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The Binormal Hypothesis of Specific Learning Diddileis
Stephen Anthony Albone

The concept of specific learning disabilities hagoots in the medical literature
of the nineteenth century. According to the mediuatlel the cause of specific
learning disabilities are presumed to lie in speabgnitive dysfunctions. This
hypothesis predicts two qualitatively distinct tgp# learner and a bimodal
distribution of assessment scores. Evidence foodatity has been sought in the
distribution of residuals generated from the regjmsof standardised measures
of attainment on 1Q, however this technique haslvédely criticised. Recent
advances in computer adaptive assessment, cougilte@Rasch interval level
measurement, have opened up the possibility ofisgekidence for bimodality

in the distribution of assessment scores directly.

In the present study the binormal distribution \waseloped as a model for
describing bimodality. The binormal distributioncgnceived as two
superimposed normal distributions and is definedfiviyparameters. The
algebraic relationship between the five parametas first determined, and then
a methodology was developed for deriving objecéisgmates of those
parameters. The methodology was applied to a urdgtaset of over 80,000
children aged between seven and eleven years paadeacross four assessment

domains; picture vocabulary, reading, mathematicsaaithmetic.

The methodology was found to be sensitive to factioat might influence the
shape of the distribution of assessment scoresasigiender, number of years of
schooling, and ceiling effects, and this affectsedutility. Nevertheless evidence
was found for the existence two qualitatively distigroups of reader. The
pattern in these results was consistent with aldpugental transition from
beginning to fluent reader. Evidence was also fdoné developmental lag
between boys and girls, which would explain thenbigprevalence of dyslexia
reported for boys in many studies. The methodolmgguced inconsistent
results when applied to the other assessment)@edidence was found to
either confirm or disprove the existence of spedfysfunctions as predicted by

the medical model.
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Chapter 1: The Background and Context of the Study

1. Introduction

The study of special educational needs goes baitletmedical literature of the
nineteenth century. However it was not until muatied that researchers from
non-medical disciplines began to take an interethis area. With that interest
came much debate concerning the nature of spetiiabéional needs and the
terms used to define it. This remains one of thetroontentious issues in

psychological and educational research.

A central theme of the debate concerns whetheobthere are qualitatively
distinct subpopulations of learners. Presented iseaénistorical summary of that
debate insofar as it pertains to that specificas3inis leads on to the rationale
for the present study.

2. Early Case Studies of Reading Disabilities

The origin of the concept of learning disabilithess its roots in the medical
literature of the nineteenth century. Early caseists of patients with reading
disorders were to introduce a number of terms dads that would shape our
present understanding of the condition. Some oké#yepapers are outlined

below.

In an 1887 monograph the German ophthalmologisteBsor Dr. Rudolph
Berlin described six case studies of adult patidrdas showed particular
difficulties with reading (Berlin, 1887, Wagner, 3. Berlin had written of the
same condition in a previous work, and had intredute term dyslexia to
describe it (Berlin, 1884). Following post-morteramination of his patients

Berlin attributed the probable cause of dyslexia twrain dysfunction.
In the United Kingdom similar case studies were a¢ported, crucially

however this literature included numerous examefasildren that in spite of

receiving every advantage lacked the specific aapaxlearn to read

16



(Hinshelwood, 1900, Kerr, 1897, Morgan, 1896, Nsttip, 1901). In the
absence of any obvious illness or injury it wasatoded that these children
probably suffered from a congenital condition kncagword blindness. It was
Hinshelwood that first made the distinction betwé##a congenital form and the

acquired word blindness that was observed in afditsshelwood, 1896).

The first report of children having word blindnesssermany was made by
Foerster (Foerster, 1905). In doing so he madstandiion between word
blindness that was associated with mental retamdaéind that which presented
as a specific cognitive deficit. He also suggesied the two forms of word

blindness had a different underlying neurologicalse.

Thus at an early date the hypothesis for the exgstef two distinct causes of
reading failure was established. On the one hamdhtbility to learn to read
might be due to general cognitive deficits affegtine intelligence of the
individual. Alternatively the condition might be atacterised by particular
cognitive impairments, and presumed to be duesjoeaific dysfunction of the
central nervous system. This hypothesis has be&omen as the medical
model of learning disabilities. An extensive acdoofithe pioneering work in
this field is provided by Anderson and Meier-Heddaderson and Meier-
Hedde, 2001).

3. The Scholastic Disabilities Model

In the United Kingdom the concept of learning disaés was further developed
by Schonell, but from an educational perspectiva¢®ell, 1935). Schonell was
interested in comparing measures of the intelligequotient (IQ) with a related
measure of scholastic achievement known as thergashment quotient (AQ).
Comparison of these two measures enabled Schondintify children that
were underachieving with respect to their 1Q. Hatnan to define three classes

of underachievement, which he termed scholastabdlity.
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1. The innately dull who are backward because of iofantellectual
powers and hence need teaching differing qualigdgiand quantitatively
from that accorded to normal children.

2. Those of unimpaired general intellectual powers @h®backward in
school work and who simply need continuous schgoindividual
assistance or special coaching to overcome thislicap.

3. The supernormal pupils whose disparity betweenn@® AQ should
hardly be considered as backwardness, a more daiteabm being
retardation; their backwardness is more apparemrtheal. Such
scholars require increased private study and aefutlurriculum to
extend them to the limit of their intellectual cajies.

Whilst there is no explicit reference to the metimadel in Schonell's
definition it is nevertheless implicit that thene aifferent underlying causes for
academic failure. It is the recognition of thesiéedent causes that is vital

because it informs the choice of remediation siater each child.

Schonell was principally interested in the probifescores across different
academic disciplines, which prompted a further clicapon to his model.
Schonell observed that children may show scholastability in some areas but
not others. He defined these as specific disadsliti

Schonell’'s model introduced two important conceptis the field of learning
disabilities. The first was the notion of a disaepy between academic potential
and achievement. The second was the recognitidiffefent types of learning
failure requiring qualitatively different remediaii strategies. However there are
difficulties that arise as a consequence of iteddpnce on cut-scores to define
intelligence and accomplishment as either low, rarmn high. This presents
certain practical as well as philosophical difficeg when applying the model. A
second weakness in the model stems from the peaatidefining
underachievement as the arithmetical differend®iand AQ measures, a
practice that fails to take account of systemadiitguns in the magnitude of
measurement error in the data. A final difficultittwusing the model results
from its emphasis on underachievement without larfglnsideration of low

achievement.
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4. The Regression Model of Underachievement

As mentioned in the previous section one difficuliyh Schonell’'s scholastic
disabilities model is that the practice of definungderachievement in terms of
an arithmetical difference between 1Q and AQ meastails to properly account
for the measurement error in the data. Accordingldesical test theory a
person’s observed assessment score consists abtwponents, the true score
and the measurement error (Hopkins, 1998). Thuaghessment score is only
an estimate of the true ability. The magnitudeheférror component varies
between individuals for a variety of reasons. Aidifity arises in the
interpretation of assessment scores because thibuli®on of measurement error
is not random. The value of the error may be pasitiesulting in an assessment
score that overestimates the true score, or itlmeayegative resulting in an
underestimate of the true score. There is a sysieteadency for individuals
with low scores to have a large negative error]sthigh scores tend to be
associated with large positive errors. This biatherdata can be controlled for

using the regression methodology.

The regression methodology can be applied whenisataffect between two
variables is justified on theoretical grounds.Ha tase of Schonell’s model it is
assumed that AQ is somehow dependent on IQ, whickgarded as
independent. To apply the regression method theralgmt variable (AQ) is
plotted against the independent variable (IQ).n& lof best fit is then applied to
the data in such a way that the sum of squardseofertical distances between
each data point and the line of best fit, knowthasregression line, is
minimised. The vertical distance from each datafptwi the regression line is
called the residual because it represents thappéne AQ measure that is left
over after the 1Q of that person has been takenaotount. This effectively
controls for the systematic distribution of measueat error in the dependent
variable (AQ). The residual thus generated provaleseasure of the under- or
over-achievement after the bias in measurement ka®been corrected for. A
full description and justification of the regregsiapproach is given by
Thorndike (Thorndike, 1963).
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5. Application of the Regression Model: The Isle d#Vight
Studies

The regression methodology was applied by Willianiey Michael Rutter and
colleagues in a series of influential papers (Ruft®78, Rutter and Yule, 1975).
In those studies the researchers gathered readthiflameasures from all of the
children in three year groups located in the I1$lé&/aht (aged 9 to 11 years).
Follow up data were gathered on two of these cshairaige 14. A fifth
population of children from an inner London borowgds also assessed. The
number of individuals constituting each of the fatady populations ranged
from 1134 to 2113. The data so gathered were usddfine two classes of poor
readers. The first group consisted of those indi&isl with reading scores that
were at least 2 years 4 months below the averggeceed for their age. Such
children were classified as low achievers and desdras having a general
reading backwardness. The researchers then usattipleregression approach
to produce a predicted level of reading for eadlddfter taking into account
their chronological age and IQ. Children with reagscores that fell at least 2
years 4 months below that predicted by the regrassiodel were classified as

underachievers and described as having a speeéttirg retardation.

A difficulty with this classification approach wésat a high proportion of weak
readers fell into both categories. However this juasified as an important way
forwards on two grounds. The first concerned tlffeiintial educational
prognosis of backward readers compared to retashaters and the second was
concerned with the shape of the distribution oith@s scores in the population

as a whole. Each of these lines of evidence isrittestbelow.

In the follow up study of the two youngest IsleVidight cohorts, Yule found
evidence of a different educational prognosis lertivo classifications of poor
reader (Yule, 1973). Initially the two groups hasimilar average reading age,
about 33 months below the cohort average. Howéwesr differed in their
average 1Q scores. The reading retarded (underac)echildren had an
average IQ score similar to that of the controlyapon, whilst that of the

reading backward (low achieving) group was abowet standard deviation
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lower. The children were given follow up assessmeintreading accuracy,
spelling and arithmetic. A striking aspect of tkesults was that the retarded
readers made significantly better progress tham#e&ward readers in
arithmetic, but in reading and spelling the opposasult was found. It was
concluded that the distinction between the two gsoof poor reader had a valid
educational significance. Later studies also foevidence for differences
between the two groups of poor readers in ternsewfratio, incidence of
neurological disorder and pattern of neuro-develemial deficits (Rutter and
Yule, 1975).

According to the medical model there are two gatliely distinct
subpopulations of reader which might be referredstayslexics and typical
readers. As distinct subpopulations they would decbxpected to have a quite
different distribution of reading assessment scoséh the dyslexic
subpopulation having a lower mean score. The medhodel therefore predicts
a bimodal distribution of scores in the populatiGiven that it is entirely
possible that the distribution of scores in the subpopulations might have
considerable overlap, with the most able dyslekitdeen gaining higher scores
than the weakest of the typical readers, this batitydwould not necessarily
appear as two distinct peaks in the distributioneafding scores (Everitt, 1981,
Fleiss, 1972). In fact it was asserted by Critchiteat the distribution of reading
scores has a hump in the left-hand tail due tgpthsence of dyslexics in that

part of the reading abilities range (Critchley, @9Yule et al., 1974).

Having found evidence for two educationally distigroups of poor readers
Yule and colleagues sought and found empiricalenge to support Critchley’s
assertion (Yule et al., 1974). In their study, dngtribution of residuals obtained
from the regression of standardised reading saestandardised non verbal
intelligence scores for five populations of childrgere analysed. It was shown
that there were significantly more children in te# hand tail of the
distributions than would be expected by chanceafresiduals were normally
distributed in each population. The authors ackeodgéd that according to
Gruenberg (Gruenberg, 1966) such humps can emsrge artefact when the

abilities of the sample tested are broader thasetlom which the assessment was
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standardised, but argued that this was not an iasihés instance. They
concluded that the presence of the hump providateeee for the existence two

distinct groups of weak readers.

6. Specific Criticisms of the Isle of Wight Studies

Reactions to the findings of the Isle of Wight sasthave been mixed. Silva and
colleagues presented the results from a study h@%e-year-olds from New
Zealand that were in broad agreement with respeitiet differences between the
reading backward and reading retarded groups (8tlah, 1985). The authors
claimed that the differences they observed mayflaetological significance,
although Rutter and Yule had previously specificathted that their findings

did not support that view, despite the apparenti@iities between their retarded
readers and many of the characteristics assoaidgtealyslexia. Specific
differences in early literacy and phonological mssing skills were also found
in a study of 453 Australian children over theisfithree years in school (Jorm
et al., 1986). However in a re-evaluation of thevNEealand study the validity

of the apparent differences between the retardddackward readers was
questioned (Share et al., 1987). The objectiohégtevious conclusions was
based upon the assumed relationship between tmgeand 1Q measures,
which the authors argued was really correlativearathan causative in nature. It
was concluded that there was in fact no evidencbifoodality, and that it was

better therefore to treat under-achievement asiancam.

Another line of criticism challenged the underlyagsumption that the residual
scores of reading on 1Q are normally distributeah(der Wissel and Zegers,
1985). The authors argued that this would onlyxyeeted if three conditions

were met:

The reading scores are normally distributed.

The regression of reading scores on IQ is linear.

The variance of the conditional reading score dusttion given the 1Q
level is constant over all IQ levels (homoscedésg)ic

wn PR
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They concluded that the apparent hump observdtkitste of Wight data might

simply result from a ceiling on the reading test.

Attempts to replicate the findings have also mehwmixed results. On the one
hand Stevenson found evidence for a hump in thdualsscores of eleven-year-
olds for reading and spelling, but not mathemg&tsvenson, 1988). Rodgers
however failed to reproduce the findings usingaaliieg assessment that had no
ceiling (Rodgers, 1983). He gave four difficultiegh the original study that

might have affected the outcomes of the analys$iss& were as follows:

1. The reading tests employed had an acknowledgedgewith a
resultant deviation from linearity in the regressitunctions employed.

2. The histograms of residual scores that were preskntight more
properly be regarded as negatively skewed, rathan toimodal.

3. The prevalence estimates for specific reading dettion varied
considerably between different groups according/iich tests were
used.

4. The test score distributions may have deviated filormality in such a
way as to affect the shape of the distributionesidual scores.

In essence Rodgers was arguing that the obserstibdtion of residual scores
was simply an artefact resulting from limitationslhe assessments employed.
Shaywitz and colleagues also failed to find anylemnce for a hump in the
distribution of reading residual scores (Shaywitale 1992b). They also
reported that only 28% of children classified ademachieving in Grade 1
received the same classification two years latee [ack of stability in reading
disability classification is unexpected if the mbdere valid, and the authors
concluded that reading disabilities fall on a contim with typical reading

acquisition that can be modelled using the norrnsfidution.

7. The Rejection of the 1Q-Discrepancy Model

Although there are earlier discussions in thediiere the first strong rejection of
the IQ-discrepancy model of learning disabilitiesne from Siegel (Siegel,
1989). That rejection was largely based on argusnesricerning the validity of
various assumptions that underpin the model, beiatdo rejected empirical

evidence for the cognitive differences betweenviadials identified as low
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achievers compared to under achievers. Althouglobjections were

specifically discussed in relation to reading dikiads she stated that her
arguments could be generalised to other formsademic achievement. She
went on to gather further empirical evidence topsuwpher view (Siegel, 1992).
A study by Shaywitz and colleagues also conclutiatithere are more
similarities than differences between the two gsoappoor readers (Shaywitz et
al., 1992a).

The model was also rejected by Aaron following\aaw of the evidence for the
predicted qualitative differences between the qudsyof weak reader (Aaron,
1997). As well as the validity of the model Aardscaquestioned its utility in
informing different remediation strategies for itléad individuals. As an
alternative Aaron proposed the reading componermteiras a more appropriate
approach. According to this model all poor readersld be assessed for
specific weaknesses in particular reading skilhsas word decoding and
comprehension and given remediation to specificaigress any weaknesses
that were found. In a later study Pennington aniéagues did find evidence for
a differential effect in component reading procedsetween the two reading
disability subtypes (Pennington et al., 1992). Hesvehe same study found no
evidence for an underlying genetic cause for tffer@inces, an observation that
would have supported the medical model. In a glifferent approach Vellutino
and colleagues demonstrated that IQ-discrepancy dhiled to distinguish
between two important classes of poor reader, Bpaity those that did and did
not respond to remediation (Vellutino et al., 2000)

Criticism of the 1Q-discrepancy model is not redtrd to reading disabilities. It
has also been shown in a study addressing aritbahétarning disabilities that
there is little evidence for a difference betwean-bchieving and under-

achieving arithmeticians with respect to perforneaan working memory tasks

and arithmetical word problems (Jiménez GonzalezGarcia Espinel, 1999).

Perhaps the most vehement critique of the IQ disarey model has been made
by Stanovich (Stanovich, 2005). As well as reiiegthe points made by Siegel
and Aaron, he argues that a fundamental difficwith the 1Q-discrepancy
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model is its dependence on a causative unidiregti@ationship between 1Q
and attainment and points to evidence that théioekhip is in fact reciprocal, at
least in the case of reading (Stanovich, 1991,dvah, 1993).

In defence of the discrepancy model Kavale haseatgjuat it remains useful if it
is simply regarded as an operational definitionmderachievement (Kavale,
2001). In other words it is a practical tool toanh identification, which is a
considerably weaker role than its use for defingagning disabilities. In a meta-
analysis of 46 studies Stuebing and colleaguesifditite evidence to support
the validity of the 1Q-discrepancy classificatidtijebing et al., 2002).
Nevertheless they argued that it did not necegsaiglan that the concept of
learning disabilities is invalid, rather that theeoational implementation of the
concept is flawed. It is a problem with all studileat utilise the regression
model that there is a considerable overlap betumgrachieving and under

achieving individuals.

Dissatisfaction with the discrepancy model has gi@eh Vaughn and Fuchs to
propose an alternative framework for defining léagrdisabilities (Vaughn and
Fuchs, 2003). The response-to-intervention modékshe emphasis from
student deficits to student outcomes, however tagnadstic validity of this
approach has also been questioned by Kavale whwite@against the wholesale
rejection of the discrepancy model (Kavale, 20@5eems that in spite of the
practical and philosophical obstacles, the disarepanodel of learning
disabilities has an appeal that is difficult to maeme. That appeal may lie in the
face validity of the underlying concept of qualiaty distinct subtypes of
learners, and perhaps what is really needed ifeaeht toolkit to explore that

idea.

25



8. The Definition of Specific Learning Disabilities

The term “learning disability” was introduced byn3zel Kirk in 1962 (Kirk,
1962). According to Kirk:

A learning disability refers to a retardation, disier, or delayed
development in one or more of the processes oftbpémguage,
reading, writing, arithmetic, or other school sutjegesulting from
a psychological handicap caused by a possible cat@lysfunction
and/or emotional or behavioral disturbances. Iinist the result of
mental retardation, sensory deprivation, or culturaand
instructional factors.
A central feature of this and many later definisa@f learning disabilities is the
controversial notion that the presumed cause otdnélition is a dysfunction of
the central nervous system. It is an idea thaeissdd directly from the medical
literature and one that has profound implicatidhhe presumption is correct, it
means that the population consists of qualitatidetyinct subpopulations of
learners. If not it means that learners form alsiegntinuum of ability, and that
the differences between the weak and able are ynguaintitative. The truth or
otherwise of the presumption has important prakimoplications for how we
identify and remediate learning disabilities, aslae philosophical implications

for how we view affected individuals.

Another important feature of Kirk’s descriptionlefirning disabilities that is
often repeated in other definitions is the exclasitauses that form the final
sentence. Such clauses also have their origireimgdical literature and
reinforce the notion of qualitatively distinct sulgulations of learners. The
mental retardation clause in particular has begelyunfluential in the adoption
of operational definitions of learning disabilitigsat utilise regression
discrepancy models. The use of such clauses haredogicised for defining
learning disabilities in terms of what they are, mather than what they are, and
attempts have been made to remove both the exclakiases and aetiological

component from the definition of learning disalélg (Wepman, 1975).

According to Kavale a third important feature oflis definition is that it

introduced the notion of intra-individual differesec(Kavale, 2001), although
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this was also hinted at in the earlier work of Sab(Schonell, 1935). The idea
that a learning disability may differentially aftquarticular areas of academic
attainment, and be independent of normal functgmnother cognitive
domains, has prompted the introduction of the tepacific learning

disabilities’ into the literature. Interestingly this has ledhe use of the
unqualified termilearning disabilities’to refer to conditions that result from
mental retardation, which is in complete contradicto the exclusion clause in

Kirk’s original definition.

This contradiction in terminology illustrates a flamental issue at the heart of
definitions of learning disabilities. Kavelle andrRess argue that it is an
inherent problem that interested parties simplyndeliearning disabilities
according to what they think it should be (Kavatel &orness, 2000). They state
that:

Learning disabilities definitions, although usefrdmain equivocal
with respect to validity because they properly hgloto the
stipulative class of definition

They go on to state that:

In reality, stipulative definitions are only of gaic usefulness and
require transformation to be applied in practicenel most usual
transformation is the operational definition, ruleipulating how
the term is to apply to a particular case if speclfoperations yield
certain characteristic results.

According to Kavale and Forness operational deding suffer from a number of
philosophical and practical difficulties. The outees of operational procedures
are sensitive to the reliability and validity oktbperational indicators chosen to
make the necessary observations. Validity is atsissue when it comes to
matching an operational procedure with the undeglyheoretical construct. It is
possible to operarationalise anything but it doeftfow that it has any
meaning in reality. There is a real danger of $yndefining learning disabilities
in terms of what can easily be measured, but unltesss coupled to a valid
theoretical model then our understanding of thedit@m is not enhanced.

Ultimately the diagnosis and remediation of leagnilisabilities is dependent on
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this understanding. They conclude that as the tiefinof learning disabilities
has developed from one that is conceptually phggioal to one that is
behaviourally centred it has lost the power tolinfas what learning disabilities
actually are.

Perhaps the real issue behind this apparent paradoxunrealistic expectation
of what definitions of learning disabilities actlyahre. The situation is clarified
by Snowling for whom the term specific learnindfidiilties refers to a
‘statistical definition’which‘carries no implication about the nature or
aetiology’ of the condition (Snowling, 2005). For Snowlingthspecific
learning disabilities provide an operational defom which may, or may not
indicate a dysfunction, and can at best thereftiex the clinician a starting

point for their diagnosis.

9. Rationale for the Present Study

My interest in this area stems from my role as sgaech Associate at the Centre
for Educational Management (CEM) based at Durhanveysity. Part of my

role involves the training of teachers in the iptetation of feedback generated
by CEM’s primary school level monitoring projecliswas in this role that |
observed that one of the uses to which the date pugirwas to provide objective
evidence to support the identification of childkeith special educational needs.
This evidence was important because access to HolalaPsychologists for the

purposes of making a formal diagnosis is both Bohidand has cost implications.

At the time the CEM assessments available foritreetb eleven year age range
were exclusively presented in a paper and pencitdb. The assessment system,
known as Performance Indicators in Primary SchooEmply PIPS, uses
standardised assessments of curriculum dependesunes (reading and
mathematics) that are regressed against standaurdisasures of developed
abilities (picture vocabulary and non-verbal ap)lio provide an indication of
over- or under-achievement. A fuller descriptiortted assessments have been
provided by Tymms and Albone (Tymms and Albone, 200
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| was interested in how appropriate it was to iigeRIPS data as a screening
device for special educational needs, and had timaipal concerns. The first of
these was the accuracy of standardised assesstoess or atypically
achieving children. Paper based standardised assetsare designed to
discriminate between typically achieving childrés. a child’s score on such an
assessment departs from the average the errorasfurement on that score can
increase enormously. This is not surprising if goasider the experience of a
child that is academically very weak. Such a chlaly be able to tackle one or
two of the easiest items in the assessment, buethef it may be unobtainable
to them. If this is the case the child has effedjivbeen presented with a two
item assessment, irrespective of how many itemaskessment actually
contains. The best that we can say about the hiltht they are very weak in
the area that the assessment is designed to mehstienot possible to state
exactly how weak they are with any precision. Thabfem is just as acute for
very able children for whom successful interactioth the majority of the
assessment items is almost a given and who araeally tested by one or two
of the most difficult items. We can conclude thatls children are very able, but

not exactly how able they are.

My second concern was prompted by the doubts thblen raised about the
validity of the 1Q-discrepancy model, particulanythe United States of
America. There are some fundamental differencéisarway that PIPS was
being used as a screening tool in the UK, compiaréise much stronger use of
IQ-discrepancy as an operational definition of ey disabilities. In addition
the developed abilities component of the PIPS asseist was never intended to
represent a proxy measure for intelligepee se Nevertheless some of the

technical objections to the regression approacle werthy of reflection.

One way of approaching these concerns was to thkengage of the huge
longitudinal dataset of PIPS assessment scoresdlabeen collected over a
number of years. It was reasoned that even if tvere a high measurement
error on a single assessment result for a child special educational needs, that
error would be reduced if the results from sevasaessments taken over several

years were aggregated. This approach might alsodera way of looking at the
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stability of scores over time. In addition, if efigs were restricted to
longitudinal patterns in curriculum dependent measwithout reference to the
developed ability measures it would completely sthp the issues concerning
the application of the regression methodology.

In an early discussion along these lines ProfedBster Tymms proposed the
hypothesis that if the population did indeed cansigjualitatively distinct
subtypes of learner, then that might be revealddarshape of the distribution of

mean normalised scores. The rationale for this tigsis is as follows.

One reason why previous studies have not lookeHifoodality directly in
measures of academic achievement is that theldistin of standardised test
scores does not accurately reflect the true digioh of that ability in the
population. According to classical test theoryraividual’'s test score is made
up of their ‘true score’ and the error on that scétowever that error is not
randomly distributed in the population. An assessngemade up of separate
items. In a well constructed assessment the disioib of item difficulties will
reflect the distribution of abilities in the poptitan that the assessment is
intended for. An assessment item can be thoughs dking well targeted to a
particular individual if the difficulty of that ita is closely matched to their
ability. If the item is too easy or too hard, tieif it is not well targeted, then it
can reveal little about an individual's ability.dfn necessity standardised
assessments are targeted towards typically aclgentividuals, meaning that a
relatively high proportion of items in the assesstwall suit the average ability.
As an individual’s ability moves further from theesage they will typically be
presented with fewer and fewer well targeted iteBisce the absolute
magnitude of the measurement error is an invensetitn of the number of well
targeted items there is a systematic tendency &asorement error to increase as
ability departs from the average. The matter ithierrcomplicated if the
direction of the error is considered. If the eligopositive it will cause the test
score to be higher than the ‘true score’ thatimisnded to estimate. If the error
Is negative it will cause the ‘true score’ to belerestimated. There is a
systematic tendency for high scores to be assalcwgte positive measurement

error, whilst low scores are associated with negatieasurement error. Since
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the variation of measurement error with abilityasgely the property of the
assessment itself, and that error makes up a signifproportion of the overall
score, it is unwise to infer much about the disttidn of the ‘true score’ in the
population. In short any evidence for bimodalitgttmay be observed in the
distribution of assessment scores may simply bartafact of the assessment

itself.

The process of standardising assessment scorei\adfe involves the linear
transformation of raw scores to fix their mean &adance to some agreed value.
The shape of the resulting distribution is exattitly same as that of the raw data.
This manipulation may be taken a step further logifig the data into a normal
distribution. This process is called normalisatidfhen a group of children are
assessed on two occasions and their mean normatiseel determined it is

found that the variance of those mean scores ssthes that of the original
normalised scores, although the mean remains the.sehis is because the
mean score will tend to have less measurement #aareither of the individual
assessment scores. If a third assessment is anltieel analysis then the variance
of mean normalised scores will shrink still furthend so on. Theoretically after
an infinite number of assessments all of the measent error will have been
accounted for and the mean normalised score wiidusvalent to the true score.
Clearly it is not possible to conduct an infinitenmber of assessments; however
it may be possible to gain some insight into the-4score distribution given a
suitable longitudinal dataset. Specifically if tinederlying distribution of ability

Is unimodal, then the distribution of mean nornediscores across several
assessments will also tend to be unimodal. Howeéfvitre underlying

distribution of ability is bimodal this will begito reveal itself in the shape of the
distribution of mean normalised scores. Furthermibie shape of the

distribution of mean normalised scores will rev&ainething of the nature of the
relationship between the two sub populations. Tkdioal model predicts that
the smaller subpopulation will have the lower mseore. The resulting
asymmetry in the distribution of mean normaliseares would be indicated by a
negative skew. If the smaller subpopulation werkawee the higher mean score a
positive skew would be observed. If the two subpajons were of equal size

and variance then the distribution of mean normdlscores would remain
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symmetrical, and the skew would be zero. Howewanen this case evidence
for bimodality would be revealed in an increaseddais in the distribution of

mean normalised scores.

It was originally intended that the applicationtloifs idea would form the basis
of the present thesis. Large amounts of longitudiata were available and the
process of deriving mean normalised scores waigstfarward. Initial results
were encouraging, suggesting evidence for bimadialithe distribution of
reading scores, but not in mathematics. An attemgstalso made to model the
distribution of scores as the sum of two normatridtistions (binormal
distribution) and thereby derive parameter estisiédethe distribution of each
subtype of reader. The results of these analyses pvesented at two
conferences (Albone et al., 2006b, Albone et &062a). However further
development of the methodology revealed a numbpraiflems. It was shown
by use of randomised datasets having a binormalldison that the
normalisation process so confounded the scoresdbegssion to the mean
could never fully resolve the two subpopulatiohsistmaking it impossible to
derive accurate parameter estimates. The methog@dogleriving parameter
estimates was itself flawed, based as it was osltape of the frequency
histogram generated from the mean normalised scbhesparameter estimates
generated in this way were found to be sensitivbeégosition of the category
boundaries chosen for each bar of the histogranhesmethodology lacked
robustness. The precision of the parameter estineds dependent on the
category width selected, and the selection of tltpaint of each category to
represent its horizontal location introduced aeaysitic bias. In addition the
process of aggregating the data into categoriedteglsin a second systematic
bias according to the frequency of scores in eabtbgory. Since each bar of the
histogram contributed a single data point to thel@eh@t, scores that fell into
infrequent categories had a disproportionate imit@eon the final result. Finally,
and perhaps most significantly, it was found th&lPS reading assessment
scores were taken in pairwise combinations (thenewix assessments and
therefore fifteen pairs) the skewness observedemiean of the standardised
scores explained 71% of the variance observedeiskbwness of the mean

normalised scores. The equivalent figure with respekurtosis was found to be
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35%. In other words the shape of the distributibmean normalised scores was
still heavily dependent on the distribution of rassessment scores. Like the Isle
of Wight studies before, the apparent bimodalitgmisimply be an artifact of
the assessments used.

These analyses prompted a review of the approaahargd this line of
investigation was abandoned. However this prelinyiedfort laid the
groundwork for what is the subject of this the3ise failure of the mean
normalised scores approach ultimately resulted fiteerinsufficient quality of
the data used to evaluate it. A difficulty withreflardised assessment results
such as those used here is that the data genesagsdly at the ordinal level, but
to gauge the true distribution of scores in theypaion requires interval level
data. It has been shown that in the mid range atdisid scores provide a good
approximation of interval level data, but not ie tfails of the distribution where
children with learning disabilities are likely teside (Cohen, 1979, Preece,
2002). A solution is to apply the Rasch measuremmadel to the data to obtain
true equal interval measurement (Bond and Fox, R@dwever this is not
sufficient on its own as it cannot compensateliertiigh measurement error in
the distribution tails. That requires the use ocbmputer adaptive assessment.
An assessment of this kind acts dynamically, selg@ssessment items of
appropriate difficulty according to each individiggbreceding pattern of
responses. This results in a high proportion of weetjeted questions,
maximizing the efficiency of the assessment whigtimizing the measurement

error, and in a way that is independent of thetgof the subject.

The aim of the present study was to determinegifetlis any evidence for
bimodality in the distribution of assessment scdhes would support the
medical model of specific learning disabilities.igtvas done by analysing the
scores of the entire population of four primary axas in Northern Ireland
without reference to measures of ability or 1Q. Ta¢a were gathered using a
computerised adaptive assessment and processgdReasih to obtain interval
level measures. The central theme of the thesieigevelopment of the
binormal distribution as a model of bimodality. Tieormal distribution model

is introduced, defined and described algebraigallshapter 2. In chapter 3 an
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objective methodology is developed for determirbngprmal parameter
estimates. Specific details of how that methodolwgg applied to the Northern
Ireland data are given in chapter 4. Chapters S6aa@ concerned with a
description of the results of that analysis. Inptha7 the validity of these results
are considered within the theoretical context @&cjic learning disabilities. In
the final chapter the limitations of the methodgl@ge discussed as are some of

its potential applications.

10. Research Questions

The central theme of the present study is the egipdin of the binormal
distribution to the study of learning disabiliti@e research questions that arise

from this application are as follows:

1. Does the binormal distribution provide a suitabledel for the
investigation of bimodality in an epidemiologicélidy of academic
attainment in primary school children?

2. Is there any evidence for qualitatively distincbtypes of learner in the
population under study?

3. Isit possible to obtain valid and reliable paraneistimates for the
distribution of assessment scores for differentyquds of learner within
the population as a whole?

4. To what extent does the identification of distisabtypes of learner
support the medical model of specific learning likizes? Is there any
evidence for the existence of dysfunctions suctlyatexia and
dyscalculia?

5. What are the implications of application of thedsimal model to the
identification of children with specific learningsabilities?
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Chapter 2: The Binormal Distribution

1. Introduction

In this chapter the binormal distribution is inttméd as a model for
investigating data that has an underlying bimottalcture. The binormal
distribution is conceived as the sum of two nordisfributions. The model is
then developed to determine the relationships beivlee parameters that define
it.

2. Notation

The notation used to describe the binormal distidinuhas been adapted from

the convention used in medical diagnostics (Pep@3R Since the present study
is primarily concerned with the distribution of ses on assessments of academic
attainment the population is conceived as congjsifriwo qualitatively distinct
subpopulations of learners. One of these subpapotawill tend to have low
levels of attainment compared to the other. Theroslibpopulation may be
regarded as having typical (or high) levels ofiattent. The notation used is as
follows:

D - attainment status ( 1 = low attainment, O =d¢gpattainment)

D,D - subscripts for low and typically attaining sopplations

Yo, - prevalence of low attaining subpopulatiB(D :1)
Ny - number of low attaining individuals

Ns - number of typically attaining individuals

N - total number of all individuals n, +ng

X - variate quantifying attainment

U - population mean

X5 - mean of low attaining subpopulation

X5 - mean of typically attaining subpopulation
o? - population variance

s? - variance of low attaining subpopulation

s% - variance of typically attaining subpopulation
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3. The Normal Distribution

The normal distribution is a continuous probabittgtribution that is commonly
used to model unimodal data. According to the egtitnit theorem the sum of a
number of independent random variables with fim&an and variance tends to
approach a normal distribution as the number abbées increases (Grinstead
and Snell, 1997). This means that in real worldagibns where the magnitude of
a particular measure is dependent upon a complespiay of many underlying
factors, the distribution of that measure over malngervations will tend to have
a normal distribution. This makes it possible tplg@ relatively simple model

to complex phenomena. One application of this kihchodelling is that it

permits access to an array of powerful parametaiissical tools.

The probability density function (pdf) of the norndisstribution in variate X is

given by
e—a
P(X) =
o~ 2T
where
2
o= (=x)
20°

Thus the normal distribution is defined in termswad parameters, the mear) (
and the standard deviatios) (Rees, 1987).
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4. The Binormal Distribution

The binormal distribution is here defined as the i two normal distributions
and is therefore a continuous probability distritwit The probability density

function of the binormal distribution in variateiXgiven by:

P(X)= pP(X, )+ (- p)P(X;)

It is a necessary feature of any probability dgrfsihction that the area under the
curve described by the function be equal to onerdier to preserve this
condition the normal pdf of each subpopulation dtiplied by the prevalence of
that subpopulation. Since the prevalence of thedtiaining subpopulation is
given byp, and the sum of the prevalences must equal ofalaws that the

prevalence of the typical attainers must be equélp).

Thus the binormal distribution is thus definedemts of five parameters. These

are the mean and standard deviation of each sulgimpuand the prevalence of

the low attaining subpopulati(ﬁﬂD,ia,sD,&D ,,0).

There is an intimate relationship between thesarpaters and the mean and

standard deviation of the population overall surGt:t
H=pXy + (A= P)X5 1

0® = psh +(1-p)st + (%o ~ )~ %5) 2

The remainder of this chapter is concerned witlvigiog an algebraic proof of

these relationships.
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5. Algebraic Proof of Equation 1 (Population Mean)
Total number of individuals in the population:

N =n, +ng

Prevalence of the low attaining subpopulation:

p=—1o

Ny +nNg
p_ 1
N Np+ng

Prevalence of the typically attaining subpopulation

1-p)=—>2

- p) .

-p)_ 1
N5 Np +Ng

Population mean:

_2X
SN
Where:

SX =3 Xy +I X

Mean of low attaining subpopulation:

Np

Xp

Mean of typically attaining subpopulation:

Xf:zx5
n

D
D
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1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09



Substituting 1.01 and 1.07 into 1.06:

2 Xp +2 X
=="b ="b 1.10
N, +ng
X—
= 2Xp + 2% 1.11
N, +Ng Ny +ng
Substituting 1.03 and 1.05 into 1.11:
2 X 1-0).2 X~
ﬂsz D+( P)-2 X3 1o

Ny ns
Substituting 1.08 and 1.09 into 1.12 gives an esgom for the mean of the binormal
distribution (equation 1):

H=pXy + (A= P)X5
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6. Algebraic Proof of Equation 2 (Population Variarce)

Population variance:

_ 2
N
Where:
S(X =) =2(Xp - p) +2(X5 - pf 2.02
Variance of low attaining subpopulation:
_v \2
s? = 2(Xo 7%)" 2.03
nD
Variance of typically attaining subpopulation:
X- —%X-)?
sz - 2% %) 2.04
N5
Substituting 1.01 and 2.02 into 2.01:
X —u)+ X_ -y
oo X0 —uf + 3 (X5 - 4) o5
Np + N5
Xp — 1) X —uf
Uz:z( o~ H) +z( 5 ~H) 2.06
Np + N5 Np + N5
Substituting 1.03 and 1.05 into 2.06:
ERPAY: _ A v
Lo PEXo—uf  1-p) Y (X - 1) .
N, Ns
ConsidefX , - u):
(Xp =) = (Xp =Xp) +(Xp = 4) 2.08
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(XD _,u)z = (XD _)_(0)2 +2(XD _XD)()_(D _,u)+()_(|:) _,u)z

Z(XD _,u)z :Z(XD _XD)Z +22(XD _)_(D)(XD _,U)"‘Z()_(D _,u)z

Since ¥(X, - %, )=0:
E(Xp =) =E(Xp =%p)* + X(Xp — )

2(Xp - 1)? — 2(Xp _)_(D)2 + 2(Xp - p)?
Ny Ny Ny

Substituting®(x, — #)° =ng (%, — 1)’

- 2 _ v \2
Z(XD ,U) — Z(XD XD) +(XD _,u)z
Np Np

Substituting 2.03 into 2.13:

Y(Xp = H)? -
( rD1 4) :SI§+(XD_/'I)2
D
And similarly:
X(X5 —)° -
o TSy
D

Substituting 2.14 and 2.15 into 2.07:

2

0 = plst + (% =) )+ (- p)(s2 + (%5 - 1)

Substituting Equation 1 into 2.16:
0 = pls2 + (%, — pX, — (1= P)%5 J2)+ (- p)(s2 + (%, - u)?)
o = pls +((1- p)%o ~ (- P)%, )+ (1= )s? + (%, - 1))

7= plss (- A, 5, )+ - )t +(5 - )
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2.09

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19



Substituting Equation 1 into 2.19:

o = plsi +((1- )% ~ %5 ) )+ (- P)s2 + (% - p% ~(1-£)%, ) 220
o = plsi +((1- )% — %o )F )+ (1= p)ls2 + (0%, — p%, ) 2.21
o = plst + (- £)%o ~ % )F )+ - o)s + (ol%s ~%o ) 2.22
o = plsi + (- p)' (% %, ) )+ (- p)(sE + (%, ~ %, ) 223

since(X, - %5 f = (%5 — %, )
0% = ps? +(1- p)s? + p1- p)(%, — %5 2.24

o2 = pst +(1- p)st + p(1- )%y — %5 %o — %) 2.25

Rearranging Equation 1:

Xs = ,ul—_—,opiD 2.26
Substituting 2.26 into 2.25:

o’ =pst +(1-p)s? + p.(l—p)(iD —’ul__—p/':D](iD - %) 2.27

o2 = ps? +(1- p)s? +p.(1—p)(iDl__’2)_(D - 'Ul__p;[’ J()_(D - %) 2.28

o’ = pst +(1- p)s + plL- ,o)( 21'3__10/”[}(?,3 - %) 2.29

0% = p.s2 +(1- p)s? + p %o = 1)(%o — %) 2.30
Rearranging Equation 1:

X, = HZL=P)Xs 2.31

0
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Substituting 2.31 into 2.30:

o = psi +(1- p)s?

0% =psy +({1-p)s?

o’ = ps +(L-p)s}

Simplifying equation 2.34 gives an expression ke variance of the binormal

distribution (equation 2):

+p{%o — )

+p{%o — 1)

+ p'()_(D - /J)

0 = pst +(1-p)st + (% — p)u - %)
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2.32

2.33

2.34



7. Summary

In this chapter the binormal distribution was deéfiras the continuous
probability distribution resulting from the rescdlsum of two normal
distributions. It was shown that the distributigrdiescribed by five parameters.
The model was then developed algebraically to debterthe relationships
between these parameters. These relationshipsraraaised in equations that
describe the population mean and population vagiafi¢che binormal
distribution (equation 1 and equation 2). These goosare utilised in chapter 3

for the purpose of deriving estimates of the birarparameters.
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Chapter 3: A Method for Deriving Binormal Parameters

1. Introduction

In the previous chapter the binormal distributicssvdefined as a continuous
probability distribution that can be describedamts of five parameters. In the
present chapter a methodology is described fovieriestimates for these
parameters from an empirical dataset. The reasomeforing such parameters
are threefold.

1. To provide evidence to support the hypothesis ti@pbpulation
consists of two qualitatively distinct subpopulaso

2. To describe in quantitative terms the relationst@ween those
subpopulations.

3. To provide a basis for performing inferential statson the differences

between the two subpopulations.

The methodology to derive binormal parameter esamhas two stages. In the
first stage a curve was generated that descriteeduimulative probability
distribution observed in the data. A curve fitteygproach was then used to fit
the binormal cumulative distribution function (cdib)the observed curve. This
technigue employed nonlinear regression to detexitiia combination of

parameter magnitudes that gave the best fit ofribéel to the observed data.

2. The Binormal Cumulative Distribution Function

The cumulative distribution function (cdf) is a carthat describes the
cumulative probability distribution for a particulgrobability distribution. The
cdf of the normal distribution is given by the fmNing equation whererf is the

Gauss error function.

-1 X-H
d(x) = 2[1+ erf(aﬁD
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Since the binormal distribution is defined as thmf two normal distributions,
corrected for the prevalence of each subpopulatidoljows that the cdf of the

binormal distribution is given by:
®(x) :(ﬁj 1+erf| Yo "% +((1_’0)j 1+erf| 2%
2 $,V2 2 S5v2

3. Deriving the Observed Cumulative Probability Disribution

The cumulative probability distribution curve fowariate X is observed when
the cumulative probability that a value is lessitbaequal to X is plotted against
X. The value for X is taken directly from the dat&e cumulative probability for
each value of X in a data set containing N obs@wmatwas derived by the

following procedure.

1. The observations were sorted from lowest to highedtassigned the
rank 1 to N.

2. The fractional rank for each observation was deteeohby dividing each
rank by N, thus giving a scale running from 1/NLt&ince the
cumulative probability should properly run fromd1 this method
provides an estimate with a slight positive off3dte offset will be
negligible where N is large, however the followstgps were used to
provide a simple correction.

3. The observations were sorted from highest to loaerdtassigned the
reverse rank. Thus the observation with the forwand “1” was
assigned the reverse rank “N”.

4. The reverse fractional rank was calculated for edogervation by
dividing by N.

5. A correction for the reversion was made by subingdhe reverse
fractional rank from 1. This gave a scale thatfram O to (N-1)/N.

6. The cumulative probability for each observation weesn calculated by
finding the mean of the forward fractional rank dhe corrected reverse
fractional rank. This gave a cumulative probabiitale that ran from 0
to 1.
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In summary the cumulative probability for each ataton is given by the
following expression wher#R is the forward fractional rank amBR is the

reverse fractional rank.

fFR+ (L-rFR)
2

Having determined x and y coordinates for the olebcumulative probability
distribution curve the next stage was to deterrhim& well those data fitted the

normal and binormal distribution models.

4. Curve Fitting

All curve fitting procedures were carried out usthg DataFit software package
(Oakdale Engineering, 2008). The software requdeta to be input in the form
of x and y coordinates. It has the capacity to mogin user defined models and
contains a variety of internal functions to faeié this. The square root function
(sqgr) and Gauss error function (erf) were utilisegrogram cumulative

distribution models for both the normal and binolrtiatributions.

The cumulative normal distribution model was simgiygled as follows.

Model Definition:
F1 = (x-m)/(s*sqr(2))
Y = (1+erf(F1))/2

The model definition uses the letters ‘m’ and tsrépresent the mean and

standard deviation parameters of the normal digioh respectively.
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Coding of the binormal distribution model was #ditmore complicated, as is

explained below. The actual code used in the Dasaifiware was as follows.

Model Definition:

F1 = (m-p*ml)/(1-p)

F2 = sgr((s*s-p*s1*sl-(m1-m)*(m-(F1)))/(1-p))
F3 = (x-m1)/(s1*sqr(2))

F4 = (x-(F1))/((F2)*sqr(2))

F5 = (1+erf(F3))/2

F6 = (1+erf(F4))/2

Y = p*(F5)+(1-p)*(F6)

The binormal distribution is defined in terms ofdiparameters. In the model
definition here employed parameters describingltegibution of the low
attainment subpopulation are used directly thusiepresents the prevalence,
‘m1’ is used to represent the subpopulation mead, s’ signifies the standard
deviation of the same subpopulation. The two remgiparameters required to
complete the model are the mean and standard aev@dtthe typically attaining
subpopulation. However rather than entering theim time model definition
directly, substitutions derived from the rearrangetrof the equations for the
population mean and variance of the binormal distron that were derived in

chapter 2 were used instead.

Rearranging the equation for the mean of the bimabdistribution (equation 1)
allows the mean of the typically attaining subpagpioh to be expressed in terms

of the population mean and the mean of the lowratiga subpopulation.

XB = /'I - IO'XD 3
1-p

Similarly rearranging the equation for the varian€éhe binormal distribution

(equation 2) allows the standard deviation of ffpectlly attaining

subpopulation to be expressed in terms of othearpaters, including the

standard deviation of the whole population.

=\/02—p-83—(io—u)(u—io)
1-p

D
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The overall effect of these two substitutions id tiae latent parameters in the
model are replaced by two that can be calculatesttlly from the data, namely
the population mean and standard deviation. As thighcumulative normal
distribution, these are represented by ‘m’ andrighe model definition.

To determine how well the observed data fitted ed¢he two models a
nonlinear regression approach was used. Nonlimgmession requires that initial
parameter estimates are entered into the softWataFit then calculates how
well the observed cumulative probability curve tlie model curve using those
parameters. The software then enters an iteratsegure in which the
parameter estimates are altered slightly with thread improving the overall
model fit. This process continues until either adptermined number of
iterations have been completed or there is no diabée improvement in the

model fit.

A potential difficulty with the nonlinear regressimethodology is that it is
possible to obtain more than one valid solutiomesheling on the values used for
the initial parameter estimates. This is more likelpccur if the model uses a
large number of parameters. In the case of therimalodistribution this is a
distinct possibility since it is defined by fivenaaneters. The solution to this is to
replace variable parameters in the model with dbjely determined constant
values. The purpose of substituting latent pararsdtethe binormal model with
the population mean and standard deviation waaditithte this. Within the
DataFit software it is possible to specify whetbach variable in the model
should be treated as a variable or constant vaiube present study the
population mean and population standard deviatierevassigned as constants
with a value calculated from the data. Thus forghgose of obtaining a model
fit the normal distribution is expressed in termh$wo constants, whilst the

binormal distribution is expressed in terms of memstants and three variables.
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5. Nonlinear Regression Output Statistics

The DataFit software produces a variety of outpatistics that enable the user
to evaluate their model fits. The three principbgistics that are reported in this

study are outlined below.

The coefficient of multiple determination (R?) refsothe proportion of variation
in the data points that is explained by the regoessiodel. If the value of R2 is
equal to one it means that the curve passes threxgyly data point. An R2 value
of zero means that the regression model does sctibe the data any better
than a horizontal line passing through the aveyagalue of the data points.

The adjusted coefficient of multiple determinati®®af) adjusts the value of R2
according to the number of explanatory terms innioglel used. The binormal
distribution model includes three more variablemtthe simpler normal
distribution model. It is not surprising therefahat it tends to provide a better fit
to the data and higher R2 values. The Ra? statigficsts the value of R2
downwards to compensate for these additional degregeedom. Direct
comparison of the Ra? statistic allows the evatuatf whether the improvement
in the fit of the model justifies the increasetmcomplexity.

The nonlinear regression technique produces estinoatiie magnitude of each
variable in the model, together with the standardreof that estimate. These
statistics are used to perform a t-test with théhmypothesis that the value of the
variable is equal to zero. The prob(t) statistiogeful because it highlights any
variables in the model that are not contributinghi® overall fit and may

therefore be dropped.

6. Limitations of the Methodology

A well known limitation of nonlinear regression,caone that is inherent in any
iterative procedure, is the possibility of arriviaga false solution. This
possibility increases with the complexity of thgnession model. The possibility

of arriving at a false solution may be compenséetby running the procedure a
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number of times with different initial parametetiesmtes. Whatever the value of
the initial parameter estimates the procedureidaélly converge upon the same
solution. If more than one solution is found thes®y be evaluated to determine
which, if any, is more likely to be the correctiwodn. More than one solution to

the model fit may also indicate that there is greabmplexity in the data than is
explained by the regression model, or that a difftmodel may be more

appropriate.

A more serious limitation to the methodology comsathe quality of the data
used to generate the observed cumulative probabistribution. It is a
prerequisite that the data used provides a trlectedn of the distribution of the
abilities in the sample, and it follows that thesest also be interval level data.
Strictly speaking the standardised scores prodbgdchditional paper-based
assessments are at the ordinal level. What is rtfueggattern of scores on such
assessments has as much to do with the distribatinem difficulties as it does
with that of pupil abilities. If such data were dsany findings generated by this
methodology may simply be an artefact of the assessused to gather the data.
A partial solution to this is to employ a Raschqadure to convert the data to
interval level scores that truly reflect the distiion of abilities in the sample.
However the use of Rasch measurement on its owat isufficient. Paper-based
(static) assessments are designed to target tiypattdining individuals, with the
result that those in the tails of the ability rarage measured far less precisely. If
the methodology is to provide good parameter esésfor a low attaining
subpopulation it is necessary to get accuratetglpieasures in this range. This
may be achieved using a dynamic procedure sudiasffered by a
computerised adaptive assessment. Using such essassnt system the
precision with which an individual is measuredasthe most part independent

of where they fall on the ability range.

In addition to the quality of the data used itlsoanecessary to consider the
quantity of those data. This affects in partictles fineness of the probability
scale that forms the y-axis of the observed cunwaadrobability distribution.

To illustrate this point consider the situation wérere are only ten data points.

These points are equally spaced in the vertical ni&oa at 0.1 intervals. The
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figure of 0.1 represents the maximum possible preciof measurement in this
dimension. Put another way the cumulative probigiginnot be reported to any
greater accuracy than one significant digit. Insieg the number of data points
by a factor of ten to 100 would allow a theoretiegorting limit of two
significant digits. However in practice we mightjuere considerably more data-
points before we were confident in reporting tieael of accuracy. If it were
taken as a ‘rule-of-thumb’ that the number of digant digits that we were
confident in reporting were one less than the oad@nagnitude of the data
points, and that a minimum acceptable level of isrec were two significant

digits, then the methodology described requiresrannum sample size of 1000.

7. Summary

In this chapter a methodology is described forueg binormal parameter
estimates from an empirical dataset. The procedurarried out in two phases.
In the first phase the coordinates of data polmas describe the cumulative
probability curve observed in the dataset are geadr In the second phase
nonlinear regression is used to determine the coatibn of parameter estimates
that provide the closest fit of the observed dattoé theoretical model. It is
argued that both the quality and quantity of dagaimportant considerations in
the application of the methodology. It is recommezhthat the data used should
be collected using an adaptive assessment progeddtitea minimum sample

size of one thousand individuals.
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Chapter 4: The Data Used to Evaluate the Binormal
Distribution Model

1. Introduction

Having defined the binormal distribution model aleveloped a methodology
for deriving parameter estimates for the samenéh stage was to apply the
model to a real dataset. Given the limitationshefrinethodology described in the
previous chapter careful consideration was givethéadata chosen to evaluate
the model. A substantial database of assessmeiitsress available that had
been gathered using an adaptive computer basezhgyibius meeting the
necessary quality and quantity criteria. In thiaptier a description is given of
the assessment used, and of the data collecteallyf-ithe procedure and
rationale for preparing the raw data for input itite regression model is also

described.

2. The Interactive Computerised Assessment System

The Interactive Computerised Assessment System ()@Ra computer
adaptive assessment designed by the Centre foudial and Monitoring at
Durham University, UK. The InCAS software providesadlection of
assessment modules that are designed for use ldyechaged between five and
eleven years. Each of the assessment items that3n@as are thoroughly
trialled in advance to determine the age at whitypecally achieving child

would have an equal chance of answering it cogrertincorrectly. This age
represents the difficulty of that item. The softwtren takes the child’s
chronological age as an initial estimate of thbitity and presents the first item
accordingly. Typically this would mean presentihg thild with an item

difficulty two years lower than their chronologiage. INCAS then uses adaptive
algorithms to select the difficulty of the itematlare subsequently presented. In
this way the software quickly targets items toabdity of the child, greatly
increasing the efficiency and reliability of thesassment process. In the same
way that the item difficulties are defined in terofsan age-equivalency, so are
the ability measures that are output by the sotwaArfuller description of
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INCAS and the rationale behind the assessment wheltbgy has been given by
Merrell and Tymms (Merrell and Tymms, 2007).

For the purposes of the present study data fromIfgLAS assessment modules
were used. These were picture vocabulary, readiathematics and arithmetic.
The format of each of the modules is described beowample screenshots from

each assessment module are given in the appendix.

Picture VocabularyThis is a relatively simple task in which the chilgars a
word and sees five pictures. They use the mousdgvdmclick on the picture

that best illustrates that word.

Reading:The InCAS reading module itself consists of threygesate tasks. These
are word recognition, word decoding and readingm@tmension. In the word
recognition task the child hears a word, and theaerdence putting that word
into context. They use the mouse pointer to clickhencorrect spelling of that
word from a choice of five. Clearly children mayeusoth word recognition and
word decoding strategies to correctly answer eadstipn. In order to
disentangle these two quite different skills they then presented with a
dedicated word decoding task. This takes a simianét to the word
recognition task, but in this case the child isspreged with an unfamiliar or
nonsense word. Since the child will not have sbentord before they must use
a decoding strategy to find the correct solutiorkefatogether the word
recognition and decoding tasks provide a measubasit reading skills. This is
used to select a passage of text that is of seit@iHficulty for the reading
comprehension task. In this final reading taskdhiéd is asked at various points
to select the correct word from a choice of thiest best fits within the overall

meaning of the sentence.

MathematicsThe mathematics module covers the broad mathscalum
including number, measurement, shape & space, atadhéndling. The child
hears a question and is given additional visualrmétion in the form of
pictures, charts etc. The child then selects theecbanswer from a choice of up

to five.
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Arithmetic: The arithmetic module consists of four tasks, ameeich arithmetic
operation. Progression through the tasks from emidio subtraction,

multiplication, and finally division depends on therformance on the previous
arithmetic tasks. Each assessment item is preseisteally in symbolic notation

with a choice of four possible answers to click theuse pointer on.

Reliability figures were calculated for each modaitel were as follows; picture
vocabulary (0.89), reading (0.97), mathematicsA)).@nd arithmetic (0.96). The
validity of the picture vocabulary and reading miedihas been discussed by
Merrell and Tymms (Merrell and Tymms, 2007). Faegd modules predictive
validity was determined by comparison with PIPSgrdgased standardised
assessments. The correlations between the PIP$1@A&lassessments were
found to be 0.82 for picture vocabulary and 0.7#5réading. Both figures were
statistically significant at the 0.01 level. The hehatics module was developed
using items from a variety of sources, includindlwalidated items released by
the Third International Mathematics and Science B{UeA, 1995a, IEA,

1995b). The item difficulties reported by the IEA w@ompared with those that
were generated when the same items were presesitegltbe INCAS assessment
engine. The correlations were found to be 0.791@&0s; population 1) and 0.77
(15 items; population 2). Both figures were statadty significant at the 0.01

level. No figures were available for the validitfitbe INCAS arithmetic module.

3. The Assessment Sample

The reading and maths modules of the INCAS asses$sireea statutory
requirement for all state schools in Northern inelauring the last four years of
primary school (that is P4, P5, P6 and P7). Thesaasents are taken by all of
the children in these year groups except in veegisth circumstances. In
addition to the statutory requirements many schoontiertake the other
assessment modules such as picture vocabularyriéimthetic on a voluntary
basis. The statutory nature of the maths and readodules means that data are

available on a substantial majority of the popolain those four year groups,
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and data were gathered from in excess of 80,000rehi The voluntary

modules were completed by about a quarter theb&igiopulation.

The data presented here were collected in Northmetanid during 2009. This
particular dataset was chosen for two reasonsoAgh the INCAS assessment
has been a statutory requirement in Northern Icekance 2007, it was
previously restricted to one or two cohorts. Thiswee first occasion that data
were available across the four upper primary cahdmtaddition there had been
significant development of INCAS since 2008 to lotye floor and raise the
ceiling of both the reading and mathematics assessnthus extending the
ability range over which reliable measurement cdaddnade. All of the
assessments were completed between September aaochiber, with peak
activity around October. To the author’s knowledye data collected are unique

with respect to quantity for a computerised adapassessment.
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4. The Assessment Process

The assessments were carried out by teachers aedéhing assistants within
the participating schools. The children were typicassessed in small to whole
class groups according to the group dynamics, aviailstaff and availability of
computers. Specific details of the managementeptiocess were left to each
school.

From the child’s perspective the assessment progeskyes sitting at the
computer terminal wearing a set of headphonesdardo hear the audio
component of the assessment. Initiation of eachsassent is controlled through
the use of unique passwords that are used only dihce system facilitates
management of the process by school staff and ekpssure that each child is
assessed once only on each module. Once a pasisvemtgred the child is
given some audio instructions on how to completeatbsessment, followed by
some practice questions. The assessment itselfgaea@thout providing
feedback to the child on whether each item was aresvcorrectly or not. A
status bar provides an indication to the child@immuch time remains to
complete the assessment. INCAS has a time limgdgh question and for the
assessment overall, however these are generoub@adsessment reaches a
natural conclusion for the vast majority of childrdf a child fails to respond to a
particular item within the time limit it is recorddy the software dimed out’
but is treated as incorrect for the purposes afipecong a final score. The time it
takes to complete an assessment varies accordwgitb module it is and the
individual child, but most are completed within tvixe minutes. It is
recommended that children sit no more than one teddwa single session,

although modules such as arithmetic and readintaoon series of subtasks.

As each assessment proceeds INCAS records the@iesented together with the
child’s response (correct, incorrect or timed oAt)the end of the assessment
INCAS calculates an overall score and separat@sdor any subscale within the
module. These data together with item level inforamaare uploaded via a
secure internet connection to the INCAS web sdogated at Durham

University. It is these uploaded data that weralusehe present study.
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5. Initial Data Processing

The summary statistics generated by INCAS were ghsded in this study.
Instead the item level responses were taken arditaggenerate the same
statistics from scratch. The advantage of this @ggr was that the pupil scores
were referenced directly within the concurrent sk@mther than on an item

standardisation based on data collected in thequswyear.

Interval level scores were generated from the iw@ral data using the Winsteps
Rasch-Model Computer Program (Linacre, 2007). Thernnal scale produced by
Winsteps is in the form of logits. These were mappeih an age scale using a
straightforward linear regression of each childgit score against their age at
test. Summary statistics for these age equivalenbreken down by year group

are shown in tables 1.1 to 1.4.

A glance at tables 1.1 to 1.4 reveals that the naganequivalent scores are
broadly, but not exactly in line with the mean afj¢éest. The reading module
generated the most variable scores, and this vadmmply due to the greater
complexity of the assessment, composed as it wised separate tasks. The
arithmetic module scores were more variable thah e mathematics or
picture vocabulary scores, and this assessmenhatba relatively complex
structure of four subtasks. The variation of thedheg module scores was fairly
uniform across the four year groups. However inrémeaining modules there

was a noticeable increase in the variation in P7.

The pattern of assessment scores across cohorfsnyees investigated by
dividing each year group into six subgroups acecwydo age. Thus each
subgroup contained children that were born wittiaw two months of one
another. The mean assessment score was then @gtedt the mean age at test
for each subgroup. This reveals the cross sectpattdrn in assessment scores
according to age and year group (grade), and aeerbierred to age-grade

curves (figures 1.1 to 1.4).
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Year Number of | Mean Age at | Age Equivalent Score (years
Group Children Test Mean Standard
(years) Deviation
P4 4028 7.80 7.67 1.87
P5 5151 8.79 8.83 1.81
P6 5399 9.80 9.86 1.88
pP7 5384 10.79 10.80 2.03

Table 1.1: Summary statistics for the INCAS picture vocabulaodule.

Year Number of | Mean Age at | Age Equivalent Score (years
Group Children Test Mean Standard
(years) Deviation
P4 18343 7.78 7.63 1.60
P5 19722 8.77 8.83 1.64
P6 20656 9.78 9.89 1.66
P7 21673 10.77 10.74 1.64

Table 1.2: Summary statistics for the INCAS reading module.

Year Number of | Mean Age at | Age Equivalent Score (years
Group Children Test Mean Standard
(years) Deviation
P4 18249 7.78 7.75 1.07
P5 19321 8.77 8.78 1.11
P6 20281 9.78 9.68 1.14
P7 21367 10.77 10.90 1.48

Table 1.3: Summary statistics for the INCAS mathematics medul

Year Number of | Mean Age at | Age Equivalent Score (years
Group Children Test Mean Standard
(years) Deviation
P4 4451 7.79 7.69 1.26
P5 5655 8.78 8.81 1.25
P6 5957 9.79 9.80 1.26
P7 6090 10.78 10.82 1.47

Table 1.4: Summary statistics for the INCAS arithmetic module
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Each age-grade curve shows a characteristic steptw@en one year group and
the next. This step up shows the effect of one ysahsoling. In the case of the
picture vocabulary and reading modules the steig agittle less each year,
indicating in absolute terms a decrease in theceffea years schooling as the
children get older. The same pattern holds with erattics and arithmetic for
the first two steps. However the final step betweérand P7 shows a marked
increase in magnitude that goes against the getneral. There is also a trend
within each year group favouring higher scoresolder children. The slope
within each year group decreases with older cohortiscating that the
importance of age on assessment scores decreabeschidren get older. This

pattern is maintained across all four assessmedtles.

It was clear from this preliminary inspection oéthssessment results that the
distribution of scores is influenced both by thentner of years of schooling and
the age of the child within each cohort. As a reswlas decided that any
treatment of the data be conducted separatelyafdr gear group. In addition it
was decided that all further analyses be condueitdassessment scores that
were corrected for age. This was achieved by sirspbtracting each child’s age
at test from their age-equivalent score on eachsassent module. The corrected

score is here referred to as the age/ability dfiee.
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6. The Effect of Gender on the Assessment Scores

An issue of concern to the developers of educatiassessments is that of
gender bias. Assessments must at least be perdenbe teachers that use them
not to favour either boys or girls. Of course difieces between boys and girls in
the pattern of scores may be due to genuine difée®that arise from a complex
interaction of a variety of causes, rather thaaraartefact of the assessment
materials and procedure. One relatively consideattire of many assessments is
that boys’ scores tend to have a greater varidkian those of girls. In the

present context any gender bias that may be prasém INCAS assessment
modules is not of any immediate concern becaussttity is primarily

concerned with the shape of the distribution ofsswather than the magnitude
of those scores. In the previous section it waseatghat the year of schooling
and the relative age of a child within a cohorttave factors that affect the shape
of the score distribution, and that these can hg&@i taken into account in the
analysis. In this section attention is focussedhereffect of gender.

Tables 2.1.1 to 2.4.2 present descriptive statifticthe age/ability difference in
INCAS assessment module scores according to yeap @nd gender. The
results of significance tests for the equality &fans and variances of these

scores between boys and girls are given in Tabled3rable 4 respectively.
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Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 2089 7.80 -0.173 1.957
P5 2649 8.80 0.035 1.850
P6 2730 9.80 0.154 1.917
P7 2736 10.78 0.128 2.096

Table 2.1.1:Descriptive statistics for boys’ picture vocabylegsults

Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 1939 7.80 -0.088 1.745
P5 2502 8.79 0.038 1.757
P6 2669 9.80 -0.032 1.830
P7 2648 10.80 -0.130 1.977

Table 2.1.2:Descriptive statistics for girls’ picture vocabrylaesults

Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 0331 7.79 -0.386 1.656
P5 10166 8.77 -0.156 1.718
P6 10648 9.78 -0.072 1.724
P7 11149 10.77 -0.240 1.701

Table 2.2.1:Descriptive statistics for boys’ reading results

Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 9012 7.78 0.089 1.481
P5 9556 8.77 0.293 1.507
P6 10008 9.78 0.312 1.551
P7 10524 10.78 0.180 1.554

Table 2.2.2:Descriptive statistics for girls’ reading results
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Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 9266 7.79 -0.034 1.108
P5 10011 8.77 -0.002 1.162
P6 10442 9.78 -0.101 1.203
P7 10964 10.77 0.107 1.542

Table 2.3.1:Descriptive statistics for boys’ mathematics resul

Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 8983 7.78 -0.040 1.000
P5 9310 8.77 0.014 1.049
P6 9839 9.78 -0.103 1.093
P7 10403 10.78 0.142 1.419

Table 2.3.2:Descriptive statistics for girls’ mathematics ksu

Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 2254 7.79 -0.016 1.292
P5 2840 8.78 0.051 1.346
P6 3023 9.80 0.035 1.332
P7 3102 10.77 0.011 1.600

Table 2.4.1:Descriptive statistics for boys’ arithmetic result

Year Group Number of Mean Age Age/Ability Difference
Pupils (years) (years)
Mean Std Deviation
P4 2197 7.79 -0.187 1.173
P5 2815 8.79 0.000 1.131
P6 2934 9.79 -0.025 1.200
P7 2988 10.78 0.078 1.341

Table 2.4.2:Descriptive statistics for girls’ arithmetic retsul
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Year Group Comparison of Means (significance)
Vocabulary Reading Mathematics | Arithmetic
P4 0.15 0.00 0.70 0.00
P5 0.96 0.00 0.31 0.13
P6 0.00 0.00 0.91 0.07
P7 0.00 0.00 0.09 0.08

Table 3: Comparison of mean age/ability difference scoregdnder using an independent-

samples t-test with equal variances not assumed.

Year Group Comparison of Variances (significance)
Vocabulary Reading Mathematics | Arithmetic
P4 0.00 0.00 0.00 0.00
P5 0.00 0.00 0.00 0.00
P6 0.00 0.00 0.00 0.00
P7 0.20 0.00 0.00 0.00

Table 4: Comparison of the spread of age/ability differeaceres by gender using Levene’s test

for homogeneity of variances.

The figures presented demonstrate that on averdgegiform significantly

better than boys on the reading assessment adrgssiagroups, however in

mathematics no such difference was observed. Th&€ bograge arithmetic

scores were significantly higher than those ofgiiks in P4, however this

advantage had been lost by P5. By the time theremlreached P7 the girls were
slightly ahead of the boys in arithmetic, althoulgé difference was not
statistically significant. In terms of average asseent score the results for the
picture vocabulary module were the most curioushénearlier year groups, P4
and P5, there was no significant difference betwesyrs and girls. However by
P6 the boys were achieving significantly betteulss and by P7 the gap had

widened even further.

In terms of equality of variance it was found thays’ scores were significantly
more variable than those of girls in almost evergunstance. The one
exception to this was found in the case of P7 pectwocabulary where no

evidence for a difference was observed.
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Given these results it is clear that in every caration of assessment module
and year group there is evidence for a differenadbe distribution of scores
according to gender. In consequence it was dedltsdpplication of the
binormal model was to be conducted separatelydgs land girls.

7. Summary

In this chapter a description is given of the mdthod materials used in the
collection of data that would be used to evaluaghinormal distribution model.
That is followed by an account of how the raw dagaenprocessed and
descriptive statistics of those data. It is argined the distribution of scores may
be influenced by three. These are the year of dictgpahe relative age within
the cohort, and the sex of the child. Each of tli@siers was taken into account
in the application of the methodology for derivinigormal parameters. The
relative age within the cohort was allowed for Isyng age corrected scores.
Year of schooling and the sex of the child wereveld for by analysing each
grouping separately. A disadvantage of this apgraathat the smaller size of
the datasets thus used will tend to compromis@dmesr of the methodology to

produce accurate parameter estimates as discusskdpter 3.
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Chapter 5: A Statistical Evaluation of the Regressin
Model Fits

1. Introduction

In this chapter precise details are first giverhow the methodology for

deriving binormal parameter estimates was appbetie INCAS assessment data
described in the previous chapter. This is followgdn initial evaluation of the
model fits so derived. This initial evaluation wascerned with whether the
relatively complex binormal model provided a befiefor the observed data
than the default normal distribution model, andtanon the output statistics

generated by the DataFit software.

2. Initial Parameter Estimates

As stated previously, a difficulty with the nonlareregression technique is that it
is possible to arrive at more than one solutiod, tiat the chance of this
increases with the number of variables in the ieggom model. One way of
decreasing the number of variables in the mod®l ieplace them with constant
values. In the present study these constants wewded by the mean and
standard deviation that were calculated directyfthe data. The values of the

parameter constants used are reported in tablelstd.2.4.2.

In the case of the normal distribution the replagetof two variable parameters
with two constant parameters in the model effetyifi®zed the model solution.

In the case of the binormal distribution the sap@acement left three variable
parameters, and therefore the possibility of mbamtone solution to the model
fit. For this reason two conditions of initial parater estimates were used to
evaluate each binormal regression model. Thesalioiinditions are set out in
table 5.
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Variable Parameter

Initial Estimate #1

Initial Estimate #2

Prevalence 0.5 0.01
Mean -0.5 -4.0
Standard Deviation o o

Table 5: Initial variable parameter estimates used to atalthe binormal regression model
under two conditions. The parameters refer to akedttaining subpopulation.

In each condition the initial estimate of the staddeviation of the low
attaining subpopulation was taken as the standavzhiion of the population
overall. Since the mean age/ability difference wlase to zero under all
conditions the initial parameter estimates undeddmn #1 gave a scenario that
was approximately symmetrical about the populati@an. The initial parameter
estimates under condition #2 reflected the scenehnere there was a very small
subpopulation of low attaining children in the faft-hand tail of the

distribution.

In most cases the nonlinear regression converggtktsame solution under both
conditions of initial parameter estimates. In sarases under condition #2 a
solution was reached in which either the prevalenmcgandard deviation had a
negative value. In these circumstances the thealigtimpossible solution was
rejected in favour of the solution derived using thitial parameter estimates
under condition #1. In cases where two differerittbeoretically possible
solutions were reached the model fit reportedesaie with the higher value for
the coefficient of multiple determination (R?), th&the model fit that explained

more of the variation in the observed data.
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3. The Overall Goodness of Fit

We should only accept the binormal distributioit grovides a better fit than the
normal distribution after taking into account threager flexibility in the model
afforded by three additional parameters. Sincenthvenal model is nested within
the binormal model the null hypothesis that theolnmal model does not give a
significantly better fit can be evaluated usingatest. The value of F is
calculated using the following expression wherediescripts and, refer to the
normal and binormal distributions respectivéhgSefers to the residual sum of
squares of the model fih, refers to the number of parameters that desdnibe t
model, anch is the number of data points.

P, =P,
(ngj
n-p,

The DataFit software reports the residual sum oasgpias part of its output, and

(RS@—RS%J

it is therefore relatively straightforward to cdlaie F statistics. The value of F
thus calculated hap4- p1, n - p) degrees of freedom. When the F test was
performed a probability of 0.00 was returned uraleconditions. However this
was due at least in part to the very large numbédata points. The high value of
nin these calculations made it extremely diffidolreject the null hypothesis,
and so on these criteria at least it was acceptadhie binormal distribution

always gave a significantly better fit.

Another approach to evaluating the overall goodoé$s is to compare the
adjusted coefficient of multiple determination (R&%is statistic is a version of
the coefficient of multiple determination that @jasted to account for the
number of variables in the regression model. Thiamaehat the fit statistics
may be compared directly with one another. An athga of using this method
over using an F test is that the difference in Rafistics provides a quantitative
indication of the improvement in fit. A comparisohRa? fit statistics for the

normal and binormal distribution models are givemables 6.1.1 to 6.4.2.
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The difference in Ra2 when the value for the bindmmadel is subtracted from
the value for the normal model is positive in @temstances. This indicates
that the binormal model always provides a staaliisignificant improvement
in fit after allowing for the additional degreesfogedom in the model. This

confirms the results of the F test described aarli¢his section.

A cursory analysis of the magnitude in the diff@®m Ra? statistics indicates
that the improvement in fit is least apparent i piicture vocabulary assessment,
followed by reading and mathematics. The arithmeggessment tends to show
the most marked improvement in fit. With respedtite reading and

mathematics modules the improvement in model fiti$eto increase with the

age of the cohort. An exception to this generaldris found in the mathematics
results for both boys and girls where there wasaeahse in the improvement of
fitin P7.
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Year Adjusted Coefficient of Multiple Difference in Raz?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.99453 0.99974 0.00521
P5 0.99570 0.99980 0.00410
P6 0.99471 0.99987 0.00516
P7 0.99586 0.99990 0.00403

Table 6.1.1:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal

and binormal models applied to boys’ picture vodatyuscores.

Year Adjusted Coefficient of Multiple Difference in Ra?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.99399 0.99966 0.00568
P5 0.99068 0.99991 0.00923
P6 0.99478 0.99956 0.00478
P7 0.99771 0.99944 0.00174

Table 6.1.2:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal

and binormal models applied to girls’ picture voglaloy scores.

Year Adjusted Coefficient of Multiple Difference in Ra?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.99956 0.99994 0.00038
P5 0.99478 0.99990 0.00512
P6 0.98976 0.99980 0.01004
P7 0.98637 0.99926 0.01289

Table 6.2.1:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal
and binormal models applied to boys’ reading scores

Year Adjusted Coefficient of Multiple Difference in Raz?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.99931 0.99986 0.00055
P5 0.99587 0.99985 0.00398
P6 0.99436 0.99979 0.00543
P7 0.98847 0.99953 0.01106

Table 6.2.2:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal
and binormal models applied to girls’ reading ssore
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Year Adjusted Coefficient of Multiple Difference in Raz?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.99868 0.99981 0.00113
P5 0.98912 0.99991 0.01079
P6 0.99001 0.99991 0.00990
P7 0.99515 0.99966 0.00451

Table 6.3.1:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal
and binormal models applied to boys’ mathematicsesc

Year Adjusted Coefficient of Multiple Difference in Ra?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.99828 0.99995 0.00166
P5 0.98955 0.99993 0.01038
P6 0.98887 0.99995 0.01108
P7 0.99372 0.99979 0.00607

Table 6.3.2:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal
and binormal models applied to girls’ mathemat@rss.

Year Adjusted Coefficient of Multiple Difference in Ra?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.98482 0.99988 0.01505
P5 0.98234 0.99982 0.01748
P6 0.98887 0.99984 0.01097
P7 0.99495 0.99986 0.00491

Table 6.4.1:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal
and binormal models applied to boys’ arithmeticreso

Year Adjusted Coefficient of Multiple Difference in Raz?
Group Determination (Binormal — Normal)
Normal Model Binormal Model
P4 0.97118 0.99986 0.02868
P5 0.98111 0.99979 0.01868
P6 0.97876 0.99979 0.02103
P7 0.97463 0.99989 0.02527

Table 6.1.1:Comparison of the adjusted coefficient of multigitermination (Ra2) for normal
and binormal models applied to girls’ arithmetiomss.
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4. Binormal Parameter Fit Statistics

The output from the DataFit software includes estemnaf the value of any
variable parameters in the model, together withsthadard error of those
estimates. It then performs a t-test and calculieprobability that the
parameter estimate is actually zero. If the nufidtiaesis is accepted it is an
indication that the parameter in question doescoantribute to the overall model
fit, and therefore that a simpler model requirieg/ér parameters is more
appropriate. If such an analysis were to resuthérejection of the binormal

model then by default the normal model is acceptethe more appropriate.

As a result of the way in which the binormal modelks coded into the DataFit
software, direct parameter estimates were onlyrgéee for the prevalence,
mean and standard deviation of the low attainirgpspulation. Parameter
estimates for the higher attaining subpopulatiorevileen calculated using
equations 3 and 4. These data are presented iis faAllld.1 to 7.4.4.2.

These results indicate that in every circumstantle thie exception of the picture
vocabulary scores for girls in P7 (table 7.1.4k@) three variable parameters
make a statistically significant contribution te@thinormal model fit. In most
circumstances the contribution is highly signifigasut it is only just significant

in the case of mathematics scores for boys in&dgt7.3.1.1).
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Variable Value Std. Error t-ratio Prob(t)
P 0.073 0.021 3.515 0.000
X5 -3.272 0.776 -4.219 0.000
So 2.496 0.287 8.684 0.000
X5 0.072
S5 1.679

Table 7.1.1.1:Binormal parameter estimates for boys’ picturealmdary scores in P4

Variable Value Std. Error t-ratio Prob(t)
Y 0.269 0.046 5.823 0.000
X5 -1.453 0.273 -5.325 0.000
So 1.908 0.067 28.375 0.000
X5 0.415
S5 1.373

Table 7.1.1.2:Binormal parameter estimates for girls’ pictureabulary scores in P4

Variable Value Std. Error t-ratio Prob(t)
Y 0.534 0.008 70.703 0.000
X5 -0.367 0.009 -39.348 0.000
So 2.157 0.005 430.423 0.000
X5 0.497
S5 1.269

Table 7.1.2.1:Binormal parameter estimates for boys’ picturealmdary scores in P5

Variable Value Std. Error t-ratio Prob(t)
P 0.296 0.003 90.170 0.000
X5 -0.704 0.009 -76.851 0.000
So 2.422 0.005 459.664 0.000
X5 0.350
S5 1.261

Table 7.1.2.2:Binormal parameter estimates for girls’ pictureabulary scores in P5
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Variable Value Std. Error t-ratio Prob(t)
Y 0.229 0.007 31.516 0.000
X5 -1.115 0.043 -25.825 0.000
So 2.426 0.005 514.424 0.000
X5 0.531
S5 1.548

Table 7.1.3.1:Binormal parameter estimates for boys’ picturealmdary scores in P6

Variable Value Std. Error t-ratio Prob(t)
Y 0.030 0.002 14.871 0.000
X5 -5.006 0.204 -24.602 0.000
So 1.697 0.181 9.397 0.000
X5 0.120
S5 1.608

Table 7.1.3.2:Binormal parameter estimates for girls’ pictureabulary scores in P6

Variable Value Std. Error t-ratio Prob(t)
Y 0.279 0.008 37.010 0.000
X5 -0.973 0.033 -29.250 0.000
So 2.545 0.005 550.151 0.000
X5 0.554
S5 1.668

Table 7.1.4.1:Binormal parameter estimates for boys’ picturealmdary scores in P7

Variable Value Std. Error t-ratio Prob(t)
P 0.175 0.194 0.900 0.368
Xo -1.799 1.825 -0.986 0.324
So 2.164 0.426 5.085 0.000
X5 0.223
S5 1.740

Table 7.1.4.2:Binormal parameter estimates for girls’ pictureabulary scores in P7
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Variable Value Std. Error t-ratio Prob(t)
P 0.763 0.005 165.795 0.000
Xp -0.872 0.009 -101.775 0.000
So 1.472 0.003 518.723 0.000
X5 1.179
S5 1.180
Table 7.2.1.1:Binormal parameter estimates for boys’ readingessin P4
Variable Value Std. Error t-ratio Prob(t)
P 0.366 0.052 7.049 0.000
Xp -0.817 0.128 -6.358 0.000
S 1.373 0.028 49.204 0.000
X5 0.613
S5 1.274
Table 7.2.1.2:Binormal parameter estimates for girls’ readingrss in P4
Variable Value Std. Error t-ratio Prob(t)
Y 0.166 0.002 99.677 0.000
Xp -2.531 0.013 -188.817 0.000
So 1.254 0.006 195.445 0.000
X5 0.318
S5 1.370
Table 7.2.2.1:Binormal parameter estimates for boys’ readingessin P5
Variable Value Std. Error t-ratio Prob(t)
P 0.146 0.007 20.419 0.000
Xp -1.631 0.067 -24.190 0.000
Sy 1.414 0.024 59.119 0.000
X5 0.622
S= 1.255

Table 7.2.2.2:Binormal parameter estimates for girls’ readingrss in P5
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Variable Value Std. Error t-ratio Prob(t)
P 0.163 0.002 88.315 0.000
Xp -2.618 0.018 -144.588 0.000
So 1.307 0.010 135.782 0.000
X5 0.424
Ss 1.306
Table 7.2.3.1:Binormal parameter estimates for boys’ readingessin P6
Variable Value Std. Error t-ratio Prob(t)
P 0.081 0.001 70.485 0.000
Xp -2.571 0.021 -122.889 0.000
Sp 1.116 0.014 79.102 0.000
X5 0.568
S5 1.306
Table 7.2.3.2:Binormal parameter estimates for girls’ readingrss in P6
Variable Value Std. Error t-ratio Prob(t)
Y 0.459 0.010 43.925 0.000
Xp -1.288 0.039 -33.364 0.000
So 1.714 0.012 145.859 0.000
X5 0.649
Ss 1.066
Table 7.2.4.1:Binormal parameter estimates for boys’ readingessin P7
Variable Value Std. Error t-ratio Prob(t)
P 0.406 0.010 39.786 0.000
Xp -0.830 0.037 -22.164 0.000
Sp 1.620 0.010 159.005 0.000
X5 0.872
S= 1.045

Table 7.2.4.2:Binormal parameter estimates for girls’ readingrss in P7
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Variable Value Std. Error t-ratio Prob(t)
Y 0.292 0.121 2.414 0.016
X5 -0.724 0.319 -2.272 0.023
So 1.130 0.067 16.891 0.000
X5 0.251
S5 0.965

Table 7.3.1.1:Binormal parameter estimates for boys’ mathematicses in P4

Variable Value Std. Error t-ratio Prob(t)
Y 0.054 0.001 73.922 0.000
X5 -1.893 0.011 -170.889 0.000
Sp 0.708 0.007 100.151 0.000
X5 0.066
S 0.906

Table 7.3.1.2:Binormal parameter estimates for girls’ mathensasicores in P4

Variable Value Std. Error t-ratio Prob(t)
Y 0.366 0.004 102.664 0.000
Xp -0.771 0.010 -73.931 0.000
So 1.275 0.002 546.217 0.000
X5 0.441
S5 0.811

Table 7.3.2.1:Binormal parameter estimates for boys’ mathematioges in P5

Variable Value Std. Error t-ratio Prob(t)
P 0.307 0.003 89.586 0.000
Xp -0.759 0.011 -69.271 0.000
Sy 1.190 0.002 503.922 0.000
X5 0.357
S= 0.761

Table 7.3.2.2:Binormal parameter estimates for girls’ mathensasicores in P5
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Variable Value Std. Error t-ratio Prob(t)
P 0.289 0.002 155.096 0.000
Xp -0.843 0.006 -148.575 0.000
So 1.523 0.001 1895.414 0.000
X5 0.201
Ss 0.881
Table 7.3.3.1:Binormal parameter estimates for boys’ mathematicses in P6
Variable Value Std. Error t-ratio Prob(t)
P 0.282 0.001 219.428 0.000
Xp -0.767 0.004 -217.325 0.000
Sp 1.424 0.001 2162.857 0.000
X5 0.158
S5 0.790
Table 7.3.3.2:Binormal parameter estimates for girls’ mathensasicores in P6
Variable Value Std. Error t-ratio Prob(t)
Y 0.790 0.002 411.824 0.000
Xp -0.191 0.003 -57.720 0.000
So 1.560 0.001 2275.885 0.000
X5 1.225
S5 0.759
Table 7.3.4.1:Binormal parameter estimates for boys’ mathematicses in P7
Variable Value Std. Error t-ratio Prob(t)
P 0.648 0.004 183.828 0.000
Xp -0.324 0.007 -49.490 0.000
Sp 1.447 0.001 1048.998 0.000
X5 0.998
S= 0.859

Table 7.3.4.2:Binormal parameter estimates for girls’ mathensasicores in P7
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Variable Value Std. Error t-ratio Prob(t)
P 0.191 0.011 18.121 0.000
Xp -1.476 0.086 -17.187 0.000
Sp 1.513 0.028 54.305 0.000
X5 0.330
S 0.949
Table 7.4.1.1:Binormal parameter estimates for boys’ arithmstiores in P4
Variable Value Std. Error t-ratio Prob(t)
P 0.177 0.005 34.562 0.000
Xp -1.679 0.047 -35.912 0.000
S 1471 0.016 93.371 0.000
X5 0.135
S5 0.789
Table 7.4.1.2:Binormal parameter estimates for girls’ arithmetores in P4
Variable Value Std. Error t-ratio Prob(t)
Y 0.219 0.005 46.098 0.000
Xp -1.219 0.031 -38.707 0.000
So 1.720 0.006 280.849 0.000
X5 0.406
Ss 0.956
Table 7.4.2.1:Binormal parameter estimates for boys’ arithmstiares in P5
Variable Value Std. Error t-ratio Prob(t)
P 0.249 0.005 49.753 0.000
Xp -0.986 0.024 -41.940 0.000
Sp 1.415 0.004 327.342 0.000
X5 0.327
S= 0.781

Table 7.4.2.2:Binormal parameter estimates for girls’ arithmetores in P5
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Variable Value Std. Error t-ratio Prob(t)
P 0.267 0.006 42.543 0.000
Xp -0.981 0.029 -34.351 0.000
So 1.611 0.005 344.140 0.000
X5 0.406
Ss 0.981
Table 7.4.3.1:Binormal parameter estimates for boys’ arithmstiores in P6
Variable Value Std. Error t-ratio Prob(t)
P 0.235 0.003 79.999 0.000
Xp -0.940 0.013 -73.046 0.000
Sp 1.698 0.003 660.562 0.000
X5 0.257
S5 0.810
Table 7.4.3.2:Binormal parameter estimates for girls’ arithmetores in P6
Variable Value Std. Error t-ratio Prob(t)
Y 0.237 0.006 37.046 0.000
Xp -0.953 0.028 -34.508 0.000
So 2.060 0.004 473.907 0.000
X5 0.311
Ss 1.289
Table 7.4.4.1:Binormal parameter estimates for boys’ arithmstiores in P7
Variable Value Std. Error t-ratio Prob(t)
P 0.283 0.006 47.025 0.000
Xp -0.765 0.021 -36.098 0.000
Sp 1.630 0.002 693.972 0.000
X5 0.311
S= 1.289

Table 7.4.4.2:Binormal parameter estimates for girls’ arithmetores in P7
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5. The Variation Explained by the Models

The coefficient of multiple determination (R?) debes the proportion of
variation in data explained by the regression madalits own the normal model
explains the bulk of the variation in all of theatimstances here described.
Another way to investigate the improvement in mddes to consider the
additional variance explained by the binormal manar and above that
explained by the normal distribution model. Thisimilar to the analysis
performed in section 3 of this chapter, but is mewsily interpreted. It also
allows an evaluation of the magnitude of any reglidumexplained variation. The
results from this analysis are given in tables18t®.8.4.2.

The partitioning of explained variance reportedaiblés 8.1.1 to 8.4.2 reveals
some trends, but there is no entirely consistettépa Perhaps the most
consistent trend concerned the mental arithmesiesssnents. These showed the
greatest amount of additional explained variancéhbybinormal model, together

with the least amount of unexplained variance.

Not surprisingly the girls’ picture vocabulary résun P7, for which the
binormal model was rejected in the previous se¢csbowed a very high
proportion of variance explained by the normal modewever the girls’ P4
mathematics scores and the P4 reading scorestobbygs and girls all showed a
higher proportion of variance explained by the n@rmodel, even though the
binormal model provided a statistically better fiiiterestingly the girls’ P7
picture vocabulary results showed a relatively pgbportion of unexplained
variance after fitting the binormal model, and thiggests that the curve fitting

methodology may have arrived at an incorrect sotuin this case.

The lowest amount of additional variation explailbgdhe binormal model was
0.038% in the case of boys’ reading results inad, this still gave a
significantly better fit than the normal model. Faveral assessments, most
notably the P7 reading results for both boys and,ghe amount of unexplained

variance after fitting the binormal model was dimilar magnitude. This
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suggests that in some circumstances there mayoipe $o fit a model to the data

that is even more complicated than the binormatitigion.
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Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation
Normal Binormal Explained
Model Model
P4 0.99454 0.99974 0.52% 0.03%
P5 0.99570 0.99980 0.41% 0.02%
P6 0.99472 0.99987 0.52% 0.01%
P7 0.99586 0.99990 0.40% 0.01%

Table 8.1.1:Comparison of the variation explained by the ndramal binormal models applied

to boys’ picture vocabulary scores.

Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation
Normal Binormal Explained
Model Model
P4 0.99399 0.99966 0.57% 0.03%
P5 0.99069 0.99991 0.92% 0.01%
P6 0.99478 0.99956 0.48% 0.04%
P7 0.99771 0.99944 0.17% 0.06%

Table 8.1.2:Comparison of the variation explained by the ndramal binormal models applied

to girls’ picture vocabulary scores.

Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation
Normal Binormal Explained
Model Model
P4 0.99956 0.99994 0.04% 0.01%
P5 0.99478 0.99990 0.51% 0.01%
P6 0.98976 0.99980 1.00% 0.02%
P7 0.98638 0.99926 1.29% 0.07%

Table 8.2.1:Comparison of the variation explained by the ndramal binormal models applied

to boys’ reading scores.

Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation
Normal Binormal Explained
Model Model
P4 0.99931 0.99986 0.06% 0.01%
P5 0.99587 0.99985 0.40% 0.01%
P6 0.99436 0.99979 0.54% 0.02%
P7 0.98847 0.99953 1.11% 0.05%

Table 8.2.2:Comparison of the variation explained by the ndramal binormal models applied

to girls’ reading scores.
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Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation

Normal Binormal Explained
Model Model

P4 0.99868 0.99981 0.11% 0.02%

P5 0.98913 0.99991 1.08% 0.01%

P6 0.99001 0.99991 0.99% 0.01%

P7 0.99515 0.99966 0.45% 0.03%

Table 8.3.1:Comparison of the variation explained by the ndramal binormal models applied

to boys’ mathematics scores.

Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation

Normal Binormal Explained
Model Model

P4 0.99828 0.99995 0.17% 0.01%

P5 0.98955 0.99993 1.04% 0.01%

P6 0.98887 0.99995 1.11% 0.01%

P7 0.99372 0.99979 0.61% 0.02%

Table 8.3.2:Comparison of the variation explained by the ndramal binormal models applied

to girls’ mathematics scores.

Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation

Normal Binormal Explained
Model Model

P4 0.98483 0.99988 1.50% 0.01%

P5 0.98234 0.99982 1.75% 0.02%

P6 0.98887 0.99984 1.10% 0.02%

P7 0.99495 0.99986 0.49% 0.01%

Table 8.4.1:Comparison of the variation explained by the ndramal binormal models applied

to boys’ arithmetic scores.

Year Coefficient of Multiple Additional Unexplained
Group Determination (R?) Variation Variation

Normal Binormal Explained
Model Model

P4 0.97119 0.99986 2.87% 0.01%

P5 0.98111 0.99979 1.87% 0.02%

P6 0.97877 0.99979 2.10% 0.02%

P7 0.97464 0.99989 2.53% 0.01%

Table 8.4.2:Comparison of the variation explained by the ndramal binormal models applied

to girls’ arithmetic scores.
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6. Summary

An examination of the output produced by the Ddtaéitware revealed that,
with one exception, the binormal distribution mogdedvided a statistically better
fit than the normal distribution model. The exceptwas found in the case of the
picture vocabulary scores for the oldest cohogin$ (P7). In this case it was
accepted that the normal distribution representexbi@ appropriate model,
although the possibility that the software hadiedttipon an incorrect solution
was also considered. It was also argued that ireszases, such as those of the
reading results for the P7 cohort, the distributbscores may be even more
complicated than that allowed for by the binormaldel.
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Chapter 6: A Visual Examination of Model Fits

1. Introduction

In chapter 5 it was established that in most ircarthe binormal model
provided a better fit for the distribution of ass@ent scores than did the normal
model. Whilst this is encouraging, a test of stafé significance on its own
does not guarantee the validity of a particular ehofihe model must also make
sense within a theoretical framework. The first stegestablishing this is to

consider the face validity of the model fits.

In this chapter three graphs are presented for @aizlset. Figure 2 presents the
pdf curve for the normal distribution model agaiagirobability histogram of the
actual age-ability difference scores. The parametires used to produce the
normal curve are given in table 2. Figure 3 pres#m pdf curve for the
binormal distribution model against the same prdlglhistogram. The
parameter values used to produce the binormal @amevgiven in table 7. Figure
3 uses the same parameter values to present thnainoaf curve of each of the
subpopulations that make up the binormal modelrfithese subpopulation plots
the distribution of the low attaining subpopulatisrrepresented by a blue line

and that of the higher attaining subpopulation Ipynk line.

90



2. The Production of Probability Histograms

The histograms presented in figure 2 and figurek8 the usual frequency of
observations in each category and rescale thenpesbability. This procedure
places the histogram on the same scale as thaupdd,¢hus allowing a direct

visual inspection of the model fit.

For the production of each histogram a categorytw{a) of 0.25 years was
chosen. The age-ability difference scores were rednd the nearest 0.25 years.
The scores were then aggregated by this roundedemnenb the frequency of
observations(f) in each category determined. The height of eacinkie
histogram was then determined using the followixygression in whichN

refers to the total of all the observations.

This expression simply takes the proportion of olesgns in each category and

then makes a correction for the category width.
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Figure 3.3.3.2: Binormal Model Plot for Girls’ Math  ematics Results in P6

-6 -4 -2 0 2 4
Age - Ability Difference (years)

145



Probability

o
(V)

0.5

0.4

o
w

0.1

0.0

Figure 3.3.4.1: Binormal Model Plot for Boys’ Mathe

-6 -4 -2 0
Age - Ability Difference (years)

146

matics Results in P7

2 4



Probability

o
(V)

0.5

0.4

o
w

0.1

0.0

Figure 3.3.4.2: Binormal Model Plot for Girls’ Math  ematics Results in P7
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Figure 3.4.2.1: Binormal Model Plot for Boys’ Arith
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Figure 3.4.2.2: Binormal Model Plot for Girls’ Arit  hmetic Results in P5
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Figure 3.4.3.1: Binormal Model Plot for Boys’ Arith
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Figure 3.4.3.2: Binormal Model Plot for Girls’ Arit  hmetic Results in P6
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Figure 3.4.4.1: Binormal Model Plot for Boys’ Arith
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Figure 3.4.4.2: Binormal Model Plot for Girls’ Arit  hmetic Results in P7
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Figure 4.1.1.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P4
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Figure 4.1.1.2: Binormal Subpopulation Plot for Gir IS’ Picture Vocabulary Results in P4
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Figure 4.1.2.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P5
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Figure 4.1.2.2: Binormal Subpopulation Plot for Gir IS’ Picture Vocabulary Results in P5
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Figure 4.1.3.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P6
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Figure 4.1.3.2: Binormal Subpopulation Plot for Gir  Is’ Picture Vocabulary Results in P6
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Figure 4.1.4.1: Binormal Subpopulation Plot for Boy s’ Picture Vocabulary Results in P7
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Figure 4.1.4.2: Binormal Subpopulation Plot for Gir  Is’ Picture Vocabulary Results in P7
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Figure 4.2.1.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P4
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Figure 4.2.1.2: Binormal Subpopulation Plot for Gir  Is’ Reading Results in P4

-6 -4 -2 0 2 4
Age - Ability Difference (years)

165



Probability

o
(V)

0.5

0.4

o
w

0.1

0.0

Figure 4.2.2.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P5
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Figure 4.2.2.2: Binormal Subpopulation Plot for Gir  Is’ Reading Results in P5
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Figure 4.2.3.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P6
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Figure 4.2.3.2: Binormal Subpopulation Plot for Gir  Is’ Reading Results in P6
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Figure 4.2.4.1: Binormal Subpopulation Plot for Boy s’ Reading Results in P7
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Figure 4.2.4.2: Binormal Subpopulation Plot for Gir  Is’ Reading Results in P7
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Figure 4.3.1.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P4
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Figure 4.3.1.2: Binormal Subpopulation Plot for Gir  Is’ Mathematics Results in P4
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Figure 4.3.2.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P5
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Figure 4.3.2.2: Binormal Subpopulation Plot for Gir  Is’ Mathematics Results in P5
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Figure 4.3.3.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P6
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Figure 4.3.3.2: Binormal Subpopulation Plot for Gir  Is’ Mathematics Results in P6
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Figure 4.3.4.1: Binormal Subpopulation Plot for Boy s’ Mathematics Results in P7
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Figure 4.3.4.2: Binormal Subpopulation Plot for Gir IS’ Mathematics Results in P7
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Figure 4.4.1.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P4
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Figure 4.4.1.2: Binormal Subpopulation Plot for Gir  Is’ Arithmetic Results in P4
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Figure 4.4.2.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P5

-6 -4 -2 0 2 4
Age - Ability Difference (years)

182



Probability

o
(V)

0.5

0.4

o
w

0.1

0.0

Figure 4.4.2.2: Binormal Subpopulation Plot for Gir  Is’ Arithmetic Results in P5
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Figure 4.4.3.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P6
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Figure 4.4.3.2: Binormal Subpopulation Plot for Gir  Is’ Arithmetic Results in P6
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Figure 4.4.4.1: Binormal Subpopulation Plot for Boy s’ Arithmetic Results in P7
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Figure 4.4.4.2: Binormal Subpopulation Plot for Gir  Is’ Arithmetic Results in P7
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3. Picture Vocabulary

On the whole the model fits illustrated in figuren®icate that the normal
distribution represents a good description of theeoved data. However closer
inspection reveals that there is a systematic elisurcy in the fits such that
immediately to the left of centre the bars of tietdgram tend to be lower than
the fitted curve, whilst those immediately to tight of centre tend to be taller.
Whilst the normal curve describes a distributioat ik symmetrical about the
mean, the observed distribution is asymmetricas. ih fact negatively skewed,
having a relatively long and thick left hand t3ihis pattern is a consistent

feature of the picture vocabulary distributions.

Figure 3 illustrates how well the negative skewvthia distribution of scores is
described by the binormal distribution. The patithef binormal pdf curve tracks
the height of the histogram bars very closely. Fegtidemonstrates how this
improvement in fit is achieved. In all cases thedo attaining subpopulation has
a very broad flat distribution which effectivelyiithe left hand tail, but also
extends well in to the right hand side of the disttion. In most cases the
standard deviation of the scores of the low attgrsubpopulation is actually
greater than that of the population as a whole.dfeeexception to this is in the
case of girls’ scores in P6, but here the standamt of the estimate is very high

and so the exception may be misleading.

Figure 3 also clearly illustrates that with respgectubpopulation prevalence’s
there is no consistent pattern, either with gidmpared to boys or with trends

across cohorts.

4. Reading

An examination of figures 2.2.1.1 and 2.2.1.2 révétle evidence for skewness
in the P4 reading data. In each case the heidhiedfistogram falls short of the
normal pdf curve towards the centre of the distrdoy but a little taller to either
side. This negative kurtosis is more clearly illatgd in the boys’ data. In the

remaining cohorts the data appear to be negatskadwed.
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Figure 3 reveals that the binormal model goes semeto describing the
negative skew in the data, but that systematiaejsncies between the
histograms and pdf curves indicate additional stmecin the distributions that
are not fully accounted for by the binormal moddiis is most clearly evident in
the P7 distributions where there is a clear suggesf a third peak in the

distribution of scores.

The subpopulation plots (figures 4.2.1.1 to 4.2.4eR¢al some consistent
patterns in the data. In P4 for both boys and ¢fwse is a considerable overlap
in the subpopulation distributions, which accountsthe negative kurtosis and
lack of skew in the overall distribution of scoré&se standard deviation of the
scores of the low attaining subpopulation is alwlayger than that of the
population as a whole, which is in contrast to wilas found with picture
vocabulary. The prevalence of the low attaining pafoon is always higher for
boys than for girls within a cohort. In the caseled boys’ data in P4 prevalence
of the low attaining subpopulation is greater ttaat of the higher attaining
subpopulation. In all other circumstances the revés true. For both boys and
girls the prevalence of the low attaining subpopoiadecreases between P4 and
P5, and between P5 and P6. In P7 there is an seregrevalence, an
observation that may be accounted for if the daeewo have a more complex,

possibly trimodal structure.

5. Mathematics

The normal model plots for mathematics (figures1213to 2.3.4.2) illustrate
negatively skewed distributions for boys and gmlsll year groups. In the three
younger cohorts the variation in scores is smétlan was observed for both
picture vocabulary and reading, resulting in tallenner distributions. In P7 the
scores are more spread out and as with the P7redditribution there is a hint
of a third peak hidden in the data.
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The binormal model plots (figures 3.3.1.1 to 3.3.4nAicate a good model fit
for boys and girls in P4, P5 and P6. However thdehdoes not adequately
summarise the shape of the more complex distribstapserved in P7.

The subpopulation plots for mathematics are illusttan figures 4.3.1.1 to
4.3.4.2. The plots for boys and girls in the threangest cohorts account for the
negative skew with a broad flat distribution of =in the low attaining
subpopulation. This is similar, though not quitevesked, to the pattern
observed for the distribution of picture vocabulacgres. In P7 the pattern is
quite different. Here there is considerable ovelajween the two
subpopulations, and that with the higher attainmeptesents smaller
subpopulation. The pattern of subpopulation paranvetiees between boys and

girls is inconsistent, as is the trend across geaups.

6. Arithmetic

The overall pattern in the distribution of arithneetcores closely mirrors those
found for mathematics. The distributions tend teeha relatively small variance
and be negatively skewed. The low attaining subgdjmui has a high standard
deviation that extends well into the left hand tdithe distribution. However
unlike the mathematics distributions this patternontinued in the P7 results. As
with the mathematics data there are some hintsrtbara underlying trimodal

distribution, particularly in P7, although not dsvmusly so.

With respect to the binormal parameter estimateretls some evidence of a
mirroring of those results for boys’ and girls’,tlwith inconsistencies in the
differences of the absolute magnitudes of thosenagts. The most striking
cross-cohort pattern occurs in the estimate ofriean score for the low attaining

subpopulation. For both boys and girls this incesasith the age of the cohort.
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7. Summary

In this chapter a visual inspection was made ohtbrenal and binormal model
fits to the observed distributions of assessmertesc An examination of the
probability histograms revealed a tendency fordai to be negatively skewed.
In general the binormal model provided a good dpson of the data for
younger cohorts, but there was evidence for a roongplex data structure in
some instances. In particular the P7 results fadirgy and mathematics revealed
evidence for an underlying trimodal structure. Thees a tendency for the
binormal model fits to accommodate the negativevskethe data by utilising a
broad flat distribution of scores in the low attagnsubpopulation.

In general the results described here concur \withstatistical evaluation of
model fits presented in chapter 5. However thealisMamination of the data
gave insights into the distribution of assessmeotes that were not immediately
apparent in the statistical descriptives. In chaptine validity of the model fits
within the context of the binormal hypothesis oésific learning disabilities is

considered.
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Chapter 7: The Validity of the Binormal Model Fits

1. Introduction

On its own a statistically significant fit does moean that a particular model has
validity. To establish that it necessary to conslu®wr the results sit within a
theoretical framework. In this chapter the degoeehich these data support the
hypothesis that the population consists of qualiat distinct subpopulations is
considered. Other factors that may contribute ¢ostiepe of score distributions

are also discussed.

2. The Evidence from Age-Grade Curves

An interesting feature of the age-grade curvesgmtesl in chapter 4 is the
sudden step up in scores that was observed foremaitincs and arithmetic
between P6 and P7 (figures 1.3 and 1.4). This weangganied by a sudden
increase in the variance of scores (tables 1 .3lat)d The pattern is also
illustrated in the probability histograms whererthies a suggestion of another
peak appearing in the right hand tail of the d@las is perhaps most clearly
illustrated in the boys’ mathematics results in(lRyure 3.3.4.1). Here there is a
clear spike in the distribution at around about&ry Compared to the apparently
binormal distribution observed in P6 (figure 3.2)3t is as if a third group of
pupils had suddenly pulled away to the right. Thatatusion is also supported
by the subpopulation plot for the same data whegartinority subpopulation has
suddenly shifted from the left hand tail to thehti¢figure 4.3.4.1).

A possible explanation for these observationsas itlresults from a particular
quirk of the Northern Ireland education system wltbe data were collected.
Northern Ireland is one of the few remaining regiohthe UK that operates a
grammar school entry system. A proportion of claidn the province will have
been given additional coaching in their final yeprimary school for the
purpose of sitting grammar school entry exams. fifag have had a knock on
impact that has affected the INCAS scores, eitiveugh a boost in curriculum

knowledge or a boost in test-wiseness. It is egtpessible that this would have
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a more apparent effect on mathematics and aritbrtetn it would on reading,
although there is evidence for a similar effedhi@ P7 reading histograms
(figures 3.2.4.1 and 3.2.4.2). If that explanatigre correct then a simple way
to test it would be to repeat the analysis usirf@AS data gathered from
somewhere where there are no such tests for segosateool entry. Data
gathered from an entire education authority in oot or England would be

ideal for such a purpose.

Another possible explanation is that the appearaheesubtype of high attaining
children in the population is a reflection of a gewe developmental step that
occurs at around the age of 10 years. If this wekethen it is probable that
some children will have made that step alreadii@ige of nine years, and
others will still not have made the transition hg time that they are 11. In short
there ought to be an observable pattern in thealagatime, particularly with
respect to prevalence estimates. If such a pattera found it would be
desirable to establish whether it was a speciindrassociated with either
mathematics or reading, or something more genkitialalso entirely feasible
that there would be a gender difference in anydirearticularly if it were linked
to the onset of puberty. Within the context of pnesent study finding such a
pattern would be dependent upon applying modeisapéasing modality,

starting with the trinormal distribution.

The possibility that the distribution of scores nteyaffected by instructional
factors is not very surprising. Indeed it was aekieolged to be a possible
explanation for the skew observed in the Isle ofjhVstudy data (Rutter and
Yule, 1975). However this need not be an obstacfatling evidence for

specific learning disabilities. If there are quatiwely distinct subtypes of learner
then it is likely that instruction will have a déffential effect on those subtypes.
Children with specific learning disabilities willik have a tendency to be located
at the lower end of the distribution, and that Ww#l apparent in a large enough

sample.
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3. Picture Vocabulary

In terms of qualitatively distinct subtypes of vboéary acquisition the major
difference might be expected to be found betweesdlthat speak English as
their first language, and those that speak it asdalitional language. The
variation in vocabulary scores might be expecteoetoelatively high for
additional language speakers for a variety of neasbhe amount of exposure to
English would contribute significantly to this var@an. Children that had newly
arrived in the country and had only been learningli&h for a short while would
be at a considerable disadvantage compared to bmosen the country that,
whilst having a different mother tongue, had hasis@xposure to English for
the whole of their lives. In addition picture vociddry assessments are known to
have a cultural load that is likely to disproponidely affect recent immigrants.
As well as a relatively high variation in scoressitlso likely that there would be
considerable overlap between the two subpopulatiisist it might be
expected that the vocabulary score of the wealastenEnglish speaker might
not be as low as that of the weakest additionauage speaker, there is no
reason to suppose that there should be the safeeedife at the other end of the

scale.

At first glance the picture vocabulary data presdritere are largely consistent
with the expectation presented in the previousgragh. However closer
examination of the data reveals a problem. If newwigrants continue to arrive
in the country it will tend to hold down the lowesicabulary score of the
additional language subpopulation, while the higlsesre for the same
subpopulation will tend to increase. This would tesua larger variance in the
scores of the additional language subpopulatidhesohorts increase in age.
This pattern is not found in the data (tables 9ahd 9.1.2). It may be that
additional language speakers do not form a higlhugim@roportion of the
population to make a noticeable impact on theibigtion of scores. Although
reliable figures for the proportion of EAL (English an Additional Language)
children in the sample were not available, it ss@nable to suppose that
Northern Ireland represents a region of the UK witielatively low number of

such children.
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Year Variable

Group P X5 Sp X5 Ss
P4 0.07 -3.27 2.50 0.07 1.68
P5 0.53 -0.37 2.16 0.50 1.27
P6 0.23 -1.12 2.43 0.53 1.55
P7 0.28 -0.97 2.55 0.55 1.67

Table 9.1.1:Summary of binormal parameter estimates for bpigure vocabulary scores

Year Variable

Group P X5 Sp X5 Ss
P4 0.27 -1.43 1.91 0.42 1.37
P5 0.30 -0.70 2.42 0.35 1.26
P6 0.03 -5.00 1.70 0.12 1.61
P7 0.18 -1.80 2.16 0.22 1.74

Table 9.1.2:Summary of binormal parameter estimates for gpisture vocabulary scores

If EAL children are not making a significant contrtion to the distribution of
picture vocabulary scores then it might be expetttatdthey would follow a
normal distribution. In fact this doesn’t appeabtthe case if the additional
variation explained by the binormal model fit ikea into consideration (table
8). This shows that fitting the binormal model te thicture vocabulary data has
a greater impact than it does on either that afirgpor mathematics. However
this might simply have resulted from having foumnéis less data which will have
affected the smoothness of cdf curve used in theéehfd. When the parameter
fit statistics were considered the binormal disttibn model was rejected in
favour of the normal distribution model for girfgicture vocabulary scores in P7
(table 7.1.4.2). However, this aside the binornistridbution model did provide a
significantly better fit. If the negative skew imet data cannot be explained in
terms of the presence of EAL children then it sutgysat something more

complex is happening.

Early vocabulary acquisition is achieved entirelylistening to language.
However as a child learns to read they increasiagfuire vocabulary through
the printed word. The degree to which children agjuocabulary from print

will depend upon their reading ability and theiopensity to read. Thus children

with specific reading disabilities are likely tocaire less vocabulary through
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print, but that is not to say that they do not depeompensatory mechanisms
for language development. The vocabulary developmiembrmal readers that
never pick up a book will also be affected. Thusdistribution of picture
vocabulary scores may be intimately connected wglling development in

complex ways.

If vocabulary acquisition is indeed linked to reagldevelopment then the
connection will be most prominent in data colledieain older children. A
tantalising glimpse of that connection is revealdéde P7 girls’ probability
histograms for picture vocabulary and reading aragared (figures 3.1.4.2 and
3.2.4.2). In this case the binormal distributiond®idfor picture vocabulary was
rejected on the grounds that mean and prevaleticea¢ss of the low attaining
population were not significantly different fromreeHowever the distribution
of scores is clearly not unimodal, and perhapgarmal distribution would
provide a better fit. There is also a suggestionttiadistribution of reading
scores might be better described by a trinormatidigion.

When cross-gender and cross-cohort comparisormeade of the binormal
parameter estimates then no particular patternstzserved. This may result
from complex interactions with reading developmemd EAL status. If so this
exposes an important limitation of the methodoltmgope with such

complexity.

4. Reading

The distributions of reading results appear to lemgemplex structure that is not
adequately explained by the binormal distributiordel. It has been argued that
in P7 an apparent boost in mathematics and aritbrsebdres may have resulted
from the preparation of some learners to take gramsohool entrance tests, and
that has introduced additional complexity into thi&tribution of assessment
scores. However this explanation would seem tonadaquate when applied to
reading. On the one hand there was little evidéoica boost in reading scores in
P7. It might also be expected that the developrokergading skills requires
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practice over extended periods and may therefotedsesusceptible than

mathematics and arithmetic to short term crammaécniques.

A second observation is that the apparently comgliercture in the distribution
of reading scores is already apparent in youngeorts of children. For example
the distribution of girls’ reading scores in P5 agrs to show three separate
peaks at around -2, 0 and 1 years (figure 3.2.2.ppssible explanation for this
distribution of scores is that it results from tieéatively complex structure of the
reading assessment, composed as it is of sepalztests of word recognition,
word decoding and reading comprehension. The appt@odality in the
results might simply be an artefact. Clearly ong weacheck this would be to
analyse the results for each subtest separately.

Another explanation for the complexity of the disition of reading scores is
that it is a true reflection of the distributiontime population, and that the
composite nature of the reading assessment usedasisimply revealed it. The
simple view of reading (SVR) is a widely investigatmodel of reading
disabilities originally proposed by Gough and Tunift@ough and Tunmer,
1986). According to this model reading comprehemgahe product of two
quite different skills; word decoding and listenicgmprehension. The model
predicts two types of specific reading disabilitgarding to which of these skills
are impaired. It is suggested that a deficit indvdecoding results in the
condition usually referred to as dyslexia, whilstedicit in listening
comprehension manifests itself as hyperlexia. Tleeaggrowing body of
evidence to support the independence of word dagaahd listening
comprehension in the development of reading, tmogiging support for the
SVR model (Kendeou et al., 2009). The INCAS readisgpssment employed in
the present study does not include an assessmbstieoing comprehension,
although it does include word decoding. If the SMBdel is correct then a
trimodal distribution of INCAS reading scores mifjet expected. The lowest
attaining subpopulation would be those children Were unable to decode
(dyslexics). Children that could decode but not poghend (hyperlexics) would
appear as a hump in the middle of the distributidermal readers would appear

as the highest attaining subpopulation. It is jikélat in younger cohorts the
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presence of dyslexics might be evident, but thaehgxics would be
indistinguishable from weaker normal readers. Haves the cohorts increased
in age and reading development it is likely that liyperlexic and normal readers
would gradually separate out, resulting in an iasnegly trimodal distribution of

scores.

If the data do indeed have a trimodal structurgaevhaps one of even higher
modality, it presents a fundamental difficulty whenomes to fitting the
binormal distribution model. Unable to cope witle tomplexity in the data the
model is likely to find a best fit solution that rges particular sub-distributions
within the whole, resulting in misleading paramedstimates. That means that
there will always be an element of doubt into tbdrey of those estimates.
However one way in which our confidence in the pater estimates can be
enhanced is if patterns are found across diffatatdsets. When this kind of
reasoning is applied to the reading data it reveatse interesting results. In the
context of the present study it is possible to lewlkdifferences and similarities

between boys and girls, or to look for trends ashorts.

Tables 9.2.1 and 9.2.2 summarise the parameteratesrfor reading that were
originally presented in table 7.2. The binormal paeter estimates for the girls’
reading scores are considered first of all. Thepears to be a clear trend in the
results from P4 to P6. The prevalence of the lowiritig subpopulation is
around 37% in P4 and roughly halves each year tin8?6. At the same time
the mean score of the same subpopulation decrbgsdsout 1 year each year. If
the mean score is added to the mean age at telat {i2) it is possible to
calculate the mean reading age of the low attaisufgpopulation in each cohort.
The figures come out as follows; 6.96 years in P¥4 years in P5, and 7.21
years in P6. It is as if the low attaining group defined by a reading age of
about seven years. These observations are consigterihe notion that there is
a fundamental developmental transition at abouajeeof seven. What that may
be cannot be stated on the basis of this eviddntene possibility is that it
represents the transition from a beginning reamnlerftuent one. Further clues to

test that hypothesis might be found in an analykthe reading subscale results.
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Year Variable
Group P X5 Sp X5 Ss
P4 0.76 -0.87 1.47 1.18 1.18
P5 0.17 -2.53 1.25 0.32 1.37
P6 0.16 -2.62 1.31 0.42 1.31
P7 0.46 -1.29 1.71 0.65 1.07
Table 9.2.1:Summary of binormal parameter estimates for bmgading scores
Year Variable
Group P X5 Sp X5 S5
P4 0.37 -0.82 1.37 0.61 1.27
P5 0.15 -1.63 1.41 0.62 1.26
P6 0.08 -2.57 1.12 0.57 1.31
P7 0.41 -0.83 1.62 0.87 1.05

Table 9.2.2:Summary of binormal parameter estimates for gidading scores

Whatever the validity of the speculative hypothgsesented in the previous

paragraph may be, the pattern in the reading sedolsupport the premise that
there is a qualitatively distinct group of low atiag readers. If the population
contains more than two qualitatively distinct greughree in the case of a
trimodal distribution, then it follows that the paneter estimates given for the
higher attaining subpopulation actually represesuiramary of the remaining
scores, rather than anything meaningful in theneselin the case of a trimodal
distribution these would represent a summary ohtiddle attaining and high
attaining subpopulations. Such reasoning can be tesexplain the apparent
inconsistency in the P7 results. If the observeddrn which the prevalence of
the low attaining group tends to halve each yeaeue continue into P7, then
we would expect to see a prevalence estimate aftat¥. Since the binormal
model is unable to resolve three subpopulatioresptbdel fit may have simply
have coped by merging what is now a very smalldtaining subpopulation
with the middle attaining group, and reporting kigh attaining group as a
distinct subpopulation. Evidence that is the cadeund in the estimate of the
standard deviation of the higher attaining subpafpah which falls from about
1.3 in the younger cohort to a little over one ih P
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Interpretation of the binormal parameter estimatgsined from the boys’ scores
is more problematical. At first glance there idriksg consistency between the
parameter estimates obtained in P5 and P6. Indudtorts the prevalence figure
for the low attaining subpopulation is about 169 #re mean score is about -
2.5 years. However if the parameter estimates@rgared with those obtained
for the girls then there is a certain consistemcthe results for the P4, P6 and P7
cohorts, and that would suggest that the P5 reswdisbe misleading.
Specifically the means of the low attaining subpapon are very similar
between boys and girls in P4 and P6, whilst thealemce figure for the boys is
about twice that reported for the girls in eachecés P7 the prevalence figure is
about 5% higher for boys, but that is consisterihwie notion that the
prevalence of the low attaining subpopulation haleeery year. If the
contribution of the low attaining subpopulationthe prevalence figure reported
in P7 is 4% for the girls, then by the same logigiil be 8% for the boys, thus
accounting for the bulk of the 5% difference. Otabae then the latter
explanation accounts for more of the observatiarthe boys’ results whilst
maintaining consistency with the patterns founthimgirls’. Inconsistent
observations may be explained by limitations inrtrethodology for which

further investigation is required.

To what extent then do these results support thecaledodel of specific
reading disabilities? Certain cross-cohort andszgender patterns in the results
provide strong evidence for two qualitatively drifat subpopulations of reader
that are consistent with a developmental transitiareading ability at a mean
age of about seven years. The medical model ofilggadisabilities predicts
qualitatively different subpopulations as a resfilspecific cognitive deficits. In
recent years a growing body of evidence has acatedithat reading
disabilities may result from such a deficit in pbtogical processing and that a
second subtype of reading disability may exist ihéinked to a core deficit in
naming speed (Vukovic and Siegel, 2006). It hag béen suggested that it is a
deficit in visuo-spatial processing that is resplolles(Stein et al., 2000, Stein and
Walsh, 1997, Stein, 2001, Vidyasagar and PamméQ)2&ither way if reading
disabilities are indeed caused by an innate cagndeficit that would predict

that the prevalence of the condition will be constcross different age groups.
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Prevalence estimates vary according the detailseoprocedures used to identify
individuals; however a figure of between 5.4% af@as been cited (Snowling,
2005). In the present study the lowest prevalestenate was found to be higher
than this at 8% in the case of 10-year-old girlgittrermore the prevalence is not
constant across cohorts but tends to decreasedoy 0% each year. This result
suggests that the cause of reading disabilitiagislay in a developmental step
that occurs on average at seven-years-of-age. Howeat does not exclude the
possibility that there are children for whom th@uitive systems required for
reading are so compromised that they never makelévelopmental step. Such
children might be classed as ‘true’ dyslexics. ®xplanation is consistent with
the causal model of dyslexia proposed by Mortonkiti (Morton and Frith,
1995). According to this model dyslexia resultsrirthe failure at the cognitive
level of a critical neurological structure, refate as ‘P’. Failure of this
structure may have several causes at the biololgicel. These include a ‘faulty
brain system’ as predicted by the medical modeln ¢tihe case of younger
children an ‘immature brain system’ indicating aelepmental cause. If this
model is correct then behavioural level observatioireading ability will fail to
identify the underlying biological cause of readfadure. Nevertheless it is
theoretically possible to extrapolate the trengnevalence estimates to
determine the proportion of children that are kkil make the required
developmental transition. Whatever proportion rerediwould provide an
estimate of the prevalence of ‘true’ dyslexia. Utiiaately the data presented

here are insufficient for that purpose.

A widely reported feature of reading disabilitisghat it affects a
disproportionate number of boys compared to ghts.example in a study of
1206 nine and ten year olds Lewis and colleaguastifted more boys than girls
as having specific reading disabilities (Lewis let H994). However this apparent
gender bias has been challenged by Share and(Siae and Silva, 2003). In
their study the preponderance of boys identifielasng specific reading
disabilities was shown to be an artefact of thedl§&repancy methodology
resulting from differences in the distribution efiding scores between boys and
girls. As with the present study the reading scéwegirls were found to have a

higher mean and smaller variance than those didlgs. When Share and Silva
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applied the IQ-discrepancy methodology separategatch gender they actually
identified slightly more girls than boys as havspgcific reading disabilities,
7.7% compared to 6.8%. In this study the resul¢gyest that the rate of reading
disabilities is about twice as high in boys as iini girls in any one year group,
but that this results from a developmental lag leetwboys in girls. Given that
the prevalence rate was estimated at 15% forigifs and 16% for boys in P6
it would suggest that this lag is about a year. &li®no evidence for any
difference between boys and girls in absolute ratelyslexia.
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5. Mathematics

In cohorts P4, P5 and P6 the binormal distribupmvided an excellent fit for
the observed data leaving little unexplained vemmbr evidence for additional
complexity in the data. As discussed previouslydat for the P7 cohort appear
to indicate a boost in performance for a selecugraf children that may have
resulted from preparation for grammar school emgaasts. For that reason the

P7 data will not be considered further in this dgsion.

Tables 9.3.1 and 9.3.2 summarise the parameteragesrfor mathematics that
were originally presented in table 7.3.

Year Variable

Group P X5 Sp X5 Ss
P4 0.29 -0.72 1.13 0.25 0.97
P5 0.37 -0.77 1.28 0.44 0.81
P6 0.29 -0.84 1.52 0.20 0.88
pP7 0.79 -0.19 1.56 1.23 0.76

Table 9.3.1:Summary of binormal parameter estimates for boyathematics scores

Year Variable

Group P X5 Sp X5 Ss
P4 0.05 -1.89 0.71 0.07 0.91
P5 0.31 -0.76 1.19 0.36 0.76
P6 0.28 -0.77 1.42 0.16 0.79
pP7 0.65 -0.32 1.45 1.00 0.86

Table 9.3.2:Summary of binormal parameter estimates for girlathematics scores

Given that the binormal distribution model fits tinaths data so well it is
initially disappointing that there is no appareend in the value of parameter
estimates across cohorts. This would suggest thhiteureading, there is there is
no particular evidence for qualitatively separatbtgpes of mathematician. This
Is perhaps not surprising when the nature of thihemaatics assessment is
considered. Successful engagement with the assessegeires a broader range
of skills than does the reading assessment. Atéhgleast it requires a degree

of both literacy and numeracy. It is probably aisore directly sensitive to the
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nuances of the curriculum than is the reading assest, for example through

the use of subject specific vocabulary.

The multi-factorial nature of the mathematics assess would predict a normal
distribution scores. Why then is there such strewigence that the data is in fact
negatively skewed? It would seem to indicate aragieffect that has restricted
the potential of more able mathematicians to aehlegher scores. An
inspection of the probability histograms for matlagics (figures 3.3.1.1 to
3.3.3.2) shows that the weakest mathematiciangaelsicores about four years
below the average for their age, and yet the mastmathematicians are only
two and a half years ahead of the average. The In&&8ssment is capable of
providing reliable age-equivalent scores up teast 16 years, around five years
ahead of the oldest participant in this study, sy e ceiling at two-and-half
years. If there is no ceiling on the assessment tite next most likely
explanation is that there is a ceiling in the autum delivery. In order to
achieve a score that was four years ahead of thericaverage age a child in the
upper primary school would need to have been exptmsthe secondary level
curriculum. There are any number of reasons whyrthght not happen. It could
be down the confidence and competence of primachters to deliver
mathematics instruction at such a high level. gmilso result from policy
decisions concerning curriculum implementatiorhatschool, local authority or
national level. If this is correct then it goes soway to explaining why the

speculated reason for the boost in P7 scores lthsuth a marked effect.

6. Arithmetic

At first sight the pattern of results seen in ari#tic was similar to that described
for mathematics in the previous section. In gengr@binormal model provided
an excellent fit for the data with some evidenaetti@ emergence of a
subpopulation that had received a boost in P7. Mewinere appears to be more
evidence of a pattern in the binormal parametémesés. Tables 9.4.1 and 9.4.2
summarise the parameter estimates for arithmediokre originally presented
in table 7.4.
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Year Variable
Group P X5 Sy X S5
P4 0.19 -1.48 1.51 0.33 0.95
P5 0.22 -1.22 1.72 0.41 0.96
P6 0.27 -0.98 1.61 0.41 0.98
P7 0.24 -0.95 2.06 0.31 1.29
Table 9.4.1:Summary of binormal parameter estimates for bayighmetic scores
Year Variable
Group P X5 Sy X S5
P4 0.18 -1.68 1.47 0.14 0.79
P5 0.25 -0.99 1.42 0.33 0.78
P6 0.24 -0.94 1.70 0.26 0.81
P7 0.28 -0.77 1.63 0.31 1.29

Table 9.4.2:Summary of binormal parameter estimates for gatghmetic scores

The emergence of a pattern in the binormal paranestenates for arithmetic
that was not apparent in the mathematics data maydirect consequence of the
relative simplicity of the assessment task. Sudaksderaction with the INCAS
arithmetic assessment depends on a narrower rdrggitive skills than are
required for mathematics. This will result is a leemplex data structure, and
therefore a greater chance that the binormal medleleveal meaningful
consistencies in the data.

The trend in the estimate of the mean score ofaeaktaining subpopulation to
increase with the age of the cohort suggests tieaaitithmetical skills of the low
attaining children is catching up with those of thgher attaining children.
However The INCAS arithmetic assessment is restriccte relatively simple
format of items. In consequence there is a knovilimgeon the assessment
overall of about 14 years, whilst the ceiling oa #ddition subtest is as low as
11 years. The observed pattern probably reflecttatikeof capacity of the
assessment to extend the more able children. Thisgceffect would also
explain the negative skew observed in the scoteahlisions, which is in contrast
to the ceiling in curriculum delivery that was posed in the case of

mathematics.
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Even if the assessment has a ceiling for able aeiticrans this should not be
sufficient to affect the scores of a subpopulatain specific arithmetical
disabilities. However it is observed that the staddleviation estimates for the
low attaining group are very high, often exceedimgt observed for the whole
population and reported in table 2.4.2. Whilssiacknowledged that it is not
necessarily so, it might be expected that a quiakty distinct group of weak
arithmeticians would show less variation in therdsition of their scores. If this
Is coupled with an expectation that the prevalefcich a subpopulation be
considerably lower than that estimated here (batvi®86 and 28%), then an
alternative explanation for the pattern of resséiems more plausible. It seems
likely that in these circumstances the limited itbélty of the binormal model
has been utilised to explain the skew caused bygdlhi@g in the assessment.
However it might still be possible to reveal a grauth specific arithmetical
disabilities if a higher modality model, such asiaormal model were

employed.

Our current understanding of the nature of speaifithmetical disabilities would
suggest there may be several subtypes weak arithiamt, and that a high
modality model may be necessary to reveal them.nidwdically equivalent term
for arithmetical learning disabilities is dyscaleyla condition that was originally
proposed by Kosc (Kosc, 1970, Kosc, 1974). Therévawecompeting
hypotheses for the underlying cognitive deficitp@ssible for dyscalculia
(Feigenson et al., 2004). Butterworth has proptsedefective number module
hypothesigButterworth, 2005b). According to Butterworth tlailt lies with a
deficit in the innate ability to understand and mpatate small whole number
quantities. The competing hypothesis proposed byeBed and colleagues states
that the deficit lies with the cognitive systemsadlved in magnitude
representation and which allow us to understandeopate quantities
(Dehaene et al., 2004, Dehaene et al., 2003, WdsdrDehaene, 2007).
Dehaene calls this ability number sense. Sincesthexlels are not mutually
exclusive there is the possibility of two distimettegories of arithmetical
disability based on this theory alone, but the cizapons do not end there.
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One of the difficulties with studying arithmetidabrning disabilities is its
apparent association with so many other conditsauth as working memory
deficits, ADHD and dyslexia (von Aster and Sha2®07). This has led
Rubinsten and Henik to propose three alternataméworks for the
classification of arithmetical learning disabilgiaccording the hypothesised
cognitive deficits underlying the condition. Thesage from the shared deficits
that underlie other conditions such as dyslexihése that are very specific.
According to their model the term dyscalculia shiodo restricted to cases where
the causal cognitive deficit lies with the procagshumerical quantities alone
(Rubinsten and Henik, 2009). Whilst arithmeticall a@ading disabilities are
often reported as being comorbid there is incrggsindence for a dissociation
between dyscalculia and dyslexia, therefore sugggdifferent underlying
cognitive deficits for the two conditions (Landetlal., 2009, Rubinsten and
Henik, 2006, Swanson and Jerman, 2006).

Although prevalence estimates for arithmeticalneag disabilities have been
put in the region of 5% to 6% it is likely that easof ‘pure’ dyscalculia are very
rare indeed (Snowling, 2005, Gifford and Rockli2©08). In a study of 1206
nine and ten year olds Lewis and colleagues regdiniat the prevalence of
specific arithmetic difficulties was three timesvier than that of specific reading
difficulties (Lewis et al., 1994). The figures faithmetic and reading were put
at 1.3% and 3.9% respectively. Given the low exgebprrevalence and
multiplicity of possible subtypes of specific antktical disabilities finding
evidence for their existence, even using an enlthmedtimodal version of the
method described here, may present considerabliernges. However, if viewed
from a developmental rather than neurocognitivepettive the potential of the

methodology may be more promising.

In the analysis of reading data presented in seétior of this chapter evidence
was presented for a developmental step that magsept the transition from
beginning to fluent reader. Theoretically it maygdwssible to find a parallel
transition in the case of arithmetic. The mecharbigrwhich children acquire
arithmetical skills is well understood, at leasthe case of addition
(Butterworth, 2005a, Geary, 2003, Geary and Haz005). Initially children
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perform arithmetic using cumbersome counting striate As their skills

improve they gradually adopt more efficient caltiola techniques. With enough
practice they may eventually commit a number fadbhg-term memory and
will therefore be able to instantly recall the amswo that particular arithmetical
problem. This change from a calculation to a restaditegy represents a
fundamental shift that may be detectable in tha.dahas been shown that the
tendency to progress from calculation to recadtsyies does not occur evenly
across arithmetical operations. For example retdhle solution to addition
problems is far more likely than it is for subtiaat(Barrouillet et al., 2008). It
has also been shown that whilst the rate of retafiultiplication facts tends to
increase with the age of the child, division faats rarely committed to memory
(Robinson et al., 2006, Steel and Funnell, 200Ba®y if evidence for a
developmental shift from calculation to recall saes is to be discovered in the
INCAS arithmetic scores it will be necessary tolgsgthe data from the four

subtests separately.

7. Summary

In this chapter the validity of the binormal modied generated in this study have
been evaluated. The rationale for developing a naetlogy for deriving
binormal parameter estimates was to discover evaléor the existence of
qualitatively distinct subpopulations of learnetlie population. It was argued
that if found it would provide evidence to suppixe medical model of learning
disabilities that was largely free of the criticisthat have been widely levelled
at traditional 1Q-discrepancy based methodolodrepractice no evidence was
found for neurocognitive deficits that would indiedhe existence of a specific
dysfunction such as dyslexia or dyscalculia. Howewédence was found for a
developmental transition at around the age of sgears in the case of reading.
Evidence was also found for a developmental delabofit a year between the
genders that would account for the higher proportibboys with reading
disabilities that are reported in many studieshéligh no evidence was found
that would support the existence of a specific aeognitive deficit it was
argued that ‘true’ dyslexics might represent thatipn of the population that

fail to make the transition, and that evidencetligs might still be found by
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looking at the trend in prevalence estimates aaasstable longitudinal or

cross-sectional dataset.

Evidence was presented that the methodology istsent ceiling effects in
both assessment and curriculum delivery. It was atgued that the binormal
model was of limited use when applied to dataséts alcomplex structure,
specifically those with a modality higher than tWavo approaches were
suggested to counter this difficulty. The first apgarh would be to develop
higher modality models such as the trinormal distion. The second approach
would be to apply the existing model in the casassiessments designed to

measure more specific abilities, for example addis opposed to arithmetic.
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Chapter 8: Final Discussion

1. Critique of the Study

The principal weakness of the study is that whilkts provided a unique
perspective on the nature of learning disabilitied given fresh insights, the
strength of any conclusions that might be drawmftbhe analyses are tempered
by limitations of the methodology employed for derg binormal parameter

estimates. These limitations are discussed below.

It was argued in chapter 3 that successful apphicaif the methodology is
dependent on both the quality and quantity of @& dvailable. It was then
shown in chapter 4 that it is necessary to be mirafffactors that might affect
the distribution of assessment scores. Specifith#yeffect of gender and years
of schooling were taken into consideration by asialy these data separately. In
addition the effect of intra-cohort age differeneess taken into account by
performing the analysis on the age-ability differescores, rather than on the

assessment data directly.

Having anticipated and accounted for gender, yefasshooling and intra-cohort
age differences, the methodology revealed littidevce for qualitatively
distinct subtypes of learner as it was intendediotoT he best evidence for this
was found in the data for reading, but the pattémesults across cohorts was
inconsistent. It was argued that the methodology semsitive to additional
complexity in the data that might be introducedhbiling (and presumably floor)
effects, instructional effects and multiplicitytime constructs that a particular
assessment was designed to measure. With respessting effects evidence
was found for an assessment ceiling in the casgtbimetic, and an instructional
ceiling in the case of mathematics. It was arghed the ceiling resulted in a
skew in the distribution of scores for the highehiaving subpopulation, and
that the limited flexibility in the binormal modelas used to describe that
skewness, rather than any bimodality that may ees present in the data.
Evidence for further instructional effects came fribva apparent boost in

arithmetic and particularly mathematics scoreh@ftnal year of primary school
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(P7). It was argued that this boost may have reddibm the preparation of
select individuals for secondary school entranststeecause this may have
increased curriculum knowledge or contributed toegal test-wiseness. The
effect of construct multiplicity was illustrated lthye picture vocabulary
assessment where it was argued that the resulesssenfluenced by the effect
of reading on vocabulary development that it fatledeveal qualitatively

different subtypes of English language speaker.

A final limitation in the methodology that is intgt in the nonlinear regression
technique is the danger of arriving at misleadiragai fits, particularly if the
model uses a number of variable parameters. Ondaagproach this difficulty

Is to evaluate any model fit for validity withintlaeoretical framework. Another
approach is to look for trends and patterns in rhbideacross different datasets.
Validation of the methodology presented here witimately depend upon the
establishment of explainable patterns across divdasasets. In this study
within-population patterns have been sought withoross-sectional dataset. The
methodology would benefit from application to ahintpopulation longitudinal

dataset, and also a cross-population analysis.

In spite of these limitations the study has rewéalame interesting results,
particularly in the case of reading. The issuesliggted here are not
insurmountable and the methodology stands as d pf@oncept. With further
refinement and extension of the methodology themotential for it to shed light
on the nature of learning disabilities that is fof¢he dogma of 1Q-discrepancy.

2. Refinement and Extension of the Methodology

The method for deriving binormal parameter estimdescribed in chapter 3
uses two constants and three variables to defaéwé binormal parameters.
The constants employed are the mean and variartbe distribution. A
desirable refinement to the methodology would bsutostitute one or more of
the remaining variables with constants, the valugloch could be calculated
directly from the data. To do so would reduce thance of obtaining multiple

model fits.
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The variance represents a specific example frormdyfaf distribution shape

statistics with the general form:

2 (X -p)
n

g

In the case of the variance the valueacf 2 is substituted into the expression.
When a value ot = 3s used the expression provides a measure of the

asymmetry in the data that is akin to the skewthéncase of a symmetrical

distribution such as the normal distribution théueeof o® = 0. In principle it is
possible to expand this expression along the sares &s that employed in
chapter 2, and so derive an expression for the atng of the binormal
distribution in terms of the binormal parametersptactice the algebra required
for this is quite complicated. However a 3-constaivariable model has been
implemented in DataFit in the case of the standadibinormal distribution.
This was possible because the substitution of @bjoul mean and variance

figures of 0 and 1 respectively made the calcutaticonsiderably simpler.

A serious limitation of the methodology is its inlél to cope with more

complex data structures such as a trimodal didtdbuor a bimodal distribution
in which one of the subpopulation distributionskewed. A solution to this is to
fit a trinormal distribution to the data insteadheTprobability density function of

the trinormal distribution in variate X is given:by

P(X) = poP(X5)+ o5 P(X5)+ (- o, _IOB)P(XS)

Adding a third subpopulation increases the numbpamameters required to
describe the model by three to a total of eight &ktra parameters are needed to
describe the prevalence, mean and standard deviatite additional
subpopulation. A drawback of this is that incregdime number of variable
parameters also increases the chance of findingpteuimodel fits. Clearly
application of such a model would require even tgregare than is the case with

the binormal model.
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In principle the modality of the model could be arded still further, but the
number of parameters required to describe the medeld increase by three
with each additional subpopulation. Ideally mod#lgcreasing modality would
be applied to the data as long as the value dddiested coefficient of multiple
determination (Ra?2) continued to increase, wittiahparameter estimates

informed by the solution arrived at from the apation of the preceding model.

3. Diagnostic Utility

The binormal subpopulation plots presented in Bgigraphically illustrate a
problem at the heart of the identification of laaghdisabilities. The overlap
between the low attaining subpopulation and thekeeemembers of the higher
attaining subpopulation means that it is imposdiblaccurately assign every
individual to the correct subpopulation based ughair assessment score alone.
Many studies assign individuals to one categorgaifing disability or another
based on a particular cut-score. However it isitable that whatever cut-score

is chosen some individuals will be wrongly assigned

In medicine incorrect diagnosis can have serionseguences, and so much
effort has been expended in the development obpotd for establishing the
diagnostic utility of screening tests. One sucltquol is the use of receiver
operating characteristic (ROC) curves (Park e2@04, Faraggi and Reiser,
2002). An ROC curve is that which results whentthe positive fraction (TPF)
is plotted against the false positive fraction (JFRIF a range of cut-scores on a
particular screening test. The true positive fatis defined as the proportion of
individuals below the cut-score that were correadbntified as having the
particular disease or condition. The false positraetion is defined as the
proportion of individuals above the cut score thate incorrectly identified as
not having the disease or condition. If the disttitns of diseased and healthy
individuals each follow a normal distribution, thaif the scores are binormaly
distributed in the population, it can be shown thatROC curve is described by
the following expression whegerepresents the standard normal cumulative

distribution function:
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This expression has been adapted from the onetegploy Park and colleagues
to utilise the notation of Pepe that has been tls@dighout this thesis (Park et
al., 2004, Pepe, 2003)

The area under this curve can take any value bet@&eand 1. A value of 0.5
for the area under the curve would indicate thatsitreening test had no power
to correctly assign individuals to the correct gaty of either diseased or
healthy. A value of 1 would indicate that the ass@nt correctly assigns
individuals every time. Thus the magnitude of theaaunder the ROC curve is

measure of the diagnostic utility of the screertas].

Clinicians use the data contained in ROC curvesftym the judgements they
make as to the most appropriate cut-score to nseaking those judgements it
is necessary to weigh up the consequences ofrtgethtdse individuals with an
incorrect positive diagnosis against not treathmgse with an incorrect negative
diagnosis. Clearly the same type of information lddwave a similar value for
informing the decisions made by teachers, psychstognd researchers in the

field of learning disabilities.

To illustrate one such application of ROC analyisesdiagnostic utility of the
INCAS reading assessment will be considered fds gircohorts P4, P5 and P6.
These data were selected because they represesttahgest evidence found in
the present study for qualitatively distinct sulgymf learner. The ROC curves
on which the following analysis is based are presgm figure 5.

For data that are binormaly distributed the aredeuthe ROC curve (AUC) can
be calculated using the expression below whichoeas adapted from the one
reported by Faraggi and Reiser to utilise the matf Pepe (Faraggi and
Reiser, 2002, Pepe, 2003):
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X= —X
AUC = q;[D—D}

/( 2 zj
S5 tSp

Inputting the derived binormal parameters repometdbles 7.2 into this
equation produced the following values for the aneder the curve; 0.78 in P4,
0.88 in P5 and 0.97 in P6. The figures indicate tiwa diagnostic utility of the
INCAS reading assessment to correctly categorisetifidren into the low
attaining or high attaining subtype increases withage of the cohort. Even
though the prevalence of the low attaining readerseases, the chance of
correctly identifying them increases.

The ROC methodology clearly has potential for igtime diagnostic utility of an
assessment and informing choice of cut-score.drfighd of learning disabilities
research it would allow researchers to estimaterepalrt the proportion of

children in their treatment groups that had beeorirectly classified.

A related application of the binormal distributiorodel lies in the establishment
of the chance that an individual belongs to onetber subtype of learner.
Rather than categorising a child as having a legrdisability according to
which side of a cut-score their assessment reslliit fvould be possible to
calculate a probability that they fell into theraiag disability group. This
approach might be particularly useful when couptetbngitudinal monitoring

of children.

Clearly the application of the binormal model oésific learning disabilities has
a great potential to provide an additional dimengothe interpretation of data
generated by screening tests. However these palttapplications are dependent
on establishing the validity of the groupings rdeday the binormal model
fitting procedure. The ROC approach also highlighesfact that such
assessments are unlikely to ever be completelyratein their designation of

learning disabilities. However reliable and validadaptive assessment such as
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INCAS may be, the computer remains an unintelligéserver. Ultimately the

diagnosis of learning disabilities requires ingint observation.

216



True Positive Fraction

0.0

0.2

Figure 5: ROC Curve for Girls' Reading Results

0.4 0.6
False Positive Fraction

217

0.8

1.0

P6




4. Conclusions

In conclusion to the thesis the research quespossd in chapter 1 will now be

reconsidered. These questions are reproduced below:

1. Does the binormal distribution provide a suitabledal for the
investigation of bimodality in an epidemiologicéiidy of academic
attainment in primary school children?

2. Is there any evidence for qualitatively distincbtypes of learner in the
population under study?

3. Is it possible to obtain valid and reliable paraanetstimates for the
distribution of assessment scores for differentyquds of learner within
the population as a whole?

4. To what extent does the identification of distisabtypes of learner
support the medical model of specific learning kikizes? Is there any
evidence for the existence of dysfunctions suathyakexia and
dyscalculia?

5. What are the implications of application of thedsimal model to the

identification of children with specific learningsabilities?

In the present study the evaluation of 32 datassfined by cohort, gender and
INCAS assessment module was undertaken. It waglftiat in all but one case
the binormal distribution model provided a bettesctiption of the distribution
of age-ability difference scores than did the senplormal distribution model.
However real evidence of bimodality was only foumdiour cases; that is the
reading data for girls in P4 and P5, and the repdata for both boys and girls in
P6. In other circumstances additional flexibiliffoaded by the binormal model
was utilised to explain other structure within guere distributions such as skew
and higher order modality. Nevertheless it was edghat the application of the
binormal model stands as a proof of concept. It alas proposed that the utility
of the general methodological approach introducae imight be extended by
developing higher modality models or else by apmythe binormal distribution
model to assessments that are designed to measueespecific cognitive

functions.
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The evidence for qualitatively distinct subtypedeafrner was restricted to some
reading assessments, as stated in the previougrapha The pattern in the data
suggested that the qualitative difference betwhendentified subpopulations
may represent a developmental step that occursnaba age of about seven
years. In this context reading disabilities wouddrbanifested in a developmental
lag. Evidence for a developmental lag of about yese between boys and girls
was observed. It was speculated that the develo@ingep may represent the
transition from beginning to fluent reader, althbugwas acknowledged that

further research would be required to validate ithed.

The methodology employed certainly makes it posdiblobtain reliable
binormal parameter estimates. The nonlinear reigmesschnique generates
standard error statistics on the magnitude estsratgariable parameters in the
model. These were used to evaluate whether oraobt eariable parameter
makes a significant contribution to the modelkiawever the production of
reliable statistics does not imply that they hamwg \aalidity. In order to establish
validity cross-cohort and cross-gender patterngweught in the binormal
parameter estimates. These patterns were theprieted within a theoretical
framework. This approach yielded positive resuitthie case of some reading

assessments as discussed above.

The evidence for the existence of distinct subtygfagader was interpreted
within a behavioural rather than medical framewditke medical model predicts
a fixed prevalence of dysfunction across cohorswhat was observed was a
decrease in the prevalence of low ability reademnfone cohort to the next. The
decrease was observed to be in the region of 5@¥%\esar. The prevalence of
low attaining readers was also higher than mighexpected from reported
prevalence estimates of dyslexia. If all childregravto ultimately make the
transition from the low to high attaining grouprefders it would support the
hypothesis that reading abilities represent a singhtinuum in the population. It
was proposed that true dyslexics might be compog#uht group of children
that ultimately fail to make the transition, buéttata were insufficient to

determine if such a group were likely to exist. &adence was found to support
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the existence of dyscalculia, but this may simplyult from limitations of the

methodology and the low expected prevalence otomelition.

Finally, the application of the binormal model tefide children in terms of the
probability that they have a learning disabilitysagiscussed. At the group level
this would allow estimates to be made of the rataisdiagnosis on the basis of
cut-scores. It could also be used to inform the besice of cut-score and to
establish the diagnostic utility of a screeningd.tés the individual level it would
provide additional perspective to teachers andai#ins in the interpretation of

assessment data.

Despite the acknowledged limitations of the methoglp the binormal
modelling approach offers real potential to givevniesights into the nature of
learning disabilities. It presents a perspecti th free of the widely reported
difficulties associated with the IQ-discrepancyheique. However its real
strength lies with the complete objectivity of {herameter estimation process.
To the authors knowledge all previous researcherfield of learning
disabilities has included some subjective elemsren if it has only been in the
choice of cut-score. Of course interpretation efdltput from any analytical
procedure will always have some subjectivity. TiBatllties associated with
the methodology are not insurmountable and the nesv@ar doing so may be

considerable.
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Appendix: Example Screenshots of the INCAS
Assessment Modules

Picture Vocabulary

pigeon
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Word Decoding

Quiz

Question

Comprehension

The Pickwick Papers
By
Charles Dickens
Introduction to The Pickwick Papers
naovel,
The Pickwick Papers was Dickens' first |memaory, | written when he
revelation,
passing notates
was | only in his mid-twenties. It | draws the Pickwick Club and
later describes
Dicken's episodic
unlike some of | Dickens's |later works it is extremely (mnemonic | and
Dickens serious
founder
comic. Mr Samuel Pickwick is the | foundary| and chairman of the
author

abstract boasts
ambient | Pickwick Club, which alse | includes | Mr Tupman, Mr
obsurd had

characters
Snodgrass and Mr Winkle. The | creatures go through various
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General Maths

Here are some vases of flowers.

Quiz

Question

Which vase contains three flowers?

Mental Arithmetic

Section

Question
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