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Preface 

This thesis summarises work done by the author between October 1995 and May 

1999 at the Department of Mathematical Sciences, University of Durham, England 

under the supervision of Professor David Fairlie and Dr. Valya Khoze. No part 

of this work has been previously submitted for any degree at this or any other 

university. 

Chapter one serves as an introduction, and no claim is made for originality. Chap­

ter two is also a review of previously published material. Chapter three contains 

original work by the author in collaboration with Valya Khoze and Michael Mattis. 

The material of chapter four is also claimed to be original, and was carried out in 

collaboration with Ivo Sachs. Chapter five was original work, but during the anal­

ysis a paper [19] making use of the same techniques appeared superceding it . As 

such, it should be regarded as a review chapter. Work that is not that of the author 

wil be properly acknowledged. The material of chapter three is published in Physics 

Letters B408 (1997) 213, and the work presented in chapter four is currently being 

prepared for publication. 

The copyright of this thesis rests with the author. No quotation 

from it should be published without his prior consent and the 

information derived from it should be properly acknowledged. 



Abstract 

This thesis is concerned with so-called higher derivative terms which arise in low 

energy approximations to certain physical models. In particular, the aim is to in­

vestigate the role that such terms play in low energy N=2 supersymmetric gauge 

theories in 4 dimensions, with gauge group SU(2). 

Chapter one serves as an introduction to the notions of supersymmetry and su-

perfields. The problem of constructing an effective action which describes the low 

energy dynamics is introduced, and the construction of the Wilsonian action in 

terms of light and heavy modes is developed. The concept on a derivative expansion 

is also described. 

Chapter two introduces N=2 supersymmetric gauge theories with spontaneous sym­

metry breaking. It is observed that such systems always have a Bogomolnyi bound, 

and the consequences are discussed. We then develop a derivative expansion of this 

system in terms of N=2 superfields, drawing particular attention to the next-to-

leading order derivative term (that is, those with 4 derivatives/8 fermions). The 

duality properties of such a term are reviewed, and their impact on the mass for­

mula discussed. Conclusions are drawn as to their influence on the results of Seiberg 

and Witten. 

Chapter three deals with a non-renormalisation theorem for the next-to-leading or­

der higher derivative term proposed by Dine and Seiberg. This states that instanton 

contributions to such a term in massless N=2 SU(NC) gauge theories vanish when 

the number of flavours Nf = 2NC. We prove this result using the ADHM formalism 

for multi-instantons in the case Nc = 2. 

i i 
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Chapter four studies the relationship between the microscopic and effective coupling 

in the N=2 SU(2) gauge theory with 4 massless flavours. 

Chapter five then examines the correspondence between N=2 gauge theories and 

the dynamics of fields on an M-theory 5-brane wrapped on a Riemann surface, f t 

is shown that at quadratic order the 5-brane action is identical to that of the gauge 

theory, and the Riemann surface has a natural interpretation as the curve arising in 

Seiberg and Witten's analysis of N=2 gauge theories. We then proceed to investigate 

whether the higher order terms also correspond. 

The final chapter contains a brief summary and a hint of further directions for 

research that were outside the scope of this thesis. 
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Chapter 1 

Introduct ion 

In the middle of the 1990's, the mathematical physics community underwent a pe­

riod of great activity. It was believed that the use of certain discrete transformations 

- dualities - offered an opportunity to solve some of the most difficult problems in 

field theory utilising a conceptually satisfying and mathematically elegant procedure. 

The paradigm for these efforts was the study of the Coulomb branch of gauge the­

ories with N=2 extended supersymmetry. By use of dualities in the mass spectrum 

and a moduli space of inequivalent vacua, Seiberg and Witten were able to deduce 

information concerning the strong coupling regime and, as a consequence, justify a 

solution to the confinement problem of (super)QCD by means of the mechanism of 

monopole condensation. 

A crucial ingredient in this programme was the use of an effective action to describe 

the low energy behaviour of the system. In particular, Seiberg and Witten considered 

the leading order term of a low energy expansion of an SU(2) gauge theory with N=2 

supersymmetry in a 4d spacetime. As will be shown below, this term is governed by 

a prepotential which is holomorphic in (N=2 super)fields and as such has sufficient 

mathematical structure to allow a thorough analysis of their nature. Beyond this 

leading order the scenario is more complicated. In particular the next-to-leading-

order Lagrangian is given by a prepotential which is real and analytic rather than 

holomorphic. This lack of holomorphicity means, for example, that certain non-

1 



CHAPTER 7. INTRODUCTION 2 

renormalisation theorems valid for the holomorphic leading order term are no longer 

satisfied for the higher order terms. 

It is the purpose of this thesis to investigate various properties of these so-called 

higher derivative terms, but this chapter will first expand upon some of the concepts 

introduced in the foregoing paragraphs which will recur in this work. 

1.1 Super symmetry: An Outline 

Since its introduction in the 1970's, supersymmetry - which at its most basic level 

can be thought of as a symmetry between fermions and bosons - has become one 

of the central tenets of modern mathematical physics. Models with supersymmetric 

invariance appear as extensions to familiar field theories, since they typically exhibit 

an improved behaviour under quantisation due to cancellations between fermionic 

and bosonic loops. In this work, we work almost exclusively in the arena of su­

persymmetric extensions to Yang-Mills systems with local SU(2) gauge invariance 

which, by means of a Higgs-mechanism, has been broken to the Coulomb branch. It 

is found that this model can be concisely presented by introducing so-called super-

fields which contain, as co-efficients in an expansion of Grassmannian co-ordinates, 

component fields which can be interpreted as the higgs scalar and, in N=2 theories, 

the gauge field strength. As such, we shall present a general introduction to super-

symmetry sufficient for our purposes in subsequent chapters. More encompassing 

reviews of the extremely sizeable literature concerning supersymmetry can be found 

in [43, 51, 94, 85]. Our conventions will be those of Wess and Bagger [92], 

1.1.1 Supersymmetry Algebra 

Relativistic quantum field theories are postulated to be invariant under translations, 

boosts and rotations. Collectively, these are termed Poincare transformations. It is 

well known that boosts and rotations by themselves arise from the Lorentz group 

which leave the spacetime metric invariant. I f we denote the generator of translations 

as PM and the generator of the Lorentz group as M^, then the Poincare algebra of 
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infinitesimal transformations is given by 

\P~ti > PA = 0 (1.1.1a) 

[P^,i\Up] = iiv^Pp - V»PP») (1-1-lb) 

[ M ^ j M p f f ] = i{r}vpMIUJ--n„aMlip-r]tlpMva + r]liaMvp) (1.1.1c) 

where is the flat (4d) spacetime metric tensor diag( — 1,1,1,1) and /.i,v,p,<T = 

0,1,2,3. The operators P^ and MM„ have a physical significance, since P is the 

4-momentum and M is related to spin. In addition to this Poincare symmetry, the 

action for a quantum field theory is typically constructed to exhibit invariance under 

an internal symmetry group such as isospin. These groups G are of the Lie type, 

and have associated Lie algebra 

[T°,T 6] = t f a b c r c (IT . id) 

where Ta are the generators of the internal symmetry, and f a b c are the structure 

constants for the algebra with a = 1, • • • , dimG. 

In a celebrated paper, Coleman and Mandula were able to show, subject to rea­

sonable physical assumptions on the S-matrix, that the Poincare symmetry and the 

internal symmetry group can only, by themselves, appear in the same Lagrangian 

as a direct product structure. Mathematically, this "no-go theorem" is exhibited in 

the relations 

[P„Ta] = [M^,Ta]=0 (1.1. le) 

A method for avoiding this non-mixing was found by Haag, Lopuszahski and Sohnius. 

This was to introduce additional generators into the algebra which obeyed anti-

commutation relations. This is achieved on the introduction of a Graded Lie-algebra. 

Schematically, these algebra have relations of the form 

[B,B] = B [B,F} = F {F,F} = B 

where the symbols B and F stand for bosonic and fermionic generators respectively. 

In our case, the F generators are elements in the ( | ,0 ) or (0, ^) representations 

of the Lorentz group - more correctly of 5/(2,C) - and B in the (0,0), {\ , \ ) or 

file:///P~ti
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(1,1) representations. In addition, one must introduce a graded Jacobi identity of 

the form [B, {Fu F2}} = {Fu [B, F2}} + { F 2 , [B, Fx)}. The F generators are denoted 

as Q*a and its complex conjugate Ql

a where i — 1. • • • , N and a, a = 1,2. In this 

work we shall be particularly interested in the case N = 2. Both Q and Q are 

2-component Weyl spinors. We now have all the elements required to present the 

supersymmetry algebra. In addition to the numbered relations above, the most 

general N-super-Poincare algebra consists of 

{Q*,QD = W<C,P, (i.i-if) 

[Qi,P?] = o (ii-ig) 

[Q^M^] = i{a^Ql)a (1.1.lh) 

{QaiQ?} = tafiZ* /." Z" (1.1. l i ) 

[Zl\ anything] = 0 (1.1.lj) 

[Qa,Ta] = (Ra)]Qi (1.1.1k) 

along with the complex conjugate relations involving Q. In the above, aM is a Pauli 

matrix, a''1' = | (a^a" — a"a1*), Z1-7 are termed central charges and R is termed the 

/^-symmetry matrix which rotates the fermionic generators into each other. Those 

relations without the Lorentz generator M form the supersymmetry algebra. In 

chapter 2, we shall examine relation ( l . l . l i ) in more detail. 

A simplification of the supersymmetry algebra occurs in the case where = 1. 

Firstly, since there are no antisymmetric matrices of dimension 1, the N = 1 algebra 

contains no central charges. Next, on studying the commutator of Qa with relation 

(1.1. Id) and using the graded Jacobi identity, one sees that the N = 1 algebra can 

only support an Abelian /?-symmetry. Further, use of the Jacobi identity in relation 

(1.1.If) with the Abelian generator T shows that [ Q Q , T ] = — Qa and [ Q q , T ] = Qa-

To conclude this subsection we note some facts. Since in relativistic theories it is 

known that the mass m arises in P^PIX = —m 2, relation (1.1.lg) shows that irre­

ducible representations of the above algebra will be degenerate in mass. On the other 

hand, due to relation (1.1.lh) the same representations will include particles with 

different spin. Lastly we show that in an irreducible representation of supersymme­

try, the number of fermions equals the number of bosons. We introduce a fermion 
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number operator ( — ) F defined via the eigenvalue equations ( — )F\B) = + \B) and 

(—)F\F) = — \F) where \B) and \F) are bosonic and fermionic states respectively. 

By the definitions of the supersymmetry algebra above we have ( — )FQa = —Ql

a{ — )F 

with a similar relation for Q1^. Considering relation (1.1.If) we see ( — )F{Q,Q} = 

—Q( — )FQ + { — )FQQ where we have neglected the indices for convenience. Now, 

for a non-trivial finite representation of the supersymmetry algebra we can take the 

trace and use the cyclicity property tx{AB) = tv{BA) to see tr [( — )F{Q,Q}} = 0. 

By (1.1.If) this means that tr [( — )FP] = 0 which implies, for fixed momenta - for 

example the rest frame - that t r (—) F = 0. As such, ( — ) F must have an equal num­

ber of positive and negative eigenvalues meaning that the number of bosons equals 

the number of fermions in an irreducible representation of supersymmetry. 

1.1.2 Superspace and Superfields 

For physical applications it is necessary to determine representations of the super-

symmetry algebra with component fields corresponding to physical degrees of free­

dom. These component fields can then be used to construct actions. One method to 

achieve this is to start with familiar Lagrangians with bosons and fermions, intro­

duce transformations on the fields which leave the Lagrangian invariant up to total 

derivatives, and which also close to the supersymmetry algebra. This was the orig­

inal approach of Wess and Zumino and is reviewed in great detail in [85]. A much 

more elegant and compact method of developing supersymmetric Lagrangians is pro­

vided by the superspace method. This construct is a generalisation of Minkowski 

spacetime to include anti-commuting co-ordinates, and provides a natural arena to 

discuss supersymmetry. Since this concept will arise throughout this thesis, we shall 

briefly review it . 

We shall consider the case of vV = 1. It was pointed out in the previous subsection 

that the supersymmetry algebra could be considered a generalisation of a Lie algebra 

using anti-commuting generators. In analogy with the familiar case, this motivates 

the exponentiation of the algebra to form a group. That is, we consider a group 
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element 

where x*1 can be considered a spacetime co-ordinate and the parameters 9a and 9a 

are Grassmannian co-ordinates obeying the anti-commutation relations {9a,9p} = 

{9a,9a} = {9a, 9p} — 0. We can now investigate the product of two of these 

elements. Consider multipication on the left given by 

r(y,(,Or(x,9,9) = r(x',9',9') (1.1.2) 

Operators do not, in general, obey eaeb = ea+b. Instead one must use the Hausdorff 

relation eaeb = ec where c = a + b + | [a, b] + ([a, [a, b}] + [b, [b, a]]) + • • •. However, 

relations (1.1.1a), (1.1.If), (1.1.lg), and (1.1.li) mean that we only have to consider 

up to single commutators in (1.1.2). It is then simple to see that the co-ordinates 

9a -> e'Q = 9a + cQ 

h ^ 9'a = 9« + Q 

where we have used the commutator identity [AB, CD] — A{B, C}D — AC{B, D} + 

{A,C}DB -C{A,D}B. 

On substitution of the co-ordinates xm, 9, and 9 we see that the operator 

CQ + CQ = C (J^ - ioLPd^ + Cd ( J - - iP<>y%} (1.1.3) 

generates the co-ordinate transformations without space-time translations. It is a 

matter of simple algebra, remembering that derivatives with respect to Grassman­

nian co-ordinates anti-commute, to show that the operators in (1.1.3) obey 

{Q«,Q*} = 2ia^d(l 

{Qa,Qp} = {Qa,Qp} = o 

so that the identification P^ = —id^ shows that (1.1.3) is a representation of the 

N = l superalgebra in terms of differential operators. A more rigorous approach using 
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the concept of cosets gives the same results. In fact, superspace is the coset of the 

super-Poincare group by the Lorentz group [51]. 

We are now in a position to introduce the notion of a superfield. A superfielcl 

f(x,9,9) is a function of the co-ordinates x, 9 and 9 which transforms in the fun­

damental representation of the supersymmetry algebra. Since 9 and 9 are defined 

to be Grassmannian, the series expansion of the superfield will terminate at finite 

order. In the case of N = l supersymmetry, the most general superfield is given by 

f ( x , 9, 9) = a(x) + 9aipa(x) + 9 ^ + 92m(x) + 92n(x) 

+ 9aa^v„{x) + 929«\°{x) + 929aKa{x) + 9292d(x) (1.1.4) 

where we have not given any physical interpretation to the component space-time 

fields which arise as co-efficients at each order of the expansion with respect to 

the Grassmannian co-ordinates. By imposing constraints which are invariant under 

supersymmetry, one can reduce the number of degrees of freedom in (1.1.4) to any 

required by physical considerations. A simple example of a constraint is to impose 

reality on the superfield (1.1.4). That is / = / T . In this case, one sees that the 

above superfield reduces to 

C{x) + 9ai>a(x) + 9d{x)^{x) + 92 [M{x) + iN(x)] + 92 [M{x) - iN(x)} 

+ 9a^9v^(x) + 929aXa{x) + 9296X{x) + 9292D(x) 

where now C, M, N, v f l , and D are real. Other possible constriants involve deriva­

tives which are covariant under supersymmetry, and lead on to chiral superfields. 

These shall be introduced in later chapters when required. The supersymmetry 

transformation of the component fields which arise as co-efficients of the expansion 

of the superfield are given by reading off the coefficients of the transformation 

[(Q + (Q]f(xJ,9) (1.1.5) 

using the differential operators in (1.1.3). In (1.1.5) we see how superfields transform 

in the vector representation of supersymmetry. 

For physical applications, one is interested in constructing supersymmetry invariant 

actions. To this end, one can consider functionals of (constrained) superfields as the 
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integrands of an integral over the entire superspace. This involves integration over 

the Grassmannian co-ordinates 6 and 9, a process known to mathematical physicists 

as Berezin integration. The properties of these integrals, as well as the description 

of supersymmetric actions developed from superfields is undertaken in chapter 3. 

Finally, we remark that this discussion can be generalised to N=2 supersymmetry 

in 4d, but the essential idea is as above. One introduces the requisite number of 

Grassmannian co-ordinates, develops a differential operator representation of the 

supersymmetry algebra, and defines N=2 superfields as expansions in the Grass­

mannian co-ordinates. This is a long exercise, which is adequately dealt with in 

standard textbooks [94, 51]. In this thesis, we shall content ourselves with stating 

the relevant results. Often we shall simply work with the N = l superspace formula­

tion of N=2 supersymmetry, as in chapter 3. Those interested in further details of 

N=2 superfields should also consult that chapter. 

1.2 Low Energy Derivative Expansion 

An effective theory is an idea implicit in all of physics [20]. A student measuring 

the acceleration of an object due to the Earth's gravitational field does not need to 

know that the spacetime is - however slightly - curved. Instead, the postulates of 

Newtonian dynamics suffice. Likewise, at energies currently attainable by particle 

accelerators, one is not required to understand the details of string theory - or any 

other proposed GUT - in order to calculate the cross-section of a particular process: 

the standard model suffices. More generally, a basic feature of physical models is 

that processes occurring at low energies (or equivalently large distances) do not 

depend on the dynamics at high energies (small distances). Put another way, the 

influence of any high energy degrees of freedom on low energy processes is negligible 

and can be taken into account by absorbing their effect into effective vertices. All 

that is important to the low energy observer is that one has adequate degrees of 

freedom to model the system, obeying any symmetries relevant at the chosen energy 

scale. As in all particle physics problems, this notion can be cast into the language 

of Lagrangians and actions. 
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In applications to supersymmetry with spontaneous breaking of a gauge symmetry, 

a particular construction of the effective theory is useful. This is the "Wilsonian 

Effective Action," and it is used, for example, in Seiberg and Witten's analysis of 

N=2 systems. In this section, we shall develop the notion of this effective action. 

1.2.1 One Particle Irreducible (1PI) Effective Action 

As a prelude to describing the low energy Wilsonian effective action, we shall quickly 

remind the reader of another effective action: the one particle irreducible (IPI) 

effective action familiar from canonical presentations [24, 65, 67] of quantum field 

theories. This will also allow us to explain the meaning of a derivative expansion. 

Let 0 denote a field. Whilst the following analysis holds for fermions and gauge 

potentials, we shall consider 0 to be a scalar. This will circumvent the need to 

introduce anti-commuting quantities and ghosts into the path integral: elements 

which only obscure the main issues. The generating functional for the field theory 

is defined in the path integral formalism to be 

Z[j] = j Vcf>exp J d*xL[<f>,d<i>] + j{x)<f>(x^j (1.2.6) 

where j(x) is a source coupled to the <̂ >-field and L is the Lagrangian functional. The 

generating functional is at the heart of analysing quantum field theories since it can 

be used to calculate transition amplitudes for particular processes. More technically, 

differentiating Z m-times with respect to the source j leads on to the m-leg Green 

function 

Gm ( -El > 3-2 j • • • Xm ) = (0|T{</»(x 1)...^(.xm)}|0) (1.2.7) 

where T{} means the 0 are time ordered and |0) is the vacuum state. 

The generating functional can equivalently be defined as a series in sources. That is 

0 0 i m f ( r n \ 
Z\l\ = Y l ~I / - 7 ( X l ) ' ••j(Xm)Gm{xU . . . ,Xm) 

m=0 m - J \i=l J 

Normalisation of the ground state |0) to unity in (1.2.7) shows that (0|0) = Z[0] = 1. 

Also Gm(xi,... xm) = Gm(xi + a,... ,xm + a) due to translation invariance of the 

ground state. As such Gm only depends on the differences Xi — xj of the co-ordinates. 
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It is common to introduce a functional W[j] defined as Z[j] = exp^WTj]). This 

W[j] can be shown to generate the connected Green functions, where in this case 

connected means that the Feynman diagram has no subdiagrams which are not 

joined to the others by a propagator. Using this definition, the vacuum expectation 

value (vev) in the presence of an external source j(x) is given by 

<O|0(:r)|O) 6W[j] 
u(x) = (1.2.8) 

(0|0) 6j(x) 

and the vev {(f>) is given by l i m ^ o u(x). In (1.2.8), u(x) is determined by the external 

source j(x). To consider which source j(x) will produce a given u(x) it is convenient 

to introduce the Legendre transformation 

Y[u] = W[j] - J d4xj(x)u(x) (1.2.9) 

where T[u] is termed the effective action. Since 

Su(x) Su(x) J [ X ) J y d u ( x ) [ y ) 

i(x) + J d* 
5W 6j(y) 8j(y) 

we can use (1.2.8) to see 

6T\u} 
Su(x) 

Sj(y) 5u(x) Su(x) u{y) 

Translation invariance of the vacuum state means that whenever j = 0, u(x) must 

take the constant value (</>). This means that the vev (cp) is a root of the equation 
<sr>] 

Su 
u={4>) 

One may now develop T[u] as a generating functional 

r[«] 
oo „ / n \ 

n = l ^ \ i = l / 

(1.2.10) 

It can be shown that F[u] is the generating functional for the one particle irreducible 

[1PI] or proper Feynman diagrams. These are diagrams which have the property 

that the diagram remains connected whenever an internal line is cut. They are also 

defined to have no external propagators. Such diagrams are the building blocks of the 

quantum field theory. Without too much detail, integrations over momenta can be 
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carried out independently in each 1PI subdiagram of a given diagram. Connected 

diagrams are formed by linking 1PI diagrams by propagators, and m-leg greens 

functions by summing connected diagrams. 1PI diagrams are also central to the 

renormalisation program since if each 1PI subdiagram can be made finite, then one 

removes all ultraviolet divergences. 

An alternative expansion of T[u] is that of the derivative expansion 

— V e f f ( u ( x ) ) + -dyU(x)d^u(x) Zef j(u(x)) + terms with > 4 derivatives 

(1.2.11) 

which can be related to the alternative definition (1.2.10) on using the fourier trans­

form 

T{n)(k Em*""* r<n>( ) m Xi 1, 

/ Em* d xe m x 

conservation of momenta/translation invariance 

and expanding T about vanishing momenta. Odd powers of momenta in the expan­

sion (1.2.11) vanish due to symmetry under kr <-» — and the off-diagonal second 

derivative terms vanish on suitably choosing the basis of momenta vectors. The 

expression (1.2.11) is the position space representation of this momentum expan­

sion. It should be pointed out that the expression (1.2.10) for the effective action 

is highly non-local. This means that the derivative expansion (1.2.11), which has 

the appearance of being localised, would be preferred when one wishes to consider 

scattering processes. 

The standard references at the start of this subsection then show how this object, and 

in particular the effective potential V e f f , is used to define physically useful quantities 

in the renormalised theory such as the mass and coupling constants. I t is particularly 

useful when considering systems in which spontaneous symmetry breaking occurs. 

This is the situation in which the vacuum of the theory does not share a symmetry 

of the lagrangian. If this symmetry is global, it leads on to massless spin-0 states: if 

it is local and there are gauge fields, it leads on to the Higgs mechanism and yields 

massive gauge particles. We shall not require this formalism in this thesis. 

r[«l = / 1 ( f x 
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1.2.2 Wilsonian Effective Action 

As indicated in the general introduction to this section, physical models are often 

implicitly low energy approximations to a more general theory. In order that this 

takes place, one must remove explicit dependence on the high energy degrees of 

freedom. This procedure is termed "integrating out" the high energy modes, and 

can be achieved by constructing the Wilsonian low-energy effective action as shall 

be schematically described below. 

As previously, we shall limit our attentions to a single scalar field <j>(x). We begin 

by observing that expressions (1.2.9) and (1.2.6) imply that, in the path integral 

formalism, the 1PI effective action F[u) obeys 

where again L is the Lagrangian density, and u(x) the vev in the presence of the 

external source j. One can now split the spectrum of particle states into light and 

heavy modes. A mode is called "heavy" if it satisfies 

where k is the 4-momentum, m the particle mass and \x some cutoff consistent with 

regularisation - for example, in a regularisation scheme with a UV cutoff A, one must 

take \L < A - such that i i is much less than scale associated with the high energy 

physics. I t should be noted that the cutoff in (1.2.12) is imposed in Euclidean space. 

This avoids difficulties in Minkowski space where the components of k in lightlike 

directions is massive, whilst k2 remains small. Obviously, light fields are defined to 

be those that are not heavy. 

We shall denote heavy fields as (f)^, and light fields as fa. The low energy Wilsonian 

action Sw is then defined from 

Ztyexp i / <i4.xIW,a„0) (4>(x) - u(x)) / 

k2 + m2 > n2 (1.2.12) 

/ Sw(<t>i,n)-i J d'lxj(x)(4>i(x)-u(x)) exp iFw [u] 

where 

/ dAxL(0,, (j)h) 
J i ht 

expiSMufj.) V(ph exp i 
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In addition to the cutoff, an approximation has been made by demanding that 

the heavy modes decouple from the sources. This has the consequence that heavy 

modes only appear in loops, and are therefore absorbed into vertices. These ideas 

are perhaps best illustrated by a concrete example. 

Consider the massive (p4 theory with a cutoff regularisation. This theory has a 

generating functional given by 

where we have Wick rotated into Euclidean space, and ignore source terms for the 

sake of simplicity. We can now define the heavy and light modes as follows 

;eA < \k\ < A 
0 ; \k\ < eA 

0 ; > eA 
4>{k) ; \k\ < eA 

(1.2.13a) 

(1.2.13b) 

so that 4> = </•/ + 0/i • In these expressions we have introduced the momentum space 

representation of the fields, and have 0 < e < 1. Then 

Now, 

j dtxfaWMx) = j dAx j d ' k ^ y 4 j e/ 4 ^(27r)- 4 e i ( A : i + f c 2 ) ' c0 / i(A: 1)</) /(^) 

= I d'k^n)-4 I cPhMkiMh^Hki + k2) 

= 0 

due to the definitions in (1.2.13a, 1.2.13b). Likewise, J d4xd^hd^i = 0. Using 

these identities, we see that the generating functional separates into 

V f a e - ^ ^ ^ f f ^ ' ^ (1.2.14) 

where Lejj contains only those modes with \k\ < eA. The expression (1.2.14) makes 

it apparent that Lefj\<j>\ = L[<f>] + corrections. These corrections compensate for the 

removal of the high-energy modes by the introduction of interactions amongst the 
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light modes fa that were previously mediated by fluctuations of the heavy modes 

fa-

The integration over the heavy modes 4>h can be done as in other field theories. In 

particular, one can develop the Feynman rules for the (j>h fields. As such, we can 

define a free Lagrangian to be |(d</>/,)2 and the interactions to be given by the other 

terms involving (f)h in (1.2.14), including the quadratic (mass) term. Then, the free 

action for the heavy fields is given by 

j dClk{2it)-*fak)k2(l){-k) 

where we have used the fourier transform. This can be shown in the standard way 

to give rise to the heavy particle propagator 

Mh)Mh) = ^(27r) 4 M 4>(A; 1 + A:2)e(A:1) 

where the step-function Q(k) = < \ ^ f ^ — . ^ < ^ arises due to the definition of 
v ; \ 0 otherwise 

<f>h in (1.2.13a). The interactions can then be dealt with in perturbation theory. 

Since this shall not be important for the rest of this thesis, we merely point out the 

the light fields fa merely behave like co-efficients in the path integration over (ph. As 

such, one will obtain contributions to the coupling constants of the fa fields due to 

the 4>h loops. These are the effective vertices, and encode the influence of the heavy 

modes. Full details of this analysis can be found in [67]. Finally we remark that 

we can treat Sw in much the same manner as in the 1PI effective action in (1.2.11). 

In particular, one can construct a derivative expansion which will contain only the 

low energy fields and powers of their derivatives. This is what we mean by the low 

energy derivative expansion. 



Chapter 2 

Influence of Next to Leading 

Order Terms 

The existence of topological (Bogomolnyi) bounds is a general feature of physical 

systems with extended supersymmetry (SUSY). I t arises due to the special nature 

of the supersymmetric algebra as will be shown soon. Mathematically, these bounds 

are due to the fact that there exists a subspace - the space of BPS states - of the 

(graded) complex Hilbert space associated with the physical system for which every 

element is annihilated by a particular combination of the supercharges of the algebra. 

Physically they arise due to the presence of a Higgs mechanism which breaks the 

semi-simple gauge group of the theory to some (typically Abelian) subgroup. This 

mechanism leads on to a minimal energy for particles in the way highlighted by 

Bogomolnyi. As such, an important feature of any model we consider will be so-

called flat directions; manifolds of minimal potential energy. 

This chapter hopes to clarify the various issues surrounding the nature of topological 

bounds in theories with N=2 extended SUSY, and a semi-simple gauge group which 

is broken to an Abelian subalgebra by means of a Higgs mechanism. In particular 

the role of the Abelian sector in determining the BPS states will be exemplified, 

with a consequent discussion of the veracity of using a low energy effective theory 

to determine the quantum Bogomolnyi bound. Eventually an evaluation of the use 

of Bogomolnyi bounds in establishing Montonen-Olive duality in Abelianised N=2 

15 
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super Yang-Mills (SYM) shall be presented. 

2.1 Topological Bounds in S U S Y are algebraic 

A typical feature of classical field theories is that they possess greatest lower bounds 

on the energy of the system. These relations are termed Bogomolnyi bounds, and 

are usually derived by a clever manipulation of the Lagrangian associated with the 

model. In theories with extended SUSY, such bounds are generic since they appear 

as a natural consequence of the SUSY algebra. To see this consider the usual two 

component superalgebra introduced in chapter 1 

{Ql

aAQJp)]} = 2a^8)PM = 2m5^ (2.1.1a) 

= ta&Zli where Z ! J = - ^ ! (2.1.1b) 

{(Q1JAQJ

P)]} = ^ z \ 3 (2.1.1c) 

where we are assuming that the four momentum Pfl is related to the mass m through 

p2 — — m2. Since the particles have non-vanishing rest mass, relation (2.1.1a) is 

presented in the rest frame defined by PM = (—m, 0,0,0). In the above relations 

fj, = 1 , . . . , 4 is a Lorentz index, a, (3 = 1, 2 are 57(2, C) indices and i, j = 1 , . . . , N 

are the internal symmetry indices describing SUSY. As before, the supercharge Ql

a 

is a two component Weyl spinor whilst Zli is a central charge of the algebra. We 

have also used a representation of the Pauli matrices in which cru = — K2-

We follow VVess and Bagger [92] to investigate the representation of this algebra. 

Since the central charges Z l J commute with all of the generators of the algebra, and 

in particular amongst themselves, there exists a similarity transformation which 

simultaneously diagonalises these operators such that they have eigenvalues ZlJ. 

Due to the anti-symmetry relation in (2.1.1b) we can construct an N x N anti­

symmetric matrix whose entries are these eigenvalues. Standard texts on linear 

algebra then tell us that we can choose a basis such that this anti-symmetric matrix 

takes a standard form. This is achieved, in the usual manner, by an orthogonal 

transformation 

z i j = Ul

mUiZmn 
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In the case where TV" is even, this standard form is given by the direct product 

Z = t®D 

where e is a 2 x 2 antisymmetric matrix with e1 2 = 1 and D is a diagonal matrix 

with real entries Z4, A = 1 , . . . |vV. This result can be justified once we realise that 

every anti-symmetric matrix can be written in the form e ® M and then we perform 

the diagonalisation procedure to M. In component form 

Z13 = ( C 0 D)l] = (e ® D) aA,bB — ab j-^AB 

where we have decomposed the indices i = (a, A) and j = (b, B) with a,b — 1,2 and 

A, B = 1 , . . . , \N. Obviously Z13 = - Z ] i . 

In order to be consistent, we must also transform the supercharges as 

Qa = u;Qi 

Rewriting the superalgebra in this equivalent representation, we have 

(2.1.2a) 

(2.1.2b) 

(2.1.2c) 

We can now introduce an isomorphic algebra by defining the supercharges to be a 

linear combination of 

1 
V2 
1 

V2 L 
QlA - to0{QT) 2/U| 

and their hermitean conjugates (rAY and (sAY. Using the fact that 

1 

N/2 

and .12 1 we see that the commutation relations (2.1.2a-2.1.2c) give 

{rZ,(rgV} = rn6A5% - m e ^ S f f i - \e125AB Z B e a ^ ° + l-tape^ t 2 l 5 A B Z 

= {2m + Z)8AX 

B 

(2.1.3a) 
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Similarly 

{rtrg} = K\sf} = K \ S f } = 0 (2.1.3b) 

= S^(2m-Zn) (2.1.3c) 

(2.1.3d) 

Taking a — [3 and A = B in (2.1.3a) and (2.1.3c) we see that the inequalities 

2m + Zn > 0 and 2m — Zn > 0 arise. Multiplying these together, we wee that 

2m > \Zn\2 for all n (2.1.4) 

Since m is the mass, we seen that the supersymmetry algebra (2.1.1a-2.1.1c) gener-

ically gives rise to a Bogomolnyi bound. Thus, as promised, we have shown that a 

Bogomolnyi bound arises in supersymmetry without the need to recourse to a par­

ticular Lagrangian in a manner to be exemplified later. In theories with extended 

supersymmetry and their attendant central charges, we see the Bogomolnyi bound 

is an algebraic consequence. In the next section we shall look at the more interesting 

case of a physical example, and shall find that it is rigorous to talk of a quantum 

bound in systems with extended supersymmetry. 

Finally we remark that the relations presented in (2.1.3a-2.1.3c) have the form of 

an algebra of 2N fermionic creation and annihilation operators. The representations 

of such a construct are well known, and are formed by acting on the vacuum |0) 

defined by r£\0) = s^\0) = 0. Non-vacuum states are formed by the application 

of the creation operators (r^)* and (•s^1)t leading on to a set of 22N states due 

to the anticommutivity shown in (2.1.3b). However, if the Bogomolnyi bound is 

saturated, some of these states will be represented trivially and the dimension of 

the representation is correspondingly less. In particular, if there are r relations of 

the type 2m — ±Zn the dimension of the representation is reduced to 22(-N~r\ 

2.2 Quantum Bogomolnyi Bounds I 

Having shown that a Bogomolnyi bound arises in systems with extended SUSY on 

purely algebraic grounds, it is of interest to investigate a particular model. This will 
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justify our occasional use of the term "topological bound" and also allow a discus­

sion of the persistence such bounds show under perturbative and non-perturbative 

quantum effects. 

Due to its application to Montonen-Olive duality in Abelianised N=2 SYM [80], 

we shall consider an N=2 Super-Yang-Mills (SYM) theory with semi-simple gauge 

group Q broken by a Higgs mechanism to an Abelian subgroup Ti. In particular we 

take g = SU{2) and % = U{\). In this context N=2 SYM means that the field 

content forms a representation for both the gauge group (colour) and N=2 super-

symmetry. In practice this means the model contains an N = l chiral superfield 

containing the Higgs boson, in the same (adjoint) representation as a field strength 

superfield Wa, containing the field strength vIJLl, = d^Vy — dvv^ + iglv^^v^] with 

the gauge connection of the theory. This latter superfield is related to a (real) 

vector superfield V by Wa = — \D2 exp( — V)Da exp(V'). The classical Lagrangian 

expressed in N = l superspace for such a system is known [80] to be: 

C = -Urn J d29d29 tig (A exp{2gV) A + T-WaWa 52{9)^ (2.2.5) 

where the complexified coupling constant r = | | + f ^ i , © being the theta vacuum 

angle and g the usual gauge coupling. Using the techniques of chapter 3 the above 

expression can be reduced into component form, but the only important aspect of 

this for our purposes is the appearance of a superpotential E: 

E - trg [<j>, 4>}2 where <j>(x) = A(x, 9)\e=0 (2.2.6) 

This object describes a vacuum manifold defined by the vanishing of E. In the case 

of SU(2) this occurs only when 0 and 0 both lie in the Cartan subalgebra. Such di­

rections in the group manifold along which the superpotential vanish are generically 

termed "flat directions." That these classical manifolds of minimal energy persist 

even on quantisation is well known. The proof relies on the fact that the only way 

to generate a superpotential is to break the N=2 SUSY, a situation which cannot 

occur dynamically [53]. This powerful result will allow us to speak of a quantum 

Bogomolnyi bound. 

Following Olive and Witten [75] it is a matter of tedious manipulation to proceed 

from the component form of equation (2.2.5) to derive explicit expressions for the 
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central charge. We shall outline the method. Beginning with the component form 

of (2.2.5) one constructs the Noether current J£ associated with N = l SUSY trans­

formations in the usual way, remembering to differentiate out the spinor parameter 

Q i ) associated with the supersymmetry. One then proceeds to get (2.1.1b) by means 

of: 

{QlQi) = J r [C(2j • Q2 + C(2) • Q\Qi]=Jr [<P*\m4 = ^ z 

°^{2) a t > ( 2 ) J 

where A^ represents the infinitesimal transformation. The eventual result, on read­

ing off terms, is that the central charge 

Z = t r S ( / ( 2) J d3x dt (El(f) + Bi4>) (2.2.7) 

where the "electric field" Ef = and the "magnetic field" Bf — ^^jkV^, with 

v the s«(2)-valued curvature. We shall provide a more detailed calculation in the 

following section. 

Equation (2.2.7) has several important consequences. Firstly, it is a divergence term 

and so we may use Stokes theorem to consider a surface integral at spatial infinity. 

Since E and B both decrease asymptotically as r - w for large non-zero Z requires 

</>(oo) / 0. This in turn implies that the vacuum given by the necessary condition 

£ = 0 is determined by the flat directions with non-zero vacuum expectation value. 

So central charges imply non-zero vacuum expectation value. 

Secondly, the only components of the electric and magnetic fields important to 

the central charge are precisely those that permeate the vacuum. These are the 

gauge fields associated with the Cartan subalgebra of the original gauge group, 

since only these remain massless under the Higgs mechanism. In the case of SU(2) 

this subgroup is U(l) and so expression (2.2.7) has an interpretation as the electric 

and magnetic charges of the theory along the direction picked out 1 by the Higgs 

mechanism. This is the meaning of "topological bound": at least part of the central 

charge has a topological origin (the magnetic charge). In fact it has been written that 

the central charge is always associated with a topological current [86]. This is due 
lln the sense that, for example, the electric charge is associated with U(l ) rotations about the 

axis picked out by the Higgs at spatial infinity 
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to an observation that the two supercurrents, the energy-momentum tensor and a 

topological current (all non-anomalous) form a representation of the SUSY algebra, 

and the time-component of these currents can be integrated over space to obtain 

conserved charges; Ql

a, Q2

a, and Z. Although it may be objected that the electric 

charge is not topological in origin, it can at least be written as a boundary term. 

Note that the electric charge must be calculated using a Noether procedure (the 

global symmetry being U(l) rotations about the Higgs at large spatial distances), 

and is not the same as the gauge coupling. 

We now come on to the most fundamental part of the arguments to be presented 

in this chapter; the consideration of what happens to the expression for the central 

charge and the topological bound when one quantises the system. The classic answer 

was given by Witten and Olive [80] and is based upon the representation theory of 

SUSY algebras. In the case of N=2, representations can have either 22N = 16 states 

when massive or 2N = 4 when massless. The difference arises since in the latter case 

half of the SUSY generators are represented trivially. That states saturating the 

Bogomolnyi bound (2.1.4) form a short (that is massless) representation is seen by 

forming particular complex linear combinations of the supercharges, constructing an 

algebra isomorphic to (2.1.1b) et cetera, and noting that certain anticommutators 

vanish [92] when the mass is related to the central charge as in (2.1.4) with the 

inequality replaced by equality. There are then fewer non-trivial SUSY generators, 

and so the dimension of the representation on states is correspondingly less. This 

was shown in section 2.1. 

It follows that this must be true even when quantisation has occurred, a process 

which is not expected to generate twelve new states. The Abelian fields automati­

cally form a massless representation of SUSY, and so present themselves as a natural 

choice to describe the quantum BPS bound. The same cannot be said for those con­

taining the massive W ± particles which tend to zero at large distances. This idea 

has great implications for this chapter. In determining properties related to the 

topological bound we need only consider processes whose only external particles are 

the Abelian fields and their super-partners. This means we can realistically consider 

an Abelianised version of the ful l gauge theory - that is a low energy effective action 
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with the cutoff below the mass of the other gauge fields - to give us quantitative 

information of the Bogomolnyi bound of the model. We consider this later, but first 

give a more direct proof of the ubiquity of the Abelian fields in the Bogomolnyi 

bound. 

2.3 Quantum Bogomolnyi Bounds I I 

It is possible to conclude that the Bogomolnyi bound for the N=2 SYM theory 

with gauge group SU(2) arises solely from the Abelian fields by more conventional 

means. This shall be done by constructing the bound directly. Our starting point is 

the most general N=2 supersymmetric action with local gauge symmetry [79]. This 

obviously includes the quantised system, and is: 

S = — Im / dSjd'ed'6 
47T a*° v ' * 1 2d$ad<s>b 

(2.3.8) 

where the N = 1 superfields have component content: 

$(v) = <f>(y) + V28-ii>(y) + 82F 

<%) = </,* - 2%QaHd^ + ... 

v{y) = vwz{y) = -e^ev^ + ie2e -l-iPe • x + ^e2e2(v - i d ^ ) 

Wa = - ^ 2 e x p ( - \ / ) D Q e x p ( V 0 = -\D2(Da + l- [DQV, V]) 

= - i \ a + (sty - l-(a^tv,?j 9P + e'a^d^ 

We have worked with chiral co-ordinates y^ = x'1 + %6a^6 for ease, and the Wess-

Zumino gauge [92] since it provides the simplification (Vwz)n = 0 for all integers 

n > 3. Each of the fields is su{2) valued. For instance, A — AaTa where Ta is 

a generator of the Lie algebra associated with the gauge group. Lower case latin 

letters denote isospin indices. Also, the field strength = <9Mu" — duv^ + gtabcvbvl 

for SU(2) with vector potential and gauge coupling g. Of the other component 

fields 0 is a scalar "Higgs", ip is the higgsino, A the gaugino, and V, F auxiliary 

(non-propagating) fields introduced to ensure that the number of bosons equals the 

number of fermions off-shell. 
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Using these expressions it is possible to reduce (2.3.8) to the component action 

simply by looking for terms which transform as total derivatives under SUSY. It is 

well known that these are the 9262 terms in (2.3.8): 

S = Im / (Fx 
8?r J d(f)ad(f)' 

\{v + i *v)l„ -{v + i * v ) H 6 + V ^ V ^ * 6 .3.9) 
4 

with covariant derivative V£ b = d^S^+ige^v1^ and -kv^ = \t,w\KvXK the Hodge dual 

of 'Up,, such that -k2 = —1. In (2.3.9) we have written down only the contributions 

of the bosonic degrees of freedom2. This is because once one knows these terms, 

those parts with the fermionic and auxiliary degrees of freedom can be deduced 

using supersymmetric transformations. We have also neglected the expression for 

the superpotential since we will be interested in the physics on the vacuum manifold. 

The derivation of a Hamiltonian from (2.3.9) can be determined by the usual method 

of coupling the lagrangian density to a non-flat background metric tensor h and 

varying with respect to this field to get the energy-momentum tensor T^u as in 

general relativity: 

S[h] = J dAx Vdeth C[h:v^(f>,(l)*] so 

AhS = j d4x Vde~th A / i " " T^ 

Performing this well-known calculation gives a result extremely similar to the clas­

sical case since !F((f)) does not depend on the spacetime metric. This fact will lead 

to many similarities between the classical and quantum versions of the Bogomolnyi 

bound. Introducing the electric vector Ei = v0i = —El and the magnetic vector 

E>i = (*v)oi = —Bx with i = 1,2,3 we see, since the Hamiltonian H = f dax T00: 

H = ^-Im J d?x [EfEt + B1B\ + 2V l 0 a V ! 0* f t + 2 V o 0 a V o ^ ] (2.3.10) 

From this energy functional it is possible to construct a Bogomolnyi bound in the 

usual manner. First we must attempt to construct a first order differential equation 

(the Bogomolnyi equation). It is usual to consider the gauge VQ0 = 0 and we see 

2 I t should be noted that in deriving this action we have used the result Vfl5((^>) = gp-VM<?y\ 

This is clearly a covariant version of the usual chain rule for derivatives, and is derived in ap­

pendix A. 
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no reason to break this habit. Unlike the classical case this does not mean we 

are considering configurations with V , ^ = 0, since the presence of the d2T/dfidd 

prefactor modifies the equations of motion [21]. From (2.3.10) we get: 

1 r d2 T 
H = Im / d3x rffi£lb; 

16TT J d(ba<t>b 1 1 

N / 2 t f d2T 
16TT 

with Q,f — B? + iE? + \/2Vi</>a the Bogomolnyi operator for this system. The 

Bogomolnyi saturated states are then given by = 0, Vo^ = 0 and vanishing 

superpotential. It remains to determine what their energy is. After some tedious 

manipulation of the last term in the above equation using the trick of "adding zero" 

one eventually obtains: 

.f/oo = ~ f ^ m I d3xd, (2.3.11) 

which relies on the fact that T\i\a = d^vay the momentum density conjugate to 

v f , obeys V,-7r" = 0 when V o 0 a = 0. The symbol is intended to express 

that this is the contribution to the Hamiltonian from the boundary terms at large 

distances. Using Stokes theorem on (2.3.11) we see that it is a surface integral on the 

boundary at spatial infinity. This means that the only fields which contribute to the 

Bogomolnyi bound are those with infinite range: precisely the states which remain 

massless under the Higgs mechanism. For SU(2) this is the degree of freedom in the 

Cartan subalgebra, justifying our assertion that the Bogomolnyi bound is given by 

the abelian fields. 

Lastly, we introduce the (quantum) vacuum expectation values of 4> and the "dual" 

field <t>D = §^Ta as: 

lim (f)(x) — a l im 0£>(x) = dp 
|x | ->oo |x|—>oo 

so that we obtain the useful expression for the central charge 

Z = Hoc = \/2 (nea + nmaD) (2.3.12) 

where nea — — ^Im f dSliXi\a(j)a and nmao = — ^ I m J dSlBl^a4>a

D so that the Bogo­

molnyi bound on the mass M is as in (2.1.4). 
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2.4 Abelianised N=2 S Y M with Gauge Group SU(2) 

As pointed out previously, the Bogomolnyi bound for N = 2 super-Yang-Mills arises 

f rom the Abelian fields in the Cartan subalgebra of the subgroup. I t therefore makes 

sense to consider a model derived f rom the f u l l N = 2 super-Yang-Mills lagrangian, 

formally obtained by integrating out all of the massive modes and their related 

super-partners in a manner similar to that presented in chapter 1. The calculation 

of the effective action by this method would be extremely lengthy, involving a large 

number of terms. However, a simple counting method w i l l allow us to construct the 

derivative expansion of the low energy Wilsonian action. 

The on-shell component fields in an N = 2 super-Yang-Mills theory are the Higgs 

scalar 4>, its higgsino superpartner tp, the gauge potential v^, and its gaugino super-

partner A. The N = 2 transformations assemble them into a "diamond" structure as 

in figure 3.1. Off-shell one has to introduce auxiliary fields D and F to ensure that 

the number of bosonic equals the number of fermionic degrees of freedom, thereby 

preserving supersymmetry. The off-shell representation of N = 2 supersymmetry can 

then be encoded in an N = 2 superfield, much as il lustrated in chapter 1. In particular, 

the component fields enter as the coefficients of an expansion in two Grassmannian 

co-ordinates Q\ and This N = 2 superfield shall be denoted as A and its properties 

- in particular any constraints - detailed in chapter 3. Then 

where the groupings are in terms of N = l superfields, as w i l l be shown later. 

We now determine an expansion in terms of derivatives of the component fields in 

(2.4.13). Since we require that the expansion be N = 2 supersymmetric, this is most 

easily done working w i t h Abelian N = 2 superfield in N = 2 superspace. The general 

action in such a superspace is given by 

where L is a lagrangian density depending on fields and their derivatives. Let 

us introduce a counting scheme which w i l l allow us to express this action in its 

A D { [ < / v 0 , n [ A A , ^ ] } (2.4.13) 

/ S A, A ) ( f x / dz9ldz62d'6ldz02L(A,A) 
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derivatives. I f we denote [a] as the order of the operator a, then i t is clear we must 
take [dfj\ = 1. I t is now possible to construct the order of any other operator. The 
differential representation (1.1.3) of the superalgebra (2.1.1a) indicates 

" d 

M 

Likewise, since A is an expansion in 9X w i th lowest component <j>, we see [A] = [4>\. 

Since <f> has no derivatives, we take [</>] = 0. For consistency w i t h the dimension of 

the supersymmetry generators, we require [-0] = [A] = \ and [v^] = 1. For ease of 

reference, we tabulate the order of derivatives of various quantities 

Operator Dimension Operator Dimension 
1 dAx - 4 

e _ i 
2 9 _ \ 

2 
d2e 1 d 

00 
1 
2 

A, A 0 0 
A 1 

2 1 

Using this counting scheme, we see that the most general term of lowest order in 

the derivative expansion is given by 

J d4x J t / 2 M 2 % F ( A ) +c.c . (2.4.14) 

as found by Seiberg [79]. I f we let n be the order, then this term has n = —2. 

This leading order term is that investigated by Seiberg and Wi t t en . The functional 

F ( A ) is said to be holomorphic due to the lack of any dependence on A, and is often 

termed the '"'holomorphic prepotential". 

Now, a consequence of N = 2 supersymmetry is that there are no odd n terms in the 

expansion. As such, the next to leading order term expressed in N = 2 superspace is 

at n = 0, and is given by 

J d*x j d29l_d2e2_d26id1H{h,k) (2.4.15) 

where now H(A,A) is a real functional . In particular i t is not holomorphic. This 

object is referred to as the "Henningson prepotential," and i t encodes all of the 

next-to-leading order corrections in the derivative expansion of low energy effective 

N = 2 super-Yang-Mills. 

d 

del 

1 

2 K 1 = 01 
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One can now proceed to construct the derivative expansion order by order, but as 

this thesis w i l l be concerned pr imari ly w i t h the next-to-leading order term we shall 

simply note that the expansion becomes one in terms of (super)derivatives of the 

N = 2 superfield A, and that a Bianchi identity (2.4.20) means that (2.4.14) is the 

only holomorphic term that is possible. 

2.4.1 Leading Order Term and Seiberg Witten 

The leading order term (2.4.14) was used by Seiberg and Wi t t en in their examination 

of N = 2 supersymmetric gauge theories [80, 81]. As such, we review some features 

of this term and their use in Seiberg and Wit ten 's analysis. The interested reader 

eager for more details should consult one of the many pedagogical reviews of this 

topic [17], and in particular the rigorous appraisal given in [45]. 

The generality of the leading order term in the low energy effective action (2.4.14) 

means that i t can be used to determine any quantum corrections to the classical 

action which arises f rom the prepotential 

1 
F(A) - T i 

2 

where r is the complexified coupling constant. As such, one sees that 

d2F 
dA2 

(2.4.16) 

where (4>) is the vacuum expectation value (vev) of the Higgs scalar. This can be 

shown, using the method of reduction introduced in chapter 3, to generalise directly 

to the quantum case. As such, the holomorphic prepotential F encodes information 

relating to the coupling constant. 

One can now proceed to evaluate the quantum corrections to this classical result 

[14]. As noted in chapter 1, all supersymmetric theories have a (classical) U(1)R 

symmetry. In terms of the component fields, this acts as 

( ^ Q , A Q ) ^ e ' Q C 0 Q , A Q ) ct>^e2iact> 

where a is the U(1)R charge. In terms of the N = 2 superfield A this symmetry looks 
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like 

A' = e 2 l Q A (x, e-'a9h2) (2.4.17) 

so that the classical action w i l l be invariant i f the grassmannian co-ordinates trans­

form as 0 ' ^ eia9 as in chapter 1. Consider then the Lagrangian which has the 

correct fo rm to reproduce the component f o r m of the N = 2 super-Yang-Mills action 

L ( A ) = — I m [ d29ld292F(A) 
16tt J ~ ~ 

Under the symmetry (2.4.17) we see this transforms as 

L ( A ' ) = — I m f d29ld292F (e2lQA(x, e~ia 9)) 
167T J ~ ~ 

= ^ I m j d2Qld292e~AiaF (e2iaA(x,9)) 

which for an infinitesimal transformation means 

L + 5L = 
lt>7T J 

1 -Im / d29xd292 

~lm j d 2 9 x _ d 2 9 2 { \ - 4ia) ^ F ( A ) + 2iaA^j + 0{a2) 

16n 

1 + Aia - 1 + 
d 

d(A2) 
O(o2) F(A) (2.4.18) 

where we have used the result ^ = ^ - ^ f ? = 2 A ^ | 2 . I t has been shown in the 

literature that the U(\)a symmetry has an axial anomaly, and in particular that the 

one-loop result for SU{2) is SL = —•^oV^v'11'. Using the method of reduction, this 

arises f rom an N = 2 supeispace expression — g^-Im f d29\d292A2. Comparing this 

w i t h (2.4.18) we see 

a 
Air' 

I m / d29ld292 

d(A2) J 27r 
= 0 

so that the holomorphic prepotential F ( A ) obeys the differential equation 

d 1 
F ( A ) 

<9(A2) [ A 2 

almost everywhere. This equation has solution 

1 1 

2^ A 2 

(2.4.19) 
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where the integration constant A can be fixed by the value of the coupling constant 

at a subtraction point. As such, i t is renormalisation scheme dependent [30]. The 

expression (2.4.19) is the perturbative correction to the holomorphic prepotential F. 

A theorem of Novikov et. al. [17] shows that there are no higher loop corrections 

to the holomorphic prepotential of the Wilsonian effective action. As such, all that 

remains are the non-tr ivial non-perturbative corrections to the prepotential. These 

arise f rom instantons and can be put in the fo rm of an (instanton) series 

71=1 V ' 

where the co-efficients Fn are determined by direct instanton calculation. This series 

can be justif ied by noting that the regularisation scale A obeys A b = fibe 92(") where 

b is the negative of the beta-function which, in the theories under consideration, is 

given by (3 — Nf — 2NC where Nc = 2 is the number of colours and Nj = 0 is the 

number of flavours. As such, 6 = 4. The exponential is the typical weighting factor 

for a single instanton, and f j , is a characteristic scale of the theory which is taken 

to be the vev ((/>). Supersymmetrisation introduces A in place of ((f)) and the A 2 

factor appears f rom the semi-classical saddle-point approximation used in instanton 

calculations. 

This then gives a complete characterisation of the quantum holomorphic prepotential 

in the low energy effective action of N = 2 super-Yang-Mills. 

Seiberg and Witten Theory: A Brief Summary 

Seiberg and Wit ten 's analysis of N = 2 supersymmetric gauge theories w i th sponta­

neous breaking of gauge symmetry is, at its core, really a characterisation of the 

quantum moduli space of inequivalent vacua. In such systems, the classical theory 

has a potential (2.2.6) for the complex scalar Higgs field 4> which is in the adjoint 

representation of the gauge group. As remarked earlier, the vacuum is defined by 

the vanishing of this potential, a condition which is satisfied when the field 4> is in 

the Cartan subalgebra of the gauge group. I n the case of SU(2), this subalgebra 
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has rank 1 so that the vacuum - or flat direction - can be chosen to be 

, 1 3 , , / 1 0 where a3 = ( . 1 ) and a € C V Q _ x 

A n examination of the kinetic term for the Higgs scalars in the microscopic theory 

I j D ^ I 2 , where is the covariant derivative, on expansion about the vacuum state 

a ^ 0 shows that the gauge bosons lying outside the Cartan subalgebra develop a 

mass. Further, the gauge symmetry is broken to U(l). I n the case of SU(2) this is 

the famil iar Higgs mechanism giving rise to the massless photon and two massive 

gauge bosons W ± . 

The Weyl group links physically equivalent vacua, and in the case of SU(2) this 

means that the vacua states w i t h a and —a are indistinguishable. This requires 

the the co-ordinate of the classical modul i space of inequivalent vacua in SU(2) 

super-Yang-Mills to be 

u = ( tr f ) = l-a2 

where {•) means the vacuum value. In the classical theory, the point u — 0 cor­

responds to reinstating the f u l l SU(2) gauge symmetry and the massive particles 

becoming massless. As such, there exists a singularity in the modul i space at this 

point, so that the classical modul i space has the topology of a complex plane w i t h 

a puncture at the origin. 

As was remarked earlier, the flat directions persist under quantisation due to the 

general properties of N = 2 supersymmetric gauge theories. As such, i t is valid to 

enquire as to what way perturbative and non-perturbative corrections affect the 

classical modul i space. Of particular interest are the existence, or otherwise, of 

a global parameterisation of the modul i space and whether the punctures in the 

modul i space alter location and/or number. This is at the heart of Seiberg and 

W i t t e n theory. Since the analysis of that work [80] w i l l not fo rm a crucial role in 

this thesis, we shall content ourselves w i t h stating their main conclusions. 

They first observe that the cr-model metric on the moduli space appearing as the 

co-efficient of the kinetic terms for the scalars in the effective theory is given by 

I m r , where r has been defined previously as the complexified coupling. The holo-
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morphicity of r in (2.4.16) means that this metric is a harmonic function and cannot 

then be positive definite. As such, the modul i space w i l l have to be reparameterised 

in the strong coupling regime. Their observation is that a natural candidate for 

this reparameterisation is in terms of the dual variable a D = F'(a). Next they note 

the appearance of a singularity in the weak coupling regime of the quantum modul i 

space. Due to asymptotic freedom in N = 2 SU(NC) gauge theories w i t h N j flavours 

and 2NC > Nf they note that this regime corresponds to large a. In this range, 

the logari thm (2.4.19) in F(a) dominates, and so circuits about the point u = oo 

lead on to non-tr ivial monodromy in the variables a and in particular aD. This 

then shows a modification to the classical modul i space. Topological arguments, 

especially homotopy, then imply that there are at least two other singularities in the 

moduli space. Due to the axial anomaly in the classical U(1)R invariance, there is 

a symmetry u f-> —u in the modul i space. As such, Seiberg and W i t t e n make the 

minimal assumption that there are precisely two more punctures in the quantum 

modul i space. The physical interpretations of these singularities is that they arise 

due to massive particles which were integrated out of the weak coupling regime of 

the effective theory becoming massless at values of u which correspond to the punc­

tures. Seiberg and Wittens proposal is that the magnetic monopole which arises in 

Yang-Mills-Higgs systems becomes massless at one of the strong coupling singular­

ities. Using arguments involving the monodromy group, they then show that the 

other puncture arises f rom a dyon. 

The moduli space can then be given a geometrical interpretation. I t has been shown 

[45] that the modul i space is uniquely given by the quotient manifold H/T2 where 

% is the upper half plane and 

T 2 = {M E Sl(2, Z ) : M = l2{ mod 2)} 

a modular subgroup. This leads on naturally to a Riemann surface which gives a 

positive definite metric r as the ratio of the periods of this curve. 
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2.4.2 The Role of Higher Derivative Terms 

There are at least two ways in which the higher order terms can affect the analysis of 

Seiberg and W i t t e n , or they can fa i l to exhibit an S7(2,Z) duality. They can affect 

the Bogomolnyi bound in such a way that the conjecture that singularities in the 

moduli space of vacua comes f rom monopoles/dyons becoming massless is violated. 

We shall indicate that neither of these scenarios arise. 

A n N = 2 chiral superfield A is constrained by the Bianchi identity 

Da{lDJ

aA = D^D^A (2.4.20) 

which has been shown to be solved by the Mezincescu relation 

A = D4Da\lD3

aVl3 (2.4.21) 

in the abelian case. Here is a superfield constrained to be real and symmetric. 

The i,j = 1,2 are internal SUSY indices, and the Da are the usual N = l superco-

variant derivatives (since we are in a massless theory). We also have the chirali ty 

relation DA = 0. We examine these constraints in chapter /refch3. 

The above constraint (2.4.20) can be imposed in the par t i t ion function on the in­

troduction of a Lagrange mult ipl ier in the path integral 3 

/ £ % e x p z S ( A , A ) 

VAVA VVU 

expz (s{A,A) + J d{xdA9dAe V[3 {Da\lD{k - D\D^JA)^ (2.4.22) 

3 In general, the action S(A, A) can contain as many orders of derivatives as we please. 

That is we can have derivative interactions. In the context of classical mechanics, a La­

grangian L with functional dependence L(<p, c^(i)</>,... ,d^i),,,^n)<f>;x) has phase space co­

ordinates {4>, dfl(i)4>, • • • , ^;i(i).../i(n—1)0} and momenta co-ordinates. Quantum mechanically, the 

path integral measure could contain terms associated with these degrees of freedom, and the ques­

tion arises what the actual measure will be. Letting qi — <9,1(i)...^,(,)0, these co-ordinates are not 

independent. We have derivative constraints of the form = <9(i(,+ 1)<7, so we introduce these 

into the path integral via Lagrange multipliers and get 

/ (nr=o v < n ) e x p ( L ({<?;};x)) nr=i - ^ ( o ^ - i ) 
so that the measure reduces down to V<fi and the Lagrangian is as above. 
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where is the N = 2 superfield lagrange multiplier which is symmetric (since D^'D^ -
Da^Dl

a by the usual commutation rule for supercovariant derivatives) and real. 
This insertion plays much the same role as when one wishes to integrate over field 
strengths in the path integral rather than gauge potentials in gauge theories. Per­
forming integration by parts: 

J d4xd46d49 V[3 (DallDJ

aA - DID"13A) = j d4xd29 / ; ' / ) ' ' 7 ) / , V(, A + c.c. 

so that the par t i t ion function (2.4.22) reduces to 

Z = j 2?V(,-expiS'(A',A') 

where we have introduced the new field A' = D4 Da\l DJ

aVi:j which is an N = 2 chiral 

superfield in comparison w i t h (2.4.21). The action 5" is given by a variant on the 

usual Fourier transform 

e x p i S ' ( A ' , A ' ) = j VAVAexpi ( s (A,A) + J d4xd26A A + c.c. J (2.4.23) 

Such an operation is often termed an S-transformation of the action. I t should 

be noted that this is not a symmetry of the theory. The fields are different, as is 

the functional form of the action. In fact, there is no non-tr ivia l field redefinition 

which reinstates the original action. The S-transformation is often termed a weak-

strong duali ty since i t often relates a theory at strong coupling w i t h another at weak 

coupling. Since the S-duality is a Fourier transform we might expect that applying 

two such transformations w i l l give us back the original theory. This indeed occurs. 

Instigating the S operation twice on (2.4.22) yields 

e x p i S " ( A " , A " ) = j VAVAVAV& expi (^S(A,A) + J d4xd20A'A + A A"^j 

Doing the integration over A' and A' gives the result that 

expiS"'(A", A " ) = e x p z 5 ( - A " , - A " ) 

so that apart f rom the t r iv i a l field definition A —> —A (which are related by a VVeyl 

reflection in the fu l l gauge theory and so are physically equivalent), we see that 

S2 ~ / where / is the identity transformation. 
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We now introduce the notion of a T-transformation. In ordinary Yang-Mills this 

corresponds to shif t ing the 0 vacuum angle by 2ix. This is unobservable. Its analogue 

in the N = 2 superfield formalism is to add into the action in (2.4.22) the term 

d4xd49-AA + [ d4xd49-AA 
2 J 2 

since the reduction of this expression to the N = 0 component fields has in i t a part 

3^i>' i" * wi th v^w the abelian field strength. From ordinary Yang-Mills this is 

precisely the term which shifts the vacuum angle by 2n. I t is now possible to consider 

the effect of the composition of S and T transformations on equation (2.4.22) 

T : = e x p i ^ S ( A , A ) + j d4xd29^AA + c.c.j 

ST : = expiSi(Ai, Ai) 

J VAVA exp i (^S(A,A) + J d4xdA6 QAA + A A i ) + c.c. 

( S T ) 3 : = e x p ^ 3 ( A 3 , A 3 ) 

VAVAVAx VA\ VA2 VA2 

exp i S(A,A) + j d4xd49. 

^ (AA + A i A i + A 2 A 2 ) + A A j + A i A 2 + A 2 A 3 ^ + c.c. 

Doing the A j followed by the A 2 integration implies that 

exp iS3 ( A 3 , A 3 ) = exp iS(A3, A 3 ) 

so (ST)3 ~ / . 

Now, the two relations S2 = 1 and (ST)3 = 1 are the defining relations of the group 

57(2,Z) = {m G M 2 ( Z ) | d e t ( m ) = 1} which describes the modular transformations 

on the upper half plane of complex numbers. I f we were speaking in terms of the 

matr ix group, the S and T transformations would be the generators of the group. 

As a result of this, the action in (2.4.22) exhibits an 57(2, Z ) duality. Since this 

action was general enough to contain higher derivatives, we have shown that one of 

our mechanisms for violat ing the results of Seiberg and W i t t e n does not arise. 

We now turn to the influence of higher order terms on the Bogomolnyi bound of the 

system. Since the low energy effective action is also N = 2 supersymmetric i t has such 
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a bound by the results of section 2.1. Furthermore, since these higher derivatives 

give the results for processes up to a scale l / / / 1 for n-th order term, this Bogomolnyi 

bound must agree wi th that in (2.3.12) at least to the same accuracy. We remind 

the reader that /J is the energy above which modes are integrated out of the theory. 

A direct calculation of this bound 4 as in section 2.3 or of the central charge as 

outlined in section 2.2 using component fields is not feasible. This is because the 

higher derivative action has an extremely large number of terms. For example the 

next to leading order term has 0(500) pieces in terms of N = 0 component fields. I t 

is for this reason that we look for a short cut. This w i l l be the fact that the higher 

derivative terms exhibit an 5/(2, Z ) duality. 

First of all we indicate that the term associated wi th the electric degrees of freedom 

are precisely the same as those in (2.3.12) so that higher derivatives do not con­

tribute. We follow a clever trick of Seiberg and Wi t t en . Consider coupling matter 

minimal ly to the super Yang-Mills fields appearing in (2.3.8). This is done by intro­

ducing an N = 2 hypermultiplet which transforms in the fundamental representation 

of the gauge group. Such superfields contain (s)quarks in the N = 0 language. In the 

N = l superfield formalism, they contain two chiral superfields Mj and M A Here we 

shall specialise to the number of flavours Nf = 1 and so drop the / label. Of course 

M transforms in the conjugate representation of M. In addition to the canonical 

kinetic terms, there is an N = 2 superpotential 

^matter = \FlAMM + 7 / M M 

where A is the N = l chiral superfield in the N = 2 vector mult iplet . In this equation, 

the first term looks like a Yukawa coupling between the Higgs and the quarks and 

the latter is a mass term for the hypermultiplet introduced by hand. We can arrange 
4 One has to take care in calculating the Hamiltonian for higher derivative Lagrangians. As a 

simple example consider the classical Lagrangian in 1 + 1 Cartesian space with explicit dependence 

L(x, x',x"; t ) wi th prime denoting time derivative. This has degrees of freedom q\ = x and qi = x'. 
The corresponding equation of motion derived from a variational principle is = ^ — j£y • 

This means that the conjugate momenta are clearly p \ = j ^ h and p 2 = §~ — §i§^r- A suitable 

Hamiltonian is these H = piq[ + P2q'2 — L with the constraint q[ — q2- This may affect the naive 

expectation of the Hamiltonian being given by H = § j j x ' — L. Care must be taken should you be 

so inclined to want the Hamiltonian. 

file:///FlAMM
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the mass 77 in such a way that the matter is not integrated out when we construct the 

corresponding Wilsonian theory below the energy of the massive gauge bosons. This 

being the case, the mass of the quarks can be read off the Lagrangian as \\/2a + 771 

where the vacuum expectation value a is as in (2.3.12). Put t ing q to zero we see 

that the fundamental electric particles have mass \y/2a\ when we perform the Higgs 

mechanism so that the Bogomolnyi bound for electrically charged particles in the 

Wilsonian theory is 

M > V2\nea\ 

where the number of electric units is ne. Note that higher derivative terms cannot 

affect this result since we have read the mass term off of the Lagrangian directly. 

I t is not possible to perform such a manipulation for the magnetically charged par­

ticles since these are not elementary excitations that explicitly appear in the La­

grangian. We must t ry to derive them by alternative means. 

Decomposing the general Wilsonian action 5 (A, A ) w i t h all orders of derivatives into 

5 (A, A ) = Sh(A, A ; - ) + / cfxcPOTik) + c.c. 
/J J 

where T is the leading order prepotential in the low energy expansion in powers of 

j-t and 5/i contains all other terms, we perform an S-transformation as in (2.4.23) to 

get 

S S f 
expzS ' (A ' ,A ' ) = expiSh(-i — , - i - ^ ) e x p i / cf 4 .xd 4 0.F / (A / ) + c.c. (2.4.24) 

oA' oA' J 
The dual prepotential J7'(A') follows f rom 

expz I d4xd46T'(A') = JvAexpi J d'ixdi9 (J^(A) + A A ' ) (2.4.25) 

In (2.4.24) we have performed a manipulation much as in the derivation of pertur-

bative Feynman rules in field theories. Introducing the dual N = 2 chiral superfield 

A „ = £ ( A ) 

we assume that Ap assumes every value once and only once. I t then possible to 

evaluate (2.4.25) by expansion about the unique stationary point given by 

— ( ^ ( A ) + A A ' ) = 0 =» AD = — = - A ' (2.4.26) 
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Since S2 ~ / we let the value of A corresponding to this point be A = A'D so that 

^ ( A D ) 4- A' = 0. Usually an expansion about the stationary point would factorise 

the value of the integrand 5 and there would be a non-tr ivial integral to perform. 

In the case of (2.4.25) the presence of supersymmetry gives a simplification. We 

can make a holomorphic change of variables such that the associated superjacobian 

is unity. The super-jacobian is used to preserve the supersymmetric nature of the 

integrand. To illustrate this point we consider two simpler cases. First consider a 

model w i t h one Grassmann superspace co-ordinate 9. A chiral superfield w i l l have 

the 9 expansion 

$ = (J) + s/29i; 

w i t h 4> a boson and ip a fermion. We instigate a holomorphic change of variable by 

$' = </($) = g(q>) + \ / 2 0 ^ = </>' + V26ip' 

where g is a holomorphic functional . The super-jacobian for this is given by 

: 1 
'5& 

Sdet [ — I = Sdet 
6$ 

5g I 52g 
Sip 

0 % 

by the formula Sdet" 1 ^ ^ = ^ ^ f ^ T ' ^ w h e r e -4< 5 ' C > a n d D a r e respec­

tively bose-bose, fermi-bose, bose-fermi and fermi-fermi submatrices. 

Now let <£> be an N = l chiral superfield wi th the usual 9 expansion $ = (f>+ \/29aiJja + 

92F using chiral co-ordinates. The Grassmann parameter 9 is a two component Weyl 

spinor, and F is an auxiliary field. Performing the change of variables 

we see 

Sdet 
6^ 

Sdet 

5g_ 

' p i 0 ' 

M 2 0 
5<f>2 

0 0 

0^i £fV>2 

3For instance in I D Cartesian space J d x e x p f ( x ) = exp(/(a;o)) / dxexp (^2™=2 ^ " L 0 ^ »!°̂  ) 

where j £ | —0 and xq is the stationary point. 
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as above. 

By the extension of these results to the N = 2 superfield formalism we can transform 

the seemingly intractable (2.4.25) to a Gaussian integral. This has the same number 

of extrema and can be given the same numerical value at this point. Consequently 

the result at the stationary point A = A'D is all that matters. The dual potential 

then becomes 

JF ' (A ' ) = F(A'D) + A'DA' 

wi th = A'D = A. I t follows that £f ( f £ ( A ' ) ) = f f (A) = - A ' . This can be 

represented more succintly as 

/ A \ _ S / A ' \ / 0 - 1 \ / A \ / - A D \ 

\ Ap J y A ' D J \ 1 0 ) V A D ) \ A ) 

Inspecting (2.4.24) a simple dimensional analysis [60] shows the higher derivative 

terms in the Wilsonian action can only be transformed to similar terms in the dual 

theory. This is extremely important for us since i t implies that the mass terms in the 

dual Lagrangian w i l l come purely f rom the leading order term JF'(A'). The higher 

derivatives do not contribute. By the previous analysis on the mass formula of the 

elementary electric excitations we can say that the corresponding particles in the 

dual theory w i l l have a mass given by M = \/2\aD\ w i th aD as in (2.3.12). These 

modes are the "magnetic monopoles" so that the mass formula 

M = V2\nea + n m d £ > | 

for dyons in the low energy Lagrangian is precisely the same as in the f u l l theory. 

The higher order derivative terms do not affect the mass formula at al l . As a result 

our second route to violat ing Seiberg and Wit ten 's analysis does not bear f r u i t . 

2.5 Conclusions 

This chapter has introduced the derivative expansion in iV = 2 supersymmetric 

gauge theories, and used the duality properties of such a construct to consider pos­

sible modifications to the conclusions of Seiberg and Witten 's work on the quantum 
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moduli space of the low energy effective model. A few papers [70, 97, 95] have at­
tempted to study the higher derivative terms in a more systematic manner. Due to 
calculational difficulties, their attention focused on the next-to-leading order term. 
Perhaps the most ambitious attempt to synthesise the knowledge about this term 
was undertaken by Matone [70]. That author took the known behaviour of the Hen-
ningson prepotential H(A,A) at weak coupling - that its one-loop contribution [95] 
was proportional to In A In A and that i t should have m-instanton/n-anti-instanton 
contributions [97] of the form ( A / A ) " 4 m ( A / A ) " 4 " where A is the Wilsonian cut-off. 
This information arises f rom direct calculations, and there is no reason to doubt its 
validity. In addit ion, Matone also assumed that the weak coupling singularity due to 
the logarithm was the only one for H(A, A ) and that the zeroes of that functional are 
precisely at the locations in the modul i space where the singularities in the leading 
order term appeared (that is, where the once massive monopole becomes massless). 
His just if icat ion impl ic i t ly assumed that this was required to ensure that the results 
of Seiberg and W i t t e n were not altered by the higher derivative term. However, the 
results of this chapter seem to indicate that this is not the case: the higher deriva­
tive terms do not, a pr ior i , affect the conclusions of Seiberg and Wi t ten , even i f the 
Henningson prepotential H does not vanish at the punctures in the quantum modul i 
space. Likewise, i t is debatable whether the behaviour at weak coupling is enough to 
determine the global fo rm of H. This is because the prepotential at next-to-leading 
order is non-holomorphic, meaning that the concept of analytic continuation is not 
well-defined. As such, whilst Matone's conjecture as to the form of H(A,A) may be 
correct, this would be more fortuitous than one might hope. 

As i t stands, one might hope to check Matone's results by comparing the expansion 

of his formula w i t h higher loop contributions to H. We note, however, that there 

have been indications that these quantum effects are null . In particular, i t has been 

shown that the two-loop contribution vanishes [52]. 

Finally, we remark that due to the calculational difficulties and their lack of influence 

on the physics, there is no interest in determining the explicit form of the higher 

order terms other than for completeness. 



Chapter 3 

Higher Derivatives and Instantons 

One of the most satisfying features of supersymmetric theories is that they often yield 

non-renormalisation theorems. By considering the symmetries of the problem, Dine 

and Seiberg [36] were able to develop such a theorem for the next to leading order 

term in the low energy expansion of certain supersymmetric theories on the Coulomb 

branch. In particular, they were able to demonstrate that the non-holomorphic 

prepotential H(A,A) in N = 2 supersymmetric gauge theories w i th vanishing (5-

funct ion is one-loop exact: i t recieves no quantum corrections f rom higher orders in 

perturbation theory, nor f rom non-perturbative phenomena such as instantons. 

This chapter aims to validate this non-renonnalisation theorem for the instanton 

contributions to Ti. As such, we shall be required to obtain the interaction vertices 

which appear in the component form of the next to leading order term of the low 

energy expansion. Once these are obtained, we shall be able to investigate instanton 

contributions to this prepotential uti l ising the A D H M method for multi-instantons. 

3.1 Reduction of the Superfield Action 

In this section we shall derive component terms in the low energy expansion of the 

N = 2 super Yang-Mil ls action. This information w i l l enable us to investigate the role 

of instantons in such theories. We shall utilise the method of projection (REF:Rocek 

40 
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et al) to remove all explicit dependence on fermionic super-co-ordinates that appear 
in the Lagrangian originally expressed in terms of superfields. 

3.1.1 Normal i sat ion of the Superspace Measure 

We shall follow the conventions of Wess and Bagger [92] when dealing wi th indices. 

Berezin integration of a single Grassmannian variable is defined as 

dee = I 

Now consider the equivalent expression in an N = l superspace 

j d 2 e e e = N J de°ea(}de'} e^^e5 

where N is a normalisation constant to be fixed, and elS is the anti-symmetric tensor 

which relates equivalent spinor representations. The indices a, ft,... take the values 

1 or 2. In essence, i t can be thought of as an artifice for raising and lowering spinor 

indices. I t is defined such that e n = — 1- Then 

d2e ee = 4N J dehw2 exe2 = -AN 

where we have used the anti-commuting property of Grassmannian variables. I f we 

now demand the convention that f d2eee = 1 [92, pp 62] then we must normalise 

the measure via N = —1/4. In an abuse of notation we may wri te 

d2e = --deaea0de'} 

4 

Similary 

d2e = - - S ^ S f , 
4 p 

d2ed2e = ^deaeaPde0de^de^ 

These formulas generalise in an obvious way when we have more than one super-

symmetry. In particular, the measure in N = 2 superspace w i l l be normalised as 

d2eLd2e2 = ^d&itaPdeld9^ta>p,de{ 

d2eLd2e2_d2eLd2e2 = ^deieaPdefde^ea.0>d9^de2te6$ddjdel,€&^'d^, 

where the underlined numbers indicate the relevant supersymmetry transformation. 
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3.1.2 T h e M e t h o d of P r o j e c t i o n 

The method of projection is a procedure which facilitates the reduction of actions 

expressed in terms of superfields to that where the dependence on component fields 

is explicit (or in the case of extended supersymmetry, dependence of superfields f rom 

a superspace of lower dimension). 

We shall investigate a simple, non-tr ivial example which wi l l i l lustrate the method of 

projection. Consider an Abelian N — 1 vector field strength superfield Wa(x;9,9). 

This has the constraints [92] 

D«Wa = 0 DaWa = D6W£ (3.1.1) 

where we have introduced the conjugate field W as well as the superderivatives 

d 

The first of the constraints in equation (3.1.1) means, in the parlance of supersym­

metry, that W is "chiral". A simple change of co-ordinates can now be introduced 

to s implify subsequent calculations. We redefine 

(xm,ea,eA) — • ( y m = xm + i9ame,9Q,9a) 

w i t h the effect that 

Da 

I t can then be shown [92] that 

Wa{y;6) = - i \ a ( y ) + 

d 
d9« 

90 + 99aZdm\Hy) 

where v m n = dmvn — dnvm is the usual abelian field strength, w i t h vm the vector 

potential. The equation of motion for D(y) is polynomial, and as such D(y) auxiliary 

and can be eliminated by use of the solution to the equation of motion. The field A 
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is the supersymmetric partner o f v m and is often termed the gaugino. The remaining 

symbols are 8, the Kroneker delta, and a m n = \ (arnan — anom) w i t h am a Paul i 1 

matrix. 

Consider then the expression 

^ J d 4 x j d29 j d 2 9 W { x ; 9 , 8 ) W { x ; 8 , 9 ) = ^ J d 4 y j d29W(y;9)W{y;8) 

where we have used the fact that the Jacobian of the co-ordinate transformation is 

unity. 

We now proceed to reduce this action by the method of projection. This is essentially 

a supersymmetric generalisation of a property of Berezin integration of Grassmanian 

variables. I t is well know that such an operation is equivalent to differentiation as 

follows 

f 8 f 8 
I d9 9 = 1 is equivalent to — 9 — 1 and / d8 1 = 0 is equivalent to — 1 = 0 

J 89 J 89 

To simply replace the integration measure w i t h ordinary differentiation w i t h respect 

to Grassmanian variables would not guarantee that the result of the reduction would 

be supersymmetric. Instead, one must use the superderivatives Da and D& since 

these operators are defined to commute w i t h the generators of the supersymmetry 

transformation. Af t e r performing manipulations w i t h these derivatives, one sets to 

zero all Grassmanian parameters. This step extracts the correct term f rom a more 

general expansion. Following this recipe, the specific details for (3.1.4) are 

d29WW = -^d8aeafjd90WW 

= ^-DaDQ(WW)\ 
lb 

= _ I (DaW0\ DaVV0\ - W0\DaDaWp\) 

1 8 
\V I W I fa f^K + - f ^ W I f Q / 3 — W I 

8 89a 89^ ^ p a 8 89P89C 

- \ ^ l K W D ~ * { ° m T Vmn) [SID ~ i [0^]l V p q ) -

-AD2 - l-\am8rn\ - l-vmnvmn + ^ v m n *vmn (3.1.2) 

1 Although not required, for those who like to see a specific representation of the Pauli matrices, 

we can take a0 = ( \ ), <n = ( J J ) , a2 = ( ° ~* Y a3 = ( J ^ 
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The vertical bars indicate that one should set all Grassmanian co-ordinates to zero; 

that is 9a = 6a = 0. We have used the identities 

Tvamn = 0 

Tr (amnapq) = - - { i f n p i f q - i j m q r r ) ~ - c m n p q 

2 2 

and that Da anti-commutes w i t h Wp. One finds that this agrees wi th the more 

direct procedure of extracting the 0{92) terms f rom the series expansion of M^I 'V^ . 

This therefore indicates that the method of projection il lustrated above is valid. 

A similar calculation can be performed on \ f d29 WW w i t h the result that, when 

combined wi th (3.1.2) 

^ J dAx j d29 j d29 WW + WW = \ d 2 { x ) - i \ a m d m \ - \ v m n v m n (3.1.3) 

which is precisely the component form of the N = l supersymmetric generalisation of 

abelian gauge theories which appears in the literature [10]. 

In later sections we shall utilise information derived f rom the Lagrangian to per­

form instanton calculations. As such, a great deal of importance is attached to 

self-dual and anti-self-dual gauge fields, where (ant i -)self-dual i ty is defined by 

e m n p q B p q = ( — )Bmn where B is an arbitary 2-tensor having the relevant prop­

erty. In anticipation of this, we can rewrite the result (3.1.3) using a more useful 

notation. 

The field strength v m n in Minkowski space can be decomposed into self-dual (SD) 

and anti-self-dual (ASD) components using the identi ty 

Vrnn ^ ^VmpVnq ~ VmqVnp + ~^mnpq^ ^ 

2 {^IrnpVnq i^mrtpq) V P q 

- ( \ 

— 2 \ ^ m n *"™n) 

and v*™ = (v%?. 

I t then follows that v m n = (v%£ + v ^ 0 ) and *vmn = (vm% - v*s

n

D). 



CHAPTER 3. HIGHER DERIVATIVES AND INSTANTONS 45 

Using this decomposition the action (3.1.3) can be rewritten as 

\d4x J d29 J d29WW + WW = 

l-D2(x) - i X a ^ X - \ ( v S D f - \ ( v A S D ) 2 (3.1.4) 

which is now more transparent for the purpose of investigating contributions f rom 

(anti)self-dual solutions, for example i f we wish to consider the situation of an in-

stanton background. 

As a consequence of the above calculations we can write down a heuristic recipe for 

the method of reduction 

d29 —> -DaDa\g=g=0 

d29 —> -^DaDa\e=e=o 

3.1.3 T h e R e d u c t i o n of the N = 2 Effect ive A c t i o n 

Using the techniques presented in the previous section we shall now reduce both the 

leading and next-to-leading order terms of the N = 2 effective action of supersym-

metric Yang-Mills. 

N = 2 C h i r a l Superfields 

When dealing wi th physical models invariant under two independent supersymmet-

ric transformations i t is extremely useful to enlarge the N = 1 superspace to contain 

two fermionic co-oridinates. Such a construct is termed an N = 2 superspace [56] 

and fields defined therein N = 2 superfields. The general expansion of such a 

(constrained) superfield contains the relevant physical fields, and can be used to 

introduce N = 2 invariant Lagrangians and so, by integration over the superspace, 

actions. 

There are essentially two N = 2 superfields: the chiral superfield containing compo­

nent fields which transmit the gauge field, and hypermultiplets which are typically 
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X 

iP iP 
5v O 

N=2 N=2 
Vector Hyper 

Multiplet multiplet 

iP iP 

X 

Figure 3.1: On-Shell Field Representations of N = 2 Supersymmetry 

used to represent matter. They can be presented pictorially as in figure 3.1. This 

diagram shows the relation of the various component fields. In this chapter, we shall 

be part icularly concerned wi th the N = 2 vector mult iplet . 

The manipulation of N = 2 quantities is aided by the use of superspace techniques. 

In particular, the information regarding the N = 2 vector mult iplet is encoded in an 

N = 2 chiral superfield A which has been determined [51] to satisfy the constraints 

A A = A A = 0 (3.1.5a) 

DLD3-A = D-D]-A (3.1.5b) 

where contractions over fermionic indices is understood. In these equations i G 

{ 1 , 2 } labels the supersymmetry. 

In general, the supercovariant derivatives appearing in the above constraints can 

have an operational dependence on the central charge Z of the N = 2 superalgebra. 

In the case of the chiral superfield A we can effectively neglect such a dependence 

since 

0 = { D l D ^ A = e . ^ D z A 
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where we have used the condition (3.1.5a). Here Dz is the differential operator 

related to the central charge. I t should be apparent that Dz = dz, thereby illus­

t ra t ing that A is independent of the central charge, and that we can ignore the 

central charge differential that would usually appear in the superderivatives. 

The former constraint (3.1.5a) is the counterpart of the N = 1 chirality condi­

t ion, whereas the second (3.1.5b) enforces the correct number of degrees of freedom. 

Whils t aesthetically pleasing, the N = 2 superspace formalism is unwieldy for prac­

tical calculations. As such, we shall reduce down to an = 1 language and thereby 

extract component expressions f rom the action. 

The N = 2 superfield can be thought of as an expansion in the Grassmannian co­

ordinate 02, where the co-efficients are famil iar N = 1 superfields. I t is usual to take 

the following definitions [94] 

$ = A\e2_=o W a = D | A | % = 0 J = —DgDgAU^o 

where J is a field which we shall show can be replaced by an expression in terms of 

A using the constraints. 

We can derive the N = 1 chirality condition f r o m (3.1.5b) 

DlaA = 0 => D&& = 0 

Z ) i 6 A = 0 =^ D2aDlaA = 0 

=>• DiaDgaA 

=> DaWQ = 0 (3.1.6) 

We next consider the second constraint (3.1.5b). First ly we investigate the case 

1 = 1 , 1 = 2 . 

DlD-A = e—e—DgDiA = DLDgA = D ^ A 

and taking 02 = 0 we derive an additional constraint on the N — 1 vector superfield 

DaWa = DaW" 

which taken together wi th (3.1.6) therefore shows that Wa is the usual N = 1 vector 

superfield containing the gauge field strength, and that $ is a chiral N = l superfield. 
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The fact that the internal supersymmetry indices are raised and lowered by the 

antisymmetric epsilon-tensor is related to the fact that for N = 2 theories, there is 

an internal symmetry group SUR(2). In fact, i t can be shown [29] that this so-called 

"R-symmetry" together w i t h N = 1 supersymmetry automatically gives a theory 

w i t h N = 2 supersymmetry. 

Now consider i = j = 2 in (3.1.5b). Then 

D-D-A = ••• = DaDQA = D ^ A 

with the result on setting 92 — 0 

J 
1 

DaDn<& 

The conjugated result comes f rom considering the i = j = l constraint. 

I t is now possible to use these results to reduce actions in a similar manner to that 

done in the previous section. The simplest case, and one which is very instructive, 

is to attempt the reduction of an action constructed f r o m an Abelian holomorphic 

N = 2 prepotential .F(A) 

Sr, = I m j c / 4 x d 2 M 2 % F ( A ) 

I m / d4xd29, 

1 

-DgD^iA) 
J 02 

Im / crxd%[D2{D2&F{A))]t 

4 

I m 

^ I m j d4xd29L ([D1D1A]l 

hm J d4xd29L ^[D1DzA]l 

hm J dAxd29i ^ [DLDLA] 

j d4x 

or 
~A 

dT_ 
dA 

+ [D2_A}ei[D2_A}gi 

d2T 
dAdA 

<9<&<9<i> a $ 4 - (3-1.7) 

where the }g2 indicates that one sets the co-ordinates 92 = 0. This result is an F-term 

since we are integrating over only half of the superspace Grassmannians. 

The second term in this final expression should be famil iar as the action for the 

jV = 1 massless super-Yang-Mills theory. This should be even more apparent i f we 
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introduce the specific holomorphic prepotential 

^ ( A ) 
1 

TA 

which gives the correct classical action. In this expression r is the complexified cou­

pling constant. More generally we see that the N = 2 superspace expression (3.1.7) 

leads on to kinetic terms for the gauge fields, the Higgs and their supersymmetric 

partners. Further, we can identify d^T{4>) as a generalised complexified coupling 

constant which for suitable T w i l l encode loop and instanton quantum corrections 

As such, the above action is recognised as that of the N = 2 supersymmetric U(l) 

action expressed in terms of TV = 1 superfields. I t is also ubiquitous in Seiberg-

W i t t e n theory since this is precisely the lowest order (2 derivative/4 fermion) term 

in the Wilsonian effective action. 

I t is possible to reduce this action into component fields using methods similar 

to those used previously, but we choose not to duplicate that analysis. We note, 

however, that i t can be reduced to the component form of the N = 2 super-Yang-

Mil l s theory. 

3.1.4 N o n - H o l o m o r p h i c P r e p o t e n t i a l 

In chapter 2 we introduced the next-to-leading order term in the low energy deriva­

tive expansion of N = 2 super-Yang-Mills theories in the absence of matter. I t was 

pointed out that this term could be encoded in an N = 2 non-holomorphic prepoten­

t ia l H(A, A ) . In chapter 2 we investigated the duality properties of this construct 

and indicated that i t has no effect on the results of Seiberg and Wi t t en . In particular 

it has no influence on the BPS mass formula. 

Using the technique of reduction introduced previously, we can derive the component 

action of the 4-derivative and up to 8-fermion real D - t e r m 

As a subset of the (many) terms this expression has, we are part icularly interested 

[79]. 

/ d'lxdi9ldq92H A, A ) S i 
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in the nine effective vertices 

_L (VSD)2 ( v A S D y d a a _ a _ a % { a -a) { 3 1 g a ) 

1 ( ^ D ) 2 A c T " m C ; D ^ Q a a a a H ( a , a ) (3.1.8b) 
2^2 

o ^ ( v A S D ) 2 ^ a m n v ™ \ d ^ U ( a , a ) (3.1.8c) 
2 V 2 

o ^ ( t ; 5 D ) 2 ^ 2 A 2 c > a a S ^ ( a , a ) (3.1.8d) 
o 

o l(vASD)2iP2\2daaaa&&H(a,a) (3.1.8e) 
o 

0 ^ c r m n ^ A A a p ^ p f D ^ a a a ( i S a K ( a ; a ) (3.1.8f) 

0 - ^ ^ ^ ^ m n ^ A V J 2 A 2 a a Q a a a 5 a 7 { ( a , a ) (3.1.8g) 

0 --^^mnV'^n

D^2X2daaaa-amU{a,a) (3.1.8h) 

° ^^^^^daaaaaaaa'Hia,^) (3.1.8i) 
I D 

where a denotes the vacuum expectation value of the Higgs field which is the lowest 

component of the N = l chiral superfield <fr which in turn is the lowest component of 

the N = 2 chiral superfield A. Notice that (3.1.8a) leads on to terms of the form v4. 

3.2 Instanton Calculation 

Following a general approach originally developed by Seiberg and co-workers [1], 

Dorey, Khoze and Matt is [29, 30, 32] were able to investigate the instanton series 

arising in the Seiberg and Wit ten 's holomorphic prepotential T(A) wi thout recourse 

to duali ty arguments. This provided the first independent checks of Seiberg and 

Wit ten 's results [80, 81]. 

The essential methodology involved the consideration of certain chirality violating 

Green's functions to study the instanton contributions to particular vertices which 

arise in the Lagrangian for N = 2 SUSY gauge theories w i t h and wi thout matter. 

More specifically, they studied instanton correlators w i th field insertions replaced 

by their values in the classical instanton background, they projected onto the un­

broken U(l) direction in colour space, and then they integrated over all bosonic 
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and fermionic collective co-ordinates which arise f rom zero-modes in the instanton 

background. To give a precise just if icat ion of this method would take us too far 

afield f rom the purpose of this chapter. Instead, we refer the interested reader to 

the excellent papers [29, 30, 32, 33] which develop the construction in great detail. 

As an application of their formalism, we can consider the instanton contribution to 

the 8 fermion vertex 

h ^ 2 ' x 2 w n M ( 3 - 2 - 9 ) 

which arose f r o m the reduction of the next to leading order term in the low energy 

expansion of N = 2 supersymmetric gauge theories w i t h gauge group SU(2). The 

other vertices above (3.1.8i) can be analysed in a similar manner to that detailed 

below. 

For reasons explained later, one must study the correlator 

(^(.Ti)^(.T 2)^(.T3)A5(a- 4)^a(a' '5)' ' / ' /3(^6)A 7(x7)A (5(x8)) (3.2.10) 

in order to consider instanton contributions to (3.2.9). 

Now, since we are dealing wi th the effective theory in (3.2.9) we must use the rele­

vant long-distance effective U{\) fields which match into the short-distance singular 

superinstanton. The explicit fo rm of these solutions was evaluated by Dorey et al. 

[29, 30] and we shall tabulate the relevant expressions here 

i-'aixi) = iV2(iaSaa{xii XQ) ——h other terms (3.2.11a) 
da 

^a(xi) = i\/2(2aSaa(xi, Xo)——h other terms (3.2.11b) 
da 

ii 

''Pa(xi) = Am2Saa{xi, XQ) wjf ( T 3 ) ^ ^ j t 7 + other terms (3.2.11c) 
i=\ 
ii 

^a{xi) = 4iir2Sad{xii x0) w^f ( T 3 ) ^ ^k~t + other terms ( 3 . 2 . l i d ) 
i=\ 

where the "other terms" are those independent of the supersymmtry zero modes 

C 1 ' 2 or are those which fa l l of faster than (xi — x0)~3. 

In the above long distance approximations of the fields we have taken the unbroken 

U(l) direction to lie in the r 3 direction of colour space. The parameters w^, fi^-y, 
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and Vkj are quaternionic valued quantities which arise in the A D H M formalism for 

multi-instantons as detailed in the technical appendix B. Indeed, the upper bound n 

on the summation is defined as the instanton winding number. Finally, the fermionic 

propagators 

S a a { x i , x o ) = &™adMG(Xi, XQ) 

where G(X1,XQ) = , 2 , 1 — ^ is the massless Euclidean propagator. One should note 

that the fermionic propagators Saa l ink fermions to anti-fermions. I t is for this 

reason, when one also takes into consideration the saturation of the Grassmannian 

integrals developed below, that the correlator (3.2.10) yields information concerning 

the vertex (3.2.9) 

The n-instanton contr ibution to (3.2.9) is thus given, in the usual manner, by 

J d 4 x 0 d 2 ( l d 2 ( 2 

x J d / 2 ^ £ i ) V ^ ( : E 2 ) A \ ( x 3 ) A ^ ^ 

where d f j , represents the properly normalised integration measure for all collective 

co-ordinates arising f rom the zero modes in the solution space [34]. I t excludes 

the N = 2 superspace position variables (a^bCSC2) which have been seperated and 

wri t ten explicitly. These latter fermionic collective co-ordinates are so-called "exact 

modes" and can be shown not to appear in the instanton action Sinst. As such, 

saturation of the Ql integrals takes place by explicit insertions of suitable fields f r o m 

(3.2.11a), (3.2.11b). The fermionic modes in dfx do appear in S i n s t and are " l i f ted" 

by the occurence of Yukaw ra terms. 

Now we have seen that 

I d2CCaCP = ~ \ e a P J d2C ( C ) 2 = A f ^ 

so that the collective co-ordinate integration 3.2.12 becomes 

J dqXoeKXSKA(xuxo)SXp(x2, x 0 ) e p a S ^ s , x0)Sl7s(x4, x0) 

x t K X S a k ( x 5 , x0)SpjK(x(i, x0)ef"TS1p(x7, x0)Ss&(xs, x0) 

d 4 f n 

X — / dfie-S^1 ^ {&K2)A{VkT3WkWk.TZVk,){lllTiWlWVTillV) 
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This expression should be recognisable as the position space Feynman integral for a 
local ip2\2iji2\2 vertex w i t h an effective coupling given by 

8a4 

J i. i-t J it i k,k',l,l' = l 

Comparing this wi th the vertex (3.2.9), which is a generic expression of an n-

instanton contribution to such a localised vertex, ones sees that to leading semi-

classical order 

da4 

n 1 

x Yl T(4?7r 2 ) 4 (z7 f c r 3 w f c tD f c < r 3 7y f c / ) ( / i , r 3 w / iD r rV( ' ) (3 .2 .13) 
4 

k,k',l,l'=\ 

As pointed out previously, i t is possible to obtain formal expressions for f ^ V . and 

o^i'H using the other vertices above (3.1.8i). Exchanging a and a in (3.2.13) gives the 

anti-instanton contribution. There may also be mixed n-instanton/m-anti-instanton 

contributions to % due to the non-holomorphicity of this prepotential. However, 

such configurations shall not be considered in this work. 

We now present the simplest situation in which the above formal expression can 

be calculated explicitly. Let us consider the 1-instanton contribution to the non-

holomorphic prepotential 7i(A, A ) in the case of pure N — 2 super-Yang-Mills. 

In this case, the instanton action S m s l is given to leading order [29] by 

S l u s l = 47r2adwmwm - 2 V / 2 ^ 7 T V q ( T 3 ) ^ (3.2.14) 

where the 1-instanton values of the various A D H M parameters (collective co-ordinates) 

are presented in a technical appendix. Also, [34] the correctly normalised instanton 

measure over the collective co-ordinates is given by 

4 
d4wd2f.id'2v 

w i t h A the dynamically generated (Pauli-Villars) scale. Then 

6 4 7 r 8 ^ j d4w j d V W - 4 * 2 ^ " 1 ^ [{VTZWWT*V) ( / I T ^ T V ) ] (3.2.15) 
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where the second term in (3.2.14) does not appear since the Grassmannian integra­

tions over /./, and v are already saturated. We now recognise 

J d2v{uTiwwTiu) = -^wmwntY2(T3amanT3) 

But using the cyclicity of the trace and the results in appendix B we have t r 2 ( . . . ) = 

SmnI so that (3.2.15) becomes 

32TT 4 A 4 / d4w(wmwn,)2e-'l7,a"w"'w" j d4w(wmwm) 

We now change to polar co-ordinates where the measure f d4w H-> J d f l drr3. I t 

is easy to show that the angular integration in 4-d has the value f d f l = 2ir2, and so 

all that remains to be evaluated in (3.2.15) is the radial contribution. By means of 

the substitution r2 = R and the standard integral [39] f0°° dRRn exp(-aR) 

we therefore see (3.2.15) 

n + \ 

da4 V ' ' 4 7 T 2 a 4 a 4 

Integrating this expression four times, and on comparison w i t h the other vertices 

above (3.1.8i) one finds that at the one instanton level 

n(a,a) = - - ^ ^ j \ n a (3.2.16) 

which agrees w i t h an earlier prediction made by Yung [98] which was obtained using 

a completely different reasoning. 

I t is possible to evaluate analagous quantities in models where the number of flavours 

Nf > 0. I t should be pointed out [81] that a discrete Z 2 symmetry in the moduli 

space forbids all odd-instanton contributions to vertices. This can be seen in the 

instanton method. The presence of hypermultiplets introduces the collective co­

ordinates /C;, and /Q( as detailed in appendix B. As such, we must introduce the 

measure for the n-instanton 

/ dnhyp « / Y\ dJCn • • • dlCnidK-u • • • dKnie~Sh"p (3.2.17) 
^ ' i=i 

where Shyp is the action arising f r o m the presence of hypermultiplets. For massless 

hypermultiplets, i t can be shown [30] that Shyp is even under Ku Ku. However, 
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the measure collects a factor of ( — l ) n under this transposition when we remember 

that the entries of /C and /C are Grassmannian. Thus we see that (3.2.17) vanishes 

when n is odd. and so only even instanton contributions survive in the massless 

theory. As such, one should begin by looking at the 2-instanton contribution using 

the A D H M method detailed in Dorey et als papers [29, 30]. We shall not explicit ly 

pursue this line of investigation in this chapter, but the methodology is the same as 

that just presented. 

3.2.1 Nonrenormal i sa t ion T h e o r e m for the N = 2, Nf = 4 M o d e l 

Four dimensional N = 2 models w i t h vanishing /3-functions are finite and confor-

mally invariant [64]. This proves a strong constraint on the behaviour of the next to 

leading order terms in the low energy expansion of such models, as we shall review 

below. This theoretical prediction based on the symmetries of the model [36] shall 

be confirmed by an analysis of the scaling properties of this term. 

We have seen in section 3.1.3 that gauge fields in N = 2 models arise in the expansion 

of the N = 2 superfield A. Concisely, such a superfield encodes an N = 1 chiral 

superfield $ containing a scalar field (f> often interpreted as the Higgs particle in a 

certain representation of the gauge group (in this case the adjoint) . I t also has as 

a sub-field an N = 1 field-strength superfield Wa which contains the field-strength 

v^j,. In addition, we have seen by reducing the superfield action that the quadratic 

term 

J d291d292TAA (3.2.18) 

gives rise to kinetic terms for the gauge fields and the adjoint Higgs. The co-efficient 

r can be considered a superfield in its own right. In fact, we have shown (3.1.7) that 

generically r = where T is a holomorphic prepotential which, by vir tue of 

being a funct ion of the chiral superfield A is invariant under \ of the supercharges 

in the theory. I n fact, for the model we are considering, r is a constant funct ion of 

A. 

The fact that the theory we are considering is scale invariant coupled w i t h the 
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knowledge that A has dimension 1 under scaling - since A contains the scalar (p 

as its lowest (N = 0) component - tells us that (3.2.18) remains quadratic in A 

after quantum corrections are taken into consideration. Further, assuming that r 

is compatible w i th Seiberg and W i t t e n duality, i t has been shown [81] that the co­

efficient in this quadratic term is not affected either. In particular, r is not replaced 2 

by a function of r. 

The next co-efficient in the low energy expansion is given by 

where the r and f appear because in a scale invariant theory, there can obviously be 

no dynamically generated scale (other than that associated w i t h A itself) . Further, 

the non-holomorphic prepotential % must respect all of the symmetries of the model. 

In particular, i t must respect the U(1)R symmetry which is non-anomolous in the 

model under consideration [79]. This R-symmetry acts in the following way 

For fixed r i t has been shown [95] that there is a unique non-tr ivial form permitted 

by the symmetries. I t is 

Since we integrate over the entire superspace, the second term in 3.2.20 does not 

contribute to the action. Obviously, the scale A is fake as expected. 

Using the form of the action (3.2.19) Dine and Seiberg showed - by means of pro­

moting the constant r to a superfield - that in order for % to be consistent w i t h all of 

the symmetries in the model, including scale invariance, that the prepotential % has 

no explicit r dependence. Hence there can be no perturbative or non-perturbative 

corrections to H. 
2 I t will transpire that for the low energy theory, r is the effective coupling. See chapter 4 for 

more details 

d 0xd 02d 0vd 02

/H(A, A , r, f ) (3.2.19) 

R o A(0 j , x) = exp(2ia)A(exp(—ia)0v x) 

A A 
n n 

A A 

( l n A + l n A ) 2 - ( 
1 

l n z A + 

l n 2 ( A A ) + (G(A) -r c.c 

- I n 2 A + In A In A + c.c. 

(3.2.20) 
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We should be able to check the validity of this non-renormalisation theorem by 

considering a rescaling of the quantities appearing in the instanton calculation above. 

Using the equation for the instanton action Sinsl detailed in [30] it becomes apparent 

that when the masses of the hypermultiplets vanish, all dependence on a and a can 

be eliminated from Sinst by means of the ADHM collective co-ordinate rescaling 

a ^ - ^ (3.2.21) 
Vaa va \/a v a v a 

Consider the case of N = 2 models with 0 < Nj < 4 flavours of massless fundamen­

tal hypermultiplets and no adjoint hypermultiplets. In these cases, the integration 

measure over the zero modes (excluding those arising from translations in super-

space) taking into account the scaling behaviour in (3.2.21) shows 

dp ( v W - ^ ^ r ^ v / a ) 2 " ^ • dp. = a2-«-N')ndii 

where the first 8n — 4 arises from the bosonic zero modes in a. This is seen since 

a single instanton has 4 translational zero modes, 1 scaling zero mode and 3 zero 

modes arising from iso-orientations in the colour space. In the far seperated limit, we 

expect the n-instanton solution to be approximated by n 1-instantons. Thus there 

are a total of 8n bosonic zero modes for the n-instanton. We can now identify four 

of these with a centre of mass co-ordinate and seperate it from the measure to agree 

with (3.2.12) giving a total of 8n — 4 degrees of freedom in the ADHM collective 

co-ordinate matrix a. Likewise, by supersymmetry, we expect the matrices A4 and 

M developed in the appendix B to give a total of 8n —4, where on this occasion the 4 

arises due to the seperation of the exact modes from the measure dp,. Note, however, 

that the properties of Grassmanian integration - f d90 = 1 ensure that the measure 

must scale inversely to the fermions. Lastly, the fundamental hypermultiplets give 

rise to a term J Yl?=i Ylj^i dlC^dK,^ which leads on to the factor with 2nNj. 

Now, in (3.2.13) we see 
n n 

E ( " * i - 3 - - - m - > ^ 4 E ( • • • ) 
k,k',l,l' = l k,k',l,l' = l 

since is an entry in the ADHM matrix a, / i in Ai, and u in N. Applying all 

of the above arguments to the generic vertex (3.2.13) and integrating the requisite 
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number of times, we see that the n-instanton contribution to the non-holomorphic 

prepotential 

H{a,a) ~ a

( i V ' - 4 ) n - In a 

which agrees with (3.2.16) in the special case n = 1, Nj = 0. 

In the case of Nj = 4 massless hypermultiplets we see that 

7-(.NF=4 ~ In a 

and is therefore an (anti-)holomorphic function in a. Examining the possible ver­

tices, one sees that the effective component vertices contained in the next-to-leading 

order Lagrangian vanish since the prepotential always comes with a mixture of a 

and a derivatives. Similar comments also hold for anti-instanton contributions which 

arise from swapping a a. Thus we confirm the nonrenormalisation theorem of 

Dine and Seiberg outlined previously. That is, the non-holomorphic prepotential -

which arises at next to leading order in the low energy expansion - in scale invariant 

theories does not get contributions from n (anti)instantons. 

In Sinst the presence of massive hypermultiplets ruin this argument since the mass 

mi rescales to ^ which can then be pulled down from the exponent in Sinst. 

3.3 Conclusions 

Using the method of reduction, we were able to extract interaction vertices from the 

prepotentials which encode the first two terms in the low energy expansion oi N = 2 

supersymmetric gauge theories. In particular we extracted nine vertices from the 

non-holomorphic prepotential Ti. which appears as the leading irrelevant operator on 

the Coulomb branch of the model. Utilising the ADHM method, these vertices were 

used to investigate the (multi)-instanton contributions to this functional. In particu­

lar, the ADHM method was shown to reproduce the results obtained by Yung [98] for 

the case of a single instanton in pure N = 2 super-Yang-Mills. Further, using scal­

ing arguments, we were able to demonstrate the existence of a non-renormalisation 
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theorem in the case of a model with vanishing /^-function: the N = 2 supersym-

metric SU(2) gauge theory with four (massless) hypermultiplets. This confirmed 

the results of Dine and Seiberg who originally proposed that in such models the 

prepotential T-L was one loop exact. In particular it obtained no contribution from 

instantons. 

Using similar techniques to those detailed in this chapter, it is possible to show that 

the non-renormalisation theorem is also valid for the finite N = 4 supersymmetric 

gauge theory. We have not detailed it here, but the analysis can be found in the 

reference [33]. 



Chapter 4 

Couplings in Scale Invariant 

Theories 

In a series of papers, Dorey, Khoze, and Mattis [29, 30, 32] tested the results of N=2 

supersymmetric gauge theories with gauge group SU(2) as proposed by Seiberg 

and Witten [80, 81] against first-principles instanton calculations. In doing so they 

found perfect agreement when the number of flavours Nj < 2. When Nj — 3, 4 a 

discrepancy was found which they resolved by reinterpreting the parameters which 

appear in the Seiberg-Witten elliptic curve which encodes information about the 

vacuum in the theory. In particular, for the case Nf = 4 they showed that the effec­

tive coupling r e f f , which arises on integrating out massive modes, is the parameter 

which appears in the curve; not the classical coupling r classical. This is despite 

the absence of a running coupling in this scenario, which one might naively assume 

guarantees r e f f = r . 

In the course of this analysis, Dorey et al [30] found a relationship between r and 

with cn non-zero for all even n. In this expression, it is clear that the T-symmetry 

of the modular group (or a subgroup) is preserved by this series. That is, r i—r + 1 

implies r e f f i-> r e f f + 1. One would hope that other modular symmetries would be 

r T eff 

n>0 

where q — exp(2?7rr) 

60 
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realised as some linear transformation r e„ i—> ' , | n

T e " , with the instanton series above 
e" C+DTef[' 

allowing us, in some way, to investigate this. 

It is the aim of this section to propose an explicit formula relating r and r e f f . In 

the first instance this shall be attempted in the form of an ansatz. When this is 

shown to be unsatisfactory, we formulate the problem in a more systematic way, and 

propose a relation which should be verifiable using instanton techniques. 

4.1 Scale Invariant Nf = 4 Theories 

The massless Nf = 4 model has zero /3-function and an identically vanishing U(1)R 

anomaly. This means that the microscopic coupling g and the vacuum angle 9 

combine into an holomorphic scale-independent coupling r = f + p̂r with an effective 

Lagrangian which reduces to a classical N = 2 free field theory with suitably defined 

coupling constant. The relevant coupling is the one that appears in the BPS formula 

for the masses of dyons. 

Seiberg and Witten [81] assumed that the absence of a running coupling constant 

guaranteed that the effective Abelian coupling rB f f, arising from the integrating out 

of massive states, was identical to the classical 51/(2) coupling r . That is r e f r = r. 

In fact, performing an explicit instanton calculation, Dorey et al [31] found that 

with c0 = -L41n2 and c, = — - ^ K . 

Since the /3-function vanishes, with the consequence that no dynamical scale appears 

in the theory, the curve which controls the low energy behaviour has coefficients 

which are functions of the effective coupling r e f f . This is in contrast to models 

with non-vanishing /3-function which then have dynamical scales which appear as 

polynomials in the relevant curve. 

Using the above observations, we give a brief outline of how the correct effective 

coupling Tef f is used. 

n T eff here q = exp(2z7rr) w 
n>0 



CHAPTER 4. COUPLINGS IN SCALE INVARIANT THEORIES 62 

It is possible to show [81] that the cubic 

3 1 1 
y 2 = I I ('T ~ ei(Te«)u) = x3 - -g2(reH)xu2 - - . 9 3 ( r e f f ) u 3 (4.1.1) 

i=\ 

is the elliptic curve which encodes the low energy physics. In (4.1.1) we have e.\ + 
e 2 + 63 = 0 and the Eisenstein series 

#2 = —j ^2 (mr e f f + n )~ 4 = - 4 ] ^ % ^ 
m , n e Z - { 0 } i < j 

5 3 = ~ ? ( m r e f f + n ) ~ 6 = 4 r i e i 

m , n £ Z - { 0 } 

so the coefficients in (4.1.1) are modular forms of weight 4 and 6 respectively [82]. 

These depend on the complexified coupling constant r e f f . 

The holomorphic one-form u> = has periods [48] 

du .,Cl 

UJ where C\ is a contour from 0 to ir 

da f 
— — u> where L/ 2 is a contour from 0 to 7rr 
ou J C o 

Then 

a = y/2u dp = Teffa (4.1.2) 

which is exactly the defining equations of a classical free field theory with prepoten-

tial J-(a) = \TMC?. It is obvious that u = | o 2 . 

Now, it is a basic fact that for large fields the theory is weakly coupled and the 

quantum moduli space is well approximated by the classical moduli space. As such, 

the limit Imr e f f —» 0 0 - that is g —> 0 - should reduce the cubic 4.1.1 to the classical 

curve. 

Using the series expansion of the [15] 

ei = l + 16q2 + 16q4 + ... 

e2 = - I - 8 g - 8 f 7

2 - . . . 

e3 = - - + 8q-8q2 + ... 
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we see the curve y2 —> 

x i—> x — | gives 

2u 
x ) [x + |) [x + | ) which under the reparameterisation 

y2 = x2(X - u) 

which is the classical curve, an indication that the above prescription is correct. 

4.2 An ansatz 

In this section we consider a possible relation between the effective and microscopic 

theories in N=2 supersymmetric gauge theories with vanishing /3-function, and in 

particular the theory with gauge group S U ( N c ) N c = 2 and Nf = 4, where Nf is the 

number of flavours. That this has vanishing /3-function follows from the well known 

relation /3 = Nf - 2NC. 

We introduce the following relation as an ansatz between the microscopic coupling 

T and the effective coupling r e f f : 

where M\ and A/-2 are two modular functions1 of two (not necessarily identical) non-

identity subgroups of the modular group S1(2,Z), and a,b,... , / are constants to 

be determined. 

In order to allow a facilitate a sensible classical limit, we presume that the relation 

between the two couplings has the property that it maps one weak coupling regime 

into another. Symbolically, we demand that Im(r) —> oo iff Im(r e f f ) —> oo. 

We also take e and / to be positive and real. This is to restrict the couplings, which 

appear as the argument of the modular functions, to the upper half plane. 

These assumptions can be used to attempt to fix the constants in the ansatz for 

specific choices of M i and M2. 

' In an abuse of notation we will sometimes use Mi and M-2 to represent the subgroups. Hopefully 

the context should make this obvious. 

a + 6 M 2 ( / r ) 
eM T 1 c + dM2(fr) 

(4.2.3) 
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4.2.1 Mi = M 2 = Sl(2, Z) 

As a first guess we attempt to resolve the constants in the ansatz (4.2.3) using the 

modular group S1(2,Z). The modular function of this group is commonly denoted 

as J(z) in mathematical literature, with z in the upper half plane. 

It shall suit our purposes to write J in terms of the modular function A of the 

subgroup r(2) < S1(2,Z). From [25] it is known that 

X(z) = 16q [] ( 1 +

 q

2n_x J with q = exp(zTrz) (4.2.4) 
71=1 ^ ^ ' 

Physically, z is the complexified coupling constant. Using (4.2.4) we can write 

{ ' ~ 27 *>(1 - A)2 

Thus J(z) has singularities when A = 0,1 or oo; that is when z = 0,1, or oo [3]. 

Using [41, pp 23] we know that the inverse of this automorphic function in the 

regime of weak coupling is given by 

G{— — ' 1' —) 

2mJ'1 (w) = -Inw - 3 In 12+ — V 1 2 / 12_' ' w' : \w\ > 1 and | arg(l - w) \ < ir 

where 

G(a, b;l;9) = f 2 + n ) + ^ b + n ) _ 2^{n + 1) + ^{a) + ^(6) - 2^(1)] 0r> 
n = l ^ 

2 F i is a hypergeometric function, ip(z) = ^ " f ^ is the digamma function, and the 

Pochhammer symbol (a)n = r^"^. 
Now consider the ansatz (4.2.3) for the case M i = M2 = Sl(2, Z) 

r e f f = eJ 1 
a +bJ(fr) 

[c + dJ(fr)_ 

If we demand that the weak coupling regimes of r and r e f r correspond to each other, 

then since J(oo) = oo we see that 

, . a + 6J(w) 
hm J (it;) = hm —~—-

w^co Im(w)-»oo c + riJ(ty) 
which implies f = 0, that is d = 0. Then 

r e f f = e./-1 (a' + b'J(fr)) (4.2.5) 
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where a' = - and b' = -. 
c c 

We are now in a position to expand the RHS of (4.2.5) and fix the free parameters 

a1, b', e and / on comparison with the known result [31] 

r e f f

 = r + ]C c'l<?" ' q = e x P ( 2 m r ) (4.2.6) 
7l>0 

with c0 = ^41n2 and cx = 

In doing so, one must use the formulae [40] for the digamma function 

n— 1 1 

+ n) — 

and also [40, pp 19] 

2 - 2cos (^K'-^J 

which allows us to calculate 

1 
12 12 

= 2-0(1) - 2TT - 3 In 3 - 8 In 2 

Performing the relevant expansion of (4.2.5) and equating terms with (4.2.6) one 

determines that e = / = 1 due to the absence of odd-instanton terms. Examining 

constant 0(q°) terms fixes a' = 256, and study of the 0(q2) terms yields a value 

for b' which involves logarithms and powers of IT. This then leads on to instanton 

coefficients which are irrational, a situation which is unlikely to occur in reality. We 

therefore believe that either we have used the wrong modular groups, or the ansatz 

is wrong. For now, we try some other situations. 

V TT 
In q cot 

1 2 
P 

-TT + c o s ( 27rr- ) In 

4.2.2 Mi = Sl(2, Z) , M 2 = T(2) 

With the inverse of the modular function of F(2) defined as in (4.3.16), one finds that 

the above procedure also results in instanton coefficients dependent on logarithms 

and powers of IT. 
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4.2.3 M , = M 2 = r(2) 

Pursuing a similar method to that above, one fixes the constants in the ansatz as 

_ 1 (1 A(2r) \ 
^ 2 U 8 ( l - ^ f A ( 2 r ) J ( j 

which yields a prediction c2 = ^ 1 1 ^ .gVo 8 7 1 3 « 10£. Whilst this appears to be 

satisfactory in that it provides a rational and finite value for c2, it is believed that 

the above result is not the functional relationship between r e f f and r . We believe this 

because the corners of the fundamental polygons, defined later, of the two couplings 

are not sent to sensible values. For example, A(2r) = 1 maps to A(2r e f f) « 7.78xl0~ 3 . 

4.2.4 Mi = T(2), M 2 = Sl(2, Z) 

In this case, the ansatz becomes 

Teff = A_1
 G10-33 J ( T ) - I M ) 

with instanton coefficient c2 = 1 1 9 0 4 7 7 / 5

6 * 2 3 3 7 0 7 « 10 3^ which seems unfeasibly large. 

In summary, the ad hoc procedure of attempting to fix the parameters of the ansatz2 

(4.2.3) does not appear to be frui tful . Problems arise in the size or content of the 

instanton coefficients predicted by this method, or in the mapping properties of the 

singularities. In the next section we shall attempt to resolve this by using a more 

analytical method. 

4.3 Relating refr and r using Schwarzians 

4.3.1 Introduction 

Having tried, and failed, to find a relation between the effective coupling r e f f and the 

microscopic coupling r using the ansatz (4.2.3), we now attempt another method. 
2We have also looked at the possibility that the r in 4.2.7 is shifted by a constant value, and in 

particular by ^4 In 2 - so that the T is replaced by the one loop corrected coupling - but similar 

problems to those outlined in the main text arise when the calculation is done. 
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We shall utilise the Schwarz-Christoffel transformation [62] which is concerned with 
mappings from simply connected domains T> in the complex plane into the upper 
half plane U. In particular the V shall be polygons bounded by circular arcs, and 
the Schwarz-Christoffel transformations correspond to the couplings mapping into 
the space of modular functions. This method will automatically detect any relation 
of the form (4.2.3). Central to this work is the theorem [62] 

Theorem 4.1. The function y(x) mapping Imx > 0 onto a curvilinear polygon with 

n vertices Ai,A2,... , An bounded by circular arcs which form angles nai,.. .Tran 

and such that the vertices correspond to a\,... ,an satifies 

V 2 ( * - a ! ) 2 x - a j 

with conditions 
n 

£ f t = 0 

n 

[2aiA + 1 " = 0 
i=i 

n 

J2[(3ta2 + a i { l - a 2 ) } = 0 
i=i 

where the "Schwarzian" 

c / \ i dxxxV 3 ( d x x y \ 2 I' d x x y \ 1 ( d x x y \ 2 

Using this definition, it is straightforward to see that the Schwarzian is invariant 

under conformal transformations y(x) —> where A,B,C,D G C. The con­

ditions on the parameters at, arise by demanding that r(A) be regular at large A 

and an assumption on the form of r(A) near singularities. Details can be found in 

[62]. 

The above conditions simplify if one of the singularities is at oo. Starting with 
n 

£ (2a,A + 1 - a2) = 0 
i=i 

so 
n - l 

Y {ZoiPi - a2) = a2

00 - n - 21 px 

i=l 



CHAPTER 4. COUPLINGS IN SCALE INVARIANT THEORIES 68 

where / is a symbol representing infinity in this case, and 

[A-fli + *i (1 - « i ) ] = - / 2 ^ o o - / (1 - < 4 ) 

We can now eliminate 0(I2) terms and take / —> oo to obtain the general case 

n - l 52 (2a,A - a2) = (2- n) -
i = i 

However, we are concerned only with curvilinear regions with "parallel sides" at 

infinity, and so we take = 0 so that 

n - l 

(2fliA - a?) = (2 - n) 
i = l 

We can now solve the constraints for the case 

CZi = — 0,2 = —U 03 = 0 0 Q'l = a-2 = CI' CV3 = 0 

which correspond to a symmetric region with 3 singularities, one of which is at 

infinity. 

It is a matter of straightforward algebra to find that 

& o = 0 (4.3.8a) 

/?_! = - f t = - L ( l - 2a 2) (4.3.8b) 
Au 

This information shall be used later. 

4.3.2 A Relation Between r and r e f f 

I t has been shown in [31] that 

r e f f ( r ) = T + Y2 cnqn where q = e2viT (4.3.9) 
n>0 

where 

c0 = -41n2 cx = --— 3 5 (4.3.10) 
7T 7T 2° 
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We shall now attempt to invert this to determine r ( r e ( r ) . We have on exponentiating 
(4.3.9) that 

f/e f fe~ 2™C 0 = q JJ e2*iCnqn where q,a = e2mT*« (4.3.11) 
71>1 

We now expand (4.3.11) around the weak coupling point q = 0 to get 

qetJe~2nlC0 = q + q2 (2mcx) + q3 (^2mc2 + ^ (27n C l ) 2 ^ + 0(q'1) (4.3.12) 

Now consider the general expansion q = Y J n > 0 An-\q™a. Since we assume that the 

weak coupling regimes in the microscopic and effective theories correspond to each 

other we see that A_\ = 0. Then 

q = <7efr ( A ) + + A2q2

K +...) (4.3.13) 

Substituting this into (4.3.12) and equating powers of qeff yields 

A0 = e~2niC0 

Ax = - e - i 7 ! l C 0 (2mCl) 

A 2 — — v - 6 l T i c ° 2iric2 — ^ {2nic\)2 

Taking logarithms of (4.3.13) with the values for At substituted in, and dividing the 

final result by 2wi gives the result 

T = r e f f - Co - Cle-2mc°qeff + (2TTZC 2 - c 2) e " 4 ^ 0 ^ + 0{qAJ (4.3.14) 

as the inverted formula defining r ( r e f f ) . 

4.3.3 Modular Function with 3 Singularities at { — 1,1, oo} and its Inverse 

We shall find it useful to investigate the relationship between modular functions 

with singularities at { — 1,1, oo} and { 0 , 1 , oo}, that is, between the modular groups 

T(2) and r 0 ( 2 ) which are both index six subgroups of S1(2,Z). 

4.3.4 The modular function of T(2) 

This is well known in the literature where it is conventionally written as A. From 

this point on, we shall denote it by A0 where the subscript 0 indicates that we have 
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a singularity at the origin in the complex Ao plane under the map r e f f(Ao). We shall 

take 

,2n \ 8 

A 0 ( 9 ) = 169X1(7 
n=l ^ 

with inverse [42] 

l + qz 

+ q 2 n - l where q — el e C (4.3.15) 

A ^ z ) ^ 2Fxa , i ; l ; l - 2 ) 
2 ^ i ( | , | ; 1; z ) 

(4.3.16) 

which is a Schwarz triangle function, and Schwarzian 

{z, A 0 } 
1 1 1 

+ + 2 L(l - Ao)2 Ao ( l -Ao)Ao 

Lastly we note that A 0 satisfies the so-called "Picard-Fuchs" equation [23] 

(4.3.17) 

(4.3.18) 

where following the usual theory [62] a solution to the Schwarzian 4.3.17 is a ratio 

of two linearly independent solutions of this Pichard-Fuchs equation. 

The Modular Function of T 0(2) 

For this modular subgroup, we know that there are three singularities in the complex 

plane located at { — 1,1, 0 0 } with zero open angles at the vertices of the fundamental 

polygon. This appears extremely similar to the case of F(2). As such, we can utilise 

the modular function A 0 of T(2) to determine that of r 0 ( 2 ) , which we shall denote 

by A _ j . 

We note that there are six transformations taking the points {0, l ,oo} onto the set 

{ — l , l , o o } . They are 

A - i i - 1 2A0 - 1 l+Ao 
1-An 

{ o o , l , - l } { - l , l , o o } { 1 , 0 0 , - 1 } 

and their negatives. We are interested in the particular endomorphism 

A_, = | - - l (4.3.19) 
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A.0-plane X^-plane 

Figure 4.1: Showing the relation between T(2) and r 0 ( 2 ) with particular emphasis 

on how the functions compose. 0 is the map 0(Ao) = —1 + 2/A_i 

which has the effect 

x A o 
oo 
0 
1 

i — > 0 
1 

oo 

A_ l 

oo 
1 

- 1 

(4.3.20) 

The situation we are considering is illustrated in diagram 4.1 

Under this mapping, the fundamental regions of T(2) and To(2) are transformed 

injectively into each other. For example the line Re A0 = 0 is sent onto the line 

1 +

2

 t + 1 + | t = 0 = > Re A_i = —1, and likewise Re A0 = 1 is mapped to the circle 

| A _ i | 2 = 1 and the circle | | — A 0 | 2 = 4 is taken to the line Re A_i = 1. Further, it 

is also apparent that since Re A0 > 0 i—> Re A_i > —1, Re A0 < 1 ̂  | A - i | 2 > 1 and 

|^ — A 0 | 2 > \ i—> Re A_i < 1 we see that the interior of the fundamental region of 

T(2) is sent to the interior of that of T 0(2). These relations can be seen in figure 

4.2. 
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A A 
o I 

c B 

B 

0 

Figure 4.2: The relation between the fundamental polygons of the two modular 

groups T(2) and r 0 ( 2 ) under the mapping A _ i = —1 + 2 / A Q 

Now consider the Schwarzian 

{x, X-i} 

Thus 

{.x, A 0 } 

{x,X0} 

{x, A 0 } 

OX, 
dA_! 

9A_! 

4 

+ { A 0 , A _ ! } 

(1 + A - i ) 4 

(1 + A - O 4 

2 

1 1 

J _ 1 1 

L A | + (1 - A 0 ) 2 + A 0 ( l - A 0; 

(1 + A . i ) 2 , (1 + A ^ ) 2 , (1 + A - O 3 

+ 

+ 

( -1 + A_i)2 ( -1 + A . 0 

2 1 
+ 2 (1 + A_x) 2 (1 + A _ 1 ) 2 ( - 1 + A _ 1 ) 2 {1 + X_x){-1 + \ ^ 

A 2 ! + 3 

2 ( - l + A _ 1 ) 2 ( l + A _ 1 ) 2 

(4.3.21) 

{ r , A _ 1 } = + (4.3.22) 
. ( - l + A . O 2 (1 + A _ X ) 2 (1 + A _ 1 ) ( 1 - A _ 1 ) . 

as expected from general considerations of the fundamental region of T 0(2) and using 

the formulae in [40]. In this analysis we have used the inverse relation A 0 = 1 +

2 ,̂ 

the consequent identity 1 — A 0 = " H ^ * " " / , and the fact that that {A 0 , A_i} = 0 since 

quantities related by a fractional linear mapping have vanishing Schwarzian. 
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Comparing with (4.3.16) we see that 

2-F1 [k, h i ; i+x / ) vF, (- -• l-1 - \n) 
x = i \LA L ± ± Z = z 2 ^ 2 , 2 , l , l A 0 j ( 4 3 ^ 

2-1 1 2' L> 1+A_i y W 2 7 

It is now possible to derive the counterpart to the Picard-Fuchs equation (4.3.18). 

We shall calculate this in some detail since some of the calculation shall be useful 

in determining an ordinary differential equation for the microscopic coupling r . 

Consider the canonical hypergeometric equation with regular singularities at 0,1, and 

d2 d 
z(l - z)——u(z) + (c - (a + b + l)z) —u(z) - abu(z) = 0 

dzl dz 

where a, b and c are constants related to the open angles in a fundamental polygon 

bounded by arcs to be described later. 

We map this to an equation with singularities at —1,1 and oo using the active trans­

formation z i—y met previously. Performing this mapping leads to 

(1 + z ) ( l - z)^-1u{z) + ((c - 2)z + c - 2a - 2b) YU(Z) + = 0 (4.3.24) 
d z cf: z 1 I z 

By means of the substitution 

u(z) = ,(z)exp (-1 J * v { C ~ 2 } ? + J j l ~ ^ 2 ) ~ 2 b ) 

we can reduce this to the form 

d~ 
— v(z) + I(z)v{z)=0 (4.3.25) 

where 

with 

az2 + pz + 7 
I { Z ) = (z + l ) 2 ( z - l ) 2 ( 4 3 - 2 6 ) 

1 1 2 
a = -c c 

2 4 
P = -2ab + ca - \ ? + cb 

7 = 1 c + ca — cb — a2 c2 — b2 

1 2 4 
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However, it is known from the general theory of hypergeometric equations that the 
function I(z) in (4.3.25) makes an appearance in the Schwarzian 

{G(z),z} = 2I{z) 

where G(z) is the ratio of two linearly independent solutions of equation (4.3.25), 

or equivalently (4.3.24). Now, from (4.3.21) we have seen 

z 2 + 3 
i W ) - ( z + l ) 2 ( 2 _ l ) 2 

and on comparison with (4.3.26) we obtain the solution set 

c = 1 

, 1 
a — o — -

2 

which on substitution into (4.3.26) gives the relevant equation of hypergeometric 

type 
(1 - , ) ( ! + - (1 + + ^ = 0 (4.3.27) 

which is important, since the ratio of two linearly independent solutions of this 

equation will yield a r e f f relevant for T(2). 

4.4 Relating r to r e f r 

We now seek to combine the findings of [31] with the analysis of the preceeding 

sections to propose an ansatz for the microscopic coupling r . This will then allow 

us to predict the unknown constants which appears in the expansion 

Tea = T + ^ cnqn where q = exp(27T2r) (4.4.28) 

with cn the instanton coefficients to be fixed when n > 2. In particular, we shall 

evaluate c2. In what follows we shall denote A_i as z. 

Consider the schwarzian 

(dz^ 2 

{ren,r} = { r e f f , z } ) + { r , z} 

( % ) \ { T ^ Z } - { T , Z } \ (4.4.29) 
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where we have used the identity 

{g(f(x)),x} = { g j } ( ^ ) 2 + { f , x } 

which can be used, on letting g = x and f ( x ) = y(x), to derive the inverse relation 

{y,x} = -{x,y} ( ^ j 

We now assume that the fundamental domains of the inequivalent couplings r and 

r e f f are polygons in the upper half plane which are bounded by circular3 arcs. As 

such, the two Schwarzians on the right hand side of (4.4.29) have the standard form 

n - l , 2 

and similarly 

where n is the number of corners (singularities) of the polygon. Substituting these 

into (4.4.29) then gives 

{ W > U J - ^ 2 ( 7 ^ + ( 7 ^ ^ 2 ( 7 ^ + ( ^ ) ( 4 A 3 2 j 

We now insist that both fundamental domains have the same number of singularities 

(n = n) and moreover that they are mapped into each other. We can relabel to 

ensure at = ĉ . This is defined up to a linear fractional mapping on the z-plane, 

which itself is equivalent to an appropriate redefinition of the (a;,aj) parameters. 

We have seen previously that the parameters in (4.4.32) are not free: rather they 

are constrained as in theorem 4.1. I f we now accept that the domain representative 

of r e f f is that of T(2) as suggested by Seiberg and Witten [81] then we have 

Oi = —a_x = 1 OLi = 0 y% / ? ! = — / ? _ ! = — 2 

as calculated previously (4.3.8a, 4.3.8b). 

3 In the usual way, straight lines are considered as arcs of zero curvature. 
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The situation for the microscopic coupling r is less certain. To be compatible with 

the singularity structure we must have that the fundamental polygon of r has three 

singularities located at —1,1 and oo. We also assume that the domain is symmetric. 

This is a natural consequence of demanding that the singularities of r e f f and r map 

to each other and that they be joined by arcs of constant curvature. Due to the 

constraints in theorem 4.1 we have seen (4.3.8a, 4.3.8b) that this situation removes 

all but one degree of freedom which we shall write as a parameter a. More explicitly 

cvi = a_x = a A = —fi-i = — - ( 1 — 2a2) 

Substituting these values into (4.3.20) and simplifying gives 

, f d r \ 2 2a2 

i T e t t , T t \ d z ) (1 + 2 ) 2 (1 - Z f 

We can now expand this about the point z = oo, which from (4.3.20) corresponds 

to the weak coupling regime. Then, using a standard McLaurin Series 

( w } ( g ) 2 ^ X > + 1 > , - » 

We know from (4.3.23) that 

2a2 

71 = 0 
(4.4.33) 

T„n- = I 
F (I I -1• =1±±\ 

2 1 12' 2 ! 1
 1+2 / 

F ( I 1-1• 2 1 

and can expand 

Now, from [40, pp 95] we have 

\ ^ (I, i ; 1; e) + \ in (1 - 0) ,Fl (11 1; 1 - ») = £ Bn (1 - 0) 
\ / \ / „ = 0 

with 

(4.4.34) 

2 

V»(n + 1) - V(n+ - ) (4.4.35) 

Using the transformation 9 i—> 1 — 9 allows us to write 

2 F j I \ h \ - \ - e \ =--hie2Fl (l,l;l;9 
2' 2' 7T 2' 2 7T 

(4.4.36) 
n=0 

file:///h/-/-e/
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which allows 2F\ \ ; 1; 1 — 9) to be expanded about 9 — 0. 

Since we shall be interested in terms beyond the zeroth order in 9 it is useful to 

write 

(i + i)2 ( 1 \ 
Vn (4.4.37) 

where we have used '0(1) — tp(^) = 2 In 2 and ip(x + n) — 'ip(x) + Y^=o j + j • We n ° t e 

in particular that 

S 0 = 1 Bx = - In 2 - -
0 2 4 

5a = — ( 1 2 In2 - 7) 
128v ; 

(4.4.38) 

Using these relations with 0 = - 2 Xl^Li( — z ) n t o s e e t n a t the numerator in (4.4.34) 

is 

- ( 31n2 + lnz + ^ ( 3 1 n 2 + lnz) + - ^ ( 3 1 n 2 - l i i £ - 5 ) ) + 0(z~ 3 ) (4.4.39) 
7r V 2z \ozz } 

To determine the denominator we use the power series [13] for the hypergeometric 

function 

2 F 1 (a ,6 I ; C ;» ) = f ; ^ # i ( r 
n=0 c„n\ 

with 

l+z 
n=0 

Evaluating this power series and combining it with (4.4.39) in (4.4.34) gives 

7T 
31n2 + lnz -

16 zz 

+ 0{z~3) (4.4.40) 

That this is correct - at least to this order - can be seen by substituting r e f f into 

2 - i 
z = wher 

?i=i 

re z = 16q ( ^ ^ - ^ - i j w i t h
 9 =

 e x P ( ? ; 7 r T e f f ) 

~2n \ 8 

with z is the modular function (4.3.15) for F(2), and we have used the relation 

(4.3.19). 

Now, from section 4.3.1 we know 

r = r e f f - Co - Cle-27rtC0qen + {2-KIC\ - c 2 ) e " 4 ™ 0 ^ + 0 ( d ) (4.4.41) 
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with <7eff = exp(2i7rr e f f). Using (4.4.39), (4.4.40) and (4.4.41) it is easy to see, after 

some manipulation, that 

f d r e f f \ 2 7 1 /7-7213 ,„ \ 1 . . 

Comparing this expansion with (4.4.33) we can extract 

« 2 = 22T35 ( 4 - 4 4 3 ) 

which then fixes the erstwhile free parameter in { r , z}. 

Taking (4.4.43) and equating 0(z~6) between (4.4.33) and (4.4.43) we can therefore 

make a prediction that the four instanton coefficient c2 in the series (4.4.28) is 

_ i 7-17-421 
°2 ~ n26 - 3 1 0 -521 

In principal the above method provides an algorithm for predicting all of the instan­

ton coefficients, but we shall not pursue that route in this chapter. 

Lastly, we can attempt to evaluate an ordinary differential equation which has the 

property that the ratio of two linearly independent solutions yields a functional form 

for T in terms of the modular function z of r 0 ( 2 ) . 

We know that 

l i z 2 + | - 2 2 

{T,Z} a 
361 , 1 2 
243 

( 1 - 2 ) 2 ( 1 + Z ) 2 

on substituting (4.4.43) into (4.4.31). Using a similar technique to that applied in 

the previous section, we can determine what the parameters a, 6, and c are in the 

equation of hypergeometric type (4.3.24) 

(1 - z)4^u(z) + ((c - 2)* + c - 2a - 2b) ^u(z) + = 0 
azz dz 1 + 2 

One finds that 

c = 1 

6(1 - a) + a( l - b) = 1/2 

(a-b)2 = — 
v ' 972 
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which can obviously be solved for a and b. We shall not do this, since it merely gives 

parameters with square roots. We note, however, that all of a, b and c are real and 

positive. We can also see that a = b due to the interchange symmetry in the above 

system as expected due to the nature of the fundamental polygon proposed for r . 

4.5 Conclusions 

In this chapter we have investigated the relationship between the effective coupling 

constant r e f f and the microscopic coupling r. Our derivations relied crucially on the 

instanton series calculated by Dorey et al (4.4.28) which gave a power series relation 

between the two complexified couplings. 

Our first attempt to construct an analytic expression utilised an ansatz which we 

hoped would allow us to investigate any subsequent duality properties. Ultimately 

this failed when we demanded that it should predict sensible instanton coefficients 

and map singularities into sensible values. 

We then changed the direction of our analysis, and drew on the methods of Schwarz-

Christoffel transformations and their relationship with second order differential equa­

tions of hypergeometric type. Making several apparently sensible assumptions about 

the nature of the fundamental polygons, we were able to predict the instanton co­

efficient c2 in the series (4.3.9). This is verifiable by utilising the ADHM method 

and would be the aim of future analysis. However, since it involves a four instanton 

process, this would more than likely be an involved calculation. A more serious ob­

stacle is that, to our knowledge, no group has constructed a solution to the ADHM 

constraints in the case where n — 4. Finally, we have an implicit relation between 

T e f f and r. In the above text we have T(Z) and z(relf). I t is obvious that one can the 

determine r ( r e f r ) using the analysis in the text. 

As such, we conclude that if r has three singularities located at —1, 1 and oo then 

it must be related to r e f f as found in this chapter. 



Chapter 5 

Higher Derivatives from Branes 

In the mid-1990's, a revolution occurred in the point of view of the string theory 

community. Up until that time, it was believed that there were 5 consistent and 

distinct string theories which were candidates for providing a unifying theory for 

modern particle physics. These were the type I , type I IA, type I IB and the two 

heterotic theories. There was a great deal of dissatisfaction that no one model could 

assert itself as the master theory which provided a description of the world as we 

see it. Eventually, it was discerned that each of these models, when one adds in 

11-dimensional supergravity, were different facets of the same theory. The presence 

of so-called dualities between the parameters of the models gave rise to the notion 

of a moduli space of string theories, with each of the distinct models listed above 

lying in particular regions of this complicated web. This is M-theory. 

An essential ingredient in realising this encompassing theory was the observation 

that there existed extended objects which generalised the notion of particle world-

lines and string world-sheets. These were termed p-branes, and had (p-fT)-dimensional 

world-volumes. In this scheme, world-lines are termed 0-branes and world-sheets 1-

branes. 

In M-theory, the low energy effective theory indicated the presence of 5-branes. 

Using a particular embedding of this 5-brane in spacetime, Witten was able to show 

that the results of 4d N=2 supersymmetric gauge theories were derivable from the 

80 
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M-theory model. I t is the aim of this chapter to review this method, demonstrating 

that the correct kinetic terms for the scalar fields arise. We will then examine1 

whether the higher derivative terms derived from M-theory coincide with those of 

the field theory. 

5.1 Seiberg Wi t t en Action f rom M—Theory 

In this section we shall derive an action which corresponds to the kinetic terms for 

the scalar fields arising in the N=2 supersymmetric SU(k) gauge theories studied 

by Seiberg-Witten [80, 81]. This shall be done in the framework of M-theory. A 

thorough discussion of the features of M-theory would take us too far afield from 

the purpose of this chapter. Instead we refer the reader to several of the excellent 

reviews which have appeared [38, 78, 89] and shall content ourselves with using the 

relevant results. 

5.1.1 An M-Theory System with N=2 Worldvolume Supersymmetry 

We wish to compare models with N=2 supersymmetry with respect to an observer 

in 4d. Since we will eventually consider physics on an M5 brane, and it is known 

that these objects satisfy a topological bound with the result that they preserve | 

of the spacetime supersymmetries, we shall give an example of how to construct a 

background spacetime which has A r = 4 supersymmetries to the 4d observer. 

Let the background spacetime be 11-dimensional, and to allow comparison 

with field theories in a Minkowski spacetime E 1 , 3 let it be a product manifold of 

the form Mn = R 1 ' 3 x Mj with M 7 a 7d manifold. We wish there to be global 

supersymmetries in the R 1 ' 3 , a condition which requires us to find spinors which 

are invariant under parallel transport in M.\\. Another way to state this is that the 

spinors must be covariantly constant in A^7. If we want the background spacetime to 
1 Whilst undertaking this analysis, several papers were published which encompassed my work 

to this end. As such, this chapter should be seen as a short review of already published material, 

indicating the relationship between higher derivatives in different physical systems. 
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have N=4 global supersymmetry, the problem finally reduces to discerning 4 spinors 

which are in a trivial representation of the holonomy group, a mathematical structure 

which encodes how an object will transform under parallel transport around a closed 

loop in a manifold. 

The largest [91] holonomy group for a 7-manifold is SO(7). This has an associated 

semi-simple Lie algebra written as B 3 in the Dynkin classification. The spinor 

representation for this algebra, is 8-dimensional [26] and is written as 8. This can 

be seen2 by considering the general formula [69] for the dimension of the Clifford 

algebra Cl(2n + 1) in an (2n-t-l)-dimensional manifold: dim[C7(2n + 1)] = 2 n . We 

are required to find an embedding of a proper subalgebra in B3 such that this 

representation has four trivial representations of the subalgebra. The exponentiation 

of this subalgebra will then give the holonomy group which will guarantee N = 4 

supersymmetry. Using data concerning branching rules [71] to investigate which 

algebra leads on to the desired situation, one finds that only SU(2), whose Lie 

algebra is A[ in the Dynkin classification, yields the desired result 

8 4 © 4 3 © 3 © 1 e 1 ^ 2 © 2 © 1 © 1 © 1 © 1 

Thus, in order to have a background spacetime with four supersymmetries, the 

manifold . M 7 is required to have SU{2) holonomy. We can take3 M7 = K 3 x Q4 

where Q4 is a 4-manifold with SU(2) holonomy. Thus, our spacetime is the product 

Mu = x R 3 x Q 4 

Complexifying Q4 means [55] that it is a so-called hyper-Kahler manifold, a special 

case of a Calibi-Yau manifold which are complex m-manifolds with SU(m) holonomy. 

Into this background spacetime, one can now immerse the 6-dimensional surface -

the M5 brane - which arises in M-theory. In general, such an immersion generically 
2 I t is a standard result [69] that the representations of the a Clifford algebra are the (spinor) 

representations of the universal cover of the special orthogonal groups. 
3 This can be made more rigorous when one considers the decomposition of the vector represen­

tation of £?3 under Ai. Using branching rules [71] we have 

7 A 6 ® 1 3 ® 3 © 1 A 2 © 2 © 1 © 1 © 1 

and then identify an K 3 with the orbits of the singlets under the group action of SU(2). 
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breaks all of the supersymmetry in the spacetime, but there are situations in which 

some is preserved [12]. This can be seen in the following discussion. 

It is known [2] that the action for the M5 brane can be written in a form which 

is analogous to the construction of the supersymmetric string action in the Green-

Schwarz formalism [54]. Let a flat 4 l i d spacetime have co-ordinates yM where 

M — 0,1, • • • 10 and introduce a 32 component Majorana spinor 0 which will be 

used to construct an N = 1 superspace. If we let T be the Gamma matrices of the 

l i d Clifford algebra, then we have the defining relation { r ^ T ^ } = 2gMN where 

g M N is the metric of our spacetime which has signature ( —, + , + , . . . + ) . 

The action for the 5-brane in l i d is written in terms of the differentials 

dO and UM = dyM - OTMde (5.1.1) 

where the exterior derivative d = dxmdm is the pull back to the brane worldvolume, 

and we consider x'n to represent the co-ordinates on the worldvolume. To an ob­

server in the brane, the (super)co-ordinates of the background spacetime manifest 

themselves as fields. This should be familiar to those who have a aquaintance with 

string theory. A supersymmetry transformation of these fields is defined as 

6ee = e and 5eyM = eTMe (5.1.2) 

which obviously leave (5.1.1), and therefore the action, invariant. In (5.1.2) e is 

clearly a constant 32-component Majorana spinor. Although the precise form of the 

5-brane action shall not concern us, we note that it was discerned that one must 

include an additional (local) symmetry of the action if one is to obtain the correct 

number of components in 0 to guarantee supersymmetry. This is the so-called kappa 

symmetry familiar from string theory. It acts as 

5Ke = 2P+K(X) and 8KyM = 2i9YM P+K{X) 

4 The analysis in a curved spacetime is more complicated, but yields the same conclusions. A 

quick way to justify this is to consider the curved space as being immersed in K 1 , 3 . The Clifford 

algebra above (5.1.1) is then replaced by the pull back into the curved space. The analysis then 

proceeds as in the main text. 
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where 

P. — - M + -L F

m °-" i5 ,a ? ; M > a , , M 5 r \ _ I [ i _ i _ J , m 0 - n i 5 - p \ 
- ' i — g V 6! ^ m o i / ^maJ/ 1 Mo-Ms I ~ 2 \ Q\ m0-mb I 

In this expression r m o . . . m 5 — ^T^NOTIM • • • r „ l 5 ] . Using the results in the appendix 

to [85] we have (0?=o r * ) 2 = 1 s o t h a t ( p ± ) 2 = P ± a n d P + P - = P - P + = °- T h i s 

means that P± give a decomposition of unity. 

Now, the insertion of a bosonic brane into a spacetime will generically break su-

persymmetry. This can be thought of as occurring since the spacetime is no-longer 

invariant under (super)translations. However, if it is possible to compensate this 

effect by a kappa transformation, then the brane preserves supersymmetry. For this 

to happen, we must have 

se = ste + sKe = o 

which by the above formulae means e + 2P+n = 0. Applying the projection operator 

P- we therefore have the final condition 

P_e = 0 (5.1.3) 

This projection operator halves the number of degrees of freedom in 0 and so the 

supersymmetry on the worldvolume is halved5. This then shows that we have 4d 

N = 2 supersymmetry on the worldvolume of the brane, provided the solution to 

(5.1.3) is compatible with our demands of trivial holonomy. 

Now to have Poincare invariance in to a 4d observer in the brane worldvolume, it is 

required that the 5-brane fills all of the K 1 ' 3 in M.\\. This means that the M5-brane 

has geometry I 1 * 3 x E where E is a 2d surface. It is possible to consider E to be a 

complex curve in the canonical way. Furthermore, the fact that the brane preserves 

half of the supersymmetry is related to the presence of a topological bound arising 

from minimising the area of the brane. It has been shown [61] that this bound leads 

on to the condition that E is holomorphically embedded in Q4. 
5 One may now use these conditions to investigate whether it is possible to preserve super-

symmetries when more than one brane is present. This problem essentially reduces to finding 

configurations whose chirality operators P± commute with each other. We shall not be required 

to pursue this avenue of investigation in this chapter. 
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As such, we have illustrated how one can obtain a configuration in M-theory which 

allows comparison with 4d field theories with N=2 supersymmetry. One starts with 

an l i d spacetime of the form Mn = R 1 ' 3 x R 3 x Q4 where Q4 is a complex surface 

with SU(2) holonomy. Into this spacetime one immerses a 5-brane with geometry 

Mb = R 1 ' 3 x E where £ is a complex curve holomorphically embedded in Q4, and 

the factors of R 1 ' 3 are identified. 

5.1.2 Leading Order Terms in Seiberg-Witten from M-Theory 

We use the above configuration to develop a general method for constructing the 

kinetic terms for the scalars apparent to a 4d observer in the R 1 ' 3 of the M5 world-

volume. We then examine a specific choice for Q4 which was considered by Witten 

[96], and show how this leads on to the familiar Seiberg-Witten action for N = 2 

supersymmetric gauge theories. 

We begin by introducing co-ordinates to represent the configuration developed above. 

Let y°, • • • y10 be the co-ordinates on M.u and x°, • • • , xb be those of the five-brane. 

We identify yl = xl for i = 0,1, 2, 3 and introduce X1 = y4 + iy5 and X2 = y6 + iy10 

as the complex co-ordinates for Q4. We understand X1 = X1. Further, we demand 

that y1 = y8 = y9 — 0 for the fivebrane. This is associated with an identification of 

the universal cover of the Lorentz group of the R 3 in with an R-symmetry of 

the supersymmetry algebra. On the M5 worldvolume we write z = x4 + ixb. Then, 

the condition of holomorphic embedding of the five-brane in M\\ is expressed as 

X1 = Xl(z,ua) and X1 = Xl(z,ua) for i = 1,2; where the ua are moduli of the 

curve £ which in general will have genus g. This will be seen in more detail later. 

The bosonic action on the worldvolume of a 5-brane has been derived in [11, 2, 16], 

and has a term 6 of the form 

6There are, of course, other terms in this action, but they are either related to the given term 

via supersymmetry, or do not contribute to the subsequent analysis in this chapter. We have also 

suppressed various constants in this subsection. They shall be reinstated later. 

J <Pxs/=g~ S here g = det(gab) w (5.1.4) 
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where the metric tensor on the worldvolume gat, is an embedding of the spacetime 

metric since, by equations of motion, it was discerned that gab = GMNdayM dbyN 

with yM the co-ordinates of the background spacetime. With the configuration 

outlined above, we have the spacetime metric, GMNdyMdyN, 

ds2 = r}mndymdyn + 2Gl]dXldX3 + bpqdyvdyq 

with m,n = 0,1,2,3 and p,q = 7,8,9. As noted above, i,j = 1,2. 

(5.1.5) 

Let us now analyse (5.1.4) with this choice of metric. Due to the above identifications 

we see the measure 

d6x i - ^ 2 / d4xdzdz 

Now, since the M5 is at a point in the 1R3 and Gtj — G~^ we can calculate 

dJCdX^ dXidX' 
9mn Vmn G^ ^ _ — — + Gi 

Vmn 

— Vmn 

13 dxm dxn 13 dxn dxm 

' dXl dua dX> du0 . 
( j f i ^ — o h ( m <-> n ) 

3 dua dxm du? dxm v ; 

ga0dmuadnu^ + ( m ^ n) (5.1.6a) 

Likewise, we can write 

r , dXl dX~i da? _ . _p_ 

d_X^dX^dn^= _Q_ 
9 13 dz dua dxm 

9zz — 9zz = 0 by holomorphic embedding 

9z G, 
dX( dXJ 

(5.1.6b) 

(5.1.6c) 

(5.1.6d) 

(5.1.6e) 
13 dz dz 

Putting these expressions into a determinant and using the well known formula 

det P Q 
R S det P~QS~lR 0 

0 S 

0 gz with P = (gmn), Q = ( gmz gm2 )> ^ = ( ^ ) a n d 5 = ( ) yields 

9zB9az i { d m U a d n U 0 + ( m ^ n ) | j ( 5 A ? ) 
d e t 9 = 9zz d e t Vmn + 1 9a 
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Keeping only the lowest order terms in the expansion det(I + A) = 1 + trA + .. . 

and using det(A + B) = det (A) det(I + A~lB) and the Maclaurin series (1 + e)^ = 

l + |e + . . . we expand (5.1.7) about a flat background, a situation which corresponds 

to a low energy approximation 

( - det g)* « gzz + (gzzgap - gz-0gaz) dmuQdmuP 

Ignoring the gzz term we then have 

J d6x{-det 5 ) 5 « 2 J dAxdmuadmu'3 J dzdz (gzSga-p - gaSgz?) (5.1.8) 

as the kinetic term for the scalars ua. Using the definitions in (5.1.6a)-(5.1.6e) yields 

Gap = 2 J dzdz (gzzgap - gazgzp) 

dzdzdzXmd-zXn ^ g_p (GmnGi3 - GinGm3) (5.1.9) 

where we have introduced Gap as the field theory Kahler metric for scalars as is 

standard since systems with N = 2 supersymmetry generically give rise to a Kahler 

manifold whose co-ordinates are the scalar fields [99, 4]. 

Now, for a general complex manifold, the Kahler form Q is [73] 

Q = —J^pdz^1 A dzv where J is the complex structure 

= -g^dz11 A dz"jl = ig^dz^1 A dzv 

where in this expression, the {z11; \x = 1, • • • , d} are the co-ordinates of an arbitary 

d-dimensional complex manifold with hermitean metric g^. Thus, in general, 

Q ACl = ^(g»Pgap - gll0gap)dztl A dzv A dza A dz0 

This demonstrates that the factor GmriGij — GinGmj in (5.1.9) is proportional to QAO, 

in Q4. Now it is a general result [73, pp 283] that for Hermitean manifolds Q, = Cl so 

that we have in principle calculated fiAO which can now be used as a volume form 

for the Kahler manifold. This is due to the fact that we are considering a complex 

manifold of real dimension 4, and the Betti number 6(2,2) (Q 4) = 1, meaning that the 

space of (2,2) forms in our 2d complex Kahler manifold has dimension 1 [66]. 
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Now consider the curve £ in Q4 to be given by 

A{v)t2 + B{v)t + C(v) = 0 (5.1.10) 

where t, v are co-ordinates of Q4. We shall relate t and v to the X1 later. Also, 

A(v) and C(v) are non-zero constant functions, so that they have no zeroes by the 

fundamental theorem of algebra. Mapping t >-» ( ^ ) 2 t and B(v) h> —2(AC)^B(V) 

reduces (5.1.10) to 

t2 - 2B(v)t + 1 = 0 (5.1.11) 

Obviously these transformations leave j invariant. 

Let the polynomial B(v) be of degree k in v. The most general such polynomial is 

B(v) = a0vk + axvk^ + ... + ak ; a 0 ^ 0 

We can now scale and shift v. Let v t—>• a0 ^ f c (u + A ) , with A a constant. It is clear 

that the differential dv i-» a~xlkdv. Then 

B(v) = vk + kAvk~l + ( 2 ) ^ V " 2 + • • • + + 

( t ,*" 1 + (A: - 1 ) A ^ " 2 + . . . + A * - 1 ) + 
a 0 

- i ^ E ( v * - » + . . . + A*-») + . . . + 0 t 

We now collect terms 

+ I Q l A + ° 2 A 2 + + A* 

We now set A = — ^ T ^ T T T s o that the v ^ - 1 term vanishes. 

We now transform t ^ t — B, and the curve (5.1.11) becomes 

t2 = B{v)2-l (5.1.12) 

with 

B(v) = vk + u 2 w f c " 2 + . . . + Mfc-iv + M f c (5.1.13) 
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+ 

v 
3 / 

Figure 5.1: Construction of branched cover (Riemann surface) for the polynomial 

t2 = B(v)2 — 1. The left diagram shows the two Riemann sheets w i t h branch-cuts, 

the right diagram how these are patched together to fo rm a smooth surface. We 

have illustrated the genus 2 case. 

Comparison w i t h [7, 58] shows that this is the (hyper)elliptic curve governing the 

coloumb phase of the N = 2 supersymmetric gauge theory wi thout matter, and wi th 

gauge group SU(k). From equation (5.1.13) we also see the meaning of the modul i 

ua introduced previously, w i t h a = 1, • • • , k and u\ = Yli=i ei = 0 where et are the 

roots of k-degree polynomial B(v). 

Geometrically, we can picture the curve £ embedded in Q4 as follows. Each of 

the two roots of (5.1.12) in the t-plane lead on to two Riemann sheets E + and 

E_, each sheet having branch points where the discriminant, ^B(v)2 — 1, of the 

curve vanishes. Since B(v) is a complex polynomial of degree k, there are 2k such 

points. One now forms a surface by joining the branch points w i t h cuts and then 

patching the Riemann sheets w i t h k-circles. This situation is the canonical method 

of constructing a genus (k — 1) Riemann surface [68], and is illustrated pictorially 

in figure 5.1. 

We now leave the generalities of the problem behind and consider a specific model. 

Let the complex manifold Q4 be parameterised by the co-ordinates 

This therefore gives Q4 the topology 7 R3 x S l . In this case, the Kahler fo rm Q is 

7 The astute reader wil l realise that K 1 , 3 x S1 has trivial holonomy. Naively one would expect 

v = y4 + iyb and t = exp(—s) — exp(—y 6 — iy10) 
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given by 

i f 1 -
ft = - [ dv A dv + — A dt 

2 V < 2 

Using the foregoing analysis, we consider the curve in Q4 

t 2 - 2B(z;ua)t + A 2 f c = 0 (5.1.14) 

where we have reinstated a renormalisation scale A, and have identified v = z 

to conform w i t h the configuration 8 originally considered by Wi t t en [96]. Then, 

differentiating (5.1.14) w i t h respect to ua and using (5.1.13) we have 

d t (t - B(z)) = t d B [ Z ] U a ) = t*-« 
dua du 

so 

dt zk~at z k - a t 

dua t - B ( z ) ( B 2 - A 2 k ) * 

Now, f rom (5.1.9) we see that the Kahler metric 

/

dX' dX-i 
d z d z d z X m d - z X n - ^ - j {GmnGfj — GinGrnj) 

(5.1.15) 

*a/3 

r k-a / zk-0 \ 

the 4d observer in the worldvolume of the M5 to see N=4 supersymmetry using the argument 

that the spinor representation 8 of £? 3 transforms as 8 l's under trivial holonomy group, and that 

half of these are preserved by the presence of the 5-brane in the spacetime. However, a detailed 

analysis, which is outside the scope of this chapter, shows that this choice for Q 4 does indeed give 

N — 2 supersymmetry. As pointed out previously, i t has to be shown that solutions to (5.1.3) are 

compatible with the demands of trivial holonomy. In the case of M 1 , 3 i t is found that half of the 8 

invariant spinors do not globally satisfy the demand of positive chirality under parallel transport. 

For more details see [61, 50]. 
8 I n Witten's paper, the initial analysis was in I I A string theory which is known to be the 

limit of M-theory with vanishing radius of the eleventh dimension. In this dimensional reduction, 

the M5-brane can be reduced into a configuration of so-called Neveu-Schwarz (NS) 5-branes or 

Dirichilet (D) 4-branes depending on whether the M5-brane is wrapped on the circular dimension 

or not. To describe this procedure in detail would take a great amount of time, and so we refer 

the reader to Witten's seminal paper [96] 
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Figure 5.2: The symplectic basis of homology cycles [77] on a (A; — l)-genus hyper-

elliptic curve. 

where we have used the fact that Gzi = \ and Gti = \\t\~2 w i th all other entries 

zero. 

Now, i t is known [58] that the one-forms tua — jz^dz fo rm a basis of holomorphic 

one forms for a curve E of genus k — 1. Thus 

Ga0 = I WQ A UJp (5.1.17) 

This is precisely [37] the same result as is obtained in field theory. We have therefore 

demonstrated that the dynamics on a 5-brane w i t h suitable identifications yields the 

correct Kahler metric for SU(k) super-Yang-Mills wi thout matter. 

Further, the one-forms uia obey the Riemann bilinear relation [77, pp51] 

G e n u s = f c - 1 

Mr, I COp ~ J UJp I U)c 

A, J Bi 

U)Q A Up E (5.1.18) 
= 1 xJAi JB, 

where Ai and Bi are the cycles on the curve as shown in figure 5.2. 

Introducing the derivatives of the periods (a \ al

D) of E 

dcii 
dun 

d{ap)i _ r 
dua J B . 

U)p 

Ai U L L a JB 

and placing these into (5.1.18) we see (5.1.17) becomes 

fe-i 

= 
i = l 

dcii dal

D dcii dal

D 

dua dup dun du p UUQ 

(5.1.19) 

which agrees wi th the formula of Seiberg and W i t t e n [80]. We can now derive the 

kinetic action for SU(k) N = 2 super-Yang-Mills. 

We have f r o m (5.1.8) that the low energy dynamics of the scalar fields on the brane 

file:////t/~2
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worldvolume are given by 

dxm dxn f J \duQ dup dup dua 

r k-l 

= / d'xrf'"1 dma'dna^ - (d m a*d n a ' D ) 
i = l 

/
fe-1 

i = l 

which is the canonical action for the scalar fields of SU(k) N = 2 super-Yang-Mills. 

We have therefore illustrated how to obtain the Seiberg-Witten curve f rom M-theory, 

and in particular how the action for N = 2 Super-Yang-Mills arises. 

5.1.3 Higher Der ivat ives 

We w i l l now attempt to derive the higher derivative action using this brane dynamics 

formalism. We st i l l consider the spacetime to be 

This was shown to lead on to the kinetic terms for the scalars of N = 2 supersymmet-

ric Yang-Mills and gave a natural interpretation for the Seiberg-Witten curve that 

appears so mysteriously in its original derivation [80]. I t shall be illustrated that 

despite the agreement for holomorphic terms, the next to leading order correction 

derived f rom branes cannot be that of the field theory. 

The metric for our spacetime was wri t ten in (5.1.5) as 

ds2 = rjmndxmdxn + 2Gz2dzdz + 2Gttdtdi+ ^ difdy* 
i=7,8,9 

Whils t in the foregoing analysis i t was possible to use this general form of the metric, 

i t is now important that we reinstate any constants relevant to the physical problem 

at hand. I t can be shown [19, Appendix A] that the correct metric is 

ds2 = r}mndxmdxn + \l2

stdv\2 + \ R j \ 2 + ••• (5.1.20) 

where we now have t = e ~ ' y 6 + i y l ° ^ f i w i th R the radius of the circle in the 11th 

dimension. The • • • signify terms related to the first R 3 factor in Mn, but since 
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we consider our 5-brane to be at a point in this submanifold. we do not need their 

specific form. The parameter l s t has its interpretation in the lOd type I I A string 

theory which was originally used by W i t t e n to study this model. I t arises in (5.1.20) 

to ensure that the mass of the particles in the field theory are given by the tensions 

of strings l inking the NS 4-branes; objects which arise on wrapping the M5 brane on 

the 11-th dimension. Indeed, the strings themselves arise on wrapping a 2-brane on 

the same circle. Comparing the actions of I I A string theory and the dimensionally 

reduced action of l i d supergravity (which is appropriate model for low energy M -

theory) i t was discerned [90] that there is a relation between the parameters l s t , R 

and the 11-dimensional Planck length l n . This is 

(lst)2R = ( l u ) 3 (5-1.21) 

Now, due to the identifications made in the previous subsection 

_ ax* dxi at at 
9zz — — ^zz + ^ t t ^ - ^ Z 

OZ OZ OZ OZ 

so that using the result dzt = ( f r j f j derived f rom (5.1.14) we see that on the M5 

worldvolume 

4 R2\dzB\2 _ l*Jt - B\2 + R2\dzB\2 

9zz — l-st ' \t-B\2 \t~B\2 

. dX' dXJ Also, gap = but as previously, our holomorphic embedding conditions 

dt 
8ua 

dt dt „ 2 zk~azk-p 

mean that only ^ — and the complex conjugate - are non-zero. Thus 

9a3 — Gti-—-—- — R 

Also 

duQ dup \t — B\2 

dt dt ^drBzk~0 

9zf) — Gti^-^rfi — R2 

dzduP \t-B\2 

and lastly 

a - R 2 ^ B z k ~ 9az — K 
It - B 

Using the above formulae i t is a matter of simple algebra to show 

9zp9*z R2l'l

stzk-azk-0 

9a0 gzz l4

st\t-B\2 + R2\dzB\2 
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which can then be placed in the general formula for the determinant derived in 

(5.1.7) to give 

- d e t g = g2

zsdet [sp + E z ^ z ^ 1 3 ^dpuQdQa^ + dpu^dquQ^ (5.1.22) 

where we are denoting =L = f 4 \ T _ B \ 2 + R 2 \ 9 B\2 • Now, let t ing A be the difference f rom 

the unit matr ix w i th in the [• • • ] in equation (5.1.22), one can derive 

tr A = 2Ezk-azk-pdmuQdmu0 

t r X 2 = 2E2z2k-a-a'zk-M' \dmuadmua'dnu^dnu^ + dmua'dmu^'dnuadnu^ 

We can now make use of the identity det ( I + .4) = 1 + t r A — ̂ t r A2 + \ (tr A)2 + • 

to expand (5.1.22) to next to leading order about a f lat spacetime. We obtain 

v / - d e t 1 + 2Ezk-azk-f,dmuQdmu^ 
V v ' 

Leading order, derived previously 

=?z2k-a-a' z 2 k ~ ^ ' d m u a d ^ d n u ° ' dnJ' 

and subsequently we expand the square root using (1 + e)s = 1 + |e — | e 2 + • • to 

see 

v / - d e t 1 - E z k - a z k - f i d m u a d m u $ 

1 „ 
E2z2k-a~a''z2k-0-P'dmuadmua'dnu0dy' + ••• 

where the • • • are terms wi th more than four derivatives. In particular, the total 

contribution at four derivative order is given by 

1, 
- E 2 g z - z z 2 k ^ - a ' z 2 k - ^ ' d m u a d m u a ' d n ^ d n u ^ (5.1.23) 

Now, using the method of reduction used in chapter 3 i t is possible to show that the 

general fo rm of the higher derivative action (here expressed in N = 2 superspace) 

sH = / cfxcre^jre^HiK 

has as its purely scalar component term 

SH = I ^ x H ^ t f d m t f d ^ ' d J 1 (5.1.24) 
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where d4M 
i l j k l — dpd&d&dft • ^ n t n e w o r l d v o l u m e of the M5, the scalar fields are the 

ua and so i f the M-theory is to give rise to the higher derivative terms in a 4d field 

theory, we must have that the worldvolume action (5.1.4) 

5 5 = j dAxd2z^-t\et g 

- where we have reinstated a constant related to the brane tension - has an identical 

expression as in (5.1.24). On comparison between (5.1.23) and (5.1.24), we can see 

that this is indeed the case, w i t h 

?2/ 

- [ d 2 z -
J E I t 

R 2 ( l n f z 2 k - a - a ' z 2 k - ' 3 - ' } ' 
(5.1.25) 

B\2{(lu) \t - B\2 + R4\dzB\2) 

for the non-holomorphic prepotential H which encodes information on the next to 

leading order terms in the low energy expansion of supersymmetric field theories. 

In deriving (5.1.25) we have made use of the relation (5.1.21). 

As a specific example, consider the case of 5/7(2). From the analysis of the foregoing 

subsection, this corresponds to the polynomial (5.1.14) being B(z;u) 

Substituting this into (5.1.25) we see 

u. 

"Ruuuu 
( h l f R 2 

d2z-
' E | ( ^ 2 + U ) 2 - A 4 | ( { l u f \{z2 + u)2 - A 4 1 +4R*\z\2) 

in which we have made use of (t — B)2 = B2 — A2k. We can discern an upper bound 

on the magnitude of this integral by making use of the Cauchy inequality, that is 

\Ruuuu I {in?R2 d2z-, 

< R2 d2z-

E \(z2 + u y - A i \ 

I 

6?z 
E ( / n ) 6 | ( z 2 + u ) 2 - A 4 | + 4 ^ 1 ^ ! 

' E \(z2 + u) - A 4 | 

where use has been made of the triangle inequality \a\ + \b\ > \a + b\. However, an 

examination of the result (5.1.16) shows that the Kahler metric 

1 
Guu = R / d z— 2 

' E \{Z2 + U) - A 4 

so that 

file:///Ruuuu
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Making use of (5.1.19) i t is apparent that for gauge group SU(2) 

da da D daD da 
uu du du 

da da da 
du du 

da da da D D 

du du da du du da 
dap 
da du 

I m 

Thus we see that 

\n uuuu < 4 
da 
du 

I m 
daD 

da 

2 

One can now use the results of Seiberg and W i t t e n [80] which calculate explicit 

relations between a and u, and aD and u for particular values of the modul i u which 

correspond to the singularities in the curve (5.1.13). This is a simple exercise which 

we shall not pursue here. 

We now enquire whether the higher derivative terms arising f rom the theory on the 

worldvolume of a 5-brane are the same as that arising f rom field theory. We first 

note that whilst i t may appear satisfactory that the brane formalism led on to a 

higher derivative term of the same type as that arising in field theory; this was to be 

expected. This statement can be justif ied by the fact that both the field theory and 

the physics on the worldvolume have N = 2 supersymmetry, and the action (5.1.24) 

arises f rom general considerations of systems w i t h this amount of supersymmetry. 

Given this, any identification between the higher derivative terms in M-theory and 

field theory would be nothing other than a chimera. As is well known, the field theory 

is governed by the parameters A and u. In giving an interpretation to the Seiberg-

Wi t t en curve in M-theory, we identified the A of the surface £ w i th the physical 

renormalisation scale of the super-Yang-Mills theory. Furthermore, the parameter 

u which arose as a scalar field on the brane worldvolume has its identification in 

the field theory as being the moduli related to vacuum expectation value of the 

Higgs field a. As far as the non-derivative terms are concerned, this would allow 

us to identify the physics on the brane w i t h that in field theory. However, the 

higher derivative terms derived f rom M-theory contain extra parameters. These 

are R and In, relics of the fact that we are looking at a string theory wi th all the 

complications that entails. Due to this parameter mis-match, i t is not possible for 
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the higher derivatives in super-Yang-Mills to be the same as those for the theory on 

the M5 worldvolume, and as such the two theories are distinct. 

However, an examination of (5.1.25) shows that the integrand is singular whenever 

t — B = 0 or \t — B\2 + R4\dzB\2 = 0. The second condition can be rephrased 

on noting that i t is a sum of positive quantities, meaning that both (t — B) and 

dzB must vanish at the same point. In either case (t — B) = 0, which means that 

the discriminant of the polynomial (5.1.14) vanishes. This is precisely the same 

condition as for the leading order holomorphic term in (5.1.16). A t this leading 

order, the match to field theory is appropriate and, as is well-known, this situation 

corresponds to points in the modul i space where the dyons become massless [80]. As 

such, i t is reasonable to claim that the two distinct theories have the same general 

properties, and can therefore be said to lie in the same universality class of models 

w i t h N = 2 supersymmetry. 

5.2 Conclusions 

In this chapter we have investigated the relationship between the physics on the 

worldvolume of a 5-brane in l i d M-theory and super-Yang-Mills. I t was demon­

strated that to be permitted to do this, one had to choose the spacetime carefully 

and also immerse the 5-brane into the spacetime in a particular way. We then 

considered the configuration originally proposed by Wi t t en [96] to show how the 

action for the scalar field on the 5-brane worldvolume led in a natural way to the 

action for the Higgs particles in Seiberg-Witten models of SU(k) super-Yang-Mills. 

In doing so, we illustrated the use of a (hyper)elliptic curve of genus (k-1) in the 

M-theory as a sub-manifold of the 5-brane worldvolume. This curve is related to the 

Seiberg-Witten curve of field theory. We then considered higher derivative terms 

arising in the brane theory, and showed that these had the expected generic form 

for N = 2 supersymmetric theories. Lastly, i t was pointed out that these could not 

be the same as those of super-Yang-Mills due to the appearance of extra parameters 

beyond those which arose in the identifications at leading order. 



Chapter 6 

Conclusions and Future Work 

This thesis has attempted to investigate higher derivative terms and their influence 

on N = 2 supersymmetric systems. In particular, we were concerned w i t h those aris­

ing f rom the supersymmetric generalisation of the Yang-Mills-Higgs model w i t h and 

wi thout matter. I t was demonstrated that these terms do not influence the conclu­

sions of Seiberg and Wi t t en in their analysis of such terms. We then proceeded to 

investigate multi-instanton contributions to the non-holomorphic prepotential which 

arises at next-to-leading order in the derivative expansion. I t was then possible to 

prove a non-renormalisation theorem: in scale invariant models, instantons do not 

contribute to the prepotential. As a separate development, we then examined the 

relationship between the microscopic and effective coupling constants in these scale 

invariant theories making use of the Schwarzian derivative. Finally, we gave con­

sideration to the exciting developments in str ing theory which seemed to relate the 

dynamics on an M-theory 5-brane to gauge theories in 4d. Comparing the low en­

ergy expansions we were able to demonstrate that the higher derivative terms had 

the same functional form, but that a careful examination of the parameters arising 

in the brane model showed that the two models were inherently different. 

One of the l imitat ions of this thesis was our reliance on the gauge group SU(2). The 

Seiberg and W i t t e n programme has been directly extended to other gauge groups 

[9, 58], for example the case of SU(Nc) broken to it 's Cartan subalgebra U(l)Nc~l by 
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a Higgs mechanism. As such, i t would be of interest to generalise the investigations 

in this thesis to that case. For example, one could envisage looking at the instanton 

contributions to the non-holomorphic prepotential in this case, making use of the 

results in [35]. 

Another avenue of investigation might be to at tempt to show higher derivative 

terms do not contribute to the mass formula directly by making use of the rela­

t ion {Q^,Qp^} = eQpZe^ where the operators are determined f rom the low energy 

effective action. 

One might also at tempt to study the perturbative contributions to the non-holomorphic 

prepotential, due to an interesting result [52] which showed that for this object the 

contribution f rom two loops is zero. I t would be interesting to see whether all higher 

loop contributions also vanish, since this is not guaranteed by the general results 

derived by Shifman et al - in particular there is no holomorphy. 

Finally, we note that Matone [70] attempted to construct an explicit expression 

for the non-holomorphic prepotential in N = 2 super-Yang-Mills using some minimal 

assumptions. In fact, the authors interest in higher derivatives in M-theory was 

instigated in the hope of independently verifying Matone's formula. Crucial to Ma-

tone's conjecture was the behaviour at large distances and that the non-holomorphic 

prepotential vanished at points in the moduli space where the holomorphic prepo­

tential develops singularities. The former condition is contentious since the non-

holomorphicity of the prepotential means that there is no concept of analytic con­

tinuation. The second condition is not required by physical arguments. As such, 

i t would be of interest to develop methods to investigate the veracity of Matone's 

result. One could at tempt to begin wi th the microscopic theory and integrate out 

the massive modes, but this would probably be inconclusive and/or too dif f icul t . 

Rather, we would hope that there exists a more compact method to study this 

problem. 



Appendix A 

A Covariant Chain Rule 

In chapter 2 we used the result 

dG 

V„W) = V / t 0 a ^ (1.0.1) 

in deriving the action (2.3.9). In (1.0.1) 0 is in the adjoint representation of the gauge 

group. Although we usually take this group to be SU(2) we keep the discussion in 

this appendix more general. As such, we write <p = ^ a 4>aTa where the sum has the 

dimension of the Lie algebra as the upper bound. In the case of SU(2), we would 

take T a = ^ r u w i th r the Pauli matrices. The representation matrices obey the 

defining equation of a Lie algebra [Ta,Tb] = Y 2 c f a b c T c where f a b c are the structure 

constants of the algebra (we have absorbed any factors into these co-efficients). 

The group valued funct ion Q((f>) is defined in terms of a power series in the matr ix 

(f>. As such, i t w i l l suffice to consider the term </>" = YYi=i </>• 

Now, 

n n 
d ^ n = Y^<i>ai ••• (f)a'-1dll(j)a'(pa'+1 • • • <j)an Y[ T a j 

1=1 j=l 

and 

j2 v | £ = E w E ̂  • • • ^ • • • <T" nTak 

i i j k=l 
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f 1 if ci b 
which on use of the Kronecker delta 5? = < _ . „ . , shows 

0 [ 0 if a 7^ b 

i 

Next, consider the commutator 

1<V> 
a A:=l i \ b 

where we have used the commutator identi ty [A, BC] = -B[A C] + [A, B]C. Com­

paring this w i t h 

i i a,b j k=l 

and recalling that the summed indices can be relabelled (that is, they are dummy 

indices) we f ind that 

i 

Now since the covariant derivative acting on fields A in the adjoint representation 

of the gauge group is defined as 

V^A = d„A + [v^A] 

we see that on combining, (1.0.2) w i t h (1.0.3), the stated result (1.0.1) is proved. 



Appendix B 

Instantons and the A D H M 

Construction 

B . l Instantons: a very brief introduction 

A n instanton is properly denned as a finite action solution to the Euler-Lagrange 

equations in a spacetime wi th Euclidean signature. Such a spacetime is often de­

duced f rom a Minkowski manifold which has been transformed by a Wick rotat ion 

(in a rough sense, t ime is complexified.) These instantons often have associated w i t h 

them a topological invariant which pure mathematicians call the Pjontriagin index, 

but which physicists loosely term the "winding number." 

To illustrate some of these ideas consider a pure Yang-Mil ls system wi th no super-

symmetries. We let A M be the vector potential w i t h values in the Lie algebra of the 

gauge group. The associated field strength we wri te as F^„ = d^tA„) + A ( / ( A „ ) w i t h 

( . . . ) being an antisymmetrisation operation. Notice that we have suitable rescaled 

the fields such that the coupling constant in this classical theory is unity, and also we 

work in a spacetime w i t h signature (1 ,1 ,1 ,1) w i t h co-ordinates x^1 — (x\, x'2, x3, x 4 ) . 

As we are working i n such spacetime, there is no distinction between co- and contra-

variant tensors. This means we can raise and lower indices wi th no consequence. 
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The action, S, for this model is given by the canonical 

S = j cfx^tx ( v ^ v ^ ) 

f 1 1 
= tr / d4x- ( v ^ =F *v , t J / ) (v / i ( , q= * v / t i , ) ± - (v / t „ * v ^ ) 

w i th the trace being taken over the group and * v / i t / = ^ e ^ p c r F p a being the dual field 

strength, since e is the anti-symmetric Levi-Cevita tensor. 

I t is straightforward to show that 

1 / 2 \ 

—tr (v / t „ -k v^j ,) = dfjtre^pu I A-ndpA-u + —ApA„ A C T J 

and so 

± ^ t r j tf'xv^ * v M i / = f dS^e^pa ^ , 9 ^ , + ^ A p A ^ A ^ 

is a boundary integral by the divergence theorem, w i t h the surface E(oo) being that 

at inf in i ty in the 4-dimensional spacetime. 

A t this point we note that a vector potential at oo need not decay to zero: i t can 

be pure gauge. Therefore we w i l l get a finite action solution i f 

= (2.1.1) 

lirn = g-%g (2.1.2) 
\x\—>oo 

where g is a (gauge) group transformation. For this solution one can observe 

± ^ t r / d S % „ p o . (.AydpAa + ^ A p A . A J = ±\ [ dStie^pag~1dugg~1dpgg'lda 

1 J E ( o o ) V 6 ) 6 J^oo) 

Using spherical polars i t is then a tedious algerbraic exercise [65] to see that the 

action is bounded by: 

S > 8ir2\n\ 

where n G Z is identified w i t h the instanton (winding) number. The sign of n 

determines whether one is dealing w i t h instanton or anti-instantons. The above 

bound is saturated in the case of instantons wherein = -kv^. 
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B.2 Some Notation 

104 

We introduce some quaternion notation which w i l l prove useful. 

We shall denote the field of quaternions by EL Our quaternions w i l l be defined as 

e, = ( t T j 2 ) (2.2.3) 

where the r are 3 anti-commuting quantities. We take these to be in a represen­

tat ion where ( T I , T 2 , T 3 ) are hermitian Pauli matrices which obey the usual anti-

commutation relations. For our purposes, a specific representation is not important . 

I t then follows that = — e\ and e^e\ — as is usual for a quaternionic algebra. 

We also have 

euev + = 28^I2 (2.2.4) 

where I 2 is the 2 x 2 identity matr ix . We can then introduce quaternion valued 

vectors as in 

x = = ix • T + x4l (2.2.5) 

I t w i l l also be useful to introduce the t 'Hoof t symbols [63] 

Vm* = \ ( e ^ v ~ e^n) (2.2.6a) 

% v = ^ (e,,e„ - eue^) (2.2.6b) 

I t is then apparent that tpUpar)pa = i][W and tpVpaf\piJ = —f\pV. Tha t is, r\ and fj are 

respectively self-dual and anti-self dual. 

B.3 The A D H M Construction of Multi-Instantons 

B .3 .1 In troduct ion 

The general construction of instantons wi th arbitary winding number is a very d i f f i ­

cult problem, but a significant advance was made by At iyah, Dr infe ld , Hitchen and 
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M a r t i n ( A D H M ) when the}' proposed [6] a generic method for finding such solu­
tions. This diff icul t work is grounded in algebraic geometry, but was brought to the 
attention of physicists by the "translations" into a more accessible form by several 
groups [76, 22, 27, 28]. Here we shall simply state the algorithm and outline several 
useful results. 

First of all i t should be noted that we are restricting our interests to the gauge group 

Sp(N), and in particular we shall eventually focus on the case N = 1 which can be 

shown to be isomorphic to the special unitary group 517(2). The elements of Sp(N) 

are most simply represented by uti l is ing quaternion notation. The elements of the 

N x N mat r ix representation g of Sp(N) are then considered as quaternions. That 

is ia • T + a4I and gg = I2N-

B.3 .2 T h e A D H M C o n s t r u c t i o n 

R u l e one 

The vector potential is demanded to be 

A „ = Hd,H HH = I 2 n (2.3.7) 

This of course looks like a pure gauge, but in this construction the mat r ix H is not 

square. In fact H € M j v + n i j v ( H ) where the M means matr ix group w i t h quaternion 

entries. I t w i l l eventually transpire that n is the winding number of the solution. 

Using the usual definition of the field strength we then have 

= d l l ( H d v H ) + H d l l H H d u H - { n ^ u ) 

= H fa (HH) du (HH) - dv (HH) d„ (HH)} 

which obviously has the property of anti-symmetry in p, <-> v. I t should be noted 

that we have not imposed the condition HH = /^(/v+n)- We implement gauge 

transformations via H —> Hg, g € Sp(N). I t then follows that the quantity HH is 

gauge invariant due to the condition g~l = g. We can then see that —> gv^g 

which is the usual gauge transformation of the field strength. 
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We should also observe that since (HH)2 = H(HH)H = HH and (HH) = HH 
that HH is a projection operator. Observing that (HH)H = H we see that i t acts 
as a projection operator on the columns of H . 

We now seek the complementary operator to HH. This we denote by A , and so 

R u l e 2 

We demand that 

AH = 0 (2.3.8) 

Requiring that the columns of A together w i t h the columns of V span the relevant 

(N + n)-dimensional space we introduce the decomposition of unity 

h { N + N ) = HH + A ( A A ) " 1 A (2.3.9) 

where we notice that the operator / = ( A A ) 1 is hermitean. I t should also be clear 

that A is an (N + n) x N quaternion valued matr ix , and that the above condition 

is consistent w i t h the various projections. Ut i l i s ing the above ansatz gives 

= H [<9M ( A / A ) d„ ( A / A ) - ( / i <-> u)} H 

= H [ d l l ( A ) f d u { A ) - ( ^ ^ u ) } H 

since any term w i t h subexpressions AH and HA vanish due to the nature of pro­

jections and the definit ion of f ~ l = A A 

R u l e three 

I t is demanded that 

A = a + bx (2.3.10) 

In words, A be linear in the "co-ordinate" x = xtle^ expressed as a quaternion. Both 

a and b are constant (N + n) x N dimensional quaternion valued matrices. Then 

v M „ = Hb {efJeu - e v f e ^ ) bH 
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I f we make one final demand that / e / ( = e ^ f , that is / commutes 1 w i th the quater­
nion e^, then we have 

v f W = Hbf (e / t e„ - e ^ , ) bH 

= 2Hbfrhl„bH (2.3.11) 

and also that / is real in the quaternion sense: i t has no entries proportional to 

20"i,2,3• From the above expression we can see that the solution has the required 

property v / i ( , = • v ^ thanks to the duality properties of the rj. 

We can now reduce the problem of f inding a multi- instanton solution to three con­

ditions. Since we require f ~ x = (a + bx)(a + bx) to commute wi th each of the 

quaternions and for all . T m we see that fjk\^ — f j k ^ , where j, k e ( 1 , . . . , n) and 

a, j3 are the indices relating to the quaternionic entries. Further, fjk(x) = fjk{®) + 

xfld^lfjk(0) + ^x^xudfldufjk + - • • by Taylor's theorem, and / _ 1 = aa+xba+abx+xbbx. 

Equating co-efficients of x^L we see the following 

(aa)1 = aa oc e± (2.3.12a) 

(66)' = 66<xe 4 (2.3.12b) 

(6a)' = ba (2.3.12c) 

where the t superscript indicates transposition in the non-quaternionic indices. The 

first expression is t r i v i a l to derive, and so we show 

xbbx = ^ x , 1 x v d t l v f - l { 0 ) 

=> e^bbey = ^ 5 ^ / _ 1 ( 0 ) 

=> bb oc e ^ d ^ f ' ^ O ) oc { e M , e„} d ^ f ^ O ) oc e4 

1 Clearly this also means that f~l also commutes with each of the quaternions. In fact, it is a 

general rule that [A,B] = 0 <=> = 0 provided that A is invertible. 
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and in a similar vein 

- l e^ba + abe^ = d^f~ (0) 

e^e^ba + e^abe^ = e ^ / ^ O ) 

and e^bae^ + abe^e^ = e M ^ / _ 1 ( 0 ) 

Aba-2{ab)q = elxdlJ-l(0) (2.3.13a) 

and -2(ba)q+ 4ab = e^dtlf-l(0) (2.3.13b) 

The last equation (2.3.13b) can be made more useful using 

-2ev (ba)q eu + 4euabe„ = e ^ e ^ / - 1 (0) 

=> -2ba + A{ab)q = e M 9 M / - 1 ( 0 ) (2.3.14) 

meaning that, on taking (2.3.13a) f r o m (2.3.14) 

6 a - (ab)q = ba- (J)a)1 = 0 

where we have used the fact that co-efficients of quaternions are real, and also 

the result e^e„efl = e^e^e^ = —2e„. The superscript q indicates conjugation in the 

quaternion indices only. This then derives the constraints (2.3.12a, 2.3.12b, 2.3.12c). 

The above formulat ion has some invariances which further reduce the degrees of 

freedom of the problem. First of al l , i f S is a constant element of the group Sp(N+n) 

then we can note that = Hd^H is invariant under the transformation H —>• SH. 

We also see that (SA)(SH) = AH so that there is an ambiguity w i t h Sa and Sb 

giving the same field. There is a similar ambiguity i f we replace a and b w i t h aT 

and bT respectively, where T G Gl(n,M). 

Following the t imbre of this work, we shall now concentrate on the case where the 

gauge group is Sp(l) ~ SU(2). In this case we can use the above invariances of the 

solution space in (2.3.8) to reduce the parameter matrices a and b to a more useful 

form. Let Si G Sp(n + 1) such that the row [5i]oi is a vector in the orthogonal 

complement to the columns of b. Then b i—> Sib has 
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where 0 is a null-vector and b' G M n i „(HI) . From the constraint (2.3.12b) we see 
that b'b' must be real and symmetric. As such, the general theory of such matrices 
[57, 18] tells us that i t can be expressed as a matr ix product Vtl£Q, where Q £ 0(n) 
and £ = diag(/?i, /?2, • • • ,/3 n) where /?, is an eigenvalue of b'b'. In fact, i t is simple 
to see that Q must be formed of the eigenvectors - made orthogonal by a Gram-
Schmidt procedure - of the symmetric matr ix . We can now transform b via b i—> bT\ 
w i t h Ti € Gl{n) defined as T\ = Q • d i ag ( l / \ / / 3 i " , . . . l / ^ / A J , and follow this w i t h 
b \-> S2b where [S^oo = 1> [S^oi = [ ^ j t o = 0, and [S^]^ = This then yields a 

canonical fo rm for b as 

0 
eA n 

(2.3.15) 

Applying the same transformations to a, we write 

(2.3.16) 

where w is a n-tuple of quaternions. Hence, this canonical arrangement has A 0 ; = wi 

and also all of the degrees of freedom are contained in the matr ix a. Finally, we 

note that the constraint (6a) 1 = ba tells us that a'1 = a!. 

Before we leave the theoretical underpinnings of the A D H M method to consider how 

i t is applied to physical systems, we briefly calculate some asymptotic formulae. 

Since equation (2.3.9) has 

HH = I - A / A 

i t is straightforward to show - remembering we are considering SU(2) gauge group 

| i / 0 | 2 = 1 - ^tr2wfw (2.3.17a) 

HK = -—^AfwHo w i t h K ^ O (2.3.17b) 

Using these expressions, i t should be clear that at large distances, 

A = a + bx x bx 

f x I n X 2 

\ x \ 

a 
a 



APPENDIX B. INSTANTONS AND THE ADHM CONSTRUCTION 110 

where the first and last expressions are obvious. The second relation can be derived 

by recalling Z " 1 = A A i—>• xbbx and our canonical b (2.3.15). We note that specific 

gauge choices lead on to the values for HQ. 

B.4 Some Fields 

In the previous section, we derived the A D H M representation of the gauge field vm. 

This was defined to be vm = HdmH which we remarked looked pure gauge, but was 

not due to the demand that H € M^+n /^(M). I t is possible to attempt to construct 

other fields wi th in the framework of A D H M . We do this for the fundamental and 

adjoint fermions which arise in N = 2 supersymmetric models w i th matter. 

I t was established in [27] that the fundamental zero modes Xi a n d Xi w i t h i £ 

{ 1 , . . . , N f } are given by 

( X f f = HiabXkfklK,H (X?)* = fffWw&i (2-4.18) 

where we have explici t ly wri t ten the indices appearing in the A D H M quantities. 

Of the spinor indices, a is a Weyl and j3 a gauge group - which we take to be 

Sp(l) ~ SU(2) - index. The matrices /C and K, are constructed f rom grassmannian 

numbers not spinors. I t is these matrices which encode the collective co-ordinates of 

the fermions obtained by seperating out the zero modes of the fluctuation operator 

f rom the semi-classical action, and so they appear in the measure introduced in chap­

ter 3. Considering the definit ion of the covariant derivative V m in the fundamental 

representation contracted w i t h a spin m a t r i x 2 

dm (X?f + Hp

x

5dmHXSi (x?)' 

and manipulating this w i t h the identities 

dmH • A = —H • dmA (2.4.19a) 

d m f = - f d m f - ' f = - / d m ( A A ) / = - / ( e m 6 A + Abem)f (2.4.19b) 

dmH = —HdmHH - U d m A f A (2.4.19c) 
2Essentially the spin matrix arises from the representation of the Dirac algebra which underpins 

fermions. 



APPENDIX B. INSTANTONS AND THE ADHM CONSTRUCTION 111 

one finds that the spinors defined in (2.4.18) satisfy the Dirac equation ^^{VmXt)13 = 

0 without constraint. 

Similarly, the adjoint fermion zero modes can be found in [22, 27, 28]. For example, 

the higgsino 

(V>a)? = H^MjfbH^ - HibfM^H^ (2.4.20) 

where once more a is a Weyl index, and the others arise f rom the gauge group 

SU(2). The (n 4- 1) x n matr ix M consists of elements which are grassmannian 

spinors. This time the covariant derivative V m appears in the Dirac equation 

a&a ( V m 0 o ) ? = ( a m ( V a ) ? + H ^ d m H ^ a ) \ - ^ Q f . H ^ d m H ^ ) = 0 

Using the relations (2.4.19a, 2.4.19b, 2.4.19c) i t is a matter of tedious algebra to show 

that the solution (2.4.20) only obeys the Dirac equation when the constraints 

a ^ A / ; = -JV^'a* (2.4.21a) 

blNy = A f j t b i a (2.4.21b) 

are satisfied. The superscript t denotes transpose in the (n + 1) x n " A D H M " 

indices - ie the non-grassmannian indices. 

Similarly, one can introduce an (n + 1) x n matr ix A 4 7 of grassmannian spinors to 

encode the collective co-ordinates of the gaugino ip. The formula for ip follows f rom 

(2.4.20) by replacing M w i t h M. 

B.5 An Illustration: The 1-instanton from A D H M 

As a f inal i l lustrat ion of the A D H M method, we shall derive the n-instanton solution 

when n = 1 and when the gauge group is Sp(l) ~ SU(2). First we use the canonical 

A D H M matrices (2.3.15, 2.3.16) so that all of the degrees of freedom are contained 

in a € M 2 J I ( 1 H I ) and we shall define a = ^ ^ ^ . In this situation, we see that the 

A D H M constraints (2.3.12a, 2.3.12b, 2.3.12c) are t r iv ia l ly satisfied. 

Using A = a + bx w i t h x = xmem we see A = ^ _ ^ ^ ^ . Since a is a constant 

quaternion, we are permitted to express i t as a = — XQ where the interpretation of 
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a;0 follows. Thus, we see 

A P 
X - XQ 

In terms of components [ A 0 ] Q d = u>Qd = Pa& and [ A i ] a t j = [x — .TO]QQ- Now, the 

A D H M construction demands that / _ 1 = A A commutes wi th all quaternions. I t 

must therefore be proportional to e4 = I . Tha t is = • Thus 

X Q f 0 [ x - XQ]0a 

= ( p m p n + (x - x 0 ) m ( x - x 0 ) n ) ( e m e n f . 

= [p 2 + (x - . x 0 ) 2 ] 4 

Thus, since in the 1-instanton sector / is just a number when we seperate off the 

quaternion 

1 / 

Consider the quantity 

H0 

p2 + (a; - x0)2 

1 - -ftr(ww) 

(2.5.22) 

2 p2 + (x - . T 0 ) 2 

(x - T 0 ) 2 

(2.5.23) 
p2 + ( T - T 0 ) 2 _ 

since t r ( e m e" ) = 25mnl. I t is easy to see that this matr ix H0 satisfies (2.3.17a) and 

so is a suitable candidate for the upper row of the matr ix appearing in the definit ion 

of the vector potential. Clearly 

\H0\2 = 1 - lftv(ww) 
(X - T 0 ) 2 

p2 + ( T - . T 0 ) 2 

(2.5.24) 
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and so using (2.3.17b) the remaining entry in H is 

1 

\H~o\ 
[ # l ] a d = - j ^ A ^ w H o 

p2 + (x - X0)2

 v „ m 1 0 [ (x - x0)< 

( x - x 0 ) 2 1 ° j e ^ p 2

 + ( x - x 0 ) 2 P " ^ p2 + (x - . T 0 ) 2 . 
(x - x 0 ) m p " ^ m . ^ ^ o 

V ( x - x 0 ) 2 ( p 2 + ( x - x 0 ) 2 ) Q / 3 " 7 ° 

- " ( ^ ^ v ^ + ^ r ^ " 7 6 

where C ^ 7 = I p l ^ 1 / ^ 7 is an iso-orientation mat r ix in the spin-^ representation of 

SU{2). I t obeys OO = I 2 . 

One can easily verify that X1A=O H\H\ = I 2 . Further, we must investigate the 

expression for the vector potential 
I 

A = 0 

as prescribed by the A D H M method. Performing the relevant differentiation, and 

collecting terms, one finds 

P2 

{-(x - x 0 ) m + a0O(x - x0)emOa0} (x - x0)x2 ((x - x 0 ) 2 + p1) 

However, we recall that x = x1len and enem = 5mn + f j m n . Hence 

vm = p 2 { x ~ ^ n a0OfjmnOa0 (2.5.25) 
(x - x 0 ) 2 + p2 

Notice that the mat r ix term at the end of (2.5.25) is of the form f f = B f j B where 

B is a constant mat r ix in SU(2). This is simply a change of basis through rotation. 

Hence we have the f inal result 

p 2 v ' m n { x - x Q ) n (2.5.26) 
p2 + (x - x 0 ) 2 

Comparison wi th standard references [5] show that this is exactly the fo rm of the self-

dual vector potential w i th winding number n = l in the singular gauge. Therefore 

the A D H M method has reproduced the expected result. We also note that the 

parameters arising f rom our canonical fo rm of the A D H M matrices have the usual 

interpretation in the 1-instanton sector. The collective co-ordinate xo is the centre 

of the instanton, \p\ is the size of the instanton and the quaternion "phase" of p 

yield the iso-orientation in colour space. 



Appendix C 

SU(2) S U S Y with Nf = 4 

In N = 2 SU(Nc) super-Yang-Mills (SYM) theories w i t h Nc colours and Nf flavours, 

i t is a known result that the /3-function is proportional to 2NC — N f . This means 

that theories wi th N j = 2NC are scale invariant. In this chapter we shall consider 

such a theory, in particular the case Nc — 2 and Nf = 4. 

The classical theory has an N = 2 invariant - when one includes kinetic terms -

superpotential 
NF=4 

W = ^2 V2Qi$Qi + (3.0.1) 
i=i 

where Qi and Qi are matter hypermultiplets (see figure 3.1) and rrij are the masses 

of these particles. The N = 1 superfield $ was also introduced previously, and is 

the lowest N = 1 component of an N = 2 vector superfield. Physically, i t contains 

the scalar Higgs field and its superpartners. The massless theory, which we consider 

f rom this point onwards, has global symmetry which is a quotient of the group 

0 ( 8 ) x SU(2)R x U(1)R. A S remarked earlier, the last two symmetries ensures 

N = 2 invariance. The 0 ( 8 ) is a flavour symmetry. I t arises in place of the usual 

SU(Nf) x U(l) since for gauge group SU(2) the quarks Q and anti-quarks Q are in 

isomorphic representations [26] of the gauge group. Under 0 ( 8 ) x SU(2)R x U(1)R 

the quarks (Q,Q) transform as (8,2,0) and the scalar </> in $ as (1,1,2) . 

In this model, there is a flat direction w i t h non-zero 4> wherein the SU{2) gauge group 

is broken in a Higgs-type mechanism to the Abelian subgroup U{\). I n addition, due 
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Figure C . l : Dynkin Diagram for 5 0 ( 8 ) . 

to the Yukawa couplings in (3.0.1) the quarks develop a mass. When this occurs, we 

say that the physics is on the Coulomb branch 1 of the theory. When one considers 

the quantum moduli space, one finds that the 0 ( 8 ) is replaced w i t h _ S 0 { 8 \ due_tp _ _ -

the spontaneous breaking of a pari ty Z 2 C 0 ( 8 ) . 

When SU(2) is broken to U(l) on the Coulomb branch, magnetic monopoles arise 

in the usual way (see chapter 2). In the background of this magnetic monopole, the 

fermions (and by implication their superpartners) develop zero modes. A n index 

theorem [59] tells us that each fundamental fermion has one zero mode in this 

background. For 4 hypermultiplets each wi th an SU(2)R doublet of fermions we 

therefore have 8 zero modes transforming in a vector representation of a subgroup 

of 0 ( 8 ) . In fact, the presence of spinors indicates that we must consider the spin 

cover of 5 0 ( 8 ) . This is the group Spin(8) w i th centre Z 2 x Z 2 . 

The Dynk in diagram C . l of the spin(8) = D 4 algebra indicates the presence of 

an outer automorphism. This is " t r ia l i ty" and is isomorphic to the permutation 

group 5 , 3 . I f the particle states are distinguished by the quantum numbers (nm,ne) 

where nm is the magnetic charge of the state, and ne is the electric charge 2 then the 

quantum numbers under the centre of Spin(8) are determined as 

1 There is another branch - when Nf = 3 , 4 and all rtii = 0 - wherein the gauge symmetry is 

completely broken. This is the Higgs branch, and we shall not consider it in this chapter. 
2 I t is these quantum numbers which appear, for example, in the BPS mass formula 
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(nm,ne) Representation Symbol Interpretation 
(0,0) t r iv ia l 8 C 

(0,1) vector 8„ 
(1.0) spinor 8, 
(1.1) spinor 8C 

elementary gauge fields 
elementary quark 

fundamental monopole 
first excited monopole (dyon) 

In general, there exist so-called "curves of marginal stability" in the moduli space of 

N = 2 supersymmetric gauge theories. These loci occur in the strong coupling regime 

and are described by the equation I m ^ - = 0. Mathematically this corresponds to a 

collapse of the lattice A which appears in the quotient C / A which yields the Seiberg-

W i t t e n curve. Physically [8] this condition makes the decay of erstwhile stable BPS 

particles more likely. In essence [44] this means that the fundamental particles in 

the strong coupling core are different to those in the weak coupling regime. I t is this 

phenomena that prevents the spectra of particles f rom being Sl(2, Z ) invariant over 

the whole modul i space. 

The existence of t r ia l i ty in Nf = 4 theories indicates that this decay is less likely 

than otherwise one would expect. This therefore lends probabil i ty to the A ; = 

4 theory having an S1(2,Z) invariant BPS spectra over the entire moduli space. 

Essentially one should be able to transform to another represention of 5 0 ( 8 ) using 

this outer automorphism. I t is this realisation that makes study of the Nf = 4 

theories interesting to mathematical physicists. 
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