Exploring IPC Synthase:
A POTENTIAL ANTI-LEISHMANIAL
DRUG TARGET

PhD Thesis
Durham University
Department of Chemistry

John G. M. Mina

Ustinov College

June 2010
Supervisors

Dr. Patrick G. Steel
Centre for Bioactive Chemistry, Chemistry Dept. Science labs,
Durham University, Durham, DH1 3LE, UK
p.g.steel@durham.ac.uk
+44 191 334 21 31

Dr. Paul W. Denny
Biophysical Sciences Institute, Chemistry Dept. Science labs,
Durham University, Durham, DH1 3LE, UK
p.w.denny@durham.ac.uk
+44 191 334 39 83

Examiners

Prof. Dr. David Parker
Centre for Bioactive Chemistry, Chemistry Dept. Science labs,
Durham University, Durham, DH1 3LE, UK
david.parker@durham.ac.uk
+44 191 33 42033

Dr. Terry Smith
Biomolecular Sciences Building, University of St Andrews
North Haugh, St Andrews, Fife, KY16 9ST, UK
tks1@st-andrews.ac.uk
+44 1334 46 34 12
Exploring IPC Synthase: A POTENTIAL ANTI-LEISHMANIAL DRUG TARGET
John G. M. Mina

Leishmaniasis is a widespread disease affecting 12 million people with about 2 million new cases recorded annually and 350 million people considered to be at risk worldwide. Consequently, it has been ranked category ‘1’ by WHO–TDR in 2004. Currently available drugs are expensive and difficult to administer with toxic and/or teratogenic side effects. In addition, there are increasing levels of drug resistance. Therefore, there is a need for new effective drug treatments.

Earlier work in the group identified *Leishmania major* Inositol Phosphorylceramide Synthase (*Lmj*IPCS) as a functional orthologue of the fungal IPC synthase. This membrane bound enzyme has no mammalian equivalent therefore represents an attractive anti-Leishmanial drug target. The aim of this chemical biology project was to functionally characterise this enzyme and synthesise lead compounds for inhibitor design. The first aspect of the project focused on the establishment of a robust assay system that was used in the determination of the kinetic parameters of the enzyme. The established protocol was amenable to scaling-up processes and HTS. Validation of the assay was achieved using Aureobasidin A, a known fungal IPCS specific inhibitor, and two substrate mimics.

Phase two of the project involved the use of synthetic chemistry towards the enantioselective and diastereoselective synthesis of an array of substrate mimics to help identify the structural requirements for the substrate binding to the enzyme. The key reactions were asymmetric PT amino acid alkylation of benzophenone glycine imine and a stereospecific reduction of protected N-Boc-enones formed from the corresponding amino acid. The prepared alkenes were utilised in olefin cross metathesis reactions to yield a library of ceramide mimics variable in the sphingosine backbone. Deprotection-acylation sequence of the protected amino group resulted in variable N-acyl ceramide mimics. Screening of the substrate mimics library together with other putative inhibitors generated preliminary SAR data. Future work will involve using the SAR data generated in this study to design and synthesise new generations of inhibitors as well as substrate probes to help map the active site of the enzyme.
“... I can do all things through Christ who strengtheneth me.”

Philippians 4:13, KJV
TABLE OF CONTENT

Abstract .. iii
Table of Content ... v
Bibliography .. xi
Acknowledgements .. xii
Declaration ... xiii
Copyright .. xiii
Abbreviations .. xiv

1 INTRODUCTION.. 2

1.1 Thesis Synopsis .. 2

1.2 Sphingolipids ... 3

1.2.1 Historical Perspective .. 3

1.2.2 Structure and Classification ... 4

1.2.3 Diversity between different species ... 8

1.2.4 Nomenclature ... 10

1.2.5 Metabolism .. 12

1.2.5.1 De novo Synthesis ... 12

1.2.5.2 Recycling, Salvage and Degradation ... 15

1.2.6 Biological Significance ... 16

1.2.6.1 Sphingolipids as Structural Components ... 16

1.2.6.2 Sphingolipids as Biological Signalling Agents .. 18

1.2.6.3 Defects in sphingolipids metabolism: the Sphingolipidoses 19

1.2.7 Sphingolipid Biosynthesis: An Attractive Drug Target 20

1.3 Kinetoplastidae: *Leishmania spp.* and *Trypanosoma brucei* 22

1.3.1 *Leishmania spp.* and the Leishmaniases ... 23

1.3.1.1 Introduction .. 23

1.3.1.2 Available treatment ... 24

1.3.2 *Trypanosoma brucei* spp. and HAT ... 26

1.3.2.1 Introduction .. 26

1.3.2.2 Available treatment ... 27

1.3.3 Putative Drug Targets against Leishmaniasis and HAT 28

1.4 The Kinetoplastid IPC Synthase(s): a Novel Drug Target 29

1.4.1 Identification and isolation ... 29

1.4.2 The Hypothetical Reaction Mechanism .. 30
TABLE OF CONTENT

1.4.3 The Biological Significance of IPC Synthases .. 31
1.4.4 L. major IPC Synthase ... 32
1.4.5 Topologies Studies ... 32
1.4.6 Sensitivity studies and drug target validation ... 33
1.5 Project Objectives and Work strategy ... 34
References .. 35

2 CHARACTERISATION OF LmjIPCS .. 39

2.1 Work Synopsis .. 39
2.1 Establishment of an in-vitro Activity Assay ... 40
2.1.1 Construction of the LmjIPCS complemented Mutant Yeast Strain 40
2.1.2 Preparation of the Microsomal Membranes Fraction 41
2.1.2.1 Preparation of Crude microsomal membranes ... 41
2.1.2.2 Activity Assay of the Crude Microsomal Membranes 42
2.1.2.3 Preparation of Refined Microsomal Membranes 43
2.1.3 Establishment of LmjIPCS Assay Conditions ... 45
2.1.3.1 Techniques of IPC Synthase Activity Assays ... 46
2.1.3.2 Activity vs. Variants of the Donor Substrate ... 47
2.1.3.3 Activity vs. Temperature .. 48
2.1.3.4 Activity vs. pH ... 49
2.1.3.5 Activity vs. Time & Protein Concentration ... 50
2.1.4 Validation of the Assay Protocol ... 52
2.1.4.1 Aureobasidin A Inhibition of LmjIPCS ... 52
2.1.4.2 Substrate Analogues as Competitive Inhibitors of LmjIPCS 53
2.2 Determination of the Kinetic Parameters ... 56
2.2.1 The Physical Aspects of the Assay Protocol .. 56
2.2.2 Initial Hypotheses for LmjIPCS Kinetic Model ... 57
2.2.3 The Catalytic Cycle and the Reaction Rate Equation 59
2.2.4 \(V_{\text{max}} \) and \(K_{m}^{\text{Cer}} \) \(\text{(app.)} \) in terms of NBD-C6-Ceramide 64
2.2.5 \(V_{\text{max}} \) and \(K_{m}^{\text{Pl}} \) \(\text{(app.)} \) in terms of PI ... 64
2.2.6 Bi–Bi Substrate Kinetics and Surface Dilution Effect 67
2.3 Conclusion ... 70
References .. 71

3 LmjIPCS ORTHOLOGOUS ENZYMES .. 74

3.1 Work Synopsis .. 74
3.2 TbSLS4 (Tb09.211.1000) .. 74
3.2.1 Introduction .. 74
TABLE OF CONTENT

3.2.2 Construction of the TbSLSs complemented Mutant Yeast Strain .. 75
3.2.3 In vitro assay of TbSLS4 activity ... 76
 3.2.3.1 Activity vs. Different Donor Substrates ... 77
 3.2.3.2 Activity vs. Time ... 79
 3.2.3.3 Aureobasidin A Inhibition ... 80
3.2.4 Reverse Activity .. 81
3.3 AtIPCS 1, 2 & 3 (At3g54020.1, At2g37940.1 & At2g29525.1) ... 83
 3.3.1 Introduction .. 83
 3.3.2 Construction of the AtIPCSs complemented Mutant Yeast Strain 83
 3.3.3 Microsomes Preparation and in vitro Activity Assay .. 84
 3.3.4 AtIPCS1-3 are Functional IPC Synthases ... 84
 3.3.4.1 Activity vs. Different Donor Substrates ... 84
 3.3.4.2 Aureobasidin A inhibition ... 85
3.4 Conclusion ... 87
References .. 88

4 SYNTHESIS OF SUBSTRATE ANALOGUES ... 90

4.1 Work Synopsis .. 90
4.2 The Rationale behind the Design of Potential Inhibitors ... 91
 4.2.1 The Structural Features of Known Substrates and Inhibitors .. 91
 4.2.2 The Template Structure for Potential Inhibitors ... 93
4.3 Synthesis of a Ceramide Analogues Library .. 94
 4.3.1 Synthetic Routes to Sphingosine and ceramide ... 94
 4.3.2 The Synthetic Strategy for the Parallel Synthesis ... 96
 4.3.2.1 The Retro Synthetic Analysis for the Common Scaffold .. 96
 4.3.2.2 The Proposed Synthetic Routes ... 97
 4.3.3 Synthesis of Scaffold ‘1’: N-Boc-2-aminopent-4-ene-1,3-diol .. 97
 4.3.4 Synthesis of the Scaffolds of 1-Deoxyceramide Analogues ... 100
 4.3.4.1 Synthesis of Scaffold ‘2a’: N-Boc-2-aminopent-4-en-3-ol ... 100
 4.3.4.2 Synthesis of Scaffold ‘2b’: N-Boc-2-aminohex-5-en-3-ol ... 101
 4.3.5 Synthesis of Scaffolds ‘3’: N-Boc-2-aminopent-4-en-1-ol .. 102
 4.3.5.1 Synthesis of the Benzophenone Glycine Imine .. 104
 4.3.5.2 Synthesis of (2R) & (2S) N-Boc-2-aminopent-4-en-1-ol ... 105
 4.3.6 Olefin Cross Metathesis (CM) of the Prepared Scaffolds .. 105
 4.3.7 Deprotection and Acylation of CM Products ... 108
 4.3.8 Synthesis of Ceramide-1-Phosphate Analogue ... 109
 4.3.9 Synthesis of the 1-Phenyl-2-aminopropanol Series .. 109
4.4 Conclusions .. 111
TABLE OF CONTENT

References..112

5 SCREENING OF THE SUBSTRATE ANALOGUES..115
 5.1 Work Synopsis..115
 5.2 Preparation of the Screening Compounds ..116
 5.3 The Assay Protocol of the Inhibition Assays ..116
 5.4 Analysis of the Screening Results ..117
 5.4.1 The Ceramide Analogues Library ..117
 5.4.2 The Synthetic Intermediates ..119
 5.4.3 The Nor-Ephedrine (1-Phenyl-2-aminopropanol) Series120
 5.4.4 The β-blockers ..120
 5.4.5 Z-Prime Value of the Screening Assay ...121
 5.4.6 IC50 of the Representative Potent Compounds ...123
 5.4.7 Mass Spectrometry of the Representative Compounds124
 5.4.8 Pre-incubation with a Ceramide-1-phosphate Analogue (338)125
 5.5 The SAR Analyses ...126
 5.5.1 Feature ‘1’: 1-OH, H-Donor/H-Acceptor ...126
 5.5.2 Feature ‘2’: 2S-NH-, H-Donor ...127
 5.5.3 Feature ‘3’: 3R-OH, H-Donor/H-Acceptor ...128
 5.5.4 Feature ‘4’: Position of the Double Bond ..128
 5.5.5 Feature ‘5’: Sphingosine backbone Tail, Hydrophobic Surface129
 5.5.6 Feature ‘6’: -CO-R, H-Acceptor ...130
 5.5.7 Feature ‘7’: N-Acyl Hydrophobic Tail, Hydrophobic Surface132
 5.6 Conclusion ...135

References..136

6 CONCLUSIONS AND FUTURE WORK...138
 6.1 Conclusion ..138
 6.2 Proposed Future Work ..139
 6.2.1 Biological Approach ..139
 6.2.1.1 Enhancement of the Assay Protocol ...139
 6.2.1.2 Further Enzyme Activity Studies & Site directed mutagenesis of Arg262 ..139
 6.2.1.3 Kinetics of PI Phosphorylation of LmjIPCS140
 6.2.2 Bioinformatics and In Silico Molecular Modelling141

References..142

7 BIOLOGICAL MATERIALS AND METHODS ...144
7.1 Materials .. 144
7.2 Instruments and Equipment ... 144
7.3 Solutions, Buffers and Media Compositions ... 145
7.4 Standard Protocols .. 146
 7.4.1 Complementation of AUR1 mutant \textit{S. cerevisiae} .. 146
 7.4.2 AUR1 mutant \textit{S. cerevisiae} culture .. 147
 7.4.2.1 Agar Plates .. 147
 7.4.2.2 Culture Sealing-up ... 148
 7.4.3 Preparation of the Microsomal Membranes Fraction 148
 7.4.3.1 Step 1: Preparation of Cell Extract ... 148
 7.4.3.2 Step 2: Preparation of Crude Microsomal Membrane Fraction 148
 7.4.3.3 Step 3: Preparation of CHAPS-washed Microsomal Membranes Fraction ... 149
 7.4.3.4 Step 4: Determination of the Protein Content in Enzyme Units 149
 7.4.4 NBD-C₆-Ceramide Fluorescence Assay .. 150
 7.4.4.1 Protocol ‘A’: 96-well plate Assay .. 150
 7.4.4.2 Protocol ‘B’: Thin Layer chromatography (TLC) Assay 150
 7.4.4.3 Assay for Inhibitions Studies .. 151
 7.4.5 Mass Spectrometry Analyses .. 151
References .. 153

8 \textbf{CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS} 155

8.1 General Procedures .. 155
 8.1.1 IUPAC nomenclature .. 155
 8.1.2 Solvents purification .. 155
 8.1.3 Reaction Conditions, Monitoring and Purification 155
 8.1.4 Column chromatography .. 155
 8.1.5 Spectroscopic Data .. 156
 8.1.6 Titration of Organometallic Reagents .. 156

8.2 Experimental Procedures ... 157
 8.2.1 Commercially Available Starting Materials .. 157
 8.2.2 Synthesis of Intermediate compounds .. 159
 8.2.2.1 4E-1-deoxy ceramide analogues ... 159
 8.2.2.2 5E-1-deoxy ceramide analogues ... 161
 8.2.2.3 Ceramide analogues .. 163
 8.2.2.4 4E-3-deoxy-ceramide analogues ... 168
 8.2.3 General Procedure for Phase Transfer Catalysis11,15 173
 8.2.4 Olefin Cross Metathesis .. 177
 8.2.4.1 4E-1-deoxy ceramide analogues ... 178
 8.2.4.2 5E-1-deoxy ceramide analogues ... 179
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.4.3</td>
<td>Ceramide analogues</td>
<td>181</td>
</tr>
<tr>
<td>8.2.4.4</td>
<td>4E-3-deoxy ceramide analogues</td>
<td>185</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Screening Compounds Library</td>
<td>187</td>
</tr>
<tr>
<td>8.2.5.1</td>
<td>4E-1-deoxy ceramide analogues</td>
<td>187</td>
</tr>
<tr>
<td>8.2.5.2</td>
<td>5E-1-deoxy ceramide analogues</td>
<td>193</td>
</tr>
<tr>
<td>8.2.5.3</td>
<td>Ceramide analogues</td>
<td>198</td>
</tr>
<tr>
<td>8.2.5.4</td>
<td>4E-3-deoxy ceramide analogues</td>
<td>204</td>
</tr>
<tr>
<td>8.2.5.5</td>
<td>3-phenyl-1-deoxy ceramide analogues</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>214</td>
</tr>
</tbody>
</table>

APPENDIX 'A': EXPRESSION VECTOR p426MET25

APPENDIX 'B': MATRIX OF DILUTION EFFECT

APPENDIX 'C': SCREENING RESULTS TABLE

APPENDIX 'D': PUBLICATIONS
John G. M. Mina

Egyptian
Born 6th Oct. 1977

June 2000,
B.Sc. (Honours) “Pharmacy and Pharmaceutical Sciences”
Faculty of Pharmacy, Cairo University - Egypt.

Jan. 2004,
Joined the Chemistry Department in Durham University, and that’s where my academic career began.

Nov. 2005
M.Sc. “Stereocontrolled Synthesis of Highly Functionalized Heterocycles”
Chemistry Department, Faculty of Sciences, Durham University - United Kingdom.

Supervisors: Prof. Dr. Judith A. K. Howard CBE FRS
Dr. Patrick G. Steel

Examiners: Dr. David R. W. Hodgson (Durham University)
Dr. Andrew Parsons (York University)
ACKNOWLEDGEMENTS

To
My parents,
All my teachers,
And my supervisors,

Prof. Judith A. K. Howard, FRS
&
Dr. Patrick G. Steel
&
Dr. Paul W. Denny

who taught me from A B C to Ph.D.

A massive thank you is due to my wife Aristeia for her endless and continuous support.

A big thank you to my dear friends Sam, Ahmed and Ali who always supported me.

Special thanks to Dr. Alan Kenwright, Dr. Andy Beeby, Dr AnnMarie O'Donoghue, Dr. David Hodgson, Dr. Maria Hinaje, Dr. Martin Cann, and all the NMR & MS service teamwork for their guidance and helpful discussions.

Thanks for all Wolfson Research Institute specially Simon Padbury and Diane Hart and CY001 colleagues, Dr. Kathryn Knight, Dr. Jonathan Sellars, Dr. Marie Landrum, Dr. Tom Woods, Michal Czyzewski, Peter Harrisson Dr. Matt Burton, Dr. Steve Bratt, Dr. Ahmed Ali, Nick Hughes, John Dunwell and Hazmi Tajuddin who always made the environment so joyful and encouraging.
DECLARATION

The work in this report was carried out at the University of Durham as a conjunction work between the Department of Chemistry and Wolfson Research Institute between October 2006 and June 2010. It has not been submitted for any other degree and is the author’s own work, except where acknowledged by reference.

COPYRIGHT

The copyright of this report rests with the author. This copy has been supplied on the understanding that it is copyright material and that no quotation from the report may be published without proper acknowledgement.
ABBREVIATIONS

1D | Unidimensional
2D | Bidimensional
Ac | Acetyl
aq. | Aqueous
Ar | Aromatic group
AitPCS | *Arabidopsis thaliana* IPC synthase
b | Broad (in IR spectroscopy)
b.p. | Boiling point
Bn | Benzyl
BSF | Blood stream form (for parasites)
Bu | Butyl
BuLi | Butyllithium
c.a. | *circa*, about
CHAPS | 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate
CHAPSO | 3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxy-1-propanesulfonate
CM | Cross Metathesis
conc. | Concentrated
Cosy | H1–H1 correlation spectroscopy
Cpd | Compound
d | Doublet (in 1H NMR spectroscopy)
D (#) | Domain (number) in protein sequence
Da | Dalton
DAG | Diacylglycerol
DCM | Dichloromethane (CH$_2$Cl$_2$)
dd | Doublet of doublet (in 1H NMR spectroscopy)
ddd | Doublet of doublet of doublet (in 1H NMR spectroscopy)
DIBAH | Diisobutylaluminium hydride
DMAP | 4-(N,N-Dimethylamino)pyridine
DMF | N,N-dimethylformamide
DNA | Deoxyribonucleic acid
e.g. | For example
EDC | 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
EDTA | Ethylene diamine tetracetic acid
eq. | Equivalents
ER | Endoplasmic Reticulum
ESMS | Electrospray Mass spectrometry
Et | Ethyl
g | Gram
GC | Gas chromatography
GC / MS | Gas chromatography / Mass spectroscopy
GLS | Glycosphingolipid
GPCR | G-protein coupled receptor
h | Hours
HAT | Human African Trypanosomiasis
HMBC | Heteronuclear shift correlation *via* multiple bond connectivities
HPTLC | High performance thin layer chromatography
HSQC | Heteronuclear single quantum correlation
i.e. | *In extensor*
IPC | Inositolphosphoryl ceramide
IPCase | IPC lyase
IR | Infrared
J / Hz | Coupling constant / Hertz (in NMR spectroscopy)
kDa | Kilo Dalton
kDNA | Kinetoplast DNA
k_m | Michaelis constant
L_m | Lamellar phase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lβ</td>
<td>Gel phase</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropylamide</td>
</tr>
<tr>
<td>LmjIPCS</td>
<td>Leishmania major IPC synthase</td>
</tr>
<tr>
<td>LPP</td>
<td>Lipid phosphate phosphatase</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet (in 1H NMR spectroscopy)</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting point</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>mg.</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MIPC</td>
<td>Mannose inositol phosphorylceramide</td>
</tr>
<tr>
<td>Ms</td>
<td>Mesyl (Methylsulfonyl)</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NBD-C_6-ceramide</td>
<td>N-[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoyl]-D-erythro-sphingosine</td>
</tr>
<tr>
<td>NMM</td>
<td>N methyl morpholine</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>nOe</td>
<td>Nuclear Overhauser effect</td>
</tr>
<tr>
<td>nOesy</td>
<td>Nuclear Overhauser effect spectroscopy</td>
</tr>
<tr>
<td>Nu</td>
<td>Nucleophile</td>
</tr>
<tr>
<td>PC</td>
<td>Phosphatidylcholine</td>
</tr>
<tr>
<td>PCF</td>
<td>Procyclic form (for parasite)</td>
</tr>
<tr>
<td>PE</td>
<td>Phosphatidyl ethanolamine</td>
</tr>
<tr>
<td>P-EtN</td>
<td>Ethanolamine phosphate</td>
</tr>
<tr>
<td>pH</td>
<td>$-\log$ [Hydrogen ion concentration]</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>PI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>PI</td>
<td>Phosphatidylinositol</td>
</tr>
<tr>
<td>pK_a</td>
<td>Acid ionisation constant</td>
</tr>
<tr>
<td>PSL</td>
<td>Phosphosphingolipid</td>
</tr>
<tr>
<td>R</td>
<td>Alkyl group</td>
</tr>
<tr>
<td>R_f</td>
<td>Distance travelled on TLC</td>
</tr>
<tr>
<td>R.T / r.t</td>
<td>Room temperature</td>
</tr>
<tr>
<td>s</td>
<td>Singlet (in 1H NMR spectroscopy)</td>
</tr>
<tr>
<td>S1P</td>
<td>Sphingosine-1-phosphate</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure Activity Relationship</td>
</tr>
<tr>
<td>ScIPCS</td>
<td>Saccharomyces cerevisiae inositol phosphorylceramide synthase</td>
</tr>
<tr>
<td>SK</td>
<td>Sphingosine Kinase</td>
</tr>
<tr>
<td>SM</td>
<td>Starting material (in chemical context)</td>
</tr>
<tr>
<td>SM</td>
<td>Sphingomyelin (in biological context)</td>
</tr>
<tr>
<td>SMase</td>
<td>Sphingomyelinase</td>
</tr>
<tr>
<td>SMS</td>
<td>Sphingomyelin synthase</td>
</tr>
<tr>
<td>SPT</td>
<td>Serine palmitoyl transferase</td>
</tr>
<tr>
<td>t</td>
<td>Triplet (in 1H NMR spectroscopy)</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-Butyldimethylsilyl</td>
</tr>
<tr>
<td>TBSLS</td>
<td>Trypanosoma brucei sphingolipid synthase</td>
</tr>
<tr>
<td>tDOC</td>
<td>Taurodeoxycholate</td>
</tr>
<tr>
<td>Tfa</td>
<td>Trifluoroacetate</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TM (#)</td>
<td>Transmembrane domain (in protein sequence)</td>
</tr>
<tr>
<td>v_0</td>
<td>Initial velocity (enzyme kinetics)</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum velocity (enzyme kinetics)</td>
</tr>
<tr>
<td>VSG</td>
<td>Variant Surface Glycoprotein</td>
</tr>
</tbody>
</table>

Latin Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>Heat</td>
</tr>
<tr>
<td>δ / ppm</td>
<td>Chemical shifts / parts per million</td>
</tr>
</tbody>
</table>
Chapter I

Introduction
1 INTRODUCTION

1.1 Thesis Synopsis

The aim of this work is to functionally characterise the recently identified enzyme, Inositol Phosphorylceramide Synthase from Leishmania major (LmjIPCS). This enzyme represents a promising drug target against Leishmaniasis and therefore warrants further study. Chapter ‘I’ will present the background to the project; a brief description of sphingolipids in terms of structure and function in addition to the differences in metabolism between fungi, higher plants, Kinetoplastidae and the mammalian systems. These differences form a cornerstone of the project. Furthermore, the last section will demonstrate the disease burden of Leishmaniasis and HAT, caused by the related trypanosome Trypanosoma brucei.

The project focused on a set of key objectives. These included the establishment of a high-throughput compatible activity assay protocol and the determination of the kinetic parameters of LmjIPCS. The achievement of these two objectives is discussed in Chapter ‘II’. Moreover, application of these protocols in the preliminary characterisation of the closely related T. brucei Sphingolipid Synthase, TbSLS4, and the divergent Arabidopsis thaliana Inositol phosphorylceramide synthases, AtIPCS1-3, is the focus of Chapter ‘III’. The third and fourth objectives focused on the chemical synthesis of a library of substrate analogues and the screening of this library against LmjIPCS. Details of the synthesis strategy and the screening results will be discussed in Chapter ‘IV’ and Chapter ‘V’ respectively while the project conclusions together with the future work will be presented in Chapter ‘VI’. Finally, the biological materials and methods and the experimental details of the chemical synthesis will be demonstrated in Chapters ‘VII’ and ‘VIII’ respectively.
1.2 Sphingolipids

1.2.1 Historical Perspective

Sphingolipids, a class of natural products, were first characterised by the German-born chemist and clinician Johann L. W. Thudichum in 1884 by fractional crystallisation from human brain tissue.\(^1\) He isolated three related waxy lipids, sphingomyelin (1), cerebroside (2) and cerebrosulfatide (3), which upon hydrolysis gave a long chain aliphatic amine that he named sphingosine after the Greek mythological monster, Sphinx, due to its enigmatic nature. In the early 1900s, it was recognized as “dihydroxyamino-octadecene”.\(^2-4\) The correct relative orientations of the key functional moieties of sphingosine (4) (Figure 1-1) were determined by Carter and co-workers in 1947.\(^5\) Subsequently, the first racemic synthesis of sphingosine was reported by Shapiro and Segal in 1954.\(^6\)

![Figure 1-1: (A) The chemical structures of the lipids isolated by Thudichum (B) The key structural features of D-erythro-Sphingosine, (2S, 3R, E)-2-aminooctadec-4-ene-1,3-diol.](image)

Over the last decade, there has been an exponentially growing interest in the study of sphingolipids; not only as structural components of the eukaryotic cell but also due to their interaction with a myriad of biological processes including signal transduction, cell growth, differentiation, apoptosis.\(^7-11\) These are in addition to the relatively recent discovery of their role in the regulation of protein kinase C.\(^12\)
1.2.2 Structure and Classification

Lipids are indispensable abundant structural components in eukaryotic plasma membranes (Figure 1-2) and intracellular organelles (25 % and 52 % of total lipid of mitochondrial membranes and chloroplasts respectively). In addition, lipids represent a major class of messenger and signal transduction bioactive molecules which modulate various cellular metabolic processes.13-14

![Figure 1-2: Lipids are integral component of plasma membrane](http://cellbiology.med.unsw.edu.au/units/science/lecture0803.htm)

On structural basis, lipids comprise a diverse range of naturally-occurring molecules and can be divided into eight categories. These are the fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides (Figure 1-3).15 Three of these classes (Figure 1-3: b, c and d) consist of a long chain fatty acid backbone structure to which is attached a variety of charged, neutral, phosphorylated and or glycosylated moieties that results in both polar and non-polar regions which give them an amphipathic character, and accounts for their tendency to aggregate into membranous structures. The divergence encountered in their chemical structures allows them to play distinctive roles within cellular metabolism.13-14
Importantly, whilst glycerolipids (b) and glycerophospholipids (c) are mono-, bi- or tri- acyl glycerol based, sphingolipids are distinguished by the presence of a structurally related family of backbones termed sphingoid bases (e.g. sphingosine) linked by an amide bond to an acyl group of a fatty acid to form N-acyl-sphingosines generically named “ceramides”. Relevant examples of sphingoid bases to the work presented in this thesis are illustrated in (Figure 1-4). There are considerable differences in the acyl chain between sphingolipids and the closely related, phospholipids. While phospholipids tend to have shorter acyl chains (16C-18C) with higher degrees of unsaturation, sphingolipids often have longer (20C-24C) saturated acyl chains.

13, 16

Figure 1-3: Representative examples of the primary categories of lipids

A. Fatty Acyls: hexadecanoic acid

B. Glycerolipids: 1-hexadecanoyl-2-(9Z-octadecanoyl)-sn-glycerol

C. Glycerophospholipids: 1-hexadecanoyl-2-(9Z-octadecanoyl)-sn-glycero-3-phosphocholine

D. Sphingolipids: N-(tetradecanoyl)-sphing-4-enine

E. Sterol Lipids: cholest-5-en-3β-ol

F. Prenol Lipids: 2E,6E-farnesol

G. Saccharolipids: UDP-3-O-(3R-hydrpxy-tetradecanoyl)-α-D-N-acetylglucosamine

H. Polyketides: aflatoxin B1
CHAPTER I: INTRODUCTION

However, in the so-called phosphosphingolipids, ceramides acquire a phosphate head group (e.g. ethanolamine phosphorylceramide and sphingomyelin) and exhibit structural features of both sphingolipids and phospholipids (Figure 1-5).

Excluding variation in the ceramide backbone, more than 300 different types of complex sphingolipids have been reported.17-19 These can be subdivided into seven classes20 (Figure 1-6).15, 21 A fully comprehensive enumeration for all the structural variation of sphingolipids can be found online in continuously updated databases such as SphinGOMAP.
(www.sphingomap.org), the Japanese Lipid Bank (http://www.lipidbank.jp) and the Lipid Maps Consortium (www.lipidmaps.org).

![Sphingolipid Structure](image)

<table>
<thead>
<tr>
<th>Sphingolipid Class</th>
<th>Example</th>
<th>1-O- Head Group (R₁)</th>
<th>(R₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sphingoid bases</td>
<td>Sphingosine-1-phosphate</td>
<td>PO₃⁻</td>
<td>H</td>
</tr>
<tr>
<td>2. Ceramides</td>
<td>Ceramide-1-phosphate</td>
<td>PO₃⁻</td>
<td>Fatty acyl group</td>
</tr>
<tr>
<td>3. Phosphosphingolipids</td>
<td>Sphingomyelin</td>
<td></td>
<td>Fatty acyl group</td>
</tr>
<tr>
<td>4. Cerebrosides</td>
<td>Glycosphingolipid Glcβ-Cer (d18:1/12:0)</td>
<td></td>
<td>Fatty acyl group</td>
</tr>
<tr>
<td>Natural Glycosphingolipids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Gangliosides</td>
<td>Glycosphingolipid (4’-Sialoyl) Glcβ-Cer (d18:1/12:0)</td>
<td></td>
<td>Fatty acyl group</td>
</tr>
<tr>
<td>Natural Cerebrosides linked to Sialic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Acidic Glycosphingolipids</td>
<td>Cerebrosulphatide (3’-sulfo) Galβ-Cer (d18:1/12:0)</td>
<td></td>
<td>Fatty acyl group</td>
</tr>
<tr>
<td>7. Sulfonosphingolipids²²</td>
<td>Sulfobacins²³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capnine²⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-6: Representative Structures of sphingolipids classes (based on mammalian sphingosine)
1.2.3 Diversity between different species

With sphingolipids ubiquitous in nature, divergence is inevitable, and to-date, a vast array of sphingoid bases has been encountered. These include structural variations in terms of chain length, hydroxylation pattern (2, 3 or more OH groups), double bonds (number, position and conjugation) and branched side chains. Mammalian sphingoid bases are characterised by the predominance of C18 sphingosine. However, other chain lengths (C12 to C26) have been reported. In addition, variation in double bonds (e.g. Cpd 13), hydroxyl groups (e.g. Cpd 16, 18) and branched side chain sphingoid bases have been isolated (Figure 1-7). Additionally, N- and O-methyl-sphingoid bases, e.g. N,N-dimethylsphingosine have been found in small amounts.20

![Figure 1-7: Variation in Mammalian sphingoid bases](image)

In fungi and plants, sphingoid bases differ from those coming from mammalian species as they lack the C4-5 double bond, show a higher pattern of hydroxylation at C4 (Figure 1-4) and tend to have longer acyl chains (C28-C34).16

Sphingoid bases of sphingolipids from other species, including insects and aquatic organisms, extend the structural and compositional variation even further. For example,
uncommon C14 conjugated diene (Cpd 19) sphingoid base and a phytosphingosine with an odd number of carbon atoms C15 have been found. Furthermore, unique sphingoid bases with a cyclopropane ring in the alkyl side chain have been isolated from sponges (Cpd 20) (Figure 1-8).²⁰

![Figure 1-8: Variation in sphingoid bases from insects and sponges](image1.png)

The combination of these variations in the sphingoid base and the acylating fatty acid results in a massive structural divergence of the resulting ceramides. Enhanced variation is then encountered in further modifications to complex sphingolipids with a variety of head groups according to the host organism (Figure 1-9).

![Figure 1-9: Host-based variation and partial similarities of complex sphingolipids](image2.png)
1.2.4 Nomenclature

Sphingolipids comprise an important class of compounds and are the focus for much contemporary research. Therefore, it has been necessary to establish a standard system for their nomenclature ensuring easier and effective communication to overcome the obsolete denotations that sometimes become confusing and misleading.

Some classes of sphingolipids had gained their own nomenclature system historically; e.g. ‘Svennerholm’ nomenclature\(^{25}\) of gangliosides based on the number of sialic acid residues.\(^{13,16}\) Many specialised and comprehensive reviews and online resources are continuously dealing with the problems regarding the development of a systematic protocol for the nomenclature of lipids in general.\(^{26}\) This section will focus on the issues regarding nomenclature of sphingolipid subclasses relevant to this work following the recommendations of the Lipid Maps Consortium (www.lipidmaps.org).

Conventionally, the naturally occurring D-erythro-sphingosine diastereoisomer\(^{26}\) (Figure 1-10, entry 1) has been agreed to be the standard form of sphingosine unless a different stereochemistry is indicated. The higher order sphingolipids, ceramides and sphingomyelin have been abbreviated to Cer and SM respectively, followed by parentheses defining the hydroxylation pattern, chain length and degree of unsaturation. Representative examples of sphingolipid classes to be encountered within this thesis are illustrated in Figure 1-10.\(^{15}\)
1. **Common Name:** Sphingosine
 Short hand: \((d, \# \text{ of } OH \text{ groups } 18, \text{ Chain length } : 1, \# \text{ of double bonds})\)
 Lipid Maps Name: Sphing-4-ene

2. **Common Name:** Sphinganine
 Short hand: \((d18:0)\)
 Lipid Maps Name: Sphinganine

3. **Common Name:** Phytosphingosine
 Short hand: \((t18:0), 1, \text{ trihydroxy}\)
 Lipid Maps Name: Sphinganine

4. **Common Name:** Ceramide
 Short hand: \(\text{Cer(d18:1/12:0, fatty acyl chain length)}\)
 Lipid Maps Name: N-(dodecanoyl)-sphing-4-ene

5. **Common Name:** Phytoceramide
 Short hand: \(\text{Cer(t18:1/16:0)}\)
 Lipid Maps Name: N-(hexadecanoyl)-4R-hydroxy-sphinganine

6. **Common Name:** Sphingomyelin
 Short hand: \(\text{SM(d18:1/18:0)}\)
 Lipid Maps Name: N-(octadecanoyl)-sphing-4-ene-1-posphocholine

7. **Common Name:** Inositol phosphorylceramide
 Short hand: \(\text{Ins-1-P-Cer(d18:1/22:0); Ins-1-P, Inositol-1-Posphate } C_{13}H_{27}\)
 Lipid Maps Name: N-(docosanoyl)-sphing-4-ene-1-phospho-(1'-myo-inositol)

Figure 1-10: Common names and short hands of sphingolipid classes and their nomenclature according to Lipid Maps Consortium
1.2.5 Metabolism

Sphingolipid metabolism constitutes a highly complex network of interconnected pathways where ceramide (and dihydroceramide to a lesser degree) occupies a central position in biosynthesis and catabolism and thus, represents a metabolic hub. In terms of ceramide, these pathways can be grouped into three clusters; de novo synthesis, recycling ‘salvage’ and degradation (Figure 1-11). To date, the mammalian sphingolipid metabolism has been extensively studied and many of the enzymes involved have been identified and characterised. Consequently, it will be used as the reference model in the following section.

Figure 1-11: A simplified diagram of sphingolipids metabolism in mammalian cell. (Redrawn from ref. 27 with permission)

1.2.5.1 De novo Synthesis

De novo biosynthesis of sphingolipids takes place in the ER and Golgi apparatus. It has a rate-limiting entry point, condensation of palmitoyl-CoA with L-serine catalysed by serine palmitoyl transferase (SPT) to produce 3-ketosphinganine in the ER. This is subsequently reduced to sphinganine. These two metabolic steps are largely conserved across all the Eukaryota (Figure 1-12).
Figure 1-12: Mammalian biosynthesis of dihydrosphingosine

Following sphinganine formation, metabolic differences are encountered. While in fungi and higher plants sphinganine is hydroxylated to phytosphingosine then acylated to produce phytoceramide, in animal cells sphinganine is acylated to dihydroceramide which is later desaturated to form ceramide (Figure 1-13).²⁹

Figure 1-13: Sphinganine metabolism in different species
Ceramide (or phytoceramide), the simplest sphingolipid, is then transported from the ER to the Golgi apparatus where further synthesis of complex sphingolipids takes place. Ceramide can be phosphorylated by ceramide kinase, glycosylated by glucosyl or galactosyl ceramide synthases or acquires a variety of neutral or charged head groups to form various complex sphingolipids depending on the host organism. For example, in animal cells ceramide is a substrate mainly for sphingomyelin synthase (SMS 1 & 2) to produce sphingomyelin. In contrast, fungi and higher plants utilise phytoceramide to produce inositol phosphorylceramide (IPC) as their principal complex sphingolipid, a reaction catalysed by IPC synthase. IPC is later used to produce more complex phosphosphingolipids (PSLs) (e.g. glycosylated PSLs in plants and mannose-IPC (MIPC) in yeast). Finally, *Kinetoplastidae* represent a distinct third group in which ceramide acquires a phosphorylinositol head group to produce IPC (Figure 1-14).

Figure 1-14: Divergence in the post-ceramides biosynthetic steps.
It is noteworthy that although phosphoinositol-containing sphingolipids are completely absent from mammalian cells, the ceramide component of the *Kinetoplastidae* IPC shows more similarity to its mammalian counterpart, sphingomyelin. Notably, it contains a sphingosine base and (C16-C18) fatty acid moieties as opposed to the fungal IPC which has a phytosphingosine backbone attached to a very long chain (C26) fatty acid group (Figure 1-9). These unique structural features indicate that the *Kinetoplastidae* IPC represents a stand-alone class of sphingolipids which is an intermediate between fungal and mammalian counterparts.

1.2.5.2 Recycling, Salvage and Degradation

In addition to the *de novo* synthesis, cellular levels of sphingolipids are modulated by the recycling/salvage and degradation pathways. These pathways operate in the direction of ceramide regeneration from complex sphingolipid reservoirs (GSLs and SMs) through the action of specific hydrolases. Based on the subcellular localisation, sphingolipid recycling can be categorised into two pathways: lysosomal and non-lysosomal degradation.

In lysosomal degradation, breakdown of GSLs occurs as sugar residues are cleaved leading to the formation of glucosylceramide and galactosylceramide. In turn, specific β-glucosidases and galactosidases hydrolyse these lipids to regenerate ceramide which is then deacylated by an acid ceramidase to form sphingosine. In non-lysosomal degradation, breakdown of SM takes place. This is catalysed by acid, neutral or alkaline sphingomyelinases (SMases) according to the cellular localisation releasing ceramide. Additionally, SM can be degraded in extracellular membranes as in lipoproteins. In all cases, the released ceramide can be either recycled into sphingolipid synthesis or degraded to sphingosine.

The resultant sphingosine, produced from either pathway, is either recycled into sphingolipid biosynthesis or phosphorylated by a cytosolic sphingosine kinase (SK) yielding sphingosine-1-phosphate (S1P). S1P can itself be dephosphorylated back to sphingosine or irreversibly degraded by S1P lyase into non-sphingolipid molecules, ethanolamine phosphate (P-EtN) and hexadecenal, representing a unique exit point from the sphingolipid metabolic pathway (Figure 1-11).
1.2.6 Biological Significance

Sphingolipids play two major interconnected roles within the cell. They are ubiquitous and essential structural components of eukaryotic membranes37 as well as some prokaryotic organisms and viruses13. They are found predominantly in the outer leaflet of the plasma membrane,16 the lumen of intracellular organelles28,35 and lipoproteins.13 Additionally, sphingolipids are bioactive signalling molecules that control a plethora of cellular events. It is noteworthy that some sphingolipid metabolites can exhibit both structural and signalling functionalities. For example, glycosphingolipids have been reported to be involved in cellular recognition complexes (e.g. blood group antigens), cell adhesion and regulation of cell growth.16

1.2.6.1 Sphingolipids as Structural Components

The unique features of the molecular structure of sphingolipids comprising the free C3-hydroxyl group, the amide functionality (amine group in non-acylated sphingoid bases) and the C4-C5 \textit{trans} double bond notably affect the biophysical properties of both simple sphingoid bases and complex sphingolipids. Comparative studies have reported how the interfacial regions of sphingomyelin (SM) and its phospholipid analogue, phosphatidycholine (PC), differ significantly from each other.45-46 In SM the amide nitrogen and the C3-hydroxyl groups could act as hydrogen bond donors and acceptors whereas the amide carbonyl could act as hydrogen acceptor. However, in PC, the two ester carbonyls could only function as hydrogen bond acceptors (Figure 1-15).47-48

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure_1-15.png}
\caption{Molecular differences between SM and PC}
\end{figure}
These interfacial differences give SM the unique ability to form both intra- and intermolecular hydrogen bonding. SM spectroscopic studies have revealed a strong intramolecular hydrogen bond between the C3- hydroxyl and the bridging phosphate ester C1-oxygen. Such a hydrogen bond is unique for the naturally occurring diastereomer of SM.49 Furthermore, the \textit{trans} double bond seems to affect the strength of the hydrogen bonding interactions. For example, weaker intramolecular, but stronger intermolecular hydrogen bonds are formed in dihydrosphingomyelin assemblies compared to SM.46

These molecular features explain the tendency of sphingolipids to cluster rather than behave like typical “fluid” membrane lipids. In general, naturally occurring sphingolipids undergo the L_β (gel phase) to L_α (lamellar phase) transition near the physiological temperature of 37 °C while this transition for naturally occurring phospholipids is near or below 0 °C. In addition, the long saturated alkyl chains of sphingolipids allow them to pack tightly with sterols.50 Current knowledge suggests that the interaction between cholesterol and SM is stabilised by hydrogen bonding attributed to the amide functionality.46 Analogous results have been reported with the SM fungal/plant counterpart, IPC, where it was shown that IPC was able to form sterol containing ordered domains in model systems.50

These findings combined support the hypothesis regarding how sphingolipids interact with sterols to form laterally compact hydrophobic micro-domains known as ‘rafts’.51 These domains can readily segregate from the more disordered and expanded domains of unsaturated acyl chains of phospholipids.13 Membrane rafts have been proposed to function in a diverse array of processes from polarised trafficking of lipid modified proteins52 and the stabilisation of other types of biological structures such as lamellar bodies, to the assembly and activation of signal transduction complexes.13, 27, 53-55

In a similar fashion, glycosphingolipids (GSLs) have the opportunity to form an extensive hydrogen-bonding network in the head group region. Therefore they form detergent-insoluble gel-phase domains46 that have been implicated during the formation of ‘caveolae’.13
1.2.6.2 Sphingolipid as Biological Signalling Agents

Although sphingolipids are hydrophobic molecules and subject to subcellular localisation and a specialised transport system, their chemical structures provide the biophysical properties needed for their functions as bioactive signalling molecules. For example, the low pK_a (7 ~ 8) of sphingosine allows it to remain partially uncharged at physiological pH retaining the ability to move across membranes.13 Likewise, ceramide, a neutral species, is able to freely flip flop across membranes.27

Sphingolipids represent an important group of bioactive molecules with a complex network of cell signalling effects. Sphingosine has been first identified to exert pleiotropic effects on protein kinases. Also, several sphingolipid metabolites have been reported to affect many cellular processes. For example, ceramide mediates many cell-stress responses, including the regulation of apoptosis,35 whilst sphingosine-1-phosphate (S1P) has crucial roles in cell survival, cell migration and inflammation.27

However, the investigation and deciphering of the functions of each specific sphingolipid remains challenging. This is due to the complexity in sphingolipid metabolic interconnection, their varied biophysical properties (neutral or charged), the hydrophobic nature of the involved enzymes and the presence of multiple pathways that can operate in parallel.27 The interaction with other cellular metabolic pathways (e.g. phospholipid metabolism) introduces another layer of complexity.

Overall, the signalling effect of an individual sphingolipid could be defined as a three dimensional function in terms of subcellular localisation, regulation and mechanism of action. For example, phosphorylation of 1~3 % cytosolic sphingosine may double the levels of S1P that acts on G protein-coupled receptor (GPCR) to elicit a specific response.27 Such signalling event can be described as a function of cytosolic S1P that is regulated by S1P Kinase and works through interaction of S1P with a GPCR. The description of such complex systems remains challenging and a comprehensive discussion of the issue is beyond the scope of this thesis.
1.2.6.3 Defects in sphingolipids metabolism: the Sphingolipidoses

The sphingolipidoses comprise a group of inherited metabolic disorders, e.g. hereditary sensory neuropathy type I, neointimal hyperplasia and colon tumorigenesis, in which a mutation of one of the lipid hydrolases or activator proteins blocks sphingolipid degradation. They are characterized by pathological accumulations of specific lipids in organs and tissues affecting primarily the central nervous system. Most of these diseases are fatal in the first few years of life. However, there are two conditions (Gaucher's Type I and Fabry's diseases) which affects the systemic organs but not the central nervous system and result in longer life spans (Figure 1-16).

![Diagram of mammalian (glyco) sphingolipid catabolism](image)

Figure 1-16: Overview of mammalian (glyco) sphingolipid catabolism. The enzyme/glycosidases and activator proteins responsible are indicated at the glycosidic linkage. The associated sphingolipidose that is manifested by an enzyme defect is also shown. (Reprinted from Ref. 59 with permissions)
1.2.7 Sphingolipid Biosynthesis: An Attractive Drug Target

The essential functions of sphingolipids coupled with the divergence in their biosynthetic pathways between mammals and pathogens have resulted in investigation of the biosynthetic enzymes as possible drug targets. Consequently, a list of inhibitors with enzyme targets spanning all the steps of sphingolipid biosynthesis has been described.13, 35

The sphingolipid biosynthetic pathway is almost conserved until the synthesis of ceramide. Therefore, all the inhibitors that target the fungal enzymes before the ceramide step failed in drug development because of potential host toxicity as absolute selectivity has not been attainable (e.g. Fumonisins which inhibit phytoceramide synthase cause toxic effects in animals).35 In contrast, the post-ceramide divergence represented by the absence of inositol-based sphingolipids from mammalian cells and the fact that IPC synthase has no mammalian equivalent highlights the therapeutic potential of putative inhibitors targeting the fungal IPC synthase(s). Such inhibitors could result in selective anti-fungal drugs with minimised host toxicity. Additionally, the recent identification and isolation of the functional orthologues of the fungal IPC synthase in the TriTryp genome (\textit{Leishmania major}, \textit{Trypanosoma brucei} and \textit{Trypanosoma cruzi}) carried out by Denny \textit{et al.}37 has expanded the clinical prospects of IPC synthase(s) as potential anti-parasitic drug targets (\textit{vide infra} 1.5 Project Objectives and Work Strategy).

To date, only three molecules, aureobasidin A,60-62 khafrefungin63 and rustmicin64-65 (Figure 1-17), have been reported as potent inhibitors against the fungal IPC synthase.13, 35, 66 Further extensions of their inhibitory effect to include the \textit{Kinetoplastidae} orthologues have been shown.37, 67-68 Unfortunately, further development of all the three known inhibitors of IPC synthase have stalled either due to lack of physical properties required for an acceptable pharmacokinetic profile (e.g. aureobasidin A is very sparingly soluble in water)35, 66 or their highly complex chemical structures that render chemical synthesis challenging. Moreover, the few synthetic efforts reported that aimed to modify or synthesise analogues resulted in compounds with either reduced or no activity.66, 69
Figure 1-17: Inositol phosphorylceramide synthase inhibitors
1.3 Kinetoplastidae: *Leishmania spp.* and *Trypanosoma brucei*

Kinetoplastids are an important group of protozoan parasites. They are characterised by the presence of an internal structure containing an extensive mitochondrial DNA, termed the kinetoplast. *Trypanosomatids*, a subgroup of *Kinetoplastids*, have characteristic elongated to very slender single-flagellated cells.

Leishmania spp. (causative agent of Leishmaniasis) and *T. brucei* (causative agent of Human African Trypanosomiasis, HAT) belong to the family *Trypanosomatidae* (Figure 1-19). They are widespread vector-borne parasites causing a combined disease burden over 3.5 million Disability Adjusted Life Years. Conversely, the prevention measures (e.g. residual spraying of insecticides) proved effective against Chagas’ disease caused by the closely related *T. cruzi* and the disease threat is retreating. In 2004, Leishmaniasis and HAT have been ranked Category ‘1’ - Emerging and Uncontrolled Diseases - by the WHO (Table 1-1).70

![Figure 1-18: Leishmania parasite. (http://www.google.com/ > image > Leishmania)](http://www.google.com/ > image > Leishmania)

![Figure 1-19: Taxonomy of Kinetoplastida](http://www.google.com/ > image > Leishmania)
Table 1-1: Kinetoplastids Diseases Portfolio

<table>
<thead>
<tr>
<th>TDR disease category</th>
<th>Disease burden DALYs* (x1000)</th>
<th>Deaths (x1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Male</td>
</tr>
<tr>
<td>African trypanosomiasis</td>
<td>1</td>
<td>1,525</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>1</td>
<td>2,090</td>
</tr>
<tr>
<td>Chagas disease</td>
<td>3</td>
<td>667</td>
</tr>
</tbody>
</table>

* Disability Adjusted Life Years (the number of healthy years of life lost due to premature death and disability)

1.3.1 *Leishmania* spp. and the Leishmaniases

1.3.1.1 Introduction

Leishmania spp. comprise at least 16 widespread species and subspecies causing the Leishmaniasis complex in 88 countries over the five continents (Figure 1-20). It is one of the so-called ‘neglected’ diseases, i.e. low profile and status in public health priorities. Leishmania is transmitted to mammals, including humans, by phlebotomine sandflies (Figure 1-21). However, vertical (transplacental) transmission, venereal transmission, and even rare cases of direct horizontal transmission between dogs have been documented.

![Figure 1-20: The Geographical distribution of Leishmaniasis worldwide. CL, Cutaneous Leishmaniasis; VL, Visceral Leishmaniasis. (www.who.org, 2007)](image-url)
The Leishmaniases are characterised by a spectrum of clinical manifestations: ulcerative skin lesions developing at the site of the sandfly bite (localised cutaneous leishmaniasis [LCL]); multiple non-ulcerative nodules (diffuse cutaneous leishmaniasis [DCL]); destructive mucosal inflammation (mucosal leishmaniasis ML); and disseminated visceral infection (visceral leishmaniasis VL). This last form is by far the most deadly reason which, if untreated, becomes lethal usually within several months. Although most cases of CL heal spontaneously leaving the person immune to further infection, other forms of Leishmaniasis are extremely difficult to treat particularly in immune-compromised patients.

1.3.1.2 Available treatment

Whilst leishmania infections can be prevented by avoidance of sandflies bites through use of repellents or insecticides, vector and reservoir host control measures are expensive, requiring good infrastructure and maintenance and often give results which are short-lived. Consequently, drugs represent a more viable solution.

There are a number of existing chemotherapies that have been used for decades. Treatment often requires a long course of intravenous pentavalent antimony drugs (e.g. Glucantime and
Pentostam), aminosidine or liposomal amphotericin B (Figure 1-22). The most recent addition was in 2002 when Miltefosine, originally developed as anti-neoplastic agent, exhibited good efficacy against visceral Leishmaniasis in vitro and, with oral administration, in animals. Despite its teratogenic effects, due to the lack of effective medications, it has been registered and is now used in India, Colombia, Guatemala and Germany.

Figure 1-22: The commonly used anti-leishmanial therapeutic agents

Other regimens of treatment include pentamidin, paromomycin, allopurinol, dapsone, fluconazole, itraconazole and ketoconazole. However, to-date all available chemotherapeutic agents suffer from being toxic or inaccessible, both geographically and financially, in endemic areas where public health is under-resourced, poor and underdeveloped.

Overall, the lack of effective vaccines and the alarming emergence of resistance to these drugs demand an intensive search for alternative anti-leishmanials to enable effective treatment and control. Therefore, the discovery of the LmjIPCS by Denny et al., represents a promising lead for drug targets against Leishmaniasis.
1.3.2 Trypanosoma brucei spp. and HAT

1.3.2.1 Introduction

T. brucei spp. are the causative agent of HAT, commonly known as African sleeping sickness. Like the leishmaniases, it is a vector-borne parasitic disease transmitted to humans by the tsetse fly (*Glossina* Genus) bites. It can also be transmitted transplacental, by mechanical transmission and via contaminated needles. In 2000 WHO estimated HAT to threaten 50 to 60 million people in 36 countries of sub-Saharan Africa (Figure 1-23), mainly in rural areas where health systems are weak or non-existent. By 2007, WHO surveillance policies had been reinforced and the number of reported new cases per year fell to 10,000.

![Map of Africa with color-coded areas indicating cases of HAT](http://www.who.int/trypanosomiasis_african/disease/en/index.html)

HAT takes two forms, depending on the parasite involved; *Trypanosoma brucei gambiense* (*T.b.g.*) is prevalent in west and central Africa (> 90% of reported cases); the disease is chronic, generally lasting several years. *Trypanosoma brucei rhodesiense* (*T.b.r.*) is found in eastern and southern Africa (< 10% of reported cases); the disease is acute, lasting from a few weeks to several months. However, in both cases without proper diagnosis and treatment the outcome is death without any major signs or symptoms.
HAT has two stages; the first stage (haemolymphatic phase) entails bouts of fever, headaches, joint pains and itching while the second stage (neurological phase) begins once parasite crosses the blood-brain barrier and invades the central nervous system causing disturbed sleep patterns, coma and eventual death.

1.3.2.2 Available treatment

Generally, treatment depends on the stage of the disease. In the first stage, the drugs used are less toxic, easier to administer and more effective. Treatment in the second stage requires a drug that can cross the blood-brain barrier. Such drugs are considerably toxic and complicated to administer. Currently, four drugs are registered for HAT treatment and are provided free of charge to endemic countries through a WHO private partnership with Sanofi-Aventis (pentamidine, melarsoprol and eflornithine) and Bayer AG (suramin) (Figure 1-24).

![Chemical structures of the commonly used anti-HAT therapeutic agents](image)

Figure 1-24: The commonly used anti-HAT therapeutic agents

Unfortunately, they all exhibit a broad range of adverse side-effects including death. Moreover, treatment regimens are usually highly restrictive particularly in the 2nd stage of the disease requiring hospital based I.V. treatment with continuous monitoring. Additionally, emerging drug resistance is an alarming problem.
1.3.3 Putative Drug Targets against Leishmaniasis and HAT

The current treatments for Leishmaniasis and HAT were developed many decades ago, and are often ineffective against resistant strains and/or possess toxic side effects. Thus, there has been an increasing demand for the identification of exploitable macromolecular targets for therapeutic development. Reflecting this, numerous pathways have attracted the attention as possible drug targets such as phosphorylation in kinase pathways and lipidation (e.g. farnesyltransferase and N-myristoltransferase). Other proposed drug targets include tubulin, DNA topoisomerases, glucose and purine transporters and pyrimidine pathway in Leishmania, sterol biosynthesis (e.g. squalene synthase, SQS), histone deacetylases, glycolconjugates (e.g. Variant Surface Glycoprotein, VSG, in T. brucei) and kinetoplast DNA (kDNA) in general. However, none of these researches have paid off yet.
1.4 The Kinetoplastid IPC Synthase(s): a Novel Drug Target

1.4.1 Identification and isolation

Precedent research reported that while *L. major*, *T. cruzi* parasites produce IPC as their principal complex sphingolipid, *T. brucei* parasite produces both IPC and SM. However, the enzymes responsible for such enigmatic functionality had not been isolated. In an attempt to identify this group of enzymes, Denny screened the genome sequence databases of *L. major* (Sanger GeneDB) using a conserved motif shared by the lipid phosphate phosphatase (LPP) family, fungal AUR1p proteins, and animal sphingolipid synthases. The screen resulted in the identification of eight candidates, one of which (*LmjIPCS, LmjF35.4990*) encoded a putative transmembrane protein of unknown function with no orthologue in mammalian cells.

Additionally, orthologues of *LmjIPCS* were found through a BLAST search of the *T. brucei* (4 sequences provisionally designated *TbSLS1–4*) and *T. cruzi* (2 sequences provisionally designated *TcIPCS1* and *TcIPCS2*) databases suggesting that the IPC synthase is a ubiquitous feature of this group of flagellated parasites. The *TcIPCS1 & 2* exhibited 52–53 % sequence identity and 69–70 % similarity with *LmjIPCS* while *TbSLS1–4* exhibited 43–44 % identity and 61–63 % similarity with *LmjIPCS*. Subsequent phylogenetic analyses of the kinetoplastid AUR1p orthologues identified them as a new separate class of eukaryotic phosphosphingolipid synthases (Figure 1-25).
1.4.2 The Hypothetical Reaction Mechanism

All the identified kinetoplastid AUR1p orthologues demonstrated two conserved regions (CGDX₃SGHT & HYTDVX₃YX₄FX₃YH) with respect to the animal SM synthases and LPP. Similar observations were found for the fungal orthologue AUR1p. These regions contain the so-called the catalytic triad (two Histidines and one Aspartate residues) that mediates nucleophilic attack on lipid phosphate ester during the transferase/hydrolase activity (Figure 1-26). Additionally, mutagenesis of this triad has been shown to deactivate the fungal IPC synthase and mammalian SMS activity. However, the exact mechanisms of the catalytic action of these enzymes whether it is a sequential binding or a double displacement remain unknown.
1.4.3 The Biological Significance of IPC Synthases

In this biosynthetic step, the IPC synthase(s) (LmjIPCS in *L. major* and TbSLSs in *T. brucei*) catalyse(s) the analogous reaction mediated by SM synthase in mammalian cells. These evolutionarily divergent enzymes are both central in controlling a delicate balance of an intersection point between phosphoglycerolipids (PI in and DAG out) on one hand and phosphosphingolipids (PSLs) (ceramide in and IPC/SM out) on the other hand. Such control has significance as a regulator of the pro-apoptotic marker, ceramide and the mitogenic factor, DAG, a second messenger signalling molecule. Accumulation of ceramide has been shown to induce programmed-cell death, apoptosis; an effect observed in the fungicidal activity of IPC synthase inhibitors which is an analogous effect to the apoptotic ceramide role in mammalian cells. In addition to the mitogenic function, DAG has been attributed to play a role in several enzymatic activation and regulatory functions.
1.4.4 *L. major* IPC Synthase

LmjIPCS is encoded by a single-copy gene in *L. major*\(^{37}\) and consists of 338 amino acids with MW of approximately 38 kDa (Figure 1-27). The active residues of the ‘Catalytic Triad’ have been identified by homology alignment and were proposed to be His264, Asp268 and His220. His264 is assumed to attack the electrophilic phosphorus in PI while the Asp268 is believed to act as a proton shuttle to facilitate such attack.\(^{91}\) However, the definite function of His220 remains unclear.

Figure 1-27: The Protein Sequence of *LmjIPCS*. The Catalytic Triad is underlined

1 MTSHVTADHV GGNEDIGTDH VFWYKQPLPL CTQVMRFILL LLLTVFLGAVAILVANARMF
61 DPEKVRPLPD LLLESIPKVA LLLENIVII DILLANNIVFV GFKVFLERHHMNGLPRVTFL
121 VGVFKIGSFL NRMAFGLDSEKRFPFLKNV FPPMAIRFLL SYAVMVFRAFVIMGTSYPA
181 TDNHCQNPQV IEHPVLNVIL TLVLGSGAIL HCGDLMFSGHE TCILSLAFIL AWQYSPFILHP
241 WAVRUVWSVL LPISYICILA SRSHYDIL VAMYVMIATN KVIDHAETGAPWQMQLLLIRW
301 MPWFGANTEKWTADERVVTVQPTPAEDSTDASAALPEH

1.4.5 Topologies Studies

The first proposed structure of *LmjIPCS* was introduced by *Denny et al.* and assumed that it consists of seven TMDs with the catalytic site facing the lumen of the Golgi apparatus, However, *Denny’s* model lacked D2 motif present in orthologous enzymes in mammals (Figure 1-28: Panel A). A recent study by *Bangs’ group*,\(^{92}\) introduced a different model. The early model was based on single sequence analysis of *LmjIPCS* resulting in an extra helix (TMx, ~11 residues) between TM3 and TM4 and inversion of the upstream TM1–3 orientation to preserve the lumenal positioning of the active-site in TM4 and TM6 while the recent model was produced using comparative alignment of single orthologous sequences from three kinetoplastid species, *Bang* discounted the TMx and claimed the presence of the conserved SM synthase D2 motif located in TM3 (Figure 1-28: Panel B).\(^{87, 89}\) However, to-date, experimental evidence to support either model is still lacking.
1.4.6 Sensitivity studies and drug target validation

Previous work within the group37 involved the expression of the functional protozoan orthologue (\textit{LmjIPCS}) in a mutant yeast strain. Although the \textit{LmjIPCS} complemented yeast strain remained as sensitive to cycloheximide and myriocin as wild type yeast, it was resistant to aureobasidin A at 25 µM (\textit{AbA MIC} against \textit{S. cerevisiae} is approximately 0.1 ~ 0.4 µg/ml).66,93 However, at \textit{AbA} concentration equal to 100 µM, inhibition of \textit{LmjIPCS} was apparent. Similarly, recent results have been reported by Tanaka \textit{et al.}67 confirmed the inhibitory effect of aureobasidin A on other leishmania species (e.g. \textit{L. L. amazonensis}).
1.5 Project Objectives and Work strategy

With the AUR1p kinetoplastid orthologues, LmjIPCS and TbSLS4 have been isolated and identified, the next step was to characterise such enzymes so that their potential as putative drug targets can be further explored. The project primarily focuses on the characterisation of the LmjIPCS with consideration of the possibility of expanding the techniques developed to the closely related TbSLSs with an ultimate objective of exploiting their potential as a valid anti-protozoan drug targets. This project followed a logical set of objectives. Starting from the establishment of an *in vitro* activity assay protocol to the implementation of the assay in the determination of the kinetic parameters of LmjIPCS and finally screening of a library of substrate mimics and custom drug-like molecules to generate a preliminary SAR data. The SAR data would provide a rationale for future work involving the synthesis of second generation library of inhibitors with a long-term objective for identifying drug-like inhibitor that can be upgraded to drug candidates suitable for clinical trials (Figure 1-29).

![Diagram of project objectives and work strategy](image-url)
REFERENCES

CHAPTER I: INTRODUCTION

C. o. V. M. Diseases

P. A. Aeed, C. L. Young, M. M. Nagiec and A. P. Elhammer,

C. o. V. M. Center for Food Security and Public Health and A. Iowa State University, Iowa 50011, *Leishmaniasis (cutaneous and visceral)*, cfsph@iastate.edu, http://www.cfsph.iastate.edu.
CHAPTER II

CHARACTERISATION OF LmjIPCS
2 CHARACTERISATION OF *LmjIPCS*

2.1 Work Synopsis

This chapter describes work towards two major objectives of this project (Figure 2-30). The first objective focused on the establishment of an activity assay protocol for the *LmjIPCS*. The requirements of the assay protocol included ease of accessibility, cost efficiency and providing a robust platform valid for high-throughput screening and amenable to scale-up and automation. The second objective comprised the determination of the kinetic parameters of *LmjIPCS* using the established assay protocol. Once these objectives had been accomplished, a further objective was the application of these techniques established to other orthologous enzymes. This aspect will be further elaborated in Chapters III.

![Figure 2-30: Work Strategy towards the set objectives](image-url)
2.1 Establishment of an *in-vitro* Activity Assay

2.1.1 Construction of the *Lmj*IPCS complemented Mutant Yeast Strain

Given the objective of developing an *in-vitro* assay, an efficient method to produce the *Lmj*IPCS protein was required. This was simply achieved by construction of a mutant yeast strain as described in Denny *et al.*\(^1\) Briefly, an auxotrophic *YPH499-HIS-GAL-AUR1* *S. cerevisiae* strain was constructed in *YPH499* (*Mat a; ura3-52; lys2-801amber; ade2-101ochre; trp1-63; his3-200; leu2-1*) by bringing the expression of the native yeast *AUR1* gene under the control of the stringently regulated *GAL1* promoter that is repressed in the presence of glucose. The *AUR1* promoter in the yeast genome was exchanged by a selection marker/promoter *HIS/GAL1* cassette. Subsequent transformation into the haploid *YPH499* strain, selection on minimal medium lacking histidine but containing galactose, and confirmation of the insertion of the *HIS-GAL* fragment were performed. Additionally, the *Leishmania* candidate coding sequence (*LmjF35.4990*) and the *AUR1* sequence were amplified from genomic DNA and cloned into the yeast expression vectors p426MET25 (see Appendix A) creating p426MET25-*Lmj*IPCS and p426MET25-*Sc*IPCS (*AUR1*) respectively.

The auxotrophic *YPH499-HIS-GAL-AUR1* *S. cerevisiae* strain and the vectors p426MET25, p426MET25-*Lmj*IPCS and p426MET25-*Sc*IPCS (*AUR1*) were obtained from Dr. Denny. These were used in the transformation of the *YPH499-HIS-GAL-AUR1* *S. cerevisiae* strain. Functionally complemented transformants were selected on non-permissive SD medium (0.17 % Bacto yeast nitrogen base, 0.5 % ammonium sulphate, and 2 % dextrose) containing the nutritional supplements necessary to allow selection of transformants (Figure 2-31).

![Figure 2-31: Transformation of *YPH499-HIS-GAL-AUR1* *S. cerevisiae* with p426MET25 (Control), p426MET25-*Lmj*IPCS and p426MET25-*Sc*IPCS (*AUR1*). WT: *YPH499*](image)
2.1.2 Preparation of the Microsomal Membranes Fraction

2.1.2.1 Preparation of Crude microsomal membranes

Having generated a complemented yeast strain, the next objective was the preparation of a microsomal membrane fraction enriched in LmjIPCS suitable to conduct the proposed mechanistic studies and compound screening. Following a standard protocol reported by Fischl et al. for the preparation of IPC synthase from S. cerevisiae, the isolated yield of crude LmjIPCS microsomal membranes was considerably low, approximately 0.12 % of wet cell mass (WCM) compared to a yield of approximately 1.13 % of WCM (S. cerevisiae WT) reported previously.

In spite of the different nature of the two strains and the fact that the LmjIPCS complemented yeast grows slower than wild type or ScAUR1 complemented yeast cells, a 100 fold reduced yield indicated a defect in the preparation protocol. This was likely attributed to the efficacy of the disruption/extraction step which was believed to have a critical effect on the yield of isolated microsomal membranes. Three variables were considered; the amount of glass beads, the volume of STE buffer and the number of vortex disruption cycles.

To test the effect of such variables on enhancing the isolated yield of microsomal membranes, the disruption/extraction process was modified. It was split into two steps. In step ‘1’, the number of vortex mixing cycles was increased to 20 cycles (each included 1 minute vortex mixing and 1 minute rest on ice) using a larger volume of extraction buffer (approximately 1½ WCM ml) and (approximately 1½ WCM gm) of glass beads. This was followed by centrifugation (1500 × g, 4 °C and 10 min) and decantation of supernatant. In step ‘2’, fresh STE buffer (approximately ½ WCM ml) was added followed by vortex mixing for additional 10 cycles, centrifugation and decantation of supernatant. The combined supernatants were further treated exactly as the literature protocol. The modified protocol resulted in an approximately 100 fold enhancement of the yield of crude LmjIPCS microsomal membranes fraction.
2.1.2.2 Activity Assay of the Crude Microsomal Membranes

With an efficient preparation of the crude microsomal membranes achieved, the focus then moved to test and to quantify its content in terms of the LmjIPCS transferase activity. Preliminary activity assays following Figueiredo et al.³ using the crude microsomal membranes exhibited high level of endogenous activity (> 25% in terms of the donor substrate, PI, Figure 2-32). This was expected as it had been previously reported that PI accounts for approximately 20% of the phospholipid content in S. cerevisiae Golgi membranes.⁴

![Endogenous activity in crude LmjIPCS microsomal membranes](image)

Figure 2-32: Endogenous activity in crude LmjIPCS microsomal membranes

Although Figueiredo has reported the use of a crude microsomal fraction in the activity assay of the closely related enzyme T. cruzi IPC synthase, the protocol required the use of very high concentrations of added substrates to minimise background interference. Additional control experiments were needed to account for the endogenous activity. This procedure cannot overcome the limited dependence of the assay on the added (exogenous) PI particularly at low concentrations rendering the assay reproducibility problematic.

Similar observations regarding the background interference due to the endogenous activity were reported by Aeed et al.⁴ for microsomal membranes prepared from C. albicans. Aeed reported the necessity of using detergents to deplete the microsomal membranes of endogenous...
PI so that accurate kinetic measurements would be possible. After investigating the effect of 26 different membrane-perturbing agents on the activity and phase distribution of *C. albicans* IPC synthase activity in crude membranes, Aeed concluded that while non-ionic detergents (e.g. Triton X-100), the conventional zwitterionic detergents (e.g. Empigen BB), lysophospholipids and the sterol-containing agent, digitonin, caused drastic if not complete loss of enzyme activity while the zwitterionic sterol-based detergents such CHAPS, CHAPSO and taurodeoxycholate (tDOC) could efficiently solubilise the enzyme with minimal deterioration of activity. They stated that washing the membranes with 2.5 % CHAPS, approximately 50 % of the protein and 80 % of the phospholipids content were solubilised with no detectable loss of enzyme activity. Additionally, whilst subjecting the membranes to a second CHAPS-wash had a limited enhancement of the specific activity, a third wash had no value-add in the washing efficacy but resulted in noticeable loss in specific activity. Using such refined (washed) microsomal membranes, Aeed was able to demonstrate a considerable improvement in the assay reproducibility by reducing the background noise due to the endogenous activity rendering the assay to be 100 % dependent on added acceptor substrate analogue (NBD-C₆-Ceramide) and greater than 95 % dependent on added donor substrate (PI). Based on this precedent work, the crude *Lmj*IPCS microsomal membranes were considered unsuitable for mechanistic studies and that further purification was needed. Consequently, their use was limited to preliminary and qualitative experiments.

2.1.2.3 Preparation of Refined Microsomal Membranes

Following the protocol developed by Aeed *et al.*, the *Lmj*IPCS crude microsomal membranes were washed with 2.5 % CHAPS (1:1 detergent : protein). The CHAPS washed membranes maintained enzyme activity and exhibited more than a two fold increase in specific activity with minimised background noise. Comparison between crude and washed membranes in preliminary assays indicated that using washed membranes rendered the assay to be 100 % dependent on added NBD-C₆-ceramide and ≥ 90 % dependent on added PI (Figure 33).
CHAPTER II: CHARACTERISATION OF *Lmj*IPCS

1 µg from crude/washed microsomal preps were used per assay in the presence of 1 µM added donor substrate (PI).

Figure 33: (A) Background noise in crude and CHAPS-washed membranes (B) Specific Activity of crude and CHAPS-washed membranes

This enhancement of the membranes performance can be attributed to the removal of most of the native PI content of the membranes along with low molecular weight and/or peripheral proteins. However, in contrast to Aeed’s observations with *C. albicans* IPCS microsomal membranes, a second wash of the *Lmj*IPCS membranes resulted in drastic loss of protein content (> 90 %) in sedimentable pellet and complete deactivation of the enzyme. Consequently, further mechanistic and screening experiments were conducted using simply CHAPS-washed membranes.

Although, the CHAPS-washing enhanced the quality of the prepared membranes, the refined microsomal membranes exhibited considerable variation between different batches with the reduction in total protein content ranging from 86 % to 98 %. This subsequently caused fluctuation in the specific activity of the refined microsomal membranes. The inconsistent efficacy of the washing step could be attributed to several possible factors. For example, the uneven chemical composition of the crude microsomal membrane fractions arising from inevitable differences in the growth phase of the mutant yeast when harvested. Also, experimental errors in the protein quantification prior to CHAPS-washing could have crucial effect on the critical ratio of protein:CHAPS that would affect the washing efficacy and reproducibility. Such errors could also arise due to the presence of interfering compounds (e.g. storage buffer, STE buffer, protease inhibitors and the endogenous phospholipid content) and the
trans-membrane nature of the \textit{Lmj}IPCS. Additionally, this could be due differences in the molar fraction of \textit{Lmj}IPCS in the sedimeted membranes pellet or that \textit{Lmj}IPCS could exist in a deactivated form as a result of excessive de-lipidation during CHAPS-washing.

This variation in the specific activity of the refined membranes rendered the expression of \textit{Lmj}IPCS content in terms of a definitive mg/ml concentration to be subjective and preparation dependent. Moreover, direct correlation between results generated using different batches of microsomal membranes would not be possible. The kinetic parameters presented in this work were produced using two different preparations of \textit{Lmj}IPCS microsomal membranes (4.26 mg/ml, specific activity = 2.33 \textit{pico}kat/ml and 3.1 mg/ml, specific activity = 3.11 \textit{pico}kat/ml). Subsequently, to standardise the assay material, samples were normalized with respect to active enzyme content thereby removing variability in sample preparation and ensuring consistency across experiments.

Although the standardised unit for enzymatic activity is the katal6 where 1 kat = 1 mol(product).s−1, the use of the enzyme unit (U)2, 5 is more conventional. Consequently, for the range of substrates concentrations used in the work presented here, a more practical value was the enzyme unit (U) where, “\textit{One unit is the amount of enzyme that catalyses the formation of 1 picoMol of product per minute under specified conditions}” where 1 U corresponds to 16.67 femtokats.7 Subsequently, for every batch of prepared refined membranes, acetone pre-precipitated protein content was determined according to Bradford8 followed by generating an activity vs. protein concentration curve to determine the specific activity for such batch as U.mg−1. Batch concentration was calculated as U/µl and aliquots were stored at −80 °C until use. Additionally, the reaction rate \(v \) and \(V_{\text{max}} \) were expressed in terms of pMol.min−1.U−1.

2.1.3 Establishment of \textit{Lmj}IPCS Assay Conditions

Having prepared the \textit{Lmj}IPCS microsomal membranes in a refined form suitable for accurate and reproducible results, attention turned to the establishment of the conditions of the activity assay in terms of temperature, time, pH and protein concentration. To accomplish the task, a review for previously described IPC synthases activity assays was performed prior to selection of compatible protocols that would fulfil the set requirements.
2.1.3.1 Techniques of IPC Synthase Activity Assays

Several activity assays for IPC synthase had been previously reported. In general, those assays can be grouped into two categories, radioactive and fluorometric assays. These assays quantify the turnover of a radioactive substrate ([3H] ceramide/PI) or a fluorescent substrate analogue (NBD-C6-Ceramide or BODIPY FL-C5-Ceramide) to the corresponding product, IPC. In all cases, the product IPC, needs isolation and this has been achieved using a variety of different techniques such as solvent-phase separation, HPTLC, HPLC, affinity chromatography and anion exchange chromatography. A recent assay technique has been reported wherein a FRET-pair based quantification of the product that does not require product isolation has been employed.

Within this work, two protocols were used. The Tris/HCl/BSA/EDTA system reported by Figueiredo et al. was mainly employed for preliminary, small scale and qualitative assays while the K2HPO4/KH2PO4/CHAPS system reported by Aeed et al. was used in mechanistic and screening experiments due to the potential of it to be used in 96-wellplate format. The former would be referred to as ‘Protocol B’ while the later would be referred to as ‘Protocol A’. These protocols rely on the quantification of the turnover of the commercially available fluorescent substrate analogue, NBD-C6-ceramide, into NBD-C6-IPC (Figure 34).

Figure 34: The two LmjIPCS assay protocols utilised in this work
2.1.3.2 Activity vs. Variants of the Donor Substrate

While NBD-C₆-ceramide has been previously shown to act as an acceptor substrate for LmjIPCS,¹ there was still a need for the selection of a donor substrate variant (mammalian PI or soybean PI). In precedent work by Figueiredo, soybean PI has been used in the activity assays of the closely related TcIPCS.¹⁴ Therefore, following the same protocol, LmjIPCS activity was measured against different variants of PI (main species: mammalian PI (18:0/20:4), soybean PI (16:0/18:2) and synthetic PI (16:0/16:0)). While mammalian PI and plant PI were shown to act almost as equally as donor substrates, synthetic PI resulted in a marginal increase of activity relative to the blank (no exogenous PI added) (Figure 35). Consequently, further experiments were performed using the mammalian variant of PI.

![Figure 35: LmjIPCS activity vs. PI variants.](image-url)
2.1.3.3 Activity vs. Temperature

LmjIPCS activity was measured at different temperatures between 4 °C up to 37 °C. *LmjIPCS* exhibited the capacity to remain active over a broad range of temperatures, even at considerably low temperature (20 % activity at 4 °C). The optimum temperature was determined to be approximately 30 °C (Figure 36: A) with a sharp decline (~ 35 %) in activity from 30 °C to 33 °C. Given this and the fact that sand flies temperature would be close to their environment (tropical and subtropical region, 22~28 °C) and that mammalian host skin temperature would be in the range of 31~35 °C, the temperature profile of *LmjIPCS* exhibiting highest activity in the range 26~33 °C with a maximal activity at 30 °C is a reasonable observation.

![Figure 36: Activity vs. temperature Profile of (A) LmjIPCS and (B) TbSLS4](image)

This is different from the temperature profile of the closely related *TbSLS4* (*T. brucei* Sphingolipid Synthase) where the activity was maximal at 40 °C and decreased with a lowering of temperature till diminished activity at 4 °C (*Pan-ssu Ying*, MSc 2008, Durham University, Figure 36: B). Such differences can be explained by the fact that while *T. brucei* is a bloodstream protozoan that causes fever in infected patients, *L. major* protozoan spans its life cycle between the midgut of the invertebrate host (sandfly) and skin lesions in the mammalian host.
2.1.3.4 Activity vs. pH

To determine the optimum functional pH for *LmjIPCS*, a series of reactions were conducted using Tris/HCl buffer over a pH range from 4.1 up to 9.0. The pH profile of *LmjIPCS* revealed maximal activity at pH = 6 with asymmetric decline slopes at both sides of the maxima (Figure 37). While moving towards more acidic pH induced a slow decrease in activity, moving towards more alkaline pH resulted in a sharp reduction of the enzymatic activity. Similar observations have been previously reported with *TcIPCS* which also exhibited maximal activity at approx. pH = 6.

![Activity vs. pH Profile](http://www.scripps.edu/~cdputnam/protcalc.html)

Figure 37: Activity vs. pH Profile and the estimated protein charge as predicted by Protein Calculator (http://www.scripps.edu/~cdputnam/protcalc.html)

Such observations can be explained in the light of cellular physiology of the host organism. Although leishmania parasites alternate between the neutral-alkaline HCO$_3^-$ rich medium of the sandfly's midgut and the acidic environment of the mammalian macrophage lysosome,19 the intracellular pH (pH$_i$) of the parasites remains constant throughout their life cycle.18 The pH$_i$ is estimated to be approximately 6.72 but subject to slight changes in response to environmental factors.$^{18-21}$ An important factor to consider is the electrostatic nature of the enzyme. Although there is a lack of empirical data, submitting the protein sequence to Protein Calculator v3.3 (http://www.scripps.edu/~cdputnam/protcalc.html) predicted the pI = 6.65 and the total protein charge as presented in Figure 37. Clearly, there could be a correlation between the total protein
charge which will affect the ionisation constant of the catalytic triad and consequently the catalytic rate of the transferase activity.

Although the optimum pH was determined at approximately pH 6.0, further experiments were carried out at neutral pH 7.0 to facilitate product separation using the anion exchange micro-columns and to minimise any un-predicted ionisation of test compounds during the inhibitors screening process.

2.1.3.5 Activity vs. Time & Protein Concentration

With the optimum temperature and pH determined, the next goal was to determine the linear range of activity in terms of time and protein concentration. Consequently, LmjIPCS activity was monitored over time up to 60 minutes following the typical assay reaction conditions. This revealed that LmjIPCS activity was linear up to approximately 30 minutes of reaction time before it starts to taper off in a non-linear pattern (Figure 38). Consequently, all subsequent assays were conducted within the linear range of the graph with reaction times not exceeding 15 minutes. Additionally, when the assay was carried out without pre-incubating the membranes with PI, the reaction rate was reduced to approximately 60 %. However, no lag time could be detected under the assay conditions in contrast to that observed with C. albicans. The presence or absence of a lag time has important implications on the reaction kinetic scheme. This will be further elaborated in section 2.3.

![Figure 38: Activity vs. Time Profile](image)
Although the rate of the reaction started to decrease after 30 minutes, only \(\leq 12\% \) of the added donor substrate was consumed after 1 hour of the reaction time. The decrease in the rate of product formation could be attributed to product inhibition by either NBD-C\(_6\)-IPC and/or DAG rather than exhaustion of the substrates. Alternatively, the products could remain associated with the microsomal membrane and in some way affect a change in the surface diffusion of the substrates to the active site. Unfortunately, in this respect, these hypotheses could not be tested in terms of IPC because of the unavailability of needed chemicals. However, measuring LmjIPCS activity against an increasing concentration of DAG resulted in an IC\(_{50}\) = 8.4 ± 1.2 \(\mu\)M (Figure 39). In spite of the determined IC\(_{50}\) which indicates that a bulk concentration of DAG should be about twice that of NBD-C\(_6\)-ceramide to elicit a considerable inhibition, the DAG produced by the enzyme might have a more profound inhibitory effect on the reaction rate due to its high localised surface concentration in the microsomes. This observation supported the initial hypothesis of possible (by) product feedback inhibition.

![Figure 39: The inhibitory effect of DAG on LmjIPCS activity](image)

The final variable of the assay conditions to be determined was the linear range of activity in terms of enzyme concentration. Measuring the activity against an increasing enzyme concentration up to 3.5 U/assay (final concentration 87.5 U/ml), identified the linear range below 1 mU/assay (15 \(\mu\)U/\(\mu\)l) (Figure 40) under typical assay conditions. Above this concentration, the activity curve started to taper-off exhibiting non-linear behaviour. This deviation could be due to possible aggregation of the hydrophobic microsomal membranes at higher concentrations resulting in a change in the available enzyme surface that would affect accessibility to the active site.
CHAPTER II: CHARACTERISATION OF \textit{LmjIPCS}

Figure 40: Activity vs. Enzyme Concentration

2.1.4 Validation of the Assay Protocol

Having established all the assay conditions, it was then necessary to confirm its validity for experimental investigation. As the ultimate application of the established assay was in screening of potential inhibitors against \textit{LmjIPCS}, the ideal validation experiment should test the inhibitory effect of a known IPC synthase inhibitor. Out of the three known fungal IPC synthase inhibitors, khafrefungin,22 rustmicin23 and aureobasidin A,13 only the latest is commercially available.

2.1.4.1 Aureobasidin A Inhibition of \textit{LmjIPCS}

Although the inhibitory effect of aureobasidin A on \textit{Leishmania spp.} remains a matter of debate,$^{1,11,24-25}$ aureobasidin A could be still considered as a likely inhibitor against \textit{LmjIPCS}. Consequently, the activity of refined \textit{LmjIPCS} microsomal membranes was measured against an increasing concentration of aureobasidin A using both assay protocols previously described. The inhibition assays were carried out using microsomal preparation of \textit{ScIPCS} as a positive control and the results were visualised on HPTLC (Figure 41). Using ‘\textit{Protocol B}’, aureobasidin A exhibited an apparent IC$_{50}$ between 10 ~ 50 µM in terms of \textit{LmjIPCS}. However, under the ‘\textit{Protocol A}’ conditions, aureobasidin A inhibited only \textit{ScIPCS} with no inhibition of \textit{LmjIPCS} could be detected. These differences could be attributed to the combined effect of the different solubilising agent of the two protocols (BSA & CHAPS) with the very poor aqueous solubility of aureobasidin A (http://bio.takara.co.jp) that would render the effective concentration far below the added molar concentration. The yet observed inhibition of \textit{ScIPCS} in both cases is due to its very high sensitivity to aureobasidin A13 (Lit. IC$_{50} = 0.2$ nM).26
Further investigation of the inhibitory profile of aureobasidin A on \(Lmj \)IPCS identified an IC\(_{50} > 100 \) µM (Figure 42: A). Additionally, aureobasidin A was found to be a non-competitive inhibitor in terms of both substrates, NBD-C\(_6\)-ceramide and PI (Figure 42: B, C) similar to recent observations in respect of an orthologous IPC synthase from \(S. \) cerevisiae.\(^{27}\)

\[
\text{Figure 41: The inhibitory effect of Aureobasidin A on LmjIPCS. ScIPCS was used as a control}
\]

\[
\text{Figure 42: (A) Aureobasidin A inhibition of LmjIPCS (IC}_{50} > 100 \) µM. Determination of aureobasidin A mode of inhibition in terms of substrates, (B) Non-competitive in terms of NBD-C}_6\text{-ceramide ([Ab A] = 0, 50 µM). (C) Non-competitive in terms of PI ([Ab A] = 0, 50 µM).}
\]

\subsection*{2.1.4.2 Substrate Analogues as Competitive Inhibitors of LmjIPCS}

Having validated the assay protocols in terms of a well-established fungal IPCS inhibitor, further validation in terms of potential inhibitory effect of substrate analogues was necessary.
CHAPTER II: CHARACTERISATION OF LmjIPCS

Three compounds were chosen for this basic inhibition study; D-erythro-sphingosine (d18:1), N-acetyl-D-erythro-sphingosine (d18:1/2:0) and N-stearoyl-D-erythro-sphingosine (d18:1/18:0, natural mammalian ceramide). The inhibitory effect of these compounds was measured in terms of their ability to compete with the fluorescent NBD-C₆-ceramide with variation in the quantity of the fluorescent product (NBD-C₆-IPC) reflecting the effect of the substrate competitors on enzyme turnover.

Analyses of the synthetic analogues D-erythro-sphingosine and N-acetyl-D-erythro-sphingosine, using Protocol ‘A’ in the 96-well plate based assay demonstrated that they are, as expected, competitive with IC₅₀ values of 52 µM and 16 µM respectively (Figure 43: A and B). However, unlike D-erythro-sphingosine and N-acetyl-D-erythro-sphingosine, N-stearoyl-D-erythro-sphingosine was insufficiently soluble in the phosphate-based buffer employed for the microtitre plate assay, curtailing analysis. This problem could be circumvented by using Protocol ‘B’ which contained defatted-BSA. In this buffer N-stearoyl-D-erythro-sphingosine was soluble and the results indicated that NBD-C₆-ceramide exhibited an equivalent affinity for LmjIPCS as the natural substrate (Figure 43: C).

![Graph A](image1.png)
![Graph B](image2.png)
![Graph C](image3.png)

Figure 43: The inhibitory profile of NBD-C₆-ceramide analogues. (A) D-erythro-sphingosine (d18:1). (B) N-acetyl-D-erythro-sphingosine (d18:1/2:0). (C) N-stearoyl-D-erythro-sphingosine (d18:1/18:0, natural mammalian ceramide).
Subsequent MS-ES$^+/\text{ES}^-$ analyses of the reaction product profiles (Figure 44) revealed the presence of a mass of 582.3 corresponding to IP-N-acetyl-D-erythro-sphingosine confirming that N-acetyl-D-erythro-sphingosine had been turned over by LmjIPCS. This was expected as this ceramide analogue has previously been shown to act as a substrate for the yeast enzyme.15 Conversely, no IP-D-erythro-sphingosine could be detected in the MS spectra either in positive or negative ion mode, which indicated that D-erythro-sphingosine is not a substrate for LmjIPCS; rather it is acting as a true inhibitor. This basic inhibition study of ceramide analogues demonstrated the validity of the established assay protocols to serve in the accomplishing the objective to be used in the screening of chemical libraries of potential inhibitors.

Figure 44: The Mass spectrum (ES$^+$) of a standard LmjIPCS activity assay in presence of N-acetyl-D-erythro-sphingosine. Highlighted peaks assign substrates and products.
2.2 Determination of the Kinetic Parameters

With the standard assay protocols defined and validated, the next objective was the determination of the kinetic parameters of \textit{Lmj}IPCS. This required a closer investigation of the physical aspects of the assay system which are believed to have a critical effect on the enzyme interaction with the substrates and hence its activity. Only these physical aspects are defined, can initial hypotheses regarding the reaction kinetic model be made and an appropriate experimental layout be designed.

2.2.1 The Physical Aspects of the Assay Protocol

Due to the hydrophobic nature of both donor and acceptor substrates, PI and ceramide respectively, a common feature of IPC synthase activity assays is the presence of a solubilising agent\(^5\) (e.g. BSA, CHAPS or a cosolvent, EtOH). These disperse the sparingly water-soluble lipid substrates and products and bring the reaction mixture close to homogeneity. The work presented in this thesis was carried out using two assay protocols that differ in the solubilising agent and the buffer ingredient (Figure 34).

The assay reactions generally started with pre-drying PI in Eppendorf tubes. The pre-dried PI was presumed to be reconstituted into the solution by sonication and to exist in the form of vesicle at such low concentration\(^28\) excluding the effect of the solubilising agent. In the presence of BSA (typically 4.5 nMol/assay), there is a lack of data about the possible patterns of interaction with PI but it could be postulated that PI will partition between pure PI vesicles and the hydrophobic grooves on the BSA surface.\(^29\)-\(^32\) A similar hypothesis was also assumed valid for the interaction between BSA and NBD-C\(_6\)-ceramide. Under these conditions, BSA would behave as a controlled release reservoir for NBD-C\(_6\)-Ceramide and to a lesser extent for PI.

However, the effect of CHAPS is more complex as a ‘Surface Dilution’ effect would be expected\(^33\). It is well established that an activity assay which is dependent on the concentration of a hydrophobic substrate shows a considerable deviation from classic Michaelis-Menten behaviour in the presence of a detergent.\(^34\)-\(^37\) This is mainly because of the so-called “Surface Dilution Phenomenon”. In such assay, the substrate would exist in detergent mixed micelles and
the activity would depend on its respective surface concentration of the substrate in the micelles rather than its molar concentration.

2.2.2 Initial Hypotheses for LmjIPCS Kinetic Model

Combined, the transferase activity of LmjIPCS, the hydrophobic nature of substrates and the presence of CHAPS in the reaction mixture, made it difficult to predict which kinetic model would provide the best fit for the enzyme mechanism. A literature survey revealed that several transferases have been reported to follow Bi−Bi substrate kinetic model.38-44 This can follow either sequential-binding39 (ordered or random) or double displacement kinetics38 (Figure 45). While in the former, both substrates, A and B, must bind to the enzyme surface at the same time before the catalytic event takes place, in the latter; the enzyme binds the first substrate, A, and forms a substituted enzyme intermediate, F, releasing the first product, P. Then, the substituted enzyme would bind to the second substrate, B, and dissociate releasing the final product, Q, and regenerating the enzyme, E. Both mechanisms can be differentiated by the respective Lineweaver-Burk plot. While in sequential binding, it yields intersecting lines, parallel lines pattern is obtained in case of double displacement.

![Bi-Bi Substrate Kinetic Models and the respective Lineweaver-Burk plots](image)

Figure 45: Bi-Bi Substrate Kinetic Models and the respective Lineweaver-Burk plots
Initially, on this basis a double displacement kinetic model45 was hypothesised. However, ‘Surface Dilution’ kinetic effects remained to be considered.46 Such kinetic dilemma dictated a better understanding of the possible interaction between NBD-C$_6$-ceramide, PI, CHAPS and \textit{Lmj}IPCS microsomal membranes and this is discussed below.

While there is a lack of data about the nature of CHAPS/NBD-C$_6$-ceramide/PI mixed micelles under the established assay conditions, it was possible to build initial assumptions based on previously reported findings in precedent analogous systems. In a study investigating CHAPS micelles, Schürholz28 has shown that both the critical concentration of free detergent $[D_w]^C$ which is necessary for lipid vesicle solubilisation and the critical micellar detergent : lipid ratio $R^C(M)$ strongly depend on the lipid composition. His results showed that CHAPS could solubilise PI vesicles at very low concentration $[D_w]^C = 0.27$ mM far below the CMC (4 ~ 10mM). Additionally CHAPS/PI mixed micelles had a detergent/lipid ratio of $R^C(M) = 0.17$. Based on these results, the $[D_w]^C$ for CHAPS under the assay conditions could be calculated from equation (2.1). Therefore, in a typical assay reaction ([PI] = 100 μM), $[D_w]^C = 583$ μM and at highest concentration of PI used ([PI] =250 μM), $[D_w]^C = 557$ μM. In both cases $[D_w]^C$ is far below the CMC.

$$[D_T]^C = [D_w]^C + R^C(M) \times [L_T]$$ \hspace{1cm} (2.1)

Where, $[D_T]^C$ = Total CHAPS concentration, $[L_T]$ = Total lipid concentration

At this point, it could be assumed that at $[D_T]^C = 600$ μM, detergent concentration in assay mixture, CHAPS would essentially exist in a monomeric form with low contribution to the formed PI micelles (c.a. 15\%). Thus the surface dilution effect due to CHAPS in the micelles would be minimal. Additionally, it was reasonable to suggest that the minor lipid component, NBD-C$_6$-ceramide, would partition between the PI micelles and the bulk CHAPS monomers. As a result, the concentrations of both substrates are interdependent \textit{i.e.} changing the concentration of one would inevitably change the concentration of the other. These facts combined with the unravelled interaction of the substrates with the enzyme microsomal membranes suggested that a logical start point to address this issue would be to generate a basic set of kinetic data which would guide further experimental work.

Given the concentrations present in the assay system, whilst changes in PI concentration would lead to large and significant variation in NBD-C$_6$-ceramide concentration, the reverse is
CHAPTER II: CHARACTERISATION OF LmjIPCS

not the case. Consequently, a large ‘steady state’ PI concentration and a variable NBD-C_6-ceramide concentration were initially chosen to investigate the kinetic model. It is noteworthy that at such relatively low NBD-C_6-ceramide concentration in the assay, the reaction rate would be dependent on both its molar and surface concentrations. All kinetic assays were carried out in triplicates; results were analysed using the software program Prism® 5.0 (GraphPad) and Excel® Solver Add-in (Microsoft).

2.2.3 The Catalytic Cycle and the Reaction Rate Equation

Assuming a double displacement model, the catalytic cycle could be divided into two sequential partial reactions in which the first product is DAG while the second is IPC. The kinetic equation was derived under the steady state approach conditions assuming that the overall catalytic reaction is reversible at all intermediate stages and the system is in equilibrium (Figure 46: A). However, assuming the initial rate assumptions, the concentrations of product, [IPC], and by-product, [DAG], were set to zero (Figure 46: B). Finally, the overall rate could be given by equation (2.2).

\[v = k_9 [E_D, IPC] \]

\(v \): reaction rate;
\(k_9 \): rate constant;
\([E_D, IPC] \): concentration of intermediate substituted LmjIPCS with phosphorylinositol group.

Figure 46: The hypothetical catalytic reaction scheme. (A) Assuming steady state approach. (B) Assuming initial rate conditions.
The derivation of the rate equation started with enumeration of the steady state equations of different forms of the enzyme in the catalytic cycle in terms of \([E_D, IPC]\). Applying the mass conservation law in terms of total enzyme concentration \([E_T]\), the overall rate equation (2.7) could be derived as mentioned below.

- Steady state at \(E_D, IPC\)

\[
k_7[E_D, IPC] + k_{10}[E_D][IPC] = (k_9 + k_8)[E_D, IPC]
\]

\[
\therefore [E_D, IPC] = \left(\frac{k_9 + k_8}{k_7}\right)[E_D, IPC] - \frac{k_{10}}{k_7}[E_D][IPC]
\]

(2.3)

- Steady state at \(E_D, IP, Cer\)

\[
k_5[E_D, IP][Cer] + k_8[E_D, IPC] = (k_6 + k_7)[E_D, IP, Cer]
\]

\[
\therefore [E_D, IP] = \left(\frac{k_6 + k_7}{k_5k_7[Cer]}\right)[E_D, IP] - \frac{k_{10}(k_6 + k_7)}{k_5k_7[Cer]}[E_D][IPC] - \frac{k_8}{k_5[Cer]}[E_D, IPC]
\]

(2.4)

- Steady state at \(E_D, IP\)

\[
k_3[E_D, PI] + k_6[E_D, IP, Cer] = (k_5[Cer] + k_4[DAG])[E_D, IP]
\]

\[
\therefore [E_D, PI] = \left(\frac{k_6 + k_7}{k_3k_7}\right)[E_D, PI] + \frac{k_4(k_6 + k_7)(k_9 + k_8)[DAG]}{k_3k_5k_7[Cer]}[E_D, PI] - \frac{k_8}{k_3}[E_D, IP] - \frac{k_8k_4[DAG]}{k_3k_5[Cer]}[E_D, IP] - \frac{k_6(k_9 + k_8)}{k_3k_7}[E_D, IP]
\]

\[
+ \frac{k_6k_{10}}{k_3k_7}[E_D][IPC] - \frac{k_{10}(k_6 + k_7)}{k_3k_7}[E_D][IPC] - \frac{k_4k_{10}(k_6 + k_7)[DAG]}{k_3k_5k_7[Cer]}[E_D][IPC]
\]

(2.5)

- Steady state at \(E_D\)

\[
k_1[E_D][PI] = k_2[E_D, PI] + k_9[E_D, IPC]
\]
According to the mass conservation law in terms of $[E_T]$

$$[E_T] = [E_D] + [E_D, PI] + [E_D, IP] + [E_D, IP, Cer] + [E_D, IPC]$$

$$
\therefore [E_T] = \frac{v}{k_9} \left(1 + \frac{(k_6 + k_7)(k_9 + k_8)}{k_3 k_7} - \frac{k_8}{k_3} \frac{k_6(k_9 + k_8)}{k_3 k_7} + \frac{(k_6 + k_8)}{k_7} \right) + \frac{v}{k_9} \left(\frac{1}{[PI]} - \frac{k_2 k_8}{k_1 k_3 k_7} - \frac{k_2 k_6}{k_1 k_3 k_7} - \frac{k_2 k_6}{k_1 k_3 k_7} \right) + \frac{v}{k_9} \left(\frac{1}{[Cer]} - \frac{k_4(k_6 + k_7)(k_9 + k_8)[DAG]}{k_3 k_5 k_7} - \frac{1}{[PI]} [Cer] + \frac{1}{[Cer]} \right) + [IPC][E_D] \left(\frac{k_6 k_{10}}{k_3 k_7} - \frac{k_10}{k_7} - \frac{k_10(k_6 + k_7)}{k_3 k_7} + \frac{k_2 k_6}{k_1 k_3 k_7 [PI]} - \frac{k_2 k_{10}}{k_4(k_6 + k_7)[DAG]} \right) + \frac{v}{k_9} \left(\frac{1}{[PI]} + \frac{1}{[Cer]} \right) + \frac{v}{k_9} \left(\frac{1}{[PI]} - \frac{k_2 k_6}{k_1 k_3 k_7} \right) \right)$$

Additionally, the initial rate conditions were applied to equation (2.7) in two stages. First stage set the factors of the second reverse partial reaction to zero (k_{10}, k_8 and IPC concentration = 0). This reduced equation (2.7) to equation (2.8). in and the and DAG concentrations to zero. Finally, reduced forms of the rate equation at saturating concentrations of the substrates were deduced. In the second stage, the first reverse partial reaction was set to zero (k_4 and DAG concentration = 0). This reduced equation (2.8) to equation (2.9)

Setting the second reverse partial reaction to zero (k_{10}, k_8 and [IPC] = 0)

$$\frac{[E_T]}{v} = \left(\frac{1}{k_9} + \frac{1}{k_7} + \frac{(k_6 + k_7)}{k_3 k_7} - \frac{k_6}{k_3 k_7} \right) + \left(\frac{1}{k_9} + \frac{1}{k_7} + \frac{k_10(k_6 + k_7)}{k_3 k_7} - \frac{k_2 k_6}{k_1 k_3 k_7} \right) \frac{1}{[PI]} + \left(\frac{1}{k_9} + \frac{1}{k_7} + \frac{k_2 k_6}{k_3 k_5 k_7} - \frac{k_2 k_6}{k_1 k_3 k_7} \right) \frac{1}{[Cer]} + \left(\frac{1}{k_9} + \frac{1}{k_7} + \frac{k_2 k_4}{k_1 k_3 k_7} - \frac{k_2 k_4}{k_1 k_3 k_7} \right) \frac{1}{[PI]} \frac{1}{[Cer]}$$

(2.8)
CHAPTER II: CHARACTERISATION OF \textit{LmjIPCS}

- Setting the first reverse partial reaction to zero (k_4 and [DAG] = 0)

\[
\frac{[E_T]}{v} = \left(\frac{1}{k_9} + \frac{1}{k_7} + \frac{(k_6 + k_7)}{k_3 k_7} - \frac{k_6}{k_3 k_7} \right) + \left(\frac{1}{k_1} + \frac{k_2(k_6 + k_7)}{k_1 k_3 k_7} - \frac{k_2 k_6}{k_1 k_3 k_7} \right) \frac{1}{[PI]}
\]

\[
+ \left(\frac{(k_6 + k_7)}{k_5 k_7} \right) \frac{1}{[Cer]}
\]
(2.9)

- Finally, the rate equation can be written in the following simplified form,

\[
\frac{[E_T]}{v} = \varnothing_0 + \varnothing_{PI} \frac{1}{[PI]} + \varnothing_{Cer} \frac{1}{[Cer]} \text{ where,}
\]

\[
\varnothing_0 = \left(\frac{1}{k_8} + \frac{1}{k_7} + \frac{(k_6 + k_7)}{k_3 k_7} - \frac{k_6}{k_3 k_7} \right), \quad \varnothing_{PI} = \left(\frac{1}{k_1} - \frac{k_6}{k_1 k_7} + \frac{k_2(k_6 + k_7)}{k_1 k_3 k_7} \right)
\]

\[
\varnothing_{Cer} = \left(\frac{(k_6 + k_7)}{k_5 k_7} + \frac{k_4(k_6 + k_7)}{k_3 k_5 k_7} \frac{[DAG]}{[PI]} \right)
\]
(2.10)

- **Special conditions derivation**

 - If both [PI] and [Cer] are saturating, equation (2.10) can be reduced to,

\[
\frac{[E_T]}{v} = \varnothing_0 \text{ where, } v = \frac{[E_T]}{\varnothing_0} = V_{\max}
\]
(2.11)

 - While if only [PI] is saturating, the equation can be reduced to,

\[
\frac{[E_T]}{v} = \varnothing_0 + \varnothing_{Cer} \frac{1}{[Cer]} \text{ where by rearrangement gives,}
\]

\[
v = \frac{[E_T][Cer]}{\varnothing_0[Cer] + \varnothing_{Cer}} = \frac{V_{\max}[Cer]}{[Cer] + \varnothing_{Cer}/\varnothing_0} \text{ with } k_{m(\text{app.})}^{\text{Cer}} = \varnothing_{Cer}/\varnothing_0
\]
(2.12)

 - Similarly, if only [Cer] is saturating, the equation can be reduced to,

\[
\frac{[E_T]}{v} = \varnothing_0 + \varnothing_{PI} \frac{1}{[PI]} \text{ where by rearrangement gives,}
\]

\[
v = \frac{[E_T][PI]}{\varnothing_0[PI] + \varnothing_{PI}} = \frac{V_{\max}[PI]}{[PI] + \varnothing_{PI}/\varnothing_0} \text{ with } k_{m(\text{app.})}^{\text{PI}} = \varnothing_{PI}/\varnothing_0
\]
(2.13)
In summary, equation (2.10) represents the simplest form of the rate equation at any given concentrations of ceramide and PI while equation (2.11) gives the theoretical V_{max} when both substrates are saturating. Also, when either [PI] or [Cer] is saturating, equation (2.9) could be reduced to a simpler form resembling Michaelis-Menten kinetics, equation (2.12) or (2.13) respectively. However, the measured $k_{m(app)}^{PI}$ and $k_{m(app)}^{Cer}$ should be cautiously interpreted in terms of enzyme affinity to either substrate. It is noteworthy that although under initial rate assumptions, [DAG] was set to zero, it is evident that \varnothing_{Cer} parameter is dependent on [DAG] according to equation (2.9) and affects $k_{m(app)}^{Cer}$ in equation (2.12). This means that increasing [DAG], either produced as a by-product or exogenously added to the reaction mixture, would be expected to have an inhibitory effect on the reaction rate, a previously validated hypothesis (see section 2.2.3.4). In addition DAG would be expected to act as a competitive inhibitor in terms of ceramide leading to higher $k_{m(app)}^{Cer}$ value.
2.2.4 V_{max} and $k_{m\,(app)}^{\text{Cer}}$ in terms of NBD-C$_6$-Ceramide

As described earlier, changing the NBD-C$_6$-ceramide concentration within the range 0 µM up to 20µM relative to PI concentration range (12.5 – 250 µM) is very low (c.a. 8% in average). Thus, PI concentration would remain almost constant ($\Delta[\text{PI}] \leq 3.2\%$, see Appendix B) across experiments. Measuring LmjIPCS activity against an increasing concentration of NBD-C$_6$-ceramide (at a fixed [PI] = 100 µM) yielded a curve that fitted Michaelis-Menten kinetic model (Figure 47) with V_{max} and $k_{m\,(app)}^{\text{Cer}}$ equal to 2.1 pmol.min$^{-1}$.U$^{-1}$ and 3.5 µM respectively.

Determination of the Hill constant (Figure 47) revealed a Hill slope = 2.7 (> 1.0) which indicated a co-operative binding and that the observed fit to Michaelis-Menten kinetic model is an apparent behaviour due to the saturating concentration of PI in the experiment. This could be explained by equation (2.10). However, the measured $k_{m\,(app)}^{\text{Cer}}$ would be equal to the value of $\varnothing_{\text{Cer}}/\varnothing_0$.

![Figure 47: (A) LmjIPCS Activity vs. NBD-C$_6$-ceramide [µM]. (B) Hill slope determination in terms of NBD-C$_6$-ceramide](image)

2.2.5 V_{max} and $k_{m\,(app)}^{\text{PI}}$ in terms of PI

In contrast to NBD-C$_6$-ceramide, the determination of the (apparent) kinetic parameters of LmjIPCS in terms of PI was not straightforward. Measuring LmjIPCS activity against an increasing concentration of PI (at fixed [NBD-C$_6$-ceramide] = 5 µM) revealed an unexpected inhibitory effect of PI at high concentration with considerable deviation from apparent Michaelis-Menten kinetics (Figure 48: A). The observed inhibitory effect of PI at high...
concentration has been previously reported by Aeed et al. in terms of IPC synthase from C. albicans. Albeit, in Aeed’s report, the concentration of PI was higher (400 µM) and the assay was performed at a saturating concentration of NBD-C₆-ceramide. Aeed had justified the inhibition in terms of the relatively low affinity of PI for the IPC synthase which is consistent with the high levels of this substrate in the intact yeast Golgi membrane. Additionally, he identified an algorithm that incorporates a substrate inhibition parameter ‘Ki’ to provide the best fit. Re-analysis of the data using this algorithm gave a better fit model (enhanced R^2 value from 0.79 to 0.85, c.a. 6%) (Figure 48: B) with V_{max}, $k^{PI}_{m(app)}$ and $k^{PI}_{i(app)}$ equal to 2.2 pMol.min⁻¹.U⁻¹, 54.4 µM and 220.3 µM respectively.

![Figure 48: LmjIPCS Activity vs. [PI] µM. (A) Using apparent Michaelis-Menten Kinetic model, [NBD-C₆-ceramide] = 5 µM. (B) Using Substrate Inhibition Kinetic model, [NBD-C₆-ceramide] = 5 µM.](image)

However, repeating the experiment at a higher concentration of NBD-C₆-ceramide (20 µM), corresponding to $5.7 \times k^{Cer}_{m(app)}$, resulted in no inhibitory effect of PI could be detected up to PI concentration = 250 µM (Figure 49: A). Interestingly, when the PI concentration was further increased at the same NBD-C₆-ceramide concentration (20 µM) an inhibitory effect could be observed at PI concentration greater than 500 µM (Figure 49: B). These observations suggested an alternative explanation that under the specified assay conditions, the enzyme activity depends on the ratio of substrates concentrations rather than their molar concentrations. Consequently, a dilution effect should be considered.
Given the fact in this complex system the *Lmj*IPCS is a membrane enzyme activity acting on lipid substrates within mixed micelles, to facilitate further analyses a number of assumptions were made: PI micelles have a low molar % of CHAPS and can be considered as pure PI micelles; all lipids and detergent molecules have the same surface area; all lipids and detergent molecules have equal accessibility to the enzyme active site. All concentrations are expressed as molar fractions of total lipid plus detergent. Consequently, at [CHAPS] = 0.6 mM, increasing the molar concentration of PI from 0 – 250µM would drop the molar fraction of NBD-C$_6$-ceramide from 0.83% to 0.58% with a total reduction of 29% of the starting NBD-C$_6$-ceramide concentration. This could explain the recurrent apparent inhibition at increasing PI concentrations at fixed concentration of NBD-C$_6$-ceramide.

To verify this conclusion, the results of *Lmj*IPCS activity against substrate concentrations were re-analysed in terms of molar fractions. The molar fractions were calculated in terms of bulk concentrations of total lipids and detergent (Figure 50: A and C) and in terms of likely micellar concentrations of lipids and detergent (Figure 50: B and D). The re-plots of activity against NBD-C$_6$-ceramide Mol% (Bulk and micellar) maintained an apparent good fit to Michaelis-Menten kinetic model. (Figure 50: A and B). This would be expected given that NBD-C$_6$-ceramide is the minor lipid component in the assay. However, the re-plots in terms of PI Mol% maintained an apparent good fit to Michaelis-Menten equation only when expressed in bulk Mol% (Figure 50: C) but not in micellar Mol% (Figure 50: D). These observations
supported the dilution effect hypothesis and indicated that the activity is dependent on the bulk concentrations in terms of total lipids, PI and NBD-C₆-ceramide, and detergent, CHAPS.

![Graph A](image1)
![Graph B](image2)
![Graph C](image3)
![Graph D](image4)

Figure 50: Activity vs. NBD-C₆-ceramide, x-**abscissa** is expressed in Mol% relative to total lipids and CHAPS in reaction mixture (Graph A) & in Micelles (Graph B). Activity vs. PI, x-**abscissa** is expressed in Mol% relative to total lipids and CHAPS in reaction mixture (Graph C) & in Micelles (Graph D)

2.2.6 Bi–Bi Substrate Kinetics and Surface Dilution Effect

The presence of a dilution effect required further experimental data in order to determine the kinetic parameters of the kinetic equation and to confirm the initial hypothesis, a double displacement kinetic model. Towards this end, *LmjIPCS* activity was measured against an increasing concentration of NBD-C₆-ceramide at different fixed concentrations of PI (Figure 51: A). Generation of the Lineweaver-Burk plot of the data revealed an almost parallel pattern (Figure 51: B) that supported the initial hypothesis of double displacement kinetics. A plot of the intercepts against the reciprocal of PI Mol% gave a linear relationship (Figure 51: C) as would be predicted from equation (2.10) with very low residual values (Figure 51: D).
CHAPTER II: CHARACTERISATION OF LmjIPCS

Subsequently, a global analysis of the data (56 points, mean values of 168 replicates) in terms of the surface dilution kinetic model developed by Deems \(^{48}\) (equation 2.14, [PI] and [Cer] expressed as mol% in PI micelles) resulted in non convergent results. On contrary, when the generalised form of bi-bi substrate kinetic equation (equation 2.15) was used, a valid solution could be found. However, the global analysis resulted in a very low value for the parameter \(\emptyset_{AB} \) (1.6 \times 10^{-5}). This suggested the absence of the component \(\frac{1}{[\text{PI}][\text{Cer}]} \) from the equation which reduces it to equation (2.10) and in turn supports the initial hypothesis of double displacement model. Nevertheless, it might be possible that \(\frac{1}{[\text{PI}][\text{Cer}]} \) component is masked under the experimental conditions.

\[
\frac{1}{v} = \frac{1}{V} + \left(\frac{k_{Pl}k_{Cer}}{V[Cer]} \right) \frac{1}{[\text{PI}]} + \frac{k_{Cer}}{[\text{Cer}]} \\
\frac{[E_T]}{v} = \emptyset_0 + \emptyset_A \frac{1}{[\text{PI}]} + \emptyset_B \frac{1}{[\text{Cer}]} + \emptyset_{AB} \frac{1}{[\text{PI}][\text{Cer}]} \tag{2.14}
\]

\[
\frac{1}{[\text{NBD-C6-ceramide}]\%} = 0.0 0.4 0.8 1.2 1.6 2.0
0.0 0.5 1.0 1.5 2.0 2.5
\]

\[
\emptyset_0 + \emptyset_A \frac{1}{[\text{PI}]} + \emptyset_B \frac{1}{[\text{Cer}]} + \emptyset_{AB} \frac{1}{[\text{PI}][\text{Cer}]} \tag{2.15}
\]
Both the global analysis of the data and the graphical linear analysis yielded comparable results for the equation parameters (Table 2-1). The mean V_{max} and k_m^{cer} values determined were 2.13 pMol.min$^{-1}$.U$^{-1}$ and 0.54 Mol% respectively and were comparable to the values determined using apparent Michaelis-Menten equation. However, k_m^{PI} (4 Mol%) was more than 2 fold the value determined using Michaelis-Menten kinetics. Cross validation of the results was achieved by plotting simulation curves by substituting equation 2.10 with the values determined. Comparable curves to the experimental data could be generated (Figure 52) with R^2 values greater than 0.90.

Table 2-1: The equation Parameters as determined by global analysis and linear analysis

<table>
<thead>
<tr>
<th></th>
<th>V_{max}</th>
<th>\varnothing_0</th>
<th>\varnothing_A</th>
<th>\varnothing_B</th>
<th>\varnothing_{AB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Analysis (Solver – Excel)</td>
<td>2.31</td>
<td>0.26</td>
<td>0.82</td>
<td>0.14</td>
<td>1.0×10^{-5}</td>
</tr>
<tr>
<td>Graphical Linear Analysis</td>
<td>1.94</td>
<td>0.31</td>
<td>1.47</td>
<td>0.17</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 52: Simulation curves vs. Experimental curves
2.3 Conclusion

The work demonstrated in this chapter included the establishment of an assay protocol suitable for drug screening of potential inhibitors against \textit{Lmj}IPCS. The typical assay concentrations are 10 µg microsomal protein, 100 µM PI, 5 µM NBD-C\textsubscript{6}-ceramide and 0.6 mM CHAPS in 40 µL of 50 mM phosphate buffer. The established protocol has been validated in terms of aureobasidin A inhibition of \textit{Lmj}IPCS. Determination of the kinetic parameters has shed light on the mechanistic aspects of \textit{Lmj}IPCS in terms of relative affinities towards substrates and the kinetic model describing the enzyme mechanism of action. These findings will be further elaborated in Chapter VI regarding the rational design of inhibitors that target \textit{Lmj}IPCS.

The previously described apparent inhibition of PI has now been demonstrated in terms of a dilution effect rather than an inhibitory effect of PI that confers a regulatory function of PI over IPC synthase activity.

To the best of the author’s knowledge, no precedent kinetic analysis of a sphingolipid synthase (SM synthase or IPC synthase) has been demonstrated in terms of a double displacement kinetics employing dilution phenomenon in the kinetic analyses. The outcomes of this work have been recently accepted for publication (see Appendix D).
CHAPTER II: CHARACTERISATION OF LmjIPCS

REFERENCES

CHAPTER III

LmjIPCS ORTHOLOGOUS ENZYMES TbSLS4 & AtIPCSs
3 LmjIPCS ORTHOLOGOUS ENZYMES

3.1 Work Synopsis

Having established the LmjIPCS activity assay and the determination of its kinetic parameters, the established characterisation techniques were applied to LmjIPCS orthologues. The candidates selected for this were the closely related TbSLS4 from T. brucei and the identified orthologous Plantae enzymes AtIPCS 1, 2 & 3. Successful application of those techniques helped to characterise the former as a potential drug target for African Trypanosomiasis and demonstrate the IPC synthase activity of the later cluster of enzymes which had remained unidentified in the genome databases. The outcomes of this work, performed in collaboration with laboratory colleagues, have been recently published1-2 (see Appendix D). This chapter will discuss the relevant previous work and focus on the author’s contributions to this work with respect to TbSLS4 and AtIPCS 1, 2 & 3.

3.2 TbSLS4 (Tb09.211.1000)

3.2.1 Introduction

The Trypanosoma brucei genome has four tandem gene sequences (Tb09211.1030, Tb09.211.1020, Tb09.211.1010 and Tb09.211.1000; here annotated TbSLS1-4 to reflect their 5’ to 3’ order) that were previously identified in the T. brucei genome database (www.genedb.org) as sequence orthologues of the LmjIPCS.3 Importantly, knockdown of TbSLS1-4 expression using inhibition RNA (RNAi) in bloodstream form parasites demonstrated that the enzyme activity is essential for growth thus validating it as a target for the development of new anti-HAT therapies.2,4-5

Previous work within the Denny group using metabolic labelling of LmjIPCS complemented yeast with NBD-C6-ceramide and HPTLC chromatographic separation of the synthesised sphingolipid products, demonstrated the synthesis of one labelled sphingolipid species identified
to be NBD-C₆-IPC. However, using the same mutant line, labelled under the same conditions but complemented with \(T₇bSLS4 \) or \(T₇bSLS1 \), two predominant sphingolipid species were synthesized. One of these co-migrated with NBD-C₆-IPC, the other with NBD-C₆-SM and was SMase sensitive. It is noteworthy that while the dominant species in case of \(T₇bSLS4 \) was NBD-C₆-SM, \(T₇bSLS1 \) predominantly synthesised NBD-C₆-IPC with trace amounts of NBD-C₆-SM. This indicated that \(T₇bSLS4 \) was a bi-functional enzyme with the ability to catalyze the biosynthesis of both IPC and SM, thus reflecting the sphingolipid profile of the parasite (Figure 3-1).\(^2\)\(^4\) This unusual behaviour required further characterisation of these enzymes.

![Figure 3-1: The catalytic transferase activity of \(T₇bSLS4 \) as a bi-functional enzyme which can turn over both PC and PI into SM and IPC respectively.](image)

3.2.2 Construction of the \(T₇bSLSs \) complemented Mutant Yeast Strain

The auxotrophic \(YPH499-HIS-GAL-AURI \) \(S. \) \textit{cerevisiae} strains complemented with the vectors p426MET25, p426MET25-\(T₇bSLS1 \), p426MET25-\(T₇bSLS4 \) and p426MET25-\(ScIPC \) (AUR1) -obtained from Dr. Denny- were constructed as previously described under section 2.1.1. Similarly, Functionally complemented transformants were selected on non-permissive SD medium (0.17 % Bacto yeast nitrogen base, 0.5 % ammonium sulphate, and 2 % dextrose) containing the nutritional supplements necessary to allow selection of transformants (Figure 3-2).
3.2.3 *In vitro* assay of *TbSLS4* activity

To further analyse the observed activity of *TbSLS4*, microsomal membranes from exponentially growing *YPH499-HIS-GAL-AUR1* *S. cerevisiae* with *pRS426 TbSLS4* yeast were prepared as previously described\(^6\) and the isolated membrane fraction re-suspended in storage buffer (50 mM Tris–HCl pH 7.4, 20 % (v/v) glycerol, 5 mM MgCl\(_2\)) with Complete\(^\text{®}\) EDTA-free Protease Inhibitor Cocktail at a protein concentration of 10 mg/ml. As for the *Lmj/IPCS* material, the microsomal membranes were subsequently washed in 2.5 % CHAPS, isolated by ultracentrifugation, re-suspended in storage buffer at 10mg/ml and stored at \(-80\, ^\circ\text{C}\) until use.

Initial activity assays were conducted using Protocol ‘B’ in which HPTLC analyses provide a qualitative assessment.\(^7\) Briefly, the assay mix contained 100 µM donor substrate (bovine liver PI, PC or PE), 10 µg of microsomes, 100 mM Tris–HCl, 10 mM EDTA, 6 mg/ml BSA and 5 µM NBD-C\(_6\)-ceramide. Following incubation at 30 °C for 60 minutes the reaction was quenched by the addition of 150 µl of chloroform:methanol:water (10:10:3). After biphasic separation the organic layer was removed, processed and analyzed using HPTLC plate separation. For inhibition experiments the reaction mix was pre-incubated for 30 minutes with appropriate quantities of aureobasidin A before the addition of the acceptor substrate NBD-C\(_6\)-ceramide.
3.2.3.1 Activity vs. Different Donor Substrates

Initial experiments focused on measuring the *Tb* SLS4 activity in terms of the potential donor substrates: mammalian PI, phosphatidylethanolamine (PE) and phosphatidylcholine (PC). These investigations required validation of the absence of background activity due to the endogenous yeast IPCS. Consequently, the activities of crude and washed ScIPCS (*YPH499-HIS-GAL-AUR1 pRS426 AUR1*) microsomes were first measured in terms of exogenous mammalian PI and PC (Figure 3-3). Whilst a detectable activity could be measured in case of the crude ScIPCS microsomes (lanes 1), there was little enhancement of the turnover upon addition of PI (lanes 2) and no detectable effect on addition of PC (lanes 3). The CHAPS-washed ScIPCS microsomes exhibited a similar profile to the crude microsomes but with a remarkably reduced turnover (lanes 4, 5 & 6). This drop in activity was attributed to the depletion of native yeast (polyhydroxylated) PI in the CHAPS-washed membranes combined with the inability of the ScIPCS to turn over the exogenous PI (mammalian variant, predominant species is 16:0/20:4).

Having confirmed the absence of background activity, it was possible to test *Tb* SLS4 activity profile in terms of the donor substrates (Figure 3-3).

![Graph](image-url)

Figure 3-3: The activity profiles of ScIPCS Control (using crude microsomes, *lanes 1, 2 & 3*, and CHAPS-washed microsomes, *lanes 4, 5 & 6*) and *Tb* SLS4 in terms of different donor substrates (using CHAPS-washed microsomes, individual donor substrates: *lanes 7, 8, 9 & 10* and equimolar mixtures of donor substrates: *lanes 11, 12 & 13*). (B, Blank, no added exogenous donor substrate; PI, phosphatidylinositol; PC, phosphatidylcholine; PE, phosphatidylethanolamine).
Using CHAPS-washed microsomes of TbSLS4, a blank experiment (no added donor substrates) gave a trace amount of the products (NBD-C₆-IPC & NBD-C₆-SM) (lane 7). However, the addition of exogenous PI (mammalian) increased the formation of NBD-C₆-IPC more than 25 fold (lane 8). This demonstrated the ability of TbSLS4 to catalyse the formation of IPC. In contrast to the activity profile observed in metabolic labelling experiments, the addition of exogenous PC (mammalian) did not reconstitute the activity of the enzyme as an SM synthase (lane 9). Furthermore, the addition of PE (mammalian) did not result in the formation of any other labelled species such as ethanolamine phosphoryl-NBD-C₆-ceramide (EPC) (lane 10). Subsequently, TbSLS4 activity was measured upon the addition of equimolar mixtures of PI/PC, PI/PE and PC/PE (lanes 11, 12 & 13). In spite of the fact that no additional formation of either NBD-C₆-SM or ethanolaminephosphoryl-NBD-C₆-ceramide was detected, a significant reduction of NBD-C₆-IPC formation was observed. This indicated that although the added PC and PE could not be turned over by the enzyme, these lipid species may still be able to bind to the enzyme active site as one-site competitive inhibitors resulting in a reduced rate of NBD-C₆-IPC formation.

The failure to reconstitute the SM synthase activity was surprising. However, upon closer investigation of the literature it could be speculated that a possible reason for such observation was the PC variant used in those assays. While under the experimental conditions deployed, exogenous PC was from a mammalian source (predominant species 18:0/18:2), in other published work⁵,⁷ the plant variant of PC (16:0/18:2) which has a shorter (C16) 1-sn-acyl chain was utilised (Figure 3-4).

![Figure 3-4: The chemical structure of mammalian and plant PC demonstrating the subtle structural difference due to the chain length of the 1-sn-acyl residue.](image-url)
This assumption is consistent with the fact that *S. cerevisiae*, where both *TbSLS4* and *TbSLS1* function as SM synthases, predominantly possesses C32:2 (16:1/16:1) and C34:2 (16:1/18:1) PC variants.\(^\text{10}\) Additionally, in earlier work, Richmond *et al.*\(^\text{11}\) has demonstrated that *T. brucei* procyclic and bloodstream forms harbour significant quantities of C36, C38 and C40 PC species in addition to minor quantities of the shorter C28 PC species.\(^\text{11-12}\) Also, Richmond has reported that a permeating feature of the lyso-PC molecules synthesized in *T. brucei* is that their acyl moiety (2*-sn*-acyl) is composed of a long and highly unsaturated chain of C22 (22:*x*; *x* = 4, 5 & 6) in nearly 50 % of the metabolite population. Together these facts suggest the presence of a high PC population with the 1*-sn*-acyl shorter than C18 (C16 & C14) which is consistent with the hypothesis that only PC with a C16 or shorter 1*-sn*-acyl residue can be utilised by the SM synthase activity of *TbSLS4*. One way to validate this hypothesis is to measure the activity of *TbSLS4* against both PC variants under the same experimental conditions and within a pH range\(^\text{5}\) 5.5 ~7.5 as this also might have profound effect due to the anionic/cationic nature of the donor substrates.

3.2.3.2 Activity vs. Time

The *TbSLS4* activity profile was monitored, using protocol ‘B’, over time up to 50 minutes. The results showed only trace amounts of NBD-C\(_6\)-SM (most probably due to residual amounts of PC in CHAPS-washed microsomes) were formed over the time span of the experiment and were ignored in quantification. Consequently, using protocol ‘A’, *TbSLS4* activity was quantified in terms of NBD-C\(_6\)-IPC (Figure 3-5). In contrast to *LmjIPCS*, the *TbSLS4* turnover rate reached a plateau after about 20 minutes of reaction time. The reasons behind such early decline in the turnover rate are unclear; however, this demonstrated the application of the 96-wellplate assay format in the study of *TbSLS4*.

CHAPTER III: *LmjIPCS* ORTHOLOGOUS ENZYMES

79
3.2.3.3 Aureobasidin A Inhibition

Previous work within the group identified that the fungal IPCS inhibitor aureobasidin A has a trypanocidal effect on the bloodstream form *T. brucei*. Consequently, the activity of *TbSLS4* was measured against an increasing concentration of aureobasidin A (Figure 3-6). The inhibition profile revealed an IC$_{50}$ = 0.4 nM (*c.f.* IC$_{50}$ for *LmjIPCS* > 100 µM). Such potent effect is consistent with earlier work within the group and indicated that the trypanocidal effect of aureobasidin A is due to the inhibition of the essential enzyme *TbSLS4*. Additionally, this observation identifies *TbSLS4* to be different from the closely related orthologues *LmjIPCS* and *TcIPCSs* which are aureobasidin A insensitive. Although the reasons for this difference in aureobasidin A sensitivity are unclear, based on a recently proposed non-competitive inhibition
model, it might be attributed to the relative spatial organisation of the enzyme transmembrane helices.

![Figure 3-6: Aureobasidin A inhibition profile against TbSLS4.](image)

3.2.4 Reverse Activity

Previous work has demonstrated developmental regulation of the predominant sphingolipid species in the lifecycle of the parasite. IPC was found to be predominant in the procyclic form (PCF) but undetectable in the blood stream form (BSF). This has been correlated with the developmental regulation of the different isoforms of the TbSLSs. However the fate of the accumulated IPC in the PCF remained unexplained. Towards this end, the ability of TbSLS4 to catalyse the reverse activity (IPCase function) was investigated. Such activity would indicate a role in the remodelling of the parasite sphingolipids during the lifecycle.

Testing this hypothesis required NBD-C6-IPC which is not commercially available. Consequently, in a tenfold scaled-up experiment using LmjIPCS microsomes, NBD-C6-ceramide was converted to NBD-C6-IPC which was subsequently purified using HPTLC. The resultant NBD-C6-IPC was kept at −80°C until use. Equivalent amounts (by protein concentration) of CHAPS-washed microsomal membranes containing LmjIPCS or TbSLS4 were added to NBD-C6-IPC in the presence or absence of DAG (acting as a potential acceptor substrate to form PI) (Figure 3-7). Under the experimental conditions TbSLS4 exhibited the capacity to catalyse the reverse reaction in the presence of DAG whilst LmjIPCS did not (Figure 3-7). Such activity suggests that TbSLS4 might be involved in the recycling of the IPC during the lifecycle of the parasite.
Figure 3-7: (Top) The hypothetical reaction scheme for the experiment design of the reverse activity of LmjIPCS and TbSLS4 with potential labelled products boxed. (Bottom) The visualisation of the NBD-C6-IPC and the released NBD-C6-ceramide using the HPTLC plate showing no reverse activity in case of LmjIPCS and DAG-dependent reverse activity in case of TbSLS4.
3.3 *At*IPCS 1, 2 & 3 (*At*3g54020.1, *At*2g37940.1 & *At*2g29525.1)

3.3.1 Introduction

Although the activity of an IPCS orthologue had been detected in bean microsomes, the plant enzyme remained unidentified. However, interrogation of the Arabidopsis genome database with the predicted protein sequence of *Lmj*IPCS identified opening reading frames encoding three highly related sequence orthologues – *At*IPCS1 (*At*3g54020.1), *At*IPCS2 (*At*2g37940.1) and *At*IPCS3 (*At*2g29525.1)– demonstrating 26, 29 and 31% identity to the protozoan protein respectively. These newly identified putative plant IPC synthases form a new class of sphingolipid syntheses where the key motifs, D3 and D4 that contain the catalytic triad necessary for the transferase activity of the sphingolipid synthase family are conserved, but unlike their protozoan and mammalian counterparts, they lack a D1 domain and thus resembling the fungal IPC synthases. Despite the conservation of some of these motifs the plant sequences are divergent with respect to primary sequence.

Previous work within the group demonstrated that the complementation of the AUR1 auxotrophic mutant *YPH499-HIS-GAL-AUR1* with *pRS426 At*IPCS1-3 restored the growth of the mutant yeast. These data indicated that *At*IPCS1, 2 and 3 are functional orthologues of fungal AUR1p. Additionally, using a diffusion assay the efficacy of two different classes of inhibitor were assayed against *YPH499-HIS-GAL-AUR1 pRS426 At*IPCS1, 2 and 3. The transgenic yeast strains were resistant to aureobasidin A at 100 µM but remained sensitive to myriocin (SPT inhibitor). Further validation of the function of the isolated enzymes required an *in vitro* assay system suitable to test their hypothesised transferase activity.

3.3.2 Construction of the *At*IPCSs complemented Mutant Yeast Strain

As previously described under sections 2.1.1 and 3.2.2, the auxotrophic *YPH499-HIS-GAL-AURI* *S. cerevisiae* strains complemented with the vectors *p426MET25, p426MET25-At*IPCS1, *p426MET25-At*IPCS2, *p426MET25-At*IPCS3 and *p426MET25-ScIPCS (AUR1)* -obtained from Dr. Denny- were constructed and functionally complemented transformants were selected on non-permissive SD medium (0.17 % Bacto yeast nitrogen base, 0.5 % ammonium sulphate, and
2% dextrose) containing the nutritional supplements necessary to allow selection of transformants (Figure 3-8).

![Figure 3-8: Transformation of YPH499-HIS-GAL-AUR1 S. cerevisiae with p426MET25 (Control), p426MET25-AtIPCS1-4 and p426MET25-ScIPCS (AUR1).]

3.3.3 Microsomes Preparation and *in vitro* Activity Assay

The *AtlPCS* microsomal membranes were prepared from *YPH499–HIS–GAL–AUR1 pRS246 AtlPCS1-3* and *YPH499–HIS–GAL–AUR1 pRS246 AUR1* and assayed as described previously. Assays were performed using protocol ‘B’. However, it was presumed that the most efficient donor substrate would have been the soybean PI (predominant species 16:0/18:2) (*c.f.* sections 2.1.3.2 & 3.2.2.1). This hypothesis was supported by experimental evidence as will be discussed below in section 3.3.3.1. It is noteworthy that CHAPS-washing the crude *AtlPCS* microsomes resulted in apparent inactivation of the enzyme *AtlPCS1* & 3. However, in the case of *AtlPCS2*, the enzyme remained active but with high background activity.

3.3.4 *AtlPCS1-3 are Functional IPC Synthases*

3.3.4.1 Activity vs. Different Donor Substrates

Having established that *AtlPCS2* is the most highly expressed isoform, the most responsive isoform under the assay conditions and the only *AtlPCS* to give detectable activity after washing, CHAPS-washed *AtlPCS2* microsomes were prepared and tested against different donor substrate variants: mammalian, plant (soy) and synthetic (dipalmitoyl) PI. It has been found that while
AtIPCS2 showed highest activity with the plant PI and considerable turnover with the mammalian variant, it could not utilise the synthetic variant (Figure 3-9). This could be attributed to the varying degrees of polyunsaturation between plant, mammalian and saturated dipalmitoyl PI which may confer conformational constraints that were not met by the active site of AtIPCS2.

![Figure 3-9: CHAPS-washed AtIPCS2 activity vs. different variants of the donor substrates, PI.](image)

3.3.4.2 Ab A inhibition

Using the established *in vitro* assay system, equal quantities (by protein concentration) of the microsomes prepared from YPH499-HISGAL-AUR1 pRS426 AtIPCS1-3 were tested for IPC synthase activity in the presence of aureobasidin A (5.0 \(\mu \)M) to suppress any possible background activity due to the yeast AUR1p. Although the turnover of AtIPCS1-3 appeared low, the detectable activity was successfully quantified in terms of NBD-C\(_6\)-IPC (Figure 3-10). Similar observations of this low level of activity have been previously noted by Wang *et al.*\(^{16}\) Moreover, Wang has reported that the low level of activity was unaffected by the use of NBD-C\(_6\)-phytoceramide (plant variant) rather than NBD-C\(_6\)-ceramide as acceptor substrate.
Figure 3-10: (Left) Assay in the presence of phosphatidylinositol (PI), with (+) or without (-) the specific fungal inhibitor aureobasidin A (AbA). In contrast to the S. cerevisiae IPC synthase (AUR1), the plant activity encoded by AtIPCS1-3 is insensitive to AbA at 5 µM. (Right) Quantification of the produced NBD-C6-IPC. Mean of 3 separate experiments, S.E. shown. A.F.U, Arbitrary Fluorescence Units.

The *in vitro* assay of AtIPCS1-3 has demonstrated that the three plant enzymes are active IPC synthases and confirmed that the Arabidopsis enzymes are aureobasidin A insensitive. This is in contrast to the IPCS activity assayed in Golden butter wax bean extracts that has been shown to be acutely sensitive to this inhibitor. The reasons for this difference in aureobasidin A sensitivity are unclear and no data are currently available for the bean sequence to help elucidate this discrepancy.
3.4 Conclusion

The work demonstrated in this chapter highlighted the successful application of the earlier established assay protocols to orthologous enzymes, both closely related (TbSLS4) and divergent (AtIPCSs). However, more work is required for further optimisation. Additionally, the inhibitory effect of aureobasidin A on TbSLS4 has been established and a nanomolar IC$_{50}$ value has been determined. Furthermore, the comparative capacity of LmjIPCS and TbSLS4 to catalyse the reverse reaction has been investigated. To the best of the author’s knowledge, TbSLS4 represents the first IPC synthase with IPCase activity.

Using the established assay protocol, it was also possible to demonstrate the aureobasidin A insensitive IPC synthase turnover by all three identified sequence-divergent Arabidopsis isoforms. This evidence supports AtIPCS1-3 as a new group of sphingolipid synthases within the wider enzyme family.1 Moreover, in a concurrent work, it has been demonstrated that during a screen for factors involved in programmed cell death (PCD) defence mechanisms, an AUR1 functional orthologue was identified in Arabidopsis. However, the encoded protein demonstrated little homology to the yeast AUR1p, having most similarity to the more recently identified animal sphingomyelin synthases.16
REFERENCES

CHAPTER IV

SYNTHESIS OF SUBSTRATE ANALOGUES
This chapter describes the chemical synthesis of a first generation library of potential inhibitors. Screening of this library against *LmjIPCS* using the assay protocol described in chapter II would generate basic SAR data which can be used to guide future synthesis of inhibitors and/or photolabelling probes with the ultimate objective of mapping the active site of *LmjIPCS* (Figure 4-1). Results from the screening of this library together with the SAR data and recommendations for future design of inhibitors will be discussed in Chapter V.

![Figure 4-1: Work Strategy towards the set objectives](image-url)
4.2 The Rationale behind the Design of Potential Inhibitors

4.2.1 The Structural Features of Known Substrates and Inhibitors

Having determined the kinetic parameters of \(LmjIPCS \), attention then turned towards the rational design of potential inhibitors against \(LmjIPCS \). The known fungal IPCS inhibitors (Figure 4-2) were excluded due to their complex structure and the fact that no modification to-date has resulted in more potent analogues. Additionally, the long studied khafrefungin, rustmicin and aureobasidin A exhibited a non-competitive mode of inhibition which does not suggest usefulness in mapping the active site of \(LmjIPCS \) (see section 1.2.7). However, a survey of the structural features of known donor and acceptor substrates (Figure 4-3) in addition to the previously described ceramide mimics (see section 2.2.4.2) represented a valid alternative for the rational design of substrate mimics that might result in potential inhibitors.

![Figure 4-2: Inositol phosphorylceramide synthase inhibitors](image)

Khafrefungin (S. M. Mandala, 1997) (24)
Aureobasidin A (M. M. Nagiec, 1997) (25)
Rustmicin (S. M. Mandala, 1998) (26)
It has been found that a common feature of all substrates was the presence of at least one long hydrophobic fatty chain which might be essential for binding into the hydrophobic pocket of this integral membrane protein. However, the requirement for a second hydrophobic fatty residue differs in the structural requirements of the donor and acceptor substrates, PI and ceramide respectively. It has been shown previously that reducing the length of the ceramide second fatty acid chain (N-acyl residue) to two carbons (C₂-ceramide), did not affect the capacity of LmjIPCS to turn it over to the respective product (C₂-IPC) (see section 2.2.4.2). This is consistent with earlier work in the literature that has reported the use of C₂-ceramide as a C₁₈-ceramide equivalent. Moreover, the commercially available ω-fluorescent N-acyl ceramide analogues (NBD-C₆/C₁₂-ceramide and BODIPY-FL-C₅-ceramide) that have variable N-acyl chain length have been widely used in studies of sphingolipid synthases. In contrast, previous work with IPC synthase from C. albicans has shown that the lack of a second fatty acid residue (2-sn-acyl) in the donor substrate, i.e. lyso-PI, appeared to compete with the donor substrate, PI, and also resulted in a considerable deactivating solubilising effect on the microsomal membrane structure and subsequently the IPC synthase.
It is noteworthy, that the absence of an N-acyl moiety and the presence of an unmasked amino functionality as in sphingosine resulted in a true inhibitory effect on \textit{Lmj}IPCS activity. This is consistent with precedent reports that had identified long chain 2-amino alcohols to exhibit many biological activities14 and in particular anti-leishmanial effects.15 This observation could be attributed to the fact that the amide functionality can act as both an H-donor and H-acceptor while the free, mostly protonated, NH$_2$ group would act as an H-donor only.

4.2.2 The Template Structure for Potential Inhibitors

At the onset, two possible approaches were considered for the inhibitor template structure. These are substrate-like (PI-like and/or ceramide-like) and product-like (IPC-like). The latter was excluded due to the complex chemical synthesis of phosphosphingolipids and based on the observation that \textit{Lmj}IPCS does not catalyse the reverse activity, which render the enzyme affinity towards IPC uncertain. Although this might hold valid for \textit{Lmj}IPC\textsubscript{S}, it can be further exploited in terms of inhibitors targeting \textit{Tb}SLS4 which has demonstrated IPCase activity.

Apart from the exhausting and complex synthesis of phosphatidylinositol lipids,16, 17 it has been shown that \textit{Lmj}IPCS shows relatively lower affinity towards PI (\textit{c.f.} ceramide). Moreover, the presence of the enzyme in the form of microsomal membranes where there is always residual amounts of PI might suggest that the enzyme will be in the phosphorylated form which makes it less likely for a PI analogue to bind to the active site. In contrast, the kinetic analyses indicated a higher affinity of \textit{Lmj}IPCS towards NBD-C_6-ceramide (comparable affinity as such towards natural C_{18}-ceramide) over PI. Also, considering the fact that C_2-ceramide has been shown to act as a substrate to the enzyme while sphingosine is not, suggests possible modulation of the enzyme activity using ceramide analogues which would range between one-site competitive binders to true inhibitors. Finally, the chemical synthesis literature has a wealth of knowledge of synthetic routes to sphingosines and ceramides that can be used in parallel synthesis of libraries of ceramide mimics. Therefore, the acceptor substrate, ceramide, was chosen to be the template for the inhibitor design in subsequent work.
4.3 Synthesis of a Ceramide Analogues Library

The library was designed to probe the structural features of ceramide (Figure 4-3). Even excluding the possibility of cyclic mimics, a large number of possible analogous compounds could be hypothesised. Six structural features were selected to probe their effect in terms of affinity towards LmjIPCS and modulation of the enzyme activity. These included the presence or absence of the 1-hydroxy group, the presence or absence of the 3-hydroxy group, the position of the double bond, the nature/chain length of the sphingosine backbone, the presence or absence of the amide functionality and the nature/chain length of the N-acyl fatty acid residue (Figure 4-4).

Figure 4-4: The structural features of the ceramide molecule with the selected features highlighted.

4.3.1 Synthetic Routes to Sphingosine and ceramide

Since the correct relative orientation of the functional moieties of sphingosine was presented by Carter et al in 1947, intensive synthetic efforts have been applied to its preparation. This is confirmed by the enormous number of reported chemical synthetic routes towards the preparation of sphingosine derivatives including ceramides. A comprehensive review of these synthetic routes is beyond the scope of this thesis. However, a brief summary will be presented to highlight the basis of the adopted synthetic strategy.

In stereochemical terms, sphingosine chemical syntheses can be simply categorised as racemic or asymmetric syntheses. The latter can be subcategorised on the basis of the starting material as syntheses from chiral or achiral pool. While the chiral syntheses are based on sugar derivatives, amino acids and their derivatives, Garner aldehydes or other chiral
starting materials,29,30 the latter introduce chirality using either chiral synthetic reagents or chiral catalysts (Scheme 4-1).31-33

Scheme 4-1: Different Synthetic Routes to Sphingosine.
4.3.2 The Synthetic Strategy for the Parallel Synthesis

4.3.2.1 The Retro Synthetic Analysis for the Common Scaffold

The starting material for the retro synthetic analysis was envisaged to be a set of hydroxylated amino alkene scaffolds from which ceramide analogues with different patterns of hydroxylation could be obtained. These scaffolds represent three series of analogues, ceramide, 1-deoxy-ceramide and 3-deoxy-ceramide analogues (Scheme 4-2). Screening of these series of analogues against \(Lmj \)IPCS would allow probing the selected set of the structural features of ceramide. Details of the proposed synthetic routes of these scaffolds will be discussed below.

Scheme 4-2: (A) The Retro Synthetic Analysis of the common scaffold for three series of analogues with different hydroxylation pattern. (B) The proposed three precursors for the synthesis of the analogues series. (PG, Protecting Group).
4.3.2.2 The Proposed Synthetic Routes

The main requirements of the synthetic routes were versatility (in terms of R1 and R2, Scheme 4-3), atom efficiency and cost efficiency. In terms of versatility, the olefin cross metathesis can be utilised to form the sphingosine-like backbone chain (R1). This methodology would allow the use of virtually any terminal alkene (R1=CH=CH\textsubscript{2}) and hence make the synthesis of an array of a large number of analogues possible. Furthermore, using a deprotection-acylation sequence, a variety of acyl chlorides can be used. This would result in a diverse range of the N-acyl residues (R2) in the ceramide-like end product analogues (Scheme 4-3).

![Scheme 4-3: Versatility of the proposed synthetic sequence.]

4.3.3 Synthesis of Scaffold ‘1’: N-Boc-2-aminopent-4-ene-1,3-diol

Yamamoto et al.26 had reported a versatile protocol for the synthesis of sphingosine and ceramide derivatives. Briefly, L-serine was Boc protected, converted to the Weinreb amide and then protected as the TBS ether followed by treatment with vinyl magnesium bromide to afford compound (206a) which was later used to prepare C\textsubscript{16}-ceramide (Scheme 4-4).

![Scheme 4-4: Yamamoto’s sequence for the synthesis of sphingosine and ceramide derivatives.]

Consequently, N-Boc-1-serine was converted to the Weinreb amide (202) in a high yield (91%) using N-methylmorpholine (NMM), N,O-dimethylhydroxylamine hydrochloride and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) hydrochloride as a coupling reagent (Scheme 4-5). Evidence for the formation of (202) was observed by the appearance of distinctive two sharp peaks at 3.78 ppm (OCH$_3$) and 3.24 ppm (NCH$_3$) in the 1H NMR spectrum and confirmed by the upfield shift of the C1 175.0 to 170.9 ppm in the 13C NMR spectrum and a peak at m/z 271.2 in the ESMS corresponding to [M+Na]$^+$. Subsequently, the primary hydroxyl group of (202) was protected as the TBS ether (204) in a high yield (89%). Evidence for the formation of (204) was observed by the loss of a broad OH peak above 3000 cm$^{-1}$ in the IR spectrum and the appearance of the 2 × SiMe and SiC(Me)$_3$ peaks at 0.02, 0.01 ppm and 0.85 ppm respectively in the 1H NMR spectrum coupled with a molecular ion at m/z 362.5 [M+H]$^+$ in the ESMS spectrum. Finally, the enone (205) was generated in very good yield (84%) upon treating (204) with an excess of vinyl magnesium bromide. Evidence for the formation of (205) was observed through the appearance of characteristic multiplets of the olefinic protons signal in the 1H NMR spectrum at 6.55 ppm (4-CH), 6.34 ppm (5-CH$_{trans}$) and 5.83 ppm (5-CH$_{cis}$) and confirmed by a downfield shift of the C2 from 170.9 ppm to 196.8 ppm in the 13C NMR spectrum. Spectral data of all intermediates up to (205) were identical to the previously reported syntheses.26, 34 It is noteworthy that attempts to modify Yamamoto’s sequence resulted in failed reactions (Scheme 4-6).

![Scheme 4-5: Following the sequence of Yamamoto’s synthesis (200 → 202 → 204 → 205).](image-url)
With the enone (205) in hand, the next step was the stereospecific reduction to set the desired stereochemistry at C3. This reduction proved to be critically dependent on the solvent used and the reducing agent. Initial attempts to reduce the enone (205) using sodium borohydride at −78 °C in MeOH resulted in a complex mixture that consisted primarily of the fully reduced alcohol (206c) with a minor fraction of the desired alkene (206a) that could be detected in the \(^1\)H NMR spectrum of the crude products. Recourse to lithium tri-tert-butoxy aluminium hydride in MeOH resulted in a mixture of the 1-4 Michael addition reduced product (206c) and the desired alkene (206a). However, the resultant mixture was inseparable using column chromatography. Finally the reduction was accomplished using lithium tri-tert-butoxy aluminium hydride in spectrophotometric grade ethanol (as in Yamamoto’s report) to yield the desired product (206a) as a single diastereoisomer as ascertained by the \(^1\)H NMR spectrum in high yield (95%) as viscous oil (Scheme 4-7). The stereochemical outcome of the reduction reaction which resulted in one single diastereoisomer can be explained using either Felkin-Anh assuming that the (−CH\textsubscript{2}OTBS) to be the largest substituent on C2 model or the chelation model (Scheme 4-8).
CHAPTER IV: SYNTHESIS OF SUBSTRATE ANALOGUES

4.3.4 Synthesis of the Scaffolds of 1-Deoxyceramide Analogues

Having successfully synthesised the core for the ceramide analogues, attention then turned to the other series of analogues that lacked the primary (1-OH) hydroxyl group. Two different series of these analogues were synthesised which simply differed in the position of the double bond. The starting material for both was N-Boc-L-alanine.

4.3.4.1 Synthesis of Scaffold ‘2a’: N-Boc-2-aminopent-4-en-3-ol

Applying the same sequence previously described in the preparation of (206a), using N-Boc-L-alanine instead of N-Boc-L-serine as the starting material, an analogous precursor for 4E-1-deoxyceramide analogues could be prepared (Scheme 4-9). The data for all compounds was consistent with the proposed structures. Again, attempts to reduce the enone (102) using lithium tri-tert-butoxy aluminium hydride in MeOH resulted in an inseparable mixture of the fully reduced alcohol (103c) and the desired alkene (103a). Consequently, the desired product was successfully prepared using lithium tri-tert-butoxy aluminium hydride in spectrophotometric grade ethanol to yield (103a) in a high yield (89%) as a single diastereoisomer as ascertained by the 1H NMR spectrum of the crude product. Evidence of the formation of (103a) was supported
by the appearance of a new multiplet peak at 4.22–4.16 (3-\(H\)) in \(^1\)H NMR identical to the previously reported synthesis\(^{35}\) of (103a) (Scheme 4-10).

Scheme 4-9: Synthesis of the enone (102) via a Weinreb amide intermediate.

Scheme 4-10: Synthesis of the 4E-1-deoxyceramide Analogues Precursor (103a)

4.3.4.2 Synthesis of Scaffold ‘2b’: N-Boc-2-aminohex-5-en-3-ol

An alternative route was explored to access analogues in which the position of the double bond is one methylene unit further. Based on a procedure initially reported by Toumi et al.,\(^{36}\) \(N\)-Boc-L-alanine was first treated with an equimolar amount of \(n\)-BuLi followed by allylmagnesium bromide to afford the allyl ketone (121) as a crystalline white solid in high yield (95%). Evidence for the formation of (121) was observed in the IR spectrum by the absence of a broad hydroxyl peak above 3000 cm\(^{-1}\) and confirmed by the appearance of the olefinic protons peaks at 5.91 ppm (5-\(H\)) and 5.15 ppm (6-\(H_2\)) in the \(^1\)H NMR spectrum, the downfield shift of the C3 to 207.6 ppm in the \(^{13}\)C NMR spectrum. Subsequently, the allyl ketone (121) was then reduced using sodium borohydride at −78 °C to yield a mixture of diastereoisomers (122a) and
(122b) in a ratio of 82:18 respectively (as determined by the 1H NMR spectrum of the crude products) and a total yield of 92% (Scheme 4-11).

![Scheme 4-11: Synthesis of 5E-1-deoxyceramide Analogues Precursor (122a)]

Although a complete separation of the two diastereoisomers was very difficult using column chromatography (R_f 122a ≈ 0.30, R_f 122b ≈ 0.32; EtOAc/pet. ether 25/75), a pure fraction of (122a) could be isolated. Evidence for the formation of (122a) was observed in the IR spectrum by the appearance of a hydroxyl peak at 3250-3350 cm$^{-1}$ and the loss of the carbonyl band at 1726 cm$^{-1}$. Further confirmation was obtained through the appearance of a new signal at 3.71 ppm assigned to the carbinol (C-H) and the downfield shift of the C3 signal from 207.6 ppm to 73.4 ppm in the 1H and 13C NMR spectra respectively.

4.3.5 Synthesis of Scaffolds ‘3’: N-Boc-2-aminopent-4-en-1-ol

Having successfully established routes to the 3-hydroxylated core, the next objective was to establish a route for the 3-deoxy analogue. So far, the 3-oxygenated position was essential for the introduction of the long chain precursor (allyl or vinyl side chains); therefore, an alternative strategy was required.

Since the early 1970s, phase-transfer catalysis (PTC) has been recognized as a versatile methodology for organic synthesis in both industrial and academic laboratories. This is because it features simple experimental operations, mild reaction conditions, inexpensive and environmentally benign reagents. In addition, it has become an increasingly expanding utility with applications in different asymmetric synthetic reactions. Moreover, O’Donnell had
reported several studies38-41 focused on the use of PTC in the asymmetric preparation of \(\alpha\)-amino acids from the achiral glycine-derived Schiff base using cinchona alkaloids quaternary ammonium salts as active catalysts (Scheme 4-12).

Scheme 4-12: An example of PTC in the enantioselective alkylation of a glycine Schiff base.

This strategy therefore seemed ideal for the goal of preparing precursor ‘3’, \(N\)-Boc-2-aminopent-4-en-1-ol starting from the commercially available hydrochloride salt of glycine through asymmetric amino acid alkylation reaction. Additionally, using cinchona alkaloids (cinchonine and cinchonidine) derived PT catalysts, two series could be prepared from the glycine-derived Schiff base and the alkyl halide, allyl bromide. These two series would simply differ in the stereochemistry at C2 (Scheme 4-13).

Scheme 4-13: The retrosynthetic analysis of the precursor for the 3-deoxy ceramide analogues.
Towards this end, the cinchona alkaloids phase transfer catalysts were prepared in the active form, \(O\)-allyl. Following previously reported procedures, the quaternary ammonium salts of cinchonidine (303) and cinchonine (305) were prepared using 9-chloromethylanthracene in refluxing toluene in 88% and 48% isolated yield respectively. Subsequently, the quaternary ammonium salts were converted to the allyl forms (304) and (306) using allyl bromide and aq. KOH in Toluene/DCM at room temperature in 84% and 87% isolated yield respectively (Scheme 4-14). Spectral data of the synthesised catalysts were identical to literature reports.

Scheme 4-14: Synthesis of the phase-transfer active catalysts from the cinchona alkaloids.

4.3.5.1 Synthesis of the Benzophenone Glycine Imine

With the PT catalysts in hand, synthetic efforts were directed towards the synthesis of the glycine Schiff base. Consequently, following the procedure previously reported by O’Donnell, the Schiff base (307) was successfully prepared from methyl glycine hydrochloride. Briefly, stirring of methyl glycine hydrochloride with an equimolar amount of benzophenone imine in anhydrous DCM afforded the desired product in very good isolated yield (80%) as white waxy solid. Evidence of the formation of (307) was observed in the IR spectrum by the absence of NH peaks above 3000 cm\(^{-1}\) and the upfield shift of the Ph\(_2\)C peak to 172.0 ppm (cf., benzophenone imine 177 ppm) in the \(^{13}\)C NMR spectrum and confirmed with the mass peak at \(m/z \) (ES\(^+\)) 254.4 [M+H]\(^+\) (Scheme 4-15).
CHAPTER IV: SYNTHESIS OF SUBSTRATE ANALOGUES

4.3.5.2 Synthesis of (2R) & (2S) N-Boc-2-aminopent-4-en-1-ol

With both the Schiff base (307) and the active catalysts (304) and (306) in hand, the preparation of the (2R)-4E-3-deoxyceramide and the (2S)-4E-3-deoxyceramide precursors was straightforward. The enantiomers (309) and (329) were prepared successfully in good yield (c.a. 78%, Scheme 4-16) using the general procedure for enantioselective phase-transfer amino acid alkylation\(^\text{42, 45}\) (see Chapter VIII). Unfortunately, due to technical difficulties, determination of the enantiomeric ratio of the precursors was not possible in the time available and the purified reaction products were assumed to be scalemic mixtures.

4.3.6 Olefin Cross Metathesis (CM) of the Prepared Scaffolds

Having successfully prepared all the scaffolds (206a, 103a, 122a, 309 and 329) needed, these were subjected to olefin cross metathesis\(^\text{26}\) conditions using 2\(^{nd}\) generation Grubb’s catalyst (0.3% mol) in refluxing DCM with four equivalents of the coupling olefins 1-pentadecene, 1-hexene and allyl benzene (Scheme 4-17). The double bond geometry in all purified products was
trans and this was confirmed by the coupling constant $J_{\text{Ha-Hb}} = 14\text{~}15$ Hz in the ^1H NMR spectra. The cis diastereoisomer was not detected in the ^1H NMR spectra of the crude reaction mixtures or in the isolated fractions from column chromatography.

It is noteworthy that during the preparation of more material of the precursor (122a) few months after the first batch, repeating the same CM reactions resulted in a complex mixture of products. Separation of the crude products using column chromatography resulted in the isolation of (122c) (Scheme 4-18). Evidence for the formation of (122c) was supported by the appearance of a doublet at 1.71 ppm in the ^1H NMR spectrum corresponding to the methyl group ($\text{CH}_3\text{–CH=CH–}$) in the isomerised product and confirmed by the ^1H ^1H COSY 2D NMR spectrum. This suggested that the reaction course mainly followed an olefin isomerisation instead of the CM as suggested by trace peaks of the desired product in the ^1H NMR spectrum of the crude products (Scheme 4-18).
Similar observations has been previously reported by Gimeno et al.46 Gimeno recommended that the addition of a catalytic amount (5 %) of benzoic acid suppressed the olefin isomerisation and directed the reaction towards the metathesis product (Scheme 4-19). Following Gimeno’s recommendations, conducting further CM reactions in the presence of 5% benzoic acid suppressed the isomerisation reaction and the reaction course was switched back towards the generation of the CM product (Scheme 4-20).

While the precursors (103a), (122a), (309) and (329) afforded the corresponding crude products that were easily purified using column chromatography, the precursor (206a) resulted in highly non-polar crude products whose purification was difficult and time consuming. Consequently, (206a) was deprotected to afford the diol (207) in a high yield 92 % which was later subjected to olefin cross metathesis conditions to yield the corresponding products that were easy to purify (Scheme 4-21). All metathesis product yields are summarised in Table 4-1.
Scheme 4-21: (206a) vs. (207) as a convenient precursor for the olefin cross metathesis reaction.

Table 4-1: Product yields of the Olefin Cross Metathesis reactions.

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Coupling Olefin</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>103a</td>
<td>1-pentadecene</td>
<td>52</td>
</tr>
<tr>
<td>103a</td>
<td>1-hexen</td>
<td>67</td>
</tr>
<tr>
<td>103a</td>
<td>allyl benzene</td>
<td>64</td>
</tr>
<tr>
<td>122a</td>
<td>1-pentadecene</td>
<td>53</td>
</tr>
<tr>
<td>122a</td>
<td>1-hexen</td>
<td>56</td>
</tr>
<tr>
<td>122a</td>
<td>allyl benzene</td>
<td>64</td>
</tr>
<tr>
<td>309</td>
<td>1-pentadecene</td>
<td>53</td>
</tr>
<tr>
<td>309</td>
<td>1-hexen</td>
<td>71</td>
</tr>
<tr>
<td>309</td>
<td>allyl benzene</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Coupling Olefin</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>206a</td>
<td>1-pentadecene</td>
<td>72</td>
</tr>
<tr>
<td>206a</td>
<td>1-hexen</td>
<td>71</td>
</tr>
<tr>
<td>206a</td>
<td>allyl benzene</td>
<td>65</td>
</tr>
<tr>
<td>207</td>
<td>1-pentadecene</td>
<td>44</td>
</tr>
<tr>
<td>207</td>
<td>1-hexen</td>
<td>59</td>
</tr>
<tr>
<td>207</td>
<td>allyl benzene</td>
<td>62</td>
</tr>
<tr>
<td>329</td>
<td>1-pentadecene</td>
<td>62</td>
</tr>
</tbody>
</table>

4.3.7 Deprotection and Acylation of CM Products

The CM products were later converted to the end products through a BOC deprotection-acylation sequence. Subjecting the Boc-protected compounds to acidic de-protection conditions using TFA, afforded the free amine compounds after workup. For each compound, a minor fraction was kept as the parent amine compound while the rest of the material was divided into three or four acylation reactions using different acyl chlorides (acetyl Cl, phenylacetyl Cl, benzoyl Cl and octanoyl Cl). Assessment of the crude product purity was based on crude 1H NMR. Compounds that were $\geq 80\%$ pure were used as soon as they were produced. Others were purified by standard column chromatography. It is noteworthy that in the deprotection of (332), the crude product gave two major TLC spots (pet ether/EtOAc 3:1). A spot at the base line corresponding to the deprotected amine and a second spot ($R_f = 0.30$) almost co-eluting with the starting material. The fraction corresponding to the second spot was isolated and identified to be
the trifluoroacetyl amide using 19F NMR spectroscopy and ESMS (Scheme 4-22). This impurity has been observed in other reactions but in trace amounts and could not be isolated.

![Scheme 4-22: Formation of the trifluoroacetyl amide in the TFA mediated deprotection of the Boc-protected compounds.](image)

4.3.8 Synthesis of Ceramide-1-Phosphate Analogue

The compound (338) was prepared as a potential ceramide-1-phosphate analogue with the prospect that it might alkylate the active histidine residue in *LmjIPCS*. However, the stability of this compound in the assay buffer was questionable. It was prepared from the surplus of the undesired product (334) in good yield, 77 % (Scheme 4-23).

![Scheme 4-23: The synthesis of ceramide-1-phosphate analogue (338).](image)

4.3.9 Synthesis of the 1-Phenyl-2-aminopropanol Series

The *N*-myristoyl derivatives of 1-phenyl-2-aminopropanol, *erythro*-MAPP, had been previously reported to mimic the action of ceramide. However, while the d-*erythro*-MAPP induced a concentration- and time-dependent growth suppression of HL-60 human
promyelocytic leukaemia cells, the L-erythro-MAPP enantiomer was without effect (Figure 4-5).

Figure 4-5: Effects of D- and L-e-MAPP on endogenous levels of ceramide. Reprint with permission "This figure was originally published in Journal of Biological Chemistry©. Bielawska et al. 1996; 271(21): 12646-12654.

With the starting material, 1-phenyl-2-aminopropanol, available in hand, analogues of erythro-MAPP were successfully prepared using acetyl chloride, phenylacetyl chloride, benzooyl chloride and octanoyl chloride to afford the corresponding products in good to high yields (Scheme 4-24).
4.4 Conclusions

The work presented in this chapter demonstrated the successful preparation of five series of ceramide mimics. These are ceramide, 1-deoxy-4E-ceramide, 1-deoxy-5E-ceramide, (2R)-3-deoxy-4E-ceramide and (2S)-3-deoxy-4E-ceramide analogues. In addition to the 1-Phenyl-2-aminopropanol derivatives and a potential ceramide-1-phosphate mimic. These analogues were prepared using well-established synthetic methodology.

The key reactions included a stereospecific reduction of an enone and asymmetric amino acid alkylation using PT catalysis. The key features of the synthetic routes included versatility in the sphingosine-backbone-mimic and the N-acyl residues which were introduced using olefin cross metathesis and deprotection-acylation sequence. The screening results of testing these analogues against LmjIPCS will be discussed in Chapter V.
CHAPTER IV: SYNTHESIS OF SUBSTRATE ANALOGUES

References

CHAPTER V

SCREENING OF THE SUBSTRATE ANALOGUES
5 SCREENING OF THE SUBSTRATE ANALOGUES

5.1 Work Synopsis

The work presented in this chapter demonstrates the achievement of the last objective of this chemical biology project in terms of generation of preliminary SAR data towards mapping the active site of LmjIPCS (Figure 5-1). This chapter describes the screening of the library of ceramide analogues against LmjIPCS, determination of the Z-prime value of the assay platform and finally demonstration of the proposed SAR hypotheses together with the recommended future work to test these hypotheses.

Figure 5-1: A flow chart of the process of screening of the substrate analogues against LmjIPCS and the analysis of the results. Grey boxes and arrows represent future work.
5.2 Preparation of the Screening Compounds

All compounds were first dissolved in MeOH and 1.0 mM stock solutions were prepared in DMSO/MeOH (9:1 v/v) and 0.20 mM working solutions in DMSO/MeOH (98:2). All prepared solutions were stored at -20 °C until use. In addition to the final ceramide analogues the screening was expanded to include key synthetic intermediates that exhibit structural similarities to the ceramide scaffold and to act as controls to account for interference due to minor impurities that might have been carried over from previous reactions.

5.3 The Assay Protocol of the Inhibition Assays

The hydrophobic nature of most of the synthesised substrate analogues required special attention to ensure their solubility/dispersion in the reaction mixture. This required minor modifications to adapt the assay protocol for screening purposes. For each inhibition reaction, the donor substrate (PI) and test inhibitors were first dried into a reaction Eppendorf tube followed by addition of the reaction buffer, CHAPS and NBD-C₆-ceramide followed by sonication for 3 minutes. The reaction was started by the addition of LmjIPCS microsomes (Figure 5-2). This reverse of order of addition of reactants and conducting the reactions without pre-incubating of LmjIPCS with PI allowed for the possibility that some screened compounds might act as competitive inhibitors in terms of PI in addition to maintaining the final DMSO concentration of 5 %. Final concentrations of the test compound, PI and NBD-C₆-ceramide were 20 µM, 100 µM and 5 µM respectively. All reactions were done in triplicates with the inhibitory effect quantified by the change in the formation of the labelled product, NBD-C₆-IPC.

Figure 5-2: Comparison of the assay protocols. (A) Protocol used in determination of the kinetic parameters. (B) Protocol adapted for screening purposes.
5.4 Analysis of the Screening Results

Details of the results of all tested compounds are summarised in (Appendix C). The screening results of the ceramide analogues library and the key synthetic intermediates (that resembles ceramide) together with two classes of compounds, Nor-ephephedrine derivatives and β-blockers, will be discussed below in separate graph for clarity reasons. This will be followed by the calculation of the Z-prime value for the inhibitions assays, the determination of the IC$_{50}$ values of identified potent inhibitors and their mass spectrometric analyses.

5.4.1 The Ceramide Analogues Library

The screening of the ceramide analogues library identified 27 compounds with inhibitory effect greater than 40 % out of which 10 compounds showed inhibitory effect between 50~70 % and 3 compounds exhibited inhibition greater than 75 % against LmjIPCS (Figure 5-3).

The top inhibitory compounds were compound (222) (R$^1 = C_{13}H_{27}$, R2 = octanoyl) in Series 3 (ceramide analogues), compound (112) (R$^1 = C_{13}H_{27}$, R2 = octanoyl) in Series 1 (1-deoxy-ceramide analogues) and compound (336) (R$^1 = C_{13}H_{27}$, R2 = phenylacetyl) in Series 5 (2R-3-deoxy-ceramide analogues). These compounds exhibited 87 %, 79 % and 76 % inhibition of LmjIPCS respectively.

In general, the results indicated a trend of a proportional increase in the inhibitory effect of the ceramide analogue based on their hydrophobicity. Changing the hydrophobic tail of the sphingosine backbone from CH$_2$Ph and C$_4$H$_9$ (less hydrophobic) to C$_{13}$H$_{27}$ (more hydrophobic) resulted in an almost regular trend of increasing the inhibition of LmjIPCS. In contrast, although the change in the N-acyl residue appeared to be synergistic in terms of adding more hydrophobic character to the analogues, it showed a less regular pattern in terms of the inhibitory profile of the respective ceramide analogues on LmjIPCS. Details of the preliminary SAR analysis will be further elaborated in section 5.5.
Figure 5-3: Screening Results of the ceramide analogues library
5.4.2 The Synthetic Intermediates

The set of synthetic intermediates consisted of the N-Boc protected CM products which comprised the starting materials for the Boc-deprotection acylation reactions (Figure 5-4). While the CM products that contained a short chain (C₄H₉) or an aromatic residue (CH₂Ph) in the sphingosine backbone showed poor or no (≤ 17 %) inhibition of *Lmj*IPCS, compounds with a long chain (C₁₃H₂₇) exhibited considerable inhibitory effect (29~59 %) on the enzyme turnover. This could be attributed to the relative hydrophobicity of the analogues as it has been previously indicated.

![Figure 5-4: Screening results of the CM N-Boc protected compounds.](image-url)
5.4.3 The Nor-Ephedrine (1-Phenyl-2-aminopropanol) Series

While all the derivatives of the (+)-(1S,2R)-1-Phenyl-2-aminopropanol exhibited poor or no inhibition (< 10 %), two derivatives from the (−)-(1S,2R)-1-Phenyl-2-aminopropanol, (405, $R^1 = e$) and (407), exhibited moderate inhibition 23 % and 33 % respectively against LmjIPCS (Figure 5-5). These two small molecules (MW < 300 Da) could be further elaborated to as a design template with fewer rotatable bonds. Analogues derived from such template could lead to the generation of a pharmacophore model of the acceptor substrate of LmjIPCS.

![Figure 5-5: Screening results of the (+)-Nor-ephedrine series and the (−)-Nor-ephedrine series.](image)

5.4.4 The β-blockers

It has been suggested that integral membrane lipid phosphate phosphatases (LPPs) and phosphotransferases function via a similar mechanism of action. Additionally, several studies have reported that propranolol, a β-blocker, to exhibit inhibitory effect on lipid phosphate phosphatases. Moreover, the scaffold of the β-blockers exhibit structural similarities to that of
ceramide. Consequently, (±)-propranolol, (+)-propranolol, (−)-propranolol, betaxolol and ICI 118,551 were screened against \textit{LmjIPCS} and resulted in 48 \%, 39 \%, 50 \%, 48 \% and 54 \% inhibition respectively (Figure 5-6). The slightly more potent effect of (+)-propranolol compared to (−)-propranolol might indicate a preferential stereochemistry of the secondary hydroxyl group. Importantly, the observed capacity of the β-blockers to inhibit \textit{LmjIPCS} could be further elaborated in the design of specific \textit{LmjIPCS} inhibitors that exploit the benefit of the pharmacokinetic profile of this class of drugs that had made it already to the pharmaceutical market.

![Figure 5-6](image)

Figure 5-6: The selected β-blockers set and their screening results against \textit{LmjIPCS}.

5.4.5 Z-Prime Value of the Screening Assay

The established assay protocol was designed to be HTS-compatible. Therefore, statistical validation of the assay platform was required. This was accomplished using the Z-prime value, a dimensionless statistical parameter, which is commonly used to assess the quality of a high-throughput assay.\(^6\) It compares the mean value of the maximum signal control to the mean value of the minimum signal control according to equation 4.1. Z-prime will have a higher value when
(i) there is a wide separation band between the maximum and minimum controls and (ii) the standard deviations are low. For a good assay, Z-prime values for each plate should be greater than or equal to 0.5 with the Z-prime value of a perfect assay approaching 1.0.

\[
Z = 1 - \left(\frac{(3 \times SD_{max}) + (3 \times SD_{min})}{|\bar{x}_{max} - \bar{x}_{min}|} \right)
\]

(4.1)

\(SD_{max} = \) SD of the Maximum Signal Control \(SD_{min} = \) SD of the Minimum Signal Control

\(\bar{x}_{max} = \) Mean of the Maximum Signal Control \(\bar{x}_{min} = \) Mean of the Minimum Signal Control

Evaluation of each screening assay results yielded an average Z-prime value less than 0.5. This is due to the lack of a potent inhibitor in these assays. However, using the identified potent inhibitors (112) and (336) in addition to the moderately active (±)-propranolol, the Z-prime value of the screening assay was recalculated (Figure 5-7). These calculations resulted in Z-prime value of 0.58, 0.42 and −0.18 when the minimum control was compound 112, compound 336 and (±)-propranolol respectively. This demonstrated that including a minimum signal control wherein inhibition is about 80 % renders the assay statistically valid for HTS screening.

![Figure 5-7: Left: Reference compounds and the respective measured activity of LmjIPCS. Right; Correlation between the minimum signal control and the determined Z-Prime value.](image-url)
5.4.6 IC₅₀ of the Representative Potent Compounds

To confirm the inhibitory effect of the lead compounds identified, dose-inhibition assays were performed and the respective IC₅₀ values were determined (Figure 5-8). The most potent inhibitor was compound (112) (IC₅₀ = 4.8 ± 1.17 µM). These dose-inhibition curves confirmed the potential hits identified. However, further analyses were required to determine whether these compounds act as true inhibitors or as competitive acceptor substrates that can be turned over by LmjIPC S.

![Inhibition curves and IC₅₀ values of select inhibitors.](image-url)
5.4.7 Mass Spectrometry of the Representative Compounds

To distinguish between true inhibitors and competitive acceptor substrates, mass spectrometric analyses were required. Consequently, the organic extracts from the inhibition assays of representative compounds of different series of analogues were submitted for positive and negative ion mass spectrometry. The resultant MS spectra were searched for the mass peaks \([\text{M}+\text{IP}]\) corresponding to the hypothetical products. Results of the analyses are summarised in Table 5-1.

Table 5-1: Mass spectrometric analysis of inhibition assays of select compounds demonstrating whether a turnover product was detected or not.

<table>
<thead>
<tr>
<th>TEST COMPOUNDS</th>
<th>Product</th>
<th>TEST COMPOUNDS</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>314</td>
<td>Not Detected</td>
<td>112</td>
<td>Not Detected</td>
</tr>
<tr>
<td>135</td>
<td>Not Detected</td>
<td>222</td>
<td>Detected</td>
</tr>
<tr>
<td>218</td>
<td>Not Detected</td>
<td>328</td>
<td>Not Detected</td>
</tr>
<tr>
<td>334</td>
<td>Detected</td>
<td>333</td>
<td>Not Detected</td>
</tr>
<tr>
<td>336</td>
<td>Not Detected</td>
<td>337</td>
<td>Detected</td>
</tr>
<tr>
<td>(±)-Propranolol</td>
<td>Not Detected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The results highlighted the possible structural features of a true acceptor substrate in terms of the importance of the long chain length of the sphingosine backbone (218 vs. 222), the electronic nature of the amide/amine functionality and the bulkiness/hydrophobicity of the N-acyl residue (333, 336 vs. 337). Additionally, the results showed that the presence of the 3-OH group is not essential for the turnover of LmjIPCS (334, 337). Details of the SAR conclusions will be discussed in section 5.5.

5.4.8 Pre-incubation with a Ceramide-1-phosphate Analogue (338)

Initially, analogue (334) was speculated to act as a ceramide analogue whilst analogue (338) was expected to act as a PI analogue that might result in mesylation of the active His264 residue. The screening experiments have shown that analogues (334) and (338) resulted in 65% and 18% inhibition of LmjIPCS respectively. Moreover, the hypothetical product of analogue (334) has been detected in the MS analyses. This partially supported the initial hypothesis. Consequently, the activity of LmjIPCS was measured with and without pre-incubation with PI in the presence or absence of analogue (338) (Figure 5-9). As expected, pre-incubation with PI resulted in enhanced activity. However, pre-incubation with PI in presence of analogue (338) diminished such enhancement. Surprisingly, pre-incubation with analogue (338) only, resulted in about 18% enhancement of activity. These facts combined indicated an obscure effect of analogue (338). Delineation of such effect requires more detailed study with this class of potential ceramide-based alkylating agents.

![Figure 5-9: LmjIPCS activity measured without (blank) pre-incubation or with pre-incubation with the donor substrate PI ± analogue 338 (structure shown).]
5.5 The SAR Analyses

The following analyses were aimed at the identification of the structural features of the acceptor substrate, ceramide, required for binding and turn over by \textit{Lmj}IPCS. The derived SAR conclusions relied on the comparative analyses of the cumulative experimental observations. These conclusions are illustrated together with the recommended further work.

In addition to the lack of a crystal structure for \textit{Lmj}IPCS or a closely related enzyme, the large number of rotatable bonds in the ceramide molecule and the difficulty in simulating its interaction with an integral membrane protein \textit{in silico} rendered a robust pharmacophore search challenging. However, based on the experimental data, conclusions regarding the key structural features of ceramide could be elucidated. The seven pharmacophore features of ceramide (Figure 5-10) could be divided into two categories based on their necessity for binding and/or turnover by the enzyme.

![Figure 5-10: The structural features of the ceramide molecule.](image)

5.5.1 Feature ‘1’: 1-OH, H-Donor/H-Acceptor

Although the primary 1-OH group is obviously essential for substrate turnover by \textit{Lmj}IPCS (analogue 222), the experimental results indicates that it was not essential for binding e.g. analogue (112). Future work to probe this hypothesis could include the substitution of the 1-OH by other bioisosteres e.g. NH$_2$, F (Figure 5-11).\cite{7}
CHAPTER V: SCREENING OF THE SUBSTRATE ANALOGUES

5.5.2 Feature ‘2’: 2S-NH₂, H-Donor

The tangible enhancement (excluding 319 vs. 336) in the inhibitory effect of Series 5 relative to Series 4 (Figure 5-12) suggest that although there might be preferential affinity towards the C2 stereochemistry analogous to that of ceramide, it might not be essential for binding and turnover by the enzyme. However, these analogues lacked the 3-OH group where the cumulative effect of relative orientations at C2 and C3 might have a different effect.

This hypothesis could be tested by changing the relative stereochemistries at C2 and C3 (Figure 5-13). Moreover, the importance of 2-NH₂ group can be probed by substitution by other bioisosteres e.g. OH, F. Also, it is noteworthy that changing the -NHCOR functionality to –NHR would switch this pharmacophore feature from H-donor to H-acceptor (c.f. Propranolol). This will be elaborated in section 5.5.1.6.
CHAPTER V: SCREENING OF THE SUBSTRATE ANALOGUES

Figure 5-13: The proposed future analogues to probe the importance of the 2-NH₂ group in terms of relative stereochemistries at C2 and C3 and by using other bioisosteres.

5.5.3 Feature ‘3’: 3R-OH, H-Donor/H-Acceptor

Based on the results of the MS analyses, it can be suggested that the 3R-OH is not essential for substrate turnover by *LmjIPCS*. However, it does affect the binding affinity reflected by the comparative inhibition of *LmjIPCS* by (222), (112) vs. (337), 87 % and 57 % inhibition respectively (Figure 5-14). This hypothesis could be probed by substitution with other bioisosteres e.g. NH₂, F. Additionally, the C3 relative stereochemistry to C2 could also be probed as (see above 5.5.1.2).

Figure 5-14: Comparative inhibition by 222 vs. 337

5.5.4 Feature ‘4’: Position of the Double Bond

The comparison between the inhibition profiles of Series 1 (1-deoxy-4E-ceramide analogues) and Series 2 (1-deoxy-5E-ceramide analogues) shows that when the position of the double bond was analogous to natural sphingosine (Series 1), the inhibition was modulated by the added
hydrophobicity due to the N-acyl residue. In contrast, displacing the double bond one methylene unit further (Series 2) resulted in a different inhibition profile which appeared almost insensitive to the nature of the N-acyl residue (Figure 5-15: top). This is best demonstrated by the difference in the inhibition of LmjIPCS by analogues (112) and (144).

Previous work by Ramstedt8 reported that the trans double bond has a considerable effect on the hydrogen bonding interactions of the 3-OH group in ceramide. Therefore, the encountered differences in the inhibitory profiles can be attributed to the different hydrogen bonding interactions of these analogues with the active site of LmjIPCS. Additionally, the trans configuration of the double bond that might function as a structural constraint to control the orientation of the long hydrophobic tail required for binding. This hypothesis can be tested by the comparative screening of (112), 1-deoxy-5E-C$_{18}$-ceramide, dihydro-1-deoxy-C$_{18}$-ceramide and the cis diastereoisomer (Figure 5-15: bottom).

![Graph showing comparative inhibitions by Series 1 vs. Series 2.](image)

Figure 5-15: Top: Comparative inhibitions by Series 1 vs. Series 2. Bottom: The proposed future analogues with different backbone chain lengths and/or cis configuration.

5.5.5 Feature ‘5’: Sphingosine backbone Tail, Hydrophobic Surface

The screening results of the ceramide analogues revealed that apart from three compounds (Figure 5-16) all analogues that exhibited greater than 40% inhibition contained the long C$_{13}$H$_{27}$ hydrophobic tail in their backbones. This observation strongly suggests that the chain length of
the sphingosine backbone is crucial for binding to the enzyme. This is expected given the hydrophobic nature of \textit{Lmj}IPCS as an integral membrane enzyme.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5-16.png}
\caption{Inhibitors lacking the long chain C_{13}H_{27}.}
\end{figure}

However, the situation is clearly different in terms of the inhibition exhibited by the \(\beta\)-blockers. Therefore, the \(\beta\)-blockers might provide a different scaffold with no linear hydrophobic tail. However, the mode of action of the tested \(\beta\)-blockers on \textit{Lmj}IPCS needs to be further verified. These hypotheses could be further tested by the synthesis of a medium length hydrophobic tail (C_{8}H_{17}) as previously described in 5.5.1.4 and/or substitution by a hydrophobic moiety analogous to propranolol or betaxolol (Figure 5-17).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5-17.png}
\caption{The proposed future analogues with different backbones as a hybrid of both the ceramide and \(\beta\)-blockers scaffolds.}
\end{figure}

5.5.6 Feature ‘6’: -CO-R, H-Acceptor

Early work described in Chapter II has demonstrated that whilst acetyl sphingosine was an acceptor substrate, sphingosine was not. Additionally, the MS analyses described in section 5.4.7 had shown that while analogue (337) was turned over by the enzyme, analogue (333) was not
Taken together, these results suggest that the (possibly protonated) free-amino group of sphingosine interferes electrostatically with the active site of the enzyme.

![Figure 5-18: Both acetyl sphingosine and analogue (337) are acceptor substrates while sphingosine and analogue (333) are true inhibitors.](image)

Similar observations have been previously reported e.g. the inhibitory effect of sphingosine analogues on the *S. cerevisiae* phosphatidate phosphatase, a member of the LPP enzyme superfamily believed to share a mechanism of action with the sphingolipid synthases. In addition, Sigal et al. have proposed a generalised hypothetical mechanism of action for the phosphoryl transferases. This mechanism, in addition to the catalytic triad, involves two arginine and one lysine residues. These three residues are presumed in be in the protonated state and therefore can stabilise the transition state during the phosphate group transfer (Figure 5-19: A). Moreover, Sigal had demonstrated that one of the involved arginine residues is conserved across different families of enzymes and organisms. This residue is located close (5 amino acids away) to the active nucleophilic histidine residue of the active site. Investigation of the *Lmj*IPCS sequence identified Arg262 as a conserved residue in all the identified orthologous IPC synthases in the TriTryp genome (Figure 5-19: sequence). Consequently, Arg262 can be presumed a potential candidate residue involved in the stabilisation of the transition state during the phosphorylinositol group transfer by *Lmj*IPCS (Figure 5-19: B). This speculation is consistent with the hypothesis that the protonated amino group of sphingosine electrostatically interferes with the protonated Arg262 which results in inhibition of the catalytic transfer mechanism.
Figure 5-19: Top: The relative position of the proposed Arg262 residue to the His264 and the Asp268 in the \textit{LmjIPCS} sequence. A. Sigal’s proposed mechanism of action of phosphoryl transferases. B. The proposed mechanism of \textit{LmjIPCS} based on Sigal’s model.

The function of Arg262 could be verified by site-directed mutagenesis. Additionally, the electrostatic nature of the amino/amide group can be tested by the screening of the reduced (\textit{N}-alkyl) form of a known acceptor substrate against \textit{LmjIPCS} followed by MS of the organic extracts to check for product formation (Figure 5-18).

Figure 5-20: Proposed future work to test the difference in mode of action between \textit{N}-acyl-sphingosines and reduced \textit{N}-alky-sphingosine analogues.

5.5.7 Feature ‘7’: \textit{N}-Acyl Hydrophobic Tail, Hydrophobic Surface

It has been previously demonstrated that the chain length of the \textit{N}-acyl group is not essential for the turnover of the acceptor substrate by the \textit{LmjIPCS} e.g. acetyl sphingosine. However, a
CHAPTER V: SCREENING OF THE SUBSTRATE ANALOGUES

comparison of the competitive inhibition of Lmj/PC by analogue (222), C₈-ceramide, and analogue (220), C₂-ceramide suggests that the more hydrophobic the N-acyl residue, the higher the affinity to the active site. This hypothesis can be tested by the screening of a C₅-ceramide which would be expected to exhibit an intermediate affinity/inhibition between C₈-ceramide and C₂-ceramide.

![Figure 5-21: Competitive inhibition of C₈-ceramide vs. C₂-ceramide and the hypothetical of Lmj/PC by C₅-ceramide.](image)

Additionally, the screening results indicated that the bulkiness of the N-acyl residue might affect the ability of the enzyme to turn over the acceptor substrate analogues. MS analyses had shown that while NBD-C₆-ceramide and analogues (334) and (337) are acceptor substrates whilst analogue (336) is not (Figure 5-22).

![Figure 5-22: Comparison between the bulkiness of the N-acyl residues in acceptor substrates and the true inhibitor, analogue 336.](image)

These observations suggest that presence of bulky substituent e.g. a phenyl group close to the amide functionality (1 methylene unit apart) could lead to a possible distortion of the active site resulting in a less than optimum conformation that whilst hindering the catalytic transfer
mechanism however, does not abolish the affinity to the active site. Similar ceramide analogues have been recently reported and proposed as chemotherapeutic agents for breast cancer (Figure 5-23: A). Such hypothesis can be further studied and elaborated in the design of future inhibitors which maintain the affinity to the active site but cannot be turned over by the enzyme (Figure 5-23: B). It is noteworthy, that LmjIPCS complemented an auxotrophic yeast strain where the acceptor substrate comes from a phytoceramide pool. Consequently, synthesis and screening of C2-hydroxylated N-acyl analogues might reveal interesting structural features of the active site of LmjIPCS which resemble the fungal orthologue.

Figure 5-23: (A) The recently reported ceramide analogues with bulky N-acyl residues. (B) The proposed ceramide analogues for the determination of the optimum position of the bulky substituent in the N-acyl residue that maintains both the enzyme affinity and the true inhibition mode of action.
5.6 Conclusion

The screening of the library of ceramide mimics against \textit{Lmj}IPCS using the assay protocol combined with the MS analyses has enabled the categorisation of the key structural features of ceramide, the acceptor substrate, in terms of binding affinity and turnover by the enzyme. These preliminary SAR conclusions will guide the optimisation process of the design of future inhibitors.

Additionally, two different classes of compounds, Norephedrine derivatives and β-blockers, have been screened against \textit{Lmj}IPCS. Two (−)-norephedrine-derived compounds (405 and 407) have been identified as small molecules that could be further elaborated as a more constrained scaffold for future inhibitors. Moreover, the β-blockers tested against \textit{Lmj}IPCS resulted in an average inhibition greater than 50%. Whilst the determination of their mode of action requires further studies, this class of compounds provides a new scaffold for \textit{Lmj}IPCS inhibitors. Finally, the assay platform has been statistically validated for HTS with a \textit{Z}-prime value greater than 0.5.
REFERENCES

CHAPTER VI

CONCLUSIONS AND FUTURE WORK
CHAPTER VI: CONCLUSIONS AND FUTURE WORK

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

Using a chemical biology approach, the work presented in this thesis has characterised a potential drug target for the treatment of leishmaniasis, namely *Leishmania major* Inositol Phosphorylceramide Synthase (*LmjIPCS*). A high-throughput compatible assay platform for *LmjIPCS* was established. This platform enabled probing the enzyme affinity in terms of the donor substrate and determination of the linear assay conditions in terms of time, temperature, substrates and enzyme concentrations. Validation of the assay protocol was accomplished using the known fungal-IPCS inhibitor, aureobasidin A and two ceramide mimics, sphingosine and acetyl sphingosine.

Using the established protocol, the kinetic parameters of *LmjIPCS* were determined in terms of both donor and acceptor substrates. The kinetic model applied surface-dilution considerations which is unprecedented with this class of enzymes. *LmjIPCS* was found to obey the double displacement kinetic model with apparent $V_{\text{max}} = 2.31 \text{ pmol.min}^{-1}.U^{-1}$. The observed higher affinity of *LmjIPCS* for NBD-C$_6$-ceramide relative to PI was in agreement with previous literature results.1 Additionally, the techniques established with *LmjIPCS* were successfully applied to the orthologous enzymes *TbSLS4* from *T. brucei* and *AtIPCS 1, 2 &3* from *A. thaliana*. The contribution of this work validated *TbSLS4* as a potential drug target against *T. brucei* and confirmed the IPC synthase activity of the identified *AtIPCS 1, 2 &3*.

Furthermore, a first generation library of ceramide mimics has been synthesised. The library consisted of five series with different ceramide-based scaffolds. The key synthetic reactions included a stereospecific reduction of an enone and asymmetric amino acid alkylation using cinchona derived PT catalysts. Screening of the analogues library against *LmjIPCS* enabled the categorisation of the key structural features of ceramide in terms of binding affinity and turnover by the enzyme. Based on the screening results a preliminary SAR conclusions could be drawn which will guide the optimisation process of the design of future inhibitors. Two different classed of compounds, Norephedrine derivatives and β-blockers, have been also identified as
potential scaffolds for future inhibitors targeting *Lmj*IPCS. Finally, the assay platform has been statistically validated for HTS with a Z-prime value greater than 0.5.2

To summarise, the work accomplished to-date sets a robust foundation upon which future work can be established with the ultimate objective of the development of new treatments for leishmaniasis and the closely related HAT and Chagas’ disease.

6.2 Proposed Future Work

Building on the current data, future work can be divided into two categories: biological and *in silico* molecular modelling.

6.2.1 Biological Approach

6.2.1.1 Enhancement of the Assay Protocol

Possible enhancements could be made to the established protocols. These include improvement of the quality of the protein preparation and the assay protocol. The former would involve further purification3-4 of *Lmj*IPCS protein using affinity and size-exclusion chromatography to yield a high purity protein suitable for biophysical topological studies in synthetic lipid bilayers.5-6 On the other hand, development of the assay protocol could include the application of novel techniques such as FRET-pair-based direct quantification of the formation of NBD-IPC without the need for the laborious product isolation.7

6.2.1.2 Further Enzyme Activity Studies & Site directed mutagenesis of Arg262

Further studies of *Lmj*IPCS activity against variants of the acceptor substrate (e.g. dihydroceramide and the hydroxylated phytoceramide) and probing the metal dependency of *Lmj*IPCS would complete the kinetic profile of the enzyme and prove useful in molecular modelling of the active site. Also, comparative parallel screening of inhibitors that may target both SM and IPC synthases could prove invaluable in SAR analyses that would help the design of selective second generation inhibitors. Moreover, using site directed mutagenesis, it would be
possible to probe the proposed role of Arg262 in the catalytic transfer function of the \(Lmj \)IPC and the orthologous Kinetoplastidae enzymes.

6.2.1.3 Kinetics of PI Phosphorylation of \(Lmj \)IPC

It has been shown that \(Lmj \)IPC obeys the double displacement kinetic model. Consequently, investigation of the first partial reaction, phosphorylation of \(Lmj \)IPC by PI, would provide evidence for four hypotheses (Figure 6-1). First, detection of \([3^H] \)labelled \(Lmj \)IPC protein after incubation with the labelled phosphatidyl-\([3^H] \)inositol would provide a conclusive evidence for the substituted enzyme and consequently the double displacement mechanism. Such phosphorylated intermediate can be subjected to trypsin digest and MALDI spectrometric analysis to provide evidence for the active histidine residue. Additionally, the kinetic analysis of the enzyme phosphorylation reaction (\(K_m \) and \(V_{max} \)) would shed light about the physiological “ground state” of the enzyme which is believed to be in the phosphorylated form due to the abundance of PI in the Golgi membranes. Also, addition of NBD-DAG to the reaction mixture and investigation of the formation of NBD-Phosphatidyl-\([3^H] \)inositol will provide evidence whether the phosphorylation reaction is reversible or not.

![Figure 6-1: Investigation of the phosphorylation reaction of \(Lmj \)IPC by PI would provide conclusive evidence for the double displacement kinetics and confirmation of the hypothesised active His264 residue. Additionally, the reversible nature and the kinetic parameters of the first partial reaction can be determined.](image-url)

\[Lmj\text{IPCS-His}^{264}_{264} \leftrightarrow \text{E}_{\text{double displacement}} \leftrightarrow Lmj\text{IPCS} \]
6.2.2 Bioinformatics and In Silico Molecular Modelling

In 1997, Neuwald10 had reported an unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. He reported sequence motifs shared between type two phosphatidic acid phosphatase and soluble vanadium-dependent chloroperoxidase where these regions are also conserved in other soluble globular and membrane associated proteins. He suggested that a similar arrangement of catalytic residues of the active site within both soluble and membrane spanning domains. With the crystal structure of several chloroperoxidases available in PDB together with reiterative cycles of QSAR model enhancement, an initial model can be constructed and continuously optimised using and pharmacophore searches using conformationally constrained substrate analogues. Additionally, using molecular modelling software, a QSAR model can be generated based on the screening results of the library of ceramide mimics.
REFERENCES

CHAPTER VII

BIOLOGICAL MATERIALS AND METHODS
7 BIOLOGICAL MATERIALS AND METHODS

7.1 Materials

PI: L-α-phosphatidylinositol (Liver, Bovine, predominant species: 18:0/20:4, 1-sn-stearoyl-2-sn-arachidonoyl) and PI: L-α-phosphatidylinositol (Soybean, predominant species: 16:0/18:2, 1-sn-palmitoyl-2-sn-lenoleyl) were from Avanti Polar Lipids. PI: L-α-phosphatidylinositol (synthetic, 1-sn,2-sn-dipalmitoyl), C_{18}-Ceramide (N-stearoyl-(2S,3R,E)-2-aminooctadec-4-ene-1,3-diol), CHAPS, Tris/HCl, sucrose, glucose (as monohydrate), ammonium sulphate, chloroform 99.8%, methanol 99.8%, formic acid, potassium formate, potassium monohydrogen phosphate, potassium dihydrogen phosphate and the β-blockers collection; (±) propranolol, (+) propranolol, (−) propranolol, betaxolol and ICI 118.551 were from Sigma Aldrich. D-erythro-sphingosine (d18:1) and N-acetyl-sphingosine (d18:1/2:0, C_{2}-Ceramide) were from TOCRIS BioScience. NBD-C_{6}-ceramide and yeast nitrogen base were from Invitrogen. DAG (1-sn-stearoyl-2-sn-arachidonoylglycerol) was from Enzo Life Sciences. AG4-X4 resin was from BioRad. Protease inhibitor, Complete® EDTA-free Protease Inhibitor Cocktail Tablets were from Roche Applied Science. 1.5 ml LoBind Tubes from Eppendorf were used for all assays reactions. Amino acids drop-out packages were from Clontech. Acid-washed glass beads (425-600 μm, 30-40 U.S. sieve) were obtained from Sigma Aldrich. The protein assay kit was from BioRad using Coomassie® Brilliant Blue G-250. All reactions were carried out using high purity distilled deionised water. All other solvents used were of the highest purity available commercially.

7.2 Instruments and Equipment

All centrifugation steps were carried out using Beckman Coulter® centrifuges/ultracentrifuges. Eppendorf tubes were centrifuged using Boeco U-320. Disruption of yeast cells was performed using Vortex Mixer MT20 Chiltern®. Protein content was quantified using Boeco S-32 Spectrophotometer. The 96-well plate-based assays separation of products was done using a Millipore vacuum manifold system. The filtration steps were done using Millipore
MultiScreen® Solvinert 96-well filter plates; the filtrate was collected using OptiPlate-96 F (black plates) from Perkin Elmer. Fluorescence quantification was done using Fusion® α plate reader from Packard Bioscience. HPTLC plates were from Merck. Quantification of the TLC spots was carried out using Fuji FLA-3000 plate reader and AIDA Image Analyser® software (version 3.52). Mass Spectrometry analyses were performed on an LTQFT from ThermoFinnigan Corp.

7.3 Solutions, Buffers and Media Compositions

Details of the solutions, buffers and media compositions used are given below in Table 7-1 and Table 7-2.

Table 7-1: Solutions and Buffers Ingredients.

<table>
<thead>
<tr>
<th>Buffers</th>
<th>Final Conc.</th>
<th>Vol./ weight</th>
<th>Stock solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>STE Buffer (50 ml)</td>
<td>25 mM</td>
<td>1.25 ml</td>
<td>Tris/HCl (1 M)</td>
</tr>
<tr>
<td></td>
<td>250 mM</td>
<td>12.5</td>
<td>Sucrose (1 M)</td>
</tr>
<tr>
<td></td>
<td>1 mM</td>
<td>100 µL</td>
<td>EDTA (0.5 M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 tab Complete® Protease Inhibitor Cocktail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 50 ml</td>
<td>Water</td>
</tr>
<tr>
<td>Storage Buffer (50 ml)</td>
<td>50 mM</td>
<td>2.5 ml</td>
<td>Tris/HCl (1 M)</td>
</tr>
<tr>
<td></td>
<td>10% w/v</td>
<td>6.25 ml</td>
<td>Glycerol (80% w/v)</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.25 ml</td>
<td>MgCl₂ (1 M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 tab Complete® Protease Inhibitor Cocktail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 50 ml</td>
<td>Water</td>
</tr>
<tr>
<td>Tris/EDTA/BSA buffer (50 ml)</td>
<td>250 mM</td>
<td>12.5 ml</td>
<td>Tris/HCl (1 M)</td>
</tr>
<tr>
<td></td>
<td>25 mM</td>
<td>2.5 ml</td>
<td>EDTA (0.5 M)</td>
</tr>
<tr>
<td></td>
<td>15 mg/ml</td>
<td>750 mg</td>
<td>Free-fatty-acid BSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 50 ml</td>
<td>Water</td>
</tr>
<tr>
<td>Phosphate Buffer (1 L)</td>
<td>71.4 mM</td>
<td></td>
<td>KH₂PO₄·H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K₂HPO₄·7H₂O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ad 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>AG4-X4 Resin Suspension (20 ml)</td>
<td></td>
<td>4 gm</td>
<td>AG4-X4 Resin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 20 ml</td>
<td>EtOH</td>
</tr>
<tr>
<td>TE Buffer (10×) (1 L)</td>
<td></td>
<td>100 ml</td>
<td>1 M Tris-HCl (pH 7.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 ml</td>
<td>500 mM EDTA (pH 8.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 880 ml</td>
<td>Ultrapure Water</td>
</tr>
<tr>
<td>PEG 3350 (50%) (200 ml)</td>
<td></td>
<td>100 gm</td>
<td>PEG 3350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 200 ml</td>
<td>Ultrapure Water</td>
</tr>
</tbody>
</table>
Buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Final Conc</th>
<th>Vol./weight</th>
<th>Stock solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE/Li Acetate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50 ml, 10×)</td>
<td></td>
<td>5 ml</td>
<td>1 M Li Acetate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ml</td>
<td>10× TE Buffer500 mM EDTA (pH 8.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 50 ml</td>
<td>Ultrapure Water</td>
</tr>
<tr>
<td>PEG/Li Acetate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50 ml, 10×)</td>
<td></td>
<td>5 ml</td>
<td>1 M Li Acetate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ml</td>
<td>10× TE Buffer500 mM EDTA (pH 8.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad 50 ml</td>
<td>50% PEG 3350</td>
</tr>
</tbody>
</table>

Table 7-2: Growth Media Ingredients.

<table>
<thead>
<tr>
<th>Growth Media</th>
<th>Vol./weight</th>
<th>Stock solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD–HIS–URA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 L)</td>
<td>20 gm</td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td>± 5 gm</td>
<td>Agar (Added for solid media preparation)</td>
</tr>
<tr>
<td></td>
<td>1.7 gm</td>
<td>Yeast Nitrogen Base</td>
</tr>
<tr>
<td></td>
<td>5 gm</td>
<td>Ammonium Sulphate</td>
</tr>
<tr>
<td></td>
<td>0.7 gm</td>
<td>AAcid(s) Drop-Out Supplement–HIS–URA–TRP</td>
</tr>
<tr>
<td></td>
<td>2 ml</td>
<td>Tryptophane (10 mg/ml)</td>
</tr>
<tr>
<td></td>
<td>ad 1000 ml</td>
<td>Water</td>
</tr>
<tr>
<td>YPGR Sol I</td>
<td>10 gm</td>
<td>Yeast Extract</td>
</tr>
<tr>
<td>(1 L)</td>
<td>20 gm</td>
<td>Pepton</td>
</tr>
<tr>
<td></td>
<td>ad 800 ml</td>
<td>Water ‘autoclaved separately’</td>
</tr>
<tr>
<td>YPGR Sol II</td>
<td>40 gm</td>
<td>Galactose</td>
</tr>
<tr>
<td></td>
<td>20 gm</td>
<td>Raffinose</td>
</tr>
<tr>
<td></td>
<td>ad 200 ml</td>
<td>Water ‘autoclaved separately’</td>
</tr>
<tr>
<td>YPD Sol I</td>
<td>10 gm</td>
<td>Yeast Extract</td>
</tr>
<tr>
<td>(1 L)</td>
<td>20 gm</td>
<td>Pepton</td>
</tr>
<tr>
<td></td>
<td>ad 800 ml</td>
<td>Water ‘autoclaved separately’</td>
</tr>
<tr>
<td>YPD Sol II</td>
<td>20 gm</td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td>ad 200 ml</td>
<td>Water ‘autoclaved separately’</td>
</tr>
</tbody>
</table>

7.4 Standard Protocols

7.4.1 Complementation of AUR1 mutant *S. cerevisiae*

Previously in Denny’s group, the auxotrophic *YPH499-HIS-GAL-AUR1 S. cerevisiae* strain was constructed by bringing the expression of the yeast AUR1 gene under the control of the stringently regulated GAL1 promoter that is repressed in the presence of glucose. The AUR1 promoter in the yeast genome was exchanged by a selection marker/promoter HIS/GAL1 cassette. This yeast strain was used in all complementation experiments. Briefly, 1 ml of YPGR
media was inoculated with \textit{YPH499–HIS–GAL–AUR1} mutant yeast. The media was vortexed vigorously to disperse any clumps. The cells were then transferred to a flask containing 30 ml of YPGR and incubated at 30 °C overnight with shaking to stationary phase (OD$_{600}$ > 1.5). The overnight culture was diluted into enough volume of YPGR media to produce an OD$_{600}$ = 0.2–0.3. Following the dilution, the yeast culture was incubated at 30 °C with shaking till OD$_{600}$ = 0.5 ± 0.1. The cells were then placed into 50-ml tubes and centrifuged at 1,000 × g for 5 min at room temperature. The supernatant was discarded and the cells were re-suspended in 5 ml sterile water. The cells were re-centrifuged at 1,000 × g for 5 min at room temperature and the supernatant was discarded by decantation. The cell pellet was then re-suspended in 1 ml of freshly prepared, sterile 1× TE/Li Acetate buffer to form the yeast competent cells.

Consequently, 0.1 µg of the control vector pRS246 or the complemented vector (pRS246-IPC synthase) was added to 10 µL of Herring testes carrier DNA in an Eppendorf tube followed by the addition of 0.1 ml of the yeast competent cells and mixed by vortexing. This was followed by the addition of 0.6 ml of a freshly prepared sterile PEG/ Li Acetate solution and the mixture was vortexed at high speed followed by incubation at 30 °C for 30 minutes with shaking. After the incubation period, 70 µL of DMSO were added and mixed by gentle inversion and swirling. Subsequently, the cells were subjected to a heat shock for 15 minutes in a 42 °C water bath. After the heat shock, the cells were chilled on ice for 1–2 min, centrifuged for 5 seconds at room temperature at 14,000 rpm. The supernatant was removed and the cells were re-suspended in 0.5 ml 1X TE buffer and plated onto agar plates of permissive (SGR –HIS –URA) and non-permissive media (SD –HIS –URA).

\section*{7.4.2 AUR1 mutant \textit{S. cerevisiae} culture}

\subsection*{7.4.2.1 Agar Plates}

Stocks of the complemented yeast were frozen at −80 °C in 10 % glycerol and cultures were maintained in SD –HIS –URA agar medium. For a typical procedure, the agar plates were inoculated with enough inoculum (from frozen stock, −80 °C) of the \textit{AUR1}-mutant complemented yeast strain. The plates were incubated at 30 °C till convenient growth was noticed (approximately 4 days). The fully grown plate cultures were kept at 4 °C until use.
7.4.2.2 Culture Scaling-up

Cultures were propagated in liquid SD –HIS –URA media. Briefly, 5 ml liquid media were inoculated to approximately $\text{OD}_0 = 0.2$ and incubated at 30 °C till $\text{OD} \geq 0.8 \sim 1.0$ (late exponential or early stationary phase, approximately 24 hours). Fresh media (500 ml) were added and incubated at 30 °C till $\text{OD} \geq 0.8 \sim 1.0$ (approximately 48 hours). The culture was then scaled up by diluting into fresh media (5 L) and incubated at 30 °C till $\text{OD} \geq 0.6$ (mid to late exponential phase, approximately 24 hours).

7.4.3 Preparation of the Microsomal Membranes Fraction

7.4.3.1 Step 1: Preparation of Cell Extract

Crude membranes from the mutant *S. cerevisiae* were prepared essentially as described by Fischl *et al.*\(^1\) The complemented yeast cells were propagated in liquid SD –HIS –URA media until $\text{OD} \geq 0.6$. Cells were harvested by centrifugation (1500 × g, 4 °C, 10 min) and washed (twice) with cold PBS buffer. A 5 litre culture would typically result in 8.0 ~ 8.5 gm of wet cell mass (WCM). The pellet was re-suspended in STE buffer and the yeast cells were disrupted with pre-chilled glass beads, using a vortex mixer. Disruption step involved 10 cycles of 1 min vortex mixing followed with a 1 min rest on ice between each cycle. Glass beads, unbroken cells and cell-wall debris were removed by centrifugation (approximately 1500 × g, 4 °C, 15 min) to obtain the cell extract (supernatant).

7.4.3.2 Step 2: Preparation of Crude Microsomal Membrane Fraction

The microsomal membrane fraction – enriched in IPC Synthase – was isolated from the cell extract by differential centrifugation. A large granular fraction – including mitochondria and large cellular organelles – was initially removed by centrifugation (27000 × g, 4 °C and 30 min). The supernatant was re-centrifuged (150000 × g, 4 °C and 90 min) to obtain a pellet of the small granular fraction enriched in microsomal membranes. The pellet was suspended in storage buffer containing protease inhibitor and the protein content determined according to *Bradford*.\(^2\) The concentration was adjusted to 20 mg/ml and 100 µL aliquots were stored at −80 °C until use.
7.4.3.3 Step 3: Preparation of CHAPS-washed Microsomal Membranes Fraction

The crude microsomal membranes were adjusted to a concentration of 10 mg/ml using STE buffer and a 5 % CHAPS stock solution was diluted with STE buffer to 2.5 % concentration. Equal volume of the microsomal membranes and 2.5 % CHAPS were mixed together and kept on ice for 60 min without shaking. The mixture was centrifuged (150000 × g, 4 °C and 90 min) and the sediment was re-suspended in storage buffer, protein content was quantified and kept at −80 °C until use. A second wash inactivated the enzyme.

7.4.3.4 Step 4: Determination of the Protein Content in Enzyme Units

The typical procedure of protein quantification included an ‘Acetone Precipitation’ as an initial step to remove interfering buffers and the phospholipids. The typical precipitation step included mixing 10 µL of the microsomal membranes with 100 µL of ice-cold acetone in 1.5 ml Eppendorf tube. The mixture was kept at 0 °C for 30 min and centrifuged (14000 rpm, 4 °C and 30 min). The supernatant was removed and the protein pellet was re-suspended in distilled water and quantified according to Bradford.²

To standardise the assay material, samples were normalized with respect to active enzyme content thereby removing variability in sample preparation and ensuring consistency across experiments. Although the standardised unit for enzymatic activity is the katal where 1 kat = 1 mol(product).s⁻¹,³ for the range of substrates concentrations used in the work presented here a more practical value is enzyme unit (U). One unit (U) of enzyme is defined as that which converts 1 pmol of substrate per minute under the conditions described (1 U = 1 pmol(product).min⁻¹) where 1 U corresponds to 16.67 femtokats.¹ The conversion of the fluorescent acceptor substrate NBD-C₆-ceramide to the product NBD-C₆-IPC was measured and quantified with respect to known concentrations of NBD-C₆-IPC, activity calculated as U/µl and the samples were stored at −80 °C until use. Enzyme turnover was calculated per milligram of total protein in the sample (U.mg⁻¹).
7.4.4 NBD-C6-Ceramide Fluorescence Assay

7.4.4.1 Protocol ‘A’: 96-well plate Assay

CHAPS-washed membranes were used in a reaction mix containing 100 µM (or appropriate) PI, 50 mM KH2PO4 (pH 7.0) and 5 µM (or appropriate) NBD-C6-ceramide. Briefly, 4 µL of 1 mM PI was dried into each reaction tube in a rotavapor (Eppendorf Concentrator 5301). To the dried PI, 28 µL of 71.4 mM KH2PO4 buffer were added. The solution was sonicated for 2 min then rested on ice before the addition of 2 µL of the microsomal membranes. Following pre-incubation at 30 °C for 30 minutes, the reaction was initiated by the addition of the NBD-C6-ceramide and 2.4 mM CHAPS. The reaction was incubated for the specified period of time and subsequently quenched by the addition of 200 µl of methanol 99.8 %.

Separation of the reaction product, NBD-C6-IPC, from the substrate NBD-C6-ceramide was achieved by applying the reaction mix to 100 µl (sedimented gel volume) of AG4-X4 resin, formate form, in 96-well filter plates using a vacuum manifold. The resin was washed 5 × 200 µL methanol, the product was eluted into black OptiPlate® 96-F plates, to minimize background emission, (Perkin Elmer) using 4 × 50 µL of 1 M potassium formate in methanol and quantified using a fluorescence plate reader (Fusion™ α, Packard Bioscience) - excitation λ = 466 nm; emission λ = 536 nm. Typically, assays used were carried out in triplicate and results analysed using Prism 5.0 software (GraphPad).

7.4.4.2 Protocol ‘B’: Thin Layer chromatography (TLC) Assay

1 µL of 50 mM PI was dried into each reaction tube in a rotavapor (Eppendorf Concentrator 5301). To the dried PI, 20 µL Tris/EDTA/BSA buffer were added, the solution was sonicated for 2 min, rested on ice for 1 min followed by addition of 2 µL of the microsomal membranes and the volume was adjusted to 48 µL with distilled water. After pre-incubation at 30 °C for 30 minutes, the reaction was started by addition of 2 µL of 5 mM NBD-C6-Ceramide. The final volume was 50 µL and final concentrations of the reaction components were 1 mM PI, 100 mM Tris/HCl buffer (pH 7.4) and 200 µM NBD-C6-Ceramide. The reaction mixture was incubated at...
30 °C for the required time before quenching with 150 µL of Chloroform:Methanol:Water (10:10:3).

The resultant mixture was centrifuged to separate phases and the organic layer removed. The aqueous phase was then re-extracted with 50 µL of chloroform. The combined organic extracts were dried in a rotavapor (Eppendorf Concentrator 5301) and re-suspended in 20 µL of Chloroform:Methanol:Water 10:10:3. Reaction products were fractioned on HPTLC plates (silica gel 60 F254) after equilibration or carried out in triplicates using the eluent system Chloroform:Methanol:aq. 0.25 % KCl (55:45:10). The R_f values for the excess NBD-C₆-Ceramide and the product NBD-C₆-IPC were 0.96, 0.57 respectively. Product quantification was carried out using a TLC plate reader (Fujifilm, FLA3000) and AIDA Image Analyzer software (version 3.52).

7.4.4.3 Assay for Inhibitions Studies

In the preliminary inhibition studies using an N-acetyl-sphingosine and D-erythro-sphingosine, substrate analogues were added with the fluorescent substrate NBD-C₆-ceramide in the quantities required.

In the screening of the synthesised substrate analogues library, the substrate analogues were dried into reaction tubes with PI followed by the addition of 50 mM KH₂PO₄ buffer (pH 7.0) and 5 µM NBD-C₆-ceramide. The solution was sonicated for 2 min then rested on ice before pre-incubation at 30 °C for 15 minutes. The reaction was initiated by the addition of 2 µL of the microsomal membranes. The reaction was then incubated at 30 °C for 15 min and subsequently quenched by the addition of 200 µl of methanol. Separation and quantification were carried out as previously described.

7.4.5 Mass Spectrometry Analyses

Analyses were performed on an LTQFT (ThermoFinnigan Corp); an FTICR MS instrument equipped with a 7.0 T magnet. The assay protocol ‘B’ was deployed to minimise CHAPS content using washed membranes. The organic extracts were dried and re-suspended in chloroform and
introduced into the electrospray ion source by direct infusion from a syringe at a flow rate 3 µl/min. Positive ion measurements were made with the source voltage at 4.0 kV and negative ion measurements were made with the source voltage at 3.5 kV. The tube lens was kept at 100 V and the source temperature at 275 °C for all experiments.
REFERENCES

CHAPTER VIII

CHEMICAL SYNTHESIS

EXPERIMENTAL DETAILS
8 CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

8.1 General Procedures

8.1.1 IUPAC nomenclature

The IUPAC names were generated using ChemBioDraw (v12.0); CambridgeSoft.

8.1.2 Solvents purification

All solvents were dried and distilled by standard procedures\(^1\) and stored under nitrogen before use,

- Petroleum ether (Petrol) was distilled and collected fractions correspond to a boiling point of 40-60°C
- THF and ether were distilled over sodium / benzophenone
- Dichloromethane over calcium hydride
- Toluene over sodium.

8.1.3 Reaction Conditions, Monitoring and Purification

- All sensitive reactions were performed under an inert atmosphere and done in dried glassware.
- All reactions were followed by thin layer chromatography (TLC) using normal phase silica plates which were revealed by UV (254 nm) for components with active chromophores or visualised by stains (phosphomolybdic acid in ethanol) and revealed by heating.
- Purification of the products was performed by flash column chromatography with normal phase silica gel (Kieselgur 40-60 μm silica) using an appropriate choice of eluent (or solvent system).

8.1.4 Column chromatography

- Purification of products by column chromatography were performed using an automatic flash chromatography system, CombiFlash® \(R_{f}\); Teledyne-ISCO.
8.1.5 Spectroscopic Data

- Infrared spectra were recorded using a golden gate (ATR) on a Perkin-Elmer FT-IR 1600 spectrometer and reported in the following format ν_{max} frequency (s, strong; br, broad and w, weak) cm$^{-1}$.

- 1H and 13C NMR spectra were acquired in CDCl$_3$ or CD$_3$OD unless otherwise stated on a Varian VXR-400 (1H at 400 MHz, 13C at 101 MHz) and reported as follows:

 - Chemical shift was reported in the following format; δ (ppm) (number of protons, multiplicity, coupling constant J (Hz), assignment).

 - The residual protic solvent was used as internal reference:
 - CHCl$_3$ $\delta_H = 7.26$ ppm; CDCl$_3$ $\delta_C = 77.16$ ppm
 - CHD$_2$OD $\delta_H = 3.31$ ppm, 1.09 ppm; CD$_3$OD $\delta_C = 49.0$ ppm

 - Assignment of stereochemistry was carried out with help of COSY, HSQC, HMBC and NOESY experiments.

 - Low Resolution Mass Spectra were obtained on Waters Micromass LCT Mass spectrometer. Gas-Chromatography Mass Spectra (GC-MS) were taken using a Thermo-Finnigan Trace. High-resolution mass spectra (HRMS) were performed on a Thermo-Finnigan LTQ FT Mass Spectrometer by Durham University Mass Spectroscopy service.

8.1.6 Titration of Organometallic Reagents

- Organolithium (RLi), Grignard reagents (RMgX), and LDA were titrated following a No-D NMR spectroscopy technique reported by Hoye et al. using cyclooctene (COE) and 1,5-cyclooctadiene (COD) as an internal reference.
8.2 Experimental Procedures

8.2.1 Commercially Available Starting Materials

<table>
<thead>
<tr>
<th>Compound</th>
<th>Synonym</th>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
<th>CAS Number</th>
<th>Optical activity</th>
<th>mp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boc-L-Ala-OH (100)</td>
<td>Synonym: N-(tert-Butoxycarbonyl)-L-alanine</td>
<td>C₈H₁₅NO₄</td>
<td>189.21</td>
<td>15761-38-3</td>
<td>[α]²³ D = −23°, c = 2 in acetic acid</td>
<td>79-83 °C (lit.)</td>
</tr>
<tr>
<td></td>
<td>Boc-L-alanine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synonym: N-(tert-Butoxycarbonyl)-L-alanine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boc-L-serine</td>
<td>C₈H₁₅NO₅</td>
<td>205.21</td>
<td>3262-72-4</td>
<td>[α]²³ D = −3°, c = 2 in acetic acid</td>
<td>91 °C (lit.)</td>
</tr>
<tr>
<td></td>
<td>Boc-L-serine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₂-Gly-OMe HCl (300)</td>
<td>Synonym: L-Glycine methyl ester hydrochloride</td>
<td>C₃H₇NO₂.HCl</td>
<td>125.55</td>
<td>5680-79-5</td>
<td>[α]²³ D = −3°, c = 2 in acetic acid</td>
<td>175 °C (lit.)</td>
</tr>
<tr>
<td></td>
<td>L-Glycine methyl ester hydrochloride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synonym: L-Glycine methyl ester hydrochloride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(−)-Cinchonidine</td>
<td>C₁₀H₂₂N₂O</td>
<td>294.39</td>
<td>485-71-2</td>
<td>[α]²³ D = −106±4°, c = 1% in ethanol</td>
<td>204-206 °C (lit.)</td>
</tr>
<tr>
<td></td>
<td>Cinchonidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synonym: Cinchonidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commercially available from Novabiochem

Commercially available from Sigma Aldrich
(+-)Cinchonine (302)
Commercially available from Sigma Aldrich
Molecular Formula: C_{19}H_{22}N_{2}O
Molecular Weight: 294.39
CAS Number: 118-10-5
Assay: 85% (15% dihydrocinchonine)
Optical activity: $[\alpha]_{D}^{23} = +228^\circ$, $c = 0.5\%$ in ethanol
mp: 258-260 °C (lit.)

(1S,2R)-(+)-Norephedrine (400a)
Commercially available from Sigma Aldrich
Synonym: (1S,2R)-2-Amino-1-phenyl-1-propanol
Molecular Formula: C_{9}H_{13}NO
Molecular Weight: 151.21
CAS Number: 37577-28-9
Optical activity: $[\alpha]_{D}^{23} = +40^\circ$, $c = 7$ in 1 M HCl
mp: 51-54 °C (lit.)

(1R,2S)-(-)-Norephedrine (400b)
Commercially available from Sigma Aldrich
Synonym: (1R,2S)-2-Amino-1-phenyl-1-propanol
Molecular Formula: C_{9}H_{13}NO
Molecular Weight: 151.21
CAS Number: 37577-28-9
Optical activity: $[\alpha]_{D}^{23} = -41^\circ$, $c = 7$ in 1 M HCl
mp: 51-53 °C (lit.)
8.2.2 Synthesis of Intermediate compounds

8.2.2.1 4E-1-deoxy ceramide analogues

(S)-tert-Butyl (1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate (101)

Procedure: To a solution of N-(tert-butoxycarbonyl)-L-alanine 100 (1.513 g, 8.0 mmol) in anhydrous CH₂Cl₂ (50 ml) was added N-methylmorpholine (0.967 ml, 8.8 mmol, 1.1 eq.) and N,O-dimethylhydroxylamine hydrochloride (0.859 g, 8.8 mmol, 1.1 eq.) at –15 °C. To the reaction mixture was added 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (1.53 g, 8.8 mmol, 1.1 eq.) over 30 min at the same temperature. The reaction mixture was stirred for 4 hrs then poured into ice and 1N HCl. The resulting mixture was extracted with CH₂Cl₂. The organic layers were combined, and washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo to give the crude Weinreb amide as a white solid. Column chromatography on silica gel (from 25 % to 50 % EtOAc in pet. ether) gave 101 (1.69 g, 98 %) as a white solid. ν_{max} (ATR) 3293 (s), 2976, 1703, 1658, 1537, 1293, 1173, 1066, 981 cm^{−1}; δ_H (700 MHz, CDCl₃) 5.24 (1H, m, NH), 4.68 (1H, m, 2-H), 3.77 (3H, s, OCH₃), 3.20 (3H, s, NCH₃), 1.44 (9H, s, C(CH₃)₃), 1.31 (3H, d, J 6.9, 3-H₃); δ_C (176 MHz, CDCl₃) 173.8 Cl, 155.3 NHCOO, 79.7 C(CH₃)₃, 61.8 OCH₃, 46.7 C₂, 32.3 NCH₃, 28.5 C(CH₃)₃, 18.9 C₃; m/z (ES⁺) 232.9 [M]⁺ C₁₀H₂₀O₄N₂²⁺ (Expected: 232.1), 255.1 [M+Na]⁺ C₁₀H₂₀O₄N₂²⁺Na (Expected: 255.1).

(S)-tert-Butyl (3-oxopent-4-en-2-yl)carbamate (102)
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

Procedure. Vinyl magnesium bromide (12 ml of 0.6M solution in THF, 7.2 mmol, 4 eq.) was added dropwise at 0 °C to a solution of 101 (400 mg, 1.8 mmol) in anhydrous THF (10 ml). The reaction mixture was allowed to warm up to room temperature. After the reaction mixture was stirred for 1 hr at the same temperature, the reaction mixture was poured into ice cooled 2N HCl. The resulting mixture was extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo to give the crude products. Column chromatography on silica gel (from 10 % to 50 % EtOAc in pet. ether) gave 102 (335 mg, 98 %) as a white solid (Rf ≈ 0.37; EtOAc/pet. ether 25/75). νmax (ATR) 3382 (s), 2975, 2931, 1710, 1694, 1612, 1518, 1282, 1246, 1162, 1003 cm⁻¹; δH (700 MHz, CDCl₃) 6.45 (1H, dd, J₁₇.₄, 10.5, 4-H), 6.37 (1H, dd, J₁₇.₄, 1.3, 5-Htrans), 5.88 (1H, d, J₁₀.₅, 1.3, 5-Hcis), 5.36 (1H, m, NH), 4.61 (1H, p, J₇.₂, 2-H), 1.43 (9H, s, C(CH₃)₃), 1.33 (3H, d, J₇.₂, 1-H); δC (176 MHz, CDCl₃) 198.8 C₃, 155.3 NHCOO, 132.9 C₄, 130.3 C₅, 79.8 C(CH₃)₃, 53.2 C₂, 28.5 C(CH₃)₃, 18.6 Cl; m/z (ES⁺) 222.2 [M+Na]⁺ C₁₀H₁₇O₃N₂Na (Expected: 222.1).

tert-Butyl ((2S,3R)-3-hydroxypent-4-en-2-yl)carbamate (103a)⁶

Procedure. To a solution of 102 (500 mg, 2.5 mmol) in spectrophotometric grade ethanol (31 ml) was added lithium tri-tert-butoxy aluminium hydride (1.40 g, 5.5 mmol, 2.2 eq.) at −78 °C. After the reaction mixture was stirred at the same temperature for 2 hrs, 0.1N HCl (15 ml) was added followed by Celite and EtOAc (15 ml). The resulting slurry was filtered through Celite and the filtering bed was washed with EtOAc (15ml). The two phases were separated and the aqueous phase was re-extracted with EtOAc. The organic extracts were combined, washed with NaHCO₃ and brine, dried over MgSO₄, filtered, and concentrated in vacuo to give the product as a single diastereoisomer 103a as ascertained by crude ¹H NMR. Column chromatography on silica gel (from 25 % to 50 % ethyl acetate in pet. ether) gave 103a (450 mg, 89 %) as a white solid (Rf ≈ 0.3; EtOAc/pet. ether 25/75). νmax (ATR) 3351 (br, s), 2986, 2937, 1679, 1529, 1280, 1161, 1021 cm⁻¹; δH (700 MHz, CDCl₃) 5.85 (1H, ddd, J₁₇.₂, 10.6, 5.5, 4-H), 5.33 (1H, dt, J₁₇.₂, 1.5, 5-Htrans), 5.23 (1H, dd, J₁₀.₆, 1.5, 5-Hcis), 4.65 (1H, m, NH), 4.22–4.16...
(1H, m, 3-H), 3.84 (1H, m, 2-H), 1.44 (9H, s, C(CH$_3$)$_3$), 1.09 (3H, d, J 6.9, 1-H$_3$); δC (176 MHz, CDCl$_3$) 156.5 NHCOO, 137.0 C4, 116.7 C5, 79.9 C(CH$_3$)$_3$, 75.9 C3, 50.9 C2, 28.5 C(CH$_3$)$_3$, 15.5 C1; m/z (ES$^+$) 224.3 [M+Na]$^+$ C$_{10}$H$_{19}$O$_3$N$_2$Na (Expected: 224.1).

8.2.2.2 5E-1-deoxy ceramide analogues

(S)-tert-Butyl (3-oxohex-5-en-2-yl)carbamate (121)7-8

![Chemical structure of 121](image)

Procedure:8 A solution of n-BuLi (1.4 M solution in hexanes, 7.2 ml, 10 mmol, 1.0 eq.) was added dropwise at −10 °C to a solution of N-(tert-butoxycarbonyl)-L-alanine 100 (1.89 g, 10 mmol) in anhydrous THF (100 ml). The resulting thick gelatinous suspension was stirred at −10 °C for 30 minutes, cooled to −78 °C and treated with a solution of allylmagnesium bromide (1.0 M solution in ether, 23.0 ml, 23 mmol, 2.3 eq.). The resultant light grey slurry was stirred for 1 hour at −78 °C, warmed to room temperature over 1 hour, stirred at this temperature for an additional 30 minutes and then poured into a mixture of sat. aq. NH$_4$Cl solution, ice and ether. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with brine, dried over MgSO$_4$, filtered and concentrated under vacuo to yield the desired product 121 as a crystalline white solid (2.03 g, 9.5 mmol, 95 %). The product was used without further purification (R_f ≈ 0.80; EtOAc/pet. ether 67/33). ν_{max} (ATR) 3386, 2975, 2932, 1726, 1694, 1642, 1516, 1166 cm$^{-1}$; δH (500 MHz, CDCl$_3$) 5.91 (1 H, ddt, J 17.1, 10.2, 6.9, 5-H), 5.15 (3H, m, NH and 6-H$_2$), 4.41–4.31 (1H, m, 2-H), 3.34–3.21 (2H, m, 4-H$_2$), 1.43 (9H, s, C(CH$_3$)$_3$), 1.33 (3H, d, J 7.1, 1-H$_3$); δC (126 MHz, CDCl$_3$) 207.6 C3, 155.3 NHCOO, 129.9 C5, 119.5 C4, 79.9 C(CH$_3$)$_3$, 54.9 C2, 44.2 C3, 28.5 C(CH$_3$)$_3$, 17.8 C1; m/z (ES$^-$) 212.1 [M−H]$^-$; (ES$^+$) 236.2 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 236.1257, C$_{11}$H$_{19}$O$_3$N$_2$Na requires M^+ 236.1257.
Procedure: A solution of 121 (2 g, 9.4 mmol) in anhydrous methanol (60 ml) was treated with sodium borohydride (0.72 g, 18.5 mmol, 1.97 eq.) at −78 °C. The resulting mixture was stirred for 90 minutes, carefully quenched by addition of a sat. aq. NH₄Cl solution at −78 °C, warmed to room temperature, and diluted with 1M NaOH solution (24 ml) and ether (60 ml). The organic layer was separated and the aqueous layer was extracted with ether (2 × 20 ml). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum to yield the crude product as a white solid consists of a mixture of 122a and 122b. The diastereoisomeric ratio was determined by analysis of the ¹H NMR spectra of the crude product and was found to be 82:18 of 122a:122b. The crude mixture was purified by chromatography (25 % ethyl acetate in pet. ether) to yield 0.73 g of a 70/30 mixture of 122a and 122b followed by 1.14 g of pure 122a with total yield 92 % (1.87 g, 8.7 mmol) (Rf 122a ≈ 0.30, Rf 122b ≈ 0.32; EtOAc/pet. ether 25/75). 122a; νmax (ATR) 3358 (br, s), 2979, 2940, 1681 (s), 1526 (s), 1174 (s), 1024 (s) cm⁻¹; δH (500 MHz, CDCl₃) 5.84 (1H, ddt, J 7.3, 10.3, 14.4, 5-H), 5.19–5.09 (2H, m, 6-H), 4.75 (1H, br s, NH), 3.71 (2H, m, 2-H and 3-H), 2.38–2.11 (3H, m, OH, 4-H₂), 1.44 (9H, s, C(CH₃)₃), 1.12 (3H, d, J 6.8, 1-H₃); δC (101 MHz, CDCl₃) 156.0 NHCOO, 134.8 C5, 118.2 C6, 79.6 C(CH₃)₃, 73.4 C3, 50.4 C2, 38.5 C4, 28.5 C(CH₃)₃, 14.7 Cl; m/z (ES⁺) 238.2 [M+Na]⁺; HRMS (ES⁺) found [M+Na]⁺ 238.1414, C₁₁H₂₁O₃N⁺Na requires M⁺ 238.1414.

(2S)-2-(tert-Butoxycarbonylamino)hex-5-en-3-yl acetate (123)

Procedure: To a solution of a (70/30) mixture of the diastereoisomers 122a and 122b (0.7 g, 3.25 mmol) in anhydrous CH₂Cl₂ (40 ml) were added Et₃N (0.91 ml, 6.5 mmol, 2.0 eq.) and a
catalytic amount of DMAP (0.081 g, 0.65 mmol, 0.2 eq.). The reaction mixture was stirred for 5 min followed by dropwise addition of acetic anhydride (0.46 ml, 4.88 mmol, 1.5 eq.). The reaction mixture was stirred overnight at room temperature. Upon completion, the reaction mixture was transferred to an ice bath; 10 ml of 1M HCl were added to the reaction mixture and the two phases were allowed to separate. The aqueous phase was re-extracted with EtOAc (2 × 5 ml). The combined organic extracts were washed with sat. aq. NaHCO₃, brine and dried over MgSO₄ and filtered. The solvent was removed in vacuo yielding the crude product as viscous yellow oil. The crude product was purified by chromatography (from 5 % to 25 % ethyl acetate in pet. ether) to give 123 as a (70/30) mixture of two diastereoisomers (0.725 g, 2.82 mmol, 86%) (\(R_f \approx 0.40, 0.55; \text{EtOAc/ pet. ether 85/15})

\(\nu_{max} (\text{ATR}) 3346 (\text{w}), 2978, 1710 (\text{s}), 1691 (\text{s}), 1522, 1455, 1366, 1234 (\text{s}), 1173 (\text{s}), 1024 \text{ cm}^{-1}; \delta_H (700 \text{ MHz, CDCl}_3) 5.72 (1H, ddt, J 17.1, 10.1, 5-H), 5.07 (1H, d, J 17.1, 6-H\text{trans}), 5.04 (1H, d, J 10.1, 6-H\text{cis}), 4.90 (0.7H, ddd, J 8.0, 5.5, 4.3, 3-H), 4.87–4.83 (0.3H, m, minor 3-H), 4.65–4.54 (1H, m, NH), 3.91–3.80 (1H, m, 2-H), 2.35–2.22 (2H, m, 4-H), 2.06–1.99 (3H, m, OCOCH₃), 1.48–1.37 (9H, m, C(CH₃)₃), 1.12–1.05 (3H, m, 1-H); \delta_C (176 \text{ MHz, CDCl}_3) 170.81 (\text{minor} 170.59), 155.47 (\text{minor} 155.20), 133.45 (\text{minor} 133.22), 118.31 (\text{minor} 118.00), 79.50 (\text{minor} 79.44), 75.79 (\text{minor} 75.48), 48.12 (\text{minor} 48.07), 36.28 (\text{minor} 35.69), 28.48, 21.17 (\text{minor} 18.75), 15.51 (\text{minor} 14.30); m/z (ES⁺) 280.1 [M+Na]+; HRMS (ES⁺) found [M+Na]+ 280.1519, C_{13}H_{23}O_{4}N_{2}Na requires M⁺ 280.1519.

8.2.2.3 Ceramide analogues

(S)-2-((tert-Butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)propanoic acid (201)

Procedure: To a solution of \(N\)-(tert-butoxycarbonyl)-L-serine 200 (512 mg, 2.5 mmol) in anhydrous DMF (12 mL), imidazole (509 mg, 7.5 mmol, 3 eq.) was added and the reaction mixture was cooled to 0 °C followed by addition of TBSCI (490 mg, 3.25 mmol, 1.3 eq.). The resulting mixture was slowly warmed to room temperature and stirred overnight and followed by TLC. Upon total consumption of the starting material (monitored by TLC), the reaction mixture
was poured into a mixture of ice cooled 1N HCl (5 mL) and ether (20 mL) to hydrolyze the silyl ester. The organic layer was separated and the aqueous layer was extracted with ether (2 × 20 ml). The combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated under vacuum to yield the desired product as pale yellow sticky oil (630 mg, 1.97 mmol, 79 %). \(\nu_{\text{max}} \) (ATR) 3380–3492 (br), 3451 (s), 2952, 2569, 1724, 1691, 1505 cm\(^{-1}\); \(\delta_H \) (200 MHz, CDCl\(_3\)) 8.49 (1H, br s, acidic OH), 5.35 (1H, br d, J 8.2, NH), 4.36 (1H, m, 2-H), 4.09 (2H, m, 3-HH), 3.83 (1H, A of ABX syst., m, 3-HH), 3.14 (9H, s, OC(CH\(_3\))\(_3\)), 0.86 (9H, s, SiC(CH\(_3\))\(_3\)), 0.03, 0.2 (2 × 3H, s, SiCH\(_3\)); \(\delta_C \) (75 MHz, CDCl\(_3\)) 175.3 C\(_{14}\)H\(_{30}\)O\(_5\)N (Expected: 175.3).

\[(S)-\text{tert-Butyl (3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-yl) carbamate (202)}^{4,9}\]

\[
\begin{align*}
\text{HO} & \quad \text{NHBoc} \\
\text{O} & \quad \text{NHBoc} \\
\text{NH} & \quad \text{O}
\end{align*}
\]

Procedure: To a solution of N-(tert-butoxycarbonyl)-L-serine 200 (3.075 g, 15 mmol) in anhydrous CH\(_2\)Cl\(_2\) (100 ml) was added N-methylmorpholine (1.812 ml, 16.5 mmol, 1.1 eq.) and \(N,O \)-dimethylhydroxylamine hydrochloride (1.610 g, 16.5 mmol, 1.1 eq.) at \(-15 \, ^\circ \text{C}\). To the reaction mixture was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.874 g, 16.5 mmol, 1.1 eq.) over 30 min at the same temperature. The reaction mixture was stirred for 4 hrs then poured into ice and 1N HCl. The resulting mixture was extracted with CH\(_2\)Cl\(_2\). The organic layers were combined, and washed with brine, dried over MgSO\(_4\), filtered, and concentrated \textit{in vacuo} to give the crude Weinreb amide 202 (3.400 gm, 91%) as a colourless solid. The crude product was at high purity and was used directly without further purification. \(\nu_{\text{max}} \) (ATR) 3329, 2935, 1715, 1665, 1498, 1173 cm\(^{-1}\); \(\delta_H \) (500 MHz, CDCl\(_3\)) 5.57 (1H, br s, NH), 4.89–4.74 (1H, m, 2-H), 3.86–3.79 (2H, m, 3-H\(_2\)), 3.78 (3H, s, OCH\(_3\)), 3.24 (3H, s, NCH\(_3\)), 2.49 (1H, br s, OH), 1.45 (9H, s, C(CH\(_3\))\(_3\)); \(\delta_C \) (126 MHz, CDCl\(_3\)) 170.9 C1, 156.0 NHCOO, 80.3 C(CH\(_3\))\(_3\), 64.1 C3, 61.8 OCH\(_3\), 52.5 C2, 31.1 NCH\(_3\), 28.5 C(CH\(_3\))\(_3\); \(m/z \) (ES\(^+\)) 271.2 [M+Na]\(^+\) C\(_{10}\)H\(_{20}\)O\(_5\)N\(_2\)Na (Expected: 271.1).
(S)-*tert*-Butyl (1-hydroxy-3-oxopent-4-en-2-yl)carbamate (203)10

![chemical structure](image)

Procedure:4 A (0.6 M) solution of vinyl magnesium bromide (*c.a.* 22 ml, 12.9 mmol, 4 eq.) in THF was added dropwise at 0 °C to a solution of 202 (800 mg, 3.23 mmol) in anhydrous THF (30 ml). The reaction mixture was allowed to warm up to room temperature. After the reaction mixture was stirred for 1 hr at the same temperature, the reaction mixture was poured into ice cooled 2N HCl. The resulting mixture was extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over MgSO$_4$, filtered, and concentrated in vacuo to give the crude products. Column chromatography on silica gel (from 40% to 80% EtOAc in pet. ether) gave 203 (510 mg, 73%) as a sticky oil ($R_f \approx 0.30$; EtOAc/pet. ether 67/33). ν_{max} (ATR) 3384, 2978, 1681, 1501, 1366, 1162 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 6.57 (1H, dd, J 17.4, 10.5, 4-H), 6.43 (1H, dd, J 17.4, 1.1, 5-H)$_{\text{trans}}$, 5.92 (1H, dd, J 10.5, 1.1, 5-H)$_{\text{cis}}$, 5.72 (1H, br s, NH), 4.66 (1H, s, 2-H), 4.00–3.80 (2H, m, 1-H_2), 2.91 (1H, br s, OH), 1.44 (9H, s, C(CH$_3$)$_3$); δ_C (101 MHz, CDCl$_3$) 196.6, 156.2, 132.9, 130.8, 80.6, 63.8, 60.0, 28.4; m/z (ES$^+$) 238.0 [M+Na]$^+$ C$_{10}$H$_{17}$O$_4$N$_2$Na (Expected: 238.1).

(S)-*tert*-Butyl (3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-yl)carbamate (204)4

![chemical structure](image)

Procedure:9 To a solution of 202 (500 mg, 2.02 mmol) in anhydrous DMF (2.5 mL) were added imidazole (410 mg, 6.12 mmol, 3 eq.) and a catalytic amount of DMAP (25 mg, 0.2 mmol, 0.1 eq.) at 0 °C followed by addition of a solution of TBSCl (349 mg, 2.32 mmol, 1.15 eq.) in anhydrous DMF (2.5 ml). The resulting mixture was allowed to warm up to room
temperature, stirred overnight, and poured into sat. aq. NH₄Cl solution (5 ml) and extracted with CH₂Cl₂ (3 × 20 ml). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum to yield the crude product as yellowish viscous oil. Column chromatography on silica gel (from 25% to 50% EtOAc in pet. ether) gave 204 (650 mg, 1.80 mmol, 89%) as a sticky oil (Rf ≈ 0.25; EtOAc/pet. ether 25/75). νmax (ATR) 2931, 2857, 2350, 1711, 1611, 1494, 1468, 1168, 1111, 837 cm⁻¹; δH (700 MHz, CDCl₃) 5.35 (1H, br d, J 8.5, NH), 4.80 – 4.70 (1H, m, 5-H), 3.84 (1H, dd, J 9.4, 4.5, 6-H), 3.78 (1H, dd, J 9.7, 4.5, 6-H), 3.74 (3H, s, 1-H), 3.20 (3H, s, NC₃H₃), 1.43 (9H, s, C(C₃H₃)₃), 0.85 (9H, s, SiC(C₃H₃)₃), 0.02, 0.01 (2 × 3H, s, SiC₃H₃); δC (176 MHz, CDCl₃) 170.9, 155.5, 79.7, 63.7, 61.6, 52.6, 32.3, 28.5, 25.9, -5.4, -5.4; m/z (ES⁺) 385.2 [M+Na]⁺; C₁₆H₃₄O₅N₂³⁺Na (Expected: 385.1).

Procedure:

A (0.6 M) solution of vinyl magnesium bromide (c.a. 11 ml, 6.64 mmol, 4 eq.) in THF was added dropwise at 0 °C to a solution of 204 (600 mg, 1.66 mmol) in anhydrous THF (10 ml). The reaction mixture was allowed to warm up to room temperature. After the reaction mixture was stirred for 1 hour at the same temperature, the reaction mixture was poured into ice cooled 2N HCl. The resulting mixture was extracted with ethyl acetate. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo to give the crude products. Column chromatography on silica gel (from 5% to 20% EtOAc in pet. ether) gave 205 (920 mg, 84%) as a viscous oil (Rf ≈ 0.78; EtOAc/pet. ether 25/75). νmax (ATR) 3460, 2865, 1695, 1489, 1359, 1173 cm⁻¹; δH (700 MHz, CDCl₃) 6.55 (1H, dd, J 17.5, 10.7, 4-CH), 6.34 (1H, dd, J 17.5, 1.0, 5-CH₃), 5.83 (1H, d, J 10.7, 5-CH₃), 5.52 (1H, br d, J 6.8, NH), 4.63–4.56 (1H, m, 2-CH), 4.00 (1H, dd, J 10.2, 1.0, 1-CH), 3.85 (1H, dd, J 10.2, 4.4, 1-CH), 2.04 (1H, s, OH), 1.44 (9H, s, C(CH₃)₃), 0.83 (9H, s, SiC(CH₃)₃), 0.02, 0.01 (2 × 3H, s, SiCH₃); δC (176 MHz, CDCl₃) 196.8, 155.3, 133.1, 129.3, 79.7, 63.4, 59.5, 28.3, 25.7, 18.2, -5.6; m/z (ES⁺) 330.5 [M+H]⁺; C₁₆H₃₂O₄N₁²⁺Si (Expected: 330.2).
tert-Butyl ((2S,3R)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxypent-4-en-2-yl)carbamate (206a)

![Chemical structure of 206a]

Procedure: To a solution of the enone 205 (910 mg, 2.77 mmol) in spectrophotometric grade ethanol (35 ml) was added lithium *tri-*tert-butoxy aluminium hydride (1.546 g, 6.1 mmol, 2.2 eq.) at −78 °C. After the reaction mixture was stirred at the same temperature for 2 hrs, 0.1N HCl (16.5 ml) was added followed by Celite and EtOAc (16.5 ml). The resulting slurry was filtered through Celite and the residue was washed with EtOAc (16.5 ml). The two phases were separated and the aqueous phase re-extracted with EtOAc. The organic extracts were combined, washed with NaHCO₃ and brine, dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude product as a single diastereomer (206a) as indicated by the ¹H NMR analysis. Column chromatography on silica gel (from 20% to 50% ethyl acetate in pet. ether) gave 206a (870 mg, 95%) as a viscous oil ($R_f \approx 0.40$; EtOAc/pet. ether 25/75). ν_{max} (ATR) 3445, 2940, 1699, 1494, 1168, 840 cm⁻¹; δ_H (500 MHz, CDCl₃) 5.91 (1H, ddd, J 17.1, 10.6, 4.9, 4-H), 5.37 (1H, dd, J 17.1, 1.6, 5-H_{trans}), 5.27 (1H, br d, J 7.9, NH), 5.23 (1H, dd, J 10.6, 1.6, 5-H_{cis}), 4.29–4.22 (1H, m, 3-H), 3.91 (1H, dd, J 10.4, 2.9, 1-H), 3.74 (1H, dd, J 8.3, 2.9 1-HH), 3.65–3.58 (1H, br s, OH), 3.47 (1H, m, 2-H), 1.44 (9H, s, OC(CH₃)₃), 0.88 (9H, s, SiC(CH₃)₃), 0.05, 0.04 (2 × 3H, s, SiCH₃); δ_C (126 MHz, CDCl₃) 155.9, 138.0, 115.9, 79.7, 74.9, 63.6, 54.2, 28.5, 28.5, 25.9, 25.9, 18.2, -5.52, -5.54; m/z (ES⁺) 332.4 [M+H]⁺ $C_{16}H_{33}O_4N_1Si_1$ (Expected: 332.2), 354.4 [M+Na]⁺ $C_{16}H_{32}O_4NaSi^{28}$Na (Expected: 354.2).

tert-Butyl ((2S,3R)-1,3-dihydroxypent-4-en-2-yl)carbamate (207)

![Chemical structure of 207]
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

Procedure: A solution of 206a (100 mg, 0.3 mmol) in methanol (1.5 ml) was treated with 2N HCl (150 µl) dropwise at −0 °C. The resulting mixture was stirred for 15 minutes at the same temperature and monitored by TLC. Upon complete consumption of the starting material, the reaction was quenched by addition of a brine solution (5 ml) and extracted with EtOAc (2 × 10 ml). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum to yield the crude product. Column chromatography on silica gel (from 25% to 50% ethyl acetate in pet. ether and elution with MeOH) gave 207 (60 mg, 2.76 mmol, 92 %) as viscous oil ($R_f \approx 0.13$; EtOAc/pet. ether 50/50). ν_{max} (ATR) 3456, 2931, 1705, 1510, 1177, 842 cm$^{-1}$; δ_H (700 MHz, CDCl$_3$) 5.94 (1H, ddd, J 16.9, 10.6, 5.3, 4-H), 5.40 (1H, d, J 16.9, 5-H$_{\text{trans}}$), 5.35 (1H, br s, NH), 5.27 (1H, d, J 10.6, 5-H$_{\text{cis}}$), 4.39 (1H, br s, 3-H), 3.93 (1H, dd, J 11.2, 3.5, 1-HH), 3.74–3.68 (1H, m, 1-HH), 3.68–3.61 (1H, m, 2-H), 2.85 (1H, app d, J 4.5, 3-OH), 2.57 (1H, br s, 1-OH), 1.45 (9H, s, C(CH$_3$)$_3$); δ_C (176 MHz, CDCl$_3$) 156.3, 137.6, 116.7, 80.1, 75.1, 62.7, 55.1, 28.5; m/z (ES$^+$) 240.4 [M+Na]$^+$ C$_{10}$H$_{19}$O$_4$N$_2$Na (Expected: 240.1).

8.2.2.4 4E-3-deoxy-ceramide analogues

(1S,2S,4S,5R)-1-(Anthracen-9-ylmethyl)-2-((R)-hydroxy(quinolin-4-yl)methyl)-5-vinyl-1-azoniabicyclo[2.2.2]octane chloride (303)11

Procedure:11 To a suspension of cinchonidine 301 (294 mg, 1.0 mmol) in toluene (4 ml) was added 9-(chloromethyl)anthracene (237 mg, 1.05 mmol, 1.05 eq.), and the mixture was stirred at reflux 110 °C for 3 hrs. The mixture was cooled to room temperature, poured into 20 ml of ether. The solid residue was collected by centrifugation and decantation of the liquid phase. The
residue was washed by ether (2 × 20 ml) and collected by centrifugation. The mother liquor was concentrated in vacuo and the residue was dissolved in CH₂Cl₂/ether and kept at −20 °C to precipitate another fraction of the product. The combined solid residue was recrystallized from CH₂Cl₂/ether and kept at −20 °C to afford 303 (460 mg, 0.88 mmol, 88%) as light yellow solid ($R_f \approx 0.30$; CH₂Cl₂/MeOH 93/7). δH (400 MHz, CDCl₃, 20 mg/ml)¹² 8.97 (1H, d, J 8.4), 8.86 (1H, d, J 4.3), 8.79 (2H, d, J 8.9), 8.17 (1H, d, J 4.9), 8.06–8.01 (2H, m, J 4.7), 7.71 (1H, d, J 8.2), 7.68–7.64 (1H, m), 7.61 (1H, d, J 7.8), 7.47–7.40 (1H, m), 7.29–7.21 (4H, m), 7.19–7.09 (1H, m), 7.09–7.04 (1H, m), 6.74 (2H, s), 5.42 (1H, ddd, J 16.8, 10.5, 6.1), 5.21 (1H, d, J 16.8), 4.90 (1H, dd, J 10.5, 1.4), 4.85–4.73 (1H, m), 4.72–4.58 (1H, m), 3.97 (1H, d, J 13.0), 2.58 (1H, dd, J 12.9, 10.6), 2.47 (1H, app. t, J 12.6), 2.18–2.06 (1H, m), 1.95–1.77 (2H, m), 1.77–1.56 (1H, m), 1.22–1.11 (1H, m), 1.11–0.95 (1H, m); δC (176 MHz, CDCl₃) 149.01, 136.52, 133.38, 132.76, 131.21, 130.45, 130.39, 128.98, 128.86, 128.38, 127.76, 127.46, 127.23, 125.98, 125.73, 124.93, 124.91, 124.38, 124.06, 120.26, 118.26, 117.86, 67.22, 67.18, 61.58, 54.98, 50.66, 38.64, 25.99, 25.81, 23.50; m/z (ES⁺) 485.5 [M]+ C₃₄H₃₃ON₂ (Expected: 485.3).

(1S,2S,4S,5R)-2-((R)-Allyloxy(quinolin-4-yl)methyl)-1-(anthracen-9-ylmethyl)-5-vinyl-1-azoniabicyclo[2.2.2]octane bromide (304)¹¹

Procedure.¹¹ To a suspension of 303 (200 mg, 0.39 mmol) in CH₂Cl₂ (5 ml) was added allyl bromide (100 µl, 1.17 mmol, 3.05 eq.) and 50% aq. KOH solution (200 µl, 1.9 mmol, 5 eq.). The resulting mixture was stirred vigorously at room temperature for 4 hrs. The mixture was diluted with water (6.25 ml) and extracted with CH₂Cl₂ (3 × 5 ml). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo. Recrystallization of the residue from MeOH/ether at −20 °C afforded the desired product 304 (190 mg, 0.32 mmol, 84%) as an orange
solid. δ_H (700 MHz, CD$_3$OD, 25 mg/ml)12 9.07 (1H, d, J 4.4), 8.93 (1H, s), 8.77 (1H, d, J 9.0), 8.63–8.56 (1H, m), 8.48 (1H, d, J 9.1), 8.31–8.26 (2H, m), 8.25 (1H, d, J 8.3), 8.01–7.93 (3H, m, J 15.0, 7.2), 7.83 (1H, dd), 7.79 (1H, dd, J 8.5, 7.2), 7.68 (2H, dd, J 14.4, 6.3), 6.98 (1H, s), 6.44 (2H, ddd, J 15.9, 11.0, 5.6), 5.92 (1H, d, J 13.9), 5.76–5.67 (2H, m), 5.58 (1H, d, J 10.4), 5.06–4.98 (2H, m, J 13.0, 6.0), 4.51–4.42 (2H, m), 3.80 (1H, d, J 9.1), 3.30–3.24 (1H, m), 2.94 (1H, td, J 11.6, 5.1), 2.54–2.42 (2H, m, J 23.5, 13.6), 2.21 (1H, s), 2.00 (1H, s), 1.70–1.58 (2H, m); δ_C (176 MHz, CD$_3$OD) 151.05, 149.38, 142.94, 138.50, 134.80, 134.67, 134.61, 133.94, 133.10, 133.04, 131.52, 131.31, 131.18, 130.66, 129.41, 129.26, 127.08, 126.66, 126.57, 125.28, 124.88, 121.65, 119.12, 117.80, 71.44, 70.12, 63.55, 57.42, 53.69, 49.53, 39.48, 27.30, 26.26, 23.31; m/z (ES$^+$) 525.5 [M]$^+$ C$_{37}$H$_{37}$ON$_2$ (Expected: 525.3).

(1S,2R,4S,5R)-1-(Anthracen-9-ylmethyl)-2-((S)-hydroxy(quinolin-4-yl)methyl)-5-vinyl-1-azoniabicyclo[2.2.2]octane chloride (305)12

Procedure.12 To a suspension of cinchonine 302 (294 mg, 1.0 mmol) in toluene (4 ml) was added 9-(chloromethyl)anthracene (237 mg, 1.05 mmol, 1.05 eq.), and the mixture was stirred at reflux 110 °C for 4 days. The mixture was cooled to room temperature, poured into 20 ml of ether. The solid residue was collected by centrifugation and decantation of the liquid phase. The residue was washed by ether (2 × 20 ml) and collected by centrifugation. The mother liquor was concentrated in vacuo and the residue was dissolved in CH$_2$Cl$_2$/ether and kept at −20 °C to precipitate another fraction of the product. The combined solid residue was recrystallized from CH$_2$Cl$_2$/ether and kept at −20 °C to afford 305 (250 mg, 0.48 mmol, 48%) as light yellow solid ($R_f \approx 0.30$; CH$_2$Cl$_2$/MeOH 93/7). δ_H (700 MHz, CDCl$_3$, 25 mg/ml)12 9.24 (1H, d, J 8.6), 8.92 (1H, d, J 6.7), 8.81 (1H, s), 8.41 (1H, d, J 8.7), 8.20 (1H, s), 8.02 (1H, d, J 3.7), 7.85 (1H, s),
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

7.55 (1H, d, J 8.1), 7.53 (1H, d, J 8.3), 7.45 (1H, d, J 8.2), 7.27–7.23 (1H, m), 7.21–7.16 (2H, m), 7.11–7.06 (1H, m, J 6.7), 7.06–7.02 (1H, m, J 7.2), 6.98–6.89 (3H, m), 6.46 (1H, d, J 13.7), 5.56 (1H, ddd, J 17.2, 10.5, 6.6), 5.00 (1H, d, J 10.5), 4.84 (1H, d, J 17.3), 4.75–4.68 (1H, m), 4.44–4.36 (1H, m), 4.24 (1H, t, J 11.5), 2.45 (2H, t, J 12.0), 2.30 (1H, dd, J 20.5, 10.7), 1.92 (1H, t, J 12.6), 1.73–1.64 (2H, m, J 23.5, 10.1), 1.49 (1H, s), 1.34 (1H, t, J 11.1), 0.65 – 0.57 (1H, m); δH (176 MHz, CDCl3) 149.4, 147.0, 145.6, 135.6, 133.1, 132.8, 130.9, 130.4, 130.1, 129.0, 128.5, 128.2, 127.6, 127.3, 126.9, 124.9, 124.9, 124.61, 120.1, 118.1, 117.5, 67.8, 66.8, 57.6, , 54.3, 54.0, 38.1, 26.4, 24.1, 22.7; m/z (ES+) 485.8 [M]+ C34H33ON2 (Expected: 485.3).

(1S,2R,4S,5R)-2-((S)-Allyloxy(quinolin-4-yl)methyl)-1-(anthracen-9-ylmethyl)-5-vinyl-1-azoniabicyclo[2.2.2]octane bromide (306)13

![Chemical Structure 305](image1.png)

![Chemical Structure 306](image2.png)

Procedure:11 To a suspension of 305 (272 mg, 0.52 mmol) in CH2Cl2 (7 ml) was added allyl bromide (141 µl, 1.63 mmol, 3.05 eq.) and 50% aq. KOH solution (286 µl, 2.6 mmol, 5 eq.). The resulting mixture was stirred vigorously at room temperature for 4 hrs. The mixture was diluted with water (9 ml) and extracted with CH2Cl2 (3 × 7 ml). The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. Recrystallization of the residue from MeOH/ether at −20 °C afforded the desired product 306 (275 mg, 0.45 mmol, 87%) as orange solid. δH (700 MHz, CD3OD, 18 mg/ml)12 9.04 (1H, d, J 4.0), 9.01 (1H, d, J 9.0), 8.77 (2H, m), 8.27 (1H, d, J 8.7), 8.20–8.14 (3H, m), 8.00 (1H, s), 7.94–7.90 (2H, m), 7.84–7.79 (1H, m), 7.70–7.66 (1H, m), 7.62 – 7.57 (2H, m, J 10.4, 5.4), 6.90 (1H, s), 6.46–6.38 (1H, m), 6.13–5.99 (2H, m), 5.93 (1H, ddd, J 17.2, 10.6, 6.9), 5.72 (1H, d, J 17.2), 5.63 (1H, d, J 10.6), 5.19 (1H, d, J 10.5), 5.04 (1H, d, J 17.3), 4.58 (1H, m), 4.55 (1H, dd, J 12.8, 6.0), 4.41–4.34 (3H, m), 3.11 (1H, app. t, J 11.5), 2.77 (1H, m), 2.55–2.50 (1H, m), 2.25–2.14 (1H, m), 1.85–1.78 (2H, m), 1.56–1.46 (1H, m), 1.39–1.26 (2H, m), 0.92–0.80 (3H, m), 0.66–0.61 (1H, m).
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

1.64–1.55 (1H, m), 1.20–1.12 (1H, m), 0.70 (0.45H, t, J 7.4); m/z (ES$^+$) 525.7 [M]$^+$ C$_{37}$H$_{37}$ON$_2$ (Expected: 525.3).

Methyl 2-((diphenylmethylene)amino)acetate (307)14

![Chemical Structure](image)

Procedure:14 To a suspension of methyl glycine hydrochloride 300 (753 mg, 6 mmol) in anhydrous CH$_2$Cl$_2$ (20 ml), an equimolar amount of benzophenone imine (1 ml, 6 mmol) was added and the reaction mixture was stirred at room temperature for 24 hr. The reaction mixture was filtered to remove NH$_4$Cl and evaporated to dryness on a rotary evaporator. The residue was dissolved in 20 mL of ether, filtered, washed with 20 mL of water, and dried over MgSO$_4$ to yield the crude product. Column chromatography on silica gel (from 10% to 50% ethyl acetate in pet. ether) gave 307 (1.221 g, 4.8 mmol, 80 %) as white waxy solid (R_f \approx 0.33; EtOAc/pet. ether 33/67). ν_{max} (ATR) 2948, 2890, 2361, 1970, 1752, 1622, 1573, 1384, 1195, 682 cm$^{-1}$; δ_H (700 MHz, CDCl$_3$) 7.66 (2H, m, ArH), 7.49–7.42 (3H, m, ArH), 7.40 (1H, m, Ar$'H$), 7.33 (2H, m, Ar$'H$), 7.18 (2H, m, Ar$'H$), 4.22 (2H, s 2-H_2), 3.74 (3H, s, OCH$_3$); δ_C (176 MHz, CDCl$_3$) 172.0, 171.2, 139.3, 136.0, 130.6, 128.9, 128.9, 128.8, 128.2, 127.8, 55.7, 52.1; m/z (ES$^+$) 254.4 [M+H]$^+$ C$_{16}$H$_{16}$O$_2$N (Expected: 254.1).
8.2.3 General Procedure for Phase Transfer Catalysis11,15

To an ice cooled solution of the Schiff base 307 in Toluene/CH$_2$Cl$_2$ (7:3 v/v), the cinchona catalyst 304 or 306 was added (5 mol\%) followed by dropwise addition of allyl bromide (5.0 eq.) at 0 °C. The reaction mixture was stirred for 5 min before the dropwise addition of 50\% aq. KOH (5 eq.). The reaction was stirred vigorously overnight from 0°C to room temperature. The reaction was monitored by TLC and upon completion; the reaction mixture was diluted with water (10 ml) and extracted with EtOAc (3 × 5 ml). The organics were dried over MgSO$_4$, filtered, and evaporated in vacuo, affording the crude products.

\begin{equation}
(S)-\text{Methyl 2-((diphenylmethylene)amino)pent-4-enoate (309)}11
\end{equation}

\begin{equation}
(R)-\text{Methyl 2-((diphenylmethylene)amino)pent-4-enoate (329)}
\end{equation}

The asymmetric syntheses of 309 and 329 were carried out according to the general procedure mentioned above. However, the racemic mixture preparation was accomplished following the protocol described below.

Procedure:16-17 To a solution of the Schiff base 307 (80 mg, 0.32 mmol) in anhydrous THF (3 ml) was added a (1.8 M) solution of LDA (200 µl, 0.35 mmol, 1.1 eq.) in THF at −78 °C. The reaction mixture was stirred for 30 min at the same temperature followed by addition of the allyl bromide (30 µl, 0.33 mmol, 1.05 eq.). The reaction mixture was stirred for 60 min at −78 °C after which it was allowed to warm up to room temperature. The reaction was pouring into ice water and extracted with EtOAc (3 × 5 ml). The organics were dried over MgSO$_4$, filtered, and evaporated in vacuo, affording the crude product (50 mg, 0.17 mmol, 57\%). ν_{max} (ATR) 2954, 2385, 1704, 1491, 1168, 840 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 7.65–7.61 (2H, m, ArH), 7.47–7.42 (3H, m, ArH), 7.40–7.36 (1H, m, ArH), 7.35–7.30 (2H, m, ArH), 7.19–7.14 (2H, m, ArH), 5.67 (1H, ddt, J 17.1, 10.1, 7.2, 4-H), 5.07 (1H, dd, J 17.1, 2.0, 5-HH), 5.02 (1H, dd, J 10.1, 2.0, 5-
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

$HH)$, 4.16 (1H, dd, J 7.8, 5.3, 2-H), 3.72 (3H, s, OCH$_3$), 2.75–2.56 (2H, m, 3-H_2); δ_C (101 MHz, CDCl$_3$) 172.4 (COOCH$_3$), 170.8 (Ph$_2$CN), 139.6 (Ar), 136.4 (Ar), 134.4 (Ar), 130.5 (C4), 128.94 (Ar), 128.78 (Ar), 128.61 (Ar), 128.14 (Ar), 128.03 (Ar), 117.8 (C5), 65.4 (C2), 52.1 (OCH$_3$), 38.3 (C3).

(S)-2-((Diphenylmethylene)amino)pent-4-en-1-ol (310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)

(310)
Chapter VIII: Chemical Synthesis Experimental Details

(S)-Methyl 2-((tert-butoxycarbonyl)amino)pent-4-enoate (312)18,19

![Chemical structure of 309 and 312](image)

Procedure:16 A mixture of the starting material 309 (735 mg, 2.51 mmol) and 4N HCl (3.1 ml, excess) in MeOH (10 ml) was refluxed for 1 hr. The reaction mixture was allowed to cool down to room temperature. The reaction mixture was extracted by ether (2 × 5 ml). The ether layer was discarded and the aqueous layer was basified by NaHCO\textsubscript{3} to pH 8 followed by addition of Boc\textsubscript{2}O (Boc anhydride) (824 mg, 3.77 mmol, 1.5 eq.) and the reaction was stirred for 2 hrs at room temperature and monitored by TLC. The reaction volume was reduced under vacuum and extracted with EtOAc (3 × 10 ml). The combined organic extracts were washed with brine, dried over MgSO\textsubscript{4}, filtered and evaporated in vacuo to afford the crude product. Column chromatography on silica gel (from 20% to 50% ethyl acetate in pet. ether) gave 312 (442 g, 1.9 mmol, 76%) as viscous liquid (Rf ≈ 0.42; EtOAc/pet. ether 33/67). ν\textsubscript{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm-1; δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 5.68 (1H, ddt, J 17.0, 9.7, 7.2, 4\text{-H}), 5.17–5.08 (2H, m, 5\text{-H}\textsubscript{2}), 5.03 (1H, br d, J 6.2, NH), 4.37 (1H, dd, J 13.3, 6.2, 2\text{-H}), 3.72 (3H, s, OCH\textsubscript{3}), 2.61 – 2.39 (2H, m, 3\text{-H}\textsubscript{2}), 1.42 (9H, s, C(CH\textsubscript{3})\textsubscript{3}); δ\textsubscript{C} (126 MHz, CDCl\textsubscript{3}) 171.2, 155.3, 132.4, 119.1, 79.9, 52.3, 36.9, 28.4; m/z (ES+) 253.0 [M+Na]+ C\textsubscript{11}H\textsubscript{19}O\textsubscript{2}N\textsubscript{1}23Na\textsubscript{1} (Expected: 253.1).

(R)-Methyl 2-((tert-butoxycarbonyl)amino)pent-4-enoate (330)18,19

![Chemical structure of 329 and 330](image)
Procedure.16 A mixture of the starting material 329 (690 mg, 2.35 mmol) and 4N HCl (3.0 ml, excess) in MeOH (10 ml) was refluxed for 1 hr. The reaction mixture was allowed to cool down to room temperature. The reaction mixture was extracted by ether (2 × 5 ml). The ether layer was discarded and the aqueous layer was basified by NaHCO\textsubscript{3} to pH 8 followed by addition of Boc\textsubscript{2}O (Boc anhydride) (775 mg, 3.53 mmol, 1.5 eq.) and the reaction was stirred for 2 hrs at room temperature and monitored by TLC. The reaction volume was reduced under vacuum and extracted with EtOAc (3 × 10 ml). The combined organic extracts were washed with brine, dried over MgSO\textsubscript{4}, filtered and evaporated in vacuo to afford the crude product. Column chromatography on silica gel (from 20% to 50% ethyl acetate in pet. ether) gave 330 (408 g, 1.78 mmol, 75\%) as viscous liquid (Rf ≈ 0.42; EtOAc/pet. ether 33/67). ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm-1; δ_{H} (400 MHz, CDCl\textsubscript{3}) 5.68 (1H, ddt, J 17.0, 9.7, 7.2, 4-H), 5.17–5.08 (2H, m, 5-H\textsubscript{2}), 5.03 (1H, br d, J 6.2, NH), 4.37 (1H, dd, J 13.3, 6.2, 2-H), 3.72 (3H, s, OCH\textsubscript{3}), 2.61–2.39 (2H, m, 3-H\textsubscript{2}), 1.42 (9H, s, C(CH\textsubscript{3})\textsubscript{3}); δ_{C} (126 MHz, CDCl\textsubscript{3}) 171.2, 155.3, 132.4, 119.1, 79.9, 52.3, 36.9, 28.4; m/z (ES+) 253.1 [M+Na]+ C\textsubscript{11}H\textsubscript{19}O\textsubscript{2}N\textsubscript{1}2Na\textsubscript{1} (Expected: 253.1).

(S)-tert-Butyl (1-hydroxypent-4-en-2-yl)carbamate (313)20

![Chemical Structure](image)

Procedure: A solution of 312 (332 mg, 1.45 mmol) in anhydrous ether (5 ml) was added dropwise to a stirred suspension of LiAlH\textsubscript{4} (100 mg, 3.19 mmol, 2.2 eq.) in anhydrous ether (5 ml) at −0 °C. The reaction mixture was allowed to warm up to room temperature, was stirred for additional 1 hr and followed by TLC. Upon completion, the reaction was carefully quenched with dropwise addition of water (1 ml) followed by addition of 15% aq. NaOH (1 ml), water (3 ml), Celite and EtOAc (10 ml). The resulting slurry was filtered through Celite and the filtering bed was washed with EtOAc (2 × 5 ml). The two phases were separated and the organic layer was washed with brine, dried over MgSO\textsubscript{4}, filtered and evaporated in vacuo to afford the crude product 313 (265 mg, 1.32 mmol, 91\%) as a pale yellow oil (Rf ≈ 0.25; EtOAc/pet. ether 33/67). The product was pure enough and was used without further purification. ν_{max} (ATR) 3375, 2971,
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_H (700 MHz, CDCl$_3$) 5.78 (1H, ddt, J 17.2, 10.2, 7.1, 4-H), 5.11 (2H, m, 5-H_2), 4.72 (1H, br s, NH), 3.74–3.58 (3H, m, 1-CH$_2$ and 2-H), 2.67 (1H, br s, OH), 2.31 (1H, m, 3-HH), 2.23 (1H, m, 3-HH), 1.43 (9H, s, C(CH$_3$)$_3$); δ_C (101 MHz, CDCl$_3$) 156.56, 134.28, 118.23, 79.89, 65.54, 52.30, 36.10, 28.49; m/z (ES$^+$) 224.0 [M+Na]$^+$ C$_{10}$H$_{19}$O$_3$N$_1$Na$_1$ (Expected: 224.1).

(R)-tert-Butyl (1-hydroxypent-4-en-2-yl)carbamate (331)20

![Chemical structure](image)

Procedure: A solution of 330 (388 mg, 1.69 mmol) in anhydrous ether (6 ml) was added dropwise to a stirred suspension of LiAlH$_4$ (102 mg, 3.72 mmol, 2.2 eq.) in anhydrous ether (6 ml) at −0 °C. The reaction mixture was allowed to warm up to room temperature, was stirred for additional 1 hr and followed by TLC. Upon completion, the reaction was carefully quenched with dropwise addition of water (1 ml) followed by addition of 15% aq. NaOH (1 ml), water (3 ml), Celite and EtOAc (12 ml). The resulting slurry was filtered through Celite and the filtering bed was washed with EtOAc (2×5 ml). The two phases were separated and the organic layer was washed with brine, dried over MgSO$_4$, filtered and evaporated in vacuo to afford the crude product 331 (270 mg, 1.34 mmol, 79%) as a pale yellow oil ($R_f \approx 0.25$; EtOAc/pet. ether 33/67). The product was pure enough and was used without further purification. ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_H (700 MHz, CDCl$_3$) 5.78 (1H, ddt, J 17.2, 10.2, 7.1, 4-H), 5.11 (2H, m, 5-H_2), 4.72 (1H, br s, NH), 3.74–3.58 (3H, m, 1-H_2 and 2-H), 2.67 (1H, br s, OH), 2.31 (1H, m, 3-HH), 2.23 (1H, m, 3-HH), 1.43 (9H, s, C(CH$_3$)$_3$); δ_C (101 MHz, CDCl$_3$) 156.56 (NCHO), 134.28, 118.23, 79.89, 65.54, 52.30, 36.10, 28.49; m/z (ES$^+$) 224.0 [M+Na]$^+$ C$_{10}$H$_{19}$O$_3$N$_1$Na$_1$ (Expected: 224.1).

8.2.4 Olefin Cross Metathesis
To a solution of Grubbs II (0.3% mol) in CH$_2$Cl$_2$, the starting material was added as a solution in CH$_2$Cl$_2$ followed by the addition of the coupling olefin in excess (5 eq.). The reaction mixture was refluxed, typically for 4–8 hrs. The reaction was followed by TLC and quenched by addition of potassium 2-isocyanoacetate (1.32% mol, 4.4 eq. to Grubbs catalyst). The reaction was stirred for 15 min at room temperature then evaporated in vacuo to yield the crude mixture which was purified by column chromatography on silica.

8.2.4.1 4E-1-deoxy ceramide analogues

tert-Butyl ((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)carbamate (104)

![Chemical structure of tert-Butyl ((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)carbamate (104)]

Yield (52%); ν_{max} (ATR) 3375, 2971, 2879, 1716, 1173, 840 cm$^{-1}$; δ_H (700 MHz, CDCl$_3$) 5.75–5.66 (1H, m, 5-H), 5.43 (1H, dd, J 15.5, 6.6, 4-H), 4.68–4.60 (1H, m, NH), 4.14–4.06 (1H, m, 3-H), 3.83–3.75 (1H, m, 2-H), 2.07–2.01 (2H, m, 6-H$_2$), 1.44 (9H, s, C(CH$_3$)$_3$), 1.39–1.22 (22H, m, 7-H$_2$ to 17-H$_2$), 1.07 (3H, d, J 6.4, 1-H$_3$), 0.88 (3H, t, J 6.9, 18-H$_3$); δ_C (101 MHz, CDCl$_3$) 156.3 (NHCOO), 134.2, 128.5, 79.8, 75.9, 32.5, 32.1, 29.9, 29.8, 29.8, 29.7, 29.6, 29.5, 29.3, 28.5, 22.8, 15.6, 14.3; m/z (ESI$^+$) 406.5 [M+Na]$^+$; HRMS (ESI$^+$) found [M+H]$^+$ 384.3474, C$_{23}$H$_{46}$O$_3$N$_1$ requires M^+ 384.3472.

tert-Butyl ((2S,3R,E)-3-hydroxynon-4-en-2-yl)carbamate (105)

![Chemical structure of tert-Butyl ((2S,3R,E)-3-hydroxynon-4-en-2-yl)carbamate (105)]
Yield (67%); \(\nu_{\text{max}} \) (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm\(^{-1}\); \(\delta_H \) (400 MHz, CDCl\(_3\)) 5.76–5.65 (1H, m, 5-H), 5.42 (1H, ddt, J 15.4, 6.6, 1.4, 4-H), 4.74–4.61 (1H, m, NH), 4.13–4.05 (1H, m, 3-H), 3.84–3.72 (1H, m, 2-H), 2.01–2.07 (2H, m, 6-H\(_2\)), 1.43 (9H, s, C(CH\(_3\))\(_3\)), 1.40–1.25 (4H, m, 7-H\(_2\) and 8-H\(_2\)), 0.88 (3H, t, J 7.1, 9-H\(_3\)); \(\delta_C \) (101 MHz, CDCl\(_3\)) 156.4, 134.1, 128.6, 79.7, 75.9, 51.2, 32.1, 31.5, 28.5, 22.3, 15.7, 14.0; \(m/z \) (ES\(^+\)) 280.0 [M+Na]\(^+\); C\(_{14}\)H\(_{27}\)O\(_3\)N\(_1\)Na\(_1\); HRMS (ES\(^+\)) found [M+H]\(^+\) 258.2064, C\(_{14}\)H\(_{28}\)O\(_3\)N\(_1\)Na\(_1\) requires \(M^+ \) 258.2064, [M+Na]\(^+\) 280.1884; C\(_{14}\)H\(_{27}\)O\(_3\)N\(_1\)Na\(_2\) requires \(M^+ \) 280.1883.

tert-Butyl ((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)carbamate (106)

Yield (64%) as viscous oil; \(\nu_{\text{max}} \) (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm\(^{-1}\); \(\delta_H \) (400 MHz, CDCl\(_3\)) 7.32–7.24 (2H, m, ArH), 7.23–7.14 (3H, m, ArH), 5.93–5.83 (1H, m, 5-H), 5.53 (1H, ddt, J 15.3, 6.3, 1.4, 4-H), 4.74–4.66 (1H, m, NH), 4.19–4.13 (1H, m, 3-H), 3.86–3.73 (1H, m, 2-H), 3.40 (2H, d, J 6.8, 6-H\(_2\)), 1.44 (9H, s, C(CH\(_3\))\(_3\)), 1.08 (3H, d, J 6.9, 1-H\(_3\)); \(\delta_C \) (101 MHz, CDCl\(_3\)) 156.4, 140.1, 132.2, 130.2, 128.6, 128.9, 126.3, 79.8, 75.6, 51.2, 38.9, 28.5, 15.6; \(m/z \) (ES\(^+\)) 314.3 [M+Na]\(^+\); C\(_{17}\)H\(_{25}\)O\(_3\)N\(_1\)Na\(_1\); HRMS (ES\(^+\)) found [M+H]\(^+\) 292.1908, C\(_{17}\)H\(_{26}\)O\(_3\)N\(_1\) requires \(M^+ \) 292.1907.

8.2.4.2 5E-1-deoxy ceramide analogues

(2S,E)-2-((tert-Butoxycarbonyl)amino)nonadec-5-en-3-yl acetate (127)

Yield (64%) as viscous oil; \(\nu_{\text{max}} \) (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm\(^{-1}\); \(\delta_H \) (400 MHz, CDCl\(_3\)) 7.32–7.24 (2H, m, ArH), 7.23–7.14 (3H, m, ArH), 5.93–5.83 (1H, m, 5-H), 5.53 (1H, ddt, J 15.3, 6.3, 1.4, 4-H), 4.74–4.66 (1H, m, NH), 4.19–4.13 (1H, m, 3-H), 3.86–3.73 (1H, m, 2-H), 3.40 (2H, d, J 6.8, 6-H\(_2\)), 1.44 (9H, s, C(CH\(_3\))\(_3\)), 1.08 (3H, d, J 6.9, 1-H\(_3\)); \(\delta_C \) (101 MHz, CDCl\(_3\)) 156.4, 140.1, 132.2, 130.2, 128.6, 128.9, 126.3, 79.8, 75.6, 51.2, 38.9, 28.5, 15.6; \(m/z \) (ES\(^+\)) 314.3 [M+Na]\(^+\); C\(_{17}\)H\(_{25}\)O\(_3\)N\(_1\)Na\(_1\); HRMS (ES\(^+\)) found [M+H]\(^+\) 292.1908, C\(_{17}\)H\(_{26}\)O\(_3\)N\(_1\) requires \(M^+ \) 292.1907.
Yield (49%); ν_{max} (ATR) 3449, 2928, 1715, 1497, 1173, 839 cm$^{-1}$; δ_{H} (700 MHz, CDCl$_3$) 5.52–5.44 (1H, m, 5- H), 5.34–5.27 (1H, m, 6-H), 4.87 (1H, ddd, J 7.9, 5.8, 4.0, 3- H), 4.64–4.55 (1H, m, NH), 3.91–3.80 (1H, m, 2-H), 2.30–2.16 (2H, m, 4- H$_2$), 2.07–1.99 (4H, m, 7-H$_2$ and OCOCH$_3$), 1.95 (1H, dd, J 14.2, 7.1, 7-HH), 1.43 (9H, s, C(CH$_3$)$_3$), 1.36–1.19 (22H, m, 8- H$_2$ to 18-H$_2$), 1.09 (3H, d, J 7.1, 1-H$_3$), 0.87 (3H, t, J 7.1, 19-H$_3$); δ_{C} (176 MHz, CDCl$_3$) 170.84, 155.21, 134.42, 124.44, 79.47, 75.96, 48.15, 34.54, 32.71, 32.05, 29.81, 29.79, 29.76, 29.69, 29.65, 29.54, 29.49, 29.31, 28.52, 22.82, 21.23, 15.50, 14.24; m/z (ES$^+$) 462.4 [M+Na]$^+$ C$_{26}$H$_{49}$O$_3$N$_1$Na; HRMS (ES$^+$) found [M+Na]$^+$ 462.3577, C$_{26}$H$_{49}$O$_3$N$_1$23Na$_1$ requires M^+ 462.3559.

tert-Butyl ((2S,3R,E)-3-hydroxynonadec-5-en-2-yl)carbamate (129)

Yield (53%); ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_{H} (700 MHz, CDCl$_3$) 5.55 (1H, dt, J 12.8, 6.7, 6-H), 5.43–5.36 (1H, m, 5-H), 4.83–4.68 (1H, m, NH), 3.73–3.58 (2H, m, 3-H and 2-H), 3.48 (1H, d, J 7.8, OH), 2.27–2.15 (4H, m, 4-H$_2$ and 7-H$_2$), 2.14–1.98 (2H, m, 7-H$_2$), 1.44 (9H, s, C(CH$_3$)$_3$), 1.38–1.22 (94 H, m, 8-H$_2$ to 18-H$_2$ and 1-H$_3$), 0.88 (3H, t, J 7.1, 19-H$_3$); δ_{C} (126 MHz, CDCl$_3$) 156.24, 135.03, 125.50, 79.56, 73.69, 50.35, 37.46, 32.88, 32.15, 29.90, 29.88, 29.85, 29.73, 29.66, 29.58, 29.45, 29.44, 28.63, 22.92, 14.35; m/z (ES$^+$) 398.5 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 398.3627, C$_{24}$H$_{48}$O$_3$N$_1$ requires M^+ 398.3629; [M+Na]$^+$ 420.3446, C$_{24}$H$_{47}$O$_3$N$_1$23Na$_1$ requires M^+ 420.3448.

tert-Butyl ((2S,3R,E)-3-hydroxydec-5-en-2-yl)carbamate (130)
Yield (56%); waxy solid; ν_{max} (ATR) 3449, 2928, 1715, 1497, 1173, 839 cm$^{-1}$; δ_{H} (400 MHz, CDCl$_3$) 5.55 (1H, dt, J 13.2, 6.6, 6-CH), 5.43–5.34 (1H, m, 5-H), 4.83–4.70 (1H, m, NH), 3.74–3.58 (2H, m, 2-H and 3-H), 2.23–1.96 (4H, m, 4-H$_2$ and 7-H$_2$), 1.44 (9H, s, C(CH$_3$)$_3$), 1.39–1.23 (4H, m, 8-H$_2$ and 9-H$_2$), 1.15–1.02 (3H, t, J 7.1, 10-H$_3$); δ_{C} (101 MHz, CDCl$_3$) 156.0, 134.8, 125.6, 79.6, 73.5, 50.4, 37.2, 32.3, 31.6, 28.4, 22.2, 13.9; m/z (ES$^+$) 294.3 [M+Na]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 272.2220, C$_{15}$H$_{30}$O$_3$N$_1$ requires M$^+$ 272.2220; [M+Na]$^+$ 294.2040, C$_{15}$H$_{29}$O$_3$N$_1$Na$^+$ requires M$^+$ 294.2040.

tert-Butyl ((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)carbamate (131)

Yield (64%) as viscous oil; ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_{H} (700 MHz, CDCl$_3$) 7.30–7.27 (2H, m, ArH), 7.21–7.15 (3H, m, ArH), 5.71 (1H, dtd, J 15.2, 11.8, 6.6, 6-H), 5.53 (1H, dd, J 15.2, 6.3, 5-H), 4.80 (1H, br s, NH), 3.75–3.62 (2H, m, 3-H and 2-H), 3.36 (2H, d, J 6.6, 7-H$_2$), 2.24–2.05 (2H, m, 4-H$_2$), 1.44 (9H, s, C(CH$_3$)$_3$), 1.10 (3H, d, J 6.8, 1-H$_3$); δ_{C} (176 MHz, CDCl$_3$) 155.88, 140.56, 135.89, 133.24, 128.57, 127.42, 126.16, 79.58, 73.75, 50.37, 39.23, 39.22, 37.17, 28.55, 14.72; m/z (ES$^+$) 328.3 [M+Na]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 306.2063, C$_{13}$H$_{28}$O$_3$N$_1$ requires M$^+$ 306.2064; [M+Na]$^+$ 328.1883, C$_{13}$H$_{27}$O$_3$N$_1$Na$^+$ requires M$^+$ 328.1883.

8.2.4.3 Ceramide analogues

tert-Butyl ((2S,3R,E)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxyoctadec-4-en-2-yl)carbamate (208)$^+$
Yield (72%); v_{max} (ATR) 3452, 2931, 1711, 1493, 1168, 835 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 5.74 (1H, dd, J 15.0, 7.0, 5-H), 5.49 (1H, dd, J 15.0, 5.9, 4-H), 5.29–5.16 (1H, m, NH), 4.23–4.13 (1H, m, 3-H), 3.93 (1H, dd, J 10.3, 3.0, 1-HH), 3.81–3.71 (1H, m, 1-HH), 3.62–3.49 (1H, m, 2-H), 2.04 (2H, dd, J 14.2, 7.0, 6-H$_2$), 1.44 (9H, s, OC(CH$_3$)$_3$), 1.41–1.20 (22H, m, 7-H$_2$ to 17-H$_2$), 0.94 – 0.77 (12H, m, SiC(CH$_3$)$_3$ and 18-CH$_3$), 0.06 (6H, d, 2 × SiCH$_3$); δ_C (101 MHz, CDCl$_3$) 155.9, 133.2, 129.5, 79.5, 74.6, 63.6, 32.5, 32.0, 29.8, 29.6, 29.5, 28.5, 25.9, 22.8, 18.2, 14.3, 5.3, 5.5; m/z (ES$^+$) 514.6 [M+H$^+$]; HRMS (ES$^+$) found [M+H$^+$] 514.4277, C$_{29}$H$_{60}$O$_4$N$_1$Si$_1$ requires M$^+$ 514.4286, [M+Na$^+$] 536.4096, C$_{29}$H$_{59}$O$_4$N$_1$Si$_1$Na$_1$ requires M$^+$ 536.4094.

tert-Butyl ((2S,3R,E)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxynon-4-en-2-yl)carbamate (209)

Yield (71%) as viscous oil; v_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 5.75 (1H, dt, J 15.1, 6.8, 1.3, 5-H), 5.50 (1H, dd, J 15.1, 5.9, 4-H), 5.29–5.14 (1H, m, NH), 4.23–4.13 (1H, m, 3-H), 3.97–3.88 (1H, m, 1-HH), 3.78–3.70 (1H, m, 1-HH), 3.63–3.46 (1H, m, 2-H), 2.12–1.96 (2H, m, 6-H), 1.44 (9H, s, OC(CH$_3$)$_3$), 1.39–1.20 (4H, m, 7-H$_2$ and 8-H$_2$), 0.95–0.79 (12H, m, SiC(CH$_3$)$_3$ and 9-CH$_3$), 0.06 (6H, d, 2 × SiCH$_3$); δ_C (101 MHz, CDCl$_3$) 154.4, 133.1, 129.6, 79.5, 74.6, 63.6, 32.5, 32.0, 29.8, 25.9, 22.8, 18.2, 14.3, 5.3, 5.5; m/z (ES$^+$) 388.5 [M+H$^+$]; HRMS (ES$^+$) found [M+H$^+$] 388.2871, C$_{20}$H$_{42}$O$_4$N$_1$Si$_1$ requires M$^+$ 388.2878, [M+Na$^+$] 410.2689, C$_{20}$H$_{42}$O$_4$N$_1$Si$_1$Na$_1$ requires M$^+$ 410.2697.

tert-Butyl ((2S,3R,E)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxy-6-phenylhex-4-en-2-yl)carbamate (210)
Yield (65%) as viscous oil; ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_{H} (400 MHz, CDCl$_3$) 7.32–7.24 (2H, m, ArH), 7.24–7.11 (3H, m, ArH), 5.94 (1H, dt, J 15.2, 6.8, 1.4, 5-H), 5.64–5.54 (1H, m, 4-H), 5.28–5.20 (1H, m, NH), 4.30–4.20 (1H, m, 3-H), 3.92 (1H, dd, J 10.4, 3.0, 1-HH), 3.79–3.70 (1H, m, J 10.1, 3.0), 1-HH), 3.64–3.54 (1H, m, 2-H), 3.41 (2H, d, J 6.8, 6-H$_2$), 1.44 (9H, s, OC(CH$_3$)$_3$), 0.87 (9H, s, SiC(CH$_3$)$_3$), -5.54; δ_{C} (101 MHz, CDCl$_3$) 155.89, 140.13, 138.05, 131.24, 128.66, 128.58, 126.24, 79.68, 74.52, 63.63, 54.72, 38.81, 28.53, 25.94, 18.26, -5.51, -5.54; m/z (ES$^+$) 422.5 [M+H$^+$]; HRMS (ES$^+$) found [M+H$^+$] 422.2713, C$_{23}$H$_{40}$O$_4$N$_1$Si$_1$ requires M$^+$ 422.2721, [M+Na$^+$] 444.2531, C$_{23}$H$_{39}$O$_4$N$_1$Si$_1$Na requires M$^+$ 444.2541.

tert-Butyl ((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)carbamate (211)

Yield (44%, 50%); ν_{max} (ATR) 3410, 2886, 2874, 1687, 1512, 1173 cm$^{-1}$; δ_{H} (400 MHz, CDCl$_3$) 5.83–5.73 (1H, m, 5-H), 5.53 (1H, ddt, J 15.6, 6.5, 1.2, 4-H), 5.30 (1H, br d, J 6.4, NH), 4.38–4.28 (1H, m, 3-H), 3.94 (1H, app. d, J 10.0, 1-HH), 3.76–3.67 (1H, m, 1-HH), 3.63–3.54 (1H, m, 2-H), 2.50 (2H, br s, 2 × OH), 2.05(2H, q, J 7.3, 6-H), 1.45 (9H, s, C(CH$_3$)$_3$), 1.42–1.18 (22H, m, 7-H$_2$ to 17-H$_2$), 0.88 (3H, t, J 6.9, 18-H$_3$); δ_{C} (101 MHz, CDCl$_3$) 158.1, 134.2, 128.9, 79.7, 74.9, 62.9, 56.0, 32.3, 31.9, 29.8, 29.6, 29.5, 29.3, 29.1, 28.4, 22.6, 14.1; m/z (ES$^+$) 400.9 [M+H$^+$]; HRMS (ES$^+$) found [M+H$^+$] 400.3419, C$_{23}$H$_{46}$O$_4$N$_1$ requires M$^+$ 400.3421, [M+Na$^+$] 422.3238, C$_{23}$H$_{45}$O$_4$N$_1$Si$_1$Na requires M$^+$ 422.3241.

tert-Butyl ((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)carbamate (212)
\[\text{Yield (59\%, 57\%); } \nu_{\text{max}} \text{ (ATR) } 3375, 2971, 2879, 1716, 1491, 1173, 840 \text{ cm}^{-1}; \delta_H \text{ (400 MHz, CDCl}_3) \]

\[5.76 \text{ (1H, dtd, } J = 15.4, 6.7, 1.1, 5-H), 5.51 \text{ (1H, ddt, } J = 15.4, 6.5, 1.3, 4-H), 5.32 \text{ (1H, br d, NH), 4.34–4.21 \text{ (1H, m, 3-H}), 3.90 \text{ (1H, d, } J = 11.4, 1-HH), 3.68 \text{ (1H, dd, } J = 11.0, 1-HH), 3.63–3.51 \text{ (1H, m, 2-H), 2.97 \text{ (2H, br s, } 2 \times \text{ OH), 2.05 \text{ (2H, dd, } J = 13.8, 6.7, 6-H_2), 1.44 \text{ (9H, s, C(CH}_3)_3), 1.39–1.23 \text{ (4H, m, 7-H}_2 \text{ and } 8-H_2), 0.88 \text{ (3H, t, } J = 7.1, 9-H_3); \delta_C \text{ (101 MHz, CDCl}_3) \]

\[156.4, 134.2, 129.1, 79.9, 74.8, 62.8, 55.6, 32.1, 31.4, 28.5, 22.3, 14.0; m/z \text{ (ES}^+ \text{) 274.6 [M+H]}; \text{HRMS (ES}^+ \text{) found [M+H] }^+ \text{ 274.2012, C}_{14}H_{28}O_4N_1 \text{ requires } M^+ \text{ 274.2013, [M+Na] }^+ \text{ 296.1831, C}_{14}H_{27}O_4N_1^{23} \text{Na requires } M^+ \text{ 296.1832.} \]

\text{tert-Butyl (2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)carbamate (213)}

\[\text{Yield (62\%, 43\%); } \nu_{\text{max}} \text{ (ATR) } 3375, 2971, 2879, 1716, 1491, 1173, 840 \text{ cm}^{-1}; \delta_H \text{ (400 MHz, CDCl}_3) \]

\[7.32–7.26 \text{ (2H, m, ArH), 7.23–7.19 \text{ (1H, m, ArH), 7.18–7.14 \text{ (2H, m, ArH), 6.00–5.90 \text{ (1H, m, 5-H), 5.61 \text{ (1H, dd, } J = 15.4, 6.2, 4-H), 5.30 \text{ (1H, br s, NH), 4.40–4.32 \text{ (1H, m, 3-H), 3.93 \text{ (1H, dd, } J = 11.2, 3.5, 1-HH), 3.71 \text{ (1H, dd, } J = 11.4, 3.5, 1-HH), 3.67–3.58 \text{ (1H, m, 2-H), 3.40 \text{ (2H, d, } J = 6.8, 6-H), 2.71–2.44 \text{ (2H, br m, } 2 \times \text{ OH), 1.45 \text{ (9H, s, C(CH}_3)_3); } \delta_C \text{ (125 MHz, CDCl}_3) \]

\[156.7, 139.3, 132.8, 130.7, 128.66, 128.62, 126.4, 80.7, 74.8, 62.8, 38.8, 28.5; m/z \text{ (ES}^+ \text{) 329.9 [M+Na]}; \text{HRMS (ES}^+ \text{) found [M+H] }^+ \text{ 308.1855, C}_{17}H_{26}O_4N_1 \text{ requires } M^+ \text{ 308.1856, [M+Na] }^+ \text{ 330.1673, C}_{17}H_{25}O_4N_1^{23} \text{Na requires } M^+ \text{ 330.1676.} \]
8.2.4.4 4E-3-deoxy ceramide analogues

(S,E)-tert-Butyl (1-hydroxyoctadec-4-en-2-yl)carbamate (314)**

Yield (53%); ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 5.52 (1H, dt, J 13.4, 6.7, 5-H), 5.41–5.27 (1H, m, 4-H), 4.66 (1H, br s, NH), 3.73–3.48 (3H, m, 1-H$_2$ and 2-H$_2$), 2.57 (1H, br s, OH), 2.33–2.10 (2H, m, 3-H$_2$), 2.00 (2H, dt, J 14.0, 6.7, 6-H$_2$), 1.44 (9H, s, C(CH$_3$)$_3$), 1.39–1.14 (22H, m), 0.88 (3H, t, J 6.8, 18-H$_3$); δ_C (101 MHz, CDCl$_3$) 155.98, 134.82, 125.20, 79.85, 65.99, 52.74, 34.89, 32.73, 32.07, 29.84, 29.81, 29.78, 29.66, 29.54, 29.51, 28.52, 28.51, 22.84, 14.28; m/z (ES$^+$) 384.9 [M+H$^+$]; HRMS (ES$^+$) found [M+H$^+$] 384.3470, C$_{23}$H$_{46}$O$_3$N$_1$ requires M$^+$ 384.2472, [M+Na$^+$] 406.3288, C$_{23}$H$_{45}$O$_3$N$_1$$_{23}Na_1$ requires M$^+$ 406.3292.

(S,E)-tert-Butyl (1-hydroxyoctadec-4-en-2-yl)carbamate (314)**

Yield (71%); ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 5.58–5.46 (1H, m, 5-H), 5.41–5.29 (1H, m, 4-H), 4.67 (1H, br s, NH), 3.73–3.48 (3H, m, 1-H$_2$ and 2-H$_2$), 2.61 (1H, br s, OH), 2.32–2.10 (2H, m, 3-H$_2$), 2.02 (2H, dt, J 13.2, 4.1, 6-H$_2$), 1.44 (9H, s, C(CH$_3$)$_3$), 1.35–1.27 (4H, m, 7-H$_2$ and 8-H$_2$), 0.88 (3H, t, J 7.1, 9-H$_3$); δ_C (101 MHz, CDCl$_3$) 156.5, 134.5, 125.2, 79.7, 65.8, 52.6, 32.2, 31.5, 28.4, 22.1, 13.9; m/z (ES$^+$) 258.6 [M+H$^+$] and 280.6 [M+Na$^+$]; HRMS (ES$^+$) found [M+H$^+$] 258.2063, C$_{14}$H$_{28}$O$_3$N$_1$ requires M$^+$ 258.2064, [M+Na$^+$] 280.1882, C$_{14}$H$_{29}$O$_3$N$_1$$_{23}Na_1$ requires M$^+$ 280.1883.

(S,E)-tert-Butyl (1-hydroxy-6-phenylhex-4-en-2-yl)carbamate (316)
Yield (50%); ν_{max} (ATR) 3375, 2971, 2879, 1716, 1173, 840 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 7.32–7.26 (2H, m, ArH), 7.22–7.14 (3H, m, ArH), 5.74–5.64 (1H, m, 5-H), 5.48 (1H, ddd, J 15.2, 7.1, 3.6, 4-H), 4.68 (1H, br s, NH), 3.77–3.50 (3H, m, 1-H$_2$ and 2-H), 1.44 (9H, s, C(CH$_3$)$_3$); δ_C (176 MHz, CDCl$_3$) 156.03, 134.07, 130.06, 128.41, 128.40, 126.85, 126.04, 118.11, 78.80, 64.45, 55.63, 38.99, 29.67, 28.34; m/z (ES$^+$) 292.9.6 [M+H]$^+$ and 314.7 [M+Na]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 292.1906, C$_{17}$H$_{26}$O$_3$N$_1$ requires M$^+$ 292.1907, [M+Na]$^+$ 314.1725, C$_{17}$H$_{25}$O$_3$N$_1$Na$_1$ requires M$^+$ 314.1727.

(R,E)-**tert**-Butyl (1-hydroxyoctadec-4-en-2-yl)carbamate (332)22

Yield (62%); ν_{max} (ATR) 3375, 2971, 2879, 1716, 1491, 1173, 840 cm$^{-1}$; δ_H (400 MHz, CDCl$_3$) 5.52 (1H, dtt, J 15.4, 6.6, 1.0, 5-H), 5.35 (1H, dtt, J 15.4, 7.1, 1.3, 4-H), 4.66 (1H, br s, NH), 3.70–3.53 (3H, m, 1-H$_2$ and 2-H), 2.57 (1H, br s, OMe), 2.30–2.11 (2H, m, 3-H$_2$), 1.99 (2H, dd, J 13.7, 6.7, 6-H$_2$), 1.44 (9H, s, OC(CH$_3$)$_3$), 1.36–1.22 (22H, m, 7-H$_2$ to 17-H$_2$), 0.88 (3H, t, J 6.9, 18-H$_3$); δ_C (101 MHz, CDCl$_3$) 155.98, 134.82, 125.20, 79.85, 65.99, 52.74, 34.89, 32.73, 32.07, 29.84, 29.81, 29.78, 29.66, 29.54, 29.51, 29.32, 28.51, 28.22, 14.28; m/z (ES$^+$) 384.9 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 384.3470, C$_{23}$H$_{46}$O$_3$N$_1$ requires M$^+$ 384.2472, [M+Na]$^+$ 406.3288, C$_{23}$H$_{45}$O$_3$N$_1$Na$_1$ requires M$^+$ 406.3292.
8.2.5 Screening Compounds Library

General procedure for BOC de-protection - Acylation Reactions

To a solution of the N-Boc protected starting material in CH$_2$Cl$_2$, TFA (excess) was added dropwise at room temperature and the reaction was monitored by TLC. Typically the reaction was complete in less than 1 hr. The reaction mixture was dried on the rotary evaporator to remove the excess TFA. The resulting residue (unprotected amine) was dissolved in CH$_2$Cl$_2$ (2 ml) and basified to pH 8 with aq. NaHCO$_3$ followed by the addition of the corresponding acid chloride (1.2 eq.). The reaction was monitored by TLC. Upon completion, the reaction was diluted with sat. aq. NH$_4$Cl. The phases were separated and the aqueous layer was extracted with twice CH$_2$Cl$_2$. The combined organic extracts were washed with brine, dried on anhydrous MgSO$_4$ and evaporated to yield the crude product. Assessment of the crude product purity was based on crude 1H NMR. Compounds that were ≥80% pure were used as they soon as produced. Others were purified by standard column chromatography. All compounds used in the screening were characterised as an array (1H NMR and Mass Spectrometry data).

8.2.5.1 4E-1-deoxy ceramide analogues

N-((2S,3R)-3-hydroxypent-4-en-2-yl)benzamide (107)

(It was prepared to test the synthetic route)

Yield (80%); δ$_H$ (500 MHz, CDCl$_3$) 7.79–7.75 (2H, m, ArH), 7.51 (1H, m, ArH), 7.44 (2H, m, ArH), 6.30 (1H, br s, NH), 5.92 (1H, ddd, J 17.3, 10.6, 5.4, 4-H), 5.38 (1H, dt, J 17.3, 1.4, 5-H$_{trans}$), 5.27 (1H, d, J 10.6, 5-H$_{cis}$), 4.39–4.31 (2H, m, 3-H and 2-H), 2.17 (1H, s, OHH), 1.23 (3H, d, J 6.9, 1-H$_3$); δ$_C$ (126 MHz, CDCl$_3$) 168.1 CONH, 136.9 C4, 134.4 ArC1’, 131.8 ArC4’, 128.7
ArC3’,5’, 127.1 ArC2’,6’, 116.9 C5, 75.7 C3, 50.4 C2, 15.2 C1; \(m/z \) (ES\(^+\)) 228.6 [M+Na]\(^+\), C\(_{12}\)H\(_{15}\)O\(_2\)N\(_1\)\(^{23}\)Na\(_1\); HRMS (ES\(^+\)) found [M+Na]\(^+\) 228.1008, C\(_{12}\)H\(_{15}\)O\(_2\)N\(_1\)\(^{23}\)Na\(_1\) requires \(M^+ \) 228.1000.

\(\text{N-((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)benzamide (108)} \)

(It was prepared to test the synthetic route)

\[
\text{Yield (45%); } \delta_H (400 \text{ MHz, CDCl}_3) 7.79–7.75 (2H, m, ArH), 7.53–7.47 (1H, m, ArH), 7.46–7.41 (2H, m, ArH), 6.34 (1H, br d, J 7.8, NH), 5.81–5.72 (1H, m, 5-H), 5.49 (1H, dd, J 15.4, 6.4, 4-H), 4.31 (1H, ddd, J 13.7, 6.9, 3.2, 3-H), 4.25 (1H, dd, J 6.4, 2.0, 2-H), 2.11–1.99 (2H, m, 6-H\(_2\)), 1.41–1.19 (25H, m, 7-H\(_2\) to 17-H\(_2\) and 1-H\(_3\)), 0.88 (3H, t, J 6.9, 18-H\(_3\)); \(m/z \) (ES\(^+\)) 410.4 [M+Na]\(^+\) C\(_{25}\)H\(_{41}\)O\(_2\)N\(_1\)\(^{23}\)Na\(_1\); HRMS (ES\(^+\)) found [M+Na]\(^+\) 410.3047, C\(_{25}\)H\(_{41}\)O\(_2\)N\(_1\)\(^{23}\)Na\(_1\) requires \(M^+ \) 410.3035.

\(\text{(2S,3R,E)-2-aminooctadec-4-en-3-ol (109)} \)

\[
\text{Yield (62%); } \delta_H (400 \text{ MHz, CDCl}_3) 7.80 (2H, br s, NH\(_2\)), 5.77 (1H, dt, J 15.2, 6.4, 5-H), 5.37 (1H, dd, J 15.2, 6.1, 4-H), 4.41–4.24 (1H, m, 3-H), 3.40–3.28 (2H, m, 2-H and OH), 2.02 (2H, dd, J 13.7, 6.7, 6-H\(_2\)), 1.29–1.21 (25H, m, 7-H\(_2\) to 17-H\(_2\) and 1-H\(_3\)), 0.87 (3H, t, J 6.8, 18-H\(_3\)); \(m/z \) (ES\(^+\)) 284.3 [M+H]\(^+\); HRMS (ES\(^+\)) found [M+H]\(^+\) 284.2947, C\(_{18}\)H\(_{36}\)O\(_3\)N\(_1\) requires \(M^+ \) 284.2948.

\(\text{N-((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)acetamide (110)} \)
Yield (80%); δ_{H} (400 MHz, CDCl$_3$) 5.75–5.66 (1H, m, 5-\(H\)), 5.60 (1H, d, J 2.4, NH), 5.48–5.35 (1H, m, 6-\(H\) and COCH$_3$), 1.40–1.11 (22H, m, 7-\(H\)$_2$ to 17-\(H\)$_2$), 1.08 (3H, d, J 6.9, 1-\(H\)$_3$), 0.87 (3H, t, J 6.8, 18-\(H\)$_3$); m/z (ES$^+$) 348.4 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 348.2871, C$_{20}$H$_{39}$O$_2$N$_1$Na$_1$ requires M$^+$ 348.2873.

N-((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)-2-phenylacetamide (111)

Yield (22%); δ_{H} (400 MHz, CDCl$_3$) 7.39–7.23 (5H, m, Ar\(H\)), 5.64 (1H, dtd, J 15.0, 7.0, 0.9, 5-\(H\)), 5.51 (1H, br d, NH), 5.31 (1H, dd, J 15.0, 6.3, 4-\(H\)), 4.13–4.03 (2H, m, 3-\(H\) and 2-\(H\)), 3.58 (2H, s, PhCH$_2$), 1.98 (2H, dd, J 13.8, 7.0, 6-\(H\)$_2$), 1.39–1.18 (22H, m, 7-\(H\)$_2$ to 17-\(H\)$_2$), 1.01 (3H, d, J 6.8, 1-\(H\)$_3$), 0.88 (3H, t, J 6.9, 18-\(H\)$_3$); m/z (ES$^+$) 424.5 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 424.3182, C$_{26}$H$_{45}$O$_2$N$_1$Na$_1$ requires M$^+$ 424.3186.

N-((2S,3R,E)-3-hydroxyoctadec-4-en-2-yl)octanamide (112)

Yield (41%); δ_{H} (400 MHz, CDCl$_3$) 5.71 (1H, dtd, J 14.9, 6.7, 1.1, 5-\(H\)), 5.43 (1H, ddt, J 15.4, 6.6, 1.4, 4-\(H\)), 4.64 (1H, br s, NH), 4.14–4.06 (1H, m, 3-\(H\)), 3.85–3.72 (1H, m, 2-\(H\)), 2.56 (1H, br s, OH), 2.04 (2H, dd, J 14.9, 7.0, 6-\(H\)$_2$), 1.40–1.20 (22 H, m, 7-\(H\)$_2$ to 17-\(H\)$_2$), 1.07 (3H, d,
J 6.9, 1-H₃), 0.88 (3H, t, J 6.9, 18-H₃); m/z (ES⁺) 432.6 [M+Na]⁺; HRMS (ES⁺) found [M+Na]⁺ 432.3806, C₂₈H₅₁O₂N₂₃Na₁ requires M⁺ 432.3812.

(2S,3R,E)-2-aminonon-4-en-3-ol (113)

Yield (73%); δ_H (400 MHz, CDCl₃) 5.79–5.69 (1H, m, 5-H), 5.39 (1H, dd, J 14.9, 5.3, 4-H), 5.30 (2H, br s, NH₂), 4.32–4.24 (1H, m, 3-H), 3.33–3.21 (1H, m, 2-H), 2.03 (2H, dd, J 12.8, 5.2, 6-H₂), 1.41–1.26 (4H, m, 7-H₂ and 8-H₂), 1.15 (1H, d, J 6.5, 1-H); 0.88 (1H, t, J 6.9, 9-H₃); m/z (ES⁺) 158.1 [M+H]⁺; HRMS (ES⁺) found [M+Na]⁺ 158.1539, C₉H₁₉O₁N₂₃Na₁ requires M⁺ 158.1539.

N-((2S,3R,E)-3-hydroxynon-4-en-2-yl)acetamide (114)

Yield (79%); δ_H (400 MHz, CDCl₃) 6.03 (1H, br s, NH), 5.74–5.62 (1H, m, 5-H), 5.41 (1H, dd, J 15.3, 6.4, 4-H), 4.16–4.00 (1H, m, 3-H and 2-H), 3.73 (1H, s, OMe), 2.14–1.87 (5H, m, 6-H₂ and COCH₃), 1.44–1.25 (4H, m, 7-H₂ and 8-H₂), 1.06 (1H, d, J 6.8, 1-H); 0.88 (3H, t, J 6.8, 9-H₃); m/z (ES⁺) 222.2 [M+Na]⁺; HRMS (ES⁺) found [M+Na]⁺ 222.1463, C₁₁H₂₁O₂N₂₃Na₁ requires M⁺ 222.1465.

N-((2S,3R,E)-3-hydroxynon-4-en-2-yl)-2-phenylacetamide (115)
Yield (50%); δ_H (400 MHz, CDCl$_3$) 7.35–7.22 (5H, m, ArH), 5.69–5.59 (1H, m, 5-H), 5.32 (1H, dd, J 15.9, 6.3, 4-H), 4.19–3.98 (2H, m, 3-H and 2-H), 3.56 (2H, s, PhCH$_2$), 1.99 (2H, dd, J 13.3, 6.6, 6-H$_2$), 1.34–1.21 (2H, m, 7-H$_2$ and 8-H$_2$), 0.89 (1H, t, J 6.5, 9-H$_3$); m/z (ES$^+$) 298.3 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 298.1775, C$_{17}$H$_{25}$O$_2$N$_2$Na$_1$ requires M^+ 298.1778.

N-((2S,3R,E)-3-hydroxynon-4-en-2-yl)octanamide (116)

Yield (23%); δ_H (400 MHz, CDCl$_3$) 5.76–5.67 (1H, m, 5-H), 5.63 (1H, br d, J 7.7, NH$_2$), 5.41 (1H, dd, J 15.5, 6.3, 4-H), 4.11 (2H, m, 3-H and 2-H), 2.20–2.15 (2H, m, COCH$_2$), 2.10–2.02 (2H, m, 6-H$_2$), 1.66–1.58 (2H, m, COCH$_2$CH$_2$), 1.39–1.22 (12H, m, 7-H$_2$, 8-H$_2$ and 4 x octanoyl aliphatic CH$_2$), 1.09 (3H, d, J 6.8, 1-H$_3$), 0.92–0.85 (6H, m, 9-H$_3$ and octanoyl terminal CH$_3$); m/z (ES$^+$) 306.4 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 306.2402, C$_{17}$H$_{33}$O$_2$N$_1$Na$_1$ requires M^+ 306.2404.

(2S,3R,E)-2-amino-6-phenylhex-4-en-3-ol (117)
Yield (77%); δ_H (400 MHz, CDCl$_3$) 7.85 (2H, br s, NH$_2$), 7.29–7.23 (2H, m, ArH), 7.20–7.16 (1H, m, ArH), 7.14–7.11 (2H, m, ArH), 5.97–5.88 (1H, m, 5-H), 5.45 (1H, dd, $J_{15.5}$, 6.2, 4-H), 4.48–4.39 (1H, m, 3-H), 3.43–3.37 (1H, m, 2-H), 3.35 (2H, d, $J_{7.7}$, 6-H$_2$), 2.89 (1H, br s, OH), 1.19 (3H, m, J 6.5, 1-H$_3$); m/z (ES$^+$) 192.2 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 192.1383, C$_{12}$H$_{18}$O$_1$N$_1$ requires M$^+$ 192.1383.

N-((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)acetamide (118)

N-((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)-2-phenylacetamide (119)

Yield (67%); δ_H (400 MHz, CDCl$_3$) 7.31–7.27 (2H, m, ArH), 7.22–7.14 (3H, m, ArH), 5.98 (1H, br s, NH), 5.93–5.82 (1H, m, 5-H), 5.50 (1H, dd, $J_{15.3}$, 6.2, 4-H), 4.21–4.13 (1H, m, 3-H), 4.06 (1H, dt, $J_{8.0}$, 4.0, 2-H), 3.88 (1H, d, J 6.7, 6-H$_2$), 2.89 (2H, br s, OH), 1.94 (3H, s, COCH$_3$), 1.08 (3H, m, J 6.9, 1-H$_3$); m/z (ES$^+$) 256.3 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 256.1307, C$_{14}$H$_{19}$O$_2$N$_1$Na$_1$ requires M$^+$ 256.1308.

N-((2S,3R,E)-3-hydroxy-6-phenylhex-4-en-2-yl)octanamide (120)
8.2.5.2 5E-1-deoxy ceramide analogues

(2S,E)-2-benzamidononadec-5-en-3-yl acetate (128)

(It was prepared to test the synthetic route)

Characterised as a mixture of the two diastereoisomers (70:30) with the signals attributed to the minor diastereoisomers indicated where applicable;

Yield (85%); δH (700 MHz, CDCl3) 7.81–7.70 (2H, m, ArH), 7.53–7.47 (1H, m, ArH), 7.47–7.38 (2H, m, ArH), 6.78–6.72 (1H, m, NH), 5.59–5.49 (1H, m, 6-H), 5.41–5.30 (1H, m, 5-H), 4.95 (1H, ddd, J 8.3, 5.7, 2.9, 3-H), 4.47–4.42 (0.3H, m, minor 2-H), 4.42–4.34 (0.7H, m, 2-H), 2.41–2.28 (2H, m, 4-H2), 2.11 (3H, s, COCH3), 1.98 (2H, dd, J 14.1, 6.9, 7-H2), 1.39–1.18 (25H, m, 8-H2 to 18-H2 and 1-H3), 0.88 (3H, t, J 7.1, 19-H3); δC (176 MHz, CDCl3) 171.87, 166.61, 134.86, 131.53, 128.68, 127.02, 126.99, 124.27, 76.36, 48.11, 35.11, 32.75, 32.06,
29.83, 29.82, 29.80, 29.77, 29.65, 29.51, 29.50, 29.33, 22.83, 21.23, 14.97, 14.26; \(m/z \) (ES\(^+\)) 444.5 \([M+H]^+\); HRMS (ES\(^+\)) found \([M+H]^+\) 444.3481, \(C_{28}H_{46}O_3N_1 \) requires \(M^+\) 444.3472.

\((2S,3R,E)-2\text{-aminodec-5-en-3-ol (132)}\)

Yield (79%); \(\delta_H \) (400 MHz, CDCl\(_3\)) 5.62–5.45 (1H, m, 6-\(H \)), 5.41–5.26 (1H, m, 5-\(H \)), 5.14 (1H, br s, NH\(_2\)), 3.83–3.71 (1H, m, 2-\(H \)), 3.31–3.13 (1H, m, 3-\(H \)), 2.27–1.93 (4H, m, 4-\(H_2 \) and 7-\(H_2 \)), 1.33–1.29 (4H, m, 8-\(H_2 \) and 9-\(H_2 \)), 1.16 (3H, d, J 6.1, 1-\(H_3 \)), 0.87 (3H, t, J 7.0, 10-\(H_3 \)); \(m/z \) (ES\(^+\)) 172.3 \([M+H]^+\), 194.3 \([M+Na]^+\); HRMS (ES\(^+\)) found \([M+H]^+\) 172.1696, \(C_{10}H_{22}O_1N_1 \) requires \(M^+\) 172.1696.

\(N-(2S,3R,E)-3\text{-hydroxydec-5-en-2-yl)acetamide (133)}\)

Yield (70%); \(\delta_H \) (400 MHz, CDCl\(_3\)) 5.88 (1H, br s, NH\(_2\)), 5.55 (1H, dt, J 13.4, 6.6, 6-\(H \)), 5.44–5.34 (1H, m, 5-\(H \)), 4.01 (1H, ddd, J 8.5, 6.8, 3.0, 2-\(H \)), 3.64 (1H, ddt, J 8.5, 4.2, 3.1, 3-\(H \)), 2.11–1.99 (4H, m, 4-\(H_2 \) and 7-\(H_2 \)), 1.98 (3H, s, COCH\(_3\)), 1.38–1.25 (4H, m, 8-\(H_2 \) and 9-\(H_2 \)), 1.10 (3H, d, J 6.8, 1-\(H_3 \)), 0.88 (3H, t, J 7.1, 10-\(H_3 \)); \(m/z \) (ES\(^+\)) 236.3 \([M+Na]^+\); HRMS (ES\(^+\)) found \([M+Na]^+\) 236.1620, \(C_{12}H_{23}O_2N_1^{23}Na_1 \) requires \(M^+\) 236.1621.

\(N-(2S,3R,E)-3\text{-hydroxydec-5-en-2-yl)-2-phenylacetamide (134)}\)
Yield (85%); \(\delta \)H (400 MHz, CDCl\(_3\)) 7.40–7.22 (5H, m, ArH), 5.73 (1H, br s, NH), 5.50 (1H, dt, J 15.2, 6.6, 6-H), 5.35 (1H, ddd, J 15.2, 7.7, 6.3, 5-H), 3.99 (1H, ddd, J 15.2, 7.7, 6.3, 5-H), 3.56 (1H, m, 3-H and PhCH\(_2\)), 2.22–2.08 (2H, m, 4-H\(_2\)), 2.06–1.92 (2H, m, 7-H\(_2\)), 1.34–1.28 (4H, m, 8-H\(_2\) and 9-H\(_2\)), 1.04 (3H, d, J 6.9, 1-H\(_3\)), 0.88 (3H, t, J 7.1, 10-H\(_3\)); m/z (ES\(^+\)) 312.4 [M+Na]; HRMS (ES\(^+\)) found [M+Na]\(^+\) 312.1935, C\(_{18}\)H\(_{27}\)O\(_2\)N\(_1\)\(^2\)Na\(_1\) requires M\(^+\) 312.1934.

N-((2S,3R,E)-3-hydroxydec-5-en-2-yl)octanamide (135)

Yield (83%); \(\delta \)H (400 MHz, CDCl\(_3\)) 6.03–5.98 (1H, br s, NH), 5.54–5.43 (1H, m, 6-H), 5.35–5.25 (1H, m, 5-H), 4.23–4.11 (1H, m, 2-H), 4.05–3.98 (1H, m, 3-H), 2.35–2.27 (2H, m, COCH\(_2\)), 2.20–2.11 (2H, m, 4-H\(_2\)), 2.06–1.94 (2H, m, 7-H\(_2\)), 1.68–1.50 (2H, m, COCH\(_2\)CH\(_2\)), 1.39–1.19 (12H, m, 8-H\(_2\), 9-H\(_2\) and 4 × aliphatic CH\(_2\)), 1.14–1.05 (3H, d, J 6.9, 1-H\(_3\)), 0.86 (6H, 10-H\(_3\) and octanoyl terminal CH\(_3\)); m/z (ES\(^+\)) 298.5 [M+H]\(^+\), 320.5 [M+Na]\(^+\); HRMS (ES\(^+\)) found [M+Na]\(^+\) 320.2563, C\(_{18}\)H\(_{35}\)O\(_2\)N\(_1\)\(^2\)Na\(_1\) requires M\(^+\) 320.2560.

(2S,3R,E)-2-amino-7-phenylhept-5-en-3-ol (136)

Yield (46%); \(\delta \)H (700 MHz, CDCl\(_3\)) 7.88 (2H, br s, NH\(_2\)), 7.20–7.11 (5H, m, ArH), 5.71–5.65 (1H, m, 6-H), 5.45–5.40 (1H, m, 5-H), 3.93–3.89 (1H, m, 3-H), 3.36 (1H, d, J 7.7, 2-H), 3.32 (2H, d, J 6.7, 7-H\(_2\)), 2.28–2.09 (2H, m, 4-H\(_2\)), 1.20 (3H, d, J 6.3, 1-H\(_3\)). m/z (ES\(^+\)) 206.3 [M+H]\(^+\), 228.3 [M+Na]\(^+\); HRMS (ES\(^+\)) found [M+H]\(^+\) 206.1540, C\(_{13}\)H\(_{20}\)O\(_1\)N\(_1\) requires M\(^+\) 206.1539.
CHAPTER VIII: CHEMICAL SYNTHESIS EXPERIMENTAL DETAILS

N-((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)acetamide (137)

![Chemical structure of 137](image)

Yield (86%); δ\(\text{H}\) (400 MHz, CDCl\(_3\)) 7.34–7.24 (2H, m, Ar\(\text{H}\)), 7.24–7.15 (3H, m, Ar\(\text{H}\)), 5.79 (1H, br s, NH\(\text{H}\)), 5.73 (1H, ddd, \(J\) 15.2, 8.4, 4.3, 6-\(\text{H}\)), 5.52 (1H, ddd, \(J\) 15.2, 7.7, 6.4, 5-\(\text{H}\)), 4.03 (1H, dqd, \(J\) 13.8, 6.9, 3.0, 2-\(\text{H}\)), 3.72–3.65 (1H, m, 3-\(\text{H}\)), 3.37 (1H, d, \(J\) 6.7, 7-\(\text{H}\)), 2.30–2.04 (2H, m, 4-\(\text{H}\)), 1.98 (3H, s, COCH\(_3\)), 1.11 (3H, d, \(J\) 6.9, 1-\(\text{H}\)); \(\text{m/z}\) (ES\(^+\)) 248.4 [M+H], 270.3 [M+Na]; HRMS (ES\(^+\)) found [M+Na] \(\text{+}\) 270.1464, C\(_{15}\)H\(_{21}\)O\(_2\)N\(_{12}\)Na requires \(\text{M}^+\) 270.1465.

N-((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)-2-phenylacetamide (138)

![Chemical structure of 138](image)

Yield (27%); δ\(\text{H}\) (400 MHz, CDCl\(_3\)) 7.43–7.08 (10H, m, Ar\(\text{H}\)), 5.78–5.59 (1H, m, 6-\(\text{H}\)), 5.57–5.37 (1H, m, 5-\(\text{H}\)), 4.07–3.93 (1H, m, 2-\(\text{H}\)), 3.64–3.50 (3H, m, 2-\(\text{H}\) and PhCH\(_2\)), 3.34 (1H, d, \(J\) 6.7, 7-\(\text{H}\)), 2.25–1.93 (2H, m, 4-\(\text{H}\)), 1.03 (3H, d, \(J\) 6.8, 1-\(\text{H}\)); \(\text{m/z}\) (ES\(^+\)) 346.4 [M+Na]\(^+\); HRMS (ES\(^+\)) found [M+Na] \(\text{+}\) 346.1779, C\(_{21}\)H\(_{25}\)O\(_2\)N\(_{12}\)Na requires \(\text{M}^+\) 346.1778.

N-((2S,3R,E)-3-hydroxy-7-phenylhept-5-en-2-yl)octanamide (139)

![Chemical structure of 139](image)

Yield (70%); δ\(\text{H}\) (400 MHz, CDCl\(_3\)) 7.31–7.27 (2H, m, Ar\(\text{H}\)), 7.23–7.15 (3H, m, Ar\(\text{H}\)), 5.87–5.65 (1H, m, NH and 6-\(\text{H}\)), 5.52 (1H, dt, \(J\) 14.2, 6.6, 5-\(\text{H}\)), 4.13–3.94 (1H, m, 2-\(\text{H}\)), 3.78–3.59
(1H, m, 3-H), 3.37(1H, d, J 6.6, 7-H₂), 2.32–2.04 (2H, m, COCH₂), 1.70–1.54 (2H, m, COCH₂CH₂), 1.37–1.21 (8H, m, 4 × aliphatic CH₂), 1.13 (3H, d, J 6.9, 1-H₃), 0.87 (3H, t, J 6.6, octanoyl terminal CH₃); m/z (ES⁺) 332.5 [M+H]⁺, 354.4 [M+Na]⁺; HRMS (ES⁺) found [M+Na]⁺ 354.2403, C₂₁H₃₃O₂N₁Na requires M⁺ 354.2404.

\[(2S,3R,E)-2\text{-aminononadec-5-en-3-ol (141)}\]

\[
\begin{align*}
\text{C}_{13}H_{27} & \quad \text{OH} \\
\text{NHBoc} & \quad \rightarrow \\
\text{C}_{13}H_{27} & \quad \text{OH} \\
\text{NH₂} &
\end{align*}
\]

Yield (70%); \(\delta_{HH} (700 \text{ MHz, CDCl}_3) 8.12 (2H, br s, NH₂), 5.56–5.48 (1H, m, 6-H), 5.38 (1H, dd, J 14.0, 6.7, 5-H), 3.73–3.67 (1H, m, 3-H), 3.65–3.60 (1H, m, 2-H), 2.15–2.07 (1H, m, 4-HH), 2.04–1.95 (3H, m, 4-HH and 7-H₂), 1.38–1.09 (26H, m, 8-H₂ to 18-H₂ and 1-H₃), 0.86 (3H, t, J 7.0, 19-H₃). m/z (ES⁺) 298.4 [M+H]⁺; HRMS (ES⁺) found [M+H]⁺ 298.3099, C₁₀H₄₀O₁N₁ requires M⁺ 298.3110.

\[N-((2S,3R,E)-3\text{-hydroxynonadec-5-en-2-yl})\text{acetamide (142)}\]

\[
\begin{align*}
\text{C}_{13}H_{27} & \quad \text{OH} \\
\text{NHBoc} & \quad \rightarrow \\
\text{C}_{13}H_{27} & \quad \text{OH} \\
\text{NHCOMe} &
\end{align*}
\]

Yield (82%); \(\delta_{HH} (400 \text{ MHz, CDCl}_3) 5.96 (1H, br d, J 6.0, NH), 5.54 (1H, dt, J 15.0, 6.6, 6-H), 5.45–5.34 (1H, m, 5-H), 4.00 (1 H, ddd, J 8.5, 6.9, 3.0, 3-H), 3.64 (1H, ddd, J 8.8, 4.4, 3.0, 2-H), 2.23–1.99 (4 H, m, 7-H₂ and 4-H₂), 1.97 (3H, s, COCH₃), 1.38–1.21 (22H, m, 8-H₂ to 18-H₂), 1.10 (3H, d, J 6.8, 1-H₃), 0.87 (3H, t, J 6.9, 19-H₃). m/z (ES⁺) 338.4 [M+H]⁺; (ES⁺) 362.4.3 [M+Na]⁺; HRMS (ES⁺) found [M+H]⁺ 340.3219, C₂₁H₄₀O₂N₁ requires M⁺ 340.3216.

\[N-((2S,3R,E)-3\text{-hydroxynonadec-5-en-2-yl})-2\text{-phenylacetamide (143)}\]
Yield (86%); δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 7.37–7.32 (2H, m, Ar\textsubscript{H}), 7.31–7.24 (3H, m, Ar\textsubscript{H}), 5.74 (1H, br d, J 8.3, NH), 5.50 (1H, dt, J 14.7, 6.6, 6-\textit{H}), 5.34 (1H, ddd, J 15.2, 7.6, 6.4, 5-\textit{H}), 3.99 (1H, ddd, J 8.4, 6.9, 3.0, 3-\textit{H}), 3.73–3.64 (1H, m, 2-\textit{H}), 2.15–2.08 (2H, m, 4-\textit{H}2), 2.06–1.94 (2H, m, 7-\textit{H}2), 1.36–1.22 (22H, m, 8-\textit{H}2 to 18-\textit{H}2), 1.04 (3H, d, J 6.8, 1-\textit{H}2), 0.88 (3H, t, J 6.9, 19-\textit{H}3). m/z (ES−) 414.4 [M−H]; (ES+) 438.4 [M+Na]+; HRMS (ES+) found [M+H]+ 416.3533, C\textsubscript{27}H\textsubscript{46}O\textsubscript{2}N\textsubscript{1} requires M+ 416.3529.

\textit{N-((2S,3R,E)-3-hydroxynonadec-5-en-2-yl)octanamide (144)}

Yield (85%); δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 5.85 (1H, br d, J 8.4, NH), 5.55 (1H, dt, J 14.9, 6.6, 6-\textit{H}), 5.39 (1H, ddd, J 15.0, 7.5, 6.4, 5-\textit{H}), 4.03 (1H, ddd, J 8.7, 7.0, 3.0, 3-\textit{H}), 3.64 (1H, ddd, J 8.8, 4.1, 3.0, 2-\textit{H}), 2.33 (2H, t, J 7.5, COCH\textsubscript{2}), 2.19–2.14 (2H, m, 4-\textit{H}2), 2.00 (2H, dd, J 13.7, 6.6, 7-\textit{H}2), 1.62 (2H, dd, J 13.3, 6.0, COCH\textsubscript{2}CH\textsubscript{2}), 1.54–1.22 (26H, m, 8-\textit{H}2 to 18-\textit{H}2 and 4 × aliphatic CH\textsubscript{2}), 1.10 (3H, d, J 6.8, 1-\textit{H}3), 0.87 (3H, t, J 6.7, 19-\textit{H}3). m/z (ES−) 422. [M−H]−; (ES+) 446.4 [M+Na]+; HRMS (ES+) found [M+H]+ 424.4174, C\textsubscript{27}H\textsubscript{54}O\textsubscript{2}N\textsubscript{1} requires M+ 424.4155.

\textit{8.2.5.3 Ceramide analogues}

\textit{N-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)benzamide (214)}

(It was prepared to test the synthetic route)
Yield (25%); δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 7.82–7.78 (2H, m, Ar\textsubscript{H}), 7.51–7.46 (1H, m, Ar\textsubscript{H}), 7.46–7.40 (2H, m, Ar\textsubscript{H}), 7.03 (1H, br d, N\textsubscript{H}), 5.82 (1H, dt, J\textsubscript{16.0}, 6.8, 5-H), 5.59 (1H, dd, J\textsubscript{16.0}, 6.3, 4-H), 4.47–4.42 (1H, m, 3-H), 4.13–4.04 (2H, m, 2-H and 1-HH), 3.81 (1H, dd, J\textsubscript{11.3}, 2.4, 1-HH), 2.36 (2H, br s, 2 × OH), 2.07 (2H, dd, J\textsubscript{13.8}, 6.8, 6-H\textsubscript{2}), 1.38–1.21 (4H, m, 7-H\textsubscript{2} and 8-H\textsubscript{2}), 0.87 (3H, t, J\textsubscript{7.0}, 9-H\textsubscript{3}); m/z (ES−) 276.3 [M]− C\textsubscript{16}H\textsubscript{22}O\textsubscript{3}N\textsubscript{1} 23Na; HRMS (ES−) found [M+Na]+ 300.1588, C\textsubscript{16}H\textsubscript{23}O\textsubscript{3}N\textsubscript{1} 23Na requires M+ 300.1576.

\textit{(2S,3R,E)-2-aminonon-4-ene-1,3-diol (215)}

Yield (54%); δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 5.80–5.71 (1H, m, 5-H), 5.42 (1H, dd, J\textsubscript{15.2}, 6.7, 4-H), 4.31 (4H, br s, NH\textsubscript{2} and 2 × OH), 4.25–4.19 (1H, m, 3-H), 3.78–3.63 (2H, m, 2-H and 1-HH), 3.06 (1H, dd, J\textsubscript{8.7}, 4.2, 1-HH), 2.04 (2H, dd, J\textsubscript{13.1}, 6.5, 6-H\textsubscript{2}), 1.39–1.26 (4H, m, 7-H\textsubscript{2} and 8-H\textsubscript{2}), 0.88 (3H, t, J\textsubscript{7.0}, 9-H\textsubscript{3}); m/z (ES+) 174.3 [M+H]+, 196.4 [M+Na]+; HRMS (ES+) found [M+H]+ 174.1490, C\textsubscript{9}H\textsubscript{20}O\textsubscript{2}N\textsubscript{1} requires M+ 174.1489.

\textit{N-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)acetamide (216)}
Yield (73%); δ_{1H} (700 MHz, CDCl$_3$) 6.44 (1H, br d, J 13.7, NH), 5.82–5.76 (1H, m, 5-H), 5.41 (1H, dd, J 15.1, 5.7, 4-H), 4.47–4.39 (1H, m, 3-H), 3.87–3.77 (2H, m, 2-H and 1- HH), 3.35–3.29 (1H, m, 1- HH), 2.09–2.00 (5H, m, 6-H_2 and COCH$_3$), 1.41–1.23 (4H, m, 7-H_2 and 8-H_2), 0.88 (3H, t, J 7.3, 9-H_3). m/z (ES$^+$) 238.2 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 238.1419, C$_{11}$H$_{21}$O$_3$N$_1$Na$_2$ requires M^+ 238.1419.

N-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)-2-phenylacetamide (217)

Yield (65%); δ_{1H} (400 MHz, CDCl$_3$) 7.35–7.23 (5H, m, ArH), 6.34 (1H, br d, J 6.6, NH), 5.66 (1H, dt, J 14.9, 6.7, 5-H), 5.40 (1H, dd, J 14.9, 6.5, 4-H), 4.23–4.16 (1H, m, 3-H), 3.88–3.79 (2H, m, 2-H and 1- HH), 3.61 (1H, dd, J 10.9, 2.7, 1- HH), 3.56 (2H, s, PhCH$_2$), 1.98 (1H, dd, J 13.5, 6.8, 6-H_2), 1.32–1.25 (4H, m, 7-H_2 and 8-H_2), 0.88 (3H, t, J 7.0, 9-H_3); m/z (ES$^+$) 292.2 [M+H]$^+$, 314.2 [M+Na]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 292.1907, C$_{17}$H$_{26}$O$_3$N$_1$ requires M^+ 292.1913.

N-((2S,3R,E)-1,3-dihydroxynon-4-en-2-yl)octanamide (218)

Yield (68%); δ_{1H} (400 MHz, CDCl$_3$) 6.44 (1H, br s, NH), 5.74 (1H, dt, J 15.9, 6.7, 5-H), 5.49 (1H, dd, J 15.9, 6.0, 4-H), 4.30–4.21 (1H, m, 3-H), 3.94–3.84 (2H, m, 2-H and 1- HH), 3.71–3.63 (1H, m, 1- HH), 2.24–2.16 (2H, m, COCH$_2$), 2.04 (2H, dd, J 13.0, 6.7, 6-H_2), 1.64–1.55 (2H, m, COCH$_2$CH$_2$), 1.34–1.21 (4H, m, 7-H_2 and 8-H_2), 0.87, 0.86 (2 × 3H, t, J 6.5, 9-H_3 and octanoyl terminal CH$_3$); m/z (ES$^+$) 300.3 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 300.2536, C$_{17}$H$_{34}$O$_3$N$_1$ requires M^+ 300.2539.
(2S,3R,E)-2-aminooctadec-4-ene-1,3-diol (219)

Yield (64%); δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 5.87–5.79 (1H, m, 5-H), 5.53 (1H, dd, J 15.4, 6.5, 4-H), 4.78 (2H, br s, NH\textsubscript{2}), 4.41–4.36 (1H, m, 3-H), 4.10 (1H, dd, J 11.5, 2.7, 1-HH\textsubscript{2}), 3.93 (1H, m, 2-H), 3.73 (1H, dd, J 11.5, 3.5, 1-HH\textsubscript{2}), 2.77 (2H, br s, 2 × OH), 2.06 (2H, dd, J 14.0, 7.0, 6-H\textsubscript{2}), 1.67 (1H, dq, J 12.2, 6.0, 17-H\textsubscript{2}), 1.48–1.22 (20H, m, 7-H\textsubscript{2} to 16-H\textsubscript{2}), 0.89 (1H, t, J 7.5, 18-H\textsubscript{3}); m/z (ES+) 300.5 [M+H]+, 322.5 [M+Na]+; HRMS (ES+) found [M+H]+ 300.2902, C\textsubscript{18}H\textsubscript{38}O\textsubscript{2}N\textsubscript{1} requires M+ 300.2897.

N-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)acetamide (220)

Yield (71%); δ\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 5.81 (1H, dt, J 14.6, 7.1, 5-H), 5.51 (1H, dd, J 15.4, 6.4, 4-H), 5.39 (1H, br s, NH\textsubscript{2}), 4.38–4.32 (1H, m, 3-H), 4.07 (1H, dd, J 11.6, 2.7, 2-H), 3.83–3.78 (1H, m, 1-HH\textsubscript{2}), 3.73 (1H, dd, J 11.6, 2.9, 1-HH\textsubscript{2}), 2.09–1.98 (5H, m, 6-H\textsubscript{2} and COCH\textsubscript{3}), 1.39–1.20 (22H, m, 7-H\textsubscript{2} to 17-H\textsubscript{2}), 0.87 (1H, t, J 6.7, 18-H\textsubscript{3}); m/z (ES+) 364.4 [M+Na]+; HRMS (ES+) found [M+Na]+ 364.2829, C\textsubscript{20}H\textsubscript{39}O\textsubscript{3}N\textsubscript{1} requires M+ 364.2822.

N-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)-2-phenylacetamide (221)
Yield (44%); δ_H (400 MHz, CDCl$_3$) 7.38–7.25 (5H, m, ArH), 6.21 (1H, br d, J 7.0, NH), 5.73–5.63 (1H, m, 5-H), 5.42 (1H, dd, J 15.4, 6.5, 4-H), 4.27–4.20 (1H, m, 3-H), 3.90–3.83 (2H, m, 2- and 1-H), 3.70 (1H, m, 1-H), 3.54 (1H, d, J 9.7, 4-H); m/z (ES$^+$) 440.5 [M+Na]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 418.3324, C$_{26}$H$_{44}$O$_3$N$_1$ requires M^+ 418.3316.

N-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-yl)octanamide (222)

Yield (38%); δ_H (400 MHz, CDCl$_3$) 6.25 (1H, br d, J 7.8, NH), 5.84–5.74 (1H, m, 5-H), 5.53 (1H, dd, J 15.5, 6.5, 4-H), 4.36–4.30 (1H, m, 3-H), 3.96 (1H, dd, J 11.1, 3.7, 1-H), 3.93–3.88 (1H, m, 2-H), 3.70 (1H, dd, J 11.1, 2.9, 1-H), 2.71 (2H, br s, 2 \times OH), 2.27–2.20 (2H, m, COCH$_2$), 2.06 (2H, dd, J 14.6, 7.4, 6-H), 1.71–1.57 (2H, m, COCH$_2$CH$_2$), 1.43–1.18 (28H, m, 7-H$_2$ to 17-H$_2$ and 4'-H$_2$ to 7'-H$_2$), 0.92–0.83 (6H, m, 18-H$_3$ and octanoyl terminal CH$_3$); m/z (ES$^+$) 426.4 [M+H]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 448.3761, C$_{26}$H$_{44}$O$_3$N$_1$ requires M^+ 448.3767.

$(2S,3R,E)$-2-amino-6-phenylhex-4-ene-1,3-diol (223)

Yield (67%); δ_H (400 MHz, CDCl$_3$) 7.25–7.20 (2H, m, ArH), 7.16–7.07 (3H, m, ArH), 5.88 (1H, dt, J 15.0, 6.6, 5-H), 5.42 (1H, dd, J 15.0, 5.0, 4-H), 4.87 (2H, br s, NH$_2$), 4.40–4.29 (1H,
m, 3-H), 3.76–3.67 (2H, m, 3-H and 1-HH), 3.41–3.33 (1H, m, 1-HH), 3.30 (2H, d, J 6.6, 6-H2), 3.21–3.14 (2H, br s, 2 × OH); m/z (ES+) 208.2 [M+H]+; HRMS (ES+) found [M+H]+ 208.1331, C12H18O2N1 requires M+ 208.1338.

N-((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)acetamide (224)

![Image](224)

Yield (31%); δH (400 MHz, CDCl3) 7.32–7.27 (2H, m, ArH), 7.23–7.14 (3H, m, ArH), 6.32 (1H, br d, NH), 5.96 (1H, dt, J 15.4, 6.7, 5-H), 5.61 (1H, dd, J 15.4, 6.0, 4-H), 4.38–4.32 (1H, m, 3-H), 3.99–3.88 (2H, m, 2-H and 1-HH), 3.70 (1H, dd, J 11.0, 2.8, 1-HH), 3.40 (1H, d, J 6.7, 6-H2), 2.01 (3H, s, COC3); m/z (ES+) 250.1 [M+H]+, 272.1 [M+Na]+; HRMS (ES+) found [M+Na]+ 272.1248, C14H19O3N123Na1 requires M+ 272.1263.

N-((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)-2-phenylacetamide (225)

![Image](225)

Yield (85%); δH (400 MHz, CDCl3) 7.34–7.25 (6H, m, ArH), 7.22–7.11 (4H, m, ArH), 6.32 (1H, br d, J 7.5, NH), 5.82 (1H, dt, J 15.0, 6.8, 5-H), 5.47 (1H, dd, J 15.0, 5.8, 4-H), 4.24–4.18 (1H, m, 3-H), 3.89–3.84 (1H, m, 2-H), 3.81 (1H, dd, J 11.1, 4.0, 1-HH), 3.59 (1H, dd, J 11.1, 3.2, 1-HH), 3.51 (2H, s, COCH3), 3.31 (2H, d, J 6.8, 6-H2), 2.25 (2H, br s, 2 × OH); m/z (ES+) 326.2 [M+H]+; HRMS (ES+) found [M+H]+ 326.1767, C20H24O3N1 requires M+ 326.1756.

N-((2S,3R,E)-1,3-dihydroxy-6-phenylhex-4-en-2-yl)octanamide (226)
Yield (82%); δ_H (400 MHz, CDCl$_3$) 7.31–7.23 (3H, m, ArH), 7.22–7.18 (1H, m, ArH), 7.17–7.11 (2H, m, ArH), 6.41 (1H, br d, J 6.6, NH), 5.92 (1H, dt, J 15.3, 6.8, 5-H), 5.58 (1H, dd, J 15.3, 6.1, 4-H), 4.33–4.27 (1H, m, 3-H), 3.89 (2H, m, COCH$_2$H$_2$), 1.63–1.53 (2H, m, COCH$_2$CH$_2$), 1.32–1.22 (8H, m, 4 × aliphatic CH$_2$), 0.87 (3H, t, J 6.8, octanoyl terminal CH$_3$); m/z (ES$^+$) 334.2 [M+H]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 334.2393, C$_{20}$H$_{32}$O$_3$N$_1$ requires M$^+$ 334.2382.

8.2.5.4 4E-3-deoxy ceramide analogues

(S,E)-2-aminoctadec-4-en-1-ol (317)

Yield (61%); δ_H (400 MHz, CDCl$_3$) 5.51 (1H, dt, J 13.9, 6.5, 5-H), 5.38–5.30 (1H, m, 4-H), 3.60 (1H, d, J 8.2, 1-HH), 3.33 (1H, dd, J 10.2, 8.2, 1-HH), 2.97–2.83 (1H, m, 2-H), 2.34 (3H, br s, NH$_2$ and OH), 2.20–2.10 (1H, m, 3-H$_2$), 1.99 (2H, dd, J 13.5, 6.6, 6-H$_2$), 1.37–1.20 (22H, m, 7-H$_2$ to 17-H$_2$), 0.87 (3H, t, J 6.5, 18-H$_3$); m/z (ES$^+$) 284.2 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 284.2947, C$_{18}$H$_{38}$O$_1$N$_1$ requires M$^+$ 284.2953.

(S,E)-N-(1-hydroxyoctadec-4-en-2-yl)acetamide (318)
Yield (68%); δ_H (700 MHz, CDCl$_3$) 5.82 (1H, br d, J 14.8, NH), 5.51 (1H, dt, J 15.0, 6.7, 5-H), 5.34 (1H, dt, J 15.1, 7.1, 4-H), 3.91 (1H, tdd, J 11.1, 7.2, 3.6, 2-H), 3.65 (1H, dd, J 11.0, 3.3, 1-HH), 3.58 (1H, dd, J 11.1, 5.7, 1-HH), 3.25 (1H, br s, OH), 2.27–2.22 (1H, m, 3-HH), 2.17 (1H, dt, J 14.1, 7.1, 3-HH), 1.98 (5H, m, 6-H$_2$ and COCH$_2$), 1.35–1.30 (20H, m, 8-H$_2$ to 17-H$_2$), 0.87 (3H, t, J 7.1, 18-H$_3$); m/z (ES$^-$) 324.4 [M−H]$^-$; (ES$^+$) 326.4 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 326.3046, C$_{20}$H$_{40}$O$_2$N$_1$ requires M$^+$ 326.3035.

(S,E)-N-(1-hydroxyoctadec-4-en-2-yl)-2-phenylacetamide (319)

Yield (82%); δ_H (700 MHz, CDCl$_3$) 7.36–7.33 (1H, m, ArH), 7.30–7.28 (1H, m, ArH), 7.25–7.22 (1H, m, ArH), 5.58 (1H, br d, J 5.6, NH), 5.32 (1H, dt, J 14.7, 6.6, 5-H), 5.23–5.18 (1H, m, 4-H), 3.88 (1H, tdd, J 13.2, 6.5, 3.8, 2-H), 3.61 (1H, dd, J 11.1, 3.5, 1-HH), 3.58 (2H, s, PhCH$_2$), 3.54 (1H, dd, J 11.1, 6.2, 1-HH), 2.19–2.14 (1H, m, 3-HH), 2.09–2.04 (1H, m, 3-HH), 1.88 (2H, dd, J 13.2, 6.5, 6-H$_2$), 1.31–1.23 (22H, m, 7-H$_2$ to 17-H$_2$), 0.88 (3H, t, J 7.0, 18-H$_3$); m/z (ES$^-$) 400.5 [M−H]$^-$; (ES$^+$) 402.4 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 402.3356, C$_{26}$H$_{44}$O$_2$N$_1$ requires M$^+$ 402.3348.

(S,E)-N-(1-hydroxyoctadec-4-en-2-yl)octanamide (320)

Yield (85%); δ_H (700 MHz, CDCl$_3$) 5.71 (1H, br s, NH), 5.52 (1H, dt, J 14.8, 6.8, 5-H), 5.37–5.31 (1H, m, 4-H), 3.91 (1H, tdd, J 10.8, 6.9, 3.6, 2-H), 3.65 (1H, dd, J 10.9, 3.1, 1-HH), 3.58 (1H, dd, J 11.0, 6.0, 1-HH), 3.28 (1H, br s, OH), 2.26 (1H, dt, J 13.5, 6.6, 3-HH), 2.20–2.14 (3H, m, 3-HH and COCH$_2$), 1.99 (2H, dd, J 14.3, 7.1, 6-H$_2$), 1.60 (2H, dt, J 14.6, 7.4, COCH$_2$CH$_2$), 1.35–1.22 (30H, m, 7-H$_2$ to 17-H$_2$ and 4 × aliphatic CH$_2$), 0.87 (6H, t, J 7.1, 18-H$_3$)
and terminal octanoyl CH₃; m/z (ES⁻) 408.5 [M−H]⁻; (ES⁺) 410.5 [M+Na]⁺; HRMS (ES⁺) found [M+H]⁺ 410.3999, C₂₆H₅₂O₂N₁ requires M⁺ 410.3998.

(S,E)-2-aminonon-4-en-1-ol (321)

Yield (34%); δ_H (400 MHz, CDCl₃) 5.57–5.46 (1H, m, 5-H), 5.35 (1H, dd, J 13.9, 7.6, 4-H), 3.77–3.48 (2H, m, 2-H and 1-H), 3.33 (1H, s, 1-H), 2.91 (3H, br s, NH₂ and OH), 2.36–2.10 (2H, m, 3-H), 2.01 (2H, dd, J 13.4, 7.0, 6-H), 1.40–1.23 (4H, m, 7-H and 8-H), 0.89 (3H, t, J 6.9, 9-H); m/z (ES⁺) 158.2 [M+H]⁺; HRMS (ES⁺) found [M+H]⁺ 158.1545, C₉H₂₀O₁N₁ requires M⁺ 158.1545.

(S,E)-N-(1-hydroxynon-4-en-2-yl)acetamide (322)

Yield (82%); δ_H (400 MHz, CDCl₃) 5.66 (1H, br d, J 6.6, NH), 5.58–5.47 (1H, m, 5-H), 5.40–5.30 (1H, m, 4-H), 4.05–3.97 (1H, m, 2-H), 3.67 (1H, dd, J 11.1, 3.6, 1-H), 3.59 (1H, dd, J 11.1, 6.3, 1-H), 3.33 (1H, br s, OH), 2.37–2.13 (2H, m, 3-H), 2.10–1.95 (5H, m, 6-H and COCH₃), 1.37–1.27 (4H, m, 7-H and 8-H), 0.89 (3H, t, J 6.7, 9-H); m/z (ES⁺) 222.2 [M+Na]⁺; HRMS (ES⁺) found [M+Na]⁺ 222.1466, C₁₁H₂₁O₂N₁Na¹ requires M⁺ 222.1470.

(S,E)-N-(1-hydroxynon-4-en-2-yl)-2-phenylacetamide (323)

Yield (31%); δ_H (400 MHz, CDCl₃) 7.36–7.26 (4H, m, ArH), 7.24–7.21 (1H, m, J 5.3, 3.1, ArH), 5.68 (1H, br d, J 7.0, NH), 5.30 (1H, dt, J 14.2, 6.6, 5-H), 5.19 (1H, dt, J 15.2, 7.1, 4-H),
3.89 (1H, tdd, J 10.8, 7.0, 3.8, 2-H), 3.64 (2H, s, PhCH₂), 3.61 (1H, dd, J 11.2, 3.6, 1-HH), 3.53 (1H, dd, J 11.8, 5.2, 1-HH), 2.15 (1H, dt, J 13.5, 4.9, 3-HH), 2.05 (1H, dd, J 14.3, 7.3, 3-HH), 1.89 (2H, dd, J 13.7, 7.0, 6-H₂), 1.33–1.23 (4H, m, 7-H₂ and 8-H₂), 0.89 (4H, t, J 7.0, 9-H₃); m/z (ES⁻) 274.3 [M-H]⁻; (ES⁺) 298.3 [M+Na]⁺; HRMS (ES⁺) found [M+H]⁺ 276.1958, C₁₇H₂₆O₂N₁ requires M⁺ 276.1964.

(S,E)-N-(1-hydroxynon-4-en-2-yl)octanamide (324)

Yield (27%); δ_H (400 MHz, CDCl₃) 5.63 (1H, br d, J 6.2, NH), 5.53 (1H, dt, J 15.0, 6.7, 5-H), 5.39–5.30 (1H, m, 4-H), 3.93 (1H, tdd, J 9.5, 6.4, 3.4, 2-H), 3.67 (1H, dd, J 11.0, 3.4, 1-HH), 3.59 (1H, dd, J 11.1, 6.2, 1-HH), 2.31–2.15 (4H, m, 3-H₂ and COCH₂), 2.01 (3H, dd, J 13.5, 6.6, 6-H₂), 1.61 (4H, dt, J 15.3, 7.7, COCH₂CH₂), 1.37–1.23 (12H, m, 7-H₂, 8-H₂ and 4 × aliphatic CH₂), 0.89 (3H, t, J 7.0, 9-H₃), 0.87 (9 H, td, J 7.0, terminal octanoyl CH₃); m/z (ES⁻) 282.4 [M-H]⁻; (ES⁺) 306.4 [M+Na]⁺; HRMS (ES⁺) found [M+H]⁺ 284.2581, C₁₇H₃₄O₂N₁ requires M⁺ 284.2590.

(S,E)-2-amino-6-phenylhex-4-en-1-ol (325)

Yield (30%); δ_H (700 MHz, CDCl₃) 7.49–7.04 (5H, m, ArH), 5.75–5.67 (1H, m, 5-H), 5.47–5.42 (1H, m, 4-H), 3.71 (2H, m, 1-H₂), 3.34 (2H, d, J 6.7, 6-H₂), 2.41–2.33 (1H, m, 2-H), 2.27–2.18 (2H, m, 3-H₂); 1.90 (3H, br s, NH₂ and OH). m/z (ES⁺) 192.2 [M+H]⁺, C₁₂H₁₇O₁N₁. HRMS could not be obtained for this compound.

(S,E)-N-(1-hydroxy-6-phenylhex-4-en-2-yl)acetamide (326)
Yield (36%); δ_{HH} (700 MHz, CDCl$_3$) 7.72–6.93 (5H, m, ArH), 5.71 (1H, dd, J 14.2, 6.5, 5-H), 5.62 (1H, br d, J 4.9, NH), 5.50–5.42 (1H, m, 4-H), 4.12–4.00 (1H, m, 2-H), 3.60 (1H, dd, J 11.0, 5.3, 1-HH), 3.40 (1 H, dd, J 11.0, 6.8, 1-HH), 3.33 (2H, d, J 6.6, 6-H$_2$), 2.42–2.28 (2H, m, 3-H$_2$), 1.95 (1H, s, COC$_3$H$_3$). m/z (ES$^+$) 256.2 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 256.1320, C$_{14}$H$_{19}$O$_2$N$_1$$_{23}Na_1$ requires M$^+$ 256.1313.

(S,E)-N-(1-hydroxy-6-phenylhex-4-en-2-yl)-2-phenylacetamide (327)

Yield (21%); δ_{HH} (700 MHz, CDCl$_3$) 7.54–6.95 (10H, m, ArH and Ar’H), 5.66 (1H, br d, J 6.7, NH), 5.57–5.51 (1H, m, 5-H), 5.32 (1H, dd, J 15.6, 6.5, 4-H), 3.94–3.89 (1H, m, 2-H), 3.66–3.63 (1H, m, 1-HH), 3.62 (1H, d, J 5.4, PhCH$_2$CO), 3.57 (1H, d, J 5.1, 1-HH), 3.23 (1H, d, J 6.7, 6-H$_2$), 2.25–2.19 (1H, m, 3-HH), 2.10 (1H, m, 3-HH); m/z (ES$^+$) 332.3 [M+Na]$^+$; HRMS (ES$^+$) found [M+Na]$^+$ 332.1613, C$_{20}$H$_{23}$O$_2$N$_1$$_{23}Na_1$ requires M$^+$ 332.1626.

(S,E)-N-(1-hydroxy-6-phenylhex-4-en-2-yl)octanamide (328)

Yield (31%); δ_{HH} (700 MHz, CDCl$_3$) 7.21–7.13 (5H, m, ArH), 5.82 (1H, br d, J 6.7, NH), 5.73–5.67 (1H, m, 5-H), 5.41 (1H, dd, J 15.7, 6.4, 4-H), 3.98–3.94 (1H, m, 2-H), 3.68 (1H, dd, J 11.1, 3.9, 1-HH), 3.62 (1H, dd, J 10.7, 5.9, 1-HH), 3.34 (2H, d, J 7.2, 6-H$_2$), 2.39–2.15 (5H, m, 3-H$_2$ and COCH$_2$), 1.62 (2H, dd, J 14.6, 7.2, COCH$_2$CH$_2$), 1.34–1.22 (12H, m, 7-H$_2$, 8-H$_2$ and 4 × aliphatic CH$_2$), 0.87 (3H, td, J 6.5, terminal octanoyl CH$_3$); m/z (ES$^+$) 318.3 [M+H]$^+$; (ES$^+$) 340.3 [M+Na]$^+$ HRMS (ES$^+$) found [M+Na]$^+$ 340.2246, C$_{20}$H$_{31}$O$_2$N$_1$$_{23}Na_1$ requires M$^+$ 340.2252.
(R,E)-2-amino-octadec-4-en-1-ol (333)

Yield (62%); \(\delta \) (400 MHz, CDCl\(_3\)) 5.51 (1H, dt, \(J = 13.9, 6.5, 5-H \)), 5.38–5.30 (1H, m, 4-H), 3.60 (1H, d, \(J = 8.2, 1-H \)), 3.33 (1H, dd, \(J = 10.2, 8.2, 1-H \)), 2.97–2.83 (1H, m, 2-H), 2.34 (3H, br s, NH\(_2\) and OH), 2.20–2.10 (1H, m, 3-H\(_2\)), 1.99 (2H, dd, \(J = 13.5, 6.6, 6-H \)), 1.37–1.20 (22H, m, 7-H\(_2\) to 17-H\(_2\)), 0.87 (3H, t, \(J = 6.5, 18-H \)); \(m/z \) (ES\(^+\)) 284.2 [M+H]\(^+\); HRMS (ES\(^+\)) found [M+H]\(^+\) 284.2947, C\(_{18}\)H\(_{38}\)O\(_1\)N\(_1\) requires M\(^+\) 284.2953.

(R,E)-2,2,2-trifluoro-N-(1-hydroxy-octadec-4-en-2-yl)acetamide (334)

Yield (38%); \(\delta \) (400 MHz, CDCl\(_3\)) 6.56 (1H, br d, \(J = 7.0, NH \)), 5.56 (1H, dt, \(J = 15.0, 6.8, 5-H \)), 5.35 (1H, dt, \(J = 15.0, 7.2, 4-H \)), 4.05–3.97 (1H, m, 2-H), 3.73 (2H, app. d, \(J = 3.8, 1-H \)), 2.39–2.25 (2H, m, 3-H\(_2\)), 2.00 (2H, dd, \(J = 13.8, 6.9, 6-H \)), 1.38–1.20 (22H, m, 7-H\(_2\) to 17-H\(_2\)), 0.88 (3H, t, \(J = 6.9, 18-H \)); \(\delta \) (376 MHz, CDCl\(_3\)) –75.87 CF\(_3\); \(m/z \) (ES\(^−\)) 378.4 [M–H]\(^−\); (ES\(^+\)) 402.4 [M+Na]\(^+\); HRMS (ES\(^+\)) found [M+Na]\(^+\) 402.2603, C\(_{20}\)H\(_{36}\)O\(_2\)N\(_1\)F\(_3\)Na requires M\(^+\) 402.2608.

(R,E)-N-(1-hydroxy-octadec-4-en-2-yl)acetamide (335)
Yield (88%); δ_H (700 MHz, CDCl₃) 5.82 (1H, br d, J 14.8, NH), 5.51 (1H, dt, J 15.0, 6.7, 5-H), 5.34 (1H, dt, J 15.1, 7.1, 4-H), 3.91 (1H, tdd, J 11.1, 7.2, 3.6, 2-H), 3.65 (1H, dd, J 11.0, 3.3, 1-HH), 3.58 (1H, dd, J 11.1, 5.7, 1-HH), 3.25 (1H, br s, OH), 2.27–2.22 (1H, m, 3-HH), 2.17 (1H, dt, J 14.1, 7.1, 3-HH), 1.98 (5H, m, 6-H₂ and COCH₃), 1.35–1.30 (20H, m, 8-H₂ to 17-H₂), 0.87 (3H, t, J 7.1, 18-H₃); m/z (ES[−]) 324.4 [M−H]; (ES⁺) 326.4 [M+H]⁺; HRMS (ES⁺) found [M+H]⁺ 326.3046, C₂₀H₄₀O₂N₁ requires M⁺ 326.3035.

(R,E)-N-(1-hydroxyoctadec-4-en-2-yl)-2-phenylacetamide (336)

Yield (47%); δ_H (700 MHz, CDCl₃) 7.36–7.33 (2H, m, ArH), 7.30–7.28 (1H, m, ArH), 7.25–7.22 (2H, m, ArH), 5.58 (1H, br d, J 5.6, NH), 5.32 (1H, dt, J 14.7, 6.6, 5-H), 5.23–5.18 (1H, m, 4-H), 3.88 (1H, tdd, J 13.2, 6.5, 3.8, 2-H), 3.61 (1H, dd, J 11.1, 3.5, 1-HH), 3.58 (2H, s, PhCH₂), 3.54 (1H, dd, J 11.1, 6.2, 1-HH), 2.19–2.14 (1H, m, 3-HH), 2.09–2.04 (1H, m, 3-HH), 1.88 (2H, dd, J 13.2, 6.5, 6-H₂), 1.31–1.23 (22H, m, 7-H₂ to 17-H₂), 0.88 (3H, t, J 7.0, 18-H₃); m/z (ES[−]) 400.5 [M−H]; (ES⁺) 402.4 [M+H]⁺; HRMS (ES⁺) found [M+H]⁺ 402.3356, C₂₆H₄₄O₂N₁ requires M⁺ 402.3348.

(R,E)-N-(1-hydroxyoctadec-4-en-2-yl)octanamide (337)

Yield (76%); δ_H (700 MHz, CDCl₃) 5.71 (1 H, br s, NH), 5.52 (1 H, dt, J 14.8, 6.8, 5-H), 5.37–5.31 (1H, m, 4-H), 3.91 (1H, tdd, J 10.8, 6.9, 3.6, 2-H), 3.65 (1H, dd, J 10.9, 3.1, 1-HH), 3.58 (1H, dd, J 11.0, 6.0, 1-HH), 3.28 (1H, br s, OH), 2.26 (1H, dt, J 13.5, 6.6, 3-HH), 2.20–2.14 (3H, m, 3-HH and COCH₂), 1.99 (2H, dd, J 14.3, 7.1, 6-H₂), 1.60 (2H, dt, J 14.6, 7.4, COCH₂CH₂), 1.35–1.22 (30H, m, 7-H₂ to 17-H₂ and 4 × aliphatic CH₂), 0.87 (6H, t, J 7.1, 18-H₃
and terminal octanoyl CH$_3$; m/z (ES$^-$) 408.5 [M−H]$^-$; (ES$^+$) 410.5 [M+Na]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 410.3999, C$_{26}$H$_{52}$O$_2$N$_1$ requires M$^+$ 410.3998.

(R,E)-2-(2,2,2-trifluoroacetamido)octadec-4-en-1-yl methanesulfonate (338)

\[
\text{Yield (77%); } \delta_H (700 \text{ MHz, CDCl}_3) 6.55 (1H, br d, J 7.5, NH), 5.61 (1H, dt, J 14.1, 6.8, 5-H), 5.32 (1H, dt, J 15.4, 7.5, 4-H), 4.36 (1H, dd, J 10.9, 3.6, 1-HH), 4.28 (1H, dd, J 10.8, 4.6, 1-HH), 4.21 (1H, dt, J 7.7, 5.7, 2-H), 3.05 (3H, s, SO$_2$CH$_3$), 2.37 (2H, dd, J 11.3, 6.9, 3-H$_2$), 2.01 (2H, dd, J 14.3, 7.2, 6-H$_2$), 1.37–1.21 (25H, m, 7-H$_2$ to 17-H$_2$), 0.88 (4H, t, J 7.0, 18-H$_3$); \delta_F (658 MHz, CDCl$_3$) −75.98; m/z (ES$^+$) 458.2 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 458.2561, C$_{21}$H$_{39}$O$_4$N$_1$F$_3$S$_1$ requires M$^+$ 458.2552.

8.2.5.5 3-phenyl-1-deoxy ceramide analogues

N-((1S,2R)-1-hydroxy-1-phenylpropan-2-yl)benzamide (401)
N-((1R,2S)-1-hydroxy-1-phenylpropan-2-yl)benzamide (405)

Yield (401, 75%; 405, 79%); \delta_H (400 MHz, CDCl$_3$) 7.75 (2H, m, ArH), 7.54–7.48 (1H, m, ArH), 7.46–7.40 (2H, m, ArH), 7.40–7.33 (4H, m, Ar'H), 7.31–7.27 (1H, m, Ar'H), 6.29 (1H, m,
N\textsubscript{\textit{H}}, 4.97 (1H, m, 1-H), 4.55 (1 H, dqd, J 13.8, 6.9, 2.8, 2-H), 3.56 (1H, d, J 3.9, OH), 1.12 (3H, d, J 6.9, 3-H\textsubscript{3}); m/z (ES+) 256.4 [M+H]+; HRMS (ES+) found [M+H]+ 256.1332, C\textsubscript{16}H\textsubscript{18}O\textsubscript{2}N\textsubscript{1} requires \textit{M}+ 256.1332.

\textit{N-}((1S,2R)-1-hydroxy-1-phenylpropan-2-yl)acetamide (402)
\textit{N-}((1R,2S)-1-hydroxy-1-phenylpropan-2-yl)acetamide (406)

\begin{center}
\begin{tikzpicture}
\draw (0,0) circle (1cm);
\draw (0,1) node [left] {\textit{NH}};
\draw (0,0) node [above] {\textit{H}};
\draw (0,0) node [right] {\textit{H}};
\draw (0,0) node [below] {\textit{H}};
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}
\draw (0,0) circle (1cm);
\draw (0,1) node [left] {\textit{NH}};
\draw (0,0) node [above] {\textit{H}};
\draw (0,0) node [right] {\textit{H}};
\draw (0,0) node [below] {\textit{H}};
\end{tikzpicture}
\end{center}

Yield (402, 78%; 406, 88%); \textit{δ}\textsubscript{H} (400 MHz, CDCl\textsubscript{3}) 7.36–7.30 (4H, ArH), 7.30–7.25 (1H, m, ArH), 5.80 (1H, br s, NH), 4.85 (1H, d, J 2.7, 1-H), 4.41–4.19 (1H, m, 2-H), 3.79 (1H, br s, OH), 1.98 (3H, s, COCH\textsubscript{3}), 0.99 (3H, d, J 7.0, 3-H\textsubscript{3}); m/z (ES+) 194.3 [M+H]+; HRMS (ES+) found [M+H]+ 194.1175, C\textsubscript{11}H\textsubscript{16}O\textsubscript{2}N\textsubscript{1} requires \textit{M}+ 194.1176.

\textit{N-}((1S,2R)-1-hydroxy-1-phenylpropan-2-yl)-2-phenylacetamide (403)
\textit{N-}((1R,2S)-1-hydroxy-1-phenylpropan-2-yl)-2-phenylacetamide (407)

\begin{center}
\begin{tikzpicture}
\draw (0,0) circle (1cm);
\draw (0,1) node [left] {\textit{NH}};
\draw (0,0) node [above] {\textit{H}};
\draw (0,0) node [right] {\textit{H}};
\draw (0,0) node [below] {\textit{H}};
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}
\draw (0,0) circle (1cm);
\draw (0,1) node [left] {\textit{NH}};
\draw (0,0) node [above] {\textit{H}};
\draw (0,0) node [right] {\textit{H}};
\draw (0,0) node [below] {\textit{H}};
\end{tikzpicture}
\end{center}
Yield (403, 74%; 407, 70%); δ_H (400 MHz, CDCl$_3$) 7.42–7.11 (10H, m, ArH and Ar’H), 5.56 (1H, br s, NH), 4.75 (1H, m, 1-H), 4.30 (1H, pd, J 7.0, 3.1, 2-H), 3.54 (2H, m, COCH$_2$), 0.93 (3H, d, J 7.0, 3-CH$_3$); m/z (ES$^+$) 270.4 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 270.1488, C$_{17}$H$_{20}$O$_2$N$_1$ requires M$^+$ 270.1489.

N-((1S,2R)-1-hydroxy-1-phenylpropan-2-yl)octanamide (404)
N-((1R,2S)-1-hydroxy-1-phenylpropan-2-yl)octanamide (408)

 Yield (404, 88%; 408, 93%); δ_H (400 MHz, CDCl$_3$) 7.29–7.24 (4H, m, ArH), 7.23–7.18 (1H, m, ArH), 5.86 (1H, br s, NH), 4.75 (1H, d, J 2.8, 1-H), 4.23 (1H, ddd, J 8.1, 7.0, 2.8, 2-H), 2.14–2.03 (2H, m, COCH$_2$), 1.62–1.47 (2H, m, COCH$_2$CH$_2$), 1.22 (8H, m, 4 x aliphatic CH$_2$), 0.93 (6H, d, J 6.9, 3-H$_3$), 0.83 (3H, t, J 6.8 aliphatic terminal CH$_3$); m/z (ES$^+$) 278.5 [M+H]$^+$; HRMS (ES$^+$) found [M+H]$^+$ 278.2114, C$_{17}$H$_{28}$O$_2$N$_1$ requires M$^+$ 278.2115.
REFERENCES

APPENDICES
APPENDIX ’A’: EXPRESSION VECTOR p426MET25
APPENDIX A: EXPRESSION VECTOR p426MET25

p426 MET25
6,338 bp

Amp

MET25-Prom

CYC1-Term

Sacl (2,720)
Sall (2,271), Xhol (2,265), ClaI (2,278), HindIII (2,286), EcoRI (2,298)
Smal (2,316), SpeI (2,326), BamHI (2,320)

2-μ

PstI (395)

EcoRV (603)

Apal (791)

XbaI (5,873)
APPENDIX ’B’: MATRIX OF DILUTION EFFECT
APPENDIX B: MATRIX OF DILUTION EFFECT

<table>
<thead>
<tr>
<th>CHAPS = 600</th>
<th>PI (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 PI %</td>
</tr>
<tr>
<td>Cer (μM) 0.0</td>
<td>600.0</td>
</tr>
<tr>
<td>Cer % 0.0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Cer % 1.0</td>
<td>601.0</td>
</tr>
<tr>
<td>Cer % 2.0</td>
<td>602.0</td>
</tr>
<tr>
<td>Cer % 3.0</td>
<td>603.0</td>
</tr>
<tr>
<td>Cer % 4.0</td>
<td>604.0</td>
</tr>
<tr>
<td>Cer % 5.0</td>
<td>605.0</td>
</tr>
<tr>
<td>Cer % 7.5</td>
<td>607.5</td>
</tr>
<tr>
<td>Cer % 10.0</td>
<td>610.0</td>
</tr>
<tr>
<td>Cer % 12.5</td>
<td>612.5</td>
</tr>
<tr>
<td>Cer % 15.0</td>
<td>615.0</td>
</tr>
<tr>
<td>Cer % 20.0</td>
<td>620.0</td>
</tr>
</tbody>
</table>

- **Legend:**
 - **Total Lipid + CHAPS (μM)**
 - **PI %**
 - **Cer %**

- **Δ** = 3.23% (0.0% - 3.16%)
- **Δ[PI] %** (0.0% - 3.2%)
- **Δ[Cer] %** (0.0% - 3.16%)
APPENDIX ’C’: SCREENING RESULTS TABLE
<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sph</td>
<td></td>
<td></td>
<td>53%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Synthetic intermediates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early intermediates</td>
<td></td>
<td></td>
<td>112%</td>
<td>11.5%</td>
</tr>
<tr>
<td></td>
<td>202</td>
<td></td>
<td>112%</td>
<td>11.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Pre-CM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122a</td>
<td></td>
<td>89%</td>
<td>19.0%</td>
</tr>
<tr>
<td></td>
<td>103a</td>
<td></td>
<td>75%</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td></td>
<td>104%</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>207</td>
<td></td>
<td>91%</td>
<td>16.5%</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td></td>
<td>76%</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td>331</td>
<td></td>
<td>114%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>
Boc-protected CM Products

<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>211</td>
<td></td>
<td>66%</td>
<td>8.0%</td>
</tr>
<tr>
<td>212</td>
<td>212</td>
<td></td>
<td>103%</td>
<td>5.0%</td>
</tr>
<tr>
<td>213</td>
<td>213</td>
<td></td>
<td>104%</td>
<td>12.4%</td>
</tr>
<tr>
<td>104</td>
<td>104</td>
<td></td>
<td>139%</td>
<td>5.7%</td>
</tr>
<tr>
<td>105</td>
<td>105</td>
<td></td>
<td>163%</td>
<td>3.2%</td>
</tr>
<tr>
<td>106</td>
<td>106</td>
<td></td>
<td>102%</td>
<td>1.3%</td>
</tr>
<tr>
<td>129</td>
<td>129</td>
<td></td>
<td>71%</td>
<td>2.8%</td>
</tr>
<tr>
<td>130</td>
<td>130</td>
<td></td>
<td>84%</td>
<td>6.4%</td>
</tr>
<tr>
<td>131</td>
<td>131</td>
<td></td>
<td>85%</td>
<td>8.5%</td>
</tr>
<tr>
<td>314</td>
<td>314</td>
<td></td>
<td>41%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>
Appenidx C: Screening Results Table

<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td></td>
<td></td>
<td>101%</td>
<td>5.0%</td>
</tr>
<tr>
<td>316</td>
<td></td>
<td></td>
<td>98%</td>
<td>6.2%</td>
</tr>
<tr>
<td>332</td>
<td></td>
<td></td>
<td>45%</td>
<td>14.8%</td>
</tr>
</tbody>
</table>

Ac protected CM products

<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td></td>
<td></td>
<td>54%</td>
<td>4.2%</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td>54%</td>
<td>2.0%</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td>60%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Library Compounds

<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td></td>
<td></td>
<td>64%</td>
<td>4.1%</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>81%</td>
<td>7.0%</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td>55%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td>21%</td>
<td>1.5%</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td>81%</td>
<td>8.0%</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td>87%</td>
<td>6.2%</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td>105%</td>
<td>1.5%</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td>68%</td>
<td>5.0%</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td>68%</td>
<td>8.0%</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td>101%</td>
<td>9.4%</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td>90%</td>
<td>8.1%</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>90%</td>
<td>8.5%</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td>60%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td>61%</td>
<td>6.2%</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td>45%</td>
<td>4.8%</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td>55%</td>
<td>3.9%</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td>62%</td>
<td>0.0%</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td>80%</td>
<td>9.0%</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td>85%</td>
<td>6.0%</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td>58%</td>
<td>3.8%</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td>99%</td>
<td>6.0%</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td>129%</td>
<td>0.5%</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td>62%</td>
<td>16.5%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>139</td>
<td>226</td>
<td>Ph</td>
<td>68%</td>
<td>8.3%</td>
</tr>
<tr>
<td>219</td>
<td>219</td>
<td>C_{13}H_{27}</td>
<td>54%</td>
<td>9.5%</td>
</tr>
<tr>
<td>220</td>
<td>220</td>
<td>C_{13}H_{27}</td>
<td>36%</td>
<td>4.5%</td>
</tr>
<tr>
<td>221</td>
<td>221</td>
<td>C_{13}H_{27}</td>
<td>40%</td>
<td>1.0%</td>
</tr>
<tr>
<td>222</td>
<td>222</td>
<td>C_{13}H_{27}</td>
<td>13%</td>
<td>3.5%</td>
</tr>
<tr>
<td>215</td>
<td>215</td>
<td>C_{4}H_{9}</td>
<td>65%</td>
<td>2.5%</td>
</tr>
<tr>
<td>216</td>
<td>216</td>
<td>C_{4}H_{9}</td>
<td>71%</td>
<td>3.0%</td>
</tr>
<tr>
<td>217</td>
<td>217</td>
<td>C_{4}H_{9}</td>
<td>104%</td>
<td>3.0%</td>
</tr>
<tr>
<td>218</td>
<td>218</td>
<td>C_{4}H_{9}</td>
<td>44%</td>
<td>0.5%</td>
</tr>
<tr>
<td>223</td>
<td>223</td>
<td>Ph</td>
<td>119%</td>
<td>10.0%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td>86%</td>
<td>7.5%</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td>71%</td>
<td>1.5%</td>
</tr>
<tr>
<td>226</td>
<td></td>
<td></td>
<td>55%</td>
<td>4.3%</td>
</tr>
<tr>
<td>317</td>
<td></td>
<td></td>
<td>52%</td>
<td>5.5%</td>
</tr>
<tr>
<td>318</td>
<td></td>
<td></td>
<td>58%</td>
<td>11.0%</td>
</tr>
<tr>
<td>319</td>
<td></td>
<td></td>
<td>50%</td>
<td>5.2%</td>
</tr>
<tr>
<td>320</td>
<td></td>
<td></td>
<td>54%</td>
<td>2.7%</td>
</tr>
<tr>
<td>321</td>
<td></td>
<td></td>
<td>83%</td>
<td>17.5%</td>
</tr>
<tr>
<td>322</td>
<td></td>
<td></td>
<td>77%</td>
<td>6.0%</td>
</tr>
<tr>
<td>323</td>
<td></td>
<td></td>
<td>101%</td>
<td>7.5%</td>
</tr>
<tr>
<td>324</td>
<td></td>
<td></td>
<td>69%</td>
<td>3.0%</td>
</tr>
<tr>
<td>325</td>
<td></td>
<td></td>
<td>88%</td>
<td>6.1%</td>
</tr>
<tr>
<td>326</td>
<td></td>
<td></td>
<td>83%</td>
<td>10.0%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>327</td>
<td></td>
<td></td>
<td>89%</td>
<td>2.0%</td>
</tr>
<tr>
<td>328</td>
<td></td>
<td></td>
<td>74%</td>
<td>6.6%</td>
</tr>
<tr>
<td>333</td>
<td></td>
<td></td>
<td>43%</td>
<td>6.6%</td>
</tr>
<tr>
<td>334</td>
<td></td>
<td></td>
<td>35%</td>
<td>4.5%</td>
</tr>
<tr>
<td>335</td>
<td></td>
<td></td>
<td>48%</td>
<td>0.6%</td>
</tr>
<tr>
<td>336</td>
<td></td>
<td></td>
<td>24%</td>
<td>3.8%</td>
</tr>
<tr>
<td>337</td>
<td></td>
<td></td>
<td>43%</td>
<td>4.4%</td>
</tr>
<tr>
<td>338</td>
<td></td>
<td></td>
<td>82%</td>
<td>5.7%</td>
</tr>
</tbody>
</table>

1-Phenyl-2-aminopropanol (PAP) Derivatives

<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)PAP</td>
<td></td>
<td></td>
<td>111%</td>
<td>6.7%</td>
</tr>
<tr>
<td>401</td>
<td></td>
<td></td>
<td>89%</td>
<td>11.6%</td>
</tr>
<tr>
<td>402</td>
<td></td>
<td></td>
<td>107%</td>
<td>25.9%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>403</td>
<td></td>
<td></td>
<td>123%</td>
<td>11.8%</td>
</tr>
<tr>
<td>404</td>
<td></td>
<td></td>
<td>92%</td>
<td>3.7%</td>
</tr>
<tr>
<td>(-)PAP</td>
<td></td>
<td></td>
<td>111%</td>
<td>20.5%</td>
</tr>
<tr>
<td>405</td>
<td></td>
<td></td>
<td>77%</td>
<td>11.0%</td>
</tr>
<tr>
<td>406</td>
<td></td>
<td></td>
<td>118%</td>
<td>9.5%</td>
</tr>
<tr>
<td>407</td>
<td></td>
<td></td>
<td>67%</td>
<td>9.5%</td>
</tr>
<tr>
<td>408</td>
<td></td>
<td></td>
<td>80%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Beta Blockers, Propranolol (PPL), Betaxolol (BXL), ICI 118,551 (ICI)

<table>
<thead>
<tr>
<th>Cpd Class</th>
<th>#</th>
<th>Structure</th>
<th>Act%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)PPL</td>
<td></td>
<td></td>
<td>48%</td>
<td>1.3%</td>
</tr>
<tr>
<td>(++)PPL</td>
<td></td>
<td></td>
<td>39%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Cpd Class</td>
<td>#</td>
<td>Structure</td>
<td>Act%</td>
<td>SE</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>(-)PPL</td>
<td></td>
<td></td>
<td>50%</td>
<td>11.5%</td>
</tr>
<tr>
<td>BXL</td>
<td></td>
<td></td>
<td>48%</td>
<td>5.1%</td>
</tr>
<tr>
<td>ICI</td>
<td></td>
<td></td>
<td>54%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>
APPENDIX ’D’: PUBLICATIONS
A plate-based assay system for analyses and screening of the Leishmania major inositol phosphorylceramide synthase

John G. Minaa, Jackie A. Moselya, Hayder Z. Alia, Hosam Shams-Eldinc, Ralph T. Schawrazc,d, Patrick G. Steela,*, Paul W. Dennya,b,*

A R T I C L E I N F O

Article history:
Received 5 March 2010
Received in revised form 4 June 2010
Accepted 9 June 2010
Available online 16 June 2010

Keywords:
Inositol phosphorylceramide synthase
Leishmania species
Leishmaniasis
Kinetics
Inhibition

A B S T R A C T

Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesise inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AURI gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given the paucity of effective treatments for kinetoplastid diseases such as leishmaniasis, there is a need to characterize the protozoan enzyme. To this end a fluorescent-based cell-free assay protocol in a 96-well plate format has been established for the Leishmania major IPC synthase. Using this system the kinetic parameters of the enzyme have been determined as obeying the double displacement model with apparent $V_{\text{max}} = 2.31 \text{ pmol min}^{-1} \text{ U}^{-1}$. Furthermore, inhibitory substrate analogues have been identified. Importantly this assay is amenable to development for use in high-throughput screening applications for lead inhibitors and as such may prove to be a pivotal tool in drug discovery.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The insect vector borne protozoan parasites of the family Kinetoplastidae cause a range of human diseases, including the leishmaniasis and African Sleeping Sickness. These infections are of increasing prevalence, particularly in developing countries, and have been classified by the World Health Organisation as Category I emerging or uncontrolled diseases (Remme et al., 2002). For example, the Leishmania spp. (the causative agents of the leishmaniasis) infect more than 12 million people in five continents and are endemic in 88 nation states putting over 350 million people at risk, with instances of leishmaniasis not uncommon in certain regions of North America and southern Europe. Moreover, the spread and severity of disease is exacerbated by its status as an important co-infection in AIDS patients and the overlap in prevalence of HIV and Leishmania (Alvar et al., 2008). In the absence of effective vaccines, the treatment of kinetoplastid infections is difficult with the most serious visceral form of leishmaniasis often requiring a long, costly course of drug therapy. In addition, available drugs often exhibit serious side-effects and resistance is rapidly emerging (Remme et al., 2002). These facts make the discovery and validation of new therapeutic agents a priority.

The diverse, amphipathic sphingolipids consist of a sphingosine backbone with long-chain base and polar alcohol attachments. These essential lipid species are found in all eukaryotic cells, as well as in some prokaryotic organisms and viruses (Smith and Merrill, 2002). In eukaryotes, the unmodified sphingolipid, ceramide, is a precursor for the synthesis of complex sphingolipids in the Golgi apparatus. The resultant lipid species are subsequently concentrated in the outer leaflet of the plasma membrane. Here, together
with sterols, they form the microdomains known as lipid rafts (Futerman and Hannun, 2004). Such domains have been suggested to be central to a wide array of cellular processes, including the formation of signal transduction complexes (Magee et al., 2002; Pierce, 2002) and the polarized trafficking of lipid-modified proteins (Brown and London, 1998). Importantly, sphingolipid metabolites such as ceramide and phosphorylated sphingosine (sphingosine-1-phosphate), are also involved in the intracellular signal transduction processes that regulate cell growth, differentiation and programmed cell death (apoptosis) (Futerman and Hannun, 2004).

Sphingolipids demonstrate structural divergence in evolution. Whilst sphingomyelin (SM) is the predominant phosphosphingolipid (PSL) of mammalian cells, inositol phosphoceramide (IPC) is found in the fungi, plants and some protozoa but not in mammals (Lester and Dickson, 1993; Spierling and Heinz, 2003). SM is formed by the transfer of the phosphocholine head group from the phospholipid phosphatidylcholine (PC) to ceramide, a reaction catalysed by SM synthase (Huitema et al., 2004). The related enzyme, IPC synthase, mediates the formation of IPC in fungi, plants and the pathogenic kinetoplastid protozoa (e.g. Leishmania spp.) by catalyzing the transfer of phosphorylinositol from phosphatidylinositol (PI) to ceramide or phytoceramide (Becker and Lester, 1980; Bromley et al., 2003; Denny et al., 2006). In the fungi this enzyme activity has been attributed to the AUR1p protein first identified in Saccharomyces cerevisiae and subsequently in several fungal pathogens (Heidler and Radding, 1995; Heidler and Radding, 2000). We have isolated a functional orthologue of this protein in the kinetoplastid, protozoan parasite Leishmania major (LmjIPCS) (Denny et al., 2006). LmjIPCS is encoded by a single gene (GeneDB, LmjF35.4990), and closely related orthologues are found in the complete genome sequences of the related kinetoplastid pathogens, Trypanosoma brucei (the causative agent of African Sleeping Sickness) and Trypanosoma cruzi (Chagas Disease) (Denny et al., 2006).

IPC synthase activity is evident in both the insect and mammalian stages of the L. major lifecycle, however in the intra-macrophage form the parasite is predicted to scavenge host cell ceramide for use as substrate by LmjIPCS (Zhang et al., 2005, 2009).

As an essential activity with no mammalian equivalent the fungal IPC synthase has become a recognized and well studied drug target (Georgopapadakou, 2000; Nagiec et al., 1997a). The discovery of functional orthologues in the kinetoplastid pathogenic protozoa has led to its further consideration as a potential target. It is known that LmjIPCS activity is susceptible to the established fungal inhibitor aureobasidin A (Denny et al., 2006). In addition, this compound has been demonstrated to inhibit the growth and infectivity of L. amazonensis (Tanaka et al., 2007). Furthermore, recent work in our laboratory (Mina et al., 2009) and elsewhere (Sutterwala et al., 2008) has both genetically and pharmacologically validated the kinetoplastid enzyme as a target in T. brucei. Therefore, further study of the LmjIPCS (and other kinetoplastid orthologues) is vital in moving towards the ultimate goal of identifying compounds with the potential for development into much needed, pharmacologically active anti-protozoal agents. We herein report the establishment of a robust 96-well plate based assay system that uses easily obtainable, transgenic yeast-derived material, together with its application to the kinetic parameters of LmjIPCS and demonstrate the inhibitory effects of several substrate analogues.

2. Materials and methods

Phosphatidylinositol (bovine liver PI; predominant species 1-stearoyl-2-archidonoyl-sn-glycero-3-phospho-1-myoinositol sodium salt) was from Avanti Polar Lipids, N-erythro-Sphingo-4-enine (d18:1; sphing-4-enine, (2S,3R,E)-2-aminoocdeac-4-ene-1,3-diol) and N-acetyl-N-erythro-sphingo-4-enine, (2S,3R,4E)-N-acetyl-2-amino-octadec-4-ene-1,3-diol) were from TOCRIS BioScience. C16-Ceramide (d18:1/18:0; N- acetyl-N-erythro-sphingo-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycerol) were from Sigma–Aldrich. NBD-C6-ceramide (N-[6-[(7-nitro-2,3-benzo- xadiazol-4-yl)amino]hexanoyl]-N-erythro-sphingo-sphingosine) was from Invitrogen.

2.2. Preparation of LmjIPCS microbial material

Auxotrophic AUR1 mutant S. cerevisiae was complemented by the expression of the L. major IPC synthase to create YPH499—HIS—GAL—AUR1 pRS246 LmjIPCS (Denny et al., 2006). These cells were propagated in SD medium (0.17%Bacto yeast nitrogen base, 0.5% ammonium sulphate and 2% dextrose) containing the appropriate nutritional supplements, and microsomes prepared from an exponentially growing culture (Fischl et al., 2000). Briefly, approximately 8.0 g of wet cell mass was suspended in STE buffer (25 mM Tris–HCl pH 7.4, 250 mM sucrose and 1 mM EDTA) containing Complete® EDTA-free Protease Inhibitor Cocktail (Roche Applied Science) and the yeast disrupted by vortex mixing with pre-chilled acid-washed glass beads (425–600 μm, Sigma–Aldrich). After the removal of the glass beads, unbroken cells and cell-wall debris by centrifugation (1500 × g, 4°C and 15 min), the microsomal membrane fraction was isolated by differential centrifugation. Subsequently the large granular fraction was removed (27,000 × g, 4°C and 30 min) and the microsomal membrane fraction isolated (150,000 × g, 4°C and 90 min). The microsomes were re-suspended at a concentration of 10 mg ml−1 in storage buffer (50 mM Tris/HCl pH 7.4, 20% (v/v) glycerol, 5 mM MgCl2) containing protease inhibitor. As required, the microsomal membranes were washed in 2.5% CHAPS (Sigma–Aldrich; 4°C, 60 min), isolated by centrifugation (150,000 × g, 4°C and 90 min), assayed for protein content (BCQCA, Invitrogen) and re-suspended in storage buffer. A second wash inactivated the enzyme.

Different preparations of microsomal membranes were utilized in this study and these varied in specific LmjIPCS enzyme activity. Therefore, to standardise the assay material samples were normalized with respect to active enzyme content ensuring consistency across experiments. Although the standardised unit for enzymatic activity is the katal where 1 kat = 1 mol (product) s−1 (International Union of Biochemistry, 1979), for the range of substrates concentrations used in the work presented here a more practical value is enzyme unit (U), One unit (U) of enzyme is defined as that which converts 1 pmol of substrate per minute under the conditions described (1 U = 1 pmol (product) min−1), where 1 U cor-
responds to 16.67 femtokia (Fischl et al., 2000). The conversion of the fluorescent acceptor substrate NBD-C6-ceramide to the product NBD-C6-IPC was measured and quantified with respect to known concentrations of NBD-C6-ceramide, activity calculated as U μl⁻¹ and the samples were stored at −80 °C until use. Enzyme turnover was calculated per milligrams of total protein in the sample (U mg⁻¹).

2.3. Thin layer chromatography (TLC) based LmjIPCS synthase assay

Both unwashed and CHAPS-washed (1 μg) microsomal membranes were used in a 50 μl assay mix containing 1 mM Pi, 100 mM Tris–HCl (pH 7.4) and 200 μM NBD-C6-ceramide (Figueiredo et al., 2005). The reaction was pre-incubated before the addition of the NBD-C6-ceramide at 30 °C (the established optimum temperature for the assay) for 30 min and subsequently for a further hour before quenching with 150 μl of chloroform:methanol:water (10:10:3). After biphasic separation the organic layer was removed, dried in a rotavapor (Eppendorf Concentrator 5301) and re-suspended in 20 μl of 10:10:3. The reaction products were fractionated using HPTLC silica plates (Merck) and the eluent system chloroform:methanol:aqueous 0.25% KCl (55:45:10). The Rf values for the substrate, NBD-C6-ceramide, and the product, NBD-C6-IPC were 0.96 and 0.57 respectively. Quantification was carried out using a FLA3000 scanner (Fujifilm) and AIDA Image Analyzer® software (version 3.52).

2.4. 96-well plate-based LmjIPCS assay for kinetic analyses

CHAPS-washed membranes (Aeed et al., 2004), 0.6 U or as described, were used in a reaction mix containing 100 μM (or as indicated) Pi, 50 mM KH₂PO₄ (pH 7.0) and 5 μM (or as indicated) NBD-C6-ceramide. Following pre-incubation at 30 °C for 30 min, the reaction was initiated by the addition of the NBD-C6-ceramide (5 μM or as indicated) and 2.4 mM CHAPS. The reaction was incubated for the specified period of time and subsequently quenched by the addition of 200 μl of methanol. Separation of the reaction product, NBD-C6-IPC, from the substrate NBD-C6-ceramide was achieved by applying the reaction mix to 100 μl (sedimented gel volume) of AG4-X4 resin (BioRad), formate form, in 96-well Multiscreen® Solvinitr filter plates (Millipore) using a vacuum manifold (Millipore). The resin was washed 5 times with 200 μl methanol, the product was eluted into OptiPlate™ 96-F plates (PerkinElmer) using 200 μl of 1 M potassium formate in methanol and quantified using a fluorescence plate reader (FLX800™, BioTek)–excitation λ = 485 nm; emission λ = 528 nm. Assays used were carried out in triplicate and results analysed using Prism 5.0 software (GraphPad) and Excel® Solver Add-in (Microsoft Office). The separation protocol was validated by collecting fractions from a 5-fold scale up of the process and fractionating them by TLC as above (Fig. 1).

Substrate analogues were employed in inhibition studies and added with the fluorescent substrate NBD-C6-ceramide in the quantities indicated.

The assay system was validated as excellent for screening purposes with a Z' value of 0.58 (Zhang et al., 1999). Calculation of this value utilized 2 bespoke inhibitors, (4E) N-(phenylacetyl)-1-deoxy sphing-4-enine and (2R,4E) N-phenylacetyl-2-aminoctadec-4-en-1-ol whose synthesis and screening will be subsequently reported.

2.5. Mass spectrometry

Analyses were performed on an LTQFT (ThermoFinnigan Corp.); an FTICR MS instrument equipped with a 7.0 T magnet. Chloroform extracts were introduced into the electrospray ion source by direct infusion from a syringe at a flow rate of 3 μl min⁻¹. Positive ion measurements were made with the source voltage at 4.0 kV and negative ion measurements were made with the source voltage at 3.5 kV. The tube lens was kept at 100 V and the source temperature at 275 °C for all experiments.

2.6. Cytotoxicity screening

L. major (MHOM/IL/81/Friedlin) and L. mexicana (MNHY/BZ/62/M379) parasites were maintained at 26 °C in Schneider’s Drosophila media (Sigma–Aldrich) supplemented with heat inactivated foetal bovine sera (15% for promastigotes and 20% for amastigotes; Biosera). L. mexicana promastigotes were transformed into axenic amastigotes by a pH and temperature shift as previously described (Bates, 1994). In 96-well plates (Nunc) parasites at 10⁵ ml⁻¹ were incubated with compounds in triplicate (including mifeprisone (Cayman Chemical) as a positive control, and untreated parasites and media as negative controls) for 24 h before incubation with Alamar Blue (Invitrogen) for 4 h prior to assessing cell viability using a fluorescent plate reader (Biotek; 560EX nm/600EM nm). ED₅₀ was calculated after plotting cell viability (as percent of untreated control) against log compound concentration (μM).

3. Results and discussion

3.1. Assay of LmjIPCS microsomal material

The high levels of endogenous PI present in yeast microsomes (Aeed et al., 2004) rendered establishing the kinetic parameters of LmjIPCS with respect to this donor substrate problematic. Initial assay experiments using unrefined material derived from LmjIPCS complemented HIS-GAL-AUR1 auxotrophic yeast IPSC mutants (Denny et al., 2006) demonstrated that endogenous, microsomal PI accounted for approximately 25% of the measured LmjIPCS turnover (Fig. 2A), making accurate determination of the enzyme kinetic parameters impossible. A similar problem has previously been identified with the use of T. cruzi derived microsomes in an
assay of TcIPCS turnover (Figueiredo et al., 2005). However, it has been demonstrated that washing microsomal membranes derived from the pathogenic yeast, Candida albicans with a zwitterionic detergent (CHAPS) removed endogenous substrate lipids without affecting IPCS activity (Aeed et al., 2004). Adopting this approach and employing microsomes from LmjIPCS complemented HIS-GAL-AUR1 yeast, washed with CHAPS as described, the parasite enzyme assay proved to be dependent not only on the addition of the fluorescent acceptor substrate, NBD-C6-ceramide, but now also more than 90% dependent on the addition of the donor substrate (bovine liver PI; Fig. 2A). It has previously been demonstrated that the S. cerevisiae orthologous enzyme, AUR1p, is unable to utilise bovine liver PI (Mina et al., 2009). In the present assay system, the CHAPS-washed microsomes also demonstrated an approximately 2-fold higher level of enzyme turnover than equivalent quantities of crude material (Fig. 2B). This increase is most likely due to enrichment of the sample for LmjIPCS as other proteins are washed away from the detergent insoluble material. However, the removal of microsomal proteins and lipids may also reduce the spatial volume of the washed material leading to more rapid diffusion of applied exogenous substrates into the membranes. Taken together these data indicate that washing the microsomes with CHAPS depletes them of PI, and perhaps (phyto)ceramide, thereby facilitating more accurate determination of the kinetics of LmjIPCS. Moreover, the fact that LmjIPCS remained highly active within a detergent resistant lipid environment suggests that the enzyme may reside within CHAPS-resistant lipid microdomains in vivo (Rouvinski et al., 2003).

3.2. Determination of LmjIPCS assay parameters

Using the 96-well plate formatted system described, reproducible, quantitative kinetic data could be obtained for the enzyme from CHAPS-washed LmjIPCS yeast microsomes. In the first instance the formation of product (IPCS) over time was determined. The results demonstrated that the reaction rate is linear for 30 min before it decreases over time (Fig. 3A). As a consequence all subsequent assays were performed with a 15 min reaction time to ensure linearity under the specified conditions, turnover was assumed to be equivalent to initial velocity (v0).

Since both substrates are in excess and only approximately 12% of the limiting acceptor substrate, NBD-C6-ceramide, is consumed after 1 h, the reasons for the decrease in reaction rate above 30 min are unclear. The IPC product may be localised around the enzyme affecting a change in the diffusion rate of the substrates to the active site. It is also possible that LmjIPCS activity is modulated by inhibitory feedback from the synthesized NBD-C6-IPC or diacylglycerol (DAG) which is formed as a by-product of IPC synthase turnover (Denny et al., 2006). Analysis of the inhibitory effect of DAG indicated a log IC50 value of 0.92 ± 0.08 and an IC50 of 8.3 μM (Fig. 3B) supporting the latter hypothesis.

Product (NBD-C6-IPC) formation also increased in a linear manner with increasing enzyme concentration up to 0.8 U/assay (Fig. 3C). However, the linear relationship deviated beyond this point (data not shown). Notably, increasing the concentration of enzyme also leads to a change in the protein: lipid: detergent (CHAPS) ratio and hence modulates the substrate concentration at the active site of LmjIPCS. Taking this observation into account 0.6 U of LmjIPCS (within the linear range) was employed in all subsequent analyses.

3.3. Determination of LmjIPCS kinetic parameters

Having established a standardized set of conditions that gave a linear response, and in which endogenous interfering substrate was minimized by detergent washing, the kinetic parameters of LmjIPCS with respect to both the acceptor (NBD-C6-ceramide) and donor (PI) substrates were determined. Initially, the data obtained were tested against the Michaelis–Menten model and with respect to increasing concentrations of NBD-C6-ceramide gave a curve of good fit ($R^2 = 0.97$; Fig. 4A). The apparent K_m for the acceptor substrate was 3.5 ± 0.35 μM and the apparent V_{max} 2.1 ± 0.07 pmol min$^{-1}$ U$^{-1}$. However, determination of the Hill constant revealed a Hill slope of 2.7 that indicated co-operative binding of substrates was occurring (Hill, 1910).

In contrast, with [NBD-C6-ceramide] fixed at 5 μM, the data with respect to the PI showed a poor fit to the Michaelis–Menten
\[\text{Eqn} \]

Fig. 4. *LmjIPCS* turnover versus acceptor substrate (NBD-C6-ceramide) and donor substrate (phosphatidylinositol) concentrations. Determined using the 96-well plate formatted assay as described, with fluorescent NBD-C6-ceramide as acceptor substrate, and bovine phosphatidylinositol (PI) as the donor substrate. IPC quantified with respect to NBD-C6-ceramide standard curve. All points in triplicate, error bars shown. (A) *LmjIPCS* turnover (defined as pmol IPC min\(^{-1}\) U\(^{-1}\); \(I_0\)) demonstrated apparent Michaelis–Menton kinetics – \(v_0 = V_{\text{max}} [S]/(K_m + [S])\) – with respect to the acceptor substrate NBD-C6-ceramide (S). Non-linear analysis calculated the apparent \(K_m = 3.5 \pm 0.35 \mu M\); and the apparent \(V_{\text{max}} = 2.1 \pm 0.1 \text{ pmol min}^{-1} \text{ U}^{-1}\). \(R^2 = 0.97\), indicating a good fit to the model. \([\text{PI}] = 100 \mu M\). (B) *LmjIPCS* turnover (\(I_0\)) with respect to the donor substrate (S), phosphatidylinositol (PI), did not fit the Michaelis–Menton model. \(R^2 = 0.76\). \([\text{NBD-C6-ceramide}] = 5 \mu M\). (C) However, *LmjIPCS* turnover (\(I_0\)) with respect to PI fits a Michaelis–Menten model at high NBD-C6-ceramide concentration. \(R^2 = 0.93\). Non-linear analysis calculated the apparent \(K_m = 22.8 \pm 4.6 \mu M\) and the apparent \(V_{\text{max}} = 2.0 \pm 0.07 \text{ pmol min}^{-1} \text{ U}^{-1}\). \([\text{NBD-C6-ceramide}] = 20 \mu M\).

equation (R^2 = 0.82; Fig. 4B), with considerable deviation at high concentrations of donor substrate. The enzyme orthologue from the pathogenic yeast *C. albicans* has previously been shown to behave in a similar manner, a phenomenon which was described as being caused by substrate inhibition (Aeed et al., 2004). However, at a higher, saturating concentration of the acceptor substrate, \([\text{NBD-C6-ceramide}] = 20 \mu M (>5 \times \text{ apparent } K_m)\), no apparent inhibition at high [PI] could be detected (Fig. 4C). This strongly suggested that activity is dependent on the substrate molar ratio, with a dilution effect being observed with low NBD-C6-ceramide (5 \mu M) and high PI (>150 \mu M). The mol% concentration of NBD-C6-ceramide dropped 30% from 0.82% at 12.5 \mu M PI and 600 \mu M CHAPS to 0.58% 250 \mu M PI and 600 \mu M CHAPS. In contrast a change in concentration of the acceptor substrate has little affect on the mol% concentration of PI (14.3% at 1 \mu M NBD-C6-ceramide and 600 \mu M CHAPS to 13.9% at 20 \mu M NBD-C6-ceramide and 600 \mu M CHAPS) and CHAPS.

PI vesicles can be solubilised by 0.27 mM CHAPS, far below the CMC of this detergent (\([\text{D}_n]\) F: critical concentration of free detergent; Schürholz, 1996). Therefore under the experimental conditions employed (0.6 mM CHAPS) in the assay system PI/CHAPS mixed micelles are formed. The molar detergent to lipid ratio of these (\(R^2\)) is 0.17, meaning that CHAPS is a minor component, approximately 15% of the total molar concentration in micelles (Schürholz, 1996). Based on these data the \([\text{D}_n\text{F}]\) in the assay system employed can be calculated using Eq. (1) (Schürholz, 1996).

\[
[\text{D}_n\text{F}] = [\text{D}_n\text{}\text{F}] + R^2(\text{M}) × [\text{L}]
\]

\[\text{[L]} = \text{Total CHAPS concentration},\]

\[\text{[D}_n\text{F}] = \text{Total CHAPS concentration},\]

At \([\text{D}_n\text{F}] = 600 \mu M\) in the reaction mix the \([\text{D}_n\text{F}] \text{ (270 } \mu M\) is exceeded under all conditions employed in this study and CHAPS exists primarily in a monomeric form with a minor proportion associated with PI in micelles (2.8% at 100 \mu M PI).

Given the fact that in this complex system the *LmjIPCS* is a membrane enzyme acting on lipid substrates within mixed micelles the deviation from Michaelis–Mention kinetics observed is unsurprising. To facilitate further analyses a number of assumptions were made, namely: the kinetic parameters would be determined using the steady state approach; initial rate assumptions are applied; PI/CHAPS micelles have a low mol% of CHAPS (approximately 15%); all lipids and detergent molecules have the same surface area; all lipids and detergent molecules have equal accessibility to the enzyme active site. All concentrations are expressed as molar fractions of total lipid plus detergent.

Subsequently a series of assay reactions were carried out with varying acceptor substrate concentrations, \([\text{NBD-C6-ceramide}]\), at different fixed [PI] (12.5–100 \mu M). A global analysis of the data points (56 mean points of 168 replicates) employing the surface dilution kinetic model, which considers the surface concentration of lipids ([PI] and [Cer] expressed as mol% in PI/CHAPS micelles; Demms et al., 1975), resulted in non-convergent results. However, given that *LmjIPCS* is an integral membrane protein within micosomal membranes the enzyme can fuse with PI/CHAPS micelles, or maintain its integrity and bounce between micelles whilst interacting with the bulk monomeric CHAPS/NBD-C6-ceramide in the assay buffer. Both cases would confer bulk concentration dependence to the kinetics (Carman et al., 1995).

Lineweaver–Burk analyses of the data set gave a near parallel pattern (Fig. 5A), with a plot of the intercepts demonstrating a linear correlation to 1/[PI] mol% (Fig. 5B). A subsequent global analysis of these data in terms of a generalised form of a bi-bi substrate kinetic equation (Engel, 1977; Eq. (2)) provided a solution for the values of the equation parameters, where \(\varnothing_0 = 0.26\), \(\varnothing_A = 0.82\), \(\varnothing_B = 0.14\), \(\varnothing_{AB} = 1.0 \times 10^{-5}\). From these \(V_{\text{max}} = 2.31 \text{ pmol min}^{-1} \text{ min}^{-1}\). \(K_m = 3.15 \text{ mol}\%\) and \(K_n = [\text{NBD-C6-ceramide}] = 0.54\text{ mol}\%\).

\[
\frac{[\text{E}_n]}{v} = \varnothing_0 + \varnothing_A \left[\text{PI}\right] + \frac{\varnothing_B}{[\text{Cer}]} + \frac{\varnothing_{AB}}{[\text{PI}] [\text{Cer}]} \tag{2}
\]

Notably, the relatively high affinity of the acceptor substrate for *LmjIPCS* compared with that of the donor PI was consistent with the proposal that ceramide, a highly bioactive molecule, is
the rate-limiting substrate in the in situ IPC synthase reaction. In contrast PI is a relatively abundant substrate in most membraneous environments (Aeed et al., 2004; Dickson, 1998; Leber et al., 1995).

Based on these data the value Θ_{AB} was assumed to be zero thereby reducing Eq. (2) to that describing double displacement kinetics (Eq. (3)). Details of the factors of Θ_0, Θ_A, Θ_B are in supplementary data (S1).

$$\frac{[E_1]}{v} = \Theta_A + \frac{1}{[\text{PI}]} + \Theta_B \frac{1}{[Cer]}$$

(3)

These analyses provide strong support for the notion that LmjIPCS functions via a double displacement model. This is further evidenced by the close correlation of experimental data with simulations derived from Eq. (3) (Fig. 5C and D).

With this in mind, the apparent fit to the Michaels–Menten model with respect to ceramide initially observed was most likely due to pre-incubation with saturating levels of PI leaving the majority of the enzyme in an intermediate phosphorylated state. In this state it is predicted that LmjIPCS has meditated the transfer of the phosphorylinositol group of PI to the reactive histidine within the identified catalytic triad (Denny et al., 2006) with the concomitant release of DAG. Notably mutation of His-294 in the yeast AUR1p triad has been shown to result in non-viable haploid cells (Levine et al., 2000) and the equivalent mutation (His-264) in LmjIPCS rendered it unable to complement auxotrophic AUR1p mutant yeast (Mina and Denny, unpublished). The second step in the reaction is then initiated by the addition of acceptor substrate (ceramide) when the phosphorylated intermediate is subjected to nucleophilic attack by the oxygen of the ceramide hydroxyl group, resulting in phosphoryl group transfer to the sphingoid base thus forming IPC.

3.4. Substrate analogues as competitive inhibitors

The delineation of the kinetic parameters of LmjIPCS also provided the opportunity to begin to further understand the mode of action of this enzyme and perhaps, via a rational approach, to design specific inhibitors. Given the high affinity of the acceptor substrate for LmjIPCS, the ability of natural ceramide (Cer; 18:1/18:0; N-stearoyl-d-erythro-sphingosine) and the ceramide analogues d-erythro-sphingosine and N-acetyl-d-erythro-sphingosine to compete with fluorescent NBD-C6-ceramide was analysed, with variation in the quantity of the product (NBD-C6-IPC) reflecting the effect of the substrate competitors on enzyme turnover.

Unlike N-acetyl-d-erythro-sphingosine and d-erythro-sphingosine, N-stearoyl-b-erythro-sphingosine was insufficiently soluble in the phosphate-based buffer employed for the microtitre plate assay, curtailing analysis. This problem could be circumvented by using a Tris-based buffer system containing defatted-BSA. Here N-stearoyl-d-erythro-sphingosine and N-acetyl-d-erythro-sphingosine were soluble in the phosphate-based buffer system in the 96-well plate based assay, demonstrating that they are, as expected, competitive with respect to NBD-C6-ceramide: IC50 values of 16 and 52 μM respectively (Fig. 6A and B). Subsequent MS-ES+/ES− analyses of
Fig. 6. Competitive inhibition of LmjIPCS activity. Determined using the 96-well plate formatted assay as described, with fluorescent NBD-C6-ceramide as acceptor substrate, and bovine phosphatidylinositol (PI) as the donor substrate. IPC quantified with respect to NBD-C6-ceramide standard curve. All points in triplicate, error bars shown. Donor substrate (PI) concentration at 100 &H9262;M, acceptor (NBD-C6-ceramide) substrate at 5 &H9262;M. log IC50 = log(10 log(Ki)/(1 + [NBD-C6-Cer]/Km)), [NBD-C6-Cer] = 5.0 &H9262;M, Km = 3.5 &H9262;M. (A) N-acetyl-d-erythro-sphingosine is a competitive inhibitor of LmjIPCS: log IC50 = 1.2 ± 0.2; IC50 = 16 &H9262;M; R² = 0.83. (B) d-erythro-sphingosine is a competitive inhibitor of LmjIPCS: log IC50 = 1.7 ± 0.2; IC50 = 53 &H9262;M; R² = 0.93.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>L. major promastigotes</th>
<th>L. mexicana promastigotes</th>
<th>L. mexicana amastigotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphingosine log IC50</td>
<td>0.81</td>
<td>0.91</td>
<td>1.12</td>
</tr>
<tr>
<td>SE log IC50</td>
<td>0.13</td>
<td>0.14</td>
<td>0.04</td>
</tr>
<tr>
<td>ED50 µM</td>
<td>6.49</td>
<td>8.18</td>
<td>13.3</td>
</tr>
</tbody>
</table>

ND = not determined; ED50 = Effective dose, 50%; SE = standard error.

Fig. 7. Mass spectrometric analyses of reaction products from N-acetyl-d-erythro-sphingosine. Negative ion mass spectrum demonstrating that N-acetyl-d-erythro-sphingosine (AcSph, mass = 340.3) is a substrate for LmjIPCS, giving the product inositol phosphoryl acetyl-d-erythro-sphingosine (IP-AcSph, mass = 582.3).

Table 1 Efficacy of ceramide analogues against L. major and L. mexicana. Established using the Alamar Blue assay system.

The reaction product profiles (Fig. 7) revealed the presence of a mass of 582.3 corresponding to IP-N-acetyl-d-erythro-sphingosine confirming that N-acetyl-d-erythro-sphingosine had been turned over by LmjIPCS. This was expected as this ceramide analogue has previously been shown to act as a substrate for the yeast enzyme (Nagiec et al., 1997b). Conversely, no IP-d-erythro-sphingosine could be detected in the MS spectra either in positive or negative ion mode, which indicated that d-erythro-sphingosine is not a substrate for LmjIPCS, rather it is acting as a true inhibitor (data not shown). Screening this inhibitor against L. major and L. mexicana promastigotes (insect stage) and L. mexicana amastigotes (mammalian stage) demonstrated its efficacy against both species and lifecycle stages (ED50 of 6.5, 8.2 and 13.3 &H9262;M respectively; Table 1). It should be noted that it is unclear whether this was a target specific effect, however the substrate analogue N-acetyl-sphingosine was considerably less cytotoxic such that it was not possible to determine its ED50 versus L. mexicana amastigotes (Table 1).

In structure–function terms these data indicated that the free amine group present in d-erythro-sphingosine abolishes enzyme activity, whilst masking this group with even a minimal acyl moiety...
(N-acetyl-d-erythro-sphingosine) restored it. Similarly, sphingo-
sine analogues have demonstrated an inhibitory effort on the S.
cerevisiae phosphatidate phosphatase (Wu et al., 1993), a member
of the LPP enzyme superfamily which are believed to share a
mechanism of action with the sphingolipid synthases (Huiterta
et al., 2004). Taken together it may be hypothesized that the proto-
nated free-amino group of d-erythro-sphingosine electrostatically
interferes with the active site of these enzymes, an observation
which may potentially be exploited in the rational design of specific
enzyme inhibitors.

4. Summary

Using the multi-well format assay established in this work we
have deduced the kinetic parameters of LmjIPCS with respect to
both the donor (PI) and acceptor (NBD-C6-ceramide) substrates,
and provided evidence that the enzyme functions through a bi-
(bi-(ping-pong)) substrate kinetic model. These data provide the
first direct indication of the mechanism of action of the sphin-
golipid synthase family. Such analyses would not have been
possible using a conventional assay system such as that previ-
uously employed for the T. cruzi orthologue (Figueiredo et al., 2005).
However, by employing a complemented yeast system, large
quantities of active LmjIPCS could be isolated in a cost effective
manner avoiding the handling of pathogenic material. Further-
more washing the microsomal starting material with CHAPS
removed endogenous, contaminating donor substrate (PI) leav-
ing an environment in which the enzyme exhibited not only a
dependency on exogenous PI, but also a higher level of specific
activity. With a Z value of 0.58 (Zhang et al., 1999), the assay system
described lends itself to high-throughput screening for inhibitors
of a protozoal enzyme activity that has been demonstrated to be
essential for kinetoplastid pathogens (Mina et al., 2009; Sutterwala
et al., 2008). The assay of ceramide analogues demonstrated this
potential and provides the backbone for consideration of rationally
designed enzyme inhibitors. In the longer term, it is hoped that
it will assist in the discovery of new, much needed therapies for
leishmaniasis and African Sleeping Sickness.

Supplementary data

S1 derivation of Eq. (3): The hypothetical catalytic reaction
scheme assuming double displacement kinetics and initial rate con-
ditions.

\[E_P \cdot LmjIPCS \rightarrow E_P \cdot LmjIPCS–PI complex \rightarrow D: \text{dicylglycerol} \rightarrow E_P \cdot IP: \ \text{phosphorylated intermediate} \rightarrow E_P \cdot IPC: \ \text{IP–ceramide complex} \rightarrow E_P \cdot IPC–IPC complex: \ \text{IPC: inositol phosphoryl-
ceramide}.

Acknowledgements

This work was funded by Biotechnology and Biological Research
Council (BB/DS2396X/1) and Royal Society (2005/R1) grants to
PWD and a British Council/Deutscher Akademischer Austausch
Dienst Academic Research Collaboration Award to PWD and RTS.
JGM is funded by an Overseas Research Studentship and a Wolf-
son Research Institute Award. JAM is an Engineering and Physical
Sciences Research Council Academic Fellow. This work was also
supported in part by Deutsche Forschungsgemeinschaft, Bonn
and a Wolfson Research Institute Small Grants Award. We thank
Drs. Ann-Marie O'Donoghue and David Hodgson (Department
of Chemistry, Durham University) and Dr. Buddhapriya Chaikrabi

References

Aeed PA, Sperry AE, Young CL, Nagiec MM, Elhammer AP. Effect of membrane per-
turbants on the activity and phase distribution of inositol phosphoceramide
ship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev
Bates PA. Complete developmental cycle of Leishmania mexicana in axenic culture.
Becker GW, Lester RL. Biosynthesis of phosphoinositol-containing sphingolipids
from phosphatidylcholine by a membrane preparation from Saccharomyces cere-
Bromley PE, Li YQ, Murphy SM, Sumner CM, Lynch DV. Complex sphingolipid synthe-
sis in plants: characterization of inositolophosphorylceramide synthase activity
Carman GM, Deems RA, Dennis EA. Lipid signaling enzymes and surface dilution
Denms RA, Eaton BR, Dennis EA. Kinetic analysis of phospholipase A2–activity
Denny PW, Shams-Eldin H, Price HP, Smith DF, Schwarz RT. The protozoan inositol
phosphorylceramide synthase: a novel drug target which defines a new class
Dickson RC. Sphingolipid functions in Saccharomyces cerevisiae: comparison to
1977.
Figueiredo JM, Dias WB, Mendonca-Previo L, Previato J, Heise N. Characterization
of the inositol phosphorylceramide synthase activity from Trypanosoma cruzi.
Fischl AS, Liu Y, Browdy A, Cremesti AE. Inositolphosphorylceramide synthase from
Futerman AH, Hannun YA. The complex life of simple sphingolipids. EMBO Reports
2004;5:777–82.
Georgopapadakou NH. Antifungals targeted to sphingolipid synthesis: focus on inos-
Heidler SA, Radding JA. The AUR1 gene in Saccharomyces cerevisiae encodes domi-
nant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrob
Heidler SA, Radding JA. Inositol phosphoryl transferases from human pathogenic
Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on
Huiterta K, van den Dijkerberg J, Brouwers JF, Holthuis JC. Identification of a family
Leber A, Hrstuk C, Daum G. Phospholipid-synthesizing enzymes in Golgi mem-
Lester RL, Dickson RC. Sphingolipids with inositolphosphate-containing head
Levine TP, Wiggins CA, Munro S. Inositol phosphorylceramide synthase is located in
Magee T, Prinien N, Alder J, Papakis SN, Parmidy L. Sphingolipid rafts: cell surface
Mina JG, Pan SY, Wansadhijapihi NK, Bruce CR, Shams-Eldin H, Schwarz RT, et al. The
Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target.
Nagiec MM, Nagiec EE, Balbierski JA, Wells GB, Lester RL, Dickson RC. Sphingolipid
Nagiec MM, Nagiec EE, Balbierski JA, Wells GB, Lester RL, Dickson RC. Sphingolipid
synthase as a target for antifungal drugs. Complementation of the inositol phos-
phorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae
emphases for tropical diseases research: a TDR perspective. Trends Parasitol
Rouvinakis A, Gahali-Sissi I, Stav I, Metzer E, Atlani H, Taraboulos A. Both raft- and
non-raft proteins associate with CHAPS-insoluble complexes: some APP in large

The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target

John G. Mina, Ssu-Ying Pan, Nilu K. Wansadhipathi, Catherine R. Bruce, Hosam Shams-Eldin, Ralph T. Schwarz, Patrick G. Steel, Paul W. Denny

A R T I C L E I N F O

Article history:
Accepted 11 June 2009
Available online 21 June 2009

Keywords:
Trypanosoma
Trypanosomiasis
Sphingolipid synthase
Drug target

A B S T R A C T

Sphingolipids are important components of eukaryotic membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction processes. In the Eukaryota the biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals which produce sphingomyelin (SM), several pathogenic fungi and protozoa synthesize inositol phosphorycleramide (IPC) as the primary phosphosphingolipid. This process is catalyzed by the enzyme IPC synthase, a recognized target for anti-fungals encoded by the AUR1 gene in yeast. Recently, functional orthologues of the AUR1p have been identified in a group of insect vector-borne pathogenic protozoa, the Kinetoplastida, which are responsible for a range of so-called neglected diseases. Of these the Trypanosoma brucei species are the causative agents of human African trypanosomiasis in many of the most under-developed regions of Africa. The available treatments for these diseases are limited, of decreasing efficacy, and often demonstrate severe side-effects. Against this background the T. brucei sphingolipid synthase, an orthologue of the yeast AUR1p, may represent a promising target for novel anti-protozoals. Our studies identify an isoform of this protein as a novel bi-functional enzyme capable of catalyzing the synthesis of both IPC and SM, both known to be present in the parasite. Furthermore, the synthase is essential for parasite growth and can be inhibited by a known anti-fungal at low nanomolar levels in vitro. Thus, the T. brucei sphingolipid synthase represents a valid and promising drug target.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Trypanosoma brucei species are protozoan parasites of the order Kinetoplastidae and the etiological agents of both human African trypanosomiasis (HAT, sleeping sickness), and diseases of economically important animals (e.g. nagana in cattle) [1]. These diseases are endemic in much of sub-Saharan Africa, with HAT causing a burden of approximately 1.6 million disability adjusted life years (http://www.who.int/tdr/). This distribution across some of the most under-developed regions of the world is coupled with a paucity of effective therapies, with those available being either too expensive (e.g. efomrinthine) or exhibiting catastrophic side-effects (e.g. melarsoprol). Together with the leishmaniases (caused by the related Leishmania species) HAT has been described as an emerging or uncontrolled disease. Therefore, there is an urgent need for new, validated drug targets and anti-HAT compounds to combat a disease causing in excess of 50,000 deaths per annum [2].

Sphingolipids are a diverse group of amphipathic lipids that perform essential functions in eukaryotes. For example, the unmodified sphingolipid ceramide acts as a secondary signalling molecule [3] and more complex species are implicated in the formation and function of signal transduction complexes [4,5]. The primary phosphosphingolipid species in mammalian species, including humans, is sphingomyelin (SM). SM is formed by the transfer of the phosphorylcholine head group from phospholipid phosphatidylcholine (PC) to ceramide, a reaction catalyzed by SM synthase [6]. In contrast
fungi, plants and at least some protozoa produce inositol phosphosphoryceralamide (IPC) as their primary phosphosphingolipid [7]. In these organisms IPC synthase catalyzes the transfer of phosphorylinositol from phosphatidylinositol (PI) to ceramide [8–10]. IPC synthase has long been established and studied as a target for novel anti-fungals [11,12]. More recently this enzyme has come under scrutiny as a potential target for anti/protozoal [13]. With the recent identification and characterization of the Leishmania IPC synthase (LmIPCs; [10]) it has become possible both to validate this protozoan activity as a drug target and, furthermore, begin to investigate potential inhibitors, including those known to act against the fungal IPC synthase. Four closely related orthologues of LmIPCs are apparent in the T. brucei database [10], and mass spectrometry of isolated fractions has revealed that whilst the predominant phosphosphingolipid in pathogenic bloodstream form parasites is SM [14]; insect stage, procyclic T. brucei also contain IPC [15].

Here we describe the characterization of the African trypanosome, T. brucei, sphingolipid synthase 4 (TbSLS4) which demonstrates itself to be a novel bi-functional enzyme with the ability to catalyze the biosynthesis of both IPC and SM, thus reflecting the sphingolipid profile of the parasite. Importantly, the IPC synthase activity of TbSLS4 is acutely sensitive to the well-characterized specific fungal inhibitor aureobasidin A [11,12] and pathogenic bloodstream form T. brucei are rapidly killed at sub-micromolar concentrations of this drug. Furthermore, down-regulation of TbSLS1–4 using inhibition RNA interference (RNAi) in bloodstream form parasites demonstrated that the enzyme activity is essential for growth thus validating it as a target for the development of new anti-HAT therapies.

2. Materials and methods

2.1. Functional identification of the T. brucei sphingolipid synthase

A common, conserved AUG start codon was predicted for all four TbSLS isoforms by examination of the genome sequence (www.genedb.org). Subsequently, TbSLS1 (Tb09211.1030) and TbSLS4 (Tb09211.1000) were amplified with Pfu polymerase (Promega) from T. brucei strain Lister 427 genomic DNA using primer pairs (homologous sequence underlined): TbSLS1–CCGCAATCCATGATCACCCTTCTTCCTCC and CCGCTGACTGATACCTCCTCTTGTTATATTCCAC; TbSLS4–CGGAAATCTGATGATCACCCTTCTTCCTCC and CCGCTGACTGATACCTCCTCTTGTTATATTCCAC. The PCR products were subsequently cloned into the yeast expression vector pRS426 MET [16] to give pRS426 TbSLS1 and pRS426 TbSLS4. These, together with pRS426 AUR1, pRS426 human sphingomyelin synthase 1 and 2 (HsSMS1 and 2) and empty vector (pRS426), were used to transform the YPH499-HIS-GAL-AUR1 S. cerevisiae strain [10]. Transformants were selected on non-permissive SD medium (0.17% Bacto yeast nitrogen base, 0.5% ammonium sulphate and 2% dextrose) or permissive SGR medium (0.17% Bacto yeast nitrogen base, 0.5% ammonium sulphate and 2% dextrose) before the addition of NBD C6-ceramide.

2.2. Metabolic labelling and analyses

Yeast were grown to exponential phase in SD or SGR as indicated and 2.5 OD600 units incubated in 1 ml of SD or SGR supplemented with 5 μM of NBD C6-ceramide (Invitrogen) conjugated to fat-depleted bovine serum albumin (Sigma–Aldrich) for 120 min at 30 °C. Yeast were harvested by centrifugation and washed twice with phosphate buffered saline. Cholorform/methanol (0.4 ml; 1:1, v/v) was added and cells were disintegrated with glass beads. The pellet was re-extracted with chlorform/methanol/water (10:10:3) and the lipid fraction isolated by phase separation. After drying in a rotavator (Eppendorf Concentrator 5301) reaction products were re-suspended in 20 μl of 10:10:3 and cell mass equivalents fractionated using HPTLC silica plates (Merck) and the eluent system chloroform:methanol:aqueous 0.25% KCl (55:45:10). Imaging and quantification was carried out using a FLA3000 scanner (Fujifilm) and AIDA Image Analyzer® software (version 1.3). Vero cells were labelled and processed for use as controls and standards as previously described [10].

Sphingomyelinase (Bacillus cereus, Sigma–Aldrich) was used to identify sphingomyelin in the NBD C6-ceramide lipids extracted from the complemented yeast as previously described [17]. Briefly, YPH499-HIS-GAL-AUR1 S. cerevisiae complemented with pRS426 TbSLS4 (in SD) or transformed with pRS426 HsSMS2 or empty vector (in permissive SGR, or for a limited period SD) were grown to exponential phase. After adjustment to an optical density of 0.5 OD600 in 5 ml of either SD or SGR, cells were labelled for 16 h with 2 μM of NBD C6-ceramide conjugated to fat-depleted bovine serum albumin as previously described [6]. Labelled lipid fractions from these were prepared and dried as above with 50 μg of sphingomyelin (Sigma–Aldrich), and re-suspended, with sonication in a water bath, in 600 μl of 20 mM Tris–HCl (pH 7.4), 10 mM MgCl2 and 0.05% (w/v) Triton X-100. Subsequently, samples (300 μl) were incubated with or without 2 units of B. cereus sphingomyelinase (Sigma–Aldrich) at 37 °C for 120 min. Equivalent lipid extracts were fractionated and analyzed as above.

2.3. In vitro assay of TbSLS4 activity

Microsomal membranes from exponentially growing YPH499-HIS-GAL-AUR1 pRS426 TbSLS4, pRS426 LmIPCS or pRS426 AUR1 [10] were prepared as previously described [18] and the isolated membrane fraction re-suspended in storage buffer (50 mM Tris–HCl pH 7.4, 20% (v/v) glycerol, 5 mM MgCl2) with Complete® EDTA-free Protease Inhibitor Cocktail (Roche Applied Science) at a protein concentration of 10 mg/ml. The microsomal membranes were subsequently washed in 2.5% CHAPS (w/v; Sigma–Aldrich; 4 °C, 60 min), isolated by centrifugation (150,000 × g, 4 °C and 90 min), re-suspended in storage buffer at 10 mg/ml and stored at −80 °C until use.

The assay mix contained 100 μM donor substrate (bovine liver PI, PC or PE, Avanti Polar Lipids), 10 μg of micromesomes, 100 mM Tris–HCl, 10 mM EDTA, 6 mg/ml BSA and 5 μM NBD C6-ceramide [19]. Following incubation at 30 °C for 60 min the reaction was quenched by the addition of 150 μl of chloroform:methanol:water (10:10:3). After biphasic separation the organic layer was removed, processed and analyzed as above.

For inhibition experiments the reaction mix was pre-incubated for 30 min with appropriate quantities of aureobasidin A (Takara) before the addition of NBD C6-ceramide.

2.4. Parasite culture

Bloodstream form T. brucei strains Lister 427 and its engineered variant, Single Marker Bloodstream form (SMB, T7RNAP::TETR::NED) [20] were maintained in vitro at 37 °C with 5% CO2 in HMI-9 medium supplemented with 10% FCS and, for SMB, 2.5 μg/ml G418.

2.5. Inhibition RNA (RNAi) of TbSLS

An 165 base pair sequence fragment common to all four TbSLS open reading frames was amplified from genomic DNA using Pfu polymerase and primer pair (homologous sequence underlined): CATAGATCTAGGTTCCATACCTGTC and CATAGATCTACGACGACACATG. This PCR product was cloned into the RNAi vector p2T7 [21] and, following linearization, 10 μg transfected into SMB T. brucei and
transformants selected using 2 μg/ml phleomycin (Sigma–Aldrich). Following induction with 1 μg/ml doxycycline cell growth was determined at 24 h intervals by light microscopy using an Improved Neubauer Haemocytometer.

48 h post-induction total RNA was isolated (RNeasy®, Qiagen) and RT-PCR was performed (SuperScript II, Invitrogen) using the primer pairs:

TbSLS: AAACTGTACCTTCTTCACCG and CGAGAGGCAACGATGC;
Tb β tubulin: GGAGCGCATCAATGTGTAC and CAGGCAGCAGGT-GACGCCG.

2.6. T. brucei susceptibility to aureobasidin A

T. brucei Lister 427 were cultured in the presence of various concentrations of aureobasidin A. Growth was analyzed at 24 h intervals as above.

3. Results and discussion

3.1. Identification and characterization of the T. brucei sphingolipid synthase

Four tandem gene sequences (Tb09211.1030, Tb09.211.1020, Tb09.211.1010 and Tb09.211.1000; here annotated TbSLS1–4 to reflect their 5‘−3’ order) were previously identified in the T. brucei genome database (www.genedb.org) as sequence orthologues of the inositol phosphorylceramide synthase (LmIPCS) from the related kinetoplastid parasite, Leishmania [10]. The predicted open reading frames encode four closely related trans-membrane proteins with more than 90% identity and 94% similarity. Most variation occurs at the carboxy-termini, a region predicted to lie on the cytosolic side of the membrane away from the active site at the Golgi lumen, with another variable domain close to and within the second predicted trans-membrane domain [10]. One of the predicted T. brucei sphingolipid synthase isoforms (Tb09.211.1000; TbSLS4) was the focus of this study. In addition, the isoform most distant from TbSLS4 with respect to the internal variable domain (Tb09.211.1030; TbSLS1) was also subjected to preliminary analyses.

The auxotrophic mutant S. cerevisiae strain, YPH499-HIS-GAL-AUR1, has the essential AUR1 IPC synthase gene under the control of a galactose inducible promoter. Therefore it is unable to grow in the presence of the repressor glucose, a phenotype that is rescued by the ectopic expression of LmIPCS [10]. Similarly, TbSLS4 and TbSLS1 expression complemented the YPH499-HIS-GAL-AUR1 mutant yeast line indicating that they are also functional orthologues of the yeast AUR1 gene (Fig. 1). The yeast IPC synthase (AUR1) also complemented this mutant line. Significantly, neither HsSMS1 nor HsSMS2 complemented the YPH499-HIS-GAL-AUR1 yeast (data not shown) indicating that sphingomyelin synthase activity alone is not sufficient to rescue the mutant.

To understand the function of the T. brucei sphingolipid synthase, the auxotrophic YPH499-HIS-GAL-AUR1 yeast cells complemented with either TbSLS4, TbSLS1 or yeast AUR1 were metabolically labelled with fluorescent NBD C6-ceramide, a substrate for sphingolipid synthases, including those from the kinetoplastids [10]. Under the conditions described, the AUR1 complemented S. cerevisiae auxotrophic mutant synthesized IPC as the only labelled product. In contrast, both TbSLS4 and TbSLS1 complemented mutant yeast were shown to synthesize two major labelled lipid species. One of these co-migrated with SM, the other with IPC. The latter at levels equivalent to those produced in the AUR1 complemented yeast (Fig. 2A). In addition, TbSLS4 complemented yeast synthesized a third species which co-migrated with an unknown lipid (X) produced by labelled mammalian cells (Vero).

As a control YPH499-HIS-GAL-AUR1 cells harbouring an empty vector (pRS426) were cultured in both permissive (SGR) and non-permissive (SD) media. Both lines grew equivalently in both media for 16 h and for a further 8 h after dilution to an optical density 0.3 OD600, and remained viable (by plate on permissive media, data not shown). Labelling of these dividing cells with NBD C6-ceramide in their respective media under the same conditions as above demonstrated that in non-permissive SD no labelled IPC is produced, indicating the down-regulation of AUR1p (Fig. 2B).

TbSLS4 was chosen for further study due to the relative predominance of the SM-like species in the labelled complemented yeast. Unlike IPC, SM is known to be present in the pathogenic bloodstream form of the parasite [14]. The labelled SM-like species (and the unknown X) proved to be susceptible to sphingomyelinase (which breaks down SM into phosphorylcholine and ceramide) when lipid extracts were treated with this enzyme, thereby confirming its identity (Fig. 3A). In contrast the IPC produced was insensitive to this enzyme treatment. Extracts from the auxotrophic mutant expressing HsSMS2, which produce an equivalent quantity of labelled SM under permissive conditions (SGR), acted as a control for SMase activity.
Fig. 2. (A) Metabolic labelling of yeast IPC synthase (AUR1) complemented YPH499-HIS-GAL-AUR1 with NBD C6-ceramide in glucose-containing media (SD) showed that they synthesize only labelled IPC. In contrast the same mutant line, labelled under the same conditions, but complemented with TbSLS4 or TbSLS1 synthesized two predominant sphingolipid species, one of which co-migrated with IPC, the other with SM. In addition, in TbSLS4 complemented yeast a minor labelled species (X) was evident which co-migrated with an unknown detected in labelled mammalian cell (Vero) extracts, in which the predominant complex sphingolipid is SM. (B) The yeast IPC synthase (AUR1) is down-regulated in YPH499-HIS-GAL-AUR1 cells transformed with empty vector (pRS426) when incubated in non-permissive, glucose-containing media (SD). This is demonstrated by the lack of detectable IPC in yeast metabolically labelled with NBD C6-ceramide in SD under the same conditions as above. In galactose-containing, glucose-free media (SGR) the synthesis of IPC is clearly evident. NBD C6-ceramide labelled lipid extracts fractionated by HPTLC, representative of at least three independent experiments. O, origin; IPC, inositol phosphorylceramide; SM, sphingomyelin; Cer, ceramide (migrating at the front); X, unknown sphingolipid. All lipid extracts normalised with respect to cell mass.

Together these data suggest that TbSLS4 is a novel bi-functional enzyme acting as both a SM and an IPC synthase. This is consistent with previous analyses which demonstrated that the parasite harbours both SM [14] and IPC phosphosphingolipids [15].

3.2. In vitro analyses of TbSLS4 activity

To further investigate the function of TbSLS4, microsomal material was isolated from the TbSLS4 and AUR1 complemented yeast as described and used in an in vitro assay utilising the common acceptor substrate NBD C6-ceramide and the candidate donor substrates bovine liver PI, PC and phosphatidylethanolamine (PE; a potential substrate for ethanolamine phosphorylceramide synthesis [22]). Notably, when assayed, the yeast AUR1 crude microsomal material showed significant IPC synthase turnover, but demonstrated little significant increase in this on the addition of the donor substrate PI. As expected, no detectable SM synthesis was observed with or without the addition of PC (Fig. 4A). In order to clearly assign enzyme function this assay was refined according to data obtained from the analysis of LmIPCS (Mina et al. in preparation). In brief, microsomal fractions were washed with 2.5% 3-[3-(cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS) to remove endogenous (i.e. yeast) substrates. This facilitated analyses of the effect of adding exogenous substrate to the reaction—in this case the candidate donor substrates (PI, PC or PE) plus the known acceptor substrate NBD C6-ceramide. Without the addition of the donor substrate the CHAPS-washed AUR1 microsomes, compared to the crude unwashed sample, demonstrated a relatively low level of IPC synthase turnover and, as expected no evidence of SM synthase function (Fig. 4A, crude and washed). Importantly, the addition of PI or PC had no discernable effect on enzyme turnover in the washed sample indicating that the yeast IPC synthase is either substrate specific (and unable to utilize bovine PI) or that the detergent treatment had disrupted the protein (Fig. 4A, +PI and +PC washed). In contrast, assay of identically treated TbSLS4 microsomes showed that the addition of PI led to a large (more than 12-fold) increase in the formation of IPC (Fig. 4B, +PI). This demonstrated that TbSLS4 functions as an IPC synthase, an activity not attributable to background AUR1 expression.

Fig. 3. (A) Sphingomyelinase (SMase) treatment of lipids extracted from YPH499-HIS-GAL-AUR1 complemented with TbSLS4, grown in glucose-containing media (SD) and labelled with NBD C6-ceramide, demonstrated that the predicted sphingomyelin species is SMase sensitive, as is unknown X. In contrast the predicted IPC is insensitive. As a control, YPH499-HIS-GAL-AUR1 expressing human SM synthase 2 (HsSMS2, grown in permissive SGR media) was utilized as they produce equivalent quantities of labelled SM to the TbSLS4 line. (B) The yeast IPC synthase (AUR1) is down-regulated in YPH499-HIS-GAL-AUR1 cells transformed with empty vector (pRS426) incubated in non-permissive SD under the same conditions as the SMase treated samples. This is demonstrated by the lack of detectable IPC in yeast metabolically labelled with NBD C6-ceramide in SD. In galactose-containing, glucose-free media (SGR) the synthesis of IPC is clearly evident. NBD C6-ceramide labelled lipid extracts fractionated by HPTLC, representative of at least three independent experiments. O, origin; IPC, inositol phosphorylceramide; SM, sphingomyelin; Cer, ceramide (migrating at the front); X, unknown sphingolipid. All lipid extracts normalised with respect to cell mass.
Suprisingly, given the identification of SM as a TbSLS4 product above (Fig. 3A), bovine PC – a potential donor substrate for a SM synthase – had no significant effect on enzyme activity (Fig. 4B, +PC). The addition of PE was similarly ineffectual (Fig. 4B, +PE). However, when PC or PE were added simultaneously as molar equivalents with PI to the assay system, the quantity of IPC produced decreased 4- and 2-fold respectively. This suggested that both PC and PE bind competitively with PI to the same region of the enzyme (Fig. 4B, +PI + PC and +PI + PE).

Taken together these results indicate that TbSLS4 functions as an IPC synthase but also binds PC (and PE) and can participate in the synthesis of SM. The lack of in vitro SM synthase activity in the presence of exogenous PC is surprising and may relate to substrate specificity (see yeast AUR1 and bovine PI, Fig. 4A, washed). One possibility is that TbSLS4, in this assay, is unable to utilize bovine liver PC. This donor substrate is a mixture of natural products with predominantly C36:2 PC. In contrast, S. cerevisiae, where both TbSLS4 and TbSLS1 function as SM synthases, predominantly possesses C32:2 and C34:2 PC [23]. Perhaps TbSLS favours these relatively short acyl groups? However, T. brucei procyclic and bloodstream forms harbour significant quantities of C36, C38 and C40 PC species [14,24,25], indicating that any substrate selectivity is perhaps due more subtle structural differences. In support of this, although TbSLS4 can utilize bovine liver PI (predominantly C38:4) efficiently as a substrate for IPC synthesis, procyclic form parasites (known to synthesize IPC [15]) harbour only trace levels of the C38:4 PI [14].

To establish the efficacy of aureobasidin A against the T. brucei enzyme the previously described in vitro assay was employed using CHAPS-washed TbSLS4 microsomes with NBD C6-ceramide and bovine PI as receptor and donor substrates respectively. As a control identically prepared LmIPCS microsomes were assayed in the same manner. Given the inactivity of the yeast enzyme in this assay system it was not possible to include this as a further control. The synthesis of labelled IPC was used as a measure of IPC synthase turnover. From this assay it was evident that the T. brucei enzyme is acutely sensitive to the drug (Fig. 5A). Following reanalysis of the linear portion of the curve (0–0.5 nM aureobasidin A), the turnover was calculated to be 50% inhibited (IC50) by 0.42 nM aureobasidin A. TbSLS4 turnover was undetectable at a concentration of 50 nm aureobasidin A. TbSLS4 turnover was undetectable at a concentration of 50 nm aureobasidin A. In contrast, the IC50 for LmIPCS inhibition by aureobasidin A was more than 200,000 times higher, with precipitation of the drug at concentrations above 100 μM (Fig. 5B) preventing the determination of an absolute value.

3.4. Validation of TbSLS as a target of anti-protozoals

Using a sequence fragment common to all four TbSLS isoforms an RNAi construct was prepared in the p2T7 vector [21] and used to specifically inhibit TbSLS expression in cultured bloodstream form T. brucei (SMB). Non-induced TbSLS RNAi cells grew in a similar manner to control SMB parasites carrying empty vector with or without the doxycycline. In contrast, doxycycline induction of TbSLS RNAi saw the parasites cease division and led to some cell death as scored by light microscopy. RT-PCR, using β tubulin as a control, confirmed the specificity of the TbSLS mRNA inhibition (Fig. 6).

This genetic approach validated TbSLS as an essential enzyme for pathogenic bloodstream form parasite growth. Given the in vitro data shown above in which aureobasidin A was demonstrated to inhibit TbSLS4, the efficacy of this natural compound was tested against cultured bloodstream form T. brucei (Lister 427; Fig. 7). When the concentration of aureobasidin A was 1 μM cell growth...
was completely inhibited and the parasites were scored as dead by light microscopy after 24 h. The EC\textsubscript{50} of aureobasidin A against the parasites was estimated from these data as being below 250 nM. However, it is the trypanocidal activity of this compound at higher concentrations that is of most significance.

3.5. Summary

Previous studies using pharmacological and genetic inhibition of the first step in sphingolipid biosynthesis, catalyzed by serine palmitoyltransferase, showed that this pathway is essential for the viability of both bloodstream and procyclic forms of *T. brucei* [17,27]. This is in contrast to the related protozoan parasite *Leishmania major* where this enzyme, though essential for sphingolipid biosynthesis, is non-essential for both viability and pathogenesis [28,29]. These studies indicate that sphingolipid biosynthesis could be a viable drug target in the African trypanosomes.

The sphingolipid biosynthetic pathway is largely conserved across the Eukaryota. However, whilst animal cells synthesize the phosphosphingolipid SM, yeast and plants, plus at least some protozoa, produce IPC [7]. The IPC synthase of pathogenic fungi has long been validated and studied as a drug target [11], and the recent identification of a functional orthologue in the protozoan Kinetoplastids, the causative agents of several so-called neglected diseases, has led to its consideration as a target for anti-protozoal agents [10]. In this study we confirm that two of the four closely related *T. brucei* orthologues (TbSLS4 and 1) of the *Leishmania* IPC synthase (LmIPCS) are also functional orthologues of the *S. cerevisiae* enzyme encoded by *AUR1*. However surprisingly, unlike the *Leishmania* enzyme (and *AUR1*) TbSLS4 and 1 are able to catalyze the synthesis of both IPC and SM, which reflects the known sphingolipid content of *T. brucei* cells [15]. In an in vitro assay system utilizing TbSLS4 complemented *AUR1* mutant yeast microsomes, it was demonstrated that the *T. brucei* enzyme was able to function as an IPC synthase. Although PC
Fig. 6. TbSLS is an essential enzyme in bloodstream form T. brucei. (A) Inhibition RNAi of TbSLS. Cell counts over a 48 h period: (▲) mock transfected cells non-induced; (×) mock transfected cells induced by 1 μg/ml doxycycline; (♦) TbSLS RNAi cells non-induced; (■) TbSLS RNAi cells induced by 1 μg/ml doxycycline. Error bars for standard deviation over three replicates are shown. (B) RT PCR using total RNA isolated from TbSLS RNAi parasites with or without doxycycline induction (Doxy). RT, reverse transcriptase; βTUB, β tubulin control.

(and PE) was demonstrated to be a competitive binder with respect to PI, SM synthase activity could not be constituted possibly due to some level of specificity with respect to the donor substrate PC. Clearly, substrate specificity and the mechanism of action of TbSLS4 warrant further investigation to disentangle the detected IPC synthase function from the apparent SM synthase activity. Determination of the kinetic parameters of TbSLS4 would facilitate this, for example with respect to determining the binding constants for the apparent competitive IPC synthase inhibitors—PC and PE. In this respect it should be noted that the T. brucei enzyme is unlike its orthologues from the other kinetoplastid parasites where both the Leishmania (Fig. 5B) and Trypanosoma cruzi enzymes (Casbon and Denny, unpublished) demonstrate only IPC synthase activity in the in vitro system employed here. It is also clearly important to fully analyse the other three TbSLS isoforms to determine their function.

The known yeast and fungal IPC synthase inhibitor, aureobasidin A, has previously been shown to be active against the related kinetoplast, Leishmania species, inhibiting growth, but not affecting viability, in culture [30]. However, it has been demonstrated that the L. major IPC synthase is refractory to aureobasidin A (Fig. 5B) and that its affect against this species in culture is non-specific [28]. A similar situation has been observed with respect to the causative agent of Chagas disease, T. cruzi [19]. In contrast, this study showed that aureobasidin A demonstrated a high level of efficacy against TbSLS4 turnover in vitro, with an IC_{50} of 0.42 nM. In light of these results demonstrating the ability of a known inhibitor to affect enzyme activity, it was important to validate TbSLS as a potential target of anti-trypanosome drugs. Simultaneous RNAi of all four closely related isoforms of TbSLS demonstrated that this enzyme is essential for growth and so represents a new, much needed anti-protozoal target. Furthermore, aureobasidin A proved highly effective and trypanocidal against cultured bloodstream form T. brucei, with a sub-micromolar EC_{50}.

Together these data raise the possibility of the discovery of a new generation of lead inhibitors directed against TbSLS, ultimately leading to novel drugs for the treatment of human African trypanosomiasis.
bars for standard deviation over three replicates are shown.

References

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. This work was also supported in part by a Wolfson Foundation Grant.

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲) 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. This work was also supported in part by a Wolfson Foundation Grant.

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. This work was also supported in part by a Wolfson Foundation Grant.

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. This work was also supported in part by a Wolfson Foundation Grant.

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. This work was also supported in part by a Wolfson Foundation Grant.

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Acknowledgements

This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. This work was also supported in part by a Wolfson Foundation Grant.

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.

Fig. 7. Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 h with (▲); 1 µM aureobasidin A (AbA); (●) 250 nM AbA; (○) control. Error bars for standard deviation over three replicates are shown.
Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase

J. G. Mina · Y. Okada · N. K. Wansadhipathi-Kannangara · S. Pratt · H. Shams-Eldin · R. T. Schwarz · P. G. Steel · T. Fawcett · P. W. Denny

Received: 2 November 2009 / Accepted: 9 March 2010 / Published online: 23 March 2010 © Springer Science+Business Media B.V. 2010

Abstract Sphingolipids are key components of eukaryotic plasma membranes that are involved in many functions, including the formation signal transduction complexes. In addition, these lipid species and their catabolites function as secondary signalling molecules in, amongst other processes, apoptosis. The biosynthetic pathway for the formation of sphingolipid is largely conserved. However, unlike mammalian cells, fungi, protozoa and plants synthesize inositol phosphorylceramide (IPC) as their primary phosphosphingolipid. This key step involves the transfer of the phosphorylinositol group from phosphatidylinositol (PI) to phytoceramide, a process catalysed by IPC synthase in plants and fungi. This enzyme activity is at least partly encoded by the AUR1 gene in the fungi, and recently the distantly related functional orthologue of this gene has been identified in the model plant Arabidopsis. Here we functionally analysed all three predicted Arabidopsis IPC synthases, confirming them as aureobasidin A resistant AUR1p orthologues. Expression profiling revealed that the genes encoding these orthologues are differentially expressed in various tissue types isolated from Arabidopsis.

Keywords Arabidopsis · AUR1 · Expression · Inositol phosphorylceramide · IPC synthase · Sphingolipids

Abbreviations
AbA · Aureobasidin A
BSA · Bovine serum albumin
Cer · Ceramide
IPC · Inositol phosphorylceramide
NDB C6-ceramide 6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino) hexanoyl)sphingosine
PI · Phosphatidylinositol
SD · Synthetic minimal media with glucose
SGR · Synthetic minimal media with galactose
SM · Sphingomyelin

Introduction

The diverse, amphipathic sphingolipids consist of a long chain base backbone with long-chain fatty acid and polar...
alcohol attachments. These lipid species are ubiquitous membrane components of eukaryotic cells, as well as being found in some prokaryotic organisms and viruses (Smith and Merrill 2002). Studies in mammals and yeast have shown that they are important structural components of membranes and also serve as bioactive molecules involved in cell signalling and regulation (Dickson et al. 2006; Merrill 2002). The unmodified sphingolipid, ceramide, is an intermediate in complex sphingolipid biosynthesis in the Golgi apparatus. These complex species ultimately concentrate in the outer leaflet of the plasma membrane where, with sterols, they form lipid raft microdomains (Futerman and Hannun 2004). Rafts have been proposed to be central to a multitude of cellular processes, from the polarized trafficking of lipid-modified proteins (Brown and London 1998) to the formation of signal transduction complexes (Magee et al. 2002; Pierce 2002). Furthermore, sphingolipid metabolites such as ceramide and phosphorylated sphingosine (sphin-gosine-1-phosphate), are central to intracellular signal transduction processes that regulate cell growth, differentiation and apoptosis (programmed cell death—PCD; Futerman and Hannun 2004).

The biosynthesis of sphingolipids shows commonality between mammals, fungi and plants up to the formation of ceramide (phytoceramide in plants and fungi), but the predominant complex phosphosphingolipid species subsequently synthesized differs. Mammals produce sphingomyelin (SM; a ceramide unit with a phosphorylcholine moiety), whereas fungi and plants synthesize inositol phosphorylceramide (IPC) by the transfer of the phosphoryl group from phosphatidylinositol (PI) to phytoceramide, a reaction catalysed by IPC synthase. This enzyme was shown to be at least partly encoded by the AUR1 gene in yeast and other fungi (Nagiec et al. 1997), and recently an accessory protein involved in IPC synthase activity (KE11p) in these organisms has been identified (Sato et al. 2009). However, the plant enzyme remained unidentified although the activity had been measured in bean microsomes (Bromley et al. 2003). Then, during a screen for factors involved in PCD defence mechanisms, an AUR1 functional orthologue was identified in Arabidopsis. However, the encoded protein demonstrated little homology to the yeast AUR1p, having most similarity to the more recently identified animal sphingomyelin synthases (Wang et al. 2008). This lack of similarity to the long known fungal enzyme (Nagiec et al. 1997) lay behind the previously fruitless search for the plant orthologue (Dunn et al. 2004). Here we demonstrate that all three orthologues identifiable in the Arabidopsis genome database represent aureobasidin A resistant functional orthologues and that, through phylogenetic analyses, these represent a new group of sphingolipid synthases within the wider enzyme family. Furthermore, we show the expression profile of all three isoforms in the tissues of Arabidopsis. This demonstrated that there is differential expression of IPC synthase, an enzyme central to the synthesis of plasma membrane sphingolipids (Dunn et al. 2004) and a regulator of PCD (Wang et al. 2008) in this plant species.

Materials and methods

Complementation of auxotrophic AUR1 mutant yeast with AtIPCS1-3

Arabidopsis IPC synthase 1, 2 and 3 (AtIPCS1–At3g54020.1, AtIPCS2–At2g37940.1 and AtIPCS3–At2g29525.1) were amplified from Arabidopsis cDNA using primers 5′ AtIPCS1 EcoRI gaattcATGACGCTTTATATTCGCCGG and 3′ AtIPCS1 SalI gtcgacGAGCAGAGATCTCATGTG; 5′ AtIPCS2 EcoRI gaattcATGACACTTTATATTCGCCGG and 3′ AtIPCS2 SalI gtcgacTCACGCGCCATT; 5′ AtIPCS3 EcoRI gaattcATGCCGGTTTACGTGATCGCG and 3′ AtIPCS3 SalI gtcgacTCAATGATCACGTGCTACATT.

The products were subsequently cloned into the yeast vector pRS426MET25, creating pRS426 AtIPCS1-3. In the YPH499–HIS–GAL–AUR1 S. cerevisiae strain expression of the essential AUR1 gene (Nagiec et al. 1997) is under the control of the GAL1 promoter and is repressed in the presence of glucose (Denny et al. 2006). YPH499–HIS–GAL–AUR1 was transformed with pRS426 AtIPCS1-3 and pRS426 AUR1 and functionally complemented transformants selected on non-permissive SD medium containing necessary nutritional supplements (Denny et al. 2006).

Diffusion assay of complemented auxotrophic AUR1 mutant yeast

YPH499–HIS–GAL–AUR1 pRS426 AtIPCS1-3 and YPH499–HIS–GAL–AUR1 pRS426 AUR1 were assayed for susceptibility to aureobasidin A (Takara) and myriocin (Sigma) as previously described (Nagiec et al. 2003). Briefly, 2.4 × 10^7 logarithmically dividing cells were embedded in 15 ml of YPD-agarose (1% yeast extract, 2% peptone, 2% dextrose, 0.8% agarose) on 100 cm^2 square Petri dishes (Sarstedt). Inhibitors were applied in Me2SO at the concentrations described below and the dishes incubated at 30°C.

Microsomal assay of AtIPCS

For in vitro assay microsomal membranes were prepared from YPH499–HIS–GAL–AUR1 pRS246 AtIPCS1-3 and YPH499–HIS–GAL–AUR1 pRS246 AUR1 and assayed as
described (Mina et al. 2009). In brief, assays were performed in 50 μl of 100 mM Tris HCl pH 7.4, 10 mM EDTA and 6 mg/ml defatted BSA, with or without 1 mM PI (soybean, Avanti Polar Lipids; predominant species C16:0-C18:2) and 5 μM aureobasidin A, and with 2 μl of microsomes (10 mg/ml protein) and 2 μl of 5 mM NBD C6-Ceramide (Molecular Probes) in DMSO. After incubation at 30°C for 60 min the reaction was stopped by the addition of 150 μl of chloroform/methanol/water (10:10:3 v/v/v) and the lipid fraction isolated by phase separation. This process facilitated reproducible quantitative analyses of IPC formation. Following equilibration (Synergy HT, Bio-tek) samples were analysed by high performance thin-layer chromatography (Denny et al. 2001; Ralton and McConville 1998), imaged using a FLA3000 scanner (Fuji) and quantified using the Aida V3.11 software package.

Plant growth and harvesting of material

Arabidopsis thaliana (Col-0) plants were grown under long-day conditions (16 h day/8 h night) and the following tissues were harvested at specific development stages (Boyes et al. 2001). Rosette leaves were collected at stage 8.00, roots and flowers were collected at stage 6.50, siliques 3.90, cauline leaves and stem were collected at stage 5.10, tissues were harvested at specific development stages long-day conditions (16 h day/8 h night) and the following *Arabidopsis thaliana*

Plant growth and harvesting of material

Arabidopsis thaliana (Col-0) plants were grown under long-day conditions (16 h day/8 h night) and the following tissues were harvested at specific development stages (Boyes et al. 2001). Rosette leaves were collected at stage 3.90, cauline leaves and stem were collected at stage 5.10, roots and flowers were collected at stage 6.50, siliques were collected at stage 8.00.

RNA isolation and RT

Plant tissue was harvested and immediately frozen in liquid nitrogen. Total RNA was isolated using an RNasey Plant Mini Kit (Qiagen), including DNase I digestion, according to the manufacturers instructions.

RNA integrity was tested by electrophoresis on 1% agarose gels and was quantified by measuring the absorbance at 260 nm. The A260 nm/A280 nm ratios of purified RNA samples were in the range of 2.0 to 2.1 and were determined to be free of genomic DNA by the absence of larger, intron containing, PCR products.

RT reactions were carried out on 1.0 μg of total plant RNA using Superscript III reverse transcriptase (Invitrogen) and oligo dT primer according to the manufacturers instructions.

Real-time qRT-PCR conditions and analysis

Steady-state levels of RNA for each AtIPCS gene in plant material were analysed using SYBR green to monitor DNA synthesis with a Rotor-Gene RG-3000 (Corbett Research) instrument. Amplification was achieved with the following gene-specific primers; AtIPCS1-forward 5'-AGCCCTTTGATTATTGCGTC-3' and AtIPCS1-reverse 5'-AACACAGGCATTGCTCCCT-3' to give a 145 bp product; AtIPCS2-forward 5'-AGCCTTTGATTGCTCCCT-3' and AtIPCS2-reverse 5'-GACGTGCTGTTGCTCCCA-3' to produce a 145 bp product; AtIPCS3-forward 5'-TGGCTTATGGCAGTAATACAG-3' and AtIPCS3-reverse 5'-GCCAGAAATGGCCAGAACCTT-3' to produce a 141 bp product.

To determine the highest specificity and sensitivity qPCR profile for each AtIPCS transcript, titration experiments were performed over a range of MgCl2 concentrations (1.5 to 5 mM) and primer concentrations from (0.1 to 0.5 μM). Concentrations were considered optimal at the lowest Ct value that reproducibly gave an amplicon of the correct size in the absence of primer dimers. Based on results of these optimization experiments, qPCR assays for the AtIPCS1 transcript contained 3 mM MgCl2 and 0.5 μM of each primer; the AtIPCS2 transcript 3 mM MgCl2 and 0.4 μM of each primer; and the AtIPCS3 transcript 4 mM MgCl2, 0.4 μM of the forward and 0.5 μM of the reverse primer. The reactions (total volume 20 μl) also contained 2 μl of 10× PCR buffer, 10 pg of cDNA, 200 μM dNTPs, SYBR Green I dye and 2 Units of Taq polymerase. Assays were carried out using the following conditions: 1 cycle of 10 min of 95°C, followed by 30 cycles of 10 s of 95°C, 15 at 52°C and 20 s of 72°C. Amplicon dissociation curves were recorded at the end of the PCR cycles. External standard curves were constructed using the three AtIPCS cDNAs and relevant gene-specific primer pairs and used to determine the number of transcripts for each gene.

Results

AtIPCS1-3 complement an *AUR1* auxotrophic mutant yeast and confer aureobasidin A resistance

Interrogation of the Arabidopsis genome database with the predicted protein sequence of the protozoan IPC synthase from *Leishmania major* (LmIPCS) (Denny et al. 2006) identified opening reading frames encoding three highly related sequence orthologues—Arabidopsis IPC synthase 1 (AtIPCS1–At3g54020.1), AtIPCS2 (At2g37940.1) and AtIPCS3 (At2g29525.1)—demonstrating 26, 29 and 31% identity to the protozoan protein. Subsequently, AtIPCS2 has been isolated, characterised and designated ERH1 (Wang et al. 2008). The open reading frames of AtIPCS1-3, when cloned into an URA3 selectable expression vector to create pRS426 AtIPCS1-3, restored the growth of the *AUR1* auxotrophic mutant YPH499-HIS-GAL-AUR1, as did the ectopic expression of *S. cerevisiae* AUR1p (AUR1) (Fig. 1a). These data indicated that AtIPCS1, 2 and 3 are functional orthologues of fungal AUR1p, a protein that forms at least part of an IPC synthase (Nagiec et al. 1997).

By diffusion assay (Nagiec et al. 1997, 2003) the efficacy of two different classes of inhibitor were assayed
against YPH499–HIS–GAL–AUR1 pRS426 AtIPCS1, 2 and 3. The transgenic yeast were resistant to aureobasidin A (AbA, a fungal IPC synthase inhibitor) at 100 μM (Fig. 1b), a concentration shown to inhibit the growth of LmIPCS complemented yeast (Denny et al. 2006), but remained sensitive to myriocin (which inhibits the first step in sphingolipid biosynthesis—serine palmitoyltransferase, SPT). Indeed, yeast complemented with the plant enzymes appeared to be more sensitive to the SPT inhibitor than the AUR1 control, a similar observation had previously been made with regard to the LmIPCS complemented yeast (Denny et al. 2006). The in vitro assay for AtIPCS1-3 described below (Fig. 2a) confirmed that the Arabidopsis enzymes are AbA insensitive. In contrast, the IPCS activity from Golden butterwax bean extracts has been shown to be acutely sensitive to this inhibitor (Bromley et al. 2003).

The reasons for this difference in AbA sensitivity are unclear and no data are currently available, for the bean sequence, to help elucidate this discrepancy.

AtIPCS1-3 are functional IPC synthases

In vitro assay of microsomes prepared from YPH499–HIS–GAL–AUR1 pRS426 AtIPCS1-3 demonstrated that the three plant enzymes are active IPC synthases (Fig. 2a). However, their turnover appeared low when compared to an S. cerevisiae AUR1 control. This was also noted by Wang et al. (2008) and was unaffected by the use of NBD C6-phytoceramide rather than C6-ceramide as acceptor substrate. In support of the data shown above (Fig. 1b), AtIPCS1-3 activity was insensitive to the addition of AbA at a concentration (5 μM) that completely inhibited the
yeast enzyme (Fig. 2a). Thereafter this inhibitor was applied to the reaction mix for assay of AtIPCS1-3 at 5 \(\mu \)M.

In the experiment (Fig. 2a) above the plant (and yeast) enzymes are assayed in the presence of exogenous soybean PI. To ascertain the effect of adding this exogenous donor substrate samples were assayed with and without PI in the reaction mix (Fig. 2b). All samples showed a similar level of activity in the absence of donor substrate but, surprisingly, only AtIPCS2 demonstrated any significant increase in turnover on the addition of PI. This indicated that the AtIPCS1 and 3 are unable to utilize substrate from this source effectively. Similar results were obtained utilizing bovine PI which has previously been demonstrated to be effectively utilized by the protozoan orthologues from both \(L. \) major and Trypanosoma brucei but not by \(S. \) cerevisiae AUR1p (Mina et al. 2009). Despite this, these data confirm AtIPCS1-3 as functional orthologues of AUR1p, forming at least part of an IPC synthase.

The plant IPC synthases form a new class of sphingolipid synthase

The key motifs, D3 and D4, of the sphingolipid synthase family are conserved in the plant IPC synthases (Wang et al. 2008). However, unlike their protozoan and mammalian counterparts they lack a D1 domain (Huitema et al. 2004). In this they resemble the fungal IPC synthases and it may be hypothesized that D1 is involved in the binding of ceramide, a substrate for the protozoan and mammalian enzymes, whereas another unidentified region is involved in binding the phytoceramide substrate to the plant and fungal IPC synthases. Despite the conservation of some of these motifs the plant sequences are divergent with respect to primary sequence and so, until recently, remained cryptic within the genome databases (Wang et al. 2008). This divergence was illustrated by phylogenetic analysis of predicted SM and IPC synthase sequences which demonstrated that the plant enzymes, the three orthologues identified in the \(Oryza \) sativa (rice) database are included, form a new clade of sphingolipid synthases (Fig. 3).

Expression profiling of AtIPCS1-3

Estimates of the relative abundance of transcripts can be made from their representation within the EST databases. For the three AtIPCS genes described a similar number of AtIPCS1 and AtIPCS3 transcripts are present, whilst the largest number is for AtIPCS2 (Table 1; data derived from TAIR BLAST version 2.2.8). However, these data do not give any information regarding the tissue location of the transcripts and are therefore of limited use when investigating the expression of gene families. Tissue-specific transcript abundance data can be obtained from multiple microarray experiments using Genevestigator (Grennan 2006). Only AtIPCS2 is represented on the Affymetrix arrays that are used to derive these data and this shows that the gene is expressed in cauline leaves, roots and rosette leaves at similar levels and these are approximately twice the expression levels seen in stems, flowers and siliques (Table 2).

Given the limitations of these data sets, in order to establish a complete expression profile for each AtIPCS isoform, real time quantitative RT-PCR was performed on RNA isolated from various Arabidopsis tissues (Fig. 4). AtIPCS2 was the most highly expressed of the three isoforms in all tissues. In agreement with the Genevestigator data, the highest levels of AtIPCS2 transcript were seen in root, rosette leaves and cauline leaves and these were five to ten fold greater than the levels of transcripts in siliques,
stems and flowers. The patterns of expression determined by these two methods are in general agreement but the relative levels differ, this may reflect differences in the plant material used in each case. Genevestigator uses a large number of microarray experiments to generate data and is therefore robust, however the data represents plant material grown under different conditions and which may have been harvested at different times within a developmental stage. The quantitative RT-PCR data presented here is determined from plants grown and harvested under identical conditions and therefore represents transcript levels at defined developmental stages in these tissues.

AtIPCS1 transcripts are expressed at low levels in all tissues, ranging from 0.05% of AtIPCS2 levels in rosette leaves to 2.8% of AtIPCS2 levels in stems. While AtIPCS3 transcripts are also present in low levels in cauline leaves, rosette leaves, roots and stems (ranging from 0.02 to 0.67% of AtIPCS2 transcripts) they are present at similar levels to AtIPCS2 transcripts in stem (84% of AtIPCS2 levels) and flower (74% of AtIPCS2 levels).

The data presented here adds to existing studies by providing tissue specific expression data for all the

Table 1 EST numbers for AtIPCS genes derived from TAIR BLAST version 2.2.8

<table>
<thead>
<tr>
<th>Gene</th>
<th>EST</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtIPCS1</td>
<td>32</td>
</tr>
<tr>
<td>AtIPCS2</td>
<td>57</td>
</tr>
<tr>
<td>AtIPCS3</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 2 Microarray data for AtIPCS2 in the genevestigator database

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Root</th>
<th>Rosette leaf</th>
<th>Cauline leaf</th>
<th>Stem</th>
<th>Flower</th>
<th>Siliques</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtIPCS2 levels</td>
<td>2383</td>
<td>2135</td>
<td>2509</td>
<td>1167</td>
<td>998</td>
<td>705</td>
</tr>
</tbody>
</table>

Fig. 3 The plant IPC synthase defines a new class of sphingolipid synthases. Maximum parasimony analysis of Animalae, Fungi, Trypanosomatidae and Plantae sphingolipid synthase sequences. Bootstrap scores >60 indicated. *Homo sapiens* LPP1 (outgroup) accession number: O14494; *Arabidopsis thaliana* IPCS1-3 accession numbers: at3g54020.1, At2g37940.1, At2g20525.1; *Oryza sativa* IPCS1-3: NP_0010444812, NP_001055712, NP_001055096; *T. brucei* SLS1-4: Tb09.211.1030, Tb09.211.1020, Tb09.211.1010, Tb09.211.1000; *T. cruzi* IPCS1&2: Tc00.1047053506885.124, Tc00.1047053510729.290; *L. major* IPCS: LmjF35.4990; *Aspergillus fumigatus* AUR1p: AAD22750; *Candida albicans* AUR1p: AAB67233; *Pneumocystis carinii* AUR1p: CAH17867; *Saccharomyces cerevisiae* AUR1p: NP_012922; *Schizosaccharomyces pombe* AUR1p: Q10142; *Caenorhabditis elegans* SMS1-3: Q9U3D4, AAA82341, AAK84597; *Homo sapiens* SMS1&2: AB154421, Q8NHU3; *Mus musculus* SMS1&2: Q8VCQ6, Q9D4B1
isoforms of AtIPCS which may indicate a specific role for AtIPCS3 in stems and flowers.

Discussion

The data presented describe the analyses of all three orthologues of the recently identified Arabidopsis IPC synthase (Wang et al. 2008). They all represented functional orthologues of \textit{S. cerevisiae} IPC synthase, AUR1p, and demonstrated activity in an in vitro assay. However, unlike the yeast activity the Arabidopsis enzyme is resistant to aureobasidin A, a non-competitive inhibitor of the fungal IPC synthase with an unknown mechanism of action (Zhong et al. 1999). Conversely, it has previously been shown that the IPCs activity in Golden butterwax bean extracts was acutely sensitive to this inhibitor (Bromley et al. 2003). The reasons for this discrepancy are unclear, however it is notable that similarly profound differences in aureobasidin A sensitivity have been observed within the kinetoplastid parasite IPCS orthologues. Whilst the \textit{L. major} enzyme is relatively refractory to the drug, the \textit{T. brucei} sphingolipid synthase (TbSLS) is highly sensitive (Mina et al. 2009). No reason for this can be deduced from the primary sequence data and it may be envisaged that this diversity is due to subtle differences in 3-dimensional enzyme structure.

In the in vitro, microsome-based assay all three Arabidopsis isoforms demonstrated IPC synthase turnover. However, although the presence of PI (from soybean or bovine sources) led to a significant increase in turnover with AtIPCS2, AtIPCS1 and 3 were refractory to the addition of this donor substrate. This indicated that PI from these sources was utilized inefficiently by these Arabidopsis isoforms. Similarly, it has been noted that mammalian PI is not efficiently utilized by the \textit{S. cerevisiae} IPC synthase activity (Mina et al. 2009). Notably, unlike the yeast phospholipids (Guan and Wenk 2006), plant and mammalian PIs exhibit varying degrees of polyunsaturation (Thompson and MacDonald 1975, 1976). It may be hypothesized this polyunsaturation may confer structural constraints and make it less acceptable to the \textit{S. cerevisiae} enzyme. However, the lack of reactivity of AtIPCS1 and with plant derived PI (soybean, C16:0–C18:2) is less easy to explain. It is possible that the endogenous yeast PI has a higher affinity for these isoforms and outcompetes the exogenous substrate. Attempts to minimize the available quantity of endogenous PI to test this were made by detergent washing as previously (Mina et al. 2009). However, this led to apparent inactivation of the enzymes. Alternatively, significant differences may exist in the substrate requirements of these Arabidopsis isoforms. Notably, AtIPCS1 transcript level is low in all plant tissue and AtIPCS3 in many, including siliques, perhaps reflecting the level of acceptable donor PI in seeds (such as soybeans, the source of PI in these experiments).

Despite these variances, all the plant IPC synthase orthologues identified share the motifs predicted to form the catalytic triad that promotes nucleophilic attack on lipid phosphate ester bonds which, in the case of IPC synthase, is thought to lead to the transfer of an inositol phosphate group from PI to the 1-hydroxyl group of (phyto)ceramide releasing diacylglycerol as a by-product (Huitema et al. 2004; Neuwald 1997). Therefore it is likely that the eukaryotic sphingolipid synthases possess a common mechanism of action, indicating a single evolutionary origin. In contrast, the prokaryotic SM synthase lacks the catalytic triad (Luberto et al. 2003) and is likely to have evolved independently. Phylogenetic analyses show the plant proteins forming a distinct clade, thereby defining a new class of eukaryotic sphingolipid synthases.

It has been demonstrated, by RNAi of the first enzyme in the biosynthetic pathway—serine palmitoyltransferase, that sphingolipid biosynthesis per se is essential for the viability of Arabidopsis (Chen et al. 2006). Furthermore,
recent work has suggested that the plant IPC synthase is pivotal in pathogen-resistance associated PCD. By analyses of leaf tissue from an ERH1 (AtIPCS2) insertion mutant Wang et al. (2008) detected a significant increase in ceramide levels, an observation consistent with the fact that ceramide is a substrate for IPCS. Importantly, ceramide is a key regulator of PCD (Futerman and Hannun 2004) and the accumulation of this factor was co-incident with PCD at the site of powdery mildew infection in Arabidopsis (Wang et al. 2008). This work is further supported by similar observations in accelerated-cell-death (acd11 and acd5) mutants of Arabidopsis in which a sphingosine transfer protein (ACD11) or a ceramide kinase (ACD5) are affected (Brodersen et al. 2002; Liang et al. 2003). Given the prominence of AtIPCS2 as a putative regulator of PCD the differential expression levels of each of the three functional Arabidopsis orthologues may shed light on this key process in the whole plant.

Acknowledgments This work was funded by Biotechnology and Biological Research Council (BB/D52396X/1) and Royal Society (2005/R1) grants to PWD and a British Council/Deutscher Akademischer Austausch Dienst Academic Research Collaboration Award to PWD and RTS. JGM and NKW are funded by the Overseas Research Student Award Scheme. JGM is also funded by the Wolfson Research Institute Collaborative Small Grants Scheme and Deutsche Forschungsgemeinschaft, Bonn.

References

