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Abstract 

The Companion Equations and the Moyal-Nahm Equations 
Ph.D. thesis submitted by Linda Baker, August 2000. 

The first part of this thesis is concerned wi th the companion equations. These 

are equations of motion for the companion Lagrangian which is proposed to be 

the Lagrangian for a field theory associated wi th strings and branes, similar to the 

Klein-Gordon field description for particles. The form of this Lagrangian can be 

related to the Hamilton-Jacobi formalism for strings and branes. Some solutions 

to the companion equations are found and their integrability is discussed. 

There is an equivalence between the equations of motion for diff'erent compan­

ion Lagrangians when some constraints are applied. Under these constraints, the 

companion equations for a Lagrangian without a square root are equivalent to the 

companion equations for a Lagrangian wi th a square root but in one dimension 

less. 

The appearance of Universal Field Equations, generalised Bateman equations, 

in the companion equations leads to the study of an iterative procedure for La­

grangians which are homogeneous of weight one in the first derivatives in the fields 

the theory describes. The Universal Field equations appear after several iterations. 

Also, i t is shown how Lagrangians for a large family of field theories are a 

divergence or vanish on the space of solutions of the equations of motion. Such 

theories could be called 'pseudo-topological'. 

The second part of this thesis is concerned wi th finding solutions to the Moyal-

Nahm equations in four and eight dimensions. These equations are the Nahm 

equations, which give a set of solutions to self-dual Yang-Mills, but wi th the com­

mutators replaced wi th Moyal brackets. Solutions are found in terms of gener­

alised Wigner functions. Also, matr ix representations of the algebra generated by 

the equivalent Nahm equations in eight dimensions are obtained. Solutions to the 

Nahm equations in eight dimensions are also given. 
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Chapter 1 

Introduction 

This thesis contains work on two topics. The first is a proposal for a field theory 

associated w i t h strings and branes wi th equations motion which have been named 

the companion equations. The second part is concerned wi th finding solutions to 

a set of equations known as the Moyal-Nahm equations. This introduction gives a 

brief review of some of the background behind the work and introduces some other 

useful topics that w i l l be needed later. 

1.1 Particles, Strings and Branes 

A lot of the current research in theoretical high energy physics is based on the 

study of extended objects called strings and branes. In the first part of this thesis, 

we develop a field theory which can be associated wi th these strings and branes. 

To do this, we first need to explain what strings and branes are. These objects are 

reviewed in [5] [6 . 

1.1.1 Particles 

I t is easiest to first consider point particles. Consider a relativistic particle in 

(i-dimensional space-time. I t is a zero-dimensional object which traces out a one-

dimensional trajectory in space-time, a world-line. This world-line can be param-

eterised by one parameter, r say. The motion of the particle can be described by 

d functions X^{T) where // = 0 , 1 , . . . , (i — 1. 
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The action for a particle is given by 

Summation over indices is assumed here and throughout the thesis, unless specified 

otherwise. The equations of motion can be found by minimising this action with 

respect to AT'^ . 

1.1.2 Strings 

A string is a one-dimensional object which traces out a two-dimensional world-

sheet in (i-dimensional space-time. This world-sheet can be parametrised by two 

coordinates (a, r ) . The motion of the string is described by d functions of these 

coordinates X^{a,T), where fj, = 0,1,... ,d — 1. Strings can be either open or 

closed. As their names suggest, closed strings form a loop and open strings have 

two ends. 

A natural extension of the particle action is to take the string action to be 

V oa OT 

da' da^ 
dadT a' = {a,T), i = 1,2. (1.2) 

This is the Nambu-Goto action for a string. The sign under the square root changes 

according to whether the theory is for Euclidean or Minkowski space-time. The 

action given above is the Euclidean version. When dealing wi th Minkowski space-

time the action is 

det 
dXi' dXf, 

da' da^ 
dadr a ' = {a,T), i = l , 2 . (1.3) 

However, there is also another action which is classically equivalent to the 

Nambu-Goto action. This is the Schild Lagrangian [7], 

da ) [ dr ) [ d a dr J ' ^^"^^ 

which is the square of the Nambu-Goto Lagrangian. The equations of motion for 

the Schild Lagrangian imply that the Lagrangian is a constant. I f i t is a non-zero 

constant then the equations of motion are classically equivalent to the equations 
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of motion f rom Nambu-Goto Lagrangian. I f the constant is zero then we get a 
new set of solutions, the null strings. The Nambu-Goto Lagrangian cannot admit 
solutions where the Lagrangian is equal to zero. 

There is an analogue for this in the particle case. Consider the two Lagrangians 

The equations of motion for the second Lagrangian imply that the Lagrangian is 

a constant. I f i t is a non-zero constant then the equations of motion imply the 

equations of motion for the first Lagrangian. However, the first Lagrangian does 

not permit solutions where the Lagrangian is zero. I t only allows time-like and 

space-like solutions. The second Lagrangian allows time-like, space-like and null 

solutions since the Lagrangian can be zero. 

The main problem w i t h the Schild Lagrangian is that i t is not reparametrisation 

invariant, in contrast w i th the Nambu-Goto Lagrangian which is. However, i t has 

been used in the literature by Eguchi [8], to quantise the string, and by Nambu [9], 

to find a generalisation of Hamiltonian dynamics for strings. 

1.1.3 Branes 

A p-brane is a jo-dimensional object which traces out a (p-M)-dimensional world-

volume in (i-dimensional space-time. This world-volume is parameterised by p+l 

coordinates ( T ^ where i = 0 , 1 , . . . , p . The j9-brane is described by d functions 

X^{o'^) where jU = G , l , . . . , d — 1. A 0-brane is a point particle and a l-brane is a 

string. 

D i r a c - B o r n - I n f e l d Ac t ion 

The action for a p-brane is 

S = -Tp J dP+^a e - * y / - det { d j + 5,^ + 2TrafFij\. (1.6) 

This is the Dirac-Born-Infeld action [10][11]. Gtj is the induced metric on the brane 

given by 

^dX^dX^ 
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where G^^ is the space-time metric. Bij is the pullback of the antisymmetric tensor 
B^^ on the brane. 

_dX'^dX-^ 

Fij is the antisymmetric field strength tensor for the U{1) gauge field A'{a^) l iving 

on the brane. e~* gives the dilaton dependence and Tp is the tension of the p-brane. 

Often, the choice is made to split the induced metric Gij into two parts by 

picking what is know as the static gauge. The world-volume coordinates are chosen 

to be equal to the first p+1 target space coordinates. The remaining target space 

coordinates are the transverse coordinates and are labelled y'^, say. So we have 

made the choice 

X' = a \ 2 = 0 , l , . . . j 9 (1.9) 

X"' = y'^, m = p + l , . . . d - l . (1.10) 

The induced metric can now be wri t ten as 

Although this choice helps wi th some calculations, i t is harder to see some of the 

properties of the action. In this work, such a choice wi l l not be made and as a 

result i t is easier to see some of the more global properties of the theory and its 

equations of motion. 

This action arose f rom the Born-Infeld action [10] which was first proposed as 

a non-linear theory for electrodynamics. Born-Infeld theory allows finite energy 

solutions. A pure Born-Infeld action takes the form [12 

5 = J d'^x Y^det \v^, + F^^\. (1.12) 

T]^^ is the space-time metric and is the electromagnetic field strength. The 

classical action for a string in d dimensions is the same as the d-dimensional Born-

Infeld action [13 . 

The original idea for branes came f rom [14]. Dai et.al. considered p-dimensional 

membrane type objects which had Dirichlet boundary conditions in some directions. 

These were named D-branes. A D-brane is an extended object that open strings can 

end on [15]. This was not an entirely new idea since Dirichlet boundary conditions 

had been considered for strings previously [16]. The Dirac-Born-Infeld action was 

found to give the required classical equations of motion for these D-branes [17. 
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The action (1.6), given above, is for arbitrary fields in arbitrary space-time. For 

much of the work in the following chapters we w i l l be considering the case where 

there is flat space-time and no antisymmetric part to the action. For this choice, 

the action is of the form 

S = / d̂ '+V , /det dXt' dX„ 

da' da^ 
(1.13) 

This is the higher dimensional analogue of the Nambu-Goto action for strings 

(1.2). This Lagrangian can either be wri t ten as the square root of a determinant 

(as above) or as the square root of, a sum of squares of Jacobians, 

, 1 /a (x / -^x^^• . . ,x^p+l) 
''(p+l)! U ( a 2 , . . . , a ^ + i ) 

(1.14) 

There are always more target space or dependent variables, A^^, than there are 

base space or independent coordinates, a\ One motivation behind the structure 

of the companion Lagrangian, which appears in later chapters, is that i t is of the 

same structure as the Dirac-Born-Infeld Lagrangian but the number of dependent 

coordinates, (p\ is less than the number of independent coordinates, x^. Such a 

Lagrangian can s t i l l be wri t ten as the square root of a determinant or the sum of 

squares of Jacobians, 

'det 
dxt" dx,, 

9(01 , < ^ ^ . . . , ( ^ P + i ) 

(p + iy. \d{xt'\xi'2,...,x''p+') 
(1.15) 

I t should also be noted that i f the antisymmetric Fij terms are put back into 

the Dirac-Born-Infeld Lagrangian, then i t can st i l l be wri t ten as the square root of 

the sum of squares [18]. For example, i f p=3, 

dJO^dX, 
da' da^ ^ 

dXt^dX^dX^dX"^ 

da' 'da^ da'' da^ 
1 

+ 8 
dx^" dx" 

-ijki da' dai 
-F, kl 

+ ( -^^ijkiFijFi^i (1.16) 
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1.2 Field Theory and the Klein-Gordon Equa­
tion 

Fundamental theories of matter need to be consistent wi th both relativity and 

quantum mechanics. Field theories make this possible. The need for field theories 

can be seen by considering a single particle relativistic wave equation, such as 

the Klein-Gordon equation [19]. This describes a particle wi th no spin, a scalar 

particle. 

I t arises f rom the energy-momentum equation for a relativistic particle, 

E is the energy, p is 3-momentum and m is the mass of the particle. The con­

vention c = 1, h = 1 is assumed. Using the correspondence principle to make 

the substitution E ^ i^^, p -iV and letting these operators act on the one 

component wavefunction (f){x) we find that (1.17) becomes 

{a + m^)(p = 0. (1.18) 

This is the Klein-Gordon equation. 

Unfortunately, there are problems wi th interpreting this as a single particle wave 

equation. These include the existence of negative energy solutions, a probability 

amplitude which is sometimes negative (a probability, by definition, cannot be 

negative) and the violation of causality. These problems ini t ial ly led to the Klein-

Gordon equation being abandoned. 

However, by interpreting the Klein-Gordon equation as a field equation these 

problems are solved. Such a theory allows the number of particles in the theory to 

be non-constant. I t allows pair creation and the existence of multi-particle states 

and vi r tual particles. This in turn removes the problems of negative energy and 

causality violation. 

In the chapters that follow, the Klein-Gordon equation is a field equation. When 

proposing a field theory for strings and branes the in i t ia l idea was to generalise the 

Klein-Gordon equation, which is for particles, to a theory for higher dimensional 

objects. 

1.2.1 Lagrangian Field Theory 

Much of this thesis is concerned wi th the Lagrangians of various field theories. In 

classical mechanics, one of the fundamental quantities is the action, S, which is 
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the t ime integral of the Lagrangian L of a dynamical system [20]. I t is also the 
integral of the Lagrangian density, £ , over space-time. £ is a function of the field 

0(x^) and its first derivatives df^cp = 

S = jLdt = jc{^,d^(l))d^x. (1.19) 

From now on, the Lagrangian density £ wi l l be referred to as the Lagrangian. 

To find the equations of motion for a theory we use the principle of least action 

which basically says that as a system evolves between two times, ti and t2, the 

action S is extremised. I t is usually a minimum. This condition can be imposed 

by setting SS = 0. Therefore, 

'• (djC f dC \ ( dC \^ 
\ — ^ - d A - — - \ ^ ^ d A dS = 0. (1.20) 

t2 

'tl 

The last term can be wri t ten as a surface term. Since the ini t ia l and final field 

configurations are fixed then 5(j) = 0 at t = ti,t2. Therefore this term vanishes. 

Since the remainder must vanish for arbitrary 6(j) then we find 

dC I' dC \ 

d(j) \d{di,(l)) J 

This is the Euler-Lagrange equation of motion for a field (j). This is easily extended 

for a field theory w i t h n fields (!>', i = 1,2,... ,n, w i th Lagrangian C{(f)', d^(j)'). In 

this case, there are n equations of motion writ ten as 

dC f dC \ 

c V - ^ 4 w ) j = " - 1 . 2 , . . . . n ^ (1.22) 

These equations of motion w i l l be used extensively when finding the equations of 

motion for the companion Lagrangian which depends on the derivatives of n fields 

Lagrangian for the K l e i n - G o r d o n Equat ion 

Consider the Lagrangian for a field (j){x^), 

C = \d,cj>d^<i>-\m'ci>\ (1.23) 

Put t ing this into the Euler-Lagrange equations of motion (1.21) gives 

( • + m 2 ) ( / . = 0. (1.24) 
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This is the Klein-Gordon equation. Therefore (1.23) is the Lagrangian for the 
Klein-Gordon equation. I t is this Lagrangian we w i l l be generalising when we 
propose the companion Lagrangian for strings and branes. 

Quantisat ion 

When quantised, the Klein-Gordon equation is a quantum field theory which allows 

many particle solutions. The number of particles is a quantum variable. The first 

part of this thesis looks at developing a field theory for strings which is similar 

to the Klein-Gordon field theory for particles. This is not an entirely new idea. 

Morris [21, 22] tried to develop a field theory for strings and used the quantisation 

of string theory as his main motivation. The idea was to find a field theory where 

i t was not necessary to specify the number strings. The number of strings was a 

quantum number and neither the strings nor the world-sheet appeared explicitly 

in the formulation. In this respect the theory was analogous to the theory for the 

Klein-Gordon equation. However, one of the main problems wi th this idea, and a 

similar idea of Hosotani [23], was that their formulations in the particle case did 

not resemble the Klein-Gordon case. Instead of a theory wi th one field ^, there 

were many fields. 

A later idea of Hosotani and Nakayama [24] was also partially motivated by the 

search for a quantum string theory. Their idea was to use the classical Hamilton-

Jacobi equation for strings in order the find a quantum field theory for strings and 

p-branes. The Hamilton-Jacobi equation can be viewed as the classical l imi t for 

a quantum theory. The Hamilton-Jacobi equations for strings and branes wi l l be 

used as a further motivation for the companion Lagrangian for strings and branes. 

I t should be noted that all these ideas for field theories for strings, and the 

theory involving companion Lagrangian to be proposed in this thesis, are different 

f rom string field theory [25] [26]. In string field theory, the field is a functional 

'^[X^{a),p+,T] which depends on the curve traced out by the string, X'^{a), and 

the string length, p+. 

1.3 Bateman Equation 

When the equations of motion for the companion Lagrangian are studied, they often 

take the form of what is known as the Bateman equation, or equations related to the 

Bateman equation. This section looks at what this equation is, what its properties 
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are and how it can be generalised. 

The Bateman equation is 

,2 d f \ f _ ^dcj)d(t) d^(j) 
dy J dx^ dx dy dxdy ^ [dxj dy' ^' 

(1.25) 

for a field 4 > { x , y ) in two dimensions. I t first appeared in [27] where Bateman 

discussed hydrodynamics. Using the notation 

0X1 = dxdy' "^yy - Qy2' (1.26) 

i t can also be written as a determinant 

0 't>y 

det (f>x 'Pxx 4 ' x y = 0. (1.27) 

4 ' x y (pyy 

The Bateman equation has many important properties. It is not only invariant 

under Euclidean (Lorentz) coordinate transformations but is also invariant under 

general linear transformations of the group GL{2, R). Also, if ̂  is a solution to the 

Bateman equation then so is any function, f{(f)) say, of (j). This means the equation 

is covariant, a property which will be desirable in our field theory. 

The general solution to the Bateman equation is the solution for (j) of the fol­

lowing equation. 

xF(0) + yG(0) = c, (1.28) 

du _ du 
dx dy' 

where u 

where F and G are arbitrary functions of (p. c can be any constant, including zero. 

The Bateman equation is equivalent to the Monge nonlinear wave equation 

(Py 

This is a first order differential equation. From the this equation is easy to show 

that the Bateman equation possesses an infinite number of conservation laws since 

(1.29) implies that 

dx 
d_ 

dy 
n 

n + 1 
-u n+l (1.30) 

This property leads to the fact that the Bateman equation is completely integrable. 

The general solution to the Monge equation is given by solutions to the equation 

u = W{y + ux), (1.31) 
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where W is an arbitrary function. The general solution to the Bateman equation 
can be derived from this since 

W'\u) = y + ux. (1.32) 

Then, put u = V{(f)), where V is some function of (p. This is allowed since 

Ur VT (t>r 
M = - = - ^ = ^ , 1.33 

Uy Vy 4>y 

which is consistent with (1.29). Therefore, 

W-\V{^)) = y + V{cj^)x 

1 = I , (134) 

This is equivalent to xF{(f)) + yG{(l)) = c where F and G are arbitrary functions, 

as required. 

The Bateman equation can also be derived from the three dimensional Laplace 

wave equation when this is subject to the constraint that the gradient of ̂  is a null 

vector. 

(Pxx + (Pyy ± 4>zz = 0, (1.35) 

(l)l + cj)l±4>l = 0. (1.36) 

To show this, simply eliminate the (j)z and (j)^^ from the above. It is an extension 

of this property which leads to an equivalence theorem between the equations of 

motion for the companion Lagrangians, with and without square roots, in different 

dimensions. I t should be noted that the left hand side of (1.36) is the Lagrangian 

for equations of motion which take the form of (1.35). 

Finally, any Lagrangian which is homogeneous of weight one in the derivatives 

4>n=-§^, ^=1,2, has the Bateman equation as its equation of motion. If a La­

grangian, £ , is a homogeneous function of weight m in the derivatives then it 

satisfies 

dC 

cf>,— = mC. (1.37) 

This equation will be made use of later. 

1.3.1 Generalising the Bateman Equation 

Work has been done to find other field theories which have fully covariant solutions, 

just like the Bateman equation does. This has been achieved by generalising the 
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Bateman equation to more fields and more dimensions resulting in what are known 

as the Universal Field Equations [28] [29]. 

There are two ways to do this. One is just to increase the number of dimensions. 

Generalising the determinantal structure of the Bateman equation we can construct 

an equation for a field (p{x^) in d dimensions, 

det 

0 (f)2 . . . (pd 

01 (Pn fpu ••• (f>id 

(t>2 <f>n 4>22 ••• (l>2d = 0. (1.38) 

<l>d 0id hd ••• 4>dd 

If is a solution to this equation then so is any function of 0, so the equation is 

covariant, as required. The notation used is 

Q2J, 

Such notation will also be used elsewhere in the thesis. 

(1.39) 

The other way is to increase the number of fields (and the number of dimen­

sions). In particular, we shall be considering the case of n fields in n-l-1 dimensions. 

For two fields in three dimensions the generalisation in determinantal form is 

det 

0 0 (f)^ 

0 0 V'x 

0x i^x <t>xx 

(Py Ipy 4>xy 
(t>z i'z (f>xz 

(f>xy 

(f>yy 

(f>yz 

<i>z 

4>xz 

<t>yz 

4>zz 

= 0, (1.40) 

where the fields are (j) and ip and the space-time coordinates are (x, y, z). In 

general, for n fields, (j)^, in n-\-l dimensions, {x^}, the Universal Field Equations 

can be written as 

i = 1,. ..,n, (1.41) 

where = ^fj.uii^2-i^n^li'Pi2 • • • ^^n- ^ Jacobian and could also be written 
Later on, the notation for a Jacobian for n fields ^'(a;'') in d as d(x''i,x''2,...,x''d)-

dimensions will be 

J - (1.42) 
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The Bateman equation and its generalisations, the Universal Field Equations, 
appear in the equations of motion for the companion Lagrangians we will be con­
sidering. They are also involved in the iterative procedure to be studied in a later 
chapter. In this procedure, each iteration involves multiplying by some function 
and then applying the Euler operator £ which is the operator which gives the 
equations of motion. 

For one field 0, the required function is already known to be the Lagrangian C 

28]. In this case, the iterative procedure is 

£C£C, £C£C£C, . . . (1.43) 

where the Euler operator is 

d<p dcp^ d(p^,y 

For a theory in d dimensions, after d — 1 iterations we obtain the Universal Field 

equation for one field in d dimensions (1.38). Part of this thesis is concerned with 

generalising this procedure to more than one field with the aim of obtaining the 

Universal Field equations after a finite number of iterations. 

1.4 Topological Field Theories 

We will also be looking at a property of the companion Lagrangian which extends 

to other field theories. This property is that for a large family of field theories, the 

Lagrangian of the theory vanishes or is a divergence on the space of solutions of its 

equations of motion. A large set of examples will be given. The fact that we obtain 

a divergence, leads to describing these theories as 'pseudo-topological'. This is 

because, for a fully topological theory the Lagrangian is a divergence or zero without 

having to put any constraints on i t . An example of such a topological theory is 

gravity in two dimensions [30]. In this case the Lagrangian can just be picked to 

be zero. In our examples of free fields, we need to put in the constraint that the 

equations of motion are satisfied before the Lagrangian is zero or a divergence. 

This is where the 'pseudo' part of the name comes from. 

1.5 Yang-Mills Fields 

The final part of the thesis is concerned with finding solutions to the Moyal-Nahm 

equations in four and eight dimensions. The Moyal-Nahm equations are the Nahm 
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equations, but with Moyal brackets instead of commutators. Solutions to the Nahm 
equations give a set of solutions to Yang-Mills theory. In the next few sections we 
briefiy review Yang-Mills fields, Nahm equations, Moyal brackets and give some 
motivation for studying such topics in more than four dimensions. 

Non-abelian gauge theories, i.e. theories with a higher symmetry than 50(2) or 

[ / ( I ) , can be described by Yang-Mills theory. Work on this was originally done by 

Yang and Mills in at attempt to treat isospin as a local symmetry [31]. Although 

this was the wrong thing to do, Yang-Mills theory did successfully describe the 

SU{2) symmetry of the weak interaction and the SU{3) symmetry of the strong 

interaction of quarks [32]. It works for other symmetry groups, such as U{N). The 

easiest symmetry group to consider is SU{2). 

The Lagrangian for pure Yang-Mills is 

C = -^Tv{F,,Fn, (1-45) 

where F^ ,̂ = dfj_A^ - d„Afj, + [A^,^!^] . is the gauge field and F^,^ is the gauge 

field strength. The equation of motion for this theory is 

Df.F^'' = d^F"" - f [A^, Fi""] = 0. (1.46) 

is the covariant derivative. 

One way to obtain solutions to pure Yang-Mills is by solving the Nahm equations 

33]. Any solution of the Nahm equations is automatically a solution of the full 

Yang-Mills equation of motion. Again, although Nahm equations can be found for 

any gauge group, SU(2) is the easiest to consider. In four space-time dimensions, 

the Nahm equations are 

^ - \A- A^\ 

^ = [ ^ ^ ^ ^ ] , (1.47) 

dA^ 
= [A\A\ 

dt 
The gauge choice A'^ = 0 has been made. 

1.6 M-Theory and M(atrix) Theory 

M-Theory 

M-Theory is possibly the best candidate we have at present for a 'Theory of Ev­

erything' [34]. I t appears to have two definitions. One is that it is the eleven-
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dimensional theory which is the strong coupling limit of Type IIA superstring the­
ory and has eleven dimensional supergravity as its low energy limit. However, its 
definition is often broadened to be the eleven dimensional quantum theory which 
has the five different superstring theories as various limits [5] [35]. Very little is 
known about M-Theory and there is obviously much that still needs to be under­
stood. I t is also unclear what the M in M-Theory stands for. In the past i t has 
been taken to stand for membrane, matrix, mother, mystery, and magical. 

M(atrix) Theory 

A big step towards understanding M-Theory was made by Banks, Fischler, Shenker 

and Susskind when they proposed M(atrix) Theory [36]. Their conjecture was that 

M-Theory in the infinite momentum frame is equivalent to matrix supersymmetric 

quantum mechanics for N DO-branes in the N ^ oo limit. It follows from taking 

9-1-1 dimensional U{N) super Yang-Mills theory and dimensionally reducing it to 

O-f-1 dimensions. The infinite momentum frame, in simplest terms, is when the 

total momentum of the system is very large [37]. The action for this U{N) super-

Yang-Mills quantum mechanics is 

S = ~ / Tr ( x ^ X . + 29^9 - hx^, X""]' - 29^jJ9, X"]] dr. (1.48) 
^9 J \ 2 . J 

The X ' ' (/i = 1 , . . . , 9) are nine N x N matrices and 9 represents the 16 fermionic 

superpartners. Derivatives with respect to r are denoted by X^ or 9. g is the 

coupling constant. 

Matrix String Theory 

A similar approach was later used to construct matrix string theory, to give a two 

dimensional Af = 8 supersymmetric U{N) Yang-Mills theory, rather than a one 

dimensional theory [38]. The description is now for Dl-branes, or strings, instead 

of DO-branes which are particles. The action for such a theory is 

5 = / Tr f ( A X ^ ) ' + 9'^P9 + glFf. - ~\X^, X^f + -9^^,[X\ 9]] dadr. 

(1.49) 

The X ' ' (// = 1 , . . . , 8) are eight scalar fields and the 9 are the eight fermionic fields. 

They are all A'' x A'' hermitian matrices, (a, r ) are the world-sheet coordinates, y^ 

is the string coupling constant. Again, to obtain a description of M-theory, we need 
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to take the N ^ oo limit. This theory gives a new way to approach M-Theory and 
investigate the string and brane states which occur and their interactions [39]. It 
has been used to study the high energy scattering processes in M-Theory [40 . 

I t is matrix string theory which provides some of the motivation for studying 

the Nahm equations in eight dimensions. Matrix string theory involves Yang-Mills 

theory for eight fields X^, for which a set of solutions for Yang-Mills can be found 

from the Nahm equations in eight dimensions. Therefore, by studying the Nahm 

equations in eight dimensions we can find a set of solutions for Yang-Mills. 

1.7 The Moyal Bracket 

The Moyal Bracket for two functions f{x,p) and g{x,p) on two-dimensional phase 

space {x,p) is defined as [41 

{f,g}MB = l . U ^ g - 9 ^ f ) - (1.50) 

The star, -k, denotes the star product which is defined as 

-k = exp dx dp dp dx 
(1.51) 

The Moyal bracket is a one parameter deformation of the Poisson bracket, where 

A is the deformation parameter. The Poisson bracket is written as 

f f ,1 _ d f d g df dg 

^^''^''-d^d^-d^d^- ^'-'^^ 

In the limit A ^ 0, the Moyal Bracket is just the Poisson bracket. 

The Moyal brackets can also be associated with commutators [42]. If the defor­

mation parameter is set to be A = ^ , where A'̂  is an odd integer, then the Moyal 

bracket of two functions {X^, X''}MB reproduces the commutators ol N x N ma­

trices, A^. These are SU{N) matrices and the matrix components of A'̂  are the 

fourier modes of the functions X ' ' . As A' -> oo then A 0, so in the large A'' 

limit the Moyal Bracket is the Poisson bracket. Therefore the Poisson bracket can 

be identified with the commutator of SU{oo) matrices. The link between Moyal 

Brackets, Poisson brackets and commutators will become more apparent in the 

examples that follow. 
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Quantum Mechanics 

Moyal Brackets were first used to write down a formulation of Quantum Mechanics 

43]. The way to incorporate the Moyal brackets is to replace all ordinary multipli­

cation with the star product. Therefore, all commutators in the usual formulation 

of quantum mechanics are now Moyal Brackets. The deformation parameter is set 

to be h. Finding the classical limit of the theory is then both easy and natural. It 

simply amounts to taking the limit h ^ 0. In this limit, all the star products are 

reduced to ordinary multiplication again. 

Non-commutative Geometry 

Recent work of Seiberg and Witten [44] has led to a large number of papers on 

the subject of non-commutative geometry and the use of the star product and the 

Moyal bracket. The Seiberg and Witten paper showed that there was an equivalence 

between ordinary Yang-Mills and non-commutative Yang-Mills for open strings in a 

constant non-zero B-field. This work resulted in many papers being written where 

ordinary multiplication was replaced with the star product in order to make the 

theory non-commutative. In such papers it is space-time which is non-commutative. 

For example, in [45] a non-commutative scalar theory for field (p in 2+1 dimen­

sions is studied. Consider the theory where the energy is given by 

E = \ [ (]:d^'pd''<p + Vi(P)]d^x. (1.53) 

V{(p) = ^rn^cp'^ + ^X(p^ + ... is the potential term. To turn this ordinary scalar 

field theory into a non-commutative one, then the spatial coordinates become non-

commutative such that 

Xfj,,x^]=^i9f,^, (1.54) 

where 9^^, (//, i^=l,2) are the components of a totally antisymmetric matrix. Let 

9i2 = 9. This 9 is then the deformation parameter in the star product. We now 

put star products in place of ordinary multiplication to give 

E = \ f (-d.(Pd^(P+lm^(P'^ + ]-X(Pi.(Pi<(P + ...]d'x. (1.55) 
9 J \^ 2 3 / 

Note that we do not need star products for the quadratic terms because when the 

integral over the whole space is taken the following property holds: 

J f { x i , X 2 ) i r g{xi,X2) d^x ^ J f { x x , X 2 ) g { x i , X 2 ) d'^x. (1.56) 
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Therefore, we only need put in the star product for cubic terms and above. If we 
were not considering the integral then the star product would need to be put in 
everywhere. The potential would be V{<p) = ^rn^cj) -k (p + ^X4> (j> ^ (f> + • • •, for 
example. Similar procedures have been used to study other non-commutative field 
theories. 

M(atrix) theory 

Moyal brackets can also be used in M(atrix) theory [46]. They can be used to 

give a new interpretation to the A" —)• oo limit which needs to be taken in order 

to recover M-Theory from M(atrix) theory. By setting the deformation parameter 

to be A = ^ and replacing all multiplication by star products we have an action 

containing Moyal Brackets. Taking the large Â  limit all the Moyal Brackets become 

Poisson brackets. Therefore, a new way of looking at the N ^ oo limit of M(atrix) 

theory is to have a theory with Poisson brackets, not commutators. 

Nahm Equations 

A similar procedure is used to turn the Nahm equations (1.47) into the Moyal-

Nahm equations. As with the other cases, the ordinary multiplication is replaced 

with star brackets. This results in the right hand side of the Moyal-Nahm equations 

being Moyal brackets, as shown below. 

dA^ C -2 
— {A ,A IMB, 

^ ^ { A \ A ' } M B , (1.57) 

dA^ 
^ = {A\A'}MB. 

These are the Moyal-Nahm equations in four dimensions. The main motivation for 

studying these is that we live in four large dimensions and the Nahm equations in 

four dimensions themselves have already been studied in great detail. 

However, this thesis is also concerned with finding solutions to the Moyal-Nahm 

equations in eight dimensions. The main motivation for this arises from the appear­

ance of Yang-Mills in matrix string theory. In this theory, Yang-Mills field theory 

for eight fields X^ appears in the action. If solutions to the Nahm equations can 

be found then these are automatically solutions to the equations from Yang-Mills. 

Therefore, it makes sense to study the Nahm equations and the Moyal-Nahm equa­

tions in eight dimensions. The solutions which are found may have some bearing 
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on matrix string theory and so ultimately on M-Theory. Another reason for con­
sidering the Moyal-Nahm equations, rather than just the Nahm equations, is the 
use of Moyal brackets in a possible interpretation of the large A'' limit as described 
above. 

1.8 Layout of Thesis 

This chapter has been a brief introduction into some of the background material 

needed for the main part of this thesis. Some of these topics will be expanded later 

on. 

In Chapter 2, we introduce the companion Lagrangian and give some motivation 

as to why we want to study it . Chapter 3 looks at the equations of motion for this 

Lagrangian, the companion equations, and discusses their integrability. In Chapter 

4 we extend an iterative procedure to Lagrangians for more than one field, such 

as the companion Lagrangian. Chapter 5 deals with a property of a large set 

of Lagrangians, not just the companion Lagrangian. This property is that many 

field theory Lagrangians are zero or a divergence on the space of solutions of the 

equations of motion. In Chapter 6 we study the Moyal-Nahm equations, explaining 

what they are and solving them in four and eight dimensions. In Chapter 7 we 

give the final conclusions to all this work, giving suggestions for further research. 



Chapter 2 

The Companion Lagrangian 

The next few chapters involve a Lagrangian called the companion Lagrangian which 

has equations of motion known as the companion equations. It is a Lagrangian for 

a field theory associated with strings and branes. These chapters are based on work 

in [1][2 . 

This chapter discusses the motivation behind looking at such a theory and 

the problems encountered by similar theories in the past. Equivalence theorems 

between different companion Lagrangians are stated. Finally, we look at the co-

variance of the theory, the inclusion of a background metric and the possible ways 

of including electromagnetism in the theory. 

2.1 The Big Idea 

In quantum mechanics we come across the concept of particle-wave duality. On 

the quantum level, particles take on wave-like characteristics such as electrons 

going through slits exhibiting interference eflfects and waves take on particle-like 

characteristics, for example, electromagnetic waves being made up of photons. A 

classical point particle has the Lagrangian 

'dXt'^^ 
£ = , / ^ j . (2^1) 

but when we go over to quantum mechanics it can be described by a Klein-Gordon 

field, (t){x^) which has Lagrangian 

1 / a^y 

27 
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This is an example of particle-wave duality. A point particle traces out a one-
dimensional world-line in space-time which can be parameterised by just one pa­
rameter, T . It should be noted that there is one parameter r and one field (p. The 
big question is: Is there an alternative description for strings and branes so that 
they too have a field theory description similar to the Klein-Gordon? 

Strings can be described by the Nambu-Goto Lagrangian 

'dXt^V/dX-V /"dXf^dX,,^^ 

Strings trace out a two-dimensional world-sheet which is parameterised by two 

world-sheet coordinates (cr, r ) . The conjecture is that they can also be described 

by a theory with two fields and a Lagrangian which is some power of 

{dxi^J \dx-J [dxt^dxj • ^ ' 

(p{xi^) and -0(0;^) are the two fields and they depend on the space time coordinates 

{li = 1 , . . . ,d). This idea can also be extended to branes which, in simplest 

form in the absence of a U{1) field, are described by the Lagrangian 

£ = t/det 
dXi" dX^ 
da' dai 

(2.5) 

A p-brane sweeps out a p -f-1 dimensional world-volume which is parameterised by 

the p+1 world-volume coordinates a' {i = 0,... ,p). The field theory conjectured 

to be associated with branes has a Lagrangian which is some power of 

d f d(j>> 
C = det 

dx^' dx^ 
(2.6) 

0' are p+1 fields. In every case the number of fields is equal to the number of 

world-volume coordinates. This is analogous to the particle case where there is one 

(Klein-Gordon) field and a one dimensional world-line. The new field Lagrangians, 

(2.4) and (2.6), will be referred to as companion Lagrangians and their equations 

of motion will be the companion equations. 

Similar ideas have appeared before in the literature. Hosotani [23] considered 

the case of a string theory in four dimensions and showed this was mathematically 

equivalent to a scalar field theory with two fields. The equations of motion in 

both theories are the same. Strings have a world-sheet with coordinates (a, r ) . He 

introduced two new parameters {S, T) so that (a, r, 5, T) covered a four-dimensional 
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domain in space-time. The Nambu-Goto Lagrangian for string theory (2.3) was 
shown to be the same, up to a determinantal factor, as the Lagrangian for a scalar 
field theory where S{x^) and T(a;^) are the two scalar fields and the Lagrangian is 

~ V [dx'^J [dx-J [ d x f ^ d x j • ^ - ' 

Morris [21] [22] later discussed a very similar idea but extended the number of 

space-time dimensions. His starting point was to consider the string world-sheet, 

not as the function of two world-sheet variables, X^^{a, r ) , but as the intersection of 

d—2 hypersurfaces, /^(a;) = 0. (This is similar to the way a curve can be thought 

of as the intersection of two planes.) A Lagrangian for a string in d dimensions 

was related to a Lagrangian for o? — 2 fields. This amounted to an interchange of 

independent and dependent variables, where the independent variables were com­

plemented with d — 2 extra variables. He showed the equations of motion involving 

these fields are mathematically equivalent at a classical level to the equations of 

motion from the Nambu-Goto Lagrangian. The Lagrangians for the two theories 

are the same up to a determinantal factor. This was also extended to show the 

equivalence of a theory of p-branes with Lagrangian (2.5) to a theory with d — p — 1 

fields. 

But these field theories differ from the companion Lagrangian idea. In the 

companion Lagrangian case, the number of fields is equal to the dimension of the 

world-volume, p + 1. In the theories of Hosotani and Morris the number of fields 

is essentially the complement of this, i.e. d — p—1. However, one of the initial 

motivations for this work was that the field theory for the strings and branes should 

be analogous to the particle/Klein-Gordon case where there is one Klein-Gordon 

field, irrespective of the number of space-time dimensions. This is not the case 

for the ideas of Hosotani and Morris where a particle in d space-time dimensions 

would be described by a theory with d — I fields. This would clearly not look 

like Klein-Gordon theory. Morris was aware that the particle case should look 

like Klein-Gordon and thought maybe some form of gauge-fixing would solve this 

problem, but the companion Lagrangian seems a simpler way of achieving this. 

More recent work of Hosotani and Nakayama [24] has been done on field theories 

for strings with two fields (not d - 2) which is much the same as the companion 

Lagrangian idea. It is based on the Hamilton-Jacobi equations for strings and 

branes. 
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2.2 Hamilton-Jacobi Equations 
The work on Hamilton-Jacobi equations for theories with more than one inde­

pendent variable began with Caratheodory [47] and Velte [48]. Their ideas were 

developed by Nambu [9, 49], Rund [50], Kastrup [51][52] and Rinke [53] to find 

Hamilton-Jacobi equations for strings. Rinke [53] was the first to give a deriva­

tion for the Hamilton-Jacobi equation for strings. However, for Kastrup and Rinke 

the motivation was to try to relate string theory to a Maxwell field, not to find a 

generalisation to the Klein-Gordon field. Hosotani and Nakayama [24] used these 

Hamilton-Jacobi equations to construct their field theory associated with strings 

and branes. Similar ideas have also been discussed in [54]. 

This section is based on work by Nambu [9] which is easier to follow than some 

of the other papers on this subject. A Hamilton-Jacobi type formalism for strings 

which can be extended to branes is given. Equations analogous to the Hamiltonian 

equations and Hamilton-Jacobi equation for a point particle can be obtained for 

strings. This will give further motivation for the form of the companion Lagrangian. 

2.2.1 Point Particles 

For a point particle we have the one-form relation 

dS = ^Pidx'- Hdt, where H = H{pi,x'), S = S{x\,t). (2.8) 
i 

from which we can obtain the usual Hamiltonian equations 

dp^^_dH dx^^dH 
dt dx^' dt dp^' ^ ^ 

H is the Hamiltonian for the system and S is the action. The Hamilton-Jacobi 

equation for a point particle, with mass m, is 

I t can be viewed as the classical limit of a quantum field theory. 

2.2.2 Hamilton-Jacobi Equation for Strings 

This idea is now extended to strings. We start by writing a two-form analogous to 

the one-form above (2.8). 

dSi A dTi + dSi A dT2 = ^ P i j dx' A dx^ - Hda A dr. (2.11) 
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where Sm = Sm{x\a,T), = r„ (a ; ' , a , r ) , m = l ,2 . 

, H = Hip,j,x'). (2.12) 

This results in the following 

The last two expressions are essentially constraints and their left hand sides are 

zero because there are no cross terms between dx^ and do or dr in the two-form. A 

suitable ansatz would be to set Si and Ti to both be functions of o and r only, and 

set ^2 and T2 to be functions of the x^ only. i.e. Si{a,T),Ti{a,T), S2{x^),T2{x'^). 

This ansatz will suffice since it satisfies the two constraints to leave the equations 

From (2.11), by taking the exterior derivative we can see that 

0 = V dpij A dx' A dx^ - ^ ^ d p i j + -^dx' \ A da A dr, (2.15) 

and by equating the coefficients of dpij and dx'^ we obtain 

d{x\ x^) ^ dH ^ d { p , j , x ^ ) ^ dH 

di a, T) dpij' ^d{ a, r ) dx'' ^ " ^ 

These equations are the analogues of the Hamiltonian equations (2.9). Substituting 

the string Hamiltonian equations (2.16) back into the two form (2.11) we have 

/ dH \ 
V dSm A dTm = '^Pij^ H da AdT = Ldo Adr. (2.17) 

\^>J / 

This defines the Lagrangian L in terms of the Hamiltonian H. 

These equations (2.16) also imply 

so i f is a constant of the motion and does not depend upon the evolution parameters 

(a,r). 
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Now we consider the Schild string. Remember this has Lagrangian 

>C = -Mx,.x,]f where {x,,x^} = ^p^, (2.19) 

and equations of motion 

{ x ^ K , x , } } = 0. (2.20) 

Choose the Hamiltonian to be 

H = I J : P I ^ . (2.21) 

From (2.17) and (2.18) we have C = H = constant. By putting this Hamiltonian 

into the Hamiltonian equations (2.16) we obtain 

d{x^,x,) _ ^ d{p^,,x'') _ 

d{a, T ) -P'-" ^ d { a , r ) ~ ^' ^^-^^ 

which leads to 

{x^,{x„x,}} = 0, (2.23) 

which is the equation of motion for the Schild string. (The Lagrangian is also that 

for the Schild string.) Using the ansatz for Sm,Tm that we had before (2.14) then 

d{S2, T2) -

so using (2.21) we have 

fdS2y(dT2V fdS2dT2V ^ ^ 

This is the Hamilton-Jacobi equation for strings. 

Hosotani and Nakayama based their analysis on the Nambu-Goto action rather 

than the Schild action for strings but some of their findings work for both cases. 

The equation of motion for both is 

= 0, (2.26) 

where p̂ ^̂  is the conjugate momentum in each case. 

Now, consider a family of solutions to the equations of motion for a the­

ory in 0? space-time dimensions, d - 2 parameters Xa specify these solutions 
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xi^ = a;^((T, r , A i , . . . Ad_2)- This defines a mapping f rom {a , r , AQ} to {x^}. I f 
this mapping is one-to-one then p^j.^io', t, A ^ ) can be treated as a local field p^^{x''). 
This means the equations of motion can be rewritten as 

d { o , r ) ~ dxP da dr dxP dr da ~ ^ ^pV,u-^- K^-K) 

But, using the fact p^j, is antisymmetric w i th respect to indices [i and v then 

f'^d.p,. = If'd.p,. - \f^d.p,, - f If^'d.p.p - \f''d,p., 

= \p'"'d[pPf.^] - j 5 / x ( K V p ) 

= - ^ 5 , ( / > , , ) = 0 . (2.28) 

so p^^Ppu ^constant. From the ansatz (2.14) for Sm and earlier, using the 

definition for p,., then 

y - p , . = [ f l ] [ ^ ] = constant, (2.29) 2 \ dx^ J \ dx" J \ dx^" dx, J 

which is the Hamilton-Jacobi equation for strings. For the Nambu-Goto string the 

constant is related to the way the theory is normalised. I t should be noted that 

the constant may be zero for the Schild string but not for the Nambu-Goto string. 

In general, i f 5*2 and T 2 satisfy the Hamilton-Jacobi equation (2.29) then as 

given in (2.14) satisfies the equation of motion for the string (2.26). 

The question st i l l remains: what are ^2 and T 2 ? For the point particle 5 ( 0 ; ) is 

the action at point x, but as yet the meaning of ^2 and T 2 has yet to be worked 

out. 

2.2.3 Hamilton-Jacobi Equation for Branes 

The Hamilton-Jacobi equation for p-branes can be found in a similar way. The 

conjugate momentum tensor is 

- d { S i , S2,..- , Sp+i) , , 

d{x^^\x^^^,... ,x^p+^y ^ ^ ^ 

Note that here the local fields Si are analogous to the 5 2 and T2 f rom the string 

case. The Hamilton-Jacobi equation is 

2 

/ y i , 5 2 , . - - , V i A ^constant . (2.31) 
\d{x^'^,x''\ ... , x ' ' p + 0 / 
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2.2.4 Obtaining the Companion Lagrangians 

We observe that the Hamilton-Jacobi equation for a massless point particle 

/ dS V 

1 ^ = 0 (2.32) 

takes the same form as the Klein-Gordon Lagrangian 

l^y. (2.33) 

By analogy, for the string case we take the field Lagrangian to be of the same form 

as the Hamilton-Jacobi equation for strings 

^ ^ ' [dx'^ J [dx-^ J [dx^dxj • ^ ''^^ 

Similarly for the p-brane, the companion Lagrangian is the same form as the 

Hamilton-Jacobi equation for a p-brane (2.31) and is therefore 

{p+iy. \^{x^'\x^^,... ,x^'p+•^) dxf^ dXfj, 
(2.36) 

However, i t may prove a good idea to take the square root of this as the La­

grangian. This would look similar to the Nambu-Goto action for strings or the 

Born-Infeld action for branes. 

2.3 E q u i v a l e n c e T h e o r e m s 

2.3.1 Equivalent Lagrangians 

In some cases i t may not matter i f the companion Lagrangian has a square root 

or not, since i f the Lagrangian is a non-zero constant the equations of motion for 

both Lagrangians are the same. 

For the non-square root companion Lagrangian, C, the equations of motion are 

^ ^ ^ ^ ^ = °- (2-3^^ 

For the square root Lagrangian y/C, w i th the same number of fields and dimensions 

as the non-square root Lagrangian above, the equations of motion are 

d fdVc\ 1 d'c 1 dc dc _ 
-Ku - 7 7 ^ c^, a„„ - U- (^•3»j dx^^ \ d^], J 2VC d(j)],dcli 4 £ 3 / 2 d<f,^ dx>^ 
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I f the Lagrangian is a non-zero constant, £ = c say, then 

= 0. (2.39) 
dx^" 

Therefore, the second term in the equations of motion for the square root case 

vanishes leaving the first term which is the equivalent to the equations of motion for 

the non-square root case. Therefore, the two Lagrangians give the same equations 

of motion i f the Lagrangian is a non-zero constant. 

2.3.2 Equivalence Theorem for Companion Lagrangians in 

Different Dimensions 

There is a another way to relate the theories of companion Lagrangians wi th and 

without square roots. The main difference here is that the number of dimensions 

in each theory is not the same. 

Theorem: The equations of motion for a companion Lagrangian for n fields 

without a square root, subject to some constraints, are equivalent to the equations 

of motion for a companion Lagrangian for n fields wi th a square root in one less 

space-time dimension. 

Klein-Gordon equation 

This began w i t h a simple observation regarding the Klein-Gordon equation. Con­

sider the massless Klein-Gordon Lagrangian in d space-time dimensions, 

^ = K ^ ) i^ = l,..-,d. (2.40) 

Impose the condition £ = 0. Using this condition to eliminate partial derivatives 

wi th respect to one coordinate, x"̂  say, then we find the equations of motion for 

the Klein-Gordon Lagrangian are now the same as the equations of motion for the 

square root of the Klein-Gordon Lagrangian in one less dimension. 

> C ' = W ^ h ^ where a = l , . . . , d - l . (2.41) 

This can be seen as follows: 

Using the constraint £ = 0 we find 

(pd = \/-<t>a<t>a, SO (j)dd = 7-7 • (2.42) 
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Therefore, the Klein-Gordon equation can be wri t ten as 

9,^1, = (Paa + <Pdd = (Paa 7-7 = . , = 0. (2.43) 

The numerator of which is the same as the equations of motion for Lagrangian 

(2.41). In all of the above then a, ^ , 7 = 1, 2 , . . . , (d - 1). 

This property also extends to more general Lagrangians of the form 

^=\<t>l-^\F{^a) where a = l , . . . , d - l , (2.44) 

where F{(j)ct) is an arbitrary function of the (f)^- As before, by imposing the condi­

t ion £ = 0, we can eliminate derivatives wi th respect to x^ since 

0, = v ^ , so 0,, = - ^ ^ ^ ^ , (2.45) 

where = — F ^ p = ^ , „ , • 

So the equation of motion for (2.44) is 

^ ^ + ^ f e , F . , = ' ' ^ ° ' ' ^ ^•'^'''^•"'=0. (2.46) 

The numerator of this is the equation of motion for the Lagrangian 

C = VF{4>a) a = l , . . . d - l . (2.47) 

Again, a theory for a field in d dimensions has been reduced to a theory in d - 1 

dimensions by setting the Lagrangian of the first theory equal to zero. 

The question to ask now is, does any of this generalise to the companion equa­

tions for strings and branes? The answer is yes! 

Strings 

A similar thing can be shown for the companion Lagrangians for strings which have 

two fields (j){x^) and tp{x^). However, this time, as well as imposing the condition 

£ = 0, we also need the constraints 

" - 0 . J L ^ ^ O . (2.48) 
a ( ^ ) dx^dx-^ d { ^ ) dx^dx"^ 

W i t h these constraints then the equations of motion for the string companion 

Lagrangian wi thout a square root are the same as the equations of motion for the 

string companion Lagrangian wi th a square root but in one less dimension. 
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Branes 

This also extends to p-branes. When the equations of motion for the companion 

Lagrangian for p + 1 fields 0* without a square root are subject to the constraints 

Pt( dt \ dxf'dx' 
= 0, no summation over «, (2.49) 

then they are the same as the equations of motion for the companion Lagrangian 

w i t h a square root in one less space-time dimension. 

I t is easy to prove this equivalence in the Klein-Gordon case and this has already 

been shown. Computer calculations using the package M A P L E can also be used to 

check results for low numbers of dimensions and fields. However, a general proof 

has been found which proves this equivalence for any number of fields, n , and any 

number of fields, d, where d> n[A\. This proof is given in Appendix A. 

I t should be noted that iov d — n + 1 the equations of motion, when subject 

to the constraints, vanish identically. This is because when the number of fields is 

the same as the number of dimensions in the square root case, the Lagrangian is a 

divergence so therefore the equations of motion wi l l be identically zero. 

This equivalence theorem has some similarity w i t h ' t Hooft's Holographic Prin­

ciple [55], which has also been studied by Susskind [56]. The principle says that a 

three-dimensional object can be described on a two-dimensional surface, just like 

a hologram. Therefore, a theory can be dimensionally reduced by one dimension, 

the same as in the companion Lagrangian equivalence theorem. 

As yet, we do not have a f u l l interpretation of what the constraints mean. The 

constraints we have used may turn out to be too strong, since there are a lot of 

them. We may need fewer constraints to obtain the same equivalence and the 

constraints that have been used here would just be a special class of a more general 

set of constraints. Also, the constraints we have used are not invariant under simple 

transformations such as 

0 ^ i = ( ^ 6 - h ^ ) , ^ - ^ - ^ ( ^ - ^ ) . (2.50) 

This is something to look for in more general constraints, particularly as the La­

grangian is invariant under such a transformation. Finding another set of con­

straints may make the interpretation of the constraints and the equivalence theorem 

easier. 

Overall, i t seems likely that the theorem and constraints have some importance 
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since i t is non-tr ivial that the two Lagrangians give the same equations of motion 
when the constraints are apphed. 

2.4 Covariance 

I t is unclear at present whether i t is best to take the companion Lagrangian with 

or without the square root. One argument for taking the square root case is that 

of general covariance. For the companion Lagrangian wi th n fields in d dimensions, 

under the field redefinition 

cj,^^^^{4>\cl>',...,r), (2.51) 

the Lagrangian transforms as 

C ^ JC, (2.52) 

and so is mult ipl ied by a factor J , which is the Jacobian of the transformation i. e. 

However, the equations of motion are unchanged under this transformation since 

d{JC) d ( d{JC) \ dJ_^ _ _d__ ( dC 

d(f)^ dx^ \ d { § ^ ) ) \ 

dJ_ dJ d^ dC 

In the middle line, the first two terms cancel wi th each other because the Lagrangian 

is homogeneous of weight one in the ^ and depends on these derivatives in such 

a way that 

=51C. (2.55) 
dx^' f)( 

This just leaves the original equation of motion for 0\ Therefore, the square root 

Lagrangian is generally covariant which means any function of a solution to the 
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equations of motion is also a solution to the equations of motion. The Lagrangian 
wi thout the square root does not possess this property of general covariance. The 
Lagrangian acquires a factor of under the field redefinition (2.51) and the equa­
tions of motion change under this transformation. 

2.5 Including a Background Metric 

Companion Lagrangians and Born-Infeld type Lagrangians can be writ ten in terms 

of a quadratic form of Jacobians. I f we include a background metric, g^^, then this 

property s t i l l holds. 

A companion Lagrangian wi th a background metric is 

jC = Wdet (2.56) 
dx^j, dxy 

For the string case, where we have two fields {(j), •0), this can be re-written in terms 

of Jacobians to give 

This is very similar to the Nambu-Goto string. I f we put a background metric into 

the Lagrangian then i t becomes 

dJO^dX^ 
'det 

which can be wri t ten in terms of Jacobians as follows 

(2.58) 

A general companion Lagrangian, for n fields in d dimensions, wi th a back­

ground metric can be wri t ten in terms of Jacobians 

(2.60) 

where J/i^^i^^^^...^^ is the usual Jacobian for companion Lagrangians as defined in 

(1.42). Note that i t is s t i l l of quadratic form inside the square root. This is also 

the form for Born-Infeld type Lagrangians wi th a background metric but where the 

Jacobians J^^+^n^^2-iid '̂he Jacobians for Born-Infeld type theories. 
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2.6 Electromagnetic Interactions 
The question arises as to how to incorporate electromagnetic interactions into our 

theory w i t h companion Lagrangians. As yet, the following ideas are somewhat 

speculative but do point towards ways in which this could be done. 

In Born-Infeld theory, electromagnetism is incorporated by adding an antisym­

metric term, Fij, to the induced metric g^j so the Lagrangian is now 

£ = ^ d e t | ^ , , + F, , | = 
d_X^d_X, 
da^ da3 ^^'^ 

(2.61) 

dA^ dA' 
where da' da^ 

I f we want to copy this structure for the companion Lagrangian, then one way 

of doing this is to assume that the gauge field depends only on x^ through the fields 

(j)'{x^). The gauge fields would be wri t ten as A^{^) and the companion Lagrangian 

w i t h electromagnetism would be 

£ = Wdet 
dff)' d4>^ ^ dA^ dA' 
dx^" dx, d(j)' d(t>^ 

(2.62) 

This possibility is gauge invariant. 

Another possibility is to consider the conserved currents for the theory and 

to couple the electromagnetic fields to these. This ensures gauge invariance. An 

example of a conserved current is 

= - 4 ^ ^ ^ ' ^ J- (2-63) 

I t is easy to see that this is conserved since, 

d P3 = Q ( - 4 ^ < i ^ \ = d i 1 cjP + - 4 ^ ^ = 0. (2.64) 

e.o.m =0 

The first term is zero because i t is the equation of motion. The second term is zero 

because this is a condition due to the fact the Lagrangian is a function of Jacobians 

and i ^ j , as seen f rom (2.55). 
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Also, the currents J " — J^-' (no summation over indices i and j ) are conserved 

since 

a, 
dC dC dC d(p' dC dcjP 

dxf" 

=c 

0. 

(2.65) 

In the above, the / i index is summed over but the i and j indices are not. These 

currents, J^-', carry two indices so they naturally couple to a two index gauge 

field, A^^ say, which transforms under the group SO{n). The contribution to the 

Lagrangian for the gauge field coupling to the fields (p^ would be 

(2.66) 

This is gauge invariant up to a divergence. 

A th i rd suggestion would be to consider the Kalb-Ramond string interaction 

term for an antisymmetric 5-f ie ld 

^"'^ da dr • 

For the companion Lagrangian, the analogous term would be of the form 

d(j) dip 

(2.67) 

(2.68) 
^"dx^^ dx-' 

A final way of including C/(l) gauge fields in companion Lagrangians was sug­

gested in [57]. Instead of having the usual brane Lagrangian (2.61), we consider 

C = ^ dei\g^j + Fij\ = y 'det 
dX^ dp dq dp dq 

da' da^ da' dai da^ da' 
(2.69) 

where Fij is now the Lagrange Bracket, 

dp dq dp dq 
da' da^ da^ da'' 

This is s t i l l a U{1) theory. 

The equivalent companion Lagrangian would be 

(2.70) 

'det dcp'dcj)^ ^ f dcp'd(f>^ d(l>id(f)' 
dx^ dx^, dp dq dp dq 

(2.71) 
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where the antisymmetric term, Fij, is now 

F - d^ d^' 
dp dq dp dq ' 

This is the Poisson bracket. This term is the commutator term in an SU{oo) 

theory. This is because in the - ) • oo l imi t , the SU{N) algebra corresponds to 

the Poisson Bracket algebra [58]. I t should be noted that the Poisson bracket and 

Lagrange bracket are inverses of each other. This Lagrangian is covariant. 

Although i t is not yet clear which of these ideas is the best, i t has been shown 

that there are possible covariant or gauge invariant ways of introducing gauge 

fields. The concept of a field description of strings and branes via the companion 

Lagrangian and equations is strengthened by the fact that gauge fields can be added 

to the theory. 

2.7 Summary 

In this chapter, the structure of the companion Lagrangian, a Lagrangian for a field 

theory for strings and branes, has been given. The Lagrangian can be written in 

terms of Jacobians which always appear in quadratic form. This form is maintained 

even when a background metric is added. 

The main motivation behind studying i t is to formulate a field theory which 

gives equations of motion similar to the Klein-Gordon equation but for strings and 

branes rather than particles. The number of fields should always be equal to the 

number of world-volume coordinates. I t is further motivated by the Hamilton-

Jacobi equations for strings and branes. 

I t is not clear whether the Lagrangian should be taken wi th or without a square 

root. However, i f the Lagrangian is a non-zero constant, this does not matter since 

the equations motion for Lagrangians wi th and without square roots are the same 

in this case. There is also an equivalence theorem which states the equations 

of motion for the companion Lagrangian without a square root for n fields in d 

dimensions, when subjected to some constraints, are equivalent to the equations 

of motion for a companion Lagrangian wi th a square root wi th n fields but d — 1 

dimensions. From the point of view of wanting a covariant theory, the square root 

companion Lagrangian is the best choice. 



Chapter 3 

Companion Equations and 
Integrability 

The aim of this chapter is to discuss the equations of motion for the companion 

Lagrangian. First, we look at the equations of motion for the Born-Infeld type La­

grangians i.e those for the relativistic particle, Nambu-Goto string and p-branes. 

Then we consider the companion equations. These are sums of Bateman equa­

tions or Universal Field Equations. The integrability of some of these equations is 

discussed, mainly for the case where there is one more dimension than there are 

fields. Finally, a proof is given to show that all Lagrangians wi th two fields in three 

dimensions, which are homogeneous functions of weight one in the Jacobians, have 

the same equations of motion. 

3.1 Equations of Motion of Born-Infeld Type 

We begin by describing the equations of motion for Born-Infeld type Lagrangians 

and show how they can be wri t ten in a compact form. For a classical point particle 

wi th Lagrangian 

the equations of motion can be wri t ten as 

d^Xi'dX" d^X" dXi" 

dr'^ dr dr"^ dr 
= 0. (3.2) 

43 
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For d dimensions i t is easy to verify that there are d — 1 independent equations of 

motion in this case. This can be seen i f we rewrite them as 

_dT±_ 

ax' 
dr^ _ _ _dT±_ 
dxl ' ' ' d)i± '• 

dr dr 

(3.3) 

assuming ^ 7̂  0 for / i = 1, 2,.. . d. In the case of the point particle, the number 

of equations of motion depends on the number of space-time dimensions, d. 

Now we consider the Nambu-Goto string wi th Lagrangian 

£ 'dXi^\^ fdX'^^^ 
da dr 

dX^dX, 
da dr 

(3.4) 

I n three dimensions, d = 3, there is only one equation of motion. This can be 

wr i t ten as 

( J i J2 J3 ) 

f x L 

XL 

1 \ / { x l f + {x'',f + { x l f ^ 

-2{XlXl + XlXl + XlXl) 

(3.5) 

where 
dX^ 

Xt 
d'^X^ 

da^dai 
â  = ( a , r ) , (3.6) 

and J p — t p , j j X ^ X ^ — ^ p , v 
x: 

x!^ A:r 
(3.7) 

Therefore, the equation of motion (3.5) could be wri t ten as 

J . X ^ j { L - % = 0, (3.8) 

where L is a matr ix which has components [L],^ = ^ f | ^ - is the inverse of 

this matr ix. For a string in d dimensions, the equations of motion can be written 

in a similar form. 

(3.9) 

where the Jacobians are 

1/11^2...I'd 

x::"-' x^j 

X . a:;<' 
(3.10) 
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Only d - 2 of these equations of motion (3.9) are independent. 

This can be extended to branes. For a p-brane wi th the Born-Infeld Lagrangian 

C = \ det 
dX^' dX^ 

(3.11) 
da' da^ 

the equations of motion can be wri t ten as 

JnV2l^3..Mi_j,_iJuili2...l'i_j,_iXj^^{L ) j j = 0, (3-12) 

where 

Again, L is a matr ix w i t h components [L]ij = ^ r ^ ^ - In general, an object 

(particle, string or brane) which sweeps out an (p-|-l)-dimensional world volume 

in d-dimensional space-time has only d — p — 1 independent equations of motion. 

In the case d=p+l, the Lagrangian is a divergence, so all the equations of motion 

vanish. 

3.2 Companion Equations 

We now turn our attention to the companion equations which are the equations 

of motion for the companion Lagrangians. We wi l l be considering the Lagrangians 

w i t h a square root. Firstly, we discuss the case of one field ^{x^') wi th Lagrangian 

(3.14) 

For two space-time dimensions, d = 2, the companion equation is 

a^Y a^ ^ / a ^Y a^ _ ̂  / a^\ / a^\ ay ^ ^ 
dxi) dxl \dx2J dx\ \ d x i j \dx2J dxidx2 

This is the Bateman equation. For d = 3 the equation of motion is 

+ <t>lhz + '/'3<̂ 22 - 24>2hhz = 0, (3.16) 

where 

a^ d^(j> 
dxi' dx.dxj 

(t>i = —. 4>zj = (3-17) 
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This is the sum of three Bateman equations. This pattern generalises as we increase 

the number of dimensions. For d space-time dimensions the companion equation is 

the sum of ( 2 ) Bateman equations. There is always only one equation of motion, 

irrespective of the number of space-time dimensions. This is due to the fact there 

is only one field, (j). 

We now consider the companion equations for strings which come from the 

companion Lagrangian 

^ = y J [ i ( t ) , f { ^ < ^ f - { K % f ] = \ j \ (3.18) 

Note that the Lagrangian depends on the derivatives (f), and •0̂  only through the 

Jacobians which are of the form {4>,ipiy ~ 4>ui>ij)- For three space-time dimensions, 

d—Z, then the equations of motion are of the form 

det 

0 0 (/'2 h 

0 0 ^3 

4>i i^i (t>n (pu (pn 

4>2 ^2 (t>\2 (t>22 </'23 

4>3 •03 (1>13 023 033 

= 0. (3.19) 

There are two equations of motion. The second has the same structure as (3.19) 

but w i th 0 and -0 interchanged. This is a Universal Field Equation, a generalisation 

of the Bateman equation. 

For ci=4, the equations of motion are the the sum of four Universal Field Equa­

tions like (3.19), 

0 0 01 02 03 

0 0 Ipi 1p2 "03 

01 "01 011 012 013 + 

02 fp2 012 022 023 

03 "03 013 023 033 

0 0 01 03 04 

0 0 Vl ^3 ^4 

+ I 01 "01 011 013 014 

03 ^3 013 033 034 

04 "04 014 034 044 

0 0 01 02 04 

0 0 Vl ^2 ^4 

01 Ipl 011 012 014 

02 "02 012 022 024 

04 -04 014 024 044 

0 0 02 03 04 

0 0 IIJ2 4'3 '^4 

+ I 02 V'2 022 023 024 

03 ^3 023 033 034 

04 "04 024 034 044 

= 0. (3.20) 

The other equation of motion is the same except 0 and ij; are interchanged. For 

general d, the equations of motion are the sum of (3) Universal Field Equations. 
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For a p-brane, the companion Lagrangian can again be writ ten in terms of 

Jacobians, 

'det 
dcf)' d(j)^ 

dx^' dx. 

1 

[p + iy. \d{xt'\xt'^,...,x^p+^)) • 

(d{ <t>^ (3.21) 

I n the case d=p+2, the equation of motion are just Universal Field Equations again, 

of the form 

det 

0 

0 

0 

0 

0? 

p+2 

0 

0 

0 

'Pp+2 

^l2 

4>22 

P+2 

<t>l P+2 

^P+1 
^P+2 

<^i,P+2 

'?^2,P+2 

p+2,p+2 

= 0. (3.22) 

For higher space-time dimensions, the equations of motion are sums of (^^2) Uni­

versal Field Equations (3.22). There are always p+1 equations of motion, the same 

as the number of fields. The fact that the companion equations are all made up of 

Universal Field Equations is related to the fact that the companion Lagrangians 

are all square roots of squares of Jacobians. In fact, the equations of motion can 

alternatively be wr i t ten using the Jacobians. They take the form. 

J^l^l2tJ.3...^ld-p-l'^l'^i2^l3•.•|J•d-p-l^, i = l,2,...,p+l, 

where the Jacobian is defined as 

(3.23) 

(3.24) 
' M i / ' 2 A ' 3 - - / i < i - p - i '^^ll^^2—^^d-p-l'^l'^2•••l^p+l'rIyl^f2 • 

The calculation to show these are the equations of motion of the companion La­

grangian is in Appendix B. 

3.3 Integrability 

As mentioned before, the companion equation for the companion Lagrangian wi th 

a square root for one field in two dimensions (3.14) is the Bateman equation (3.15). 

This equation is fu l ly integrable. The equation has the general solution 

F{(j))xi + G{(f))x2 = c = constant. (3.25) 
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where F and G are arbitrary functions. I t is covariant since i f 0 is a solution then so 

is any function of 0. The Bateman equation is equivalent to the Monge non-linear 

wave equation 

du 

dxi 
u 

du 

dxo 
where u = 

d(t> 

d(t> 
dX2 

01 

02' 
(3.26) 

This is a first order equation for u. The companion Lagrangian can be writ ten so 

that i t contains u, 

£ = 0 2 \ / ( l + u2). 

The equation of motion is 

d 1 
+ 

d u 

dx2 y r r ^ dxi ^ / ^ T ^ 
= 0, 

(3.27) 

(3.28) 

which is equivalent to the Monge equation (3.26). In fact, replacing \ / l + v? wi th 

any differentiable function f{u) w i l l give the same equation of motion. 

This was known already, but what happens in the next case up when we have 

two fields in three dimensions? The equations of motion are known to be covariant 

in this case (see section 2.4) and so we ought to be able to express them in terms 

of two ratios of Jacobians 

01-02 - M l 
U = 

V = 

02- 03 - 03^2 ' 
03- 01 - 0i7/)3 

(3.29) 
02^3 - 03-02 

These are analogous to the u defined in (3.26) for the one field case. The Lagrangian 

can be wri t ten as 

£ = (02^3 - 03^2) ^/{\+V?-VV^), 

and the equations of motion are 

(3.30) 

+ u 

+ u 

d V d 1 

dXi ^/l + dx2 v T + u2 

d u d 1 

dxi i / l + ^2 + dxj, ^ \ -h ^2 -1- v'^ 

d 1 d V 

dX2 \ / l + dxi V l + V? 

d u d V 

dx2 \ / l + V? -f- dxz -t- ?;2 

= 0, 

0. (3.31) 
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As before, y/l + -\- can be replaced by an arbitrary function f{u,v). For any 

such function, we can write the equations of motion down as 

du du du 
+ V— + U— = 0, 

dxi ' " dx2 ' "^dxz 
dv dv dv ^ , , 

^ + v — + u— = 0. 3.32 
OXi 0x2 0x3 

These are equivalent to (3.31), independent of the function f{u,v), and look like 

generalisations of the Monge equation. 

They have an impl ic i t solution for u and v which can be found by solving the 

equations 

U = F{X3 - UXi,X2 - VXi), V = G{X3 - UXi,X2 - VXi), (3.33) 

where F and G are arbitrary functions of two variables. By setting u = U{(j),ip) 

and V = V{(j),ilj), where U and V are also arbitrary functions of two variables, and 

then solving the equations (3.33) for (/> and ip then we have a general solution to the 

equations of motion. This is similar to they way the general solution to the Monge 

equation leads to the general solution for the Bateman equation. This shows that 

these equations of motion are integrable. 

This procedure is easily generalised for n fields in n + 1 dimensions. As yet, a 

generalisation for n fields in d dimensions has not been found, but i t is hoped that 

this does exist and that the equations of motion are integrable. However, for the 

cases where d > n + 1 , the equations of motion are sums of Bateman equations of 

Universal Field Equations. A large class of solutions to these equations of motion 

can be found by solving each Bateman equation or Universal Field Equation sepa­

rately. For example, for the one field case the equation of motion is the sum of (2) 

Bateman equations. Solving the equation below for (f), 

x^F,{<f>) = c, (3.34) 

where F^ are d arbitrary functions of (/>, and c is a constant, gives solutions to all the 

individual Bateman equations and therefore to the whole equation of motion. This 

works the same for more fields. By finding solutions which satisfy each Universal 

Field Equation by itself, the equations of motion are satisfied. 
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3.4 Lagrangians with the Same Equations of Mo­
tion 

In the previous section we said that all Lagrangians for two fields in three di­

mensions which are homogeneous of weight one in the Jacobians have the same 

equations of motion i.e. Lagrangians of the fo rm C — {(p2i>3 — 'p3'^2)f{u,v) where 

/ is an arbitrary function and u, v are the ratios of Jacobians, given in (3.29). This 

can be shown either by calculating the equations of motion for such a Lagrangian 

directly, which can be a bi t messy, or as follows. Take Lagrangian C = C{Ji, J^., J3) 

where are the Jacobians defined as = e^^pCp^ipp. Since the Lagrangian is a 

homogeneous function of weight one in the Jacobians then the following are true: 

The first and the last equation arise because the Lagrangian is a homogeneous 

function of weight one in 0^ and also in ip^. The other two equations arise because 

the Lagrangian is a funct ion of Jacobians. The equations of motion are 

Differentiating the constraints (3.35) wi th respect to we obtain 

This gives six equations, five of which are independent. Solving these, i t is possible 

to write all Q^^Q^ in terms of Q^^, say. Similarly, diflTerentiating the constraints 

(3.35) wi th respect to ipi, and constraints (3.36) wi th respect to (p^ we find 

^*.(3f4r + 3 x i r ) = ( ' ^ {3-39) 

Again, there are six equations for which five of the { g f ^ + Q^^Q^^ ) can be found 

in terms of the sixth, g ^ ; ^ , say. Differentiating (3.36) wi th respect to i / ; ^ means 
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we can also write all in terms of gfj^^ • Put t ing these into the equations of 

motion gives 

1 9 2 / : _ , 1 d^C 

1 1 d'^C 
Ji^JAixu + 7 2 a / -^/xJ^'^,.^ = 0, (3 .40) 

which are equivalent to 

^^^^^/x:. = 0. (3.41) 

These equations (3 .41) are the Universal Field equations which were writ ten in 

determinantal fo rm in ( 3 .19 ) . This should generalise to n fields in n + 1 dimensions. 

The proof follows a similar pattern to give the result that, for a given n, all such 

Lagrangians which are homogeneous functions of weight one in the Jacobians have 

same equations of motions. These equations are the Universal Field equations 

(3 .22 ) . 

3.5 Summary 

For the usual particle, Nambu-Goto string and brane wi th a Born-Infeld type La-

grangian, then a p-dimensional object in d-dimensional space-time has d — p — 1 

independent equations of motion which can be wri t ten in the general form (3 .12) . 

The number of equations depends on both the number of world-sheet coordinates 

and space-time coordinates. For the companion Lagrangian wi th n fields in d di­

mensions there are n independent equations of motion which can be written in 

the general fo rm of sums of ( 3 .22 ) . The number of equations only depends on the 

number of fields, not the number of dimensions unlike the Born-Infeld type cases. 

However, the structure of both types of equation of motion are similar. 

The companion equations are sums of („^ j ) Bateman equations or Universal 

Field equations. I f d=n, the equations of motion are automatically zero. I f ( i = n + l , 

the equations of motion are each just one Bateman or Universal Field equation. In 

fact, i f ( i = n + l , then all Lagrangians which are homogeneous of weight one in the 

Jacobians have the same equations of motion. These equations are the Universal 

Field Equations. Such cases appear to be integrable. 



Chapter 4 

An Iterative Procedure 

The structure of the companion Lagrangians and the appearance of Bateman and 

Universal Field Equations in the companion equations led to investigations into 

the extension of an iterative procedure known for Lagrangians depending on one 

field to Lagrangians depending on more than one field. 

In this chapter, we explain how the iterative procedure works for Lagrangians 

which are homogeneous functions of weight one in the first derivatives of a field 

(j). The penultimate iteration always gives a Universal Field Equation. We then 

explain how such a procedure can be extended to Lagrangians which are homo­

geneous functions of weight one in the first derivatives of several fields, such as 

the companion Lagrangian. We concentrate mainly on the case of two fields in 

three dimensions, giving explicit examples of how the procedure works, and how 

the Universal Field Equations appear. 

4.1 Universal Field Equations 

Unt i l now, generalisations of the Bateman equation have involved increasing the 

number of fields. We now consider generalisations where the number of dimensions 

are increased, without changing the number of fields. The resulting field equation 

is also known as a Universal Field Equation [28] [29] [59]. This generalised Bateman 
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equation in d dimensions for a field (j){x'^) can be wri t ten as 

0 • (f>d 

• (pld 

det h (l>12 4)22 • • 4)2d = 0. (4.1) 

^d (t>id hd • • (pdd 

This equation possesses general covariance like the Bateman equation does. I t 

is also integrable just like the Bateman equation is. This was proved in [60] by 

linearising the Universal Field Equation using the Legendre transform. A large 

class of solutions to (4.1) can be wri t ten as solutions to the equation 

x^F,{(l>) = c, (4.2) 

where (//=1,2, . . . , c?) are arbitrary functions of 0. c is a constant. This has 

the same form as the general solution to the Bateman Equation (1.28). 

4.2 Iterative Lagrangians 

These Universal Field Equations can be obtained by using an iterative procedure 

involving Lagrangians and equations of motion. Equations of motion for a theory 

involving one field (p can be found using the Euler operator 

d 
£ = dadu d4> + (4.3) 

This summation in the operator can be continued forever, but for the present 

discussion the expansion can be terminated after the th i rd term because we wi l l 

only be dealing w i t h first and second derivatives. In general, the equation of motion 

for Lagrangian £ would be wri t ten £C=Q. 

Now consider Lagrangians, £ , which only involve first derivatives, and are 

homogeneous functions of weight one in these derivatives. Since the Lagrangian 

does not depend explicitly on the field (j) then £C is a divergence. For such cases, 

i t can be shown that S^C = 0. 

The iterative procedure is as follows 

£C£C, 

£C£C£C, 

(4.4) 
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I t should be noted that applying operator E reduces the function to one which is 
weight zero in the derivatives of in the sense that 

By mul t ip lying i t by L we return to a function which is weight one in the deriva­

tives of just like the original Lagrangian. Af ter each iteration then only first and 

second derivatives are left. A l l th i rd derivatives cancel wi th each other. For a La­

grangian in d dimensions, this iterative procedure terminates after d iterations. A t 

this point everything vanishes identically. Af ter d- \ iterations then we obtain the 

Universal Field Equation for a field in d dimensions (4.1). This is all independent 

of the Lagrangian we started wi th . 

For any Lagrangian, L = >C(^^) which is homogeneous of weight one in the (^^, 

after d—\ iterations we obtain the Universal Field Equation. Even i f the original 

Lagrangian possesses no symmetry we can reach an equation which is invariant 

under the group GL{d), despite the equation being highly non-hnear. I t is this 

which makes the Universal Field Equations universal, because they can be found 

f rom an infinite number of starting Lagrangians. There is a proof for this in [29 . 

The Universal Field Equations can be obtained f rom an infinite number of 

starting Lagrangians. Since these Lagrangians only depend on first derivatives of 

the field, and not on the field (j) itself, this means the equation of motion is 

Since this is a divergence and there are an infinite number of Lagrangians £ , then 

there are an infinite number of conservation laws. There is one for each possible 

Lagrangian. This is one of the properties which first led to the idea these Universal 

Field Equations might be integrable. 

4.3 Extension to Higher Dimensions 

The main aim of this work was to t ry to find an iterative procedure for Lagrangians 

which involve more than one field. Most of this discussion wi l l be for theories wi th 

two fields, (f) and if), where the Lagrangian is homogeneous of weight one in the first 

order derivatives 4>^j_ and V'/i-

This process is not as simple as the iterative procedure £C£C£C for one field 

where we just mul t ip ly by the Lagrangian C before re-applying the Euler operator 

S. 
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From now on, £^ denotes the Euler operator wi th respect to field (p and £^ 
denotes the Euler operator w i th respect to field if). I f we just carry out the process 
£^li£^L then we now obtain th i rd order derivatives and higher, unlike in the one 
field case where we only had first and second derivatives. As a result, there appears 
to be no simplification like in the one field case. As the iteration continues, the re­
sulting expression becomes increasingly complicated and involves higher and higher 
orders of derivatives. Also, £^L gives a function of weight zero in the derivatives 
of 4> and weight one in derivatives of Mul t ip ly ing by L gives L£^L. This is a 
funct ion of weight one in derivatives of ^ but weight two in derivatives of T / ) , which 
is not the same as the Lagrangian which is weight one in both derivatives of ^ and 
•0. This is also different to the one field case where mult iplying by the Lagrangian 
always returned the object to a function of weight one in derivatives of (^^, which 
is the same as the starting Lagrangian. 

To overcome these problems, instead of mult iplying by £ each time, we multiply 

by a funct ion / which depends on the Lagrangian in some way. / should depend 

on (/)̂  and -i/)^ only, as £ does. Also, / should be a homogeneous function of weight 

one in 0^ and weight zero in •0^. This means that j£^L is weight one in both 4>ii 

and T / ) ^ , the same as the Lagrangian. Finally, / should be chosen so that there are 

no th i rd order derivatives when the Euler operator is applied for the second time, 

^(/>/<^0£-

To find f{(f>fj.,ipfj,) we need to find the conditions on / required to ensure that 

there are no terms involving th i rd derivatives. Applying the first Euler operator, 

£^, gives 

Mul t i p ly this by an as yet unknown function / , which depends only on (f>^ and '0^. 

Then apply the Euler operator, £^, again. 
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Looking at the terms involving th i rd order derivatives only then we find 

df d^c d'c df d'c 
d<i)pdci)^d(i>J^'"' ' d(j),d(i).d(j)/'''"' d(Ppd(t>>,di:, 

So, for all this to vanish we require 

df d^C df d^C 
d4>, ds.d^i^J'"' d^, dci>,d<i>J""' ~ ^^-^"^ 

In general, this w i l l be satisfied i f the function / satisfies the following condition: 

df d^C 

^ = ^ for all (4.11) 
dili^ d(pi dipi 

There is no summation over indices in this condition (4.11). 

I f we apply the Euler operator £^ to f£^C then we obtain the same condition 

(4.10). 

Similarly, i f we consider mult iplying E^C by some function g{(f>fM,tp„) then g 

needs to satisfy 

dg d^c 

^ = ^ for all (4.12) 

so that E^gS^L and E^gE.^C only involve first and second derivatives. 

4.4 Specific Examples 

We now consider some specific Lagrangians, find the functions / which satisfy the 

conditions (4.11) and discuss the iterations. We wi l l concentrate on two fields in 

three dimensions. In each case, / must satisfy the conditions 

dj_ dj_ d f _ d^C 

d f _ ~ dj_ ~ dj_ " 82£ • V^-^"^) 
dipi dip2 dtps dipid(j>\ 

First we look at the companion Lagrangian wi th a square root 

£ = ^Jj! + J | + Jl (4.14) 
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where the J, are the usual Jacobians. The required function / is 

(4.15) 

Note that any function of this / w i l l satisfy the condition (4.13). However, i t makes 

sense to choose / to be weight one in and weight zero in •0^ so that f£(j,C is a 

funct ion of weight one in derivatives of (p and in derivatives of as stated earlier. 

The iterative sequence is then 

£^f£^C det 

0 Ipi 1p2 

Ipl Ipu •012 ^13 

1p2 "012 '022 •023 

•03 •013 0̂23 "033 

(4.16) 

Af te r two iterations we have some factor multiplied by the Universal Field Equation 

for field in three dimensions. The expression is completely independent of 0 and 

its derivatives. Similarly, i f we make the valid choice for g 

£ 
9 = 

then 

£ip9^tp^ (0? + 02 + 02)3/2 
det 

4>l 

0 01 

01 011 

02 012 

03 013 

(4.17) 

02 

012 

022 

023 

03 

013 

023 

033 

(4.18) 

This is some factor multiplied by the Universal Field Equation for field 0 and is 

completely independent of ip. 

The following list of Lagrangians for two fields in three dimensions all behave 

similarly. Suitable functions / have been found for them all. 

£ 
£ — aijJiJj, 

£ 
CkJk 

£ = C{bjJj,CkJk), 

f = 

f = 

f = 

\/ ^iiniz^hhii ^T-2h ̂ 3 '0n '0Ji 

£ 
etjkkcjtpk 

(4.19) 

The Uij, bk, Ck are all constants and summation over indices is assumed. A l l indices 

run f rom 1 to 3. The first of these examples is the companion Lagrangian (4.14) 
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w i t h a background metric. Setting 011,022,0,33 = 1 and all other aij = 0 we 
just have the normal companion Lagrangian. In all the cases above, the iterative 
sequence E^fE^C is always of the same form as (4.16). The determinant part, 
the Universal Field Equation, always appears and is multiplied by some factor. 
The factor depends on the starting Lagrangian. The whole expression always only 
involves derivatives of ip and so is completely independent of derivatives of (j). 

In some ways i t is not surprising that the second iteration of these Lagrangians 

is the same, since the equations of motion of all these Lagrangians are equivalent. 

What is surprising is that the iteration only depends on the first and second deriva­

tives of ip and has no dependence on derivatives of (f) at all . Similarly, E^gE.^L only 

depends on derivatives of (f). The fields seem to completely decouple. Another im­

portant point is that the second iteration always involves the generalised Bateman 

equation (the Universal Field Equation). This is analogous to the one field case 

where after d — \ iterations we obtain the Universal Field Equation. 

This can be generalised to higher dimensional cases where the number of fields is 

one less than the number of dimensions. Functions / can be found for Lagrangians 

of the same form as (4.19) but w i th the Jacobians redefined for d — 1 fields in d 

dimensions. The / 's have a similar structure to those in (4.19). I t is hoped that 

this can be extended to n fields in d dimensions. 

4.5 Summary 

The iterative procedure for Lagrangians which are homogeneous functions of weight 

one in derivatives of one field, 0^, where the (d—l)th iteration is the Universal Field 

Equation, has been generalised to more than one field. 

Rather than mult iplying each time by the Lagrangian, i t is necessary to mul­

t ip ly by a funct ion / which depends on the Lagrangian. For two fields in three 

dimensions, several examples of Lagrangians which are homogeneous functions of 

weight one in (/)̂  and t/)^ have been given. In these cases we have found a suit­

able function / and shown that the second iteration always gives a Universal Field 

Equation. 

As yet, the list of examples does not cover all Lagrangians which are weight 

one in the first derivatives of the fields. However, the list does involve a large class 

of such Lagrangians, including the companion Lagrangian. 

Extension to d — 1 fields in d dimensions is possible and functions, / , can 
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be found for a similar list of Lagrangians to those found for two fields in three 
dimensions. Extension to n fields in d dimensions sti l l remains to be done. I t is 
likely that iterations for these w i l l result in Universal Field Equations appearing 
somewhere. 



Chapter 5 

A Special Property of a Family of 
Field Theories 

I n this chapter, we discuss a property of a family of field Lagrangians, not just com­

panion Lagrangians. This property is that for these field theories, the Lagrangian 

vanishes or is a divergence on the space of solutions of the equations of motion. 

The list of examples is given below. Basic background on most of the examples 

can be found in [19] [32 . 

5.1 Klein-Gordon Field 

The Klein-Gordon equation is a field equation for a scalar field (f>{x^). Its La­

grangian is 

£ = ^a^^a'̂ c/. - i m V , (5.1) 

where m is the mass. The equation of motion is 

( • + m^),/. = 0. (5.2) 

This is the Klein-Gordon equation. To show the property that the Lagrangian is a 

divergence on the space of solutions then rewrite the Lagrangian (5.1) using partial 

integration as follows. 

C=]^d,{<}>d^<j>)-\<j>d,d>^<P-\m^4>'' 

= \d,{ct>d^<P) - l ^ ( D ^ + r n V ) . (5.3) 

divergence e.o.m. 

When the equation of motion (e.o.m.) is satisfied the second term is zero, so the 

Lagrangian is a divergence. 
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5.2 The Dirac Equation 
The Dirac equation is a first order equation for fermions wi th spin 1/2. The 

Lagrangian is 

£ = i'ip'j'^d^il) - m'0'0, (5.4) 

where ip{x'^) is a spinor and ip = -0^7° is its adjoint. The equations of motion are 

(z7^a^ - m)tp = 0 and ipiij^X + m) = 0. (5.5) 

The first is the Dirac equation and the second is its Hermitian conjugate. I t is 

very easy to see that the Lagrangian for Dirac field vanishes on the space of the 

solutions of the equations of motion since the Lagrangian is just 

C = tPiiYdu^-mi;). (5.6) 
V 

e.o.m. 

5.3 Maxwell Theory 

Maxwell Theory describes electromagnetism. I t is a C/(l) gauge theory. The La­

grangian for a free electromagnetic field is 

£ = - i F ^ , F ^ ^ (5.7) 

where = d^A^, — d^A^, is the electromagnetic field strength tensor and A^ is 

the gauge field. The equation of motion is 

d^F''" = 0. (5.8) 

Rewri t ing the Lagrangian (5.7) using the antisymmetry of F^,^ and partial integra­

t ion we find 

£ = --^{d^A, - d,A^)F'''' 

= -Id.A^F'^" 

= -\dM>^Fn + \A.d,F^r (5.9) 

The last term is zero when the equations of motion are satisfied so the Lagrangian 

is a divergence on the space of solutions of the equations of motion. 
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5.4 Self-Dual Gauge Fields 
In general, the result does not hold for non-abelian gauge theories. However, in the 

special case of self-dual Yang-Mills the Lagrangian can be writ ten as a divergence. 

The non-abelian field strength is 

F^^ = d^A^ - d^A^ + [A^, A^]. (5.10) 

The self-duality condition is 

F^, = *F^,, where *F^, = ^e^.paF"", (5.11) 

so the self-dual Yang-Mills Lagrangian is 

C = -lTv{F,,Fn = -le''''"'Tv{F,,F,,). (5.12) 
4 o 

This can be rewritten as a total derivative, 

C = -^d,[e'''""'Tv{A,d,A, + '^A^ApA,)]. (5.13) 

I t is the total derivative of the Chern-Simons term which can be studied as a 

Lagrangian in its own right [61]. Therefore, self-dual Yang-Mills has a Lagrangian 

which is a divergence. In the previous examples the Lagrangian is only a divergence 

when the equations of motion are satisfied. Here, i t may at first seem like the 

equations of motion have not been considered. However, i f the self-duality condition 

is satisfied then so are the equations of motion for Yang-Mills, so the condition the 

equations of motion are satisfied was taken account of in (5.12). For more on 

self-duality, see Chapter 6 on the Moyal-Nahm equations. 

5.5 Gravity 

The Lagrangian for gravity is 

C = V^R, (5.14) 

where g is the determinant of the space-time metric and R is the Ricci scalar. I f 

there is no matter in the theory, the equation of motion is 

R^^-lg^-^R=0, (5.15) 

where R^" is the Ricci tensor. W i t h matter, the right hand side of this would 

be the stress-energy tensor T^" but since we have empty space-time this implies 

iJf"^ = 0 and therefore R = 0. Therefore, the Lagrangian for pure gravity vanishes 

on the space of solutions of the equations of motion. 
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5.6 Strings and Branes 

The Lagrangian for strings and p-branes is 

£ = Wdet (5.16) 

X' ' (a*) (// = 0 , 1 , . . . , d - 1) are the d target space coordinates, a' ( i = 0 , 1 , . . . ,p) 

are the p-t-1 world-volume coordinates. For string theory, set p = 1. The equations 

of motion are 

dC 
0. 

dim. 
I t can be shown, via the theorem of false cofactors, that 

^X^' dC 

(5.17) 

dm) 
(5.18) 

This is shown as follows [18]: 

Let £ = so 

L = det 
dX'' dX„ 

(5.19) 

Also, let Lij be the cofactor, or signed minor, of the i - jth component in matrix 

of which L is the determinant. Therefore, 

dC dX^' d^/L IdX^ 1 dL 

dim dim 2 da^ 

1 1 dXi'dXp 
2 y/L da' da'' 

dXJt 
) 

{Lkj + Ljk) 

1 ^X^'^X, 

^/L dai da'' 
L 

(5.20) 

I n the th i rd line we can see that ii i = j then we just get the determinant, L . But, 

i f i ^ j then this is same as finding the determinant of a matrix wi th two rows 

which are the same. The determinant of such a matr ix is always zero. This is the 

theorem of false cofactors. I t should be noted that the case i = j shows that the 

Lagrangian £ is homogeneous of degree one in the for each value of i. 
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This result and partial integration can be used to give 

1 dX" dC 

p + ida^ a ( f f ) 

1 d (^^ dC dC 
(5.21) 

Therefore, i t can now be seen that when the equations of motion are satisfied the 

Lagrangian is a divergence. I t should be noted that this works for any power of 

the Lagrangian (5.16). For 

dXf'dXf, 
'd^'d^ ) ' 

where A'' is some number, then the Lagrangian can be rewritten as 

£ = det (5.22) 

C 
1 dc 

N{p + l)da^Y' d{%^) N{p + 1) d a ^ \ d m 
(5.23) 

so is again a divergence on the space of solutions for any power y . The important 

values of iV are iV = 1 which is the case given and N = 2, the Schild string (when 

p = l). 

5.7 Companion Equations 

This property is also true for the companion field theory for strings and branes 

which was described earlier. The Lagrangian is 

C — \ /det 
d<p' defy! 
dxi^ dx,, 

(5.24) 

where (/)̂  ( i = 1, 2 , . . . , n) are the fields and x'^ (/x = 1,2, . . . , d) are the spacetime 

coordinates. The equations of motion are 

dC 
= 0. (5.25) 

'\d{d,cl>^ 

The Lagrangian is homogeneous of weight one in the first partial derivatives of 

01 = g i . This means 

dC 
C = d,(l>' 

d{d,<l>')' 
(5.26) 



5.8 Supe rsymmetr i c Lagrangians: C h i r a l Superfields 65 

By rewrit ing this using partial integration, the Lagrangian is 

So, the companion Lagrangians are also a divergence on the space of solutions of 

the equations of motion. 

As in the string/brane example, this works the same for any power of the 

Lagrangian (5.24). In particular, the property holds for the companion Lagrangian 

either w i th or without a square root. 

5.8 Supersymmetric Lagrangians: Chiral Super-
fields 

The property also extends to some supersymmetric Lagrangians. Firstly, we con­

sider a chiral superfield. Chiral superfields obey the condition = 0. A general 

chiral superfield in superspace {x, 9,9) has the form [62 

^x,9,9) = A{x) + t9a"'9dmA{x) + ^9999aA{x) 

+ V29i;{x) - ~99dmi^{x)a"'9 + 99F{x). (5.28) 
v 2 

Consider a Lagrangian involving only chiral superfields as below, 

JC = ^l^.Ueo + lm,,{^,^,leB + <fJ$J|,-,-) (5.29) 

= idmi^.a'^i^, + A*DA, + F:F, + mi,{AiFj - -iP^^, + A*F* - ^V^.V',), 

where rriij is symmetric w i th respect to indices i and j. The equations of motion 

for this Lagrangian are as follows: 

F* + rriijAj = 0, OA* + rriijFj = 0, idmi'ia"' - m ^ V j = 0, 

F, + m,jA* = 0, nA, + m,jF* = 0, ta^'dmfpi + m^jiij = 0. (5.30) 

Rewrit ing the Lagrangian using partial integration, we find 

+AHUA, + m,,F;) + {F: + m,,A,)F, + '-dm{i^,a^i^,). (5.31) 

The first four terms w i l l vanish when the equations of motion are satisfied 

and the last term is a divergence. A more general supersymmetric Lagrangian for 
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chiral fields would involve the addition of the terms ^gijk^i<^j^k, Ai$i and their 
hermitian conjugates. However, i f these are added then the Lagrangian is no longer 
a divergence when the equations of motion are satisfied. 

5.9 Supersymmetric Lagrangians: Vector Super-
fields 

Secondly, we consider vector supersymmetric Lagrangians. Vector superfields obey 

the condition V = . A general vector superfield takes the form [62 

V = C{x) + i9x{x) - iOxix) + \e9[M{x) + iN[x)] - l.Od[M{x) - iN{x) 

- Oa'^evmix) + i9e9[~X{x) + ^a'^dmxix)] - t0e9[X{x) + ^a^^drnXix), 

+ \dm[D{x) + \^C{x)\. (5.32) 

For a vector field, the Lagrangian can be writ ten as 

£ = \{yV^W^\ee + W^Wo\-ee) + m V ^ (5.33) 

where = ~\DDDaV and Wa = ~\DDDaV. For the massless case, we can 

use the Wess-Zumino gauge in which the component fields C, x, M and N are all 

zero. The Lagrangian is then just 

^ = I D ' - -^V^^Vmn - iXo^dmX (5.34) 

where Vmn = d^Vn — dnVm- The equations of motion are 

D = 0, -la'^dmX^O, idmXa"' = 0, d'^Vmn^O. (5.35) 

Rewrit ing the Lagrangian, we find 

^ = I D ' + ^V^'d^Vmn - iXa^dm'X - ^d"" {v'^Vmn) • (5.36) 

So, for the massless vector superfield, when the equations of motion are satisfied the 

Lagrangian is a divergence. For the massive case we cannot use the Wess-Zumino 

gauge. However, the action can be rewritten as [63 

S[V] = ^ y VD'^D^DaV d^xd^e + w? j dSd^^, (5.37) 
and the equations of motion are 

ID'^D^D^V + m'V = (5.38) 
8 

From this i t can be see that the Lagrangian is a divergence when the equations of 

motion are satisfied. 
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5.10 Discussion 
The Lagrangians of the following field theories have been shown to be a divergence 

on the space of solutions of the equations of motion of that theory: Klein-Gordon, 

Dirac, Maxwell, Self-Dual Yang-Mills, gravity, string theory, brane theory, com­

panion field theory, supersymmetric chiral and vector superfields. The theories can 

be massive or massless. 

This property suggests there is a 'pseudo-topological' nature to the Lagrangians. 

Lagrangians which are divergences wi th no other constraints are fu l ly topological, 

such as gravity in two dimensions [30]. Here the Lagrangian is only a divergence 

when the equations of motion are satisfied. However, i t should be noted that there 

are many important properties of fu l ly topological theories which do not appear in 

these 'pseudo-topological' theories. 

Kastrup [52] considered what solutions of equations of motion implied £ = 0 

for various theories including field theories. He had also noticed that £ = 0 for all 

solutions to the Dirac equation and pure gravity, but did not notice that for some 

other field theories £ is a divergence. His interpretation was that solutions wi th 

£ = 0 were bifurcations or phase transitions of the theory 

This is best seen in statistical mechanics where C = F wi th F defined as the 

density of the free energy. £ — 0 marks the transition between ordered and un­

ordered phases in the theory. In the examples we have given, when the Lagrangian 

is zero or a divergence we have a non-interacting theory but as soon as other terms 

are added this condition is lost and we have interactions. In Yang-Mills theory 

we the Lagrangian is a divergence only for self-dual gauge fields. £ = 0 seems to 

mark special solutions to a theory {e.g. solutions wi th no interactions, no matter, 

self-duality). 

I t should be noted that each theory can be writ ten as a Lagrangian which 

vanishes on the space of solutions, since all Lagrangians which are equivalent up 

to a divergence give the same equation of motion. 



Chapter 6 

The Moyal-Nahm Equations 

6.1 Introduction 

The main aim of this chapter is to find solutions to the Moyal-Nahm equations 

in four and eight dimensions. The Nahm equations give solutions for a particular 

set of self-dual Yang-Mills fields. When the commutators are replaced by Moyal 

brackets these equations become the Moyal-Nahm equations. 

Firstly, we discuss self-duality and the Nahm equations in four dimensions. This 

is then extended to higher dimensions. We look at why you would want to this and 

how to go about i t . In particular, we focus on Nahm equations in eight dimensions. 

Next, we look at Moyal brackets and star products. These objects are defined 

and some of their properties are given. Motivation is given as to why you might 

want to consider them. Wigner functions, a type of phase space distribution func­

tion, are also discussed since the solutions wi l l be in terms of generalised Wigner 

functions. 

Finally, we t r y to solve the four dimensional Moyal-Nahm equations and the 

eight dimensional Nahm and Moyal-Nahm equations. We use an ansatz based on 

generalised Wigner functions and sets of matrices which obey the algebra generated 

by the Nahm equations. Finding sets of such matrices was an important part of 

this work. 

This chapter is based on work in [3 . 

68 
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6.2 Nahm Equations 

6.2.1 Self-Dual Gauge Fields in Four Dimensions 

Non-abelian gauge fields can be described by Yang-Mills field theory. For the 

moment, consider gauge fields in four dimensional Euclidean space-time wi th coor­

dinates x'^, (/Li = 0 , . . . , 3). I f the theory only involves the gauge fields themselves, 

A^{x'') say, this is pure Yang-Mills. The field strength is defined as 

F^,u = df,A^ - d^Af, + [Af,, A^]. (6.1) 

The Lagrangian for pure Yang-Mills is 

C=^Tr{F,,Fn- (6.2) 

The equation of motion is 

D^F^" = 0, (6.3) 

where is the covariant derivative. The self-duality condition in four dimensions 

is 

F,, = *F,,, where *F^, = ^e^.p.F^^ (6.4). 

i.e. the field strength is equal to the dual field strength This results in the 

following three equations: 

Foi — F23, F02 = F31, Fo3 = Fi2- (6.5) 

I f the self-duality equation (6.4) is satisfied then the equations of motion for the 

Yang-Mills theory (6.3) are automatically satisfied via the Bianchi identity, 

DpF^, + D^F.p + D,Fp^ = 0. (6.6) 

This is important, since i t means all solutions of the self-dual equations are solutions 

of the f u l l Yang-Mills theory. I t is known that the Yang-Mills equations are not 

completely solvable, however the self-dual Yang-Mills equations are, in general, 

solvable [64]. Instanton and BPS^ monopole solutions both satisfy the self-dual 

Yang-Mills equations. 

^ where BPS stands for Bogomornyi-Prasad-Somerfield. 
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6.2.2 Nahm Equations 
Instantons are solutions of the self-dual Yang-Mills equations where the action is 

finite. A l l instanton solutions can be generated by the A D H M construction of 

At iyah, Drinfield, Hitchin and Manin [65]. This construction reduces the problem 

to a set of non-linear algebraic equations. Nahm generalised the A D H M construc­

tion to monopole solutions which have finite energy and are invariant under shifts 

in Euclidean t ime but do not have finite action. This generalisation resulted in 

what are know as the Nahm equations [33 . 

The Nahm equations can also be constructed in the following way. Consider the 

self-dual Yang-Mills equations (6.4) where the gauge fields depend on only one 

space time coordinate, 3;° = t say. Also, fix the gauge so that = 0. This is the 

most convenient gauge to use and makes life easier later. The self-dual equations 

are now 

dA' 
dt 

dA^ 

dA^ 

= [A\A% 

= [A\A\ (6.7) 

= [A\A\ 

These are the Nahm equations. 

Given that A° = 0 and the other gauge fields A^ { j = 1,2,3) only depend on t, 

the Yang-Mills Lagrangian is now [66 

(fdA^V I • u u\ 
£ = Tr — +-[A\A%A^,A'] . (6.8) 

\ \ dt J 2 ) 

The equations of motion are 

and the energy is 

+ [ A ^ [ A ^ A^]] = 0, (6.9) 

^ = Tr 
0 1 - ^ ' • ' ' ^ ^ ' ' • ' ' ^ ^ 

I t is easy to see that solutions of the Nahm equations (6.7) satisfy the equations 

of motion, simply by differentiating. 
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The Lagrangian (6.8) can also be wri t ten as 

£ = Tr —--[A", A'] + — - - [ A \ A ' ] 

\ \ dt ' 'J \ dt ' V 
+ { ^ - [ A \ A ' ] ] + 2 U A ' A ' A ' - A ' A ' A ' ) . (6.11) 

\ dt J dt J 

This is just sums of squares of the Nahm equations plus a divergence. Since squares 

of real objects are always positive then the Lagrangian must be greater or equal to 

the divergence. This is the Bogomol'nyi bound [67]. Therefore, when the Nahm 

equations are satisfied the Bogomol'nyi bound is satisfied. The Nahm equations 

are just Bogomol'nyi equations. Also, by squaring the Nahm equations i t can be 

seen that the energy (6.10) for solutions to the Nahm equations is zero. 

6.2.3 Self-Duality in Higher Dimensions 

As well as considering gauge fields in four dimensions, a lot of work has been 

done in extending such theories to higher dimensions [64] [68] [69] [70]. The aim is 

usually to consider the theory in a higher dimension, where there may be new and 

interesting physics, and then dimensionally reduce the theory via compactification 

to one in (preferably) four large dimensions. Recently, there has been an interest in 

Yang-Mills in higher dimensions because of the appearance of Yang-Mills actions in 

M(a t r ix ) Theory [36] [38]. M(a t r ix) theory is based on the conjecture that M-theory 

can be described by the N —)• oo l imi t of supersymmetric quantum mechanics. 

Corrigan et al. [68] were particularly interested in finding analogues of the 

self-dual Yang-Mills equation in higher dimensions. They wanted to find a linear 

relationship for the field strength, solutions to which automatically satisfied the 

Yang-Mills equations in D > 4 dimensions via the Bianchi identity. 

-Tf_iupaFpa = AF^y. (6.12) 

Tf^iypa is a total ly antisymmetric tensor and A is a constant. Therefore, this linear 

relationship implies the Yang-Mills equations are satisfied. For D = A the choice 

for T̂ i/pCT is essentially unique and is 

-^^HupaFpa — AF^y. (6.13) 

A = 1 gives the usual self-dual equations. A = — 1 wi l l give the anti-self-dual 

equations. A l l other values of A require F^j, = 0. The most interesting, and closest 
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analogy to the D = 4 case is that for D = 8. One possible linear relationship is 

Foa = ^CabcFbc, (6.14) 

where Cabc are the octonionic structure constants (see section 6.2.5). This is in 

complete analogy wi th the self-dual equations in four dimensions, which may be 

wri t ten as 

Foa = -eabcFbc, (6.15) 

where eabc are the quaternionic structure constants. Equations (6.14) are the self-

dual equations in eight dimensions that we wi l l be considering. They can be written 

as 

Fio + F27 + Fes + F54 = 0, F20 + Fn + F53 + F,, = 0, 

F30 + + F25 + F47 = 0, F40 + Fi5 + Fe2 + Fn = 0, 

F50 + F41 - f F32 + = 0, Feo + F31 + F24 + F75 = 0, (6.16) 

F70 + F12 - f F34 + F56 = 0. 

6.2.4 Nahm Equations in Eight Dimensions 

The Nahm equations in eight dimensions can be derived in much the same way 

as in four dimensions. Again, the gauge field A^ is assumed to only depend on 

one space-time coordinate, x^ = t , and the gauge choice A° = 0 is made. Putt ing 

these constraints into the the self-dual equations (6.16) results in the following set 

of equations: 

dA^ 
dt 

dA^ 
dt 

dA^ 

'df 
dA^ 

dt 
dA' 
dt 

dA^ 
dt 

dA' 
dt 

A'] - [ A ^ A^\ - \A\ A'\ = 0, 

[A', A'] - {A', A^] - \ A \ vl^] = 0, 

[A\ A'] - [A', A''] - \ A \ A'\ = 0, 

[A\ A'] - \A\ A^\ - \ A \ A^\ = 0, 

[A', A'] - \A\ A^\ - {A\ A'\ = 0, 

[A\ A'] - \A\ A'\ - \ A \ A""] = 0, 

[A\ A'] - {A\ A'\ - [A\ A^] = 0. 

(6.17) 
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In terms of the octonionic structure constants they are 

8A^ 1 

-g^ = -,cAA',A% . (6.18) 

These are the Nahm equations in eight dimensional Euclidean space-time. 

6.2.5 Octonions 

The octonions O are one of the four division algebras [69]. The other three are 

the real, complex and quaternionic numbers {TZ,C,V.). The octonions are non-

associative and non-commutative, so they do not have a matrix representation. 

However, they are alternative and so for any x,y e O, so 

x{y^) — {xy)y = 0 and {x^)y — x{xy) = 0. (6.19) 

The basis for the octonions is { 1 , 6 ^ } where a = 1 , . . . , 7. Any octonion q can be 

wri t ten as ^ = Qo + Qa^a where all are real. In this work, only the imaginary octo­

nions (cq , a = 1 , . . . , 7) w i l l be considered. The octonions obey the multiplication 

rule 

CiCj = -6ij + c^jkCk, (6.20) 

where c^fc are the octonionic structure constants. The structure constants wi l l be 

taken to be 

Cl27 = C631 = C541 = C532 = C246 = C347 = C567 = 1- (6.21) 

These are total ly antisymmetric. A l l other Cij^ are zero. There are many examples 

of the octonions appearing in physics, especially when the groups 5 0 ( 8 ) , 5 0 ( 7 ) 

and G2 are discussed [68] [69] [71] [72 . 

6.3 Moyal Brackets and Star Products 

6.3.1 The Star Product 

The star product of two functions f{x,p) and g{x,p) which are functions of a 

2-dimensional phase space {x,p) can be wri t ten in several ways [41 . 

f ^ g = exp zA( — — - — — 
dx dp' dp dx' 

f{x,p)g{x',p')\x=x',p=p', (6.22) 
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or 

S' 
3=0 ' t=0 

(6.23) 

or 

= 
1 

1 1 1 

X x' x" 

p p' p" f{x',p')g{x",p") dx'dx"dp'dp". (6.24) 
47r2A2 

A is a parameter. The last definition can be checked against the others by using 

the Fourier transforms of / and g. The star product can easily be generalised for 

functions on a 2A''-dimensional phase space {xj,pj) as follows: 

"d t t t 
f-kg = fexp iX 

dxj dpj dpj dxj 
(6.25) 

or 

N OO 
(6.26) 

The star product is associative, so for any three functions / , g, h then 

f -k{g-kh) = {f •kg)-kh, 

but i t is non-commutative, so in general 

/ * 5 7̂  5 * / • 

(6.27) 

(6.28) 

The star product can be expanded as a power series in the parameter A. 

I t should be noted that the first term in the expansion is ordinary multiplication 

of / and g. Therefore, in the l im i t A 0 the star product tends to ordinary 

mult ipl icat ion. The second term in the expansion is the Poisson bracket which wil l 

be discussed later. 
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Propert i e s 

As well as being associative and non-commutative, the star product has the prop­

erty 

dpdo; = J f 9 dpda;. (6.30) 

This is because all the terms in the star product are divergences except the first 

term f g . Assuming the functions / and g and their derivatives vanish at infinity 

these divergences are just integrated out. This property is most easily seen from 

definition (6.24) of the star product. 

A useful result due to Ian Strachan [41] which wi l l be used in later calculations 

is that 

e^^fix) * e^y'g{x) = e^^^^^'^ f{x + y')g{x - y). (6.31) 

6.3.2 IVIoyal Brackets 
The Moyal Bracket was first introduced by Moyal over 50 years ago [43]. I t is the 

imaginary part of the star product. The Moyal Bracket of two functions / and g 

is therefore 

{f,9}MB = l . U ^ 9 - g ^ S ) . (6.32) 

The real part of the star product is known as Baker's cosine bracket (named after 

George Baker, not Linda Baker), 

{ { f . 9 ) ) = \ { f ^ 9 + 9 ^ f ) - (6.33) 

The Moyal Bracket is a one parameter deformation of the Poisson Bracket which 

is given by 
rr . 9f^9 d f d g 

^^^'^''=d^d-p-d^d^- ^'-^'^ 

The deformation parameter is the A in the star product. I t is a Lie algebra, like the 

Poisson bracket is, and so satisfies the Jacobi Identity just like matrix commutators 

and Poisson Brackets do. 

{ { / , 9}MB, h}MB + {{9, h}MB, / } m b + {{K /}mb, 9}MB = 0. (6.35) 

Arveson showed that the Moyal bracket is the only function of iterated Poisson 

brackets which can satisfy the Jacobi identity [73]. The Moyal Bracket is the 

unique one parameter associative deformation of the Poisson bracket and in the 

l i m i t A —>• 0 then j{f,g}MB becomes the Poisson bracket. 
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6.3.3 Wigner Functions 
One set of objects commonly used wi th Moyal Brackets are Wigner functions. 

These are phase space distr ibution functions and were invented by Wigner and 

Szilard [74]. Wigner used them as a kind of probability distribution function 

constructed f rom wave functions when he was studying quantum corrections in 

statistical mechanics. Since then, Wigner functions have been used in dynami­

cal systems (especially collision theory), quantum optics, quantum chemistry and 

M-theory [75] [76] [77] [46]. The t ime independent Wigner function on phase space 

{x,p) is [78' 

/ ( ^ , P ) = ^ / n x - ^ y ) e - ' y ' ' ^ { x + ^y)dy. (6.36) 

if) is an eigenfunction of the Schrodinger equation. Hip = Ftp. As i t stands, the 

Wigner function is not a probability distribution function since i t can sometimes 

be negative. However, integrating i t over one of the phase space coordinates, either 

X or p, results in an object which is always positive and can be considered to be 

probabili ty distribution function. I t is non-local, an important property for some 

of its uses. The Wigner funct ion can be generalised [41]. For example, one could 

consider 

fab{x,p) = ^ J r a i x - \y)e-'^^U^ + \y) dy, (6.37) 

where the wavefunctions ipa are orthogonal, 

j ra{x)U^)dx = 5a,. (6.38) 

I t w i l l be a generalised Wigner function which is used to solve the Moyal-Nahm 

equations. 

6.3.4 Uses and Motivation 

Quantisat ion 

The original context for the use of Moyal Brackets was in a formulation of Quantum 

Mechanics. This is known as the Weyl-Wigner-Moyal formalism which uses Wigner 

distr ibution functions. Moyal wrote an evolution equation for these phase space 

distr ibution functions f{x,p,t), 

^-i^ = { H . f } . s . (6.39) 
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H is the Hamiltonian. As is well known, when wri t ing classical objects as quantum 
mechanical operators the ordering matters since the operators do not commute. In 
the Weyl-Wigner-Moyal formalism, Weyl ordering is used as the way of choosing 
the order the operators are wri t ten down. Baker showed that the Moyal evolution 
equation and Wigner distr ibution functions imply quantum mechanics [79 . 

Essentially, the Moyal quantisation process involves replacing all multiplication 

w i t h star products and using Wigner distribution functions instead of the usual 

wavefunctions. Wherever there is usually a commutator there is now a Moyal 

bracket. The deformation parameter is h. This is quite a natural way to quantise 

since in the classical l im i t {h 0) the Moyal bracket reduces to the Poisson bracket 

as expected. 

Bayen et al. stated that the Moyal bracket is the only deformation of the Poisson 

bracket which can be used like this [80], while Arveson showed that the Moyal 

Bracket is the only such object which can be used in the phase-space formulation 

of Quantum Mechanics [73 . 

M - T h e o r y 

Moyal brackets can not only be used in quantisation but they can also appear in 

association wi th M-Theory [46] [81]. M-Theory is the 11-dimensional theory which 

has SUGRA as its low energy effective description. I t also reduces to the five string 

theories in various l imits. Banks et al. have constructed a M(atr ix) Theory which 

is a matr ix model which describes this theory when the large A'' l imi t is taken [36 . 

A'' is the size of the matrices. A typical action [38], in this case for matrix string 

theory, is 

S = / Tr ({D,X^)' + e^pe + glFl - 1 [ X ^ X'']' + - ^ % [ X ^ 6]) dadr. 
2Tra'J \ g j gs J 

(6.40) 

This is the action for A/" = 8 supersymmetric U{N) Yang-Mills theory. The 

X'^ are N x N Hermitian matrices and are the scalar fields. The 91, 9% are eight 

fermionic fields. The a and r are the world-sheet coordinates. To recover M-Theory 

we need to take the large A'' l i m i t . The Moyal brackets give a way of approaching 

this l imi t . I f we rewrite the theory by replacing all multiplication by star products, 

then the commutators are replaced by Moyal brackets, fermionic terms involve the 

cosine bracket and the matrices X^ are now functions over a phase space, (a, /?) 
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say. The deformation parameter is A = ^ . The action is now 

5 M B = ^ I ({D^X'^Y + {{e^.m) + 9 > F f ^ (6-41) 

1 . . . . . V 1 , , „ ^ 1 
^ {X^,X"}MB] +-{{e^l,,^{X\9}MB)) dadrdad /? . 
^gs / 5s A j 

We now need to take the large A'' l imi t . As the value N (taken to be an odd integer 

else this does not work) is increased the Moyal bracket becomes an infinite sum 

of copies of the commutator [X'^.,X'']. In the large A'̂  l imi t this is the Poisson 

bracket. So, when we take the N ^ oo l imi t of the Moyal action then we get an 

action involving Poisson brackets, 

•>PB ^ J i^iD.Xn' + B'm - I - gl^xFl (6.42) 

--^{X^^X'^fp^ + - ^ ^ 7 , { ^ ^ ^ } P B j d a d r d a d / ? . 
9s 9s j 

Moyal brackets just give a diflFerent way of considering the large iV l imi t , 

s t r i n g T h e o r y and Non-commutat ive Geometry 

One of the most recent uses of the star product was in the work of Seiberg and 

Wi t t en [44] (and all the spin-off papers f rom this work) which showed the equiva­

lence between ordinary gauge fields and non-commutative ones. They considered 

non-commutative geometry wi th coordinates x^ which have a non-zero commutator 

given by 

'x\ x^\ = i9'K (6.43) 

In this case, the deformation parameter of the star product is taken to be the 

antisymmetric matr ix 9 which has components 9^K The star product is 

* = e^^^'^'^. (6.44) 

They showed that ordinary Yang-Mills and non-commutative Yang-Mills are equiv­

alent for open strings in a constant, non-zero B-field and that i t is possible to go 

f rom one theory to the other simply via a change of variables. 
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6.4 4D Moyal-Nahm Equations and Solutions 

The aim of this section is to find solutions to the Moyal-Nahm equations in four 

dimensional Euclidean space-time. 

The Moyal-Nahm equations are simply the usual Nahm equations (6.7) where 

the commutators have been replaced by Moyal brackets and the matrices A'^{t) are 

replaced by functions X'^{t, x,p). This A '̂̂  (A;=0,l,2,3) is a field in four dimensions 

which depends upon only one coordinate, in this case t, and phase space {x,p). 

The Moyal Nahm equations in four dimensions are 

dx^ 
dt 

dx^ 
dt 

dX^ 
dt 

= {X\X^}MB, 

= {X',X'}MB, 

= {X\X^}MB-

(6.45) 

To solve this set of equations we use the ansatz 

X' = i^]{x-y,t)e'''M^ + y,t)e''''^ylUy, (6.46) 

which takes the form of a generalised Wigner function. The e'-''' is the usual to­

tal ly antisymmetric e symbol (wi th convention ê ^̂  = -h i ) . The i){x,t) are three 

component wavefunctions. These wavefunctions were chosen to be of the form 

(6.47) 

where the (j)i{x) are orthonormal wavefunctions. The star product of X^ and X^ is 

calculated as follows: 

X^ i.X' = - JJ iPlix - y, t)e^'%{x + y, t)e^^'^y"' * 

i^lix - y', t)e'="^"^„(x + y\ t)e2-P^'/A dydy'. 

ij){x,t) = 1p2{x,t) = 
\ 'ip3{x,t) J 

Using (6.31) 

- y + y'^ t)e'%{^ + y + y', t)^^"''"'^ 

i^lix - y ' - y , t)e'^^U^ - f y' - y, t)e^^^^y'l^ dydy'. 
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and via a change of variables 

= - \ j ^ l { ^ - y ^ i)e'='""Z„,(t)e^'V/(a; + y, t)e^^^^y" dy (6.48) 

= - \ j 4(^-y)/LWe'^"^n,W6^'7w( t )<^/( :r ; + y)e''^^''^/'dy, 

where orthogonality of the wavefunctions 4>k{x) is assumed to be of the form 

/

CO 
(t>]{x)<l>k{x)dx^5jk, (6.49) 

oo / -oo 

and 

I hit) 0 0 ^ 

Z{t) = f P where / = (6.50) 0 f2{t) 0 

V 0 0 ut) J 

The partial derivative a much simpler calculation, can be written as 

— = - y <P]{x - y)-{f{t)e^^'f{t))M^ + 2/)e2-^^/^dy. (6.51) 

By put t ing these into the Moyal-Nahm equations we obtain three matrix equa­

tions of the form 

^ | ( / t ( O e V ( 0 ) = ^iP{t)e'Zit)e'f{t) - f\t)e'Zit)e'f{t)), (6.52) 

where eMs a 3 x 3 matr ix wi th jk^^ entry ê '̂̂ . Equating the entries in the matrices 

gives differential equations of the form 

| ( / 2 7 3 ) = - ^ l / i r ( / 2 7 3 ) = 

^(/aV^) = - \ \ h \nf2). (6.53) 

and cyclic combinations of these. These result in the following set of three diff'er-

ential equations: 

^(1/21^1/3!^) = -2l'^^l^l-^2 |^l'^'^l^' 

Id /s lViP) = - ^ l / i l V 2 n / 3 p , (6.54) 

^ ( i / i n / 2 n = - 2 i / i p i / 2 n / 3 p . 

Note that for each of the above, the right hand side of the equations is always the 

same. I t is these equations which need to be solved to find the solutions to the 

Moyal-Nahm equations. 
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6.4.1 Simplest Solution 
The simplest solution is to set all the fi equal to each other. This gives the solution 

l / i P = I / 2 P = l / s P = (6.55) 

so that 

f l i t ) = / 2 W = hit) = - ^ j ^ , (6.56) 

where K is an arbitrary constant. Since each component of the field is dependent 

on l / i p then the t dependence in this example is a simple pole. 

6.4.2 Another Simple Solution 

By setting two of the fi equal to each other then a solution in terms of the hyperbolic 

functions can be found. 

\h? = | /2p = 45COth(gt + i ^ ) , 

/3p = 8gcsch(2gt + 2ir), (6.57) 

so that 

h{t) = f2{t) = 2^yqcoth{qt + K), 

fsit) = 2^y2qcsch{2qt + 2K), (6.58) 

where K and q are both real constants. 

6.4.3 General Solution 

However, ideally we want a general solution to these equations. In this case the 

solutions are wri t ten in terms of elliptic functions sn, cn and dn. The most general 

solution was found to be 

1/1P = Mk 
2sn{qt + c)cn{qt + c) 

dn{qt + c) 

sn{qt + c) 

2 . dn{qt + c)sn{qt + c) 
cn(qt + c) 

q, c and k are all constants but may have to be carefully chosen in order to ensure 

that al l the | / i p are positive, k depends on the elliptic functions. 
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6.5 8D Nahm Equations and Solutions 
The work is now extended f rom four dimensions to eight dimensions. The Nahm 

equations in eight dimensions are 

dA 1 
^ = -c^,k[A„ Ak], (6.60) 

where the Cijk are the structure constants which define the multiplication of the 

imaginary octonions. The equations are wri t ten out in fu l l in (6.17). These equa­

tions are self-dual Yang-Mills equations in 8-dimensional Euclidean space where 

the gauge fields depend on only one coordinate , x° = T (the zeroth coordinate), 

and the gauge is fixed so that A° = 0. 

We now attempt to find solutions to the 8D Nahm equations. In particular, 

we are looking for matr ix solutions. To do this we must first find sets of matrices 

which satisfy the algebra generated by the Nahm equations, i. e. sets of matrices, 

Bi {i = 1,... ,7), which satisfy 

mBi = ^Cijk[Bj,Bk], (6.61) 

where m is some number. 

6.5.1 Solution 1 

I t is known that a solution to the 8D Nahm equations is 

A, = - ^ e „ (6.62) 

where the e, form the basis of the imaginary octonions. Since the octonions are 

non-associative, there are no matr ix representations of the octonion algebra. I t 

would therefore be reasonable to question whether a matrix solution to the 8D 

Nahm equations exists at al l . 

However, the octonionic structure constants can be used to find a matrix so­

lution of the Nahm equations. Seven matrices, Bi{i = 1 , . . . ,7) , were constructed 

where the j-kth. component of the zth matrix is the octonionic structure constant 

c^Jk• i-e. 

Bi]jk = Cijk- (6.63) 

These matrices, Bi, are writ ten out in f u l l in Appendix D. The matrices satisfy 

the equations 

3Bi = ^c,jk[B„ Bkl (6.64) 
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which are basically the Nahm equations without the partial derivative. The possible 

r dependence of solutions based on these matrices was explored. In this case, the 

most general solution to the Nahm equations to be found was one involving a simple 

pole. 

A, = ---B,. 
3r 

(6.65) 

6.5.2 Solution 2 

Solutions w i t h a more general r dependence can be found using a diff'erent set of 

matrices. Consider a set of matrices which are a direct sum of representations of 

the SU(2) algebra. These matrices are not reducible. The example we use is below, 

although obviously there are other possible constructions. 

/ rr, n 0 ^ / aa 0 0 ^ 

S i = Bo —I 

B. = 

\ 
B, —I 

BF, = -i B, = 

0 ag 0 

V 0 0 a,J 

/ aas 0 0 

0 (72 0 

y 0 0 ica2 J 

ao2 0 0 ^ 

0 -ibaz 0 

0 0 cTiy 

CT2 0 0 ^ 

0 iha2 0 

\ 0 0 cas y 

Each matr ix is a direct sum of three sigma matrices. The sigma matrices are 

the usual 2 x 2 matrices 

(7i 0 

0 bu2 0 

y 0 0 icaz j 

(%ao2 0 0 

0 5CT3 0 

^ 0 ^02) 

( iaaz 0 0 ^ 

0 (Ti 0 

0 0 ca2 J 

Br = (6.66) 

C^2 (6.67) 

The set involves three arbitrary parameters (a, 6, c). None of these parameters can 

be set to zero i f the solution is to stay irreducible. These seven matrices satisfy 

the equations (6.61), just like the last set of matrices, but this time m = 2. The 

aim is now to find solutions to the Nahm equations wi th non tr ivial r dependence 
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(setting a = 1, b = 1, c = 1). The most obvious way of doing this is to multiply 
each matr ix by a funct ion of r , / i ( r ) . So 

A, = h{T)B, z = l , , . . , 7 . (6.68) 

However, this ansatz is too restrictive and the only solution to be found is 

A, = -^B, ? = 1 , . . . , 7 , (6.69) 
IT 

as before. However, a more general ansatz gives a different result. This time 

mul t ip ly each matr ix Bi by a diagonal 6 x 6 matrix given by 

I h{T)h 0 0 ^ 

Q = 0 gi{T)h 0 . (6.70) 

^ 0 0 hi{T)h , 

This amounts to mul t ip lying each a matr ix entry in each matrix Bi by a different 

r dependent function. I t is easiest to consider each row of a matrices separately. 

First, we shall look at the top row of sigma matrices and put in the r dependence 

by mul t ip lying each matr ix by a function / i ( T ) . Put t ing these 2 x 2 matrices into 

the Nahm equations gives the following set of differential equations, 

1̂  - 2/1/7 + 2/5/3 - 2/4/6, 

f = 2 / . / „ f = 2 / . / „ f = 2 / . / „ (6.71) 

5/5 _ , , 9fe _ d f j _ 
- ^/2/3, ^ - 2/2/4, ^ - ^hJu 

and the following constraints, 

/7/3 = / 1 / 5 , h f i = / 1 / 4 , hh = hU (6.72) 

Note that all of the differential equations involve / 2 , but none of the constraints 

do. 

These can be solved in terms of elliptic functions. I t was found that 

/e = K J , = i ^ i M i / i = ^-K,MrQMQir + d,), 

h = K,U = K,M,fj = ^K,M,Q,cn{q,T + d,), (6.73) 

/2 = -qidn{qiT + di), 
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where cn, sn, dn are elliptic functions and Ki, M i , qi, Qi, di are all constants. 

The elliptic functions are related to each other by a parameter ki as follows 

sn^(a;) + cn^(a;) = 1, 

din\x) + k\sn\x) = 1, (6.74) 

where A;i = ^ ^ l ^ M l { l - K l ) . 

Similar results are obtained when the second and th i rd rows of sigma matrices in 

the Bi are considered and the functions Qi and hi have a similar form to the / j . 

Pu t t ing all of this together, the following set of matrices satisfy Nahm's equations 

in eight dimensions. 

A, = 

h<Jz 0 0 
A, 

^ f20l 0 0 ^ 

0 92(^2 0 

^ 0 0 ih2az j 

A. —I A. —I 

tfA02 0 0 

0 giaz 0 

\ 0 0 h,az I 
^ h(Jz 0 0 ^ 

0 gza2 0 

y 0 0 ihz(721 

ho2 0 0 ^ 

0 -ig-,oz 0 

\ 0 0 /l5(7ly 

/ !i02 0 0 ^ 

0 ig-jU2 0 , 

^ 0 0 h-joz ̂  

where fi are given in (6.73) the other r dependent functions are given by 

A^ = A.= 

0 g^oz 0 

\̂  0 0 hi021 

I ihoz 0 0 ^ 

0 g&oi 0 

^ 0 0 /l60-2 I 

(6.75) 

P5 = K2gi = K2M2gi = ^ i ^ 2 M 2 Q 2 s n ( g 2 T + 0^2), 

gi = K2g2 = K2M2gz = —K2M2Q2Cn{q2T + 0(2), 

56 = - g 2 d n ( g 2 r + (^2), 

(6.76) 

/i2 = Kzh^ = KzMzhi = -KzMzQzsn{qzT + dz) 

hz = Kzh = KzMzhi = 
—I 
—KzMzQzcn{qzT + dz), 

h = -qzAn{qzT + dz). 

(6.77) 
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The matrices used here are not the only solutions which can constructed using 

direct sums of representations of SU{2). The sigma matrices in each row can be 

replaced by representations of SU(2) of any dimension. Also, the matrix Bi does 

not have to be a direct sum of three objects, i t could be a sum of any number of 

two or more objects. For example, Bi which are 4 x 4 matrices can be found by 

omit t ing the last two rows and columns of the Bi used above. 

6.6 8D Moyal-Nahm Equations and Solutions 

The Moyal-Nahm equations in eight dimensions are: 

,X }MB + {X ,X }MB + {X ,X }MB, 

X^}MB + {X^, X^}MB + {X'^, X^}MB, 

X^}MB + {X'^, X^}MB + {X^^, X^}MB, 

^^,X^}MB + {X^, X^}MB + {^^1 ^^}MB, 

X^}MB + {X^, X^}MB + {X^, X^}MB, 

[X^, X^}MB + {^^, X'^}MB + {^^1 ^°}MB, 

dt 
dX^ 

dt 
dX' 

dt 
dX^ 
' d f 
dX^ 

dt 
dX' 

dt 
dX' 

dt 

= i x 

X'' 

x' 

(6.78) 

X ^,X^}MB + {X^, X^}MB + {X^, X^}MB-
at 

Again, they were obtained f rom the Nahm equations by replacing the commutators 

w i t h Moyal Brackets and the matrices Ai w i th functions X\ A n ansatz based on 

the generalised Wigner function, similar to the one used for the 4D Moyal-Nahm 

equations, is used. I t is 
/•oo 

X^ = i 
l-oo 

i;^{x - y, T)Bii;{x + y, T)^^'^yl^dy, 

functions of the form 

(6.79) 

(6.80) 

where 'ip{x,t) are six component wave 

ijjj = fj{T)(j)j{x), j not summed, 

and Bi are 6 x 6 matrices. Again, the (f)j{x) are orthonormal. 

6.6.1 Sigma Solution 

In the first solution, the matrices, Bi, are the direct sums of sigma matrices as given 

in (6.66) but w i th parameters a,b,c= 1. There is no loss of generality when doing 
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this since these parameters can be considered to be contained in the r dependent 

functions / ^ ( T ) . A S before, this ansatz was put into the Moyal-Nahm equations. 

The differential equations for the functions /^(t) were found to of the form 

'11 
dr 
f2 

= - I / 1 P I / 2 P , 

^-^ = -l{\h\' + \f2\')nh, 

The differential equations are similar for fz, JA and /s, /e 

They can be solved to give the following solution. 

(6.81) 

{ f i , f2, fs, f i , h, fe} — 
2^/E^e^^' 2^/K;e'^' 2 ^ e ' ' 2/^e^^^ 2^/K~ze'^' 2^fKz^' 

(6.82) 

A l l Ki and are real constants. This solution can be generalised to solutions 

w i t h Bi matrices which are direct sums of any number of, but at least two, sigma 

matrices. 

6.6.2 Epsilon Solution 

Another solution can be found using the three dimensional representation of S'[/(2), 

which involves the completely antisymmetric matrices tijk- This time, the matrices 

Bi are the direct sums of two epsilon matrices. For our example, we used 

5 i = -

B , = 

0 62 / V 0 €3 

B, = -
€2 0 
0 it2 

(6.83) 

where the jk^^ entry of the matr ix is given by the totally antisymmetric tensor 

ei = 

0 0 ^ 

0 1 

-1 o y 

£2 

/ 0 0 

0 0 

y l 0 

0 £3 

^ 0 1 0 ^ 

- 1 0 0 

V 
0 0 0 

(6.84) 

J 

Put t ing these Bi matrices into the ansatz we now solve the differential equations 

for the functions / i ( r ) obtained f rom the Moyal-Nahm equations. These are of the 
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same form as the ones obtained f rom the 4 D Moyal-Nahm equations when solved 
using e matrices (6.53). The r dependent functions /^ ( r ) are therefore same form 
as the solution (6.59). The solutions are 

2 , „ , . 2 S n ( g ' ^ + c)cn(gT + c) 2 rx2Sn (Qr + 6)cn((3r + 6) 

'^^1 d n ( g r 4- c) ' l^^l dn{Qr + b) ' 

2 . cn (gr + c)dn (gr + c) 2 cn(Qr-H 6)dn(Qr + 6) 

l^^l = " ^ ^ ' ^ s n ( Q r - F 6 ) ' 

1 /3^ = 4 / " ^ ^ " ^ ^ ' " ^ " ' " ^ l / a P = 4 Q ' " ^ ^ " ' ^ ' ^ ^ " ^ ? : ' ^ ' ^ (6.85) 
cn(gT + c) c n ( ( 5 r + 6) 

9, (5 , c, 6, k, K are all constants, k, K are the parameters which depend on the 

elliptic functions. These solutions can be extended for direct sums of more than 

two ej matrices. For a direct sum of n matrices, the Bi w i l l be 3n x 3n matrices 

and ip{x,T) w i l l be 3n component wavefunctions. 

I t would also be possible to find solutions using other direct sums of represen­

tations of SU{2) for the Bi in the ansatz. 

6.6.3 Octonion Solution 

The same method can be used to find solutions based on the seven matrices con­

structed using the octonionic structure constants. The same ansatz (6.79) is used 

as before but this time the matrices are (6.63) and the tp{x,T) are seven com­

ponent wavefunctions. Put t ing the ansatz into the Moyal Nahm equations gives 

differential equations for seven functions fi. However, the only solution to be found 

for these equations was 

f^ = (6.86) 

so the whole function X^ has a simple pole solution. The only way of obtaining 

other solutions is i f several of the fi are set to zero. 

6.7 Summary 

In this chapter we have discussed the Moyal-Nahm equations and their solutions. 

These equations come f rom the Nahm equations, the solutions to which form a set 

of solutions to self-dual Yang-Mills. The concept of self-duality has mostly been 

studied in four dimensions but has been extended to higher dimensions. 
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The Nahm equations in eight dimensions have been given. The motivation for 
studying eight dimensions is the existence of eight dimensional Yang-Mills in matrix 
string theory and the fact that eight dimensional self-duality closely resembles self-
duality in four dimensions. This last part is most clearly seen when the self-duality 
condition is wri t ten in terms of quaternionic structure constants in four dimensions 
and octonionic structure constants in eight dimensions. 

To obtain the Moyal-Nahm equations we simply replaced the matrices in the 

Nahm equations wi th functions and all multiplication wi th star products. The 

commutators in the Nahm equations became Moyal Brackets. The Moyal Bracket 

is a one parameter deformation of the Poisson bracket and was first introduced in 

the context of wr i t ing down a formulation for quantum mechanics. 

Solutions to the Moyal-Nahm equations in four and eight dimensions were found 

using an ansatz based on the generalised Wigner function. Such Wigner functions 

often appear in theories involving Moyal Brackets. Solutions to the eight dimen­

sional Nahm equations were also found. 

During the construction of solutions, sets of matrices which satisfy the algebra 

created by the 8D Nahm equations when the partial derivatives are removed were 

obtained. One of these sets of matrices was constructed using the octonionic struc­

ture constants. The octonions seem to feature strongly in the eight dimensional 

case. 



Chapter 7 

Conclusion 

The question asked at the beginning of this work was is there a field theory associ­

ated w i t h strings and branes analogous to the Klein-Gordon theory for particles? 

The conjecture of a field theory w i t h the companion Lagrangian and its equations 

of motion seems to be a good candidate for such a theory. Although i t may re­

quire some alterations, in principle this proposal is a good one and deserves further 

investigation. 

The companion Lagrangian is a better idea than the early proposals of Hosotani 

and those of Morris since i t reduces to the Klein-Gordon Lagrangian in the particle 

case which these other ideas do not. In the particle case they have many fields, 

not one. The companion Lagrangian has the same number of fields as the number 

of world-sheet coordinates for the object i t is describing. Like the later work of 

Hosotani and Nakayama, the companion Lagrangian is further motivated by the 

Hamilton-Jacobi formalism for strings and branes. 

One of the remaining questions is whether to take the Lagrangian with or 

without a square root. While the non-square root case is a direct analogue of the 

Klein-Gordon Lagrangian, the square root case has many things in its favour. I t 

possesses general covariance, the equations of motion have either been shown to be 

integrable or show signs they w i l l be, and the Lagrangian is a direct continuation 

of the Dirac-Born-Infeld Lagrangian but for more base space coordinates than 

target space coordinates. However, recently i t has been shown that the equations 

of motion for the companion Lagrangians wi th and without square roots are the 

same i f the Lagrangian is set to be a non-zero constant. 

These two types of Lagrangians can also be linked together by an equivalence 

theorem which states that the equations of motion for a companion Lagrangian 

90 
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without a square root when subjected to some constraints are the same as the 
equations of motion for a companion Lagrangian wi th a square root in one less 
dimension but w i th the same number of fields. A proof has been given for this. 
However, these constraints have not been fu l ly understood so further work needs 
to be done, either to understand these constraints or to find other ones which lead 
to the same equivalence. The constraints that have been found may turn out to 
be sufficient but not necessary. They could be a special case of some more general 
constraints. I t would also be interesting to find out i f any other types of Lagrangians 
have a similar equivalence theorem. The proof in the appendix depends on the use 
of an epsilon identity which could be useful in other calculations and proofs. 

Both the Born-Infeld Lagrangian and companion Lagrangian can be written 

as the square root of Jacobians in quadratic form. This persists even when a 

background metric is added. The equations of motion for these theories have a 

similar structure and both involve Jacobians. However, the number of independent 

equations of motion differs in each case. For the Born-Infeld case the number 

of equations depends on the number of target space coordinates and base space 

coordinates. For the companion equations this number depends only on the number 

of fields, not the number of dimensions. The companion equations are sums of 

Bateman equations or Universal Field equations. This makes the theory integrable 

or at least makes i t easy to find a large class of solutions. More work could be done 

in this area to find more general solutions for theories wi th any number of fields or 

dimensions. 

The inclusion of electromagnetism in the theory was investigated briefly and 

four possible ways of incorporating a gauge field were given. I t is not clear which 

proposal is the right one, although the proposals which maintain covariance are the 

strongest candidates since this is a desirable property in our theory. 

The fact that the companion Lagrangian wi th a square root is a homogeneous 

function of weight one in the Jacobians made i t possible to extend the iterative 

procedure for Lagrangians wi th one field to Lagrangians wi th two or more fields. At 

present this has only really been done for two fields in three dimensions. The most 

interesting aspect of this was that after two iterations the expression only depends 

on one of the fields in the form of a generalised Bateman equation. I t is completely 

independent of the other field. The extension to d — 1 fields in d dimensions is 

relatively straightforward. However, further work could be done to investigate 

more d=3, n = 2 cases. Also, extension to more fields in higher dimensions should 
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be done so that more than two iterations can be considered. 

One of the properties of the companion Lagrangian is that i t is a divergence on 

the space of solutions of its equations of motion. In fact, this is also true for other 

theories. Lagrangians for a large family of field theories are a divergence or vanish 

on the space of solutions of their equations of motion. This property means such 

theories could be called 'pseudo-topological' because a Lagrangian which is a diver­

gence without any additional constraints is fu l ly topological. The fu l l meaning and 

implication of this property is, as yet, unknown. Therefore, further investigation 

is required. 

Overall, an important and interesting question concerning a field theory asso­

ciated w i t h strings and branes has been discussed and solutions to its equations of 

motion have been found. Although the ideas may require some modification, they 

give a good basis for further investigation. The study of the companion Lagrangian 

and its equations of motion has also led to other observations which are relevant 

to other Lagrangians too. This includes the iterative procedure work which covers 

many Lagrangians which are homogeneous functions of weight one in the Jacobians, 

not just those Lagrangians wi th the structure of the companion Lagrangian. I t also 

includes the property that all free field theory Lagrangians are a divergence on the 

space of solutions of the equations of motion, of which the companion Lagrangian 

is just one example. There is scope for a lot more research into this subject. 

The last part of this thesis was a search for solutions to the Moyal-Nahm equa­

tions. I t was found that solutions to the Moyal-Nahm equations do exist. 

Solutions to the 8D Nahm equations and 4D and 8D Moyal-Nahm equations 

have been found, although the list given is by no means exhaustive. The solu­

tions are constructed f rom generalised Wigner functions. The dependence on the 

coordinate t or r is often based on a simple pole or elliptic functions. 

The solutions in four dimensions are useful because this is the number of di­

mensions we like to think we live in . The solutions in eight dimensions may turn 

out to be useful in the context of M(at r ix) theory which has a Yang-Mills action 

which involves eight bosonic fields, X^. 

As well as the solutions, sets of matrices which satisfy the algebra generated 

by the eight dimensional Nahm equations have been found. One set is based on 

the octonionic structure constants. The other set is based on representations of 

SU{2). The matrices are a direct sum of any number of representations of SU{2). 
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Any representation can be used. These sets of matrices may be useful elsewhere, 
possibly in other areas which are related to the octonions. There may be other 
matrices which obey the algebra. 

W i t h the increase in interest in non-commutative gauge fields and replacing 

mult ipl icat ion w i t h star products in many theories, these results could turn out 

to be useful in the future. This work shows that by put t ing star products into 

self-dual Yang-Mills, solutions can be found and a way to construct an ansatz for 

such theories has been given. A similar ansatz, involving Wigner functions, could 

be used to find solutions to other theories involving Moyal Brackets. 

Further research could be done to find more solutions to the Moyal-Nahm equa­

tions in four, eight, and maybe other dimensions, as well as finding solutions to 

other theories containing star products and Moyal brackets. 



Appendix A 

Proof for the Equivalence 
Theorem 

The proof i n this appendix is based on [4]. 

A . l Theorem 

The equations of motion for the companion Lagrangian, without a square root, 

w i th n fields, in d space-time dimensions (x^), 

d(j)' dcfP 
C = det 

dxi' dx^ 
f , = i,2,...,d, ( A . l ) 

subject to the constraints 

dC • 
=^0 i not summed, n is summed, (A.2) 

and the Lagrangian vanishing, are the same as the equations of motion for the com­

panion Lagrangian w i t h a square root wi th n fields but d—1 space-time dimensions, 

i.e. in one dimension less. 

£ ' = W det 
del)' d(f)^ 
dx)^ dXfj, 

^ = . l , 2 , . . . , d - l . (A.3) 

A.2 Conventions and Notation 
The n fields are where i = 1,... ,n. They depend on the d space-time coordinates 

x*^, where f j . = 1,... ,d. Partial derivatives are denoted by 

94 
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There is summation over indices unless otherwise stated. 

Total ly antisymmetric tensors e^jj/j,..^^ are used throughout the proof wi th the 

convention 612...d = + 1 - When indices have an arrow above them then they repre­

sent several indices. They can be thought of as vectors wi th several components. 

jl, p, a each have (n — 1) components. For example, /2 denotes {fi2,fJ'3, • • • ,P-n}-

r , K each have {d - n) components. For example, H denotes {/ci, K 2 , • • • , i^d-n}-

K' denotes {K.2, KZ, • • • , f^d-n} and iZ" denotes {K.Z, • • • , i^d-n}-

For the product of (n - 1) fields we use the notation = <Pl^(f)l^ • • • Cn-

Also, r = d — n. 

A.3 Useful Epsilon Identity 

A useful identity for the antisymmetric epsilon tensors, which wi l l be used through­

out the proof, is 

• • • + ^pd'^2'^Z-'^d^PlP2-Pd-\P-- (-'̂ •5) 

I t amounts to swapping the index f rom the first epsilon wi th each index from the 

second epsilon. For a more involved explanation of this identity, see Appendix C. 

A.4 Equations of motion 

Consider the Lagrangian for n fields (f)^ in d space-time dimensions which does 

not involve a square root. 

C = det 
dxi^ d X f j , 

(A.6) 

The equations of motion for this Lagrangian are 

d(f)'^d(t>i 

These determinantal Lagrangians can be wri t ten as the sum of squares of Jacobians. 

The Jacobians w i l l be denoted as 

JK. — JK.iK2--.Kd-n ~ ^KiK2...Kd-n'^ll'2--l'n4'wi^U2 ' ' ' ^I^n ' (^•^) 



A.5 The Constraints 96 

For the square root case the Lagrangian is 

'det 
d^' d(t>i 

dx. 
1 

[d-n) 
(A.9) 

The equations of motion for this can be wri t ten as 

JMK'J.K'<^;. . = 0. ( A . I O ) 

The calculation for obtaining these equations of motion is given in Appendix B. For 

n fields i n ci — 1 dimensions, the equations of motion for the companion Lagrangian 

w i t h a square root can be wri t ten as 

This is the expression we w i l l be looking for. 

A.5 The Constraints 

The equations of motion for the non-square root case w i l l be subject to the following 

constraints. 
dC • 

^ f , . = 0. (A.12) 

There is no summation over the index ^, but there is over index Also, we set 

£ = 0. 

The idea is to reduce the number of dimensions f rom dto d—\. The constraints 

(A.12) can be used to eliminate all second derivatives of the fields which involve a 

partial derivative w i t h respect to x'^, the c?th dimension, i.e. From the constraints 
dC dC dC 

'13 • (A.13) 

Again, there is no summation over i but there is over a, /? = 1, 2 , . . . (d-l). Put t ing 

these constraints into the equations of motion (A.7) we have 

1 

( d c \ 

dc\ d^C dC dC d^C dC dc d^c 

dcfy>J dcj^idcjP^ d<f>i^d<f>^d<i>id<j>^ d4d^id<^i,d(f>i 

dC dC d^C 

d<i^adct>^pd4>',d<i>^. 

(A.14) 

The equations of motion no longer involve any second derivatives wi th respect to 

x'^. Note that the indices a, /? = 1, 2 , . . . , { d - l ) throughout this proof. 
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A . 6 T h e P r o o f 

For the moment we shall consider the equation of motion wi th respect to field 

4>^ = 4> arid we are only looking at the component which involves the terms ^ap-

The other components w i l l work in the same way. Wr i t ing the Lagrangian without 

a square root in terms of Jacobians then we have 

C = - J — J - J -
[d - n)] 

= JJ^^^l^KP^pKp4>u4>p^i^^p (A. 15) 

= ^ ^y (t>L'(l)pBup where B^p = e^^^e^^p-^^^p, 

using the notation defined in section A.2. The first and second partial derivatives 

of the Lagrangian can therefore be wri t ten as 

The numerator of the coefficient of (f)^^ in (A. 14) becomes 

Bfj,d{Bi,dBap - B^pBad) + Bfj^aiBuisBdd - B^dBpd)]<f>p.^iy ( ^ - l ^ ) 

Now, 

B^dBa0 — B^pBad = [^yRfi^dnP^afp^pfS — ^ufip,^Pfiu^afp^df5\ ^p.^P^p^5 

= euK{l(^afp[^dKO^I}TS - ^pKP^dfs\^fi^0^p^S- (A.18) 

Using the epsilon identity (A.5) to move the index (3 around in the first two epsilons 

in the square bracket then 

^dKU^Prff = ^iSRu^dTS + ^dl3K2.. .KrP^Klfff ~l~ ^dK2p---K-rU^K2Ta + • • • "I" ^dni..-Kr-\PO^KrfS 

(A.19) 

The first term on the right hand side is just the other term in expression (A. 18) 

so this w i l l cancel. The last n — \ terms w i l l all vanish when put into (A. 18) due 

to symmetry conditions. This is because in the second epsilon, ty^^5, Vi and Oi are 

antisymmetric, but in (A, 18) ui and ct, are symmetric due to the ^p^s term, so 

these last n — \ terms vanish. This only leaves the middle terms. By swapping the 
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labels Hi and and using antisymmetry of the epsilons to permute the K,i w i th 

other indices we have 

^l'Kl...KTil^dKlK2---P---liri'^Kifa ^ i y K . i . . . K , i . . . K r i X ^ d K i K 2 - - - P - - - K r P ^ K , l f a 

^l/Kl...Ki...Krfi^dPK2---K,i...Kri'^Klfd 

— ^l/^il^dPK2...KrP^Kifa- (A.20) 

There are r = d — n of these terms. Therefore, 

The epsilon identity (A.5) can be used again to swap subscript KI about in the first 

two epsilons in the expression above 

(-vRji^aTp ~ ^uaK2--.Hrjl^Klfp "I" ^l/TlK2--.Kri2^aK,lT2...TrP • • • + l̂/Tr K2 • • Kr A ̂ OT] .. .Tr-1 K] p 

+ (-up2K2—KrP^arKiP3...p„ + • • • + ^up„K.2.--K.rfi^afp2—Pn-ll^i' 

(A.22) 

The last n - 1 terms w i l l vanish when put into (A.21) due to symmetry consider­

ations of the indices and pi. By relabelling indices and using the antisymmetric 

property of the epsilons the middle terms become 

^l^TiK2-.K.rfi^Ciri...K,i...TrP^K.ira — (•I^KiK.2...Kril^aTl...Ti...TrP^TiTi...Ki...Trff 

— ^I/Kfi^aTp^Klfff- (A.23) 

Since there are r of these terms we can write 

^uKfi^afp^Kifff^il^p = {^vaR'fi^KiTp^KifS " T^vKfif-afp^Kifd)^p.^p 

^ (1 + r)t^iliiearpt^,Ta^ii^p = ^uaR'p^K^fp^K,f5^ fi^ p- (A.24) 

which gives 

BudBaH - B^pBad = -^r^B^^le^aK'n^dpK'u^fi^o]- (A.25) 

Substituting this into the expression (A. 17) we find 

BTTlB^d^uaR' fi^d0K'P + B^a^^dK'il^PdK,'w]^p.^v4>ii<t>u 

= BrT[e^fptdT5^uaK'jX^dpK'P " ^p.Tp^ara^udK'p.^dPK'p]^jl^u^p^S(i>p.<t>u 

= Brr[e^fp^dPK'p{edfffe^aK'iI - eafff^iydii'p)]^il^P^p^fffpf^fpu- (A.26) 
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Now, using (A.5) to move subscript d, 

^dra^uan'ft — ^i^fa^dait'(i ~^ ^arff^i/dK,'p, ^K2fff^i'adKz.-.K,rfi " I " • • • "f" ^Krfa^uaK2 --Kr-idfl 

"I" ^ii2f5^uaK.'dp.3...p,n + • • • + ^unfa^uaR'p.2--tin-\d-

(A.27) 

The second term w i l l cancel w i th the term in (A.26). The last n — 1 terms wi l l 

vanish due to symmetry considerations for the indices fXi and Oi. For the middle 

terms, by relabelling and using antisymmetry, 

(A.28) 

There are (r — 1) = (d — n — 1) of these terms. We now have 

^ _^ ^BrTi^fifp^iyfa^daK'fl^dPK'P + — ^)^p.fp^K2fa^i^adK"fl^dPK'p]^fi^P^p^a'f>n(Pu-

(A.29) 

Again, rewri t ing the epsilons f rom the second part of (A.29), this time moving 

subscript K,2, 

^HTp^dPR'P — ^K2fp^dpfJ.K"P "f" ^tlK2T2-..Trp^dPTlK"P " ( " • • • " ( " ^/XTl . ..Tr-lli2P^dPTr K" P 

+ ^HfK.2P3—Pn^dPp2K"P + • • • + ^nfp2...pn-lK2^dPpnK"P-

(A.30) 

The last n — 1 terms w i l l vanish due to symmetry considerations of i/i and pi. For 

the middle terms, again by relabelling, 

^IJ.Ti...K2..-TrP^dPTiK"P^K.2fff — ~^p,fp^dPK,'P^K,2f5' (A.31) 

There are r = d — n of these terms so, 

(r + l)(.^fp(-dPK'PtK2fff^P^P = (•K2fp^dPp.K"P^K2fa^P^p- (A.32) 

Therefore, we now have 

r T — 1 
-BrTi^ufp^iyTa^dan'il^dPK'P H —^K2fp^K2fa^i'QdK''p^dPK''p]^fi^P^p^a4'li4>u4'ap-

r + 1 r + 1 
(A.33) 

Rewriting this in terms of the Lagrangians and Jacobians then this becomes 

T T — 1 
— Brr[edaK'p.^dpR'P^ii^pf\C - yj—^Bi^^Jdaii" JdPK"]<l>aP 

rr\ ( d J f i d J f i 

r + 

(f>ap-

(A.34) 
r + 1 \ d ( f ) r d ( j ) r 

dJdn' dJdR' \ . r - 1 / d J , dJo \ 

d(f>a d(t>p J (r + 1)! \ d ( l ) , d ( f > . 
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This completes the calculation for the terms involving (pap- A very similar 

calculation can be carried out to rewrite the coefficients of (jp^^ [ j ^ 1) f rom (A.14). 

Set (jp — ip and this time define B^p to be 

Bvp = ^l^l^2fll -4id-n''i - >'ri^PlPtll - tid-nP3 -Pn(t>Pli'p2(l^l3 ' ' ' 'Kn^PS ' ' ' 'Kn' (A.35) 

We choose j = 2 to make notation easier but j could be chosen to be any value 

j = 2, 3 , . . . ,n. The calculation is then almost identical to the one given above, 

and the term involving ipap is found to be 

rr\ ( d J f i dJjx 

r + 1 \d(j)rdipr 

dJdit' dJdR'\ . r - 1 (dJ^dJp^ 

9 ^ ^ " (r + 1)! ' 

(A.36) 

When the condition that the Lagrangian vanishes is put into the equations of 

motion, they can be rearranged to give 

JdaK"JdpK"(i>QP = 0, (A.37) 

as required. Comparing (A.37) wi th (A.11), these are the equations of motion for 

the Lagrangian involving a square root (A.9) in {d — 1) dimensions. 

Therefore, i t has been proved that the equations of motion for the companion 

Lagrangian without a square root when subject to some constraints are equivalent 

to the equations of motion for the companion Lagrangian wi th a square root in one 

less dimension. 



Appendix B 

Equations of Motion for the 
Companion Lagrangian 

In this appendix we show that the equations of motion for the companion La­

grangian w i t h a square root , 

£ = Wdet 

can be wr i t ten as 

( B . l ) 

J>.K'J.K'<I>1, = 0- (B.2) 

Remember that these equations of motion are sums of the Universal Field Equations 

which take the form given in (1.40). 

Again, we make extensive use of the epsilon identity 

^p.l'2yz -Vd^PlP2- Pd ~ ^p\U2l^3- l'd^P-P2 -Pd ^P2'^2'^3-- l^d^PlP-P3-- Pd + • • ' 

^PdV2>^3 - '^d^P\P2 - Pd-\P-- ( - B - ^ ) 

A fuller explanation of this identity can be found in Appendix C. The equation of 

motion w i t h respect to field 0* is 

4^.. = 0. (B.4) 
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Notat ion 

Indices w i t h arrows above them represent several indices which can be thought of 

as a vector. We use the following notation: 

a, 7, p, a denote n - l component vectors. E.g. a denotes { a 2 , ^ 3 , • • •, an}-

T denote d — n component vectors. E.g. K denotes {K-[, i i 2 , . . •, Kd-n}-

K' denotes the d — n — 1 component vector {K,2, ^ 3 , • • • , i^d-n}-

Also $ 5 denotes the product of n - 1 fields (j)\.^4>\^ • • • ̂ 2n-

We set r = d — n . 

F i r s t part of calculation 

Start by setting field = 4>. Consider the equation of motion ( B . 4 ) wi th respect 

to (j). The Jacobians and their derivatives can be writ ten as 

d J J 
JK = e;i^,p<P,^i^p, -wT^ = ^Kpp^p, r., ^ , = 0- ( B . 5 ) 

Up to a numerical factor the Lagrangian is 

Therefore, 

C = ^ / j J r . ( B . 6 ) 

d c 1 a j « . 

0(j)^ L 0(Pfj, 

so. 

This is the term in the equation of motion wi th respect to ^ which contains ^^y. 

Using the definition of the Jacobian ( B . 5 ) , the numerator of this can be written as 

{^iip.a^Kv^(-r^p^ra3 " ^KfiS^Kji^fup^Taa)^a^y^p^a(pa(l>y(i>nu 

= ^niia^faai^Ru^^T-yp- (•Ky^^fyp)^S^^^p^34^^ ( B . 9 ) 

Consider the first two epsilons inside the bracket. Using the epsilon identity to 

swap index 7, 

r n 

^Kl/J^fjp — ̂  ^ ^KiK2...'y.-.KrI/J^fKiP + ^KJJ^fl/p + ̂  ] ^ K f 7 2 7 3 • - T - • - T n ^ T 7 i P • ( B . I O ) 

1=1 i-2 
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The last n — 1 terms w i l l all vanish due to the antisymmetry of the epsilons and 
the symmetry of $^$p-. The middle term is just the second term in (B.9). The 
first r — d — n terras, when mult ipl ied by €^^5, are all the same. This is seen by 
swapping the labels of KI and Ki w i th each other and then rearranging the indices. 

(•KIJ,a^KlK2..-J...Krlyj^TKiP — ^K; «2 • • Kl • •-Kr/id^Ki K2 • •-T-•-Kr''7 ̂ T/tl p 

— ^K,lK2-.-Ki...Krfia^'YK2-..K.i...Krf7^fKlp 

~ ^Kfia^'yK'i/jf^fK.ip- (-^••^-^) 

Therefore, the expression in (B.9) can now be writ ten as 

refi^aefaa^jii'uyef^iP^a^^^p^a<i>a(p'y'f>lj.,.- (B.12) 

Looking at the first two epsilons, we can use the epsilon identity again to move the 

index KI around, 

r n 

^Kna^Taa ~ ^ ^TjK'fj.a^TiT2...Ki..-Traa ^aR'p.a^fK\a '^ ^ ^ajK,'p.S^faa2C3- -K-i- -Cn- (B.13) 

The last n - 1 terms w i l l vanish due to the symmetry of $ 5 $ ^ . The first r terms, 

when multiplied by Cf^jp, can be rewritten by swapping the labels K,I and and 

then rearranging the indices, as follows. 

(^TiK' jia^T\T2-..Kl...Traa^TKlp ^KIK'pa^TlT2---Ti...Traa^TlT2---K-l--TTTiP 

^K,p,a^faff^fKip (B.14) 

This has the same form as the left hand side of (B.13) (when i t is also multiplied 

by f-TKip) so we have 

(r + l)tR^StT^aS^fKip^a^a = ^aii'na^fK.a^TKip^S^S • (B.15) 

Our expression (B.12) is now 

r + 
r 

-eaK'f,S^fKiff^'yK'n^fKip^a^^^p^c4>a(f>7<Pp.u 

r dJf dJf 

r + 1 90^1 

Now we need to consider the coefficients of in the equation of motion, where 

2 ^ 1 . 
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Slight Change in Notat ion 

From now on, 

5, 7, p, a denote n — 2 component vectors. E.g. a denotes { 0 : 3 , 0 : 4 , . . . , Q;„}. 

denotes the product of n - 2 fields (f)l^(f>a^ • • - ^on-

A l l other notation is the same. 

Second part of calculation 

Withou t any loss of generality, we consider the term containing (̂ ^ ,̂. For conve­

nience, set (f)'^ = ip. The calculation follows similar lines to the one above. We now 

write the Jacobian and its derivatives as 

JK' = ^K'p,P2p(t>pAp2'^P^ (B-17) 

- ~ = (-R'^P2^P2^p, = e^'pi^p<f>pi'^p- (B.18) 

For the term in the equation of motion containing ip^i^ we find 

-V'/^- = 7^ ^ — J f J r - ^ j R ^ J f ^^u- (B.19) 

There are no second derivatives of the Jacobians because these terms vanish due to 

the symmetry oii)^„. Put t ing these new expressions for the Jacobians into (B.19), 

we find 

^Kp.a2a^T(Ti0-2(7 ( ^ K 7 i i ' j ^ f p i p 2 P ~ ^ K 7 i P 2 7 ^ - ? P i i ' p ) ^ l \ 4'pi 'Pai V'a2'^P2 V'o-j a"^p^S"^p,v• 
(B.20) 

Using the epsilon identity to move the p 2 index about, 

r 

^KJil/'y^fpiP2P — y ^j^K\K2...p2—K.r1\Vl^rp\KiP~\~ ^Kp2l^j^fpljip 
n 

+ ^KjiP2j^Tpii^p + ^ K 7 l f 7 3 7 4 - - P 2 . - - 7 n ^ r p i 7 i p - (B-21) 
1=3 

The first r terms w i l l give rep.^ff^^i,;:iefp^K.ip^Rp.a2S in the expression f rom a similar 

argument to that used in ( B . l l ) . The next term w i l l vanish due to the symmetry 

of </>pi(̂ Si-yi. The next term appears in (B.20). The last n — 2 terms w i l l vanish due 

to the symmetry of ^p'^^. Our expression (B.20) is now 

T^Kp.a2a^Taia2S^P2R'')ii^l^r rpi.lpK<l>PlMc,2M<^2'^'^^l'^P^S%u. (B.22) 
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Using the epsilon identity to move the K.I index around in the first two epsilons, 
then 

^Kp.a2&^faia2S ^^^TiH'p,a2a^r\T2---K\...TrO\a2S " I " ^(J\K'na2a^fK,icr23 

2 = 1 
n 

~f ^a2R'P'Oi2Ct^TaiKl3 + ^^^aiK' p.Ot2^^TaiO'2(T3---f^l---(7n' 

(B.23) 
i=3 

The last n — 2 terms w i l l vanish due to the symmetry of ' ^ a ' ^ 3 . The term before 

this w i l l vanish due to the symmetry of tpa2i'(T2- The first r terms can each be 

rewrit ten as —ef-^a2a^Taia2a'^TpiK.ip in the same manner as in (B.14), so that 

(r + ^^^R,ii(X2a^Ta\iT23^Tp\K\p4^ci2^a2^ S . ^ 3 ^aiR' ixa25.^TK\<y2S^rp\K\p^a2'^(72^ o . ^ 3-

(B.24) 

The expression is now 

r 
^aiii' jj,a2a^TKia23^p2K,''ii i^7^rpiKip^7i (j^pi 4^<7\ V'cug V'p2^0'2 ^ p^ 3"^ p.u 

-[efi.i<T23^rp,K^p(l)p,'^if4^a2'^3]V,,R'aia2&^<^K''^,P2l(l>ai^ 
r + 1 

In terms of Jacobians, this is equal to 

r dJ^ dJf 

(B.25) 

Jnn'JuK^au- (B.26) , 1 rs I -J p,K' 'JPK' Yp-H 

r + 1 d(f>^, d^jj^, 

Therefore, in general, the equations of motion can be wri t ten as 

d^C ^ , r 1 dJr^ dJ, ^ T AJ - n (B.27) 

By simple rearranging, i t can be seen that this is equivalent to 

V J . . - ^ , . = 0. (B.28) 



Appendix C 

Useful Epsilon Identity 

The proofs in appendices A and B make use of an epsilon identity. This appendix 

explains how the identity works. I t is easiest to consider a total ly antisymmetric 

epsilon tensor w i t h only two indices, Cij, where i,j = 1,2 and €12 = + 1 . 

The epsilon identity in this case is 

This amount to swapping the index i w i th each of the indices a and b in the second 

epsilon on the left hand side to give a sum of two terms on the right hand side. To 

see that this is true we need to consider several cases. 

C a s e 1 

^ij^ab = + 1 so i = a, j = 6 but i ^ j , h. 

Therefore, 

(-aj^ib ~ + 1 since a = i , j = b but a ^ j , b, as above, and 

^bj^ai ~ 0 since i = a. 

The right hand side of ( C . l ) equals the left hand side so for this case the identity 

is true. 

C a s e 2 

ezj^ab = - 1 so z = 6, j = a but z / j , a. 

Therefore, 

^aj^ib = 0 since a = j , and 

^bj(^ai = - 1 since b = j , a = i but b ^ i , a . 

The right hand side of ( C . l ) equals the left side so for this case the identity is true. 
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C a s e 3 

I n this case then there are three possibilities. 

(i) z = j , a ^ b or I ^ j, a = b. Three of the four indices must be the same so 

(•aj^ib — 0, ^bj^ai = 0, since in each case, for one of the epsilons both indices are the 

same. Therefore, the right hand side of the identity is zero as required. 

(i i) i = j = a = b. A l l four indices are the same so eajen, = 0, ebjeai = 0. 

Therefore the right hand side of the identity is zero as required. 

( i i i ) i = j , a = b but i a,b. Therefore, eaĵ ife = —^bj^ai, so the right hand side 

of the identity vanishes. Therefore the identity is true in this case. 

So, i t has been shown that in all cases the epsilon identity is true when there 

are two indices. Similar arguments can be used to show that the identity works for 

higher numbers of indices. 

The identity for three indices, using the convention £123 = + 1 is 

^ijk^abc — ^ajk^ibc + ^bjk^aic ~^ ^cjk^abi-
(C.2) 

The identity for four indices, using the convention £1234 = + 1 is 

^ijkl^abcd = ^ajkl^ibcd + ^bjkl^aicd + ^cjkl^abid + ^djkl^abci- (C-3) 

I n general 

So, in general, the useful epsilon identity for a totally antisymmetric epsilon tensor 

w i t h n indices, using the convention e i 2 . . . „ = + 1 is 

^ij2j3 -jn^aia2...an — ^aij2j3—3n^ia2:-an ^~ ^a2j2j3- -jn^0.lia3...an + • • • + ^anj2j3 - jn^aia2.- an-li 
n 

~ ^ ^j^arj2j3---jn^aia2-.i..-an- . (^-4) 

The index i f rom the first epsilon on the left hand side is swapped wi th each index 

f rom the second epsilon on the left hand side to give a sum of n terms on the right 

hand side. 



Appendix D 

Octonion Matrices 

The seven 7 x 7 matrices on the next page are solutions to the algebra created 

f rom the Nahm equations. These matrices were constructed using the octonionic 

structure constants, Cijk, which are taken to be 

Cm = C63I = C541 = C532 = C246 = C347 = C567 = 1- ( D . l ) 

These are total ly antisymmetric. A l l other Cijk are zero. The jk'^'^ entry of the 

matr ix Bi is given by [Bi]jk = ctjk- The matrices are used in the solutions which 

have been found for the Moyal-Nahm equations in eight dimensions. 
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B , = 

B, 

Bj 

( o 0 0 0 0 0 0 \ / 0 0 0 0 0 0 - 1 \ 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 - 1 0 0 0 0 0 - 1 0 0 

0 0 0 0 -- 1 0 0 B2 = 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 - 1 0 0 0 

V O - 1 0 0 0 0 0 / 1 0 0 0 0 0 0 / 
/ 0 0 0 0 0 1 0 \ 0 0 0 0 1 0 0 \ 

0 0 0 0 1 0 0 0 0 0 0 0 - 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 

0 0 0 0 0 0 1 , Bi = 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 - 1 0 0 0 0 0 0 

- 1 0 0 0 0 0 0 0 1 0 0 0 0 0 

V 0 
0 0 — 1 0 0 0 / V 0 0 1 0 0 0 0 / 

/ o 0 0 - 1 0 0 0 \ / 0 0 - 1 0 0 0 0 \ 
0 0 -- 1 0 0 0 0 0 0 0 1 0 0 0 

0 1 0 0 0 0 0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 , Be = 0 - 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 - 1 0 ) V 0 0 0 0 1 0 0 / 

( ° 1 0 0 0 0 0 \ 
- 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 - 1 0 0 0 0 

0 0 0 0 0 1 0 

0 0 0 0 - 1 .0 0 

V 0 
0 0 0 0 0 0 J 
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