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Abstract

The Companion Equations and the Moyal-Nahm Equations
Ph.D. thesis submitted by Linda Baker, August 2000.

The first part of this thesis is concerned with the companion equations. These
are equations of motion for the companion Lagrangian which is proposed to be
the Lagrangian for a field theory associated with strings and branes, similar to the
Klein-Gordon field description for particles. The form of this Lagrangian can be
related to the Hamilton-Jacobi formalism for strings and branes. Some solutions
to the companion equations are found and their integrability is discussed.

There is an equivalence between the equations of motion for different compan-
ion Lagrangians when some constraints are applied. Under these constraints, the
companion equations for a Lagrangian without a square root are equivalent to the
companion equations for a Lagrangian with a square root but in one dimension
less.

The appearance of Universal Field Equations, generalised Bateman equations,
in the companion equations leads to the study of an iterative procedure for La-
grangians which are homogeneous of weight one in the first derivatives in the fields
the theory describes. The Universal Field equations appear after several iterations.

Also, it is shown how Lagrangians for a large family of field theories are a
divergence or vanish on the space of solutions of the equations of motion. Such
theories could be called ‘pseudo-topological’.

The second part of this thesis is concerned with finding solutions to the Moyal-
Nahm equations in four and eight dimensions. These equations are the Nahm
equations, which give a set of solutions to self-dual Yang-Mills, but with the com-
mutators replaced with Moyal brackets. Solutions are found in terms of gener-
alised Wigner functions. Also, matrix representations of the algebra generated by
the equivalent Nahm equations in eight dimensions are obtained. Solutions to the

Nahm equations in eight dimensions are also given.
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Chapter 1
Introdu_ction

This thesis contains work on two topics. The first is a proposal for. a field theory
associated with strings and branes with equations motion which have been named
the companion equations. The second part is concerned with finding solutions to
a set of equations known as the Moyal-Nahm equations. This introduction gives a
brief review of some of the background behind the work and introduces some other

useful topics that will be needed later.

1.1 Particles, Strings and Branes

A lot of the current research in theoretical high energy physics is based on the
study of extended objects called strings and branes. In the first part of this thesis,
we develop a field theory which can be associated with these strings and branes.

To do this, we first need to explain what strings and branes are. These objects are

reviewed in [5][6].

1.1.1 Particles

It is easiest to first consider point particles. Consider a relativistic particle in
d-dimensional space-time. It is a zero-dimensional object which traces out a one-
dimensional trajectory in space-time, a world-line. This world-line can be param-
eterised by one parameter, 7 say. The motion of the particle can be described by

d functions X*(7) where p =0,1,...,d — 1.



1.1 Particles, Strings and Branes 10

The action for a particle is given by

5:/ <3;i”>2d7-. (11)

Summation over indices is assumed here and throughout the thesis, unless specified

otherwise. The equations of motion can be found by minimising this action with

respect to X*.

1.1.2 Strings

A string is a one-dimensional object which traces out a two-dimensional world-
sheet in d-dimensional space-time. This world-sheet can be parametrised by two
coordinates (o, 7). The motion of the string is described by d functions of these
coordinates X*(o,7), where 4 = 0,1,...,d — 1. Strings can be either open or
closed. As their names suggest, closed strings form a loop and open strings have

two ends.

A natural extension of the particle action is to take the string action to be
Xu Xv Xr9X,\°
5= [ () (Y- () g
do 01
X ©
_ / \/ |2 aX,L

Od* Ocd
This is the Nambu-Goto action for a string. The sign under the square root changes

dodr o' =(o,7), i=1,2. (1.2)

according to whether the theory is for Euclidean or Minkowski space-time. The
action given above is the Euclidean version. When dealing with Minkowski space-

time the action is

_/¢_

However, there is also another action which is classically equivalent to the

Nambu-Goto action. This is the Schild Lagrangian [7],

OxX*\? (9x*\* [0X*8X,\’
ﬁ‘(%)(&)‘(aa“é?)’ (1.4)

which is the square of the Nambu-Goto Lagrangian. The equations of motion for

0XH0X,

50" Bos dodr  o'=(o,7), i=1,2. (1.3)

the Schild Lagrangian imply that the Lagrangian is a constant. If it is a non-zero

constant then the equations of motion are classically equivalent to the equations
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of motion from Nambu-Goto Lagrangian. If the constant is zero then we get a
new set of solutions, the null strings. The Nambu-Goto Lagrangian cannot admit
solutions where the Lagrangian is equal to zero.

There is an analogue for this in the particle case. Consider the two Lagrangians

oxX#\? oX*\? _
£1 = < 57 ) , EQ = (-E'T—-) . (13)

The equations of motion for the second Lagrangian imply -that the Lagrangian is
a constant. If it is a non-zero constant then the equations of motion imply the
equations of motion for the first Lagrangian. However, the first Lagrangian does
not permit solutions where the Lagrangian is zero. It only allows time-like and
space-like solutions. The second Lagrangian allows time-like, space-like and null
solutions since the Lagrangian can be zero.

The main problem with the Schild Lagrangian is that it is not reparametrisation
invariant, in contrast with the Nambu-Goto Lagrangian which is. However, it has
been used in the literature by Eguchi [8], to quantise the string, and by Nambu [9],

to find a generalisation of Hamiltonian dynamics for strings.

1.1.3 Branes

A p-brane is a p-dimensional object which traces out a (p+1)-dimensional world-
volume in d-dimensional space-time. This world-volume is parameterised by p+1
coordinates o, where 1 = 0,1,...,p. The p-brane is described by d functions
X*#(o') where 1 =0,1,...,d — 1. A O-brane is a point particle and a 1-brane is a

string.

Dirac-Born-Infeld Action

The action for a p-brane is

S = —Tp/dp+10' B—Q\/— det |Gij + Bij + 27Talﬂj|. (16)

This is the Dirac-Born-Infeld action [10][11]. G;; is the induced metric on the brane
given by
X+ oX¥
G, —

iy — %% [N (17)
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where G, is the space-time metric. B;; is the pullback of the antisymmetric tensor
B, on the brane.
_ OXH*OoX"
Y Qat o M

F; is the antisymmetric field strength tensor for the U(1) gauge field A*(0?) living

(1.8)

on the brane. e~? gives the dilaton dependence and T, is the tension of the p-brane.

Often, the choice is made to split the induced metric G;; into two parts by
picking what is know as the static gauge. The world-volume coordinates are chosen
to be equal to the first p + 1 target space coordinates. The remaining target space
coordinates are the transverse coordinates and are labelled y™, say. So we have

made the choice

X' =0 i=0,1,...p (1.9)
X™ = qy™ m=p+1,...d—1. (1.10)

The induced metric can now be written as

Oy™ Oym
Oot Ood

Although this choice helps with some calculations, it is harder to see some of the

Gij = mij + (1.11)

properties of the action. In this work, such a choice will not be made and as a
result it is easier to see some of the more global properties of the theory and its
equations of motion.

This action arose from the Born-Infeld action [10] which was first proposed as
a non-linear theory for electrodynamics. Born-Infeld theory allows finite energy

solutions. A pure Born-Infeld action takes the form [12]

5= /d% VJdetn, + F . (1.12)

T 18 the space-time metric and F),, is the electromagnetic field strength. The
classical action for a string in d dimensions is the same as the d-dimensional Born-
Infeld action [13].

The original idea for branes came from [14]. Dai et.al. considered p-dimensional
membrane type objects which had Dirichlet boundary conditions in some directions.
These were named D-branes. A D-brane is an extended object that open strings can
end on [15]. This was not an entirely new idea since Dirichlet boundary conditions
had been considered for strings previously [16]. The Dirac-Born-Infeld action was

found to give the required classical equations of motion for these D-branes [17].
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The action (1.6), given above, is for arbitrary fields in arbitrary space-time. For
much of the work in the following chapters we will be considering the case where
there is flat space-time and no antisymmetric part to the action. For this choice,

the action is of the form

S = /d”“a \/det

This is the higher dimensional analogue of the Nambu-Goto action for strings

dX X,

ST aor | (1.13)

(1.2). This Lagrangian can either be written as the square root of a determinant

(as above) or as the square root of .a sum of squares of Jacobians,

1 2 p+1 2
c:\/ 1 <B(X#,X#,...,X#+)>. 114

(p+ 1)\ 0(ot, o2, ..., 0rtl)

There are always more target space or dependent variables, X*, than there are
base space or independent coordinates, o¢. One motivation behind the structure
of the companion Lagrangian, which appears in later chapters, is that it is of the
same structure as the Dirac-Born-Infeld Lagrangian but the number of dependent
coordinates, ¢, is less than the number of independent coordinates, z#. Such a

Lagrangian can still be written as the square root of a determinant or the sum of

= 1 (Y, ¢2, ..., ¢p+1) 2
B \/(p+1)! <a($”l,$"2,,,,,xﬂp+1)> . (1.15)

It should also be noted that if the antisymmetric Fj; terms are put back into

squares of Jacobians,

9¢* 07

8z Bz,

the Dirac-Born-Infeld Lagrangian, then it can still be written as the square root of

the sum of squares [18]. For example, if p=3,
aXk0X,

EZ\/det 8o Dot

|1 0XH9X¥ 0XP0X"\? 1 0X*0x”  \?
12\ 551 907 Bok B +§ UG Ggi M

1

1 212
+ <§€ijkl-Fiijl> J . (116)

+ Fy
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1.2 Field Theory and the Klein-Gordon Equa-
tion

Fundamental theories of matter need to be consistent with both relativity and
quantum mechanics. Field theories make this possible. The need for field theories
can be seen by considering a single particle relativistic wave equation, such as
the Klein-Gordon equation [19]. This describes a particle with no spin, a scalar
particle.

It arises from the energy-momentum equation for a relativistic particle,
E? —~p?=m? (1.17)

E is the energy, p is 3-momentum and m is the mass of the particle. The con-
vention ¢ = 1, h = 1 is assumed. Using the correspondence principle to make
the substitution £ — i%, p — —iV and letting these operators act on the one

component wavefunction ¢(z) we find that (1.17) becomes
(O+m?)¢ = 0. (1.18)

This is the Klein-Gordon equation.

Unfortunately, there are problems with interpreting this as a single particle wave
equation. These include the existence of negative energy solutions, a probability
amplitude which is sometimes negative (a probability, by definition, cannot be
negative) and the violation of causality. These problems initially led to the Klein-
Gordon equation being abandoned.

However, by interpreting the Klein-Gordon equation as a field equation these
problems are solved. Such a theory allows the number of particles in the theory to
be non-constant. It allows pair creation and the existence of multi-particle states
and virtual particles. This in turn removes the problems of negative energy and
causality violation.

In the chapters that follow, the Klein-Gordon equation is a field equation. When
proposing a field theory for strings and branes the initial idea was to generalise the

Klein-Gordon equation, which is for particles, to a theory for higher dimensional

objects.

1.2.1 Lagrangian Field Theory

Much of this thesis is concerned with the Lagrangians of various field theories. In

classical mechanics, one of the fundamental quantities is the action, S, which is
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the time integral of the Lagrangian L of a dynamical system [20]. It is also the
integral of the Lagrangian density, £, over space-time. L is a function of the field
¢(z*) and its first derivatives 0,4 = 2%

EETR

S = ‘/L& ‘/£¢,#¢ (1.19)

From now on, the Lagrangian density £ will be referred to as the Lagrangian.

To find the equations of motion for a theory we use the principle of least action
which basically says that as a system evolves between two times, ¢, and t,, the
action S is extremised. It is usually a minimum. This condition can be imposed

by setting 6.5 = 0. Therefore,

55 = ,[ {—ﬂw+- ;;)«n@}d%
= [ {5000 (a0.0) ¢+ (™) = =0. a0

The last term can be written as a surface term. Since the initial and final field
configurations are fixed then §¢ = 0 at t = t,%;. Therefore this term vanishes.
Since the remainder must vanish for arbitrary d¢ then we find
oL < oc )
— =0yl == ] =0. 1.21
2~ %\98,0) (20
This is the Euler-Lagrange equation of motion for a field ¢. This is easily extended
for a field theory with n fields ¢, ¢ = 1,2,...,n, with Lagrangian £(¢%,8,4"). In
this case, there are n equations of motion written as
oL ( oL ) .
— -0l =———=1]=0 1=1,2,...,n. 1.22
0¢* #\ 0(8,9%) (1.22)
These equations of motion will be used extensively when finding the equations of

motion for the companion Lagrangian which depends on the derivatives of n fields
¢".
Lagrangian for the Klein-Gordon Equation
Consider the Lagrangian for a field ¢(z#),

£:%@¢W¢—%m%? (1.23)
Putting this into the Euler-Lagrange equations of motion (1.21) gives

(O+m?*)¢=0. (1.24)
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This is the Klein-Gordon equation. Therefore (1.23) is the Lagrangian for the
Klein-Gordon equation. It is this Lagrangian we will be generalising when we

propose the companion Lagrangian for strings and branes.

Quantisation

When quantised, the Klein-Gordon equation is a quantum field theory which allows
many particle solutions. The number of particles is a quantum variable. The first
part of this thesis looks at developing a field theory for strings which is similar
to the Klein-Gordon field theory for particles. This is not an entirely new idea.
Morris [21, 22] tried to develop a field theory for strings and used the quantisation
of string theory as his main motivation. The idea was to find a field theory where
1t was not necessary to specify the number strings. Thebnumber of strings was a
quantum number and neither the strings nor the world-sheet appeared explicitly
in the formulation. In this respect the theory was analogous to the theory for the
Klein-Gordon equation. However, one of the main problems with this idea, and a
similar idea of Hosotani [23], was that their formulations in the particle case did
not resemble the Klein-Gordon case. Instead of a theory with one field ¢, there
were many fields.

A later idea of Hosotani and Nakayama [24] was also partially motivated by the
search for a quantum string theory. Their idea was to use the classical Hamilton-
Jacobi equation for strings in order the find a quantum field theory for strings and
p-branes. The Hamilton-Jacobi equation can be viewed as the classical limit for
a quantum theory. The Hamilton-Jacobi equations for strings and branes will be
used as a further motivation for the companion Lagrangian for strings and branes.

It should be noted that all these ideas for field theories for strings, and the
theory involving companion Lagrangian to be proposed in this thesis, are different
from string field theory [25][26]. In string field theory, the field is a functional
U[X*(0),p+, 7] which depends on the curve traced out by the string, X#(c), and
the string length, p,.

1.3 Bateman Equation

When the equations of motion for the companion Lagrangian are studied, they often
take the form of what is known as the Bateman equation, or equations related to the

Bateman equation. This section looks at what this equation is, what its properties
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are and how it can be generalised.

The Bateman equation is

09\ 0% 0904 8?9 [0\ 8% )
<%> — =2 + (a) 5 =0, (1.25)

o0z? dz Ay Hzdy oy?
for a field ¢(z,y) in two dimensions. It first appeared in [27] where Bateman

discussed hydrodynamics. Using the notation

B d¢ _ d¢ . 9?¢ B 0% _ 0%¢
¢z - 0—27, ¢y - ay: ¢zz - w; ¢a:y - m; ¢yy - 6_y2’ (1-26)
it can also be written as a determinant
0 ¢ ¢y
det ¢x ¢m: ¢zy = 0. (127)
¢y ¢zy sty

The Bateman equation has many important properties. It is not only invariant
under Euclidean (Lorentz) coordinate transformations but is also invariant under
general linear transformations of the group GL(2, R). Also, if ¢ is a solution to the
Bateman equation then so is any function, f(¢) say, of ¢. This means the equation
1s covariant, a property which will be desirable in our field theory.

The general solution to the Bateman equation is the solution for ¢ of the fol-

lowing equation,
zF(¢) +yG(9) =, (1.28)

where F' and G are arbitrary functions of ¢. ¢ can be any constant, including zero.
The Bateman equation is equivalent to the Monge nonlinear wave equation

au_ ou

5 = U where  u = 2 (1.29)

0y’ 9y
This is a first order differential equation. From the this equation is easy to show
that the Bateman equation possesses an infinite number of conservation laws since

(1.29) implies that

ouv* 0 o
= — n ) 1.
or Oy (n 1 ) (1.30)

This property leads to the fact that the Bateman equation is completely integrable.

The general solution to the Monge equation is given by solutions to the equation

u=W(y+ uz), (1.31)
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where W is an arbitrary function. The general solution to the Bateman equation

can be derived from this since
W u) =y + uz. (1.32)

Then, put u = V(¢), where V' is some function of ¢. This is allowed since

e <) 1.33
Uy Vy o By (1.33)
which is consistent with (1.29). Therefore,
W V(¢) =y +V(¢)z
1 V
1= yr—9 (1.34)

W-L(V(g))” WV (¢))
This is equivalent to xF(¢) + yG(¢) = ¢ where F and G are arbitrary functions,
as required.
The Bateman equation can also be derived from the three dimensional Laplace

wave equation when this is subject to the constraint that the gradient of ¢ is a null

vector.

¢z.7: + ¢yy + ¢zz - 0; (135)
¢; + ¢L £ ¢ =0. (1.36)

To show this, simply eliminate the ¢, and ¢,, from the above. It is an extension
of this property which leads to an equivalence theorem between the equations of
motion for the companion Lagrangians, with and without square roots, in different
dimensions. It should be noted that the left hand side of (1.36) is the Lagrangian
for equations of motion which take the form of (1.35).

Finally, any Lagrangian which is homogeneous of weight one in the derivatives
gbﬂzz%%, p=1,2, has the Bateman equation as its equation of motion. If a La-

grangian, £, is a homogeneous function of weight m in the derivatives ¢, then it

satisfies

¢u% =mL. (1.37)

This equation will be made use of later.

1.3.1 Generalising the Bateman Equation

Work has been done to find other field theories which have fully covariant solutions,

just like the Bateman equation does. This has been achieved by generalising the
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Bateman equation to more fields and more dimensions resulting in what are known
as the Universal Field Equations [28][29)].

There are two ways to do this. One is just to increase the number of dimensions.
Generalising the determinantal structure of the Bateman equation we can construct

an equation for a field ¢(z*) in d dimensions,

0 & ¢2 ... ¢y
¢ b P2 ... Pua

det, (152 ¢12 QSQQ ¢2d =0. (138)

Pa Pra P - Bad
If ¢ is a solution to this equation then so is any function of ¢, so the equation is

covariant, as required. The notation used is

_ 09 _ 0%
Pu = Dk’ P = Ozrozv’

(1.39)

Such notation will also be used elsewhere in the thesis.
The other way is to increase the number of fields (and the number of dimen-
sions). In particular, we shall be considering the case of n fields in n+1 dimensions.

For two fields in three dimensions the generalisation in determinantal form is

0 0 ¢ & ¢
0 0 % oy
det| ¢s Yo Gz Gzy ¢z | =0, (1.40)
by Uy by Gy Py
b V2 Gaz Py P2

where the fields are ¢ and 1 and the space-time coordinates are (z, y, 2). In
general, for n fields, ¢*, in n+1 dimensions, {z,}, the Universal Field Equations

can be written as
S, =0  i=1,...,n, (1.41)

where J, = €y 0 @2, ... ¢ . J, is a Jacobian and could also be written

P - - Yy,

as % Later on, the notation for a Jacobian for n fields ¢*(z*) in d

dimensions will be

n (1.42)

. 1 12
Jﬂlll-2~~~#d—n - 6#1#2-~~#d—null’2-~”n¢u1 12700 o
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The Bateman equation and its generalisations, the Universal Field Equations,
appear in the equations of motion for the companion Lagrangians we will be con-
sidering. They are also involved in the iterative procedure to be studied in a later
chapter. In this procedure, each iteration involves multiplying by some function
and then applying the Euler operator & which is the operator which gives the
equations of motion.

For one field ¢, the required function is already known to be the Lagrangian £

[28]. In this case, the iterative procedure is

EL, ELEL, ELELEL, (1.43)
where the Euler operator is
0 0 0
E=—— — — 0,0, —+--. 1.4
a¢+8ua¢u Oy agzsw,+ (1.44)

For a theory in d dimensions, after d — 1 iterations we obtain the Universal Field
equation for one field in d dimensions (1.38). Part of this thesis is concerned with
generalising this procedure to more than one field with the aim of obtaining the

Universal Field equations after a finite number of iterations.

1.4 Topological Field Theories

We will also be looking at a property of the companion Lagrangian which extends
to other field theories. This property is that for a large family of field theories, the
Lagrangian of the theory vanishes or is a divergence on the space of solutions of its
equations of motion. A large set of examples will be given. The fact that we obtain
a divergence, leads to describing these theories as ‘pseudo-topological’. This is
because, for a fully topological theory the Lagrangian is a divergence or zero without
having to put any constraints on it. An example of such a topological theory is
gravity in two dimensions [30]. In this case the Lagrangian can just be picked to
be zero. In our examples of free fields, we need to put in the constraint that the
equations of motion are satisfied before the Lagrangian is zero or a divergence.

This is where the ‘pseudo’ part of the name comes from.

1.5 Yang-Mills Fields

The final part of the thesis is concerned with finding solutions to the Moyal-Nahm

equations in four and eight dimensions. The Moyal-Nahm equations are the Nahm
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equations, but with Moyal brackets instead of commutators. Solutions to the Nahm
equations give a set of solutions to Yang-Mills theory. In the next few sections we
briefly review Yang-Mills fields, Nahm equations, Moyal brackets and give some
motivation for studying such topics in more than four dimensions.

Non-abelian gauge theories, i.e. theories with a higher symmetry than SO(2) or
U(1), can be described by Yang-Mills theory. Work on this was originally done by
Yang and Mills in at attempt to treat isospin as a local symmetry [31] Although
this was the wrong thing to do, Yang-Mills theory did successfully describe the
SU(2) symmetry of the weak interaction and the SU(3) symmetry of the strong
interaction of quarks [32]. It works for other symmetry groups, such as U(N). The
easiest symmetry group to consider is SU(2).

The Lagrangian for pure Yang-Mills is

L— —%Tr(FWF””), (1.45)

where F,, = 9,A, — 0,A, + [A,, A)]. A, is the gauge field and F),, is the gauge
field strength. The equation of motion for this theory is

D, F™ = ,F™ + A, F™] = 0. (1.46)

D,, is the covariant derivative.

One way to obtain solutions to pure Yang-Mills is by solving the Nahm equations
[33]. Any solution of the Nahm equations is automatically a solution of the full
Yang-Mills equation of motion. Again, although Nahm equations can be found for
any gauge group, SU(2) is the easiest to consider. In four space-time dimensions,

the Nahm equations are
gA!

o~ A4

dA?

e ! (1.47)
A3

O _ a1, 47,

ot

The gauge choice A’ = 0 has been made.

1.6 M-Theory and M(atrix) Theory

M-Theory

M-Theory is possibly the best candidate we have at present for a “Theory of Ev-
erything’ [34]. It appears to have two definitions. One is that it is the eleven-
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dimensional theory which is the strong coupling limit of Type ITA superstring the-
ory and has eleven dimensional supergravity as its low energy limit. However, its
definition is often broadened to be the eleven dimensional quantum theory which
has the five different superstring theories as various limits [5][35]. Very little is
known about M-Theory and there is obviously much that still needs to be under-
stood. It is also unclear what the M in M-Theory stands for. In the past it has

been taken to stand for membrane, matrix, mother, mystery, and magical.

M(atrix) Theory

A big step towards understanding M-Theory was made by Banks, Fischler, Shenker
and Susskind when they proposed M(atrix) Theory [36]. Their conjecture was that
M-Theory in the infinite momentum frame is equivalent to matrix supersymmetric
quantum mechanics for N DO-branes in the N — oo limit. It follows from taking
9+1 dimensional U(N) super Yang-Mills theory and dimensionally reducing it to
0+1 dimensions. The infinite momentum frame, in simplest terms, is when the
total momentum of the system is very large [37]. The action for this U(V) super-

Yang-Mills quantum mechanics is

S = %/Tr (XﬂXu + 2676 — %[X“,X”]Q - 29T7u[0,)§”]) dr. (1.48)

The X* (1 =1,...,9) are nine N x N matrices and 0 represents the 16 fermionic
superpartners. Derivatives with respect to 7 are denoted by X* or 6. g is the

coupling constant.

Matrix String Theory

A similar approach was later used to construct matrix string theory, to give a two
dimensional A = 8 supersymmetric U(N) Yang-Mills theory, rather than a one
dimensional theory [38]. The description is now for D1-branes, or strings, instead

of DO-branes which are particles. The action for such a theory is

1
s=—> |1 ((Da—X“)Q +67D8 + g2F2 — glg[X“, XVJ? + g—seT%[xu, 0]) dodr.

o
(1.49)

The X* (u=1,...,8) are eight scalar flelds and the 6 are the eight fermionic fields.
They are all N x N hermitian matrices. (o, 7) are the world-sheet coordinates. g

is the string coupling constant. Again, to obtain a description of M-theory, we need
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to take the NV — oo limit. This theory gives a new way to approach M-Theory and
investigate the string and brane states which occur and their interactions [39]. It
has been used to study the high energy scattering processes in M-Theory [40].

It is matrix string theory which provides some of the motivation for studying
the Nahm equations in eight dimensions. Matrix string theory involves Yang-Mills
theory for eight fields X*#, for which a set of solutions for Yang-Mills can be found
from the Nahm equations in eight dimensions. Therefore, by studying the Nahm

equations in eight dimensions we can find a set of solutions for Yang-Mills.

1.7 The Moyal Bracket

The Moyal Bracket for two functions f(z,p) and g(z,p) on two-dimensional phase

space (z,p) is defined as [41]

{f,9tuB = %(f*g—g*f) (1.50)

The star, %, denotes the star product which is defined as

- .
* = exp l:’i)\ (gz - 8%)8%)} . (1.51)

Ox Op

The Moyal bracket is a one parameter deformation of the Poisson bracket, where
A is the deformation parameter. The Poisson bracket is written as

{f.9}pp = %g}% - g—ig—i (1.52)
In the limit A — 0, the Moyal Bracket is just the Poisson bracket.

The Moyal brackets can also be associated with commutators [42]. If the defor-
mation parameter is set to be A = %", where N is an odd integer, then the Moyal
bracket of two functions {X*, X"} p reproduces the commutators of N x N ma-
trices, A*. These are SU(N) matrices and the matrix components of A* are the
fourier modes of the functions X#. As N — oo then A — 0, so in the large N
limit the Moyal Bracket is the Poisson bracket. Therefore the Poisson bracket can
be identified with the commutator of SU(co) matrices. The link between Moyal
Brackets, Poisson brackets and commutators will become more apparent in the

examples that follow.
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Quantum Mechanics

Moyal Brackets were first used to write down a formulation of Quantum Mechanics
[43]. The way to incorporate the Moyal brackets is to replace all ordinary multipli-
cation with the star product. Therefore, all commutators in the usual formulation
of quantum mechanics are now Moyal Brackets. The deformation parameter is set
to be h. Finding the classical limit of the theory is then both easy and natural. It
simply amounts to taking the limit A — 0. In this limit, all the star products are

reduced to ordinary multiplication again.

Non-commutative Geometry

Recent work of Seiberg and Witten [44] has led to a large number of papers on
the subject of non-commutative geometry and the use of the star product and the
Moyal bracket. The Seiberg and Witten paper showed that there was an equivalence
between ordinary Yang-Mills and non-commutative Yang-Mills for open strings in a
constant non-zero B-field. This work resulted in many papers being written where
ordinary multiplication was replaced with the star product in order to make the
theory non-commutative. In such papers it is space-time which is non-commutative.
For example, in [45] a non-commutative scalar theory for field ¢ in 2+1 dimen-
sions is studied. Consider the theory where the energy is given by
E= 91—2 / (%Oﬂqﬁ g+ V(¢)> &z, (1.53)
V(¢) = 3m?¢* + 1A$® + ... is the potential term. To turn this ordinary scalar
field theory into a non-commutative one, then the spatial coordinates become non-

commutative such that
[I#, .'E,,] = 7;0;1.1/7 . (154)

where 0, (u,v=1,2) are the components of a totally antisymmetric matrix. Let
B2 = 6. This 0 is then the deformation parameter in the star product. We now

put star products in place of ordinary multiplication to give
E=— §8u¢8"¢+§m¢> +§)\¢*¢>*¢+... d°z. (1.55)
g

Note that we do not need star products for the quadratic terms because when the

integral over the whole space is taken the following property holds:

/f(:cl,xg) * g(z1,m9) d’z = /f(a:l,zQ)g(:vl,xg) d%z. (1.56)
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Therefore, we only need put in the star product for cubic terms and above. If we
were not considering the integral then the star product would need to be put in
everywhere. The potential would be V(¢) = sm?¢ x ¢+ tAgxpx ¢+ ..., for
example. Similar procedures have been used to study other non-commutative field

theories.

M (atrix) theory

Moyal brackets can also be used in M(atrix) theory [46]. They can be used to
give a new interpretation to the N — oo limit which needs to be taken in order
to recover M-Theory from M(atrix) theory. By setting the deformation parameter
to be A = 3—\’;— and replacing all multiplication by star products we have an action
containing Moyal Brackets. Taking the large IV limit all the Moyal Brackets become
Poisson brackets. Therefore, a new way of looking at the N — oo limit of M(atrix)

theory is to have a theory with Poisson brackets, not commutators.

Nahm Equations

A similar procedure is used to turn the Nahm equations (1.47) into the Moyal-
Nahm equations. As with the other cases, the ordinary multiplication is replaced
with star brackets. This results in the right hand side of the Moyal-Nahm equations

being Moyal brackets, as shown below.

Al

—87' = {AQ,AS}MB)

0A?

= 4% A%, (1.57)
A3

B = WA

These are the Moyal-Nahm equations in four dimensions. The main motivation for
studying these is that we live in four large dimensions and the Nahm equations in
four dimensions themselves have already been studied in great detail.

However, this thesis is also concerned with finding solutions to the Moyal-Nahm
equations in eight dimensions. The main motivation for this arises from the appear-
ance of Yang-Mills in matrix string theory. In this theory, Yang-Mills field theory
for eight fields X* appears in the action. If solutions to the Nahm equations can
be found then these are automatically solutions to the equations from Yang-Mills.
Therefore, it makes sense to study the Nahm equations and the Moyal-Nahm equa-

tions in eight dimensions. The solutions which are found may have some bearing
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on matrix string theory and so ultimately on M-Theory. Another reason for con-
sidering the Moyal-Nahm equations, rather than just the Nahm equations, is the

use of Moyal brackets in a possible interpretation of the large N limit as described

above.

1.8 Layout of Thesis

This chapter has been a brief introduction into some of the background material
needed for the main part of this thesis. Some of these topics will be expanded later
on.

In Chapter 2, we introduce the companion Lagrangian and give some motivation
as to why we want to study it. Chapter 3 looks at the equations of motion for this
Lagrangian, the companion equations, and discusses their integrability. In Chapter
4 we extend an iterative procedure to Lagrangians for more than one field, such
as the companion Lagrangian. Chapterl 5 deals with a property of a large set
of Lagrangians, not just the companion Lagrangian. This property is that many
field theory Lagrangians are zero or a divergence on the space of solutions of the
equations of motion. In Chapter 6 we study the Moyal-Nahm equations, explaining
what they are and solving them in four and eight dimensions. In Chapter 7 we

give the final conclusions to all this work, giving suggestions for further research.



Chapter 2
The Companion Lagrangian

The next few chapters involve a Lagrangian called the companion Lagrangian which
has equations of motion known as the companion equations. It is a Lagrangian for
a field theory associated with strings and branes. These chapters are based on work
in [1][2].

This chapter discusses the motivation behind looking at such a theory and
the problems encountered by similar theories in the past. Equivalence theorems
between different companion Lagrangians are stated. Finally, we look at the co-
variance of the theory, the inclusion of a background metric and the possible ways

of including electromagnetism in the theory.

2.1 The Big Idea

In quantum mechanics we come across the concept of particle-wave duality. On
the quantum level, particles take on wave-like characteristics such as electrons
going through slits exhibiting interference effects and waves take on particle-like
characteristics, for example, electromagnetic waves being made up of photons. A

classical point particle has the Lagrangian

L= <8Xw>2, (2.1)

or

but when we go over to quantum mechanics it can be described by a Klein-Gordon

field, ¢(z*) which has Lagrangian

c:%(ﬁff. (2.2)

o+

27
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This is an example of particle-wave duality. A point particle traces out a one-
dimensional world-line in space-time which can be parameterised by just one pa-
rameter, 7. It should be noted that there is one parameter 7 and one field ¢. The
big question is: Is there an alternative description for strings and branes so that
they too have a field theory description similar to the Klein-Gordon?

Strings can be described by the Nambu-Goto Lagrangian

aXr\? [0Xv\*  [0XrX,\’
C—\/<30><87'>_<80 3T>' (2:3)

Strings trace out a two-dimensional world-sheet which is parameterised by two

world-sheet coordinates (o, 7). The conjecture is that they can also be described

by a theory with two fields and a Lagrangian which is some power of

(0N [\ [ 9p o\
o= (o) () - (rams) 0

#(z*) and 1 (z*) are the two fields and they depend on the space time coordinates

z* (u = 1,...,d). This idea can also be extended to branes which, in simplest

form in the absence of a U(1) field, are described by the Lagrangian

L= .\/det

A p-brane sweeps out a p + 1 dimensional world-volume which is parameterised by

o 0K,
dot doi |

(2.5)

the p + 1 world-volume coordinates ¢ (1 =0,...,p). The field theory conjectured
to be associated with branes has a Lagrangian which is some power of

o¢' o

dz+ Oz,

. (2.6)

,C:det‘

¢ are p+1 fields. In every case the number of fields is equal to the number of
world-volume coordinates. This is analogous to the particle case where there is one
(Klein-Gordon) field and a one dimensional world-line. The new field Lagrangians,
(2.4) and (2.6), will be referred to as companion Lagrangians and their equations
of motion will be the companion equations.

Similar ideas have appeared before in the literature. Hosotani [23] considered
the case of a string theory in four dimensions and showed this was mathematically
equivalent to a scalar field theory with two fields. The equations of motion in
both theories are the same. Strings have a world-sheet with coordinates (o, 7). He

introduced two new parameters (S, T) so that (o, 7, S, T') covered a four-dimensional
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domain in space-time. The Nambu-Goto Lagrangian for string theory (2.3) was
shown to be the same, up to a determinantal factor, as the Lagrangian for a scalar

field theory where S(z*) and T'(z*) are the two scalar fields and the Lagrangian is

= (Z) (Z)- (B

Morris [21][22] later discussed a very similar idea but extended the number of

space-time dimensions. His starting point was to consider the string world-sheet,
not as the function of two world-sheet variables, X#(o, 7), but as the intersection of
d — 2 hypersurfaces, fx(z) =0. (This is similar to the way a curve can be thought
of as the intersection of two planes.) A Lagrangian for a string in d dimensions
was related to a Lagrangian for d — 2 fields. This amounted to an interchange of
independent and dependent variables, where the independent variables were com-
plemented with d — 2 extra variables. He showed the equations of motion involving
these fields are mathematically equivalent at a classical level to the equations of
motion from the Nambu-Goto Lagrangian. The Lagrangians for the two theories
are the same up to a determinantal factor. This was also extended to show the
equivalence of a theory of p-branes with Lagrangian (2.5) to a theory with d—p—1
fields.

But these field theories differ from the companion Lagrangian idea. In the
companion Lagrangian case, the number of fields is equal to the dimension of the
world-volume, p + 1. In the theories of Hosotani and Morris the number of fields
is essentially the complement of this, i.e. d — p — 1. However, one of the initial
motivations for this work was that the field theory for the strings and branes should
be analogous to the particle/Klein-Gordon case where there is one Klein-Gordon
field, irrespective of the number of space-time dimensions. This is not the case
for the ideas of Hosotani and Morris where a particle in d space-time dimensions
would be described by a theory with d — 1 fields. This would clearly not look
like Klein-Gordon theory. Morris was aware that the particle case should look
like Klein-Gordon and thought maybe some form of gauge-fixing would solve this
problem, but the companion Lagrangian seems a simpler way of achieving this.

More recent work of Hosotani and Nakayama [24] has been done on field theories
for strings with two fields (not d — 2) which is much the same as the companion

Lagrangian idea. It is based on the Hamilton-Jacobi equations for strings and

branes.
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2.2 Hamilton-Jacobi Equations

The work on Hamilton-Jacobi equations for theories with more than one inde-
pendent variable began with Carathéodory [47] and Velte [48]. Their ideas were
developed by Nambu [9, 49], Rund [50], Kastrup [51}[52] and Rinke [53] to find
Hamilton-Jacobi equations for strings. Rinke [53] was the first to give a deriva-
tion for the Hamilton-Jacobi equation for strings. However, for Kastrup and Rinke
the motivation was to try to relate string theory to a Maxwell field, not to find a
generalisation to the Klein-Gordon field. Hosotani and Nakayama [24] used these
Hamilton-Jacobi equations to construct their field theory associated with strings
and branes. Similar ideas have also been discussed in [54].

This section is based on work by Nambu [9] which is easier to follow than some
of the other papers on this subject. A Hamilton-Jacobi type formalism for strings
which can be extended to branes is given. Equations analogous to the Hamiltonian
equations and Hamilton-Jacobi equation for a point particle can be obtained for

strings. This will give further motivation for the form of the companion Lagrangian.

2.2.1 Point Particles
For a point particle we have the one-form relation

ds — Zpidxi — Hdt,  where H = H(p,z"), S = S(z%,t). (2.8)

from which we can obtain the usual Hamiltonian equations
op; oH ozt  OH
ot oz ot op

H is the Hamiltonian for the system and S is the action. The Hamilton-Jacobi

(2.9)

equation for a point particle, with mass m, is

(-‘?ﬁ)z =m?’. (2.10)

oxH

It can be viewed as the classical limit of a quantum field theory.

2.2.2 Hamilton-Jacobi Equation for Strings
This idea is now extended to strings. We start by writing a two-form analogous to

the one-form above (2.8).

dSy ATy +dS, NdT, = Y pijdz* Ada? — Hdo A dr, (2.11)

1>7
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where S = Sp(a*,0,7), Tpm = Tr(a,0,7), m=1,2.

This results in the following

M) o = OSmTn)
m; (.’]31,.’1}])’ " m:ZLQ 8(077.)’
_ O(Sm, Tn) _ O(Sm, Tm)
LG RPN E e M

The last two expressions are essentially constraints and their left hand sides are
zero because there are no cross terms between dz’ and do or dr in the two-form. A
suitable ansatz would be to set S; and T; to both be functions of ¢ and 7 only, and
set Sy and Ty to be functions of the z* only. i.e. Si(o,7),Ti(0,7),S2(z?), To(z?).
This ansatz will suffice since it satisfies the two constraints to leave the equations

9(Sy, To) 95, 1)

Dij = W; - m (214)

From (2.11), by taking the exterior derivative we can see that

0= Z dps; N dzt A da? — ( o dpz] Z ——d:v ) Ado Adr, (2.15)
>3

i>j Pij

and by equating the coefficients of dp;; and dz* we obtain

d(z*, 27)  OH pU, ) 0H
3o, 7)  py’ Za = o (2.16)

These equations are the analogues of the Hamiltonian equations (2.9). Substituting

the string Hamiltonian equations (2.16) back into the two form (2.11) we have
OH |
> dSmAdTm =Y pyn— —H|doAdr=Ldondr (2.17)

This defines the Lagrangian L in terms of the Hamiltonian H.
These equations (2.16) also imply

OH 0H

— =0, — =0, 2.18

0o or (2.18)

so H is a constant of the motion and does not depend upon the evolution parameters

(o,7).



2.2 Hamilton-Jacobi Equations 32

Now we consider the Schild string. Remember this has Lagrangian

1
L= Z({a;,“a:,,})2 where  {z,,z,} = %({;L:f_—”)), (2.19)
and equations of motion
{z* {z,, 2z, }} = 0. (2.20)
Choose the Hamiltonian to be
1 2
H= 52%. (2.21)

u>v

From (2.17) and (2.18) we have £ = H = constant. By putting this Hamiltonian

into the Hamiltonian equations (2.16) we obtain

3(.’13,“ ) 8(29;“/7 z”)
o r) = Pw zy: o) =0 (2.22)
which leads to
{2 {z,,z,}} =0, (2.23)

which is the equation of motion for the Schild string. (The Lagrangian is also that
for the Schild string.) Using the ansatz for Sp,, T, that we had before (2.14) then

_0(5,, Th)
Pur = i o)’ (2.24)
so using (2.21) we have
08,\? (0Ty\* [0S, 0Ty \*
(@‘) <—a}7> — @B_x# = constant. (225)

This is the Hamilton-Jacobi equation for strings.

Hosotani and Nakayama based their analysis on the Nambu-Goto action rather
than the Schild action for strings but some of their findings work for both cases.
The equation of motion for both is

O(puv, ")

3oy =0 (2.26)

where p,, is the conjugate momentum in each case.
Now, consider a family of solutions to the equations of motion for a the-

ory in d space-time dimensions. d — 2 parameters A, specify these solutions
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¢ = x#(0, 7, A1, ... Ag_2). This defines a mapping from {o,7, A} to {z#}. If
this mapping is one-to-one then p,, (o, 7, A,) can be treated as a local field p,, (z*).

This means the equations of motion can be rewritten as

8(}9#,/, xl/) — apl“’ Oz’ Oz appu/ o0z” Oz I _ ;
(o, r)  0zf 9o Or Oz Or 0o © oD = 0. (2.27)

But, using the fact p,, is antisymmetric with respect to indices x and v then

14 1 14 1 14 1 14 1 14
pp pPuv = Epp app;w - §pp vPup + ipp 8upup - gpp 8upup
1 14 1 v
= §pp OpPy) — Zau (P”Pup)
1 v
= —Zau(p” pt/p) = 0. (2.28)

so p*p,, =constant. From the ansatz (2.14) for S,, and T, earlier, using the

definition for p,,, then

1 652 2 81 2 2 852 8]2 2
el HI/ = —_— —_ —————— = A
of Pu <(‘3x“ ) (83:" > <8x” 0z, > constant, (2.29)

which is the Hamilton-Jacobi equation for strings. For the Nambu-Goto string the
constant is related to the way the theory is normalised. It should be noted that
the constant may be zero for the Schild string but not for the Nambu-Goto string.
In general, if S, and T satisfy the Hamilton-Jacobi equation (2.29) then p,, as
given in (2.14) satisfies the equation of motion for the string (2.26).
The question still remains: what are S, and T5? For the point particle S(z) is

the action at point z, but as yet the meaning of Sy and T has yet to be worked

out.

2.2.3 Hamilton-Jacobi Equation for Branes

The Hamilton-Jacobi equation for p-branes can be found in a similar way. The

conjugate momentum tensor 1s

_ (81,8, Spnn) 230

Durps..pps1 Bzt zk2, ..., ghett)’

Note that here the local fields S; are analogous to the Sy and T3 from the string

case. The Hamilton-Jacobi equation is

2
(8( 51, 92, Spin )> = constant. (2.31)

a(xﬂl , TH2 L _'L'llp-i—l)
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2.2.4 Obtaining the Companion Lagrangians

We observe that the Hamilton-Jacobi equation for a massless point particle

S \?
— | = ) 32
( 327'“) 0 (2.32)
takes the same form as the Klein-Gordon Lagrangian
09\’

By analogy, for the string case we take the field Lagrangian to be of the same form

as the Hamilton-Jacobi equation for strings
2 2 2
oT: T.
93, 9L \" _ (05,0, =0, (2.34)
Oz oz” Oz+ Oz,

- 8¢ 2 6,#1 2 a¢ 81,/) 2
= ﬁ*(%) (w) ‘(@é@)- (2:35)

Similarly for the p-brane, the companion Lagrangian is the same form as the
Hamilton-Jacobi equation for a p-brane (2.31) and is therefore

L (3¢, 8%, Y 0¢' 0¢/

= det —_—

(p+ 1) \ O(zm, zh2, ... zHe+1) Oz# Oz,

However, it may prove a good idea to take the square root of this as the La-

. (2.36)

grangian. This would look similar to the Nambu-Goto action for strings or the

Born-Infeld action for branes.

2.3 Equivalence Theorems

2.3.1 Equivalent Lagrangians

In some cases it may not matter if the companion Lagrangian has a square root
or not, since if the Lagrangian is a non-zero constant the equations of motion for
both Lagrangians are the same.
For the non-square root companion Lagrangian, £, the equations of motion are
2L .
—¢’, =0. (2.37
09,041, " )

For the square root Lagrangian v/L, with the same number of fields and dimensions

as the non-square root Lagrangian above, the equations of motion are

2
9 a\/Z _ ! “ .qﬂ',,—ig‘c—.a—ﬁzo. (2.38)
oz \ 04, /8 041,04, W 4L312 0t Oz
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If the Lagrangian is a non-zero constant, £ = c say, then
oL
— =0. 2.39
oz (2.39)
Therefore, the second term in the equations of motion for the square root case
vanishes leaving the first term which is the equivalent to the equations of motion for
the non-square root case. Therefore, the two Lagrangians give the same equations

of motion if the Lagrangian is a non-zero constant.

2.3.2 Equivalence Theorem for Companion Lagrangians in

Different Dimensions

There is a another way to relate the theories of companion Lagrangians with and
without square roots. The main difference here is that the number of dimensions
in each theory is not the same.

Theorem: The equations of motion for a companion Lagrangian for n fields
without a square root, subject to some constraints, are equivalent to the equations
of motion for a companion Lagrangian for n fields with a square root in one less

space-time dimension.

Klein-Gordon equation

This began with a simple observation regarding the Klein-Gordon equation. Con-

sider the massless Klein-Gordon Lagrangian in d space-time dimensions,

2
£:%<3¢:) where p=1,...,d. (2.40)

9z

Impose the condition £ = 0. Using this condition to eliminate partial derivatives
with respect to one coordinate, z¢ say, then we find the equations of motion for
the Klein-Gordon Lagrangian are now the same as the equations of motion for the

square root of the Klein-Gordon Lagrangian in one less dimension.

1/ 8¢\
"=z =— w a=1,...,d-1. .
L 5 <8ma> here o d (2.41)

This can be seen as follows:

Using the constraint £ = 0 we find

¢q = V —PaPa, S0 bda = "M- (242)
Dy By
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Therefore, the Klein-Gordon equation can be written as

PopPabs  PacPpPps — PagPatPs

Gy Dy Py B
The numerator of which is the same as the equations of motion for Lagrangian
(2.41). In all of the above then «, 8,7y =1,2,...,(d - 1).

This property also extends to more general Lagrangians of the form

0. (2.43)

¢uu = Gaa + Pdd = Pac —

1 1
L= di+5F(6)  whee a=1..d-1, (244

where F(¢,) is an arbitrary function of the ¢,. As before, by imposing the condi-

tion £ = 0, we can eliminate derivatives with respect to z¢ since

ap ol
$a=V-F, SO Qgd = —é—iF—ﬂ, (2.45)
oF O*F

where Fy=—, 0wl = .
0o P~ 0¢a0¢s

So the equation of motion for (2.44) is

1 2F 3 F — F F3)d,
Gqq + §¢aﬁFaﬁ = (2Fup iF 5)as =0. (2.46)

The numerator of this is the equation of motion for the Lagrangian

L=Fl$) a=1,.d-1 (2.47)

Again, a theory for a field in d dimensions has been reduced to a theory in d — 1
dimensions by setting the Lagrangian of the first theory equal to zero.
The question to ask now is, does any of this generalise to the companion equa-

tions for strings and branes? The answer is yes!

Strings

A similar thing can be shown for the companion Lagrangians for strings which have
two fields ¢(z*) and ¥ (z*). However, this time, as well as imposing the condition

L = 0, we also need the constraints

oL Pp or oy
8(6‘%) oty 0, 8(%) ozhdzy 0 (248)

With these constraints then the equations of motion for the string companion
Lagrangian without a square root are the same as the equations of motion for the

string companion Lagrangian with a square root but in one less dimension.
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Branes

This also extends to p-branes. When the equations of motion for the companion

Lagrangian for p + 1 fields ¢* without a square root are subject to the constraints

oL %
o (@ﬂ) ozHozY

=0, no summation over i, (2.49)

o+

then they are the same as the equations of motion for the companion Lagrangian
with a square root in one less space-time dimension.

It is easy to prove this equivalence in the Klein-Gordon case and this has already
been shown. Computer calculations using the package MAPLE can also be used to
check results for low numbers of dimensions and fields. However, a general proof
has been found which proves this equivalence for any number of fields, n, and any
number of fields, d, where d > n [4]. This proof is given in Appendix A.

It should be noted that for d = n + 1 the equations of motion, when subject
to the constraints, vanish identically. This is because when the number of fields is
the same as the number of dimensions in the square root case, the Lagrangian is a
divergence so therefore the equations of motion will be identically zero.

This equivalence theorem has some similarity with 't Hooft’s Holographic Prin-
ciple [55], which has also been studied by Susskind [56]. The principle says that a
three-dimensional object can be described on a two-dimensional surface, just like
a hologram. Therefore, a theory can be dimensionally reduced by one dimension,
the same as in the companion Lagrangian equivalence theorem.

As yet, we do not have a full interpretation of what the constraints mean. The
constraints we have used may turn out to be too strong, since there are a lot of
them. We may need fewer constraints to obtain the same equivalence and the
constraints that have been used here would just be a special class of a more general
set of constraints. Also, the constraints we have used are not invariant under simple
transformations such as

1
.ﬁ__—
¢ 2

V2

This is something to look for in more general constraints, particularly as the La-

G+9), - —}5@5-:&). (2.50)

grangian is invariant under such a transformation. Finding another set of con-
straints may make the interpretation of the constraints and the equivalence theorem

easier.
Overall, it seems likely that the theorem and constraints have some importance
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since it is non-trivial that the two Lagrangians give the same equations of motion

when the constraints are applied.

2.4 Covariance

It is unclear at present whether it is best to take the companion Lagrangian with
or without the square root. One argument for taking the square root case is that
of general covariance. For the companion Lagrangian with n fields in d dimensions,

under the field redefinition
¢t — (', 4% ..., 8"), (2.51)
the Lagrangian transforms as
L— JL, (2.52)

and so is multiplied by a factor J, which is the Jacobian of the transformation i.e.

_0(0,9%,...,0")
09, 4%, )

However, the equations of motion are unchanged under this transformation since

J (2.53)

oJL) 8 [ouL)\ _o7 . o8 [, o

d¢*  Oz# 3( gfy) o¢t " Oxt 3( gfp)
0, 0Jo¢ OL o [ oL
T 94 _0¢j3m“3(%)_ Oz* 3(%)
:_Ja;; aé—;) = 0. (2.54)

In the middle line, the first two terms cancel with each other because the Lagrangian

is homogeneous of weight one in the % and depends on these derivatives in such

a way that
o oL __sip (2.55)
)

This just leaves the original equation of motion for ¢*. Therefore, the square root

Lagrangian is generally covariant which means any function of a solution to the
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equations of motion is also a solution to the equations of motion. The Lagrangian
without the square root does not possess this property of general covariance. The
Lagrangian acquires a factor of J? under the field redefinition (2.51) and the equa-

tions of motion change under this transformation.

2.5 Including a Background Metric

Companion Lagrangians and Born-Infeld type Lagrangians can be written in terms
of a quadratic form of Jacobians. If we include a background metric, g,,, then this

property still holds.

A companion Lagrangian with a background metric is
Op* O
L= \/ det i

g;wgagi:
For the string case, where we have two fields (¢4, 9), this can be re-written in terms

. (2.56)

of Jacobians to give

o= fioman - (320)) (o)) o0

This is very similar to the Nambu-Goto string. If we put a background metric into

the Lagrangian then it becomes

L= \/det

which can be written in terms of Jacobians as follows

£ =St ) (S2220) (X o

A general companion Lagrangian, for n fields in d dimensions, with a back-

oXHoXv

I 57 BoT (2.58)

3

ground metric can be written in terms of Jacobians

1
- \/nl((d — n)!)2Culuz...udfuwz...udgmmgum - Gt Spmrpinrz-o g Tongrvnse.ves
(2.60)

where Jy, 4 1pnte. g 18 the usual Jacobian for companion Lagrangians as defined in
(1.42). Note that it is still of quadratic form inside the square root. This is also
the form for Born-Infeld type Lagrangians with a background metric but where the

Jacobians J,,.,, ..., @€ now the Jacobians for Born-Infeld type theories.
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2.6 [Electromagnetic Interactions

The question arises as to how to incorporate electromagnetic interactions into our
theory with companion Lagrangians. As yet, the following ideas are somewhat
speculative but do point towards ways in which this could be done.

In Born-Infeld theory; electromagnetism is incorporated by adding an antisym-

metric term, Fj;, to the induced metric g;; so the Lagrangian is now

0X*+0X,

det |g;; + F35| = \/det 90T Doi + F;l, (2.61)
047  0A*
where Fj; = 50 907

If we want to copy this structure for the companion Lagrangian, then one way
of doing this is to assume that the gauge field depends only on z* through the fields
¢*(z*). The gauge fields would be written as A*(¢7) and the companion Lagrangian

with electromagnetism would be

L’:\%iet

This possibility is gauge invariant.
Another possibility is to consider the conserved currents for the theory and

09 0¢! , 0N OA
ook Bz, | O O |

(2.62)

to couple the electromagnetic fields to these. This ensures gauge invariance. An

example of a conserved current is

oL
o(2)

It is easy to see that this is conserved since,

J7 = &, i # (2.63)

oL oL 0L O
9,J9 =8, mw =, M ¢7+5@@=0. (2.64)
e

The first term is zero because it is the equation of motion. The second term is zero
because this is a condition due to the fact the Lagrangian is a function of Jacobians

and 7 # j, as seen from (2.55).
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Also, the currents J* — Ji7 (no summation over indices ¢ and j) are conserved

since
8 (JF - J7) =
0 . d . : '
Y E_ i [,‘ &+ oL 0¢ oL o

3(3{) 835“1_\5(2%;) 6.’10“4 B

e.o.m. e.0.1m. =L =L

In the above, the u index is summed over but the ¢ and j indices are not. These
currents, J” , carry two indices so they naturally couple to a two index gauge
field, A¥ say, which transforms under the group SO(n). The contribution to the
Lagrangian for the gauge field coupling to the fields ¢* would be
> AT (2.66)
1,]
This is gauge invariant up to a divergence.
A third suggestion would be to consider the Kalb-Ramond string interaction

term for an antisymmetric B-field

oX* oX"¥
v . 2.6
oo o (267)
For the companion Lagrangian, the analogous term would be of the form
0p Oy
B,——. 3
* Ok Ozv (2.68)

A final way of including U(1) gauge fields in companion Lagrangians was sug-

gested in [57]. Instead of having the usual brane Lagrangian (2.61), we consider

. _ 0X*+0X, Op Oq dp Oq
L= ydetlgy + Byl = \/det do* 0ol <30’i dai  Qoi Dot ]| (2.69)
where F;; is now the Lagrange Bracket,
dop 0 dp 0
Fy= ot 2 (2.70)

Oct 8o Bod Dot
This is still a U(1) theory.

The equivalent companion Lagrangian would be

O¢' 6(;51 0¢' 07 O¢? 3¢’
\/7 ’5 o O, 5p8_q_555q>” 1)
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where the antisymmetric term, F};, is now

_ 04'0¢7 07 8¢

by = Op 0g Op Oq

(2.72)

This is the Poisson bracket. This term is the commutator term in an SU(co)
theory. This is because in the N — oo limit, the SU(N) algebra corresponds to
the Poisson Bracket algebra [58]. It should be noted that the Poisson bracket and
Lagrange bracket are inverses of each other. This Lagrangian is covariant.

Although it is not yet clear which of these ideas is the best, it has been shown
that there are possible covariant or gauge invariant ways of introducing gauge
fields. The concept of a field description of strings and branes via the companion
Lagrangian and equations is strengthened by the fact that gauge fields can be added
to the theory.

2.7 Summary

In this chapter, the structure of the companion Lagrangian, a Lagrangian for a field
theory for strings and branes, has been given. The Lagrangian can be written in
terms of Jacobians which always appear in quadratic form. This form is maintained
even when a background metric is added.

The main motivation behind studying it is to formulate a field theory which
gives equations of motion similar to the Klein-Gordon equation but for strings and
branes rather than particles. The number of fields should always be equal to the
number of world-volume coordinates. It is further motivated by the Hamilton-
Jacobi equations for strings and branes.

It is not clear whether the Lagrangian should be taken with or without a square
root. However, if the Lagrangian is a non-zero constant, this does not matter since
the equations motion for Lagrangians with and without square roots are the same
in this case. There is also an equivalence theorem which states the equations
of motion for the companion Lagrangian without a square root for n fields in d
dimensions, when subjected to some constraints, are equivalent to the equations
of motion for a companion Lagrangian with a square root with n fields but d — 1
dimensions. From the point of view of wanting a covariant theory, the square root

companion Lagrangian is the best choice.



Chapter 3

Companion Equations and

Integrability

The aim of this chapter is to discuss the equations of motion for the companion
Lagrangian. First, we look at the equations of motion for the Born-Infeld type La-
grangians i.e those for the relativistic particle, Nambu-Goto string and p-branes.
Then we consider the companion equations. These are sums of Bateman equa-
tions or Universal Field Equations. The integrability of some of these equations is
discussed, mainly for the case where there is one more dimension than there are
fields. Finally, a proof is given to show that all Lagrangians with two fields in three
dimensions, which are homogeneous functions of weight one in the Jacobians, have

the same equations of motion.

3.1 Equations of Motion of Born-Infeld Type

We begin by describing the equations of motion for Born-Infeld type Lagrangians
and show how they can be written in a compact form. For a classical point particle

with Lagrangian

L= (68{”)2, (3.1)

the equations of motion can be written as

PXHOXY XY OXH
or: or  Or2 or =0. (3-2)

43
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For d dimensions it is easy to verify that there are d — 1 independent equations of

motion in this case. This can be seen if we rewrite them as

a2x! 32X2 62/\d

gr2  _ o9r*2 _ . _ _O7°

axt T oax® T HXd >’ (33)
or ar or

assuming ‘95: #0for p=1,2,...d. In the case of the point particle, the number

of equations of motion depends on the number of space-time dimensions, d.

Now we consider the Nambu-Goto string with Lagrangian

GGG e

In three dimensions, d = 3, there is only one equation of motion. This can be

written as
Xi, Xb X%, (X172 4+ (X2)2 + (X2
(7 2 d )| X2, X2 x4 || —200x0+ X2x2+ x3X3) | =0,
X3, X3, X (X5)? + (X2)? + (X2)?
(3.5)
oxH 02X+ ,
where qu = W’ ,5 = W; g = (07 T)a (3 6)
y_ 1 Xy Xg
and Jp = pr,Xf;XT = —Z—Epw, X7lf X: | (37)
Therefore, the equation of motion (3.5) could be written as
L X5(L7 Ny =0, (3-8)

where L is a matrix which has components [L};; = %% 5#. L~! is the inverse of

this matrix. For a string in d dimensions, the equations of motion can be written

in a similar form,
Jp.l/z...l/d_QJIJ]IJQ...I/d_QXijI (L_l)ij - 07 (39)
where the Jacobians are

X;_’d—l X Yd
d ‘ . (3.10)

Vg
X—rd 1 X,;.Id

— Vi—1 YWd — —
Jlllllz...lld_g - 61/1112...1/ng Xq- - 261111124..11‘1
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Only d — 2 of these equations of motion (3.9) are independent.

This can be extended to branes. For a p-brane with the Born-Infeld Lagrangian

oXH 90X
L = 4/det _ e 3.11

\/ 80t 9o (3:11)

the equations of motion can be written as
J#V2V3~~-Vd—p—lJV1V2-~-Vd—p—1X1§_/jl(L_1)ij =0, (3'12)

where
OXVd-p 9 X Va-rh oXvd

‘]U1U2...Ud_p_1 = €V1V2...Vd 60'1 80'2 L ao_p+1 . (313)
Again, L is a matrix with components [L}; = %%2%%  In general, an object

(particle, string or brane) which sweeps out an (p+1)-dimensional world volume
in d-dimensional space-time has only d — p — 1 independent equations of motion.
In the case d=p+1, the Lagrangian is a divergence, so all the equations of motion

vanish.

3.2 Companion Equations

We now turn our attention to the companion equations which are the equations
of motion for the companion Lagrangians. We will be considering the Lagrangians

with a square root. Firstly, we discuss the case of one field ¢(z*) with Lagrangian

e (2. a0

For two space-time dimensions, d = 2, the companion equation is

o 282(]5 0¢ 232¢ 8¢ 8¢ 82¢ B
<3x1) oz} <8x2) 0z 2 <8x1) (ax,z) 305, (3.15)

This is the Bateman equation. For d = 3 the equation of motion is

G2pos + Pid11 — 2010210 + P33 + P3P — 20103013
+ $3d33 + P5bar — 2dagpachas =0, (3.16)

where

_ 99 _ 0%
¢i - 8_117;7 ¢1] - 611318513]

(3.17)
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This is the sum of three Bateman equations. This pattern generalises as we increase
the number of dimensions. For d space-time dimensions the companion equation is
the sum of (g) Bateman equations. There is always only one equation of motion,
irrespective of the number of space-time dimensions. This is due to the fact there
is only one field, ¢.

We now consider the companion equations for strings which come from the

companion Lagrangian

L= /16 W) - 6.,)7] = \/ G =) (319

Note that the Lagrangian depends on the derivatives ¢, and 1, only through the
Jacobians which are of the form (¢,%, — ¢,%,.). For three space-time dimensions,

d=3, then the equations of motion are of the form

0 0 ¢ ¢ &3
0 0 ¥ v s
det| ¢ ¥ ¢ ¢ b13 | =0
B2 Y2 B2 P2 P
$3 Y3 P13 Paz Pas

There are two equations of motion. The second has the same structure as (3.19)

(3.19)

but with ¢ and v interchanged. This is a Universal Field Equation, a generalisation
of the Bateman equation.

For d=4, the equations of motion are the the sum of four Universal Field Equa-
tions like (3.19),

The other equation

0 0 ¢1 ¢2 ¢3
0 0 1 ¥ s
¢1 U1 d11 P12 D13
b2 Yo P12 P22 Po3
b3 Y3 d13 P23 P33

0 0 ¢1 ¢3 ¢4
0 0 91 Y3 9
¢1 Y1 P11 D13 Pua
b3 V3 P13 B33 P34
Pa s P14 P34 Paa

0 0 ¢ ¢2 ¢
0 0 ¥ Y2 Y
¢1 ,l[)l ¢11 ¢12 ¢14
¢2 ¢2 ¢12 ¢22 ¢24
G4 Yy d1a P24 Pas

0 0 ¢2 ¢35 ¢4
0 0 v 5 s

+ | @2 Y2 d22 P23 P2

¢3 'ﬁb3 ¢23 ¢33 ¢34
¢4 ¢4 ¢24 ¢34 ¢44

=0.

(3.20)

of motion is the same except ¢ and ¢ are interchanged. For

general d, the equations of motion are the sum of () Universal Field Equations.
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For a p-brane, the companion Lagrangian can again be written in terms of

_ 1 a( 1, ¢2,..., ¢r+1)\?
- \/(p+1)! <a($l‘l’$#27”_,xpp+l)> : (3.21)

In the case d=p+2, the equation of motion are just Universal Field Equations again,

Jacobians,

o' o

oz Oz,

of the form
0 0 e 0 ¢% ¢% - 11)+2
o 0 - 0 ¢} ¢ :
p+l pt+1
det| C 0 & P2 =0, (3.22)

1 2 +1 1 1

¢1 ¢1 T ‘#1) ¢11 ¢i2 tre ¢1,p+2
1 2 +1

¢2 ¢2 e <15]2J 45%2 QS%z tr ¢§,p+2

1 $2 Y P! A S |
p+2 Yp+2 p+2 1,p+2 p+2,p+2

For higher space-time dimensions, the equations of motion are sums of (p_‘f_Q) Uni-
versal Field Equations (3.22). There are always p+1 equations of motion, the same
as the number of fields. The fact that the companion equations are all made up of
Universal Field Equations is related to the fact that the companion Lagrangians
are all square roots of squares of Jacobians. In fact, the equations of motion can

alternatively be written using the Jacobians. They take the form,

J#u2u3~-~#d—p-1Juu2u3-~-ud-p—1 :u/ =0 i=1,2,...,p+1, (3'23)
where the Jacobian is defined as
_ 1 42 +1
J#luzus---ﬂd—p-l - 6#1#2---#d—p—1V1V2~--Vp+1¢u1 vyttt Yupgr” (3‘24)

The calculation to show these are the equations of motion of the companion La-

grangian is in Appendix B.

3.3 Integrability

As mentioned before, the companion equation for the companion Lagrangian with
a square root for one field in two dimensions (3.14) is the Bateman equation (3.15).

This equation is fully integrable. The equation has the general solution

F(¢)z; + G(¢)z2 = ¢ = constant, (3.25)
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where F' and G are arbitrary functions. It is covariant since if ¢ is a solution then so

is any function of ¢. The Bateman equation is equivalent to the Monge non-linear

wave equation

ou  Ou 3
agjl = Ua—x;, where U = :937_{ = % (326)

This is a first order equation for u. The companion Lagrangian can be written so

that it contains wu,
L= ¢/ (1 + u?). (3.27)
The equation of motion is

0 1 0 u
Do vite it (3.28)
which is equivalent to the Monge equation (3.26). In fact, replacing V1 + u? with
any differentiable function f(u) will give the same equation of motion.
This was known already, but what happens in the next case up when we have
two fields in three dimensions? The equations of motion are known to be covariant

in this case (see section 2.4) and so we ought to be able to express them in terms

of two ratios of Jacobians

b b
¢277/)3 - ¢3¢2,
3t — 13

e (3.29)

These are analogous to the u defined in (3.26) for the one field case. The Lagrangian

can be written as

L = (aths — datha) /(1 + u? + v?), (3.30)

and the equations of motion are

[ 0 v 0 1
v e+
021 /1 +u2 +0v2  Oz2 /1 +u? + v2]
N [ 0 u 0 1 1 0
U — =0,
|0z1 /1 + w2 +v2  0z3/1+ u? + 02
F 0 1 0 v
022 1+ u2+v2 0711+ u? + v
[ 0 U 0 v ]

= 0. (3.31)

| 022 /1 + u? + 02 B 5373\/1'+ u? + v?]
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As before, v/1 + u? + v2 can be replaced by an arbitrary function f(u,v). For any

such function, we can write the equations of motion down as

ou . ou N ou
8]:1 6332 ualg N

LI L) (3.32)
oz, | 0w,  Omy ‘

0,

These are equivalent to (3.31), independent of the function f(u,v), and look like
generalisations of the Monge equation.
They have an implicit solution for » and v which can be found by solving the

equations
u = F(z3 — uzy, T2 — v21), v = G(z3 — uz1, T2 — VI1), (3.33)

where F' and G are arbitrary functions of two variables. By setting v = U(¢, 9)
and v = V(¢,v), where U and V are also arbitrary functions of two variables, and
then solving the equations (3.33) for ¢ and % then we have a general solution to the
equations of motion. This is similar to they way the general solution to the Monge
equation leads to the general solution for the Bateman equation. This shows that
these equations of motion are integrable.

This procedure is easily generalised for n fields in n+1 dimensions. As yet, a
generalisation for n fields in d dimensions has not been found, but it is hoped that
this does exist and that the equations of motion are integrable. However, for the
cases where d > n+1, the equations of motion are sums of Bateman equations of
Universal Field Equations. A large class of solutions to these equations of motion
can be found by solving each Bateman equation or Universal Field Equation sepa-
rately. For example, for the one field case the equation of motion is the sum of (‘Qi)

Bateman equations. Solving the equation below for ¢,
T*F(¢) =, (3.34)

where F), are d arbitrary functions of ¢, and c is a constant, gives solutions to all the
individual Bateman equations and therefore to the whole equation of motion. This
works the same for more fields. By finding solutions which satisfy each Universal

Field Equation by itself, the equations of motion are satisfied.
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3.4 Lagrangians with the Same Equations of Mo-
tion

In the previous section we said that all Lagrangians for two fields in three di-
mensions which are homogeneous of weight one in the Jacobians have the same
equations of motion 7.e. Lagrangians of the form £ = (¢o93 — ¢3)2) f(u,v) where
f is an arbitrary function and u, v are the ratios of Jacobians, given in (3.29). This
can be shown either by calculating the equations of motion for such a Lagrangian
directly, which can be a bit messy, or as follows. Take Lagrangian £ = L(J;, J2, J3)
where J,, are the Jacobians defined as J, = €,,,¢6.%,. Since the Lagrangian is a

homogeneous function of weight one in the Jacobians then the following are true:

oL oL _
¢u5&; =L, 1/’#(975;‘ =0, (3.35)
oL oL
¢#a—¢# =0, %8—% =L. (3.36)

The first and the last equation arise because the Lagrangian is a homogeneous
function of weight one in ¢, and also in 9,. The other two equations arise because

the Lagrangian is a function of Jacobians. The equations of motion are

oL o*L
P a0, F W a6,00, T
&L O*L
wuvawuawu + d)w—a(lsua’(/lu = 0. (3.37)

Differentiating the constraints (3.35) with respect to ¢,, we obtain

o’ L o*L

%m =0, %W =0 (3.38)

This gives six equations, five of which are independent. Solving these, it is possible
to write all E,f:—gm in terms of ‘aff—aem’ say. Similarly, differentiating the constraints
(3.35) with respect to 9, and constraints (3.36) with respect to ¢, we find

rL oL ) .
"’“(amazpu T 56.08,) ="

0L 2L
w"(%ﬁ% " a¢ua¢y> =0 (3.39)

Again, there are six equations for which five of the (3 gg:% + a$§¢u) can be found

in terms of the sixth, %@T’ say. Differentiating (3.36) with respect to 1, means
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we can also write all 55— w a ™ in terms of f (,fw Putting these into the equations of
motion gives
1 0L 1 0°L
————J, b ——Ju v =0,
72 36006 0 T T ogion
1 9L 1 0L
J S J JoQu = : :
T a5t g (8.40)
which are equivalent to
JuJu¢uu =0,
Ju b = 0. (3.41)

These equations (3.41) are the Universal Field equations which were written in
determinantal form in (3.19). This should generalise to n fields in n+1 dimensions.
The proof follows a similar pattern to give the result that, for a given n, all such
Lagrangians which are homogeneous functions of weight one in the Jacobians have

same equations of motions. These equations are the Universal Field equations

(3.22).

3.5 Summary

For the usual particle, Nambu-Goto string and brane with a Born—Infel.d type La-
grangian, then a p-dimensional object in d-dimensional space-time has d —p — 1
independent equations of motion which can be written in the general form (3.12).
The number of equations depends on both the number of world-sheet coordinates
and space-time coordinates. For the companion Lagrangian with n fields in d di-
mensions there are n independent equations of motion which can be written in
the general form of sums of (3.22). The number of equations only depends on the
number of fields, not the number of dimensions unlike the Born-Infeld type cases.
However, the structure of both types of equation of motion are similar.

The companion equations are sums of (nil) Bateman equations or Universal
Field equations. If d=n, the equations of motion are automatically zero. If d=n+1,
the equations of motion are each just one Bateman or Universal Field equation. In
fact, if d=n+1, then all Lagrangians which are homogeneous of weight one in the
Jacobians have the same equations of motion. These equations are the Universal

Field Equations. Such cases appear to be integrable.



Chapter 4
An Iterative Procedure

The structure of the companion Lagrangians and the appearance of Bateman and
Universal Field Equations in the companion equations led to investigations into
the extension of an iterative procedure known for Lagrangians depending on one
field to Lagrangians depending on more than one field.

In this chapter, we explain how the iterative procedure works for Lagrangians
which are homogeneous functions of weight one in the first derivatives of a field
#. The penultimate iteration always gives a Universal Field Equation. We then
explain how such a procedure can be extended to Lagrangians which are homo-
geneous functions of weight one in the first derivatives of several fields, such as
the companion Lagrangian. We concentrate mainly on the case of two fields in
three dimensions, giving explicit examples of how the procedure works, and how

the Universal Field Equations appear.

4.1 Universal Field Equations

Until now, generalisations of the Bateman equation have involved increasing the
number of fields. We now consider generalisations where the number of dimensions
are increased, without changing the number of fields. The resulting field equation

is also known as a Universal Field Equation [28][29][59]. This generalised Bateman

52
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equation in d dimensions for a field ¢(z*) can be written as

0 ¢ ¢ ... ¢a
$ o P12 ... i

det| ¢2 @12 b2 ... @2 | =0. (4.1)

ba $1a P2 - Daa
This equation possesses general covariance like the Bateman equation does. It
is also integrable just like the Bateman equation is. This was proved in [60] by
linearising the Universal Field Equation using the Legendre transform. A large

class of solutions to (4.1) can be written as solutions to the equation
*F,(¢) = ¢, (4.2)

where F, (u=1,2, ..., d) are arbitrary functions of ¢. c is a constant. This has

the same form as the general solution to the Bateman Equation (1.28).

4.2 Iterative Lagrangians

These Universal Field Equations can be obtained by using an iterative procedure
involving Lagrangians and equations of motion. Equations of motion for a theory

involving one field ¢ can be found using the Euler operator

9 9 9
£ =55+ gy~ Odgu—t

This summation in the operator can be continued forever, but for the present

(4.3)

discussion the expansion can be terminated after the third term because we will
only be dealing with first and second derivatives. In general, the equation of motion
for Lagrangian £ would be written £L£=0.

Now consider Lagrangians, £, which only involve first derivatives, ¢,, and are
homogeneous functions of weight one in these derivatives. Since the Lagrangian
does not depend explicitly on the field ¢ then £L is a divergence. For such cases,
it can be shown that £2£ = 0.

The iterative procedure is as follows
EL,
ELEL,

ELELEL,
(4.4)
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It should be noted that applying operator £ reduces the function to one which is

weight zero in the derivatives of ¢, in the sense that
a(EL o(EL
Zqﬁu———é )4 > b L) _y, (4.5)
" Ou

By multiplying it by £ we return to a function which is weight one in the deriva-

tives of ¢, just like the original Lagrangian. After each iteration then only first and
second derivatives are left. All third derivatives cancel with each other. For a La-
grangian in d dimensions, this iterative procedure terminates after d iterations. At
this point everything vanishes identically. After d —1 iterations then we obtain the
Universal Field Equation for a field in d dimensions (4.1). This is all independent
of the Lagrangian we started with.

For any Lagrangian, £ = £(¢,) which is homogeneous of weight one in the ¢,,
after d — 1 iterations we obtain the Universal Field Equation. Even if the original
Lagrangian possesses no symmetry we can reach an equation which is invariant
under the group GL(d), despite the equation being highly non-linear. It is this
which makes the Universal Field Equations universal, because they can be found
from an infinite number of starting Lagrangians. There is a proof for this in [29].

The Universal Field Equations can be obtained from an infinite number of
starting Lagrangians. Since these Lagrangians only depend on first derivatives of
the field, and not on the field ¢ itself, this means the equation of motion is

0 (0L
2 (W) ~0. (46)
Since this is a divergence and there are an infinite number of Lagrangians £, then
there are an infinite number of conservation laws. There is one for each possible
Lagrangian. This is one of the properties which first led to the idea these Universal

Field Equations might be integrable.

4.3 Extension to Higher Dimensions

The main aim of this work was to try to find an iterative procedure for Lagrangians
which involve more than one field. Most of this discussion will be for theories with
two fields, ¢ and 1, where the Lagrangian is homogeneous of weight one in the first
order derivatives ¢, and 1,.

This process is not as simple as the iterative procedure ELELEL for one field
where we just multiply by the Lagrangian £ before re-applying the Euler operator
£.
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From now on, &; denotes the Euler operator with respect to field ¢ and &,
denotes the Euler operator with respect to field 1. If we just carry out the process
EsLELL then we now obtain third order derivatives and higher, unlike in the one
field case where we only had first and second derivatives. As a result, there appears
to be no simplification like in the one field case. As the iteration continues, the re-
sulting expression becomes increasingly complicated and involves higher and higher
orders of derivatives. Also, 4L gives a function of weight zero in the derivatives
of ¢ and weight one in derivatives of ¥. Multiplying by £ gives LE4L. This is a
function of weight one in derivatives of ¢ but weight two in derivatives of 9, which
is not the same as the Lagrangian which is weight one in both derivatives of ¢ and
1. This is also different to the one field case where multiplying by the Lagrangian
always returned the object to a function of weight one in derivatives of ¢,, which
is the same as the starting Lagrangian.

To overcome these problems, instead of multiplying by £ each time, we multiply
by a function f which depends on the Lagrangian in some way. f should depend
on ¢, and 9, only, as £ does. Also, f should be a homogeneous function of weight
one in ¢, and weight zero in v,. This means that f€4L is weight one in both ¢,
and 1, the same as the Lagrangian. Finally, f should be chosen so that there are
no third order derivatives when the Euler operator is applied for the second time,
EsfELL.

To find f(¢,,%,) we need to find the conditions on f required to ensure that
there are no terms involving third derivatives. Applying the first Euler operator,

&y, gives

oL 0L 9L
EL =0 = y+ ——
¢ “(8%) 86,00, Pt Boou

Multiply this by an as yet unknown function f, which depends only on ¢, and %,.

Yy (4.7)

Then apply the Euler operator, £, again.

of 0L oL
EsfESL =0, i yaryarve
ofe (aqﬁp 56,00, * 1 34,88,94,

8 af 9L oL ( 9*L )
v A ol o Pu} — 0 az/ YRy E
+ o6, 96,00, ' Bg,90,00, " ) W\ 56,00,

Puv (4.8)
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Looking at the terms involving third order derivatives only then we find

of 9*°L 0L of 0L
96, 96,00, T 1 35.56,96,70 * 34, 56,00, "+
L of 0L of 0’L
T 5h,00,00, 1~ B0, 50,08, 34, 96,06,
3L BL
"I 56.00,00,% ~ 1 36,86.00, " (49)
So, for all this to vanish we require
of 0L of 0°L
30, 58,00, "~ B, 00,00, (4.10)
In general, this will be satisfied if the function f satisfies the following condition:
of %L
aaﬁ = 6‘212?1 for all p. (4.11)
O 0¢10¢1

There is no summation over indices in this condition (4.11).

If we apply the Euler operator &, to f€4L then we obtain the same condition
(4.10).

Similarly, if we consider multiplying £,£ by some function g(¢,,%,) then g

needs to satisfy

a%q L

_ 59199

o =~y forallp, (4.12)
Iy O18¢;

so that £,9&y L and £,9€4L only involve first and second derivatives.

4.4 Specific Examples

We now consider some specific Lagrangians, find the functions f which satisfy the
conditions (4.11) and discuss the iterations. We will concentrate on two fields in

three dimensions. In each case, f must satisfy the conditions

af of of L
O¢y __ Opa _ O¢3 __ 0¢10¢1
of T 8f T Bl T oL (4.13)

oY1 O s 10

First we look at the companion Lagrangian with a square root

L=/Jt+J2+ J2, (4.14)
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where the J; are the usual Jacobians. The required function f is
L
f= 2 2 2’
VYT + 9 + s
Note that any function of this f will satisfy the condition (4.13). However, it makes

sense to choose f to be weight one in ¢, and weight zero in %, so that f€4L is a

function of weight one in derivatives of ¢ and in derivatives of 1, as stated earlier.

(4.15)

The iterative sequence is then

0 Y1 Yo Y3
1 U Yu e Yis

EJfELL = d . 4.16

el = Tl N gy v Um s (416)

Y3 13 thes Y33

After two iterations we have some factor multiplied by the Universal Field Equation
for field % in three dimensions. The expression is completely independent of ¢ and

its derivatives. Similarly, if we make the valid choice for g

L

9= NG R (4.17)
then
0 ¢ 2 ¢
EpgEul = ! det| o1 P P O (4.18)

(92 + ¢5 + ¢3)%/2 2 P12 P2 Po3
b3 d13 P2z P33

This is some factor multiplied by the Universal Field Equation for field ¢ and is

completely independent of 1.
The following list of Lagrangians for two fields in three dimensions all behave

similarly. Suitable functions f have been found for them all.

L
ﬁ:\/agJiJ», f: )
7o \/§6i1i2i3€j1j2j3a12j2aisj3¢il"pjl

_ aijJiJj f _ Cka
ckJk 7 \/6i1i21'3 €515233 iz ja ci3cj3¢11¢jl ’

L
L = L(b;J}, cx ), f= . (4.19)
17k Yilj

The a;;, bx, cx are all constants and summation over indices is assumed. All indices

run from 1 to 3. The first of these examples is the companion Lagrangian (4.14)
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with a background metric. Setting aj1,a2,a33 = 1 and all other a;; = 0 we
just have the normal companion Lagrangian. In all the cases above, the iterative
sequence &,fESL is always of the same form as (4.16). The determinant part,
the Universal Field Equation, always appears and is multiplied by some factor.
The factor depends on the starting Lagrangfan. The whole expression always only
involves derivatives of 1 and so is completely independent of derivatives of ¢.

In some ways it is not surprising that the second iteration of these Lagrangians
is the same, since the equations of motion of all these Lagrangians are equivalent.
What is surprising is that the iteration only depends on the first and second deriva-
tives of 1 and has no dependence on derivatives of ¢ at all. Similarly, £,9&, L only
depends on derivatives of ¢. The fields seem to completely decouple. Another im-
portant point is that the second iteration always involves the generalised Bateman
equation (the Universal Field Equation). This is analogous to the one field case
where after d — 1 iterations we obtain the Universal Field Equation.

This can be generalised to higher dimensional cases where the number of fields is
one less than the number of dimensions. Functions f can be found for Lagrangians
of the same form as (4.19) but with the Jacobians redefined for d — 1 fields in d
dimensions. The f’s have a similar structure to those in (4.19). It is hoped that

this can be extended to n fields in d dimensions.

4.5 Summary

The iterative procedure for Lagrangians which are homogeneous functions of weight
one in derivatives of one field, ¢,,, where the (d—1)th iteration is the Universal Field
Equation, has been generalised to more than one field.

Rather than multiplying each time by the Lagrangian, it is necessary to mul-
tiply by a function f which depends on the Lagrangian. For two fields in three
dimensions, several examples of Lagrangians which are homogeneous functions of
weight one in ¢, and 1, have been given. In these cases we have found a suit-
able function f and shown that the second iteration always gives a Universal Field
Equation.

As yet, the list of examples does not cover all Lagrangians which are weight
one in the first derivatives of the fields. However, the list does involve a large class
of such Lagrangians, including the companion Lagrangian.

Extension to d — 1 fields in d dimensions is possible and functions, f, can
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be found for a similar list of Lagrangians to those found for two fields in three
dimensions. Extension to n fields in d dimensions still remains to be done. It is
likely that iterations for these will result in Universal Field Equations appearing

somewhere.



Chapter.5

A Special Property of a Family of
Field Theories

In this chapter, we discuss a property of a family of field Lagrangians, not just com-
panion Lagrangians. This property is that for these field theories, the Lagrangian
vanishes or is a divergence on the space of solutions of the equations of motion.
The list of examples is given below. Basic background on most of the examples

can be found in {19](32].

5.1 Klein-Gordon Field

The Klein-Gordon equation is a field equation for a scalar field ¢(z*). Its La-
grangian 1is
L= %a”qsa“qs -~ -;—mQ(j)Q, (5.1)
where m is the mass. The equation of motion is
(O 4 m?)¢ =0. (5.2)

This is the Klein-Gordon equation. To show the property that the Lagrangian is a
divergence on the space of solutions then rewrite the Lagrangian (5.1) using partial

integration as follows.

L= L0,(90"9) - 580,09 — s

_! 1 2
= 5 0u(¢0"9) —5¢(0¢ +m’¢). (5.3)
divergence e.o.m.

When the equation of motion (e.0.m.) is satisfied the second term is zero, so the

Lagrangian is a divergence.
60
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5.2 The Dirac Equation

The Dirac equation is a first order equation for fermions with spin 1/2. The

Lagrangian is
L =iy 9up — mipy), (5.4)
where 1)(z*) is a spinor and ¢ = 177° is its adjoint. The equations of motion are
("8, —m)p =0 and  §(iy*0, +m) =0. (5.5)

The first is the Dirac equation and the second is its Hermitian conjugate. It is
very easy to see that the Lagrangian for Dirac field vanishes on the space of the

solutions of the equations of motion since the Lagrangian is just

£ = p(ir"0p — map). (5.6)
N ——— ————

€.0.m.

5.3 Maxwell Theory

Maxwell Theory describes electromagnetism. It is a U(1) gauge theory. The La-

grangian for a free electromagnetic field is
1 3
L= —ZFIM,F , (37)

where F,, = 8,4, — 8,4, is the electromagnetic field strength tensor and A, is

the gauge field. The equation of motion is
0, F" = 0. (5.8)

Rewriting the Lagrangian (5.7) using the antisymmetry of F},, and partial integra-

tion we find

= —%(B“Au — 8,A,)F*

1 14
= —iauAuF”
1 py 1 [11%4
= —iay(AyF )+§A,,6#F : (5.9)

The last term is zero when the equations of motion are satisfied so the Lagrangian

is a divergence on the space of solutions of the equations of motion.
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5.4 Self-Dual Gauge Fields

In general, the result does not hold for non-abelian gauge theories. However, in the
special case of self-dual Yang-Mills the Lagrangian can be written as a divergence.

The non-abelian field strength is

E, =0,A, —0,A,+[Au A (5.10)
The self-duality condition is
Fo="Fu, where *F = %ew,,an“, (5.11)
so the self-dual Yang-Mills Lagrangian is
L= —iTr(F,“,F“") - —%eu"wTr(FWFpa). (5.12)
This can be rewritten as a total derivative,
L= —%3ﬂ[6"”"”Tr(A,,8,,AU + gAuAPAU)]. (5.13)

It is the total derivative of the Chern-Simons term which can be studied as a
Lagrangian in its own right [61]. Therefore, self-dual Yang-Mills has a Lagrangian
which is a divergence. In the previous examples the Lagrangian is only a divergence
when the equations of motion are satisfied. Here, it may at first seem like the
equations of motion have not been considered. However, if the self-duality condition
is satisfied then so are the equations of motion for Yang-Mills, so the condition the
equations of motion are satisfied was taken account of in (5.12). For more on

self-duality, see Chapter 6 on the Moyal-Nahm equations.

5.5 Gravity

The Lagrangian for gravity is
L=+/—gR, (5.14)

where g is the determinant of the space-time metric and R is the Ricci scalar. If

there is no matter in the theory, the equation of motion is

1
R — Zg"R =0, (5.15)

where R™ is the Ricci tensor. With matter, the right hand side of this would
be the stress-energy tensor T#” but since we have empty space-time this implies
R™ = 0 and therefore R = 0. Therefore, the Lagrangian for pure gravity vanishes

on the space of solutions of the equations of motion.
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5.6 Strings and Branes

The Lagrangian for strings and p-branes is

=i

X#(0%) (1 =0,1,...,d—1) are the d target space coordinates. o* (i =0,1,...,p)

are the p+1 world-volume coordinates. For string theory, set p = 1. The equations

0 oL
@(3(3‘)&‘)) =0. (5.17)

dot

90X+ 0X,
dot Qo |

(5.16)

of motion are

It can be shown, via the theorem of false cofactors, that

oX* oL

00" 3(55)

=L, (5.18)

This is shown as follows [18]:
Let £ =L, so

X+ 0x,
dot 0ol

L = det (5.19)

Also, let L-j be the cofactor, or signed minor, of the 2+ — jth component in matrix

of which L is the determinant. Therefore,

ox* oL _ ox* VL 10X* 1 0L

9o 9(2%) T 00t 0(%F) ~ 200° VLO(55)
11 0X* 8X

2/L 8ot aak(

1 8X* 09X, ;

bt = S

VI 8c* 9ok

1

= \/ZL(S,J

= 0;L. (5.20)

Lij + Lyx)

In the third line we can see that if 2 = j then we just get the determinant, L. But,
if i # j then this is same as finding the determinant of a matrix with two rows
which are the same. The determinant of such a matrix is always zero. This is the
theorem of false cofactors. It should be noted that the case ¢ = j shows that the

Lagrangian £ is homogeneous of degree one in the 2X7 6 ~ for each value of 4.
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This result and partial integration can be used to give

1 oxr o
" p+1 00t 8(%—)5,—“)
1 0 oL 1 0 oL
= - K — | ——— 5.2
1001 (X a(%};;‘)) p1t aai<a(fg};f)>' (5:21)

Therefore, it can now be seen that when the equations of motion are satisfied the
Lagrangian is a divergence. It should be noted that this works for any power of

the Lagrangian (5.16). For

o i
L‘z(det‘aX 0X,

N/2
dot o’ ) ’ (5.22)

where N is some number, then the Lagrangian can be rewritten as

1 9 oL 1 0 oL
L=s——==| X' —mxmy | ~ o X 5o\ araxEy 5.2
N(p+1) 30’( a(%%;)) N(p+1)" 0o (a(%))’ (5.23)

so is again a divergence on the space of solutions for any power % The important

values of N are N = 1 which is the case given and N = 2, the Schild string (when
p=1).

5.7 Companion Equations

This property is also true for the companion field theory for strings and branes

which was described earlier. The Lagrangian is

[ Terew -
L= 4/det 5o 0, (5.24)

)

where ¢* (i = 1,2,...,n) are the fields and z# (1 = 1,2,...,d) are the spacetime
coordinates. The equations of motion are
oL
9 <——> =0. 5.25)
"\ 9369 (
The Lagrangian is homogeneous of weight one in the first partial derivatives of

¢! = 22 This means

T fzH
oL

ERDE (5.26)

L=0,4
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By rewriting this using partial integration, the Lagrangian is

c=a(¢'559) -+ (a9 >:27)

So, the companion Lagrangians are also a divergence on the space of solutions of

the equations of motion.
As in the string/brane example, this works the same for any power of the
Lagrangian (5.24). In particular, the property holds for the companion Lagrangian

either with or without a square root.

5.8 Supersymmetric Lagrangians: Chiral Super-

fields

The property also extends to some supersymmetric Lagrangians. Firstly, we con-
sider a chiral superfield. Chiral superfields obey the condition Ds® = 0. A general
chira) superfield in superspace (z, 6, #) has the form [62]

&(x,0,0) = A(z) + 100™00,A(z) + %9999_114(3;)
- %oeamw(x)ame‘ +OOF(z).  (5.28)

Consider a Lagrangian involving only chiral superfields as below,

+ V209(z)

1
L = 045 + é‘mij(q)z'q)jleﬂ + &1 ®l|5) (5.29)
- 1. 1. -
= 1O i@ + AJOA; + FFy + myj (A F; — Vi + AJFT — ‘2‘1/12'%),

where m,; is symmetric with respect to indices 7 and j. The equations of motion

for this Lagrangian are as follows:

Fi* + mijAj = 0, DA: + miij = 0, iamzﬁﬁm - mi]"(/)j = 0,
Fy+mgA; =0,  OAi+myFy =0, 6™t +my; = 0. (5.30)

Rewriting the Lagrangian using partial integration, we find
L o - m 1+, -
L= 5(23m¢i0 — ;)¢ — 51/%(7»0 Omi + mij ;)
A (DA, + i FY) + (F} +mi A7) F; + %am(wmzpi). (5.31)

The first four terms will vanish when the equations of motion are satisfied

and the last term is a divergence. A more general supersymmetric Lagrangian for
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chiral fields would involve the addition of the terms %gijkq)i(bj@k, A;®; and their
hermitian conjugates. However, if these are added then the Lagrangian is no longer

a divergence when the equations of motion are satisfied.

5.9 Supersymmetric Lagrangians: Vector Super-

fields

Secondly, we consider vector supersymmetric Lagrangians. Vector superfields obey

the condition V = V1. A general vector superfield takes the form [62]
V = C(z) + i0x(z) — i0%(z) + %ee[M(x) +iN(z)] - %95[1\4@) —iN()]

— 00" () + i6891A(x) + L 5m oy ()] — B[\ (z) + %0’” 2(3)]

2
| R 1
+ 59090[D(z) + 5DC’($)] (5.32)
For a vector field, the Lagrangian can be written as
1 -
L= (W Walog + W Walag) + m?*V?, (5.33)

where W, = —1DDD,V and Wy = —;DDD,V. For the massless case, we can
use the Wess-Zumino gauge in which the component fields C, x, M and N are all

zero. The Lagrangian is then just

1 1 _
L= 5D2 = V" Umn — AT O A, (5.34)

where v, = OpnUn — Onvm. The equations of motion are
D=0, —io™0uA=0, 0,20 =0, 0"y, =0. (5.35)
Rewriting the Lagrangian, we find

1 1 -1
L= §D2 + iv”amvmn — AT O A — 587"(@%,%). (5.36)
So, for the massless vector superfield, when the equations of motion are satisfied the
Lagrangian is a divergence. For the massive case we cannot use the Wess-Zumino

gauge. However, the action can be rewritten as [63]

S[V] = %/VD"‘DQDQV d*zd*e + m2/ V2 d*zd*e, (5.37)
and the equations of motion are
%Da[ﬂDaV +m’V =0. (5.38)

From this it can be see that the Lagrangian is a divergence when the equations of

motion are satisfied.
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5.10 Discussion

The Lagrangians of the following field theories have been shown to be a divergence
on the space of solutions of the equations of motion of that theory: Klein-Gordon,
Dirac, Maxwell, Self-Dual Yang-Mills, gravity, string theory, brane theory, com-
panion field theory, supersymmetric chiral and vector superfields. The theories can
be massive or massless.

This property suggests there is a ‘pseudo-topological’ nature to the Lagrangians.
Lagrangians which are divergences with no other constraints are fully topological,
such as gravity in two dimensions [30]. Here the Lagrangian is only a divergence
when the equations of motion are satisfied. However, it should be noted that there
are many important properties of fully topological theories which do not appear in
these ’pseudo-topological’ theories.

Kastrup [52] considered what solutions of equations of motion implied £ = 0
for various theories including field theories. He had also noticed that £ = 0 for all
solutions to the Dirac equation and pure gravity, but did not notice that for some
other field theories £ is a divergence. His interpretation was that solutions with
L = 0 were bifurcations or phase transitions of the theory

This is best seen in statistical mechanics where £ = F' with F' defined as the
density of the free energy. £ = 0 marks the transition between ordered and un-
ordered phases in the theory. In the examples we have given, when the Lagrangian
is zero or a divergence we have a non-interacting theory but as soon as other terms
are added this condition is lost and we have interactions. In Yang-Mills theory
we the Lagrangian is a divergence only for self-dual gauge fields. £ = 0 seems to
mark special solutions to a theory (e.g. solutions with no interactions, no matter,
self-duality).

It should be noted that each theory can be written as a Lagrangian which
vanishes on the space of solutions, since all Lagrangians which are equivalent up

to a divergence give the same equation of motion.



Chapter 6

The Moyal-Nahm Equations

6.1 Introduction

The main aim of this chapter is to find solutions to the Moyal-Nahm equations
in four and eight dimensions. The Nahm equations give solutions for a particular
set of self-dual Yang-Mills fields. When the commutators are replaced by Moyal
brackets these equations become the Moyal-Nahm equations.

Firstly, we discuss self-duality and the Nahm equations in four dimensions. This
is then extended to higher dimensions. We look at why you would want to this and
how to go about it. In particular, we focus on Nahm equations in eight dimensions.

Next, we look at Moyal brackets and star products. These objects are defined
and some of their properties are given. Motivation is given as to why you might
want to consider them. Wigner functions, a type of phase space distribution func-
tion, are also discussed since the solutions will be in terms of generalised Wigner
functions.

Finally, we try to solve the four dimensional Moyal-Nahm equations and the
eight dimensional Nahm and Moyal-Nahm equations. We use an ansatz based on
generalised Wigner functions and sets of matrices which obey the algebra generated
by the Nahm equations. Finding sets of such matrices was an important part of
this work.

This chapter is based on work in [3].

68
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6.2 Nahm Equations

6.2.1 Self-Dual Gauge Fields in Four Dimensions

Non-abelian gauge fields can be described by Yang-Mills field theory. For the
moment, consider gauge fields in four dimensional Euclidean space-time with coor-
dinates z#, (u =0, ..., 3). If the theory only involves the gauge fields themselves,
A#(z") say, this is pure Yang-Mills. The field strength is defined as

F,, =0,A, —0,A,+[AuL A (6.1)
The Lagrangian for pure Yang-Mills is
L= %Tr(FWFW). (6.2)
The equation of motion is
D,F* =0, (6.3)

where D, is the covariant derivative. The self-duality condition in four dimensions
is
* * 1 po
Fo="Fy, where F,. = EfuvpaF ) (6.4).
i.e. the field strength is equal to the dual field strength *F,,. This results in the

following three equations:
Fo = Fas, Foo = Fa, Foz = Fra. (6.5)

If the self-duality equation (6.4) is satisfied then the equations of motion for the
Yang-Mills theory (6.3) are automatically satisfied via the Bianchi identity,

D,F,,+D,F,,+D,F,, =0. (6.6)

This is important, since it means all solutions of the self-dual equations are solutions
of the full Yang-Mills theory. It is known that the Yang-Mills equations are not
completely solvable, however the self-dual Yang-Mills equations are, in general,
solvable [64]. Instanton and BPS' monopole solutions both satisfy the self-dual
Yang-Mills equations.

lwhere BPS stands for Bogomol’nyi-Prasad-Somerfield.
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6.2.2 Nahm Equations

Instantons are solutions of the self-dual Yang-Mills equations where the action is
finite. All instanton solutions can be generated by the ADHM construction of
Atiyah, Drinfield, Hitchin and Manin {65]. This construction reduces the problem
to a set of non-linear algebraic equations. Nahm generalised the ADHM construc-
tion to monopole solutions which have finite energy and are invariant under shifts
in Euclidean time but do not have finite action. This generalisation resulted in
what are know as the Nahm equations [33].

The Nahm equations can also be constructed in the following way. Consider the
self-dual Yang-Mills equations (6.4) where the gauge fields A* depend on only one
space time coordinate, 20 = ¢ say. Also, fix the gauge so that A® = 0. This is the

most convenient gauge to use and makes life easier later. The self-dual equations

are now
O )
38_/12 = (4%, AY, (6.7)
‘98—‘? = (A}, A7).

These are the Nahm equations.
Given that A° = 0 and the other gauge fields A7 (j = 1,2, 3) only depend on ¢,
the Yang-Mills Lagrangian is now [66)

L="Tr ((%j) + %[Aj, AF)[A7, A’“]) . (6.8)

The equations of motion are

0rAI

T [AF)[AF, A7]] = 0, (6.9)

and the energy is

E=Tr ((%) - %[Aj,A’“][Aj, A"]) . (6.10)

It is easy to see that solutions of the Nahm equations (6.7) satisfy the equations

of motion, simply by differentiating.
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The Lagrangian (6.8) can also be written as

[ = Tr((i)_/il - [A2,A3])2 + (%—f - [A3,Al]>2

0A® 1 42 ’ 0 114243 143 42

+ | = —[A}A%]) +2-(A'A°A° - A A°A%) ). (6.11)
ot ot

This is just sums of squares of the Nahm equations plus a divergence. Since squares
of real objects are always positive then the Lagrangian must be greater or equal to
the divergence. This is the Bogomol’nyi bound [67]. Therefore, when the Nahm
equations are satisfied the Bogomol'nyi bound is satisfied. The Nahm equations
are just Bogomol’'nyi equations. Also, by squaring the Nahm equations it can be

seen that the energy (6.10) for solutions to the Nahm equations is zero.

6.2.3 Self-Duality in Higher Dimensions

As well as considering gauge fields in four dimensions, a lot of work has been
done in extending such theories to higher dimensions [64](68][69][70]. The aim is
usually to consider the theory in a higher dimension, where there may be new and
interesting physics, and then dimensionally reduce the theory via compactification
to one in (preferably) four large dimensions. Recently, there has been an interest in
Yang-Mills in higher dimensions because of the appearance of Yang-Mills actions in
M (atrix) Theory [36][38]. M(atrix) theory is based on the conjecture that M-theory
can be described by the N — oo limit of supersymmetric quantum mechanics.
Corrigan et al. [68] were particularly interested in finding analogues of the
self-dual Yang-Mills equation in higher dimensions. They wanted to find a linear
relationship for the field strength, solutions to which automatically satisfied the

Yang-Mills equations in D > 4 dimensions via the Bianchi identity.
1
§Tuvpana = AF,,. (6.12)

T,p0 1 a totally antisymmetric tensor and A is a constant. Therefore, this linear
relationship implies the Yang-Mills equations are satisfied. For D = 4 the choice

for T,,0 is essentially unique and is

1
§€uvmpro = A, (6.13)
A = 1 gives the usual self-dual equations. A = —1 will give the anti-self-dual

equations. All other values of A require F,, = 0. The most interesting, and closest
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analogy to the D = 4 case is that for D = 8. One possible linear relationship is

1
FOa = icachbm (614)

where ¢, are the octonionic structure constants (see section 6.2.5). This is in
complete analogy with the self-dual equations in four dimensions, which may be

written as

1
FOa = ieachbc; (615)

where €4, are the quaternionic structure constants. Equations (6.14) are the self-
dual equations in eight dimensions that we will be considering. They can be written

as

Fig + For + Fes + F54 = 0, Foo + Fr + Fs3 + Fig = 0,

Fso + Fig + Fos + Fur = 0, Fyo+ Fis+ Feo+ Fr3 =0,

Fyo + Fy + F32 + Fer = 0, Feo + F31 + Fog + F75 =0, (6.16)
Fro+ Fig+ F34 + F56 = 0.

6.2.4 Nahm Equations in Eight Dimensions

The Nahm equations in eight dimensions can be derived in much the same way
as in four dimensions. Again, the gauge field A* is assumed to only depend on
one space-time coordinate, 2° = ¢, and the gauge choice A® = 0 is made. Putting
these constraints into the the self-dual equations (6.16) results in the following set

of equations:

Al
- [A2, AT] — [AS, A% — [4°, A%] =0,
A2
e [A7, A'] — [A°, A%] — [A%, A% =,
- 9A®
T [AY, A®] — [A?%, A%] — (A%, AT] =0,
OAT (a1 4] — (45, A7) — (A7, A%] = 0 (6.17)
at I ) ) - 3 .
A"
——87 — [A4,- Al] b [Aa, A2] _— [AG, A7] = 0,
O A®
W — [A3, A1] - [AQ, A4] —_ [AY, AS] = 0,
QA7

T AL AT 47, A - (45 A% = 0
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In terms of the octonionic structure constants they are

oA 1 ,
S = tikld’ AF). - (6818)

These are the Nahm equations in eight dimensional Euclidean space-time.

6.2.5 Octonions

The octonions O are one of the four division algebras [69]. The other three are
the real, complex and quaternionic numbers (R,C,#). The octonions are non-
associative and non-commutative, so they do not have a matrix representation.

However, they are alternative and so for any z,y € O, so
z(y?) - (zy)y =0 and (z*)y — z(zy) = 0. (6.19)

The basis for the octonions is {1,e,} where a = 1,...,7. Any octonion g can be
" written as ¢ = gy +4qa€, where all g, are real. In this work, only the imaginary octo-
nions (eq, @ = 1,...,7) will be considered. The octonions obey the multiplication

rule
€;€; = —61']' -+ Cijk€k, (620)

where c¢;;; are the octonionic structure constants. The structure constants will be

taken to be
C127 = Cg31 = Cs41 = C532 = Coap = C347 = Cs567 = 1. (6.21)

These are totally antisymmetric. All other ¢, are zero. There are many examples
of the octonions appearing in physics, especially when the groups SO(8), SO(7)
and G, are discussed [68][69][71][72].

6.3 Moyal Brackets and Star Products

6.3.1 The Star Product

The star product of two functions f(z,p) and g(z,p) which are functions of a

92-dimensional phase space (,p) can be written in several ways [41].

(ii . 39—)] D)o P orpys  (622)
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or

fro= 3 BL Y () g nize (6.29

or
1 1 1

%det x ' I

f xg = /6 p pp f(:r',p')g(x",p") dz'da:"dp'dp". (624)

1
472 )\?
) is a parameter. The last definition can be checked against the others by using

the Fourier transforms of f and g. The star product can easily be generalised for

functions on a 2N-dimensional phase space (z;,p;) as follows:

789 9 7)]97 6.25)

= A
frg=fexp [Z <ax] Op; ~ Op; Oz

or

=2 Sy (e nmata 6

j=1 s=0 ! t:O

The star product is associative, so for any three functions f, g, h then

fx(g*h)=(frg)xh, (6.27)

but it is non-commutative, so in general

frxg#g*f (6.28)
The star product can be expanded as a power series in the parameter A.
0fdg 0f 0g 2
= i = - A%). .
fro=tgra (G- E ) o (6.29)

It should be noted that the first term in the expansion is ordinary multiplication
of f and g. Therefore, in the limit A — 0 the star product tends to ordinary
multiplication. The second term in the expansion is the Poisson bracket which will

be discussed later.
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Properties

As well as being associative and non-commutative, the star product has the prop-

erty
/f*gdpda: = /fg dpdz. (6.30)

This is because all the terms in the star product are divergences except the first
term fg. Assuming the functions f and g and their derivatives vanish at infinity
these divergences are just integrated out. This property is most easily seen from
definition (6.24) of the star product.

A useful result due to Ian Strachan {41] which will be used in later calculations

is that

e? f(z) x e® g(z) = V) f(z + y)g(z — v). (6.31)

6.3.2 Moyal Brackets

The Moyal Bracket was first introduced by Moyal over 50 years ago [43]. It is the
imaginary part of the star product. The Moyal Bracket of two functions f and ¢

is therefore

1
{f:9}mp = 5.(fxg—g*f). (6.32)
The real part of the star product is known as Baker’s cosine bracket (named after

George Baker, not Linda Baker),

(F.9) = 5(F *g+9x ). (6.39

The Moyal Bracket is a one parameter deformation of the Poisson Bracket which

is given by

_0fdg 059y
{f.g9}pp = 520p  Opos’ (6.34)

The deformation parameter is the X in the star product. It is a Lie algebra, like the

Poisson bracket is, and so satisfies the Jacobi Identity just like matrix commutators

and Poisson Brackets do.

{{f,9Ymm, h}ms + {{g, h}us, f1us + {{h fmB, 9tmp = 0. (6.35)

Arveson showed that the Moyal bracket is the only function of iterated Poisson
brackets which can satisfy the Jacobi identity [73]. The Moyal Bracket is the
unique one parameter associative deformation of the Poisson bracket and in the

limit A — 0 then 3{f, g} »p becomes the Poisson bracket.



6.3 Moyal Brackets and Star Products 76

6.3.3 Wigner Functions

One set of objects commonly used with Moyal Brackets are Wigner functions.
These are phase space distribution functions and were invented by Wigner and
Szilard [74]. Wigner used them as a kind of probability distribution function
constructed from wave functions when he was studying quantum corrections in
statistical mechanics. Since then, Wigner functions have been used in dynami-
cal systems (especially collision theory), quantum optics, quantum chemistry and
M-theory [75][76][77][46]. The time independent Wigner function on phase space
(z,p) is [78] |

h
50) = 5 [ 9= 50U + 50 dy (6:36)

1 is an eigenfunction of the Schrodinger equation, Hy = E. As it stands, the
Wigner function is not a probability distribution function since it can sometimes
be negative. However, integrating it over one of the phase space coordinates, either
z or p, results in an object which is always positive and can be considered to be
probability distribution function. It is non-local, an important property for some
of its uses. The Wigner function can be generalised [41]. For example, one could

consider

Fus(,) / bie = S Pl + Ty)dy, (6.37)

where the wavefunctions 9, are orthogonal,

/ 02 (@) () dz = . (6.38)

It will be a generalised Wigner function which is used to solve the Moyal-Nahm

equations.

6.3.4 Uses and Motivation
Quantisation

The original context for the use of Moyal Brackets was in a formulation of Quantum
Mechanics. This is known as the Weyl-Wigner-Moyal formalism which uses Wigner
distribution functions. Moyal wrote an evolution equation for these phase space
distribution functions f(z,p,t),

of(z,p,1)

ot = {H, f}MB- (6-39)
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H is the Hamiltonian. As is well known, when writing classical objects as quantum
mechanical operators the ordering matters since the operators do not commute. In
the Weyl-Wigner-Moyal formalism, Weyl ordering is used as the way of choosing
the order the operators are written down. Baker showed that the Moyal evolution
equation and Wigner distribution functions imply quantum mechanics [79].

Essentially, the Moyal quantisation process involves replacing all multiplication
with star products and using Wigner distribution functions instead of the usual
wavefunctions. Wherever there is usually a commutator there is now a Moyal
bracket. The deformation parameter is /. This is quite a natural way to quantise
since in the classical limit (A — 0) the Moyal bracket reduces to the Poisson bracket
as expected.

Bayen et al. stated that the Moyal bracket is the only deformation of the Poisson
bracket which can be used like this [80], while Arveson showed that the Moyal
Bracket is the only such object which can be used in the phase-space formulation

of Quantum Mechanics [73].

M-Theory

Moyal brackets can not only be used in quantisation but they can also appear in
association with M-Theory [46][81]. M-Theory is the 11-dimensional theory which
has SUGRA as its low energy effective description. It also reduces to the five string
theories in various limits. Banks et al. have constructed a M (atrix) Theory which
is a matrix model which describes this theory when the large N limit is taken [36].

N is the size of the matrices. A typical action [38], in this case for matrix string

theory, 1s
1 ] o
S = o Tr ((DiX“)2 + 676 + ngii- - ?[X#,X 24 g_gT’Yu[Xu>9]> dodr.
L] s

(6.40)

This is the action for N' = 8 supersymmetric U(N) Yang-Mills theory. The
X* are N x N Hermitian matrices and are the scalar fields. The 6%, 0% are eight
fermionic fields. The ¢ and T are the world-sheet coordinates. To recover M-Theory
we need to take the large N limit. The Moyal brackets give a way of approaching
this limit. If we rewrite the theory by replacing all multiplication by star products,
then the commutators are replaced by Moyal brackets, fermionic terms involve the

cosine bracket and the matrices X# are now functions over a phase space, (a, §)
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say. The deformation parameter is A = %” The action is now

1
2mal

Sup =

/((DiX“)2 +((67,99)) + ¢S Tx F; (6.41)

1 o o 2
_(E{X’X}MB) gs(( Y~ {X G}MB))>dodeadﬂ.

We now need to take the large N limit. As the value NV (taken to be an odd integer
else this does not work) is increased the Moyal bracket becomes an infinite sum
of copies of the commutator [X*, X*]. In the large N limit this is the Poisson
bracket. So, when we take the N — oo limit of the Moyal action then we get an

action involving Poisson brackets,

1
2mad

SPB =

/ ((DiX“) +07P0 + g TrF (6.42)
——g—{X“ XY+ 9%{){# e}pB) dodrdadg.

Moyal brackets just give a different way of considering the large N limit.

String Theory and Non-commutative Geometry

One of the most recent uses of the star product was in the work of Seiberg and
Witten [44] (and all the spin-off papers from this work) which showed the equiva-
lence between ordinary gauge fields and non-commutative ones. They considered
non-commutative geometry with coordinates z* which have a non-zero commutator

given by
(2%, 27]) = i67. (6.43)

In this case, the deformation parameter of the star product is taken to be the

antisymmetric matrix # which has components 6¥. The star product is
= 30700 (6.44)

They showed that ordinary Yang-Mills and non-commutative Yang-Mills are equiv-
alent for open strings in a constant, non-zero B-field and that it is possible to go

from one theory to the other simply via a change of variables.
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6.4 4D Moyal-Nahm Equations and Solutions

The aim of this section is to find solutions to the Moyal-Nahm equations in four
dimensional Euclidean space-time.

The Moyal-Nahm equations are simply the usual Nahm equations (6.7) where
the commutators have been replaced by Moyal brackets and the matrices A*(t) are
replaced by functions X*(¢, z,p). This X+ (k=0,1,2,3) is a field in four dimensions
which depends upon only one coordinate, in this case ¢, and phase space (z,p).

The Moyal Nahm equations in four dimensions are

ox?!

Erale {X% X*}ums,

0X?

—at—‘ - {X3,X1}MB, (645)
ox3

i = XX s

To solve this set of equations we use the ansatz
1 [ g .
X' = ; / 1/}; (113 - Y t)ewkwk (.’13 -+ Y, t)e27rzpy//\ dy) (646)
-0

which takes the form of a generalised Wigner function. The €7* is the usual to-
tally antisymmetric e symbol (with convention €'*> = +1). The (=, t) are three

component wavefunctions. These wavefunctions were chosen to be of the form

P1(z, 1) fi(t)g(z)
Y(z,t) = | Yalz,t) | = | f(t)da(z) |, (6.47)
¥3(z, 1) f3(t)¢3(z)

where the ¢;(z) are orthonormal wavefunctions. The star product of X7 and X* is

calculated as follows:

Xj * Xk = — / ’(ﬁj(.’)’) -y, t)Ejil’(/)[($ +, t)e27ripy/)\ %

,(/)In(x _ y’,t)ékmnl/)n(ib 4+ y’,t)ehipyl/'\ dydy’.
Using (6.31)

== / wj(as -y+, t)eﬁlwl(x +y+v, t)e27fipy/A

i/fjn(x . y' —y, t)ekmnwn(x + y' —y, t)empy’//\ dydy',
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and via a change of variables
1 y )
=3 /Tﬁjn(w — y, )™ 2, (1) (x + y, )PPV M dy (6.48)
1 g )
~ 73 / oLz — y) ()" Zni ()€™ () di(z + )€™ dy,

where orthogonality of the wavefunctions ¢, (z) is assumed to be of the form

/—00 qﬁ;(a:)gbk(a:) dz = 0k, (6.49)
and
fit) 0 0
Z(t) = ff! where f= 0 fat) 0 . (6.50)
0 0 f3(t)

The partial derivative 6—;{—’, a much simpler calculation, can be written as

ax' 1
ot 1

By putting these into the Moyal-Nahm equations we obtain three matrix equa-

[ it -5 (FOS @) bua+ ey (65)

tions of the form
—.—(ff(t)elf(t)) = ;—il(fT(t)e3Z(t)62f(t) - fT(t)EQZ(t)63f(t)), (6.52)

where € is a 3 x 3 matrix with j&*® entry €. Equating the entries in the matrices

gives differential equations of the form
0, .. 1 .
E(f2f3) = _Z|f1|2(f2f3),
0, ,. 1 . -
éz(fsfz) = —Z|f1|2(f3f2)a (6.53)

and cyclic combinations of these. These result in the following set of three differ-

ential equations:
O (IBRIBE) = —SIA IR
8t 2 3 - 2 1 2 3 >
0 1
§(|f3|2|f1|2) = —§|f1|2|f2|2|f3|2> (6.54)
0 1
a(|f1|2|f2|2) = "§|f1|2|f2|2|f312~

Note that for each of the above, the right hand side of the equations is always the

same. It is these equations which need to be solved to find the solutions to the

Moyal-Nahm equations.
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6.4.1 Simplest Solution

The simplest solution is to set all the f; equal to each other. This gives the solution

AP = 15 = 1P = HLK (6.55)
so that
71O = Flt) = Js0) = <= (6.56)

where K is an arbitrary constant. Since each component of the field X *is dependent

on |f;]? then the ¢ dependence in this example is a simple pole.

6.4.2 Another Simple Solution

By setting two of the f; equal to each other then a solution in terms of the hyperbolic

functions can be found.

\f1]> = |f2|* = 4gcoth(qt + K),
|fs)? = 8gcsch(2gt + 2K), (6.57)

so that

A1) = f(t) = 2/gcoth(gt + K),
f3(t) = 24/2g csch(2gt + 2K), (6.58)

where K and ¢ are both real constants.

6.4.3 General Solution

However, ideally we want a general solution to these equations. In this case the
solutions are written in terms of elliptic functions sn, ¢cn and dn. The most general

solution was found to be

2 ,sn(gt + ¢)en(gt +c)
A" = dqk dn(gt + ¢) ’
> _ cn(gt + ¢)dn(gt + ¢) 3
|fol* = oy PTSOE (6.59)
2 = 4 dn(qt + ¢)sn(qt + ¢)
! cn(gt + ¢) '

g, c and k are all constants but may have to be carefully chosen in order to ensure

that all the | f;|? are positive. k depends on the elliptic functions.

"
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6.5 8D Nahm Equations and Solutions

The work is now extended from four dimensions to eight dimensions. The Nahm

equations in eight dimensions are

0A; 1
5 = pCurlAdi, Ak, (6.60)

where the ¢;;; are the structure constants which define the multiplication of the

imaginary octonions. The equations are written out in full in (6.17). These equa-
tions are self-dual Yang-Mills equations in 8-dimensional Euclidean space where
the gauge fields depend on only one coordinate , z° = 7 (the zeroth coordinate),
and the gauge is fixed so that A = 0.

We now attempt to find solutions to the 8D Nahm equations. In particular,
we are looking for matrix solutions. To do this we must first find sets of matrices
which satisfy the algebra generated by the Nahm equations, i.e. sets of matrices,
B; (i=1,...,7), which satisfy

mB; = %cijk[Bj, By}, (6.61)

where m is some number.

6.5.1 Solution 1

It is known that a solution to the 8D Nahm equations is
A= —6%61-, (6.62)
where the e; form the basis of the imaginary octonions. Since the octonions are
non-associative, there are no matrix representations of the octonion algebra. It
would therefore be reasonable to question whether a matrix solution to the 8D
Nahm equations exists at all.
However, the octonionic structure constants can be used to find a matrix so-
lution of the Nahm equations. Seven matrices, B;(i = 1,...,7), were constructed

where the j-kth component of the sth matrix is the octonionic structure constant
Cijk- 1.e. A

[Biljk = cijk- (6.63)
These matrices, B;, are written out in full in Appendix D. The matrices satisfy

the equations

1
3B; = icijk[Bj, By, (6.64)
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which are basically the Nahm equations without the partial derivative. The possible
7 dependence of solutions based on these matrices was explored. In this case, the
most general solution to the Nahm equations to be found was one involving a simple
pole.

Ai:—'——- i .
2B (6.65)

6.5.2 Solution 2

Solutions with a more general 7 dependence can be found using a different set of
matrices. Consider a set of matrices which are a direct sum of representations of
the SU(2) algebra. These matrices are not reducible. The example we use is below,

although obviously there are other possible constructions.

03 090 o1 0 0

B] = —'L 0 03 0 , BQ = —’é 0 bO'Q 0 5
0 0 o3 0 0 2co3
aocs 0 0 a0 0 0

B3 = —1 0 09 0 ) B4 = — 0 b0'3 0 )
0 0 7;602 0 0 09
aocy 0 O taoz3 0 0

Bs = —1 0 —ibO’g 0 R BG = — 0 g1 0 s
0 0 o1 0 0 coy
J9 0 0

By =—i| 0iboy 0 |. (6.66)
0 0 CO3

Each matrix is a direct sum of three sigma matrices. The sigma matrices are

the usual 2 X 2 matrices

01:(01>, Uzz(qi), 0'3:(1 O) (667)
10 -1 0 0 -1

The set involves three arbitrary parameters (a, b, ¢). None of these parameters can
be set to zero if the solution is to stay irreducible. These seven matrices satisfy
the equations (6.61), just like the last set of matrices, but this time m = 2. The

aim is now to find solutions to the Nahm equations with non trivial 7 dependence
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(setting a = 1, b = 1, ¢ = 1). The most obvious way of doing this is to multiply

each matrix by a function of 7, f;(7). So

A; = fi(1)B; i=1,...,7. (6.68)
However, this ansatz is too restrictive and the only solution to be found is

A =—-—B, 1=1,...,7, (6.69)

as before. However, a more general ansatz gives a different result. This time

multiply each matrix B; by a diagonal 6 x 6 matrix C; given by

fi(T)]lg 0 0
Ci = 0 gi(T)ly 0 . (6.70)
0 0 h/l (T)HQ

This amounts to multiplying each ¢ matrix entry in each matrix B; by a different

7 dependent function. It is easiest to consider each row of o matrices separately.
First, we shall look at the top row of sigma matrices and put in the 7 dependence

by multiplying each matrix by a function f;(7). Putting these 2 x 2 matrices into

the Nahm equations gives the following set of differential equations,

02— ot + 2hsfs — 2afe
0 0 0
5{‘1‘ = 2faf7, 5{73 = 2fafs, —aé =2f2fs, (6.71)
% = 2fafs, %J;s = 2faf4, %é = 2f2f1,
and the following constraints,
fifs = fifs, fefr = fifs, fafs = fsfs. (6.72)

Note that all of the differential equations involve f;, but none of the constraints
do.

These can be solved in terms of elliptic functions. It was found that
1
fe = Kifs = KhMifi = §K1M1Q15H(Q1T+d1),
—1
fo = Kifs = KiMafr = TKlMlQlcn(f11T+d1), (6.73)

7
fo= §q1dn(q1’r+d1),
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where cn, sn, dn are elliptic functions and K, M, q1, GQ1, di are all constants.

The elliptic functions are related to each other by a parameter &, as follows

sn’(z) + cn®(z) =

dn®(z) + kisn®(z)

1,
1, (6.74)

where k; = %\/1 + M2(1 - K3).

Similar results are obtained when the second and third rows of sigma matrices in
the B; are considered and the functions g; and h; have a similar form to the f;.
Putting all of this together, the following set of matrices satisfy Nahm’s equations

in eight dimensions.

ficz 0 0 faor 0O 0
Ai=—i| 0 gos 0 |, Ay = =1 0 goop O ;
0 0 hos 0 0 ihyo3
faos 0 0 ifsor 00
Ay = —1 0 gs509 0 ; Ay =—1 0 9403 0 )
0 0 ihsoo 0 0 hyoo
f50'2 0 0 'if603 0 0
As = —i| 0 =—igsoz 0 |, Ag = —1 0 geor 0 |,
0 0 h501 0 0 h602
f702 0 0
A7 = —3 0 ’1:970'2 0 ’ (675)
0 0 h70’3

where f; are given in (6.73) the other 7 dependent functions are given by

1
95 = Kogs = KoMogy = §K2M2Q28H(Q2T+d2),
—1
g1 = Kago = KoMygs = 7K2M2QQCH(Q2T+C£2), (6.76)

7
g = §Qan(Q2T+d2);

1
hy = Ksh; = KsMsh, = “2‘K3M3Q3SH(Q3T+d3);

—1
hg = K3h5 = K3M3h4 = 7K3M3Q3(3H((]37’+d3), (677)

1
h5 = §q3dn(q37' + d3)
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The matrices used here are not the only solutions which can constructed using
direct sums of representations of SU(2). The sigma matrices in each row can be
replaced by representations of SU(2) of any dimension. Also, the matrix B; does
not have to be a direct sum of three objects, it could be a sum of any number of
two or more objects. For example, B; which are 4 x 4 matrices can be found by

omitting the last two rows and columns of the B; used above.

6.6 8D Moyal-Nahm Equations and Solutions

The Moyal-Nahm equations in eight dimensions are:

ox!

5 (X%, X"} + {X8 X3 up + {X°, X s,
0X?

—8t— = {X77X1}MB + {XsaX3}MB + {X4’X6}MB’
0Xx3

— = (X X + (X5, X s + (X% X s,
0x*

ot (X1, X*Yup + {X8 X s +{X", X*}u, (6.78)
8X5 _ 4 1 3 2 6 7
T = {X* X" s +{X°, X} +{X", X }mB,
0X° 5
W = {X3;X1}MB + {X27X4}MB + {X7’X0}MB’
8X7 _ 1 ) 3 4 -5 6
e —{X , X }MB+{X , X }MB"'{‘X , X }MB'

Again, they were obtained from the Nahm equations by replacing the commutators
with Moyal Brackets and the matrices A; with functions X . An ansatz based on
the generalised Wigner function, similar to the one used for the 4D Moyal-Nahm

equations, is used. It is
X; = z'/oo Wiz — y,7)Bab(z + y, )XV dy, (6.79)
—co
where 1(z, t) are six component wave functions of the form
¥; = f;(1)$;(z), Jj not summed, ‘ (6.80)

and B; are 6 x 6 matrices. Again, the ¢;(z) are orthonormal.

6.6.1 Sigma Solution

In the first solution, the matrices, B;, are the direct sums of sigma matrices as given

in (6.66) but with parameters a,b,c = 1. There is no loss of generality when doing
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this since these parameters can be considered to be contained in the 7 dependent
functions f;(7). As before, this ansatz was put into the Moyal-Nahm equations.

The differential equations for the functions f;(t) were found to of the form

ol f:]? o(fy i
WL pie, QB 2 e +isnins,
0| f2|* A(fifs
gjl = ~|Al1fl%, (’;Tf?) = —%(|f1|2 + LI fufs. (6.81)

The differential equations are similar for f3, f4 and fs, fs.

They can be solved to give the following solution.

{f17f27f3af47f5af6} =
{ WK  2J/Kiet?  2Keifs  2/Kze®t  2\/Kje?s  2/Kze' }
1— e—KlT’ \/éKlT _ 17 \/1 _ e—}{zT7 ‘/eKzT _ 17 \/1 _ e—KgT’ \/6K3T -1 )
(6.82)

All K; and 6; are real constants. This solution can be generalised to solutions
with B; matrices which are direct sums of any number of, but at least two, sigma

matrices.

6.6.2 Epsilon Solution

Another solution can be found using the three dimensional representation of SU(2),
which involves the completely antisymmetric matrices €;;;. This time, the matrices

B; are the direct sums of two epsilon matrices. For our example, we used
-0 0 0 €3 0
By = - ° , Ba=-— “ , Bs=-— ° , Bi=— e ;
0 € 0 e 0 e 0 €3
0 ez 0 0
Be=— (2" ), Be== (" "), Bi=— 2"}, (6.83)
0 ie3 0 & 0 7¢9 '

where the jk* entry of the matrix ¢; is given by the totally antisymmetric tensor

eijk.z'.e.
00 0 0 -1 010
a=10 01], e=lo00 o0, ee=|-100]. (68)
-1 0 10 0 000

Putting these B; matrices into the ansatz we now solve the differential equations

for the functions f;(7) obtained from the Moyal-Nahm equations. These are of the
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same form as the ones obtained from the 4D Moyal-Nahm equations when solved
using € matrices (6.53). The 7 dependent functions f;(7) are therefore same form

as the solution (6.59). The solutions are

T T+ b)en(Q7 + b)

AP = 4qk2sn(qu+ c)en(gr + c)’ il = 4QKan(Q + ’
n(gr+c) dn(Q7 +b)
7+ ¢)dn(g7 + ¢) cn(QT + b)dn(QT + b)
|f2|2 = _4qcn(q hi C) s If5|2 = —4Q )
sn(g7 + ¢) sn(QT + b)
_dn(gr +c)sn(gT +¢) _ ~dn(Q7 4+ b)sn(Q7 + b)
A =44 cn(qT + ¢) el =4Q cn(QT +b) (6.85)

q, Q, ¢, b, k, K are all constants. k, K are the parameters which depend on the
elliptic functions. These solutions can be extended for direct sums of more than
two ¢; matrices. For a direct sum of n ¢; matrices, the B; will be 3n X 3n matrices
and ¥ (z, 7) will be 3n component wavefunctions.

It would also be possible to find solutions using other direct sums of represen-

tations of SU(2) for the B; in the ansatz.

6.6.3 Octonion Solution

The same method can be used to find solutions based on the seven matrices con-
structed using the octonionic structure constants. The same ansatz (6.79) is used
as before but this time the matrices B; are (6.63) and the 9(z,T) are seven com-
ponent wavefunctions. Putting the ansatz into the Moyal Nahm equations gives
differential equations for seven functions f;. However, the only solution to be found

for these equations was

fi - _\/—7’ (6-86)

so the whole function X* has a simple pole solution. The only way of obtaining

other solutions is if several of the f; are set to zero.

6.7 Summary

In this chapter we have discussed the Moyal-Nahm equations and their solutions.
These equations come from the Nahm equations, the solutions to which form a set
of solutions to self-dual Yang-Mills. The concept of self-duality has mostly been

studied in four dimensions but has been extended to higher dimensions.
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The Nahm equations in eight dimensions have been given. The motivation for
studying eight dimensions is the existence of eight dimensional Yang-Mills in matrix
string theory and the fact that eight dimensional self-duality closely resembles self-
duality in four dimensions. This last part is most clearly seen when the self-duality
condition is written in terms of quaternionic structure constants in four dimensions
and octonionic structure constants in eight dimensions.

To obtain the Moyal-Nahm equations we simply replaced the matrices in the
Nahm equations with functions and all multiplication with star products. The
commutators in the Nahm equations became Moyal Brackets. The Moyal Bracket
is a one parameter deformation of the Poisson bracket and was first introduced in
the context of writing down a formulation for quantum mechanics.

Solutions to the Moyal-Nahm equations in four and eight dimensions were found
using an ansatz based on the generalised Wigner function. Such Wigner functions
often appear in theories involving Moyal Brackets. Solutions to the eight dimen-
sional Nahm equations were also found.

During the construction of solutions, sets of matrices which satisfy the algebra
created by the 8D Nahm equations when the partial derivatives are removed were
obtained. One of these sets of matrices was constructed using the octonionic struc-
ture constants. The octonions seem to feature strongly in the eight dimensional

case.



Chapter 7
Conclusion

The question asked at the beginning of this work was is there a field theory associ-
ated with strings and branes analogous to the Klein-Gordon theory for particles?
The conjecture of a field theory with the companion Lagrangian and its equations
of motion seems to be a good candidate for such a theory. Although it may re-
quire some alterations, in principle this proposal is a good one and deserves further
investigation.

The companion Lagrangian is a better idea than the early proposals of Hosotani
and those of Morris since it reduces to the Klein-Gordon Lagrangian in the particle
case which these other ideas do not. In the particle case they have many fields,
not one. The companion Lagrangian has the same number of fields as the number
of world-sheet coordinates for the object it is describing. Like the later work of
Hosotani and Nakayama, the companion Lagrangian is further motivated by the
Hamilton-Jacobi formalism for strings and branes.

One of the remaining questions is whether to take the Lagrangian with or
without a square root. While the non-square root case is a direct analogue of the
Klein-Gordon Lagrangian, the square root case has many things in its favour. It
possesses general covariance, the equations of motion have either been shown to be
integrable or show signs they will be, and the Lagrangian is a direct continuation
of the Dirac-Born-Infeld Lagrangian but for more base space coordinates than
target space coordinates. However, recently it has been shown that the equations
of motion for the companion Lagrangians with and without square roots are the
same if the Lagrangian is set to be a non-zero constant.

These two types of Lagrangians can also be linked together by an equivalence

theorem which states that the equations of motion for a companion Lagrangian

90
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without a square root when subjected to some constraints are the same as the
equations of motion for a companion Lagrangian with a square root in one less
dimension but with the same number of fields. A proof has been given for this.
However, these constraints have not been fully understood so further work needs
to be done, either to understand these constraints or to find other ones which lead
to the same equivalence. The constraints that have been found may turn out to
be sufficient but not necessary. They could be a special case of some more general
constraints. It would also be interesting to find out if any other types of Lagrangians
have a similar equivalence theorem. The proof in the appendix depends on the use
of an epsilon identity which could be useful in other calculations and proofs.

Both the Born-Infeld Lagrangian and companion Lagrangian can be written
as the square root of Jacobians in quadratic form. This persists even when a
background metric is added. The equations of motion for these theories have a
similar structure and both involve Jacobians. However, the number of independent
equations of motion differs in each case. For the Born-Infeld case the number
of equations depends on the number of target space coordinates and base space
coordinates. For the companion equations this number depends only on the number
of fields, not the number of dimensions. The companion equations are sums of
Bateman equations or Universal Field equations. This makes the theory integrable
or at least makes it easy to find a large class of solutions. More work could be done
in this area to find more general solutions for theories with any number of fields or
dimensions.

The inclusion of electromagnetism in the theory was investigated briefly and
four possible ways of incorporating a gauge field were given. It is not clear which
proposal is the right one, although the proposals which maintain covariance are the
strongest candidates since this is a desirable property in our theory.

The fact that the companion Lagrangian with a square root is a homogeneous
function of weight one in the Jacobians made it possible to extend the iterative
procedure for Lagrangians with one field to Lagrangians with two or more fields. At
present this has only really been done for two fields in three dimensions. The most
interesting aspect of this was that after two iterations the expression only depends
on one of the fields in the form of a generalised Bateman equation. It is completely
independent of the other field. The extension to d — 1 fields in d dimensions is
relatively straightforward. However, further work could be done to investigate

more d=3, n=2 cases. Also, extension to more fields in higher dimensions should
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be done so that more than two iterations can be considered.

One of the properties of the companion Lagrangian is that it is a divergence on
the space of solutions of its equations of motion. In fact, this is also true for other
theories. Lagrangians for a large family of field theories are a divergence or vanish
on the space of solutions of their equations of motion. This property means such
theories could be called ‘pseudo-topological’ because a Lagrangian which is a diver-
gence without any additional constraints is fully topological. The full meaning and
implication of this property is, as yet, unknown. Therefore, further investigation
is required.

Overall, an important and interesting question concerning a field theory asso-
ciated with strings and branes has been discussed and solutions to its equations of
motion have been found. Although the ideas may require some modification, they
give a good basis for further investigation. The study of the companion Lagrangian
and its equations of motion has also led to other observations which are relevant
to other Lagrangians too. This includes the iterative procedure work which covers
many Lagrangians which are homogeneous functions of weight one in the Jacobians,
not just those Lagrangians with the structure of the companion Lagrangian. It also
includes the property that all free field theory Lagrangians are a divergence on the
space of solutions of the equations of motion, of which the companion Lagrangian

is just one example. There is scope for a lot more research into this subject.

The last part of this thesis was a search for solutions to the Moyal-Nahm equa-
tions. It was found that solutions to the Moyal-Nahm equations do exist.

Solutions to the 8D Nahm equations and 4D and 8D Moyal-Nahm equations
have been found, although the list given is by no means exhaustive. The solu-
tions are constructed from generalised Wigner functions. The dependence on the
coordinate ¢ or 7 is often based on a simple pole or elliptic functions.

The solutions in four dimensions are useful because this is the number of di-
mensions we like to think we live in. The solutions in eight dimensions may turn
out to be useful in the context of M(atrix) theory which has a Yang-Mills action
which involves eight bosonic fields, X*.

As well as the solutions, sets of matrices which satisfy the algebra generated
by the eight dimensional Nahm equations have been found. One set is based on
the octonionic structure constants. The other set is based on representations of

SU(2). The matrices are a direct sum of any number of representations of SU (2).
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Any representation can be used. These sets of matrices may be useful elsewhere,
possibly in other areas which are related to the octonions. There may be other
matrices which obey the algebra.

With the increase in interest in non-commutative gauge fields and replacing
multiplication with star products in many theories, these results could turn out
to be useful in the future. This work shows that by putting star products into
self-dual Yang-Mills, solutions can be found and a way to construct an ansatz for
such theories has been given. A similar ansatz, involving Wigner functions, could
be used to find solutions to other theories involving Moyal Brackets.

Further research could be done to find more solutions to the Moyal-Nahm equa-
tions in four, eight, and maybe other dimensions, as well as finding solutions to

other theories containing star products and Moyal brackets.



Appendix A

Proof for the Equivalence

Theorem

The proof in this appendix is based on [4].

A.1 Theorem

The equations of motion for the companion Lagrangian, without a square root,

with n fields, ¢¢, in d space-time dimensions (z*),

o4 09!

L = det =1,2,...,d Al
€ ax# 8.',17# ) % () s W ( )
subject to the constraints
oc . .
~¢* =0  inotsummed, p is summed, (A.2)
o, "

and the Lagrangian vanishing, are the same as the equations of motion for the com-
panion Lagrangian with a square root with n fields but d—1 space-time dimensions,
i.e. in one dimension less,

o' o

L=y det Oz+ Oz,

b

A.2 Conventions and Notation

The n fields are ¢* where i = 1,... ,n. They depend on the d space-time coordinates
z*, where p = 1,...,d. Partial derivatives are denoted by
a¢i o2 ¢i o

(A.4)

Fra P dzhozr M
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There is summation over indices unless otherwise stated.
Totally antisymmetric tensors €,,,,. ., are used throughout the proof with the
convention €5 4 = +1. When indices have an arrow above them then they repre-

sent several indices. They can be thought of as vectors with several components.

ii, 7, 7,3 each have (n — 1) components. For example, /i denotes {a, t3, ... , itn}
7 & each have (d — n) components. For example, K denotes {1, k2,... ,Ka—n}-
&' denotes {kg, K3, - .-, ka—n} and K" denotes {Ks,... ,K4_n}
For the product of (n — 1) fields we use the notation &7 = ¢2 ¢35 ... ¢ .
Also, r =d—n.

A.3 Useful Epsilon Identity

A useful identity for the antisymmetric epsilon tensors, which will be used through-

out the proof, is

€pvavs..vg€orp2..pa = Eprvava..va€upa..pa T €pavavs..vaCprups..pa T - - -

oot €pguavs. g €pipapas i (A.5)

It amounts to swapping the index u from the first epsilon with each index from the

second epsilon. For a more involved explanation of this identity, see Appendix C.

A.4 Equations of motion

Consider the Lagrangian for n fields ¢ in d space-time dimensions z* which does

not involve a square root,

¢ ¢
L = det —1. A6
 \ozn oz, (4.6)
The equations of motion for this Lagrangian are
oL .
5 ¢, = 0. (A7)
03,00y

These determinantal Lagrangians can be written as the sum of squares of Jacobians.

The Jacobians will be denoted as

: 1 42
J,‘{ = ']Kllizn-Kd—n = €k1K9...Kg_nV1V2...Vn u1¢u2 s ¢Zn (AS)
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For the square root case the Lagrangian is

O¢t O 1
L =, t|——| = J,—g R A.
de Ozt 0z, (d — n)! / (A4.9)
The equations of motion for this can be written as
Juzr Jur @ = 0. (A.10)

The calculation for obtaining these equations of motion is given in Appendix B. For
n fields in d — 1 dimensions, the equations of motion for the companion Lagrangian

with a square root can be written as
Jaarr Jagrr Pop = 0. (A.11)

This is the expression we will be looking for.

A.5 The Constraints

The equations of motion for the non-square root case will be subject to the following

constraints.
oL .
¢!, = 0. (A.12)
oL, "
There is no summation over the index 7, but there is over index p. Also, we set
L=0.

The idea is to reduce the number of dimensions from d to d—1. The constraints
(A.12) can be used to eliminate all second derivatives of the fields which involve a

partial derivative with respect to z¢, the dth dimension. i.e. From the constraints

oL oL oL

) Era ) gL, 06, ,;

i =~ o Popr Paa= T2 af- (A.13)
%04 (6«5:;)

Again, there is no summation over ¢ but there is over o, f = 1,2,... (d— 1). Putting

these constraints into the equations of motion (A.7) we have

"o [(aa)z 8L oL oL 8L AL AL OL
)2

06,04, 09}, 00, 041,06,  0¢} 0¢h 06408

2 0%

o (e
¢,

n oL 0L 0*°L i
o¢h 0¢), 008, | 0

(A.14)

The equations of motion no longer involve any second derivatives with respect to

2%, Note that the indices o, 3=1,2,...,(d — 1) throughout this proof.
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A.6 The Proof

For the moment we shall consider the equation of motion with respect to field
¢* = ¢ and we are only looking at the component which involves the terms @ug.
The other components will work in the same way. Writing the Lagrangian without

a square root in terms of Jacobians then we have

1
L= MJEJE
1
(d _ ) el/KI/Epr¢l/¢p® @ (A-15)
(d— o) qﬁ,,(bp vp where B,, = €vricpisPo®Pp,

using the notation defined in section A.2. The first and second partial derivatives
of the Lagrangian can therefore be written as

oL 2 0*L 2

o,  (d— n)!¢VB“V’ 00,06, (d—n)

The numerator of the coefficient of ¢,p in (A.14) becomes

By, (A.16)

[B,ud(BudBaﬁ - BuﬁBad) + B;_La(Buﬁde - BudBﬂd)]¢u¢u- (A17)
Now,

B,4Bop — BupBaa = [evritdrsarstprs — vrptpritaritirs] p®s®;Ps
= € zp€ars|Carrprs — €prrtars|PaPsPsPs. (A.18)

Using the epsilon identity (A.5) to move the index § around in the first two epsilons

in the square bracket then

€arr€prs = €PRUCITE + €dBky.. k€K1 TG + €dkof.. K€K TE +...+ €dky..kr100Ck, 75

+ €4RBus..vn Cva7d T €dRvaf. wn€us7d T - - T €dRuy..vn_ 1 BEVRTG-

(A.19)

The first term on the right hand side is just the other term in expression (A.18)
so this will cancel. The last n — 1 terms will all vanish when put into (A.18) due
to symmetry conditions. This is because in the second. epsilon, €,,77, V4 and o; are
antisymmetric, but in (A.18) v; and o, are symmetric due to the $,;P; term, so

these last n — 1 terms vanish. This only leaves the middle terms. By swapping the
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labels x; and x; and using antisymmetry of the epsilons to permute the x; with

other indices we have

€vky..kri€drika.. B ko PCkiTE = Cukipy..srfiCdrikg.. B ko 7€k TG
= €uky..ki.. ke fi€dBky.. ki ko TR TG

= €7i€dBrs. ke DEK TG (A.20)
There are 7 = d — n of these terms. Therefore,
B,4Bap — BugBad = Tevrip€aritapr it 752 PsP5Ps. (A.21)

The epsilon identity (A.5) can be used again to swap subscript «, about in the first

two epsilons in the expression above

€vii€arp = Cvaka..kri€r1TF + €uriky.. ke fCak1 T T +...+ €vrrka.. krfi€ary .. Tro1K1P

+ eupgnz...nrﬂea'f’mpg...pn +...+ Eupnng...nrﬁeafpg...pn_lnl'

(A.22)

The last n — 1 terms will vanish when put into (A.21) due to symmetry consider-
ations of the indices p; and p;. By relabelling indices and using the antisymmetric

property of the epsilons the middle terms become

€vrika.. ke i€aty.. k.. T pERITE — €vkiky..kri€am) .Ti T PETITY KL TG

(A.23)

— _Euﬁﬁeaﬁfﬁfnlf&'-
Since there are r of these terms we can write

€vri€aii€r7ePiPs = (Evaii€ri7ptri7e — TeRECTFer177) PP

= (1 -+ T)Eygﬁeafﬁﬁmfa@ﬁ®5 = Gya,glﬁﬁmfﬁm;g@ﬁ@p‘. (A24)
which gives

r
B,4Bag — BugBag = r—‘Bnn[fuaE’ﬁedﬂk"ﬁ@ﬁ@ﬁ]- (A.25)

+1

Substituting this into the expression (A.17) we find

B, ;| Bui€vai g€apis + Buatuir p€pars)@aPsdudy
= By,[eprs€ars€ar g€apivs — Eprpearatvar p€aprs|PaPo®sPsudy
=B,

€ urs€apr i (€arsCvar i — €arsvairi)| PaPo®sPsdudy. (A.26)
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Now, using (A.5) to move subscript d,

€d75€var' i = Cv7a€dar’ i + €arFCuvdr! i + €ro7i€radrs...krfi +...+ €xr7G€raky..kr_1dfi

+ €ua7G€vardus .. .un +...+ €un7GCvak .. pin-1d-

(A.27)

The second term will cancel with the term in (A.26). The last n — 1 terms will
vanish due to symmetry considerations for the indices y; and ;. For the middle

terms, by relabelling and using antisymmetry,

(A.28)

€x;75Cvaks.. . d..kr G€APKa .. Ki..ke T — EraTFCvadr! i€dPR' T

There are (r — 1) = (d — n — 1) of these terms. We now have

-
r+1

B, leprstvraCani p€aprs + (T — 1)€uipensraradrr i€apra]Pa®s®;Ps sy
(A.29)
Again, rewriting the epsilons from the second part of (A.29), this time moving

subscript xo,

€pFF€dBR' T = Ena7p€dpur’'s T €ungro..mrp€dpniR’ + - o -+ €ur iy kof€dBrRT

+ €uinaps...on€dBpai’v t - F Eutpy.pn_rra€aBpnR-

(A.30)

The last n — 1 terms will vanish due to symmetry considerations of v; and p;. For

the middle terms, again by relabelling,

€ty ke PEABTi RN FE Ry 76 = —EprFEdPR FERaTF - (A.31)

There are r = d — n of these terms so,
(1 + 1)eurseapr o€r, 7z PoPp = €nyrp€apuir v€rya Lo Pp. (A.32)

Therefore, we now have
T r—1
By, [€ursturs€ior i€dpis + —Enyritrrravadir i€iprr 5| PpPoPsPs Bududap.

r+1 r+1

(A.33)

Rewriting this in terms of the Lagrangians and Jacobians then this becomes

T r—1
_BTT ok i R”D(I)"CI)D' 'L — Bmc] E”J R 1%Pa
7 Brrleaowacapr o ®p®oriL = T BuJaok Jag Jbas

B rr! 8JﬁaJﬁ> l:(a]d,;/ 8Jd,;:)£_ r—1 <8J178J17) I J¢
T r+1\0¢,04.) [\ 04. 9dg (r + 1)1 \ 8¢y 0, ) ~ = "% | To
(A.34)
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This completes the calculation for the terms involving ¢qs. A very similar
calculation can be carried out to rewrite the coefficients of d)iﬁ (j # 1) from (A.14).
Set ¢’ =1 and this time define B,, to be

_ 3 n 13 n
Bup — 6’/1/2#1-*-ﬂd—nVS---Vneplplll---ﬂd—nPSH-pn(ﬁplpr vyt YupTp3 ¢pn' (A35)

We choose 7 = 2 to make notation easier but j could be chosen to be any value
j =2,3,...,n. The calculation is then almost identical to the one given above,

and the term involving 1, is found to be

rrl [ 0J; 0J; <8Jd?§’ 0Jawr s = 1 (0J; 3J,7> oo Juger| 9
r+1\96, 8%, ) |\ 0%a Oyp (r+ D) \ 8, B ) “ % 7% | TP
(A.36)

When the condition that the Lagrangian vanishes is put into the equations of

motion, they can be rearranged to give
Jaorr Japir Pop = 0, (A.37)

as required. Comparing (A.37) with (A.11), these are the equations of motion for
the Lagrangian involving a square root (A.9) in (d — 1) dimensions.

Therefore, it has been proved that the equations of motion for the companion
Lagrangian without a square root when subject to some constraints are equivalent
to the equations of motion for the companion Lagrangian with a square root in one

less dimension.



Appendix B

Equations of Motion for the

Companion Lagrangian

In this appendix we show that the equations of motion for the companion La-

grangian with a square root ,

_ o¢t 0
L= 4/det 95 9z, | (B.1)
can be written as
T Juz @, = 0. (B.2)

Remember that these equations of motion are sums of the Universal Field Equations

which take the form given in (1.40).

Again, we make extensive use of the epsilon identity

€pvav..vg€p1p2..pa = Eprvava..vaCupe...pg T Epavavs..va€p1pps...pa +..

T €pavavs.va€p1p2. pa—1 1 (B.3)

A fuller explanation of this identity can be found in Appendix C. The equation of
motion with respect to field ¢ is
o*L
0¢',00}

¢, =0. (B.4)
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Notation

Indices with arrows above them represent several indices which can be thought of

as a vector. We use the following notation:

&, 7, §, & denote n — 1 component vectors. E.g. & denotes {as, 3, ..., an}.
R, 7 denote d — n component vectors. E.g. & denotes {x1, kg, ..., Kd—n}-
&' denotes the d — n — 1 component vector {ka, k3, . - -, Kd—n}-

Also ®5 denotes the product of n — 1 fields ¢2_¢3 ... 9%, .
We set r =d —n.

First part of calculation

Start by setting field ¢! = ¢. Consider the equation of motion (B.4) with respect

to ¢. The Jacobians and their derivatives can be written as

oJz - 0% Jz
Jz = €250, Py, = €z,Pp, = 0. B.5
’ 09, 38,06, (B5)
Up to a numerical factor the Lagrangian is
L =/T:Js. (B.6)
Therefore,
oL 10Jz
—— =", B.7
06, ~ LOg, (B
S0,
2L 1 [0Jz 0Jz 0Jz . 0J7
— 0, = — ———J;Jf - ——J;{—-Ji—' V- B.8
50,00, ~ I3 (50777 5650, 2 (B8)

This is the term in the equation of motion with respect to ¢ which contains ¢,,.

Using the definition of the Jacobian (B.5), the numerator of this can be written as

(€zua€rvi€instras — €rxpativycrvitias)PaPsPsPsPady Py

= €zuarac (€rvierys — EryiCrvp) PaP7P5Ps Pa Py Puv- (B.9)

Consider the first two epsilons inside the bracket. Using the epsilon identity to

swap index v,

T n

€xvitrns = O Enara.rymeniCrnig T Eryi€rvg + ) " €rvmrs. v nE77is: (B.10)
=1 =2
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The last n — 1 terms will all vanish due to the antisymmetry of the epsilons and
the symmetry of ®;®; The middle term is just the second term in (B.9). The
first r = d — n terms, when multiplied by €z,s, are all the same. This is seen by

swapping the labels of k; and x; with each other and then rearranging the indices.

= Emrcz...fci...nrud'e’yng...ni...fcfuie'?mﬁ

= €RuaEYRvTERK1 P (B.11)
Therefore, the expression in (B.9) can now be written as
T€iua€rasCyivi€in pPaPyPsPs PodyPp- (B.12)

Looking at the first two epsilons, we can use the epsilon identity again to move the
index x; around,

T n

€rpatras — Z €rr ua€nim.. k1. rald + €ar natir, & + Z ﬁaiﬁ’ud'efaagag...m...an- (B13)
i=1 i=2

The last n — 1 terms will vanish due to the symmetry of ®;®;. The first r terms,

when multiplied by €7, 5, can be rewritten by swapping the labels x; and 7; and

then rearranging the indices, as follows,

GTiE’uo_Ze'rsz...nl...Tra&’e’f'lilﬁ' = Cmfi’udenTz...'ri...TraECnTQ...m TPTiD

= —€gpatiastinf- (B.14)

This has the same form as the left hand side of (B.13) (when it is also multiplied

by €7¢,5) so we have
(7‘ -+ 1)6,-{”56.,-—'056;515@&(1)5 = Ga,glﬂaefmgéfmﬁ@@(pg. (B15)

Our expression (B.12) is now

,
T—:Ieaﬁl“aeﬁcl367'3'”'YCF’*lﬁ(I)&(I)”?(I)ﬁ@E‘ﬁad”yqbuu
r
= o lermaernp®s®alleurancrrri®a®idadrdu
r  0J: 0Jr
= T =L T Jui b (B.16)
r+10¢., Obs, " #

Now we need to consider the coefficients of QSLV in the equation of motion, where

i# 1.
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Slight Change in Notation

From now on,
&, 7, 7, & denote n — 2 component vectors. E.g. & denotes {3, y, ..., an}.
Uy denotes the product of n — 2 fields ¢3. 45, ... 9% .

All other notation is the same.

Second part of calculation

Without any loss of generality, we consider the term containing ¢fw. For conve-
nience, set ¢? = 1. The calculation follows similar lines to the one above. We now

write the Jacobian and its derivatives as

Jw = eﬁ’Plpzﬁépl 'd)pz ‘1157 (B'17)

07y 8Je

—_ = Rl .\Il—', = K&l 11/" I\I]"‘. B18
9, €& upap¥o, Vs o, €& i V5 ( )

For the term in the equation of motion containing v, we find

0*L 1 /0J-0Jz oJ= . 0J=
T Yw = 73 R Jedr — ok
Bapa, e = I8 (am a0, " 54, oy,

There are no second derivatives of the Jacobians because these terms vanish due to

J;) Do (B.19)

the symmetry of 9,,. Putting these new expressions for the Jacobians into (B.19),

we find

€Rpr@ €702 (€Rmvi€FpLP2E — ERnpri€Tp1vE) Dn Bor Do Yoo Voo Yo, Va W5 ¥ 5 ¥ 5%y -

(B.20)
Using the epsilon identity to move the p; index about,
T
€Rmv7€Tp1p2p — E :‘Enmz.--pz..-m711/"7€fp1niﬁ'+ €RpavyCTpI P
i=1
n
+ 65’71/’2’76?‘011&5 + E €E’ylu'73'y4...p2...fynCFplryiﬁ- (B21)

i=3
The first 7 terms will give 7€ p,z19,07€7p, 51 f€Rpara 0 the expression from a similar
argument to that used in (B.11). The next term will vanish due to the symmetry
of ¢, ¢y, The next term appears in (B.20). The last n — 2 terms will vanish due

to the symmetry of ¥;¥5. Our expression (B.20) is now

Tfk’uazd’ei’olag&epzk"'yluie'?plmﬁ¢'n ¢p1 ¢01 %2 "/)pz 1,002 \Il&\II,Y\IIﬁ\II&-quy. (B22)
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Using the epsilon identity to move the k, index around in the first two epsilons,

then
r
€Rua2d€io1026 = 5 €/ pas@Crir.. k1. Tr 01026 + €017 par @€k, 096

1=1
n

+602E’ua2d'efalm&' + E eaiﬁ’uagdei‘alazag...m...an- (B23)
=3

The last n — 2 terms will vanish due to the symmetry of ¥5¥sz. The term before

this will vanish due to the symmetry of %4,%,,. The first r terms can each be

TeWTitten as —€zua,6€7010,6€7p x5 1N the same manner as in (B.14), so that

(T + 1)Ek‘uazaffalaﬁffplmﬁ’l/)@1/)02\I/&\I/E = ealﬁ’uazﬁev"‘maz&'e?plnlﬁ¢02¢az\I}d'\llff'-
(B.24)

The expression is now

T
H—leﬂlE'uazd'efmdzaemﬁlwV’_Y'efplmﬁqs’)‘l ¢P1¢01¢a2¢02¢02\de'\lliqlﬁ\llﬁwuu
-
= m[fﬁclaQ&'E?mmﬁQSpl\Ij/ﬂbag\ljﬁ][Euﬁ’alazd'euk"'ylpg'?qsal¢02¢71¢p2\11d‘\11'7]¢uu-
(B.25)
In terms of Jacobians, this is equal to
r  0Jr 0Jz

T T J, g/J,/,-{I v B.26
T+ 100, O, Vu ( )

Therefore, in general, the equations of motion can be written as

o? , 1 0J- 0Jr ,

£ - " T dudl, = 0. (B.27)

0,04, Y =S¥ 0dr, g,
By simple rearranging, it can be seen that this is equivalent to

J;LR"JVE'%U — O (B28)



Appendix C

Useful Epsilon Identity

The proofs in appendices A and B make use of an epsilon identity. This appendix
explains how the identity works. It is easiest to consider a totally antisymmetric
epsilon tensor with only two indices, €;;, where 4,7 = 1,2 and €15 = +1.

The epsilon identity in this case is
€ij€ab = €qgj€ib T €bj€ai- (C1)

This amount to swapping the index 4 with each of the indices a and b in the second
epsilon on the left hand side to give a sum of two terms on the right hand side. To

see that this is true we need to consider several cases.

Case 1

€ij€ab = +1 soi=a,j=>bbuti#jb

Therefore,
€qj€ib = +1 since a = 1, § = b but a # 7, b, as above, and
€pj€ai = 0 since 1 = a.

The right hand side of (C.1) equals the left hand side so for this case the identity

is true.

Case 2

€ij€ab = —1 so1=0>b, j =abut#j,a.

Therefore,
€aj€ip = 0 since a = j, and
€pj€ai = —1 sinceb=3j,a=1ibutb#1,a.

The right hand side of (C.1) equals the left side so for this case the identity is true.
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Case 3

€ij€ap = 0.
In this case then there are three possibilities.

(i)i=7,a#bori+#j,a=>b Three of the four indices must be the same so
€qj€iv = 0, €pj€ai = 0, since in each case, for one of the epsilons both indices are the
same. Therefore, the right hand side of the identity is zero as required.

(ii) i = § = a = b. All four indices are the same 50 €gi€ip = 0, €pj€0 = 0.
Therefore the right hand side of the identity is zero as required.

(iii) 4 = j, a = b but i # a,b. Therefore, €,je; = —e€pj€q:, S0 the right hand side

of the identity vanishes. Therefore the identity is true in this case.

So, it has been shown that in all cases the epsilon identity is true when there

are two indices. Similar arguments can be used to show that the identity works for

higher numbers of indices.

The identity for three indices, using the convention €13 = +1is
€ijk€abc = €ajk€ibc T Ebjk€aic T €cjkCabi- (C.2)
The identity for four indices, using the convention €134 = +1 is

€ijki€abed = €ajki€ibed T €bjki€aicd T €cjki€abid T €djki€abei- (C.3)

In general

So, in general, the useful epsilon identity for a totally antisymmetric epsilon tensor

with 7 indices, using the convention €5, = +1 18

€ijajs...in€a1az...an = €a1j273...5n Ciaz...an T €a3j243...jn Carias...an + T €angajsegn€ara..an_1i
n

= E :Earj2j3---jn6“1‘22~~-i~-an’ . (0-4)

r=1
The index i from the first epsilon on the left hand side is swapped with each index
from the second epsilon on the left hand side to give a sum of n terms on the right

hand side.



Appendix D
Octonion Matrices

The seven 7 x 7 matrices on the next page are solutions to the algebra created
from the Nahm equations. These matrices were constructed using the octonionic

structure constants, c;;x, which are taken to be
C127 = Cp31 = €541 = C532 = C246 — C347 = C567 = L. (D-l)

These are totally antisymmetric. All other c;;; are zero. The 7k entry of the
matrix B; is given by [B;]jr = ¢ijk. The matrices are used in the solutions which

have been found for the Moyal-Nahm equations in eight dimensions.
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D. Octonion Matrices
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