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ABSTRACT 
The distribution of suspended algae was investigated in a 69-km length of a 

small lowland river in the UK, the Nene (annual median discharge at km 91.7 = 

6 m^ s"Var ia t ions in chlorophyll a data collected between 1975 and 1998 by water 

management organisations at km 91.7 were evaluated against a range of physical and 

chemical variables. Interpretation was aided by additional sampling between 1993 and 

1997. 

The latter half of the 24-year period had significantly higher temperatures and 

sunshine-hours and significantly lower ammonium concentrations. Discharge, 

temperature and sunshine-hours were significant predictors of chlorophyll 

concentration, particularly between January and June, and spring chlorophyll maxima 

ranged from 106 to 276 |ig L"'. 

Centric diatoms were the most abundant taxa in the main-river and, in the 

absence of other limiting factors, appeared to be restricted by the availability of silica. 

There was also evidence that the centric diatoms suffered from severe parasitism. 

Inter-year phytoplankton abundance was most variable in the summer, and years 

with abundant submerged macrophytes had particularly low phytoplankton numbers. 

Spring phytoplankton peaks occurred earlier and had smaller amplitude at 

downstream sites than those further upstream. Average spring chlorophyll 

concentrations (April - June) increased significantly between km 22.4 and km 43.9, 

thereafter remaining high to km 91.7. Spatial trends were attributed to changes in 

channel morphology, retention time, dead zones, longitudinal variations in current 

velocity, temperature and silica limitation. 

An appraisal of the Utermohl method of counting phytoplankton was made and a 

new technique proposed, called 'spaced fields'. The spaced fields method accurately 

identified small changes in phytoplankton abundance and was used to identify short-

term temporal and small-scale spatial trends in the Nene. 
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ABBREVIATIONS AND ACRONYMS 
X Arithmetic mean 
0 Diameter 

Chi square statistic 
[chl] Chlorophyll concentration (fig L"') 
ANOVA Analysis of variance 
BFI Base flow index 
BOD Biochemical oxygen demand 
CCA Canonical correspondence analysis 
CANOCO Canonical community ordination 
CCAP Culture Collection of Algae and Protozoa. FBA, Ambleside, Cumbria 
CuSum Cumulative sum 
d Day 
Die Dissolved inorganic carbon 
df Degrees of freedom 
DO Dissolved oxygen 
D/S Downstream 
EC European Community 
EA Environment Agency 
FBA Freshwater Biological Association 
FRP Filterable reactive phosphorus 
fe Frequency expected 
fo Frequency observed 
fo Form (taxonomic classification) 
GALD Greatest axial linear dimension of algal cell or colony (excluding 

flagella, spines or fibres) 
h Hour 
/ Irradiance 
ind Individual 
ha Hectare 
HPLC High performance liquid chromatography 
/ Length 
LCL Lower confidence limit (95% level unless otherwise stated) 
L M N D A T Limnological database system 
LOI Loss on ignition 
LOIS Land ocean interaction study (see Leeks et al., 1997) 
MS Mean square 
n Total number of sampling units in sample 
N:P N:P ratio 
NGR National grid reference 
NLS EA's National Laboratory Service 
NRA National Rivers Authority 
NS Not significant 
p Probability 
PEEP Phytoplankton ecology evaluation program 
PET Polyethylene terephthalate 
PR Pseudo-random fields 
P:Si P:Si ratio 
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Q Discharge (m^ s"') 
R&D Research and development 
r ' Square of correlation between observed and fitted y values. Fraction of 

the variation in y that is explained by the fitted equation 
RF Random fields 
SEM Scanning electron microscope 
SF Spaced fields 
SMCOUNT Computer simulation of counting algae in sedimentation chambers 
Sp Species (plural, spp.) 
SS Sum of squares 
ST Spaced transects 
SD Standard deviation 
STW Sewage treatment works 
Syn Synonym 
s' Variance 
t Time 
T Temperature (°C) 
TN Total nitrogen 
TON Total oxidised nitrogen (NO2-N + NO3-N) 
TP Total phosphorus 
TRP Total reactive phosphorus 
UCL Upper confidence limit (95% level unless otherwise stated) 
u/s Upstream 
UWWT Urban waste water treatment 
var Variety (taxonomic classification) 
w Watts 

Euphotic depth (m) 
Secchi disc depth (m) 
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1 INTRODUCTION 

1.1 Prelude 

This thesis came about as part of a larger National Rivers Authority (NRA) and 

later Environment Agency (EA) project to investigate the impact of P removal from 

major sewage treatment works (STW) discharging to the River Nene. P removal was 

originally a water company initiative and was undertaken as a prelude to the 

implementation of the Urban Waste Water Treatment (UWWT) Directive, which 

requires P concentrations to remain below prescribed limits at major discharges. At that 

time I was employed by the NRA and was asked to investigate phytoplankton dynamics 

in the river system, as a part of the wider project with which I was also involved. 

Historical data for suspended chlorophyll at a downstream site on the Nene indicated 

the periodic occurrence of high concentrations of phytoplankton (relative to lakes). I 

had previously worked on lake and reservoir phytoplankton, but had little experience of 

suspended algae in rivers so this project presented an ideal opportunity to expand my 

knowledge and experience. There was insufficient time to undertake a detailed 

evaluation of river phytoplankton within the constraints of the wider project and it was 

therefore decided to augment the routine work with this part-time research (with the 

financial and practical support of the NRA, and later EA). 

Shortly before commencing this research I was involved in another NRA project 

which aimed to implement standardised phytoplankton methodologies to the Anglian 

Region. During this time I made progress in this area, but there was insufficient time to 

undertake a full appraisal of counting in sedimentation chambers, which would have 

benefited from computer simulation and detailed analysis. As counting phytoplankton 

was fundamental to the success of the Nene investigation it was decided to combine 

these two complimentary pieces of work, which resulted in this thesis. 

1.2 Introduction 

Interest in river phytoplankton has increased in recent years, but attention has 

focused on larger rivers. Systems of fourth order or greater normally support distinctive 

phytoplankton communities (Vannote et al., 1980; Reynolds and Descy, 1996), with 

their distribution and periodicity regulated by physical (Descy and Gosselain, 1994), 

chemical (Swale, 1969) and/or biological factors (Gosselain et al., 1998b). 



The introductory material that follows contains a review of key factors that 

influence the abundance of river phytoplankton. This is succeeded by consideration of 

the timing, amplitude and species composition of river phytoplankton populations. The 

review commences with an appraisal of quantitative methods, as these are fundamental 

to investigations of phytoplankton dynamics. 

1.3 Quantitative methods 

Introduction 

Accurate estimates of phytoplankton abundance are essential to quantitative 

investigations of phytoplankton dynamics and such estimates generally involve a 

measure of quantity or biomass. Quantitative investigations often involve counting the 

taxa present in a subsample and, if required, the results can be converted to biomass, 

following further measurements. However, photosynthetic pigment content or cellular 

carbon are more rapidly attained and are widely used as measures of phytoplankton 

biomass. 

Biomass 

All planktonic autotrophs contain pigments, which become excited in the presence 

of light and, along with a complex of biochemical activity, form the basis of 

photosynthesis and carbon assimilation. The principal photosynthetic pigments are 

chlorophyll a, b and c and several forms of carotenoids (Lewin, 1974). Of all the 

pigments chlorophyll a is the most widespread, being found in all phytoplankton phyla 

(Meeks, 1974). Cellular carbon is another widely used measure of phytoplankton 

biomass and the conversion ratio of 50:80 (carbonxhlorophyll) is often used (Harris, 

1986). Gosselain et al. (1994) compared two methods of estimating cellular carbon, 

using estimations from measured cell volumes and chlorophyll conversion, and found 

poor agreement between the two approaches. 

Using chlorophyll concentration as a surrogate for phytoplankton biomass has 

numerous limitations. Different species contain different photosynthetic pigments 

(Boney, 1974) and the same taxa under varying physiological conditions can contain 

differing quantities of chlorophyll per unit volume (Meeks, 1974). Additionally, green 

algae and cryptophytes contain proportionally more chlorophyll per unit volume than 

diatoms or blue-green algae (Reynolds, 1993). Another important consideration is the 

quantity of degradation products, collectively referred to as phaeopigment, which can 



introduce error into chlorophyll results. Phaeopigment is a degraded form of 

chlorophyll and can be present in appreciable amounts (Marker, 1992). Kowalczewski 

and Lack (1971) examined the quantities of total and degraded chlorophyll in the 

Kennet and Thames at Reading and found the Kennet to have proportionally more 

phaeopigment (average 50%) than the Thames (average 32%). Recent developments in 

pigment analysis using HPLC provide a mechanism of identifying the abundance of the 

main taxonomic groups in mixed samples (Descy et al., 2000). 

Fluorometric estimations of chlorophyll concentrations are widely used, also. 

This sensitive method (Butterwick et al., 1982) can be applied directly to water samples, 

and has become known as 'in vivo' fluorecence (Jones, 1979). 

Quantity and identification 

Direct counting has several advantages over other methods of assessing algal 

abundance, such as pigment analysis. Firstly, the algae are actually seen thus allowing 

changes in appearance to be observed, such as dead or dying cells, parasitism, presence 

of spores or heterocysts. Thus providing the opportunity to collect ecological 

information which would be otherwise unattainable. Direct counting also allows small 

numbers of specific algae to be distinguished from others or detritus (Lund and Tailing, 

1957; Butterwick et al., 1982). 

A prerequisite to cell counts is accurate identification and live examination of 

specimens is by far the best initial approach (Belcher and Swale, 1979). Cell colour, 

size, shape and movement are all key taxonomic features (Fritsch, 1948) that can be lost 

or severely altered following fixation. However, few phytoplankton can satisfactory be 

counted in the live state and examination of live material followed by a count of 

preserved specimens is probably the best compromise. 

Methods of direct counting were reviewed by Jones (1979), which included 

various counting devices such as sedimentation chambers. Utermohl (1958) 

standardised the method of concentrating and counting phj'toplankton in sedimentation 

chambers using an inverted microscope, and this technique was given statistical 

consideration by Lund et al. (1958). 



1.4 Key factors controlling river phytoplankton 

Introduction 

This section contains a review of key factors that control river phytoplankton 

abundance and periodicity. This section also contains background information that is 

particularly pertinent to this thesis. 

1.41 Physical environment 

Velocity and discharge 

River velocity and discharge are intrinsically linked, and are both often referred to 

as 'flow'. Velocity is the current speed (m s"̂ ) whereas discharge refers to volume per 

unit time (m^ s'̂ ) and is often calculated as the product of average velocity and the 

cross-sectional area of the wetted channel. Velocity varies both laterally and vertically 

within a river and average velocity is often calculated as the product of several current 

readings across a channel divided by their sum, with the mean vertical velocity being 

found at 0.6 of the total depth, from the surface (Shaw, 1998). A significant positive 

relationship exists between average velocity and discharge, both increasing in a 

downstream direction (Round et al., 1998). Therefore both velocity and discharge can 

be used as a correlative for evaluating the impact of flow on phytoplankton, although if 

an approximation of retention time or distance travelled by suspended algae is needed 

then velocity must be used. 

Water Management Bodies continuously record discharge at permanent gauging 

stations, which usually consist of a concrete weir and a water level recorder. Discharge 

is measured as level or 'stage height' at these sites, following the calibration of the 

stage-discharge relationship (Shaw, 1998). These kinds of gauging stations are not 

suitable for navigable river systems and measuring flow here is often less accurate than 

in smaller rivers, where weirs can be constructed. In recent years ultrasonic gauging 

equipment has been used in larger rivers, although its accuracy is often inhibited by an 

accumulation of silt or submerged plant growth (D. Glenn, pers. comm.). If discharge 

measurements are required for ungauged sites then they can be calculated by catchment 

scaling from gauged sites, preferably including the influence of discharges and 

abstractions and supported by spot measurements. Water Management Bodies rarely 

record velocity per se but use measurements as part of discharge calculations. 



However, estimates of average velocity can to be made from discharge if the discharge-

level and level-wetted area relationships are known or attainable, or by using the 

method described by Round et al. (1998). 

Very high discharge inhibits or suppresses phytoplankton development by 

continuously removing cells before they have time to attain a high density. High 

discharge can also result in elevated levels of suspended solids, which reduce light 

availability and suppress growth at depth (Reynolds, 1994). Low discharge may also 

inhibit phytoplankton development through insufficient turbulence to maintain algae 

(particularly diatoms) in suspension (Gosselain et al., 1994). The relationship between 

turbulence and velocity is of great significance to the structure of phytoplankton 

communities in rivers and these factors are intrinsically linked to depth and channel 

roughness. 

Depth, turbulence and channel roughness 

Turbulent flow is necessary to maintain most phytoplankton in suspension 

(Reynolds, 1993). In fact, particles will remain in suspension for over four times longer 

in a continuously mixed system compared to a static column (Smith, 1982). At low 

velocity, viscosity can overcome turbulence and flow can become laminar (Smith, 

1975) producing unfavourable conditions for all but the most buoyant species. The 

extent of turbulence in rivers is determined by depth and velocity, with shallow slow 

velocity systems tending towards laminar flow and deeper rivers being more likely to 

produce turbulence (Reynolds, 1994a). Indeed, Reynolds et al. (1990) demonstrated 

that the loss of suspended particles from flowing water was influenced more by depth 

than velocity. 

Channel roughness impacts directly on velocity by creating frictional resistance. 

A 'laminar sub-layer' of fluid exists next to solid boundaries, such as the riverbed in 

deep, slow flowing rivers (Carling, 1992). If objects on the riverbed project above this 

sub-layer then the surface is considered as 'dynamically rough' and can impede 

velocity. For example, a river with a depth of 3 m and a slope of 1:10000 would have 

its average velocity reduced from approximately 175 to 75 cm s"' when bed roughness 

of a height of 10 cm is introduced (Smith, 1975). Seasonal variation in velocity, depth 

and submerged macrophyte growth will have significant implications on the amount of 

turbulence produced and therefore the environment of phytoplankton. 



Greater turbulence will be necessary to maintain those algae of greatest density 

(such as diatoms) in suspension, and too much turbulence has been shown to be 

detrimental to the green alga Scenedesmus quadricauda (syn. S. communis) (Hondzo 

and Lyn, 1999), which is common in British rivers (Belcher and Swale, 1979). 

Sedimentation and entrainment 

Most algae, with the exception of gas-vacuolate blue-green algae, have a density 

greater than water and in the absence of turbulent motion or motile organs are destined 

to sink (Round, 1984). Sinking velocity varies considerably between the groups, with 

the heavier diatoms sinking at least twice as quickly as non-siliceous algae with similar 

geometric properties (Sommer, 1988). 

Phytoplankton have evolved several mechanisms to depress their settlement 

velocity, which relate to size, density and form resistance. Reynolds (1993) compared 

the settling velocity of live and freshly killed Stephanodiscus astraea cells. A positive 

relationship was found between the size of dead diatoms and settling velocity, with 

larger algae sinking more quickly. However, this relationship did not hold true for live 

specimens, with relatively low settlement velocities throughout the size classes. These 

experiments suggest that some properties of the living cells are instrumental in reducing 

sinking velocity, and could relate to extra-cellular projections or an intra-cellular 

reduction in density. Reduced density can be achieved through the storage of relatively 

'light' lipids and the secretion of mucilage. Lipids generally account for between 2% 

and 20% dry weight of algae (Reynolds, 1993) and as these are often lighter than water 

they can contribute to an overall reduction in density. Several types of planktonic algae, 

particularly the blue-greens and the greens secrete mucilage. Mucilage increases the 

size of an alga with a minimal increase in density, which up to a point will reduce 

sinking rate (Reynolds, 1993). 

Variations in form resistance are utilised by many algae as a mechanism to reduce 

sinking rate, without altering density. Spherical cells will sink more quickly than a 

flattened cell of equal density, providing the latter can maintain its greatest linear 

dimension perpendicular to the direction of sinking. Many diatoms, such as 

Stephanodiscus hantzschii which are common in European rivers, increase their form 

resistance through chain formation and the production of fibrous projections. Walsby 

and Xypolyta (1977) compared the sinking velocity of the centric diatom Thalassiosira 



fluviatilis before and after the removal of its chitin fibres, with removal resulting in a 

doubling of the sinking rate. 

Colony formation occurs in many groups and will inevitably result in an increase 

in overall sinking rate. However, i f an increase in size has other advantages, such as 

resistance to grazing, then an increased size could be offset by an increase in form 

resistance (Reynolds, 1993). Examples of colonies that increase form resistance are 

filaments (e.g. Melosira varians), discs (e.g. Pediastrum duplex), ribbons (e.g. 

Fragilaria crotonensis) and stellate groups (e.g. Actinastrum hantzschii). 

Dead zones 

Fritsch (1903) and later Margalef (1960) recognised the importance of eddies and 

backwaters as areas where phytoplankton populations could develop and contribute to 

those in the main flow. These areas of retention exist throughout river systems and are 

often referred to as dead zones. Wallis et al. (1998) investigated the influence of dead 

zones on solute transport in rivers in north-west England. They considered dead zones 

to be areas of dynamic storage where some mixing takes place. These areas include the 

periphery of open channels, within turbulent eddies, wakes around roughness elements 

and reverse flow associated with pools and bends. Solutes that entered these areas are 

temporarily trapped and mixed with the contents of the dead zone, to some degree, 

before being released back into the main flow. Their work involved the evaluation and 

timing of tracer concentrations at fixed points along a river reach. Wallis et al., (1989) 

found that solute retention was reach specific and greatest in channels with most 

structural heterogeneity. 

If dead zones could retain solutes then it is likely that they could also provide 

areas for phytoplankton development. Reynolds and Glaister (1992) evaluated in situ 

growth at fixed points in many UK rivers in April, June and September. They 

concluded the downstream increase in phytoplankton biomass could not be possible 

without a contribution of algae from dead zones. This work followed detailed analysis 

of the phytoplankton of a single dead zone in the Severn (Reynolds, 1991). The low 

fluid exchange of dead zones is also likely to result in them warming and retaining heat 

more readily than the main river, as indicated by Reynolds and Gaister (1992). Other 

studies indicate that high phytoplankton abundance is attainable in rivers through in situ 

growth alone and can occur without the contribution of dead zones (Skidmore et al., 

1998). 



Temperature and solar radiation 

Algae utilise solar radiation to fix carbon during photosynthesis and the rate at 

which these biochemical processes occur is temperature-dependent. Therefore, 

temperature and solar radiation have a great influence on phytoplankton growth, and as 

they are intrinsically linked it is often difficult to distinguish the contribution of each 

factor (Soeder and Stengel, 1974). In many species the relationship between light and 

algal growth is a rectangular hyperbolic function, with growth inhibition occurring at 

supersaturating levels, possibly resulting from damage caused by ultraviolet radiation. 

Temperature usually has a second-degree polynomial relationship with algal growth, 

indicating an optimal temperature range. 

Phytoplankton populations can exhibit locally variable temperature optima 

(Round, 1984), which also occur between phyla. Sosnowska (1985) found that the 

dominant planktonic alga changed from diatoms to greens to blue-greens concurrently 

with increasing temperature. Gamier et al. (1995) modelled phytoplankton dynamics in 

the Seine and used temperature optima drawn from the literature of 20°C and >30°C, for 

diatoms and greens, respectively. 

Photosynthesis can also be limited by the availability of carbon during periods of 

high phytoplankton density, as dissolved carbon dioxide is removed from the water 

faster than it can be replenished by diffusion from the atmosphere (Hein, 1997). 

1.42 Chemical environment 

Carbon and pH 

Carbon dioxide is very soluble in water and forms an association with the 

carbonate-bicarbonate system to be the principal source of carbon for photosynthesis 

(Round, 1984). The major chemical pathway in photosynthesis is the conversion of 

carbon dioxide and water to carbohydrates and oxygen, using light energy that is 

harvested by a pigment such as chlorophyll (Hall and Rao, 1972). As carbon dioxide is 

removed from the water faster than it is replenished the equilibrium between carbon 

dioxide, bicarbonate and carbonate ions shifts towards the latter and results in an 

increase in pH (Harris, 1986). Photosynthesis, and therefore phytoplankton growth, can 

be limited by the lack of carbon dioxide and the detrimental effects of high pH, and the 

latter can impact on numerous physiological and biochemical processes (Stewart, 1974). 



However, carbon limitation and the detrimental affects of high pH are less likely to 

impact on river phytoplankton than in other less dynamic environments. 

Nitrogen and phosphorus 

The productivity potential of open water phytoplankton is generally limited by 

available P (Moss, 1988), as demonstrated in Alton Water, Suffolk by Perkins and 

Underwood (2000). The optimum P concentration for phytoplankton varies 

considerably, although laboratory studies indicate that for diatoms and green algae it 

lies between 100 |xg L * and 2 mg L ' (Kuhl, 1974). Many algae have the ability to 

incorporate P rapidly and in some cases to an extent that far exceeds need (Ketchum, 

1939), the so called 'luxury uptake'. Many algae have also been shown to produce 

'surface' phosphatase activity during periods of P deficiency, which may enable them to 

utilise organic P (Kuhl, 1974; Whitton, 1992). 

The most common sources of N used by algae are NH4"^ and NO3' with the 

former being preferentially utilised (Morris, 1974). The ratio of N:P is often used as an 

indicator of a particular nutrient's importance and a molecular N:P ratio that exceed 

16:1 is thought to indicate possible P limitation (Redfield, 1958). 

A competitive advantage for nutrients has been demonstrated amongst 

phytoplankton. Diatoms have been shown to be good competitors for nutrients, 

especially phosphorus. In P-limited steady-state competition experiments diatoms 

outcompeted blue-green and green algae, except when silica was limiting (Sommer, 

1983). Shafik et al. (1997) found that the centric diatom Cyclotella meneghiniana had a 

higher growth rate when P was limiting compared to when either N or Si were the 

limiting factor. An explanation for the competitive advantage of diatoms for P 

utilisation was proposed by Werner (1977) who suggested that the silica frustules of 

diatoms could act as an effective absorbing agent for dissolved substances at low 

concentrations. Competitive advantage for nutrients is also thought to result in species 

succession in diatoms. A successional sequence of diatoms has been shown, with the 

dominant taxa changing concurrently with decreasing silica and increasing phosphorus 

concentrations (Tilman et al., 1982). 

The relationship between the concentrations of P (usually TP) and 

phytoplankton biomass (total chlorophyll) has been extensively explored in standing 

waters (OECD, 1992), but little work of this type exists for rivers. Steinberg and 

Hartmann (1988) thought that the development of blue-green algae could be described 



by physical factors, above a TP concentration of 10|Lig L"'. As lowland rivers often 

contain abundant inorganic N and P (DokuUl, 1995) it is unlikely that these nutrients are 

limiting phytoplankton here (Kelly and Whitton, 1998; Wehr and Descy, 1998). In 

urbanised regions P concentrations in rivers correlate negatively with flow, as the point 

sources are diluted. Whereas, in agricultural catchments N shows the opposite response 

as increased leaching occurs with elevated precipitation (Whitton and Kelly, 1998). 

The fate of nutrients in rivers is complex. A large sewage discharge to the Great 

Ouse near its source in Northamptonshire was found to have a negligible impact on the 

nitrate concentration but a significant impact on the phosphorus concentration, which 

varied seasonally (House and Denison, 1997). During the spring and summer there was 

a large uptake of P to the bed sediment and vegetation, which was associated with the 

calcite concentration of the sediment. Nitrate can be lost from rivers systems through 

denitrification, a process where nitrate is converted to nitrous oxide or nitrogen gas and 

can occur within periphyton dominated by Cladophora (Whitton and Kelly, 1998). 

Other nutrients and vitamins 

Apart from N and P algae have a requirement for other macro and micronutrients 

and vitamins (O'Kelley, 1974; Provasoli and Carlucci, 1974). Calcium, sulphur and 

iron concentrations are often measured by Water Management Bodies, but the status of 

other nutrients and vitamins is unknown as they are rarely monitored or even considered 

important. 

Silica 

Dissolved silica is utilised by diatoms to construct their frustules, however 

planktonic diatoms are unable to take advantage of pulses of silica and require a 

continuous supply to facilitate population increases (Sommer, 1988). Significant 

negative relationships can occur between phytoplankton abundance and silicate 

concentrations (Balbi, 2000) and silica limitation appears to limit the abundance of 

planktonic diatoms in the Rhine (Admiraal et al., 1993) and Trent (Skidmore et al., 

1998). Silica limitation has been demonstrated in populations of the centric diatom 

Stephanodiscus hantzschii, both experimentally (Swale, 1963) and in the Severn (Swale, 

1969). In both cases Swale identified the point where there was insufficient silica for 

the population to divide. Silica limitation, however, is not always easy to demonstrate, 

although a molecular Si:P ratio of less than 16:1 is thought to be diagnostic (Perkins and 

Underwood, 2000). Low silica concentrations can also limit planktonic diatom 
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abundance indirectly, through poorly developed frustules (Sommer, 1988) that render 

them more susceptible to fungal infection (Canter, 1979). 

1.43 Biological interactions 

Parasitism 

Fungal and protozoan parasites can significantly impact on phytoplankton 

abundance. The majority of fungal parasites found in fresh waters belong to the 

Chytridiales or are simple biflagellate Phycomycetes. A flagellate stage in the chytrids 

and the flagellate habit of the phycomcetes allows widespread dispersal and infection. 

Once a host is located a chytrid attaches itself to the outside of the cell and digests its 

contents via a rhizoid, whereas a biflagellate invades the cell. Infection is followed 

either be the formation of a resting stage or a sporangia from which more zoospores are 

released (Canter, 1979). Fungal infection of phytoplankton can be severe and rapid. 

Chytrids can be abundant in the River Bure, Norfolk and Clarke (1989) identified a 

concurrent increase in the abundance of chytrids with a decline in the abundance of the 

centric diatom Stephanodiscus hantzschii, which occurred within a week. Holfeld 

(2000) found that fungal parasites could persist even when their host comprised of a 

small fraction of the total phytoplankton biovolume. Fungal infection is not restricted to 

diatoms and water bom fungi can infect green algae, cryptomonads and dinoflagellates, 

also (Canter-Lund and Lund, 1996). 

Protozoan parasites include the amoeba Vampyrella and the flagellate Codosigma, 

both of which attach themselves to the outside of algal cells (Finlay et al., 1988, Canter-

Lund and Lund, 1996). Larger protozoa form a part of the zooplankton and can engulf 

some planktonic algae whole. 

Zooplankton 

The zooplankton of rivers often contains abundant rotifers (Gosselain et al., 

1998) and protozoa (Foissner and Berger, 1996) and are less often dominated by 

cladocera and copepods (Sanderson, 1998), which can be abundant in standing waters 

(Fitter and Manuel, 1986). Many planktonic protozoa engulf their prey to form a food 

vacuole within their cytoplasm. Some species of protozoa are specialist feeders on 

diatoms or filamentous blue-green algae (Canter-Lund and Lund, 1996; Foissner and 

Berger, 1996). Rotifers either seize and engulf their food whole, or pierce and extract 

the cell contents (Pontin, 1978). Grazing by zooplankton has been cited as an important 



controlling factor for phytoplankton abundance (Gosselain et al., 1994, 1998a, 1998b), 

although in other situations it appears that the abundance of rotifers is controlled by the 

availability of suitable food (Sanderson, 1998). Some larger phytoplankton are 

unsuitable prey for rotifers or ciliates and grazing pressure can select for colonial forms. 

In fact, the mere presence (without contact) of zooplankton can induce Scenedesmus to 

form larger coenobia more rapidly than when grazers are absent (Liirling and Van 

Donk, 1999). Gosselain et al. (1998a) noted an increase in 'inedible algae' (> 20\im 

GALD) in the Meuse during periods of grazing pressure from rotifers (up to 2500 

ind. U ' ) . 

Bivalves and other invertebrates 

Filtration by bivalve molluscs has long been thought a significant loss process to 

river phytoplankton (Swale, 1969). Bivalves feed mainly on suspended algae, detritus 

and organic matter, which are strained off by the gills where they become entangled in 

mucus and swept towards the mouth by cilia. Species of the genera Anadonta and Unio 

can filter up to 1.5 and 3.6 L h"' respectively (Ellis, 1978). Over the past two centuries 

the zebra mussel (Dreissena polymorpha) has spread throughout much of northern and 

western Europe and is now locally common in many British rivers (Fitter and Manuel, 

1986). 

Low plankton abundance in the Rideau River, Ontario, was thought to result 

from filtration from Dreissena polymorpha, which were at a density greater than 1000 

individuals m^ (Basu and Pick, 1997). Experiments have shown that D. polymorpha 

can filter between 24 to 63 mL mussel ' h"'. Clearance rate was found to be extremely 

variable, generally with unicellular taxa (e.g. unicellular Microcystis aeruginosa) being 

taken in preference to colonial and filamentous forms such as Anabaena sp. (Bastviken 

et al., 1998). From the above figures, it can be calculated that a thousand mussels could 

filter between 24 and 63 L h"', or a m^ in under 16 h. It is therefore not surprising that 

when these organisms are numerous they can have a significant impact on 

phytoplankton abundance. 

Numerous other invertebrate animals consume phytoplankton. Chironomid 

larvae can be very abundant in the sediments of lakes and rivers or attached to other 

substratum. Chironomus plumosus is thought to play a role in controlling 

phytoplankton abundance in shallow eutrophic lakes and enhance benthic metabolism 

and nutrient exchange following the sedimentation of phytoplankton (Hansen et al., 
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1998). First instar larva of some species preferentially consume diatoms (Pinder, 1992), 

although selection is probably based on food size rather than diatoms per se. Pinder et 

al. (1992) found abundant chironomid larvae, cladocerans and copeopods attached to 

the leaves of Nuphar lutea in the Great Ouse, and this was the most numerous species of 

macrophyte in the middle and lower reaches of this river. 

Brendelberge (1997) examined the feeding preferences of two gastropod species. 

Radix peregra and Bithynia tentaculata. Radix was found to browse generally whereas, 

Bithynia fed selectively on algae, with maximum assimilation efficiency for the green 

alga Chlamydomonas. 

Macrophytes 

The relationship between turbidity and aquatic macrophytes was reviewed by 

Scheffer (1999). Very turbid waters will limit the development of submerged 

macrophytes, but once vegetation is present water clarity improves and provides 

favourable light conditions for further development of aquatic vegetation (Yallop and 

O'Connell, 2000). Abundant submerged macrophytes can inhibit phytoplankton by 

interfering with the turbulent flow necessary for their maintenance in suspension. They 

can also provide a daytime refugium for zooplankton (Stephen et al., 1998) to avoid 

predation by fish and achieve population densities not otherwise attainable. Or, 

macrophytes can act as 'filters', as seen downstream of some lakes (Chandler, 1937). 

Submerged macrophytes can also reduce phytoplankton biomass by producing shade, 

reducing nutrient availability, through the production of allelopathic substances (Jasser, 

1995) or the reduction of resuspension (Barko and James, 1998). 

1.5 Abundance patterns of river phytoplankton 

Introduction 

River phytoplankton studies have covered a wide range of river types; from fast-

flowing shallow systems (Holmes and Whitton, 1981; Jones and Barrington, 1985) to 

rivers which function as elongated shallow lakes of low retention (Welker and Walz, 

1999). The key features taken from a range of these investigations are summarised in 

Table 1.1. Although the classifications used are a simplification of complex systems 

they permit a general appraisal of similarities in the abundance and periodicity of 

suspended algae. 

Chlorophyll and/or cell counts are widely used in investigations, although some of 
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the studies did use other methods of biomass, such as cell volume (Reynolds and 

Glaister, 1992) and cell carbon content (Gosselain et al., 1994). 

Temporal and spatial trends 

The shallow fast-flowing systems have low chlorophyll/cell counts and are 

dominated by 'benthic' forms compared to deeper slower rivers. Many of the deeper 

rivers are dominated by centric diatoms, which are particularly abundant during the 

spring. Many of the deeper systems also experience summer periods with low 

chlorophyll/cell counts compared to the major peaks and these periods are dominated by 

greens and sometimes blue-green algae. Few authors consider N or P to be limiting in 

lowland rivers, although silica depletion and filtration by zooplankton and mussels are 

often cited as restricting phytoplankton development. Not surprisingly, physical factors 

such as flow rate, temperature and light are universally considered as major impacts on 

phytoplankton. 

Many systems exhibit a general downstream increase in algal biomass, although 

this trend does not necessarily occur throughout the year and in some instances 

increases to a point, thereafter tending to decline (Basu and Pick, 1997). Other systems 

have fluctuating stretches that correspond with river order, or downstream peaks that 

occur before upstream sites (Gamier, et al., 1995). Reynolds (1991) identified spatial 

differences in the algal biomass in the Severn, which were associated with a dead zone. 

Skidmore et al. (1998) examined the chlorophyll concentration at three points across the 

Trent. On two occasions, no difference was found between the samples, but on a third 

occasion the right-hand side of the river had a significantly lower concentration than the 

centre channel and left-hand side 

Sources of river phytoplankton 

Hynes (1970) proposed that river phytoplankton was a composite of several 

types: from bays and backwaters, the benthos and 'tme' river phytoplankton, which 

grows and reproduces in flowing water. Reynolds and Descy (1996) reviewed the 

origin of phytoplankton in rivers, and defined potamoplankton as those species that are 

simultaneously able to grow and divide in the open-flow of river channels from an 

inoculum of cells that are somehow maintained or continuously renewed. 

14 
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'On-channel' lakes and backwaters within the river catchment can potentially 

influence the phytoplankton composition of the main river as suspended algae are 

continuously swept downstream or diffuse into the river. The greater retention time of 

lakes can often result in phytoplankton development when conditions in rivers are 

unsuitable. Marker and Collett (1991) observed the chlorophyll concentrations of three 

marinas connected to the Great Ouse and found they were relatively high compared to 

levels in the river. 

The fate of phytoplankton entering rivers depends on the species and prevailing 

conditions. Holmes and Whitton (1981) found that suspended algae that originated 

from reservoirs did not persist in several fast-flowing rivers of north-east England. 

Chandler (1937) identified macrophytes as being responsible for 'filtering' lake 

phytoplankton within a river, while other studies have shown that lake phytoplankton 

can continue to grow when conditions in the lakes and river are similar, but decline 

when not (Kohler, 1994). 

River size 

Wehr and Descy (1998) reviewed the characteristics that might constitute a 'large 

river', and their relationship with river phytoplankton. Physical, ecological and cultural 

factors were considered and it was concluded that large rivers are of sixth order or 

greater. 

1.6 Aims 

The aim of this study was to identify the key factors controlling the abundance, 

species composition and periodicity of suspended algae in a small, lowland, nutrient-

rich river and see how these compare to larger systems. It was also intended that the 

work would facilitate informed judgements about historic chlorophyll data and the 

evaluation of river phytoplankton as a monitoring tool. 

The research will test the hypothesis that the key factors controlling 

phytoplankton populations in a small river are not dissimilar to those acting in larger 

systems. 

The Nene was an ideal subject for this purpose because of its size, low stream 

order, considerable variation in flow and history of high chlorophyll concentrations at a 

downstream site. 
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2 G E O G R A P H I C A L B A C K G R O U N D 

2.1 Introduction 

The Nene rises (1° 13' W, 52° 14' N; 160 m.a.s.l.) a few kilometres south-west of 

the Northamptonshire town of Daventry and flows in a north-easterly direction for 

approximately 170 km before discharging into The Wash, near Sutton Bridge. 

Lincolnshire (0° 10' E, 52° 45' N). The river achieves third order at km 24.4 and 

remains so throughout its length (Smith and Lyle, 1979). Major tributaries, which join 

mainly from the north, include the Brampton Arm (also considered the Nene - Hart. 

1971), River Ise and Willow Brook (Figure 2.1). 

North 

Wisbech 

Peterborough 

• b y ^ Z - ' ^ n ~ 

Oundle 

Kettering' . ^ Thrapston 
Daventry , j - / S « | 

"^Wellingborough 

" Northampton 

10 km 

Figure 2.1 Map of the Nene. Showing, major towns and STW (*) and location of 
tidal sluice. Inset, UK location of Nene. 

The Nene catchment is intensively agricultural and has a rapidly growing 

population, containing many large conurbations, and both of these factors impact on the 

river's water quality. The river has been utilised over many centuries for navigation. 

miUing and water supply. The river is now the principal source for abstraction for 

Rutland Water, which is a major potable storage reservoir for the region. The Nene 

navigation, which extends downstream from Northampton, comprises 38 locks 

including a tidal sluice, which is situated several km downstream of Peterborough 

(National Rivers Authority, 1993). The changing nature of the river is summarised in 
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Figure 2.2. 

H. km l>l(WesiLighlhouse) 

F. km91.7(Wanslorcl) 

C. Brampton Branch 
Norllianipton G. km 117.2 (Tidal sluice) 

E. km 64.6 (Thrapsion 

A. km 9.0 (Wcedon) 

D. km .«..•> (Cogenhoe) 

B. km 22.4 (Duslon Mill) 

Figure 2.2 Photographic summary of the Nene from headwaters to estuary (labelled in a 
downstream direction). 

18 



2.2 Geology and hydrology 

The geology of the Nene catchment has been described in detail (Ministry of 

Housing and Local Government, 1964; Hart, 1971) and the overlying features of the 

area are relatively recent compared to other parts of the UK. The main surface outcrops 

are all Jurassic in origin and were laid down below shallow seas or estuaries. The 

principal surface geology of the upper catchment consists of Lias clays with some 

Oolithic sand/ironstone and limestone. The middle reaches of the river flows mainly 

through Oolithic limestone, whereas downstream of Peterborough Alluvial fen and 

valley gravels become increasingly abundant. 

The mixed geology of the Nene catchment results in a flow regime that is 

characterised by a mixture of surface and groundwater flow. This is reflected in a BFI 

(Shaw, 1998) of 0.52 at Peterborough (on a scale of 0 to 1), compared to 0.18 for the 

Wiske at Kirby Wiske (North Yorkshire) and 0.96 for the Itching at Highbridge (Hants) 

- which are examples of surface and base flow-dominated systems, respectively. These 

factors combined with relatively low rainfall (annual average = 635 mm) result in the 

Nene having a widely varied flow regime, with a seasonal contrast greater than many 

larger UK rivers (Lewin, 1981). 

The Nene has seven principal gauging stations dating from the late 1930s and 

early 1940s, although most of them are situated in the upper catchment or on the 

tributaries (Figure 2.3). Recent additions such as Wootton Brook and others in the 

headwaters (not all shown in Figure 2.3) are of lesser interest here. Downstream 

discharge on the main Nene is calculated using a combination of gauged sites, Orton 

Staunch and Wansford, where the long-term (1975 - 1996) median discharge is 6 m^ s"'. 

The Orton station consists of a group of weirs, sluices and regulated bypass channels 

and records discharge up to about 38 m^ s"'. The complex nature of this station is 

necessary to allow boat passage and probably results in a less accurate flow record 

compared to a fixed weir system (D. Glenn, pers. comm.). Discharge of greater 

magnitude is recorded 12 km further upstream at Wansford gauging station (km 92.5), 

where discharge is based on level, which is calibrated using a fixed 'cable way' system 

(Shaw, 1998). Ultrasonic gauging equipment (Shaw, 1998) was installed at km 92.5 

during the mid 1990s to gauge the main river and the Rutland Water abstraction, which 

is also located here. Data for this station are available from the beginning of 1997, 
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although the accuracy and reliability of the record is thought to be influenced by plant 

growth and sUtation (D. Glenn, pers. comm.). River level loggers have also been 

installed recently at many of the locks (Figure 2.2 D. right hand foreground) and levels 

are recorded at 15 min intervals. 

Harpers Brook 
Islip 

River Ise 
Harrowden 

Brampton Branch 
Northampton 

Willow Brook 
Fotheringhay 

km 105.5 
(Orton Staunch) 

km 92.5 
(Wansford) 

km 21.4 (Upton Mill) 

Figure 2.3 Location of gauging stations on the main Nene and tributaries. 

2.3 Navigation and industry' 

Early accounts of navigation on the Nene include Vikings sailing their long-boats 

upstream to raid Northampton, the river having been made navigable to Peterborough 

by the Romans. Early navigation probably included the creation of temporary 

impoundments along the river, which were dismantled to allow boat passage. The first 

formal navigation was constructed in an upstream direction from Peterborough to 

Northampton, where it was officially opened in 1761 (Steane, 1974). The navigation 

consisted of thirty-four locks and twelve staunches. Unlike pen-locks which consist of a 

pair of gates, allowing manipulation of the water level over a small area, staunches have 

a single gate which, when closed, floods a large river section. The navigation was 

enhanced in 1815 when a branch of the Grand Union Canal (GUC) was extended to join 

the river at Northampton. 

Modernisation of the navigation took place between 1936 and 1941. eliminating 

the necessity for nine of the staunches, by deepening the river, and conversion of the 

remaining staunches into pen-locks (Steane, 1974). The modernisation also included 
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the construction of a tidal sluice (Figure 2.2 G) a few kilometres downstream of 

Peterborough (Ministry of Housing and Local Government, 1964). Most of the present 

day locks consist of a pair of conventional pointing doors upstream with a vertical steel 

gate downstream (Figure 2.2 D). During periods of high flow the conventional doors 

can be opened and the vertical gate used as a regulatory sluice, thus rendering the 

navigation inoperative. 

Today the freshwater navigation is used almost exclusively by pleasure craft. In 

1962 the Dog-in-a-Doublet tidal sluice recorded the passage of 272 vessels, which 

included 80 stone barges, 55 com barges and 130 pleasure craft. Although further com 

barges were still entering the river at Northampton (from the GUC) and servicing the 

mill at Wellingborough. 

There were once at least 43 water mills on the main river, extending from near the 

source at Newnham to Peterborough. This number was greatly reduced with the advent 

of turbine mills and later by electricity. Today, two commercial mills survive at 

Wellingborough and Bugbrooke but many of the old mill buildings and associated 

waterways remain. 

The navigation section of the freshwater river has average channel dimensions of 

27 m wide and 2 m deep and has little shading from trees, although overhanging 

vegetation is more abundant along the back and by-pass channels. 

2.4 Meteorology 

Long-term light data (1975-1997) were supplied by the Meteorological Office, 

Bracknell, Berkshire, UK. Light data (sunshine 'hours and tenths' from a Campbell-

Stokes, universal sunshine recorder - Meteorological Office, 1982) were used from a 

combination of Wittering (TF 043 026), Monks Wood (TL 201 798) and Coningsby (TF 

225 570). Light data were not available for the whole period (1975-1997) from a single 

station, so combinations of data were used, preferentially utilising Wittering (closest to 

km 91.7). 

More recent meteorological data, including five-min solar radiation readings 

(kwatts m^), were available from the Rutland Water Weather Station (SK 885 085) 

operated by the Environment Agency. 
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2.5 Standing waters 

Standing waters within the catchment could potentially influence the chlorophyll 

concentration of tributaries and the main river. Numerous flooded gravel extractions 

occur along the Nene valley and several have through-flowing water that discharges to 

the main river. Some of these water bodies, such as Thrapston sailing lake, have been 

established for over thirty years (Ministry of Housing and Local Government, 1964), 

whereas others are of more recent origin. 

Willow Brook has several lakes along its course the largest located near 

Blatherwycke (SP 975 965) is 25 ha and feeds directly into this tributary. 

2.6 River maintenance 

An ongoing maintenance programme is undertaken to reduce the probability of 

flooding and includes dredging and cutting of submerged macrophytes (National Rivers 

Authority, 1994). 'Weed' cutting is normally undertaken between July and September, 

working downstream from Northampton to the tidal sluice. The EA do not maintain 

records of the quantity of vegetation removed each year, but there is evidence of 

considerable inter-year variation (Brierley et al., 1989; Foster, 1990) and 1997 is 

thought to have had the greatest macrophyte growth for more than 20 years (T. Hill , 

pers. comm.). 

2.7 Chemical monitoring and water quality 

The Environment Agency and its predecessor organisations have monitored the 

Nene over many years as part of its water quality monitoring programme. Routine 

chemical determinands including temperature, N, P, silicate and chlorophyll, which 

have been recorded at Wansford (km 91.7) since early 1975, although the record is 

interrupted for chlorophyll and silicate. Data is also available for several other sites but 

these are of shorter duration and lower frequency than Wansford. 

The water quality of the Nene is variable and several main river and tributary sites 

fail their 'River Ecosystem' or 'Coastal and Estuary Working Party' quality targets 

(Environment Agency, 1998). Significant quality failures are in the headwaters of 

Willow Brook and the tidal river and are attributed to eutrophication or drought. A 

headwater stream of Willow Brook also fails the EC Dangerous Substances Directive 

with respect to zinc, which originates from British Steels activities in Corby. 
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The Nene receives several inputs from large sewage treatment works (Figure 2.1 -

serving populations > 100,000) and is considered to be eutrophic throughout its length 

(Rose andBalbi, 1997). 

2.8 Biological monitoring and water quality 

For many years the EA (and predecessors) have routinely monitored 

macroinvertebrate communities throughout the freshwater Nene and its tributaries. 

These surveys are undertaken as part of the statutory water quality monitoring 

programme and result in a biological assessment using the Lincoln Quality fridex 

classification system (Extence and Ferguson, 1989), which is based on the work of 

Chester (1980). Biological water quality results often conflict with the results of the 

chemical surveys, with many river reaches achieving their targets biologically but 

failing chemically. This discrepancy probably results from the small number of 

determinands used to assess chemical quality (BOD, DO and ammonium 

concentrations), but where there are inconsistencies the results of chemical surveys 

often override the biological data. More recently, macroinvertebrates have been used to 

assess water quantity issues in the Nene catchment using a system devised by Extence at 

el. (1999). 

Planktonic rotifers can be abundant in the Nene (Sanderson, 1998) and bivalve 

molluscs (e.g. Anodonta cygnea) are a common constituent of the benthos (EA, 

unpublished data). The Nene sustains a healthy coarse fishery, although there are 

concerns relating to the impact of poor water quality and restrictions to fish movements 

created by locks and weirs (Reeds et al., 1995). 

Over recent years macrophyte and benthic diatom communities have been 

monitored in the Nene, and some of its tributaries, to assess nutrient status for the 

UWWT Directive submissions (Rose and Balbi, 1997). 

2.9 Sample sites 

A 69-km length of river was surveyed from km 22.4 (Duston Mill) to km 91.7 

(Wansford) and consisted of eight main river and three tributary sites (Table 2.1 and 

Figure 2.4). Main river sites are identified by their distance from source (km) and 

name and tributaries are numbered (1-3) in a downstream direction (University of 

Durham tributary labelling system was not used). All sites were near bridges, locks or 
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weirs to facilitate ease of sampling from flowing water and to provide sufficient depth 

to measure light attenuation. 

Table 2.1 Main river and tributary sample sites, showing downstream distance from 
source, tributary confluence distance from source of main river, watercourse, site 
name and NGR. 

Site River Name NGR 
Main river 

km 22.4 Nene Duston Mill SP 729 596 
km 34.0 Nene Great Billing SP814611 
km 39.8 Nene Hardwater Mill SP 876 637 
km 43.9 Nene Wellingborough SP 902 662 
km 52.2 Nene Irthlingborough SP 957 706 
km 64.6 Nene Thrapston SP 991 787 
km 85.2 Nene Elton TL 830 939 
km91.7 Nene Wansford TL 075 991 

Tributary 
1 (km 24.4) Brampton Arm Northampton SP 749 615 
2 (km 44.8) Ise Wellingborough SP 907 674 
3 (km 85.4) Willow Brook Fotheringhay TL 063 935 

Tributary sites 
3. Willow Brook 

2. River Ise 

1. Brampton Brancli 

Main river sites 
km 91.7 (Wansford) 

km 85.2 (Elton) 

64.2 (Thrapston) 

km 52.2 (Irthlingborough) 

km 43.9 (Wellingborough) 

km 38.9 (Hardwater Mill) 

km 34.0 (Great Billing) 

km 22.4 (Duston Mill) 

Figure 2.4 Location of routine sample sites (.)• Tributary sites are numbered in a 
downstream direction and main river sites are labelled with distance from source and 
name. 
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3 Methods and materials 
3.1 Field analysis 

Surface water temperature and Secchi disc measurements {zs - Standing 

Committee of Analysts, 1985) were recorded at all routine sites. On several occasions 

water column light attenuation was measured simultaneously with Zs, using a 'LI-COR' 

LL250 light meter, to investigate their relationship (Zeu calculated as 1 % surface light -

Moss, 1988). 

3.2 Physical data 

3.21 Water temperature 

The longitudinal temperature record for sites from km 34.0 (Great Billing) to km 

85.2 (Elton) was augmented using estimated data, derived from linear regression 

models, based on km 91.7 (Wansford). Temperature data for km 91.7 were more 

numerous than other sites and these were used to extend the record elsewhere. Spot 

temperature records for each site were regressed on temperature data for km 91.7 and 

the resulting equations used to estimate longitudinal daily water temperatures (r^ values 

ranged from 0.94 to 0.97; p < 0.05 for all). 

3.22 Discharge 

Most of the sample sites were not situated near to gauging stations (Figure 2.3 and 

Figure 2.4) or the discharge record was incomplete (Section 2.2). Discharge at km 91.7 

could be derived using one of three options. 

1. Scale downstream from gauged sites in the upper catchment, allowing for major 

discharges and abstractions (adapted from model produced by G. Watts, pers. 

comm.). 

2. Use relationship between gauged sites in upper catchment and available ultrasonic 

data as a model (Upton, Harrowden and Fotheringhay produce best relationship; 

r̂  = 0.91, n = 578). 

3. Scale upstream from Orton allowing for the Rutland Water abstraction. 
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Theoretically, option three should be the most accurate as Orton is closest to km 91.7, 

providing the available discharge and abstraction data are accurate. The options were 

evaluated by regressing daily discharge values calculated for 1997 from each method on 

daily values recorded using ultrasonic equipment at km 92.5 (Wansford gauging 

station), assuming that the latter record was most accurate of all. Methods one, two and 

three produced r̂  values of 0.81, 0.78 and 0.87 respectively (all: p < 0.05, n = 365). As 

upstream scaling produced the most significant relationship with the ultra-sonic record 

and it was decided to use these data throughout the research. However, the marginal 

difference between the methods possibly reflects the inaccuracy of the Orton Gauge 

and/or the Wansford abstraction data. Although consistency between the three methods 

evaluated and those recorded ultrasonically provides some confidence in downstream 

scaling and the accuracy of the recently installed ultrasonic equipment. With 

confidence established in both up and downstream scaling of flow it was decided to 

scale upstream from Orton to derive daily discharge for km 91.7 and km 85.2, and scale 

downstream from Northampton and gauged tributaries for all other sites. The use of km 

85.2 as a transition point was investigated by regressing daily discharge values 

calculated in a downstream direction on those scaled upstream, during 1996. The two 

methods correlated significantly (r^ 0.79; n = 366) with a slope of 0.93, indicating that 

the upstream scaling was producing a slight underestimate compared to the downstream 

procedure. 

3.23 Channel and catchment characteristics 

Channel and catchment statistics are shown in Table 3.1. Slope was calculated as 

the difference in altitude (m.a.s.l.) between the upper and lower ends of the section, 

divided by the section length. Sinuosity was calculated as the section length divided 

by the shortest route along the section (Reynolds and Glaister, 1992). Approximate 

river channel dimensions were calculated from cross-sectional drawings held by the EA 

(navigation sections) or direct measurement over a range of flow conditions. Depth was 

determined as the average of several measurements across the whole river width and 

was based on median water levels for the navigation sections. 
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Table 3.1 Channel and catchment statistics of main river (above) and tributaries 
(below). Average channel dimensions and catchment area are common. Altitude, 
slope and sinuosity are shown for the Nene. Tributary length, lake areâ  and median 
velocity (1994 - 1996) are shown for tributaries. ^ Only lakes having a continuous 
discharge to tributary included; Slope = fall length; Sinuosity = reach length 
shortest distance between start and end of reach (Reynolds and Glaister, 1992). 
Site Depth Width Area Altitude Slope Sinuosity 

(m) (m) (km') (m) (m m"') 
km 22.4 0.2 13.0 299 61.0 — — 
km 34.0 1.7 18.8 604 49.8 0.0010 1.14 
km 39.8 1.9 21.2 638 44.7 0.0009 1.24 
km 43.9 2.0 29.9 729 39.0 0.0011 1.03 
km 52.2 2.3 36.0 1107 35.3 0.0007 1.43 
km 64.6 2.1 28.0 1128 28.4 0.0004 1.41 
km 85.2 2.4 24.6 1393 15.8 0.0008 1.64 
km 91.7 1.8 31.9 1529 8.1 0.0008 1.08 

Length Lake Velocity 
(km) area (m^) (ms-') 

Tributary 1 0.4 7.0 234 24 0.9 0.21 
Tributary 2 0.4 17.0 226 46 8.8 0.20 
Tributary 3 0.2 6.0 90 38 27.7 0.21 

3.24 Velocity 

Average velocity at main river sites between km 34.0 and km 91.7 (inclusive) 

were calculated as the quotient of average daily discharge (m^ s"') and cross-sectional 

area (m^, taken from drawings). The relationship between cross-sectional area and 

discharge, for each site, was established using daily average river levels (recorded every 

15 min) and cross-sectional drawings. Independent current meter records were 

available for two sites (km 39.8 and km 91.7) and these were used to verify the velocity 

estimates here, with both comparisons producing highly significant results (r' = 0.99; p 

< 0.05; n = 10, for both). Estimated retention time at km 34.0, km 39.8 and km 43.9 

were based on their distance from the commencement of navigation and estimated 

average daily velocity. River cross-sections and water level data were not available for 

all sample sites and in these cases the nearest location with suitable data was used. 

Median tributary velocity, for the period 1994 to 1997, were estimated using median 

and average discharge values, following a method described by Round et al., (1998). 

3.3 Sample Programme 

3.31 Routine collection, treatment and storage of water samples 

Routine water samples were collected from the surface running water at a depth of 

about 10 cm, unless stated otherwise. Where necessary samples were taken from 
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bridges or using the technique described in Figure 3.1 to avoid contamination from 

bank-side vegetation or debris. 

bank —vegetation river • 
A 

1. A clean empty bucket is thrown towards the desired sample point (retaining attached rope) in such 
a way that it rotates through the air and lands on the surface water face-down. 

2. I f carried out successfully, the bucket lands at the desired spot with its opening facing downwards 
and still rotating. The sample is collected and the bucket rights itself, with sample contained. The 
weight of the bucket and contained sample keep the bucket stable as it floats with its periphery 
above the surrounding water. 

3. The bucket and contained sample are then carefully retrieved by gently withdrawing the rope. 

Figure 3.1. Method of taking water sample from open/flowing water and avoiding 
contamination from bank-side vegetation and/or debris. Using a 15-L 'bottom-
weighted' stainless steel bucket, with attached rope. 

Water samples were subsampled for chlorophyll (1 -L PET in light-tight 

container), phytoplankton counting (300-mL PET with Lugofs Iodine) and for live 

phytoplankton identification (300-mL PET). Additionally, chemical samples were 

collected to augment the routine EA chemical programme. These included, sihcate (1-L 

PET), TP (300-mL PET) and FRP (60 mL site filtered through Whatman GF/C filter 

paper). Routine chemical samples were normally analysed within 24 h, although 

samples collected to evaluate sample heterogeneity and phaeopigment concentrations 

were analysed within 4 h. 

Some chlorophyll samples were stored on frozen filter papers during periods of 

intensive sampling and analysed within 3 d of sampling. In vivo chlorophyll 

concentration was determined using a Turner 10-AU field fluorometer (Figure 3.5), 

following calibration against the routine chlorophyll method and adjustment for 

temperature. Live phytoplankton samples were examined on the day of collection and 
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fixed samples were processed as soon as possible. Diatom and rotifer samples (1-L 

PET with Lugol's Iodine) were also collected at km 91.7, mostly during 1995, 1996 and 

1997. 

The routine sampling programme was based on 2-weekly sampling at all main 

river and tributary sites between June 1993 and December 1997, although km 22.4 and 

tributary 1 (Brampton Branch) were introduced during 1994. The frequency of 

phytoplankton and chlorophyll sample collection was increased during the spring and 

summer (April to September) at km 91.7. Samples were normally taken weekly during 

the spring and summer of 1994, 1995 and 1997 and three times per week during 1996. 

3.32 1994 flood event 

Phytoplankton samples were collected from km 91.7 following two days of heavy 

rain that occurred on 14 and 15 September 1994, which followed three months of 

sustained low flow. Samples were collected on 15, 16, 17, 19, 20, 21 and 23 

September. Al l taxa were identified and changes in abundance and diversity were used 

to evaluate the impact of increasing discharge. 

3.33 Main river/bay comparison 

A comparison was made between the phytoplankton occurring in a bay and the 

main channel at km 91.7 between 4 April and 28 September 1995 (Figure 3.2). Samples 

were collected at weekly intervals for phytoplankton counts and chlorophyll. 

Temperature and water transparency (Secchi disc) were also recorded. 

3.34 Sediment trap 

A sediment trap was used in the river at km 91.7 between 6 March and 11 October 

1996 (location Figure 3.2) and was emptied every two weeks with the exception of 5 

April, when it was retrieved after 24 h. The trap was constructed from a 0.5-L plastic 

measuring cylinder fitted to a heavy steel base-plate and connected to a chain for 

lowering and retrieving from the river bed (Figure 3.3). The trap had a total height of 

approximately 40 cm and was positioned at a depth of 2.8 m, on the far side of the river 

from the routine sample point. 
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Bay sample point 

Main river sample 
point 

Sediment 
rap 

I (km 91.7) Old road bridge^ Wamford \ 

5m 

Figure 3.2 Schematic representation of km 91,7 sample site, showing location of 
main river and bay sample points (*) and sediment trap (o). Solid arrows indicate 
direction of flow. 

Sediment 
trap 

lead cap for 
use when 
lowering into 
position 

Retaining 
chain 

Figure 3.3 Sediment trap. Also showing cylinder cap, retaining chain and other 
materials used during collection of samples. 

The sediment trap was implemented and emptied using the following steps. 

Implementing sediment trap 

1. Add 10 mL Lugol's Iodine to clean cylinder 

2. Fill cylinder with deionised water 

3. Fit cylinder with lead cap 

4. Lower sediment trap carefiiUy to the river bed (ensuring chain lies to one side) 

5. Allow to stand for at least 5 min 

6. Carefully remove cap 
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Emptying sediment trap 

1. Carefully retrieve sediment trap from river bed 

2. Empty contents into clean bucket and rinse with deionised water 

3. Transfer contents of bucket to a labelled 1-L PET bottle and re-fix 

4. Clean cylinder and base removing any invertebrates or debris 

3.35 High frequency sampling 

Samples were taken at high frequency (1 h to 4 h) to assess short-term trends in 

chlorophyll and phytoplankton abundance. 

Short-term temporal change 

Samples were collected for phytoplankton and chlorophyll analysis at two depths 

(10 cm and 1 m) from km 91.7 at 4-hourly intervals for 24 h, on the 4 and 5 April 1994. 

Water temperature and Secchi depth were also recorded with each sample (where 

possible). 

Four-hourly samples were also collected using a Hobo automatic sampler (Figure 

3.4) positioned within the Wansford gauging station (km 92.5 - TL 081 996), which is 

located 800 m downstream from the routine site, km 91.7. The sample tube was 

suspended from a buoy (Figure 3.5) at a depth of 0.5 m in a total water depth of 

approximately 2 m and was routed underground to the sampler. 
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Figure 3.4 Hobo automatic water sampler (open) and Grant YSI water quality 
monitor. Both located inside Wansford gauging station at km 92.5. 

Field 
fluorometer 

Wanstord 
gauging 
station 2 m 

Buoy supporting 
sample tube and 

probe 

Figure 3.5 Nene at km 92.5, adjacent to Wansford gauging station. Showing 
supporting buoy for sample tube and Grant YSl water quality probe and field 
fluorometer, battery and tubing. 

The Hobo sampler purged and flushed the sample tube prior to each sample 

collection, which took several minutes to complete. The sampler was used on three 

occasions during the spring and summer of 1997, as follows. 

1. Samples every four h between 08:00 31 March and 08:00 4 April. 

2. Samples every h between 08:00 14 April and 13:00 18 April. 

3. Samples every two h between 00:00 6 May and 06:00 9 May. 
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Samples were collected for phytoplankton and chlorophyll and the latter was either 

determined photometrically or using a fluorometer. Samples stood for a maximum of 

14 h after being either filtered and frozen on site or determined fluorometrically. Water 

temperature was recorded using a Grant YSI water quality logger at 15-min intervals 

over a 12-month period. The temperature probe was positioned at a depth of 0.8 m and 

located on the same buoy used for the automatic sampler. During the second survey (14 

to 18 April 1997) silicate, ammonium, TON and TRP samples were also collected every 

four h for 48 h. 

3.36 Cross sectional proflles and spot sampling 

River profiles were investigated for chlorophyll, temperature and velocity at km 

91.7 and km 92.5 on the 17 April 1997. Additionally, the heterogeneity of the surface 

chlorophyll concentration of the main river and bays was explored around the upstream 

site. 

A series of vertical profiles were undertaken across the river at 2- m intervals at km 

92.5 (16 profiles) and 1-m intervals at km 91.7 (9 profiles). Each profile consisted of 

four individual sample points, 0.2, 0.4, 0.6 and 0.8 of the total river depth. At each 

point the chlorophyll concentration and temperature were determined using a 

fluorometer and velocity was measured using an Ott RC2 electro-magnetic current 

meter. 

3.37 Picoplankton 

Samples were collected for picoplankton analysis from km 91.7 at 2-weekly 

intervals between 10 July 1997 and 28 August 1998. Samples were stored in a 300 mL 

PET bottle and preserved in 2% (final concentration) buffered formalin (Hawley and 

Whitton, 1991) and stored in the dark below 5°C. 

3.38 Rotifer 

Samples were collected for rotifer identification and enumeration at km 91.7 three 

times a week between April and September 1996. Samples were stored in a 1-L PET 

bottle and preserved in Lugol's Iodine. 
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3.39 Planktonic diatoms 

Several samples were collected at km 91.7 for the identification of diatoms, 

following acid digestion. These samples were stored in a 1-L PET bottle and preserved 

with Lugol's Iodine. 

3.310 Influence of Billing marina and Thrapston sailing lake 

The influence of Billing marina (20 m upstream of km 34.0) and Thrapston sailing 

lake (500 m downstream of km 64.6) on the phytoplankton of the main river was 

investigated between 10 April and 14 August 1996, following pilot studies during 

1994/5. Billing marina and Thrapston sailing lake are both flooded gravel workings, 

but they differ in that Billing has no flow to the main river and Thrapston usually has a 

conflnuous through-flow. Both sites were sampled on a 2-weekly basis for 

phytoplankton and chlorophyll. 

Billing 

In addidon to the rouflne samples at km 34.0 (which is situated approximately 20 

m downstream of the marina) one sample was taken at the mouth of the marina and 

another 500 m further upstream. The upstream sample point was located upstream of 

Billing lock to eliminate any possibility of back-flow from the marina. 

Thrapston 

The outflow water of Thrapston sailing lake was sampled, although flow was 

restricted for maintenance during some of the period. 

3.311 Spot surveys 

In addidon to the surveys covered above several spot invesdgadons were 

undertaken to supply important background or supporting information for the wider 

study (Table 3.2). 

Table 3.2 Spot samples and surveys undertaken. 

Kinewell lake outfall (SP 975 753) 

Summer Leys outfall (SP 889 642) 

Spatial survey of tributary 3 (Willow Brook) 7 sites 
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3.312 Phaeopigment surveys 

Chlorophyll was not routinely corrected for phaeopigments, although a small 

study was carried out to assess the relative contribution of degradation products, which 

were determined using acidification and neutralisation (Marker, 1992). Samples were 

collected at km 91.7 on 10 Apri l 1997, 5 August 1997 and 8 January 1998, n = 5 for 

each. 

3.313 Sample and subsample error 

Numerous phytoplankton and chlorophyll samples were taken at km 91.7 to assess 

sample and subsample error, sample treatment and the accuracy of analysis carried out 

by the EA NLS. 

Sample error 

Samples were collect at 2-min intervals to assess sample error for phytoplankton 

and chlorophyll. Samples were taken f rom the main river at km 91.7 (18/8/94, 21/4/95, 

7/8/95, 13/5/96, 11/7/95, and 15/5/96) and one from the bay (21/4/95). n = 5 for all 

tests. 

Subsample error 

Primary-subsample error was assessed by taking five subsamples for 

phytoplankton and chlorophyll f rom a single sample (17/8/94,18/8/94, 20/4/95, 13/5/96, 

15/5/96 and 5/8/97). 

Analysis of f ive subsamples f rom a single primary-subsample assessed secondary-

subsample error. Primary and secondary-subsample errors were also assessed on the 

14/5/98 using in-vivo fluorescence. On this occasion two 1-L primary-subsamples were 

taken f rom a single 10-L sample and the in-vivo chlorophyll was measured in 10 

secondary-subsamples f rom each 1-L bottle. 

Chlorophyll sample treatment 

The influence of different storage durations and treatments were evaluated along 

with parallel analyses carried out by the NLS. Samples were stored for varying periods 

prior to analysis, either as whole water samples or as filtered samples on frozen filter 

paper (Table 3.3). 
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Table 3.3 Chlorophyll sample storage treatments and parallel runs with NLS. Light-
tight bottles were used for storage of whole water samples. A l l samples were taken at 
km 91.7. Water samples were stored < 5°C , except 10/6/97 which was stored at 
ambient temperature. 
Date Treatment 
17/8/94 10 1-L samples collected. Odd numbered samples were site filtered and 

frozen. Even numbered samples were kept in bottles. A l l samples analysed 
after 27 h. 

18/8/94 10 1-L samples collected. Odd numbered samples sent for analysis at NLS. 
Even numbered samples analysed within four h. 

20/4/95 10 1-L samples collected. Five samples site filtered and frozen. Five 
samples stored in bottles. 

7/11/95 25 1-L samples collected. 500-mL site filtered and frozen from each of the 
25 1-L bottles and remaining 500-mL was left in the bottle. Five each of 
the site filtered and whole water samples were selected at random and 
analysed at 4 h, 24 h, 48 h, 72 h and 144 h. 

13/5/96 25 1-L samples collected. Five samples sent for analysis by NLS. Five 
samples analysed after four h. 10 1-L were site filtered and frozen and 
remaining 10 1-L stored in bottles. Five samples from each treatment were 
selected at random and analysed after 16 d and 31 d. 

10/4/97 10 1-L samples collected. Odd numbered samples sent for analysis at NLS. 
Even numbered samples analysed within 4 h. 

10/6/97 10 1-L samples collected. Five samples site filtered, frozen and analysed 
same day. Five samples stored overnight in Wansford gauging station at 
ambient temperature and analysed following day. Both sets of samples 
were analysed for phaeopigment concentrations. 

3.314 Additional data 

Chemical 

A range of chemical determinands was available for Nene sites, collected as part 

of the EA routine monitoring programme. These data were readily available from 1991 

onwards f rom a database at Peterborough. Additional data for km 91.7 were obtained 

from two other sources, archive tape held by the EA at Peterborough (1981 to 1990) and 

microfiche held by the EA at Lincoln (1975 to 1980). The km 91.7 data were compiled 

to form what w i l l be referred to as the long-term data set. Unfortunately, the long-term 

data were incomplete for two important determinands for this research (silicate and 

chlorophyll). 

Rotifers 

Rotifer abundance data were obtained for the Nene at Wansford Railway Station 

(TL 093 979), which was situated 2.6 km downstream from km 91.7. 10-L samples 
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were taken f rom the open water, filtered through 53-^m mesh and preserved in 4% 

formaldehyde (R. J. Sanderson, pers. comm.). 

Macrophyte data 

Macrophytes (including filamentous algae) were recorded and percentage cover of 

each taxon estimated f rom 100-m stretches at several Nene sites between 1993 and 

1997, as part of the U W W T Directive eutrophication assessment. Surveys were carried 

out using the EA standard methodology (Environment Agency, 1999), which uses the 

nine-point scale for estimating abundance of macrophytes (based on. Standing 

Committee of Analysts, 1987). 

Summary of sampling programme 

Key elements of the sample programme described above are shown in Table 3.4. 

Table 3.4 Summary of sample programme. Showing determinand, median sample 
frequency (Freq.) and comments (occ. = occasionally). 
Determinand Freq. Comment 
Long-term study: km 91.71975 to 1998 

Temperature 6 d 
NH4-N 7 d 
NO3-N 7 d 
NO2-N 7 d 
TRP 7 d 
Chlorophyll 7 d Chlorophyll data augmented by current study 

Current study: eight main river and three tributary sites 1993 to 1998 (Figure 2.4) 
Secchi disc depth 14 d 
Temperature 14 d 
FRP 14 d Higher frequency at km 91.7 for chlorophyll 
TP 14 d and phytoplankton: 7 d 1994 and 1995 (Apr 
Chlorophyll and phytoplankton 14 d to Sep), 3 d 1996 (Mar to Oct) 

Additional studies: chlorophyll and phytoplankton 
Spate f low 1 d September 1994 at km 91.7 
Bay/main river comparison 7 d Apri l to September 1995 at km 91.7 
Sedimentation 14 d March to October 1996 at km 91.7 
Light attenuation occ. km 91.7 
Rotifers 1996 3 d March to October at km 91.7 
High frequency sampling 4 h Four occasions at km 91.7 and km 92.5 
Picoplankton 14 d 1997 to 1998 at km 91.7 
Influence of Bi l l ing marina 14 d Mar to Sep 1996 
Influence of Thrapston lake 14 d Mar to Sep 1996 
Wi l low Brook 1996 

Additional data f rom EA and Meteorological Office 
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3.4 Laboratory analysis 

3.41 Chemical 

Nutrient and silicate concentrations were determined photometrically following 

standard methodologies. TRP, FRP and TP were analysed using the 

phosphomolybdenum blue method (Standing Committee of Analysts, 1992: based on 

Murphy and Riley, 1962). Silicate was determined as molybdate reactive silicon 

fol lowing reduction by means of l-amino-2-naphthol-4-sulphonic acid (Standing 

Committee of Analysts, 1992: based on Webber and Wilson, 1964). NH4-N was 

determined as indophenol blue after reacting with hypochlorite and salicylate ions in 

solution in the presence of sodium nitroprusside (Standing Committee of Analysts, 

1981a: based on Chaney and Marchbach, 1962). TON, NO3-N and NO2-N were 

measured using continuous f low analysis (Standing Committee of Analysts, 1981b: 

based on Bendschneider and Robinson, 1952). TON was measured as NO2-N, 

fol lowing the reduction of NO3-N to NO2-N by hydrazine. NO3-N was determined as 

T O N minus NO2-N. T N was calculated as the product of NH4-N, NO3-N and NO2-N 

and N:P ratio as the quotient of T N and TRP. Likewise, the P:silicate ratio was 

calculated as the quotient of TRP and Si02-Si. 

A l l chlorophyll samples were analysed using hot methanol extraction and 

photometric determination at wavelengths 665 nm and 750 nm, the latter to compensate 

for 'background turbidity' (Standing Committee of Analysts, 1980) Phaeopigments 

were determined using acidification and neutralisation (Marker, 1992). 

Dissolved inorganic carbon (DIC) was estimated f rom total alkalinity using a 

method described by (Wetzel and Likens, 1991), using contemporaneous temperature 

and pH values. 

3.42 Biological 

Planktonic diatom treatment and enumeration 

Diatom samples were allowed to sediment in clean 1-L glass cylinders for 

sufficient time for the smallest specimens to settle completely (Furet and Benson-Evans, 

1882). Following settlement the supernatant was carefully siphoned of f and the 

remaining sediment transferred to a 50-mL centrifuge tube for the digestion of organic 

matter, fol lowing the method described by Kelly (1996). This method was too 

disruptive for some plankton samples, which contained pennate diatoms with poorly 
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developed frustules. These diatom samples were digested by ignition, where a 

concentrated droplet of sample was placed on a clean microscope slide, which was 

placed on a hot-plate for several hours. A l l samples were mounted in Naphrax prior to 

examination under oil immersion at x 1000 magnification. 

Slides were enumerated by transects (avoiding the edges of the sample) counting 

at least 300 specimens. 

Picoplankton enumeration 

Picoplankton enumeration was based on the methods described by Hawley and 

Whitton (1991). Fully mixed samples were pre-filtered through a 3-|im Whatman 

cellulose nitrate filter papers, before being filtered on 0.2-|i.m Whatman polycarbonate 

(hydrophilic) filter paper, which had been pre-stained with irgalan black (Ceiba-Geigy, 

2 g L"' in 2% acetic acid). Filter papers were placed on a clean microscope slide, held 

in position with a little emersion oi l , and fitted with a cover slip. 

Enumeration was carried out in a darkened room using oil emersion at xlOOO 

magnification and illuminated using epifluorescence light with blue and green filtration. 

Cells were counted in random fields of view and classified according to their size and 

colour of filter under which they fluoresced most brightly. 

Phytoplankton enumeration 

The basic counting method employed during this work, which was based on the 

techniques described by Utermohl (1958) is described and evaluated in Chapter 5. 

The standard method was carried out on routine samples collected from km 91.7, and 

adaptations of this method and other procedures were used elsewhere, depending on the 

desired information and accuracy required. 

In addition to km 91.7, three main river sites (km 34.0, km 43.9, km 64.6) were 

selected for evaluation of phytoplankton abundance and species composition. At these 

sites 'key taxa' (those which were most dominant or of greatest interest) were counted 

during periods when the chlorophyll concentration > 10 )a,g L" ' . High frequency, 

tributary and special survey samples were also treated in this way and/or using a new 

approach (spaced fields) which provides greater accuracy with narrower confidence 

intervals (Chapter 5). 
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Live samples were concentrated by centrifugation (where necessary) and 

examined at x 400 magnification. The species were recorded and their abundance 

classified according to a semi-quantitative scale (Table 3.5). 

Table 3.5 Semi-quantitative abundance categories. 

Abundance category Description 

present (P) 1 specimen in sample 

scarce (S) 2 to 10 specimens in sample 

common (C) 11 to 100 specimens in sample 

abundant (A) 101 to 1000 specimens in sample 

very abundant (V) more than 1000 specimens in sample 

Zooplankton enumeration 

The 1-L zooplankton samples were concentrated in clean glass cylinders and 

allowed 48 h to settle. The supernatant was carefully siphoned of f and the sediment was 

transferred to a clean measuring cylinder and made up to a known volume with 

deionised water. The concentrated sample was ful ly mixed and a subsample transferred 

to a clean 10-mL sedimentation chamber. Sediment chambers were allowed 20 min to 

settle, which was found by experimentation to be the necessary time for all the rotifers 

to settle. This technique reduced the quantity of smaller sediment, which was still in 

suspension, thus improving the accuracy of the count. 

The whole chamber was then scanned in a series of horizontal adjacent transects 

(Hasle, 1981) at X 100 magnification using a cross-hair graticule (Chapter 5), on an 

inverted microscope. Zooplankton and rotifer eggs encountered during the scans were 

counted as they passed the vertical line of the cross-hair. Organisms falling on the 

upper horizontal line of the cross-hair were counted and those on the lower line ignored, 

being counted in the next transect. At least 300 individuals were counted per sample 

(where possible). 

Sediment treatment and enumeration 

Sediment samples (with the exception of the 5/4/96) were thoroughly mixed and 

divided into two equal quantities, one for evaluation of dry weight and L O I and the 

other for identification and counting. Dry weight was achieved by placing the sample in 
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a Perspex beaker in an oven at 110°C until weight became stable. L O I was calculated 

as the dry weight minus the weight following combustion in a muffle furnace for 24 h. 

The remaining aliquots and the sample collected on the 5 Apri l 1995 were made 

up to a known volume, using deionised water. These aliquots were then subsampled 

into clean 10-mL sedimentation chambers and allowed to settle for at least 24 h before 

counting. The samples were counted at x 1000 magnification under oil immersion in 

between 50 and 100 random fields, attempting to count at least 300 individuals, 

although the quantity of inorganic sediment in some samples made this impossible. 

A l l results were converted to a percentage and expressed as units day ' by dividing 

by the number of days the sediment trap was deployed. 

3.5 Statistical methods and treatment of data 

3.51 General procedures and transformations 

General statistical analysis was carried out using M I N I T A B software (Ryan et al., 

1985). Statistical distributions were examined prior to analysis and where necessary 

data were either transformed (Table 3.6) to approximate normality (Fry, 1996) or non-

parametric techniques were used. Normally distributed or successfully transformed 

data facilitates the use of parametric techniques, such as product moment correlation 

and regression analysis (Elliott, 1983). Chlorophyll values < l|j,g L ' ' were excluded 

f rom the subsequent analysis, logio transformation resulting in negative values. 

Table 3.6 Data transformations. 
Variable (x) Transformation Variable (x) Transformation 
7 d CuSum Sun-light None Phytoplankton Logic (x + 1) 
75 SF counts None/ Logio (x) Rotifers Logio ( X ) 

Chlorophyll Logio ( X ) Si02-Si None 
Discharge Logio ( X ) TRP Vw~ 
FRP Vw~ Temperature None 
Macrophytes Logio ( X ) T N None 
N:P ratio Logio ( X ) TON None 
NH4-N Logio ( X ) Velocity l / (x) 
NO3-N None Zeu Logio ( X ) 

NO2-N VotT Zs Vw~ 

Confidence intervals for small samples (n < 30; e.g. sample error evaluation and 

phytoplankton counts in diameter transects) were calculated using logio transformed 

data and the arithmetic mean (Elliott, 1983). Confidence intervals for larger samples 
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(n > 30) were calculated using the Student's t statistic or from predetermined 

relationships (Chapter 5). 

3.52 Physical and chemical 

Euphotic depth 

The relationships between chlorophyll concentration and Zs and Zs and Zeu were 

explored using regression analysis. The data were restricted to the periods Apri l to 

September (1994 - 1996) when the influence of inorganic suspended solids on light 

attenuation was thought to be least. 

Long-term trends 

Long-term trends in discharge, water temperature, light, NH4-N, NO3-N, NO2-N, 

T N , N:P and TRP (1975 -1996) at km 91.7 were investigated by regressing annual 

medians on t and by comparison of the medians from the periods 1975 to 1986 and 

1987 to 1998. This was undertaken using Mood's median test, which was also used to 

investigate inter-year variation. 

3.53 Chlorophyll 

Temporal trends 

The relationships between discharge and water chemistry and physical and 

chemical variables and chlorophyll concentration were investigated using regression 

analysis. Additionally to evaluating relationships using the f u l l chlorophyll data set, 

subsets were created to ease elucidation of the factors influencing temporal chlorophyll 

concentration. 

Spatial trends 

Downstream trends in chlorophyll concentration were investigated by plotting 

velocity, temperature and chlorophyll concentration (1994 - 1996) for main river sites 

(km 22.4 to km 91.7) against downstream distances f rom source. This was completed 

for chlorophyll concentrations expressed as 3-monthly averages, annual maxima at 

downstream sites (km 85.2 and km 91.7) and annual maxima for the study section. 

Downstream chlorophyll trends were further investigated using multiple-regression 
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analysis, using velocity, temperature and downstream distance from source as 

predictors. 

Differences in tributary chlorophyll concentration were examined using Mann-

Whitney U tests and results were evaluated with respect to relevant physical variables. 

The influence of tributary 3 on the main river was investigated by examination of 

contemporaneous chlorophyll concentrations at up and downstream sites (km 85.2 and 

km 91.7). Comparison was made using the whole data set and a restricted set, 

consisting of tributary chlorophyll concentrations that exceeded those of the main river. 

Derivation of chlorophyll data subsets 

The exploration of chlorophyll data subsets was undertaken using a specially 

written computer program (PEEP), which aided rapid manipulation and comparison of 

large data sets. The PEEP software enabled rapid production of data subsets and 

facilitated the examination of relationships between variables, either as selected time 

periods (e.g. all between Apri l to June) or ranges (e.g. all between a temperature range 

of 5 to 20°C). Furthermore, where daily data were available (e.g. discharge and 

sunlight) chlorophyll could be correlated against variables expressed in a variety of 

different ways. For example, average, cumulative-sum, minimum, etc could be 

calculated over varying numbers of days (2 - 15) proceeding and including the sample 

date. The principal objective of this process was not to produce the most significant 

relationships between chlorophyll concentration and other variables but to extract the 

most useful information. Following preliminary exploration, five chlorophyll sub-sets 

were created (Table 3,7). 

Table 3.7 describes low chlorophyll summer periods, which were further 

investigated by examination of the annual physical variables for the period July to 

September. Statistical comparison was made between data from years with 'low 

chlorophyll summer periods' and other years. 

3.54 Phytoplankton 

Temporal trends at km 91.7 

Temporal trends in phytoplankton abundance were explored by examination of 

time series, through correlation with chemical and physical variables and using 

multivariate statistics. Initially all phytoplankton taxa f rom the routine sampling 
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programme were collated and each taxon expressed as a percentage occurrence. Taxa 

groups were then selected based on abundance/biovolume, periodicity and ecology. 

Group selection was partly a subjective process based on experience gained during the 

phytoplankton counts and personal observation, but their validity was assessed during 

the analysis and reclassifications made as necessary. 

Table 3.7 Chlorophyll data sub-sets created to investigate the relationship between 
chlorophyll concentration and physical and chemical variables. 
Sub-set name Definition 

January to spring A l l data f rom 1 January to spring chlorophyll maximum 
chlorophyll maximum (maximum occurring between January and June) 

Low chlorophyll Period (in excess of 30 d) following the spring chlorophyll 
summer period peak that starts when the chlorophyll concentration falls 

below 10 |Xg L ' ' (between June and August) and ends 
when it increases above 20 fxg L * or 31 December, 
whichever is sooner 

A l l minus low A l l chlorophyll data minus the 'low chlorophyll summer 
chlorophyll summer period' 

period 

January to June A l l data f rom 1 January to 30 June 

July to December A l l data f rom 1 July to 31 December 

Major groups were plotted as time series to aid qualitative assessment. The PEEP 

software (described above) was also used to explore the relationships between important 

taxa groups and physical and chemical variables. During this analysis phytoplankton 

data were transformed and any resultant negative values excluded. 

A l l major groups were also analysed using the CANOCO software (ter Braak and 

Smilauer, 1998) where the ordination of the taxa can be assessed against environmental 

variables, using the CCA routine (ter Braak and Verdonschot, 1995). The CCA analysis 

was undertaken using symmetrical biplot scaling with log transformed taxa data and 

down-weighing of the influence of rare taxa. The initial analysis was carried out using 

manual forward selection of environmental variables with Monte Carlo permutation 

tests for significance. Those environmental variables that had a non-significant 

influence during the initial analysis were removed from the model and the final analysis 

was run with tests for axes significance. The resulting ordinations were printed as 

separate biplots of samples and environmental variables and taxa and environmental 
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variables (ter Braak and Verdonschot, 1995). The taxa data was analysed as a complete 

set and separated into two subsets, 1 January to 30 June and 1 July to 31 December. 

Short-term trends at km 91.7 

A pilot survey was undertaken during 1996 and three more extensive surveys 

during 1997. Throughout the 1997 surveys discharge, light and temperature were 

recorded at 30 min, 10 min and 15 min intervals respectively and chlorophyll and 

phytoplankton at varying intervals between 1 h and 4 h, using the auto-sampler. 

Temporal change in chlorophyll and phytoplankton were investigated using 

regression analysis, with discharge, temperature and light as predictors. Temperature 

and discharge were averaged over varying periods preceding the sample and light was 

integrated in the same way. 

Spatial trends 

Direct comparison of time series of spatial chlorophyll was complicated by 

seasonality, and this problem was addressed by decomposition of the series using time-

series analyses (Minitab, 1996). Seasonality of data was removed and liner trends used 

as underlying values for site comparisons using Mann-Whitney U tests. 

3.55 Zooplankton 

The influence of physical and biological variables on rotifer and ciliate abundance 

was investigated using regression analysis. 

3.56 Sediment 

The relationship between the abundance of taxa in the sediment traps and the 

phytoplankton was investigated using regression analysis. 

3.57 Macrophyte 

The percentage cover values of submerged macrophytes were summated for each 

site and evaluated against discharge, temperature and chlorophyll. Variables were 

expressed as the annual averages up to the data of, or the nearest sample preceding the 

macrophyte survey and transformed as necessary. Data sets were pooled following 

standardisation, which was achieved by dividing each value by the site average and 

multiplying by 100. 
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4 TAXONOMY 

4.1 Introduction 

This chapter contains details of suspended algae, zooplankton and submerged 

macrophytes. Details of diatom and picoplankton size classes used, centric diatoms in 

digested samples and the morphological impacts of silicate deficiency are also included. 

4.2 Suspended algae at km 91.7 

Samples were treated in one of four ways; examined live, fixed in Lugol's Iodine, 

f ixed in buffered formalin or digested/combusted to allow the frustules of diatoms to be 

examined. The latter being examined using a light microscope and SEM. A single 

method of treatment was unsuitable for the identification of all taxa. For example, i f 

movement is diagnostic then the examination of live material is necessary, whereas 

diatom taxonomy is usually based on the morphology of the frustule, which cannot be 

resolved without the removal of organic material. The taxa list for km 91.7 (Wansford), 

that follows, was compiled using a combination of techniques and contains 

representative taxa f rom all sites found throughout the study (Table 4.1). 

Table 4.1 List of suspended algae at km 91.7. Codes, 
were taken f rom Whitton et al. (1998). Abbreviations 
those given by Brummitt and Powell (1992). 

nomenclature and authorities 
and other conventions follow 

Code Genus Species Authority 
01020000 A N A B A E N A 
01020090 Anabaena 
01040020 Aphanizomenon 
01130000 CHROOCOCCUS 
01320000 GOMPHOSPHAERIA 
01320010 Gomphosphaeria 
01320020 Gomphosphaeria 
01430000 L Y N G B Y A 
01460000 MERISMOPEDIA 
01490000 MICROCYSTIS 
01430000 OSCILLATORL\ 
01430010 Oscillatoria 
01430160 Oscillatoria 
01430230 Oscillatoria 
04010000 C O L A C I U M 
04020000 EUGLENA 
04020310 Euglena 

flos-aquae 
flos-aquae 

aponma 
lacustris 

agardhii 
limnetica 
redekei 

tnptens 

Bory 
(Lyngb.) Breb. 
(L.) Ralfs 
Nageli 
Kutz. 
Kutz. 
Chodat 
C.Agardh 
Meyen 
Kutz. 
Vaucher 
Gomont 
Lemmerm. 
Goor 
Ehrenb. 1838 
Ehrenb. 1830 
(Dujard.) G.A.Klebs 
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04070000 PHACUS 
04100000 TRACHELOMONAS 

04100140 
04100340 
04100360 
04020000 
04040000 
04040040 
04040040 
04100000 
05100012 

Trachelomonas 
Trachelomonas 
Trachelomonas 
CHROOMONAS 
CRYPTOMONAS 
Cryptomonas 
Cryptomonas 
RHODOMONAS 
Rhodomonas 

06020000 C E R A T I U M 
06020040 Ceratium 
06040000 G L E N O D I N I U M 
06070000 G Y M N O D I N I U M 

06110000 
09130042 
09230000 
09230070 
09310000 
09310030 
09430000 
10040010 
10090020 
12020010 
12030000 
12030060 
12060040 
12060040 
12070000 
12070040 
12070280 
12070340 
12070370 
12110000 
12110080 
12160000 
12160020 
12160030 
12180000 
12180090 

PERIDINIUM 
Chrysococcus 
D I N O B R Y O N 
Dinobryon 
M A L L O M O N A S 
Mallomonas 
SYNURA 
Centritractus 
Goniochloris 
Actinocyclus 
AULACOSEIRA 
Aulacoseira 
Cyclostephanos 
Cyclostephanos 
CYCLOTELLA 
Cyclotella 
Cyclotella 
Cyclotella 
Cyclotella 
MELOSIRA 
Melosira 
SKELETONEMA 
Skeletonema 
Skeletonema 
STEPHANODISCUS 
Stephanodiscus 

hispida 
volvocina 
volvocinopsis 

marsonu 
ovata 

lacustris var. 
nannoplanktica 

hirundinella 

12180092 Stephanodiscus 

rufescens 

sertularia 

akrokomos 

belonophorus 
mutica 
normanii 

granulata 
dubius 
invisitatus 

atomus 
meneghiniana 
pseudostelligera 
radiosa 

varians 

potamos 
subsalsum 

hantzschii 

hantzschii fo. 

Dujard. 1841 
Ehrenb. emend Deflandre 
1926 
(Perty) Stein 
Ehrenb. 
Swirenko 
Hansg. 1884 
Ehrenb. 1838 
Skuja 
Ehrenb. 
Karsten 1898 
Pascher et Ruttner. (Skuja) 
Jav. 
Schrank 1793 
(O.F.Mull.) Dujard. 
(Ehrenb.) F.Stein 
F. Stein 1878 em. Kofoidet 
Swezy 
Ehrenb. 1830 
G. A.Klebs 
Ehrenb. 1834 
Ehrenb. 
Perty 1841 
Ruttner in Pascher 
Ehrenb. 1834 
Lemmerm. 
(A.Braun) Fott 

(Greg, ex Grev.) Hust. 1947 
G.H.K.Thwaites 1848 
(Ehrenb.) Simonsen 1979 
(Fricke) Round 1982 
(Hohn et Hellermann) Theriot 
Kutz. ex. Breb. 1838 
Hust. 1937 
Kutz. 1844 
Hust. 1939 
(Grunow) Lemmerm. 1900 
C.Agardh 1824 
Agardh 1827 
R.K.Grev. 1864 
(Weber) Hasle 1976 
(A.Cleve) Bethge 1928 
Ehrenb. 1844 

Grunow in Cleve et Grunow 
1880 
Grunow in Cleve et Grunow 
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12180160 Stephanodiscus 
12180190 Stephanodiscus 
12190140 Thalassiosira 
12190200 Thalassiosira 

13010000 ACHNANTHES 
13010270 Achnanthes 
13040000 A M P H O R A 
13040180 Amphora 
13040280 Amphora 
13040290 Amphora 

13080010 
13160000 
13160080 
13160100 
13160104 
13190012 
13210000 
13220000 
13220122 
13220330 
13220600 

Asterionella 
COCCONEIS 
Cocconeis 
Cocconeis 
Cocconeis 
Ctenophora 
CYMATOPLEURA 
C Y M B E L L A 
Cymbella 
Cymbella 
Cymbella 

13260000 D I A T O M A 
13260042 Diatoma 
13260040 Diatoma 
13310170 Encyonema 

13370000 
13370034 
13370040 
13390040 
13410000 
13410080 
13410310 
13410390 
13420000 
13420010 
13420040 
13410000 
13420000 
13420340 
13420410 

FRAGILARIA 
Fragilaria 
Fragilaria 
Frustulia 
GOMPHONEMA 
Gomphonema 
Gomphonema 
Gomphonema 
GYROSIGMA 
Gyrosigma 
Gyrosigma 
MERIDION 
N A V I C U L A 
Navicula 
Navicula 

tenuis 
neoastraea 
parvus 
pseudonana 
weissfloggii 

haynaldii 

libyca 
ovalis 
pediculus 

formosa 

pediculus 
placentula 
placentula 
pulchella 

cistula 
lanceolata 
tumida 

tenue 
vulgare 
minutum 

capucma 
crotonensis 
vulgaris 

augur 
parvulum 
truncatum 

acuminatum 
attenuatum 

capitatoradiata 
cincta 

1880 
Hak. etHickel 1986 
Stoermeret Hak. 1984 
Hasle etHeimdal 1970 
(Grunow) Fryxell et Hasle 
1977 
Bory 1822 
Schaarschm. 1881 
Ehrenb. ex Kutz. 1840 
Ehrenb. 
Kiitz. 1844 
(Kiitz.) Grunow in Schmid et 
al. 1874 
Hassall 1844 
Ehrenb. 1837 
Ehrenb. 1838 
Ehrenb. 1838 
Ehrenb. 1838 
(Ralfs ex. Kutz.) Kutz. 1844 
W.Sm. 1841 
C.Agardh 1830 
(Ehrenb.) Kirchner 1878 
(Ehrenb.) Kirchner 1878 
(Breb.) Grunow in Van 
Heurck 1880 
Bory 1824 
Agardh 1812 
Bory 1824 
(Hilse in Rabenh.) D.G.Mann 
in Round etal. 1990 
H.C.Lyngb. 1819 
Desm. 1824 
Kitton 1869 
(Thwaites) De Toni 1891 
Ehrenb. 1832 
Ehrenb. 1840 
(Kutz.) Kutz. 1849 
Ehrenb. 1832 
Hassall 1844 
(Kutz.) Rabenh. 1843 
(Kiitz.) Cleve 1894 
C.Agardh 1824 
Bory 1822 
Germain 1981 
(Ehrenb.) Ralfs in A.Pritch. 
1861 
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13420440 
13420480 
13421070 
13421240 
13421390 
13421600 
13421860 
13422010 
13422100 
13422730 
13422740 
13422840 
13422880 
13440000 
13440020 
13440090 
13440140 
13440180 
13440260 

Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
Navicula 
NITZSCHIA 
Nitzschia 
Nitzschia 
Nitzschia 
Nitzschia 
Nitzschia 

13440370 Nitzschia 
13440480 Nitzschia 
13440490 Nitzschia 
13440442 Nitzschia 

13440440 Nitzschia 
13440610 Nitzschia 
13440640 Nitzschia 
13440730 Nitzschia 

13440842 Nitzschia 
13440900 Nitzschia 

13440980 
13440990 
13441040 
13441110 
13441140 
13441210 
13490000 
13491240 
13670010 

Nitzschia 
Nitzschia 
Nitzschia 
Nitzschia 
Nitzschia 
Nitzschia 
PINNULARIA 
Pinnularia 
Reimeria 

13680000 RHOICOSPHENIA 
13680010 Rhoicosphenia 
13770020 Staurosira 

cryptocephala 
cryptotenella 
gregaria 
incertata 
lanceolata 
menisculus 
phyllepta 
radiosa 
rhynchocephala 
tripunctata 
trivialis 
veneta 
viridula 

acicularis 
amphibia 
archibaldii 
bacillum 
capitellata 

dissipata 
filiformis 
flexa 
frustulum 

fruticosa 
gracilis 
heufleriana 
intermedia 

linearis 
microcephala 

palea 
paleacea 
perminuta 
pumila 
recta 
sigmoidea 
PINNULARIA 
viridis 
sinuata 

abbreviata 
elliptica 

Kutz. 1844 
Lange-Bert. 1984 
Donkin 1861 
Lange-Bert. 1984 
(Agardh) Ehrenb. 1838 
Schumann 1866 
Kutz. 1844 
Kiitz. 1844 
Kutz. 1844 
(O.F.Mull.) Bory 1822 
Lange-Bert. 1980 
Kutz. 1844 
(Kutz.) Ehrenb. 1836 
Hassall 1844 
(Kutz.) W.Sm. 1843 
Grunow 1862 
Lange-Bert. 1980 
Hust. 1922 

Hust. in A.Schmidt et al. 
1922 
(Kutz.) Grunow 1862 
(W.Sm.) Van Heurck 1896 
Schumann 1862 
(Kiitz.) Grunow in Cleve et 
Grunow 1880 
Hust. 1947 
Hantzsch 1860 
Grunow 1862 

Hantzsch ex Cleve et Grunow 
1880 
(Agardh) W.Sm. 1843 
Grunow in Cleve et Moller 
1878 
(Kutz.) W.Sm. 1846 
Grunow in Van Heurck 1881 
(Grunow) M.Perag. 1903 
Hust. 1944 
Hantzsch ex. Rabenh. 1861 
(Nitzsch.) W.Sm. 1843 
Ehrenb. 1843 
(Nitzsch) Ehrenb. 1843 
(Greg.) Kociolek et Stoermer 
1987 
Grunow 1860 
(C.Agardh) Lange-Bert. 1980 
(Schumann) D.M.Williams et 
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13800000 SURIRELLA 
13800100 Surirella 
13800230 Surirella 
13800320 Surirella 
13810000 SYNEDRA 
13810010 Synedra 
13810180 Synedra 
13820000 T A B E L L A R I A 
13820010 Tabellaria 
13840070 Tryblionella 
14040010 Nephroselmis 
16030010 Aulacomonas 
16060000 CARTERIA 
16180000 C H L A M Y D O M O N A S 
16180030 Chlamydomonas 
16180032 Chlamydomonas 
16190000 CHLOROGONIUM 
16260000 EUDORINA 
16260010 Eudorina 
16330000 G O N I U M 
16330020 Gonium 
16470000 PANDORINA 
16470010 Pandorina 
16600000 PTEROMONAS 
16600032 Pteromonas 
16680010 Spermatozopsis 
17020000 A C T I N A S T R U M 
17020010 Actinastrum 
17040000 ANKISTRODESMUS 
17040030 Ankistrodesmus 
17040040 Ankistrodesmus 
17130000 CHLORELLA 
17130060 Chlorella 
17170000 CLOSTERIOPSIS 
17170020 Closteriopsis 
17200000 COELASTRUM 
17200020 Coelastrum 
17200040 Coelastrum 
17240000 CRUCIGENIA 
17240030 Crucigenia 
17260010 Crucigeniella 
17330000 DICTYOSPHAERIUM 
17330010 Dictyosphaerium 

brebissonii 
helvetica 
minuta 

acus 
ulna 

fenestrata 
debilis 
olivacea 
submarina 

cingulata 
cingulata 

elegans 

sociale 

morum 

angulosa 
exsultans 

hantzschii 

falcatus 
fusiformis 

vulgaris 

longissima 

microporum 
pseudomicroporum 

tetrapedia 
apiculata 

chlorelloides 

Round 1987 
Turpin 1828 
Krammer et Lange-Bert. 1987 
Brun 1880 
Breb. 1838 
Ehrenb. 1830 
Kutz. 1844 
(Nitzsch) Ehrenb. 1836 
Ehrenb. 1840 
(Lyngb.) Kutz. 1844 
Arnott in O'Meara 1873 
Stein 
Skuja 
Diesing 
Ehrenb. 
Pascher 
Pascher 
Ehrenb. 
Ehrenb. 
Ehrenb. 
O.F.Mull. 
(Dujard.) Warming 
Bory 
(O.F.Mull.) Bory 
Seligo 
(N.Carter) Lemmerm. 
Korshikov 
Lagerh. 
Lager h. 
Corda 
(Corda) Ralfs 
Corda 
Beij . 
Beij . 
Lemmerm. 
(Lemmerm.) Lemmerm. 
Nageli 
Nageli 
Korshikov 
Morren sensu Komarek 
(Kirchner) W. et G.S.West 
(Lemmerm.) Komarek 
Nageli 

(Nauman) Komarek et 
Perman 
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17330020 
17330040 
17430020 
17410000 
17410040 
17440000 
17440020 
17440040 
17440070 
17470000 
17470010 
17480000 
17480010 
17480020 

17480070 
17620000 
17640000 
17640060 
17640120 
17680000 
17680020 
17680040 
17680090 
17800000 
17810000 
17810020 
17810030 
17810040 
17810060 
17810080 
17810090 
17810120 
17810160 
17810192 
17810240 
17810282 
17810320 
17810340 
17830000 
17860000 
17870020 
17910000 
17910010 
17960000 

Dictyosphaerium 
Dictyosphaerium 
Golenkinia 
KIRCHNERIELLA 
Kirchneriella 
LAGERHEMIA 
Lagerheimia 
Lagerheimia 
Lagerheimia 
MICRACTINIUM 
Micractinium 
MONORAPHIDIUM 
Monoraphidium 
Manoraphidium 

Monoraphidium 
NEPHROCHLAMYS 
OOCYSTIS 
Ooocystis 
Oocystis 
PEDIASTRUM 
Pediastrum 
Pediastrum 
Pediastrum 
RAPHIDOCELIS 
SCENEDESMUS 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
Scenedesmus 
SCHROEDERIA 
SELENASTRUM 
Siderocelis 
SPHAEROCYSTIS 
Sphaerocystis 
TETRAEDRON 

ehrenbergianum 
pulchellum 
radiata 

obesa 

ciliata 
genevensis 
wratislaviensis 

pusillum 

arcuatum 
contortum 

komarkovae 

marssonu 
parva 

biradiatum 
duplex 
tetras 

aculeotatus 
acuminatus 
acutus 
apiculatus 
armatus 
arthrodesmiformis 
bicaudatus 
communis 
denticulatus 
grahneisii 
intermedius 
obliquus 
opoliensis 

ornata 

planctonica 

Nageli 
H.C.Wood 
(Chodat) Wille 
Schmidle 
(W.West) Schmidle 
(De Toni) Chodat 
(Lagerh.) Chodat 
(Chodat) Chodat 
Schroder 
Fresenius 
Fresenius 
Komarkova-Legnerova 
(Korshikov) Hindak 
(Thur.) Komarkova-
Legnerova 
Nygaard 
Korshikov 
Nageli ex A.Braun 
Lemmerm. 
W. et G.S.West 
Meyen 
Meyen 
Meyen 
(Ehrenb.) Ralfs 
Hindak em. Marvan et al. 
Meyen 
Reinsch 
(Lagerh.) Chodat 
Meyen 
(W.et G.S.West) Corda 
(Chodat) Chodat 
Schroder 
Dedusenko 
Hegewald 
Lagerh. 
(Heynig) Fott 
Chodat 
(Turpin) Kiitz. 
P.Richter 
Lemmerm. em. Korshikov 
Reinsch 
(Fott) Fott 
Chodat 
(Korshikov) Bourr. 
Kutz. 
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17960010 Tetraedron caudatum (Corda) Hansg. 
17960020 Tetraedron incus (Teiling) G.M.Sm. 
17960030 Tetraedron minimum (A.Braun) Hansg. 
17970000 TETRASTRUM Chodat 
17970020 Tetrastrum glabrum (Roll) Ahlstrom et Tiffany 
17970040 Tetrastrum staurogeniaeforme (Schroder) Lemmerm. 
18010020 Treubaria triappendiculata Bernard 
24170000 GLOEOTILA Kiitz. 
24340000 STICHOCOCCUS Nageli 
24380000 ULOTHRIX Kutz. 
24010000 ELAKATOTHRIX Wille 
24030000 KOLIELLA Hindak 
24030010 Koliella longiseta (Vischer) Hindak 
27040000 CLOSTERIUM Nitzsch 1817 ex Ralfs 1848 
27040040 Closterium acutum (Lyngb.) Breb. in Ralfs 1848 
27040440 Closterium moniliferum (Bory ) Ehrenb. ex Ralfs 1848 
27040400 Closterium parvulum Nageli 1849 
27040000 COSMARIUM Corda ex Ralfs 1848 
27040160 Cosmarium bioculatum Breb. in Ralfs 1848 
27370000 STAURASTRUM Meyen 1829 em. Ralfs 1848 

4,3 Diatom identification 

Identification of diatoms was not normally possible during counting (with some 

exceptions, such as filamentous centric forms like Melosira varians and colonial 

pennates like Nitzschia fruticosa). Diatoms were therefore normally classified 

according to size. Centric diatoms were grouped according to the diameter of their 

valves and pennate diatoms according to their length (Table 4.2). On occasions 

Stephanodiscus hantzschii, Stephanodiscus hantzschii fo. tenuis and Cyclotella 

meneghiniana were readily identifiable and recorded during the counts. 

Table 4.2 Size classifications used for unidentifiable diatoms. Sizes are in |im and 
classifications used are identified 'X ' . 

<5 > 5 to < 10 > 10 to < 20 > 20 to < 30 > 30 to < 40 >40 

Centric 0 X X X X 

Pennate GALD X X X X X 

During 1995 diatoms were identified following digestion and the proportions of 

species found then compared with the counts of size classes. The four most abundant 

centric diatoms were Stephanodiscus hantzschii, Stephanodiscus hantzschii fo. tenuis, 

Cyclotella meneghiniana (two size classes) and Cyclotella radiosa. Stephanodiscus 
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hantzschii fo. tenuis has recently been identified as a poorly silicified form of 

Stephanodiscus hantzschi (E.Y. Haworth, pers. comm.). Morphological changes 

relating to silicate deficiency have been recorded from other centric diatoms (Belcher et 

al., 1966), although taxonomists often group 'morphotypes' together (Krammer and 

Lange-Bertalot, 1991). 

The four most abundant centric diatom species constituted the majority of centric 

diatoms found throughout the survey (Table 4.3). Stephanodiscus hantzchii was 

generally smaller than S. hantzschii fo. tenuis and the two taxa have an inverse 

abundance relationship, with 5. hantzschii fo. tenuis becoming most abundant during 

times of probable silicate limitation. 

Table 4.3 Percentage abundance of centric diatoms found in digested samples during 
1995 and their average valve diameter (|im). 

Stepanodiscus Cyclotella 
hanztschii fo. tenuis meneghiniana radiosa Others 

21 March 66 22 11 0 1 
4 April 70 20 10 0 0 
21 April 87 9 0 4 0 
2 May 53 31 1 11 4 
31 May 4 93 0 1 2 
7 June 5 93 0 2 0 
28 June 5 77 0 15 3 
11 July 39 44 0 17 0 
6 September 71 2 27 0 0 

0 (^im) 8.80 11.06 10.90 12.0 
SD 1.07 1.16 1.84 1.36 
n 30 30 10 10 

The abundance of centric diatoms < 5 |j,m 0 varied in the counts from 3.1% to 

87% but were scarce in the digested samples (Table 4.3). Some centric diatoms < 5 |im 

were found in the digested samples (e.g. Cyclotella stelligera and C. pseudostelligera) 

but were not abundant. 

4.4 Morphological impact of low silicate concentration 

Some species of pennate diatom, particularly Nitzschia acicularis, exhibited 

twisting and splitting of the frustule. This phenomenon occurred mostly during the 

spring when centric diatoms were abundant and was attributed to poorly developed 

frustules, resulting from rapid growth in a silicate depleted environment. Twisting or 
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splitting was, however, rarely seen in live samples and this condition could have been 

exacerbated by fixation. Acidified Lugol's solution is thought to be responsible for 

dissolving diatoms during long-term storage (S. Juggins, pers. comm.). However, it is 

unlikely that the acid contained in Lugol's solution was wholly responsible for the 

deterioration of frustules as other diatoms exhibited well formed frustules using the 

same fixative at other times. 

4.5 Picoplankton identification 

Picoplankton (< 3 |Lim GALD) were counted using phase-contrast microscopy 

during routine analysis and under fluorescence illumination during a special 

investigation, the former approach allowing estimation of colonial forms (Stockner et 

al., 2000). Under the light microscope cells were classified by size, shape and number 

of cells per colony (Figure 4.1). Examination of picoplankton under fluorescence 

illumination was carried out using green (ca. 500-550 nm) and blue (ca. 420-490 nm) 

filtration. Those cells that fluoresced most persistently under green filtration were 

classified as blue-green algae and those fluorescing using blue filtration as green algae 

(Hawley and Whitton, 1991). This analysis was based respectively on the 

photosynthetic pigments characteristics of phycoerythrin and chlorophyll a (Hall and 

Rao, 1972). Within these broad distinctions picoplankton cells were classified 

according to size (Table 4.4). 

Figure 4.1. Drawings of picoplankton observed under light microscopy at km 91.7 on 
28/6/94, although these are typical of several occasions. Showing spherical and rod 
shaped cells < 3|im diameter/GALD. Some rod cells appear to be dividing. 
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Table 4.4 Size and classification of picoplankton under the fluorescent microscope. 
Classifications used are identified 'X ' . 

> 1 |xm 0 1 |xm 0 2|Lim0 3 |im GALD 
Blue filtration X X X 
Green filtration X X X 

4.6 Zooplankton 

Zooplankton are listed in Table 4.5, taxa codes, nomenclature and authorities were 

taken from Maitland (1977). 

Table 4.5 Zooplankton recorded at km 91.7 and from R. J. Sanderson (pers. comm.). 
Code Tax a/Genus Species Authority 
None 
08000000 
08040900 
08040901 
08040902 
08040903 
08040904 
08040907 
08081010 
08042409 
08040403 
08041608 
08041602 
08140404 
08042101 
08041901 
08041904 
08060100 
08042408 
08042400 
08042204 
08042203 
08042201 
08042201 

08120100 
08120106 
08120101 
08030309 
08120200 
08120210 
08120211 
08140108 
08090101 

Ctt^IATES 
ROTIFERA 
Brachionus sp. 
Brachionus 
Brachionus 
Brachionus 
Brachionus 
Brachionus 
Cephalodella 
Colourella 
Epiphanes 
Euchlanis 
Euchlanis 
Filinia 
Kelicottia 
Keratella 
Keratella 
Lecane sp. 
Lepadella 
Notholca sp. 
Notholca 
Notholca 
Notholca 
Notholca 
(Argonotholca) 
Polyartha sp. 
Polarthra 
Polyarthra 
Rotaria 
Synchaeta sp. 
Synchaeta 
Synchaeta 
Testudinella 
Trichocerca sp. 

angularis Gosse 
calyciflorus Pallas 
leydigii Cohn 
quadrientatus Hermann 
urceolaris Miiller 
gibba Ehrenberg 
uncinata Muller 
senta Miiller 
pyriformis Gosse 
dilatata Ehrenberg 
terminalis Plate 
longispina Kellicott 
cochlearis Gosse 
quadrata Muller 

patella Muller 

squamula Muller 
labis Gosse 
accuminata Ehrenberg 
foliacea Ehrenberg 

remata Skorikov 
delichoptera Idelson 
neptuna Ehrenberg 

oblonga group Ehrenberg 
pectinata group Ehrenberg 
patina Herm 
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08040701 
None 
24000000 
24030601 
24030000 
26000000 
None 
None 

Trichotria 
Loose eggs 
CLADOCERA 
Bosmina 
Daphnia sp. 
COPEPODA 
Adult 
Nauplii 

pocillum 

longirostris 

Miiller 

Miiller 

4.7 Submerged macrophytes 

Those taxa classified as submerged macrophytes are listed in Table 4.6, taxa 

codes and nomenclature of angiosperms were taken from Holmes et al. (1978), 

authorities from Chapman et al. (1987) and code, name and authority of Cladophora 

from Whitton et al. (1998). 

Table 4.6 List of 'submerged' macrophytes recorded at Nene sites during the study (EA 
unpublished data). 
Code Taxa/Genus Species Authority 

ALGAE 
20030030 Cladophora glomerata (L.) Kiitz 

MONOCOTYLEDONS 
382103 Elodea nuttallii Planchon 
384004 Potamogeton compressus L. 
384011 Potamogeton lucens L. 
384014 Potamogeton pectinatus L. 
384016 Potamogeton perfoliatus L. 
384018 Potamogeton praelongus Wulfen 

DICOTYLEDONS 
361100 Callitriche spp. L. 
361401 Ceratophyllum demersum L. 
364403 Myriophyllum spicatum L. 

4.8 Taxonomic literature 

Taxonomic literature used for the identification of algae, zooplankton and 

macrophytes are listed in Table 4.7. 

Table 4.7 Taxonomic literature used for the identification of algae, zooplankton and 
macrophytes. 
Barber and Haworth, 1981 
Belcher and Swale, 1978 
Belcher and Swale, 1979 
Bourrelly, 1966 
Bourrelly, 1968 
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Bourrelly, 1970 
Chapman et al., 1987 
Cox, 1996 
Desikachary, 1959 
Geitler, 1932 
Komarek and Anagnostidis, 1999 
Krammer and Lange-Bertalot, 1988 
Krammer and Lange-Bertalot, 1991 
Pentecost, 1984 
Pontin, 1978 
Prescott, 1962 
Westet al., 1927 
Whitton et al., 2000 

4.9 Discussion 

The numerous algae recorded for km 91.7 were the result of four different 

identification methods, including live examination and acid digestion of diatoms. 

Unfortunately, this level of taxonomy could not be carried out on routine counts, where 

algae were treated with preservative. Examination of live algae and the pilot study of 

diatoms provides some confidence regarding species composition, but complete 

quantitative assessments at species level was not always possible. The classification of 

centric diatoms by diameter measurements was not altogether satisfactory. However, 

the results indicate a concurrent species and size class shift, from Stephanodiscus 

hantzshii to S. hantzshii fo. tenuis and from centric diatoms less than to greater than 10 

\\.m 0. There is also some evidence that this apparent shift may be occurring at times 

with a reduced silicate concentrations. Additionally, the size class and species shift is 

supported by the literature. Swale (1964), found that S. hantzschii to have an average 

valve diameter of 9.9 |J,m in two UK rivers, whereas Krammer and Lange-Bertalot 

(1991) identify S. hantzshii fo. tenuis as having a diameter larger than 10 |lm. 

Discrepancies in the quantity of centric diatoms < 5 0 found in the digested and 

Lugol's-preserved samples does give cause for concern and are either the result of loss 

during concentration or mechanical damage during treatment. The complete 

sedimentation of very small centric diatoms can be problematical (Furet and Benson-

Evans, 1882) and they could easily become re-suspended during siphoning, or may not 

sediment at all due to circulatory currents in tall cylinders. Other methods should be 

explored, such as concentration through centrifugal force or siphoning of the settled 

algae rather than the supernatant. 
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Reduced silicate concentration do appear to impact on the frustule development of 

Nitzschia acicularis. A poorly developed frustule can result from rapid division or 

growth in a low ambient silicate concentration (E.Y. Haworth, pers. comm.). Nitzschia 

acicularis had an average length of 76 |xm (n = 30) during the spring diatom peak of 

1997. This is relatively small for this species, the length of which ranges from 30 |im to 

150 |im (Krammer and Lange-Bertalot, 1988), and this could indicate rapid growth or 

adaptation for life in the planktonic. 

Picoplankton taxonomy is specialised and as a group have received increasing 

attention over recent years, particularly single celled taxa (Stockner et al., 2000). The 

two approaches tried during this study are complimentary. Colonial forms would be 

overlooked in the fluorescent technique, some being removed during pre-filtration, 

although single cells would be mostly missed under the light microscope at x 400 

magnification. The Fluorescent microscopy allowed singled celled picoplankton to be 

counted, classified and a tentative distinction made between those taxa belonging to the 

classes Chlorophyceae and Cyanobacteria. 

4.10 Summary 

1 Phytoplankton taxa were examined in four ways, including acid digestion and live 

examination, and taxa found at km 91.7 represented all locations. 

2 Diatoms were classified by size during routine counts, centric forms by diameter 

and pennate forms by length. The determination of centric forms was 

approximated to species identified in acid digested samples which were examined 

under a light microscope and SEM. 

3 Reduced silicate appeared to impacted on the development of centric diatoms and 

the pennate diatom Nitzschia acicularis. 

4 Picoplankton were identified during routine counts and using fluorescence 

microscopy, the latter technique permitting the classification of blue-green and 

green algae. 

5 Suspended algae, zooplankton and submerged macrophytes are listed. 
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5 COUNTING: D E S C R I P T I O N , E V A L U A T I O N AND 
D E V E L O P M E N T 

5.1 Introduction 

It was considered necessary to undertake a thorough appraisal of the accuracy and 

reproducibility of phytoplankton counts in sedimentation chambers, as preliminary 

evaluations had produced unreliable results (National Rivers Authority, 1993). 

Routine phytoplankton enumeration undertaken during this research was based on 

the sedimentation procedures described by Utermohl (1958). The Utermohl, or 

sedimentation technique, uses glass bottomed counting chambers with an approximate 

diameter of 25 mm, where the sample is concentrated, through sedimentation, and 

examined from below using an inverted microscope. The majority of phytoplankton 

counts were undertaken in accordance with the methods used by the Anglian Region of 

the EA (Environment Agency). These methods were implemented during 1993 

following a project undertaken to establish standardised phytoplankton methods 

(National Rivers Authority, 1993). Although the standard or 'basic' methods were 

thought sufficient for routine analysis, I endeavoured to develop a new approach that 

would produce more accurate results and permit the identification of small changes that 

would otherwise be undetectable. 

This chapter describes the basic counting method, evaluates its accuracy and 

precision empirically and by computer simulations. The description, development and 

evaluation of a new counting technique, 'spaced fields', is also presented. 

5.2 Description of basic counting method 

Water samples, fixed with Lugol's Iodine and normally contained in 300-ml PET 

bottles, were thoroughly mixed and an aliquot transferred to a clean 5 or 10-mL 

sedimentation chamber and allowed to settle for a minimum of 24 h. Following 

sedimentation, the chamber was carefully transferred to an inverted microscope and 

counted using the three tiered approach described in Table 5.1. 

The counting area of sedimentation chambers and eyepiece graticules were 

measured prior to use. The counting area of individually identifiable 5 and 10-ml 

sedimentation chambers were calculated by measuring the diameters of each chamber 

using the vernier scales on the microscope stage (n = 5). The diameter and area (KT^) of 
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each chamber was recorded for use during count calculations. Eyepiece graticules were 

calibrated using a stage micrometer. The Whipple graticule perimeter was measured at 

X 200 and x 400 magnification and the vertical length of the cross-hair graticule at x 

200 magnification. The counting area of a transect being calculated as the width of the 

cross-hair graticule multiplied by the diameter of the chamber. 

Table 5.1 Counting strategy of 'basic' method. 
Method Description 
Full chamber Full chamber count in strips (Hasle, 1981) at x 80 magnification 
count counting the 'larger' taxa (e.g. Closterium sp.) * 
Diameter 5 to 9 evenly spaced diameter transects (Hasle, 1981) at x 200 
transects magnification counting 'intermediate' sized taxa (e.g. 

Scenedesmus communis)* 
Fields 50 to 100 'randomly' placed fields of view at x 400 

magnification, counting the 'smaller' taxa (e.g. Stephanodiscus 
hanzschii) t 

* The upper and lower limits of the counting area were defined using a cross-hair graticule placed in 
one of the microscopes eyepieces (Lund et al., 1958) 
t The limits of the counting area were defined as the perimeter of a Whipple graticule (Guillard, 
1981) placed in one of the microscope's eyepieces. Field placement was in an ad hoc fashion and not 
necessarily placed randomly. Counts at x 200 an x 400 were undertaken using phase-contrast 
microscopy 

The volume used in each count was varied according to the abundance of algae 

and usually ranged from 0.25 to 10-mL and normally provided sufficient numbers of the 

most abundant taxa to produce a count exceeding 100 units (cells, filaments or 

colonies). The main exception to this was when there was an abundance of non-algal 

material present in the samples (e.g. inorganic sediment). 

Fields were placed by 'blind' movements of the microscope stage (not truly 

random). All algal cells falling within the Whipple field, or on two of the 

predetermined edges, were counted and all other algae were excluded. Spaced diameter 

transect counts were positioned at the left-hand edge of the chamber, at its widest point, 

and then the chamber was slowly moved so that the graticule transversed the chamber. 

Algae falling within the graticule, or on one of the predetermined lines, were counted as 

they passed the vertical line of the cross-hair. All other algae were excluded. Transects 

were evenly spaced although the position was approximate, plus or minus a few degrees 

in either direction. 
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The abundance of each taxa recorded was converted into 'algal units' mL"', as 

follows. 

Units mL"' = 
No. of algal units counted 

X 
area of chamber 

area of field/transect 
-^sample volume 

No. of fields/transects counted 

Where units are cells, filaments or colonies. 

When algal units were filaments or colonies these were converted to cells mL'' by 

multiplying the number of units counted by the average numbers of cells in 30 units 

(where possible). Conversion of counts to cells/units mL"', data storage and 

manipulation was facilitated using a specially written computer program and database 

(LIMNDAT). 

5.3 Evaluation of basic method and development of a new technique 

During this evaluation counting error was evaluated in two ways. Firstly by trial 

counts using fixed cultures, and secondly using a specially written computer program 

that simulated counting (SIMCOUNT), the latter of which provided a mechanism for 

evaluating alternative techniques. 

5.31 Counting Trials 

Introduction 

When the whole chamber is enumerated the counting accuracy that results will 

depend on personal counting error. If the subsample counted can be shown to come 

from a Poisson distribution then the accuracy of the subsample is proportional to the 

number of units counted (Lund et al., 1958). However, others have shown that Poisson 

based confidence intervals may underestimate the true error by between 5% and 15% 

(Edgar, 1993). 

When the counting chamber is subsampled, using either transects or fields, the 

accuracy of the result will depend on the distribution of the algae within the chamber. 

Some plankton workers calculate subsamling errors based on the assumption that cells 

are randomly distributed within the counting chamber (Venrick, 1981). Others suggest 

that a homogenous distribution of plankton can never be guaranteed (Nauwerk, 1963). 
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Method 

Two cultures, Scenedesmus communis and Chlamydomonas augustea, were 

obtained from CCAP. These cultures were diluted with distilled water and fixed in 

Lugol's Iodine. Estimates of cell concentrations were made using a Lund Chamber 

(Lund, 1959), and final concentrations were made, using distilled water, to achieve 

approximately 1500 and 1200 cells mL"' respectively for the Chlamydomonas and 

Scenedesmus cultures. The quantity of algae in these cultures was investigated further 

by full chamber counts (n = 3). The fixed cells of Chlamydomonas and Scenedesmus 

had approximate dimensions of 9 x 7 |xm and 42 x 25|im, respectively (including spines 

for Scenedesmus, n = 30). 

Chlamydomonas was enumerated in trials of 50, 75 and 100 Whipple graticule 

fields at a magnification of x 400. Scenedesmus was counted in 5, 7 and 9 evenly 

spaced diameter transects at a magnification of x 200. Counts were made over a range 

of volumes, and cell counts were recorded as individual fields or transects and expressed 

as cells mL"'. Individual transects and fields, including the full chambers transects, 

were replicated and where the error exceeded 5% the results were rejected. Below this 

value differences were averaged. Complete counts were also replicated within 

chambers (on the same distribution of algae). This procedure was intended to identify 

the difference between errors created by the counting method and those caused by the 

distribution of cells. 

Estimates were evaluated according to their distance from the population mean, 

their success of accurately predicting the population and their distribution around the 

population. The average distance of estimates from the population produced by the 

different counting methods was used as a measure of accuracy. Confidence intervals 

(95% level) were assigned to field counts (n > 30), as follows. 

+ Is^ 
95% confidence interval = average cells per fields 1.96 — 

V n 

Confidence intervals for transect counts (n < 30) were calculated by applying loge 

transformed data to the arithmetic mean (Elliott, 1983). 

X /variance of transformed counts 
95% confidence interval - average cells per transect t 
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The distribution of estimates about the population was evaluated using the 

statistic, assuming (Ho) that an unbiased method would produce estimates randomly 

distributed around the population. %̂  was calculated as follows: 

^ . . ^ ( f o ^ 

fe 

The significance of the resultant %̂  values were assessed against statistical tables 

(Gravetter and Wallnau, 1985) at the 95% level with one degree of freedom. 

Results 

Full chamber counts produced reasonably consistent results (Table 5.2). 

However, the distributions that resulted from the counts were variable (Figure 5.1). If 

the cells within these chambers were distributed at random then the bar charts in Figure 

5.1 would exhibit a semicircular appearance, reflecting the shape of the chamber. The 

skewed appearance of most graphs, particularly Chlamydomonas plot 3, suggests that 

the distributions are non-random. 

The results of transect and field counts are shown in Figure 5.2 and Figure 5.3. 

The results of the counts indicate a very wide range of estimates with the number failing 

to predict the population exceeding that expected by the 95% confidence intervals (1 in 

20). As expected, an increased n produces a reduction in error. 

Table 5.2 Full chamber counts (standardised to 1 mL). 
Replicates 

Stock 1 2 3 Mean 
Chlamydomonas 1621 1641 1533 1598 
Scenedesmus 1269 1341 1258 1289 
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Figure 5.1 Full chamber counts. 
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5 transects: 65 counts ranging irom 23 to 1526 (mean = 241). Mean error = 30%. 32% failure 
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7 transects: 37counts ranging from 42 to 797 (mean = 265). Mean error = 24%. 54% failure 
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9 transects: 37 counts ranging from 55 to 1000 (mean = 339). Mean error = 20%. 51% failure 

Figure 5.2 Estimates and 95% confidence intervals for 5, 7 and 9 diameter transects 
at X 200 magnification. Estimates arranged from smallest to greatest count, left to 
right. Also showing, count range, mean error and percentage of counts failing to 
accurately estimate the population. 
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75 fields: 66 counts ranging from 7 to 165 (mean = 77). Mean error = 31%. 14% failure 
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100 fields: 42 counts ranging from 9 to 203 (mean = 87). Mean error = 29%. 21% failure 

Figure 5.3 Estimates and 95% confidence intervals for 50, 75 and 100 fields at x 400 
magnification. Estimates arranged from smallest to greatest count, left to right. Also 
showing, count range, mean error and percentage of counts failing to accurately 
estimate the population. 

The results of the distribution of estimates around the population are shown in 

Table 5.3. None of the tests were significant but transect counts all exhibited an 

underestimation. 
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Table 5.3 Results of the distribution of estimates around the population. Showing 
counting method, percentage of estimates above population, and probability, df : 
1 for all. 
Method % above P 
5 transects 39 3.66 NS 
7 transects 38 2.19 NS 
9 transects 38 2.19 NS 
50 fields 51 0.76 NS 
75 fields 50 0.00 NS 
100 fields 50 0.00 NS 

Replicate counts within an undisturbed chamber exhibit a greater level of 

consistency than replicates between newly settled chambers (Figure 5.4) and it is likely 

that this phenomenon relates to differences in subsample volume and/or subsample 

distribution. Significant differences were not evident between any of the replicates, 

using either method, but significant differences do exist between chambers. 

5 transects at x 200 50 fields at x 400 

2500 

1500 

500 
i 

3500 H 

2500 

1500 

500 J i n ij H 
> _ 

n: 173-173 75-77 113-94 140-115 153-143 n: 43-29 49-48 57-42 65-66 118-98 

Figure 5.4 Estimates (cells mL" ) and 95% confidence intervals for five replicate, 
transect and f ield counts (within the same chamber on the same distribution). Also 
showing the count (n) for each estimate. Note: Sample volume varies between and 
within methods. 

When the confidence of the estimates is increased to ±50% then the majority of 

trials accurately predict the population (Figure 5.5). Counts greater than 100 and 30 for 

5 transects and 50 field respectively produced estimates that accurately predicted the 

population. 
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Figure 5.5 Population estimates (cells m L ' ) ± 50% for 5 transects and 50 fields. 

Because of the uncertainty regarding the influences of cells distribution and 

subsample error, it was decided to investigate counting error further using computer 

simulation. This approach would also allow the evaluation of novel counting 

techniques. 

5.32 Simulation 

Introduction 

The aim of the simulation was to accurately reproduce the process of counting 

algae in sedimentation chambers while maintaining control over the number of cells and 

their distribution within each chamber. This approach would provide a mechanism of 

evaluating the significance of cell numbers and distributions and facilitate the 

exploration of alternative counting techniques. 

Method 

Chamber and graticule dimensions were reproduced accurately within the 

simulation (Table 5.4). The simulation operated at a resolution of 1 | im, which was the 

size of the simulated taxa used (each cell occupying an area of 1 |im^). 
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Table 5.4 Simulated chamber and graticule dimensions. 
Dimension Length/area 
Chamber diameter 25.00 mm 
Chamber area 490.87 mm^ 
Whipple area at x 400 magnification 2.96 mm^ 
Whipple area at x 200 magnification 11.83 mm^ 
Vertical length of 'cross hair' graticule 0.64 mm 
Transect area at x 200 magnification 15.90 mm-

Five simulated distributions were used (Table 5.5) and these were based on 

observation, experience and the literature. Observations and the results of fu l l 

chamber counts (above) indicate that algae can accumulate in sections of the chamber 

and this was the basis for producing the sector and semicircle distributions. Sandgren 

and Robinson (1984) observed that algae tend to accumulate around the periphery of a 

chamber, this was supported by personal observation and resulted in the inclusion of a 

'two-strata' distribution. Observations of clumped distributions of algae occurring 

anywhere within chambers was allowed for by the 'spot' distribution, the random 

placement of these spots being more likely to occur towards the edges of chambers. 

Chambers with a random distribution were also included. 

The four non-random distributions each had four levels of increasing contagion 

(A to D - Table 5.5). For example, with single sector distribution at level ' B ' one of 

the four chamber sectors was selected at random (i) and 35% of cells were placed 

randomly within that sector. The remaining 65% cells were then distributed at random 

throughout the whole chamber. Likewise, with a 'spot distribution at level ' D ' 45% of 

the cells were placed randomly within the a 626 | i m radius of the centre of the 

randomly selected 'spot' and the remaining 55% of cells were distributed at random 

throughout the whole chamber. 
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Table 5.5 Contagious distributions used during simulations. Details of the four 
contagious distributions (1-4) and the four levels of contagion within each 
distribution (A-D) . 
Distribution Description 
1. Single sector Randomly selected sector 

i = 25% of chamber area 
Distributions 
A. 30% of cells in ' i ' 
B. 35% of cells in ' i ' 
C. 40% of cells in ' i ' 
D . 45% of cells in ' i ' 

70% at random throughout chamber 
65% at random throughout chamber 
60% at random throughout chamber 
55% at random throughout chamber 

2. Two strata Two fixed strata 
i = 25% of chamber area - i i = 75% of chamber area 
Distributions 
A. 20% of cells in ' i ' - 80% of cells in ' i i ' 
B . 15% of cells in ' i ' - 85% of cells in ' i i ' 
C. 10% of cells in ' i ' - 90% of cells in ' i i ' 
D. 5% of cells in ' i ' - 95% of cells in ' i i ' 

3. Semicircle 

4. Spot 

Randomly selected semicircle 
i = 50% of chamber area 
Distributions 
A. 60% of cells in ' i ' - 40% at random throughout chamber 
B. 70% of cells in ' i ' - 30% at random throughout chamber 
C. 80% of cells in ' i ' - 20% at random throughout chamber 
D. 90% of cells in ' i ' - 10% at random throughout chamber 

Randomly selected spot (centre anywhere within chamber) 
i = 25% of chamber area 
Distributions 

' i ' - 70% at random throughout chamber 
' i ' - 65% at random throughout chamber 
' i ' - 60% at random throughout chamber 
' i ' - 55% at random throughout chamber 

A. 30% of cells in 
B. 35% of cells in 
C. 40% of cells in 
D. 45% of cells in 

Four counting methods were evaluated during the simulations. These included 

random fields, pseudo-random fields, spaced transects and an experimental approach 

called spaced fields (Table 5.6). Random fields and spaced fields were evaluated at 

simulated magnifications of x 200 and x 400, pseudo-random fields at x 400 and spaced 

transects at x 200. Pseudo-random fields were a simulation of ad hoc field placement 

used in the count trials as a substitute for actual random fields. 
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Table 5.6 Counting methods evaluated during the simulations. 
Method Description of simulation 
Spaced transects Evenly spaced diameter transects. Commencing from a 

randomly chosen point on the chamber's circumference. 
Transects were thereafter spaced evenly within a few 
degrees. 

Random fields Fields placed at random. Each field had an equal chance of 
being placed anywhere in the chamber. 

Pseudo-random Commencing f rom a randomly chosen position, subsequent 
fields fields were placed in any direction between 0.4 and 4.0 mm 

of the previous field. These f ield placements were 
interspersed with placements of between 4 and 12 mm of the 
previous field, and occurred at a frequency of between every 
5 to 15 fields 

75 Spaced fields Starting f rom a randomly chosen position on the chambers 
circumference 10 evenly spaced diameter transects were 
placed, each transect had either 6 or 9 fields placed along its 
length (Table 5.7). Transect placements were within a few 
degrees 

A l l cells fall ing within or on the edges of the fields or transects were counted 

A fuller explanation of spaced fields method is shown in Table 5.7. The spaced 

fields method was developed following some experimentation and its purpose is to 

produce a consistent coverage of the chamber and to eliminate the possibility of over or 

under-sampling contagion within the chamber. Spaced fields do not cover the chamber 

evenly, as they under-sample the chambers periphery compared to the centre, but the 

distribution of fields is the result of a compromise between even coverage of the 

chamber and practicalities of f ield placements. 

The four contagious distributions were used in equal proportions at contagion 

level ' B ' combined with random distributions at a ratio of 4:1, contagious to random. 

This combination was chosen by comparing the slope and intercept of fitted lines 

produced by plotting the variance against the count for actual and simulated data 

(Table 5.8). The contagion level ' B ' combined with random distributions at 2:1 fitted 

the actual slope most accurately but underestimated the variance up to a count of 275. 

Therefore, the ' B ' distribution combined with random distributions at 4:1 was chosen, 

this combination producing a variance equal to the actual at a count of 125, thereafter 

overestimating the variance. This combination was used for simulations (n = 1000) 

where counting methods were compared over a range of cell quantities. The methods 
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were also evaluated over a range o f contagion (n = 400), from a random distribution to 

contagion levels A to D. 

Table 5.7 Placement o f 75 spaced fields, a: Schematic o f field placement. Arrow 
indicates transect 1 (red), other transects clockwise from here, b: Details o f field 
numbers in each transect. For example, transect 1 (red) uses nine fields, o f the ten 
evenly spaced positions, number 6 being omitted. Omitted fields indicated ' X ' . 
Arrangement o f transects and fields for 75 spaced fields 

a b Fields 

C3 

a b c d e f h i i 
* 

1 • • • • • X • • • • 
2 X X X X 
3 X 
4 X X X X 
5 X 
6 X X X X 
7 X 
8 X X X X 
9 X 

10 X X X X 

The latter approach was also tested using Kruskal-Wallis (a non-parametric 

alternative to a one-way analysis o f variance - Ryan et al., 1985), with the null 

hypothesis that the counting method does not produce difference in the population 

estimates. 

Simulations were evaluated in terms o f their accuracy, precision and distribution 

o f estimates around the population. Where necessary, confidence intervals were 

adjusted to conform to the requirements o f the 95% level and the relationship between 

error and count calculated. 

Table 5.8 Fitted lines for variance regressed onto count, for actual field counts and 

Distribution n slope*** intercept'"' r* P 
Actual 42 0.019 -0.057 0.801 0.000 
B 2 : r 600 0.020 -0.330 0.541 0.000 
B 4 : l * 500 0.022 -0.427 0.598 O.QOO 

shown. ^ Lines fitted using resilient line method (Ryan et al., 1985). 
O Spearman rank correlation 
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Results 

The simulation of pseudo-random fields and spaced diameter transects, at x 200 

and X 400 magnification respectively, performed poorly compared to random fields 

and spaced fields, the latter producing greatest accuracy and precision. Figure 5.6 

shows the percentage of counts that did not accurately predict the true population. 

Confidence intervals were calculated at the 95% level, therefore a failure level of 5% is 

acceptable. 
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Figure 5.6 Number of simulated counts not accurately estimating the population 
plotted against increasing count. Counts were at x 200 magnification (above) and x 
400 (below), using the methods: spaced diameter transects (ST), random fields 
(RF), pseudo-random fields (PR) and spaced fields (SF). Each line is fitted to eight 
points and each point consists of the four contagious (at level 'B ' ) and a random 
distribution, combined at a ratio of 4:1 (n = 1000 for each point). A l l lines are 
significant at the 95% level and were fitted using natural logarithms of the count. 
Broken line = 5% level. 

The results indicate that the spaced fields were the only method evaluated that 

conformed to the requirements of the 95% level, with less that 5% of the estimates 

failing to predict the actual population. Pseudo-random fields had the poorest 

precision with between 13% and 32% of the counts not accurately predicting the true 

population. The average error produced by the spaced fields method was also the least 

of all the methods evaluated. Figure 5.7 shows the percentage error (half intervals) 

produced fol lowing adjustment to satisfy the requirements of the 95% level. 
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Figure 5.7 Percentage error (half intervals) plotted against increasing counts. 
Counts were at x 200 magnification (above) and x 400 (below), using the methods 
spaced diameter transects (ST), random fields (RF), pseudo-random fields (PR) and 
spaced fields (SF), using the same data described in Figure 5.6. Lines were fitted 
using a 2"'' order logarithmic function, which fits the data more closely than a 
standard logarithmic function, especially over the count range of 50 to 200. A l l 
lines are significant at the 95% level (Table 5.10). 

The results indicate there is a large difference in the level of error produced by 

the different methods. At x 200 magnification a count of 125 produces errors of ± 

49%, 23% and 18% for spaced transects, random fields and spaced fields, respectively. 

Likewise, at x 400 magnification a count of 125 produces errors of ± 4 1 % , 27% and 

2 1 % for pseudo-random fields, random fields and spaced fields, respectively. A l l 

methods produced error half intervals within ± 50% of estimate and spaced fields 

performed the most favourably. 

The equations for the fitted lines in Figure 5.7 are shown in Table 5.9 and these 

could be used to estimate error. A second order logarithmic function was used to f i t 

the lines in Figure 5.7 because it fitted the data more closely through the critical count 

range of 50 to 200. This results in overestimates in the error at high counts (>300), 

particularly for pseudo-random and random fields at x400. 
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Table 5.9 Parameters used for the fitted lines in Figure 5.7 and r^ values. The 
parameters shown can be used in the following equation to calculate error (y) for a 
given count (x), within the range 50 to 800. y = yg+a\nx + bilnx)^ . 
Method yo 
x200 magnification 

Spaced transects 275.1 -75.98 6.03 0.98 
Random fields 133.9 -36.48 2.88 0.99 
Spaced fields 161.5 -48.31 3.94 0.98 

x400 magnification 

Pseudo-random fields 128.4 -31.32 2.73 0.91 
Random fields 127.2 -35.20 2.99 0.93 
Spaced fields 132.4 -36.65 2.82 0.99 
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Figure 5.8 Number of simulated counts not accurately estimating the population 
plotted against variance:mean ratio. Counts were at x 200 magnification (above) 
and x 400 (below), using the methods: spaced diameter transects (ST), random fields 
(RF), pseudo-random fields (PR) and spaced fields (SF). Each count was 
approximately 150 and 140 at x 200 and x 400 magnification, respectively. Each 
line is fitted to five points, which consist of a random distribution and the four 
contagious distributions in equal proportions at levels ' A ' , ' B ' , ' C and ' D ' (n = 400 
for each point). 

The performance of the counting methods was assessed across a range of 

distributions, f rom random to contagious, using the four contagious distributions in 
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equal proportions at level ' A ' , ' B ' , ' C and ' D ' (Figure 5.8). A l l methods, except 

spaced fields, exhibited an increased number of failures with increasing contagion, 

although random fields appear to stabilise at 14 failures. Spaced fields conform to the 

95% confidence limits throughout. 

The results of the Kruskal-Wallis tests support those presented above and 

provide further insight into the behaviour of the simulated counts (Table 5.10). 

Table 5.10 Probability values (adjusted for ties) for Kruskal-Wallis tests for 5 
spaced transects (ST), 75 random fields (RF), 75 pseudo-random fields (PR) and 75 
spaced fields (SF). Tests carried out on simulated populations of 1000 for ST, 8000 
for RF and SF at x 200 magnification and 30000 at x 400 magnification. Significant 
results are boxed, n = 100 for each test. 

Distributio 
n 

x200 magnification x400 magnification 

and level ST RF SF PF RF SF 
Random 0.982 0.735 0.991 0.711 0.431 0.907 
l A 1.000 0.289 0.956 0.000 0.766 0.914 
2A 1.000 0.001 0.999 0.338 0.002 0.204 
3A 0.398 0.007 1.000 0.000 0.001 1.000 
4A 0.644 0.000 0.831 0.000 0.000 0.974 
I B 0.610 0.001 0.999 0.000 0.020 0.994 
2B 0.398 0.088 0.700 0.252 0.617 0.987 
3B 0.398 0.007 1.000 0.543 0.000 1.000 
4B 0.020 0.058 0.946 0.000 0.001 0.961 
IC 1.000 0.000 0.999 0.000 0.002 0.934 
2C 0.492 0.000 1.000 0.005 0.313 0.851 
3C 1.000 0.000 1.000 0.000 0.000 1.000 
4C 0.001 0.001 0.803 0.000 0.080 0.180 
I D 1.000 0.000 0.990 0.000 0.000 1.000 
2D 0.442 0.764 1.000 0.000 0.536 1.000 
3D 0.364 0.000 1.000 0.000 0.000 1.000 
4D 0.002 0.000 0.999 0.000 0.000 0.672 

The spaced fields method was non-significant throughout, as were all methods 

using random distributions. The spaced transects exhibited a better overall 

performance than random fields but produced significant results on three distribution 

levels ( 'B ' , ' C and ' D ' ) . Spaced transects are likely to produce variable results with 

the 'spot' distribution when it occurs towards the centre of the chamber. The bias 

produced by spaced transects is also evident when the distribution of counts around the 

population is examined (Table 5.11). A l l methods are non-significant with the random 
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distribution with the exception of spaced transects, which produced a significant 

underestimation. The ' A ' level of contagion was non-significant with spaced transects, 

but levels ' B ' , ' C and ' D ' produced increasingly greater underestimates. Spaced 

transect produced the most significant deviation from the mid-point (50%). Other 

methods did exhibit significant differences, but no pattern was evident and these 

deviations were distributed around the mid-point. 

Table 5.11 Distribution of estimates around the population. Showing percentage of 
counts above the population and significance of % test. Contagion was produced 
using a combination of distributions 1 to 4, in equal proportions, at the level of 
contagion shown. Counting methods were spaced transects (ST), random fields 
(RF) and spaced fields (ST), df = 1, n = 400 for each test. 

Contagion level 
Random A B C D 

X 200 magnification 
ST % above 39 51 44 43 39 

P <0.005 NS <0.025 <0.005 <0.005 
RF % above 49 45 56 53 50 

P NS NS <0.025 NS NS 
SF % above 51 56 54 58 56 

P NS <0.025 NS <0.005 <0.025 

X 400 magnification 
PR % above 48 49 45 43 43 

P NS NS NS <0.005 <0.005 
RF % above 53 52 55 55 57 

P NS NS NS NS <0.01 
SF % above 49 48 43 51 47 

P NS NS <0.025 NS NS 

The average distances of estimates from the population are shown in Table 5.12. 

A l l methods exhibited increased average distances of estimates from the population 

with increased contagion. Spaced transects and pseudo-random fields have the greatest 

distances and spaced fields the least. Direct comparison cannot be made between 

spaced transects and the other methods at x 200, or between the results at x 200 and x 

400. Nevertheless, the comparisons indicate that the spaced fields method produces 

results that are consistently closer to the population and are less influenced by 

increasing contagion. 
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Table 5.12 Average distances and standard deviations of simulated estimates. Contagion 
was produced using a combination of distributions 1 to 4, in equal proportions. Counting 
methods were 5 spaced transects (ST), 75 random fields (RF), 75 pseudo-random fields (PF) 
and 75 spaced fields (SF). n = 400 for each value. 
X 200 magnification X 400 magnification 
Method & Average Method & Average 
distribution distance SD distribution distance SD 
ST PF 

Random 63 50 Random 1937 1506 
A 73 58 A 3938 3147 
B 108 86 B 4995 3951 
C 135 108 C 5244 4480 
D 147 128 D 5957 4828 

RF RF 
Random 751 375 Random 2060 1538 
A 772 605 A 2894 2042 
B 751 577 B 3180 2470 
C 915 749 C 3371 2620 
D 920 713 D 3916 3030 

SF SF 
Random 528 402 Random 1867 1346 
A 545 399 A 2091 1631 
B 536 411 B 2210 1751 
C 526 417 C 2339 1739 
D 570 415 D 2084 1632 

Further count trials 

Following the evaluation of errors and performances of the different counting 

methods resulting f rom the simulations it was decided to conduct further counting trials 

comparing the spaced fields technique with those used in the 'basic method'. Counts at 

X 400 magnification were carried out using the Chlamydomonas culture described 

above. However, the remaining quantity of Scenedesmus culture was inadequate for 

further work and counts at x 200 magnification were carried out on a natural sample 

collected on the 4 November 1997 f rom West Lake, Whisby Nature Park, Lincolnshire 

(NGR, SK 905 665) that contained abundant Cryptomonas sp. The number of 

Cryptomonas cells per m L were estimated by counting three complete chambers, as 

explained above (Figure 5.9). 
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Figure 5.9 Full chamber counts for Cryptomonas in 41 transects. Counts are 910, 1744 
and 2598 for volumes 1, 2 and 3 m L samples, respectively. Average = 883 cells mL"'. 

The test species were used to evaluate the spaced fields method against spaced 

transects at x 200 magnification and pseudo-random fields at x 400 magnification. 

Each counting method was repeated twenty-four times, consisting of twelve counts at 

one of two volumes (Figure 5.10). The twelve counts were derived from four replicates 

f rom three chambers. Two of the four replicates were carried out on the same 

distribution and the second two on the same subsample following re-suspension and 

complete settlement of the original sample. This was done in an attempt to identify the 

differing influences of distribution and subsampling on the different counting methods. 

Estimates and confidence intervals were calculated as described above. Kruskal-Wallis 

tests were also carried out on each method, comparing the medians at each volume 

between counts (n = 2), between chambers (n = 3) and between distributions within the 

same chamber (n = 6). 
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None of the spaced f ield counts failed to estimate the population whereas both the 

spaced transects and the pseudo-random fields failed to predict more frequently than 

would be expected by the 95% confidence intervals. The influence of subsampling 

error (difference between replicates f rom the same chamber before and after re-

suspension) is not evident in any of the spaced field counts although there is a 

suggestion of pairing in the spaced transects and pseudo-random fields, although none 

of these are significant. 
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Figure 5.10 Count trials at x 200 and x 400 magnification for 75 spaced fields (SF), 5 
spaced transects (ST) and 75 pseudo-random fields (PR). Each counting method 
consist of 24 trials, 12 f rom one of two volumes. Average counts for 4 and 10 ml 
samples at x 200 magnification are 62 and 139 (SF) and 643 and 1359 (ST) 
respectively. Average counts for 10 and 20 ml samples at x 400 magnification are 64 
and 116 (SF) and 75 and 113 (PR) respectively. 

The Kruskal-Wallis tests identified spaced fields as being non-significant at all 

levels and spaced transects and pseudo-random fields as significant at the distribution 

and/or chamber level (Table 5.13). Thus indicating that distribution is a major influence 

on the accuracy of counts rather than absolute number of cells within the chamber. 
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Table 5.13 Kruskal-Wallis probability values for count trials comparing 75 spaced 
fields (SF) with 5 spaced transects (ST) and 75 pseudo-random fields (PF) at two 
magnifications and volumes. Tests were between counts (n = 2), between chambers 
(n = 3) and between re-distributed samples within the same chamber (n = 6). 
Significant results are boxed. 

X 200 magnification 
4 m L 10 m L 

X 400 magnification 
10 m L 20 mL 

SF ST SF ST SF PF SF PF 
A l l 0.818 0.348 0.626 0.089 0.292 0.135 0.581 0.026 
Chambers 0.921 0.294 0.547 0.186 0.065 0.215 0.051 0.002 
Distributions 0.967 0.052 0.818 0.004 0.149 0.021 0.189 0.011 

The distance of estimates f rom the population was calculated separately for each 

volume and had a similar trend to that seen in the simulations, with spaced fields 

producing consistently closer estimates to the population than other methods (Table 

5.10). The influence of increasing count is also evident in all counting methods. 

Table 5.14 Average distances and standard deviations of estimates at two volumes, 
as Figure 5.10. n = 12 for each value. 

x200 magnification x400 magnification 
Spaced fields Spaced transects Spaced fields Pseudo-random 

fields 
4 m L 

Average 102 
SD 65 

l O m L 4 m L 
52 159 
37 99 

10 m L 10 m L 
89 206 
79 98 

2 0 m L l O m L 20 mL 
97 432 193 
44 202 135 

5.4 Discussion 

The simulations identified cell distribution as a key factor influencing the 

accuracy of estimates, in the absence of any variation in cell number that might result 

f rom subsampling. However, it appears that the simulated distributions produced a 

greater degree of contagion than exists naturally. This is not altogether surprising, as 

the arbitrary choice of four contagious distributions combined in equal proportions and 

mixed with random distributions is unlikely to simulate reality, where distributions 

would probably vary more gradually. This discrepancy is not detrimental to the 

exercise with the greater contagion created by the simulations producing a cautious 

approach to the methods evaluated. 

The counting trials identified the inherent dangers of assuming randomness in the 

distribution of settled algae and the use of parametric statistics to calculate confidence 



intervals. As some workers suggest (Nauwerk, 1963), a random distribution can never 

be relied upon. Utermohl (1958) suggested many ways of subsampling chambers and 

also identified the dangers of a contagious distribution within sedimentation chambers. 

He did not, however, identify the influence that different counting methods could have 

on the f inal result. Sandgren and Robinson (1998) identified a bias from using diameter 

transects, caused by an 'edge effect' with more algae settling towards the edge of 

chambers, and proposed that fields should be placed disproportionately at the edge of 

the chamber. This work confirms that diameter transects introduce bias to the results 

not only with an edge effect, but even with a random distribution. Indeed a slight edge 

effect appears to improve the accuracy of diameter transects, presumably by 

compensating for the under-sampling of the chambers periphery, that is inherent in the 

method. 

The key components of a successful counting method must include accuracy (how 

close the estimate is to the population), acceptable precision (confidence intervals that 

estimate the population within known limits) and a minimum amount of error 

(percentage difference between the estimate and confidence intervals). Spaced transects 

produce large confidence limits, compared to other methods, because of their small n. 

Therefore spaced transects have fewer estimates failing to accurately predict the 

population compared to pseudo-random fields, because the latter produce narrower 

confidence intervals. 

The results generally support those previously stated for the EA 'basic method' 

(National Rivers Authority, 1993). With a count of 100 algal units in 5 spaced diameter 

transects (at x 200 magnification) producing an error of < ± 50% and a count of 50 algal 

units in 50 'ad hoc' f ield placements (at x 400 magnification) producing an error of < 

40%. Errors of < 50% are acceptable when gross changes in populations are under 

investigation (Lund et al., 1958). However, this makes the 'basic method' unsuitable 

for work where the identification of smaller differences in populations need to be 

identified, such as small spatial differences or short-term temporal trends. The spaced 

fields method appears to provide a mechanism capable of accurately identifying small 

changes in populations, normally within ± 20%. 

The spaced fields method, however, presents a number of problems. Systematic 

sampling does not conform to normal statistical practice. The main purpose of random 

sampling is to make available an estimate of error, using probability theory (Cassie, 
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1962). Parametric confidence intervals should not be assigned to any of the counting 

methods evaluated here except random fields, where they do not appear to work 

satisfactorily. A well-planned systematic sampling procedure in which samples are 

placed in a regular pattern would almost invariably give a much more precise estimate, 

but the degree of precision would by unknown (Cassie, 1962). Improved accuracy of 

estimates does occur with the systematic placement of spaced fields and the results of 

the simulations provide a method of assigning confidence intervals, which appear to 

work in the count trials. Alternatively a non-parametric method of assigning confidence 

could be used (Ryan et al., 1985). 

Cell distribution appears to be the greatest influence on the accuracy of results and 

differences in subsample quantity of lesser significance. Errors can occur at all stages, 

from taking the sample, subsamples and counting (Venrick, 1981). Some studies have 

identified sampling error as being the principal constituent of overall error (Irish and 

Clarke, 1984). It appears that counting and secondary subsample error can be 

adequately accounted for using the methods described here and any differences 

identified outside assigned confidence limits will originate from the sample or primary 

subsample. This subject will be discussed further in the next chapter. 

5.5 Summary 

1. A basic counting method is described and evaluated using counting trials and 

computer simulation, the latter approach was also used to evaluate a new technique 

called spaced fields. 

2. The basic method exhibited a similar performance during the simulation as the 

count trials whilst spaced fields had the best overall performance in the simulations 

and secondary count trials. 

3. Variations in distribution were more significant than differences in cell quantity 

between samples. 

4. A count of 100 algal units in 5 spaced diameter transects (at x200 magnification) 

produces an error of < ± 50% and a count of 75 algal units in 50 'ad hoc' field 

placements (at x400 magnification) an error of < ± 40%. 
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5. A count of 100 algal units in 75 spaced fields at either x200 or x400 magnification 

produces an error of < ± 25%. 
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6 SAMPLE ERROR AND TREATMENT 

6.1 Introduction 

This section explores sources of error additional to those described in the previous 

chapter. Stages from sample collection to analysis (Figure 6.1) can all introduce error 

and all these stages will also contain a degree of random or experimental error. Sample 

and subsample errors are explored using chlorophyll, fluorescence and counting, 

although counts used for this purpose will also contain secondary-subsample and 

counting error. All the subsequent analyses were undertaken during periods of 

relatively stable discharge and not within 7 d of spate flows. 

c 

Stage 1. Sample error 
15-L bucket sample from river 

Stage 2. Primary-subsample error 
Bucket to 300-mL sample bottle 

Stage 3. Secondary-subsample error 
Sample bottle to 10-ml counting 
chamber 

Stage 4. Counting error 
Counting fields/transects on 
inverted microscope 

Figure 6.1 Schematic representation of the stages in phytoplankton sampling and 
sub-sampling. Showing principal sources of errors. 
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6.2 Sample error 

Sample error, chlorophyll 

Five samples were collected at 2-min intervals over a range of chlorophyll 

concentrations, from an average of below 10 |Xg L'* to more than 200 |ig L"' and error 

ranged from 0.8% to 14.7% (Table 6.1). Percentage error does not appear to be 

connected to magnitude, with high chlorophyll concentrations producing a range of 

error values. The results indicate an acceptable level of consistency in sampling from 

the main river and bay at km 91.7 (Wansford). It is assumed that these error levels are 

transferable to other locations within the system. 

Table 6.1 Chlorophyll sample error. All samples were collected from the main 
river at km 91.7 except (b) which were collected from a bay. Showing mean, upper 
and lower 95% confidence limits, standard deviation, n and percentage error. 
Confidence limits were calculated using logio transformed data and arithmetic 
mean (Elliott, 1983). 

18/8/94 21/4/94 21/1/94" 11/7/95 13/6/96 15/5/96 
mean 6.4 130.6 143.5 13.1 207.6 174.5 
UCL 6.4 149.9 151.6 13.8 240.4 182.2 
LCL 6.3 113.7 135.8 12.4 179.3 167.1 
SD 0.1 14.1 6.3 0.6 18.3 6.0 
n 5 5 5 5 4 5 
% error 0.8 13.9 5.5 5.3 14.7 4.3 

Sample error, phytoplankton 
Counts of Nitzschia acicularis from five 2-min samples were highly consistent 

indicating minimal variation in samples (Figure 6.2). 

Sample date 21/4/95 
p = 0.633 
5 diameter transects @ x 200 
Average count/transect = 64 

1 2 3 4 5 

Figure 6.2 Phytoplankton counts and confidence limits for samples taken every 2-
min at km 91.7. Confidence limits were calculated using logio transformed data 
and arithmetic mean (Elliott, 1983). p was calculated using Mood Median Test. 
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Primary-subsample error, chlorophyll 

Five subsample taken from a single sample were used to assess primary-

subsample error, which was generally similar to sample error ranging from 1.5% to 

10.6% (Table 6.2). This suggests that much of the variation results from analytical or 

random error rather than chlorophyll variability per se. 

Table 6.2 Chlorophyll primary-subsample error. All samples were collected from 
the main river. Showing mean, upper and lower 95% confidence limits, standard 
deviation and percentage error. Confidence limits were calculated using logio 
transformed data and arithmetic mean (Elliott, 1983). The samples taken on 
14/5/98 were primary-subsamples from a single sample and were analysed using 
in-vivo fluorescence. 

1994 1996 1994 1998 
17/8 20/4 13/6 15/5 10/4 10/6 8/1 14/5 14/5 

mean 6.4 125.8 213.0 171.8 126.2 44.5 8.4 85.1 83.6 
UCL 6.8 139.8 221.5 186.2 129.3 47.9 9 86.8 84.9 
LCL 6.0 113.1 204.9 158.5 123.1 41.3 7.8 83.3 82.3 
SD 0.3 10.5 6.7 10.9 2.5 2.7 0.3 2.4 1.8 
n 5 5 5 5 5 5 5 10 10 
% error 6.3 10.6 3.9 8.1 2.5 7.4 7.1 2.0 1.5 

Primary-subsample error, phytoplankton 

Phytoplankton primary-subsample counts for Nitzschia acicularis were non­

significant. These data support the finding of the chlorophyll analysis, indicating a 

minimum of sample error (Figure 6.3). 

2500. 

2000. 

g 
1/2 1500. 

o o 

1 

Sample date 20/4/95 
p= 0.067 
n = 5 

^ 5 diameter transects 
Average count/transect = 54 

I I I I I 
1 2 3 4 5 

Figure 6.3 Phytoplankton counts and confidence limits for primary-subsamples 
taken from a single sample from km 91.7. Confidence limits were calculated using 
logio transformed data and arithmetic mean (Elliott, 1983). p was calculated using 
Mood Median Test. 

Sources of error 

The contribution of variance from sample, primary-subsample and secondary-

subsample were evaluated by repeating 75 spaced field counts throughout the levels, 

with five counts at each level (Figure 6.4). No significant difference was found between 
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the levels and the contribution of variation from the sample was similar to that of the 

primary and secondary-subsamples. 

Sample Primary- subsample Secondary-subsample 

30000 1 1 1 T T • • 

J 2 5 0 0 0 . t ; ^ T t x T T ' T ^ ' ' J ) : ' ' - ' 

J 20000. X ^ t l l l ^ l ^ 

15000 I I I I I I I I I 

1 2 3 4 5 1 2 3 4 5 

Level SS df MS P 
Samples (1) 808.4 14 57.7 0.634 

Primary-subsample (2) 575.0 9 63.9 0.559 

Secondary-subsample (3) 151.7 4 37.9 0.752 

-
—^ 

o ••J 

I I I I I 

1 2 3 4 5 
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su 
60 

40 

20 
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Figure 6.4 Sources of variance from sample to counting. Comprising five samples, 
five primary-subsamples from a single sample and five secondary-subsamples from 
a single primary-subsample (above, left to right). Table shows the distribution of 
variance between levels, with sum of squares (SS), degrees of freedom (df), mean 
square (MS) and p value from ANOVA. Proportion of variance components shown 
as a percentage of total variance (bottom right). Counts were 75 spaced fields for 
centric diatoms > 5 < 20 \x.m 0 collected from km 91.7 on 15/5/96. Average count 
per field were 14.2, 14.2 and 15.4 for sample, primary and secondary-subsamples, 
respectively. 

6.3 Sample storage 

Chlorophyll 

In the absence of definitive guidance on the storage of chlorophyll samples it was 

decided to conduct a range of experiments to evaluate deterioration during storage of 

whole water samples and samples stored on frozen filter papers (Figure 6.5). These 

evaluations would provide guidance for routine sample treatment and indicate how best 

to handle samples during high-frequency sampling. The results indicate gradual 

deterioration of chlorophyll with time which appears to be delayed by filtering samples 

and storing on frozen filter papers. Samples stored for 24 h in Wansford gauging station 

(km 92.5) at ambient were non-significant, although the increase of degradation product 

was almost significant. 
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Comparison between 
storage of samples on 
frozen filter paper (left) and 
liquid at below 4°C (right). 
Analysis was same day (1) 
and after 1,2,3 and 6 days 
(2 to 5). Fitted lines have r̂  
values of 0.39 and 0.93 and 
p values for Mood Median 
Tests of 0.155 and 0.000 
for frozen and liquid 
storage respectively 

Comparison between 
storage of samples on 
frozen filter paper (left) and 
liquid at below 4°C (right). 
Analysis was same day (1) 
and after 16 and 31 days (2 
and 3). Fitted lines have r̂  
values of 0.77 and 0.94 and 
p values for Mood Median 
Tests of 0.497 and 0.010 
for frozen and liquid 
storage respectively 

Analysed within 4 h (1) and 
after 24 h at ambient (19.9 °C 
at end of test) in Wansford 
gauging station (2). Mann-
Whitney U test: /?= 0.144. 
Phaeopigment ratio decreased 
from 1.3 to 1.1, see Table 6.3. 
Mann-Whitney U test: P -
0.06 
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Figure 6.5 Comparisons and evaluations of chlorophyll storage techniques. 
Confidence limits were calculated using logio transformed data and arithmetic mean 
(Elliott, 1983) and all samples were n = 5. Lines were fitted using least-squares 
method. 

Phytoplankton 

Phytoplankton preservation using Lugol's iodine was assessed by counting 

preserved samples prior to and following storage. Figure 6.6 shows two replicate 

counts for samples that had been in storage for over 16 months. No significant 

difference were found between the treatments for either species. 
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Nitzschia acicularis Oscillatoria redekei 
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First count (1) 5/3/96 
Second count (2) 17/7/97 
/7 = 0.834 

First count (1) 5/3/96 
Second count (2) 23/7/97 
P = 0.602 

Figure 6.6 Preservation efficiency for two species fixed with Lugol's iodine. 
Comparisons are for 5 transect counts at x 200 magnification for original (1) and 
replicate (2) counts. Confidence limits were calculated using logio transformed data 
and arithmetic mean (Elliott, 1983) and all samples were n = 5. p values are from 
Mann Whitney U Tests. 

6.4 Inter-laboratory calibrations 

Chlorophyll 

As the majority of chlorophyll samples were analysed by the EA National 

Laboratory Service (NLS - and its predecessors) it was thought necessary to evaluate 

the results of self and NLS analyses (Figure 6.7). One of the three comparisons made is 

significant but the trend is inconsistent, with the remaining evaluations being non­

significant. Without further information about the treatment of individual samples if is 

difficult to draw further conclusions. 
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13/5/96; p = 0.037 10/6/97; p = 0.210 
Figure 6.7 Comparison between self (1) and NLS (2) chlorophyll analysis. 
Confidence limits were calculated using logio transformed data and arithmetic mean 
(Elliott, 1983) and all samples were n = 5. Sample date and p values from Mann-
Whitney U tests are shown below each plot. 
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6.5 Phaeopigment 

Phaeopigment estimates (Table 6.3) indicate that the proportion of degradation 

product increases through the year, being minimal during the spring peak and becoming 

most abundant during the winter. 

Table 6.3 Total chlorophyll and phaeopigment concentrations on three occasions at km 
91.7. Degradation absent AJAm = approximately 1.6, degradation complete An/A,„ = 
1.0 (Marker, 1992). 

Chlorophyll (|Lig L"') 
Total (An) Degraded (Am) AJAm n 

10/4/97 127.2 82.1 1.54 5 
05/8/97 8.7 7.6 1.13 5 
08/1/98 11.1 10.8 1.07 5 

6.6 Discussion 

In standing waters sample variance is often cited as the principal source of error, 

with subsample and counting errors being small by comparison (Irish and Clarke, 1984). 

In the Nene, it appears that phytoplankton can be considerably homogeneous. A 

phenomenon that probably results from the turbulent and unidirectional nature of rivers, 

especially during periods of relative stability. It would be expected that sample 

variation would be far more heterogeneous during spate flows or following other 

physical disturbance, such as the passage of boat traffic or 'weed' cutting. Although 

small localised influxes of algae would soon become 'diluted' by turbulent flow. 

The results here indicate a very different situation to standing waters with similar 

variation in sample, primary and secondary-subsample (Figure 6.4). This is further 

supported by the sample and primary-subsample counts, which were all non-significant 

(Figure 6.2 and Figure 6.3). Such counting consistency indicates homogeneity at all 

levels, which is confirmed by the analysis of variance. However, smaller counts, 

particularly in transect or pseudo-random fields would probably result in significant 

differences, relating to the counting method (Chapter 5). The influence of sample 

frequency and sample location are explored in Chapters 8 and 9, respectively. 

The results from the chlorophyll storage evaluations vindicate the methods 

employed during this research. Samples stored below 4°C will usually have 

insignificant deterioration, providing they are analysed within a few days. Samples 
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stored on frozen filter papers exhibited reduced deterioration compared to whole-water 

samples, and this method was therefore more suitable for long-term storage (longer than 

48 h). Storing chlorophyll samples on frozen filters would have reduced bacterial 

activity, grazing or parasitism that could continue in water samples stored below 4°C, 

albeit more slowly than normal. Filter papers can be frozen 'on site' by placing them 

(in sealed and labelled bags) between ice-blocks in a cool-box. However, storing 

samples on frozen filters has the disadvantages of prolonging sampling time and the 

requirement for additional field equipment. Also, extra care is needed at the analysis 

stage as filter papers can become brittle and must be completely defrosted before 

analysis. The comparison of a freshly analysed sample and one stored at ambient in the 

gauging station (at km 92.5) for 24 h provides validity for using the auto-samples, 

where samples could stand for up to 14 h before treatment. 

The inter-laboratory calibrations of chlorophyll samples indicate a reasonable level 

of consistency, although some samples do give cause for concern, fritra-laboratory 

consistency suggests that differences were due to treatment rather than differences in 

chlorophyll per se. For example, some samples sent to the NLS may have been stored 

for longer than usual (e.g. 13/5/96), but without details of each sample analysed it is not 

possible to speculate further. 

As chlorophyll samples were not routinely corrected for phaeopigment. The pilot 

survey provides an important contribution to the understanding of chlorophyll dynamics 

in the Nene, which follow a similar pattern to those seen in the Kennet and Thames 

(Kowalczewski and Lack, 1971). During the spring chlorophyll peaks degradation 

product appears to be minimal but becomes increasingly important as the year 

progresses. The high proportion of phaeopigment in the winter provides justification 

for removing samples with chlorophyll concentrations < 1 |ig L"' for statistical analysis 

of trends, with normalisation (logio) resulting in negafive values. 

6.7 Summary 

1. Sample error was consistent throughout the levels of treatment, being similar to 

the primary and secondary-subsamples. 
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2. Sample storage evaluations provide justification for treatments used throughout 

this research. Although prompt analysis of samples is preferable, the analysis of 

chlorophyll samples within 24 h of collection and preserved phytoplankton 

3. Samples within a few months of collection should not result in significant 

deterioration. Chlorophyll samples stored for longer than 48 h exhibit reduced 

deterioration i f stored on frozen filter paper. 

4. Inter-laboratory chlorophyll analysis tests were within acceptable limits although 

some comparisons had a significant difference. 

5. Phaeopigment exhibit seasonal variation and the pilot study provides valuable 

information for the interpretation of chlorophyll data. 
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7 ENVIRONMENTAL BACKGROUND AND LONG-TERM 

TRENDS 

7.1 Introduction 

This Chapter examines environmental background information and long-term 

trends at km 91.7 (Wansford). 

7.2 Light attenuation 

Light attenuation measurements were not available for the whole period therefore 

chlorophyll concentration was utilised as an estimate for Zeu (using Zs as an 

intermediate). Figure 7.1 shows the relationships between chlorophyll concentration 

and Secchi disc depth and Secchi disc depth and euphotic depth. Chlorophyll 

concentrations of 10, 30 and 50 |ig L"' result in estimated Zeu of 2.3, 1.8 and 1.6 m, 

respectively. These results indicate that benthic photosynthesis would be inhibited 

throughout much of the navigation section of the Nene at chlorophyll concentrations 

greater than 30 |Xg L"', as the average depth is greater than 1.8 m (Table 3.1). 

7.3 Environmental trends and background 

All physical, chemical and biological variables have significant inter-year 

variation, which is most pronounced in discharge (Table 7.1, Figure 7.2 and 7.3). 

Drought periods are evident particularly during 1976 and in the early 1990s and during 

1996. Temperature and light varied throughout but both have higher values in the latter 

twelve year period. Ammonium exhibits the most consistent change through time, the 

1976 peak was possibly exacerbated by the drought but this was followed by a 

consistent downward trend. This pattern is also evident to a lesser extent in NO2-N, 

TON, NO3-N, TN levels. Silicate concentrations were consistent throughout, with a 

slight decrease during the latter periods possibly reflecting lower discharge. TRP 

concentrations also reflect varying discharge, although increasing concentrations up to 

1991 could reflect an increasing population in the area and lower concentrations 

thereafter could partly reflect P removal at major STW. Chlorophyll concentrations 

were significantly higher in the earlier period, even when the influence of severer 

drought years (1975 and 1976) is removed. 
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Figure 7.1 Relationship between chlorophyll concentration and Secchi disc depth 
and Secchi depth and euphotic depth. Chlorophyll and Secchi depth data were 
treated with logio and square root transformations respectively (Table 3.4). 

Table 7.1 Long-term physical, chemical and biological trends at km 91.7. Showing 
and p values for inter-year and inter-period (data set in two 12 year periods; 75-

86 and 87-98) tests and the inter-period medians. Significant tests are boxed. 

Mood median tests for 
Inter- Inter-period Period 1 Period 2 
year P P median median 

Discharge (mg L"') 887.6 0.000 11.5 0.001 6.24 5.79 
Temperature (°C) 43.8 0.006 2.4 0.123 11.00 12.00 
Light (sunshine h) 59.5 0.000 4.1 0.042 3.10 3.40 
NH4-N (mg L"') 88.9 0.000 44.7 0.000 0.18 0.08 
NO2-N (mg L"') 57.6 0.000 5.9 0.015 0.10 0.09 
NO3-N (mg L' ' ) 82.3 0.000 0.1 0.721 9.39 9.23 
TON (mg L"^) 84.2 0.000 0.2 0.641 9.50 9.34 
TN (mgL ') 79.4 0.000 1.8 0.183 9.84 9.25 
TRP (mg L"') 174.0 0.000 10.6 0.001 0.96 1.14 
N:P (mg L"') 44.6 0.000 3.72 0.054 9.80 8.20 
Si02-Si (mg L"') 32.7 0.018 1.0 0.329 6.07 5.90 
Chlorophyll (|Xg L ' ' ) 100.4 0.000 9.6 0.002 17.4 11.0 
Chlorophyll (^g L ' ' ) 82.7 0.000 7.0 0.008 15.6 11.0 
minus 1975 and 1976 
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Figure 7.2 Time series for discharge (m^ s''), temperature (°C), light (sunshine h 
and tenths) and NH4-N (mg L' ') at km 91.7 from 1975 to 1998. Discontinuities in 
the NH4-N plot indicates missing data. Sample frequencies for discharge and light 
were daily. Median sample frequencies for NH4-N and temperature were 7 d and 6 
d respectively. 
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Figure 7.3 Time series for TON (mg L^'), TRP (mg L"'), silicate(mg L") and 
chlorophyll (fxg L'") at km 91.7 from 1975 to 1998. Discontinuities in the plots 
indicate missing data. Median sample frequencies were 7 d for all variables. 
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As discharge exhibited the greatest inter-year variability its relationship with other 

variables was explored using regression analysis (Table 7.2). Discharge correlates 

positively with N (except NO2-N) and negatively with TRP, these opposing trends 

resulting in N:P having the most significant relationship. The silicate relationship was 

weak indicating the influence of other factors. 

Table 7.2 Chemical variables regressed on discharge. Showing r ,̂ p, n and trend. 

P n Trend 
NH4-N 0.147 <0.05 938 Positive 
N02-N 0.005 NS 890 None 
N03-N 0.336 <0.05 889 Positive 
TN 0.336 <0.05 938 Positive 
TRP 0.340 <0.05 1030 Negative 
N:P 0.527 <0.05 890 Positive 
Si02-Si 0.099 <0.05 756 Positive 

Nutrient concentrations at four main river and three tributary sites are summarised 

in Table 7.3 The results indicate general downstream increases in all nutrients with 

evidence of a slight decline at km 91.7. The influence of the major STW (Figure 2.1) 

on NH4-N and P concentrations is evident at km 43.9 and in tributary 3 (Willow Brook). 

A large increase in NH4-N and P occurs at km 43.9 and the average P concentration in 

tributary 3 is considerably higher than the other tributaries, these sites being 

respectively downstream of Billing and Corby STW. The downstream increase in TON 

concentrations reflect increasing catchment area, which is also evident in the differing 

catchment areas of the tributaries (Table 3.1). Comparison with the long-term data 

indicates that nutrient concentrations have generally declined in recent years, as 

identified in Table 7.1. 

The 1994 to 1997 average NH4-N and TON concentrations are respectively 0.19 

and 1 mg L"̂  lower than the long-term values. Table 7.3 also indicates that TON 

principally comprises NO3-N and TP mainly comprises reactive P, with little difference 

occurring between TRP and FRP. On average, TON is 99% NO3-N (min = 84%, max = 

100%, n = 888) and TP 83% FRP (min = 45%, max = 100%, n = 51). TP has its lowest 

percentage of FRP during the spring and this possibly reflects high levels of particulate 

P, in the form of suspended algae. 
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Table 7.3 Nutrient concentrations (mg L"') at four main river and three tributary sites 
(1994 to 1997) and long-term at km 91.7 (1975 to 1998). Showing ammonium (NH4-
N), total oxidised nitrogen (TON), filterable reactive phosphorus (FRP), total reactive 
phosphorus (TRP) and total phosphorus (TP). 
Site and period Nutrient Mean Min Max n 
1994 to 1997 
km 22.4 NH4-N 0.10 < 0.03 0.62 74 
(Duston Mil l) TON 7.71 3.40 14.00 74 

FRP 0.96 0.03 3.40 84 
TRP 0.82 0.10 2.40 74 
TP 0.98 0.15 2.46 117 

Tributary 1 NH4-N 0.11 < 0.03 0.80 47 
(Brampton Branch) TON 9.56 4.70 16.60 48 

FRP 0.35 0.06 1.60 84 
TRP 0.39 0.06 3.20 48 
TP 0.42 0.10 2.09 86 

km 43.9 NH4-N 0.23 < 0.03 0.81 48 
(Wellingborough) TON 9.90 4.90 15.50 48 

FRP 1.55 1.08 3.70 94 
TRP 1.57 0.33 3.60 48 
TP 1.67 0.15 4.28 97 

Tributary 2 NH4-N 0.11 < 0.03 0.82 48 
(River Ise) TON 7.01 1.80 15.00 48 

FRP 0.12 0.03 0.40 85 
TRP 0.12 0.03 0.40 48 
TP 0.18 0.04 1.28 85 

km 64.6 NH4-N 0.27 < 0.02 1.24 50 
(Thrapston) TON 10.21 5.80 14.90 49 

FRP 1.39 0.05 3.57 92 
TRP 1.44 0.25 3.10 49 
TP 1.55 0.13 3.72 97 

Tributary 3 NH4-N 0.10 < 0.03 0.50 50 
(Willow Brook) TON 6.50 0.80 13.60 50 

FRP 0.64 0.06 1.50 96 
TRP 0.71 0.09 1.74 48 
TP 0.76 0.08 2.21 116 

km 91.7 NH4-N 0.10 < 0.03 0.51 119 
(Wansford) TON 8.70 4.10 14.80 124 

FRP 1.07 0.04 2.68 108 
TRP 1.10 0.12 2.40 196 
TP 1.22 0.02 7.37 144 

7975 to 1998 
km 91.7 NH4-N 0.29 < 0.01 5.32 926 
(Wansford) NO3-N 9.69 0.42 20.10 892 

NO2-N 0.10 < 0.01 0.40 891 
TON 9.76 0.50 20.19 958 
TRP 1.17 0.07 4.39 1031 
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7.4 Long-term chlorophyll trends at km 91.7 

The relationship between the long-term chlorophyll record and physical variables was 

investigated by regressing chlorophyll on discharge, temperature and light (Figures 7.4, 

7.5 and 7.6). This analysis was undertaken using the whole chlorophyll data set and 

subsets, as shown. 

Maximum chlorophyll concentrations mostly occur at a discharges below 

10 m^ s"', although chlorophyll concentrations greater than 10 |ig L ' ' do occur at high 

discharge. Chlorophyll data from the first half of the year are influenced more by 

discharge than those from other times. Data from the latter part of the year having a less 

significant relationship (Figure 7.4). Discharge produced more significant relationships 

with chlorophyll when expressed as a four-day average, compared to daily values or 

averaging over longer or shorter periods. 

Temperature correlates poorly with the whole chlorophyll data set, but maximum 

chlorophyll concentrations do not occur below 5°C. Chlorophyll concentration has a 

linear relationship with temperature, up to the spring chlorophyll peak, thereafter in­

creasing temperature tends to result in a wider scatter and a general decrease in the chlo­

rophyll concentration (Figure 7.5). Polynomial regression significantly improved the r̂  

coefficient for the January to June data but made little difference to the January to 

spring chlorophyll peak. During July to December a wide range of chlorophyll values 

are evident, with low concentrations occurring throughout the temperature range. 

Generally light correlated poorly with chlorophyll (Figure 7.6), but again, the 

most significant relationships are found with chlorophyll data from the first half of the 

year. The poor relationship may result from the insensitivity or unsuitability of the data, 

with light only being recorded during periods of bright sunshine. This is evident in the 

plots, with many low records despite the seven-day cumulative summation of light data. 

Nevertheless, low chlorophyll concentrations rarely occur at the greatest light values, 

especially in the former half of the year. Although high chlorophyll values do occur 

throughout the light range. 

Multiple regression analysis of the combined January to June data sets produced 

an enhanced relationship [r^ = 0.65, p < 0.05, n = 450; logio [chl] = 0.877 + 0.185(T) -

0.006 (T^) + 0.003(7: 7 d CuSum) - 0.554(Q: 4 d mean)], the influence of light being 

negligible. A more comprehensive assessment of the long-term chlorophyll data and 
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combinations of physical variables over different time periods can be found in Balbi 

(2000). 

All data 
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Figure 7.4 Chlorophyll plotted against discharge. Showing data range, correlation 
coefficients, probabilities and n. Data ranges are all data (top plot) and from 
restricted ranges, as indicated. For example, all data between 1 July and 31 
December (bottom plot). See Table 3.7. 
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Figure 7.5 Chlorophyll plotted against temperature. Showing data range, correlation 
coefficients, probabilities and n. Data ranges are all data (top plot) and from 
restricted ranges, as indicated. For example, all data between 1 July and 31 
December (bottom plot). See Table 3.7. 
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Figure 7.6 Chlorophyll plotted against sunlight hours and tenths. Showing data range, 
correlation coefficients, probabilities and n. Data ranges are all data (top plot) and 
from restricted ranges, as indicated. For example, all data between 1 July and 31 
December (bottom plot). See Table 3.7. 

The greater variability of chlorophyll data from the second half of the year 

warranted further investigation. Close scrutiny of the chlorophyll time series (Figure 

7.3) indicates considerable variability of summer chlorophyll concentrations, with some 

years (e.g. early 1980s) having a relatively high concentration compared to others. 
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which had very low summer chlorophyll concentrations (e.g. 1993 to 1995). The 

influence of summers with low chlorophyll concentrations on the whole data set was 

investigated by establishing the 'low chlorophyll summer period' (Table 3.7) and 

removing these data from the whole chlorophyll data set. Low chlorophyll summers 

were most numerous in the latter part of the study, commencing from mid-June to late 

September and ranging from 40 to 194 days (Table 7.4). 

Table 7.4 Years with 'Low chlorophyll summer periods' at km 91.7, between 1975 and 
1996. (Too few data to include 1983 and 1988). 
Year Period Period Number of Chlorophyll Number of 

start end days Mean Minimum Maximum samples 
1977 27 Sep 6 Dec 70 3.7 1.4 5.2 9 
1984 13 Jul 31 Dec 171 8.6 4.0 18.2 8 
1985 25 Jul 3 Sep 40 4.9 1.3 12.3 7 
1987 29 Jul 31 Dec 155 4.1 1.0 9.1 10 
1989 10 Jul 31 Dec 174 4.3 1.2 11.7 11 
1990 15 Aug 31 Dec 138 4.5 1.5 10.0 9 
1991 23 Sep 18 Nov 56 3.3 1.7 6.2 5 
1993 21 Jul 31 Dec 163 5.2 1.9 11.2 22 
1994 20 June 31 Dec 194 3.4 1.0 9.3 23 
1995 17 Jul 31 Dec 167 4.8 3.0 8.9 26 
1996 16 Aug 31 Dec 137 5.4 1.0 17.0 25 
1997 03 Jul 31 Dec 181 6.6 1.6 18.0 33 
1998 27 Aug 31 Dec 126 5.9 1.0 20.0 15 

Removing low chlorophyll summer data greatly enhanced the relationship 

between the chlorophyll concentration and temperature and discharge, but made less 

difference to light. Thus indicating that low chlorophyll summer periods were 

independent of the main regulatory factors influencing the majority of data (more than 

75% of the data). 

Low chlorophyll summers were also evaluated by comparing physical variables 

from these periods with those from July to September from other years (Table 7.5). 

Temperature and light were not significantly different between the treatments, but 

discharge was significantly lower during the low chlorophyll periods. Higher summer 

discharge could explain higher chlorophyll concentrations in terms of providing the 

necessary turbulence to maintain diatoms in suspension. However, high discharge 

could also result in low chlorophyll summers as seen during 1994, which had an 

extended low chlorophyll summer period and an average summer discharge (July to 

September) of 5.4 m^ s"'. 
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Table 7.5 Mann-Whitney U tests comparing physical variables and chlorophyll 

'Low chlorophyll years' 'Other years' 

P median n median n 

Temperature (°C) 0.401 18.0 267 18.0 121 

Discharge (m^ s'') 0.000 3.2 1288 4.1 920 
Light (h) 0.134 5.7 1288 5.3 920 

Chlorophyll (ng L ' ' ) 0.000 10.0 166 37.2 89 

The impact o f physical variables upon the onset o f low chlorophyll summer 

periods was investigated by comparing values from the month preceding each o f these 

periods with values for June from 'other' years (Figure 7.7). 
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Figure 7.7 Physical variable from the month preceding the onset o f low chlorophyll 
summer periods (coloured) and values for June o f other years (black). Showing 
discharge (m^ $"'), (sunshine hours and tenths) and temperature (°C). 

Comparisons in Figure 7.7 are not strictly valid because the onset o f low 

chlorophyll summer periods varied considerably (Table 7.4), but they do identify 

considerable differences especially during the early 1980s. 1980. 1981 and 1982 all had 

summers with extensive high chlorophyll concentrations and relative to other years 

these had high discharge, low light and temperature. Differences at other times are not 

so clear but interpretation could be hindered by using June data for comparison. 

Although a causal factor for the onset o f ' l o w chlorophyll summer periods" is far from 
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conclusive, these periods are normally preceded by high temperature, high light and low 

discharge. 

Physical variables do not appear to be wholly responsible for the data variability 

in the latter half of the year or the onset of low chlorophyll summer periods, so the 

relationship between chlorophyll and chemical variables was examined. This was 

undertaken for the whole chlorophyll data set and for the ' 1 January to the spring 

chlorophyll maximum', where nutrient limitation is most likely to have been evident 

(Figure 7.8). P does not appear to be limiting either during the whole or restricted data 

sets. In fact, P actually increases with increasing chlorophyll and this is presumably the 

result of chlorophyll peaks occurring during periods of reduced discharge. The N:P 

ratio also decreases with increasing chlorophyll concentration, as seen during the spring 

of 1996 (Table 7.6), further supporting the supposition that P was not limiting. 

Nitrate concentrations do exhibit a negative relationship with chlorophyll, 

especially with the restricted data set. Although nitrate concentrations are generally 

greater than 5 mg L"' even when phytoplankton are at their most abundant. Ammonium 

has the strongest negative relationship with chlorophyll of the N fractions examined. 

During the spring chlorophyll maxima ammonium concentrations were reduced to 20 

|i,g L ' ' (10"'^) but with abundant nitrate at this time it is unlikely that N is limiting algal 

growth. 

Silicate concentration has a strong negative relationship with chlorophyll, for the 

whole and restricted data sets. During the spring chlorophyll maxima silica 

concentrations are reduced to very low levels (below threshold at 30 |ig L"') and could 

be limiting further increases in the population under these conditions, as indicated by 

the P:Si ratio (Table 7.6). 

Table 7.6 N:P ratio, P:Si ratio (m mol L"') and Chlorophyll (|Lig L"') on three 
occasions during the spring of 1996 
Date N:P ratio P:Si ratio Chlorophyll 
3 April 35.5 44.3 65.0 
9 May 23.3 38.8 123.9 
21 May 16.5 26.7 156.0 

106 



All data 1 January to Spring Chlorophyll 
maximum 

1000 

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 
— I 

1.5 

V t R P (mg U ' ) 
r ' = 0.00; p = NS; n = 702 

1000 

= 0.06; p < 0.05; n = 256 

d 

10 15 20 

NO3-N (mg L"') 

p 

o 

r =0.08; p<0.05; n = 696 

1000" 

100-

r̂  = 0.16; ;7<0.05; n = 254 

-1 

r̂  = 0.20; p<0.05; n = 707 
logioNH4-N(mgL-') 

r" = 0.38; p<0.05; n = 257 

Si02-Si (mg L"') 
r̂  = 0.52; < 0.05; n = 628 r̂  = 0.66; p<0.05; n = 228 

Figure 7.8 Chlorophyll plotted against nutrients and silicate for 'all data' and the '1 
January to spring chlorophyll maximum' data sets. Also showing r ,̂ p and n. TRP 
and NH4-N were square-root and logio transformed respectively (Table 3.6). 

The occurrence of such a strong relationship between silicate and chlorophyll 

indicates the presence of abundant planktonic diatoms. However, there are periods 
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where high chlorophyll and silicate concentrations occur simultaneously and low 

silicate and low chlorophyll concentrations occur together. These data respectively 

indicate times with abundant phytoplankton that do not have a requirement for silica 

and silica uptake from biota other than phytoplankton. 

Die concentrations, estimated from total alkalinity, are equally high throughout 

periods of high and low chlorophyll concentrations (Table 7.7). The difference in the 

Die concentrations between the periods was not significant, although the greater 

abundance of algae during the spring could be responsible for the elevated pH values 

that occurred. The DIC concentrations during this study greatly exceed those which are 

likely to limit phytoplankton growth (Reynolds, 1993). 

Table 7.7 CaCOs (mg L"'), pH, temperature (°C) and DIC (m mol C U ' ) and 
Chlorophyll (|J.g L'^) during spring and summer 1996. Mann Whitney U test = NS for 
DIC concentrations during spring (April & May) and summer (August & September). 
Date CaCOa pH Temperature DIC Chlorophyll 
25 April 190 8.60 13.0 3.8 181.0 
9 May 220 9.00 11.5 4.2 138.0 
21 May 201 8.90 12.5 3.9 148.0 
16 August 197 8.27 18.5 3.9 14.0 
28 August 177 8.15 18.5 3.5 6.7 
12 September 201 8.17 15.0 4.0 6.0 

7.5 Discussion 

Several long-term trends are evident over the 24-year period, which reflect 

political, demographic and climatic influences. The most dramatic trend is that of 

ammonium (Figure 7.2), which declined significantly following the privatisation of the 

water industry in 1989 and was also influenced by the drought of the mid 1970s. 

Increases in P could mirror those of population, although investment following 

privatisation of the water industry and the implementation of the UWWT Directive 

resulted in reduced concentrations in recent years (Figure 7.3). Significant inter-year 

variation was evident in all variables examined and water chemistry is significantly 

influenced by discharge, which has the greatest inter-year variation. P is influenced 

negatively by increasing discharge and N positively. These trends reflect the origins of 

these nutrients, with P originating principally from point sources and N (except 
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ammonium) from diffuse inputs, the former being diluted and the latter leached 

concurrently with increasing rainfall and river flow. 

Nutrient concentrations are generally high throughout the study section (Table 

7.3), with considerable variations in the tributaries, and based on these concentrations 

the Nene can be classified as eutrophic (Environment Agency, 2000) to hypertrophic 

(Dokulil, 1995). This classification and the relationship between spring chlorophyll 

maxima and nutrients indicates that phytoplankton are unlikely to be nutrient limited in 

the Nene. A statement which is supported by the N:P ratios. 

Ammonium concentrations are reduced to low levels during the spring 

chlorophyll peaks but this probably reflects preferential uptake over nitrate (Morris, 

1974), which remains abundant throughout. P concentrations were influenced more by 

discharge than chlorophyll and the lowest TRP concentration recorded during the spring 

chlorophyll maxima (chlorophyll > 100 |ig L"') was 0.33 mg L"', so it is unlikely that P 

is limiting algal growth. 

Silicate concentrations are reduced to low levels during the spring chlorophyll 

maxima and are thought to limit phytoplankton abundance in other lowland systems 

(Swale, 1969; Skidmore et al., 1998). The strong negative relationship between silicate 

and chlorophyll indicates an abundance of planktonic diatoms, although a fuller analysis 

of the impact of reduced silica on phytoplankton development will be undertaken in the 

next chapter. Periods with high chlorophyll concentrations and high silicate probably 

reflect an abundance of green algae (which do not require silica for growth) and low 

silicate concentrations at times of low phytoplankton abundance possibly indicates silica 

uptake by benthic diatoms. Again, further investigations of these subjects will ensue in 

subsequent sections. 

The influence and occurrence of low chlorophyll summer periods is of great 

significance to the elucidation and understanding of chlorophyll dynamics in the Nene. 

Summers with low chlorophyll concentrations are independent of the main influencing 

variables (discharge and temperature) at other times. The factors causing the onset of 

these periods is unclear but in some cases appears to be associated with high 

temperature and light and low discharge (Figure 7.7). Temperature and light appear to 

have increased in latter years (Table 7.1), as have the occurrence of low chlorophyll 

summer periods (Table 7.4). The summers of the early 1980s had relatively high 

chlorophyll concentrations and were associated with high discharge, low temperature 

109 



and light. A temperature range of approximately 5 to 15°C does appear to promote high 

chlorophyll (Figure 7.5) and inhibit suspended chlorophyll development in the Nene 

above 15 to 18''C. It is clear that 'low chlorophyll summer periods' are not the product 

of a few predictable processes and may result from a series of disparate events. 

Biological influences have not been considered here and grazing, filtration and 

parasitism may be important factors impacting on chlorophyll concentrations, especially 

in periods of low discharge which are likely to promote the development of planktonic 

grazers. 

Many of the factors discussed here are expanded in the next chapters which will 

attempt to elucidate temporal patterns in the long-term chlorophyll data by detailed 

analysis of data colleted between 1993 and 1999. 

7.6 Summary 

1. Long-term data on physical, chemical and biological variables exhibit significant 

inter-year variation (especially discharge) and several of these variables show 

significant inter-period trends, some increasing (e.g. TRP) and others decreasing (e.g. 

NH4-N) over the 24 year study period. 

2. Nutrient concentrations are generally high throughout the study section and the Nene 

can be classified as eutrophic to hypertrophic. P originates mainly from point 

sources and N from diffuse inputs, with P correlating negatively and N positively 

with discharge. N and P are unlikely to be limiting phytoplankton abundance 

although silicate could be restricting further growth during periods of high 

phytoplankton abundance. 

3. Chlorophyll concentrations exhibit considerable inter-year variation with some 

summers having relatively high concentrations compared to others years. The 

identification of low chlorophyll summer periods and the removal of these data from 

the main data set enhanced the relationships between chlorophyll and physical 

variables. Low chlorophyll summer periods appear to be independent of the 

controlling variables at other times and the reason for these periods is unclear but 

may be associated with high temperature and light and low discharge. 
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4. The relationship between silicate and chlorophyll indicates that diatoms are abundant 

in the plankton (particularly during the spring) and are the main constituent of the 

chlorophyll maxima. Chlorophyll maxima occur between a temperature of 8 and 

18°C, and temperature increases above this level may be inhibitory to growth. 

5. Many of the factors discussed in this chapter will be expanded upon in subsequent 

sections. 
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8 TEMPORAL TRENDS 1993 to 1998 

8.1 Introduction 

This chapter examines temporal chlorophyll and phytoplankton trends at km 91.7 

(Wansford) throughout the study period and periodic high frequency investigations at 

km 92.5 (Wansford gauging station). This analysis builds and expands on the previous 

chapter and should facilitate a fuller understanding of long-term chlorophyll trends. 

Chlorophyll sampling continued throughout the period and these data are included 

in the long-term analysis, in the previous Chapter. However, some additional analysis 

of the chlorophyll data is useful for the 1994 to 1997 period, as solar irradiance data 

were available for this time and these data could prove to be a better predictor of 

chlorophyll concentration than sunshine h, used for the long-term analysis. 

The primary phytoplankton analysis is based on 188 taxa in 138 samples taken 

between 25/6/93 and 27/5/97 at varying frequencies (median = 8 d), but with a 

concentration of effort on periods of greatest phytoplankton abundance. 

8.2 Chlorophyll 

With the availability of solar radiation data (watts m^h"') for the period 1994 to 

1997 the chlorophyll data for this period were re-evaluated substituting these data for 

the sunshine h used in the long-term analysis (Table 8.1). The substitution of solar-

radiation data for sunshine h made little difference to the significance of the relationship 

between chlorophyll and light, with data from the first half of the year having least 

variability. 

Table 8.1 Multiple-regression analyses for chlorophyll data (1994-1997) on the 
physical variables, discharge (m^ s"'), light (watts m^ d"'), temperature (°C) and 
temperature^ (°C). Analysis was undertaken for all data, those data between 1 
January and 31 June and those data between 1 January and the spring chlorophyll 
maximum (Table 3.7). The variables used in each analysis are indicated (X) and all 

Chlorophyll data range Disch. Light Temp. Temp.'̂  P n 
Al l data X X X 0.28 <0.05 277 
1 Jan to 31 Jun X X X 0.50 <0.05 141 
1 Jan to spr. chl. max X X 0.40 <0.05 86 

112 



8.3 Taxa groups 

The top-twenty numerically most abundant taxa recorded at km 91.7 are listed in 

Table 8.2, and these represent more than 88% of all taxa recorded. Centric diatoms 

were the most abundant group (44%) followed by greens (excluding unidentifiable cells 

and picoplankton - 23%) and picoplankton (14%), these three groups constituted 75% of 

all taxa found. The objective of the initial analysis of taxa was to construct taxa groups 

with the purpose of easing analysis and understanding of temporal trends. The 

construction of these taxa groups was made with consideration to 

abundance/biovolume, periodicity and ecology. 

Table 8.2 The twenty most numerically abundant taxa recorded at km 91.7 
during the study. Taxa classified as a percentage of all cells recorded. 

Percentage 
Taxa abundance cumulative 
Centric diatom > 6 to < lOfXm 0 20.7 20.7 
Spherical cell < 3)xm 0 11.0 31.7 
Centric diatom < 5|im 0 9.4 41.1 
Stephanodiscus hantzschii fo. tenuis 8.5 49.6 
Chlorella sp. 6.0 55.6 
Centric diatom > 11 to < 20|j,m 0 5.8 61.3 
Rhodomonas lacustris var. nannoplanktica 4.2 65.5 
Monoraphidium contortum 3.4 68.9 
Rod cell < 3|im GALD 3.3 72.2 
Oscillatoria redekei 3.1 75.3 
Flagellate < 5|Lim GALD 2.4 77.7 
Actinastrum hantzschii 2.2 79.9 
Scenedesmus communis 2.2 82.1 
Chlorella vulgaris 1.4 83.5 
Spherical > 6 to < lOfim 0 1.0 84.5 
Flagellate < 6 to < lO^im GALD 0.9 85.4 
Oscillatoria agardhii 0.8 86.2 
Dictyosphaerium pulchellum 0.7 86.9 
Tetraedron caudatum 0.7 87.6 
Tetrastrum staurogeniaeforme 0.7 88.3 

Abundance and Biovolume 

The initial analysis provides an idea of numerical abundance but biovolume 

requires consideration before further analysis can proceed. Biovolume is an important 

consideration because of the relative sizes of the taxa concerned, covering several 

orders of magnitude. For example, the two most abundant taxa recorded were centric 

diatom > 6 to < 10|im 0 and Spherical cell < 3p,m 0 (Table 8.2), with the former taxa 
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being 1.9 times numerically more abundant than the latter. However, i f the two taxa are 

compared volumetrically then centric diatoms are at least 53 time more abundant than 

spherical cells (based on a diatom cell with valve and girdle dimensions o f 8 \xm, a 

spherical cell with a 3)am 0 and corrected for percentage abundance). This estimated 

difference in numerical and volumetric abundance results from a conservative estimate 

that the diatoms have a volume 28.5 times greater than a spherical cell. Likewise 

Nitzschia acicularis has been found (during this study) to have an average biovolume 

o f 128 |am^ N. acicularis is 17 times less abundant, numerically, then spherical cells < 

3|am 0 but 1.9 times less abundant volumetrically. 

Periodicity 

For an initial appraisal o f periodicity the phytoplankton taxa were divided into six 

main groups and plotted as percentage abundance (Figures 8.1). 

u 
3J 

o 
o 

' 

'-J 

100% 

20% i 

93 94 95 96 97 

• Gentries • greens • picoplankton • blue-greens • flagellates • pennates 

Figure 8.1 Percentage occurrence o f numerically most abundant phytoplankton groups at 
km 91.7 (25/6/93 and 27/5/97). 

Centric diatoms exhibit numerical dominance during the spring, achieving 90 % 

o f taxa in 1996. Centric diatoms form a large proportion o f taxa during the late summer 

also, but these periods are dominated principally by green algae, picoplankton and blue-

green algae. Picoplankton were most abundant during the summer o f 1994. when other 

114 



algae were infrequent. Blue-green algae were most numerous during the summer of 

1993. Pennate diatoms generally have periods of abundance before and following the 

centric diatom peaks. Unidentified flagellates exhibit variable abundance and were 

particularly numerous during the summer of 1995. 

Ecological considerations 

Examination of the data revealed the occurrence of taxa that could be of particular 

value as environmental indicators. For example, the periodic occurrence of Nitzschia 

fruticosa and benthic diatoms could respectively indicate increased grazing pressure and 

light transparency. The colonial habit of N. fruticosa making it unpalatable to smaller 

grazers and benthic forms possibly being restricted by light during periods of high 

phytoplankton abundance. 

Taxa groups 

Considering abundance/biovolume, periodicity and ecology, and following some 

experimentation, 32 taxa groups were created to further investigate phytoplankton 

dynamics in the Nene (Table 8.3). 

Table 8.3 Taxa groups and abundances, expressed as a percentage of all taxa. Short 
names (curved brackets) correspond to those used in the biplots (Figures 8.8, 8.9 and 
8.10). Square bracketed taxa are included for comparative purposes only and are not 
included as groups in subsequent analysis. 
Taxa % abundance 
[All blue-greens] 5.11 
Oscillatoria redekei and limnetica (O. r. & I.) 3.57 
Oscillatoria agardhii (O. aga.) 0.79 
Other blue greens (Ot. BG) 0.74 

Euglenophyceae (Bug.) 0.04 

[Cryptophyceae] 4.62 
Rhodomonas lacustris var. nannoplanktica (Rhod.) 4.15 
Cryptomonas (Cryp.) 0.43 

Dinophyceae (Dino.) 0.03 

Chrysophyceae (Chry.) 0.06 

Centric diatom < 5^m 0 (CD<5) 9.40 
Centric diatom > 6 to < 10|J.m 0 (CD 6-10) 20.71 
Centric diatom > 11 to < 20|im 0-1-5'. hantzschii fo. tenuis (CD 11-20) 14.24 
Filamentous centric diatoms (e.g. Me/o5/ra vanan^) (Mel. v.) 0.13 

Benthic diatoms {Amphora, Cymbella, Cocconeis, Cymatopleura, 0.10 
Gomphonema, Meridian, Rhoicosphenia, Surirella Spp., Navivula 
spp. except N. lanceolata) (Benth.) 
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Navicula lanceolata (N. Ian.) 0.08 
Nitzschia acicularis (N. aci.) 0.61 
Nitzschia fruticosa (N. ftu.) 0.91 
Asterionellaformosa and Diatoma elongatum (A.f. & D.e.) 0.49 

[All greens] 23.10 
Scenedesmus spp. (Seen.) 6.69 
Koliella longiseta (Kol.) 0.33 
Actinastrum hantzschii (Act.) 2.30 
Chlorella spp. (Chlor) 7.41 
Monoraphidium contortum (Mon.) 3.40 
Crucigenia (Cruc.) 1.13 
Dictyosphaerium pulchellum (Diet.) 0.72 
Tetrastrum staurogeniaeforme (Tet.) 0.66 
Lagerheimia sp. (Lag) 0.43 
Other greens (minus above and desmids) (0. Gr.) 3.05 
Desmids (Des) 0.01 

[Unidentified flagellates] 3.34 
Flagellate < 5|im GALD (F. <5) 2.37 
Flagellate < 6 to < 10|J.m GALD (F. 6-10) 0.87 

[Picoplankton] 14.29 
Spherical cell < 3|ini 0 (S. < 3) 10.97 
Rod cell < 3|j,m GALD (R.<3) 3.32 

8.4 Trends in phytoplankton 

Time series 

Temporal trends of phytoplankton groups were initially appraised by scrutiny of 

time series, some of which are shown in Figures 8.2, 8.3 and 8.4. 

Centric diatoms exhibit greatest abundance during the spring with an indication of 

a shift from the smaller to larger forms as the spring progresses. Planktonic pennate 

diatoms also have spring peaks, which are dominated by Nitzschia acicularis and 

colonial forms (Asterionellaformosa and Diatoma elongatum) to a lesser extent, 

whereas the colonial pennate Nitzschia fruticosa (not shown) became most abundant 

during the summers of 1995 and 1996. Those pennate diatoms classed as 'benthic' 

were generally low in abundance achieving less than 200 cells mL'^ at their most 

numerous. Benthic forms are mostly absent when centric diatoms are abundant, and 

most numerous following the decline of the centric peaks. During the spring of 1994 

benthic forms were particularly numerous and their peak corresponds to a poor spring 

centric diatom peak. 
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Planktonic green algae were most numerous during May and June. Some green 

taxa, such as Scenedesmus spp. and Monoraphidium contortum, occurred every summer 

whereas other taxa, such as Actinastrum hantzschii, were far more numerous during 

1996, than other years. Several taxa of green algae were most abundant during 1996, 

less so in 1995 and least numerous in 1994. The 'large' acicular green alga Koliella 

longiseta differed from other greens in its early annual occurrence and absence at other 

times. 

Rhodomonas lacustris var. nannoplanktica was more ubiquitous than other taxa, 

being abundant over a wide period. Oscillatoria redekei and O. limnetica had a 

sporadic occurrence, being almost entirely absent during 1995 and having their peaks at 

various times during 1994 and 1996. Unidentified flagellates and picoplankton exhibit 

some similarities in their temporal occurrence but no obvious patterns are evident. 
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Figure 8.2 Time series of centric and pennate diatoms at km 91.7 (25/6/93 to 27/5/97). 
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Scatter plots 

The relationship between selected phytoplankton taxa and discharge, temperature 

and light are shown in Figures 8.5, 8.6 and 8.7. The scatter plots indicate the optimum 

conditions for the individual taxa. Discharge and light were expressed as either daily 

values or values averaged over preceding days (as indicated fd). With the exception of 

centric diatoms the graphs consist of all data recorded for the taxa shown. Centric 

diatom plots are shown for all data and for date from the period 1 January to 30 June 

and colour coded for the three dominant groups (Table 8.3). 

In many cases the optimal taxa response to one of the physical variables is clear, 

but in other cases these is considerable scatter (e.g. Oscillatoria redekei and O. 

limnetica - Figure 8.6). In the former situation response lines could be readily applied 

to the plots by hand or in the example of N. acicularis (Figure 8.7) fitted 

mathematically. In this case a second order polynomial function has been fitted around 

the periphery of the scatter to describe the optimal behaviour of the taxa to changing 

physical conditions. Furthermore, the functions can be differentiated and the first 

derivative used to establish the gradient of the curve and the point at which maximum 

growth occurs. In the case of temperature the maximum abundance of N. acicularis 

occurs at 11.3°C. 

Following this method the differing responses of the taxa to their physical 

environments can be examined. Some taxa have their optimal growth at low 

temperature and light (e.g. N. acicularis and centric diatoms) relative to others which 

have their optimal growth under higher light and temperature conditions (e.g. 

Scenedesmus spp.). The observed patterns of optimal conditions reflect the periodicity 

of taxa in the time series (Figure 8.2, 8.3 and 8.4), with the diatoms occurring earlier in 

the year than most of the green taxa. The scatter plots also suggest that some species 

are more ubiquitous than others, indicated by the rate of response. For example, 

Rhodomonas has a much shallower response curve to temperature and light than 

Actinastrum. 

Oscillatoria redekei and O. limnetica species show a wide scatter and this may 

reflect their infrequent occurrence in the plankton or their lentic origin. Other taxa that 

show a wide scatter are the picoplankton and unidentified flagellates and this could 

result from the mixed nature of these groupings. 
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The influence of discharge will now be considered. Although most taxa exhibit 

their optimal growth at a distinct flow regime, interpretation has to carried out with the 

knowledge that the minimum recorded discharge between 1993 and 1997 was 

1.4 m^ s '. Therefore extrapolation of taxa dynamics below this flow rate cannot be 

undertaken. Nevertheless, those taxa which are most dominant in the spring have a 

higher discharge maxima than summer taxa. For example, N. acicularis were most 

abundant at a discharge of 6.3 m^ s"' whereas N. fruticosa were most numerous at 

3.0 m^ s\ 

The centric diatoms size classes exhibit a differential response to physical 

variables. Centric diatom < 5|im 0 and centric diatoms > 6 to < 10|im 0 have a similar 

response to discharge, temperature and light, being most abundant at high flow (approx. 

7 m^ s"') and low temperature (approx. 11°C for < 5|im 0 and 12°C for > 6 to < lO^im 

0 ) and having a similarly wide light range (approx. 2334 to 5600 watts m'̂  d"'). The 

centric diatoms of the size class > 11 to < 20|im 0 , which consist principally of S. 

hantzschii fo. tenuis, occurs at a lower discharge (approx. 4.8 m^ s"'), higher 

temperature (approx. 14.5°C) and narrower light response (approx. 4171 watts m^ d ') 

than the other two centric diatom taxa. 

Comparison of the centric diatom plots for the full year and first half of the year 

indicate a greater spread of taxa in the latter part of the year and much of the scatter of 

low abundance is for the size class > 11 to < 20|im 0 . Centric diatoms < 5[Lm 0 can 

persist in the latter part of the year at an abundance of about 100 cell mL"', as seen 

during the summers of 1994 and 1995. 

Some of the relationships with discharge indicate an element of 'system flushing', 

where a small number of samples correlate positively with increasing discharge. An 

example of flushing can be seen in Oscillatoria redekei and O. limnetica (Figure 8.6), 

where autumn counts exceeded 100 cells mL"' at a daily discharge greater than 

70 m^ s"'. 
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Figure 8.5 Centric diatoms groups, Chlorella spp. and Scenedesmus spp. plotted 
against discharge, temperature and light. Centric diatom groups are colour coded: 
red, < 5^m 0: black. > 6 to < 10|4m 0 and blue, > 11 to < 20|am 0 + S. hantzschii fo. 
tenuis, fd = indicates the number of days over which the data were averaged to 
produce the minimum of scatter. 
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Biplots 

The results of the CCA analysis are shown in three pairs of Biplots (Figure 8.8, 

8.9 and 8.10) and were undertaken for all data and for the 1 January to 30 June and 1 

July to 31 December subsets. The results of the initial stepwise analyses, to evaluate the 

significance of environmental variables, are shown in Table 8.4. The same variables 

were used for the full year and 1 January to 30 June analyses, with averaged light and 

discharge being preferentially selected over daily values, and N and P were non­

significant. The analysis of the 1 July to 31 December data resulted in the selection of 

two variables, light and flow, with averaged data again being selected in preference to 

daily values. 

Table 8.4 Evaluation of the significance of environmental variables for inclusion 
in the CCA models. Only those variable with a p value < 0.05 were included in 
the final analyses. Labels in brackets are identifiers used in the biplots (Figure 
8.8, 8.9 and 8.10). 

Al l 1 Jan. to 1 Jul. to 
Variable data 30 Jun. 31 Dec. 

3—I 
Daily discharge (m s") 

NS NS NS 
4 day average discharge (m^ s"') (Flo04) 0.005 0.005 0.005 
Daily temperature (°C) (Tmp) 
Daily light (watts m^ d"') 

0.005 0.005 NS Daily temperature (°C) (Tmp) 
Daily light (watts m^ d"') NS NS NS 
6 day average light (watts m^ d'') (Lgt06) 0.005 0.005 0.005 
SiOi-Si (mg L"') (Si02) 0.005 0.005 NS 
FRP (mg L"^) NS NS NS 
NH4-N (mg L"') NS NS NS 
NO3-N (mg L"') NS NS NS 

Each pair of biplots show the first two ordination axes along with environmental 

variables for the taxa groups and samples. The interpretation of the CCA biplots is not 

intuitive so a brief explanation is included. CCA is a combination of ordination and 

multiple regression, with taxa or samples indicated by points and environmental 

variables by arrows. The taxa points indicate the relative location of the two-

dimensional niche of that taxa in the ordination diagram. The arrows for the 

environmental variables run from the origin of the diagram, and the arrow's coordinates 

are the correlation of the variable with the axes. The strength of the environmental 

correlations are indicated by the arrow's length (ter Braak and Verdonschot, 1995). 

For example, in Figure 8.8 Nitzschia lanceolata (N. Ian.) correlates positively 

with flow (ca. +1.0) and negatively with temperature and light (ca. -1.0), whereas 

Nitzschia fruticosa (N. fru.) exhibits the opposite trend. In summary, the pairs of 
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biplots indicate the influence of environmental variables on the taxa groups and under 

what conditions they prevail. The relative positioning of the samples, to the taxa groups 

and environmental variables, completes the interpretation. The large number of 

samples prohibited individual labelling and the approximate timing of the samples has 

been generally identified on the plots. 

The results support the assumptions made from the time series and scatter-plots 

and adds further information not available in the aforementioned assessments. The 

analysis using all of the data and the 1 January to 30 June period are mostly similar. 

Spring samples correlate positively with high discharge and negatively with light and 

temperature, whereas samples from early summer have the opposite response (Figures 

8.8 and 8.9). 

A gradient of spring taxa correlating with discharge is evident. At high discharge, 

benthic diatoms such as Navicula lanceolata (N. Ian.) and the colonial-planktonic 

pennate diatoms Asterionella formosa and Diatoma elongatum (A.f & D.e.) are most 

abundant. A lower discharge tends to favour the centric diatoms (CD), Nitzschia 

acicularis (N. aci.) and Koliella (Kol.). The larger centric diatoms (CD 10-20) correlate 

negatively with the silicate concentration more so than the other centric groups. 

Summer samples correlate positively with increasing temperature and light and 

negatively with increasing discharge. This period favours the greens Dictyospherium 

(Diet.) and Actinastrum (Act.) and most positively the colonial pennate diatom 

Nitzschia fruticosa. Other green algae, like Scenedesmus (Seen.) and Chlorella (Chlor.) 

appear to be less influenced by light than temperature and occur at a lower temperature 

than Actinastrum and Dictyosphaerium. 

Dissimilarities between the results for all data and 1 January to 30 June period are 

also indicative of temporal change in the Nene. For example, those taxa classed as 

'benthic' (benth.) are located differently within the biplots, for the two periods. The 

analysis for all data indicates an association between the 'benthic' forms and the 

summer, but in the 1 January to 30 June analysis (when this period is unavailable) 

benthic diatoms occur at high discharge and their presence is presumably the result of 

scouring. Likewise, the occurrence of Rhodomonas (Rhod.) under differing physical 

conditions is indicative of its ubiquitous occurrence. 

The analysis for the 1 July to 30 December period supports much of the above 

(Figure 8.10). However, the reduced number of significant physical variables, and the 
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short arrows produced, indicates that much of the variability is due to factors other than 

those considered here, as concluded previously. 
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Figure 8.8 Biplots of the CCA analysis for all data. Environmental and taxa data above 
and environmental and sample data below. The cumulative percentage of variance 
explained for taxa-environment relationship is 48% and 70% for axes one and two 
respectively. The taxonomic groups Dinoflagellates and Nitzschia fruticosa were 
outliers and were removed in the final analysis (relative position indicated by black 
arrows). Seasonal distribution of samples shown in italics. Abbreviations for taxa and 
environmental variables are shown in Table 8.3 and Table 8.4. 
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Figure 8.9 Biplots of the CCA analysis for 1 January to 30 June data. Environmental 
and taxa data above and environmental and sample data below. The cumulative 
percentage of variance explained for taxa-environment relationship is 53% and 72% for 
axes one and two respectively. The taxonomic groups O. agardhii and Nitzschia 
fruticosa were outliers and were removed in the final analysis (relative position 
indicated by black arrow). Seasonal distribution of samples shown in italics. 
Abbreviations for taxa and environmental variables are shown in Table 8.3 and Table 
8.4. 
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Figure 8.10 Biplots of the CCA analysis for 1 July to 31 December data. 
Environmental and taxa data above and environmental and sample data below. The 
cumulative percentage of variance explained for taxa-environment relationship is 85% 
and 100% for axes one and two respectively. The taxonomic group Chrysophyceae 
was an outliers and was removed in the final analysis (relative position indicated by 
black arrows). Seasonal distribution of samples shown in italics. Abbreviations for 
taxa and environmental variables are shown in Table 8.3 and Table 8.4. 
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Silica 

The silicate concentration is reduced to a low level during periods of diatom 

abundance and this is reflected in all three centric diatom groups and Nitzschia 

acicularis (Figure 8.11). Swale (1964) calculated the silica requirements for 

Stephanodiscus hantzschii in culture and these calculations allow the silica requirements 

for further increases in the centric diatoms populations to be estimated. At the lowest 

silicate concentration (0.2 mg L"') the larger centric diatoms range from 1097 to 16710 

cells mL"'. These concentrations have a siUca requirement of 0.04 and 0.64 mg L' ' 

respectively for a fitrther cell division. 

The greatest and second greatest abundance of centric diatoms (24888 cells mL"' 

on 1 April 1997 and 23174 cells mL'' on 8 April 1997 respectively) occurred in the 

intermediate size class, at respective SiOi-Si concentrations of 0.9 and 0.5 mg L' ' . The 

population size at the start of this period had a silica requirement of approximately 0.96 

mg L"' to facilitate a ftirther division. There was enough siUca present for most of the 

population to complete a further division, although by the end of the period the Si02-Si 

concentration was significantly reduced without a concurrent increase in diatom 

abundance. It appears there was enough silica to maintain the population (against loss 

factors) but not enough to facilitate further enlargement. It is therefore likely that the 

magnitude of centric diatom populations was limited by the availability of silica. 
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Figure 8.11 Relationship between centric diatoms and Nitzschia acicularis and Si02-
Si concentration. Centric diatom groups: red, < 5|am 0 ; black, > 6 to < 10|im 0 and 
blue, > 11 to < 20pm 0 + 5". hantzschii fo. tenuis. 
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8.5 Short-term trends 

Four surveys of short-term temporal change in chlorophyll and phytoplankton 

were undertaken. A 24-h pilot study during April 1996 and three more extensive 

studies were carried out during early and mid April 1997 and early May 1997. 

Throughout the 1997 surveys discharge, light and temperature were recorded at 30-min, 

10-min and 15-min intervals respectively and chlorophyll and phytoplankton at varying 

intervals between 1 and 4 h. 

Temporal change in chlorophyll and phytoplankton were investigated using 

regression analysis, with discharge, temperature and light as predictors. Temperature 

and discharge were averaged over varying periods preceding the sample and light was 

integrated in the same way. 

24-h survey April 1996 

During the 24-h sampling period, trends in temperature and light varied 

predictably, with an evident lag in temperature (Figure 8.12). Chlorophyll does exhibit 

a temporal trend but no obvious relationship with depth. The diatom data also has a 

temporal trend and two of the samples have a significant difference for depth (Mann 

Whitney U tests: 14:00, p = 0.010; 18:00 p = 0.013), with a significantly greater 

abundance occurring at the surface. Chlorophyll and cell numbers correlate positively 

with temperature, with surface concentrations of diatoms producing the strongest 

relationships and surface chlorophyll concentrations the poorest. The survey was 

undertaken during a period of gradually declining flow (5/4/96 = 6.06 m^ s"'; 4/4/96 = 

5.96 m^ s"') and the Si02-Si concentration was 1.2 mg L"' on the 3/4/96. 
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Figure 8.12 Temporal change in temperature, light, chlorophyll and cell count at 
km 91.7 over a 24-h period at two depths. Upper: spot temperature (red) and 4-h 
integrated light (dark red). Middle: chlorophyll. Lower: Centric diatoms > 6 to < 
lOfim 0 . Counted using 75 SF. CI fitted using student t. Blue = 0 m and red = 1 m. 
Measurements and samples were taken every 4-h between 4/4/96 18:00 and 5/4/96 
18:00. Phytoplankton samples have been offset by 15 min for clarity. 

96-h survey early-April 1997 

The results of the 96-h survey are shown in Figures 8.13 and 8.14. Discharge was 

relatively consistent throughout the sample period, but temperature and light varied 

considerably. 

Chlorophyll correlated significantly with increasing temperature (4 h; r̂  = 0.23; p 

< 0.05; n = 25). Centric diatoms > 6 to < lOjam 0 correlated most significantly with 

discharge and temperature (2 h; r̂  = 0.54;p < 0.05; n = 25) and their abundance 

increased significantly through most days. With few exceptions. 4-h diflferences were 

133 



insignificant and most significant change occurred over several sample intervals. Cell 

counts ranged from 16192 to 30023 and averaged 24569 cell mL''. 

Centric diatoms > 10 to < 20 |a.m 0 had a similar pattern of occurrence as the 

smaller diatoms, with cell counts generally increasing throughout the survey period. 

Although the larger diatoms were much less abundant and correlated significantly with 

light (24 h; r̂  values = 0.15; p < 0.05; n = 27). These centric diatoms did not exhibit as 

much diurnal variation in abundance as the smaller taxa and had greatest variation 

during the warmer period, where a significant increase is evident. 

Nitzschia acicularis counts correlated most significantly with discharge and light 

(24 h; r̂  = 0.34; n = 27). These diatoms were most abundant early in the survey 

showing a general decline with time. Koliella longiseta numbers were relatively 

consistent throughout most of the survey with decline latterly. This taxa did not 

correlate significantly with any of the variable tested but responded most significantly to 

changes in temperature. 

The 96-h period was put into longer-term perspective by comparing daily 

chlorophyll and phytoplankton values (08:30) with those occurring several days before 

and after the survey (Figures 8.15 and 8.16). The physical variables used for this 

evaluation were temperature, daily and 4-day average discharge and daily, 3 and 6-d 

average light. This overview indicates that the survey was carried out during a period of 

generally declining discharge and increasing temperature with variable solar radiation. 

The chlorophyll data indicate a trend of general increase and correlated most 

significantly with discharge (4 d discharge; ? = Q.9\ \p< 0.05; n = 7). Similarly, the 

centric diatoms exhibited an increase in abundance over time, with the smaller taxa 

responding to temperature and flow and the larger taxa with flow alone (Centric diatoms 

> 6 to < 10 | im 0 : 4 d discharge; r̂  = 0.96; p < 0.05; n = 7. Centric diatom > 10 to < 20 

|im 0 : 4 d discharge; r̂  = 0.90; p < 0.05; n = 7). 

Nitzschia acicularis and Koliella longiseta responded most significantly to 

temperature and light respectively, but the results were not statistically significant. 

SiOi-Si was not monitored throughout the survey, but the concentrations were 1.8, 

0.9 and 0.5 mg L"' on the 26 May, 1 April and 8 April (08:30) respectively. 

134 



Discharge 

4 t 

3 ^ 

o 

Temperature 

12 T 

Solar radiation 

1501 

100 . 

50 • 

0 

Chlorophyll 

150 T 

100 

50 
31 4 

31/3/97 to 4/4/97 
Figure 8.13 Discharge, temperature, solar radiation and chloroph\ ll at km 92.5 
(31/3/97 to 4/4/87). Discharge and temperature are based on 30-min readings, light on 
5-min readings and chlorophyll was sampled every 4 h. 

135 



Centric diatoms > 6 to < 10pm 0 

35000 -J 

30000 • 

25000 • 

20000 • 

15000 - 1 — 

Centric diatoms > 11 to < 20pm 0 + 5. hantzschii fo. tenuis 

10000 

8000 

6000 

4000 

2000 

0 

T I T T T T 

^ Nitzschia acicularis 
o 2000 1 

1500 

1000-

500 -

0 

Koliella longiseta 

900 - I 

600 - I 

300 A 

31 2 

31/3/97 to 4/4/97 
Figure 8.14 Centric diatoms > 6 to < 10pm 0 , Centric diatoms > 11 to < 20pm 0 (inc. 
S. hantzschii fo. tenuis), Nitzschia acicularis and KoliclUi li>inj;i\c!ii at km 92.5 
(31/3/97 to 4/4/87). Samples were collected every 4 h. 
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(26/3/97 to 8/4/87). Discharge is a daily average, light a daily integral and temperature 
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Figure 8.16 Centric diatoms > 6 to < 10pm 0 , Centric diatoms > 11 to < 20pm 0 (inc. 
S. hantzschii fo. tenuis), Nitzschia acicularis and KolicUu lojii^iscui at km 92.5 
(26/3/97 to 8/4/87). Samples were collected at 08:30. 
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96-h survey mid-April 1997 

The results of the mid-April survey are shown in Figures 8.17 and 8.18. 

Compared to the previous survey this one was undertaken during a period of lower, but 

more variable, discharge and higher temperature. Chemical determinands were also 

measured at 4-h intervals for the first 48 h of the survey (SiOi-Si, NH4-N, TON, TRP 

and pH). 

During this survey the abundance of centric diatoms > 6 to < 10 |im 0 were 

significantly lower than during early April, but the numbers of larger centric diatoms 

were similar to the previous survey. The Si02-Si concentration was below the 

detectable limits (< 0.1 mg L"') through much of the survey, although it increased 

overnight, 14/15 April, and following increased discharge on the 16 April. The 

combined abundance of centric diatoms during the 14 and 15 April was approximately 

11500 cell mL'' and would require a silica concentration of 0.4 ml L"' to facilitate a 

further division of the population (Swale, 1963). As the silica concentration at this time 

was < 0.1 mg L ' ' it is likely that diatom abundance was silica limited, an assumption 

which is supported by increases in diatom numbers occurring when the Si02-Si 

concentration increased to 0.5 mg L"'. 

The abundance of the green alga Monoraphidium contortum was similar to the 

early-April survey. M. contortum did not exhibit any marked increases in abundance 

throughout the survey, perhaps indicating the diatom increases were due to increased 

silica rather than some other variable which would have also been reflected in the 

abundance of this species. 

During the first 48 h of the survey TRP and TON concentrations were 1.3 mg L ' ' 

and 8.9 mg L'^ respectively. Ammonium was reduced to less than 0.03 mg L"' and pH 

varied from 8.5 to 7.6 concurrently with changes in chlorophyll, being most alkaline 

during periods of greatest chlorophyll concentration. 
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Figure 8.17 Discharge, temperature, solar radiation and silica at km 92.5 (14/4/07 to 
18/4/97). Discharge and temperature are based on 30 min readings, light on 5-min 
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Figure 8.18 Chlorophx ll, Centric diatoms > 6 to < 10pm 0 , Centric diatom > 11 to < 
20pm 0 and S. hantzschii fo. tenuis and \lon(>rui)hidiiim conioriinn at km 92.5 
(14/4/97 to 18/4/87). Samples were taken every h and phytoplankton samples were 
selected to reflect changes in chlorophyll concentration. 

96-h survey early-May 1997 

The short-term survey of mid-May 1997 covered a period of considerable physical 

diversity. During this survey temperature decreased over four degrees, discharge more 

than doubled and there was a large pulse mid-way through the period (Figure 8.19). 
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Figure 8.19 Discharge, temperature, solar radiation and 11 at km 92.5 (6/5/97 
to 8/5/87). Discharge and temperature are based on 30 min readings, light on 5 min 
readings and chlorophyll was sampled every 2 h. 

This period of change coincided with an increase in chlorophyll, which correlated 

significantly with decreasing temperature (r' = 0.37; p < 0.05; n = 28). The abundance 

of four taxa from the former and latter part of this period were estimated and a 
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significant increase in centric diatoms established (Figure 8.20). The green algae 

Scenedesmus acuminatus and S. communis decreased in abundance, and in cells per 

unit, through the period of physical change but not significantly so. 

Centric diatoms > 6 to < 10pm 0 (blue) and Centric diatoms > 11 to < 20pm 0 
+ 5. hantzschii fo. tenuis (black) 
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Figure 8.20 Centric diatoms > 6 to < 10pm 0 , Centric diatoms > 11 to < 20pm 0 and 
S. hantzschii fo. tenuis, Scenedesmus communis and S. acuminatus at km 92.5 (6/5/97 
to 8/5/87). Samples counted 6/5/97 00:00 and 7/5/97 20:00 and were chosen to reflect 
change. Numbers in lower plot are average cells per unit. 

8.6 1994 nood event 

A flood event that occurred during the September 1994 provided an opportunity to 

investigate the influence of increasing discharge on phytoplankton composition (Figure 

8.21). The summer of 1994 (1 July to 13 September), preceding the September spate, 

had an extended period of low chlorophyll (average = 3.6 pg L"'. maximum = 6.3 L' ') 

and a relatively consistent discharge (average = 3.5 m^ s'', maximum = 4.8 m^ s"'). 

Very heavy precipitation on the 14/9/94 (daily rainfall ^ 73 mm. Wittering) resulted in a 

three fold increase in discharge over the subsequent three days (maximum daily 

discharge - 38 m^ s"', on 16/9/94). 
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The phytoplankton composition was explored by constructing taxa groups, based 

on the methods described above. The phytoplankton preceding the September spate 

consisted mainly of the Rhodomonas lacustris var. nannoplanktica, picoplankton and 

pennate diatoms. During this period total phytoplankton abundance remained less than 

5000 cells mL"', with between 20 and 30 individual taxa (Figure 8.21). The abundance 

and number of some taxa tended to increase (e.g. centric diatoms) throughout the study 

whereas other taxa remained relatively constant (e.g. pennate diatoms and 

picoplankton). The abundance of centric diatoms increased from early August. This 

trend corresponds to decreasing temperature, with average monthly values of 21, 18 

and 14°C for July, August and September respectively. 

The spate flows during September resulted in a significant change in the 

phytoplankton taxa. Blue-green algae, which were very scarce preceding the spate, 

became dominant over several days. The blue-green algal peak consisted mainly of 

Oscillatoria agardhii, O. limnetica and O. redekei the former of which exceeded 6000 

cells mL"' and was not found in the plankton of the Nene before the flood. Other blue 

green algae found during the spate, which are not normally found in the plankton, were 

Aphanizomenonflos-aquae, Merismopedia and Microcystis spp. 

Scenedesmus acuminatus and S. communis, which were the most abundant green 

algae preceding the September spate also increased in abundance throughout the spate. 

Likewise, Picoplankton, were the most numerically abundant taxa throughout most of 

the survey, they increased in abundance with increasing discharge and remained 

abundant following the initial spate. 

Perhaps surprisingly, the number of pennate diatom taxa did not increase markedly 

with spate flow and remained relatively constant throughout. 

8.7 Picoplankton survey 

The results of the picoplankton survey and fluorescence analysis are shown in 

Figure 8.22. Picoplankton were most abundant at times when the larger phytoplankton 

were less numerous, as seen in the routine counts. Blue-green picoplankton were more 

abundant than greens, and of the blue-green picoplankton spherical cells 1 |xm 0 were 

most numerous. The green picoplankton had a more sporadic occurrence, with 

spherical cells < 1 |j,m 0 being most abundant in the winter. The most abundant green 
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picoplankton group were spherical cells 1 pm 0 and these had their period of greatest 

abundance shortly before the spring blue-green picoplankton peak. 
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Figure 8.22 Picoplankton at km 91.7. 

8.8 Sample frequency 

The influence of varying sample frequencies on the 1996 chlorophyll data set at 

km 91.7 is shown in Figure 8.23. Altering the sample frequency from 7 to 14 d results 
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in the annual recorded chlorophyll maximum being reduced from 210 to less than 140 

fj,g L" ' . Further increasing the sample frequency to 28 d reduced the annual recorded 

chlorophyll maximum to 89 p̂ g L ' ' . However, the influence o f sample frequency has 

Uttle effect over most o f the year. 
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Figure 8.23 The impact o f varying sample frequencies on 1996 chlorophyll data. 

8.9 Discussion 

Analysis o f temporal trends provides a detailed insight into the behaviour o f 

chlorophyll and phytoplankton, and provides an opportunity for fiirther interpretation o f 

the long-term chlorophyll data. 

Further analysis o f the chlorophyll data, substituting light expressed as 'sunshine' 

h wi th integrated irradiance, made little difference to the strength of the resulting 

relationships. This supports the findings o f the previous chapter and identifies light as a 

poor predictor o f chlorophyll concentration, particularly in the first hah" o f the year. 

The construction o f taxa groups reduced a large data set (188 taxa) to a 

manageable size (32 taxa). Taxa grouping is a compromise between ease o f 

interpretation and loss o f information, but i f undertaken with care should result in a 

greater benefit than loss. Taxa grouping was possible because the twenty most 
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abundant taxa constituted 88% of all taxa recorded and centric diatoms (excluding 

Melosira varians and Skeletonema spp.) 44% of all taxa. 

As already mentioned, the danger of grouping taxa is loss of information. For 

example, six Scenedesmus spp were recorded during the counts and these were grouped 

into a single category for further analysis. However, of the six taxa Scenedesmus 

species S. communis and S. acuminatus made up 60% and 23% respectively. The 

response of these two taxa to discharge, temperature and light was very similar, so 

grouping was thought justifiable. I f taxa were inappropriately grouped then this would 

be evident in the scatter plots (Figures 8.5, 8.6 and 8.7) and this is the most likely 

explanation for the wide variation seen in the scatter plots of picoplankton against 

physical variables. 

Picoplankton were most abundant when the larger taxa were scarce, as seen in 

several lake studies (Happey-Wood, 1988). The detailed study of picoplankton 

indicates varying periodicities and abundances of the taxa, with blue-green forms being 

most numerous. The separation of the two main picoplankton groups (spherical and rod 

cells < 3 |Lim 0 ) in the CCA biplots supports this, with the rod cells being associated 

with greater light and discharge values (early spring and autumn) and the spherical cells 

with temperature (summer). Although being numerically abundant the picoplankton 

constitute a much smaller proportion of the total phytoplankton when expressed as a 

volume. 

The three tiered approach to taxa analysis (time-series, scatter plots and CCA 

biplots) are complementary. The analysis clearly identifies periodicities and 

abundances in response to changes in discharge, temperature and light. The physical 

environment is most favourable to some taxa during periods of high discharge, low 

temperature and light (Spring taxa: e.g. Nitzschia acicularis and Koliella longiseta). 

Whereas, other taxa are most abundant during periods of low discharge, high 

temperature and light (Summer taxa: e.g. Actinastrum hantzschii and Dictyosphaerium 

pulchellum). A few taxa appear to have a universal distribution, being able to 

proliferate throughout much of the year (e.g. Rhodomonas lacustris var. 

nannoplanktica). These categories are not absolute and gradations of taxa occurrence 

are evident, as seen in the centric diatom size classes. 

The results indicate a shift f rom smaller to larger centric diatoms (Stephanodiscus 

hantzschii to S. hantzschii fo . tenuis), which are concurrent with decreasing discharge. 
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increasing temperature and light. This trend was evident in the time-series, scatter plots, 

biplots and short-term high-frequency samples. The biplots also identified the larger 

centric diatoms as being associated with low silicate concentration, more so than the 

other size classes. 

Although there is a paucity of silicate data it has still been possible to demonstrate 

silica limitation. The results here fol low the findings of Swale (1963) and population 

increases are restricted when silica concentration is low. Silica limitation has been 

demonstrated in lakes (Lund et al., 1963) but rivers are further complicated by varying 

replenishment rates. Figures 8.17 and 8.18 clearly show how increased discharge can 

result in a concurrent increase in Si02-Si and sequentially facilitate an increase in 

diatom abundance. 

This phenomenon could explain some of the temporal trends seen in the Nene. 

The low temperature optimum for centric diatoms could be the result of selection 

pressure for their proliferation when silica is most abundant, and this w i l l often be early 

in the year when temperature and light are limited. The temperature optimum for 

centric diatoms > 6 to < 10 | i m (Stephanodiscus hantzschii) found during this study is 

considerably lower than other British rivers (Swale, 1969). 

Few detailed studies of diurnal trends in phytoplankton have been undertaken. 

This study clearly shows considerable diurnal change in chlorophyll and phytoplankton 

abundance. During his study of phytoplankton and chlorophyll in the Danube at God, 

Kiss (1996) attributed daily increases, which often resulted in two peaks per day, to the 

rapid division of centric diatoms, h i the Danube poor agreement was found between 

cell numbers and chlorophyll, which was thought to result f rom overnight decreases in 

pigment concentration. This is contrary to the finding here where concurrent changes in 

chlorophyll and phytoplankton abundance can be seen. 

The influence of N and P on phytoplankton abundance in the Nene appears to be 

negligible, as concluded f rom the long-term data. However, ammonium concentrations 

are reduced to very low levels during phytoplankton peaks and the aforementioned 

conclusion assumes that nitrate is readily utilised by phytoplankton in the absence of 

ammonium. 

The analysis of the 1994 September spate revealed some patterns of abundance 

not previously evident. The increase in discharge brought about a large increase in 

phytoplankton abundance and number of taxa, which lasted for several days. This 
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pattern is contrary to other studies that have linked increases in f low with a decline in 

phytoplankton abundance (Lack, 1971). Naturally, sustained increases in f low wi l l 

eventually result in reduced phytoplankton abundance, but in the Nene there is an 

element of flushing which results in concurrent high f low and phytoplankton 

abundance. This phenomena w i l l contribute to the overall variability in the relationship 

between phytoplankton and physical variables and produce some of the scatter seen in 

previous plots (Chapter 7). 

Increases in discharge brought about by sustained precipitation wi l l have a two­

fo ld flushing effect; Flushing of standing waters and the flushing of the river itself. The 

former of these situations is evident in Figure 8.21. The sudden increase in blue-green 

algae and the occurrence of Microcystis and Aphanizomenon, which are normally 

associated with lentic systems, was probably the result of flushing from lakes, and their 

sudden appearance possibly indicates the lakes were relatively close by. Lakes along 

tributary 3 (Wil low Brook) are a likely source of these algae (see Section 9.4). 

The continued occurrence of centric diatoms, cryptomonads and particularly green 

algae after the spate indicates that these were being flushed from the river itself, or more 

distant lakes than those where the initial increase in blue-green algae originated. The 

low abundance of pennate diatoms is of interest, as this group would be expected to be 

scoured f rom the benthos throughout the spate. A plausible explanation for low 

numbers of benthic diatoms is that they were removed from the system relatively 

suddenly and this was not detected by the daily sample programme. This could have 

been the case, especially i f many of the benthic forms were attached to macrophytes, 

which would have been flushed f rom the system with the onset of increased discharge. 

The short-term samples and the frequency adjustments made to the 1996 

chlorophyll data provide an insight into sample programme design. The most efficient 

use of sampling effort would be to concentrate on periods when plankton are most 

abundant. The difference in the maximum chlorophyll concentration recorded for 1996 

between the 7 and 14-d samples is dramatic, although the overall trend is unchanged. 

However, 1996 had a high chlorophyll concentration compared to other years. During 

1994 the chlorophyll peak was greatly restricted compared to 1996 (Figure 7.3) and 14-

d sampling would have resulted in an increased chance of missing the peaks. The short-

term analysis for chlorophyll and phytoplankton indicate how these can vary 
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considerably through the day. Therefore care must be taken when considering daily 

chlorophyll data when samples are taken at different times of the day. 

In the Nene a sufficient sampling programme would include samples for 

phytoplankton and chlorophyll taken at weekly intervals between 1 March and 31 

October and at two-weekly intervals at other times (excepting any extraordinary events, 

like extreme drought). It is also preferable i f silicate samples are taken along with the 

weekly samples and preferably these would be analysed to a lower level of detection. 

Nutrient data collected as part of the EA routine monitoring programme is probably 

sufficient, although this would need to be reviewed periodically. 

Many of the results collected during this work provide a foundation for dynamic 

modelling of phytoplankton in the Nene. The scatter-plots and examples of fitted lines 

provide the mathematics for relating species abundance to changes in the physical 

environment, as does the short-term trend data. Although lines might have to be fitted 

more precisely to some data, than the example given. The findings also highlight the 

importance of calibrating a Nene phytoplankton model with actual data f rom this river 

and how inappropriate data taken f rom the literature would be. However, any model of 

the Nene would also need to consider other biological and physical loss factors (Chapter 

10). 

This and the previous chapter have explored temporal trends at km 91.7. The next 

chapter w i l l now put these observations into a wider context. 

8.10 Summary 

1 The substitution of solar radiation data for sunshine h made little difference to the 

significance of light as a predictor for chlorophyll concentration. 

2 188 taxa were recorded in the Nene at km 91.7. The 20 most abundant of these 

taxa constituted 88% and centric diatoms (minus Melosira varians and Skeletonema 

spp.) being 44% of the total. 

3 Taxa groups (32) were constructed and used to explore their relationship with 

physical and chemical variables, using time-series, scatter plots and CCA biplots. 
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4 Taxa occurrence and abundance was linked to physical variables and silicate 

concentrations, which were validated using long and short-term data. 

5 There is evidence that the magnitude of centric diatom populations are limited by 

the availability of silica. This conclusion is based on the concurrent abundance of 

centric diatoms and silicate concentrations. 

6 Picoplankton consisted mainly of blue-green algae. Green algae picoplankton had a 

different periodicity to the blue-greens and tended to be most abundant during 

periods when other algae were scarce. 

7 Spate flows during September 1994 provided additional information on temporal 

trends. Phytoplankton abundance increased significantly with the onset of spate 

flows. A marked increase in blue-green algae was probably the result of flushing 

f rom lentic systems. Phytoplankton that were normally present in the river 

persisted over several days of high f low. 

8 A sampling programme is suggested that consists of weekly samples between 1 

Apr i l and 30 September and fortnightly at other times. 
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9 SPATIAL DISTRIBUTIONS 

9.1 Introduction 

The main objective of this chapter is to place the temporal trends presented in the 

preceding chapters into a wider perspective. The previous two chapters explored 

temporal trends in chlorophyll and phytoplankton at km 91.7 (Wansford). This chapter 

expands on the previous two by looking at large and small-scale spatial trends. These 

studies include longitudinal trends in chlorophyll and phytoplankton (upstream of km 

91.7) and an investigation into localised trends, including a comparison between a bay 

and the main river and the influence of lentic systems on river phytoplankton 

composition. 

9.2 Longitudinal trends 

Chlorophyll 

Spatial trends in chlorophyll concentration are shown in Figure 9.1, which uses all 

available data f rom 1 January 1993 to 31 December 1997. The chlorophyll 

concentration increases markedly in the three most upstream sites and mostly so 

between km 22.4 (Duston M i l l ) and km 34.0 (Great Bill ing). The data exhibit marked 

seasonality at all sites downstream of km 34.0, which is consistent with km 91.7. 

Each data set was standardised to produce an evenly spaced series and 

investigated using time series analysis (Table 9.1). During the analysis each series was 

decomposed into a linear trend, seasonal component and error. The trend data for each 

pair of sites, working in a downstream direction, were then compared using Mann-

Whitney U tests. 

A significant change in chlorophyll concentration occurred in most comparisons, 

but mostly so at the first three sites. Other changes, although significant, were small 

and no downstream trend was apparent downstream of km 64.6. 
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Figure 9.1 Spatial chlorophyll concentrations at eight main river sample points 

(1993 to 1997). 
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Table 9.1 Analyses o f spatial chlorophyll data. Showing n, average frequency of 
days between samples (Ave. Freq.), overall median o f data, median o f fitted trend and 
p values for Mann-Whitney U Tests. Tests are for paired samples working 

Site n Ave. Freq. 
Median chlorophyll (|ag L ' ' ) 
Overall Trend p 

km 22.4 (Duston Mil l ) 90 14 4.0 6.69 
km 34.0 (Great BiUing) 87 15 7.2 17.19 0.000 
km 39.8 (Hardwater Mi l l ) 88 15 5.4 21.87 0.000 

km 43.9 (Wellingborough) 82 16 5.0 23.66 0.000 
km 52.2 (IrtMingborough) 82 16 9.0 23.05 0.020 

km 64.6 (Thrapston) 82 16 8.1 28.41 0.000 
km 85.2 (Elton) 81 16 8.0 29.60 NS 
km91.7 (Wansford) 91 14 8.0 27.57 0.000 

Chlorophyll development in the upper part o f the navigation section was 

investigated by calculating retention time at three sites (km 34.0. km 39.8 and km 43.9). 

Chlorophyll concentration (January to June and restricted to 5°C to 15°C) correlates 

significantly with retention time (r"̂  = 0.38; p < 0.05: n = 80). approximately doubling 

with daily increases in estimated retention (Figure 9.2). 

CI. 

o 

retention time (d" ) 
Figure 9.2 Chlorophyll concentration plotted against retention time (1 January to 
30 June, restricted to between 5°C and 15°C). o = km 34.0; ^ = km 39.8: = k 
43.9. 

Figure 9.1 also indicates that the chlorophyll maxima at downstream sites occur 

earlier and are o f less magnitude than upstream sites, especially during dryer years. The 

situation was clarified by listing chlorophyll maxima and their date o f occurrence (Table 

9.2). 
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Table 9.2 Spring chlorophyll maxima (|xg L ' ' ) and date when they occurred 

Site 1993 1994 1995 1996 1997 

km 34.0 112(25/6) 35 (26/4) 77 (31/5) 127 (22/5) 67 (8/4) 
km 39.8 139(27/5) 73 (7/6) 170(16/5) 253 (5/6) 99 (8/4) 
km 43.9 155 (27/5) 99 (7/6) 192(16/5) 232 (5/6) 167 (23/4) 
km 52.2 135(11/5) 86 (7/6) 212(16/5) 231 (22/5) 99 (23/4) 

km 64.6 198(11/5) 78(12/5) 307(16/5) 188 (22/5) 151 (8/4) 
km 85.2 105 (10/5) 74 (12/5) 175 (20/4) 172 (8/5) 187(8/4) 

km91.7 189 (5/4) 106(12/5) 179 (20/4) 209 (8/5) 189 (8/4) 

The phenomenon o f spatially differential chlorophyll maxima was fiirther 

investigated by plotting chlorophyll peaks at dovrastream and intermediate locations 

along with contemporaneous velocity and temperature data (Figure 9.3). 
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Figure 9.3 Spring chlorophyll maxima at downstream and intermediate sites, 
velocities and temperature (1994 to 1996) from km 34.0 to km 91.7 (o = downstream 
chlorophyll maxima; x = chlorophyll maxima at intermediate sites). Dates o f maxima 
as Table 9.2. 
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Multiple-regression analysis identified temperature, velocity and downstream 

distance from source as significant predictors o f downstream spring chlorophyll 

concentration (r^ = 0.99;p < 0.05; n = 21), whereas spring chlorophyll peaks at 

intermediate sites were best predicted by temperature alone (r^ = 0.34; p < 0.05; n = 21). 

It is important to consider, at this point, that the longitudinal temperature record is likely 

to be biased by sampling method. Samples were mostly collected in an upstream 

direction and increases (or decreases) in daily temperature would be better represented 

in samples taken later in the day. 
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Figure 9.4 Three-monthly average velocities, temperature and chlorophyU 
concentrations from km 34.0 to km91.7 ( + = 1994; o = 1995; x = 1996). 
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Three-monthly average velocity, temperature and chlorophyll concentration are 

showTi in Figure 9.4. Velocities generally increase in a downstream direction, whereas 

temperatures decrease during the colder seasons and increase slightly during the spring 

and summer. Chlorophyll concentrations were low throughout the January to March 

and October to December periods, increasing in a downstream direction during the 

former period and declining in the latter. Chlorophyll concentrations were consistentK 

greatest during the Apri l to June period and most variable between July and September. 

Mukiple-regression analysis for combined period data, using velocity, 

temperature and downstream distance from source as predictors for chlorophyll 

concentration, identified significant relationships for the January to March and April to 

June periods. Temperature and velocity were the most significant predictors o f 

chlorophyll concentration for the January to March period (r^ = 0.62; p < 0.05: n = 21), 

and temperature and distance from source between Apri l and June (r"̂  = 0.37; p < 0.05: n 

= 21). Velocity best predicted the average chlorophyll concentration between July and 

September (r^ = 0.22; p < 0.05; n = 21) whilst none o f the predictors were significant for 

the October to December period. 

The influence o f temperature and velocity on spring chlorophyll concentrations 

was similar at four locations (km 34.0, km 43.9, km 64.6 and km 91.7) and exhibited 

similar characteristics o f those seen in the long-term data for km 91.7 (Figure 9.5). 
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Figure 9.5 Chlorophyll concentration plotted against temperature and velocity at four 
main river sites (both restricted to 1 January to 30 June; temperature restricted to 5 to 
15°C). o = km 34.0; + = km 43.9; 0 = km 64.6; x = km 91.7. 

Phytoplankton 

The spatial distributions o f phytoplankton taxa at four Nene locations are shown 

in Figures 9.6, 9.7 and 9.8. 
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Figure 9.6 Time series for Centric diatoms > 5 < 10 i^m 0 and Centric diatoms > 10 < 20 
[im 0 (inc. Stephanodiscus hantzschii fo. tenuis) at four Nene sites. Sites other than km 
91.7 were selectively analysed during periods when chlorophyll > 10 ^g L ' . 
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Figure 9.7 Time series Nitzschia acicularis and Sccnedcsnuis communis at four Nene 
sites. Sites other than km 91.7 were selectively analysed during periods when chlorophyll 
> 10 pg L- ' . 
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Figure 9.8 Time series o f KolieUu loiigisciu and Rhodomonas laciistris var. 
nannoplanktica at four Nene sites. Sites other than km 91.7 were selectively analysed 
during periods when chlorophyU > 10 |ag L"' (except Kolicllu at Thrapston and 
Wellingborough during 1995 which was not counted). 
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The timing and magnitude o f periods with abundant centric diatoms > 6 to < 

10|j,m 0 was similar to the chlorophyll, with km 91.7 having its peak earlier and o f less 

magnitude than upstream sites. This fmding is not surprising as these diatoms are the 

most abundant taxa during spring peaks. What is surprising though, and not obvious in 

the chlorophyll plots is the magnitude o f difference, with km 43.9 and km 64.6 having 

twice the abundance o f km 91.7 (Mann-Whitney U Tests: p = 0.000 for 16/5/95 and 

22/5/96, km 91.7 compared with km 64.6 and km 43.9). Additionally, the much greater 

abundance o f larger centric diatoms at the downstream site during 1994 and 1995 could 

be indicative o f silica limitation here, as this taxa mainly comprises Stephanodiscus 

hantzschii fo. tenuis, the silica deficient form of S. hantzschii. 

Scenedesmus communis exhibited a downstream increase in abundance, whereas 

other species had a more sporadic pattern o f occurrence. Nitzschia acicularis exhibited 

signs o f silica limitation (as described in Chapter 4) at all sites, although this alga was 

most abundant at km 91.7. 

Centric diatoms o f the size range > 6 to < 10pm 0 from the four locations exhibit 

a similar response to temperature, with peak abundance between 10 and 15°C. thereafter 

numbers tending to decline (Figure 9.9). 
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Figure 9.9 Centric diatoms > 6 to < 10pm 0 plotted against temperature at four 
Nene sites (restricted to 1 January to 30 June), o = km 91.7; + = km 43.9; 0 
64.6; X = km 91.7. 
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9.3 Spatial distributions at km 91.7 

Bay/main-river comparison 

During 1995 additional samples were taken in a small bay adjoining the main 

river at km 91.7 (Figure 3.2). Samples were taken for chlorophyll and phyloplankton. 

and temperature differences were noted. The aim of the survey was to assess 

differential growth patterns between the two locations in light of the possible influence 

of'dead zones' (WaUis et al., 1989). 

Comparisons of temperature and chlorophyll concentration for the main-river and 

bay are shown in Figure 9.10. Temperature varied little between the two sites. Whereas 

chlorophyll exhibits an elevated concentration in the bay during the early part of the 

period (April to late May), followed be the opposite trend (late May to mid-June) and 

the remaining period had equivalent concentrations. It may be important to note that the 

apparent switch between the most abundant chlorophyll in the bay and main river (late 

May) coincided with a water temperature of approximately 15°C. 
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Figure 9.10 Temperature and chlorophyll comparison between bay (black) and main 
river (red) sample sites at km 91.7. 

Evaluation of the phytoplankton dynamics at the two locations helped to explain 

the pattern seen in the chlorophyll series (Figure 9.11). The initial period with a higher 

chlorophyll concentration in the bay was dominated by centric diatoms > 6 to < 10\xm 
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0, which were significantly more abundant in the bay than in the main river (26/4/95: 

Mann-Whitney U Test: p = 0.018). 
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Figure 9.11 Comparison of phytoplankton abundance between bay (black) and main 
river (red) sample sites at km 91.7. 

Differences in abundance between phytoplankton in the main river and bay were 

fiirther investigated by carrying out SF counts on selected species in samples collected 

the 11/4/95, 23/5/95 and 3/7/95 (Table 9.3). On the 11/4/95 Nitzschia acicularis, CD on 
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< 5 | im 0 , Koliella longiseta and Cryptomonas sp. were significantly more abundant in 

the bay than in the main river. On the 23/5/95 N. acicularis was most abundant in the 

main river, which was the same for Scenedesmus communis on the 3/7/95. Of those 

taxa that exhibited a significant difference between the locations, the ones with greatest 

abundance in the bay occurred in the early sample and those that occurred later had the 

opposite trend. 

Additionally, on the 11/4/95 all six taxa were more abundant in the bay than the 

main river, whereas on the 23/5/95 four taxa were more abundant in the bay and three in 

the main river. Using tests (Hq: the bay is having no influence on the distribution of 

taxa with greatest abundance) the bay was identified as having a significant influence 

during April (x̂  = 6, df = 1) but not so in May (insufficient taxa in the July sample to 

test). 

Table 9.3 Taxa abundance comparisons between the bay and main river on three 
occasions, using Mann-Whitney U tests (SF counting method). Of the tests which 
were significant some had greatest abundance in the bay (b) and others in the main 
river (m). 

11/4/95 23/5/95 3/7/95 
Centric diatoms < 5^im 0 0.0002(b) NS 
Centric diatoms > 6 to < lO^m 0 NS NS 
Centric diatoms > 11 to < 20|im 0 NS NS 
Nitzschia acicularis 0.0005 (b) 0.0117 (m) 
Koliella longiseta 0.0325 (b) NS 
Cryptomonas s^. 0.0211(b) NS 
Scenedesmus communis NS 0.0016 (m) 
Actinastrun hantzschii NS 

River profiles and spot samples 

On one occasion during 1997 two river profiles were explored for differences in 

velocity, temperature and chlorophyll concentration. These surveys were undertaken at 

km 91.7 and km 92.5, along with surface chlorophyll evaluations. River profiles are 

shown in Figure 9.12 and Figure 9.13 and the data is summarised in Table 9.4. 
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r 
Velocity (mm s"'): blue = 11 to 20, green = 41 to 60, red = 61 to 80 

Temperature (°C): blue= 11.5, green = 11.6, red = 11.7 

ChlorophyU (^ig L"'): blue = 131 to 150, green = 151 to 170, red = 171 to 190, yeUow 
191 to 220 
Figure 9.12 River profiles for velocity, temperature and chlorophyU at km 92.5 on 17/4/97 
(10:17 to 12:37). 'X 'in upper plot signifies location of temperature probe and auto-
sampler intake pipe. Drawn looking downstream. Not to scale: 32 m wide and 2.5 m deep 
(maximum dimensions). Each profile is based on 64 spot measurements. 
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Velocity (cm s"'): blue = 5-10, green = 11 - 15, red = 16 - 20, yellow = 21-25 

Temperature (°C): blue= 12.0, green = 12.1, red = 12.2, yellow = 12.3, black = 12.4 

Chlorophyll (|ig L' ' ) : blue = 180 to 190. green = 191 to 200. red ^ 201 to 210 

Figure 9.13 River profiles for velocity, temperature and chlorophyll at km 91.7 on 
17/4/97 (14:50 to 15:50). 'X ' and ' Y ' in upper plot respectively signify the 
locations of the routine sample site and sediment trap used during 1996. (Drawn 
looking downstream. Not to scale: 9.6 m wide and 2.8 m deep (maximum 
dimensions). Each profile is based on 36 spot measurements. 
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Table 9.4 River profile statistics. Mean and standard deviation values for velocity, 
temperature and chlorophyll from the river profiles shown in Figure 9.12 and 9.13. n 

km 91.7 
Mean SD 

km 92.5 
Mean SD 

Velocity (cm s"') 13.38 3.45 4.35 1.37 
Temperature (°C) 12.21 0.10 11.54 0.05 
Chlorophyll (fXg L"') 188.68 3.95 148.13 22.80 

The wider downstream site (km 92.5) had considerably greater variability in 

chlorophyll than the upstream site, ranging from 133 to 208 f ig L"', compared to a 

range of 185 to 202 |Lig L"'. Temperature was more variable at the upstream site ranging 

from 12 to 12.4 °C compared to a difference of 11.6 to 11.7 °C at the larger 

downstream sites. Temperature differences need to be considered in light of general 

change during the survey, the temperature probe situated at km 92.5 recorded a 0.2 °C 

increase during the downstream survey and no change during the upstream work. 

Velocity was naturally faster at the narrower upstream section and this could have 

implications on sedimentation and mixing at this site. Chlorophyll concentrations of 

149 and 157 |Lig L"̂  were recorded for samples collected by the auto-sampler during the 

first and second survey, respectively. 

Additionally to the upstream transect, spot surveys were carried out for 

chlorophyll and temperature in the main river and in two bays adjoining the river (the 

bay surveyed during 1995 and a bay on the opposite bank). The main river was found 

to have a significandy higher chlorophyll concentration than either of the bays (Mann-

Whitney U test: p = 0.0000) but no difference was found between the bays or between 

temperature at any of the sites. 

9.4 Extrinsic sources of phytoplankton 

Tributaries 

The three main tributaries surveyed (Figure 2.3) exhibited considerable variation 

in suspended chlorophyll (Figure 9.14). The chlorophyll series were decomposed using 

time series analysis to find the underlying trend and the resulting data compared using 

Mann-Whitney U Tests (Table 9.5). Tributary 2 (River Ise) has a significantly greater 
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chlorophyll concentration than tributary 1 (Brampton Branch) and tributary 3 (Willow 

Brook) a significantly greater concentration than tributary 2. 

The variability of chlorophyll concentration in the tributaries does not correlate 

with catchment area (Table 3.1), with tributary 3 having an area less than half that of the 

other two tributaries, but tributary chlorophyll does correlate with lake area. Tributar\- 3 

has three lakes along its course and the contribution of these to the chlorophyll 

concentration in this tributary is investigated following a general review of suspended 

algae in the tributaries. 
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Figure 9.14 Chlorophyll concentrations at tributary sites (1994 to 1997). 
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Table 9.5 Chlorophyll concentrations in the tributaries. Showing overall median of 
data, median of fitted trend and p values for Mann-Whitney U tests. Tests are for 
paired samples working down the list (e.g. First p is for comparison between tributary 

Median chlorophyll (|ig L"') 
Site Overall Trend P 
Tributary 1 (Brampton Branch) 4.0 4.9 
Tributary 2 (River Ise) 9.2 9.2 0.000 
Tributary 3 (Willow Brook) 25.1 25.1 0.000 

The principal algae of the tributaries was investigated paying particular attention 

to tributary 3, which had chlorophyll peaks of greatest magnitude. The low chlorophyll 

concentrations of tributary 1 consisted of benthic diatoms and a few green algae (as did 

the main river at km 22.4). The unusually high chlorophyll value recorded at the start of 

tributary 2 series consisted mainly of centric diatoms at a quantity not found thereafter. 

Tributary 3 had more prolonged periods with abundant centric diatoms early in the 

season followed by abundant green algae and some blue-green algae occurring later. 

The origin of centric diatoms in tributary 3 was investigated on the 18/4/97 by 

taking chlorophyll and phytoplankton samples along its course, paying attention to the 

three lakes (Table 9.6). Centric diatoms were abundant throughout tributary 3 and 

particularly so downstream of Blatherwycke Lake (the largest of the three standing 

waters). The impact of tributary 3 on the main river was investigated by comparing 

chlorophyll concentrations in the tributary with those of the main river, up (km 85.2) 

and downstream (km 91.7) of the confluence (km 85.4). Time series analysis of spatial 

chlorophyll concentrations in the Nene identified a small but significant decrease in 

chlorophyll concentration between km 85.2 and km 91.7 (Table 9.1) so it seems 

unlikely that tributary 3 is impacting on the phytoplankton of the main river. 

A comparison of contemporaneous chlorophyll concentrations in tributary 3 and 

km 85.2 and km 91.7 are shown in Table 9.7. Using this restricted data set no 

significant difference was found between any of the sites (Mann-Whitney U Tests). On 

a few occasions (marked 'r' in Table 9.7) tributary 3 had a chlorophyll concentration 

exceeding that of both km 91.7 and km 85.2, whilst km 85.2 had a lower concentration 

than km 91.7. It is under these conditions that a significant difference between km 85.2 

and km 91.7 is most likely to occur, but none was found (Mann-Whitney U test: p = 

NS). 
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Table 9.6 Location (NGR), chlorophyll concentration (mg L" ) and principal taxa in 
tributary 3. Abundance classifications (brackets) are as Table 3.5. 
Site chl. Principal taxa 
D/S Deene Lake 54 Centric diatoms > 6 to < 10|xm 0 (V), 
(SP 955 928) Nitzschia acicularis (A), Monoraphidium 

contortum (A) 
U/S Blatherwycke Lake 39 Centric diatoms > 6 to < 10|im 0 (C), Nitzschia 
(SP 971 957) acicularis (C) 
D/S Blatherwycke Lake 123 Centric diatoms > 6 to < 10|im 0 (V), 
(TL 989 968) Nitzschia acicularis (A) 
U/S Apethorpe Lake 76 Centric diatoms > 6 to < lOjim 0 (V), 
(TL 025 959) Nitzschia acicularis (A), Monoraphidium 

contortum (A) 
D/S Apethorpe Lake 72 Centric diatoms > 6 to < 10|im 0 (C), Nitzschia 
(TL 030 945) acicularis (C) 
Fotheringhay 68 Centric diatoms > 6 to < 10|j.m 0 (A), 
(routine site) Nitzschia acicularis (A), Centric diatom > 11 

to < 20|im 0 (A) 
Elton 65 Centric diatoms > 6 to < 10|im 0 (C), 
(TL 080 939) Monoraphidium contortum (C), Cryptomonas 

sp. (C), Nitzschia acicularis (C) 

Table 9.7 Chlorophyll concentrations (mg L"') in tributary 3 (routine site) and the 
Nene at km 85.2 and km 91.7. (r) = restricted data set where chlorophyll at km 85.2 is 
lower than km 91.7 and tributary 3 is greater than both. 
Date km 85.2 Tributary 3 km 91.7 
4 Apr 95 34 91 (r) 44 
20 Apr 95 175 63 167 
2 May 95 147 71 135 
16 May 95 91 44 76 
31 May 95 165 32 149 
10 Apr 96 74 92 111 
24 Apr 96 85 65 92 
8 May 96 172 73 181 
22 May 96 160 110 148 
5 Jun 96 169 113 59 
3 Jul 96 43 53 (r) 47 
18 Jul 96 20 91 (r) 57 
31 Jul 96 12 24 (r) 21 
14 Aug 96 8 78 (r) 16 
26 Mar 97 69 75 43 
8 Apr 97 187 111 189 
18 Apr 97 104 65 111 
23 Apr 97 68 62 53 
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Billing marina 

Following a preliminary investigation during 1994 and 1995 into the possible 

influence of algae from Billing Marina on the phytoplankton composition of the main 

river, a more extensive study was undertaken during 1996. The preliminary work 

identified the marina as a potential infiuence on the main river. High concentrations 

of blue-green algae (Oscillatoria limnetica, O. arghadhii and Anabaena sp.) were 

present in the marina during the summers of 1994 and 1995. The results of the 1996 

survey are shown in Figure 9.15. 
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Figure 9.15 Chlorophyll and phytoplankton up and downstream of Billing marina 
and in the marina, during 1996. CD = Centric diatoms. 

The influence of Billing Marina on the presence of blue-green algae in the main 

river is clear. An abundance of Oscillatoria spp. occurred in the marina and these 
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figure strongly in the plankton at the downstream site, whilst being absent upstream. 

Dinobryon sp. and Synura sp. were also abundant at this location but not so at any of the 

downstream sites. These taxa are often associated with unproductive or P-deficient 

environments (Sandgren, 1988) although they have been found to be abundance in P 

rich ponds (Reynolds, 1993). Both of these taxa are likely to be associated with the 

main river rather than the marina as they were also numerous at the upstream site. 

Thrapston sailing lake 

The outflow from Thrapston lake was investigated during 1996. This site was 

known to support high concentrations of blue-green algae during 1990 and 1995 (J.T. 

Krokowski, pers. comm.) and as this lake discharged directiy into the Nene it was 

considered worthy of investigation. The contrast between the in and outflow of 

Thrapston sailing lake is illustrated in Figure 9.16. The lake receives water directly 

from the main river which returns via a sluice at the opposite end of the water body. On 

the 27/6/96 the lake had abundant Aphanizomenonflos-aquae and the river abundant 

centric diatoms. Centric diatoms entering the lake did not persist, but blue-green algae 

entering the river from the lake were found over a wide area, downstream of the outfall. 

The chlorophyll and main phytoplankton at the Thrapston sailing lake outflow are 

shown in Figure 9.17. The lake experienced an early period dominated by the green 

alga Chlamydomonas sp. Following a period of low phytoplankton abundance the blue 

green alga Aphanizomenonflos-aquae became abundant in the lake, which was later 

succeed by Anabaenaflos-aquae. 
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Thrapston lake inflow 

Thrapston lake outflow 

Figure 9.16 In and outflow of Thrapston sailing lake 27/6/96. Above: inflow water 
'stained' brown with abundant centric diatoms flowing into Aphanizomenonflos-
aquae 'bloom'. Below: surface 'scum' ofA.flos-aquae adjacent to lake outflow. 
Arrows indicate direction of flow. 

— 

a. 
o 

Chlamvdomonas 
Aphanizomenonflos-aquae Anabaenaflos-aquae 

K. 

10/4/96 to 14/8/96 
Figure 9.17 ChlorophyU and phytoplankton in outflow of Thrapston saUing lake 
during 1996. 
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Ad hoc surveys 

Two additional sources of algae to the Nene were identified during 1996; Summer 

Leys nature reserve (SP 885 635) and Kinewell Country Park (SP 975 749). Summer 

Leys is of relatively recent construction (1993), whereas Kinewell lake has been 

established since 1983. Both of these lakes were observed to be discharging high 

concentrations of algae to the main river. 

On the 11/4/96 Summer Leys lake was discharging Chlamydomonas sp. 

(chlorophyll = 74.1 [Xg L"^) and on the 25/6/96 Aphanizomenon flos-aquae (chlorophyll 

= 337 |J,g L '). On the latter occasion the discharge was discolouring a large section of 

the main river. 

Kinewell lake was discharging Anabaena flos-aquae into the main river on 

25/6/96 (chlorophyll = 118 |Xg L ' ' - Figure 9.18). The peculiarity of the Kinewell site is 

it does not have a surface inflow and water is thought to enter the lake from the 

groundwater. 

Evidence of impact on the main river during 1996 

The impact of extrinsic sources of phytoplankton on the main river was not 

monitored in detail but several observations from the routine sample sites correspond 

with the various sources of phytoplankton identified during 1996. 

Aphanizomenon flos-aquae were recorded in the routine sample (2078 cell mL"') 

from km 43.9 on the 20/6/96 and several times thereafter. This species was not seen in 

samples collected from km 34.0 and as km 43.9 is approximately 3 km downstream 

from the Summer Leys lake outfall it is likely that they originated here. 

Aphanizomenon flos-aquae was not, however, recorded at km 64.6 during 1996, 

but was recorded along with Anabaena flos-aquae at km 91.7 and it is likely that these 

particular specimens originated from Thrapston lake (which is situated downstream of 

the routine site) and/or Kinewell lake. It appears that these species of blue-green algae 

can persist in the river over long distances if conditions are favourable. 
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Figure 9.18 Outflow water of Kinewell Lake containing a high concentration of 
Anabaena floss-aquae entering the main river (25/6/96). Arrows indicate direction 
of flow. 

9.5 Discussion 

Distinct and significant trends are evident in the longitudinal chlorophyll 

distribution. The upper catchment has relatively low chlorophyll concentrations with 

poorly defined seasonality, compared to the downstream locations. The dramatic 

increase in chlorophyll levels between km 22.4 and km 34.0 refiect a change in physical 

character, with the commencement of the navigation system. Suspended algae at the 

upstream site consist principally of benthic diatoms of the genera Navicula and 

Nitzschia with some ubiquitous greens like Scenedesmus communis, a pattern which is 

also evident in tributary 1. 

The occurrence of phytoplankton in the navigation section is likely to reflect 

increased depth (Reynolds et a l , 1990) rather than any other physical or chemical 

change in the river. Although the abundance of Chrysophytes {Dinobryon sp. and 

Synura sp.) at Great Billing may reflect the lower nutrient status at this site. These 

algae are less abundant at downstream locations which are also downstream of the 

Billing STW discharge and the associated increase in nutrients (Table 7.3). 

Increases in chlorophyll concentration downstream from km 34.0 correlate 

significantly with estimated retention time to km 43.9, thereafter changes being less 

marked. The timing and magnitude of the chlorophyll peaks at the different sites is of 

considerable interest. 
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The data indicate a complex series of events resulting in downstream chlorophyll 

peaks occurring earlier and being of smaller magnitude than those at upstream sites. 

This pattern is apparent in the chlorophyll data but most significant in centric diatom 

abundance of the size class that corresponds to Stephanodiscus hantzschii. The 

disparity between chlorophyll and centric diatom abundance indicates that the absence 

of centric diatoms at the downstream site is being compensated for by the occurrence of 

another taxa, possibly Koliella longiseta. Although the extent of the upstream 

chlorophyll peaks are possibly underestimated because of the lower sample frequency 

there. 

The early occurrence of downstream chlorophyll and phytoplankton peaks appears 

to be related to distance from source, which could indicate the contribution of algae 

from dead zones to the main river. The comparative investigation of chlorophyll and 

phytoplankton in the bay and main river, at km 91.7, supports this. The possible 

influence of a downstream temperature gradient has also been postulated (Balbi, 2000). 

The data indicates a downstream increase in temperature during the spring, although in 

the absence of contemporaneous measurements this cannot be confirmed. The influence 

of dead zones could also contribute to this phenomenon, although the difference 

between bay and main river temperatures were negligible. This finding may be 

misleading, however, as all measurements were taken before 10:00 and a temperature 

differential could occur between the two locations as the day progresses. 

The occurrence of a downstream temperature gradient and contribution from dead 

zones offers a plausible explanation for the early occurrence of chlorophyll peaks at 

downstream sites. In Balbi (2000) it was suggested that the reason for upstream sites 

having later chlorophyll peaks of greater magnitude, than those downstream, was also 

related to temperature differences and facilitated by lower velocities. With suppression 

of abundance occurring at downstream sites, as temperature increases above the 

optimum for the most abundant centric diatom size class. The current work has 

provided an alternative explanation. 

It does seem likely that temperature increases above 15°C to 18°C in the dead 

zones negates their importance as sources of phytoplankton to the main river and this is 

supported by the comparative investigation. The new insight into spatially differential 

chlorophyll and phytoplankton maxima is one of silica limitation. The downstream site 

has already been identified as being limited by available silica and if the supply to 
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upstream locations was greater than at downstream sites then this could explain the 

greater abundance of Stephanodiscus hantzschii there. This hypothesis is also supported 

by the greater abundance of Stephanodiscus hantzschii fo. tenuis at km 91.7. This 

species being most prevalent in silica depleted environments. This theory is supported 

by geographical evidence. 

The first major tributary upstream from km 91.7 is tributary 3, joining the river 

over 6 km upstream. This tributary is likely to contain low silica concentrations as it 

supports considerable concentrations of diatoms. In contrast to km 91.7, both the km 

64.6 and km 43.9 sites have reasonably sized tributaries within a kilometre upstream. 

Neither of these streams have lakes on their course so are unlikely to be silica limited 

for prolonged periods. This notion is tentatively supported by low frequency silicate 

samples at km 22.4 which exhibit high concentrations during many spring and summer 

samples. In the absence of spatial silica data it is difficult to postulate further. 

The river profile investigations provided an insight into local variability. The 

downstream channel cross section was approximately three time greater than the routine 

site and the slower velocities resulted in greater sediment deposition there. The 

simultaneous measurement of velocity, temperature and chlorophyll is likely to have 

resulted in some disturbance of the sediment and this may have contributed to the 

variability in chlorophyll record. Any such occurrences are less likely to impact on 

measurements in the faster velocities of the upstream site. Irrespective of this 

possibility there was considerably greater variability in velocity and chlorophyll in the 

downstream channel compared to the artificial constraints at km 91.7. The greater 

temperature variability in the narrower channel may reflect the time of sampling rather 

than any other feature. Temperature was increasing during the first profile but had 

stabilised by the time the second was undertaken. 

Both profile surveys provide confidence in sample point locations. The auto-

sampler intake tube appears to have been located in a position of intermediate velocity, 

temperature and chlorophyll. The homogenous distributions at the upstream site 

vindicates the use of this sample point also. 

Lentic systems within the Nene catchment can have a significant impact on the 

phytoplankton composition of the main river. This is particularly apparent during drier 

years and when intrinsic phytoplankton abundance is low. However, tributary 3 did not 
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have a detectable impact on the chlorophyll concentration of the main river, although 

this tributary appears to be a source of Oscillatoria redekei. 

The results presented here highlight the difficulties of selecting representative 

sample sites on the Nene. The apparent influence of silica limitation and contribution of 

algae f rom lentic environments can be considerable. 

9.6 Summary 

1 The Nene supports a distinct phytoplankton with pronounced seasonality, at sites 

downstream from the commencement of the navigation. 

2 Phytoplankton abundance appears to be restricted in the upper sections of the 

navigation by residence time, chlorophyll concentrations not achieving their 

maximum for approximately 20 km. 

3 Chlorophyll and centric diatom peaks occurred earlier and were of lesser magnitude 

at downstream sites compared to upstream locations. This phenomenon was 

attributed to a downstream temperature gradient, contribution of dead zones and 

silica limitation at the downstream site. 

4 Chlorophyll concentration and centric diatom abundance respond similarly to 

temperature throughout the river. 

5 Lentic systems have a significant impact on the phytoplankton composition of the 

main river, particularly as sources of blue-green algae during dry years and when 

phytoplankton abundance is low in the river. 

6 Some phytoplankton taxa in the upper catchment are normally associated with a 

lower nutrient status than those further downstream, which are downstream of the 

major STW discharges. 

7 The most chlorophyll rich tributary, tributary 3, did not have a significant impact on 

the main river but this tributary appears to be a source of Oscillatoria redekei. 
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8 The results highlight the difficulties of selecting representative sample sites for 

evaluation river phytoplankton in the Nene. Spatial distributions can vary 

considerably and the apparent influence of silica concentrations and lentic sources of 

algae can be significant. 
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10 B I O L O G I C A L INTERACTIONS AND LOSS FACTORS 

10.1 Introduction 

This chapter explores interactions between phytoplankton and other biota with 

particular reference to the loss of algae f rom suspension. Loss factors that w i l l be 

considered are zooplankton, macrophytes and loss through sedimentation, which may be 

partly the result of biological factors. The aim of this investigation is to identify and 

qualify the conditions under which loss occurs. A l l examples and data presented are 

f rom km 91.7 (except rotifers in 1994 which were f rom km 94.3). 

10.2 Zooplankton 

The impact of planktonic rotifers w i l l be considered for 1994 and 1996, years that 

had great contrast in the abundance of suspended chlorophyll. In both years the most 

abundant zooplankton taxa were Keratella sp., Synchaeta sp. and Brachionus sp., 

constituting 75% and 94% of total rotifers for 1994 and 1996, respectively. The 

abundances of all rotifers and the main rotifer taxa are shown in Figure 10.1. 

The magnitude and extent of the chlorophyll peak was considerably greater during 

1996 and this is reflected in both the magnitude and taxa composition of the rotifers. 

Synchaeta sp. were the most numerous taxa during 1994, having their peak in early 

May. This coincided with the Brachionus peak and was followed by a small number of 

Keratella. During 1996 Synchaeta sp. also had their peak abundance during early May 

but this was preceded and followed by several smaller Synchaeta peaks. Again in 1996 

the Synchaeta peak was followed by a Keratella peak, but 1996 differed in the 

considerable abundance of this taxon. 

A positive relationship exists between total rotifer abundance and chlorophyll 

concentration (Figure 10.2). The combined 1994 and 1996 data sets were significant (r^ 

= 0.67, p < 0.05, n = 55), although there was far more variability in the 1994 data 

(1994; r^ = 0.44,p <0 .05 ,n = 24; 1996: r^ = 0.82, p <0 .05 ,n = 31). 
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Figure 10.1 Rotifers abundance (ind L"') during 1994 and 1996. Rotifer taxa: red 
all rotifers; blue = Keratella sp.; green = "^ynchacia sp.; black = Brachionus sp. 
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Figure 10.2 Chlorophyll plotted against total rotifers. Combined data for 1994 
(solid circles) and 1996 (open circles). 

The influence o f discharge on total rotifer abundance was significant, with most 

variability in the latter half o f the year (Figure 10.3). as seen in the phytoplankton data. 

Data fi-om the first half o f the year correlated most significantly (r^ = 0.80, p < 0.05. 

n = 37) and the combined influence o f chlorophyll and discharge on total rotifer 

abundance increased the significance o f the relationship (r ' = 0.84, p < 0.05. n = 37: 

in total rotifers (ind U ' ) = 10^[3.48 - 2.74(logio discharge ( m ' s ' ) ) + 0.713(log 

chlorophyll ( | ig L" ' ) ) ] ; discharge and chlorophyll from 1 January and 30 June). Rotifer 

abundance correlated most significantly with discharge expressed as a 14 day average. 
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and data f rom 1 January to 30 June (right). 
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The food preference of Keratella sp. and Synchaeta sp. was investigated by 

multiple regression analysis, with the rotifer data expressed as individual and combined 

years. Synchaeta sp. were associated most significantly with green algae (r^ = 0.67, 

p < 0.05, n = 42) and Keratella sp. with centric diatoms and green algae (r^ = 0.80, p < 

0.05, n = 42). Both taxa were associated more strongly with greens during 1996 and 

diatoms during 1994. 

As rotifer periodicity does not appear to relate to food availability the influence of 

temperature was evaluated as a causal factor for the timing of rotifer abundance (Figure 

10.4). Synchaeta sp. are at their most abundant at a temperature of 11.5°C and 

Keratella sp. at 17.5°C, with Brachionus sp. having a temperature optimum similar to 

Synchaeta sp. 
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Figure 10.4 Synchaeta sp. and Keratella sp. (ind L" ) plotted against temperature 
(°C). 

A comparison between total rotifer abundance and discharge, temperature and 

chlorophyll is shown in Figure 10.5. Discharge up to June 1994 was mostly greater 
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than 10 m^ s"', with the exception o f a short period at the beginning o f May when it 

declined to less than 5 m^ s"'. This period o f reduced discharge coincided with the peak 

o f rotifer abundance. In 1996 flow declined below 5 m^ s"' during April and remained 

below this level from May onwards. 
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Figure 10.5 Total rotifers (ind ^"L) plotted against discharge (m"* s''), temperature 
(°C) and chlorophx II ( | ig L ' ' ) . Black = total rotifers. 

Temperature was favourable during both years from May onwards although this 

was not reflected in the abundance o f rotifers, therefore rotifer maxima were probably 

more influenced by discharge than temperature, especially during 1994. 

The chlorophyll concentration had a short lived peaks o f low magnitude during 

May and June 1994. The magnitude o f these peaks is likely to result from high 

discharge and the reduced chlorophyll that occurred between the two peaks could partly 

relate to a concurrent reduction in temperature and slightly elevated discharge. It 
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appears that during 1994 the decline in rotifers was the result of increased discharge, 

rather than food availability. 

In 1996 the peak rotifer abundance occurred in the early part of June, during a 

period of stable discharge and temperature. It is tempting to attribute the concurrent 

reduction in chlorophyll concentration that occurred at the time of high rotifer 

abundance to grazing, but chlorophyll was in decline f rom the middle of May when 

rotifers were in low abundance. 

Ciliates were not monitored during 1994 but during 1996 they achieved 

abundances of 3120 and 2168 cell mL"' in Apri l and May respectively. Ciliate 

abundance was positively associated with chlorophyll concentration (r^ = 0.74, p < 

0.05, n = 25) and was most significantly associated with centric diatoms and green algae 

(r^ = 0.71, p < 0.05, n = 19). Ciliate peaks occurred throughout the period of 

phytoplankton abundance and therefore had a wide temperature range. 

Copepods (particularly nauplii) and occasionally cladocera were present in the 

zooplankton samples during 1994 and 1996. Nauplii achieved maximum abundances of 

22 and 38 ind U ' during 1994 and 1996, respecfively. Adult copepods and cladocera 

rarely occurred. 

10.3 Macrophytes 

The influence of suspended chlorophyll concentration on submerged macrophyte 

abundance was assessed by investigating their relafionship. Data from three sites were 

combined using standardised variables for percentage cover of submerged macrophytes 

and average annual chlorophyll preceding each macrophyte survey (Figure 10.6). 

The survey sites were Cogenhoe Back Channel (a few km downstream from km 

34.0), White Mil l s (a few km upstream from km 39.8) and km 52.2 (routine site) and the 

surveys took place between 1993 and 1996. A significant negafive relationship was 

found between the abundance of submerged macrophytes and preceding annual average 

chlorophyll concentration (r^ = 0.82, p < 0.05, n = 15). The greatest abundance of 

macrophyte and lowest chlorophyll concentrations occurred during 1994 whilst the 

opposite trend was seen in 1995 and 1996. A fourth site (Ditchford Lock - few km 

upstream f rom km 52.2) was rejected as four out of the five samples f rom this 

impounded stretch behaved differently f rom those of other locations. 
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The influence o f average temperature and discharge on macrophyte abundance 

was examined and both were non-significant (temperature: r ' = 0.04, p = NS. n = 15: 

discharge: r̂  = 0.19, = NS, n = 15). 

I 
3 

c 
0 o 
g 2 « 

1 8 I 

120 

90 H 

60 

0 60 120 180 

relative abundance of submerged macroph\te 
Figure 10.6 Submerged macrophyte abundance plotted against chlorophyll. Data 
is from three sites and standardised for percentage cover o f submerged 
macrophytes and average annual chlorophyll preceding each macrophyte survey. 
1993, red; 1994, blue; 1995, green; 1996, black. 

10.4 Sedimentation 

The results from the sediment trap used at km 91.7 during 1996 indicate the 

presence o f physical and biological loss factors. Estimated daily sediment deposition, 

physical and chemical variables are shown in Figure 10.7. Inorganic sedimentation was 

variable, being lowest in March and September and greatest in early May. Organic 

sediment was greatest in late July, but approximately proportional to inorganic sediment 

throughout the survey (r^ = 0.88, p < 0.05. n = 14). 

High inorganic sedimentation in May is likely to result from spate flows in late 

April . The organic peak in late July could result from sedimentation o f phytoplankton 

following their decline. 

The Zeu readings indicate non phytoplankton turbidity both preceding and 

following the chlorophyll peak. High turbidity in March is likely to result from a 

sediment load caused by high rainfall and maintained by high discharge. Turbiditv 

following the chlorophyll peak could result from dead algae and detritus resulting from 

the period o f phytoplankton abundance. 
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Figure 10.7 Discharge , Zeu, chkii oph\ II and sedimentation during 1996. 
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depth. 
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The numerically most important taxa f rom the sediment trap are shown in Table 

10.1, and constitute 88% of live and 77% of dead cells found. The greens consisted of a 

wide range of taxa represented in the plankton. 

Table 10.1 Percentage occurrence of most abundant live and dead cells in sediment 
trap during 1996. Total abundance of ceHs = 21.3x10^ and 23.6x10^ for live and 

Taxa Condition % 
Centric diatoms < 5 \Lm 0 live 4 

dead 10 
Centric diatoms > 5 to < 10 |J,m 0 live 22 

dead 54 
Centric diatoms > 10 to < 20 fxm 0 live 6 

dead 8 
Cocconeis spp. live 0 

dead 5 
Greens live 56 

dead 0 

Dead centric diatoms were represented by clean intact frustules which were 

devoid of cell contents and their occurrence was possibly the result of parasitism. This 

phenomenon was manifest in all centric size classes. A comparison of live and dead 

cell abundances in the sediment trap and plankton is shown in Figure 10.8. In this 

Figure the plankton record is an average of samples taken during each deployment of 

the trap (ca. 14 d). 

The centric diatoms start with equal proportions of dead and live specimens 

captured in the sediment trap, but following mid-April the proportion of dead cells 

increases exponentially. The difference between the proportion of live and dead 

diatoms was most pronounced in early May. This situation was similar for centric 

diatom < 5 f im 0 but the largest diatoms had their biggest differential in the middle of 

June. 

Very few dead greens algal cells were found and the proportion of live cells found 

in the trap mirrored those of the plankton (r^ = 0.85, p < 0.05, n = 14). One of the 

largest outliers in this data set is associated with late July and possibly represents the 

sedimentation of green algae as the period of plankton abundance ends. The high 

degree of consistency between live green algae in the plankton and those in the 

sediment trap suggests a continuous sedimentation rate in proportion to abundance. The 

relationship between live centric diatoms in the trap and the plankton was not so strong 
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as for green algae but was also significant (r^ = 0.66, p < 0.05. n = 9). the greater 

variation presumably arising from large numbers o f dead cells. 
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Figure 10.8 Centric diatoms and green algal cells in the sediment trap (above) and in 
the plankton (below). Sediment trap: black = live cells; red = dead cells. Plankton 
data are averaged over each period o f the sediment traps deployment. 

The possibility that the exponential increase in abundance o f dead centric diatoms 

in the traps was related to parasitism was tentatively explored, assuming that small 

flagellates < 5 |am G A L D were involved in the loss process. Contemporaneous values 

for discharge, temperature dead diatoms in the traps, diatoms in the plankton and small 

flagellates are shown in Figure 10.9. 

The loss o f planktonic centric diatoms and increase o f dead cells in the sediment 

trap do not relate to variations in either discharge or temperature. With both these 

physical variables being favourable to phytoplankton development. Increasing 

flagellates correspond with a decrease in planktonic centric diatoms and an increase in 

dead cells in the sediment trap. Planktonic flagellates and centric diatoms exhibit a 
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phased response that is often evident in 'predator-prey' relationships (Begon et al.. 

1987). 
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Figure 10.9 Discharge and temperature (top), C 
plankton and unidentified flagellates < 5 \im G A L D in the plankton (middle) and dead 
Centric diatoms > 5 to < 10 j^m 0 in the sediment trap and unidentified flagellates < 5 
l^m G A L D in the plankton (bottom trap). Plankton data averaged over period o f each 
sediment trap deployment. Diatoms left axes, flagellates right axes. 

The possibility that small flagellates could be related to loss o f phytoplankton 

from suspension was further explored using 1994 data (Figure 10.10). As with the 1996 

data the flagellates and centric diatoms > 5 to < 10 \im 0 exhibit a classic "predator-

prey' relationship. However, the occurrence o f parasitism does not explain the ultimate 

decline in suspended algae that occurred in 1994 and 1996. 
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Other notable patterns in the taxa found in the sediment trap were, the occurrence 

o f dead Cocconeis spp. which only occurred from July onwards and live Glenodinium 

sp. during June and July. 

10.5 Discussion 

It is difficult to quantify loss factors, in view o f the range o f complex interactions 

and processes occurring simultaneously. However, with the aid o f published or 

theoretical values the importance o f each component can be estimated. 

Rotifer abundance and periodicity was controlled by temperature, discharge and 

food availability. Rotifer abundance correlated most significantly with daily discharge 

averaged over longer periods than those used for the phytoplankton. and this probably 

reflects the slower growth rate o f these organisms. 

Rotifers grazing has the potential to significantly reduce phytoplankton 

populations. The filtration rate o f these animals wil l vary according to temperature, size 

and density o f prey. Filtration rates o f 0.02 to 0.11 mL d"' have been cited (Reynolds. 

1993). These values would result in filtration volumes ranging from 2 to 105 mL d"' 

and 11 to 646 mL d"' respectively for the maximum rotifer abundances that occurred 

during 1994 and 1996. From these values it appears unlikely that grazing was having an 

appreciable impact on phytoplankton abundance during 1994, although during 1996 

some 'top down' control o f the phytoplankton could have been occurring. 

Rotifer abundance wil l also be limited by food particle size. The principal rotifers 

found in the Nene would be able to handle particles up to about 12 and 18|am for 

Keratella sp. and taxa o f a similar size to Synchaeta sp., respectively (Reynolds. 1993). 

Using these values it is unlikely that the early decline o f rotifers during 1994 was due to 
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food limitation. Although this may be so during 1996 where rotifer decline closely 

followed the suspended algae. 

It appears that periods of high rotifers abundance did not result in a large loss of 

suspended algae, either during 1994 or 1996. Rotifers seem to have been limited by 

discharge during 1994 and although there was a great abundance of Keratella sp. during 

1996 they did not result in an appreciable decline in phytoplankton abundance. In the 

Nene rotifers are likely to grow more slowly than phytoplankton (rotifers: Sanderson, 

1998; phytoplankton: Reynolds, 1993) and as optimal conditions for phytoplankton 

species w i l l correspond with optimal conditions for rotifers i t seems likely that rotifers 

are controlled by phytoplankton abundance, rather than phytoplankton being controlled 

by rotifers. The negligible impact of rotifer grazing on phytoplankton abundance is in 

contrast to the dramatic population crashes in centric diatoms, that appear to be the 

result of parasitism. 

There is good evidence of significant parasitism of the centric diatom populations. 

This is supported by the high quantity of dead diatoms in the sediment trap, their 

condition and the concurrent disappearance of centric diatoms from the plankton. The 

apparent relationship between the increased abundance of small flagellates and 

reductions in planktonic diatoms is of considerable interest, but not a key piece of 

evidence for the occurrence of parasitism. 

As mentioned above, the dead centric diatoms were predominantly intact frustules 

completely devoid of cell contents. The only plausible explanation for this phenomenon 

is parasitism (Canter, 1979). Chytrids were frequently seen attached to centric diatoms, 

but no obvious pattern or frequency of occurrence was noted. Likewise, dead diatoms 

in the aforementioned condition were occasionally seen in the plankton, but these only 

constituted a small percentage of total cells and it appears that dead cells are quickly 

lost f rom suspension. The low abundance of dead green algae in the sediment trap 

either indicates low parasitism of this group or that dead greens remain in suspension. 

As the latter situation was not observed it seems likely that parasitism of greens was 

minimal, compared to the centric diatoms. 

Ciliates were present throughout the period of phytoplankton abundance and 

probably represent a range of species. Some planktonic ciliates feed preferentially on 

phytoplankton (Foissner and Berger, 1996) and these are likely to exert loss pressure on 

the phytoplankton community. 
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The sediment trap produced invaluable data and functioned satisfactorily over a 

range of conditions. The trap had a i.0 ratio of 6.5, which is somewhat less than that 

recommended for use in turbulent conditions (Bloesch and Bums, 1980). Nevertheless, 

the trap retained fixative throughout each period of deployment indicating an absence of 

currents within the chamber. Results f rom sediment traps can be inherently misleading, 

with some devices over-trapping sediment (Kozerski, 1994). Notwithstanding this, the 

sediment trap provided valuable data that would have otherwise been unattainable or 

overlooked. 

Sedimentation rates are extremely heterogeneous in rivers (Tipping et al., 1993). 

It is therefore dangerous to draw river-wide conclusions about sedimentation from a 

single point. The location of the trap, at km 91.7 (Figure 9.13), was chosen for ease of 

access, security and river depth. The river section at this point is uncharacteristically 

narrow and consequenfly has an atypically high velocity (Chapter 9). The consequences 

of this on the collection of sediment is unclear, but the location should have ensured a 

continuous and unidirectional passage of water and eliminated the possibility of 

disproportional deposition that can occur in eddies. 

Throughout the study of sedimentation the deposition of live cells Wcis 

approximately proportional to their concentration in suspension, and sedimentation rates 

appear to be independent of variations in discharge. This factor indicates the presence 

of turbulent f low and entrainment of cells throughout the period of phytoplankton 

abundance. 

The relationship between submerged macrophyte abundance and preceding 

chlorophyll concentration could be of great significance. The data indicate that 

phytoplankton can suppress submerged macrophyte growth, presumably through 

shading. Following the 1976 drought macrophyte growth was so restricted in the Nene, 

compared to the pre-drought conditions, that 'weed' cutting was abandoned. Brierley et 

al. (1989) concluded that this situation was mainly caused by excessive winter scouring 

and dredging practices. However, the data indicates that a series of cool, wet summers 

could have promoted prolonged periods of phytoplankton abundance, which in turn 

could have suppressed macrophyte growth (Balbi, 2000). 

The theory that phytoplankton suppress submerged macrophyte growth was 

supported by the sediment trap data. Cocconeis sp. are associated with submerged 

aquatic plants (Pentecost, 1984; Cox, 1996) and the absence of this taxa throughout 
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periods of phytoplankton abundance indicates the absence of submerged macrophytes. 

Likewise the sudden occurrence of these diatoms following the decline in 

phytoplankton is thought to indicate the occurrence of submerged plants. 

The impact of submerged macrophytes on phytoplankton is less easy to establish 

f rom the data, although the literature suggests that macrophytes can inhibit 

phytoplankton development in a number of ways (Scheffer, 1999). In the Nene it is 

likely that the most important impacts of macrophytes are their interference with 

turbulent f low and inhibifion of algal resuspension. 

10.6 Summary 

1 Rotifers can be abundant in the Nene and their abundance and periodicity is limited 

by temperature, discharge and food availability. The slower growth rate of rotifers, 

compared to phytoplankton, results in them requiring periods of greater stability to 

proliferate than are required by phytoplankton. 

2 The evidence f rom 1994 and 1996 suggests that rotifer abundance tends to mirror 

periods of phytoplankton abundance rather than control them. 

3 The sediment trap data suggests that centric diatoms suffer f rom severe parasitism 

and this appears to result in significant reducfions in the abundance of centric 

diatoms. There was also some evidence that unidentified flagellates < 5 j im GALD 

are implicated in parasitism. 

4 Submerged macrophyte abundance correlates negatively with the annual average 

chlorophyll concentration preceding the plant surveys. Therefore phytoplankton 

appear to be restricting submerged macrophyte growth through shading. 

5 The sudden occurrence of Cocconeis sp. in the sediment traps following the decline 

of phytoplankton is thought to indicate a rapid increase in submerged macrophyte 

abundance, which in turn inhibits the return of abundant phytoplankton. 
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11 DISCUSSION 

11.1 Synopsis and introduction 

The aims of this research have been achieved, although the hypothesis that 'the 

key factors controlHng phytoplankton populations in a small river are not dissimilar to 

those acting in larger systems' can only be partially accepted (Chapter 1). The Nene 

supports high concentrations of phytoplankton which are controlled by similar processes 

to those of larger systems, but the small size of the Nene combined with geological and 

geographical factors result in it sometimes behaving very differently to larger river 

systems. 

The apparent 'switching' of the Nene from phytoplankton to macrophyte 

dominance is not reported from larger systems. This feature of the Nene results from its 

relatively shallow depth which allows submerged macrophytes to flourish under certain 

conditions. The geological and geographical features of the Nene catchment result in a 

wide flow regime (impermeable geology and low rainfall), which may have exerted 

selection pressures on the phytoplankton which are absent in larger systems. For 

example, the Nene's unusually wide flow regime may have produced selection 

pressures, through silica limitation, for a low temperature optimum in some of the 

centric diatom populations. 

These features of the Nene will be explored more fully in this chapter, which is 

intended to consolidate the results of Chapters 4 to 10 into a unified consensus. This 

will be undertaken with an overview of phytoplankton in the Nene followed by a 

detailed appraisal of controlling factors, consideration of modelling and concluding with 

a summary of methodological approaches to the Nene and river phytoplankton in 

general. 

11.2 Overview of phytoplankton in the Nene 

The chlorophyll concentration at km 91.7 over the 22-year period exhibits 

considerable variation. There appears to have been a higher chlorophyll concentration 

in the early part of the period and higher light and lower discharge latterly (Table 7.1), 

although significant inter-year variation was seen in all variables examined. Despite 

this variation there is considerable inter-year constancy in chlorophyll concentration in 
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relation to physical variables. Fortuitously, during the period of phytoplankton analysis 

considerable inter-year contrast occurred. 1994 had the lowest chlorophyll maxima for 

the 24-year period and 1996 had a high and prolonged chlorophyll concentration. 

Chlorophyll concentrations and similarities and differences in taxa composition 

between 1994 and 1996 are illustrated in Figure 11.1. The years were clearly different 

in the magnitude and extent of chlorophyll, with 1996 having a maximum over twice 

that of 1994. However, irrespective of this difference the form of the phytoplankton 

was very similar in the early part of both years. 
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Figure 11.1 Schematic representation of phytoplankton composition and abundance 
during 1994 and 1996 at km 91.7. Letters refer to the description in the text. 
Chlorophyll = green line. Illustrations of phytoplankton modified from Belcher and 
Swale (1978 and 1979). Influence of spate flows during September 1994 not 
represented. Illustrations not to scale. 

Both 1994 and 1996 commenced with the occurrence of Navicula lanceolata. 

Nitzschia acicularis and centric diatoms (a: Figure 11.1). As time progressed centric 

diatoms became more abundant and both years also had the narrow filamentous blue-

green algae Oscillatoria redekei and O. limnetica (b). From mid-May onwards, green 

algae became more abundant (c) but the abundance and diversity of greens was far 

greater in 1996, with Actinastrum hantzschii, Monoraphidium contortum and Chlorella. 

spp. becoming particularly numerous. Aphanizomenon flos-aquae and Anahaena flos-

aquae were also present in 1996, but absent from 1994. 
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From mid-June 1994 the abundance of phytoplankton declined to a very low level 

(d) and remained so until the September spate (Chapter 9). This period was 

characterised by Rhodomonas lacustris var. nannoplanktica, Scenedesmus communis 

and benthic pennate diatoms like Cocconeis spp. (e). There were also abundant 

picoplankton during the summer of 1994, when other algae were scarce (not represented 

in Figure 11.1). A similar period of low phytoplankton abundance with suspended 

benthic diatoms also occurred in 1996, but two months later than in 1994 (e). The 

summer of 1996 (d) was characterised by a continuation of centric diatoms and mixed 

green algae. 

The similarities and differences seen between 1994 and 1996 characterise the 

phytoplankton of the 22-year period and provide a starting point from which 

generalisations can be made. The first half of the year appears to contain far greater 

consistency in phytoplankton abundance and periodicity than occurs between July and 

December. This temporal trend was seen in the long term chlorophyll data and the more 

recent species analyses. The processes involved in phytoplankton trends in the Nene lie 

in an understanding of the key controlling variable. 

11.3 ControlUng variables 

Those factors identified as important controls of phytoplankton are listed in Table 

11.1. Other factors, like N and P, are not thought to be important at this time. Some of 

the factors listed in Table 11.1 have multiple effects on the timing, magnitude and 

species composition of phytoplankton populations. Each of these factors will now be 

considered. 

Physical Depth 
Discharge 
Extrinsic sources 
Dead zones 
Light 
Retention time 
Temperature 

Chemical Silica 
Biological Grazing 

Macrophytes 
Parasitism 
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Depth and retention time 

The influence of water depth on phytoplankton development is clear in the Nene. 

A characteristic river phytoplankton does not occur in the Nene until the 

commencement of the navigation, at Northampton. Depth influences phytoplankton 

development by facilitating turbulent flow, which cannot occur so readily in shallow 

rivers (Smith, 1975). 

Retention time in the Nene was identified as a factor influencing phytoplankton 

development. Chlorophyll maxima at km 34.0 were significantly lower than the next 

downstream sample site (km 39.8) and km 39.8 had a significantly lower concentration 

than km 43.9. Significant differences did occur downstream of km 43.9 but these were 

small in comparison to the upstream sites. Retention time is, of course, an 

approximation as it assumes non-laminar flow and ignores the influence of eddies and 

dead zones. Regardless of these shortfalls the Nene appears to require a distance of 

about 20 km before phytoplankton can achieve their maximum abundance. The 

influence of retention time cannot be evaluated further in the absence of silicate data for 

these sites. 

The depth of the navigable Nene is reasonably consistent, at about 2 m. This 

depth is likely to create a favourable light climate for suspended algae in a turbulent 

river system. The minimum euphotic depth in the Nene is about 1 m and under these 

conditions algae spend approximately half their time below the photic-zone. 

Consequently, as river depth increases suspended algae will spend increasingly longer 

in darkness. This is illustrated in the River Meuse where a downstream decrease in 

phytoplankton biomass was attributed to increasing depth (Descy and Gosselain, 1994). 

Discharge 

The multiple-influences of discharge are illustrated in Figure 11.2. High 

discharge can result in a high suspended sediment load, which will reduced the euphotic 

depth and restrict phototroph abundance. In the Nene this situation is often apparent in 

the early spring when the high winter flows are carrying suspended matter washed in 

from agricultural land. Suspended chlorophyll at this time is low and the first peak 

normally coincides with increased light attenuation. The early occurrence of Navivula 

lanceolata in the plankton may also be related to this factor with recruitment probably 

originating from the shallower margins. The occurrence of this large diatom in 

suspension illustrates another important feature of discharge, the creation of turbulence. 
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The influence of turbulent flow is evident in the annual succession of taxa: 

Permate diatoms to centric diatoms to colonial and flagellate forms. The data from the 

sediment trap indicated loss from suspension in proportion to abundance in the plankton 

and this was cited as evidence of turbulent flow (Chapter 10). However, turbulence 

flow is Ukely to have been decreasing with decreasing discharge, hence the earl\-

occurrence of the large pennate diatom Navivula lanceolata. 

high 

DISCHARGE 

sediment load 

flushing 

high Si02-Si 

- • light limitation 

- • loss > growth 

- • mcreased growth potential 

low 

low Si02-Si 

reduced turbulence 

- • reduced growth potential 

- • cells lost from suspension 

Figure 11.2 Schematic representation of the influences of discharge on 
phytoplankton in the Nene. 

Flushing, or the mfluence of increased discharge, will ultimately result in loss of 

phytoplankton, but the short-term effect of flushing is not straightforward. An increase 

m water entering the river will result in increased velocity and loss of phytoplankton. 

The influence on phytoplankton abundance will be through dilution and enhanced 

removal rate. Increased discharge will normally be the result of recent precipitation and 

i f occurring over a prolonged period will ultimately result in loss of phytoplankton. 

Locahsed heavy rain will quickly lead to loss through dilution although heavy rainfall in 

the headwaters will result m a slower loss process. This will occur not only because of 

a delayed response due to distance but because the whole upstream system has to be 

flushed before the impact is apparent. The spate flows of September 1994 illustrate this 

point (Chapter 8). 

On the day of the spate flows that occurred during September 1994, heavy rain 

fell across the length of the Nene catchment and resulted in a three-fold increase in 

discharge that day and a further three-fold increase, which lasted for the subsequent two 

days. The very rapid increase in blue-green algae following the inundation indicates 

local flushing from lakes (probably located along tributary 3). However, the sustained 
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high occurrence of other algae normally present in the river (e.g. Scenedesmus 

communis), over at least two weeks indicates a flushing of algae from the length of the 

river. The protracted period with high phytoplankton abundance following the spate 

indicates that despite the elevated discharge much of the pre-spate river water was only 

partially mixing with the rain water, with a large proportion of the original river water 

being retained and gradually flushed downstream. 

The negative influence of flushing is balanced against the positive effect of 

increased silica concentrations. High discharge increases the concentration of silica but 

also increases loss through flushing. Whereas low discharge provides a more 

favourable physical environment but a less favourable chemical media for sustained 

diatom growth. These conflicting trends were well illustrated during this study. April 

and May of 1994 and 1996 had average silica concentrations of 2.9 and 0.5 mg L"' 

respectively. The average discharge during these periods was 10.9 and 5.1 m^ s'' 

respectively for 1994 and 1996. Therefore spring phytoplankton abundance was limited 

by discharge during 1994 and probably by silica at times during 1996. 

Summer periods of elevated rainfall and discharge are often associated with lower 

temperature, which in turn may promote phytoplankton abundance. 

Temperature 

A simplified representation of a phytoplankton temperature gradient for the Nene 

is shown in Figure 11.3. Here taxa are listed and their optimum temperature identified 

(Chapter 8), although some species have a wider temperature range than others. These 

values were derived from nature and therefore in the presence of other controlling 

variables. The data suggest that the temperature range of the Nene extends beyond the 

optimum for some species whereas others exhibit increased growth throughout the 

range. 

Hypothetical growth curves are illustrated in Figure 11.4 for Stephanodiscus 

hantzschii and Actinastrum hantzschii. At low temperature the centric diatom grows 

more quickly then the green alga, but when temperature increases above 15°C to 18°C 

growth rate declines and eventually becomes negative. Actinastrum grows more slowly 

at low temperature compared to the diatom but continues to exhibit increased growth 

with increasing temperature. 

The response curves are typical for the algal groups they represent (Gamier et al., 

1995) but the interesting feature of the Stephanodiscus hantzschii curve is that the 
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optimum is several degrees lower than seen for this species in other British rivers 

(Swale. 1969). As postulated earlier, a plausible explanation for a lower temperature 

optimum in .S'. hantzschii is selection pressure created by silica limitation. As described 

above, a balance exists between the negative and positive affects of high and low 

discharge on centric diatom development in the Nene. To achieve maximum abundance 

S. hantzschii has to time its maximum growth at a time when silica concentrations are 

adequate. This period will correspond with high discharge, and will tend to occur early 

or late in the year when temperature is low. This theory is supported by the larger 

centric diatoms, which consist mainly of S. hantzschii fo. tenuis, having a higher 

temperature optimum, this species being a poorly silicafied form of 5. hantzschii (E.Y. 

Haworth, pers. comm.). 

Navicula lanceolata 

Nitzschia acicularis 

Stephanodiscus hantzschii and Monoraphidium contortum 
centric diatoms < 5^m 0 

Stephanodiscus hantzschii fo. tenuis 

Scenedesmus communis 

Actinastrum hantzschii 

Nitzschia fruticosa 

1 i I r I I I I I 
5°C 10°C 15°C 20°C 25°C 

Figure 11.3 Schematic representation of phytoplankton temperature gradient. 
Arrows indicate approximate temperature optima. 
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Figure 11.4 Hypothetical growth curves in relation to temperature for Stephanodiscus 
hantzschii (left) and Actinastrum hantzschii (right) in the Nene. 

Water temperature in the Nene is low relative to other Northern European rivers 

and this may relate to differences in discharge and length. The Nene has a maximum 

temperature of about 21°C whereas other rivers exceed this value by several degrees 

(Descy and Gosselain, 1994; Gosselain et al., 1994). 

Light 

Although light is included in the list of key factors controlling phytoplankton 

abundance in the Nene (Table 11.1), it is difficult to disentangle the influence of light 

from temperature, although this can be done experimentally. Algal cell temperature can 

be influenced by solar radiation, particularly when cells are near the surface and infrared 

wavelengths are transmitted (DeNicoIa, 1996). However, light is more likely to 

influence growth by convection transfer of heat from surrounding waters. 

Ultraviolet radiation can be damaging to algal cells (Soeder and Stengel, 1974) 

although the negative impact of light in a turbulent environment is difficult to 

determine. 

Dead zones 

The contribution of algae from dead zones has the potential of significantly 

influencing the algae of the main river. Although in the Nene this period of influence 

appears to be restricted to a times when the temperature is below 15°C. Under these 

conditions the bay at km 91.7 did contain a greater concentration of phytoplankton than 
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the main river (Chapter 9) and these were likely to be augmenting the algae of the main 

river, through diffusion. Bays and other dead zones are also likely to be more effective 

at retaining algae during spate flows than the main river and thus facilitate rapid 

recolonisation. 

Dead zones are likely to heat and cool more rapidly than the main river (Reynolds 

and Glaister, 1992) and in the case of the Nene this factor could contribute to the 

downstream temperature gradient, which is apparent in the spring. The differentially 

higher temperatures in dead zones would promote the growth of Stephanodiscus 

hantzschii below 15°C and inhibits growth at higher values. The bay at km 91.7 did not 

contain more green algae than the main river during the summer and the reason for this 

is unclear. One possible explanation for this disparity is that the bay contained a stand 

of Glyceria maxima and these could have been creating shade. 

Extrinsic sources of phytoplankton 

The significance of extrinsic sources of phytoplankton to the Nene is one of 

species composition and frequency of occurrence. The data indicate that centric 

diatoms entering the Nene from tributary 3 have an insignificant impact on the main 

river. However, sources of blue-green algae from standing waters adjoining the river 

are of importance. 

Oscillatoria limnetica, O. redekei and O. agardhii occur in the Nene and appear to 

tolerate turbulent riverine conditions, although there is no evidence of continued growth 

in the river. Other blue-green algae, like Aphanizomenon flos-aquae and Anabaena 

flos-aquae, are less frequent in the Nene phytoplankton. However, with the increased 

abundance of standing waters adjoining the river and the possibility of warmer summers 

these taxa could become a more frequent occurrence in the Nene. Notwithstanding this 

possibility, most the blue-green algae originating from lentic sources could probably be 

prevented from entering the river. For example, the diversion of channels around 

standing water rather than through them and the use of reed beds to 'filter' algae from 

lake outflow waters would contribute significantly to the prevention of algae entering 

the river. 

One of the unresolved questions regarding river phytoplankton is sources of 

inocula (Wehr and Descy, 1998). The studies of extrinsic sources of phytoplankton 

demonstrates the potential sources of phytoplankton inocula to the main river. The 

Nene contains numerous marinas, adjoining flooded gravel pits, backwaters and side 
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channels. Al l these locations and much of the main river can retain sources of algal 

inocula, as algal cells or resting stages. The study of tributary 3 showed how centric 

diatoms can be carried over long distances, therefore any standing water within the 

catchment is a potential source of algae to the river. 

Grazing 

Grazing by Cladocera is an important controlhng factor for phytoplankton in 

standing waters, and considered a key component in 'top down' control in many 

biomanipulation projects. However, in the Nene grazing appears to be of lesser 

importance than in lakes. Planktonic grazers in the Nene are mostly restricted to rotifers 

and ciliates and although large populations can develop they do not appear to 

significantly impact on phytoplankton abundance. This is despite rotifer populations in 

the Nene achieving abundances that are thought to limit phytoplankton numbers in 

larger systems (Gosselain et al., 1998). 

Grazing by bivalves molluscs has not yet been considered in the Nene. Large 

bivalve of the genera Anadonta and Unio are ubiquitous throughout the deeper 

freshwater sections of the Nene (EA, unpublished data). These organisms are relatively 

slow growing, taking several years to mature (Ellis, 1978). Bivalves will almost 

certainly be filtering algae during periods of phytoplankton abundance, but the degree 

of impact they have on phytoplankton populations is unknown. However, filtering by 

bivalves will be relatively continuous and is unlikely to be responsible for sudden 

reductions in phytoplankton abundance, such as those that appear to occur from 

parasitism. 

Parasitism 

The data suggest that in the Nene parasitism has a major impact on phytoplankton 

abundance, being responsible for significant population reductions. Parasitism by 

chytrids cause population crashes in rivers (Clarke, 1989) and lakes (Canter, 1979) and 

they appears the most likely explanation for sudden declines in phytoplankton 

abundance in the Nene. Significant reductions in centric diatoms population, which 

cannot be explained by physical or chemical variables, are likely to result from 

parasitism. This was confirmed during 1996, with the concurrent disappearance of 

centric diatoms from suspension and their condition and occurrence in the sediment 
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trap. Numerous intact frustules devoid of cell contents are more likely to be the product 

of parasitism than any other process (Chapter 10). 

Macrophytes 

Abundant submerged macrophytes are often cited as being responsible for 

improved water clarity, although the mechanisms for this phenomenon are numerous 

(Scheffer, 1999). In the Nene high chlorophyll concentrations do appear to restrict the 

abundance of submerged plants. However, it does not necessarily follow that abundant 

macrophytes will limit chlorophyll levels. 

One of the main sources of unexplained variation in the phytoplankton data is 

summer periods with protracted low chlorophyll levels. The occurrence of these 

periods was established in the long-term chlorophyll data set with 25% of the data 

('low chlorophyll summer periods') having a significant influence on the whole data set. 

Macrophytes could be implicated in the perpetuation of low chlorophyll summers, 

but probably not in their initiation. That is, some factor other than macrophytes is 

responsible for causing the decline of phytoplankton long enough to permit the growth 

of submerged macrophytes, which will then prevent the return of phytoplankton 

abundance. The decline of the summer chlorophyll and events that could result in 

submerged macrophyte growth will now be considered. 

11.4 Summer decline of phytoplankton 

The exploration of factors that could lead to the onset of low chlorophyll summers 

will commence by looking at a year that didn't experience such a phenomenon, 1980. 

Discharge, temperature, silicate and chlorophyll at km 91.7 during 1980 are shown in 

Figure 11.5. 

During 1980 an early chlorophyll peak (a, Figure 11.5) occurred at low 

temperature (7°C) and high discharge (11 m^ s"'), but high amplitude peaks did not 

occur until temperature increased above 10°C and discharge declined below 10 m^ s ' 

(b). This and the subsequent chlorophyll peak resulted in a sharp decline in silicate and 

are therefore likely to constitute abundant centric diatoms, with possible silica limitation 

and parasitism. The latter possibly resulting in a significant decline in chlorophyll (c), 

although declining temperature may have also contributed. 
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The second major decline in chlorophyll during June 1980 (d) may have again 

resulted from parasitism, but also corresponded with temperature increases above 18°C. 

which is likely to have reduced centric diatom abundance. 
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Figure 11.5 Discharge, temperature, silicate and chloroph>ll at km 91.7 during 1980. 
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Likewise, the large chlorophyll peak that occurred in late June (e) corresponded to 

a reduction in temperature and the less pronounced reduction in silicate possibly 

suggests an increasing abundance of suspended green algae. Although this peak was 

probably dominated by diatoms because its decline again corresponded with an increase 

in temperature to 21°C. The duration of this trough (f) was extended by high discharge 

during August/September. The return of discharge to values below 10 m^ s"' was soon 

followed by an increase in chlorophyll which coincided with a temperature favourable 

to diatoms and resulted in the depression of silicate. 

The decline of the September chlorophyll peak may have been caused by 

parasitism, but declining temperature probably resulted in the depressed chlorophyll 

peak that followed (h), which was annulled by increasing discharge. 

This description of the probable factors controlling chlorophyll during 1980 

propose a series of events that would inhibit the occurrence of macrophyte growth, 

through shading caused by high suspended chlorophyll. It is also worth noting that 

'weed' growth was negligible during 1980 (Brierley et al., 1989). 

The significance of temperature as a controlling mechanism in the Nene should not 

be underestimated. Sustained temperature above 18°C will result in a significant 

reduction in centric diatoms and promote macrophyte growth. Sustained high discharge 

will also reduce phytoplankton abundance and provide favourable conditions for 

submerged macrophyte growth, as occurred during 1994. 

In 1996 the temperature increased above 18°C in early July and remained so until 

the end of August, peaking at 21°C. The occurrence of this prolonged period with high 

temperature is likely to have produced favourable conditions for macrophyte growth. 

The simplified pattern of temporal phytoplankton dynamics introduced in Figure 

11.1 can be further expanded by subdividing the annual occurrence of phytoplankton 

into four phases, based on variations in temperature and discharge. 

11.5 Phytoplankton phases 

Four possible phases of annual phytoplankton occurrence are shown in Figure 

11.6. These phases are not necessarily sequential and not all phases will occur each 

year. 
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Phase 1: early spring 

0 
6> 

Phase 2: spring/cold summer 

0 
Phase 3: hot summer 

Phase 4: low chlorophyll summer/macrophyte dominance 

0 

-> 

Temperature Discharge and turbulence 
Figure 11.6 Phases of phytoplankton abundance in the Nene and the influence of 
temperature and discharge/turbulence. Illustrations of phytoplankton modified from 
Belcher and Swale (1979 and 1979). Temperature represented by length of red line 
(left) and discharge/turbulence by thickness of blue swirl (right). 
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Phase I probably occurs in some form most years at low temperature and high 

discharge, and is characterised by Navicula lanceolata and Nitzschia acicularis. Phase 

n is the key period of high phytoplankton abundance and dominance by centric diatoms. 

Increasing temperature and discharge can result in Phase lU, green algae dominance. 

Prolonged high temperature can lead to Phase IV where submerged macrophytes 

become abundant and phytoplankton scarce. 

These four phases of phytoplankton abundance, albeit great generalisations of 

nature, explain the major temporal trends seen in the Nene. Exceptions to these phases 

do occur, such as the severe drought of 1976, but the influence of temperature and 

discharge do generally hold true. Phase U is the key period of phytoplankton abundance 

and occurs every spring to some extent. Phase I precedes Phase n most years, but 

Phases m and IV are not necessarily represented every year (e.g. 1980). 

These simplifications and the gradual introduction of levels of greater complexity 

are a sound basis for modelling phytoplankton abundance in the Nene. 

11.6 Modelling 

Simple linear models describing chlorophyll concentration in the Nene at km 91.7 

were constructed using temperature and discharge as predictors (Chapters 7 and 8). 

These models were produced by transforming temperature and discharge to approximate 

linear functions. Unfortunately, these technique inadequately describe the non-linear 

nature of the relationships and under these circumstances phytoplankton dynamics are 

most satisfactorily modelled by numerical methods (Bowker, 1996). 

The Nene data lend themselves well to modelling. The simplest form of dynamic 

models are deterministic and assume that future trends can be determined from the 

current state (Gumey and Nisbet, 1998). The production of a dynamic model to 

describe phytoplankton in the Nene at km 91.7 is the next logical step to this research. 

Although modelling is beyond the scope of this work the conceptualisation of a model 

is a useful summation of key processes. 

Some models of river phytoplankton focus on chlorophyll (Whitehead et al., 1997) 

although an approach using key taxa ( Gamier et al. 1995) is preferable for the Nene. 

As the centric diatom Stephanodiscus hantzschii is the most abundant taxon in the Nene 

it is suggested that this species should be used for the initial model. Once the model of 

a single taxa has been produced and verified then other taxa could be introduced. The 

results of combined taxa models could be converted to chlorophyll (based on cell 
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volume) for comparison with the long-term data. A flow chart for the initial model is 

shown in Figure 11.7. 

The model would be based on a daily timeframe and require daily values for 

discharge, water temperature and silicate concentration, standardised to a predetermined 

time (e.g. 12:00). Daily discharge data would be readily available for km 91.7 

(following scaling) but temperature and silicate concentration would have to be 

modelled from other variables. Initial attempts to model water temperature have been 

made using six day average solar radiation and two day average discharge (r̂  ^OJ\,p< 

0.05, n = 304). Silicate has not yet been modelled but would have a minimum data 

requirement of centric diatom abundance and discharge. Once the wherewithal for 

obtaining these daily variables is established the modelling proper could proceed. 

uptake 
growth 

centric diatoms 

Loss factors Key 
discharge rectangle = state variable 
parasitism driving variable = circle 
sedimentation flow = lines and arrows 
grazing processes = valves 
macrophytes sink = polygon 

diatoms' is governed by the controlling variables temperature and silica 
concentration (above). Table of loss factors and a key to symbols used in the 
diagram (below). 

The first step would be to establish equations to describe growth, in respect to 

temperature and the availability of silicate. Growth rate at different temperatures can be 

estimated from data collected during this work, when silica was not limiting. The 

impact of silica limitation can be estimated from Swale (1963). Once these two 

relationships have been established then gross phytoplankton abundance can be 
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estimated and these values minus total loss would provide estimates of net 

phytoplankton abundance. 

The impact of loss factors has to be calculated on a daily basis and each factor 

listed in Figure 11.7 will be considered in turn. 

Discharge 

There are two main facets of the loss impacts of discharge on centric diatoms, 

namely dilution and turbulence. Dilution impacts could be quantified from the linear 

relationship between chlorophyll/centric diatoms and discharge. The minimum 

discharge to produce sufficient turbulence for centric diatoms could also be extrapolated 

from the data. 

During periods of high phytoplankton abundance the impact of short-lived small 

(below 10 m^ s"') fluctuations in discharge would be negligible. Large and sustained 

increases in discharge would initially lead to increased phytoplankton abundance, due to 

flushing of algae from the system, followed by general decline in phytoplankton 

abundance. 

Parasitism 

The impact of parasitism on centric diatom abundance would best be achieved by 

modelling chytrid abundance from the abundance and duration of centric diatom 

populations, assuming an exponential rate of increase in infection. The frequency of 

parasitism would have to be estimated from trends observed during this work. 

Sedimentation 

Sedimentation losses of centric diatoms could be estimated as a proportion to their 

concentration in suspension. 

Grazing 

The abundance of rotifers (and possibly ciliates and bivalves) could be estimated 

from temperature, discharge and abundance of suspended algae. Standard filtering rates 

for rotifers can be applied to abundance values. 

Macrophytes 

To assess the impact of macrophytes it would be preferable to model general 

macrophyte abundance, based on temperature and underwater light. Light transparency 
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being estimated from phytoplankton abundance/chlorophyll concentration. Loss of 

macrophytes would be assumed to occur at high discharge (> 20 m^ s"') and 

consideration has to be given to the EA annual 'weed' cutting programme. 

The uncertainty of the impact of macrophytes on phytoplankton abundance could 

be further investigated using the model. Once the first half of the year has been 

adequately represented by the model, then the range of conditions that result in 

macrophyte dominance can be evaluated by adjusting the controlling variables or by the 

introduction of new variables. 

Spatial modelling 

Modelling of spatial trends in phytoplankton abundance in the Nene could follow 

temporal modelling at km 91.7. Initial spatial modelling would be preferably limited to 

km 64.6 and km 43.9 and the model could be used to describe the additional silicate 

resource that appears to be available at these sites (Chapter 9). Modelling at km 34.0 

would require some adjustment to growth/loss factors to account for reduced retention 

time that appears to impact here (Chapter 9). 

Extrinsic sources of algae 

The modelling of extrinsic influences would be more problematic and require an 

element of local knowledge. The abundance of blue-green algae would need to be 

estimated/modelled in lakes. However, some species of blue-green algae like 

Oscillatoria redekei can occur in standing water throughout much of the year (Whitton 

and Peat, 1969) so the influence of these taxa would involve modelling their abundance 

in standing waters and consideration of proximity and discharge. The latter would 

represent flushing rate of algae into the river. 

Extrapolation of unknown conditions 

The modelling of phytoplankton abundance under physical conditions not 

encountered during this study would also be problematic. For example, periods of 

sustained low discharge, as seen in 1976, can have a major influence on the pattern and 

magnitude of phytoplankton abundance. Under these conditions consideration would 

have to be given to other physical variables, like wind speed and direction as found in a 

study of phytoplankton in an impounded stretch of the River Welland during 1996 

(Balbi, 1997). 
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Validation and use of model 

The modal would need to be validated before it can be used with confidence and 

this would be undertaken using actual data from the Nene (probably chlorophyll 

concentration). I f the model cannot be made to function adequately then additional data 

on macrophyte/phytoplankton relationships, parasitism and grazing may be required. 

Modelling of the Nene could also have important implications for river 

management, particularly with the advent of the Water Framework Directive, which has 

a requirement for phytoplankton monitoring and is due to be adopted in the UK shortly. 

Additionally, i f river phytoplankton monitoring does become a requirement of this 

Directive then many of the methods developed here would have a wider application. 

11.7 Methodology and sampling strategy 

Phytoplankton enumeration 

The methodology development undertaken during this research provides 

considerable scope for further use, particularly the phytoplankton enumeration 

techniques. Sedimentation techniques of phytoplankton enumeration are widely 

referenced in the literature. Utermohl (1958) has been cited over 1000 times in the 

literature since 1981 and Lund et al. (1958) more than 590 times (ISI, Science Citation 

Index). However, these citations are often inappropriate or incomplete. 

The Lund et al. (1958) methodology was based on a complete counting of settled 

algae in a sedimentation chamber and the statistical treatment described is often 

inappropriately transferred to other techniques without consideration of additional 

sources of error that could be introduced. Edgar and Laird (1993) reviewed the 

Poisson-based methods of assigning confidence to count estimates and concluded that 

the techniques underestimated confidence intervals by between 5% and 15%. 

The method proposed by Lund et al. (1958) has also been criticized for the way 

confidence intervals from a single count are used to embrace the population in a lake, or 

part thereof. Other studies have concentrated on levels of error, from sample to final 

determination, and quantified the errors at each stage (Venrick, 1981; Irish and Clarke, 

1984), with sample error often cited as being the largest source or variance. 

Utermohl (1958) cited many possible alternative techniques of counting 

phytoplankton in sedimentation chambers and offered little in the way of statistical 
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validation. Irrespective of this the 'Utermohl Method' is often cited without any 

indication of which techniques have been used or statistical confidence attained. 

The significance of the discrepancies in counting techniques listed above will 

depend greatly on the nature of the study. Although when inferences are being drawn 

about population trends it is imperative that a knowledge of the confidence of each 

estimate is gained. 

The 'spaced fields' method developed and used during this research provides a 

robust modification to the traditional approaches and although the confidence intervals 

achieved per unit effort are wider than those quoted by Lund et al. (1958) they are more 

realistic and reliable. 

The spaced fields technique is likely to be criticized by statisticians because of the 

non-random nature of field placement. Cassie (1962) suggests that systematic sampling 

will always produce more accurate estimates than random sampling, and that statement 

was verified here. The disadvantage of non-random sampling is that probability theory 

cannot be used to assign confidence. The necessity to apply confidence intervals in this 

way is not a issue with the spaced fields method, as non-parametric techniques or the 

relationships resulting from the simulations can be used. 

The spaced fields method is not necessarily a replacement for other methods but an 

alternative which is ideal for use when the identification of small changes in population 

density need to be confidently attained. This method would be useful for monitoring 

phytoplankton cultures and in monitoring toxic or nuisance phytoplankton which 

requires high levels of accuracy. Accurate enumeration of potentially toxic planktonic 

blue-green algae is becoming increasingly important in the water industry as litigation 

or cessation of sporting activities may result from cell counts exceeding a predetermined 

level (although the validity of cell count 'warning thresholds' is dubious). 

Sediment traps 

The use of a sediment trap in the Nene produced invaluable results. On reflection 

it would have been preferable to empty the trap more frequently (at least weekly) to 

identify the impact of parasitism more precisely. Irrespective of this, the method has 

potential for application in other systems although traps must be located with care, 

preferably in sections where a unidirectional flow is maintained. 
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Sampling and analysis strategy 

The assessment of phytoplankton abundance was approached at several levels 

during this research. Increasing effort normally produces additional information, but 

the increase in information is not always proportional to effort. As time is always a 

limited resource careful targeting of effort is vital. In terms of pure research, time will 

always be wasted in the pursuit of knowledge. However, in terms of routine river 

monitoring all work has to be justified and carefully thought out strategies are required. 

The key to a optimal sampling and analysis strategy lies in flexibility and ensuring 

that effort is targeted where it is most effective. Unfortunately, routine monitoring 

programmes rarely allow for flexibility and sample collection has to be scheduled and 

budgeted for. 

Chlorophyll samples have been collected in the Nene over many years, although 

notwithstanding this work, their intended use is unclear. The UWWT Directive 

classifies rivers as eutrophic i f they have an annual maximum chlorophyll > 100 |ig L"' 

or annual average > 25 |ig L ' ' . Such a simplification of complex systems has obvious 

shortfalls in respect to the timing and frequency of sampling. Sample effort would be 

most effectively targeted at times of greatest phytoplankton abundance, but this would 

bias the average chlorophyll concentration. If targeted sampling is not undertaken then 

the peaks chlorophyll concentration could be overlooked. Additionally, samples taken 

in the morning often have lower levels of chlorophyll that those collected in the middle 

of the afternoon. 

Nevertheless, chlorophyll is a readily obtained determinand, and despite numerous 

shortfalls, forms a sound basis for a routine sampling programme. The contribution of 

degradation product must be considered and can be a significant proportion of total 

chlorophyll. However, chlorophyll determination alone is inadequate to gain a thorough 

understanding of regulatory processes in rivers, and phytoplankton species-composition 

must be considered. 

Flexibility of phytoplankton analysis is as important as flexibility of sampling, 

although analysis flexibility is compatible with a scheduled sampling programme. It is 

suggested that samples (concentrated i f necessary) should be examined live, species 

identified and abundance assessed using a semi-quantitative method (Chapter 3). The 

results of the semi-quantitative method could then used in conjunction with chlorophyll 

data to draw qualitative inferences about temporal or spatial trends (Chapter 9). 
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Quantitative phytoplankton analysis is essential for assessing trends and the 

identification of small changes. For example, in the assessment of eutrophication, 

temporal trends in chlorophyll could be less obvious than species trends. Species will 

always be better ecological indicators than general measurements like chlorophyll. 

Recent developments in HPLC techniques provide methods of quantifying 

taxonomic groups without counting. Pigments identified using HPLC techniques can be 

used as quantitative markers (Descy and Metens, 1996) and software has been 

developed to aid this process (Descy et al., 2000). The HPLC analysis provides a 

potential intermediate method of analysis between chlorophyll and counting, and should 

be considered for use in routine monitoring. 

Spatial distribution of sample sites for effective river monitoring also requires 

consideration. During this work effort was targeted at km 91.7, the most downstream 

site, and selective analysis was undertaken at other sites. This has proved to be an 

effective approach on this river and km 91.7 could be used as a key site in routine 

sample programmes, although the differences in spatial distributions of 

phytoplankton/chlorophyll would need to be considered. 

A suggested monitoring programme for km 91.7 is listed in Table 11.2, and this 

could be repeated at km 64.6 and km 43.9 if resources allowed. This programme would 

produce a sound data set and could be used in conjunction with modeling to help further 

elucidate the processes involved in phytoplankton dynamics in the Nene. 

Table 11.2 Suggested routine monitoring programme for km 91.7. 
Samples and Treatment/notes 
measurements 

Temperature Field record 
Secchi depth Field record 
Chlorophyll/HPLC Stored in dark below 4°C and analysed within 24 h 
Live Stored in dark below 4°C and analysed semi-quantitatively on 

day of collection 
Lugol's fixed Store out of direct sunlight and analysed quantitatively within 

12 months, adding more preservative during storage if 
necessary. Samples can be selected for analysis according to 
chlorophyll/HPLC/semi-quantitative results and should be 
counted to produce population estimates of dominant taxa 
within confidence intervals of ± 25% 

Si02-Si 
(Routine chemical programme would provide sufficient nutrient data) 

Frequency (Period 1 should to be extended during mild autumns/winters) 
Period 1: weekly between 1 March and 31 October 
Period 2: 2-weekly between 1 November and 28/29 February 
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12 SUMMARY 
1 Phytoplankton dynamics were investigated in the 96-km length of the River Nene. 

Trends in chlorophyll data for a downstream site (km 91.7), spanning 24-years, 

were explored using physical and chemical variables as predictors. The 

interpretation of these data was aided by additional sampling at eight main river and 

three tributary sites between 25/6/1993 to 31/12/1997 (km 22.4 to km 91.7). 

2 The additional sampling programme included investigations into light attenuation, 

sedimentation, filterable reactive and total phosphorus, phaeopigments, species 

composition, picoplankton, zooplankton, small-scale and short term trends in 

chlorophyll and phytoplankton. Phytoplankton analysis was targeted at four main 

river and the tributary sample sites. 

3 Phytoplankton were abundant in the deeper navigation sections of the river and 

were characterised by spring peaks which were followed by either continued high 

chlorophyll or very low concentrations. Chlorophyll concentrations in the upper 

part of the navigation appeared to be restricted by retention time. 

4 Discharge and temperature were significant predictors of chlorophyll concentration 

and phytoplankton abundance, and correlated most significantly with data from the 

first-half of the year. The greater variability later in the year was due to increased 

species diversity and some summers having extended periods of very low 

chlorophyll concentration. 

5 188 taxa were recorded for km 91.7 and the 20 most abundant taxa represented 

88% of all taxa. Centric diatoms represented 44% of taxa and over half of these 

were of the size class > 5 <10 iim diameter and consisted mostly of Stephanodiscus 

hantzschii. 

6 32 taxa groups were formed to investigate phytoplankton dynamics further and 

these based on abundance/biovolume, periodicity and ecological considerations. 

These groups were assessed by scrutiny of time-plots, correlating with discharge, 

temperature and light and by multivariate analysis. These three approaches were 
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complementary and identified taxa gradients in relation to physical and chemical 

variables. 

7 Spring phytoplankton peaks were characterised by abundant centric diatoms, which 

followed increasing temperature and decreasing discharge. Further increases in 

temperature and decreases in discharge were characterised by increasing numbers 

for green algae. Picoplankton were often abundant at times when larger 

phytoplankton were scarce and blue-green picoplankton were more abundant than 

greens. 

8 High frequency sampling at Wansford identified short-term trends in chlorophyll 

and phytoplankton abundance that related to discharge, temperature, light and 

silica. 

9 There is considerable evidence that centric diatom abundance was limited by the 

availability of silica and limitation appears to be more pronounced at some 

locations than others. 

10 Rotifers were abundant in the Nene and were limited by temperature, discharge and 

food availability. Rotifers required periods of greater stability than phytoplankton 

to proliferate. Grazing did not appear to significantly impact on phytoplankton 

abundance. 

11 The data suggest that centric diatom populations are severely impacted by 

parasitism. This premise is supported by the loss of centric diatoms from the 

plankton, in the absence of any physical or chemical explanation, and their 

concurrent appearance and condition in a sediment trap. 

12 Chlorophyll and phytoplankton peaks at km 91.7 occur earlier and are of lower 

magnitude than at upstream sites. Although the reason for this pattern is not 

entirely clear it appears to relate to a downstream temperature gradient, the 

contribution of dead zones and differential silica limitation. 
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13 Lentic sources of centric diatoms do not appear to have any influence on the main 

river but several locations were discharging blue-green algae into the river, which 

persisted over long-distances. 

14 Neither N nor P appear to be limiting phytoplankton abundance in the Nene and 

from the prevailing concentrations of these nutrients the river can be classified as 

eutrophic to hypertrophic. However, there is an abundance of some phytoplankton 

taxa at km 22.4 that are normally associated with unproductive or P limited 

environments. 

15 Summer periods with low chlorophyll concentrations are thought to result from an 

abundance of submerged macrophytes. The data suggests that abundant 

phytoplankton inhibit submerged macrophyte growth, through shading. However, 

once macrophytes become established they prevent the development of large 

phytoplankton populations. Protracted periods of high temperature (> 18°C) are 

thought to be a causal factor for the decline of phytoplankton numbers and 

increased submerged macrophyte growth. 

16 Proposals for modelling phytoplankton dynamics are presented. 

17 Phytoplankton enumeration techniques in sedimentation chambers were evaluated 

by empirical methods and computer simulation. Traditional methods produced 

errors which were greater than predicted by parametric techniques. A new 

approach called spaced fields was developed, which performed more satisfactorily 

than traditional methods and permitted the accurate identification of small changes 

in phytoplankton population. 

18 The spaced fields counting method was used to evaluate sample, primary and 

secondary-subsample error. All three stages of sampling were found to contribute 

an approximately equal variance to the overall process. 

19 A sampling programme for future monitoring of the Nene is suggested. 
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