
Durham E-Theses

Electronic structure calculations on nitride

semiconductors and their alloys

David, Dugdale

How to cite:

David, Dugdale (2000) Electronic structure calculations on nitride semiconductors and their alloys,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4324/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4324/
 http://etheses.dur.ac.uk/4324/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Electronic Structure Calculations on Nitride 

Semiconductors and their Alloys 

David Dugdale 

A thesis submitted for the 

degree of Doctor of Philosophy 

at the University of Durham, 

Department of Physics 

September 2000 

The copyright of this thesis rests with 
the author. No quotation from it should 
he published in any form, including 
Electronic and the Internet, without the 
author's prior written consent. All 
information derived from this thesis 
must be acknowledged appropriately. 

f 3 JUL 2001 



Abstract 

Calculations of the electronic properties of A1N, GaN, InN and their alloys are 

presented. Initial calculations are performed using the first principles pseudopoten-

tial method to obtain accurate lattice constants. Further calculations then investigate 

bonding in the nitrides through population analysis and density of state calculations. 

The empirical pseudopotential method is also used in this work. Pseudopotentials 

for each of the nitrides are constructed using a functional form that allows strained 

material and alloys to be studied. The conventional k.p valence band parameters for 

both zincblende and wurtzite are obtained from the empirical band structure using 

two different methods. A Monte-Carlo fitting of the k.p band structure to the pseu

dopotential data (or an effective mass method for the zincblende structure) is used to 

produce one set. Another set is obtained directly from the momentum matrix elements 

and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculat

ing k.p parameters produce band structure in excellent agreement with the original 

empirical band calculations near the centre of the Brillouin zone. The advantage of 

the direct method is that it produces consistent sets of parameters, and can be used 

in studies involving a series of alloy compositions. Further empirical pseudopotential 

method calculations are then performed for alloys of the nitrides. In particular, the 

variation of the band gap with alloy composition is investigated, and good agreement 

with theory and experiment is found. The direct method is used to obtain k.p pa

rameters for the alloys, and is contrasted with the fitting approach. The behaviour of 

the nitrides under strain is also studied. In particular, valence band offsets for nitride 

heterojunctions are calculated, and a strong forward-backward asymmetry in the band 

offset is found, in good agreement with other results in the literature. 
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Chapter 1 

Introduction 

Semiconductors play an integral part in modern technology. Defined as having an 

energy gap of less than a few eV, they are the material of choice for the electronics 

industry due to the properties they offer and the increasing sophistication with which 

they can be grown. 

The best known semiconductor, and that for which technology is best developed, 

is the group IV element Silicon. Binary compounds, formed from elements of groups 

I I I and V (or groups I I and VI) , have properties broadly similar to their group IV 

counterparts, but with increased ionicity due to the transfer of electronic charge from 

the group I I I atom to the group V atom. This ionicity has a profound effect on their 

semiconducting properties, causing increases in the Coulomb interaction between ions 

and in the fundamental energy gap. Semiconductors with larger band gaps have uses 

in colour displays and lasers, while smaller band gap materials typically have appli

cations in infrared detectors. In addition to binary materials, ternary and quaternary 

compounds also exist with which a range of properties are possible. Heterostructures 

comprised of semiconducting materials can also be fabricated, allowing for further ma

nipulation of the semiconducting properties. I t is because of this degree of control that 

semiconductors are essential for modern electronic devices. 

Within this context, semiconductor devices based on A1N, GaN and InN have re-
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ceived great interest over the last few years due to the electronic and optical properties 

they offer. The principal reason for this interest is that they are wide band gap ma

terials, and together with their alloys AlGaN, GalnN and AlInN, band gaps ranging 

from approximately 2.0 eV (InN) to 6.2 eV (A1N) are possible. Thus an immediate 

use of nitride LEDs is in full colour displays, for which the three primary colours red, 

green and blue are required. For nitride based laser diodes, light can be focused more 

sharply than in conventional lasers because of their short operating wavelength, and 

thus optical storage capacities can be greatly increased. The capacities of DVDs, for 

instance, would increase from 4.7 gigabytes to over 15 gigabytes going from AlGaAs to 

InGaN based laser diodes. 

Other wide band gap semiconductors do exist, but in comparison to these and 

other materials the I I I -V nitrides have several advantageous properties. The bond 

strengths in the nitrides, for example, are typically larger than those found in I I - V I 

semiconductors, with Landwehr et al. [1] measuring bond energies of 2.3 eV/bond 

in GaN and 1.2 eV/bond in ZnSe. The low field mobilities of electrons and holes 

in GaN are also reasonable, with reported room temperature electron mobilities as 

high as 900 cm 2 /V s [2]. This value is significantly improved upon in AlGaN/GaN 

heterostructures, where mobilities of 1700 cm 2 /V s have been reported [3]. Moreover, 

Monte Carlo simulations of GaN find a peak velocity of ~ 3 x 107 cm/s and a saturation 

velocity of 1.5 x 107 cm/s [4], values which are considerably larger than those found 

in Si or GaAs. The breakdown voltage of GaN of 3 x 106 V/cm also compares very 

favourably with that of Si (2 x 105 V/cm) or GaAs (4 x 105 V/cm), making i t an 

ideal candidate for use in high power devices. In addition, the nitrides are well suited 

for high temperature applications because of their high thermal stability, which is also 

desirable from the point of view of device processing. Thus the I I I -V nitrides find a 

particular niche in high temperature and high power applications. 

Importantly, I I I -V nitride quantum wells and superlattices can also be fabricated. 

For this, AlGaN or GaN are used as the barrier and cladding layers, with GaN or InGaN 
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as the active layers. In addition, the lattice mismatch between A1N, GaN and InN also 

allows various properties of nitride heterojunctions, such as the band offset, to be tuned 

to some degree. This is possible because the strain in these heterostructures, which can 

be altered by using a suitable alloy affects these properties via the piezoelectric effect. 

Such heterostructure technology is necessary for the fabrication of modern devices, 

and ensures that the I I I -V nitrides have a variety of commercial applications. Indeed, 

the development of the I I I -V nitrides over the last decade has largely been fuelled by 

their commercial potential. What follows is a summary of the principal points in the 

development of the nitride materials. For a more detailed discussion of their growth 

and applications the reader is referred to the reviews of Ambacher [5] and Jain et al. [6]. 

The first blue GaN LED was fabricated by Pankove et al. [7,8] in the early 1970s. 

However, for the rest of this decade the development of Ill-nitrides was severely ham

pered by the low material quality of GaN, due in part to a lack of an ideal substrate. 

Progress began again in 1983 with the development by Yoshida et al. [9] of a two-step 

method of growth. In this, an A1N buffer layer is initally grown on the sapphire sub

strate at low temperature of ~ 500 °C. Significantly higher quality GaN layers could 

then be obtained by growing GaN on this buffer layer at a higher temperature. The 

two-step method was further developed by Amano and co-workers [10,11], resulting in 

the growth of high quality GaN films with high-mobility and strong photoluminescence 

intensity. The second breakthrough necessary for the continued development of the ni

tride materials was the growth of p-type GaN in 1989. This was crucial for LEDs and 

laser diodes, both of which rely on a p-n junction to inject holes and electrons into the 

active layers of the device. Previously, only n-type GaN was available. I t was Amano 

et al. [12] who first obtained p-type GaN films by using Mg-doping for the acceptor im

purity and a low energy electron beam irridation (LEEBI) treatment following a metal 

organic chemical vapour deposition (MOCVD) growth method. Nakamura refined this 

method, replacing the LEEBI with a N2-ambient thermal annealing for the Mg-doped 

GaN [13]. Lastly, the deveopment of high quality InGaN by Nakamura and Mukai [14] 
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enabled the commercial development of I I I -V nitride based LEDs and laser diodes for 

emitting red to UV light. For these, incorporation of small amounts of In in GaN was 

found to result in the strong band to band emission at room temperature necessary in 

such devices [15]. 

The development of devices based on nitride materials has resulted in a demand 

for their characterisation. At present, the I I I -V nitrides still suffer from low material 

quality, and thus experimental measurements are somewhat compromised. Theoret

ical methods are obviously not affected by such factors, and are therefore extremely 

important in reliably determining various quantities which are not accessible through 

experiment. These theoretical methods are well developed, having been successfully 

used to study established materials such as Si and GaAs, and they will remain essen

tial to studies of the nitrides until the technology matures. To date, experimental and 

theoretical investigations have established reliable values for such quantities as lattice 

parameters [16-18] and fundamental band gaps [19-21], but many other parameters 

remain uncertain. For device modelling, studies include calculations of optical gain in 

both bulk and quantum well structures [22-24], as well as Monte Carlo simulations of 

electron transport [25,26]. Calculations such as these rely on accurate band structure 

models and transport parameters, and the work in this thesis is primarily directed 

towards providing them. 

In this work, three theoretical methods have been used. These methods approach 

the problem of describing the electronic structure in different ways, and are particularly 

suited for different applications. The first of these methods, the first principles (or ab 

initio) pseudopotential method, is useful for obtaining accurate lattice parameters and 

also for identifying general trends in materials. These calculations are computationally 

expensive, but have become increasingly tractable with increases in computational 

power over the last two decades. One feature associated with these calculations is that 

although the valence band structure is accurately obtained, the fundamental band gap 

is underestimated. 
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In contrast, the empirical pseudopotential method (EPM) has the advantage of 

giving accurate band structure, since it is specifically designed to reproduce accepted 

band energies from experiment or more sophisticated first principles calculations. This 

method has commonly been used in calculations of effective masses and in studies 

of the dielectric response. Computationally, it is less expensive than first principles 

approaches. 

The k.p method uses perturbation theory to obtain the band structure around 

a certain point in fc-space (usually the Gamma point). Of all the models, the k.p 

method [27] using six or eight bands is one that is especially useful for device modelling. 

This is because its computational demands are light compared to the other methods 

discussed above. In particular, the k.p approach is known to provide a good description 

of the heavy-hole, light-hole and crystal field split-off bands at the centre of the Brillouin 

zone, which are of obvious importance in any consideration of optical properties. 

1.1 Description of the work 

The general structure of each chapter is to introduce the theoretical background for the 

particular method employed. Results obtained using the method are then presented 

and discussed. 

Chapter 2 

In this chapter, the first principles psuedopotential method is introduced, as are the 

zincblende and wurtzite structures in which they can crystallise. Using this method, 

initial calculations on bulk A1N, GaN and InN are performed to obtain accurate lattice 

constants. Additional studies addressing bonding in the nitrides are also presented; 

through population analysis the covalency of the bonding is determined, and from den

sity of states calculations the specific orbitals involved in this bonding are obtained. 
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Chapter 3 

This chapter covers the various aspects of the empirical pseudopotential method, 

with particular emphasis placed on the concept of pseudopotentials and how they have 

been obtained in this work. Local and nonlocal pseudopotentials are discussed, to

gether with the mechanism whereby spin orbit coupling is included in calculations. 

Pseudopotentials for A1N, GaN and InN which are adaptable for the study of strained 

material and alloys are derived. These are then used to calculate band structures and 

dielectric functions. 

Chapter 4 

Chapter 4 introduces the k.p method and presents calculations performed using it . 

From the empirical pseuodpotential models for the nitride materials, two sets of k.p 

parameters are obtained. One set is obtained by specifically fit t ing the parameters to 

the empirical band structure. The other set is obtained directly from the momentum 

matrix elements and energy eigenvalues at the centre of the Brillouin zone. The k.p 

parameters obtained in these two ways are used to obtain values for effective masses, 

and are compared with others in the literature. The relative advantages of each method 

are discussed. Additionally, the band structure of alloys of the nitrides is also studied 

using the empirical pseudopotential method. In particular, the variation of the band 

gap with alloy composition is investigated. Consistent k.p parameters for alloys of 

various compositions are also calculated using the direct method, and constrasted with 

those obtained using the fitting technique. 

Chapter 5 

In this chapter, the behaviour of A1N, GaN and InN under strain is investigated. 

In particular, the empirical pseudopotential method is used to study band gap defor

mation potentials and the variation of the uppermost valence bands in general. The 
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valence band offsets of several nitride heterojunctions are also calculated using the first 

principles pseudopotential method. These calculations are done for both material A 

grown on material B and material B grown on material A. The resulting band offsets 

are discussed with respect to each other and in relation to others in the literature. 

Conclusions 

Finally, conclusions are made in Chapter 6. Suggestions for further work are also 

made. 



Chapter 2 

The First Principles Method 

2.1 Introduction 

One of the most popular tools available to study the electronic structure of matter is the 

first principles pseudopotential method. Techniques such as this, which require only a 

specification of the atoms present in the system being studied, are commonly referred 

to as ab initio methods, and their goal is to numerically solve the Schrodinger equation. 

This solution generally proceeds through an iterative search routine implemented on a 

computer, which terminates when solutions are converged to a sufficient predetermined 

accuracy. In practice, this approach has only been made tractable by advances in both 

computing power and mathematical techniques over the last 30 years. 

In a search for a solution to the Schrodinger equation the most important quantity 

is the total energy. This is because an ability to calculate the total energy of a solid is 

the key to obtaining its physical parameters, since the minimisation of the total energy 

determines the equilibrium structure of that material. Indeed, by making appropriate 

use of total energies (or differences in total energies), such diverse quantities as lattice 

constants, bulk moduli, and piezoelectric constants have been accurately calculated. 

To obtain these quantities using the first principles pseudopotential method, successive 

improvements are made to the wavefunction describing the system until the total energy 

8 
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is minimised to the required degree. 

In forthcoming chapters alternative methods used to calculate the electronic struc

ture of a material will be described, but in this chapter attention is focused on the 

first principles pseudopotential method. In this work, this has been used to investigate 

various properties of the nitrides. Initially, lattice constants are calculated using three 

different first principles codes (FHI96MD [28], CASTEP [29] and VASP [30-32] for 

both the zincblende and wurtzite structures of A1N, GaN and InN. For wurtzite the 

internal parameter u is also calculated, as is the crystal field splitting. The bonding in 

each of the structures is then investigated through population analysis. Valence band 

structures for each of the materials are also presented. Additional insight into these 

band structures is provided from density of states calculations. 

2.2 Theory 

Due to computational constraints, first principles pseudopotential calculations typically 

deal with systems containing several atoms per unit cell. The nuclei and electrons of 

these atoms all interact with each other, and the many body Hamiltonian describing 

this can be written 

2r2Ml * +

 2 ^ | R , - R , | + ^ 2 m e * 2 ^ | F f c _ r / | ^ |r , - R,| 

(2.1) 

where R j and M j denote the positions and masses of the ions, denote the positions of 

the electrons and the are the atomic numbers of the atoms present. In this equation 

the units used are such that l/47re0 = 1. The terms in the many body Hamiltonian 

above describe, in order, the nuclear kinetic energy, the ion-ion interaction, the elec

tronic kinetic energy, the electron-electron interaction and the electron-ion interaction. 
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In general, it is not possible to solve this equation exactly, and the first principles 

pseudopotential method is an attempt to provide an approximate solution. 

The total energy pseudopotential method has been extensively described in several 

reviews [29,33,34]. I t relies on several approximations to provide a solution to the many 

body problem outlined above. The first of these is the Born-Oppenheimer approxima

tion, which exploits the large difference in mass between the electrons and the nuclei. 

Due to this mass difference, the response of the electrons to any motion of the nuclei 

will be essentially instantaneous, and thus the problem can be reduced to one of elec

trons moving in some set configuration of nuclei. Secondly, density functional theory 

as developed in [35,36] enables an approximate but nevertheless successful treatment 

of the electron-electron interactions. This effectively changes the problem from that of 

an interacting electron gas in the presence of nuclei to that of a single particle moving 

in an effective nonlocal potential. Lastly, the electron-ion interactions are successfully 

described using pseudopotential theory. 

The main elements of density functional theory are outlined below. The concept of 

pseudopotentials will be discussed in more detail in chapter 3. 

2.2.1 Density Functional Theory 

The main thrust of density functional theory lies in its description of exchange and 

correlation in an electron gas. The exchange energy is a consequence of the requirement 

for antisymmetry of the electron wavefunctions with the same spin. This antisymmetry 

causes a spatial separation of the electrons which reduces the Coulomb energy of the 

system, and this reduction, computed using the Hartree-Fock approximation, is called 

the exchange energy. The Coulomb energy can be further reduced (at a cost in kinetic 

energy) if electrons with opposite spins are also spatially separated, and the difference 

between this and that calculated using the Hartreee-Fock approximation is termed the 

correlation energy. 
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2.2.1.1 The Kohn-Sham Total Energy Functional 

Work by Hohenberg and Kohn [35] showed that the total energy of an electron gas is a 

unique functional of the electron density, and that the ground state energy of the system 

can be obtained through minimisation of the total energy functional with respect to 

the density. The density that yields this minimum is the exact single-particle ground 

state density. Within this formalism, Kohn and Sham [36] then proceeded to replace 

the formidable many-body problem with an exactly equivalent set of self-consistent 

one-electron equations. 

The Kohn-Sham total energy functional can be written as follows: 

E[M] • Y , j ^
 V2^rf3r + / Vlon{v)n{v)dzv 

4 / ! y Z ^ r f 3 r d V + Exc [n(r)] + Elon (RT) (2.2) 

where the terms are, respectively, the kinetic energy, the electron-ion interaction energy, 

the electron-electron interaction energy, the exchange correlation energy and the ion-ion 

interaction energy. Vion(r) is the static electron-ion potential and n(r) is the electronic 

charge density given by 

N 

n(r) = 5 > / ( r M ( r ) (2.3) 

where N is the number of particles. The computational task of total energy calculations 

lies in determining the set of wavefunctions which minimise the total energy. This is 

achieved through solving the Kohn-Sham equations [36]: 



CHAPTER 2. THE FIRST PRINCIPLES METHOD 12 

2m 
V 2 + Vlon(r) + VH(r) + V x c ( r ) ^ = e ^ r ) (2.4) 

where ipi is the wavefunction of electronic state i, £j is the Kohn-Sham eigenvalue, 

VH(T) is the Hartree potential and Vxc(*) is the exchange correlation potential. The 

Hartree and exchange correlation potentials can be written as 

The exchange correlation potential is usually evaluated using the Local Density Ap

proximation (LDA) described in more detail below. 

2.2.1.2 The Local Density Approximation 

The most common approach for the exchange correlation potential is the Local Den

sity Approximation (LDA). The core assumption of this approach is that the density 

is slowly varying. The exchange-correlation at point r can therefore be simply approx

imated by that due to a homogeneous electron gas of density n(r). Thus 

w = e 7 i V> H r - r ' 
(2.5) 

VXC(T) 
SEXC [n(r)] 

6n(r) 
(2.6) 

[n(r)] = j £xc (r)n(r)cfV E (2.7) 
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5EXC [w(r)] = dn{r)eXc{*) 
5n(r) dn(r) 

(2.8) 

where 

exc(r)=e%? [n(r)] (2.9) 

There are, of course, alternatives to the LDA. Of these, the most popular are those 

based around the generalised gradient approximation (GGA). In the GGA, the density 

is a function of both the electron density and its gradient, and for many materials, 

but not all, it has been shown to improve results for total energies and the general 

properties of solids. In the nitrides, however, the GGA has been shown to provide no 

significant improvement on the standard LDA [37] and therefore in all the calculations 

in this work the standard LDA is used. 

2.2.1.3 Expansion using a plane wave basis set 

The next task is to solve the problem of an infinite number of interacting electrons 

moving in the static field due to an infinite array of ions. For this, there are two 

difficulties which have to be overcome. The first is that a wavefunction has to be 

calculated for each of the infinite number of electrons. The second is that the basis set 

in which the wavefunctions will be expanded is also infinite. 

At OK, the ions in a perfect crystal are arranged in a regular periodic way. Thus the 

potential felt by the electrons due to the ions will also be periodic, with a period equal 

to that of the length of the unit cell, 1. Thus V(r) = V(r + 1) and Bloch's theorem is 

satisfied. The wavefunction of the infinite crystal can therefore be expressed in terms 

of the reciprocal space vectors of the Bravais lattice. 

Bloch's theorem uses the periodicity of the crystal to reduce the problem of com-
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puting a wavefunction for an infinite number of electrons to one of computing a wave-

function for each electron in the unit cell. The electronic wavefunctions are expanded 

in terms of a cell-periodic part and a wavelike part: 

^ ( r ) = exp[ik .r] / i (r) (2.10) 

The cell periodic part / j (r ) is then simply expanded using a discrete set of plane waves 

whose wave vectors are reciprocal lattice vectors of the crystal: 

fz(r) = J2ci,Gexp[iG.T} (2.11) 
G 

where G are the reciprocal lattice vectors. These are defined by G . l = 2nm for all 

1, where 1 is a lattice vector of the crystal and m is an integer. Combining this with 

equation 2.10, each electronic wavefunction can be written as a sum of plane waves: 

^ ( r ) = Y^clM+Gexp[i((k + G).r} (2.12) 
G 

By using Bloch's theorem it is no longer necessary to consider an infinite number of 

electrons. Instead, the problem is mapped onto one of expressing the wavefunction 

for each electron in the unit cell in terms of an infinite number of reciprocal space k 

points within the first Brillouin zone. However, because the wavefunctions at k points 

which are very close together are essentially identical, it is possible to represent the 

electronic wavefunctions over some region of A; space by the wavefunction at a single 

k point. Several schemes have been devised to best achieve this sampling, the most 

notable being those of Monkhorst and Pack [38] and Chadi and Cohen [39]. The denser 

the fc-point set the more accurate the sampling, and so it is important to choose a set 
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which is sufficient for the calculation in question. Thus with fc-point sampling the 

electronic wavefunctions can be expressed using only a finite number of A; points. 

The electronic wavefunctions at each such k point should in principle be expanded 

using an infinite basis set of reciprocal lattice vectors G . However, in practice it is 

possible to use a finite basis set. This is because for the lower energy solutions the co

efficients c^k+G of the plane waves with small kinetic energy, given by (h2/2m) |k + G | 2 , 

are generally larger than those with higher kinetic energy. Therefore a plane wave en

ergy cutoff can be imposed to truncate the basis set to a finite size. This will result in 

an error in the total energy of the system, but this can be made arbitrarily small by 

increasing the cutoff energy. In practice, the cutoff needed depends upon the system 

being studied. 

One final advantage of using a plane wave basis set is that the Kohn-Sham equation 

takes on a particularly simple form: 

In this reciprocal space representation the kinetic energy is diagonal and the potentials 

are described in terms of their Fourier components. This equation can be solved by 

traditional matrix diagonalisation techniques, with the Hamiltonian matrix elements 

# k + G , k - G given by the term in square brackets. For larger and more complicated 

systems standard diagonalisation becomes intractable, and alernative techniques have 

been developed. 

The Kohn-Sham equations are solved self consistently; that is, from a starting guess 

for the charge density the wavefunctions are calculated, and are then used to give a 

new charge density, which in turn gives new wavefunctions. This process is continued 

until consistency is reached. To assist the convergence it is important to mix the new 

2m 
G 

k + G | 2 SGG, + Vlon(k + G , k - G') + VH(G - G') + VXC(G - G') x 

Ci,k+G' — £iCj,k+G' (2-13) 



CHAPTER 2. THE FIRST PRINCIPLES METHOD 16 

and old charge densities [40]. A flowchart illustrating the basic points in the procedure 

is shown in Figure 2.1. 

2.2.2 The Pseudopotential Approximation 

It was shown above how plane waves were used in a Fourier expansion of the wave-

function. Normally, plane waves would be i l l suited to expanding the electronic wave-

functions because a very large number would be required to accurately describe the 

rapidly oscillating wavefunctions of electrons in the core region. The pseudopotential 

method relies on the fact that most of the physical properties of solids are determined 

primarily by the valence electrons. The pseudopotential approximation expolits this 

fact to replace the core electrons and strong nuclear potential with a much weaker 

pseudopotential, and is described in detail in Chapter 3. 

2.2.3 Geometry Optimisation 

In many calculations, the relaxed lattice parameters and atomic positions of a material 

are required. The Kohn-Sham equations allow for the minimisation of the total energy 

with respect to the electronic degrees of freedom. However, to obtain the true minimum 

in the total energy of a material, it is also necessary to include the ionic degrees of 

freedom. Thus in such calculations the ions must be allowed to move within a set 

scheme. For this to be possible, the forces acting on each ion must be evaluated, and 

this can be incorporated into the total energy pseudopotential method. 

The force acting on an ion Fi can be obtained from the ful l derivative of the total 

energy of the system with respect to the ionic position R/: 

dE 
dR 

(2.14) 

The ion is then allowed to move, and the electronic wavefunctions change to the 
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Calculate V i o n given atomic 

numbers and positions 

Choose cutoff for plane wave basis set 

Choose trial density n(r) 

Calculate V H and V x c 

Solve Kohn-Sham equations 

Calculate new n(r) 

Is solution self-consistent? 

YES 

Compute total energy 

NO 

Generate new density n(r) 

Figure 2.1: Flow chart describing the computational procedure to calculate the total 
energy of a solid in the first principles pseudopotential method. 
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self-consistent Kohn-Sham eigenstates corresponding to its new position. The force on 

the ion changes because of the changes in the electronic wavefunctions, as can be seen 

by expanding the derivative in equation 2.14: 

The Hellman-Feynmann theorem states that when each electronic wavefunction is 

an eigenstate of the Hamiltonian the last two terms in the equation above vanish, 

and the force felt by the ion is just the partial derivative of the total energy with 

respect to the ionic position. Thus in a search for the minimum total energy the ions 

are allowed to move and the total energy minimum corresponding to the new ionic 

configuration is calculated. The new forces acting on the ions are computed, and when 

these forces decrease to below a specified level the ionic structure is deemed to be 

relaxed. Similarly, the stress on a unit cell can also be evaluated. The unit cell can 

then be relaxed according to this stress in a similar way, and a description of this can 

be found in [41]. 

First principles calculations have been performed on A1N, GaN and InN. Three different 

codes have been used for this task - FHI96MD [28], CASTEP [29] and VASP [30-32]. 

The results of the calculations using VASP are included for comparison, and were 

carried out by Steve Pugh. The three codes use different types of pseudopotentials. 

FHI96MD uses pseudopotentials generated according to the scheme of Troullier and 

Martins [42] whereas VASP and CASTEP use ultra-soft Vanderbilt pseudopotentials 

[43]. For GaN and InN, these pseudopotentials treated the d electrons as valence just 

as the s and p electrons. This was necessary because the Ga 3d and the In Ad states 

dE dE dtbi dE dip* E E F 
3R dtpi dR dtp* dR 

(2.15) 

2.3 Bulk Calculations 
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have been shown to play an active part in chemical bonding [44-46]. In the rest of 

this chapter, all the calculations have been performed using CASTEP unless otherwise 

stated. 

For the results in this section, it should be noted that for both the zincblende 

and wurtzite structures of InN a band gap of zero was obtained. This is in line with 

other calculations [37], and does not appear to adversely affect the calculated lattice 

parameters or densities of states. 

2.3.1 Convergence Tests 

To ensure reasonable accuracy in first principles calculations i t is necessary to first 

perform convergence tests for each of the materials. As discussed in section 2.2.1, the 

two main factors which directly affect the accuracy of the calculation are the plane 

wave energy cutoff and the A;-space sampling. The A;-space sampling was done with 

points generated according to the Monkhorst-Pack scheme [38]. Figure 2.2 shows the 

convergence of the computed total energy with respect to these two parameters for 

wurtzite GaN. From this, it can be seen that the total energy is rapidly convergent, 

with a plane wave energy cutoff of 500 eV and 14 k space sampling points being 

sufficient to converge the total energy to better than lmeV/atom. Similar calculations 

were carried out for the other materials and structures, ensuring that a converged 

representation was used for each. 

2.3.2 Equilibrium Lattice Parameters 

A1N, GaN and InN can crystallise in both the zincblende and wurtzite structures. 

The hexagonal wurtzite structure is usually referred to as the a-phase whereas the 

zincblende structure is known as the /?-phase. The zincblende and wurtzite structures 

are very similar; both structures have tetrahedral bonding and the difference between 

them is in the stacking order of the layers. In the zincblende form the stacking ar-
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No. of k space sampling points. Plane wave energy cutoff (eV) 

Figure 2.2: Convergence of the total electronic and ionic energy at OK for wurtzite 
structure GaN with respect to the plane wave energy cutoff and the number of k-
points used. 

rangement is ABC ABC, while in the wurtzite structure the arrangement is ABAB. 

2.3.2.1 Zincblende Structure Materials 

The zincblende structure is shown in Figure 2.3. I t can be regarded as two interpene

trating face-centred cubic Bravais lattices displaced along the body of the diagonal by 

one quarter the length of the diagonal. The primitive lattice vectors are described by 

one lattice constant a and can be written as 

ai = 

I o \ 

1/2 

V l / 2 ; 

a 2 0 a 3 = 1/2 

V 0 / 

(2.16) 

The lattice parameters for the nitride materials in the zincblende form calculated 

using various first principles codes are shown in Table 2.1, together with generally 

accepted experimentally determined values. From this table, it can be seen that the 

lattice constants calculated in this work agree with these accepted values to within 2%. 

The lattice constant for InN calculated using FHI96MD is unusual in that it is 
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! 

Figure 2.3: The crystal structure of zincblende GaN. 

FHI96MD CASTEP VASP Other Theory Experiment 
A1N 4.30 4.31 4.34 4.35 [60] 4.38 [61] 
GaN 4.42 4.46 4.45 4.46 [62] 4.50 [63] 
InN 5.00 4.98 4.96 4.94 [60] 4.98 [64] 

Table 2.1: Equilibrium lattice parameters in Angstroms calculated for zincblende A1N, 
GaN and InN. 

larger than the experimentally determined value, since in general the LDA gives lattice 

constants which are lower than those found from experiment. As a whole, the results 

produced by CASTEP are in better agreement with experiment than those of the other 

two codes. 

2.3.2.2 Wurtzite Structure Materials 

The wurtzite crystal structure shown in Figure 2.4 is described by the space group 

P63inc (CQV). It can be regarded as an interpenetration of two hexagonally close-

packed lattices displaced along the 2-direction by uc where u is an internal parameter 

ideally equal to 3/8 and c is a lattice constant. For most wurtzite crystals, u deviates 
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V. 

VI 

Figure 2.4: The crystal structure of wurtzite GaN. 

from its ideal value, resulting in two slightly different nearest neighbour distances. The 

primitive lattice vectors are described by two lattice constants a and c, and can be 

written as 

1 x/3/2^ 

ai = 

V 
1/2 

0 

1 - V 5 / 2 X 

a a 2 

/ V 

1/2 

0 

a a 3 = 

/ V 1 / 

(2.17) 

The lattice parameters for the nitride materials in the wurtzite form calculated 

using various first principles codes are shown in Table 2.2, together with the generally 

accepted experimentally determined values. As for the zincblende structure, the lattice 

constants a and c calculated in this work agree with those from experiment to within 

2%. For A1N, VASP produces the lattice parameters in the best agreement with ex

perimental data. For GaN and InN, however, VASP produces acceptable values for a 
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but substantially underestimates c. A reason for this could be that the corresponding 

value of the internal u parameter obtained using VASP is large. For both GaN and 

InN the a and c values of CASTEP are in better agreement with experiment. For the 

internal parameter u, CASTEP produces values which are in the best agreement with 

those calculated by Wei and Zunger [52] for all three materials. 

Values for the crystal field splitting, which splits the uppermost valence bands, 

are also shown in Table 2.2. Note that the value of A c / for A1N is negative. This is 

discussed in more detail in chapter 4 with respect to the ordering of the valence bands. 

The values for the crystal field splitting calculated in this work using CASTEP show a 

decrease in the size of the splitting going from A1N to InN. The values obtained from 

VASP also follow this trend, and both sets are in approximate agreement with those 

from the literature. No values for the u parameter or the crystal field splitting were 

obtained from the calculations performed using FHI96MD, since this code does not 

allow an explicit relaxation of the unit cell. To calculate the lattice parameters using 

the FHI96MD code, total energies had to be calculated over a mesh of a and c values. 

The relaxed lattice parameters a and c, corresponding to the minimum of the total 

energy over the mesh, were then extracted. 

FHI96MD CASTEP VASP Experimental values 
A1N a 3.063 3.064 3.079 3.110 [16] 

c 4.881 4.900 4.926 4.980 
u - 0.382 0.380 0.3819 [52] 
A c / - -0.246 -0.262 -0.219 [52], -0.058 [53] 

GaN a 3.133 3.155 3.149 3.190 [16] 
c 5.106 5.150 5.098 5.189 
u - 0.376 0.377 0.3768 [52] 
A c / 

- 0.066 0.061 0.042 [52], 0.072 [53] 
InN a 3.526 3.521 3.544 [54] 

c 5.712 5.664 5.718 
u - 0.378 0.380 0.3790 [52] 
A c / - 0.028 0.042 0.041 [52], 0.028 [55] 

Table 2.2: Equilibrium lattice parameters in Angstroms calculated for wurtzite A1N, 
GaN and InN. Shown also are the crystal field splittings (in eV) calculated in this work 
and others in the literature. 
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2.3.3 Population Analysis 

CASTEP can also be used to investigate the bonding in bulk crystals in more detail. 

In first principles calculations, the limitation of using a delocalised plane wave basis set 

is that it cannot be directly applied to the study of local atomic properties. However, 

Sanchez-Portal et al. [56,57] showed that it is possible to project the set of these valence 

electron wavefunctions onto a set composed of a linear combination of atomic orbitals 

(LCAO). The quality of this projection is given by the spilling parameter, which simply 

measures the fraction of the valence charge that is missed in the projection. Once the 

projection is done, bonding can be investigated through population analysis. 

Population analysis is done following the formalism due to Mulliken [58], and gives 

such quantities as the charge on the anion and cation in the crystal. One must be careful 

in interpreting these results, since the absolute magnitudes of the atomic charges have 

little physical meaning, displaying an extreme sensitivity to the atomic basis set with 

which they are calculated. From the anion and cation charges, effective valence ionic 

valences can be obtained. These are defined as being the difference between the formal 

ionic charge and the Mulliken charge on the anion species in the crystal, and serve 

as a measure of the ionicity. Similarly, overlap populations between atoms give direct 

information on the covalency of the bonding [59]. 

Within the context of bonding, Mulliken electronegativities are traditionally used 

as a guide to ionicity. These electronegativities are defined as 

XM = — 2 ~ (2.18) 

where A is the electron affinity of an atom of the species and I is its ionization energy. 

The difference in the Mulliken electronegativies of two species provides an indication 

of the bonding between the atoms of each species; the larger the difference in the 

electronegativities, the greater the degree of ionicity. 
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Thus from calculations of this type, several indicators of the nature of bonding in 
crystals can be obtained. 

2.3.3.1 Zincblende Structure Materials 

Material Spilling Anion Cation + + Effective 
parameter charge (|e|) charge (|e|) valence charge (|e|) 

A1N 7 x 1(T 3 -1.33 1.33 1.67 
GaN 6 x lO" 4 -0.93 0.93 2.07 
InN 9 x 10" 4 -0.94 0.94 2.06 

Table 2.3: Spilling parameters and valence charges calculated for zincblende A1N, GaN 
and InN. 

Table 2.3 shows the spilling parameters and atomic charges evaluated in the calcu

lations. From this table, the spilling parameters obtained were of the order of 10~3 for 

all three materials. This indicates that the projection of the plane wave basis set onto 

the LCAO basis set was successful, with only 0.1% of the valence charge being missed 

in the projection, and that therefore good representations of the electronic bands were 

obtained. It can also be seen that the charge transfers for GaN and InN are approxi

mately the same, and are significantly less than that found in A1N. Not shown in the 

Table 2.3, for GaN and InN the bulk of the charge transfer came from the s and p 

electrons, with very small change for the d electrons. However, although there is very 

little transfer of d electrons, it has previously been shown that they are important in 

bonding [45]. The basis for this is that they are close in energy to the uppermost N s 

states and are thus able to hybridise with them. This is discussed in more detail below 

in relation to density of states calculations. 

Overlap populations vary from 0 to 1, with values near 1 indicating high covalency 

and values near 0 indicating high ionicity. For the overlap populations shown in Table 

2.4, there is no clear trend for the three materials, with each having a value of ap

proximately 0.50. This value is intermediate, indicating that the bonding can properly 

be described as either ionic or covalent. The effective valence charges and the differ-
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ences in the Mulliken electronegativities, AXM, also suggest this. However, the trend 

in the Mulliken electronegativity differences is not reflected in the either the overlap 

populations or the effective valence charges. 

Material Nearest neighbour Nearest neighbour A X M (eV) 
overlap population (|e|) bond length (A) Ref. [60] 

A1N 0.51 1.865 4.08 
GaN 0.56 1.932 4.15 
InN 0.47 2.156 4.25 

Table 2.4: Overlap populations and bond lengths calculated for zincblende A1N, GaN 
and InN. 

2.3.3.2 Wurtzite Structure Materials 

Material Spilling Anion Cation Effective 
parameter charge (|e|) charge (|e|) valence charge (|e|) 

A1N 8 x 10- 3 -1.36 1.36 1.64 
GaN 6 x 10" 4 -0.94 0.94 2.06 
InN 9 x 10" 4 -0.96 0.96 2.04 

Table 2.5: Spilling parameters and valence charges calculated for wurtzite A1N, GaN 
and InN. 

Table 2.5 shows the spilling parameters and atomic charges obtained in the pop

ulation analysis calculations. Again, low spilling parameters for all three materials 

indicate a successful projection of the PW states onto the LCAO basis states. From 

the table, it can be seen that the charges on the anion and cation are essentially the 

same as for the zincblende structure. As was found for the zincblende structure, the 

charge transfer for GaN and InN was almost exclusively from the s and p electrons, and 

given the similarity between the zincblende and wurtzite structures this is to be ex

pected. Additionally, the effective valence charges of the three materials again indicate 

intermediate covalency for the bonding. 

The overlap populations for the wurtzite materials are shown in Table 2.6. Note 

that two overlap populations and bond lengths are given. This is because the bond in 
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the c direction is slightly longer than the three "in-plane" bonds and thus has different 

values for these two quantities. For GaN and especially A1N, there is a large difference 

in the overlap populations for the two bonds. Some insight into this can be gained 

from consideration of the bond lengths, which are also shown in Table 2.6. For A1N, 

the difference in the bond lengths is quite large (corresponding to the large u value 

for this material), and this is reflected in the overlap populations. For GaN, the bond 

lengths do not differ by quite as much, and correspondingly the overlap populations 

are more similar. However, InN has overlap populations that are approximately equal, 

despite having quite different bond lengths. 

I t is also worth discussing the overlap populations for the wurtzite materials with 

reference to those obtained for the zincblende structure. This can be done after consid

eration of the number of the nearest neighbours in the two structures. In zincblende, 

the tetrahedral bonding is such that its 4 nearest neighbours are all the same dis

tance away. For wurtzite however, only 3 of the bonds are of equal length, with the 

bond along the c direction being slightly longer. However, an average bond length and 

overlap population can be calculated for wurtzite. If this is done, the average bond 

length between the anion and cation in wurtzite is slightly smaller than that found 

in zincblende; values of 1.864 A, 1.932 A and 2.155 A respectively are obtained for 

A1N, GaN and InN. Similarly, overlap populations of 0.50, 0.56 and 0.46 are obtained 

for A1N, GaN and InN respectively. These values are directly comparable to the over

laps obtained for the zincblende structure of 0.51, 0.56 and 0.47. Thus the results for 

wurtzite are fully consistent with those for zincblende. 

The differences in the Mulliken electronegativity, AXM, also suggest intermediate 

bonding for the nitride materials. The absolute value of AXM increases from A1N to 

InN. This trend is not repeated in the nearest neighbour overlap populations in-plane, 

but does manifest itself in the nearest neighbour overlaps in the c direction. 
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Material Nearest neighbour Nearest neighbour A I M (eV) 
in-plane in c direction 

Overlap Bond Overlap Bond Ref. [60] 
population (|e|) length (A) population (|e|) length (A) 

A1N 0.59 1.861 0.23 1.874 4.08 
GaN 0.60 1.930 0.43 1.936 4.15 
InN 0.46 2.153 0.46 2.162 4.25 

Table 2.6: Overlap populations and bond lengths calculated for wurtzite A1N, GaN 
and InN. Note that in wurtzite the tetrahedral bonding is such that the bond in the c 
direction is longer, resulting in a lower overlap population. 

2.3.4 Density of States 

Much of the work contained in this thesis is concerned with the valence band structure. 

Insight into this, such as the s, p and d composition of the bands, can be gained from 

density of states (DOS) calculations. These have been performed following on from 

the population analysis in the previous section, and the spilling parameters obtained 

there give an indication of the accuracy of the DOS calculations. For all the materials 

considered here these were very low, indicating that the densities of states presented 

here are reasonably accurate. 

The density of states can be evaluated as: 

g(E) = = W ^5(E - Enk) (2.19) 
n n 

2.3.4.1 Zincblende Structure Materials 

The valence band structures of zincblende A1N, GaN and InN are shown in Figure 

2.5. The corresponding DOS are shown in Figures 2.6, 2.7 and 2.8. In each of these 

figures, the upper panel shows the DOS for the binary compound. The middle and 

lower panels show the partial DOS for the anion and cation respectively. 

For A1N, it can be seen that the top of the valence band is composed primarily from 

the N p orbital. The contribution to the top of the valence band from AI is relatively 
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Figure 2.5: The valence band structures throughout the Brillouin zone calculated using 
CASTEP for zincblende structure A1N, GaN and InN. 
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small, being mainly due to the p orbital. For GaN and InN the 3d and 4c? electrons 

respectively are treated as valence, and this has a significant effect on the density of 

states. Again, the top of the valence band is dominated by N p orbitals, though for 

both GaN and InN the contributions from the cation are more significant than in A1N. 

As can be seen from the insets in the middle panels in Figures 2.11 and 2.12, these 

contributions arise mainly from the cation p orbital, with the s orbitals taking part to 

a lesser extent. The d orbitals only make a very minor contribution to the top of the 

valence band. 

However, the d electrons have a much larger effect on the lower bands. For both 

GaN and InN, the lower bands shown in Figures 2.11 and 2.12 are comprised mainly of 

Ga 3d and In Ad orbitals, with additional contribution from N s orbitals. I t can be seen 

that for these bands the d orbitals are close in energy to the N s orbitals, indicating 

that hybridisation is possible. However, no noticeable d contributions are found from 

the N site, suggesting that the degree of hybridisation is small. This is backed up by 

the atomic populations calculated in the previous section. I f the populations on each 

site are broken down into their constituent s, p and d parts, only about 0.01 d electrons 

from the Ga (and 0.03 from the In) are transferred, and none of this appears on the N 

site population. In the literature, one previous calculation for zincblende GaN in which 

the Ga 3d electrons were treated as valence found more evidence for hybridisation [45]. 

2.3.4.2 Wurtzite Structure Materials 

The valence band structures of wurtzite A1N, GaN and InN are shown in Figure 2.9. 

The corresponding DOS are shown in Figures 2.10, 2.11 and 2.12. In each figure, the 

upper panel shows the DOS for the binary compound. The middle and lower panels 

show the partial DOS for the cation and anion respectively. 

The density of states for wurtzite A1N, GaN and InN are very similar to those 

for the zincblende structure; at the bottom of the valence band the DOS is essentially 

indentical to that found in the zincblende structure, being dominated by the N s orbital 
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Figure 2.6: Electronic density of states (arbitrary units) for zincblende structure AIN. 
The upper panel shows the density of states for AIN while the middle and lower panels 
show the partial density of states for Al and N respectively. 
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Figure 2.7: Electronic density of states (arbitrary units) for zincblende structure GaN. 
The upper panel shows the density of states for GaN while the middle and lower panels 
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Figure 2.8: Electronic density of states (arbitrary units) for zincblende structure InN. 
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for A1N and by the cation d orbitals for GaN and InN. The top of the valence band 

is again dominated by the N p orbitals for all three materials. The most noticeable 

difference in the density of states between the two structures occurs at the very top 

of the valence band in the N p orbitals. In the zincblende structure there is a double 

peak whereas for wurtzite this feature becomes a large peak with a shoulder. 

2.4 Summary 

In this chapter, some basic properties of the nitrides have been investigated using first 

principles calculations. Initially, the lattice parameters describing the zincblende and 

wurtzite structures were determined. These were all in good agreement with experi

ment. Consistent crystal field splittings in the wurtzite structure were also calculated. 

CASTEP was then used to further study the nitrides, starting with the bonding 

in each of the materials being investigated through population analysis. From this, 

effective valence charges and overlap populations indicated that the bonding in the 

nitrides is intermediate between ionic and covalent. The bulk of the charge transfer 

from the cation to the anion came from s and p electrons, although there was also a very 

small amount d transfer for GaN and InN. CASTEP was also employed to calculate 

the valence band structure and density of states for each of the materials. This study 

found the top of the valence band to be dominated by the N p orbital, whereas the 

bottom was dominated by either the N s orbital (in the case of A1N) or d orbitals (in 

the case of GaN and InN). These d electrons are close in energy to the N p states, and 

can thus potentially hybridise with them [61]. However, no evidence for this was found 

in this work. 

In summary, several parameters describing the nitrides have been calculated. These 

were found to be consistent with both experimental results and previous calculations, 

establishing it as a firm basis for further calculations in the following chapters. 
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Figure 2.10: Electronic density of states for wurtzite structure A1N. The upper panel 
shows the density of states for A1N while the middle and lower panels show the partial 
density of states for Al and N respectively. 
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Chapter 3 

The Empirical Pseudopotential 

Method 

3.1 Introduction 

Studies of electronic structure rely on a knowledge of the energies and wavefunctions of 

single electron states throughout the Brillouin zone. There are two general approaches 

for the solution of this, one such being the first principles (or ab initio) method that 

was described in chapter 2. The other type of approach is empirical. Unlike ab initio 

methods, empirical approaches require several parameters as input. Regardless of which 

approach is employed, the basic requirement is for the electronic structure to be known 

as a function of position in k-space. That is, we require 

E = En(k) 

i> = </>n(k) (3.1) 

where n is a band index. 

In practice, the choice of which method to use is largely determined by the type of 

39 
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calculation to be performed. For instance, it is obviously preferable to use a method 

which is reasonably fast in terms of CPU time if a large number of band structure 

calculations throughout the Brillouin zone are required. 

The standard first principles pseudopotential method for calculating band structure 

was described in 2. Although it can be used to obtain accurate lattice constants and to 

give some insight, it does not give accurate conduction band energies. This is because 

it is a ground state theory with correspondingly empty conduction band states, and 

as such cannot be expected to do so. Therefore, ab initio methods do not necessarily 

give a good representation of the actual situation. An additional drawback of first 

principles methods is that they are very CPU intensive. 

Fortunately, empirical methods are available that are less computationally expen

sive than ab initio calculations. One such approach is the Empirical Pseudopotential 

Method (EPM) [62-65]. In this, the relevant parameters are adjusted so as to accu

rately reproduce band structure data from another source, be i t experiment or more 

sophisticated first principles calculations. The obvious advantage of this is that ac

cepted valence and conduction band energies throughout the Brillouin zone can be 

guaranteed. Several properties of materials, such as the reflectivity, are dependent 

upon the wavefunctions. Therefore, if these properties are successfully reproduced by 

the empirical pseudopotential method then the wavefunctions can be regarded as be

ing accurate. The even less computationally intensive 6 or 8 band k.p method, which 

is described in chapter 4, can also produce accurate band structure, but as a pertur

bation technique its use is restricted to a limited region in k-space rather than the 

entire Brillouin zone. Although more bands can be used in this method to increase 

its accuracy, this results in a corresponding increase in computational effort. Thus the 

empirical pseudopotential method is an acceptable choice to satisfy the requirements 

for reasonably fast and accurate band structure. 
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3.2 The Pseudopotential Method 

All band structure methods are required to solve the one-electron Schrodinger equation: 

V(r) = E ^ r ) (3.2) 

The difficulty in solving this lies in the potential term V(r). This is the average 

potential felt by each electron due to the other electrons and ion cores, and it has the 

periodicity of the crystal lattice. In particular, it has the property of being strong and 

atomic-like near the cores and weak between them. I t is instructive to first look at two 

models which adopt each of these extremes as their view of the potential. 

The tight-binding method (TBM) starts by treating the electrons as being tightly 

bound to the nuclei of their atoms. In a crystal where these atoms are close together, the 

wavefunctions will overlap, and the electronic wavefunctions are therefore approximated 

using a linear combination of the atomic wavefunctions. Thus this method is also 

known as linear combination of atomic orbitals method (LCAO). Again, the use of 

more orbitals results in greater accuracy, but in practice a minimal set of orbitals is 

usually employed. This method provides acceptable valence band structure but cannot 

be relied on for excited states, which are of obvious importance in any study of the 

optical properties. 

In contrast, the nearly free electron model (NFEM) views the valence electrons as 

a perturbed gas of completely free electrons. That is, the potential in the one-electron 

Hamiltonian of equation 3.2 is considered to be much smaller than the kinetic energy 

term, such that the energy can be expanded using perturbation theory. As such, it is 

an obvious over-simplification. 

It is readily apparent that neither one of these views is entirely satisfactory, and 

so an acceptable compromise has to be reached between the two. This can be done 

using the pseudopotential technique, which exploits the fact that the valence states are 

2m r 

V 2 + V ( r ) 
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of primary importance in determining the crystal properties. This approach was first 

employed by Fermi [66] in 1934, and subsequently by Hellman [67]. However, it was 

not until the late 1950's that the pseudopotential concept really began to be exploited. 

3.2.1 Elements of the Pseudopotential Method 

The electronic configuration of Si is ls 22s 22p 63s 23p 2. These electrons can be identified 

as either core or valence. The Is, 2s and 2p orbitals are fully occupied and form the 

core shells. Electrons in the Si 3s and 3p shells are called valence electrons, and are 

involved in bonding with neighbouring atoms. These electrons are nearly free, in that 

they are screened from seeing the ful l nuclear charge by the filled core shells. Thus in 

this pseudopotential approximation only the valence electrons are considered, with the 

cores frozen in an atomic-like configuration. 

The wavefunctions of the valence electrons must be orthogonal to those of the core 

electrons. Thus i t is sensible to construct the basis states in such a way as to ensure this, 

and this is commonly done using the Orthogonalised Plane Wave (OPW) method [68]. 

Importantly, constructing the basis states in this way also allows a good description of 

the wavefunctions in a tractable number of plane waves, and this is discussed in more 

detail below. 

3.2.1.1 Orthogonalised Plane Waves 

In this approach, the basis states are constructed from a set of plane waves which 

have been orthogonalised to the atomic core states. Between the cores, the plane wave 

component is well suited to describe the weak potential that exists there. Near the 

cores, however, the orthogonalisation terms force the valence electron wavefunctions to 

adopt the next highest core state wavefunction, effectively acting to repel the valence 

electrons from the core. Thus these orthogonalisation terms act like a kind of repulsive 

potential, and when it is combined with the attractive core potential they almost 

cancel, leaving behind a net, weak effective potential. This is the pseudopotential. This 
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effect is detailed in the Phillips-Kleinmann cancellation theorem [62], which explicitly 

demonstrates how such an orthogonality potential can be constructed. I t is instructive 

to complete this understanding with a mathematical description, and this is done below. 

The true wavefunction is expressed as the sum of a smooth wavefunction <j> and a 

sum over occupied core states cf>t: 

^ = 4> + Y^bt(t>t (3.3) 
t 

Enforcing the wavefunction to be orthogonal to the core states, i.e. (<f>t\'tl)) — 0, we 

obtain 

V- = 0 - X > t | 0 > 0 t (3-4) 
t 

If we then operate on ip with the Hamiltonian, with H = —h2/2m0V2 + V where V is 

the core potential, we obtain 

H<f> - YMt\4hE<k = E<f> - EYtWitih (3-5) 
t t 

which simplifies to 

Hct> + Y,(E-Et)Mt\<l>) = E<}> (3.6) 
t 

This can then be rewritten in such a way as to explicitly identify the repulsive potential 

VR arising from the orthogonalisation terms: 
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(H + V R ) = E<f> (3.7) 

where 

VR = Y,(E-Et)M<l>t\<i>) (3.8) 
t 

If we then split up H into its component kinetic and core potential terms, we obtain 

{ ^ + V + V ' ) * = ( ^ ' + V ' - ) * = E* ( 3 ' 9 ) 

Hence we now have an equation for (f), the pseudowavefunction. However, although 

this is a pseudowavefunction it is important to note that the energy E is not a pseudo 

energy. Rather, it is the true energy corresponding to the true wavefunction. In par

ticular, in equation 3.9 the long-range attractive core potential V and the short-ranged 

repulsive potential VR have now been added together, leaving just the pseudopotential 

Vp3. 

Figure 3.1 shows a representation of the variation of the real potential and the pseu

dopotential with distance from the nucleus. In this, the real potential is quite deep and 

therefore strong near the core. The pseudopotential, however, is weak in this region, 

indicating that the cancellation between the real potential and the repulsive one due to 

the orthogonalisation terms is quite complete. Away from the core, the pseudopoten

tial is long ranged and attractive, and identical to that of the real unscreened Coulomb 

potential. 

The weak form of the pseudopotential in Figure 3.1 has obvious implications for the 

pseudowavefunctions. Figure 3.2 is a schematic representation of the real wavefunction 
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Figure 3.1: Schematic representation of the real-space pseudopotential. The solid line 
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Figure 3.2: Schematic representation of the pseudowavefunction. The solid line repre
sents the pseudowavefunction and the dashed line represents the real wavefunction. 
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and the pseudowavefunction, showing the variation with distance from the nucleus. 

From this, it can be seen that the pseudowavefunction is smooth, even in the core 

region. This contrasts with the real wavefunction, which has rapid spatial oscillations 

near the core. 

These considerations serve to highlight the advantage of the pseudopotential ap

proach. Without using pseudopotentials, these calculations would be computationally 

prohibitive. If a description of the true wavefunction was attempted using plane waves 

it would become clear that, because of the strong spatial oscillations of the wavefunc

tion in the core region, a large number of plane waves would be required to provide an 

adequate representation. This number would be large enough to make such calculations 

intractable in terms of computing time. The advantage of using the pseudopotential 

lies in the resulting pseudowavefunction. This is smooth, and thus a comparatively 

small number of plane waves are needed in the basis state expansion to provide an 

acceptable description. The advantages of the pseudopotential are common not only 

to the empirical pseudopotential method but to ab initio techniques as well. 

3.2.2 Solution of the Pseudo-Hamiltonian 

The energies and pseudowavefunctions in the crystal are obtained by solving the 

Schrodinger equation: 

+ Vps\iP = EiP 
2m o 

(3.10) 

The potential V p s ( r ) has to possess the periodicity of the lattice, such that 

V ( T ) = V ( r + R n ) (3.11) 
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where R n is a lattice vector. This means that it can be written as a Fourier sum in 

terms of the reciprocal lattice vectors G m : 

V(r) = £ V ( G m y Gm.r (3.12) 

This is a local pseudopotential - there is no dependence on the angular momentum. 

Nonlocal pseudopotentials are discussed later. Bloch's theorem can then be employed 

to rewrite the wavefunction ^fc( r ) : 

^ f c (r) = e i k r « k ( r ) (3.13) 

where u k (r) has the periodicity of the lattice. Like the potential, this can then be 

expanded as a Fourier sum employing N plane waves: 

N 
u k (r) = 5 > „ ( k ) e i G - (3.14) 

n = l 

When the potential in equation 3.12 and the wavefunetion in equation 3.14 are put 

into the Schrodinger equation of 3.10, the problem is reduced to a standard matrix 

eigenvalue problem: 

/ T ( l ) Vps(l,2) ••• VP8(1,N) \ ( a i \ 

Vps(2,l) T(2) VP3{2,N) 

\ V p a ( N , l ) Vps(N,2) ••• T(iV) J \ a N J 

a2 E 
0-2 

(3.15) 

where the individual matrix elements are given by 
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T(i ) - JLfr + G i f + i K i l V p s t f l K i ) 

V p s ( i , j ) = ( K i l ^ W I K j ) 

K„ = e

l ( k + G n ) - r (3.16) 

The solution of this proceeds using standard matrix diagonalisation routines. If N plane 

waves are used in the expansion at a given k, N eigenvalues are obtained corresponding 

to the energies of the bands at that k. Each of these eigenvalues also has an associated 

eigenvector whose coefficients (oi, e t 2 , a j v ) describe the wavefunction of that band at 

k. Hence diagonalisation of the matrix results in N eigenvalues and N eigenvectors. 

At this point, it is instructive to restate the advantage of the pseudopotential ap

proach in quantitative terms. I f the real potential was used in equation 3.15 then the 

rapid oscillations of the wavefunctions in the core would require an expansion involving 

of the order of 106 plane waves, corresponding to a 106 x 106 matrix. This essentially 

renders the problem insoluble from a computational point of view, since the number 

of calculations required to solve the Hamiltonian is proportional to A^3, where N is the 

order of the matrix. Use of the pseudopotential reduces this problem to a manageable 

one, with of the order of 50 plane waves per atom in the unit cell usually being suffi

cient to obtain a reasonably well converged representation. For the exact form of this 

pseudopotential, there are two main choices. 

3.2.3 Choice of Pseudopotential 

In the previous discussion on orthogonal plane waves, it was shown using the Phillips-

Kleinmann [62] theorem in equation 3.7 how the pseudopotential could be constructed 

from a knowledge of the core states. However, although this theorem does serve to 

underline why the pseudopotential method works, in practice other techniques are gen

erally used to obtain the pseudopotentials. For most such approaches, a parametrised 
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model for the potential is chosen, the final form of which is obtained by fitting to known 

data from experiment. 

Cohen and Bergstresser [63] chose to adopt a simple local form for the pseudopo

tential Vpa(r), where local means that there is no angular momentum dependence. This 

technique was successfully used for Ge and Si before being extended to other common 

semiconductors, and it is this form of the potential that is primarily used in this work. 

However, after consideration of the Phillips-Kleinmann formulation of the pseudopo

tential, it is obvious that i t must possess some nonlocal character. This is because the 

pseudopotential is constructed from a summation over the core states, and can thus be 

split up into its constituent Vs, Vp, etc. contributions. I t becomes clear that if the 

core does not contain electrons of a certain angular momentum then there will be no 

repulsive potential for that component. Carbon, for example, has a core which is I s 2 , 

and thus the p-valence electrons will feel no repulsive potential. It should be noted 

that in practice, however, the precise form of the local potential might be chosen to to 

give correct results for a given symmetry state. Therefore, even if there are no p or d 

core states it does not necessarily mean that there are no p or d components. 

In addition to the local and nonlocal pseudopotentials, the effects of spin-orbit 

coupling must also be included, leaving a final form for the matrix elements of the 

pseudopotential as: 

(KilV^Kj) = (Ki\Vi + Vnl + V ^ ) (3.17) 

where Vi is the local pseudopotential, Vni is the nonlocal pseudopotential and Vso is the 

contribution due to spin-orbit coupling. These are all discussed below. 

3.2.4 The Local Pseudopotential 

For one atom per primitive unit cell, the pseudopotential can be written as 
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Vl(v) = Y,V(Gm)elG-r (3.18) 
m 

The Fourier components V(G) of this, which are commonly referred to as the pseu

dopotential form factors, are given by 

V(G) = ^ / V{v)e~iG rdT (3.19) 

where Q is the volume of the primitive unit cell. Different numbers of form factors are 

employed for the zincblende and wurtzite structures, and a description of how these 

are obtained can be found in Appendix A. 

3.2.5 The Nonlocal Pseudopotential 

It was earlier stated that in principle the pseudopotential should possess some nonlocal 

character, even though in actual calculations these contributions are often ignored. 

The inclusion of nonlocal effects in the pseudopotential method is described in the 

literature by various authors [63,69-72]. In this work, the nonlocal pseudopotential is 

incorporated by placing spherical potential wells around each ion, each of which act on 

a different angular momentum component of the wavefunction. The matrix element 

contribution from the nonlocal pseudopotential is written in the form 

( K j | K ( | K i ) = £ < K i l 4 ( * 0 / i ( O £ | K i > (3.20) 
i 

where At{E) is the well depth, fi(r) describes the shape of the well, and P; is a pro

jection operator such that the Ith well acts only upon the Ith angular component of the 
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wavefunction. The summation is over the angular momentum components / present 

in the core wavefunctions. Thus for the materials considered in this work only the 

/ = 0,1,2 components corresponding to the s, p and d states need to be considered. In 

practice, the p component can effectively be included in the local part of the pseudopo-

tential, and thus the summation above only involves the / = 0 and / = 2 components. 

The well depth Ai(E) is in general a function of energy. I t is usually sufficient to 

adopt a fixed depth A2 for the d well, but a more complicated form is used for the s 

well depth. A description of this, and the square well shape for / / ( r ) , can be found 

in [72]. 

The inclusion of a nonlocal component in the pseudopotential introduces a total 

of up to 5 new parameters per atomic type, some of which such as the interatomic 

separation are fixed. In this work, the nonlocal form of the pseudopotential was only 

used for the zincblende structure and not for the wurtzite structure. This was because 

for the wurtzite structure a lot of other parameters were already involved and i t was 

found to offer no significant improvement on the entirely local approach. 

3.2.6 Spin-Orbit Coupling 

For the heavier elements, the atomic spin-orbit splitting becomes important, and must 

therefore be included in band structure calculations. For the I I I - V nitrides considered 

in this work, however, the spin-orbit splittings are small. This is due to the top of the 

valence band being dominated by nitrogen, as was shown in chapter 2; since nitrogen 

is a light element it has a correspondingly small spin-orbit effect. Therefore, spin-orbit 

effects in the II -V nitrides will be much smaller than those found in, for example, GaSb, 

where the spin-orbit splitting is approximately 0.75 eV. 

There are several approaches which incorporate spin-orbit coupling into the pseu

dopotential formulation [72-74]. In the Bloom and Bergstresser formulation [74], the 

matrix element due to the spin-orbit interaction can be written as 
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(KilVsolKj) = ( K ^ x K ^ v [-i\s.Ss(Gi - G j ) + X A . S A ( G 2 - G j ) ] (3.21) 

where 

K , = k + Gi 

Kj = k + G j 

Xs = (K + K ) 

\ A = ( A c - A a ) 

poo 
Bnl(K) oc / jnl(Kr)Rnl(r)r2dr (3.22) 

J o 

where jni(Kr) is the spherical Bessel's function of the Ith angular momentum compo

nent and Rni(r) is the radial part of the core wavefunction. 

In this work, the matrix element contributions due to the anion and cation are more 

simply written as (see e.g. [64]): 

( K ^ I K , ) = - ^ ^ . ( K . x K , ) 

( K . I 1 / / J K , ) = -aniiuWMKiXKj) ( 3 - 2 3 ) 

There is essentially no difference between this and the more sophisticated approach 

adopted by Bloom and Bergstresser for the materials considered here. The parameter 

ix is an adjustable parameter, altered so as to reproduce the required valence band 

splittings. 
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The immediate effect of including the spin-orbit coupling in the calculations is a 

doubling in the size of the matrices involved. Without spin, the Hamiltonian matrices 

were N xJV, where N is the number of reciprocal lattice vectors used in the plane wave 

expansion. Including spin, the matrices become 2N x 2N with an associated increase 

in computational load. This doubling in matrix size can be circumvented by treating 

the spin-orbit interaction as a perturbation, as is done by Chelikowsky and Cohen [72], 

but this technique is not employed in this work. 

3.3 Output of the E P M 

Once parameters describing the local and nonlocal parts of the pseudopotential have 

been obtained, as well as the spin-orbit splitting, solution of the 2N x 2N matrix 

can proceed by standard diagonalisation methods. Energies and their corresponding 

pseudowavefunctions are output as 

En{k), n = l , ...,2N (3.24) 

c„(k), n = l, ...,2N (3.25) 

where n is the band index. The pseudowavefunctions are vector quantities, and are 

generally complex numbers (but not in the case of IV-IV materials with the origin 

chosen as the bond centre): 

c n (k) = [ ^ ( k ) , . . . , ^ ( k ) , + C r M(k) , . . . , ^ ( k ) ] (3.26) 

The pseudowavefunction is then given by 
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W»(k) = u n(k)e*- r = 1 ^ ( t C n J l t ) + ; c n J | | ) ) e r e i k r (3.27) 

where itn(k) is the Bloch periodic part of ipn(k) and £1 is the unit cell volume. The 

eigenfunctions | t ) and | j .) denote spin-up and spin-down states respectively. 

3.3.1 Overlap Integrals 

In many of the calculations contained in this work, such as those on the dielectric 

function presented later in this chapter, it is necessary to evaluate the overlap integral 

between the periodic parts of the Bloch functions at specific values of the wavevector. 

These overlaps are given by 

N 

(u m (k i )K(k 2 )> = £ r C ^ k O V , ^ ) + l ^ ( k i ^ M (3.28) 
3=0 

At a given wavevector k, the bands are all orthogonal to each other, and can 

furthermore be normalised such that 

(um(k)\un{k)) = 5mn (3.29) 

where 5mn is the Kronecker delta function. 

The calculation of such overlap integrals should obviously be performed using the 

real wavefunction, which can be obtained from the pseudowavefunction through equa

tion 3.4. However, it is actually possible to use the pseudowavefunction in these calcu

lations with little loss of accuracy. The reason for this lies in the pseudowavefunction 

being a good approximation to the real wavefunction in the region between the atoms 
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where the valence electrons are concentrated. This is because the overlap between these 

valence electron states and those in the core are small. Thus the additional terms in

troduced in obtaining the real wavefunction should be negligible in the context of the 

calculations considered in this work. 

3.4 Pseudopotential Fitting 

As was stated at the beginning of the chapter, the empirical pseudopotential method 

requires input in the form of band structure information. That is, the pseudopotential 

is specifically tailored to reproduce band structure in good agreement with that from 

another source. Earlier in this chapter, it was shown how pseudopotentials for both 

the zincblende and wurtzite structures could be constructed. These pseudopotentials 

are parametrised in terms of an appropriate number of symmetric and antisymmetric 

form factors, V s (G) and Va(G), at the discrete set of points in reciprocal space defined 

by the reciprocal lattice vectors G. The aim in any fitting procedure is to obtain a 

complete set of these parameters which produces sufficiently accurate band structure. 

One simple approach is to randomly vary the individual parameters themselves until 

that is achieved. However, while schemes which do this to obtain the parameters for 

a particular material are acceptable, the use of the resultant form factors is restricted 

solely to that situation; they cannot easily be adapted for use in strained material or 

alloys. 

In this work, smooth V(q) functions have instead been constructed for both the 

zincblende and wurtzite structures of the nitride materials, from which the form factors 

at the relevant points q — G could be extracted. The advantage this approach offers is 

that it allows pseudopotentials representing strained material and alloys to be readily 

obtained, something which is covered in detail in chapters 4 and 5. With the midpoint 

between the two atoms (in the zincblende case) taken as the origin of the unit cell, 

the symmetric and antisymmetric functional forms of the pseudopotential used in this 
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work are given below. The form for the symmetric part was originally suggested by 

Falicov and Lin [75]. 

aiq2 + a 2 

1 + exp(a3[a4 - q2}) 

{axq2 + a2)exp{ai[aA - q2)) (3.30) 

in which q is in units of (2n/azb), where azb is the lattice constant of the zincblende 

form of the relevant material. The respective form factors V(G), at the particular G-

values required in the band structure calculations, can then be simply obtained from 

these expressions. 

As a summary, the parameters used in the calculations for both the zincblende 

and wurtzite structures are shown in Table 3.1. Note that for the wurtzite structure 

an entirely local pseudopotential was sufficient to provide a good description of the 

materials. The parameter u in Table 3.1 was chosen to be in good agreement with 

accepted values in the literature, and to be generally consistent with the first principles 

calculations of chapter 2. 

Having adopted this approach, an acceptable set of the parameters (z=l-4) from 

which the form factors are calculated must be obtained. For this, a Monte-Carlo 

scheme is employed, in which the empirical pseudopotential method band structure is 

compared with target band energies of other calculations at high symmetry points in 

the Brillouin zone. In this work, the target band energies used were at the T, L and X 

points. For A1N and GaN, the band energies come from the quasiparticle corrected first 

principles calculations of Rubio et al. [76]. For InN, such results were not available, and 

so the results of the first principles calculations of chapter 2 using VASP were used, with 

an appropriate "scissoring" of the band gap to correctly reproduce accepted excited 

state energies. I t is important to note, however, that quasiparticle corrections tend to 

produce a /c-dependent correction to the LDA results. Therefore, if the eigenvalues for 

V s = 

v a = 
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Zincblende 

Fixed Lattice 
Nonloe 
Nonlocal #g, R% 
Nonlocal Rc

0, Rc

2 

Fitted Local Vs{q) -—> V s (V3), Vs(V8), Vs{Vll) 
Va{q) —> Va(V3),Va(y/i),Va{y/li) 

Nonlocal a§, 0§ —>• A£ 
ag . /^ —> 

Spin-orbit \x 

Wurtzite 

Fixed Lattice a, c, u 

Fitted Local Vs(q) —> V'(V3),... , V s ( ^ l i f ) 

V a ( > / 3 ) , . . . , ^ ( ^ / l 4 j ) 

Spin-orbit / i 

Table 3.1: The fixed and fitted parameters of the empirical pseudopotential method 
for the zincblende and wurtzite structures. 
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Set initial parameter values 
for Vfq) ) 

Set initial parameter values 
for Vfq) 

Calculate band structure 
at .1 high symmetry points 

in BriMourn zone 

^ F o ld 

Figure 3.3: The Monte-Carlo 
algorithm used for the fitting 
of the pseudopotential param
eters. See text for details. 

InN across the entire Brillouin zone are rigidly shifted this will result in some error. 

The aj values in equation 3.30 were varied using a Monte-Carlo technique. The 

associated form factors were then calculated from these, and band structure calculations 

performed at the required points in the Brillouin zone. These computed band energies 

were then compared with the target energies, and the process systematically repeated 

until acceptable agreement was reached. This involved minimising the function F, 

given below: 

Id 
E N D 

N 

± 

Choose one V(qJ 
parameter at random 

, T 7 
Adjust value 

randomly 

Calculate band structure 
at 3 high symmetry points 

in Brillouin zone 

\ ~ 

Compute F M w 

T 
Discard set old N old 

Keep set 

F = j ) \Eepm(i,j) - Etarget{i,j)\2 (3.31) 
' i 

The index i refers to the 3 high symmetry k-points used in the calculation whereas j is 

the band index. w(i,j) is the weight attached to each particular band energy at each 

k-point. A schematic representation of the fitting procedure is shown in Figure 3.3 
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3.4.1 Requirements for the Fitted Pseudopotentials 

In this work, it was important to reproduce accurate band structure for the top three 

valence bands and the first conduction band at the zone centre. In the wurtzite struc

ture, the energies of the top three valence band states at the F point, split by the 

spin-orbit coupling and the crystal field, are [77]: 

E0 = 0 

1 1 / 8 
Ex = - - ( A s o + A c r ) + - W ( A S 0 + A c r ) 2 - - A S 0 A c r 

1 1 / 8 
E2 = - - ( A s o + A c r ) - -d(AS0 + A c r ) 2 - - A S 0 A c r (3.32) 

where A s o is the spin-orbit splitting and A c r is the crystal field splitting. Note that 

the zincblende structure has a higher symmetry than the wurtzite structure and has 

no such crystal field splitting. For the zincblende structure materials the bands are 

only split by the spin-orbit interaction. 

The inclusion of spin results in a breaking of the degeneracy at the T point for the 

materials considered in this work. The triple degeneracy found in zincblende structure 

materials is split into a doublet and a singlet, whereas in the wurtzite structure the 

extra splitting due to the crystal field results in three separate states. A schematic 

diagram of this is shown in Figure 3.4. 

The target band energies of Rubio et al. , and the first principles band structure 

of chapter 2 for InN, do not include spin in their calculations. Therefore, in the 

fit t ing procedure shown in Figure 3.3, spin was not included in the band structure 

calculations. Instead, the parameter fi, which accounts for the spin-orbit coupling Aso 

in the Hamiltonian, is manually altered after the fitting to give the correct splitting of 

the valence bands at the zone centre. However, the spin-orbit splitting for the three 

nitrides is not reliably known, and therefore in this work \x was altered to give a A s o 
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Zincblende Wurtzite 

0 

cr so 

A =0 A =0 
so so 

Figure 3.4: Schematic diagram of the valence band splittings due to spin-orbit coupling 
and crystal field effects for the zincblende and wurtzite structures at the T point. Note 
that the top band for the zincblende structure is a quadruplet. The diagram for wurtzite 
above is for a positive crystal field splitting as found in GaN and InN; for A1N, which 
has a negative crystal field splitting, the ordering of the bands is different. This can 
be seen in the band structures presented later in this chapter. 

of 11 meV for all the materials, in accordance with Dingle et al. [21]. 

In the previous chapter, first principles calculations were used to calculate the 

crystal field splittings ( A c r ) and other lattice parameters for the nitrides. However, as 

for the spin-orbit splitting there is some doubt as to what the correct values of A c r 

should be. In this work7 acceptable target values for the crystal field splittings were 

taken from various sources [21,52,53,55,77]. 

As well as producing acceptable band energies at the three high symmetry points 

in the Brillouin zone, several other requirements also had to be satisfied: 

• There should be good qualitative agreement over the entire Brillouin zone be

tween the empirical pseudopotential method band structure and that produced 

by the first principles calculations of chapter 2 

• The V(q) functions had to be smooth and physically reasonable 

Moreover, for the wurtzite structure it was desirable to impose two further constraints: 
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V s ya 
ax 0,2 03 04 Ol 0,2 03 04 

Zincblende 
A1N 0.0769 -0.4236 -0.3705 10.4965 0.0209 0.0940 0.1164 10.4270 
GaN 0.0752 -0.5173 -0.5255 10.0740 0.0101 0.0824 0.1070 8.8359 
InN 0.0732 -0.5273 -0.5732 9.5069 0.0052 0.0787 0.1016 8.2672 
Wurtzite 
A1N 0.0767 -0.4478 -0.4831 10.7550 0.0018 0.1005 0.1736 10.7369 
GaN 0.0837 -0.5643 -0.5485 10.5076 0.0148 0.0869 0.1265 9.3214 
InN 0.0843 -0.6104 -0.5851 10.3746 0.0079 0.0857 0.0492 9.6443 

Table 3.2: The coefficients of the form factor V(q) functions defined in equation 3.30. 

• The wurtzite V(q) functions for each material had to bear some resemblance to 

their counterparts in the zincblende structure 

• A reasonable deformation potential should be obtained for each of the three 

materials 

The first point is desirable for consistency with the concept of transferable atomic 

potentials. That is, the pseudopotential is derived from the actual real space potentials 

of the constituent atoms, and thus there must be some correspondence in the pseu-

dopotentials between the zincblende and wurtzite structures of the same material. The 

second point addresses the effect of strain on the band structure of the material, and 

is discussed in detail in chapter 5. 

The final coefficients obtained from the fitting procedure described above are shown 

in Table 3.2. The resulting V(q) form factor curves for each material are shown in 

Figure 3.5. The curves for the two structures are reasonably similar for each of the 

materials, with the exception of A1N. For this material, the antisymmetric V(q) curve 

for the wurtzite structure is perhaps a bit large. 
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Figure 3.5: The symmetric (Vs) and antisymmetric (V^) V(q) curves for AIN, GaN 
and InN in the zincblende (solid line) and wurtzite (dashed line) structures. 
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3.5 Band Structure 

63 

The principal directions in the Brillouin zones of the zincblende and wurtzite struc

tures are shown in Figure 3.6. Figures 3.7, 3.8 and 3.9 show the calculated empirical 

band structure compared with that calculated using the first principles code VASP 

(computed by Steve Pugh). The diamonds in the graphs are the targets used in the 

empirical pseudopotential fitting procedure. For GaN and InN there is good overall 

agreement in the band structures throughout the Brillouin zone. For A1N, particularly 

in the zincblende structure, the agreement is less good. The empirical band structures 

in Figures 3.7, 3.8 and 3.9 are consistent with the results of other groups reported in 

the literature [44], [55], [78]. 

Note that the valence band maxima all occur at the T-point. GaN and InN are both 

direct gap materials, in contrast to A1N in the zincblende structure which is indirect. 

Also note that for all the first principles calculations the band gap is underestimated. 

In particular, for the band gap of both zincblende and wurtzite InN a band gap of 

zero was obtained. As discussed in chapter 2, an underestimation of the band gap is 

typical for such calculations. Thus these band structures serve to highlight one of the 

advantages of the empirical pseudopotential method, in that it can reproduce accepted 

excited state energies from experiment. 

3.6 The Dielectric Function 

The optical properties of the nitrides are of obvious importance, and in particular a 

detailed knowledge of the dielectric function e(u) is necessary for the development of 
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Figure 3.6: High symmetry points in the Brillouin zone for the zincblende and wurtzite 
structures 
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Figure 3.7: The band structures for zincblende and wurtzite structure AIN. The dashed 
lines are calculated using the first principles code VASP and the solid lines are calcu
lated using the empirical pseudopotential method. The diamonds represent the targets 
used in the fit t ing procedure. 
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Figure 3.8: The band structures for zincblende and wurtzite structure GaN. The dashed 
lines are calculated using the first principles code VASP and the solid lines are calcu
lated using the empirical pseudopotential method. The diamonds represent the targets 
used in the fitting procedure. 
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Figure 3.9: The band structures for zincblende and wurtzite structure InN. The dashed 
lines are calculated using the first principles code VASP and the solid lines are calcu
lated using the empirical pseudopotential method. The diamonds represent the targets 
used in the fitting procedure. 
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optoelectronic devices. For example, Bragg reflectors can be employed as the highly 

reflective mirrors which are needed for laser operation, and for these i t is important to 

know the optical response of the materials involved. Beyond the actual requirements 

of potential devices, calculations of the dielectric function have traditionally provided 

a useful contact between theory and experiment, and indeed reflectivity measurements 

have often been used as the data source from which the parameters for the empirical 

pseudopotential method have been fitted. 

The optical properties can be described in terms of a complex dielectric function: 

e(u) = ei(u>) + ie2{uj) (3.33) 

In general, e is a function of both wavevector and frequency. The real and imaginary 

parts can be written as [65] 

ei(q,u>) = 1 + ^ K M k + q,*)! 2 

k,c,v 

x {[Ec(k) - Ev(k + q) - hut]-1 + [Ec{k) - Ev{k + q) + H " ' } 

(-3,34) 

c 2(q,w) = ^ ^ | ( k , c | k + q , t ; ) | 2

( 5 ( £ ; c ( k ) - ^ ( k + q ) - M (3.35) 
k,c,v 

where c and v refer to the conduction and valence bands respectively. These equations 

involve computing overlaps and energies throughout the Brillouin zone, and in this 

work this sampling is done numerically using a Monte Carlo method. For fixed q, a k-

point within the Brillouin zone is randomly picked and the energies and wavefunctions 
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in each band at k and k + q are calculated. The real and imaginary parts of e(q,w) 

corresponding to those k and q values are then evaluated at fuv values ranging in small 

steps from 0-20 eV, and stored in histograms according to energy. This procedure is 

then repeated at fixed q for a large number of randomly chosen k vectors, with the real 

and imaginary values being added to the existing histogram values. After a certain 

number of such evaluations, the values in the histograms are divided by the number of 

k vectors used in the sampling. In practice, this number is chosen to ensure that the 

real and imaginary parts are sufficiently converged. 

In evaluating the real and imaginary parts of e(q,a>) i t is necessary to consider the 

the situation as f\w —)• Ec(k) — Ev{k + q). For the real part of the dielectric function 

this would lead to spikes, and thus in equation 3.34 the following approximation is 

made: 

[Ec(k) - Ev(k + q) - M " 1 + [#c(k) - Ev(k + q) + hJ\~l ~ 

%e {[Ec(k) - Ev{k + q) - hw - irj}~1 + [Ec(k) - Ev{k + q) + hu> + irj]'1} (3.36) 

where rj is a small positive value. For hu qk Ec(k) — Ev(k + q) the right hand side of 

equation 3.36 is a good approximation to the left hand side. As fkv —> Ec(k) — Ev(k+q) 

the right hand side tends to zero and thus spikes are avoided. 

Similarly for e2(q, u), the Dirac delta function 8 (^(k) — Ev(k + q) — hu>) in equa

tion 3.35 must also be approximated, in this case by a top hat function of finite width 

and unit area: 

25e 
S(Ec(k)-Ev(k + q)-Hw) 

0 

for \ECV — hw\ < 5e, 

otherwise. 
(3.37) 



CHAPTER 3. THE EMPIRICAL PSEUDOPOTENTIAL METHOD 70 

where Se is a small energy value. 

The values of 77 and 5e must be chosen to ensure that ei(q, to) and e2(q>^) are 

converged with respect to them. In practice, either the real or imaginary part of the 

dielectric function can be obtained from the other using the Kramers-Kronig relations 

shown in equation 3.38 below [79]. The numerical accuracy involved in the above 

approximations can be checked by comparing the directly calculated real and imaginary 

parts with those obtained using the Kramers-Kronig relations: 

The dielectric function e(q,u>) is obviously q-dependent, and thus in a rigorous 

calculation all directions in the Brillouin zone would be sampled. The computation 

requirements for this, however, would be too large to make such a calculation feasible. 

Therefore, for the calculations in this work several appropriate directions for q within 

the Brillouin zone are chosen. 

3.6.1 Zincblende Structure Materials 

Equations 3.34 and 3.35 were employed to calculate the real and imaginary parts of 

the dielectric function for zincblende nitrides. These calculation were done for q in 

the (100), (110) and (111) directions in the Brillouin zone. The calculated dielectric 

responses in these three directions can be seen in Figure 3.10. From this, it can be 

seen that the dielectric function is approximately isotropic. 

The empirical pseudopotential method was used for the calculations with an expan

sion involving two different numbers of plane waves. Figure 3.11 shows the real and 

imaginary parts of the dielectric function for InN calculated using 65 and 137 plane 

w W q . w ) 0 0 

dui 1 + -P /2 7T LO 0 
ei(q,w') - 1 0 0 2u dto' /2 

7T LO LO 0 
(3.38) 
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Figure 3.10: The calculated real and imaginary parts of the dielectric function for 
zincblende structure InN as a function of frequency at fixed wavevector (k=0). Cal
culations are performed in the 100 direction (black lines), the 110 direction (red lines) 
and the 111 direction (green lines) using 137 plane waves. 

waves. From this, it is clear that a reasonably converged representation of the dielec

tric function in the zincblende structure can be obtained by using just 65 plane waves. 

However, 137 plane waves were used in this work because the empirical pseudopotential 

calculations are acceptably fast using this number. 

The dielectric functions for zincblende structure A1N, GaN and InN are shown 

alongside those for the wurtzite structure in Figures 3.13, 3.14 and 3.15 respectively. 

All three graphs have the typical shape for both the real and imaginary parts of the 

dielectric function. There is little experimental information on the dielectric reponse 

for zincblende A1N and InN, but the dielectric response of zincblende GaN has been 

investigated experimentally [92-94]. Logothetidis et al. [92] observe two adjacent peaks 

in e2 at 7.0 and 7.6 eV. In this work, only one peak was found at 8.4 eV, though there is 

a small shoulder at approximately 6.75 eV. A feature of less sophisticated calculations 

such as the one in this work is that spectral features are shifted to higher energy, and 

this is discussed below in the results for wurtzite. First principles calculations of the 
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Figure 3.11: The calculated real and imaginary parts of the dielectric function for 
zincblende structure InN as a function of frequency at fixed wavevector (k=0). The 
calculations are performed using 137 plane waves (black lines) and 65 plane waves (red 
lines). 

dielectric function exist for all three materials in the zincblende structure [12]. These 

authors find three distinct groups of peaks in ti for both A1N and GaN instead of the 

two that are found in this work. More relevant to this work, Wang et al. [95] have also 

calculated the dielectric response of GaN in both zincblende and wurtzite structure 

using the empirical pseudopotential method. As in this work, they find two distinct 

peaks in e2- More generally, there is excellent agreement in the features of both the 

real and imaginary parts of the dielectric function. For GaN, the value for obtained 

in this work of 6.1 is larger than the theoretical value of 5.41 of Karch et al. [96], and 

is also larger than the experimental values for wurtzite of 5.29 [93] and 5.35 [94]. A 

reason for this could be due to the empirical model for GaN having a slightly smaller 

band gap (3.16 eV) than that found in other calculations or experiment. 
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3.6.2 Wurtzite Structure Materials 

As for the zincblende structure , the real and imaginary parts of the dielectric function 

for A1N, GaN and InN in the wurtzite structure were calculated using equations 3.34 

and 3.35. For this, 263 plane waves were used in the empirical pseudopotential method 

expansion. Unlike the zincblende structure, the dielectric function is not isotropic in 

the wurtzite structure because of its reduced symmetry. Instead, calculations of the 

dielectric response must be performed in two different directions, one perpendicular to 

the c-axis of the wurtzite crystal and one parallel to i t . However, in the perpendicular 

(in-plane) direction the dielectric function is isotropic. This is shown in Figure 3.12, 

which plots the dielectric function in both the (100) and (210) in-plane directions. 

From this, it can be seen that there is essentially no difference in either e\ or e2 in the 

two directions. Therefore, the calculations in this work are done in the (001) c-axis 

direction and the (100) in-plane direction. Note that in the case of experiment, most 

measurements of the dielectric function are restricted to the in-plane direction. 

The dielectric functions for wurtzite A1N, GaN and InN are shown alongside those 

for the zincblende structure in Figures 3.13, 3.14 and 3.15 respectively. Experimen

tal and theoretical studies of the dielectric response exist for the wurtzite form of all 

three materials. The experimental studies have largely been based on reflectivity and 

ellipsometry measurements [80,85-90]. Unfortunately, these studies have been compro

mised by poor material quality, and in particular surface roughness and oxide layers 

are thought to account for some of the deficiencies in the measured values. 

Theoretical calculations [46,83-85,91,92] have successfully reproduced some gross 

experimental features in the dielectric function such as positions of absorption peaks, 

but have otherwise failed to obtain the general shape of the curve. More recently, Bene

dict et al. [93,94] have included the electron-hole interaction within a first-principles 

scheme to obtain results in improved agreement with experiment. Djurisic et al. [95,96] 

have also incorporated excitonic effects to successfully model the dielectric response 
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Figure 3.12: The real and imaginary parts of the dielectric function for wurtzite struc
ture GaN as a function of frequency at fixed wavevector (k=0) in two in-plane direc
tions. The black lines show the calculation performed in the 100 direction and the red 
lines correspond to a calculation done in the 210 direction. 

response for the wurtzite form of all three materials. As for the zincblende structure, 

Wang et al. [95] have also used the empirical pseudopotential method to calculate 

the dielectric response for GaN in the wurtzite structure. The spectral features these 

authors find for both ei and e2 are in excellent agreement with those found in this 

work. 

In comparing the wurtzite dielectric function in the in-plane and c-axis directions 

several features deserve comment. First, while there are differences between the two 

directions, the general shape of the graph is the same. For InN, the dielectric function 

is quite similar in the two directions, but for A1N and GaN there are more obvious 

differences. For these two materials, the main difference is in the positions of the peaks 

in the spectrum. In particular, the initial peak in ei in the c-axis direction coincides 

with a smaller peak in the in-plane direction. This difference is more pronounced in 

e2, where the initial peak in the c-axis direction appears only as a shoulder in the in-

plane direction. This kind of behaviour, in which small in-plane peaks correspond to 

100 
210 
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spectra [97,98]. More recently, Benedict et al. [94] have calculated the in-plane and 

c-axis dielectric response for A1N and GaN. They too report a significantly enhanced 

initial peak for e2 in the c-axis direction compared to the in-plane direction. 

So far, no measurements of the dielectric response for wurtzite A1N, GaN or InN 

in the c-axis direction are available. However, experimental studies of the in-plane 

dielectric function do exist for A1N [88,90], GaN [80,85,94] and InN [87], and can be 

contrasted with those obtained in this work. In comparison to experiment, the principal 

difference is that the calculations presented here produce sharper and stronger peaks 

than those observed experimentally. The experimental explanation for this is thought 

to be the sample quality, with surface roughness and oxide layers in particular held 

to be responsible for decreased magnitudes in e2. Note however that the theoretical 

results in this work can always be artificially broadened by choosing a less dense set 

of energy histograms as described earlier in the chapter. The other main difference is 

that the spectral features calculated in this work occur at higher energies than those 

measured experimentally. This is consistent with the work of Benedict et al. [93] and 

Albrecht et al. [99], in which i t was shown that inclusion of the electron-hole interaction 

shifts the spectral features to lower energy in better agreement with experiment. Thus, 

since the calculations in this work do not include this interaction, i t is to be expected 

that the peaks are at higher energies than suggested by experiment. 

More generally, InN has a larger value for than GaN, which in turn has a 

large value that A1N. For GaN, the value for of 5.03 eV slightly understimates the 

measured values of 5.29 [81] and 5.35 [82]. 

3.6.3 Discussion 

It is also instructive to compare the dielectric functions of the zincblende and wurtzite 

structures shown in Figures 3.13, 3.14 and 3.15. Noticeably, the shapes of the curves 
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Figure 3.13: The real and imaginary parts of the dielectric function for zincblende and 
wurtzite structure AIN as a function of frequency at fixed wavevector (k=0). For the 
wurtzite structure, calculations are done in the in-plane (solid line) and c-axis (dashed 
line) directions. 
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Figure 3.14: The real and imaginary parts of the dielectric function for zincblende and 
wurtzite structure GaN as a function of frequency at fixed wavevector (k=0). For the 
wurtzite structure, calculations are done in the in-plane (solid line) and c-axis (dashed 
line) directions. 
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Figure 3.15: The real and imaginary parts of the dielectric function for zincblende and 
wurtzite structure InN as a function of frequency at fixed wavevector (k=0). For the 
wurtzite structure, calculations are done in the in-plane (solid line) and c-axis (dashed 
line) directions. 
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are very similar for the different structures of each material. In particular there is 

marked similarity for InN, where the positions of the peaks agree very well. However, 

for AIN and GaN the spectral features in the wurtzite structure are at slightly higher 

energy. I t is interesting to note that for each of the materials the zincblende dielectric 

function is in the best agreement with the wurtzite calculations done in-plane. This is 

to be expected given that the zincblende and wurtzite structures differ in their stacking 

arrangements in the c direction. 

For each of the materials the peaks in the zincblende case are higher, particularly 

for the imaginary part 62- The value of also differs for the two structures. For 

all three materials the value of in the wurtzite structure is lower than it is in 

zincblende. I t can also be seen that the values of increase going from AIN to InN, 

and both these results are consistent with the band gaps of the materials. AIN has the 

largest band gap and thus the energy terms in equations 3.34 and 3.34 will be large, 

lowering the value of the dielectric function. Similarly, zincblende AIN and GaN have 

a lower band gap than that they do in the wurtzite structure, which explains their 

larger dielectric function. However, for InN this argument does not work. Even though 

wurtzite InN has a smaller band gap than it does in the zincblende structure, €<» is 

smaller, indicating that the wavefunction overlaps for wurtzite InN in equations 3.34 

and 3.35 are perhaps smaller. 

3.7 Summary 

In this chapter, the main elements of the pseudopotential concept were introduced 

and pseudopotentials describing AIN, GaN and InN were obtained. These parameter 

sets were used for band structure calculations throughout the Brillouin zone and for 

investigating the dielectric response. Importantly, the pseudopotentials in this work 

were specifically constructed in such a way as to facilitate study of strained material and 

alloys. This involved adopting a functional form for the symmetric and antisymmetric 
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parts of the pseudopotential, from which the form factors for strained or unstrained 

material could be obtained. These empirical pseudopotential method descriptions form 

the basis for the further calculations on strained and unstrained material, as well as 

alloys, in the following chapters. 



Chapter 4 

The k.p Method and its 

Applications 

4.1 Introduction 

An alternative to the empirical pseudopotential method for the calculation of band 

structure is the k.p method. Primarily, i t is used to describe the band structure 

close to a particular k point in great detail. I t is because of this that it lends itself 

particularly well to studies of semiconductors, since in these materials the free carriers 

are normally confined to a small region of k space. For the nitrides, these studies have 

concentrated on the T point as the main region of interest. 

The method again requires some input, but unlike the pseudopotential method it 

does not rely on knowledge of the crystal potential. Rather, i t requires certain matrix 

elements which can be derived from experiment or more fundamental calculations, and 

consideration of the symmetry properties of the material in question. Computationally, 

the 6 or 8 band k.p method is much faster than the pseudopotential method since it 

involves matrices of much smaller size. Thus in cases where energies or matrix elements 

used in the calculation of physical properties must be evaluated many times, the k.p 

approach can be considered preferable to the empirical pseudopotential method. 

81 
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4.2 Theory 

The one-electron Schrodinger equation is written: 

82 

- f t 2 

2ran 
V 2 + V(r) ip{r) = Eip(r) (4.1) 

where m0 is the free electron mass and V(r) is the preiodic potential. The wavefunction 

of the state with wavevector k in band n is expressed in its Bloch form: 

V'nfc(r) = unk{r)e i k . i (4.2) 

Substitution of this into the Schrodinger equation leads to 

ft2 

2mn 
— k . V + — - + V r 
m 0 2mo 

unk(r) = En(k)unk(r) (4.3) 

If we consider a point k = k 0 , then equation 4.3 has a complete set of eigenfunctions 

unko(r) which completely span the space of functions periodic in the real space Bravais 

lattice, and can be rewritten as: 

Hk0 + — ( k - k 0 ) . V + -^ - (A; 2 - f c 2 ) 
rriQ 2 r a r j 

unk{r) = En{k)unk(r) (4.4) 

where 

T ) 2 ft h2k2 

Hk0 = ^ - + - k 0 . p + ^ + V(r) 
2m0 m0 2m, 

(4.5) 
o 
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It is then possible to express unk(r) as a linear combination of the Bloch periodic 

parts of the infinite set of bands at this wavevector k 0 : 

Unk{r) = ^ c m „ ( k - k 0 ) M m k o ( r ) (4.6) 
m 

This expansion is such that only a few terms are necessary to obtain a satisfactory 

representation of itnfc(r) when k is sufficiently close to k 0 . For the work presented here, 

attention is focused on the conduction and valence bands at the zone centre ( k 0 = 0). 

Substituting this expansion into equation 4.4 and multiplying on the left by u*n0(r) we 

obtain: 

£ ( [ £ „ ( k ) - ( * „ ( 0 ) + l3 m0 

(4.7) 

where 

Pnm = J < 0 ( r ) p u m 0 ( r ) d r (4.8) 

and the integration is performed over the unit cell. Equations 4.6 to 4.8 define the 

k . p representation, and the problem is reduced to diagonalisation of the Hamiltonian 

matrix contained in the left hand side of equation 4.7. The terms k . p n m are the off-

diagonal elements of the Hamiltonian. Note that equation 4.6 is valid for all k when m 

runs over the infinite basis, but in practice it is necessary to use a finte basis set. Use 

of ~ 30 basis states from the bands around the fundamental gap can give a reasonable 

description of the band structure throughout the Brillouin zone. However, the method 

is commonly used with a small number (typically 8 or less) of basis states, and the 

results are correspondingly accurate for a small range of k . 
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Al l the states are divided into two classes A and B, where those in A are the basis 

states from the bands of interest. Those in B are from the bands which are energetically 

remote from the bands of interest, but their interactions with the states in A are such 

that they have a significant effect on the resulting band structure. These interactions 

can be treated perturbatively following a method introduced by Lowdin [100]. In 

this, the k . p coupling between states in A are treated exactly, while the interactions 

of these states with those in B are treated as perturbations by defining an effective 

matrix element between any two valence band wavefunctions as 

where % and j are are in A and k is in B. 

In this work, the states of interest (those in A) are the six uppermost valence bands 

and the first two conduction bands at the zone centre. At the zone centre the spin-

orbit splitting is such that the valence band consists of a fourfold multiplet ((3/2, ±3 /2 ) , 

|3/2, ±1/2}) and a doublet ( | l /2 , ±1 /2 ) ) . We use these to form the basis set of the 

Hamiltonian, and their form is addressed in the next section. Thus with this approach, 

the problem is reduced to one of diagonalising an 8 x 8 matrix, with the effects of the 

remote bands included perturbatively in the Hamiltonian. 

Additionally, the spin-orbit interaction is considered for the materials studied in this 

work. This interaction increases with atomic number (or mass), leading to a lowering of 

the symmetry and consequent splitting of the valence bands. The spin-orbit interaction 

contribution to the Hamiltonian in equation 4.1 can be written as [27]: 

Hit-H ikSIkj 

Ei-E 
(4.9) 

h 
[ W x p] .a (4.10) 

4m 2 c2 

where a are the usual Pauli operators on the electron spin variable. This results in two 
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additional terms in equation 4.5: 

^ = 4 ^ t W X p l f f + 4 ^ ' W > < k ' - f f ( 4 ' U ) 

Within the k . p method it is appropriate to treat this interaction by adding i t to 

the Lowdin perturbation Hamiltonian. The justification for this is that the spin-orbit 

splitting is typically of the order of 0.1 eV compared to a band gap of a few eV (e.g. 

GaAs etc.). Moreover, HkSO is usually very small compared to Hso, and thus is 

commonly neglected. 

4.3 Zincblende Structure Materials 

For optical devices, the primary region of interest lies around the fundamental energy 

gap which separates the occupied states in the valence band from the unoccupied 

states in the conduction band at zero temperature. For all the materials considered 

in this work, the top of the valence band lies at the zone centre. If we consider 

GaN, then Ga has an outer shell configuration of 4s24p1 while for nitrogen the outer 

shell configuration is 2s2 2p3. These electronic configurations determine the conduction 

and valence band states around the band gap, and can be considered by reference to 

standard atomic physics. In this, the orbital electronic wavefunctions are classified as 

s,p, d, etc. according to their orbital angular momentum /. The p states corresponding 

to / = 1 are triply degenerate, and can be chosen to be eigenstates of Lz, the z-

component of the orbital angular momentum operator, with eigenvalues m; = 1,0, —1. 

The spherical harmonics |/,m/) corresponding to these states can thus be written as: 
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1, 1) (x + iy) /y/2 

1, 0) z 

1,-1) {x - iy) /y/2 (4.12) 

However, the spin-orbit interaction must also be considered. This is usually ex

pressed as : 

where A is the spin-orbit coupling. The eigenfunctions of this equation are eigenstates 

of the total angular momentum J = L + S and its z component Jz. For the p states, 

with / = 1 and s — 1/2 the possible values for the eigenvalues of j are j = I + s = 3/2 

and j — I — s — 1/2. For each of these there are 2j + 1 values of mz, the eigenvalue of 

Thus in zincblende structure materials the inclusion of the spin-orbit interaction 

splits the p-like valence bands into an upper fourfold degenerate T 8 state and a lower 

twofold degenerate T7 state. At the bottom of the conduction band is a twofold de

generate T 6 state derived from s orbitals. Thus i t is natural to choose these eight zone 

centre states to form the basis set of the Hamiltonian: 

HSo = AL.s (4.13) 

Jz. 
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ui = |St> 

u2 = (l/V2)\(X + iY) t> 

^ = (i/V6)|(x + i y ) ; > - y | | z t > 

u 4 = (l/V3)[\(X + iY)i) + \Zt)} 

u5 = \S I ) 

u6 = (l/V2)\{X-iY)]) 

-(l/V6)\(X-zY) V)-yJl\Zi) 

-(l/y/3)[\{X-iY)t) + \Zl)] (4.14) 

u7 

where \S) denotes an s orbital and \X), \Y) and \Z) indicate px, py and pz orbitals 

respectively. The arrows represent the spin orientation. In this basis, the Hamiltonian 

follows as given in Table 4.1 [27,101-103]. 

In Table 4.1 

k^. — Jcx ~\~ iky 

k_ = kx + iky (4-15) 

where all the wavevectors are expressed in units of y/h2/2mQ. The other parameters 

in Table 4.1 are given by: 
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2m 
P — \\ To"PKane 

Pkane = -i — (S\px\X) 
m 

= Isi ( 4 1 6 ) 

where Ec, Ev and A are the conduction band, valence band and spin-orbit splitting 

energies at the T point. 71, 72 and 73 are the modified Luttinger parameters, and 

are related to the unmodified Luttinger parameters 7f , 72 and 73 by the following 

equations [103]: 

71 = 7i 

72 = 72 

73 = 73 

L EP 
3Eg 

L K_ 

6E9 

6Eg 

3 ~ m~~c~T{E~9
 + 2(Eg + A)] ( 4 ' 1 7 j 

where Eg is the band gap and 

Ep = 2~^P2 (4-18) 

The unmodified Luttinger parameters are related to the effective masses and are dis

cussed below. 
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4.3.1 Calculation of the k.p parameters 

The empirical pseudopotential models for zincblende structure A1N, GaN and InN 

that were presented in chapter 3 all used the nonlocal form for the pseudopotential. 

However, for the k . p calculations presented here the pseudopotentials used are local. 

This was necesssary in order to to obtain k . p parameters using the direct method, and 

is explained below. Note that new, entirely local pseudopotentials were generated for 

this purpose. 

Two different methods were employed to obtain k . p parameters from the empirical 

pseudopotential models. The first method exploits the fact that the valence bands 

are sufficiently parabolic near the zone centre to enable a simple calculation of the k . p 

parameters from the curvature of the bands. In the second method, the k . p parameters 

are obtained directly from the zone centre wavefunctions and energies. 

4.3.1.1 Effective Mass Method 

In this method, the k . p parameters are obtained from the effective masses calculated 

at the T-point in the empirical band structure. For the three uppermost valence bands 

and the lowest conduction band, the effective masses are calculated simply from the 

second derivative of the band energy with respect to wavevector. The values of the 7* 

are then obtained from the effective masses using equations 4.19 [102]: 

7i 

72 

73 

1 1 
+ mih 

1 
mih 

1 

1 

™>Kh 
1 

Ep 

3E9 

Ep 

+ 
mlh mhh m%h 

Ep 

SE~0 

(4.19) 

In these equations, m ^ , and mso are the effective masses (in units of the 

free electron mass) of the heavy-hole, light-hole, and spin split-off valence bands re-



CHAPTER 4. THE K . P METHOD AND ITS APPLICATIONS 91 

spectively. m^h is the heavy hole effective mass in the L direction. Unlike GaN and 

InN, A1N has an indirect band gap, but in the equations above the direct gap should 

be used. Note that the unmodified Luttinger parameters can be identified with the 

effective masses by comparing equations 4.17 and 4.19. 

4.3.1.2 Direct Method 

k . p parameters have also been calculated using a method that requires knowledge of 

the wavefunctions and energies at the centre of the Brillouin zone, k = 0. When spin-

orbit splitting is ignored, the top of the valence band is six-fold degenerate (including 

spin) and the zone centre valence band wavefunctions have T i 5 symmetry, commonly 

denoted by the labels X, Y and Z. As described previously, i t is possible to adequately 

describe the valence band states at nonzero k using an expansion in terms of X, Y and 

Z and employing Lowdin's perturbation theory [100] to account for the remote bands. 

Local pseudopotentials had to be used to generate the empirical band structure for 

this method. Unlike local pseudopotentials, nonlocal pseudopotentials are dependent 

on k , and perturbation theory using the zone centre wavefunctions and energies cannot 

account for this dependence. 

The contributions to the unmodified Luttinger parameters from states with sym

metries F i , and F i 2 (corresponding to singlets, triplets and doublets respectively) 

can be written as [104,105]: 

The unmodified Luttinger parameters (7 )̂ are obtained from a, TT and S using the 

1 J2\(X\px\u)\2/(e„-e) a 3mn 
V 

r i 5 1 
E K * I p » I 2 / ( ^ - £ ) 7T 

3m 0 

r i 2 1 y]\(X\px\u)\2/(eu-e) 
6m 0 V 

(4.20) 
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following relations [104]: 

7i 1 + 2a + 4-7T + 45 

72 a - 7r + 26 

73 a + 7r — 5 (4.21) 

Pseudowavefunctions and energies were used to evaluate the terms and sums in 

equations 4.20. In these equations, 100 bands were used in each summation. Figure 

4.1 show the convergence of a, IT and 5 with respect to the number of bands used in 

each summation. From these, it is clear that the sums are rapidly convergent, and 

although 100 bands are used the parameters are converged to within 1% of their final 

values after just 20 bands. For <j, the greatest contribution by far is from the first 

conduction band. Similarly, the principal contributions to n and 5 come from the first 

triplet and doublet respectively. 

4.3.2 Results 

The calculated values of the k . p parameters for zincblende materials are shown in Table 

4.2. From this table, it is clear that the parameters obtained from the two methods 

are very similar. In particular, the values of 71 and 72 are within 1% of each other 

for the two methods, and the only significant difference between the two sets is in the 

value of 73. This parameter is larger for the direct method in all three cases, and the 

agreement is only to within about 10%. Reasonable values are also obtained for Ev 

and the parameter s, which is required by k . p theory to be less than unity. 

The parameters from Table 4.2 were used in k . p calculations to obtain valence band 

structures close to the zone centre for A1N, GaN and InN. Figures 4.2, 4.3 and 4.4 show 

the k . p band structures of A1N, GaN and InN in the Y — L and V — X directions. It is 

clear from these figures that the bands are parabolic close to the zone centre. For all 
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Figure 4.1: Convergence of a, TT and 8 for zincblende structure GaN 
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A1N GaN InN 
Method 

0 ) ( " ) 0 ) ( » ) (i) (ii) 
it 1.842 -1.841 3.030 3.031 3.400 3.399 
ik 0.431 -0.431 0.897 0.895 1.157 1.155 
ik 0.755 0.772 1.282 1.285 1.468 1.480 
7i 0.631 0.630 0.780 0.781 0.710 0.709 
72 -0.175 -0.175 -0.228 -0.230 -0.188 - 0.190 
73 0.150 0.166 0.157 0.160 0.123 0.135 
s 0.67 0.67 0.92 0.92 0.88 0.88 
Ep 22.3 22.3 22.4 22.4 18.4 18.4 

Table 4.2: k . p parameters for zincblende structure A1N, GaN and InN calculated from 
(i) the effective mass method and (ii) the direct method. The superscript L refers to 
the unmodified Luttinger parameters. 

three of these materials, the agreement between the k . p band structure of both methods 

and that of the original empirical band structure is good. As expected, the agreement 

is less good away from the zone centre. In particular, there is no noticeable difference 

in the quality of fit that each methods produces for any of the three materials. Thus, 

although there is an appreciable difference in the Luttinger parameter 73 obtained by 

the two methods, this difference has a negligible effect on the resulting band structure. 

The parameter sets obtained using the direct method can also be used to calculate 

values for the effective masses through use of equation 4.19. The effective masses calcu

lated in this way are contrasted in Table 4.3 with those calculated from the curvature 

of the empirical band structure. For all three materials in the X direction, the effective 

masses of the light hole and heavy hole bands are in good agreement for both methods. 

However, due to the large value obtained for 73, the heavy hole mass in the L direction 

is slightly overestimated by the direct method. 

In Table 4.3, the results of this work are also compared with the effective masses 

obtained by other workers. Additionally, the empirical pseudopotential parameters 

of Fan et al. [106] for A1N and GaN have been taken and used to calculate effective 

masses using both of the methods presented in this work. As in this work, the empirical 

pseudopotential parameters of Fan et al. were adjusted to fit the band energies obtained 
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Figure 4.2: Band structure close to the zone centre (r-point) for zincblende structure 
AIN. The pluses represent the original band structure and the solid lines represent the 
k . p band structure. Negative k indicates the T — L direction and positive k indicates 
the T — X direction, (i) and (ii) show the empirical pseudopotential band structure and 
the k . p band structures obtained by the effective mass method and the direct method 
respectively. 
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Figure 4.3: Band structure close to the zone centre for zincblende structure GaN. See 
Figure 4.2 for an explanation of the notation. 
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Figure 4.4: Band structure close to the zone centre for zincblende structure InN. 
Figure 4.2 for an explanation of the notation. 
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This work Fan [106] Meney [107] 
(i) (ii) (i) (ii) 

AIN 
mso 0.54 0.53 0.41 
mih 0.37 0.37 0.35 0.35 0.28 
mhh 1.02 1.02 1.04 1.03 0.80* 
m k 3.01 3.36 2.80 2.82 1.00* 
mc 0.23 0.21 0.21 
GaN 
mso 0.33 0.32 0.33 
mih 0.21 0.21 0.21 0.21 0.21 
mhh 0.81 0.81 0.76 0.75 0.80* 
<h 2.14 2.17 1.92 1.93 1.00* 
mc 0.13 0.13 0.15 
InN 
mso 0.30 0.31 
mlh 0.18 0.18 0.19 
mhh 0.92 0.92 0.80* 
<h 2.15 2.28 1.00* 
mc 0.11 0.14 

Table 4.3: Effective masses (in units of the free electron mass) for zincblende structure 
materials calculated (i) from the empirical band structure and (ii) from the directly 
obtained k . p parameters. The effective masses mso, mih and m,hh are taken in the 
X direction. The effective mass m\h is taken in the L direction. Additionally, we 
have taken the empirical band structure for AIN and GaN of Fan et al. and calculated 
effective masses from it using methods (i) and (ii). Values obtained by Meney et 
al. [107] are also shown (the values indicated by * are assumed rather than calculated). 
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f rom the quasiparticle calculations of Rubio et al. [76], and so there should be reasonable 

agreement i n the effective masses obtained. As in the case of the results calculated using 

our own empirical band structure, there is excellent agreement between the effective 

masses obtained using both methods. In particular, the heavy hole mass in the L 

direction is in much better agreement. Also, there is good agreement between the 

effective masses obtained using Fan's bandstructure and those calculated using our 

own. In comparing the results of this work w i t h those of Meney et al. [107], there is 

quite good agreement for GaN and I n N , but less good agreement for A1N. As a whole, 

however, these results indicate that the direct method can generally be relied upon to 

produce accurate values for the effective masses. 

4.4 Wurtzite Structure Materials 

A six band k . p model has been used to describe the top of the valence band in a 

nitride material w i t h the wurtzite structure. Following Chuang and Chang [108], the 

basis functions have been taken as: 

«3> 

1 

V2 
1 

(X V2 

\(X + iY) t ) 

iY) t ) 

1 
M4> (X 

V2 
us) (X V2 
k ) zi) 

\(X + iY) I ) 

iY) I ) 

(4.22) 
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where \X), \Y) and \Z) indicate the symmetry of the valence band zone centre states, 

and the arrows represent the spin orientation. The z-direction corresponds to the c-axis 

of the wurtzite crystal. 

The k . p Hamiltonian matr ix in the basis defined by equation 4.4, where row/column 

% is associated w i t h basis state | u j ) , is 

F -K* 0 0 0 

-K G H- 0 0 A 

-H+ HI A 0 A 0 

0 0 0 F -K 

0 0 A -K* G 

0 A 0 H*_ -H+ A 

where 

F = A1+A2 + X + 9 

G = A i - A 2 + A + 0 

A = 
2 m 0 

h2 

[Alk2

z-+A2{kl + kl)] 

[A.kl + A^kl + kl)] 9 
2m o 

A§{kx "I" iky) K 
•0 

2mo 
h2 

AG(kx + iky)kz + iA7(kx + iky) 

H- = A6(kx + iky)k2 - iA7(kx + iky) 

A = x / 2 A 3 (4.23) 
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In the above expressions, A i = A c r , the crystal field spl i t t ing energy, and A 2 = 

A 3 = A s o / 3 , where A s o is the spin orbi t spl i t t ing energy. The terms involving Ai (i=l-

6) arise f rom the contribution of remote bands which are calculated using Lowdin's 

perturbation theory [100]. These parameters are analogous to the Lutt inger parameters 

used in the zincblende case, and thus are commonly referred to as the Luttinger-like 

parameters. The Hamiltonian matr ix above differs f rom that in reference [108] by the 

inclusion of terms linear in k which arise f rom the k . p term in the Hamiltonian and 

involve the coefficient Ay. 

The k . p parameters can be calculated by using the pseudopotential wavefunctions 

and energies at the zone centre to evaluate the formulae for them. These are [108]: 

Ai = 
2m 0 

L2, A2 = 
2m 0 M 3 ) A3 = 

2ra 0 ( M 2 - L 2 ) , 

_ 2m 0 N2 

V V 2 

L i + Mi 2m o A 
h2 

2m 0 iVi 
(4.24) 

where 
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U = 

L2 = 

Ml = 

M2 = 

M 3 

h2 

2 m 0 

h2 

2 m 0 

h2 

2 m 0 

h2 

2mo 

h2 

2mo 

» + E 

7 

7 

7 

7 

m 0 ( £ 0 - # 7 ) 

m 0 ( £ 0 - Ky) 

2 P x 7 / 
7 x 

m 0 ( £ 0 - E~T) 

m0 (E0 -

m0 {E0 - Ey) 

& P%p\Y + PXJP*Y 

mi ^ ra0 ( £ 0 - # 7 ) 1) 

m. 0 

P x ^ z + P x 7 P 7 z 

m 0 (£? 0 - £ 7 ) 
(4.25) 

and j & 7 = W | 7 ) , P y = (n/«) (d/dy). 

The terms involving A 7 arise f rom matr ix elements of the type (X\kxpx\Z) which 

result directly f rom the k . p term in the Hamiltonian rather than f rom remote band 

effects^ Such terms vanish by symmetry in the zincblende structure but not in the 

wurtzite structure. I n much previous work the parameter A-j has been assumed to be 

zero, but recently i t has been shown that its inclusion can give an improved description 

of the valence bands [109] and thus i t is used here. 

There are several matr ix elements which involve A7 in equation 4.4. To evaluate 

A7 i t is therefore necessary to consider one of these, such as H+: 

H+ = 
h2 

2mi 
-A6(kx + iky)kz + iA7(kx + iky) (4.26) 
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The term H+ above is derived f rom the u2 and u 3 states, and is defined as 

{u2\H\uz) = -j=({X - iY) t \H\Z t ) 

= -^(X\H\Z) + ^=(Y\H\Z) (4.27) 

where H is the Hamiltonian in equation 4.7. The term corresponding to A7 is derived 

f rom the ( /z /m 0 )k .p term in H. For this, only the terms ( X l / r ^ Z ) and are 

nonzero. The term in A7 is thus 

m 0 

^=[kx(X\p*\Z) + zky(Y\py\Z)} (4.28) 

Addit ionally, (X\px\Z) = (Y\py\Z) by symmetry, such that the term corresponding to 

A7 can be simplified to 

H (X\px\Z)[kx + iky] (4.29) 
m 0 \ / 2 

Therefore, the term A7 in equation 4.26 can be wri t ten as 

A7 = -^=(X\p*\Z) (4.30) 
mov 2 

Other terms linear in k can also appear i n the Hamil tonian mat r ix due to a linear k 

term in the spin-orbit interaction or through remote band effects of the k-independent 

part of the spin-orbit interaction in association wi th the k . p term. These terms either 

vanish or are very small in zincblende structure materials, and are expected to be so 

here as well, particularly in view of the very small spin-orbit interaction in the nitrides. 
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This view appears to be confirmed by the results presented later in this chapter. 

4.4.1 Calculation of the k.p parameters 

The wurtzite empirical band structures of A1N, GaN and I n N of Chapter 3 have been 

used as the basis for a series of k . p calculations, and again two methods have been 

employed to to obtain the k . p parameters f rom them. I t is not possible to calculate the 

parameters f rom the effective masses as was done in the zincblende case because the 

effective masses themselves are diff icul t to define in the wurtzi te structure, since many 

of the bands are extremely non-parabolic. This causes problems w i t h the calculation 

of convergent values for the second derivative of the band energy w i t h respect to wave-

vector at points progressively closer to the F point. For this reason, a f i t t i n g method 

was adopted instead. As for the zincblende structure, a direct method was used to 

obtain another set of k . p parameters. 

4.4.1.1 F i t t i n g M e t h o d 

In this method, the values of the A{ were obtained through a simple Monte-Carlo f i t t i ng 

procedure to the band structure. The empirical pseudopotential method was used to 

calculate the band structure at several Appoints over the range shown in Figure 4.7. 

The k . p method was then used to calculate the band structure at k-points in these two 

directions, using a set of Ai values. These A( values were then varied using a Monte-

Carlo technique, and the process systematically repeated un t i l the k . p eigenvalues 

were in good agreement w i th those of the empirical pseudopotential calculations. This 

Monte-Carlo approach involved minimising the value F, where 

F = \Ekp(i,j) ~ Eepm(i,j)\2 (4.31) 
i 3 

Here, Ekp(i,j) and EepTn(i,j) refer to the empirical and k . p eigenvalues of band j at k-
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Figure 4.5: The Monte 
Carlo algorithm used to 
fit k . p parameters to em-
pircial band structure. 
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point i respectively. The parameter Wij is a weight attached to each k point and band. 

For this work, the empirical and k . p energies used in the fitting were calculated in three 

directions f rom the zone centre; one in the /^-direction, one in an in-plane direction, 

and one in a direction involving k x , ky and kz. These directions were necessary to obtain 

an accurate value for the parameter A 6 , which only contributes to the Hamiltonian in 

4.4 when there are nonzero values for both (kx + iky) a n d ' I n this approach, the 

band structure at the zone centre was deemed to be important , and thus bands at k 

points close to the zone centre were typically weighted more than those further away. 

Also, the /c-points in the in-plane directions were weighted more than those in the kz 

direction, since the band structures in these directions generally have more structure, 

due in part to the inclusion of A7. A schematic representation of the f i t t i n g procedure 

is shown in Figure 4.5. 
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Figure 4.6: Convergence of the k . p parameters for wurtzite structure GaN 
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4.4.1.2 D irec t M e t h o d 

In the second method, the k . p parameters were evaluated directly f rom equations 

4.24, 4.25 and 4.30. To obtain these parameters, 250 bands were included in each 

summation in equation 4.25, but in practice i t is possible to use much fewer bands 

w i t h no significant loss of accuracy. This can be seen in Figure 4.6, which shows the 

convergence of the k . p parameters w i t h respect to the number of bands used in the 

summations in equation 4.25. I t is important to note that this summation over bands 

is actually done for the L, M and N parameters of Equation 4.25, and the actual 

Luttinger-like parameters are then derived f rom these. From Figure 4.6, i t is clear 

that the sums for al l of the parameters are rapidly convergent, w i t h all of the k . p 

parameters converged to w i th in 1% of their final value after a summation over « 60 

bands. Also note that in the summation over bands, entire doublets or triplets should 

be included. In a t r iplet therefore, all three bands should be included rather than just 

one or two. However, since the sums are converged using 250 bands, in practice this 

makes no observable difference. 

In comparison w i t h the zincblende case, these parameters converge much more 

slowly. Whi le for the zincblende structure materials only the first few bands were 

important in the summation, there are s t i l l significant contributions f r o m more ener

getically remote bands in the wurtzite case. However, the expansion does s t i l l converge, 

and thus the parameters obtained using this method are unique for a given empirical 

band structure. 

4.4.2 Results 

The calculated values of Ai ( i = l - 7 ) for A1N, GaN and I n N , together w i t h those f rom 

other calculations, are presented in Table 4.4. The parameters f rom the two different 

methods were used in k . p calculations of the band structures of GaN, A1N and InN in 

the region of interest close to the T-point. The resulting band structures are shown in 
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Figures 4.7, 4.8 and 4.9. Note that A1N has a negative crystal field spli t t ing, and thus 

the ordering of the bands is different f rom that of GaN and I n N . For all three materials, 

both the Monte-Carlo fitting approach and the direct method produce band structure 

in very good agreement w i th that of the original empirical pseudopotential calculation. 

In particular, the inclusion of A7 accurately models the l i f t i n g of the degeneracy near 

the anticrossing feature seen in GaN and InN . Also, note that these bands are extremely 

non-parabolic, and thus obtaining effective masses (and subsequently k . p parameters) 

f rom them via parabolic line fits is not preferable to the methods presented here. 

From Table 4.4, i t is clear that the parameters obtained by the Monte-Carlo fitting 

and the direct approach are somewhat different f rom each other for each of the mate

rials. For A1N, the difference in the Ai values is typically about 10%. For GaN, the 

agreement is better, wi th differences of around 6%, and for I n N the values generally 

differ by about 13%. However, despite these differences, both methods give a very sim

ilar quality of fit to the original band structure, as can be concluded f rom the results 

shown in Figures 4.7, 4.8 and 4.9. This demonstrates the potential inconsistency of 

the fitting method, in that two different sets of parameters appear to result in equally 

good agreement w i t h the in i t i a l band structure. Indeed, for the fitting procedure a 

range of equally valid parameter sets exist, and because of this i t can not be relied 

upon to give consistent k . p parameters when independent fits are made for a series of 

alloy compositions. In contrast to the fitting approach, the method of obtaining k . p 

parameters directly f rom the zone centre wavefunctions and energies has a firm physical 

basis and presents an unambiguous route to calculating these quantities f rom a given 

original band structure. Consequently, this method can be applied to a series of alloy 

compositions w i t h the expectation that consistent k . p parameters w i l l be obtained. 

In addition to the results calculated in this work, Table 4.4 also shows the k . p 

parameters that have been reported in the literature by other workers. The most in

formation exists for GaN. For this, the results of this work are most similar to those of 

Yeo et al. [77], who also employ an empirical pseudopotential method. Additionally, a 
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Present Work Ref. [77] Ref. [110] Ref. [53] Ref. [ I l l ] 
F i t Direct F i t Direct* F i t Quasicubic 

A 1 N 
Ai -4.367 -4.711 -3.86 -3.74 -4.06 -3.82 
A2 -0.518 -0.476 -0.25 -0.23 -0.26 -0.22 
A3 

3.854 4.176 3.58 3.51 3.78 3.54 
A, -1.549 -1.816 -1.32 -1.76 -1.86 -1.16 
A5 -1.680 -1.879 -1.47 -1.52 -2.02 -1.33 
A6 -2.103 -2.355 -1.64 -1.83 - -1.25 
A7 0.204 0.096 - 0.00 - 0.00 
A x (meV) -93.2 -93.2 -215.0 - -58.5 -219.0 
A 2 (meV) 3.7 3.7 6.8 6.3 6.8 6.6 
A 3 (meV) 3.7 3.7 5.7 6.3 6.8 6.7 

G a N 
Ai -7.706 -7.979 -7.24 -7.17 -6.40 -6.36 -6.27 -6.40 
A2 

-0.597 -0.581 -0.51 -0.44 -0.50 -0.51 -0.96 -0.80 
A3 7.030 7.291 6.73 6.64 5.90 5.85 5.70 5.93 
A, -3.076 -3.289 -3.36 -3.62 -2.55 -2.92 -2.84 -1.96 
A5 -3.045 -3.243 -3.35 -3.57 -2.56 -2.60 -3.18 -2.32 
A6 

-4.000 -4.281 -4.72 -4.04 -3.06 -3.21 -4.96 -3.02 
A7 0.194 0.179 - - 0.20 0.00 < 0.27 0.35 
A i (meV) 22.3 22.3 21.0 21.0 36.0 - 72.0 24.0 
A 2 (meV) 3.7 3.7 3.7 3.7 5.0 6.3 5.4 5.4 
A 3 (meV) 3.7 3.7 3.7 3.7 5.9 6.3 6.8 6.8 

I n N 
Ai -9.470 -10.841 -9.28 
A2 -0.641 -0.651 -0.60 
A3- 8.7-71 10.100 8:68 
A4 -4.332 -4.864 -4.34 
A, -4.264 -4.825 -4.32 
A6 

-5.546 -6.556 -6.08 
A7 0.278 0.283 0.00 
A x (meV) 37.3 37.3 17.0 
A 2 (meV) 3.7 3.7 3.7 
A 3 (meV) 3.7 3.7 3.7 

Table 4.4: k . p parameters for wurtzite structure A1N, GaN and I n N . The Ai are in 
units of h2/2m0, except A7 where the units are eVA. * These are values calculated in 
this work using the direct method f rom the empirical band structure parameters of 
Ref. [77]. 
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Figure 4.7: Band structure close to the zone centre (T-point) for wurtzite structure 
A1N. The pluses represent the original band structure and the solid lines represent 
the k . p band structure. Negative k indicates a c-axis (T — A) direction and positive k 
indicates an in-plane (T — M) direction, (i) and (i i) show the empirical pseudopotential 
band structure and the k . p band structures obtained via the f i t t i n g method and the 
direct method respectively. 
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Figure 4.8: Band structure close to the zone centre for wurtzi te structure GaN. See 
Figure 4.7 for an explanation of the notation. 
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Figure 4.9: Band structure close to the zone centre for wurtzi te structure I nN . See 
Figure 4.7 for an explanation of the notation. 
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new set of A{ (i=l-6) have been calculated directly using Yeo's empirical band struc

ture. There is good agreement between this new set and that originally obtained by 

Yeo et al. , who calculated their values using a 3-dimensional fitting procedure wi th in 

the Br i l louin zone. The other values quoted in Table 4.4 are based on first principles 

calculations, and while qualitatively similar to the results of this work, the individual 

Ai parameters can differ significantly. This is to be expected, given that the empirical 

band structure used in this work is different f rom the first principles band structures 

used in the fi t t ings for those results. 

The results of this work in Table 4.4 can also be considered w i t h respect to the 

cubic approximation to the wurtzite structure [53,112]. This approximation is based 

on the similari ty between the zincblende and wurtzite structures, i n that they are 

both tetrahedrally bonded but w i t h different stacking arrangements. For the cubic 

approximation, the following relations can be established between the Luttinger-like 

parameters: 

Ax = A2 + 2A4 

A3 = -2 A, 

A:i + 4Ar, = sf2A% 

(4.32) 

Al though there is no requirement for these relationships to be satisfied in our calcu

lations, we note that substitution of the values of Table 4.4 in equation 4.32 show that 

the cubic approximation is satisfied approximately. For A1N, comparing the actual 

value on the left hand side of equation 4.32 w i t h the value determined by the right 

hand side, the relations are satisfied to wi th in 20% for the fitting method and to wi th in 

13% for the direct method. For GaN, the values are wi th in 13% for the fitting method 

and 10% for the direct method. For I n N , the approximation holds somewhat better, 
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wi th values for both methods wi th in about 5% of those predicted. 

The Luttinger-like parameters presented in Table 4.4 can also be used to calculate 

the valence band effective masses in the kz direction (m") and in the in-plane direction 

( m x ) using the following equations [53]: 

hh 

mih 

17lcr 
1 

-(A1 + A3) 

-(A2 + A4 - A 5 ) 

-(A2 + A4 + A 5 ) - 2 r ^ -

mcr | A c r 
^ 2 + 2 ^ 7 (4.33) 

Here, mhh, mih a n d the effective masses of the heavy-hole, light-hole and crystal 

field split-off bands respectively. 

The resulting valence band effective masses for the wurtzi te materials calculated 

using both the fitted and directly obtained k . p parameters are shown in Table 4.5. For 

both methods, the effective masses are quite similar, as is to be expected given that 

they are produced f rom the same empirical band structure. However, there are some 

differences in the masses, most notably in the in-plane direction. In this direction, the 

Luttinger-like parameter A7 plays an important role, and thus large discrepancies in this 

parameter between the two methods, such as in A1N, can cause quite different effective 

masses. This again demonstrates the potential inconsistency of the fitting method, in 

that the various parameter sets obtained could produce quite different effective masses. 

For the direct method, only one set of effective masses is obtained. Moreover, i t can 

be argued that the masses are more accurate than those calculated f rom the fitted 
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k.p parameters. This is because in the zincblende case the direct method produced 

effective masses in very good agreement w i t h those obtained f r o m the curvature of the 

empirical band structure near the zone centre, and by extension i t is reasonable to 

believe that this is also true for the wurtzite case. 

Table 4.5 also compares our calculated effective masses w i t h others in the literature. 

These other calculations obtain their parameters by f i t t i n g to first principles or empir

ical band structure, and are qualitatively similar to our own results. I n particular, the 

effective masses of this work are in the best agreement w i t h those of Yeo et al. [77]. 

For A1N, however, the effective masses of this work are significantly lower than those 

obtained by other workers. From chapter 3, the antisymmetric V(q) curve for A1N was 

quite large, and this is probably the origin of any discrepancies. 

4.5 Wurtzite Alloys 

Alloys of the nitride materials are very important for modern devices. For example, 

InGaN quantum wells are very important for light emi t t ing devices. This is because 

incorporation of small amounts of In in GaN considerably increases the luminescence 

efficiency [15,113-115]. I n addition, alloys also afford a degree of control over various 

properties that would be unavailable w i t h bulk materials. 

4.5.1 The Virtual Crystal Approximation 

In this work, the empirical pseudopotential method has been used to study the band 

structure of wurtzite alloys involving A1N, GaN and I n N . For this, a simple vir tual 

vrystal approximation (VCA) model was adopted. In the V C A model, the alloy is 

described as a uni form crystal comprised of v i r tua l atoms which are a concentration-

weighted average of the real atoms. Thus for the alloy A x B i _ x N , v i r tua l atoms replace 

those of A and B, and the V C A impl ic i t ly assumes that the A - N and B - N bond lengths 

are the same. However, this is not the case for a real alloy, where the A - N and B-
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Present Work Ref. [77] Ref. [110] Ref. [53] Ref. [ I l l ] 
F i t Direct F i t Direct* F i t Quasicubic 

A1N 

0.23 0.21 0.26 0.27 0.25 0.26 

ml 1.95 1.87 3.53 4.41 3.53 3.57 
mlh 1.95 1.87 3.53 4.41 3.53 3.57 
ml 0.24 0.24 0.35 0.33 0.33 0.32 
m c r 1.33 1.89 4.05 4.41 3.81 4.54 
m l 0.28 0.24 0.33 0.29 0.24 0.37 
m L 2.58 2.42 11.14 2.18 10.42 20.00 
m^ 0.25 0.25 0.35 0.33 0.25 0.33 
GaN 

TTlcr 0.13 0.13 0.14 0.14 0.16 0.16 0.15 0.16 

ml 1.48 1.47 1.96 1.90 2.00 1.96 1.10 2.12 
m\h 1.48 1.47 1.96 1.90 2.00 1.96 1.10 2.12 

ml 0.14 0.14 0.19 0.19 0.23 0.19 0.20 0.18 
m i 0.67 0.74 1.96 1.48 1.49 1.96 1.10 0.29 
ml 0.17 0.16 0.14 0.14 0.18 0.16 0.15 0.42 
mih 

1.59 1.59 1.87 2.03 2.04 1.20 1.65 2.27 
m^ 0.15 0.15 0.17 0.17 0.19 0.19 0.18 0.20 

I n N 

TTlcr 0.11 0.09 0.10 
m l 1.43 1.35 1.67 

m h h 1.43 1.35 1.67 - - -

ml 0.10 0.10 0.11 
mi 0.58 0.56 1.67 
m l 0.12 0.11 0.11 
m i h 

1.41 1.45 1.61 
mi 0.10 0.10 0.10 

Table 4.5: Effective masses (in units of the free electron mass) for wurtzite structure 
A1N, GaN and InN . Also shown are the results of other calculations which obtain the 
parameters by f i t t i n g to first-principles or empirical band structure. *These are our 
directly calculated values using the empirical band structure parameters of Ref. [77] 
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N bond lengths tend to preserve their respective binary crystal values and the local 

atomic environments are not identical. Despite the rather simplistic model of the 

crystal structure, the V C A has been successfully applied to other I I I - V systems, and 

is used in this work wi th a recognition of its l imitat ions. In particular, i t is interesting 

to compare the V C A results w i th those of more sophisticated calculations. We might 

expect rather better agreement for GaAIN alloys than for those containing In , since 

the A1N and GaN bond lengths are rather similar but much different for InN . 

For the alloy A ^ B i ^ N , the lattice constants of the v i r tua l crystal are given by 

Vegard's law which predicts a simple linear interpolation between the lattice constants 

A form must also be adopted for the variation of the the internal parameter u, which 

has a strong affect on the crystal field spli t t ing. I n the absence of any information on 

this quantity for the ternary nitride alloys, this is also assumed to vary according to 

Vegard's Law: _ . -

of A N and B N : 

aABN = XCbAN + (1 - x)aBN 

CABN = x c A N + (1 - X)CBN (4.34) 

u A B N = x u A N + (1 - x ) u B N (4.35) 

Once the structural parameters of the alloy have been obtained using equations 

4.34 and 4.35 above, the parameters which describe the pseudopotential can also be 

derived. 
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4.5.2 Calculation of Form Factors for Alloys 

I t was shown in chapter 3 that the form factor at a particular G-value is given by: 

As discussed further in chapter 5, the concept of transferable atomic pseudopoten-

tials allows the pseudopotential obtained for a bulk material also to be used for its 

associated alloys. As for the lattice constants, in our approximate model the form fac

tors for alloys were obtained using Vegard's Law. The symmetric and antisymmetric 

form factors for A i . ^ B ^ N at a given G are taken to be: 

Here, the individual V ^ G ) , V b ( G ) are obtained using equation 4 . 3 6 at the G-values 

relevant to the alloy and using the new alloy volume. Figure 4 . 1 0 shows the symmetric 

and antisymmetric form factors for the wurtzite alloy Gao.5Ino.5N, together w i th the 

Vs(q) and Va(q) curves for the two binary compounds. 

4.5.3 Results 

A band structure property of particular interest is the variation of the band gap w i t h 

alloy composition. This has been studied for the wurtzi te structure materials using two 

different calculations for unstrained and strained alloys respectively. For the unstrained 

case, both the a and c lattice parameters for the alloy are obtained using Vegard's Law. 

This corresponds to the ideal situation where the alloy is grown on a lattice-matched 

substrate. For the strained case, the alloy is under biaxial strain such that the in-

plane lattice parameter a is held at the value of one of the binary compounds for all 

1 
iG . r V G V(r)e dr 

n 
( 4 . 3 6 ) 

W G ) = V ^ ( G ) ( 1 - x ) + VB(G)x ( 4 . 3 7 ) 

http://Gao.5Ino.5N
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Figure 4.10: The symmetric and antisymmetric form factors for wurtzite structure 
Gao.5Ino.5N alloy calculated f rom the V(q) curves of bulk GaN and I n N . The form 
factors for GaN and I n N are represented by squares and circles respectively. The alloy 
fo rm factors are indicated by crosses. 

alloy compositions. The practical relevance of this is the common situation where the 

alloy GalnN, say, is grown on GaN. In the strained case, the value of c for the other 

binary compound at this value of a is obtained f rom first principles calculations using 

C A S T E R 

The structure of the top of the valence band has also been studied for several alloy 

compositions of GaAIN, GalnN and A l I n N . In addition, k.p parameters have been 

obtained for these materials using the direct method described in Chapter 3. 

4.5.3.1 G a A I N 

The variation of the band gap w i t h alloy composition for G a ^ A ^ N is shown in 

Figure 4.11. From this, i t can be seen that in this work the band gap varies linearly 

w i t h composition for both the strained and unstrained cases. There is l i t t l e difference 

between the variation of the band gap for the strained and unstrained cases. For both 

of these, the results of this work are in good agreement w i t h the experimental results 

http://Gao.5Ino.5N


CHAPTER 4. THE K . P METHOD AND ITS APPLICATIONS 

G a ^ N WZ 

120 

6.0 

„ 5.0 
> 
3. 
LU 

4.0 

3.0 
0.0 0.2 0.4 0.6 0.8 1.0 

x 

Figure 4.11: The band-gap Eg as a funct ion of alloy composition a; in the wurtzite alloy 
Gai_a;ALj;N. Shown is a comparison to experimental data (A) compiled in ref. [116] 

of Bergmann et al. [116]. Note that there is a slight offset in the theoretical and 

experimental values of Eg at x = 0. This is due to the choice of 3.50 eV for the band 

gap of GaN in the original f i t , and discounting this the actual gradients are comparable. 

Band structure diagrams close to the zone centre for GaAIN for the compositions 

x = 0.05, 0.10, 0.15 and 0.20 are shown in Figure 4.12. This figure also shows k.p band 

structures calculated using the direct method, and as for the bulk materials there is 

excellent agreement between the two band structures. The k.p parameters calculated 

using the direct method are shown in Table 4.6. In this table, the Luttinger-like 

parameters are seen to vary consistently w i t h composition. 

From Figure 4.12, i t can be seen that w i t h increasing A1N composition the crystal 

field spl i t t ing decreases and becomes negative, resulting in a flip-over in the normal 

ordering of the bands at approximately x = 0.1. The reasons for this behaviour are 

investigated in chapter 5. Experimentally, Hangleiter et al. [117] observe T E mode 

gain in GaAIN quantum wells, consistent w i t h the heavy hole being band above the 

Unstrained 
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XX 

* X 
X ~ x X 

x > T h i s work 
Exper iment (A) 
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Figure 4.12: Band structure close to the zone centre (r-point) for the wurtzite al
loy G a i - z A l ^ N . The pluses represent the empirical band structure and the solid lines 
represent the k.p band structure calculated using directly obtained k.p parameters. 
Negative k indicates a c-axis (r — A) direction and positive k indicates an in-plane 
(r - M) direction. 
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Ga i - s A l x N 
Composition A, A2 A, A4 A5 A6 ^ 6 

0.05 -7.68 -0.57 7.00 -3.15 -3.12 -4.10 0.17 
0.10 -7.41 -0.57 6.74 -3.03 -3.00 -3.93 0.16 
0.15 -7.17 -0.56 6.50 -2.92 -2.89 -3.78 0.16 
0.20 -6.94 -0.55 6.29 -2.83 -2.80 -3.65 0.15 

Table 4.6: k.p parameters for the wurtzite alloy G a i _ x A l x N . The A{ are in units of 
h2/2m0, except Aj where the units are eVA. 

l ight hole band. Furthermore, they assign this gain to localised exciton states. Both 

these topics are discussed in more detail for Ga lnN. 

4.5.3.2 G a l n N 

The variation of the band gap w i t h alloy composition for G a i _ x I n x N is shown in Figure 

4.13. From this, i t can be seen that the band gap dependence on alloy composition 

exhibits significant bowing, and is very similar to that of experiment [116,118]. Note 

that there is again a slight offset in the value of Eg at x — 0 due to the original GaN f i t , 

but that the rates of variation of Eg are comparable. The difference in the variation 

of the band gap between the strained and unstrained cases is much larger than for 

GaAIN. However, the lattice mismatch of GaN and I n N is large compared to GaN and 

A1N, and thus this should be expected. 

The band gap bowing of GalnN is accounted for in [119] by the large lattice mis

match between GaN and I n N . However, I n x G a i _ x A s also has a large lattice mismatch 

and has been shown to exhibit bowing which is much smaller and relatively composition 

independent compared to I n x G a i _ x N [120]. More particularly, recent theoretical work 

by Bellaiche et al [121] attributes the large band gap bowing instead to In-localized 

hole states in the upper valence band. The v i r tua l crystal approximation adopted in 

this work cannot include this effect, but nevertheless appears to give a good description 

of the variation of the alloy band gap. 

Band structure diagrams close to the zone centre for Ga lnN for the compositions 
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Figure 4.13: The band-gap Eg as a funct ion of alloy composition x in the wurtzite alloy 
Ga i -z In^N. Shown is a comparison to a linear fit to experimental data (A) in [119], 
experimental data points (B) compiled in ref. [116] together w i t h PR data (C) and PL 
data (D) f rom ref. [118]. 

x = 0.05, 0.10, 0.15 and 0.20 are shown in Figure 4.14. This figure also shows k.p band 

structures calculated using the direct method, and as for the bulk materials there is 

excellent agreement between the two band structures. The k.p parameters calculated 

using the direct method are shown in Table 4.7. Again, the k.p parameters vary 

smoothly w i t h composition, and this feature of the direct method is discussed in more 

detail below. 

From Figure 4.14, i t can be seen that w i t h increasing I n composition the crystal 

field spl i t t ing decreases rapidly and becomes negative, resulting in a flip-over in the 

normal ordering of the bands. To t ry to understand this phenomenon, the behaviour 

of both GaN and I n N under strain is investigated in chapter 5. The flip-over also 

deserves further comment w i t h reference to information f rom experiment. Laser diodes 

based on GalnN quantum wells (wi th In composition typically up to 20%) exhibit T E 

mode lasing, which is usually associated wi th the heavy hole band. In turn , T M mode 
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Figure 4.14: Band structure close to the zone centre (T-point) for the wurtzite al
loy Ga i - s In^N. The pluses represent the empirical band structure and the solid lines 
represent the k.p band structure calculated using directly obtained k.p parameters. 
Negative k indicates a c-axis (r — A) direction and positive k indicates an in-plane 
(r - M) direction. 
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G N 
Composition Ai A2 ^ 3 A, A5 A, ^ 6 

0.05 -8.36 -0.59 7.66 -3.46 -3.41 -4.54 0.21 
0.10 -8.80 -0.60 8.09 -3.67 -3.61 -4.84 0.24 
0.15 -9.25 -0.61 8.53 -3.87 -3.81 -5.15 0.27 
0.20 -9.69 -0.62 8.96 -4.08 -4.02 -5.45 0.29 

Table 4.7: k.p parameters for the wurtzite alloy G a ^ I n ^ N . The Ai are in units of 
h2/2mo, except A-? where the units are eVA. 

lasing is associated wi th the light hole band. Experimentally however, T E mode gain is 

reported to be much greater than the T M mode gain; Frankowsky et al. [122] measured 

the optical gain spectra for Ga 0 .9ln 0 . iN and found a strong polarization dependence, 

wi th the T E mode gain greater than the T M mode gain. Since the heavy hole band 

couples almost exclusively to T E polarized light (wi th the electric field vector in the 

plane of the layer), this would imply that the heavy hole band is above the light hole 

band, in conflict w i t h the results of this work. 

Reasons for this disagreement probably lie in the l imitat ions of the model used for 

the alloy in this work. In particular, i t is most likely due to the failure of the vir tual 

crystal approximation to describe the local atomic environment. Also, Chichibu et al. 

[15] showed experimentally that the concentration of In in Ga lnN alloys is not uniformly 

distributed. They measured a weak temperature dependence of the emission spectra 

in Ga lnN compared to that of GaN, and at t r ibuted the emission f r o m GalnN samples 

to localised excitons. These localised states were explained in terms of In-rich regions 

due to fluctuations in the alloy composition, and the v i r tua l crystal approximation or 

any bulk band structure calculation obviously cannot model this. Also, because there 

is a large degree of strain in the system, there is probably some error in using Vegard's 

Law to obtain the alloy lattice parameters. 

I t was stated earlier in this chapter that one of the advantages of using the direct 

method to calculate k.p parameters is that i t can be expected to produce consistent 

sets of parameters for a series of alloy compositions. To investigate this, directly 
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obtained and f i t ted k.p parameters were calculated for the whole composition range 

of Ga i -aJn jN. Figure 4.15 shows the variation of both the directly obtained and fitted 

Luttinger-like parameters w i t h composition in GalnN. From this, i t can be seen that 

the directly obtained k.p parameters are smoothly varying, and show strong bowing. 

The fitted k.p parameters also exhibit this behaviour, w i t h the possible exception of 

A2 and A4. I t should be noted, however, that similar weightings were used for the 

fitted k.p parameters. From identical empirical band structure, other groups may 

obtain significantly different k.p parameters because of different f i t t i n g procedures or 

different weightings. W i t h the direct method, different groups would obtain identical 

k.p parameters. 

4.5.3.3 A l I n N 

The variation of the band gap w i t h composition for A l ^ ^ I n ^ N is shown in Figure 4.16. 

As for GalnN, the results of this work indicate that there is significant bowing of the 

band gap w i t h composition. As for GalnN, the variation of the band gap is different 

for the strained and unstrained cases, especially at large x . This should be expected 

given the large lattice mismatch between A1N and I n N . 

The theoretical prediction of Wright and Nelson [123], which predicts less bowing 

than found in this work, is also shown in Figure 4.16. However, the theoretical result of 

reference [123] was obtained by extension of their zincblende calculations to the wurtzite 

structure, which was done on the basis that the band gaps of the two structures were 

only slightly different. Experimental results are also shown in Figure 4.16. The results 

of this work are in good agreement w i t h those of K i m et al. [124] and Guo et al. [125]. 

However, the agreement w i t h the early work of Kubota et al. [126], who measure a 

very large band gap bowing, is less good. 

Band structure diagrams close to the zone centre for A l I n N for the compositions 

x = 0.05, 0.10, 0.15 and 0.20 are shown in Figure 4.17. This figure also shows k.p band 

structures calculated using the direct method, and i t can be seen that there is excellent 
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Figure 4.16: The band-gap Eg as a funct ion of alloy composition x in the wurtzite 
alloy A l i ^ I n ^ N . Shown is a comarison to the theoretical results of Wright and Nelson 
(A) [123] and the experimental results of Kubota et al. (B) [126], K i m et al. (C) [124] 
and Guo et al. (D) [125]. 

agreement between the two band structures. The k.p parameters calculated using the 

direct method are shown in Table 4.8. In this table, the Luttinger-like parameters are 

again seen to vary consistently w i t h composition. From Figure 4.17, i t can also be 

seen that w i t h increasing In composition the crystal field spl i t t ing decreases, becoming 

more negative. Again, this behaviour is discussed w i t h respect to strain on bulk A1N 

and I n N in chapter 5. 

4.5.4 Discussion 

For the variation of the band gap w i t h composition for the wurtzite alloys GaAIN, 

GalnN and A l I n N , the results of this work appear to be in good agreement wi th 

experiment. The band gap of GaAIN was shown to vary linearly w i t h composition, in 

contrast to Ga lnN and A l I n N where strong bowing was found. This agreement is in 

spite of the relatively simple model employed in this work. 

T h i s work 
Theory (A) 
Exper iment (B) I 

• Exper iment (C ) 
A Exper iment (D) 

Strained 

Unstrained 
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Figure 4.17: Band structure close to the zone centre (r-point) for the wurtzite alloy 
A l i _ x I n x N . The pluses represent the original band structure and the solid lines represent 
the k.p band structure calculated using directly obtained k.p parameters. Negative 
k indicates a c-axis (r — A) direction and positive k indicates an in-plane (r — M) 
direction. 
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Composition Al A2 A3 A4 A5 Ae ^ 6 

0.05 -4.98 -0.49 4.42 -1.95 -1.99 -2.52 0.14 
0.10 -5.27 -0.50 4.69 -2.10 -2.11 -2.70 0.17 
0.15 -5.58 -0.51 4.98 -2.24 -2.24 -2.90 0.19 
0.20 -5.90 -0.52 5.29 -2.39 -2.38 -3.10 0.22 

Table 4.8: k.p parameters for the wurtzite alloy A l i - ^ I n ^ N . The Ai are in units of 
h2/2m0, except A7 where the units are eVA. 

For the ordering of the uppermost valence bands, however, the agreement w i t h 

experiment is less good. Optical gain experiments for both GaAIN and Ga lnN show a 

strong anisotropy, w i t h the gain for the T E mode much greater than that of the T M 

mode. In both cases, the origin of the optical gain is a t t r ibuted to localised excitons. 

The implication of having T E mode gain is that the heavy hole band is above the light 

hole band in these alloys, contrary to the situation found in this work. 

4.6 Summary 

In this chapter, k.p parameters have been derived for both the zincblende and wurtzite 

forms of A1N, GaN and I n N . In the zincblende case, effective masses and Luttinger 

parameters were calculated f rom the curvature of the bands at the zone centre. The 

Luttinger parameters were also obtained directly f rom the wavefunctions and energies 

at the zone centre. Both methods produced essentially identical k.p band structure, in 

good agreement w i t h the empirical band structure of Chapter 3 near the zone centre. 

The effective masses of the two methods were also in very good agreement. 

In wurtzite, i t was not possible to calculate the effective masses f rom the band struc

ture because the valence bands were non-parabolic. Instead, a Monte-Carlo scheme 

was adopted, in which the Luttinger-like parameters were systematically varied so as 

to give k.p bandstructure in good agreement wi th that of the empirical pseudopoten-

t i a l method. As in the zincblende case, the k.p parameters were also obtained directly 
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using the zone centre wavefunctions and energies, and again the two methods produced 

k.p band structure of comparable quality. The effective masses calculated from the 

Luttinger-like parameters were also in reasonable agreement for the two methods. 

In particular, for the wurtzite case the direct method can be considered favourable 

to alternative methods which employ some kind of fit t ing approach. This is because 

it produces a unique set of k.p parameters for a given empirical band structure, as 

opposed to a fitting technique for which an infinite number of near optimum sets 

exist. The existence of all these possible sets has implications for the effective masses 

calculated from them, in that two parameter sets that seem to produce equally good 

band structure will generally produce different effective masses. The arbitrary nature of 

a fitting technique means that there is no guarantee that the effective masses obtained 

will exactly correspond to the actual physical values. The direct technique has a sound 

theoretical basis and has also been shown to produce accurate effective masses for 

zincblende structure materials. I t is thus reasonable to expect that the effective masses 

obtained for wurtzite structure materials using the direct method are also accurate. 

Also note that, in principle, a better fitted result could be obtained simply by increasing 

the number of points used in the fitting procedure, with an associated increase in 

computational effort. However, since the direct method requires only one calculation 

and is faster, i t should be regarded as preferable. 

Lastly, nitride alloys were investigated. Despite the simple nature of the virtual 

crystal approximation, good agreement for the variation of the band gap with alloy 

composition was found between the results of this work and those in the literature. 

For GalnN, there was found to be a flip-over in the ordering of the uppermost valence 

bands which is not seen in existing experimental measurements. As for bulk materials, 

k.p calculations were also performed for a series of alloy compositions using the direct 

method. I t was found that this method has the particular advantage of producing 

consistent sets of parameters. Different groups using different fitting schemes would 

obtain different k.p parameters, but the direct method produces just one parameter 
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set. 



Chapter 5 

Strain 

5.1 Introduction 

Consideration of strain is important in any study of the nitrides. This is because nitride 

epilayers are usually strained, since there is typically a large mismatch in the lattice 

constants between the nitride materials and the substrates on which they are grown. 

Thus it is essential to understand how various important properties of the materials 

vary with strain. From the point of view of device design, such quantities include the 

band gap and the band structure in general. 

Additionally, nitride heterojunctions are an important class of device, being used 

for such applications as LEDs and MOSFETs. An understanding of strain, and the 

lineup of the potentials across the interface, is necessary to optimise the performance of 

such devices. As part of this optimisation, alloys of the nitride materials afford a degree 

of control that would be unavailable with bulk materials. This is because alloys of the 

nitrides have lattice constants which differ from the bulk materials, and therefore the 

band offsets of heteroj unctions involving these will be affected. Thus by constructing a 

heterojunction from nitride alloys of appropriate composition, some degree of control 

of the band offset, and thus of the transport across the interface, can be achieved. This 

is indeed the case with devices; AlGaN or GaN are often used as barrier and cladding 

133 
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layers, and InGaN or GaN as active layers. Thus the offset calculations which are 

presented later in this chapter complement the alloy calculations that were performed 

in chapter 4. 

In chapter 3 pseudopotentials for A1N, GaN and InN were obtained. These were 

specifically constructed so as to be easily adaptable for use in strained material, and 

this property is exploited in this chapter. I t is demonstrated how the pseudopotential 

form factors for the nitride materials under strain are obtained. These descriptions are 

then used to study deformation potentials, band gaps and the valence band structure 

in general. 

5.2 Theory 

A full discussion of several aspects of strain pertinent to this work can be found in, 

for example, [127]. Presented here is a short summary of the major issues. Consider 

the two materials A and B shown in Figure 5.2 (a). These two materials have an 

obvious lattice mismatch, and this is the case to be found in all the nitride materials 

considered in this work. Due to this lattice mismatch, strain effects will be present 

in any heterostructures made from these materials. This is obvious if one considers 

growing an epilayer of material B on a substrate of material A, as is shown in Figure 

5.2 (b). The atoms of B are forced to align themselves with those of A with the in-

plane lattice constant of B matching that of A, and thus the epilayer is under biaxial 

compression. As a result of this, the epilayer of B expands along the growth direction 

such that instead of being described by one lattice constant a;, B is now described by 

as and ar, such that ar > a; > as. 

For a sufficiently thin epilayer it is reasonable to assume that all the strain is 

incorporated in the layer. The net strain in the layer plane, en, is given by 
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Figure 5.1: Schematic diagram showing exaggerated lattice mismatch between sub
strate and epilayer, resulting in strained layer growth. In (a), it is clear that the bulk 
lattice parameters of materials A and B are not equal, such that a\ > as. In (b) is 
shown the result of growing an epilayer of material B on a substrate of material A. The 
result of this is that the epilayer is forced to relax in the growth direction, such that 
ar > ai > as. 
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£\\ = txx = eyy = {a* - ai)/ai (5.1) 

The strain in the epilayer along the growth direction, e±, is given by 

eL = - ^ - e \ \ (5.2) 

where a is Poissons's ratio. For the tetrahedral semiconductors considered in this work 

a is approximately | , and thus ey ~ e±. I t is then useful to resolve the total strain into 

an axial component eax and a hydrostatic component evoi\ 

£ax = e-L - ey = —2e\\ 

(•vol = (-xx + tyy + ^zz ~ C|| (5.3) 

Hydrostatic strain is such that the crystal symmetry is not affected; the only change 

is in the lattice parameters of the material. For biaxial strain, such as in the lattice 

mismatch case considered above, the symmetry of the crystal will change. 

5.2.1 Critical Layer Thickness 

Consideration of the critical layer thickness is important in any study of strained epilay-

ers. The discussion of this issue here will be brief; for a fuller discussion with particular 

emphasis on the nitride materials see [6]. 

When an epilayer is grown on a substrate with some degree of lattice mismatch there 

exists a critical thickness hc; below this thickness the epilayer is pseudomorphically 

strained with an in-plane lattice constant equal to that of the substrate, but beyond hc 

it becomes energetically more favourable for the strain to be relieved via dislocations. 
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The critical layer thickness depends on such factors as the in-plane strain and ma

terial properties. Two main approaches have been proposed to model this dependence; 

one based on energy minimisation and one known as the force balance approach. An 

extensive discussion of both of these models can be found in [128]. From the force 

balance model, the critical layer thickness can be calculated to be 

he = + (HPchJq)) (5.4) 

where o is Poisson's ratio and b is the dislocation Burgers vector. In general, critical 

layer thicknesses calculated using this equation are smaller than those measured in 

experiment. 

Experimental measurements of hc for A1N grown on GaN obtain values varying from 

~ 4 A [129] to 30 A [130]. Estimates of the critical thickness also vary, with reported 

values lying between 10 A [131] and 30 A [132]. Additionally, Grandjean et al. [129] 

find no difference in the critical thickness for A1N grown on GaN and GaN grown 

on A1N. Akasaki and Amano [133] have studied A ^ G a i ^ N and I ^ G a i ^ N grown on 

GaN (with x in the range 0.05 < x < 0.2). They measure hc to be 300 — 700nm 

for ALcGai-^N/GaN and ~ 400nm for In x Gai_ x N/GaN, and observe no significant 

change in hc with composition x. For GaN/InN and AIN/InN, the critical thickness is 

estimated to be 6 A [134]. The implications of this for calculations of band offsets are 

discussed later in this chapter. 

5.2.2 Strain in the Empirical Pseudopotential Method 

Strain enters the empirical pseudopotential method primarily through the pseudopo

tential term Vps. I t is this that holds information about the crystal structure, and thus 

any changes induced by applying strain to a material will be strongly reflected in the 

pseudopotential form factors that describe this term. The kinetic and spin-orbit terms 
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also depend upon the lattice parameters, and so strain will also have an effect on these 

terms, though to a lesser degree. 

5.2.2.1 Calculation of Form Factors for Strained Material 

In chapter 3 symmetric and antisymmetric form factor curves were obtained for A1N, 

GaN and InN in the wurtzite structure, and these curves can be extended for studies of 

strained material. This approach is justified when the origin of the form factor curves 

is considered. In chapter 3, the form factors describing the material were explicitly 

formulated from the atomic pseudopotentials of the anion and cation. Hence the form 

factor curves can be applied to strained material in an appropriate way described below. 

From chapter 3, the form factor at a particular G-value is written as: 

From this equation it is clear that the pseudopotential form factors depend upon the 

volume as well as the individual G-values. In strained material both these quantities 

will change, resulting in different form factors. Thus to obtain these form factors this 

equation is simply evaluated at the new volume and G-values of the strained material. 

As an alternative to this method, strain can also be applied in the EPM by assuming 

an approximately linear variation in the form factors in the region about each reciprocal 

lattice vector G [135]. However, for large changes this is perhaps less appropriate. 

Using the empirical pseudopotentials obtained in Chapter 3 for A1N, GaN and InN, 

various properties of the nitrides under strain have been studied. In this work, partic

ular attention has been focused on the behaviour of the uppermost valence bands and 

the conduction band close to the Brillouin zone centre. 

iG.r V(r)e dr 
n 

(5.5) 

5.3 Results 
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5.3.1 Band Gap Deformation Potential 

The energy shift under hydrostatic strain for the conduction band is characterised by 

the band gap deformation potential ag. This is defined as 

dEQ . , 

where Eg is the band gap, and il the unit cell volume. 

In this work, band gap deformation potentials have been calculated using the em

pirical pseudopotential method for the zincblende and wurtzite structures of A1N, GaN 

and InN. For the wurtzite materials, calculation of the deformation potential was in

corporated into the actual pseudopotential fitting procedure in order to ensure values 

that were consistent with those obtained for the zincblende structure. Deformation 

potentials were also calculated within the group using the first principles code VASP. 

The results obtained using these two theoretical approaches, together with those from 

the literature, are shown in Table 5.1. 

From Table 5.1 it can be seen that for the zincblende materials the empirical ap

proach tends to produce larger values than the first principles calculations. This is 

repeated for the wurtzite materials, where the empirical values are again larger than 

the first principles results. For both zincblende and wurtzite structures there is a def

inite trend; the deformation potential of A1N is greater than that of GaN which is 

greater than that of InN. Compared with other results in the literature, the empirical 

values in this work tend to overestimate the deformation potential for all three mate

rials. The implication of this is that the empirical pseudopotentials used in this work 

overestimates the effect of strain. 
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Material First principles Empirical Ref. [106] Ref. [136] Ref. [46] 
ZB A1N -9.0 -14.6 -9.8 -9.0 

GaN -7.0 -11.2 -7.7 -6.4 -7.4 
InN -7.7 -3.0 -2.2 

WZ A1N -9.0 -12.4 -9.0 -8.8 
GaN -6.8 -11.0 -6.9 -7.8 
InN -9.1 -2.8 -4.1 

Table 5.1: The band gap deformation potential (eV) for zincblende and wurtzite struc
ture A1N, GaN and InN obtained in this work using both first principles and empirical 
approaches. Other empirical (Ref. [106]) and first principles (Ref. [46,136]) results in 
the literature are shown for comparison. 

5.3.2 Variation of the Valence Bands with Strain 

The variation of the uppermost valence bands with strain is of obvious importance in 

semiconductor devices, and this has been studied for A1N, GaN and InN in the wurtzite 

structure. Figures 5.2, 5.3 and 5.4 show the band structures of the heavy hole, light 

hole and spin split-off bands close to the centre of the Brillouin zone for A1N, GaN and 

InN under hydrostatic strain using the empirical pseudopotential method. 

From Figure 5.2, it can be seen that for A1N the crystal field splitting increases 

for both positive and negative strain. For GaN shown in 5.3, the crystal field splitting 

also increases for negative strain. However, for positive strain the crystal field splitting 

decreases and becomes negative, such that there is a flip-over in the normal^ordering 

of the bands at about 2%. This behaviour is repeated for InN, as shown in Figure 5.4, 

where there is a flip-over at just over 6%. 

First principles calculations using CASTEP have also been used to study the vari

ation of the uppermost valence bands with strain. These calculations were performed 

starting at the theoretical lattice parameters obtained in chapter 2. For A1N, the crystal 

field splitting was found to increase for negative strain but decrease for positive strain. 

For GaN, the calculations confirm the trend found in the empirical calculations. For 

positive strain the crystal field splitting decreases, and there is a flip-over in the normal 

ordering of bands. However, this flip-over occurs at a hydrostatic strain of just over 
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20%, much larger than in the empirical case. However, it is important to note that the 

first principles crystal field splittings calculated for GaN using CASTEP is much larger 

than that obtained by using the empirical pseudopotential method. From chapter 2, 

a crystal field splitting of 66 meV is obtained for GaN using CASTEP, which is much 

larger than the 22 meV adopted in the empirical model. Therefore, it is reasonable for 

the flip-over to occur at a higher strain. For negative strain, the first principles calcu

lations find that the crystal field splitting increases. For InN, the crystal field splitting 

again decreases with positive strain, resulting in a flip-over at approximately 30%, and 

increases with negative strain. However, in the first principles calculations the atoms 

within the unit cell were allowed to relax, resulting in changes to the u parameter. In 

contrast, the u parameter does not change in the empirical calculations. Therefore, 

since the band structure of the emprical pseudopotential method is dependent on the 

value of u, a direct comparison between results for the two types of calculations is not 

possible. 

The variation of the valence bands with strain should also be discussed with refer

ence to the results for alloys in chapter 4. For GaAIN, there was found to be a flip-over 

in the uppermost valence bands with increasing A1N composition, and this can be 

identified as being due to two competing effects. Results for A1N under positive strain 

presented earlier in this chapter showed that the crystal field splitting became more 

negative with increasing strain. In contrast, the crystal field splitting of GaN became 

more positive on application of negative strain. Thus for GaAIN, the flip-over in the 

ordering of the bands occurs slowly because of these two effects. For GalnN, a flip-over 

occurred at very low InN compositions. For GaN, positive strain resulted in a decrease 

in the crystal field splitting. By contrast, the crystal field splitting of InN increased for 

negative strain up to 4% but decreased thereafter. Thus from this consideration the 

behaviour of the uppermost valence bands for GalnN is not unexpected. AlInN also 

showed a flip-over in the valence bands at small InN compositions, and this can again 

be explained; the crystal field splitting of A1N decreases (becoming more negative) with 
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positive strain, while the crystal field splitting of InN decreases under large negative 
strains. 

5.4 Valence Band Offsets 

The nitrides have many potential uses in heteroj unction devices. In these, transport 

can either be across the interface (such as in lasers, photodiodes, LEDs) or along the in

terface (such as in MOSFETs, MESFETs etc.) These devices rely on band engineering 

to provide the required degree of optical and/or carrier confinement. The valence and 

conduction band offsets of the heteroj unction play an important role in determining 

the level of confinement, and thus for this type of engineering some knowledge of the 

band offsets is essential. A detailed discussion of the various aspects involved in band 

offset engineering can be found in [137]. 

First principles calculations present one way in which knowledge of the valence and 

conduction band offsets can be obtained. The first step in these calculations is to 

build the supercell describing the heteroj unction. One of these supercells for an InN-

GaN heteroj unction is shown in Figure 5.5. (Throughout the rest of this chapter the 

notation A-B is adopted, whereby A-B denotes a heterojunction where an overlayer of 

semiconductor A is grown on substrate B. In the context of the calculations presented 

in this work, this means that the in-plane lattice parameter of an A-B heterojunction 

is held at that of material B). 

The supercell in Figure 5.5 contains 6 wurtzite unit cells along the c-axis. On one 

side of the interface there are 3 cells of GaN and on the other side there are 3 cells of 

InN. The size of the supercell required in these calculations is determined primarily by 

one factor. This is that the heterojunction supercell must be thick enough such that 

charge densities and potentials are approximately bulk-like in the central regions on 
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Figure 5.2: Band structure close to the zone centre (r-point) for wurtzite structure AIN 
under hydrostatic strain. Negative k indicates a c-axis (r - A) direction and positive 
k indicates an in-plane (F — M) direction. 
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Figure 5.3: Band structure close to the zone centre (r-point) for wurtzite structure 
GaN under hydrostatic strain. Negative A; indicates a c-axis (r - A) direction and 
positive k indicates an in-plane (r — M) direction. 
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Figure 5.4: Band structure close to the zone centre (r-point) for wurtzite structure InN 
under hydrostatic strain. Negative k indicates a c-axis (r — A) direction and positive 
k indicates an in-plane (r — M) direction. 
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Figure 5.5: The supercell for wurtzite structure InN-GaN 

each side of the interface. This indicates that the supercell gives a sufficiently accurate 

representation of the essentially infinite interface found in a real heterojunction. 

In this work, valence band offsets have been calculated for several wurtzite structure 

nitride heteroj unctions. In these calculations, the c lattice parameter of the supercell 

is allowed to relax while the in-plane lattice constant is held at the relaxed theoretical 

value of bulk A1N, GaN or InN. In addition, all the atomic positions within the supercell 

are also allowed to relax. 

In order to evaluate the valence band offset of a heterojunction, it is necessary to 

have a knowledge both of the bulk band structure of the two materials on either side of 

the heterojunction and of the lineup of the electrostatic potential across the interface. 

In first principles calculations band energies are determined with respect to the average 

electrostatic potential in that particular material, which is arbitrary. Therefore, to 

evaluate the relative positions of the valence band maxima, it is necessary to perform a 

calculation in which the two average electrostatic potentials can be directly compared, 

and this is done in a supercell calculation of the interface. 

The valence band offset of an A-B heterojunction is written 

A E V B O ( A - B) — (EV(A) - EV{B)) + &V{A - B) (5.7) 

Here, EV(A) and EV(B) are the positions of the top of the valence bands with respect to 

the average electrostatic potential in bulk material of A and B. These terms are evalu-
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Figure 5.6: Schematic diagram showing how the valence band offset at an A-B hetero
junction is evaluated. 

ated from separate calculations for the two materials in uniformly strained geometries; 

that is, in order to evaluate EV(A) — EV(B) for an AIN-GaN heterojunction, the bulk 

calculation for A1N is performed at the relaxed in-plane lattice constant of GaN. The 

second term AV(A — B) in the equation above is the lineup of the electrostatic po

tential across the interface, generated by the electronic and ionic charge distributions. 

This term is evaluated from the supercell calculation using a macroscopic averaging 

technique described below. 

The quantities involved in evaluating the valence band offset are illustrated in Figure 

5.6. Here, the lineup of the electrostatic potentials AV across the heterojunction is 

shown in the centre of the diagram. The position of the valence band maxima with 

respect to these potentials is known from calculations on each of the bulk materials 

(shown on the left and right of the diagram), and thus the band offset between them 

AEVBO can be determined. 

5.4.1 The Macroscopic Average 

The electrostatic potential and the electronic charge density are periodic along the 

c-axis of the supercell due to pseudomorphism. Therefore, the first obvious step is to 
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compute a microscopic planar average of both the electrostatic potential (comprised of 

the Hartree, exchange-correlation and ionic terms) and the electronic charge density. 

These planar averages will be referred to as V(z) and n(z) respectively. 

The planar average of the electrostatic potential can be seen in Figure 5.7 (a). 

From this, it can be seen that the potentials on either side of the interface are periodic 

functions that join smoothly across it . Due to lattice mismatch, the period of the 

potential on each side is not equal. 

For lattice matched heterojunctions, where the periods of the potential on either 

side of the heterojunction are equal, Baldereschi et al [138] proposed a macrosopic 

averaging procedure to subtract bulk effects from V(z). This entailed integrating along 

the supercell over a period A centred at z: 

_ _ -i pz+X/2 _ 

V(z) = - / V{z')dz' (5.8) 
A Jz-X/2 

However, in systems with a lattice mismatch this approach is not sufficient to 

subtract the bulk effects on each side of the interface. This is because the potential 

and the electronic charge density have different periods on either side of the interface. 

However, the technique can be extended to accommodate this after Colombo et al. [139]. 

This involves performing a double integration over the supercell, once with the period 

on the left side of the interface and once with the period on the right: 

_ rz+X/2 p z ' + \ ' / 2 _ 

V(z) = — / V(z")dz"dz' (5.9) 
A A Jz-X/2 J z ' - \ ' / 2 

Here, A and A' are the periods of the left and right sides of the interface respectively. 

Figure 5.7 shows how the macroscopic averaging technique is applied to the electrostatic 

potential for an InN-GaN supercell. Figure 5.7 (a) shows the simple planar average 

potential V(z), Figure 5.7 (b) shows the potential after integrating once in equation 5.9 
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and Figure 5.7 (c) shows the final macroscopically averaged potential V(z). A similar 

procedure is used to obtain the macroscopically average electronic charge density. 

Note that the macroscopically averaged potential does not exhibit a simple step-like 

jump at the interface. This is because of the polar nature of nitride heterojunctions in 

the wurtzite structure that are joined along the c-axis. Also note that there is a strong 

and uniform electric field in the bulk regions on either side of the interface. This is due 

to charge transfer across the heteroj unction resulting in different charge distributions 

on either side. This electronic charge transfer is from the In side of the heterojunction 

to the Ga side. 

The macroscopically averaged electronic charge density is shown in Figure 5.8. This 

shows flat plateaus in the GaN and InN regions between interfaces, demonstrating that 

the materials have relaxed to become bulk-like in those regions, which of course is 

required for accuracy in these calculations. Note that the plateau values of the charge 

density for the bulk-like GaN and InN regions are not equal due to lattice mismatch. 

As mentioned previously, the macroscopically averaged electrostatic potential is 

sloped on either side of the interface instead of being flat because of the strong electric 

fields. Therefore, there is some degree of ambiguity in determining the offset at the 

heterojunction, since the offset will depend where on each side of the interface the 

potential is evaluated. However, from the macroscopically averaged electronic charge 

density, the centre of the bulk-like regions on either side of the interface are well defined. 

Therefore, to obtain the band offsets in this work, the potential is evaluated at the two 

centres of the bulk-like regions. By choosing the offset in this way the error is estimated 

to be within 0.1 eV. 

5.4.2 Details of the calculations 

For the geometry optimisations of the supercell, the valence electron wavefunctions 

were expanded in a plane wave basis set with a cut-off of 500eV. The relaxations were 

performed using CASTEP, with a conjugate gradients routine chosen to minimise the 
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Figure 5.7: The stages involved in calculating the macroscopically averaged electro
static potential. See text for details. 
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Figure 5.8: The macroscopically averaged electronic charge distribution. 

total energy. Integrations over the Brillouin zone were done using 10 symmetrised k-

points in the Brillouin zone generated according to the Monkhorst-Pack scheme [38]. 

In the calculations the electron-ion interactions were described by the ultrasoft pseu-

dopotentials of Vanderbilt [43]. I t has been shown that the Ga 3d states and the In Ad 

states play an active part in chemical bonding [45,46], and thus for both Ga and In the 

d electrons were treated as valence in addition to the s and p. The forces on the ions 

were calculated using the Hellmann-Feynmann theorem, and again minimised using a 

conjugate gradients technique. A finite basis set correction was employed to account 

for changes in the supercell geometry as a result of the relaxation. 

As discussed previously in this chapter, there is a large lattice mismatch between 

InN and GaN or A1N. Consequently, heterojunctions between InN and either GaN or 

A1N will be highly strained systems with significant relaxations in the atomic positions 

at the interface. There will also be large relaxations in the c lattice parameter for 

these systems. Therefore, for some of the heterojunction supercells considered in this 

work a series of single point energy calculations were initially performed to obtain an 

estimate of the relaxed supercell c value. For these, the total energy was calculated for 
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Figure 5.9: The total energy of the InN-GaN supercell for various values of the c lattice 
parameter. The lattice parameter a was held at the relaxed value of bulk GaN. 

successive values of c, with a held fixed at the respective in-plane lattice constant of 

the heterojunction. A graph showing the results of such a calculation for an InN-GaN 

supercell is shown in Figure 5.4.2. 

For InN-GaN and AIN-GaN, geometry optimisations were performed for supercells 

containing up to 6 wurtzite unit cells (3 on either side of the interface), corresponding to 

6 atoms of Ga, 6 atoms of In or Al , and 12 atoms of N. However, i t was found that there 

was little difference in the band offsets calculated using 4 and 6 unit cells respectively, 

with the discrepancy being less than 0.03 eV. Additionally, for the supercell calculations 

using 4 unit cells, the macroscopically averaged electronic charge densities exhibit well-

defined plateau regions, indicating that 4 unit cells are sufficient for these calculations. 

This is consistent with previous calculations, which find it is necessary to employ 

layers 4 to 6 atoms thick on either side of the interface to extract accurate band 

offsets [140,141]. 

Additionally, the method used in this work was also used to obtain the valence 
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band offset for the well-studied AlAs-GaAs heterojunction. A value of 0.44 eV was 

calculated, which is in good agreement with the theoretical and experimentally observed 

values of other groups, which obtain values of between 0.40 and 0.55 eV [142-144]. 

5.4.3 Results 

Heteroj unction Q>sub C-sub C superlattice 

AIN-GaN 3.155 5.150 19.976 
GaN-AIN 3.064 4.900 20.199 
InN-GaN 3.155 5.150 22.611 
GaN-InN 3.526 5.712 21.234 
AIN-InN 3.526 5.712 19.334 
InN-AIN 3.064 4.900 22.476 

Table 5.2: Substrate a and c lattice parameters together with relaxed superlattice c 
values (all in Angstroms) for the heterojunctions considered in this work. 2 unit cells 
of each material are on either side of the heterojunction. 

Table 5.2 shows the "substrate" a and c lattice parameters. Also shown are the 

relaxed superlattice c values. Note that the substrate lattice parameters used here 

are from the theoretical calculations of chapter 2. These parameters differ from the 

experimentally determined values by up to ~ 2%, and as discussed later this will have an 

effect on the calculated band offset. The values of csuperceu for AIN-GaN and GaN-AIN 

differ only by approximately 0.20 A, as would be expected since the lattice mismatch 

between A1N and GaN is only 3 %. For the heterojunctions involving InN however, 

the lattice mismatch is much larger, at about 12 % for GaN and 15 % for A1N. This is 

reflected in the two relaxed c s u p e r i a t t i c e values for each heterojunction, which differ by 

up to 3 A. 

5.4.3.1 A I N - G a N Heterojunctions 

Table 5.3 shows the valence band offsets calculated in this work with others in the 

literature. For all of the offsets in this table, the offset is such that the top of the valence 

band of GaN is above that of A1N. The most significant feature in the results from this 
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This work Ref. [145] 
Theory 

Ref. [146] Ref. [147] Ref. [52] Ref. [148] 
A I N - G a N 0.15 0.20 

0.7 ± 0.1 0.81 
0.44 

G a N - A I N 0.77 0.85 0.80 0.73 
Expt . 

Ref. [134] Ref. [149] 
A I N - G a N 0.57 ± 0.22 1.36 ± 0.07 

G a N - A I N 0.60 ± 0.24 

Table 5.3: Valence band offsets (in eV) for AIN-GaN and GaN-AIN heterojunctions. 
For all the offsets presented above the top of the valence band of GaN is above that of 
A1N. Note that for references [148] and [147] the offset is calculated for the zincblende 
(001) and (110) interfaces respectively. 

work is the large forward-backward asymmetry of the offset, which has previously 

been reported in the theoretical calculations of Bernardini et al. [145] and Nardelli et 

al. [148]. The origin of this feature can be traced to either a band edge shift in the bulk 

band structure (the EV(A) — EV(B) term in equation 5.7) or to a change in the lineup 

of the potentials in the supercell (the AV(A — B) term in equation 5.7). In this work, 

this asymmetry is almost exclusively due to band edge shifts (0.57 eV) rather than the 

potential lineup in the actual supercell (0.02 eV). The asymmetry has been explained 

by Bernardini et al. [145] in terms of the different natures of the valence band maxima 

in A1N and GaN. In A1N, the singlet at the top of the valence band (formed from 

hybridised N 2s orbitals and Al pz states) is pushed downwards by biaxial compression; 

in GaN the doublet at the top of the valence band (formed from hybridised N 2s and 

Ga pxy states) is pushed upwards by biaxial compression. Nardelli et al. obtained 

their results from studying a zincblende (001) interface. This result can be compared 

with ones for wurtzite heterojunctions because of the similarity of the wurtzite and 

zincblende structures; these primarily differ in their stacking arrangements, and hence 

their band lineups should be similar. Van de Walle et al. [147] have also studied the 

valence band offset for the nonpolar (110) zincblende interface. They obtain a value 
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for the valence band offset between unstrained materials of 0.7 ± 0.1 eV by subtracting-

out the contribution due to strain. These authors also report a difference of only 0.1 

eV between the band offsets of (110) and (001) interfaces. 

From Table 5.3, it can be seen that the results in this work are in excellent agreement 

with other theoretical calculations, particularly those of Bernardini et al. [145] and 

Majewski et al. [146]. For both of these, the offsets calculated in this work are within 

0.1 eV of their reported values. The offset obtained by Van de Walle et al. , which is 

corrected for strain, also falls between the two values in this work. For the calculations 

of Wei and Zunger [52], the in-plane lattice constant of the wurtzite heterojunction is 

taken to be the average of the two nitride materials on either side, and hence it would 

be reasonable to expect their offset to lie within the two values presented in this work. 

Their reported value of 0.81 eV does not satisfy this expectation. However, it should 

be noted that for GaN-InN heterojunctions these authors report no appreciable change 

in the offset with substrate lattice constant, and thus any discrepancies are quite likely 

due to this. Finally, the offsets obtained by Nardelli et al. exhibit forward-backward 

asymmetry and are comparable in magnitude to the ones presented in this work. 

From Table 5.3, it can be seen that there is some disagreement between the theo

retically calculated band offsets and those measured from experiment. In particular, 

the results from x-ray photoemission spectroscopy of Martin et al. [134] do not show 

any significant forward/backward asymmetry, although they do obtain a similar mag

nitude for the offset. Lastly, the anomalously large offset obtained by Waldrop and 

Grant [149] is not in agreement with any of the other results shown in Table 5.3. 

5.4.3.2 G a N - I n N Heterojunctions 

The offsets calculated in this work are compared with others in the literature in Table 

5.4. For all of the results in this table, the offset is such that the top of the valence 

band of InN is above that of GaN. As for the AIN-GaN and GaN-AIN heterojunctions, 

the offsets obtained in this work exhibit considerable asymmetry and are of similar 
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This work 
Theory 

Ref. [147] Ref. [52] Ref. [148] 
Expt . 

Ref. [134] 
I n N - G a N 0.85 

0.3 ± 0.1 0.48 0.70 
0.93 ± 0.25 

G a N - I n N 0.02 0.59 ± 0.24 

Table 5.4: Valence band offsets (in eV) for InN-GaN and GaN-InN heterojunctions. 
For all the offsets presented above the top of the valence band of InN is above that of 
GaN. Note that for references [148] and [147] the offset is calculated for the zincblende 
(001) and (110) interfaces respectively. 

magnitude. The offset of Van de Walle et al. , of 0.3 ± 0.1 eV [147], which again is 

corrected for strain, lies between the two values of this work. Wei and Zunger [52] 

calculate a value for the offset of 0.48 eV using an in-plane lattice constant equal to 

the average of the GaN and InN a values. Since this offset lies between 0.02 eV and 

0.82 eV, this is in general accord with the results presented in this work. However, 

these authors report a weak dependence of the band offset on the lattice constant used 

in the calculation. They find that using the substrate lattice constant for GaN or InN 

respectively instead of their average only accounts for changes in the band offset of the 

order of 0.1 eV. Nardelli et al. [148] have also evaluated the valence band offset of the 

GaN-InN based heterojunction, and obtain a value of 0.70 eV. However, this value was 

calculated for a heterojunction with the in-plane lattice parameter fixed at the lattice 

constant of A1N. As such, it should be in general agreement with that obtained here 

for InN-GaN, and this is true to within 0.15 eV. 

Experimental investigation of the band offset in InN-GaN or GaN-InN is hindered 

in that achieving a pseudomorphic interface between the two compounds is problem

atic. Indeed, the critical layer thickness is estimated to be 6 A [134]. Therefore, real 

heterojunctions are likely to be comprised of a messy interface region with fully relaxed 

GaN and InN on either side. However, reported values do exist for offsets in these het

erojunctions. An experimental investigation from Martin et al. [134] finds valence band 

offsets for the InN-GaN and Gan-InN cases of 0.93 eV and 0.59 eV respectively. These 
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are in qualitative agreement with the offsets calculated in this work since they also 

exhibit forward-backward asymmetry, though to a lesser degree. However, the value 

they obtain for the offset for GaN-InN of 0.59 ± 0.24 eV is not in good agreement 

with the offset calculated in this work of 0.02eV. This discrepancy is most likely due to 

the state of the interface region mentioned above; strain in their sample is likely to be 

relieved by dislocations, in contrast to the "perfect" heterojunction modelled in this 

work. 

In contrast to AIN-GaN and GaN-AIN heterojunctions, the forward-backward asym

metry in the valence band offset calculated in this work is largely caused by a change 

in the lineup of the potential in the supercell. The change in the offset of 0.80 eV is 

comprised of a band edge shift of -0.59 eV and a large change in the supercell potential 

lineup of 1.39 eV. Martin et al. suggest that the forward-backward asymmetry is ex

plained by strain-induced piezoelectric fields. The lattice constants a and c of GaN are 

about 12 % lower than those of InN, and thus heterojunctions comprised of these two 

materials will be highly strained. In contrast, heterojunctions involving A1N and GaN, 

whose lattice constants agree to within ~ 3 %, will not be so strongly strained. The 

nitrides have negative piezoelectric constants such that increases in the lattice constant 

result in static electric fields which decrease the band gap. Hence in the nitrides strain 

acts to decrease the valence band offsets, and thus nitride heterojunctions involving 

InN will exhibit a degree of forward-backward asymmetry. 

The dependence of the asymmetry on strain also has some relevance to the origin of 

the discrepancy between the results of this work and those of Martin et al. . Specifically, 

if some of the strain in their sample is relieved by dislocations then it is reasonable to 

expect that the forward-backward asymmetry they observe would be smaller than that 

calculated in this work, and this is indeed the case. 
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This work 
Theory 
Ref. [52] Ref. [148] 

Expt . 
Ref. [134] 

A I N - I n N -0.22 
1.25 ± 0.1 

1.32 ± 0.14 

I n N - A I N 1.58 1.37 1.71 ± 0.20 

Table 5.5: Valence band offsets (in eV) for InN-AIN and AIN-InN heterojunctions. A 
negative value for the band offset indicates that the valence band of A1N is above that 
of InN. Note that for references [148] the offset is calculated for the zincblende (001) 
interface. 

5.4.3.3 I n N - A I N Heterojunctions 

The offsets calculated in this work are compared with others in the literature in Table 

5.5. Again there is a strong forward-backward asymmetry in the offsets calculated in 

this work. This effect is stronger than was found in GaN-InN and InN-GaN, as would 

be expected given that the lattice mismatch of ~ 15 % is somewhat larger than in those 

heterojunctions. The resulting strain is such that the valence band of A1N is actually 

above that of InN for an AIN-InN heterojunction. For InN-AIN, a large valence band 

offset is found. These results are reasonably consistent with the calculations of Wei 

and Zunger [52], who obtain a value of 1.25 ± 0.1 eV. This value lies within the two 

values obtained in this work, as would be expected for a calculation using an average 

of the A1N and InN in-plane lattice parameters. The result of Nardelli et al.-[148] is 

also in reasonable agreement with the values found in this work. 

As for GaN-InN and InN-GaN, the extreme lattice mismatch between A1N and 

InN makes experimental investigation of heterojunctions between them problematic, 

with a critical layer thickness, like GaN-InN, estimated to be 6 A(Martin et al. [134]). 

Therefore, as for GaN-InN, it is reasonable to assume that in practice a heterojunction 

formed from these materials will consist of an interface region containing many defects 

and dislocations, with fully relaxed A1N and InN away from i t on either side. I t is 

thus important to take care when comparing the results in this work with those of 

experiment, such as those of Martin et al. . These authors report forward-backward 
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asymmetry that is not as pronounced as in this work. In particular, although their 

result of 1.71 ± 0.20 eV for InN-AIN is in good agreement with that found in this work, 

there is considerable discrepancy in the value for AIN-InN. Again, this is likely to be 

due to there being many dislocations at their sample interface instead of the uniformly 

strained heterojunction modelled in this work. If some of the strain is relieved by 

dislocations, and the forward-backward asymmetry is partly due to strain induced 

electric fields, then this does serve as an explanation for why they do not obtain the 

extreme asymmetry found in this work. 

As for GaN-InN and InN-GaN, it is instructive to decompose the forward-backward 

asymmetry into its band edge and potential lineup components. For this, the asymme

try of 1.8 eV is comprised of a band edge shift of 2.20 eV and a change in the potential 

lineup of -0.4 eV. This asymmetry can again be explained by large strain-induced 

piezoelectric fields. 

5.4.4 Discussion 

The valence band offsets calculated for the nitride heterojunctions considered above are 

in good general agreement with the results of other groups. In particular, the forward-

backward asymmetry in the band offset that is observed in experimental measurements 

and in other theoretical calculations is reproduced in this work. This dependence on 

the substrate lattice constant has obvious implications for device design which are 

discussed in more detail below. 

In the results for the band offsets there are several features which deserve further 

comment. Firstly, the positions of the A1N, GaN and InN valence bands with respect 

to each other is worth discussing. For the AIN-GaN and GaN-AIN heterojunctions, 

GaN is above A1N. For the InN-GaN and GaN-InN heterojunctions, InN is above 

GaN. For InN-AIN, as expected InN is above A1N, but for the AIN-InN heterojunction 

A1N is actually higher than InN. A qualitative explanation for this behaviour can be 

found by examining the effect of the d electrons in each of the materials [52], and is 
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reproduced here. In A1N the unoccupied Al d orbital lies above the N p level, and 

thus p-d repulsion pushes the valence band maximum down in energy. For both GaN 

and InN the situation is different. In GaN there is an occupied Ga 3d level and in 

InN there is an occupied Ad level, both of which are below the N p energy. Thus for 

these two materials p-d repulsion acts to push the valence band maximum up in energy. 

The degree of this shift can be approximated as ~ Vp

2

d/{EP — Ed) [52]. Therefore, the 

closer the anion p and cation d levels are in energy, the greater the shift of the valence 

band maximum. Since the matrix element Vpa- increases as the nearest-neighbour bond 

length decreases, then compared to other I I I -V systems this shift is also greater due 

to the shorter anion-cation bond lengths. Thus from this consideration the valence 

band maximum of InN should be above that of GaN, which itself should be above that 

of A1N. This is reflected in the results of this work, with the only discrepancy being 

for AIN-InN, which has the valence band maximum of A1N above that of InN. This is 

explained by the large piezoelectric fields induced by the high degree of strain in this 

heterojunction. 

For devices based upon nitride heterojunctions there are several practical limi

tations to consider. Foremost of these is the matter of the critical layer thickness. 

For GaN-AIN systems, the relatively small lattice mismatch results in a critical layer 

thickness of approximately 30 A. In contrast, the critical layer thickness for nitride 

heterojunctions involving InN are estimated to be 6 A. Moreover, one of the principal 

features of nitride epitaxial layers grown by MBE and CVD is a network of threading 

defects which relieve the strain. Thus for the heterojunctions modelled in this work, in 

which the layers are pseudomorphically strained, the calculated offsets must be used 

with caution when comparing them with those measured from real heterojunctions, 

particularly those involving InN. In real systems, strain will be present to an unknown 

extent. Martin et al. attributed the forward-backward asymmetry of the band offsets 

to strain-induced piezoelectric fields, and expressed a preference for measurements with 

the smallest piezoelectric effect. On this basis, they rejected the cases with the smallest 
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valence band discontinuities and applied rough corrections for the piezoelectric fields. 

The corrected values they obtained were 

GaN-AIN 0.70 ±0.24 eV 

InN-GaN 1.05 ±0.25 eV 

InN-AIN 1.81 ±0.20 eV 

which are in reasonable agreement with the values for those heterojunctions obtained 

in this work of 0.77 eV, 0.85 eV and 1.58 eV. 

Perhaps the most interesting result in the calculations above is the forward-backward 

asymmetry in the band offsets. This effect is strongest for the AIN-InN/InN-AIN het

erojunctions, as should perhaps be expected with the large lattice mismatch present 

in these systems, but it is also significant for the more closely lattice matched A1N-

GaN/GaN-AlN heterojunctions. Therefore, the results in this work would seem to 

suggest that the forward-backward asymmetry found in these systems is caused by 

strain-induced electric fields. From the point of view of band engineering, the impor

tant result here is the dependence of the band offset on the lattice constant of the 

"substrate" nitride. This implies that the band offset can be tuned to some degree by 

using a nitride alloy substrate of appropriate composition on one side of the interface. 

5.5 Summary 

In this chapter, the behaviour of A1N, GaN and InN under strain was investigated. 

This study focused on conduction band deformation potentials and the behaviour of 

the uppermost valence bands. For all the nitrides, the empirical deformation potentials 

calculated in this work were larger than those found by experiment. For GaN, positive 

strain was found to result in a negative crystal field splitting and a flip-over in the 

normal ordering of the bands at the zone centre. This behaviour was repeated for InN. 
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Valence band offset calculations were also performed for various nitride hetero

junctions. The results obtained for these were in line with other theoretical results 

and with experiment. A strong forward-backward asymmetry was displayed by all the 

heterojunctions, and particularly those involving InN. An explanation for this effect 

was found in piezoelectric fields generated as a result of the strain. In heterojunction 

devices, this strain induced polarization provides an additional degree of freedom by 

which the carrier concentration can be significantly altered, and thus device behaviour 

can effectively be engineered. 



Chapter 6 

Conclusions 

In this thesis, work investigating the electronic structure of I I I - V nitride materials and 

their alloys has been presented. For this, three different but complementary meth

ods were employed. Being theoretical, these methods avoid any problems due to poor 

quality of the nitride materials, and thus provide a useful tool for such studies. More

over, these methods are all well established, having been successfully used in similar 

investigations on materials such as Si and GaAs. 

In Chapter 2, the first principles pseudopotential method was introduced. In addi-

ton to a discussion of its physical basis, the important approximations necessary for i t 

were discussed. Using this method, lattice parameters describing the zincblende and 

wurtzite structures for the nitride materials were obtained. 

Bonding in the zincblende and wurtzite structures was also investigated via popu

lation analysis. Through a projection of the plane wave basis states onto L C A O states, 

both atomic populations and overlap populations gave indications of the relative cova-

lent/ionic nature of the bonding. GaN and I n N had similar anion and cation valence 

charges suggesting intermediate covalency, and this conclusion was also backed up by 

the results for overlap populations. The lower atomic populations for A1N implied 

slightly less ionic character in the bonding than GaN and I n N , but bond overlaps indi

cated similar covalency. I n summary, bonding in the three nitr ide materials was found 
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to be similar, though no definite trends were found. 

From part ial density of states calculations, the valence bands were resolved into 

the respective anion and cation s, p and d angular momentum components. In this 

way, the top of the valence band in the nitrides was identified as being dominated by 

the N p orbitals. In A1N, the lower bands were largely composed of N s orbitals, in 

contrast to GaN and I n N where the most significant contributions came f rom 3d and 

4c? orbitals respectively. For these, the d electrons were explicit ly treated as valence. 

The d orbitals and the N s orbitals are close in energy, but no real evidence of s-d 

hybridisation was found. 

In chapter 3, the empirical pseudopotential method (EPM) was described, w i th 

particular emphasis on the pseudopotential concept. Pseudopotentials describing the 

zincblende and wurtzite materials were obtained using a functional form that could be 

easily extended for use in strained material and alloys. Using these pseudopotentials, 

f u l l zone band structures were calculated that agreed well w i t h the first principles 

calculations of chapter 2. In addition, the dielectric response of the three nitride 

materials in both structures was investigated. For all three materials, these reproduced 

general features in the dielectric funct ion. On this basis, our E P M models for the I I I - V 

nitride materials were satisfactory and could be extended for further work on strained 

material and alloys. 

Chapter 4 introduced the k.p method and explained its particular suitabili ty for 

device modelling. Using the E P M band structure of chapter 3 as a basis, k.p parame

ters for both zincblende and wurtzite structures were obtained using different methods. 

For the zincblende structure, one set of k.p parameters were obtained indirectly f rom 

the effective masses (which themselves were calculated f r o m the curvature of the va

lence bands). Another set was calculated directly f rom the E P M momentum matr ix 

elements and energy eigenvalues at the zone centre. For the wurtzi te structure, one 

set of k.p parameters was obtained by using a simple fitting procedure in which the 

parameters were varied in a Monte Carlo scheme un t i l satisfactory agreement w i th the 
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E P M band structure was reached. As for the zincblende structure, a second set was 

calculated directly f rom the E P M momentum mat r ix elements and energy eigenval

ues at the zone centre. For both the zincblende and wurtzite structures, the f i t ted 

and direct k.p parameters produced equally good band structure. The direct method 

for obtaining k.p parameters was advocated over an arbi trary fitting approach on the 

basis that i t provided an unambiguous route to obtaining k.p parameters while pro

ducing band structure of the same quality. Effective masses for both structures were 

also calculated. For the zincblende structure, effective masses obtained using the di

rect method were in good agreement w i t h those calculated simply f r o m the curvature 

of the bands, and w i t h others in the literature. For the wurtzite structure, effective 

masses were calculated using both the fitting approach and the direct method. These 

two methods gave effective masses in reasonable agreement w i t h each other, and were 

similar to others in the literature. 

Also in this chapter, various aspects of nitride alloys were studied using the empirical 

pseudopotential method wi th in the v i r tua l crystal approximation. I n particular, the 

variation of the band gap wi th alloy composition was investigated. I n this work, both 

GalnN and A l I n N were found to exhibit strong band gap bowing, in contrast to A l G a N 

where the band gap was found to vary almost linearly w i t h composition. Both of these 

results were in good agreeement wi th experiment, despite the simple nature of the 

model used to describe them. Contrary to experiment, for Ga lnN a flip-over in the 

normal ordering of the bands was found for small In compositions. This discrepancy 

was explained by the simple nature of the model used in this work. 

The direct method of obtaining k.p parameters was also used to produce consistent 

parameter sets for a series of alloy compositions in the wurtzi te structure. To contrast 

this w i t h the fitting method, fitted parameters were also calculated for GaN. The direct 

method gave parameters which were all smoothly varying, but this was not the case for 

all of the parameters obtained f rom the fitting method. This highlighted the arbitrary 

nature of a fitting approach, in that the k.p parameters obtained in such a way are 
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dependent on the particular weightings used in the procedure. On this basis, the direct 

method can be viewed as preferable to those in which parameters are fitted. 

Chapter 5 began by addressing the properties of the nitr ide materials under strain 

using the empirical pseudopotential method. For this, deformation potentials describ

ing the variation of the band gap wi th strain were obtained. Strain was also found 

to have a profound effect on the ordering of the uppermost valence bands, w i t h small 

positive strain resulting in a flip-over in the normal ordering of the bands for both GaN 

and InN . 

Band offsets for several nitride heterojunctions were also calculated in this work, 

and were generally found to be in good agreement w i t h other results reported in 

the literature. The salient feature of the calculated band offsets was the strong for

ward/backward asymmetry all the heterojunctions exhibited. This effect was largest 

for heterojunctions involving InN where the lattice mismatch was quite large, but was 

st i l l significant for the two GaN-AIN systems. This demonstrated the f lexibi l i ty af

forded by nitr ide heterojunctions, in that offsets can potentially be engineered towards 

a desired value through use of alloys of appropriate composition. Previously, the origin 

of the asymmetry has been attr ibuted to strain-induced piezolectric fields. This view 

is reinforced by the results of this work, in which i t was found that the largest lattice 

mismatch (and correspondingly the greatest strain) resulted in the greatest asymmetry. 

In conclusion, several methods have been employed to study the electronic prop

erties of the I I I - V nitrides and their alloys. Using these, a consistent picture of their 

electronic structure has been constructed, f rom which band structure details and trans

port parameters important in device design and optimisation have been obtained. 

6.1 Suggestions for further work 

Following on f rom the work contained in this thesis, there are several areas in which 

further work could be done. I n chapter 2, bonding in the I I I - V nitrides was investigated 
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using population analysis. To help establish this method for use in more complicated 

calculations i t would be interesting to extend this study to investigate the relationship 

between the calculated overlap populations and bond lengths in strained material. 

There is also great scope for further investigation of valence band offsets in the ni

tride materials. In chapter 5, the band offsets of the nitride heterojunctions were found 

to depend upon the nitride material was used for the substrate. This forward/backward 

asymmetry could be investigated more fu l ly by studying the exact relationship between 

the band offset and the substrate lattice constant used in the calculation. This would 

help confirm the origin of this effect and how i t could be exploited in device design. A d 

dit ional insight could also be gained by using population analysis to study the bonding 

at the heterojunction interface. 

The empirical pseudopotentials obtained for the nitride materials could also be 

used to study other nitr ide alloys. In particular, GaAsN is an alloy which exhibits 

extremely large band gap bowing, wi th the substitution of 1% nitrogen for arsenic in 

GaAs resulting in a decrease in the band gap f rom 1.42 to 1.25 eV [150]. This bowing is 

such that in contrast to the nitride alloys considered in this work, the parametrisation 

of the band gap reduction requires a composition dependent bowing parameter. This 

suggests that the origin of the band gap variation differs f rom that in conventional 

nitride alloys, and this could be investigated using the pseudopotentials developed in 

this work. 



Appendix A 

Form Factors 

A . l Zincblende 

There are two atoms in the zincblende unit cell. Denoting the position of these atoms 

as r 0 and rp, the crystal pseudopotential form factors are obtained by placing the 

respective atomic pseudopotentials at these positions: 

V(G) = ^ J [VQ{r)e-iG-r° + Vp{r)e~iG^] e~iGrdr ( A . l ) 

I t is convenient to take the midpoint between the two atoms as the origin of the unit 

cell. Thus, the positions ra and Tp of the two atoms are given by 

r Q = f (1,1,1) = r 

rp = - f (1,1,1) = - r 

and our expression for V ( G ) now becomes 

V(G) = [VQ(r)e-iG-T + V„(r ) e i G - T ] e~iG rdr (A.2) 

But the atomic pseudopotential fo rm factors as given by equation 3.12 are 
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Va(G) = J- J Va(v)e~^ 

Vp(G) = jf V>(r )e - i G - ' (A.3) 

where the atomic volumes fia and Qp are usually taken to be equal to 0 / 2 . Thus we 

can now wri te 

V ( G ) = \ [elG-TVa(G) + e-iG-TVp(G)} (A.4) 

I t is then convenient to define symmetric and antisymmetric fo rm factors, V s and Va: 

VS(G) = I ( y a ( G ) + ty(G)) 

V ( G ) = I ( f a ( G ) - V , ( G ) ) (A.5) 

Substituting these into the expression for V ( G ) we obtain 

V(G) = y s ( G ) c o s ( G . r ) + iV^ a (G) sin ( G . r ) 

= Vs(G)Ss(G)+iVa(G)Sa(G) (A.6) 

where we have introduced the symmetric and antisymmetric structure factors, 5 s (G) = 

cos (G. r ) and Sa(G) = s i n ( G . r ) . W i t h the fo rm factors wr i t ten this way, several 

observations can be made. Foremost, i t is clear that the antisymmetric form factors 

vanish entirely for those materials possessing the diamond structure, since there is only 

one atomic type and thus Va — Vp. In many materials the difference in the potentials 

of the two atom types is small, and thus the antisymmetric part of the pseudopotential 
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is also be expected to be small. However, N is a small atom and thus its potential 

should be considered to be rather different f rom that of A l and particularly Ga and 

In . Therefore the antisymmetric part of the pseudopotential w i l l be sizeable for the 

nitrides. 

I t is also common practice to make the assumption that the pseudopotentials of 

the two atoms are spherically symmetric. Thus the symmetric and antisymmetric form 

factors can now simply be described by V s (G) and Va(G), since they depend on just 

the magnitude of G . The form factors w i t h G2 > 1 1 ( ^ ) 2 are commonly neglected. 

This is because V ( G ) decreases as for large G, and so imposing this cutoff is an 

acceptable compromise between accuracy and speed. 

The resulting zincblende G vectors and their associated structure factors are shown 

in Table A.1.Note that the contribution to the pseudopotential f rom G 0 is constant, 

and ^ 0. However, this simply shifts all the energies up or down and effectively sets the 

origin of the band structure. As such, i t is usually set to zero. Also note that the sym

metric structure factor for G4 is zero, as is the antisymmetric structure factor for Gg. 

Thus the local pseudopotential in the zincblende structure can be described by 3 sym

metric and 3 antisymmetric form factors: F s ( \ / 3 ) , VS(VS), VS(VU), Va(V3), Va(y/4) 

and V a ( y / l l ) . 

A.2 Wurtzite 

In the wurtzite case, the pseudopotential fo rm factors can be expressed in a similar 

way to those in the zincblende structure: 

V(G) = VS(G)SS{G) + iVa{G)Sa(G) (A.7) 

A n ideal wurtzite unit cell (wi th u = a/c = 3/8), w i t h the associated a, b and c 
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5/8 c 

3/8 c 

Figure A . l : The crystal structure of wurtzi te GaN. 

primit ive vectors, is shown in Figure A . l . I f the following definitions are made 

r i 

r 2 

1 1 1 / 1 
6 ' 6 ' 2 \ 2 + U 

1 1 1 / 1 
6 ' 6 ' 2 V2 u (A.8) 

then the atoms of one type are at + r i and —r2 , and atoms of the other type are at 

—Ti and + r 2 . Again, like in the zincblende case, spherical symmetry is assumed, and 

thus V*(G) and Va(G) only depend upon the magnitude of G . The symmetric and 

antisymmetric structure factors are this time given by [65]: 

SS(G) = cos 

Sa{G) = cos 

2 ^ T + T + T 
Gx Gy Gz 
~6~ 6 4 

cos 

sin 

2TT 

2TT 

Gzu 
2 

Gzu 
(A.9) 

For the wurtzite structure i t is necessary to use more form factors than in the 

zincblende case. The wurtzite G-vectors and their associated structure factors are 

shown in Table A . l . I t is important to note that the values for G2 and the structure 

factors in this table are calculated assuming an ideal wurtzi te structure wi th u = 3/8. 

In the non-ideal case used in this work, not only w i l l the values for G2 be slightly 



APPENDIX A. FORM FACTORS 172 

G G2 \SS{G)\ \Sa(G) 

Zincblende (1,1,1) 3 y j 
2 2 

(2,0,0) 4 0 1 

(2,2,0) 8 1 0 

(3,1,1) 11 2 
^2 
2 

W u r t z i t e (1,0,0) 2^ 
Z 3 

1 
2 0 

(0,0,2) 3 0.71 0.71 

(1,0,1) 3 ^ 
° 1 2 

0.33 0.80 

(1,0,2) ° 3 0.35 0.35 

(2,1,0) 8 1 0 

(1,0,3) 0.80 0.33 

(2,0,0) I 
2 0 

(2,1,2) 11 0.71 0.71 

(2,0,1) 11-5-
1 1 1 2 0.33 0.80 

(0,0,4) 12 0.00* 1.00 

(2,0,2) 1 3 l 0.35 0.35 

- ( W ) 
-

0:00* 0:50 

Table A . l : The reciprocal lattice G vectors and the associated structure factors for 
zincblende and wurtzite materials. Note that for the wurtzi te case the values of G2 

have been calculated assuming the ideal case of u = a/c = 3/8. Those used in the 
calculations presented in this work are evaluated exactly. Also note that the structure 
factors marked w i t h an asterisk w i l l be nonzero for the non-ideal case considered in 
this work. 
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different, but in particular the structure factors for the (2, 0, 0) and (1 , 0, 4) G-vectors 

wi l l be nonzero. Thus in this work 12 symmetric and 9 antisymmetric fo rm factors are 

employed for the wurtzite structure materials. 



Appendix B 

Publications 

Much of the work contained in this thesis has been previously published in journals. 

The references for these are: 

• S. K . Pugh, D . J. Dugdale, S. Brand and R. A. Abram, "Electronic structure 

calculations on nitride semiconductors", Semicond. Sci. Tech. 14, 23, (1999) 

a S. K . Pugh, D . J. Dugdale, S. Brand and R. A. Abram, "Band-gap and k.p 

parameters for GaAIN and GalnN alloys", J. App l . Phys. 86, 3768, (1999) 

• D. J. Dugdale, S. Brand and R. A. Abram, "Determination of band structure 

parameters in nitridfTalloys for use in quantum well calculations", Physica Status 

Solidi B 216, 351 (1999) 

• D. J. Dugdale, S. Brand and R. A. Abram, "Direct calculation of k.p parameters 

for wurtzite A1N, GaN, and I n N " , Phys. Rev. B 61 12933, (2000) 
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