
Durham E-Theses

Classical and quantum aspects of topological solitons:
(using numerical methods)

Weidig, Tom

How to cite:

Weidig, Tom (1999) Classical and quantum aspects of topological solitons: (using numerical methods),
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4277/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4277/
 http://etheses.dur.ac.uk/4277/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Classical and Quantum Aspects 

of Topological Solitons 

(using numerical methods) 

Tom Weidig 

Centre for Particle Theory 

Department of Mathematical Sciences 

Thesis presented for the Degree of Doctor of Philosophy 

at the University of Durham 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without the written consent of the 
author and information derived 
from it should be acknowledged. 

August 1999 

1 2000 



To the memory of my grandparents 



Preface 

After 23 years of formal education, I hereby present my PhD thesis. I cannot deny that i t took 

me a rather long t ime to get close to the forefront of knowledge and research. When I was very, 

very young, I thought my parents knew everything. When I was very young, my primary school 

teachers knew everything. When I was young, my secondary school teachers knew everything. 

Not long ago, doctors and professors knew everything. Now, I th ink no-one knows everything-a 

frightening but l iberating thought. 

Let me take the opportunity to thank some people. First of al l , I want to thank my parents, 

Gilles, Revel, Monni Paul, Boma Olga and the rest of the family for their moral and financial 

support. Wi thou t their help, everything would have been much harder. Of course, I am grateful 

to my supervisor Wojtek Zakrzewski for his encouragement and efforts. Many thanks also go to 

Bernard Piette for computer code and answering my questions in a very Belgian way. I thank 

all the people who attended the Tuesday seminars, the people f rom the C P T group in Physics 

and Maths and the Mathematical Sciences for making my stay an enjoyable one. And I am 

grateful to my former supervisors Lewis Ryder and Chris Isham for guidance and inspiration. 

I acknowledge the receipt of a Durham Research Award, financial support f rom the depart­

ment to attend summer schools and a 'bourse universitaire' f rom the government of Luxem­

bourg. 

Last but certainly not least, I thank all my fellow PhD students in Physics and Maths. I 

i 



PREFACE i i 

hope I don't forget someone, in no order of preference: Ricardo for many New Inn lunches and 

for telling me that Luxembourg w i l l soon be a province of Portugal, M a t t C, for let t ing me save 

your plant, Karate K i d M a t t S., John C. pardon Bierhoff, John O., Mark for his collaboration 

and his computer enthusiasm, Laur for being a true intellectual theoretical physicist in the 

continental sense, Sabine, Clare L . for invi t ing me and Kelly to her wedding, Matthias for 

being a nice guy, A n j a for good disco dancing, Steve for being a cheeky bastard, Alan for 

'wasting' our t ime chatting, Imran for his curiosity, Lars for insulting my country and winning 

6-0 6-0 in tennis, Sharry for his X-mas party performance, Patrick, David B. , Clare for being 

very nice, Linda, Stuart, Vinay, Medina, Filipe, Owen for showing off his finger, Justin, Iannis 

and his combat trousers, W a j d i f rom Libya, Gavin, Pete M . , David for being very Cambridge­

like, Nuno for extraordinary paintballing skills, Michael, Caroline, Georgios, Bil l ie for winning 

one chess game (out of 10), Jeppe, Ramon and Pete for being Pete and many others. 



Declaration 

This thesis builds on the course taken by the author in elementary particle physics f rom October 

1996 to A p r i l 1997 and summarises the research work undertaken f rom May 1997 to July 1999; 

both at the Centre for Particle Theory at the department of Mathematical Sciences at the 

University of Durham, England. No part of this work has been previously submitted for any 

degree at any university. 

Chapter 1 and 2 are reviews on solitons and numerical methods. Most of the computer 

codes have been wri t ten by the author and I acknowledge the use of some routines wri t ten by 

Bernard Piette. Chapter 3 and 4 is believed to be orginal work, unless stated. The research 

work on the structure of multi-skyrmions orginates f rom a paper submitted and accepted for 

publication in Nonlinearity. The implementation of the Simulated Annealing scheme has been 

done in cooperation w i t h Mark Hale. 

The copyright of this thesis rests w i t h the author. No quotation f rom i t should be published 

without their prior wr i t ten consent and information derived f rom i t should be acknowledged. 

We adopted the convention to write names wi th a capital letter and words derived f rom 

names wi th lower letters e.g. the Skyrme model and skyrmions or the Lagrange multiplier and 

the lagrangian. 

i i i 



Abstract 

Classical and Quantum Aspects of Topological Solitons 
PhD thesis by Tom Weidig, August 1999 

In Introduction, we review integrable and topological solitons. I n Numerical Methods, we 

describe how to minimise functionals, time-integrate configurations and solve eigenvalue prob­

lems. We also present the Simulated Annealing scheme for minimisation in solitonic systems. 

In Classical Aspects, we analyse the effect of the potential term on the structure of minimal-

energy solutions for any topological charge n. The simplest holomorphic baby Skyrme model 

has no known stable minimal-energy solution for n > 1. The one-vacuum baby Skyrme model 

possesses non-radially symmetric multi-skyrmions that look like 'skyrmion lattices' formed by 

skyrmions wi th n = 2. The two-vacua baby Skyrme model has radially symmetric mul t i -

skyrmions. We implement Simulated Annealing and i t works well for higher order terms. We 

find that the spatial part of the six-derivative term is zero. 

In Quantum Aspects, we find the first order quantum mass correction for the 4>4 kink using 

the semi-classical expansion. We derive a trace formula which gives the mass correction by 

using the eigenmodes and values of the soliton and vacuum perturbations. We show that the 

zero mode is the most important contribution. We compute the mass correction of (f)4 kink and 

Sine-Gordon numerically by solving the eigenvalue equations and substi tuting into the trace 

formula. 

IV 
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Chapter 1 

Introduction 

"Today I looked out of my window: someone was watering the lawn. He was pulling 

a garden hose behind him. This created a rather strange impression. I t was very 

bright outside and the green hose, moving through the green grass like a snake, 

wasn't visible at times. But then, at times, I did see i t : I saw the knots in the hose 

that were moving like balls along the grass following an invisible, mysterious force. 

I found this rather curious. These knots were behaving like independent particles. 

Could i t be that elementary particles are knots in some medium which we don't 

see???" 

(diary entry, July 1992) 

I t does not quite match J. Scott Russell's heroical horse ride along the Edinburgh-Glasgow 

canal and his subsequent discovery of solitary waves. Nevertheless, my diary entry dating back 

to 1992 comes amazingly close to the main lei tmotiv of my PhD thesis seven years later: the 

study of objects arising f rom a non-trivial topology and their application to particle physics. 

We call these objects topological solitons. They are solutions of non-linear partial differential 

equations (PDEs) which are derived f rom a lagrangian system w i t h non-tr ivial topology. The 

1 



CHAPTER 1. INTRODUCTION 2 

literature defines a solitary wave as a localised finite-energy field configuration (a lump of 

energy) that travels without dispersion. And , solitons are those solitary waves that can pass 

through each other and retain their shape, Strictly speaking, our topological 'solitons' do not 

possess this property, rather they scatter at 90 degrees or form more complicated configurations. 

Thus, they are solitons in the sense that they keep to a localised configuration(s) after collisions; 

apart f rom annihilation processes. Most of these non-linear PDEs prove impossible to solve 

explicitly; especially in more than one space dimension. Therefore, we use numerical methods to 

study the classical aspects of solitons. Any application to particle physics needs an adaptation 

of the model to the quantum regime. For topological solitons in two or three space dimensions, 

this task is conceptually and technically very involved. Therefore, our strategy for the study 

of quantum aspects of solitons again resorts to numerical techniques. 

Every introduction to solitons starts w i th the first known study of solitary waves by J. Scott 

Russell; and so w i l l ours. His work inspired many researchers. The discovery of the Korteweg-

de Vries ( K d V ) , the Burgers equations and much more followed. Usually, solitonic systems 

are classified into two groups: the integrable models and the topological models. Integrable 

solitons owe their existence to the finely tuned balanced action of non-linear and dispersive 

or dissipative terms. This is int imately linked to an infinite number of conservation laws and 

the integrability of the system. Expl ic i t solutions come f rom various techniques e.g. Lax pair, 

inverse scattering etc. We move on to construct solitonic systems whose stability is imposed 

by its topology. Unlike for integrable models, few mathematical tools are available. Field 

configurations are classified via a topological charge and an appropriate lagrangian ensures 

stability. The sine-Gordon model is special due to its integrability and its non-trivial topology. 

The non-linear O(N) model and its stabilised version, the Skyrme model are good examples of 

topological solitons. 

We discuss the application of solitons to particle physics. t 'Hoof t and Witten 's work on 
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Large-N expansion and low-energy QCD established the nuclear Skyrme model as the candidate 

theory for the description of nuclei. Adkins, Nappi and Witten 's quantization paper have 

partially confirmed this hope. We discuss the problems involved and recent attempts to improve 

the predictive power. 

We give a brief summary of this thesis. In 'Numerical Methods', we present the numerical 

techniques used for our study of classical and quantum aspects of solitons. The finite difference 

is the core ingredient of these standard numerical methods. We also introduce the Metropolis-

Simulated Annealing principle. This technique should prove to be an interesting and efficient 

alternative way to find minimal energy solutions. The implementation of this method to soli-

tonic systems was done by the author and Mark Hale. 'Classical Aspects of Baby Skyrme 

models' analyses baby Skyrme models. We explore the structure of minimal-energy skyrmion 

solutions of topological charge greater than one for the different baby Skyrme models. On 

the way, we review the holomorphic and the old baby Skyrme model and confirm previous 

work. We find that the new baby Skyrme model has a completely different multi-skyrmion 

structure. This leads us to the conclusion that the structure is heavily potential dependent. 

In the 'Quantum Aspects of Solitons', we show how to extract quantum mass corrections via 

numerical methods. We review the method by Barnes & Turok and confirm the validity of their 

technique. First, we compute the mass correction for the </>4 kink model explicitly. Then we 

derive a simple trace formula and redo the calculations explicitly and numerically. We apply i t 

to another model in 1+1 dimensions, namely the Sine-Gordon model. 

1.1 How it all started... 

Imagine you throw a stone in a lake. The resulting water wave undergoes dispersion and, to 

a lesser degree, dissipation. I t is a superposition of waves at different frequencies which travel 
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at different speeds: the water wave disperses i.e. becomes delocalised. Dissipative effects lead 

to a gradual decrease of the amplitude of these travelling waves. The concept of a solitary 

wave comes f rom the observation of water waves that do not follow this pattern. Indeed, these 

water waves are single localised entities. J. Scott Russell seems to be the first to have studied 

the fundamentally different dynamics underlying solitary waves. In 1844, Russell reported on 

his observation of 'great waves of translation' in the Edinburgh-Glasgow canal that led to his 

subsequent studies of such phenomena and started off research on solitons as such [Rus45]: 

I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped - not so the mass 

of the water in the channel which i t had put in motion; i t accumulated round the 

prow of the vessel in a state of violent agitation, then suddenly leaving i t behind, 

rolled forward w i t h great velocity, assuming the fo rm of a large solitary elevation, a 

rounded, smooth and well-defined heap of water, which continued its course along 

the channel apparently without change of form or diminut ion of speed. I followed 

i t on horseback . . . Its height gradually diminished, and after a chase of one or two 

miles I lost i t in the windings of the channel. Such, in the month of August 1834, 

was my first chance interview w i t h that singular and beautiful phenomenon... 

He succeeded in re-creating solitary waves in his laboratory. Simulating the boat in the canal, 

Russell dropped weights at one end of a water channel. The mass of water displaced formed 

a solitary wave: the volume of water displaced by the weight was exactly equal to the volume 

of water in the wave. Further, Russell found an empirical formula relating the speed v and the 

amplitude a of the wave, the undisturbed depth h of water and the acceleration g of gravity: 

v2 = g{h + a). (1.1) 
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The form of the solitary wave depends on the properties of the physical system rather than the 

circumstances of its creation. Another important observation shed light on the fundamentally 

different dynamics underlying solitary waves. Russell described how a large wave 'immediately 

breaks down by spontaneous analysis into two, the greater moving faster and altogether leaving 

the smaller'. The concept of a soliton as the solitary wave conserved in collisions is emerging. 

Subsequent research by Boussinesq (1871), by Lord Rayleigh (1876) and by Korteweg and de 

Vries (1895) showed that the solitary wave in shallow water can be well described by the K d V 

equation: see [DJ96, pages 7-15] for example. A t a much later stage, numerical experiments by 

Fermi, Pasta and Ulam [FPU55], by Perring and Skyrme [PS62] and by Zabusky and Kruskal 

[ZK65] clarified the concept of a soliton and its stability throughout interactions. It 's Zabusky 

and Kruskal who came up w i t h the name 'soliton' and clearly stated in [ZK65]: 

Shortly after the interaction, they reappear vi r tual ly unaffected in size or shape. 

In other words, solitons "pass through" one another without losing their identity. 

Here we have a nonlinear physical process in which interacting localised pulses do 

not scatter irreversibly. 

1.2 Integrable solitons 

Solitons are solitary waves that keep their identity after collisions. Generally, solitons can be 

classified into integrable solitons and topological solitons. Unfortunately, there is no general 

agreement over the definit ion of an integrable system: see [AC91, pages438-439]. Since inte­

grable solitons are not the subject of this thesis, we restrict ourselves to a brief survey of the 

key concepts and techniques available. This w i l l provide us w i t h a good starting point for the 

introduction of topological solitons. Their lack of mathematical tools to produce solutions is 

in stark contrast to integrable systems and requires numerical studies. Useful references on 
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integrable models are [Bow], [DJ96], [AC91], [RS84]. 

Integrability of a system is related to the existence of a Lax pair and the Painleve property. 

Various techniques can be used to f ind explicit solutions or the time-evolution of configurations, 

to name a few: travelling wave solution, inverse scattering, Backlund transformation, Lax pair. 

The stability of the solitons arises f rom the existence of an infini te number of conservation 

laws. These laws are often a result of the finely balanced action of a non-linear term and a 

dispersive or dissipative term. However, the integrability of such systems can be destroyed 

very easily by a perturbation on the equation e.g. a change of the potential. Unfortunately, in 

general, integrable solitons do not annihilate each other. Further, integrable systems are usually 

not Lorentz invariant and are known to exist mainly in (1+1)D. Thus a comparison w i t h real 

particles is flawed f rom the start. However, models like the Sine-Gordon are integrable and 

topological and provide us, as we w i l l see later, w i t h excellent toy models to simulate particle 

physics properties. 

1.2.1 K d V and Burgers equation 

We start out w i th the simple wave equation in one dimension, 

uXx = utt] (1-2) 

we let c — 1 and utt stands for the second partial derivative wi th respect to time. The differential 

equation is linear i.e. we can construct new solutions by superposition of known solutions. The 

general solution known as d'Alembert's solution is given in terms of two functions of variables 

x±t: 

u(x,t) = f ( x - t ) + g(x + t). (1.3) 

Given an in i t ia l configuration, the wave w i l l split into a right-moving and a left-moving wave. 

These waves w i l l not change their shape; there is no dispersive or dissipative term present. In 
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effect, we have two non-interacting waves that travel forever. I f we just concentrate on the 
right-moving wave, the corresponding differential equation simplifies to 

ut + ux = Q. (1.4) 

There are three modifications one can do to the wave equation (1.4). 

The addition of odd derivative terms leads to dispersion of the wave. For example, 

ut + ux + u x x x = 0 (1.5) 

leads to the general solution 

/

oo 
d k A ( k ) e ^ k x - u m (1.6) 

-oo 

with some given A(k) fixed by in i t ia l conditions. Further, the frequency w of a wave depends 

on its wave number k; the dispersion relation 

u>(k) = k - k \ (1.7) 

This leads to the de-localisation of an in i t ia l wave packet as its underlying waves travel at 

different speeds according to their wave number k. 

The addition of even derivative terms leads to dissipation i.e. a decay of the amplitude of 

the wave. The dispersion relation u>(k) becomes complex and we end up w i t h an exponentially 

decaying term. For example, 

ut + ux - uxx = 0 (1.8) 

leads to a complex dispersion relation 

u;(k) = k - i k 2 (1.9) 

and the general solution gives 

/

OO 

dkA{k)e-k2telk{x-t]. (1.10) 
-oo 
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The amplitude A(k) exp(—k2t) decreases with time and the underlying waves vanish. 

Another modification to the wave equation is the addition of a non-linear term, for example 

ut + ux + uux = 0. (1-11) 

The differential equation is non-linear and we cannot construct new solutions by the super­

position principle. Further, a time-evolved initial configuration only generates a single-valued 

solution for a finite amount of time, (see [DJ96, page 5]) 

What happens if a dissipative or dispersive and a non-linear term is added to the wave 

equation (1.4)? If we add a dispersive and a non-linear term, we get the KdV equation that 

controls the dynamics of a solitary water wave (see above): 

ut +(l + u)ux + u x x x = 0. (1.12) 

Transforming 1 + u —> 6u, we get the most commonly used form of the KdV equation: 

ut + 6uux + u x x x = 0. (1-13) 

Replacing the dispersive term with a dissipative term, we end up with the Burgers equation. 

Surprisingly, there exists an infinite number of conserved quantities of the KdV equation. In 

addition to the conservation of momentum and energy, many other conserved quantities were 

found and the existence of infinitely many was conjectured. In 1968 Miura [Miu68] discovered 

an important transformation that links the KdV equation to the modified KdV equation; 

vt - 6v2vx + v x x x = 0. (1.14) 

If v is a solution of the mKdV equation, then necessarily, via the Muira transformation 

u = - v 2 - v x , (1.15) 
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u is a solution of the KdV equation, because the expression 

-(2v + dx){vt-6v2vx+vxxx)=0 (1.16) 

equals the KdV equation. This fact led Miura, Gardner and Kruskal [MGK68] to a proof 

of the conservation of an infinite number of conserved quantities. They generalised Muira's 

transformation and defined w to be 

u = w — ewx — e2w2, (1-17) 

where e is an arbitrary constant. Again, u will be a solution to the KdV equation if and only 

if w satisfies a differential equation, here 

wt + 6(w — e2w2)wx + wxxx = 0. (1-18) 

This equation can be written in a conservation form; 

(w)t + (3w2 - 2e2w3 + wxx)x = 0 (1.19) 

and 

/

oo 
w(x, t; t)dx = constant. (1.20) 

w depends on e, but the KdV equation does not. Thus they expressed the solution in terms of 

a power series expansion of the form 
oo 

w{x,t-t) = YJwn{x,t)en (1.21) 

and every wn, an infinite number of them, represents a conserved quantity 

/
oo 

wn(x, t)dx = constant. (1.22) 
-oo 

The conserved quantities and conservation laws are found by substituting (1-21) into (1.17) and 

equating the coefficients of increasing power of e. See [AC91, pages 23-24] and [DJ96, section 

5.1] for a complete proof. 
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1.2.2 Searching for solutions: various techniques 

Unlike for topological solitons, there are various techniques to find solutions to integrable sys­

tems. Generally, the problem of solving the corresponding non-linear PDE is divided up into 

simpler problems like ODEs and integral equations. And one can rely on a vast amount of 

standard techniques and knowledge in these fields. 

Travelling Wave Solution 

This is the simplest and oldest technique available. The travelling wave ansatz assumes that 

the solution is travelling with a constant speed v; 

u(x,t) = f ( x - v t ) . (1.23) 

Let us take the KdV equation (1.12) as our example. Using the ansatz, we obtain the following 

differential equation with respect to / , 

- v f ' + 6 f f ' + f'" = 0. 

Integrating twice using appropriate boundary conditions and separating variables, we end up 

with an integral on both sides, 

/ , ^ = f d{x- vt), 
J y / f * ( v - 2 f ) J 

which gives us the travelling wave solution for the KdV equation: 

f ( x - vt) = ^ s e c h 2 ( ^ ( x - x 0 - vt)). (1.24) 

Inverse Scattering 

The inverse scattering method (ISM) is very effective for the time-evolution of an initial solution 

u(x,0) that falls off sufficiently fast as it approaches spatial infinity. Effectively, the non-linear 
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PDE problem is reduced to solving two second order ODEs and an integral equation. We 

will briefly underline the main ideas: see [AC91, section 1.7] and [DJ96, chapter 3 and 4] for 

detailed discussions. Fourier transforms are similar: a problem is solved in Fourier space and 

transformed back. 

Let us consider the KdV equation. Solving the KdV equation with an initial condition 

u(x,0) will give us the time-evolution of the initial configuration. Unfortunately, it is not 

possible to solve the non-linear PDE directly. The main idea of the inverse scattering is to re­

formulate the problem into a scattering and inverse scattering problem of the time-independent 

Schrodinger equation with the potential u(x, 0). The Miura relation (1.15) allows us to translate 

every solution of the mKdV equation (1.14) into a KdV solution (1.12). Actually, this relation 

is a Riccati equation which can be linearised using the relation 

^x 
« = f - (1-25) 

We treat time as a parameter from now onwards. At a given time t, here it is t = 0, using the 

linearisation in (1.15) and the Galilean invariance u —> —X + u(x + 6Xt,t) of the KdV equation, 

we obtain the time-independent Schrodinger equation: 

( - ^ + M ) * = A*' 
Finding the eigenvalues and eigenfrequencies for the potential u(x; t) is a well-explored area 

known as the Sturm-Louiville problem. The continuous spectrum is described by 

V(x) ~ e~lkx + r(k)eihx as x —> oo (1.26) 

V(x) - a{k)e~lkx as x —> -oo (1.27) 

r{k) is the reflexion coefficient and a(k) the transmission coefficient. The discrete spectrum is 

described by 

*n(x) ~ cne~^x, (1.28) 
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u(x, 0) 
Scattering 

Scattering Data at t = 0 

PDE Time-evolution 

u(x,t0) 
Inverse Scattering 

Scattering Data at t = t0 

Figure 1.1: Inverse Scattering Method 

where A n is the nth discrete eigenvalue. This represents all information on the scattering data. 

Now, the scattering data is time-evolved. Only the reflection coefficient r(k) and cn are changing 

with time. We would like to know the potential i.e. u(x; t) that corresponds to the scattering 

data at time t. Therefore, we have to use the inverse scattering method which corresponds to 

solving an integral equation called the Gel'fand-Levitan-Marchenko equation. Finally, we end 

up with u(x,t). However, solving the scattering and inverse scattering problem is not an easy 

task. A visual representation of the inverse scattering method is given in figure 1.1. 

Lax Pair, Painleve test and Backlund Transformation 

The inverse scattering method plays a crucial role in solving non-linear PDEs of integrable 

systems. There are several properties or techniques closely related to the ISM. Unfortunately, 

there is no definite framework unifying all of them together. Rather, one has to prove the 

relations within the framework of a specific system. For example in the KdV model, we proved 
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the existence of an infinite number of conserved quantities. We briefly describe three more 

techniques. For more details, please consult [DJ96], [AC91] and [RS84]. 

The compatibility of linear operators or existence of a Lax pair is crucial to the integrability 

of a system. A model described by t) is integrable if the set of two N first-order coupled 

linear DEs with the Lax pair U(u(x, t); A) and V(u(x,t); X), 

Fx = U(u(x,t);X)F (1.29) 

Ft = V{u{x,t);X)F, (1.30) 

exists such that the differential equation of the model in terms of u(x,t) satisfies the form 

U t - V x + [U,V]=0. (1.31) 

The Lax pair U and V are N x N matrices and depend on u and its derivatives, F is a Tri­

dimensional vector and that the equations must be satisfied for all complex A. The spectral 

problem (see Schrodinger equation in ISM) is effectively encoded in the first of the two DEs 

(1.29) and time is treated as a parameter. The second DE can be viewed as the auxiliary 

spectral equation where space is treated as a parameter. If a Lax pair can be found, then one 

only needs to find the solution to the two linear DEs. For example, Lax pairs exist for the KdV 

equation and the Sine-Gordon model. 

Every evolution equation solvable by ISM seems to have a corresponding Backlund trans­

formation. The transformation is very useful for generating iV-soliton solutions as its effect on 

a solution is to add or subtract a soliton. Essentially, the Backlund transformation changes a 

pair of coupled first order equations (it, v) into a pair of uncoupled second order equations in 

u and v. See [DJ96, section 5.4] and [AC91, section 2.6.6] for details. We will give an example 

of a Backlund transformation during our discussion of the Sine-Gordon model. 

Which equations are solvable by ISM? The Painleve conjecture states: "A nonlinear PDE is 

solvable by the inverse scattering transform if every ordinary differential equation derived from 
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it (by exact reduction) satisfies the Painleve property." For the equation to have the Painleve 

property, it should not have any movable critical points i.e a movable singularity which is not 

a pole. In 1884, Fuchs showed that first order equations of the Painleve type have to satisfy 

the form 

^ = a(z)w2 + b(z)w + c{z) (1.32) 
dz 

where a, b, c are analytic functions of the complex variable z. Painleve and Gambier generalised 

the method to second order equations. They found 50 different cases; all but six equations are 

solvable by elementary functions. The six equations known as Painleve transcendents are 

irreducible, but their solutions are known. The KdV equation, for example, reduces to the 

Painleve Type I I equation. Thus, if one can put a non-linear PDE in the Painleve form, i t is 

solvable. 

1.3 Topological Soliton 

Are there integrable systems that are Lorentz invariant? Do solitons exist in higher dimen­

sions? Integrable models are very convenient, because we can find explicit solutions and do a 

detailed analysis of their dynamics. Unfortunately, integrable models are very rare. Additional 

constraints like Lorentz invariance and an extension to (3+l )D physical space destroy their 

integrability. There are no known integrable systems satisfying these conditions. Here comes 

the topology of a system into play. Integrable systems have solitons due to their conservation 

laws. Topological solitons exist due to a non-trivial mapping between physical space and field 

space. We can think of a string with knots in it . You fix your boundary conditions by holding 

onto both ends of a string. The string with one knot can never be deformed into the string with 

two or no knots. A more accurate visualisation of topological solitons is a twist in the string. 

You fix your boundary conditions again and then twist one end of the string around once. I f 
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you hold both ends of the string, there is no way, you can undo the twist without violating the 

boundary conditions. Further, if you now anti-twist one end, i.e. twist in the opposite direction, 

you 'annihilate' the first twist. We can imagine topological solitons modelling real elementary 

particles. The non-trivial mapping gives rise to a twisted field configuration that carries a 

charge; very much like the baryon number conservation. In addition to non-trivial topology, 

we need to ensure that the dynamics generated by the lagrangian allows stable solitons. This 

means the soliton should not shrink to a point or expand to nothing: it must have a stable 

scale. Often, i t has a preferred scale. 

To summarise, topological solitons possess all the desired properties like Lorentz invariance 

by construction and higher dimensions that integrable models do not have. And, integrable 

models are completely solvable whereas solutions to topological soliton equations are rarely 

known and have to be explored numerically. In a sense, integrable and topological systems are 

antagonists with the notable exception of special systems in one space dimension. The prime 

example is the Sine-Gordon model, a good toy model that has exact solutions which can be 

compared to numerical results. 

1.3.1 The Topology 

We can look at a field theory as the mapping Ai at time t of a base space X, our physical space 

R", into a target space $, the field space. We write: 

M at t : R n —> $ (1.33) 

x —• <j)(x) (1.34) 

which means that, to every element x in physical space, we associate an element (f>(x) in field 

space. We impose a physical restriction on our map Ai{X,$). For the field theory to be a 
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'physically good' theory that describes finite, localised objects, we require that 

4>{x) —> 4>v as \x\ —> oo; (1.35) 

(f>v is an element of field space which we call the vacuum field value. Note that this condition is 

not valid for gauge models, for the additional gauge freedom allows extra freedom in defining 

the vacuum: see e.g. the abelian Higgs model [Ryd94, last chapter]. In other words, the field 

of our theory should approach the vacuum at spatial infinity in all directions. Note that the 

field 'must converge sufficiently fast' to the vacuum field value to ensure energy finiteness, for 

example. In terms of mapping, all elements 'representing spatial infinity' in physical space are 

mapped into one single element, namely </>v, in field space. The structure of such a physical 

space corresponds exactly to the stereographic projection of a circle S1, a sphere S2 and so 

on onto a flat space; depending on how many space dimensions we have. So, effectively, we 

might as well describe the physical space as Sn as this automatically includes the property of 

a 'physically good' theory: we say that space is compactified. The map changes to 

Matt: S" —> $ 

x —• <f>(x) (1.36) 

In the introduction to topological solitons, we talk about how a configuration with one 

twist cannot be changed into a configuration with two twists, for example. We need to ensure 

that there is no way that a given field configuration in one class, say the class of one-twist 

configurations, can dynamically evolve into a field configuration of a different class i.e. a class of 

configurations with the number of twists different from one. A non-trivial topology of a mapping 

arises if it is possible to non-trivially classify all maps, representing the field configurations, in 

terms of the following equivalence relationship: two maps in different equivalence classes cannot 

deform into each other. Therefore, each equivalence class is characterised by a unique conserved 

quantity: the topological charge or winding number. Now, these classes form the group elements 
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of a homotopy group whose group action is the addition of two field configurations. The secret 

to constructing topological solitons is to choose the manifold of the field space in such a way 

that it gives rise to non-trivial mapping. [MRS93, Appendix B] provides a good introduction 

to homotopy groups. The homotopy group we are interested in is the nth homotopy group 

7 r n ( $ ) such that the group is isomorphic to the addition group Z. In general, any non-trivial 

homotopy group will lead to a non-trivial classification of field configurations. For example, this 

means that we can add together two configurations with one twist each and get a configuration 

with two twists. The group action of Z effectively adds up the topological charge of both 

configurations. Thus, annihilations are possible: we can think of a configuration with one twist 

added to one with one anti-twist that gives a configuration with no twist. There are standard 

tables like [MRS93, Table B . l , page 226] which list the nth homotopy group for a given $ 

manifold. The common choice is Sn as the nth homotopy group of Sn, 

7rn(Sn) = Z. (1.37) 

One can think of many other choices. For example, for 5 3 i.e. compactified 3 dimensional space, 

the 3th homotopy group of the manifold of the Lie group SU(n) is also equal to the addition 

group Z. 

The most interesting feature is the emergence of a conserved quantity: the topological 

charge. This is due to the fact that an equivalence relation exists which can classify the 

mappings into equivalence classes. And, by definition, an equivalence class can be classified 

by a unique quantity. Thus, this leaves us with the interesting option to define a conserved 

quantity not via Noether's theorem, but purely out of the non-trivial mapping of a field theory 

satisfying the compactification property of physical space. 

We give an explicit example: the topological charge of the map S2 —> S2. The topological 

charge or winding number must give the number of times an element of the S2 field space is 

mapped to or, in other words, the number of times the map winds around the S2 field sphere. 
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Consider S2 a sphere of unit radius. Its surface can be described by a three dimensional 
vector 0 = (<pi, 02, <fo) with 0 • 0 = 1 or an unconstrained coordinate system (<Ji,a2) e.g. polar 
coordinates. The expression of an infinitesimal surface area pointing in the 0Q direction is 

JS» = i £ V > ^ f ^ V (1.38) 

This is valid for all unconstrained two-dimensional coordinates: a change in the coordinates is 

absorbed by the Jacobian. The integral over the map 0((j1,cr2) gives 

/ = J dSa • 0a = JdS = 4TT7V. (1.39) 

The surface of the unit sphere is Air and we take into account the number of times N the sphere 

is mapped to. Therefore, we use this integral to construct the topological charge which is given 

by 
Q = hl ̂ 3eabc^^dxdy = h! d x d y ^ x ^ • * ( L 4 ° ) 

There is a general method for constructing topological charges of a given field theory: 

Isham's construction of topological charges (see [MRS93, section 2.1-2.3]). 

1.3.2 The Lagrangian and Hobart-Derrick theorem 

A non-trivial topology is a necessary but not sufficient condition for the existence of stable 

topological solitons. The dynamics generated by the lagrangian must lead to a stable field 

configuration: the stability condition. A stable configuration has a stable scale i.e. any change 

of scale by a perturbation is energetically unfavourable. Further, a physical theory needs to 

be Lorentz invariant and sometimes satisfy further constraints like chiral invariance. Special 

relativity i.e. Lorentz invariance restricts the choice of terms in the lagrangian. For example, 

the Lorentz indices need to be contracted i.e. each term of the lagrangian needs to have an even 

number of derivatives. We discuss the various options later. 
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The Hobart-Derrick theorem provides a useful check on the stability of a minimal-energy 

solution. It checks whether a solution can be stable under scaling transformations. It is a 

necessary but not sufficient condition for stability: we can rule out certain lagrangians due 

to the instability of the static solution under scale transformations. Let 4>ST(%) be the static 

solution of the Euler-Lagrange equation with the principle of least action 

SEtysr] = 0, 

where E is the energy functional. Let x undergo a scale transformation 

x = Xx 

and 

(t>sr(x) —> <l>\ = <PST(XX). 

We re-write the principle of least action (1.41 as 

dE[<t>ST{Xx)} 
5E& ST dX 

SX = 0. 

(1.41) 

(1.42) 

(1.43) 

(1.44) 
A=l 

This equation should be invariant for any scale transformation of A. We end up with the 

condition that 
dE[+srW] = Q ( 1 4 5 ) 

dX A=l 

For a stable solution, the second derivative with respect to the energy functional should be 

positive: 
a 2 * - ( A * » ! > 0. (1.46) 

dX2 

A=l 

1.3.3 O(3)a-model (or Non-linear a model) 

Consider a field theory in (2+1) dimensions with a mapping 

S2 —• S2. (1.47) 



CHAPTER 1. INTRODUCTION 20 

This gives rise to a non-trivial homotopy group ^(S2) and the topological charge has been 
derived above: 

Q = hldxdy^ x dy& • ̂  (L48) 

The expression is valid for any finite-energy field configuration of any lagrangian and tells us 

the topological sector the configuration belongs to i.e. which topological charge it has. The S2 

space can be described by a three-dimensional field vector <f>(t, x, y) constructed out of three 

real scalar fields with the constraint 

${t,x,y) • <j>(t,x,y) = 1. 

This also implies 

and 

The field vector describes a point on the sphere S2. A choice of an unconstrained coordinate 

system for S2 is a complex field vector W(t,x,y) which is the stereographic projection of the 

field vector (f>. The disadvantage of this coordinate system is its singularity at infinity i.e. the 

north pole is mapped to infinity. This problem is overcome by choosing two coordinate sets: 

W maps the north pole to infinity and the inverse map U = ^ maps the south pole to infinity. 

Another choice is the use of two angles to describe a point on the sphere S2. Again, two 

coordinate sets are needed to completely map out every point. 

The lagrangian density of the 0(3) cr-model consists of one term called the o term: 

C = d J - d ^ . (1.49) 

The coordinates are x^ with /x = 0 . . . 2. The coordinate x0 is the time and X{ labels the space 

coordinates with X\ = x and .x2 = y. The contracted covariant derivatives enforce Lorentz 
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invariance. The rule consists of putting all Lorentz indices \i down or up according to the 

transformation d° = —d0 and dl = <9;. The dot product i.e. summing over the field components 

ensures the 0(3) symmetry of the lagrangian. We have to remember to include the constraint 

on the field vector 4>. A Lagrange multiplier has to be included and the full action has the form: 

S[$(t,x,y)] = Jdtjdxdy[dJ-d»$+\(t,x,y){$-$-l)]. (1.50) 

The action is invariant under an 0(3) transformation of the field vector. This corresponds to a 

0(3) symmetry of the action; hence the name 0(3) o model. However, we might as well call it 

S2 a model as the invariant subspace of an unconstrained field vector <f> is precisely the sphere 

S2. The Euler-Lagrange equation 

with respect to the field component (j>a gives the field equations 

2 3 ^ $ - X$= 0. 

Using the constraint 4> • (j> = 1, A takes the form 2<9/,d/x0 • 0. The final version of the field 

equations is 

d^d^+idJ-d^ti^O. (1.52) 

An important aspect of topological solitons is the existence of a lower bound on the minimal-

energy solution in a given topological sector: the Bogomolnyi bound. We start out with the 

identity 

J dxdy(di$± eij(f x d^)2 > 0 (1.53) 

Expanding the expression and using the constraints (1.3.3), we end up with 

J dxdy(dt$-dl$) > ± j dxdy(dx$ x dy$) • $. (1.54) 
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This is nothing else than a lower bound on the energy in a given topological sector, 

E>Aix\Q\. (1.55) 

If the field configuration for a given charge satisfies the Bogomolnyi bound exactly, it is a 

minimal-energy solution. Thus E — Air\Q\. This also means that the identity (1.53) is zero and 

the field has to satisfy the Bogomolnyi equation 

di$± eij<p x dj(£ = 0. (1.56) 

One can show that this first-order equation satisfies the second-order field equation (1.52). 

Hence, the existence of the Bogomolnyi equation simplifies the search for minimal-energy solu­

tions. Note that this is only the case if there exists a minimal-energy solution that satisfies the 

bound.1 

We switch to the stereographic coordinate system W(t,x,y). The complex field W is given 

by 

W = i T T ^ - I 1 - 5 7 ) 
01 + 0̂2 

—* —* 

in terms of the field vector 0 components. The inverse transformation relates W to 0 with 

w + w* .w-w* i - | W f n _ R , 
0 1 = TTjW ^2 = i T T w 0 3 = TTW' ( 1- 5 8 ) 

The form of the energy density changes to 

8 Wd'lW* 
L (1 + | W | 2 ) 2 1 D y j 

and the equation of motion becomes 

(WXX + Wyy - WU)(1 + \W\2) + 2W* ({Wtf - {WXf - ( W y f ) = 0. (l.60) 

xThe derivation of the equation is often called 'completing the square'. 
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The Bogomolnyi equation (1.56) re-written in terms of the complex field is exactly the Cauchy-

Riemann equation: see [Raj96, page56-57]. Thus, any analytic function actually satisfies the 

equation and is a minimal-energy solution. A simple solution for a given charge n is 

W(z) = [X(z - z0)]n (1.61) 

where z = x + iy. We can easily check that this solution has indeed topological charge n. This 

is done by using the Bogomolnyi bound and the expression of the energy density (1.59). 

The charge does not depend on the scaling factor A and nor does the energy. Performing the 

integral, one notices that A can be scaled away. This turns our attention to Derrick's theorem 

for an explanation. How does the a term (1.49) scale? Which effect does it have on the energy 

density? The condition for stability (1.45) is not fulfilled, because 

E[4>{\x)} = E[4>(x)] 

is independent of A and the second derivative will be zero. The energy functional is scale 

invariant. The soliton can contract or expand without changing its energy. Therefore, i t does 

not have a preferred scale. It is unstable in the sense that a small perturbation will change 

its size. The model is not very reliable in numerical simulations due to the very small but 

unavoidable perturbations induced by numerical errors. We can also see that in more or less 

dimensions, A is present and the condition of stability cannot be fulfilled either. The stability 

can only be retained by adding extra terms with different scaling behaviours. This concludes 

our discussion on this model. In the next section, we analyse modified versions with the crucial 

help of Derrick's theorem. 
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1.3.4 Other topological models 

We have seen that the 0(3)cr-model is scale invariant. A generalisation of the a term to n 

dimensions shows that the energy functional scales as 

E[4>(Xx)] = X2-dE[<f>(x)}. (1.62) 

In one dimension, the energy scales as A. Decreasing A the coordinate grid shrinks and the 

soliton spreads out and vice versa. A decrease in A leads to a decrease in energy. Therefore, 

the dynamics w i l l expand the soliton and decrease the energy. There is no counterbalance and 

the soliton spreads out more and more and the energy goes to zero. In two dimensions, i t is 

scale invariant. In three dimensions, the energy scales as A - 1 . Then, the soliton w i l l shrink to 

zero and the energy goes to zero, too. Clearly, i f we want to have stable solitons, we need to 

add appropriate terms to the lagrangian i.e. terms w i t h different scaling behaviour. 

Consider the general energy term T a w i th 2a second order derivatives in n dimensions: 

T a = E[cj>(x)} = J { d x Y i d ^ . (1.63) 

Note that the number of derivatives is even due to Lorentz invariance. The mixing of the 

Lorentz indices also gives rise to many different derivative terms but w i t h the same scaling 

behaviour. The term w i t h a — 0 is the potential term: a function of $ does not scale i.e. we 

set i t to 1. A scale transformation induces the following changes: 

x —> x = Xx 

di —)• di = X^di 

(f){x) —> (f>(x) = <f>(x) 

Using these transformations, we obtain 

E[4>(Xx)] = Xd-2aE[<f>(x)}. (1.64) 
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Applying Derrick's theorem, the conditions for stability (1.45) for a general energy functional 
containing all terms Ta up to Nth order in n dimensions are 

N 
J2{d~2a)Ta = 0 (1.65) 
Q=0 

and 
N 

£ ( d - 2 a ) ( d - 2 a - l)Ta > 0. (1.66) 

We are now able to select out the models which satisfy the conditions for stability. However, 

Derrick's theorem is just a necessary but not sufficient conditions. Thus, rather than proving 

stability, we discard the models that are unstable. 

Topological Solitons in I D 

The simplest stable lagrangian is 

C=(dt<P)2-(dxct>)2-V^). (1.67) 

There exist different models according to the potential e.g. 

V{<j>) = (1 - 0 2 ) 2 0 4 theory (1.68) 

V{4>) = 1 — cos0 Sine-Gordon model (1.69) 

'Completing the square' leads to the Bogomolnyi equation 

( £ V = V<*>- (1.70) 

The static minimal-energy solutions are solutions of 

f ^ £ = = x + x0. (1.71) 

J y^) 
We wi l l discuss the Sine-Gordon model in the next section as the I D toy model for particle 

physics. 
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Topological Solitons in 2D 

The lagrangian of the 0(3)a model is unstable in two dimensions, because the a term is scale 

invariant. We need to add a higher order term e.g. wi th four derivatives and a potential term. 

The common choice is the Skyrme term 

CSK = ( d j - d ^ f - (dJ-dJ){d*$-&'$) (1.72) 

where <j> is the three dimensional field vector. The term is a combination of the two possible 

terms wi th four derivatives. I t was originally proposed by Skyrme and is designed in such the 

way that the t ime derivatives in the field equation is maximally of second power and the energy 

functional is positive. The two-derivative term is scale invariant. And the potential term scales 

as A - 2 and w i l l balance out the A 2 behaviour of the Skyrme term. We end up wi th the baby 

Skyrme model: 

£ = £a-£sK-V((/)). (1.73) 

The choice of potential is largely arbitrary. This model w i l l be the focus of our study of classical 

aspects of topological solitons and has first been explored by Zakrzewski et al.: see [LPZ90]. 

Another possibility is the abelian Higgs vortices. The lagrangian contains a magnetic field and 

a charged scalar field: see [Ryd94]. 

Topological Solitons in 3D 

In three dimensions, the potential term is optional: the a term scales as A - 1 and the Skyrme 

term as A 1 . The nuclear Skyrme model first proposed by Skyrme has the form: 

£ = £ a - £ S K . (1.74) 

The Skyrme model is a popular candidate for the description of low energy QCD: i t is an 

effective theory. We w i l l discuss the model in detail later. Other topological solitons in three 

dimensions are the Yang-Mills Higgs monopoles: see [Ryd94]. 
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1.3.5 The Sine-Gordon model: I D toy model 

As mentioned above, the Sine-Gordon model is a very useful toy model for particle physics and 

clarifies the concepts used in higher dimensional models. Explici t solutions can be found using 

the techniques associated to the integrability of the model. The Sine-Gordon solitons are also 

topological solitons and mimic various properties in particle physics e.g. particle annihilation. 

The Sine-Gordon energy density in terms of an angular variable <f)(t, x) is 

£ = \(dt4>)2 + \{dx<j>)2 + (1 - cose/.). (1.75) 

For fixed t, the mapping of the field goes f rom S1 —> S l . One-dimensional space is compactified 

to S l , for we require the field <p(t,x) to be the same (up to multiples of 2n) at x — oo and 

x = —oo. And , the energy has to go to zero ergo </>(oo) and (f>(—oo) are multiples of 2i\. Of 

course, the angular variable 4>{x) describes S1 field space. Consider (j)(—oo) to be fixed to zero 

without loss of generality due to the <j) —> <f> + 2iv symmetry. The boundary condition at x = oo 

is (f> = 2irn and we analyse the various configurations: 

n = 0 : The minimal energy solution is (/> = 0 which satisfies the boundary condition and the 

energy is zero and minimal; as ^ is a constant. 

n > 0 : The minimal energy solutions are non-trivial and have topological charge n. The field 

maps n times over the field space S1 i.e. the circle: i t starts at 0 = 0 and ends up at 

(f> — 2ixn. The solutions are the topological solitons. 

n < 0 : These configurations have negative topological charge and represent the anti-solitons. 

The field maps n times over the field space Sl i.e. the circle: i t starts at <j> — 0 and ends 

up at 0 = — 2ix\n\. 

We can see that, by adding a soliton and anti-soliton solution, the boundary condition at 

x = oo changes to zero and the solitons are annihilated i.e. the topological charge is zero. We 
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now derive the minimal-energy solution of topological charge one via the Bogomolnyi equation 

(1.56): 

A/27T 
X + XQ. 

y f f i l ~ COS ( f ) 

We re-write i t in terms of sin(</>/2), integrate, invert and get 

4>st{%) = 4arctan[exp (x + XQ)]. 

(1.76) 

(1.77) 

We can obtain a moving solution by performing a Lorentz boost. The static minimal-energy 

solution satisfies the boundary condition <f)(—oo) = 0 and </>(oo) = 2ir: the field winds around 

the field sphere 5 2 once. The expression of the energy density is 

e(x) - 4 s in 2 [(f)st(x)}. (1.78) 

The energy goes to zero at spatial inf in i ty and the integral is finite. Note that i f we write the 

potential as V = 1 — cos(A</>), A plays the role of coupling constant. The tota l energy or mass 

is now proportional to A - 1 . Clearly, we could not have obtained a good approximation via a 

perturbative expansion. Our 1-kink solution is non-perturbative. 

The Sine-Gordon model is an integrable system and we can use the Backlund transforma­

tion to generate solutions. We re-write the Sine-Gordon equation in terms of the light-cone 

coordinates: 

<9+<9_0 — sin cj) = 0. 

The corresponding Backlund equations are defined as 

1 
d+(4>i - <f>0) = asm {<t>i + </>o) 

and 

^<9_(0! + (f)0) = a 1sin 



CHAPTER 1. INTRODUCTION 29 

where a is a non-zero arbitrary constant that becomes a parameter for the new solution. We 

differentiate the first equation by cL, substitute this expression in the second equation and use 

trigonometric identities to obtain 

d+d-(<f>i — fa) = sin fa — s i n ^ 0 - (1-79) 

Clearly, i f fa is a solution to the Sine-Gordon equation, then so is fa. Thus we can use a 

solution fa to generate another solution fa. Note that we only have to solve two first order 

equations instead of second order! I f fa = 0, we get the Bogomolnyi equation for the 1-kink 

solution. I f we use this 1-kink solution as our fa, we get the 2-kink solution. I t turns out that 

fa is the n + 1-kink solution for an ini t ia l n-kink input for fa. Note that the constant a is 

related to the speed when you construct a single soliton f rom the vacuum, but i t is a more 

general parameter otherwise. 

The quantum theory is discussed in Quantum Aspects. The beauty of the Sine-Gordon 

model and fa kink model is that we can get exact results which can be compared to our 

numerical methods. 

1.4 The nuclear Skyrme model 

The nuclear Skyrme model is one of the 'raison d'etre' of the study of topological solitons in 

theoretical particle physics. In the early 60's, Skyrme came up w i t h a theory to describe the 

hadronic spectrum i.e. a theory of mesons and baryons [Sky61]. He had the ingenious idea to 

construct an effective field theory of mesons where the baryons are the topological solitons of 

the theory. Baryon conservation is equivalent to the conservation of the topological charge. His 

ideas were put aside by the success of QCD in the description of hadrons in terms of quarks. The 

QED lagrangian is invariant under the (7(1) gauge transformations; the gauge field being the 

photon. The QCD lagrangian is of the Yangs-Mills type. I t is invariant under the non-abelian 
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5C/(3) gauge transformation; the gauge fields called gluons being the adjoint representation of 

the SU(3) colour group. The QCD lagrangian is given by 

£QCD = £ W ^ - ^ - ^ G 1 ^ . (1.80) 

is the covariant derivative and G p „ the gluon field strength components. We w i l l not go into 

any details. Basically, the lagrangian terms include the propagation of the massive quarks (g£ 

wi th the flavour index a and the colour index a and mass ma), the massless gluon field and the 

interaction term w i t h the coupling constant. Both the gluon fields and the interaction are hidden 

away in the covariant derivative and field strength. A crucial step forward in the understanding 

of QCD is the emergence of the idea of confinement. In QED, the running coupling constant 

decreases wi th distance of interaction and a perturbation expansion is very effective. In QCD, 

the inverse is true: only at small distance ergo high energy does the coupling become small and 

the quarks are free particles. A t low energies, people believe that the quarks form colourless 

colour-singlet states: the hadrons. This must be true as there is no experimental evidence to 

the contrary. Sofar, no-one has come up wi th a decent way of deriving the confinement in 

QCD. This is due to the rising coupling constant i.e. perturbation techniques are useless. This 

energy region of QCD is called non-perturbative region. Clearly, the lack of a small parameter 

to do a perturbation expansion is evident. In the mid 70's, t 'Hoof t [tH74][tH73] generalised 

QCD to be invariant under a SU(Nc) gauge group. He realised that the quantum treatment 

of QCD simplified considerably and i t is possible to derive some qualitative statements in 

the large Nc and low energy l imi t . This comes f rom the fact that non-planar diagrams and 

internal quark loops are suppressed by a factor of N^2 respectively N^1. For large N c , QCD 

is a weakly interacting theory of mesons w i t h the meson-meson interaction of order NQ1 . For 

Nc —> oo, QCD is therefore a theory of mesons which are free and non-interacting. Wi t t en 

[Wit79] realised that weakly coupled theories may exhibit non-perturbative states like solitons 

or monopoles. A typical example is the Polyakov-'t Hooft monopole whose mass diverges for 
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vanishing coupling. 2 He showed that baryons behave as i f they are solitons in a large-Nc meson 

theory. The derivation of effective actions f rom the QCD lagrangian is an unsolved problem. 

The Skyrme model is the simplest of a candidate theory for the low-energy effective lagrangian 

of QCD. Of course, one may add some higher order correction terms. See [MRS93, chapter 9] 

for a simple review on the relation between QCD and the Skyrme model. 

Let us give a brief description of the Skyrme lagrangian and its features: see [HS86] and 

[MRS93] for more details. The lagrangian has already been described above in terms of the </> 

notation. In effect, the most commonly used notation is in terms of a coordinate set on the 

SU(3) group manifold. The lagrangian has the following form 

where U is a SU(2) matr ix and 9 is f i t ted to experiments. We can re-write the nuclear Skyrme 

I f we think about Kab being a constant, the quantization procedure is greatly simplified. The 

lagrangian just looks like a generalised harmonic oscillator type. I n 1981, Adkins, Nappi and 

Wi t t en [ANW83] realised that a slowly rotat ing radially symmetric skyrmion solution satisfies 

this condition; K being the rotational inertia matr ix and a constant of motion. Then they 

quantise the model as a spinning top and are able to extract all the important quantum prop­

erties of the proton i.e. the skyrmion w i t h topological charge one. However, this quantisation 

procedure does not take into account the centrifugal deformation of a fast rotat ing skyrmion and 

is restricted to topological charge one. A l l skyrmions w i t h topological charge greater than one 

have a discrete symmetry and the procedure fails. A more rigorous description of the problems 

2see the Sine-Gordon model for diverging mass at vanishing coupling. 

C = tr [d^Ud^j +9tr [{d^U)^, {duU)U^ (1.81) 

lagrangian (1.74) in the (f> notation as follows: 

c = Y,4>*Kohtf$)k-v{d$). (1.82) 
a,b 



CHAPTER 1. INTRODUCTION 32 

associated wi th the quantisation of the Skyrme model is given in [MRS93, chapter 8]. Let us 

just briefly note that the quantisation is ambiguous, because the theory is not renormalisable. 

One can do a renormalisation to a given order, but i t w i l l depend on the scheme. Therefore, i t 

is essential to compare the scheme-dependent results w i t h experimental data. 

We wi l l discuss quantisation issues in the chapter on quantum aspects of solitons. We are 

using the semi-classical approximation: quantisation around the minimal-energy solution in a 

given topological sector. The quantum corrections e.g. for the mass are given by the normal 

modes of the static solution. 



Chapter 2 

Numerical Methods 

"Should we call in an expert or screw i t up ourselves?" 

(on an expert's office door) 

The success of our study of classical and quantum aspects of solitons crucially depends on 

our abili ty to solve the differential and eigenvalue equations of the associated systems. Many 

such problems do not have a known explicit solution. In general, only (1 + 1) dimensional in­

t eg ra te models e.g. the Sine-Gordon model are solvable. They provide a very useful check on 

the numerical techniques we have used in (2+1) dimensions. We have compared our numerical 

results w i th the exact explicit solutions and find acceptable agreement between both. Higher 

dimensional solitonic field theories like the (2+1) dimensional baby Skyrme model pose a chal­

lenge. They are non-integrable systems and only in a few, rather special, occasions can we find 

explicit solutions to their resulting differential equations. Numerical methods are the only way 

forward in (2+1) dimensions, but we are faced wi th the need for more memory allocation and 

computational power. The advent of fast computers makes this task manageable and not too 

time-consuming. 

We are using the method of finite differences. The continuous system is approximated on 

33 
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a discrete lattice and the derivatives become finite differences. In this chapter, we w i l l discuss 

all the numerical techniques that have been used for our studies: 

• the minimisation of functionals: to find minimal energy solutions e.g. of the baby Skyrme 

model in the hedgehog ansatz. 

• the time-evolution of an in i t ia l configuration: to study scattering behaviour in the baby 

Skyrme model and to get static non-radially symmetric minimal energy solutions by 

adding a damping term. 

• the eigenvalue problem: to find the vibrational modes of a static solution around which 

we quantise. 

We always t ry to point out alternative approaches. Some of our C programs use modified 

versions of Bernard Piette's routines and general data structure as described in [Pie96]. The 

implementation of the Metropolis-Simulated Annealing method to solitonic field theories is 

thought to be original work by Mark Hale and the author. Useful references of numerical tech­

niques are: [PTVF92], [Pie96], [PZ98], [Ame77]. Boyd gives a refreshingly different viewpoint 

in [Boy89]. 

2.1 Discretisation Procedure 

2.1 = 1 Discrete Lattice 

A field value is associated to each point in continuum space and time. Discretising space means 

approximating this space as a discrete lattice in terms of N lattice points e.g. w i t h a constant 

lattice spacing e. A field value is associated to each lattice point: 

<f>(x) —> <f>i 
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wi th i = 1 . . . N. On a lattice, derivatives are replaced by finite differences. There are many 

ways of discretising derivatives; however all versions have to approach the continuum derivative 

for the l imi t of the lattice spacing e going to zero. The explicit fo rm also depends on the nature 

of the problem studied, particularly for non-linear PDEs and the Metropolis algorithm. The 

first derivative, for example, can be discretised as a forward difference 

d(f>(x) fa - fa+i 
dx 

a backward difference 

(2.1) 

dx e 

or a combination of the two, the central difference 

dfax) fa-x - fa+x 

dfax) ^ - fa_ ^ ^ 

(2.3) 
dx 2e 

Usually, we use the central differences for the PDEs. This excludes the Metropolis algorithm 

and the boundaries where we have to use the forward or backward difference. The discretised 

version of other derivatives, including in higher dimensions i.e. partial derivatives, are obtained 

by straightforward generalisation. The discretisation of the second derivative has the form 

d2fax) <f>j_x - 2fa + fa+l 

dx2 e2 ' 1 j 

Extra care is needed for the the baby Skyrme model in (2+1) dimensions. Here, the form of 

the laplacian becomes crucial for an accurate numerical integration. Only a good approximation 

of the continuum laplacian i.e the use of information f rom more grid points can handle highly 

non-linear effects. The usual 5-point laplacian is too sensitive towards grid effects and fails to 

represent these non-linear effects reliably. Its 9-point analogue comes closer to restoring the 

rotational symmetry of the continuum laplacian. The discretised 2D 9-point laplacian has the 

general form 

V 2 f a x , y ) — > ± W a f 3 f a t f } (2.5) 
0 6 a,0=~\ 
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where a and f3 are labelling the x and y axis. We are using the following weight distr ibution 

W of the lattice points: 

1 4 1 

4 -20 4 

1 4 1 

The centre lattice point has the biggest weight. The lattice points at the corners have weight 

one. 

Our discretisation procedure is certainly not 'the last word' . There are many improvements 

possible: see [PZ98]. The use of a 25-point laplacian is desirable, but 2.5 times slower than 

the use of a 9-point laplacian. We are using a constant equally-spaced lattice. The use of 

a hexagonal grid instead of a square one increases accuracy, but more memory allocation is 

needed per lattice area. Another interesting idea is the mul t i -gr id method. The closer one 

gets to the centre of the grid, the more lattice points there are. This is particularly useful for 

scattering of solitons. Nothing much happens outside the centre: two skyrmions do not really 

interact. Few lattice points are needed to represent this system. However, at the centre, the 

scattering of two skyrmions is a highly non-linear effect and a larger number of lattice points 

per area is certainly desirable. The mul t i -gr id method helps at increasing accuracy and lowering 

memory needs. However, i t is harder to implement and specific to the problem studied. Finally, 

some prefer to discretise the lagrangian and derive an equation of motion via the discretised 

Euler-Lagrange equations. This procedure leads to an exact discretised system and ensured a 

very good conservation of energy. We discretise the equation of motion and plug the fields back 

into the lagrangian. This approach should get closer to the real continuum dynamics, but the 

correspondence between equation of motion and energy density functional is not exact. 

Thus, there is ample opportunity for improvement. Our numerical scheme may not be 

the most sophisticated one, but i t is robust, reasonably fast, easy to implement and accurate 
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enough for our needs. New methods may improve accuracy, but one needs time to implement 

them and i t probably leads to an increase in CPU time and memory needs. 

2.1.2 O D E and P D E as sets of first order DEs 

A l l ordinary differential equations (ODEs) and discretised partial differential equations (PDEs) 

can be broken down to ordinary first order differential equations. For example, a second order 

differential equation of the form 

is equivalent to a set of two first order ODEs 

d f ( x ) 

dx 
dg(x) 

= 9(x) (2-7) 

= F(xJ(x),g(x)). (2.8) 
dx 

An ODE of order n can be re-written as a set of n first order ODEs. Similarly, any PDE can be 

wri t ten as a set of coupled first order ODEs. Our example is the wave equation w i t h a damping 

term; ignoring any coefficients 

d2u(x,t) = d2u(x, t) + ^du(x,t) 

dt2 dx2 dt 

We discretise space as lattice points labelled by i and u(x) becomes u^. Now, (2.9) turns into 

an O D E for each lattice point i: 

d2ut(t) 1 . . , n , , . . . ,dui(t) 
= ^ ( u ^ i t ) - 2Ui(t) + Ui+l{t)) + A - ^ 2 - (2.10) 

Then we wri te the expression as a set of coupled first order ODEs: 

dui(t) 

dt 
dvi(t) 1 

= Vi(t) (2.11) 

(u i_ i ( t ) - 2ui(t) + ul+1(t)) + Xvi{t). (2.12) 
dt 

For every lattice point i, we have to solve a set of first order ODEs. 
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2.1.3 Integration Techniques 

A differential equation is not sufficient description of a system. Addi t ional information in terms 

of boundary conditions are needed. There are two types of problems: the in i t i a l value problem 

and the boundary value problem. A l l ODEs can be reduced to sets of first order ODEs. 

Therefore, we concentrate on the one dimensional first order differential equation; wri t ten 

as 

fx=F{xJ{x)). (2.13) 

I f we know the value of the function / at x = Xo, then the function is uniquely determined. In 

general, an approximation of a function at x + e is given in terms of its Taylor expansion 

f ( x + e) = f ( x ) + e d ^ + 0(e2). (2.14) 

Thus, up to first order precision in e, the value of the function at x + e is 

f ( x + € ) = f ( x ) + eF(x, f ( x ) ) + 0 ( e 2 ) . (2.15) 

where we have used (2.13). We discretise the function on a discrete lattice. The lattice points 

are equally spaced by e and labelled i w i th Xi = x0 + ie. The funct ion at the lattice point i is 

labelled We have 

/ 1 + i = / l + e F ( x l , / l ) + 0 ( e 2 ) . (2.16) 

Knowing the value of the function at the lattice point i = 0, / 0 , we know the value of F at this 

lattice point and we can find / ] up to first order precision in e. We can repeat this procedure 

over and over again. Now, we know the value of f i + \ and Fi+i and we find the approximate value 

of the function / l + 2 . This procedure is called the Euler integration method. The integration is 

only accurate to first order in e. The error may be small for one integration step, but they sum 

up and become important . 
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The 2nd order Runge K u t t a method is a step forward and gives second order precision. 
f ( x + e) is calculated via a linear combination of the derivative at the starting point a- and a 
point x + ae w i th in the integration interval; ergo a < l 1 

fi+i = fi + ah+bh (2.17) 

* i = eFixiJi) (2.18) 

k2 = eFixi + oteJi + ah) (2.19) 

We have to f ind the value of the constants a, b, a that satisfy the Taylor expansion of / up to 

second order: 
1 dF 

fi+i = fi + tF(xu h) + ^V^> f i ) + ( 2 ' 2 ° ) 
2 ax 

Expanding (2.17) as a Taylor series, we get 

dF 
f i + 1 = f l + (a + b)eF(xu f A + bae2 — ( X i , f ) + 0 ( e 3 ) . (2.21) 

Comparing both expansions, we may choose a = 0, b = 1 and a = | . We end up wi th the 

following expressions: 

= fi + eFixi + ^eJi + ^h) (2.22) 

h = F { x u f i ) (2.23) 

We use a more sophisticated version of the Euler method: the 4th order Runge-Kutta 

method. I t is accurate to 4th order in terms of the Taylor series expansion. The idea is to 

use derivative information f rom the starting point, two midpoints and the final point. The 

Runge-Kutta 4th order formula takes the form: 

fi+i = fz + ^(ki + 2k2 + 2k3 + kA) 

following [Pie96] 



CHAPTER 2. NUMERICAL METHODS 40 

ki = tF{xlJi) 

k2 = eF{xl + 0.5e,fl + 0.bk1) 

fa = eF(xt + 0.5e, h + 0.5/c2) 

fa = eF(x'z + e,fi + fa) 

Higher order Runge-Kutta methods are not necessarily more accurate. However, the use 

of an adaptive step size version of the Runge-Kutta method may be desirable. Often, the 

integration is done over a very smooth interval and a bigger step size e is sufficient. Or, a 

smaller step size is needed for regions with a lot of non-linear effects e.g. the region where two 

solitons scatter. An adaptive step size version would automatically take this into account by 

making error estimates and adapt the step size accordingly (see [Pie96]). [BFR78] provides 

supplementary information on the Runge-Kutta-Fehlberg method. 

We start out with the minimisation of a functional E; typically the integral of an energy density 

£ in one dimension over the interval [a, b): 

where f(a) and /(&) are known. This corresponds to searching for the minimal energy solution 

f(x) of the system. We use three different techniques. Apart from the shooting method, they 

can be extended to more than one dimension. However, the decrease in the speed of convergence 

and the increase in memory needs and CPU time is considerable and puts a serious limit on 

any higher dimensional minimisation. 

2.2 Minimisation of Functionals 

/ dx€[x,f(x),f'{x)} 
J a 

E (2.24) 
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We can try to find the minimal energy solution directly from the functional: see [PTVF92, 

chapter 10]. Marc Hale and the author have implemented the Metropolis-Simulated Anneal­

ing method as an interesting alternative to the standard techniques (to be discussed later). 

This brute force method is qualitatively very different from any other technique and builds 

on physical intuition. However, the standard procedure uses the Euler-Lagrange equation of 

the functional E with respect to the function f ( x ) to find the minimal energy solution f(x). 

The problem turns out to be equivalent to a two point boundary value problem satisfying the 

following differential equation: 

It is a second order ODE and equivalent to a set of two first order ODEs. There are two 

standard ways of approaching the problem: see [PTVF92, chapter 17]. The shooting method 

transforms the two boundary values problem into an initial value problem and adjusts the 

initial conditions to fit the boundary value. The relaxation method starts out with an initial 

guess function and the function relaxes to the hopefully global minimum. 

There are two ways of uniquely determining the DE (2.25): either by specifying the two bound­

ary values or the value of the function and its derivative at one of the two boundaries. For 

the shooting method, the two boundary value problem is turned into an initial value problem. 

We adjust the value of the derivative of the function at one boundary in such a way that the 

function matches the second boundary value. Therefore, we have to integrate the function over 

and over again from the one boundary to the other; using different values for the derivative to 

get the right boundary value. In a sense, we shoot a bullet from a certain height f(a) at x = a 

and have to adjust the angle (the derivative) to hit the target at the height f(b) at x = b. 

In this example, the differential equation would represent the gravitational field and the air 

d dE dE 
0 

dx \df 
(2.25) 

2.2.1 Shooting Method (only for I D ) 
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resistance. 

The second order ODE (2.25) is a set of two first order ODEs 

df(x) 
(2.26) 

dx 
dg(x) 

F(x,f(x),g(x)) (2.27) 
dx 

which satisfy two known boundary values /(a) and fib). We know f(a) and guess a = . 

Then we numerically integrate up to the point x = b and try to match the value of the integrated 

function fa(b) to f(b). We adjust a accordingly. Our algorithm follows: 

1. INPUT a, b, / (a) , f(b). 

2. INPUT interval [ O L M I N , ® - M A X ] for OL = ^ j f^ - & M I N should undershoot i.e. fa(b) < f(b) 

and ( X M A X should overshoot i.e. fa(b) > f(b). 

3. COMPUTE a = aMAx+<*Mw , 

4. DO a Runge-Kutta integration from x = a to x — b. 

5. IF fQ(b) > f(b) then PUT a M A X = a. IF fa(b) < f(b) then PUT aMiN = OL. 

6. GO TO 3 unless fa{b) « f(b). 

7. DO one more Runge-Kutta integration. 

8. SAVE function and COMPUTE energy. 

There are certainly other ways of determining a: see [PTVF92, chapter 17]. 
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2.2.2 Relaxation Methods 

A numerical relaxation is another way of solving the differential equation. We are using two 

different approaches. 

One might derive the full equation of motion from the lagrangian and add a damping term 

to the differential equation. The system becomes dissipative and energy decreases with time 

until a minimum is reached. A configuration close to the real solution is taken as an initial 

condition. The kinetic energy is gradually taken out of the system by adding the damping factor 

to the time-evolution equation. In fact, absorbing at the boundaries can have a similar effect: 

the time-derivatives of the field components are multiplied by a factor that goes smoothly 

to zero at the boundary. Thus finding a solution is translated into a relaxation of a time-

evolved configuration. We describe this technique in more detail during our discussion of the 

time-evolution of the baby Skyrme model i.e. scattering and our search for multi-skyrmions. 

Actually, this technique is only useful i f one wants to do the time-evolution problem anyway. 

A much more efficient way is the Gauss-Seidel over-relaxation technique [PTVF92, chapter 

17]. Let us re-write equation (2.25) in the following way: 

Then we construct a time-dependent DE, basically a diffusion equation, 

whose limit, for large time t and ^ = 0, satisfies the original DE. So we may start out with 

any initial configuration ideally satisfying the two boundary conditions. I f the system settles 

down i.e. ^ = 0, this configuration is the solution to the original DE. We modify the diffusion 

equation and add a convergence factor u: 
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The coefficient of the leading term ^ is dimensionless and the factor u determines the speed 
of convergence. Obviously, a good initial guess is vital for a fast convergence. There are many 
ways of time-integrating the DE (2.30). The Euler method proves to be as good as the Runge-
Kutta method, for we are only interested in the asymptotic behaviour of the system. u> needs 
to be smaller than one. Another integration technique is the Crank-Nicholson method. We are 
using the Gauss-Seidel over-relaxation (SOR) method where u> needs to be smaller than two. 
The SOR is in effect the Euler method using up-dated information from the already computed 
field values at lattice points. The subroutine, we are using, computes all even lattice points on 
the grid and then uses this up-dated information to compute the odd points. This technique 
ensures better convergence. 

There are other ways of using up-dated information. One scheme uses the new data se­

quentially i.e. compute the first point, compute the second point using the up-dated field value 

from the first point and so on. Even the SOR may have slow convergence, because the optimal 

choice of u> can rarely be theoretically determined for a non-linear system. Therefore, the search 

for the uj giving best convergence is very important. We do it by trial and error. However, 

one could use a simple algorithm that integrates a few time steps and finds the optimal value. 

This should be repeated 'after a while', because the optimal value should change in non-linear 

theories. 

2.2.3 Metropolis-Simulated Annealing 

We propose to use a more general, flexible and easy-to-implement minimisation technique: 

Simulated Annealing. The standard minimisation techniques solve the corresponding Euler-

Lagrange equation of the functional via the shooting method or the relaxation method, for 

example. Unfortunately, these methods have some drawbacks: 

The Euler-Lagrange equation becomes very extensive if we deal with high order lagrangians 
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and the constraints on the field vector. A good example is the time-evolution of the 

Skyrme model. Our work was just manageable, but including higher order terms would 

make our task very difficult. 

The shooting method is restricted to one-dimensional problems. The relaxation technique 

depends on our choice of the initial configuration. I t may not converge or we end up in 

a local minimum (which often turns out to be the global minimum). The method cannot 

escape a local minimum. 

The discretisation of the field equation might be a worse option than the discretisation of the 

functional. 

There are clear limitations on the use of the standard techniques for complicated lagrangians. 

Nevertheless, for our study of the baby Skyrme model, the methods are sufficient and give 

satisfactory results. 

Unlike the iterative minimisation methods, Simulated Annealing is a randomisation tech­

nique. In 1953, Metropolis and al. proposed an algorithm, now called the Metropolis algorithm, 

that describes the evolution of a statistical system to thermal equilibrium. Assume the energy 

of the system is changed by a random thermal fluctuation that modifies the system configura­

tion C to Cnew. I f the energy of the new configuration Cnew is lower, the system accepts the 

change. If the energy is higher, there is a probability of transition 

at temperature T; according to the Boltzmann probability distribution. Hence, the system 

will accept an upward step in energy with a probability V. This is crucial to achieve thermal 

equilibrium: the system can escape a local minimum. Figure (2.2.3) shows the Metropolis 

algorithm. Note that J- stands for the functional to be minimised. 

T'iC — 7 Cnew) — e ) E — E new (2.31) 
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Figure 2.1: The Metropolis algorithm: Scheme for thermal equilibrium 

Metropolis Algorithm 

ACCEPT Change: C = Cn 

yes 

Randomly PERTURB C —> Cn 

Change A = F(C) - F(Cnew) 

positive 

negative 

Probability of transition V = e^r 

(Random Number e [0,1]) > V? 

no 
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Figure 2.2: Simulated Annealing: Scheme for Minimisation 

47 

Simulated Annealing 

Start with initial T 

M E T R O P O L I S M E T R O P O L I S 

no 
Thermal Equilibrium? 

no 

yes 

Decrease T (stop at T = 0) 

In effect, the algorithm simulates the annealing of a solid. If you cool down the solid 

sufficiently slow, you reach the ground state of the solid. Here, sufficient slow cooling means 

thermal equilibrium at each stage of the cooling. Thirty years later, Kirkpatrick and others 

realised a deep analogy between annealing of solids and the optimisation problem. If we define 

the energy to be the function to be optimised, we can use the Simulated Annealing method 

to find the minimum of the function. We start out with an initial temperature T and run the 

Metropolis algorithm until we reach thermal equilibrium. Then we decrease the temperature 

and re-do the procedure until T = 0. Simulated Annealing is a conceptually easy-to-understand 

minimisation technique: see figure (2.2.3). 

Its implementation in a computer code is straightforward. The method has mainly been used 

for discrete problems e.g. the travelling salesman. The application to a continuous minimisation 
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problem deserves some reflexion on the discretisation of the derivatives. A more general and 

crucial question is the cooling schedule. There are several issues we had to address in order to 

implement the technique: 

Which initial guess? Unlike for the relaxation method, the initial configuration is not impor­

tant as the system should be able to jump out of local minima. Of course, an initial guess 

close to the global minimum solution reduces the running time. 

How to randomly perturb (7? The perturbation has to depend on the temperature e.g. small 

changes at low temperature. A smooth random distribution e.g. a Gaussian that scales 

with T is desirable. 

When is equilibrium reached? The correct answer is to do a statistical study on the changes 

done to the system and compare this statistical distribution with the Boltzmann distribu­

tion. However, one can just loop sufficiently long at the same temperature. The number 

of loops can be determined empirically. 

At what initial temperature to start? Conceptually speaking, it corresponds to the tempera­

ture of the initial configuration. A too high temperature 'melts' the initial configuration 

to the liquid phase and the cooling time increases. A too low initial temperature may 

freeze the system into a local minimum. Hence, better a temperature that is too high 

than too low. 

Decrease T by which step size? This depends on how we determine the equilibrium. If we loop 

a fixed number of times at a given temperature T, the decrement of T should depend on 

the evolution. I f we loop until equilibrium, the decrement of T should be constant. 

Restarting i.e. cooling, re-heating and cooling? Often, the cooling is too fast and we have to 

repeat the procedure. We use the lowest energy configuration as the initial guess and a 
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lower initial temperature. 

Discretisation of continuous functional T1 This is a critical part of the minimisation scheme. 

It's important NOT to use the central difference, because it does not depend on the 

function at the centre point. If we randomly change the configuration at a given point, 

the derivative will not be sensitive to the change at all and not affect the probability of 

transition. 

Use of constraints? Constraints are no problem, because we just use random perturbations 

that satisfy the constraints. 

To summarise, the cooling schedule is very crucial, because it determines the speed of conver­

gence. A simple schedule will do, but it will be much slower than a carefully thought out one. 

Different schedules are discussed in [vLA87, chapter 5 and 6] and [BFR78, section 10.9]. Our 

cooling schedule is simple: Budget K total Metropolis moves. Start with temperature T 0 . Loop 

m times at a given temperature T. Reduce T by 

T = T 0 ( l - k / K ) a (2.32) 

where k is the total number of moves sofar. a determines how much time is spent at different T 

i.e. large a means more loops at lower temperature. We set a = 1 for computational efficiency. 

Al l others parameters are chosen empirically. We implement this technique in Classical Aspects 

and discuss the choice of parameters chosen in more detail. 

2.3 Time evolution of initial configuration 

In this section, we describe the time evolution of an initial configuration. We need this frame­

work to study the scattering of skyrmions. Another application is the search for static solutions 
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by adding a damping term. The time-evolution is determined by the equation of motion of the 

system. We discretise space and do a time integration of an initial configuration via the Runge-

Kutta method, for example. The boundary of the lattice can cause problems, for the derivatives 

cannot be computed. A way around it is to set the derivatives to zero or impose periodic bound­

ary conditions. The choice really depends on which kind of dynamics you are looking at. It is 

important to monitor the quality of the time-integration by looking at the conserved quanti­

ties involved, namely: the topological charge and the Noether quantities like total energy etc. 

We present a time-evolution of a specific model: the baby Skyrme model. This example is 

most appropriate, because it is our main tool to analyse classical aspects of the baby Skyrme 

model in the next chapter. The time-evolution in ID , for example the Sine-Gordon system, is 

a straightforward simplification to the one of the baby Skyrme model. 

2.3.1 The equation of motion: (2+l)D baby Skyrme model 

First, we need to obtain the equation of motion of the baby Skyrme model. Using the d) 

notation, we have to add a Lagrange multiplier to the baby Skyrme lagrangian (1.73) in order 

to take care of the constraint 4>- (f) = 1. We get the equation of motion for each field component 

(j)a and A via the Euler-Lagrange equation. Solving for A, the equation of motion takes the 

form: 

- ( d j - d ^ i d ^ - d ^ ) ^ } + lo2^-(8a3 - 0a03) = 0 
2 a03 

(2.33) 

The equation of motion can be rewritten as 

Kab4>b = Fa\<t>, 4>, did) 
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with 

Kab = (1 + 29xdS • dl$)bab ~ 20!0a (2-34) 

The inverse matrix of K exists in an analytic, but rather messy form (see appendix A). Now, 

ia = K^FbU,ldiA . (2.35) 

The equation of motion is a 2nd order partial differential equation or a set of two 1st order 

partial differential equation, 

(t) = ( ^ ( ^ > ^ ) ' (2"36) 

and we can time integrate it with the Runge-Kutta 4th order. 

Initial set-up: 

The initial field configuration is a linear superposition of static solutions with or without initial 

velocity. The superposition is justified, because the profile function decays exponentially. The 

superposition is done in the complex field formalism W i.e. the stereographic projection of the </> 

field of S2 (see [PZ95]). We use the profile function of a static solution (typically of topological 

charge one) to obtain 

W = tan (^Y^j e~ind- (2.37) 

This equation holds in the rest frame of a static skyrmion solution centred around its origin 

and ^ = 0. We may introduce moving solutions by switching to a different frame of reference. 

This can be done by performing a Lorentz boost on the rest frame of a given W, because W is 

a Lorentz scalar. The time derivative of W becomes 

D W _ E-M ( f'(xvx + yvy) + . " t a n ( £ ) (xvx - yvy)\ ^ 

dt \2y/x2 + y2 cos2 (0 x2 + y2 
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where x undergoes a Lorentz contraction -y(x — vxt) and y j(y — vyt). Now it is easy to construct 

a linear superposition of individual, moving or not, baby skyrmion solutions Wa by 

where (xa,yQ) is the location of the centre of the ctth skyrmion. I t is important that the different 

skyrmions are not too close to each other. Finally, the complex field is re-written in terms of 

Integration Technique on S2 

It is important to make sure that the time-evolution does not introduce significant numerical 

errors. A integration method, no matter how sophisticated, will always introduce small error. 

Those should not make a qualitative or even quantitative difference, for they are random to a 

certain degree. Systematic errors are far more dangerous as they can significantly change the 

outcome of a simulation; often the system becomes singular-it 'explodes'. The first thing to do 

is to monitor the conserved quantity required by Noether's theorem and by the topology. 

The equation of motion incorporates the 0(3) constraint 

because of the added Lagrange multiplier. The field should therefore always lie on the sphere. 

This fact provides a crucial check of the numerically integrated fields. These numerically 

computed fields are not exact. They leave the sphere and need to be projected back onto the 

sphere. The most simplest and sufficient projections are: 

W{x, y) = Y^ w<*{x - x a , y - ya) (2.39) 
a 

the field (j) and its derivative. 

0.0 = 1 (2.40) 

0 a 
a 

V0-0 
(2.41) 

dt6 • <t> dt(p Ot(t>a 0 a <j>.<t> 
(2.42) 
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Of course, the space derivatives may also be corrected. See [PZ98] for further discussions. 

Relaxation technique 

We mentioned that i t is possible to find static solutions by relaxing a configuration. A damping 

term in the equation of motion will gradually take the kinetic energy out of the system; the 

system becomes dissipative. The equation (2.33) changes to 

where 7 is the damping coefficient. We set 7 to 0.1, but most values will do as long as they are 

not too large. Another approach is to absorb the outwards travelling kinetic energy waves in 

the boundary region. 

2.4 Eigenvalue Problem 

The eigenvalue problems are very common and important. For example, we will need it to 

calculate the mass correction in Quantum Aspects. Numerical Recipes devotes a whole chapter 

to it: see [PTVF92, chapter 11]. The aim is to solve the eigenvalue equation: 

1 4>a = Kab T b <j>, (j), di4> 1<P a (2.43) 

A(x)r](x) = Xr](x) (2.44) 

where A is an operator, 77 is the eigenvector with eigenvalue A. We are discretising the system 

and end up with 

(2.45 A77 - AT? 

where A is an N x N matrix. The equation (2.45) only holds if and only if 

det(A - A l ) = 0. 
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If we expand out, we get a Nth polynomial in A which gives N solutions, not necessarily distinct. 

There are several methods available. We discuss the brute force matrix diagonalisation. It works 

fine in one dimension, but the computational effort grows like iV 3 . The shooting method is very 

good but can only be used in one dimension. We also discuss a diffusion method. 

Finally, the eigenvalue problem depends on the system itself; specifically on the structure of 

the matrix: the sparser it is, the faster the convergence. It is easy in one dimension, but very 

difficult in two or three. 

2.4.1 Brute Force Matrix & Shooting Method 

First, we reduce the real and symmetric matrix A to a tridiagonal matrix via the Householder 

reduction. The number of operations grows with ^N3 (if we want both eigenvalues and eigen­

vectors). We are using the routine tred2 from Numerical Recipes: see [PTVF92, page 474]. The 

final step i.e. the diagonalisation is done by the routine tqli (see [PTVF92, page 480]) using 

the QL algorithm with implicit shifts. Again, the number of operations grows with order n 3 . 

The technique works well in one dimension, but it is too slow in two or three dimensions. 

Often, the eigenvalue equation is equivalent to the static Schrodinger equation: 

We can discretise the equation and get a relationship for t / ; n + 1 in terms of the value of ipn and 

If we further assume that the function ip goes to zero at spatial infinity, we are able to 

use the shooting method. We pick a value for large negative x with small V(x) — E. Then we 

set ip to zero and start integrating using the relationship. I f we know the eigenvalue, we can 

get the eigenfunction up to a factor. This factor depends on our starting point of integration 

and can be 'normalised away'. If we don't know the eigenvalue, we can do a shooting method 

and narrow down the energy value for which the function goes to zero at x = — oo. We use the 

d 
+ V(x) V W = E^(x) 

dx2 
(2.46) 
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routine written by Bernard Piette. 

2.4.2 Diffusion Method 

The idea is equivalent to finding the minimal-energy solution via relaxation. First, we relax an 

initial configuration down to its minimal energy solution: the lowest mode. We normalise this 

first mode. Then we create a new initial configuration from which we project out the first mode. 

We re-do the relaxation projecting out this mode again from time to time. We end up with 

the second lowest mode which we normalise and orthogonalise with respect to the first mode. 

Then we project both modes out of the initial configuration and re-do the relaxation. In this 

way, we build up an archive of the lowest orthonormal modes. This technique has been used 

by Barnes and Turok in [BT97]. However, we use the Runge-Kutta integration scheme instead 

of the Crank-Nicholson integration technique. A crucial drawback of the diffusion technique is 

the accumulation of numerical errors for higher modes, because a higher mode is computed by 

using information from already computed lower modes. 



Chapter 3 

Classical Aspects of Solitons 

"Mein Busen fuhlt sich jugendlich erschiittert, 

vom Zauberhauch, der Euren Zug umwittert." 

(from Goethe's Faust and dedicated to my beloved baby skyrmions) 

In this chapter, we discuss classical aspects of solitons using the numerical methods discussed 

in the previous chapter. We want to emphasise that numerical methods are the only possible 

way of studying non-integrable solitons in a general framework. The main part of the work 

repeated in this chapter consists of the study of the multi-skyrmion structure of the baby 

Skyrme models. This work will soon to be published in Non-linearity. We find that the 

structure of multi-skyrmions depends on the potential of the baby Skyrme models. We also 

include other relevant information and numerical results which we have excluded from the to-

be-published version. Then, we present our foundation work on the use of Simulated Annealing 

in one dimension. We show that Simulated Annealing works well for known results. Further, 

we emphasise the ease with which we can include higher order terms. The work on Simulated 

Annealing has been done in co-operation with Mark Hale. Finally, we briefly discuss how to 

include a higher order term i.e. six-derivatives term into the lagrangian and suggest further 

56 
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research on this topic. 

3.1 Baby Skyrme Models and Their Multi-Skyrmions 

First, we analyse the structure of minimal-energy solutions of the baby Skyrme model for any 

topological charge n; the baby multi-skyrmions. Unlike in the (3+ l )D nuclear Skyrme model, 

a potential term must be present in the (2+l )D baby Skyrme model to ensure stability of 

skyrmions. The form of this potential term has a crucial effect on the existence and structure 

of baby multi-skyrmions. The simplest holomorphic baby Skyrme model has no known stable 

minimal-energy solution for n greater than one. The other baby Skyrme model studied in 

the literature possesses non-radially symmetric minimal-energy configurations that look like 

'skyrmion lattices' formed by skyrmions with n = 2. We discuss a baby Skyrme model with a 

potential that has two vacua. Surprisingly, the minimal-energy solution for every n is radially-

symmetric and the energy grows linearly for large n. Further, these multi-skyrmions are tighter 

bound, have less energy and the same large r behaviour than in the model with one vacuum. 

We rely on numerical studies and approximations to test and verify this observation. 

3.1.1 Introduction 

The baby Skyrme model is a modified version of the (2+ l )D S2 sigma model. The addition 

of a potential and a Skyrme term to the lagrangian ensures stable solitonic solutions. The 

Skyrme term has its origin from the nuclear Skyrme model proposed in [Sky61] and the baby 

Skyrme model can therefore be viewed as its (2+l )D analogue. However, in (2+1) dimensions, 

a potential term is necessary in the baby Skyrme models to ensure stability of skyrmions; this 

term is optional in the (3+l )D nuclear Skyrme model. The multi-skyrmion structure of the 

nuclear Skyrme model has been studied numerically by Braaten et al. [BTC90] and by Battye 
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and Sutcliffe [BS97]. 

The form of the potential term is largely arbitrary and gives rise to a multitude of possible 

baby Skyrme models. In the literature, two specific models have been studied in great detail (see 

[PZ95],[PSZ95b]). The simplest holomorphic model does not seem to admit stable n-skyrmions 

where n is greater than one. (We define an n-skyrmion to be the minimal-energy solution with 

topological charge n.) And the 'baby Skyrme model' 1 with a very simple potential possesses 

rather beautiful, non-radially symmetric multi-skyrmions. A new2 slightly modified potential 

gives rise to a remarkably different structure for multi-skyrmions: we call it the new baby 

Skyrme model. In fact, we show that the energy density of all n-skyrmions turns out to be 

radially symmetric configurations, namely rings of larger and larger radii. Clearly, the choice 

of the potential term has a major impact on the formation of multi-skyrmions and their shape. 

We start with a short introduction to the baby Skyrme models. The earlier results for the 

two baby Skyrme models are re-calculated and reviewed in the light of their multi-skyrmion 

structure. We present a numerical and theoretical study of the new baby Skyrme model. We 

create n-skyrmions by putting n 1-skyrmions in an attractive channel. They form a bound 

state which we relax to the minimal-energy state. We find radially-symmetric new baby multi-

skyrmions solutions. Therefore, we are led to look for static hedgehog solutions. Finally, we 

make some general comments about the existence and structure of multi-skyrmions depending 

on the choice of the potential term. 
1it is called baby Skyrme model!... we call i t old baby Skyrme model to avoid confusion. 
2 f i rs t used in [KPZ98]. 
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3.1.2 Baby Skyrme models 

Non-trivial Topology & 'Stable' Lagrangian 

Baby Skyrme models3 admit stable field configurations of finite energy and solitonic nature. 

These baby skyrmions are topological solitons. Their existence is a consequence of the non-

trivial topology of the mapping of physical space into field space at a given time t: 

M : S2 —• S2. (3.1) 

Here, physical space 7Z2 is compactified to S2 by requiring spatial infinity to be equivalent in 

each direction. This one-point compactification is necessary to ensure a non-trivial mapping. 

The target manifold (or internal space) is described by a three-dimensional vector 4> with 

(f) • (j) = 1. The non-trivial topology allows to classify maps into equivalence classes; each of 

which has a unique conserved quantity: the topological charge 

Q = ^ a b c j dxdy<t>a (dx<f>b) {dy4>c) (3.2) 

given in integer units. See chapter Introduction. 

Further, stability is ensured by an appropriate choice of lagrangian terms of field derivatives 

and a potential. The lagrangian has the form 

L = dJ- &>$-es [ ( d j - d ^ ) 2 - ( d j - d j ^ d ^ - d»$)] - 6VV($) (3.3) 

and consists of three terms; from left to right: the sigma model, the Skyrme and the potential 

term. At a classical level, the coefficient of the sigma model term can always be set to one 

by re-defining 9S and 8V. Thus, there are two free parameters in the model. Each term 

has a different scaling behaviour and, together, they ensure stability according to Derrick's 

theorem[Raj96, pages 47-48]. We require that the potential vanishes at infinity for a given 
3see review [PZ95] 
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vacuum field value; for example <p = (0,0,1). Care should be taken that the potential term 
is invariant under the 50(2) group transformation of <j)\ this becomes vital for the use of the 
hedgehog ansatz. There is a further possibility that the potential is also zero for other values 
of the field. Actually, the fact that the potential vanishes at infinity makes the energy finite 
and justifies the one-point compactification of physical space discussed above. 

Hedgehog Static Solutions 

The static energy functional density of the baby Skyrme model is 

£ = (di<j> • di<j>) + 9S (dS-di$f - (drf-djip} (dS• d3(f) 9VV (<(>). (3.4) 

We look for solutions of the corresponding Euler-Lagrange equation. This is a very difficult 

task. The hedgehog ansatz provides a starting point of our search for static solutions; in polar 

coordinates 
/ sin[/(r)] cos(n9 — x) \ 

(3.5) sin[/(r)]sin(n0 - x) 

V cos[/(r)] J 

Note that n is a non-zero integer (it is the topological charge as we will discover later), 9 the polar 

angle, x a phase shift and f(r) the profile function satisfying certain boundary conditions. The 

hedgehog field (3.5) is chosen, because it is invariant under the maximal group of symmetry that 

leaves the energy functional invariant for non-zero topological charge (see [PSZ95b, page 167]). 

According to the 'Principle of Symmetric Criticality' or 'Coleman-Palais theorem'([MRS93, 

pages 72-76]), we can search for static solutions invariant under any symmetry by solving the 

variational problem for the invariant field. 

The integrated energy density takes the form 

1 r j (r'2 , 2s in 2 / , E (4TT) - rdr I f + n 2 ^ / ( l + 29sf'2) + O v V ( f ) \ . (3.6) 
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The energy density depends only on the profile function f(r): the invariant field. It is indepen­

dent of the polar angle and has a radial symmetry. Then, the corresponding Euler-Lagrange 

equation with respect to the invariant field f(r) leads to a second-order ODE, 

/ + 2 g 5 n 2 s i n 2 / \ „ + / _ 2 f l 5 n 2 s i n 2 / + 29sn2 sin / cos / / ' \ , 
\ r J \ r2 r J 

n2 sin / c o s / 6 v d S l { f ) 

; r T " d T = 0 ' ( 3 - 7 ) 

which we re-write in terms of the second derivative of the profile function: 

/" = H f j ' , r ) . (3.8) 

The profile function f(r) is a static solution of the baby Skyrme model. These static solutions 

are certainly critical points, but not necessarily global minima. However, it has been proven 

that the hedgehog solution of the nuclear Skyrme model is the minimal-energy solution for 

topological charge one (see [MRS93, pages 80-88]). Further, an explicit hedgehog solution 

with the topological charge one exists for the holomorphic baby Skyrme model and has the 

lowest energy. Therefore, it is reasonable, but not proven here, that the hedgehog solution for 

topological charge one is the minimal-energy solution. 

The topological charge takes the form 

r°° / / ' sin f \ n 
T ~ J ^ ° rdr K - ^ U ^ [ c o s / ( o o ) - c o s / ( 0 ) ] . (3.9) 

The boundary conditions for the profile function need to be fixed. Our value of the vacuum at 

infinity is 4> — (0, 0,1) and we may choose 

Um/(r ) = 0. (3.10) 

Then the value of the profile function at the origin needs to be 

/ (0) = m7r (3.11) 
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where rn is an odd integer. The topological charge is n in integer units. From now on, we write 

all other quantities in ATT units. All m / 1 solutions are expected to decay into m = 1 solutions. 

Thus, in this paper, we concentrate our attention on solutions corresponding to m = 1. 

The Equation of Motion 

A Lagrange multiplier term X((f> -0—1) needs to be included in the lagrangian (3.3) to take 

care of the S2 constraint (see [Raj96, pages 48-58]). The equations of motion for each field 

component <pa and A are obtained via the Euler-Lagrange equation. Solving for A, the equation 

of motion takes the form 

d ^ ) d u d ^ a - {dud»$-d»$)d^a + (dj-d^)(dj-d^)cf>a 

- ( d J - d J W f - d ^ a ] + \ o v ~ { 8 a i - = 0 (3.12) 
2 d0 3 

which we re-write in terms of the acceleration of the field (j)a: 

dtt<j>a = K~b

lTb [l dt$, di$) (3.13) 

with 

Kab = (1 + 29sdt$- di$)6ab - 20sdi<i>adi<j>b. (3.14) 

We find that the inverse matrix of K exists in an explicit, but rather messy form. The equation 

of motion is a second order PDE. 

3.1.3 Theoretical Prediction 

Is it possible to predict the general features of the multi-skyrmions? The main obstacle is the 

non-linearity of the DEs even in a simpler form like in the hedgehog ansatz. Nevertheless, 
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at special points i.e. the boundaries, approximations can be made which simplify the DEs. 

Derrick's theorem allows us to give further quantitative predictions. Both serve as consistency 

checks for our numerical work and help our understanding of the models. 

The value of the field is known at two space locations. Those special points are r = 0 and 

r = oo. In the hedgehog ansatz, the ODE can be approximated around these points. 

• At the origin, the profile function is approximated as 

/ ~ 7 r + C n r " (3.15) 

and so 

f'~nCnrn-1 (3.16) 

as long as
 dVjp tends to zero at this point. We need this approximation for the shooting 

method [PMKTZ94]. Further, the energy density at the origin is 

5 ( 0 ) = Cl(l + esCl) + \6vV[K] ( n = l ) 

£(0) = \dvW[n] {n > 2). (3.17) 

As one would expect, the energy density of the new baby Skyrme model at the origin 

is zero, because there is a further vacuum at the origin; V[7r] = 0. It is non-zero only 

in the topological sector one. Clearly, if the hedgehog solutions are the minimal-energy 

solutions, the new baby n-skyrmions are ring configurations. However, in the case of the 

old or holomorphic baby Skyrme model, the energy density is always non-zero for any 

static hedgehog solution. These hedgehog solutions do not seem to minimise the energy 

as well as in the new baby model. Our numerical results confirm this. 

At large r, the ODE reduces to 

1 , n2 0V dV(f) 
r r2J 2 df 

= 0. (3.18) 
small f 
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The last term, arising from the potential, can be neglected for some potentials in a 

consistent way, because it is small compared to the other terms. This is the case for the 

holomorphic model where this term is of order f 7 . However, the term has to be included 

for the old and new baby Skyrme model and gives —\j or —9yf respectively. Looking 

at large r, the old and the new baby skyrmions behave in the same way4. Actually, the 

DE is that of a static Klein-Gordon field with a radially symmetric form where 6V plays 

the role of the meson mass. As discussed above, the real difference lies in the small r and 

medium r region. For the new baby Skyrme model, the equation (3.18) gives 

/ " + ; / ' - / ( ^ + * v ) = 0. (3.19) 

The coefficient of the potential term is present here. The potential localises the skyrmion 

exponentially. Solving for appropriate boundary conditions, the profile function decays 

exponentially 

f(r)-+-±=exp(-evr). (3.20) 
Vvvr 

Derrick's theorem5 (see [MRS93, pages 52-54]) provides a necessary but not sufficient con­

dition for the existence of stable solutions. Under a simple scale transformation r —> Ar, the 

total energy changes to a function of A and the non-scaled energies of the three terms: 

E{f{Xr)} = Ea + X26SES + \~HyEy. (3.21) 

The sigma term is scale invariant. The derivative of the energy with respect to A at A = 1 has 

to be zero if a stable solution exists. This implies 

9$ES — 9yEy. (3.22) 

4 we just re-define Qy for one of the models. 
5 i t is also known as the Hobart-Derrick theorem 

file:///~HyEy
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Our numerical results have to fulfi l l this condition. Further (3.21) suggests that the scaling 

effect can be un-done by redefining 9S to \29s and 9V to \~29v. In fact, writing the DE (3.8) 

in terms of f ( f , 9s, Qv) and using f = Ar, we find 

f(\r,\-20s,\2dv) = f(r,6s,Bv). (3.23) 

Substituting / into the energy functional gives exactly the same energy as / does. If two models 

with coefficients 9s and 8y, respectively 9s and By, satisfy 

0s0y = 9S9V, (3.24) 

then their stable solutions have the same energy. This is a further consistency check. 

3.1.4 Numerical Techniques 

The baby Skyrme model is a non-integrable system and explicit solutions to its resulting dif­

ferential equations are nearly impossible to find. Numerical methods are the only way forward. 

We need (2.33) for the time-evolution and relaxation of an initial configuration and use (3.8) 

to find static hedgehog solutions. These DEs are re-written as sets of two first order DEs. We 

discretise DEs by restricting our function to values at lattice points and by reducing the deriva­

tives to finite differences.6 (as explained in [PZ98], see also [PTVF92]). We take the time step 

to be half the lattice spacing: St = \5x. We use fixed boundary conditions i.e. we set the time 

derivatives to zero at the boundary. We check our numerical results via quantities conserved 

in the continuum limit and by changing lattice spacing and number of points. Moreover, we 

compare them with theoretical predictions. 

Looking for static hedgehog solutions The static hedgehog solutions of (3.8) are found by 

the shooting method using the 4th order Runge-Kutta integration and the boundary conditions 
6 we use the 9-point laplacian 
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(3.10) and (3.11). Alternatively, one can use a relaxation technique like the Gauss-Seidel over-

relaxation ([PTVF92]) applied to an initial configuration with the same boundary conditions. 

Looking for multi-skyrmions We construct n-skyrmions by relaxing an initial set-up of 

n 1-skyrmions with relative phase shift of Using the dipole picture developed by Piette 

et al. [PSZ95b], two old (or new) baby 1-skyrmions attract each other for a non-zero value 

of the relative phase; phase shift of IT for maximal attraction. A circular set-up is crucial as 

they maximally attract each other and 1-skyrmions do not form several states that repel each 

other. One possible objection to a circular set-up is its apparent discrete symmetry, the cyclic 

group Zn. However, the discretised PDE on a finite square lattice is not invariant under Zn 

as we impose boundary conditions. Further, the linear superposition is only an approximate 

solution of the model and the 1-skyrmions used are produced from the hedgehog ansatz. In 

this sense, lattice effects and small integration errors even provide useful small perturbations. 

We have run simulations for non-circular set-ups, but either the 1-skyrmions take longer to fuse 

together or they fuse into many bound-states and repel each other. We run our simulations on 

grids with 2002 or 3002 lattice points and the lattice was Sx = 0.1 or 0.05. However, for large 

topological charge, we need larger grids and the relaxation takes a long time. The corresponding 

hedgehog solution as an initial set-up usually works well and is faster, but biased due to its large 

symmetry group. The time-evolution of an initial configuration is determined by the equation 

of motion (2.33). We are using the 4th order Runge-Kutta method to evolve the initial set-up 

and correction techniques to keep the errors small. We relax i.e. take out kinetic energy by 

using a damping (or friction) term. 

Initial set-up: see numerical methods chapter. 

Correction techniques: see numerical methods chapter. 



CHAPTER 3. CLASSICAL ASPECTS OF SOLITONS 67 

Relaxation technique: see numerical methods chapter. 

3.1.5 The Different Models 

So far, the literature on baby skyrmions reports work on the holomorphic model with V = 

(1 4- 03)4 and the old baby Skyrme model with V = 1 — (j>3. There are no stable multi-

skyrmions found in the holomorphic model. However, the old baby Skyrme model possesses 

non-radially symmetric minimal-energy solutions. We will show that the new baby Skyrme 

model with V = 1 — $1 has radially symmetric multi-skyrmions. 

Holomorphic Model 

The simplest holomorphic model has the potential V = (1 + </>3)4 and is the first baby Skyrme 

model studied in the literature. ([LPZ90], [Sut91], [PZ95]). We have re-done the calculations 

and agree with the literature. This agreement provides a check on our numerical methods. 

The holomorphic potential is unique in the sense that its model admits an explicit solution 

for a skyrmion with topological charge one (we call it a 1-skyrmion). To leading order, the 

asymptotic behaviour does not depend on the potential. The skyrmion is polynomially localised. 

The force between two holomorphic skyrmions is always repulsive. This repulsion can be 

overcome by sending the two 1-skyrmions against each other at a sufficiently high speed. Above 

a critical value, they overlap and form a intermediate state. However, this state is not stable 

and the two 1-skyrmions scatter at 90 degrees. No multi-skyrmions are known to exist in this 

model. 

Exact static solutions The form of the potential seems arbitrary, but it is not. It emerges 

out of the most simplest ansatz. In the W-formulation, the equation of the static solutions has 

the form 



CHAPTER 3. CLASSICAL ASPECTS OF SOLITONS 68 

W* 
- W x l - W y y + 2 r T ] W ( ^ + ^ 2 ) 

+ \ i + \ w \ 2 f { ~ m : y W x W v + W L W » + w™wl 

-w;x\wy\2 - w;y\wx\2 + wxy(w:wy + w;wx)) (3.25) 

- 8 n M I . ^ C ^ - w;wxf - 2e2(i + \w\2)2 d v 

(1 + \w\2yx 1 y y dw* 
= 0 

plus its complex conjugate. Wx stands for the partial derivative of W with respect to x. An 

explicit solution can be found using the most simplest ansatz for a static solution, 

W = Ar exp(i9) = X(x + iy) = Xz. (3.26) 

Note that A takes the role of scaling the radius r and thus determines the size of the skyrmion. 

Now, the PDE in this ansatz reduces to 

dV 219xXiW 
dW* 92(1 + \W\2)5' 

This equation is satisfied for V = (1 + ^ 3 ) 4 and 

(3.27) 

A = ^ (3.28) 

Note that another choice of ansatz leads to a different potential and model. For example, it is 

possible to find exact multi-skyrmion solutions for any charge n of the simple form 

W = Xnzn (3.29) 

by using an appropriate potential that satisfies (3.27). Coming back to our 1-skyrmion solution, 

the energy density gives 

EW = (1 + X2r2)2 + ( H A W ( 0 ) 
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Energy density of holomorphic model 

2 / (1+x"2)"2*4/{1+x"2)"4*4/ (1+x"2)"4 • 

0 I 1 t 1 1 1 

0 1 2 3 4 5 
R 

Figure 3.1: The profile function of the holomorphic skyrmion 

The energy density is clearly decaying polynomially for large r. Or, in the hedgehog ansatz 

equation (3.18) gives 

/ " + V - %f = 0 (3.31) 
r rl 

for large r. The potential term with 62 drops out; f is neglected compared to ^ . An appropriate 

choice of boundary conditions gives the asymptotic form of the profile function, 

/ ( r ) - > I (3.32) 

Again, the profile function and hence energy density is decaying polynomially. The exact energy 

density is shown in figure 3.1. A is set to 1 and the parameters are chosen accordingly; 9i = 0.5 

and 02 = 1. The total energy in terms of A clearly shows the stabilising effect of the differently 

scaling lagrangian terms; 

E = 2TT(1 + U.X2 + \e2\-2) = 2TT(1 + \ ^ f 2 9 j 2 ) . (3.33) 

Time-evolution So far, no-one has found an exact explicit expression for a time-dependent 

configuration. A good way to check the stability of the skyrmion and the computer code is to 
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perturb the exact static solution. Figure 3.2 shows the time-evolution of the perturbed static 

solution W = Xz with A —> 2A. The initial configuration has twice the size of the static solution 

(plot 1). The skyrmion 'shakes' off its extra energy (plot 2) and radiates out kinetic energy 

waves (plot 3 & 4). The stable skyrmion remains; the stability of the 1-skyrmion is fine. 

As mentioned before, the common technique to create multi-skyrmions is as follows: use 

an approximate ansatz of n skyrmions apart from each other at rest at relative phase angles, 

they attract and form a bound state, take out the kinetic energy of the bound-state by relax­

ation. This does not work for the holomorphic model as there is a repulsive force between two 

skyrmions. 

The exact two-soliton configuration of the a model, 

is good enough for two skyrmions 2a units apart in the rest frame. 

The result of the simulation is shown in figure 3.3. Two 1-skyrmions at rest repel each 

other after adjusting to the lattice and the presence of the other skyrmion. The repulsive force 

is overcome by giving both skyrmions an initial velocity towards each other (plot 1). In fact, 

there is a critical velocity at which they come on top of each other (see the paper by Sutcliffe 

[Sut91]). They form a ring-like bound state (plot 2) and scatter at 90 degrees (plot 3). However 

they escape to infinity (plot 4). There does not seem to be a stable bound-state due to the 

repulsion. For further information, see the references on the holomorphic model above. 

Old Baby Skyrme Model 

The old baby Skyrme model has been extensively studied in [PSZ95b] and [PSZ95a]. The 

potential V — 1 — ^ 3 gives rise to very structured multi-skyrmions. The configurations are 

crystal-like in the sense that its building block is a 2-skyrmion. We have re-done Piette et al.'s 

W = A 
(z — a)(z + a) 

2a 
(3.34) 
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Figure 3.3: Two holomorphic skyrmions don't form a bound-state after 90 degrees scattering 

Scattering JHolomorphic_Skyrmions 

Plot no.1 Plot no.2 

Plot no.3 Plot no.4 
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computations for multi-skyrmions and confirm their results. We use their coefficients i.e. add 

a factor \ to the sigma model term, 6S — 0.25 and 6y = 0.1 [see (3.3)]. 

Multi-skyrmions We construct a 2-skyrmion by sending two 1-skyrmions against each other. 

Put close to each other, they merge into an oscillating bound-state (see next section for picture) 

which leads to the stable radially symmetric 2-skyrmion by numerical relaxation. We have 

checked its stability by evolving it in time without relaxation. We repeat the procedure and 

find that all higher n-skyrmions are not radially symmetric. We extend Piette et al.'s work to 

n = 7, n = 8 and n = 9 to make sure that the n-skyrmions are 'skyrmion crystals' formed by 

2-skyrmions. In this work, we only present the formation of an 8-skyrmion (see figure 3.4). We 

put eight 1-skyrmions on a circle with a phase shift of ^ between neighbouring 1-skyrmions. 

The initial configuration of eight 1-skyrmions is time-evolved and relaxed. The system starts 

moving to four 2-skyrmions which re-arrange themselves. Slowly, the system moves towards 

a stable configuration, the 8-skyrmion. The building block of this crystal-like structure is the 

2-skyrmion. Figure 3.6 shows the 7 and 9-skyrmion. 

Hedgehog Ansatz Solutions of the hedgehog ansatz can be found numerically by solving 

equation (3.8) via the shooting method. As seen above, only the n = 1 and n = 2 hedgehog 

configurations are global minima. The 1-skyrmion has a hill shape and is exponentially localised. 

Unlike in the holomorphic model, the asymptotic behaviour of the profile function does depend 

on the potential term to leading order. The 2-skyrmion is a ring-like configuration. A n = 3 

static hedgehog solution exists, but does not have the lowest energy in its topological sector. A 

time-evolution shows that it is unstable and relaxes to the non-radially symmetric 3-skyrmion. 
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Figure 3.4: Contour plots of energy density: Eight 1-skyrmions merge together (pictures 1-4) 

m 

m m 

o 

Figure 3.5: Contour plots of energy density: Bound state relaxes into an 8-skyrmion (pictures 

5-8) 
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Figure 3.6: Energy density of a 7-skyrmion 
7-S0LIT0N 

Figure 3.7: Energy density of a 9-skyrmion 
9-SOLITON 
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Charge Energy Energy per skyrmion Break-up modes Ionisation Energy 

1 1.549 1.549 - -

2 2.907 1.454 1 + 1 0.191 

3 4.379 1.460 2 + 1 0.077 

4 5.800 1.450 2 + 2 0.014 

3 + 1 0.128 

5 7.282 1.456 3 + 2 0.005 

4 + 1 0.068 

6 8.693 1.449 4 + 2 0.015 

3 + 3 0.066 

5 + 1 0.138 

Table 3.1: Multi-skyrmions of the old baby Skyrme model 
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Energies Table 1 reproduces Piette et al.'s results and we will compare them to the new baby 

model's. The ionisation energy Ef-i is defined as the energy you have to add to a n-skyrmion 

to break it up into a k-skyrmion and a 1-skyrmion: 

As n increases, the ionisation energy decreases (but not continuously) and the n-skyrmions 

become less bound. The 2-skyrmion emission is the energetically most favourable break-up 

mode. An emission of a 2-skyrmion takes the smallest amount of kinetic energy to break up 

an 8-skyrmion. Thus, it is justified to think about a n-skyrmion as a collection of 2-skyrmions 

bound together. 

Note that the data comes from the ful l time-evolution. Using the hedgehog ansatz leads 

to slightly different, more accurate, values. There the energy of a 1-skyrmion is 1.564 and the 

energy of a 2-skyrmion is 2.936. This effect is due to the finite lattice and the fact that we can 

use more lattice points in the hedgehog ansatz. 

New Baby Skyrme Model 

The new baby Skyrme model7 exhibits a completely different structure for multi-skyrmions. 

In fact, the multi-skyrmions are ring-like configurations; their radii being proportional to their 

topological charge. The form of the potential is 

The potential has two vacua; for cf>3 = 1 and 0 3 = — 1. At infinity, the old and the new baby 

Skyrme models have the same vacuum 03 = 1 and behave in the same way. They only differ 

for small r. Another important fact is that the lagrangian of the new baby Skyrme model is 

Ehi = En — (Ek + Et). (3.35) 

V = l-4>1 = (1 03)(1 (3.36) 

invariant under 6 4> 
7see also [KPZ98] 
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Figure 3.8: Contour plot of energy density: Formation of 2-skyrmion 
Scattering of New_Baby_Skyrmions 

l i «ft 
. , 0 L i.i i n ! - ^ . J . 1 0 F , 11 • i i — -io F ' 1 1 1 1 1 1 • • ' -io 

• 10 0 10 -10 0 10 -10 0 10 -10 0 10 

10 10 10 

5 r -5 ~ -5 -

10 
0 10 10 10 

10 10 10 

oo 
. 1 0 F n n l m i , 1 0 F i m ^ n i _ 1 0 F i r i i I i i i i I . 1 0 F i i i i I i i i i 

-10 0 10 -10 0 10 -10 0 10 -10 0 10 

10 

10 10 
-10 0 10 -10 0 10 -10 0 10 -10 0 10 

Looking for multi-skyrmions First, two new baby 1-skyrmions scatter in the same way as 

the old baby skyrmions do. Figure 3.8 shows how the two 1-skyrmions attract each other, form 

a bound-state, scatter away at 90 degrees, get slowed down by their mutual attraction, attract 

each other again and so on. This oscillating but stable bound-state is an excited state of the 

2-skyrmion solution. Taking out the kinetic energy, the bound-state relaxes to the 2-skyrmion; 

a ring. 

We have looked at all higher n-skyrmions. Figure 3.9 presents the results of some of our 

simulations: the formation of a 5, 7 and 10-skyrmion. The skyrmions attract each other and 

merge into intermediate states. Relaxation takes out the kinetic energy and the unstable 

intermediate states merge together. They form an irregular ring configuration that moves like 

a vibrating closed string. Slowly, the configuration settles down to a radially symmetric form 

due to the loss of kinetic energy. Figure 3.12 shows the final configuration of multi-skyrmions 
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Figure 3.9: Contour Plot of Energy Density: Formation of 5-skyrmion 
POTENTIAL_ENERGY_OF_5_SOLITON 
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from charge two to five. Actually, the larger rings are slightly deformed. This effect is due to 

boundary effects and reduced by using larger grids. Thus, we have convinced ourself of the 

radial symmetry of n-skyrmions. 

I n the hedgehog ansatz The n-skyrmions are radially symmetric and we can study them 

in the hedgehog ansatz. Numerically speaking, the problem is reduced to one dimension and, 

effectively, we can take as many lattice points as we want. We want to compare the multi-

skyrmions to those of the old baby Skyrme model. We add a factor of \ to the sigma term. 

The coefficient 0V is set to half of the value of 9y in the old baby Skyrme model: 9V = 0.05. 

Now, the old baby Skyrme model has exactly the same large r behaviour i.e same pion mass. 

Then, we set 9s so that the energy of the new baby 1-skyrmion is now approximately the same 

as the old baby 1-skyrmion in the hedgehog ansatz: 9S = 0.44365. This convention puts both 

models on an equal footing. Note that there is a certain ambiguity about the choice of the 
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Figure 3.10: Contour Plot of Energy Density: Formation of 7-skyrmion 
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Figure 3.11: Contour Plot of Energy Density: Formation of 10-skyrmion 
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Figure 3.12: Contour Plot of Energy Density: Rings of multi-skyrmions from n=2 to n=5 

coefficients. The energy is a function of Osdy and a compensating change of both coefficients 

gives the same energy. 

Again, we find the hedgehog solutions by solving (3.8) using the shooting method. Fig­

ure 3.13 shows all solutions up to topological charge 10. The higher the charge the more difficult 

it becomes to find solutions numerically. The shooting method becomes more and more sensi­

tive to the numerically determined value of its derivative at the origin i.e. C\Q ~ 10 - 1 0(see 3.15). 

The numerical results are very interesting. The peaks of the energy density of rings converge 

to an asymptotic height and their position shifts by an asymptotically constant amount. This 

observation deserves some further understanding. 

Relation between energy peak and its location Our numerical results show that the 

profile function / at the position of the energy density peak, r = d(n), approaches the value | 
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Figure 3.13: The energy density of new baby skyrmions up to charge 10 
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for large n. The energy density at this point reduces to 

2 
E\d(n), n] = f'f + ^ ( 1 + 29s ft) + 0V. (3.37) 

Its value depends on the derivative of the profile function at d(n) and the ratio between n and 

d(n). Now, figure 3.13 shows that the height of the energy density of the peak is approximately 

a constant for large n i.e. 

lim £\d(n),n] = constant. (3.38) 

The larger the topological charge the more the multi-skyrmion approaches the peak and shape 

of the 'asymptotic multi-skyrmion'. Using this empirical knowledge leads us to conclude that, 

in the large n l imit, 

B l i m / ; 2 = a> (3.39) 

and 
n2 

lim - £ — 2 = $ \ (3.40) 
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where a and (5 are constants. And, the peak of the ring shifts by a fixed amount from a 

skyrmion of charge n to one of charge n + 1 i.e. 

d(n) = P~ln. (3.41) 

This relation agrees with our numerical work and provides a good consistency check. The 

energy density becomes 

£[d(oo)] = a2 + /32(1 + 26sa2) + 9V; (3.42) 

taking (3.24) into account. The shape of the n-skyrmions approaches that of the 'asymptotic 

multi-skyrmion'. We can approximate the configurations by a finite box of height £ d around 

the point r = d(n). This gives us the dependence of the total energy on the topological charge 

i.e. 

E = [ d { n ) + a drr£d = 2£dad{n) = (2£dap2)n (3.43) 
Jd(n)—a 

using (3.41). Asymptotically, the total energy grows linearly with n. 

Energies Table 2 shows our numerical results for the energies of the multi-skyrmions up to 

n = 6. First, the 2-skyrmion has a lower energy than an old baby 2-skyrmion, but looks exactly 

the same at large r. The multi-skyrmions do not break up via a 2-skyrmion emission (see last 

section) but into two similar configurations ie. 5—> 3 + 2 or 6—> 3 + 3. This can be seen from 

the ionisation energy. 

Further the ionisation energy and the energy per skyrmion decreases to an asymptotic value 

for large n (unlike the old baby multi-skyrmions). The monotonic decrease of the ionisation 

energy shows that the large n-skyrmions become less stable: a smaller addition of kinetic energy 

can break them apart. Nevertheless, they are much tighter bound and more stable than their 

old baby analogues. 
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Charge Energy Energy per skyrmion Break-up modes Ionisation Energy 

1 1.564 1.564 - -

2 2.809 1.405 1 + 1 0.319 

3 4.112 1.371 2 + 1 0.262 

1 + 1 + 1 0.580 

4 5.433 1.358 2 + 2 0.186 

3 + 1 0.243 

5 6.761 1.352 3 + 2 0.160 

4 + 1 0.235 

6 8.094 1.349 3 + 3 0.130 

4 + 2 0.148 

Table 3.2: Multi-skyrmions of the new baby Skyrme model 
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3.1.6 Summary and Open Questions 

Clearly, the choice of the potential term has a crucial effect on the structure of multi-skyrmions. 

The comparison between the new and the old baby Skyrme model has proved to be very 

interesting. Both models have the same asymptotic behaviour, but possess completely different 

multi-skyrmion structures. The new baby Skyrme model has radially symmetric minimal-

energy solutions for all topological charges whereas the old baby multi-skyrmions are 'skyrmion 

lattices' formed by 2-skyrmions. New baby multi-skyrmions are tighter bound and have less 

energy than their old baby analogues. 

We have backed up our numerical results by monitoring conserved quantities (like energy, 

topological charge, S2 constraints), comparing with approximations for small and large r, check­

ing the relation between energy peaks and their position and verifying conditions imposed by 

Derrick's theorem. 

Obviously, a general framework that predicts the structure of multi-skyrmions for a given 

potential is desirable. However, we have not been able to achieve this goal. Rather, we state 

some empirical laws derived from our numerical experiments. 

Existence of multi-skyrmions. The new and old baby Skyrme models admit stable multi-

skyrmions. When 2 1-skyrmions are put at rest at a finite distance, they attract, move 

towards each other, form an intermediate state and scatter at 90 degrees. After the 

scattering, they move away from each other, slow down, stop and eventually move towards 

each other again and scatter one more time. This process is repeated many times, and 

as the skyrmions radiate some energy during each scattering they progressively form 

a bound state. This is not true for the holomorphic model, for the two 1-skyrmions 

repel each other. A related observation leads us to the conjecture that if the asymptotic 

behaviour does not depend on the potential coefficient, the force between two 1-skyrmions 

is repulsive; see the holomorphic model. 
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Structure of multi-skyrmions. The potential shapes the structure of multi-skyrmions. 

Unfortunately, we can only show the fact by our numerical results. The existence of 

more than one vacuum seems to be crucial to the radial symmetric shape of the new 

baby n-skyrmions. I t might well be possible to prove that potentials with more than one 

vacuum lead to radially symmetric multi-skyrmions. However, we were not able to back 

such claims by a theoretical study. 

To conclude, some interesting questions arise from the study of multi-skyrmions in the baby 

Skyrme models and are worth investigating further. 

• The choice for potential terms is largely arbitrary. The study of other potentials and 

in particular those with multiple vacua could help to clarify the issues surrounding the 

existence and structure of multi-skyrmions. Further, on one hand, potentials with multiple 

vacua can still have the same large distance behaviour like old baby skyrmions. On the 

other hand, their multi-skyrmion solutions should have rather exotic shapes, because 

the dynamics tries to have multiple vacua. Unlike the conventional smooth lump of the 

1-skyrmion, their 1-skyrmion lumps may have riddles in them. Or, one might like to 

rephrase our question and ask whether multi-vacua models have circular domain walls, 

too. 

• The application of the baby Skyrme model in the quantum regime requires an appropriate 

quantization scheme. The radially symmetric new baby multi-skyrmion solutions could 

simplify this task. The mass correction of all multi-skyrmions i.e. the eigenvalue equation 

in the harmonic approximation (see next chapter) can be calculated numerically without 

excessive computer power. This is not true for the old baby Skyrme model, for higher 

multi-skyrmions do not have a continuous symmetry. 
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• Are there any applications? If there are 90 degrees scattering phenomena observed in ex­

periments, then the analysis of bound-states can lead to the determination of the potential 

responsible for these phenomena. 

• The choice of the potential crucially shapes the structure of multi-skyrmions. This is 

probably not true in the nuclear Skyrme model, because the sigma term is not scale 

invariant. Often, an 'old baby Skyrme'-type potential is included to have a pion mass 

and exponential decay. There is no argument why the potential term used cannot have two 

vacua. What happens in a nuclear Skyrme model with a 'new baby Skyrme potential'? 

Is the energy of the n-skyrmions lower? 

It is also possible to interpret the ring-like multi-skyrmions of the new baby Skyrme model 

as circular domain walls separating the two vacua. This is an interesting and conceptually 

clearer viewpoint. Indeed, at the location of the peak of the energy density, the field switches 

from one vacuum value to the other. These domain walls also have a topological charge. 

3.2 Using Simulated Annealing for I D minimisation... 

In this section, we present the results of our implementation of the Simulated Annealing min­

imisation scheme described in detail in the last chapter. We show that i t works well in one 

dimension and is easy to implement. There is no need to derive the Euler-Lagrange equation 

and higher order terms can be easily added to the energy functional. First, we reproduce some 

known results: exact one for the Sine-Gordon model and numerical ones for the Skyrme-type 

models. Secondly, we revisit the radially symmetric new baby multi-skyrmion solutions and 

get much clearer results than with the shooting method used in our earlier study. Finally, we 

include a higher order term to the nuclear Skyrme model and show the relationship between 

the value of its coefficient and its minimal energy. 
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We include our computer code in appendix B. Three parameters are crucial for a successful 

cooling. The initial temperature must be high enough to avoid the system getting frozen in a 

local minimum. The 'Boltzmann constant' K defines the probability of acceptance of upwards 

moves i.e. moves which have a higher energy: we typically use K = 10~6. The condition 

for thermal equilibrium is crucial for a well-minimised result. If the number of upwards and 

downwards steps is roughly the same after X changes, the system is in thermal equilibrium. 

How big is X i.e. how long should a monitored chain of changes be until we are confident the 

system has reached thermal equilibrium? We typically take 100N or 1000N changes where N 

is the number of lattice points. The longer the chain the better and the slower the cooling. 

We have to emphasise that we only get the same answer for a re-run if the configuration is 

the minimal-energy solution. If the answer is slightly different, we need to increase the chain. 

We usually start with a small chain and increase it until the result does not change anymore. 

This procedure ensures that the schedule really did allow for thermal equilibrium at each 

temperature. To conclude, a 'paramaterology' does not exist for Simulated Annealing , we find 

the best values by trial and error. For more details, please see the last chapter. 

3.2.1 The Sine-Gordon and Skyrme models 

Comparison with theoretical value We start out with the integrable sine-Gordon model. 

Its energy functional is given in (1.75). Its minimal-energy solution is 4>st{x) = 4 arctan[exp x] 

whose total energy is exactly 8. Our initial configuration is a straight line from one boundary 

value, 0 = 0, to the other, 4> = •n. The parameters of our cooling schedule are: Tinitiai = 1000, 

K = 10~6, 500 cooling iterations and our condition for thermal equilibrium is 100iV. For 

N = 600 points with box-size L = 30, we obtain 7.999837: see cooling in figure (3.14). The 

plot clearly shows that the decrease in energy of the configuration is not monotonically: upwards 

step are allowed. We re-run the code and get slightly different result in the last three digits. 
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Figure 3.14: Cooling of initial configuration to minimal-energy solution 

Hence, we increase the chain to 1000N. We obtain 7.999367. We re-run it and obtain the same 

energy. As a general guide, maximum accuracy is not attainable due to discretisation and finite 

box effects. We trust our numerical values to three-digit precision: thus 7.999. 

Comparison with published numerical results We run our computer code for the 1 and 

2-skyrmion solutions of the old and new baby Skyrme model. We use 401 lattice points and 

the box size is 15. The cooling schedule is Tinitiai = 500, K = 10" 6 and the chain is 5007V. 

Our results are identical up to three-digits precision to the results in the previous section: see 

also [PSZ95a]. We use the coefficients of the papers. The computed energies of the old baby 

Skyrme model are Ex = 1.5644 and E2 = 2.9363. And those of the new baby Skyrme model 

are E\ = 1.5642 and E2 = 2.8094. We also evaluate the energy of the 1-skyrmion of the nuclear 

Skyrme model. Using the expression given in [MRS93], the energy functional of the nuclear 
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Skyrme model is 

roo 
E[f(r)] = n dr 

Jo 

in units of ~~. We obtain the minimal-energy profile function with the correct polynomial decay 

and a total energy value of E = 36.566^; compared to 36.5 in Nappi et al. [ANW83] 

3.2.2 Domain Walls in new baby Skyrme model 

In our earlier study of multi-skyrmions, we have looked at the minimal-energy solution of the 

new baby Skyrme model for any topological charge. We found that the solutions are radially 

symmetric energy configurations. However, the shooting method did not produce reliable results 

for higher charges. The value of the derivative has to be adjusted so that the function falls 

off to zero at infinity. In our case, the correct derivative at the origin is very small for a large 

charge and the Runge-Kutta numerical integration method could not handle such small values 

and became very sensitive to the number of lattice points used and the finite size of the box. 

The Simulated Annealing method has no such problems and works fine. Let us note that the 

relaxation method described in the last chapter works fine, too. 

We use the same coefficients as in the last section. Table 3.3 shows the energies of multi-

skyrmions from charge one to twenty. Figure 3.15 shows that the energy-per-charge density of a 

multi-skyrmion decreases to an asymptotic value of around 1.35. We also look at the location of 

the peak of the energy density of each multi-skyrmion. Again, the relationship is asymptotically 

linear (see figure 3.16) i.e. the location of the peak divided by the charge goes to a constant. 

However, due to the discretisation of space, we only know the peak location approximately. 

Thus, our obtained values are not very accurate; the value of the 'constant' is roughly 1.38. 

Figure 3.17 shows the profile function of the 1, 5, 10, 15 and 20-skyrmion. The higher the 

topological charge, the more distinct the transition between one vacuum to the other becomes. 

f r - + 4 s i n 2 / ] W / + 2 ^ / (3.44) 
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Charge Energy E/C Peak Location Charge Energy E/C Peak Location 

1 1.564 1.564 0.00 11 14.782 1.344 15.20 

2 2.809 1.404 2.82 12 16.122 1.343 16.56 

3 4.112 1.371 4.16 13 17.461 1.343 17.96 

4 5.433 1.358 5.56 14 18.802 1.343 19.36 

5 6.761 1.352 6.92 15 20.142 1.343 20.75 

6 8.094 1.349 8.32 16 21.482 1.343 22.12 

7 9.430 1.347 9.68 17 22.823 1.343 23.44 

8 10.767 1.346 11.08 18 24.164 1.342 24.80 

9 12.105 1.345 12.40 19 25.504 1.342 26.24 

10 13.443 1.344 13.84 20 26.845 1.342 27.60 

Table 3.3: Multi-skyrmions of the new baby Skyrme model 
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Figure 3.15: Asymptotic decrease of the energy per skyrmion of a multi-skyrmion 
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Figure 3.16: Linear dependence of the location of the energy peak vs. its charge 
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Profile Function goes from One Vaccum To The Other 
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Figure 3.17: Profile function of 1, 5, 10, 15 and 20-skyrmion 

Therefore, we might as well view our multi-skyrmion solutions as charged domain walls; the 

location of the peak of the energy being the transition from one vacuum to the other. We 

conclude that Simulated Annealing is very useful for studying classical aspects of skyrmions. 

The multi-skyrmion solutions are intriguingly simple and a further study of the behaviour of 

such charged circular domain walls might be worthwhile. Further, does the inclusion of a higher 

order Skyrme term change the structure of the multi-skyrmions? 

3.2.3 Higher Order Term in nuclear Skyrme model 

In this section, we include a higher order term in the lagrangian of the nuclear Skyrme model 

and find the energy of the 1-skyrmion using the hedgehog ansatz. From Marleau [Mar90] and 
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Jackson et al. [JJGB85], we must add the term 

fOO 

6 drf 
•a sin 4 f(r) (3.45) 

Jo 

in the hedgehog ansatz; 9 being the coefficient of the higher order term. This six-derivatives 

term is the most physical one, for it is positive and only first order in time derivatives. Note 

that it is also possible to replace the Skyrme term with the six-derivatives term. 

The 9 coefficient should really be positive otherwise the model would have configurations 

with an arbitrary large negative energy. Indeed, if we assume that 9 is negative, we can think 

of a configuration in the form of a delta function. Then the negative six-order term will always 

'win', i.e. lead to a negative energy, if we take the derivative sufficiently large. Nevertheless, 

we will explore the full range of 9 for which we obtain positive energy solutions. 

Derrick's theorem and the topological bound give us necessary but not sufficient conditions 

on the minimal-energy solution of the functional. From Derrick's theorem, the Skyrme term in 

2+1 or 3+1 dimensions tries to expand the skyrmion. Intuitively, its derivatives have to be small 

to minimise a functional. The same is true for the six-derivatives term. Using the condition 

of stability (1.45), the 'shrinking' a term balances the 'expanding' Skyrme and six-derivatives 

term: 

the coefficients of the a and Skyrme term are treated as constants. Further, there is a topological 

bound on the energy functional 

the same as for the nuclear Skyrme model. This bound arises from Bogomulyni's bound on the 

a term, 1 . 57T 2 , and the relation (3.46). 

We compute the energy of the minimal-energy solutions for various values of 9. It is easy 

to add one or more higher order terms to the functional in the Simulated Annealing scheme, 

Ea = ESk + 39 E6; (3.46) 

E > 3n2 29.6; (3.47) 
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Energy Dependence on Higher Skyrme Term Energy 
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Figure 3.18: Logarithmic dependence of the energy on 9 

because we do not have to derive the Euler-Lagrange equation. We use 301 lattice points 

and lattice spacing Sx = 0.05. The cooling schedule is similar to previous ones. We find a 

roughly logarithmic dependence of the energy on 9: see figure 3.18. The computed energy of 

the 1-skyrmion in the nuclear Skyrme model i.e. 9 = 0 is E = 36.566 which is approximately 

1.23 times the topological bound. As expected a positive 9 leads to a higher energy and a 

small negative one to a lower energy. The lowest energy we get is 35.571 for 9 = —0.56 and 

it is roughly 1.20 times the bound. For a value slightly above the critical 9 = —0.56, the 

minimisation technique gives us a negative value for the energy. I f we double the number of 

points and increase the box to 20, we can push the critical value that leads to a positive energy 

to -0.57. Conceivably, even more lattice points and a wider box might give us a solution of 

slightly lower energy. Still, we believe that this is, apart from numerical precision, a real cut-off 

in the theory above the theoretical bound. 



CHAPTER 3. CLASSICAL ASPECTS OF SOLITONS 96 

Energy density for various values of 9 
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Figure 3.19: Energy density of 1-skyrmion with coefficient -0.56, 0 and 10 

In figure 3.19, we present the energy densities for different 9 values. The higher the value 

of 9, the more dominant the higher order term becomes. Using Derrick's theorem, the relation 

(3.46) helps us to explain figure 3.19. For large 9 = 10, the skyrmion is more spread out. For 

negative 9, the effect of the two 'expanding' terms is partially cancelled and the soliton shrinks. 

Finally, there are plenty of interesting research ideas. Why is there a cut-off and at what 

value? What is the structure of the multi-skyrmions? We have used the hedgehog ansatz. What 

about the general case? Work is on progress on the implementation of a 2D minimisation scheme 

using Simulated Annealing. 
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3.3 Adding a six-derivatives t e r m . . . 

We want to know what happens if we add a higher order term to the baby Skyrme lagrangian. 

The Skyrme term is just the trivial 2-space dimensional analogue of the (3+1) Skyrme term. 

We do the same for the higher order term and translate it to (2+1) dimensions. 

The non-linear a model, a model of pions, is the simplest approximation to an effective field 

theory of QCD. However, the soliton is not stable and shrinks to zero-size. The lagrangian does 

not satisfy the condition of stability (1.45) according to Derrick's theorem. Therefore, a higher 

derivative term e.g. four-derivatives term was added to insure stability. The addition of the 

Skyrme term in the lagrangian is a reasonable and simplest choice of a low-energy effective field 

theory. And the model is unambiguous, because the Skyrme term is the only four-derivatives 

term which leads to a positive and first-order in time hamiltonian. Adkins et al. point out that 

'the Skyrme model is only a rough description, since it omits the other mesons and interactions 

that are present in the large-N limit . ' Jackson et al. [JJGB85] look at the possibility to simulate 

w-mesons physics by adding (or replacing the Skyrme term) by a six-derivatives term. Marleau 

[Mar90] attempts to derive a generalised Skyrme lagrangian of second order in time and obeying 

constraints from vector meson physics. In both approaches, the researchers are restricted to 

the hedgehog ansatz to manage the calculations. 

The six-derivatives term that they propose has the form 

L 6 = ( d j - ^ 0 ) 3 - 3 ( d j - d ^ j ) ( d j - d p $ ) (d"$-dp$)+2 (duf-dvfy [dp$-d»$) [d»$-dp$) 

(3.48) 

where we sum over fi, v and p. We split the time derivative from the space derivative terms 

and get 

L 6 = 3(0 • 0) [{4>i • fa)2 - (<f>i • 4>j)2] - 6(0 • h f t t j • <j>3) + 6(0 • 0,)(0 • • 4>j) 

- ( 0 , • 0 i ) 3 + 3(0i • 0,) 2 (0 f c • <t>k) - 2(08 • 0,)(0 f c • 0 2)(0, • fa) (3.49) 
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where (j> stands for dt<j> and fa for di<f>. We work in (2+1) dimensions: the indices i, j label 

x and y. The spatial derivative part is identically zero due to redundant labelling in 2 space 

dimensions. The time-dependent terms 

1 
12 LG = (<P • <t>) [(<f>x • (t>x) + (fa • <t>y) - (4>x ' <t>y) \ + [<t>

 1 </>x)(0 ' <f>y)(4>x " <f>y) 

-(</> • <f>x?{<f>y • fa) ~ (0 • faf{<t>x • <t>x) (3.50) 

are the only terms left in the lagrangian. This discovery leads to interesting conclusions and 

questions. First of all, the energy density of L 6 for a static configuration is identically zero. 

Static minimal-energy solutions do not depend on the six-order term. For example, if we add 

L6 to the baby Skyrme lagrangian, the minimal-energy solutions are exactly the same as for 

the original baby Skyrme model. However, the scattering behaviour could be different, because 

time-dependent six-order terms are present in the lagrangian. This model is worth further 

investigations. I t is not too much work to derive the equation of motion, because the spatial 

part is zero and the number of terms seems manageable. Secondly, we can replace the Skyrme 

term by L 6 . The energy density only contains the a term and a potential. There do exist 

time-dependent minimal-energy solutions called Q-balls for such a lagrangian. I f we assume a 

solution 

W = z{x,y)ela{t) (3.51) 

where z(x, y) is a complex function, we get an additional term 
• 21 12 

a \z\ (3.52) 
(i + M 2 ) 2 

in the lagrangian which does not have any derivatives. Hence, we can cancel the term by adding 

an appropriate potential; the additional term with an opposite sign. This corresponds to a 

balance between the rotating solution and the potential. Any static solution z of the model 

has a time-dependent solution associated to it . However, our six-derivatives term destroys 
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this relationship, because we get additional time-dependent terms that include a and contain 

derivatives. The potential cannot be modified so to cancel the effect of a solution of the form 

(3.51). According to Derrick' theorem, any minimal-energy solution is not stable, because we 

can lower its energy by scaling. However, does the time-dependent six-derivatives term prevent 

the configuration from collapse? Again, a numerical study should give an answer and we will 

attempt to do this in the near future. 

We believe that the study of higher order terms is interesting and should lead to new 

behaviour and structure. It is not clear which terms to choose and the motivation for future 

research seems rather to be of mathematical interest than of physical importance. However, an 

effective theory should have higher order terms. Finally, we believe that Simulated Annealing 

will help us in these studies and is better equipped than the Euler-Lagrange equation for 

minimisation. Work is on progress on a 2D minimisation scheme. 



Chapter 4 

Quantum Aspects via Numerical 

Methods 

" . . . It is truly surprising how little difference all this makes. Most physicists use 

quantum mechanics every day without needing to worry about the fundamental 

problem of its interpretation... A year or so ago, while Philip Candelas (of the 

physics department at Texas) and I were waiting for the elevator, our conversation 

turned to a young theorist who had then dropped out of sight. I asked Phil what had 

interfered with the ex-student's research. Phil shock his head sadly and said, "He 

tried to understand quantum mechanics." " 

(from Weinberg's 'Dreams of a Final Theory') 

In the previous chapter, we have shown how to study classical aspects of solitons using 

numerical techniques. In this chapter, we discuss how to study the aspects of the quantum 

nature of solitons, namely their mass correction, using numerical methods. 

In our introduction, we explained the difficulties surrounding the quantization of the (3+1)-

dimensional Skyrme model. Nappi et al. [ANW83] partially overcame these problems by using 

100 
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a spinning-top approximation; the minimal-energy solution is radially symmetric and rotating 
without deformation. Effectively, they only include the rotational zero mode of the 1-skyrmion. 
This procedure allows to quantise the 1-skyrmion as a nucleon and gives reasonable agreement 
with experiments. The work by Braaten et al. [BTC90] and Battye and Sutcliffe [BS97] on the 
structure of classical multi-skyrmions supports further the idea that an appropriate quantization 
around these minimal-energy solutions for a given topological sector could lead to an effective 
description of atomic nuclei. However, the calculation of quantum properties of the multi-
skyrmions is very difficult, because these minimal-energy solutions are not radially symmetric, 
for example. This is rather frustrating, for the claim that the Skyrme model descending from a 
large N-QCD approximation models mesons, baryons and higher nuclei is a very compelling one. 
There have been various attempts to extract quantum properties, notably by Walet [Wal96] 
and Leese et al. [LMS95]. A recent zero mode quantization of multi-skyrmions from charge 
four to nine has been undertaken by Irvine [Irv98]. Reliable quantitative results were not to be 
expected, but even the correct quantum number for the ground states of some nuclei, skyrmions 
with odd charge 5, 7 and 9, could not be obtained. 

Al l these attempts rely on theoretical approximations like moduli-space or rational map 

ansatz and mostly include only zero modes. Barnes, Baskerville and Turok's attempt is notably 

different. They want to include all lowest modes, not just zero modes, and get more reliable 

quantitative results. Therefore, they have to use numerical techniques to achieve their goal. 

In a series of papers, they compute the lowest modes spectrum of B = 2 [BBT97a], 5 = 4 

[BBT97b] and B = 7 [Bas97] numerically. Their numerical results shed further light on normal 

modes of multi-skyrmions and motivated theoretical studies. In another paper, Barnes and 

Turok [BT97] compute numerically the mass correction of the (H-l)-dimensional 4>A kink. They 

wanted to show how to use numerically extracted lowest normal modes to compute the quantum 

properties in a simple toy model. To achieve this task, they use a trace formula over the normal 
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modes of the vacuum and the soliton ground-state; derived in [CCG76]. The </>4 kink model 
proved to be an ideal candidate, for theoretical results are known and can be compared with 
numerical ones. In his PhD thesis [Bar98], Barnes explains how to extend their scheme to 
(3+1) dimensions; in principle. However, renormalisation issues and the sheer complexity of 
their approach in higher dimensions pose serious problems for an implementation. Possibly, one 
could use another formula from [CCG76] using the phase shifts of the normal modes: see, for 
example, recent work by Holzwarth and Walliser [HW99]. Whatever way, Barnes et al. have not 
yet published a description on how to compute quantum properties of the (3+1) dimensional 
multi-skyrmions from their numerically calculated normal modes. 

In this chapter we focus on the computation of the mass correction of (l+l)-dimensional 

solitonic theories theoretically and numerically. We follow Rajaraman's semi-classical quantisa­

tion procedure; another option is via path integrals - see Dashen et al. [DHN75]. Specifically, 

we are interested in the use of the normal modes to compute the mass correction and the extent 

to which the lowest modes from both, the soliton and the vacuum, sectors give the leading con­

tribution. We start with a review of the derivation of the first order quantum correction. Then, 

we derive the trace formula from first principles.1 We use this formula to re-compute the mass 

correction and show that the lowest modes are the most important ones. Then, we calculate 

the lowest modes numerically and hence the leading contribution to the mass correction. 

Thus, rather than aiming for higher dimensions, which proves to be very challenging and 

difficult, we content ourselves with getting a good understanding of the one-dimensional case. 
1 this is not done in [CCG76]. 
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4.1 Mass Quantum Correction: General Idea 

We start out with a general lagrangian for a (l+l)-dimensional field theory 

£ = \i>2 - \ f - v{4>) (4.1) 

for the scalar field (fi(t,x) and with the potential V being positive. The time-independent 

Euler-Lagrange equation leads to 

- f + ^ = 0. (4.2) 

We quantise around the minimal-energy static solution 4>st{x) satisfying (4.2), which could be 

the vacuum or the minimal-energy solution in a non-zero topological sector. The semi-classical 

expansion states that the quantum field (j)(t, x) is the classical static field < j ) s t { x ) plus a quantum 

correction field e(t,x), 

j>{t,x) = (l>at(x)+e(t,x) (4.3) 

where~ reminds us to treat the function as a quantum object, an operator satisfying, possibly 

non-commuting, commutation relations with other operators. We have to substitute (4.3) into 

the hamiltonian 

H (</>) = j _ ~ dx Q</>2 + \ f + V^V) (4.4) 

and obtain, in orders of e, 

' rIV \ 1 . 1 / J 2 rJ2V \ 
e + 0 ( e 3 ) (4.5) 

i „ i f d2 d2v 
+ - 7 T 2 + -e — — + 

Pst, 
2 2 \ dx2

 d(j)2 

</>.sf. 

Classical = 0 (4.2) Quantum 

where n is the conjugate momentum of e. We have used integration by parts, set the boundary 

terms to zero and Taylor expanded the potential term in powers of e. We split our hamiltonian 

into three parts, 

H — H ( j i a s s i c a i + H Q u a n t u m + HHigherOrder i (^ ^) 
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where the classical mass/energy can be found by substituting <j)st into (4.4). We concentrate on 
the lowest order quantum energy HQuantum. This is justified in the framework of a perturbation 
theory where higher order terms are neglected due to their smallness in comparison to the 
lowest term. This approximation is justified if the potential is roughly harmonic around the 
static solution and e" terms depend on the coupling constant A in the form A n , for example. 
If these conditions are not fulfilled or a better accuracy is wanted, one can resort to well-
known perturbation techniques of standard quantum mechanics. However, let us emphasise 
that this would considerably complicate our task. Therefore, Barnes et al.'s attempts are 
already significantly hampered for those multi-skyrmions whose potential does not have a steep 
valley i.e. are not suitable for a harmonic oscillator approximation. This is the case for B = 2, 
for example.2 

Our quantum hamiltonian, in the harmonic approximation, has the form 

Z(t,x) (4.7) 

A 2 

where A2 is an operator. If A2 acts as a number, the hamiltonian has the form of an harmonic 

oscillator and we know the quantisation procedure. In effect, we have to solve the eigenvalue 

equation 

A 2 e(t, x) = uj2e(t, x) (4.8) 

and this is equivalent to the time-independent Schrodinger equation. We have to decompose the 

quantum field e in terms of a complete set of real and orthonormal eigenfunctions. Therefore, 
oo 

i(t,x) = Y , qn(t)rjn(x) (4-9) 
n 

with 

^private communication from Barnes 
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Jdx{f)n(x)f]m(x)] = 5 n , m (4.10) 

and 

A277i(x) =u?fji(x). (4.11) 

We substitute the decomposition (4.9) into (4.7), integrate over x and use the constraints (4.10) 

on the eigenfunctions. We are left with 

2tf(«) = E [ # ( * ) + < ^ ( t ) ] (4-12) 

n 

where p„ is the conjugate momentum of qn. The hamiltonian is an infinite sum of harmonic 

oscillators of frequency ujn. We have reduced our quantum field theory with an infinite number 

of degrees of freedom to a pseudo particle quantum mechanics with an infinite number of 

harmonic oscillators. We are now able to use standard particle quantum mechanics. Using the 

operator method with Heisenberg's commutation relation 

\Pn,qn]=ih, (4-13) 

we get 

= ftWan + ^ W (4.14) 

where an is the ctth energy level of the nth oscillator. Naively speaking, we have all the 

information we need to calculate the mass correction: the classical mass and the quantum 

correction to first order i.e. the quantum hamiltonian. Unfortunately, if we were to calculate 

the quantum mass in a specific model, we would quickly realise that the mass is divergent; the 

infinite number of oscillators, an inherent feature of any quantum field theory, being the cause 

of this divergent result. In the next section, we describe, using the </>4 model as our example, 

how to extract a meaningful quantum properties from our naive expression. 
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4.2 Mass Quantum Correction: Derivation 

We follow Rajaraman's procedure. For a very detailed and lucid description, we refer to Ra-

jaraman's book [Raj96, section 5.3]. We have re-done all the calculations by hand and with the 

use of Maple. Further we have expanded on the discussion of some parts, given more details 

and corrected some typographical errors.3 

The hamiltonian of the (f>4 kink model is 

2H = J dx (> + <t>'2 ~ + \<F + ^ ) (4.15) 

where m is the mass of the field 4> and A the self-coupling constant. In topological charge sector 

zero, the minimal-energy solution i.e. the vacuum is 

</>lt{x) = ± m (4.16) 

and, in topological charge sector one, the minimal-energy solution i.e. the 1-kink is 

m(x — a) m (pst(x) = ± - ^ = t a n h 
V2 

(4.17) 

where a indicates a translational invariance (this will lead to a zero mode). We quantise around 

the solutions with the positive sign in front which is the soliton - compared with the negative 

sign in front which is the anti-soliton. 

The corresponding eigenvalue equation for the vacuum is 

d2 

dx2 
+ 2m2 fii(x) = o j V l fii(x) . (4.18) 

The eigenfunctions and eigenvalues are 

fjk(x) = exp(ikx) (4.19) 
3and probably introduced others. 
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and 

uj^k = k + 2m2 

We use periodic boundary conditions in a box of length L and 

knL = 27rn 

(4.20) 

(4.21) 

where n is an integer. The continuum limit is reached by taking L to infinity and any discrete 

sum over kn, or simply n, turns into an integral over k of the form 

L 
dk (4.22) 

using the constraint (4.21) on /;:„/• 

The corresponding eigenvalue equation for the 1-kink is less trivial 

1<P_ 
2dz2 

+ (3tanh2z - 1) K,i 

77r 
(4.23) 

where z = mx / \ / 2 fo r convenience. In fact, it belongs to a class of special Schrodinger equations; 

the Sine-Gordon model being another example.4 There are two discrete modes; one zero mode 

7)0 (z) = cosh 2 z with uj(Q = 0 (4.24) 

and a second discrete mode 

7)1(2) = sinhz cosh 2 z with IJ02

K q = -m2. 

The continuous eigenmodes, which we label with q, are 

( z ) = e

i q z (3 tanh 2 z - 1 - q2 - 2>iq tanh z) 

4 private communication from Jackiw and see [Jac77, pages 683-684] 
5the eigenmodes are Jacobi polynomials in tanhz. [Jac77] 

(4.25) 

(4.26) 
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with 

u)Kq = m (4.27) 

Imposing periodic boundary conditions becomes more tricky. For z —» ±oo, we can use the 

asymptotic form of f]q(z) 

fiq(z) —> (2 - q2

 T 3iq) 

— • v / ( g 2 + 4) 2 (g 2 + l)exp \i(qz ±h{q)) (4.28) 

3<Z 

where 5(g) is the phase shift of the scattering states from the viewpoint of the Schrodinger 

equation; 

8(q) = —2 arctan 

The condition imposed by the periodic boundary is 

(4.29) 

V2. 
+ 5(qn) = 27rn (4.30) 

and the sum over n becomes an integral over q in the limit where L goes to infinity: 

/ mL d 
(4.31) 

using the constraint (4.30) on n. Let us briefly note that the zero mode, which we have found, 

is nothing else but the manifestation that the 1-kink solution is translationally invariant. We 

can imagine the infinite-dimensional potential space at its minimal-energy location having a 

1-dimensional valley along which we can move our solution by varying a without changing the 

energy of the system. This zero mode certainly needs to worry us, for our harmonic oscillator 

approximation assumes steep valleys in all dimensions. However, this is only problematic if the 

zero mode is coupled with another mode and this does not happen in the computation of the 

mass correction up to first order. A proper treatment of zero modes is done with collective 

coordinates: see Rajaraman [Raj96, chapter 8]. 
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We have all the necessary information on the eigenvalues and should naively be able to 
compute the mass of the 1-kink up to first order quantum corrections. Using (4.6) and the 
eigenvalues of the 1-kink solution, we get an expression for the energy 

E ^ 2 ^ + ^ + lnmW^ + 2 (4'32) 

' ' v v ' > v ' 
Classical Discrete Continuous 

Finite Divergent 

which includes the finite classical energy, no contribution from the zero mode due to its zero 

frequency, a finite contribution from the second discrete mode and a sum over the continuous 

modes. Unfortunately, if we were to perform the integral over q using (4.30), we would find 

it to be divergent. This clearly shows that our naive treatment of quantum field theory is 

inadequate. To have a finite answer, there are two modifications we have to make. 

4.2.1 Energy level difference 

Let us write out the expression for the vacuum energy up to first order quantum corrections 

^ = ^ E ^ + 2 m 2 - ( 4 - 3 3 ) 
n 

Using (4.22), we get 

Ev = ^ [°° dkVk2 + 2m2 (4.34) 
47T J-oo 

which is a quadratically divergent integral. Thus, even the leading quantum contribution to the 

classical vacuum is not finite. However, we can follow the example of newtonian gravity which 

defines potential energy as the difference between two states. I t makes physical sense to define 

our naive vacuum energy, even though it is infinite, as the lowest of possible energy states in 

the theory i.e. to put it equal to zero and hence to subtract it from our naive calculation of the 
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1-kink energy. We get 

„ „ 2\/2m 3 

^ + ^ E ^ ^ + 2 - ^ + 2 ™ ^ (4.35) 

B finite 

and we label all finite terms collectively E f m i t e - We go to the continuum limit and perform the 

integral over k. Therefore, we re-express qn in terms of kn 

qn = ^2L_m) (4.36) 

using the boundary conditions (4.30) and (4.21). The expression in the sum takes the form 

msj\ql + 2 - y/k* + 2m? = ^ ( k n - 6 - ^ j + 2m* - + 2m? 

Ly/kl + 2m? 

= i — (S^)7ils + 0 ( 1 / i 2 ) (4-37) 

where we have Taylor expanded the first line, used expression (4.29) and Taylor expanded it . 

Both Taylor expansions are in £ and make sense, for we take the box size L to infinity later. 

Using (4.22), the expression for the energy becomes 

h r (3m k \ k 
EK = E ! M U + - j i k arctan ^ ^ 3 ^ ) + 0 (1 /L) . (4.38) 

* v '- v ' 
du/dk v 

The dependence on the box size goes away for L —y oo and we are allowed to neglect the 0(1/L) 

and higher terms. As our notation indicates, we perform integration by parts. The boundary 

term has the form 

1 k= —a 

(4.39) 
- k=a 

— lim 
2rc a->oo 

3m k arctan — — \/k? + 2m 2 

\^/2m? - k 2 ) 
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This limit is ill-defined for trivial substitution of a = oo: the arctan function gives us 0 and 
the polynomial function oo. Therefore, we use l'Hoptial's rule and obtain a finite answer 

3 
Km —-= (4.40) 

7T\/2 

which we include in our E f i n i t e . The integral obtained by integration by parts has the form 

3\/2m r k2 + m2 

/ dk , . (4.41) 
2tt J y/k2 + 2m 2 (2k2 + m2) 

We put a cut-off A on the k limits and change to the variable p = k/m. We get 

A 2 , 1 

lim PJL± U 42) 
J A X / ^ T 2 (2n2 + 1) y ' 1 A^oo J A. ^/pi + 2 (2p2 + 1) 

If we perform this integral, we still find a logarithmic divergence plus a finite contribution. 

We need to cancel the divergence with another term. We need to look closer at the infinities 

produced by the infinite degrees of freedom of a field theory. 

4.2.2 Normal-Ordering and Counter-terms 

We have to normal-order the hamiltonian and introduce counter-terms. We do not give a full 

introduction to all these more complicated ideas and refer to Ryder [Ryd94], for example, for 

a detailed introduction. We decompose the field <fi in terms of a complete set of orthonormal 

eigenfunctions of the vacuum fluctuations 

0 M = E --anen(x) H - = = 4 4 ( 2 ) (4.43) 
_\ /2( j n \f2u)n 

where a is the annihilation and a) the creation operator (we neglect the ~ on them). The 

hamiltonian (4.7) becomes 

2# = Yu un {anal + 4 f ln) = un (2a)nan + l ) (4.44) 



CHAPTER 4. QUANTUM ASPECTS VIA NUMERICAL METHODS 112 

using the orthonormality relations of e and the commutation relation between an and a)n. The 
term ata„ is viewed as the number operator Nn and gives the number of nth oscillators that 
are excited. We see that the sum J2n 1 i s divergent and the common procedure is to re-define 
the hamiltonian. We are free to choose the zero of energy and are allowed to neglect the 1. 
Phrased differently, we normal-order the hamiltonian by writing all annihilation operators to 
the right of all creation operators. Thus, we get 

2 : H : = :^ujn{ana\l+a]

nan) : = 2^uno)nan (4.45) 
n * v ' n 

flip 

where :: stands for normal-ordering. The relations between a normal-ordered and non-ordered 

product of the fields are 

: 0 4 : = + a<f)2 + (3 

: 0 2 : = (j)2 + 5 (4.46) 

where a, j3 and 7 are constants. We write the normal-ordered hamiltonian as our non-ordered 

hamiltonian plus two counter-terms that arise from the relations (4.46) 

H : = H j dx (^5m2(f>2 + 7) (4.47) 

where dm is the mass correction to the field and can be evaluated using the one-loop Feynman 

diagram. The constant 7 is not of any importance, because it will cancel itself out due to 

its presence in both, the vacuum and the 1-kink, hamiltonian. The additional term to E f i n i t e 

and the divergent term (4.42) come from subtracting the counter-term of the vacuum from the 

counter-term of the 1-kink and we get 

EC

K

T - EyT = Urn2 I \dx 
, 9 / m x \ 

1 - tanh 2 ^ m 5 m 2 (4.48) 
Vn /2 /J A 

We evaluate 5m2 by using the equivalent expression in (f>4 theory. We refer to Ryder [Ryd94, 

section 6.4] for a detailed discussion. The standard formula (Ryder: eq 6.95) in perturbation 
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theory for the 4>4 model is 

Sm2 1 igAF 0 (4.49) 

where g is the coupling and A f ( 0 ) the free particle propagator of a loop diagram i.e AF(x — x). 

We have to be careful when adapting the result to our case. Three modifications to </)4 (Ryder 

eq 6.65) are necessary: 

• g/4\ = A/4 and g = 6A. 

• The theory should be in (1 + 1) dimensions. 

• There is only one vacuum. The vacuum eigenvalues are k2 + in2 and those of our 4>4 kink 

theory are k2 + 2m 2 . Therefore, we need to change the mass m 2 to 2m 2 . 

The (1+1) dimensional free particle loop propagator (Ryder: eq 6.14) with modified mass 2m 2 

has the form 

where we have a pole at k 2 = 2m 2 and the two-vector k equals (E, —k). We evaluate the double 

integral further 

where we have integrated over E. We change to the variable p = k/'m and put a cut-off A on 

p. Substituting everything into (4.49), we get 

dk 
A F 0) 

27r)27 k 2 - 2 m 2 
(4.50) 

dE (0) = dk 
E2 - (k2 + 2m 2 

dk 
Vk2 + 2m 2 

(4.51) 

I m 

I-t 
dp 3Xh 

dm lim 
Air A—>oo 

m 

(4.52) 

which we substitute into the additional term (4.48). 
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4.2.3 Finite Mass Correction 

Finally, we are able to write the quantum mass of the 1-kink as 

M = EK + ECT = E f i n i t l i + km —— l im / m 

47T A - > o o 7 - A 
m 

dp 
Vp^+2 y/p^+2 y / p 2 ^ (2P

2 + 1) 
dp 2(p2 + 1) 

(4.53) 

We have done the integral using a cut-off A with Maple. Both terms produce the same loga­

rithmic divergent term which cancel each other out. Taking the cut-off to infinity, we get the 

final answer for the mass of a 1-kink up to first order quantum corrections 

where we have written E j i n i t e out explicitly. The first term is just the total energy of the 

classical 1-kink solution. Note that the presence of 1/A indicates the non-perturbative nature 

of the solution. To zeroth order in A and first order in h, we have the first quantum correction. 

I t is only valid in the weak-coupling limit. The next term of the quantum correction would be 

of order \h2. Rajaraman [Raj96, section 5.4-5.6] gives a detailed interpretation of the result 

and also explains why the effect of the counter-terms on the kink solution and the zero mode 

are effects of order A. 

This concludes our derivation of the quantum mass. In the next section, we show that it is 

possible to get a formula for the mass correction which allows us to quantify the contribution 

of the different modes and compute the mass correction numerically by using numerically 

computed lowest eigenmodes. 

2V2 1 3 m M + Tim 
V2 A 6 V 2 7T 

(4.54) 

4.3 Trace formula: Derivation 

The trace formula has been first published by Cahill et al. [CCG76], but an explicit derivation 

has not been given in their paper. We derive the formula in this section6. We start by writing 
6private communication by Barnes 
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out the hamiltonian (4.7) 

2U{t, x) = vr2(t, x) + i(t, x)A2i{t, x) (4.55) 

and the equation of motion of the normal modes is 

e(t, x) = —w2e(t, x) (4.56) 

with the eigenvalue equation 

A 2 ti{x) = cof et(x) (4.57) 

where we ignore the" on the quantum field. A2 depends on the static solution around which 

we expand. We label Ay the operator for the vacuum and A\ the operator for the kink. We 

expand the quantum fluctuation e(t,x) in terms of the normal modes of the vacuum, which 

we label eK(t,x), and the 1-kink, which we label ev(t,x). In terms of the plane waves of the 

mesons with eigenvalue tOk, 

ev(t,x) = 
-iu>kt 

--a(k)elkx + 
0ilOf;t 

--o){k)e -ikx 

and, in terms of the normal modes of the 1-kink with eigenvalue ujn, 

(4.58) 

eK(t,x) = 
-iuint 

--antn{x) + 
0iujnt 

(4.59) 

where the plane waves exp(ikx) and the normal modes en are orthonormal eigenfunctions. The 

next step involves writing the annihilation and creation operators of the eigenmodes in terms 

of the creation and annihilation operators of the planes waves. By definition, 

eK(t,x) = ev(t,x) 

eK(t,x) = ev{t,x). 

(4.60) 

(4.61) 
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We then integrate over both equations with x, use the fact that the eigenmodes are a complete 

orthonormal set (4.10) and solve the set of two equations for an and a*. We obtain 

a i = I n 
^ k 

i 

a \ k ) i n { - k ) 

^ it 

0^ 
00k 

UJr, 

aHk)in(k) 
w„ / \\l u)k 

a H k ) e n ( - k ) [ , p - J ^ ) + a \ k ) i n ( k ) I + 

n, 

0>„ 

(4.62) 

(4.63) jUJr, 

00n) V V 00k 

where e„(/c) is the exponential Fourier transform, / dx e x p ( i k x ) e n ( x ) , of e n ( x ) . We calculate 

the hamiltonian in terms of soliton normal modes annihilation and creation operators in the 

last section (4.45) and expand the term in terms of the annihilation and creation operators of 

the vacuum. We get 

oona]

nan = 'terms with a! a, aa and a W ' 

= 'terms with a*a, aa and a W ' 

+ 
OOn | Uk ^ 

lU>k LOn 

(4.64) 

where we have used the commutation relation between operators [a(k), a^(l)] = &k,i and merged 

the resulting a)a term into the 'collective' term. Finally, we can express the un-ordered term 

as the normal-ordered term i.e. all the terms with a^a, aa and a)a) and an extra term: 

u n a ]

n a n = : w„aj,a„ : + - ^ e n ( k ) e n ( - k ) 
( u n - u k ) ' 

which leads us to the final answer 

H ujnalan + 5m. 

(4.65) 

(4.66) 

The mass correction 5m can be expressed as a trace over any complete set of orthonormal 

states, 

5m 
(AK - Ay? 

Av 
(4.67) 
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where Ay is the operator of the vacuum and A\ is the operator of the kink perturbations. This 
trace formula is finite. Further further discussions see [BT97] and [Bar98]. 

4.4 Trace formula: Theoretical Result 

We use the trace formula to calculate the contribution of the lowest discrete modes to the mass 

correction. Cahill et al. only quote the results in their paper [CCG76].7 We can re-write the 

trace formula (4.67) in the following way 

S m = - J Y , / d k \ V K A x ) V v , k ( x ) \ 2 K wfc 1 - 2 u j n + WfcJ (4.68) 

4 n J-oo 

which reduces for the special case of the zero mode mass correction to 

1 f°° 

6m0 = - - dk \ T ] K : o { x ) r j V ! k ( x ) \ 2 ujk (4.69) 

4 J—oo 

where r ] K n are the eigenmodes of the kink and rjv^k the eigenmodes of the vacuum. Finding the 

appropriate Fourier transform is the main technical difficulty in solving these kinds of integrals. 

We have used the Maple library inttrans to find Fourier exponential, cos and sin transforms 

and the book on integral tables by Erdelyi et al. [EMOT54]. 
4.4.1 </>4 kink model 

We have seen that the 0 4-kink has two discrete modes (4.24). The zero mode 

om , _ 2 / Tax 
\ 

^ o ( x ) = V472cosh V72' (4-70) 

with 0 = 0 and the second discrete mode 

" « w = \ / l i s i n l 1 i c o s h _ 2 i ( 4 7 1 ) 

7see also [Hol92] for explicit calculations 
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with u>\ | = | m 2 are here given in their normalised form i.e. integration of the mode squared 

over x gives one. The normalised eigenmodes of the vacuum fluctuations are 

1 
W,k(x) = r,ikx (4.72) 

with eigenvalues u>v,k = k 2 + 2m 2 . Using (4.69), we obtain the following integral 

8m 

which we simplify to 

.) r dk V k 2 + 2m2 [ 
Akx 

dx 

cosh2 (5f) 

,-tky 

cosh2 J 
(4.73) 

8mn = (...) r dk V k 2 + 2m2 [ 
J-oo J0 

r°° COs(kx) 
dx-

'cosh2 
( . . . ) / _ 

°° „ V k 2 + 2m2
 k 2 

dk 
sinh2 ivt) 

3m r°° q2VQ2 + n 2 

2N/2' 
— f°° dq 
7T 3 J-oo sinh q 

(4.74) 

/o 

where we have used Euler's formula, the Fourier cos transform of cosh - 2 and changed to the 

variable q = ~^^x- Using (4.68), we obtain the correction to the mass from the second discrete 

mode 

8mx = (...) j °" dk ( ^ { k 2 + 2m2)~12 - 3m 2 + Vk2 + 2m2 

-oo V 2 

k2 cosh2 (^f) 

roo S i l l h ( m ) 
/ d x s m ( k x ) - V ^ r 

^0 cosh2(5§) 

/
oo / 

dk ( . . . ) . , x 

-00 V } ( l + C Osh 2 ( ^ ) ) 
1\ 3m /-oo / ( N / g 2 + 4 7 r _ ^ 

4/ 2>/27r3 ./-oo 9 V W + 4?r2 [1 - f cosh q\ 
(4.75) 

where we have used Euler's formula, the Fourier sin transform of sinh cosh 2 and changed to 

the variable q = -j^-
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We have evaluated I0 and h numerically with Maple and obtain 

Jo = 11-247 

\h = 0.827 
4 

and the contributions to the mass correction are 

5m0 + 5m1 = (-0.384 - 0.0283)m - 0.413m (4.76) 

compared to the ful l quantum correction (4.54) 

5m = - 0.471m (4.77) 

where we have set h to one. Finally, we find that the zero mode contributes 81.5% and the 

second discrete mode 6%, thus in total 87.5%, to the total mass correction. 

We are also interested to what value of k the normal modes of the vacuum fluctuations have 

to go to give a reliable answer to the mass correction. Intuitively, the zero and second discrete 

mode are localised and its norm with the long wavelength vacuum modes should become very 

small. We have put a cut-off A on our integral I0 and \l\ and evaluated the integrals as a 

function of the cut-off. We have done this numerically with Maple. Figure 4.1 shows that we 

only need to go up to a cut-off of around q = 5 for the zero mode and of around q — 15 for 

the second discrete mode. (k= ^^q) This is good news, for we can ignore long wavelength 

vacuum modes. 

4.4.2 Sine-Gordon model 

We do the same for the Sine-Gordon model. There is only one discrete mode, the zero mode 

of translation: see section 4.2 and [Jac77]. The normalised zero mode has the form 

VK,Q(X) = cosh (mx) (4.78) 
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C u t - o f f 

Figure 4.1: Value of I0 (upper curve) and Ix (lower curve) as a function of their cut-off A for q 

with eigenvalue U)K,Q = 0. The eigenmodes of the vacuum fluctuations are the same as before, 

but the eigenvalues change to uiv,k — k2 + m2. The mass correction takes the form 

5m0 = ( . . .) J dkVk2 + m2 j dx cos(kx) cosh'1 (mx) 

= (...)/ dkVk2 + m2 cosh"2 

m 
4-7T 

(4.79) 
cosh q 

where we have used Euler's formula, the Fourier cos transform of cosh - 1 and changed to the 

variable q = J^. 

We have evaluated the integral numerically with Maple and obtain 

Tfi Tfl 
5m0 = - 3.572— = - 0.893 — 

47T 7T 
0.284 m (4.80) 
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I n t i . « 

C u t - o f f 

Figure 4.2: The value of the integral versus its cut-off A for q 

compared to the full quantum correction ([DHN75], [Raj96]) 

Sm = = -0.318 m (4.81) 

where we have set h to one. Finally, we find that the zero mode contributes 89.3% to the total 

mass correction. 

Again, we are interested to what value of k the normal modes of the vacuum fluctuations 

have to go to give a reliable answer to the mass correction. We have put a cut-off A on the 

integral and evaluated the integral as a function of the cut-off. We have done this numerically 

with Maple. Figure 4.2 shows that we only need to go up to a cut-off of around q = 5 for the 

zero mode. We do not need to include long wavelengths vacuum modes. 
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4.5 Trace formula: Numerical Result 
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In the last section, we have applied the trace formula to the <̂>4 kink and the Sine-Gordon 

model. The results are clear-cut. The contribution from the discrete modes to the quantum 

mass correction is dominant (more than 80%). Further, we do not need to probe our discrete 

modes for long wavelength of the vacuum mode. This is good news for numerical methods and 

we can limit ourselves to the lowest normal modes of fluctuations in both the vacuum and the 

kink sector. Moreover, in (1 + 1) dimension, we are not restricted by memory or computational 

needs and can include all the vacuum and kink modes. 

4.5.1 Preparation 

We calculate the mass correction for the 0 4 kink and Sine-Gordon model. We have set the mass 

m = 1 and coupling A = 1 for simplicity. The energy functional has the form 

for the (b4 kink and 

E 

-J 

-i 

dx 

dx 

L ^ 2 + ^ ' 2 + ^ ( ^ 2 - l ) 2 

^ 2 + ^ ' 2 + (l-cos«/>) 

(4.82) 

(4.83) 

for the Sine-Gordon model; where <f)' — ^ and <f> = Using appropriate boundary conditions, 

we find the minimal-energy configuration, which we call 4>st, for both models in the topological 

charge sector one. We use the Gauss-Seidel overrelaxation method. Our box size is L = 40 

from -20 to 20 and we use 1600 points. Thus, the lattice spacing is dx = 0.025. 

The corresponding eigenvalue vacuum and kink operators in terms of the static solution 

(see 4.7) are 

A2 

A2 

- — + 2 
dx2 

dx2 + 1 - m (4.84) 
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for the ( f ) 4 kink and 

d 
A v dx2 

d 
A K dx2 

+ 1 

+ COS 4>st (4.85) 

for the Sine-Gordon model. In Numerical Techniques, we describe three different methods that 

solve the discrete eigenvalue problem. The trivial matrix diagonalisation is the more accurate 

and simplest one. However, we have to admit that the computational time grows as the cube 

of the number of points and the cechnique cannot be used in two or more dimensions. We 

substitute the value of the numerically minimised field8 into the discretised eigenvalue equation 

and diagonalise the resulting matrix with periodic boundary conditions. 

Figure 4.3 shows the first four normal modes of the </>4 kink. The numerical eigenvalues are 

—5.78 10~8, 1.49998, 2 and 2.03072 compared to the exact eigenvalues 0 (zero mode), 1.5 (first 

mode) and 2 (start of 'continuous' modes). Figure 4.4 shows the first four normal modes of the 

Sine-Gordon soliton. The numerical eigenvalues are 5.12 10~8, 1.00682, 1.00682 and 1.06128 

compared to the exact eigenvalues 0 (zero mode) and 1 (start of 'continuous' modes). 

We have all the information needed to compute the mass correction. The trace formula has the 

form 

which is similar to (4.68). r)K,n(xi) refers to the nth eigenmode of the kink, rjv,k(xi) refers to 

the kth eigenmode of the vacuum and X{ to the position of the ith lattice point. 

We start with the </>4 kink. We sum up the contributions to the mass correction, mode by 

mode. Figure 4.5 shows that the mass correction approaches an asymptotic limit. The first 
8 we used the relaxation method described in Numerical Methods 

4.5.2 Results 

Jl[JlvK,n(xi)vvAxi)) [ 
a.k \ i / 

1 dm 2u>n + ujk n^k 
a.k 

(4.86) 
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Figure 4.3: The </>4 Kink eigenmodes from zero to three 

few mode contributions are the most important ones. We only include mode contributions up 

to mode 200. Figure 4.6 shows that the norm is mostly zero and peaks for the norm between 

the nth kink mode and the nth vacuum mode. For the lowest kink mode contribution, only 

the lowest vacuum modes are important. For the highest kink mode contributions, only the 

highest vacuum modes are important. The discrete mode corrections are 

8m0 = -0.384626 

<Jmi = -0.0282964 (4.87) 

which are very close to their exact values (4.76). The numerical value of the mass correction is 

5m = - 0.471097 (4.88) 

compared to the exact value of-0.471113 and is 99.997% accurate. This is a very satisfactory 

result. 



CHAPTER 4. QUANTUM ASPECTS VIA NUMERICAL METHODS 

Eigenmtra 2 

02 

025 

0 02 

005 

005 -20 -15 10 -5 0 5 10 15 20 -20 -IS -10 -5 0 5 !0 15 20 

Figure 4.4: The Sine-Gordon eigenmodes from zero to three 
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Figure 4.5: The total contribution to the mass correction mode by mode 
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Figure 4.6: Norm between four kink modes and the vacuum modes 

We turn our attention to the Sine-Gordon kink. We sum up the contributions to the mass 

correction mode by mode. Figure 4.7 shows that the mass correction approaches an asymptotic 

limit. The first few mode contributions are the most important ones. Figure 4.8 shows the 

contribution of the first mode for each vacuum mode. Note that some contributions are zero, 

because the first mode is an odd function and some of the vacuum modes are even functions. 

The discrete mode i.e. zero mode correction of the Sine-Gordon kink is 

Sm0 = -0.28402 (4.89) 

which is very close to the exact value (4.80). The numerical value of the mass correction is 

Sm = - 0.318144 (4.90) 

compared to the exact value of -0.318309 and is 99.95% accurate. This is a very satisfactory 

result. 
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Figure 4.7: The total contribution to the mass correction mode by mode 
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Figure 4.8: Mass correction of the first kink mode versus the vacuum modes 
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4.6 Conclusion 
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We have shown that the trace formula works very well in (1+1) dimensions for the Sine-Gordon 

and the </>4 kink model. The numerical quantum mass correction is very close to the exact one. 

Our technique can be applied with ease to any (1+1) dimensional theory. This allows us to 

calculate the mass correction to non-integrable solitonic systems, for example. Specifically, 

we are interested in the Sine-Skyrme model [PPZ93] and plan to study the mass correction 

numerically. Or, we can look at the mass correction of multi-skyrmions, for example. 

There are two drawbacks. We have used a brute force matrix diagonalisation to find the 

eigenvalues. It works very well and is reasonably fast in (1+1) dimensions. However, if you 

are to implement the trace formula in higher dimensions, you will have to use a different 

technique. Barnes and Turok in [BT97] have used a diffusion equation method; as discussed 

in the chapter on numerical methods. They compute the zero mode, then project it out of the 

initial configuration, get the next mode and so on. Only the first modes are accurate, because 

the errors are summing up. Computational restrictions also limit the calculations to the first 

few modes. 



Chapter 5 

Conclusion 

"We have found that where science has progressed the farthest, the mind has but 

regained from nature that which mind has put into nature. We have found a strange 

foot-print on the shores of the unknown. We have devised profound theories, one 

after another, to account for its origin. At last, we have succeeded in reconstructing 

the creature that made the foot-print. And Lo! It is our own." 

(the English physicist Eddington) 

Firstly, we have clearly shown that numerical techniques can study classical and quantum 

aspects. The computer codes we had to produce and the methods we had to understand provide 

the author with all the essential tools to further investigate solitonic or other systems requiring 

numerical methods. In the future, much less time will be spent on preparing the grounds. 

Secondly, we were able to confirm previous work by Piette et al. on multi-skyrmions and show 

the variety of multi-skyrmion structure in different baby Skyrme models. We succeeded in 

computing the quantum mass corrections of (1+1) dimensional models numerically by using a 

trace formula. We also implemented the Simulated Annealing scheme to solitonic systems and 

show that it handles higher order terms better. Thirdly, our work triggered new research ideas 

129 
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which we intend to pursue. We list the most interesting ones: 

• to implement the Simulated Annealing scheme for 2 dimensions. This would allow us 

to systematically look at multi-skyrmion structure for different potentials and for higher 

order terms. I t is hard to see how the conventional approach could study higher order 

terms. 

» to do the same in 3 dimensions if possible. 

• to study the scattering behaviour in the baby Skyrme model with a six-derivatives term. 

The equation of motion will be extensive, but probably just manageable. 

© to study the mass correction for different theories. Especially the Sine-Skyrme model, 

a 1-dimensional analogue to the baby Skyrme model, would be an interesting starting 

point. We also intend to look at the mass correction of the multi-skyrmions in (1+1) 

dimensional models. 

• to apply the trace formula to the baby Skyrme models. 

• to look at the baby Skyrme models with potentials with more than one vacuum and see 

if their multi-skyrmions are all radially symmetric. 

Final Thoughts 

We have studied classical and quantum properties of solitons. The baby Skyrme models are 

not integrable and no exact solutions are known in general. We could only achieve this study 

by using numerical methods. Our approach is symptomatic for the increased use of computers 

in extracting valuable information from theories untrackable by mathematical tools. Lattice 

QCD, structure formation and black hole simulations are further examples. Certainly, the 
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exponential increase of CPU power and its decrease in price will further enhance this approach 

and 'numerical experiments' will become a well established area between 'real' experiments and 

pure theory. 

Physicists have two ways of thinking about physical systems; in terms of waves or particles. 

Solitons combine both fundamental concepts and are waves with particle behaviour. This 

new concept is exciting and very appealing to theorists in all domains - a new tool to use. 

Promising research in real industrial applications is underway in the area of telecommunication 

and DNA, for example. On the fundamental level, solitons have been discovered in quantum 

field theory, too. Monopoles, instantons and skyrmions are now well established and if physical 

intuition 'What can happen, will happen' is valid, experimental verification will follow. Solitons 

also play an important role in the most likely TOE, M-theory in 11 dimensions: see Duff's 

review [Duf98, section 8]. Briefly, the Olive-Montonen conjecture suggests a duality between 

elementary particles carrying Noether charges and solitons carrying a topological charge. If 

you interchange the particles/solitons and invert their coupling, the theory gives the same 

predictions. This idea later led to the emergence of S-duality which plays a crucial role in 

linking the five string theories together. M-theory is compactified by hand down to the 4 

dimensional standard model. A sensible compactification scheme must arise from the M-theory 

lagrangian itself. Solitons could play this role. Actually, some researchers believe that a newly 

found object in string-M theory, a Dirichlet brane (D-brane) which can be viewed as a soliton 

with extra degrees of freedom, could take over the compactification role. We can even think of 

dynamical compactification in the baby Skyrme model in (2+1) dimensions as a very simple toy 

model! We start out with a high temperature configuration of topological charge one. This is 

our early universe with many fluctuations of skyrmion and anti-skyrmion pairs-the dynamics is 

two-dimensional. We cool the configuration and it will eventually condensate to a 1-skyrmion. 

Now, the dynamics of the field is effectively described by an 1-dimensional field theory of the 
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1-skyrmion. Or we think of a high-temperature new Baby Skyrme configuration with charge 

five. Cooling reduces the dynamics to a one-dimensional ring: see figure 3.9. 

The author is in no doubt that solitons will play an increasingly important role in industrial 

application and fundamental physics. 
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Appendix A 

This is the part of the software code used for the time-evolution of configuration in the holo-

morphic baby Skyrme model. 

/* Caculate the free-indices expressions */ 

fo r ( j = 0 ; j<3 ;j++) 
{ 

f x [ j ] = (Field[RIGHT+j] - Field[LEFT+j])/(2*pde->dx); 

f y [ j ] = (Field[TOP+j] - Field[BOTTOM+j])/(2*pde->dy); 

f x t [ j ] = (Field[RIGHT+j+3] - Field[LEFT+j+3])/(2*pde->dx); 

f y t [ j ] = (Field[TOP+j+3] - Field[BOTTOM+j+3])/(2*pde->dy); 

f x y [ j ] = ( Field[TOP_RIGHT+j] - Field[T0P_LEFT+j] 
-Field[B0TT0M_RIGHT+j] + Field[B0TT0M_LEFT+j] ) 

/(4*pde->dx*pde->dy) ; 
f x x [ j ] = ( Field[(RIGHT+j)] - 2 * F i e l d [ j ] + Field[(LEFT+j)] ) 

/ (4*pde->dx*pde->dx) ; 

f y y [ j ] = ( Field[(TOP+j)] - 2 * F i e l d [ j ] + Field[(BOTTOM+j)] ) 
/ (4*pde->dy*pde->dy) ; 

L a p l [ j ] = ( 4*(Field[LEFT+j] + Field[RIGHT+j] + 
Field[TOP+j] + Field[BOTTOM+j]) 

+ 
( Field[T0P_LEFT+j] + Field[TOP_RIGHT+j] + 
+Field[BOTTOM_LEFT+j] + Field[B0TT0M_RIGHT+j]) 

20 * F i e l d [ j ] ) 
/ 
(6*pde->dx*pde->dx); 

} 
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/* Calculate the summed-over-free-indices expressions */ 

xyaxa=0;xyaya=0;xxaya=0;yyaxa=0; 
xaxa=0;yaya=0;xaya=0; 
tata=0;xata=0;yata=0; 
xtata=0;ytata=0; 
xtaxa=0;ytaya=0; 
xxata=0;yyata=0; 
assa=0;ssata=0; 

for(j=0;j<3;j++) 
{ 

xyaxa += f x y [ j ] * f x [ j ] ; 
xyaya += fxyCj] * f y [ j ] ; 
xxaya += f x x [ j ] * f y C j ] ; 
yyaxa += fyyCj] * f x [ j ] ; 

xaxa += fxCj] * f x [ j ] ; 
yaya += f y [ j ] * f y [ j ] ; 
xaya += f x [ j ] * f y [ j ] ; 

t a t a += F i e l d [ 3 + j ] * F i e l d [ 3 + j ] ; 
xata += f x [ j ] * F i e l d [ 3 + j ] ; 
yata += f y [ j ] * F i e l d [ 3 + j ] ; 

xtata += f x t [ j ] * F i e l d [ 3 + j ] ; 
ytata += f y t [ j ] * Field[3+j] ; 

xtaxa += f x t [ j ] * f x [ j ] ; 
ytaya += f y t [ j ] * f y [ j ] ; 

xxata += fxxCj] * Field[3+j] ; 
yyata += f y y [ j ] * F i e l d [ 3 + j ] ; 

assa += FieldEj] * L a p l [ j ] ; 
ssata += L a p l [ j ] * F i e l d [ 3 + j ] ; 
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/* calculate the scalar expressions */ 

beta = 1 - 2 * t h e t a l * assa; 

det = ( beta - 2 * t h e t a l * ( f x [ 0 ] * f x [ 0 ] + f y [ 0 ] * f y [ 0 ] ) ) * 
( beta - 2 * t h e t a l * ( f x [ l ] * f x [ l ] + f y [ l ] * f y [ l ] ) ) * 
( beta - 2 * t h e t a l * ( f x [ 2 ] * f x [ 2 ] + f y [ 2 ] * f y [ 2 ] ) ) 

4* t h e t a l * t h e t a l * 
( f x [1] * f x [2] +f y [1] * f y [2]) * ( f x [1] * f x [2] +f y [1] * f y [2] ) * 
( beta - 2 * t h e t a l * ( f x [ 0 ] * f x [ 0 ] + f y [ 0 ] * f y [ 0 ] ) ) 

4* t h e t a l * t h e t a l * 
( f x [0] * f x [1] +f y [0] * f y [1] ) * (fx [0] * f x [1] +f y [0] * f y [1] ) * 
( beta - 2 * t h e t a l * ( f x [ 2 ] * f x [ 2 ] + f y [ 2 ] * f y [ 2 ] ) ) 

4* t h e t a l * t h e t a l * 
( f x [0] * f x [2] +f y [0] * f y [2]) * ( f x [0] * f x [2] +f y [0] * f y [2] ) * 
( beta - 2 * t h e t a l * ( f x [ l ] * f x [ l ] + f y [ l ] * f y [ l ] ) ) 

16 * t h e t a l * t h e t a l * t h e t a l * 
( f x [0] * f x [2] +f y [0] * f y [2]) * ( f x [0] * f x [1] +f y [0] * f y [ 1 ] ) * 
( f x [ l ] * f x [ 2 ] + f y [ l ] * f y [ 2 ] ) ; 

M[0][0] = ( ( f x [ l ] * f x [ l ] + f y [ l ] * f y [ l ] ) * ( f x [ 2 ] * f x [ 2 ] + f y [ 2 ] * f y [ 2 ] ) ) 
- ( ( f x [ l ] * f x [ 2 ] + f y [ l ] * f y [ 2 ] ) * ( f x [ l ] * f x [ 2 ] + f y [ l ] * f y [ 2 ] ) ) ; 

M [ l ] [ l ] = ( ( f x [ 0 ] * f x [ 0 ] + f y [ 0 ] * f y [ 0 ] ) * ( f x [ 2 ] * f x [ 2 ] + f y [2] * f y [2]) ) 
- ( ( f x [ 0 ] * f x [ 2 ] + f y [ 0 ] * f y [ 2 ] ) * (f x[0] * f x[2] +f y [0] * f y [2] ) ) ; 

M[2][2] = ( ( f x [ 0 ] * f x [ 0 ] + f y [ 0 ] * f y [ 0 ] ) * ( f x [ l ] * f x [ l ] + f y [ l ] * f y [ l ] ) ) 
- ( ( f x [ 0 ] * f x [ l ] + f y [ 0 ] * f y [ l ] ) * (f x[0] * f x [ l ] + f y[0] * f y [1] ) ) ; 

M[0][1] = ( ( f x [ l ] * f x [ 2 ] + f y [ l ] * f y [ 2 ] ) * (f x[0] * f x [2] +f y [0] * f y [2] ) ) 
- ( ( f x [ 0 ] * f x [ l ] + f y [ 0 ] * f y [ l ] ) * (f x [ 2 ] * f x [ 2 ] + f y [2] * f y[2] ) ) ; 
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M[l] [0] = M[0] [1] ; 

M[0][2] = ( ( f x [ 0 ] * f x [ l ] + f y [ 0 ] * f y [ l ] ) * ( f x [ l ] * f x [ 2 ] + f y [1] * f y [ 2 ] ) ) 
-( ( f x [ 0 ] * f x [ 2 ] + f y [ 0 ] * f y [ 2 ] ) * (f x [ l ] * f x [1] +f y [1] * f y [1] ) ) ; 

M[2] [0] = M[0] [2] ; 

M [ l ] [ 2 ] = ( - ( f x [ 0 ] * f x [ l ] + f y [ 0 ] * f y [ l ] ) * ( f x [ 0 ] * f x [ 2 ] + f y [ 0 ] * f y [ 2 ] ) ) 
- ( ( f x [ 0 ] * f x [ 0 ] + f y [ 0 ] * f y [ 0 ] ) * (f x [1] * f x [2] +f y [1] * f y [2] ) ) ; 

M [ 2 ] [ l ] = M [ l ] [ 2 ] ; 

/* Caculate the right-hand side (one free indice) */ 

for(j=0;j<3;j++) 
{ 

termlEj] = L a p l [ j ] 
+ 
2 * t h e t a l * 
( 
-t a t a * L a p l [ j ] 

+ 
f x x [ j ] * yaya 

+ 
f y y [ j ] * xaxa 

2 * f x y [ j ] * xaya 
+ 
f x [ j ] * ( xyaya - yyaxa - xtata ) 

+ 
f y [ j ] * ( xyaxa - xxaya - ytata ) 

+ 
F i e l d [ 3 + j ] * ( ssata 

- xtaxa - ytaya ) 
+ 
2 * f x t [ j ] * xata 
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2 * f y t [ j ] * yata 
) 

theta2 * ( 1 + F i e l d [ 2 ] ) * ( l + F i e l d [ 2 ] ) * ( l + F i e l d [ 2 ] ) 
* ( j - 0 ) * ( j - l ) ; 

term2[j] = F i e l d [ j ] 
* 
( - t a t a - assa 
+ 
2 * t h e t a l * 
( 2*xaxa*yaya 
- 2*xaya*xaya 
+ 2*assa* t a t a 
+ 2*xata*xata 
+ 2*yata*yata) 

+ 
2 * theta2 * (1+Field[2] )*(1+Field[2])*(1+Field[2]) 
* Field[2] 

) ; 

/* mult i p l y Matrix inverse with right-hand side */ 

for(j=0;j<3;j++) 

term3 = beta*( t e r m l [ j ] + term2[j] ) ; 

for(i=0;i<3;i++) 
{ 

term3 += beta*2*thetal* ( f x [ j ] * f x [ i ] + f y [ j ] * f y [ i ] ) *terml [ i ] ; 

term3 += 4*thetal*thetal*M[j] [ i ] * ( t e r m l [ i ] + t e r m 2 [ i ] ) ; 
} 
Force[j+3] = term3/det ; 
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Appendix B 

This is the computer code using the Simulated Annealing scheme to minimise one dimensional 

functionals. See chapter on numerical techniques for more details. We do not include the 

random number generator routine due to copyright reasons. The interested reader can consult 

Numerical Recipes [PTVF92]. It's important to use a good random generator ergo the standard 

C routines are not recommended. Their period of random numbers is very short, 32'767, and 

one Simulated Annealing run needs many ten thousand random numbers. 

/* Minimisation of one-dimensional functional */ 
/* using the Simulated Annealing algorithm */ 
/* */ 
/* Version : July 1999 (Durham, CPT) */ 
/* Authors : Mark Hale & Tom Weidig */ 

/* include standard l i b r a r i e s */ 

#include <math.h> 
#include <time.h> 
#include <stdio.h> 

/* define setup of program */ 

#ifndef __IBMC__ 
#define . I n l i n e s t a t i c 

#endif 

#define PI 3.14159265358979 

#define BABY 1 
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#define OLD 1 
#define NEW 2 

#define SINE.GORDON 2 
#define SKYRME 3 
#define HOSKYRME 4 

#define MODEL 
#define SUB_MODEL 
#define N 
#define L 
#define dr 
#define T.INIT 
#define THERMAL 
#ifdef THERMAL 

#define K 
#endif 
#define COOL.ITER 
#define EQM.ITER 

HOSKYRME 
NEW 
401 
15.0 
L/(N-1) 
1000.0 

1.0e-6 

500 
1000*N 

/* model */ 
/* model sub-type */ 
/* number of points */ 
/* l a t t i c e length */ 
/* l a t t i c e spacing */ 
/* i n i t i a l temperature */ 

/* Boltzmann constant */ 

/* number of cooling i t e r a t i o n s */ 
/* number of thermal eqm i t e r a t i o n s */ 

#define n 
#define theta_v 
#define theta_6 

0.08873 
0.0 

/* topological charge */ 
/* p o t e n t i a l c o e f f i c i e n t */ 
/* c o e f f i c i e n t of higher order term */ 

/* function prototypes */ 

i n t main ( i n t , char * [ ] ) ; 
. I n l i n e double energyOfPoint(double [],const i n t ) ; 
. I n l i n e double totalEnergy(double [ ] ) ; 
_ I n l i n e double rCoord(const i n t ) ; 
. I n l i n e void loadData(char *,double [].double [ ] ) ; 
. I n l i n e void saveData(double [].double [],const double); 
. I n l i n e double myRandomdong * ) ; 

/* Main Program with Simulated Annealing Routine */ 
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i n t main(int argc.char *argv[]) { 
i n t i.j.pos; 
double func [N],energy[N].newEnergy[3] ; 
double deltaFunc.deltaEnergy,temp=T_INIT; 
i n t upSteps,downSteps.noSteps; /* s t a t i s t i c s */ 
long idum=-time(NULL); /* random seed */ 

/*** INITIAL CONDITIONS ***/ 

/* parse cmd l i n e arguments */ 
if(argc==2) { 

loadData(argv[l],func,energy); 
} else { 
/* i n i t i a l function */ 

for(i=0;i<N-l;i++) { 
# i f MODEL==BABY 

func[i]=PI*exp(-10.0*i*dr/L); 
# e l i f (MODEL==SKYRME I I M0DEL==H0SKYRME) 

func[i]=PI*exp(-10.0*i*dr/L); 
# e l i f M0DEL==SINE_G0RD0N 

func[i]=2*PI*i*dr/L; 
#endif 

} 
/* boundary conditions */ 

# i f MODEL==BABY 
func[N-1]=0.0; 

# e l i f (MODEL==SKYRME I I M0DEL==H0SKYRME) 
func[N-1]=0.0; 

# e l i f M0DEL==SINE_G0RD0N 
func[N-l]=2*PI; 

#endif 
/* i n i t i a l energy */ 

for(i=0;i<N;i++) 
energy[i]=energyOfPoint(func,i); 

r 
i 
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/*** COOLING SCHEDULE ***/ 

for(i=0;i<C00L_ITER;i++) { 
do { 

upSteps=downSteps=noSteps=0; 
f o r ( j =0;j<EQM_ITER;j ++) { 

/* flu c t u a t e */ 
pos=(int)(myRandom(&idum)*(N-2))+l; 
/* deltaFunc=(2.0*myRandom(&idum)-l.0)*dr*temp/1000.0; */ 

deltaFunc=(2.0*myRandom(&idum)-1.0) 
*2*K*temp*10.0; 

func[pos]+=deltaFunc; 
newEnergy[0]=energy0fPoint(func,pos-1); 
newEnergy[1]=energy0fPoint(func,pos); 
newEnergy[2]=energy0fPoint(func,pos+1); 

/* Metropolis */ 
deltaEnergy=energy[pos-1]+energy[pos]+energy[pos+1] 

-newEnergy[0]-newEnergy[1]-newEnergy[2]; 
#ifdef THERMAL 

if(deltaEnergy>0.0 I I exp(deltaEnergy/(K*temp))>myRandom(&idum)) { 
#else 

if(deltaEnergy>0.0) { 
#endif 

if(deltaEnergy>0.0) 
downSteps++; 

else 
upSteps++; 

energy[pos-1]=newEnergy[0]; 
energy[pos]=newEnergy[1] ; 
energy[pos+1]=newEnergy[2]; 

} else { 
noSteps++; 
func[pos]-=deltaFunc; 

} 
} 
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#ifdef THERMAL 
} while(upSteps<downSteps); 

#else 
} while(noSteps<downSteps); 

#endif 
temp*=((double)(C00L_ITER-i))/((double)COOL.ITER); 
saveData(func,energy,temp); 

} 

return 0; 

/* Compute the energy density at l a t t i c e point */ 

double energyOfPoint(double f [],const i n t pos) { 
const double r=rCoord(pos); 
const double n_r=n/r; 
const double s i n f = s i n ( f [ p o s ] ) ; 
double density.derivSqr; 
if(pos==0) { 

/* Calculate derivatives */ 
derivSqr= (f [1] * f [1] +f [0] * f [0] -2. 0*f [0] * f [1] ) / (dr*dr) ; 

} else if(pos==N-l) { 
d e r i v S q r = ( f [ N - l ] * f [ N - l ] + f [ N - 2 ] * f [ N - 2 ] - 2 . 0 * f [ N - l ] * f [ N - 2 ] ) / ( d r * d r ) ; 

} else { 
/* D~2 = average of <d>~2 and <d~2> 

Note: D~2 = <d>~2 = <d~2> when variance (<d~2>-<d>"2) = 0 */ 
derivSqr=(3.0*(f[pos+1]*f[pos+1]+f[pos-1]*f[pos-1]) 

-2.0*f[pos-1]*f[pos+1]-4.0*f[pos]*(f[pos-1] 
- f [pos]+f [pos+1]))/(8.0*dr*dr); 

} 
# i f M0DEL==BABY 

# i f SUB_M0DEL==0LD 
density=r*(derivSqr+sinf*sinf*(n_r*n_r*(1.0+derivSqr)) 
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+2.0*theta_v*(1.0-cos(f [pos])))/4.0; 
# e l i f SUB_MODEL==NEW 

density=r*(derivSqr+sinf*sinf*(n_r*n_r*(1.O+derivSqr) 
+2.0*theta_v))/4.0; 

#endif 
# e l i f MODEL==SKYRME 

density=PI*( derivSqr* ( r * r / 2 + 4 * s i n f * s i n f ) 
+ s i n f * s i n f + 2 * s i n f * s i n f * s i n f * s i n f / ( r * r ) ) ; 

# e l i f M0DEL==H0SKYRME 
density=PI*( derivSqr* (r*r/2+4*sinf*sinf 

+ t h e t a _ 6 * s i n f * s i n f * s i n f * s i n f / ( r * r ) ) 
+ s i n f * s i n f + 2 * s i n f * s i n f * s i n f * s i n f / ( r * r ) ) ; 

# e l i f M0DEL==SINE_G0RD0N 
density=derivSqr/2.0 - (cos(f [pos])-1); 

#endif 
return density*dr; 

/* Sum up energy density */ 

double totalEnergy(double e [ ] ) { 
i n t i ; 
double total=0.0; 
for(i=0;i<N;i++) 

total+=e [ i ] ; 
r eturn t o t a l ; 

/* Deals with s i n g u l a r i t y at r=0 */ 
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double rCoord(const i n t pos) { 
double r ; 
if(pos==0) 

r=dr/N; 
else 

r=pos*dr; 
return r ; 

} 

/* Load I n i t i a l Configuration */ 

void loadData(char *filename,double f[],double e [ ] ) 
/* load binary data */ 

FILE *fp=fopen(filename,"rb"); 
fread(f,sizeof(double),N,fp); 
fread(e,sizeof(double),N,fp); 
f c l o s e ( f p ) ; 

/* saves data i n f i l e */ 

void saveData(double f [],double e[].double temp) { 
i n t i ; 
FILE * f p ; 

/* save binary data */ 
fp=f openC_function.bin" , "wb"); 
fwrite(f,sizeof(double),N,fp); 
fwrite(e,sizeof(double),N,fp); 
f c l o s e ( f p ) ; 

/* save t e x t data */ 
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fp=fopen("_energy_func.dat","w"); 
for(i=0;i<N;i++) 

f p r i n t f (fp,'7.f '/.f y.f\n",rCoord(i) , e [ i ] ,f [ i ] ) ; 
f c l o s e ( f p ) ; 

/* save energy */ 
fp=fopen("_tmp_energy.dat","a"); 
f p r i n t f ( f p , " % f °/„f \n" ,temp,totalEnergy(e)); 
f c l o s e ( f p ) ; 

/* Generates random number [0,1] */ 
/* (copyright Numerical Recipes) */ 
/* standard C routine i s useless */ 

double myRandomQong *idum) { 

SEE NUMERICAL RECIPES: routine ran2 

} 


