
Durham E-Theses

Improved learning automata applied to routing in

multi-service networks

Aranzulla, Philip John

How to cite:

Aranzulla, Philip John (2000) Improved learning automata applied to routing in multi-service networks,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4256/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4256/
 http://etheses.dur.ac.uk/4256/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Improved Learning Automata

Applied to Routing in Multi-Service

Networks

Philip John Aranzulla

School of Engineering

University of Durham

September 2000

A thesis submitted for the degree of Doctor of Philosophy (Ph.D.)

of the University of Durham

Philip John Aranzulla

Improved Learning Automata Apphed to Routing in Multi-Service Networks

Ph.D. 2000.

Abstract

Multi-service communications networks are generally designed, provisioned and configured,

based on source-destination user demands expected to occur over a recurring time period.

However due to network users' actions being non-deterministic, actual user demands will

vary from those expected, potentially causing some network resources to be under-

provisioned, with others possibly over-provisioned. As actual user demands vary over the

recurring time period from those expected, so the status of the various shared network

resources may also vary. This high degree of uncertainty necessitates using adaptive resource

allocation mechanisms to share the finite network resources more efficiently so that more of

actual user demands may be accommodated onto the network. The overhead for these

adaptive resource allocation mechanisms must be low in order to scale for use in large

networks carrying many source-destination user demands.

This thesis examines the use of stochastic learning automata for the adaptive routing

problem (these being adaptive, distributed and simple in implementation and operation) and

seeks to improve their weakness of slow convergence whilst maintaining their strength of

subsequent near optimal performance. Firstly, current reinforcement algorithms (the part

causing the automaton to learn) are examined for applicability, and contrary to the literature

the discretised schemes are found in general to be unsuitable. Two algorithms are chosen

(one with fast convergence, the other with good subsequent performance) and are improved

through automatically adapting the learning rates and automatically switching between the

two algorithms. Both novel methods use local entropy of action probabilities for determining

convergence state. However when the convergence speed and blocking probability is

compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found

to be superior.

A novel re-application of learning automata to the routing problem is therefore

proposed: using link utilisation levels instead of call acceptance or packet delay. Learning

automata now return a lower blocking probability than the dynamic shortest-path based

scheme under realistic loading levels, but still suffer from a significant number of

convergence iterations. Therefore the final improvement is to combine both learning

automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking

probability of this novel routing algorithm is superior to either algorithm, even when using

frend user demands.

The main thesis conclusion is that although stochastic learning automata can self-

organise their action probabilities to produce good overall routing performance by effectively

processing the full set of path possibilities, they thrive when there is a deterministic aid to

their action probability convergence.

I l l

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it has not been

the subject of any previous application for a degree, and that all sources of information have

been duly acknowledged.

© Copyright 2000, Philip John Aranzulla.

The copyright of this thesis rests with the author. No quotation from it should be published

without the written consent, and information derived from it should be acknowledged.

IV

Acknowledgements

I firstly wish to express my thanks to my academic supervisor, Professor Phil Mars, for his

work in obtaining the research grants which funded this research, and for his oversight

throughout the period of study.

I also acknowledge and am thankful for the funding of this research, a scholarship

from St. Aidan's College, and an EPSRC 'CASE' award from Cable & Wireless (formerly

Anite Networks). I am very grateful for the guidance provided by my industrial supervisor,

Dr. Dennis Nyong, whose contributions I have found very instructive.

Thanks must also go to my fellow researchers during my time in Durham, and in

particular Dr. Jonathan Reeve whom I found to be a great help during my time there.

Finally, I am most grateful for the continual support given to me by my mother,

especially during the final stages of this undertaking.

Table of contents

L I S T OF F I G U R E S XI

L I S T OF T A B L E S XIV

1 INTRODUCTION 1

1.1 INTRODUCTION TO MULTI-SERVICE NETWORKS 1

1.2 MULTI-SERVICE NETWORKS USING ATM TECHNOLOGY 2

1.3 MULTI-SERVICE NETWORKS USING I P TECHNOLOGY 4

1.4 PLANNING, PROVISIONING A N D ALLOCATION OF NETWORK RESOURCES 5

1.5 D Y N A M I C ROUTING ALGORITHMS 7

1.6 OUTLINE OF THE THESIS 9

2 A B R I E F R E V I E W OF LEARNING AUTOMATA 13

2.1 INTRODUCTION 13

2.2 BASIC CONCEPTS 13

2.3 REINFORCEMENT ALGORITHMS 16

2.3.1 Standard Algorithms 17

2.3.1.1 Linear Reward Inaction (LRI) Algorithm 17

2.3.1.2 Linear Reward Penalty (LRP) Algorithm 18

2.3.2 Estimator Algorithms 18

2.3.2.1 The Pursuit Algorithm 19

2.3.2.2 The General Estimator Algorithm 20

2.3.3 Discretised Reinforcement Algorithms 21

2.3.3.1 Discretised Linear Reward Inaction (DLRI) Algorithm 21

2.3.3.2 Discretised Linear Reward Penalty (DLRP) Algorithm 22

2.3.3.3 Discretised Pursuit Algorithm 23

2.3.3.4 Discretised General Estimator Algorithm 24

2.3.4 Comparisons between Algorithms 25

2.4 ROUTING USING LEARNING AUTOMATA 26

2.4.1 The Network as an Environment 26

2.4.2 Routing in Networks 26

2.4.2.1 Learning Automata for Routing in Circuit Switched Networks 27

2.4.2.2 Learning Automata for Routing in Best-Effort Packet Switched Networks.... 28

VI

2.4.2.3 Steady State Performance for Routing using Learning Automata 29

2.4.2.4 Transient Performance for Routing using Learning Automata 29

2.5 SUMMARY 30

3 IMPROVING STANDARD DYNAMIC ROUTING ALGORITHMS FOR

ROUTING I N MULTI-SERVICE NETWORKS 31

3.1 INTRODUCTION 31

3.2 T H E ROUTING FUNCTION A N D CALL ACCEPTANCE CONTROL 32

3.2.1 Bandwidth-based CAC 32

3.2.2 Effective bandwidth calculations 32

3.2.2.1 Effective bandwidth allocation sfrategy 33

3.2.2.2 Computing effective bandwidth values 33

3.3 STANDARD D Y N A M I C ROUTING ALGORITHM SELECTION 37

3.3.1 Overview of algorithms 37

3.3.1.1 Dynamic-alternate path 37

3.3.1.2 Widest-shortest path 38

3.3.1.3 Shortest-widest path 38

3.3.1.4 Shortest-distance path 39

3.3.1.5 The proposed new algorithm 39

3.3.2 Simulation scenarios 41

3.3.3 Results for the fully connected topology 43

3.3.3.1 Results for symmefrical network loading 43

3.3.3.2 Results for non-symmefrical network loading 45

3.3.4 Results for sparsely connected topology 47

3.3.4.1 Results for symmefrical network loading 47

3.3.4.2 Results for non-symmefrical network loading 48

3.4 REALISTIC ROUTING ALGORITHM PERFORMANCE 49

3.4.1 Route selection with partial information 49

3.4.2 Simulation results of using event trigger thresholds 51

3.5 MECHANISMS FOR SIGNALLING OVERHEAD REDUCTION 53

3.5.1 Limited update distribution methods 54

3.5.1.1 Hop-count limited flooding 54

3.5.1.2 Reverse path update 54

3.5.2 Using locally available information 55

3.5.2.1 Caching reject information 55

3.5.2.2 Local link status 55

3.5.2.3 Using existing connection set-up signalling 55

vii

3.5.3 Performance of limited distribution mechanisms 56

3.6 SUMMARY 58

4 P E R F O R M A N C E ANALYSIS OF VARIOUS LEARNING AUTOMATA

R E I N F O R C E M E N T ALGORITHMS 60

4.1 INTRODUCTION 60

4.2 LEARNING AUTOMATA FOR ROUTING I N MULTI-SERVICE NETWORKS 60

4.3 A FRAMEWORK FOR OBTAINING RELATIVE REINFORCEMENT ALGORITHM

PERFORMANCE 61

4.3.1 Performance metrics 62

4.3.2 Framework outline 62

4.3.3 Analytical results 63

4.4 EXPERIMENTAL RESULTS 65

4.4.1 Basic algorithms 65

4.4.1.1 Continuous algorithms 66

4.4.1.2 Discretised algorithms 74

4.4.2 Estimator algorithms 78

4.4.2.1 Continuous algorithms 79

4.4.2.2 Discretised algorithms 84

4.5 SUMMARY 87

5 IMPROVED L E A R N I N G AUTOMATA APPLIED TO ROUTING IN MULTI­

S E R V I C E NETWORKS 90

5.1 INTRODUCTION 90

5.2 REINFORCEMENT ALGORITHM SELECTION 91

5.2.1 Adaptive learning rates 91

5.2.1.1 Automatic adaptive mechanism 92

5.2.1.2 Entropy threshold calculation 95

5.2.1.3 Experimental results 98

5.2.2 Automatic reinforcement algorithm selection 108

5.2.2.1 Experimental results 109

5.3 COMPARISONS WITH STANDARD ROUTING METHOD 112

5.3.1 Initial algorithm comparison

5.3.2 A more realistic network scenario 114

5.3.3 Experimental results

5.4 SUMMARY 117

Vll l

6 USING AN S-MODEL RESPONSE ENVIRONMENT FOR A NOVEL

L E A R N I N G AUTOMATA BASED ROUTING A L G O R I T H M 120

6.1 INTRODUCTION 120

6.2 REASONS W H Y A NEW LEARNING AUTOMATA METHOD FOR ROUTING I N NETWORKS IS

REQUIRED 120

6.3 USING AN S-MODEL RESPONSE ENVIRONMENT PARADIGM 122

6.3.1 Normalising the available bandwidth 122

6.3.2 Reinforcement algorithm selection 123

6.4 EXPERIMENTAL RESULTS 124

6.4.1 Learning rate effects 124

6.4.2 Comparative algorithm results 127

6.5 SUMMARY 131

7 A HYBRID ROUTING A L G O R I T H M UTILISING BOTH SHORTEST-PATH

AND L E A R N I N G AUTOMATA CONCEPTS 133

7.1 INTRODUCTION 133

7.2 USING LEARNING AUTOMATA FOR ROUTING I N REAL NETWORKS 133

7.2.1 Rationale for a novel learning automata based routing algorithm 134

7.2.2 Hybrid algorithm details 136

7.2.3 Switching threshold calculation 140

7.3 EXPERIMENTAL RESULTS 142

7.4 SUMMARY 148

8 CONCLUSIONS AND F U R T H E R W O R K 150

8.1 CONCLUSIONS 150

8.2 FURTHER WORK 155

8.2.1 Average utilisation calculation as information input 155

8.2.2 Flow-splitting modifications 157

8.2.3 Link state update propagation 158

APPENDIX A: IP T E C H N O L O G Y AND PROTOCOLS, AND IP NETWORK

PLANNING AlVD DESIGN 160

A. 1 OVERVIEW OF CURRENT I P TECHNOLOGY AND PROTOCOLS 160

A. 1.1 Basic IP networking with reference to the OSI layer model 160

A. 1.2 Quality of Service (QoS) in IP networks 162

A. 1.2.1 Basic mechanisms 163

A. 1.2.2 More complex scheduling 164

IX

A . 1.2.3 End-to-end congestion control 164

A . 1.2.4 End-to-end QoS 165

A . 2 I P NETWORK PLANNING A N D DESIGN 166

A.2.1 Network design for best-effort IP networks 166

A.2.2 Network design for IP networks providing QoS 166

A. 2.3 The place for bandwidth-based dynamic routing algorithms in IP networks.... 167

A P P E N D I X B : A T O O L A N D M O D E L S F O R S I M U L A T I O N A N A L Y S I S 168

B . l INTRODUCTION 168

B . 2 M O D E L L I N G TECHNIQUE SELECTION 168

B.3 SIMULATION MODELLING TOOL SELECTION 169

B . 4 NETWORK MODEL 170

B. 4.1 Simulation method 170

B. 4.2 Model design 171

B . 4.2.1 Weaknesses of the standard model libraries 171

B.4.2 .2 The new model library 172

B.5 ANALYSIS OF RESULTS 174

B . 6 SUMMARY 176

A P P E N D I X C : E R L A N G L O S S F O R M U L A C A L C U L A T I O N S 177

A P P E N D I X D : R E L A T E D P U B L I C A T I O N S 178

R E F E R E N C E S 179

List of Figures

Figure 1: Chapter information dependencies 11

Figure 2: Learning Automata acting in an environment 14

Figure 3: Fully connected logical topology 42

Figure 4: Seven node sparsely connected logical topology 42

Figure 5: 28 node sparsely connected topology 42

Figure 6: Performance of A M H and A A M H with no trunk reservation for the fully connected

topology 44

Figure 7: Optimum trunk reservation for A A M H for the frilly connected topology 45

Figure 8: Performance of A M H and A A M H with 5% trunk reservation for the fully connected

topology 45

Figure 9: Performance of A M H and A A M H for the fully connected topology under non-

symmefrical loading 46

Figure 10: Performance of A A M H with 0 and 6% trunk reservation 46

Figure 11: Performance of A M H and A A M H for the sparsely connected topology 47

Figure 12: Optimum A A M H trunk reservation parameter for the sparsely connected topology48

Figure 13: Performance of A M H and A A M H under non-symmetrical loading for the sparsely

connected topology 49

Figure 14: A A M H performance with and without load bands 53

Figure 15: A A M H set-up times with and without load bands 53

Figure 16: Resulting blocking probability performance of link-state updating methods 57

Figure 17: Resulting set-up time performance of link-sate updating methods 57

Figure 18: Four node network 63

Figure 19: Learning Automata Convergence Under /J = 10 calls/min 64

Figure 20: Influence of Arrival Rate on Convergence 64

Figure 21: Convergence for LRI and LRP 68

Figure 22: Convergence Properties for LRI and LRP Algorithms 68

Figure 23: Convergence for LRI and LRP with low Penalty Rates 69

Figure 24: Convergence for LRI using high Learning Rates 70

Figure 25: Convergence for LRP using high Learning Rates 71

Figure 26: Convergence Properties for LReP 73

Figure 27: Convergence for DLRI and DLRP 76

Figure 28: Convergence Properties for DLRP Algorithm 76

XI

Figure 29: Convergence Properties of DLRP Algorithm under Increasing Minimum Penalty

Probability Scenarios 77

Figure 30: Convergence Properties for DLReP Algorithm 78

Figure 31: Convergence for Pursuit Algorithm 80

Figure 32: Convergence properties for Pursuit Algorithm 80

Figure 33: Convergence for GE Algorithm for both Linear and 'x^' Non-linear Updating

Function 82

Figure 34: Convergence Properties of GE Algorithm for 'x^' Updating Function and High

Learning Rates 83

Figure 35: Convergence for GE Algorithm with 'x^' Non-linear Updating Function 83

Figure 36: Convergence for Discretised Pursuit Algorithm 84

Figure 37: Convergence properties for Discretised Pursuit Algorithm 85

Figure 38: Convergence for DGE Algorithm for both Linear and 'x^' Non-Linear Updating

Function 87

Figure 39: Network blocking probability and iterations required for convergence using LRI

and LRP 94

Figure 40: Enfropy and network blocking probability during convergence using LRI 95

Figure 41: Local enfropy using 4-node network with LReP and 5% learning rate 97

Figure 42: Local enfropy using 4-node network with LReP and 1% learning rate 97

Figure 43: Local enfropy using 4-node network and LReP with adaptive leaming rate 98

Figure 44: 4-node network and LRsP with fixed 5% leaming rate 99

Figure 45: 4-node network and LReP with fixed 1% leaming rate 99

Figure 46: 4-node network and LReP with adaptive leaming rate 100

Figure 47: 28-node network and LReP with fixed 1% leaming rate 100

Figure 48: 28-node network and LReP with fixed 5% leaming rate 100

Figure 49: Network blocking probability and iterations for convergence using LReP and 28-

node network 101

Figure 50: Local enfropy using 4-node network with DLRP and 1.5% leaming rate 104

Figure 51: Local enfropy using 4-node network and DLRP with 0.04% leaming rate 104

Figure 52: Local enfropy using 4-node network and DLRP with adaptive leaming rate 104

Figure 53: 4-node network and DLRP with fixed 1.5% leaming rate 105

Figure 54: 4-node network and DLRP with fixed 0.4% leaming rate 105

Figure 55: 4-node network and DLRP with adaptive leaming rate 105

Figure 56: 28 node-network and DLRP with fixed 0.4% leaming rate 106

Figure 57: 28-node network and DLRP with fixed 1.5% leaming rate 106

Xll

Figure 58: Network blocking probability and iterations for convergence using DLRP and 28-

node network 106

Figure 59: 4-node network and automatic LReP or DLRP selection with 1.5% learning ratell 1

Figure 60: 28-node network and automatic algorithm selection 111

Figure 61: 28-node network and A A M H with RA+B 113

Figure 62: Mean frace used for a 24 hour period 115

Figure 63: A typical resulting user demand frace at a source node 115

Figure 64: Performance of A A M H with frend user demands 116

Figure 65: Performance of LA with automatic algorithm selection with frend user demands 117

Figure 66: 28-node network with S-model and LReP with 17% learning rate, lA 20s 127

Figure 67: 28-node network with A A M H and RA+B 128

Figure 68: 28 node network with P-model and automatic algorithm selection 128

Figure 69: Performance of S-model LReP LA with frend user demands 130

Figure 70: Performance of A A M H with frend user demands 130

Figure 71: Performance of P-model LA with automatic algorithm selection and frend user

demands 131

Figure 72: SDL representation of proposed hybrid routing algorithm 139

Figure 73: Local enfropy using 4-node network with AAMH and action probability updates 141

Figure 74: Local enfropy using 4-node network with S-model LReP and 17% learning rate 142

Figure 75: Local enfropy using 4-node network and hybrid algorithm 142

Figure 76: 28-node network with hybrid algorithm, l A 20s 143

Figure 77: 28-node network with S-model and LReP with 17% learning rate, l A 20s 144

Figure 78: 28-node network with A A M H and RA+B, lA 20s 144

Figure 79: Performance of hybrid algorithm with frend user demands 147

Figure 80; Performance of S-model LReP LA with trend user demands 147

Figure 81: Performance of A A M H with trend user demands 147

Figure 82: The signalling process required to set-up a VCC fraversing 3 VPCs 173

Figure 83: The signalling process required to tear-down a VCC which fraverses 3 VPCs... 175

Xll l

List of Tables

Table 1 - Summary of the asymptotic properties of various reinforcement algorithms 25

Table 2: Traffic modelling parameters 34

Table 3: Effect of increasing hop count on voice effective bandwidth 34

Table 4: Model parameters for the MPEG coded 'Star Wars' film trace 36

Table 5: Effect of increasing hop count on MPEG video effective bandwidth 36

Table 6: Average network blocking probability for 28-node network with LReP using fixed

5% and adaptive leaming rates 102

Table 7: Standard deviation on network blocking probability for 28-node network with LReP

using fixed 5% and adaptive leaming rates 102

Table 8: Global connection attempts for convergence for 28-node network with LReP using

fixed 5% and adaptive leaming rates 102

Table 9: Average network blocking probability for 28-node network with DLRP using fixed

1.5% and adaptive leaming rates 107

Table 10: Standard deviation on network blocking probability for 28-node network with

DLRP using fixed 1.5% and adaptive leaming rates 107

Table 11: Global connection attempts for convergence for 28-node network with DLRP using

fixed 1.5% and adaptive leaming rates 107

Table 12: Average network blocking probability for 28-node network with automatic

algorithm selection I l l

Table 13: Standard deviation on network blocking probability for 28-node network with

automatic algorithm selection 112

Table 14: Global connection attempts for convergence for 28-node network with automatic

algorithm selection 112

Table 15: Average network probability for 28-node network with A A M H and RA+B 113

Table 16: Standard deviation on network blocking probability for 28-node network with

A A M H and RA+B 113

Table 17: Average network blocking probability for 28-node network with S-model LReP and

various leaming rates 126

Table 18: Standard deviation on network blocking probability for 28-node network using S-

model LReP and various leaming rates 126

Table 19: Global connection attempts for convergence for 28-node network using S-model

LReP and various leaming rates 126

xiv

Table 20: Average network blocking probability for 28-node network with S-model and LReP

with 17% learning rate 129

Table 21: Standard deviation on network blocking probability for 28-node network using S-

model and LReP with 17% learning rate 129

Table 22: Global connection attempts for convergence for 28-node network using S-model

and LReP with 17% learning rate 129

Table 23: Average network blocking probability for 28-node network with S-model and LReP

with 17% learning rate 145

Table 24: Standard deviation on network blocking probability for 28-node network using S-

model and LReP with 17% learning rate 145

Table 25: Global connection attempts for convergence for 28-node network using hybrid and

pure S-model LReP with 17% learning rate 146

XV

1 Introduction

1 • 1 Introduction to multi-service networks

Historically, networks have been categorised into one of two types: either a voice network or

a data network. A company would generally have two separate physical networks connecting

its sites together, one carrying its internal voice calls, with the other carrying its data fraffic.

The voice network would have Private Branch Exchanges (PBXs) located at each company

site, with these being cormected together by leased lines provided by a Public Services

Telecommunications Network (PSTN) company.

Transporting a voice call involves digitising or encoding the analogue voice frace,

fransmitting the digital information, and decoding the analogue voice waveform at the

destination. The basic Coder Decoder (CODEC) used produces a constant 64 kb/s frain of

information. Each voice call carried by the company voice network would be allocated a

specific time slot of the fraversed leased line, each time slot comprising a 64 kb/s

transmission capacity. It is during the call set-up phase that the requfred time slot on the

leased line is reserved by the call, and i f the leased line capacity is being fiilly consumed by

the existing calls then the PBX breaks out that call request on to the PSTN as a standard dial-

out voice call. This system ensures that each voice call receives sufficient network resources

for its data to be fully carried within the voice traffic delay requirements; and due to the

network resource reservation mechanism, no other calls' fraffic can interfere with this call's

traffic and so degrade its Quality of Service (QoS).

The data network operated differently, being packet switched rather than circuit

switched as was the voice network. As data applications are generally bursty in nature rather

than constant in their fraffic fransmission as is a voice CODEC, so their fraffic is encapsulated

in small packets of information, the data network switching these packets rather than the

whole call's fraffic. This ensures a higher statistical multiplexing gain, meaning that a higher

number of data calls can be carried by the links as one call's silent period can be used for

another call's data fransmission.

This type of network is termed a best-effort data network as no separation of differing

flows' fraffic occurs, so that under congestion conditions all flows are affected and all may

lose data. This situation is acceptable to data applications which do not requfre delay

guarantees, as the fransport layer would detect the data loss after a timer expiry and refransmit

the data.

More recent developments in network technology have produced single physical networks

which can handle both types of traffic, these being termed integrated or multi-service

networks. These networks can provide differing degrees of QoS according to the application

requirements, and so make the most efficient use of the expensive Wide Area Network

(WAN) link resources, these generally being the greatest component of the total network cost.

By providing the required bandwidth and delay characteristics for applications such as voice

which need strict QoS from the network, together with little or no QoS for best-effort data

traffic, as well as many possible degrees of QoS sfrictness in between, all application types

can be efficiently accommodated and transported by the single physical network

infrastructure. The technology used for such networks is generally one of two types:

Asynchronous Transfer Mode (ATM) or Internet Protocol (IP) based.

1.2 Multi-service networks using ATM technology

Asynchronous Transfer Mode (ATM) technology arose and was driven mainly from the

PSTN carrier perspective. As such it has been used for multi-service PSTN carrier links and

networks, as well as being used for corporate WAN links. Previously PSTNs had carried data

based on single or multiples of 64 kb/s connections combined together to form larger

aggregate pipes. As the PSTN backbone had moved from analogue to digital exchanges, so

local Integrated Services Digital Network (ISDN) ports at customer sites would allow that

customer to fransmit their digital data directly onto the network at 64 kb/s or multiples

thereof Therefore the PSTN network could carry both data and voice application fraffic with

the consfraint that the data channels or flows had to be in multiples of 64 kb/s.

Coming from this circuit-switched perspective, one of the drivers of ATM was to

have a network which would allow greater statistical multiplexing of the traffic, whilst still

separating individual 'active' flows so that no existing flow's QoS would be degraded by

interference from other flows. Like fraditional data networks, the application data is

packetised (in this case in fixed 53 byte ATM cells [1]) and the various applications' data

packets are multiplexed and carried over the physical links. However unlike fraditional data

networks, the various data flows are logically separated into virtual channels, and by having

separate buffers at switch output ports on a virtual channel basis, the flows are segregated and

the network's QoS for a flow cannot be degraded by interference from another flow.

As some data flows may be quite small in their WAN link bandwidth requirements,

so many more simultaneous data flows may arise than with voice calls. In order to properly

manage the network so that it is scaleable up to large PSTNs, there is the need to aggregate

these many flows together so that network management functions operate on multiples of

simultaneous traffic flows. A T M provides a two level hierarchical structure for aggregating

micro-flows into higher level network flows [2]. At the lower level, end-to-end Virtual

Channel Connections (VCCs) are instantiated in the network [3], these being separated from

other VCCs by utilising a scheduling buffer unique to the VCC at the output port for each

transit node. Micro-flows for the same source to destination are aggregated onto the VCC by

the layer 3 IP packets being segmented and encapsulated into A T M cells at the IP to ATM

convergence layer, this being termed the ATM Adaptation Layer (AAL). VCCs form the

logical network route topology over which the micro-flows can be routed by edge layer 3 IP

routers. The higher level aggregation occurs with the formation of Virtual Path Connections

(VPCs). These traverse one or more physical links, and form a logical network topology over

which the VCCs are set up. The size of these logical network links is specified at set-up time,

and is used by the Call Acceptance Control (CAC) function when new VCC set-up requests to

traverse this VPC arrive. I f there exists sufficient resources over a VPC to accommodate a

VCC request across it, the CAC for the VPC accepts the request; otherwise the CAC rejects

or blocks the VCC request.

Two main types of VCC are defined: Constant Bit Rate (CBR) and Variable Bit Rate

(VBR) VCCs. CBR VCCs are for application types generating either a deterministic data

stream with predictable packet sizes and interpacket intervals, or for reserving a pre-defined

amount o f bandwidth for aggregates of micro-flows. Rather than reserving a pre-specified

amount of bandwidth as with CBR, the CAC for VBR VCCs generally reserves an amount of

bandwidth between the average and the peak, computed using burst characterisation

parameters of the application source. VBR VCCs are used for bursty data applications, where

rather than reserving the peak required bandwidth, a smaller value is reserved in order to

obtain greater statistical multiplexing in the VPC.

CBR VCCs are ideal for use by voice CODEC applications, as these generally

generate a constantly sized application level packet and constant inter-packet time. Other

single data source types may be better served by VBR VCCs, thus allowing for more efficient

usage of the VPC's bandwidth. Most data sources require only best-effort network service:

these sources can be conveniently served by either CBR or VBR VCCs, as the higher level

(transport level or layer 4) protocols (e.g. TCP) take care of end-to-end flow control under

VCC congestion conditions. Another type of VCC, the Available Bit Rate (ABR) VCC, has

also been defined. This less used type seeks to allocate unused VPC bandwidth for best-effort

traffic, throttling it back as the spare VPC bandwidth is allocated to new CBR or VBR VCCs.

As this concept is similar to the layer 4 functionality, so the benefit of ABR VCCs lies in the

more efficient usage of spare VPC capacity. However a similar effect to ABR VCCs occurs

when setting up either CBR or VBR VCCs to fully utilise VPC bandwidth together with

policing mechanisms to ensure the maximum user demand doesn't exceed the stated VCC

bandwidth requirements. The best-effort traffic sources are allowed to use these VCCs, and

the layer 4 flow confrol mechanisms regulate the traffic sources to use all the available

bandwidth within the VCC.

1.3 Multi-service networks using IP technology

Internetworking Protocol (IP) [4] technology arose from the need to allow for data

interconnectivity between heterogeneous networking technology types. Its use has become

sjmonymous with the Local Area Network (LAN) arena, as the various layer 2 and 1

technologies are combined together into a seamless networking environment by the IP layer.

Being a layer 3 protocol in the OSI model, it performs the routing and congestion control

functions [5] with the aid of associated protocols.

Whilst it is true that because the IP layer is local to the user so in general ATM

networks carry IP fraffic, yet IP networks generally refer to networking technologies which

utilise the whole suite of protocols associated with IP, these protocols going up to the

application layer (layer 7 in the OSI model), and down to the data-link layer (layer 2 in the

OSI model). The reader is referred to appendix A for further details on the IP protocol suite

and associated planning and design issues. Due to IP networks providing only best-effort

service, the W A N has used other network technologies such as A T M or Frame Relay.

However with the advent of IP QoS mechanisms in the IP network equipment, the possibility

of pure IP even at the carrier level is fast becoming a reality.

These IP QoS mechanisms utilise certain fields in the IP packet header for the

packet's class identification so that QoS differentiation of fraffic flows becomes possible. In

IP version 4 the 3 precedence bits in the Type of Service field are used, giving a possible 8

different classes of service. The improved IP version 6 [6] has a larger flow label field of 24

bits, so that more than 16 million differing classes of service can be defined.

The best-effort service occurs through the use of a single First In First Out (FIFO)

output queue, which stores packets under link congestion conditions, forwarding them on in

order of arrival. This basic queuing and scheduling method is unsuitable for use in multi­

service networks for whilst packets from bursty fraffic sources may not necessarily be

dropped, yet the high delay variation possible when fraversing the buffer would seriously

affect the time-sensitive fraffic flows.

By having multiple queues at an output port, served by a scheduling mechanism

which empties each queue in turn, the differing classes' fraffic can be separated and handled

differenUy. IP packets enter the router and after being routed to the required output port, are

placed into the buffer corresponding to the class indicated in the IP packet header. The

servicing of each class queue is handled by the scheduling mechanism, an established method

being the Weighted Round Robin (WRR) algorithm [7]. Bandwidth is effectively allocated to

each aggregate class buffer flow by configuring WRR to spend a certain percentage of its

scheduling time servicing one buffer, another percentage another buffer, and so on. The more

recent Weighted Fair Queueing (WFQ) algorithm [8] is an improvement in that it allows the

re-use of remaining scheduling time by other class buffers when a class buffer is empty.

Unlike the per-VCC level flow segregation of ATM networks, these IP buffers are

aggregate class buffers, with many micro-flows possibly using a particular buffer. Therefore

in order to ensure misbehaving micro-flows do not adversely affect the network QoS to other

flows of the same class, strict policing mechanisms at the network edges are required. Having

done so, soft guarantees can be given to flows (because of the shared buffer resources), rather

than hard QoS guarantees which ATM can provide. End-to-end network performance is

improved by using the Random Early Detection (RED) mechanism [9]. This mechanism

seeks to avoid cases of recurrent network congestion prevalent with TCP traffic flows (see

appendix 1 for further details), in order to utilise network resources more efficiently, so

allowing the network to provide a more consistent response or QoS to users and applications.

The algorithm probabilistically discards IP packets before the onset of chronic congestion in

order to cause the TCP engine at the micro-flow source to effectively slow its transmission.

Although utilising shared network resource pools at transit nodes, end-to-end

resource reservation is facilitated by the Resource reSerVation Protocol (RSVP) [10] which

reserves network resources along a source-destination route according to the source's

requirements. True QoS separation of flows also requires the possibility of using one route

for a class' traffic and another for another class' traffic for the same source-destination pair.

This abihty is provided by Multiprotocol Label Switching (MPLS) [11] which can provide

route separation down to the micro-flow level, with RSVP reserving the required resources

for bundles or single MPLS flows at transit nodes.

Al l these QoS mechanisms operating together form an architecture for providing

multi-service requirements for heterogeneous traffic sources using IP networks.

1.4 Planning, provisioning and allocation of network resources

The planning and design function of multi-service networks, be they EP or ATM based,

centres on some form of user demand modelling for each application type using the network.

By combining the number of expected concurrent sessions of an application, and the source

and destination locations for each traffic flow, together with the expected traffic demand for

each application session instance, an expected aggregate user demand for each required

logical link can be derived. When mapping these logical links onto an existing physical

topology via routes produced from a routing algorithm (due to resizing an existing network in

the case of a network change or upgrade) the required physical link sizes that the logical links

fraverse are obtained. In cases of a greenfield site (i.e. where the network is to be designed

and installed from scratch) the physical network topology generated wil l be dependent on the

node or user population sub-set concenfration or location. The resulting physical link sizing

is again based on the aggregate requirements of the multiplexed expected fraffic logical links.

With the network planning stage being completed, the physical network is

provisioned according to the expected user demand-based design. This provisioning process

not only involves the installation of the physical network resources such as the switching and

router equipment together with the associated connecting links, but their configuration as

well. This configuration allows for logical links with heterogeneous QoS requirements to be

multiplexed over the same physical links, there being a separating mechanism effective over

the link to ensure that misbehaving sources do not compromise the QoS of other multiplexed

flows. This separating mechanism may involve separate class buffers and scheduling in the

case of either IP or A T M network technology.

Finally there is the actual allocation of these provisioned network resources which

may occur on a per-demand basis. There are two associated functions or mechanisms linked

with resource allocation: Call Acceptance Confrol (CAC) and call routing. The CAC function

works in conjunction with the routing function in allowing new call requests access to the

network resources needed to maintain the call's QoS requirements, or downgrading the call's

fraffic QoS tag i f insufficient network resources are available. Both ATM and IP (using

RSVP) technology CACs may also deny a new call or connection request any resources in

cases of network congestion, so blocking the call. The routing function routes the call's

fraffic through the network from the source to the destination, the CAC fiinction having

reserved the resources along the route for the call's duration.

However in cases of more static provisioning, the CAC fiinction is more akin to a

policing function in that the aggregate bandwidth for an application type's source to

destination flow is already reserved or allocated based on expected application demands. The

CAC or policing mechanism then ensures that there are not too many such application micro-

flows routed over and so using that reserved shared resource, blocking or downgrading the

QoS of new requests at the edge of the network. Implemented in an ATM network, such an

allocation policy would require pre-established VPCs and VCCs (otherwise known as

Permanent Virtual Circuits or PVCs), each VCC carrying multiple application micro-flows.

Implemented in an IP network, such an allocation policy would require pre-established fransit

node class buffer sizing and scheduling algorithm configuration (this allocation policy being

termed Differentiated Services or DiffServ [12]). Such network resource allocation can still

be varied according to network conditions with resizing of the reserved aggregate bandwidth

sizes, as well as recalculation of the routes through the network i f necessary. To simplify this

procedure in an A T M network, fairly static SVCs could be used instead of PVCs, these being

resized as necessary or even re-routed or reformed over a different route. With an IP network,

aggregate class buffer sizes and scheduling algorithm time can be reconfigured using RSVP,

this therefore operating over multiple MPLS flows through that transit node [13]. The MPLS

routes themselves can also be reconfigured as required.

Weaknesses with the static allocation approach centre on the fact that non-

deterministic user actions, which result in demands for network resources, cannot be predicted

accurately. This leads to a mismatch between expected user demands for which the network

has been provisioned, and actual user demands that the provisioned network attempts to

satisfy. Whilst most network designs may over-provision resources in an attempt to solve this

problem as well as building in some traffic demand growth expectation, unless there is a high

degree of over-provisioning there wil l generally occur hot-spots in the network, with some

areas being under-provisioned and other having spare capacity. As user demands vary with

time, so the hot-spot network areas may also move over time, meaning that a large number of

higher capacity links may be required to eliminate the problem. Of course, this situation is

exacerbated when provisioning for network failure conditions.

By allowing some dynamism in the resource allocation policy, user demands can be

redistributed as necessary in order to ease network congestion hot-spots, by consuming some

of the spare capacity found at other parts of the network. Therefore all the network resources

are used more efficiently, resulting with a lower provisioning requirement. Whilst it is true

that differing static allocation policies may be put in place at different times of the day or

under network failure conditions to more accurately allocate resources to expected user

demands, yet significant mismatches may still occur. Therefore fully dynamic allocation

policies are investigated in this thesis, these resulting with the most efficient use of shared

network resources. As this area is the more combinatorially complex, it is believed that

contributions in this area will be applicable and useful in the less complex and more static

allocation policy scenarios.

1.5 Dynamic routing algorithms

A dynamic resource allocation policy requires the dynamic operation of the combined CAC

and routing functions. The routing function calculates a route from the source to the

destination, with the CAC function accepting the call request i f there remain sufficient unused

7

network resources over the calculated route. This set of dynamic calculations may be

performed on an aggregated call basis, or down to the micro-flow level call basis. When

operating in an A T M paradigm, this franslates to a SVC environment. When using IP

technology this maps directly to the Integrated Services (IntServ) [14] operational

environment, but also conceptually to the DiffServ paradigm. This is true when there are

multiple route possibilities for that flow's class over partitioned and allocated pools of shared

network resources for that class. At that point the combined mechanism of CAC and routing

functions can decide over which route to send the call request, the feedback for the decision

making process being the status of the shared network resources along that downsfream path.

Most dynamic routing algorithms currently used (such as IP's OSPF) re-calculate routes

on indications that the network topology has changed, with either links or network equipment

going out of service. This is in order to preserve network stability. However it is only with

bandwidth-based dynamic routing algorithms that the allocation of the network resources can

vary from that matching the expected fraffic demands to that matching the actual fraffic

demands. Such algorithms vary the route set calculated according to the current network state

or link loading levels, lower loading levels returning higher available bandwidth indications,

this predisposing the route calculation to favour usage of such links. By performing the route

calculations at the call level based on the reserved aggregate call level bandwidth rather than

current flow level, large swings in link state are avoided, so aiding network stability. The

most combinatorially complex network scenario type was chosen (that of user individual

calls) in order to assess the proposed novel dynamic routing solutions contained in this work

within the most challenging context.

As regarding the routing and multiplexing of multi-service fraffic on the same links, the

preferred policy is, in general, to reserve some resources exclusively for each fraffic class

whilst sharing the remainder [15]. The performance of routing algorithms within a multi­

service context with shared resources is generally given in terms of the bandwidth blocking

probability. This is defined as follows:

V. bandwidth(0
bandwidth blocking rate =

2_,.^^bandwidth(0

where B is the set of all blocked call requests, and S the set of all call requests. Previous work

has shown that a single routing policy returns comparable performance to a set of routing

policies in a shared resource multi-service flow context (i.e. one policy for each service type)

[19]. However the blocking probability increases as the fraffic intensity for a source remains

constant but its bandwidth requirement increases for each instance. As the focus of this work

is to improve user perceived network performance by improving the dynamic routing

algorithm, therefore any possible clouding effects of heterogeneous fraffic sources are

8

removed by using homogeneous or single class types in the experiments. However the

experimental framework is provided for evaluating heterogeneous source traffic scenarios,

which because of possible reservation policies which include partitions exclusively used by a

source type with other partitions shared between source types, require various scenarios in

order to be evaluated.

The initial experimental work contained in this thesis explores the performance of

current link-state shortest path based algorithms proposed in the literature. Further work

ensues in trying to reduce the associated link state advertisement overhead, whilst still trying

to maintain good performance in terms of blocking probability under moving and steady

network state conditions.

However the main focus of work covered in this thesis lies in the field of the application

of stochastic learning automata to the dynamic routing problem in multi-service networks.

Learning automata have been shown to produce near optimal performance after convergence

in stationary environment applications [16], and have also been previously applied to the

routing function in communications networks [17]. The main work of this thesis seeks to

improve their weakness of slow convergence speed whilst retaining their strength of good

steady-state performance. These improvements are validated by comparing the resulting

performance with that obtained from the proposed novel shortest-path based routing

algorithm. Unlike previous studies using learning automata [18, 19], experiments are also

performed to show that these improvements hold under dynamic user demand conditions in

the network.

1.6 Outline of the thesis

Figure 1 shows the thesis contents breakdown in terms of the chapters' information

dependencies. Rather than the work having a single strand of thought and being described in

a purely sequential manner, there are two main areas of work that although interrelated may

be thought of as distinct work areas.

The first and main area of work is the critical examination and subsequent

improvement of stochastic learning automata operation when applied to routing in

reservation-based networks such as ATM or IP with QoS features. This body of work is

contained in chapters 2, 4, 5, 6 and 7. The second area of work deals with obtaining a

dynamic routing algorithm that performs well in either ATM or IP QoS networks and is based

on currently used routing algorithms, this then being used on a comparative basis with the

resulting learning automata based method. This second area of work is presented in chapter

3, its contents feeding into chapter 5 onwards. The proposed and validated algorithms for IP

QoS networks are modified for use in more regular DiffServ IP based networks in the fiirther

work section of chapter 8.

Chapter 2 contains a literature review of stochastic learning automata, including thefr

operation and application to the routing function in networks.

Chapter 3 sets the scene for routing in both ATM and IP QoS networks by examining

the role of the Call Acceptance Confrol function for differing fraffic types. After detailing an

accepted effective bandwidth calculation method for voice connections, a novel method for

effective bandwidth calculation of MPEG sources is presented, with initial results indicating

its superior accuracy when compared with previous methods. Various link-state routing

algorithms are then examined, with a modified existing algorithm being comparatively

evaluated via simulation experiments. This results with a link-state routing algorithm whose

performance can be used for comparison with learning automata based methods.

Chapter 4 examines the resulting performance of the various reinforcement

algorithms, these being an integral part of learning automata operation. Their performance

has been characterised for stationary environment applications, which is where the

environment state doesn't change. However the communications network environment is of

the non-autonomous non-stationary kind, as its state changes according to the learning

automata actions performed. Previous work on applying learning automata to networking

problems has simply assumed that the relative performance of the differing reinforcement

algorithms when learning automata operate in a stationary environment is the same as when

operating in non-autonomous non-stationary environments. However the comparative

examination presented in chapter 4 shows this to be an erroneous assumption, with a number

of the algorithms thought to produce the best performance being clearly unsuitable for use in

applications of non-autonomous non-stationary environment kinds.

Chapter 5 takes the best performing learning automata schemes arising from the work

of chapter 4, and seeks to improve their performance. Two differing schemes are taken from

the work of chapter 4, one having strengths in network steady-state conditions with the other

sfrengths in moving network state conditions. The performance of both schemes is improved

with a novel adaptive mechanism, which adapts the learning rate according to a novel method

of characterising the local network state. A different novel adaptive mechanism which seeks

to combine the sfrengths of both schemes highlighted in chapter 4 is then proposed and

evaluated, this also showing a performance improvement. The performance of both of these

improved learning automata schemes are then compared with that resulting from using the

dynamic shortest-path algorithm detailed in chapter 3.

10

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

^ •
Chapter 8

Figure 1: Chapter information dependencies

The work contained in chapter 6 re-examines how learning automata have historically been

applied to the routing problem in reservation-based networks, and proposes a novel way of

applying them to the problem, the reinforcing feedback being based on link utilisation levels.

The resulting performance of the new learning automata routing algorithm is finally compared

to that of the dynamic shortest-path algorithm.

Having seen that each of these algorithms is stronger in differing network state

circumstances, the work collated in chapter 7 seeks to combine the two algorithms to produce

a hybrid routing algorithm. This hybrid includes both a learning automata component, and a

shortest-path component, the part that is active at any one time being dependent on the locally

perceived network state.

11

Chapter 8 draws all the strands of findings and conclusions together, also presenting some

directions for further work. This further work section proposes modifications of the hybrid

algorithm for it to operate in a more regular IP environment, (i.e. a Diffserv paradigm).

12

2 A Brief Review of Learning Automata

2.1 Introduction

The purpose of the following chapter is to provide the theoretical aspects of learning

automata, which wil l be required when detailing proposed improvements in later chapters.

The chapter begins by introducing the basic concepts of an automaton interacting with an

environment, and proceeds to detail in a simple and unified manner the various main

reinforcement algorithms. It is by using these algorithms that the automaton is able to learn

the statistical environment characteristics. The use of different reinforcement algorithms

results in different theoretical performance characteristics when operating in stationary

random environments, so a tabulation of the various performance groupings is given.

Finally, the means by which learning automata have previously been applied to the

routing problem in both circuit and packet-switched networks is briefly shown, together with

the observed resulting performance characteristics.

2.2 Basic Concepts

Learning can be defined as any relatively permanent change in behaviour resulting from past

experience. Therefore a learning system has the ability to improve its behaviour with time,

according to a defined performance measure [20]. A learning automaton can be defined as a

decision maker which operates in a random environment, updating its strategy for choosing

actions on the basis of the environment's response [16]. The automaton has a finite number

of actions and the response of the environment to each action can be either favourable or

unfavourable. The automaton's interaction with its environment is shown in Figure 2.

13

i Automaton
^ , F { . . } , G { . . }

a

Environment
E(n)

Figure 2: Learning Automata acting in an environment

The automaton is defined by its state set ^ , an output or action set a, an input set ^, a

fransition or updating function F{ . .} , and an output function G{. .} . The automaton can be

either stochastic or deterministic; the former's output function G{..} being composed of

probabilities based on the environment's response, whilst the latter having a fixed mapping

function between the internal state and the function to be performed. Further sub-division of

classification occurs when considering the fransition or updating fimction F{..} which

determines the next state of the automaton given its current state and the response from the

environment. I f this is fixed then the result is a fixed structure deterministic or a fixed

sfructure stochastic automaton. However i f the updating fiinction is variable, allowing for the

fransition function to be modified so that choosing the operations or actions changes after

each iteration, then the result is a variable structure deterministic or a variable structure

stochastic automaton. For this stiidy the particular types used are variable stioicture stochastic

automata, these having the potential of greater flexibility and therefore performance. For

such an automaton A at instant n:

where we have an action set a with r actions, an environment response set ^ and a probability

set 2 containing r probabilities, each being the probability of performing every action possible

in the current internal automaton state. The function T is the reinforcement algorithm which

modifies the action probability vector £ with respect to the performed action and the received

response. The new probability vector can therefore be written as:

U(n+l) = T{a,AR{n)}

The environment is defined by E(«):

E{n)={a,Mc}

14

where c is the penalty set. This is the probability that the action aj would result in an

unfavourable response from the environment, and is defined as:

c, - Pr[/7(«) = l\a(n) = ; / = { 1, 2,.... , r }

This characterises the response of the environment to a performed action, and therefore

indicates the desirability of different actions, responding with a penalty signal or penalty

weight depending on the environment model. There are three possible environment response

models: the P-model responds to an action with a binary signal (either 0 or 1, reward or

penalty); the S-model has a continuous response in the region (0, 1) and the Q-model's

response is one from a finite set of discrete values in the range of (0, 1). For this study both

the P-model and S-model were chosen. The P-model's binary response can be easily

generated from the network according to whether a connection attempt had been successful or

not, and this is the method that has been traditionally used. However an enhancement

presented in later chapters involves the use of the S-model. These matters are further

explained in the next main section.

One quantity useful in judging the behaviour of a learning automaton is the average

penalty received by the automaton. The average penalty received by the automaton for a

given action probability vector is expressed by:

Min) = E[j3(n)\p{n)

r

1=1

I f no a priori information is given and the actions are chosen with equal probability, then the

average penalty received by the automaton is given by:

r

The use of the term learning automaton can be justified i f the average penalty is made less

than Mo at least asymptotically, such behaviour being called expediency. So an expedient

learning automaton performs better than one whose actions are chosen in a purely random

manner. An optimal learning automaton would produce the minimum value of M(n).

Optimality implies that asymptotically the action associated with the minimum penalty

probability is chosen with probability one. Whilst optimality is very desirable it is often not

achievable, and so suboptimal performance is aimed for. Such is termed £--optimality, and

implies that the performance of the automaton can be made as close to the optimal as desired.

15

An absolutely expedient learning automaton has a monotonic decrease in M{n). Absolute

expediency implies expediency and ^--optimality in all stationary random envfronments [21].

Having defined the learning automaton and environment type that will be used, the

differing learning automaton classification that occurs in the remainder of this study is based

on the reinforcement algorithm employed.

2.3 Reinforcement Algorithms

Classification of such algorithms can be based either on the nature of the function used in the

scheme, or on the property exhibited by a learning automaton using the algorithm [20].

The first classification type may be split into two main areas: the linearity of the

scheme, and whether the scheme is continuous or discrete in nature. An example of the

former area is i f ̂ {n + 1) is a linear fiinction of ^(/ i) , then the scheme is termed linear.

Schemes involving higher orders of ^(n) are non-linear, with the final class of algorithm

combining aspects of the two and so being a hybrid. As non-linear and hybrid algorithms

have given no appreciable improvement over the linear updating schemes [22], only linear

algorithms wil l be used in this study.

As for whether the scheme is discrete or continuous, with a continuous scheme the

action probabilities may take any real value between the interval (0, 1), this being limited

when implemented only by the floating point precision. A discretised scheme on the other

hand discretises the probability space so that the action probabilities may take values only

from a finite set in the interval (0, 1).

This second classification type results with broadly two types of learning automaton:

those that are absolutely expedient and generally ^-optimal, and those that are ergodic. In

general the theoretical proofs given for these properties assume a stationary random

environment, so it remains unclear whether these properties hold in non-stationary random

environments, a multi-service network corresponding to such an environment, as detailed in

chapter 4. However, the properties for each algorithm are given as an aid to classification.

It was thought beneficial to detail the algorithms which follow as the original sources

varied in their terminology and method of explanation. The details below are given in a

uniform manner and style to ease both their comprehension and the appreciation of

differences. Al l the algorithms have a learning rate parameter, which indicates the possible

size of change in the updating of action probabilities.

16

2.3.1 Standard Algorithms

Standard reinforcement algorithms use the instantaneous environment response /5 to direcdy

update the action probabilities. According to the algorithm used, either one or both of the

environment responses are used in the updating mechanism. The following algorithms

follow: LRI, LRP and L R ^ , these being the ones mainly used. Other possible algorithms

include LIP, LRr, LpP, which are not considered in this study as the former have been shown

to be superior [18].

2.3.1.1 Linear Reward Inaction (LRI) Algorithm

The following algorithm only updates the probabilities when receiving a successful response

from the environment, keeping the probabilities unchanged for a penalty response. Using

either the P-model or S-model response environments, the probabilities are updated in the

following manner:

Reward on «(«) = «; y^«) = [0, 1]:

(« +1) = (l - «(1 - («) 0 < « < 1

p,{n^\) = \-Y,p.{n^X)

Therefore when there is a penalty response 0^«) = 1) on ain) = the result will be:

Pj{n + l) = pj{n)-yj

The LRI scheme is expedient and ^--optimal in stationary random environments, but as the

automaton is not ergodic it is possible for it to get stuck in absorbing states. This makes it

sensitive to the starting conditions and probabilities, and also to non-stationary environments.

Such occurs when action probabilities tend to one, so that i f the network state changes, the

probability vector may not adapt to the new optimum for a long time.

17

2.3.1.2 Linear Reward Penalty (L R P) and L R s P Algorithms

This algorithm updates the probabihties for both a successful and unsuccessful response from

the environment. Again, using either response environment, the probabilities are updated as

follows:

Reward on a(n) = j^n) = [0, 1):

Pj,, (n + l) = (l-a(l- /?{n)))pj («) 0 < a < 1

p^(n + \) = \ - f ^ p . (n + \)
J*'

Penalty on a(n) = a\ J3{n) = 1:

PjAn + ̂)-y:ri^'^-b)pj{n) Q<b<\

p,{n + \) = \-Ypj{n + \)

where b = a.

The LRP scheme is expedient, and the probability vector £(«) has been shown to converge in

distribution to a normal random variable for small step sizes [16, 23]. The scheme is also

ergodic [24], so that this distribution function is independent of the initial probability vector

2(0). This feature is also advantageous when operating in non-stationary environments such

as a communications network, as the automaton does not get stuck in absorbing states and so

is better able to track the changing optimum probability vector.

The LRiP scheme is similar to the LRP scheme except that the penalty learning rate

is less than the reward learning rate, meaning that (b < a). This changes its behaviour to be

both ^--optimal and ergodic. In general the penalty rate is set at one tenth of the reward rate.

2.3.2 Estimator Algorithms

To improve the main limitation of learning automata, that of a slow rate of convergence, a

new class of algorithm was proposed [25]. Its novel feature is that it uses history by

maintaining estimates of the reward characteristics of the environment, which in turn drive the

18

updating algorithm to produce a stronger convergence result. This occurs as the probability

vector is updated based on both the estimate vector and the current response from the

environment. Thus for this class of algorithm, even i f a particular action is rewarded, it might

be the case that the probability of choosing another action is increased. The family of

estimator algorithms has been shown to be ^--optimal in stationary random environments.

2.3.2.1 The Pursuit Algorithm

The pursuit algorithm is a special case of a general estimator algorithm, and is characterised

by the fact that it pursues what it reckons to be the optimal action [26]. It is similar in design

to the LRI algorithm, except that whereas the LRI algorithm moves the action probability

vector in the direction of the most recently rewarded action, the pursuit algorithm moves it

towards the action that possesses the highest estimate of reward. Like the LRI algorithm, the

pursuit algorithm has been shown to be ^-optimal [27]. Using either response environment,

the algorithm is as follows:

Reward on a(n) = a, /^n) = [0, 1]:

Pj,, (n +1) = (1 - a(\ - m)) P j («) 0 < « < I

p,{n + \) = \-Y,Pj{n + \)

This again causes the following on receiving a penalty indication (JXn) = 1) on <a(n) = or,-:

p^{n + \) = pj{n)- Vy

For either environment reply, the runnmg estimates are subsequently updated as follows:

W^{n + \)=W^{n) + {\-/3{n))

Z,(« + 1) = Z,(«) + 1

<'(« + !) =
Z,(« + l)

where pk is the action probability that has the highest running estimate d[of being rewarded;

Wi{n) is the number of times the zth action has been rewarded up to «; and Z,{«) is the number

of times the /th action has been selected up to n.

19

2.3.2.2 The General Estimator Algorithm

The general estimator algorithm is a more complex scheme, with the probabilities being

updated as a function of both the reward estimates and the action probability vector [25]. The

algorithm is as follows:

For either environment response to a(n) = ai.

f[dl{n)-d]{n)\
^ (^-Pj{n)]p,{n)

r - \

A(« + l) = A(«) + a 2 f[d\{n)-d'.{n)\ S,^{n)p.{n)^S,,{n)^- '-^^

where Sij{n) is an indicator function defined as:

= 1 f o r < ' («) > J ; (n)

= 0 for d\{n)<d]{n)

and/is a monotonic increasing function, such as 'x" or 'x^'.

For either environment response, the running estimates are subsequently updated as follows:

Z,(n + l) = Z,(«) + l

Z,(« + l)

As can be seen, the updating of the probability vector depends indirectly on the response from

the environment as this feedback changes the components of D(n) which affect the sign of

X- --) and Sij. I f ai is chosen and d\{n) < d'j{n), then an amount proportional to (/>,(«) / (r -

1)) (1 - pj{n)) is added to pjin). However i f > d'j (n) , then an amount proportional to

Pj{n) is subfracted from Pj{ri).

20

2.3.3 Discretised Reinforcement Algorithms

All algorithms given to date approach the optimal action probability asymptotically, so by

discretising the probability space to discrete values in the region [0,1], convergence is

speeded up when the optimal action probability is close to unity, as occurs with stationary

random environments. This happens by the discretised automaton mcreasing the probability

of choosing that action to the value of unity directly, instead of approaching that value

asymptotically as with continuous schemes [28]. The discretisation is termed linear i f the

allowable values are equally spaced; otherwise it is called non-linear. In general, the

discretised version of a continuous algorithm retains the original's property of ^--optimality or

ergodicity. Another benefit of discretisation is that the requirements on the system random

number generator are reduced as the probability space is now a set of integers, rather than a

continuous set. This is due to the contents of the probability space not needing to be stored as

real numbers, only their integer index requiring storage. Therefore the random number

generator needs to generate an integer within the bounds zero and the number of discrete steps

rather than a high precision real number, so that it is as close as can be possible to the

continuous case when using digital circuitry.

As with the section on the standard continuous algorithms, other possible algorithms

such as DLIP and ADLIP are not given as their performance was found to be less than the

ones given below [29].

The details for the following reinforcement algorithms are applicable with the P-

model response environment. For the S-model response environment, a number of A

additions or subtractions may occur according to the magnitude of the reward indicator.

However, it should be borne in mind that the reception of a variable environment response

really requires the capability of a continuous algorithm to map it to an appropriate

reinforcement of the action probabilities. As the size of the minimum granularity is limited

when using discretised algorithms, the effective use of an S-model response environment is

often not possible. This is not so much the case with the discretised estimator algorithms as

the updating function folly takes into consideration the variable nature of the environment

response.

2,3.3.1 Discretised Linear Reward Inaction (D L R I) Algorithm

The updating algorithm is fairly similar to that of the continuous case, except that for the two

action case the automaton has (A'̂ + 1) states, A'̂ being an even integer, and associated with the

21

state Si is the probability i/N, which represents the probability of the automaton choosing an

action [30]. For the r action case the step size A, instead of being l/N, translates to:

rN

The algorithm is as follows for the P-model response environment:

Reward on O{VL) = ai J3(TI) = 0:

Pj^,(n + l) = max{pj(n)-A,0}

p,in + l) = \ - f ^ P j i n + l)
./>'•

Penalty on o(n) = tjr, /j(n) = 1:

Pj(n + l) = p.{ny, vy

Like its continuous counterpart, the DLRI algorithm has been shown to be .r-optimal in all

stationary type environments for the two-action case [30].

2.3.3.2 Discretised Linear Reward Penalty (D L R P) Algorithm

This is similar to the DLRI updating mechanism, except that the penalty environment

responses are also utilised, as follows for a P-model response environment:

Reward on a{n) = a; ^n) = 0:

Pj,^(n + \) = max{pj(n)-A,0]

p,in + l) = l - J] p j (n + l)

Penalty on «(n) = at ^n) = 1:

;?,v,(« + l) = min{/7.(«) + A,l}

p,{n + \) = \-Y,Pj{n + \)

22

Interestingly, the discretised version of the LRP algorithm has slightly different properties to

its continuous counterpart. It has been shown that whilst keeping its ergodic nature, it is also

^•-optimal in environments where the lowest penalty probability for an action is less than 0.5

[31]. Moreover, by artificially creating absorbing states (called the ADLRP algorithm) the

algorithm loses its ergodicity but becomes ^--optimal in all enviroimients. However it has

been noticed at least in non-stationary random environments that absorbing schemes generally

perform poorly [17]. Finally, a modification of the DLRP algorithm can be performed (called

the MDLRP algorithm) which renders it ergodic and ^--optimal in all random environments.

The modification is as follows: i f the environment response is a penalty, then there is a 50%

chance of decreasing that action probability, and a corresponding 50% chance of increasing it.

This modification effectively reduces the penalty response updates, so making it similar to the

LRiP algorithm in performance and rationality.

The DLR^P scheme is similar except that a reward results in a multiple number of

step changes, and a penalty in a single step change.

2.3.3.3 Discretised Pursuit Algorithm

Like its continuous counterpart, this algorithm has also been shown to be f-optimal. For

either response environment, its updates are as follows [28]:

Reward on a(n) = ai /^n) = [0, 1):

Pj^k (« + !) = max{p. («) - A,0}

p,{n + \) = \-f^p^{n + \)

Penalty on ain) = a\ y^n) = 1:

p / n + 1) = ;?,(«); V/'

with the update of the running estimates being as for the continuous case.

23

2.3.3.4 Discretised General Estimator Algorithm

The entire family of discretised estimator algorithms have been shown to be ^--optimal as long

as the following two properties are met: the property of moderation, and the monotone

property [27]. The first property states that the maximum magnitude by which an action

probability can decrease per iteration is bounded by MrN. The monotone property indicates

absolute expediency, in that an action probability monotonically moves to the optimum one.

There are various modifications of the continuous algorithm to allow its use for the

discrete domain. First the value for A is slightly modified to make it hold to the property of

moderation as follows:

rN0

where represents the largest multiple of A that any one component of the probability vector

can decrease by in one iteration. It has been stipulated from the change equation below, that 0

effectively replaces the term 'a' found in the continuous case [27]. However, i f one takes A

to be the same as for the other discretised schemes which leave out d, then the analogous

continuous case learning rate is actually the full step size ('̂A for this case).

Secondly, the terms />,(«) and (1 - Pj{n)) p^n) have been dropped completely so that

the algorithm approaches its end point directly rather than asymptotically. Thirdly, two new

functions are introduced: Rnd(x) rounds x up to an integer, being one oi {-0,-B+ 1, -0+ 2,

... , 0- 1, 0}\ and Check takes as inputs the current action probabilities and the allowable

change, retioming the maximum permissible number of step changes which keeps all action

probabilities within the bounds of 0 and 1. It is formally specified as follows:

For any environment response to cdji) = for each action j starting with m:

change = Rnd(^^(j ; (n) - d'j{n)) • [s.j{n) + Sj^{n)y-^

Pj{n + \) = pj(n) - ACheck(p, . («) ,pj («) ,change)

(« + !) = pi («) + ACheck(;?,. (w), Pj («), change)

with the update of the running estimates being as for the continuous case.

24

2.3.4 Comparisons between Algorithms

The following section attempts to collate the information available for the aforementioned

algorithms to provide readily accessible comparisons in type and functionality.

Unfortunately, the vast majority of performance indicators available in the literature are for

random stationary environments, but these are not relevant in our study as the environment to

which the learning automata will be applied is non-stationary, as will be explained in the

following section. In fact one of the aims of the following chapter is to give some empirical

indications on comparative performance of the various available algorithms for state-

dependent non-stationary environments such as a communications network.

Therefore the relevant possible comparative indicators currently available concern the

asymptotic properties in stationary environments of these variable structure stochastic

automata. These are shown in Table 1.

,e-optimal ergodic .̂ -optimal and
ergodic

Continuous
LRI yes

LRiP yes
LRP yes

pursuit yes
general estimator yes

Discrete
DLRI yes

DLR£P yes
DLRP yes yes ifcn,in<0.5

MDLRP yes
ADLRP yes

discretised pursuit yes
dis. gen. estimator yes

Table 1 - Summary of the asymptotic properties of various reinforcement algorithms

Ideally, since the environment type used will be non-stationary, the property of ergodicity is

important. I f this can be coupled with f-optimality and a fast convergence rate, then such an

algorithm should be the ideal for use in this environment type.

25

2.4 Routing using Learning Automata

There follows an overview of how previous studies have applied learning automata to the

problem of routing in networks, for both circuit-switched and packet-switched networks. The

performance for the reinforcement algorithms that were used is also given, together with the

reasons why variations in performance occurred.

2.4.1 The Network as an Environment

An environment is non-stationary i f the penalty probabilities c, (z = 1, 2, ... , r) corresponding

to the various actions vary with time. There are three main types of non-stationary

environment; periodic environments, Markovian switching environments and state dependent

environments [20, 16]. Periodic environments vary the penalty probabilities periodically in

time with a common period. Markovian switching environments are similar in that the

penalty probabilities vary with time, but the new penalty probability set is chosen from a

number probabilistically [32]. Finally state dependent environments vary implicitly or

explicitly with the current state. For example implicit dependence may arise i f the state

transitions are determined by the action of the automaton. This final type of non-stationary

environment is also termed a non-autonomous environment [18].

Routing is the process that decides over which physical links the data will be

fransmitted to eventually reach its destination. The action of routing a call changes the

network state as the link utilisations wil l change. Therefore the environment for the learning

automata when they are applied to the problem of routing in a communications network is of

the non-stationary non-autonomous kind.

2.4.2 Routing in Networks

Elements that a good routing algorithm should ensure are: robustness, stability, fairness and

optimality [5]. Using learning automata as the routing algorithm ensures these criteria are

met due to its load balancing properties, its close to optimal performance, and its ability to

learn the optimal routing pattern for a new network state. Its stochastic nature also aids

stability as wild swings in network loading are avoided.

26

Learning automata have previously been applied to both circuit switched and best-effort

rather than multi-service packet switched networks. Studies have shown that the basic

elements that determine network performance are network architecture, call processing

effectiveness, the routing method, and the switch structure [33]. The interest in applying

learning automata to the routing problem has been partly due to their good performance and

adaptability, but also due to their low processing requirement in comparison to other routing

algorithms [34]. The following sections briefly describe their implementation in these

differing network technologies, and general results obtained.

2.4.2.1 Learning Automata for Routing in Circuit Switched Networks

Telephone networks employ circuit-switching, where a circuit is set up from link to link in a

progressive manner and the message is fransmitted after the entire circuit has been set up, the

transmission resources being reserved for the complete duration of the connection [35]. I f

there are no outgoing trunks free at a source or transit node then the call is blocked. Network

performance is therefore normally measured as the blocking probability, and can be gathered

for the whole network or local to each node, these being termed the global and local blocking .

probabilities respectively.

Using learning automata for the routing function in such a network, requires (N-1)

automata at each node for a N node network, there being one automaton providing routes for

one destination at a node. The destination address is held in the arriving set-up packet, and so

the appropriate automaton for that destination is selected. I f the connection request reaches

the destination node, then an acknowledgement returns to the source node. I f the call is

blocked then a release message returns to the source node. Therefore the response from the

network is binary, the environment being classed as P-model responsive.

Previous simulation studies have centred on fully connected or hierarchical network

topologies, these both mapping directly to current telephone networks. Performance of

learning automata have been shown to equal existing fixed rule alternate routing schemes

under engineered loads, but outperform the latter in overload conditions where there exists

extra capacity elsewhere in the network [36].

27

2.4.2.2 Learning Automata for Routing in Best-Effort Packet Switched

Networks

Learning automata have also been applied to best-effort packet switched networks, in a

different form to the circuit switched case. Best-effort packet switched networks can be

roughly subdivided into datagram and virtual circuit types. Since each call is now accepted,

the performance measure for a routing scheme in these kinds of network is no longer the

blocking probability but the mean end-to-end delay of packets arriving at the destination

node. Therefore the feedback from the environment is no longer binary, but continuous. This

can be discretised, and by using digital technology effectively always is, but the S model

response environment is still applicable in this case.

As with the circuit switched case, routing decisions are performed by (N-1) independent

automata situated at each node. In addition to these, delay estimate vectors are also held at

each node, these containing the average delay between the current node and all the destination

nodes for each outgoing link. With the datagram network case, the feedback is returned by a

small acknowledgement packet for each data packet received, this including the sum of the

delay between the previous node and the current node, and the estimate of the delay from the

current node to the destination. This sum is therefore the delay estimate for the destination

node for the previous node. The response to the automaton at a node is bounded between zero

and one, and is the normalised delay. This normalisation procedure can be calculated in

either of two ways, the first being:

delay
normalised delay =

max. delay

However this requires prior knowledge of the maximum delay. The other method doesn't

require a priori information, using the minimum recorded delay to date:

normalised delay = 1 - -
delay

min. delay

This latter technique has the added attraction of effectively separating low values of delay

which are closely spaced and compressing the range of longer delays.

Rather than updating the delay estimate by simply storing the new one, the

exponential smoothing technique can be used as follows:

normalised delay(new) = ^(normalised delay(old)) + (1 - <5')(normalised delay(retumed))
with 0 < <£• < 1

28

The virtual circuit case is similar in using normalised delay feedback updates, but this occurs

for the acknowledgement to the original set-up packet for the virtual circuit only. To

minimise switch processing overhead, learning automata have also been used as decision

makers at the source node of a set of pre-determined routes to a destination node [37].

According to the delay feedback and reinforcement algorithm employed, the automaton

probabilistically chooses a route for the virtual circuit request, this effectively being source

routing.

2.4.2.3 Steady State Performance for Routing using Learning Automata

It has been shown that both LRI and LR£P learning automata converge to equalise the penalty

probabilities [38], these being representative of e-optimal schemes in steady-state

performance. LRP automata on the other hand, converge to equalise the penalty probability

rates [18], this being representative of ergodic schemes. This is why both LRI and LRiP

automata have been found to result with a lower blocking probability and so give performance

closer to the optimum when compared with LRP automata.

This translates to LRI and LRiP equalising the path blocking probabilities, and the

LRP scheme equalising the path blocking probability rates in circuit switched networks. In

the best-effort packet switched network case, the average packet delays are equalised by the

LRI and LR^P schemes, whilst the LRP scheme equalises the delay rates.

2.4.2.4 Transient Performance for Routing using Learning Automata

It is not so straightforward to explain the dynamic behaviour of automata action probabilities,

as the steady state performance does not hold during convergence. A new model of a

nonstationary automaton environment was proposed, whose response characteristics are

dynamically related to the probabilities of the actions performed on it [39]. This model was

shown to give good correspondence with the fransient response of the automaton action

probabilities when appropriate model parameters are chosen.

However the transient behaviour when multiple automata provide adaptive routing in

an environment has not been examined, this requiring a more complex model. The problem is

29

that other automata in the network might cause more complex phenomena, such as oscillatory

behaviour.

2.5 Summary

The chapter has provided an overview of the theoretical aspects of learning automata, with the

purpose of giving sufficient background from which to draw when detailing the proposed

improvements in the following chapters. As the improvements relate to the reinforcement

algorithm used, this being the learning mechanism of the automaton, so this chapter has

concentrated on detailing the current standard approaches and algorithms commonly used.

These have been tabulated according to the resulting performance characteristic of

the automaton in stationary random environments, together with comments on desirable

performance properties for operation in non-stationary environments.

Brief explanation on how learning automata have been previously applied to the

routing problem have also been included, together with relative reinforcement algorithm

performance.

30

3 Improving Standard Dynamic Routing Algorithms for

Routing in IVluIti-Service Networks

3.1 Introduction

The purpose of this chapter is to detail a link-state routing algorithm which provides low

blocking probability performance when compared to other previously proposed algorithms.

The resulting performance from this algorithm may then be compared to the learning

automata based routing methods outlined in the chapters which follow. Al l aspects of the

link-state routing method are examined: the algorithm itself, the Imk-state information to be

propagated, and finally also the propagation method.

However before looking at the routing mechanisms, the Call Acceptance Control

(CAC) method is examined as this is linked with the routing function. A bandwidth-based

CAC mechanism is proposed, with methods and calculations for obtaining the effective

bandwidths for different traffic types being given. This section includes a novel method for

calculating the effective bandwidth of MPEG sfreams which provides more accurate results

than previous methods.

Having examined and detailed the CAC mechanism, previously proposed algorithms

for routing in multi-service networks are outiined. A new algorithm is proposed, and the

results from simulation experiments are then given to show its benefits when compared to

another algorithm which was detailed in previous work.

Next the type of link-state information is examined, having first summarised previous

work in the area. The section continues with simulation results which show the benefits of

using the proposed type of link-state information as part of the route calculation.

Finally, mechanisms for reducing the signalling overhead when propagating the link-

state information are examined. After summarising some previously proposed mechanisms, a

new method which uses existing connection set-up signalling is detailed. This is compared to

other methods via further simulation experiments, with conclusions being drawn as to its

relative benefits.

31

3.2 The routing function and call acceptance control

3.2.1 Bandwidth-based C A C

There is a sfrong relationship between proposed congestion control mechanisms used to

guarantee Quality of Service (QoS) in multi-service networks and routing. Congestion

confrol is required in order to ensure that all connections' QoS requirements, such as delay

and/or cell loss, are satisfied. There are two aspects of congestion confrol in multi-service

networks: accepting a connection request based on its pre-defined fraffic confract, and

policing an accepted connection to ensure its compliance to its pre-defined traffic confract.

Policing is referred to as Usage Parameter Control (UPC) in A T M networks, and various

algorithms have been proposed to perform this function [40, 41].

However, it is at the acceptance of a call's request based on its fraffic confract that the

sfrong link with routing occurs. It is the role of the Call Admission Confrol (CAC) to allow

the new connection onto the network i f sufficient resources are available to meet its QoS

whilst not affecting that of others already accepted. I f insufficient network resources are

available however, the call request can be rejected or the QoS downgraded. The CAC can use

one of two general methods to perform this fonction: either measure current network

utilisation to ascertain whether the new connection can be accepted [42]; or pre-characterise

each accepted connection's bandwidth requirement permitting a new connection i f the sum of

the bandwidth requirements is not above each virtual links' bandwidth (VPC in ATM and

class bandwidth in IP with QoS) which comprises the route from the source to the destination

[43]. As this study is primarily interested in the routing function, so the simplest CAC

method was chosen: that of reserving capacity for an accepted connection based on its

effective bandwidth [44].

3.2.2 Effective bandwidth calculations

The effective bandwidth of a connection is generally characterised by a value lying between

the peak and mean bit-rates of the call. When a new connection is set up over a logical link,

an amount of bandwidth equal to its effective bandwidth is reserved on the logical link for the

duration of the call. The CAC function consists of determining whether there is sufficient

residual bandwidth to accommodate the effective bandwidth of the new connection request.

32

3.2.2.1 Effective bandwidth allocation strategy

I f a call traverses several logical links, the cell losses or delays accumulate along the

connection and the end-to-end QoS achieved by the connection is equal to the sum of the QoS

on the logical links. In an ATM network, or an IP network with QoS features, the same

effective bandwidth allocations may therefore result in different end-to-end QoS for different

connections, depending on the route chosen.

Previous work has highlighted the need to sum the individual VPC's QoS for a route

using an A T M network in order to obtain the end-to-end QoS, with both fully and sparsely

connected topologies [45, 46]. The resulting allocation sfrategy derived from previous work

is as follows: the required end-to-end QoS is divided by the number of VPCs (or logical links)

which form the route, an effective bandwidth being reserved on each for the connection. The

effective bandwidth calculated for each logical link will therefore be for a stricter QoS than

the end-to-end QoS. It follows that the longer the paths permitted in the network, the higher

the effective bandwidth which will be reserved along the route for the same connection

request and therefore same end-to-end QoS requirement as with a shorter path. This factor

impinges on the routing algorithm, in that any algorithm for routing in multi-service networks

should try to limit higher hop count paths more so than with standard dynamic circuit-

switched routing algorithms.

3.2.2.2 Computing effective bandwidth values

Effective bandwidths may be calculated according to the fluid model described in [44]. This

details equivalent capacity equations which may be applied for either cell loss rate or delay

QoS calculations. As delay through a node is upper bounded by each switch manufacturer, it

is relatively sfraightforward to design the physical network ensuring that worst-case end-to-

end delay is still conformant with the QoS required by application types. This study therefore

uses the equivalent capacity equation to meet cell loss QoS criteria for connections. The

resulting equivalent capacity equation is:

2ccb{\-p)

where a-\n{\l s) (^being the desired QoS), p is the utilisation, .Rpeak is the peak rate, b is

the mean of the burst period, and x is the available buffer size.

33

3.2.2.2,1 Voice call calculations

Previous studies have characterised voice traffic according to the number of on-off sources

required to model the traffic type [47]. Table 2 gives the resulting modelling parameter

values for uncompressed and uncoded traffic sources, where M is the number of on-off

sources required to model the traffic type, l/A is the mean ' o f f period, and 1/// is the mean

'on' period.

So for a QoS specifying a cell loss probability of 10'', the resulting effective

bandwidth for the voice call is about 0.026 Mb/s. This figure being lower than the standard

64 kb/s reserved on telephonic networks shows one aspect of the savings that the statistical

multiplexing effects of A T M networks can bring. The' effect of increasing hop count when

choosing a route is shown in Table 3, the results indicating that unlike the reports from a

previous study [46], the effect is relatively limited as there occurs a 1.5% increase when using

a 5 hop route over a 1 hop route.

Traffic Source M A(l/s) /<l/s) i?peak(Mb/s)

voice 1 1/0.65 1/0.352 0.064

videophone 10 1.3078 2.5922 1.163

Table 2: Traffic modelling parameters

Number of hops Effective bandwidth requirement (Mb/s)

1 0.0266708

2 0.0268359

3 0.0269327

4 0.0270014

5 0.0270547

Table 3: Effect of increasing hop count on voice effective bandwidth

34

3.2.2.2.2 Video call calculations

Using the values given in Table 2 together with a QoS specifying a cell loss probability of 10"

,̂ the resulting effective bandwidth for the videophone call is 9.917 Mb/s. However most

video sources will be MPEG coded, and as yet no satisfactory algorithm for calculating the

effective bandwidth exists, with current formulae grossly underestimating the bandwidth

required [48]. Therefore there exists a requirement for a more accurate a-priori effective

bandwidth calculator for MPEG traffic, as ATM networks with bandwidth-based CACs will

require this in order to guarantee the MPEG connection request and other existing

coimections' QoS requirements.

Some progress has occurred in this area by examining traces from vanous

programmes encoded by MPEG. It has been shown that there is a wide variation of peak and

effective bandwidth requirement for these various traces [48, 49], with peaks varying from

around 0.3 to 7 Mb/s and most being between 3.5 and 6.5 Mb/s. Whilst the mean bandwidth

requirements were much lower, the effective bandwidth required was in the region of half of

the peak as this source type is very bursty.

In order to produce an effective bandwidth formula which provides results close to

that of real traffic, MPEG traces were examined to obtain a characterisation of its pattern.

Three frame types are visible: I , P and B frames, there being two patterns transmitted each

second. Each pattern consists of a twelve frame group of pictures (GOP) pattern of

IBBPBBPBBPBB [49]. Thus an I frame will occur twice each second, and so on. The

following novel solution is proposed: that of characterising each frame type as a separate

deterministic 'on-off source, and summing the required effective bandwidths generated by

the equivalent capacity equation to obtain the total bandwidth required for the traffic stream.

By knowing the number of GOP patterns that occur each second, the 'on' time where each

frame type is fransmitted can easily be calculated, the ' o f f time being the GOP pattern time

minus the calculated 'on' time.

In order to test the proposed method, model parameters were obtained from the 'Star

Wars' film trace, these being shown in Table 4. So for a QoS specifying a cell loss

probability of 10"*, the resulting effective bandwidth for the I frames is 2.315 Mb/s, for the P

frames 0.165 Mb/s and for the B frames 0.064 Mb/s resulting in the MPEG video connection

requiring about 2.544 Mb/s. This final result compares exfremely favourably with the

required bandwidth found for the real trace, which was about half of the peak requirement

[48], in this case being 2.12 Mb/s. This result is more impressive after considering that

methods to date consistently underestimate the bandwidth required.

35

The slight overprovisioning of resources which has resulted may be explained by the fact that

the examined frace yielded a mean rate of 0.537 Mb/s, whilst the full film results with a mean

of 0.36 Mb/s. This implies that the examined trace had a higher degree of traffic than the

overall film, and it is therefore possible for this method to yield precise required bandwidth

calculations were the I , P and B average frame parameters from the whole film used.

There is no doubt that further empirical results using different fraces are required to

more fully validate this method. However, for our purposes of utilising a method providing

realistic effective bandwidth requirements which increase with longer route hop counts, the

proposed novel method is currently the best available.

Using this method, the effect of increasing hop count is shown in Table 5 by the

required bandwidth. As can be seen, the relative effect of increasing hop count is of a higher

order than with the voice connections, there now being an 8% increase when using a 5 hop

route over a 1 hop route. This combined with the higher absolute effective bandwidth

required becomes significant in heterogeneous fraffic situations where lower bandwidth

requiring fraffic such as voice may be severely resfricted due to unnecessarily long hop counts

in the higher bandwidth fraffic's routes. This is evidenced by the video fraffic's 5 hop route

consuming exfra bandwidth equivalent to about 8 voice connections when compared to the

video's 1 hop route.

Historically routing algorithms have tended to use the shorter paths in order to

maximise the number of simultaneous calls being carried by the network. This CAC work

shows that this principle must be all the more sfrictly adhered to in the case of multi-service

networks, as choosing a path of twice the length of another possibility, more than doubles the

amount of network resources used.

Traffic Source Frame Type 41/s) Ml/s) /?peak(Mb/s)

video I 1/0.4583 1/0.0417 4.24
P 1/0.09375 1/0.0417 0.48
B 1/0.0417 1/0.0833 0.095

Table 4: Model parameters for the MPEG coded 'Star Wars 'film trace

Number of hops Effective bandwidth requirement (Mb/s)
1 2.544
2 2.641
3 2.694
4 2.730
5 2.757

Table 5: Effect of increasing hop count on MPEG video effective bandwidth

36

3.3 Standard dynamic routing algorithm selection

Previous work has shown link-state routing schemes to be more flexible and robust [50].

Therefore this type of routing algorithm was chosen as representative of the best performing

algorithm type currently used in real networks.

3.3.1 Overview of algorithms

Link-state routing algorithms are dependent on the accuracy of the network state information

which each node or decision maker holds. However, frequentiy propagating network state

information in order to maintain database accuracy incurs a heavy overhead in extra

signalling and processing. Therefore a frade-off exists between increasing the routing

algorithm performance and minimising the extra signalling bandwidth and processing

required in order to do so.

Previously proposed algorithms for routing in multi-service networks have in the

main been of the link-state type. Comparative investigations of routing algorithms have been

previously undertaken [46, 51], with each algorithm being seen to have different strengths and

weaknesses. Four main variances on shortest-path type algorithms have been proposed:

widest-shortest path, shortest-widest path, dynamic- alternate path, and shortest distance path.

There follows a summation of the perceived strengths and weaknesses of each, followed by

details of a proposed new algorithm called Alternate Adaptive Minimum Hop (AAMH).

3.3.1.1 Dynamic-alternate path

This algorithm has been proposed due to the success of the dynamic alternate routing

algorithm used in telecommunication networks. In its strictest form, such as Least Busy Path

(LBP) [45], it is equivalent to that implemented by AT&T in the form of its RTNR algorithm

[52].

The LBP algorithm assumes a highly-connected topology, and operates as follows: an

attempt is made to route the connection on the direct path first, and failing that it attempts the

two hop path with the maximum residual capacity. Paths are not permitted to exceed two

37

hops in length, and the residual capacity (A ŝ,̂) on a path from source node s to destination

node d via intermediate node / is given by:

where Nst is the residual capacity on the link between node s and node t, and Nij is the residual

capacity on the link between node t and node d. Bandwidth may be reserved for 'direct'

fraffic on links in order to prevent unresfricted use of longer alternative paths leading to a

reduction in throughput at heavy loads.

The initial proposal was to emulate a highly-connected cfrcuit switched network

topology by using A T M VPCs to provide logical direct links between pafrs of nodes [45].

However by so doing, there is a reduction in the level of statistical multiplexing, causing

inefficient use of the network resources.

In order to loosen the algorithm's dependency on a highly-connected topology,

subsequent work has modified the algorithm. Rather than specifying one hop minimum

routes, any route with a minimal number of hops is permitted, the residual capacity for the

route being the minimum of all its comprising links. I f no feasible minimal hop path is

available, minimal hop plus one hop are chosen.

Even without using trunk reservation, this modified algorithm has been shown to

result with good performance, returning a comparable i f slightly worse blocking probability

as other algorithms at low loads, whilst providing comparably superior performance as the

loads increased [51]. In addition it has been clearly demonsfrated to have greater robustness

and insensitivity to inaccurate network state information.

3.3.1.2 Widest-shortest path

This algorithm is similar to the improved version of the previous, apart from only permitting

paths with a minimal number of hops [53]. It was termed Adaptive Minimum Hop (AMH) in

a previous study [46], and was found to provide superior performance when compared with

other algorithms of the shortest-widest and shortest-distance types.

3.3.1.3 Shortest-widest path

This algorithm type chooses paths with the maximum bandwidth, and i f there are several such

paths the one with the fewest number of hops is selected. I f there are several paths with the

38

same minimum number of hops, one is randomly selected. Minimum Sum of Loads (MSL) is

of such a type [54].

As this algorithm type does not place an upper limit on the route hop length, it has

been found to produce poor performance in all scenarios except where very light traffic

loading was present. In such cases it gave comparable or slightiy improved performance over

the previous algorithm types.

3.3.1.4 Shortest-distance path

Shortest-distance path algorithms differ from shortest-widest path types in their cost function.

Instead of summing the residual bandwidth in a linear manner, the reciprocal of the link

residual capacity is added together to form the cost of a route. The route cost therefore

becomes:

where Ri, ..., are the bandwidths available on the path with k hops.

Least Loaded Path routing (LLP) [55] is one of a number of this type which has been

shown to be effective when selecting routes for high bandwidth connections [56]. It also

results with improved performance over shortest-widest schemes as highly loaded links are

effectively excluded from the route possibilities since their cost tends towards infmity. When

compared to dynamic-alternate type schemes in the main comparative performance has been

achieved [51], with slightly improved performance at low traffic loads and slightly poorer

performance at high loads. However, it has also been noted that this algorithm type is more

susceptible to inaccurate network state information, this being explained by it having the

opportunity to select longer paths, inaccurate link information therefore being compounded

the greater number of links comprise a route.

3.3.1.5 The proposed new algorithm

It has been shown that in QoS routing there is a need to limit route length as a higher hop

route requires a higher effective bandwidth in order to guarantee the end-to-end QoS for the

connection. It is for this reason, in addition to that of multiple link consumption, that results

in inferior performance of routing algorithms which permit unnecessarily long routes.

39

Therefore the proposed new algorithm, termed Alternate Adaptive Minimum Hop (AAMH),

operates as a superset of A M H and in a similar vein to more recent dynamic-alternate

schemes. As with AMH, the algorithm attempts to route on the least-loaded minimum hop

route. I f all are congested, it attempts to route on the next shortest hop route which is

topologically permissible. This differs from dynamic-alternate schemes which permit

alternate routes only of minimum hop plus one, even i f the shortest alternate route is

minimum hop plus two or more.

A M H has been shown to produce good performance when applied to sparsely-

connected networks [46]. However it cannot be assumed that most multi-service networks

will generally take this topological form, especially with the capability of a logical topology

diverse from the physical one when using VPCs in ATM networks or class reservation in IP

networks with QoS features. A A M H is therefore proposed as a generically applicable routing

algorithm to any network topology, which should still result with leading performance from

all the shortest-path type algorithms. Moreover dynamic-alternate path type schemes have

been shown to produce good performance under diverse fraffic loads whilst being relatively

insensitive to inaccurate network state information. Al l these factors point to AAMH being a

sfrong general purpose routing algorithm, having insensitivity to network scenario exfremes.

The performance derived from this algorithm may therefore be used as a comparison when

evaluating that obtained from learning automata based routing schemes.

Increases in network bandwidth cause fransmission times to decrease since the same

information transfer occurs more quickly. Therefore the requfrement for faster connection

set-up times occurs since the signalling to manage the connection becomes a greater

percentage of the total connection time on the network. In order to reduce the processing

required at intermediate nodes, the use of source based rather than hop-by-hop based routing

algorithms has been proposed. These algorithms calculate the whole route at the source node,

including the details in the connection set-up packet that then fraverses intermediate nodes on

its way to the destination node of the route. There incurs a smaller processing delay at

intermediate nodes and so faster connection set-up time. As routing algorithms in multi­

service networks provide QoS guarantees by interacting with the CAC mechanism, so the

required effective bandwidth for a connection request needs to be calculated at the source

node, with the length of the route being one of the parameters in the calculation. Therefore

multi-service routing algorithms are biased towards being implemented in a source-based

fashion as the benefit of intermediate node route recalculation is lost since the effective

bandwidth for a new route must be calculated at the source via a crankback mechanism.

A A M H therefore lends itself to being implemented so that it operates within a source-based

paradigm.

40

3.3.2 Simulation scenarios

Simulation modelling was chosen rather than analytical modelling for evaluating research

ideas in order that the ideas would not be constrained by the necessary simplifying

assumptions required to make the problem tractable analytically. The OPNET modelling and

simulation tool was chosen after an extensive comparative evaluation with other available

commercial simulation tools. As the standard model libraries included with the package are

constrained functionally (so that it becomes unfeasible to undertake large dynamic call

generation scenarios), it was decided at the commencement of the research to write a new

model library in order to frilly evaluate any ensuing research direction. This new library

consists of more than 13,000 lines of C code, and further elucidation on all these modelling

aspects are given in appendix B.

TTie simulations were performed using three differing logical network topologies.

These are shown in Figure 3 to Figure 5, and they range both fully-connected and sparsely

connected topologies. The flilly-connected topology was kept small so that the performance

improvement of using an alternate routing scheme over a minimum hop scheme would not be

too dramatic. The seven node topology is representative of a typical corporate WAN, whilst

the large sparse topology is a simplified version of the US internet backbone. The results

obtained using these differing topologies will indicate the generic applicability of AAMH.

Previous comparative studies have demonstrated that algorithms with a strong

preference for minimum-hop routes almost always outperform algorithms that do not consider

path length [51, 58]. As A M H was designed by taking this into consideration, and was found

to produce favourable results compared to other proposed algorithms at that time [46], it was

used as the comparative benchmark for AAMH.

In order to ascertain the relative performance of AAMH over AMH, simplified

simulation scenarios were generated. These centred on the pure algorithm performance, and

so consisted of using homogeneous traffic sources and perfect link-state knowledge. The

former precluded algorithm performance being affected by traffic source types with widely

different bandwidth requirements, whilst the latter leaves out the effects of the frequency and

type of link-state information propagation, this being addressed in the section that follows.

The link capacities were set to 500 Mb/s, and a data type traffic source was used

which proved to have an effective bandwidth of around 2.4 Mb/s, yielding a mean bandwidth

of about 0.5% of link capacity in order to have a realistic networking situation. Each

simulation run consisted of 400,000 call requests, with statistics for the first 100,000 being

discarded to allow the network state to settle into normal operational mode. Due to the long

simulation run, it was found that the results obtained varied by no more that 0.15% when

41

varying the random number generator seeds. It was therefore felt sufficient to perform

simulation runs using two different seeds, the average from both being taken as the blocking

probability for the connection arrival rate.

Figure 3: Fully connected logical topology

Figure 4: Seven node sparsely connected

logical topology

node 23

...node 111 node 3-
node 24

s t i t s

Figure 5: 28 node sparsely connected topology

42

Some previous studies on routing algorithm performance have included results generated only

under symmetrical traffic loading, where source nodes obtain destination addresses for

connection requests by using a uniform distribution over all the network nodes bar itself [51,

58]. Whilst it is true that symmetrical loading and homogeneously sized links approximates

the situation of the user demand equalling the expected demand for which the network was

designed (overloading occurring when the magnitude of the actual demand is higher than the

expected, but the source-destination binding probabilities remain the same), yet it is often the

case that actiaal demand varies significantly in type and magnitude than that expected, this

being approximated by non-symmehical traffic loading. Therefore our simulation

experiments use both symmeft-ical and this non-symmefrical network loading configuration.

3.3.3 Results for the fully connected topology

It is in the context of highly-connected topologies that the benefits of the alternate routes

available to A A M H should produce significantly better routing performance. The

symmefrical network loading case is the worst-case scenario for AAMH, as it is in these

conditions that the use of alternate paths will utilise more network resources and so produce a

higher blocking probability.

It was found that A A M H with trunk reservation was comparable in performance to

A M H under symmefa-ical fraffic loading. However A A M H significantly out-performed AMH

under non-symmetrical loading.

Were the topology to have a greater number of nodes, it is expected that the results

would be similar under symmefrical loading, and superior for A A M H under non-symmetrical

loading due to the increased number of available alternate paths.

3.3.3.1 Results for symmetrical network loading

Teleti-affic networks use the trunk reservation mechanism in order to ensure that alternate path

routing schemes do not overly use longer routes to the detriment of future cormection requests

which could have been routed on minimum hop routes [57]. Trunk reservation operates by

reserving a certain percentage of the link capacity for minimum hop routes, so that when the

link is close to saturation only minimum hop new routes are allowed to traverse it.

The requirement for having the same mechanism with AAMH is evident from Figure

6 where A A M H with no trunk reservation produces significantiy higher blocking probability

43

than A M H which just utilises single hop routes. In general a trunk reservation parameter of

5% is used in teletraffic networks, this causing A A M H to return blocking perfomiance close

to A M H as shown in Figure 8. In fact A A M H produces slightly better perfomiance than

A M H under low traffic load levels, and slightly worse at higher levels with fixed trunk

reservations.

Further experiments were performed by varying the trunk reservation parameter over

different network loading rates. Figure 7 shows the trunk reservation parameter which caused

A A M H to produce the lowest average blocking probability at each loading rate. As expected,

at low traffic arrival rates a lower trunk reservation parameter allows A A M H to choose more

alternate paths so resulting in a lower blocking probability. However at higher traffic

loadings, the use o f alternate paths must be discouraged, so requiring a higher trunk

reservation parameter. Were the trunk reservation parameter to be dynamic according to the

traffic loading, it is expected that A A M H would in general out-perform or be equal to the

blocking probability produced by A M H for highly-connected network topologies.

4 Node Fully Connected V P C Network

0.25

? 0.15

5 0.05

•AMH

AAMH

0.25 0.3

Arrival Rate (conn/sec)

0.35

Figure 6: Performance of AMH and AAMH with no trunk reservation for the fully connected

topology

44

Optimal Trunk Reservation Paramter

- A A M H

0.25 0.3

Arrival Rate (conn/sec)

0.35

Figure 7: Optimum trunk reservation for AAMH for the fully connected topology

4 Node Fully Connected V P C Network

c 0.06
•AMH

AAMHtr 5%

0.25 0.3

Arrival Rate (conn/sec)

0.35

Figure 8: Performance of AMH and AAMH with 5% trunk reservation for the fully connected

topology

3.3.3.2 Results for non-symmetrical network loading

The user demand traffic matrix used for this set o f experiments was one node transmitting to

another fixed destination address, with the other nodes establishing connections to randomly

generated destination addresses at an eighth of the arrival rate of the first node.

Figure 9 shows that in these circumstances A A M H significantly outperforms A M H ,

producing a blocking probability up to 40% lower. This is due to it being able to use two hop

45

paths when A M H is limited to using the direct one hop route. The use of alternate paths

should not be discouraged under these circumstances. Figure 10 showing that when they are

there results a light decrease in performance, to the extent of 2.5% higher blocking

probability.

4 Node Fully Connected V P C Network

P 0.2

- ,AMH

A A M H

0.2 0.4 0.6

Arrival Rate (conn/sec)

Figure 9: Performance of AMH and AAMH for the fully connected topology under non­

symmetrical loading

4 Node Fully Connected V P C Network

• AAMHitr 0%

AAMH:tr 6%

0.5 1

Arrival Rate (conn/sec)

Figure 10: Performance of AAMH with 0 and 6% trunk reservation

46

3.3.4 Results for sparsely connected topology

A M H was primarily designed for use in sparsely connected network topologies. However,

the results below indicate that A A M H still out-performs A M H with non-symmetrical traffic

loading, although not to the same degree as with the fully-connected topology.

3.3.4.1 Results for symmetrical network loading

Figure 11 shows the results for A M H and A A M H with no trunk reservation and, as expected,

A M H returns superior results. However the difference between the two is not as great as with

the fu l ly connected topology scenario. The reason for this is that rather than consuming a

little over twice the network resources as previously, alternate paths now consume 1/3 to 1/2

as much depending on the route. This factor is also evident in Figure 12 which shows in

general that a much lower trunk reservation parameter is required for optimum A A M H

performance since alternate routes should not be discouraged as much as in the previous case.

7 Node Sparsely Connected VPC Network

= 0.5

o 0.4

m 0.2

•AMH

AAlvH

0.05 0.1 0.15 0.2 0.25 0.3

Arrival Rate (conn/sec)

0.35

Figure 11: Performance of AMH and AAMH for the sparsely connected topology

4 -

Optimal Trunk Reservation Parameters

5

_ 4.5

I 3.5

fe 3
a.
c 2.5
o

I 2
S 1.5

1

I 0.5
t-

0

-AAMH

0.5 1 1.5

Arrival Rate (conn/sec)

Figure 12: Optimum AAMH trunk reservation parameter for the sparsely connected topology

3.3.4.2 Results for non-symmetrical network loading

As with the fully connected network topology, the best case realistic scenario was simulated.

This consisted of the top left node transmitting to the far right node, with the other nodes

establishing connections to randomly generated destination addresses at an eighth of the

arrival rate of the first node.

Figure 13 clearly shows A A M H significantly out-performing A M H due to the extra

paths it has at its disposal as alternate routes. The performance improvement is not as great as

with the fully-connected topology due to A M H now having a number of paths at its disposal

for routing to the destination nodes rather than the one it previously had. This means that the

increase in paths which A A M H has over A M H is not as great as before, and so not as much

extra traffic can be routed on the alternate paths as previously.

Considering that A M H was designed for sparsely-connected topologies, this is a

strong result in favour of using A A M H as a general routing algorithm for routing in multi­

service networks.

48

7 Node Sparsely Connected V P C Network

AAMH

0.1 0.2 0.3 0.4

Arrival Rate (conn/sec)

Figure 13: Performance of AMH and AAMH under non-symmetrical loading for the sparsely

connected topology

3.4 Realistic routing algorithm performance

In order to remove performance affecting factors so that the performance due to pure

algorithm selection could be shown, the results given in the previous section were based on

the source node having perfect network state information at its disposal. This is not possible

in a real-world situation, but can be approximated by periodic updates of link-state

information which are propagated throughout the network and so to every source node. A

minimum time interval might be imposed to avoid overloading o f network bandwidth and

processing resources, but large periods result in out o f date link-state information which can

cause a switch to select a sub-optimal or even unfeasible route. Hence tuning the frequency

o f link-state update messages requires a careful understanding o f the tension between network

overheads and the accuracy o f routing decisions.

3.4.1 Route selection with partial information

The link-state information can be propagated in a periodic fashion or in response to a

significant change in the link-state metric; for example its utilisation. By updating link load

information in response to a change in available bandwidth, triggered updates respond to

49

smaller changes in utilisation as the link nears capacity. In contrast to periodic updates

however, triggered messages complicate the provisioning of network resources since rapid

fluctuations in available capacity can generate a large number of link-state updates, unless a

reasonable hold-down timer is used.

With a periodic update policy, large periods substantially increase connection

blocking, ultimately outweighing the benefits of QoS routing. In fact, under uniform loading

static routing becomes competitive with QoS routing once the update period grows beyond 60

times the average connection interarrival time [58], the reason being that the fluctuations in

link state begin to exceed the random variations in traffic load. Under non-uniform loading

QoS routing does indeed continue to outperform static routing. Periodic updates with large

periods also cause dramatic fluctuations in link state between successive update messages,

therefore meaning that the routing algorithm is now causing oscillatory and less stable

network behaviour. This phenomenon occurs by the network reacting to an update message

that a link has low utilisation by routing more traffic through that link. Blocking remains low

until saturation occurs, and is then constant until the next link-state message update occurs

which can cause another dramatic change in the link utilisation as no further connections are

routed along it and the present ones disconnect. However some form of periodic update is

required in order to detect link or equipment failures in the network. It is proposed that such

updates form part of a separate local system, which upon detection of a local link failure

propagates a link fully utilised (or link unavailable) Link State Advertisement (LSA)

throughout the network using full flooding.

Triggered updates may be implemented with dynamically calculated events, or pre­

determined event threshold levels, and should result in more stable network operation as large

differences between the actual and advertised link utilisation are no longer possible.

Dynamically calculated triggers occur upon detection of a significant change in the available

capacity since the last update message, responding to smaller changes in utilisation as the link

nears saturation. In contrast to periodic updates, coarse-grain triggers do not have a

significant impact on the overall blocking probability [58].

Event trigger thresholds may also be pre-determined throughout the network. This

involves the mapping of load measures into discrete categories, and generating a message

update when the link utilisation crosses into another category [59]. Benefits of using this

method include simplicity: less processing at nodes is required, and only the integer category

value is required in the updating message rather than the utilisation itself Another benefit is

that the thresholds could then be set according to expected traffic loads, causing message

updates only when actual traffic patterns differ from the expected ones. This latter reason fits

well with the case for dynamic routing algorithms, for i f the network designer and planner

was able to predict the traffic demands accurately, then the network could be perfectly

50

dimensioned and static routing be used. For this study pre-defined event trigger thresholds

were used.

3.4.2 Simulation results of using event trigger thresholds

A previous study which used category bands for link-state updates concluded that link-state

information at higher load levels is useful, but is not required at low loads as no loading

information is necessary for a routing algorithm to produce good performance [60]. Indeed, it

found that even though there may be fewer categories in a set, i f it divided the load levels

with a finer granularity when the link was close to saturation, this produced better results from

the dynamic routing algorithm. The load categories chosen for use in our experiments were

therefore as follows:

[0%, 50%), [50%, 80%), [80%, 90%), [90%, 95%), [95%, 100%].

In order to assess the impact of effectively discretising the load space into categories and just

updating the categories when a transition occurred into a new one, the following experiments

were undertaken on the 28 node sparsely connected logical network topology. This provided

the greatest diversity of route options, and so would best indicate the performance

improvements of using load information to guide the route calculation.

The performance baseline chosen was a routing algorithm which had the option of

using the ful l set of alternate routes, but had no load information to guide it in its choices. It

attempted to route on all the minimum hop routes and then on all the alternate routes in turn,

using crankback in order to choose another route. Whilst this algorithm would in general

produce multiple routing attempts and so have a significant network processing overhead, it

does result with the lowest blocking probability possible for a shortest-path routing algorithm

not utilising load information in its calculations. This algorithm is termed Alternate Routing

(AR) in the graphs below. The other two algorithms are as follows: ' A A M H ' is AAMH

operating with exact link-state knowledge, and 'AAMH(LB) ' is A A M H operating with the

load bands specified above. Symmetrical network loading was used for these experiments as

it was felt that it would more clearly show the benefits of directing route calculation with the

aid of link-state information. Otherwise the performance difference between AR and AAMH

with ful l link-state knowledge might not be so noticeable.

Figure 14 shows that this difference is in the region of a 2% lower blocking

probability for A A M H with full network knowledge. As expected, the performance of

A A M H with load bands is found to be between the two. What is of interest however is that at

51

low traffic loads its performance is close to that of A A M H with full link-state knowledge,

whilst at higher loads its performance degrades to become closer to that of AR. From this it

seems that at low load levels the two final load categories make a significant difference in

path selection. When the traffic load increases, most links will be close to saturation and so in

the last category, path selection then becoming more random and so closer to the performance

produced by AR.

When examining the connection set-up time shown in Figure 15, we find that AAMH

with full link-state knowledge gives a fairly constant value regardless of the loading rate.

These results are reasonable for i f the network cannot support a new call request it is blocked

before any network signalling occurs. Conversely, i f the network can support the call, then it

is accepted and the set-up signalling occurs. The time taken to do so remaining unchanged

indicates that the average route length does not alter as loading increases, as would be

expected.

AR on the other hand, returns a higher connection set-up time which increases still

further as the loading rate increases, whilst AAMH with load bands produces times that lie

between the two. The increasing set-up time of AR makes sense when considering that a

higher traffic loading would produce more highly utilised links, forcing a greater number of

crank-backs as the routing algorithm attempts to choose other routes to reach the destination

address. The matter of load bands discretising the link utilisation levels has the effect of

causing crank-backs, but not to the same degree as with AR. This indicates that whilst the

blocking probability performance might be similar under high loads, there remains the

considerable benefit of a lower connection set-up time when comparing AR to AAMH with

load bands.

The use of A A M H with load bands has been shown to produce superior results to AR

which does not use link-state information in its decision making process. The issue now is on

how to propagate the required link-state information to the decision making nodes.

52

28 Node Sparsely Connected V P C Network

0.14

0.12

0 1

0.08

5 0.06

I 0,04

z 0.02

• AR

AAMH

AAMH(LB)

0.04 0.05 0.06

Arrival Rate (conn/sec)

0.07

Figure 14: AAMH performance with and without load bands

28 Node Sparsely Connected V P C Network

0.000029
0.0000285

0.000028
0.0000275
0.000027

0.0000265

0.000026
0.0000255
0.000025

0.0000245
0.000024

AAMH

AAMH(LB)

0.04 0.05 0.08

Arrival Rate (conn/sec)

0.07

Figure 15: AAMH set-up times with and without load bands

3.5 Mechanisms for signalling overhead reduction

In large networks or internets, flooding dynamic information may not be possible because o f

the network processing and bandwidth involved. Therefore in this section ways to take

advantage o f the benefits o f adaptive routing without relying on global flooding of dynamic

updates are investigated.

53

3.5.1 Limited update distribution methods

Conventional hop-by-hop link-state routing protocols, such as OSPF [61], flood updates to all

network nodes since all nodes are required to maintain consistent information to avoid routing

loops. However a source-based routing scheme such as AAMH does not require this as loop-

fi-ee routes are precomputed with the dynamic information being used to select from among

the available routes and to improve routmg decisions. Two different methods have been

proposed in a previous study [60], and are outlined here.

As A A M H is a source-based routing algorithm and so guarantees loop-free routing

even i f updates are lost, so mechanisms for ensuring the correct delivery of the updates are

not required as would be with conventional link-state routing protocols such as OSPF [61].

3.5.1.1 Hop-count limited flooding

Hop-count limited flooding is a simple mechanism by which routing updates are distributed

within some fixed hop count, R, of the node initiating the update. When a node initiates an

update, it sets a Time-to-Live (TTL) field in the update packet to R. Each node that processes

the update decrements the TTL. I f the TTL is greater than zero, the node continues the

flooding process. Otherwise it records the update information but halts the flooding process.

Using this distribution mechanism, each node learns dynamic information about those nodes

within R hops of it.

3.5.1.2 Reverse path update

The previous method provides nodes with information about nearby nodes in the network.

Reverse Path Update (RPU) is an alternative mechanism which provides nodes with dynamic

information about some nodes further away in the network. RPU operates by forwarding

update messages in the reverse direction of currently installed connections in the network.

When a node initiates an update, it consults its forwarding table for currently active

connections and forwards an update in the reverse direction of all active routes. In this way,

each source node that currently has an active route through the initiating node will receive a

copy of the update.

This method provides a reduction in update messages as it takes advantage of overlap

routes, sending a single copy of the update message along a link shared by multiple routes.

54

3.5.2 Using locally available information

The same previous study also proposed the following two methods: caching reject

information, and local link status. In addition to these, another method is newly proposed in

this study: using the existing connection set-up signalling.

3.5.2.1 Caching reject information

With caching rejects, when a node attempts to establish a route and receives a reject

notification fi-om one of the nodes along the route, it caches this information. The notification

wil l indicate which link lacked sufficient resources to admit the new sessions. The source is

then able to avoid routes that traverse links havmg a high likelihood of being unavailable, and

can try other routes which might have a better chance of admitting the session.

The issue with this strategy is how long to keep the reject information at the source.

I f it is held for too short a time it may be of limited use, and i f it is held for too long it may no

longer be accurate. Whilst the proper time-out for this information is a function of the traffic

patterns in the network, a previous study used an interval of four times the average session

length [60].

3.5.2.2 Local link status

This simple method involves nodes periodically measuring the status of their adjacent links,

storing their current loading but not generating updates to other nodes. Therefore when a

node makes a routing decision, it does so on the status of its adjacent links. Indeed this

method has been commonly used elsewhere, such as with the classical hot-potato routing

[62].

3.5.2.3 Using existing connection set-up signalling

This proposed method does not require extra signalling to propagate update messages

throughout the network as it uses the existing call set-up signalling for this purpose. When

attempting to set-up a call, a route is calculated at the source node and the signalling packet

traverses the network according to this calculated route. Whether or not the call request is

accepted or rejected by intermediate nodes, some sort of acknowledgement packet returns to

55

the source node which initiated the call request. This method 'piggy-backs' onto the

returning acknowledgement packet the information concerning the link with the lowest

available bandwidth found along the route. This information is subsequentiy stored at all

upsfream nodes from the link as the acknowledgement packet returns to the source node. The

method wil l be termed Route Accepted plus Blocked (RA+B).

The A T M Forum specifies that the setting up and tearing down of VCCs be

performed using defined signalling packets encapsulated within the payload of the standard

A T M cell [41]. The IETF specifies a similar mechanism for RSVP, the call set-up and tear

down messages being encapsulated in IP packets [10]. It is therefore proposed to include this

loading information in both the 'connect', or call set-up, and 'release', or call tear down,

signalling packet types.

3.5.3 Performance of limited distribution mechanisms

The previous study which evaluated these methods did not result with conclusions of any one

method being better than another [60]. This was due to a higher signalling overhead being

generated by methods which resulted in superior routing performance. What is of interest in

this study is the performance of the new method which utilises existing signalling for link-

state propagation compared to those previously proposed. As our proposed method includes

as a subset of its total data input that which might be derived from using reverse path update,

caching reject information, and the local link status, these were not simulated to be included

in the comparison. Therefore there remains the general hop-count limited flooding method

with which to make comparisons.

Figure 16 shows the blocking probability resulting from AAMH when using hop-

count limited flooding and the proposed method with various route lengths for the 28 node

logical topology. This network topology has a diameter of seven hops, and during simulation

it was noted that when using A A M H an average route length of just under four hops was

returned. As may be seen from the diagram, the performance increases when the hop-count

limit is increased. What is of particular interest however is that the performance achieved

when using a hop-count limit equivalent to the average route length is the same as that

obtained when utilising full flooding. This result implies that a simple way of reducing the

network bandwidth and processing required with link-state routing methods, whilst not

affecting overly the routing performance, is to limit the update information propagation to that

of the average path length. Were the fraffic loading on a network to be more non-symmetrical

56

in nature, then perhaps certain source nodes which utilised certain longer routes might require

extra link-state information.

When comparing the result achieved for our proposed method, shown as the RA+B

line, it is encouraging to note that it is comparable to that returned when using ful l flooding.

Whilst the RA+B method returns information on the most highly utilised links, the

performance of the routing algorithm might improve on knowing the utilisation of links close

by. Wi th this in mind, a further experiment was undertaken by combining both the RA+B

and the hop-count limited flood update methods. The blocking performance results obtained

from this approach however are little different to that resulting from the use of RA+B singly.

This result confirms previous work which indicated that information pertaining to highly

utilised links is more important than that of other links [58].

As shown in Figure 17, the average set-up times resulting from the link-state methods

are all fairiy comparable and are lower than that o f AR. This again indicates the fact that

link-state information, however incomplete, w i l l direct the routing process and so result with

lower connection set-up times.

Network Blocking Probability at 0.05 conn/sec Arrival Rate

0.06
0.058
0.056
0.054
0.052
0.05

0.048
0.046
0.044
0.042
0.04 L L L L I

Method for obtaining Load info.

Figure 16: Resulting blocking probability performance of link-state updating methods

Average Set-up Times at 0.05 conn/sec Arrival Rate

0,000028

0,0000275 -

I 0,000027

9 0,0000265-

^ 0.000026

0.0000255 • l l I I I
Metfiod for obtaining Load info.

Figure 17: Restdting set-up time performance of link-sate updating methods

5^

3.6 Summary

This chapter has examined the necessary issues linked with proposing a current-generation

routing algorithm that performs well. Its performance can then be compared in subsequent

chapters to that obtained from learning automata based schemes.

In order to permit QoS routing, the CAC mechanism was initially examined. For

simplicity, a bandwidth-based mechanism was proposed. Effective bandwidth calculations

are used in order to reserve the required network resources so that the connection's QoS can

be guaranteed. Whilst methods for accurately calculating the effective bandwidth a priori of

voice or data connections are available, those for MPEG video sfreams grossly underestimate

the actual bandwidth required. A new method for calculating the effective bandwidth of

MPEG streams is proposed, and is found to result in accurate characterisation of bandwidth

requirements.

Next, current dynamic routing algorithms which are link-state based are evaluated

based on previous studies. Four main types are outiined: widest-shortest path, shortest-widest

path, dynamic-alternate path, and shortest distance path. The strengths and weaknesses of

each type are given, the section ending with the proposed algorithm (AAMH) being outlined.

The ensuing simulation experiments compare AAMH with an algorithm from the widest-

shortest path variety (AMH). The simulation results, gathered from both fully-connected and

sparsely connected logical topologies, show the benefits of A A M H over AMH. With

symmefrical fraffic loading patterns, trunk reservation is required for A A M H to match AMH

performance under higher loads. Otherwise AAMH consistently out-performs AMH due to

the extra paths available to its route decision-making process.

In order to make dynamic routing decisions, the link-state information must be

propagated throughout the network. Each node having perfect network state information can

therefore be approximated using frequent link-state message updates. However tuning the

frequency of link-state update messages requires a careful understanding of the tension

between network overheads and the accuracy of routing decisions. In order to reduce the

amount of network processing and bandwidth related to the update messages, the link-state

information propagation method is examined with the view of reducing this overhead whilst

retaining good routing algorithm performance. The strengths and weaknesses of both

periodic and friggered updates are summarised from previous work, and pre-planned event

friggers are proposed for use in this study as it is felt, amongst other factors, that such a

method would be more likely to be utilised in real network due to it being linked with pre­

planning of both user demands and the network capacity and configuration. Results from

simulation experiments of the 28 node sparsely connected topology are then given, in order to

58

show the effect of discretising the utilisation space into load bands. Whilst it is evident that

the routing performance is not as high as with perfect network state information, yet it is

higher than the best possible shortest-path algorithm which does not use link-state in its

routing calculations. This therefore shows that the number of message updates can be greatly

reduced by using load bands, whilst still retaining some blocking probability improvements

resulting from using the link-state information in the routing decision-making process. Also,

throughout the fraffic loading range it is evident that the connection set-up time is greatiy

reduced by using link-state information to guide the routing process. Therefore the use of

load bands is validated in that it allows A A M H to return superior routing performance than

the best shortest-path routing algorithm which does not use utilisation as a variable in its route

calculation.

Finally, explicit methods are examined for reducing the network processing and

bandwidth overhead incurred by propagating the link-state update messages. Previous work

has highlighted both limited update disfribution methods and use of locally available

information. Examples of the former include hop-count limited flooding and reverse path

updates; whilst of the latter are caching reject information and use of local link status. A new

method is proposed which by using existing connection set-up signalling incurs no bandwidth

overhead and little processing overhead. By including reverse path update, caching reject

information and local link status ideas, the proposed update method was compared in

simulation experiments solely with hop-count limited flooding. The results from these

simulations indicate that the proposed method results with routing performance close to that

obtained when using full flooding. What was also of note was that according to the fraffic

loading type, a hop-count limited flood equal to the average route length will return a routing

performance equivalent to that obtained when using frill flooding.

The outcome of this chapter's study is an implementable algorithm which returns

good routing performance, both in terms of low blocking probability and acceptable

connection set-up times.

59

4 Performance analysis of various learning automata

reinforcement algorithms

4.1 Introduction

The purpose of the following chapter is to highlight the currently used reinforcement

algorithms that have superior performance for learning automata interacting with non-

autonomous environments, the function of routing in a communications network being of

such a type. These best performing algorithms can then be used as the baseline comparison to

those learning automata based methods with the proposed improvements detailed in the later

chapters.

Previous studies have given performance indicators for the various reinforcement

algorithms when used with stationary and switching environments. The conclusions drawn

from these studies have then been assumed to hold true for learning automata interacting with

non-autonomous environments. The aim of the work detailed in this chapter is to give a

framework for rigorously assessing the performance of the currently used reinforcement

algorithms for learning automata interacting with non-autonomous environments.

The analytical basis for the framework is initially given, from which the converged

action probabilities and blocking rates are obtained for a relatively simple network scenario.

The remainder of the chapter deals with the experimental analysis to obtain the performance

of the various reinforcement algorithms, the performance indicators of interest being both

speed of action probability convergence and the subsequent steady-state accuracy.

Both standard and estimator type reinforcement algorithms are examined within this

framework. Within these types of algorithm, the results for both continuous and discretised

schemes are detailed with conclusions being drawn for each one as to its applicability for use

in non-autonomous environments. Finally, the various results are brought together in the

summary, with the best performing reinforcement algorithms being highlighted.

4.2 Learning automata for routing in multi-service networks

Multi-service networks using per-call reservation are a mixture of both circuit switched and

packet switched network technologies. They can in some measure be thought of as virtual

60

circuits over a logical topology (i.e. VCCs over a VPC topology in the case of ATM, or

RSVP over class reservations in IP with QoS). However, unlike previous virtual circuits in

packet switched networks where the optimising factor was delay, multi-service networks can

guarantee end-to-end delay i f the user requests so in the specified QoS. Assuming the CAC

used is bandwidth based, an effective bandwidth is assigned for a connection to meet the

specified QoS, causing the call routing function to occur as in the circuit switched case. The

difference is that since multi-service networks allow different reservations of bandwidth for

different types of call, such as voice or video, so they are analogous to a multirate circuit

switched network.

Learning automata may be applied to the problem of call routing in multi-service

networks in a similar way to the circuit switched case. By using the P-model response

environment, the network response to a connection request is either 0 for a successful routing

attempt or 1 for a blocked connection. Enhancements to this method will be proposed in a

later section. Using the P-model response environment, e-optimal type reinforcement

algorithms wil l therefore equalise the blocking probability, whilst ergodic type algorithms

wil l equalise the blocking probability rates.

Two main fraffic types will be used for this study: both voice and video fraffic. The

effective bandwidth for either can be calculated by the equivalent capacity equation given in

[44], the MPEG calculation requiring the use of the method outiined in chapter 3.

4.3 A framework for obtaining relative reinforcement algorithm

performance

Generally speaking, all the standard reinforcement algorithms are presented in the literature

with accompanying theoretical and simulation analysis for performance characteristics when

operating in stationary random environments. Performance analysis for non-stationary time-

varying environments, including Markovian switching environments, has also been

undertaken in other studies [32]. The results from these studies have in general been accepted

as valid for learning automata operating in non-stationary non-autonomous environments,

most recently causing the prevalent use of discretised schemes [17, 34]. However, the

validity of this assumption remains unclear, and it is therefore thought important to undertake

a study comparing relative reinforcement algorithm performance for learning automata

operating in non-autonomous environments.

61

4.3.1 Performance metrics

Previous studies that have applied learning automata to the network routing problem have

obtained a characterisation of the action probability values after convergence for the two

performance related reinforcement algorithm classification [18]. e-optimal schemes tend to

equalise the blocking probabilities of their various actions, whilst ergodic schemes tend to

equalise the blocking probability rates. These characterisations enable the calculation of the

average penalty rate and action probabilities of a single automaton after convergence.

However, the speed of convergence and ensuing steady state accuracy has not been

characterised in any way. It is these two performance mefa-ics which are of most interest in

communication network situations as the network state can rapidly change due to multiple

varying traffic sources and dynamic routing algorithms, and unvarying steady state accuracy

improves user perceived network performance under steady-state situations.

4.3.2 Framework outline

Whilst no analytical analysis currenfly exists for learning automata interacting with a non-

autonomous environment, analytical techniques are available for the network routing

problem. Therefore when learning automata are applied to such an environment scenario, the

same analytical techniques may be used to gain steady-state expected performance

characteristics, these therefore occurring after convergence.

Erlang's Loss formula characterises the average blocking probability for a link, taking

as inputs the connection arrival rate and mean holding times, and the size of the link. This

may be modified by including the action probability effects, as shown in appendix C. By so

doing, the expected average blocking and action probabilities may be analytically derived for

both 8-optimal and ergodic schemes.

Having obtained analytically the action probability to which a reinforcement

algorithm will converge, both the speed of convergence to that value and the steady-state

accuracy thereafter may be gained experimentally. Doing so for all the main reinforcement

algorithms currentiy found in the literature results in their relative performance indices for

learning automata operating in non-autonomous environments.

The resulting best performing reinforcement algorithm of those currently used will

then be utilised as the baseline when comparing the proposed improved algorithms.

62

4.3.3 Analytical results

A simple network routing scenario which has been used in the literature to show the benefits

of learning automata routing over fixed rule routing [18] is shown in Figure 18. As may be

seen, there is one fraffic source on node 1 generating traffic for node 3. The link size units are

given in multiples of voice bandwidth connections (each connection being 0.026 Mb/s).

Using a mean connection arrival rate of 10 per minute, and a mean holding time of 6 minutes

per call, we would intuitively expect the optimum call blocking probability to be around 0.5

as there are 30 free units of voice call bandwidth and about 60 call requests in a call time

period.

Figure 19 shows anal3'tically what should occur using learning automata and an

arrival rate of 10 calls per minute. The c l and c2 traces were calculated using Erlang's Loss

formula, as per appendix 3. cT is the total or overall blocking probability based on the action

probability p i (p2 being 1 - p i) and is calculated as the addition of the two fraces p l c l and

p2c2. It shows that the result of using the LRI or LRsP reinforcement algorithms will be p i

converging to 0.676, since e-optimal schemes tend to equalise the blocking probability which

is the intersection between fraces cl and c2. When using LRP p i should converge to 0.578 as

ergodic schemes tend to equalise the penalty rates, which is the intersection between the

fraces p l c l and p2c2. At this arrival rate we see that the cT frace is fairly flat for a range of

p i , so that even though the two different schemes converge to slightiy different pis, yet their

overall blocking probability is very similar at around 0.53 .

Figure 20 shows the same convergence diagram for different arrival rates resulting in

under \0% to about 80% blocking probability. The concern here is to see whether the arrival

rate affects the convergence of the p i action probability, and the effect on cT.

We find that at low arrival rates, the graph for cT is no longer flat but a pronounced

curve. This would imply a noticeable difference in asymptotic performance between

LRI/LR.6P and LRP schemes, as p i converges to different values according to the scheme.

30

> (̂ >

20

40

10

•Q
Figure 18: Four node network

63

Convergence Diagram for LRI & LRP S c h e m e s

Action Probability p1

- » - c 2

p i c l

- p2c2

Figure 19: Learning Automata Convergence Under k = 10 calls/min

Convergence Diagram for LRI & LRP Schemes (4 catl/min)

Action Probabiltty pi

Convergence Diagram for LRI & LRP Schemes (6 calUmin)

Acnon PrDt>at»kty p

Converger>c« Diagram for LRI & LRP Schemes (12 call/min)

Action Probabitily pi

Convergertce Diagram for LRI & LRP Sctwmes (20 call/min)

Figure 20: Influence of Arrival Rate on Convergence

64

As the arrival rates increase so cT 'flattens out' causing the blocking probabilities resulting

from either scheme to be fairly similar. As regarding the convergence of p 1, we find that for

the LRI scheme it remains fairly constant over all arrival rates, at around 0.67, increasing

slightly at low arrival rates. For the LRP scheme however, p i is close to 0.67 under low

arrival rates, but decreases as the arrival rates increase to 0.53 under around 77% blocking

probability. This equates to it being closer to that for LRI under low arrival rates, with it

being more distant under higher arrival rates.

We conclude that the s-optimal class schemes should be fairly unaffected by arrival

rate, but the ergodic class schemes have a noticeable variance in p i according to the arrival

rate. Combining these observations with the effects of arrival rate on cT, we expect that this

variance in p i between the two types of schemes should not result with variance in

performance under higher arrival rates but only under low arrival rates. Telecommunications

networks are generally dimensioned to a blocking probability of up to 10% [46], so it is

reasonable to assume future multi-service networks will operate with a similar loading as they

will carry voice and other fraffic types with stringent QoS requirements. Therefore

realistically it is envisaged that e-optimal class schemes would produce a noticeable

performance improvement were learning automata to be used for the routing ftinction.

4.4 Experimental results

The following experimental results were obtained using one hundred simulation runs with

varying random number generator seeds, subsequently obtaining the mean and 90%

confidence intervals for each connection attempt from all the simulation runs' results.

Multiple simulations are required to obtain each graph due to the stochastic natiore of the

learning automata, so that smooth behavioural fraces are an average of multiple runs.

As a number of reinforcement algorithms are available for learning automata, there is

the requirement to select one that might be most suitable for this application or environment

type. Performance in this case is the number of feedback messages required for convergence

to an analytically calculated action probability, and the level of variance from that value once

convergence has occurred.

4.4.1 Basic algorithms

The following basic reinforcement algorithms have commonly been used in various

environments: LRI and LRP, with LReP also sometimes being used due to its joint property

65

of s-optimality and ergodicity. However, the discretisation of such algorithms has been

applied in more recent studies, often taking the analytical stationary environment conclusions

as valid for the non-stationary case.

4.4.1.1 Continuous algorithms

The main factor in differing speed of convergence performance between LRI and LRP

reinforcement algorithms is that in addition to utilising the reward feedbacks, the LRP

algorithm also utilises the penalty feedbacks. For scenarios where each member of the

penalty probability set has a high value, it would therefore be expected that the LRP algorithm

would converge within a much smaller number of overall feedback responses, when using the

same learning rate. This scenario has a blocking probability and thus penalty probability of

0.53 after convergence, so it is expected that the LRP algorithm will converge at around half

of the time taken by the LRI algorithm.

Figure 21 and Figure 22 show how the action probabilities vary with the number of

connections attempted for both algorithms using different learning rates. As might be

expected, the higher the learning rate the faster the convergence and the higher the variance

for both algorithms. This is shown more clearly in Figure 22 where the spread of values with

90% confidence after convergence is plotted.

The LRP has faster convergence than expected, and should converge faster than LRI

even when the penalty probabilities are low. This faster convergence is not just due to the

lower action probability value after convergence, as is shown by Figure 23. Here the

minimum blocking rate was 5%, and gives LRI converging after around 2710 connection

attempts with LRP doing so after about 1620 connection attempts, even though the converged

action probabilities are similar. Rather than the 5% speed increase, LRP is seen to have a

40% speed increase. This initially counter-intuitive statement is explained by recalling that

the penalty rate is 5% only after convergence, but higher previous to that point.

LRP also has higher variance than LRI when using the same learning rate, with the

trace for 0.05 learning rate being similar to a standard control trace which has the gain too

high causing overshoot. This result implies that the leaming rate for the LRP algorithm

should be lower than that for the LRI algorithm to obtain similar performance of low variance

after convergence.

66

LRI with 0.005 learning rate

0.69 T

= 0,61

- LA prob [1]

- 90% Conf.

2000 3000

C o n n e c t i o n A t t e m p t s

LRI with 0.05 Learning Rate

0.73 •

0.71

0.69 •

I" 0-67 I 0.65 -

^ 0.63
o

I 061 •

0.59 -

0,57 -

0.55 •

-LAprob,[11

- 90% Cont.

200 400 600

C o n n e c t i o n A t t e m p t s

s:,c

L R P with 0.005 Learn ing Rate

i 0,54

0,53

- LA prob,[1]

-90% Conf

500 1000

C o n n e c t i o n A r r i v a l s

67

G 75

LRP with 0.05 Learning Rate

- L A p r o b [l]

90° c Cy-'

0 100 200 300 400 500 600

C o n n e c t i o n A t t e m p t s

Figure 21: Convergence for LRI and LRP

LRI Reinforcement Algorithm

1500

o 1000

0.04 0

L e a r n i n g R a t e

Convergence

- Spread

L R P Reinforcement Algorithm

600 T

5. 400

• 0.01

L e a r n i n g R a t e

Convergence

- Spread

Figure 22: Convergence Properties for LRI and LRP Algorithms

6S

0,75

0,65

LRI with 0.005 Learning Rate

- LA prob [1]

- 90% Conf

1000 2000 3000

C o n n e c t i o n A t t e m p t s

4000 5000

L R P with 0.005 Learning Rate

0 7

0,63

0,66

« 0.6
Q.

g 0,5S

< 0,56

0.54

0.52

0 5

- prob.[1]

90% Conf.

1000 2000 3000

C o n n e c t i o n A t t e m p t s

4000

Figure 23: Convergence for LRI and LRP with low Penalty Rates

Intuitively it might be thought that by increasing the learning rate of LRI in order to produce

the same degree o f overshoot seen with LRP would result in a convergence rate of twice that

o f LRP for this scenario. However, when attempting to increase the learning rate for LRI to

match the initial overshoot properties before convergence of LRP, unexpected results ensued.

Figure 24 shows L R I with learning rates of 0.1, 0.2 and 0.3, and indicates that there occurs a

rapid movement to the expected action probability, but rather than converging the action

probability continues moving towards unity. Wi th the very high learning rate of 30%,

convergence occurs to a fixed value lower than with the previous case, due to the high

granularity effects. This implies that high learning rates may not be used when employing

L R I in non-autonomous environments.

6)̂

LRI with 0.1 Learning Rate

S- 0.8

— LA prob.[1]

— 90%Conf.

0 1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

LRI with 0.2 Learning Rate

- prob [1]

90%COnf.

500 1000 1500 2000

C o n n e c t i o n A t t e m p t s

0 .5

0.75

0.7

0.65

0.6

0.55

0.5

LRI with 0.3 Learning Rate

- LA prob [11

90% Conf

500 750 1000

C o n n e c t i o n A t t e m p t s

1250 1500

Figure 24: Convergence for LRI using high Learning Rates

70

L R P with 0.1 Learning Rate

- LA prob [1]

90% Conf

2000 3000

C o n n e c t i o n A t t e m p t s

5000

LRP with 0.2 Learning Rate

0 S5

0.8

0.75

0,7

0 65

0

0,55

0,5

- LA prob [1]

90% Conf.

1000 2000 3000 4000

C o n n e c t i o n A t t e m p t s

Figure 25: Convergence for LRP using high Learning Rates

Previous studies have commended the use o f the L R I algorithm for such environments [38,

39] but it is evident that its poor steady-state performance with higher learning rates was not

known. The LRI algorithm is therefore not recommended for general use in such

environments.

The LRP reinforcement algorithm does not suffer from this effect when using very

high learning rates; Figure 25 showing that the variance simply increases once convergence

has occurred.

Figure 26 shows the convergence properties o f the LRsP algorithm. The results

indicate a faster convergence than the L R I algorithm, but slower than the LRP algorithm. Of

greater interest is the low overshoot and variance that LReP exhibits, being lower than even

the L R I algorithm. Using very high learning rates, the LReP algorithm does not exhibit the

7]

same loss of convergence behaviour of LRI , imitating rather the LRP algorithm that simply

increases the variance after convergence.

The action probability converged to is 0.643 for this scenario, having a minimum

penalty probability o f 0.53. A previous analytical study showed that the two-action DLRP

algorithm is both ergodic and c-optimal in stationary random environments where the

minimum penalty probability is less than 0.5 [31]. However, as shown in the next section,

with scenarios of increasing minimum penalty probability the converged action probability

tends towards that o f equalising the penalty rates rather than the penalty probabilities. Whilst

the literature for the LReP algorithm does not mention the same, yet these empirical results

indicate that this algorithm seems to bear the same property since with an increasing

minimum penalty probability the converged action probability moves towards that for

equalising the penalty rates. Further work is required to derive an analytical verification of

this.

These results indicate that both the LRP and LReP algorithms would be suitable for

use in non-autonomous environments.

0 66

064

0.62

1 °'
I 0.58

056

0.54

0 52

0 5

L R e P with 0.005 Learning Rate

. LA prob [1]

90% Corf.

2000 3000

C o n e n o t i o n A t t e m p t s

5000

72

L R e P Reinforcement Algorithm

0,01 0,02 0,03

L e a r n i n g R a t e

0,04 J C 5

Convergence

- Spread

I I 0.5

LReP with 0.05 Learning Rate

S - 0,62

- LAprob,[11

90% Conf,

200 400 600 800

C o n n e c t i o n A t t e m p t s

L R e P Reinforcement Algorithm

IS,
0.2

- %age

0,6 0,7 0,8 0 9

M i n . E n v i r o n m e n t P e n a l t y R a t e

Figure 26: Convergence Properties for LReP

73

4.4.1.2 Discretised algorithms

Discretised versions of continuous reinforcement algorithms have been shown to converge

much quicker in stationary random environments, due to their linear rather than asymptotic

convergence properties. They have also been used in non-stationary environments, even of

the non-autonomous kind [17]. However the validity of so doing remains unclear, as their

convergence performance has not been examined in the literature.

Figure 27 and Figure 28 show the results for the DLRI and DLRP algorithms, each

having unexpected characteristics. For low leaming rates (up to 0.02), the action probability

converges to 1 instead of 0.676, the speed of convergence varying according to the leaming

rate. Once converged, the action probabilities remain fixed as penalty environment responses

are not acted upon by the reinforcement algorithm. As the leaming rate is increased, so the

value to which the action probability converges decreases to below the analytically derived

optimum of 0.676 . The unvarying mean and confidence intervals imply an oscillation in the

action probabilities between a couple of values. These results indicate that the DLRI

reinforcement algorithm should not be used for such environments as the action probabilities

fail to converge.

A previous study's blocking probability results [17] for the discretised algorithms do

not vary from the generally accepted thinking on discretised performance because a fairly

high leaming rate of 0.1 was used for all the different algorithms. These results show this

high leaming rate to result with better steady-state performance than lower and more usual

leaming rates. Were a more usual leaming rate of under 0.05 chosen the results would have

shown a marked difference, with performance being much lower than the other algorithms.

The DLRP results do not show such unexpected behaviour in convergence, but do so

in the final action probability steady-state value converged to. A previous analytical study

showed that the two-action DLRP algorithm is both ergodic and e-optimal in stationary

random environments where the minimum penalty probability is less than 0.5 [31]. The

results shown, where the penalty probability is 0.53 after convergence, indicate that for non-

autonomous environments DLRP causes the action probabilities to converge to between those

arising from equalising the penalty probabilities, and those resulting from equalising the

penalty probability rates.

This is clear from Figure 29 where the effect of increasing minimum penalty

probability is seen on the converged action probability. As expected, the mean action

probability after convergence decreases with increasing minimum penalty probability from

that obtained when equalising the penalty probabilities to that resulting from equalising the

penalty rates. As it is reasonable to assume that multi-service networks will be dimensioned

74

to operate with a blocking probability o f up to 10%, so the DLRP reinforcement algorithm is

very suitable to use, ensuring 8-optimal performance. Moreover, it has faster convergence

than its continuous counterpart but suffers from a higher variance after that point, evidenced

by comparing Figure 28 with Figure 22.

DLRI with 0.005 Learning Rate

- LA prob [1]

90% Conf.

1000 2000 3000

C o n n e c t i o n A t t e m p t s

4000 5000

S 0,6

DLRI with 0.05 Learning Rate

- LA prob,[1]

90% Conf,

100 200 300 400 500

C o n n e c t i o n A t t e m p t s

(a): Convergence for DLRJ

75

DLRP with 0.005

L 0.61

- LA prob [1]

90% Conf.

500 1000 1500 2000

C o n n e c t i o n A t t e m p t s

DLRP with 0.05 Learning Rate

100 200 300 400

C o n n e c t i o n A t t e m p t s

- LA prob.11)

90% Conf.

Figure 27: Convergence for DLRI and DLRP

DLRP Reinforcement Algorithm

450

400

350

I 300

200

150

100

50

0

0.02 0.03

L e a r n i n g R a t e

C O S

Convergence

- Spread

Figure 28: Convergence Properties for DLRP Algorithm

70

The graphs o f Figure 27 also indicate that the effect o f discretisation is to increase the control

gain which causes the faster convergence, so that for the same learning rate as the continuous

case, there is a greater degree of overshoot and number of oscillation before convergence

occurs. Therefore for good steady-state performance, meaning low variance after

convergence, a smaller discretisation value is required than the learning rate for the

continuous case.

Figure 30 shows that the DLRsP algorithm takes after the D L R I rather than DLRP

algorithm in performance. It fails to converge to the expected value, the action probability

converging to unity for low learning rates, and progressively lower values as the learning rate

is increased. It is therefore not recommended for use in non-autonomous environments.

DLRP Reinforcement Algorithm

3 0,5

< * 0 , 3

T3 ra
S So,;
^ a

0,6 0,7 0,8 0,9

M I n . E n v i r o n m e n t P e n a l t y R a t e

- %age

DLRP Reinforcement Algorithm

T 0,046

3,044

3,042

0,038 o

y 350 0,036 g

0,032

0.6 0.7 0,8 0.9

M i n . E n v i r o n m e n t P e n a l t y

Convergence

- Spread

Figure 29: Convergence Properties of DLRP Algorithm under Increasing Minimum Penalty

Probability Scenarios

77

1

0 95

1}

1
? 0.75

I
^ 0.65

0 6

0,55

0.5

DReP with 0.005 Learning Rate

• LA proO.(l)

90% Conf.

1000 2000 3000

C o n n e c t i o n A t t e m p t s

DLReP with 0.05 Learning Rate

LA crcD

90% Conf.

200 400 600 800 1000

C o n n e c t i o n A t t e m p t s

Figure 30: Convergence Properties for DLRsP Algorithm

4.4.2 Estimator algorithms

By reinforcing the action probabilities based on both the current environment response and

stored history, estimator algorithms would be expected to outperform other types of

algorithm. This has been shown to be the case for stationary and switching environments [25,

26, 63], but no known detailed example exists to date for non-autonomous environments, with

studies such as [34] simply assuming its better performance as regarding convergence speed

compared with other reinforcement algorithms.

Two estimator reinforcement algorithms are currently used: the pursuit and the

general estimator algorithms. As with the basic algorithms, the discretisation of these

estimator algorithms has occurred, with studies such as [34] assuming their steady-state

performance in non-autonomous environments rather than validating it.

4.4.2.1 Continuous algorithms

The pursuit algorithm is the simpler o f the two estimator algorithms, and its performance is

shown in Figure 31 and Figure 32. It can be seen that even with a low learning rate the

algorithm does not converge to its theoretical value o f 0.676, instead overshooting its mean

value as it takes some iterations before it can pursue another action. Interestingly, it is seen

that the mean or converged value after initial overshoots is higher than the theoretic one, this

increasing with the learning rate as shown by Figure 32. The variance or maximum spread

with 90% confidence in possible values after convergence also increases with the learning

rate, indicating that the gain in 'overshoots' is increased, as might be expected. As the pursuit

algorithm does not cause the action probability to converge to the analytically calculated

value, it is not recommended for use in non-autonomous environments.

The general estimator algorithm not only takes the learning rate as input parameter,

but also the monotonic function type which forms part of the reinforcement function. For this

experiment three different functions were used: 'x\ 'x^' and 'x^' with various learning rates

for each.

Pursuit with 0.005 Learning Rate

£• 0,67

- LA prob |1)

90% Conf,

2000 3000

C o n n e c t i o n A t t e m p t s

7^)

Pursuit with 0.05 Learning Rate

£• • - 5
. LA prob 11]

90% Conf

0 1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

Figure 31: Convergence for Pursuit Algorithm

Pursuit Reinforcement Algorithm

0.735

0.15 o
R-ob.

- Spread

0 01 0.02 0.03

L e a r n i n g R a t e

Figure 32: Convergence properties for Pursuit Algorithm

Figure 33 shows results for the general estimator algorithm for both the linear and '.v'"

updating functions. Both function types result with a long pre-convergence period, requiring

more than 5000 connection attempts for both cases. Using the linear function results in

overshoot o f convergence after a relatively long period o f time (more than 1000 connection

attempts when using a leaming rate of 0.005). By using very low leaming rates, for example

0.001, overshoot still occurs to the same degree (0.73) but with a slower rate, requiring a

relatively long interval of 7500 connection attempts. Changing to very high leaming rates,

such as 0.3, causes the action probability to converge fairiy quickly but with a high variance,

but as the number o f connection attempts increase it drills lower from its converged value.

On the other hand, using the '.r^' function results with little overshoot and a gradual

convergence to the analytically derived action probability. As shown by Figure 34, by using

SO

the much higher learning rate o f 0.3, overshoot is increased but convergence occurs sooner

but still relatively slowly, after 2430 connection attempts. For both updating functions, the

possible spread o f values with 90% confidence after convergence is seen to be small.

The effect of increasing the updating function to \x'' is shown in Figure 35. These

preliminary results indicate that increasing the power o f the updating function decreases

oscillatory and overshoot behaviour as well as the time to converge, whilst causing the

converged action probability to move slightly from its analytically derived expected value.

From these results it is seen that the general estimator reinforcement algorithm with a

'jc^' updating function coupled with high learning rate is suitable for use in non-autonomous

environments, for although the convergence speed is slow the variance is low after

convergence.

0 75

I 0,65

§ 0.6

•a

0 5

GEI with 0.005 Learning Rate

- L A prob |1]

90% Conf

2000 3000

C o n n e c t i o n A t t e m p t s

5000

GEI with 0.05 Learning Rate

- LA prob [1]

90% Conf,

1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

SI

GEnI with 0.005 Learning Rate

? 0.58

" 0.54

-U\prob[1]

90% Corf

1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

GEnI with 0.05 Learning Rate

2 ' 0.65

« 0.63 90% Corf

1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

Figure 33: Convergence for GE Algorithm for both Linear and 'x ' Non-linear Updating

Function

GEnI with 0.3 Learning Rate

- LA prob.11]

90% Conf.

1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

S2

GEnI Reinforcement Algorithm

3500 T

0.O4 -
Convergence

— Spread

0 0.05 0,1 0.15 0,2 0,25 0,3

L e a r n i n g R a t e

Figure 34: Convergence Properties of GE Algorithm for ' Updating Function and High

Learning Rates

GEnl2 with 0.05 Learning l^ate

£• 0,58

^ 0,54

^LAprob. (1] :

- 90%Conf,

1000 2000 3000 4000

C o n n e c t i o n A t t e m p t s

GEnl2 with 0.2 Learning Rate

0 6£

0,66

0 6-1

^ 0,62

I 0 6

% 0,58
o

I 0.56

0 5 4

0.52

0.5

- L A p r o t j . l l]

90%Conf.

1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

Figure 35: Convergence for GE Algorithm with 'x 'Non-linear Updating Function

83

4.4.2.2 Discretised algorithms

As always, the rationale for discretising continuous estimator algorithms is to obtain a linear

rather than asymptotic convergence of an action probability, resulting with much faster

convergence in stationary or switching environments [27].

As wi th the continuous case. Figure 36 and Figure 37 show that the discretised

pursuit algorithm does not converge to its expected analytical value. In fact it overshoots to a

greater degree than with the continuous case, so that with a moderately high learning rate of

0.05 the action probability converges close to unity. Therefore as with the continuous variant,

the use o f the discretised pursuit algorithm is not recommended for non-autonomous

environments.

DPursuit with 0.005 Learning Rate

0.55 -

- LA prob.[1]

90% Conf.

2000 3000

C o n n e c t i o n A t t e m p t s

«
£ 0.7

5

S. 0.6

0,5

0.4

DPursuit with 0.05 Learning Rate

- LA prob.[1

90% Conf,

1000 2000 3000 4000 5000

C o n n e c t i o n A t t e m p t s

Figure 36: Convergence for Discretised Pursuit Algorithm

84

DPursuit Reinforcement Algorithm

0.005 0 01 0.02 0.03 0.05

L e a r n i n g R a t e

0.14 S FYoO.

' Spread

3500

3000

a 2500

I 2000
<
g
= 1500
a
c

J 1000

500

0

DPursuit Reinforcement Algorithm

- Convergence

0 01 0.02 0.03

L e a r n i n g R a t e

104 0.05

Figure 37: Convergence properties for Discretised Pursuit Algorithm

Figure 38 shows the resuhs when using the discretised general estimator algorithm with both

linear and '.v''" updating functions. It is evident that discretising the general estimator

algorithm causes it to lose the property to converge to the analytically derived value, instead

overshooting towards unity as the learning rate increases. The effect o f greater non-linearity

with the 'x' ' ' updating function is to increase the overshoot away from the analytically derived

value.

Therefore the use o f the discrete general estimator algorithm for non-autonomous

environments is not recommended.

S5

DGEI with 0.005 Learning Rate

— LA prob,[1]

— 90% Conf.

2000 3000

C o n n e c t i o n A t t e m p t s

so;;

DGEI with 0.05 Learning Rate

* 0.85

' LA prob.[1]

90% Conf.

1000 2000 3000

C o n n e c t i o n A t t e m p t s

••:oc

DGEnI with 0.005 Learning Rate

0.9 T

- LA prob.ni
90% Conf.

2000 3000 4000

C o n n e c t i o n A t t e m p t s

5000

86

DGEnI with 0.05 Learning Rate

0 0.65

- lA prob.[11

- 90% Conf.

2000 3000

Connection Attempts

4000 5000

Figure 38: Convergence for DGE Algorithm for both Linear and 'x ' Non-Linear Updating

Function

4.5 Summary

The chapter began by highlighting the need for examining the performance of currently used

reinforcement algorithms when learning automata interact with a non-autonomous

environment. This is due to previous studies having analysed their performance with

stationary and switching enviroimients, and assuming the conclusions drawn as valid for non-

autonomous environments. The results obtained with this study, however, are in opposition

to this generally held assumption.

A well performing reinforcement algorithm in non-autonomous environments should

produce fast convergence of action probabilities with low variation afterwards, and ideally

converge to equalise the penalty probabilities rather than the penalty rates so producing lower

penalty probability performance in the steady-state. Having obtained the converged action

probabilities analytically for a simple network scenario, the convergence speed and steady

state variance was obtained experimentally. The analytical work also resulted in the

conclusion that at low blocking rates there would arise a noticeable difference in network

blocking performance between 8-optimal and ergodic schemes, this not being noticeable at

higher penahy rates.

Of the basic continuous algorithms, both the LRP and LReP algorithms have been

shown to converge faster than the LRI algorithm, although the variance afterwards is higher

87

using LRP. As the LRI algorithm fails to converge once the learning rate is increased to

higher levels, it is not recommended for general use in such environments. This is an

important result considering that this algorithm has been used in most previous studies

involving learning automata for routing in networks. Another interesting contribution of this

work has been to show that the LReP algorithm seems to display the same property as the

DLRP algorithm: that of tending towards equalising the penalty rates rather than the penalty

probabilities as the minimum penalty rate for the scenario increases significantly above 0.5 .

It has been consistently noticed in this study that the effect of discretising continuous

algorithms is to increase the gain so that convergence times are decreased and variance

increased. However, due to it causmg an action probability of unity to be approached linearly

rather than asymptotically, convergence to the analytical value sometimes does not occur.

Discretising the LRI and LRsP algorithms causes them to consistently fail to converge to the

analytical value, and so they are not deemed suitable. The DLRP algorithm has increased

variance compared to its continuous version, and converges slightly quicker. It also equalises

the probabilities rather than the probability rates of its continuous counterpart. This algorithm

is therefore suitable for use in such environments, provided that a low enough learning rate is

used after convergence has occurred.

Of the two continuous estimators, the pursuit algorithm fails to converge to the

expected value, the overshoot increasing with the learning rate. The general estimator with a

linear updating function works fairly well with low learning rates but always overshoots, and

although the convergence time is slow it produces very low variance once convergence to

equalise the penalty probabilities has occurred. Using the non-linear updating function of

'x^\ low variance is evident although convergence takes a long time.

Discretisation encourages failure of convergence for the pursuit algorithm, the

overshoot being still higher than with the continuous case. The same effect is observable with

the discretised general estimator algorithm, for any updating function and learning rate. It

fails to converge, constantly overshooting its target.

Of the range of reinforcement algorithms which are generally used, the LRP, LReP,

DLRP and general estimator with the 'x^' non-linear updating functions were found to

perform the best this non-autonomous environment. Of these three, LRP is the only one to

equalise the penalty probability rates, resulting with a higher penalty probability in the steady-

state. The LRsP and DLRP algorithms produce a lower penalty probability when the

minimum is less than 0.5, and the general estimator always produces the lower penalty

probability. As the general estimator also has a much lower variance after convergence, it is

the one to be preferred as long as its relatively slow convergence time is acceptable.

88

With current understanding assuming the applicability of stationary and switching

environment results to non-autonomous environments, so discretised schemes have been more

recently favoured for use in such environment scenarios. The importance of this study is to

show the general non-applicability of discretised reinforcement schemes, and the superior

performance after convergence of the continuous general estimator algorithm using the 'x^'

non-linear updating function, the LReP, and the DLRP schemes.

89

5 Improved learning automata applied to routing in multi­

service networks

5.1 Introduction

The purpose of the work contained in the following chapter is to increase the' learning

automata performance to be higher than that obtained when using the best performing

reinforcement algorithms detailed in the previous chapter; namely DLRP and LReP. The

improved learning automata performance can then be compared with that resulting from the

use of the improved dynamic shortest-path based mechanism detailed in chapter 3.

Improving a reinforcement algorithm's convergence speed, for example by increasing

the learning rate, degrades its steady-state performance. Contrariwise, increasing its steady-

state accuracy slows down its rate of convergence. Therefore the improvement methods

studied in this chapter are based on increasing convergence speed under changing

environment conditions, and increasing accuracy under environment steady-state situations.

A novel mechanism for detecting the environment state is detailed. Rather than

requiring centralised operation, it is applied in a local manner, so retaining a benefit of

learning automata operation; that of local feedbacks. This mechanism, based on action

probability entropy, is used by both novel learning automata performance improvement

methods outlined in this chapter. They are adaptive learning rates, and automatic

reinforcement algorithm selection.

Next, the resulting best performing learning automata based method is compared with

the AAMH algorithm outlined in chapter 3. A new network scenario is used for performing

the comparison, this scenario mimicking real networking situations more closely. This is

based on trend user demands rather than the statistically constant simulations which are

generally used in the literature.

Finally the chapter's findings are summarised, and reasons given as to why the further

learning automata improvement work of chapter 6 is required.

90

5.2 Reinforcement algorithm selection

The results from the previous chapter highlighted a number of reinforcement algorithms

which produce good learning automata performance when interacting with non-autonomous

environments. They are as follows: DLRP, LReP, and GE with the 'x^' non-linear updating

function.

DLRP produced a faster convergence rate than LReP, but with a higher steady-state

variation thereafter. The GE with 'x^' updating function produced the lowest steady-state

variation of all the algorithms, but required the longest number of iterations before

convergence occurred. It therefore seems that each of these reinforcement algorithms has its

own particular strengths and weaknesses relative to each other.

A particular reinforcement algorithm might be selected according to the application

type. For example if the environment for the application was generally in steady-state

behaviour and rate of convergence for the learning automata is not of great importance, then

using the GE reinforcement algorithm is an apt choice. On the other hand, if the environment

exhibits dynamic behaviour due to factors other than the automata actions then the DLRP

algorithm might be used, in order to track the moving environment state most quickly. Were

neither of these performance factors of overriding importance, then the LReP reinforcement

algorithm might be used. The application of routing in multi-service networks has elements

of both dynamic and steady-state network behaviour, according to the user demands

throughout the day. Therefore it is difficult to propose the use of just one for this application

type.

However, rather than having to characterise the application type a priori and then

choose the most appropriate reinforcement algorithm, it is proposed to improve the

performance of these three algorithms in order to make them more generically applicable to

applications which exhibit environment types of both steady and moving states, such as

routing in networks. The two proposed methods are: adaptive learning rates, and automatic

reinforcement algorithm selection.

5.2.1 Adaptive learning rates

Each of the three reinforcement algorithms has a configurable parameter: the learning rate.

Variations in this variable produce variations in the rate of convergence and subsequent

steady-state accuracy. A higher value causes the learning automaton to converge within a

fewer number of iterations, but it also causes a higher subsequent steady-state action

91

probability variation. The use of a lower learning rate produces opposite effects in both

performance indicators.

Increasing the learning rate has a positive effect on the rate of convergence, whilst

decreasing it has a positive effect on the subsequent steady-state variation. Were one to

dynamically vary the learning rate according to the environment state and associated

conditions, then it might be possible to obtain both a higher convergence speed and

subsequent lower steady-state variance than is currently the case with fixed reinforcement

algorithms and learning rates. The use of such a mechanism in this application would

increase the learning rate in cases of moving network state, and decrease it in more steady-

state network conditions when the action probabilities are close to convergence.

As the use of learning automata is beneficial in cases of environment uncertainty, due

to them automatically converging to produce near optimal performance, so ideally the

mechanism should be able to automatically detect whether the environment, which in our case

is a multi-service network, is in a steady or moving state. The following section details a

method which allows the learning automaton mechanism to automatically detect the

environment status.

5,2.1.1 Automatic adaptive mechanism

The method or mechanism for deciding whether convergence of the action probabilities has

taken place requires a numerical indicator of the status of the network and action

probabilities. This might be based on the average network blocking probability, or the

average path length of routes selected. As convergence of the action probabilities takes place,

both the average network blocking probability and path length should decrease and finally

plateau at a minimum value when convergence has occurred. According to whether these

numerical indicators are increasing, decreasing or stationary, so the learning rate might be

increased, held steady, or decreased respectively. Another indicator that might be used is the

entropy of the system. An experiment was undertaken to ascertain which of these indicators

is the most suitable to perform this function. The average path length was not included for

consideration as this is heavily influenced by the changing traffic matrix, and so might often

report an increasing or decreasing value even when the action probabilities had converged.

5.2.1.1.1 Using entropy measures

The entropy of a system is a measure of its disordedness, and it has been shown that as

learning automata which perform the routing function in a telecommunications network

92

converge, so the disorganisation of the overall system decreases [18]. The system entropy in

terms of the learning automata action probabilities may be characterised by the following

equation:

H{n) = YYXpl^^^Pl bits
ieN JeDkeR

where A'̂ is the set of nodes, D is the set of destinations, R are the allowable actions at each

automaton in the network, and p is the probability of performing an action. It is therefore a

function of the action probabilities. As the action probabilities converge, so the

disorderedness of the system decreases causing the entropy to also decrease. It is not

necessarily the case however that this reduction is monotonic, for the action probabilities are

updated based on stochastic events, and so might cause the system disorderedness to increase

in the short term.

In order to ascertain which indicator might be best suited for the automatic adaptive

mechanism proposed, the following experiment was undertaken. It consisted of the 28 node

network topology with symmetrical network loading. Using different learning rates with the

basic reinforcement algorithms recommended in the literature, namely LRI and LRP, Figure

39 is produced. Adaptation in this case was taken as the point where the decreasing network

blocking probability began to plateau, and so is overly optimistic on the minimum number of

iterations required for convergence. As expected, increasing the learning rate decreases the

number of iterations required for convergence but increases the average network blocking

probability due to the higher steady-state action probability variance. This is true for both

LRI and LRP, indicating its validity for both e-optimal and ergodic schemes. The aim is

therefore to adapt the learning rate to give the fast convergence rate seen when using a fixed

5%, and the low steady-state variance (and so network blocking probability) seen when using

a fixed 1% learning rate.

Figure 40 shows how the network blocking probability and entropy of the system

changes during convergence of the action probabilities when using the LRI reinforcement

algorithm. The network blocking probability values given are the average over the 1000

connection period. It can be seen that as the number of iterations passed increases, so the

entropy and network blocking probability decrease. However, what is of interest is that the

network blocking probability reaches a minimal plateau whilst the entropy measure is still

decreasing. Were the indicator for whether the action probabilities had converged to be the

blocking probability, then the onset of convergence would be reported too early and so

inaccurately. It is therefore proposed to use the entropy measure as the indicator as to

whether convergence has taken place.

93

This was done using this global entropy measure, and by automatically adapting the learning

rate, a combined performance of the fast 5% learning rate convergence rate and the good 1%

learning rate steady-state accuracy was obtained [64]. However, in order to have an

automatic mechanism for convergence detection and so learning rate adaptation, it is not

possible to use a system-wide indicator such as global entropy due to the network resources it

would consume in information transmission and processing. A compromise is to use the local

entropy measure, this being calculated as follows:

bits
;=1

Whilst it is expected that the use of this method will be more problematic, due to the

stochastic nature of the action determination and so action probability updating, it appears

feasible that its use will provide a usable automatic learning rate adjustment mechanism.

Network Blocking Probability and Connections Required for Adaptation at
0.05 conn/sec

0.09

0.08

2 0.07

0.06

0.05

0.04

0.03

0.02

35000

30000 'I

20000

15000 o-

10000

5000 2

SNetworkBI. Fb.

• Conn. Req.

LR- LR- LR- LR- LR- LR-
1(1%) 1(3%) l(%5) R(1%) R(3%) fl;5%)

Figure 39: Network blocking probability and iterations required for convergence using LRI

andLRP

94

L e a r n i n g A u t o m a t a (LR- I)

1 1000

- 800

700

D.3 + f 400

- 200

Block. Prob.

Entropy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C o n n e c t i o n s A r r i v e d (x 1000)

Figure 40: Entropy and network blocking probability during convergence using LRI

5.2.1.2 Entropy threshold calculation

The maximum local entropy occurs when the action probabilities are equidistant, and as they

change values f rom that point the local entropy decreases. For the four node network

example, the maximum entropy value at node three is 3.46 as there are eight action

probabilities in all when including the two for destination node 3. The minimum entropy

value possible is when half o f the action probabilities are close to unity (the other half

therefore being close to zero), the calculated value when probabilities are at 0.999 and 0.001

being 0.04, which is arbitrarily close to 0. However the spread in possible values is much

smaller in realistic scenarios as the entropy is 2.5 when action probabilities are at 0.8 and 0.2 .

The four node network example was again used, as it is possible to determine

analytically the converged action probability values. These were 0.67 and 0.33 respectively

for the experiment's loading rate. Figure 41 shows the local entropy value for the node

having the traffic source, when using a learning rate o f 5% with the LReP reinforcement

algorithm. This trace shows significant variation around the value o f 3.35 which is what it

should converge to, indicating that the high learning rate is causing it to consistently

overshoot.

Figure 42 shows the local entropy value for the node having the traffic source, when

using a learning rate of 1% with the LRsP reinforcement algorithm. As expected, the entropy

95

decrease is much more progressive, with little oscillatory behaviour evidenced. Towards the

end of this initial convergence period, a slight increase in entropy is noticed, as the action

probabilities temporarily move away from their final converged values.

Both these figures show runs of 270 iterations, and indicate that individual learning

automata traces can vary somewhat from the smoothed average traces of various simulation

runs. Therefore there exists the requirement to smooth the varying individual entropy traces,

so that a true indication on whether the entropy is changing significantly (meaning that the

environment is in a non-steady state condition) may be obtained. To this end, ten point

samples are taken and averaged, these values also being represented on the graphs.

From these the following threshold values are obtained. When using a 5% learning

rate, a change in entropy less than 0.05 between averaged 10 point samples should cause a

change to a 1% learning rate. When using a 1% learning rate, an entropy change greater than

0.01 should cause the learning rate to change to 5%. When first initiated however, the

mechanism should first allow for an entropy change of 0.05 or greater, before permitting the

learning rate to be dropped to 1%. To avoid the learning rate remaining at 5% with cases

whose converged action probabilities are around 0.5, the mechanism should change to a

learning rate of 1% after ten consecutive 10 point samples of entropy changes less than 0.05 .

These threshold values are valid for LReP, as other reinforcement algorithms have different

convergence and variance characteristics. When the number of possible actions is increased,

the maximum entropy value also increases, therefore also possibly affecting the threshold

values. In this application however, an increase in the number of possible actions should not

overly affect the threshold values as some of the actions would rarely be used, causing the

enfropy spread to be much less than otherwise. Therefore for this application there is only

required a re-characterisation of the thresholds for the other reinforcement algorithms.

96

Local entropy: L R e P 5% learning rate

3.5

3.45

3.4

>. 3.35
& to

iS 3.3

3.25

3.2

3.15

• Bitropy

Bitropy (av. 10)

500 1000 1500 2000 2500

Time e lapsed (s e e s .)

Figure 41: Local entropy using 4-node network with LRsP and 5% learning rate

Local Entropy: L R e P 1% learning rate

- Entropy

Entropy (10 av.)

500 1000 1500 2000

Time e lapsed (s e e s .)

2500

Figure 42: Local entropy using 4-node network with LREP and 1% learning rate

^1

Local Entropy: L R e P with adaptive learning rate

3.48

3.46

3.44

3.42

3,4

I 3.38

c 3.36
ui

3.34

3.32

3.3

3.28

3.26

• Entropy

Entropy (10 av.)

500 1000 1500 2000

Time e lapsed (sees .)

2500

Figure 43: Local entropy using 4-node network and LReP with adaptive learning rate

5.2.1.3 Experimental results

This section seeks to validate the benefits of automatic adaptation of learning rates. To this

end, only the DLRP and LReP reinforcement algorithms are used, as the GE algorithm has an

additional parameter which affects performance, namely the updating function. Also it

requires a large number of iterations before convergence occurs, and it has been shown that

even high learning rates do not reduce the number to that comparable with the other

reinforcement algorithms.

5.2.1.3.1 Results for L R e P

The characterisation threshold values for the adaptive learning rate scheme used with the

LReP algorithm were the same as those calculated in the previous section.

Beginning with the 4-node network scenario. Figure 44 shows the convergence

results for LReP algorithm when using a fixed 5% learning rate, with Figure 45 showing the

same when using a fixed learning rate of 1%. As may be seen, the latter has a much slower

convergence rate than when using the 5% learning rate, but its subsequent steady-state

98

variation is much lower. The 90% confidence interval spread in the action probability is

around 2% when using the 5% learning rate, and 1% with the 1% learning rate.

Figure 46 shows the convergence of the action probabilities when using the adaptive

learning rate scheme. As may be seen, the rate of convergence is very similar to that when

using the fixed 5% learning rate, but the subsequent steady-state variation is just a little higher

than that when using the fixed 1 % learning rate, and certainly far lower than that evidenced

with the 5% learning rate.

The point of adaptation for the 28 node network was taken to be when the decreasing

network blocking probability rather than the global entropy plateaued. This was because the

continuing convergence of the action probabilities, and so decrease in the global entropy, did

not significantly affect the performance measure for this application; namely the network

blocking probability.

L R e P with f ixed 5% learning rate

0.7

0.68

0.66

0.64

E 0.62
P3

.Q
O 0 6
Q.

ti
on

0.58

0.56

0.54

0.52

0 5

- LA prob. [1]

- 90% Conf.

400 600

Connection attempts

1000

Figure 44: 4-node network and LReP with fixed 5% learning rate

L R e P with f ixed 1% learning rate

£ 0.62

-LAprobl!)

90% Conf

200 400 600 800 1000

Connection attempts

Figure 45: 4-node network and LRsP with fixed 1% learning rate

99

L R e P with adaptive learning rate

0 0.58

< 0.56

• LA prob. [1)

90% Conf

200 400 600 800 1000

Connection attempts

Figure 46: 4-node network and LReP with adaptive learning rate

L R e P with fixed 1% learning rate, lA 20s

S 0.08

<° 0.06

200000 400000 600000 800000 1000000

Connection attempts

- Blocking Prob.

Entropy

Figure 47: 28-node network and LReP with fixed 1% learning rate

L R e P with fixed 5% learning rate, lA 20s

0 2

0.18

0.16

0.14

0 0.12
a
ai
c 0.1

o
o 0.08
m

0.06

0.04

0.02

0
0 200000 400000 600000 800000 1000000

Connection attempts

• Blocking Rob.

Entropy

Figure 48: 28-node network and LReP with fixed 5% learning rate

100

0 02

o 0.01

L R e P with fixed and adaptive learning rates

5% Adaptive

Learning rate

500000

300000

200000

|Av Blocking Prob

- Conn. Req.

Figure 49: Network blocking probability and iterations for convergence using LReP and 28-
node network

However rather than the case with Figure 39, a more conservative estimate of when the

plateauing began was chosen. This explains the apparent increase in the iterations required

for convergence, when compared with Figure 39.

Figure 47 for example shows the process for the fixed 1% learning rate case, whilst

Figure 48 shows that for the fixed 5% case. As may be seen from Figure 47, the action

probabilities are still converging by the end of 1,000,000 connection attempts when using the

fixed 1% learning rate, the entropy being more than twice that of Figure 48 at the end of its

simulation run. The effect of this is seen by the decreasing trend of blocking probability in

Figure 47, whilst that of Figure 48 is fairly static after 400,000 connection attempts. In this

case, we take convergence to have occurred after 700,000 connection attempts when using a

fixed 1% learning rate, as the blocking probability is fairly stationary subsequent to that point.

These results are summarised together with those for the fixed 3% and adaptive learning rate

schemes in Figure 49. In each case, the average network blocking probability was calculated

from the point of convergence onwards.

The iterations before convergence results indicate that increasing the learning rate

decreases the number of iterations required for convergence of the action probabilities, which

is as expected. It can be seen that the number of iterations required is a little above that of

when using a fixed 5% learning rate.

What is unexpected however, are the blocking probability results which seem to

suggest that the average blocking probability is relatively unaffected by the learning rate

parameter, the value being around 2.3% blocking probability. This is especially surprising

considering that the 4-node network scenario results show a visible affect on the action

probability of changing the learning rate. A possible explanation for this is the relatively

101

small variation in action probability values after convergence when using the highest learning

rate, Figure 44 showing the range being within an action probability band of 5% (63-68%).

This implies that even with the highest learning rate, the action probabilities in the 28-node

scenario do not vary greatly from their optimum, so returning a similar average blocking

probability whatever the learning rate. This explanation is supported by the DLRP results

which show a larger action probability band together with a higher blocking probability.

LReP with fixed 5% and adaptive learning rates are also compared with each other

over various traffic loadings as they exhibit a similar number of iterations before

convergence. Table 6 shows that the adaptive scheme returns equal or slightly poorer average

network blocking probability to the fixed 5% scheme; returning poorer results at low blocking

probability levels. Similarly, Table 7 shows the adaptive scheme having a higher steady-state

variation at the lower traffic loads, but is comparable to the fixed 5% scheme at higher loads.

Finally Table 8 shows the adaptive scheme generally requiring a slightly higher number of

iterations before convergence. These results are not of great use in themselves, but are

important for comparative purposes with the following which are obtained using other

reinforcement algorithms.

Traffic load ('conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Fixed 5% 0.021 0.117 0.28 0.351 0.423 0.53 0.666
Adaptive 0.026 0.12 0.28 0.351 0.424 0.532 0.665

Table 6: Average network blocking probability for 28-node network with LReP using fixed
5% and adaptive learning rates

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Fixed 5% 0.0135 0.0239 0.0258 0.0254 0.0233 0.0222 0.018
Adaptive 0.0148 0.0238 0.0253 0.0251 0.024 0.0223 • 0.0186

Table 7: Standard deviation on network blocking probability for 28-node network with LReP
using fixed 5% and adaptive learning rates

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Fixed 5% 400,000 80,000 60,000 75,000 25,000 35,000 60,000
Adaptive 450,000 100,000 60,000 75,000 50,000 45,000 40,000

Table 8: Global connection attempts for convergence for 28-node network with LReP using
fixed 5% and adaptive learning rates

102

5.2.1.3.2 Results for D L R P

The use of the DLRP reinforcement algorithm requires a re-characterisation of the adaptation

threshold entropy values, as per section 5.2.1.2 . As the DLRP exhibits a higher gain for the

same learning rate, so the fixed rates were reduced to 1.5% and 0.04%. As may be seen from

Figure 50 and Figure 51, the characterised entropy threshold values were higher than 0.015 to

switch from 0.4% to 1.5%, and lower than 0.1 to change from 1.5% to 0.4% learning rate.

The resulting DLRP performance when using the adaptive learning rate is shown in Figure

52.

The results for the 4-node network scenario are given first. As with the case of using

LRsP, Figure 53 shows DLRP producing a faster convergence than Figure 54, but with higher

subsequent steady-state variation. The benefits of using the adaptive learning rate scheme

with the DLRP algorithm are shown by Figure 55, which exhibits the benefits of both the high

convergence speed of Figure 53 and the low subsequent steady-state variation of Figure 54.

Using the DLRP rather than LReP algorithm causes the action probability to have a larger

possible value spread after convergence, this being up from 5% to 8%) (67%)-75%). Also the

converged action probability is different to the LReP one, from 67% to 71%. This seems to

indicate that the established body of theoretical work needs revision, as current thinking

indicates that the converged action probabilities should be the same for both reinforcement

algorithms.

The 28-node network results are closer to those expected than the LRsP ones. Figure

57 clearly shows that DLRP exhibits a faster convergence but a higher blocking probability

and steady-state variation when the fixed learning rate is increased from that of Figure 56.

These results are summarised in Figure 58, which clearly shows the adaptive learning rate

scheme being only slightly slower in convergence to the fixed 1.5% learning rate. Moreover

the subsequent average steady-state probability for the adaptive scheme is only slighdy higher

than that when using the fixed 0.4% learning rate, and certainly lower than that resulting with

either of the fixed 1% or 1.5% learning rates.

103

Loca l entropy: D L R P 1.5% learning rate

- Entropy

- Entropy (av. 10)

500 1000 1500 2000

Time elapsed (sees.)

Figure 50: Local entropy using 4-node network with DLRP and L5% learning rate

Loca l entropy: D L R P 0.4% learning rate

- Entropy

- Entropy (av. 10)

500 1000 1500 2000 2500

Time elapsed (sees.)

Figure 51: Local entropy using 4-node network and DLRP with 0.04% learning rate

L o c a l entropy: D L R P witti adaptive learning rate

- Bltropy

• Entropy (10 av.)

3 25
0 500 1000 1500 2000 2500

Time elapsed (sees.)

Figure 52: Local entropy using 4-node network and DLRP with adaptive learning rate

104

D L R P with fixed 1.5% learning rate

0.75

~ 0.7

1
2 0.65
a.
c
o

I 0.6

0.55

05

- LA prob. [1)

-90% conf.

200 400 600 800 1000

Connection attempts

Figure 53: 4-node network and DLRP with fixed 7.5% learning rate

D L R P with fixed 0.4% learning rate

0.65 - LA prob. [1]

- 90% Conf.

500 1000

Connection attempts

Figure 54: 4-node network and DLRP with fixed 0.4% learning rate

D L R P with adaptive learning rate

• LA prob.[1]

- 90% Conf.

200 400 600 800 1000

Connection attempts

Figure 55: 4-node network and DLRP with adaptive learning rate

105

DLRP with fixed 0.4% learning rate, lA 20s

T 1000

o 0.12
• Hocking FTob.

- Entropy

100000 200000 300000 400000 500000

Conneetion attempts

Figure 56: 28 node-network and DLRP with fixed 0.4% learning rate

DLRP with fixed 1.5% learning rate, lA 20s

o 0.12
- Booking Rob,

- Entropy

100000 200000 300000 400000 500000

Conneetion attempts

Figure 57: 28-node network and DLRP with fixed 1.5% learning rate

0 07

C 06

DLRP with fixed and adaptive learning rates

250000

0 02

|Av. BlocWng R-ob.

- Conn. Req

0.40% 1.00% 1.50% Adaptive

Learning rate

Figure 58: Network blocking probability and iterations for convergence using DLRP and 28-
node network

106

Table 9 shows that in general the adaptive scheme returns a lower blocking probability to the

fixed 1.5% learning rate, together with a comparable or lower standard deviation in the action

probability after convergence. As was the case with the LReP convergence results, the

adaptive scheme also generally requires more iterations in order to converge than the fixed

scheme with the high learning rate.

Traffic load (conn./sec.)

0.05 0.067 0.1 0.12 0.14 0.2 0.33

Fixed 1.5% 0.07 0.139 0.288 0.349 0.422 0.531 0.664

Adaptive 0.06 0.156 0.281 0.347 0.422 0,531 0.663

Table 9: Average network blocking probability for 28-node network with DLRP using fixed

7.5% and adaptive learning rates

Traffic load (conn./sec.)

0.05 0.067 0.1 0.12 0.14 0.2 0.33

Fixed 1.5% 0.021 0.025 0.026 0.0256 0.0174 0.0226 0.0185

Adaptive 0.019 0.026 0.026 0.0256 0.0173 0.0226 0.0182

Table 10: Standard deviation on network blocking probability for 28-node network with

DLRP using fixed 7.5% and adaptive learning rates

Traffic load (conii./sec.)

0.05 0.067 0.1 0.12 0.14 0.2 0.33

Fixed 1.5% 50,000 40,000 9,000 10,000 14,000 9,000 15,000

Adaptive 70,000 40,000 9,000 15,000 16,000 9,000 15,000

Table 11: Global connection attempts for convergence for 28-node network with DLRP using

fixed 1.5% and adaptive learning rates

It is difficult to make direct comparisons of these results with those of the LReP algorithm as

both convergence speed and subsequent steady-state behaviour are affected by the learning

rate parameter. This means that the resulting performance of either reinforcement algorithm

might be improved by modifying the learning rates according to the environment scenario.

However general characteristics are visible in each set of results, and these can be compared

and conclusions drawn.

107

Although the LReP reinforcement algorithm does not seem to be greatly susceptible to

learning rate parameter changes when operating in more complex environments, it does seem

to consistently return a lower average blocking probability than when using the DLRP

algorithm. The reasons for the poorer DLRP performance seem to be twofold: different

converged action probability values, and a higher subsequent variation and possible spread in

these values. The latter reason is validated by Figure 58 which clearly shows an increase in

the blocking probability when the DLRP fixed learning rate is increased.

The DLRP algorithm on the other hand clearly displays a higher convergence speed

than the LReP algorithm. By comparing Table 8 with Table 11, it can be seen that the DLRP

requires between half to a sixth of the number of iterations than LReP requires in order to

converge.

It therefore seems that the results on algorithm strengths and weaknesses brought out

in chapter 4 still hold even when using differing fixed learning rates, the range used in this

study being 0.4 to 1.5% for DLRP and 1 to 5% for LReP. This conclusion is surprising when

considering simply the 4-node network scenario results, as these show similar traces in both

convergence speed and subsequent steady-state accuracy for both algorithms at both their

learning rate parameter extremities. It therefore seems important to perform more complex

environment interaction experiments before drawing conclusions on the learning automata

performance when using a specific updating method.

The adaptive learning rate scheme has been shown to be beneficial for both

reinforcement algorithms, in general resulting with a slightly poorer convergence speed than

when using the highest fixed learning rate, and a slightly poorer subsequent blocking

probability to that obtained from the lowest fixed learning rate. These improvements however

do not change the essential performance characteristic of either of these algorithms: the LReP

algorithm produces lower blocking probability after convergence, and the DLRP algorithm

requires significantly fewer iterations in order to converge. It may be concluded that even

when using the adaptive learning rate scheme, one algorithm might be better for a specific

non-autonomous environment application than the other, but neither may be generically

recommended to produce good learning automata performance.

5.2.2 Automatic reinforcement algorithm selection

The previous section has outlined a scheme for improving learning automata performance

based on setting the learning rate to that which produces the best performance for the current

108

network and action probability convergence states. This scheme was automated using a

mechanism which detected the state of convergence of the learning automaton action

probabilities.

This section proposes to harness the same idea to automatically select the most

appropriate reinforcement algorithm for the network and action probability convergence

states. Results given in chapter 4 showed that the DLRP, LReP, and GE reinforcement

algorithms produced the best performance for learning automata interacting with non-

autonomous environments. It was also shovra that GE with the 'x^' updating function

produces the best performance once convergence has occurred, and DLRP produces the best

under moving network and convergence state conditions. By utilising the most appropriate

reinforcement algorithm for the environment and learning automata action probabilities,

superior performance both in convergence speed and steady-state behaviour should follow.

For this application type, namely routing in communication networks, the

environment is rarely in a steady-state condition, and i f so only for short periods of time. This

factor precludes the use of the GE reinforcement algorithm as it requires a large number of

iterations in order to converge. It is therefore proposed to switch from the DLRP to the LReP

algorithm in steady-state conditions. The validity for doing so is shovra when comparing

Figure 49 with Figure 58, the network blocking probability being lower for LRsP than DLRP.

The entropy thresholds for automatically switching between reinforcement algorithms

are a combination of both sets of previous experiments. When using the DLRP algorithm, i f

the entropy change is less than 0.1 then the algorithm should be changed to the LReP

algorithm. I f the current algorithm is LRsP and the entropy change is greater than 0.01, the

reinforcement algorithm should be changed to DLRP.

As this method seeks to improve convergence and steady-state performance by

changing the reinforcement algorithm dynamically, so fixed learning rates were used. The

values chosen were learning rates of 1.5% for each algorithm, this being a high learning rate

for the DLRP algorithm which is used under converging conditions, and a low learning rate

for the LReP algorithm which is used under steady-state conditions. This learning rate should

therefore produce good performance for each algorithm, as each will be utilised under

conditions most suited to its strength.

5.2.2.1 Experimental results

Figure 59 shows the performance curve for the automatic reinforcement algorithm selection

method when operating in the 4-node network scenario. Comparing this curve with those in

109

Figure 46 and Figure 55 is inconclusive as these latter two display similar characteristics and

yet the algorithms return significantly diverse performance results when operating in more

complex environments. What can be gleaned however is that the action probability

converged to seems to be between that of the DLRP and LReP, as might be expected. With

the algorithm currently operational moving the action probability to its convergence value and

the action probability value being subsequently moved back when the other algorithm is

switched in, the variation in the steady-state is higher.

Figure 60 shows the performance for the algorithm when operating in the 28-node

network scenario with an average interarrival rate of 20 seconds for the user demand models.

When comparing these graphs with those in Figure 47 and Figure 57, it seems that the

automatic algorithm selection exhibits similar convergence characteristics to the DLRP

algorithm, together with a subsequent steady-state blocking probability approaching that of

the LReP algorithm. However it does exhibit a higher steady-state variation than either of the

two algorithms by themselves.

Looking at the algorithm's blocking probability performance over differing traffic

loads in Table 12, it can be seen that it is between the LReP and DLRP algorithm singly used,

and so can be thought as being superior to either as sometimes one outperforms the other

according to the ti-affic loading. Table 13 shows that the subsequent steady-state variation is

as high or higher than either singly used, whilst Table 14 indicates the automatic algorithm

selection method returns close to or better convergence speed when compared to that for the

DLRP algorithm.

To conclude, it has been showoi that the automatic reinforcement algorithm selection

provides better generic performance than the adaptive learning rate mechanism applied to

either of the two algorithms by themselves. This updating mechanism for the action

probabilities can therefore be recommended for most non-autonomous environment

applications, as it provides both relatively good convergence speed and subsequent

environment penalty probability.

110

Automat ic a lgor i thm se lec t ion

0.8 -

• LA prob [1]

90% Conf.

200 400 600

Connection attempts

8c:

Figure 59: 4-node network and automatic LReP or DLRP selection with 7.5% learning rate

D L R P - L R e P with f ixed 1.5% learn ing rate, lA 20s

02

0.18

0.16

0 14

o 0 12
Q.
O)
c

0,1

o 0-08
m

0.06

0.04

0.02

0

• Bkjcking Prob

Entropy

200000 400000 600000 800000 1000000

Connection attempts

Figure 60: 28-node network and automatic algorithm selection

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Automatic 0.059 0.138 0.287 0.353 0.423 0.532 0.663

Table 12: Average network blocking probability for 28-node network with automatic

algorithm selection

111

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Automatic 0.021 0.025 0.026 0.025 0.023 0.022 0.018

Table 13: Standard deviation on network blocking probability for 28-node network with

automatic algorithm selection

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Automatic 100,000 33,000 8,000 11,000 15,000 12,000 16,000

Table 14: Global connection attempts for convergence for 28-node network with automatic

algorithm selection

5 • 3 Comparisons with standard routing method

As was vmtten in chapter 3, the better performing group of routing algorithms which are

currenfiy used in real networks are based around shortest-path principles. This work took one

of the better performing algorithms fi-om this group, and improved its method of operation for

use in realistic network scenarios. These improvements encompassed both its algorithm

performance, the type of link-state information to be propagated, and the method its update

throughout the network. This has resulted with a standard routing method which is thought to

provide good network performance, whilst requiring no extra signalling for propagation of

link state information.

The improved standard routing method is compared with the automatic reinforcement

algorithm selection scheme, which is the best of the improved learning automata routing

methods detailed in this chapter for this type of application. The main experimental

comparison occurs using a more realistic network simulation scenario than previously, the

rationale for which follows in section 5.3.2.

5.3.1 Initial algorithm comparison

Figure 61 shows the blocking probability performance for the 28 node network when using

A A M H with existing signalling for link-state propagation. When compared to Figure 60

which is that for the learning automata with automatic algorithm selection, it can be seen that

the A A M H algorithm seems to rettam on average a lower blocking probability. This is

112

confirmed by comparing Table 12 with Table 15, for AAMH returns a lower blocking

probability at all loading rates. A comparison of Table 13 with Table 16 also shows AAMH

blocking probability performance having a lower or equal standard deviation at loads causing

blocking probabilities up to 27%, with a higher one at greater loads. This indicates that

AAMH might produce a more consistent network performance than the learning automata

based method under realistic network loads. A table on iterations for convergence is not

included as the AAMH algorithm does not require a period in order to converge.

These results are a little unexpected as learning automata based methods should

produce superior performance after convergence at lower loads due to the accessibility of a

greater number of paths. The reason for the poorer performance must therefore centre on the

failure to fully converge due to the statistical variations in the user demand models.

However this experimental scenario does not match real-world network scenarios

very closely. The following section therefore details a more realistic experiment, from which

results are gathered and observations drawn.

AAMH with RA+B, IA20s

ra 0,06

m 0,04

200000 400000 600000 800000 1000000

Connection attempts

Figure 61: 28-node network and AAMH with RA+B

Traffic load (conn./sec.)
().()5 0.067 0.1 0.12 0.14 0.2 0.33

A A M H , RA+B 0.050 0.128 0.276 0.344 0.421 0.529 0.662

Table 15: Average network probability for 28-node network with AAMH and RA+B

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

A A M H , RA+B 0.017 0.021 0.025 0.026 0.026 0.026 0.018

Table 16: Standard deviation on network blocking probability for 28-node network with

AAMH and RA+B

113

5.3.2 A more realistic network scenario

The simulation results to date have used statistical interarrival and holding times for the user

demand model traffic generation. This results with a dynamic variation in the traffic arrivals

and so network resource usage at any one instant, but a fixed or static statistical variation in

the user demands. By running separate simulations using different average interarrival times,

the user demand traffic is altered so causing the network resource usage to be changed. These

experiments have been used to give an indication of network behaviour at different loading

rates, the effect of resource control algorithms being different according to the user demand

traffic loading.

Whilst such simulation methods have historically been used to ascertain network

behaviour, real networks do not exhibit such scenarios in practice. User demand traffic is

dynamic, but rarely statistically constant as user demand characteristics change over different

measurement periods. Simulation work to date has tried to take this factor into account by

generally undertaking peak busy-hour experiments in order to characterise the network

performance under the worst-case traffic loading. What such simulation experiments fail to

capture however, is that in real networks user demand traffic does not perform a large step

response in size, but gradually and statistically increases to the peak level. The effect of this

is for certain network resources to be consumed so that the network is in a certain state before

the peak busy-hour period occurs, the network moving from one state to another as the user

demand traffic changes. Using a step response change in the user demand traffic from zero to

that of the peak busy-hour period causes the network to begin in a different state than in real-

life, so that there is a distinct possibility of it ending up in a state different to that of the real

network situation. Another weakness of such experiments is that much of the dynamics of

network behaviour is lost because the user demand fraffic being statistically constant.

Recent work has highlighted these failings [65], and subsequent simulation

experiments have used frends in user demand traffic in order to match real-life network

scenarios more closely [66]. These trends were composed of increasing, decreasing and

steady-state user demands, the level of demand being deterministically calculated according

to the current simulation time and start of the currently valid sfraight-line frend. The work in

this section goes a natural step forward by using statistical rather than deterministic frends for

user demand fraffic generation, as was outiined in [67]. Due to the increased resulting

dynamism of the network state, it is expected that learning automata performance relative to

that of A A M H may be poorer still.

114

5.3.3 Experimental results

Figure 62 shows the mean trend used for each 24 hour recurrent time periods. Due to

limitations in the statistical variations o f the modelling environment, step sizes were used

instead o f true trends. However this method convincingly approximates trend generation, as

is shown by the typical user demand trace at each source node given in Figure 63. As may be

seen, the mean trend is replicated eleven times and a statistical variation applied to it. The

multiplicity o f recurrent time periods allows for a large enough sample space from which to

derive statistical conclusions.

0.07

0.06

0 05

0.04

0.03

0.02

0.01

0

User de i rand (conn sec ;

10000 20000 30000 40000 50000 60000 70000 80000

T i m e (s e e s .)

Figure 62: Mean trace used for a 24 hour period

A typical user demand trend for each source node

» 0 0 5

= 0.03

o 0.01

200000 400000 600000 800000

E a l p s e d t i m e (s e e s .)

1000000 1200000

Figure 63: A typical resulting user demand trace at a source node

115

When using the A A M H algorithm combined with the existing signalling method of link-state

propagation, the recurrent time periods are clearly indicated in the resulting blocking

probability performance, this being shown in Figure 64. Peak demand levels result with

blocking probabilities o f up to 18%, but generally up to 16%. Comparing these results with

those o f the learning automata with the automatic reinforcement algorithm selection which are

shown in Figure 65, confirms our expectation o f poorer performance. This graph shows peak

blocking probabilities o f up to 22%, but generally up to 19%. Examining the entropy curve

shows that as previously the reason for this poorer performance is due to lack o f action

probability convergence. This is shown by the curve evidencing continuous change,

indicating that the action probabilities are continually changing.

There therefore seems to be the requirement for schemes to improve the convergence

o f the action probabilities when learning automata interact with non-autonomous

environments. A problem certainly apparent with this application revolves around the binary

environment feedback mechanism. The network does not differentiate between a route which

is almost saturated, and one having low utilisation, returning a positive feedback response for

the reinforcement algorithm in either case. The improvements proposed in the following

chapter are linked with learning automata operating with link utilisation based environment

feedbacks, these being a richer and more informative basis with which to reinforce the action

probabilities. The use o f this mechanism should aid convergence and so result with lower

blocking probabilities.

AAMH with trend user demands

0.18 r

u> 0,08

200000 400000 600000

C o n n e c t i o n a t t e m p t s

800000 1000000

Figure 64: Performance of AAMH with trend user demands

LA with automatic algorithm selection and trend user
demands

0.25

S 0.15

1̂ m
- Blocking Prob

Entropy

0 200000 400000 600000 800000 1000000

C o n n e e t i o n a t t e m p t s

Figure 65: Performance of LA with automatic algorithm selection with trend user demands

5.4 Summary

The results presented in the previous chapter highlighted a number of reinforcement

algorithms which produce good learning automata performance when interacting with non-

autonomous environments. The DLRP algorithm results with fast convergence but a high

subsequent steady-state variation. The LReP algorithm on the other hand, produced the

contrary in both performance metrics. It seems that improving convergence speed degrades

steady-state performance, whilst increasing steady-state accuracy slows convergence. The

work presented in this chapter has sought to improve the performance of both algorithms by

seeking to alter their convergence speed or steady-state accuracy according to the

environment state. This has been done in order to produce an algorithm which might be

generically applicable to non-autonomous environment applications such as routing in

communication networks. The two methods that have been examined in this chapter are

adaptive learning rates and automatic reinforcement algorithm selection.

Each mechanism seeks to change a parameter or method according to the converged

state o f the action probabilities. I f the action probabilities have converged, then the

reinforcement algorithm parameters or method is changed in order to reduce the steady-state

variation. Contrariwise, i f the environment state is moving, then the reinforcement algorithm

is altered in order to produce a faster convergence of the action probabilities. These

alterations or parameter changes therefore require a mechanism for detecting the state of

convergence o f the action probabilities. Rather than trying to characterise the environment

states a-priori to determine when the action probabilities have converged (as with the previous

117

chapter), a novel mechanism is detailed which calculates the local entropy of the action

probabilities for determining whether they are relatively stationary or still moving.

Experimentally derived enfropy thresholds have been calculated for DLRP and LReP in turn,

where a low mean enfropy change after ten iterations would cause the reinforcement

algorithm to be set to favour low steady-state variation rather than high convergence speed. I f

on the other hand there occurs a relatively large mean enfropy change after ten iterations, the

reinforcement algorithm is altered to favour faster convergence rather than lower steady-state

variation. This novel action probability convergence state detection mechanism has been

successfully applied in this study for both the adaptive learning rates and automatic

reinforcement algorithm selection methods.

The novel adaptive learning rate mechanism seeks to alter the reinforcement

algorithm learning rates. The rate is set high when requiring fast convergence speed, and low

when hying to increase steady-state accuracy. The mechanism was successfiiUy applied to

both the DLRP and LReP reinforcement algorithms using different enfropy change thresholds.

The LReP algorithm seems relatively unaffected by fixed learning rate parameter changes, so

a significant improvement was not evidenced when using the adaptive learning rate

mechanism. The use of the mechanism with the DLRP algorithm on the other hand, did

produce a noticeable improvement, especially under lower network loading.

However this improvement was not large enough to remove the conclusion that using

the DLRP algorithm produces better convergence speed, whilst using the LRsP algorithm

results with a lower steady-state variation. This observation led to the formation of the novel

automatic algorithm selection scheme, where instead of adapting the learning rates to produce

better performance, the DLRP algorithm is used under action probability convergence

conditions, and the LReP algorithm is switched in under steady-state conditions. This novel

scheme was found to produce significantiy superior results in terms of both iterations required

for convergence and subsequent blocking probability. It therefore may be considered as a

suitable reinforcement method for learning automata interacting with a non-autonomous

environment.

Finally the resulting improved learning automata performance was compared to the

improved dynamic shortest-path based algorithm proposed in chapter 3. In order to assess the

performance benefits of one algorithm versus the other, a new network experiment type was

defined, based on user demand frends which more closely resemble real networking

situations.

The initial experimental results which used the standard statistically constant user

demands showed that the A A M H algorithm consistently returned a lower blocking probability

of close to 1%), and did not require a convergence period. It was expected that the relative

118

A A M H performance would be even more superior when used in the more realistic trend

scenario, and this indeed proved to be the case. A A M H was seen to peak at a blocking

probability of 18%, whilst the learning automata with automatic algorithm selection scheme

peaked at a blocking probability of 22%.

It was seen that the poorer learning automata performance was due to the failure of

the action probabilities to fully converge, this being evidenced by the entropy trace constantly

changing. The main reason for the lack of convergence was noted as the fact that the network

does not differentiate between a route which is almost saturated and one having low

utilisation, returning a positive feedback response in either case. Therefore to improve the

learning automata performance, there is the requirement to make the network feedback

responses linked in some way with the spare capacity on the route. The work detailed in the

next chapter seeks to do just this: to modify the reinforcement algorithm and environment so

that the learning automaton operates on utilisation based network responses. It is expected

that the use of this mechanism will aid convergence and so result with lower blocking

probabilities.

119

6 Using an S-model response environment for a novel

learning automata based routing algorithm

6.1 Introduction

The purpose of the following chapter is to re-apply learning automata to the routing problem

in networks in a novel way which is related more closely with network performance

indicators. Previous reservation-based work has been linked with the acceptance or rejection

of connection requests, but this work links the environment feedback with the actual link

utilisation levels which cause a connection request to be either accepted or rejected. By so

doing, better performance is expected due to the greater information content returned in the

environment feedback.

Rather than using the binary P-model response environment as previously, the S-

model response environment is used. The relative available bandwidth on the route is

normalised to the range of 0 to 1, and then smoothed to erase short-term fluctuations using the

exponential smoothing technique.

Experiments are then performed to obtain the best performing learning rate for the

reinforcement algorithm chosen. Finally the performance of this novel algorithm is compared

to that of A A M H and the P-model automatic reinforcement algorithm selection method

detailed in the previous chapter.

6.2 Reasons why a new learning automata method for routing in

networks is required

As was outlined in chapter 2, learning automata based routing applied to reservation-based

connection-oriented networks has utilised the P-model response environment in all the

literature surveyed. Reservation-based connection acceptance is based on whether there

remains sufficient bandwidth along the source to destination path to allow the connection

request QoS to be met whilst not violating the QoS of the connections already present along

the path. Therefore there exists a simple mapping from the network response to a connection

120

request (this being either an acceptance or rejection) to the binary feedback of the P-model

response environment.

However a number of weaknesses are apparent with the use of this method. The main

one was highlighted by the results in chapter 4, in that a significant number of the

reinforcement algorithms failed to converge. Those particularly affected were discretised

schemes, where nearly all types failed to converge. The main difference in operation between

discretised and continuous schemes is that the former approach an action probability of unity

directiy, whilst the latter do so asymptotically. This means that with continuous linear

schemes, when the action probability is close to unity a reward environment response causes

the probability to be increased slightly whilst a penalty response causes it to be decreased by a

higher amount. Discretised linear schemes on the other hand would increase and decrease the

action probability by the same amount wherever its value was currentiy found.

It therefore seems to be the case that penalty responses are an integral part of the

convergence process. A sufficient number of them are required for convergence to take place,

or in order to stop the action probability continuing to increase to a value of unity as occurs

with many discretised schemes. For applications such as the routing function in networks,

where minimum environment penalty probabilities are generally low and in the order of up to

10%, the requfrement for a significant number of penalty responses from the environment

becomes unacceptable. This indicates that learning automata methods in their present form

may not be realistically used for the routing function of reservation-based connection-oriented

networks such as multi-service networks.

Another weakness of the presently used method is the lack of richness in the

information passed with the environment feedback response. The binary response of the

connection request being accepted or not includes no indication as to whether the network

resources along the path chosen are almost fully or only slightly utilised. In cases of low

capacity utilisation it is expected that load balancing would therefore not occur, this being a

usual benefit of using learning automata for the routing function. Using the available

bandwidth feedback information should result with much faster convergence of action

probabilities as their updating wil l vary in granularity according to the size of the remaining

free network resources along the route, so causing the probability value to move more quickly

towards using paths of lower utilisation. A load balancing effect should then also occur,

whatever the level of utilisation of the network resources. Indeed, the network mechanism

currently utilises available bandwidth as its confrol indicator, accepting a new connection

request i f there remains sufficient free bandwidth along the route. It therefore seems

reasonable to use the same confrol indicator as the updating mechanism for the learning

automata action probabilities. The use of this method should also ensure that environment

penalties, which in this case are connection requests blocked, are no longer required for

121

convergence to take place. It is therefore realistic to use this new method of applying learning

automata to the reservation-based connection-oriented routing problem in real networks.

6.3 Using an S-model response environment paradigm

In order to have a richer feedback response capability, the S-model response environment

must be substituted for the P-model response environment which has been used up to this

point. The S-model response environment allows the feedback response to take any value in

the region (0, 1) rather than be limited to either 0 or 1 as is the P-model feedback.

6.3.1 Normalising the available bandwidth

The issue is now to convert the available bandwidth value for a path into a value that lies

within the region (0, 1). This is a similar problem to that posed when applying learning

automata to routing in packet-switched networks: how to map the variable delay values to the

region (0, 1). The difference between these two cases is that delay values are effectively

unbounded at the maximum, whilst the available bandwidth is bounded at the upper end by

the link capacities. The bandwidth conversion problem is therefore simpler, and so the

following formula is sufficient:

,. , , available bandwidth
normalised bandwidth = 1 -

minimum link capacity along path

The available bandwidth for a path is the minimum available bandwidth on all the logical

links which form the path from the source to the destination node. The formula will return

values close to 0 under low utilisation, and close to 1 under high utilisation conditions. As

with delay feedbacks, it is beneficial to smooth updates of available bandwidth in order to

smooth out short-term fluctuations in available bandwidth. The exponential smoothing

technique can be used as follows:

normalised bw(new) = £-(normalised bw(old)) + (1 - £-)(normalised bw(retiimed))

122

with 0<e<l

A high value of e causes the normalised bandwidth to react slowly to bandwidth changes,

whilst too low a value of 8 will cause the smoothing process to fail as the value returned will

match short-term fluctuations too closely. Values used in real network scenarios vary

according to application. For example Cisco's Weighted Random Early Detection (WRED)

mechanism uses a normalised value for the average buffer depth in order to ascertain whether

to probabilistically discard IP packets [70]. As buffer depth in IP routers can vary

significantly over short periods of time, the weighting factor is set to 0.998 so that a 'longer

term' average value is returned. However with our application reserving bandwidth on the

network for the duration of a call, it is not expected that link utilisation values will vary

greatly in the short-term. Therefore a lower value of 0.7 is used for the ensuing experiments.

6.3.2 Reinforcement algorithm selection

The benefits of using the S-model response environment revolve around the variable

environment response which can be generated. To fully utilise the feedback information, the

reinforcement algorithm ideally requires the capability of having an updating function which

can operate at the same level of granularity as the environment feedback.

This requirement effectively precludes the use of discretised schemes as their benefit

concerns the coarse granularity of their action probability updates when these are close to

unity. This leaves the two continuous schemes which were recommended from the

investigation undertaken using the P-model response environment: LReP and GE with the 'x^'

updating function. As with chapter 5, because this application type's environment is rarely in

a steady-state condition and the GE algorithm requires a large number of iterations for it to

converge, it is not used in this experiment. Therefore only the LReP reinforcement algorithm

is used for this new application of learning automata to the connection-oriented reservation-

based routing problem. It should be noted however, that it is possible that other

reinforcement algorithms are suitable for use with non-autonomous S-model environments

such as this, since the performance experiments undertaken in chapter 4 utilised the P-model

response environment.

The varying feedback response returned by the environment according to the amount

of available bandwidth on the route chosen, will cause a varying adaptation rate of the action

probabilities. Therefore the use of automatic adaptation of the reinforcement algorithm

learning rate is not utilised in these experiments, as their purpose is to show the effectiveness

123

of the new method of applying learning automata to the routing problem in networks. Were

the learning rate adaptation method utilised in these experiments, frirther convergence speed

gains with higher steady-state accuracy might be expected to result. However its usefulness

might be limited to scenarios of high resource utilisation, where the available bandwidth

feedback response is relatively low which causes a small change in the action probabilities

and so a small entropy change.

6.4 Experimental results

This section is composed of two parts. The first shows the effects of changing the fixed

learning rate on the resulting algorithm performance, the purpose being to use a learning rate

parameter which returns an acceptable medium between high convergence speed and low

subsequent steady-state accuracy.

6.4.1 Learning rate effects

As a fixed learning rate is required, so high learning rates are selected for study. This is valid

because the variable feedback response is bounded at the minimum and maximum by values

of 0 and I , which are those returned with the P-model response environment with reward and

penalty responses respectively. Therefore as the environment reward response would very

rarely be close to 0, this being true only in cases of little or no utilisation, so the updating

effect on the action probabilities would be significantly less than the full high learning rate

when using the P-model response environment.

The highest learning rate used for the P-model LRsP algorithm was 5%, so this was

chosen for the initial experimental evaluations. Three experiments were performed for each

learning rate tested: one producing a low blocking probability (around 5%), another

producing a higher one (around 35%), and a final one producing one still higher (around

65%). The rationale for this was to see i f a learning rate producing good relative performance

in a certain scenario would produce poorer relative performance in differing ones.

Initial algorithm results showed promise, with a lower blocking probability (3.8%))

and subsequent variation returned under low network loading than either A A M H (4.9%) or

the P-model learning automata method with automatic algorithm selection (5.9%). However

it took a larger number of iterations for the algorithm to converge, from 100,000 with the P-

124

model automatic algorithm selection to 400,000 with the S-model LReP. Another weakness

evidenced was that a higher blocking probability compared with the other algorithms was

returned for the higher loading rates. In order to improve on the slow convergence rate, the

learning rate for the S-model LReP was increased in 2% increments until poorer blocking

probability performance ensued.

As expected. Table 19 shows that as the learning rate was increased, so the

connection attempts required for convergence generally decreased. However an unexpected

conclusion is drawn from Table 17, in that the resulting blocking probability actually

decreases as the learning rate is increased. This initially counter-intuitive result can be

explained by examining the enfropy of the action probabilities for the various learning rates.

It was seen that after convergence the global enfropy value was 389 when using the 5%

learning rate, and 345 with the 17% learning rate. This indicated that the action probabilities

had converged to significantly different values with the 17% learning rate, implying by the

better network performance that the action probabilities had been able to converge more

accurately, and not get stuck in local minima as with the 5% learning rate. Remaining in local

minima might easily occur with S-model reinforcement algorithms since when the

environment feedback is close to 1 the action probability update is very small. Therefore it is

possible when using lower learning rates for the action probabilities not to fully converge

before link utilisation levels are close to capacity, so that the action probabilities do not vary

significantly from then on when using the statistically constant user demands of these

experiments. As the effect of raising the loading rate is to cause link saturation to occur in

fewer connection attempts, since the holding time remains constant, so the action probabilities

have less iterations to converge resulting with the higher blocking probability when compared

with the other algorithms.

By comparing the resulting blocking probability (Table 17) with the iterations

required for convergence (Table 19), it was decided to use a learning rate of 17% as this

produced both a low blocking probability and low number of iterations before convergence.

However even at this high learning rate, the resulting network blocking probability under high

loads is worse than with the previous algorithms. It therefore seems to be the case that a

significant portion of the overall action probability convergence for the P-model automatic

algorithm selection occurs when the links are already at or close to saturation. This explains

why increasing the learning rate of the S-model LReP still fiirther does not reduce the

blocking probabilities, but rather causes them to increase slightly as the pre-link saturation

convergence is now less accurate.

125

Learning rate Traffic load (conn./sec.)
0.05 0.12 0.33

5% 0.038 0.364 0.677
7% 0.034 0.364 0.676
9% 0.036 0.363 0.676
11 % 0.036 0.363 0.677
13 % 0.035 0.363 0.676
15% 0.036 0.363 0.677
17% 0.035 0.364 0.677
19% 0.036 0.363 0.677
25% 0.039 0.365 0.676

Table 17: Average network blocking probability for 28-node network with S-model LRsP and
various learning rates

Learning rate Traffic load (conn./sec.)
0.05 0.12 0.33

5 % 0.009 0.023 0.018
7% 0.01 0.022 0.017
9% 0.009 0.023 0.017
11 % 0.009 0.022 0.018
13 % 0.010 0.023 0.017
15% 0.009 0.022 0.017
17% 0.009 0.023 0.018
19% 0.010 0.023 0.018
25% 0.010 0.022 0.018

Table 18: Standard deviation on network blocking probability for 28-node network using S-
model LRsP and various learning rates

Learning rate Traffic load (conn./sec.
0.05 0.12 0.33

5 % 400,000 60,000 20,000
7% 400,000 40,000 16,000
9% 300,000 37,000 20,000
11 % 105,000 12,000 16,000
13% 150,000 20,000 12,000
15% 150,000 10,000 17,000
17% 140,000 10,000 15,000
19% 135,000 11,000 13,000
25% 80,000 17,000 20,000

Table 19: Global connection attempts for convergence for 28-node network using S-model

LRsP and various learning rates

126

6.4.2 Comparative algorithm results

Figure 66 shows the convergence o f the S-model LReP algorithm with the fixed 17% learning

rate under a statistically constant loading rate with an interarrival time of 20 seconds.

Comparing this with that for A A M H in Figure 67 and the P-model learning automata with

automatic algorithm selection in Figure 68, it is seen that the S-model LReP algorithm

produces both lower average blocking probability and steady-state variation. This algorithm

outperforms the other two at this loading level because it can choose under-utilised routes

longer than the shortest or next shortest. This is also true of the P-model automatic algorithm,

but its coarse granularity environment feedbacks seem to preclude it from doing so

effectively. This is shown by the entropy traces for the two, the one for the P-model

automatic algorithm clearly converging to a significantly lower value, finishing the simulation

at 80 instead o f 250 for the S-model LRsP. This lower value for the P-model automatic

algorithm indicates that it is more prone to action probability extremes (i.e. close to 0 or 1),

precluding the occasional use of longer paths which the S-model LReP algorithm uses. It is

under these relatively lower levels o f loading that the algorithm can occasionally use longer

paths for beneficial effect, for at higher loading rates the extra network capacity used for a

longer path cannot be used by arriving connection requests, leading to a higher blocking

probability and so worse comparative performance. This is shown by the comparative results

in Table 20, indicating that at loading levels o f 0.1 connections per second and higher, poorer

results than the other two algorithms are returned.

S-model LReP with 17% learning rate, lA 20s

S 0.07

o 0.03

0 02

200000 400000 600000 800000 1000000

C o n n e c t i o n at tempts

• Blocking Rob.

- Entropy

Figure 66: 28-node network with S-model and LRsP with 17% learning rate, lA 20s

127

AAMH with RA+B, IA20s

. 0.08

? 0.06

a 0.04

200000 400000 600000

C o n n e c t i o n at tempts

800000

Figure 67: 28-node network with AAMH and RA+B

DLRP-LReP with fixed 1.5% learning rate, lA 20s

0.2

3 !8

D 16

3 14

S 0.12
Q.

? 0.1

0.08

0 06

0.04

0.02

0

- Blocking Prob.

200000 400000 600000 800000 1000000

C o n n e c t i o n a t tempts

Figure 68: 28 node network with P-model and automatic algorithm selection

Table 21 shows that the S-model LReP algorithm results with lower or equal steady-state

variation than the other two algorithms. This must be due to the relative stability of the action

probabilities under saturated or close to saturated link conditions, for the A A M H and the P-

model environment responses might have significant variations of actions and feedbacks

respectively (which in turn leads to different probabilistic actions for the P-models automatic

algorithm).

Table 22 shows that the S-model LReP algorithm needs a slightly higher number of

iterations to converge compared to the P-model automatic algorithm under the relatively

lower loadings, the converse being true for the higher loadings. This is acceptable given the

view that convergence speed was sufficient for the P-model automatic algorithm.

128

Tral •fic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

S-model ReP 0.035 0.130 0.297 0.364 0.438 0.546 0.677
AAMH 0.050 0.128 0.276 0.344 0.421 0.529 0.662

Automatic 0.059 0.138 0.287 0.353 0.423 0.532 0.663

Table 20: Average network blocking probability for 28-node network with S-model andLRsP

with 17% learning rate

Tral •fic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

S-model ReP 0.009 0.018 0.024 0.023 0.023 0.020 0.018
AAMH 0.017 0.021 0.025 0.026 0.026 0.026 0.018

Automatic 0.021 0.025 0.026 0.025 0.023 0.022 0.018

Table 21: Standard deviation on network blocking probability for 28-node network using S-

model and LRsP with 17% learning rate

Tral ffic load (conii./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

S-model ReP 140,000 35,000 11,000 10,000 14,000 10,000 15,000
Automatic 100,000 33,000 8,000 11,000 15,000 12,000 16,000

Table 22: Global connection attempts for convergence for 28-node network using S-model

and LRsP with 17% learning rate

The following three figures show results for the more realistic network scenario, that using

the frend user demand models. Figure 69 shows the graphs for the S-model LReP algorithm,

the minimum peak blocking probability in any of the simulated days being just under 19%.

This compares exfremely favourably with the P-model automatic algorithm which peaked at

22% (Figure 71). A comparison of the two algorithms' entropy fraces indicates the reason for

the superior performance of the S-model LReP algorithm. As was the case previously, the

enfropy frace values are significantly higher for the algorithm, showing that it is using a

greater number of paths since action probability exfremes are used less often.

However the S-model LReP algorithm is similar or slightly worse than the AAMH

algorithm performance (Figure 70). Since the LReP algorithm outperformed the AAMH

algorithm using statistically constant load user demands, so this slightly inferior performance

is due to the required iterations before convergence. With its ability of utilising a wider set of

paths however, it is expected that the S-model LReP algorithm will outperform the AAMH

129

algorithm in most network scenarios, as these will generally evidence varying degrees of non-

symmetry in the user demands. Therefore the conclusion drawn from comparing Figure 69

with Figure 70 may be thought of as the worst-case comparative S-model LReP performance.

S-model L R e P with 17% learning rate and trend user demands

-r 700

400 ?

200000 400000 600000 800000 1000000

C o n n e c t i o n a t tempts

• Blocking Rob,

- Entropy

Figure 69: Performance of S-model LRsP LA with trend user demands

AAMH with trend user demands

?> 0 08

o 0.06

200000 400000 600000

Connec t ion at tempts

800000 1000000

Figure 70: Performance of AAMH with trend user demands

130

LA with automatic algorithm selection and trend user
demands

1 0.15

1—

• Blocking Rob,

Bltropy

0 200000 400000 600000 800000 1000000

Connect ion at tempts

Figure 71: Performance of P-model LA with automatic algorithm selection and trend user

demands

6.5 Summary

The previous chapter detailed two improvements to the standard learning automata

application to routing in reservation-based networks: adaptive learning rates and automatic

reinforcement algorithm selection. Of these two the automatic algorithm selection method

produced the greater performance improvement, but this was still short of the superior

performance of the AAMH algorithm of chapter 3, both in terms of blocking probability and

iterations required for convergence.

The main reason noted for this inferior performance is the P-model response

environment, in that no differentiation is possible between routes almost saturated and others

with low utilisation, both returning an environment feedback of zero. By using an S-model

response environment with a utilisation level based feedback, an improved load balancing

would ensue (especially at lower loading rates), leading to an expected reduced blocking

probability.

Normalising the available bandwidth into the range 0 to 1 required a relatively simple

formula as the maximum value is bounded by the link capacities. The formula is as follows:

available bandwidth
normalised bandwidth = 1 -

minimum link capacity along path

In order to smooth out short-term fluctuations, the exponential smoothing technique is used.

As using the S-model response environment precludes the use of discretised

reinforcement schemes, so the fixed LRsP algorithm was used. In order to have the best

131

learning rate, various experiments were undertaken using differing loading rates, whilst

progressively increasing the learning rate until poorer performance ensued. A high learning

rate of 17% was found to be superior to others, both in terms of blocking probability and

iterations for convergence. Whilst the latter is expected, the former was initially surprising,

but can be explained by the fact that a high learning rate will cause the action probabilities to

converge quickly before saturation of links occurs, the environment feedbacks being much

smaller thereafter.

Comparing the algorithm's results for statistically constant user demands with those

of A A M H and the P-model automatic algorithm selection, showed that the former

outperformed the two latter under low loading levels, the converse occurring as the loading

increased. Using the trend user demands showed that the S-model LRsP and AAMH results

were fairly comparable, both returning a comfortably lower blocking probability than the P-

model automatic algorithm.

The superior performance of the S-model LReP algorithm under relatively low loads

was shovra to be due to its ability to use a larger set of possible routes. Whilst these network

scenarios have used symmetrical network loading, non-determinism of user demands in real

networking situations would generally cause non-symmetry of loading. It is therefore

expected that this algorithm would improve its relative performance compared with the others

still further under real network scenarios.

132

7 A hybrid routing algorithm utilising both shortest-path

and learning automata concepts

7.1 Introduction

The work presented in the previous chapters has sought to improve the performance of

learning automata methods, when applied to the routing problem in reservation-based

networks. However, despite the various improvements, weaknesses with the use of leaming

automata are still evident; namely the large number of iterations required before convergence,

and therefore the poorer blocking probability under certain circumstances when compared

with the A A M H algorithm. In order to overcome these weaknesses, the work contained in

this chapter seeks to combine the A A M H algorithm with the S-model LReP leaming

automata method to produce a hybrid algorithm. The Specification Description Language

(SDL) is used to detail the algorithm's functionality.

As with the automatic switching systems proposed in chapter 5, the average local

entropy change is used in the decision making aspects of whether to switch from the AAMH

to the S-model LReP algorithm and vice versa. Once the relevant switching thresholds are

found via the use of the four node experiment, the algorithm is applied to the 28 node network

in various experiments with both statistically constant and trend user demands. Finally the

results of the hybrid algorithm are compared to those of the AAMH and S-model LReP

algorithms when used alone, and conclusions on overall performance differences drawn.

1.1 Using leaming automata for routing in real networks

The following sub-sections begin with a description of the reasons why a re-application of

leaming automata based network routing was undertaken. Having provided the rationale, the

proposed new routing algorithm is presented in detail, including a flowchart representation of

the algorithm. Finally this main section ends with the experimental details for calculating the

necessary switching thresholds, based on the average local entropy changes.

133

7.2.1 Rationale for a novel learning automata based routing algorithm

Real networks are initially designed, provisioned and configured, based on the expected user

demand traffic pattem or matrix. This is required so that the designers can reasonably choose

the aggregate finite network resources needed together with an initial configuration and

policies for sharing them fairly between different streams of user demand traffic. Were the

designers to have perfect knowledge of the user demands that will be present on the network,

then an optimal provisioning and route configuration might be put in place, requiring just

single routes fi^om each source to its destinations. However as it is never possible to have

perfect knowledge of user demands, so the expected traffic demand pattem will never exactly

match that seen on the actual network. In order to allow variations in the user demand to still

have access to the network, alternate routes from source to destination nodes can be

configured, so that under-utilised network resources on one main route may be utilised by an

altemate path. The ordering of these altemate route attempts may be either static or dynamic.

In dynamic routing the ordering of altemate path selection would be changed according to the

equipment status and possibly also the network loading at the time. Static routing would not

vary the order of altemate path selection. Using either means, the routes are chosen

deterministically, based on both expected or historical user demands and possibly current

traffic patterns.

Stochastic learning automata based routing, on the other hand, performs its decisions

using a stochastic rather than deterministic paradigm. The action probabilities are

determined, but the choice of a specific action occurs stochastically. The justification for this

mechanism is that the non-autonomous environment response to a node's routing actions is

stochastic because of the routing interactions occurring at other parts of the network.

Therefore the learning automata can adjust their action probabilities in order to produce a

close to optimal stochastic environment response. This stochastic environment response is

not just a featiire of applying learning automata to the routing problem in this way, but is also

present with deterministic routing methods so that performance measures for a such routing

algorithms are often given in terms of blocking probability. However it is not the case that

the stochastic environment response seen with traditional routing methods is caused by the

routing mechanism as this is deterministic. It is therefore solely a factor of the user demands

which are non-deterministic, and how they are allocated to the network resources by the

routing mechanism. Stochastic learning automata applied to the routing function in this

marmer are tracking the non-deterministic network load by characterising the combined non-

deterministic user demands and demand to network allocation method. This paradigm arose

out the observation that network load is non-deterministic, even i f the demand allocation

134

mechanism is deterministic. It seemed reasonable to combine the characterisation of the user

demands and network resource reservation function into one as their combined effect is non-

deterministic, and leaming automata essentially characterise a non-deterministic environment.

However improved results from the application of leaming automata may arise by applying

them in a different way, so that they characterise purely the non-deterministic user demands,

and these results are used in deterministically calculating the most applicable resource

allocation. Recent work has indicated the need to apply leaming automata to the routing

problem in this different manner; unbundling the non-deterministic environment response by

the leaming automata characterising the non-deterministic user demands themselves rather

than their effect on the network response [65].

The work collated in this chapter does not go fully down this route, but may be

thought of as an intermediate step as it brings together the use of both standard deterministic

methods together with a leaming automata component. Such a method may be used with any

non-autonomous environment application, in order to improve the performance of a leaming

automata mechanism, and therefore also aid the acceptance of stochastic leaming automata

methods. A hybrid solution for the routing problem is given: the proposed mechanism being

composed of both a dynamic shortest-path component and a stochastic leaming automata

component, both of which are used to make the routing decisions. The initial motivation for

designing this hybrid algorithm was to overcome performance weaknesses of existing

applications of leaming automata. Whilst leaming automata methods have been shown to

produce near optimal steady-state performance, their main weakness is in the slow

convergence of their action probabilities when tracking an environment to a new steady-state

position. Traditional methods, such as shortest-path network routing schemes, normally have

good initial performance due to their deterministic action choices, but suffer somewhat in

steady-state conditions due to their limited number of possible choices. Therefore the

proposed hybrid algorithm solution to interacting with non-autonomous environments is to

use traditional deterministic algorithms under moving environment state conditions, whilst

using the environment response to continue to update the leaming automata action

probabilities. When the environment is close to a steady-state condition, the leaming

automata part may then be used to perform the actions, optimising the action probabilities still

further in order to produce a better performance response from the environment. Such should

occur due to the reinforcement algorithm updating the action probabilities so that not only are

shortest-paths chosen, but occasionally also slightly longer ones [19], so providing a greater

degree of load balancing and use of spare network bandwidth.

Not only should this hybrid method produce better performance than the use of either

component on its ovm for the routing function, but the deterministic component in the

algorithm causes the updating of the leaming automata action probabilities to follow paths

135

engineered in the network because of expected user demands, network topology and

configuration. The action probabilities then become set close to the expected user demand

traffic pattem under moving network state conditions, adapting to the actual and unexpected

traffic pattem when the network is close to steady-state conditions.

7.2.2 Hybrid algorithm details

The following section describes the proposed hybrid algorithm in detail, utilising the CCITT-

Specification and Description Language (SDL) [68]. The algorithm has two main states: the

A A M H and the LA states, these describing whether the algorithm process is performing the

functionality of the A A M H or the LA algorithm for its routing decisions. Part (a) of Figure

72 shows that after initialisation, the routing algorithm process commences in state AAMH.

As may be seen in parts (b) and (d), either state can receive and operate on the same

two events: a route connection request, and an environment feedback update. The operations

performed on reception of the environment feedback update when in either state are very

similar. In both cases, the index of the action probability corresponding to the routing attempt

previously made is obtained. Next it is updated using the LReP reinforcement algorithm with

a 17% learning rate, with the other action probabilities being adjusted accordingly. The

entropy of the new action probabilities is then calculated, and after ten environment feedbacks

the average entropy over the set of feedbacks is compared with that for the previous set. I f

the current state is ' A A M H ' and the difference is less than the 'LA switching threshold', a

transition to state ' L A ' occurs. I f the current state is LA and the difference is greater than the

A A M H switching threshold, then a transition to state ' A A M H ' occurs. I f no state transition

occurs, the process remains in its current state.

^ START ^

INITIALISE VARIABLES:
previous_entropy_sum := 0
LA_switch_threshold := 0.1

AAMH_switch_threshold := 0.1
entropyjnstances := 0

entropy_sum := 0

^ AAMH J
(a): Specification at start

136

C

^ "9 o c

on
m

en
t

ck
 u

pd
a

X
of

 a
ct

i
or

re
sp

c

> -o

et
 in

de
:

ib
ili

ty
 c

OB 2
Q.

= a! E "

a | s E U P
O 0)

1 E

^1 " l

o o

CD ^

o
a

AAMH (2)

Is 2 routing
attemot flap set?

Is alternate route
bit set in received

c p t i i n nkf ?

available BW
0 ?

no_of_routes := total
no of alternate routes

^ AAMH ^

routes

Obtain next possible
minimum hoo route

Get route available BW

available_BW <
required connection BW

route_available_BW
>available B W ?

route_available_BW
= available BW available_BW :=

route available BW

Record route_no and clear
other recorded route numbers Add route_no to

recorded route numbers

1^

no_of_rout
of recorc

3S := number
ed routes

Generate r
intervalf1.r

3ndom_no in
0 of routesl

next_iiopJd :=
recorded_routes(

index random no)

Store connection
information at tiiis node

Send setup pkt
next tiop ii

p k t t o ^ v .

^ AAMH ^

available BW := 0

Clear sto
num

red route
bers

Generate - v e
environment

feedbaclctoself

(c): Specification for AAMH state (2)

138

I Route connection
request

Generate a random
number within interval

[0,1]

index := 1

Perform action
(index)

Generate - v e
environment feedbacl<

to self

CD

action_probability(index)
> random number index := index + 1

Was there enougri free
BW on outgoing link to

accommodate
connection request?

Y E S

Store connection
information at tliis node

Send setup pkt to
next hop id

1 Environment feedback
update

Y E S

(d): Specification for LA state

Get index of action
previously used

Update action probabilities
using the S-model LreP
reinforcement algorithm
with 17% learning rate

Calculate new local
entropy value

Add this value to
entropy_sum

entropyjnstances :=
entropyjnstances + 1

entropyjnstances
1 0 ?

entropyjnstances := 0

entropy_sum := entropy_sum / 1 0

I
difference := entropy_sum -

previous_entropy_sum

previous_enlropy_sum :•
entrGpy_sum

entropy_sum := 0

difference
AAMH switch threshold

Figure 72: SDL representation of proposed hybrid routing algorithm

139

Comparing the difference in functionality between the two states on reception of a 'route

connection request' event shows the simplicity of the leaming automata implementation to

that required for the A A M H algorithm. When in the 'LA ' state, the algorithm generates a

random number within the interval of [0, 1], and chooses the corresponding action (which in

this case is the outgoing link) as shovra in part (d). I f the outgoing link cannot support the

bandwidth required for the connection request due to it being close to full utilisation, a

negative environment feedback is generated for the process instance. I f the outgoing link can

support the connection request, then the connection information is recorded at the node and

the setup packet sent on to the next node via the chosen outgoing link.

The ' A A M H ' state functionality, on the other hand, evaluates all possible minimum

hop routes to the destination, and i f none of those can support the connection request's

bandwidth requirement all the alternate routes are evaluated. The detailed specification

shown in parts (b) and (c) indicates the significantly higher level of complexity of this

procedure when compared with that of state 'LA ' shown in part (d).

Some of the routing algorithm's associated functions have been left out of the

specification presented. For example, this includes the automatic generation of a 'positive

environment feedback to self on reception of a set-up acknowledgement packet retuming

towards the source node of the connection request.

7.2.3 Switching threshold calculation

The proposed method for determining when to switch from shortest-path to leaming automata

based routing and back again is the local entropy measure, as used in the previous chapters.

The hybrid algorithm is therefore a combination of the algorithm solutions outlined in both

chapters 3 and 6. The shortest path component uses the A A M H algorithm with RA+B link

state update method, storing and acting on load band link state information. Although only

load band information is stored for AAMH, actual minimum available bandwidth on a route is

retumed and used to continuously update the leaming automata action probabilities.

The threshold calibrations are done using the four node network, as the converged

action probabilities can then be calculated analytically beforehand. Having done so, the

resulting local entropy value after convergence can be derived, this being around 3.35 under

the experiment's loading rate. Figure 73 shows the local entropy for the node with the feeder

traffic source when using the A A M H algorithm, whilst still updating the leaming automata

action probabilities. This algorithm results with entropy at around 3.42 which is generally

higher than that for leaming automata, as shown by the comparison with Figure 74 which

140

towards the end of the graph shows consistent entropy values around 3.35 . This effect is

explained by recalling that the AAMH algorhhm is determining and perfomiing the actions

whilst updating the learning automata action probabilities with the environment responses.

Therefore the action probabilities generally will not converge to the expected values under

AAMH, probably requiring further convergence once the learning automata are switched in.

From these two graphs, the threshold values are obtained. When using the AAMH

algorithm, a change in the entropy less than 0.1 between averaged ten point samples should

cause a change to the learning automata method. When using the learning automata, an

entropy change greater than 0.1 should cause the AAMH algorithm to be switched in. The

benefits of this hybrid method is shown in Figure 75 which indicates a faster convergence

than the learning automata method alone, and a lower variation in entropy and so action

probability values than when using the AAMH algorithm alone. Also the entropy values are

generally closer to 3.35 than when just using AAMH, showing that the hybrid algorithm

should produce lower blocking probability results than pure AAMH.

L o c a l entropy: AAMH updating LA probabil i t ies

- Entropy

- Entropy (av. 10)

0 1000 2000 3000 4000

Time elapsed (sees.)

Figure 73: Local entropy using 4-node network with AAMH and action probability updates

141

L o c a l entropy: S-model L R e P 17% learning rate

• Entropy

Bitropy (av. 10)

0 1000 2000 3000 4000

T i m e e l a p s e d (s e e s .)

Figure 74: Local entropy using 4-node network with S-model LRsP and 17% learning rate

L o c a l entropy: Hybrid algorithm

• Bitropy

Bitropy (av. 10)

1000 2000 3000 4000

T i m e e l a p s e d (s e e s .)

Figure 75: Local entropy using 4-node network and hybrid algorithm

7.3 Experimental results

Figure 76 shows the resulting blocking probability and entropy of the hybrid algorithm under

a statistically constant loading rate with an interarrival time of 20 seconds. As may be seen

when compared with Figure 78, the blocking probability graph follows that of AAMH fairly

142

closely, having similar peaks and variations. Like the case when using AAMH, the hybrid

algorithm initially produces zero blocking probability, the value then increasing as

connections arrive and the network becomes congested. This is in contrast with that tor the S-

model ReP algorithm of Figure 77, where convergence of the action probabilities is initially

required to bring the blocking probability down from an unacceptably high value, many

connection attempts being initially blocked because of routing loops or the maximum number

of permissible hops being reached.

The similarity in initial performance characteristics is explained by the fact that

AAMH is initially used by the hybrid algorithm, the S-model LReP algorithm being switched

in once the action probability variations have stabilised. Therefore the initial blocking

probability for the hybrid algorithm is zero, and the action probabilities are updated due to the

A A M H actions, therefore initially converging to both the shortest paths and those altemate

routes of closest hop distance. This explains the lower entropy value converged to by the

hybrid algorithm, evidenced when comparing Figure 76 with Figure 77. A much quicker

convergence in entropy occurs using the hybrid algorithm, with the lower final value

indicating a fewer number of possible route options for the action probabilities are closer to

extremities.

Table 23 compares the blocking probability performance of the hybrid algorithm with

AAMH and the S-model LReP algorithms over various statistically constant loading rates. At

the low loading rate of a 20 second average connection request interarrival time, the hybrid

algorithm returns a lower blocking probability than AAMH, but higher than the S-model

LReP algorithm. However at all other loading rates, the hybrid algorithm consistently out­

performs both other algorithms significantly, generally returning a lower blocking probability

of at least 3 percentage units in value. This considerable improvement is achieved with no

Hybrid algorithm, lA 20s

- Blocking Ftob.

Bilropy

200000 400000 500000 800000 1000000

C o n n e c t i o n at tempts

Figure 76: 28-node network with hybrid algorithm, lA 20s

143

S-model L R e P with 17% learning rate, lA 20s

; 0,08

S 0.04

200000 400000 600000 800000 1000000

C o n n e c t i o n a t tempts

• Blocking R-ob

E " : - c r .

Figure 77: 28-node network with S-model and LRsP with 17% learning rate, lA 20s

AAMH with RA+B, IA20s

? 0.06

m 0.04

0 200000 400000 600000 800000 1000000

C o n n e c t i o n a t tempts

Figure 78: 28-node network with AAMH and RA+B, I A 20s

start-up convergence period, as shown by Table 25. However rather than taking the average

blocking probability from zero iterations, calculations are performed from when the blocking

probability has stabilised, this figure being indicated in brackets in the table. As was also

shown by the faster entropy trace convergence of Figure 76 over Figure 77. these values are

significantly lower than those of the S-model LReP algorithm, over all loading rates.

The reason behind the better hybrid algorithm performance is indicated by Table 24,

where the hybrid algorithm returns a consistently higher value of variation in blocking

probability compared with the other two algorithms. It is seen that once converged, the S-

model LReP algorithm still generally has a greater choice of possible routes available to a

destination than the AAMH algorithm, so retuming a lower blocking probability under low

144

loading levels, and a higher one as the loading rate increases. The hybrid algorithm switches

between the two algorithms, so switching between a possibly smaller set of paths to a larger

set and vice versa. The switch between one set of paths and another will generally produce a

corresponding step change in blocking probability, so resulting with a higher variation in

blocking probability over a long time period. The reason why the hybrid algorithm retums

superior blocking probability performance to the S-model LReP algorithm is that by

sometimes using the A A M H algorithm whilst still updating the action probabilities, the

possible paths to choose from is limited to paths close to the minimum hop length. Whilst

this hinders performance under low loading levels, as the loading rate increases so the

avoidance of longer paths results with a significantly lower blocking probability. The hybrid

results are consistently lower than the A A M H algorithm blocking probability for the opposite

reason; in that the hybrid algorithm generally will have a greater number of possible routes to

choose fi:om, all these being close to the minimum hop route in length. It therefore seems that

the initial guidance of the leaming automata action probabilities by an application specific

method whilst allowing the leaming automata to diverge from that guidance i f beneficial,

results with superior overall performance than either of the methods singly used. The reason

for this is that the use of leaming automata by themselves require an infinite number of

iterations before convergence to an e-optimal value is achieved. This is also seen

experimentally by Figure 77, where the entropy value is still decreasing after the end of

1,000,000 iterations, meaning that the action probabilities are still changing.

Trai fie load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Hybrid 0.045 0.114 0.266 0.334 0.406 0.511 0.643
S-model ReP 0.035 0.130 0.297 0.364 0.438 0.546 0.677

AAMH 0.050 0.128 0.276 0.344 0.421 0.529 0.662

Table 23: Average network blocking probability for 28-node network with S-model and LRsP

with 17% learning rate

Tral Ffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Hybrid 0.019 0.021 0.027 0.027 0.026 0.025 0.019
S-model ReP 0.009 0.018 0.024 0.023 0.023 0.020 0.018

AAMH 0.017 0.021 0.025 0.026 0.026 0.026 0.018

Table 24: Standard deviation on network blocking probability for 28-node network using S-

model and LRsP with 17% learning rate

145

Traffic load (conn./sec.)
0.05 0.067 0.1 0.12 0.14 0.2 0.33

Hybrid 0
(10,000)

0
(19,000)

0
(8,000)

0
(9,000)

0
(7,000)

0
(9,000)

0
(13,000)

S-model ReP 140,000 35,000 11,000 10,000 14,000 10,000 15,000

Table 25: Global connection attempts for convergence for 28-node network using hybrid and

pure S-model LRsP with 17% learning rate

Figure 79 shows the resulting blocking probability for the hybrid algorithm when using user

demands with trends. Comparing this with Figure 80 which shows the resulting blocking

probability for the S-model LReP algorithm, indicates that the hybrid algorithm out-performs

the S-model algorithm, consistently returning a lower blocking probability. The reason for

this is shown by the entropy curves, that for the hybrid algorithm being lower than that for the

S-model algorithm, indicating the main use of a smaller set of path possibilities, these being

constrained when switching in the A A M H sub-algorithm to minimum or close to minimum

hop routes.

The maximum peak of the hybrid algorithm is equal to that of the AAMH algorithm

shown in Figure 81, but in general the peaks are lower when using the hybrid algorithm.

Therefore the conclusion drawn from these experiments is that the hybrid algorithm generally

out-performs both the A A M H and S-model LReP algorithms singly used, under both static

and dynamic statistical user demands.

The only proviso to this rule centres around the use of low loading situations. The

blocking probability trace of the hybrid algorithm in Figure 79 evidences similar 'slow decay'

of value at around 250,000 and 400,000 connection attempts, as the S-model LRsP algorithm

always shows (Figure 80). This is in contrast to the sharp change in blocking probability to

zero of the A A M H algorithm shown in Figure 81. Therefore even when using a utilisation

based feedback, the action probability convergence worsens under low utilisation levels.

When applying this observation to the general case, it seems that in low penalty rate

application environments, where the environment state changes, less reliance on learning

automata adaptation and greater leaning on the deterministic application control method

would be beneficial.

146

Hybrid and trend user d e m a n d s

200000 400000 600000 800000 100000

C o n n e c t i o n a t tempts

- Blocking Prob

- Entropy

Figure 79: Performance of hybrid algorithm with trend user demands

S-model L R e P with 17% learning rate and trend user demands

T 700

400 ^

200000 400000 600000 800000 1000000

C o n n e c t i o n a t tempts

- Blocking Prob

- Entropy

Figure 80: Performance of S-model LRsP LA with trend user demands

AAMH with trend user d e m a n d s

. E 0.08

° 0.06

400000 600000

C o n n e c t i o n a t tempts

Figure 81: Performance of AAMH with trend user demands

147

7.4 Summary

The work presented in the previous chapters has sought to improve the performance of

learning automata when interacting with a non-autonomous environment. These

improvements have been demonstrated by applying learning automata to the routing problem

in reservation-based networks. The learning automata performance was compared to that of

one of the better performing of the commonly used methods for this problem, and concluded

that weaknesses with the use of learning automata are still evident despite various

improvements. The main weakness is the large number of iterations required before

convergence, and therefore the poorer blocking probability under certain circumstances. The

work contained in this chapter has sought to combine currendy used deterministic algorithms

for problem solving with the learning automata method. The experimental validation of the

proposed hybrid algorithm solution is again the routing problem in reservation-based

networks.

The strengths of the dynamic shortest-path algorithm called AAMH is that no a-priori

convergence period is required, the algorithm immediately choosing routes deterministically

whatever the dynamics of the network state. The strength of the learning automata algorithm

on the other hand is that once fully converged, the resulting action probabilities should

produce superior blocking probability performance due to the evaluation of a greater number

of paths. The proposed hybrid algorithm seeks to combine these separate strengths and

obviate the weaknesses by using the A A M H algorithm under moving network state

conditions, and using the S-model LReP algorithm under steady-state conditions. When the

A A M H algorithm is used, the learning automata action probabilities are still reinforced, based

on the environment response which is the minimum available bandwidth along the attempted

route. When the learning automata algorithm is used, the local copy at each source node of

the link states is still updated, this being used by the AAMH algorithm when it is switched in

once the network state is seen to significantly move again.

As with the previous chapters, the proposed method for determining when to switch

from shortest-path to learning automata based routing and back again is the local entropy

measure. The four node network was used to determine the threshold values required for

switching from one algorithm to the other. Once these thresholds were incorporated into the

hybrid algorithm, it was applied to the 28 node network scenario under various loading rates.

When using statistically constant user demands the results indicated that in general

the hybrid algorithm significantly outperformed both the A A M H and S-model LRsP

algorithms singly used. Like the A A M H algorithm, the hybrid method requires no iterations

for the blocking probability to reduce to acceptable levels, but the evaluation of a greater

148

number of path possibilities allows it to return a lower blocking probability. The results

confirm these observations when using the trend user demand models, the hybrid algorithm

generally returning a lower blocking probability than either of the two methods used alone.

It was seen that the main reason for this result is that when using the AAMH

algorithm the learning automata action probabilities are strongly guided towards paths of

minimum or close to minimum hop count. When the learning automata method is switched

in, the main paths are therefore those of low hop count, but it still has the occasional use of

longer under-utilised paths. These suppositions were confirmed by the lower entropy trace of

the hybrid algorithm, this fact indicating that the action probabilities were in general closer to

the extremes of 0 and 1 when compared with those of the S-model LReP algorithm singly

used. With an action having a probability close to unity, the other actions therefore are very

rarely used, these having probabilities close to zero.

Therefore it seems that learning automata methods thrive when there is a

deterministic aid to their action probability convergence. From these experiments it is

concluded that it is highly beneficial to combine learning automata methods with standard

control algorithms in order to produce hybrid algorithms, the expectation being that these will

return superior performance than either method singly used.

149

8 Conclusions and further work

8.1 Conclusions

In this thesis, the practical use of stochastic learning automata for routing in multi-service

networks has been examined. After having evaluated currently used routing algorithms and

the best performing of the previously proposed learning automata methods, the learning

automata based schemes were improved using various novel methods. The resultant routing

performance was found to be superior to the proposed shortest-path dynamic routing

algorithm, but still required a considerable number of iterations for convergence. By

combining the two algorithm types to form a novel hybrid, superior performance ensued than

either singly used, with no separate iterations required before convergence.

In chapter 1 multi-service networks were introduced, commencing with networking

history that led to their requirement and so creation. Both ATM and IP networks with QoS

features were highlighted as the main network technologies that support multi-service

networking, as both can provide differing QoS for separate traffic flows. Methodologies and

mechanisms for planning, provisioning and allocating network resources were identified,

these being based on expected user demand generation together with an associated economic

benefit model whose purpose may be to maximise network performance or minimise network

cost, or strike a balance between the two. The importance of dynamic resource allocation

policies (especially djoiamism in the routing mechanism) was highlighted as twofold: coping

with actual user demands not matching the expected user demands; as well as increasing

resilience under network failure conditions. After noting that most presently used dynamic

routing algorithms are of the link-state shortest-path variety, stochastic learning automata

were identified as promising for application to the routing problem as their use has been

previously shown to result with s-optimal performance.

Chapter 2 contained a literature review of stochastic learning automata, the outlined

theoretical aspects of their operation being required in later chapters when detailing the

improvements to their operation. The learning mechanism of an automaton was highlighted

as the reinforcement algorithm, there being a number of different algorithms resulting with

differing performance characteristics from the automaton when operating in stationary

random environments. The historical application of stochastic leaming automata to the

routing problem in both circuit-switched and best-effort packet-switched networks was also

150

detailed, with multi-service networks being thought of as similar to the multi-rate circuit-

switched case.

Chapter 3 sought to examine the issues linked with proposing a link-state dynamic

routing algorithm that would perform well, to use as a comparison to the performance derived

from the learning automata based routing method. It began by showing the link between the

CAC and routing functions in multi-service networks, and went on to describe a method for

calculating effective bandwidth requirements for applications requiring QoS from the

network, such as voice and video. These were based on a multiple on-off source model, and a

novel application of the method to the MPEG traces was found to produce significandy more

accurate bandwidth requirements than methods seen in the surveyed literature. Having

looked at the CAC and associated functions, previously proposed algorithms for routing in

multi-service networks were outlined and a modified version was proposed (AAMH) as a

representative 'good' link-state algorithm. The associated link-state information required for

making the routing decisions was then examined, with the possible means for propagating

information throughout the network in the literature being found to be both periodic and

friggered update methods. As these simulations assumed no link failures, event triggered

updates were chosen for propagating link-state information, events being caused when the

link utilisation level crossed into another band (the link bandwidth having been divided into

the following classes or bands: 0-50%, 50-80%, 80-90%, 90-95% and 95-100%). The effect

of this discretisation of the utilisation level was found to result with a higher blocking

probability than when using the full link-state information, but lower than when using no link-

state information. Finally methods for reducing the signalling overhead incurred by

propagating the link-state updates were examined. The literature surveyed highlighted both

limited update disfribution methods, and the use of locally available information. From these,

a new method was proposed: that of using existing call set-up signalling together with local

schemes. This method was compared experimentally with hop-count limited flooding and

was found to result with performance close to that obtained when using full flooding. It was

also found that a hop-count limited flood equal to the average route length returned a blocking

probability equivalent to that when using full flooding. Whilst this observation is dependent

on the network topology and user demands, it does indicate that by using these concepts for

reducing the signalling overhead and configuring them according to the network topology and

expected user demands, accurate network state information can be propagated throughout the

network whilst having greatly reduced signalling and processing overheads.

Chapter 4 contained experiments whose purpose was to validate which of the

currently used learning automata reinforcement algorithms result with superior performance

when interacting with a non-autonomous non-stationary environment such as routing in multi­

service networks. The requirement for this work existed due to previous studies analysing

151

leaming automata performance with stationary and switching environments, and assuming the

conclusions drawn as valid for non-autonomous environments. The chapter presented a

framework for rigorously assessing the performance of currently used reinforcement

algorithms, this framework being partly analytical and partly experimentally based. By using

a simple network scenario, converged action probabilities were analytically derived using

Erlang's formula. The number of iterations required for the various reinforcement algorithms

to update the action probabilities to their converged state were then experimentally derived,

together with their subsequent variation. Of the basic continuous schemes, both the LRP and

LReP reinforcement algorithms were shown to converge faster than LRI. Also it was noted

that using LRI with a high leaming rate causes the action probabilities to fail to converge,

indicating that unlike previous literature its general usage is not recommended. Of the class

of estimator reinforcement algorithms, both the pursuit algorithm and the general estimator

with linear updating fimction failed to converge. However using the GE with the updating

function caused slow convergence but with very low action probability variance thereafter.

Discretisation of continuous schemes had been shown in the literature to produce faster

convergence when interacting with stationary random environments, and so such schemes

have been previously applied to non-autonomous environment applications such as routing in

networks. However the work contained in this chapter showed that discretisation generally

caused failure of convergence, as evidenced by the following schemes: DLRI, DLRsP,

DPursuit and DGE. Discretising the LRP scheme caused the action probabilities to converge

quicker than with the continuous LRP scheme, but with increased subsequent variance.

However by equalising the action probabilities rather than the action probability rates (as does

the continuous LRP scheme) a lower blocking probability ensues. Therefore DLRP was

preferred over LRP, with LRsP and GE with updating function also being recommended

for general usage in non-autonomous application environments such as routing in multi­

service networks. However as such an application's environment state continually changes

due to changing user demands, so only the DLRP and LReP reinforcement algorithms were

recommended for general use (as GE evidenced a very slow convergence relative to the

others), the DLRP algorithm evidencing fast convergence and the LReP algorithm good

steady-state performance.

Having validated the best performing reinforcement algorithms for use with leaming

automata applied to routing in multi-service networks, chapter 5 sought to improve leaming

automata performance from that obtained using either DLRP or LReP reinforcement

algorithms. Two mechanisms were proposed in this chapter: automatically adapting the

reinforcement algorithm leaming rates, and automatic reinforcement algorithm selection.

Both novel methods utilised the fact that improving convergence speed degraded steady-state

152

performance, whilst increasing steady-state accuracy slowed convergence of the action

probabilities. Each method sought to improve the learning automata performance by seeking

to alter the convergence speed or steady-state accuracy according to the environment state. In

order to determine the current environment state, a novel local mechanism was proposed

based on the enfropy of the action probabilities for the learning automata based at a node.

This method was found to be more accurate than using other criteria such as change in

blocking probability or average path length, etc.. The first novel improvement sought to alter

the reinforcement learning rates, the rate being set to high when requiring fast convergence

speed, and low when trying to increase steady-state accuracy. This method was successfully

applied to both the D L R P and LREP reinforcement algorithms using different entropy change

thresholds. Although using this method with the DLRP algorithm produced a noticeable

improvement in performance (especially under lower network loading conditions), the LReP

algorithm performance was relatively unaffected (due to fixed learning rate parameter

changes having little effect). However as the LRsP algorithm still evidenced superior steady-

state performance, the second novel improvement was proposed: using the DLRP algorithm

under convergence conditions, and the LReP algorithm under steady-state conditions. This

novel scheme was found to produce superior results to previous learning automata schemes in

terms of both convergence speed and subsequent blocking probability. This improved

learning automata scheme was compared to the dynamic shortest-path based algorithm

proposed in chapter 3 (called AAMH) using the more realistic networking scenario of trend

user demands. These comparisons showed that the dynamic shortest-path based scheme

consistently outperformed the learning automata based scheme under the topology and traffic

loading characteristics of the network scenario used for the evaluation.

The work in chapter 6 therefore sought to improve the learning automata performance

still further, by proposing a novel re-application of learning automata to the routing problem

in multi-service networks. With the work up to date having used the P-model response

environment, the feedback received could not distinguish between highly and lightly loaded

routes. By using the S-model response environment and changing the feedback to represent

link utilisation levels, it was believed that this novel paradigm would produce better results as

it was more closely linked with the actual problem the learning automata were being applied

to. After having normalised the instantaneous utilisation level to the region [0, 1] and used

the exponential smoothing technique to smooth out short-term fluctuations, the reinforcement

algorithm updated the action probabilities. The LREP with a high fixed learning rate of 17%

was used as the S-model response environment generally caused action probability updates of

much lower learning rates (especially when links were close to saturation). The DLRP

algorithm was not used as the S-model response environment precluded the use of discretised

153

schemes. Under lower loading levels this improved leaming automata based routing scheme

was found to outperform both the A A M H and previously proposed leaming automata

methods. Using the trend user demands showed the S-model LReP and A A M H results to be

fairly comparable, both retuming a comfortably lower blocking probability than the P-model

automatic reinforcement algorithm selection scheme. The superior performance of the S-

model LReP algorithm under relatively low loads was shown to be due to its ability to

evaluate a larger set of possible routes. Whilst the network scenarios evaluated used

symmetrical network loading, non-determinism of user demands in actual networking

situations would generally cause greater non-symmetry in loading. It is therefore expected

that this algorithm would improve its relative performance compared with the others still

further under real network scenarios. However these results still show the main weakness of

leaming automata methods: that of the requirement for a large number of iterations before

convergence occurs.

The work contained in chapter 7 sought to address this fundamental weakness by

combining both the A A M H and S-model LReP leaming automata algorithms into a single

hybrid routing algorithm. The strength of the A A M H algorithm was that no a-priori

convergence period was required, the algorithm immediately choosing routes

deterministically whatever the dynamics of the network state. The strength of the leaming

automata algorithm was that once the action probabilities had converged, a superior blocking

probability ensued due to the evaluation of a greater number of paths. By using the AAMH

algorithm under moving network state conditions (whilst still updating the leaming automata

action probabilities) and the S-model LReP algorithm under steady-state conditions, the

separate strengths were combined. Using either statistically constant or trend user demands,

the hybrid algorithm consistently outperformed either AAHM or the S-model LReP algorithm

used alone, always retuming a lower or comparable blocking probability. It was seen that the

main reason for this improvement is that the leaming automata action probabilities were

strongly guided by the deterministic A A M H algorithm, causing other longer paths to be used

less frequently than previously.

Therefore it seems that stochastic leaming automata methods thrive when there is a

deterministic aid to their action probability convergence. From these experiments it is

concluded that it is highly beneficial to combine stochastic leaming automata methods with

standard control algorithms in order to produce hybrid algorithms, the expectation being that

these wil l return superior performance than either method singly used.

154

8.2 Further work

The work contained in the previous chapters has sought to improve the routing performance

within a connection-oriented reservation-based network environment such as ATM or IP with

QoS and RSVP. The charactensation and optimisation method called stochastic learning

automata has been applied to the routing function, and its performance has been improved.

The resulting routing performance has been seen to be superior to more fraditional dynamic

shortest-path link-state based routing algorithms. There is a need to apply the same novel

learning automata concepts to routing within a cormectionless network environment, such as

an IP network with DiffServ [12] implementation. Such network technology is becoming

more and more important in high speed multi-service networking environments, with

companies such as Cisco having gigabit-switch routers at the top of their product lines [69].

With these fast routers concentrating on switching and packet forwarding, it is not possible

for them to also sustain many RSVP requests making and releasing network resource

reservations for calls requiring QoS from the network. Therefore the DiffServ IP network

design paradigm is becoming increasingly important as it has superior scaling properties to

the IntServ [14] paradigm. In order to use the hybrid algorithm in IP networks with DiffServ,

modifications to the algorithm are required in the following areas: calculating link utilisation

levels on a time averaged basis, modifying the A A M H part of the algorithm to utilise multiple

routes so as to avoid oscillations, and using a limited flooding mechanism for updating link

states across the network.

8.2.1 Average utilisation calculation as information input

In a connection-oriented reservation-based network, an accepted connection consumes

bandwidth of the links along the path according to its expected fraffic demand requirement,

this being termed the effective bandwidth for the connection. Thus the utilisation level of

links reported may not be the actual utilisation level at that time, but is the level of bandwidth

currently reserved on the link, this remaining constant for the duration of the connections

traversing the link at that time. Variations in link utilisation therefore occur relatively slowly,

being bound by variations at the connection or call level. Connectionless networking

environments on the other hand have rapidly varying instantaneous utilisation levels, the

value being representative of the link utilisation due to actual packet fransmission at that

instant in time (or more correctly the average packet transmission over a short time window).

155

Making routing decisions on a requested connection basis is applicable since connection or

call duration is generally much longer than individual packet transmission, effectively

encompassing an average of traffic demand requirement a-priori. In connectionless

environments however, an averaging of the constantly varying utilisation level is required, in

order to make both reasonable routing decisions and so that routes are not recalculated

unnecessarily often. An average of the current link utilisation levels can therefore form the

basis of information input for both the utilisation based leaming automata and the AAMH

routing algorithms.

For this to occur there is the requirement to obtain a reasonable averaging method. A

dynamic mechanism in the IP world which requires the averaging of instantaneous

information for it to perform reasonable operations is the Random Early Detection

mechanism. The Cisco implementation (Weighted RED or WRED) [70] uses an

exponentially weighted moving average of the class buffer level in order for it to

probabilistically discard packets. The packets in these class buffers are served by a

scheduling algorithm into the link meaning that, amongst other things, the class buffers are

indirectly acting as playout buffers for that link. This indicates that the variation in the

buffers wil l in general be much higher than that of the link utilisation, so that the same

averaging method configuration would not be applicable for use in the link utilisation, as it

wil l react too slowly to trend changes in the utilisation level.

Perhaps a more promising route is to examine currently used routing algorithms.

Dynamic link-state routing algorithms generally use a hold-down timer [58], meaning that the

algorithm is not allowed to recalculate routes more quickly than the pre-set timer expiry. This

function bounds the maximum frequency of route set recalculation. Current IP routing

algorithms such as Routing Information Protocol (RIP) [73] and Open Shortest Path First

(OSPF) [61] are d5mamic in the sense that route recalculation occurs on physical network

failures such as links, interfaces or nodes. The hold-down timer for RIP is effectively 180

seconds, for whilst refresh packets are sent every 30 seconds, routes are invalidated by the

'timeout' timer. OSPF has a similar hold-down timer of either 40 seconds for broadcast

networks or 120 seconds for non-broadcast networks [71], due to the 'hello' packets being

send to neighbouring nodes once every 10 or 30 seconds, the 'dead' timer being set to four

times the 'hello' timer interval.

Whilst these algorithms will in general be rarely invoked (network failures occurring

relatively infrequently) they still have hold-down timers to ensure that situations where weak

electrical connections that cause equipment to repeatedly go down and come back up again do

not cause repeated routing information flooding and recalculation of the routes. So while

these type of events should occur very infrequently, when they do occur there may be a

significant number of similar events in a short space of time. When considering the

156

instantaneous utilisation level, it is found that this will generally show highly varying values

within a time period of tens of seconds. The frequency of variation being therefore higher

than under equipment failure conditions, it is reasonable to use a hold-down timer with

smaller duration for averaging instantaneous utilisation levels. It is proposed that the

experiments to be undertaken in future work are to use an averaging period of 30 seconds

before updating the link state database at the node.

8.2.2 Flow-splitting modifications

Cormection-oriented network environments calculate a route between a source and destination

pair, keeping that route in place for the duration of the data fransmission. Connectionless-

oriented networks, on the other hand, may have multiple routes present in the routing tables

for a source-destination pair (such as when the load balancing option in OSPF is used) the set

of data packets being carried over various routes in order to reach the destination. The data

packets for the connection-oriented network therefore arrive in order, whilst those of the

connectionless network may occasionally arrive out of order, the re-ordering occurring both at

the network (IP) layer and also at the fransport layer, for which Transmission Confrol

Protocol (TCP) [74] is normally used. The flow-splitting ability of connectionless networks

is beneficial in order to balance network loading. This feature is approximated in connection-

oriented networks by the possibility of multiple concurrent connections with the same source-

destination pair being routed over different paths, as a separate route calculation may have

occurred for each connection request. This is a close approximation to the connectionless

case, as IP routers generally route packets of the same TCP connection over the same route in

order not to overload the layer 3 and 4 re-assembly engines by many out of order packets or

segments arriving.

In order to modify the A A M H part of the hybrid algorithm to exhibit flow-splitting

properties when operating in a connectionless networking environment, some significant

changes are required. While previously the algorithm calculated a single path for a source-

destination pair, now multiple active routes are required. This is to avoid oscillatory network

loading behaviour occurring when single path routes are changed throughout the network and

then possibly back again as the network saturation 'hot-spots' move locations due to the route

changes. The A A M H algorithm is modified in order to produce multiple routes by allowing

all the possible shortest path routes, each with a certain weighting or probability of usage

according to the minimum amount of unused bandwidth available on the route. The

weighting may be calculated as follows:

157

min link free bandwidth along route

^ min link free bandwidth along route
all shortest
path routes

As A A M H aggregates link utilisations into class bands, so route recalculation should

generally occur less frequently than link state recalculation. One point to note however is that

the average link utilisation wil l generally never reach 100%, so that AAMH in its present

form never uses alternate routes. Therefore the further modification is required so that

alternate routes are permissible when all shortest path routes have the utilisation level in the

highest aggregate class. So in such a case, any altemate routes with minimum bandwidth

along the route being greater than the minimum are also included in the set of permissible

routes, the associated weightings being:

min link free bandwidth along route

^ min link free bandwidth along route
all shortest and some
altemate path routes

I f any routes share the next hop, then their respective weightings are added together to give

the tme weighting for choosing that link at this node.

When using the learning automata part of the algorithm, route calculation is not

deterministic but stochastic, according to the action probabilities. These action probabilities

automatically perform a flow-splitting function over time, and so require no modification of

operation (with the exception of requiring a mechanism for ensuring that all packets

belonging to a TCP connection are routed over the same path).

For both the algorithms however, there is a change to how the paths are set up. In the

connection oriented-case, the path is directly set up from the source node to the destination

node by the connection set-up signalling. In the connectionless networking technology case,

the paths are indirectly set up via the flow splitting percentages present at each node. A

packet will therefore utilise a particular path from a source to a destination node with a certain

probability; this being calculated as the sum of the probabilities of choosing each of the links

in turn which comprise the end to end route.

8.2.3 Link state update propagation

Chapter 3 detailed experimental work linked with reducing the extra signalling required to

propagate link-state updates so that all the nodes' link state databases are representative of the

network. The recommended method was to use the existing connection set-up signalling,

158

piggy-backing the link state information of that with the least remaining unused bandwidth

along the route. Both the learning automata and A A M H components of the hybrid algorithm

have used this method of obtaining the current network state. However with connectionless

networks not requiring signalling for connection set-up, another link-state information

propagation method is required. The comparative results of other possible methods

highlighted in chapter 3 indicated that using a hop count limited flood, limited to the average

path length, resulted with almost the same blocking probability as a full flood. Whilst this

experiment was performed using symmefrical network loading, the result has general

applicability according to the source-destination user demands and dimensioned links present

in the network. Therefore this method seems applicable to explore for link state information

propagation in the IP networking experiments for future work.

159

Appendix A: IP technology and protocols, and IP network

planning and design

A. 1 Overview of current IP technology and protocols

This section seeks to give a brief overview of the historical and current use of IP technology

and associated protocols. First the main IP stack mechanisms and protocols are outiined.

Next more recent scheduling mechanisms for providing quality of service differentiation of

flows are ouflined. Finally end-to-end IP related mechanisms are briefly discussed.

A.1.1 Basic IP networking with reference to the OSl layer model

The Internetworking Protocol (IP) [4] is a network layer protocol for packet fransmission

from source to destination nodes. Being a layer 3 protocol in the OSI model, it performs the

routing and congestion confrol functions [5] with the aid of associated protocols. Its original

conception arose out of a need to connect differing network technologies, with end-to-end

operation occurring in a seamless way. Higher layer protocol payloads are therefore

segmented and encapsulated within IP packets, and presented to the layer 3/2 technology

running at that point in the network for further encapsulation before fransmission. At the next

IP node, the IP packet would be re-assembled, for the convergence sublayer to which it was

presented may have segmented it. Further routing decisions are performed before it is again

presented to that node's convergence sublayer, which may use a different networking and

fransmission technology. Therefore seamless operation occurs at the IP layer and higher,

whatever the heterogeneous mix of networking and fransmission technologies used below the

IP layer.

IP networks generally refer to networking technologies which utilise the whole suite

of protocols associated with the Internet Protocol, these protocols going up to the application

layer (layer 7 in the OSI model), and down to the data-link layer (layer 2 in the OSI model).

The layer 2 protocol generally used is the Point to Point Protocol (PPP) [72] which provides a

standard method for fransporting multi-protocol datagrams over point-to-point links.

160

However IP network technologies are generally associated with protocols down to layer 3,

such hardware or equipment in the network being termed a router.

Two routing protocols are mainly used in the IP world: Routing Information Protocol

(RIP) [73] and the Open Shortest Path First (OSPF) [61] protocols. RIP is a distance vector

routing algorithm, and therefore evidences slow convergence properties of routing tables.

Faster convergence occurs with OSPF as this is a link-state routing algorithm, so this

algorithm is superseding the use of the RIP algorithm. With the routing protocol generating

the routing tables at each node, the IP packets are then h-ansmitted from node to node, the

hop-by-hop route chosen based on the destination address for that packet held in the IP

header.

The layer 3 congestion control function has historically been rather limited in IP

routers, in general a single queue being used to buffer packets waiting for transmission on a

certain link. Congestion control in IP networks has therefore historically relied on other

layers' functionality. For example, the layer 2 protocol ensures reliable link transmission,

whilst the layer 4 protocols such as Transmission Control Protocol (TCP) [74] ensure end-to-

end reliable transmission and rate limiting under congestion conditions. Applications

requiring reliable transport therefore use the TCP transport protocol which guarantees reliable

end-to-end ti-ansmission of application payload packets. It operates by segmenting

application packets into TCP segments, which are in tum delivered to the IP layer for further

segmentation and encapsulation as required. As an IP network is connectionless in operation,

so IP packets can arrive at the destination out of order. TCP therefore re-orders the arrived

segments as necessary, passing their payload up to the application layer. Rate limiting under

congestion conditions automatically occurs by the source node TCP requiring

acknowledgements of TCP segments sent previously, these acknowledgements coming from

the destination node's TCP engine.

Other application types place speed of packet delivery as a priority above reliable

transmission of the data. For example real-time applications such as voice or video are not

overly affected by occasional data loss, but require as small an end-to-end delay as possible.

Such applications use the Real-time Transport Protocol (RTP) [75] which is further

encapsulated into User Datagram Protocol (UDP) [76] segments, both these protocols being at

the layer 4 or transport layer. By not guaranteeing reliable segment transmission, UDP does

not re-transmit dropped packets or rate-limit the RTP source, so that application packets

arrive at the destination application host with as little delay as possible.

The transport layer of the IP protocol stack generally interfaces directly with the

application layer or layer 7 of the OSI model. This layer is for protocols which applications

may use for their data transmissions. For example, e-mail applications generally use either

the Post Office Protocol version 3 (P0P3) [77] or Internet Message Access Protocol version 4

161

(IMAP4) [78], and the Simple Mail transfer Protocol (SMTP) [79]. P0P3 is used by mail

clients to download stored e-mails from their mailbox held on a mail server. IMAP4 has

additional functionality to POP3 in that remote message folders may be manipulated in a

functionally equivalent way to local mailboxes. SMTP is used to transmit messages between

mail servers, in order for them to reach the message's destination server where there resides

the recipient's mailbox. Another example application is a web browser, this using the

Hypertext Transfer Protocol (HTTP) [80]. HTTP allows the web browser to obtain web

pages from remote internet servers, automatically reconstructing a page from its various

heterogeneous component objects.

Some of the generally used layers 3, 4 and 7 protocols have been outlined, these

forming the IP protocol stack. Whilst it is feasible to interchange other lower and higher layer

protocols, this being a main benefit of a layered network architecture, the whole set is

generally used in its entirety, at least down to the IP layer. The main reason for this is due to

IP penefration at network end-points, this being highlighted in the following section.

A.1.2 Quality of Service (QoS) in IP networks

Historically, two significant benefits of A T M network have been their speed and guaranteed

QoS for each accepted connection request. IP routers have historically been of lower speed,

requiring higher processing than an ATM switch at each node, as packet routing decisions

occur from hop to hop in the IP case, whilst the ATM packets traverse a single pre-defined

and set-up route in the coimection-oriented ATM case. The inherent reduced routing

complexity of A T M during packet transmission meant that switching and transmission speed

could be increased, as less transit processing is required. The higher switch throughput,

combined with an initially higher equipment cost, meant that ATM technology was

historically confined to the WAN, whilst the lower costing and slower IP technology

remained in the L A N arena. So because A T M was rarely found at the desktop, convergence

of the IP packets to the A T M layers occurred at the equipment serving the WAN interface.

As regarding QoS, IP routers have historically offered only 'best-effort' service capabilities,

with no guarantees for traffic flows being possible.

However more recently various mechanisms have been introduced at the IP layer so

that QoS differentiation of traffic flows becomes possible. The mechanisms generally use the

precedence field of the IP packet header in order to categorise an IP packet into a certain class

or flow. At present most routers operate with IP version 4, whose precedence field is 3 bits

long, meaning that up to eight different classes of flows are available (with one being reserved

162

for network operational use). However the more recently proposed IP version 6 [6] has a

larger flow label field of 24 bits, so that more than 16 million differing classes of service or

application types can be defined. Once the packet's class has been established, it can be

scheduled for link transmission according to the scheduling mechanism's configuration and

functionality.

A.1.2.1 Basic mechanisms

Historically IP routers have performed First In, First Out (FIFO) queueing [81], with a single

buffer storing packets under link congestion conditions and forwarding them on in order of

arrival. Whilst this method meant that the packets from bursty traffic sources would not

necessarily be dropped, it also meant that such sources also caused high delays in other time-

sensitive traffic flows. Various basic queueing and scheduling schemes have been

implemented in IP routers, seeking to overcome this shortcoming.

One of the first mechanisms implemented by Cisco to improve the FIFO queueing

situation was Priority Queueing (PQ) [7]. This mechanism can allocate up to four priority

queues, these being high, medium, normal and low priorities. The buffers are then scheduled

in turn, the algorithm moving to the next lower priority buffer when there are no more packets

waiting to be scheduled at the higher priority buffer. This means that one type of traffic (such

as applications crucial to the business functions, termed mission-critical applications) is

ensured transmission, possibly at the expense of all others.

Custom Queueing (CQ) (otherwise known as Weighted Round Robin or WRR) was

implemented to avoid this unfair situation. This method guarantees some level of service to

all traffic because bandwidth can be allocated to each class of service. Up to sixteen queues

can be thus configured for scheduling, the mechanism ensuring that a class obtains the

configured bandwidth, even under congestion conditions.

By differentiating between types of traffic flow via the precedence bits and

scheduling differing class flows in a different manner, so QoS is achieved on the IP network.

The A T M Constant Bit Rate (CBR) and Variable Bit Rate (VBR) services provide hard QoS,

guaranteeing service by reserving network resources specifically for the connection along its

path. This function can be emulated by using the CQ feature, as bandwidth is reserved for

specific flows or classes, with no other class traffic able to utilise this reserved bandwidth.

PQ on the other hand is an example of soft QoS, which is where some traffic is

treated better than the rest, there being statistical preference rather than a hard guarantee.

163

A T M technology variants of this type of service are Unspecified Bit Rate (UBR) and

Available Bit Rate (ABR) services.

A.1.2.2 More complex scheduling

The weakness of PQ is that no guarantees of QoS are possible under congestion conditions,

whilst that of CQ is that the bandwidth for a class remains unused and so is wasted under

congestion conditions when there are no packets of that class requiring transmission.

Weighted Fair Queueing (WFQ) [8] seeks to combine the two algorithms' strengths whilst

avoiding each one's weakness. Individual class or flow buffers are configured on each router,

these being emptied by the WFQ scheduling mechanism. It then empties packets from each

buffer according to the configured scheduling weight for that buffer. However i f there are not

enough packets held in a buffer to 'use up' its configured scheduling weight, that excess is

distributed to the remaining buffers with unscheduled packets still present. It therefore

provides both hard QoS with bandwidth guarantees in congestion conditions, but also the

most efficient use of bandwidth, redistributing any unused to lower class buffers. This is the

scheduling mechanism generally used in most IP networking situations today.

A.1.2.3 End-to-end congestion control

Whilst the above scheduling mechanisms operate at the local node level, there is also end-to-

end congestion control occurring at the transport layer by the TCP engines. In cases of

network congestion, the TCP engines throttle back their data transmissions, so that the

congestion is eased downstream. When there is chronic network congestion and packets are

dropped, the TCP source halts transmission and after a timeout period retransmits the

information, increasing its transmission rate exponentially. The effect of this slow-start

feature can be to cause oscillatory behaviour in the network, network congestion being

followed by underutilisation of links, being followed by congestion as the TCP engines

increase their transmission rates again.

The Random Early Detection (RED) [9] mechanism was designed to avoid this

recurring network congestion by seeking to limit TCP transmissions before the onset of

chronic congestion. It operates on the class queues or buffers that have been set up for the

QoS scheduling mechanism. A moving average of the instantaneous buffer level is

164

calculated, and on its crossing a configured threshold a probabilistic discard of differing

source TCP engines' IP packets occurs, the probability of discard increasing as the average

buffer level goes up.

The effect of occasionally dropping packets is to cause those TCP sources to stop

transmissions and re-transmit the data after their timeouts occur. Therefore the aggregated

flow though the buffer is reduced but not halted, as the flow normally consists of many TCP

sources. This reduction normally means that hard discard (which is where the class buffer is

filled and all extra packets are dropped) is avoided so that a few rather than many TCP

engines retransmit. The effect of this function is for most users on the network to perceive

better network dependent application response as their TCP transmissions remain largely

unaffected or at least affected less often. From a network resource perspective, such occurs

due to the link bandwidth being more efficientiy used, with full or close to frill utilisation

occurring, rather than oscillations between full and partial utilisation as multiple TCP re­

transmission timers expire.

A.1.2.4 End-to-end QoS

IP QoS mechanisms guarantee QoS for an aggregate class flow through a node but not for a

specific flow through the network, as does ATM technology. Therefore IP QoS technology

provides soft QoS, for i f other fa-affic flows of the same class misbehave a flow's QoS can be

degraded.

Hard QoS can be approximated however, with the use of edge policing. For example

Cisco's Committed Access Rate (CAR) mechanism [82] can be configured to measure

incoming traffic flows and either drop packets exceeding the configured flow 'contract' or

downgrade the excess traffic's class type. The mechanism is intelligent enough to allow

bursts of the flow's ti-affic through after periods of flow underutilisation using a token bucket

mechanism, but unlike standard leaky bucket implementations no traffic shaping is

performed.

Using this or other edge policing mechanisms, end-to-end QoS can be guaranteed for

a flow. The mechanism ensures the specified upper bound for a traffic flow is not exceeded,

and the scheduling mechanisms present at local points in the network are configured based on

the aggregate flows' confa-acts, which traverse each local point. Therefore having ensured all

flows' access to the network are limited to their contracts and the network can support all the

contracts' requirements, the end-to-end QoS requirements for each flow is guaranteed (the

flow's QoS requirements being an integral part of the flow's contract specification).

165

A.2 IP network planning and design

With IP networks historically providing just best-effort service, the planning and design

function centred purely with link sizing and routes, together with equipment throughput

dimensioning. With the more recent QoS features and mechanisms becoming available

however, the planning function has become more complex, with provisioning of logical links

now being possible.

A.2.1 Network design for best-effort IP networks

The design of both greenfield site networks and modifications of existing networks is based

on some sort of user demand modelling. This procedure seeks to estimate the amount of

source-destination traffic demand that users might place on the network once it is frilly

commissioned and operational.

Using the example of a corporate network, the simplest form of user demand

modelling is to place the application servers on the network, and then link this or these nodes

with the others using tiransmission pipes thought sufficiently large for the user set accessing

these server applications. The linking may occur on a point-to-point basis or via a meshed

network topology, according to the number of sites to be linked together, and the cost-

performance balance to be achieved. Routes are then assigned in the network, according to

the expected application traffic flows on the network. For resiliancy a dynamic routing

algorithm may be used, causing the pre-assigned routes to be changed in network failure

conditions.

A.2.2 Network design for IP networks providing QoS

The requirements for IP networks providing QoS become essential when the network is used

to carry certain types of traffic. For example, applications such as voice over IP (VoIP) and

videoconferencing require sfa-ict end-to-end delay guarantees from the network in order to

operate properly. Therefore i f congestion occurs at nodes which the fraffic flow traverses,

policies must operate locally at the congestion point to allow the traffic from the critical flows

to pass whilst buffering that of less important flows. The operation of such local policies

ensures that the network can consistently meet a flow's end-to-end delay requirement.

166

The presence of such mechanisms is also important to 'mission-critical' traffic flows:

applications which may not have strict QoS requirements, but whose traffic is important in

value to the customer or company. Under chronic congestion situations such traffic is passed

through whilst other less important traffic is discarded, meaning that data loss for applications

critical to the company's operation is minimised or eliminated altogether.

A.2.3 Tlie place for bandwidth-based dynamic routing algorithms in IP

networks

As the level of connectivity in a network increases, so the number of alternate paths from a

source to a destination node increases. It is under such circumstances that the possibility of

choosing a different path for the same source-destination pair, due to its lower loading,

becomes preferable to always choosing the same route whatever the state of the network

loading.

The requirement for QoS in IP networks arises from the use of applications important

to the business function (termed 'mission-critical' applications), or applications requiring end-

to-end delay guarantees from the network in order to operate correctly. The first kind

generally do not add connectivity to the network, as they may be used by a few or many

people in the company, but are generally server-based and so cenfralised. However the

second kind of application's destination bindings are normally distributed throughout the

network, such applications normally being audio and / or video based, connecting a pair of

users rather than a user client to a server. It is with the use of such applications therefore that

connectivity in the network might expect to increase. As the requirement for such

applications increase in corporate networks, so utilisation-based dynamic routing schemes

will increase in importance.

These discussions have cenfred on corporate networks. Carrier networks are the

networks which telecommunications providers use to carry the traffic of many corporate

networks. Individual corporate networks are designed, with the network's links being

overlaid over the carrier network's links and nodes. The carrier network therefore requires a

large number of nodes so that all the areas have a relatively close point of presence, coupled

with a good connectivity to ensure network resilience. Therefore carrier IP networks, whether

best-effort or QoS based, in general would benefit from the use of utilisation-based dynamic

route calculation.

167

Appendix B: A tool and models for simulation analysis

B. l Introduction

The main aim of this appendix is to describe the important issues relating to the simulation

models used to test the various routing algorithms.

The appendix begins by explaining why simulation modelling was used for this

particular problem rather than analytical techniques. There follows an overview of the

evaluation of commercial simulation packages which was undertaken at the start of the

research. This includes references to the full reports which documented the evaluation.

Having chosen OPNET as the modelling and simulation environment, different simulation

method possibilities are examined and the one giving the required level of detail for the

problem under investigation is selected.

When examining the models included with the OPNET environment, it was found

that due to certain limitations these were unusable for the research experiments. These

limitations are highlighted as are the high-level details of the new model library which was

constructed to permit the research experiments. Finally, rather than using the analysis and

displaying functions within the OPNET environment itself, reasons are given for the benefit

of exporting the raw results data to Excel for analysis and display.

B.2 Modelling technique selection

There are two techniques available for evaluating the blocking probability of routing

algorithms: analytical and simulation modelling. Analytical modelling approaches have been

favoured in the past for two main reasons. Firstly, the resulting closed-form equations can be

used to easily produce the upper and lower bounds together with the mean for the network

performance. Secondly, computing power used to be much lower, resulting with much more

limited possibilities for simulation modelling.

A large body of analytical modelling material is thus available for circuit-switched

networks [35]. This includes techniques for calculating the average blocking probability

when operating a particular routing algorithm. Due to the similarities between routing and

168

call admission in multi-service networks and circuit-switched networks, it has been suggested

that some of the techniques used for analysing circuit-switched networks might be used for

A T M networks for example [45]. The weakness of analytical methods is, however, that they

require simplifying assumptions to be made about the traffic, topology or routing algorithm.

For example, fully connected, symmefrical topologies and fraffic distributions are a-priori

assumptions in order to make the analysis fractable. With circuit-switched networks the use

of these assumptions is in the main part reasonable. However the same is not true for multi­

service networks due to the more complex fraffic, topology and routing algorithm possibilities

available with such networks.

The analytical approach was therefore rejected from the outset, and discrete-event

computer simulation [83] chosen instead. There next followed an extensive evaluation of the

two leading commercial communications simulation packages in order to ascertain the

preferable system for use in this research.

B.3 Simulation modelling tool selection

Having decided on using computer simulation techniques for multi-service network

performance analysis, the two leading commercial communications simulation packages were

evaluated for suitability in this research. These were Optimised Network Engineering Tools

Modeller (OPNET) and Block Oriented Network Simulator Designer (BONeS).

BONeS came with two campus type network examples, having an FDDI ring and

A T M backbone respectively [84, 85]. The original network scenario consisted of four token

ring LANs together with three ethemet LANs connected to a FDDI backbone ring via three

bridges. The total number of workstations individually modelled over the whole of the

heterogeneous network is 23, each workstation generating up to 1.2 Mbps of fraffic. The

second network scenario is an evolution of the first, replacing the FDDI backbone ring with a

four switch A T M network interconnected with SONET STS-1 links (these being 49.5 Mbps

user or payload rate [86]). Furthermore the number of workstations on the LANs is doubled,

with the two 4 Mbps token rings also being upgraded to 16 Mbps. Various results and

simulation speed comparisons are included in the documentation, with conclusions on

network performance and suitability being drawn for each scenario.

For an accurate comparison of environments, including standard libraries and

simulation speeds, it was thought beneficial to model the same scenarios in OPNET.

However, this was found to be difficult as BONeS lacked the fransport layer models which

the standard OPNET user demand models required. On the other hand, OPNET lacked a

169

bridge for the token ring protocol to FDDI, or a router for token ring to ATM. Rather than

expend significant effort in modelling the same scenario using both environments in order to

obtain accurate simulation speed comparisons, a compromise was reached by modelling

FDDI rings instead of token ring LANs. By limiting the ti-affic to the equivalent token-ring

network parameters and by modifying the traffic generators, an equivalent traffic load was

simulated so that simulation speed comparisons could be undertaken.

The outcome of the evaluation was that OPNET was chosen as the simulation

package with which to perform the experiments. Further details of the evaluation may be

found in [87], with the simulation results for the campus network modelled using the OPNET

environment being detailed in [88].

B.4 Network model

Having chosen OPNET as the computer modelling and simulation environment with which to

perform network performance analysis experiments, a multi-service network model was

required in order to simulate different network topologies, traffic demands and routing

algorithms.

The following sections begin with detailing the various simulation methods available,

and the reasons why session level event-driven simulation models were used in simulations.

Rather than utilising the existing models that are included with OPNET new ones were

produced, the reasons being shown. Finally the design and functionality of the new model

library are outiined.

B.4.1 Simulation method

Ideally a simulation program should run at speeds comparable to the real network in order to

enable results to be gathered rapidly [89]. Three levels of simulation detail are possible when

constructing network models; the more detailed the level the longer the simulation time

required.

The first is cell or packet level simulation, where the basic unit of traffic is the ATM

cell or IP packet, so that all the signalling and data carrying cells/packets are simulated, each

cell/packet arrival being a simulation event. A coarser level of detail is the burst which is

defined as a group of cells or packets with constant arrival rate, an event being a change in

this cell/packet rate, so causing far less traffic events than cell/packet level simulation.

Finally there exists session level simulation which is where individual traffic events consist of

170

the setting up, modification and tearing-down of a session, with the data fransmission part of

the session not being simulated.

With our CAC model being based on pre-calculated effective bandwidths rather than

measured statistics (see chapter 3), the data modelling is encapsulated at a coarse level by the

effective bandwidth calculations themselves. Therefore for speed of simulation purposes, it

was decided to use session level simulation models. In order to obtain simulation results on

connection set-up times, a multiple packet-based signalling has been modelled rather than

having just the single set-up packet indication.

Two differing methods of simulation are available, both discrete-event simulation and

time-driven simulation. Discrete-event simulation is driven by separate events being

enqueued in a time-ordered event list and the simulator kernel consuming and acting on these

time-ordered events [83]. On the other hand, time-driven simulation progresses in discrete

time steps, with the simulator kernel performing the event actions that are scheduled to occur

at that particular time instant. Time-driven simulation provides a speed improvement when

many events occur during each progressed time instant, otherwise event-driven simulation is

faster and so generally preferable. As session level simulation causes significant periods of

time with no events and then a number of events on the same time instances, it was decided to

use discrete-event simulations. The OPNET simulation kernel operates in a discrete-event

fashion, and so naturally complements this decision. OPNET could still have been used i f

performing time-driven simulations, but each network element would have had to generate its

own time-driven events.

B.4.2 Model design

The following section does not deal with the intricacies of the network model design, but

some of the high-level concepts only. These include showing the weaknesses in the standard

model libraries that are included with OPNET, and the design and functionality of the newly

developed library. Details of the network topologies used and the connection characteristics

for the various fraffic types are given in chapter 3 and so are not included below.

B.4.2.1 Weaknesses of the standard model libraries

The OPNET modelling environment comes complete with certain model libraries; for

example the A T M models being compliant to the ATM Forum UNI signalling protocol [41].

These libraries was evaluated for suitability in this research, but was unfortunately found to

171

be unsuitable due to several significant limitations. These in the main revolved around the

fact that the modelling methodology that had been used precluded large topology and

concurrent call simulation experiments.

The main limitations in the ATM library range as follows: VPCs can only be one link

in length; VCCs are statistically set up at the start of the simulation and cannot be reassigned,

and source and sink models can handle just one VCC each. As the research direction was

unclear at the beginning of the project, it was thought important to have full ATM

functionality available. This was in case strands of the research focused on all three levels in

the technology that affected routing decisions: the VPC topology management, the VPC

bandwidth allocation, and the VCC route management.

However the main general limitation is due to an object-orientated modelling

philosophy having been used in constructing the model libranes. This causes the instantiation

of a new process model on each node traversed by a route when setting up a new call on the

network. Whilst this method results in clear and easily maintainable models, the weakness is

that as the network topology and number of concurrent calls grows, so the run-time

simulation program increases in memory size. This precludes the possibility of simulating

large network topologies and many concurrent calls as the run-time process size becomes too

large for the available computer memory resources.

Due to these limitations, it was decided to construct a new model library. The

OPNET environment facilitates the coding of new models by using C code within Finite State

Machines, resulting in a pictorial representation of the process' functionality. Currently the

constructed library of models amounts to over 13,000 lines of C code.

B.4.2.2 The new model library

The functionality of the new model library currently supports logical link set-up via a simple

signalling protocol, and call set-up and tear-down via the ATM Forum UNI signalling

protocol [41] and PNNI document [90]. This is similar to using RSVP with the fritServ

paradigm [14]. This allows for accurate simulations which also indicate the connection set-up

time for different algorithms. The standard can also be tested as to whether it provides for the

requirements of various algorithms. As detailed within the body of the thesis, various

algorithms to perform unicast call routing have also been implemented, with new algorithm

implementation requiring relatively simple modifications as the basic node models are

consistent with all the algorithms.

The modelling philosophy used for the standard model libraries has not been

followed. Rather than having a separate process which stored the information pertaining to

172

one call fraversing a node, with multiple calls requiring multiple process instantiations at that

node, the new design is based on having a single process on each node with an associated list

of data holding the information for all the calls fraversing the node.

The A T M Forum specifies the setting up and tearing-down of VCCs be performed

using defined signalling packets encapsulated within the payload of the standard ATM cell.

The full recommended procedure has been followed in order to obtain accurate session set-up

times for different routing algorithms. Figure 82 shows the process that is undertaken when

setting up a VCC over three VPCs. The time axis is vertical, increasing as one fravels down

the figure. The various different signalling packets are indicated on the diagram, these being

generated by the A T M layer. The application above the source node's AAL layer is allowed

to commence fransmission of data after the reception of the 'begin ackpdu'.

node 1 node 2 node 3 node 4

— - °^^-iir ^

call proceeding set-up

4 '
call proceeding set-up

4 ' • »

^

rnnner.t
connect ack

connect connect ack

« — ' '
connect ack

• • »

AAL

beginpdu^

>

begin pdu
AAL

beginpdu^
' »

begin pdu

• »
begin pdu

begia ack pdu
AAL

begin ack pdu
• " begin ack pdu

begin ack pdu
«—

« ' '

AAL

Figure 82: The signalling process required to set-up a VCC traversing 3 VPCs

173

The 'set-up', 'call proceeding', 'connect' and 'connect ack' packets are all generated by the

A T M layer to set up the VCC, with the source AAL being informed of the VCC when the

'connect' packet arrives from the destination node ATM layer. The AAL layer then generates

a 'begin pdu' which is encapsulated in an A A L packet which is in its turn encapsulated into

an A T M cell and sent to the destination node AAL layer for A A L session instantiation. At

the reception of the 'being ack pdu', the source node AAL informs the application above it

that the connection is set-up and that transmission of data packets can now begin. In this

example, the routing tables at four nodes will be updated, even though the route might

fraverse many more nodes due to each VPC being more than one physical link in length. It

should be noted that i f the VCC traverses only one VPC, then the ti-ansmission of 'call

proceeding' signalling packets wil l not occur. The equivalent IP based RSVP is similar [10].

Figure 83 shows the signalling process required when tearing down a VCC. The

source node application informs the AAL layer that it no longer requires the connection, and

the A A L layer commences the tear-down of it by sending an 'end pdu' to the destination node

A A L layer. On the reception of the returning 'end ack pdu', the A A L connection is closed,

and the A T M layer can then tear-down the VCC. At the reception of the 'release complete'

packet, each node clears its routing table of the VCC entry. The equivalent IP based RSVP is

again similar [10].

B.5 Analysis of results

The OPNET environment includes the facility for specifying probes that gather results during

simulation runs [91]. These results may then be displayed in an analysis window, there also

being the possibility of analysis using the built-in analysis function blocks.

Due to perceived limitations in the graphing and analysis functions included with the

package however, it was decided to output the pre-processed results to a file as simulation

occurred. This raw results data file could then be imported into a standard data analysis

package for post-processing and displaying of the analyses.

Microsoft Excel [92] was used as the post-processing package as the spreadsheet

analysis functions are familiar and the resulting graphs ported to a document can still be

linked with the analysis data.

174

node 1 node 2 node 3 node 4

AAL

end pdu

end pdu

end pdu

end ack pdu

end ack pdu 4

end ack pdu

release

release complete release

4 " '
release compete release

4 '

release complete

AAL

end ack pdu

Figure 83: The signalling process required to tear-down a VCC which traverses 3 VPCs

175

B.6 Summary

The main aim of this appendix has been to describe the important issues relating to the

simulation models used to test the various routing algorithms. After giving the reasons for

choosing simulation modelling rather than analytical techniques, there follows an overview of

an evaluation of commercial simulation packages which was undertaken at the start of the

research. Having chosen OPNET as the modelling and simulation environment, different

simulation method possibilities were examined and the one giving the required level of detail

for the problem under investigation was selected.

Due to limitations in the standard models included with the OPNET environment, it

was thought that these were unusable for the envisaged research experiments. These

limitations were highlighted along with the high-level details of the new model library which

was therefore constructed. Finally, rather than using the analysis and displaying functions

within the OPNET environment itself, reasons were given for the benefit of exporting the raw

results data to Excel for analysis and display.

176

Appendix C : Erlang loss formula calculations

In the Erlang Loss Formula, the probability that a call requesting use of a line is blocked is

given by [18]:

p' ll\

where p= X/ fi,X being the call arrival rate, Xlp the mean call time, and / the number of lines

in the trunk group. For the four node network shown in Figure 18, the path blocking and

penalty probabilities may be written as:

4=0

^1 = I.

k=0

111

Appendix D: Related publications

1. Aranzulla P., Mellor J., Mars P., "Dynamic routing in ATM networks", 3"*

Communication Networks Symposium, July 1996, pp. 159-162.

2. Aranzulla P., "Using OPNET for Investigating Dynamic Routing in A T M Networks",

OPNETWORK 1997.

3. Aranzulla P., Mellor J., "Comparing two routing algorithms requiring reduced signalling

when applied to A T M networks", 14*' lEE UK Teletraffic Symposium, March 1997, pp.

6/1 - 6/7.

4. Aranzulla P., Reeve J., Mellor J., Mars P., "Improved stochastic learning automata for

routmg in ISDNs", Proceedings of NOC '97, Vol. 1, pp. 227-231, 1997.

5. Aranzulla P., Mellor J., "Implementing dynamic unicast VCC routing in ATM networks",

Proceedings of NOC '97, Vol. 2, pp. 157-160.

6. Aranzulla P., Ritch M. , "Improved learning algorithms for satisfying quality of service

requirements: routing and nodal perspectives", 15* lEE UK Teletraffic Symposium,

1998.

7. Nyong D., Aranzulla P., Cosmas J., Pitts J., "Resource based policies for design of

interworking heterogeneous service networks". Interoperable Communication Networks,

Vol. 1, No. 2-4, pp. 571-580, 1998.

8. Mellor J., Aranzulla P., "Using an S-model response environment with learning automata

based routing schemes for IP networks", IFIP workshop on Performance Modelling and

Evaluation of A T M Networks, 2000.

178

References

1. B-ISDN ATM Layer Specification, ITU-T Recommendation 1.361.

2. B-ISDN Asynchronous Transfer Mode Functional Characteristics, ITU-T Recommendation
1.150.

3. B-ISDN General Network Aspects, ITU-T Recommendation 1.311.

4. Internet Protocol, rfc 791, 1981.

5. J. Walrand, Communication Networks, Aksen Associates, 1991.

6. Internet Protocol, Version 6 (IPv6), rfc 1883, 1995.

7. Congestion Management Overview, Cisco product literature,
http://www.cisco.com/univercd/cc/td/doc/product/soft\vare/iosl2Q/12cgcr/qos c/qcpart2/qcconman.ht

8. Cisco -lOS Technologies - Quality - Weighted Fair Queueing (WFQ), Cisco product
literature, http://www.cisco.com/warp/customer/732/Tech/wfq

9. Cisco lOS Technologies - Quality - Random Early Detection (RED), Cisco product
literature, http://www.cisco.com/warp/customer/732/Tech/red/

10. Resource ReSerVation Protocol (RSVP) - version 1 Functional Specifications, rfc 2205, 1997.

11. Multiprotocol Label Switching Architecture, Internet draft, 1998.

12. An Architecture for Differentiated Services, rfc 2475, 1998.

13. A Provider Architecture for Differentiated Services and Traffic Engineering (PASTE),
rfc 2430, 1998.

14. Integrated Services in the Internet Architecture: An Overview, rfc 1633, 1994.

15. Kelly F.P., "Network Routing", Phil. Trans. R. Soc. Land A, 1991, pp. 343-367.

16. Narendra K., Thathachar M.A.L., Learning Automata - An Introduction, Prentice-Hall, 1989.

17. Zgierski J.R., Oommen B.J., "SEATER: An Object-Oriented Simulation Environment Using
Learning Automata for Telephone Traffic Routing", IEEE Transactions on Systems, Man,
and Cybernetics, Feb. 1994, pp.349-356.

18. Chrystall M.S., Adaptive Control of Communication Networks Using Learning Automata,
Ph.D. thesis. University of Aberdeen, 1982.

19. Reeve J.M., Learning Algorithms for the Control of Routing in Integrated Service
Communication Networks, Ph.D. thesis. University of Durham, 1998.

20. Narendra K., Thathachar M.A.L., "Learning automata - a survey", IEEE Transactions on
Systems, Man, and Cybernetics, July 1974, Vol. SMC-4, No. 4, pp. 323-334.

21. Lakshmivarahan S., Thathachar M.A.L., "Absolutely expedient learning algorithms for
stochastic automata", IEEE Transactions on Systems, Man, and Cybernetics, May 1973,
pp. 281-286.

179

22. Mars P., Chen J.R., Nambiar R., Learning Algorithms - Theory and Applications in Signal
Processing, Control and Communications, CRC Press, 1996.

23. Economides A.A., "Multiple Response Learning Automata", IEEE Transactions on Systems,
Man, and Cybernetics, Feb. 1996, pp. 153-156.

24. Thathachar M.A.L., "Learning automata Processing Ergodicity of the Mean: The Two-
Action Case", IEEE Transactions on Systems, Man, and Cybernetics, Nov./Dec. 1983,
pp. 1143-1148.

25. Thathachar M.A.L., Sastry P.S., "A new approach to the design of reinforcement schemes for
learning automata", IEEE Transactions on Systems, Man, and Cybernetics, Feb. 1985,
pp. 168-175.

26. Mukhopadhyay S., Thathachar M.A.L., "Associative learning of boolean functions", IEEE
Transactions on Systems, Man, and Cybernetics, Sep ./Oct. 1989, pp. 1008-1015.

27. Lanctot J.K., Oommen B.J., "Discretized estimator learning automata", IEEE Transactions
on Systems, Man, and Cybernetics, Nov./Dec. 1992, pp.1473-1483.

28. Oommen B.J., Lanctot J.K., "Discretised pursuit learning automata", IEEE Transactions on
Systems, Man, and Cybernetics, July/Aug. 1990, pp. 931-938.

29. Oommen B.J., "Absorbing and ergodic discretized two-action learning automata", IEEE
Transactions on Systems, Man, and Cybernetics, Mar./Apr. 1986, pp. 282-293.

30. Oommen B.J., Hansen E., "The asymptotic optimality of discretized linear reward-inaction
learning automata", IEEE Transactions on Systems, Man, and Cybernetics, May/June 1984,
pp.542-545.

31. Oommen B.J., Christensen J.P.R., "^--optimal discretized linear reward-penalty learning
automata", IEEE Transactions on Systems, Man, and Cybernetics, May/June 1988,
pp.451-458.

32. Vasilakos A.V., Papadimitriou G.I., "A new approach to the design of reinforcement
schemes for learning automata: Stochastic estimator learning algorithm", Neurocomputing,
no. 7, 1995, pp.275-297.

33. Akselrod B., Langholz G., "A Simulation Study of Advanced Routing Methods in a
Multipriority Telephone Network", IEEE Transactions on Systems, Man, and Cybernetics,
Nov./Dec. 1985, pp. 730-736.

34. Vasilakos A.V., Paximadis C.T., "Fault-Tolerant Routing Algorithms Using Estimator
Discretized Learning Automata for High-Speed Packet-Switched Networks", IEEE
Transactions on Reliability, Dec. 1994, pp.582-593.

35. Girard A., Routing and Dimensioning in Circuit-Switched Networks, Addison-Wesley, 1990.

36. Narendra K.S., Wright E.A., Mason L.G., "Application of leaming automata to telephone
traffic routing and control", IEEE Transactions on Systems, Man, and Cybernetics,
Nov. 1977, pp.785-792.

37. Economides A.A., "Leaming Automata Routeing in Connection-Oriented Networks",
International Journal of Communication Systems, Vol. 8 1995, pp. 225-237.

38. Narendra K.S., Thathachar M.A.L., "On the behavior of a leaming automaton in a changing
environment with application to telephone traffic routing", IEEE Transactions on Systems,

180

Man, and Cybernetics, May 1980, pp.262-269.

39. Nedzelnitsky O. V. Jr., Narendra K.S., "Nonstationary models of learning automata routing
in data communication networks", IEEE Transactions on Systems, Man, and Cybernetics,
Nov./Dec. 1987, pp. 1004-1015.

40. International Telecommunication Union, ITU-T Recommendation 1.371: Traffic control and
congestion control in B-ISDN, 1993.

41. A T M Forum, ATM User-Network Interface Specification, version 3.1, 1994.

42. Jamin S. et al, "A measurement-based admission control algorithm for integrated services
packet networks", Proceedings of the ACM Sigcomm, September 1995, pp. 2-13.

43. Dziong Z., Choquette J., Liao K.-Q., Mason L., "Admission control and routing in ATM
networks", Computer Networks and ISDN Systems, vol. 20, 1990, pp. 189-196.

44. Guerin R., Ahmadi H., Naghshineh M. , "Equivalent capacity and its application to bandwidth
allocation in high-speed networks", IEEE Journal on Selected Areas in Communications,
vol. 9, 1991, pp. 968-981.

45. Gupta S., Ross K., El-Zarki M. , "On routing in A T M networks", IFIP Transactions
C: Modelling and Performance Evaluation of A TM Technology, Elsevier Science Publishers,
1993, pp. 229-239.

46. Jordan T.P., Design and Analysis of Routing Algorithms for A TM Networks, Ph.D. thesis,
De Montfort University, 1995.

47. Maglaris B., et al, "Performance models of statistical multiplexing in packet video
communications", IEEE Transactions on Communications, Vol. 36, No. 7, July 1988.

48. Naldi M. , Pelusi P., "Efficiency and usability of equivalent bandwidth algorithms for ATM
network dimensioning". Proceedings ofNOC '97, Vol. 2, pp. 218-225.

49. O. Rose, "Statistical properties of MPEG video traffic and their impact on traffic modelling
in A T M systems", University of Wurzburg, Institute of Computer Science, Report no. 101,
Feb. 1995.

50. Moy J., "Link-state routing". Routing in Communications Networks, Prentice-Hall, 1995,
pp. 135-157.

51. Ma Q., Steenkiste P., "Quality of service routing for traffic with performance guarantees",
(version obtained by ftp from Carnegie Mellon University), 1997.

52. Ash G.R., "Dynamic network evolution, with examples from AT&T's evolving dynamic
network", IEEE Communications Magazine, July 1995, pp. 26-39.

53. Guerin R., Orda A., Williams D., "QoS routing mechanisms and OSPF extensions", IETF
Internet Draft, draft-guerin-qos-routing-ospf-OO.txt, November 1996.

54. Chugo A., lida I . , "Dynamic path assigimient for broadband networks based on neural
computation", lEICE Transactions on Communications, vol. E75-B (pt. 7), 1992,
pp. 634-641.

55. Rampal S., Reeves D.S., "Routing and admission control algorithms for multimedia
networks", 1995.

56. Ma Q., Steenkiste P., Zhang H., "Routing high-bandwidth traffic in max-min fair share

181

networks", ACMSigcomm96, August 1996, pp. 206-217.

57. Gibbens R.J., Kelly F.P., Key P.B., "Dynamic alternate routing". Routing in
Communications Networks, Prentice-Hall, 1995, pp. 13-48.

58. Shaikh A., Rexford J., Shin K.G., "Dynamics of quality-of-service routing with inaccurate
link-state information", (version obtained by ftp fVom University of Michigan), 1998.

59. Mitra D., Gibfaens R.J., Huang B.D., "Analysis and optimal design of
aggregated-least-busy-altemative routing on symmetric loss networks with trunk
reservation". Proceedings of the 13"'' International Teletrqffic Congress, June 1991.

60. Breslau, Adaptive Source Routing of Real-time Traffic in Integrated Services Networks,
Ph.D. Thesis, University of Southern California, 1996.

61. Moy J., OSPF version 2, RFC 2328, April 1998.

62. Baran P., "On distributed communication networks", IEEE Transactions on Communications
Systems, CS-12(l):l-9, March 1964.

63. Rajaraman K., Sastry P.S., "Finite time analysis of the pursuit algorithm for leaming
automata", IEEE Transactions on Systems, Man, and Cybernetics, 1996, Vol. 26,
pp. 590-598.

64. Aranzulla P., Reeve J., Mellor J., Mars P., "Improved stochastic leaming automata for
routing in ISDNs", Proceedings of NOC '97, Vol. 1, pp. 227-231, 1997.

65. Nyong O.D.O., Performance Modelling and the Representation of Large Scale Distributed
System Functions, Ph.D. thesis. University of Durham, 1999.

66. Nyong D., Aranzulla P., Cosmas J., Pitts J., "Resource based policies for design of
interworking heterogeneous service networks". Interoperable Communication Networks,
Vol. 1, No. 2-4, pp. 571-580, 1998.

67. Luo Z., Cosmas J., Nyong D., Pitts J., Learning and Prediction, DTI HPIP project ARMAN,
version 1., 1996.

68. CCITTRecommendation Z. WO: Specification and Description Language SDL, 1988.

69. Cisco 12000 Series Gigabit Switch Routers, Cisco product literature,
http://www.cisco.com/warp/public/733/12000/12000_ov.htm. 1998.

70. Distributed Weighted Random Early Detection, Cisco product literature,
http://cio.cisco.com/univercd/cc/td/doc/product/software/iosl 11/ccl 11/wred.htm. 1998.

71. Designing Large Scale IP Networks, Cisco product literature,
http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/index.htm.

72. The Point-to-Point Protocol (PPP), rfc 1661, 1994.

73. Routing Information Protocol, rfc 1058, 1988.

74. Transmission Control Protocol, rfc 793, 1981.

75. RTP: A Transport Protocol for Real-Time Applications, rfc 1889, 1996.

76. User Datagram Protocol, rfc 768, 1980.

182

77. Post Office Protocol - Version 3, rfc 1939, 1996.

78. . Internet Message Access Protocol - Version 4revl, ifc 1730, \996.

79. Simple Mail Transfer Protocol, rfc 821, 1982.

80. Hypertext Transfer Protocol - HTTP/1.0, rfc 1945, 1996.

81. Cisco lOS™ Software: Quality of Service Solutions, Cisco product literature,
http://www.cisco.com/warp/partner/svnchronicd/cc/cisco/mkt/ios/qosio wp.htm

82. Cisco lOS Technologies - Quality - CAR,
http://www.cisco.com/warp/customer/732/Tech/car/index.html

83. Matloff N. , Probability Modelling and Computer Simulation, PWS-KENT Publishing
Company, 1988.

84. "Chapter 9: Campus Network Example", BONeS Designer: MAC Modules Library
Reference, BONeS Designer Documentation, 1994.

85. "Chapter 3: Example Systems", BONeS Designer: ATM Library Reference, BONeS
Designer Documentation, 1994.

86. Comparison of IP-over-SONET and IP-over-ATM Technologies, http://www.trillium.com,
Trillium Digital Systems, 1997.

87. Aranzulla P., "A comparative evaluation of OPNET and BONeS computer modelling
packages", Internal report 1, 1995.

88. Aranzulla P., "Dynamic routing in A T M networks". Internal report 2, 1995.

89. Griffin D. ed., Integrated Communications Management of Broadband Networks, Crete
University Press, 1996.

90. PNNI Draft Specification, A T M Forum, R9, 1995.

91. OPNET Tool Operations Manual, OPNET Modeller Documentation, Vol. 5, 1997.

92. Liengme B., A Guide to Microsoft Excel for Scientists and Engineers, Arnold, 1997.

183

