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ABSTRACT 

Although many multi-component polymer systems are well characterised, the 

surface properties of polymers mixed with low surface energy additives have 

received little attention. In addition, the new branches of scanning probe 

microscopy that enable high resolution mapping and modification of surface 

charge distributions have been infrequently applied to polymer surfaces. 

The surface segregation of a fluorochemical additive directly from a 

polypropylene host matrix has been investigated by AFM and other surface 

analysis techniques. The level of surface enrichment was found to be governed 

by the temperature and duration of annealing. Further investigation revealed 

that the speed and extent of surface enrichment of the additive increases with 

polymer molecular weight. The effect of additive structure on surface 

segregation has also reported. 

A method of depositing charge onto polypropylene substrates from a high 

potential scanning AFM tip was developed. The relation between AFM tip-

voltage and the level of charge deposited on the substrate suggested that a 

localised corona discharge was generated. AFM scanning parameters were 

found to effect the deposition of charge. 

The charging behavior of fluorochemical doped polypropylene surfaces was 

investigated on macroscopic scales using a scanning electrometer probe, and 

on microscopic scales using EFM. Fluorochemical domains at the surface have 

been found to preferentially accumulate both positive and negative charge. 

Surface charge distributions were found to become more uniform during 

annealing. 

Sub-micron particle capture by charged surfaces was investigated using EFM. 

In addition, spatially confined amine beads were deposited onto a patch of 

localised charge and subsequently functionalised to produce a metallic gold 

coating. 
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QUOTATIONS 

"If god made the solids, then the devil made their surfaces" 

WOLFGANG PAULI 

"The larger the searchlight, the larger the circumference of the unknown" 

DICK TAYLOR 

BLOOD 
KNOW MUMHE'S 
TllKtNG ABOUT CMC* 

(Sf l l l fWtt* 

?*5 

3 

th (Kipper Williams in "The Times'* Newspaper, 8 February 1998) 
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CHAPTER 1 

INTRODUCTION TO POLYPROPYLENE, 
POLYMER SURFACE MODIFICATION AND 

SURFACE ANALYSIS TECHNIQUES 



1.1. Overview 

This Chapter aims to introduce some structural features of polypropylene; 

provide a background to relevant methods for chemical and electrical surface 

modification; and describe the surface analysis techniques used. 

1.2. Polypropylene 

1.2.1. Chemical Structure and Stereochemistry 

The chemical repeat unit of polypropylene is 

-(C*H-CH2)n-

CH 3 

where C* is a chiral centre. Polymers with this chemical structure are subdivided 

according to their stereochemistry. Atactic polypropylene has no 

stereospecificty at the chiral centres along the polymer chain, syndiotactic 

polypropylene has alternate r and s chiral centres, and isotactic polypropylene 

has the same chirality at each centre. Isotactic polypropylene (iPP) substrates 

have been used extensively in this work, consequently the remainder of this 

section focuses on polymer chains with this stereochemistry. 

1.2.2. Crystallinity 

Solidified isotactic polypropylene exhibits a high degree of crystallinity and is 

well known to produce complex structures on the molecular and the 

supermolecular scale.1'2 The crystallization of iPP is of particular interest due to 

its ability to crystallize in four modifications1 and the unusual phenomena of 

"cross-hatching" in its crystalline structure. The a-form of iPP is the most 

commercially useful phase.3 

1.2.3. Polymer Chain Conformations 

Although there are an infinite number of conformations that a polymer chain 

can adopt, in practice crystalline chain conformation is uniquely determined by 
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an interplay of energetics and kinetics.4 For iPP, all of the crystal forms involve 

the packing of just one helical conformation. This is a three-fold helix consisting 

of a regular sequence of TGTGTGTG... internal rotations with a 6.5 A chain 

axis repeat distance.1 This helical configuration arises from the need to avoid 

methyl-methyl steric hindrance. Both left-handed and right-handed helices are 

possible. 

1.2.4. Isotactic Polypropylene Crystal Structures 

1.2.4.1. a-Phase 

The crystal structure of the a-phase was solved by Natta and Corridini in 1960.5 

The overall geometry of the crystal cell is monoclinic, Figure 1.1. Helical 

packing proceeds so that any helix interacts mostly with helices of opposite 

chirality. This produces an alternation in the b axis direction of layers parallel to 

the ac plane made of only left-handed, or right-handed helices. Various 

representations of the crystal structure and the space group symmetry have 

been published.1,4 In addition, a helix may either point up, or down depending 

on the orientation of its methyl groups relative to the helix axis. The unit cell 

allows for statistical occupation of up or down helices, however prolonged 

annealing produces an ordered arrangement.6 

Cell parameters: 

a = 6.65 A; 
b = 20.96 A; 
c = 6.5 A; 
(3 = 99°80 

Figure 1.1 The crystal cell of a-polypropylene. 

1.2.4.2. p\ yand Smetic Modifications 

The (3-phase of iPP has a hexagonal unit-cell,7,8 while y-iPP is triclinia9 There is 

still debate over the structure of the fourth "smetic" phase. X-ray diffraction 

suggests a degree of order somewhere between crystalline and amorphous. 
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1.2.5. Factors Infiuencing Crystal Structure 

Crystallization of polypropylene at low to moderate undercooling exclusively 

produces the a-modification. As the crystallization temperature (T c) reduces 

(equivalent to a higher cooling rate for non-isothermal crystallization) increasing 

amounts of the (3-form are included. 2 , 1 0 However, the p-modification rarely 

exceeds 15 % of the total crystallized material. 1 0 The temperature at which the 

p-modification is introduced depends on the polymer grade; however in general 

at temperatures above 132 °C, only the a-phase is present. 1 0 A maximum 

temperature for p-phase inclusion has been predicted by theory (140-141 °C) 

and a suggested lower temperature limit (100 °C) 1 2 has been confirmed by 

experiment. 1 1 

It is possible to produce higher amounts of p-modification by using a 

"temperature gradient" approach, or by the addition of p-nucleating agents. Use 

of a selective p-phase nucleator and careful control of thermal conditions can 

produce pure p-iPP. 1 2 The y-phase is produced from low molecular weight iPP, 

and during high pressure crystallization. 1 3 , 1 4 Smectic iPP results from quenching 

of the melt. Quenching rates of up to 10,000 K min"1 fail to produce a totally 

amorphous sample. 

1.2.6. Macroscopic Polymer Structures: Spherulites 

1.2.6.1. Polymer Spherulites 2 

Polymers in a quiescent melt mainly crystallize into spherulitic structures. 

"Spherulite" refers to an accumulation of crystallites having a spherical shape or 

symmetry that have formed by uniform growth in all directions from a central 

nucleus. When thin films are observed during isothermal crystallisation with 

transmission polarization microscopy, spherulites appear as birefringent disc­

like formations seeded on random crystal nuclei, growing radially at a constant 

rate. On contacting, the growth fronts produce a multitude of polygonal 

formations bounded by straight or curved lines. 

Space filling in spherulites is thought to result from branching and subsequent 

splaying of growing lamellae at small non-crystallographic angles. Originally the 
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origin of splaying was attributed to the accumulation of non-crystallising 

components at the growth front. 1 5 This interpretation has been disputed by 

Basset who has found evidence that suggests segregation of contaminants 

does not effect spherulitic morphology. Instead factors such as cilia pressure 

(loose loops on the fold surface of lamellae) are invoked to explain branching 

and splaying. 1 6 ' 1 7 

1.2.6.2. Spherulite Types 

A rich variety of spherulite structures can be generated during the crystallization 

of iPP. These are usually identified according to their appearance in polarizing 

optical microscopy. For example, spherulites may be either radial or ringed. In 

radial spherulites, growth proceeds in a linear fashion from the nucleus. 

Whereas in ringed spherulites helical growth occurs, producing concentric dark 

rings in polarizing micrographs. 

Spherulites are often classified according to their birefringence. The 

birefringence of a spherulite, An, is defined as the difference in the refractive 

indices along the spherulites' radial and tangential directions, Equation 1 .1 . 1 8 

An - nr - n, Equation 1.1 

A spherulite is classified optically positive if nr is greater than n,. The origin of 

birefringence in polymeric material results from the interaction of incident 

radiation with the helical chain structure. 1 9 

A multitude of spherulite types have been identified optically. 2 0 The original 

work of Padden and Keith identified five types of spherulites. 2 1 They observed 

that a-phase spherulites changed their birefringence continuously from negative 

to positive with increasing supercooling. While, (3-phase spherulites were 

reported to occur sporadically at crystallization temperatures less than 132 °C. 

Observations have also shown that spherulites with positive birefringence form 

at high crystallization temperatures. 2 2 (3-modification hedrites have also been 

reported. Hedrites are about 1 |im in size and are thought to derive from the 

spiral growth of lamellae around a screw dislocation. 

5 



1.2.7. Internal Spherulite Structures 

1.2.7.1. The Origin of Positive Birefringence in a-iPP Spherulites 

The existence of optically positive a-spherulites is unexpected. Both theoretical 

optical anisotropy calculations, 2 3 and birefringence measurements on stretched 

polypropylene f ibres 2 3 show that the refractive index of polypropylene chains is 

larger parallel to their helical axis than perpendicular to it. The classical view of 

spherulites consisting of radial or nearly radial lamellae (R-lamellae) would 

suggest that the helical axis of the chain is mainly orientated tangentially. This 

would imply that all spherulites are negatively birefringent, Figure 1.2. 

n, 

*** 

nr 

J 

Figure 1.2 Radial lamellae place the polymer chains' helix axis in the tangential 
direction. 

In fact, positive birefringence is possible in a-spherulites because of a second 

set of parallel lamellae in the tangential direction (T-lamellae). Such lamellae 

are formed by large angle branching from R-lamellae, producing a texture 

known as "cross-hatching". T-lamellae have been observed by optical 

microscopy, transmission electron microscopy (TEM) and scanning electron 

microscopy. 3 ' 1 0 , 1 7 , 1 8 , 2 4 T-lamellae are observed to make a constant angle with 

R-lamellae (80° or 100°). The proportions of T- (positive contribution to 

birefringence) and R- (negative contribution to birefringence) lamellae in a 

spherulite can be calculated from birefringence measurements. 1 8 Positive 

birefringence occurs when the R-lamellae fraction, f r is less than 0.665 while 

spherulites are negatively birefringent if f r is greater than 0.665. 2 1 

1.2.7.2. Effect of Crystallization Temperature on Cross-Hatching in a-iPP 

Decreasing the crystallization temperature of a-iPP produces a gradual 

transition from optically negative to positive spherul i tes 2 0 This reflects a 

decrease in the fraction of R-lamellae with decreasing crystallization 

temperature. Micrographs of spherulite structure with lamellae resolution have 



indeed revealed such a correlat ion. 1 0 ' 1 7 , 2 4 At T c=160 °C spherulites are 

composed of radially growing dominant lamellae with the space between filled 

by nearly parallel lamellae. The onset of cross-hatching is observed when T c is 

between 155 °C and 150 °C. In this temperature range cross-hatching starts to 

fill in some of space between lamellae, however the generation of parallel 

lamellae still determines local morphology. 1 7 At T c=140 °C, T-lamellae are 

obvious in TEM micrographs and are well developed. At 130 °C T-lamellae are 

poorly developed and the cross-hatching density is high. 

At low temperatures the cross-hatched lamellae develop at the same time as 

the leading radial lamellae, and so T and R lamellae have similar thickness. 

Whereas at high temperatures T lamellae grow after radial lamellae, have less 

annealing time and are thinner. 2 4 

1.2.7.3. Molecular Explanation of Cross-Hatching in a-iPP 

In 1968 it was suggested that T-lamellae are generated by epitaxial growth on 

the ac face of R-lamellae to allow favourable interdigitation of methyl groups. 1 8 

This turned out to be correct, and this idea has now been refined to include the 

effect of polymer helix chirality. 1 , 2 5 In fact, T-lamellae are nucleated when the 

pattern of alternating sheets of oppositely handed helices along the b axis is 

broken by the deposition of a helix of the same hand as those in the 

neighbouring row, Figure 1.3. In this case, interdigitation of methyl groups is 

maintained by rotating the helical axis through the monoclinic angle, resulting in 

a branching nucleus, Figure 1.3. 
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B = 99°40 

Radial 
Lame ae 

• a : radial 
direction 

7[ 
5 

tangential 
lamellae 
axis 

Figure 1.3 Accidental deposition of a ac layer of the same helical chirality as 
the previous row initiates the formation of T-lamellae. Note that the fastest 
growth rate is along the a axis of the monoclinic cell. 

This interpretation explains the temperature dependence of cross-hatching. At 

high crystallization temperatures the diffusion rate is high, and deposition 

occurs at a low rate; reducing the possibility of branching. Whereas, at lower 

temperatures the rate of chain deposition is large and nucleation on growth 

faces is important. 2 5 

1.2.8. The Size and Shape of iPP Spherulites 
As the crystallization temperature decreases the average spherulite size 

decreases due to an increase in the average density of nuclei. The 

thermodynamic barrier for nucleation is proportional to AT"2 (where AT = T m -

T c , and T m is the melting temperature) whereas the barrier to growth is 

proportional to AT"1. Therefore as the crystallization temperature decreases, the 

rate of nucleation increases to a considerably greater extent than the spherulite 

growth rate from the nuclei. 2 

The combination of nucleation behaviour and spherulite growth rate accounts 

for the shape of spherulite boundaries. In a single phase system, the growth 

rates of all nuclei are the same, and so the boundary surface is determined by 

the formation of crystalline nuclei. Under isothermal conditions, nucleation may 

proceed simultaneously (athermal nucleation) or at different moments (thermal 
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nucleation).2 Models of spherulite boundaries show that if neighbouring 

spherulites nucleate at the same time and grow at the same rate then the 

boundary between them will be a straight line (planar in 3-dimenisons). 

However, if nucleation is staggered then the boundary will be hyperbolic (a 

hyperboloid in 3-dimensions). If another phase is present, then the spherulite 

growth rates will differ, allowing spherical and cardioid boundaries to form. 

Continuous cooling in a single phase system gives the same interspherulitic 

boundary geometry as in the isothermal case. 2 6 The situation for continuously 

cooled multi-phase systems is more complex and has not been solved. 

1.3. Polymer Surface Modification Methods 

1.3.1. Chemical Surface Modification 

1.3.1.1. Introduction 

Surface chemistry (and morphology) determines the way in which polymeric 

materials interact with their environment. The modern world is replete with 

examples of materials that rely on tailored surface properties resulting from 

careful control of the chemical functionalities present in their outermost regions. 

Water repellent garments, non-stick surfaces, anti-fog lenses, adhesives and 

many more all rely on surface modification. 

Methods of altering polymer surface chemistry include, plasma treatment (with 

gases 2 7 or polymerisable monomers 2 8), wet chemical treatment, 2 9 surface 

grafting, 2 9 UV irradiation, 2 8 and flame treatment. 2 9 Another strategy exploits the 

fact that in some polymer systems mixing in a low concentration of a polymer or 

small molecular additive can enrich the surface with a desired functionality. The 

remainder of this section outlines the factors that determine the surface 

composition in these binary systems. 
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1.3.1.2. Binary Polymer Systems 

Three types of two-component polymer systems are commonly identified: 

polymer-polymer blends, polymer-additive systems and co-polymers. In 

polymer blends two or more different polymers are present, in polymer-additive 

systems a polymer is mixed with a small molecule, whilst in co-polymer systems 

blocks of differing types of monomer are linked together by chemical bonds. 3 0 

1.3.1.3. Polymer Blends 

Polymer blends are divided into two types according to the degree of mixing of 

their components: miscible and immiscible. 3 1 

(a) Immiscible Blends 

In immiscible blends containing two different polymers, the surface is generally 

enriched by the lower surface energy component. 3 2 As an example, 

polystyrene/poly(ethyleneoxide) blend surfaces are enriched in the lower 

surface energy polystyrene component for all bulk compositions. As 

fluoropolymers are renowned for their low surface energy, they often exhibit 

surface segregation. For example, a poly(perfluoromethylmethacrylate) and 

poly(methylmethacrylate) blend with only 0.01% fluorinated component by 

weight, contains 24% fluorine in its outermost region. 3 4 

Bulk thermodynamics favours complete de-mixing of immiscible blends, which 

would result in a surface completely covered by the lower surface energy 

component. In practice, equilibrium is not usually obtained, and other factors 

govern surface composition. These can be intrinsic such as relative wettabilities 

and the degree of phase separation, or extrinsic such as sample preparation 

and blend morphology.4 

Annealing allows equilibrium to be more closely approached. At elevated 

temperatures, polymer molecules are able to relax, migrate and then reorganise 

into a more thermodynamically favourable state. 3 5 One example is that a layer 

of polystyrene can diffuse through a covering layer of poly(ethyleneoxide) 

during heating, to further lower surface energy. 3 3 
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Although surface energy differences are the main driving force for surface 

enrichment, other factors can alter a blends surface composition. Increasing the 

side chain length of a higher surface energy blend component, provides steric 

hindrance to the surface migration of a low surface energy polymer. 3 4 Chain 

stiffness is also an important factor. Single-chain mean field theory simulations 

suggest that for stiff/flexible mixtures, stiff chains segregate to the surface to 

achieve more efficient packing. 3 6 The crystallinity of each blend component can 

also determine the extent of segregation. In a polyolefin blend consisting of an 

amorphous and a crystalline component, the amorphous component 

significantly enriched the surface. 3 7 

(b) Miscible Polymer Blends 

As well as the factors discussed above, miscible polymer blends also undergo 

temperature and concentration dependent phase transitions that may influence 

surface segregation. 3 8 The correspondence between surface energy 

differences and surface excess is well illustrated for a miscible 

polystyrene/poly(vinylmethyl ether) blend where polystyrene preferentially 

segregates to the surface. 3 2 In this case, the extent of surface enrichment 

increases with the molecular weight of the polystyrene component. This effect 

was rationalised by the known decrease of surface energy with increasing 

polymer molecular weight. A good correlation between the mathematical 

relation describing the change in surface energy with molecular weight and the 

observed surface compositions was obtained. 

1.3.1.4. Polymer Additives 

Polymer additives are larger than common solvent molecules, but much smaller 

than polymer chains. Many polymer additives are designed to stabilise bulk 

polymers, by acting as antioxidants. For these applications, the accumulation of 

additive at the polymer-air interface is undesirable as it will lead to leaching and 

an uneven distribution of additive molecules throughout the polymer. 3 9 

However, low-surface energy additives can be used to modify surface 

chemistry. 4 0 ' 4 1 As for the polymer blend systems, surface energy differences 

between the additive and host polymer drive surface segregation. 4 1 Additive 

molecules are normally considered to diffuse to the surface through the 

amorphous phase of semi-crystalline host polymers. 3 9 Consequently the 
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structural features of the host polymer play a large part in determining the 

behaviour of the additive at the surface. For example in one study additive 

molecules were found to appear at a polypropylene surface in the amorphous 

boundaries between spherulites, and then spread across the surface by 

diffusion along spherulite radii. 4 2 Quantitative relationships have been 

established between polymer amorphous free volumes and additive diffusion 

rates. 4 3 

An additive's size and shape also effects its ability to diffuse through a host 

matrix to achieve surface enrichment. 4 4 This trend has been quantitatively 

related to the specific free volume of the additive. 

The compatibility of an additive with the host polymer will also effect its 

distribution. 3 9 Factors such as the physical state of the additive and its 

interactions with the polymer, itself and other additives determine 

compatibility. 

1.3.2. Electrical Surface Modification 

1.3.2.1. Introduction 

Surfaces that retain a permanent electric field following charging, are called 

electrets 4 5 They find applications in a wide range of technologies (e.g. 

microphones and xerography). One class of electrets that have found particular 

use are thin polymer films, whose electric field results from charge implanted 

from external sources. A range of polymers, including polyolefins and 

fluorocarbon polymers display excellent charge storage properties. 4 6 This arises 

from the low electrical conductivity of these polymers and the existence of 

localised traps for charge carriers caused by impurities, structural defects in 

monomer units and imperfections in crystalline order. 4 5 

Three main processes exist for the generation of polymer electrets: irradiation 

by low energy electrons, contact with liquids, and corona discharge. These are 

now briefly introduced. 
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1.3.2.2. Electret Formation by Low-Energy Electrons 

The exposure of a polymer electret to a beam of mono-energetic electrons 

produces a controlled density of charge carriers with known polarity at a depth 

precisely determined by the penetration of the electrons. 4 5 This method has 

little commercial use (it is technologically complex and requires vacuum 

apparatus), but due to the high degree of control it has been used to study the 

physical properties of electret materials 4 7 

1.3.2.3. Electret Formation by Contact with Liquid 

When a dielectric surface is exposed to a conducting liquid, charge transfer 

occurs onto the surface. This surface charge can then be introduced into the 

bulk by ageing, resulting in the formation of stable electrets with high surface 

charge density 4 5 

1.3.2.4. Electret Formation by Corona Discharge 

Exposure of polymer electrets to corona discharge is a commercially useful 

method of charging, and can achieve charge life-times comparable to those of 

films charged with an electron beam. 4 5 Corona discharge is defined as a self-

sustainable, non-disruptive, electrical discharge which occurs when a 

sufficiently high potential difference exists between asymmetric electrodes such 

as a fine wire and a plate. 4 8 The polarity of a corona discharge is determined by 

the high field electrode. Corona discharges are further sub-divided according to 

the corona voltage. With increasing voltage the positive corona becomes a 

continuous glow discharge, while negative discharges enter the Trichel pulses 

regime before also becoming continuous glows 4 9 During corona discharge, 

ionization occurs in the region close to the tip where the field strengths are 

greatest. Following generation, the ions drift to the grounded plate (samples 

undergoing modification are placed on this) under the influence of the electric 

field. More control over the level of surface charge can be achieved by placing 

a biased grid between the tip and the sample (corona triode). 4 8 The ions 

responsible for charging depend on corona polarity, discharge gas and 

humidity. The species present in air corona discharges are detailed in Table 

1.1. 
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% HUMIDITY POSITIVE CORONA NEGATIVE CORONA 

0 

100 

(H 2 0) n NO + , 

(H 2 0) n (N0 2 ) + , 

( H 2 0 ) n H + 

n increases 

co 3 ' 

• 

10% become hydrated 

(H 2 0 ) n C0 3 -

Table 1.1 Species responsible for corona charging. 

As well as implanting charge, corona discharges can cause chemical and 

morphological transformations to polymer surfaces. 5 0 

1.4. Characterisation Techniques 

1.4.1. Scanning Probe Microscopy 

1.4.1.1. Introduction 

Since the development of contact mode atomic force microscopy (AFM) in 

1986, 5 1 many new variations have sprung into use. Scanning probe 

microscopies can now measure surface mechanical properties, 5 2 perform 

localised thermal analysis, 5 3 obtain information about the electromagnetic 

properties of surfaces without wavelength limiting resolution, 5 3 and map 

magnetic and electrical f ields 5 4 with unrivalled lateral resolution. This section 

focuses on two advances: the use of an intermittent contact mode to allow 

mapping of heterogeneous systems (Tapping Mode AFM) and the development 

of techniques to map electric fields (Electric Force Microscopy). 

1.4.1.2. Basic Principles 

Atomic Force Microscopes consist of a sharp probe tip (typical radius of 

curvature = 13 nm 5 5 ) mounted on an ultra-light cantilever which is suspended in 

a fixed position above a xyz piezoelectric scanner. The probe is most 
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commonly made by masking and etching a silicon surface. Recording an 

image involves the scanner executing a raster scan underneath the tip in the xy 

plane. As the tip moves across the surface one of its physical properties 

reflecting the magnitude of the tip-surface interaction is monitored. For example 

in contact mode AFM the deflection of the cantilever is recorded using a beam 

bounce method (cantilever deflection reflects the tip-sample force). A feedback 

circuit is then used to adjust the z-scanners position so as to maintain a 

constant tip-surface interaction. The movements executed in the z-direction 

form a topographic image of the surface (in this case recorded at constant 

force). 

The high resolution of atomic force microscopy arises from a combination of the 

features of the instrumental design. Sharp tips provide good sensitivity to 

surface topography and enable images of cusps to be recorded (objects with 

aspect ratios higher than the tips' profile will be broadened or not fully tracked). 

The low mass of the cantilever, together with the optical detection method 

allows response to incredibly low forces (10 9 N) . 5 6 Excellent xy resolution is 

achieved by high precision, accurately calibrated scanners. 

1.4.1.3. Tapping Mode Atomic Force Microscopy 

The drawback of using contact mode AFM to examine soft surfaces (e.g. 

polymers), is that damage to the tip and sample may occur. This is because of 

the dragging motion of the tip across the surface. 5 7 In Tapping Mode, lateral 

forces are reduced by causing the tip to oscillate at or near its resonance 

frequency (70 kHz - 350 kHz depending on the probe type). 5 8 Under these 

conditions, the tip is picked up and moved, rather than being dragged across 

the surface. Tapping Mode operates by monitoring the amplitude of tip 

oscillation at its resonance frequency (using optical interferometery). As a freely 

vibrating probe approaches a surface it will experience a loss in energy as it 

starts to make intermittent contact with the surface (in fact, the resonance peak 

shifts to higher frequencies, so that the frequency being monitored is moved 

further from resonance). 5 9 This energy loss will cause a reduction in the 

oscillation amplitude at the monitoring frequency. A feedback loop is used to 

maintain a constant oscillation amplitude while scanning, and the adjustments 

necessary form a Tapping Mode height image. The important variables in 
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Tapping Mode imaging are the probe's free amplitude (i.e how hard it is driven 

before contacting the surface) and the amplitude during tapping (the set-

point). 5 9 A derived quantity; the set-point : free amplitude ratio is often used to 

summarise the imaging mode; low values signify hard tapping, while higher 

values signify softer tip-sample interactions. Insufficient free-amplitudes (<20 

nm) prevent the tip from leaving the contamination layer. 6 0 These parameters 

can effect height contrast. 6 0 

In addition to monitoring the amplitude of the tip oscillation, the phase shift 

between the exciting frequency and the tip's response can also be recorded. 

The resulting phase images are valuable tools in mapping heterogeneous 

surfaces. 6 0 Although spectacular image contrast is often obtained, the 

interpretation of phase shifts is difficult, and they correlate with the Tapping 

Mode parameters mentioned above. Contrast in published phase images has 

been attributed to factors including, elasticity,5 9 hydrophobicity, 6 1 , 6 2 adhesion, 6 3 

and energy dissipation. 6 0 

1.4.1.4. Electric Force Microscopy (EFM) 

EFM was initially developed as a variation of non-contact AFM. In non-contact 

AFM, the same oscillation amplitude feedback described for Tapping Mode is 

used, however instead of intermittently touching the surface, the tip is raised a 

short distance above the surface (0.1 - 10 nm). 6 4 Under these conditions, Van-

der Waals forces are responsible for changes in the tips' oscillation amplitude. 

However, for charged surfaces additional electrostatic forces are also present 

at the surface, and will contribute to changes in oscillation amplitude. From this 

prototype EFM, many variations have emerged, Table 1.2. 

In this work a commercial method that combines Tapping Mode and non-

contact mode has been used: lift-mode EFM. 6 5 Lift-mode EFM entails initially 

recording a Tapping Mode height scan line. This height data is then used to 

ensure that the tip is held a fixed distance above the surface during a second 

non-contact "lifted" scan along the same scan line. The lift-height is defined by 

the user (normally 5-50 nm). During the lift-mode scan line the tip continues 

oscillating, and changes in its vibrational characteristics will reflect the long 

range forces above the sample. However in contrast to other non-contact EFM 
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methods, the tips' phase shift rather than its amplitude is used to detect the 

electric field gradient above the surface. Phase shifts are highly sensitive to 

long-range forces. Another advantage of lift-mode is that Tapping Mode phase 

data can be simultaneously collected. It is also possible to apply a small d.c. 

voltage to the tip while scanning, to assist the determination of surface polarity. 
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1.4.2. X-ray Photoelectron Spectroscopy (XPS) 

XPS uses soft x-rays to photoeject 7 4 core level electrons from atoms in the 

uppermost region of the sample (1-5 nm). 7 5 These photoelectrons pass through 

an electron analyser prior to detection, resulting in a spectrum of electron 

intensity as a function of kinetic energy (KE). According to energy conservation 

the binding energy (BE) of the electrons is given by Equation 1.2: 

KE=hv-BE -</> Equation 1.2 

where hv is the energy of the incident photons and <p is the spectrometer work 

function. 

Ultra-high vacuum is necessary to ensure that the photoelectrons reach the 

electron analyser without colliding with background gas molecules. 7 6 Suitable x-

ray sources must have line widths sufficiently narrow so as not to limit energy 

resolution, and a characteristic energy high enough to eject a wide range of 

core level electrons. Mg Ka (hv = 1253.6 eV; line width = 0.7 eV) and Al Ka (hv 

= 1486.6 eV; line width = 0.85 eV) satisfy these conditions. 

Each elements' core level electrons have a characteristic binding energy 

(although H and He cannot be photoionized by usual X-ray sources), and so 

XPS spectra provide elemental analysis. If suitable reference compounds are 

available, then the intensity of XPS signals can be quantified to give surface 

elemental abundances. Binding energies show small variations according to the 

atoms' chemical environment. For example, the attachment of groups that 

withdraw electron density from the atom (e.g. fluorination), will cause an 

increase in core level electron binding energies as a result of their decreased 

nuclear screening. Greater electron withdrawal results in a greater increase in 

binding energy. 7 7 

The surface sensitivity of XPS is a result of the inelastic mean free path length, 

X, of the photoelectrons. X is a statistical quantity reflecting the average 

distance an emitted electron can travel within the solid before being involved in 
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an inelastic collision. Once such collisions occur, the electron will no longer 

appear in the XPS peak. Inelastic path lengths depend on the energy of the 

electron, and so vary for different elements, Figure 1.4. However, most 

elements contained in polymers emit photoelectrons with energies in the range 

of 100 eV - 1000 eV. Such electrons can only escape from within a few 

monolayers of the sample surface, Figure 1.4. 

CO 0 
Co 

10 

10 CO 

CD 
CD 1 10 LL 

Co 
CD 0 ^ 10 

1 o 1 10 10 10 10 10 10 

Electron Energy / ev 

Figure 1.4 The dependence of inelastic mean free path length, X on the 
emitted electron energy for elements. 

When electrons are detected normal to the sample surface, 95 % of electrons 

at a given energy emerge from within 3X of the sample surface (the escape 

depth). However by changing the angle at which electrons are detected (the 

take-off angle, 9) the escape depth is scaled to 3^sin0, Figure 1.5.7 6 

Detector 
Detector 

9 

31 T 
Pfi-iiiWiimtti-i 

31 
H 3^sin0 

Figure 1.5 Angle resolved XPS. 
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The instrumental design of XPS apparatus has been described in detail 

elsewhere. 7 6 

1.4.2.1. Secondary Ion Mass Spectroscopy (SIMS) 

In SIMS an ion beam (commonly O", Cs + , Xe + , Ar +, Ga + , 0 2

+ ) of energy 0.5-20 

keV is used to erode the sample surface and generate secondary elemental or 

cluster ions that are subsequently extracted from the surface by an electric field 

and detected in a quadrupole or time-of-flight (TOF) mass spectrometer. 7 8 

These secondary ions usually come from the top monolayer of the exposed 

surface. Results can be presented as a function of mass, location or depth. 

Static SIMS records the mass distribution of ions using a low flux of incident 

ions to prevent erosion of the sample. In contrast, a high ion flux is used in 

dynamic SIMS to erode the surface as well as generating secondary ions. 

Imaging is possible either by rastering the ion beam across the sample 

(secondary ion microprobe) or by using ion optics to obtain a stigmatic image of 

the sample (secondary ion microscope). 7 9 

1.4.3. Contact Angle Measurements 

1.4.3.1. Introduction 

Contact angle analysis is an extremely surface sensitive technique (top 5-10 

A) . 8 0 The behaviour of a droplet of liquid on the surface of a solid is determined 

by the surface tensions of both the droplet and the solid surface. On a smooth 

surface the equilibrium contact angle arises from a balance of forces and can 

be expressed in terms of surface tensions, Figure 1.6 and Equation 1.3 

(Young's equation 8 1). Contact angles reflect the degree of repellency of a 

surface to a given probe liquid, higher angles indicating greater repellency. 

Instrumental^, static contact angles are most accurately determined using a 

video contact angle apparatus. This allows the deposition of a known volume of 

probe liquid onto the surface of interest. A CCD camera focused on the droplet 

as it rests on the substrate allows the capture of a static image. Software is 

then used to calculate the contact angle from the image. 
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7sv Ysl 

Figure 1.6 The contact angle experiment: the contact angle is the angle 
between the marked tangent and the liquid/solid interface, 6C. The forces are: a 
force tending to decrease droplet size to minimise liquid/gas interface area, YLV; 
a force tending to minimise the solid/liquid interface area, ysi_, and a force 
tending to minimise the solid/gas interface area, ysv- Resolving the forces leads 
to an expression for the contact angle, Equation 1.3.8 2 

cos(9 c) = Equation 1.3 
Y L V 

1.4.3.2. Surface Energy Determination 

If two or more contact angles are recorded with liquids of known surface 

tensions, then estimates of the surface energy of the solid may be obtained. 

The two methods used in this work are detailed below. 

(a) Owen and Wendt Method 

This method allows surface energy to be estimated from contact angle 

measurements using two different liquids. 8 3 The method derives from Young's 

equation (rearranged as Equation 1.4) and Fowke's idea that surface tensions 

could be split into dispersive and polar components, Equation 1.5 

7sv = 7 S L + 7 L V C O S 9 c 

Superscripts are d; dispersive and p; polar. 

Equation 1.4 

Equation 1.5 

Owen and Wendt proposed that the solid-liquid surface tension could be written 

as the geometric mean of the solid-vapour and liquid-vapour surface tensions, 

Equation 1.6. Combining this with Youngs' equation gives Equation 1.7. 
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Y s L = T s + Y L - 2 ( y ^ d

L ) l / 2 - 2 ( Y s P y P

L ) Equation 1.6 

Y L V C + C O S 0 c ) = 2 ( 7 S V Y L V ) 1 / 2 " * " 2 ( Y S V Y L V ) 1/2 Equation 1.7 

By measuring the contact angles of two high boiling point liquids, for which the 

dispersive and polar parameters (yp

LV and yd

LV) are known, Equation 1.7 can 

be solved to give the dispersive and polar contributions of the surface's energy 

( / W a n d yd

Sv). 

(b) Zisman Plots 

A Zisman plot is constructed by choosing a set of liquids from the same 

homologous series and measuring their contact angles with the surface of 

interest. A plot of the cosine of the contact angles versus the liquids' surface 

tensions approximates to a linear relationship.8 4 By extrapolating the line of best 

fit to cosG = 1, the critical surface tension is obtained. Any liquid with a surface 

tension smaller than this value will spread out when contacted with the surface. 

1.4.4. Electrometer 

Electrometers comprise a metallic probe suspended above the surface of 

interest. They are able to record the surface potential of the region immediately 

below the probe, using a null potential method. An a.c. voltage of magnitude V a c 

and frequency co is applied to the probe, resulting in a force, F, which depends 

on the potential between probe and sample, V d c , the probe/sample capacitance 

dC 
gradient, — , and time, t, Equation 1.8. This force will cause the tip to oscillate. 

The instrument's electronics alter the probe voltage until the oscillation ceases 

(i.e. there is no force), at this point the voltage on the probe is the same as the 

surface potential, and a measurement is recorded. 

dz 

dC 
dz 

V d cV a ccos(Ot Equation 1.8 
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CHAPTER 2 

FLUOROCHEMICAL DOPED POLYPROPYLENE 
SURFACES 
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2.1. Introduction 
Fluorinated surfaces are renowned for their oil and water repellency,1 chemical 

inertness, low coefficient of friction, and low dielectric constant. 2 These 

properties are exploited in protective clothing, 3 stain-proof textiles,4 medical 

implants,5 marine coatings,6 etc. Conventional methods employed for 

generating fluorinated surfaces include: direct reaction with F 2 , 7 plasma 

treatment using fluorine containing gases, 8 plasma polymerisation of 

fluoromonomers, 9 VUV assisted fluorination, 1 0 sputter deposition of 

fluorocarbon layers from a polytetrafluorethylene (PTFE) target, 1 1 and chemical 

derivatisation. 1 2 All of these methods are applied to a pre-formed substrate. 

An alternative approach is to mix in a small amount of fluorine containing 

material during polymer processing, 4 , 1 3" 1 5 which preferentially segregates to the 

surface as a result of its low surface energy. 1 6" 1 8 Annealing the formed polymer 

can then be used to increase the extent of segregation. 1 9 Previous examples of 

surface enrichment include fluoropolymer/polyolefin blends, 1 8 fluorinated blocks 

within copolymer systems, 1 6 fluorocarbon groups located at the end of polymer 

chains, 1 7 and fluorochemical addit ives. 2 0 , 2 1 Studies of the latter category are 

limited to spun cast systems: examples include a PTFE - polyurethane - PTFE 

additive mixed into polyether sulfone 2 0 and fluorinated esters doped into alkyd 

resin. 2 1 

The factors affecting the segregation of fluorinated additives are poorly 

understood compared to other multi-component systems. For example, the 
19 22 

segregation of fluoropolymers has been widely studied in the past, ' and 

shown to be dependent upon crystallinity,2 3 blend composition, 2 4 polymer 

molecular structure 2 2 and thermal history of the sample. 1 9 , 2 4 Whereas surface 

enrichment phenomena employing fluorine containing additives has received 

very little attention. 2 0 , 2 1 Some "diffusion-in" experiments addressing the 

migration of non-fluorinated additives have been previously carried out, 2 5 

however the role played by polymer molecular weight has not been addressed. 

The segregation behaviour in multi-phase fluorine containing systems is also 

known to depend on the molecular structure of the fluorochemical dopant. For 
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example, in the case of polymer blend systems comprising polystyrene and 

perfluorohexane double end capped polystyrene, the number of styrene units 

contained between the perfluorinated end groups in the polymeric additive 

governs the extent of surface enrichment. 2 6 However, the effect of 

fluorochemical additive structure on segregation behaviour has not been 

investigated. 

This chapter studies the surface segregation behaviour of extruded 

fluorochemical doped polymer films. The effect of annealing (Section 2.2), 

polymer molecular weight (Section 2.3) and additive structure (Section 2.4) are 

investigated. 
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2.2. Surface Enrichment of Fluorochemical Doped 
Polypropylene Films 

2.2.1. Introduction 
In this section the surface segregation of a fluorochemical additive directly from 

a polymer melt is described. The system comprises polypropylene and a bis-

perfluorinated additive: 1-octanesulfonamide,N,N'-[1,6-hexanediylbis[(2-oxo-

3,5-oxazolidinediyl)methylene]]bis[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-

heptadecafluoro-N-methyl],2 7 Structure 2.1. XPS, optical microscopy, Tapping 

Mode AFM, imaging SIMS, and contact angle analysis have been used to 

characterise the surface of these polymer films. 

NSOX„F 2 W 8 - 17 

/ o 
Me O N A/V o N 

/ O 
C 8 F 1 7 0 2 S N ^ / 

Structure 2.1 Bis-perfluorinated additive. 

2.2.2. Experimental 
The following two films were prepared by melt blowing: a reference substrate 

comprising isotactic polypropylene (Exxon 3505; melt flow index 400); and the 

same grade polypropylene mixed with 1 % wt. of the fluorochemical additive. 

Subsequent annealing studies were carried out in a temperature controlled 

oven, where a piece of film was laid flat onto a clean metal plate. The surface 

exposed to air was then analysed for physiochemical changes. 

XPS spectra were recorded on a VG Escalab Mkll spectrometer equipped with 

an unmonochromatised Mg K a X-ray source (1253.6 eV), and a hemispherical 

analyser. Photoemitted core level electrons were collected at a fixed take-off 

angle (75° away from the sample surface, except for angle resolved 

experiments) with electron detection in constant analyser energy (CAE) mode 
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with 20 eV pass energy. Data was acquired on an interfaced computer. 

Instrument calibration was performed using the gold 4f 7 / 2 reference peak at 

83.8 eV with a full-width-at-half-maximum (fwhm) of 1.2 eV. No radiation 

damage was observed during the time scale taken for data accumulation. 

Sensitivity factors determined using calibration compounds were taken as C(1s) 

: F(1s) : 0(1 s) : N(1s) : S(2p) equals 1.00 : 0.24 : 0.39 : 0.65 : 0.49. 

Optical micrographs were obtained using an Olympus BX40 microscope with 

top lighting (x 50 objective). 

AFM micrographs were acquired with a Digital Instruments Nanoscope III. 

Damage to the tip or sample was minimised by using Tapping Mode AFM. 2 8 In 

addition to height images, phase images reflecting the mechanical properties of 

the surface were obtained by choosing a setpoint : free amplitude ratio of 0.5 

(setpoint = 50 nm; free amplitude = 100 nm). 2 9 Image analysis was performed 

using Scion Image beta release 3b software. 

TOF-SIMS analysis was carried out with a Physical Electronics 7200 instrument 

which has been described previously. 3 0 A liquid metal ion gun was used for 

imaging (25 keV Ga +) with a sub-micron spot size (-0.5 urn). The total ion-flux 

was kept well under 10 1 3 ions cm" 2 (static conditions). 

Sessile drop contact angle measurements were carried out at 20 °C using a 

video capture apparatus (A.S.T. Products VCA2500XE). The chosen probe 

liquids were: high purity water (B.S. 3978 Grade 1), hexadecane (Aldrich, 99% 

purity) and methylene iodide (Aldrich, 99% purity). 
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2.2.3. Results 

2.2.3.1.Surface Analysis of Pure and Fluorochemical Doped Polypropylene 
Films 

XPS was used to measure the C, F, O, N and S elemental abundances within 

the top 2-5 nm of each sample, 3 1 Table 2.1. Only carbon spectral features 

corresponding to CxHy were observed for the pure polypropylene film (since 

XPS is not sensitive to hydrogen). In the case of the fluorochemical doped 

polyolefin film, the ratio of F : O : N : S at the surface was found to be 

consistent with the molecular formula of the additive (40% C, 42.5% F, 10% O, 

5% N and 2.5% S; again H is excluded). The overall fluorochemical coverage at 

the surface was calculated to be 21.2 ± 0.6% (based on percentage F detected 

by XPS). Hence, there is a considerable surface excess compared to the 1 % 

fluorochemical additive loading in the bulk. 

Sample I 

C(1s) 

Percentage 

F(1s) 

Elemental c 

0(1 s) 

:ompositior 

N(1s) 

i 

S(2p) 

Pure 

polypropylene 

100.0 0.0 0.0 0.0 0.0 

Fluorochemical 

+ polypropylene 

86.8 ± 0.2 9.0 ±0.3 2.1 ±0.3 1.6 ±0 .4 0.5 ±0.2 

Table 2.1 XPS analysis. 

Optical microscopy showed that both films crystallise to form spherulites, which 

impinge to produce mainly polygonal boundaries, Figure 2.1. The spherulite 

diameters were measured along their widest axis, Table 2.2; and it was found 

that spherulites in the fluorochemical doped film are slightly larger compared to 

those associated with the pure polypropylene substrate. 
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Figure 2.1a Optical micrograph of pure polypropylene. o 
• 

V 

80um 
Figure 2.1b Optical micrograph of fluorochemical doped polypropylene. 

Sample Mean diameter / |im Standard deviation / urn 

Pure 

polypropylene 

14.9 ±4 .5 

Fluorochemical + 

polypropylene 

15.3 ±4 .9 

Table 2.2 Spherulite sizes determined by optical microscopy. 
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Low resolution height and phase Tapping Mode AFM images of pure 

polypropylene film also display spherulitic morphology, with mostly polygonal 

edges, Figure 2.2a. Organisation of lamellae within each spherulite is evident at 

higher resolution, Figure 2.2b. For the chosen set of AFM phase imaging 

parameters, the highly crystalline lamellae appear brighter than the amorphous 

surround due to their higher density. 3 2 Rows of lamellae appear arranged both 

tangentially to, and along, the radial direction of the spherulite, Figure 2.2c. 

Spherulitic morphology is also evident in the Tapping Mode AFM micrograph of 

the doped fluorochemical sample, Figure 2.3a. However, the phase image 

reveals additional bright dots and patches not seen in the case of the pure film, 

Figure 2.2, or the corresponding optical micrograph, Figure 2.1b. These regions 

of high phase shift are randomly distributed across the surface and do not 

correlate with topographical features, Figures 2.3b and c. Image analysis shows 

that these high phase shift fluorochemical regions cover 28 ± 1 % of the surface. 

This is slightly more coverage than that measured by XPS, and the difference 

can be attributed to the greater surface sensitivity of the AFM technique, in 

conjunction with a concentration gradient at the surface (Tapping Mode AFM is 

only sensitive to the outermost surface, whereas XPS probes 2-5 nm into the 

sample 3 1). Small underlying polypropylene crystallites can be identified at high 

resolution, however these have no specific orientation in contrast to the pure 

polypropylene sample, Figure 2.3c. 

Prior to annealing, the F" TOF-SIMS image of the doped film surface displayed 

bright striations corresponding to patches of fluorochemical additive at the 

polymer surface, Figure 2.4a. The total ion image reflects sample topography, 

Figure 2.4b. 
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Figure 2.2 Tapping Mode AFM micrographs of pure polypropylene (LHS: 
height; RHS: phase): (a) 30 |im x 30 urn; (b) 10 jim x 10 urn; and (c) 2 fim x 
2 |im (the radial direction of the spherulite is indicated by an arrow). 
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Figure 2.3 Tapping Mode AFM micrographs of fluorochemical doped 
polypropylene (LHS: height; RHS: phase): (a) 30 urn x 30 |im; (b) 10 |im x 10 
|im; and (c) 2 |im x 2 (xm. 
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Figure 2.4 50 um x 50 |im SIMS images of doped polypropylene: (a) F" ion 
image; and (b) total ion image. 



2.2.3.2.The Effect of Annealing 

Annealing at 80 °C and 130 °C did not alter the XPS surface composition of the 

pure polypropylene film. Whereas in the case of the fluorochemical doped 

material, the rate of additive build-up at the surface slowed with lengthening 

annealing period, until eventually a limiting coverage was reached, Figure 2.5. 

A maximum fluorochemical coverage of about 34% was measured after 

annealing at 80 °C for 64 hours, Figure 2.5a. At the higher temperature of 130 

°C, the maximum coverage was greater, corresponding to approximately 80% 

coverage after just 15 minutes, Figure 2.5b. 
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Figure 2.5 XPS additive coverage as a function of annealing time: (a) 80 °C; (b) 
130 °C. 

On this premise, a series of surfaces with varying fluorochemical coverage were 

prepared by annealing the doped film at 130 °C for increasing periods of time. 

These were then characterised by XPS, contact angle measurements, phase 

imaging AFM, and TOF-SIMS. For each set of annealing conditions, the pure 

polypropylene sample was employed as a fluorochemical-free reference 

substrate. 

Water (surface energy: polar component = 50.7 mN m"1 and dispersive 

component = 22.1 mN m' 1) 3 3 a r , d hexadecane (surface energy: dispersive 
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component only = 27.5 mN m"1)3 3 contact angles were measured as a function 

of the amount of fluorochemical present at the surface, Figure 2.6. Water and 

hexadecane contact angles exhibit a fairly linear rise versus additive coverage. 

As expected on the basis of surface energetics, hexadecane wets pure 

polypropylene (surface energy: = 38 m Nm"1).3 3 

14a 

O 120-

c 100-

40-
n to 

O 20- •—Water 
A— Hexadecane 

10 20 30 40 50 60 70 80 90 
% FC Coverage 

Figure 2.6 Water and hexadecane contact angles as a function of 
fluorochemical coverage (determined by XPS). 

Tapping mode AFM phase images showed that the surface distribution of 

fluorochemical additive changes from discrete dots and patches, to a 

connected network with increasing surface coverage, Figure 2.7. The surface 

concentration determined by XPS was found to be in good agreement with the 

data obtained from AFM image analysis. As indicated previously, Tapping 

Mode AFM images portray slightly greater coverage compared to XPS due to 

the higher surface sensitivity of AFM. 
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Figure 2.7 Tapping Mode AFM phase images at the surface (all images are 10 
jum x 10 um): (a) pure polypropylene; (b) 21% fluorochemical coverage by XPS, 
27.7% in image; (c) 32% fluorochemical coverage by XPS, 38.8 % in image; (d) 
61% fluorochemical coverage by XPS, 65.7 % in image. 



Imaging SIMS confirmed the effect of annealing on the distribution of 

fluorochemical additive at the surface, by showing an uniform F" signal across 

the polymer film, Figure 2.8a. Again, the total ion image reflects the sample 

morphology, Figure 2.8b. 

a 
0 - -

• 

iili 50LLITI 

Figure 2.8 50 |im x 50 |im SIMS images of doped polypropylene annealed at 
130 °C for 15 minutes: (a) F" ion image; and (b) total ion image. 
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2.2.3.3.Surface Concentration Gradient 

F(1s) electrons experience a smaller mean free path compared to F(2s) 

electrons.31 Consequently the F(1s)/F(2s) intensity ratio can provide an insight 

into the concentration gradient of fluorinated moieties at the surface. 

Poly(tetrafluoroethylene) (PTFE) film was used as a reference, since it contains 

a uniform distribution of fluorinated functionalities, yielding a F(1s)/F(2s) value 

of 23.1 ± 0.4. A F(1s)/F(2s) ratio of 33.0 ± 2.5 was measured for high coverage 

fluorochemical doped polypropylene (produced by annealing at 130 °C for 15 

minutes, see Figure 2.5b). This ratio is greater than the value for PTFE, and 

therefore it can be concluded that a concentration gradient of additive exists 

within the topmost 2-5 nm of the surface (the XPS sampling depth). 

Further insight into the variation of additive concentration with depth at the 

surface was gained by angle resolved XPS.3 1 The sampling depth at a given 

take-off angle, 0 is given by 3A,sin0, where X is the mean free path of the 

photoelectrons in the polymer.31 Hence, as the take-off angle is reduced, 

surface sensitivity is enhanced. For a given high fluorochemical coverage film 

(produced by annealing at 130 °C for 15 minutes), it was found that the C(1s) 

signal intensities of the CF2 group (292.2 eV) and the CF 3 group (294.2 eV) 

increase relative to the hydrocarbon peak (285.0 eV) with decreasing take-off 

angle, Figure 2.9(a) (C(1s) spectra were fitted to five Mg Kai,2 components: 

CxHy (285 eV), C-0 (286.6 eV), C=0 / O-C-0 (287.8 eV), CF 2 (291.2 eV) and 

CF 3 (293.3 eV); 3 4 in addition Mg Koc3,4 satellite peaks shifted by ~9 eV towards 

lower binding energy were taken into consideration). The aforementioned 

surface concentration gradient was confirmed by plotting the F(1s)/C(1s) ratio 

and the relative amounts of F, N, O and S versus relative sampling depth, 

Figure 2.9b and c respectively. In the latter case, it is evident that as the 

sampling depth decreases, the proportion of F exceeds the expected 

theoretical amount (based on random additive conformation in the surface 

region), and the concentration of O is lower. In conjunction with the observed 

relative increase of CF 3 versus CF2, Figure 2.9a, this confirms that the 

fluorochemical segments of the additive are preferentially aligned outwards at 

the surface. 
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Figure 2.9a C i s envelope as a function of take-off angle. 
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Figure 2.9b Variation of F / C ratio with sampling depth. 
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Figure 2.9c Variation in amount of F, N, O and S at the surface with sampling 
depth. Horizontal dashed lines show the predicted results assuming the additive 
is randomly orientated at the surface. 

46 



2.2.4. Discussion 
The straight edged spherulite boundaries discernible in the optical and large 

scale Tapping Mode AFM images (Figures 2.1, 2.2a and 2.3a) are consistent 

with athermal (simultaneous) nucleation of a single modification of 

polypropylene during continuous cooling conditions.35 X-ray diffraction studies 

indicated that the films consist almost exclusively of the a-polymorph.36 The 

small number of rounded boundaries, such as those seen in Figure 2.2a, can 

be attributed to the sporadic inclusion of (3-phase spherulites.35 The cross-

hatched morphology seen at higher resolution by AFM phase imaging for the 

pure polypropylene spherulites (Figure 2.2c) has previously been observed by 

polarised light microscopy,37 scanning electron microscopy,37 transmission 

electron microscopy3 8 , 3 9 and Tapping Mode AFM. 4 0 This corresponds to 

lamellar growth along both the radial and tangential directions within a-

spherulites during the rapid cooling of the polypropylene melt. 4 1 , 4 2 Incorporation 

of non-crystallisable constituents into the melt can alter spherulite growth rates 

as they are expelled from the growth front.43 In the present study, the larger 

spherulite size and changes in lamellae structure noted for the fluorochemical 

containing sample are indicative of the additive altering the polypropylene 

crystallization process, Figures 2.1-2.3 and Table 2.2. 

Surface energies were calculated using the Owen and Wendt method4 4 for the 

pure polypropylene film (38 ± 3 mN m"1; contact angles: water =111° and 

methylene iodide = 48.6°) and the pure fluorochemical additive (12 + 1 mN m"1; 

contact angles: water = 109.2° and hexadecane = 78.7°) On the basis of 

thermodynamics, the lower surface energy fluorochemical component is 

enriching the polypropylene surface.16"18 However this is not able to proceed to 

completion, since the melt is cooled from 154 °C to ambient temperature in 

approximately 1 s. Subsequent annealing enables more additive to migrate 

towards the polymer-air interface, thereby approaching closer to 

thermodynamic equilibrium. The increase in additive concentration at the 

surface of the doped film during annealing can be rationalised in terms of 

kinetic and thermodynamic factors. The former is related to the additive's 

diffusion coefficient within the polypropylene matrix, which will increase with 
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temperature; ' therefore maximum coverage is reached more quickly at 130 

°C compared to 80 °C. Whereas thermodynamics determines the equilibrium 

additive coverage achievable at a given temperature. Furthermore, XPS has 

shown that the two perfluorinated arms present in the additive molecule adopt a 

conformation which exposes the fluorinated chains at the surface, further 

minimising the surface energy. 

The observed AFM phase image contrast can be attributed to differences in 

elasticity,29 hydrophobicity,47 adhesion,48 and energy dissipation4 9 For the 

moderately hard tapping conditions employed in this study, phase contrast is 

most likely to be due to differences in mechanical properties between the host 

polypropylene matrix and the fluorochemical additive. 2 9 , 5 0 Of particular note is 

the fact that the additive can be unambiguously identified in the AFM phase 

image, but not the height image. Whereas a recent study of a solvent cast, 

alkyd resin coating containing a small amount of fluorinated ester additive, 

displayed additive features in both height and phase images.21 
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2.3. The Effect of Polymer Molecular Weight on 
Surface Enrichment in Fluorochemical Doped 
Polypropylene Films 

2.3.1. Introduction 

A new set of films containing the bis-perfluorinated additive (Structure 2.1) were 

extruded to elucidate the effect of polymer molecular weight on additive 

segregation. XPS and Tapping Mode AFM analysis have been used to monitor 

the surface segregation behaviour of the fluorochemical additive. 

2.3.2. Experimental 

Melt-blown undoped and 1% wt. fluorochemical containing polypropylene films 

were prepared using three different molecular weight grades of polymer: low 

molecular weight (Exxon 3505, melt flow index = 400), medium molecular 

weight (Fina 3860, melt flow index = 100), and high molecular weight (Fina 

3374, melt flow index = 2.5). Melt flow index is taken as a measure of how a 

polymer extrudes during a fixed time period, and is therefore related to 

molecular weight.51 For instance, a low melt flow index corresponds to a 

viscous polymer melt, and hence a high molecular weight polymer.52 

Solvent washing studies of the polymer film surfaces comprised immersion in 

propan-2-ol (Fisher, 99.99 % purity) for a predetermined time, followed by air 

drying at room temperature. Subsequent annealing of the film was carried out in 

a temperature-controlled oven, where pieces of polymer were laid flat on top of 

a clean metal plate. The outer surface was then analysed by XPS and Tapping 

Mode AFM for physicochemical changes. 

XPS, Tapping Mode AFM and image analysis were carried out as described in 

Section 2.2.2. 
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2.3.3. Results 

2.3.3.1.The Effect of Polymer Molecular Weight on Surface Segregation 

XPS was used to measure the percentage elemental concentration of C, F, O, 

N and S in approximately the top 2-5 nm of each film sample,31 Table 2.3. In 

the case of pure polypropylene, only C(1s) spectral features corresponding to 

C x H y were observed (since XPS is not sensitive to hydrogen). The ratio of F : O 

: N : S at the surfaces of the fluorochemical doped polypropylene films was 

consistent with the molecular formula of the additive (40% C, 42.5% F, 10% O, 

5% N and 2.5 %S; again H is excluded). The overall fluorochemical coverage at 

the surface was calculated using the percentage of elemental F detected by 

XPS. For all three different molecular weights of polypropylene matrix, a 

considerable surface excess was observed compared to the 1% fluorochemical 

loading in the bulk. Surface enrichment increased with polymer molecular 

weight, Table 2.3. 
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2.3.3.2.The Effect of Polymer Molecular Weight on the Morphology of Pure 
Polypropylene Films 

Low resolution atomic force micrographs revealed that the surface of the pure 

polyolefin films consist mainly of straight edged spherulites, Figure 2.10. 

Spherulite size was noted to decrease with increasing polymer molecular 

weight. This trend was quantified by measuring the widest axis of each 

spherulite, Table 2.4. In the case of the highest molecular weight sample, there 

were also some regions which could not be resolved into distinct spherulites, 

Figure 2.10c. 

At higher spatial resolution, it is apparent that the structure of individual 

spherulites is also influenced by the polyolefin molecular weight, Figure 2.11. 

Two sets of lamellae arranged parallel and perpendicular to the radial spherulite 

direction are evident in the phase image of the low molecular weight 

polypropylene film, Figure 2.11a. Spherulites at the surface of the medium 

molecular weight polymer exhibit radial symmetry, Figure 2.11b. Whereas 

thicker, parallel lamellae sheaf are evident in the case of the high molecular 

weight polypropylene surface, Figure 2.11c. 

Melt flow index Pure diameter 

/ fim 

Doped diameter 

/jim 

400 15.3 16.9 

100 14.9 21.3 

2.5 2.7 ill defined 

Table 2.4 Spherulite sizes measured by AFM. 
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Figure 2.10 30 |im x 30 (im Tapping Mode AFM images of pure polypropylene 
surfaces (LHS: height; RHS: phase): (a) low molecular weight; (b) medium 
molecular weight; and (c) high molecular weight. 
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Figure 2.11 10 urn x 10 urn Tapping Mode AFM images of pure polypropylene 
surfaces (LHS: height; RHS: phase): (a) low molecular weight; (b) medium 
molecular weight; and (c) high molecular weight. 



2.3.3.3.The Effect of Polymer Molecular Weight on the Surface Morphology 
and Additive Distribution of Fluorochemical Doped Films 

The fluorochemical additive is easily identifiable in the AFM phase images of all 

three doped polypropylene films as regions of bright contrast, Figures 2.12 and 

2.13. For the low molecular weight polymer, circular dots of fluorochemical are 

prominent, Figures 2.12a and 2.13a. In addition to these fluorochemical dots, 

elongated fluorochemical patches with a common orientation, can be seen for 

the medium molecular weight system, Figure 2.12b and 2.13b. Any elongation 

of fluorochemical patches in a common direction can be attributed to film 

stretching during the melt blowing process. In the case of the high molecular 

weight polypropylene matrix, the surface is covered with a continuous network 

of fluorochemical material, Figures 2.12c and 2.13c. For each of the high-

resolution Tapping-mode AFM phase images, overall fluorochemical coverage 

(+ 1%) was estimated using image analysis software, Table 2.3. Larger 

coverage values were measured by AFM for the low and medium molecular 

weight polypropylene matrices compared to corresponding XPS elemental 

analysis. This discrepancy can be taken as being indicative of a fluorochemical 

concentration gradient extending from the surface towards the bulk (Tapping 

Mode AFM is only sensitive to the outermost surface, whereas XPS probes 2-5 

nm into the sample31). However, similar fluorochemical coverage was 

measured for the high molecular weight polypropylene matrix. This is consistent 

with this system experiencing the greatest surface segregation (i.e. the 

fluorochemical layer thickness is comparable to the XPS sampling depth). 

The spherulite morphology previously seen for the pure polypropylene films 

was still clearly visible in the large scale atomic force micrographs of 

fluorochemical doped low and medium molecular weight polypropylene, Figures 

2.12a and b. In fact, the mean spherulite diameters are larger compared to their 

pure polypropylene counterparts, Table 2.4. Again, the surface morphology of 

the high molecular weight sample was less well defined, Figure 2.13c. 

At higher spatial resolution, the lamellae organisation previously observed for 

the low and medium molecular weight pure polyolefin films was absent, Figures 
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2.13a and b. However, thick sheaf type lamellae could still be seen for the high 

molecular weight polypropylene matrix. 
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Figure 2.12 30 |im x 30 |im Tapping Mode AFM images of fluorochemical 
additive doped polypropylene surfaces (LHS: height; RHS: phase): (a) low 
molecular weight; (b) medium molecular weight; and (c) high molecular weight. 
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Figure 2.13 10 urn x 10 urn Tapping Mode AFM images of fluorochemical 
additive doped polypropylene surfaces (LHS height; RHS phase): (a) low 
molecular weight; (b) medium molecular weight; and (c) high molecular weight. 



2.3.3.4.The Effect of Polymer Molecular Weight on the Kinetics of 
Fluorochemical Segregation 

It has previously been shown that annealing fluorochemical containing 

polyolefin films can increase the extent of surface segregation (Section 2.2.3.2). 

Here, the rate of additive build-up at the surface during annealing was studied 

for all three molecular weights of polypropylene matrix. In order to compare the 

rate of fluorochemical migration, it was first necessary to remove additive from 

the outermost surface region by rinsing in propan-2-ol. This solvent was found 

not to dissolve the fluorochemical additive, rather it lifted fluorochemical away 

from the polymer surface via undercutting. In order to ensure that each sample 

was depleted of additive to the same extent during washing, the low and 

medium molecular weight samples were first annealed to obtain the same 

fluorochemical coverage as the high molecular weight system prior to 

immersion in solvent. Propan-2-ol washing was then allowed to proceed until 

the XPS signal from the additive molecules disappeared (1 hour exposure). 

This corresponded to removal of all the fluorochemical additive contained in the 

top 2-5 nm (XPS sampling depth). 

Subsequently, each sample was annealed at 130 °C as a function of time, and 

the fluorochemical segregation from the bulk towards the surface was 

monitored by XPS. All three grades of polypropylene displayed a slowing rate of 

additive migration towards the surface with increasing annealing time, Figure 

2.14. Eventually a point was reached where no further build-up of additive was 

observed, thereby indicating equilibrium had been reached. Increasing 

polypropylene molecular weight caused faster migration of the fluorochemical 

towards the surface, and also yielded greater maximum coverage (low 

molecular weight, additive coverage = 17%; medium molecular weight, additive 

coverage = 88%; and high molecular weight, additive coverage = 100%). 
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Figure 2.14 Variation in fluorochemical additive surface coverage as a function 
of annealing time at 130 °C. 

2.3.4. Discussion 

Firstly, the dependency of surface morphology upon polymer molecular weight 

needs to be considered for the undoped polypropylene films. It is well known 

that polymer spherulites tend to form as a consequence of radial crystal growth 

from nucleation centres, until eventually they impinge, generating spherulite 

boundaries. Hence, the overall spherulite size is governed by the interplay 

between rates of growth and nucleation. Fast growth rates accentuate 

spherulite diameter, whilst rapid nucleation rates restrict spherulite size due to 

greater impingement.53 The drop in spherulite size seen by AFM with increasing 

molecular weight stems from lower polymer chain mobility reducing the growth 

rate,5 4 combined with greater super-cooling of the melt increasing the 

nucleation rate,5 3 Figure 2.10 and Table 2.4. 

A greater restriction of polymer chain mobility with increasing polymer molecular 

weight can also help to explain changes seen by AFM within the individual 

spherulites,55 In this case, high polymer mobility will encourage a rapid chain 

deposition rate onto the growing lamellae, thus promoting the probability of 

branching. Whereas with increasing polymer molecular weight, there is a 

decrease in polymer chain mobility, which makes branching events less 

frequent, and radial lamellae become more prominent.55 For the highest 
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molecular weight polypropylene employed in the present study, sheaf devoid of 

radial symmetry are discernible at the centres of some spherulites, such 

features are characteristic of the early stage of spherulitic growth.56 Therefore 

chain mobility must be so low in this case that only the initial stages of 

spherulite growth occur during cooling of the film from the melt. 

AFM has shown that the fluorochemical additive interferes with the 

crystallization of polypropylene. The disruption of the surface lamellae structure 

seen for the lower molecular weight samples is caused by the need to expel 

non-crystallisable fluorochemical additive molecules from the crystal growth 

front,5 7 Figures 2.13a and b. Less perturbation of the lamellae structure is 

observed for the high molecular weight polypropylene matrix, Figure 2.13c, 

which is most likely to be a consequence of less interpenetration between 

additive and polymer moieties within the melt.17 The observed enrichment of 

fluorochemical additive at the surface of the doped films during the annealing 

studies can be attributed to a combination of faster diffusion rates at elevated 

temperatures46 and surface energetics, i.e. kinetic and thermodynamic factors. 

Fluorochemical build-up at the air-solid interface will be favoured on the basis of 

its lower surface energy (surface energy of polypropylene = 38 ± 3 mN m"1 

compared to 12 ± 1 mN m"1 for the fluorochemical - Section 2.2.4). The circular 

patches of fluorochemical seen by AFM at the surface of the doped films are 

consistent with a minimisation of interaction energy between the additive and 

the surrounding polypropylene matrix. 

Since the surface energy of polypropylene is known to increase with polymer 

molecular weight, then there should be a corresponding increase in the 

energetic driving force for fluorochemical segregation.58 This can be understood 

on the basis that confinement of a polymer chain to the surface region 

produces a decrease in conformational entropy, and so short polymer chains 

will be expected to lose less entropy per segment compared to longer ones. 5 9 

Hence as the polymer molecular weight increases, there are larger entropy 

costs associated with retaining polypropylene chains at the surface compared 

to enriching the surface with the much smaller fluorochemical additive 

molecules. Also as the polymer chain length increases, the comparatively small 

additive molecule finds less space available for it to interpenetrate the polymer 
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matrix, thus contributing to the overall drive to expel additive towards the 

surface with increasing polymer molecular weight.17 This explanation is 

consistent with the greater equilibrium surface coverage of fluorochemical 

obtained for the higher molecular weight polypropylene, Figure 2.14. 

Polymer molecular weight should also have an impact upon the rate (kinetics) 

of fluorochemical surface segregation. Additive diffusion is known to proceed 

most readily through the amorphous phase of crystalline polymers such as 

polypropylene.25 In fact diffusion rates tend to decrease with increasing polymer 

crystallinity, due to corresponding smaller volumes of available amorphous 

material.46 AFM images show that surface crystallinity of the fluorochemical 

doped samples decreases with increasing molecular weight, Figure 2.12, (i.e. a 

larger fraction of amorphous crystallite boundaries is evident on the high 

molecular weight surface combined with a more disordered spherulite 

structure). Additive diffusion can occur through voids contained within the 

amorphous regions.46 Such voids are more likely to arise in between larger 

untangled polymer molecules rather than shorter interpenetrating polymer 

chains. Therefore, the combination of decreasing crystallinity, a greater 

number of amorphous voids, and the accompanying energetic driving force for 

additive segregation all help to explain the faster additive diffusion rates 

observed during annealing as polymer molecular weight increases, Figure 2.14. 

The greater additive coverage with higher polymer molecular weight seen for 

the initial melt-blown films can also be taken as being a manifestation of these 

factors, Table 2.3. 
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2.4. Surface Enrichment of Fluorochemical Doped 
Polypropylene Films: the Effect of Additive 
Structure 

2.4.1. Introduction 

In this section film samples were extruded to compare the surface segregation 

characteristics of two structurally related fluorochemical additives introduced 

into a polyolefin host matrix. The bis-perfluorinated additive (Structure 2.1) is 

compared with a mono-perfluorinated analogue: 1-octanesulfonamide, 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8 heptadecaf luoro-N-methyl-N-[(3-octadecyl-2-

oxo-5-oxazolindinyl)methyl], Structure 2.2. 2 7 Both of these molecules contain 

two long side arms, in one case they are both perfluorinated, whilst in the other, 

one is a hydrocarbon chain. The impact of this difference in terms of 

compatibility with the host polypropylene matrix and surface segregation 

behaviour has been studied using XPS, Tapping Mode AFM, and contact angle 

measurements. 

Structure 2.2: Mono-perfluorinated additive. 

2.4.2. Experimental 

Two melt-blown film samples were prepared using isotactic polypropylene (Fina 

3860; melt flow index 100) containing 1% by weight of the mono- and bis-

perfluorinated additives respectively. Surface washing experiments comprised 

immersion in propan-2-ol (Fisher, 99.99% purity) for a predetermined time, 

followed by air drying. Subsequent annealing studies were carried out in a 

temperature-controlled oven, where pieces of polymer film were laid flat on a 

clean metal plate, and the outward facing substrate surface was subsequently 

analysed. 

O 

Na„H O 18' '37 

/ 
N 

C F . J X S 8' 1 7 w 2 
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XPS and Tapping Mode AFM analysis were carried out as described in Section 

2.2.2. 

Sessile drop contact angle measurements were carried out at 20 °C using a 

video capture apparatus (Instruments S.A. 2500XE). The various probe liquids 

(Aldrich > 99 %) used for Zisman plots and their surface tensions are listed in 

Table 2.5. 

Liquid Surface Tension / m Nm"1 

(at 20 °C) 

Hexane 18.4 

Heptane 20.1 

Octane 21.6 

Decane 23.8 

Dodecane 25.4 

Tetradecane 26.6 

Hexadecane 27.5 

Table 2.5 Surface tension of probe liquids employed for Zisman plots. 
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2.4.3. Results 

2.4.3.1 .Comparison of Surface Coverage 

Both fluorochemical additives were found to preferentially accumulate at the 

surface during film formation in comparison to their bulk loading of 1% by 

weight, Table 2.6. In fact the mono-perfluorinated additive appears to 

completely cover the surface, whilst only partial (18%) surface enrichment of 

the bis-perfluorinated additive is observed. Comparison of the elemental ratios 

obtained from XPS for the doped films with the corresponding theoretical 

values for the pure additives, indicates that in the mono-perfluorinated case 

there is an excess of F at the surface compared to its stochiometric prediction, 

Table 2.6. This can be taken as being indicative of the perfluorinated arms 

being oriented away from the bulk polymer to minimise interfacial tension, thus 

accounting for the calculated surface coverages exceeding 100%. No such 

alignment was noted for the bis-perfluorinated system. 
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Tapping Mode AFM height analysis showed that the surface morphology of the 

polypropylene film containing bis-perfluorinated additive is dominated by 

spherulites, Figure 2.15. The corresponding AFM phase images reveal bright 

phase contrast corresponding to localised regions of fluorochemical additive at 

the surface, overlaying the spherulites' crystalline structure (Section 2.2.3.1). 

The additive does not give rise to any additional contrast in the AFM height 

image. Whereas the height and phase images of the mono-perfluorinated 

doped system are very similar: the underlying spherulitic structure appears to 

be covered by small uniformly sized globular structures (Height = 50 nm; 

Diameter * 300 nm), Figure 2.16. 

(a) 
0 

mm 

: 

L. 1 — i . . - 30jLim ', ..nA,.,,,,,, 

(b) 
0 

. • 

lOum 
Figure 2.15 Tapping Mode AFM images of bis-perfluorinated doped 
polypropylene film (LHS: height ; RHS: phase): (a) 30 |im x 30 |im; and (b) 10 
um x 10 urn. 
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lOum 

Figure 2.16 Tapping mode atomic force micrographs of mono-perfluorinated 
doped polypropylene films (LHS: height; RHS: phase): (a) 30 um x 30 urn; and 
(b) 10 urn x 10 |Lim. 

Solvent washing and annealing experiments were undertaken in order to help 

explain the differences in behaviour between the two fluorochemical additives. 

As a starting point, a high coverage bis-perfluorinated doped sample was 

required to serve as a closer analogue to the mono-perfluorinated additive 

system. This was achieved by annealing the bis-perfluorinated doped sample, 

(150 °C, 30 min) to achieve 90 % fluorochemical surface coverage. In this case, 

a slight surface enrichment of F relative to the predicted elemental abundance 

was observed as previously noted for the mono-perfluorinated system. This 

corresponds to surface alignment of the perfluoroalkyl chains, Table 2.6. 



Since the driving force for surface segregation is dependent upon the additive's 

surface energy, 1 6 Zisman plots were constructed in order to estimate the critical 

surface energy for each system. 6 0 This comprised plotting the cosine of contact 

angles obtained for a homologous series of alkane probe liquids versus their 

respective surface energies, Figure 2.17. Extrapolation of the best fit to cos(6) = 

1 yielded the critical surface tension. Both samples displayed a low critical 

surface energy value, Table 2.6. This is consistent with the aforementioned 

XPS and AFM analysis. 
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Figure 2.17 Zisman plots derived from contact angle measurements using a 
homologous series of linear polyolefin probe liquids: (a) high coverage bis-
perfluorinated doped polypropylene (prepared by annealing at 150 °C for 30 
min); and (b) mono-perfluorinated doped polypropylene. 

2.4.3.2.Kinetic Studies 

In order to compare the rate and extent of fluorochemical surface segregation 

during annealing, it was necessary to first remove all additive molecules from 

the surface region. This was achieved by immersing the films in propan-2-ol. 

High coverage bis-perfluorinated additive and equivalently annealed mono-

perfluorinated additive containing polymer samples were immersed in the 

solvent for varying durations, and subsequently characterised by XPS, Figure 

2.18. An exponential loss of both types of additive from the surface was 
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observed with time. The bis-perfluorinated additive disappeared at a much 

slower rate compared to its mono-perfluorinated equivalent: total loss of bis-

perfluorinated additive from within the XPS sampling depth (2-5 nm 3 1 ) took 

approximately 1 hour, whilst depletion of the mono-perfluorinated dopant was 

complete within 5 min. 

These surface-depleted samples were then annealed at 130 °C for increasing 

durations and analysed by XPS, Figure 2.19. The bis-perfluorinated additive 

reached a maximum surface coverage of 88 % after 4 hours of annealing. In 

comparison, total surface coverage by the mono-perfluorinated additive took 

place within 15 s of annealing. In this case, the concentration of F at the 

surface continued to increase over the next 45 s, at which point no further 

compositional changes were noted, Figure 2.19. 

140-

S ? 1204= 
o 
§ 100H 
u 

mono-perfluorinated additive 
annealed bis-perfluorinated additive 

30 40 50 60 
Time / min 

90 

Figure 2.18 Fluorochemical additive coverage at the surface of polypropylene 
as a function of propan-2-ol washing time. 
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Figure 2.19 Fluorochemical additive coverage as a function of annealing time 
at 130 °C. 

2.4.4. Discussion 

Markedly different surface segregation behaviour is observed for the two 

additive molecules. In fact, the short period of cooling following film formation 

appears to be sufficient to allow the mono-perfluorinated additive to completely 

cover the surface and adopt conformations which maximise the amount of 

fluorine at the surface (thereby minimising interfacial tension). On the basis of 

the greater than theoretically predicted F concentration measured at the 

surface by XPS, the mono-substituted additive's perfluorinated arm is 

preferentially oriented towards the air-solid interface, whilst its higher surface 

energy alkane chain is directed towards the bulk, Scheme 2.1a. Such an effect 

has been previously observed for 1,1-dihydroperfluorooctyl acrylate -

polystyrene diblock co-polymer thin f i lms, 1 6 and is generally predicted for AB 

co-polymers (where A is high surface energy block and B is a low surface 

energy block). 6 1 In the case of the bis-perfluorinated system, this type of 

ordering behaviour only became apparent following annealing at elevated 

temperatures, Table 2.6. 
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Scheme 2.1 Additive conformations: (a) Mono-perfluorinated additive (b) Bis-
perfluorinated additive. 

Tapping-mode AFM revealed differences in the topography of the two doped 

polypropylene surfaces. Height images of the bis-perfluorinated additive-

containing sample depict spherulitic morphology, characteristic of crystalline 

polypropylene, Figure 2.15. 4 1 In contrast, the mono-perfluorinated doped 

surface contained globular features overlaying these spherulites, Figure 2.16. 

The corresponding AFM phase images indicate a partial coverage of bis-

perfluorinated additive, whilst total surface coverage is seen for the mono-

perfluorinated additive. The surface morphology for the latter can be attributed 

to completely segregated fluorochemical additive molecules minimising their 

interaction with the underlying polypropylene substrate. Large differences in 

surface energy between an overlayer and a substrate are known to produce 

globular features (these may consist of micellar structures where the 

perfluorinated arms point outwards from a core comprising of the higher surface 

energy pendant groups). 6 2 

Having established the differences between the as prepared films, the high 

coverage bis-perfluorinated doped polypropylene sample produced by 

annealing enabled further comparisons to be made with the mono-

perfluorinated additive. Even under optimum annealing conditions, only 90% 

surface coverage of the bis-perfluorinated moieties could be obtained. This 
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segregation process was accompanied by a small degree of molecular ordering 

leading to a rise in F concentration at the surface. The bis-perfluorinated 

additive probably adopts a U-shaped conformation, with perfluorinated arms 

upright, enabling the higher surface energy segment to remain within the bulk 

polymer, Scheme 2.1b. Theory predicts such arrangements as being optimum 

for BAB tri-block co-polymers. 6 1 

A comparison between the additive removal rates during solvent washing 

showed that it is more difficult to remove the bis-perfluorinated additive (despite 

approximately similar surface coverages). The lack of any height features in the 

AFM images corresponding to the bis-perfluorinated additive is indicative of it 

being embedded within the polymer. Thus, relatively long exposure to solvent 

was needed to lift it away from the polypropylene surface. In contrast, the rapid 

removal of the mono-perfluorinated additive can be attributed to easy 

dislodgement of the discrete globular structures clearly visible in the AFM height 

images. The hydrocarbon chain in this molecule is also likely to make it more 

soluble in propan-2-ol. 6 3 

A combination of diffusion rates (kinetic) and the overall drive for segregation 

(thermodynamics) can help to explain the observed annealing behaviour of the 

two systems. Previous "diffusion in" experiments for non-fluorinated additives 

have indicated that, molecular weight, size and shape along with chemical 

composition effect their mobility and solubility within a polymer matr ix. 2 5 , 4 6 In the 

present study both additives have linear structures, and so shape 

considerations should be similar. However, the molecular weight of the bis-

perfluorinated additive is higher than the mono-perfluorinated molecule, and it 

has been shown that additive mobility decreases with molecular weight . 2 5 , 4 6 The 

bis-perfluorinated additive also has a second fluorinated arm which will increase 

the specific volume of the bis-perfluorinated additive and therefore slow its 

migration. 4 6 Both of these kinetic factors should contribute to the slower 

segregation of bis-perfluorinated additive at the polypropylene film surface. 

Thermodynamic differences also need to be considered. The perfluoroalkyl 

chains contained in each additive have a significantly lower surface energy 
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compared to the host polypropylene matrix. Segregation of fluorochemical 

additive to the surface occurs as a consequence of the driving force for 

minimisation of surface energy. 1 6 On this basis, the lower surface energy bis-

perfluorinated additive would be expected to segregate to a greater extent than 

the mono-perfluorinated molecule, however the contrary is observed, thereby 

suggesting other factors are responsible. In fact the relative surface 

compositions are consistent with theoretical calculations made for block co­

polymer melts. 6 1 The mono-perfluorinated molecule can be regarded as being 

analogous to a AB di-block co-polymer (A = pendant group; B = perfluorinated 

chain) while the bis-perfluorinated structure can be equated to a BAB tri-block 

structure (A = linkage group; B = perfluorinated chain). The reported 

simulations predicted that AB di-block co-polymers undergo higher degrees of 

low energy component segregation and more tendency to phase separate than 

BAB tri-block equivalents, this supports our findings. A molecular-level 

explanation for this behaviour needs to consider the differing degrees of 

freedom of the two additives at the surface. Placing the fluorinated arm of the 

mono-perfluorinated additive at the air-solid interface constrains one end of the 

molecule, while the rest of the alkane chain is free to adopt any conformation. 

However, for both the fluorinated functionalities of the bis-perfluorinated 

additive to reach the interface, the linking group becomes restricted in position 

and conformation, Scheme 2.1. On the basis of these entropic factors, the 

mono-perfluorinated additive should achieve complete surface coverage more 

readily and phase-separate to form an energetically optimised surface 

morphology (as seen by AFM), whilst the more constrained bis-perfluorinated 

doped molecule cannot fully segregate, and can only minimise interfacial 

tension by forming circular domains embedded within the polymer matrix. 
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2.5. Conclusions 

Tapping Mode AFM has been used in combination with XPS, optical 

microscopy, imaging SIMS, and contact angle analysis to investigate various 

aspects of the surface enrichment of fluorochemical doped polypropylene films. 

In Section 2.2 the migration of fluorochemical additive towards the surface of 

polypropylene film during annealing was studied. The lateral distribution of 

additive at the surface was found to spread outwards from isolated circular 

domains and patches into a continuous layer, with a corresponding drop in 

surface energy. Section 2.3 demonstrated that the speed and extent of surface 

enrichment for fluorochemical containing polypropylene films increases with 

polymer molecular weight. Whilst in Section 2.4 a comparison between 

polypropylene films containing mono- and bis-perfluorinated additive molecules 

has shown that the former tend to segregate to the surface much more readily. 

These observations have been explained by considering additive diffusion rates 

and surface energetics. 
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CHAPTER 3 

SPATIALLY CONFINED CHARGE DEPOSITION 
ONTO POLYMER SURFACES USING A 

SCANNING PROBE MICROSCOPE 
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3.1. Introduction 
Charged surfaces find many uses: electrostatic filter media, 1 device 

manufacture (such as microphones),2 microbe resistant packaging, 3 optical 

display devices,4 and biomedical applications.5 In addition to these large scale 

uses, the deposition of localised charge regions onto insulating surfaces is of 

interest for memory storage devices.6 

In the past, measurement of the variation in charge density across a surface 

has been limited to mm scales using electrostatic probes. 7 The advent of 

electric force microscopy (EFM) now enables charge distributions to be mapped 

at much higher spatial resolution,8"1 1 and also provides a means for depositing 

localised regions of charge. 9 Initial attempts using this technique comprised 

applying high voltage pulses to a static AFM tip positioned above the surface. 8 , 9 

This produced point-like charge distributions (minimum diameter = 70 nm) with 

controlled polarity. Deposition of such point charges has also been achieved by 

contacting the microscope tip with the surface. 6 Both methods produce small 

point charges, which are of potential interest for memory storage. For high 

resolution patterning applications, control of the size and shape of the 

deposited charge is an important criterion. One example is the localised poling 

of thin ferroelectric films, which can be achieved by applying a voltage to a 

scanning EFM t ip. 1 2 In addition, localised surface potential modification of 

Langmuir-Blodgett films has recently been demonstrated using near-field 

irradiation from a scanning Kelvin microscope t ip. 1 3 

In this chapter, a localised high voltage discharge extending from an EFM tip is 

used to deposit well-defined regions of charge onto polymer surfaces. These 

modified substrates could be potentially useful for fabricating structures on the 

sub-micron scale. 
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3.2. Theory 

3.2.1. The Effect of Force Gradients on the Phase Shift of a 
Freely Oscillating AFM Cantilever 

The phase lag of an oscillating cantilever, <f> is defined as the difference in 

phase between the actual frequency of oscillation and the driving source. 

Phase lags are normally expressed as angles. In the case of Tapping Mode 

atomic force microscopy, the acquired phase shift images actually represent the 

difference between the phase lag of the freely vibrating cantilever and the 

phase lag of the cantilever interacting with an underlying substrate, Equation 

3 . 1 . 1 4 ' 1 5 

A<f> = <Pfree ~ ^interactmg EqUatiOfl 3.1 

Where is the displayed AFM phase shift, <j)free is the phase lag of the freely 

vibrating cantilever, and <pinle,.acling is the phase lag of the interacting cantilever. 

The driving frequency of the freely vibrating cantilever is normally chosen to be 

close to its resonance frequency. According to the theory of driven oscillators, 

the phase lag of a vibrating cantilever at its maximum amplitude (resonance) is 

equal to 90° . 1 6 Hence the phase lag of the freely vibrating cantilever, <pfree is 90°, 

Figure 3.1a. 

However when tip-substrate interactions are present, the frequency at which 

maximum amplitude occurs will shift away from the driving frequency, 1 7 this 

results in the aforementioned phase lag, <pinteraaiH. If the cantilever experiences a 

repulsive field gradient then the frequency of maximum oscillation amplitude is 

increased, and the corresponding phase lag of the interacting cantilever, 

fimeractmg
 a t the driving frequency drops below 90°. This results in the phase shift, 

becoming positive, with its magnitude corresponding to the degree of 

repulsion (contrast in phase images brightens for positive phase shifts), Figure 

3.1b. Conversely an attractive force gradient reduces the frequency at which 

maximum oscillation amplitude occurs. Hence the interacting phase lag <pimeractinf. 
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at the driving frequency rises above 90° and so the phase shift, becomes 

negative and decreases with increasing attractive force, (contrast in phase 

images brightens for positive phase shifts), Figure 3.1c. Table 3.1 summarises 

the effect of force gradients on cantilever phase shift. A more rigorous 

quantitative approach is reported in ref.18. 
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Figure 3.1 The effect of force gradients on the phase shift of a freely oscillating 
cantilever: (a) The phase lag of a freely vibrating cantilever at resonance, <pfree is 

90°; (b) The phase lag of a vibrating cantilever exposed to a repulsive force, 
0i„,ermting ' s ' e s s t n a n 90 o ; and (c) The phase lag of a vibrating cantilever exposed 
to an attractive force, <t>imemcling is greater than 90°. 
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Force 

Gradient 

Resonance 

Frequency of 

Cantilever 

Phase Shift, AFM 

Phase Image 

Repulsive Increases Positive Brighter 

Attractive Decreases Negative Darker 

Table 3.1 Summary of the effect of force gradients on the phase shift of a freely 
oscillating cantilever. 

3 .2 .2 . M a p p i n g S u r f a c e C h a r g e D i s t r i b u t i o n s w i t h L i f t - M o d e 
E F M 

Tapping-mode AFM phase images (where the tip is in intermittent contact with 

the surface) are dominated by the short-range forces above the sample 

surface, hence they provide information about mechanical properties such as 

elasticity, 1 9 adhesion, 2 0 and energy dissipation. 2 1 In the case of EFM, a lift-

mode is employed, where the tip does not contact the surface. The tip is held at 

a constant height above the substrate during scanning, and so any changes in 

phase shift are due to long-range forces. The important long-range forces are 

considered to be Van der Waals and electrostatic. The latter are dominant for 

charged surfaces. 9 

Lift-mode phase shift depends upon the electrostatic interaction between the 

surface and tip voltage. The voltage at the surface is simply the surface 

potential, Vsurface- Surface charge induces a mirror charge in the tip, -VsurfaCe in 

addition to the voltage applied to the tip from the external power supply, Vapp\\ed-

So the total voltage on the tip is given by Equation 3.2. 

Vup = Vappned - Vsurface Equation 3.2 

The phase shift will depend on the sign and magnitude of Vt;p and Vsurface- When 

Vtip and V s u r f a c e have the same sign, a repulsive force results, and so a bright 

phase shift occurs. Whereas when they have opposite polarity, the force is 

attractive and a dark phase shift results. The magnitude of the phase shift will 

depend on the product V^.Vsurface, i.e. increasing Vfip for a given VSUrface will 

produce a greater phase shift. For instance, consider a positive surface charge, 

85 



Vsudace- When a negative voltage, Vappned is applied to the tip, V t i p will also be 

negative, and so a dark, attractive phase shift will occur. The image will darken 

as increasingly negative voltages are applied. If a positive voltage, Vappned 

smaller than V s u r f a c e is applied to the tip, \Z„P remains negative and the phase 

shift will still be dark. As Vappned increases the image will brighten. When VapPned 

= Vsurface, there will be no phase shift attributable to electrostatic forces since Vt;p 

= 0 V. A further increase in Vappned will produce bright, repulsive phase contrast 

in the image as V t i p becomes more positive, Figure 3.2a. The converse 

argument applies to a negatively charged surface, Figure 3.2b. 
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Thus both the polarity and the magnitude of surface charge can be determined 

by comparing EFM lift-mode phase images recorded with different applied tip 

voltages. A region that darkens as applied voltage decreases from positive to 

negative is positively charged, with its magnitude equal to the positive voltage 

at which the phase image contrast is neither bright nor dark. A region that 

brightens as applied voltage decreases from positive to negative is negatively 

charged, with its magnitude given by the negative voltage corresponding to a 

neutral phase shift. Uncharged regions are expected to display no change in 

their EFM lift-mode phase contrast with varying applied voltage, Table 3.2. 

Uniformly charged surfaces should also give no variation in phase contrast, 

instead the phase shift of the entire image is altered (however this will appear 

as a neutral relative phase shift due to the arbitrary absolute phase shift value 

set by the microscope). 

Surface Charge Lift-mode phase image contrast 

Positive applied voltage Negative applied voltage 

Positive Bright • Dark 

Dark • Bright 

Neutral Neutral 

Negative 

Bright • Dark 

Dark • Bright 

Neutral Neutral None 

Bright • Dark 

Dark • Bright 

Neutral Neutral 

Table 3.2 The effect of applied voltage on EFM lift-mode phase image contrast. 

3.3. Experimental 

Atomic force micrographs were recorded using a Nanoscope III microscope 

(Digital Instruments) fitted with an extender electronics module and a signal 

access module. Cr sputter coated (~ 10 nm thickness on bottom-side) 125 |im 

long silicon tips were used (Olympus OMCL-AC160TS-W, force constant of = 

40 nN, resonance frequency = 270 kHz after metallization). Tapping Mode 

height and phase images were recorded with the tip in intermittent contact with 

the surface. Non-contact lift-mode phase data was collected at a constant tip-

sample height (the lift-height). Height data from the Tapping Mode scan lines 

was used as a template for the lift-mode scan lines. In all experiments the lift-

height was sufficiently high to ensure non-contact imaging. This was checked 
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by ensuring the Tapping Mode phase scan lines did not coincide the with lift-

mode phase scan lines. 

A standard set of Tapping Mode parameters was chosen to ensure consistent 

imaging. These conditions were a set-point : free amplitude ratio of 0.5 (set-

point amplitude = 50 nm; free amplitude = 100 nm), a scan rate of 1.1 Hz, and a 

lift-height of 30 nm. In order to allow both charge deposition and imaging, it was 

necessary to apply a d.c. voltage to the AFM tip during lift-mode scan lines. The 

Nanoscope controller provides an internal low voltage signal (±12 V "Analogue 

2") that is only turned on during lift-mode scan lines for this purpose. However, 

±12 V is insufficient to allow charge deposition. To allow high tip voltages, the 

internal low voltage signal (accessed via the signal access module) was used to 

gate an external high voltage d.c. power supply (±180 V). The high voltage 

gated signal is applied to the tip through the "Analogue 2" input of the signal 

access module. As a result, no voltage was applied to the tip during the 

Tapping Mode height and phase scan lines. 

Capacitor grade polypropylene (ICI) was used as the polymer substrate, this 

had been cleaned by ultrasonication in isopropanol (Fisher, 99.99 %) for 30 s. 

Each experiment comprised two stages: localised charging of the polymer 

surface using the AFM tip, followed by EFM lift-mode analysis. Charging was 

performed by scanning a 1 urn x 1 |j,m square region on the polymer surface 

with a high voltage applied to the tip. Characterisation entailed recording 10 |xm 

x 10 |im images centred on this 1 urn x 1 urn square. In the latter case, the 

applied tip voltage was chosen to be sufficiently low so as not to distort the 

deposited surface charge distribution (between +40 and -40 V). 

Two types of charging experiment were performed. First of all, EFM imaging 

parameters were explored for a single charging experiment. Here, the 

deposited charge distribution was imaged using several tip voltages. 

Subsequently, different discharge conditions were investigated. A 

corresponding set of EFM images were then collected for each fixed tip voltage 

(-20 V for positive charge and +20 V for negative charge), so as to allow a 

comparison to be made between changing discharge parameters. 
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3.4. Results 

3.4.1. Localised Positive Charge Deposition 

Scanning a small region of the polymer surface with a high positive voltage 

applied to the tip (+180 V) produced no contrast in the subsequent Tapping 

Mode AFM height or phase images, Figure 3.3a and b. However positive 

charge deposition was clearly evident in the EFM lift-mode images, Figure 3.3c-

f. A bright square extending beyond the region exposed to the discharge is 

discernible in the +35 V image, Figure 3.3c. Reducing the imaging voltage to 

+20 V decreased the size of the bright patch, Figure 3.3d. At +12 V the bright 

patch is replaced by a similarly sized dark region, Figure 3.3e. The size of this 

dark square increased when the tip voltage decreased to -20 V, Figure 3.3f. 

The precise magnitude of the applied discharge voltage employed during 

charge deposition was also found to influence the EFM lift-mode contrast, 

Figure 3.4. No localised EFM phase contrast was seen in the lift-mode image 

corresponding to the applied +80 V tip voltage scan, Figure 3.4a. At +100 V, a 

dark patch was evident within the scanned region, Figure 3.4b. A further 

increase in discharge voltage produced an expansion in the size and darkness 

of the charged area, Figures 3.4c-f. 

The tip height above the surface during discharge exposure was another 

important parameter. A discharge lift-height of 30 nm yielded a faint dark 

localised region in the corresponding EFM lift-mode image, Figure 3.5a. 

However by reducing the discharge lift-height to 12 nm, a prominent large 

region of dark contrast was subsequently identified, Figure 3.5b. 

Finally, increasing the scan speed during operation of the discharge from 1.1 

Hz to 3.0 Hz (discharge voltage = +100 V, lift-height = 30 nm) reduced the size 

of the dark region seen afterwards in the lift-mode EFM image, Figure 3.6. This 

was taken as being indicative of less charge deposition. 
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(c) 

-10um 

10»um 

Figure 3.3 10 [im x 10 urn micrographs of polypropylene. The region marked 
with a square was previously exposed to a high positive lift-mode bias (+180 V): 
(a) Tapping Mode height image; (b) Tapping Mode phase image; (c-f) Lift-mode 
phase images recorded at +35 V, +20 V, +12 V and -20 V respectively. 
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Figure 3.4 10 \im x 10 pirn lift mode images of polypropylene recorded with -20 
V applied to the tip: (a-f) the region marked with a square was previously 
exposed to lift mode bias of +80 V, +100 V, +120 V, +140 V +160 V and +180 V 
respectively (Lift-height = 30 nm; Scan speed = 1.1 Hz). 
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10|uim 

Figure 3.5 10 ^im x 10 nm micrographs of polypropylene recorded with -20 V 
applied to the tip. The region marked with a square was previously exposed to a 
+100 V lift-mode bias (Scan speed = 1.1 Hz): (a) Lift-height during charge 
deposition = 30 nm; and (b) Lift height during charge deposition = 12 nm. 

10Lim 
Figure 3.6 10 urn x 10 urn micrographs of polypropylene recorded with -20 V 
applied to the tip. The region marked with a square was previously exposed to a 
+160 V lift-mode bias (Scan speed = 1.1 Hz): (a) Scan speed while charging = 1 
Hz; and (b) Scan speed while charging = 3 Hz. 

3.4.2. Localised Negative Charge Deposition 

Application of a high negative voltage to the tip during localised scanning 

produced corresponding contrast in the EFM lift-mode image; whereas, the 

Tapping Mode AFM images remained unaffected, Figure 3.7. With +20 V EFM 

lift-mode imaging voltage, a dark patch was seen, Figure 3.7c. Decreasing this 

voltage to -12 V caused the dark region to decrease in size, Figure 3.7d. At -17 

V this patch became bright. A further reduction in EFM imaging voltage 
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increased the size of the bright patch, Figure 3.7e-f. This is consistent with a 

negatively charged surface, Table 3.2. 

Once again, varying the discharge voltage altered the EFM lift-mode images 

acquired at a fixed imaging voltage, Figure 3.8. A discharge voltage of -40 V 

was insufficient to induce EFM lift-mode contrast, Figure 3.8a. However at -50 V 

a small dark region of contrast was generated, Figure 3.8b. Lowering the 

discharge voltage further, produced increased contrast over a larger area, 

Figure 3.8c and d. 
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(c) 

I 

10|iim 
Figure 3.7 10 u.m x 10 urn micrographs of polypropylene. The region marked 
with a square was previously exposed to a high negative lift-mode bias ( -180 
V): (a) Tapping Mode height image; (b) Tapping Mode phase image; (c-f) Lift-
mode phase images recorded at +20 V, -12 V, -17 V and -20 V respectively. 
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10|iim 

Figure 3.8 10 |im x 10 urn lift mode images of polypropylene recorded with +20 
V applied to the tip: (a-d) the region marked with a square was previously 
exposed to lift mode bias of -40 V, -50 V, -60 V and -80 V respectively (Lift-
height = 30 nm; Scan speed = 1.1 Hz). 

3.5. Discussion 

Conventional large scale corona discharge treatment has been reported to 

cause oxidation of polypropylene film surfaces, 2 2 together with changes in 

morphology. 2 3 In the current series of experiments, no evidence for topographic 

changes was found in the Tapping Mode height image, Figure 3.3a, nor 

chemical differences in the associated phase image, Figure 3.3b. Imaging SIMS 

(as in Section 2.2.2, ~1 ppm sensitivity to O), has also been used to 

characterise the positively and negatively charged samples (data not shown). 

No chemical modification was detected on either sample. 
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For the positive discharge modified polypropylene surfaces, systematically 

varying the EFM imaging voltage indicates that a positively charged region is 

being deposited onto the surface, Figure 3.3c-f and Table 3.2. At high positive 

EFM imaging voltages, the tip experiences repulsion from the positively charged 

surface; producing a bright lift-mode phase shift, Figure 3.3c and d. As the 

magnitude of the positive imaging voltage falls below the positive voltage at the 

surface, the negative mirror charge induced in the tip is no longer compensated. 

This leads to the tip acquiring an overall negative charge, which means it is 

attracted towards the positive surface charge, to give dark EFM phase contrast, 

Figure 3.3e. Contrast reversal occurs between +20 V and +12 V, indicating that 

the deposited surface voltage lies between these values. The positively charged 

region's polarity is confirmed by EFM imaging using a negative tip voltage, 

where the attractive force between tip and sample now becomes sufficiently 

large to produce a prominent dark localised EFM phase shift. 

Deposition of positive charge onto the polymer surface using the EFM tip 

corresponds to a positive corona discharge being formed around the 

microscope t ip. 2 4 Although the voltage applied to the tip is much smaller than 

the voltages associated with macroscopic corona discharges (a few kV 2 4 ) , the 

extreme curvature at the tip (~ 13 nm 2 5 ) produces sufficient field strengths to 

ionise the surrounding air. 2 6 Accumulation of positive charge at the surface 

stems from positive ions (mainly hydrated H +) drifting from the ionised region 

towards the polymer surface across the potential difference between the tip and 

insulating polymer surface. 2 4 

It is apparent that positive charge deposition requires the tip voltage to exceed a 

threshold value (between +80 and +100 V), Figure 3.4a and b. Corona 

discharges are well known to exhibit a threshold voltage, determined by the 

availability of free electrons to cause ionisation. 2 4 As the tip voltage increases 

above this value, the EFM lift-mode phase shift at the centre of the charge 

patch darkens, indicating a higher degree of charging, Figure 3.4b-f. The area 

affected by the discharge also increases. This is again consistent with a corona 

discharge, since as the corona voltage rises, the current of positive species 

travelling towards the surface increases resulting in a faster rate of charge 

accumulation. 2 4 
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When the tip-voltage used for discharge generation was maintained at a 

constant value, the extent of surface charging could be enhanced by moving the 

tip towards the polymer surface, Figure 3.5. This is consistent with the threshold 

voltage for corona discharge dropping at shorter tip-sample distances. 8 

Increasing the scan speed effectively reduced the amount of charge deposited 

per unit area for an otherwise equivalent set of parameters, Figure 3.6. This is 

because higher scan speeds correspond to each region being exposed to the 

tip discharge for a shorter time period, hence less charge injection occurs. 

The increase in charge patch size with EFM imaging voltage magnitude seen in 

Figure 3.3c-f can be explained on the basis of EFM lift-mode phase shifts being 

more sensitive towards lower surface charge densities at higher imaging tip-

voltage magnitude, due to a stronger electrostatic tip-sample interaction. This 

observation implies that the positive charge patch on the polymer surface does 

not have an abrupt boundary, and that actually some positive charge density 

extends beyond the 1 ^im x 1 urn treated area, Figure 3.3c and d. A similar 

variation in lateral charge distribution has previously been observed using an 

electrometer for a macroscopically charged surface. 2 7 

The arguments outlined above for the positive discharge are also applicable to 

the negative discharge experiments. Varying the EFM imaging lift-mode voltage 

produced an opposite trend in the corresponding images, Figures 3.3c-f and 

3.7c-f. This is consistent with negative charge deposition. In this case, charge 

transfer will mainly result from CO3" ions drifting across the electric field towards 

the surface. A surface voltage of between -12 V and -17 V, was inferred from 

the point at which EFM lift-mode contrast reverses, Figure 3.7d and f. This 

potential has a similar magnitude to that resulting from positive discharge. 

Again, the charged region extends beyond the region that had been directly 

exposed to the discharge. 

The threshold voltage for negative charge deposition was found to lie between 

-40 V and -50 V, Figure 3.8a and b. This is considerably lower in magnitude 

compared to the positive threshold voltage for equivalent conditions (between 

+80 V and +100 V). A similar effect has been observed on larger scales, where 
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the onset of a negative discharge for a high curvature tip (radius of curvature < 

0.05 mm) occurs at a lower voltage than the equivalent positive discharge.28 

Again the size of the charged region correlates to the magnitude of the 

discharge voltage, due to the corresponding changes in the negative corona 

current, Figure 3.8b-d. 

3.6. Conclusions 
Localised charge deposition onto polymer surfaces can be achieved by 

scanning an atomic force microscope tip floating at high voltage. The polarity of 

the deposited charge region corresponds to the sign of the applied voltage. 

Whilst the scan parameters govern the amount of charge deposited. No 

accompanying morphological changes were detectable in the Tapping Mode 

AFM height images. Furthermore, Tapping Mode phase images and imaging 

SIMS spectra show that there is no associated chemical modification. 
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CHAPTER 4 

C H A R G E D FLUOROCHEMICAL DOPED 
P O L Y P R O P Y L E N E FILM S U R F A C E S 
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4.1. Introduction 
This chapter considers the charging behaviour of the fluorochemical doped 

polypropylene film surfaces, that were the subject of Chapter 2. Section 4.2 

describes how electric force microscopy (EFM) is used in conjunction with a 

home-built scanning electrometer to map the charge distribution across corona 

charged fluorochemical doped surfaces. Section 4.3 probes surface charging 

properties using the localised EFM charging technique described in Chapter 3. 

4.2. Mapping Charge on Fluorochemical Doped 
Polypropylene Film Surfaces 

4.2.1. Introduction 

Charged polymer surfaces have many technological uses; these include: 

electrostatic filter media,1 device manufacture (such as microphones),2 microbe 

resistant packaging,3 optical display devices,4 and biomedical applications.5 

Therefore, the identification and mapping of charge is of significant importance. 

Several powerful methods have been developed for measuring charge variation 

with depth,6 however the visualisation of charge distributions at polymer 

surfaces is relatively unexplored. An indirect method developed in the past has 

utilised photoionised dye particles to stain charged polypropylene surfaces,7 

whereby the staining was then correlated to the lateral charge distribution using 

optical microscopy. In this case, the size of the dye particles placed a limit on 

the attainable spatial resolution (~ 2 urn). More recently, it has been shown that 

scanning probe microscopies are capable of mapping surface charge with 

greater accuracy.8"12 In particular, EFM can provide lateral resolution down to 

below 30 nm,8 and even single charge carriers have been identified by this 

technique.9 

Very few EFM studies have examined polymer surfaces. One example has 

been poly(tetra-fluoroethylene-co-hexafluoropropylene) (FEP) film surfaces 

patterned with poly(amino-propyl) siloxane (APS).8 Localised force plots were 

used to show that FEP regions contained negative charge, whilst the APS 

regions were neutral. However, this approach suffered from the drawback that 
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only very small regions of the surface could be examined (since a force plot 

needed to be acquired for each point above the surface). In this section, it is 

shown that larger areas of charged heterogeneous polymer surfaces can be 

examined using height, phase, and electric force AFM. A two-component 

polymer system comprising fluorochemical domains embedded in a polyolefin 

matrix has been chosen because of the different charging attributes of the 

constituents under the influence of a corona discharge. 

4.2.2. Experimental 

A melt blown isotactic polypropylene film (medium molecular weight "Fina 3860" 

grade) containing 1% bis-perfluorinated additive, Structure 2.1 was used. An 

additive-free polyolefin film was also prepared to act as a reference substrate. 

The films were charged by a positive corona discharge (constant current 

conditions: I = 0.2 mA). Subsequent annealing studies aimed at examining 

charge dissipation were performed in a temperature controlled oven. 

EFM imaging with variable tip-voltage was carried out as described in Section 

3.3. The cross-sections presented in Figure 4.8 were prepared by disabling the 

microscope's slow scan axis, and capturing successive line scans whilst the tip 

voltage was varied. Details of EFM theory and image interpretation are 

described in Section 3.2. 

To allow large scale imaging, the surface potential distribution was also mapped 

using a electrostatic probe (Isoprobe electrostatic voltmeter model 244, Monroe 

electronics - New York; 0.1 % error) and a home-built motorised x-y sample 

manipulation stage, Figure 4.1. A PC was used to control sample x-y position 

and for data accumulation. The PC-electrometer interface was programmed 

using LabView software (version 5.1, National Instruments). Surface potential 

measurements were recorded every 400 \im covering a 20 mm x 20 mm area 

of the sample surface. Probe-sample spacing was fixed at ~1 mm, and the 

probe's voltage response was calibrated to a metal plate of known voltage prior 

to scanning. The spatial resolution of the probe head was 500 

|a,m. 
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Figure 4.1 The scanning electrometer: (a) Schematic: shaded regions are 
attached to the base plate; and (b) Photograph. 
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4.2.3. Results 

4.2.3.1. Uncharged Films 

Large scale electrostatic probe analysis of both uncharged samples reveals a 

low level of negative surface potential, Table 4.1, Figures 4.2a and 4.3a. It is 

thought that this residual surface potential will have accumulated during sample 

manufacture and handling through tribocharging. Tapping-mode AFM height 

images of the two uncharged films depict spherulitic morphology, Figures 4.4a 

and 4.5a. The phase image of the pure film solely depicts crystalline 

morphology, Figure 4.4b, whereas fluorochemical domains are visible as bright 

contrast at the surface of the doped sample, Figure 4.5b. Uncharged pure and 

fluorochemical doped polypropylene films displayed no phase contrast in the 

EFM lift mode attributable to the presence of localised surface charge, Figures 

4.4c and d, Figures 4.5c and d. 
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Figure 4.4 10 |u.m x 10 urn AFM micrographs of polypropylene film: (a) height 
image; (b) Tapping mode phase image; (c-d) EFM lift-mode phase images 
recorded at: +40 V and -40 V respectively. 
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10um 

Figure 4.5 10 [im x 10 urn AFM micrographs of fluorochemical doped 
polypropylene film: (a) height image; (b) Tapping mode phase image; (c-d) EFM 
lift-mode phase images recorded at +40 V and -40 V respectively. 



4.2.3.2. Charged Films 

Positive corona charging was found to impart a positive potential to both the 

pure and fluorochemical doped polymer surfaces, Table 4.1. The presence of 

fluorochemical gave rise to a greater build-up of positive charge at the surface 

(+367 V) compared to the pure polypropylene sample (+ 246 V). However, the 

spatial distribution of charge was non-uniform, with both types of surface 

exhibiting some regions of negative charge, Figure 4.2b and 4.3b. This is 

consistent with the previous observation that corona discharge produces non­

uniform surface charge distributions.15 

Tapping-mode AFM height and phase images of charged pure polypropylene 

film showed the same features as the uncharged equivalent, Figure 4.6a and b. 

EFM lift-mode phase images displayed contrast depicting surface morphology, 

and a localised feature centred on the spherulite nuclei, Figure 4.6c and d. 

Changing the tip voltage from +40 V to -40 V inverted the EFM lift mode 

contrast at the spherulite centres from bright to dark, which indicates that they 

are positively charged. 

Tapping-mode AFM height and phase micrographs of charged fluorochemical 

doped film also match those of the uncharged equivalents, Figure 4.7a and b. 

The corresponding EFM lift-mode phase images displayed contrast variation 

corresponding to regions of the fluorochemical additive, Figure 4.7c and d. With 

+40 V applied to the tip, locations enriched in fluorochemical produced bright 

EFM lift-mode phase contrast, Figure 4.7c. Reversing the tip voltage to -40 V 

inverted the EFM lift-mode phase contrast corresponding to the fluorochemical 

domains, Figure 4.7d. The magnitude of EFM lift-mode phase shift above a 

fluorochemical domain varied smoothly with changing tip-voltage, Figure 4.8. 

The line scans also show that the high phase shift corresponding to the location 

of a fluorochemical patch does not have a corresponding feature in the height 

scan, Figures 4.8b and 4.8a respectively. At +20 V applied tip voltage, the EFM 

lift-mode profile displays high phase shift at the location of the fluorochemical, 

Figure 4.8c, switching the tip voltage to -20 V removes any localised contrast, 

Figure 4.8d; while reducing the tip voltage further produces increasingly 

negative phase shifts, Figure 4.8e-g. All of these observations are consistent 
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with positively charged fluorochemical domains at the polypropylene film 
surface, Table 3.2. 
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Figure 4.6 10 \xm x 10 urn AFM micrographs of charged polypropylene film: (a) 
height image; (b) Tapping mode phase image; (c-d) EFM lift-mode phase 
images recorded at: +40 V and -40 V respectively. 
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Figure 4.7 10 x 10 |tim AFM micrographs of charged fluorochemical doped 
polypropylene film: (a) height image; (b) Tapping Mode phase image; (c-d) EFM 
lift-mode phase images recorded at +40 V and -40 V respectively. 

114 



(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(9) 

Height 

Phase 

EFM 
Phase 

EFM 
Phase 

EFM 
Phase 

EFM 
Phase 

EFM 
Phase 

Distance 

Figure 4.8 10 urn line scans of charged fluorochemical doped polypropylene: 
(a) Height; (b) Tapping-mode phase; (c-g) EFM Lift-mode phase images 
recorded at +20V, -20V, -40V, -60V, -80 V respectively. The location of a 
fluorochemical domain is indicated by vertical lines. 

115 



4.2.3.3. Effect of Annealing on Spatial Charge Distribution 

Tapping Mode height, phase and electrical force AFM micrographs of charged 

fluorochemical doped polypropylene films which had been annealed at 60 °C for 

1 minute showed no changes, Figure 4.9. However, increasing the annealing 

temperature to 100 °C (1 minute exposure) altered the EFM lift-mode phase 

contrast associated with the fluorochemical domains, Figure 4.10. Whilst the 

appearance of the domains themselves remains unchanged in the 

corresponding Tapping Mode phase images, Figure 4.10b, the EFM lift-mode 

phase contrast of the fluorochemical domains had decreased in magnitude at 

the higher temperature, Figure 4.10c and d. Changing the polarity of the tip 

voltage again inverted the EFM lift-mode image contrast, indicating the 

presence of positive charge on the fluorochemical domains. 

Annealing at 130 °C for 1 minute produced changes in both Tapping Mode and 

EFM lift-mode phase images, Figure 4.11. Tapping Mode AFM phase images 

were indicative of the fluorochemical surface coverage increasing, Figure 4.11b. 

EFM lift-mode phase contrast no longer matched the location of the 

fluorochemical domains, and the polarity of the applied tip voltage had little 

effect on the EFM lift-mode phase image contrast, Figure 4.11c and d. 

Regions of the charged samples previously analysed using the surface potential 

probe, Figures 4.2b and 4.3b, were re-imaged following annealing at 130 °C for 

1 minute. Both samples show thermally stimulated surface potential decay, 

Table 4.1. Although the amount of surface charge has been reduced by 

annealing, the distribution of charge across the surface remains the same (i.e 

the most positive and negative regions of the surface are located in the same 

position both before and after annealing), Figures 4.2b and c, Figures 4.3b and 

c. This suggests that large scale charge features do not laterally migrate to 

cancel each other out, rather they discharge via migration into the bulk. 
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Figure 4.9 10 urn x 10 u.m AFM micrographs of charged fluorochemical doped 
polypropylene after annealing at 60 °C for 1 minute: (a) height image; (b) 
Tapping Mode phase image; (c-d) EFM lift-mode phase images recorded at +40 
V and -40 V respectively. 
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Figure 4.10 10 [im x 10 nm AFM micrographs of charged fluorochemical doped 
polypropylene after annealing at 100 °C for 1 minute: (a) height image; (b) 
Tapping Mode phase image; (c-d) EFM lift-mode phase images recorded at +40 
V and -40 V respectively. 
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Figure 4.11 10 \xm x 10 jxm AFM micrographs of charged fluorochemical doped 
polypropylene after annealing at 130 °C for 1 minute: (a) height image; (b) 
Tapping Mode phase image; (c-d) EFM lift-mode phase images recorded at +40 
V and -40 V respectively. 

4.2.3.4. ADDENDUM: Poling of Fluorochemical Domains During Low 
Temperature Annealing 

This section reports on an interesting spatial charge distribution effect observed 

for another of the fluorochemical doped polypropylene films considered in 

Chapter 2. A film comprising 1% bis-perfluorinated additive mixed with isotactic 

polypropylene (low molecular weight "Exxon 3505" grade) was charged as 

described in Section 4.2.2, then annealed at 60 °C for 1 minute. EFM was used 

to characterise the surface charge distribution. 

The Tapping Mode AFM height image of the charged doped film following 

annealing depicts spherulitic morphology, while the phase image locates the 

fluorochemical domains as bright contrast, Figure 4.12a and b respectively. Film 

119 



morphology and the distribution of fluorochemicai are the same as that 

previously observed for the equivalent uncharged film before annealing, Figure 

2.3b. Lift-mode EFM phase images recorded at + 40 V show striking contrast 

corresponding to the location of fluorochemicai at the surface, Figure 4.12c. 

Each fluorochemical domain is split into two parts, with one region giving dark 

contrast and the other bright contrast. Furthermore, the orientation of the 

contrasting segments is common to each of the fluorochemical patches. The 

effect of changing the tip voltage from + 40 to - 40 V is to reverse the contrast of 

both parts of the fluorochemical domains, Figure 4.13. The right hand regions of 

the fluorochemical domains change from bright to dark lift-mode contrast, 

indicating positive charge, conversely the left hand side regions are negatively 

charged. Therefore it can be concluded that the charged, annealed doped 

polypropylene surface possess orientated dipoles spatially confined to the 

regions enriched in fluorochemical additive. 
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Figure 4.13: 4 |im x 4 lift-mode phase images of charged fluorochemical 
doped polypropylene after annealing at 60 °C for 1 minute, recorded in the box 
marked on Figure 4.11c: (a) + 40 V tip voltage (b) - 40 V tip voltage. 

4.2.4. Discussion 

Although polypropylene is often used as an electret material, polymers 

containing fluorine (such as poly(tetrafluoroethylene) - PTFE) tend to exhibit 

better charge storage properties.13 Indeed, in this study it has been observed 

that the presence of fluorochemical at the surface enhances the average 

surface potential acquired following positive corona discharge. This 

improvement in charge longevity can be attributed to the high surface 

hydrophobicity14 and exceptionally low electrical conductivity of fluorinated 

materials.15 Furthermore, the differences in charging characteristics between 

polyolefin and fluorinated chains suggest that a charged polypropylene surface 

containing regions of fluorochemical will display a corresponding spatial 

variation in charge distribution. 

EFM lift-mode phase images of charged pure polypropylene show contrast 

reflecting sample topography (due to the increased electric field gradient at 

highly curved regions of a uniformly charged body combined with Van der 

Waals forces16), Figure 2.6. This is consistent with a previous study where it 

was shown that charged dye particles adhere to the surface of oppositely 

charged polypropylene spherulites.7 Closer inspection reveals concentration of 
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charge at the spherulite centres. The effect of tip voltage on the EFM lift-mode 

contrast for these regions suggests that they are positively charged with respect 

to the surrounding surface. A plausible explanation for this charge build-up 

could be that spherulites often nucleate around impurities in the polymer melt, 

and such impurities are known to act as localised charge traps.1 5 

In the case of the charged fluorochemical doped polypropylene film, EFM lift-

mode phase images indicate that the additive domains possess a different level 

of charge at the surface compared to the surrounding polypropylene regions. A 

positive applied tip voltage results in the EFM lift-mode phase shift becoming 

more repulsive for the fluorochemical regions compared to the tip-polypropylene 

interactions. Negative voltages cause the tip to experience a more attractive 

field gradient when it is above fluorochemical regions compared to the 

polypropylene. These observations are consistent with the fluorochemical 

domains being positively charged with respect to the surrounding polypropylene 

matrix, Table 3.2. 

The polarity acquired by fluorinated species at surfaces relative to polyolefin 

media has only previously been studied during tribocharging experiments. In 

this case, fluorinated polymers were reported to acquire negative charge 

relative to polypropylene upon contact.17 A study of poly(tetrafluoroethylene-co-

hexafluoropropylene) (FEP) patterned with poly(amino-propyl-siloxane) (APS) 

also found the FEP regions to be negatively charged.8 This latter conclusion is 

only of limited relevance since APS does not possess electret properties and 

was reported to be uncharged. The current study differs in that the mechanism 

of charging is corona discharge. In this case it appears that the mainly positive 

deposited charge resides preferentially on the fluorochemical domains. 

The subsequent annealing studies of the positively charged fluorochemical 

doped polypropylene (medium molecular weight "Fina 3860" grade) films have 

shown that the entire surface becomes uniformly charged over the micron scale 

at high temperatures, Figures 2 .9 -2 .11 . This is consistent with the electrical 

properties of polymers being temperature dependent. For example, the 

conductivity of polymer electrets increases with temperature, due to trapped 

charge being unloaded via thermally activated processes.15 An important 
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parameter is the discharge temperature, this is defined as the temperature at 

which all trapped surface charge disappears.15 Polypropylene has a discharge 

temperature of 155 °C, and gives peaks at -70 °C and -130 °C in open circuit 

thermally stimulated current (TSC) measurements.6 These peaks correspond to 

de-trapping of charges near the surface and in the bulk respectively. PTFE can 

be taken as an analogue for the segregated perfluorinated arms of the 

fluorochemical additive at the surface, this is reported to have a higher 

discharge temperature of 230 °C, with no loss of charge occurring below 100 
OQ13 

The observed charge decay with annealing for the charged fluorochemical 

doped polypropylene films is consistent with these observations. As well as the 

actual loss of charge density from the surface, lateral migration of surface 

charge to reduce the field gradient resulting from the differential charging 

between the fluorochemical domains and the surrounding polypropylene matrix 

may be a contributing factor. This energetically favourable charge redistribution 

will become more likely at higher temperatures, due to better charge transport. 

It should also be noted that elevated temperatures will encourage the migration 

of the lower surface energy fluorochemical molecules towards the air-solid 

interface, Section 2.3. This will have the effect of disrupting the existing charged 

fluorochemical domains, and placing additional uncharged additive molecules at 

the surface. 

On this basis, the observed annealing behaviour of the charged fluorochemical 

doped polypropylene films can be accounted for as follows: at 60 °C insufficient 

thermal excitation is available for charge to de-trap in either polypropylene or 

the fluorochemical. This low conductivity also prevents lateral charge migration. 

At 100 °C the surface charge residing on polypropylene is released, but charge 

is retained on the more stable fluorinated domains. In this case, lateral charge 

migration between neighbouring fluorochemical and polypropylene domains 

accounts for the partial loss of the localised charge domains. At the highest 

temperature of 130°C, the combination of increased surface segregation, lateral 

charge migration and loss of surface charge density from the fluorinated regions 

gives rise to a uniform surface charge distribution. Although this produces the 

removal of the small scale charge heterogeneity attributable to differences in 
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chemical composition across the surface, the large scale surface potential 

variation introduced as a result of the corona discharge process remains. 

Annealing to 60 °C did not change the spatial charge distribution of the medium 

molecular weight doped polypropylene, whereas equivalent treatment of the low 

molecular weight sample produced orientated dipoles localised on the 

fluorochemical domains. A dipole arrangement could be produced by the 

presence of an electric field gradient across the surface. This gradient would 

drive positive and negative charge carriers to laterally migrate in opposite 

directions during annealing. If the field gradient was constant over the 10 urn x 

10 îm area examined by EFM then all carriers would migrate in the same 

direction, explaining the dipole's common orientation. Highly charged domains 

on other regions of the polymer surface could produce such an electric field. 

The observation that the lateral charge migration was bounded by the edges of 

the fluorochemical domains is consistent with the segregated perfluorinated 

arms of the additive molecule having better charge retaining properties than the 

surrounding polypropylene. 

4.3. Localised Charging Properties of FSuorochemicaB 
Doped Polypropylene Film Surfaces by EFM 

4.3.1. Introduction 

The variation of surface potential across positively corona charged 

fluorochemical doped surfaces have been studied on millimeter and micrometer 

scales using a scanning electrometer and EFM respectively, Section 4.2. 

Although such surfaces are found to be predominantly positively charged, 

variations in large scale surface potential (sign and magnitude) exist, Figures 

4.2 and 4.3. However EFM consistently indicates that fluorochemical enriched 

domains acquire positive charge relative to the surrounding polypropylene. This 

presents a familiar problem for scanning force microscopy methods: how to 

ensure the minute sampling area is representative of the entire surface. Usually 

this is addressed by recording and comparing scans from several different 

regions of the surface. However, this approach does not allow comparison 
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between the overall polarity of a given region and its small scale charge 

distribution. 

A solution is provided by using a scanning EFM tip to deposit controlled levels 

of charge with high spatial precision, and subsequently image the resulting 

charge distribution as described in Chapter 3. This allows the unambiguous 

identification of the relative charging behaviour of polypropylene and 

fluorochemical regions when exposed to positive and negative discharges. 

4.3.2. Experimental 

Uncharged bis-perfluorinated additive doped ( 1 % by weight) polypropylene 

(medium molecular weight "Fina 3860" grade) films were used. Lift-mode EFM 

charge deposition and imaging were performed as described in Section 3.3. 

Optimum discharge conditions were found to be: set-point: free amplitude ratio 

of 0.5; a scan rate of 0.5 Hz and a lift height of 30 nm. 

Each experiment consisted of two stages: localised surface charging, followed 

by imaging the modified region. Charging was performed by scanning a 5 urn x 

5 |im square of polymer with a high voltage (± 140 V) applied to the tip. 

Subsequently images centred on this square were recorded. 

4.3.3. Results 

While the fluorochemical enriched regions (bright tapping-mode phase contrast) 

outside the 5 [im x 5 (im square exposed to negative discharge are 

undistinguished in lift mode images, those within produce dark lift-mode 

contrast relative to the surrounding polypropylene, Figure 4.14. However, the 

lift-mode contrast of the pure polypropylene regions is not altered by negative 

discharge. With positive tip voltage (+20 V) dark lift-mode contrast signifies 

negative surface charge, Table 3.2. Hence it appears that negative EFM 

discharge deposits negative charge selectively onto the fluorochemical 

domains, without effecting the surrounding polypropylene. 

However, localised positive discharge produces a change in the lift-mode 

contrast of both the surrounding polypropylene and the fluorochemical patches, 
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Figure 4.15. With the tip voltage now at - 20 V, positive surface charge causes 

the lift-mode image to darken. Polypropylene regions within the modified region 

darken, but to a lesser extent than the fluorochemical domains. Therefore, in 

the case of positive discharge both polypropylene and fluorochemical regions 

acquire positive charge, however more potential resides on the fluorochemical. 
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4.3.4. Discussion 

Fluorochemical enriched regions accumulate both positive and negative charge 

more readily than the surrounding polypropylene matrix. This is consistent with 

prior studies of the charging characteristics of fluorinated material compared to 

polyolefins, Section 4.2.4. The polypropylene surface is observed to accumulate 

positive charge, but is not effected by the negative discharge. It has previously 

been found that the stability of negative charge injected into polypropylene is 

higher than that of positive charge.18 This has been attributed to negative 

charge carriers being trapped deeper in the bulk of the polymer. Positive 

carriers, which stay at the surface, can be more easily neutralised by surface 

recombination. This explains why EFM detects positive charge on the 

polypropylene surface, while the negative charge injected into the bulk 

produces no contrast. 

In should be noted that in the localised charging performed in Chapter 3, both 

positive and negative charge is observed on the polypropylene film surface, 

presumably this reflects the different polypropylene substrate used for this work. 
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4.4. Conclusions 
Electric force microscopy can be used to map charged fluorochemical domains 

embedded in polypropylene film surfaces. EFM images show that positive 

corona charging leads to the fluorochemical regions acquiring a positive charge 

relative to the surrounding polypropylene matrix. Subsequent annealing causes 

a redistribution of charge at the surface. 

Furthermore, localised charge deposition from a scanning EFM tip onto 

fluorochemical doped polypropylene surfaces proves that fluorochemical 

domains accumulate both negative and positive charge preferentially to the 

polypropylene surrounds. 
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CHAPTER 5 

L O C A L I S E D E L E C T R O S T A T I C ATTACHMENT OF 
POLYMER S P H E R E S TO SOLID S U R F A C E S 

USING EFM 
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5.1. Introduction 
The interaction of particulate matter with charged surfaces is of technological 

importance for processes such as xerography, 1 , 2 electrostatic aerosol filtration3 

and membrane filtration.4 AFM has recently emerged as a useful tool in the 

characterisation of such systems. For example, experiments have been 

performed with individual particles attached to a AFM cantilever in order to 

probe the electrostatic interaction of colloids with membrane pores. 4 The 

adhesion of toner particles to charged surfaces has also been investigated.5 

Electrostatic fields can control the attachment of colloidal particles to surfaces 

during the formation of the mono- and multilayers of current interest in materials 

science. 6 , 7 As an example, the attachment of negatively charged gold nano-

particles to a positive surface produces a closely packed conducting layer.6 

Such layers are usually assembled in solutions, where the electrostatic 

interactions are between ionic surface groups. This chapter investigates an 

alternative approach, namely the use of charged polymer surfaces to attract and 

trap particles from dry aerosols. The advantage of this strategy is that it can be 

combined with the localised EFM charging method described in Chapter 3, to 

achieve spatially controlled particle localisation. This approach offers high 

spatial definition and does not require the vacuum apparatus necessary for the 

deposition of localised charge using electron beams. 8 

Section 5.3.1 investigates the deposition of polystyrene spheres onto a 

localised charge patch. Electric force micrographs are recorded to provide an 

insight into the mechanism of particle capture on the sub-micron scale. Section 

5.3.2 explores the attachment of chemically modified polystyrene beads to 

charged surfaces. Strategies for the functionalisation of amine bead surfaces 

with metallic gold coatings are also investigated, with the goal of developing a 

new method for localised surface metallization. Colloidal gold particles have 

been shown to attach to surfaces with amine functionality.6 In addition, the 

plasma reduction of gold (III) chloride on a nitrogen containing surface is known 

to produce gold surfaces. 9 Both methodologies are considered. 
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5.2. Expert mental 
EFM charge deposition was performed as described in Section 3.3. Details of 

EFM theory and image interpretation are found in Section 3.2. 

XPS and optical microscopy characterisation were employed as described in 

Section 2.2.2. A theoretical sensitivity factor of 0.05 was used for the Au(4f) 

XPS analysis. 1 0 

Capacitor grade polypropylene film (ICI) served as the substrate in Section 

5.3.1; and was also used for the localised bead deposition experiments in 

Section 5.3.2. This was cleaned by ultrasonication in propan-2-ol (Fisher, 

99.99% purity) for 30 seconds. The substrates used for the large scale 

investigations in Section 5.3.2 were melt blown isotactic polypropylene films 

(Fina 3860 grade). Charged surfaces were prepared by corona discharge 

(constant current conditions: I ~ 0.2 mA). Three types of particle have been 

investigated: pure polystyrene (Agar Scientific Ltd.), amine terminated 

polystyrene (Bangs Labs Inc.) and carboxyl terminated polystyrene (Bangs Lab 

Inc.), Table 5.1. 

Bead Type Mean diameter / Nebulising 

concentration / 

ml"1 

Exposure time / 

min 

Polystyrene 0.0091 8x10 1 0 90 

Amine 0.66 4.3x10 9 30 

Carboxyl 0.60 4.3x10 9 30 

Table 5.1 Bead properties. 

Surfaces were exposed to an aerosol generated by nebulizing an aqueous bead 

suspension in a dry N 2 air stream (BOC >99.99% purity), Figure 5.1. Bead 

concentrations, and exposure times are detailed in Table 5.1. 
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Nebulizer 

N 
(0.4 bar) 

ft 

> Nebulized 
beads 

Gas flow meters 
(3 L/min) 

Figure 5.1 Schematic of the apparatus used to nebulize beads. 

The EFM charging experiments consisted of three stages: firstly, localised 

charging was performed by scanning a 20 urn x 20 |im square of polymer while 

a high voltage was applied to the AFM tip (+ 180 V); then the surface was 

exposed to a bead aerosol, and finally electric force or optical micrographs were 

recorded. 

The initial attempt to functionalise amine beads was carried out by surface 

exposure to an aqueous suspension of colloidal gold (diameter = 250 nm, 

concentration = 1.2x108 n /ml, Agar Ltd. ) for 10 minutes. Following this the 

surfaces were washed with water (B. S. 3987 Grade 1). Gold functionalisation 

of the amine beads involved first exposing the surface to a gold (III) chloride 

(Aldrich 99% purity) solution (20 % w/v in methanol) for 10 minutes, then 

washing with pure methanol (Aldrich 99% purity). Dried samples were treated 

with a low pressure H 2 (BOC >99.99 % purity) plasma (Biorad Plasma Asher 

E2000 reactor: duration = 15 min; power = 20 W; chamber pressure = 0.4 

mbar). 
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5.3. Results 

5.3.1. Localised Attachment of Polystyrene Beads to 
Polypropylene Surfaces using EFM 

5.3.1.1. Negative Surface Charge 

A 20 urn x 20 fim negative charge square (dark contrast, Table 3.2) was 

deposited onto the polypropylene film surface using a highly biased negative tip 

voltage, Figure 5.2a. The Tapping Mode phase image also showed dark 

contrast in the charged region, due to increased tip-sample attraction. Following 

exposure to polystyrene beads, particulate material was observed to 

accumulate preferentially on the charged region, particularly at its edges, Figure 

5.2b. The horizontal streaks in the Tapping Mode height and phase images can 

be attributed to particles adhering to and being perturbed by the AFM tip. 

Particles aggregated in clumps at the surface. However, rounded features with 

diameters of about 100 nm can be seen at the edges of the agglomerates, in 

good agreement with the known sphere diameters (91 nm), Figure 5.3a. Lift-

mode images also identify the presence of polystyrene beads by the 

concentration of electric field gradients at the curved height surface features. 

Furthermore, EFM analysis indicates that the edges of the deposited charge 

patch remain negatively charged, (dark contrast) while the central regions 

display neutral contrast, corresponding to loss of charge. When imaged at 

higher resolutions, the region around the beads can be seen to give bright EFM 

lift-mode contrast with positive tip voltage, whereas with negative voltage this 

contrast reverses and becomes dark, Figure 5.3. This is consistent with regions 

surrounding the attached beads being positively charged relative to their 

surroundings, Table 3.2. 

High resolution images taken outside the negatively charged region show low 

polystyrene sphere densities, Figure 5.4. These particles only show EFM lift-

mode contrast due to their curvature; no associated electrostatic features are 

seen. 
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5.3.1.2. Positive Surface Charge 

Polystyrene spheres were also found to localise preferentially around the 

peripheries of a positively charged region, Figure 5.5. Furthermore, EFM lift-

mode images recorded with positive applied tip voltage showed that positive 

charge was retained around the boundaries (dark contrast); whilst charge loss 

occurred in the central region. More horizontal streaking was apparent than for 

the case of beads attached to the negative surface. To prove that the tip was 

sweeping beads across the surface, two successive images were recorded. 

Figure 5.5a and b. Fewer beads could be seen in the second image, Figure 

5.5b, compared to the first, Figure 5.5a. 
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5.3.2. Surface Attachment of Functionalised Beads 

5.3.2.1. Attachment of Amine and Carboxyl Beads 

Positively and negatively charged polymer films (with approximately ± 500 V 

surface potential as determined using the scanning electrometer described in 

Section 4.2.2) together with an uncharged reference sample were exposed to 

an aerosol of amine terminated beads and then examined by optical 

microscopy, Figure 5.6. A high density of mainly separate particles with the 

expected diameter are observed to attach to both the positively and negatively 

charged surfaces. No beads are visible on the uncharged surface. When this 

experiment is repeated using carboxyl terminated beads, the surface of the 

uncharged sample also shows no sign of bead attachment, Figure 5.7. 

However, both positively and negatively charged surfaces became covered with 

carboxyl material. Individual carboxyl beads cannot be discerned, instead larger 

clumps of aggregated material are visible. 



80|am 

Figure 5.6 Optical micrographs of polypropylene following exposure to -NH 2 

bead aerosol: (a) positively charged surface; (b) negatively charged surface; 
and (c) neutral. 
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80um 
Figure 5.7 Optical micrographs of polypropylene following exposure to -COOH 
bead aerosol: (a) positively charged surface; (b) negatively charged surface; 
and (c) neutral. 



5.3.2.2. Localised Attachment of Amine Terminated Beads 

Amine beads were observed to develop the shape of both positive and negative 

localised charge patches, Figure 5.8. Bead attachment occurred uniformly over 

the entire charged region. 

(a) 
0 

80um 

(b) 
0 

M l 

80\xm 

Figure 5.8 Optical micrographs of locally charged polypropylene surfaces 
following exposure to -NH 2 bead aerosol: (a) positive charging; and (b) negative 
charging. 



5.3.2.3. Surface Functionalisation of Amine Terminated Beads 

(a) Gold Colloid Exposure 
XPS of the amine bead surfaces depicted in Figure 5.6 after exposure to 

colloidal gold showed no signals in the Au(4f) envelope, Table 5.2. Oxidation of 

the charged samples occurred due to modification by the corona charging 

process. Only trace N(1s) signals due to the amine functionality on the surface 

of the beads were detected. 

(b) Gold (III) Chloride Treatment 
XPS analysis of the uncharged polypropylene surface depicted in Figure 5.6c 

after treatment with gold (III) chloride indicated low levels of Au and CI, Table 

5.2. However both of the large scale charged surfaces (Figure 5.6a and b) had 

higher surface concentrations of Au and CI. The Au(4f) spectral region 

contained peaks consistent with A u 3 + incorporation (Au(4f 7 /2) at -87.6 eV; 

Au(4f 5/ 2) at -91.5 eV), Figure 5 .10. 1 1 , 1 2 More Au and CI incorporation occurred 

on the positively charged surfaces than the negatively charged equivalents. 

Optical micrographs following the treatment depicted individual beads attached 

to the polypropylene substrate, Figure 5.9. 

Positive, negative and uncharged polypropylene substrates were also exposed 

to gold (III) chloride, to ascertain if polymer surface charge was contributing to 

the observed Au and CI concentrations. All three substrates gave lower Au and 

CI concentrations than those covered with amine beads, Table 5.2. This 

indicates that most of the gold complexation is with the amine groups on the 

bead's surface rather than the underlying polypropylene. 

Having established that a A u 3 + complex was attached to the surface of the 

amine beads, low pressure H 2 plasma discharge was investigated as a method 

of reducing the A u 3 + to Au°. XPS elemental analysis of the plasma treated 

surfaces indicated a reduction in the amount of CI relative to Au, Table 5.2. 

Such a reduction in CI concentration has been reported to accompany A u 3 + 

reduction.9 Furthermore, the Au(4f 7/ 2) and Au(4f 5 / 2) XPS peaks shifted from 

-87.6 eV and -91.5 eV for the high oxidation state adduct to -85.4 eV and 

-88.9 eV after reduction respectively, Figure 5.10. Such shifts reflect the 
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reduction of gold (III) chloride to metallic gold. 1 3 Optical micrographs depicted 

beads remaining intact at the surface, Figure 5.11. The beads attached to the 

positively charged surface had higher gold concentrations than those localised 

on negative charge, Table 5.2. 

A patch of beads localised using EFM charge deposition was also subject to the 

same gold (III) chloride treatment and subsequent plasma reduction. Optical 

images revealed that the beads remained in a localised square, Figure 5.12. 

Surface Treatment X 
C 

>S Elemen 
Au 

tal Analysi; 
CI 

s a 

O 
None + gold (III) chloride 96.5 

(±1.7) 
0.3 

(± 0.2) 
1.6 

(±1.4) 
1.6 

(±0.1) 
Positive corona + gold (III) 

chloride 
94.8 

(± 0.7) 
0.5 

(± 0.2) 
2.4 

(±1.5) 
2.3 

(±1.0) 
Negative corona + gold (III) 

chloride 
95.4 

(± 0.5) 
0.2 

(±0.1) 
1.2 

(± 0.5) 
3.3 

(±0.1) 
NH 2 beads + Au colloid 98.2 

(± 0.5) 
0.0 - 1.8 

(±0.1) 
Positive corona + NH2 beads + 

Au colloid 
97.0 

(± 0.5) 
0.0 - 3.0 

(±0.1) 
Negative corona + NH 2 beads + 

Au colloid 
96.5 

(± 0.2) 
0.0 - 3.5 

(± 0.8) 
NH 2 beads + gold (III) chloride 94.4 

(±1.0) 
0.5 

(± 0.3) 
1.8 

(±1.7) 
3.3 

(±1.0) 
Positive corona + NH 2 beads + 

gold (III) chloride 
73.0 

(± 5.7) 
4.0 

(± 0.5) 
16.2 

(± 3.6) 
6.8 

(±1.6) 
Negative corona + NH 2 beads 

+gold (III) chloride 
88.7 

(± 0.3) 
1.6 

(± 0.4) 
4.0 

(±1.3) 
5.8 

(± 0.6) 
NH 2 beads + gold (III) chloride + 

H 2 plasma 
95.7 

(± 0.2) 
0.4 

(± 0.5) 
1.0 

(± 0.2) 
2.9 

(± 0.5) 
Positive corona + NH 2 beads + 
gold (III) chloride + H 2 plasma 

91.5 
(± 0.7) 

2.1 
(±0.1) 

4.8 
(± 1.0) 

1.6 
(± 0.5) 

Negative corona + NH 2 beads + 
gold (III) chloride + H 2 plasma 

94.4 
(± 0.5) 

0.6 
(± 0.5) 

1.4 
(± 0.2) 

3.7 
(± 0.4) 

Table 5.2 Chemical modification of NH 2 beads. 

Only trace levels of N were detected in the N(1s) envelope. 
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80u.m 
Figure 5.9 Optical micrographs of polypropylene following exposure to NH 2 

bead aerosol, and gold (III) chloride solution: (a) positively charged; (b) 
negatively charged; and (c) neutral. 
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Figure 5.10 Au(4f) region of polypropylene after exposure to an -NH 2 bead 
aerosol and gold (III) chloride solution: (a) positively charged surface; (b) 
positively charged surface after H 2 reduction; (c) negative surface; and (d) 
negatively charged surface after H 2 reduction. 
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Figure 5.11 Optical micrographs of polypropylene following exposure to a -NH2 

bead aerosol, gold (III) chloride solution and H 2 plasma reduction: (a) positively 
charged; (b) negatively charged; and (c) neutral. 
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Figure 5.12 Optical micrographs of locally charged polypropylene following 
exposure to a -NH2 bead aerosol, gold (III) chloride solution and H 2 plasma 
reduction: (a) positive charging; and (b) negative charging. 

5.4. Discussion 

5.4.1. Electrostatic Attachment of Polystyrene Beads 

It is well known that charged surfaces readily capture sub-micron sized air­

borne particulate matter.14 In Section 5.3.1 it was demonstrated that polystyrene 

beads preferentially accumulate onto both negatively and positively charged 

patches, compared to the uncharged surroundings. As similar particle densities 

are observed for both the negative and positively charged patches, then the 

polystyrene aerosol must have no overall dominant polarity, i.e. there are equal 
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numbers of positively and negatively charged beads. Charged particles interact 

with surface charge distributions via Coulombic forces, whereas uncharged 

particles are acted on by induction forces.3 Particles at the surface are seen to 

possess an opposite polarity charge to the underlying charged substrate. This 

may arise from particle charging during aerosol formation,15 or be induced by 

the substrate's charge. 

The observed accumulation of particles at the peripheries of charged squares 

rather than at their centres is an example of an "edge effect". This phenomena 

is well known in xerography.1 Edge effects are usually attributed to the large 

electric field gradient at the boundary between charged and uncharged regions. 

In this work, the distribution of beads reflects the fact that charge only remains 

at the edges of the deposited square after bead deposition. The change in the 

charge distribution resulting from exposure to the beads suggests that the 

central region of the charge patch is less stable than the boundary regions. This 

can be explained by considering that the characteristics of discharge from an 

EFM tip are similar to those of corona discharge, Section 3.5. Furthermore, it 

has been previously reported that the region directly exposed to the corona 

loses charge more rapidly than the indirectly charged surrounding areas due to 

excitation by UV photons.16 Therefore, it seems likely that the observed 

distribution of particles results from the greater field gradient at the edge of the 

deposited charge patches in combination with the reduced stability of their 

central regions. 

The lateral mobility of particles attached to the negative charge patch is lower 

than those attached to an equivalently deposited positive region. This is 

consistent with the previous observation that negative charge is deposited from 

the EFM tip more readily than positive charge, Section 3.5 (negative breakdown 

voltage = -40 V to -50 V; positive breakdown voltage = +80 V to +100 V). The 

higher density of negative charge would allow stronger induced and Coulombic 

interactions with particles at the surface and so reduce lateral movement 

compared to the positively charged region. 
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5.4.2. Electrostatic Attachment of Functionalised Polystyrene 
Beads 

Both carboxyl and amine terminated bead aerosols can be localised onto 

charged surfaces. Despite the ionisable nature of the surface functional groups, 

no selectivity between positive and negative surface charge was observed. This 

suggests that particle capture occurred as described for the polystyrene beads, 

Section 5.4.1. The electrostatic interaction between amine beads and the 

charge patches has been shown to be sufficient to withstand exposure to 

solvents and chemical reagents. The "edge effect" noted when polystyrene 

beads deposit onto localised charge patches is not evident for amine beads, 

Figures 5.2, 5.5 and 5.8. This could be a result of the larger size of the amine 

beads reducing their sensitivity to electric field gradients. 

5.4.3. Localised Patterning of Amine Beads with Gold 

No evidence of the attachment of gold colloidal particles to amine beads was 

found. This suggests that the density of amine groups at the surface is lower 

than the densely packed arrangement of ammonium groups that have 

previously been shown to allow attachment.6 

The absorption of gold (III) chloride onto the surface of the amine terminated 

beads was observed. It has been previously suggested that the adduct of gold 

(III) chloride and a nitrogen containing surface produces a [LxAuCI2]+[AuCI4]' 

type ion (L represents the N containing ligand).9 Results here suggest that the 

polarity of surface charge used to attach the amine beads is altering the amount 

of gold (III) chloride incorporation achievable. More co-ordination is observed for 

a positive substrate than a negative equivalent, whilst the concentrations of 

attached beads appear unaffected by the charge polarity. EFM of 

electrostatically localised uncoated polystyrene beads showed that the beads 

had acquired an induced surface charge. This induced charge might promote 

the formation of a Au + 3 adduct on the surface of the amine beads attached to 

positive substrates. 
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Successful reduction of gold (III) chloride attached to the amine beads to 

metallic gold has been observed. The concentration of gold following reduction 

reflects the differences in the amount of gold (III) chloride complexed to the 

bead surfaces. Localised amine beads appear to be resilient to this process, 

suggesting a new method for localised surface metallization. 



5.5. Conclusions 
Localised charge deposition using a scanning EFM tip provides a method for 

electrostatic patterning of surfaces. EFM has been used to map the charge 

distribution of such patterned surfaces, and reveal the induced charges on the 

captured particles. Small aerosol beads are found to accumulate at the edges of 

the deposited charge, in a similar way to the "edge-effect" reported in 

xerography. This electrostatic patterning method can also be used attach beads 

possessing desired functional groups (amine and carboxyl). Here it is 

demonstrated that co-ordination of a localised patch of amine terminated beads 

to gold (III) chloride, followed by plasma reduction provides a route to spatially 

controlled surface metallization. Some evidence is found that induced charge in 

the attached beads alters the co-ordination process. 
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CHAPTER 6 

CONCLUSIONS 
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6.1. Conclusions 
Various surface science techniques were used to investigate the surface 

enrichment of fluorochemical doped polypropylene films. During annealing, the 

lateral distribution of additive at the surface was found to spread outwards from 

isolated circular domains and patches into a continuous layer, with a 

corresponding drop in surface energy. The speed and extent of surface 

enrichment for fluorochemical doped polypropylene films was found to increase 

with polymer molecular weight. While a comparison between polypropylene 

films containing mono- and bis- perfluorinated additive molecules proved that 

the mono- additive migrates to the surface much more readily. 

Localised charge deposition onto polymer surfaces from a scanning EFM tip 

was then considered. As well as having importance in its own right, the ability 

to deposit patches of charge with known polarity provided reference samples to 

confirm the effect of varying tip voltage on EFM image contrast. A thorough 

investigation of the effect of scan parameters and tip voltage on the deposited 

charge patch suggested that the mechanism of charging was corona discharge. 

A surprising result was that charging occurred without chemically or 

morphologically altering the polymer surface. 

Having established that it is possible to identify the polarity and level of surface 

charge using EFM, attention turned to mapping charged fluorochemical 

domains embedded in polypropylene film surfaces. To aid this work, a scanning 

electrometer probe was designed and built to allow larger scale imaging of the 

surface potential distribution. EFM images proved that positive corona charging 

leads to the fluorochemical regions acquiring a positive charge relative to the 

surrounding polypropylene matrix and that subsequent annealing causes a 

redistribution of charge at the surface. Localised charge deposition from a 

scanning EFM was also used to investigate the fluorochemical doped 

polypropylene surfaces. This method proved that fluorochemical domains 

accumulate both negative and positive charge preferentially to the 

polypropylene surrounds. 
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Localised charge deposition from an EFM tip was shown to provide a method 

for electrostatic patterning of surfaces. Small aerosol beads were found to 

accumulate at the edges of deposited charge patches in a similar way to the 

"edge-effect" reported in xerography. EFM revealed that captured beads 

acquired an opposite polarity charge to the substrate. This electrostatic 

patterning method was then used to attach beads possessing desired 

functional groups. It was demonstrated that co-ordination of gold (III) chloride to 

a localised patch of amine terminated beads, followed by plasma reduction 

provides a route to spatially controlled surface metallization. Some evidence 

was found that induced charge in the attached beads alters the co-ordination 

process. 

In summary, the work in this thesis has achieved two aims: 

« The study of the chemical and electrical surface properties of 

fluorochemical doped polypropylene. 

• The development and exploitation of a method to deposit spatially 

controlled charge distributions on insulating surfaces. 
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