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Abstract 

Multi-service communications networks are generally designed, provisioned and configured, 

based on source-destination user demands expected to occur over a recurring time period. 

However due to network users' actions being non-deterministic, actual user demands will 

vary from those expected, potentially causing some network resources to be under-

provisioned, with others possibly over-provisioned. As actual user demands vary over the 

recurring time period from those expected, so the status of the various shared network 

resources may also vary. This high degree of uncertainty necessitates using adaptive resource 

allocation mechanisms to share the finite network resources more efficiently so that more of 

actual user demands may be accommodated onto the network. The overhead for these 

adaptive resource allocation mechanisms must be low in order to scale for use in large 

networks carrying many source-destination user demands. 

This thesis examines the use of stochastic learning automata for the adaptive routing 

problem (these being adaptive, distributed and simple in implementation and operation) and 

seeks to improve their weakness of slow convergence whilst maintaining their strength of 

subsequent near optimal performance. Firstly, current reinforcement algorithms (the part 

causing the automaton to learn) are examined for applicability, and contrary to the literature 

the discretised schemes are found in general to be unsuitable. Two algorithms are chosen 

(one with fast convergence, the other with good subsequent performance) and are improved 

through automatically adapting the learning rates and automatically switching between the 

two algorithms. Both novel methods use local entropy of action probabilities for determining 

convergence state. However when the convergence speed and blocking probability is 

compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found 

to be superior. 

A novel re-application of learning automata to the routing problem is therefore 

proposed: using link utilisation levels instead of call acceptance or packet delay. Learning 

automata now return a lower blocking probability than the dynamic shortest-path based 

scheme under realistic loading levels, but still suffer from a significant number of 

convergence iterations. Therefore the final improvement is to combine both learning 

automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking 

probability of this novel routing algorithm is superior to either algorithm, even when using 

frend user demands. 



The main thesis conclusion is that although stochastic learning automata can self-

organise their action probabilities to produce good overall routing performance by effectively 

processing the full set of path possibilities, they thrive when there is a deterministic aid to 

their action probability convergence. 
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1 Introduction 

1 • 1 Introduction to multi-service networks 

Historically, networks have been categorised into one of two types: either a voice network or 

a data network. A company would generally have two separate physical networks connecting 

its sites together, one carrying its internal voice calls, with the other carrying its data fraffic. 

The voice network would have Private Branch Exchanges (PBXs) located at each company 

site, with these being cormected together by leased lines provided by a Public Services 

Telecommunications Network (PSTN) company. 

Transporting a voice call involves digitising or encoding the analogue voice frace, 

fransmitting the digital information, and decoding the analogue voice waveform at the 

destination. The basic Coder Decoder (CODEC) used produces a constant 64 kb/s frain of 

information. Each voice call carried by the company voice network would be allocated a 

specific time slot of the fraversed leased line, each time slot comprising a 64 kb/s 

transmission capacity. It is during the call set-up phase that the requfred time slot on the 

leased line is reserved by the call, and i f the leased line capacity is being fiilly consumed by 

the existing calls then the PBX breaks out that call request on to the PSTN as a standard dial-

out voice call. This system ensures that each voice call receives sufficient network resources 

for its data to be fully carried within the voice traffic delay requirements; and due to the 

network resource reservation mechanism, no other calls' fraffic can interfere with this call's 

traffic and so degrade its Quality of Service (QoS). 

The data network operated differently, being packet switched rather than circuit 

switched as was the voice network. As data applications are generally bursty in nature rather 

than constant in their fraffic fransmission as is a voice CODEC, so their fraffic is encapsulated 

in small packets of information, the data network switching these packets rather than the 

whole call's fraffic. This ensures a higher statistical multiplexing gain, meaning that a higher 

number of data calls can be carried by the links as one call's silent period can be used for 

another call's data fransmission. 

This type of network is termed a best-effort data network as no separation of differing 

flows' fraffic occurs, so that under congestion conditions all flows are affected and all may 

lose data. This situation is acceptable to data applications which do not requfre delay 

guarantees, as the fransport layer would detect the data loss after a timer expiry and refransmit 

the data. 



More recent developments in network technology have produced single physical networks 

which can handle both types of traffic, these being termed integrated or multi-service 

networks. These networks can provide differing degrees of QoS according to the application 

requirements, and so make the most efficient use of the expensive Wide Area Network 

(WAN) link resources, these generally being the greatest component of the total network cost. 

By providing the required bandwidth and delay characteristics for applications such as voice 

which need strict QoS from the network, together with little or no QoS for best-effort data 

traffic, as well as many possible degrees of QoS sfrictness in between, all application types 

can be efficiently accommodated and transported by the single physical network 

infrastructure. The technology used for such networks is generally one of two types: 

Asynchronous Transfer Mode (ATM) or Internet Protocol (IP) based. 

1.2 Multi-service networks using ATM technology 

Asynchronous Transfer Mode (ATM) technology arose and was driven mainly from the 

PSTN carrier perspective. As such it has been used for multi-service PSTN carrier links and 

networks, as well as being used for corporate WAN links. Previously PSTNs had carried data 

based on single or multiples of 64 kb/s connections combined together to form larger 

aggregate pipes. As the PSTN backbone had moved from analogue to digital exchanges, so 

local Integrated Services Digital Network (ISDN) ports at customer sites would allow that 

customer to fransmit their digital data directly onto the network at 64 kb/s or multiples 

thereof Therefore the PSTN network could carry both data and voice application fraffic with 

the consfraint that the data channels or flows had to be in multiples of 64 kb/s. 

Coming from this circuit-switched perspective, one of the drivers of ATM was to 

have a network which would allow greater statistical multiplexing of the traffic, whilst still 

separating individual 'active' flows so that no existing flow's QoS would be degraded by 

interference from other flows. Like fraditional data networks, the application data is 

packetised (in this case in fixed 53 byte ATM cells [1]) and the various applications' data 

packets are multiplexed and carried over the physical links. However unlike fraditional data 

networks, the various data flows are logically separated into virtual channels, and by having 

separate buffers at switch output ports on a virtual channel basis, the flows are segregated and 

the network's QoS for a flow cannot be degraded by interference from another flow. 

As some data flows may be quite small in their WAN link bandwidth requirements, 

so many more simultaneous data flows may arise than with voice calls. In order to properly 

manage the network so that it is scaleable up to large PSTNs, there is the need to aggregate 

these many flows together so that network management functions operate on multiples of 



simultaneous traffic flows. A T M provides a two level hierarchical structure for aggregating 

micro-flows into higher level network flows [2]. At the lower level, end-to-end Virtual 

Channel Connections (VCCs) are instantiated in the network [3], these being separated from 

other VCCs by utilising a scheduling buffer unique to the VCC at the output port for each 

transit node. Micro-flows for the same source to destination are aggregated onto the VCC by 

the layer 3 IP packets being segmented and encapsulated into A T M cells at the IP to ATM 

convergence layer, this being termed the ATM Adaptation Layer (AAL). VCCs form the 

logical network route topology over which the micro-flows can be routed by edge layer 3 IP 

routers. The higher level aggregation occurs with the formation of Virtual Path Connections 

(VPCs). These traverse one or more physical links, and form a logical network topology over 

which the VCCs are set up. The size of these logical network links is specified at set-up time, 

and is used by the Call Acceptance Control (CAC) function when new VCC set-up requests to 

traverse this VPC arrive. I f there exists sufficient resources over a VPC to accommodate a 

VCC request across it, the CAC for the VPC accepts the request; otherwise the CAC rejects 

or blocks the VCC request. 

Two main types of VCC are defined: Constant Bit Rate (CBR) and Variable Bit Rate 

(VBR) VCCs. CBR VCCs are for application types generating either a deterministic data 

stream with predictable packet sizes and interpacket intervals, or for reserving a pre-defined 

amount o f bandwidth for aggregates of micro-flows. Rather than reserving a pre-specified 

amount of bandwidth as with CBR, the CAC for VBR VCCs generally reserves an amount of 

bandwidth between the average and the peak, computed using burst characterisation 

parameters of the application source. VBR VCCs are used for bursty data applications, where 

rather than reserving the peak required bandwidth, a smaller value is reserved in order to 

obtain greater statistical multiplexing in the VPC. 

CBR VCCs are ideal for use by voice CODEC applications, as these generally 

generate a constantly sized application level packet and constant inter-packet time. Other 

single data source types may be better served by VBR VCCs, thus allowing for more efficient 

usage of the VPC's bandwidth. Most data sources require only best-effort network service: 

these sources can be conveniently served by either CBR or VBR VCCs, as the higher level 

(transport level or layer 4) protocols (e.g. TCP) take care of end-to-end flow control under 

VCC congestion conditions. Another type of VCC, the Available Bit Rate (ABR) VCC, has 

also been defined. This less used type seeks to allocate unused VPC bandwidth for best-effort 

traffic, throttling it back as the spare VPC bandwidth is allocated to new CBR or VBR VCCs. 

As this concept is similar to the layer 4 functionality, so the benefit of ABR VCCs lies in the 

more efficient usage of spare VPC capacity. However a similar effect to ABR VCCs occurs 

when setting up either CBR or VBR VCCs to fully utilise VPC bandwidth together with 

policing mechanisms to ensure the maximum user demand doesn't exceed the stated VCC 



bandwidth requirements. The best-effort traffic sources are allowed to use these VCCs, and 

the layer 4 flow confrol mechanisms regulate the traffic sources to use all the available 

bandwidth within the VCC. 

1.3 Multi-service networks using IP technology 

Internetworking Protocol (IP) [4] technology arose from the need to allow for data 

interconnectivity between heterogeneous networking technology types. Its use has become 

sjmonymous with the Local Area Network (LAN) arena, as the various layer 2 and 1 

technologies are combined together into a seamless networking environment by the IP layer. 

Being a layer 3 protocol in the OSI model, it performs the routing and congestion control 

functions [5] with the aid of associated protocols. 

Whilst it is true that because the IP layer is local to the user so in general ATM 

networks carry IP fraffic, yet IP networks generally refer to networking technologies which 

utilise the whole suite of protocols associated with IP, these protocols going up to the 

application layer (layer 7 in the OSI model), and down to the data-link layer (layer 2 in the 

OSI model). The reader is referred to appendix A for further details on the IP protocol suite 

and associated planning and design issues. Due to IP networks providing only best-effort 

service, the W A N has used other network technologies such as A T M or Frame Relay. 

However with the advent of IP QoS mechanisms in the IP network equipment, the possibility 

of pure IP even at the carrier level is fast becoming a reality. 

These IP QoS mechanisms utilise certain fields in the IP packet header for the 

packet's class identification so that QoS differentiation of fraffic flows becomes possible. In 

IP version 4 the 3 precedence bits in the Type of Service field are used, giving a possible 8 

different classes of service. The improved IP version 6 [6] has a larger flow label field of 24 

bits, so that more than 16 million differing classes of service can be defined. 

The best-effort service occurs through the use of a single First In First Out (FIFO) 

output queue, which stores packets under link congestion conditions, forwarding them on in 

order of arrival. This basic queuing and scheduling method is unsuitable for use in multi­

service networks for whilst packets from bursty fraffic sources may not necessarily be 

dropped, yet the high delay variation possible when fraversing the buffer would seriously 

affect the time-sensitive fraffic flows. 

By having multiple queues at an output port, served by a scheduling mechanism 

which empties each queue in turn, the differing classes' fraffic can be separated and handled 

differenUy. IP packets enter the router and after being routed to the required output port, are 



placed into the buffer corresponding to the class indicated in the IP packet header. The 

servicing of each class queue is handled by the scheduling mechanism, an established method 

being the Weighted Round Robin (WRR) algorithm [7]. Bandwidth is effectively allocated to 

each aggregate class buffer flow by configuring WRR to spend a certain percentage of its 

scheduling time servicing one buffer, another percentage another buffer, and so on. The more 

recent Weighted Fair Queueing (WFQ) algorithm [8] is an improvement in that it allows the 

re-use of remaining scheduling time by other class buffers when a class buffer is empty. 

Unlike the per-VCC level flow segregation of ATM networks, these IP buffers are 

aggregate class buffers, with many micro-flows possibly using a particular buffer. Therefore 

in order to ensure misbehaving micro-flows do not adversely affect the network QoS to other 

flows of the same class, strict policing mechanisms at the network edges are required. Having 

done so, soft guarantees can be given to flows (because of the shared buffer resources), rather 

than hard QoS guarantees which ATM can provide. End-to-end network performance is 

improved by using the Random Early Detection (RED) mechanism [9]. This mechanism 

seeks to avoid cases of recurrent network congestion prevalent with TCP traffic flows (see 

appendix 1 for further details), in order to utilise network resources more efficiently, so 

allowing the network to provide a more consistent response or QoS to users and applications. 

The algorithm probabilistically discards IP packets before the onset of chronic congestion in 

order to cause the TCP engine at the micro-flow source to effectively slow its transmission. 

Although utilising shared network resource pools at transit nodes, end-to-end 

resource reservation is facilitated by the Resource reSerVation Protocol (RSVP) [10] which 

reserves network resources along a source-destination route according to the source's 

requirements. True QoS separation of flows also requires the possibility of using one route 

for a class' traffic and another for another class' traffic for the same source-destination pair. 

This abihty is provided by Multiprotocol Label Switching (MPLS) [11] which can provide 

route separation down to the micro-flow level, with RSVP reserving the required resources 

for bundles or single MPLS flows at transit nodes. 

Al l these QoS mechanisms operating together form an architecture for providing 

multi-service requirements for heterogeneous traffic sources using IP networks. 

1.4 Planning, provisioning and allocation of network resources 

The planning and design function of multi-service networks, be they EP or ATM based, 

centres on some form of user demand modelling for each application type using the network. 

By combining the number of expected concurrent sessions of an application, and the source 

and destination locations for each traffic flow, together with the expected traffic demand for 



each application session instance, an expected aggregate user demand for each required 

logical link can be derived. When mapping these logical links onto an existing physical 

topology via routes produced from a routing algorithm (due to resizing an existing network in 

the case of a network change or upgrade) the required physical link sizes that the logical links 

fraverse are obtained. In cases of a greenfield site (i.e. where the network is to be designed 

and installed from scratch) the physical network topology generated wil l be dependent on the 

node or user population sub-set concenfration or location. The resulting physical link sizing 

is again based on the aggregate requirements of the multiplexed expected fraffic logical links. 

With the network planning stage being completed, the physical network is 

provisioned according to the expected user demand-based design. This provisioning process 

not only involves the installation of the physical network resources such as the switching and 

router equipment together with the associated connecting links, but their configuration as 

well. This configuration allows for logical links with heterogeneous QoS requirements to be 

multiplexed over the same physical links, there being a separating mechanism effective over 

the link to ensure that misbehaving sources do not compromise the QoS of other multiplexed 

flows. This separating mechanism may involve separate class buffers and scheduling in the 

case of either IP or A T M network technology. 

Finally there is the actual allocation of these provisioned network resources which 

may occur on a per-demand basis. There are two associated functions or mechanisms linked 

with resource allocation: Call Acceptance Confrol (CAC) and call routing. The CAC function 

works in conjunction with the routing function in allowing new call requests access to the 

network resources needed to maintain the call's QoS requirements, or downgrading the call's 

fraffic QoS tag i f insufficient network resources are available. Both ATM and IP (using 

RSVP) technology CACs may also deny a new call or connection request any resources in 

cases of network congestion, so blocking the call. The routing function routes the call's 

fraffic through the network from the source to the destination, the CAC fiinction having 

reserved the resources along the route for the call's duration. 

However in cases of more static provisioning, the CAC fiinction is more akin to a 

policing function in that the aggregate bandwidth for an application type's source to 

destination flow is already reserved or allocated based on expected application demands. The 

CAC or policing mechanism then ensures that there are not too many such application micro-

flows routed over and so using that reserved shared resource, blocking or downgrading the 

QoS of new requests at the edge of the network. Implemented in an ATM network, such an 

allocation policy would require pre-established VPCs and VCCs (otherwise known as 

Permanent Virtual Circuits or PVCs), each VCC carrying multiple application micro-flows. 

Implemented in an IP network, such an allocation policy would require pre-established fransit 

node class buffer sizing and scheduling algorithm configuration (this allocation policy being 



termed Differentiated Services or DiffServ [12]). Such network resource allocation can still 

be varied according to network conditions with resizing of the reserved aggregate bandwidth 

sizes, as well as recalculation of the routes through the network i f necessary. To simplify this 

procedure in an A T M network, fairly static SVCs could be used instead of PVCs, these being 

resized as necessary or even re-routed or reformed over a different route. With an IP network, 

aggregate class buffer sizes and scheduling algorithm time can be reconfigured using RSVP, 

this therefore operating over multiple MPLS flows through that transit node [13]. The MPLS 

routes themselves can also be reconfigured as required. 

Weaknesses with the static allocation approach centre on the fact that non-

deterministic user actions, which result in demands for network resources, cannot be predicted 

accurately. This leads to a mismatch between expected user demands for which the network 

has been provisioned, and actual user demands that the provisioned network attempts to 

satisfy. Whilst most network designs may over-provision resources in an attempt to solve this 

problem as well as building in some traffic demand growth expectation, unless there is a high 

degree of over-provisioning there wil l generally occur hot-spots in the network, with some 

areas being under-provisioned and other having spare capacity. As user demands vary with 

time, so the hot-spot network areas may also move over time, meaning that a large number of 

higher capacity links may be required to eliminate the problem. Of course, this situation is 

exacerbated when provisioning for network failure conditions. 

By allowing some dynamism in the resource allocation policy, user demands can be 

redistributed as necessary in order to ease network congestion hot-spots, by consuming some 

of the spare capacity found at other parts of the network. Therefore all the network resources 

are used more efficiently, resulting with a lower provisioning requirement. Whilst it is true 

that differing static allocation policies may be put in place at different times of the day or 

under network failure conditions to more accurately allocate resources to expected user 

demands, yet significant mismatches may still occur. Therefore fully dynamic allocation 

policies are investigated in this thesis, these resulting with the most efficient use of shared 

network resources. As this area is the more combinatorially complex, it is believed that 

contributions in this area will be applicable and useful in the less complex and more static 

allocation policy scenarios. 

1.5 Dynamic routing algorithms 

A dynamic resource allocation policy requires the dynamic operation of the combined CAC 

and routing functions. The routing function calculates a route from the source to the 

destination, with the CAC function accepting the call request i f there remain sufficient unused 
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network resources over the calculated route. This set of dynamic calculations may be 

performed on an aggregated call basis, or down to the micro-flow level call basis. When 

operating in an A T M paradigm, this franslates to a SVC environment. When using IP 

technology this maps directly to the Integrated Services (IntServ) [14] operational 

environment, but also conceptually to the DiffServ paradigm. This is true when there are 

multiple route possibilities for that flow's class over partitioned and allocated pools of shared 

network resources for that class. At that point the combined mechanism of CAC and routing 

functions can decide over which route to send the call request, the feedback for the decision 

making process being the status of the shared network resources along that downsfream path. 

Most dynamic routing algorithms currently used (such as IP's OSPF) re-calculate routes 

on indications that the network topology has changed, with either links or network equipment 

going out of service. This is in order to preserve network stability. However it is only with 

bandwidth-based dynamic routing algorithms that the allocation of the network resources can 

vary from that matching the expected fraffic demands to that matching the actual fraffic 

demands. Such algorithms vary the route set calculated according to the current network state 

or link loading levels, lower loading levels returning higher available bandwidth indications, 

this predisposing the route calculation to favour usage of such links. By performing the route 

calculations at the call level based on the reserved aggregate call level bandwidth rather than 

current flow level, large swings in link state are avoided, so aiding network stability. The 

most combinatorially complex network scenario type was chosen (that of user individual 

calls) in order to assess the proposed novel dynamic routing solutions contained in this work 

within the most challenging context. 

As regarding the routing and multiplexing of multi-service fraffic on the same links, the 

preferred policy is, in general, to reserve some resources exclusively for each fraffic class 

whilst sharing the remainder [15]. The performance of routing algorithms within a multi­

service context with shared resources is generally given in terms of the bandwidth blocking 

probability. This is defined as follows: 

V. bandwidth(0 
bandwidth blocking rate = 

2_,.^^bandwidth(0 

where B is the set of all blocked call requests, and S the set of all call requests. Previous work 

has shown that a single routing policy returns comparable performance to a set of routing 

policies in a shared resource multi-service flow context (i.e. one policy for each service type) 

[19]. However the blocking probability increases as the fraffic intensity for a source remains 

constant but its bandwidth requirement increases for each instance. As the focus of this work 

is to improve user perceived network performance by improving the dynamic routing 

algorithm, therefore any possible clouding effects of heterogeneous fraffic sources are 
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removed by using homogeneous or single class types in the experiments. However the 

experimental framework is provided for evaluating heterogeneous source traffic scenarios, 

which because of possible reservation policies which include partitions exclusively used by a 

source type with other partitions shared between source types, require various scenarios in 

order to be evaluated. 

The initial experimental work contained in this thesis explores the performance of 

current link-state shortest path based algorithms proposed in the literature. Further work 

ensues in trying to reduce the associated link state advertisement overhead, whilst still trying 

to maintain good performance in terms of blocking probability under moving and steady 

network state conditions. 

However the main focus of work covered in this thesis lies in the field of the application 

of stochastic learning automata to the dynamic routing problem in multi-service networks. 

Learning automata have been shown to produce near optimal performance after convergence 

in stationary environment applications [16], and have also been previously applied to the 

routing function in communications networks [17]. The main work of this thesis seeks to 

improve their weakness of slow convergence speed whilst retaining their strength of good 

steady-state performance. These improvements are validated by comparing the resulting 

performance with that obtained from the proposed novel shortest-path based routing 

algorithm. Unlike previous studies using learning automata [18, 19], experiments are also 

performed to show that these improvements hold under dynamic user demand conditions in 

the network. 

1.6 Outline of the thesis 

Figure 1 shows the thesis contents breakdown in terms of the chapters' information 

dependencies. Rather than the work having a single strand of thought and being described in 

a purely sequential manner, there are two main areas of work that although interrelated may 

be thought of as distinct work areas. 

The first and main area of work is the critical examination and subsequent 

improvement of stochastic learning automata operation when applied to routing in 

reservation-based networks such as ATM or IP with QoS features. This body of work is 

contained in chapters 2, 4, 5, 6 and 7. The second area of work deals with obtaining a 

dynamic routing algorithm that performs well in either ATM or IP QoS networks and is based 

on currently used routing algorithms, this then being used on a comparative basis with the 

resulting learning automata based method. This second area of work is presented in chapter 

3, its contents feeding into chapter 5 onwards. The proposed and validated algorithms for IP 



QoS networks are modified for use in more regular DiffServ IP based networks in the fiirther 

work section of chapter 8. 

Chapter 2 contains a literature review of stochastic learning automata, including thefr 

operation and application to the routing function in networks. 

Chapter 3 sets the scene for routing in both ATM and IP QoS networks by examining 

the role of the Call Acceptance Confrol function for differing fraffic types. After detailing an 

accepted effective bandwidth calculation method for voice connections, a novel method for 

effective bandwidth calculation of MPEG sources is presented, with initial results indicating 

its superior accuracy when compared with previous methods. Various link-state routing 

algorithms are then examined, with a modified existing algorithm being comparatively 

evaluated via simulation experiments. This results with a link-state routing algorithm whose 

performance can be used for comparison with learning automata based methods. 

Chapter 4 examines the resulting performance of the various reinforcement 

algorithms, these being an integral part of learning automata operation. Their performance 

has been characterised for stationary environment applications, which is where the 

environment state doesn't change. However the communications network environment is of 

the non-autonomous non-stationary kind, as its state changes according to the learning 

automata actions performed. Previous work on applying learning automata to networking 

problems has simply assumed that the relative performance of the differing reinforcement 

algorithms when learning automata operate in a stationary environment is the same as when 

operating in non-autonomous non-stationary environments. However the comparative 

examination presented in chapter 4 shows this to be an erroneous assumption, with a number 

of the algorithms thought to produce the best performance being clearly unsuitable for use in 

applications of non-autonomous non-stationary environment kinds. 

Chapter 5 takes the best performing learning automata schemes arising from the work 

of chapter 4, and seeks to improve their performance. Two differing schemes are taken from 

the work of chapter 4, one having strengths in network steady-state conditions with the other 

sfrengths in moving network state conditions. The performance of both schemes is improved 

with a novel adaptive mechanism, which adapts the learning rate according to a novel method 

of characterising the local network state. A different novel adaptive mechanism which seeks 

to combine the sfrengths of both schemes highlighted in chapter 4 is then proposed and 

evaluated, this also showing a performance improvement. The performance of both of these 

improved learning automata schemes are then compared with that resulting from using the 

dynamic shortest-path algorithm detailed in chapter 3. 
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Figure 1: Chapter information dependencies 

The work contained in chapter 6 re-examines how learning automata have historically been 

applied to the routing problem in reservation-based networks, and proposes a novel way of 

applying them to the problem, the reinforcing feedback being based on link utilisation levels. 

The resulting performance of the new learning automata routing algorithm is finally compared 

to that of the dynamic shortest-path algorithm. 

Having seen that each of these algorithms is stronger in differing network state 

circumstances, the work collated in chapter 7 seeks to combine the two algorithms to produce 

a hybrid routing algorithm. This hybrid includes both a learning automata component, and a 

shortest-path component, the part that is active at any one time being dependent on the locally 

perceived network state. 
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Chapter 8 draws all the strands of findings and conclusions together, also presenting some 

directions for further work. This further work section proposes modifications of the hybrid 

algorithm for it to operate in a more regular IP environment, (i.e. a Diffserv paradigm). 

12 



2 A Brief Review of Learning Automata 

2.1 Introduction 

The purpose of the following chapter is to provide the theoretical aspects of learning 

automata, which wil l be required when detailing proposed improvements in later chapters. 

The chapter begins by introducing the basic concepts of an automaton interacting with an 

environment, and proceeds to detail in a simple and unified manner the various main 

reinforcement algorithms. It is by using these algorithms that the automaton is able to learn 

the statistical environment characteristics. The use of different reinforcement algorithms 

results in different theoretical performance characteristics when operating in stationary 

random environments, so a tabulation of the various performance groupings is given. 

Finally, the means by which learning automata have previously been applied to the 

routing problem in both circuit and packet-switched networks is briefly shown, together with 

the observed resulting performance characteristics. 

2.2 Basic Concepts 

Learning can be defined as any relatively permanent change in behaviour resulting from past 

experience. Therefore a learning system has the ability to improve its behaviour with time, 

according to a defined performance measure [20]. A learning automaton can be defined as a 

decision maker which operates in a random environment, updating its strategy for choosing 

actions on the basis of the environment's response [16]. The automaton has a finite number 

of actions and the response of the environment to each action can be either favourable or 

unfavourable. The automaton's interaction with its environment is shown in Figure 2. 
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i Automaton 
^ , F { . . } , G { . . } 

a 

Environment 
E(n) 

Figure 2: Learning Automata acting in an environment 

The automaton is defined by its state set ^ , an output or action set a, an input set ^, a 

fransition or updating function F{ . .} , and an output function G{. .} . The automaton can be 

either stochastic or deterministic; the former's output function G{..} being composed of 

probabilities based on the environment's response, whilst the latter having a fixed mapping 

function between the internal state and the function to be performed. Further sub-division of 

classification occurs when considering the fransition or updating fimction F{..} which 

determines the next state of the automaton given its current state and the response from the 

environment. I f this is fixed then the result is a fixed structure deterministic or a fixed 

sfructure stochastic automaton. However i f the updating fiinction is variable, allowing for the 

fransition function to be modified so that choosing the operations or actions changes after 

each iteration, then the result is a variable structure deterministic or a variable structure 

stochastic automaton. For this stiidy the particular types used are variable stioicture stochastic 

automata, these having the potential of greater flexibility and therefore performance. For 

such an automaton A at instant n: 

where we have an action set a with r actions, an environment response set ^ and a probability 

set 2 containing r probabilities, each being the probability of performing every action possible 

in the current internal automaton state. The function T is the reinforcement algorithm which 

modifies the action probability vector £ with respect to the performed action and the received 

response. The new probability vector can therefore be written as: 

U(n+l) = T{a,AR{n)} 

The environment is defined by E(«): 

E{n)={a,Mc} 
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where c is the penalty set. This is the probability that the action aj would result in an 

unfavourable response from the environment, and is defined as: 

c, - Pr[/7(«) = l\a(n) = ; / = { 1, 2,.... , r } 

This characterises the response of the environment to a performed action, and therefore 

indicates the desirability of different actions, responding with a penalty signal or penalty 

weight depending on the environment model. There are three possible environment response 

models: the P-model responds to an action with a binary signal (either 0 or 1, reward or 

penalty); the S-model has a continuous response in the region (0, 1) and the Q-model's 

response is one from a finite set of discrete values in the range of (0, 1). For this study both 

the P-model and S-model were chosen. The P-model's binary response can be easily 

generated from the network according to whether a connection attempt had been successful or 

not, and this is the method that has been traditionally used. However an enhancement 

presented in later chapters involves the use of the S-model. These matters are further 

explained in the next main section. 

One quantity useful in judging the behaviour of a learning automaton is the average 

penalty received by the automaton. The average penalty received by the automaton for a 

given action probability vector is expressed by: 

Min) = E[j3(n)\p{n) 

r 

1=1 

I f no a priori information is given and the actions are chosen with equal probability, then the 

average penalty received by the automaton is given by: 

r 

The use of the term learning automaton can be justified i f the average penalty is made less 

than Mo at least asymptotically, such behaviour being called expediency. So an expedient 

learning automaton performs better than one whose actions are chosen in a purely random 

manner. An optimal learning automaton would produce the minimum value of M(n). 

Optimality implies that asymptotically the action associated with the minimum penalty 

probability is chosen with probability one. Whilst optimality is very desirable it is often not 

achievable, and so suboptimal performance is aimed for. Such is termed £--optimality, and 

implies that the performance of the automaton can be made as close to the optimal as desired. 
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An absolutely expedient learning automaton has a monotonic decrease in M{n). Absolute 

expediency implies expediency and ^--optimality in all stationary random envfronments [21]. 

Having defined the learning automaton and environment type that will be used, the 

differing learning automaton classification that occurs in the remainder of this study is based 

on the reinforcement algorithm employed. 

2.3 Reinforcement Algorithms 

Classification of such algorithms can be based either on the nature of the function used in the 

scheme, or on the property exhibited by a learning automaton using the algorithm [20]. 

The first classification type may be split into two main areas: the linearity of the 

scheme, and whether the scheme is continuous or discrete in nature. An example of the 

former area is i f ̂ {n + 1) is a linear fiinction of ^(/ i) , then the scheme is termed linear. 

Schemes involving higher orders of ^(n) are non-linear, with the final class of algorithm 

combining aspects of the two and so being a hybrid. As non-linear and hybrid algorithms 

have given no appreciable improvement over the linear updating schemes [22], only linear 

algorithms wil l be used in this study. 

As for whether the scheme is discrete or continuous, with a continuous scheme the 

action probabilities may take any real value between the interval (0, 1), this being limited 

when implemented only by the floating point precision. A discretised scheme on the other 

hand discretises the probability space so that the action probabilities may take values only 

from a finite set in the interval (0, 1). 

This second classification type results with broadly two types of learning automaton: 

those that are absolutely expedient and generally ^-optimal, and those that are ergodic. In 

general the theoretical proofs given for these properties assume a stationary random 

environment, so it remains unclear whether these properties hold in non-stationary random 

environments, a multi-service network corresponding to such an environment, as detailed in 

chapter 4. However, the properties for each algorithm are given as an aid to classification. 

It was thought beneficial to detail the algorithms which follow as the original sources 

varied in their terminology and method of explanation. The details below are given in a 

uniform manner and style to ease both their comprehension and the appreciation of 

differences. Al l the algorithms have a learning rate parameter, which indicates the possible 

size of change in the updating of action probabilities. 
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2.3.1 Standard Algorithms 

Standard reinforcement algorithms use the instantaneous environment response /5 to direcdy 

update the action probabilities. According to the algorithm used, either one or both of the 

environment responses are used in the updating mechanism. The following algorithms 

follow: LRI, LRP and L R ^ , these being the ones mainly used. Other possible algorithms 

include LIP, LRr, LpP, which are not considered in this study as the former have been shown 

to be superior [18]. 

2.3.1.1 Linear Reward Inaction (LRI) Algorithm 

The following algorithm only updates the probabilities when receiving a successful response 

from the environment, keeping the probabilities unchanged for a penalty response. Using 

either the P-model or S-model response environments, the probabilities are updated in the 

following manner: 

Reward on «(«) = «; y^«) = [0, 1]: 

(« +1) = ( l - «(1 - («) 0 < « < 1 

p,{n^\) = \-Y,p.{n^X) 

Therefore when there is a penalty response 0^«) = 1) on ain) = the result will be: 

Pj{n + l) = pj{n)-yj 

The LRI scheme is expedient and ^--optimal in stationary random environments, but as the 

automaton is not ergodic it is possible for it to get stuck in absorbing states. This makes it 

sensitive to the starting conditions and probabilities, and also to non-stationary environments. 

Such occurs when action probabilities tend to one, so that i f the network state changes, the 

probability vector may not adapt to the new optimum for a long time. 
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2.3.1.2 Linear Reward Penalty ( L R P ) and L R s P Algorithms 

This algorithm updates the probabihties for both a successful and unsuccessful response from 

the environment. Again, using either response environment, the probabilities are updated as 

follows: 

Reward on a(n) = j^n) = [0, 1): 

Pj,, (n + l) = (l-a(l- /?{n)))pj («) 0 < a < 1 

p^(n + \) = \ - f ^ p . ( n + \) 
J*' 

Penalty on a(n) = a\ J3{n) = 1: 

PjAn + ̂ )-y:ri^'^-b)pj{n) Q<b<\ 

p,{n + \) = \-Ypj{n + \) 

where b = a. 

The LRP scheme is expedient, and the probability vector £(«) has been shown to converge in 

distribution to a normal random variable for small step sizes [16, 23]. The scheme is also 

ergodic [24], so that this distribution function is independent of the initial probability vector 

2(0). This feature is also advantageous when operating in non-stationary environments such 

as a communications network, as the automaton does not get stuck in absorbing states and so 

is better able to track the changing optimum probability vector. 

The LRiP scheme is similar to the LRP scheme except that the penalty learning rate 

is less than the reward learning rate, meaning that (b < a). This changes its behaviour to be 

both ^--optimal and ergodic. In general the penalty rate is set at one tenth of the reward rate. 

2.3.2 Estimator Algorithms 

To improve the main limitation of learning automata, that of a slow rate of convergence, a 

new class of algorithm was proposed [25]. Its novel feature is that it uses history by 

maintaining estimates of the reward characteristics of the environment, which in turn drive the 
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updating algorithm to produce a stronger convergence result. This occurs as the probability 

vector is updated based on both the estimate vector and the current response from the 

environment. Thus for this class of algorithm, even i f a particular action is rewarded, it might 

be the case that the probability of choosing another action is increased. The family of 

estimator algorithms has been shown to be ^--optimal in stationary random environments. 

2.3.2.1 The Pursuit Algorithm 

The pursuit algorithm is a special case of a general estimator algorithm, and is characterised 

by the fact that it pursues what it reckons to be the optimal action [26]. It is similar in design 

to the LRI algorithm, except that whereas the LRI algorithm moves the action probability 

vector in the direction of the most recently rewarded action, the pursuit algorithm moves it 

towards the action that possesses the highest estimate of reward. Like the LRI algorithm, the 

pursuit algorithm has been shown to be ^-optimal [27]. Using either response environment, 

the algorithm is as follows: 

Reward on a(n) = a, /^n) = [0, 1]: 

Pj,, (n +1) = (1 - a(\ - m ) ) P j («) 0 < « < I 

p,{n + \) = \-Y,Pj{n + \) 

This again causes the following on receiving a penalty indication (JXn) = 1) on <a(n) = or,-: 

p^{n + \) = pj{n)- Vy 

For either environment reply, the runnmg estimates are subsequently updated as follows: 

W^{n + \)=W^{n) + {\-/3{n)) 

Z,(« + 1) = Z,(«) + 1 

<'(« + !) = 
Z,(« + l ) 

where pk is the action probability that has the highest running estimate d[ of being rewarded; 

Wi{n) is the number of times the zth action has been rewarded up to «; and Z,{«) is the number 

of times the /th action has been selected up to n. 
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2.3.2.2 The General Estimator Algorithm 

The general estimator algorithm is a more complex scheme, with the probabilities being 

updated as a function of both the reward estimates and the action probability vector [25]. The 

algorithm is as follows: 

For either environment response to a(n) = ai. 

f[dl{n)-d]{n)\ 
^ (^-Pj{n)]p,{n) 

r - \ 

A(« + l) = A(«) + a 2 f[d\{n)-d'.{n)\ S,^{n)p.{n)^S,,{n)^- '-^^ 

where Sij{n) is an indicator function defined as: 

= 1 f o r < ' ( « ) > J ; ( n ) 

= 0 for d\{n)<d]{n) 

and/is a monotonic increasing function, such as 'x" or 'x^'. 

For either environment response, the running estimates are subsequently updated as follows: 

Z,(n + l) = Z,(«) + l 

Z,(« + l) 

As can be seen, the updating of the probability vector depends indirectly on the response from 

the environment as this feedback changes the components of D(n) which affect the sign of 

X- --) and Sij. I f ai is chosen and d\{n) < d'j{n), then an amount proportional to (/>,(«) / (r -

1)) ( 1 - pj{n)) is added to pjin). However i f > d'j (n ) , then an amount proportional to 

Pj{n) is subfracted from Pj{ri). 
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2.3.3 Discretised Reinforcement Algorithms 

All algorithms given to date approach the optimal action probability asymptotically, so by 

discretising the probability space to discrete values in the region [0,1], convergence is 

speeded up when the optimal action probability is close to unity, as occurs with stationary 

random environments. This happens by the discretised automaton mcreasing the probability 

of choosing that action to the value of unity directly, instead of approaching that value 

asymptotically as with continuous schemes [28]. The discretisation is termed linear i f the 

allowable values are equally spaced; otherwise it is called non-linear. In general, the 

discretised version of a continuous algorithm retains the original's property of ^--optimality or 

ergodicity. Another benefit of discretisation is that the requirements on the system random 

number generator are reduced as the probability space is now a set of integers, rather than a 

continuous set. This is due to the contents of the probability space not needing to be stored as 

real numbers, only their integer index requiring storage. Therefore the random number 

generator needs to generate an integer within the bounds zero and the number of discrete steps 

rather than a high precision real number, so that it is as close as can be possible to the 

continuous case when using digital circuitry. 

As with the section on the standard continuous algorithms, other possible algorithms 

such as DLIP and ADLIP are not given as their performance was found to be less than the 

ones given below [29]. 

The details for the following reinforcement algorithms are applicable with the P-

model response environment. For the S-model response environment, a number of A 

additions or subtractions may occur according to the magnitude of the reward indicator. 

However, it should be borne in mind that the reception of a variable environment response 

really requires the capability of a continuous algorithm to map it to an appropriate 

reinforcement of the action probabilities. As the size of the minimum granularity is limited 

when using discretised algorithms, the effective use of an S-model response environment is 

often not possible. This is not so much the case with the discretised estimator algorithms as 

the updating function folly takes into consideration the variable nature of the environment 

response. 

2,3.3.1 Discretised Linear Reward Inaction ( D L R I ) Algorithm 

The updating algorithm is fairly similar to that of the continuous case, except that for the two 

action case the automaton has (A'̂ + 1) states, A'̂  being an even integer, and associated with the 
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state Si is the probability i/N, which represents the probability of the automaton choosing an 

action [30]. For the r action case the step size A, instead of being l/N, translates to: 

rN 

The algorithm is as follows for the P-model response environment: 

Reward on O{VL) = ai J3(TI) = 0: 

Pj^,(n + l) = max{pj(n)-A,0} 

p,in + l) = \ - f ^ P j i n + l) 
./>'• 

Penalty on o(n) = tjr, /j(n) = 1: 

Pj(n + l) = p.{ny, vy 

Like its continuous counterpart, the DLRI algorithm has been shown to be .r-optimal in all 

stationary type environments for the two-action case [30]. 

2.3.3.2 Discretised Linear Reward Penalty ( D L R P ) Algorithm 

This is similar to the DLRI updating mechanism, except that the penalty environment 

responses are also utilised, as follows for a P-model response environment: 

Reward on a{n) = a; ^n) = 0: 

Pj,^(n + \) = max{pj(n)-A,0] 

p,in + l) = l - J ] p j ( n + l) 

Penalty on «(n) = at ^n) = 1: 

;?,v,(« + l ) = min{/7.(«) + A,l} 

p,{n + \) = \-Y,Pj{n + \) 
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Interestingly, the discretised version of the LRP algorithm has slightly different properties to 

its continuous counterpart. It has been shown that whilst keeping its ergodic nature, it is also 

^•-optimal in environments where the lowest penalty probability for an action is less than 0.5 

[31]. Moreover, by artificially creating absorbing states (called the ADLRP algorithm) the 

algorithm loses its ergodicity but becomes ^--optimal in all enviroimients. However it has 

been noticed at least in non-stationary random environments that absorbing schemes generally 

perform poorly [17]. Finally, a modification of the DLRP algorithm can be performed (called 

the MDLRP algorithm) which renders it ergodic and ^--optimal in all random environments. 

The modification is as follows: i f the environment response is a penalty, then there is a 50% 

chance of decreasing that action probability, and a corresponding 50% chance of increasing it. 

This modification effectively reduces the penalty response updates, so making it similar to the 

LRiP algorithm in performance and rationality. 

The DLR^P scheme is similar except that a reward results in a multiple number of 

step changes, and a penalty in a single step change. 

2.3.3.3 Discretised Pursuit Algorithm 

Like its continuous counterpart, this algorithm has also been shown to be f-optimal. For 

either response environment, its updates are as follows [28]: 

Reward on a(n) = ai /^n) = [0, 1): 

Pj^k (« + !) = max{p. («) - A,0} 

p,{n + \) = \-f^p^{n + \) 

Penalty on ain) = a\ y^n) = 1: 

p / n + 1) = ;?,(«); V/' 

with the update of the running estimates being as for the continuous case. 
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2.3.3.4 Discretised General Estimator Algorithm 

The entire family of discretised estimator algorithms have been shown to be ^--optimal as long 

as the following two properties are met: the property of moderation, and the monotone 

property [27]. The first property states that the maximum magnitude by which an action 

probability can decrease per iteration is bounded by MrN. The monotone property indicates 

absolute expediency, in that an action probability monotonically moves to the optimum one. 

There are various modifications of the continuous algorithm to allow its use for the 

discrete domain. First the value for A is slightly modified to make it hold to the property of 

moderation as follows: 

rN0 

where represents the largest multiple of A that any one component of the probability vector 

can decrease by in one iteration. It has been stipulated from the change equation below, that 0 

effectively replaces the term 'a' found in the continuous case [27]. However, i f one takes A 

to be the same as for the other discretised schemes which leave out d, then the analogous 

continuous case learning rate is actually the full step size ( '̂A for this case). 

Secondly, the terms />,(«) and (1 - Pj{n)) p^n) have been dropped completely so that 

the algorithm approaches its end point directly rather than asymptotically. Thirdly, two new 

functions are introduced: Rnd( x) rounds x up to an integer, being one oi {-0,-B+ 1, -0+ 2, 

... , 0- 1, 0}\ and Check takes as inputs the current action probabilities and the allowable 

change, retioming the maximum permissible number of step changes which keeps all action 

probabilities within the bounds of 0 and 1. It is formally specified as follows: 

For any environment response to cdji) = for each action j starting with m: 

change = Rnd(^^(j ; (n) - d'j{n)) • [s.j{n) + Sj^{n)y-^ 

Pj{n + \) = pj(n) - ACheck(p, . («) ,pj («) ,change) 

(« + !) = pi («) + ACheck(;?,. (w), Pj («), change) 

with the update of the running estimates being as for the continuous case. 
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2.3.4 Comparisons between Algorithms 

The following section attempts to collate the information available for the aforementioned 

algorithms to provide readily accessible comparisons in type and functionality. 

Unfortunately, the vast majority of performance indicators available in the literature are for 

random stationary environments, but these are not relevant in our study as the environment to 

which the learning automata will be applied is non-stationary, as will be explained in the 

following section. In fact one of the aims of the following chapter is to give some empirical 

indications on comparative performance of the various available algorithms for state-

dependent non-stationary environments such as a communications network. 

Therefore the relevant possible comparative indicators currently available concern the 

asymptotic properties in stationary environments of these variable structure stochastic 

automata. These are shown in Table 1. 

,e-optimal ergodic .̂ -optimal and 
ergodic 

Continuous 
LRI yes 

LRiP yes 
LRP yes 

pursuit yes 
general estimator yes 

Discrete 
DLRI yes 

DLR£P yes 
DLRP yes yes ifcn,in<0.5 

MDLRP yes 
ADLRP yes 

discretised pursuit yes 
dis. gen. estimator yes 

Table 1 - Summary of the asymptotic properties of various reinforcement algorithms 

Ideally, since the environment type used will be non-stationary, the property of ergodicity is 

important. I f this can be coupled with f-optimality and a fast convergence rate, then such an 

algorithm should be the ideal for use in this environment type. 
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2.4 Routing using Learning Automata 

There follows an overview of how previous studies have applied learning automata to the 

problem of routing in networks, for both circuit-switched and packet-switched networks. The 

performance for the reinforcement algorithms that were used is also given, together with the 

reasons why variations in performance occurred. 

2.4.1 The Network as an Environment 

An environment is non-stationary i f the penalty probabilities c, (z = 1, 2, ... , r) corresponding 

to the various actions vary with time. There are three main types of non-stationary 

environment; periodic environments, Markovian switching environments and state dependent 

environments [20, 16]. Periodic environments vary the penalty probabilities periodically in 

time with a common period. Markovian switching environments are similar in that the 

penalty probabilities vary with time, but the new penalty probability set is chosen from a 

number probabilistically [32]. Finally state dependent environments vary implicitly or 

explicitly with the current state. For example implicit dependence may arise i f the state 

transitions are determined by the action of the automaton. This final type of non-stationary 

environment is also termed a non-autonomous environment [18]. 

Routing is the process that decides over which physical links the data will be 

fransmitted to eventually reach its destination. The action of routing a call changes the 

network state as the link utilisations wil l change. Therefore the environment for the learning 

automata when they are applied to the problem of routing in a communications network is of 

the non-stationary non-autonomous kind. 

2.4.2 Routing in Networks 

Elements that a good routing algorithm should ensure are: robustness, stability, fairness and 

optimality [5]. Using learning automata as the routing algorithm ensures these criteria are 

met due to its load balancing properties, its close to optimal performance, and its ability to 

learn the optimal routing pattern for a new network state. Its stochastic nature also aids 

stability as wild swings in network loading are avoided. 
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Learning automata have previously been applied to both circuit switched and best-effort 

rather than multi-service packet switched networks. Studies have shown that the basic 

elements that determine network performance are network architecture, call processing 

effectiveness, the routing method, and the switch structure [33]. The interest in applying 

learning automata to the routing problem has been partly due to their good performance and 

adaptability, but also due to their low processing requirement in comparison to other routing 

algorithms [34]. The following sections briefly describe their implementation in these 

differing network technologies, and general results obtained. 

2.4.2.1 Learning Automata for Routing in Circuit Switched Networks 

Telephone networks employ circuit-switching, where a circuit is set up from link to link in a 

progressive manner and the message is fransmitted after the entire circuit has been set up, the 

transmission resources being reserved for the complete duration of the connection [35]. I f 

there are no outgoing trunks free at a source or transit node then the call is blocked. Network 

performance is therefore normally measured as the blocking probability, and can be gathered 

for the whole network or local to each node, these being termed the global and local blocking . 

probabilities respectively. 

Using learning automata for the routing function in such a network, requires (N-1) 

automata at each node for a N node network, there being one automaton providing routes for 

one destination at a node. The destination address is held in the arriving set-up packet, and so 

the appropriate automaton for that destination is selected. I f the connection request reaches 

the destination node, then an acknowledgement returns to the source node. I f the call is 

blocked then a release message returns to the source node. Therefore the response from the 

network is binary, the environment being classed as P-model responsive. 

Previous simulation studies have centred on fully connected or hierarchical network 

topologies, these both mapping directly to current telephone networks. Performance of 

learning automata have been shown to equal existing fixed rule alternate routing schemes 

under engineered loads, but outperform the latter in overload conditions where there exists 

extra capacity elsewhere in the network [36]. 
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2.4.2.2 Learning Automata for Routing in Best-Effort Packet Switched 

Networks 

Learning automata have also been applied to best-effort packet switched networks, in a 

different form to the circuit switched case. Best-effort packet switched networks can be 

roughly subdivided into datagram and virtual circuit types. Since each call is now accepted, 

the performance measure for a routing scheme in these kinds of network is no longer the 

blocking probability but the mean end-to-end delay of packets arriving at the destination 

node. Therefore the feedback from the environment is no longer binary, but continuous. This 

can be discretised, and by using digital technology effectively always is, but the S model 

response environment is still applicable in this case. 

As with the circuit switched case, routing decisions are performed by (N-1) independent 

automata situated at each node. In addition to these, delay estimate vectors are also held at 

each node, these containing the average delay between the current node and all the destination 

nodes for each outgoing link. With the datagram network case, the feedback is returned by a 

small acknowledgement packet for each data packet received, this including the sum of the 

delay between the previous node and the current node, and the estimate of the delay from the 

current node to the destination. This sum is therefore the delay estimate for the destination 

node for the previous node. The response to the automaton at a node is bounded between zero 

and one, and is the normalised delay. This normalisation procedure can be calculated in 

either of two ways, the first being: 

delay 
normalised delay = 

max. delay 

However this requires prior knowledge of the maximum delay. The other method doesn't 

require a priori information, using the minimum recorded delay to date: 

normalised delay = 1 - -
delay 

min. delay 

This latter technique has the added attraction of effectively separating low values of delay 

which are closely spaced and compressing the range of longer delays. 

Rather than updating the delay estimate by simply storing the new one, the 

exponential smoothing technique can be used as follows: 

normalised delay(new) = ^(normalised delay(old)) + (1 - <5')(normalised delay(retumed)) 
with 0 < <£• < 1 

28 



The virtual circuit case is similar in using normalised delay feedback updates, but this occurs 

for the acknowledgement to the original set-up packet for the virtual circuit only. To 

minimise switch processing overhead, learning automata have also been used as decision 

makers at the source node of a set of pre-determined routes to a destination node [37]. 

According to the delay feedback and reinforcement algorithm employed, the automaton 

probabilistically chooses a route for the virtual circuit request, this effectively being source 

routing. 

2.4.2.3 Steady State Performance for Routing using Learning Automata 

It has been shown that both LRI and LR£P learning automata converge to equalise the penalty 

probabilities [38], these being representative of e-optimal schemes in steady-state 

performance. LRP automata on the other hand, converge to equalise the penalty probability 

rates [18], this being representative of ergodic schemes. This is why both LRI and LRiP 

automata have been found to result with a lower blocking probability and so give performance 

closer to the optimum when compared with LRP automata. 

This translates to LRI and LRiP equalising the path blocking probabilities, and the 

LRP scheme equalising the path blocking probability rates in circuit switched networks. In 

the best-effort packet switched network case, the average packet delays are equalised by the 

LRI and LR^P schemes, whilst the LRP scheme equalises the delay rates. 

2.4.2.4 Transient Performance for Routing using Learning Automata 

It is not so straightforward to explain the dynamic behaviour of automata action probabilities, 

as the steady state performance does not hold during convergence. A new model of a 

nonstationary automaton environment was proposed, whose response characteristics are 

dynamically related to the probabilities of the actions performed on it [39]. This model was 

shown to give good correspondence with the fransient response of the automaton action 

probabilities when appropriate model parameters are chosen. 

However the transient behaviour when multiple automata provide adaptive routing in 

an environment has not been examined, this requiring a more complex model. The problem is 
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that other automata in the network might cause more complex phenomena, such as oscillatory 

behaviour. 

2.5 Summary 

The chapter has provided an overview of the theoretical aspects of learning automata, with the 

purpose of giving sufficient background from which to draw when detailing the proposed 

improvements in the following chapters. As the improvements relate to the reinforcement 

algorithm used, this being the learning mechanism of the automaton, so this chapter has 

concentrated on detailing the current standard approaches and algorithms commonly used. 

These have been tabulated according to the resulting performance characteristic of 

the automaton in stationary random environments, together with comments on desirable 

performance properties for operation in non-stationary environments. 

Brief explanation on how learning automata have been previously applied to the 

routing problem have also been included, together with relative reinforcement algorithm 

performance. 
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3 Improving Standard Dynamic Routing Algorithms for 

Routing in IVluIti-Service Networks 

3.1 Introduction 

The purpose of this chapter is to detail a link-state routing algorithm which provides low 

blocking probability performance when compared to other previously proposed algorithms. 

The resulting performance from this algorithm may then be compared to the learning 

automata based routing methods outlined in the chapters which follow. Al l aspects of the 

link-state routing method are examined: the algorithm itself, the Imk-state information to be 

propagated, and finally also the propagation method. 

However before looking at the routing mechanisms, the Call Acceptance Control 

(CAC) method is examined as this is linked with the routing function. A bandwidth-based 

CAC mechanism is proposed, with methods and calculations for obtaining the effective 

bandwidths for different traffic types being given. This section includes a novel method for 

calculating the effective bandwidth of MPEG sfreams which provides more accurate results 

than previous methods. 

Having examined and detailed the CAC mechanism, previously proposed algorithms 

for routing in multi-service networks are outiined. A new algorithm is proposed, and the 

results from simulation experiments are then given to show its benefits when compared to 

another algorithm which was detailed in previous work. 

Next the type of link-state information is examined, having first summarised previous 

work in the area. The section continues with simulation results which show the benefits of 

using the proposed type of link-state information as part of the route calculation. 

Finally, mechanisms for reducing the signalling overhead when propagating the link-

state information are examined. After summarising some previously proposed mechanisms, a 

new method which uses existing connection set-up signalling is detailed. This is compared to 

other methods via further simulation experiments, with conclusions being drawn as to its 

relative benefits. 
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3.2 The routing function and call acceptance control 

3.2.1 Bandwidth-based C A C 

There is a sfrong relationship between proposed congestion control mechanisms used to 

guarantee Quality of Service (QoS) in multi-service networks and routing. Congestion 

confrol is required in order to ensure that all connections' QoS requirements, such as delay 

and/or cell loss, are satisfied. There are two aspects of congestion confrol in multi-service 

networks: accepting a connection request based on its pre-defined fraffic confract, and 

policing an accepted connection to ensure its compliance to its pre-defined traffic confract. 

Policing is referred to as Usage Parameter Control (UPC) in A T M networks, and various 

algorithms have been proposed to perform this function [40, 41]. 

However, it is at the acceptance of a call's request based on its fraffic confract that the 

sfrong link with routing occurs. It is the role of the Call Admission Confrol (CAC) to allow 

the new connection onto the network i f sufficient resources are available to meet its QoS 

whilst not affecting that of others already accepted. I f insufficient network resources are 

available however, the call request can be rejected or the QoS downgraded. The CAC can use 

one of two general methods to perform this fonction: either measure current network 

utilisation to ascertain whether the new connection can be accepted [42]; or pre-characterise 

each accepted connection's bandwidth requirement permitting a new connection i f the sum of 

the bandwidth requirements is not above each virtual links' bandwidth (VPC in ATM and 

class bandwidth in IP with QoS) which comprises the route from the source to the destination 

[43]. As this study is primarily interested in the routing function, so the simplest CAC 

method was chosen: that of reserving capacity for an accepted connection based on its 

effective bandwidth [44]. 

3.2.2 Effective bandwidth calculations 

The effective bandwidth of a connection is generally characterised by a value lying between 

the peak and mean bit-rates of the call. When a new connection is set up over a logical link, 

an amount of bandwidth equal to its effective bandwidth is reserved on the logical link for the 

duration of the call. The CAC function consists of determining whether there is sufficient 

residual bandwidth to accommodate the effective bandwidth of the new connection request. 
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3.2.2.1 Effective bandwidth allocation strategy 

I f a call traverses several logical links, the cell losses or delays accumulate along the 

connection and the end-to-end QoS achieved by the connection is equal to the sum of the QoS 

on the logical links. In an ATM network, or an IP network with QoS features, the same 

effective bandwidth allocations may therefore result in different end-to-end QoS for different 

connections, depending on the route chosen. 

Previous work has highlighted the need to sum the individual VPC's QoS for a route 

using an A T M network in order to obtain the end-to-end QoS, with both fully and sparsely 

connected topologies [45, 46]. The resulting allocation sfrategy derived from previous work 

is as follows: the required end-to-end QoS is divided by the number of VPCs (or logical links) 

which form the route, an effective bandwidth being reserved on each for the connection. The 

effective bandwidth calculated for each logical link will therefore be for a stricter QoS than 

the end-to-end QoS. It follows that the longer the paths permitted in the network, the higher 

the effective bandwidth which will be reserved along the route for the same connection 

request and therefore same end-to-end QoS requirement as with a shorter path. This factor 

impinges on the routing algorithm, in that any algorithm for routing in multi-service networks 

should try to limit higher hop count paths more so than with standard dynamic circuit-

switched routing algorithms. 

3.2.2.2 Computing effective bandwidth values 

Effective bandwidths may be calculated according to the fluid model described in [44]. This 

details equivalent capacity equations which may be applied for either cell loss rate or delay 

QoS calculations. As delay through a node is upper bounded by each switch manufacturer, it 

is relatively sfraightforward to design the physical network ensuring that worst-case end-to-

end delay is still conformant with the QoS required by application types. This study therefore 

uses the equivalent capacity equation to meet cell loss QoS criteria for connections. The 

resulting equivalent capacity equation is: 

2ccb{\-p) 

where a-\n{\l s) (^being the desired QoS), p is the utilisation, .Rpeak is the peak rate, b is 

the mean of the burst period, and x is the available buffer size. 
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3.2.2.2,1 Voice call calculations 

Previous studies have characterised voice traffic according to the number of on-off sources 

required to model the traffic type [47]. Table 2 gives the resulting modelling parameter 

values for uncompressed and uncoded traffic sources, where M is the number of on-off 

sources required to model the traffic type, l/A is the mean ' o f f period, and 1/// is the mean 

'on' period. 

So for a QoS specifying a cell loss probability of 10'', the resulting effective 

bandwidth for the voice call is about 0.026 Mb/s. This figure being lower than the standard 

64 kb/s reserved on telephonic networks shows one aspect of the savings that the statistical 

multiplexing effects of A T M networks can bring. The' effect of increasing hop count when 

choosing a route is shown in Table 3, the results indicating that unlike the reports from a 

previous study [46], the effect is relatively limited as there occurs a 1.5% increase when using 

a 5 hop route over a 1 hop route. 

Traffic Source M A(l/s) /<l/s) i?peak(Mb/s) 

voice 1 1/0.65 1/0.352 0.064 

videophone 10 1.3078 2.5922 1.163 

Table 2: Traffic modelling parameters 

Number of hops Effective bandwidth requirement (Mb/s) 

1 0.0266708 

2 0.0268359 

3 0.0269327 

4 0.0270014 

5 0.0270547 

Table 3: Effect of increasing hop count on voice effective bandwidth 
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3.2.2.2.2 Video call calculations 

Using the values given in Table 2 together with a QoS specifying a cell loss probability of 10" 

,̂ the resulting effective bandwidth for the videophone call is 9.917 Mb/s. However most 

video sources will be MPEG coded, and as yet no satisfactory algorithm for calculating the 

effective bandwidth exists, with current formulae grossly underestimating the bandwidth 

required [48]. Therefore there exists a requirement for a more accurate a-priori effective 

bandwidth calculator for MPEG traffic, as ATM networks with bandwidth-based CACs will 

require this in order to guarantee the MPEG connection request and other existing 

coimections' QoS requirements. 

Some progress has occurred in this area by examining traces from vanous 

programmes encoded by MPEG. It has been shown that there is a wide variation of peak and 

effective bandwidth requirement for these various traces [48, 49], with peaks varying from 

around 0.3 to 7 Mb/s and most being between 3.5 and 6.5 Mb/s. Whilst the mean bandwidth 

requirements were much lower, the effective bandwidth required was in the region of half of 

the peak as this source type is very bursty. 

In order to produce an effective bandwidth formula which provides results close to 

that of real traffic, MPEG traces were examined to obtain a characterisation of its pattern. 

Three frame types are visible: I , P and B frames, there being two patterns transmitted each 

second. Each pattern consists of a twelve frame group of pictures (GOP) pattern of 

IBBPBBPBBPBB [49]. Thus an I frame will occur twice each second, and so on. The 

following novel solution is proposed: that of characterising each frame type as a separate 

deterministic 'on-off source, and summing the required effective bandwidths generated by 

the equivalent capacity equation to obtain the total bandwidth required for the traffic stream. 

By knowing the number of GOP patterns that occur each second, the 'on' time where each 

frame type is fransmitted can easily be calculated, the ' o f f time being the GOP pattern time 

minus the calculated 'on' time. 

In order to test the proposed method, model parameters were obtained from the 'Star 

Wars' film trace, these being shown in Table 4. So for a QoS specifying a cell loss 

probability of 10"*, the resulting effective bandwidth for the I frames is 2.315 Mb/s, for the P 

frames 0.165 Mb/s and for the B frames 0.064 Mb/s resulting in the MPEG video connection 

requiring about 2.544 Mb/s. This final result compares exfremely favourably with the 

required bandwidth found for the real trace, which was about half of the peak requirement 

[48], in this case being 2.12 Mb/s. This result is more impressive after considering that 

methods to date consistently underestimate the bandwidth required. 
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The slight overprovisioning of resources which has resulted may be explained by the fact that 

the examined frace yielded a mean rate of 0.537 Mb/s, whilst the full film results with a mean 

of 0.36 Mb/s. This implies that the examined trace had a higher degree of traffic than the 

overall film, and it is therefore possible for this method to yield precise required bandwidth 

calculations were the I , P and B average frame parameters from the whole film used. 

There is no doubt that further empirical results using different fraces are required to 

more fully validate this method. However, for our purposes of utilising a method providing 

realistic effective bandwidth requirements which increase with longer route hop counts, the 

proposed novel method is currently the best available. 

Using this method, the effect of increasing hop count is shown in Table 5 by the 

required bandwidth. As can be seen, the relative effect of increasing hop count is of a higher 

order than with the voice connections, there now being an 8% increase when using a 5 hop 

route over a 1 hop route. This combined with the higher absolute effective bandwidth 

required becomes significant in heterogeneous fraffic situations where lower bandwidth 

requiring fraffic such as voice may be severely resfricted due to unnecessarily long hop counts 

in the higher bandwidth fraffic's routes. This is evidenced by the video fraffic's 5 hop route 

consuming exfra bandwidth equivalent to about 8 voice connections when compared to the 

video's 1 hop route. 

Historically routing algorithms have tended to use the shorter paths in order to 

maximise the number of simultaneous calls being carried by the network. This CAC work 

shows that this principle must be all the more sfrictly adhered to in the case of multi-service 

networks, as choosing a path of twice the length of another possibility, more than doubles the 

amount of network resources used. 

Traffic Source Frame Type 41/s) Ml/s) /?peak(Mb/s) 

video I 1/0.4583 1/0.0417 4.24 
P 1/0.09375 1/0.0417 0.48 
B 1/0.0417 1/0.0833 0.095 

Table 4: Model parameters for the MPEG coded 'Star Wars 'film trace 

Number of hops Effective bandwidth requirement (Mb/s) 
1 2.544 
2 2.641 
3 2.694 
4 2.730 
5 2.757 

Table 5: Effect of increasing hop count on MPEG video effective bandwidth 
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3.3 Standard dynamic routing algorithm selection 

Previous work has shown link-state routing schemes to be more flexible and robust [50]. 

Therefore this type of routing algorithm was chosen as representative of the best performing 

algorithm type currently used in real networks. 

3.3.1 Overview of algorithms 

Link-state routing algorithms are dependent on the accuracy of the network state information 

which each node or decision maker holds. However, frequentiy propagating network state 

information in order to maintain database accuracy incurs a heavy overhead in extra 

signalling and processing. Therefore a frade-off exists between increasing the routing 

algorithm performance and minimising the extra signalling bandwidth and processing 

required in order to do so. 

Previously proposed algorithms for routing in multi-service networks have in the 

main been of the link-state type. Comparative investigations of routing algorithms have been 

previously undertaken [46, 51], with each algorithm being seen to have different strengths and 

weaknesses. Four main variances on shortest-path type algorithms have been proposed: 

widest-shortest path, shortest-widest path, dynamic- alternate path, and shortest distance path. 

There follows a summation of the perceived strengths and weaknesses of each, followed by 

details of a proposed new algorithm called Alternate Adaptive Minimum Hop (AAMH). 

3.3.1.1 Dynamic-alternate path 

This algorithm has been proposed due to the success of the dynamic alternate routing 

algorithm used in telecommunication networks. In its strictest form, such as Least Busy Path 

(LBP) [45], it is equivalent to that implemented by AT&T in the form of its RTNR algorithm 

[52]. 

The LBP algorithm assumes a highly-connected topology, and operates as follows: an 

attempt is made to route the connection on the direct path first, and failing that it attempts the 

two hop path with the maximum residual capacity. Paths are not permitted to exceed two 
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hops in length, and the residual capacity (A ŝ,̂ ) on a path from source node s to destination 

node d via intermediate node / is given by: 

where Nst is the residual capacity on the link between node s and node t, and Nij is the residual 

capacity on the link between node t and node d. Bandwidth may be reserved for 'direct' 

fraffic on links in order to prevent unresfricted use of longer alternative paths leading to a 

reduction in throughput at heavy loads. 

The initial proposal was to emulate a highly-connected cfrcuit switched network 

topology by using A T M VPCs to provide logical direct links between pafrs of nodes [45]. 

However by so doing, there is a reduction in the level of statistical multiplexing, causing 

inefficient use of the network resources. 

In order to loosen the algorithm's dependency on a highly-connected topology, 

subsequent work has modified the algorithm. Rather than specifying one hop minimum 

routes, any route with a minimal number of hops is permitted, the residual capacity for the 

route being the minimum of all its comprising links. I f no feasible minimal hop path is 

available, minimal hop plus one hop are chosen. 

Even without using trunk reservation, this modified algorithm has been shown to 

result with good performance, returning a comparable i f slightly worse blocking probability 

as other algorithms at low loads, whilst providing comparably superior performance as the 

loads increased [51]. In addition it has been clearly demonsfrated to have greater robustness 

and insensitivity to inaccurate network state information. 

3.3.1.2 Widest-shortest path 

This algorithm is similar to the improved version of the previous, apart from only permitting 

paths with a minimal number of hops [53]. It was termed Adaptive Minimum Hop (AMH) in 

a previous study [46], and was found to provide superior performance when compared with 

other algorithms of the shortest-widest and shortest-distance types. 

3.3.1.3 Shortest-widest path 

This algorithm type chooses paths with the maximum bandwidth, and i f there are several such 

paths the one with the fewest number of hops is selected. I f there are several paths with the 
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same minimum number of hops, one is randomly selected. Minimum Sum of Loads (MSL) is 

of such a type [54]. 

As this algorithm type does not place an upper limit on the route hop length, it has 

been found to produce poor performance in all scenarios except where very light traffic 

loading was present. In such cases it gave comparable or slightiy improved performance over 

the previous algorithm types. 

3.3.1.4 Shortest-distance path 

Shortest-distance path algorithms differ from shortest-widest path types in their cost function. 

Instead of summing the residual bandwidth in a linear manner, the reciprocal of the link 

residual capacity is added together to form the cost of a route. The route cost therefore 

becomes: 

where Ri, ..., are the bandwidths available on the path with k hops. 

Least Loaded Path routing (LLP) [55] is one of a number of this type which has been 

shown to be effective when selecting routes for high bandwidth connections [56]. It also 

results with improved performance over shortest-widest schemes as highly loaded links are 

effectively excluded from the route possibilities since their cost tends towards infmity. When 

compared to dynamic-alternate type schemes in the main comparative performance has been 

achieved [51], with slightly improved performance at low traffic loads and slightly poorer 

performance at high loads. However, it has also been noted that this algorithm type is more 

susceptible to inaccurate network state information, this being explained by it having the 

opportunity to select longer paths, inaccurate link information therefore being compounded 

the greater number of links comprise a route. 

3.3.1.5 The proposed new algorithm 

It has been shown that in QoS routing there is a need to limit route length as a higher hop 

route requires a higher effective bandwidth in order to guarantee the end-to-end QoS for the 

connection. It is for this reason, in addition to that of multiple link consumption, that results 

in inferior performance of routing algorithms which permit unnecessarily long routes. 
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Therefore the proposed new algorithm, termed Alternate Adaptive Minimum Hop (AAMH), 

operates as a superset of A M H and in a similar vein to more recent dynamic-alternate 

schemes. As with AMH, the algorithm attempts to route on the least-loaded minimum hop 

route. I f all are congested, it attempts to route on the next shortest hop route which is 

topologically permissible. This differs from dynamic-alternate schemes which permit 

alternate routes only of minimum hop plus one, even i f the shortest alternate route is 

minimum hop plus two or more. 

A M H has been shown to produce good performance when applied to sparsely-

connected networks [46]. However it cannot be assumed that most multi-service networks 

will generally take this topological form, especially with the capability of a logical topology 

diverse from the physical one when using VPCs in ATM networks or class reservation in IP 

networks with QoS features. A A M H is therefore proposed as a generically applicable routing 

algorithm to any network topology, which should still result with leading performance from 

all the shortest-path type algorithms. Moreover dynamic-alternate path type schemes have 

been shown to produce good performance under diverse fraffic loads whilst being relatively 

insensitive to inaccurate network state information. Al l these factors point to AAMH being a 

sfrong general purpose routing algorithm, having insensitivity to network scenario exfremes. 

The performance derived from this algorithm may therefore be used as a comparison when 

evaluating that obtained from learning automata based routing schemes. 

Increases in network bandwidth cause fransmission times to decrease since the same 

information transfer occurs more quickly. Therefore the requfrement for faster connection 

set-up times occurs since the signalling to manage the connection becomes a greater 

percentage of the total connection time on the network. In order to reduce the processing 

required at intermediate nodes, the use of source based rather than hop-by-hop based routing 

algorithms has been proposed. These algorithms calculate the whole route at the source node, 

including the details in the connection set-up packet that then fraverses intermediate nodes on 

its way to the destination node of the route. There incurs a smaller processing delay at 

intermediate nodes and so faster connection set-up time. As routing algorithms in multi­

service networks provide QoS guarantees by interacting with the CAC mechanism, so the 

required effective bandwidth for a connection request needs to be calculated at the source 

node, with the length of the route being one of the parameters in the calculation. Therefore 

multi-service routing algorithms are biased towards being implemented in a source-based 

fashion as the benefit of intermediate node route recalculation is lost since the effective 

bandwidth for a new route must be calculated at the source via a crankback mechanism. 

A A M H therefore lends itself to being implemented so that it operates within a source-based 

paradigm. 
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3.3.2 Simulation scenarios 

Simulation modelling was chosen rather than analytical modelling for evaluating research 

ideas in order that the ideas would not be constrained by the necessary simplifying 

assumptions required to make the problem tractable analytically. The OPNET modelling and 

simulation tool was chosen after an extensive comparative evaluation with other available 

commercial simulation tools. As the standard model libraries included with the package are 

constrained functionally (so that it becomes unfeasible to undertake large dynamic call 

generation scenarios), it was decided at the commencement of the research to write a new 

model library in order to frilly evaluate any ensuing research direction. This new library 

consists of more than 13,000 lines of C code, and further elucidation on all these modelling 

aspects are given in appendix B. 

TTie simulations were performed using three differing logical network topologies. 

These are shown in Figure 3 to Figure 5, and they range both fully-connected and sparsely 

connected topologies. The flilly-connected topology was kept small so that the performance 

improvement of using an alternate routing scheme over a minimum hop scheme would not be 

too dramatic. The seven node topology is representative of a typical corporate WAN, whilst 

the large sparse topology is a simplified version of the US internet backbone. The results 

obtained using these differing topologies will indicate the generic applicability of AAMH. 

Previous comparative studies have demonstrated that algorithms with a strong 

preference for minimum-hop routes almost always outperform algorithms that do not consider 

path length [51, 58]. As A M H was designed by taking this into consideration, and was found 

to produce favourable results compared to other proposed algorithms at that time [46], it was 

used as the comparative benchmark for AAMH. 

In order to ascertain the relative performance of AAMH over AMH, simplified 

simulation scenarios were generated. These centred on the pure algorithm performance, and 

so consisted of using homogeneous traffic sources and perfect link-state knowledge. The 

former precluded algorithm performance being affected by traffic source types with widely 

different bandwidth requirements, whilst the latter leaves out the effects of the frequency and 

type of link-state information propagation, this being addressed in the section that follows. 

The link capacities were set to 500 Mb/s, and a data type traffic source was used 

which proved to have an effective bandwidth of around 2.4 Mb/s, yielding a mean bandwidth 

of about 0.5% of link capacity in order to have a realistic networking situation. Each 

simulation run consisted of 400,000 call requests, with statistics for the first 100,000 being 

discarded to allow the network state to settle into normal operational mode. Due to the long 

simulation run, it was found that the results obtained varied by no more that 0.15% when 
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varying the random number generator seeds. It was therefore felt sufficient to perform 

simulation runs using two different seeds, the average from both being taken as the blocking 

probability for the connection arrival rate. 

Figure 3: Fully connected logical topology 

Figure 4: Seven node sparsely connected 

logical topology 

node 23 

...node 111 node 3-
node 24 

s t i t s 

Figure 5: 28 node sparsely connected topology 

42 



Some previous studies on routing algorithm performance have included results generated only 

under symmetrical traffic loading, where source nodes obtain destination addresses for 

connection requests by using a uniform distribution over all the network nodes bar itself [51, 

58]. Whilst it is true that symmetrical loading and homogeneously sized links approximates 

the situation of the user demand equalling the expected demand for which the network was 

designed (overloading occurring when the magnitude of the actual demand is higher than the 

expected, but the source-destination binding probabilities remain the same), yet it is often the 

case that actiaal demand varies significantly in type and magnitude than that expected, this 

being approximated by non-symmehical traffic loading. Therefore our simulation 

experiments use both symmeft-ical and this non-symmefrical network loading configuration. 

3.3.3 Results for the fully connected topology 

It is in the context of highly-connected topologies that the benefits of the alternate routes 

available to A A M H should produce significantly better routing performance. The 

symmefrical network loading case is the worst-case scenario for AAMH, as it is in these 

conditions that the use of alternate paths will utilise more network resources and so produce a 

higher blocking probability. 

It was found that A A M H with trunk reservation was comparable in performance to 

A M H under symmefa-ical fraffic loading. However A A M H significantly out-performed AMH 

under non-symmetrical loading. 

Were the topology to have a greater number of nodes, it is expected that the results 

would be similar under symmefrical loading, and superior for A A M H under non-symmetrical 

loading due to the increased number of available alternate paths. 

3.3.3.1 Results for symmetrical network loading 

Teleti-affic networks use the trunk reservation mechanism in order to ensure that alternate path 

routing schemes do not overly use longer routes to the detriment of future cormection requests 

which could have been routed on minimum hop routes [57]. Trunk reservation operates by 

reserving a certain percentage of the link capacity for minimum hop routes, so that when the 

link is close to saturation only minimum hop new routes are allowed to traverse it. 

The requirement for having the same mechanism with AAMH is evident from Figure 

6 where A A M H with no trunk reservation produces significantiy higher blocking probability 
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than A M H which just utilises single hop routes. In general a trunk reservation parameter of 

5% is used in teletraffic networks, this causing A A M H to return blocking perfomiance close 

to A M H as shown in Figure 8. In fact A A M H produces slightly better perfomiance than 

A M H under low traffic load levels, and slightly worse at higher levels with fixed trunk 

reservations. 

Further experiments were performed by varying the trunk reservation parameter over 

different network loading rates. Figure 7 shows the trunk reservation parameter which caused 

A A M H to produce the lowest average blocking probability at each loading rate. As expected, 

at low traffic arrival rates a lower trunk reservation parameter allows A A M H to choose more 

alternate paths so resulting in a lower blocking probability. However at higher traffic 

loadings, the use o f alternate paths must be discouraged, so requiring a higher trunk 

reservation parameter. Were the trunk reservation parameter to be dynamic according to the 

traffic loading, it is expected that A A M H would in general out-perform or be equal to the 

blocking probability produced by A M H for highly-connected network topologies. 

4 Node Fully Connected V P C Network 

0.25 

? 0.15 

5 0.05 

•AMH 

AAMH 

0.25 0.3 

Arrival Rate (conn/sec) 

0.35 

Figure 6: Performance of AMH and AAMH with no trunk reservation for the fully connected 

topology 
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Figure 7: Optimum trunk reservation for AAMH for the fully connected topology 
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Figure 8: Performance of AMH and AAMH with 5% trunk reservation for the fully connected 

topology 

3.3.3.2 Results for non-symmetrical network loading 

The user demand traffic matrix used for this set o f experiments was one node transmitting to 

another fixed destination address, with the other nodes establishing connections to randomly 

generated destination addresses at an eighth of the arrival rate of the first node. 

Figure 9 shows that in these circumstances A A M H significantly outperforms A M H , 

producing a blocking probability up to 40% lower. This is due to it being able to use two hop 
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paths when A M H is limited to using the direct one hop route. The use of alternate paths 

should not be discouraged under these circumstances. Figure 10 showing that when they are 

there results a light decrease in performance, to the extent of 2.5% higher blocking 

probability. 

4 Node Fully Connected V P C Network 
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A A M H 
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Figure 9: Performance of AMH and AAMH for the fully connected topology under non­

symmetrical loading 
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Figure 10: Performance of AAMH with 0 and 6% trunk reservation 
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3.3.4 Results for sparsely connected topology 

A M H was primarily designed for use in sparsely connected network topologies. However, 

the results below indicate that A A M H still out-performs A M H with non-symmetrical traffic 

loading, although not to the same degree as with the fully-connected topology. 

3.3.4.1 Results for symmetrical network loading 

Figure 11 shows the results for A M H and A A M H with no trunk reservation and, as expected, 

A M H returns superior results. However the difference between the two is not as great as with 

the fu l ly connected topology scenario. The reason for this is that rather than consuming a 

little over twice the network resources as previously, alternate paths now consume 1/3 to 1/2 

as much depending on the route. This factor is also evident in Figure 12 which shows in 

general that a much lower trunk reservation parameter is required for optimum A A M H 

performance since alternate routes should not be discouraged as much as in the previous case. 
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Figure 11: Performance of AMH and AAMH for the sparsely connected topology 
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Figure 12: Optimum AAMH trunk reservation parameter for the sparsely connected topology 

3.3.4.2 Results for non-symmetrical network loading 

As with the fully connected network topology, the best case realistic scenario was simulated. 

This consisted of the top left node transmitting to the far right node, with the other nodes 

establishing connections to randomly generated destination addresses at an eighth of the 

arrival rate of the first node. 

Figure 13 clearly shows A A M H significantly out-performing A M H due to the extra 

paths it has at its disposal as alternate routes. The performance improvement is not as great as 

with the fully-connected topology due to A M H now having a number of paths at its disposal 

for routing to the destination nodes rather than the one it previously had. This means that the 

increase in paths which A A M H has over A M H is not as great as before, and so not as much 

extra traffic can be routed on the alternate paths as previously. 

Considering that A M H was designed for sparsely-connected topologies, this is a 

strong result in favour of using A A M H as a general routing algorithm for routing in multi­

service networks. 
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Figure 13: Performance of AMH and AAMH under non-symmetrical loading for the sparsely 

connected topology 

3.4 Realistic routing algorithm performance 

In order to remove performance affecting factors so that the performance due to pure 

algorithm selection could be shown, the results given in the previous section were based on 

the source node having perfect network state information at its disposal. This is not possible 

in a real-world situation, but can be approximated by periodic updates of link-state 

information which are propagated throughout the network and so to every source node. A 

minimum time interval might be imposed to avoid overloading o f network bandwidth and 

processing resources, but large periods result in out o f date link-state information which can 

cause a switch to select a sub-optimal or even unfeasible route. Hence tuning the frequency 

o f link-state update messages requires a careful understanding o f the tension between network 

overheads and the accuracy o f routing decisions. 

3.4.1 Route selection with partial information 

The link-state information can be propagated in a periodic fashion or in response to a 

significant change in the link-state metric; for example its utilisation. By updating link load 

information in response to a change in available bandwidth, triggered updates respond to 
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smaller changes in utilisation as the link nears capacity. In contrast to periodic updates 

however, triggered messages complicate the provisioning of network resources since rapid 

fluctuations in available capacity can generate a large number of link-state updates, unless a 

reasonable hold-down timer is used. 

With a periodic update policy, large periods substantially increase connection 

blocking, ultimately outweighing the benefits of QoS routing. In fact, under uniform loading 

static routing becomes competitive with QoS routing once the update period grows beyond 60 

times the average connection interarrival time [58], the reason being that the fluctuations in 

link state begin to exceed the random variations in traffic load. Under non-uniform loading 

QoS routing does indeed continue to outperform static routing. Periodic updates with large 

periods also cause dramatic fluctuations in link state between successive update messages, 

therefore meaning that the routing algorithm is now causing oscillatory and less stable 

network behaviour. This phenomenon occurs by the network reacting to an update message 

that a link has low utilisation by routing more traffic through that link. Blocking remains low 

until saturation occurs, and is then constant until the next link-state message update occurs 

which can cause another dramatic change in the link utilisation as no further connections are 

routed along it and the present ones disconnect. However some form of periodic update is 

required in order to detect link or equipment failures in the network. It is proposed that such 

updates form part of a separate local system, which upon detection of a local link failure 

propagates a link fully utilised (or link unavailable) Link State Advertisement (LSA) 

throughout the network using full flooding. 

Triggered updates may be implemented with dynamically calculated events, or pre­

determined event threshold levels, and should result in more stable network operation as large 

differences between the actual and advertised link utilisation are no longer possible. 

Dynamically calculated triggers occur upon detection of a significant change in the available 

capacity since the last update message, responding to smaller changes in utilisation as the link 

nears saturation. In contrast to periodic updates, coarse-grain triggers do not have a 

significant impact on the overall blocking probability [58]. 

Event trigger thresholds may also be pre-determined throughout the network. This 

involves the mapping of load measures into discrete categories, and generating a message 

update when the link utilisation crosses into another category [59]. Benefits of using this 

method include simplicity: less processing at nodes is required, and only the integer category 

value is required in the updating message rather than the utilisation itself Another benefit is 

that the thresholds could then be set according to expected traffic loads, causing message 

updates only when actual traffic patterns differ from the expected ones. This latter reason fits 

well with the case for dynamic routing algorithms, for i f the network designer and planner 

was able to predict the traffic demands accurately, then the network could be perfectly 

50 



dimensioned and static routing be used. For this study pre-defined event trigger thresholds 

were used. 

3.4.2 Simulation results of using event trigger thresholds 

A previous study which used category bands for link-state updates concluded that link-state 

information at higher load levels is useful, but is not required at low loads as no loading 

information is necessary for a routing algorithm to produce good performance [60]. Indeed, it 

found that even though there may be fewer categories in a set, i f it divided the load levels 

with a finer granularity when the link was close to saturation, this produced better results from 

the dynamic routing algorithm. The load categories chosen for use in our experiments were 

therefore as follows: 

[0%, 50%), [50%, 80%), [80%, 90%), [90%, 95%), [95%, 100%]. 

In order to assess the impact of effectively discretising the load space into categories and just 

updating the categories when a transition occurred into a new one, the following experiments 

were undertaken on the 28 node sparsely connected logical network topology. This provided 

the greatest diversity of route options, and so would best indicate the performance 

improvements of using load information to guide the route calculation. 

The performance baseline chosen was a routing algorithm which had the option of 

using the ful l set of alternate routes, but had no load information to guide it in its choices. It 

attempted to route on all the minimum hop routes and then on all the alternate routes in turn, 

using crankback in order to choose another route. Whilst this algorithm would in general 

produce multiple routing attempts and so have a significant network processing overhead, it 

does result with the lowest blocking probability possible for a shortest-path routing algorithm 

not utilising load information in its calculations. This algorithm is termed Alternate Routing 

(AR) in the graphs below. The other two algorithms are as follows: ' A A M H ' is AAMH 

operating with exact link-state knowledge, and 'AAMH(LB) ' is A A M H operating with the 

load bands specified above. Symmetrical network loading was used for these experiments as 

it was felt that it would more clearly show the benefits of directing route calculation with the 

aid of link-state information. Otherwise the performance difference between AR and AAMH 

with ful l link-state knowledge might not be so noticeable. 

Figure 14 shows that this difference is in the region of a 2% lower blocking 

probability for A A M H with full network knowledge. As expected, the performance of 

A A M H with load bands is found to be between the two. What is of interest however is that at 
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low traffic loads its performance is close to that of A A M H with full link-state knowledge, 

whilst at higher loads its performance degrades to become closer to that of AR. From this it 

seems that at low load levels the two final load categories make a significant difference in 

path selection. When the traffic load increases, most links will be close to saturation and so in 

the last category, path selection then becoming more random and so closer to the performance 

produced by AR. 

When examining the connection set-up time shown in Figure 15, we find that AAMH 

with full link-state knowledge gives a fairly constant value regardless of the loading rate. 

These results are reasonable for i f the network cannot support a new call request it is blocked 

before any network signalling occurs. Conversely, i f the network can support the call, then it 

is accepted and the set-up signalling occurs. The time taken to do so remaining unchanged 

indicates that the average route length does not alter as loading increases, as would be 

expected. 

AR on the other hand, returns a higher connection set-up time which increases still 

further as the loading rate increases, whilst AAMH with load bands produces times that lie 

between the two. The increasing set-up time of AR makes sense when considering that a 

higher traffic loading would produce more highly utilised links, forcing a greater number of 

crank-backs as the routing algorithm attempts to choose other routes to reach the destination 

address. The matter of load bands discretising the link utilisation levels has the effect of 

causing crank-backs, but not to the same degree as with AR. This indicates that whilst the 

blocking probability performance might be similar under high loads, there remains the 

considerable benefit of a lower connection set-up time when comparing AR to AAMH with 

load bands. 

The use of A A M H with load bands has been shown to produce superior results to AR 

which does not use link-state information in its decision making process. The issue now is on 

how to propagate the required link-state information to the decision making nodes. 
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Figure 14: AAMH performance with and without load bands 
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Figure 15: AAMH set-up times with and without load bands 

3.5 Mechanisms for signalling overhead reduction 

In large networks or internets, flooding dynamic information may not be possible because o f 

the network processing and bandwidth involved. Therefore in this section ways to take 

advantage o f the benefits o f adaptive routing without relying on global flooding of dynamic 

updates are investigated. 
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3.5.1 Limited update distribution methods 

Conventional hop-by-hop link-state routing protocols, such as OSPF [61], flood updates to all 

network nodes since all nodes are required to maintain consistent information to avoid routing 

loops. However a source-based routing scheme such as AAMH does not require this as loop-

fi-ee routes are precomputed with the dynamic information being used to select from among 

the available routes and to improve routmg decisions. Two different methods have been 

proposed in a previous study [60], and are outlined here. 

As A A M H is a source-based routing algorithm and so guarantees loop-free routing 

even i f updates are lost, so mechanisms for ensuring the correct delivery of the updates are 

not required as would be with conventional link-state routing protocols such as OSPF [61]. 

3.5.1.1 Hop-count limited flooding 

Hop-count limited flooding is a simple mechanism by which routing updates are distributed 

within some fixed hop count, R, of the node initiating the update. When a node initiates an 

update, it sets a Time-to-Live (TTL) field in the update packet to R. Each node that processes 

the update decrements the TTL. I f the TTL is greater than zero, the node continues the 

flooding process. Otherwise it records the update information but halts the flooding process. 

Using this distribution mechanism, each node learns dynamic information about those nodes 

within R hops of it. 

3.5.1.2 Reverse path update 

The previous method provides nodes with information about nearby nodes in the network. 

Reverse Path Update (RPU) is an alternative mechanism which provides nodes with dynamic 

information about some nodes further away in the network. RPU operates by forwarding 

update messages in the reverse direction of currently installed connections in the network. 

When a node initiates an update, it consults its forwarding table for currently active 

connections and forwards an update in the reverse direction of all active routes. In this way, 

each source node that currently has an active route through the initiating node will receive a 

copy of the update. 

This method provides a reduction in update messages as it takes advantage of overlap 

routes, sending a single copy of the update message along a link shared by multiple routes. 
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3.5.2 Using locally available information 

The same previous study also proposed the following two methods: caching reject 

information, and local link status. In addition to these, another method is newly proposed in 

this study: using the existing connection set-up signalling. 

3.5.2.1 Caching reject information 

With caching rejects, when a node attempts to establish a route and receives a reject 

notification fi-om one of the nodes along the route, it caches this information. The notification 

wil l indicate which link lacked sufficient resources to admit the new sessions. The source is 

then able to avoid routes that traverse links havmg a high likelihood of being unavailable, and 

can try other routes which might have a better chance of admitting the session. 

The issue with this strategy is how long to keep the reject information at the source. 

I f it is held for too short a time it may be of limited use, and i f it is held for too long it may no 

longer be accurate. Whilst the proper time-out for this information is a function of the traffic 

patterns in the network, a previous study used an interval of four times the average session 

length [60]. 

3.5.2.2 Local link status 

This simple method involves nodes periodically measuring the status of their adjacent links, 

storing their current loading but not generating updates to other nodes. Therefore when a 

node makes a routing decision, it does so on the status of its adjacent links. Indeed this 

method has been commonly used elsewhere, such as with the classical hot-potato routing 

[62]. 

3.5.2.3 Using existing connection set-up signalling 

This proposed method does not require extra signalling to propagate update messages 

throughout the network as it uses the existing call set-up signalling for this purpose. When 

attempting to set-up a call, a route is calculated at the source node and the signalling packet 

traverses the network according to this calculated route. Whether or not the call request is 

accepted or rejected by intermediate nodes, some sort of acknowledgement packet returns to 
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the source node which initiated the call request. This method 'piggy-backs' onto the 

returning acknowledgement packet the information concerning the link with the lowest 

available bandwidth found along the route. This information is subsequentiy stored at all 

upsfream nodes from the link as the acknowledgement packet returns to the source node. The 

method wil l be termed Route Accepted plus Blocked (RA+B). 

The A T M Forum specifies that the setting up and tearing down of VCCs be 

performed using defined signalling packets encapsulated within the payload of the standard 

A T M cell [41]. The IETF specifies a similar mechanism for RSVP, the call set-up and tear 

down messages being encapsulated in IP packets [10]. It is therefore proposed to include this 

loading information in both the 'connect', or call set-up, and 'release', or call tear down, 

signalling packet types. 

3.5.3 Performance of limited distribution mechanisms 

The previous study which evaluated these methods did not result with conclusions of any one 

method being better than another [60]. This was due to a higher signalling overhead being 

generated by methods which resulted in superior routing performance. What is of interest in 

this study is the performance of the new method which utilises existing signalling for link-

state propagation compared to those previously proposed. As our proposed method includes 

as a subset of its total data input that which might be derived from using reverse path update, 

caching reject information, and the local link status, these were not simulated to be included 

in the comparison. Therefore there remains the general hop-count limited flooding method 

with which to make comparisons. 

Figure 16 shows the blocking probability resulting from AAMH when using hop-

count limited flooding and the proposed method with various route lengths for the 28 node 

logical topology. This network topology has a diameter of seven hops, and during simulation 

it was noted that when using A A M H an average route length of just under four hops was 

returned. As may be seen from the diagram, the performance increases when the hop-count 

limit is increased. What is of particular interest however is that the performance achieved 

when using a hop-count limit equivalent to the average route length is the same as that 

obtained when utilising full flooding. This result implies that a simple way of reducing the 

network bandwidth and processing required with link-state routing methods, whilst not 

affecting overly the routing performance, is to limit the update information propagation to that 

of the average path length. Were the fraffic loading on a network to be more non-symmetrical 
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in nature, then perhaps certain source nodes which utilised certain longer routes might require 

extra link-state information. 

When comparing the result achieved for our proposed method, shown as the RA+B 

line, it is encouraging to note that it is comparable to that returned when using ful l flooding. 

Whilst the RA+B method returns information on the most highly utilised links, the 

performance of the routing algorithm might improve on knowing the utilisation of links close 

by. Wi th this in mind, a further experiment was undertaken by combining both the RA+B 

and the hop-count limited flood update methods. The blocking performance results obtained 

from this approach however are little different to that resulting from the use of RA+B singly. 

This result confirms previous work which indicated that information pertaining to highly 

utilised links is more important than that of other links [58]. 

As shown in Figure 17, the average set-up times resulting from the link-state methods 

are all fairiy comparable and are lower than that o f AR. This again indicates the fact that 

link-state information, however incomplete, w i l l direct the routing process and so result with 

lower connection set-up times. 
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Figure 16: Resulting blocking probability performance of link-state updating methods 
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3.6 Summary 

This chapter has examined the necessary issues linked with proposing a current-generation 

routing algorithm that performs well. Its performance can then be compared in subsequent 

chapters to that obtained from learning automata based schemes. 

In order to permit QoS routing, the CAC mechanism was initially examined. For 

simplicity, a bandwidth-based mechanism was proposed. Effective bandwidth calculations 

are used in order to reserve the required network resources so that the connection's QoS can 

be guaranteed. Whilst methods for accurately calculating the effective bandwidth a priori of 

voice or data connections are available, those for MPEG video sfreams grossly underestimate 

the actual bandwidth required. A new method for calculating the effective bandwidth of 

MPEG streams is proposed, and is found to result in accurate characterisation of bandwidth 

requirements. 

Next, current dynamic routing algorithms which are link-state based are evaluated 

based on previous studies. Four main types are outiined: widest-shortest path, shortest-widest 

path, dynamic-alternate path, and shortest distance path. The strengths and weaknesses of 

each type are given, the section ending with the proposed algorithm (AAMH) being outlined. 

The ensuing simulation experiments compare AAMH with an algorithm from the widest-

shortest path variety (AMH). The simulation results, gathered from both fully-connected and 

sparsely connected logical topologies, show the benefits of A A M H over AMH. With 

symmefrical fraffic loading patterns, trunk reservation is required for A A M H to match AMH 

performance under higher loads. Otherwise AAMH consistently out-performs AMH due to 

the extra paths available to its route decision-making process. 

In order to make dynamic routing decisions, the link-state information must be 

propagated throughout the network. Each node having perfect network state information can 

therefore be approximated using frequent link-state message updates. However tuning the 

frequency of link-state update messages requires a careful understanding of the tension 

between network overheads and the accuracy of routing decisions. In order to reduce the 

amount of network processing and bandwidth related to the update messages, the link-state 

information propagation method is examined with the view of reducing this overhead whilst 

retaining good routing algorithm performance. The strengths and weaknesses of both 

periodic and friggered updates are summarised from previous work, and pre-planned event 

friggers are proposed for use in this study as it is felt, amongst other factors, that such a 

method would be more likely to be utilised in real network due to it being linked with pre­

planning of both user demands and the network capacity and configuration. Results from 

simulation experiments of the 28 node sparsely connected topology are then given, in order to 
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show the effect of discretising the utilisation space into load bands. Whilst it is evident that 

the routing performance is not as high as with perfect network state information, yet it is 

higher than the best possible shortest-path algorithm which does not use link-state in its 

routing calculations. This therefore shows that the number of message updates can be greatly 

reduced by using load bands, whilst still retaining some blocking probability improvements 

resulting from using the link-state information in the routing decision-making process. Also, 

throughout the fraffic loading range it is evident that the connection set-up time is greatiy 

reduced by using link-state information to guide the routing process. Therefore the use of 

load bands is validated in that it allows A A M H to return superior routing performance than 

the best shortest-path routing algorithm which does not use utilisation as a variable in its route 

calculation. 

Finally, explicit methods are examined for reducing the network processing and 

bandwidth overhead incurred by propagating the link-state update messages. Previous work 

has highlighted both limited update disfribution methods and use of locally available 

information. Examples of the former include hop-count limited flooding and reverse path 

updates; whilst of the latter are caching reject information and use of local link status. A new 

method is proposed which by using existing connection set-up signalling incurs no bandwidth 

overhead and little processing overhead. By including reverse path update, caching reject 

information and local link status ideas, the proposed update method was compared in 

simulation experiments solely with hop-count limited flooding. The results from these 

simulations indicate that the proposed method results with routing performance close to that 

obtained when using full flooding. What was also of note was that according to the fraffic 

loading type, a hop-count limited flood equal to the average route length will return a routing 

performance equivalent to that obtained when using frill flooding. 

The outcome of this chapter's study is an implementable algorithm which returns 

good routing performance, both in terms of low blocking probability and acceptable 

connection set-up times. 
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4 Performance analysis of various learning automata 

reinforcement algorithms 

4.1 Introduction 

The purpose of the following chapter is to highlight the currently used reinforcement 

algorithms that have superior performance for learning automata interacting with non-

autonomous environments, the function of routing in a communications network being of 

such a type. These best performing algorithms can then be used as the baseline comparison to 

those learning automata based methods with the proposed improvements detailed in the later 

chapters. 

Previous studies have given performance indicators for the various reinforcement 

algorithms when used with stationary and switching environments. The conclusions drawn 

from these studies have then been assumed to hold true for learning automata interacting with 

non-autonomous environments. The aim of the work detailed in this chapter is to give a 

framework for rigorously assessing the performance of the currently used reinforcement 

algorithms for learning automata interacting with non-autonomous environments. 

The analytical basis for the framework is initially given, from which the converged 

action probabilities and blocking rates are obtained for a relatively simple network scenario. 

The remainder of the chapter deals with the experimental analysis to obtain the performance 

of the various reinforcement algorithms, the performance indicators of interest being both 

speed of action probability convergence and the subsequent steady-state accuracy. 

Both standard and estimator type reinforcement algorithms are examined within this 

framework. Within these types of algorithm, the results for both continuous and discretised 

schemes are detailed with conclusions being drawn for each one as to its applicability for use 

in non-autonomous environments. Finally, the various results are brought together in the 

summary, with the best performing reinforcement algorithms being highlighted. 

4.2 Learning automata for routing in multi-service networks 

Multi-service networks using per-call reservation are a mixture of both circuit switched and 

packet switched network technologies. They can in some measure be thought of as virtual 
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circuits over a logical topology (i.e. VCCs over a VPC topology in the case of ATM, or 

RSVP over class reservations in IP with QoS). However, unlike previous virtual circuits in 

packet switched networks where the optimising factor was delay, multi-service networks can 

guarantee end-to-end delay i f the user requests so in the specified QoS. Assuming the CAC 

used is bandwidth based, an effective bandwidth is assigned for a connection to meet the 

specified QoS, causing the call routing function to occur as in the circuit switched case. The 

difference is that since multi-service networks allow different reservations of bandwidth for 

different types of call, such as voice or video, so they are analogous to a multirate circuit 

switched network. 

Learning automata may be applied to the problem of call routing in multi-service 

networks in a similar way to the circuit switched case. By using the P-model response 

environment, the network response to a connection request is either 0 for a successful routing 

attempt or 1 for a blocked connection. Enhancements to this method will be proposed in a 

later section. Using the P-model response environment, e-optimal type reinforcement 

algorithms wil l therefore equalise the blocking probability, whilst ergodic type algorithms 

wil l equalise the blocking probability rates. 

Two main fraffic types will be used for this study: both voice and video fraffic. The 

effective bandwidth for either can be calculated by the equivalent capacity equation given in 

[44], the MPEG calculation requiring the use of the method outiined in chapter 3. 

4.3 A framework for obtaining relative reinforcement algorithm 

performance 

Generally speaking, all the standard reinforcement algorithms are presented in the literature 

with accompanying theoretical and simulation analysis for performance characteristics when 

operating in stationary random environments. Performance analysis for non-stationary time-

varying environments, including Markovian switching environments, has also been 

undertaken in other studies [32]. The results from these studies have in general been accepted 

as valid for learning automata operating in non-stationary non-autonomous environments, 

most recently causing the prevalent use of discretised schemes [17, 34]. However, the 

validity of this assumption remains unclear, and it is therefore thought important to undertake 

a study comparing relative reinforcement algorithm performance for learning automata 

operating in non-autonomous environments. 
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4.3.1 Performance metrics 

Previous studies that have applied learning automata to the network routing problem have 

obtained a characterisation of the action probability values after convergence for the two 

performance related reinforcement algorithm classification [18]. e-optimal schemes tend to 

equalise the blocking probabilities of their various actions, whilst ergodic schemes tend to 

equalise the blocking probability rates. These characterisations enable the calculation of the 

average penalty rate and action probabilities of a single automaton after convergence. 

However, the speed of convergence and ensuing steady state accuracy has not been 

characterised in any way. It is these two performance mefa-ics which are of most interest in 

communication network situations as the network state can rapidly change due to multiple 

varying traffic sources and dynamic routing algorithms, and unvarying steady state accuracy 

improves user perceived network performance under steady-state situations. 

4.3.2 Framework outline 

Whilst no analytical analysis currenfly exists for learning automata interacting with a non-

autonomous environment, analytical techniques are available for the network routing 

problem. Therefore when learning automata are applied to such an environment scenario, the 

same analytical techniques may be used to gain steady-state expected performance 

characteristics, these therefore occurring after convergence. 

Erlang's Loss formula characterises the average blocking probability for a link, taking 

as inputs the connection arrival rate and mean holding times, and the size of the link. This 

may be modified by including the action probability effects, as shown in appendix C. By so 

doing, the expected average blocking and action probabilities may be analytically derived for 

both 8-optimal and ergodic schemes. 

Having obtained analytically the action probability to which a reinforcement 

algorithm will converge, both the speed of convergence to that value and the steady-state 

accuracy thereafter may be gained experimentally. Doing so for all the main reinforcement 

algorithms currentiy found in the literature results in their relative performance indices for 

learning automata operating in non-autonomous environments. 

The resulting best performing reinforcement algorithm of those currently used will 

then be utilised as the baseline when comparing the proposed improved algorithms. 
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4.3.3 Analytical results 

A simple network routing scenario which has been used in the literature to show the benefits 

of learning automata routing over fixed rule routing [18] is shown in Figure 18. As may be 

seen, there is one fraffic source on node 1 generating traffic for node 3. The link size units are 

given in multiples of voice bandwidth connections (each connection being 0.026 Mb/s). 

Using a mean connection arrival rate of 10 per minute, and a mean holding time of 6 minutes 

per call, we would intuitively expect the optimum call blocking probability to be around 0.5 

as there are 30 free units of voice call bandwidth and about 60 call requests in a call time 

period. 

Figure 19 shows anal3'tically what should occur using learning automata and an 

arrival rate of 10 calls per minute. The c l and c2 traces were calculated using Erlang's Loss 

formula, as per appendix 3. cT is the total or overall blocking probability based on the action 

probability p i (p2 being 1 - p i ) and is calculated as the addition of the two fraces p l c l and 

p2c2. It shows that the result of using the LRI or LRsP reinforcement algorithms will be p i 

converging to 0.676, since e-optimal schemes tend to equalise the blocking probability which 

is the intersection between fraces cl and c2. When using LRP p i should converge to 0.578 as 

ergodic schemes tend to equalise the penalty rates, which is the intersection between the 

fraces p l c l and p2c2. At this arrival rate we see that the cT frace is fairly flat for a range of 

p i , so that even though the two different schemes converge to slightiy different pis, yet their 

overall blocking probability is very similar at around 0.53 . 

Figure 20 shows the same convergence diagram for different arrival rates resulting in 

under \0% to about 80% blocking probability. The concern here is to see whether the arrival 

rate affects the convergence of the p i action probability, and the effect on cT. 

We find that at low arrival rates, the graph for cT is no longer flat but a pronounced 

curve. This would imply a noticeable difference in asymptotic performance between 

LRI/LR.6P and LRP schemes, as p i converges to different values according to the scheme. 
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Figure 18: Four node network 
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As the arrival rates increase so cT 'flattens out' causing the blocking probabilities resulting 

from either scheme to be fairly similar. As regarding the convergence of p 1, we find that for 

the LRI scheme it remains fairly constant over all arrival rates, at around 0.67, increasing 

slightly at low arrival rates. For the LRP scheme however, p i is close to 0.67 under low 

arrival rates, but decreases as the arrival rates increase to 0.53 under around 77% blocking 

probability. This equates to it being closer to that for LRI under low arrival rates, with it 

being more distant under higher arrival rates. 

We conclude that the s-optimal class schemes should be fairly unaffected by arrival 

rate, but the ergodic class schemes have a noticeable variance in p i according to the arrival 

rate. Combining these observations with the effects of arrival rate on cT, we expect that this 

variance in p i between the two types of schemes should not result with variance in 

performance under higher arrival rates but only under low arrival rates. Telecommunications 

networks are generally dimensioned to a blocking probability of up to 10% [46], so it is 

reasonable to assume future multi-service networks will operate with a similar loading as they 

will carry voice and other fraffic types with stringent QoS requirements. Therefore 

realistically it is envisaged that e-optimal class schemes would produce a noticeable 

performance improvement were learning automata to be used for the routing ftinction. 

4.4 Experimental results 

The following experimental results were obtained using one hundred simulation runs with 

varying random number generator seeds, subsequently obtaining the mean and 90% 

confidence intervals for each connection attempt from all the simulation runs' results. 

Multiple simulations are required to obtain each graph due to the stochastic natiore of the 

learning automata, so that smooth behavioural fraces are an average of multiple runs. 

As a number of reinforcement algorithms are available for learning automata, there is 

the requirement to select one that might be most suitable for this application or environment 

type. Performance in this case is the number of feedback messages required for convergence 

to an analytically calculated action probability, and the level of variance from that value once 

convergence has occurred. 

4.4.1 Basic algorithms 

The following basic reinforcement algorithms have commonly been used in various 

environments: LRI and LRP, with LReP also sometimes being used due to its joint property 
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of s-optimality and ergodicity. However, the discretisation of such algorithms has been 

applied in more recent studies, often taking the analytical stationary environment conclusions 

as valid for the non-stationary case. 

4.4.1.1 Continuous algorithms 

The main factor in differing speed of convergence performance between LRI and LRP 

reinforcement algorithms is that in addition to utilising the reward feedbacks, the LRP 

algorithm also utilises the penalty feedbacks. For scenarios where each member of the 

penalty probability set has a high value, it would therefore be expected that the LRP algorithm 

would converge within a much smaller number of overall feedback responses, when using the 

same learning rate. This scenario has a blocking probability and thus penalty probability of 

0.53 after convergence, so it is expected that the LRP algorithm will converge at around half 

of the time taken by the LRI algorithm. 

Figure 21 and Figure 22 show how the action probabilities vary with the number of 

connections attempted for both algorithms using different learning rates. As might be 

expected, the higher the learning rate the faster the convergence and the higher the variance 

for both algorithms. This is shown more clearly in Figure 22 where the spread of values with 

90% confidence after convergence is plotted. 

The LRP has faster convergence than expected, and should converge faster than LRI 

even when the penalty probabilities are low. This faster convergence is not just due to the 

lower action probability value after convergence, as is shown by Figure 23. Here the 

minimum blocking rate was 5%, and gives LRI converging after around 2710 connection 

attempts with LRP doing so after about 1620 connection attempts, even though the converged 

action probabilities are similar. Rather than the 5% speed increase, LRP is seen to have a 

40% speed increase. This initially counter-intuitive statement is explained by recalling that 

the penalty rate is 5% only after convergence, but higher previous to that point. 

LRP also has higher variance than LRI when using the same learning rate, with the 

trace for 0.05 learning rate being similar to a standard control trace which has the gain too 

high causing overshoot. This result implies that the leaming rate for the LRP algorithm 

should be lower than that for the LRI algorithm to obtain similar performance of low variance 

after convergence. 
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Intuitively it might be thought that by increasing the learning rate of LRI in order to produce 

the same degree o f overshoot seen with LRP would result in a convergence rate of twice that 

o f LRP for this scenario. However, when attempting to increase the learning rate for LRI to 

match the initial overshoot properties before convergence of LRP, unexpected results ensued. 

Figure 24 shows L R I with learning rates of 0.1, 0.2 and 0.3, and indicates that there occurs a 

rapid movement to the expected action probability, but rather than converging the action 

probability continues moving towards unity. Wi th the very high learning rate of 30%, 

convergence occurs to a fixed value lower than with the previous case, due to the high 

granularity effects. This implies that high learning rates may not be used when employing 

L R I in non-autonomous environments. 
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Previous studies have commended the use o f the L R I algorithm for such environments [38, 

39] but it is evident that its poor steady-state performance with higher learning rates was not 

known. The LRI algorithm is therefore not recommended for general use in such 

environments. 

The LRP reinforcement algorithm does not suffer from this effect when using very 

high learning rates; Figure 25 showing that the variance simply increases once convergence 

has occurred. 

Figure 26 shows the convergence properties o f the LRsP algorithm. The results 

indicate a faster convergence than the L R I algorithm, but slower than the LRP algorithm. Of 

greater interest is the low overshoot and variance that LReP exhibits, being lower than even 

the L R I algorithm. Using very high learning rates, the LReP algorithm does not exhibit the 
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same loss of convergence behaviour of LRI , imitating rather the LRP algorithm that simply 

increases the variance after convergence. 

The action probability converged to is 0.643 for this scenario, having a minimum 

penalty probability o f 0.53. A previous analytical study showed that the two-action DLRP 

algorithm is both ergodic and c-optimal in stationary random environments where the 

minimum penalty probability is less than 0.5 [31]. However, as shown in the next section, 

with scenarios of increasing minimum penalty probability the converged action probability 

tends towards that o f equalising the penalty rates rather than the penalty probabilities. Whilst 

the literature for the LReP algorithm does not mention the same, yet these empirical results 

indicate that this algorithm seems to bear the same property since with an increasing 

minimum penalty probability the converged action probability moves towards that for 

equalising the penalty rates. Further work is required to derive an analytical verification of 

this. 

These results indicate that both the LRP and LReP algorithms would be suitable for 

use in non-autonomous environments. 
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4.4.1.2 Discretised algorithms 

Discretised versions of continuous reinforcement algorithms have been shown to converge 

much quicker in stationary random environments, due to their linear rather than asymptotic 

convergence properties. They have also been used in non-stationary environments, even of 

the non-autonomous kind [17]. However the validity of so doing remains unclear, as their 

convergence performance has not been examined in the literature. 

Figure 27 and Figure 28 show the results for the DLRI and DLRP algorithms, each 

having unexpected characteristics. For low leaming rates (up to 0.02), the action probability 

converges to 1 instead of 0.676, the speed of convergence varying according to the leaming 

rate. Once converged, the action probabilities remain fixed as penalty environment responses 

are not acted upon by the reinforcement algorithm. As the leaming rate is increased, so the 

value to which the action probability converges decreases to below the analytically derived 

optimum of 0.676 . The unvarying mean and confidence intervals imply an oscillation in the 

action probabilities between a couple of values. These results indicate that the DLRI 

reinforcement algorithm should not be used for such environments as the action probabilities 

fail to converge. 

A previous study's blocking probability results [17] for the discretised algorithms do 

not vary from the generally accepted thinking on discretised performance because a fairly 

high leaming rate of 0.1 was used for all the different algorithms. These results show this 

high leaming rate to result with better steady-state performance than lower and more usual 

leaming rates. Were a more usual leaming rate of under 0.05 chosen the results would have 

shown a marked difference, with performance being much lower than the other algorithms. 

The DLRP results do not show such unexpected behaviour in convergence, but do so 

in the final action probability steady-state value converged to. A previous analytical study 

showed that the two-action DLRP algorithm is both ergodic and e-optimal in stationary 

random environments where the minimum penalty probability is less than 0.5 [31]. The 

results shown, where the penalty probability is 0.53 after convergence, indicate that for non-

autonomous environments DLRP causes the action probabilities to converge to between those 

arising from equalising the penalty probabilities, and those resulting from equalising the 

penalty probability rates. 

This is clear from Figure 29 where the effect of increasing minimum penalty 

probability is seen on the converged action probability. As expected, the mean action 

probability after convergence decreases with increasing minimum penalty probability from 

that obtained when equalising the penalty probabilities to that resulting from equalising the 

penalty rates. As it is reasonable to assume that multi-service networks will be dimensioned 
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to operate with a blocking probability o f up to 10%, so the DLRP reinforcement algorithm is 

very suitable to use, ensuring 8-optimal performance. Moreover, it has faster convergence 

than its continuous counterpart but suffers from a higher variance after that point, evidenced 

by comparing Figure 28 with Figure 22. 
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The graphs o f Figure 27 also indicate that the effect o f discretisation is to increase the control 

gain which causes the faster convergence, so that for the same learning rate as the continuous 

case, there is a greater degree of overshoot and number of oscillation before convergence 

occurs. Therefore for good steady-state performance, meaning low variance after 

convergence, a smaller discretisation value is required than the learning rate for the 

continuous case. 

Figure 30 shows that the DLRsP algorithm takes after the D L R I rather than DLRP 

algorithm in performance. It fails to converge to the expected value, the action probability 

converging to unity for low learning rates, and progressively lower values as the learning rate 

is increased. It is therefore not recommended for use in non-autonomous environments. 
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4.4.2 Estimator algorithms 

By reinforcing the action probabilities based on both the current environment response and 

stored history, estimator algorithms would be expected to outperform other types of 

algorithm. This has been shown to be the case for stationary and switching environments [25, 

26, 63], but no known detailed example exists to date for non-autonomous environments, with 

studies such as [34] simply assuming its better performance as regarding convergence speed 

compared with other reinforcement algorithms. 

Two estimator reinforcement algorithms are currently used: the pursuit and the 

general estimator algorithms. As with the basic algorithms, the discretisation of these 



estimator algorithms has occurred, with studies such as [34] assuming their steady-state 

performance in non-autonomous environments rather than validating it. 

4.4.2.1 Continuous algorithms 

The pursuit algorithm is the simpler o f the two estimator algorithms, and its performance is 

shown in Figure 31 and Figure 32. It can be seen that even with a low learning rate the 

algorithm does not converge to its theoretical value o f 0.676, instead overshooting its mean 

value as it takes some iterations before it can pursue another action. Interestingly, it is seen 

that the mean or converged value after initial overshoots is higher than the theoretic one, this 

increasing with the learning rate as shown by Figure 32. The variance or maximum spread 

with 90% confidence in possible values after convergence also increases with the learning 

rate, indicating that the gain in 'overshoots' is increased, as might be expected. As the pursuit 

algorithm does not cause the action probability to converge to the analytically calculated 

value, it is not recommended for use in non-autonomous environments. 

The general estimator algorithm not only takes the learning rate as input parameter, 

but also the monotonic function type which forms part of the reinforcement function. For this 

experiment three different functions were used: 'x\ 'x^' and 'x^' with various learning rates 

for each. 

Pursuit with 0.005 Learning Rate 

£• 0,67 

- LA prob |1) 

90% Conf, 

2000 3000 

C o n n e c t i o n A t t e m p t s 

7^) 



Pursuit with 0.05 Learning Rate 

£• • - 5 
. LA prob 11] 

90% Conf 

0 1000 2000 3000 4000 5000 

C o n n e c t i o n A t t e m p t s 

Figure 31: Convergence for Pursuit Algorithm 

Pursuit Reinforcement Algorithm 

0.735 

0.15 o 
R-ob. 

- Spread 

0 01 0.02 0.03 

L e a r n i n g R a t e 

Figure 32: Convergence properties for Pursuit Algorithm 

Figure 33 shows results for the general estimator algorithm for both the linear and '.v'" 

updating functions. Both function types result with a long pre-convergence period, requiring 

more than 5000 connection attempts for both cases. Using the linear function results in 

overshoot o f convergence after a relatively long period o f time (more than 1000 connection 

attempts when using a leaming rate of 0.005). By using very low leaming rates, for example 

0.001, overshoot still occurs to the same degree (0.73) but with a slower rate, requiring a 

relatively long interval of 7500 connection attempts. Changing to very high leaming rates, 

such as 0.3, causes the action probability to converge fairiy quickly but with a high variance, 

but as the number o f connection attempts increase it drills lower from its converged value. 

On the other hand, using the '.r^' function results with little overshoot and a gradual 

convergence to the analytically derived action probability. As shown by Figure 34, by using 
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the much higher learning rate o f 0.3, overshoot is increased but convergence occurs sooner 

but still relatively slowly, after 2430 connection attempts. For both updating functions, the 

possible spread o f values with 90% confidence after convergence is seen to be small. 

The effect of increasing the updating function to \x'' is shown in Figure 35. These 

preliminary results indicate that increasing the power o f the updating function decreases 

oscillatory and overshoot behaviour as well as the time to converge, whilst causing the 

converged action probability to move slightly from its analytically derived expected value. 

From these results it is seen that the general estimator reinforcement algorithm with a 

'jc^' updating function coupled with high learning rate is suitable for use in non-autonomous 

environments, for although the convergence speed is slow the variance is low after 

convergence. 
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4.4.2.2 Discretised algorithms 

As always, the rationale for discretising continuous estimator algorithms is to obtain a linear 

rather than asymptotic convergence of an action probability, resulting with much faster 

convergence in stationary or switching environments [27]. 

As wi th the continuous case. Figure 36 and Figure 37 show that the discretised 

pursuit algorithm does not converge to its expected analytical value. In fact it overshoots to a 

greater degree than with the continuous case, so that with a moderately high learning rate of 

0.05 the action probability converges close to unity. Therefore as with the continuous variant, 

the use o f the discretised pursuit algorithm is not recommended for non-autonomous 

environments. 
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Figure 38 shows the resuhs when using the discretised general estimator algorithm with both 

linear and '.v''" updating functions. It is evident that discretising the general estimator 

algorithm causes it to lose the property to converge to the analytically derived value, instead 

overshooting towards unity as the learning rate increases. The effect o f greater non-linearity 

with the 'x' ' ' updating function is to increase the overshoot away from the analytically derived 

value. 

Therefore the use o f the discrete general estimator algorithm for non-autonomous 

environments is not recommended. 
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4.5 Summary 

The chapter began by highlighting the need for examining the performance of currently used 

reinforcement algorithms when learning automata interact with a non-autonomous 

environment. This is due to previous studies having analysed their performance with 

stationary and switching enviroimients, and assuming the conclusions drawn as valid for non-

autonomous environments. The results obtained with this study, however, are in opposition 

to this generally held assumption. 

A well performing reinforcement algorithm in non-autonomous environments should 

produce fast convergence of action probabilities with low variation afterwards, and ideally 

converge to equalise the penalty probabilities rather than the penalty rates so producing lower 

penalty probability performance in the steady-state. Having obtained the converged action 

probabilities analytically for a simple network scenario, the convergence speed and steady 

state variance was obtained experimentally. The analytical work also resulted in the 

conclusion that at low blocking rates there would arise a noticeable difference in network 

blocking performance between 8-optimal and ergodic schemes, this not being noticeable at 

higher penahy rates. 

Of the basic continuous algorithms, both the LRP and LReP algorithms have been 

shown to converge faster than the LRI algorithm, although the variance afterwards is higher 
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using LRP. As the LRI algorithm fails to converge once the learning rate is increased to 

higher levels, it is not recommended for general use in such environments. This is an 

important result considering that this algorithm has been used in most previous studies 

involving learning automata for routing in networks. Another interesting contribution of this 

work has been to show that the LReP algorithm seems to display the same property as the 

DLRP algorithm: that of tending towards equalising the penalty rates rather than the penalty 

probabilities as the minimum penalty rate for the scenario increases significantly above 0.5 . 

It has been consistently noticed in this study that the effect of discretising continuous 

algorithms is to increase the gain so that convergence times are decreased and variance 

increased. However, due to it causmg an action probability of unity to be approached linearly 

rather than asymptotically, convergence to the analytical value sometimes does not occur. 

Discretising the LRI and LRsP algorithms causes them to consistently fail to converge to the 

analytical value, and so they are not deemed suitable. The DLRP algorithm has increased 

variance compared to its continuous version, and converges slightly quicker. It also equalises 

the probabilities rather than the probability rates of its continuous counterpart. This algorithm 

is therefore suitable for use in such environments, provided that a low enough learning rate is 

used after convergence has occurred. 

Of the two continuous estimators, the pursuit algorithm fails to converge to the 

expected value, the overshoot increasing with the learning rate. The general estimator with a 

linear updating function works fairly well with low learning rates but always overshoots, and 

although the convergence time is slow it produces very low variance once convergence to 

equalise the penalty probabilities has occurred. Using the non-linear updating function of 

'x^\ low variance is evident although convergence takes a long time. 

Discretisation encourages failure of convergence for the pursuit algorithm, the 

overshoot being still higher than with the continuous case. The same effect is observable with 

the discretised general estimator algorithm, for any updating function and learning rate. It 

fails to converge, constantly overshooting its target. 

Of the range of reinforcement algorithms which are generally used, the LRP, LReP, 

DLRP and general estimator with the 'x^' non-linear updating functions were found to 

perform the best this non-autonomous environment. Of these three, LRP is the only one to 

equalise the penalty probability rates, resulting with a higher penalty probability in the steady-

state. The LRsP and DLRP algorithms produce a lower penalty probability when the 

minimum is less than 0.5, and the general estimator always produces the lower penalty 

probability. As the general estimator also has a much lower variance after convergence, it is 

the one to be preferred as long as its relatively slow convergence time is acceptable. 
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With current understanding assuming the applicability of stationary and switching 

environment results to non-autonomous environments, so discretised schemes have been more 

recently favoured for use in such environment scenarios. The importance of this study is to 

show the general non-applicability of discretised reinforcement schemes, and the superior 

performance after convergence of the continuous general estimator algorithm using the 'x^' 

non-linear updating function, the LReP, and the DLRP schemes. 
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5 Improved learning automata applied to routing in multi­

service networks 

5.1 Introduction 

The purpose of the work contained in the following chapter is to increase the' learning 

automata performance to be higher than that obtained when using the best performing 

reinforcement algorithms detailed in the previous chapter; namely DLRP and LReP. The 

improved learning automata performance can then be compared with that resulting from the 

use of the improved dynamic shortest-path based mechanism detailed in chapter 3. 

Improving a reinforcement algorithm's convergence speed, for example by increasing 

the learning rate, degrades its steady-state performance. Contrariwise, increasing its steady-

state accuracy slows down its rate of convergence. Therefore the improvement methods 

studied in this chapter are based on increasing convergence speed under changing 

environment conditions, and increasing accuracy under environment steady-state situations. 

A novel mechanism for detecting the environment state is detailed. Rather than 

requiring centralised operation, it is applied in a local manner, so retaining a benefit of 

learning automata operation; that of local feedbacks. This mechanism, based on action 

probability entropy, is used by both novel learning automata performance improvement 

methods outlined in this chapter. They are adaptive learning rates, and automatic 

reinforcement algorithm selection. 

Next, the resulting best performing learning automata based method is compared with 

the AAMH algorithm outlined in chapter 3. A new network scenario is used for performing 

the comparison, this scenario mimicking real networking situations more closely. This is 

based on trend user demands rather than the statistically constant simulations which are 

generally used in the literature. 

Finally the chapter's findings are summarised, and reasons given as to why the further 

learning automata improvement work of chapter 6 is required. 
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5.2 Reinforcement algorithm selection 

The results from the previous chapter highlighted a number of reinforcement algorithms 

which produce good learning automata performance when interacting with non-autonomous 

environments. They are as follows: DLRP, LReP, and GE with the 'x^' non-linear updating 

function. 

DLRP produced a faster convergence rate than LReP, but with a higher steady-state 

variation thereafter. The GE with 'x^' updating function produced the lowest steady-state 

variation of all the algorithms, but required the longest number of iterations before 

convergence occurred. It therefore seems that each of these reinforcement algorithms has its 

own particular strengths and weaknesses relative to each other. 

A particular reinforcement algorithm might be selected according to the application 

type. For example if the environment for the application was generally in steady-state 

behaviour and rate of convergence for the learning automata is not of great importance, then 

using the GE reinforcement algorithm is an apt choice. On the other hand, if the environment 

exhibits dynamic behaviour due to factors other than the automata actions then the DLRP 

algorithm might be used, in order to track the moving environment state most quickly. Were 

neither of these performance factors of overriding importance, then the LReP reinforcement 

algorithm might be used. The application of routing in multi-service networks has elements 

of both dynamic and steady-state network behaviour, according to the user demands 

throughout the day. Therefore it is difficult to propose the use of just one for this application 

type. 

However, rather than having to characterise the application type a priori and then 

choose the most appropriate reinforcement algorithm, it is proposed to improve the 

performance of these three algorithms in order to make them more generically applicable to 

applications which exhibit environment types of both steady and moving states, such as 

routing in networks. The two proposed methods are: adaptive learning rates, and automatic 

reinforcement algorithm selection. 

5.2.1 Adaptive learning rates 

Each of the three reinforcement algorithms has a configurable parameter: the learning rate. 

Variations in this variable produce variations in the rate of convergence and subsequent 

steady-state accuracy. A higher value causes the learning automaton to converge within a 

fewer number of iterations, but it also causes a higher subsequent steady-state action 
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probability variation. The use of a lower learning rate produces opposite effects in both 

performance indicators. 

Increasing the learning rate has a positive effect on the rate of convergence, whilst 

decreasing it has a positive effect on the subsequent steady-state variation. Were one to 

dynamically vary the learning rate according to the environment state and associated 

conditions, then it might be possible to obtain both a higher convergence speed and 

subsequent lower steady-state variance than is currently the case with fixed reinforcement 

algorithms and learning rates. The use of such a mechanism in this application would 

increase the learning rate in cases of moving network state, and decrease it in more steady-

state network conditions when the action probabilities are close to convergence. 

As the use of learning automata is beneficial in cases of environment uncertainty, due 

to them automatically converging to produce near optimal performance, so ideally the 

mechanism should be able to automatically detect whether the environment, which in our case 

is a multi-service network, is in a steady or moving state. The following section details a 

method which allows the learning automaton mechanism to automatically detect the 

environment status. 

5,2.1.1 Automatic adaptive mechanism 

The method or mechanism for deciding whether convergence of the action probabilities has 

taken place requires a numerical indicator of the status of the network and action 

probabilities. This might be based on the average network blocking probability, or the 

average path length of routes selected. As convergence of the action probabilities takes place, 

both the average network blocking probability and path length should decrease and finally 

plateau at a minimum value when convergence has occurred. According to whether these 

numerical indicators are increasing, decreasing or stationary, so the learning rate might be 

increased, held steady, or decreased respectively. Another indicator that might be used is the 

entropy of the system. An experiment was undertaken to ascertain which of these indicators 

is the most suitable to perform this function. The average path length was not included for 

consideration as this is heavily influenced by the changing traffic matrix, and so might often 

report an increasing or decreasing value even when the action probabilities had converged. 

5.2.1.1.1 Using entropy measures 

The entropy of a system is a measure of its disordedness, and it has been shown that as 

learning automata which perform the routing function in a telecommunications network 
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converge, so the disorganisation of the overall system decreases [18]. The system entropy in 

terms of the learning automata action probabilities may be characterised by the following 

equation: 

H{n) = YYXpl^^^Pl bits 
ieN JeDkeR 

where A'̂  is the set of nodes, D is the set of destinations, R are the allowable actions at each 

automaton in the network, and p is the probability of performing an action. It is therefore a 

function of the action probabilities. As the action probabilities converge, so the 

disorderedness of the system decreases causing the entropy to also decrease. It is not 

necessarily the case however that this reduction is monotonic, for the action probabilities are 

updated based on stochastic events, and so might cause the system disorderedness to increase 

in the short term. 

In order to ascertain which indicator might be best suited for the automatic adaptive 

mechanism proposed, the following experiment was undertaken. It consisted of the 28 node 

network topology with symmetrical network loading. Using different learning rates with the 

basic reinforcement algorithms recommended in the literature, namely LRI and LRP, Figure 

39 is produced. Adaptation in this case was taken as the point where the decreasing network 

blocking probability began to plateau, and so is overly optimistic on the minimum number of 

iterations required for convergence. As expected, increasing the learning rate decreases the 

number of iterations required for convergence but increases the average network blocking 

probability due to the higher steady-state action probability variance. This is true for both 

LRI and LRP, indicating its validity for both e-optimal and ergodic schemes. The aim is 

therefore to adapt the learning rate to give the fast convergence rate seen when using a fixed 

5%, and the low steady-state variance (and so network blocking probability) seen when using 

a fixed 1% learning rate. 

Figure 40 shows how the network blocking probability and entropy of the system 

changes during convergence of the action probabilities when using the LRI reinforcement 

algorithm. The network blocking probability values given are the average over the 1000 

connection period. It can be seen that as the number of iterations passed increases, so the 

entropy and network blocking probability decrease. However, what is of interest is that the 

network blocking probability reaches a minimal plateau whilst the entropy measure is still 

decreasing. Were the indicator for whether the action probabilities had converged to be the 

blocking probability, then the onset of convergence would be reported too early and so 

inaccurately. It is therefore proposed to use the entropy measure as the indicator as to 

whether convergence has taken place. 
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This was done using this global entropy measure, and by automatically adapting the learning 

rate, a combined performance of the fast 5% learning rate convergence rate and the good 1% 

learning rate steady-state accuracy was obtained [64]. However, in order to have an 

automatic mechanism for convergence detection and so learning rate adaptation, it is not 

possible to use a system-wide indicator such as global entropy due to the network resources it 

would consume in information transmission and processing. A compromise is to use the local 

entropy measure, this being calculated as follows: 

bits 
;=1 

Whilst it is expected that the use of this method will be more problematic, due to the 

stochastic nature of the action determination and so action probability updating, it appears 

feasible that its use will provide a usable automatic learning rate adjustment mechanism. 
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Figure 40: Entropy and network blocking probability during convergence using LRI 

5.2.1.2 Entropy threshold calculation 

The maximum local entropy occurs when the action probabilities are equidistant, and as they 

change values f rom that point the local entropy decreases. For the four node network 

example, the maximum entropy value at node three is 3.46 as there are eight action 

probabilities in all when including the two for destination node 3. The minimum entropy 

value possible is when half o f the action probabilities are close to unity (the other half 

therefore being close to zero), the calculated value when probabilities are at 0.999 and 0.001 

being 0.04, which is arbitrarily close to 0. However the spread in possible values is much 

smaller in realistic scenarios as the entropy is 2.5 when action probabilities are at 0.8 and 0.2 . 

The four node network example was again used, as it is possible to determine 

analytically the converged action probability values. These were 0.67 and 0.33 respectively 

for the experiment's loading rate. Figure 41 shows the local entropy value for the node 

having the traffic source, when using a learning rate o f 5% with the LReP reinforcement 

algorithm. This trace shows significant variation around the value o f 3.35 which is what it 

should converge to, indicating that the high learning rate is causing it to consistently 

overshoot. 

Figure 42 shows the local entropy value for the node having the traffic source, when 

using a learning rate of 1% with the LRsP reinforcement algorithm. As expected, the entropy 
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decrease is much more progressive, with little oscillatory behaviour evidenced. Towards the 

end of this initial convergence period, a slight increase in entropy is noticed, as the action 

probabilities temporarily move away from their final converged values. 

Both these figures show runs of 270 iterations, and indicate that individual learning 

automata traces can vary somewhat from the smoothed average traces of various simulation 

runs. Therefore there exists the requirement to smooth the varying individual entropy traces, 

so that a true indication on whether the entropy is changing significantly (meaning that the 

environment is in a non-steady state condition) may be obtained. To this end, ten point 

samples are taken and averaged, these values also being represented on the graphs. 

From these the following threshold values are obtained. When using a 5% learning 

rate, a change in entropy less than 0.05 between averaged 10 point samples should cause a 

change to a 1% learning rate. When using a 1% learning rate, an entropy change greater than 

0.01 should cause the learning rate to change to 5%. When first initiated however, the 

mechanism should first allow for an entropy change of 0.05 or greater, before permitting the 

learning rate to be dropped to 1%. To avoid the learning rate remaining at 5% with cases 

whose converged action probabilities are around 0.5, the mechanism should change to a 

learning rate of 1% after ten consecutive 10 point samples of entropy changes less than 0.05 . 

These threshold values are valid for LReP, as other reinforcement algorithms have different 

convergence and variance characteristics. When the number of possible actions is increased, 

the maximum entropy value also increases, therefore also possibly affecting the threshold 

values. In this application however, an increase in the number of possible actions should not 

overly affect the threshold values as some of the actions would rarely be used, causing the 

enfropy spread to be much less than otherwise. Therefore for this application there is only 

required a re-characterisation of the thresholds for the other reinforcement algorithms. 
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Figure 41: Local entropy using 4-node network with LRsP and 5% learning rate 
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Figure 42: Local entropy using 4-node network with LREP and 1% learning rate 
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Local Entropy: L R e P with adaptive learning rate 
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Figure 43: Local entropy using 4-node network and LReP with adaptive learning rate 

5.2.1.3 Experimental results 

This section seeks to validate the benefits of automatic adaptation of learning rates. To this 

end, only the DLRP and LReP reinforcement algorithms are used, as the GE algorithm has an 

additional parameter which affects performance, namely the updating function. Also it 

requires a large number of iterations before convergence occurs, and it has been shown that 

even high learning rates do not reduce the number to that comparable with the other 

reinforcement algorithms. 

5.2.1.3.1 Results for L R e P 

The characterisation threshold values for the adaptive learning rate scheme used with the 

LReP algorithm were the same as those calculated in the previous section. 

Beginning with the 4-node network scenario. Figure 44 shows the convergence 

results for LReP algorithm when using a fixed 5% learning rate, with Figure 45 showing the 

same when using a fixed learning rate of 1%. As may be seen, the latter has a much slower 

convergence rate than when using the 5% learning rate, but its subsequent steady-state 
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variation is much lower. The 90% confidence interval spread in the action probability is 

around 2% when using the 5% learning rate, and 1% with the 1% learning rate. 

Figure 46 shows the convergence of the action probabilities when using the adaptive 

learning rate scheme. As may be seen, the rate of convergence is very similar to that when 

using the fixed 5% learning rate, but the subsequent steady-state variation is just a little higher 

than that when using the fixed 1 % learning rate, and certainly far lower than that evidenced 

with the 5% learning rate. 

The point of adaptation for the 28 node network was taken to be when the decreasing 

network blocking probability rather than the global entropy plateaued. This was because the 

continuing convergence of the action probabilities, and so decrease in the global entropy, did 

not significantly affect the performance measure for this application; namely the network 

blocking probability. 
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Figure 44: 4-node network and LReP with fixed 5% learning rate 
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Figure 45: 4-node network and LRsP with fixed 1% learning rate 
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L R e P with adaptive learning rate 
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Figure 46: 4-node network and LReP with adaptive learning rate 
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Figure 47: 28-node network and LReP with fixed 1% learning rate 
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Figure 48: 28-node network and LReP with fixed 5% learning rate 
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Figure 49: Network blocking probability and iterations for convergence using LReP and 28-
node network 

However rather than the case with Figure 39, a more conservative estimate of when the 

plateauing began was chosen. This explains the apparent increase in the iterations required 

for convergence, when compared with Figure 39. 

Figure 47 for example shows the process for the fixed 1% learning rate case, whilst 

Figure 48 shows that for the fixed 5% case. As may be seen from Figure 47, the action 

probabilities are still converging by the end of 1,000,000 connection attempts when using the 

fixed 1% learning rate, the entropy being more than twice that of Figure 48 at the end of its 

simulation run. The effect of this is seen by the decreasing trend of blocking probability in 

Figure 47, whilst that of Figure 48 is fairly static after 400,000 connection attempts. In this 

case, we take convergence to have occurred after 700,000 connection attempts when using a 

fixed 1% learning rate, as the blocking probability is fairly stationary subsequent to that point. 

These results are summarised together with those for the fixed 3% and adaptive learning rate 

schemes in Figure 49. In each case, the average network blocking probability was calculated 

from the point of convergence onwards. 

The iterations before convergence results indicate that increasing the learning rate 

decreases the number of iterations required for convergence of the action probabilities, which 

is as expected. It can be seen that the number of iterations required is a little above that of 

when using a fixed 5% learning rate. 

What is unexpected however, are the blocking probability results which seem to 

suggest that the average blocking probability is relatively unaffected by the learning rate 

parameter, the value being around 2.3% blocking probability. This is especially surprising 

considering that the 4-node network scenario results show a visible affect on the action 

probability of changing the learning rate. A possible explanation for this is the relatively 
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small variation in action probability values after convergence when using the highest learning 

rate, Figure 44 showing the range being within an action probability band of 5% (63-68%). 

This implies that even with the highest learning rate, the action probabilities in the 28-node 

scenario do not vary greatly from their optimum, so returning a similar average blocking 

probability whatever the learning rate. This explanation is supported by the DLRP results 

which show a larger action probability band together with a higher blocking probability. 

LReP with fixed 5% and adaptive learning rates are also compared with each other 

over various traffic loadings as they exhibit a similar number of iterations before 

convergence. Table 6 shows that the adaptive scheme returns equal or slightly poorer average 

network blocking probability to the fixed 5% scheme; returning poorer results at low blocking 

probability levels. Similarly, Table 7 shows the adaptive scheme having a higher steady-state 

variation at the lower traffic loads, but is comparable to the fixed 5% scheme at higher loads. 

Finally Table 8 shows the adaptive scheme generally requiring a slightly higher number of 

iterations before convergence. These results are not of great use in themselves, but are 

important for comparative purposes with the following which are obtained using other 

reinforcement algorithms. 

Traffic load ( 'conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Fixed 5% 0.021 0.117 0.28 0.351 0.423 0.53 0.666 
Adaptive 0.026 0.12 0.28 0.351 0.424 0.532 0.665 

Table 6: Average network blocking probability for 28-node network with LReP using fixed 
5% and adaptive learning rates 

Traffic load ( conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Fixed 5% 0.0135 0.0239 0.0258 0.0254 0.0233 0.0222 0.018 
Adaptive 0.0148 0.0238 0.0253 0.0251 0.024 0.0223 • 0.0186 

Table 7: Standard deviation on network blocking probability for 28-node network with LReP 
using fixed 5% and adaptive learning rates 

Traffic load ( conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Fixed 5% 400,000 80,000 60,000 75,000 25,000 35,000 60,000 
Adaptive 450,000 100,000 60,000 75,000 50,000 45,000 40,000 

Table 8: Global connection attempts for convergence for 28-node network with LReP using 
fixed 5% and adaptive learning rates 
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5.2.1.3.2 Results for D L R P 

The use of the DLRP reinforcement algorithm requires a re-characterisation of the adaptation 

threshold entropy values, as per section 5.2.1.2 . As the DLRP exhibits a higher gain for the 

same learning rate, so the fixed rates were reduced to 1.5% and 0.04%. As may be seen from 

Figure 50 and Figure 51, the characterised entropy threshold values were higher than 0.015 to 

switch from 0.4% to 1.5%, and lower than 0.1 to change from 1.5% to 0.4% learning rate. 

The resulting DLRP performance when using the adaptive learning rate is shown in Figure 

52. 

The results for the 4-node network scenario are given first. As with the case of using 

LRsP, Figure 53 shows DLRP producing a faster convergence than Figure 54, but with higher 

subsequent steady-state variation. The benefits of using the adaptive learning rate scheme 

with the DLRP algorithm are shown by Figure 55, which exhibits the benefits of both the high 

convergence speed of Figure 53 and the low subsequent steady-state variation of Figure 54. 

Using the DLRP rather than LReP algorithm causes the action probability to have a larger 

possible value spread after convergence, this being up from 5% to 8%) (67%)-75%). Also the 

converged action probability is different to the LReP one, from 67% to 71%. This seems to 

indicate that the established body of theoretical work needs revision, as current thinking 

indicates that the converged action probabilities should be the same for both reinforcement 

algorithms. 

The 28-node network results are closer to those expected than the LRsP ones. Figure 

57 clearly shows that DLRP exhibits a faster convergence but a higher blocking probability 

and steady-state variation when the fixed learning rate is increased from that of Figure 56. 

These results are summarised in Figure 58, which clearly shows the adaptive learning rate 

scheme being only slightly slower in convergence to the fixed 1.5% learning rate. Moreover 

the subsequent average steady-state probability for the adaptive scheme is only slighdy higher 

than that when using the fixed 0.4% learning rate, and certainly lower than that resulting with 

either of the fixed 1% or 1.5% learning rates. 
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Figure 50: Local entropy using 4-node network with DLRP and L5% learning rate 
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Figure 51: Local entropy using 4-node network and DLRP with 0.04% learning rate 
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Figure 52: Local entropy using 4-node network and DLRP with adaptive learning rate 
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Figure 53: 4-node network and DLRP with fixed 7.5% learning rate 
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Figure 54: 4-node network and DLRP with fixed 0.4% learning rate 
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Figure 55: 4-node network and DLRP with adaptive learning rate 
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Figure 56: 28 node-network and DLRP with fixed 0.4% learning rate 

DLRP with fixed 1.5% learning rate, lA 20s 

o 0.12 
- Booking Rob, 

- Entropy 

100000 200000 300000 400000 500000 

Conneetion attempts 

Figure 57: 28-node network and DLRP with fixed 1.5% learning rate 
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Figure 58: Network blocking probability and iterations for convergence using DLRP and 28-
node network 
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Table 9 shows that in general the adaptive scheme returns a lower blocking probability to the 

fixed 1.5% learning rate, together with a comparable or lower standard deviation in the action 

probability after convergence. As was the case with the LReP convergence results, the 

adaptive scheme also generally requires more iterations in order to converge than the fixed 

scheme with the high learning rate. 

Traffic load (conn./sec.) 

0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Fixed 1.5% 0.07 0.139 0.288 0.349 0.422 0.531 0.664 

Adaptive 0.06 0.156 0.281 0.347 0.422 0,531 0.663 

Table 9: Average network blocking probability for 28-node network with DLRP using fixed 

7.5% and adaptive learning rates 

Traffic load (conn./sec.) 

0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Fixed 1.5% 0.021 0.025 0.026 0.0256 0.0174 0.0226 0.0185 

Adaptive 0.019 0.026 0.026 0.0256 0.0173 0.0226 0.0182 

Table 10: Standard deviation on network blocking probability for 28-node network with 

DLRP using fixed 7.5% and adaptive learning rates 

Traffic load (conii./sec.) 

0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Fixed 1.5% 50,000 40,000 9,000 10,000 14,000 9,000 15,000 

Adaptive 70,000 40,000 9,000 15,000 16,000 9,000 15,000 

Table 11: Global connection attempts for convergence for 28-node network with DLRP using 

fixed 1.5% and adaptive learning rates 

It is difficult to make direct comparisons of these results with those of the LReP algorithm as 

both convergence speed and subsequent steady-state behaviour are affected by the learning 

rate parameter. This means that the resulting performance of either reinforcement algorithm 

might be improved by modifying the learning rates according to the environment scenario. 

However general characteristics are visible in each set of results, and these can be compared 

and conclusions drawn. 
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Although the LReP reinforcement algorithm does not seem to be greatly susceptible to 

learning rate parameter changes when operating in more complex environments, it does seem 

to consistently return a lower average blocking probability than when using the DLRP 

algorithm. The reasons for the poorer DLRP performance seem to be twofold: different 

converged action probability values, and a higher subsequent variation and possible spread in 

these values. The latter reason is validated by Figure 58 which clearly shows an increase in 

the blocking probability when the DLRP fixed learning rate is increased. 

The DLRP algorithm on the other hand clearly displays a higher convergence speed 

than the LReP algorithm. By comparing Table 8 with Table 11, it can be seen that the DLRP 

requires between half to a sixth of the number of iterations than LReP requires in order to 

converge. 

It therefore seems that the results on algorithm strengths and weaknesses brought out 

in chapter 4 still hold even when using differing fixed learning rates, the range used in this 

study being 0.4 to 1.5% for DLRP and 1 to 5% for LReP. This conclusion is surprising when 

considering simply the 4-node network scenario results, as these show similar traces in both 

convergence speed and subsequent steady-state accuracy for both algorithms at both their 

learning rate parameter extremities. It therefore seems important to perform more complex 

environment interaction experiments before drawing conclusions on the learning automata 

performance when using a specific updating method. 

The adaptive learning rate scheme has been shown to be beneficial for both 

reinforcement algorithms, in general resulting with a slightly poorer convergence speed than 

when using the highest fixed learning rate, and a slightly poorer subsequent blocking 

probability to that obtained from the lowest fixed learning rate. These improvements however 

do not change the essential performance characteristic of either of these algorithms: the LReP 

algorithm produces lower blocking probability after convergence, and the DLRP algorithm 

requires significantly fewer iterations in order to converge. It may be concluded that even 

when using the adaptive learning rate scheme, one algorithm might be better for a specific 

non-autonomous environment application than the other, but neither may be generically 

recommended to produce good learning automata performance. 

5.2.2 Automatic reinforcement algorithm selection 

The previous section has outlined a scheme for improving learning automata performance 

based on setting the learning rate to that which produces the best performance for the current 
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network and action probability convergence states. This scheme was automated using a 

mechanism which detected the state of convergence of the learning automaton action 

probabilities. 

This section proposes to harness the same idea to automatically select the most 

appropriate reinforcement algorithm for the network and action probability convergence 

states. Results given in chapter 4 showed that the DLRP, LReP, and GE reinforcement 

algorithms produced the best performance for learning automata interacting with non-

autonomous environments. It was also shovra that GE with the 'x^' updating function 

produces the best performance once convergence has occurred, and DLRP produces the best 

under moving network and convergence state conditions. By utilising the most appropriate 

reinforcement algorithm for the environment and learning automata action probabilities, 

superior performance both in convergence speed and steady-state behaviour should follow. 

For this application type, namely routing in communication networks, the 

environment is rarely in a steady-state condition, and i f so only for short periods of time. This 

factor precludes the use of the GE reinforcement algorithm as it requires a large number of 

iterations in order to converge. It is therefore proposed to switch from the DLRP to the LReP 

algorithm in steady-state conditions. The validity for doing so is shovra when comparing 

Figure 49 with Figure 58, the network blocking probability being lower for LRsP than DLRP. 

The entropy thresholds for automatically switching between reinforcement algorithms 

are a combination of both sets of previous experiments. When using the DLRP algorithm, i f 

the entropy change is less than 0.1 then the algorithm should be changed to the LReP 

algorithm. I f the current algorithm is LRsP and the entropy change is greater than 0.01, the 

reinforcement algorithm should be changed to DLRP. 

As this method seeks to improve convergence and steady-state performance by 

changing the reinforcement algorithm dynamically, so fixed learning rates were used. The 

values chosen were learning rates of 1.5% for each algorithm, this being a high learning rate 

for the DLRP algorithm which is used under converging conditions, and a low learning rate 

for the LReP algorithm which is used under steady-state conditions. This learning rate should 

therefore produce good performance for each algorithm, as each will be utilised under 

conditions most suited to its strength. 

5.2.2.1 Experimental results 

Figure 59 shows the performance curve for the automatic reinforcement algorithm selection 

method when operating in the 4-node network scenario. Comparing this curve with those in 
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Figure 46 and Figure 55 is inconclusive as these latter two display similar characteristics and 

yet the algorithms return significantly diverse performance results when operating in more 

complex environments. What can be gleaned however is that the action probability 

converged to seems to be between that of the DLRP and LReP, as might be expected. With 

the algorithm currently operational moving the action probability to its convergence value and 

the action probability value being subsequently moved back when the other algorithm is 

switched in, the variation in the steady-state is higher. 

Figure 60 shows the performance for the algorithm when operating in the 28-node 

network scenario with an average interarrival rate of 20 seconds for the user demand models. 

When comparing these graphs with those in Figure 47 and Figure 57, it seems that the 

automatic algorithm selection exhibits similar convergence characteristics to the DLRP 

algorithm, together with a subsequent steady-state blocking probability approaching that of 

the LReP algorithm. However it does exhibit a higher steady-state variation than either of the 

two algorithms by themselves. 

Looking at the algorithm's blocking probability performance over differing traffic 

loads in Table 12, it can be seen that it is between the LReP and DLRP algorithm singly used, 

and so can be thought as being superior to either as sometimes one outperforms the other 

according to the ti-affic loading. Table 13 shows that the subsequent steady-state variation is 

as high or higher than either singly used, whilst Table 14 indicates the automatic algorithm 

selection method returns close to or better convergence speed when compared to that for the 

DLRP algorithm. 

To conclude, it has been showoi that the automatic reinforcement algorithm selection 

provides better generic performance than the adaptive learning rate mechanism applied to 

either of the two algorithms by themselves. This updating mechanism for the action 

probabilities can therefore be recommended for most non-autonomous environment 

applications, as it provides both relatively good convergence speed and subsequent 

environment penalty probability. 
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Figure 60: 28-node network and automatic algorithm selection 

Traffic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Automatic 0.059 0.138 0.287 0.353 0.423 0.532 0.663 

Table 12: Average network blocking probability for 28-node network with automatic 

algorithm selection 

111 



Traffic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Automatic 0.021 0.025 0.026 0.025 0.023 0.022 0.018 

Table 13: Standard deviation on network blocking probability for 28-node network with 

automatic algorithm selection 

Traffic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Automatic 100,000 33,000 8,000 11,000 15,000 12,000 16,000 

Table 14: Global connection attempts for convergence for 28-node network with automatic 

algorithm selection 

5 • 3 Comparisons with standard routing method 

As was vmtten in chapter 3, the better performing group of routing algorithms which are 

currenfiy used in real networks are based around shortest-path principles. This work took one 

of the better performing algorithms fi-om this group, and improved its method of operation for 

use in realistic network scenarios. These improvements encompassed both its algorithm 

performance, the type of link-state information to be propagated, and the method its update 

throughout the network. This has resulted with a standard routing method which is thought to 

provide good network performance, whilst requiring no extra signalling for propagation of 

link state information. 

The improved standard routing method is compared with the automatic reinforcement 

algorithm selection scheme, which is the best of the improved learning automata routing 

methods detailed in this chapter for this type of application. The main experimental 

comparison occurs using a more realistic network simulation scenario than previously, the 

rationale for which follows in section 5.3.2. 

5.3.1 Initial algorithm comparison 

Figure 61 shows the blocking probability performance for the 28 node network when using 

A A M H with existing signalling for link-state propagation. When compared to Figure 60 

which is that for the learning automata with automatic algorithm selection, it can be seen that 

the A A M H algorithm seems to rettam on average a lower blocking probability. This is 
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confirmed by comparing Table 12 with Table 15, for AAMH returns a lower blocking 

probability at all loading rates. A comparison of Table 13 with Table 16 also shows AAMH 

blocking probability performance having a lower or equal standard deviation at loads causing 

blocking probabilities up to 27%, with a higher one at greater loads. This indicates that 

AAMH might produce a more consistent network performance than the learning automata 

based method under realistic network loads. A table on iterations for convergence is not 

included as the AAMH algorithm does not require a period in order to converge. 

These results are a little unexpected as learning automata based methods should 

produce superior performance after convergence at lower loads due to the accessibility of a 

greater number of paths. The reason for the poorer performance must therefore centre on the 

failure to fully converge due to the statistical variations in the user demand models. 

However this experimental scenario does not match real-world network scenarios 

very closely. The following section therefore details a more realistic experiment, from which 

results are gathered and observations drawn. 
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Figure 61: 28-node network and AAMH with RA+B 

Traffic load (conn./sec.) 
().()5 0.067 0.1 0.12 0.14 0.2 0.33 

A A M H , RA+B 0.050 0.128 0.276 0.344 0.421 0.529 0.662 

Table 15: Average network probability for 28-node network with AAMH and RA+B 

Traffic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

A A M H , RA+B 0.017 0.021 0.025 0.026 0.026 0.026 0.018 

Table 16: Standard deviation on network blocking probability for 28-node network with 

AAMH and RA+B 
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5.3.2 A more realistic network scenario 

The simulation results to date have used statistical interarrival and holding times for the user 

demand model traffic generation. This results with a dynamic variation in the traffic arrivals 

and so network resource usage at any one instant, but a fixed or static statistical variation in 

the user demands. By running separate simulations using different average interarrival times, 

the user demand traffic is altered so causing the network resource usage to be changed. These 

experiments have been used to give an indication of network behaviour at different loading 

rates, the effect of resource control algorithms being different according to the user demand 

traffic loading. 

Whilst such simulation methods have historically been used to ascertain network 

behaviour, real networks do not exhibit such scenarios in practice. User demand traffic is 

dynamic, but rarely statistically constant as user demand characteristics change over different 

measurement periods. Simulation work to date has tried to take this factor into account by 

generally undertaking peak busy-hour experiments in order to characterise the network 

performance under the worst-case traffic loading. What such simulation experiments fail to 

capture however, is that in real networks user demand traffic does not perform a large step 

response in size, but gradually and statistically increases to the peak level. The effect of this 

is for certain network resources to be consumed so that the network is in a certain state before 

the peak busy-hour period occurs, the network moving from one state to another as the user 

demand traffic changes. Using a step response change in the user demand traffic from zero to 

that of the peak busy-hour period causes the network to begin in a different state than in real-

life, so that there is a distinct possibility of it ending up in a state different to that of the real 

network situation. Another weakness of such experiments is that much of the dynamics of 

network behaviour is lost because the user demand fraffic being statistically constant. 

Recent work has highlighted these failings [65], and subsequent simulation 

experiments have used frends in user demand traffic in order to match real-life network 

scenarios more closely [66]. These trends were composed of increasing, decreasing and 

steady-state user demands, the level of demand being deterministically calculated according 

to the current simulation time and start of the currently valid sfraight-line frend. The work in 

this section goes a natural step forward by using statistical rather than deterministic frends for 

user demand fraffic generation, as was outiined in [67]. Due to the increased resulting 

dynamism of the network state, it is expected that learning automata performance relative to 

that of A A M H may be poorer still. 
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5.3.3 Experimental results 

Figure 62 shows the mean trend used for each 24 hour recurrent time periods. Due to 

limitations in the statistical variations o f the modelling environment, step sizes were used 

instead o f true trends. However this method convincingly approximates trend generation, as 

is shown by the typical user demand trace at each source node given in Figure 63. As may be 

seen, the mean trend is replicated eleven times and a statistical variation applied to it. The 

multiplicity o f recurrent time periods allows for a large enough sample space from which to 

derive statistical conclusions. 
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Figure 62: Mean trace used for a 24 hour period 
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Figure 63: A typical resulting user demand trace at a source node 
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When using the A A M H algorithm combined with the existing signalling method of link-state 

propagation, the recurrent time periods are clearly indicated in the resulting blocking 

probability performance, this being shown in Figure 64. Peak demand levels result with 

blocking probabilities o f up to 18%, but generally up to 16%. Comparing these results with 

those o f the learning automata with the automatic reinforcement algorithm selection which are 

shown in Figure 65, confirms our expectation o f poorer performance. This graph shows peak 

blocking probabilities o f up to 22%, but generally up to 19%. Examining the entropy curve 

shows that as previously the reason for this poorer performance is due to lack o f action 

probability convergence. This is shown by the curve evidencing continuous change, 

indicating that the action probabilities are continually changing. 

There therefore seems to be the requirement for schemes to improve the convergence 

o f the action probabilities when learning automata interact with non-autonomous 

environments. A problem certainly apparent with this application revolves around the binary 

environment feedback mechanism. The network does not differentiate between a route which 

is almost saturated, and one having low utilisation, returning a positive feedback response for 

the reinforcement algorithm in either case. The improvements proposed in the following 

chapter are linked with learning automata operating with link utilisation based environment 

feedbacks, these being a richer and more informative basis with which to reinforce the action 

probabilities. The use o f this mechanism should aid convergence and so result with lower 

blocking probabilities. 
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Figure 65: Performance of LA with automatic algorithm selection with trend user demands 

5.4 Summary 

The results presented in the previous chapter highlighted a number of reinforcement 

algorithms which produce good learning automata performance when interacting with non-

autonomous environments. The DLRP algorithm results with fast convergence but a high 

subsequent steady-state variation. The LReP algorithm on the other hand, produced the 

contrary in both performance metrics. It seems that improving convergence speed degrades 

steady-state performance, whilst increasing steady-state accuracy slows convergence. The 

work presented in this chapter has sought to improve the performance of both algorithms by 

seeking to alter their convergence speed or steady-state accuracy according to the 

environment state. This has been done in order to produce an algorithm which might be 

generically applicable to non-autonomous environment applications such as routing in 

communication networks. The two methods that have been examined in this chapter are 

adaptive learning rates and automatic reinforcement algorithm selection. 

Each mechanism seeks to change a parameter or method according to the converged 

state o f the action probabilities. I f the action probabilities have converged, then the 

reinforcement algorithm parameters or method is changed in order to reduce the steady-state 

variation. Contrariwise, i f the environment state is moving, then the reinforcement algorithm 

is altered in order to produce a faster convergence of the action probabilities. These 

alterations or parameter changes therefore require a mechanism for detecting the state of 

convergence o f the action probabilities. Rather than trying to characterise the environment 

states a-priori to determine when the action probabilities have converged (as with the previous 
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chapter), a novel mechanism is detailed which calculates the local entropy of the action 

probabilities for determining whether they are relatively stationary or still moving. 

Experimentally derived enfropy thresholds have been calculated for DLRP and LReP in turn, 

where a low mean enfropy change after ten iterations would cause the reinforcement 

algorithm to be set to favour low steady-state variation rather than high convergence speed. I f 

on the other hand there occurs a relatively large mean enfropy change after ten iterations, the 

reinforcement algorithm is altered to favour faster convergence rather than lower steady-state 

variation. This novel action probability convergence state detection mechanism has been 

successfully applied in this study for both the adaptive learning rates and automatic 

reinforcement algorithm selection methods. 

The novel adaptive learning rate mechanism seeks to alter the reinforcement 

algorithm learning rates. The rate is set high when requiring fast convergence speed, and low 

when hying to increase steady-state accuracy. The mechanism was successfiiUy applied to 

both the DLRP and LReP reinforcement algorithms using different enfropy change thresholds. 

The LReP algorithm seems relatively unaffected by fixed learning rate parameter changes, so 

a significant improvement was not evidenced when using the adaptive learning rate 

mechanism. The use of the mechanism with the DLRP algorithm on the other hand, did 

produce a noticeable improvement, especially under lower network loading. 

However this improvement was not large enough to remove the conclusion that using 

the DLRP algorithm produces better convergence speed, whilst using the LRsP algorithm 

results with a lower steady-state variation. This observation led to the formation of the novel 

automatic algorithm selection scheme, where instead of adapting the learning rates to produce 

better performance, the DLRP algorithm is used under action probability convergence 

conditions, and the LReP algorithm is switched in under steady-state conditions. This novel 

scheme was found to produce significantiy superior results in terms of both iterations required 

for convergence and subsequent blocking probability. It therefore may be considered as a 

suitable reinforcement method for learning automata interacting with a non-autonomous 

environment. 

Finally the resulting improved learning automata performance was compared to the 

improved dynamic shortest-path based algorithm proposed in chapter 3. In order to assess the 

performance benefits of one algorithm versus the other, a new network experiment type was 

defined, based on user demand frends which more closely resemble real networking 

situations. 

The initial experimental results which used the standard statistically constant user 

demands showed that the A A M H algorithm consistently returned a lower blocking probability 

of close to 1%), and did not require a convergence period. It was expected that the relative 

118 



A A M H performance would be even more superior when used in the more realistic trend 

scenario, and this indeed proved to be the case. A A M H was seen to peak at a blocking 

probability of 18%, whilst the learning automata with automatic algorithm selection scheme 

peaked at a blocking probability of 22%. 

It was seen that the poorer learning automata performance was due to the failure of 

the action probabilities to fully converge, this being evidenced by the entropy trace constantly 

changing. The main reason for the lack of convergence was noted as the fact that the network 

does not differentiate between a route which is almost saturated and one having low 

utilisation, returning a positive feedback response in either case. Therefore to improve the 

learning automata performance, there is the requirement to make the network feedback 

responses linked in some way with the spare capacity on the route. The work detailed in the 

next chapter seeks to do just this: to modify the reinforcement algorithm and environment so 

that the learning automaton operates on utilisation based network responses. It is expected 

that the use of this mechanism will aid convergence and so result with lower blocking 

probabilities. 
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6 Using an S-model response environment for a novel 

learning automata based routing algorithm 

6.1 Introduction 

The purpose of the following chapter is to re-apply learning automata to the routing problem 

in networks in a novel way which is related more closely with network performance 

indicators. Previous reservation-based work has been linked with the acceptance or rejection 

of connection requests, but this work links the environment feedback with the actual link 

utilisation levels which cause a connection request to be either accepted or rejected. By so 

doing, better performance is expected due to the greater information content returned in the 

environment feedback. 

Rather than using the binary P-model response environment as previously, the S-

model response environment is used. The relative available bandwidth on the route is 

normalised to the range of 0 to 1, and then smoothed to erase short-term fluctuations using the 

exponential smoothing technique. 

Experiments are then performed to obtain the best performing learning rate for the 

reinforcement algorithm chosen. Finally the performance of this novel algorithm is compared 

to that of A A M H and the P-model automatic reinforcement algorithm selection method 

detailed in the previous chapter. 

6.2 Reasons why a new learning automata method for routing in 

networks is required 

As was outlined in chapter 2, learning automata based routing applied to reservation-based 

connection-oriented networks has utilised the P-model response environment in all the 

literature surveyed. Reservation-based connection acceptance is based on whether there 

remains sufficient bandwidth along the source to destination path to allow the connection 

request QoS to be met whilst not violating the QoS of the connections already present along 

the path. Therefore there exists a simple mapping from the network response to a connection 
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request (this being either an acceptance or rejection) to the binary feedback of the P-model 

response environment. 

However a number of weaknesses are apparent with the use of this method. The main 

one was highlighted by the results in chapter 4, in that a significant number of the 

reinforcement algorithms failed to converge. Those particularly affected were discretised 

schemes, where nearly all types failed to converge. The main difference in operation between 

discretised and continuous schemes is that the former approach an action probability of unity 

directiy, whilst the latter do so asymptotically. This means that with continuous linear 

schemes, when the action probability is close to unity a reward environment response causes 

the probability to be increased slightly whilst a penalty response causes it to be decreased by a 

higher amount. Discretised linear schemes on the other hand would increase and decrease the 

action probability by the same amount wherever its value was currentiy found. 

It therefore seems to be the case that penalty responses are an integral part of the 

convergence process. A sufficient number of them are required for convergence to take place, 

or in order to stop the action probability continuing to increase to a value of unity as occurs 

with many discretised schemes. For applications such as the routing function in networks, 

where minimum environment penalty probabilities are generally low and in the order of up to 

10%, the requfrement for a significant number of penalty responses from the environment 

becomes unacceptable. This indicates that learning automata methods in their present form 

may not be realistically used for the routing function of reservation-based connection-oriented 

networks such as multi-service networks. 

Another weakness of the presently used method is the lack of richness in the 

information passed with the environment feedback response. The binary response of the 

connection request being accepted or not includes no indication as to whether the network 

resources along the path chosen are almost fully or only slightly utilised. In cases of low 

capacity utilisation it is expected that load balancing would therefore not occur, this being a 

usual benefit of using learning automata for the routing function. Using the available 

bandwidth feedback information should result with much faster convergence of action 

probabilities as their updating wil l vary in granularity according to the size of the remaining 

free network resources along the route, so causing the probability value to move more quickly 

towards using paths of lower utilisation. A load balancing effect should then also occur, 

whatever the level of utilisation of the network resources. Indeed, the network mechanism 

currently utilises available bandwidth as its confrol indicator, accepting a new connection 

request i f there remains sufficient free bandwidth along the route. It therefore seems 

reasonable to use the same confrol indicator as the updating mechanism for the learning 

automata action probabilities. The use of this method should also ensure that environment 

penalties, which in this case are connection requests blocked, are no longer required for 

121 



convergence to take place. It is therefore realistic to use this new method of applying learning 

automata to the reservation-based connection-oriented routing problem in real networks. 

6.3 Using an S-model response environment paradigm 

In order to have a richer feedback response capability, the S-model response environment 

must be substituted for the P-model response environment which has been used up to this 

point. The S-model response environment allows the feedback response to take any value in 

the region (0, 1) rather than be limited to either 0 or 1 as is the P-model feedback. 

6.3.1 Normalising the available bandwidth 

The issue is now to convert the available bandwidth value for a path into a value that lies 

within the region (0, 1). This is a similar problem to that posed when applying learning 

automata to routing in packet-switched networks: how to map the variable delay values to the 

region (0, 1). The difference between these two cases is that delay values are effectively 

unbounded at the maximum, whilst the available bandwidth is bounded at the upper end by 

the link capacities. The bandwidth conversion problem is therefore simpler, and so the 

following formula is sufficient: 

,. , , available bandwidth 
normalised bandwidth = 1 -

minimum link capacity along path 

The available bandwidth for a path is the minimum available bandwidth on all the logical 

links which form the path from the source to the destination node. The formula will return 

values close to 0 under low utilisation, and close to 1 under high utilisation conditions. As 

with delay feedbacks, it is beneficial to smooth updates of available bandwidth in order to 

smooth out short-term fluctuations in available bandwidth. The exponential smoothing 

technique can be used as follows: 

normalised bw(new) = £-(normalised bw(old)) + (1 - £-)(normalised bw(retiimed)) 
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with 0<e<l 

A high value of e causes the normalised bandwidth to react slowly to bandwidth changes, 

whilst too low a value of 8 will cause the smoothing process to fail as the value returned will 

match short-term fluctuations too closely. Values used in real network scenarios vary 

according to application. For example Cisco's Weighted Random Early Detection (WRED) 

mechanism uses a normalised value for the average buffer depth in order to ascertain whether 

to probabilistically discard IP packets [70]. As buffer depth in IP routers can vary 

significantly over short periods of time, the weighting factor is set to 0.998 so that a 'longer 

term' average value is returned. However with our application reserving bandwidth on the 

network for the duration of a call, it is not expected that link utilisation values will vary 

greatly in the short-term. Therefore a lower value of 0.7 is used for the ensuing experiments. 

6.3.2 Reinforcement algorithm selection 

The benefits of using the S-model response environment revolve around the variable 

environment response which can be generated. To fully utilise the feedback information, the 

reinforcement algorithm ideally requires the capability of having an updating function which 

can operate at the same level of granularity as the environment feedback. 

This requirement effectively precludes the use of discretised schemes as their benefit 

concerns the coarse granularity of their action probability updates when these are close to 

unity. This leaves the two continuous schemes which were recommended from the 

investigation undertaken using the P-model response environment: LReP and GE with the 'x^' 

updating function. As with chapter 5, because this application type's environment is rarely in 

a steady-state condition and the GE algorithm requires a large number of iterations for it to 

converge, it is not used in this experiment. Therefore only the LReP reinforcement algorithm 

is used for this new application of learning automata to the connection-oriented reservation-

based routing problem. It should be noted however, that it is possible that other 

reinforcement algorithms are suitable for use with non-autonomous S-model environments 

such as this, since the performance experiments undertaken in chapter 4 utilised the P-model 

response environment. 

The varying feedback response returned by the environment according to the amount 

of available bandwidth on the route chosen, will cause a varying adaptation rate of the action 

probabilities. Therefore the use of automatic adaptation of the reinforcement algorithm 

learning rate is not utilised in these experiments, as their purpose is to show the effectiveness 
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of the new method of applying learning automata to the routing problem in networks. Were 

the learning rate adaptation method utilised in these experiments, frirther convergence speed 

gains with higher steady-state accuracy might be expected to result. However its usefulness 

might be limited to scenarios of high resource utilisation, where the available bandwidth 

feedback response is relatively low which causes a small change in the action probabilities 

and so a small entropy change. 

6.4 Experimental results 

This section is composed of two parts. The first shows the effects of changing the fixed 

learning rate on the resulting algorithm performance, the purpose being to use a learning rate 

parameter which returns an acceptable medium between high convergence speed and low 

subsequent steady-state accuracy. 

6.4.1 Learning rate effects 

As a fixed learning rate is required, so high learning rates are selected for study. This is valid 

because the variable feedback response is bounded at the minimum and maximum by values 

of 0 and I , which are those returned with the P-model response environment with reward and 

penalty responses respectively. Therefore as the environment reward response would very 

rarely be close to 0, this being true only in cases of little or no utilisation, so the updating 

effect on the action probabilities would be significantly less than the full high learning rate 

when using the P-model response environment. 

The highest learning rate used for the P-model LRsP algorithm was 5%, so this was 

chosen for the initial experimental evaluations. Three experiments were performed for each 

learning rate tested: one producing a low blocking probability (around 5%), another 

producing a higher one (around 35%), and a final one producing one still higher (around 

65%). The rationale for this was to see i f a learning rate producing good relative performance 

in a certain scenario would produce poorer relative performance in differing ones. 

Initial algorithm results showed promise, with a lower blocking probability (3.8%)) 

and subsequent variation returned under low network loading than either A A M H (4.9%) or 

the P-model learning automata method with automatic algorithm selection (5.9%). However 

it took a larger number of iterations for the algorithm to converge, from 100,000 with the P-
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model automatic algorithm selection to 400,000 with the S-model LReP. Another weakness 

evidenced was that a higher blocking probability compared with the other algorithms was 

returned for the higher loading rates. In order to improve on the slow convergence rate, the 

learning rate for the S-model LReP was increased in 2% increments until poorer blocking 

probability performance ensued. 

As expected. Table 19 shows that as the learning rate was increased, so the 

connection attempts required for convergence generally decreased. However an unexpected 

conclusion is drawn from Table 17, in that the resulting blocking probability actually 

decreases as the learning rate is increased. This initially counter-intuitive result can be 

explained by examining the enfropy of the action probabilities for the various learning rates. 

It was seen that after convergence the global enfropy value was 389 when using the 5% 

learning rate, and 345 with the 17% learning rate. This indicated that the action probabilities 

had converged to significantly different values with the 17% learning rate, implying by the 

better network performance that the action probabilities had been able to converge more 

accurately, and not get stuck in local minima as with the 5% learning rate. Remaining in local 

minima might easily occur with S-model reinforcement algorithms since when the 

environment feedback is close to 1 the action probability update is very small. Therefore it is 

possible when using lower learning rates for the action probabilities not to fully converge 

before link utilisation levels are close to capacity, so that the action probabilities do not vary 

significantly from then on when using the statistically constant user demands of these 

experiments. As the effect of raising the loading rate is to cause link saturation to occur in 

fewer connection attempts, since the holding time remains constant, so the action probabilities 

have less iterations to converge resulting with the higher blocking probability when compared 

with the other algorithms. 

By comparing the resulting blocking probability (Table 17) with the iterations 

required for convergence (Table 19), it was decided to use a learning rate of 17% as this 

produced both a low blocking probability and low number of iterations before convergence. 

However even at this high learning rate, the resulting network blocking probability under high 

loads is worse than with the previous algorithms. It therefore seems to be the case that a 

significant portion of the overall action probability convergence for the P-model automatic 

algorithm selection occurs when the links are already at or close to saturation. This explains 

why increasing the learning rate of the S-model LReP still fiirther does not reduce the 

blocking probabilities, but rather causes them to increase slightly as the pre-link saturation 

convergence is now less accurate. 
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Learning rate Traffic load (conn./sec.) 
0.05 0.12 0.33 

5% 0.038 0.364 0.677 
7% 0.034 0.364 0.676 
9% 0.036 0.363 0.676 
11 % 0.036 0.363 0.677 
13 % 0.035 0.363 0.676 
15% 0.036 0.363 0.677 
17% 0.035 0.364 0.677 
19% 0.036 0.363 0.677 
25% 0.039 0.365 0.676 

Table 17: Average network blocking probability for 28-node network with S-model LRsP and 
various learning rates 

Learning rate Traffic load (conn./sec. ) 
0.05 0.12 0.33 

5 % 0.009 0.023 0.018 
7% 0.01 0.022 0.017 
9% 0.009 0.023 0.017 
11 % 0.009 0.022 0.018 
13 % 0.010 0.023 0.017 
15% 0.009 0.022 0.017 
17% 0.009 0.023 0.018 
19% 0.010 0.023 0.018 
25% 0.010 0.022 0.018 

Table 18: Standard deviation on network blocking probability for 28-node network using S-
model LRsP and various learning rates 

Learning rate Traffic load (conn./sec. 
0.05 0.12 0.33 

5 % 400,000 60,000 20,000 
7% 400,000 40,000 16,000 
9% 300,000 37,000 20,000 
11 % 105,000 12,000 16,000 
13% 150,000 20,000 12,000 
15% 150,000 10,000 17,000 
17% 140,000 10,000 15,000 
19% 135,000 11,000 13,000 
25% 80,000 17,000 20,000 

Table 19: Global connection attempts for convergence for 28-node network using S-model 

LRsP and various learning rates 
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6.4.2 Comparative algorithm results 

Figure 66 shows the convergence o f the S-model LReP algorithm with the fixed 17% learning 

rate under a statistically constant loading rate with an interarrival time of 20 seconds. 

Comparing this with that for A A M H in Figure 67 and the P-model learning automata with 

automatic algorithm selection in Figure 68, it is seen that the S-model LReP algorithm 

produces both lower average blocking probability and steady-state variation. This algorithm 

outperforms the other two at this loading level because it can choose under-utilised routes 

longer than the shortest or next shortest. This is also true of the P-model automatic algorithm, 

but its coarse granularity environment feedbacks seem to preclude it from doing so 

effectively. This is shown by the entropy traces for the two, the one for the P-model 

automatic algorithm clearly converging to a significantly lower value, finishing the simulation 

at 80 instead o f 250 for the S-model LRsP. This lower value for the P-model automatic 

algorithm indicates that it is more prone to action probability extremes (i.e. close to 0 or 1), 

precluding the occasional use of longer paths which the S-model LReP algorithm uses. It is 

under these relatively lower levels o f loading that the algorithm can occasionally use longer 

paths for beneficial effect, for at higher loading rates the extra network capacity used for a 

longer path cannot be used by arriving connection requests, leading to a higher blocking 

probability and so worse comparative performance. This is shown by the comparative results 

in Table 20, indicating that at loading levels o f 0.1 connections per second and higher, poorer 

results than the other two algorithms are returned. 
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Figure 66: 28-node network with S-model and LRsP with 17% learning rate, lA 20s 
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Figure 67: 28-node network with AAMH and RA+B 
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Figure 68: 28 node network with P-model and automatic algorithm selection 

Table 21 shows that the S-model LReP algorithm results with lower or equal steady-state 

variation than the other two algorithms. This must be due to the relative stability of the action 

probabilities under saturated or close to saturated link conditions, for the A A M H and the P-

model environment responses might have significant variations of actions and feedbacks 

respectively (which in turn leads to different probabilistic actions for the P-models automatic 

algorithm). 

Table 22 shows that the S-model LReP algorithm needs a slightly higher number of 

iterations to converge compared to the P-model automatic algorithm under the relatively 

lower loadings, the converse being true for the higher loadings. This is acceptable given the 

view that convergence speed was sufficient for the P-model automatic algorithm. 
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Tral •fic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

S-model ReP 0.035 0.130 0.297 0.364 0.438 0.546 0.677 
AAMH 0.050 0.128 0.276 0.344 0.421 0.529 0.662 

Automatic 0.059 0.138 0.287 0.353 0.423 0.532 0.663 

Table 20: Average network blocking probability for 28-node network with S-model andLRsP 

with 17% learning rate 

Tral •fic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

S-model ReP 0.009 0.018 0.024 0.023 0.023 0.020 0.018 
AAMH 0.017 0.021 0.025 0.026 0.026 0.026 0.018 

Automatic 0.021 0.025 0.026 0.025 0.023 0.022 0.018 

Table 21: Standard deviation on network blocking probability for 28-node network using S-

model and LRsP with 17% learning rate 

Tral ffic load (conii./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

S-model ReP 140,000 35,000 11,000 10,000 14,000 10,000 15,000 
Automatic 100,000 33,000 8,000 11,000 15,000 12,000 16,000 

Table 22: Global connection attempts for convergence for 28-node network using S-model 

and LRsP with 17% learning rate 

The following three figures show results for the more realistic network scenario, that using 

the frend user demand models. Figure 69 shows the graphs for the S-model LReP algorithm, 

the minimum peak blocking probability in any of the simulated days being just under 19%. 

This compares exfremely favourably with the P-model automatic algorithm which peaked at 

22% (Figure 71). A comparison of the two algorithms' entropy fraces indicates the reason for 

the superior performance of the S-model LReP algorithm. As was the case previously, the 

enfropy frace values are significantly higher for the algorithm, showing that it is using a 

greater number of paths since action probability exfremes are used less often. 

However the S-model LReP algorithm is similar or slightly worse than the AAMH 

algorithm performance (Figure 70). Since the LReP algorithm outperformed the AAMH 

algorithm using statistically constant load user demands, so this slightly inferior performance 

is due to the required iterations before convergence. With its ability of utilising a wider set of 

paths however, it is expected that the S-model LReP algorithm will outperform the AAMH 
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algorithm in most network scenarios, as these will generally evidence varying degrees of non-

symmetry in the user demands. Therefore the conclusion drawn from comparing Figure 69 

with Figure 70 may be thought of as the worst-case comparative S-model LReP performance. 
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Figure 69: Performance of S-model LRsP LA with trend user demands 
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Figure 70: Performance of AAMH with trend user demands 
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Figure 71: Performance of P-model LA with automatic algorithm selection and trend user 

demands 

6.5 Summary 

The previous chapter detailed two improvements to the standard learning automata 

application to routing in reservation-based networks: adaptive learning rates and automatic 

reinforcement algorithm selection. Of these two the automatic algorithm selection method 

produced the greater performance improvement, but this was still short of the superior 

performance of the AAMH algorithm of chapter 3, both in terms of blocking probability and 

iterations required for convergence. 

The main reason noted for this inferior performance is the P-model response 

environment, in that no differentiation is possible between routes almost saturated and others 

with low utilisation, both returning an environment feedback of zero. By using an S-model 

response environment with a utilisation level based feedback, an improved load balancing 

would ensue (especially at lower loading rates), leading to an expected reduced blocking 

probability. 

Normalising the available bandwidth into the range 0 to 1 required a relatively simple 

formula as the maximum value is bounded by the link capacities. The formula is as follows: 

available bandwidth 
normalised bandwidth = 1 -

minimum link capacity along path 

In order to smooth out short-term fluctuations, the exponential smoothing technique is used. 

As using the S-model response environment precludes the use of discretised 

reinforcement schemes, so the fixed LRsP algorithm was used. In order to have the best 
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learning rate, various experiments were undertaken using differing loading rates, whilst 

progressively increasing the learning rate until poorer performance ensued. A high learning 

rate of 17% was found to be superior to others, both in terms of blocking probability and 

iterations for convergence. Whilst the latter is expected, the former was initially surprising, 

but can be explained by the fact that a high learning rate will cause the action probabilities to 

converge quickly before saturation of links occurs, the environment feedbacks being much 

smaller thereafter. 

Comparing the algorithm's results for statistically constant user demands with those 

of A A M H and the P-model automatic algorithm selection, showed that the former 

outperformed the two latter under low loading levels, the converse occurring as the loading 

increased. Using the trend user demands showed that the S-model LRsP and AAMH results 

were fairly comparable, both returning a comfortably lower blocking probability than the P-

model automatic algorithm. 

The superior performance of the S-model LReP algorithm under relatively low loads 

was shovra to be due to its ability to use a larger set of possible routes. Whilst these network 

scenarios have used symmetrical network loading, non-determinism of user demands in real 

networking situations would generally cause non-symmetry of loading. It is therefore 

expected that this algorithm would improve its relative performance compared with the others 

still further under real network scenarios. 
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7 A hybrid routing algorithm utilising both shortest-path 

and learning automata concepts 

7.1 Introduction 

The work presented in the previous chapters has sought to improve the performance of 

learning automata methods, when applied to the routing problem in reservation-based 

networks. However, despite the various improvements, weaknesses with the use of leaming 

automata are still evident; namely the large number of iterations required before convergence, 

and therefore the poorer blocking probability under certain circumstances when compared 

with the A A M H algorithm. In order to overcome these weaknesses, the work contained in 

this chapter seeks to combine the A A M H algorithm with the S-model LReP leaming 

automata method to produce a hybrid algorithm. The Specification Description Language 

(SDL) is used to detail the algorithm's functionality. 

As with the automatic switching systems proposed in chapter 5, the average local 

entropy change is used in the decision making aspects of whether to switch from the AAMH 

to the S-model LReP algorithm and vice versa. Once the relevant switching thresholds are 

found via the use of the four node experiment, the algorithm is applied to the 28 node network 

in various experiments with both statistically constant and trend user demands. Finally the 

results of the hybrid algorithm are compared to those of the AAMH and S-model LReP 

algorithms when used alone, and conclusions on overall performance differences drawn. 

1.1 Using leaming automata for routing in real networks 

The following sub-sections begin with a description of the reasons why a re-application of 

leaming automata based network routing was undertaken. Having provided the rationale, the 

proposed new routing algorithm is presented in detail, including a flowchart representation of 

the algorithm. Finally this main section ends with the experimental details for calculating the 

necessary switching thresholds, based on the average local entropy changes. 
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7.2.1 Rationale for a novel learning automata based routing algorithm 

Real networks are initially designed, provisioned and configured, based on the expected user 

demand traffic pattem or matrix. This is required so that the designers can reasonably choose 

the aggregate finite network resources needed together with an initial configuration and 

policies for sharing them fairly between different streams of user demand traffic. Were the 

designers to have perfect knowledge of the user demands that will be present on the network, 

then an optimal provisioning and route configuration might be put in place, requiring just 

single routes fi^om each source to its destinations. However as it is never possible to have 

perfect knowledge of user demands, so the expected traffic demand pattem will never exactly 

match that seen on the actual network. In order to allow variations in the user demand to still 

have access to the network, alternate routes from source to destination nodes can be 

configured, so that under-utilised network resources on one main route may be utilised by an 

altemate path. The ordering of these altemate route attempts may be either static or dynamic. 

In dynamic routing the ordering of altemate path selection would be changed according to the 

equipment status and possibly also the network loading at the time. Static routing would not 

vary the order of altemate path selection. Using either means, the routes are chosen 

deterministically, based on both expected or historical user demands and possibly current 

traffic patterns. 

Stochastic learning automata based routing, on the other hand, performs its decisions 

using a stochastic rather than deterministic paradigm. The action probabilities are 

determined, but the choice of a specific action occurs stochastically. The justification for this 

mechanism is that the non-autonomous environment response to a node's routing actions is 

stochastic because of the routing interactions occurring at other parts of the network. 

Therefore the learning automata can adjust their action probabilities in order to produce a 

close to optimal stochastic environment response. This stochastic environment response is 

not just a featiire of applying learning automata to the routing problem in this way, but is also 

present with deterministic routing methods so that performance measures for a such routing 

algorithms are often given in terms of blocking probability. However it is not the case that 

the stochastic environment response seen with traditional routing methods is caused by the 

routing mechanism as this is deterministic. It is therefore solely a factor of the user demands 

which are non-deterministic, and how they are allocated to the network resources by the 

routing mechanism. Stochastic learning automata applied to the routing function in this 

marmer are tracking the non-deterministic network load by characterising the combined non-

deterministic user demands and demand to network allocation method. This paradigm arose 

out the observation that network load is non-deterministic, even i f the demand allocation 
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mechanism is deterministic. It seemed reasonable to combine the characterisation of the user 

demands and network resource reservation function into one as their combined effect is non-

deterministic, and leaming automata essentially characterise a non-deterministic environment. 

However improved results from the application of leaming automata may arise by applying 

them in a different way, so that they characterise purely the non-deterministic user demands, 

and these results are used in deterministically calculating the most applicable resource 

allocation. Recent work has indicated the need to apply leaming automata to the routing 

problem in this different manner; unbundling the non-deterministic environment response by 

the leaming automata characterising the non-deterministic user demands themselves rather 

than their effect on the network response [65]. 

The work collated in this chapter does not go fully down this route, but may be 

thought of as an intermediate step as it brings together the use of both standard deterministic 

methods together with a leaming automata component. Such a method may be used with any 

non-autonomous environment application, in order to improve the performance of a leaming 

automata mechanism, and therefore also aid the acceptance of stochastic leaming automata 

methods. A hybrid solution for the routing problem is given: the proposed mechanism being 

composed of both a dynamic shortest-path component and a stochastic leaming automata 

component, both of which are used to make the routing decisions. The initial motivation for 

designing this hybrid algorithm was to overcome performance weaknesses of existing 

applications of leaming automata. Whilst leaming automata methods have been shown to 

produce near optimal steady-state performance, their main weakness is in the slow 

convergence of their action probabilities when tracking an environment to a new steady-state 

position. Traditional methods, such as shortest-path network routing schemes, normally have 

good initial performance due to their deterministic action choices, but suffer somewhat in 

steady-state conditions due to their limited number of possible choices. Therefore the 

proposed hybrid algorithm solution to interacting with non-autonomous environments is to 

use traditional deterministic algorithms under moving environment state conditions, whilst 

using the environment response to continue to update the leaming automata action 

probabilities. When the environment is close to a steady-state condition, the leaming 

automata part may then be used to perform the actions, optimising the action probabilities still 

further in order to produce a better performance response from the environment. Such should 

occur due to the reinforcement algorithm updating the action probabilities so that not only are 

shortest-paths chosen, but occasionally also slightly longer ones [19], so providing a greater 

degree of load balancing and use of spare network bandwidth. 

Not only should this hybrid method produce better performance than the use of either 

component on its ovm for the routing function, but the deterministic component in the 

algorithm causes the updating of the leaming automata action probabilities to follow paths 
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engineered in the network because of expected user demands, network topology and 

configuration. The action probabilities then become set close to the expected user demand 

traffic pattem under moving network state conditions, adapting to the actual and unexpected 

traffic pattem when the network is close to steady-state conditions. 

7.2.2 Hybrid algorithm details 

The following section describes the proposed hybrid algorithm in detail, utilising the CCITT-

Specification and Description Language (SDL) [68]. The algorithm has two main states: the 

A A M H and the LA states, these describing whether the algorithm process is performing the 

functionality of the A A M H or the LA algorithm for its routing decisions. Part (a) of Figure 

72 shows that after initialisation, the routing algorithm process commences in state AAMH. 

As may be seen in parts (b) and (d), either state can receive and operate on the same 

two events: a route connection request, and an environment feedback update. The operations 

performed on reception of the environment feedback update when in either state are very 

similar. In both cases, the index of the action probability corresponding to the routing attempt 

previously made is obtained. Next it is updated using the LReP reinforcement algorithm with 

a 17% learning rate, with the other action probabilities being adjusted accordingly. The 

entropy of the new action probabilities is then calculated, and after ten environment feedbacks 

the average entropy over the set of feedbacks is compared with that for the previous set. I f 

the current state is ' A A M H ' and the difference is less than the 'LA switching threshold', a 

transition to state ' L A ' occurs. I f the current state is LA and the difference is greater than the 

A A M H switching threshold, then a transition to state ' A A M H ' occurs. I f no state transition 

occurs, the process remains in its current state. 

^ START ^ 

INITIALISE VARIABLES: 
previous_entropy_sum := 0 
LA_switch_threshold := 0.1 

AAMH_switch_threshold := 0.1 
entropyjnstances := 0 

entropy_sum := 0 

^ AAMH J 
(a): Specification at start 
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AAMH (2) 

Is 2 routing 
attemot flap set? 

Is alternate route 
bit set in received 

c p t i i n nkf ? 

available BW 
0 ? 

no_of_routes := total 
no of alternate routes 

^ AAMH ^ 

routes 

Obtain next possible 
minimum hoo route 

Get route available BW 

available_BW < 
required connection BW 

route_available_BW 
>available B W ? 

route_available_BW 
= available BW available_BW := 

route available BW 

Record route_no and clear 
other recorded route numbers Add route_no to 

recorded route numbers 

1^ 

no_of_rout 
of recorc 

3S := number 
ed routes 

Generate r 
intervalf1.r 

3ndom_no in 
0 of routesl 

next_iiopJd := 
recorded_routes( 

index random no) 

Store connection 
information at tiiis node 

Send setup pkt 
next tiop ii 

p k t t o ^ v . 

^ AAMH ^ 

available BW := 0 

Clear sto 
num 

red route 
bers 

Generate - v e 
environment 

feedbaclctoself 

(c): Specification for AAMH state (2) 
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I Route connection 
request 

Generate a random 
number within interval 

[0,1] 

index := 1 

Perform action 
(index) 

Generate - v e 
environment feedbacl< 

to self 

CD 

action_probability(index) 
> random number index := index + 1 

Was there enougri free 
BW on outgoing link to 

accommodate 
connection request? 

Y E S 

Store connection 
information at tliis node 

Send setup pkt to 
next hop id 

1 Environment feedback 
update 

Y E S 

(d): Specification for LA state 

Get index of action 
previously used 

Update action probabilities 
using the S-model LreP 
reinforcement algorithm 
with 17% learning rate 

Calculate new local 
entropy value 

Add this value to 
entropy_sum 

entropyjnstances := 
entropyjnstances + 1 

entropyjnstances 
1 0 ? 

entropyjnstances := 0 

entropy_sum := entropy_sum / 1 0 

I 
difference := entropy_sum -

previous_entropy_sum 

previous_enlropy_sum :• 
entrGpy_sum 

entropy_sum := 0 

difference 
AAMH switch threshold 

Figure 72: SDL representation of proposed hybrid routing algorithm 
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Comparing the difference in functionality between the two states on reception of a 'route 

connection request' event shows the simplicity of the leaming automata implementation to 

that required for the A A M H algorithm. When in the 'LA ' state, the algorithm generates a 

random number within the interval of [0, 1], and chooses the corresponding action (which in 

this case is the outgoing link) as shovra in part (d). I f the outgoing link cannot support the 

bandwidth required for the connection request due to it being close to full utilisation, a 

negative environment feedback is generated for the process instance. I f the outgoing link can 

support the connection request, then the connection information is recorded at the node and 

the setup packet sent on to the next node via the chosen outgoing link. 

The ' A A M H ' state functionality, on the other hand, evaluates all possible minimum 

hop routes to the destination, and i f none of those can support the connection request's 

bandwidth requirement all the alternate routes are evaluated. The detailed specification 

shown in parts (b) and (c) indicates the significantly higher level of complexity of this 

procedure when compared with that of state 'LA ' shown in part (d). 

Some of the routing algorithm's associated functions have been left out of the 

specification presented. For example, this includes the automatic generation of a 'positive 

environment feedback to self on reception of a set-up acknowledgement packet retuming 

towards the source node of the connection request. 

7.2.3 Switching threshold calculation 

The proposed method for determining when to switch from shortest-path to leaming automata 

based routing and back again is the local entropy measure, as used in the previous chapters. 

The hybrid algorithm is therefore a combination of the algorithm solutions outlined in both 

chapters 3 and 6. The shortest path component uses the A A M H algorithm with RA+B link 

state update method, storing and acting on load band link state information. Although only 

load band information is stored for AAMH, actual minimum available bandwidth on a route is 

retumed and used to continuously update the leaming automata action probabilities. 

The threshold calibrations are done using the four node network, as the converged 

action probabilities can then be calculated analytically beforehand. Having done so, the 

resulting local entropy value after convergence can be derived, this being around 3.35 under 

the experiment's loading rate. Figure 73 shows the local entropy for the node with the feeder 

traffic source when using the A A M H algorithm, whilst still updating the leaming automata 

action probabilities. This algorithm results with entropy at around 3.42 which is generally 

higher than that for leaming automata, as shown by the comparison with Figure 74 which 
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towards the end of the graph shows consistent entropy values around 3.35 . This effect is 

explained by recalling that the AAMH algorhhm is determining and perfomiing the actions 

whilst updating the learning automata action probabilities with the environment responses. 

Therefore the action probabilities generally will not converge to the expected values under 

AAMH, probably requiring further convergence once the learning automata are switched in. 

From these two graphs, the threshold values are obtained. When using the AAMH 

algorithm, a change in the entropy less than 0.1 between averaged ten point samples should 

cause a change to the learning automata method. When using the learning automata, an 

entropy change greater than 0.1 should cause the AAMH algorithm to be switched in. The 

benefits of this hybrid method is shown in Figure 75 which indicates a faster convergence 

than the learning automata method alone, and a lower variation in entropy and so action 

probability values than when using the AAMH algorithm alone. Also the entropy values are 

generally closer to 3.35 than when just using AAMH, showing that the hybrid algorithm 

should produce lower blocking probability results than pure AAMH. 

L o c a l entropy: AAMH updating LA probabil i t ies 

- Entropy 

- Entropy (av. 10) 

0 1000 2000 3000 4000 

Time elapsed (sees.) 

Figure 73: Local entropy using 4-node network with AAMH and action probability updates 
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L o c a l entropy: S-model L R e P 17% learning rate 

• Entropy 

Bitropy (av. 10) 

0 1000 2000 3000 4000 

T i m e e l a p s e d ( s e e s . ) 

Figure 74: Local entropy using 4-node network with S-model LRsP and 17% learning rate 

L o c a l entropy: Hybrid algorithm 

• Bitropy 

Bitropy (av. 10) 

1000 2000 3000 4000 

T i m e e l a p s e d ( s e e s . ) 

Figure 75: Local entropy using 4-node network and hybrid algorithm 

7.3 Experimental results 

Figure 76 shows the resulting blocking probability and entropy of the hybrid algorithm under 

a statistically constant loading rate with an interarrival time of 20 seconds. As may be seen 

when compared with Figure 78, the blocking probability graph follows that of AAMH fairly 
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closely, having similar peaks and variations. Like the case when using AAMH, the hybrid 

algorithm initially produces zero blocking probability, the value then increasing as 

connections arrive and the network becomes congested. This is in contrast with that tor the S-

model ReP algorithm of Figure 77, where convergence of the action probabilities is initially 

required to bring the blocking probability down from an unacceptably high value, many 

connection attempts being initially blocked because of routing loops or the maximum number 

of permissible hops being reached. 

The similarity in initial performance characteristics is explained by the fact that 

AAMH is initially used by the hybrid algorithm, the S-model LReP algorithm being switched 

in once the action probability variations have stabilised. Therefore the initial blocking 

probability for the hybrid algorithm is zero, and the action probabilities are updated due to the 

A A M H actions, therefore initially converging to both the shortest paths and those altemate 

routes of closest hop distance. This explains the lower entropy value converged to by the 

hybrid algorithm, evidenced when comparing Figure 76 with Figure 77. A much quicker 

convergence in entropy occurs using the hybrid algorithm, with the lower final value 

indicating a fewer number of possible route options for the action probabilities are closer to 

extremities. 

Table 23 compares the blocking probability performance of the hybrid algorithm with 

AAMH and the S-model LReP algorithms over various statistically constant loading rates. At 

the low loading rate of a 20 second average connection request interarrival time, the hybrid 

algorithm returns a lower blocking probability than AAMH, but higher than the S-model 

LReP algorithm. However at all other loading rates, the hybrid algorithm consistently out­

performs both other algorithms significantly, generally returning a lower blocking probability 

of at least 3 percentage units in value. This considerable improvement is achieved with no 

Hybrid algorithm, lA 20s 

- Blocking Ftob. 

Bilropy 

200000 400000 500000 800000 1000000 

C o n n e c t i o n at tempts 

Figure 76: 28-node network with hybrid algorithm, lA 20s 
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S-model L R e P with 17% learning rate, lA 20s 

; 0,08 

S 0.04 

200000 400000 600000 800000 1000000 

C o n n e c t i o n a t tempts 

• Blocking R-ob 

E " : - c r . 

Figure 77: 28-node network with S-model and LRsP with 17% learning rate, lA 20s 

AAMH with RA+B, IA20s 

? 0.06 

m 0.04 

0 200000 400000 600000 800000 1000000 

C o n n e c t i o n a t tempts 

Figure 78: 28-node network with AAMH and RA+B, I A 20s 

start-up convergence period, as shown by Table 25. However rather than taking the average 

blocking probability from zero iterations, calculations are performed from when the blocking 

probability has stabilised, this figure being indicated in brackets in the table. As was also 

shown by the faster entropy trace convergence of Figure 76 over Figure 77. these values are 

significantly lower than those of the S-model LReP algorithm, over all loading rates. 

The reason behind the better hybrid algorithm performance is indicated by Table 24, 

where the hybrid algorithm returns a consistently higher value of variation in blocking 

probability compared with the other two algorithms. It is seen that once converged, the S-

model LReP algorithm still generally has a greater choice of possible routes available to a 

destination than the AAMH algorithm, so retuming a lower blocking probability under low 
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loading levels, and a higher one as the loading rate increases. The hybrid algorithm switches 

between the two algorithms, so switching between a possibly smaller set of paths to a larger 

set and vice versa. The switch between one set of paths and another will generally produce a 

corresponding step change in blocking probability, so resulting with a higher variation in 

blocking probability over a long time period. The reason why the hybrid algorithm retums 

superior blocking probability performance to the S-model LReP algorithm is that by 

sometimes using the A A M H algorithm whilst still updating the action probabilities, the 

possible paths to choose from is limited to paths close to the minimum hop length. Whilst 

this hinders performance under low loading levels, as the loading rate increases so the 

avoidance of longer paths results with a significantly lower blocking probability. The hybrid 

results are consistently lower than the A A M H algorithm blocking probability for the opposite 

reason; in that the hybrid algorithm generally will have a greater number of possible routes to 

choose fi:om, all these being close to the minimum hop route in length. It therefore seems that 

the initial guidance of the leaming automata action probabilities by an application specific 

method whilst allowing the leaming automata to diverge from that guidance i f beneficial, 

results with superior overall performance than either of the methods singly used. The reason 

for this is that the use of leaming automata by themselves require an infinite number of 

iterations before convergence to an e-optimal value is achieved. This is also seen 

experimentally by Figure 77, where the entropy value is still decreasing after the end of 

1,000,000 iterations, meaning that the action probabilities are still changing. 

Trai fie load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Hybrid 0.045 0.114 0.266 0.334 0.406 0.511 0.643 
S-model ReP 0.035 0.130 0.297 0.364 0.438 0.546 0.677 

AAMH 0.050 0.128 0.276 0.344 0.421 0.529 0.662 

Table 23: Average network blocking probability for 28-node network with S-model and LRsP 

with 17% learning rate 

Tral Ffic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Hybrid 0.019 0.021 0.027 0.027 0.026 0.025 0.019 
S-model ReP 0.009 0.018 0.024 0.023 0.023 0.020 0.018 

AAMH 0.017 0.021 0.025 0.026 0.026 0.026 0.018 

Table 24: Standard deviation on network blocking probability for 28-node network using S-

model and LRsP with 17% learning rate 
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Traffic load (conn./sec.) 
0.05 0.067 0.1 0.12 0.14 0.2 0.33 

Hybrid 0 
(10,000) 

0 
(19,000) 

0 
(8,000) 

0 
(9,000) 

0 
(7,000) 

0 
(9,000) 

0 
(13,000) 

S-model ReP 140,000 35,000 11,000 10,000 14,000 10,000 15,000 

Table 25: Global connection attempts for convergence for 28-node network using hybrid and 

pure S-model LRsP with 17% learning rate 

Figure 79 shows the resulting blocking probability for the hybrid algorithm when using user 

demands with trends. Comparing this with Figure 80 which shows the resulting blocking 

probability for the S-model LReP algorithm, indicates that the hybrid algorithm out-performs 

the S-model algorithm, consistently returning a lower blocking probability. The reason for 

this is shown by the entropy curves, that for the hybrid algorithm being lower than that for the 

S-model algorithm, indicating the main use of a smaller set of path possibilities, these being 

constrained when switching in the A A M H sub-algorithm to minimum or close to minimum 

hop routes. 

The maximum peak of the hybrid algorithm is equal to that of the AAMH algorithm 

shown in Figure 81, but in general the peaks are lower when using the hybrid algorithm. 

Therefore the conclusion drawn from these experiments is that the hybrid algorithm generally 

out-performs both the A A M H and S-model LReP algorithms singly used, under both static 

and dynamic statistical user demands. 

The only proviso to this rule centres around the use of low loading situations. The 

blocking probability trace of the hybrid algorithm in Figure 79 evidences similar 'slow decay' 

of value at around 250,000 and 400,000 connection attempts, as the S-model LRsP algorithm 

always shows (Figure 80). This is in contrast to the sharp change in blocking probability to 

zero of the A A M H algorithm shown in Figure 81. Therefore even when using a utilisation 

based feedback, the action probability convergence worsens under low utilisation levels. 

When applying this observation to the general case, it seems that in low penalty rate 

application environments, where the environment state changes, less reliance on learning 

automata adaptation and greater leaning on the deterministic application control method 

would be beneficial. 
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Hybrid and trend user d e m a n d s 

200000 400000 600000 800000 100000 

C o n n e c t i o n a t tempts 

- Blocking Prob 

- Entropy 

Figure 79: Performance of hybrid algorithm with trend user demands 

S-model L R e P with 17% learning rate and trend user demands 

T 700 

400 ^ 

200000 400000 600000 800000 1000000 

C o n n e c t i o n a t tempts 

- Blocking Prob 

- Entropy 

Figure 80: Performance of S-model LRsP LA with trend user demands 

AAMH with trend user d e m a n d s 

. E 0.08 

° 0.06 

400000 600000 

C o n n e c t i o n a t tempts 

Figure 81: Performance of AAMH with trend user demands 
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7.4 Summary 

The work presented in the previous chapters has sought to improve the performance of 

learning automata when interacting with a non-autonomous environment. These 

improvements have been demonstrated by applying learning automata to the routing problem 

in reservation-based networks. The learning automata performance was compared to that of 

one of the better performing of the commonly used methods for this problem, and concluded 

that weaknesses with the use of learning automata are still evident despite various 

improvements. The main weakness is the large number of iterations required before 

convergence, and therefore the poorer blocking probability under certain circumstances. The 

work contained in this chapter has sought to combine currendy used deterministic algorithms 

for problem solving with the learning automata method. The experimental validation of the 

proposed hybrid algorithm solution is again the routing problem in reservation-based 

networks. 

The strengths of the dynamic shortest-path algorithm called AAMH is that no a-priori 

convergence period is required, the algorithm immediately choosing routes deterministically 

whatever the dynamics of the network state. The strength of the learning automata algorithm 

on the other hand is that once fully converged, the resulting action probabilities should 

produce superior blocking probability performance due to the evaluation of a greater number 

of paths. The proposed hybrid algorithm seeks to combine these separate strengths and 

obviate the weaknesses by using the A A M H algorithm under moving network state 

conditions, and using the S-model LReP algorithm under steady-state conditions. When the 

A A M H algorithm is used, the learning automata action probabilities are still reinforced, based 

on the environment response which is the minimum available bandwidth along the attempted 

route. When the learning automata algorithm is used, the local copy at each source node of 

the link states is still updated, this being used by the AAMH algorithm when it is switched in 

once the network state is seen to significantly move again. 

As with the previous chapters, the proposed method for determining when to switch 

from shortest-path to learning automata based routing and back again is the local entropy 

measure. The four node network was used to determine the threshold values required for 

switching from one algorithm to the other. Once these thresholds were incorporated into the 

hybrid algorithm, it was applied to the 28 node network scenario under various loading rates. 

When using statistically constant user demands the results indicated that in general 

the hybrid algorithm significantly outperformed both the A A M H and S-model LRsP 

algorithms singly used. Like the A A M H algorithm, the hybrid method requires no iterations 

for the blocking probability to reduce to acceptable levels, but the evaluation of a greater 
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number of path possibilities allows it to return a lower blocking probability. The results 

confirm these observations when using the trend user demand models, the hybrid algorithm 

generally returning a lower blocking probability than either of the two methods used alone. 

It was seen that the main reason for this result is that when using the AAMH 

algorithm the learning automata action probabilities are strongly guided towards paths of 

minimum or close to minimum hop count. When the learning automata method is switched 

in, the main paths are therefore those of low hop count, but it still has the occasional use of 

longer under-utilised paths. These suppositions were confirmed by the lower entropy trace of 

the hybrid algorithm, this fact indicating that the action probabilities were in general closer to 

the extremes of 0 and 1 when compared with those of the S-model LReP algorithm singly 

used. With an action having a probability close to unity, the other actions therefore are very 

rarely used, these having probabilities close to zero. 

Therefore it seems that learning automata methods thrive when there is a 

deterministic aid to their action probability convergence. From these experiments it is 

concluded that it is highly beneficial to combine learning automata methods with standard 

control algorithms in order to produce hybrid algorithms, the expectation being that these will 

return superior performance than either method singly used. 
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8 Conclusions and further work 

8.1 Conclusions 

In this thesis, the practical use of stochastic learning automata for routing in multi-service 

networks has been examined. After having evaluated currently used routing algorithms and 

the best performing of the previously proposed learning automata methods, the learning 

automata based schemes were improved using various novel methods. The resultant routing 

performance was found to be superior to the proposed shortest-path dynamic routing 

algorithm, but still required a considerable number of iterations for convergence. By 

combining the two algorithm types to form a novel hybrid, superior performance ensued than 

either singly used, with no separate iterations required before convergence. 

In chapter 1 multi-service networks were introduced, commencing with networking 

history that led to their requirement and so creation. Both ATM and IP networks with QoS 

features were highlighted as the main network technologies that support multi-service 

networking, as both can provide differing QoS for separate traffic flows. Methodologies and 

mechanisms for planning, provisioning and allocating network resources were identified, 

these being based on expected user demand generation together with an associated economic 

benefit model whose purpose may be to maximise network performance or minimise network 

cost, or strike a balance between the two. The importance of dynamic resource allocation 

policies (especially djoiamism in the routing mechanism) was highlighted as twofold: coping 

with actual user demands not matching the expected user demands; as well as increasing 

resilience under network failure conditions. After noting that most presently used dynamic 

routing algorithms are of the link-state shortest-path variety, stochastic learning automata 

were identified as promising for application to the routing problem as their use has been 

previously shown to result with s-optimal performance. 

Chapter 2 contained a literature review of stochastic learning automata, the outlined 

theoretical aspects of their operation being required in later chapters when detailing the 

improvements to their operation. The learning mechanism of an automaton was highlighted 

as the reinforcement algorithm, there being a number of different algorithms resulting with 

differing performance characteristics from the automaton when operating in stationary 

random environments. The historical application of stochastic leaming automata to the 

routing problem in both circuit-switched and best-effort packet-switched networks was also 
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detailed, with multi-service networks being thought of as similar to the multi-rate circuit-

switched case. 

Chapter 3 sought to examine the issues linked with proposing a link-state dynamic 

routing algorithm that would perform well, to use as a comparison to the performance derived 

from the learning automata based routing method. It began by showing the link between the 

CAC and routing functions in multi-service networks, and went on to describe a method for 

calculating effective bandwidth requirements for applications requiring QoS from the 

network, such as voice and video. These were based on a multiple on-off source model, and a 

novel application of the method to the MPEG traces was found to produce significandy more 

accurate bandwidth requirements than methods seen in the surveyed literature. Having 

looked at the CAC and associated functions, previously proposed algorithms for routing in 

multi-service networks were outlined and a modified version was proposed (AAMH) as a 

representative 'good' link-state algorithm. The associated link-state information required for 

making the routing decisions was then examined, with the possible means for propagating 

information throughout the network in the literature being found to be both periodic and 

friggered update methods. As these simulations assumed no link failures, event triggered 

updates were chosen for propagating link-state information, events being caused when the 

link utilisation level crossed into another band (the link bandwidth having been divided into 

the following classes or bands: 0-50%, 50-80%, 80-90%, 90-95% and 95-100%). The effect 

of this discretisation of the utilisation level was found to result with a higher blocking 

probability than when using the full link-state information, but lower than when using no link-

state information. Finally methods for reducing the signalling overhead incurred by 

propagating the link-state updates were examined. The literature surveyed highlighted both 

limited update disfribution methods, and the use of locally available information. From these, 

a new method was proposed: that of using existing call set-up signalling together with local 

schemes. This method was compared experimentally with hop-count limited flooding and 

was found to result with performance close to that obtained when using full flooding. It was 

also found that a hop-count limited flood equal to the average route length returned a blocking 

probability equivalent to that when using full flooding. Whilst this observation is dependent 

on the network topology and user demands, it does indicate that by using these concepts for 

reducing the signalling overhead and configuring them according to the network topology and 

expected user demands, accurate network state information can be propagated throughout the 

network whilst having greatly reduced signalling and processing overheads. 

Chapter 4 contained experiments whose purpose was to validate which of the 

currently used learning automata reinforcement algorithms result with superior performance 

when interacting with a non-autonomous non-stationary environment such as routing in multi­

service networks. The requirement for this work existed due to previous studies analysing 
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leaming automata performance with stationary and switching environments, and assuming the 

conclusions drawn as valid for non-autonomous environments. The chapter presented a 

framework for rigorously assessing the performance of currently used reinforcement 

algorithms, this framework being partly analytical and partly experimentally based. By using 

a simple network scenario, converged action probabilities were analytically derived using 

Erlang's formula. The number of iterations required for the various reinforcement algorithms 

to update the action probabilities to their converged state were then experimentally derived, 

together with their subsequent variation. Of the basic continuous schemes, both the LRP and 

LReP reinforcement algorithms were shown to converge faster than LRI. Also it was noted 

that using LRI with a high leaming rate causes the action probabilities to fail to converge, 

indicating that unlike previous literature its general usage is not recommended. Of the class 

of estimator reinforcement algorithms, both the pursuit algorithm and the general estimator 

with linear updating fimction failed to converge. However using the GE with the updating 

function caused slow convergence but with very low action probability variance thereafter. 

Discretisation of continuous schemes had been shown in the literature to produce faster 

convergence when interacting with stationary random environments, and so such schemes 

have been previously applied to non-autonomous environment applications such as routing in 

networks. However the work contained in this chapter showed that discretisation generally 

caused failure of convergence, as evidenced by the following schemes: DLRI, DLRsP, 

DPursuit and DGE. Discretising the LRP scheme caused the action probabilities to converge 

quicker than with the continuous LRP scheme, but with increased subsequent variance. 

However by equalising the action probabilities rather than the action probability rates (as does 

the continuous LRP scheme) a lower blocking probability ensues. Therefore DLRP was 

preferred over LRP, with LRsP and GE with updating function also being recommended 

for general usage in non-autonomous application environments such as routing in multi­

service networks. However as such an application's environment state continually changes 

due to changing user demands, so only the DLRP and LReP reinforcement algorithms were 

recommended for general use (as GE evidenced a very slow convergence relative to the 

others), the DLRP algorithm evidencing fast convergence and the LReP algorithm good 

steady-state performance. 

Having validated the best performing reinforcement algorithms for use with leaming 

automata applied to routing in multi-service networks, chapter 5 sought to improve leaming 

automata performance from that obtained using either DLRP or LReP reinforcement 

algorithms. Two mechanisms were proposed in this chapter: automatically adapting the 

reinforcement algorithm leaming rates, and automatic reinforcement algorithm selection. 

Both novel methods utilised the fact that improving convergence speed degraded steady-state 
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performance, whilst increasing steady-state accuracy slowed convergence of the action 

probabilities. Each method sought to improve the learning automata performance by seeking 

to alter the convergence speed or steady-state accuracy according to the environment state. In 

order to determine the current environment state, a novel local mechanism was proposed 

based on the enfropy of the action probabilities for the learning automata based at a node. 

This method was found to be more accurate than using other criteria such as change in 

blocking probability or average path length, etc.. The first novel improvement sought to alter 

the reinforcement learning rates, the rate being set to high when requiring fast convergence 

speed, and low when trying to increase steady-state accuracy. This method was successfully 

applied to both the D L R P and LREP reinforcement algorithms using different entropy change 

thresholds. Although using this method with the DLRP algorithm produced a noticeable 

improvement in performance (especially under lower network loading conditions), the LReP 

algorithm performance was relatively unaffected (due to fixed learning rate parameter 

changes having little effect). However as the LRsP algorithm still evidenced superior steady-

state performance, the second novel improvement was proposed: using the DLRP algorithm 

under convergence conditions, and the LReP algorithm under steady-state conditions. This 

novel scheme was found to produce superior results to previous learning automata schemes in 

terms of both convergence speed and subsequent blocking probability. This improved 

learning automata scheme was compared to the dynamic shortest-path based algorithm 

proposed in chapter 3 (called AAMH) using the more realistic networking scenario of trend 

user demands. These comparisons showed that the dynamic shortest-path based scheme 

consistently outperformed the learning automata based scheme under the topology and traffic 

loading characteristics of the network scenario used for the evaluation. 

The work in chapter 6 therefore sought to improve the learning automata performance 

still further, by proposing a novel re-application of learning automata to the routing problem 

in multi-service networks. With the work up to date having used the P-model response 

environment, the feedback received could not distinguish between highly and lightly loaded 

routes. By using the S-model response environment and changing the feedback to represent 

link utilisation levels, it was believed that this novel paradigm would produce better results as 

it was more closely linked with the actual problem the learning automata were being applied 

to. After having normalised the instantaneous utilisation level to the region [0, 1] and used 

the exponential smoothing technique to smooth out short-term fluctuations, the reinforcement 

algorithm updated the action probabilities. The LREP with a high fixed learning rate of 17% 

was used as the S-model response environment generally caused action probability updates of 

much lower learning rates (especially when links were close to saturation). The DLRP 

algorithm was not used as the S-model response environment precluded the use of discretised 
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schemes. Under lower loading levels this improved leaming automata based routing scheme 

was found to outperform both the A A M H and previously proposed leaming automata 

methods. Using the trend user demands showed the S-model LReP and A A M H results to be 

fairly comparable, both retuming a comfortably lower blocking probability than the P-model 

automatic reinforcement algorithm selection scheme. The superior performance of the S-

model LReP algorithm under relatively low loads was shown to be due to its ability to 

evaluate a larger set of possible routes. Whilst the network scenarios evaluated used 

symmetrical network loading, non-determinism of user demands in actual networking 

situations would generally cause greater non-symmetry in loading. It is therefore expected 

that this algorithm would improve its relative performance compared with the others still 

further under real network scenarios. However these results still show the main weakness of 

leaming automata methods: that of the requirement for a large number of iterations before 

convergence occurs. 

The work contained in chapter 7 sought to address this fundamental weakness by 

combining both the A A M H and S-model LReP leaming automata algorithms into a single 

hybrid routing algorithm. The strength of the A A M H algorithm was that no a-priori 

convergence period was required, the algorithm immediately choosing routes 

deterministically whatever the dynamics of the network state. The strength of the leaming 

automata algorithm was that once the action probabilities had converged, a superior blocking 

probability ensued due to the evaluation of a greater number of paths. By using the AAMH 

algorithm under moving network state conditions (whilst still updating the leaming automata 

action probabilities) and the S-model LReP algorithm under steady-state conditions, the 

separate strengths were combined. Using either statistically constant or trend user demands, 

the hybrid algorithm consistently outperformed either AAHM or the S-model LReP algorithm 

used alone, always retuming a lower or comparable blocking probability. It was seen that the 

main reason for this improvement is that the leaming automata action probabilities were 

strongly guided by the deterministic A A M H algorithm, causing other longer paths to be used 

less frequently than previously. 

Therefore it seems that stochastic leaming automata methods thrive when there is a 

deterministic aid to their action probability convergence. From these experiments it is 

concluded that it is highly beneficial to combine stochastic leaming automata methods with 

standard control algorithms in order to produce hybrid algorithms, the expectation being that 

these wil l return superior performance than either method singly used. 
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8.2 Further work 

The work contained in the previous chapters has sought to improve the routing performance 

within a connection-oriented reservation-based network environment such as ATM or IP with 

QoS and RSVP. The charactensation and optimisation method called stochastic learning 

automata has been applied to the routing function, and its performance has been improved. 

The resulting routing performance has been seen to be superior to more fraditional dynamic 

shortest-path link-state based routing algorithms. There is a need to apply the same novel 

learning automata concepts to routing within a cormectionless network environment, such as 

an IP network with DiffServ [12] implementation. Such network technology is becoming 

more and more important in high speed multi-service networking environments, with 

companies such as Cisco having gigabit-switch routers at the top of their product lines [69]. 

With these fast routers concentrating on switching and packet forwarding, it is not possible 

for them to also sustain many RSVP requests making and releasing network resource 

reservations for calls requiring QoS from the network. Therefore the DiffServ IP network 

design paradigm is becoming increasingly important as it has superior scaling properties to 

the IntServ [14] paradigm. In order to use the hybrid algorithm in IP networks with DiffServ, 

modifications to the algorithm are required in the following areas: calculating link utilisation 

levels on a time averaged basis, modifying the A A M H part of the algorithm to utilise multiple 

routes so as to avoid oscillations, and using a limited flooding mechanism for updating link 

states across the network. 

8.2.1 Average utilisation calculation as information input 

In a connection-oriented reservation-based network, an accepted connection consumes 

bandwidth of the links along the path according to its expected fraffic demand requirement, 

this being termed the effective bandwidth for the connection. Thus the utilisation level of 

links reported may not be the actual utilisation level at that time, but is the level of bandwidth 

currently reserved on the link, this remaining constant for the duration of the connections 

traversing the link at that time. Variations in link utilisation therefore occur relatively slowly, 

being bound by variations at the connection or call level. Connectionless networking 

environments on the other hand have rapidly varying instantaneous utilisation levels, the 

value being representative of the link utilisation due to actual packet fransmission at that 

instant in time (or more correctly the average packet transmission over a short time window). 
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Making routing decisions on a requested connection basis is applicable since connection or 

call duration is generally much longer than individual packet transmission, effectively 

encompassing an average of traffic demand requirement a-priori. In connectionless 

environments however, an averaging of the constantly varying utilisation level is required, in 

order to make both reasonable routing decisions and so that routes are not recalculated 

unnecessarily often. An average of the current link utilisation levels can therefore form the 

basis of information input for both the utilisation based leaming automata and the AAMH 

routing algorithms. 

For this to occur there is the requirement to obtain a reasonable averaging method. A 

dynamic mechanism in the IP world which requires the averaging of instantaneous 

information for it to perform reasonable operations is the Random Early Detection 

mechanism. The Cisco implementation (Weighted RED or WRED) [70] uses an 

exponentially weighted moving average of the class buffer level in order for it to 

probabilistically discard packets. The packets in these class buffers are served by a 

scheduling algorithm into the link meaning that, amongst other things, the class buffers are 

indirectly acting as playout buffers for that link. This indicates that the variation in the 

buffers wil l in general be much higher than that of the link utilisation, so that the same 

averaging method configuration would not be applicable for use in the link utilisation, as it 

wil l react too slowly to trend changes in the utilisation level. 

Perhaps a more promising route is to examine currently used routing algorithms. 

Dynamic link-state routing algorithms generally use a hold-down timer [58], meaning that the 

algorithm is not allowed to recalculate routes more quickly than the pre-set timer expiry. This 

function bounds the maximum frequency of route set recalculation. Current IP routing 

algorithms such as Routing Information Protocol (RIP) [73] and Open Shortest Path First 

(OSPF) [61] are d5mamic in the sense that route recalculation occurs on physical network 

failures such as links, interfaces or nodes. The hold-down timer for RIP is effectively 180 

seconds, for whilst refresh packets are sent every 30 seconds, routes are invalidated by the 

'timeout' timer. OSPF has a similar hold-down timer of either 40 seconds for broadcast 

networks or 120 seconds for non-broadcast networks [71], due to the 'hello' packets being 

send to neighbouring nodes once every 10 or 30 seconds, the 'dead' timer being set to four 

times the 'hello' timer interval. 

Whilst these algorithms will in general be rarely invoked (network failures occurring 

relatively infrequently) they still have hold-down timers to ensure that situations where weak 

electrical connections that cause equipment to repeatedly go down and come back up again do 

not cause repeated routing information flooding and recalculation of the routes. So while 

these type of events should occur very infrequently, when they do occur there may be a 

significant number of similar events in a short space of time. When considering the 
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instantaneous utilisation level, it is found that this will generally show highly varying values 

within a time period of tens of seconds. The frequency of variation being therefore higher 

than under equipment failure conditions, it is reasonable to use a hold-down timer with 

smaller duration for averaging instantaneous utilisation levels. It is proposed that the 

experiments to be undertaken in future work are to use an averaging period of 30 seconds 

before updating the link state database at the node. 

8.2.2 Flow-splitting modifications 

Cormection-oriented network environments calculate a route between a source and destination 

pair, keeping that route in place for the duration of the data fransmission. Connectionless-

oriented networks, on the other hand, may have multiple routes present in the routing tables 

for a source-destination pair (such as when the load balancing option in OSPF is used) the set 

of data packets being carried over various routes in order to reach the destination. The data 

packets for the connection-oriented network therefore arrive in order, whilst those of the 

connectionless network may occasionally arrive out of order, the re-ordering occurring both at 

the network (IP) layer and also at the fransport layer, for which Transmission Confrol 

Protocol (TCP) [74] is normally used. The flow-splitting ability of connectionless networks 

is beneficial in order to balance network loading. This feature is approximated in connection-

oriented networks by the possibility of multiple concurrent connections with the same source-

destination pair being routed over different paths, as a separate route calculation may have 

occurred for each connection request. This is a close approximation to the connectionless 

case, as IP routers generally route packets of the same TCP connection over the same route in 

order not to overload the layer 3 and 4 re-assembly engines by many out of order packets or 

segments arriving. 

In order to modify the A A M H part of the hybrid algorithm to exhibit flow-splitting 

properties when operating in a connectionless networking environment, some significant 

changes are required. While previously the algorithm calculated a single path for a source-

destination pair, now multiple active routes are required. This is to avoid oscillatory network 

loading behaviour occurring when single path routes are changed throughout the network and 

then possibly back again as the network saturation 'hot-spots' move locations due to the route 

changes. The A A M H algorithm is modified in order to produce multiple routes by allowing 

all the possible shortest path routes, each with a certain weighting or probability of usage 

according to the minimum amount of unused bandwidth available on the route. The 

weighting may be calculated as follows: 
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min link free bandwidth along route 

^ min link free bandwidth along route 
all shortest 
path routes 

As A A M H aggregates link utilisations into class bands, so route recalculation should 

generally occur less frequently than link state recalculation. One point to note however is that 

the average link utilisation wil l generally never reach 100%, so that AAMH in its present 

form never uses alternate routes. Therefore the further modification is required so that 

alternate routes are permissible when all shortest path routes have the utilisation level in the 

highest aggregate class. So in such a case, any altemate routes with minimum bandwidth 

along the route being greater than the minimum are also included in the set of permissible 

routes, the associated weightings being: 

min link free bandwidth along route 

^ min link free bandwidth along route 
all shortest and some 
altemate path routes 

I f any routes share the next hop, then their respective weightings are added together to give 

the tme weighting for choosing that link at this node. 

When using the learning automata part of the algorithm, route calculation is not 

deterministic but stochastic, according to the action probabilities. These action probabilities 

automatically perform a flow-splitting function over time, and so require no modification of 

operation (with the exception of requiring a mechanism for ensuring that all packets 

belonging to a TCP connection are routed over the same path). 

For both the algorithms however, there is a change to how the paths are set up. In the 

connection oriented-case, the path is directly set up from the source node to the destination 

node by the connection set-up signalling. In the connectionless networking technology case, 

the paths are indirectly set up via the flow splitting percentages present at each node. A 

packet will therefore utilise a particular path from a source to a destination node with a certain 

probability; this being calculated as the sum of the probabilities of choosing each of the links 

in turn which comprise the end to end route. 

8.2.3 Link state update propagation 

Chapter 3 detailed experimental work linked with reducing the extra signalling required to 

propagate link-state updates so that all the nodes' link state databases are representative of the 

network. The recommended method was to use the existing connection set-up signalling, 
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piggy-backing the link state information of that with the least remaining unused bandwidth 

along the route. Both the learning automata and A A M H components of the hybrid algorithm 

have used this method of obtaining the current network state. However with connectionless 

networks not requiring signalling for connection set-up, another link-state information 

propagation method is required. The comparative results of other possible methods 

highlighted in chapter 3 indicated that using a hop count limited flood, limited to the average 

path length, resulted with almost the same blocking probability as a full flood. Whilst this 

experiment was performed using symmefrical network loading, the result has general 

applicability according to the source-destination user demands and dimensioned links present 

in the network. Therefore this method seems applicable to explore for link state information 

propagation in the IP networking experiments for future work. 
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Appendix A: IP technology and protocols, and IP network 

planning and design 

A. 1 Overview of current IP technology and protocols 

This section seeks to give a brief overview of the historical and current use of IP technology 

and associated protocols. First the main IP stack mechanisms and protocols are outiined. 

Next more recent scheduling mechanisms for providing quality of service differentiation of 

flows are ouflined. Finally end-to-end IP related mechanisms are briefly discussed. 

A.1.1 Basic IP networking with reference to the OSl layer model 

The Internetworking Protocol (IP) [4] is a network layer protocol for packet fransmission 

from source to destination nodes. Being a layer 3 protocol in the OSI model, it performs the 

routing and congestion confrol functions [5] with the aid of associated protocols. Its original 

conception arose out of a need to connect differing network technologies, with end-to-end 

operation occurring in a seamless way. Higher layer protocol payloads are therefore 

segmented and encapsulated within IP packets, and presented to the layer 3/2 technology 

running at that point in the network for further encapsulation before fransmission. At the next 

IP node, the IP packet would be re-assembled, for the convergence sublayer to which it was 

presented may have segmented it. Further routing decisions are performed before it is again 

presented to that node's convergence sublayer, which may use a different networking and 

fransmission technology. Therefore seamless operation occurs at the IP layer and higher, 

whatever the heterogeneous mix of networking and fransmission technologies used below the 

IP layer. 

IP networks generally refer to networking technologies which utilise the whole suite 

of protocols associated with the Internet Protocol, these protocols going up to the application 

layer (layer 7 in the OSI model), and down to the data-link layer (layer 2 in the OSI model). 

The layer 2 protocol generally used is the Point to Point Protocol (PPP) [72] which provides a 

standard method for fransporting multi-protocol datagrams over point-to-point links. 
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However IP network technologies are generally associated with protocols down to layer 3, 

such hardware or equipment in the network being termed a router. 

Two routing protocols are mainly used in the IP world: Routing Information Protocol 

(RIP) [73] and the Open Shortest Path First (OSPF) [61] protocols. RIP is a distance vector 

routing algorithm, and therefore evidences slow convergence properties of routing tables. 

Faster convergence occurs with OSPF as this is a link-state routing algorithm, so this 

algorithm is superseding the use of the RIP algorithm. With the routing protocol generating 

the routing tables at each node, the IP packets are then h-ansmitted from node to node, the 

hop-by-hop route chosen based on the destination address for that packet held in the IP 

header. 

The layer 3 congestion control function has historically been rather limited in IP 

routers, in general a single queue being used to buffer packets waiting for transmission on a 

certain link. Congestion control in IP networks has therefore historically relied on other 

layers' functionality. For example, the layer 2 protocol ensures reliable link transmission, 

whilst the layer 4 protocols such as Transmission Control Protocol (TCP) [74] ensure end-to-

end reliable transmission and rate limiting under congestion conditions. Applications 

requiring reliable transport therefore use the TCP transport protocol which guarantees reliable 

end-to-end ti-ansmission of application payload packets. It operates by segmenting 

application packets into TCP segments, which are in tum delivered to the IP layer for further 

segmentation and encapsulation as required. As an IP network is connectionless in operation, 

so IP packets can arrive at the destination out of order. TCP therefore re-orders the arrived 

segments as necessary, passing their payload up to the application layer. Rate limiting under 

congestion conditions automatically occurs by the source node TCP requiring 

acknowledgements of TCP segments sent previously, these acknowledgements coming from 

the destination node's TCP engine. 

Other application types place speed of packet delivery as a priority above reliable 

transmission of the data. For example real-time applications such as voice or video are not 

overly affected by occasional data loss, but require as small an end-to-end delay as possible. 

Such applications use the Real-time Transport Protocol (RTP) [75] which is further 

encapsulated into User Datagram Protocol (UDP) [76] segments, both these protocols being at 

the layer 4 or transport layer. By not guaranteeing reliable segment transmission, UDP does 

not re-transmit dropped packets or rate-limit the RTP source, so that application packets 

arrive at the destination application host with as little delay as possible. 

The transport layer of the IP protocol stack generally interfaces directly with the 

application layer or layer 7 of the OSI model. This layer is for protocols which applications 

may use for their data transmissions. For example, e-mail applications generally use either 

the Post Office Protocol version 3 (P0P3) [77] or Internet Message Access Protocol version 4 
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(IMAP4) [78], and the Simple Mail transfer Protocol (SMTP) [79]. P0P3 is used by mail 

clients to download stored e-mails from their mailbox held on a mail server. IMAP4 has 

additional functionality to POP3 in that remote message folders may be manipulated in a 

functionally equivalent way to local mailboxes. SMTP is used to transmit messages between 

mail servers, in order for them to reach the message's destination server where there resides 

the recipient's mailbox. Another example application is a web browser, this using the 

Hypertext Transfer Protocol (HTTP) [80]. HTTP allows the web browser to obtain web 

pages from remote internet servers, automatically reconstructing a page from its various 

heterogeneous component objects. 

Some of the generally used layers 3, 4 and 7 protocols have been outlined, these 

forming the IP protocol stack. Whilst it is feasible to interchange other lower and higher layer 

protocols, this being a main benefit of a layered network architecture, the whole set is 

generally used in its entirety, at least down to the IP layer. The main reason for this is due to 

IP penefration at network end-points, this being highlighted in the following section. 

A.1.2 Quality of Service (QoS) in IP networks 

Historically, two significant benefits of A T M network have been their speed and guaranteed 

QoS for each accepted connection request. IP routers have historically been of lower speed, 

requiring higher processing than an ATM switch at each node, as packet routing decisions 

occur from hop to hop in the IP case, whilst the ATM packets traverse a single pre-defined 

and set-up route in the coimection-oriented ATM case. The inherent reduced routing 

complexity of A T M during packet transmission meant that switching and transmission speed 

could be increased, as less transit processing is required. The higher switch throughput, 

combined with an initially higher equipment cost, meant that ATM technology was 

historically confined to the WAN, whilst the lower costing and slower IP technology 

remained in the L A N arena. So because A T M was rarely found at the desktop, convergence 

of the IP packets to the A T M layers occurred at the equipment serving the WAN interface. 

As regarding QoS, IP routers have historically offered only 'best-effort' service capabilities, 

with no guarantees for traffic flows being possible. 

However more recently various mechanisms have been introduced at the IP layer so 

that QoS differentiation of traffic flows becomes possible. The mechanisms generally use the 

precedence field of the IP packet header in order to categorise an IP packet into a certain class 

or flow. At present most routers operate with IP version 4, whose precedence field is 3 bits 

long, meaning that up to eight different classes of flows are available (with one being reserved 
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for network operational use). However the more recently proposed IP version 6 [6] has a 

larger flow label field of 24 bits, so that more than 16 million differing classes of service or 

application types can be defined. Once the packet's class has been established, it can be 

scheduled for link transmission according to the scheduling mechanism's configuration and 

functionality. 

A.1.2.1 Basic mechanisms 

Historically IP routers have performed First In, First Out (FIFO) queueing [81], with a single 

buffer storing packets under link congestion conditions and forwarding them on in order of 

arrival. Whilst this method meant that the packets from bursty traffic sources would not 

necessarily be dropped, it also meant that such sources also caused high delays in other time-

sensitive traffic flows. Various basic queueing and scheduling schemes have been 

implemented in IP routers, seeking to overcome this shortcoming. 

One of the first mechanisms implemented by Cisco to improve the FIFO queueing 

situation was Priority Queueing (PQ) [7]. This mechanism can allocate up to four priority 

queues, these being high, medium, normal and low priorities. The buffers are then scheduled 

in turn, the algorithm moving to the next lower priority buffer when there are no more packets 

waiting to be scheduled at the higher priority buffer. This means that one type of traffic (such 

as applications crucial to the business functions, termed mission-critical applications) is 

ensured transmission, possibly at the expense of all others. 

Custom Queueing (CQ) (otherwise known as Weighted Round Robin or WRR) was 

implemented to avoid this unfair situation. This method guarantees some level of service to 

all traffic because bandwidth can be allocated to each class of service. Up to sixteen queues 

can be thus configured for scheduling, the mechanism ensuring that a class obtains the 

configured bandwidth, even under congestion conditions. 

By differentiating between types of traffic flow via the precedence bits and 

scheduling differing class flows in a different manner, so QoS is achieved on the IP network. 

The A T M Constant Bit Rate (CBR) and Variable Bit Rate (VBR) services provide hard QoS, 

guaranteeing service by reserving network resources specifically for the connection along its 

path. This function can be emulated by using the CQ feature, as bandwidth is reserved for 

specific flows or classes, with no other class traffic able to utilise this reserved bandwidth. 

PQ on the other hand is an example of soft QoS, which is where some traffic is 

treated better than the rest, there being statistical preference rather than a hard guarantee. 
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A T M technology variants of this type of service are Unspecified Bit Rate (UBR) and 

Available Bit Rate (ABR) services. 

A.1.2.2 More complex scheduling 

The weakness of PQ is that no guarantees of QoS are possible under congestion conditions, 

whilst that of CQ is that the bandwidth for a class remains unused and so is wasted under 

congestion conditions when there are no packets of that class requiring transmission. 

Weighted Fair Queueing (WFQ) [8] seeks to combine the two algorithms' strengths whilst 

avoiding each one's weakness. Individual class or flow buffers are configured on each router, 

these being emptied by the WFQ scheduling mechanism. It then empties packets from each 

buffer according to the configured scheduling weight for that buffer. However i f there are not 

enough packets held in a buffer to 'use up' its configured scheduling weight, that excess is 

distributed to the remaining buffers with unscheduled packets still present. It therefore 

provides both hard QoS with bandwidth guarantees in congestion conditions, but also the 

most efficient use of bandwidth, redistributing any unused to lower class buffers. This is the 

scheduling mechanism generally used in most IP networking situations today. 

A.1.2.3 End-to-end congestion control 

Whilst the above scheduling mechanisms operate at the local node level, there is also end-to-

end congestion control occurring at the transport layer by the TCP engines. In cases of 

network congestion, the TCP engines throttle back their data transmissions, so that the 

congestion is eased downstream. When there is chronic network congestion and packets are 

dropped, the TCP source halts transmission and after a timeout period retransmits the 

information, increasing its transmission rate exponentially. The effect of this slow-start 

feature can be to cause oscillatory behaviour in the network, network congestion being 

followed by underutilisation of links, being followed by congestion as the TCP engines 

increase their transmission rates again. 

The Random Early Detection (RED) [9] mechanism was designed to avoid this 

recurring network congestion by seeking to limit TCP transmissions before the onset of 

chronic congestion. It operates on the class queues or buffers that have been set up for the 

QoS scheduling mechanism. A moving average of the instantaneous buffer level is 

164 



calculated, and on its crossing a configured threshold a probabilistic discard of differing 

source TCP engines' IP packets occurs, the probability of discard increasing as the average 

buffer level goes up. 

The effect of occasionally dropping packets is to cause those TCP sources to stop 

transmissions and re-transmit the data after their timeouts occur. Therefore the aggregated 

flow though the buffer is reduced but not halted, as the flow normally consists of many TCP 

sources. This reduction normally means that hard discard (which is where the class buffer is 

filled and all extra packets are dropped) is avoided so that a few rather than many TCP 

engines retransmit. The effect of this function is for most users on the network to perceive 

better network dependent application response as their TCP transmissions remain largely 

unaffected or at least affected less often. From a network resource perspective, such occurs 

due to the link bandwidth being more efficientiy used, with full or close to frill utilisation 

occurring, rather than oscillations between full and partial utilisation as multiple TCP re­

transmission timers expire. 

A.1.2.4 End-to-end QoS 

IP QoS mechanisms guarantee QoS for an aggregate class flow through a node but not for a 

specific flow through the network, as does ATM technology. Therefore IP QoS technology 

provides soft QoS, for i f other fa-affic flows of the same class misbehave a flow's QoS can be 

degraded. 

Hard QoS can be approximated however, with the use of edge policing. For example 

Cisco's Committed Access Rate (CAR) mechanism [82] can be configured to measure 

incoming traffic flows and either drop packets exceeding the configured flow 'contract' or 

downgrade the excess traffic's class type. The mechanism is intelligent enough to allow 

bursts of the flow's ti-affic through after periods of flow underutilisation using a token bucket 

mechanism, but unlike standard leaky bucket implementations no traffic shaping is 

performed. 

Using this or other edge policing mechanisms, end-to-end QoS can be guaranteed for 

a flow. The mechanism ensures the specified upper bound for a traffic flow is not exceeded, 

and the scheduling mechanisms present at local points in the network are configured based on 

the aggregate flows' confa-acts, which traverse each local point. Therefore having ensured all 

flows' access to the network are limited to their contracts and the network can support all the 

contracts' requirements, the end-to-end QoS requirements for each flow is guaranteed (the 

flow's QoS requirements being an integral part of the flow's contract specification). 
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A.2 IP network planning and design 

With IP networks historically providing just best-effort service, the planning and design 

function centred purely with link sizing and routes, together with equipment throughput 

dimensioning. With the more recent QoS features and mechanisms becoming available 

however, the planning function has become more complex, with provisioning of logical links 

now being possible. 

A.2.1 Network design for best-effort IP networks 

The design of both greenfield site networks and modifications of existing networks is based 

on some sort of user demand modelling. This procedure seeks to estimate the amount of 

source-destination traffic demand that users might place on the network once it is frilly 

commissioned and operational. 

Using the example of a corporate network, the simplest form of user demand 

modelling is to place the application servers on the network, and then link this or these nodes 

with the others using tiransmission pipes thought sufficiently large for the user set accessing 

these server applications. The linking may occur on a point-to-point basis or via a meshed 

network topology, according to the number of sites to be linked together, and the cost-

performance balance to be achieved. Routes are then assigned in the network, according to 

the expected application traffic flows on the network. For resiliancy a dynamic routing 

algorithm may be used, causing the pre-assigned routes to be changed in network failure 

conditions. 

A.2.2 Network design for IP networks providing QoS 

The requirements for IP networks providing QoS become essential when the network is used 

to carry certain types of traffic. For example, applications such as voice over IP (VoIP) and 

videoconferencing require sfa-ict end-to-end delay guarantees from the network in order to 

operate properly. Therefore i f congestion occurs at nodes which the fraffic flow traverses, 

policies must operate locally at the congestion point to allow the traffic from the critical flows 

to pass whilst buffering that of less important flows. The operation of such local policies 

ensures that the network can consistently meet a flow's end-to-end delay requirement. 
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The presence of such mechanisms is also important to 'mission-critical' traffic flows: 

applications which may not have strict QoS requirements, but whose traffic is important in 

value to the customer or company. Under chronic congestion situations such traffic is passed 

through whilst other less important traffic is discarded, meaning that data loss for applications 

critical to the company's operation is minimised or eliminated altogether. 

A.2.3 Tlie place for bandwidth-based dynamic routing algorithms in IP 

networks 

As the level of connectivity in a network increases, so the number of alternate paths from a 

source to a destination node increases. It is under such circumstances that the possibility of 

choosing a different path for the same source-destination pair, due to its lower loading, 

becomes preferable to always choosing the same route whatever the state of the network 

loading. 

The requirement for QoS in IP networks arises from the use of applications important 

to the business function (termed 'mission-critical' applications), or applications requiring end-

to-end delay guarantees from the network in order to operate correctly. The first kind 

generally do not add connectivity to the network, as they may be used by a few or many 

people in the company, but are generally server-based and so cenfralised. However the 

second kind of application's destination bindings are normally distributed throughout the 

network, such applications normally being audio and / or video based, connecting a pair of 

users rather than a user client to a server. It is with the use of such applications therefore that 

connectivity in the network might expect to increase. As the requirement for such 

applications increase in corporate networks, so utilisation-based dynamic routing schemes 

will increase in importance. 

These discussions have cenfred on corporate networks. Carrier networks are the 

networks which telecommunications providers use to carry the traffic of many corporate 

networks. Individual corporate networks are designed, with the network's links being 

overlaid over the carrier network's links and nodes. The carrier network therefore requires a 

large number of nodes so that all the areas have a relatively close point of presence, coupled 

with a good connectivity to ensure network resilience. Therefore carrier IP networks, whether 

best-effort or QoS based, in general would benefit from the use of utilisation-based dynamic 

route calculation. 
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Appendix B: A tool and models for simulation analysis 

B. l Introduction 

The main aim of this appendix is to describe the important issues relating to the simulation 

models used to test the various routing algorithms. 

The appendix begins by explaining why simulation modelling was used for this 

particular problem rather than analytical techniques. There follows an overview of the 

evaluation of commercial simulation packages which was undertaken at the start of the 

research. This includes references to the full reports which documented the evaluation. 

Having chosen OPNET as the modelling and simulation environment, different simulation 

method possibilities are examined and the one giving the required level of detail for the 

problem under investigation is selected. 

When examining the models included with the OPNET environment, it was found 

that due to certain limitations these were unusable for the research experiments. These 

limitations are highlighted as are the high-level details of the new model library which was 

constructed to permit the research experiments. Finally, rather than using the analysis and 

displaying functions within the OPNET environment itself, reasons are given for the benefit 

of exporting the raw results data to Excel for analysis and display. 

B.2 Modelling technique selection 

There are two techniques available for evaluating the blocking probability of routing 

algorithms: analytical and simulation modelling. Analytical modelling approaches have been 

favoured in the past for two main reasons. Firstly, the resulting closed-form equations can be 

used to easily produce the upper and lower bounds together with the mean for the network 

performance. Secondly, computing power used to be much lower, resulting with much more 

limited possibilities for simulation modelling. 

A large body of analytical modelling material is thus available for circuit-switched 

networks [35]. This includes techniques for calculating the average blocking probability 

when operating a particular routing algorithm. Due to the similarities between routing and 
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call admission in multi-service networks and circuit-switched networks, it has been suggested 

that some of the techniques used for analysing circuit-switched networks might be used for 

A T M networks for example [45]. The weakness of analytical methods is, however, that they 

require simplifying assumptions to be made about the traffic, topology or routing algorithm. 

For example, fully connected, symmefrical topologies and fraffic distributions are a-priori 

assumptions in order to make the analysis fractable. With circuit-switched networks the use 

of these assumptions is in the main part reasonable. However the same is not true for multi­

service networks due to the more complex fraffic, topology and routing algorithm possibilities 

available with such networks. 

The analytical approach was therefore rejected from the outset, and discrete-event 

computer simulation [83] chosen instead. There next followed an extensive evaluation of the 

two leading commercial communications simulation packages in order to ascertain the 

preferable system for use in this research. 

B.3 Simulation modelling tool selection 

Having decided on using computer simulation techniques for multi-service network 

performance analysis, the two leading commercial communications simulation packages were 

evaluated for suitability in this research. These were Optimised Network Engineering Tools 

Modeller (OPNET) and Block Oriented Network Simulator Designer (BONeS). 

BONeS came with two campus type network examples, having an FDDI ring and 

A T M backbone respectively [84, 85]. The original network scenario consisted of four token 

ring LANs together with three ethemet LANs connected to a FDDI backbone ring via three 

bridges. The total number of workstations individually modelled over the whole of the 

heterogeneous network is 23, each workstation generating up to 1.2 Mbps of fraffic. The 

second network scenario is an evolution of the first, replacing the FDDI backbone ring with a 

four switch A T M network interconnected with SONET STS-1 links (these being 49.5 Mbps 

user or payload rate [86]). Furthermore the number of workstations on the LANs is doubled, 

with the two 4 Mbps token rings also being upgraded to 16 Mbps. Various results and 

simulation speed comparisons are included in the documentation, with conclusions on 

network performance and suitability being drawn for each scenario. 

For an accurate comparison of environments, including standard libraries and 

simulation speeds, it was thought beneficial to model the same scenarios in OPNET. 

However, this was found to be difficult as BONeS lacked the fransport layer models which 

the standard OPNET user demand models required. On the other hand, OPNET lacked a 
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bridge for the token ring protocol to FDDI, or a router for token ring to ATM. Rather than 

expend significant effort in modelling the same scenario using both environments in order to 

obtain accurate simulation speed comparisons, a compromise was reached by modelling 

FDDI rings instead of token ring LANs. By limiting the ti-affic to the equivalent token-ring 

network parameters and by modifying the traffic generators, an equivalent traffic load was 

simulated so that simulation speed comparisons could be undertaken. 

The outcome of the evaluation was that OPNET was chosen as the simulation 

package with which to perform the experiments. Further details of the evaluation may be 

found in [87], with the simulation results for the campus network modelled using the OPNET 

environment being detailed in [88]. 

B.4 Network model 

Having chosen OPNET as the computer modelling and simulation environment with which to 

perform network performance analysis experiments, a multi-service network model was 

required in order to simulate different network topologies, traffic demands and routing 

algorithms. 

The following sections begin with detailing the various simulation methods available, 

and the reasons why session level event-driven simulation models were used in simulations. 

Rather than utilising the existing models that are included with OPNET new ones were 

produced, the reasons being shown. Finally the design and functionality of the new model 

library are outiined. 

B.4.1 Simulation method 

Ideally a simulation program should run at speeds comparable to the real network in order to 

enable results to be gathered rapidly [89]. Three levels of simulation detail are possible when 

constructing network models; the more detailed the level the longer the simulation time 

required. 

The first is cell or packet level simulation, where the basic unit of traffic is the ATM 

cell or IP packet, so that all the signalling and data carrying cells/packets are simulated, each 

cell/packet arrival being a simulation event. A coarser level of detail is the burst which is 

defined as a group of cells or packets with constant arrival rate, an event being a change in 

this cell/packet rate, so causing far less traffic events than cell/packet level simulation. 

Finally there exists session level simulation which is where individual traffic events consist of 
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the setting up, modification and tearing-down of a session, with the data fransmission part of 

the session not being simulated. 

With our CAC model being based on pre-calculated effective bandwidths rather than 

measured statistics (see chapter 3), the data modelling is encapsulated at a coarse level by the 

effective bandwidth calculations themselves. Therefore for speed of simulation purposes, it 

was decided to use session level simulation models. In order to obtain simulation results on 

connection set-up times, a multiple packet-based signalling has been modelled rather than 

having just the single set-up packet indication. 

Two differing methods of simulation are available, both discrete-event simulation and 

time-driven simulation. Discrete-event simulation is driven by separate events being 

enqueued in a time-ordered event list and the simulator kernel consuming and acting on these 

time-ordered events [83]. On the other hand, time-driven simulation progresses in discrete 

time steps, with the simulator kernel performing the event actions that are scheduled to occur 

at that particular time instant. Time-driven simulation provides a speed improvement when 

many events occur during each progressed time instant, otherwise event-driven simulation is 

faster and so generally preferable. As session level simulation causes significant periods of 

time with no events and then a number of events on the same time instances, it was decided to 

use discrete-event simulations. The OPNET simulation kernel operates in a discrete-event 

fashion, and so naturally complements this decision. OPNET could still have been used i f 

performing time-driven simulations, but each network element would have had to generate its 

own time-driven events. 

B.4.2 Model design 

The following section does not deal with the intricacies of the network model design, but 

some of the high-level concepts only. These include showing the weaknesses in the standard 

model libraries that are included with OPNET, and the design and functionality of the newly 

developed library. Details of the network topologies used and the connection characteristics 

for the various fraffic types are given in chapter 3 and so are not included below. 

B.4.2.1 Weaknesses of the standard model libraries 

The OPNET modelling environment comes complete with certain model libraries; for 

example the A T M models being compliant to the ATM Forum UNI signalling protocol [41]. 

These libraries was evaluated for suitability in this research, but was unfortunately found to 
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be unsuitable due to several significant limitations. These in the main revolved around the 

fact that the modelling methodology that had been used precluded large topology and 

concurrent call simulation experiments. 

The main limitations in the ATM library range as follows: VPCs can only be one link 

in length; VCCs are statistically set up at the start of the simulation and cannot be reassigned, 

and source and sink models can handle just one VCC each. As the research direction was 

unclear at the beginning of the project, it was thought important to have full ATM 

functionality available. This was in case strands of the research focused on all three levels in 

the technology that affected routing decisions: the VPC topology management, the VPC 

bandwidth allocation, and the VCC route management. 

However the main general limitation is due to an object-orientated modelling 

philosophy having been used in constructing the model libranes. This causes the instantiation 

of a new process model on each node traversed by a route when setting up a new call on the 

network. Whilst this method results in clear and easily maintainable models, the weakness is 

that as the network topology and number of concurrent calls grows, so the run-time 

simulation program increases in memory size. This precludes the possibility of simulating 

large network topologies and many concurrent calls as the run-time process size becomes too 

large for the available computer memory resources. 

Due to these limitations, it was decided to construct a new model library. The 

OPNET environment facilitates the coding of new models by using C code within Finite State 

Machines, resulting in a pictorial representation of the process' functionality. Currently the 

constructed library of models amounts to over 13,000 lines of C code. 

B.4.2.2 The new model library 

The functionality of the new model library currently supports logical link set-up via a simple 

signalling protocol, and call set-up and tear-down via the ATM Forum UNI signalling 

protocol [41] and PNNI document [90]. This is similar to using RSVP with the fritServ 

paradigm [14]. This allows for accurate simulations which also indicate the connection set-up 

time for different algorithms. The standard can also be tested as to whether it provides for the 

requirements of various algorithms. As detailed within the body of the thesis, various 

algorithms to perform unicast call routing have also been implemented, with new algorithm 

implementation requiring relatively simple modifications as the basic node models are 

consistent with all the algorithms. 

The modelling philosophy used for the standard model libraries has not been 

followed. Rather than having a separate process which stored the information pertaining to 
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one call fraversing a node, with multiple calls requiring multiple process instantiations at that 

node, the new design is based on having a single process on each node with an associated list 

of data holding the information for all the calls fraversing the node. 

The A T M Forum specifies the setting up and tearing-down of VCCs be performed 

using defined signalling packets encapsulated within the payload of the standard ATM cell. 

The full recommended procedure has been followed in order to obtain accurate session set-up 

times for different routing algorithms. Figure 82 shows the process that is undertaken when 

setting up a VCC over three VPCs. The time axis is vertical, increasing as one fravels down 

the figure. The various different signalling packets are indicated on the diagram, these being 

generated by the A T M layer. The application above the source node's AAL layer is allowed 

to commence fransmission of data after the reception of the 'begin ackpdu'. 
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Figure 82: The signalling process required to set-up a VCC traversing 3 VPCs 
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The 'set-up', 'call proceeding', 'connect' and 'connect ack' packets are all generated by the 

A T M layer to set up the VCC, with the source AAL being informed of the VCC when the 

'connect' packet arrives from the destination node ATM layer. The AAL layer then generates 

a 'begin pdu' which is encapsulated in an A A L packet which is in its turn encapsulated into 

an A T M cell and sent to the destination node AAL layer for A A L session instantiation. At 

the reception of the 'being ack pdu', the source node AAL informs the application above it 

that the connection is set-up and that transmission of data packets can now begin. In this 

example, the routing tables at four nodes will be updated, even though the route might 

fraverse many more nodes due to each VPC being more than one physical link in length. It 

should be noted that i f the VCC traverses only one VPC, then the ti-ansmission of 'call 

proceeding' signalling packets wil l not occur. The equivalent IP based RSVP is similar [10]. 

Figure 83 shows the signalling process required when tearing down a VCC. The 

source node application informs the AAL layer that it no longer requires the connection, and 

the A A L layer commences the tear-down of it by sending an 'end pdu' to the destination node 

A A L layer. On the reception of the returning 'end ack pdu', the A A L connection is closed, 

and the A T M layer can then tear-down the VCC. At the reception of the 'release complete' 

packet, each node clears its routing table of the VCC entry. The equivalent IP based RSVP is 

again similar [10]. 

B.5 Analysis of results 

The OPNET environment includes the facility for specifying probes that gather results during 

simulation runs [91]. These results may then be displayed in an analysis window, there also 

being the possibility of analysis using the built-in analysis function blocks. 

Due to perceived limitations in the graphing and analysis functions included with the 

package however, it was decided to output the pre-processed results to a file as simulation 

occurred. This raw results data file could then be imported into a standard data analysis 

package for post-processing and displaying of the analyses. 

Microsoft Excel [92] was used as the post-processing package as the spreadsheet 

analysis functions are familiar and the resulting graphs ported to a document can still be 

linked with the analysis data. 
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Figure 83: The signalling process required to tear-down a VCC which traverses 3 VPCs 
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B.6 Summary 

The main aim of this appendix has been to describe the important issues relating to the 

simulation models used to test the various routing algorithms. After giving the reasons for 

choosing simulation modelling rather than analytical techniques, there follows an overview of 

an evaluation of commercial simulation packages which was undertaken at the start of the 

research. Having chosen OPNET as the modelling and simulation environment, different 

simulation method possibilities were examined and the one giving the required level of detail 

for the problem under investigation was selected. 

Due to limitations in the standard models included with the OPNET environment, it 

was thought that these were unusable for the envisaged research experiments. These 

limitations were highlighted along with the high-level details of the new model library which 

was therefore constructed. Finally, rather than using the analysis and displaying functions 

within the OPNET environment itself, reasons were given for the benefit of exporting the raw 

results data to Excel for analysis and display. 
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Appendix C : Erlang loss formula calculations 

In the Erlang Loss Formula, the probability that a call requesting use of a line is blocked is 

given by [18]: 

p' ll\ 

where p= X/ fi,X being the call arrival rate, Xlp the mean call time, and / the number of lines 

in the trunk group. For the four node network shown in Figure 18, the path blocking and 

penalty probabilities may be written as: 

4=0 

^1 = I. 

k=0 
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