
Durham E-Theses

Graph layout using subgraph isomorphisms

Hofton, Antony Edward

How to cite:

Hofton, Antony Edward (2000) Graph layout using subgraph isomorphisms, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4337/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4337/
 http://etheses.dur.ac.uk/4337/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with
the author. No quotation from it should
he published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must he acknowledged appropriately.

Graph Layout using

Subgraph Isomorphisms

Antony Edward Hofton

Ph. D. Thesis

October 2000

Research Institute in Software Evolution

Department of Computer Science

University of Durham

-+-

1 7 S E P 2001

A.Hofton Abstract

Abstract

Today, graphs are used for many things. In engineering, graphs are used to design

circuits in very large scale integration. In computer science, graphs are used in the

representation of the structure of software. They show information such as the flow of

data through the program (known as the data flow graph [1]) or the information about

the calling sequence of programs (known as the call graph [145]). These graphs consist

of many classes of graphs and may occupy a large area and involve a large number of

vertices and edges. The manual layout of graphs is a tedious and error prone task.

Algorithms for graph layout exist but tend to only produce a 'good' layout when they

are applied to specific classes of small graphs. In this thesis, research is presented into a

new automatic graph layout technique. Within many graphs, common structures exist.

These are structures that produce 'good' layouts that are instantly recognisable and,

when combined, can be used to improve the layout of the graphs.

In this thesis common structures are given that are present in call graphs. A method of

using subgraph isomorphism to detect these common structures is also presented. The

method is known as the ANHOF method. This method is implemented in the ANHOF

system, and is used to improve the layout of call graphs. The resulting layouts are an

improvement over layouts from other algorithms because these common structures are

evident and the number of edge crossings, clusters and aspect ratio are improved.

A.Hofton Acknowledgements

Acknowledgements

I would not have been able to produce this thesis without the help and support of a

number of people. There may be others that have contributed by providing me with an

interesting and enjoyable time throughout my research and for those not named below, I

thank you all.

First of all I would like to thank my parents, Joan and Michael Hofton, for support both

financially and emotionally throughout out my life. Without this help I would not be

where I am today.

I would like to thank Malcolm Munro for being an excellent supervisor and supporting

me when others may have not. Without this support I would not have made it this far

into academia or my stay in Durham would not have been as enjoyable as it was.

My eternal gratitude must also go to Liz Burd, my father Michael Hofton, and my sister

Michelle Hofton for proof reading this thesis and offering comments, constructive

criticism and continual support.

I would like to thank all the staff and students at the department of computer science for

making my life at university enjoyable. In particualar James Ingham for being an

excellent housemate throughout my PhD years and my office mates Nicholas ('string

player') Gold, Stephen ('windows') Rank, Phyo ('toast') Kyaw and Claire ('knight

rider') Knight, all of whom provided many hours of interesting and amusing

'discussions'. Together with my friends Richard Hinds and Louise Williamson without

whom my life would have been different.

TQ Environmental PLC in Wakefield sponsored this research. I owe all the directors

and staff gratitude, without their trust and foresight to fund me; this research would

never have been performed.

Finally, but by no means least, I would like to thank my examiners Keith Bennett and

Mark Harman. Without their professionalism this thesis would never had been

completed.

A.Hofton Table Of Contents

TabBe Of Contents
1. Graph Layout 1

1.1 Introduction 1

1.2 Software Engineering 3

1.3 Software Maintenance 5

1.4 Program Comprehension 6

1.5 Reverse Engineering 8

1.6 Visualization 10

1.7 Automatic Graph Layout 12

1.8 Problem Definition 13

1.9 Criteria For Success 14

1.10 Thesis Structure 15

1.11 Summary 16

2. Some Graph Theory 17

2.1 Introduction 17

2.2 Automatic Graph Layout Algorithms 20

2.3 Graph Classes 23

2.4 Aesthetics 38

2.5 Metrics 45

2.6 Summary 54

3. Some Graph Uses 55

3.1 Software Engineering Domain Graphs 56

3.2 Graph Specification Languages 74

3.3 Graph Grammars 81

3.4 Graph Drawing Tools 84

3.5 Graph Isomorphism 92

3.6 Summary 99

4. The ANHOF Method of Call Graph Layout 100

4.1 Introduction 100

4.2 The Common Model Graphs 100

4.3 The ANHOF Method 115

4.4 Summary 136

5. Implementing the ANHOF Method 137

5.1 Introduction 137

5.2 The ANHOF System 137

5.3 Summary 142

6. Tuning the ANHOF System 143

6.1 Graph Isomorphism System 143

6.2 Match Analyser 147

6.3 Graph Layout System 156

A.Hofton Table Of Contents

6.4 Summary 162

7. The ANHOF System at Work 163

7.1 Simple Example 163

7.2 Real Call Graph Examples 171

7.3 Metric Comparison of the Graphs 187

7.4 Summary 188

8. Performance of the ANHOF System 190

8.1 Models in Software 190

8.2 Metric Performance 193

8.3 Time Performance 205

8.4 Summary 207

9. Conclusions and Future Work 208

9.1 Introduction 208

9.2 Background 208

9.3 Results 210

9.4 Evaluation Against The Criteria For Success 213

9.5 Comparison Of The ANHOF Method / System With Other Systems 216

9.6 Future Work 218

9.7 Concluding Remarks 222

10. Appendix 1 - Example Systems 223

10.1 Introduction 223

10.2 Example Code 223

10.3 System Description 225

11. Appendix 2 - File Formats 228

11.1 Introduction 228

11.2 daVinci 228

11.3 Graph Tool 230

11.4 Graph Modelling Language 231

11.5 VCG 235

12. Appendix 3 - Implementation Information 240

12.1 Fact Bases 240

12.2 The Graph Representation 243

12.3 Prolog Rule Output Routines 244

13. Appendix 4 - The ANHOF System at Work 248

13.1 Adjacency Matrices ••• 248

13.2 GIN Input file 249

13.3 Graph Isomorphism System 251

13.4 Match Analyser 258

13.5 GIN Output File 262

14. Bibliography and References 265

A.Hofton Table Of Contents

Table Of Figures
Figures

Figure 1 - A typical call graph layout 1

Figure 2 - A typical call graph laid out using the layout algorithm of Sugiyama et al 2

Figure 3 - A typical call graph laid out using the ANHOF system 2

Figure 4 - A typical reverse engineering tool (adapted from [33]) 9

Figure 5 - The area of automatic graph layout 18

Figure 6 - Layouts of the same graph using the various layout standards 21

Figure 7 - An undirected graph 24

Figure 8 - A directed graph 28

Figure 9 - A basic tree 30

Figure 10 - The different classes of trees 30

Figure 11 - A graph laid out using the methods above 34

Figure 12 - A normal graph and its planar representation 37

Figure 13 - A graph that is not semantically recognisable 44

Figure 14 - A simple Dendrogram and its clustering 50

Figure 15 - An example graph to cluster 51

Figure 16 - (b) A context insensitive call graph and (a) its corresponding code 58

Figure 17 -(b) A context sensitive call graph and (a) its corresponding code 58

Figure 18 - The symbols used in call graphs 59

Figure 19 - The call graph of the 'Lines.C program 60

Figure 20 - The ANSI flowchart symbols [31] 61

Figure 21 - The flowchart of 'Lines.C' 62

Figure 22 - The symbols used in a control flow graph 66

Figure 23 - The control flow graph of the 'Lines.C' 67

Figure 24 - The symbols used in a data flow diagram 71

Figure 25 - An example of a data flow diagram 73

Figure 26 - The two production rules 83

Figure 27 - A typical structure of a graph editor / browser 89

Figure 28 - A graph layout system modified from [12] 90

Figure 29 - A drawing of graph G, H and 1 94

Figure 30 - Graph J 94

Figure 31 - The graph A and its subgraphs 96

Figure 32 - The common model graphs present in a call graph 102

Figure 33 - A Fan Out common model graph 104

Figure 34 - A Fan In common model graph 105

Figure 35 - A Chain common model graph 107

Figure 36- A Chain to Fan Out common Model Graph 108

Figure 37 - A Split 1 common model graph 109

A.Hofton Table Of Contents

Figure 76 - The relationship between the number of crossings and the number of edges 204

Figure 77 - The running of time of the ANHOF system 206

Figure 78 - Where the time is spent in the ANHOF system 207

Figure 79 - An example Split 1 model 219

Figure 80 - The grammar definition of the daVinci language taken from [65] 229

Figure 81 - 'Lines.C represented as a daVinci input file 230

Figure 82 - The grammar of a GIN file 230

Figure 83 - The GIN file representation of'Lines.C' 231

Figure 84 - The grammar of a GML file taken from [79] 233

Figure 85 - 'Lines.C' represented as a GML file 235

Figure 86- The input grammar of a VCG file taken from [103] 239

Figure 87 - 'Lines.C' represented as a VCG input file 239

Figure 88 - The GIN representation of a Triangle common model graph 248

Figure 89 - The GIN representation of a Box common model graph 249

Figure 90 - The GIN input file representing graph G 251

Figure 91 - The Prolog representation of Graph G 254

Figure 92 - fan in and fan out information 255

Figure 93 - The graph representation file 261

Figure 94 - The GIN output file from the ANHOF system 264

Tables
Table 1 - The common types of tree 31

Table 2 - A summary of aesthetic criteria 41

Table 3 - A summary of semantic constraints 41

Table 4 - Showing which aesthetics apply to which class of graph 42

Table 5 - Common metrics applied to graphs 46

Table 6 - The clustering of graph in Figure 15 51

Table 7 - The common structures of a flowchart 65

Table 8 - The common structures of a control flow graph 69

Table 9 - The common operations of a data flow diagram 74

Table 10 - A comparison of file formats 81

Table 11 - The classification of many layout systems 92

Table 12 - The properties of the chosen graphs 144

Table 13 - The settings for the various model detect systems 145

Table 14- The graph properties used to test the isomorphism algorithms 146

Table 15 - The properties of the tested graphs 149

Table 16 - The orders of match sets that were tried 151

Table 17 - The combinations that do not maximise the number of valid matches 154

Table 18 - The natural orders to send matches through the Match Analyser 155

Table 19 - the properties of the example graphs 187

A.Hofton Table Of Contents

Figure 38 - A Split 2 common model graph I l l

Figure 39 - A Split 3 common model graph 112

Figure 40 - A Triangle common model graph 113

Figure 41 - The independent variations of four vertices 114

Figure 42 - A Box common model graph 115

Figure 43 - The ANHOF method of call graph layout 117

Figure 44 - The Graph Isomorphism System 139

Figure 45 - The Graph Layout System 141

Figure 46 - The performance of various isomorphism algorithms 146

Figure 47 - The percentage of valid matches were possible by each order 152

Figure 48 - The number of valid matches that each method produces in each combination in the call graph

of real 2 153

Figure 49 - The number of valid matches that each method produces in each combination in the call graph

ofc-decl2 153

Figure 50 - The number of valid matches that each method produces in each combination in the call graph

of combine2-1 154

Figure 51- The descending alphabetical ordering of vertices 157

Figure 52 - The ascending alphabetical ordering of vertices 158

Figure 53 - The fan in ascending ordering of vertices 158

Figure 54 - The fan in descending ordering of vertices 159

Figure 55 - The vertices sorted in a combination of orders 161

Figure 56 - The Triangle structure (a) laid out using Graph Tool (b) correctly laid out 165

Figure 57 - How graph G is laid out using Graph Tool 166

Figure 58 - How graph G is laid out using daVinci 168

Figure 59 - How graph G is laid out using the ANHOF system 170

Figure 60 - The layout of program cp-search using Graph Tool 172

Figure 61 - The layout of program cp-search using daVinci 173

Figure 62 - The layout of program cp - search using the ANHOF System 174

Figure 63 - An example graph and how its layout could be improved 175

Figure 64 - genopinit laid out using conventional layout tools 176

Figure 65- genopinit laid out using the ANHOF system 178

Figure 66- varasm laid out using conventional graph layout tools 180

Figure 67- varasm laid out using the ANHOF system 182

Figure 68 - localalloc laid out using conventional methods 184

Figure 69 - localalloc laid out using the ANHOF System 186

Figure 70 - The average contents of the software tested 192

Figure 71 - Shows the average percentage of models in software 193

Figure 72 - Shows the ratio between longest and shortest side using the various methods 197

Figure 73 - The area taken by graphs 199

Figure 74 - The relationship between the clusters and vertices 201

Figure 75 - The relationship between edge length and edges 202

A.Hofton Table Of Contents

Table 20 - The programs studied 191

Table 21- The properties of the graphs processed 195

Table 22 - The adjacency matrix of a Triangle common model graph 248

Table 23 - The adjacency of a Box common model graph 249

Algorithms

Algorithm 1 -Showing when two lines cross 54

Algorithm 2 - The process of searching for the common model graphs 119

Algorithm 3 - The process of filtering of matches 120

Algorithm 4 - Layout Graph Representation 122

Algorithm 5 - The main automatic graph layout algorithm 125

Algorithm 6 - How a tree is laid out with a known mid point 126

Algorithm 7 - How vertices that have a fan in value are laid out 128

Algorithm 8- The automatic graph layout algorithm for a Fan Out common model graph 129

Algorithm 9 - The automatic graph layout algorithm for a Fan In common model graph 129

Algorithm 10 - The automatic graph layout algorithm for a Split 1 common model graph 130

Algorithm 11 - The automatic graph layout algorithm for a Split 2 common model graph 131

Algorithm 12- The automatic graph layout algorithm for a Split 3 common model graph 131

Algorithm 13 - The automatic graph layout algorithm for a Chain common model graph 132

Algorithm 14 - The automatic graph layout algorithm for a Chain to Fan Out common model graph... 132

Algorithm 15 - The automatic graph layout algorithm for a Triangle common model graph 133

Algorithm 16 - The automatic graph layout algorithm for a Box common model graph 134

Algorithm 17 -Shows an algorithm that wil l layout a hierarchical graph 135

A.Hofton Copyright Notice

Copyright Notice

The copyright of this thesis rests with the author. No quotation from it should be

published without written consent and information derived from it should be

acknowledged.

Declaration

No part of the material has previously been submitted for a higher degree in the

University of Durham or in any other university. Al l the work presented here is the sole

work of the author and no one else.

A.Hofton Chapter 1 - Graph Layout

1. Graph Layout

1.1 Introduction

Laying out large graphs by hand is a difficult and laborious task. It is a task that should

be automated; the theory is known as automatic graph layout. This thesis addresses the

problem of automatic graph layout for graphs used in software engineering. These are

used in the practice of providing a better understanding of programs by maintainers who

are changing the code. When laying out graphs by hand there are various techniques

that have to be modelled for a layout algorithm to be successful. This thesis concerns

the application of these techniques to the automatic layout of software engineering

graphs. These graphs, like many other types of graph, can quickly become unreadable

using automatic layout algorithms.

Figure 1 shows a typical small software engineering graph, known as a call graph. This

has many problems, the main ones being the high number of edge crossings and the

overlapping of vertices. These problems are typical of the layouts produced from

automatic layout algorithms and are collectively known as the 'Graph Layout Problem'.

,: **S set.c i

I : cp'J-nut.feti.top/.l

•

t • • • , •

i • 'issa!.3i:« !

ccrw*_»egs j ' IKI reg nets -

«j *«65_fltjr jt-

= .bort
....

Figure 1 - A typical call graph layout

Page 1

A.Hofton Chapter 1 - Graph Layout

Applying standard layout algorithms, such as Sugiyama, Tagawa and Toda. [159],

improves this. When Sugiyama is applied to Figure 1, the graph shown in Figure 2 is

produced. However the edge crossings are still high in this diagram. In the following

chapter it is suggested that maintainers look for common structures in graphs to aid

them in understanding the software under consideration. These common structures can

be used to improve the layout of the graph.

T

<

I

Figure 2 - A typical call graph laid out using the layout algorithm of Sugiyama et al.

In Chapter 4 of this thesis it is shown that when these common structures are given a

standard layout, collectively known as common model graphs, they can be used to

improve the layout of graphs by reducing the edge crossings and aiding understanding

by making these structures become apparent. These techniques when applied to the

graph in Figure 1 yield the much improved layout of Figure 3. It is a much improved

layout because the common structures are clearly identifiable by the different coloured

vertices. In addition, a reduced number of edge crossings and related vertices are placed

together.

: - -r
— . t "
•-r.

Figure 3 - A typical call graph laid out using the ANHOF system

Page 2

A.Hofton Chapter 1 - Graph Layout

This chapter puts graph layout into context in terms of software engineering,

maintenance, reverse engineering and visualization. The problem is stated and the

criteria for success are given. Finally the thesis structure is presented.

1.2 Software Engineering

The term software engineering was introduced at a NATO conference in the 1968 to

discuss the 'software crisis' [121]. This 'crisis' was caused by machines becoming

powerful enough to make the automation of everyday tasks feasible, thus causing larger

applications to be built. Existing development techniques were not sufficiently robust

because techniques for small systems development could not be scaled up. Projects ran

late, over budget and were difficult to maintain. Whilst hardware was becoming

cheaper, software was becoming more expensive. New techniques were needed to

control the complex task of developing software.

Today this software crisis is not completely resolved. There are improvements in

software engineering methods and techniques, development tools and in the skills of the

I.T. staff. However, the demand for software outstrips the improvements in software

productivity, and mistakes that were made in the 1960's are still being made today.

Somerville [154] suggests some factors of a well-engineered piece of software are: -

• the software should be easily maintainable. Software is subject to regular change

and be written and documented to aid this task,

• the software should be dependable. This means that it should perform as expected

by users and not fail more than the specification suggests it wil l ,

• the software should be efficient and not be wasteful on resources, and

• the software should offer an appropriate user interface.

Research into the development process is continuing. One of the first models produced

was that of a waterfall by Royce [144]. Developers welcome it because the process is

Page 3

A.Hofton Chapter 1 - Graph Layout

visible and manageable. There are five phases to the model, each one leading to a

change in the ones preceding it and is therefore an ongoing process. Royce [144]

describes these processes as: -

• requirements analysis and definition - The system's functionalities, constraints

and goals are established by consultation with the system users. Both users and the

development staff define them in a manner that is understandable.

• system and software design - The system design process partitions the

requirements of both hardware or software systems and also establishes an overall

system architecture. Software design involves representing the software system

functions so that they are transformed into one or more executable programs.

• implementation and unit testing - During this stage, the software design is realised

as a set of programs. Unit testing involves verifying that each program meets its

specification.

• integration and system testing - The individual programs are integrated and tested

as a complete system to ensure that the software requirements are met. After testing,

the software system is delivered to the customer.

• operation and maintenance - Maintenance involves correcting errors not

discovered in earlier stages of the life cycle, improving the implementation of

system units and enhancing the system's services as new requirements are

discovered.

This model is a general one and many processes are vague. Other models have been

suggested, for instance the spiral model by Boehm [17], and the rapid prototyping

model by Fairley [55]. An advantage of the waterfall model is that analysis and

planning are performed before any major decision is made.

Whichever model is used graphs are used in many stages of the process. They are used

as planning, design and maintenance tools. The layout of these graphs is crucial to the

software engineering process.

Page 4

A.Hofton Chapter 1 - Graph Layout

1.3 Software Maintenance

After the software has been delivered it is inevitable that the software will need to be

altered to implement changes to the specification or to correct errors. The term software

maintenance describes this process. It is defined as, "the modification of a software

product after delivery to correct faults, to improve performance or other attributes, or

to adopt the product to a changed environment" [1]. These modifications range in size,

from rewrites to accommodating new requirements to correcting coding errors.

It is perceived that it is impossible to produce a program of any size that does not need

to be maintained [102]. With this in mind, programs should be designed to minimize

problems with maintenance. Lientz and Swanson [105] suggest that large organisations

devote at least 50 percent of the total programming effort to maintaining existing

systems. In accordance with the above definition there are four types of software

maintenance. These are: -

• perfective maintenance,

• adaptative maintenance,

• corrective maintenance, and

• preventative maintenance.

Perfective maintenance involves implementing new functionality or non-functional

system requirements. This accounts for approximately 60 percent of all software

maintenance [105]. An example of this is to change a menu order to cause it to be more

user friendly.

Adaptive maintenance is maintenance that is required because of changes in the

environment of the program. This accounts for approximately 18 percent of all software

maintenance [105]. An example of such maintenance is where a system is changed to

work on platforms different to the original specification.

Page 5

A.Hofton Chapter 1 - Graph Layout

Corrective maintenance is the correction of previously undiscovered system errors, and

accounts for a further 17 percent [105]. An example of such maintenance is where a

system is changed to correct an error discovered in its code.

Preventative maintenance is the updating of software to overcome future problems and

to increase maintainability accounting for approximately five percent of all software

maintenance [105]. An example of this the rewriting of a module because it is the

source of many bugs.

Often errors present in the code are relatively easy and inexpensive to correct. Design

errors are more expensive, mainly because they could involve re-coding several

program components. I f a customer changes his requirements, it can often lead to a

redesign followed by rewriting large sections of the program, and is therefore expensive

to correct.

Maintenance programmers have to cope with large and ever increasing volumes of

software. Often the documentation for this software is not suited to the reader's

requirements and may even be lost or incomplete. Here techniques of program

comprehension and reverse engineering are used, both of which are discussed below.

Graphs are used as a comprehension aid because they are an effective representation of

the structure of the program. The layout of them is therefore crucial to the

comprehension of the program.

1.4 Program Comprehension

Program comprehension is a vital part of the process of software maintenance. I f a

program is to be modified then one of the first steps required is to know what the

program does. Studies have shown that 50 - 90 percent of maintenance time is devoted

to program comprehension [156]. I f documentation is present, then three and a half

times as much time is put into studying the code than studying the documentation [60].

When programmers study code they are trying to, "understand the intent and style of

the programmer" [60].

Page 6

A.Hofton Chapter 1 - Graph Layout

There are some applications in use today that were developed in the 1960's or 1970's,

before the advent of development methods and before the word 'engineering' had ever

been applied to programming. Often such systems have inadequate or non-existent

documentation. When software is behind schedule, updating the documentation is not

high on the developer's priority list, and it is difficult for later programmers to obtain

knowledge of the system.

In cases like this program comprehension techniques are required. Techniques, such as

viewing the program code or extra information generated from that code allow the

programmer to gain knowledge about the program. There is often no alternative to

reading the code. Understanding the code by reading is a function of the program size

and its complexity [143]. Despite this, the method is effective. The sheer volume of

information in the code often makes extracting the required knowledge a difficult task

to perform. Clarity of the code is often helped by using indentation [150], using

meaningful variable names [116], proper use of comments [178] and modularity of code

[99].

According to Littman, Pinto, Letovsky and Soloway [107] there are two strategies that

programmers apply in order to understand a program. The first strategy is to try

understanding the whole program, known as "the systematic approach". The other is the

"as needed strategy", where the programmer studies the part of the program as and

when needed. There is no consensus of which method is best, but the authors conclude

that a systematic approach is the best. However the original study involves small

programs only. On a large program this may not be feasible. The approach used

influences the knowledge the programmer achieves about the code. It is this knowledge

that decides whether a modification is successfully achieved. The "systematic

approach" acquires knowledge on the casual interactions of the program's functional

components and the knowledge of the program structure (static knowledge) leading to a

successful modification. However this static knowledge is not gained using the "as

needed approach". Both of these strategies allow programmers to build up the

information about a program in a mental model. There are strong and weak mental

models [107]. Weak models only contain static knowledge and are therefore gained

from the "as needed approach". However, strong mental models contain casual and

Page 7

A.Hofton Chapter 1 - Graph Layout

static knowledge about the program. These models can take many forms including

chunks, hypotheses, and beacons.

Text structures are formed from the program's source code and its structure. It is

dependent on its presentation, so it is improved by, amongst other ideas, indentation,

and use of comments.

Chunks were originally described by Schneiderman [150]. He described a process

where maintainers abstract portions of the source code in to chunks. These are then

collected together into higher-level chunks. Chunks can be immediately understood or

returned to later for revision.

Hypotheses were introduced by Brooks [25]. Hypotheses are a set of theories on what

the program does and how it works. These are then rejected or refined until the correct

set of hypotheses are found.

Beacons were introduced by Brooks [25] and further explored by Wiedenbeck [172].

These are recognisable or familiar features within the source code or other forms of

knowledge. Beacons act as cues to the presence of certain structures or features and can

be used in the forming or verification of hypothesis.

1.5 Reverse Engineering

Software documentation aids program comprehension and software maintenance. The

documentation should be produced in accordance with the source code, and as part of

the development process. Both should be passed onto the maintenance team. This is

rarely the case, and often the documentation is not of any use to the maintenance team,

due partly to its outdated nature. There are basically two types of documentation,

development documentation and user documentation. Neither is produced with the

maintainer in mind. Therefore the maintenance programmer reconstructs the useful

documentation from the source code, in order to have adequate understanding of the

system. This process is commonly known as reverse engineering, and is an example of

the overlap between software maintenance and software engineering.

PageS

A.Hofton Chapter 1 - Graph Layout

The term reverse engineering has its origins in the analysis of hardware, based on the

practice of extracting the designs from a finished product [33]. Rekoff [142] defines

reverse engineering as, "the process of developing a set of specifications for a complex

hardware system by an orderly examination of specimens of that system. These

specifications are being prepared by persons other than the original designers, without

the benefit of any of the original drawings ... for the purpose of making a clone of the

original hardware system.'" Chikofsky and Cross [33] adapt this definition to apply to

software engineering and is: -

"Reverse engineering is the process of analysing a subject system to identify the

system's components and their interrelationships and create representations of the

system in another form or at a higher level of abstraction. "

Source
Code

Parser^ Intermediate
Representation

Graphical
Representation

Repository "^"Documentation

Edit

Figure 4 - A typical reverse engineering tool (adapted from |33|)

Figure 4 above shows a typical reverse engineering tool. The tool takes a program's

source code, and parses it. This generates an intermediate representation of the program

that is then placed in a repository. An example form of the representation is a Prolog

fact base. Various tools can be developed that allow the facts that are in the repository

to be taken out and used to produce items such as new documentation.

Visualization techniques can be used to present the facts in the repository in a graphical

manner. The justification for visualization will be presented below along with some of

these graphical representations.

Page 9

A.Hofton Chapter 1 - Graph Layout

1.6 Visualization

The word visualize can be defined by the phase "to make visual to the eye and mind"

[61]. This can be generalised and applied to software engineering as a process that aids

the programmer in the understanding of a computer program. Program visualization aids

in the process of understanding the complete program, not only the part visible to the

user on the screen but its concept, its aims, and its structure.

Reading text is a special case of visual processing. However this is translated or

interpreted as a character, word or a phrase level. Unfortunately such detail is too great

and the brain will abstract each character, word or sentence into internal meaning or

representation. Two methods of describing this process are beacons [25] and chunks

[150]. Haber [75] in the late 1960's and early 1970's demonstrated the brain's great

capacity for analysing pattern, colour and dimension. Software visualizations make use

of this fact by presenting these program comprehension abstractions in a visual form. In

studies by Cunnliff and Taylor [38] it was found that graphically presented code is

faster and more accurate to comprehend. This was shown through experimentation by

comparing a subjects understanding of programs represented both graphically and

textually.

Effectively presenting large amounts of information in any form is challenging. Often

there is restricted space to present this information. Where a computer is to be used, this

space is restricted to the size of the screen. It is often possible to fill this space with so

much information and detail that it completely overwhelms the user. It has been said

that it is not the amount of information but how it is presented. The process of

presenting this information is known as 'visualization'.

A definition of visualization is provided by Knight [97] and is "visualization is a

discipline that makes use of various forms of imagery to provide insight and

understanding and to reduce complexity of the phenomena under consideration".

Myers [120] attempts to summarise the benefits of visualization as, "The human visual

system and human visual information processing are clearly optimised for multi­

dimensional data. Computer Programs, however are conventionally presented in a one

Page 10

A.Hofton Chapter 1 - Graph Layout

dimensional textual form, not utilising the full power of the brain ". However further

justification can be provided from research undertaken under the title 'information

visualization'. These are summarised by Knight [97] : -

• being able to summarise a large amount of information in one view and thus

providing an overview,

• being able to see correlations or patterns that may have otherwise been missed had

only the figures or categorical data been used,

• trying to display structural relationships and context that may be more difficult to

detect by individual retrieval requests, and

• providing an effective way of going between overview abstractions and the detail of

the data.

There are many taxonomies that attempt to classify the many types of visualizations.

([120] and [133]). Myers suggests that program visualization can be classified into one

of the following areas. These are particularly relevant to two-dimensional

visualizations: -

• static code visualizations,

• dynamic code visualizations,

• static data visualizations,

• dynamic data visualizations,

• static algorithm visualizations, and

• dynamic algorithm visualizations.

One technique of software visualization and also a technique of static analysis of

programs is the extraction of various graphs representing the program. Examples of

graphs used in software engineering are flowcharts, control flow graphs, call graphs,

and data flow graphs. A brief introduction to graphs, and in particular automatic graph

layout, is given below.

Page 11

A.Hofton Chapter 1 - Graph Layout

1.7 Automatic Graph Layout

Graphs are used in many areas ranging from chemical structure diagrams to flowcharts

in computer science. The field of automatic graph layout is diverse and fundamentally it

can be divided into two areas; the description of the structure of the graph, collectively

known as graph theory and, the methods of presenting them, collectively know as graph

drawing.

Graph theory covers the terminology of graphs, in terms of the mathematics behind

them, and their structure. It makes use of standard mathematical terminology in such

areas as Cartesian co-ordinates and set theory. There are many general books and papers

devoted to the area, e.g. [176] and [131].

Graph Drawing describes the process of formatting the graph so that is can be displayed

to a user. It can be displayed on such media as paper or a visual display unit. In order to

display the graph it has to be formatted from a raw list of vertices and edges to a defined

layout that can be displayed. The defined layout is obtained using an automatic graph

layout algorithm. When automatic graph layout became feasible new layout algorithms

were devised. These take a graph of a certain class and lay out the vertices and edges of

that graph taking various aesthetics into account. DiBattista et al. [42] provides an

annotated list of references on the topic.

In the last couple of years there has been a consolidation of the graph drawing area.

Many texts have tried to draw together the information and algorithms. Presenting the

best and worse algorithms for each class of graphs. Research has started to be

performed in where to apply each algorithm. Consequently there are growing numbers

of books and papers that provide a good general discussion on the topic, such as [161]

and [43].

In Chapters 2 and 3 the whole field of automatic graph layout will be presented. It will

present the graph theory necessary for this thesis and, the various different classes of

graphs. It will discuss the various automatic graph layout algorithms and many other

areas of the automatic graph layout.

Page 12

A.Hofton Chapter 1 - Graph Layout

1.8 Problem Definition

In the domain of software engineering, graphs are used for displaying the structure of a

computer program. For instance to display the information of which procedures call

which (known as a call graph) or the flow of information through the program (known

as a flowchart).

Earlier in this chapter it was shown that there is a problem in laying out graphs. A call

graph was shown as an example (Figure 1, Figure 2 and Figure 3). This graph and

other graphs used in software engineering do not fit into any single class of graph. They

consist of many classes of graphs. The problem is not obtaining a layout of the graph; it

is controlling the layout of the graph so that they are more comprehendible. There is

also a lack of techniques that combine some of the solutions in the literature in one tool.

It is necessary to develop an algorithm for laying out graphs in the domain of software

engineering that can be used to draw many of the types of graph in that domain and can

be customised to the users needs.

Many automatic graph layout algorithms work well with specific graph classes, e.g.

tree, but do not scale up very well to larger graphs. Software engineering graphs are

often made up of several of these graph classes. Current research in automatic graph

layout cannot proceed unless layout algorithms concentrate on a specific graph type that

is designed for a specific purpose and should stop concentrating on the general problem.

It is therefore the intention of this research to improve automatic graph layout for a

specific type of graph that is commonly used in program comprehension. I f

programmers are aiming to understand the whole program, a study by Jeffries [85]

suggests that when comprehending the program that programmers have to read the

program code, to do this they use a common method. They read it in the order in which

it would be executed, main procedure first, then procedures called by the main

procedure, and then procedures called by those procedures, etc. This knowledge of the

structure is represented by a call graph and represents a top down approach to program

comprehension. The graph type that wil l be the focus of this research will therefore be

that of the call graph.

Page 13

A.Hofton Chapter 1 - Graph Layout

Schneiderman [150] suggested that maintainers 'chunk' together sections of code. They

also look for key features in code known as beacons. Both these techniques can be

applied to call graphs. When comprehending call graphs maintainers may look for

common structures. Any layout algorithm for call graphs should therefore make these

common structures appear in the final layout of the graph. These common structures

also have other advantages. These can lead to the simplification of call graphs or can aid

in the layout of them. These common structures have associated with them a 'good'

layout. The original graph is broken up into these structures and others, called

subgraphs. Each subgraph is then laid out using their associated layout algorithm, and

the original call graph is rebuilt of 'well ' laid out graphs and a 'well ' laid out call graph

is what remains. This is a form of the 'divide and conquer' method of automatic graph

layout suggested by Messinger, Rowe and Henry [113].

It is obvious through reading several comparisons of automatic graph layout algorithms

that the success of using these algorithms is measurable using various aesthetic

properties. These properties are discussed later in this thesis. Thus the term 'well laid

out graph' can be described in terms of its aesthetic qualities. Standard layout

algorithms set standards that should be used when laying out graphs. Any new layout

method should improve these standards.

1.9 Criteria For Success

This research in this thesis will produce an automatic graph layout algorithm/system

that will : -

• identify the common structures in call graphs,

• produce well laid out call graphs that are to a high quality in terms of the metrics of

the graph,

• be able to improve the layout of large call graphs,

• have the ability to describe the graph in a simple language,

• be able to detect various common structures that have been found to be present in

many call graphs, and

• develop a prototype tool to show proof of concept.

Page 14

A.Hofton Chapter 1 - Graph Layout

1.10 Thesis Structure

In the next two chapters an overview of the literature in the areas of automatic graph

layout algorithms, software engineering domain graphs and graph theory problems is

given. These will be discussed under the following titles: -

Chapter 2 - Some Graph Theory

Chapter 3 - Some Graph Uses

In Chapters 4 and 5 the solution to the above problem is outlined. In Chapter 4 some of

the common models present in call graphs are given, and a theoretical method of

detecting them and using them to improve the layout of call graphs is outlined. This

method is discussed under the title of 'the ANHOF method'. In Chapter 5 a description

of an implementation of the method known as the ANHOF system is given. The titles of

the chapters are as follows: -

Chapter 4- The ANHOF Method of Call Graph Layout

Chapter 5- Implementing the ANHOF Method

In Chapters 6, 7, and 8 the results of applying the ANHOF system are given. In Chapter

6 the ANHOF system is optimised by investigating the settings necessary to obtain its

best performance. Whilst in Chapter 7 the system is compared with other layout tools,

and its performance is discussed. In Chapter 8 the performance of the ANHOF system is

given in terms of the metrics of the graphs it produces. These are compared with other

algorithms. The titles of the chapters are: -

Chapter 6 - Tuning the ANHOF system

Chapter 7 - The ANHOF system at work

Chapter 8 - The performance of the ANHOF system

Chapter 9 draws conclusions from and summarises this research. It suggests further

work and possible future expansions of the research. It is titled as follows: -

Chapter 9 - Conclusions and Further work

Page 15

A.Hofton Chapter 1 - Graph Layout

1.11 Summary

This chapter places graph layout in the context of software engineering, maintenance,

reverse engineering, program comprehension and software visualization. It has defined

the problem of automatic layout of graphs of a particular type used in the domain of

software engineering, known as call graphs. This is followed by the criteria of a

successful research project into the problem. Finally the structure of the rest of this

thesis is given. In the next chapter the diverse area of automatic graph layout is

presented. It will show that layout algorithms only work on a specific class of graph.

Page 16

A.Hot'ton Chapter 2 - Some Graph Theory

2. Some Graph Theory

2.1 Introduction

Many areas of science and engineering use graphs to represent systems comprising of a

large number of interacting components. Chemists use graphs to model interactions

between particles and engineers use them to represent very large scale integration

(VLSI) circuits. In computer science they are commonly used to represent databases,

semantic networks, knowledge representations and, in large programs, model control

flow and module dependency. To generalise, graphs are used to model systems where

the number of components is large but the components themselves are simple. They are

described by Tamassia, DiBattista and Batini [162] as "an effective documentation

means and representation for both the designer and the user, they are a common

language to express the requirements of the application in a formal way".

In Chapter 1 a problem of laying out software engineering graphs was given. It

suggested that layout algorithms work on specific classes of graphs. In the chapter

below a summary of the underlying graph theory is given.

This thesis describes a process applying certain techniques which layout graphs

automatically and an improved method of layout for domain specific graphs, the domain

being restricted to software engineering. This chapter of the thesis describes current

research in the field of automatic graph layout, which is a diverse field. In particular this

survey looks at graph theory, graph specification languages, automatic layout

algorithms, graph tools, graph metrics, graph aesthetics, the different graph types and

graph isomorphism. The fields are shown in Figure 5.

Page 17

A.Hofton Chapter 2 - Some Graph Theory

Graph Specification
Languages >

Automatic
Layout Algorithms

^ Edges

* • Nodes

< Graph
Grammars

• Crossing

Routing

• Ordering
• Positioning

Isomorphism

Graph Theory
Automatic Graph

Layout
Aesthetics

Graph Tool v

Davincy •*

VCG >

Tools Metrics Graph Class

Directed
General

^ w«..•>!<>. k. Undirected

r Tree

*• Hierarchical Graph

* Planar Graphs

Figure 5 - The area of automatic graph layout

Graph layout can be performed manually but is laborious and difficult and is therefore

ideal for automation using computers. However this causes many problems. For

instance what is a 'good layout' and what constitutes a 'good graph layout'? In this

chapter a summary of the literature in the areas of graph theory, layout algorithms,

graph types, metrics and aesthetics is presented. In the next chapter the graph theory

given below is used to discuss various types of software engineering graphs, graph tools

and graph specification languages. In addition, graph isomorphism is discussed in

Chapter 3.

2.1.1 Definitions

Throughout this thesis the term 'graph' is used. It is a term that underpins all the graph

theory that is used to design and describe graph layout algorithms. Before proceeding

further it is necessary to define a general graph. There are many books on the general

theory of graphs, two being [176] and [73]. They both agree on this definition of a

graph: -

Page 18

A.Hofton Chapter 2 - Some Graph Theory

"A Graph G = (V, E) is a mathematical structure consisting of two sets V and E. The

elements of V are called vertices (singular vertex) or nodes, and the elements of E are

called edges; each edge has a set of one or two vertices associated to it, which are

called its end points'"

In relation to this the following terms from graph theory will be used in this thesis: -

• path - a method of getting from one vertex to another. It is sequence of edges in

which no vertex appears more than once.

• strongly connected graph - i f for all x, y s V, there is a path from x to y and a

path from y to x.

• complete graph - a graph in which every two distinct vertices are joined by an

edge.

• labelled graph - a graph in which the vertices have been assigned an identifier

either by a function or manually.

Another definition that is more formal and commonly quoted is: -

A graph G is a tuple (V, E) where V is the set of elements called vertices and E is the

set of elements called edges and E cr V x V

As stated above this thesis is concerned with the automation of the layout of graphs

used in the domain of software engineering. Graph layout is concerned with the

positioning of the elements of the graph, the vertices and the edges. The vertices are

given a position on a Cartesian plane. The edges are given a set of coordinates using the

same Cartesian plane in which to pass through in order to fulf i l the goals of the layout.

The route may have to obey various criteria, for instance not to cross other edges or

vertices. An automatic graph layout algorithm describes the formal process of laying out

a graph.

Page 19

A.Hofton Chapter 2 - Some Graph Theory

2.2 Automatic Graph Layout Algorithms

According to Bertolazzi, DiBattista and Liotta [12] there are two approaches to

automatic graph layout algorithms, the declarative approach and the algorithmic

approach. The algorithmic approach consists of designing special purpose layout

algorithms; each algorithm is devoted to solving the layout problem for specific sets of

requirements and specific graph structures. The other is the declarative approach

consisting of devising languages for describing sets of requirements, and of using logic

programming to construct diagrams that fit the given requirements. Many of the

automatic graph layout algorithms for large general graphs use a combination of the

declarative and algorithmic approaches, first suggested by Lin and Eades [106].

There are many graph layout algorithms. DiBattista, Eades, Tamassia and Tollis [42]

provide a summary of some of the algorithms that have been published. It has been the

basis of much of this research and of others. According to Tamassia et al. [162] layout

algorithms can be categorised by: -

• the class of graph they apply to,

• the graphic standard used to layout the graph,

• aesthetics,

• constraints, and

• computation complexity.

Generally graphs can be categorised into four classes. Future sections will take each

class in turn and discuss their layout. The classes are: -

• general undirected / directed,

• trees,

• planar, and

• hierarchic.

Page 20

A.Hofton Chapter 2 - Some Graph Theory

When graphs are laid out either manually or by machine the visual representation that is

produced is called a diagram. Three standard types of diagrams are produced each with

their associated technique for producing them. The standards are: -

• straight line standard - laying out the vertices, and edges as straight-line

segments, e.g. trees.

• grid standard - place vertices on grid points and the edges follow the grid.

• mixed standard - place vertices on grid points and route edges as straight-line

segments.

Figure 6 shows a six-vertex, nine-edge graph laid out using the various standard

methods for creating a diagram of the graph.

O

o o
o

(A) B

o

(C)

(A) Straight line standard, (B) Grid Standard (C) Mixed Standard

Figure 6 - Layouts of the same graph using the various layout standards

2.2.1 A General Graph Layout Algorithm

When studying the literature it becomes obvious that the algorithms presented have

common steps. The graph layout algorithms found in the literature can be summarised

by the following general algorithm. The rest of the chapter will present more specific

Page 21

A.Hofton Chapter 2 - Some Graph Theory

algorithms. The general algorithm presented below is meant as a general guide to the

literature and to developing a 'successful' algorithm. Please note that step three does

not always apply: -

1. Order graph vertices - Rank or sort them into an order that is based on their

connectivity.

2. Position vertices using the order.

3. Reposition vertices with the aesthetics in mind.

4. Route and draw edges.

5. Display graph.

There are many methods of performing steps 1 to 3 depending upon the class of graph.

They are discussed in later sections dealing with the class of graphs.

2.2.2 Edge Routing

Edge routing (step 4) is an important problem in graph layout. Many studies have been

performed in engineering in the design of circuit boards (VLSI) but little research has

been done in relation to graph theory and automatic layout. Many other areas have been

studied and shown to have similar problems, e.g. a robot finding its way through a

maze, and many algorithms are based on this research.

Dobkin, Gausner, Kotsofios and North [47] provide an introduction to the problem of

edge routing, and also provides a definition. The definition is: -

"/« a given polygon P containing a set of holes corresponding to the obstacles S, given

two points p and q (inside P) find a path L from p to q that stays within P avoiding all

obstacles in S. Map L onto a plane in P using geometric structures."

Generally edges are added in a way that clearly exhibits vertices without adding clutter

or deceptive artefacts. Therefore a route for the edge must be found. Hsu [82] suggested

that a route is either routed on a topological plane or is mapped on to a geometric plane,

e.g. a grid. According to Dobkin et al. [47] a good route should: -

Page 22

A.Hofton Chapter 2 - Some Graph Theory

avoid other vertices in graph,

• stay close to shortest path,

• not turn sharply, and

• avoid any unnecessary inflections.

A general solution to the problem that could be applied to graph layout, is provided in

the following algorithm: -

1. Find the shortest path in polygon P from p to q such that all obstacles are avoided.

2. Fit path onto plane.

There are many solutions to find the shortest path from p to q; a few are given in [47].

Edges should bend to avoid touching incident vertices, Dobkin et al. suggest that edges

can be drawn using polylines or curves such as bezier splines to aid this.

2.3 Graph Classes

All graphs have the property of being either directed or undirected. Directed graphs are

used commonly in software engineering to represent a notion of information flow. Later

chapters show that this thesis concentrates on improving the automatic layout of

directed graphs. Undirected graphs pose many problems. An edge between two vertices

can be traversed in either direction. This lack of flow means that they are not easily

traversed automatically; there is no natural order to the vertices. The general algorithm

presented above cannot be used to design algorithms for them.

Directed and undirected graphs are largely general graph types. They are often too

general to apply automatic layout algorithms to. It is better to restrict the definitions of

the graph types further. The layout algorithms produce better results i f the exact

structure of the graph is known. Therefore, automatic layout algorithms tend to apply to

hierarchic, tree, and planar graphs. The section below provides a definition of the

general classes of directed and undirected graphs, and discusses the other classes of

graphs, giving automatic layout algorithms and associated problems for all the classes.

Page 23

A.Hofton Chapter 2 - Some Graph Theory

2.3.1 General C l a s s e s

In the section below the general classes of undirected and directed graphs are defined

and automatic layout algorithms are given.

2.3.1.1 Undirected Graphs

2.3.1.1.1 Definition

Undirected graphs are commonly known as general graphs. This definition is always

quoted as a starting point for definitions of other types of graph. A good definition is

provided by Polimeni and Straight [131] and is: -

"An undirected graph consists of a finite non-empty set V and a set E of two element

subsets of V. The Set V is called the vertex set of Graph G, while E is called the edge set

of G. The graph is denoted by ordered pair G=(V, E) "

This definition is another method of expressing the formal definition of a graph given

above. This is because when a graph is referred to without further definition, it is

generally a graph without any flow to the edges that is being referred to.

An example of an undirected graph is given in Figure 7.

U V

o

V={u,v,x,y}
E={uv, vx, xy,yu,ux}

y X

Figure 7 - An undirected graph

Page 24

A.Hofton Chapter 2 - Some Graph Theory

2.3.1.1.2 Automatic Layout Algorithms

Until 1984 there was no clear direction for laying out general undirected graphs, as

there were very few ideas on what to do with them. This was because there was very

little information to give the vertices an order and consequently very difficult to layout.

When printed circuits were just beginning to be made smaller by VLSI, graphs were

used to help lay out such structures and automatic techniques were being heavily

researched. Quinn and Breuer [140] discussed the application of particle physics and

springs to layout. They thought that they could apply weights (components) to springs

(edges) before the system was allowed to reach a state of equilibrium yielding the ideal

layout of a PCB. Eades [50] applied this technique to graph theory and this became

known as the spring embedder model. Since then, there have been several variations on

this theme; some are given below.

Eades's method uses an analogy to physics. Vertices are treated as mutually repulsive

charges and edges as springs connecting and attracting the charges. Starting with an

initial placement of vertices, the algorithm iterates the system in discrete time steps

computing the charges between the vertices, updating their position accordingly. The

algorithm stops after a fixed number of time steps. The problem with this idea is that

there is little chance of a convergence of the algorithm and therefore terminating on its

own. I f the number of time steps is too small the quality of the layout is poor and i f the

number is to large, time is wasted. Kamada and Kawai [89] (KK) refined this algorithm,

introducing an optimal edge length k. Vertices are updated by moving them one at a

time. The advantage of this system is that it converges and therefore finishes

automatically. However both of these methods have a problem in that the changes of

state only affect local areas (local minima), and not the whole graph.

In statistical mechanics a system of randomness is introduced known as simulated

mechanics. It differs from standard iterative improvement methods by allowing moves

that spoil, rather than improve, the temporary solution. This improves the problem of

local minima by using rules similar to those that define how liquids are cooled to a

crystalline form. An arbitrary state is computed. Any downward move is accepted,

while upward moves are accepted with a probability depending on a current

temperature. Initially the system has the ability to perform arbitrary moves because the

Page 25

A.Hofton Chapter 2 - Some Graph Theory

temperature is still high. Later the probability of choosing a next state with more energy

approaches zero as the temperature is lowered. This system is implemented in an

algorithm by Davidson and Harel [40] (DH). It achieves aesthetically pleasing results on

small and medium graphs. Frauchterman and Reingold [62] (FR) modify Eades's

algorithm refining the forces on the springs by implementing a simple cooling schedule.

Defining the distance a vertex can travel as being dependent on the current temperature.

The above may be regarded as the core papers on force directed placement techniques.

In recent years there have been techniques that have tried to combine them, such as

Frick, Ludwig and Mehldau [63] (GEM), combining the advantages of each.

Another method is to use a method suggested by Tunkelang [163] (TU), known as the

incremental approach. Tunkelang uses a template of 16 locations. These are the eight

local neighbour positions and eight positions at distance d. Tunkelang inserts the

vertices one after another in some precompiled order, breadth first from the centre of the

graph. For a new vertex Tunkelang checks the template positions of each of its

neighbours and the corners of the screen as candidate positions and chooses the best.

After each insertion, fine-tuning is applied. All neighbours of the current vertex are

checked for an improved position.

A comparison of these algorithms can be found in Brandenburg, Himsolt and Rohrer

[23]. Here the algorithms are tested obtaining the following information: -

1. run time,

2. the ratio of the length of the shortest and longest edges,

3. standard deviation of the edge length,

4. the number of edge crossings,

5. the distribution of vertices,

6. the ration of farthest and nearest pair of vertices, and

7. the area of the graph.

Page 26

A.Hofton Chapter 2 - Some Graph Theory

The following is a summary of the results: -

1. the algorithms are stable against random input graphs,

2. KK, FH, FR and GEM without crossing optimisation produce similar looking

diagrams,

3. TU often gives different layouts to the others,

4. DH is the most flexible and also the most time consuming,

5. KK and GEM are the fastest,

6. FR is fast on small graphs, and

7. KK produces smooth layouts with a low ratio of the longest and shortest edges and a

small derivation of the edge length.

Brandenburg et al. [23] concludes there is no clear winner. They suggest that the

algorithms are applied in the following order: -

1. KK or GEM,

2. TUorFR,then

3. DH.

2.3.1.2 Directed Graphs

2.3.1.2.1 Definition

A directed graph is used in structures where flow needs to be represented, for example

in control flow graphs [101] and call graphs [145]. A directed graph is a general term

that covers a variety of graphs. Papers and texts tend to define each of these types

separately and forget about a definition of directed graphs. However a good definition is

provided by Polimeni and Straight [131] and is: -

"A directed graph (digraph) D consists of a finite nonempty set V, together with a

subset E of the product set V x V. We call V the vertex set of D and E the edge set of D.

The digraph D is donated by the ordered pair (V, E). "

Page 27

A.Hofton Chapter 2 - Some Graph Theory

This differs from the general definition of a graph given above. The edge set (E) is not a

two-element subset of the product subset. Figure 8 gives an example of a directed graph.

v
o

V={u,v,x,y}
E={(u,y),(u,v),(v,x),(y,x)}

6
y

Figure 8 - A directed graph

2.3.1.2.2 Automatic Layout Algorithms

A method of laying out directed graphs is to use a hierarchical structure. One such

method is presented by Gansner, Koutsofios, North and Vo [67]. He uses techniques

more commonly applied to network flow and design to rank the vertices. This ranking

generates a simple hierarchical representation of a directed graph. Their algorithm is

simplified here: -

1. Rank vertices to obtain the level they are on.

2. Order vertices order the vertices on their vertices.

3. Position vertices

4. Make splines (Route Edges)

However, there are few algorithms for laying out general directed graphs because it is

better to develop an automatic layout algorithm for a specific type of graph. There are

attempts by Sugiyama and Misue [157] to apply the spring embedding algorithm (force

directed approach) described above.

2.3.2 Trees

A tree can be either a directed or undirected graph. Tree data structures are commonly

used in computer science usually in their directed form. Many texts cover the subject, a

standard one being by Wirth [177]. They are commonly used to represent or store

u
o

Page 28

A.Hofton Chapter 2 - Some Graph Theory

hierarchical data. The flow of the graph represents the amount of data being stored,

increasing or decreasing as levels are traversed. Many algorithms are available which

manipulating them. A layout of a tree is often a good representation of the design of a

computer program.

This section describes the current work on automatic tree layout. A tree is defined, the

problems associated with tree layouts are given and an automatic layout algorithm is

presented.

2.3.2.1 Definitions

There are many definitions of a tree. A mathematical definition given by Polimeni and

Straight [131] is a "Connected Acyclic Graph". Whilst this is a good general definition,

it does not represent the hierarchical nature of a tree. A better definition is provided by

Aho, Hopcroft and Ullman. [4] and is: -

"A tree is a collection of elements called vertices, one of which is distinguished as a

root, along with a relation ('parent hood') that places a hierarchical structure on the

vertices.

A recursive definition is: -

1. A single vertex by itself is a tree. This vertex is also the root of the tree.

2. Suppose n is a vertex and T/, T?,... Tk are trees with roots « / , no,.., nk respectively.

We can construct a new tree by making n be the parent of vertices nu n2, In

this tree n is the root and T/, T?, Tk are the sub trees of the root and T/, T2.... Tk are

the sub trees of the root. Vertices n\,n2,nk are called children of vertex

A tree is therefore based on a hierarchical system, a system of levels. Other general

definitions needed are the height of a tree and the width of the tree. The former is the

number of levels in the tree. The width of a tree is the maximum number of vertices on

any level within that tree.

Page 29

A.Hofton Chapter 2 - Some Graph Theory

Figure 9 - A basic tree

In Figure 9 the height is three and the width is four. Vertex A is the 'Parent' of vertex B

that is also the parent of vertices D and E etc. Vertex E cannot be connected to vertex A

directly and still be a tree. Vertex A is on level one, vertices B and C are on level two

and so on.

2.3.2.2 Classes of Trees

When studying the structure of several trees there are three distinct classes of tree.

These are defined in [165] under the following titles: -

1. dense tree - this is a tree of height d and has a minimum number of vertices

equal to 2d - 1 .

2. degenerate tree - this is a tree with one vertex per level.

3. sparse tree - a tree that has both degenerate and dense sections to it.

(a) Dense Tree (b) Degenerate Tree (c) Sparse Tree

Figure 10 - The different classes of trees

Page 30

A.Hofton Chapter 2 - Some Graph Theory

2.3.2.3 Common Types of Tree

Table 1 shows some of the more common, but different types of tree.

Tree Type Definition

Binary Tree A finite set of elements (vertices), which either is empty

or consists of a root (vertex) with two disjoint binary

trees.

Multiway trees (n-ary tree) A finite set of elements (vertices), which either is empty

or consists of a root (vertex) with n or fewer of disjoint

trees.

Balanced Tree An optimisation of a tree which aims to keep equal

numbers of items on each sub tree of each vertex so as to

minimize the maximum path from the root to any leaf

vertex. As items are inserted and deleted, the tree is

restructured to keep the vertices balanced and the search

paths uniform. They are mainly used in search trees,

because they can make searching quicker when a search

is confined to half the data. However, this is a strict

definition of a balanced tree. Keeping a tree balanced is

often time consuming and quite often removes the

benefits of a balanced tree. A more frequently used

definition is that of an AVL tree.

AVL tree This tree is named after its inventors, Adelson-Velskii

and Landis [3]. The definition is, "A tree is balanced if

and only if for every vertex the heights for its two sub

trees differ by at most one.'"

Table 1 - The common types of tree

Page 31

A.Hofton Chapter 2 - Some Graph Theory

2.3.2.4 Problems Associated With Tree Layout

According to Vaucher [165] there are three main problems associated with tree layout: -

• positioning - this method relies on the computation of the X and Y co-ordinates

of vertices. The X co-ordinates rely on the position of the neighbours, which

are not easily obtained.

• sequential printing - the characteristics of standard printers require vertices to

be printed sequentially in left to right or top to bottom order. This cannot be

achieved with recursive algorithms because they don't work in a sequential

manner.

• overflow - due to the limited width of a printed page the area required to print

trees often exceeds the page area.

2.3.2.5 Aesthetics

A comprehensive summary of the aesthetics that should be applied when laying out

trees is provided by Bloesch [14]. A brief summary is provided below: -

1. sibling vertices should have their top edges aligned horizontally,

2. sibling vertices should be laid out in the same left to right order as their logical order,

3. parent vertices should be centred over the centre of their leftmost and rightmost

children,

4. a sub tree should be laid out in the same way no matter where it appears in a tree,

5. no edge joining the centre of the bottom with the centre of the top of a child should

cross any other such edge or vertex,

6. all vertices that share a level should be separated horizontally by at least a distance

p>0. Note: for the purposes of this aesthetic a vertex is considered to extend a

distance q>0 above its edge, and

7. each vertex should be separated vertically from its parent by exactly a distance q. I f

vertices are composed of lines of text on a bit-mapped display, then q should be a

multiple of the line height.

Page 32

A.Hofton Chapter 2 - Some Graph Theory

2.3.2.6 Automatic Layout Algorithms

There are many algorithms for the automatic layout of trees, two being [171] and [166].

A general algorithm is given by Bloesch [14]. In his paper he provides two algorithms

that lay out trees in two different manners but arrive at a similar result. The general

methods are as follows: -

• a post order traversal of a tree and for each level in the tree the computer stores

the rightmost position at which a vertex has been placed, and positions a vertex

either at some position defined by its parent's nominal position or the rightmost

available position (following Vaucher's work) (Method 1), and

• a post order traversal of a tree, placing sub trees of a vertex so that they are some

predefined distance x apart. Each branch has associated with it a left and right

outline, once all sub trees have been placed, precede left to right positioning

branches so that they are p units apart. (Method 2).

The above methods are for binary trees but can be easily applied to multiway trees.

Bloesch [14] lists the advantages for both as the following: -

• method 1 is slightly faster,

• method 1 uses less storage space, and is therefore better for larger trees (more

levels), and that

• method 2 has better aesthetics because the graph is often less wide and aesthetic four

is always upheld . This is not the case in method 1.

In tests method 1 proved to be the easiest to implement and understand. The differences

in aesthetics between the methods are not visible (see Figure 11). In tests the metrics

generally are better for graphs produced using method 1. In conclusion method 1 is

better.

Page 33

A.Hofton Chapter 2 - Some Graph Theory

K A • z • K A
Method 1 Method 2

Figure 11 - A graph laid out using the methods above

2.3.3 Hierarchic Graphs

Hierarchies are common, for instance, many companies have hierarchic management

structure. Wilson [175] provides a bibliography of hundreds of uses of hierarchies. In

computer science they are used in PERT networks and call graphs. They all have

common properties of being directed and acyclic.

This section provides a definition of a hierarchy and of a proper hierarchy. It discusses

methods of representing and forming hierarchies as well as an algorithm for laying them

out.

2.3.3.1 Definitions

Warfield [168] performed much of the early work on hierarchical graphs, including a

widely accepted definition of a hierarchy. The definition has been slightly modified by

various people. The one that is most often quoted and used is by Sugiyama et al. [159]

and is: -

"A directed graph (V, E) where V is called a set of vertices and E a set of edges which

satisfies the following conditions.

Page 34

A.Hofton Chapter 2 - Some Graph Theory

1) . V is partitioned into n subsets, that is

V=V,uV2u ...uVn

Where V, is the i'h level and n the length of the hierarchy

2) . Every edge e = (vhVj) eE where v, e Vj and Vj e Vj satisfies i<j and each edge in E

is unique

The notation used is G=(V, E, n). An n level hierarchy is called "proper" when it

satisfies the following: -

3) . E is partitioned into n-l subsets that is

E=Ei uE2 u... uE„_i (EjDEj =0,

Where EjCzVj x Vi+i, i=l,,n-l

4) . An order al of Vi is given for each i, where the term "order" means a sequence of

all vertices ofVu cr=vlv2...V\vi\ (\Vj\ denotes the number of vertices of Vj). The n-

level hierarchy is denoted by G=(V,E,n, a) where <J=(a\, ...,otl). "

This is different to the definition given by Warfield [168] in the following two points: -

1. in the definition by Sugiyama et al., edges are directed with ascending orders of

levels, whist descending in Warfield's, and

2. in the definition by Sugiyama et al., orders of vertices are explicitly specified by o.

The orders are not specified in Warfield's.

With the exception of relations there is little difference between a tree and a hierarchical

graph. In a hierarchy, each level will be related in some way, whereas the subtrees of

the left and right sides of the root of the tree have little in common. A vertex on one

level in a hierarchy can link to another up or down level(s). This is not possible in tree

structure.

Page 35

A.Hofton Chapter 2 - Some Graph Theory

2.3.3.2 Methods of Forming Hierarchies

Warfield did much of the early work on hierarchies. He consequently published work on

forming hierarchies in Warfield [167]. His method is a two-step process. The first step

develops what he calls the subordination matrix showing all the inter-relations. From

this it is possible to calculate which levels are subordinate to each other, and therefore

form the hierarchy. This is therefore the second step.

Once the hierarchy is formed it is possible to form the interconnection matrix. From this

several operations are possible for instance testing for planarity, obtaining the number

of edge crossings, and laying out a hierarchy.

2.3.3.3 Automatic Layout Algorithms

There are algorithms for laying out hierarchical graphs; a few can be found in [42]. The

most important ones are by Carpano [30] and Sugiyama et al. [159]. In a study of the

tools available most have implemented the algorithm suggested by Sugiyama et al.

However both researchers follow the general algorithm given in section 2.2.1. The

differences lie in the methods used to solve steps 2 and 3. The steps are: -

1. form a proper hierarchy,

2. permute the orders of vertices in each level to reduce the number of edge crossings,

3. position the vertices horizontally, then

4. draw a two dimensional picture from these positions to the easily calculated level

positions.

Sugiyama's presents both theoretical and heuristic approaches in developing algorithms

for steps three and four. Details can be obtained from the paper [159]. The priority

layout method is a heuristic to find the horizontal positions of the vertices (step 3). The

approach works by reordering the vertices so that the most connected are at the start of a

row. Details can again be found in the paper.

Page 36

A.Hofton Chapter 2 - Some Graph Theory

2.3.4 Planar Graphs

Planar graphs are commonly used in the areas of VLSI and circuit layout. This is

because crossing of tracks in a circuit causes a short, and therefore is likely to make the

circuit unusable. Soukup [155] provides a general introduction to circuit layout, and

Bhatt and Leighton [13] provides a good introduction to the problems that arise in

VLSI. Planarity is also a desirable property in graphs and diagrams as edges are easier

to follow i f they do not cross. This section provides a definition of planar graphs and a

summary of the automatic layout algorithms available.

2.3.4.1 Definition

Polimeni and Straight [131] provide a general definition of a planar graph and is: -

"If a graph is represented in the plane so that edges intersect only at incident vertices it

is said to be planar.'"

An example of a planar graph is given in Figure 12.

(a) Normal graph (b) Planar representation

Figure 12 - A normal graph and its planar representation

2.3.4.2 Automatic Layout Algorithms

Automatic layout algorithms follow one of two theories: -

1. use PQ-trees to give the right ordering of the graph; or

2. try to embed the graph to a grid.

Page 37

A.Hofton Chapter 2 - Some Graph Theory

An algorithm that uses PQ-trees is presented by Chiba, Nishizeki, Abe and Ozawa [32],

it is based on the vertex addition of Booth and Lueker [20]. It works in linear time, and

is a two-phase process. The algorithm is complicated, and does not go as far as giving

each vertex an x and y co-ordinate. It gives the vertices an order so that they can be

embedded on a plane.

An algorithm that embeds a planar graph on a grid is presented by Tamassia [160]. It

tries to embed the graph so that each edge has the minimum number of bends. It does

this by applying minimal cost techniques to each edge. One possible problem is that the

algorithm only works on four-planar graphs. These are graphs where each vertex has

only four other edges coming or going from it.

2.4 Aesthetics

Diagrams are used to describe many things. Amongst other things they may be used as

design or documentation tools. In each case they are used as a way of conveying

information to a user in a clear and concise manner. One way in which to improve

diagrams is to use an automatic layout algorithm. Batini, Furlani and Nardelli [8]

suggest that they are commonly used for the following reasons: -

• reduction of production and maintenance costs,

« increase the expressive power of the diagrams,

• standardisation of the graphic project documentation, and to

• increase the communication between the designer and user.

Automatic graph layout algorithms produce a diagram, which represents an underlying

graph structure. The aim of the algorithm is to organise the underlying graph structure

in such a way that it is easier to read, understand and use. Designers of such algorithms

use aesthetics to help the process, and claim that by doing so they help the user to

understand and memorise the information contained in the graph. The following section

presents a summary of the area of aesthetics. It defines an "aesthetic" and provides a

summary of the aesthetics used in the literature.

Page 38

A.Hofton Chapter 2 - Some Graph Theory

2.4.1 Definition

There are few formal definitions of an aesthetic in the texts. The Oxford dictionary [61]

provides a general definition of: -

"A set ofprinciples of good taste and the appreciation of beauty"

This definition can be applied to graph layout. The only formal definition found is

attributed to Coleman and Stott-Parker [35]: -

"A measure of desirability in graph layout that is intended for human consumption. "

2.4.2 Aesthetics in Graphs

A good visual representation of an area is related to the users' mental model. A mental

model is the idea the person has of an external object or event. The goal of the

representation is to give a correct idea of a system. Therefore the goal of any layout is to

aid in giving a good mental map of an object or event. There are three important

features of a diagram that help in creating this mental map [8], and these are: -

• readability

• relevance

• comprehensibility

Readability is the only evaluable feature of the three; the others depend on the area

where they are being applied. Readability is evaluable by a deterministic approach,

finding physical parameters related. A good diagram should give clear information

about the associated object. This is known as the readability of a diagram. There are two

types of readability: -

• conceptual reading - the structural properties of a graph.

• graphic readability - the layout of the diagram.

Page 39

A.Hofton Chapter 2 - Some Graph Theory

There are few studies of either area. Batini et al. [8] studied graphic readability in two-

dimensional graphs, finding the first factor that influences readability is the set of rules

and conventions that are used to layout the diagram. These are known as standards.

Tamassia et al. [162] used this research to suggest that all diagrams belong to one of

three standards. The standards are given below or are illustrated in Figure 6.

• straight line standard - where all the connections between symbols are straight lines.

• grid standard (orthogonality) - where connections run along the lines of a grid.

• mixed standard - a combination of the straight line and grid standards.

Once a graphic standard is established it is important that the criteria for achieving

graphic readability (aesthetics) are detailed. They can be divided into two groups: -

• aesthetic features - concern the shape of the diagram, independently from the

meaning of the symbols.

• semantic constraints - the layout rules for symbol placement, which allows the

modelling of the unsupported semantic aspects, e.g. clustering of certain objects.

These standards and aesthetics can be categorised by the area of the graph that they

affect. An aesthetic or constraint may be: -

• local (L) / global (G) - local when it refers only to a part of the diagram, global

otherwise.

• hierarchical (H) / flat (F) - hierarchical when it concerns the relative position of a

set of symbol, flat otherwise.

Batini et al. [8] summarise a study of two hundred diagrams against these categories the

results of which are summarised in Table 2, Table 3 and Table 5. Table 4 shows the

class of graph referred to by each aesthetic.

Page 40

A.Hofton Chapter 2 - Some Graph Theory

Acronym Aesthetics Category

Area Minimisation of the area occupied by the layout. G & F

Balan Balance of the diagram with respect to the vertical axis or horizontal axis G & H

Bends Minimisation of the number of bends along the edges. G & F

Convex Minimisation of the number of faces drawn as a convex polygon G & F

Cross Minimisation of Crossings between edges G & F

Degree Vertices with high degree in the centre of the layout L & F

Dim Minimisation of differences among vertices dimensions G & F

Length Minimisation of global length of edges G & F

MaxCon Minimisation of the length of the longest edge G & F

Symm Symmetry of sons in hierarchies L & H

Uniden Uniform density of vertices in the layouts G & F

Vert Verticality of hierarchical structures L & H

Table 2 - A summary of aesthetic criteria

Acronym Constraint Category

Centre Place a set of given vertices in the centre of the layout L & F

Dimens Assign the dimensions of the symbols representing specific vertices L & F

Extern Place specified vertices on the external boundary of the layout L & F

Neigh Place close together a group of vertices L & H

Shape Layout a subgraph with a pre-specified shape L & H

Stream Place a sequence of vertices along a straight line L & H

Table 3 - A summary of semantic constraints

Page 41

A.Hofton Chapter 2 - Some Graph Theory

Aesthetic Tree Planar Hierarchy Directed

/Undirected

Area •

Balan

Bends •/

Convex

Cross S

Degree

Dim

Length

MaxCon s
Symm

Uniden

Vert </

Table 4 - Showing which aesthetics apply to which class of graph

In two studies Purchase ([138] and [136]) assessed five aesthetics. The aesthetics were:

the number of bends, number of edge crossings, angle of incidence of edges,

orthogonality and symmetry. She finds that the number of edge crossings is by far the

most important aesthetic. Bends and symmetry have a lesser effect, and maximising the

minimum angle and maximising orthogonality have no significant effect at all. This

justifies why all algorithms found try to minimize or remove the edge crossings. Batini

et al. [8] found that 70 percent of the layouts had no crossings at all and the remaining

30 percent had an average of 8.65 crossings per diagram.

In a study of social science graphs (known as social networks) by Blythe, McGrapth and

Krackhardt [15] it was found that structural and spatial factors influence individuals'

perception of prominence. It is found that moving a vertex away from the centre

decreases its perceived prominence. This suggests that centring important vertices in a

graph leads to increased understanding of the graph. Batini et al. [8] reports that 40

percent of diagrams present emphasis on a special object. Of these 70 percent have the

most important object in the centre and 20 percent have the important feature

Page 42

A.Hofton Chapter 2 - Some Graph Theory

emphasised by being larger and 10 percent show it being a different shape. They also

conclude that is was important to minimize the number of symbols used and that

grouping of symbols is important.

Batini et al. [8] also found that minimising both the edge length and bend in edges is an

important feature of a diagram. 30 percent have no bends, and of the remaining 70

percent the average has 9.42 bends per diagram and 0.8 bends per edge. Minimising the

area considered is another important feature.

In a study of what makes a diagram visually look good Ding and Matei [46] listed nine

factors; these are: -

• visual complexity

• regularity

• symmetry

• consistency

• modularity

• sizes

• shapes

• separation, and

• traditional ways of laying out diagrams.

Ambiguity, recognizability and geometrical complexity affect the visual complexity of a

diagram. A diagram is recognisable i f it is physically recognisable or semantically

recognisable. It is physically recognisable i f the diagram is not too big or small. Such

items as the edge lengths in a layout affect this. A diagram is semantically recognisable

i f its various interconnection properties are recognized. For instance, two diagrams

could be laid out together, and the links make it seem as i f they were one (see Figure 13

for example).

Page 43

A.Hofton Chapter 2 - Some Graph Theory

Diagram 1
V={A,C,D,F,G}

Diagram 2
V={B,E}

Figure 13 - A graph that is not semantically recognisable

I f all the vertices of a diagram are related by some mathematical relationship, then

regularity plays an important role in the layout of the diagram. The mathematical

relationship can then be used to ensure that all the vertices are laid out in the same sort

of manner. Al l the vertices can be laid out by using the mathematical relationship.

Symmetry is a kind of regularity. It is the "correspondence in size, form, shape and

arrangement of figure elements on opposite sides of a plane, line or point" [46]. It is

deemed to make a diagram more recognisable and beautiful.

A study by Dengler and Cowan [41] shows that how the vertices are ordered affects the

understanding of the diagram. They show that i f the vertices are positioned

symmetrically, in a circle, grid or line then it is interpreted as having properties in

common, or being equal in status. I f the vertices are positioned centrally or nearer the

top then they have special properties or have a higher status. A linear arrangement of

vertices means that there is a sequence of information. This suggests that program

comprehension is aided by common structures being easily detected in the layout.

Consistency is where structures that are the same in a graph are drawn with the same

layout everywhere. For instance in a binary tree diagram, it is important that the left

branch looks the same as the right branch.

Modularity in a diagram means that a diagram is made up from sub-diagrams of a

standard plan or pattern. Therefore the reader does not have to learn new structures.

The attributes of size, separation and shapes of a diagram are important as well. I f a

B

D

Page 44

A.Hofton Chapter 2 - Some Graph Theory

diagram is too big it can be complicated to understand, whereas i f it is too small it can

be difficult to read. Line separation influences how well each line is identified and

followed, and thus make it easier to read. Standard shapes should be used and the

number of different shapes be kept to a minimum. People understand diagrams when

they are laid out in a familiar way; this means that traditional methods should be

employed when laying out a diagram.

2.5 Metrics

Earlier in this chapter it was stated that there are several problems with graph layout;

one being what constitutes a 'good layout'. In order to define a 'good' layout it is

necessary to measure the quality of the layouts. This is accomplished using metrics. In

the following section the term metric is defined and some metrics used to measure the

quality of graphs are given.

2.5.1 Definition

Measurement lies at the heart of many everyday events. Economical measurements

determine price and pay increases. Measurements in atmospheric systems are the basis

for weather prediction. Without measurement technology cannot function. But how is

measurement defined? Fenton [57] defines it as: -

"The process by which numbers or symbols are assigned to attributes of entities in the

real world in such a way as to describe them according to clearly defined rules. "

Measurement is central to the evaluation of layouts. This is best represented by the

IEEE [1] definition of a metric: -

"A quantitative measure of the degree to which a system, component or process

possesses a given attribute. "

So a metric in terms of graphs is a quantitative measure to which the graph possesses a

given attribute.

Page 45

A.Hofton Chapter 2 - Some Graph Theory

2.5.2 Graph Metrics

No study has produced a complete list of metrics for graph layout. A recent incomplete

study is by Purchase [139]. There have been several studies of graph layout algorithms

([44], [23] and [45]). A summary of the metrics used to evaluate them is shown in Table

5. The effect on the understanding of the graph is discussed earlier in the aesthetic

section.

Metric Meaning

Area Area of the smallest rectangle with horizontal and vertical sides

covering the layout

Cross The total number of edge crossings

TotalBends Total number of bends

Total EdgeLen Total edge length

MaxEdgeBends Maximum number of bends on any edge

MaxEdgeLen Maximum length of any edge

UnifBends Standard deviation of the number of edge-bends

Uniflen Standard deviation of the edge length

ScreenRatio Deviation from the optimal aspect ratio, computed as the difference

between the width/height ration of the best of the two possible

orientations (Portrait and landscape) of the layout and the standard

4/3 ratio of a screen

ResFactor Inverse of the minimum difference between two vertices, or two

edge-crossings, or an edge crossings and a vertex

Symmetry A number given to the symmetry of a graph

Cluster The number of groups of vertices in the graph

Table 5 - Common metrics applied to graphs

In a study by Purchase [137] it is shown that the performance of the graph layout

algorithm is quantifiable by measuring the understanding of the graph by a subject.

After a subject has studied the graph for a length of time the subject's understanding is

measured by asking a question about the graph such as "what was the shortest route

between two vertices?" I f the questions are all answered correctly then the layout is a

successful, or poor i f an incorrect answer is given.

Page 46

A.Hofton Chapter 2 - Some Graph Theory

2.5.3 Metric Calculation

In the section below methods of calculating some of these metrics are given. They are

used later in calculating the quality of the graphs produced by the ANHOF system of

call graph layout.

2.5.3.1 Number of Clusters

Organising data into sensible groupings is one of the most fundamental modes of

understanding and learning. For example in program comprehension it has been

perceived that in order to aid the understanding of a program's calling information all

the calling information about a procedure should be grouped together in the resulting

graph layout. This practice is common in many fields of science. It has therefore been

the subject of much research, especially in the field of statistical analysis where it is

known as Cluster Analysis.

Jain and Dubes [84] describe cluster analysis as the, "formal study of algorithms and

methods for grouping or classifying object", where an object is either a set of

measurements or relationships between the objects. It differs from discriminate analysis

or pattern recognition because it does not use category labels that tag objects with prior

identifiers. The object is to find a convenient and valid organization of the data.

Everitt [53] describes a cluster as, "a set of entities which are alike, and entities from

different clusters are not alike". This definition is of little use when trying to measure

the number of clusters in a graph. A graph consists of vertices that have positions on a

plane and edges. It is therefore only possible to cluster data on the distance between the

vertices. A better definition is again provided by Everitt [53] and is, "A cluster is

aggregation of points in the test space such that the distance between any two points in

the cluster is less than the distance between any point in the cluster and any point not in

it."

It is very easy to recognize a cluster of vertices i f we see it, however it is very difficult

to formalise how it is done and provide an operational definition of a cluster. Once a

Page 47

A.Hofton Chapter 2 - Some Graph Theory

definition of a cluster is set, automating the process offers distinct advantages over

performing it manually, the main one being that it is applied consistently over any data.

A cluster is a subgraph and will have various properties, which can also be clustered.

Jain and Dubes [84] suggest five types of information to cluster in a subgraph. These

are: -

• vertex connectivity - the vertex connectivity of a subgraph is the largest

number n such that at least n paths having no vertices in common join all

pairs of vertices.

• edge connectivity - the edge connectivity of a subgraph is the largest number

n such that at least n paths having no edges in common join all pairs of

vertices.

• vertex degree - the degree of a connected subgraph is the largest integer n such

that each vertex has at least n incident edges.

• diameter - the distance between two vertices, where the distance is given by

number of the edges in the shortest path joining the vertices.

• radius - the radius of a connected subgraph is the smallest integer n such that at

least one node is within a distance n of all other vertices in the subgraph.

The simplest method and the most common method of calculating the number of

clusters of a graph is that of the distance between two vertices, a variation of the radius

method suggested above.

According to Everitt [53] cluster analysis techniques can themselves be 'classified' into

types, these are as follows: -

1. hierarchical techniques - this is where the clusters themselves are clustered

together until they form a tree.

2. optimisation-partitioning techniques - in which the clusters are formed by

optimisation of a 'clustering criterion'. The clusters are mutually exclusive,

thus forming a partition of the set of entities.

Page 48

A.Hofton Chapter 2 - Some Graph Theory

3. density of mode-seeking techniques - in which searching for regions

containing a relatively dense concentration of entities forms clusters forms

clusters,

4. clumping techniques - in which the clusters or clumps can overlap.

5. others - methods that do not fall clearly into any of the four previous groups.

A good summary of all the above techniques can be found in [53], [54] and [84]. Many

software engineering graphs are largely hierarchical in nature, clusters are therefore

likely to be on the various levels, and even likely to be the leaf vertices of all the

branches. Method four is therefore unsuitable. No part of a graph will be less densely

populated than another, thus making method three unsuitable. Method two and five are

unsuitable because they were largely more complex than needed. It was found by

experimentation that hierarchical techniques (method 1) provide a valid clustering

technique.

2.5.3.1.1 Hierarchical Clustering

There are many methods of Hierarchical Clustering. A few are: -

• nearest neighbour or single link method,

• furthest neighbour or complete link method,

• centroid cluster analysis,

• median cluster analysis,

• group average method, and

• ward's method.

To describe each method here is unnecessary. A good description is given both in [84]

and [53]. Various statistical packages implement each method and a summary can be

found in [54]. One such package is SPSS, which has implementations of all the above

methods. However none of the methods provide a number of clusters of the data it is

processing. The methods are simply a method of clustering the data. This clustering is

represented as a Dendrogram. A Dendrogram is a special type of tree structure that

provides a convenient representation of a hierarchical clustering. A Dendrogram

Page 49

A.Hofton Chapter 2 - Some Graph Theory

consists of layers of vertices, each representing a cluster. Lines connect vertices

representing clusters, which are nested into one another. Cutting a Dendrogram

horizontally creates a clustering. Figure 14 shows a simple Dendrogram and the cuts

that produce the clustering. The number of clusters in that clustering is obtained by

calculating its number of members. The Dendrogram is not taken from any specific

graph. It is merely an example Dendrogram.

In this research the number of clusters in a graph will be calculated by obtaining a

clustering at level three of the Dendrogram, the level that is two up from the base of the

Dendrogram. Also where most of the objects are involved in a cluster, but it is still

possible that they are on their own. The size of the clustering is then calculated to obtain

the number of clusters in the graph. For instance at level three in Figure 14 there are six

clusters. I f Figure 14 represented a graph then there would be six clusters in it.

Conjoint

Disjoint
5 6 7 8 9 10 11

Level Clustering

6 {(1,2,3,4,5,6,7,8,9,10,11)}

5 {(1,2,3,4,5),(6,7,8,9,10,11)}

4 {(1,2),(3,4,5),(6,7,8),(9,10,11)}

3 {(1,2),(3),(4,5),(6,7,8),(9),(10,11)}

2 {(1,2),(3),(4),(5),(6,7,8),(9),(10),(11)}

1 {(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)}

Figure 14 - A simple Dendrogram and its clustering

An example of each method of clustering wil l now be given. In order to compare the

various clustering methods an example graph is given in Figure 15. Although simple

this example begins to show some of the differences between the various methods. A

comparison is also given in [84] and [53].

Page 50

A.Hofton Chapter 2 - Some Graph Theory

11 1

• 8

9 4| 10 9 10

Figure 15 - An example graph to cluster

The X and Y positions of the vertices are entered into SPSS. This then performs any of

the necessary calculations of the analysis method. Table 6 shows the results of running

the graph through SPSS and reading the resulting Dendrogram at level three

Method Clustering Number

of Clusters

Centroid [(6.5,8).(3.4),(9),(I0),(1),(7,11),(2)] 7

Median {(7,11,2),(1),(3,4),(6,5,8),(10),(9)} 6

Furthest Neighbour {(7,11,2),(1),(3,4),(6,5,8),(10,9)}

Average Linkage (Within group) {(7,1I,2),(9),(D,(3,4),(6,5,8),(10)} 6

Nearest Neighbour {(7,11,2),(9),(3,4,5,6),(8),(10),{ 11)} 6

Ward {(5,6,10,8),(3,4),(1),(9),(7,11,2)} 5

Average Linkage (Between Groups) {(6,5,8),(3,4),(9),(10),(1),(2),(7,11)} 7

Manually {(1),(2,7,11),(9),(10),(3,4,5,6), (8)} 6

Table 6 - The clustering of graph in Figure 15

Table 6 shows that three methods produce the same number of clusters as the manually

procedure. However they all, except nearest 'neighbour analysis', fail to cluster vertices

labelled 3,4,5 and 6 together. Instead, clustering together, in some form, vertices 3,4,5,6

and 8, usually as two clusters. They cluster across levels of the graph. This is a common

Page 51

A.Hofton Chapter 2 - Some Graph Theory

outcome when the methods are applied to other graphs. When performing clustering

manually, very few clusters traverse across the levels of a graph. They cluster vertices

that are close together. These are generally on the same level. The problem lies in

defining the proximity of vertices and there is advantages were the computer performs

the clustering automatically. The distance was unknown to the user, but was

standardised by the computer's implementation.

When comparing the output of the above methods it becomes obvious that most clusters

are not only on the same level but move across levels of the graph. The data that is used

in the method is largely clustered already and therefore the clusters are present at an

early stage of the clustering process. Everitt [53] suggests that nearest neighbour

analysis gives rise to what is known as 'chaining' of clusters, where the clusters are

produced at a relatively low level of objects. This is another reason for choosing this

method. In the above graph and others, nearest neighbour analysis continually matches

the clustering gained manually. For this reason nearest neighbour analysis is used to

calculate the number of clusters in a graph.

2.5.3.2 Edge crossings

Call graphs are hierarchical in nature. A number of methods can be used to calculate the

number of crossings in a graph. One is to use the interconnection matrix. This is a

matrix built up of all the connection between vertices of two levels in the hierarchy.

These are best explained by Warfield [168] and Sugiyama et al. [159]. From these

interconnection matrices the number of crossings can be calculated. There are various

methods of doing this and are summarised in [159].

For each level on a graph an interconnection matrix is required. Applying the above

methods is time consuming and complicated. A better method is to use the mathematical

equation of the edge. In the ANHOF method an edge is a straight line and consequently

has a mathematical equation. Whereas an edge that is on a grid based system does not

have such a simple equation. In order to calculate i f two edges cross it is necessary to

know the mathematical equation of the edges. The layout algorithm is design to work on

graphs laid out on a two dimensional plane. Where simple geometry obtains the

Page 52

A.Hofton Chapter 2 - Some Graph Theory

equation of the edge. A simple guide is available in many books, one such is [135]. It is

necessary to know two points on the line; these are the points that the edge connects on

the destination and departing vertices. The equation of the edge is then given by formula

given in Equation 1.

Y 2 - Y ,

0 = (X - X ,) - Y + Y,

X 2 - X ,

Where: Xi is the x coordinate of the departing point

Yi is the y coordinate of the departing point

X 2 is the x coordinate of the destination point

Y 2 is the y coordinate of the destination point

Equation 1 - The equation of an edge

The process of calculating i f two lines cross is given by Algorithm 1. To calculate the

number of crossings in a graph Algorithm 1 should be performed with each edge cross

against every other edge.

Given four points (Xi ,Yi) , (X 2 , Y 2) , (X3,Y3) and (X^Y-O on two edges where Xi<X 2

and Y 2 <Yi and X4<X3 and Y 3 <Y 4 . The process to find i f the two edges cross is given in

Algorithm 1, the point where the two edges cross is (X,Y): -

1. Obtain the departing (Xi , Y l) and destination (X 2 , Y2) coordinates of edge 1.

2. Calculate the equation of edge 1 by using Equation 1.

3. Obtain the departing (X3, Y3) and destination (X 4 , Y4) coordinates of edge 2.

4. Calculate the equation of edge 2 by using Equation 1.

5. Calculate Y coordinate of the intercept by solving

equation of edge 1 = equation of edge 2.

6. Calculate X coordinate of the intercept by substituting the value for Y, found in

step 5, back into equation of edge 1.

7. If the point (X, Y) is in the range given below then the lines cross.

Page 53

A.Hofton Chapter 2 - Some Graph Theory

Min (X , ,X4) < X < Max (X 3 ,X 2) and Min(Y,,Y 3) < Y < Max (Y 2 ,Y 4)

8. Return (X,Y).

Algorithm 1 -Showing when two lines cross

2.6 Summary

The chapter above has presented the current research in the diverse field of automatic

layout of graphs. It has presented automatic layout algorithms for the general graph

classes of directed and undirected graphs, and the classes of trees, planar graphs, and

hierarchies. It has also presented the areas of graph metrics and aesthetics, defining

them, giving examples of them and providing a discussion on their use.

Automatic layout of graphs is a difficult area. There are many factors to take account of

some are given in the chapter above. It is a field that is worth researching. There is still

much research to do. It has shown that it is difficult to describe what constitutes "good"

graph. This is because it is a subjective area. However the quality of graphs can be

measured using metrics. This chapter has discussed how they can be used and a

suggested method of calculating them. Current layout algorithms cause many of these

metrics to be uncontrollable. The metric performance of these layout algorithms cannot

be improved unless they are tailed to specific graphs. Therefore the required aesthetics

can be clearly stated and the performance can be controlled.

In the next chapter example software engineering graphs are given. Together with a

summary of the areas of graph layout grammars, graph representation languages and

graph display tools. Algorithms are presented for graph and subgraph isomorphism.

Page 54

A.Hofton Chapter 3 -Some Graph Uses

3. Some Graph Uses

Chapter 2 discusses the diverse area of automatic graph layout. It shows that graph

theory can be used to define many classes of graphs and as the basis to describe the

process of automatically laying them out. There are many more domain specific graphs

that call upon this graph theory and methods of describing the software engineering

graphs in terms of a simple language. Graphs are a visualization technique and this

representation technique requires a method of displaying them either on paper, or on a

computer display screen using a graph display tool.

In software engineering, graphs are used as a method of representing information about

a program. For instance its structure or how the program processes data or how data

flows through the graph. In modern software engineering, graphs are increasingly used

as a documentation, comprehension and planning aid. In this chapter some of the graphs

that are used as program comprehension aids in software engineering are defined. A

preview into graph specification languages is also given. Then a summary and survey of

graph tools is given.

Graphs, and in particular, labelled graphs are a very powerful and universal tool that are

widely used in computer applications. One of the most important problems in graphs is

the comparison of graphs with each other. This is called graph isomorphism. Two

graphs, Gi and G2, may be matched using bijective mapping between the vertices of Gi

and G2 such that the structure of the edges is preserved by the mapping function. The

existence of a mapping defines that Gi and G2 are isomorphic.

The graph isomorphism problem has been the subject of much research over the years.

It is still not know whether it is NP or P hard. This chapter of the thesis discusses the

isomorphism problem, and discusses the issue of which complexity class is applicable.

Examples of matching algorithms are given, along with a comparison.

Page 55

A.Hofton Chapter 3 -Some Graph Uses

3.1 Software Engineering Domain Graphs

This section defines some of the graphs that are used in the domain of software

engineering to represent the software's structure. It wil l provide formal definitions of

the graphs and give the symbols that are used to draw them. It describes common

structures of the graphs. These graphs will be restricted to two dimensional (2D)

directed graphs and in particular to the following graphs types: -

• call graphs,

• flowcharts,

• control flow graphs, and

• data flow diagrams .

The above graphs are restricted to those that can be drawn from sequential, medium to

high level languages, those that are not too close to machine code, such as C, and those

that do not allow parallel computation or inheritance.

3.1.1 Call Graphs

A call graph is used in software engineering to represent the calling relationships

between procedures. Jeffries [85] suggests that in order to understand the whole

program, when comprehending the program, programmers have to read the program

code first and they use a common method. They read it in the order in which it would be

executed, main procedure first, then procedures called by the main procedure, and then

procedures called by those procedures, etc. This knowledge is represented by a call

graph and represents a top down approach to program comprehension. Another

justification for call graphs is given by Smith [153] who says that, "a program's global

structure is seen distinctly when its routines are connected by their call to one other."

In this thesis the concept of a procedure is used in a call graph. In the C language

procedures are called functions. The term procedure wil l be used as a generic term that

represents a sub unit of a program. When one procedure calls another, a hierarchical

Page 56

A.Hofton Chapter 3 -Some Graph Uses

structure becomes apparent. Hierarchical layout algorithms therefore provide the best

method of automating the layout of them. More formally, Ryder [145] suggests that a

call graph could be represented by a directed graph G = (N, E) where: -

• There exists a procedure vector set such that for each procedure P, defined with m

procedure parameters has a set of m-tuples of external procedures, which, during the

execution of the program can be associated with its m-tuple of procedure

parameters.

• Each vertex TV,- corresponds in a one to one manner to a procedure Pt and its

procedure vector set.

• If Pi contains a reference B0(Bi,..., B0 then for each expansion Pjo (Pji,~~ PjO ° f t n a t

reference there is a directed edge (7V,, Nj0) in the graph and (Pj/,...., P^ is in the

procedure vector set of Njo.

According to Grove, DeFouw, Dean and Chambers [74] there are two types of call

graph, context insensitive and context sensitive, a definition and discussion is given

below.

3.1.1.1 Context Insensitive Call Graphs

Each procedure is represented by a single vertex in the graph, each vertex has an

indexed set of call sites and each call site is the source of zero or more edges to other

vertices representing callers of that site [74]. An example can be found in Figure 16. In

this figure there is no distinction between the types of parameters used in procedures A

and B when calling 'max'. In the graph (Figure 16(b)) they call the same instance of

procedure 'max' and this is said to be context insensitive.

Page 57

A.Hofton Chapter 3 -Some Graph Uses

Procedure MainQ

{return A() + B() + C()}

Procedure A()

{return max(4,7)}

Procedure B()

{return max(4.5,2.5)}

Procedure C()
{return max(3,l)}

(a) code (b) call graph

Figure 16 - (b) A context insensitive call graph and (a) its corresponding code

3.1.1.2 Context Sensitive Call Graphs

A procedure may be analysed separately for different calling concepts. Each concept is

called a contour [74]. An example can be found in Figure 17. In this figure procedure B

calls 'max' with floating point parameters and procedure A calls 'max' with integer

parameters. Each of these types of parameters is dealt by different instances of

procedure max, and the call graph (Figure 17(b)) represents this and is therefore said to

be context sensitive.

Procedure Main()

{return A() + B() + C()}

Procedure A()

{return max(4,7)}

Procedure B()

{return max(4.5,2.5)}

Procedure C()

{return max(3,l)}

(a) code (b) call graph

Figure 17 -(b) A context sensitive call graph and (a) its corresponding code

Main

m

Page 58

A.Hofton Chapter 3 -Some Graph Uses

Call graphs have been used in many projects in Durham, such as the AMES project

[19]. The symbols used when drawing call graphs in these projects and others are given

in Figure 18.

Procedure
Name Procedure Procedure Call (A Calls B)

Can be labelled with the
number of times A calls B

Figure 18 - The symbols used in call graphs

3.1.1.3 Aesthetics

Call graphs have a natural hierarchical structure. Therefore they are laid out using

aesthetics similar to those used in hierarchical graphs. These are: -

• minimize the area,

• balance the graph in terms of its horizontal and vertical axis to match the media

that it is being displayed on,

• minimize the edge crossings and edge length, and

• centre father vertices over their sons.

3.1.1.4 Example

The call graph of the program 'Lines.C (listed in the appendix 1) is shown in Figure 19.

It shows that procedure "qsort" is a recursive function and also shows how it is

represented. In Figure 19 there are no edge crossings and edge length has been kept to a

minimum. The parent vertices are all centred over their children and the graph prints

well on printed media.

Page 59

A.Hofton Chapter 3 -Some Graph Uses

Main

m
1 • i

getchar

Figure 19 - The call graph of the 'Lines.C program

3.1.1.5 Common Structures

When graphs are laid out manually, the parts of the graph that are recognizable and are

laid out first i f a method of laying them out is known. This leads to certain common

structures becoming obvious in the final layouts. These can then be used to aid the

understanding of the graph and aid automatic layout of the graphs. Earlier work at the

University of Durham, summarised in Munro, Burd, Chan, and Young [117], has

discovered that there are various common structures in call graphs. These structures are

discussed in Chapter 4 of this thesis as they form the basis of the ANHOF method of

call graph layout.

3.1.2 Flowcharts

A flowchart is used to design a program and to describe how the program performs its

task; again it has a hierarchical structure. There is no definitive definition, the following

is compiled from several sources and is: -

A flowchart is a means of portraying, in graphic form, a sequence of specified

operations performed on identified data. This is usually drawn using standard symbols.

This type of diagram was first used in 1946-1947 by Goldstein and von Newmann [72].

In the 1960's various organisations defined standard symbols. In the software

Page 60

A.Hofton Chapter 3 -Some Graph Uses

engineering domain the ANSI X3.5 [5] symbols are used (Figure 20). The symbols

cover a variety of areas including operations, storage devices and input /output methods.

There are two types of flowcharts: -

system chart - this describes the sequences of data handling, identifying the

input and output sources.

flow diagrams (charts) - this describes the data handling, it explains each of the

steps involved in each process. These are the most common type.

2.

ANSI Flowchart Symbols

General Symbols

underline. Blank
il Abosolute Value

Inconnector X

System Chart
Specific

FtowlH**i

Flowchart Specific

Figure 20 - The ANSI flowchart symbols [311

Flowcharts are used as a design tool. A survey by Schneiderman, Meyer, McKay and

Heller [151] of 45 Fortran texts shows that 14 of them employ flowcharts extensively

and 19 use them occasionally. The remaining 12 do not use flowcharts. Flowcharts are

heavily used as teaching aids and as a simple comprehension aid. They tend to get very

large for large programs however.

3.1.2.1 Aesthetics

These graphs will generally be long and thin, and as a consequence they will be difficult

to display. Aesthetics will be very important here in order to ease understanding. They

are commonly laid out following the aesthetics below: -

• minimize the area,

• minimize the edge length and edges crossings, and

Page 61

A.Hofton Chapter 3 -Some Graph Uses

• the flow of the graph should be down one of the axis of the display media.

3.1.2.2 Example

The flowchart in Figure 21 shows the structure of the main functions in the program

'Lines.C, the entry function ('main') and function 'qsort'. The figure also provides a

method of representing recursion. The graphs all flow naturally down the page with no

crossings present and the edges are short and do not cross.

Start

nlines=readlines

nlines>=0 No •

qsort lines

: r
display

sorted list

To Big
to sort Stop

Stop

zr
left=first number

right=last number

left>= right yes

Swap Left and
right numbers

i=left+1

T
Compare Strings
Current and first

Stop

Swap last and ith
number

swap left and right

qsort (recursion)

qsort (recursion)

Stop

(a) Main function (b) Procedure qsort

Figure 21 - The flowchart of'Lines.C'

Page 62

A.Hofton Chapter 3 -Some Graph Uses

3.1.2.3 Common Structures

Flowcharts tend to be an abstract view of the program code. Therefore the common

structures are the same as the common operations in the programming language.

Analysis of several programming textbooks, such as [93], [37] and [51], suggests that

the common structures used in programming languages and hence in flowcharts are the

following: -

• variable assignment,

• conditional statements,

• branching statements, such as switch,

• while loops (loops where the exit clause is the first statement),

• continuous loops (loops where the exit clause is in amongst the other steps), and

• do until loops (loops where the exit clause is the last statement).

• For Loops (Repeat the steps a set number of times).

In Table 7 example code of each of these common structures will be given, together

with the flowchart representation of them: -

Type Example Code Flowchart Representation

Variable Assignment Begin

X: =0

End

i
Variable Assignment Begin

X: =0

End Variable=?

Variable Assignment Begin

X: =0

End

1

Page 63

A.Hofton Chapter 3 -Some Graph Uses

Type Example Code Flowchart Representation

Conditional Statements Begin

I f (x=l) then

do something

End

Begin

I f (x=l) then

do something

else

do something

End

ondition Y e s — •

Condition Yes •

Branching Statements Begin

case of x

do something

do something

End

Yes-

Yes

Yes-

While Loops Begin

While (x o l)

Begin

do something

do something

End

End

Condition
Reached

I
No
T

Process,

•
Process.

Page 64

A.Hofton Chapter 3 -Some Graph Uses

Type Example Code Flowchart Representation

Continuous Loops Begin

Repeat

Begin

do something

do something

i f (x=l) then exit

End

End

Condition

Process

Y e s -

Do Until Loops Begin

Do

do something

do something

Until (x=l)

Process,

No

1 r

Proc essn

Condition
Reached

For Loops Begin

fo rx= l to 10

Begin

do something

End

End

Counter=0

1

Process,

T

Processn

Counter
reached limit

Table 7 - The common structures of a flowchart

Page 65

A.Hofton Chapter 3 -Some Graph Uses

3.1.3 Control Flow Graphs

Control flow graphs are similar to a Flowchart, except the graph shows only the flow

from one step to another. It does not detail what happens at each step. Johnson, Pearson

and Pingali [86] provide a good definition: -

"A control flow graph is a graph with two distinguished vertices, known as start vertex

and end vertex. Such that every vertex occurs on some path from the start to the end.

The start vertex has no predecessors and the end vertex has no successors. "

Control flow graphs are generally used as a simpler form of flowcharts. They have been

used extensively in software metrics, e.g. in measuring the complexity of a system or

program [109] or as a measure of the structure in a program [59].

The symbols used in a control flow graph are given below.

Start / StopJ Terminator Control Step
Control Flow

Control passes
from process 1 to

process 2

Figure 22 - The symbols used in a control flow graph

3.1.3.1 Aesthetics

Control Flow Graphs are similar to flowcharts and are therefore drawn in similar

manner. They are laid out with the same aesthetics as flowcharts.

3.1.3.2 Example

Figure 23 shows the control flow graph representation of the main function and function

'qsort'. This is similar to the flowchart, except the information about each step is

omitted.

Page 66

A.Hofton Chapter 3 -Some Graph Uses

c) (Start
Start

0
5]

i

7 •

I
. 8

10 >

•

Stop
11

12

T

i i

14

Stop W

(a) Main Procedure (b) Procedure qsort

Figure 23 - The control flow graph of the 'Lines.C

Page 67

A.Hofton Chapter 3 -Some Graph Uses

3.1.3.3 Common Structures

The control flow graph is another example of an abstract view of the branching structure

in the program. They therefore have the same common structures as flowcharts but are

represented differently. The common structures are given in Table 8.

Operation Control Flow Representation

Conditional Statement

Branching Statements

Page 68

A.Hofton Chapter 3 -Some Graph Uses

Operation Control Flow Representation

While Loops —K

t

' ! »

2 ')

1)

Continuous Loops
V 1

1 2 \ •

(n)

Do Until Loops r •{ 1

..J

(7

j p

,)

')

1
 *•

For Loops

— ;

(

\

)

\
n } •

Table 8 - The common structures of a control flow graph

Page 69

A.Hofton Chapter 3 -Some Graph Uses

3.1.3.4 Control Flow Graph Decomposition

Control flow graph decomposition is a method of breaking down the control flow graph

into its basic graph structure. There has been some work on control flow graph

decomposition, this has been summarised by Fenton and Pfleeger [58]. They suggest

that control flow graphs consist of several primes. The primes are the common

structures suggested above. They suggest that a control flow graph could be described in

terms of the degree of its vertices. A vertex can have an "in" degree, the number of

edges arriving at the vertex and an "out" degree, the number of edges leaving the vertex.

This is the same as the 'fan in ' and 'fan out' notion by Henry and Kafura [76] used

throughout this thesis. Using these definitions a control flow graph can be described

as: -

A control flow graph is a directed graph in which two vertices, the start vertex and the

stop vertex, obey special properties: the stop vertex has a out-degree (fan out) of zero

and the start vertex has a in-degree (fan in) of zero and every vertex lies on some path

from the start vertex to the stop vertex. (Adapted from [58])

These primes are then combined together using sequencing and nesting to make up the

control flow graph. Sequencing is where a prime follows on from another and nesting is

where a prime is inserted in between a vertex and the next vertex, for more details see

[58].

In the past it was believed that structured programs could be expressed in terms of three

constructs; sequence, selection and iteration. This was a result of earlier work by Bohm

and Jacopini [18]. However in modern languages such Ada and Modula-2 there are

commands for performing the primes (common structures) above, therefore structured

programs are expressed as sequence, selection, iteration and the primes above. Fenton

[58] calls these S-graphs and concludes that i f a control flow graph can be solely

expressed in terms of these S- graphs then it is said to be well structured.

Page 70

A.Hofton Chapter 3 -Some Graph Uses

3.1.4 Data Flow Diagram

A general definition for a data flow diagram (DFD) is provided by the IEEE [1] and is: -

"A diagram that depicts data sources, data sinks, data storage, and processes

performed on data as vertices, and logical flow of data as links between the vertices. "

The symbols that will be used in these diagrams are given in Figure 24.

Identifier (optional)

Identification
(optional)
Description
of Function

Physical Location
where performed
(optional)

Name
Name

Duplicated

(a) Process (b) External Entity (c)Data File

Text-

(d) Dataflow
(non crossing)

(e) Dataflow
(crossing)

NOTE: if the text is in upper case on a dataflow line then an explanation is present the
Data Dictionary

Figure 24 - The symbols used in a data flow diagram

The DFD may be used to represent a system or software at any level of abstraction. In

fact, DFDs may be partitioned into levels, which represent increasing information flow

and functional detail. A level 0 DFD is also called a fundamental system model,

representing the entire software element as a single process with the input and output

represented as arrows from it. Additional processes are added as the level 0 DFD is

further partitioned making the higher level graphs.

Data flow diagrams are extensible used in database systems. There are many texts that

give examples of their use, including [181] and [66]. In addition there are many papers

Page 71

A.Hofton Chapter 3 -Some Graph Uses

that deal with systems that automate their extraction and drawing that give real world

examples, two being [149] and [134].

3.1.4.1 Aesthesis

Generally DFDs are complicated with flow being spread all around the area of display.

Aesthetics are difficult to apply because of this. However, i f the following are applied

then the graph may be more readable: -

• minimize the edge crossings and edge length, and

• balance the graph in terms of its horizontal and vertical axes.

3.1.4.2 Example

Gane [66] provides an example system analysis from which the data flow diagram can

be drawn. This system analysis is found in the Appendix 1 and the resulting data flow

diagram is given in Figure 25. This graph has many edge crossings, which are dealt with

by the use of the symbol given in Figure 24(e). However the graph is generally easy to

follow because of the use of identification numbers on the vertices that give it a reading

order and something for the eye to look for.

Page 72

If

s 11 f

31 LL! Q. -2

E
E u «
•5
I
o
c
s

o

c
E
8

IT,

3

r-

N
flu

A.Hofton Chapter 3 -Some Graph Uses

3.1.4.3 Common Structures

Very few common structures are found in data flow diagrams and published work on

the topic could not be found. After a few data flow diagrams were laid out manually,

common structures were found that generally involve two vertices and one edge and

they represented the basic operations that can be performed in a data flow diagram.

Consequently there will be many of them, but attaching a model layout to them will be

hard.

Name Data Flow Representation

Process flows to database ^ Identification ^ Process flows to database
Description ID Name

Process flows to database

^ Location ^

Process flows to process ' Identification ^ Identification ^ Process flows to process
Description Description

Process flows to process

^ Location ^ Location ^

Process flows to process

Process flows to entity f Identification ^

Description

^ Location ^

Identification Process flows to entity f Identification ^

Description

^ Location ^

Identification Process flows to entity

Entity flows to database Identification

ID Name

Table 9 - The common operations of a data flow diagram

3.2 Graph Specification Languages

Traditionally graph specification languages have been a method of describing a picture.

An original language is PIC, developed by Kernighan [92]. It is a powerful language

that provides a front end to TROFF for drawing simple pictures. Kernighan has adapted

Page 74

A.Hofton Chapter 3 -Some Graph Uses

it to layout diagrams in specific domains, for instance structure diagrams in chemistry.

The language has been updated so that it provides a front end to ML [90]. It has also

been made more powerful, using the features of ML to draw new types of diagrams, for

instance pie charts. A very simple and largely accepted language is LOGO [122]. It is

popular as it is taught in schools teaching pupils to understand basic mathematics and

basic language concepts, e.g. procedures. It is a language that can be used to draw very

simple line drawings.

Today graph specification languages are little more than file formats that are used to

describe a graph so that a graph display tool can display it. File formats often provide

tough problems both for the software engineers who write programs and people who are

using them. Software Engineers want formats that store data in an efficient manner, and

are easy to read and write. Users want a way to save their data in a convenient and fast

manner, where they do not want to be concerned with the choice of a specific format.

The consequence is that almost every graphic or desktop publishing system has its own

file format optimised for the needs of that product. This means that direct data exchange

between different products is difficult since the file formats are often mutually

exclusive. Most programs contain numerous converters that transform data between

different formats.

Having converters is inconvenient for the user. First it means that n 2 converters are

ideally needed to exchange data between n programs. However it is unlikely that each

program can read and write each other's file format. Therefore it is inconvenient for the

user, as he/she has to find a format that is common to both programs. Data may be lost

by translating the file. One way to avoid the use of converters is to provide one

powerful format that does everything, or, better, has a core part which is understood by

all the participating applications, and can be easily extended to meet a particular

application's needs.

A file format is not the type of file (binary or sequential) that is used to store

information, but how certain information is stored within that file. This method of

representing the information can be called a language. This language, because of its

Page 75

A.Hofton Chapter 3 -Some Graph Uses

very nature is domain specific. The file format therefore is used to store a program

within this language.

In the following section some examples of file formats will be given, the advantages

and disadvantages are discussed.

3.2.1 Languages

There are many different file formats (graph specification languages) available for

graph drawing packages including a mixture of commercial and educational based

formats. The educational languages tend to be ISO/ASCII files that are easy to edit and

make by hand. The commercial ones tend to be secret and binary and are therefore more

difficult to manipulate by hand or generated by other programs. It is for these reasons

that in the following section academic languages are given that are stored in ASCII/ISO

sequential files. In addition to the ones below there are dot (APPLE Research) and

various Internet based formats such as VRML. Further information can be obtained

from the graphic file format F.A.Q. [2] and other web pages. In the following section

there is a discussion of the formats of: -

• adjacency Lists,

« daVinci,

• graph tool,

• graph modelling language (GML), and

• visualizing compiler graphs.

The manner in which the graph is represented as a data structure influences the ease in

which certain types of graph are manipulated. When working with hierarchical graphs, a

term based representation can be used such as that employed by daVinci. However, this

representation has an implicit ordering of vertices in the graph and so makes cyclic

graphs hard to manipulate. Many other systems use a variant of the GML method,

which has two discrete sets, one for the vertices and the other for the edges. The edges

have reference to a source and destination vertices. This allows more general graphs to

be manipulated. However the connection between vertices are difficult to derive from

inspection.

Page 76

A.Hofton Chapter 3 -Some Graph Uses

3.2.1.1 Adjacency Lists

An adjacency list is a file that contains every vertex in the graph and, following each

one on the same line is a list of all the vertices it is connected to. Many systems use

simple adjacency lists, perhaps enriched with labels or co-ordinates. Often the end of

the line terminates an adjacency list. While this format is convenient and easy to use in

these systems, it has several disadvantages. First it is difficult to expand because new

vertices can be connected to existing ones, expansion therefore becomes more than just

adding the vertices to the end of the list. Existing members may have to be modified.

Second, labels are usually restricted to one character or a single word; often this is due

to the maximum line length of a file. However this can be overcome. Further the degree

of a vertex is limited on systems that do not support arbitrary line lengths, because the

length of the line restricts the number of vertices that can be on that line.

3.2.1.2 daVinci

The daVinci language possesses many powerful features. It extends a basic list of

vertices and edges to add many other features such as different vertex styles. It uses

simple 'user friendly' keywords to represent graphs. These however are one letter; they

would be better as whole words, e.g. edge instead of e. A large graph would be very

difficult to understand because each vertex contains a set of other vertices it is

connected to. The effect is to make it more difficult to structure the file properly, e.g. in

getting the number of brackets correct. The language can only be used to describe a

hierarchy. It could however be adapted to model general graphs. It does not allow each

vertex to be given a position and this is quite important when an automatic graph layout

algorithm is to be developed. It is because the daVinci file format is meant as a method

of getting the graph into the drawing system and the layout is handled by the system

when it is correctly stored. It could be adapted to perform this. Graph vertices are given

locations by an automatic graph layout algorithm, which cannot be turned off. daVinci

uses the Sugiyama et al. [159] automatic graph layout algorithm for laying out its

graphs, details of its implementation can be found in [64]. It does however support a

large number of features. The language is connected to a graph tool; which is a good,

Page 77

A.Hofton Chapter 3 -Some Graph Uses

stable and fast tool. If the proposed adaptation were made this tool could not be used.

There are better languages available with tools connected to them.

The language is a user-friendly file format. It can easily be read and understood through

reading the raw file. It, however, does not allow anything but hierarchies to be

represented. Without proper layout these files quickly become unreadable. However, the

style could be copied and modified to represent general graphs. The file format is

represented as a grammar in Appendix 2.

3.2.1.3 Graph Tool

Graph Tool and its graph representation language were developed in Durham by

Bodhuin [16] with later modifications by Young [180]. A Graph Tool file is frequently

referred to in this thesis and it is to the Graph INformation file (a GIN File) that this

refers and not to the two-dimensional graph (2dg) format of later versions of Graph

Tool. Its language is based on postscript and has advantages in that it can be quickly

turned into a printable graph without the use of the Graph Tool drawing system. It can

represent any type of graph. It is relatively user friendly, but this is hampered by the

way the graph is represented. The file is basically a list of vertices followed by a list of

edges. Every edge must involve a vertex that is listed. The edges become difficult to

follow because of this. It however has trouble with colour and different style vertices

cannot be represented. The file is better than daVinci because the file has better

structured and can easily represent other types of graphs. Again the grammar for the file

format along with an example file can be found in Appendix 2.

3.2.1.4 Graph Modelling Language (GML)

Michael Himsolt invented GML after discussions at the Graph Drawing conference in

1995 ([78] and [79]). It was proposed as the standard language for modelling graphs. It

has since been accepted by a few packages; in particular the Library of Efficient Data

Types [111], a library that contains implementations of various data structures such as

graphs.

Page 78

A.Hofton Chapter 3 -Some Graph Uses

The language is simple to use and can be simply extended by adding new tags to it.

Again it is basically a list of vertices and edges. The main advantage is that one file can

contain several graph descriptions. Therefore it can be used to describe the common

graph structures present in a graph and also the whole graph. However in order to

perform this it will have to be modified by adding new tags and structures, and whilst

still following the basic grammar it would not follow its original intended purpose and a

GML file produced may not be loaded by other peoples interpreters. The basic

grammar and example file is given in Appendix 2.

3.2.1.5 VCG Language

This language evolved from a project that tried to visualize compiler graphs ([146] and

[147]). The tool that emerged from this was ahead of its time, its input language

excellent. It allowed the user to specify which automatic graph layout algorithm to

apply to the graph, and had a large set of attributes that applied to the graph as a whole

or particular individual or groups of vertices and edges. Its only problem is that the

language doesn't allow more than one graph to be specified; it would need extending to

allow this. Within Sander [146] a grammar definition of the language is given, a version

of which is given in Appendix 2.

3.2.1.6 General Comparison

When comparing the various file formats it is necessary to establish a list of features

that is regarded as necessary in a file format, these features are listed in Table 10 along

with a comparison of the file formats using these features.

The multiple graph feature is present i f the file format allows several graphs to be

described in one file format; it is i f the file format allows graphs to be described that are

not fully connected. This feature could be used to describe the common structures

present in the graph. The best file format for doing this is GML because they can be

clearly defined as separate structures. It is possible to do this in Graph Tool but they are

not easily detectable from the main graph. It is desirable for the various graph

properties to be described in the file format. For instance i f it is possible to define which

automatic graph layout algorithm is used to lay out the graph or subgraph. The other

features are self-explanatory.

Page 79

A.Hofton Chapter 3 -Some Graph Uses

Feature Adjacency List daVinci Graph Tool GML VCG
Graph Al tributes

Multiple Graphs X X Y X

DirectedTUndirected X X Y Y X

Planar/nonplanar X X X Y X

Layout Algorithm X X X X Y

Title X X X Y X

Unique label X X X Y Y

Position X X X Y Y

Size X X X X Y

Vertex Attributes
Vertex Colour X Y • • Y

Text Colour X Y Y Y Y

Text Style X Y X Y X

Vertex icon X Y X X X

Border Style X Y X X X

Position X X y Y Y

Size X X Y X Y

Label Y Y Y Y

Unique Identifier X Y Y Y Y

Edge Att ributes
Colour X Y Y Y Y

Thickness X Y X Y Y

Route X X X Y X

Labels X Y Y Y Y

Line Style X Y Y Y Y

General
Comments X X X Y X

Character Set ISO ISO ISO ISO ISO
Graph Tool Attached X Y V X Y

Allow General Graphs Y X Y Y Y

Table 10 - A comparison of file formats

3.3 Graph Grammars

Graphs are one of the most important tools in computer science. They are useful

because they are flexible, have a simple formal definition and have a natural visual

representation that supports human cognitive capabilities. It is the formal recursive

definition of graphs that allows graph grammars to be used. A graph is only useful if it

is laid out 'nicely'. The aim of new tools for efficient constructions of 'nice' layouts of

graphs stems from the desire to automate layout processes and to improve the quality of

the layout. However many of the problems of automatic graph layout are NP Complete.

Page 80

A.Hofton Chapter 3 -Some Graph Uses

Most graph grammar parsers work in polynomial time and are well suited to outwit the

NP completeness of optimal graph layouts. Graph specification languages have been

written over the last decade. They often use graph grammars as their theoretical base.

This section provides a general introduction to the field of graph grammars and graph

layout grammars. It provides a definition of them both, provides a general structure of a

graph grammar, and shows how they are used.

3.3.1 Definitions

Brandenberg et al. [21] describes a graph grammar as: -

"A graph grammar consists of a finite set ofproductions of the form (A,R,C) where A is

a vertex label, R is a finite graph and C is the connection relation. Vertex w with label A

is replaced with graph R and C establishes edges between the neighbours of w and the

vertices of R."

This was more formally written by Kaul [91] as: -

"Graph Grammar is a tuple (Ev, ET, EE, P, S) if

1. Ev, ET, EE are finite alphabets for respectively vertices, terminal vertices and edge

labels, ET^EV
2. P is a finite set of productions

3. S s EV \ EX is the start symbol"

Graph grammars can be extended so that the graph can be laid out as well as described.

The extension is called A Graph Layout Grammar which is a "graph grammar but has

a layout LS attached to it. LS contains many drawing specifications." [21]. Brandenburg

[22] in an earlier paper also provides a more formal definition as: -

"A Graph Layout Grammar consists of a polynomial graph grammar (grammar that

runs in polynomial time) CG together with a layout specification LS. With each

production P =(A, R, C), LS associates a finite set of layout constraints, ci: cq. A

pair (p,Cj) is called a layout production. Each c, defines a finite set of relations on the

Page 81

A.Hofton Chapter 3 -Some Graph Uses

vertices of R, the left hand side A and the tuples from C that describe minimal distances

between these objects in X- and Y- dimension. These relations must be consistent such

that there exists a realisation in terms of a grid embedding of R, which can be extended

to an embedding of (A, R, C). The distance constraints are additive, which means that

u.X >v.X+k v.X >W.X+m implies u.X >w.X +(k+m). Here u.X denotes the X-

coordinate of the object u in some grid embedding. Moreover the constraints are

complete i.e. each pair of vertices u,v e V(R) is related by at least one constraint. "

3.3.2 Example of Use

Graph Grammars can be used to represent a binary tree in the following manner

From a vertex there are two possible productions.

1) The terminal vertex (type a) is replaced with a tree with three vertices, one root

vertex (type a) and two leaves (type A). The directed edges go from the root to the

leaves. They are unlabelled. This entire structure is enclosed in a rectangle, which

forms a vertex of type A. There is a single tuple (a,a) in the connection relation,

which is shown in Figure 26a by the edge from the vertex label 'a' on top of the

rectangle to the root.

2) Replace a vertex of type A with a terminal vertex type a, preserving the connections

from type a. see Figure 26(b)

a

a

A |

a

(a) (b)

Figure 26 - The two production rules

A

Page 82

A.Hofton Chapter 3 -Some Graph Uses

From the above it can be seen that Graph grammars are a powerful tool. However it is

questionable whether they are really useful for graph layout. They are only suitable for

graphs that have recursive definitions, i.e. graphs that have a tree like structure.

Brandenburg [21] suggests that they are therefore only useful for the following classes

of graphs: -

• trees and the binary trees,

• series parallel graphs,

• partial k-trees for fixed k,

• maximal outer planar graphs,

• complete bipartite graphs,
0 complete graphs, and

• flow graphs of programs.

They are not suitable for: -

e grids,

• planar graphs, or

• Directed a cyclic graphs.

They focus on the placement of the vertices; the routing of the edges is limited to

straight lines. However there is no guarantee that such lines do not cross each other,

although there may be extensions to allow this.

There are a few examples of the use of Graph Grammars in the real world. One that is

quoted in Kahn [88] is that of a flowchart. Here a context free grammar for a flowchart

developed by Lichtblau [104] is used to lay them out. It had limited success; the

grammar is context free meaning that every case of flowchart cannot be generated.

3.4 Graph Drawing Tools

In the last fifteen years there has been an impressive growth in the number of automatic

graph layout algorithms. There are many uses for these algorithms, one such use, and

probably the main use is for displaying graphs either on a computer screen or on paper.

Page 83

A.Hofton Chapter 3 -Some Graph Uses

This is accomplished by the use of a graph tool. Generally tools fall into one of two

types. A program that allows direct and interactive manipulation of such graphs on a

high-resolution display, which is a graph editor and a subset of a graph editor that only

allows the display of, and navigation in, a graph that is a graph browser.

This section provides a list of requirements for a typical graph tool, discusses interactive

graph tools, and provides a classification of them and a summary of the tools found in

the literature. It also gives the typical structure of a graph tool.

3.4.1 Graph Display Tools

There are many different uses for graph editor/display tools and a large number of

papers describing them. There are many different features that can be provided by the

graph tool, but a graph editor / browser must solve the following: -

• automatic layout of graphs,

• graph abstractions,

• adaptability, and

• persistence of graphs.

3.4.1.1 Automatic Layout of graphs

In Chapter 2 a summary of the area of automatic graph layout algorithms can be found.

From this chapter it can be seen that automatic graph layout algorithms are a heavily

researched area. It was also suggested that the main use of them was to display the

graphs in a readable manner either on a display screen or on paper. Graph tools are

where the majority of graph layout algorithms are used. It is probable that they were

developed for this application.

3.4.1.2 Graph Abstractions

Even an adequate automatic graph layout algorithm may not be sufficient to make

realistic graphs easy to read and manipulate. The sheer number of vertices, edges and

Page 84

A.Hofton Chapter 3 -Some Graph Uses

edge crossings may make graphical displays useless. Typically such graphs are black

with edges. Magnification and scrolling may help, but additional facilities are needed to

reduce the complexity of a graph. There are many such ways; the one that is described

here came from Paulisch and Titchy [129] and is known as multi-level subgraph

abstraction.

Multi-level subgraph abstraction is a method of grouping vertices and edges into

subgraphs. The black box view displays the entire subgraph as a single vertex. This is

useful when the subgraph is not relevant. The grey-box view is where the subgraph is

visible but the edges from the outside go to the bounding box. In the white box view the

subgraph is visible with all the connections left as normal, but the scroll bars allow only

the movement around the subgraph.

3.4.1.3 Adaptability

Adaptability is the ability of the tool to be used to display other types of graphs e.g. pert

charts and flowcharts. For each graph (diagram) there is a set of properties, for instance

each could have different symbols and thickness of lines.

3.4.1.4 Persistence of Graphs

This is the ability of the tool to store the graphs (diagram) so that they can be viewed

later. This is easy to implement and is present in all tools.

3.4.2 Interactive Graph Display Tools

Generally all modern graph tools allow the user to manipulate the graph in some way; in

short they should be interactive. This is because modern computers: -

• can store a reasonable size of graph in the memory (less than 10000 vertices),

• have a powerful processor for processing them in some way, e.g. Graph Layout, and

Page 85

A.Hofton Chapter 3 -Some Graph Uses

• have increased ability to display graphs by using better displays. This is associated

with the increased power of the processor to use new techniques to display them e.g.

fisheye views.

There are many features that a tool should possess. Papakostas and Tollis [126] provide

a study of these in orthogonal graphs; a summary is given here. Firstly the tool that

supports interactive graph drawing should be able to create a drawing of a given graph

under a given drawing standard. Secondly, the tool should give the user the ability to

interact with the drawing in the following ways: -

• move a vertex around the drawing,

• move a block of vertices and edges around the drawing,

• insert an edge between two specified vertices,

• insert a vertex along with its incident edges, and

• delete edge, vertices or blocks.

The drawing of the graph at a given moment is called the current drawing, and the graph

is called the current graph. The drawing resulting from the user change is called the new

drawing, and the graph is called the new graph. Papakostas and Tollis [126] suggest

there are various issues that should be taken into account before a new drawing is

displayed, these are: -

• the amount of control the user has upon the position of a newly inserted vertex,

• the amount of control the user has on how a new edge will be routed in the current

drawing connecting two vertices of the current graph, and

• how different the new drawing is when compared with the current drawing.

Baring this in mind Papakostas and Tollis [126] suggest the following four scenarios in

interactive drawing: -

1) full-control scenario - the user has full control of the position of the new vertex in

the current drawing. The user or the system can route the edges,

Page 86

A.Hofton Chapter 3 -Some Graph Uses

2) draw-from-scratch scenario - everytime a user requests to redraw the current

graph, a completely new drawing is drawn redrawing the current graph using

one of the popular drawing techniques,

3) relative-coordinates scenario - the general shape of the current drawing remains

the same. The coordinates of some vertices and or edges may change because

of the insertion of a new vertex, and

4) no-change scenario - in this approach the coordinates of the already embedded

vertices, bends and edges do not change at all.

A more detailed description of these scenarios can be found in [126] and [127], they

present algorithms for scenarios 3 and 4 applicable to orthogonal layouts. In Papakostas,

Six and Tollis [125] an experimental comparison is made of scenarios 3 and 4 in terms

of their performances.

3.4.2.1 Layout Stability

Automatic graph layout algorithms position vertices and edges and relieve the user of

tedious and difficult manual layout. It tries to achieve a readable presentation. However

Paulisch and Titchy [129] suggest that there are two problems with automatic layout,

these are: -

• user preferences and application constraints are difficult to incorporate, and

• layout stability.

Most algorithms do not take the previous layout into account. After changing a graph, a

new layout may be dramatically different to the previous one, causing loss of

orientation. The four scenarios above play an important part in layout stability.

Messinger [112] describes the difference between two graphs as how far the vertices

have moved from their previous locations. Ideally when a user makes a change the

automatic graph layout algorithm should just change the affected area, and therefore the

difference between two layouts should be minimal. However, most change the whole

graph. Incremental algorithms are a possible approach to take; these try to minimize the

amount of recalculation needed to layout a graph. Incremental algorithms and

minimising the difference between two layouts of graphs remain poorly explored. An

Page 87

A.Hofton Chapter 3 -Some Graph Uses

example of a tool that tries to achieve this is the EDGE system by Paulisch and Titchy

[129].

3.4.3 Tool Classification

On surveying the literature, graph tools are divided into following six types: -

1. layout algorithm -an automatic graph layout algorithm,

2. layout algorithm library - a collection of automatic graph layout algorithms,

3. graph library - libraries of data structures that represent graphs,

4. graph browser -a way of displaying graphs on the screen,

5. graph editor -a way of displaying graphs and manipulating them, and

6. graph layout system- a program(s) that incorporates a layout algorithm library,

graph library and a graph browser/editor

3.4.3.1 Graph Browser / Editor

In general a graph browser / editor can be represented by a figure similar to Figure 27.

Al l systems take in a graph and output a graph. In some systems the graph processed by

the automatic graph layout algorithm and then by the browser / editor which displays it

to the user who can obtain a hard copy of it. In some systems a browser controls when

to send it to the automatic graph layout algorithm. Graph layouts were obtained in batch

before the increase in the power of computer systems in the 1980's. Graphs were sent to

the automatic graph layout algorithm which would output another graph with the

position of the vertices and edges stored within it or it would output in a file format that

allowed it to be printed to a printer, e.g. postscript.

Page 88

A.Hofton Chapter 3 -Some Graph Uses

Graphs

Graph Drawing Graph
Algorithm Editor/Browser

Figure 27 - A typical structure of a graph editor / browser

3.4.4 Graph Layout System

A typical graph layout system will be a variation of Figure 28. This system shows the

best system is one that allows the user to implement many different algorithms, and

draw many types of diagram, e.g. PERT Charts. A good example of such a system is

ALF proposed by Bertolazzi et al. [12]. However many systems do not allow more than

one type of diagram to be drawn. But they allow many algorithms to be applied to graph

diagrams, such as GraphED or Graphlet [77] [80]. They have a system of representing

algorithms and a limited store of them, but do not store different diagrams in the

Diagram Model Store.

Page 89

A.Hofton Chapter 3 -Some Graph Uses

Layout Algorithm |
Store

Graph Browser

The User

Graphs

Requirements

Diagram Type—•

r &
I
i

Aesthetic
requirements

Diagram
Manager |

Diagram Model

Diagram Model
Store

New Diagram
Models

Layout Algorithm

Algorithm
Manager

New Layout
Algorithms

Administrator

Figure 28 - A graph layout system modified from [12|.

3.4.5 Tool Summary

DiBattista et al. [42] present many papers on tools. They are classified and a summary

of the results is given in Table 11. Most computer science departments have a graph

layout tool of some type as many systems have been developed.

Page 90

A.Hofton Chapter 3 -Some Graph Uses

Name Paper Algorithm Input
Class

Output
Class

Classification

3Dcube [128] Independent Any 3D Graph Browser
ADOCS [11] Reingold

And Tifford
Tree and Eades

Tree

Tree Tree Graph Browser

ALF [12] Independent Any Any Graph Layout
System

CABRI [39] None Any Any Graph Editor
CABRI-Graph [29] Various

(unlisted)
Any Any Graph Editor

CG [110] Grammar N/A N/A Graph Browser
COMAIDE [48] Force Directed Undirected Undirected Graph Browser

daVinci [64] Sugiyama Any Hierarchical Graph Editor
D-

ABDUCTOR
[158] Sugiyama's

Compound
Graph

Compound Compound Graph Editor

DAG [68] Sugiyama Any Hierarchical Graph browser
DynaDag [123] Sugiyama Directed Hierarchical Graph Editor

EDGE [129] Independent Any Any Graph Layout
System

GD-
Workbench

[28] N/A N/A N/A Graph Layout
System

Giotto3d [70] Giotto -
Tamassia

Directed
Acyclic

3D Hierarchical Graph Browser

Graph Editor
Toolkit

[49] N/A N/A N/A Layout Algorithm
Library

Graph Layout
Toolkit

[108] N/A N/A N/A Graph Library

GraphED [77] Several
(Unlisted)

Any Any Graph Layout
System

Graphlet
system

[80] Any Any Any Graph Drawing
System

Grappa [7] Dot Hierarchical Hierarchical Graph Browser
GROVE [169] Grammars Any Any Graph Browser

Interactive
Giotto

[24] Giotto -
Tamassia

Directed
Acyclic

Orthogonal Interactive
Algorithm

LEDA [111] N/A N/A N/A Graph Library
Link [10] Independent Any Any Graph Layout

System
Niche Works [174] Force Directed Any Circular,

Hexagonal,
Tree

Graph Editor

Optigraph [83] Force Directed Undirected Undirected Graph Browser
SWAN [179] Bloesh (tree)

Eades's Force
Directed

(undirected)

Undirected,
Tree

Undirected
Trees

Graph Editor

TOSCANA [152] None (unlisted) Any Any Graph Browser
VCG [146,

148]
Sugiyama

Force Directed
Hierarchical Hierarchical Graph Browser

Table 11 - The classification of many layout systems

Page 91

A.Hofton Chapter 3 -Some Graph Uses

3.5 Graph Bsomorphiism

The ability to be able to compare graphs is important, e.g. robot vision and hand writing

recognition. Graph isomorphism is a way of comparing graphs. The method of laying

out graphs described in this thesis relies on the fact that graphs consist of common

models. It is therefore necessary to search for these graphs so that they can be laid out

using predefined layouts. Subgraph isomorphism techniques are methods of searching a

graph for occurrences of a smaller graph, i.e. common models. Clearly subgraph

isomorphism techniques use techniques developed in graph isomorphism. In this

section the isomorphism problem is discussed giving a definition, a discussion of its

complexity class, and the main algorithms used for performing isomorphism along with

a comparison.

3.5.1 Definitions

3.5.1.1 Graph Isomorphism

There are several definitions of graph isomorphism. The definition to use depends on

the type of graph. I f the graph is defined as a set of vertices and edges, such as the

definition given in Chapter 2 then graph isomorphism is defined by Gross and Yellen

[73] as: -

"A graph isomorphism f : G -* H is a pair ofbijections

fv: VG -* VH and fE: EG -* EH

Such that for every edge e e EG, the function fv maps the endpoints of e to the endpoints

of the edge fE(e)-

Two graphs G and H are said to be isomorphic if there exists an isomorphism from G to

H. This relationship is often denoted byG=HorG = H"

Definition 1 -General graph isomorphism

Page 92

A.Hofton Chapter 3 -Some Graph Uses

For example given graphs G, H, I , J defined as: -

Graph G=(VG, E G) where V G ={u,v,w} EG={(u,w),(w,u),(u,v),(v,v)}

Graph H=(V H , E H) where V H ={u,v,w} EH={(u,w),(w,u),(u,v),(v,v)}

Graph I=(V b E,) where V r { u , v , w } E,={(u,w),(w,u),(u,v),(v,v)}

Graph J=(Vj, Ej) where Vj={a,b,c} Ej={(a,c),(c,a),(a,b),(b,b)}

Graph G can be drawn so that it looks like Figure 29(a). Figure 29(b) shows a drawing

of graph H and Figure 29(c) shows a drawing of Graph I . From the above definition

they are all isomorphic u—»u—> u, v—> v —*• v and w —> w, edges a —* a —>a, b —> b —>

b , c —• c —• c and d —> d —»d.

u a u

\
a / \4 w w

(a) Graph G (b) Graph H (c) Graph I

Figure 29 - A drawing of graph G, H and I

In graph J (shown in Figure 30) the labels are not the same as graphs G, however the

vertex and edge structure are the same. In the above definition the graphs are

isomorphic, however in many papers on the subject they are not. This is because in

many definitions of a graph, functions are defined that assign labels to the edges and

vertices. Therefore the labels are checked to be the same as well.

g

f a e

Figure 30 - Graph J

Page 93

A.Hofton Chapter 3 -Some Graph Uses

Vertex labelling helps with the efficiency of the isomorphism algorithms. Often when a

graph is naturally unlabelled each vertex is given an individual label of its degree in an

attempt to speed up detection of isomorphic graphs. In order to give all the necessary

definitions of isomorphism a directed graph should be redefined so that a function is

used to allocate labelling to the vertices and edges. The definition is taken from Bunke

and Messmer [26] and is: -

A graph G is a four- tuple G=(V,E,(j,,v), where

-V is the set of vertices

- E c VxV

- n : V -» L v

- v : E —• L E

Definition 2 - A formal directed graph

Given this definition of a directed graph a bijective function / : V —• V is a graph

isomorphism from a graph G =(V,E,|i,v) to a graph G' =(V',E',|x',v') i f :

u(v) = \i\f(y)) for all v e V.

For any edge e = (v i , v 2) £ E there exists an edge e' = (/ (V |) , / (v 2)) £ E' such that v(e)

= v(e'), and for any e' = (v' 1, v' 2) £ E ' there exists an edge e = (J (v' 1), / (v' 2)) £ E

such that v(e') = v(e)

Definition 3 - Directed graph isomorphism

3.5.1.2 Subgraph Isomorphism

This definition is necessary because the ANHOF method does not need to compare one

graph with another. It will need to search for all occurrences of a common model graph

in the large graph. This is what is known as subgraph isomorphism. Subgraph

isomorphism is a special case of graph isomorphism.

Page 94

A.Hofton Chapter 3 -Some Graph Uses

Informally a subgraph of a graph G is a graph H whose vertices and edges are all in G.

Therefore in Definition 1 VH and E H are required to be subsets of VQ and EG

respectively H is therefore a subgraph of G when H is merely isomorphic to a subgraph

of G. Formally using the terminology used in Bunke and Messmer [26]: -

Given a graph G = (V,E,n,v), a subgraph of G is a graph S = (V S ,E s ,u s ,v s) such that: -

1. V s c V

2. E S = E fl (V s xV s)

3. a* and v s are the restrictions of |4, and v to V s and E S , respectively, i.e.

o(e) if ee £ v

[undefined otherwise

Definition 4 - A subgraph

Using this definition subgraph isomorphism can now be defined. This is given in

Definition 5.

An injective function / : V —* V is a subgraph isomorphism from a graph G to G' i f

there exists a subgraph Sc: G' such that / is a graph isomorphism from G to S.

There are a number of ways of drawing graph A, one is given in Figure 31 together with

some of the subgraphs of graph A. These are all isomorphic to a subgraph of graph A.

undefined otherwise

Definition 5 - Subgraph isomorphism

As examples consider the graph A defined as: -

V={a,b,c}

E={(a,c),(a,b),(c,b),(a,b),(c,c),(c,c)).

Page 95

A.Hofton Chapter 3 -Some Graph Uses

a a a

(a) Graph A (b) subgraph 1 (c) subgraph 2 (d) subgraph 3

Figure 31 - The graph A and its subgraphs

3.5.2 NP or P Complexity Class

Trying to decide whether such a pair of bijections (from Definition 1) exists is difficult.

For certain pairs of simple n-vertex, q-edge graphs with n as small as six. A crude 'brute

force' approach may require a combination of n! vertex bijections and q! edge bijections

to see i f one specification can be transformed into the other. This is why the graph

isomorphism is regarded by most as being in the class NP [69]. However it is still an

open question whether the graph isomorphism problem is in the complexity class P or

NP. Al l algorithms that have been developed so far for the general graph isomorphism

problem require, in the worse case, exponential time and are therefore in the class NP.

Research in the last twenty years has shown that there are methods for graph

isomorphism that behave reasonably well in terms of performance and become

computationally interactable only in a few cases, therefore making the problem belong

to class P. Further discussion on the topic is found in [98].

The graph isomorphism problem has been the focus of intensive research for three

decades ([71] and [141]). There are basically two approaches that have been taken in

order to find an efficient algorithm. The first approach is based on graph-theoretic

concepts and aims at classifying the adjacency matrices of graphs into permutation

groups. With this it is possible to prove that there exists a moderately exponential bond

for the general graph [6]. Furthermore by imposing certain restriction on the graphs it is

possible to derive algorithms that have a polynomial bound [81]. These methods,

however, are not applicable in practice due to the large constant overhead of the

adjacency matrix.

Page 96

A.Hofton Chapter 3 -Some Graph Uses

The second approach is more practical. It constructs the isomorphisms in a procedural

manner. They are based on tree searching with backtracking, and work at worst in

exponential time generally in polynomial time. It is these that are described in the next

section.

3.5.3 Isomorphism Algorithms

Most practical graph isomorphism algorithms use standard tree searching techniques.

One is based on a depth-first backtracking algorithm. It was first described by Corneil

and Gotleib [36]. The method is as follows. Given two graphs Gl and G2 the vertices

of Gl are mapped one after each other onto the vertices of G2 and after each mapping it

is checked whether the edge structure of Gl is preserved in G2 by the mapping. I f all

vertices of Gl are successfully mapped onto vertices of G2 and Gl and G2 are equal

size then a graph isomorphism is found. I f Gl is smaller then G2 then a subgraph

isomorphism from Gl to G2 is found. This performs well on small graphs but the

number of steps required explodes exponentially.

3.5.3.1 Ullman's Algorithm

The most common graph isomorphism method used is that by Ullman [164]. It is an

improvement on Corneil and Gotleib's [36] depth first search with backtracking. He

combines the backtracking with a forward checking procedure. It reduces the steps

required to search for an isomorphism and therefore increases its efficiency. In order to

reduce the number of mappings that must be tested, it is better to start with a single

vertex to vertex mapping and then gradually extend this mapping such that the resulting

matching function always denotes a subgraph isomorphism. I f it does not then the

process backtracks to where it did and a further vertex is added. Further improvements

were suggested by Ullman to increase its efficiency, known as forward checking. The

basic idea of forward checking is to check for each mapping (vj,w xj) whether there

exists at least one mapping for each future vertex Vj onto some vertex w x j with j> i such

that the conditions for subgraph isomorphism hold true. The algorithm can be found in

[164]. The advantage of this algorithm is that is simple to implement and relatively

Page 97

A.Hofton Chapter 3 -Some Graph Uses

efficient on both memory usage and running time. The speed is linearly dependent on

the number of input graphs. It also performs well on unlabelled graphs.

3.5.3.2 Decision Tree

A decision tree is one of many new techniques that have been devised during the

1990's. It is suggested by Messmer in [114]. Given a set of model graphs, a decision

tree is generated that represents, for each model graph, all possible permutations of the

vertices. At run time, the isomorphisms or subgraph isomorphisms from an input graph

to all model graphs can be found by a simple decision tree traversal. Checking to see i f a

given graph is isomorphic is then a simple task of searching the decision tree for the

adjacency matrix of the graph. The algorithm for calculating the decision tree and

checking i f a graph is isomorphic is best described in Messmer and Bunke [115].

The advantages of the complete decision tree before pruning is that the performance is

independent of the number and the connectivity of the model graphs, furthermore it is

guaranteed to be only quadratic in the number of vertices of the input graphs. However

the size of the decision tree that is compiled for the model graphs is exponential in the

number of vertices of the model graphs, hence, only small model graphs (up to 19

vertices) can be handled. This fact has caused Messmer to suggest various techniques to

prune the decision tree so that it is more manageable. The decision tree can be pruned

depth and breadth wise, details can be found in [114].

Depth pruning is advantageous because the size of memory needed to store the decision

tree is reduced, but because of the pruning the speed of the searching is increased.

Breadth pruning cuts the size of the decision tree but it can only deal with small model

graphs (up to 19 vertices). Pruning both depth and breadth wise increases efficiency of

the algorithm and slightly larger graphs (up to 22 vertices) can be searched for.

Page 98

A.Hofton Chapter 3 -Some Graph Uses

3.6 Summary

In the chapter above some possible uses for graph theory and the automatic graph layout

algorithms are suggested. It has presented graphs that are used as program

comprehension tools, it has summarised the literature on graph specification languages,

and categorised some tools. It has presented the main work on graph isomorphism,

discussing the problem and giving two algorithms that solve it. In the next chapter these

algorithms wil l be used to describe a new layout algorithm for call graphs, known as the

ANHOF method.

Page 99

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4. The ANHOF Method of Gall Graph Layout

4.1 Introduction

When comprehending programs, programmers make use of visualizations such as

graphs, within these graphs they look for common structures. There are a number of

graph layout algorithms incorporated into various graphs tools but none directly address

the types of graphs in common use by software engineers. In particular they do not

highlight the common structures found in call graphs. This chapter describes a method

for automatic layout of large (greater than 150 vertices) call graphs, which conform to a

set of aesthetics.

4.2 The Common Model Graphs

Fenton and Hill [56], amongst others, show that structural flowcharts consist of various

common structures, such as those that map to sequence, decision and loop. A great deal

of research has been carried out into call graphs in the University of Durham including

their simplification [27]. Other research projects in Durham, such as AMES [19], have

used call graphs as a program representation. Further research by Munro et al. [117]

shows that there are common structures present in call graphs. Studying many graphs,

they showed that call graphs consisted of at least five common structures. In this thesis

the common structures have been given a layout. Therefore they have become what are

referred to as common model graphs. The layout that has been assigned is a

compromise between edge crossings and comprehension. The common model graphs

are laid out so that there are minimum edge crossings and in a way that they can be

understood and the common model graph stands out in the resulting graph.

There are two types of common model graphs, fixed and variable. Fixed common model

graphs consist of a strict structure; they have a fixed number of vertices, edges and edge

direction. Variable common model graphs consist of a variable number of vertices and

Page 100

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

edges but have a common edge direction and structure. Figure 32 shows that there are

nine common model graphs of which two are fixed and seven are variable. On

inspection it becomes obvious that various common model graphs are made up of

primitive common model graphs. These are common model graphs that cannot be

simplified. There are five primitive common model graphs (Figure 32(a), (b), (c), (h)

and (i)) of which two have a fixed structure and three have a variable structure. The

primitive common model graphs are Triangle, Box, Fan In, Fan Out and Chain.

However a Box consists of a Chain model and an extra vertex, the extra vertex making

it difficult to simplify and is therefore a primitive common model graph.

These common model graphs are discussed in the section below. It should be noted that

the definitions of the common model graphs below are trying to be as restrictive as

possible. The theory behind this layout method is that a graph should be made up of as

many common model graphs as possible. Therefore a common model graph should

minimize the number of vertices that it contains, in order for the automatic graph layout

algorithms to work at their peak performance and to aid understanding of the graph. In

the diagrams below the primitive common model graphs are coloured differently so that

they can be identified in future example graphs. I f in a diagram a dashed line is present

this means that the edge is not necessary. For each model graph an example

interpretation is given that relates the graph to the structure core.

Page 101

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

Variable

(a) Fan out (b) Fan In

(c) Chain

(d) Chain to Fan Out (e) Split 1

(f) Split 2 (g) Split 3

Fixed

(h) Triangle (i) Box

Figure 32 - The common model graphs present in a call graph

Page 102

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.1 Variable Common Model Graphs

These are common model graphs that have a fixed edge direction but can involve any

number of vertices. They all rely on two properties of a vertex described by Henry and

Kafura [76]. The number of edges that lead from a given vertex, known as the fan out

number of a vertex, and the number of edges that come into a vertex, known as the fan

in number of the vertex. Using this information about a vertex, various common model

graphs become obvious. The seven common model graphs, three of which are primitive

common model graphs (Figure 32(a), (b), and (c)), are discussed below. In describing

each of the model graphs a set of numerical values can be defined to parameterise each

graph. These values will be detailed by experimentation later in this thesis in Chapter 7.

The parameters are given below.

• Fanoutlevel - Measure of the fan out value of a vertex. It should be a value

greater or equal to two.

• Faninlevel - Measure of the fan out value of a vertex. It should be a value

greater or equal to two.

• Chainlevel - The number of vertices that flow in a chain like manner. It should

be a value greater or equal to two.

• Chainfanoutlevel - The number of vertices that a vertex should fan out to at the

end of a Chain. It should be a value greater or equal to two.

• Lengthofchain - The number of vertices that flow in a chain like manner. It

should be a value greater or equal to two.

• Commonfanoutnumber - This is the number of vertices that the two main

vertices commonly fan out to in a Split 1 model. It should be a value

greater or equal to two.

• Commonsplit2fanoutlevel - This is the number of vertices that the two main

vertices commonly fan out to in a Split 2 model. It should be a value greater or

equal to two.

• Split2fanoutlevel - This is the number that one of the vertices fan out to in a

split 2 model. It should be a value greater or equal to two.

• Split3fanoutlevel - This is the number of vertices that fan out from the main

vertex in a Split 3 model. It should be a value greater or equal to two.

• Split3faninlevel - This is the number of vertices that fan into the main vertex in

a Split 3 model. It should be a value greater or equal to two.

Page 103

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.1.1 Fan Out Common Model Graph

4.2.1.1.1 Description

This common model graph is the most common in a call graph because of its

hierarchical structure. A Fan Out common model graph consists of one main vertex that

flows to a number of vertices. There will be a lower limit to this number of vertices and

will be defined using the 'Fanoutlevel' parameter above to avoid conflict problems of

detecting other common model graphs.

4.2.1.1.2 Layout

The common model graph is laid out in the manner given in Figure 33 with the main

vertex centred above the ones it flows out to. In Figure 33 the father vertex is labelled

'Procedure' and the children vertices are labelled 'Procedure 1', 'Procedure 2', and

'Procedure 3' to 'Procedure N ' . The model is coloured dark green to aid future

identification.

P r o c e d u r e 1

P r o c e d u r e 2

P r o c e d u r e 3

P r o c e d u r e N

Figure 33 - A Fan Out common model graph

4.2.1.1.3 Example

A C program consists of a function that is always present, known as the 'main function'.

In large computer programs this function wil l call other functions giving the hierarchical

structure common in call graphs. It is this information that is represented by a Fan Out

common model graph. The functions that are immediately called inside the main

Page 104

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

function are represented by the vertices that the main vertex (vertex labelled

'Procedure') flows to (vertices labelled 'Procedure 1', 'Procedure 2', 'Procedure 3' and

'Procedure N ' in Figure 33).

4.2.1.2 Fan In Common Model Graph

4.2.1.2.1 Description

This common model graph is another model that is implied in the hierarchical nature of

a call graph. A Fan In common model graph consists of a set number of vertices (known

as the fan in vertices) flowing into one main vertex. Again there will be a lower limit to

the number so that the model graph will be detected reliably; this limit will be set by the

parameter 'Faninlevel' defined above.

4.2.1.2.2 Layout

The common model graph is laid out in the manner given in Figure 34, with the main

vertex centred below the fan in vertices, where the flow goes across the plane. The main

vertex is labelled in Figure 34 as 'Procedure' and the fan in vertices are labelled

'Procedure 1', 'Procedure 2', and 'Procedure 3' to 'Procedure N ' . The vertices are

coloured yellow to aid future identification.

P r o c e d u r e 1

P r o c e d u r e 2

P r o c e d u r e 3

P r o c e d u r e N '

P r o c e d u r e

Figure 34 - A Fan In common model graph

Page 105

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.1.2.3 Example

A Fan In common model graph is commonly present i f a call graph is not simplified by

removing the standard library functions. For instance i f the C function 'printf is

present, many functions wil l call on that function. In a call graph the functions that call

'printf will be the fan in vertices (vertices labelled 'Procedure 1', 'Procedure 2',

'Procedure 3' and 'Procedure N ' in Figure 34) and 'printf will be the main vertex

(vertex labelled 'Procedure') in a Fan In common model graph. It is also indicative of a

commonly used function that may for example report an error message.

4.2.1.3 Chain Common Model Graph

4.2.1.3.1 Description

A Chain common model graph implies the simplest structure in a program, one

procedure invoking another and that invoking another etc, it is therefore potentially

common in call graphs. A Chain common model graph consists of a series of vertices

that have a fan out value of exactly one. The Chain common model graph will end with

a vertex that has a fan out value not equal to one. Ideally the start vertex should have a

fan in value of zero. Each vertex can have a fan in value of any value; this is because i f

it is restricted to zero then a Chain model is rarely found in call graphs. This causes a

vertex to flow to the next one and that one to flow to the next etc therefore resembling a

chain. The length of the chain is the minimum number of vertices that are involved. It is

set and defined under the parameter 'Chainlength'.

4.2.1.3.2 Layout

The vertices of a Chain common model graph should be aligned so that the top edges

are aligned, with equal spacing in between the vertices. An example Chain common

model graph layout is shown in Figure 35, it is again coloured light green to aid future

identification.

Page 106

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

...

Procedure 1 H Procedure 2 H Procedure 3

...

Procedure 1 I H Procedure 2 i n Procedure 3 Procedure N

Figure 35 - A Chain common model graph

4.2.1.3.3 Example

A Chain common model graph is common in data processing applications when the

main function calls another function to do a small chunk of data processing which in

turn calls another function that performs some sort of output / input. On detection of a

Chain model a question may be asked about the programmer, does the programmer

understand hierarchical structures that indicative of good programming structure?

4.2.1.4 Chain to Fan Out Common Model Graph

4.2.1.4.1 Description

This consists of a combination of a Chain common model graph and a Fan Out common

model graph. It is merely a redefinition of the Chain common model graph, in that less

strict rules are placed on the end vertex of the chain. The Chain common model graph

consists of a series of vertices that have a fan out value of exactly one, the end vertex

has a fan out value greater or equal to a number. The end vertex and the vertices that it

flows out to form a Fan Out common model graph. Again there will be a limit to this

number and the limit is set under the parameter 'Chainfanoutlevel'. The length of the

chain is the minimum number of vertices that is involved in the chain. The lower limit

of this number is set by the parameter 'Lengthofchairf. It has the same properties as

'Chainlength' but is given a separate name so the settings can be unique.

4.2.1.4.2 Layout

The top of the vertices associated with the Chain model (vertices labelled 'Procedure',

'Procedure 1' and 'Procedure N ' in Figure 36) should be aligned horizontally; they

should be position so that they are centred over the children of the Fan Out common

model graph (vertices labelled 'Procedure N + l ' , 'Procedure N+2' and 'Procedure

N+M' in the diagram). An example layout of the common model graph is given in

Page 107

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

Figure 36. The composition of the common model graphs are highlighted by the vertex

colour, the Chain model being coloured light green and the Fan Out model being

coloured dark green. The vertex labelled 'Procedure N ' is a member of both the Chain

common model graph and Fan Out common model graph

Procedure
N+1

Procedure Procedure 1
Procedure

N+2

\
\

\
\

Procedure
N+M

Figure 36- A Chain to Fan Out common Model Graph

4.2.1.4.3 Example

A Chain to Fan Out common model graph is common in data processing applications

when the main function calls another function to perform some data processing (the

Chain common model graph labelled 'Procedure', 'Procedure l'and 'Procedure N ' in

Figure 36). This step is then broken down into smaller steps, each step requiring another

function (the Fan Out common model graph labelled 'Procedure N+1 ' , 'Procedure N+2'

and 'Procedure N+M'), each function is represented as a vertex that flows from the step

vertex (labelled 'Procedure N') .

Page 108

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.1.5 Split 1 Common Model Graph

4.2.1.5.1 Description

A Split 1 common model graph is a combination of two Fan Out Models. It is where

two main vertices flow to the same set of vertices. The number of common vertices has

to be greater or equal to a number. The lower limit to the number is set by the parameter

'Commonfanoutnumbef.

4.2.1.5.2 Layout

An example layout of a Split 1 common model graph is shown in Figure 37. The

common vertices are labelled as 'Procedure 2', 'Procedure 3' and 'Procedure N ' . The

vertices should be laid out so that the main vertices (labelled 'Procedure 1' and

'Procedure N + l ' in the diagram) are laid out centrally either side of the common

vertices.

Procedure 2

Procedure 1 f ^ Procedure 3
Procedure

Procedure 1
\

\

Procedure 3 ^ /
/

/

N+1

\
\

\

/
/

/
\

N 4 Procedure N

/

Figure 37 - A Split 1 common model graph

Page 109

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.1.5.3 Example

This structure is common where two procedures call a similar set of functions to

perform similar tasks. Sometimes it is an indicator that the procedures do the same

thing. For example i f a procedures does a certain task on a data type that requires many

procedures to perform and another procedure does the same processing on a different

data type using the same procedures. Another example of the use of a Split 1 model is i f

vertices labelled 'Procedure 2', 'Procedure 3' and 'Procedure N ' manipulate an equation

and vertices labelled 'Procedure 1' and 'Procedure N + l ' set up values for it.

4.2.1.6 Split 2 Common Model Graph

4.2.1.6.1 Description

This is similar to a Split 1 common model graph in that two main vertices flow out to

common vertices but one vertex also fans out to more, so the common vertices are a

subset of the set of vertices it fans out to. The common number of vertices has to be

greater or equal to a number, set by the parameter iCommonsplit2fanoutleveV. The

father vertex that fans out to more vertices should have a fan out value greater or equal

to a number, set by the parameter lSplit2fanoutleveV.

4.2.1.6.2 Layout

An example layout of a Split 2 common model graph is shown in Figure 38. In this

diagram the common vertices are labelled 'Procedure 2', 'Procedure 3', and 'Procedure

N ' . The main vertices being labelled 'Procedure 1' and 'Procedure N + l ' . The extra

vertices flow from the vertex labelled 'Procedure N + l ' and are labelled 'Procedure

N+2', 'Procedure N+3' and 'Procedure N+M' . It should be laid out so that the father

vertices are centred over the common vertices and the extra vertices.

Page 110

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

A
Procedure 2 Procedure

N+2 A A Procedure 3 Procedure Procedure Procedure 3
/

/
N+1 \

\
N+3

Procedure N Procedure
N+M

Figure 38 - A Split 2 common model graph

4.2.1.6.3 Example

It is again common where two procedures call a similar set of functions to perform

similar tasks. For example i f a procedures does a certain task on a data type that requires

many procedures to perform and another procedure does exactly the same processing on

a different data type using the same procedures as the other procedure but requires more

procedures to do the processing.

4.2.1.7 Split 3 Common Model Graph

4.2.1.7.1 Description

A Split 3 common model graph is simply a vertex that has a number of vertices both

coming in and out of it. The lower limits to these numbers are set by the parameters

'Split3fanoutlever and 'SplitSfaninlever respectively. It therefore consists of a Fan In

common model graph and a Fan Out common model graph with common father

vertices.

Page 111

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.1.7.2 Layout

The common model graph should be laid out so that the main vertex is in the centre and

it is centred over its children. The layout can be found in Figure 39. In this figure the

common model graphs are coloured in their respective colours to aid identification. The

father vertex is labelled 'Procedure N + l ' and coloured black because it is a member of

both common model graphs. The fan in vertices are labelled 'Procedure 1', 'Procedure

2' and 'Procedure N \ and the fan out vertices are labelled 'Procedure N+2 ' , ' Procedure

N+3', and 'Procedure N+M' .

Procedure 1

Procedure 2
Procedure

N+1

Procedure N ^

Procedure
N+2

Procedure
N+3

Procedure
N+M

Figure 39 - A Split 3 common model graph

4.2.1.7.3 Example

This is present where a procedure relies on the input of two or more procedures to

perform its task and then other procedures need the information that will be provided by

calling that procedure. So, it may be a type operation that processes a file where each

part of the file is processed by a procedure and the main procedure combines the results

of these procedures together. This type of operation is required by many other

procedures in the program.

Page 112

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.2 Fixed Common Model Graphs

A fixed common model graph is a model that has a fixed structure; they have a fixed

number of vertices, edges and edge direction. In the section below two examples of

fixed common model graphs will be discussed, a Triangle and Box common model

graph.

4.2.2.1 Triangle Common Model Graph

4.2.2.1.1 Description

A Triangle common model graph consists of three vertices. One main vertex that flows

to the other connected vertices. It is commonly found in the midst of a Fan Out common

model graph. It is a primitive common model graph because it cannot be simplified and

involves a fixed number of vertices.

4.2.2.1.2 Layout

It should be laid out so that the top of the main and one of the other vertices are

horizontally aligned. It differs from a normal layout because the father vertex is not

centred over its children; this is because it is easier to impose a fixed layout to fixed

common model graphs. In this common model graph one vertex is called by both the

other two vertices meaning that it is likely to be a small function, and the other two

procedures will be using it to get a small result. A programmer will read graphs firstly

left to right on the page and then top to bottom. Therefore it is necessary that the

important vertices are place nearest the left hand edge of the page then nearest to top

edge of the plane, hence the layout of the common model graph. The layout is given in

Figure 40.

Procedure 1 Procedure 2 Procedure 1 H Procedure 2

Procedure 3

Figure 40 - A Triangle common model graph

Page 113

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.2.1.3 Example

A Triangle common model graph is common where a procedure needs two sub-

procedures and one relies on the other for results, for instance in a mathematical

equation.

4.2.2.2 Box Common Model Graph

4.2.2.2.1 Description

There are 16 combinations of four unlabelled vertices. Two of these combinations are

cycles and are not allowed by the subgraph isomorphism algorithms. Nine

combinations are simple isomorphisms of each other, leaving the five combinations in

Figure 41. When searching call graphs it was found that the combinations in Figure

41(c)(d)(e) were not found in call graphs and therefore did not feature in the library of

common model graphs. Figure 41(a) is a Box common model graph discussed below.

Figure 41(b) is a Split 1 common model graph but the settings of the parameters may

not detect it as such, again it was not found in call graphs.

(a) (b)

Pi H edure 2

(c)

Procedure 2

(d) (e)

Figure 41 - The independent variations of four vertices

A Box common model graph consists of four vertices and not a cycle. The first vertex

(labelled 'Procedure 1') is connected to the second vertex (labelled 'Procedure 2'),

which is connected to the third vertex (labelled 'Procedure3'). The fourth vertex

(labelled 'Procedure 4') is connected to the first and third, therefore it is acyclic.

Page 114

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.2.2.2.2 Layout

A Box model should be laid out so that vertices 1 and 4 are vertically aligned, as are 2

and 3. Vertices 1 and 2 should be horizontally aligned, as should 4 and 3. I f the

'Chainlength' variable is set to 2 or 3 a chain is present (vertices labelled 'Procedure 1',

'Procedure 2' and 'Procedure 3'. However because of its structure the common model

graph is present in this section, and is marked as a primitive common model graph

because it involves another vertex that wil l not be part of another common model graph.

An example layout is given in Figure 42.

Procedure 1 •

•

Procedure 2

_ri
•

• Procedure 4

•

• Procedure 3

Figure 42 - A Box common model graph

4.2.2.2.3 Example

A Box common model graph is common in data processing applications when a start

procedure calls another procedure to perform some data processing which in turn calls

another function to performs output / input. Another procedure calls that output

procedure and the start procedure

4.3 The ANHOF Method

The ANHOF method brings together areas of graph layout to highlight common

structures in calls graphs. The main aims of the ANHOF method are to improve the

understanding of the graph and its metrics. The improvement in understanding of call

graphs is gained by making the common structures obvious in its layout. Reduction in

the number of edge crossings is achieved by breaking down the graph into smaller units

Page 115

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

where automatic graph layout algorithms work more effectively. The common

structures have an associated 'good' layout. The good layout is a compromise between

low edge crossings and easy comprehension. These techniques are commonly called a

divide and conquer approach and were first described by Messinger et al. [113]. It is

where first the graph is divided into subgraphs; the graphs are then laid out and then

recombined into a new and improved graph. The method presents two problems. Firstly

how to partition the input graph into subgraphs and, secondly, how to layout the

subgraphs.

To partition the graph Messinger et al. [113] suggested two methods. 1) Application

specific partitions 2) graph theoretic partitions such as those discussed by [124]. In the

ANHOF method an application specific partition is used in such a way the graph is

partitioned in to a set of common model graphs present only in that graph type.

Automatic graph layout algorithms can be classed into declarative approach,

algorithmic approach, or a combination of the two. An algorithmic approach is where a

strict algorithm is applied to the graph. This approach has generally produced some

good layouts for specific classes of graphs. They however rarely work outside of their

intended class. Layout requirements are generally hard coded into them making them

difficult to customise. They rely on the structure of the graph. A declarative approach is

where the rules and constraints to be placed on the graph are clearly specified. They are

then applied to the graph. Constraints however often apply to a graph in many

unforeseen ways and they tend to be inefficient. Paulisch and Titchy [129] suggest that

it is difficult to incorporate users and application constraints into one automatic graph

layout algorithm. An integrated approach is a combination of both of the approaches. It

is where the constraints are defined in terms of the options of algorithmic approaches'

algorithm.

The ANHOF method presents a means of automatically laying out the hierarchical / tree

like structures of call graphs, meaning that an algorithmic approach could be employed.

In order to make the ANHOF method as general as possible, however, an integrated

approach is employed, where constraints and aesthetics such as vertex spacing and the

layout options of the automatic graph layout algorithms are specified. It employs a

Page 116

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

straight-line standard from edge routing and intends to apply the following aesthetic to

the layouts: -

• minimize the crossings of edges,

• the flow of the graph will go from left to right,

• the area of the graph will be minimized,

• vertices on the same level will be placed on the same horizontal line,

• fathers will be centralised above their sons.

The divide and conquer method of call graph layout uses the ANHOF method. This is a

four-part process that is shown in Figure 43. The common model graph detection that is

performed by the Graph Isomorphism System. This produces a list of all the matches to

the models. The Match Analyser removes any invalid ones, filtering the matches to the

common model graphs. This creates a graph representation and a list of valid models.

The list of valid matches is an unused output available for use in other tools. The graph

representation contains all the valid matches and details of the whole graph. It is this

representation that is used in laying out the graph with the Graph Layout System and is

then displayed with the Graph Display System. Each section of the process will be

expanded in the sections below.

Graph

M o d e l s

Matches M
Match

Analyser

Valid
Matches

Graph
Representation

Aesthetics

Graph
Layout
System

Layout
Algorithms

Graph
Display
System

Figure 43 - The ANHOF method of call graph layout

4.3.1 Graph Isomorphism System

There are two types of common model graphs found in call graphs, fixed and variable.

In order to detect the different common model graphs type two sorts of detection

methods are needed. The techniques of subgraph isomorphism described in Chapter 3

Page 117

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

should be employed to extend the library of fixed common model graphs. The

algorithms by Ullman [164] and Messmer [114] are used and search for smaller

adjacency matrices in the larger one representing the graph. These work well with the

size of common model graph (less than 20 vertices) suggested. It is therefore only a

matter of calculating its adjacency matrix to detect any fixed common model graph and

using either algorithm and to find out whether it is present in the call graph.

The detection of the variable common model graphs relies on processing the sets of

edges and vertices. The processing of the sets is a two-step process. First, calculate the

fan in and fan out values of each vertex, and then process this information to detect the

various common model graphs according to their definition. The common model graph

definitions should be written in a simple language to allow future expansion of the

common model graph library that is then processed. The fixed common model graphs

could also be detected using the system but are best detected using the subgraph

isomorphism algorithms because some common model graphs cannot be expressed in

terms of the fan out and fan in values of its vertices. For instance a Box common model

graph is best described in terms of its adjacency matrix because two vertices have the

same fan in and fan out information.

Detecting the common model graphs in a graph can be divided further into a three-step

process. The process is given in the algorithm SearchForModelGraph (Algorithm 2).

SearchForModelGraph(G, FM, VM)

Where G=(V,E), FM= FixedModels and VM = VariableModels

1) For each fixed common model graph FM: -

a) Form adjacency matrix of FM

b) Search Graph G using a subgraph isomorphism algorithm for FM

c) Output the common model graph matches found to list Matches

2) Calculate the fan in and fan out information for each vertex in G

3) For each variable common model graph VM: -

a) Take common model graph definition of VM and: -

b) Search fan in and fan out information for correct vertices

c) I f the definition requires the edge information then check the vertices found in

step b) for the correct edge information

Page 118

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

d) Output the common model graph matches found to list Matches

4) Return Matches

Algorithm 2 - The process of searching for the common model graphs

4.3.2 Match Analyser

The Graph Isomorphism System will find a large number of possible matches to the

common model graphs. I f there are too many matches then the layout process will be

hampered. I f there are too few, the common model graphs searched for by people

comprehending programs will not become obvious, therefore not improving the graph

layout from the program comprehension point of view. The number of vertices being

passed to the automatic graph layout algorithm could be too large for the algorithms to

work successfully. Therefore the layout of the graph in terms of its aesthetics will not be

improved, and it is necessary to define what a valid match is. There are many

definitions of a valid match, for instance a common model graph cannot involve more

than a set number of vertices. One of the problems of using a divide and conquer

method of graph layout is how to cope with a vertex being a member of two or more

common model graphs. In order to overcome this problem a valid match is a common

model graph that does not include a vertex that is a member of another common model

graph. The Match Analyser therefore processes models so that they do not involve the

same vertices. AnalysisOfMatches (Algorithm 3) performs this analysis on a first

come, first served basis. The effectiveness of the algorithms is susceptible to the order

in which the common model graphs are processed; this order is investigated in future

sections. In AnalysisOfMatches (Algorithm 3) the valid matches are an output in

ValidMatches and Representation.

AnalysisQfMatches(^//Mafc/ies, G)

Where AllMatches = Matches and G=(V,E)

1) Let All Vertices = V

2) For each match in AllMatches: -

a. Get the list of vertices InvolvedVertices involved in the match

Page 119

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

b. For each vertex InvolvedVertex of InvolvedVertices: -

i . I f InvolvedVertex is a member of All Vert ices then

AllVertices = AllVertices \ InvolvedVertex

i i . Else Current match is invalid

c. I f no more vertices in InvolvedVertices then current match is valid

d. Add to ValidMatches

e. Add to Representation

3) Return ValidMatches

4) Return Representation

Algorithm 3 - The process of filtering of matches

A representation of the graph is the output from the Match Analyser. It requires very

little processing and is necessary so that the output from Match Analyser is stored and

can be viewed and altered before it is laid out by the Graph Layout System. The

representation should allow the graph to be described in terms of its common model

graphs.

The representation forms a simple domain language for describing a call graph. The

design of the representation used will follow the constituents of a good language

discussed in Pratt and Zelkowitz [132] and Bentley [9] mainly simplicity, orthogonality,

and naturalness. The representation must be simple to understand to a user in the field of

graph theory by making any terms used in the representation the same as any used in the

field, and making a construction applicable to many areas. The key information that is

to be represented is the vertices and edges of the graph, the common model graphs in

terms of its name, algorithm to be used and vertices involved. Details of the

representation will be discussed in the next chapter.

4.3.3 Graph Layout System

The Graph Layout System involves processing the representation of the graph that

includes vertices and edges that are in common model graphs and those that are not in

any model. The common model graphs are laid out using their associated algorithms

and the rest of the graph is laid out using either a standard automatic graph layout

Page 120

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

algorithm or a custom one for hierarchical structures. However the common model

graphs should be taken into account when laying the rest out.

This is achieved by forming a new graph. Each common model graph is laid out using

its associated automatic graph layout algorithm. Al l the vertices of the model are

collapsed into one vertex in the new graph, all edges that went to/from vertices in the

common model graph from/to vertices outside the common model graph now go

to/from the one vertex. The height and width of the common model graph is calculated

after it is laid out and the vertex that represents the common model graph in the graph is

given the same properties. Al l the vertices and edges that are not part of the common

model graphs in the original graph are added to the new graph as well. The whole graph

is now laid out using a standard or customised automatic graph layout algorithm. The

graph is now rebuilt, taking each vertex representing a common model graph, the vertex

is deleted and the vertices and edges in that common model graph are put back in its

place. Each vertex in the model is offset by the position in the horizontal and vertical

axis of the representing vertex. Therefore the layout of the model is maintained, each

member vertex is placed in a position relative to its representative vertex, so

maintaining the layout of the whole graph. The process is given in

LayoutRepresentation (Algorithm 4).

The automatic graph layout algorithms in the ANHOF method employ a straight line

standard of graph layout. This means that edges connect two vertices by the shortest

path, it is irrelevant whether it crosses another edge or vertex. None of the algorithms in

the section below specifically route edges. There is no step in LayoutRepresentation

(Algorithm 4) that routes the edges, unless the standard automatic graph layout

algorithm in step 8 or a model's automatic graph layout algorithm in step 5d performs it.

LayoutRepresentation(7?)

Where R = Representation

1. Get the whole graph G{Vertices,Edges) from R.

2. Let Unusededges - Edges.

3. Let Unnusedvertices = Vertices.

4. Let graph D (V 2 , Ei) be a new graph.

Page 121

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

5. For each common model graph M in R: -

a. Get vertices (V/) and edges (£/) that are involved in the common model

graph from R

b. Get the name N of the common model graph M from R.

c. Get the automatic graph layout algorithm to use on M from R.

d. Layout graph (Vi, Ei) using the common model graph's automatic graph

layout algorithm.

e. Calculate the height H and width Wof M.

f. Add one vertex Mvertex to V 2 , labelled N , with the height = H and width

= W.

g. Change all edges that go to / from a vertex involved in M to a vertex

outside, so that they go to / from Mvertex.

h. Set Unusededges = Unusededges \ E\.

i . Set Unusedvertices = Unusedvertices \ V/.

6. Let V2 = V2+ Unusedvertices.

7. Let E? = E2+ Unusededges.

8. Layout graph D (V 2 , E 2) using a standard automatic graph layout algorithm.

9. For each vertex vertex/ in D (V 2 , E 2) that represents a common model graph : -

a. Set Xpos - X position of vertex/.

b. Set Ypos = Y position of vertex/.

c. For each vertex vertex2 in the common model graph: -

/'. Let V2- V2+ vertex2.

ii. Let X position of vertex2 = X position of vertexi + Xpos.

Hi. Let Y position of vertex2 = Y position of vertex2 + Ypos.

d. V2 = VT\ vertex 1.

10. Change all edges in graph D (V 2 , E 2) so that they go to/from all of the original

vertices in graph G, i.e E 2 =E but preserving their routes

11. Return graph D (V 2 ,E 2)

Algorithm 4 - Layout Graph Representation

In order to make the ANHOF Method as general as possible the layout of the models

should be described in a language. Algorithms are given below that layout each

common model graph (step 5d in LayoutRepresentation (Algorithm 4)). The

Page 122

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

algorithms are based on a general tree automatic graph layout algorithm that positions

the father vertices central over its sons and makes the flow of the graph go across the

plane. Also the algorithms assume that the origin (coordinates (0,0)) is in the top left of

the plane.

4.3.3.1 Basic Algorithms

The general tree automatic graph layout algorithm that lays out a graph from the origin

across the page is described in this section, together with variations of the algorithm that

layout a graph from the set position of the father vertex. In addition, a variation for use

in a Fan In model, where vertices are laid out centred above the fan in vertices is

described.

LayoutSubgraph (Algorithm 5) shows how a hierarchical call graph G is laid out so

that the flow is across the page. The algorithm is based on a depth first traversal of the

hierarchy. The algorithm starts from a given father vertex and recursively traverses the

graph. Every time it goes down a level in the tree a set spacing is added to the current x

coordinate (CurrentXCoord), and every time it goes up a level the set spacing is

removed. When a leaf vertex (a fan out value of zero) is reached it stops, marks the

vertex as visited and gives it the coordinate ((CurrentXCoord, CurrentYCoord)). A set

spacing is added to CurrentYCoord and the algorithm goes back up a level and traverses

the next child. When all the children of the father are traversed the father is marked as

visited and centred over its children. This process is repeated until every vertex is

visited.

In order to traverse it, the father vertex of all the vertices is needed (CurrentVertex)

together with the origin ((CurrentXCoord, CurrentYCoord)) of the Box that will enclose

the graph such that all vertices will be placed to the right of this origin. The vertices will

be laid out so that they are SpacingX apart on the x plane and SpacingY apart on the y

plane. When the algorithm is finished the coordinate of last father vertex laid out is

(^ (Returned) , ^(Returned))- The coordinate of the bottom right hand corner of the bounding

Box is given as (MaxX(ReUimed), MaxY{Ret[ime<i)), The height of the last vertex is returned in

LaStHeight (Returned)-

Page 123

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutSubgraph (CurrentVertex, CurrentXCoord, CurrentYCoord, SpacingX,

SpacingY, G)

Where CurrentVertex e V, CurrentXCoord e N, CurrentXCoord e N , SpacingX e N,

SpacingY e H, and G = (V,E)

1. SetMaxX=0

2. Set MaxY=0

3. Set CurrentVertex Visited

4. I f CurrentVertex is a child vertex (fan out value = 0)

a. Set X Coordinate of CurrentVertex = CurrentXCoord

b. Set Y Coordinate of Current Vertex = CurrentYCoord

c. I f CurrentXCoord + Width of CurrentVertex > MaxX then set MaxX=

CurrentXCoord + Width of CurrentVertex

d. I f CurrentYCoord + Height of CurrentVertex > MaxY then set MaxY=

CurrentYCoord + Height of CurrentVertex

5. else

a. Set FirstVertex = 1

b. Set NextVertex = Search G for first unvisited vertex from CurrentVertex

c. LayoutSubgraph(Afex/yertex, CurrentXCoord + SpacingX + Width of

CurrentVertex, CurrentYCoord, SpacingX, SpacingY, G)

d. I f Mox^Returned) > CurrentYCoord then set CurrentYCoord =

Max ^(Returned) + SpacingY

e. else CurrentYCoord= K(R e t U rned) + SpacingY

f. I f Max¥(Returned)
 > MaxX then set MaxX=MaxX(RelUTned)

g. MaxY=MaxYmumeA)

h. LastHeight = LastHeight(RetXimed)

i . I f First Vertex=\

i . FirstVertex=0

i i . TopofCurrentTree = ^ R e t u r n e d)

j . Set NextVertex to next unvisited vertices from CurrentVertex

Page 124

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

k. Repeat steps c to j until no more unvisited vertices

1. I f FirstVertex=0

i . Set Y Coordinate of CurrentVertex = (CurrentYCoord -

TopofCurrentTree-LastHeight)l2

i i . Set X Coordinate of Current Vertex = CurrentXCoord

m. else

i . Set X Coordinate of CurrentVertex = CurrentXCoord

i i . Set Y Coordinate of CurrentVertex = CurrentYCoord

i i i . I f CurrentXCoord + Width of CurrentVertex > MaxX then set

MaxX= CurrentXCoord + Width of CurrentVertex

iv. I f CurrentYCoord + Height of CurrentVertex > MaxY then set

MaxY= CurrentYCoord + Height of CurrentVertex

6. Set ^ R e t u r n e d)
 = X Coordinate of CurrentVertex

7. Set ^(Returned)
 _ Y Coordinate of CurrentVertex

8. Set LastHeight(ReUimed) = Height of CurrentVertex

9. Set MaX^Returned) = MaxX

10. Set MaxF (R e t U rned) = Mjx7

11. Return (X(Returned), ^ R e t u r n e d))

12. Return (M a x ¥ (R e , u r n e d) , M a x ^ m m e d))

13. Return LastHeight (Returned)

14. Return G

Algorithm 5 - The main automatic graph layout algorithm

LayoutSubGraphFromMiddle (Algorithm 6) shows how a graph G is laid out so that

the father vertex occupies a given coordinate. It has four steps. First of all the height of

the graph is calculated, this is done by laying graph G out once using LayoutSubGraph

(Algorithm 5) where the height is returned as MaxY (R e t u r n) i f the starting origin is (0,0).

Next the mid y coordinate is calculated using MaxY (R e turn) / 2. Next the vertices are

marked unvisited so that graph G can be laid out properly using LayoutSubGraph

(Algorithm 5), the starting origin is (given X coordinate, given Y coordinate - mid y

coordinate). Graph G is returned with the new positions of the vertices.

Page 125

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutSubGraphFromMiddle(Cw/re«/FeA"tex, StartXCoord,StartYCoord, SpacingX,

SpacingY, G)

Where CurrentVertex e V, StartXCoord e N , StartXCoord e N , SpacingX e N ,

SpacingY e N and G = (V,E)

1. \joyontSnbgr2^\i{CurrentVertex,QS>,SpacingX, SpacingY, G)

2. MidHeight=(MaxY(Retumed) 12)

3. Unvisit all vertices

4. LayoutSubgraph(C«rre?tf Vertex,StartXCoord,StartYCoord-

MidHeight,SpacingX, SpacingY, G)

5. Return G

Algorithm 6 - How a tree is laid out with a known mid point

I f a vertex has a fan in value and no fan out value then LayoutSubgraph (Algorithm 5)

will not layout the vertex. This is because of steps 5b and 5j where the next vertex that

goes from the current one is actively sought. LayoutFanlnSubGraph (Algorithm 7) is

similar to LayoutSubgraph (Algorithm 5) except that it is designed so that the next

vertex that is sought in these steps is the first unvisited vertex that has an edge that goes

to the current vertex. It is still based on a depth first traversal of the hierarchy and the

method remains the same.

LayoutFanlnSubGraph {CurrentVertex, CurrentXCoord, CurrentYCoord, SpacingX,

SpacingY, G)

Where CurrentVertex e V, CurrentXCoord e N , CurrentXCoord e N, SpacingX e N,

SpacingY e N, and G = (V,E)

1. SetMaxX=0

Page 126

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

2. SetMaxF=0

3. Set CurrentVertex Visited

4. i f CurrentVertex is a leaf vertex (fan out value = 0)

a. Set X Coordinate of CurrentVertex = CurrentXCoord

b. Set Y Coordinate of CurrentVertex = CurrentYCoord

c. I f CurrentXCoord + Width of CurrentVertex > MaxX then set MaxX=

CurrentXCoord + Width of CurrentVertex

d. I f CurrentYCoord + Height of CurrentVertex > MaxY then set MaxY=

CurrentYCoord + Height of CurrentVertex

5. else

a. Set FirstVertex = 1

b. Set NextVertex = Search G for first unvisited vertex to CurrentVertex

c. LayoutFanInSubGraph(./VejrtFertex, CurrentXCoord + SpacingX +

Width of CurrentVertex, CurrentYCoord, SpacingX, SpacingYG)

d. I f Max7(Retumed) > CurrentYCoord then set CurrentYCoord =

MaxYmumed) + SpacingY

e. Else CurrentYCoord= Y^xumsA) + SpacingY

f. I f MaxY(Retumed) > MaxX then set MaxX=MaxX(Relume(i)

g. Max7=Max7 (Returned)

h. LastHeight = LastHeight(Retum^)

i . I f FirstVertex=\

i . FirstVertex=0

i i . TopofCurrentTree = ^ R e t u r n e d)

j . Set NextVertex to next unvisited vertices to CurrentVertex

k. Repeat steps c to j until no more unvisited vertices

1. I f FirstVertex=0

i . Set Y Coordinate of CurrentVertex = (CurrentYCoord -

TopofCurrentTree-LastHeight)l2

i i . Set X Coordinate of CurrentVertex = CurrentXCoord

m. else

i . Set X Coordinate of CurrentVertex = CurrentXCoord

i i . Set Y Coordinate of CurrentVertex = CurrentYCoord

i i i . I f CurrentXCoord + Width of CurrentVertex > MaxX then set

MaxX- CurrentXCoord + Width of CurrentVertex

Page 127

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

iv. I f CurrentYCoord + Height of CurrentVertex > MaxY then set

MaxY= CurrentYCoord + Height of CurrentVertex

6. Set ^ (Returned)
 = X Coordinate of CurrentVertex

7. Set l (R e t u m e d) = Y Coordinate of CurrentVertex

8. Set LastHeight(Retume<i) = Height of CurrentVertex

9. Set MaxX(Returned) = MaxX

10. Set MaxY(ReXurned)=MaxY

11. Return (X (R e i u m e d) , ^ R e t u r n e d))

12. Return (MaxX{Ketumed), MaxYiRe(umed))

13. Return Last Height (Returned)

14. Return G

Algorithm 7 - How vertices that have a fan in value are laid out

4.3.3.2 Common Model Graph Automatic Graph Layout Algorithms

Given below are the automatic graph layout algorithms for the common model graphs

described above. Al l the fixed common model graphs use LayoutSubgraph (Algorithm

5), LayoutSubGraphFromMiddle (Algorithm 6) or LayoutFanlnSubGraph

(Algorithm 7) to layout the vertices involved in each common model graph. This is

because they are defined in terms of the fan in or fan out properties of the vertices. Al l

the algorithms below require spacing between vertices (SpacingX and SpacingY). The

graph to which the algorithm applies to is given in the parameter G. In all the automatic

graph layout algorithms below the vertices and edges are sorted. There are many

methods of sorting them. For example, one is to sort the vertices in alphabetical order

and the edges into another order so that the vertices with which they are associated are

also in alphabetical order. Another is to sort the vertices into fan out order, so that the

one with the highest fan out properties are at the top of the list. A third is the

Topological Sort. These and others are be evaluated in future chapters. The sorting is

carried out because LayoutSubgraph (Algorithm 5) finds the first unvisited vertex in

steps 5b and k and the first unvisited vertex is the first in a queue of vertices and edges,

hence the need to sort the queue.

Page 128

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutFanOutModel (Algorithm 8) shows how a Fan Out common model graph is

laid out. In the common model graph there is one father vertex, a vertex with the fan in

property of zero. Common model graph G is passed through the LayoutSubgraph

(Algorithm 5) with this vertex as the start vertex. Common model graph M is then

returned with the correct layout of the vertices.

LayoutFanOutModel (SpacingX, SpacingY, M)

Where SpacingX e N, SpacingY e N, and M= (V,E)

1. SortV

2. SortE

3. Set FatherVertex = Vertex with fan in value of 0

4. LayoutSubGraph(Fatf/?£r Vertex,,0,0,SpacingX,SpacingY,M)

5. Return M

Algorithm 8- The automatic graph layout algorithm for a Fan Out common model graph

LayoutFanlnModel (Algorithm 9) shows how a Fan In common model graph is laid

out. In the common model graph there is one father vertex, a vertex with the fan out

property of zero. Common model graph M passes through the LayoutFanlnSubGraph

(Algorithm 7) with this vertex as the start vertex. Common model graph M is then

returned with the correct layout of the vertices.

LayoutFanlnModel {SpacingX, SpacingY, M)

Where SpacingX e N , SpacingY e N , and M= (V,E)

1. SortV

2. SortE

3. Set FatherVertex = Vertex with fan out value of 0

4. LayoutFanInSubGraph(Fo//?er Vertex,0,0,SpacingX, SpacingY, M)

5. Return M

Algorithm 9 - The automatic graph layout algorithm for a Fan In common model graph

Page 129

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutSplitlModel (Algorithm 10) describes how a Split 1 common model graph is

laid out. The father vertices are found, the vertices that have a fan in value of zero. I f

this is a valid Splitl common model graph then there should be exactly two of these

vertices. Take the first of these vertices and pass it through LayoutSubgraph

(Algorithm 5). Then the second of the vertices should be given the coordinate (X (returned)

+ X spacing, Y(returmd)).

LayoutSplitlModel {SpacingX, SpacingY, M)

Where SpacingX e N , SpacingY e N, and M= (V,E)

1. SortV

2. SortE

3. Set TopLevel = Top Level Vertices (vertices with fan in = 0) in Graph M

4. | TopLevel | = 2

5. CurrentVertex = Take first member TopLevel

6. LayoutSubGraph{CurrentVertex,0,0,SpacingX, SpacingY, M)

7. CurrentVertex = The next member of TopLevel

8. Set X Coordinate of CurrentVertex = A^emmed) + SpacingX

9. Set Y Coordinate of CurrentVertex = Y(retumed)

10. Return M

Algorithm 10 - The automatic graph layout algorithm for a Split 1 common model graph

LayoutSplit2Model (Algorithm 11) shows how a Split 2 common model graph is laid

out. The father vertices are found, the vertices that have a fan in value of zero. I f this is

a valid Split 2 common model graph then there should be exactly two of these vertices.

Take the father vertex that has the lowest fan out value and lay it out using

LayoutSubgraph (Algorithm 5). Use the other father vertex and lay it out using

LayoutSubGraphFromMiddle (Algorithm 6) with the starting point being (X (r e t u r n e d) ,Y

(returned))-

Page 130

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutSplit2Model {SpacingX, SpacingY, M)

Where SpacingX e N, SpacingY e N, and M = (V,E)

1. SortV

2. SortE

3. Set TopLevel = Top Level vertices (vertices with fan in = 0) in Graph M

4. Set Middle Vertex = Top Level vertex with largest fan out value

5. Set LeftVertex = Other member of TopLevel

6. LayoutSubGraph(LeftVertex,0,0,SpacingX,SpacingY, M)

7. LayoutSubGraphFromMiddle(M/<Me Vertex, X(r e turned) ,Y(returned),

SpacingX,SpacingY, M)

8. Return M

Algorithm 11 - The automatic graph layout algorithm for a Split 2 common model graph

LayoutSplit3Model (Algorithm 12) shows how a Split 3 common model graph is laid

out. The middle vertex is found, a vertex with both a fan out and fan in value, there

should only be one of these. Pass this through LayoutFanlnSubGraph (Algorithm 7)

and then LayoutSubGraphFromMiddle (Algorithm 6) with the centre point being

(X(retumed), Y (returned))- Common model graph M is then returned with the correct layout.

LayoutSplit3Model (SpacingX, SpacingY, M)

Where SpacingX e N, SpacingY e N, and M= (V,E)

1. SortV

2. SortE

3. Set Middle Vertex = Vertex with fan out >0 and fan in >0

4. LayoutFanInSubGraph(M/ddle Vertex,0,0,SpacingX,SpacingY)

5. LayoutSubGraphFromMiddle(MtMe Vertex, X(retumed), Y (returned),

SpacingX,SpacingY, M)

6. Return M

Algorithm 12- The automatic graph layout algorithm for a Split 3 common model graph

Page 131

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutChainModel (Algorithm 13) shows how a Chain common model graph is laid

out. In the common model graph there is one father vertex, a vertex with the fan in

property of zero. Common model graph M is passed through the LayoutSubgraph

(Algorithm 5) with this vertex as the start vertex. Common model graph M is then

returned with the correct layout of the vertices.

LayoutChainModel (SpacingX, SpacingY, M)

Where SpacingX e N, SpacingY e N, and M= (V,E)

1. SortV

2. SortE

3. Set StartVertex = Vertex with fan in value of 0

4. LayoutSubGraph^/art Vertex,0,0,SpacingX,SpacingY,M)

5. Return M

Algorithm 13 - The automatic graph layout algorithm for a Chain common model graph

LayoutChainToFanOutModel (Algorithm 14) shows how a Chain To Fan Out

common model graph is laid out. In the common model graph there is one father vertex,

a vertex with the fan in property of zero. Common model graph M is passed through the

LayoutSubgraph (Algorithm 5) with this vertex as the start vertex. Common model

graph Mis then returned with the correct layout of the vertices.

LayoutChainToFanOutModel {SpacingX, SpacingY, M)

Where SpacingX e N , SpacingY e N , and M= (V,E)

1. SortV

2. SortE

3. Set StartVertex = Vertex with fan in value of 0

4. LayoutSubGraph^/ar/Vertex,0,0,SpacingX,SpacingY,Ad)

5. Return M

Algorithm 14 - The automatic graph layout algorithm for a Chain to Fan Out common model

graph

Page 132

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

LayoutTriangleModel (Algorithm 15) shows how a Triangle common model graph is

laid out. There should be three vertices in the common model graph. The father vertex, a

vertex with a fan in equal to zero, is given the position nearest the left hand edge of the

plane, (0,0). The vertex with a fan in and fan out value of one is positioned a set spacing

to the right of the father vertex, and the other vertex is positioned a set spacing

underneath this vertex.

LayoutTriangleModel (SpacingX, SpacingY, M)

Where SpacingX e N , SpacingY e N, and M= (V,E)

1. Set TopLevel = Top Level vertices (vertices with fan in of 0) in Graph M

2. Set X Coordinate of TopLevel =0

3. Set Y Coordinate of TopLevel =0

4. Set CurrentVertex = Vertex in TopLevel with fan in = 1 and fan out = 1

5. Set X Coordinate of CurrentVertex =SpacingX + Width of TopLevel

6. Set Y Coordinate of CurrentVertex =0

7. Set CurrentVertex = Last Vertex from TopLevel

8. Set X Coordinate of CurrentVertex =0

9. Set Y Coordinate of CurrentVertex =SpacingY + Height of TopLevel

10. Return M

Algorithm 15 - The automatic graph layout algorithm for a Triangle common model graph

BoxModelLayout(Algorithm 16) shows how a Box common model graph is laid out. It

is difficult to detect where vertices are located because three of the vertices have the

same fan in and fan out properties. I f the positions are wrong then edges cross in the

centre of the layout, whereas a correct layout wil l be planar. Three vertices have the

same fan in and fan out properties, but the bottom right vertex has an individual fan in

and fan out property. The top left vertex is the vertex that flows to the top right vertex

and then to the bottom right vertex that has an individual fan in and fan out property.

The bottom left vertex is the one that is left and is the one that flows to the top left and

bottom right vertices. Al l the vertices should be aligned with the left most point on the

Page 133

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

vertex above it and horizontally aligned with the top most point on the vertex next to it.

Therefore the vertex in the top left corner of the plane is placed at the origin (0,0), the

bottom left vertex is placed a set spacing below, the top right is placed a set spacing to

the right and the bottom right vertex is placed a set spacing below.

BoxModelLayout(5/?«cwgX, SpacingY, M)

Where SpacingX e N, SpacingY e M, andM= (V,E)

1. Set BottomRight = Vertex with fan in of 2 in M

2. Mark BottomRight as visited

3. Set TopRight = The vertex that flows to BottomRight

4. Set TopLeft = The vertex that flows to TopRight and then to BottomRight

5. Mark TopRight as visited.

6. Mark TopLeft as visited.

7. Set BottomLeft = unvisited vertex that flows to TopLeft and BottomRight

8. Set MaxWidth = Greatest Width of TopLeft and BottomLeft

9. Set MaxHeight = Greatest Height of TopLeft and TopRight

10. Set X Coordinate of TopLeft = 0

11. Set Y Coordinate of TopLeft = 0

12. Set X Coordinate of BottomLeft = 0

13. Set Y Coordinate of BottomLeft = MaxHeight + SpacingY

14. Set X Coordinate of TopRight = MaxWidth + SpacingX

15. Set Y Coordinate of TopRight = 0

16. Set X Coordinate of BottomRight = MaxWidth + SpacingX

17. Set Y Coordinate of BottomRight = MaxHeight + SpacingY

18. Return M

Algorithm 16 - The automatic graph layout algorithm for a Box common model graph

4.3.3.3 Layout Whole Graph

In order to perform step 9 of LayoutRepresentation (Algorithm 4) an automatic graph

layout algorithm is required. The ANHOF method is designed to layout call graphs that

Page 134

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

are hierarchical / tree like structures. There are many algorithms that could be used to

perform a layout of such a structure. Which algorithm produces the best graph in terms

of its aesthetics is subject to evaluation. GraphLayout (Algorithm 17) suggests an

algorithm that uses LayoutSubgraph (Algorithm 5) to layout the structure. Its

performance wil l be evaluated against standard algorithms in future chapters. Again the

vertices and edges are sorted using methods discussed earlier. The father vertices are

found, the vertices that have a fan in value of 0, these are then laid out one at a time

using LayoutSubgraph (Algorithm 5).

This algorithm is a variation of the Graph Tool Automatic graph layout algorithm given

in Bodhuin [16] , it is used in later versions of Graph Tool that are implemented by

Young [180], and is the one used in future uses of the Graph Tool algorithm in

conjunction with the ANHOF method.

GraphLayout {SpacingX, SpacingY, G)

Where SpacingX e N, SpacingY e N, and G = (V,E)

1. SortV

2. SortE

3. Set TopLevel = TopLevel vertices (vertices with fan in of zero) in Graph G

4. Set CurrentYPosition = 0

5. Sort TopLevel

6. For each member of TopLevel: -

a. Set CurrentTL Vertex = Fist member of TopLevel

b. LayoutSubGraph(Cwrre«/rZ, Vertex, 0, CurrentYPostion, SpacingX,

SpacingY, G)

c. Set CurrentYPosition = Mxcreturned) + SpacingY

d. Set CurrentTLVertex = next unvisited member of TopLevel

7. Return G

Algorithm 17 -Shows an algorithm that will layout a hierarchical graph

Page 135

A.Hofton Chapter 4-The ANHOF Method of Call Graph Layout

4.3.4 Graph Display System

The graph can be displayed on a computer display, on paper or both. Chapter 3 gives

many display tools that can be used to display the graph. This part of the ANHOF

method is performed using one of them.

4.4 Summary

In this chapter the ANHOF method of graph layout for call graphs is given. The

common structures that are present in call graphs have been identified and their

respective layouts described. Each common model graph is discussed in turn giving

their aesthetics, layout and definition.

The ANHOF method is a four-part process, consisting of three processing parts and one

output part. In the first part, the Graph Isomorphism System, the common model graphs

are detected. The Match Analyser then sorts the matches to the common model graphs.

The valid matches are then laid out along with the rest of the graph using their

associated automatic graph layout algorithms and standard algorithms in the Graph

Layout System. When all this is performed the graph is displayed using one of the

many graph display systems available. In the next chapter an implementation of the

ANHOF method is given, this is known as the ANHOF system.

Page 136

A.Hofton Chapter 5 - Implementing the ANHOF Method

5- Implementing the ANHOF Method

5.1 Introduction

The ANHOF system is a four part process that implements the ANHOF method. The

architecture of the ANHOF system follows that of the ANHOF method given in Figure

43. This chapter describes the implementation of the ANHOF.

5.2 The ANHOF System

In Chapter 4, a four part process is presented for laying out call graphs, called the

ANHOF method. It consists of three processing steps and one display step. The Graph

Isomorphism System detects all the valid and invalid matches to the given common

model graphs. These are then sent to the Match Analyser whose job is to remove all the

invalid matches, producing a list of valid matches and a representation of a graph in

terms of the common model graphs present. Then the specification of the required

layout, in terms of its aesthetics, is used to layout the representation using standard,

customised or common model graph automatic graph layout algorithms. This produces

the input file for a graph display system.

The ANHOF system is implemented on a PC PII 450 MHz running Windows 95 with

128 MB of memory. This provides ample space to store and layout the size of graphs

(greater than 150 vertices) required and provides the graphical ability to display them.

The C++ program used was Microsoft Visual C++ version 6.0. SWI Prolog version

3.2.8 [173] was used to provide logic processing of lists.

5.2.1 Graph Isomorphism System

This is the implementation of the first part of the ANHOF method known as the Graph

Isomorphism System. It finds both the fixed and variable common model graphs in the

call graph, and all the valid and invalid matches to the common model graphs.

SearchForModelGraph (Algorithm 2) shows detection of these is a three step process,

Page 137

A.Hofton Chapter 5 - Implementing the ANHOF Method

one step to detect the fixed common model graphs and one to gather all the information

needed to detect the variable common model graphs in the final step. This equates to

two major and one simple search step. The two major processing steps equate to the

searching for the two types of common model graphs present in a call graph, variable

and fixed. When implementing these in the ANHOF system two programs are required,

known as the Fixed Model Detection System and the Variable Model Detection System.

The outline of the Graph Isomorphism System is given in Figure 44.

Graph input into the ANHOF system is in the form of the Graph Tool GIN input format.

This basically lists all the vertices and edges and therefore provides a simple input

format to use. Details of the file format are given in Appendix 2. To use this file format

processing is necessary to obtain the fan information that is used to detect the variable

common model graphs.

Fixed common model graph detection is performed using one of the algorithms

presented in Chapter 3. There are many implementations of the different algorithms of

graph and subgraph isomorphism. One such implementation is provided by Messmer

[114] and is known as the Graph Matching Toolkit. Here, Messmer implements

Ullman's Algorithm, his own decision tree approach and other tree searching

algorithms. The toolkit is written in C++ and so integrates well with the other programs.

This implements steps la to c of SearchForModelGraph (Algorithm 2) and is know as

the Fixed Model Detection System.

Variable common model graphs are detected by list processing using logic

programming. The ANHOF system uses Prolog [34]. Prolog's resolution based search

strategy provides an efficient method of searching the various vertices, edges and fan

information fact bases to implement step 3a to d of SearchForModelGraph (Algorithm

2). Each variable common model graph is implemented as a single Prolog rule and

executed singly on each fact base. Both common model graph detection programs

output a fact base of matches. A description of the graph fact base, the fan information

fact base and the match output fact base can be found in Appendix 3. The group of

Prolog rules is collectively known as the Variable Model Detection System.

Page 138

A.Hofton Chapter 5 - Implementing the ANHOF Method

In Chapter 4 it is suggested that the common model graphs in the graph be described in

some form of language. This will allow common model graphs to be given in an easy to

understand form and allow new common model graphs to be described or an existing

one to be amended. In the ANHOF system this is achieved in two different ways, one

for the fixed common model graphs and one for the variable common model graphs.

Fixed common model graphs have a fixed number of vertices and edges and can

therefore be described as an adjacency matrix. The adjacency matrix definition of the

fixed common model graphs present in call graphs is given in the Appendix 4. Variable

common model graphs can consist of any number of vertices but have a common edge

structure. The definitions of the variable common model graphs are best given as

subsets of the sets of edges and vertices. In the ANHOF system these are processed

using logic rules in Prolog. The rules provide a simple method of describing a common

model graph in terms of its vertices and edges and other information about the graph for

instance the fan in and fan out information. To aid in the description of a common

model graph standard routines are provided for output of the various fact bases, details

are provided in the Appendix 3.

ModelsH •«

Graphs •

Fixed
Models

Fixed Model
Detection
System

Variable Models

-Matches-
Fan In / Out
Information
Calculator

-Fan Info-
Variable Model

Detection
System

Graph Isomorphism System

Figure 44 - The Graph Isomorphism System

5.2.2 Match Analyser

The Match Analyser implements AnalysisOfMatches (Algorithm 3). It filters the

matches to the common model graphs found by the Graph Isomorphism System,

removing the invalid ones. In the ANHOF method an invalid match is one that involves

a vertex that is part of another common model graph. This kind of filtering is again

easily performed using Prolog. The Match Analyser processes the match fact base from

Page 139

A.Hofton Chapter 5 - Implementing the ANHOF Method

the Graph Isomorphism System and the graph fact base, creating another match fact

base populated with the valid matches. It also creates the representation discussed in

Chapter 4. Details of this representation and the match and graph fact base can be found

in Appendix 3. It operates on a first come first served basis, where i f the first match

involved all the vertices in the graph then all the others would be invalid.

5.2.3 Graph Layout System

Here the automatic graph layout algorithm is performed in accordance with the

aesthetics, such as the vertex spacing, detailed by the user in an input file. Standard

automatic graph layout algorithms are used to layout the graphs, therefore it is necessary

to provide a large set of algorithms so that any of the standard algorithms discussed in

Chapter 2 can be used. There are several algorithm libraries available ([28], [49] etc).

Most of them however implement algorithms for certain classes of graph. However a

combination of Library of Efficient Data Algorithms (LEDA) [111] and Algorithms for

Graph Drawing (AGD) [119] provides implementations of all the algorithms discussed

in Chapter 2. These libraries are imported into C++ very easily, they are easily extended

to implement the algorithms given in Chapter 4 for laying out the common model

graphs and to implement LayoutSubgraph (Algorithm 5),

LayoutSubGraphFromMiddle (Algorithm 6) and LayoutFanlnSubGraph

(Algorithm 7). AGD also provides a language for describing aesthetics, the language is

used as an input into the AGD Server, which is a program that allows a graph to be

imported and laid out using one of the AGD library of algorithms. Details of this

language can be found in [87]. The general structure of Graph Layout System for the

ANHOF system is given in Figure 45. It is written in C++ and implements

LayoutRepresentation (Algorithm 4).

In Chapter 4 it is suggested that the automatic graph layout algorithms for the common

model graphs are described in a simple language. This will allow future expansion to

the library of common model graphs and for the method to be used on other types of

graph. In the ANHOF system this is done using C/C++ with AGD/LEDA extensions.

AGD/LEDA allows its own library of automatic graph layout algorithms to be expanded

with user implemented ones. In order to do this it has made certain classes available for

Page 140

A.Hofton Chapter 5 - Implementing the ANHOF Method

allocating positions to vertices, routing edges etc. Also it imposes a certain style on the

program file that the automatic graph layout algorithm is programmed in. Experience is

required to implement a new automatic graph layout algorithm. However it does allow

new automatic graph layout algorithms to be programmed in a readable fashion and

these are easily incorporated into the Graph Layout System, this however will need

recompiling every time a new automatic graph layout algorithm is implemented. Details

of how to program a automatic graph layout algorithm can be found in [111] and [87].

Aesthetics

Graph
Representation

Graph
Layout
System

Graph Display
File Format

LEDA + AGD
Layout Algorithms

Model Layout
Algorithms

Figure 45 - The Graph Layout System

5.2.4 Graph Display System

Chapter 3 shows there are many graph display tools available. It is required that the

graph display tool in the ANHOF System has primarily a simple file input that is easy to

read. Secondly the input format allows vertices to be given Cartesian coordinates and i f

possible allow routes to be given to edges. These requirements reduced the choice

drastically. Two main ones used, VCG [146] and University of Durham's own Graph

Tool. Unfortunately neither really allow routes to be given to edges. Graph Tool does

allow one kink in the line but it is unreliable. Both the file formats are equally easy to

read and allow edges to be positioned. The original intention of the project was to

improve the Graph Tool layout; therefore the ANHOF system remains loyal to its routes

and uses Graph Tool to display the final graph layout.

Page 141

A.Hofton Chapter 5 - Implementing the ANHOF Method

5.3 Summary

Above is a short description of how a prototype of the ANHOF method of call graph

layout is implemented in a system known as the ANHOF system. It has shown that it

can be implemented in a four-part program, made up of three processing parts and one

display part. Each step has been described giving details of the languages in which they

were implemented and any outside programs that were used. Details of languages that

are used to describe the graph aesthetics, the automatic graph layout algorithms for the

common model graphs and the structure of the common model graph are also given.

It has shown that variable common model graphs are described as Prolog rules, which

are then applied to fact bases about the graph, allowing variable common model graphs

to be detected in the Graph Isomorphism System. Fixed common model graphs are

described as an adjacency matrix and detected by one of the algorithms in the

Messmer's Graph Matching Toolkit. The chapter has shown that the matches to the

common model graphs that are found are filtered by a Prolog implementation of the

Match Analyser. The layout of the graph is obtained using the Graph Layout System,

which is a C++ program using LEDA and AGD to provide standard automatic graph

layout algorithms. The common model graph automatic graph layout algorithms are also

programmed using the C++ / LEDA / AGD combination and the final layouts are

displayed on the Graph Tool graph display system.

The next three chapters will describe the optimisation of the ANHOF system. The

layouts it produces will be compared with other layouts from tools and algorithms and

the metrics of the layout wil l be assessed.

Page 142

A.Hofton Chapter 6 - Tuning the ANHOF system

6. Tuning the ANHOF System

In Chapter 4 a method of laying out call graphs is presented, called the ANHOF

method. In Chapter 5 an implementation of it is discussed, called the ANHOF system.

In order to use the ANHOF system to gain 'better' call graphs it is necessary to

customise the various settings of its components. In the following chapter the lengths of

chains, and the levels of fan in and fan out in the Variable Model Detection System are

discussed, together with the selection of the best isomorphism algorithm for the fixed

models. The maximisation of the number of models produced by the Match Analyser is

discussed. Finally the sort orders of the vertices to reduce the edge crossings in the final

layout is presented.

6.1 Graph Isomorphism System

The Graph Isomorphism System is the part of the ANHOF system that detects all the

matches of the models in the graph. There are two types of models in the graph, Fixed

and Variable, each having a separated system to detect them. The settings necessary to

detect the maximum number of models are detailed below.

6.1.1 Variable Model Detection System

Chain, fan in and fan out settings are used to specify the minimum number of vertices

that need to be present in order to detect the various variable models. They are the

parameters that are discussed in Chapter 4. Too large a setting means that few models

are found and the performance of the Variable Model Detection System suffers by

slowing it down. Too small a setting means that a large number of common model

graphs are detected, effecting performance of the Match Analyser and Variable Model

Detection System and preventing the proper filtering of models by the Match Analyser

system.

Page 143

A.Hofton Chapter 6 - Tuning the ANHOF system

Five graphs with between approximately 10 and 100 vertices and 10 and 300 edges are

selected from the approximately 250 call graphs of the GCC version 2.58 compiler. The

properties and names of the graphs are given in Table 12. First of all the common

model graphs are detected manually by searching a layout of each obtained from Graph

Tool's automatic graph layout algorithm. The graphs are then tested with the Graph

Isomorphism System with relatively high settings for the Variable Model Detection

System to check the output is correct. When the results of detecting the common model

graphs manually and by computer are compared it is found that whilst they largely

matched, i f the settings were lower the results would match better. Also when the

computer output was run through the Match Analyser it filtered less valid matches and

took a similar time than later trials. The eventual layout had few common structures

present. After lowering the settings a few times it was found that it was best to obtain

the maximum matches possible because the Match Analyser executes in an acceptable

time. The resulting layout has the most common structures present and the aesthetics

and metrics were better.

Graph Name Vertices Edges

cp-search 9 8

genopinit 21 22

varasm 26 32

recog 52 70

real - 2 111 319

Table 12 - The properties of the chosen graphs

It is ascertained that the settings in Table 13 produced maximum performance of the

Variable Model Detection System and provide an improved graph at the end in terms of

the resulting graphs aesthetics and metric quality. The settings for the fan out and fan in

were sufficiently low enough to detect most i f not all of the relevant matches, but

prevent any models that are better dealt with by a standard automatic graph layout

algorithm.

Page 144

A.Hofton Chapter 6 - Tuning the ANHOF system

Setting Level

Fanoutlevel 3

Faninlevel 3

Chainlength 3

Chainfanoutlevel 2

Lengthofchain 2

Corrmionfanoutnumber 3

Commonsplit2fanoutlevel 3

Split2fanoutlevel 3

Split3faninlevel 2

Split3fanoutlevel 2

Table 13 - The settings for the various model detect systems

6.1.2 Fixed Model Detection System

Fixed common model graphs are detected differently to variable models. The fixed

structure enables graph isomorphism techniques to be used. In order to perform this a

toolkit of many graph isomorphism algorithms is used. In particular it uses Messmer's

[114] Graph Matching toolkit. This uses a variety of algorithms in order to detect the

models present in the graph. In order to use the toolkit it is necessary to evaluate which

isomorphism algorithm is the most successful. A successful algorithm is one that detects

the most correct models in the graph.

Three graphs taken from the GCC version 2.58 compiler are passed through the various

isomorphism algorithms present in the toolkit. Table 14 shows the properties of the

graphs. The total matches to the fixed model graphs obtained by using the various

algorithms present are calculated. Figure 46 shows the result of this. It shows that the

algorithms given in Chapter 3 (methods 0, 5 and 6) and exact decomposition (method 3)

work the best, detecting the same number of matches (526 model matches). Figure 46

shows that some algorithms did not work on the graphs at all.

Page 145

A.Hofton Chapter 6 - Tuning the ANHOF system

Tests on other not completely connected graphs using the implementations of the

decision tree method of isomorphism (methods 5-10) it finds that that the input graph

did not meet many of the algorithm's pre-processing conditions. This is because the

graph is connected. Call graphs of code often are not connected together because the

code has been parsed in the various sub modules. Therefore a procedure may exist on its

own in that module but be called in another module and a base module is likely to

consist of many unconnected procedures. Whilst it is possible to circumvent this it is

deemed to be undesirable, especially when certain algorithms allow this.

Graph Name Vertices Edges

combine2-l 112 300

c-decl2 151 295

tmp 219 675

Table 14- The graph properties used to test the isomorphism algorithms

Total Number of Matches Found By Each
Isomorphism Method

» 400

u 300

3 4 5 6 7 8 9 10

Method

I Triangle BBox • Total

Method Key
0 Ullman
1 A*
2 A* with lookahead
3 Exact Decomposition
4 Inexact Decomposition
5 Complete decision tree

6
k-depth pruned complete

decision tree

7
Breadth pruned decision

tree

8
Both breadth and k-depth

pruned decision tree

9
Breadth-pruned decision

tree (single model)

10

Both breadth- and k-
depth pruned decision

tree (single model)

Figure 46 - The performance of various isomorphism algorithms

Many of the methods were unsuitable for the purpose. The ANHOF system has clearly

defined common model graphs, the graph structure is known and the graph to be

searched for in the graph is clearly defined. Therefore algorithms that search for

Page 146

A.Hofton Chapter 6 - Tuning the ANHOF system

common model graphs and the entire subgraph variations of that common model graph

are not required. Therefore the algorithms known as A* (method 1), A* with look ahead

(method 2), and inexact decomposition matching (method 4) are not needed. Indeed

they should not even work. For details about the algorithms see [114].

The other methods are variations on the decision tree approach by pruning the decision

tree. They are largely experimental and therefore will not be used. The Graph Matching

Toolkit has implemented the pruning techniques as graph isomorphism algorithms and,

therefore, compare one graph with another. The ANHOF system requires

implementations of subgraph isomorphism algorithms because the common model

graphs are smaller than the main graphs and comparing the graphs is not going to work.

The ANHOF system is looking for occurrences of the common model graphs in the

main graph, these techniques are known as subgraph isomorphism techniques.

Therefore methods 7-10 will not produce any matches to the common model graphs.

For a more thorough performance evaluation see [114].

When searching for the models in the graphs the labels and any identifiable features of

vertices can be disregarded and therefore the graphs become unlabelled. Messmer's

[114] thesis suggests that for unlabelled graphs of less than 500 vertices Ullman's

algorithm [164] (method 0) is the most suitable. The result in Figure 46 appears to agree

with this conclusion. The drawback is that the performance is dependent on the number

of common model graphs. To aid in solving this problem a graph will be searched to

find one model at a time. In Fixed Model Detection System the implementation of

Ullman's algorithm will be used as the algorithm of detecting the common model

graphs.

6.2 Match Analyser

The purpose of the Match Analyser is to reduce all the matches to valid ones. Chapter 4

suggested that there are many different definitions of a valid match. In order to avoid

problems of vertices being laid out twice because they are in different models, the rule

is applied that a model cannot involve a vertex that it is part of another model. The

method chosen to do this is on a first come first served basis. Then, i f the first match

Page 147

A.Hofton Chapter 6 - Tuning the ANHOF system

processed involved all the vertices in the graph then all the other matches would not be

valid, however this is rarely the case. It was shown in Chapter 1 that in order to increase

comprehension of graphs it is necessary to have many recognizable common structures

present in the eventual layout. However when trying to improve the layout in terms of

its aesthetics and metrics it may be sometimes best to have many small models present

and few large, and thereby maximising the number of common structures present.

Conversely it may be best to have few common model graphs present in the layout with

most of the vertices involved in one or two models where it is known how to lay them

out.

In Chapter 8 the performance of the ANHOF system against standard automatic graph

layout algorithms is assessed, however it is only assessed in terms of the metrics of the

layout. It is beyond the scope of the research to assess whether comprehension was

aided by increasing the number of common model graphs in the eventual layout. In

order to do the investigations in Chapter 8 it is necessary to perform analysis to

ascertain how to get the maximum number of valid matches out of the Match Analyser.

An investigation into how to achieve this is presented below. In order to do further

investigations into the performance of the ANHOF system it is necessary to ascertain a

method of passing a reasonable number of model matches through the Match Analyser.

This order is known as the natural order. The performance of this order is also assessed

in Chapter 8, but how to obtain it is investigated below.

6.2.1 Maximising the Number of Valid Matches

In order to increase the comprehension of graphs and generate the best aesthetics it may

be necessary to maximise the number of valid model graphs used to layout the graph.

To perform this on a 'first come first served' basis it is necessary to find the best order

in which to pass the list of matches through the Match Analyser in order to maximised

the number of valid matches. An experiment to ascertain this order is described below.

Three graphs were taken from the GCC version 2.58 compiler. They were of varying

size and varying number of common model graphs present. The properties of the graphs

are given below in Table 15.

Page 148

A.Hofton Chapter 6 - Tuning the ANHOF system

Graph

Name

Vertices Edges Total

Matches Triangles Box Split 1 Split 2 Split 3 Chain FanOut Fan In

Chain to

Fan Out

combine2-l 112 300 716 260 71 194 96 23 0 30 40 2

cdecl-2 151 296 437 37 10 219 101 7 1 29 32 1

real-2 111 391 1120 143 52 544 246 33 1 54 42 5

Table 15 - The properties of the tested graphs

There are many orders in which the models can be sent through the Match Analyser. A

list of all the matches to the common model graphs in each of the above graphs is

contained in a file in each of the following orders: -

• The matches to the common model graphs placed in the file in random order

(random).

« The matches to the common model graphs placed in the file in ascending

alphabetical order (ascending whole).

• Take each set of matches to a common model graph and sort it into ascending

alphabetical order. Combine all the sets of matches together in a file, a file made

of every combination of sets (ascending individual).

• The matches to the common model graphs placed in the file in descending

alphabetical order (descending whole)

• Take each set of matches to a common model graph and sort it into descending

alphabetical order. Combine all the sets of matches together in a file, a file made

of every combination of sets (descending individual).

» Take alternate matches from a file formed by combining the sets of matches

together, files are formed from combining the sets of matches together in every

combination (every other whole).

• Take alternate matches from each set of matches to a common model graph.

Create a similar set for each model graph; combine all the sets together in one

file. Form a file in every combination of sets (every other individual).

• Form sets of all matches to the model graphs as the Graph Isomorphism System

finds them; combine the sets together in every combination (as they come).

Page 149

A.Hofton Chapter 6 - Tuning the ANHOF system

In many of the above file orders a combination of sets is mentioned. This is a

combination of the matches to each of the nine common model graphs. Therefore there

are 362880 (9!) combinations that the models can be combined in one file. Each

combination of sets takes upwards from a minute to create, process and interpret.

Therefore the 362880 combinations would take 252 days to process and was obviously

impossible; a cross section of the combinations was therefore taken, 72 combinations

were chosen. They represented putting the common model graphs that would involve

the most vertices (Split 1, Split 2 and Split 3) first. Then the common model graphs that

would involve the least vertices (Triangle and Box) first, and, finally other variations.

The combinations are given in Table 16.

Combination Combination
Number

Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 1
Split 1 Triangle Split 2 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 2
Split 1 Split 2 Triangle Split 3 Box Chain to Fan Out Chain Fan In Fan Out 3
Split 1 Split 2 Split 3 Triangle Box Chain to Fan Out Chain Fan In Fan Out 4
Split 1 Split 2 Split 3 Box Triangle Chain to Fan Out Chain Fan In Fan Out 5
Split 1 Split 2 Split 3 Box Chain to Fan Out Triangle Chain Fan In Fan Out 6
Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Triangle Fan In Fan Out 7
Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In Triangle Fan Out 8
Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In Fan Out Triangle 9
Triangle Spl 12 Split 1 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 10
Triangle Spl 12 Split 3 Split 1 Box Chain to Fan Out Chain Fan In Fan Out 11
Triangle Spl 12 Split 3 Box Split 1 Chain to Fan Out Chain Fan In Fan Out 12
Triangle Spl 12 Split 3 Box Chain to Fan Out Split 1 Chain Fan In Fan Out 13
Triangle Spl 12 Split 3 Box Chain to Fan Out Chain Split 1 Fan In Fan Out 14
Triangle Spl 12 Split 3 Box Chain to Fan Out Chain Fan In Split 1 Fan Out 15
Triangle Spl 12 Split 3 Box Chain to Fan Out Chain Fan In Fan Out Split 1 16
Split 2 Triangle Split 1 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 17
Triangle Spl 12 Split 1 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 18
Triangle Spl 11 Split 3 Split 2 Box Chain to Fan Out Chain Fan In Fan Out 19
Triangle Spl t 1 Split 3 Box Split 2 Chain to Fan Out Chain Fan In Fan Out 20
Triangle Spl t 1 Split 3 Box Chain to Fan Out Split 2 Chain Fan In Fan Out 21
Triangle Spl t 1 Split 3 Box Chain to Fan Out Chain Split 2 Fan In Fan Out 22
Triangle Spl t 1 Split 3 Box Chain to Fan Out Chain Fan In Split 2 Fan Out 23
Triangle Spl t 1 Split 3 Box Chain to Fan Out Chain Fan In Fan Out Split 2 24
Split 3 Triangle Split 1 Split 2 Box Chain to Fan Out Chain Fan In Fan Out 25
Triangle Spl t 3 Split 1 Split 2 Box Chain to Fan Out Chain Fan In Fan Out 26
Triangle Spl t 1 Split 3 Split 2 Box Chain to Fan Out Chain Fan In Fan Out 27
Triangle Spl t 1 Split 2 Box Split 3 Chain to Fan Out Chain Fan In Fan Out 28
Triangle Spl 11 Split 2 Box Chain to Fan Out Split 3 Chain Fan In Fan Out 29
Triangle Spl t 1 Split 2 Box Chain to Fan Out Chain Split 3 Fan In Fan Out 30
Triangle Spl t 1 Split 2 Box Chain to Fan Out Chain Fan In Split 3 Fan Out 31
Triangle Spl t 1 Split 2 Box Chain to Fan Out Chain Fan In Fan Out Split 3 32
Box Triangle Split 1 Split 2 Split 3 Chain to Fan Out Chain Fan In Fan Out 33
Triangle Box Split 1 Split 2 Split 3 Chain to Fan Out Chain Fan In Fan Out 34
Triangle Split 1 Box Split 2 Split 3 Chain to Fan Out Chain Fan In Fan Out 35

Page 150

A.Hofton Chapter 6 - Tuning the ANHOF system

Combination Combination
Number

Triangle Split 1 Split 2 Box Split 3 Chain to Fan Out Chain Fan In Fan Out 36
Triangle Split 1 Split 2 Split 3 Chain to Fan Out Box Chain Fan In Fan Out 37
Triangle Split 1 Split 2 Split 3 Chain to Fan Out Chain Box Fan In Fan Out 38
Triangle Split 1 Split 2 Split 3 Chain to Fan Out Chain Fan In Box Fan Out 39
Triangle Split 1 Split 2 Split 3 Chain to Fan Out Chain Fan In Fan Out Box 40
Chain to Fan Out Triangle Split 1 Split 2 Split 3 Box Chain Fan In Fan Out 41
Triangle Chain to Fan Out Split 1 Split 2 Split 3 Box Chain Fan In Fan Out 42
Triangle Split 1 Chain to Fan Out Split 2 Split 3 Box Chain Fan In Fan Out 43
Triangle Split 1 Split 2 Chain to Fan Out Split 3 Box Chain Fan In Fan Out 44
Triangle Split 1 Split 2 Split 3 Chain to Fan Out Box Chain Fan In Fan Out 45
Triangle Split 1 Split 2 Split 3 Box Chain Chain to Fan Out Fan In Fan Out 46
Triangle Split 1 Split 2 Split 3 Box Chain Fan In Chain to Fan Out Fan Out 47
Triangle Split 1 Split 2 Split 3 Box Chain Fan In Fan Out Chain to Fan Out 48
Chain Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Fan In Fan Out 49
Triangle Chain Split 1 Split 2 Split 3 Box Chain to Fan Out Fan In Fan Out 50
Triangle Split 1 Chain Split 2 Split 3 Box Chain to Fan Out Fan In Fan Out 51
Triangle Split 1 Split 2 Chain Split 3 Box Chain to Fan Out Fan In Fan Out 52
Triangle Split 1 Split 2 Split 3 Box Chain Chain to Fan Out Fan In Fan Out 53
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 54
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Fan In Chain Fan Out 55
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Fan In Fan Out Chain 56
Fan In Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan Out 57
Triangle Fan In Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan Out 58
Triangle Split 1 Fan In Split 2 Split 3 Box Chain to Fan Out Chain Fan Out 59
Triangle Split 1 Split 2 Fan In Split 3 Box Chain to Fan Out Chain Fan Out 60
Triangle Split 1 Split 2 Split 3 Fan In Box Chain to Fan Out Chain Fan Out 61
Triangle Split 1 Split 2 Split 3 Box Fan In Chain to Fan Out Chain Fan Out 62
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Fan In Chain Fan Out 63
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan Out Fan In 64
Fan Out Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In 65
Triangle Fan Out Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In 66
Triangle Split 1 Fan Out Split 2 Split 3 Box Chain to Fan Out Chain Fan In 67
Triangle Split 1 Split 2 Fan Out Split 3 Box Chain to Fan Out Chain Fan In 68
Triangle Split 1 Split 2 Split 3 Fan Out Box Chain to Fan Out Chain Fan In 69
Triangle Split 1 Split 2 Split 3 Box Fan Out Chain to Fan Out Chain Fan In 70
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Fan Out Chain Fan In 71
Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan Out Fan In 72

Table 16 - The orders of match sets that were tried

Figure 47 shows how many valid matches it is possible to produce by using each

method in each graph. The orders random, descending whole, descending individual and

every other whole created the maximum valid matches to the common model graphs in

call graph of Combine2-l. Random sorting the file and processing it, will neither

produce the best result every time. In this graph it produced the best results after sorting

the file 60 times, it may be the first in the next. In future analysis this order is ignored.

However sorting the matches into orders descending whole and descending individual

did not produce the best results in the call graphs of c-decl2 and real-2. There is

therefore no clear method of maximising the number of valid matches that are produced

Page 151

A.Hofton Chapter 6 - Tuning the ANHOF system

by the Match Analyser. I f it is the intention to maximise the number of common model

graphs in the eventual layout then this experiment shows that a 'first come first serve'

method of match analysis is not viable. More likely the definition of a valid match is

restrictive. This is because the current implementation of the Match Analyser reduces

the matches found by over 97 percent. Often taking a graph with 600 matches to the

common model graphs to less than 10 that are valid.

Percentage Of Matches Found That Were Valid

lull • COMBINE2-1
1.8 • C-DECL2 3 5
1.6

• REAL-2 1.4
1.2

1

e> 50 6°
6̂

e. ft

e.

Figure 47 - The percentage of valid matches were possible by each order

The value used in Figure 47 is the average number of valid matches produced by the

combinations. Further analysis of the fact base of valid matches that is produced by the

Match Analyser is performed. It is performed to ascertain which combination of sets

produces the minimum number of valid matches. The results are shown in Figure 48,

Figure 49 and Figure 50.

Page 152

A.Hofton Chapter 6 - Tuning the ANHOF system

Matches Found in real-2 By Each Combination

18

men 16

2» 14 0)

o 12

s 10
8

m i l l , — _ — - — i - i D ^ N O l (O U) N O) O li) N 8 CO s m r- o) s 8 to CM <N CN CN CO ^J" T LO I D I D CD

Combination
Descending Individual Every Other Individual Every Other Whole
Every Other Whole —Ascending Individual

Figure 48 - The number of valid matches that each method produces in each combination in the call

graph of real 2

Valid Matches Found in c-dec!2 By Each Combination

2
11
10 (0

8

rn
U U - U 4 - I L U - M M - 4 - 4 - 1

co m r- cn w m s d n m n oi n m s oi to in r- o) to in r-. en
t N c y t N t N C M c o t o c o t o t o ^ f ^ r ^ j - ' ^ - ' j - i n i n i n i n i n t D CD to r-

Combination

—•—As They Come - •— Descending Individual Every Other Whole
—*— Every Other Individual —*— Ascending Individual

Figure 49 - The number of valid matches that each method produces in each combination in the call

graph of c-decl2

Page 153

A.Hofton Chapter 6 - Tuning the ANHOF system

Valid Matches Found in combine2-1 by Each Combination

13

11

£ 9

i
m m <o in s in s s co m r~ a) en in > s ?! < in in

Combination

As They Come Descending Individual Every Other Individual
Every Other Whole Ascending Indivual

Figure 50 - The number of valid matches that each method produces in each combination in the call

graph of combine2-l

It can be seen from Figure 48, Figure 49 and Figure 50 that i f the goal is to maximise

the number of valid matches then the combinations given in Table 17 should be avoided

for every method. Further investigation proved that these combinations are those where

the larger models, in terms of vertices involved and the split models are listed first.

Therefore these take up a large number of the vertices that cannot be involved in any

other common models and, therefore reduces the number of valid matches.

Combination Combination
Number

Split 1 Triangle Split 2 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 2
Split 1 Split 2 Triangle Split 3 Box Chain to Fan Out Chain Fan In Fan Out 3
Split 1 Split 2 Split 3 Triangle Box Chain to Fan Out Chain Fan In Fan Out 4
Split 1 Split 2 Split 3 Box Triangle Chain to Fan Out Chain Fan In Fan Out 5
Split 1 Split 2 Split 3 Box Chain to Fan Out Triangle Chain Fan In Fan Out 6
Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Triangle Fan In Fan Out 7
Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In Triangle Fan Out 8
Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In Fan Out Triangle 9
Triangle Split 2 Split 1 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 10
Split 2 Triangle Split 1 Split 3 Box Chain to Fan Out Chain Fan In Fan Out 17
Split 3 Triangle Split 1 Split 2 Box Chain to Fan Out Chain Fan In Fan Out 25
Triangle Split 1 Split 2 Box Chain to Fan Out Chain Fan In Fan Out Split 3 32
Box Triangle Split 1 Split 2 Split 3 Chain to Fan Out Chain Fan In Fan Out 33
Triangle Box Split 1 Split 2 Split 3 Chain to Fan Out Chain Fan In Fan Out 34
Chain to Fan Out Triangle Split 1 Split 2 Split 3 Box Chain Fan In Fan Out 41
Fan In Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan Out 57
Fan Out Triangle Split 1 Split 2 Split 3 Box Chain to Fan Out Chain Fan In 65

Table 17 - The combinations that do not maximise the number of valid matches

Page 154

A.Hofton Chapter 6 - Tuning the ANHOF system

From the above it is not possible to ascertain which method or combination maximises

the number of valid matches. It can however be narrowed down to three methods which

produce the best results and can be easily created. They are those of taking alternate

matches, sorting into ascending order and descending order. In Chapter 8, these three

orders and the natural order are tested to see which method produces the best quality of

graphs in terms of the metrics of the graphs.

6.2.2 Natural Order

In Chapter 4 it is seen that many models are made up of other models and primitive

models. This causes several orders to appear which may allow more vertices to be

involved in fewer models. However the orders all place the larger models (Split 1, Split

2 and Split 3) and therefore the orders are such that it involves as many vertices in as

few models as possible.

The call graph of the program 'recog' (Table 12 shows the properties of the graph) is

analysed for matches to the common model graphs manually. A list of valid matches

produced by following AnalysisOfMatches (Algorithm 3) in Chapter 4 are used to

layout the graph manually. The matches are sent through the algorithm in three

combinations. The matches are combined in the order they are found and not sorted in

anyway. The orders are given in Table 18. This provides experience of carrying out the

process and giving a valuable insight into the problems that are to be faced when

implementing the Graph Layout System. It also provides the opportunity to test the

ANHOF method at an early stage of its development.

Combination Combination

Number

Split 2, Split 1, Split 3, Chain to Fan Out, Box, Triangle, Fan In, Fan Out, Chain 1

Split 3, Split 2, Split 1, Chain to Fan Out, Fan Out, Fan In Chain, Box, Triangle 2

Split 2, Split 3, Split 1, Chain to Fan Out, Chain, Triangle, Fan Out, Fan In, Box 3

Table 18 - The natural orders to send matches through the Match Analyser

Page 155

A.Hofton Chapter 6 - Tuning the ANHOF system

Intuitively, order one produces the best looking graphs and the graphs are easy to layout

because many of the vertices in the graph are in few common model graphs.

Investigating this order produces a similar number of valid matches as combination 17

and therefore does not maximise the number of matches. In Chapter 8 it is shown that

this produces the best looking graphs in terms of metrics of the graphs. Therefore i f the

intention is to maximise the metrics of the graph then vertices should be involved in the

larger models rather than the smaller ones. To perform this it is suggested that order one

is used to send the common model graph matches through the Match Analyser.

6.3 Graph Layout System

The Graph Layout System is used to layout the whole graph and the common model

graph. In Chapter 4 various issues become apparent that need investigating in order to

optimise the automatic graph layout algorithms given in Algorithm 5 to Algorithm 17.

They need to be optimised so that the best layouts in terms of the metrics can be

achieved. One issue is the order in which the vertices are placed on the plane. This is

critical because the order in which the vertices are placed on the plane may prevent edge

crossings. This order is investigated in the section below.

Another issue that is made apparent in Chapter 4 is the aesthetics properties that should

be applied to the graph. The ANHOF system is a prototype system causing few

aesthetic properties to be implemented. These are the spaces between vertices on the

horizontal and vertical axes. The settings for these are also given below.

6.3.1 Vertex Order

It is seen later in Chapter 8 that using the algorithm used in Graph Tool as the

'Standard' algorithm (step 8 in LayoutRepresentation (Algorithm 4)) in the ANHOF

method produces the best results. This is given in GraphLayout (Algorithm 17). As

part of this algorithm and the automatic graph layout algorithms for the models it is

necessary to sort the vertices into order. When a tree is laid out the order in which the

children are placed is critical in terms of reducing the edge crossings and the

comprehension. In the algorithms in Chapter 4 the order describes how they are placed

Page 156

A.Hofton Chapter 6 - Tuning the ANHOF system

on the plane. Given below are some of the options for sorting the vertices. In the

diagrams below the vertices are labelled with the procedure name in capitals and the fan

in and fan out values as a pair below (fan out, fan in).

A simple nine vertex graph G is used to illustrate the orders used. This is given below: -

G=(V,E)

V={A, B , C, D, E, F, G, H, 1}

E={(A,B), (A,C), (B,C), (B,D), (B,F), (B,E), (C,D), (E,G), (E,H), (F,G), (D,G), (G,I)}

6.3.1.1 Descending Alphabetical Order

This is the method used in Graph Tool to sort the vertices. It is reasonably successful,

both because of its simplicity and its reduction of edge crossings. It is more successful

on small graphs, in the layout of graph G given in Figure 51, the method causes zero

crossings and hence, is one of the best.

Figure 51- The descending alphabetical ordering of vertices

6.3.1.2 Ascending Alphabetical Order

Sorting the vertices into ascending alphabetical order can be successful on small graphs.

However in the example it caused two edge crossings and a layout that occupies more

area because the maximum number of vertices on each level is greater than the other

layouts. In practice it works as well as sorting them into descending alphabetical order.

Page 157

A.Hofton Chapter 6 - Tuning the ANHOF system

When graph G is laid out using this sort order it is laid out in the manner given in Figure

52.

A m B
(2,0) (4.1)

Figure 52 - The ascending alphabetical ordering of vertices

6.3.1.3 Fan In Ascending

I f the vertices of graph G are sorted by their fan in properties, so that the lowest fan in

value is at the top, a diagram similar to that in Figure 53 is produced. The graph is quite

high and there is one crossing.

A
(2,0)

B A
(2,0) (4,1)

Figure 53 - The fan in ascending ordering of vertices

Page 158

A.Hofton Chapter 6 - Tuning the ANHOF system

6.3.1.4 Fan In Descending

Figure 54 shows how graph G would be laid out i f the vertices were sorted into fan in

value descending order. So that the highest fan in is at the top of the plane. It is a similar

graph layout to that of Figure 51, except there is one crossing, caused by the vertex

labelled 'E' being placed above F. This is because the vertices are always loaded up in

identification number order, E is given an identification number that is less than the

number for vertex F causing the layout below. This shows that there are other

underlying vertex orders imposed to solve order problems that occur. These problems

often occur when vertices have the same fan in value or comparison value.

*E9 1

j

i /

Figure 54 - The fan in descending ordering of vertices

6.3.1.5 Fan Out Ascending

Sorting the vertices of graph G into fan out ascending order produces the same diagram

as Figure 51 that has zero crossings. In practice it produces better results than sorting

alphabetically because the vertices are sorted by graph specific properties which when

laying out is more reliable than a human imposed label. It was found in trials that you

could sort the vertices according to their degree but it was common for vertices to have

the same degree, therefore it was found to be better to break the degree figure into the

fan in and fan out properties, and sort on them. Vertices may still have the same fan out

or fan in property.

Page 159

A.Hofton Chapter 6 - Tuning the ANHOF system

6.3.1.6 Fan Out Descending

Sorting the vertices of graph G into fan out descending order produces the same

diagram as Figure 52 that has three crossings. In practice this works as well as sorting

into fan out ascending. It works on different styles of graphs.

6.3.1.7 Topological Sort

A topological sort [170] is a standard graph vertex-sorting algorithm. It is a method of

making sure that i f there is a path from Vj to Vj then vj appears after Vj in the ordering.

The algorithm is based on a queue of the fan information. Of course the method then

depends on the order the vertices are placed on the queue. I f the vertices in graph G are

placed so that vertex B is placed after vertices E and F then a layout is achieved like that

in Figure 53 and therefore no crossings are caused. Whereas, i f vertex B is placed in

some variation of vertices E, F, and B then no crossings are caused but the edge

between vertices and D may be hidden from view. In tests this method of sorting was

found to be more difficult to implement than the other methods, and generally produces

inferior laid out graphs in terms of hidden edges and it tended to increase the edge

crossings.

6.3.1.8 Combination of Orders

It can be seen above that there is no ideal way that will work on every size and type of

graph. It is found by applying these orders to the graphs in Chapters 7 and 8 that it is

best to impose a combination of all three orders and therefore avoiding the problem of

the tool imposed vertex identification number being the final sorting factor. In certain

circumstances sorting on the fan in value is best and in others sorting on the fan out

value is best. After many trials it was found that vertices have a more varying fan out

value than fan in value. It makes little difference i f they are sorted into ascending or

descending order. Therefore the order that is used when sorting vertices in the ANHOF

method is to sort the vertices into descending fan out order then descending fan in order

for any vertices with the same fan out order, finally for any vertices that have the same

fan in and fan out value sort them in descending alphabetical order. In the case of graph

Page 160

A.Hofton Chapter 6 - Tuning the ANHOF system

G this produces a layout that has three crossings (shown in Figure 55) but in practice

reduces the crossings in larger real world graphs.

6.3.1.9 Heuristics

Sugiyama et al. [159] suggests several heuristics for sorting the vertices on a level.

From this paper 'bary centre' ordering provides a method of sorting them that is simple

to implement. These methods may present an improvement over the above method.

Another heuristic that may be an improvement on the above is to sort the vertices so that

the ones with lowest vertex degree levels are in the middle and the ones with the highest

vertex degrees are on the outside. But the highest degree vertices are placed either on

the top or bottom of the list of children, in the position that minimizes the edge length of

the vertices in the graph.

6.3.2 Aesthetic Settings

It is suggested in Chapter 2 that it is desirable to minimize the area taken by the graph

and also to produce a ratio between the sides that is close to 1.41. In order to achieve

this the spacing on vertices should be set. The vertical spacing should be less than the

horizontal spacing in order to achieve the ratio. Trials of graphs using the Graph Tool

display system shows that the horizontal (X axis) spacing should be set 100 and vertical

(Y axis) spacing should be set 50. This enables all arrowheads to be seen and for edges

to be of reasonable length.

/

Figure 55 - The vertices sorted in a combination of orders

Page 161

A.Hofton Chapter 6 - Tuning the ANHOF system

6.4 Summary
In this chapter the settings are given to maximise the performance of the ANHOF

system in terms of improving the metrics of the eventual layouts and aiding

comprehension. The chapter shows the settings for the length of chains and the levels of

fan in and fan out properties of vertices in order to get the maximum number of matches

to the various variable models using the Variable Model Detection system. It also shows

that the implementation of Ullman's isomorphism algorithm in Messmer's [114] Graph

Matching Toolkit is the best isomorphism algorithm to use for the Fixed Isomorphism

Detection system. These settings are necessary to maximise the number of matches

produced by the Graph Isomorphism System.

The chapter details an order to combine the set of matches to the various common

model graphs to cause the maximum number of models to pass through the Match

Analyser and become valid matches. This may be used to increase the comprehension of

the graph by having the maximum number of common model graphs present in the

eventual layout. After further investigation in Chapter 8 it may prove that maximising

the number of valid common model graph matches may improve the metrics of the

graph and it gives a natural order to combine the set of matches to the various common

model graphs that may also achieve the best metrics for the eventual layout of the graph

when passed through the Match Analyser.

The chapter also suggests an order in which the vertices be sorted which will be used to

obtain the next available vertex in the automatic graph layout algorithms for the

common model graphs. The sort order of the vertices is discussed so that the crossings

are minimized. This sort order is important because it may reduce the crossings further

and is necessary so that the Graph Layout System can be optimised. Finally the spacing

of the vertices is given so that the ratio between the horizontal and vertical axes is

minimized.

In the next chapter the layouts obtained from the ANHOF system are compared with

other layouts form Graph Tool and daVinci.

Page 162

A.Hofton Chapter 7 -The ANHOF System at Work

7. The ANHOF System at Work

Chapter 4 gives a description of the ANHOF method. This is then implemented using

the ANHOF system discussed in Chapter 5. Chapter 6 provides the settings necessary to

optimise the ANHOF system. In this chapter the layouts created by the ANHOF system

using these settings are compared with those generated by existing layouts algorithms. It

shows some of the problems associated with conventional layouts and how they are

corrected using the ANHOF System. First of all, a simple example is given, and then

four call graphs from the GCC version 2.58 are laid out and compared before the graphs

layouts are compared using metrics.

7.1 Simple Example

In order to show how each part of the ANHOF system works an example graph is

constructed, simple enough to show every feature of the various parts. It consists of 45

vertices and 50 edges. A possible layout is shown in Figure 57 of Graph G defined

below.

Given a graph G=(V,E)

Where : -

V= {1,2,4,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45}

E= {(1,18), (1,2), (1,37), (1,41), (1,6), (2,3), (3,4), (4,5), (6,7), (7,10), (8,10), (9,10),

(10,11), (10,12), (10,13), (14,15), (15,17), (16,14), (17,16), (18,19), (19,20),

(20,21), (20,22), (20,23), (21,14), (22,24), (23,32), (24,25), (24,26), (24,27),

(28,25), (28,26), (28,27), (28,29), (28,30), (28,31), (32,33), (32,34), (32,35),

(36,33), (36,34), (36,35), (37,38), (38,39), (38,40), (40,39), (41,42), (43,42),

(44,42), (45,42)}

Page 163

A.Hofton Chapter 7 -The ANHOF System at Work

7.1.1 Existing Automatic Graph Layout Algorithms

Two existing layout algorithms are compared in the following chapter. The tools named

Graph Tool and daVinci implement specific layout algorithms, and are used to layout

the graph; the resulting layouts are given below and discussed.

7.1.1.1 Graph Tool

Graph Tool is a graph display tool originally developed in Durham by Bodhuin [16] and

later maintained by Young [180]. It is possible to layout graph G using Graph Tool. The

output is shown in Figure 57. Graph Tool adopts a straight-line standard of graph layout

where each edge is a straight line, forming the shortest route between two vertices. This

has many problems that can be summarised as: -

• related vertices are not situated with each other,

• common Structures are not apparent,

• come edges are lost, and

• high edge crossings.

The vertices that are connected to each other should be as close together as possible. For

instance vertices 8, 9, 10, 11, 12 and 13 should be close to 7 as should vertices 42, 43,

44 and 45 be close to vertex 41. Vertices 14, 15, 16, 17 should be close to vertex 21 and

25, 26, 27, 28 should be close to vertex 24. There may be other instances where this is

the case but this is not clear from the diagram. The common models graphs in the

ANHOF method can be used to force this closeness.

The common structures discussed in Chapter 4 are not apparent in the layout performed

by this graph layout tool. Many of the models laid out down the edge of the diagram

cause the hierarchical nature of the graph (all vertices leading from vertices labelled 1)

to be lost. But some of the models can be seen. Some models are clear but are not laid

out as they would be using their associated automatic graph layout algorithms. For

instance the Box model of the vertices labelled 16, 17, 14, 15 should be laid out like a

Box not a form of rhombus.

Page 164

A.Hofton Chapter 7 -The ANHOF System at Work

In the diagram some edges are not shown. They merge themselves with other edges. For

instance the Triangle structure between vertices 38, 39, and 40 is shown as a chain of

vertices like in Figure 56(a) but however there is an edge between vertices 38 and 39.

Therefore it should be laid out as a Triangle shown in Figure 56(b)

38 -+\ 40 > 39 38 "40 J

39

(a) (b)

Figure 56 - The Triangle structure (a) laid out using Graph Tool (b) correctly laid out

It is desirable not to have edge crossings in a diagram because they make it easier to

follow. In this diagram there are 13 line crossings, this is not a considerable number but

given that there are 50 edges, this is a fair proportion. Most of the edge crossings could

be avoided i f the related vertices were close together.

Page 165

A.Hofton Chapter 7 -The ANHOF System at Work

T
1

\
\

\ \ \
\

r 28

\ \ \ •. \
\ \

• \

\ \ \ \

v

\ mm \ \ \ s
\

\

\ \ V s

-mmm \ \ •
1 1 8 I

Figure 57 - How graph G is laid out using Graph Tool

Page 166

A.Hofton Chapter 7 -The ANHOF System at Work

7.1.1.2 daVinci

The University of Bern developed a powerful graph drawing tool that uses the algorithm

of Sugiyama et al. [159] to layout all graphs. This tool is called daVinci and can be seen

in [64]. Graph G can be laid out using the daVinci System as shown in Figure 58. One

improvement of the daVinci layout of Graph G over the other tools is that it improved

the ratio between the height and width of the graph. In Chapter 8 it is shown that

European paper formats have a ratio of 1.41 or a screen has a ratio of 1.33, these figures

are to be aimed for. In this diagram it is closer to 1 than any of the other layouts and is

therefore the layout to achieve this metric. However this is not the case in practice

where the layouts are long and thin giving a high ratio. The Graph Layout System has

similar problems to that of the Graph Tool mainly: -

• the related vertices are not situated with each other,

• the common structures are not apparent,

« high number edge crossings, and

• the hierarchy is difficult to follow.

Again daVinci does not position related vertices together, however it is different

vertices to the diagram produced by Graph Tool. For instance 36 should be closer to

vertices 34, 35, and 33. Also vertices 28, 31, 30, and 32 should be closer to 27,26, and

25.

There are fewer common structures shown in this diagram than in the Graph Tool

Layout. It is closely related to the hierarchy created. A Triangle model is shown on

three levels instead of two, for instance the Triangle between 38, 39 and 40. Many of

the common structures are laid out differently to Chapter 4. This is because the

algorithm does not centre father vertices above its children. For instance the central

vertex labelled 10 of the Split3 model involving vertices labelled 7, 8, 9, 10, 11, 12, and

13 is not central therefore the model is not easily followed or detected. The Box

structure of the vertices 14, 15, 16 and 17 is again hindered by the rigid hierarchical

structure imposed on the diagram by the automatic graph layout algorithm; there is no

need for these to span four levels.

Page 167

A.Hofton Chapter 7 -The ANHOF System at Work

The hierarchical structure imposes many line crossings on the diagram. This could be

reduced with better sorting of vertices. For instance i f vertex 28 was situated between

vertices 24 and 14 with vertices 31, 30 and 29 situated in between 25 and 15 then many

crossings could be avoided. This algorithm always creates more crossings than Graph

Tool, possibly because Graph Tool has a better sorting algorithm.

44 1' 41 IK

4>

_ 40

3 31 31

• •s 34 14

LiL 29 35 34 33 3" 25 I?

Figure 58 - How graph G is laid out using da Vinci

7.1.2 The ANHOF System

The aim of the use of graph G is to illustrate how each part of the ANHOF system

complimented each other improving the layout of call graphs. Using the models

described in Chapter 4, graph G is fed through the ANHOF system. The input and

output of each program of the ANHOF system is detailed in Appendix 4. The resulting,

improved graph is shown in Figure 59. The graph is an improvement because of the

following: -

• no edge crossings,

Page 168

A.Hofton Chapter 7 -The ANHOF System at Work

« common structures are clear,

• a good ratio between the width and height of the graph,

• the total edge length is reduced, and

• related vertices are situated together,

The detection of the models was correct, however the Triangle model involving vertices

38, 39 and 40 was not laid out using the Triangle automatic graph layout algorithm, it is

laid out using a Chain to Fan Out model automatic graph layout algorithm. Which may

be a case for changing the levels of the various settings of the detection algorithm or the

order the Match Analyser processes them.

The Graph Display System that is used was Graph Tool. However, until recently, this

did not allow edges to be connected to specific parts of a vertex. This caused edges to

cross vertices that could have otherwise been avoided. For instance the edge connecting

vertices labelled 1 and 41 crosses vertex 45, it could have been avoided i f it was

connected to the left hand edge of vertex labelled 41.

Page 169

A.Hofton Chapter 7 -The ANHOF System at Work

H I

i
I 1

B Z 1 f 1

V !
D

H H •

Figure 59 - How graph G is laid out using the ANHOF system

Page 170

A.Hofton Chapter 7 -The ANHOF System at Work

7.2 Real Call Graph Examples

The aim of the ANHOF method / system is to improve the layout of real world call

graphs. Therefore in order to show the ANHOF system working, real call graphs from

implemented program are used. The following examples are taken from GNU C

compiler GCC version 2.58. There are many methods of extracting the call graph from

the source code [118] or even the executable [52]. The call graphs used below are

abstracted from the source code using a source code analyser for C programs know as

CCG [94]. Four call graphs are shown from the programs of cp-search, genopint,

varasm and localalloc.

7.2.1 Call Graph of cp-search

The call graph representing the program of cp-search is a nine vertex, eight edge graph

that represents the procedures for searching GCC's internal representation of a C

program. It is a very simple graph and again illustrates the ANHOF system working and

highlights similarities between the Graph Tool automatic graph layout algorithm and the

daVinci one.

7.2.1.1 Existing Automatic Graph Layout Algorithms

The layout obtained from Graph Tool is shown in Figure 60 and the layout obtained

from daVinci is shown in Figure 61. They both fail to deal with the following properties

of the graph: -

• the graph is not semantically recognized, and

• the Triangle Model is not visible.

Both of the automatic graph layout algorithms fail to highlight the Triangle model,

involving vertices labelled 'poptypelevel ' , 'pop stack level' and 'obstack free'.

Graph tool misses out an edge as discussed earlier and the hierarchical structure

imposed on the graph by daVinci makes it less obvious to recognize.

Page 171

A.Hofton Chapter 7 -The ANHOF System at Work

When a graph is not connected and it can be seen in the layout then it is said to be

symmetrically recognisable. Both of the automatic graph layout algorithms layout the

graph so that it looks to be one graph when it is two, and are therefore not semantically

recognisable. In Graph Tool the edge between vertices labelled 'mytreecons' and

'obstacknewchunk' makes it seems that vertex labelled 'mytreecons' is part of the

structure above it involving vertices labelled 'pop_type_level', 'pop_stack_level' and

'obstackfree' when this structure is a separate graph. This will hamper understanding

of the graph. In the daVinci layout the edge between 'popstacklevel' and

'obstack free' makes it seem that the Triangle model between 'poptypelevel ' ,

'popstacklevel' and 'obstack free' is part of the main graph when it is a separate

graph.

The daVinci layout again causes more edge crossings than the other automatic graph

layout algorithms. It is possibly because of the sorting algorithm. Swapping

' ostack newchunk' with 'obstack free', and 'my tree cons' was inserted in between

'popstacklevel' and 'pushstacklevel', would remove the edge crossings and also

make the two graph structure visible.

push_type_ level push_stack_level
^ ' ''

memcpy

_obstack_newchunk

push, search, level

pop_type_level pop^stackjevel obstackjree pop^stackjevel obstackjree

my_tree_cons

Figure 60 - The layout of program cp-search using Graph Tool

Page 172

A.Hofton Chapter 7 -The ANHOF System at Work

push_type_level pushsearchjevel

pushstacklevel

memcpy

poptypelevel

popstackjevel

obstack free

mytreecons

obstack newchunk

Figure 61 - The layout of program cp-search using daVinci

7.2.1.2 ANHOF System

The layout obtained by sending the call graph of the program cp-search through the

ANHOF system is shown in Figure 62. The two-graph structure can be quite clearly

seen as can the models present. In Figure 62 an edge crosses a vertex, the use of the

straightline standard of edge routing has caused this. The edge is between vertices,

labelled 'my tree cons' and 'obstractnewchunk', it crosses the vertex labelled

'pushsearchlevel'. This is caused by step 8 of the automatic graph layout algorithm

(LayoutRepresentation (Algorithm 4)) laying out the whole graph as three vertices,

one for 'mytreecons' , one for the Split 3 model (vertices labelled

'pushsearchlevel', 'push type level', 'push_stack_level', ' obstract newchunk' and

'memcpy') and another for the Triangle model (vertices labelled 'poptypelevel ' ,

'pop stack level' and 'obstack free').

Page 173

A.Hofton Chapter 7 -The ANHOF System at Work

I 7 tree cons push^searchjevel

pushjypejeve

Figure 62 - The layout of program cp - search using the ANHOF System

7.2.2 Call Graph of genopinit

Many modules in the GCC compiler need to process an array of operation codes. The

function to process these operation codes are in the module called genopinit. Given

below is a discussion of the call graph of the module laid out by various methods. The

call graph consists of 21 vertices and 22 edges.

7.2.2.1 Existing Automatic Graph Layout Algorithms

The layout obtained by using daVinci to layout the call graph of genopinit is shown in

Figure 64(a) and the layout using Graph Tool is shown in Figure 64(b). This graph is

larger and so the problems of conventional automatic graph layout algorithms are

becoming evident and are: -

• related vertices are not close together,

• edges are crossing unnecessarily,

• hard to follow, and

• common structures are not apparent.

The daVinci layout is increasingly becoming harder to follow. Its vertex-sorting

algorithm separates related vertices and elongates edges more than necessary. For

instance, the routing of the edge between vertices labelled 'exit' and 'main' causes the

edge to be longer than necessary. I f the vertex labelled 'exit' is positioned on the

opposite of the vertex labelled ' fprintf then the edge could have been routed along the

Page 174

A.Hofton Chapter 7 -The ANHOF System at Work

other side of the graph, towards the vertex labelled 'fatal'. It may not be much shorter

but many edge crossings could be avoided. Similarly i f the vertices labelled 'xrealalloc'

and 'xmalloc' are positioned on the other side of the vertex labelled 'main' many more

edge crossings are avoided.

In Graph Tool the vertices are sorted alphabetically and so the vertices labelled

'xrealalloc' and 'xmalloc' are on the right side of main. However the vertex labelled

'fancy abort' is the wrong side of 'main'. This is a simple example of a problem with

other graphs in that the automatic graph layout algorithm in Graph Tool cannot cope

with a single vertex flowing into another vertex that has already been placed. I f this was

implemented the Graph Tool automatic graph layout algorithm would perform much

better. As an example the graph shown in Figure 63(a) would be laid out like the graph

in Figure 63(b). This is because the automatic graph layout algorithm in Graph Tool

starts at one vertex and flows to the next and continues until no more vertices flow from

the current vertex. The algorithm should check that there are no more vertices that flow

into the current vertex when there are no more vertices that flow out.

m m
m m m

m
(a) Improved Layout (b)Graph Tool Layout

Figure 63 - An example graph and how its layout could be improved

The common structures that are present in the graph are more obvious using the Graph

Tool Layout than they are using the daVinci automatic graph layout algorithm, but this

is largely because it is easier to read the graph when the writing is flowing across the

page (across the shortest side of the page) than the automatic graph layout algorithm.

Again daVinci causes more edge crossings than the other two automatic graph layout

algorithms.

Page 175

A.Hofton Chapter 7 -The ANHOF System at Work

fprintf
1

xrealloc fatal

'exit

8 xmalloc !
ungetc

7
read skip spaces

* 71
read rtx

z
printf

perroi

in t rt
4

i toupper

tolower.

1 gen inbn i

.strlert

aborl

fopen

i

fflush 1 1
nb̂ tdck aaem

fancvabort

1
!

(a) By daVinci (b) By Graph Tool

Figure 64 - genopmit laid out using conventional layout tools

Page 176

A.Hofton Chapter 7 -The ANHOF System at Work

7.2.2.2 The ANHOF System

I f the models given in Chapter 4 are used to pass the call graph from genopinit program

through the ANHOF system produces a graph laid out in the manner given in Figure 65.

Here the common structures are easily seen and the related vertices are situated

together. However the sorting of the vertices that flow out from the vertex labelled

'geninsn' causes edge crossings. The edge between vertices labelled 'main' and

'printf crosses some of the edges that flow out from the vertex labelled 'gen insn'.

This could be avoided i f the vertices were sorted differently or a better heuristic was

applied, such as those discussed in Chapter 6.

The problem that vertices cannot be a member of two or more models is highlighted

here. The vertices that flow out from the vertex labelled 'main' form a Fan Out model.

However vertices labelled 'gen insn' and 'fatal' are members of other models that are

given preference to the Fan Out common model graph involving the vertex labelled

'main'. It is fortunate that the 'standard' automatic graph layout algorithm can cope

with the Fan Out model naturally. It may be best to take the vertex that is in two or more

models out of the offending model match, so that most of that model is laid out using a

common model algorithm. However this would not make any difference to the layout of

this graph.

Page 177

A.Hofton Chapter 7 -The ANHOF System at Work

mam

sen insn

strlen

xrealloc

fancy_abort form tf

xmalloc sprintf

ungetc

skip_spaces

read rtx

perror

init rt

fflush

3bstack_begin

Figure 65- genopinit laid out using the ANHOF system

7.2.3 Call Graph of varasm

The call graph of the program varasm compiles the assembler of a C program. It can be

represented as a call graph with 26 vertices and 32 edges. Detailed below is a

Page 178

A.Hofton Chapter 7 -The ANHOF System at Work

comparison of the layout obtained from using the automatic graph layout algorithms of

daVinci, Graph Tool and the ANHOF system.

7.2.3.1 Existing Automatic Graph Layout Algorithms

Figure 66 shows how varasm is laid out using conventional tools. Figure 66 shows how

it is laid out (a) daVinci and (b) using Graph Tool. They have many problems, such as:

• the graph structure is not symmetrically recognisable,

• related vertices are not situated close together,

• common structures are not evident, and

• many edges crossings.

It is shown in Figure 67 that the graph is in fact two graphs and this cannot be seen from

Figure 66. The illusion of it being one graph is caused in Graph Tool by the error

discussed earlier that the layout algorithm cannot deal with vertices that fan into a

vertex that has already been placed. For instance the way that vertices labelled

'dtors section', 'datasection' and 'ctorssection' fan into the vertex labelled ' fpr intf .

I f the layout algorithm were to be improved then this illusion would not occur. The

same vertices cause the illusion in the daVinci laid out graph, however this would have

to be solved by improvements in the vertex ordering routine present in the daVinci

layout algorithm.

The vertices labelled, 'strlen', 'obstacknewchunk' 'sprintf, 'memcpy', ' bcgenr tx '

and 'alloc' should all be situated near vertex labelled ' bcmakede lc r t l ' . This would

be dealt with using a Split 1 model. Therefore the common structures are not visible in

the graphs, and related vertices are not situated closely together.

Figure 67 (a) shows that daVinci produces long and thin diagrams and i f printed are

difficult to read. daVinci again causes more edge crossings than the other algorithms.

Page 179

A.Hofton Chapter 7 -The ANHOF System at Work

fpnntf
1

r t iGni Iv idataisection sconst'isection text section

be text

/ stolen /
1 sprintf. i

/ / / fherncpy s /
/

V // »
genirtx /

I -makeJunction rtl
6

decMjncticn.eo-iteiet

I
bclgerytx

E i \
alloca

51
obstacienewchunk

YT7 1 /
svepy I / /

i

stnp_reg..name

/
/

dec3de_reg_name make_decLrtl strcmp

/ 7
atoi I

be make deel rtl
1
i

1
dtors_section

da:d S'ction be data

j"> sr rhon

g

1 3

i

(a) by daVinci (b) by Graph Tool

Figure 66- varasm laid out using conventional graph layout tools.

Page 180

A.Hofton Chapter 7 -The ANHOF System at Work

7.2.3.2 The ANHOF System

The call graph of varasm can be sent through the ANHOF system, using the models

provided in Chapter 4. A drawing given in Figure 67 is produced. This has solved many

of the problems given above. The common structures are evident and the edge crossings

are reduced. The graph is of a reasonable size that it can still be printed. However the

vertex problem occurs here, the problem where a vertex cannot be a member of two or

more models. Here the vertex labelled 'strlen' cannot be a member of the Split 1 model

that it was positioned in and the Fan Out model from the vertex labelled

'decoderegname'. In the case of this diagram it does not hinder overall layout.

Edge crossings could be further reduced i f the order of the fan in vertices into vertex

labelled ' fprintf was different. I f the position of the vertex 'data section' was at the top

of the vertices or at the bottom then the graph could be laid out without edge crossings.

Page 181

A.Hofton Chapter 7 -The ANHOF System at Work

•
r.

I

i

\
\

/ /
/ \ / /

/

/
i

I

i % 1,
»' S *

1

i

I

Figure 67- varasm laid out using the ANHOF system

Page 182

A.Hofton Chapter 7 -The ANHOF System at Work

7.2.4 Call Graph of localalloc

The call graph of localalloc is another program from the GCC source code. It deals with

the allocation of the registers so that they can be used within the local areas of the

compiling program. The program can be represented as a call graph with 55 vertices and

84 edges.

7.2.4.1 Existing Automatic Graph Layout Algorithms

Large graphs (greater than 100 vertices) are difficult to display on A4 paper because it

is difficult to f i t all the edges and vertices onto the sheet. Therefore, the call graph of

'localalloc' is amongst the largest graph that can be displayed on an A4 sheet. In Figure

68 the layout gained from using (a) daVinci and (b) Graph Tool is shown. The problems

of conventional layouts are obvious in Figure 68 and are: -

• high number of edge crossings,

• related vertices are not placed together, and

• common structures are not close together.

The increasing number of crossings hinders the ability to follow edges in both layouts.

Related vertices not being close together causes many of the edge crossings. Most of

the common structures are not visible except for Fan Out models. Figure 68(a) shows

that daVinci produces long and thin diagrams that are very hard to fit on an A4 sheet of

paper. It will be later shown that using Sugiyama's Algorithm, on which daVinci is

based, continuously produces long and thin diagrams.

Page 183

A.Hofton Chapter 7 -The ANHOF System at Work

i

\ \
i

/

/

/
•

-

//

/

I i

\
/

/

I

i

-

\ T -

L

(a) By daVinci (b) By Graph Tool

Figure 68 - localalloc laid out using conventional methods

Page 184

A.Hofton Chapter 7 -The ANHOF System at Work

7.2.4.2 The ANHOF System

Passing the call graph of the localalloc program through the ANHOF system produces a

graph laid out in the manner shown in Figure 69. Figure 69 shows that edge crossings,

whilst reduced by the ANHOF method / system, are still present in the diagram. They

could be reduced further i f a better edge routing algorithm could be implemented. The

algorithm again produces layouts that are long and thin but less so than Sugiyama. In

addition the rule that vertices cannot be part of two or more models is hampering the

layout a little. Many vertices are part of two or more models generating an increasing

number of vertices that are not involved in models, and therefore increasing the chance

of the diagram becoming hard to follow and understand.

Page 185

A.Hofton Chapter 7 -The ANHOF System at Work

/

\

1

!

I

Figure 69 - localalioc laid out using the ANHOF System

Page 186

A.Hofton Chapter 7 -The ANHOF System at Work

7.3 Metric Comparison of the Graphs

In Chapter 2 metrics are given that provide the ability to compare graphs together with

methods of calculating them. In Chapter 8 these metrics wil l be explored and discussed

further. In order to compare the graph layouts the following metrics will be calculated: -

• height,

« width,

• ratio of height to width,

• the area occupied,

• the edge length, and

• the number of clusters in the graph.

Program Algorithm Crossings Vertices Edges Height Width Area Ratio Edge length Clusters

cp-search ANHOF 0 9 8 161 655 105455 4.07 1687 5

cp-search daVinci 2 9 8 675 224 151200 3.01 1370 5

cp-search Graph Tool 0 9 8 185 384 71040 2.08 1349 5

genopinit ANHOF 1 21 22 500 365 182500 1.37 3882 7

genopinit daVinci 28 21 22 153 775 118575 5.07 4385 6

genopinit Graph Tool 11 21 22 677 278 188206 2.44 4467 9

localalloc ANHOF 73 55 84 733 2648 1940984 3.61 35522 21

localalloc daVinci 256 55 84 6580 490 3224200 13.43 41220 13

localalloc Graph Tool 163 55 84 1620 842 1364040 1.92 36179 16

G ANHOF 0 45 50 462 1005 464310 2.18 6231 24

G daVinci 36 45 50 514 604 310456 1.18 7094 17

G Graph Tool 13 45 50 1005 466 468330 2.16 8990 18

varasm ANHOF 2 26 32 503 849 427047 1.69 6317 12

varasm daVinci 46 26 32 1564 212 331568 7.38 6548 11

varasm Graph Tool 11 26 32 759 469 355971 1.62 8656 12

Table 19 - the properties of the example graphs

Page 187

A.Hofton Chapter 7 -The ANHOF System at Work

Table 19 shows the metric properties of the example graphs given above. The layout

algorithm of daVinci creates long and thin graphs; these are graphs that have a high

ratio between the height and width. However in the case of cp-search the ANHOF

system produces the highest ratio and, in the case of the G, daVinci produces the layout

that has a ratio closest to one and is therefore the squarest in nature. There are mixed

results, which should be subject to further experimentation, the results of which are

given in the next chapter. daVinci produces graphs occupying the smallest area, except

in cp-search and localalloc, this again suggests further investigation.

Generally the layout algorithm in Graph Tool produces average results, coming first or

second in all sectors. There may be a case for extending the layout algorithm with the

common structures method. Therefore using the Graph Tool Layout algorithm as the

standard layout algorithm in the ANHOF method / system (step 8 in

LayoutRepresentation (Algorithm 4)). This will be investigated in the next chapter.

Generally the ANHOF system performs better than Graph Tool, but only just. daVinci

was third in the rankings. However the graphs above only provide a small cross section

of vertices and edges. The performance of the ANHOF system is not shown on graphs

of greater than 250 vertices.

In every case the ANHOF system reduces the number of edge crossings making the

graphs easier to follow. Using the ANHOF system, related vertices are positioned

together, therefore edge length should be reduced and clustering in the graph should

increase. Generally this was case and is the subject of further investigation, the results

of which are given in the next chapter.

7.4 Summary

In the above chapter the layouts obtained by sending real and conceived graphs through

the ANHOF system are compared with those that are produced using the existing layout

tools of Graph tool and daVinci. The layouts produced by the ANHOF system are an

improvement over the conventional layouts because: -

Page 188

A.Hofton Chapter 7 -The ANHOF System at Work

• the common structures where easily detected,

• edge crossings were reduced,

• the edge length was reduced,

• the number of vertex clusters increased,

• related vertices were positioned in close proximity to each other, and

• graphs that consisted of two Graphs became obvious.

However the problem of vertices being members of two or more models was shown to

be an increasing problem and the sort order of the vertices should be improved. An

indication of future problems that could occur i f the Graph Tool layout algorithm is

used as the 'standard' algorithm is given. The graph tool layout algorithm has great

difficulty in dealing with vertices that fan into a vertex that has already been positioned.

It was shown that the ANHOF method/system fixes problems with conventional layouts

from the smallest graphs. However conventional layouts could be greatly improved in

terms of the metrics of the graph i f better edge routing was incorporated. The layout

algorithms should not be just a vertex positioning algorithm. It was shown in the graph

of localalloc and possibly the graph of varasm that edge routing would improve the

layouts produced by the ANHOF system both in terms of the metrics of the layouts and

the understanding of the graph. It was shown in all the layout tools the vertex sorting

could improve this and further improve the metrics of the graph.

In the next chapter the metrics of the layouts from the ANHOF system are further

assessed to find out which order of sorting the matches to the common model graphs

and which standard layout algorithm, creates the best layouts in terms of the metrics of

the final layout.

Page 189

A.Hofton Chapter 8 - Performance of the ANHOF System

8. Performance of the ANHOF System

Chapter 6 suggested how to tune the ANHOF system, which, was then used to compare

the layouts obtained using the ANHOF system with those of the daVinci and Graph

Tool layout tools in Chapter 7. Chapter 7 also provided areas for future investigation in

terms of the metric performance of the ANHOF system. In this chapter the metrics of

the resulting graphs from the ANHOF system are further investigated, the types of

models that are present in common everyday software are assessed, and the time

performance of the ANHOF system is also detailed.

8.1 Models in Software

There are many types of commercial software applications, a few being: -

© Compiler - This provides a service to other programs. It converts programs

written in text into machine understandable code and is an example of system

software.

• Database - This restructures information and stores it so that it can be searched

for information. It is an example of business software.

« Embedded Software - This resides in the read only memory and is used to

control products and systems.

• Text editors - This allows humans to write and amend text. It is an example of

Personal Computer Software (PCS).

• Graphic editors - This allows humans to view and edit graphics on the

computer screen. It is another example of Personal Computer Software (PCS).

It is often necessary to know what types of graph models are contained within these

types of software so that layout algorithms can be tuned. However this analysis is

difficult to perform, not only is it difficult to get code in order to analyse, but also it is

very easy to make a broad generalisation. The analysis is still of benefit to perform.

However it should be noted that the programs are not claimed to be a good

representation of the type of program merely an example of them. The programs that are

Page 190

A.Hofton Chapter 8 - Performance of the ANHOF System

analysed are given in Table 20. Two databases are analysed as examples of business

software, the GCC version 2.58 compiler is analysed as an example of system software,

two graph display tool\editors VCG [146] and Graph Tool [16] are analysed as

examples of graphic tools in personal computer software and three gas analyser control

systems are analysed as examples of embedded software.

Name Type Lines of

Code

Total

Vertices

Total

Edges

Cobol Database management Database 1512 36 394

Flatfile Database Database 3400 221 489

2006- Gas Analyser Control

Software

Embedded 2548 171 315

300 - Gas Analyser Control

Software

Embedded 4511 129 376

Network - Gas Analysis

Software

Embedded 1724 80 194

GCC version 2.5.8 Compiler 32071 10756 2561

VCG Graphics 51667 1773 4057

Graph Tool Graphics 2177 466 760

Elvis Text 12963 677 791

Emacs Text 170384 3920 6184

Table 20 - The programs studied

The databases were COBOL programs and the other programs are all C programs. Al l

of the programs except the databases were processed into a set of Prolog facts about

them using the processor called CCG system by Kinloch [95]. Included in these facts is

the calling information, which can be converted into a call graph. Once the call graph is

obtained it can be processed by the Graph Isomorphism System in the ANHOF system

obtaining a list of all the models present. The numbers of each model is then calculated.

The results are shown in Figure 70. The call graph is obtained from the COBOL

programs by recording when paragraphs are performed in that program.

Page 191

A.Hofton Chapter 8 - Performance of the ANHOF System

Showing the Model Contents of Various Software Types

• Triangles
• Box
• Splitl
• Spiit2
• Split3

• Chain
• Fan Out
• Fan In
• Chain to Fan Out

Figure 70 - The average contents of the software tested

Figure 70 indicates that either the Chain models are not common in software or the

detection algorithm is poor for them, and that a better definition is necessary. In

addition, the compiler has a large percentage of fixed models (Triangle and Box)

present in the code, and a lower than average percentage of the other models.

Databases have a high proportion of Chain to Fan Out models present. This may be

because databases commonly process data that are stored in data types. A Chain to Fan

Out model indicates using them, because they are where a procedure calls another

procedure that processes information in a data type. Triangles are the most common

models found in the code. On closer inspection these are often present in a Fan Out

model and was not expected. However, it may be another indication of well-structured

code, because a task relies on two further tasks that interact with each other and, in these

circumstances code is efficiently used and easily modified.

It was expected that software would have a high proportion of Fan Out models because

this indicates that a program is well structured and that a task has been split into many

other tasks, each task using a procedure. This was largely the case but was never the

most common model found.

I f a piece of software has a high proportion of Fan In models this may be a case of the

program making high use of standard libraries. Whilst the Fan In models were common

45
40
35
30
25
20

ill,
15
10

ii
BP & <<8

Page 192

A.Hofton Chapter 8 - Performance of the ANHOF System

they were not as common as most, therefore suggesting that the use of standard libraries

is poor.

In the software a Split 1 model is the most common of the variable models. This is

because in programming, two procedures may use the same data but in different ways. It

may also be a sign that the code needs restructuring because two procedures may

perform the same task. To generalise the results Figure 71 shows the average proportion

of models found.

Average Percentage of Models Found In Software

9% 1%

1% 19%

• Triangles
• Box
• Splitl
• Split2

• Splits

• Chain
• Fan Out
• Fan in
• Chain Fan out

Figure 71 - Shows the average percentage of models in software

8.2 Metric Performance

In Chapter 6 five graphs were evaluated against metrics discussed in Chapter 2. Further

discussion is given below, presenting the desired results. There are many papers dealing

with the problems of evaluating software engineering methods and tools. Kitchenham

and Pfleeger have written a whole series of them, such as [130] and [96]. In terms of

graph layout it is a difficult area, the quality of the layout is subjective. However in

earlier chapters there are many metrics that can be used to measure the quality of the

graph. Call graphs are an aid to program comprehension. To a larger extent this is

quantifiable to certain levels. It can then be assessed using Benchmarking.

Benchmarking is described by Kitchenham [96] as, "running a number of standard

Page 193

A.Hofton Chapter 8 - Performance of the ANHOF System

tests/trials using alternative tools/methods (usually tools) and assessing the relative

performance of the tools/method against these tests. " In terms of the ANHOF system

these 'tests/trials'1 are a selection of the metrics given in Chapter 2. The following

characteristics (metrics) will be measured: -

Area and shape properties: -

• area taken, and

• aspect ratio - ratio between longest and shortest side.

Graph properties: -

• crossings,

• total edge length, and
• the number of clusters of vertices in the graph.

Apart from common structures being clearly visible, generally it is considered that the

graph should be the smallest size possible, have an aspect ratio close to that of the

output media that it is to be displayed. The edge crossings should be kept to a minimum

and edges should be kept as short as possible. Related information should be clustered

together and therefore the number of clusters should be high. It is these properties that

are strived for in order to create a 'good' layout that is easy to understand. This is what

shall be sought in the metric calculations below.

8.2.1 Method of Comparing Call Graphs

The above metrics are applied to 26 graphs from the GCC compiler version 2.58. The

properties of these graphs are given in Table 20. Each graph was selected so that either

the number of vertices was approximately (within 10 percent of goal) equal to

50,100,150, and 200, or the edges where approximately equal to 50,100,150,200,250

and 300. In general within these graphs each vertex has a Fan Out value of

approximately two. Although this may not be true for call graphs in every type of

program.

Page 194

A.Hofton Chapter 8 - Performance of the ANHOF System

Graph Vertices Edges Graph Vertices Edges

aux-output 70 100 genemit 28 45

calls2 89 160 genoutput 32 49

calls2-sub 81 109 genrecog 37 52

c-decl2 151 298 gtest 182 310

combine2-l 112 317 insn-emit-2 151 470

combine3 115 296 jump-2 101 176

cp-class 53 69 loop-2 118 208

cp-cvt 79 149 optabs 89 244

cp-decl2-2 148 207 protoize 94 242

cp-except 110 202 real-2 111 391

c-typeck 147 382 recog 52 70

dbxout 51 84 reload-2 73 156

function-2 151 40 tmp 219 675

Table 21- The properties of the graphs processed

In the following section the results of laying out the above graphs using the methods

below wil l be discussed. They will be compared using the metrics above therefore

enacting a benchmarking evaluation method as described by Kitchenham [96]. The

results are given in two areas, the area and shape properties and the general graph

properties.

Standard Algorithms: -

• graph tool layout algorithm (Standard GT),

• Sugiyama layout algorithm (Standard Sugiyama), and

• Manual (Standard Manual).

ANHOF system methods: -

• Matches as they were detected in order of Split 2, Split 1, Split 3, Chain to Fan

Out, Box, Triangle, Fan In, Fan Out, then Chain using Graph Tool as the

'standard' layout algorithm (ANHOF Order using Graph Tool).

Page 195

A.Hofton Chapter 8 - Performance of the ANHOF System

• Matches sorted in descending order using Graph Tool as the 'standard' layout

algorithm (ANHOF Descending using Graph Tool).

• Matches sorted in ascending order using Graph Tool as the 'standard' layout

algorithm (ANHOF Ascending using Graph Tool).

» Alternate matches taken from the order of Split 2, Split 1, Split 3, Chain to Fan

Out, Box, Triangle, Fan In, Fan Out, then Chain using Graph Tool as the

'standard' layout algorithm (ANHOF Every other using Graph Tool).

« Matches as they were detected in order of Split 2, Split 1, Split 3, Chain to Fan

Out, Box, Triangle, Fan In, Fan Out, then Chain using Sugiyama as the

'standard' layout algorithm (ANHOF Order using Sugiyama).

• Matches sorted in descending order using Sugiyama as the 'standard' layout

algorithm (ANHOF Descending using Sugiyama).

• Matches sorted in ascending order using Sugiyama as the 'standard' layout

algorithm (ANHOF Ascending using Sugiyama).

• Alternate matches taken from the order of Split 2, Split 1, Split 3, Chain to Fan

Out, Box, Triangle, Fan In, Fan Out, then Chain using Sugiyama as the

'standard' layout algorithm (ANHOF Every other using Sugiyama).

The layout of the graphs using the standard algorithms were obtained passing the graph

information file (GIN) through the layout algorithms implemented as part of the Graph

Layout System. In Chapter 7 graphs were laid out using Sugiyama et al. [159]

algorithm, the layout was obtained by using daVinci as the layout tool that applied to

algorithm to the graph. In the tests below the layouts are obtained by using the LEDA /

AGD library implementations of the various algorithms. The algorithm by Sugiyama et

al is a standard layout algorithm contained in the LEDA / AGD library, and the Graph

Tool layout algorithm is an implementation of GraphLayout (Algorithm 17) using the

LEDA / AGD libraries to provide standard functions.

8.2.2 Area and Shape Properties

The ratio of the longest side to the shortest side provides the aspect ratio of the graph.

Most paper sizes are rectangular in nature; therefore in order for the graphs to be printed

they also need to be rectangular in nature. A square diagram will have a ratio of one,

therefore the larger the value the more rectangular the graph is. European paper sizes,

Page 196

A.Hofton Chapter 8 - Performance of the ANHOF System

e.g. A4, have a ratio of 1.41 and most displays have a ratio 1.333. Therefore a desirable

property of a graph is one of these figures. Figure 72 shows the ratio obtained by the

various methods. The applications of Sugiyama's algorithm to a graph tends to cause

graphs to occupy a smaller area of paper, but are long and thin, and are therefore

difficult to print. This property could be changed using different spacing between

vertices. I f the value of 1.41 is the desired ratio then it is not achieved, not even by

manual layout. However doing it manually did produce the closest. Manual layout was

hampered by not being able to evenly space the vertices. Therefore large spaces in the

graph were produced that could have been pulled together making the vertex more

compact. I f manual layout could get over this problem then it would probably come

even closer to the 1.41 or 1.33 figure. This was corrected using an automatic algorithm.

This however had problems setting the spacing correctly. Using either the Graph Tool

Algorithm or the Sugiyama algorithm as the standard layout method in the ANHOF

system improves the ratio from using the respective algorithm on the whole graph

without the ANHOF system. Results showed that to get the best ratio it is not advisable

to sort the matches, but combine them in the natural order (described above and in

Chapter 6) and use the Graph Tool algorithm to layout the resulting graph.

Average Ratio of Each Method

„ _ „ - - " "

Standard Standard GT Standard ANHOF ANHOF ANHOF ANHOF ANHOF ANHOF ANHOF ANHOF
Manual Sugiyama Order Using Ascending Descending Everyother Order Using Ascending Descending Even/other

GT Using GT Using GT Using GT Sugiyama Using using Using
Sugiyama Sugiyama Sugiyama

Figure 72 - Shows the ratio between longest and shortest side using the various methods

I f the aim is to reduce the area of the graph then the results of Figure 73 suggests the use

of Sugiyama's Algorithm. On closer inspection it is long and thin and is therefore

Page 197

A.Hofton Chapter 8 - Performance of the ANHOF System

unprintable. The results show that using either the Graph Tool algorithm or the

Sugiyama algorithm as the 'standard' algorithm the ANHOF system increases the area

taken by graphs. I f the matches are sorted into ascending order and laid out using the

Graph Tool layout algorithm then its area is polynomial, the others are largely linear. To

minimize the area taken using the ANHOF system then the results show that the

following should be followed. I f the graph has fewer than 65 vertices then the matches

should be sorted into ascending order then the resulting graph laid out using Graph

Tool. However i f the graph is larger than 65 vertices and the area is to be minimized

then the matches should be placed in a file in the natural order given above and in

Chapter 6 and the whole graph laid out using Sugiyama. However, this is likely to

produce a long and thin graph.

A long and thin graph is difficult to follow. Therefore for comprehensible graphs a

compromise between the thin graphs produced using Sugiyama and the polynomial

performance of the ascending order using Graph Tool should be found. Placing the

matches in the natural order described in Chapter 6 and using the Graph Tool layout

algorithm as the 'standard' layout algorithm obtains the best performance of the

ANHOF system.

Page 198

A.Hofton Chapter 8 - Performance of the ANHOF System

The Area of the Graph Taken Using Each Method

45

40

S 35

30
V)

25

20

15

£ 10

50 100 150 200 250

Nodes

Standard Manual — ANHOF Order Using GT
Standard GT ANHOF Descending Using GT
Standard Sugiyama — A N H O F Ascending Using GT
ANHOF Everyother Using GT — ANHOF Order Using Sugiyama
ANHOF Ascending Using Sugiyama ANHOF Descending Using Sugiyama
ANHOF Everyother Using Sugiyama

Figure 73 - The area taken by graphs

8.2.3 Graph Properties

It is a desirable property to gather all the common information together in a graph. I f in

a call graph, a procedure calls other procedures, then the procedures it calls and the

calling procedure should be as close together as possible. Chapter 7 suggests that this is

not dealt with using a standard layout algorithm. However using the ANHOF system it

is possible to cluster, not only procedures that call each other, but common structures in

the program that may represent common programming practices. In Chapter 2 a method

of calculating the number of clusters in a graph is given based on the distance between

Page 199

A.Hofton Chapter 8 - Performance of the ANHOF System

vertices. The relation property (a cluster) used is that vertices are related either though

being called by each other or they are a common structure. I f they are related through

this definition then they should be placed close together. Using the ANHOF method /

system should cause there to be a high number of clusters based in the distance on

layouts obtained. The results show that this is indeed the case.

Figure 74 shows that the number of clusters is polynomial in nature and that it is a

convex curve, meaning that it wil l peak. This may be because the method invoked to

calculate the number of clusters may not be suitable for calculating the number of

clusters in large graphs. In Chapter 2 it is shown that calculating the number of clusters

is a case of interpreting the Dendrogram at level three. In larger graphs (greater than 150

vertices) the level may have to be level two because the clustering method (nearest

neighbour analysis) may cluster graphs earlier in larger graphs than in smaller ones

because greater distances are considered. The results show that the number of clusters in

a layout drawn using manual methods has indeed already peaked, at around 140

vertices. The results show that the numbers of clusters in layouts drawn using automatic

methods are still climbing at this point. The results show that more clusters were evident

from layouts obtained using Sugiyama, both as the layout for the whole graph and with

the ANHOF system, than those obtained using the Graph Tool layout algorithm, both as

the layout for the whole graph and with the ANHOF system. This was because of the

method used to cluster them, and was not generally a property of the graphs.

Page 200

A.Hofton Chapter 8 - Performance of the ANHOF System

The Number of Clusters In A
Graph Using Each Method

120

100
:

3 80

o
5 60

§. 40

20

0
50 100 150 200 250

Nodes

• . • . . . , • ••

Standard Manual ANHOF Order Using GT
Standard GT ANHOF Descending Using GT
Standard Sugiyama - ANHOF Ascending Using GT
ANHOF Even/other Using GT —-ANHOF Order Using Sugiyama
ANHOF Ascending Using Sugiyama ANHOF Descending Using Sugiyama
ANHOF E\eryother Using Sugiyama

Figure 74 - The relationship between the clusters and vertices

The edge length is related to the area of the graph because i f the graph takes more area

then the edges will be longer. A large area often means there will be a few very long

edges. A long edge can be difficult to follow. The results shown in Figure 75 show that

the ANHOF system produces longer edged graphs than normal algorithms. This

counteracts the cluster finding, because vertices should be together. It may be because

of the spacing used between the vertices. However it is not possible to position all the

vertices together, there are always going to be vertices that are positioned by one model

layout algorithm but are called by other vertices. These may be positioned at opposite

ends of the graph so causing long edges. It may be the result of the rule that a vertex

cannot be a member of two or more models. It was shown in Chapter 7 that the ANHOF

Page 201

A.Hofton Chapter 8 - Performance of the ANHOF System

system generally reduced the edge length; however investigating this over many more

graphs disproved this. Performing the layout manually produces a linear edge length per

edge. Al l methods perform similarly until approximately 310 edges then using the

layout algorithm by Sugiyama et al. as the 'standard' layout increases rapidly and

causes longer edges than using the Graph Tool Layout algorithm as the 'standard'

layout. It has been show earlier that Sugiyama produces long and thin graphs. Therefore

the edge length will be increased. Results have indicated that in order to reduce the edge

length of a graph when using ANHOF system either sort the matches found into

ascending order or place them into the natural order given in Chapter 6 and use the

Graph Tool layout algorithm as the 'standard' layout algorithm.

The Edge Length Caused By Each Method

3000000

2500000

2000000

O)
c <D

- I
0)
CO

s

1500000

1000000

500000

200 400

Edges

600

— I
800

Standard Manual — — ANHOF Order Using GT

Standard GT ANHOF Descending Using GT

Standard Sugtyama — — ANHOF Ascending Using GT

~ - ANHOF 6/eryother Using GT ANHOF Order Using Sugiyama

——ANHOF Ascending Using Sugiyama ANHOF Descending Using Sugiyama

——ANHOF Everyother Using Sugiyama

Figure 75 - The relationship between edge length and edges

Page 202

A.Hofton Chapter 8 - Performance of the ANHOF System

In Chapter 2 it is suggested that reducing the edge crossings is an important goal for any

layout algorithm because it increases comprehension. In most automated graph layout

algorithms edge crossings are inevitable. The ANHOF system is no exception. Figure

76 shows the results of counting the edge crossings in each graph. The results have

indicated that using Sugiyama's Algorithm seems to produce more crossings than the

Graph Tool algorithm. A l l methods produce similar results until around 200 edges, from

this point onwards most increase rapidly at different rates. The ANHOF system

produces fewer crossings than the standard algorithms. The results show that using the

natural order described in Chapter 6 and using the Graph Tool algorithm produces the

fewest crossings in every case. It is also more linear than the others. The results also

shows that sorting the matches into ascending order and using Sugiyama as the

'standard' layout algorithm, and taking every other match from a list of matches in the

natural order (discussed in Chapter 6) and using Graph Tool the 'standard' layout

algorithm produces less crossings than using the conventional layout algorithms of

Sugiyama and Graph Tool.

Page 203

A.Hofton Chapter 8 - Performance of the ANHOF System

The Number Of Edge Crossings
Caused By Each Method

25000

20000

/ 15000
m

//
10000

/

f V

5000

300 400 100 200 500 600 700 800

Edges

Standard Manual — ANHOF Order Using GT

Standard GT ANHOF Descending Using GT

Standard Sugiyama -— ANHOF Ascending Using GT

ANHOF B/eryother Using GT — ANHOF Order Using Sugiyama

ANHOF Ascending Using Sugiyama ANHOF Descending Using Sugiyama

ANHOF B/eryother Using Sugiyama

Figure 76 - The relationship between the number of crossings and the number of edges

From all the above comparisons of graph metrics, it is evident that one method of graph

layout performs consistently better. The results show that the ANHOF system should be

used in the following manner. Search for the common model graphs creating nine

Page 204

A.Hofton Chapter 8 - Performance of the ANHOF System

separate lists of matches. Then combine the list of matches in the order Split 2, Split 1,

Split 3, Chain to Fan Out, Box, Triangle, Fan In, Fan Out, then Chain into one large list.

Pass this list of matches through the Match Analyser, and through the Graph Layout

System using Graph Tool's layout algorithm as the 'standard' layout algorithm. This

will maximise the performance of the system and produce a graph that may aid program

understanding.

8.3 Time Performance

It is desirable for a program to execute in linear time. Figure 77 shows that the ANHOF

system largely does execute linearly, one vertex taking approximately three quarters of

a second to place in total. This figure is not desirable in terms of an interactive graph

layout system. The ANHOF system is a prototype system that was designed to show the

concept and Chapter 7 shows that the concept works. A great deal of time is spent in the

ANHOF system outputting status information to the screen. I f this was removed then

time could be saved. The sorting algorithms used in the Graph Layout System are

largely inefficient and more efficient algorithms could be written, again offering an

optimisation of the system.

Any deviations from the linear execution time are caused by it taking longer to lay out a

graph that has a high percentage of common structures than those with not. Two models

take more time to layout than one whole graph. This is due to the fact that a model is

laid out first and the vertices contained in the model are all combined into one vertex in

a new graph. This new graph is then laid out using a 'standard' layout algorithm before

the vertex representing the common model graph is expanded again. This of course is

going to take longer than just sending the whole graph through the 'standard' layout

algorithm in one go. Many of the graphs used in this evaluation consist of numerous

Fan Out models. However it is better i f the 'standard' layout algorithm evaluates these,

because laying them out as separate models causes additional overheads in time. It

would be an interesting experiment to investigate i f removing the Fan Out model from

the library improved the time taken and the quality of the graph.

Page 205

A.Hofton Chapter 8 - Performance of the ANHOF System

The Time Taken For The ANHOF System Per Vertex

180 1— i — ~ | — — — - , —

160
140
120

in
100

I 80
60
40
20

50 100 150 200 250

vertices

Figure 77 - The running of time of the ANHOF system

The results shown in Figure 78 show the percentage time taken by each of the three

processing steps of the ANHOF system. The two most processor intensive tasks (the

Graph Isomorphism System and the Graph Layout System) take the major share of the

time taken. It is interesting to observe that the Graph Isomorphism System takes up 50

percent of the time. It is thought that the Graph Layout System should take up most of

the time because this is possibly the most processor intensive task. It is also interesting

to note that the fixed isomorphism detection system ran quite efficiently taking only 12

percent of the time in the Graph Isomorphism System or six percent of the total time,

whereas the Variable Model Detection System takes 88 percent of the time taken by the

Graph Isomorphism System or 44 percent of the total time. However, 21 percent of the

time taken to detect the variable models is taken in creating the Prolog representation of

the input graph and calculating the fan in and fan out information. This is good area for

optimisation; two tools that could be easily combined currently perform these. One

reason why the Fixed Model Detection System runs so efficiently is that one program

searches for all the models, therefore the graph is stored once and the models are read

only once. This is more efficient than the Variable Model Detection system where each

model is detected using a separate Prolog rule executed sequentially. Each rule having

to be executed and graph and fan information loaded, this is a very inefficient method of

performing this step. Prolog, whilst efficient at searching the information, has a large

Page 206

A.Hofton Chapter 8 - Performance of the ANHOF System

initiation time that the Fixed Model Detection System does not suffer from. These are

the areas that could be optimised.

The Percentage Time Taken by Each Part of The ANHOF
system

7%

(I) 43%
50%

• Isomorphism System

• Match Analyser

• Layout System

Figure 78 - Where the time is spent in the ANHOF system

8.4 Summary

This chapter provides analysis of the types of models that are found in everyday

computer programs. This is generalised further by providing the common model graph

contents of computer software. The ANHOF system was evaluated in terms of the

metrics of the graph it produces. Finally the time performance of the ANHOF system is

calculated. The percentage of time spent by each part of the system is given.

In the next chapter conclusions are drawn from this research and further work is

detailed.

Page 207

A.Hofton Chapter 9 - Conclusion and Future Work

9e Conclusions and Future Work

9.1 Introduction

This chapter presents a summary of this thesis and evaluates the success of the research

work against the criteria defined in Chapter 1. Comparisons of the ANHOF method with

a similar method and possibilities for further work in the future are also discussed.

9.2 Background

Graphs are used in many every day tasks from modelling interactions between particles

in chemistry to designing circuits in engineering. Laying out these large graphs is a

difficult, labour intensive task. It is a task that is ideal for automation. The algorithms

to perform this are known as automatic graph layout algorithms and are subject to a

great deal of research, and form the main part of the theory behind this thesis.

This thesis presents research into the application of graph layout techniques to the

automatic layout of software engineering graphs. These graphs quickly become

unreadable because edge crossings are high and vertices often overlap. Application of

many 'standard' layout algorithms may reduce the overlapping vertices but the edge

crossings are still high. The work carried out for this thesis tries to improve the layout of

software engineering graphs.

Software engineering concerns the process of producing computer programs for use in

everyday tasks. When software is written it is often produced so it that can be used for

many years. Within these years it is inevitable that the software wil l have to be changed

to meet new requirements. This is known as software maintenance. This is why, when

modelling the software engineering process, maintenance is a large proportion of the

process. Often software is maintained that is many years old, the software was often

programmed before the advent of software engineering methods, the original

Page 208

A.Hofton Chapter 9 - Conclusion and Future Work

programmers have left and the documentation is non-existent or has not been kept up to

date. Therefore the programmers that have been given the task of implementing the

change to the software face a daunting task of understanding the code. This is where the

field of program comprehension is used. This provides methods of modelling a

programmer's mind, allowing tools to be developed that aid the programmer in

understanding the code. One such method is to use a visualization of the program.

Visualization may take many forms and represent many aspects of the software. One

such form may be a two dimensional graph that represents the flow of data through a

program (data flow graph) or a graph that represents the calling relationship between

procedures or functions (call graphs).

There are two approaches to automatic graph layout algorithms. One is the algorithmic

approach consisting of designing special purpose layout algorithms, each algorithm

devoted to solve the layout problem to specific sets of requirements and specific graph

structures. Another is the declarative approach consisting of devising languages for

describing requirements, and of using logic programming to construct diagrams that fi t

the given requirements. There is a growing trend that implements a combination of the

two.

Since the early 1980s there has been an impressive growth in the number of automatic

graph layout algorithms. Automatic Graph Layout Algorithms tend to work well for

small graphs (less than 50 vertices) and do not scale up well to larger graphs (greater

than 150 vertices). Also the algorithms usually apply to specific classes of graphs. The

graphs in the domain of software engineering tend to consist of many classes of graphs.

Consequently the automatic graph layout algorithms provide poor results. It is a view

that research in automatic graph layout cannot proceed further until this issue is

addressed, and layout algorithms are developed that work on specific types of graphs.

This research improves the layout of a specific type of software engineering graph

known as the call graph.

When comprehending programs maintainers tend to chunk section of code together.

They also look for beacons of code that indicate the presence of certain processes.

These techniques can be applied to call graphs. These beacons and chunks tend to

correspond to the presence of certain common structures in call graphs. When

Page 209

A.Hofton Chapter 9 - Conclusion and Future Work

understanding call graphs maintainers look for these common structures. When using

standard layout algorithms these common structures do not become prominent and

therefore the graphs do not aid comprehension and the point of the graphs has been lost.

The common structures can also be used to improve the layout of graphs i f the common

structures have an associated good layout that aids understanding and reduces the

number of crossings in the graph. The common structure in the form of a graph and its

associated layout algorithm are collectively known as common model graphs. The

original call graph is broken up into these common model graphs and other graphs

known as subgraphs. Each subgraph is then laid out using its associated layout

algorithm and the graph is then rebuilt of well laid out graphs. The layout that is left is

greatly improved. Also because the graph has been broken up into smaller subgraphs the

standard layout algorithms yield better results.

The following section provides a discussion of the work presented within this thesis,

identifying what has been accomplished. This is followed by an evaluation of this

research work against the criteria for success given in Chapter 1. Finally, possibilities

for further work and future directions of this research are identified.

9.3 Results

In this thesis a method of graph layout, know as the ANHOF method is presented. This

is a four-part method for automatically laying out call graphs; these are graphs used in

software engineering. Within many call graphs there exist common structures. These

structures are laid out in the same manner every time, and therefore become

recognisable and aid comprehension. These common structures are given a standard

layout and are know as common model graphs. The ANHOF method allows these

common model graphs to be described and searched for in the call graph using subgraph

isomorphism.

Each part of the ANHOF method is discussed and detailed. The four-part process

consists of three processing parts and one display part. The common model graphs are

detected using the Graph Isomorphism System. This produces a list of matches that are

then filtered by the Match Analyser. The Match Analyser applies the rule to filter the

Page 210

A.Hofton Chapter 9 - Conclusion and Future Work

models, that a vertex cannot be a member of two or more models. The Match Analyser

produces a list of valid matches that are incorporated in a graph representation and used

to layout the graph using the Graph Layout System. The final layout is displayed on a

Graph Display System. In Chapter 4 specific algorithms are given that can be used to

implement each part.

A proof of concept implementation of the ANHOF method has been developed. The

implementation is known as the ANHOF system. It implements each part of the method

as a separate program. Two programs detect the two types of common model graphs in

the Graph Isomorphism System, one for the fixed common model graphs, known as the

Fixed Model Detection System and one for the variable common model graphs, known

as the Variable Model Detection System. Details are given of all the languages used to

implement the ANHOF system, giving a description of the languages used to describe

the models, the layout algorithms and the aesthetics

This thesis evaluates the ANHOF system; the settings for tuning the ANHOF system are

given. These are settings that are necessary to get the maximum performance out of the

ANHOF system. The lengths of chains and the fan out and fan in levels necessary to

detect the maximum number of models by the Variable Model Detection System are

detailed. The results indicate that Ullman's algorithm is the most suitable for detecting

the maximum number of models by the Fixed Model Detection System. The results of

experimentation into the methods of getting the maximum number of matches through

the Match Analyser are detailed and a natural order for the matches to be combined is

discussed. The natural order is shown to improve the metrics of the graph. Methods of

sorting vertices in a graph so that the edge crossings are minimized are also discussed.

The vertices need to be sorted because many layout algorithms traverse hierarchies so

that the next vertex is the next unvisited vertex. The next unvisited vertex is often the

first on a list. This list can be sorted in many ways; it is these orders that are discussed.

Finally the spacing of vertices on the horizontal and vertical plane is given so that the

ratio between the longest and shortest side of the bounding box of the graph is

minimized.

This thesis compares the layouts obtained from the ANHOF system with those obtained

from tools implementing standard layout algorithms. The tools are daVinci, which

Page 211

A.Hofton Chapter 9 - Conclusion and Future Work

implements Sugiyama's layout algorithm and Graph Tool that implements

GraphLayout (Algorithm 17). Existing layout algorithms have many problems that are

all corrected by the ANHOF system. The following problems were detected in this

thesis: -

• the related vertices are not situated with each other,

• the common structures are not apparent,

• high number edge crossings,

• the hierarchy is difficult to follow.

• some edges are lost, and

• often the graph structure is not symmetrically recognisable.

The results of experiments into the models that are found in software are discussed. To

generalise the results indicate that software consists of 28 percent Triangle models,

eight percent Box models (36 percent Fixed models), 19 percent Split 1, one percent

Split 2, 16 percent Split 3, three percent Chain, 15 percent Fan Out, nine percent Fan In

and one percent Chain to Fan Out (64 percent Variable Models). The layouts obtained

by the ANHOF system are evaluated in terms of their metrics. Finding that the ANHOF

system is successful because: -

• it reduces the ratio between the longest and shortest side of the bounding box,

• increases the number of clusters in the graph, and

• decreases the number of edge crossings.

These metrics are improvements because i f the ratio is reduced then the graph is easier

to print and display, because it becomes closer to the 1.41 ratio of European paper and

the 1.33 ratio of the display screen. I f the number of clusters in the graph is increased it

corresponds to the related vertices, which are situated together, and the common

structures, which are increasingly present. Edges are easier to follow i f they do not

cross, therefore reducing them aids in the comprehension of the graph.

It is also shown that the ANHOF system is not successful in: -

Page 212

A.Hofton Chapter 9 - Conclusion and Future Work

• reducing the area taken by the graph, and

• reducing the edge length

This thesis also evaluates the time taken to perform the graph layout process using the

ANHOF system. It found that it takes approximately three quarters of a second per

vertex to place each vertex. This is not ideal i f the Graph Layout System is to be

interactive but adequate given the circumstances. It shows that 50 percent of the time is

spent in the Graph Isomorphism System; the efficiency of which can be improved and a

method of doing this is given.

This thesis shows that maximum performance of the ANHOF system, in terms of

producing the best metrics system, is achieved by forming nine separate lists of

matches. The lists should be in the order they are detected. Combine the lists in the

order Split 2, Split 1, Split 3, Chain to Fan Out, Box, Triangle, Fan In, Fan Out, then

Chain to form one list. The list of matches is then passed to the models through the

Match Analyser, yielding a representation of the graph that is then passed through the

Graph Layout System. The Graph Layout System should use the layout algorithms

associated with the models and the Graph Tool layout algorithm given in GraphLayout

(Algorithm 17) using the spacing between the vertices of 100 on the horizontal plane

and 50 on the vertical plane.

The above order in which to combine the list of matches to the common model graphs

shows that in terms of the metrics it is better to have many vertices involved in few

models. Therefore it is better to have larger models present in the final layout that use

more vertices. This may not be a result that helps comprehension, as it is foreseen that

more model graphs prominent in the layout is better than few.

9.4 Evaluation Against The Criteria For Success

The criteria for success, given in Chapter 1, are again given below in addition to a brief

evaluation of how this research has addressed each criterion.

• Identify the common structures in call graphs.

Page 213

A.Hofton Chapter 9 - Conclusion and Future Work

In Chapter 4 the common structures that are present in call graphs are discussed. Earlier

works by Munro et al. [117] found five common structures present. The five models

found are all known as primitive models. Nine structures that are present in call graphs

are given in Chapter 4, these consist of the original five and four new ones. The four

new ones are variations of the primes, added to ease the searching for models. The

chapter shows that there is two types of models present in call graphs, fixed and

variable. Fixed common model graphs consist of a strict structure; they have a fixed

number of vertices, edges and edge direction. Variable common model graphs consist of

a variable number of vertices and edges, but have a common edge direction and

structure. There are seven variable models (named Fan In, Fan Out, Chain, Chain to Fan

Out, Split 1, Split 2, and Split 3) and two fixed models (named Triangle and Box). The

chapter also shows that various common model graphs are made up of primitive

common model graphs. These are common model graphs that cannot be simplified.

There are five primitive common model graphs, two fixed common model graphs

(named Triangle and Box) and three variable common model graphs (named Fan In,

Fan Out, Chain).

• Produce well laid out call graphs that are to a high quality described in

metric criteria.

In Chapters 7 and 8 it is shown that the ANHOF system produces graphs that are an

improvement on the layout obtained from using existing automatic graph layout

algorithms. They are an improvement because the common structures are apparent and

the related vertices are situated together. The number of clusters metric shows this,

which is greater than the number in 'standard' layouts. In the ANHOF system the metric

calculating the number of edge crossings shows that the number is decreased, also that

the rate of increase is more linear than the other algorithms.

• Be able to improve the layout of large call graphs with greater than 150

vertices.

In Chapter 8 it was shown that the above improvements were made in graphs that have

between 200 and 250 vertices. There is no reason why this should not continue to be the

Page 214

A.Hofton Chapter 9 - Conclusion and Future Work

case for graphs having greater than 300 vertices. All the detection methods and layout

tools can easily cope with larger graphs.

® Have the ability to describe the graph in a simple language.

In Chapter 5 four languages are discussed. Each language is for a separate task; one is

for the simple aesthetics to be described, another is to describe the layout algorithms

and the third is to describe the common model graphs in terms of the adjacency matrix

or the fan in and fan out information. A simple language that allows the whole graph to

be represented and also the common structures to be given is the last to be described.

The name of layout algorithms to be used to layout the whole graph and common

structures can also be stated. The language is reasonably easy to understand and is in

simple ASCII format so that it can be read by both machine and human.

• Be able to detect various common structures that have been found to be

present in many call graphs.

In Chapter 4, algorithms are given that detail how the Graph Isomorphism System

should detect the common structures. In Chapter 5 it is shown that the two types of

common model graphs are detected by two programs and in two different ways.

Variable models are detected by the Variable Model Detection System that is a Prolog

based system and applies logic rules to the fact bases about the graph to search for the

common model graphs. The Fixed Model Detection System detects fixed models; this is

a program that implements various standard subgraph isomorphism algorithms, the best

being Ullman [164]. This is an adaptation of Messmer's [114] Graph Matching Toolkit.

• To develop a prototype tool to show poof of concept.

In Chapter 5 an implementation of the ANHOF method is given that and is know as

ANHOF system. It consists of a four part system. The system is largely implemented in

C++, although each part is implemented in different ways. The common model graphs

are detected by the Graph Isomorphism System, which is in fact two separate programs,

one to detect the fixed common model graphs written in C++ (known as the Fixed

Model Detection System) and another to detect the variable common model graphs

Page 215

A.Hofton Chapter 9 - Conclusion and Future Work

written in Prolog (known as the Variable Model Detection System). This produces a list

of matches to the common model graphs that is filtered by the Match Analyser, which

produces a representation of the graph. This representation is then laid out using the

Graph Layout System that can use standard automatic graph layouts or those for the

models to layout the graph. This then produces a file that can be displayed on Graph

Tool.

It can be seen above that the research has achieved all of its criteria. Overall the

ANHOF method / system has been successful. It demonstrates that subgraph

isomorphism is a successful method of laying out a graph. Isomorphism is used to find

common model graphs in the whole graph that can be used to improve the layout of the

whole graph. In the proceeding section the ANHOF method is compared against a

similar theoretical system that uses a similar method to layout a graph.

9.5 Comparison Of The ANHOF Method / System With
Other Systems

A similar method of laying out graphs with a pre-specified layout was described by

Kosak, Marks and Shieber [100]. Here the input graph and the pre-specified layout are

given in the form of a language grammar, these is then processed using Prolog. The

grammar was similar to that of a layout grammar discussed in Chapter 3. It allowed only

fixed common model graphs to be described and not variable common model graphs.

Variable common model graphs form the majority of the common model graphs

discovered in call graphs. Not all graphs can be represented using the grammar-based

system, whereas in the ANHOF method all directed graphs could be laid out. However

Kosak et al. [100] suggested with some interesting problems of using such a method to

layout graphs. The ANHOF method addresses and answers the problem identified

below.

l.No guarantee of success - A graph may not possess the specified common

model graphs

Page 216

A.Hofton Chapter 9 - Conclusion and Future Work

2. Interacting common model graphs - There are potential problems with

vertices being members of two common model graphs.

3. Occasional unacceptable performance - Prolog backtracking is occasionally

inefficient when a solution is hard to find.

4. Introduction of unwanted common model graphs - There is no guarantee that

correct common model graphs are discovered and the valid common model

graphs are the best to use.

The common model graphs in Kosak et al. were fixed and therefore there was a chance

of them not being present in a Graph. The ANHOF method combines both fixed

common model graphs that may not be present in the graph with variable common

model graphs. These variable common model graphs are described in such a way that i f

the associated parameterised values are set correctly some i f not all the variable

common model graphs should be present. For instance a Fan Out common model graph

is basically a hierarchy and a call graph is naturally a hierarchy. If no models are found

then the graph is laid out using standard layout algorithms, whilst there is no

improvement over standard layout algorithms the graph will at least be laid out with a

reasonably successful layout algorithm. This was not the case in Kosak et al.

The interacting common model graphs are solved by the ANHOF method by simply not

allowing them. The main layout algorithm catches any vertices that are not part of the

common model graphs.

The performance issue is hard to evaluate. Certainly most time is spent by the ANHOF

system in the Graph Isomorphism System. This may or may not be because of Prolog.

However not all of the Graph Isomorphism System is implemented in Prolog. Ullman's

algorithm can take a long time to search for the models. The actual detection of each

model does not seem to take very long, taking an unnoticeable amount of time. It is the

execution of the Prolog language that does. It takes a long time to load up and begin

processing. It was found that the backtracking was efficient.

It is hard to say whether unwanted common model graphs were introduced in the

ANHOF system. There is certainly no notion of an unwanted model in the ANHOF

method any model that finds its way to the final layout will aid comprehension because

Page 217

A.Hofton Chapter 9 - Conclusion and Future Work

it is what the maintainers are looking for. The Match Analyser reduces the matches

found by 97 percent, reducing a graph with 600 matches to the common model graphs

to single figures. There is no guarantee that these models are the best, however it is

shown in Chapter 6, 8, and 9 that the ANHOF method is successful and therefore the

models seem to be correct.

9.6 Future Work

It is shown above that the ANHOF method of call graph layout has been successful. It

has met all of its criteria of success and has drawn together many fields of graph theory

and layout. However there are many areas in which this success can be increased.

Shown below are improvements to the three processing parts of the ANHOF system, the

system that implements the ANHOF method. Also it discusses improvements to the

whole theory and method that is behind the ANHOF method.

9.6.1 Improvements to the Graph Isomorphisms System

There are two parts to the Graph Isomorphism System, one for the fixed common model

graphs and one for the variable common model graphs. The Fixed Model Detection

System works generally well. Little can be done to improve it. The system works

efficiently and well. However because the implementation is an adaptation of

Messmer's [114] Graph Matching Toolkit it is needlessly complicated. It may be better

i f it was implemented in another system, say Prolog, whose backtracking is very

suitable to the purpose.

The Variable Model Detection System again worked successfully, it may have been

hindered, in terms of performance, by the fact that each model was implemented by one

rule. It therefore may be better if that was implemented as one. As graphs get larger and

more complicated the Prolog rules that search for the matches to the variable models

may have to make increasing use of the graph fact base, the fact base that stores the raw

vertices and edge information, or the information stored in the fan information fact base

may have to be improved. This is because the fan information, stored in the fan

information fact base may be proved unreliable. For instance when a graph edge is bi-

Page 218

A.Hofton Chapter 9 - Conclusion and Future Work

directed, i.e. a graph goes to a vertex and back again, it appears twice in the fan in and

fan out information once in the fan in and once in the fan out. This may mean that

various models are not detected properly. In Figure 79 the vertices are labelled with

their name and a tuple (fan out, fan in). This figure represents a valid split 1 model and

the layout algorithm should layout the model. But the question is it a valid split 1 model

and would the maintainer still recognizes it as a split 1 model? If the answer to this

question is no then the edge information in the graph fact base will have to be used. The

same is true for self-referencing vertices.

9.6.2 Improvements to the Match Analyser

The actual Match Analyser worked very well. It was shown in Chapter 8 that to improve

the metrics of the graph, then more vertices should be involved in few models. However

this may not aid comprehension of the graph where more instantly recognisable

common structures should be present in the graph layout. This means that many vertices

should be involved in many models. At the moment the Match Analyser reduces the

number of matches by 97 percent, reducing a list of 600 matches to single figures of

valid matches in most cases. This makes it hard to investigate whether the models being

present will aid comprehension of the program. A method of maximising the number of

valid matches that are produced by the Match Analyser was investigated in Chapter 6.

But this increases the number of common model graphs by single figures, not tens or

hundreds. The problem is the rule that the Match Analyser applies. If a method could

be found that allowed a vertex to be a member of two models, either by laying every

model match that was found or by some filtering technique then more common

structures (common model graphs) will become prominent in the final layout. There are

Figure 79 - An example Split 1 model

Page 219

A.Hofton Chapter 9 - Conclusion and Future Work

many methods of increasing the number of models used to layout the graph. One is to

restrict the number of vertices that can be involved in a model, either by not allowing

them or removing the larger models (Split 1, Split 2) from the models that are the focus

of the search. Therefore smaller models are used that involve fewer vertices. Another is

to apply the rule that if a vertex is a member of two models then delete it from one. All

of the vertices in the two models are laid out using the smaller 'good' layout algorithms.

There may be many more methods of increasing the number of valid model matches,

involving many vertices in common model graphs.

9.6.3 Improvements to the Graph Layout System

The Graph Layout System again works well. There are various efficiency gains that

could be performed to make it run faster. These include using more efficient algorithms

for sorting vertices and edges and making better use of the data structures in LEDA.

However these are superficial. In terms of the layout it produces there are two

improvements that could be tried. It may be a view that the number of edge crossings

cannot be reduced further unless edge routing techniques are introduced. At the moment

the edges are straight lines. Some say however that lines with kinks are not as easy to

read. Maybe bezier curves could be used that bypass the obstruction or some variation.

If the Graph Tool Layout Algorithm is to be used then the improvement suggested in

Chapter 7 should be implemented. This is when traversing the hierarchy and all the

vertices that flow from the current vertex have been visited then search for unvisited

vertices that fan into the vertex and is illustrated in Figure 63. This may improve the

layout algorithm greatly. The ANHOF system implements very few aesthetics into the

system and more could be implemented, e.g. symmetry.

9.6.4 Overall Future Work

Generally the suggested work above is minor improvements to the current ANHOF

system. There are many areas that could further enhance this research. A few are: -

Page 220

A.Hofton Chapter 9 - Conclusion and Future Work

• to prove that increasing the number of common model graphs actually increases

the understanding of the graph,

• to prove that the layouts used to layout the common model graphs actually aid

comprehension,

• to try other layouts to improve the metrics still further,

• to try the technique on very large graphs (greater than 1000 vertices),

• to increase the number of common model graphs that are search for,

• to try the method on other types of software engineering graphs,

• to improve all the languages, and

• to incorporate more aesthetics into the layout.

Proving that increasing the number of common model graphs will actually aid

comprehension is a very difficult and important task. If it is found to be false and it is

necessary to improve the metrics of the graphs then this research will contribute to

improving the layout of call graphs. If it was found to be true then there is considerable

work to be done on improving the Match Analyser.

This method has been shown to be successful and therefore should be applied to other

software engineering graphs, such as those given in Chapter 3. The ANHOF method

was applied to a limited number of graphs that were from GCC version 2.58 compiler.

These were chosen because they represented many areas of programming and there

were many examples of varying size. The number and range of common model graphs

is restrictive. The models may only be present in the GCC examples, there may be many

more. It may be of benefit in improving the layout of the graphs i f more and better

graphs were found, say more fixed models. The layouts that were used to layout the

common model graphs were chosen in order to improve the metrics and comprehension.

It may be that other layouts may improve these criteria as well and therefore they should

be tried. The size of graphs to which the ANHOF method has been applied is small. In

software engineering there are many graphs of 1000 vertices or greater. For a true test of

its ability then it should be applied to these as well.

A great deal of research has been carried out over the past few years into the

representation of graphs. So that many aspects of the graph can be described in

Page 221

A.Hofton Chapter 9 - Conclusion and Future Work

languages. Several limited languages for representing the layout algorithms, the models

and graph has been achieved in the ANHOF method. It may be of benefit i f these were

improved. This would increase the flexibility of the system. At the moment the layout

algorithm languages requires a recompile of the Graph Layout System in order to

implement a new algorithm. The use of a better language would improve this. The

language used to represent the models is again complicated and fragmented because

each type of model requires a different language. It may be of benefit to improve this

language by combining it into one and also include the layout algorithms within it.

Again the language used to represent the aesthetics does little more than allow the

setting for the layout algorithms to be specified. Perhaps it may be beneficial to find a

method in which to represent aesthetics better in a language.

9.7 Concluding Remarks

This chapter and thesis has shown that the ANHOF method of call graph layout, and its

implementation the ANHOF system, has been very successful. It has shown that the

method has met all its criteria for its success. It has discussed the diverse area of graph

layout and shown that there are many different classes and uses of graphs. It has

presented a successful method of graph layout for a specific type of graph, known as the

call graph. The method uses subgraph isomorphism to search for common model graphs

within these graphs. It has identified some common structures in call graphs and

assigned a layout to them making them common model graphs. It has compared the

layouts achieve using this method with layouts from other implementations of

algorithms. It has compared this method with a similar theory by Kosak et al. [100]

concluding that it has improved their method by solving problems identified with it.

Finally it has suggested future work to be performed on the method and system. Overall

it has shown that graph layout using subgraph isomorphisms is a successful method of

graph layout.

Page 222

A.Hofton Appendix 1 - Example Systems

10. Appendix 1 - Example Systems

10.1 introduction
In Chapter 3 various graphs used in software engineering are given, together with

various example graphs. In this Appendix a program and system are given that are used

to layout the example graphs (Figure 19, Figure 21, Figure 23, and Figure 25)

10.2 Example Code
The following program provides an example in which the flowchart, call graph and

control flow graphs can be drawn. It however has recursion present that means that the

flowchart and control flow graph cannot accurately be drawn. The program is a

relatively simple program for sorting. It is taken from section of Kernighan and Ritchie

[93] and is called 'Lines.C

/* K & Rpgs 108-110*/
#include <stdio.h>
#include <string.h>

#defme MAXLINES 10 /* max #lines to be sorted */
#define M A X L E N 30 /* length of input line */
#define A L L O C S I Z E 100 /* available space */

static char allocbuf(ALLOCSIZE];
static char *allocp = allocbuf;

char *lineptr[MAXLINES|;
char *alloc(n)
int n;
{
i f (allocbuf + ALLOCSIZE - allocp >= n)

{
allocp += n;
return allocp - n;
}

else
return 0;

}

int getline (s, lim)
char s[];
int lim;
{
int c,i;
i = 0;

while (- l i m > 0 & & (c=getchar()) != EOF & & c != V)

Page 223

A.Hofton Appendix 1 - Example Systems

s[i++] = c;
i f (c = V)

s[i++] = c;
s[i] = '\0';
return i ;
}

int readlines(lineptr, maxlines)
char *lineptr[];
int maxlines;
{
int len, nlines;
char *p, line[MAXLEN];

nlines = 0;
while ((len = getline(line, MAXLEN)) > 0)

{
i f (nlines >= maxlines)

return - 1 ;
i f ((p =alloc(len)) = NULL)

return - 1 ;
line[len-l] = '\0';
strcpy(p,line);
lineptr[nlines++] = p;
}

return nlines;
}

writelines(lineptr, nlines)
char *lineptr[];
int nlines;
{
while (nlines- > 0)

printf('%s\n', *lineptr++);
}

swap(v, i, j)
char *v[];
int i j ;
{

char *temp;
temp = v[i] ;
v[i] = v[j] ;
v[j] = temp;

}

qsort(v, left, right)
char *v[] ;
int left, right;
{
int i , last;
if(left >= right)

return;
swap(v, left, (left+right)/2);
last = left;

Page 224

A.Hofton Appendix 1 - Example Systems

for (i= l e f t+ l ; i <= right; i++)
if(strcmp(v[i], v[left]) < 0)

swap (v, ++last, i);
swap(v, left, last);
qsort(v, left, last-1);
qsort(v, last+1, right);
}

tnain()
{
int nlines;
i f ((nlines = readlines(lineptr, MAXLINES)) >= 0)

{
qsort(lineptr,0, nlines-1);
writelines(lineptr, nlines);
return 0;
}

else
{
printf("error : input too big to sort\n");
return 1;
}

}

10.3 System Description

Gane [66] suggests that a data flow diagram can be drawn to model the following

system. In Figure 25 this system has been drawn as such a diagram.

"Orders will be received by mail, or taken over the phone by the inward WATS line.

Phone orders will be taken down in a standard form, or entered directly into a CRT

using a standard format. Each order will be scanned to see that all important

information is present, that the title exists (Or can be identified), and that the author is

correct (Or can be identified), and that the book is available (i.e., not out ofprint). If the

order is defective, it is routed to a supervisor to see if e.g., "The Programming of

Management," by Does Jane, should really be "The Management of Programming." by

Jane Doe. Where payment is included, the amount is to be checked for correctness (if

not correct, a request for further payment or a credit should be produced). Small

discrepancies can be ignored. Where payment is not with the order, the customer file

must be checked to see if the order comes from a person or organisation in good credit

standing; if not, the person must be sent a confirmation of the order and a request for

Page 225

A.Hofton Appendix 1 - Example Systems

prepayment. If the customer is new to us, an addition must be made to the customer file.

For orders with payment or good credit, inventory is then to be checked to see if the

order can be filled. If it can, a shipping note with an in voice (marked "paid" for

prepaid orders) is prepared and sent out with the books. If the order can only be part-

filled. A shipping note and invoice is prepared for the part shipment with a confirmation

of the unfilled part (and paid invoice where payment was sent with the order), and a

back order record is created. Back orders are to be filled as soon as the books are

received from the publisher.

Where the order is for a book not held in inventory, the orders are batched for purchase

requisition on the publisher when a quantity discount has been earned. Returned books

are examined for damage, and entered back into stock, with a credit or refund being

issued to the customer as appropriate. Where the returned book is not an inventory

item, and the publisher allows returns, it is sent back to the publisher. When a shipment

of books is received from a publisher, its contents are to be checked against the original

purchase order, and discrepancies queried. The titles in the shipment are checked

against the back orders for priority shipment, and the remainder entered into inventory.

Inventory control policy calls for a reorder level on each title equal to the (average

orders over the previous four weeks) X (delivery time from publishers) plus a 50 percent

safety factor. Thus if sales of a title average 10 per week and the estimated delivery time

is 3 weeks, an order will be placed with the publisher when the total copies in hand

(and on order) have fallen to 45(3 x 10 x 150 percent). The safety factor may be varied

from time to time by management, being increased for titles whose sales are rising and

vice versa. The quantity for each order is determined by taking the product of the

average order rate and delivery time, as above, multiplying by a bulk factor (normally

3), and rounding up to the next higher discount break point, unless that increases the

order by more than 25 percent. Thus in the case above, the normal order would be 3 x

10 x 3 (bulk factor) or 90 copies. If the publisher offers an additional discount for

orders of 100 or more, 100 would be ordered. If the discount is only offered for 120 or

more, 90 would be ordered, since to order 120 would increase the order by the

excessive amount of 33 percent. The bulk factor may be varied by management for each

title from time to time. The calculation of average order rate includes not only orders

that were filled, but frustrated demand, such as back orders, orders without payment,

Page 226

A.Hofton Appendix 1 - Example Systems

and inquires that were not converted to orders because the book could not be supplied

from stock.

When payments for books supplied are received, they are matched with the appropriate

invoice. Where several invoices are outstanding for an account, and the payment does

not match any one of them exactly, it is applied to the oldest invoice first. Frequently a

customer will send one payment to cover several invoices. Where any invoice is more

than 30 days overdue, a statement of all invoices outstanding is sent to the customer.

When any invoice is more than 60 days overdue, a strongly worded letter is produced

for the Vice President's signature.

When invoices are received from publishers, they are checked against the receipt-of-

shipment records, and entered into accounts payable. If the discount for prompt

payment given by the publisher exceeds, on an annualised bases, the marginal cost of

funds (as specified from time to time by management), the system should produce a

payment check on the last day the discount is available. For example, if 2.5 percent is

offered for payment in 30 days, this is equivalent to 30 percent per year. The system

should write a check on the 29th day.

Report of invoices sent out, by day, by week, by month, payments received by day,

week, month, amounts overdue by various periods, stockouts, back orders, and

purchases from publishers, should all be produced regularly. On demand analyses of

sales by title, by subject, by publisher, with trend information, should be available on an

immediate basis, together with information on publisher delivery times and purchasing

trends. Immediate access to inventory figure of quantity-on-hand, quantity-on-order,

and expected date of delivery are all very desirable, as is the facility to give a customer

immediate information as to the status of his particular order. If a customer calls up

and says, 'I sent you a cheque for £10 five weeks ago, for Bloggs book,' we would like to

be able to tell him what day we shipped the book to him, or on what date we will be able

to ship it."

Page 227

A.Hofton Appendix 2 - File Formats

11. Appendix 2 - File Formats

11.1 Introduction
In Chapter 3 many graph file formats are compared. Below are the grammars and

example files of the four file formats that are compared. The call graph of the 'Lines.C

program in Appendix 1 is used to form an example of each file format.

11.2 daVinci
In Figure 80 the grammar forming a daVinci file is given and in Figure 81 an example

file is given.
GRAPHTERM

GRAPHTERM1

NODE

NODEATTRIBUTES

NODEATTRIBUTE

f o n t f a m i l y

f o n t s t y l e

BOXSTYLE

BORDERSTYLE

:= [GRAPHTERM1]

:= NODE
! NODE,GRAPHTERM1

:= 1("STRING",n("",NODEATTRIBUTES,EDGES))
I r("STRING")

:= [NODEATTRIBUTE]
I [NODEATTRIBUTE,NODEATTRIBUTES]

:= a("OBJECT","STRING")
I a("FONTFAMILY","fontfamily")
I a("FONTSTYLE","fontstyle")
I a("COLOR","STRING")
I a("ICONFILE","STRING")
I a("_GO","BOXSTYLE")
I a("HIDDEN","BOOLEAN")
I a("BORDER","BORDERSTYLE")

:= l u c i d a
I t i m e s
I h e l v e t i c a
I c o u r i e r

:= n o r m a l
I b o l d
I i t a l i c
I b o l d _ i t a l i c

: = box
I c i r c l e
I e l l i s p s e
I rhombus
I t e x t
I i c o n

:= d o u b l e
I s i n g l e

Page 228

A.Hofton Appendix 2 - File Formats

EDGES

EDGE

EDGEATTRIBUTES

EDGEATTRIBUTE

DIRECTIONSTYLE

PATTERNSTYLE

= [EDGE]

[EDGE,EDGES]

= 1("STRING",e("",EDGEATTRIBUTES, NODE))

= [EDGEATTRIBUTE]
[EDGEATTRIBUTE,EDGEATTRIBUTES]

= a("_DIR","DIRECTIONSTYLE")
a("EDGEPATTERN","PATTERNSTYLE")
a("EDGECOLOR","STRING");

= normal
inverse
both
none

= s o l i d
d o t t e d
dashed
t h i c k

Figure 80 - The grammar definition of the da Vinci language taken from [65]

The call graph of the ' Lines.C program above can be represented as a daVinci file. This

is shown below in Figure 81.

[l (" m a i n " , n (" " , [a("OBJECT", "main")],
[e (" " r 1

" p r i n t f " , n (" " , [a("OBJECT", " p r i n t f ")] , []))) ,
"", [] ,
"qsort", n (" " , [a ("OBJECT", " q s o r t ")] ,
("", [] ,
" q s o r t ")) ,
, [] ,

"strcmp", n (" " , [a("OBJECT", "st r c m p ")] , []))) ,
"",
"swap", n (" " , [a("OBJECT", "swap")], []))) ,
) ,
", [] ,

"readlines", n (" " , [a("OBJECT", " r e a d l i n e s ")] ,
("", [] ,
" g e t l i n e " , n (" " , [a("OBJECT", " g e t l i n e ")] ,
("", [] ,
"getchar", n (" " , [a("OBJECT", " g e t c h a r ")] , []))) ,
) ,

[] ,
" a l l o c " , n (" " , [a("OBJECT", " a l l o c ")] , []))) ,
"", [] ,
"strcpy", n (" " , [a("OBJECT", " s t r c p y ")] , []))) ,
)) ,

, [] ,
" w r i t e l i n e s " , n (" " , [a("OBJECT", " w r i t e l i n e s ")] ,
("", [] ,
" p r i n t f ")) ,
)) , Page 229

A.Hofton Appendix 2 - File Formats

Figure 81 - 'Lines.C represented as a da Vinci input file

11.3 Graph Tool
The Graph INformation (GIN) file format is much simpler than daVinci and in some

ways more effective. In Figure 82, grammar of the file format is given and in Figure 83

an example file is given.

GRAPHTERM

GRAPHTERM1:

TEXT

LINETYPE

LINESTYLE

::= GRAPHTERM1 GRAPHTERM
| GRAPHTERM1

= (Object) INT INT INT INT INT (TEXT) (TEXT)
(TEXT) object

| (l i n k) INT INT INT INT INT INT INT INT (TEXT)
(LINETYPE) (LINESTYLE) l i n k

STRING
I

::= d i r e c t e d

::= L i n e S o l i d

Figure 82 - The grammar of a GIN file

The call graph of the 'Lines.C program above can be represented as a Graph
INformation (GIN) file. This is given in Figure 83.

obj ect) 1 0 0 0 0 (g e t l i n e) () () object
obj ect) 2 0 0 0 0 (getchar) (_) () object
l i n k) 1 2 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
obj ect) 3 0 0 0 0 (main) () () obj ect
obj ect) 4 0 0 0 0 (p r i n t f) (_) (_) object
l i n k) 3 4 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
obj ect) 5 0 0 0 0 (qsort) () < _) obj ect
l i n k) 3 5 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
obj ect) 6 0 0 0 0 (readl i n e s) (_) () object
l i n k) 3 6 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
o bject) 7 0 0 0 0 (w r i t e l i n e s) () () object
l i n k) 3 7 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 5 5 0 0 0 0 0 0 (2) (d i r e c t e d) (L i n e S o l i d) l i n k
obj ect) 8 0 0 0 0 (strcmp) < _) () object
l i n k) 5 8 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
obj ect) 9 0 0 0 0 (swap) {) (_) obj ect
l i n k) 5 9 0 0 0 0 0 0 (3) (d i r e c t e d) (L i n e S o l i d) l i n k
o bject) 10 0 0 0 0 (a l l o c) < _) () object
l i n k) 6 10 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k

Page 230

A.Hofton Appendix 2 - File Formats

(l i n k) 6 1 0 0 0 0 0 0 (1) (d i r e c t e d) (L i n e S o l i d) l i n k
(object) 11 0 0 0 0 (s t r c p y) (_) (_) object
(l i n k) 6 11 0 0 0 0 0 0 (1) (d i r e c t e d) (Li n e S o l i d) l i n k
(l i n k) 7 4 0 0 0 0 0 0 (1) (d i r e c t e d) (Li n e S o l i d) l i n k

Figure 83 - The GIN file representation of 'Lines.C

11.4 Graph Modelling Language

The Graph modelling language is a very powerful format because it is easily extended.

In Figure 84 the grammar of the file format is given and an example file is given in

Figure 85.

FILE

LISTOFGRAPHS

GRAPH

GRAPHATTRIBUTES

GRAPHATTRIBUTE

:= LISTOFGRAPHS

:= GRAPH

| GRAPH LISTOFGRAPHS

:= graph [GRAPHATTRIBUTES LISTOFNODES LISTOFEDGES]

:= GRAPHATTRIBUTE
I GRAPHATTRIBUTE GRAPHATTRIBUTES
:= GLOBALATTRIBUTE
I d i r e c t e d BOOLEAN

/*
Some a t t r i b u t e s are common across the graph
*/

GLOBALATTRIBUTE i d INT
l a b e l STRING
comment STRING
Creator STRING
name STRING

/*
NODE D e f i n i t i o n
*/

LISTOFNODES

NODETYPE

NODEATTRUBUTES

NODEATTRIBUTE

NODETYPE
NODETYPE LISTOFNODES
node [NODEATTRIBUTES]

NODEATTRIBUTE
NODEATTRIBUTE NODEATTRIBUTES
edgeAnchor STRING
GLOBALATTRIBUTE
graphics [NODEGRAPHICATTS]

Page 231

A.Hofton Appendix 2 - File Formats

NODEGRAPHICATTS := NODEGARPHICATT
I NODEGRAPHICATT NODEGRAPHICATTS

NODEGRAPHICATT x
y
z
w
h
d
type
image

bitmap

//x coord
//y coord
//z coord
//width
//height
//height
//type of graphic

REAL
REAL
REAL
REAL
REAL
REAL
TYPEVALUE
STRING

//name of f i l e c o n t a i n i n g image
//note scales t o width and height

STRING
/ / f i l e t h a t i s j u s t black and white

I

TYPEVALUE := "arc"
"bitmap"
"image"
" l i n e "
" o v a l "
"polygon"
"r e c t a n g l e "
" t e x t "

/*
EDGE D e f i n i t i o n
*/
LISTOFEDGES EDGETYPE

EDGETYPE LISTOFEDGES

EDGETYPE

EDGEATTRIBUTES

:= edge [EDGEATTRIBUTES]
I
:= EDGEATTRIBUTE
| EDGEATTRIBUTE EDGEATTRIBUTES

EDGEATTRIBUTE source INT
t a r g e t INT
GLOBALATTRIBUTE
graphics [EDGEGRAPHICATTS]

// Edge from node i d
// Edge t o node i d

EDGEGRAPHICATTS EDGEGRAPHICATT
EDGEGRAPHICATT EDGEGRAPHICATTS

EDGEGRAPHICATT

/*
A l i n e i s described
A bend and endpoint
*/
POINTLIST ::

= NODEGRAPHICATT
width REAL //thickness of l i n e
s t r i p p l e STRING //type of l i n e f i l e
Line [POINTLIST]

i n terms of two endpoints and a l i s t of bends,
are j u s t normal p o i n t i n the Cartesian plane

:= POINT
| POINT POINTLIST

POINT po i n t [LINEATTRIBUTES]

Page 232

A.Hofton Appendix 2 - File Formats

LINEATTRIBUTES ::= LINEATTRIBUTE
I LINEATTRIBUTE LINEATTRIBUTES

LINEATTRIBUTE ::= x REAL
I y REAL
i z REAL
I

Figure 84 - The grammar of a G M L file taken from |79|

Figure 85 shows the program of 'Lines.C represented as a Graph Modelling Language

(GML) file.

graph [

comment "This i s the gml ver s i o n of the c a l l graph of Lines.C"
d i r e c t e d 1
is p l a n a r 0
node [

i d 1
l a b e l " g e t l i n e "
]

node [
i d 2
l a b e l "getchar"
]

node [
i d 3
l a b e l "main"
]

node [
i d 4
l a b e l " p r i n t f "

node [
i d 5
l a b e l " q s o r t "

node [
i d 6
l a b e l " r e a d l i n e s "

node [
i d 7
l a b e l " w r i t e l i n e s "
]

Page 233

A.Hofton Appendix 2 - File Formats

node [
i d 8
l a b e l "strcmp"
]

node [
i d 9
l a b e l "swap"
]

node [
i d 10
l a b e l " a l l o c "
]

node [
i d 11
l a b e l " s t r c p y "
]

edge [
source 1
t a r g e t 2
l a b e l " 1 "
]

edge [
source 3
t a r g e t 4
l a b e l " 1 "
]

edge [
source 3
t a r g e t 5
l a b e l " 1 "
]

edge [
source 3
t a r g e t 6
l a b e l " 1 "
]

edge [
source 3
t a r g e t 7
l a b e l " 1 "
]

edge [
source 5
t a r g e t 5
l a b e l "2"
]

edge [
source 5
t a r g e t 8
l a b e l " 1 "
]

Page 234

A.Hofton Appendix 2 - File Formats

edge [
source 5
t a r g e t 9
l a b e l "3"

edge [
source 6
t a r g e t 1
l a b e l " 1 "

edge
source 6
t a r g e t 10
l a b e l " 1 "

edge [
source 6
t a r g e t 11
l a b e l " 1 "

edge [
source 7
t a r g e t 4
l a b e l " 1 "

Figure 85 - 'Lines.C represented as a G M L file

11.5 VCG
Again the VCG file format is powerful performing many features the others do not. In

Figure 86 the grammar for the file format is given and in Figure 87 an example file is

given.

graph ::= "graph:" ' { ' g r a p h _ e n t r y _ l i s t ' } '

g r a p h _ e n t r y _ l i s t : : = g r a p h _ e n t r y _ l i s t graph_entry
I graph_entry

graph_entry ::= g r a p h _ a t t r i b u t e
I node_defaults
I edge_defaults
I foldnode_defaults
I foldedge_defaults
I graph
I node
I edge
I nearedge

Page 235

A.Hofton Appendix 2 - File Formats

g r a p h _ a t t r i b u t e = 'x' ':1 i n t e g e r
'y' ':' i n t e g e r
" l o c : " ' { ' 'x' ':' in t e g e r 'y'
"width" 1: 1 i n t e g e r
"height" ':' i n t e g e r
"xmax" ':' i n t e g e r
"ymax" ':' i n t e g e r
"xbase" ':' i n t e g e r
"ybase" ':' i n t e g e r
"xspace" ':' i n t e g e r
"xlspace" ':' i n t e g e r
"yspace" ':' i n t e g e r
" x r a s t e r " ':' i n t e g e r
" x l r a s t e r " ':' i n t e g e r
" y r a s t e r " ':' i n t e g e r
" f o l d i n g " ':' i n t e g e r
" i n v i s i b l e " ':' i n t e g e r
"hidden" ':' i n t e g e r
" t i t l e " ':' s t r i n g
" l a b e l " ':' s t r i n g
"classname" i n t e g e r ':1 s t r i n g
"infoname" i n t e g e r 1:' s t r i n g

i n t const 1 } '

" i n f o l " '
" i n f o 2 " '
" i n f o 3 " '
"textmode"

s t r i n g
s t r i n g
s t r i n g
' :' enum textmode

enum_layoutalgorithm
' i n t e g e r
i n t e g e r
' i n t e g e r
1 : 1 i n t e g e r

"borderwidth" ':' i n t e g e r
" c o l o r " ':' enum_color
" t e x t c o l o r " ':'enum_color
"bordercolor" 1:'enum_color
" o r i e n t a t i o n " ':' enum_orientation
"node_alignment" ':' enum_node_align
" s c a l i n g " 1:' f l o a t
" s h r i n k " 1:' i n t e g e r
" s t r e t c h " ':' i n t e g e r
" l a y o u t a l g o r i t h m " ':'
"layout_downfactor" '
"l a y o u t _ u p f a c t o r " ':'
" l a y o u t _ n e a r f a c t o r " '
" l a y o u t _ s p l i n e f a c t o r "
" s p l i n e f a c t o r " 1:* i n t e g e r
" s t a t u s " ':' enum_status
"late_edge_labels" ':' enum_yes_no
"display_edge_labels" ':' enum_yes_no
" d i r t y _ e d g e _ l a b e l s " 1:' enum_yes_no
" f i n e t u n i n g " ':' enum_yes_no
" s p l i n e s " ':' enum_yes_no
"no_nearedges"
"nearedges" ':' "no"
"nearedges" ':' "yes"
"shape" 1:' enum_shape
" l e v e l " ':' i n t e g e r
" v e r t i c a l _ o r d e r " ':' in t e g e r
" h o r i z o n t a l _ o r d e r " ':' i n t e g e r
" c r o s s i n g _ o p t i m i z a t i o n " ':1 enum_yes_no
"crossing_weight" ':' enum_cross_weight
"spreadlevel" ':' i n t e g e r
" t r e e f a c t o r " ':' f l o a t

enum c o l o r aquamarine

Page 236

A.Hofton Appendix 2 - File Formats

'black"
'blue"
'cyan"
'darkblue"
'darkcyan"
'darkgreen"
'darkgrey"
'darkmagenta"
'darkred"
'darkyellow"
•gold"
'green"
'khaki"
' l i g h t b l u e "
' l i g h t c y a n "
' l i g h t g r e e n "
' l i g h t g r e y "
'lightmagenta"
' l i g h t r e d "
' l i g h t y e l l o w "
• l i l a c "
'magenta"
'orange"
'orchid"
'pink"
'purple"
'red"
'turquoise"
'white"
'yellow"
'yellowgreen"

enum_orientation::= "top_to_bottom"
I "bottom_to_top"
I " l e f t _ t o _ r i g h t "
I " r i g h t _ t o _ l e f t "

enum_layoutalgorithm::=
I " t r e e "
I "maxdepth"
I "mindepth"
I "maxdepthslow"
I "mindepthslow"
I "maxdegree"
I "mindegree"
I "maxindegree"
I "minindegree"
I "maxoutdegree"
["minoutdegree"
I "minbackward"

enum s t a t u s "black"
I "grey"
I "white"

enum_yes_no : "yes'
"no";

enum_cross_weight ::= "bary"
I "median";

foldnode d e f a u l t s : : = "foldnode." node a t t r i b u t e ;

Page 237

A.Hofton Appendix 2 - File Formats

foldedge_default
node_defaults
edge_defaults
node ::=
n o d e _ a t t r i b u t e _ l

edge
nearedge ::=
e d g e _ a t t r i b u t e _ l

node a t t r i b u t e

s::= "foldedge." e d g e _ a t t r i b u t e ;
::= "node." n o d e _ a t t r i b u t e ;

::= "edge." e d g e _ a t t r i b u t e ;
"node:" ' { ' n o d e _ a t t r i b u t e _ l i s t ' } ' ;
i s t : : = n o d e _ a t t r i b u t e _ l i s t n o d e _ a t t r i b u t e

I n o d e _ a t t r i b u t e ;
::= "edge:" ' { ' e d g e _ a t t r i b u t e _ l i s t ' } ' ;
"nearedge:" ' { ' e d g e _ a t t r i b u t e _ l i s t ' } 1 ;
i s t : : = e d g e _ a t t r i b u t e _ l i s t e d g e _ a t t r i b u t e

I e d g e _ a t t r i b u t e ;
::= " t i t l e " ':' s t r i n g

s t r i n g
s t r i n g
s t r i n g
s t r i n g
':1 enum_color
' : 'enum c o l o r

'enum c o l o r

" l a b e l "
" i n f o l "
" i n f o 2 "
" i n f o 3 "

I " c o l o r "
" t e x t c o l o r "

I "bordercolor" _
"width" ':' i n t e g e r
"height" ':' i n t e g e r

I "borderwidth" ':' i n t e g e r
" l o c : " ' { ' 'x' ':' i n t e g e r 'y'
" f o l d i n g " ':1 i n t e g e r
" s c a l i n g " ':1 f l o a t
" s h r i n k " ':1 i n t e g e r
" s t r e t c h " ':1 i n t e g e r
"textmode" ':' enum_textmode
"shape" ':' enum_shape
" l e v e l " ':' i n t e g e r
" v e r t i c a l _ o r d e r " ':' i n t e g e r
" h o r i z o n t a l _ o r d e r " ':' i n t e g e r

i n t const ' } '

enum textmode ::= " c e n t e r "
" l e f t _ j u s t i f y "
" r i g h t j u s t i f y "

enum_shape "box"
"rhomb"
" e l l i p s e "
" t r i a n g l e "

enum_node_align
I
I

::= "bottom"
"top"
" c e n t e r "

e d g e _ a t t r i b u t e ::= sourcename
"targetname" 1:

I " l a b e l " '
I " c o l o r " '

" t h i c k n e s s " '
" c l a s s " ':'
" p r i o r i t y "
" a r r o w s i z e "
" l i n e s t y l e "

1:' s t r i n g
s t r i n g

s t r i n g
enum_color
i n t e g e r

i n t e g e r
:' i n t e g e r
':' i n t e g e r
':' e n u m _ l i n e s t y l e

"anchor" ':' i n t e g e r
I " h o r i z o n t a l order" ':1 i n t e g e r

enum l i n e s t y l e ::= "continuous"
I " s o l i d "
I "dotted"

Page 238

A.Hofton Appendix 2 - File Formats

I "dashed"
I " i n v i s i b l e "

Figure 86- The input grammar of a V C G file taken from |103|

Figure 87 shows how the program of 'Lines.C can be represented as a VCG input file.

graph: {

xspace:

node
node
node
node
node
node
node
node
node
node
node
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge
edge

25

t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t i t l e
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c
t h i c

• tf "J_ , T

: "2"
: "3"
. i i 4 H

: " 5 "
: " 6 "
• H ^ H

: "8"
: " 9 "
: "10"
: "11"
kness
kness
kness
kness
kness
kness
kness
kness
kness
kness
kness
kness

l a b e l : " g e t l i n e " loc
l a b e l : " g e t c h a r " l oc
label:"main" l o c : { x
l a b e l : " p r i n t f " l o c :
l a b e l : " q s o r t " l o c : {
l a b e l : " r e a d l i n e s " 1
l a b e l : " w r i t e l i n e s "
label:"strcmp" l o c :
label:"swap" l o c : { x
l a b e l : " a l l o c " l o c :
l a b e l : " s t r c p y " l o c
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename
3 sourcename

H ^ H

"3"
"3"
I I 3 M

H 3 H

"5"
"5"
"5"
"6"
"6"
"6"
I t "J I I

: (x
: {x
: 0
{x:
x: 0
oc:
loc
f x :
:0
{x:
: {x
ta
t a
t a
t a
t a
t a
t a
t a
t a
t a
t a
t a

0 y:0}}
0 y:0}}

y:0}}
0 y:0}}
y:0}}

{x:0 y:0}}
{x:0 y:0}

0 y:0}}
y:0}}
0 y:0}}
0 y:0}}

rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:
rgetname:

H 2 I I

I I ,j I I

"5"
"6"
I I 7 I I

I I 5 I I

"8"
I I g I I

I I - j ^ I I

"10'
"11'
" 4

l a b e l :
l a b e l :
l a b e l :
l a b e l :
l a b e l :
l a b e l :
l a b e l :
l a b e l :
l a b e l :
l a b e l ;
l a b e l :

l a b e l :

i i 2_»
I I 2_ "
I I ^ I I

H M

I I ^ "

"2"
I I ^ I I

I I 3 I I

I I I I

I I I I

I I ^ I I

I I ^ I I

}

Figure 87 - 'Lines.C' represented as a V C G input file

Page 239

A.Hofton Appendix 3 - Implementation Information

12. Appendix 3 - Implementation Information
When using the ANHOF system various input files are needed and output files are

created. The Graph Isomorphism System uses various fact bases that are used by the

Prolog programs to detect the variable models in the Variable Model Detection System.

These fact bases are discussed below. Chapter 4 suggests a method of describing new

variable models using a language. In Chapter 5 it is shown that the language in the

ANHOF system that describes the models is that of Prolog Rules. Prolog is a

complicated language to learn, in order to ease this process various output routines have

been written that ease the output of the fact bases in the new variable model

descriptions, these are given below. The Match Analyser produces a new representation

of the graph which details all the common model graphs present in the graph. Detailed

below is the grammar for the representation and also Prolog routines for its output.

12.1 Fact Bases

One part of the Graph Isomorphism System detects variable models. This system is

programmed in Prolog, a program that uses logic to process fact bases. In order to detect

models graphs two fact bases are used, the graph fact base and the fan information fact

base. Al l parts of the Graph Isomorphism System output matches to the models valid or

invalid for use elsewhere. These fact bases are detailed below.

12.1.1 Graph Fact Base

This fact base provides information on the vertices and edges of a graph. In terms of the

Graph Isomorphism System and Match Analyser this is the graph. Al l information about

the graph must be contained in here. The eventual graph display system is Graph Tool

this allowing three lines of text for each vertex. Also vertices are allowed to be

coloured, the colouring scheme allowed by graph tool for colouring both vertices and

edges is red, green, orange, black, white, magenta, purple and blue. Each vertex is

given a unique identifier and a coordinate. This information should be reflected in the

vertex (node) fact given below in Definition 6.

Page 240

A.Hofton Appendix 3 - Implementation Information

node(Id,X,Y,Textl,Text2,Text3,Colour).

Where Id is an integer and is a unique identifier that cannot equal - 1 .

X & Y are the members of the coordinate (X, Y) and are integers.

Textl, Text2 and Text3 is a string and are the lines of text that can be present in

the label for a vertex.

Colour is a string and can be one of "RED", "GREEN", "ORANGE", "WHITE",

"BLACK", "MAGENTA", "BLUE", "YELLOW" or "PURPLE".

Definition 6- A node fact

A call graph is a directed graph; therefore an edge has a vertex to go to and from. Each

edge can be labelled and can have a different line style either dashed or solid, however

this is not implemented in later versions of Graph Tool. An edge can be directed, bi

directed, reverse directed or undirected in Graph Tool. In a call graph edges cannot be

bi directed or undirected and the use of reverse directed should be avoided. Again an

edge can be given a colour. This information should be encapsulated in an edge fact

given below in Definition 7.

edge(From,To,Text,Linetype,Linestyle,Colour).

Where:

From & To are integers and are the identifiers of the vertices that the edge goes

from and to, there must be a node fact with the same integer.

Text is of string type and is the label attached to the edge.

Linetype is a string type and can be one of "directed", "bidirected",

"reverse directed" or "undirected".

Linestyle is a string and is the style of the line and can only be "LineSolid" to

work with the latest versions of graph tool.

Colour is a string and can be one of "RED", "GREEN", "ORANGE", "WHITE",

"BLACK", "MAGENTA", "BLUE", "YELLOW" or "PURPLE".

Definition 7 - An edge fact

Page 241

A.Mofton Appendix 3 - Implementation Information

12.1.2 Fan Information Fact Base

This is created by the fan in and fan out information calculator. It creates a list of "fan

facts" which contain the number of edges coming into a vertex (fan in) and the number

of edges leaving a vertex (fan out). There must be a fan fact for each vertex. It is used in

the detection of variable models. A fan fact is given below in Definition 8.

fan(Nodeid,Fanin,Fanout).

Where Nodeid is an integer that is the identifier of the vertex in question, it should

match the id of a node fact.

Fanout & Fanin are integers that represent the fan information.

Definition 8 - A fan fact

12.1.3 Match Fact Base

The Graph Isomorphism System produces a list of matches to the models that it has

searched for. The list of matches is in the form of a Prolog fact base. This enables the

Match Analyser to process them and remove any invalid matches; the valid matches are

also outputted as a Prolog fact base. These fact bases are of the same format and are

known as the Match Fact Base. A match consists of a model name and a list of the

vertices that are members of the model. A match fact contains this information and is

given below in Definition 9.

match(Modelname,Listofnodesinvolved).

Where Modelname is a string and is the name of the model found

Listofhodesinvolved is a list of integer values that are the identifiers of the
vertices involved.

Definition 9 - A match fact

Page 242

A.Hofton Appendix 3 - Implementation Information

12.2 The Graph Representation

Given below in Definition 10 is the language definition for the graph representation.

The graph representation is meant to be a simple English representation of a graph

showing the valid models that are present in that graph.

The representation consists of two parts, the graph part and the structures part. The

graph part is just a list of vertices and edges involved in the whole graph. The structures

part is where the models are given. The information contained in a node and edge fact is

same information that is stored in the graph part. Also as well as the coordinate of the

vertices, the vertex height and width can also be obtained from the representation. This

is obtained by using the coordinates of the top left and bottom right corners of the

vertex. Also contained in the graph part is the name of the algorithm that wil l be used to

lay out the main graph. The structures part of the representation is used to represent a

model, giving the model name and vertices involved. Also the name of the algorithm to

lay out the model.

REPRESENTATION ::= GRAPH STRUCTURES

GRAPH ::= graph {NODES EDGES ALGORITHM}

NODES ::= [NODE]
NODE ::=
node(ID,XI,Yl,X2,Y2,TEXT1,TEXT2,TEXT3, COLOUR) .

ID : : = INTEGER // unique identifier
XI : : = INTEGER // top left x coord
Yl : : = INTEGER // top left y coord
X2 : : = INTEGER // bottom right x coord
Y2 : : = INTEGER // bottom right y coord
TEXT1 := STRING // 1 s t line of text
TEXT1 := STRING / / 2 n d line of text
TEXT1 := STRING / / 3 r d line of text
COLOUR : := "RED"

"GREEN"
"ORANGE"
"WHITE"
"BLACK"
"MAGENTA"
"BLUE"
"YELLOW"
"PURPLE"

Page 243

A.Hofton Appendix 3 - Implementation Information

EDGES ::= [EDGE]
EDGE : :
edge(FROM,TO,TEXT,LINETYPE,LINESTYLE,COLOUR).

FROM ::= INTEGER
TO ::= INTEGER
TEXT ::= STRING
LINETYPE ::= " d i r e c t e d "

//
//
//
//

From Vertex ID
To Vertex ID
edge l a b e l
Type of l i n e

I " b i d i r e c t e d "
I " r e v e r s e _ d i r e c t e d "
I "undirected"

LINESTYLE ::= " L i n e S o l i d "
ALGORITHM ::= algorithm(STRING)

//
//
//

Syle of l i n e
name of layout
a l g o r i t h m t o use

STRUCTURES ::= [STRUCTURE]
STRUCTURE ::= structure{MODELNAME ALGORITHM
NODESUSED}

MODELNAME ::= name(STRING).

NODESUSED ::= [NODEUSED]
NODEUSED ::= nodeused(INTEGER).

12.3 Prolog Rule Output Routines
Detailed below are the routines that are used to aid writing new rules to represent

variable models. They are used to output the matches to the common model graph being

described. So that the Match Analyser can process them. The routines are also used to

output the valid matches from the Match Analyser. Prolog routines that output the

representation from the Match Analyser are also detailed.

12.3.1 Match Fact Base

The Match Fact Base is used to output valid and invalid matches to the common model

graphs, from the Variable Model Detection System. They are used to output the valid

matches from the Match Analyser.

12.3.1.1 Write Match Rule

This routine outputs a match to a common model graph in the match fact base format. It

takes as an input parameter a model name (Modelname) in the form of a string and a list

Definition 10 - The Graph Representation

Page 244

A.Hofton Appendix 3 - Implementation Information

of integers {Listofvertices) that represent the identification numbers of the vertices

involved.

It should be used in Prolog in the following format: -

vmtematch(Modelname, Listofvertices).

12.3.2 Graph Representation File

The graph representation is used to represent the graph and the common model graphs

present in the graph to the Graph Layout System. The Match Analyser creates it, which

is a Prolog based program. Detailed below is the rules used in the Prolog program to

create the file.

12.3.2.1 Write Node Rule

This outputs a node (vertex) fact to the representation file. It is used so that the whole

graph is in the representation file. It takes all the information about a vertex its id

number, its x and y coordinate and any text and colour and outputs it to the

representation file. The colour can only be one of "RED", "GREEN", "ORANGE",

"WHITE, "BLACK", "MAGENTA", "BLUE", "YELLOW" or "PURPLE".

It should be used in Prolog in the following format: -

writenode(itf, X, Y, Text I, Text 2, Text3, Colour).

Page 245

A.Hofton Appendix 3 - Implementation Information

12.3.2.2 Write Nodes Rule

This outputs all the nodes (vertices) that are currently stored to the representation file.

It should be used in Prolog in the following format: -

writenodes(_J.

12.3.2.3 Write Edge Rule

This outputs an edge fact to the representation file. It is again used so that the original

graph is in the representation file. It takes all the information about an edge, which

vertex identification numbers it goes to and form, the labels, line style and type and the

colour. The line style can only be "LineSolid" to work with the latest version of Graph

Tool. The colour can only be one of "RED", "GREEN", "ORANGE", "WHITE,

"BLACK", "MAGENTA", "BLUE", "YELLOW" or "PURPLE".

It should be used in Prolog in the following format: -

writeedge(Fro7w, To, Label, Linetype,Linestyle, Colour).

12.3.2.4 Write Edges Rule

This outputs all the edges to the representation file that are currently stored.

It should be used in Prolog in the following format: -

writeedges(_).

Page 246

A.Hofton Appendix 3 - Implementation Information

12.3.2.5 Write Graph Rule

This outputs the whole graph in format used in the representation file. It gets its

information from the node and edge facts that are currently stored from the graph fact

base.

It should be used in Prolog in the following format: -

writegraph(_).

12.3.2.6 Write Structure Rule

This outputs a valid match to the representation file. It informs the Graph Layout

System that a graph has a certain {Modelname) structure present and it involves the

vertices with the vertex identification numbers contained Listofvertices.

wntes\mct\xre(Modelname,Listqfvertices)

Page 247

A.Hofton Appendix 4 - The ANHOF System at Work

13. Appendix 4 - The ANHOF System at Work

In Chapter 5 the implementation of the ANHOF method is discussed. The

implementation is known as the ANHOF system and architecture of the system is

shown in Figure 43. This Appendix details the input and output files for each program

in order to represent and layout Graph G in Chapter 7.

13.1 Adjacency Matrices

When detecting the fixed common model graphs Messmer's Graph Matching Toolkit

searches for the adjacency matrix in the graph, in order to perform this the adjacency

matrix has to be fed in. Given below is the adjacency matrix of Triangle and Box

common model graph and the GIN input file for them so that they can be used to detect

them.

13.1.1 Triangle Common Model Graph

The adjacency matrix of a Triangle common model graph is given in Table 22.

A B c
A 0 1 1

B 0 0 1

C 0 0 0

Table 22 - The adjacency matrix of a Triangle common model graph

Table 22 can be represented as a GIN file given in Figure 88.

(object) 1 0 00 0 (A) (_) (_) (_) (_)object

(object) 2 0 0 0 0 (B) (_) (_) (_) (_) object

(object) 3 0 0 0 0 (C) (_) (_) (_) (_) object

(l i n k) 1 2 0 0 0 0 0 0 (_) (directed) (LineSolid) link

(l i n k) 2 3 0 0 0 0 0 0 (_) (directed) (LineSolid) link

(l i n k) 1 3 0 00 0 0 0(_) (d i rec ted) (LineSol id) l ink

Figure 88 - The GIN representation of a Triangle common model graph

Page 248

A.Hofton Appendix 4 - The ANHOF System at Work

13.1.2 Box Common Model Graph

A Box common model graph can be represented as an adjacency matrix, it is given in

Table 23.

A B c D

A 0 1 0 0

B 0 0 1 0

C 0 0 0 0

D 1 0 1 0

Table 23 - The adjacency of a Box common model graph

Table 23 can be represented as a GIN file in the following manner: -

(object) 1 0 0 0 0 (A) (_) (_) o b j e c t

(object) 2 0 0 0 0 (B) (_) (_) object

(object) 3 0 0 0 0 (C) (_) (_) object

(object) 4 0 0 0 0 (D) (_) (_) object

(l i n k) 1 2 0 0 0 0 0 0 (_) (directed) (LineSolid) link

(l i n k) 2 3 0 0 0 0 0 0 (_) (directed) (LineSolid) link

(l i n k) 4 1 0 0 0 0 0 0 (_) (directed) (LineSolid) link

(l i n k) 4 3 0 0 0 0 0 0 (_) (directed) (LineSolid) link

Figure 89 - The GIN representation of a Box common model graph

13.2 GIN Input file

The ANHOF system takes a graph description in the form of a Graph INformation

(GIN) file. Details of which are given in Chapter 3 and Appendix 2. The file format is a

list of vertices and edges. The GIN input file is given below in Figure 90.

Page 249

A.Hofton Appendix 4 - The ANHOF System at Work

obj e c t) 1 0 0 0 0 (1) (_) () o b j e c t
o b j e c t) 2 0 0 0 0 (2) (_) () o b j e c t
o b j e c t) 3 0 0 0 0 { 3) (_) () o b j e c t
o b j e c t) 4 0 0 0 0 (4) (_) () o b j e c t
obj e c t) 5 0 0 0 0 (5) (_) () o b j e c t
o b j e c t) 6 0 0 0 0 (6) (_) (_) o b j e c t
obj e c t) 7 0 0 0 0 (7) (_) () o b j e c t
obj e c t) 8 0 0 0 0 (8) (_) () o b j e c t
o b j e c t) 9 0 0 0 0 (9) (_) () o b j e c t
obj e c t) 10 0 0 0 0 (10) (_) () o b j e c t
o b j e c t) 11 0 0 0 0 { 11) (_) () o b j e c t
o b j e c t) 12 0 0 0 0 (12) (_) () o b j e c t
o b j e c t) 13 0 0 0 0 C 13) (_) () o b j e c t
obj e c t) 14 0 0 0 0 (14) (_) () o b j e c t
obj e c t) 15 0 0 0 0 (15) (_) () o b j e c t
obj e c t) 16 0 0 0 0 (16) (_) () o b j e c t
obj e c t) 17 0 0 0 0 (17) (_) () o b j e c t
obj e c t) 18 0 0 0 0 (18) (_) () o b j e c t
obj e c t) 19 0 0 0 0 (19) (_) () o b j e c t
obj e c t) 20 0 0 0 0 (20) (_) () o b j e c t
obj e c t) 21 0 0 0 0 (21) (_) () o b j e c t
obj e c t) 22 0 0 0 0 (22) (_) () o b j e c t
o b j e c t) 23 0 0 0 0 (23) (_) () o b j e c t
o b j e c t) 24 0 0 0 0 (24) (_) () o b j e c t
obj e c t) 25 0 0 0 0 (25) (_) () o b j e c t
obj e c t) 26 0 0 0 0 (26) (_) () o b j e c t
o b j e c t) 27 0 0 0 0 (27) () () o b j e c t
o b j e c t) 28 0 0 0 0 (28) (_) () o b j e c t
obj e c t) 29 0 0 0 0 (29) (_) () o b j e c t
obj e c t) 30 0 0 0 0 (30) (_) () o b j e c t
o b j e c t) 31 0 0 0 0 (31) (_) () o b j e c t
o b j e c t) 32 0 0 0 0 (32) (_) () o b j e c t
o b j e c t) 33 0 0 0 0 (33) (_) () o b j e c t
o b j e c t) 34 0 0 0 0 (34) () () o b j e c t
obj e c t) 35 0 0 0 0 (35) (_) () o b j e c t
obj e c t) 36 0 0 0 0 (36) (_) () o b j e c t
o b j e c t) 37 0 0 0 0 (37) (_) () o b j e c t
o b j e c t) 38 0 0 0 0 (38) (_) () o b j e c t
o b j e c t) 39 0 0 0 0 (39) (_) () o b j e c t
obj e c t) 40 0 0 0 0 (40) (_) () o b j e c t
obj e c t) 41 0 0 0 0 (41) (_) () o b j e c t
obj e c t) 42 0 0 0 0 (42) (_) () o b j e c t
obj e c t) 43 0 0 0 0 (43) (_) () o b j e c t
o b j e c t) 44 0 0 0 0 (44) (_) () o b j e c t
obj e c t) 45 0 0 0 0 (45) () () o b j e c t
l i n k) 1 18 0 0 0 0 0 0) d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 1 2 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 1 37 0 0 0 0 0 0 () d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 1 41 0 0 0 0 0 0 () d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 1 6 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 10 11 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 10 12 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 10 13 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 14 15 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 16 14 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 17 15 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 17 16 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 18 19 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 19 20 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 2 3 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k

Page 250

A.Hofton Appendix 4 - The ANHOF System at Work

l i n k) 20 21 0 0 0 0 0 0 () (d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 20 22 0 0 0 0 0 0 () (d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 20 23 0 0 0 0 0 0 () (d i r e c t e d \ (L i n e S o l i d) l i n k
l i n k) 21 14 0 0 0 0 0 0 () (d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 22 24 0 0 0 0 0 0 () { d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 23 32 0 0 0 0 0 0 () (d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 24 25 0 0 0 0 0 0 () (d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 24 26 0 0 0 0 0 0 (; (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 24 27 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 28 25 0 0 0 0 0 0 () (d i r e c t e d] (L i n e S o l i d) l i n k
l i n k) 28 26 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 28 27 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 28 29 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 28 30 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 28 31 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 3 4 0 0 0 0 0 0 () d i r e c t e d) L i n e S o l i d) l i n k
l i n k) 32 33 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 32 34 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 32 35 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 36 33 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 36 34 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 36 35 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 37 38 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 38 39 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 38 40 0 0 0 0 0 0 () (d i r e c t e d ' (L i n e S o l i d) l i n k
l i n k) 4 5 0 0 0 0 0 0 () d i r e c t e d) L i n e S o l i d) l i n k
l i n k) 40 39 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 41 42 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 43 42 0 0 0 0 0 0 () (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 44 42 0 0 0 0 0 0 () (d i r e c t e d ' (L i n e S o l i d) l i n k
l i n k) 45 42 0 0 0 0 0 0 ((d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 6 7 0 0 0 0 0 0 () d i r e c t e d) L i n e S o l i d) l i n k
l i n k) 7 10 0 0 0 0 0 0) (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 8 10 0 0 0 0 0 0) (d i r e c t e d) (L i n e S o l i d) l i n k
l i n k) 9 10 0 0 0 0 0 0) (d i r e c t e d) (L i n e S o l i d) l i n k

Figure 90 - The GIN input file representing graph G

13.3 Graph isomorphism System

In Chapter 4 it was shown that there were 2 types of models in Graphs, Variable and

Fixed. Chapter 5 showed how this would be implemented in 2 detection methods; one

that detects fixed models based around Messmer's [114] work and another detecting

variable models based on a Prolog program. The following section will show both at

work.

Page 251

A.Hofton Appendix 4 - The ANHOF System at Work

13.3.1 Variable Model Isomorphism

There are a higher proportion of variable models to detect in a call graph. These are
models that can involve any number of vertices. In order for the Prolog system to work
the graph G given in Chapter 7 needs to be converted into Prolog facts.
Figure 91 shows the Prolog representation of the graph.

node(l,0,0,'T',"_","_","Black").
node(2,0,0,"2","_","_","Black").
node(3,0,0,"3","_","_","BIackM).
node(4,0,0,n4M,M_M,"_","Black").
node(5,0,0,"5","_","_","Black").
node(6,0,0,"6",,,_"!"_M,"BlackM).
node(7,0,0,"7","_","_","Black").
node^OA'TV'JV'JVBlack") .
node(9,0,0,"9","_","_","Black").
node(10,0,0,"10","_","_","Black").
node(l 1,0,0,"1 l","_","_","Black").
node(l 2,0,0," 12n,M_","_n,"Black").
node(13,0,0," 13 ","_", , ,_",MBlack").
node(14,0,0,"14,,,"_","_M,MBlack").
node(15,0,0,"15","_","_","Black").
node(16,0,0,"16","_","_","Black").
node(l 7,0,0," 17","_","_","Black").
node(18,0,0," 18" ,"_" ,"Black") .
node(l 9,0,0," 19",M_","_","Black").
node(20,0,0,"20","_","_","Black").
node(21,0,0,"21","_","_","Black").
node(22,0,0,"22","_","_","Black").
node(23,0,0,"23","_","_","Black").
node(24,0,0,"24","_","_","Black").
node(25,0,0,"25","J',"_"/'Black").
node(26,0,0,"26","_","_","Black").
node(27,0,0,"27","_","_","Black").
node(28,0,0, "28" ,"_" ,"Black")
node(29,0,0,"29","_","_","Black")
node(30,0,0,"30","_","_","Black")
node(31,0,0,"31 ","_","_","Black")
node(32,0,0,"32","_","_","Black").
nodepSAO^'V^YJV 'Black") .
node(34,0,0,"34","_","_'',"Black").
node(35,0,0,"35","_","_","Black").
node(36,0,0,"36","_","_","Black").
node(37,0,0,"37","_","_","Black").
node(38,0,0,"38","_","_","Black").
node(39,0,0,"39","_","_","Black").
node(40,0,0,"40","_","_","Black").

Page 252

A.Hofton Appendix 4 - The ANHOF System at Work

n o d e ^ l A O^^VV'J ' , "Black").
node^OA'^'V'JV'J '^Black").
node(43,0,0,"43","_M,"J\"Black").
node(44,0,0,"44","_","_",MBlack").
node(45,G,0,"45,,,,,_","_,,,"Black").
edge(l,18,"_,',Mdirected","LineSolid","BlackM).
edge(l,2,"_",Mdirected",,,LineSolid","Black").
edge(l,37,"_,,,,'directed","LineSolid","Black").
edge(l,41,"_",,'directed",MLineSolidM,,,BlackM).
edge(l,6,"_","directed","LineSolid","Black").
edge(2,3,"_M,"directed","LineSolid",,,Black").
edge(3,4,"_","directed","LineSolid","Black").
edge(4,5,,,_M,"directedn,"LineSolidM,"BlackM).
edge(6,7,"_",Mdirected","LineSolid","Black").
edge(7,lQ," ,directed","LineSolid","Black").
edge(8,10," 'directed , ,,MLineSolid , ,,"Black").
edge(9,10," ,directed",,,LineSolid","Black").
edge(10,ll," ' ,,,directed","LineSolid","Black").
edgeCKU^ ' ,"directed","LineSolid",,,Black").
edge(10,13," ' ,"directedM,,,LineSolid","BlaekM).
edge(14,15," ' ,"directedM,"LineSolid",MBlackn).
edge(17,15," ' ,"directedM,"LineSolid","Black").
edge(14,16," ' ,"directed","LineSolid","Black").
edge(17,16," ' ,"directed",MLineSolid","Black").
edge(18,19," ' ,"directed","LineSolid","Black").
edge(19,20," ' ,"directedH,"LineSolid","Black").
edge(20,21," ' ,"directed , ,,MLineSolid", , ,Black").
edge(20,22," ' ,"directed","LineSolid","Black").
edge(20,23," ' ,"direeted,,,MLineSolid,,,"Black").
edge(21,14," ' ,"directed","LineSolid","Black").
edge(22,24," ' ,"directed","LineSolid","Black").
edge(23,32," ' ,"directedM,MLineSolidM,"Black").
edge(24,25," ' ,ndirected , ,,"LineSolid","Black").
edge(24,26," ' ,ndirected","LineSolid","Black").
edge(24,27,'• ' ,Mdirected",MLineSolid","Black").
edge(28,25," ' ,Mdirected","LineSolid","Black").
edge(28,26," ' ,,'directed",MLineSolid","Black").
edge(28,27," ' ,"directed","LineSolid","Black").
edge(28,29," ' /'directed-'/'LineSolid-'/'Black").
edge(28,30," ' ,"directedM,"LineSolid","Black").
edge(28,31," ' ,,,directed","LineSolid","Black").
edge(32,33," * ,Mdirected","LineSolid","Black").
edge(32,34," * ,"directed",MLineSolid","Black").
edge(32,35," ' ,Mdirected","LineSolid,',MBlack").
edge(36,33," ' ,"directed","LineSolid,,,"Black").
edge(36,34," * , , ,directed","LineSolid", , ,Black").
edge(36,35," ' ,"directed","LineSolid","Black").
edge(37,38," ' ,"directed,,,"LineSolid","Black").
edge(38,39," 1 ,,,directed","LineSolid,',"Black").

Page 253

A.Hofton Appendix 4 - The ANHOF System at Work

edge(38,40,
edge(40,39,"
edge(41,42,'
edge(43,42,'
edge(44,42,'
edge(45,42,'

_","directed","LineSolid","Black")
_",,,directed",,,LineSolid","Black")

,,"directed , ,,"LineSolid","Blackn)
_","directed,,,"LineSolidM,"Black")
_",MdirectedM,"LineSolid",MBlack")

',"directed","LineSolid","Black")

Figure 91 - The Prolog representation of Graph G

This graph then has to be processed for the fan in and fan out information. This simply
is the numbers of vertices coming to and from a given node. The flow information for
graph G is given in
Figure 92.

fan(l,0,5).
fan(2,l,l).
fan(3,l,l).
fan(4,l,l).
fan(5,l,0).
fan(6,l,l).
fan(7,l,l).
fan(8,0,l).
fan(9,0,l).
fan(l 0,3,3).
fan(l 1,1,0).
fan(12,l,0).
fan(l 3,1,0).
fan(14,2,1).
fan(l 5,2,0).
fan(16,l,l).
fan(17,0,2).
fan(18,l,l).
fan(19,l,l).
fan(20,l,3).
fan(21,l,l).
fan(22,l,l).
fan(23,l,l).
fan(24,l,3).
fan(25,2,0).
fan(26,2,0).
fan(27,2,0).
fan(28,0,6).
fan(29,l,0).
fan(30,l,0).
fan(31,1,0).
fan(32,l,3).
fan(33,2,0).

Page 254

A.Hofton Appendix 4 - The ANHOF System at Work

fan(34,2,0).
fan(35,2,0).
fan(36,0,3).
fan(37,l,l).
fan(38,l,2).
fan(39,2,0).
fan(40,l,l).
fan(41,l,l).
fan(42,4,0).
fan(43,0,l).
fan(44,0,l).
fan(45,0,l).

Figure 92 - fan in and fan out information

The various Prolog programs search the fan in and fan out information for the relevant

information. Details of the algorithms are given in Chapter 4 and 6.

13.3.1.1 Fan In Models

The Variable Model Detection System found that vertices 10 and 42 are fan in vertices.

The vertices that are involved in the models are 9,8,7,41,43,44,45. The output from the

Fan In model search part of the Variable Model Detection System is as follows when all

vertices that have a fan in value of greater or equal to 3: -

match("Fanin",[10, 7, 8, 9]) .
match("Fanin",[42, 41, 43, 44, 4 5]) .

13.3.1.2 Fan Out Models

The Variable Model Detection System found that vertices 1,10,20,24,28,32 and 36 are

fan out vertices. The output from the Fan In model search part of the Variable Model

Detection System is as follows when all vertices that have a fan out value of greater or

equal to 3: -

match("Fanout",[1, 18, 2, 37, 41, 6]) .
match("Fanout",[10, 11, 12, 1 3]) .

Page 255

A.Hofton Appendix 4 - The ANHOF System at Work

match("Fanout", [20, 21, 22, 23]) .
match("Fanout", [24, 25, 26, 27]) .
match("Fanout", [28, 25, 26, 27, 29, 30, 31
match("Fanout", [32, 33, 34, 35]) .
match("Fanout", [36, 33, 34, 35]) .

As it can see vertex 10 is both a fan in and fan out vertex, it is therefore a candidate for

a split 3 vertex.

13.3.1.3 Split 1 Models

A Split 1 model consists of two fan out vertices that fan out to common vertices. Hence

vertices 32,36,24 and 28 are listed as being detected as fan out vertices. Split 1 models

are used in the Split 3 model, hence later on in this thesis it is shown that vertices 24 and

28 are in the Split 3 model also. These were processed by the Variable Model Detection

System to find the common vertices and the output from the system was: -

m a t c h (" S p l i t l " , [3 2 , 33, 34, 35, 3 6]) .
m a t c h (" S p l i t l " , [2 4 , 25, 26, 27, 2 8]) .

13.3.1.4 Split 2 Models

Due to the fact that split 2 models consist of a splitl model and a Fan Out model a split

2 model should consist of vertices already listed above. This is true of vertex 24.

Therefore the output from the Variable Model Detection System is as follows: -

m a t c h (" S p l i t 2 " , [2 4 , 25, 26, 27, 28, 29, 30, 3 1]) .

Page 256

A.Hofton Appendix 4 - The ANHOF System at Work

13.3.1.5 Split 3 Models

As mentioned above vertex 10 was a possible for this model. It has been detected using

the variable mode detection system.

match("Split3",[10, 7, 8, 9, 11, 12, 1 3]) .

13.3.1.6 Chain

Chains prove difficult to detect. It may be that they must only have a fan in value of 1

that means that a starting point is difficult to detect. It can also be seen below that a box

has a chain present, hence the detection of the chain between vertices 14,15 and 16. Due

to this chain should be given a low priority in any order they appear in a file. The

Variable Model Detection System detected the following chains present in graph G: -

match("Chain",[14, 15, 2 1]) .
match("Chain",[14, 15, 1 6]) .
match("Chain",[2, 3, 4, 5]) .

13.3.1.7 Chain to Fan Out Models

Chain to Fan Out models are difficult to detect because of reasons already discussed in

the chain section above. However they proved a little more reliable than chains because

they do not share any common features with the box model. The fact that the last vertex

can fan out to more than one vertex means that it is more common. The Variable Model

Detection System detected the above chain to Fan Out models present in graph G: -

match("ChainFanOut",[18, 19, 20, 21, 22, 2 3]) .
match("ChainFanOut",[22, 24, 25, 26, 2 7]) .
match("ChainFanOut",[23, 32, 33, 34, 3 5]) .
match("ChainFanOut",[37, 38, 39, 4 0]) .
match("ChainFanOut",[6, 7, 10, 11, 12, 1 3]) .

Page 257

A.Hofton Appendix 4 - The ANHOF System at Work

13.3.1.8 Fixed Models - Box and Triangle

When running graph G through the Fixed Model Detection System the following output

was produced: -

match("Box",[17,16,15,14]).
match("Triangle", [38, 4 0, 39]) .

13.4 Match Analyser

Figure 93 provides an example of a representation file that is produced by the Match

Analyser. It is one that is produced by inputting the matches into the Match Analyser in

the order given in Chapter 6.

graph{
node (9,0,0,0,0, ' 9", i i I I I I i I I

/ Black").
node (8,0,0,0,0,' 8", i i I I I I i i I I

/ Black").
node (7,0,0,0,0, ' 7", I I I I I I i i I I

i Black").
node (6,0,0,0,0,' 6", I I I I I I i i i i

/ Black").
node (5,0,0,0,0,' 5", I I I I i i i i i i

i Black").
node (45,0,0,0,0, "45 I I I I I I i i i i ,"Black").
node (44,0,0,0,0, "44 I I I I I I i i i i ,"Black").
node (43,0,0,0,0, "43", I I I I i i i i ,"Black").
node (42,0,0,0,0, "42 I I i i I I i i i i ,"Black").
node (41,0,0,0,0, "41 I I I I I I i i i i ,"Black").
node (40,0,0,0,0, "40 I I i i I I i i i i ,"Black").
node (4,0,0,0,0," 4", I I i i I I i

r
i i» Black").

node (39,0,0,0,0, "39 I I I I I I i i i i ,"Black").
node (38,0,0,0,0, "38 I I i i I I i i I I ,"Black").
node (37, 0, 0, 0, 0, "37 I I I I I I i i I I ,"Black").
node (36, 0, 0,0,0, "36 I I I I I I i i i i ,"Black").
node (35,0,0,0,0, "35 I I I I I I i i i i ,"Black").
node (34,0,0,0,0, "34 I I I I I I i i I I ,"Black").
node (33,0,0,0,0, "33 H I I I I i i I I ,"Black").
node (32, 0, 0, 0, 0, "32 I I i i i i i i I I ,"Black").
node (31,0, 0,0,0, "31 I I i i I I i i I I ,"Black").
node 30,0,0,0,0, "30 I I i i i i i I I ,"Black").
node 3,0,0,0,0," 3", I I i I I i

/

i i i
i Black").

node 29, 0,0,0,0, "29 I I

r
i I I i

i
i i i ,"Black").

Page 258

A.Hofton Appendix 4 - The ANHOF System at Work

node (28,0,0,0, 0,"28"," ", " ","Black")
node (27,0,0,0, 0,"27"," ", " ","Black")
node (26,0,0,0, 0,"26"," ", " ","Black")
node (25,0,0,0, 0,"25"," ", " ","Black")
node (24,0,0,0, 0,"24"," ", " ","Black")
node (23,0,0,0, 0,"23"," ", " ","Black")
node (22,0,0,0, 0,"22"," ", " ","Black")
node (21,0,0,0, 0,"21"," ", " ","Black")
node (20,0,0,0, 0,"20","_", " ","Black")
node (2,0,0,0,C 1 i i o" " I ' i i ","Black").
node (19,0,0,0, 0,"19"," ", " ","Black")
node (18,0,0,0, 0,"18"," ", " ","Black")
node (17,0,0, 0, 0,"17"," ", " ","Black")
node (16,0,0,0, 0,"16"," ", " ","Black")
node (15,0,0, 0, 0,"15"," ", " ","Black")
node (14,0,0, 0, 0,"14"," ", " ","Black")
node (13,0,0, 0, 0,"13"," ", " ","Black")
node (12,0,0, 0, 0,"12"," ", " ","Black")
node (11,0,0,0, 0,"11"," ", " ","Black")
node (10, 0,0,0, 0,"10","_", " ","Black")
node (1,0,0,0,(i I I i H I I H I I

> i -1- i / _
","Black").

edge (9,10," ", " d i r e c t e d " , " L i neSolid", "Black").
edge (8,10," ", " d i r e c t e d " , " L i neSolid", "Black").
edge (7,10,"_", " d i r e c t e d " , " L i neSolid", "Black").
edge f 6 7 " " ' "di r e c t e d " , " L i n e S o l i d " , " Black").
edge (45,42," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (44,42," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (43, 42," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (41,42," ' ', " d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (40, 39, "_' 1 , " d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge f 4 c H n i ' d i r e c t e d " , " L i n e S o l i d " , " Black").
edge (38,40," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (38, 39," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (37,38," * '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (36, 35," ' 1 , " d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (36, 34," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (36,33," ' ', " d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (32,35," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (32,34," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (32, 33, "_' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge ' O A I I I I 1

^ f ^ f / ' d i r e c t e d " , " L i n e S o l i d " , " Black").
edge (28,31," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (28,30," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (28, 29," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (28,27," ' ',"d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (28,26," * '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (28,25," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (24, 27," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (24, 26," ' '," d i r e c t e d " , " L i n e S o l i d " ,"Black").
edge (24, 25," ' ',"d i r e c t e d " , " L i n e S o l i d " ,"Black").

Page 259

A.Hofton Appendix 4 - The ANHOF System at Work

edge (23,32, ft t ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (22,24, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (21,14, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (20,23, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (20,22, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (20,21, I I 1 ' , " d i r e c t e d " ,"LineSolid' *, "Black")
edge (2,3," I I 1

/ ' d i r e c t e d " , " L ineSolid",' 'Black").
edge (19,20, I I 1 1 , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (18,19, 1 1 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (17,15, I I 1 ' , " d i r e c t e d " ,"LineSolid' *, "Black")
edge (17,16, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (16,14, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (14,15, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (10,13, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (10,12, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge (10,11, I I 1 ' , " d i r e c t e d " ,"LineSolid' ', "Black")
edge d,6," I I 1

t ' d i r e c t e d " , " L ineSolid",' 'Black").
edge d,41," I I " d i r e c t e d " , " L i n eSolid", "Black").
edge d,37," I I " d i r e c t e d " , " L i n eSolid", "Black").
edge (1,2," I I 1

r ' d i r e c t e d " , " L ineSolid",' 'Black").
edge d,18," n " d i r e c t e d " , " L i n eSolid", "Black").
a l g o r i t h m (" GT' ') •

}
s t r u c t u r e {

name("Split2").
a l g o r i t h m (" S p l i t 2 ") .
nodeused(24).
nodeused(25).
nodeused(26).
nodeused{21) .
nodeused(28).
nodeused(29).
nodeused(30).
nodeused(31).

}
s t r u c t u r e {

n a m e (" S p l i t l ") .
a l g o r i t h m (" S p l i t l ") .
nodeused(32).
nodeused(33).
nodeused(34).
nodeused(35).
nodeused(36).

}
s t r u c t u r e {

name("Split3").
a l g o r i t h m (" S p l i t 3 ") .
nodeused(10).
nodeused(7).
nodeused(8).

Page 260

A.Hofton Appendix 4 - The ANHOF System at Work

nodeused(9).
nodeused(11).
nodeused(12).
nodeused(13).

}
s t r u c t u r e {

name("ChainFanOut") .
algorithm("GT").
nodeused(18).
nodeused(19).
nodeused(20).
nodeused(21).
nodeused(22).
nodeused(23).

}
s t r u c t u r e {

name("ChainFanOut").
algorithm("GT").
nodeused(37).
nodeused(38).
nodeused(39).
nodeused(40).

}

s t r u c t u r e {
name("Box").
algorithm("Box").
nodeused(17).
nodeused(16).
nodeused(15).
nodeused(14).

}
s t r u c t u r e {

name("Fanin").
a l g o r i t h m (" F a n l n ") .
nodeused(42).
nodeused(41).
nodeused(43).
nodeused(44) .
nodeused(45).

}
s t r u c t u r e {

name("Chain").
algorithm("GT").
nodeused (2) .
nodeused(3).
nodeused(4).
nodeused(5).

}

Figure 93 - The graph representation file

Page 261

A.Hofton Appendix 4 - The ANHOF System at Work

13.5 GUN Output File

The display system for the ANHOF system is Graph Tool, this interprets GIN files.

Therefore the output from the ANHOF system should be a GIN file. In Figure 94 the

GIN output file for the Graph G is shown.

(object]) 1 0241 54 262(1) (_) (_) object
(object]) 2 114457 168 478(2) () (_) object
(object]) 3 235 457 289 478 (3) () (_) object
(object] 14 347 458 401 4 7 9 (4) () (_) object
(object] > 5 472 459 526 480 (5) () (_) object
(object] >6 113 27 167 4 8 (6) () () object
(object] 17235 28 289 49 (7) () () object
(object] 18 235 89 289 110 (8) () () object
(object] I 9 235 58 289 79 (9) () () object
(object] 110 345 58 406 79 (10) () (_) object
(object] 1 11 463 89 524 110 (11) () (_) object
(object] 1 12 463 58 524 79 (12) () (_) object
(object) 113 463 28 524 49 (13) () (_) object
(object] 1 14 587 406 648 427 (14) () (_) object
(object] 1 15 587 459 648 480 (15) () (_) object
(object] \ 16 710 406 771 427 (16) (] (_) object
(object] 117 710 459 771 480 (17) (] (_) object
(object] > 18 110 331 171 352 (18) () (_) object
(object) 119 231 332 292 353 (19) () (_) object
(object] 1 20 346 333 407 354 (20) () (_) object
(object] |21 469 406 530 427(21) () (_) object
(object] |22 469 334 530 355 (22) () (_) object
(object]) 23 469 209 530 230 (23) () (_) object
(object) 24 587 334 648 355 (24) (} (_) object
(object] 25 710 361 771 382 (25) (] (_) object
(object] 26 710 334 771 355 (2 6) () (_) object
(object] 27 710 307 771 328 (2 7) (] (_) object
(object] 28 830 334 891 355 (2 8) (] (_) object
(object] 29 937 362 998 383 (2 9) (] (_) object
(object] 30 937 334 998 355 (3 0) () (_) object
(object] 31 937 307 998 328 (31) (] (_) object
(object] 32 586 210 647 231 (3 2) () (_) object
(object) 33 710 238 771 259 (33) () (_) object
(object ^ 34 710 210 771 231 (3 4) () (_) object
(object) 35 710 179 771 200 (35) () (_) object
(object j 36 829 210 890 231 (3 6) () (_) object
(object) 37 111 241 172 262 (3 7) (] (_) object
(object; 38 232 242 293 263 (38) (] (_) object
(object) 39 344 286 405 307 (39) (] (_) object
(object} 40 344 188 405 209 (4 0) (] (_) object

Page 262

A. SI of ton Appendix 4 - The ANHOF System at Work

(pbjec ;t) 41 111 118 172 139 (41) (_) (_) object
(object) 42 232 158 293 179 (42) () () object
(object) 43 111 201 172 222 (43) () () object
(object) 44 111 172 172 193 (44) () () object
(object) 45 111 147 172 168 (45) () () object
(link;) 1 18 0 0 0 0 0 0 () (directed) (LineSolid) link
(link;) 1 2 0 0 0 0 0 0 (_) (directed) (LineSolid) link
(link;) 1 3 7 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink ') 1 41 00 000 0() (directed) (LineSolid) link
(link;) 1 6 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink 1) 10 11 0000-00() (directed) (LineSplid) link
(link;) 10 12 0 000 0 0() (directed) (LineSolid) link
(link;) 1.0 13 0 000 00() (directed) (LineSolid) link
(link;) 14 15000000() (directed) (LineSolid) link
(link;) 16 140000 00 () (directed) (LineSolid) link
(link;) 17 15 00 0 00 0() (directed) (LineSolid) link
(link;) 17 16000000() (directed) (LineSolid) link
(link;) 18 1900 0 00 0() (directed) (LineSolid) link
(link; > 19 20 0 0 0 0 0 0 () (directed) (LineSolid) link
(link; >23 0 0 0 0 0 0 () (directed) (LineSolid) link
(link; >2021 0 000 0 0() (directed) (LineSolid) link
(l ink; (20 22 0 000 0 0() (directed) (LineSolid) link
(l ink; >20-23 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; > 21 14 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; >2224 0 000 00 () (directed) (LineSolid) link
(l ink; I 23 32 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 124 25 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 1 24 26 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 124 27 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 128 25 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; (28 26000 000 () (directed) (LineSolid) link
(l ink; 1 28 27 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; |28 290 0 0 000 () (directed) (LineSolid) link
(l ink; 128 30 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; (28 31 000 0 0 0 () (directed) (LineSolid) link
(l ink; >3 4 0 0.0 00-0() (directed) (LineSolid) link
(l ink; 13233 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 13234 00 0 f l 0 0 () (directed) (LineSolid) link
(l ink; |32 35 0 0000 0() (directed) (LineSolid) link
(l ink; 136 33 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 1-36-34 00 0-000() (directed) (LineSolid) link
(l ink; 136 35 0 000 0.0 () (directed) (LineSolid) link
(l ink; (3738 0 0000 0 () (directed) (LineSolid) link
(l ink; 38 39 0 0000 0() (directed) (LineSolid) link
(l ink; 38 40 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 4 5 00 0 0 0 0 () (directed) (LineSolid) link
(l ink; 4039000000() (directed) (LineSolid) link
(l ink; 4.1 42 0 0 0 0 0 0 () (directed) (LineSolid) link
(l ink; 43 42 0 0 0 0 0 0 () (directed) (LineSolid) link

Page 263

A.Hofton Appendix 4 - The ANHOF System at Work

(l ink) 44 42 0 0 0 0 0 0 (_) (directed) (LineSolid) link
(l ink) 45 42 0 0 0 0 0 0 (_) (directed) (LineSolid) link
(l i n k) 6 7 0 0 0 0 0 0 (_) (directed) (LineSolid) link
(l ink) 7 10 0 0 0 0 0 0 (_) (directed) (LineSolid) link
(l i n k) 8 1 0 0 0 0 0 0 0 (_) (directed) (LineSolid) link
(l i n k) 9 1 0 0 0 0 0 0 0 (_) (directed) (LineSolid) link

Figure 94 - The GIN output file from the ANHOF system.

Page 264

A.Hofton Chapter 14- Bibliography and Reference

14. Bibliography and References
[I] IEEE Standard Glossary of Software Engineering Terminology: IEEE, 1983.

[2] "Graphic File Formats FAQ", 12th October 2000, Available From

http://wvswxs.mu.nI/wais/html/na-dir/graphics/fileformats-faq/{partl.html,

part2.html, part3.html, part4.html}.

[3] G. M. Adelson-Velskii and E. M. Landis, "An Algorithm for the Organization of

Information," Soviet Mathematics Dokl, vol. 3, pp. 1259-1263, 1962.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms,

2nd Edition ed: Addison-Wesley, 1987.

[5] ANSI, Standard Flowchart Symbols and their use in Information Processing

(X3.5). New York: American National Standards Institute, 1971.

[6] L. Babai, "Moderately Exponential Bound for Graph Isomorphism," in

Fundamentals of Computation Theory, vol. 117, Lecture Notes in Computer

Science, F. Gecseg, Ed. Berlin: Springer-Verlag, 1981, pp. 34-50.

[7] N. S. Barghouti, J. M. Mocenigo, and W. Lee, "Grappa : A GRAPh PAckage in

Java," in Graph Drawing, vol. 1353, Lecture Notes in Computer Science, G.

DiBattista, Ed. Berlin: Springer-Verlag, 1997, pp. 336-349.

[8] C. Batini, L. Furlani, and E. Nardelli, "What is a Good Diagram? A Pragmatic

Approach," presented at 4th International Conference on Entity Relationship

Approach, Chicago, 1985.

[9] J. Bentley, "Column 9: LITTLE LANGUAGES," in More Programming

Perls:Confessions of a Coder: Addison- Wesley, 1988, pp. 83-100.

[10] J. Berry, N. Dean, M. Golderg, G. Shannon, and S. Skiena, "Graph Drawing and

Manipulation with LINK," in Graph Drawing, vol. 1353, Lecture Notes in

Computer Science, G. DiBattista, Ed. Rome: Springer-Verlag, 1997, pp. 425-

437.

[I I] F. Bertault, "ADOCS: a Drawing System for Generic Combinatorial Structures,"

in Graph Drawing, vol. 1027, Lecture Notes in Computer Science, F. J.

Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 24-27.

[12] P. Bertolazzi, G. DiBattista, and G. Liotta, "Parametric Graph Drawing," IEEE

Transactions on Software Engineering, vol. 21(8), pp. 662-673, 1995.

Page 265

http://wvswxs.mu.nI/wais/html/na-dir/graphics/fileformats-faq/%7bpartl.html

A.Hofton Chapter 14- Bibliography and Reference

[13] S. N. Bhatt and F. T. Leighton, "A Framework for Solving VLSI Graph Layout

Problems," Journal of Computer and System Sciences, vol. 28, pp. 300-343,

1984.

[14] A. Bloesch, "Aesthetic Layout of Generalized Trees," Software-Practice and

Experience, vol. 23(8), pp. 817-827, 1993.

[15] J. Blythe, C. McGrapth, and D. Krackhardt, "The Effect of Graph Layout on

Inference form Social Network Data," in Graph Drawing, vol. 1027, Lecture

Notes in Computer Science, F. J. Brandenburg and J. Franz, Eds. Passau:

Springer-Verlag, 1995, pp. 40-51.

[16] T. Bodhuin, "An Interaction Paradigm For Impact Analysis", M.S.c Thesis,

University of Durham, Durham, 1995.

[17] B. W. Boehm, "A Spiral Model of Software Development and Enhancement,"

IEEE Computer, vol. 21(5), pp. 61-72, 1988.

[18] C. Bohm and G. Jacopini, "Flow Diagrams, Turing Machines and Languages

With Only Two Formation Rules," Communications of the ACM, vol. 9(5), pp.

366-371, 1966.

[19] C. Boldyreff, E. L. Burd, R. M. Hather, R. E. Mortimer, M. Munro, and E. J.

Younger, "The AMES Approach to Application Understanding: A Case Study,"

in The Proceedings of the International Conference on Software Maintenance

1995: IEEE, 1994, pp. 182-191.

[20] K. S. Booth and G. S. Lueker, "Testing for the Consecutive Ones Property,

Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms.," Journal of

Computer System Science, vol. 13, pp. 335-379, 1976.

[21] F. J. Brandenberg, "Designing Graph Drawings by Layout Graph Grammars," in

Graph Drawing, vol. 894, Lecture Notes in Computer Science, R. Tamassia and

I . G. Tollis, Eds. Passau: Springer-Verlag, 1995, pp. 416-427.

[22] F. J. Brandenburg, "Layout Graph Grammars: The Placement Approach," , vol.

532, Lecture Notes in Computer Science: Springer-Verlag, 1991, pp. 144-156.

[23] F. J. Brandenburg, M. Himsolt, and C. Rohrer, "An Experimental Comparison of

Force Directed and Randomized Graph Drawing Algorithms," in Graph

Drawing, vol. 1027, Lecture Notes in Computer Science, F. J. Brandenburg and

J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 76-87.

Page 266

A.Hofton Chapter 14- Bibliography and Reference

[24] S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara,

"InteractiveGiotto : An Algorithm for Interactive Orthogonal Graph Drawing,"

in Graph Drawing, vol. 1353, Lecture Notes in Computer Science, G. DiBattista,

Ed. Rome: Springer-Verlag, 1997, pp. 303-308.

[25] R. Brooks, "Towards a Theory of the Comprehension of Computer-Programs,"

International Journal of Man-Machine Studies, vol. 18(6), pp. 543-554,1983.

[26] H. Bunke and B. T. Messmer, "Recent Advances in Graph Matching,"

International Journal of Pattern Recognition and Artificial Intelligence, vol.

11(1), pp. 169-203, 1997.

[27] E. L. Burd, P. S. Chan, I . M. M. Duncan, M. Munro, and P. Young, "Improving

Visual Representations of Code," University of Durham, Durham, Technical

Report 10/96, 1996.

[28] L. Buti, G. DiBattista, G. Liotta, E. Tassinari, F. Vargiu, and L. Vismara, "GD-

Workbench: A System for Prototyping and Testing Graph Drawing Algorithms,"

in Graph Drawing, vol. 1027, Lecture Notes in Computer Science, F. J.

Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 111-122.

[29] Y. Carbonneaux, J. Laborde, and R. M. Madani, "CABRI-Graph: A Tool for

Research and Teaching in Graph Theory," in Graph Drawing, vol. 1027, Lecture

Notes in Computer Science, F. J. Brandenburg and J. Franz, Eds. Passau:

Springer-Verlag, 1995, pp. 123-126.

[30] M. Carpano, "Automatic Display of Hierarchized Graphs for Computer - Aided

Decision Analysis," IEEE Transactions Of Systems Man and Cybernetics, vol.

10(11), pp. 705-715, 1980.

[31] N. Chapin, Flowcharts. Princeton: Auerberg, 1971.

[32] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, "A Linear Algorithm for

Embedding Planar Graphs Using PQ Trees," Journal of Computer and System

Sciences, vol. 30, pp. 54-76, 1985.

[33] E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery: A

Taxonomy," IEEE Software, vol. 7(1), pp. 13-17, 1990.

[34] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 4th Edition ed.

Berlin: Springer-Verlag, 1998.

Page 267

A.Hofton Chapter 14- Bibliography and Reference

[35] M. K. Coleman and D. Stott-Parker, "Aesthetics-Based Graph Layout for

Human Consumption," Software Practice and Experience, vol. 26(12), pp. 1415-

1438, 1995.

[36] D. G. Corneil and C. C. Gotlieb, "An Efficient Algorithm for Graph

Isomorphism," Journal of the ACM, vol. 17(1), pp. 51-64, 1979.

[37] B. Cornelius, Programming with TopSpeed Modula-2. Wokingham: Addison-

Wesley, 1991.

[38] N. Cunnliff and R. P. Taylor, "Graphical vs. Textual Representation: An

Empirical Study of Novices' Program Comprehension," in Empirical Studies of

Programmers: Second Workshop, Human computer Interaction, G. M. Olson,

S.Sheppard, and E.Soloway, Eds., 1987, pp. 114-131.

[39] M. Dao, M. Harib, J. P. Richard, and D. Tallot, "CABRI: An Interactive System

For Graph Manipulation.," in Graph-Theoretic Concepts in Computer Science,

vol. 246, Lecture Notes in Computer Science, G. Tinhofer and G. Schmidt, Eds.:

Springer-Verlag -Verlag, 1986, pp. 58-67.

[40] R. Davidson and D. Harel, "Drawing Graphs Nicely Using Simulated

Annealing," ACM Transactions on Graphics, vol. 15(4), pp. 301-331, 1996.

[41] E. Dengler and W. Cowan, "Human Perception of Laid-out Graphs," in Graph

Drawing, vol. 1547, Lecture Notes in Computer Science: Springer-Verlag, 1998,

pp. 441-443.

[42] G. DiBattista, P. Eades, R. Tamassia, and I . G. Tollis, "Algorithms for Drawing

Graphs: an Annotated Bibliography," Computational Geometry: Theory and

Applications, vol. 4, pp. 235-282, 1994. Available From

http://www.cs.brown.edu/people/rt/gd-biblio.html.

[43] G. DiBattista, P. Eades, R. Tamassia, and I . G. Tollis, Graph Drawing -

Algorithms for theVisualization of Graphs: Prentice Hall, 1999.

[44] G. DiBattista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassinari, F.

Vargiu, and L. Vismara, "Drawing Directed Acyclic Graphs: An Experimental

Study," in Graph Drawing, vol. 1190, Lecture Notes In Computer Science, S.

North, Ed.: Springer-Verlag, 1996, pp. 76-91.

[45] G. DiBattista, G. Liotta, A. Garg, R. Tamassia, E. Tassinari, and F. Vargiu, "An

Experimental Comparison of Four Drawing Algorithms," Computational

Geometry : Theory and Applications, vol. 7, pp. 202-325,1995.

Page 268

http://www.cs.brown.edu/people/rt/gd-biblio.html

A.Hofton Chapter 14- Bibliography and Reference

[46] C. Ding and P. Mateti, "A Framework for the Automated Drawing of Data

Structure Diagrams," IEEE Transactions on Software Engineering, vol. 16(5),

pp. 543-557, 1990.

[47] D. P. Dobkin, E. R. Gansner, E. Kotsofios, and S. C. North, "Implementing a

General-Purpose Edge Router," in Graph Drawing, vol. 1353, Lecture Notes in

Computer Science, G. DiBattista, Ed. Rome: Springer-Verlag, 1997, pp. 262-

271.

[48] D. Dodson, "COMAIDE: Information Visualization using Cooperative 3D

Diagram Layout," in Graph Drawing, vol. 1027, Lecture Notes in Computer

Science, F. J. Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp.

190-201.

[49] U. Dogrusoz and B. Madden, "Circular Layout in the Graph Layout Toolkit," in

Graph Drawing, vol. 1190, Lecture Notes in Computer Science, S. North, Ed.:

Springer-Verlag, 1996, pp. 76-91.

[50] P. Eades, "A Heuristic for Graph Drawing," Congressus Numeratium, vol. 42,

pp. 149-160, 1984.

[51] M. Elson, Concepts of Programming Languages. Chicago: Science Research

Associates, 1973.

[52] V. Engelson, "Call Graph Drawing Interface", 18th June 2000 Available From

http://www.ida.liu.se/~vaden/cgdi/.

[53] B. Everitt, Cluster Analysis, 1st ed. London: Heinemann, 1974.

[54] B. Everitt, Cluster Analysis, 3rd ed. London: Arnold, 1993.

[55] R. E. Fairley, Software Engineering Concepts. New York: McGraw-Hill, 1985.

[56] N. Fenton and G. Hill, Systems Construction and Analysis : A Mathematical and

Logical Framework. London: McGraw-Hill, 1993.

[57] N. E. Fenton, Software Metrics: A Rigorous Approach, 1st ed: Chapman and

Hall, 1991.

[58] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach, 2nd ed: PWS Publishing International Thomson Computer Press,

1996.

[59] N. E. Fenton and R. W. Whitty, "Axiomatic Approach to Software Metrication

through Program Decomposition," The Computer Journal, vol. 29(4), pp. 330-

339, 1986.

Page 269

http://www.ida.liu.se/~vaden/cgdi/

A.Hofton Chapter 14- Bibliography and Reference

[60] R. K. Fjeldstad and W. T. Hamlen, "Application Program Maintenance Study -

A Report to our Respondent," in Tutorial On Software Maintenance, G. Parikh

andN. Zvegintzov, Eds.: IEEE, 1983, pp. 13-25.

[61] H. W. Fowler, F. G. Fowler, and J. Pearsall, "The Concise Oxford Dictionary," .

Oxford: Oxford University Press, 1999.

[62] T. M. J. Frauchterman and E. M. Reingold, "Graph Drawing by Force Directed

Placement," Software Practice and Experience, vol. 21(11), pp. 1129-1164,

1991.

[63] A. Frick, A. Ludwig, and H. Mehldau, "A Fast Adaptive Layout Algorithm for

Undirected Graphs," in Graph Drawing, vol. 894, Lecture Notes in Computer

Science, R. Tamassia and I . G. Tollis, Eds.: Springer-Verlag, 1994, pp. 388-403.

[64] M. Frohlich and M. Werner, "Demonstration of the Interactive Graph

Visualization System daVinci," in Graph Drawing, vol. 894, Lecture Notes in

Computer Science, R. Tamassia and I . G. Tollis, Eds.: Springer-Verlag, 1994,

pp. 266-269.

[65] M. Frohlich and M. Werner, daVinci VI.4 Transistion Guide, 1996.

[66] C. P. Gane, Structured Systems Analysis: Tools and Techniques: Prentice-Hall,

1979.

[67] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo, "A Technique for

Drawing Directed Graphs," IEEE transactions on Software Engineering, vol.

19(3), pp. 214-230, 1993.

[68] E. R. Gansner, S. C. North, and K. P. Vo, "DAG - A Program that Draws

Directed Graphs," Software - Practice and Experience, vol. 18(11), pp. 1047-

1062, 1988.

[69] M. R. Garey and D. S. Johnson, Computers and Intractability a Guide to the

Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[70] A. Garg and R. Tamassia, "GIOTT03D : A system for Visualizing Hierarchical

Structures in 3D," in Graph Drawing, vol. 1190, Lecture Notes In Computer

Science, S. North, Ed.: Springer-Verlag, 1996, pp. 193-200.

[71] G. Gati, "Further Annotated Bibliography on the Isomorphism Disease," Journal

of Graph Theory, vol. 3, pp. 95-109, 1979.

Page 270

A.Hofton Chapter 14- Bibliography and Reference

[72] H. H. Goldstine and J. von Newmann, Planning and Coding Problems for an

Electronic Computing Instrument, vol. 1-3. Princeton, N.J.: D Van Nostrand Co,

1946.

[73] J. Gross and J. Yellen, Graph Theory and Its Applications: CRC Press, 1999.

[74] D. Grove, G. DeFouw, J. Dean, and C. Chambers, "Call Graph Construction In

Object-Oriented Languages," ACM Sigplan Notices, vol. 32(10), pp. 108-124,

1997.

[75] R. N. Haber, "How We Remember What We See," Scientific American, vol.

105, 1970.

[76] S. Henry and D. Kafura, "Software Structure Metrics Based On Information-

Flow," IEEE Transactions on Software Engineering, vol. 7(5), pp. 510-518,

1981.

[77] M. Himsolt, "GraphEd: A Graphical Platform for the Implementation of Graph

Algorithms," in Graph Drawing, vol. 894, Lecture Notes in Computer Science,

R. Tamassia and I . G. Tollis, Eds.: Springer-Verlag, 1994, pp. 182-193.

[78] M. Himsolt, "GML: A Portable Graph File Format", 02/12/1998 Available

From http://www.fmi.uni-passau.de/Graphlet/GML/gml-tr.html.

[79] M. Himsolt, "GML-Graph Modelling Language", 1st December 1998

Available From http://www.fmi.uni-

passau.de/archive/archive.theory/ftp/graphlet/GML.ps.gz.

[80] M. Himsolt, "The Graphlet System (System Demonstration)," in Graph

Drawing, vol. 1190, Lecture Notes In Computer Science, S. North, Ed.:

Springer-Verlag, 1996, pp. 233-240.

[81] C. Hoffmann, Group-theoretic Algorithms and Graph Isomorphism, vol. 136:

Springer-Verlag, 1982.

[82] C. Hsu, "Minimum - Via Topological Routing," IEEE Transactions on

Computer-Aided Design, vol. 2(4), pp. 235-246, 1983.

[83] J. Ignatowicz, "Drawing Force Directed Graphs Using Optigraph," in Graph

Drawing, vol. 1027, Lecture Notes in Computer Science, F. J. Brandenburg and

J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 333-336.

[84] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs,

New Jersey: Prentice Hall, 1988.

Page 271

http://www.fmi.uni-passau.de/Graphlet/GML/gml-tr.html
http://www.fmi.uni-

A.Hofton Chapter 14- Bibliography and Reference

[85] B. A. Jeffries, "Comparison of Debugging Behaviour of novice and expert

programmers.," Department of Psychology, Carnegie - Mellon Universirty.,

Pittsburgh, P.A. 1982.

[86] R. Johnson, D. Pearson, and K. Pingali, "The Program Structure Tree -

Computing Control Regions in Linear-Time," Sigplan Notices, vol. 29(6), pp.

171-185, 1994.

[87] M. Junger, P. Mutzel, and S. Nafer, "AGD - Algorithms for Graph Drawing

User Manual Version 1.0.1", 1999, Available From http://www.mpi-

sb.mpg.de/AGD/.

[88] Y. Kahn and T. Baylis, "A Survey of Graph Drawing Algorithms Based on

Graph Grammars," in Graph Grammars and Their Application to Computer

Science, vol. 1073, Lecture Notes in Computer Science, J. Cuny, H. Ehrig, G.

Engels, and G. Rozenberg, Eds. Williamsburg, VA, USA: Springer-Verlag,

1994.

[89] T. Kamada and S. Kawai, "An Algorithm for Drawing General Undirected

Graphs," Information Processing Letters, vol. 31, pp. 7-15, 1989.

[90] S. Kamin and D. Hyatt, "A Special-Purpose Language for Picture-Drawing,"

presented at Conference On Domain Specific Language, Santa Barbara,

California, 1997.

[91] M. Kaul, "Specification Of Error Distances for Graphs by Precedence Graph

Grammars and Fast Recognition of Similarity," in Graph-Theoretic Concepts in

Computer Science, vol. 246, Lecture Notes in Computer Science, G. Tinhofer

and G. Schmidt, Eds.: Springer-Verlag, 1986, pp. 29-40.

[92] B. W. Kernighan, "PIC - A Language for Typesetting Graphics," Software -

Practice and Experience, vol. 12, pp. 1-21, 1982.

[93] B. W. Kernighan and D. M. Ritchie, The C Programming Language., 2nd ed,

1989.

[94] D. Kinloch and M. Munro, "A Combined Representation for the Maintenance of

C Programs," in Proceedings of IEEE 2nd Workshop on Program

Comprehension. Capri Italy: IEEE, 1993, pp. 118-127.

[95] D. A. Kinloch, "A Combined Representation for the Maintenance of C

Programs", Ph.d. Thesis, University of Durham, Durham, 1995.

Page 272

http://www.mpi-
http://sb.mpg.de/AGD/

A.Hofton Chapter 14- Bibliography and Reference

[96] B. A. Kitchenham, "Evaluating Software Engineering Methods and Tool Part 1:

The Evaluation Context and Evaluation Methods," ACM SIGSOFT, vol. 21(1),

pp. 11-15, 1996.

[97] C. R. Knight, "Visualisation for Program Comprehension: Information and

Issues," Department of Computer Science, University of Durham, Durham,

Technical Report 12/98, 1998.

[98] J. Kobler, U. Schoning, and J. Toran, The Graph Isomorphism Problem : Its

Structural Complexity. Boston: Birkhauser, 1993.

[99] T. D. Korson and V. K. Vishnavi, "An Empirical Study of the Effects of

Modularity on Program Modifiability," in Empirical Studies of Programmers,

Human/Computer Interaction, E. Soloway and S. Iyengar, Eds. Washington:

Ablex, 1986, pp. 168-186.

[100] C. Kosak, J. Marks, and S. Shieber, "Automating the Layout of Network

Diagrams With Specified Visual Organization," IEEE Transactions on Systems,

Man and Cybernetics, vol. 24(3), pp. 440-455, 1994.

[101] H. Ledgard and M. Marcotty, "A Genealogy Of Control Structures,"

Communications of the ACM, vol. 18(11), pp. 629-639, 1975.

[102] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,

"Metrics and Laws of Software Evolution - The Nineties View," presented at

Elements of Software Process Assessment and Improvement, Albuquerque, New

Mexico, 1997.

[103] I . Lemke and G. Sander, "Visualisation of Compiler Graphs : Design Report and

Documentation," Universitat des Saarlandes, Technical 30/04/1998 1994.

[104] U. Lichtblau, "Flusgraphgammatiken," AusDam Fachbereivh

Informatik,University of Oldenburg, Germany, Technical Report 3/90, March

1990.

[105] B. P. Lientz and E. B. Swanson, Software Maintenance Management. Reading

MA: Addison Wesley, 1980.

[106] T. Lin and P. Eades, "Integration of Declarative and Algorithmic Approaches for

Layout Creation," in Lecture Notes in Computer Science, vol. 894, R. Tamassia

and I . G. Tollis, Eds.: Springer-Verlag, 1994, pp. 376-387.

[107] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, "Metal Models and

Software Maintenance," in Empirical Studies of Programmers,

Page 273

A.Hofton Chapter 14- Bibliography and Reference

Human/Computer Interaction, E. Soloway and S. Iyengar, Eds. Ablex Norwood,

N.J., 1986, pp. 80-98.

[108] B. Madden, P. Madden, S. Powers, and M. Himsolt, "Portable Graph Layout and

Editing," in Graph Drawing, vol. 1027, Lecture Notes in Computer Science, F. J.

Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 385-395.

[109] T. J. McCabe, "A Complexity Measure," IEEE Transaction of Software

Engineering, vol. 2(4), pp. 308-322, 1976.

[110] C. McCreary, F. Shieh, and H. Gill, "CG: A Graph Drawing System Using

Graph Grammar Parsing," in Graph Drawing, vol. 894, Lecture Notes in

Computer Science, R. Tamassia and I . G. Tollis, Eds.: Springer-Verlag, 1994,

pp. 270-273.

[I l l] K. Mehlhorn and N. Stefan, LEDA: A Platform for Combinatorial and

Geometric Computing. Cambridge: Cambridge University Press, 1999.

[112] E. B. Messinger, "Automatic Layout of Large Directed Graphs", Ph.D. Thesis,

University of Washington, 1989.

[113] E. N. Messinger, L. A. Rowe, and R. R. Henry, "A Divide-and-Conquer for the

Automatic Layout of Large Directed Graphs," IEEE Transactions on Systems,

Man and Cybernetics, vol. 21(1), pp. 1-11, 1991.

[114] B. T. Messmer, "Efficient Graph Matching Algorithms for Preprocessed Model

Graphs", PhD Thesis, Univerisity of Bern, Switzerland, 1995. Available From

http://iamwww.unibe.ch/~fkiwww/publications/index.html.

[115] B. T. Messmer and H. Bunke, "A Decision Tree Approach to Graph and

Subgraph Isomorphism Detection," Pattern Recognition, vol. 32(12), pp. 1979-

1998, 1999.

[116] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Schneiderman, "Program

Indentation and Comprehensibility," Communications of the ACM, vol. 26(11),

pp. 861-867,1983.

[117] M. Munro, E. L. Burd, P. Chan, and P. Young, "The Shape of Software to Come

: Results of Preliminary Investigations of the VRG," in Proceedings of 2nd UK

workshop on Program Comprehension. Durham: University of Durham, 1996.

[118] G. C. Murphy, D. Notkin, and E. S.-C. Lan, "An Empirical Study of Static Call

Graph Extractors," in Proceedings of the 18th International Conference on

Software Engineering. Berlin Germany: IEEE, 1996, pp. 90-99.

Page 274

http://iamwww.unibe.ch/~fkiwww/publications/index.html

A.Hofton Chapter 14— Bibliography and Reference

[119] P. Mutzel, C. Gutwenger, R. Brockenauer, S. Fialko, G. Klau, M. Kruger, T.

Ziegler, S. Naher, D. Alberts, D. Ambras, G. Koch, M. Junger, C. Buchheim,

and S. Leipert, "A library of algorithms for graph drawing," Lecture Notes in

Computer Science, vol. 1547, pp. 456-457, 1998. Available From

http://www.mpi-sb.mpg.de/AGD/.

[120] B. A. Myers, "Taxonomies of Visual Programming and Program Visualization,"

Journal of Visual Languages and Computing., vol. 1, pp. 97-123,1990.

[121] P. Naur and B. Randell, "Software Engineering^ Report on a Conference

Sponsored by the NATO Science Committee," : NATO, 1969.

[122] W. M. Newham, "A Prototype Low Cost Single User Graphic System," in

Graphic Languages, F. Nake and A. Rosenfield, Eds. Amsterdam: North-

Holland Publishing Company, 1972, pp. 291-301.

[123] S. C. North, "Incremental Layout in DynaDAG," in Graph Drawing, vol. 1027,

Lecture Notes in Computer Science, F. J. Brandenburg and J. Franz, Eds.

Passau: Springer-Verlag, 1995, pp. 409-418.

[124] M. R. Paige, "On Partitioning Program Graphs," IEEE Transactions on Software

Engineering, vol. SE-3(6), pp. 386-393, 1977.

[125] A. Papakostas, J. M. Six, and I . G. Tollis, "Experimental and Theoretical Results

in Interactive Orthogonal Graph Drawing," in Graph Drawing, vol. 1190,

Lecture Notes In Computer Science, S. North, Ed.: Springer-Verlag, 1996, pp.

371-386.

[126] A. Papakostas and I . G. Tollis, "Issues In Interactive Orthogonal Graph

Drawing," in Graph Drawing, vol. 1027, Lecture Notes in Computer Science, F.

J. Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 419-430.

[127] A. Papakostas and I . G. Tollis, "Interactive Orthogonal Graph Drawing," IEEE

Transactions on Computers, vol. 47(11), pp. 1297-1309, 1998.

[128] M. Patrignani and F. Vargiu, "3DCube : A Tool for Three Dimensional Graph

Drawing," in Graph Drawing, vol. 1353, Lecture Notes in Computer Science, G.

DiBattista, Ed. Rome: Springer-Verlag, 1997, pp. 284-290.

[129] F. N. Paulisch and W. F. Tichy, "EDGE: An Extendible Graph Editor," Software

- Practice and Experience, vol. 20(S1), pp. 63-88, 1990.

Page 275

http://www.mpi-sb.mpg.de/AGD/

A.Hofton Chapter 14- Bibliography and Reference

[130] S. L. Pfieeger, "Design and Analysis in Software Engineering Part 1: The

Language of Case Studies and Formal Experiments," ACM SIGSOFT, vol.

19(4), pp. 16-20, 1994.

[131] A. D. Polimeni and H. J. Straight, Foundations of Discrete Mathematics.

Belmont: Brooks/Cole, 1985.

[132] T. W. Pratt and M. V. Zelkowitz, Programming Languages- Design and

Implementation. New Jersey: Prentice Hall, 1996.

[133] B. A. Price, R. M. Baecker, and I . S. Small, "A Principle Taxonomy of Software

Visualization," Journal of Visual Languages and Computing, vol. 4(3), pp. 211-

266,1992.

[134] L. B. Protsko, P. G. Sorenson, and J. P. Tremblay, "Mondrian - System For

Automatic-Generation of Dataflow Diagrams," Information and Software

Technology, vol. 31(9), pp. 456-471,1989.

[135] M. H. Protter and C. B. Morray, Calculus with Analytic Geometry : A First

Course: Addison Wesley, 1977.

[136] H. Purchase, "Which Aesthetic Has the Greatest Effect on Human

Understanding?," in Graph Drawing, vol. 1353, Lecture Notes in Computer

Science, G. DiBattista, Ed. Rome: Springer-Verlag, 1997, pp. 248-251.

[137] H. C. Purchase, "Performance of layout algorithms: Comprehension, not

computation," Journal of Visual Languages and Computing, vol. 9(6), pp. 647-

657, 1998.

[138] H. C. Purchase, R. F. Cohen, and M. James, "Validating Graph Drawing

Aesthetics," in Graph Drawing, vol. 1027, Lecture Notes in Computer Science,

F. J. Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 435-

446.

[139] H. C. Purchase and D. Leonard, "Graph Drawing Aesthetic Metrics,"

Department of Computer Science, University of Queensland, Technical Report

361, 1996.

[140] N. R. Quinn and M. A. Breuer, "A Forced Directed Component Placement

procedure for Printed Circuit Boards," IEEE Transactions on Circuits and

Systems, vol. 26(6), pp. 377-388, 1979.

[141] R. C. Read and D. G. Corneil, "The Graph Isomorphism Disease," Journal of

Graph Theory, vol. 1, pp. 339-363,1977.

Page 276

A.Hofton Chapter 14- Bibliography and Reference

[142] M. G. Rekoff, "On Reverse Engineering," IEEE Transactions of Systems Man

and Cybernetics, vol. 15(2), pp. 244-252, 1985.

[143] D. J. Robson, K. H. Bennett, B. J. Cornelius, and M. Munro, "Approaches to

Program Comprehension," Journal of Systems and Software, vol. 14(2), pp. 79-

84, 1991.

[144] W. W. Royce, "Managing the Development of Large Software Systems," in

Proceedings WESTCON. San Francisco, CA, 1970.

[145] R. G. Ryder, "Constructing a Call Graph of a Program," IEEE Transactions of

Software Engineering, vol. SE-5(3), pp. 216-225, 1979.

[146] G. Sander, "Graph Layout through the VCG Tool," Universitat des Saarlandes,

Technical Report A03/94, October 4,1994 1994.

[147] G. Sander, "Layout of Compound Directed Graphs," Universitat des Saarlandes,

Saarbrucken, Technical Report A/03/96, June 5 1996.

[148] G. Sander, M. Alt, C. Ferdinand, and R. Willhelm, "CLAX - A Visualized

Compiler," in Graph Drawing, vol. 1027, Lecture Notes in Computer Science, F.

J. Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 458-462.

[149] R. Sato, "Meaning of Dataflow Diagram and Entity Life History - A Systems

Theoretic Foundation for Information Systems Analysis .," IEEE Transactions

On Systems Man and Cybernetics Part a-Systems and Humans, vol. 27(1), pp.

11-22, 1997.

[150] B. Schneiderman, Software Psychology: Winthrop, 1980.

[151] B. Schneiderman, R. Meyer, D. McKay, and P. Heller, "Experimental

Investigations of Utility of Detailed Flowcharts in Programming,"

Communications of the ACM, vol. 20(6), pp. 373-381,1977.

[152] M. Skorsky, "TOSCANA Management System for Conceptual Data," in Graph

Drawing, vol. 1027, Lecture Notes in Computer Science, F. J. Brandenburg and

J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 483-486.

[153] D. D. Smith, Designing Maintainable Software: Springer-Verlag, 1999.

[154] I . Sommerville, Software Engineering, 5TH Ed. ed: Addison-Wesley, 1996.

[155] J. Soukup, "Circuit Layout," Proceedings of the IEEE, vol. 69(10), pp. 1281-

1304,1981.

[156] T. A. Standish, "An Essay on Software Reuse," IEEE Transactions in Software

Engineering, vol. 10(5), pp. 494-497, 1984.

Page 277

A.Hofton Chapter 14- Bibliography and Reference

[157] K. Sugiyama and K. Misue, "A Simple and Unified Method for Drawing

Graphs: Magnetic-Spring Algorithm," in Graph Drawing, vol. 894, Lecture

Notes in Computer Science, R. Tamassia and I . G. Tollis, Eds.: Springer-

Verlag, 1994, pp. 364-375.

[158] K. Sugiyama and K. Misue, "A Generic Compound Graph

Visualizer/Manipulator : D- ABDUCTOR," in Graph Drawing, vol. 1027,

Lecture Notes in Computer Science, F. J. Brandenburg and J. Franz, Eds.

Passau: Springer-Verlag, 1995, pp. 500-503.

[159] K. Sugiyama, S. Tagawa, and M. Toda, "Methods for Visual Understanding of

Hierarchical System Structures," IEEE Transactions on Systems, Man, and

Cybernetics, vol. 11(2), pp. 110-125,1981.

[160] R. Tamassia, "On Embedding a Graph in the Grid with the Minimum Number of

Bends," SIAM Journal of Computing, vol. 16(3), pp. 421-444, 1987.

[161] R. Tamassia, "Advances in the Theory and Practice of Graph Drawing,"

Theoretical Computer Science, vol. 217(2), pp. 235-254, 1999.

[162] R. Tamassia, G. DiBattista, and C. Batini, "Automatic Graph Drawing and

Readability of Diagrams," IEEE Transactions on Systems,Man and Cybernetics,

vol. 18(1), pp. 61-79,1988.

[163] D. Tunkelang, "A Practical Approach to Drawing Undirected Graphs," School

of Computer Science, Carnegie Mello University, Pittsburge, Technical Report

CMU-CS-94-161, June 1994.

[164] J. R. Ullman, "An Algorithm for Subgraph Isomorphism," Journal of the ACM,

vol. 23(1), pp. 31-42, 1976.

[165] J. G. Vaucher, "Pretty Printing Of Trees," Software Practice And Experience,

vol. 10, pp. 554-561, 1980.

[166] J. Q. Walker, "A Node-positioning Algorith for General Tree," Software

Practice and Experience, vol. 20(7), pp. 685-705, 1990.

[167] J. N. Warfield, "On Arranging Elements of a Hierarchy in Graphic Form," IEEE

Transactions on Systems, Man and Cybernetics, vol. 3(2), pp. 121-132, 1973.

[168] J. N. Warfield, "Crossing Theory and Hierarchy Mapping," IEEE Transactions

on Systems, Man and Cybernetics, vol. SMC -7(3), pp. 305-323, 1977.

[169] R. Webber and A. Scott, "GOVE Grammar-Oriented Visualisation

Environment," in Graph Drawing, vol. 1027, Lecture Notes in Computer

Page 278

A.Hofton Chapter 14- Bibliography and Reference

Science, F. J. Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp.

516-519.

[170] M. A. Weiss, Data Structures and Algorithm Analysis: Benjamin/Cummings,

1992.

[171] C. Wetherell and A. Shannon, "Tidy Drawings of Trees," IEEE Transactions on

Software Engineering, vol. 5(5), pp. 514-520, 1979.

[172] S. Wiedenbeck, "Processes in Computer Program Comprehension," in Empirical

Studies of Programmers, Human/Computer Interaction, E. Solo way and

S.Iyengar, Eds. Washington: Ablex Publiching, 1986, pp. 48-57.

[173] J. Wielemaker, "SWI Prolog - Home", Available From

http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

[174] G. J. Wills, "NicheWorks - Interactive Visualization of Very Large Graphs," in

Graph Drawing, vol. 1353, Lecture Notes in Computer Science, G. DiBattista,

Ed. Rome: Springer-Verlag, 1997, pp. 403-414.

[175] D. Wilson, "Forms of Hierarchy: A Selected Bibliography," General Systems,

vol. 14, pp. 3-15, 1969.

[176] R. J. Wilson, Introduction to Graph Theory, 4th ed: Longman, 1997.

[177] N . Wirth, Algorithms + Data Structures = Programs, 1st ed. Eagle Cliffs, New

Jersey: Prentice-Hall, 1976.

[178] S. N. Woodfield, S. E. Dunsmore, and V. Y. Shren, "The Effect of

Modularization and Comments on Program Comprehension," in Proceedings of

the 5th International Conference of Software Engineering: IEEE, 1981, pp. 215-

223.

[179] J. Yang, C. A. Shaffer, and L. S. Heath, "A Data Structure Visualisation

System," in Graph Drawing, vol. 1027, Lecture Notes in Computer Science, F. J.

Brandenburg and J. Franz, Eds. Passau: Springer-Verlag, 1995, pp. 520-523.

[180] P. Young, "HELP! - GraphTool for Java," Research Institute for Software

Evolution, Durham, Manual September 1999.

[181] E. Yourdon, Model Structured Analysis. Englewood Cliffs: Prentice Hall, 1989.

Page 279

http://www.swi.psy.uva.nl/projects/SWI-Prolog/

