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The Binormal Hypothesis of Specific Learning Disabilities 
 

Stephen Anthony Albone 
 

The concept of specific learning disabilities has its roots in the medical literature 

of the nineteenth century. According to the medical model the cause of specific 

learning disabilities are presumed to lie in specific cognitive dysfunctions. This 

hypothesis predicts two qualitatively distinct types of learner and a bimodal 

distribution of assessment scores. Evidence for bimodality has been sought in the 

distribution of residuals generated from the regression of standardised measures 

of attainment on IQ, however this technique has been widely criticised. Recent 

advances in computer adaptive assessment, coupled with Rasch interval level 

measurement, have opened up the possibility of seeking evidence for bimodality 

in the distribution of assessment scores directly. 

 

In the present study the binormal distribution was developed as a model for 

describing bimodality. The binormal distribution is conceived as two 

superimposed normal distributions and is defined by five parameters. The 

algebraic relationship between the five parameters was first determined, and then 

a methodology was developed for deriving objective estimates of those 

parameters. The methodology was applied to a unique dataset of over 80,000 

children aged between seven and eleven years of age, and across four assessment 

domains; picture vocabulary, reading, mathematics and arithmetic. 

 

The methodology was found to be sensitive to factors that might influence the 

shape of the distribution of assessment scores such as gender, number of years of 

schooling, and ceiling effects, and this affected its utility. Nevertheless evidence 

was found for the existence two qualitatively distinct groups of reader. The 

pattern in these results was consistent with a developmental transition from 

beginning to fluent reader. Evidence was also found for a developmental lag 

between boys and girls, which would explain the higher prevalence of dyslexia 

reported for boys in many studies. The methodology produced inconsistent 

results when applied to the other assessments, and no evidence was found to 

either confirm or disprove the existence of specific dysfunctions as predicted by 

the medical model. 
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Chapter 1: The Background and Context of the Study 
 
 
1. Introduction 
 
The study of special educational needs goes back to the medical literature of the 

nineteenth century. However it was not until much later that researchers from 

non-medical disciplines began to take an interest in this area. With that interest 

came much debate concerning the nature of special educational needs and the 

terms used to define it. This remains one of the most contentious issues in 

psychological and educational research. 

 

A central theme of the debate concerns whether or not there are qualitatively 

distinct subpopulations of learners. Presented here is a historical summary of that 

debate insofar as it pertains to that specific issue. This leads on to the rationale 

for the present study. 

 
 
2. Early Case Studies of Reading Disabilities 
 
The origin of the concept of learning disabilities has its roots in the medical 

literature of the nineteenth century. Early case studies of patients with reading 

disorders were to introduce a number of terms and ideas that would shape our 

present understanding of the condition. Some of the key papers are outlined 

below. 

 

In an 1887 monograph the German ophthalmologist, Professor Dr. Rudolph 

Berlin described six case studies of adult patients that showed particular 

difficulties with reading (Berlin, 1887, Wagner, 1973). Berlin had written of the 

same condition in a previous work, and had introduced the term dyslexia to 

describe it (Berlin, 1884). Following post-mortem examination of his patients 

Berlin attributed the probable cause of dyslexia to a brain dysfunction. 

 

In the United Kingdom similar case studies were also reported, crucially 

however this literature included numerous examples of children that in spite of 

receiving every advantage lacked the specific capacity to learn to read 
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(Hinshelwood, 1900, Kerr, 1897, Morgan, 1896, Nettleship, 1901). In the 

absence of any obvious illness or injury it was concluded that these children 

probably suffered from a congenital condition known as word blindness. It was 

Hinshelwood that first made the distinction between this congenital form and the 

acquired word blindness that was observed in adults (Hinshelwood, 1896). 

 

The first report of children having word blindness in Germany was made by 

Foerster (Foerster, 1905). In doing so he made a distinction between word 

blindness that was associated with mental retardation, and that which presented 

as a specific cognitive deficit. He also suggested that the two forms of word 

blindness had a different underlying neurological cause. 

 

Thus at an early date the hypothesis for the existence of two distinct causes of 

reading failure was established. On the one hand the inability to learn to read 

might be due to general cognitive deficits affecting the intelligence of the 

individual. Alternatively the condition might be characterised by particular 

cognitive impairments, and presumed to be due to a specific dysfunction of the 

central nervous system. This hypothesis has become known as the medical 

model of learning disabilities. An extensive account of the pioneering work in 

this field is provided by Anderson and Meier-Hedde (Anderson and Meier-

Hedde, 2001). 

 
 
3. The Scholastic Disabilities Model 
 
In the United Kingdom the concept of learning disabilities was further developed 

by Schonell, but from an educational perspective (Schonell, 1935). Schonell was 

interested in comparing measures of the intelligence quotient (IQ) with a related 

measure of scholastic achievement known as the accomplishment quotient (AQ). 

Comparison of these two measures enabled Schonell to identify children that 

were underachieving with respect to their IQ. He went on to define three classes 

of underachievement, which he termed scholastic disability. 
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1. The innately dull who are backward because of inferior intellectual 
powers and hence need teaching differing qualitatively and quantitatively 
from that accorded to normal children. 

2. Those of unimpaired general intellectual powers who are backward in 
school work and who simply need continuous schooling, individual 
assistance or special coaching to overcome this handicap. 

3. The supernormal pupils whose disparity between IQ and AQ should 
hardly be considered as backwardness, a more suitable term being 
retardation; their backwardness is more apparent than real. Such 
scholars require increased private study and a fuller curriculum to 
extend them to the limit of their intellectual capacities. 

 

Whilst there is no explicit reference to the medical model in Schonell’s 

definition it is nevertheless implicit that there are different underlying causes for 

academic failure. It is the recognition of these different causes that is vital 

because it informs the choice of remediation strategy for each child.  

 

Schonell was principally interested in the profile of scores across different 

academic disciplines, which prompted a further complication to his model. 

Schonell observed that children may show scholastic disability in some areas but 

not others. He defined these as specific disabilities. 

 

Schonell’s model introduced two important concepts into the field of learning 

disabilities. The first was the notion of a discrepancy between academic potential 

and achievement. The second was the recognition of different types of learning 

failure requiring qualitatively different remediation strategies. However there are 

difficulties that arise as a consequence of its dependence on cut-scores to define 

intelligence and accomplishment as either low, normal or high. This presents 

certain practical as well as philosophical difficulties when applying the model. A 

second weakness in the model stems from the practice of defining 

underachievement as the arithmetical difference in IQ and AQ measures, a 

practice that fails to take account of systematic patterns in the magnitude of 

measurement error in the data. A final difficulty with using the model results 

from its emphasis on underachievement without a fuller consideration of low 

achievement. 
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4. The Regression Model of Underachievement 
 
As mentioned in the previous section one difficulty with Schonell’s scholastic 

disabilities model is that the practice of defining underachievement in terms of 

an arithmetical difference between IQ and AQ measures fails to properly account 

for the measurement error in the data. According to classical test theory a 

person’s observed assessment score consists of two components, the true score 

and the measurement error (Hopkins, 1998). Thus the assessment score is only 

an estimate of the true ability. The magnitude of the error component varies 

between individuals for a variety of reasons. A difficulty arises in the 

interpretation of assessment scores because the distribution of measurement error 

is not random. The value of the error may be positive, resulting in an assessment 

score that overestimates the true score, or it may be negative resulting in an 

underestimate of the true score. There is a systematic tendency for individuals 

with low scores to have a large negative error, whilst high scores tend to be 

associated with large positive errors. This bias in the data can be controlled for 

using the regression methodology. 

 

The regression methodology can be applied when a causal effect between two 

variables is justified on theoretical grounds. In the case of Schonell’s model it is 

assumed that AQ is somehow dependent on IQ, which is regarded as 

independent. To apply the regression method the dependent variable (AQ) is 

plotted against the independent variable (IQ). A line of best fit is then applied to 

the data in such a way that the sum of squares of the vertical distances between 

each data point and the line of best fit, known as the regression line, is 

minimised. The vertical distance from each data point to the regression line is 

called the residual because it represents that part of the AQ measure that is left 

over after the IQ of that person has been taken into account. This effectively 

controls for the systematic distribution of measurement error in the dependent 

variable (AQ). The residual thus generated provides a measure of the under- or 

over-achievement after the bias in measurement error has been corrected for. A 

full description and justification of the regression approach is given by 

Thorndike (Thorndike, 1963). 
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5. Application of the Regression Model: The Isle of Wight 
Studies 
 
The regression methodology was applied by William Yule, Michael Rutter and 

colleagues in a series of influential papers (Rutter, 1978, Rutter and Yule, 1975). 

In those studies the researchers gathered reading and IQ measures from all of the 

children in three year groups located in the Isle of Wight (aged 9 to 11 years). 

Follow up data were gathered on two of these cohorts at age 14. A fifth 

population of children from an inner London borough was also assessed. The 

number of individuals constituting each of the five study populations ranged 

from 1134 to 2113. The data so gathered were used to define two classes of poor 

readers. The first group consisted of those individuals with reading scores that 

were at least 2 years 4 months below the average expected for their age. Such 

children were classified as low achievers and described as having a general 

reading backwardness. The researchers then used a multiple regression approach 

to produce a predicted level of reading for each child after taking into account 

their chronological age and IQ. Children with reading scores that fell at least 2 

years 4 months below that predicted by the regression model were classified as 

underachievers and described as having a specific reading retardation. 

 

A difficulty with this classification approach was that a high proportion of weak 

readers fell into both categories. However this was justified as an important way 

forwards on two grounds. The first concerned the differential educational 

prognosis of backward readers compared to retarded readers and the second was 

concerned with the shape of the distribution of residual scores in the population 

as a whole. Each of these lines of evidence is described below. 

 

In the follow up study of the two youngest Isle of Wight cohorts, Yule found 

evidence of a different educational prognosis for the two classifications of poor 

reader (Yule, 1973). Initially the two groups had a similar average reading age, 

about 33 months below the cohort average. However they differed in their 

average IQ scores. The reading retarded (underachieving) children had an 

average IQ score similar to that of the control population, whilst that of the 

reading backward (low achieving) group was about one standard deviation 
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lower. The children were given follow up assessments of reading accuracy, 

spelling and arithmetic. A striking aspect of the results was that the retarded 

readers made significantly better progress than the backward readers in 

arithmetic, but in reading and spelling the opposite result was found. It was 

concluded that the distinction between the two groups of poor reader had a valid 

educational significance. Later studies also found evidence for differences 

between the two groups of poor readers in terms of sex ratio, incidence of 

neurological disorder and pattern of neuro-developmental deficits (Rutter and 

Yule, 1975).  

 

According to the medical model there are two qualitatively distinct 

subpopulations of reader which might be referred to as dyslexics and typical 

readers. As distinct subpopulations they would each be expected to have a quite 

different distribution of reading assessment scores, with the dyslexic 

subpopulation having a lower mean score. The medical model therefore predicts 

a bimodal distribution of scores in the population. Given that it is entirely 

possible that the distribution of scores in the two subpopulations might have 

considerable overlap, with the most able dyslexic children gaining higher scores 

than the weakest of the typical readers, this bimodality would not necessarily 

appear as two distinct peaks in the distribution of reading scores (Everitt, 1981, 

Fleiss, 1972). In fact it was asserted by Critchley that the distribution of reading 

scores has a hump in the left-hand tail due to the presence of dyslexics in that 

part of the reading abilities range (Critchley, 1970, Yule et al., 1974). 

 

Having found evidence for two educationally distinct groups of poor readers 

Yule and colleagues sought and found empirical evidence to support Critchley’s 

assertion (Yule et al., 1974). In their study, the distribution of residuals obtained 

from the regression of standardised reading scores on standardised non verbal 

intelligence scores for five populations of children were analysed. It was shown 

that there were significantly more children in the left hand tail of the 

distributions than would be expected by chance if the residuals were normally 

distributed in each population. The authors acknowledged that according to 

Gruenberg (Gruenberg, 1966) such humps can emerge as an artefact when the 

abilities of the sample tested are broader than those on which the assessment was 
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standardised, but argued that this was not an issue in this instance. They 

concluded that the presence of the hump provided evidence for the existence two 

distinct groups of weak readers. 

 
 
6. Specific Criticisms of the Isle of Wight Studies 
 
Reactions to the findings of the Isle of Wight studies have been mixed. Silva and 

colleagues presented the results from a study of 952 nine-year-olds from New 

Zealand that were in broad agreement with respect to the differences between the 

reading backward and reading retarded groups (Silva et al., 1985). The authors 

claimed that the differences they observed may be of aetiological significance, 

although Rutter and Yule had previously specifically stated that their findings 

did not support that view, despite the apparent similarities between their retarded 

readers and many of the characteristics associated with dyslexia. Specific 

differences in early literacy and phonological processing skills were also found 

in a study of 453 Australian children over their first three years in school (Jorm 

et al., 1986). However in a re-evaluation of the New Zealand study the validity 

of the apparent differences between the retarded and backward readers was 

questioned (Share et al., 1987). The objection to the previous conclusions was 

based upon the assumed relationship between the reading and IQ measures, 

which the authors argued was really correlative rather than causative in nature. It 

was concluded that there was in fact no evidence for bimodality, and that it was 

better therefore to treat under-achievement as a continuum.  

 

Another line of criticism challenged the underlying assumption that the residual 

scores of reading on IQ are normally distributed (van der Wissel and Zegers, 

1985). The authors argued that this would only be expected if three conditions 

were met: 

 

1. The reading scores are normally distributed. 
2. The regression of reading scores on IQ is linear. 
3. The variance of the conditional reading score distribution given the IQ 

level is constant over all IQ levels (homoscedasticity). 
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They concluded that the apparent hump observed in the Isle of Wight data might 

simply result from a ceiling on the reading test. 

 

Attempts to replicate the findings have also met with mixed results. On the one 

hand Stevenson found evidence for a hump in the residual scores of eleven-year-

olds for reading and spelling, but not mathematics (Stevenson, 1988). Rodgers 

however failed to reproduce the findings using a reading assessment that had no 

ceiling (Rodgers, 1983). He gave four difficulties with the original study that 

might have affected the outcomes of the analysis. These were as follows: 

 

1. The reading tests employed had an acknowledged ceiling, with a 
resultant deviation from linearity in the regression functions employed. 

2. The histograms of residual scores that were presented might more 
properly be regarded as negatively skewed, rather than bimodal. 

3. The prevalence estimates for specific reading retardation varied 
considerably between different groups according to which tests were 
used. 

4. The test score distributions may have deviated from normality in such a 
way as to affect the shape of the distribution of residual scores. 

 

In essence Rodgers was arguing that the observed distribution of residual scores 

was simply an artefact resulting from limitations in the assessments employed. 

Shaywitz and colleagues also failed to find any evidence for a hump in the 

distribution of reading residual scores (Shaywitz et al., 1992b). They also 

reported that only 28% of children classified as under-achieving in Grade 1 

received the same classification two years later. The lack of stability in reading 

disability classification is unexpected if the model were valid, and the authors 

concluded that reading disabilities fall on a continuum with typical reading 

acquisition that can be modelled using the normal distribution. 

 
 
7. The Rejection of the IQ-Discrepancy Model 
 
Although there are earlier discussions in the literature the first strong rejection of 

the IQ-discrepancy model of learning disabilities came from Siegel (Siegel, 

1989). That rejection was largely based on arguments concerning the validity of 

various assumptions that underpin the model, but she also rejected empirical 

evidence for the cognitive differences between individuals identified as low 
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achievers compared to under achievers. Although her objections were 

specifically discussed in relation to reading disabilities she stated that her 

arguments could be generalised to other forms of academic achievement. She 

went on to gather further empirical evidence to support her view (Siegel, 1992). 

A study by Shaywitz and colleagues also concluded that there are more 

similarities than differences between the two groups of poor readers (Shaywitz et 

al., 1992a). 

 

The model was also rejected by Aaron following a review of the evidence for the 

predicted qualitative differences between the subtypes of weak reader (Aaron, 

1997). As well as the validity of the model Aaron also questioned its utility in 

informing different remediation strategies for identified individuals. As an 

alternative Aaron proposed the reading component model as a more appropriate 

approach. According to this model all poor readers would be assessed for 

specific weaknesses in particular reading skills such as word decoding and 

comprehension and given remediation to specifically address any weaknesses 

that were found. In a later study Pennington and colleagues did find evidence for 

a differential effect in component reading processes between the two reading 

disability subtypes (Pennington et al., 1992). However the same study found no 

evidence for an underlying genetic cause for the differences, an observation that 

would have supported the medical model. In a quite different approach Vellutino 

and colleagues demonstrated that IQ-discrepancy alone failed to distinguish 

between two important classes of poor reader, specifically those that did and did 

not respond to remediation (Vellutino et al., 2000). 

 

Criticism of the IQ-discrepancy model is not restricted to reading disabilities. It 

has also been shown in a study addressing arithmetical learning disabilities that 

there is little evidence for a difference between low-achieving and under-

achieving arithmeticians with respect to performance on working memory tasks 

and arithmetical word problems (Jiménez González and Garcia Espínel, 1999).  

 

Perhaps the most vehement critique of the IQ discrepancy model has been made 

by Stanovich (Stanovich, 2005). As well as reiterating the points made by Siegel 

and Aaron, he argues that a fundamental difficulty with the IQ-discrepancy 
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model is its dependence on a causative unidirectional relationship between IQ 

and attainment and points to evidence that the relationship is in fact reciprocal, at 

least in the case of reading (Stanovich, 1991, Stanovich, 1993).   

 

In defence of the discrepancy model Kavale has argued that it remains useful if it 

is simply regarded as an operational definition of underachievement (Kavale, 

2001). In other words it is a practical tool to inform identification, which is a 

considerably weaker role than its use for defining learning disabilities. In a meta-

analysis of 46 studies Stuebing and colleagues found little evidence to support 

the validity of the IQ-discrepancy classification (Stuebing et al., 2002). 

Nevertheless they argued that it did not necessarily mean that the concept of 

learning disabilities is invalid, rather that the operational implementation of the 

concept is flawed. It is a problem with all studies that utilise the regression 

model that there is a considerable overlap between low achieving and under 

achieving individuals. 

 

Dissatisfaction with the discrepancy model has prompted Vaughn and Fuchs to 

propose an alternative framework for defining learning disabilities (Vaughn and 

Fuchs, 2003). The response-to-intervention model shifts the emphasis from 

student deficits to student outcomes, however the diagnostic validity of this 

approach has also been questioned by Kavale who councils against the wholesale 

rejection of the discrepancy model (Kavale, 2005). It seems that in spite of the 

practical and philosophical obstacles, the discrepancy model of learning 

disabilities has an appeal that is difficult to overcome. That appeal may lie in the 

face validity of the underlying concept of qualitatively distinct subtypes of 

learners, and perhaps what is really needed is a different toolkit to explore that 

idea. 

 
 



 26 

8. The Definition of Specific Learning Disabilities 
 
The term “learning disability” was introduced by Samuel Kirk in 1962 (Kirk, 

1962). According to Kirk: 

 
A learning disability refers to a retardation, disorder, or delayed 
development in one or more of the processes of speech, language, 
reading, writing, arithmetic, or other school subject resulting from 
a psychological handicap caused by a possible cerebral dysfunction 
and/or emotional or behavioral disturbances. It is not the result of 
mental retardation, sensory deprivation, or cultural and 
instructional factors. 

 
A central feature of this and many later definitions of learning disabilities is the 

controversial notion that the presumed cause of the condition is a dysfunction of 

the central nervous system. It is an idea that is derived directly from the medical 

literature and one that has profound implications. If the presumption is correct, it 

means that the population consists of qualitatively distinct subpopulations of 

learners. If not it means that learners form a single continuum of ability, and that 

the differences between the weak and able are merely quantitative. The truth or 

otherwise of the presumption has important practical implications for how we 

identify and remediate learning disabilities, as well as philosophical implications 

for how we view affected individuals. 

 

Another important feature of Kirk’s description of learning disabilities that is 

often repeated in other definitions is the exclusion clauses that form the final 

sentence. Such clauses also have their origin in the medical literature and 

reinforce the notion of qualitatively distinct subpopulations of learners. The 

mental retardation clause in particular has been hugely influential in the adoption 

of operational definitions of learning disabilities that utilise regression 

discrepancy models. The use of such clauses have been criticised for defining 

learning disabilities in terms of what they are not, rather than what they are, and 

attempts have been made to remove both the exclusion clauses and aetiological 

component from the definition of learning disabilities (Wepman, 1975). 

 

According to Kavale a third important feature of Kirk’s definition is that it 

introduced the notion of intra-individual differences (Kavale, 2001), although 
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this was also hinted at in the earlier work of Schonell (Schonell, 1935). The idea 

that a learning disability may differentially affect particular areas of academic 

attainment, and be independent of normal functioning in other cognitive 

domains, has prompted the introduction of the term ‘specific learning 

disabilities’ into the literature. Interestingly this has led to the use of the 

unqualified term ‘learning disabilities’ to refer to conditions that result from 

mental retardation, which is in complete contradiction to the exclusion clause in 

Kirk’s original definition. 

 

This contradiction in terminology illustrates a fundamental issue at the heart of 

definitions of learning disabilities. Kavelle and Forness argue that it is an 

inherent problem that interested parties simply define learning disabilities 

according to what they think it should be (Kavale and Forness, 2000). They state 

that: 

 
Learning disabilities definitions, although useful, remain equivocal 
with respect to validity because they properly belong to the 
stipulative class of definition. 

 

They go on to state that: 

 
In reality, stipulative definitions are only of generic usefulness and 
require transformation to be applied in practice. The most usual 
transformation is the operational definition, rules stipulating how 
the term is to apply to a particular case if specified operations yield 
certain characteristic results. 

 

According to Kavale and Forness operational definitions suffer from a number of 

philosophical and practical difficulties. The outcomes of operational procedures 

are sensitive to the reliability and validity of the operational indicators chosen to 

make the necessary observations. Validity is also an issue when it comes to 

matching an operational procedure with the underlying theoretical construct. It is 

possible to operarationalise anything but it doesn’t follow that it has any 

meaning in reality.  There is a real danger of simply defining learning disabilities 

in terms of what can easily be measured, but unless this is coupled to a valid 

theoretical model then our understanding of the condition is not enhanced. 

Ultimately the diagnosis and remediation of learning disabilities is dependent on 
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this understanding. They conclude that as the definition of learning disabilities 

has developed from one that is conceptually physiological to one that is 

behaviourally centred it has lost the power to inform us what learning disabilities 

actually are. 

 

Perhaps the real issue behind this apparent paradox is an unrealistic expectation 

of what definitions of learning disabilities actually are. The situation is clarified 

by Snowling for whom the term specific learning difficulties refers to a 

‘statistical definition’ which ‘carries no implication about the nature or 

aetiology’ of the condition (Snowling, 2005). For Snowling then specific 

learning disabilities provide an operational definition which may, or may not 

indicate a dysfunction, and can at best therefore offer the clinician a starting 

point for their diagnosis. 

 
 
9. Rationale for the Present Study 
 
My interest in this area stems from my role as a Research Associate at the Centre 

for Educational Management (CEM) based at Durham University. Part of my 

role involves the training of teachers in the interpretation of feedback generated 

by CEM’s primary school level monitoring projects. It was in this role that I 

observed that one of the uses to which the data were put was to provide objective 

evidence to support the identification of children with special educational needs. 

This evidence was important because access to Educational Psychologists for the 

purposes of making a formal diagnosis is both limited and has cost implications. 

 

At the time the CEM assessments available for the five to eleven year age range 

were exclusively presented in a paper and pencil format. The assessment system, 

known as Performance Indicators in Primary Schools or simply PIPS, uses 

standardised assessments of curriculum dependent measures (reading and 

mathematics) that are regressed against standardised measures of developed 

abilities (picture vocabulary and non-verbal ability) to provide an indication of 

over- or under-achievement. A fuller description of the assessments have been 

provided by Tymms and Albone (Tymms and Albone, 2002). 
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I was interested in how appropriate it was to use the PIPS data as a screening 

device for special educational needs, and had two principal concerns. The first of 

these was the accuracy of standardised assessment scores for atypically 

achieving children. Paper based standardised assessments are designed to 

discriminate between typically achieving children. As a child’s score on such an 

assessment departs from the average the error of measurement on that score can 

increase enormously. This is not surprising if you consider the experience of a 

child that is academically very weak. Such a child may be able to tackle one or 

two of the easiest items in the assessment, but the rest of it may be unobtainable 

to them. If this is the case the child has effectively been presented with a two 

item assessment, irrespective of how many items the assessment actually 

contains. The best that we can say about the child is that they are very weak in 

the area that the assessment is designed to measure, but it not possible to state 

exactly how weak they are with any precision. The problem is just as acute for 

very able children for whom successful interaction with the majority of the 

assessment items is almost a given and who are only really tested by one or two 

of the most difficult items. We can conclude that such children are very able, but 

not exactly how able they are. 

 

My second concern was prompted by the doubts that had been raised about the 

validity of the IQ-discrepancy model, particularly in the United States of 

America. There are some fundamental differences in the way that PIPS was 

being used as a screening tool in the UK, compared to the much stronger use of 

IQ-discrepancy as an operational definition of learning disabilities. In addition 

the developed abilities component of the PIPS assessment was never intended to 

represent a proxy measure for intelligence per se. Nevertheless some of the 

technical objections to the regression approach were worthy of reflection. 

 

One way of approaching these concerns was to take advantage of the huge 

longitudinal dataset of PIPS assessment scores that had been collected over a 

number of years. It was reasoned that even if there were a high measurement 

error on a single assessment result for a child with special educational needs, that 

error would be reduced if the results from several assessments taken over several 

years were aggregated. This approach might also provide a way of looking at the 
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stability of scores over time. In addition, if enquiries were restricted to 

longitudinal patterns in curriculum dependent measures without reference to the 

developed ability measures it would completely side-step the issues concerning 

the application of the regression methodology. 

 

In an early discussion along these lines Professor Peter Tymms proposed the 

hypothesis that if the population did indeed consist of qualitatively distinct 

subtypes of learner, then that might be revealed in the shape of the distribution of 

mean normalised scores. The rationale for this hypothesis is as follows.  

  

One reason why previous studies have not looked for bimodality directly in 

measures of academic achievement is that the distribution of standardised test 

scores does not accurately reflect the true distribution of that ability in the 

population. According to classical test theory an individual’s test score is made 

up of their ‘true score’ and the error on that score. However that error is not 

randomly distributed in the population. An assessment is made up of separate 

items. In a well constructed assessment the distribution of item difficulties will 

reflect the distribution of abilities in the population that the assessment is 

intended for. An assessment item can be thought of as being well targeted to a 

particular individual if the difficulty of that item is closely matched to their 

ability. If the item is too easy or too hard, that is if it is not well targeted, then it 

can reveal little about an individual’s ability. From necessity standardised 

assessments are targeted towards typically achieving individuals, meaning that a 

relatively high proportion of items in the assessment will suit the average ability. 

As an individual’s ability moves further from the average they will typically be 

presented with fewer and fewer well targeted items. Since the absolute 

magnitude of the measurement error is an inverse function of the number of well 

targeted items there is a systematic tendency for measurement error to increase as 

ability departs from the average. The matter is further complicated if the 

direction of the error is considered. If the error is positive it will cause the test 

score to be higher than the ‘true score’ that it is intended to estimate. If the error 

is negative it will cause the ‘true score’ to be underestimated. There is a 

systematic tendency for high scores to be associated with positive measurement 

error, whilst low scores are associated with negative measurement error. Since 
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the variation of measurement error with ability is largely the property of the 

assessment itself, and that error makes up a significant proportion of the overall 

score, it is unwise to infer much about the distribution of the ‘true score’ in the 

population. In short any evidence for bimodality that may be observed in the 

distribution of assessment scores may simply be an artefact of the assessment 

itself. 

 

The process of standardising assessment scores effectively involves the linear 

transformation of raw scores to fix their mean and variance to some agreed value. 

The shape of the resulting distribution is exactly the same as that of the raw data. 

This manipulation may be taken a step further by forcing the data into a normal 

distribution. This process is called normalisation. When a group of children are 

assessed on two occasions and their mean normalised score determined it is 

found that the variance of those mean scores is less than that of the original 

normalised scores, although the mean remains the same. This is because the 

mean score will tend to have less measurement error than either of the individual 

assessment scores. If a third assessment is added to the analysis then the variance 

of mean normalised scores will shrink still further, and so on. Theoretically after 

an infinite number of assessments all of the measurement error will have been 

accounted for and the mean normalised score will be equivalent to the true score. 

Clearly it is not possible to conduct an infinite number of assessments; however 

it may be possible to gain some insight into the true-score distribution given a 

suitable longitudinal dataset. Specifically if the underlying distribution of ability 

is unimodal, then the distribution of mean normalised scores across several 

assessments will also tend to be unimodal. However, if the underlying 

distribution of ability is bimodal this will begin to reveal itself in the shape of the 

distribution of mean normalised scores. Furthermore, the shape of the 

distribution of mean normalised scores will reveal something of the nature of the 

relationship between the two sub populations. The medical model predicts that 

the smaller subpopulation will have the lower mean score. The resulting 

asymmetry in the distribution of mean normalised scores would be indicated by a 

negative skew. If the smaller subpopulation were to have the higher mean score a 

positive skew would be observed. If the two subpopulations were of equal size 

and variance then the distribution of mean normalised scores would remain 
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symmetrical, and the skew would be zero. However, even in this case evidence 

for bimodality would be revealed in an increased kurtosis in the distribution of 

mean normalised scores. 

 

It was originally intended that the application of this idea would form the basis 

of the present thesis. Large amounts of longitudinal data were available and the 

process of deriving mean normalised scores was straightforward. Initial results 

were encouraging, suggesting evidence for bimodality in the distribution of 

reading scores, but not in mathematics. An attempt was also made to model the 

distribution of scores as the sum of two normal distributions (binormal 

distribution) and thereby derive parameter estimates for the distribution of each 

subtype of reader. The results of these analyses were presented at two 

conferences (Albone et al., 2006b, Albone et al., 2006a). However further 

development of the methodology revealed a number of problems. It was shown 

by use of randomised datasets having a binormal distribution that the 

normalisation process so confounded the scores that regression to the mean 

could never fully resolve the two subpopulations, thus making it impossible to 

derive accurate parameter estimates. The methodology for deriving parameter 

estimates was itself flawed, based as it was on the shape of the frequency 

histogram generated from the mean normalised scores. The parameter estimates 

generated in this way were found to be sensitive to the position of the category 

boundaries chosen for each bar of the histogram, so the methodology lacked 

robustness. The precision of the parameter estimates was dependent on the 

category width selected, and the selection of the midpoint of each category to 

represent its horizontal location introduced a systematic bias. In addition the 

process of aggregating the data into categories resulted in a second systematic 

bias according to the frequency of scores in each category. Since each bar of the 

histogram contributed a single data point to the model fit, scores that fell into 

infrequent categories had a disproportionate influence on the final result. Finally, 

and perhaps most significantly, it was found that if PIPS reading assessment 

scores were taken in pairwise combinations (there were six assessments and 

therefore fifteen pairs) the skewness observed in the mean of the standardised 

scores explained 71% of the variance observed in the skewness of the mean 

normalised scores. The equivalent figure with respect to kurtosis was found to be 
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35%. In other words the shape of the distribution of mean normalised scores was 

still heavily dependent on the distribution of raw assessment scores. Like the Isle 

of Wight studies before, the apparent bimodality might simply be an artifact of 

the assessments used. 

 

These analyses prompted a review of the approach used and this line of 

investigation was abandoned. However this preliminary effort laid the 

groundwork for what is the subject of this thesis. The failure of the mean 

normalised scores approach ultimately resulted from the insufficient quality of 

the data used to evaluate it. A difficulty with standardised assessment results 

such as those used here is that the data generated is really at the ordinal level, but 

to gauge the true distribution of scores in the population requires interval level 

data. It has been shown that in the mid range standardised scores provide a good 

approximation of interval level data, but not in the tails of the distribution where 

children with learning disabilities are likely to reside (Cohen, 1979, Preece, 

2002). A solution is to apply the Rasch measurement model to the data to obtain 

true equal interval measurement (Bond and Fox, 2001). However this is not 

sufficient on its own as it cannot compensate for the high measurement error in 

the distribution tails. That requires the use of a computer adaptive assessment. 

An assessment of this kind acts dynamically, selecting assessment items of 

appropriate difficulty according to each individual’s preceding pattern of 

responses. This results in a high proportion of well targeted questions, 

maximizing the efficiency of the assessment whilst minimizing the measurement 

error, and in a way that is independent of the ability of the subject. 

 

The aim of the present study was to determine if there is any evidence for 

bimodality in the distribution of assessment scores that would support the 

medical model of specific learning disabilities. This was done by analysing the 

scores of the entire population of four primary cohorts in Northern Ireland 

without reference to measures of ability or IQ. The data were gathered using a 

computerised adaptive assessment and processed using Rasch to obtain interval 

level measures. The central theme of the thesis is the development of the 

binormal distribution as a model of bimodality. The binormal distribution model 

is introduced, defined and described algebraically in chapter 2. In chapter 3 an 
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objective methodology is developed for determining binormal parameter 

estimates. Specific details of how that methodology was applied to the Northern 

Ireland data are given in chapter 4. Chapters 5 and 6 are concerned with a 

description of the results of that analysis. In chapter 7 the validity of these results 

are considered within the theoretical context of specific learning disabilities. In 

the final chapter the limitations of the methodology are discussed as are some of 

its potential applications. 

 
 
10. Research Questions 
 
The central theme of the present study is the application of the binormal 

distribution to the study of learning disabilities. The research questions that arise 

from this application are as follows: 

 

1. Does the binormal distribution provide a suitable model for the 

investigation of bimodality in an epidemiological study of academic 

attainment in primary school children? 
2. Is there any evidence for qualitatively distinct subtypes of learner in the 

population under study? 

3. Is it possible to obtain valid and reliable parameter estimates for the 

distribution of assessment scores for different subtypes of learner within 

the population as a whole? 

4. To what extent does the identification of distinct subtypes of learner 

support the medical model of specific learning disabilities? Is there any 

evidence for the existence of dysfunctions such as dyslexia and 

dyscalculia? 

5. What are the implications of application of the binormal model to the 

identification of children with specific learning disabilities? 
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Chapter 2: The Binormal Distribution 
 
 
1. Introduction 
 
In this chapter the binormal distribution is introduced as a model for 

investigating data that has an underlying bimodal structure. The binormal 

distribution is conceived as the sum of two normal distributions. The model is 

then developed to determine the relationships between the parameters that define 

it. 

 
2. Notation 
 
The notation used to describe the binormal distribution has been adapted from 

the convention used in medical diagnostics (Pepe, 2003). Since the present study 

is primarily concerned with the distribution of scores on assessments of academic 

attainment the population is conceived as consisting of two qualitatively distinct 

subpopulations of learners. One of these subpopulations will tend to have low 

levels of attainment compared to the other. The other subpopulation may be 

regarded as having typical (or high) levels of attainment. The notation used is as 

follows: 

D  - attainment status ( 1 = low attainment, 0 = typical attainment) 

DD,  - subscripts for low and typically attaining subpopulations 

ρ  - prevalence of low attaining subpopulation ( )1=DP  

Dn  - number of low attaining individuals 

D
n  - number of typically attaining individuals 

N  - total number of all individuals 
DD nn +=  

X  - variate quantifying attainment 

µ  - population mean 

Dx  - mean of low attaining subpopulation 

D
x  - mean of typically attaining subpopulation 

2σ  - population variance 

2
Ds  - variance of low attaining subpopulation 

2
D

s  - variance of typically attaining subpopulation 
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3. The Normal Distribution 

 
The normal distribution is a continuous probability distribution that is commonly 

used to model unimodal data. According to the central limit theorem the sum of a 

number of independent random variables with finite mean and variance tends to 

approach a normal distribution as the number of variables increases (Grinstead 

and Snell, 1997). This means that in real world situations where the magnitude of 

a particular measure is dependent upon a complex interplay of many underlying 

factors, the distribution of that measure over many observations will tend to have 

a normal distribution. This makes it possible to apply a relatively simple model 

to complex phenomena. One application of this kind of modelling is that it 

permits access to an array of powerful parametric statistical tools. 

 

The probability density function (pdf) of the normal distribution in variate X is 

given by 
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Thus the normal distribution is defined in terms of two parameters, the mean (µ) 

and the standard deviation (σ) (Rees, 1987). 
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4. The Binormal Distribution 
 
The binormal distribution is here defined as the sum of two normal distributions 

and is therefore a continuous probability distribution. The probability density 

function of the binormal distribution in variate X is given by: 

 
( ) ( ) ( ) ( )

DD XPXPXP .1. ρρ −+=  

 
It is a necessary feature of any probability density function that the area under the 

curve described by the function be equal to one. In order to preserve this 

condition the normal pdf of each subpopulation is multiplied by the prevalence of 

that subpopulation. Since the prevalence of the low attaining subpopulation is 

given by ρ, and the sum of the prevalences must equal one, it follows that the 

prevalence of the typical attainers must be equal to (1-ρ). 

 

Thus the binormal distribution is thus defined in terms of five parameters. These 

are the mean and standard deviation of each subpopulation and the prevalence of 

the low attaining subpopulation( )ρ,,,,
DDDD ssxx . 

 

There is an intimate relationship between these parameters and the mean and 

standard deviation of the population overall such that: 

 

DD xx )1(. ρρµ −+=        1 

 
( ) ( )( )

DDDD xxss −−+−+= µµρρσ 222 1.     2 

 
The remainder of this chapter is concerned with providing an algebraic proof of 

these relationships. 
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5. Algebraic Proof of Equation 1 (Population Mean) 
 
Total number of individuals in the population: 
 

DD nnN +=            1.01 

 
 
Prevalence of the low attaining subpopulation: 
 

DD

D

nn

n

+
=ρ          1.02 

 

DDD nnn +
= 1ρ

        1.03 

 
 
Prevalence of the typically attaining subpopulation: 
 

DD

D

nn

n

+
=− )1( ρ         1.04 

 

DDD
nnn +

=− 1)1( ρ
        1.05 

 
 
Population mean: 
 

N

X∑=µ          1.06 

 
Where: 
 
 

DD XXX ∑+∑=∑         1.07 

 
 
Mean of low attaining subpopulation: 
 

D

D
D n

X
x

∑
=          1.08 

 
 
Mean of typically attaining subpopulation: 
 

D

D
D n

X
x

∑
=          1.09 
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Substituting 1.01 and 1.07 into 1.06: 
 

 
DD

DD

nn

XX

+
∑+∑

=µ         1.10 

 

DD

D

DD

D

nn

X

nn

X

+
∑

+
+

∑
=µ        1.11 

 
 
Substituting 1.03 and 1.05 into 1.11: 
 

D

D

D

D

n

X

n

X ∑−
+

∑
=

).1(. ρρµ        1.12 

 
 
Substituting 1.08 and 1.09 into 1.12 gives an expression for the mean of the binormal 
distribution (equation 1): 

 

DD xx )1(. ρρµ −+=  
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6. Algebraic Proof of Equation 2 (Population Variance) 
 
Population variance: 
 

N

X 2
2 )( µσ −∑=         2.01 

 
Where: 
 

 ( ) ( ) ( )222 µµµ −∑+−∑=−∑
DD XXX      2.02 

 
 
Variance of low attaining subpopulation: 

 

D

DD
D n

xX
s

2
2 )( −∑

=         2.03 

 
 
Variance of typically attaining subpopulation: 
 

D

DD
D n

xX
s

2
2 )( −∑

=         2.04 

 
 
Substituting 1.01 and 2.02 into 2.01: 

 
( ) ( )

DD

DD

nn

XX

+
−+−

= ∑ ∑ 22

2
µµ

σ       2.05 

 
( ) ( )

DD

D

DD

D

nn

X

nn

X

+
−

+
+

−
= ∑∑ 22

2
µµ

σ       2.06 

 
 
Substituting 1.03 and 1.05 into 2.06: 

 
( ) ( ) ( )

D

D

D

D

n

X

n

X ∑∑ −−
+

−
=

22

2
.1. µρµρ

σ     2.07 

 
 
 
Consider( )µ−DX : 
 

)()()( µµ −+−=− DDDD xxXX       2.08 
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222 )())((2)()( µµµ −+−−+−=− DDDDDDD xxxXxXX   2.09 
 

222 )())((2)()( µµµ −∑+−−∑+−∑=−∑ DDDDDDD xxxXxXX  2.10 
 

 
Since ( ) 0=−∑ DD xX : 
 
 222 )()()( µµ −∑+−∑=−∑ DDDD xxXX      2.11 

 

D

D

D

DD

D

D

n

x

n

xX

n

X 222 )()()( µµ −∑
+

−∑
=

−∑
     2.12 

 
 

Substituting ( ) ( )22 µµ −=−∑ DDD xnx : 
 

( )2
22 )()( µµ

−+
−∑

=
−∑

D
D

DD

D

D x
n

xX

n

X
     2.13 

 
 
Substituting 2.03 into 2.13: 
 

22
2

)(
)( µµ

−+=
−∑

DD
D

D xs
n

X
      2.14 

 
 
And similarly: 

 

22
2

)(
)(

µ
µ

−+=
−∑

DD
D

D xs
n

X
      2.15 

 
 
Substituting 2.14 and 2.15 into 2.07: 

 

( )( ) ( ) ( )( )22222 .1. µρµρσ −+−+−+=
DDDD xsxs     2.16 

 
 
Substituting Equation 1 into 2.16: 
 

 ( )( )( ) ( ) ( )( )22222 .11.. µρρρρσ −+−+−−−+=
DDDDDD xsxxxs   2.17 

 

 ( ) ( )( )( ) ( ) ( )( )22222 .11.1. µρρρρσ −+−+−−−+=
DDDDD xsxxs   2.18 

 

 ( )( )( )( ) ( ) ( )( )22222 .11. µρρρσ −+−+−−+=
DDDDD xsxxs    2.19 
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Substituting Equation 1 into 2.19: 
 

( )( )( )( ) ( ) ( )( )( )22222 1..11.
DDDDDDD xxxsxxs ρρρρρσ −−−+−+−−+=  2.20 

 

( )( )( )( ) ( ) ( )( )22222 ...11. DDDDDD xxsxxs ρρρρρσ −+−+−−+=   2.21 

 

( )( )( )( ) ( ) ( )( )( )22222 .11. DDDDDD xxsxxs −+−+−−+= ρρρρσ   2.22 

 

( ) ( )( ) ( ) ( )( )2222222 .11. DDDDDD xxsxxs −+−+−−+= ρρρρσ   2.23 

 
 

Since( ) ( )22
DDDD xxxx −=− : 

 

( ) ( )( )2222 1.1.
DDDD xxss −−+−+= ρρρρσ      2.24 

 
( ) ( )( )( )

DDDDDD xxxxss −−−+−+= ρρρρσ 1.1. 222     2.25 

 
 
Rearranging Equation 1: 
 

ρ
ρµ

−
−

=
1

. D
D

x
x         2.26 

 
 
Substituting 2.26 into 2.25: 
 

 ( ) ( ) ( )
DD

D
DDD xx

x
xss −









−
−

−−+−+=
ρ

ρµρρρρσ
1

.
1.1. 222    2.27 

 

 ( ) ( ) ( )
DD

DDD
DD xx

xxx
ss −









−
−

−
−
−

−+−+=
ρ

ρµ
ρ
ρρρρρσ

1

.

1

.
1.1. 222  2.28 

 

( ) ( ) ( )
DD

D
DD xx

x
ss −









−
−

−+−+=
ρ
µρρρρσ

1
1.1. 222    2.29 

 
( ) ( )( )

DDDDD xxxss −−+−+= µρρρσ .1. 222      2.30 

 
 
Rearranging Equation 1: 
 

ρ
ρµ

D
D

x
x

)1( −−
=         2.31 
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Substituting 2.31 into 2.30: 
 

 ( ) ( ) ( )








−

−−
−+−+=

D
D

DDD x
x

xss
ρ

ρµ
µρρρσ

1
.1. 222    2.32 

 

  ( ) ( ) ( )








−

−−
−+−+=

ρ
ρ

ρ
ρµ

µρρρσ DD
DDD

xx
xss

.1
.1. 222    2.33 

 

( ) ( ) 






 −
−+−+=

ρ
µ

µρρρσ D
DDD

x
xss .1. 222     2.34 

 
 
 
Simplifying equation 2.34 gives an expression for the variance of the binormal 

distribution (equation 2): 

 
( ) ( )( )

DDDD xxss −−+−+= µµρρσ 222 1.  
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7. Summary 
 
In this chapter the binormal distribution was defined as the continuous 

probability distribution resulting from the rescaled sum of two normal 

distributions. It was shown that the distribution is described by five parameters. 

The model was then developed algebraically to determine the relationships 

between these parameters. These relationships are summarised in equations that 

describe the population mean and population variance of the binormal 

distribution (equation 1 and equation 2). These equations are utilised in chapter 3 

for the purpose of deriving estimates of the binormal parameters.
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Chapter 3: A Method for Deriving Binormal Parameters 

 
 
1. Introduction 
 
In the previous chapter the binormal distribution was defined as a continuous 

probability distribution that can be described in terms of five parameters. In the 

present chapter a methodology is described for deriving estimates for these 

parameters from an empirical dataset. The reasons for deriving such parameters 

are threefold. 

 

1. To provide evidence to support the hypothesis that the population 

consists of two qualitatively distinct subpopulations. 

2. To describe in quantitative terms the relationship between those 

subpopulations. 

3. To provide a basis for performing inferential statistics on the differences 

between the two subpopulations. 

 

The methodology to derive binormal parameter estimates has two stages. In the 

first stage a curve was generated that described the cumulative probability 

distribution observed in the data. A curve fitting approach was then used to fit 

the binormal cumulative distribution function (cdf) to the observed curve. This 

technique employed nonlinear regression to determine the combination of 

parameter magnitudes that gave the best fit of the model to the observed data. 

 
 
2. The Binormal Cumulative Distribution Function 
 
The cumulative distribution function (cdf) is a curve that describes the 

cumulative probability distribution for a particular probability distribution. The 

cdf of the normal distribution is given by the following equation where erf is the 

Gauss error function. 

 
















 −+=Φ
2

1
2

1
)(

σ
µx

erfx  
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Since the binormal distribution is defined as the sum of two normal distributions, 

corrected for the prevalence of each subpopulation, it follows that the cdf of the 

binormal distribution is given by: 

 

( ) ( )















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
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


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




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














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



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3. Deriving the Observed Cumulative Probability Distribution 
 
The cumulative probability distribution curve for a variate X is observed when 

the cumulative probability that a value is less than or equal to X is plotted against 

X. The value for X is taken directly from the data. The cumulative probability for 

each value of X in a data set containing N observations was derived by the 

following procedure. 

 

1. The observations were sorted from lowest to highest and assigned the 

rank 1 to N. 

2. The fractional rank for each observation was determined by dividing each 

rank by N, thus giving a scale running from 1/N to 1. Since the 

cumulative probability should properly run from 0 to 1 this method 

provides an estimate with a slight positive offset. The offset will be 

negligible where N is large, however the following steps were used to 

provide a simple correction. 

3. The observations were sorted from highest to lowest and assigned the 

reverse rank. Thus the observation with the forward rank “1” was 

assigned the reverse rank “N”. 

4. The reverse fractional rank was calculated for each observation by 

dividing by N. 

5. A correction for the reversion was made by subtracting the reverse 

fractional rank from 1. This gave a scale that ran from 0 to (N-1)/N. 

6. The cumulative probability for each observation was then calculated by 

finding the mean of the forward fractional rank and the corrected reverse 

fractional rank. This gave a cumulative probability scale that ran from 0 

to 1. 
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In summary the cumulative probability for each observation is given by the 

following expression where fFR is the forward fractional rank and rFR is the 

reverse fractional rank. 

 

 

2

)1( rFRfFR −+
 

 
 
Having determined x and y coordinates for the observed cumulative probability 

distribution curve the next stage was to determine how well those data fitted the 

normal and binormal distribution models. 

 
 
4. Curve Fitting 
 
All curve fitting procedures were carried out using the DataFit software package 

(Oakdale Engineering, 2008). The software requires data to be input in the form 

of x and y coordinates. It has the capacity to program in user defined models and 

contains a variety of internal functions to facilitate this. The square root function 

(sqr) and Gauss error function (erf) were utilised to program cumulative 

distribution models for both the normal and binormal distributions. 

 

The cumulative normal distribution model was simply coded as follows. 

 
Model Definition: 
F1 = (x-m)/(s*sqr(2)) 
Y = (1+erf(F1))/2 

 
The model definition uses the letters ‘m’ and ‘s’ to represent the mean and 

standard deviation parameters of the normal distribution respectively. 
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Coding of the binormal distribution model was a little more complicated, as is 

explained below. The actual code used in the DataFit software was as follows. 

 
Model Definition: 
F1 = (m-p*m1)/(1-p) 
F2 = sqr((s*s-p*s1*s1-(m1-m)*(m-(F1)))/(1-p)) 
F3 = (x-m1)/(s1*sqr(2)) 
F4 = (x-(F1))/((F2)*sqr(2)) 
F5 = (1+erf(F3))/2 
F6 = (1+erf(F4))/2 
Y = p*(F5)+(1-p)*(F6) 

 

The binormal distribution is defined in terms of five parameters. In the model 

definition here employed parameters describing the distribution of the low 

attainment subpopulation are used directly thus; ‘p’ represents the prevalence, 

‘m1’ is used to represent the subpopulation mean, and ‘s1’ signifies the standard 

deviation of the same subpopulation. The two remaining parameters required to 

complete the model are the mean and standard deviation of the typically attaining 

subpopulation. However rather than entering them into the model definition 

directly, substitutions derived from the rearrangement of the equations for the 

population mean and variance of the binormal distribution that were derived in 

chapter 2 were used instead. 

 

Rearranging the equation for the mean of the binormal distribution (equation 1) 

allows the mean of the typically attaining subpopulation to be expressed in terms 

of the population mean and the mean of the low attaining subpopulation. 

 

ρ
ρµ

−
−

=
1

. D
D

x
x        3 

 
Similarly rearranging the equation for the variance of the binormal distribution 

(equation 2) allows the standard deviation of the typically attaining 

subpopulation to be expressed in terms of other parameters, including the 

standard deviation of the whole population. 
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ρ
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=
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The overall effect of these two substitutions is that two latent parameters in the 

model are replaced by two that can be calculated directly from the data, namely 

the population mean and standard deviation. As with the cumulative normal 

distribution, these are represented by ‘m’ and ‘s’ in the model definition. 

 

To determine how well the observed data fitted each of the two models a 

nonlinear regression approach was used. Nonlinear regression requires that initial 

parameter estimates are entered into the software. DataFit then calculates how 

well the observed cumulative probability curve fits the model curve using those 

parameters. The software then enters an iterative procedure in which the 

parameter estimates are altered slightly with the aim of improving the overall 

model fit. This process continues until either a predetermined number of 

iterations have been completed or there is no discernable improvement in the 

model fit.  

 

A potential difficulty with the nonlinear regression methodology is that it is 

possible to obtain more than one valid solution, depending on the values used for 

the initial parameter estimates. This is more likely to occur if the model uses a 

large number of parameters. In the case of the binormal distribution this is a 

distinct possibility since it is defined by five parameters. The solution to this is to 

replace variable parameters in the model with objectively determined constant 

values. The purpose of substituting latent parameters in the binormal model with 

the population mean and standard deviation was to facilitate this. Within the 

DataFit software it is possible to specify whether each variable in the model 

should be treated as a variable or constant value. In the present study the 

population mean and population standard deviation were assigned as constants 

with a value calculated from the data. Thus for the purpose of obtaining a model 

fit the normal distribution is expressed in terms of two constants, whilst the 

binormal distribution is expressed in terms of two constants and three variables. 
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5. Nonlinear Regression Output Statistics 
 
The DataFit software produces a variety of output statistics that enable the user 

to evaluate their model fits. The three principle statistics that are reported in this 

study are outlined below. 

 

The coefficient of multiple determination (R²) reports the proportion of variation 

in the data points that is explained by the regression model. If the value of R² is 

equal to one it means that the curve passes through every data point. An R² value 

of zero means that the regression model does not describe the data any better 

than a horizontal line passing through the average y-value of the data points. 

 

The adjusted coefficient of multiple determination (Ra²) adjusts the value of R² 

according to the number of explanatory terms in the model used. The binormal 

distribution model includes three more variables than the simpler normal 

distribution model. It is not surprising therefore that it tends to provide a better fit 

to the data and higher R² values. The Ra² statistic adjusts the value of R² 

downwards to compensate for these additional degrees of freedom. Direct 

comparison of the Ra² statistic allows the evaluation of whether the improvement 

in the fit of the model justifies the increase in its complexity. 

 

The nonlinear regression technique produces estimates of the magnitude of each 

variable in the model, together with the standard error of that estimate. These 

statistics are used to perform a t-test with the null hypothesis that the value of the 

variable is equal to zero. The prob(t) statistic is useful because it highlights any 

variables in the model that are not contributing to the overall fit and may 

therefore be dropped.  

 
 
6. Limitations of the Methodology  
 
A well known limitation of nonlinear regression, and one that is inherent in any 

iterative procedure, is the possibility of arriving at a false solution. This 

possibility increases with the complexity of the regression model. The possibility 

of arriving at a false solution may be compensated for by running the procedure a 
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number of times with different initial parameter estimates. Whatever the value of 

the initial parameter estimates the procedure will ideally converge upon the same 

solution. If more than one solution is found these may be evaluated to determine 

which, if any, is more likely to be the correct solution. More than one solution to 

the model fit may also indicate that there is greater complexity in the data than is 

explained by the regression model, or that a different model may be more 

appropriate. 

 

A more serious limitation to the methodology concerns the quality of the data 

used to generate the observed cumulative probability distribution. It is a 

prerequisite that the data used provides a true reflection of the distribution of the 

abilities in the sample, and it follows that these must also be interval level data. 

Strictly speaking the standardised scores produced by traditional paper-based 

assessments are at the ordinal level. What is more, the pattern of scores on such 

assessments has as much to do with the distribution of item difficulties as it does 

with that of pupil abilities. If such data were used any findings generated by this 

methodology may simply be an artefact of the assessment used to gather the data. 

A partial solution to this is to employ a Rasch procedure to convert the data to 

interval level scores that truly reflect the distribution of abilities in the sample. 

However the use of Rasch measurement on its own is not sufficient. Paper-based 

(static) assessments are designed to target typically attaining individuals, with the 

result that those in the tails of the ability range are measured far less precisely. If 

the methodology is to provide good parameter estimates for a low attaining 

subpopulation it is necessary to get accurate ability measures in this range. This 

may be achieved using a dynamic procedure such as that offered by a 

computerised adaptive assessment. Using such an assessment system the 

precision with which an individual is measured is for the most part independent 

of where they fall on the ability range. 

 

In addition to the quality of the data used it is also necessary to consider the 

quantity of those data. This affects in particular the fineness of the probability 

scale that forms the y-axis of the observed cumulative probability distribution. 

To illustrate this point consider the situation where there are only ten data points. 

These points are equally spaced in the vertical dimension at 0.1 intervals. The 
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figure of 0.1 represents the maximum possible precision of measurement in this 

dimension. Put another way the cumulative probability cannot be reported to any 

greater accuracy than one significant digit. Increasing the number of data points 

by a factor of ten to 100 would allow a theoretical reporting limit of two 

significant digits. However in practice we might require considerably more data-

points before we were confident in reporting that level of accuracy. If it were 

taken as a ‘rule-of-thumb’ that the number of significant digits that we were 

confident in reporting were one less than the order of magnitude of the data 

points, and that a minimum acceptable level of precision were two significant 

digits, then the methodology described requires a minimum sample size of 1000. 

 
 
7. Summary 
 
In this chapter a methodology is described for deriving binormal parameter 

estimates from an empirical dataset. The procedure is carried out in two phases. 

In the first phase the coordinates of data points that describe the cumulative 

probability curve observed in the dataset are generated. In the second phase 

nonlinear regression is used to determine the combination of parameter estimates 

that provide the closest fit of the observed data to the theoretical model. It is 

argued that both the quality and quantity of data are important considerations in 

the application of the methodology. It is recommended that the data used should 

be collected using an adaptive assessment procedure, with a minimum sample 

size of one thousand individuals.  
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Chapter 4: The Data Used to Evaluate the Binormal 
Distribution Model 
 
 
1. Introduction 
 
Having defined the binormal distribution model and developed a methodology 

for deriving parameter estimates for the same, the next stage was to apply the 

model to a real dataset. Given the limitations of the methodology described in the 

previous chapter careful consideration was given to the data chosen to evaluate 

the model. A substantial database of assessment results was available that had 

been gathered using an adaptive computer based system, thus meeting the 

necessary quality and quantity criteria. In this chapter a description is given of 

the assessment used, and of the data collected. Finally, the procedure and 

rationale for preparing the raw data for input into the regression model is also 

described. 

 
 
2. The Interactive Computerised Assessment System 
 
The Interactive Computerised Assessment System (InCAS) is a computer 

adaptive assessment designed by the Centre for Evaluation and Monitoring at 

Durham University, UK. The InCAS software provides a collection of 

assessment modules that are designed for use by children aged between five and 

eleven years. Each of the assessment items that InCAS uses are thoroughly 

trialled in advance to determine the age at which a typically achieving child 

would have an equal chance of answering it correctly or incorrectly. This age 

represents the difficulty of that item. The software then takes the child’s 

chronological age as an initial estimate of their ability and presents the first item 

accordingly. Typically this would mean presenting the child with an item 

difficulty two years lower than their chronological age. InCAS then uses adaptive 

algorithms to select the difficulty of the items that are subsequently presented. In 

this way the software quickly targets items to the ability of the child, greatly 

increasing the efficiency and reliability of the assessment process. In the same 

way that the item difficulties are defined in terms of an age-equivalency, so are 

the ability measures that are output by the software. A fuller description of 
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InCAS and the rationale behind the assessment methodology has been given by 

Merrell and Tymms (Merrell and Tymms, 2007). 

 

For the purposes of the present study data from four InCAS assessment modules 

were used. These were picture vocabulary, reading, mathematics and arithmetic. 

The format of each of the modules is described below. Example screenshots from 

each assessment module are given in the appendix. 

 

Picture Vocabulary: This is a relatively simple task in which the child hears a 

word and sees five pictures. They use the mouse pointer to click on the picture 

that best illustrates that word. 

 

Reading: The InCAS reading module itself consists of three separate tasks. These 

are word recognition, word decoding and reading comprehension. In the word 

recognition task the child hears a word, and then a sentence putting that word 

into context. They use the mouse pointer to click on the correct spelling of that 

word from a choice of five. Clearly children may use both word recognition and 

word decoding strategies to correctly answer each question. In order to 

disentangle these two quite different skills they are then presented with a 

dedicated word decoding task. This takes a similar format to the word 

recognition task, but in this case the child is presented with an unfamiliar or 

nonsense word. Since the child will not have seen the word before they must use 

a decoding strategy to find the correct solution. Taken together the word 

recognition and decoding tasks provide a measure of basic reading skills. This is 

used to select a passage of text that is of suitable difficulty for the reading 

comprehension task. In this final reading task the child is asked at various points 

to select the correct word from a choice of three that best fits within the overall 

meaning of the sentence. 

 

Mathematics: The mathematics module covers the broad maths curriculum 

including number, measurement, shape & space, and data handling. The child 

hears a question and is given additional visual information in the form of 

pictures, charts etc. The child then selects the correct answer from a choice of up 

to five. 
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Arithmetic: The arithmetic module consists of four tasks, one for each arithmetic 

operation. Progression through the tasks from addition to subtraction, 

multiplication, and finally division depends on the performance on the previous 

arithmetic tasks. Each assessment item is presented visually in symbolic notation 

with a choice of four possible answers to click the mouse pointer on. 

 

Reliability figures were calculated for each module and were as follows; picture 

vocabulary (0.89), reading (0.97), mathematics (0.97), and arithmetic (0.96). The 

validity of the picture vocabulary and reading modules has been discussed by 

Merrell and Tymms (Merrell and Tymms, 2007). For these modules predictive 

validity was determined by comparison with PIPS paper based standardised 

assessments. The correlations between the PIPS and InCAS assessments were 

found to be 0.82 for picture vocabulary and 0.75 for reading. Both figures were 

statistically significant at the 0.01 level. The mathematics module was developed 

using items from a variety of sources, including well validated items released by 

the Third International Mathematics and Science Study (IEA, 1995a, IEA, 

1995b). The item difficulties reported by the IEA were compared with those that 

were generated when the same items were presented using the InCAS assessment 

engine. The correlations were found to be 0.79 (30 items; population 1) and 0.77 

(15 items; population 2). Both figures were statistically significant at the 0.01 

level. No figures were available for the validity of the InCAS arithmetic module. 

 
 
3. The Assessment Sample 

 
The reading and maths modules of the InCAS assessment are a statutory 

requirement for all state schools in Northern Ireland during the last four years of 

primary school (that is P4, P5, P6 and P7). The assessments are taken by all of 

the children in these year groups except in very special circumstances. In 

addition to the statutory requirements many schools undertake the other 

assessment modules such as picture vocabulary and arithmetic on a voluntary 

basis. The statutory nature of the maths and reading modules means that data are 

available on a substantial majority of the population in those four year groups, 
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and data were gathered from in excess of 80,000 children. The voluntary 

modules were completed by about a quarter the eligible population. 

 

The data presented here were collected in Northern Ireland during 2009. This 

particular dataset was chosen for two reasons. Although the InCAS assessment 

has been a statutory requirement in Northern Ireland since 2007, it was 

previously restricted to one or two cohorts. This was the first occasion that data 

were available across the four upper primary cohorts. In addition there had been 

significant development of InCAS since 2008 to lower the floor and raise the 

ceiling of both the reading and mathematics assessments, thus extending the 

ability range over which reliable measurement could be made. All of the 

assessments were completed between September and December, with peak 

activity around October. To the author’s knowledge the data collected are unique 

with respect to quantity for a computerised adaptive assessment. 
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4. The Assessment Process 
 
The assessments were carried out by teachers and/or teaching assistants within 

the participating schools. The children were typically assessed in small to whole 

class groups according to the group dynamics, available staff and availability of 

computers. Specific details of the management of the process were left to each 

school. 

 

From the child’s perspective the assessment process involves sitting at the 

computer terminal wearing a set of headphones in order to hear the audio 

component of the assessment. Initiation of each assessment is controlled through 

the use of unique passwords that are used only once. This system facilitates 

management of the process by school staff and helps to ensure that each child is 

assessed once only on each module. Once a password is entered the child is 

given some audio instructions on how to complete the assessment, followed by 

some practice questions. The assessment itself proceeds without providing 

feedback to the child on whether each item was answered correctly or not. A 

status bar provides an indication to the child of how much time remains to 

complete the assessment. InCAS has a time limit for each question and for the 

assessment overall, however these are generous and the assessment reaches a 

natural conclusion for the vast majority of children. If a child fails to respond to a 

particular item within the time limit it is recorded by the software as ‘timed out’ 

but is treated as incorrect for the purposes of producing a final score. The time it 

takes to complete an assessment varies according to which module it is and the 

individual child, but most are completed within twenty minutes. It is 

recommended that children sit no more than one module in a single session, 

although modules such as arithmetic and reading contain a series of subtasks. 

 

As each assessment proceeds InCAS records the item presented together with the 

child’s response (correct, incorrect or timed out). At the end of the assessment 

InCAS calculates an overall score and separate scores for any subscale within the 

module. These data together with item level information are uploaded via a 

secure internet connection to the InCAS web server located at Durham 

University. It is these uploaded data that were used in the present study. 
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5. Initial Data Processing 

 
The summary statistics generated by InCAS were disregarded in this study. 

Instead the item level responses were taken and used to generate the same 

statistics from scratch. The advantage of this approach was that the pupil scores 

were referenced directly within the concurrent sample, rather than on an item 

standardisation based on data collected in the previous year. 

 

Interval level scores were generated from the item level data using the Winsteps 

Rasch-Model Computer Program (Linacre, 2007). The interval scale produced by 

Winsteps is in the form of logits. These were mapped onto an age scale using a 

straightforward linear regression of each child’s logit score against their age at 

test. Summary statistics for these age equivalencies, broken down by year group 

are shown in tables 1.1 to 1.4. 

 
A glance at tables 1.1 to 1.4 reveals that the mean age equivalent scores are 

broadly, but not exactly in line with the mean age at test. The reading module 

generated the most variable scores, and this was probably due to the greater 

complexity of the assessment, composed as it was of three separate tasks. The 

arithmetic module scores were more variable than both the mathematics or 

picture vocabulary scores, and this assessment also had a relatively complex 

structure of four subtasks. The variation of the reading module scores was fairly 

uniform across the four year groups. However in the remaining modules there 

was a noticeable increase in the variation in P7. 

 

The pattern of assessment scores across cohorts was further investigated by 

dividing each year group into six subgroups according to age. Thus each 

subgroup contained children that were born within about two months of one 

another. The mean assessment score was then plotted against the mean age at test 

for each subgroup. This reveals the cross sectional pattern in assessment scores 

according to age and year group (grade), and are here referred to age-grade 

curves (figures 1.1 to 1.4). 
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Age Equivalent Score (years) Year 
Group 

Number of 
Children 

Mean Age at 
Test 

(years) 
Mean Standard 

Deviation 
P4 4028 7.80 7.67 1.87 
P5 5151 8.79 8.83 1.81 
P6 5399 9.80 9.86 1.88 
P7 5384 10.79 10.80 2.03 

Table 1.1: Summary statistics for the InCAS picture vocabulary module. 
 
 
 

Age Equivalent Score (years) Year 
Group 

Number of 
Children 

Mean Age at 
Test 

(years) 
Mean Standard 

Deviation 
P4 18343 7.78 7.63 1.60 
P5 19722 8.77 8.83 1.64 
P6 20656 9.78 9.89 1.66 
P7 21673 10.77 10.74 1.64 

Table 1.2: Summary statistics for the InCAS reading module. 
 
 
 

Age Equivalent Score (years) Year 
Group 

Number of 
Children 

Mean Age at 
Test 

(years) 
Mean Standard 

Deviation 
P4 18249 7.78 7.75 1.07 
P5 19321 8.77 8.78 1.11 
P6 20281 9.78 9.68 1.14 
P7 21367 10.77 10.90 1.48 

Table 1.3: Summary statistics for the InCAS mathematics module. 
 
 
 

Age Equivalent Score (years) Year 
Group 

Number of 
Children 

Mean Age at 
Test 

(years) 
Mean Standard 

Deviation 
P4 4451 7.79 7.69 1.26 
P5 5655 8.78 8.81 1.25 
P6 5957 9.79 9.80 1.26 
P7 6090 10.78 10.82 1.47 

Table 1.4: Summary statistics for the InCAS arithmetic module. 
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Each age-grade curve shows a characteristic step up between one year group and 

the next. This step up shows the effect of one years schooling. In the case of the 

picture vocabulary and reading modules the step up is a little less each year, 

indicating in absolute terms a decrease in the effect of a years schooling as the 

children get older. The same pattern holds with mathematics and arithmetic for 

the first two steps. However the final step between P6 and P7 shows a marked 

increase in magnitude that goes against the general trend. There is also a trend 

within each year group favouring higher scores for older children. The slope 

within each year group decreases with older cohorts, indicating that the 

importance of age on assessment scores decreases as the children get older. This 

pattern is maintained across all four assessment modules. 

 

It was clear from this preliminary inspection of the assessment results that the 

distribution of scores is influenced both by the number of years of schooling and 

the age of the child within each cohort. As a result it was decided that any 

treatment of the data be conducted separately for each year group. In addition it 

was decided that all further analyses be conducted with assessment scores that 

were corrected for age. This was achieved by simply subtracting each child’s age 

at test from their age-equivalent score on each assessment module. The corrected 

score is here referred to as the age/ability difference. 
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Figure 1.1: Age-Grade Curve for the InCAS Picture V ocabulary Module
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Figure 1.2: Age-Grade Curve for the InCAS Reading M odule
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Figure 1.3: Age-Grade Curve for the InCAS Mathemati cs Module
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Figure 1.4: Age-Grade Curve for the InCAS Arithmeti c Module
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6. The Effect of Gender on the Assessment Scores 
 
An issue of concern to the developers of educational assessments is that of 

gender bias. Assessments must at least be perceived by the teachers that use them 

not to favour either boys or girls. Of course differences between boys and girls in 

the pattern of scores may be due to genuine differences that arise from a complex 

interaction of a variety of causes, rather than as an artefact of the assessment 

materials and procedure. One relatively consistent feature of many assessments is 

that boys’ scores tend to have a greater variation than those of girls. In the 

present context any gender bias that may be present in the InCAS assessment 

modules is not of any immediate concern because the study is primarily 

concerned with the shape of the distribution of scores rather than the magnitude 

of those scores. In the previous section it was argued that the year of schooling 

and the relative age of a child within a cohort are two factors that affect the shape 

of the score distribution, and that these can readily be taken into account in the 

analysis. In this section attention is focussed on the effect of gender. 

 

Tables 2.1.1 to 2.4.2 present descriptive statistics for the age/ability difference in 

InCAS assessment module scores according to year group and gender. The 

results of significance tests for the equality of means and variances of these 

scores between boys and girls are given in Table 3 and Table 4 respectively. 
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Age/Ability Difference 

(years) 
Year Group Number of 

Pupils 
Mean Age 

(years) 
Mean Std Deviation 

P4 2089 7.80 -0.173 1.957 
P5 2649 8.80 0.035 1.850 
P6 2730 9.80 0.154 1.917 
P7 2736 10.78 0.128 2.096 

Table 2.1.1: Descriptive statistics for boys’ picture vocabulary results 
 
 
 

Age/Ability Difference 
(years) 

Year Group Number of 
Pupils 

Mean Age 
(years) 

Mean Std Deviation 
P4 1939 7.80 -0.088 1.745 
P5 2502 8.79 0.038 1.757 
P6 2669 9.80 -0.032 1.830 
P7 2648 10.80 -0.130 1.977 

Table 2.1.2: Descriptive statistics for girls’ picture vocabulary results 
 
 
 

Age/Ability Difference 
(years) 

Year Group Number of 
Pupils 

Mean Age 
(years) 

Mean Std Deviation 
P4 9331 7.79 -0.386 1.656 
P5 10166 8.77 -0.156 1.718 
P6 10648 9.78 -0.072 1.724 
P7 11149 10.77 -0.240 1.701 

Table 2.2.1: Descriptive statistics for boys’ reading results 
 
 
 

Age/Ability Difference 
(years) 

Year Group Number of 
Pupils 

Mean Age 
(years) 

Mean Std Deviation 
P4 9012 7.78 0.089 1.481 
P5 9556 8.77 0.293 1.507 
P6 10008 9.78 0.312 1.551 
P7 10524 10.78 0.180 1.554 

Table 2.2.2: Descriptive statistics for girls’ reading results 
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Age/Ability Difference 

(years) 
Year Group Number of 

Pupils 
Mean Age 

(years) 
Mean Std Deviation 

P4 9266 7.79 -0.034 1.108 
P5 10011 8.77 -0.002 1.162 
P6 10442 9.78 -0.101 1.203 
P7 10964 10.77 0.107 1.542 

Table 2.3.1: Descriptive statistics for boys’ mathematics results 
 
 
 

Age/Ability Difference 
(years) 

Year Group Number of 
Pupils 

Mean Age 
(years) 

Mean Std Deviation 
P4 8983 7.78 -0.040 1.000 
P5 9310 8.77 0.014 1.049 
P6 9839 9.78 -0.103 1.093 
P7 10403 10.78 0.142 1.419 

Table 2.3.2: Descriptive statistics for girls’ mathematics results 
 
 
 
 

Age/Ability Difference 
(years) 

Year Group Number of 
Pupils 

Mean Age 
(years) 

Mean Std Deviation 
P4 2254 7.79 -0.016 1.292 
P5 2840 8.78 0.051 1.346 
P6 3023 9.80 0.035 1.332 
P7 3102 10.77 0.011 1.600 

Table 2.4.1: Descriptive statistics for boys’ arithmetic results 
 
 
 

Age/Ability Difference 
(years) 

Year Group Number of 
Pupils 

Mean Age 
(years) 

Mean Std Deviation 
P4 2197 7.79 -0.187 1.173 
P5 2815 8.79 0.000 1.131 
P6 2934 9.79 -0.025 1.200 
P7 2988 10.78 0.078 1.341 

Table 2.4.2: Descriptive statistics for girls’ arithmetic results 
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Comparison of Means (significance) Year Group 

Vocabulary Reading Mathematics Arithmetic 
P4 0.15 0.00 0.70 0.00 
P5 0.96 0.00 0.31 0.13 
P6 0.00 0.00 0.91 0.07 
P7 0.00 0.00 0.09 0.08 

Table 3: Comparison of mean age/ability difference scores by gender using an independent-
samples t-test with equal variances not assumed. 
 
 
 
 

Comparison of Variances (significance) Year Group 
Vocabulary Reading Mathematics Arithmetic 

P4 0.00 0.00 0.00 0.00 
P5 0.00 0.00 0.00 0.00 
P6 0.00 0.00 0.00 0.00 
P7 0.20 0.00 0.00 0.00 

Table 4: Comparison of the spread of age/ability difference scores by gender using Levene’s test 
for homogeneity of variances. 
 
 
The figures presented demonstrate that on average girls perform significantly 

better than boys on the reading assessment across all year groups, however in 

mathematics no such difference was observed. The boys’ average arithmetic 

scores were significantly higher than those of the girls in P4, however this 

advantage had been lost by P5. By the time the children reached P7 the girls were 

slightly ahead of the boys in arithmetic, although the difference was not 

statistically significant. In terms of average assessment score the results for the 

picture vocabulary module were the most curious. In the earlier year groups, P4 

and P5, there was no significant difference between boys and girls. However by 

P6 the boys were achieving significantly better results, and by P7 the gap had 

widened even further. 

 

In terms of equality of variance it was found that boys’ scores were significantly 

more variable than those of girls in almost every circumstance. The one 

exception to this was found in the case of P7 picture vocabulary where no 

evidence for a difference was observed. 
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Given these results it is clear that in every combination of assessment module 

and year group there is evidence for a difference in the distribution of scores 

according to gender. In consequence it was decided that application of the 

binormal model was to be conducted separately for boys and girls. 

 
 
7. Summary 
 
In this chapter a description is given of the method and materials used in the 

collection of data that would be used to evaluate the binormal distribution model. 

That is followed by an account of how the raw data were processed and 

descriptive statistics of those data. It is argued that the distribution of scores may 

be influenced by three. These are the year of schooling, the relative age within 

the cohort, and the sex of the child. Each of these factors was taken into account 

in the application of the methodology for deriving binormal parameters. The 

relative age within the cohort was allowed for by using age corrected scores. 

Year of schooling and the sex of the child were allowed for by analysing each 

grouping separately. A disadvantage of this approach is that the smaller size of 

the datasets thus used will tend to compromise the power of the methodology to 

produce accurate parameter estimates as discussed in chapter 3. 
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Chapter 5: A Statistical Evaluation of the Regression 
Model Fits 
 
 
1. Introduction 
 
In this chapter precise details are first given on how the methodology for 

deriving binormal parameter estimates was applied to the InCAS assessment data 

described in the previous chapter. This is followed by an initial evaluation of the 

model fits so derived. This initial evaluation was concerned with whether the 

relatively complex binormal model provided a better fit for the observed data 

than the default normal distribution model, and centres on the output statistics 

generated by the DataFit software.  

 
 
2. Initial Parameter Estimates 
 
As stated previously, a difficulty with the nonlinear regression technique is that it 

is possible to arrive at more than one solution, and that the chance of this 

increases with the number of variables in the regression model. One way of 

decreasing the number of variables in the model is to replace them with constant 

values. In the present study these constants were provided by the mean and 

standard deviation that were calculated directly from the data. The values of the 

parameter constants used are reported in tables 2.1.1 to 2.4.2.  

 

In the case of the normal distribution the replacement of two variable parameters 

with two constant parameters in the model effectively fixed the model solution. 

In the case of the binormal distribution the same replacement left three variable 

parameters, and therefore the possibility of more than one solution to the model 

fit. For this reason two conditions of initial parameter estimates were used to 

evaluate each binormal regression model. These initial conditions are set out in 

table 5. 
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Variable Parameter Initial Estimate #1 Initial Estimate #2 

Prevalence 0.5 0.01 
Mean -0.5 -4.0 

Standard Deviation σ σ 
Table 5: Initial variable parameter estimates used to evaluate the binormal regression model 
under two conditions. The parameters refer to the low attaining subpopulation. 
 
 
In each condition the initial estimate of the standard deviation of the low 

attaining subpopulation was taken as the standard deviation of the population 

overall. Since the mean age/ability difference was close to zero under all 

conditions the initial parameter estimates under condition #1 gave a scenario that 

was approximately symmetrical about the population mean. The initial parameter 

estimates under condition #2 reflected the scenario where there was a very small 

subpopulation of low attaining children in the far left-hand tail of the 

distribution. 

 

In most cases the nonlinear regression converged to the same solution under both 

conditions of initial parameter estimates. In some cases under condition #2 a 

solution was reached in which either the prevalence or standard deviation had a 

negative value. In these circumstances the theoretically impossible solution was 

rejected in favour of the solution derived using the initial parameter estimates 

under condition #1. In cases where two different but theoretically possible 

solutions were reached the model fit reported is the one with the higher value for 

the coefficient of multiple determination (R²), that is the model fit that explained 

more of the variation in the observed data. 
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3. The Overall Goodness of Fit 
 
We should only accept the binormal distribution if it provides a better fit than the 

normal distribution after taking into account the greater flexibility in the model 

afforded by three additional parameters. Since the normal model is nested within 

the binormal model the null hypothesis that the binormal model does not give a 

significantly better fit can be evaluated using an F test. The value of F is 

calculated using the following expression where the subscripts 1 and 2 refer to the 

normal and binormal distributions respectively, RSS refers to the residual sum of 

squares of the model fit, p refers to the number of parameters that describe the 

model, and n is the number of data points. 
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The DataFit software reports the residual sum of squares as part of its output, and 

it is therefore relatively straightforward to calculate F statistics. The value of F 

thus calculated has (p2 - p1, n - p2) degrees of freedom. When the F test was 

performed a probability of 0.00 was returned under all conditions. However this 

was due at least in part to the very large number of data points. The high value of 

n in these calculations made it extremely difficult to reject the null hypothesis, 

and so on these criteria at least it was accepted that the binormal distribution 

always gave a significantly better fit. 

 

Another approach to evaluating the overall goodness of fit is to compare the 

adjusted coefficient of multiple determination (Ra²). This statistic is a version of 

the coefficient of multiple determination that is adjusted to account for the 

number of variables in the regression model. This means that the fit statistics 

may be compared directly with one another. An advantage of using this method 

over using an F test is that the difference in Ra² statistics provides a quantitative 

indication of the improvement in fit. A comparison of Ra² fit statistics for the 

normal and binormal distribution models are given in tables 6.1.1 to 6.4.2. 

 



 73 

The difference in Ra² when the value for the binormal model is subtracted from 

the value for the normal model is positive in all circumstances. This indicates 

that the binormal model always provides a statistically significant improvement 

in fit after allowing for the additional degrees of freedom in the model. This 

confirms the results of the F test described earlier in this section. 

 

A cursory analysis of the magnitude in the difference in Ra² statistics indicates 

that the improvement in fit is least apparent in the picture vocabulary assessment, 

followed by reading and mathematics. The arithmetic assessment tends to show 

the most marked improvement in fit. With respect to the reading and 

mathematics modules the improvement in model fit tends to increase with the 

age of the cohort. An exception to this general trend is found in the mathematics 

results for both boys and girls where there was a decrease in the improvement of 

fit in P7. 
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Adjusted Coefficient of Multiple 

Determination 
Year 

Group 
Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.99453 0.99974 0.00521 
P5 0.99570 0.99980 0.00410 
P6 0.99471 0.99987 0.00516 
P7 0.99586 0.99990 0.00403 

Table 6.1.1: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to boys’ picture vocabulary scores. 
 
 
 

Adjusted Coefficient of Multiple 
Determination 

Year 
Group 

Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.99399 0.99966 0.00568 
P5 0.99068 0.99991 0.00923 
P6 0.99478 0.99956 0.00478 
P7 0.99771 0.99944 0.00174 

Table 6.1.2: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to girls’ picture vocabulary scores. 
 
 
 

Adjusted Coefficient of Multiple 
Determination 

Year 
Group 

Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.99956 0.99994 0.00038 
P5 0.99478 0.99990 0.00512 
P6 0.98976 0.99980 0.01004 
P7 0.98637 0.99926 0.01289 

Table 6.2.1: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to boys’ reading scores. 
 
 
 

Adjusted Coefficient of Multiple 
Determination 

Year 
Group 

Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.99931 0.99986 0.00055 
P5 0.99587 0.99985 0.00398 
P6 0.99436 0.99979 0.00543 
P7 0.98847 0.99953 0.01106 

Table 6.2.2: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to girls’ reading scores. 
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Adjusted Coefficient of Multiple 

Determination 
Year 

Group 
Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.99868 0.99981 0.00113 
P5 0.98912 0.99991 0.01079 
P6 0.99001 0.99991 0.00990 
P7 0.99515 0.99966 0.00451 

Table 6.3.1: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to boys’ mathematics scores. 
 
 
 

Adjusted Coefficient of Multiple 
Determination 

Year 
Group 

Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.99828 0.99995 0.00166 
P5 0.98955 0.99993 0.01038 
P6 0.98887 0.99995 0.01108 
P7 0.99372 0.99979 0.00607 

Table 6.3.2: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to girls’ mathematics scores. 
 
 
 

Adjusted Coefficient of Multiple 
Determination 

Year 
Group 

Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.98482 0.99988 0.01505 
P5 0.98234 0.99982 0.01748 
P6 0.98887 0.99984 0.01097 
P7 0.99495 0.99986 0.00491 

Table 6.4.1: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to boys’ arithmetic scores. 
 
 
 

Adjusted Coefficient of Multiple 
Determination 

Year 
Group 

Normal Model Binormal Model 

Difference in Ra² 
(Binormal – Normal) 

P4 0.97118 0.99986 0.02868 
P5 0.98111 0.99979 0.01868 
P6 0.97876 0.99979 0.02103 
P7 0.97463 0.99989 0.02527 

Table 6.1.1: Comparison of the adjusted coefficient of multiple determination (Ra²) for normal 
and binormal models applied to girls’ arithmetic scores. 
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4. Binormal Parameter Fit Statistics 
 
The output from the DataFit software includes estimates of the value of any 

variable parameters in the model, together with the standard error of those 

estimates. It then performs a t-test and calculates the probability that the 

parameter estimate is actually zero. If the null hypothesis is accepted it is an 

indication that the parameter in question does not contribute to the overall model 

fit, and therefore that a simpler model requiring fewer parameters is more 

appropriate. If such an analysis were to result in the rejection of the binormal 

model then by default the normal model is accepted as the more appropriate. 

 

As a result of the way in which the binormal model was coded into the DataFit 

software, direct parameter estimates were only generated for the prevalence, 

mean and standard deviation of the low attaining subpopulation. Parameter 

estimates for the higher attaining subpopulation were then calculated using 

equations 3 and 4. These data are presented in tables 7.1.1.1 to 7.4.4.2. 

 

These results indicate that in every circumstance with the exception of the picture 

vocabulary scores for girls in P7 (table 7.1.4.2) the three variable parameters 

make a statistically significant contribution to the binormal model fit. In most 

circumstances the contribution is highly significant, but it is only just significant 

in the case of mathematics scores for boys in P4 (table 7.3.1.1). 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.073 0.021 3.515 0.000 

Dx  -3.272 0.776 -4.219 0.000 

Ds  2.496 0.287 8.684 0.000 

D
x  0.072    

D
s  1.679    

Table 7.1.1.1: Binormal parameter estimates for boys’ picture vocabulary scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.269 0.046 5.823 0.000 

Dx  -1.453 0.273 -5.325 0.000 

Ds  1.908 0.067 28.375 0.000 

D
x  0.415    

D
s  1.373    

Table 7.1.1.2: Binormal parameter estimates for girls’ picture vocabulary scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.534 0.008 70.703 0.000 

Dx  -0.367 0.009 -39.348 0.000 

Ds  2.157 0.005 430.423 0.000 

D
x  0.497    

D
s  1.269    

Table 7.1.2.1: Binormal parameter estimates for boys’ picture vocabulary scores in P5 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.296 0.003 90.170 0.000 

Dx  -0.704 0.009 -76.851 0.000 

Ds  2.422 0.005 459.664 0.000 

D
x  0.350    

D
s  1.261    

Table 7.1.2.2: Binormal parameter estimates for girls’ picture vocabulary scores in P5 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.229 0.007 31.516 0.000 

Dx  -1.115 0.043 -25.825 0.000 

Ds  2.426 0.005 514.424 0.000 

D
x  0.531    

D
s  1.548    

Table 7.1.3.1: Binormal parameter estimates for boys’ picture vocabulary scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.030 0.002 14.871 0.000 

Dx  -5.006 0.204 -24.602 0.000 

Ds  1.697 0.181 9.397 0.000 

D
x  0.120    

D
s  1.608    

Table 7.1.3.2: Binormal parameter estimates for girls’ picture vocabulary scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.279 0.008 37.010 0.000 

Dx  -0.973 0.033 -29.250 0.000 

Ds  2.545 0.005 550.151 0.000 

D
x  0.554    

D
s  1.668    

Table 7.1.4.1: Binormal parameter estimates for boys’ picture vocabulary scores in P7 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.175 0.194 0.900 0.368 

Dx  -1.799 1.825 -0.986 0.324 

Ds  2.164 0.426 5.085 0.000 

D
x  0.223    

D
s  1.740    

Table 7.1.4.2: Binormal parameter estimates for girls’ picture vocabulary scores in P7 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.763 0.005 165.795 0.000 

Dx  -0.872 0.009 -101.775 0.000 

Ds  1.472 0.003 518.723 0.000 

D
x  1.179    

D
s  1.180    

Table 7.2.1.1: Binormal parameter estimates for boys’ reading scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.366 0.052 7.049 0.000 

Dx  -0.817 0.128 -6.358 0.000 

Ds  1.373 0.028 49.204 0.000 

D
x  0.613    

D
s  1.274    

Table 7.2.1.2: Binormal parameter estimates for girls’ reading scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.166 0.002 99.677 0.000 

Dx  -2.531 0.013 -188.817 0.000 

Ds  1.254 0.006 195.445 0.000 

D
x  0.318    

D
s  1.370    

Table 7.2.2.1: Binormal parameter estimates for boys’ reading scores in P5 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.146 0.007 20.419 0.000 

Dx  -1.631 0.067 -24.190 0.000 

Ds  1.414 0.024 59.119 0.000 

D
x  0.622    

D
s  1.255    

Table 7.2.2.2: Binormal parameter estimates for girls’ reading scores in P5 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.163 0.002 88.315 0.000 

Dx  -2.618 0.018 -144.588 0.000 

Ds  1.307 0.010 135.782 0.000 

D
x  0.424    

D
s  1.306    

Table 7.2.3.1: Binormal parameter estimates for boys’ reading scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.081 0.001 70.485 0.000 

Dx  -2.571 0.021 -122.889 0.000 

Ds  1.116 0.014 79.102 0.000 

D
x  0.568    

D
s  1.306    

Table 7.2.3.2: Binormal parameter estimates for girls’ reading scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.459 0.010 43.925 0.000 

Dx  -1.288 0.039 -33.364 0.000 

Ds  1.714 0.012 145.859 0.000 

D
x  0.649    

D
s  1.066    

Table 7.2.4.1: Binormal parameter estimates for boys’ reading scores in P7 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.406 0.010 39.786 0.000 

Dx  -0.830 0.037 -22.164 0.000 

Ds  1.620 0.010 159.005 0.000 

D
x  0.872    

D
s  1.045    

Table 7.2.4.2: Binormal parameter estimates for girls’ reading scores in P7 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.292 0.121 2.414 0.016 

Dx  -0.724 0.319 -2.272 0.023 

Ds  1.130 0.067 16.891 0.000 

D
x  0.251    

D
s  0.965    

Table 7.3.1.1: Binormal parameter estimates for boys’ mathematics scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.054 0.001 73.922 0.000 

Dx  -1.893 0.011 -170.889 0.000 

Ds  0.708 0.007 100.151 0.000 

D
x  0.066    

D
s  0.906    

Table 7.3.1.2: Binormal parameter estimates for girls’ mathematics scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.366 0.004 102.664 0.000 

Dx  -0.771 0.010 -73.931 0.000 

Ds  1.275 0.002 546.217 0.000 

D
x  0.441    

D
s  0.811    

Table 7.3.2.1: Binormal parameter estimates for boys’ mathematics scores in P5 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.307 0.003 89.586 0.000 

Dx  -0.759 0.011 -69.271 0.000 

Ds  1.190 0.002 503.922 0.000 

D
x  0.357    

D
s  0.761    

Table 7.3.2.2: Binormal parameter estimates for girls’ mathematics scores in P5 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.289 0.002 155.096 0.000 

Dx  -0.843 0.006 -148.575 0.000 

Ds  1.523 0.001 1895.414 0.000 

D
x  0.201    

D
s  0.881    

Table 7.3.3.1: Binormal parameter estimates for boys’ mathematics scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.282 0.001 219.428 0.000 

Dx  -0.767 0.004 -217.325 0.000 

Ds  1.424 0.001 2162.857 0.000 

D
x  0.158    

D
s  0.790    

Table 7.3.3.2: Binormal parameter estimates for girls’ mathematics scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.790 0.002 411.824 0.000 

Dx  -0.191 0.003 -57.720 0.000 

Ds  1.560 0.001 2275.885 0.000 

D
x  1.225    

D
s  0.759    

Table 7.3.4.1: Binormal parameter estimates for boys’ mathematics scores in P7 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.648 0.004 183.828 0.000 

Dx  -0.324 0.007 -49.490 0.000 

Ds  1.447 0.001 1048.998 0.000 

D
x  0.998    

D
s  0.859    

Table 7.3.4.2: Binormal parameter estimates for girls’ mathematics scores in P7 
 



 83 

 
Variable Value Std. Error t-ratio Prob(t) 

ρ  0.191 0.011 18.121 0.000 

Dx  -1.476 0.086 -17.187 0.000 

Ds  1.513 0.028 54.305 0.000 

D
x  0.330    

D
s  0.949    

Table 7.4.1.1: Binormal parameter estimates for boys’ arithmetic scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.177 0.005 34.562 0.000 

Dx  -1.679 0.047 -35.912 0.000 

Ds  1.471 0.016 93.371 0.000 

D
x  0.135    

D
s  0.789    

Table 7.4.1.2: Binormal parameter estimates for girls’ arithmetic scores in P4 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.219 0.005 46.098 0.000 

Dx  -1.219 0.031 -38.707 0.000 

Ds  1.720 0.006 280.849 0.000 

D
x  0.406    

D
s  0.956    

Table 7.4.2.1: Binormal parameter estimates for boys’ arithmetic scores in P5 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.249 0.005 49.753 0.000 

Dx  -0.986 0.024 -41.940 0.000 

Ds  1.415 0.004 327.342 0.000 

D
x  0.327    

D
s  0.781    

Table 7.4.2.2: Binormal parameter estimates for girls’ arithmetic scores in P5 
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Variable Value Std. Error t-ratio Prob(t) 

ρ  0.267 0.006 42.543 0.000 

Dx  -0.981 0.029 -34.351 0.000 

Ds  1.611 0.005 344.140 0.000 

D
x  0.406    

D
s  0.981    

Table 7.4.3.1: Binormal parameter estimates for boys’ arithmetic scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.235 0.003 79.999 0.000 

Dx  -0.940 0.013 -73.046 0.000 

Ds  1.698 0.003 660.562 0.000 

D
x  0.257    

D
s  0.810    

Table 7.4.3.2: Binormal parameter estimates for girls’ arithmetic scores in P6 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.237 0.006 37.046 0.000 

Dx  -0.953 0.028 -34.508 0.000 

Ds  2.060 0.004 473.907 0.000 

D
x  0.311    

D
s  1.289    

Table 7.4.4.1: Binormal parameter estimates for boys’ arithmetic scores in P7 
 
 
 

Variable Value Std. Error t-ratio Prob(t) 
ρ  0.283 0.006 47.025 0.000 

Dx  -0.765 0.021 -36.098 0.000 

Ds  1.630 0.002 693.972 0.000 

D
x  0.311    

D
s  1.289    

Table 7.4.4.2: Binormal parameter estimates for girls’ arithmetic scores in P7 
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5. The Variation Explained by the Models 
 
The coefficient of multiple determination (R²) describes the proportion of 

variation in data explained by the regression model. On its own the normal model 

explains the bulk of the variation in all of the circumstances here described. 

Another way to investigate the improvement in model fit is to consider the 

additional variance explained by the binormal model over and above that 

explained by the normal distribution model. This is similar to the analysis 

performed in section 3 of this chapter, but is more readily interpreted. It also 

allows an evaluation of the magnitude of any residual unexplained variation. The 

results from this analysis are given in tables 8.1.1 to 8.4.2. 

 

The partitioning of explained variance reported in tables 8.1.1 to 8.4.2 reveals 

some trends, but there is no entirely consistent pattern. Perhaps the most 

consistent trend concerned the mental arithmetic assessments. These showed the 

greatest amount of additional explained variance by the binormal model, together 

with the least amount of unexplained variance. 

 

Not surprisingly the girls’ picture vocabulary results in P7, for which the 

binormal model was rejected in the previous section, showed a very high 

proportion of variance explained by the normal model. However the girls’ P4 

mathematics scores and the P4 reading scores of both boys and girls all showed a 

higher proportion of variance explained by the normal model, even though the 

binormal model provided a statistically better fit. Interestingly the girls’ P7 

picture vocabulary results showed a relatively high proportion of unexplained 

variance after fitting the binormal model, and this suggests that the curve fitting 

methodology may have arrived at an incorrect solution in this case. 

 

The lowest amount of additional variation explained by the binormal model was 

0.038% in the case of boys’ reading results in P4, and this still gave a 

significantly better fit than the normal model. For several assessments, most 

notably the P7 reading results for both boys and girls, the amount of unexplained 

variance after fitting the binormal model was of a similar magnitude. This 
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suggests that in some circumstances there may be scope to fit a model to the data 

that is even more complicated than the binormal distribution. 
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Coefficient of Multiple 

Determination (R²) 
Year 

Group 
Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.99454 0.99974 0.52% 0.03% 
P5 0.99570 0.99980 0.41% 0.02% 
P6 0.99472 0.99987 0.52% 0.01% 
P7 0.99586 0.99990 0.40% 0.01% 

Table 8.1.1: Comparison of the variation explained by the normal and binormal models applied 
to boys’ picture vocabulary scores. 
 
 

Coefficient of Multiple 
Determination (R²) 

Year 
Group 

Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.99399 0.99966 0.57% 0.03% 
P5 0.99069 0.99991 0.92% 0.01% 
P6 0.99478 0.99956 0.48% 0.04% 
P7 0.99771 0.99944 0.17% 0.06% 

Table 8.1.2: Comparison of the variation explained by the normal and binormal models applied 
to girls’ picture vocabulary scores. 
 
 
 

Coefficient of Multiple 
Determination (R²) 

Year 
Group 

Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.99956 0.99994 0.04% 0.01% 
P5 0.99478 0.99990 0.51% 0.01% 
P6 0.98976 0.99980 1.00% 0.02% 
P7 0.98638 0.99926 1.29% 0.07% 

Table 8.2.1: Comparison of the variation explained by the normal and binormal models applied 
to boys’ reading scores. 
 
 
 

Coefficient of Multiple 
Determination (R²) 

Year 
Group 

Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.99931 0.99986 0.06% 0.01% 
P5 0.99587 0.99985 0.40% 0.01% 
P6 0.99436 0.99979 0.54% 0.02% 
P7 0.98847 0.99953 1.11% 0.05% 

Table 8.2.2: Comparison of the variation explained by the normal and binormal models applied 
to girls’ reading scores. 
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Coefficient of Multiple 

Determination (R²) 
Year 

Group 
Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.99868 0.99981 0.11% 0.02% 
P5 0.98913 0.99991 1.08% 0.01% 
P6 0.99001 0.99991 0.99% 0.01% 
P7 0.99515 0.99966 0.45% 0.03% 

Table 8.3.1: Comparison of the variation explained by the normal and binormal models applied 
to boys’ mathematics scores. 
 
 
 

Coefficient of Multiple 
Determination (R²) 

Year 
Group 

Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.99828 0.99995 0.17% 0.01% 
P5 0.98955 0.99993 1.04% 0.01% 
P6 0.98887 0.99995 1.11% 0.01% 
P7 0.99372 0.99979 0.61% 0.02% 

Table 8.3.2: Comparison of the variation explained by the normal and binormal models applied 
to girls’ mathematics scores. 
 
 
 

Coefficient of Multiple 
Determination (R²) 

Year 
Group 

Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.98483 0.99988 1.50% 0.01% 
P5 0.98234 0.99982 1.75% 0.02% 
P6 0.98887 0.99984 1.10% 0.02% 
P7 0.99495 0.99986 0.49% 0.01% 

Table 8.4.1: Comparison of the variation explained by the normal and binormal models applied 
to boys’ arithmetic scores. 
 
 
 

Coefficient of Multiple 
Determination (R²) 

Year 
Group 

Normal 
Model 

Binormal 
Model 

Additional 
Variation 
Explained 

Unexplained 
Variation 

P4 0.97119 0.99986 2.87% 0.01% 
P5 0.98111 0.99979 1.87% 0.02% 
P6 0.97877 0.99979 2.10% 0.02% 
P7 0.97464 0.99989 2.53% 0.01% 

Table 8.4.2: Comparison of the variation explained by the normal and binormal models applied 
to girls’ arithmetic scores. 
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6. Summary 
 
An examination of the output produced by the DataFit software revealed that, 

with one exception, the binormal distribution model provided a statistically better 

fit than the normal distribution model. The exception was found in the case of the 

picture vocabulary scores for the oldest cohort of girls (P7). In this case it was 

accepted that the normal distribution represented a more appropriate model, 

although the possibility that the software had settled upon an incorrect solution 

was also considered. It was also argued that in some cases, such as those of the 

reading results for the P7 cohort, the distribution of scores may be even more 

complicated than that allowed for by the binormal model. 
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Chapter 6: A Visual Examination of Model Fits 
 
 
1. Introduction 
 
In chapter 5 it was established that in most instances the binormal model 

provided a better fit for the distribution of assessment scores than did the normal 

model. Whilst this is encouraging, a test of statistical significance on its own 

does not guarantee the validity of a particular model. The model must also make 

sense within a theoretical framework. The first stage in establishing this is to 

consider the face validity of the model fits. 

 

In this chapter three graphs are presented for each dataset. Figure 2 presents the 

pdf curve for the normal distribution model against a probability histogram of the 

actual age-ability difference scores. The parameter values used to produce the 

normal curve are given in table 2. Figure 3 presents the pdf curve for the 

binormal distribution model against the same probability histogram. The 

parameter values used to produce the binormal curve are given in table 7. Figure 

3 uses the same parameter values to present the normal pdf curve of each of the 

subpopulations that make up the binormal model fit. In these subpopulation plots 

the distribution of the low attaining subpopulation is represented by a blue line 

and that of the higher attaining subpopulation by a pink line. 
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2. The Production of Probability Histograms 
 
The histograms presented in figure 2 and figure 3 take the usual frequency of 

observations in each category and rescale them as a probability. This procedure 

places the histogram on the same scale as the pdf curve, thus allowing a direct 

visual inspection of the model fit. 

 

For the production of each histogram a category width ( )w  of 0.25 years was 

chosen. The age-ability difference scores were rounded to the nearest 0.25 years. 

The scores were then aggregated by this rounded number and the frequency of 

observations ( )f  in each category determined. The height of each bar in the 

histogram was then determined using the following expression in which N  

refers to the total of all the observations. 

 

( )
wN

f
XP =  

 
This expression simply takes the proportion of observations in each category and 

then makes a correction for the category width. 
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Figure 2.1.1.1: Normal Model Plot for Boys’ Picture  Vocabulary Results in P4
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Figure 2.1.1.2: Normal Model Plot for Girls’ Pictur e Vocabulary Results in P4
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Figure 2.1.2.1: Normal Model Plot for Boys’ Picture  Vocabulary Results in P5
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Figure 2.1.2.2: Normal Model Plot for Girls’ Pictur e Vocabulary Results in P5
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Figure 2.1.3.1: Normal Model Plot for Boys’ Picture  Vocabulary Results in P6
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Figure 2.1.3.2: Normal Model Plot for Girls’ Pictur e Vocabulary Results in P6
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Figure 2.1.4.1: Normal Model Plot for Boys’ Picture  Vocabulary Results in P7
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Figure 2.1.4.2: Normal Model Plot for Girls’ Pictur e Vocabulary Results in P7
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Figure 2.2.1.1: Normal Model Plot for Boys’ Reading  Results in P4
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Figure 2.2.1.2: Normal Model Plot for Girls’ Readin g Results in P4
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Figure 2.2.2.1: Normal Model Plot for Boys’ Reading  Results in P5
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Figure 2.2.2.2: Normal Model Plot for Girls’ Readin g Results in P5
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Figure 2.2.3.1: Normal Model Plot for Boys’ Reading  Results in P6
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Figure 2.2.3.2: Normal Model Plot for Girls’ Readin g Results in P6
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Figure 2.2.4.1: Normal Model Plot for Boys’ Reading  Results in P7
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Figure 2.2.4.2: Normal Model Plot for Girls’ Readin g Results in P7
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Figure 2.3.1.1: Normal Model Plot for Boys’ Mathema tics Results in P4
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Figure 2.3.1.2: Normal Model Plot for Girls’ Mathem atics Results in P4
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Figure 2.3.2.1: Normal Model Plot for Boys’ Mathema tics Results in P5
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Figure 2.3.2.2: Normal Model Plot for Girls’ Mathem atics Results in P5
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Figure 2.3.3.1: Normal Model Plot for Boys’ Mathema tics Results in P6
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Figure 2.3.3.2: Normal Model Plot for Girls’ Mathem atics Results in P6
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Figure 2.3.4.1: Normal Model Plot for Boys’ Mathema tics Results in P7
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Figure 2.3.4.2: Normal Model Plot for Girls’ Mathem atics Results in P7
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Figure 2.4.1.1: Normal Model Plot for Boys’ Arithme tic Results in P4
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Figure 2.4.1.2: Normal Model Plot for Girls’ Arithm etic Results in P4
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Figure 2.4.2.1: Normal Model Plot for Boys’ Arithme tic Results in P5
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Figure 2.4.2.2: Normal Model Plot for Girls’ Arithm etic Results in P5
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Figure 2.4.3.1: Normal Model Plot for Boys’ Arithme tic Results in P6
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Figure 2.4.3.2: Normal Model Plot for Girls’ Arithm etic Results in P6
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Figure 2.4.4.1: Normal Model Plot for Boys’ Arithme tic Results in P7
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Figure 2.4.4.2: Normal Model Plot for Girls’ Arithm etic Results in P7
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Figure 3.1.1.1: Binormal Model Plot for Boys’ Pictu re Vocabulary Results in P4
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Figure 3.1.1.2: Binormal Model Plot for Girls’ Pict ure Vocabulary Results in P4
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Figure 3.1.2.1: Binormal Model Plot for Boys’ Pictu re Vocabulary Results in P5
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Figure 3.1.2.2: Binormal Model Plot for Girls’ Pict ure Vocabulary Results in P5
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Figure 3.1.3.1: Binormal Model Plot for Boys’ Pictu re Vocabulary Results in P6
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Figure 3.1.3.2: Binormal Model Plot for Girls’ Pict ure Vocabulary Results in P6
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Figure 3.1.4.1: Binormal Model Plot for Boys’ Pictu re Vocabulary Results in P7
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Figure 3.1.4.2: Binormal Model Plot for Girls’ Pict ure Vocabulary Results in P7
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Figure 3.2.1.1: Binormal Model Plot for Boys’ Readi ng Results in P4
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Figure 3.2.1.2: Binormal Model Plot for Girls’ Read ing Results in P4
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Figure 3.2.2.1: Binormal Model Plot for Boys’ Readi ng Results in P5
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Figure 3.2.2.2: Binormal Model Plot for Girls’ Read ing Results in P5
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Figure 3.2.3.1: Binormal Model Plot for Boys’ Readi ng Results in P6
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Figure 3.2.3.2: Binormal Model Plot for Girls’ Read ing Results in P6
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Figure 3.2.4.1: Binormal Model Plot for Boys’ Readi ng Results in P7
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Figure 3.2.4.2: Binormal Model Plot for Girls’ Read ing Results in P7
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Figure 3.3.1.1: Binormal Model Plot for Boys’ Mathe matics Results in P4
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Figure 3.3.1.2: Binormal Model Plot for Girls’ Math ematics Results in P4
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Figure 3.3.2.1: Binormal Model Plot for Boys’ Mathe matics Results in P5
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Figure 3.3.2.2: Binormal Model Plot for Girls’ Math ematics Results in P5
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Figure 3.3.3.1: Binormal Model Plot for Boys’ Mathe matics Results in P6
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Figure 3.3.3.2: Binormal Model Plot for Girls’ Math ematics Results in P6
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Figure 3.3.4.1: Binormal Model Plot for Boys’ Mathe matics Results in P7
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Figure 3.3.4.2: Binormal Model Plot for Girls’ Math ematics Results in P7
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Figure 3.4.1.1: Binormal Model Plot for Boys’ Arith metic Results in P4
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Figure 3.4.1.2: Binormal Model Plot for Girls’ Arit hmetic Results in P4

0.0

0.1

0.2

0.3

0.4

0.5

-8 -6 -4 -2 0 2 4 6 8

Age - Ability Difference (years)

P
ro

ba
bi

lit
y

 



 150 

Figure 3.4.2.1: Binormal Model Plot for Boys’ Arith metic Results in P5
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Figure 3.4.2.2: Binormal Model Plot for Girls’ Arit hmetic Results in P5
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Figure 3.4.3.1: Binormal Model Plot for Boys’ Arith metic Results in P6
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Figure 3.4.3.2: Binormal Model Plot for Girls’ Arit hmetic Results in P6
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Figure 3.4.4.1: Binormal Model Plot for Boys’ Arith metic Results in P7
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Figure 3.4.4.2: Binormal Model Plot for Girls’ Arit hmetic Results in P7

0.0

0.1

0.2

0.3

0.4

0.5

-8 -6 -4 -2 0 2 4 6 8

Age - Ability Difference (years)

P
ro

ba
bi

lit
y

 



 156 

Figure 4.1.1.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P4
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Figure 4.1.1.2: Binormal Subpopulation Plot for Gir ls’ Picture Vocabulary Results in P4
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Figure 4.1.2.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P5
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Figure 4.1.2.2: Binormal Subpopulation Plot for Gir ls’ Picture Vocabulary Results in P5
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Figure 4.1.3.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P6
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Figure 4.1.3.2: Binormal Subpopulation Plot for Gir ls’ Picture Vocabulary Results in P6

0.0

0.1

0.2

0.3

0.4

0.5

-8 -6 -4 -2 0 2 4 6 8

Age - Ability Difference (years)

P
ro

ba
bi

lit
y

 



 162 

Figure 4.1.4.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P7
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Figure 4.1.4.2: Binormal Subpopulation Plot for Gir ls’ Picture Vocabulary Results in P7
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Figure 4.2.1.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P4
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Figure 4.2.1.2: Binormal Subpopulation Plot for Gir ls’ Reading Results in P4
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Figure 4.2.2.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P5
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Figure 4.2.2.2: Binormal Subpopulation Plot for Gir ls’ Reading Results in P5
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Figure 4.2.3.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P6
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Figure 4.2.3.2: Binormal Subpopulation Plot for Gir ls’ Reading Results in P6
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Figure 4.2.4.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P7
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Figure 4.2.4.2: Binormal Subpopulation Plot for Gir ls’ Reading Results in P7
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Figure 4.3.1.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P4
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Figure 4.3.1.2: Binormal Subpopulation Plot for Gir ls’ Mathematics Results in P4
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Figure 4.3.2.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P5
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Figure 4.3.2.2: Binormal Subpopulation Plot for Gir ls’ Mathematics Results in P5
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Figure 4.3.3.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P6
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Figure 4.3.3.2: Binormal Subpopulation Plot for Gir ls’ Mathematics Results in P6
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Figure 4.3.4.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P7
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Figure 4.3.4.2: Binormal Subpopulation Plot for Gir ls’ Mathematics Results in P7
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Figure 4.4.1.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P4
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Figure 4.4.1.2: Binormal Subpopulation Plot for Gir ls’ Arithmetic Results in P4
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Figure 4.4.2.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P5
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Figure 4.4.2.2: Binormal Subpopulation Plot for Gir ls’ Arithmetic Results in P5
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Figure 4.4.3.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P6
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Figure 4.4.3.2: Binormal Subpopulation Plot for Gir ls’ Arithmetic Results in P6
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Figure 4.4.4.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P7
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Figure 4.4.4.2: Binormal Subpopulation Plot for Gir ls’ Arithmetic Results in P7
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3. Picture Vocabulary 
 
On the whole the model fits illustrated in figure 2 indicate that the normal 

distribution represents a good description of the observed data. However closer 

inspection reveals that there is a systematic discrepancy in the fits such that 

immediately to the left of centre the bars of the histogram tend to be lower than 

the fitted curve, whilst those immediately to the right of centre tend to be taller. 

Whilst the normal curve describes a distribution that is symmetrical about the 

mean, the observed distribution is asymmetrical. It is in fact negatively skewed, 

having a relatively long and thick left hand tail. This pattern is a consistent 

feature of the picture vocabulary distributions. 

 

Figure 3 illustrates how well the negative skew in the distribution of scores is 

described by the binormal distribution. The path of the binormal pdf curve tracks 

the height of the histogram bars very closely. Figure 4 demonstrates how this 

improvement in fit is achieved. In all cases the lower attaining subpopulation has 

a very broad flat distribution which effectively fills the left hand tail, but also 

extends well in to the right hand side of the distribution. In most cases the 

standard deviation of the scores of the low attaining subpopulation is actually 

greater than that of the population as a whole. The one exception to this is in the 

case of girls’ scores in P6, but here the standard error of the estimate is very high 

and so the exception may be misleading. 

 

Figure 3 also clearly illustrates that with respect to subpopulation prevalence’s 

there is no consistent pattern, either with girls compared to boys or with trends 

across cohorts. 

 
 
4. Reading 
 
An examination of figures 2.2.1.1 and 2.2.1.2 reveals little evidence for skewness 

in the P4 reading data. In each case the height of the histogram falls short of the 

normal pdf curve towards the centre of the distribution, but a little taller to either 

side. This negative kurtosis is more clearly illustrated in the boys’ data. In the 

remaining cohorts the data appear to be negatively skewed. 



 189 

 

Figure 3 reveals that the binormal model goes some way to describing the 

negative skew in the data, but that systematic discrepancies between the 

histograms and pdf curves indicate additional structure in the distributions that 

are not fully accounted for by the binormal model. This is most clearly evident in 

the P7 distributions where there is a clear suggestion of a third peak in the 

distribution of scores. 

 

The subpopulation plots (figures 4.2.1.1 to 4.2.4.2) reveal some consistent 

patterns in the data. In P4 for both boys and girls there is a considerable overlap 

in the subpopulation distributions, which accounts for the negative kurtosis and 

lack of skew in the overall distribution of scores. The standard deviation of the 

scores of the low attaining subpopulation is always lower than that of the 

population as a whole, which is in contrast to what was found with picture 

vocabulary. The prevalence of the low attaining population is always higher for 

boys than for girls within a cohort. In the case of the boys’ data in P4 prevalence 

of the low attaining subpopulation is greater than that of the higher attaining 

subpopulation. In all other circumstances the reverse is true. For both boys and 

girls the prevalence of the low attaining subpopulation decreases between P4 and 

P5, and between P5 and P6. In P7 there is an increase in prevalence, an 

observation that may be accounted for if the data were to have a more complex, 

possibly trimodal structure. 

 
 
5. Mathematics 
 
The normal model plots for mathematics (figures 2.3.1.1 to 2.3.4.2) illustrate 

negatively skewed distributions for boys and girls in all year groups. In the three 

younger cohorts the variation in scores is smaller than was observed for both 

picture vocabulary and reading, resulting in taller thinner distributions. In P7 the 

scores are more spread out and as with the P7 reading distribution there is a hint 

of a third peak hidden in the data. 
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The binormal model plots (figures 3.3.1.1 to 3.3.4.2) indicate a good model fit 

for boys and girls in P4, P5 and P6. However the model does not adequately 

summarise the shape of the more complex distributions observed in P7. 

 

The subpopulation plots for mathematics are illustrated in figures 4.3.1.1 to 

4.3.4.2. The plots for boys and girls in the three youngest cohorts account for the 

negative skew with a broad flat distribution of scores in the low attaining 

subpopulation. This is similar, though not quite as marked, to the pattern 

observed for the distribution of picture vocabulary scores. In P7 the pattern is 

quite different. Here there is considerable overlap between the two 

subpopulations, and that with the higher attainment represents smaller 

subpopulation. The pattern of subpopulation parameter values between boys and 

girls is inconsistent, as is the trend across year groups. 

 

 
6. Arithmetic 
 
The overall pattern in the distribution of arithmetic scores closely mirrors those 

found for mathematics. The distributions tend to have a relatively small variance 

and be negatively skewed. The low attaining subpopulation has a high standard 

deviation that extends well into the left hand tail of the distribution. However 

unlike the mathematics distributions this pattern is continued in the P7 results. As 

with the mathematics data there are some hints toward an underlying trimodal 

distribution, particularly in P7, although not as obviously so. 

 

With respect to the binormal parameter estimates there is some evidence of a 

mirroring of those results for boys’ and girls’, but with inconsistencies in the 

differences of the absolute magnitudes of those estimates. The most striking 

cross-cohort pattern occurs in the estimate of the mean score for the low attaining 

subpopulation. For both boys and girls this increases with the age of the cohort. 
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7. Summary 
 
In this chapter a visual inspection was made of the normal and binormal model 

fits to the observed distributions of assessment scores. An examination of the 

probability histograms revealed a tendency for the data to be negatively skewed. 

In general the binormal model provided a good description of the data for 

younger cohorts, but there was evidence for a more complex data structure in 

some instances. In particular the P7 results for reading and mathematics revealed 

evidence for an underlying trimodal structure. There was a tendency for the 

binormal model fits to accommodate the negative skew in the data by utilising a 

broad flat distribution of scores in the low attaining subpopulation. 

 

In general the results described here concur with the statistical evaluation of 

model fits presented in chapter 5. However the visual examination of the data 

gave insights into the distribution of assessment scores that were not immediately 

apparent in the statistical descriptives. In chapter 7 the validity of the model fits 

within the context of the binormal hypothesis of specific learning disabilities is 

considered. 
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Chapter 7: The Validity of the Binormal Model Fits 
 
 
1. Introduction 
 
On its own a statistically significant fit does not mean that a particular model has 

validity. To establish that it necessary to consider how the results sit within a 

theoretical framework. In this chapter the degree to which these data support the 

hypothesis that the population consists of qualitatively distinct subpopulations is 

considered. Other factors that may contribute to the shape of score distributions 

are also discussed. 

 
 
2. The Evidence from Age-Grade Curves 
 
An interesting feature of the age-grade curves presented in chapter 4 is the 

sudden step up in scores that was observed for mathematics and arithmetic 

between P6 and P7 (figures 1.3 and 1.4). This was accompanied by a sudden 

increase in the variance of scores (tables 1 .3 and 1.4). The pattern is also 

illustrated in the probability histograms where there is a suggestion of another 

peak appearing in the right hand tail of the data. This is perhaps most clearly 

illustrated in the boys’ mathematics results in P7 (figure 3.3.4.1). Here there is a 

clear spike in the distribution at around about 1 year. Compared to the apparently 

binormal distribution observed in P6 (figure 3.3.3.1) it is as if a third group of 

pupils had suddenly pulled away to the right. That conclusion is also supported 

by the subpopulation plot for the same data where the minority subpopulation has 

suddenly shifted from the left hand tail to the right (figure 4.3.4.1). 

 

A possible explanation for these observations is that it results from a particular 

quirk of the Northern Ireland education system where the data were collected. 

Northern Ireland is one of the few remaining regions of the UK that operates a 

grammar school entry system. A proportion of children in the province will have 

been given additional coaching in their final year of primary school for the 

purpose of sitting grammar school entry exams. This may have had a knock on 

impact that has affected the InCAS scores, either through a boost in curriculum 

knowledge or a boost in test-wiseness. It is entirely possible that this would have 
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a more apparent effect on mathematics and arithmetic than it would on reading, 

although there is evidence for a similar effect in the P7 reading histograms 

(figures 3.2.4.1 and 3.2.4.2). If that explanation were correct then a simple way 

to test it would be to repeat the analysis using InCAS data gathered from 

somewhere where there are no such tests for secondary school entry. Data 

gathered from an entire education authority in Scotland or England would be 

ideal for such a purpose. 

 

Another possible explanation is that the appearance of a subtype of high attaining 

children in the population is a reflection of a genuine developmental step that 

occurs at around the age of 10 years. If this were true then it is probable that 

some children will have made that step already at the age of nine years, and 

others will still not have made the transition by the time that they are 11. In short 

there ought to be an observable pattern in the data over time, particularly with 

respect to prevalence estimates. If such a pattern were found it would be 

desirable to establish whether it was a specific trend associated with either 

mathematics or reading, or something more general. It is also entirely feasible 

that there would be a gender difference in any trend, particularly if it were linked 

to the onset of puberty. Within the context of the present study finding such a 

pattern would be dependent upon applying models of increasing modality, 

starting with the trinormal distribution. 

 

The possibility that the distribution of scores may be affected by instructional 

factors is not very surprising. Indeed it was acknowledged to be a possible 

explanation for the skew observed in the Isle of Wight study data (Rutter and 

Yule, 1975). However this need not be an obstacle to finding evidence for 

specific learning disabilities. If there are qualitatively distinct subtypes of learner 

then it is likely that instruction will have a differential effect on those subtypes. 

Children with specific learning disabilities will still have a tendency to be located 

at the lower end of the distribution, and that will be apparent in a large enough 

sample. 
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3. Picture Vocabulary 
 
In terms of qualitatively distinct subtypes of vocabulary acquisition the major 

difference might be expected to be found between those that speak English as 

their first language, and those that speak it as an additional language. The 

variation in vocabulary scores might be expected to be relatively high for 

additional language speakers for a variety of reasons. The amount of exposure to 

English would contribute significantly to this variation. Children that had newly 

arrived in the country and had only been learning English for a short while would 

be at a considerable disadvantage compared to those born in the country that, 

whilst having a different mother tongue, had had some exposure to English for 

the whole of their lives. In addition picture vocabulary assessments are known to 

have a cultural load that is likely to disproportionately affect recent immigrants. 

As well as a relatively high variation in scores it is also likely that there would be 

considerable overlap between the two subpopulations. Whilst it might be 

expected that the vocabulary score of the weakest native English speaker might 

not be as low as that of the weakest additional language speaker, there is no 

reason to suppose that there should be the same difference at the other end of the 

scale. 

 

At first glance the picture vocabulary data presented here are largely consistent 

with the expectation presented in the previous paragraph. However closer 

examination of the data reveals a problem. If new immigrants continue to arrive 

in the country it will tend to hold down the lowest vocabulary score of the 

additional language subpopulation, while the highest score for the same 

subpopulation will tend to increase. This would result in a larger variance in the 

scores of the additional language subpopulation as the cohorts increase in age. 

This pattern is not found in the data (tables 9.1.1 and 9.1.2). It may be that 

additional language speakers do not form a high enough proportion of the 

population to make a noticeable impact on the distribution of scores. Although 

reliable figures for the proportion of EAL (English as an Additional Language) 

children in the sample were not available, it is reasonable to suppose that 

Northern Ireland represents a region of the UK with a relatively low number of 

such children. 
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Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.07 -3.27 2.50 0.07 1.68 
P5 0.53 -0.37 2.16 0.50 1.27 
P6 0.23 -1.12 2.43 0.53 1.55 
P7 0.28 -0.97 2.55 0.55 1.67 

Table 9.1.1: Summary of binormal parameter estimates for boys’ picture vocabulary scores 
 
 

Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.27 -1.43 1.91 0.42 1.37 
P5 0.30 -0.70 2.42 0.35 1.26 
P6 0.03 -5.00 1.70 0.12 1.61 
P7 0.18 -1.80 2.16 0.22 1.74 

Table 9.1.2: Summary of binormal parameter estimates for girls’ picture vocabulary scores 
 
 
If EAL children are not making a significant contribution to the distribution of 

picture vocabulary scores then it might be expected that they would follow a 

normal distribution. In fact this doesn’t appear to be the case if the additional 

variation explained by the binormal model fit is taken into consideration (table 

8). This shows that fitting the binormal model to the picture vocabulary data has 

a greater impact than it does on either that of reading or mathematics. However 

this might simply have resulted from having four times less data which will have 

affected the smoothness of cdf curve used in the model fit. When the parameter 

fit statistics were considered the binormal distribution model was rejected in 

favour of the normal distribution model for girls’ picture vocabulary scores in P7 

(table 7.1.4.2). However, this aside the binormal distribution model did provide a 

significantly better fit. If the negative skew in the data cannot be explained in 

terms of the presence of EAL children then it suggests that something more 

complex is happening. 

 

Early vocabulary acquisition is achieved entirely by listening to language. 

However as a child learns to read they increasingly acquire vocabulary through 

the printed word. The degree to which children acquire vocabulary from print 

will depend upon their reading ability and their propensity to read. Thus children 

with specific reading disabilities are likely to acquire less vocabulary through 
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print, but that is not to say that they do not develop compensatory mechanisms 

for language development. The vocabulary development of normal readers that 

never pick up a book will also be affected. Thus the distribution of picture 

vocabulary scores may be intimately connected with reading development in 

complex ways. 

 

If vocabulary acquisition is indeed linked to reading development then the 

connection will be most prominent in data collected from older children. A 

tantalising glimpse of that connection is revealed if the P7 girls’ probability 

histograms for picture vocabulary and reading are compared (figures 3.1.4.2 and 

3.2.4.2). In this case the binormal distribution model for picture vocabulary was 

rejected on the grounds that mean and prevalence estimates of the low attaining 

population were not significantly different from zero. However the distribution 

of scores is clearly not unimodal, and perhaps a trinormal distribution would 

provide a better fit. There is also a suggestion that the distribution of reading 

scores might be better described by a trinormal distribution. 

 

When cross-gender and cross-cohort comparisons are made of the binormal 

parameter estimates then no particular patterns are observed. This may result 

from complex interactions with reading development and EAL status. If so this 

exposes an important limitation of the methodology to cope with such 

complexity. 

 
 
4. Reading 
 
The distributions of reading results appear to have a complex structure that is not 

adequately explained by the binormal distribution model. It has been argued that 

in P7 an apparent boost in mathematics and arithmetic scores may have resulted 

from the preparation of some learners to take grammar school entrance tests, and 

that has introduced additional complexity into the distribution of assessment 

scores. However this explanation would seem to be inadequate when applied to 

reading. On the one hand there was little evidence for a boost in reading scores in 

P7. It might also be expected that the development of reading skills requires 
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practice over extended periods and may therefore be less susceptible than 

mathematics and arithmetic to short term cramming techniques. 

 

A second observation is that the apparently complex structure in the distribution 

of reading scores is already apparent in younger cohorts of children. For example 

the distribution of girls’ reading scores in P5 appears to show three separate 

peaks at around -2, 0 and 1 years (figure 3.2.2.2). A possible explanation for this 

distribution of scores is that it results from the relatively complex structure of the 

reading assessment, composed as it is of separate subtests of word recognition, 

word decoding and reading comprehension. The apparent trimodality in the 

results might simply be an artefact. Clearly one way to check this would be to 

analyse the results for each subtest separately. 

 

Another explanation for the complexity of the distribution of reading scores is 

that it is a true reflection of the distribution in the population, and that the 

composite nature of the reading assessment used here has simply revealed it. The 

simple view of reading (SVR) is a widely investigated model of reading 

disabilities originally proposed by Gough and Tunmer (Gough and Tunmer, 

1986). According to this model reading comprehension is the product of two 

quite different skills; word decoding and listening comprehension. The model 

predicts two types of specific reading disability according to which of these skills 

are impaired. It is suggested that a deficit in word decoding results in the 

condition usually referred to as dyslexia, whilst a deficit in listening 

comprehension manifests itself as hyperlexia. There is a growing body of 

evidence to support the independence of word decoding and listening 

comprehension in the development of reading, thus providing support for the 

SVR model (Kendeou et al., 2009). The InCAS reading assessment employed in 

the present study does not include an assessment of listening comprehension, 

although it does include word decoding. If the SVR model is correct then a 

trimodal distribution of InCAS reading scores might be expected. The lowest 

attaining subpopulation would be those children that were unable to decode 

(dyslexics). Children that could decode but not comprehend (hyperlexics) would 

appear as a hump in the middle of the distribution. Normal readers would appear 

as the highest attaining subpopulation. It is likely that in younger cohorts the 
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presence of dyslexics might be evident, but that hyperlexics would be 

indistinguishable from weaker normal readers. However as the cohorts increased 

in age and reading development it is likely that the hyperlexic and normal readers 

would gradually separate out, resulting in an increasingly trimodal distribution of 

scores.  

 

If the data do indeed have a trimodal structure, or perhaps one of even higher 

modality, it presents a fundamental difficulty when it comes to fitting the 

binormal distribution model. Unable to cope with the complexity in the data the 

model is likely to find a best fit solution that merges particular sub-distributions 

within the whole, resulting in misleading parameter estimates. That means that 

there will always be an element of doubt into to validity of those estimates. 

However one way in which our confidence in the parameter estimates can be 

enhanced is if patterns are found across different datasets. When this kind of 

reasoning is applied to the reading data it reveals some interesting results. In the 

context of the present study it is possible to look for differences and similarities 

between boys and girls, or to look for trends across cohorts.  

 

Tables 9.2.1 and 9.2.2 summarise the parameter estimates for reading that were 

originally presented in table 7.2. The binormal parameter estimates for the girls’ 

reading scores are considered first of all. There appears to be a clear trend in the 

results from P4 to P6. The prevalence of the low attaining subpopulation is 

around 37% in P4 and roughly halves each year to 8% in P6. At the same time 

the mean score of the same subpopulation decreases by about 1 year each year. If 

the mean score is added to the mean age at test (table 1.2) it is possible to 

calculate the mean reading age of the low attaining subpopulation in each cohort. 

The figures come out as follows; 6.96 years in P4, 7.14 years in P5, and 7.21 

years in P6. It is as if the low attaining group are defined by a reading age of 

about seven years. These observations are consistent with the notion that there is 

a fundamental developmental transition at about the age of seven. What that may 

be cannot be stated on the basis of this evidence, but one possibility is that it 

represents the transition from a beginning reader to a fluent one. Further clues to 

test that hypothesis might be found in an analysis of the reading subscale results. 
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Variable Year 

Group ρ  
Dx  Ds  

D
x  

D
s  

P4 0.76 -0.87 1.47 1.18 1.18 
P5 0.17 -2.53 1.25 0.32 1.37 
P6 0.16 -2.62 1.31 0.42 1.31 
P7 0.46 -1.29 1.71 0.65 1.07 

Table 9.2.1: Summary of binormal parameter estimates for boys’ reading scores 
 
 

Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.37 -0.82 1.37 0.61 1.27 
P5 0.15 -1.63 1.41 0.62 1.26 
P6 0.08 -2.57 1.12 0.57 1.31 
P7 0.41 -0.83 1.62 0.87 1.05 

Table 9.2.2: Summary of binormal parameter estimates for girls’ reading scores 
 
 

Whatever the validity of the speculative hypothesis presented in the previous 

paragraph may be, the pattern in the reading results do support the premise that 

there is a qualitatively distinct group of low attaining readers. If the population 

contains more than two qualitatively distinct groups, three in the case of a 

trimodal distribution, then it follows that the parameter estimates given for the 

higher attaining subpopulation actually represent a summary of the remaining 

scores, rather than anything meaningful in themselves. In the case of a trimodal 

distribution these would represent a summary of the middle attaining and high 

attaining subpopulations. Such reasoning can be used to explain the apparent 

inconsistency in the P7 results. If the observed trend in which the prevalence of 

the low attaining group tends to halve each year were to continue into P7, then 

we would expect to see a prevalence estimate of about 4%. Since the binormal 

model is unable to resolve three subpopulations, the model fit may have simply 

have coped by merging what is now a very small low attaining subpopulation 

with the middle attaining group, and reporting the high attaining group as a 

distinct subpopulation. Evidence that is the case is found in the estimate of the 

standard deviation of the higher attaining subpopulation which falls from about 

1.3 in the younger cohort to a little over one in P7. 
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Interpretation of the binormal parameter estimates obtained from the boys’ scores 

is more problematical. At first glance there is a striking consistency between the 

parameter estimates obtained in P5 and P6. In both cohorts the prevalence figure 

for the low attaining subpopulation is about 16% and the mean score is about -

2.5 years. However if the parameter estimates are compared with those obtained 

for the girls then there is a certain consistency in the results for the P4, P6 and P7 

cohorts, and that would suggest that the P5 results may be misleading. 

Specifically the means of the low attaining subpopulation are very similar 

between boys and girls in P4 and P6, whilst the prevalence figure for the boys is 

about twice that reported for the girls in each case. In P7 the prevalence figure is 

about 5% higher for boys, but that is consistent with the notion that the 

prevalence of the low attaining subpopulation halves every year. If the 

contribution of the low attaining subpopulation to the prevalence figure reported 

in P7 is 4% for the girls, then by the same logic it will be 8% for the boys, thus 

accounting for the bulk of the 5% difference. On balance then the latter 

explanation accounts for more of the observations in the boys’ results whilst 

maintaining consistency with the patterns found in the girls’. Inconsistent 

observations may be explained by limitations in the methodology for which 

further investigation is required. 

 

To what extent then do these results support the medical model of specific 

reading disabilities? Certain cross-cohort and cross-gender patterns in the results 

provide strong evidence for two qualitatively different subpopulations of reader 

that are consistent with a developmental transition in reading ability at a mean 

age of about seven years. The medical model of learning disabilities predicts 

qualitatively different subpopulations as a result of specific cognitive deficits. In 

recent years a growing body of evidence has accumulated that reading 

disabilities may result from such a deficit in phonological processing and that a 

second subtype of reading disability may exist that is linked to a core deficit in 

naming speed (Vukovic and Siegel, 2006). It has also been suggested that it is a 

deficit in visuo-spatial processing that is responsible (Stein et al., 2000, Stein and 

Walsh, 1997, Stein, 2001, Vidyasagar and Pammer, 2010). Either way if reading 

disabilities are indeed caused by an innate cognitive deficit that would predict 

that the prevalence of the condition will be constant across different age groups. 
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Prevalence estimates vary according the details of the procedures used to identify 

individuals; however a figure of between 5.4% and 7% has been cited (Snowling, 

2005). In the present study the lowest prevalence estimate was found to be higher 

than this at 8% in the case of 10-year-old girls. Furthermore the prevalence is not 

constant across cohorts but tends to decrease by about 50% each year. This result 

suggests that the cause of reading disabilities is a delay in a developmental step 

that occurs on average at seven-years-of-age. However that does not exclude the 

possibility that there are children for whom the cognitive systems required for 

reading are so compromised that they never make that developmental step. Such 

children might be classed as ‘true’ dyslexics. This explanation is consistent with 

the causal model of dyslexia proposed by Morton and Frith (Morton and Frith, 

1995). According to this model dyslexia results from the failure at the cognitive 

level of a critical neurological structure, referred to as ‘P’. Failure of this 

structure may have several causes at the biological level. These include a ‘faulty 

brain system’ as predicted by the medical model, or in the case of younger 

children an ‘immature brain system’ indicating a developmental cause. If this 

model is correct then behavioural level observations of reading ability will fail to 

identify the underlying biological cause of reading failure. Nevertheless it is 

theoretically possible to extrapolate the trend in prevalence estimates to 

determine the proportion of children that are likely to make the required 

developmental transition. Whatever proportion remained would provide an 

estimate of the prevalence of ‘true’ dyslexia. Unfortunately the data presented 

here are insufficient for that purpose. 

 

A widely reported feature of reading disabilities is that it affects a 

disproportionate number of boys compared to girls. For example in a study of 

1206 nine and ten year olds Lewis and colleagues identified more boys than girls 

as having specific reading disabilities (Lewis et al., 1994). However this apparent 

gender bias has been challenged by Share and Silva (Share and Silva, 2003). In 

their study the preponderance of boys identified as having specific reading 

disabilities was shown to be an artefact of the IQ-discrepancy methodology 

resulting from differences in the distribution of reading scores between boys and 

girls. As with the present study the reading scores for girls were found to have a 

higher mean and smaller variance than those of the boys. When Share and Silva 
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applied the IQ-discrepancy methodology separately to each gender they actually 

identified slightly more girls than boys as having specific reading disabilities, 

7.7% compared to 6.8%. In this study the results suggest that the rate of reading 

disabilities is about twice as high in boys as it is in girls in any one year group, 

but that this results from a developmental lag between boys in girls. Given that 

the prevalence rate was estimated at 15% for girls in P5 and 16% for boys in P6 

it would suggest that this lag is about a year. There is no evidence for any 

difference between boys and girls in absolute rates of dyslexia. 
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5. Mathematics 
 
In cohorts P4, P5 and P6 the binormal distribution provided an excellent fit for 

the observed data leaving little unexplained variation or evidence for additional 

complexity in the data. As discussed previously the data for the P7 cohort appear 

to indicate a boost in performance for a select group of children that may have 

resulted from preparation for grammar school entrance tests. For that reason the 

P7 data will not be considered further in this discussion. 

 

Tables 9.3.1 and 9.3.2 summarise the parameter estimates for mathematics that 

were originally presented in table 7.3. 

 
  

Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.29 -0.72 1.13 0.25 0.97 
P5 0.37 -0.77 1.28 0.44 0.81 
P6 0.29 -0.84 1.52 0.20 0.88 
P7 0.79 -0.19 1.56 1.23 0.76 

Table 9.3.1: Summary of binormal parameter estimates for boys’ mathematics scores 
 
 

Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.05 -1.89 0.71 0.07 0.91 
P5 0.31 -0.76 1.19 0.36 0.76 
P6 0.28 -0.77 1.42 0.16 0.79 
P7 0.65 -0.32 1.45 1.00 0.86 

Table 9.3.2: Summary of binormal parameter estimates for girls’ mathematics scores 
 
 
Given that the binormal distribution model fits the maths data so well it is 

initially disappointing that there is no apparent trend in the value of parameter 

estimates across cohorts. This would suggest that, unlike reading, there is there is 

no particular evidence for qualitatively separate subtypes of mathematician. This 

is perhaps not surprising when the nature of the mathematics assessment is 

considered. Successful engagement with the assessment requires a broader range 

of skills than does the reading assessment. At the very least it requires a degree 

of both literacy and numeracy. It is probably also more directly sensitive to the 
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nuances of the curriculum than is the reading assessment, for example through 

the use of subject specific vocabulary. 

 

The multi-factorial nature of the mathematics assessment would predict a normal 

distribution scores. Why then is there such strong evidence that the data is in fact 

negatively skewed? It would seem to indicate a ceiling effect that has restricted 

the potential of more able mathematicians to achieve higher scores. An 

inspection of the probability histograms for mathematics (figures 3.3.1.1 to 

3.3.3.2) shows that the weakest mathematicians achieve scores about four years 

below the average for their age, and yet the most able mathematicians are only 

two and a half years ahead of the average. The InCAS assessment is capable of 

providing reliable age-equivalent scores up to at least 16 years, around five years 

ahead of the oldest participant in this study, so why the ceiling at two-and-half 

years. If there is no ceiling on the assessment then the next most likely 

explanation is that there is a ceiling in the curriculum delivery. In order to 

achieve a score that was four years ahead of the cohort average age a child in the 

upper primary school would need to have been exposed to the secondary level 

curriculum. There are any number of reasons why this might not happen. It could 

be down the confidence and competence of primary teachers to deliver 

mathematics instruction at such a high level. It might also result from policy 

decisions concerning curriculum implementation at the school, local authority or 

national level. If this is correct then it goes some way to explaining why the 

speculated reason for the boost in P7 scores has had such a marked effect. 

 
 
6. Arithmetic 
 
At first sight the pattern of results seen in arithmetic was similar to that described 

for mathematics in the previous section. In general the binormal model provided 

an excellent fit for the data with some evidence for the emergence of a 

subpopulation that had received a boost in P7. However there appears to be more 

evidence of a pattern in the binormal parameter estimates. Tables 9.4.1 and 9.4.2 

summarise the parameter estimates for arithmetic that were originally presented 

in table 7.4. 
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Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.19 -1.48 1.51 0.33 0.95 
P5 0.22 -1.22 1.72 0.41 0.96 
P6 0.27 -0.98 1.61 0.41 0.98 
P7 0.24 -0.95 2.06 0.31 1.29 

Table 9.4.1: Summary of binormal parameter estimates for boys’ arithmetic scores 
 
 

Variable Year 
Group ρ  

Dx  Ds  
D

x  
D

s  

P4 0.18 -1.68 1.47 0.14 0.79 
P5 0.25 -0.99 1.42 0.33 0.78 
P6 0.24 -0.94 1.70 0.26 0.81 
P7 0.28 -0.77 1.63 0.31 1.29 

Table 9.4.2: Summary of binormal parameter estimates for girls’ arithmetic scores 
 
 
The emergence of a pattern in the binormal parameter estimates for arithmetic 

that was not apparent in the mathematics data may be a direct consequence of the 

relative simplicity of the assessment task. Successful interaction with the InCAS 

arithmetic assessment depends on a narrower range of cognitive skills than are 

required for mathematics. This will result is a less complex data structure, and 

therefore a greater chance that the binormal model will reveal meaningful 

consistencies in the data. 

 

The trend in the estimate of the mean score of the low attaining subpopulation to 

increase with the age of the cohort suggests that the arithmetical skills of the low 

attaining children is catching up with those of the higher attaining children. 

However The InCAS arithmetic assessment is restricted to a relatively simple 

format of items. In consequence there is a known ceiling on the assessment 

overall of about 14 years, whilst the ceiling on the addition subtest is as low as 

11 years. The observed pattern probably reflects the lack of capacity of the 

assessment to extend the more able children. This ceiling effect would also 

explain the negative skew observed in the score distributions, which is in contrast 

to the ceiling in curriculum delivery that was proposed in the case of 

mathematics. 
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Even if the assessment has a ceiling for able arithmeticians this should not be 

sufficient to affect the scores of a subpopulation with specific arithmetical 

disabilities. However it is observed that the standard deviation estimates for the 

low attaining group are very high, often exceeding that observed for the whole 

population and reported in table 2.4.2. Whilst it is acknowledged that it is not 

necessarily so, it might be expected that a qualitatively distinct group of weak 

arithmeticians would show less variation in the distribution of their scores. If this 

is coupled with an expectation that the prevalence of such a subpopulation be 

considerably lower than that estimated here (between 18% and 28%), then an 

alternative explanation for the pattern of results seems more plausible. It seems 

likely that in these circumstances the limited flexibility of the binormal model 

has been utilised to explain the skew caused by the ceiling in the assessment. 

However it might still be possible to reveal a group with specific arithmetical 

disabilities if a higher modality model, such as a trinormal model were 

employed. 

 

Our current understanding of the nature of specific arithmetical disabilities would 

suggest there may be several subtypes weak arithmeticians, and that a high 

modality model may be necessary to reveal them. The medically equivalent term 

for arithmetical learning disabilities is dyscalculia, a condition that was originally 

proposed by Kosc (Kosc, 1970, Kosc, 1974). There are two competing 

hypotheses for the underlying cognitive deficit responsible for dyscalculia 

(Feigenson et al., 2004). Butterworth has proposed the defective number module 

hypothesis (Butterworth, 2005b). According to Butterworth the fault lies with a 

deficit in the innate ability to understand and manipulate small whole number 

quantities. The competing hypothesis proposed by Deheane and colleagues states 

that the deficit lies with the cognitive systems involved in magnitude 

representation and which allow us to understand approximate quantities 

(Dehaene et al., 2004, Dehaene et al., 2003, Wilson and Dehaene, 2007). 

Dehaene calls this ability number sense. Since these models are not mutually 

exclusive there is the possibility of two distinct categories of arithmetical 

disability based on this theory alone, but the complications do not end there. 
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One of the difficulties with studying arithmetical learning disabilities is its 

apparent association with so many other conditions such as working memory 

deficits, ADHD and dyslexia (von Aster and Shalev, 2007). This has led 

Rubinsten and Henik to propose three alternative frameworks for the 

classification of arithmetical learning disabilities according the hypothesised 

cognitive deficits underlying the condition. These range from the shared deficits 

that underlie other conditions such as dyslexia to those that are very specific. 

According to their model the term dyscalculia should be restricted to cases where 

the causal cognitive deficit lies with the processing numerical quantities alone 

(Rubinsten and Henik, 2009). Whilst arithmetical and reading disabilities are 

often reported as being comorbid there is increasing evidence for a dissociation 

between dyscalculia and dyslexia, therefore suggesting different underlying 

cognitive deficits for the two conditions (Landerl et al., 2009, Rubinsten and 

Henik, 2006, Swanson and Jerman, 2006). 

 

Although prevalence estimates for arithmetical learning disabilities have been 

put in the region of 5% to 6% it is likely that cases of ‘pure’ dyscalculia are very 

rare indeed (Snowling, 2005, Gifford and Rockliffe, 2008). In a study of 1206 

nine and ten year olds Lewis and colleagues reported that the prevalence of 

specific arithmetic difficulties was three times lower than that of specific reading 

difficulties (Lewis et al., 1994). The figures for arithmetic and reading were put 

at 1.3% and 3.9% respectively. Given the low expected prevalence and 

multiplicity of possible subtypes of specific arithmetical disabilities finding 

evidence for their existence, even using an enhanced multimodal version of the 

method described here, may present considerable challenges. However, if viewed 

from a developmental rather than neurocognitive perspective the potential of the 

methodology may be more promising. 

 

In the analysis of reading data presented in section four of this chapter evidence 

was presented for a developmental step that may represent the transition from 

beginning to fluent reader. Theoretically it may be possible to find a parallel 

transition in the case of arithmetic. The mechanism by which children acquire 

arithmetical skills is well understood, at least in the case of addition 

(Butterworth, 2005a, Geary, 2003, Geary and Hoard, 2005). Initially children 
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perform arithmetic using cumbersome counting strategies. As their skills 

improve they gradually adopt more efficient calculation techniques. With enough 

practice they may eventually commit a number fact to long-term memory and 

will therefore be able to instantly recall the answer to that particular arithmetical 

problem. This change from a calculation to a recall strategy represents a 

fundamental shift that may be detectable in the data. It has been shown that the 

tendency to progress from calculation to recall strategies does not occur evenly 

across arithmetical operations. For example recall of the solution to addition 

problems is far more likely than it is for subtraction (Barrouillet et al., 2008). It 

has also been shown that whilst the rate of recall of multiplication facts tends to 

increase with the age of the child, division facts are rarely committed to memory 

(Robinson et al., 2006, Steel and Funnell, 2001). Clearly if evidence for a 

developmental shift from calculation to recall strategies is to be discovered in the 

InCAS arithmetic scores it will be necessary to analyse the data from the four 

subtests separately.  

 
 
7. Summary 
 
In this chapter the validity of the binormal model fits generated in this study have 

been evaluated. The rationale for developing a methodology for deriving 

binormal parameter estimates was to discover evidence for the existence of 

qualitatively distinct subpopulations of learner in the population. It was argued 

that if found it would provide evidence to support the medical model of learning 

disabilities that was largely free of the criticisms that have been widely levelled 

at traditional IQ-discrepancy based methodologies. In practice no evidence was 

found for neurocognitive deficits that would indicate the existence of a specific 

dysfunction such as dyslexia or dyscalculia. However evidence was found for a 

developmental transition at around the age of seven years in the case of reading. 

Evidence was also found for a developmental delay of about a year between the 

genders that would account for the higher proportion of boys with reading 

disabilities that are reported in many studies. Although no evidence was found 

that would support the existence of a specific neurocognitive deficit it was 

argued that ‘true’ dyslexics might represent that portion of the population that 

fail to make the transition, and that evidence for this might still be found by 
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looking at the trend in prevalence estimates across a suitable longitudinal or 

cross-sectional dataset. 

 

Evidence was presented that the methodology is sensitive to ceiling effects in 

both assessment and curriculum delivery. It was also argued that the binormal 

model was of limited use when applied to datasets with a complex structure, 

specifically those with a modality higher than two. Two approaches were 

suggested to counter this difficulty. The first approach would be to develop 

higher modality models such as the trinormal distribution. The second approach 

would be to apply the existing model in the case of assessments designed to 

measure more specific abilities, for example addition as opposed to arithmetic. 
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Chapter 8: Final Discussion 
 
 
1. Critique of the Study 
 
The principal weakness of the study is that whilst it has provided a unique 

perspective on the nature of learning disabilities and given fresh insights, the 

strength of any conclusions that might be drawn from the analyses are tempered 

by limitations of the methodology employed for deriving binormal parameter 

estimates. These limitations are discussed below. 

 

It was argued in chapter 3 that successful application of the methodology is 

dependent on both the quality and quantity of the data available. It was then 

shown in chapter 4 that it is necessary to be mindful of factors that might affect 

the distribution of assessment scores. Specifically the effect of gender and years 

of schooling were taken into consideration by analysing these data separately. In 

addition the effect of intra-cohort age differences was taken into account by 

performing the analysis on the age-ability difference scores, rather than on the 

assessment data directly. 

 

Having anticipated and accounted for gender, years of schooling and intra-cohort 

age differences, the methodology revealed little evidence for qualitatively 

distinct subtypes of learner as it was intended to do. The best evidence for this 

was found in the data for reading, but the pattern of results across cohorts was 

inconsistent. It was argued that the methodology was sensitive to additional 

complexity in the data that might be introduced by ceiling (and presumably floor) 

effects, instructional effects and multiplicity in the constructs that a particular 

assessment was designed to measure. With respect to ceiling effects evidence 

was found for an assessment ceiling in the case of arithmetic, and an instructional 

ceiling in the case of mathematics. It was argued that the ceiling resulted in a 

skew in the distribution of scores for the higher achieving subpopulation, and 

that the limited flexibility in the binormal model was used to describe that 

skewness, rather than any bimodality that may have been present in the data. 

Evidence for further instructional effects came from the apparent boost in 

arithmetic and particularly mathematics scores in the final year of primary school 
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(P7). It was argued that this boost may have resulted from the preparation of 

select individuals for secondary school entrance tests because this may have 

increased curriculum knowledge or contributed to general test-wiseness. The 

effect of construct multiplicity was illustrated by the picture vocabulary 

assessment where it was argued that the results were so influenced by the effect 

of reading on vocabulary development that it failed to reveal qualitatively 

different subtypes of English language speaker. 

 

A final limitation in the methodology that is inherent in the nonlinear regression 

technique is the danger of arriving at misleading model fits, particularly if the 

model uses a number of variable parameters. One way to approach this difficulty 

is to evaluate any model fit for validity within a theoretical framework. Another 

approach is to look for trends and patterns in model fits across different datasets. 

Validation of the methodology presented here will ultimately depend upon the 

establishment of explainable patterns across diverse datasets. In this study 

within-population patterns have been sought within a cross-sectional dataset. The 

methodology would benefit from application to a within-population longitudinal 

dataset, and also a cross-population analysis. 

 

In spite of these limitations the study has revealed some interesting results, 

particularly in the case of reading. The issues highlighted here are not 

insurmountable and the methodology stands as a proof of concept. With further 

refinement and extension of the methodology there is potential for it to shed light 

on the nature of learning disabilities that is free of the dogma of IQ-discrepancy. 

 
 
2. Refinement and Extension of the Methodology 
 
The method for deriving binormal parameter estimates described in chapter 3 

uses two constants and three variables to define the five binormal parameters. 

The constants employed are the mean and variance of the distribution. A 

desirable refinement to the methodology would be to substitute one or more of 

the remaining variables with constants, the value of which could be calculated 

directly from the data. To do so would reduce the chance of obtaining multiple 

model fits. 
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The variance represents a specific example from a family of distribution shape 

statistics with the general form: 

 

( )
n

X a
a µσ −∑=  

 
In the case of the variance the value of 2=a  is substituted into the expression. 

When a value of 3=a  is used the expression provides a measure of the 

asymmetry in the data that is akin to the skew. In the case of a symmetrical 

distribution such as the normal distribution the value of 03 =σ . In principle it is 

possible to expand this expression along the same lines as that employed in 

chapter 2, and so derive an expression for the asymmetry of the binormal 

distribution in terms of the binormal parameters. In practice the algebra required 

for this is quite complicated. However a 3-constant / 2-variable model has been 

implemented in DataFit in the case of the standardised binormal distribution. 

This was possible because the substitution of population mean and variance 

figures of 0 and 1 respectively made the calculations considerably simpler. 

 

A serious limitation of the methodology is its inability to cope with more 

complex data structures such as a trimodal distribution, or a bimodal distribution 

in which one of the subpopulation distributions is skewed. A solution to this is to 

fit a trinormal distribution to the data instead. The probability density function of 

the trinormal distribution in variate X is given by: 

 

( ) ( ) ( ) ( ) ( )
DDDDDDD XPXPXPXP ~1 ρρρρ −−++=  

 
Adding a third subpopulation increases the number of parameters required to 

describe the model by three to a total of eight. The extra parameters are needed to 

describe the prevalence, mean and standard deviation of the additional 

subpopulation. A drawback of this is that increasing the number of variable 

parameters also increases the chance of finding multiple model fits. Clearly 

application of such a model would require even greater care than is the case with 

the binormal model. 
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In principle the modality of the model could be expanded still further, but the 

number of parameters required to describe the model would increase by three 

with each additional subpopulation. Ideally models of increasing modality would 

be applied to the data as long as the value of the adjusted coefficient of multiple 

determination (Ra²) continued to increase, with initial parameter estimates 

informed by the solution arrived at from the application of the preceding model. 

 
 
3. Diagnostic Utility 
 
The binormal subpopulation plots presented in figure 4 graphically illustrate a 

problem at the heart of the identification of learning disabilities. The overlap 

between the low attaining subpopulation and the weaker members of the higher 

attaining subpopulation means that it is impossible to accurately assign every 

individual to the correct subpopulation based upon their assessment score alone. 

Many studies assign individuals to one category of learning disability or another 

based on a particular cut-score. However it is inevitable that whatever cut-score 

is chosen some individuals will be wrongly assigned. 

 

In medicine incorrect diagnosis can have serious consequences, and so much 

effort has been expended in the development of protocols for establishing the 

diagnostic utility of screening tests. One such protocol is the use of receiver 

operating characteristic (ROC) curves (Park et al., 2004, Faraggi and Reiser, 

2002). An ROC curve is that which results when the true positive fraction (TPF) 

is plotted against the false positive fraction (FPF) for a range of cut-scores on a 

particular screening test. The true positive fraction is defined as the proportion of 

individuals below the cut-score that were correctly identified as having the 

particular disease or condition. The false positive fraction is defined as the 

proportion of individuals above the cut score that were incorrectly identified as 

not having the disease or condition. If the distributions of diseased and healthy 

individuals each follow a normal distribution, that is if the scores are binormaly 

distributed in the population, it can be shown that the ROC curve is described by 

the following expression whereΦ represents the standard normal cumulative 

distribution function: 
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This expression has been adapted from the one reported by Park and colleagues 

to utilise the notation of Pepe that has been used throughout this thesis (Park et 

al., 2004, Pepe, 2003) 

 

The area under this curve can take any value between 0.5 and 1. A value of 0.5 

for the area under the curve would indicate that the screening test had no power 

to correctly assign individuals to the correct category of either diseased or 

healthy. A value of 1 would indicate that the assessment correctly assigns 

individuals every time. Thus the magnitude of the area under the ROC curve is 

measure of the diagnostic utility of the screening test. 

 

Clinicians use the data contained in ROC curves to inform the judgements they 

make as to the most appropriate cut-score to use. In making those judgements it 

is necessary to weigh up the consequences of treating those individuals with an 

incorrect positive diagnosis against not treating those with an incorrect negative 

diagnosis. Clearly the same type of information would have a similar value for 

informing the decisions made by teachers, psychologists and researchers in the 

field of learning disabilities. 

 

To illustrate one such application of ROC analysis the diagnostic utility of the 

InCAS reading assessment will be considered for girls in cohorts P4, P5 and P6. 

These data were selected because they represent the strongest evidence found in 

the present study for qualitatively distinct subtypes of learner. The ROC curves 

on which the following analysis is based are presented in figure 5. 

 

For data that are binormaly distributed the area under the ROC curve (AUC) can 

be calculated using the expression below which has been adapted from the one 

reported by Faraggi and Reiser to utilise the notation of Pepe (Faraggi and 

Reiser, 2002, Pepe, 2003): 
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Inputting the derived binormal parameters reported in tables 7.2 into this 

equation produced the following values for the area under the curve; 0.78 in P4, 

0.88 in P5 and 0.97 in P6. The figures indicate that the diagnostic utility of the 

InCAS reading assessment to correctly categorise the children into the low 

attaining or high attaining subtype increases with the age of the cohort. Even 

though the prevalence of the low attaining readers decreases, the chance of 

correctly identifying them increases. 

 

The ROC methodology clearly has potential for rating the diagnostic utility of an 

assessment and informing choice of cut-score. In the field of learning disabilities 

research it would allow researchers to estimate and report the proportion of 

children in their treatment groups that had been incorrectly classified. 

 

A related application of the binormal distribution model lies in the establishment 

of the chance that an individual belongs to one or other subtype of learner. 

Rather than categorising a child as having a learning disability according to 

which side of a cut-score their assessment result fell it would be possible to 

calculate a probability that they fell into the learning disability group. This 

approach might be particularly useful when coupled to longitudinal monitoring 

of children. 

 

Clearly the application of the binormal model of specific learning disabilities has 

a great potential to provide an additional dimension to the interpretation of data 

generated by screening tests. However these potential applications are dependent 

on establishing the validity of the groupings revealed by the binormal model 

fitting procedure. The ROC approach also highlights the fact that such 

assessments are unlikely to ever be completely accurate in their designation of 

learning disabilities. However reliable and valid an adaptive assessment such as 
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InCAS may be, the computer remains an unintelligent observer. Ultimately the 

diagnosis of learning disabilities requires intelligent observation. 
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Figure 5: ROC Curve for Girls' Reading Results
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4. Conclusions 
 
In conclusion to the thesis the research questions posed in chapter 1 will now be 

reconsidered. These questions are reproduced below: 

 

1. Does the binormal distribution provide a suitable model for the 

investigation of bimodality in an epidemiological study of academic 

attainment in primary school children? 
2. Is there any evidence for qualitatively distinct subtypes of learner in the 

population under study? 

3. Is it possible to obtain valid and reliable parameter estimates for the 

distribution of assessment scores for different subtypes of learner within 

the population as a whole? 

4. To what extent does the identification of distinct subtypes of learner 

support the medical model of specific learning disabilities? Is there any 

evidence for the existence of dysfunctions such as dyslexia and 

dyscalculia? 

5. What are the implications of application of the binormal model to the 

identification of children with specific learning disabilities? 

 

In the present study the evaluation of 32 datasets defined by cohort, gender and 

InCAS assessment module was undertaken. It was found that in all but one case 

the binormal distribution model provided a better description of the distribution 

of age-ability difference scores than did the simpler normal distribution model. 

However real evidence of bimodality was only found in four cases; that is the 

reading data for girls in P4 and P5, and the reading data for both boys and girls in 

P6. In other circumstances additional flexibility afforded by the binormal model 

was utilised to explain other structure within the score distributions such as skew 

and higher order modality. Nevertheless it was argued that the application of the 

binormal model stands as a proof of concept. It was also proposed that the utility 

of the general methodological approach introduced here might be extended by 

developing higher modality models or else by applying the binormal distribution 

model to assessments that are designed to measure more specific cognitive 

functions. 
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The evidence for qualitatively distinct subtypes of learner was restricted to some 

reading assessments, as stated in the previous paragraph. The pattern in the data 

suggested that the qualitative difference between the identified subpopulations 

may represent a developmental step that occurs at a mean age of about seven 

years. In this context reading disabilities would be manifested in a developmental 

lag. Evidence for a developmental lag of about one year between boys and girls 

was observed. It was speculated that the developmental step may represent the 

transition from beginning to fluent reader, although it was acknowledged that 

further research would be required to validate that idea. 

 

The methodology employed certainly makes it possible to obtain reliable 

binormal parameter estimates. The nonlinear regression technique generates 

standard error statistics on the magnitude estimates of variable parameters in the 

model. These were used to evaluate whether or not each variable parameter 

makes a significant contribution to the model fit. However the production of 

reliable statistics does not imply that they have any validity. In order to establish 

validity cross-cohort and cross-gender patterns were sought in the binormal 

parameter estimates. These patterns were then interpreted within a theoretical 

framework. This approach yielded positive results in the case of some reading 

assessments as discussed above. 

 

The evidence for the existence of distinct subtypes of reader was interpreted 

within a behavioural rather than medical framework. The medical model predicts 

a fixed prevalence of dysfunction across cohorts, but what was observed was a 

decrease in the prevalence of low ability readers from one cohort to the next. The 

decrease was observed to be in the region of 50% each year. The prevalence of 

low attaining readers was also higher than might be expected from reported 

prevalence estimates of dyslexia. If all children were to ultimately make the 

transition from the low to high attaining group of readers it would support the 

hypothesis that reading abilities represent a single continuum in the population. It 

was proposed that true dyslexics might be composed of that group of children 

that ultimately fail to make the transition, but the data were insufficient to 

determine if such a group were likely to exist. No evidence was found to support 
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the existence of dyscalculia, but this may simply result from limitations of the 

methodology and the low expected prevalence of the condition. 

 

Finally, the application of the binormal model to define children in terms of the 

probability that they have a learning disability was discussed. At the group level 

this would allow estimates to be made of the rate of misdiagnosis on the basis of 

cut-scores. It could also be used to inform the best choice of cut-score and to 

establish the diagnostic utility of a screening test. At the individual level it would 

provide additional perspective to teachers and clinicians in the interpretation of 

assessment data. 

 

Despite the acknowledged limitations of the methodology the binormal 

modelling approach offers real potential to give new insights into the nature of 

learning disabilities. It presents a perspective that is free of the widely reported 

difficulties associated with the IQ-discrepancy technique. However its real 

strength lies with the complete objectivity of the parameter estimation process. 

To the authors knowledge all previous research in the field of learning 

disabilities has included some subjective element, even if it has only been in the 

choice of cut-score. Of course interpretation of the output from any analytical 

procedure will always have some subjectivity. The difficulties associated with 

the methodology are not insurmountable and the rewards for doing so may be 

considerable.  
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Appendix: Example Screenshots of the InCAS 
Assessment Modules 
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