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ABSTRACT 

The work in this thesis was aimed at the preparation of low energy surfaces via 

the surface attachment of fluorinated surfactant molecules. Such surface 

functionalisation routes are highly dependent on the chemical nature of the 

substrate surface. For this reason the choice of substrate materials is both all 

important and extremely limited. To make the process of more general appeal a 

method for pre-treating the substrate, using cold plasma polymerisation 

reactions, followed by surfactant coupling to the plasma polymer has been 

devised. Using this approach, the surfactant coupling process is now dependent 

on the surface chemistry of deposited plasma polymers and independent of 

substrate characteristics. 

In order to form highly functionalised surfaces, likely to undergo further reactions, 

the plasma polymerisation of acrylic acid, ally! amine and allyl alcohol was 

investigated. Highly functionalised acid, amine and alcohol surfaces, as shown 

by X-ray Photoelectron Spectroscopy (XPS) and Infrared Spectroscopy (IR), 

were produced by optimisation of pulsed plasma conditions. Measurement of 

deposition rates during plasma polymerisation reactions indicated that 

polymerisation can occur during the off-time of the pulsed plasma period, most 

likely via free radical polymerisation pathways. 

Highly functionalised plasma polymer surfaces thus formed were shown to 

couple to fluorinated surfactant molecules. The mechanism of surfactant 

attachment has been suggested to be ionic attraction between opposite charges 

on the surfactant molecule and the plasma polymer in aqueous solution. The 

surfaces formed give rise to oleophobic/hydrophilic behaviour. This is in marked 

contrast to the usual liquid repellent attributes of conventional polyelectrolyte-

fluorosurfactant complexes formed by solution phase synthesis. 
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CHAPTER ONE 

AN INTRODUCTION TO NON-EQUILIBRIUM GLOW 

DISCHARGES, PLASMA POLYMERISATION, SURFACES 

AND CHARACTERISATION TECHNIQUES 



1.1 INTRODUCTION 

Plasma processing of materials has grown into a multi-billion pound industry 

world wide, with applications in fields such as organic chemistry, polymer 

chemistry, biology, solid-state electronics and metallurgy.^ The industrial use of 

plasmas may be divided into three main categories: 

• Surface modification; plasmas are widely used to alter the surface 

properties of solid materials via the action of reactive species and 

ultraviolet radiation.^ Classes of surface modification include altering 

the wettability,^"^ the molecular weight of a polymer,^ adhesion 

behaviour, ̂ '̂  hydrophobicity,^°'^^ refractive index,"" '̂̂ ^ and 

composition.^'* 

• Surface etching; plasmas can physically etch surfaces. Two distinct 

types of etching exist; physical etching where ions from the plasma 

bombard the surface and chemical etching which involves surface 

reactions and the loss of low molecular weight stable species from the 

solid.''' 

• Deposition; new materials can be deposited from plasmas.^® This 

application will form the basis of the work presented here and will be 

discussed in further detail in the rest of this chapter. 

1.1.1 DEFINITION OF A PLASMA 

The term "plasma" was first used by Langmuir to describe the state of ionised 

gas found in electrical d i s c h a r g e s . A plasma can be viewed as a fourth state of 

matter which is composed of positively charged ions and electrons. Equal 

numbers of these species mean that plasmas are approximately neutral. As we 

shall see this picture is an oversimplification and a plasma may be defined more 

accurately as a "quasineutral gas of charged and neutral particles which exhibits 

collective behaviour."^®'^^ Although comparatively rare on Earth, most of the 

matter in the universe may well exist in the plasma state. 



1.2 GAS DISCHARGES 

1.2.1 GAS DISCHARGES 

Lightning and the Aurora Borealis are natural examples of the conduction of 

electricity through gases. Lightning occurs at atmospheric pressures while the 

Northern Lights are examples of electric currents passing through gases at very 

low pressures.^" It has even been suggested that many alleged UFO sightings 

may be the result of electrical phenomenon occurring over highly charged 

regions of the earth's surface owing their existence to geological faults. 

Electrons in gases are strongly bound to the positive nuclei; when electric field 

strengths are low, gases are highly insulating. Theoretically high electric field 

strengths would be required to ionise the atoms or molecules of gases. 

However, gases usually become conducting at much lower field strengths.^° To 

explain this phenomenon it has been suggested that free electrons are always 

present in gases due to the ionisation of particles by cosmic rays and 

background radioactive decay. The conduction of electricity in gases is 

complicated by the presence of positive ions, lonisation of gas particles to 

produce free electrons liberates an equal number of positive ions. These ions 

are also accelerated by the electrical field; but in the opposite direction. 

Gas discharges can be divided into self sustaining and non-self sustaining 

discharges.^" Self sustaining discharges do not require outside sources of 

electrons for the discharge to be maintained. Non-self sustaining discharges 

make use of external methods of producing charged particles to perpetuate the 

discharge. If this aid is removed the discharge is extinguished. Such discharges 

can be produced by heating the electrodes or the gas itself to liberate free 

electrons. The discharges utilised in this thesis are examples of non-self 

sustaining discharges and this class alone will be considered further. 



1.2.2 DISCHARGE AND BREAKDOWN 

Consider a gas between two parallel flat metal plates. When the voltage between 

the plates is small the gas is an insulator and no current flows between the 

electrodes.^" If the potential difference between the plates is increased the gas 

eventually becomes conductive and an electric current flows between the plates. 

The lowest voltage at which current is observed is known as the "breakdown 

voltage."^° At atmospheric pressure a spark of high current, lasting only a 

fraction of a second, passes between the electrodes. At lower pressures the 

current between the plates may be very small. The discharge voltage can be 

followed as a function of current passing through the gas. Figure 1.1. 
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Figure 1.1: Voltage plotted as a function of current for electrical 

discliarges 20 

At low currents, where the gas has resistance of megaohms, the discharge is 

known as a Townsend discharge.^" Breakdown of the gas occurs in this region. 



1.2.3 HOW IS THE DISCHARGE MAINTAINED? 

The electrical field in Townsend discharges is not strong enough to ionise the 

gas particles.^" However, as previously explained (Section 1.2.1), free electrons 

and ions are always present. These electrons are accelerated by the electric 

field. If the electrons gain sufficient energy, i.e. the ionisation energy or above, 

they are capable of ionising gas particles in collisions. These newly formed 

electrons are also accelerated by the field and may cause further ionisation 

leading to an avalanche of ionisation processes. However, ionisation of gas 

particles by free electrons is not very efficient. Collisions of electrons with the 

massive gas particles are likely to be elastic, with no energy being transferred. 

Furthermore, inelastic processes include excitation as well as ionisation. It is this 

excitation of gas particles and the subsequent relaxation pathways which cause 

the emission of light from gas discharges. In reality the number of electrons 

produced by the ionisation of gas particles is insufficient to account for the 

electron currents observed in such discharges. Ions strike the cathode liberating 

secondary electrons which are accelerated away from the cathode back into the 

discharge. These extra electrons account for the deficit. 

1.2.4 THE GLOW DISCHARGE 

When the current observed between the plates reaches the milliamp region the 

discharged is termed a "Glow discharge," Figure 1.1.̂ ° The glow discharge is not 

uniform across the width of the discharge, unlike the Townsend discharge. The 

discharge consists of 2 main luminous regions and 2 dark spaces.^° Adjacent to 

the cathode there is the Crookes dark space followed by the negative glow, the 

faraday dark space and finally, if the distance between the electrodes is large 

enough, the positive column. Almost all of the potential difference between the 

electrodes is concentrated between the cathode and the beginning of the 

negative glow. The rest of the discharge is relatively field free. Electrons are 

accelerated across the Crookes dark space by the electric field. These electrons 

are secondary electrons formed by the mechanism described above. They 

reach the negative glow with fairly high energies. Collisions in this region cause 



ionisation and electronic excitation. This gives rise to the light emitted from the 

negative glow. The change in potential across the Crookes dark space is given 

the name the "Cathode Fall."^° The cathode fall is constant for a range of 

currents. Figure 1.1. This corresponds to the region where the cathode is only 

partially covered in glow. Increasing the current extends the glow coverage of 

the cathode and the current grows in direct proportion to the area of the negative 

glow. This situation is termed the "Normal Glow."^° Once the entire surface of 

the cathode is covered in glow, the cathode fall of potential increases and 

becomes abnormal. The current density has to increase if the current is to be 

increased further.^" 

1.3 PLASMA THEORY 

1.3.1 PLASMAS 

A plasma is a partially ionised gas consisting of equal numbers of positive and 

negative charge carriers and a different number of neutral par t i c les .The 

plasmas in question contain a relatively small number of charged particles. 

Typically the degree of ionisation is approximately 10^. Under these conditions 

we assume that the Coulomb interactions between particles sum to zero. 

1.3.2 ELECTRON AND ION TEMPERATURES 

The mechanisms occurring in plasmas are excitation, relaxation, ionisation and 

recombination. For a steady state to be reached, i.e. electron and ion densities 

to be equal, then the rate of ionisation must equal that of recombination.^^ To 

fulfil this criteria energy must be put into the system. This usually takes the form 

of an electrical field. As ions have a much larger mass than electrons the action 

of the field is mainly to give energy to the electrons. The electron energy 

distribution, for a given mean electron energy (e), can be predicted by two 



models, the Druyvesteyn and the Maxwellian. The former distribution predicts 

fewer high-energy electrons.'' Figure 1.2. 

Maxwellian 
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<e> = 1.0 eV 
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0.3 -I <€> = 2.0 eV 

E / e V 

Figure 1.2: Electron energy distribution in a plasma.^ 



Collisions occur at a very high rate in plasmas. Electrons colliding with massive 

neutrals and ions in the plasma only transfer a small proportion of their energy in 

such collisions. This is a direct result of the large difference in mass between 

them. Conversely, ions and neutrals exchange large proportions of their energy 

on collision with each other and with the container walls. Thus the average 

kinetic energy of the electrons is high (typically 2 - 8 eV),^^ corresponding to 

temperatures in the region of 60,00 K (2 eV = 23,200 K). On the other hand the 

energy of the ions is not much greater than that of the neutral species, i.e. room 

temperature. This type of plasma is known as a "non-equilibrium plasma." 

1.3.3 EQUILIBRIUM AND NON-EQUILIBRIUM PLASMAS 

The equilibrium plasma is termed a hot plasma.""^ At temperatures of greater 

than 10,000 K molecules are ionised and a plasma is formed. In this type of 

plasma the temperatures of the electrons and other species in the gas are 

approximately equal. A thermal equilibrium therefore exists between all of the 

species present Examples of this type of plasma include stars with 

temperatures ranging from 5,000 to 70,000 K.̂ ^ Non-equilibrium plasmas, as 

explained above, occur when the temperature of the electrons greatly exceeds 

that of other gas species. These are termed "cold plasmas" because the 

temperature of the species of which the plasmas are formed does not greatly 

exceed room temperature (except the ionised electrons).Due to the very high 

temperatures generated equilibrium plasmas are not used for modification or 

deposition of polymers and will not be considered further. 

1.3.4 FLOATING POTENTIAL 

The electron and ion density in non-equilibrium plasmas are approximately equal 

and much smaller than the density of neutral species.^^ The density of ions and 

electrons is known as the "plasma density."^^ If an electrically isolated substrate 

is introduced into the plasma it will be bombarded by electrons and ions with 



certain charge fluxes (i.e. current densities).^^ The electron flux is given by the 

following equation,^^ Equation 1.1: 

and the ion flux is,^^ Equation 1.2 

i , - ' - ^ EC. 1.2 

where j , n and c are the electron (subscript e) or ion (subscript i) flux, number 

and velocity respectively. As Ce is much greater than Ci, electron fluxes are 

often three orders of magnitude greater than ion fluxes. Therefore, the substrate 

is initially bombarded by many more electrons than ions and rapidly acquires a 

negative charge with respect to the p lasma.Electrons are repelled from the 

substrate by the negative charge and ions attracted. A balance is achieved 

where the electron flux, reduced by repulsion, compensates the ion flux reaching 

the substrate surface. The potential of the substrate is known as the "floating 

potential" (Vf, which is the same as the potential of electrically isolated walls of 

the plasma chamber).^^ This floating potential is measured relative to the 

"plasma potential" (Vp), which will always be positive. 

1.3.5 PLASMA SHEATH 

Isolated substrates acquire a positive charge around them as they repel 

electrons.^^ This is known as a "space charge" and results in the formation of a 

"sheath" about the substrate.^ '̂̂ '̂̂ ^ The electron density in the sheath decreases 

towards the substrate and a sheath voltage is established. Electron collision with 

gas species, causing electronic excitation, is responsible for the light emitted by 

plasmas. As the electron density in plasma sheaths is much lower than that in 

the bulk plasma this area is less luminescent. The sheath is visible around 

objects within the plasma as an area of lower luminosity than the glow. Typical 



sheath voltages are of the order of +15 V.̂ ^ Only high energy electrons have 

enough energy to transverse the sheath and arrive at the substrate. The ion flux 

reaching the substrate is not increased by the magnitude of the floating potential 

as the flux is limited by arrival of ions at the plasma-sheath interface. However, 

the kinetic energy of ions at the substrate surface is governed by the sheath 

voltage. If no collisions occur in the sheath then ions will strike the substrate with 

a kinetic energy equivalent to the sheath voltage.^^ 

1.3.6 DEBYE SHIELDING 

Although the net Coulomb interaction between particular charges sums to zero 

on average; the instantaneous potential at a point due to a disturbance is non­

zero and time dependent.^^ If the potential in the plasma is perturbed, the 

plasma reacts to oppose the change. The "Debye length" (A-D, typically 100 |im), 

is a measure of how quickly the perturbation is attenuated in the plasma. The 

Debye length is defined by the distance required for a perturbation to be reduced 

to 1/e of its initial value.^^ When considering a particular charge in the plasma 

we need to take into account the sum of individual interactions with all other 

charges within a radius of 1 or 2 Debye lengths. Outside this sphere the net 

interaction is assumed to be zero.^^ 

1.4 METHODS OF GENERATING NON-EQUILIBRIUiVI PLASMAS 

1.4.1 DIRECT CURRENT (dc) DISCHARGES 

One of the simplest ways to produce an electrical discharge is to pass a dc 

through a gas situated between two plane electrodes; this is the glow discharge 

(Section 1.2.4). The actual structure of the gas in the discharge is more complex 

than previously suggested. A diagrammatic representation of the normal glow 

discharge, in neon gas at a pressure of 1 torr, reveals the different regions 

created, Figure 1.3.̂ ° 
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The positive column of dc discharge most resembles the idealised plasma 

(Section 1.2). In this region the discharge is approximately field free. If the 

electrodes are brought progressively closer together then the length of the 

positive column Is diminished. The Crookes dark space and the negative glow 

are unaffected. Eventually the positive column and Faraday dark space will be 

completely consumed and any further inward movement will extinguish the 

discharge.^" 

1.4.2 CORONA DISCHARGE 

To produce discharges at higher gas pressures it is necessary to alter the shape 

of the electrodes used and a point and plane configuration is often employed,'-^^ 

Figure 1.4. Using this design discharges can be produced in gases at pressures 

of up to one atmosphere. Due to the small surface area of the point electrode 

the electrical current at this position will be very high. The glow of such systems 

is concentrated at this point and the small volume of active plasma produced 

limits their use in industry. They do however find an application in such devices 

as copying machines where they produce charged particles. 
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Figure 1.4: Corona Discharge 24 

1.4.3 SILENT DISCHARGE 

The silent discharge is a large volume method with the ability to create 

industrially useful discharges at atmospheric pressures,̂ "* Figure 1.5. One 

electrode in silent discharges is covered in a dielectric material. Micro-

discharges take place between the electrodes. The reduced field at the 

breakdown voltage corresponds to electron energies of 1-10 eV. If high 

frequency electrical currents are used then high power dissipation can be 

achieved at low voltages. 

Micro-
discharge 

Electrode 

Electrode 

Dielectric 

Figure 1.5: The silent discharge 24 

12 



1.4.4 RADIO FREQUENCY (rO DISCHARGES 

rf discharges are commonly used in polymer processing applications and have 

several advantages over other types of discharges:^^ 

• Direct contact between the electrodes and the plasma is avoided. 

This overcomes the problem of contamination in plasmas by particles 

spluttered from the surfaces of electrodes; 

• Insulating materials can be studied more easily in these systems than 

in dc discharges; 

• rf discharges are also more efficient than dc systems at producing 

ionisation and sustaining the discharge; 

• The minimum operating pressures are also reduced in rf discharges 

compared with dc discharges. 

Frequencies of alternating current above 1 MHz are used for rf discharges. The 

frequency most often employed is 13.56 MHz, due to government broadcasting 

limitations.^" 

1.4.4.1 rf Sheaths 

The sheath thickness in rf systems is far less dependent on gas pressure than in 

the dc case.^^ Little ionisation occurs in the sheath region but it is generally not 

collision free (depending on gas pressure). The energy distribution of ions which 

transverse the sheath will be affected by the rf modulation.For example, a 20 

eV argon ion has a velocity of 9.8 x 10^ cms"\ It would therefore take 

approximately 1 \is to transverse the 1 cm of the sheath.^^ However, a frequency 

of 13.56 MHz corresponds to oscillations of 74 ns which means the ion would 

undergo several oscillations on its journey to the wall. The energy of ions at the 

substrate surface should be equal to that of the plasma potential, modulated by 

collisions and the oscillating field. Fast light particles will cross the sheath quickly 

and be affected by the instantaneous potential. The energy distribution of such 

particles is narrow, while slow moving, heavier particles see only an average 

potential. Their energies characteristically show a broad distribution.^^ 
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1.4.4.2 Matching Networks 

A matching network is placed between the rf generator and the discharge. This 

network increases the power dissipation in the discharge and protects the 

genera tor .The matching network is situated close to the discharge to avoid 

power loss which might occur due to the large reactive currents flowing between 

the discharge and the matching network.^^ The two methods of matching 

routinely used are inductive and capacitive coupling. Figure 1.6. 

(a) 

(b) 

(c) 

Figure 1.6: Matching in rf discharges: (a) and (b) are capacitively coupled; 

and (c) is inductively coupled.^ 
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1.4.5 MICROWAVE DISCHARGES 

Microwave discharges have the advantage that they can be operated in a wide 

pressure range, from 1 mbar to atmospheric.^^ The frequency of microwave 

electromagnetic radiation is 0.3 to 10 GHz.̂ ^ As a result the wavelength of the 

electromagnetic radiation used to maintain the plasma is similar to that of the 

reactor dimensions and resonance can occur. This makes the discharges 

efficient but difficult to maintain. 

1.5 PLASMA POLYMERISATION 

1.5.1 INTRODUCTION 

Many organic molecules possess sufficient vapour pressure for the maintenance 

of an electrical discharge. Under these conditions novel materials may be 

produced by polymerisation of the organic monomer subject to the discharge. 

These polymers are typically thin films which bare little resemblance to polymers 

formed by more conventional routes. This new class of materials are termed 

"plasma polymers" and are often highly branched, cross-linked, amorphous thin 

films.'" 

The process of plasma polymerisation is discernible from conventional 

polymerisation by several important features:^^ 

• The polymers formed lack a recognisable repeat unit; 

• Polymer properties are highly dependent on the conditions of 

polymerisation as well as the initial monomer structure; 

• Potential monomers do not require a conventional polymerisable 

functional group such as a double bond. 

The chemistry of plasma polymerisation is a nonthermal, nonequilibrium process 

and the electron temperature in non-equilibrium plasmas is several orders of 

magnitudes greater than the gas temperature.'^ Chemical reactions can take 

place at lower temperatures than would be possible under thermal conditions. 
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An understanding of the mechanism of plasma polymerisation would be useful in 

the tailoring and optimisation of polymer properties. Before considering likely 

plasma polymerisation mechanisms a brief review of more conventional 

polymerisation mechanisms is required. 

1.5.2 STEP-GROWTH POLYMERISATION 

Step-growth or condensation polymerisation occurs if two difunctional molecules 

react.̂ ® The product of such a reaction also possesses two functional groups. It 

is assumed that the reactivity of these groups is not dependent on the chain 

length when it is greater than a critical value. A small molecule is eliminated in 

the polymer forming reaction. This molecule must be removed for efficient 

polymerisation. For step-growth polymerisation to take place the equilibrium 

constant for the forward reaction must be l a r g e . T h e formation of the 

polyamide Nylon from a diacid and a diamine is one example of a polymer 

formed by a step-growth polymerisation mechanism. Figure 1.7. 

0 0 0 0 
II II • II II ; 

H2N(CH2)nNH2 + H0C(CH2)mC0H • -;-HN(CH2)nNH-C(CH2)mC-;- + HjO 

Figure 1.7: Step-Growth Polymerisation.̂ ® 

1.5.3 CHAIN-GROWTH POLYMERISATION 

The formation of polymer molecules by chain-growth polymerisation occurs via 

consecutive reaction of the end of a "living" polymer chain with a monomer 

molecule. There are three distinct stages in the chain-growth mechanism which 

can be represented as shown overleaf:^^ 
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ki 
Initiation A* + M ^ M* 

Propagation M* + M ^ — • Mj 

M„* + M ^ — • Mn+i' 

Termination Mp* ^ — • Pn 

Figure 1.8: Chain-Growth Polymerisation 16 

The first stage involves the formation of an active site and is termed initiation. 

The monomer (M) can be activated by collision with an initiator compound (A). 

The polymer molecule is formed by the rapid reaction of monomer molecules 

with the active site in the propagation step. The growth process is terminated 

when the active site is lost by colliding with a second active site. The active site 

could be cationic, anionic or more commonly a radical. Consideration of the 

mechanism of free radical polymerisation leads to the following observations:^" 

• The rate of polymerisation is proportional to the square root of the 

initiator concentration; 

• The degree of polymerisation is inversely proportional to the square 

root of the initiator concentration, i.e. the faster the polymerisation, the 

shorter the chain length. 

1.5.3.1 Thermodynamic Limitation on Chain Propagation 

On polymerisation, a large number of randomly oriented, moving monomer 

molecules become incorporated into a relatively well ordered solid structure. 

The entropy of the system is significantly decreased. As a result the enthalpy of 

the polymerisation reaction must be large and negative. Therefore the -TAS 

term dominates the thermodynamics of the system. Thus there is a ceiling 

temperature (Tc) to the polymerisation process beyond which polymerisation will 

not occur.^" 
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1.5.4 RADIATION POLYMERISATION 

Radiation polymerisation is similar to plasma polymerisation in that initiators are 

absent in both cases. Monomer molecules are ionised by radiation or high 

energy electron beams. A cation-radical is formed 

CH2=CHX • . C H 2 — C ^ + e-
X 

The ejected electron may recombine with the ion or the pair may become 

separated. If the latter takes place the cation and radical migrate to opposite 

ends of the molecule. Propagation proceeds independently at both ends of the 

molecule:^^ 

X X 
H ' I + 

• CH2—C. + CH2=CHX • • C H 2 - C - C - C H 
^ H H2 

The ejected electron could be captured by a monomer molecule to form an 

anion-radical pair also capable of initialising propagation reactions. 

1.5.5 POLYMERISATION IN A VACUUM 

Plasma polymerisation typically takes place at pressures below atmospheric. It 

is therefore necessary to take the reduced pressure into account when searching 

for possible plasma polymerisation mechanisms. Two pertinent points 

concerning polymerisation are highlighted below: 

• The number of molecules in a vacuum is considerably less than the 

number present in the same volume at atmospheric pressure; 

• The ceiling temperature to chain-growth polymerisation decreases 

with decreasing pressure. 
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The two major classes of polymerisation mechanisms discussed above are 

therefore ruled out as candidates for plasma polymerisation. The scarce 

population of monomer molecules would make conventional step-growth 

polymerisation too slow to account for the rapid polymer formation observed in 

many plasma systems.^" In the gas phase the change in entropy on 

polymerisation is greatly increased. Furthermore, due to the low pressures used 

in many plasmas, the anticipated ceiling temperature to chain-growth 

polymerisation is too low to expect appreciable polymer formation by this 

mechanism. 

1.5.6 PLASMA POLYMERISATION 

Plasma polymerisation is initiated by the formation of a reactive species by 

collision, electron impact, or interaction with an energetic photon. Polymer 

growth occurs by the addition of this reactive species to other species present. 

Termination may occur by collision of reactive species to form an unreactive 

polymer chain. This may undergo re-excitation, however, in a process akin to 

the original initiation. The polymerisation process can occur homogeneously in 

the gas phase or heterogeneously between gas phase species and activated 

surfaces. These processes are not mutually exclusive and may occur 

concurrently in the same system. Figure 1.9. 
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Figure 1.9: Schematic diagram of the various types of reaction involved in 

plasma poiymerisation.^" 

Reaction ki where monomer is directly incorporated Into the polymer film is 

called plasma induced polymerisation. Plasma polymerisation is taking place via 

reactions k2 and ka. The nature of the reactive species discussed above can be 

inferred by consideration of the discharge conditions, lonisation of molecules by 

electron collision is essential for maintaining the gas discharge. However, only 

high energy electrons (>10 eV) have sufficient energy to cause ionisation.^^ The 

electron energy distribution (Figure 1.2) in a typical plasma ensures that only a 

small proportion of the electrons in the plasma are energetic enough to cause 
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ionisation. However, a large proportion of the electrons are capable of breaking 

the covalent bonds present in many organic molecules, Table 1.1: 

H H 

H C 

H O 

H CI 

4.5 

4.3 

4.8 

4.5 

C C 

C N 

C O 

C F 

C CI 

3.6 

3.0 

3.6 

2.6 

3.6 

C = C 

C = C 

C = 0 

C = N 

6.4 

8.4 

7.5 

9.1 

Table 1.1. Average values of bond energies / (eV) 30 

We would therefore expect a far greater number of free radicals than ions 

present in the plasma. The concentration of free radicals in the plasma is 

estimated to be approximately five times greater than that of ions.̂ ^ For these 

reasons it is believed that the most important species in polymer forming 

plasmas are radicals. However, this assumption has recently been 

questioned. 

1.5.7 MECHANISM OF PLASMA POLYMERISATION 

Yasuda has proposed a mechanism based on the rapid step-growth principle,^^ 

Figure 1.10. There are two main routes of rapid step growth polymerisation. 

Cycle I represents the repeated reactivation of products from monofunctional 

activated species. Cycle II involves the reaction of difunctional or multifunctional 

species. 
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Cycle I 

Mi» + M 

Mi* + -M 

a. 

b. 

Cross-Cycle Reaction c. 

Plasma 
Excitation 

• M k * 

^ -Mk* + M 

•Mk* + *Mj* ^ *Mk-Mj' 

> *Mk-M. 

Cycle II 

i, j and k represent differences in size between the species. 

Figure 1.10: Schematic diagram of the proposed mechanism of plasma 

polymerisation.^^ 

Reactions a. and d. (Figure 1.10) require the monomer to possess a chemical 

structure that can add M*. Reaction b. is a termination step. Ions may 

contribute in reactions but reactions between neutral species are more likely.^^ 

1.5.8 POLYMERISATION PARAMETERS 

The plasma polymerisation technique is very system dependent. Under 

conditions of constant pressure, the most important parameter affecting the 

polymer structure is the power (W) to monomer flow-rate (F) ratio, W / F.̂ '* This 

parameter is modified by the molecular weight of the monomer (M) to give W / 

pi^ 16,35 dissociation of monomer molecules into radicals and ions in the 

d. 

e. 
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plasma is related to the energy each molecule receives. The chemical structure 

of the polymer produced is related to this parameter.^^ Different reactors cannot 

be compared quantitatively as monomer disruption is predominant in the glow 

discharge volume.^^ This volume is often different even for reactor systems with 

the same volume. 

1.5.9 CONCLUSION 

We have seen that one mechanism suggested for plasma polymerisation is rapid 

step-growth polymerisation. A wide range of species are involved and may 

consist of cations, anions, or more commonly, radicals. The reactions occurring 

in the plasma, homogeneously and heterogeneously, are complex and difficult to 

characterise. It seems unlikely that reaction mechanisms can be confidently 

described by the analysis of the polymers formed alone. 

1.6 PULSED PLASMAS 

The properties of plasma polymers are very dependent on the plasma system's 

parameters. The plasma is often a harsh environment and a large proportion of 

functional groups are rapidly lost from monomers and leave the plasma as stable 

molecules such as H 2 O or C O 2 . Incorporation of desirable functional groups into 

the plasma polymer is therefore often difficult. Over the last few years a new 

technique for plasma processing has been developed to tackle these difficulties 

in which the plasma is pulsed. In most examples of such work an rf plasma is 

utilised. Typically, the rf power supply is pulsed on and off by an external pulse 

generator. A quantity known as the duty cycle describes the pulse cycle used,^^ 

Equation 1.3: 

Duty Cycle = ton 

ton + toff 
Eq. 1.3 
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where ton is the plasma on-time, toff is the plasma the off-time and Pp is the peak 

rf power supplied to the plasma by the rf generator. A schematic of a typical 

pulsing experiment is presented below. Figure 1.11: 

Plasma U 

Plasma 
Pn 

Plasma toff 

Figure 1.11: Schematic representation of the pulse modulation of plasma 

discharges. 

During pulsed plasma experiments the average power supplied to the plasma 

can be calculated,^^ Equation 1.4: 

<P> = PpX 
ton + toff 

Eq. 1.4 

where <P> is the average power. Examples of structural retention during 

electrically pulsed plasma include deposition from silicon containing 

monomers,halocarbons,^®'^^"^^"^ tin containing precursors,"*^ alcohols'*^ and 

other reactive molecules.^^"^ Increased structural retention is not only achieved 

due to low average discharge powers but conventional type polymerisation 

reactions may occur in the off-time.^^ '*̂  '*̂  
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1.7 SURFACES, INTERFACES, CONTACT ANGLES AND 

SURFACTANT ADSORPTION 

1.7.1 INTRODUCTION 

An interface is a region of finite thickness where one bulk phase changes to 

another."*^ If one of the phases is a gas or a vacuum the interface is known as a 

surface. The atoms and molecules at surfaces or interfaces have chemical and 

physical properties which differ from those of the bulk material.''̂ "^^ The 

differences arise from the fact that molecules situated close to the surface are 

subject to different intermolecular forces than those experienced in the bulk of 

the material. This results in the total energy of a system being different when a 

surface exists.'*^ This excess energy is often called surface tension or surface 

energy.^^ The chemical nature of surfaces has a direct influence upon their 

interaction with other molecules during surface wetting and adsorption. The 

attractive energy between surfaces and other molecules may be broken down 

into separate contributions from different types of intermolecular forces such as 

dispersion, induction and dipole-dipole forces of attraction.Interactions were 

formerly described as polar and nonpolar, however, it has been recognised that 

polar interactions occur only between the acidic and basic sites of interacting 

materials.^ Dipole-dipole interactions are now characterised as part of 

"nonpolar" van der Waals interactions.^^ "Polar" interactions, including hydrogen 

bonds, are considered to be electron donor-acceptor (Lewis acid-base) 

interactions.^^ 

In this section we shall discuss the contact angle of liquids on solid surfaces and 

the adsorption of surfactants at an interface. A surfactant (or surface active 

agent) is a molecule which demonstrates surface activity,^^ i.e. it adsorbs 

preferentially at interfaces. Such surface activity arises from the molecular 

structure of surfactants. Surfactants have a characteristic structure consisting of 

two main structural groups known as "lyophobic" and "lyophilic." Lyophobic 

groups have little attraction for the solvent and commonly consist of a 
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hydrocarbon or fluorocarbon chain. Lyophilic groups interact strongly with the 

solvent and are often polar in nature.̂ ® 

1.7.2 SURFACE ENERGY AND CONTACT ANGLES 

The discussion of the excess energy present at solid surfaces is assisted by the 

consideration of the formation of new surfaces by separating two bulk phases. 

Figure 1.12. 

Figure 1.12: The formation of a new surface 48 

The reversible work required to produce a surface of unit area is the surface 

energy. Equation 1.5:'*® 

Y = 
'5G^ 
.5A, T,P,n 

Eq. 1.5 

where y is the surface energy, G is the Gibbs free energy, A is the surface area, 

T is the absolute temperature, P is the pressure and n is the total number of 

moles in the system. A drop placed on a solid surface changes shape until it 

reaches an equilibrium. Figure 1.13. The driving force behind this 

rearrangement is the minimisation of the free energy of the system.^^ 
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52 Figure 1.13: A drop on a solid surface. 

The equilibrium at the 3 phase boundary (solid, liquid and gas) is described by 

the Young equation,̂ "̂®^ Equation 1.6: 

Y s v - Y s i = YivCOse Eq. 1.6 

where Ysv is the surface energy of the solid in equilibrium with the saturated 

vapour of the liquid; Ysi is the interfacial energy between the solid and the liquid; 

Tiv is the surface energy of the liquid in equilibrium with its saturated vapour; and 

6 is the equilibrium contact angle for a drop of the liquid on the surface. This 

equation forms the basis of a set of arguments which enable the calculation of 

the surface energy of an ideal solid from the measurement of contact angles.^ 

An ideal solid is molecularly smooth and characterised by a well defined value of 

surface energy. The wetting liquid must be a neutral probe, i.e. it must not 

interact physically or chemically with the surface.^^ These restraints make the 

measurement of surface energy in real systems very difficult. Liquid drops can 

display many different stable contact angles on a real surface and this behaviour 

is called "contact angle hysteresis."^^'^ The maximum contact angle is often 

observed when the liquid first wets the solid when it is known as the "advancing 

angle." The minimum angle, the "receding angle," is observed on removal of the 

liquid from a previously wet surface. 
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1.7.3 CONTACT ANGLE HYSTERESIS 

When contact angle hysteresis arises from surface roughness or surface 

heterogeneity it is known as "thermodynamic hysteresis." A type of time 

dependent hysteresis known as "kinetic hysteresis," arises from non-equilibrium 

processes. These non-equilibrium processes may result from the fact that real 

liquids are not neutral probes and may penetrate and/or swell the surface region 

of the solid. It might also be that polymer surfaces are mobile and may 

rearrange in response to the environment.^^ These properties of real surfaces 

produce many closely spaced local energy minima (or metastable states) in 

place of one energy minimum. This leads to a range of allowed contact angles 

with energy barriers of varying magnitudes between them.^^ 

1.7.3.1 Surface Roughness 

On a rough surface there is more surface than is actually measured by the unit 

area. A new term, known as the roughness factor (r), can be used to modify the 

Young equation (Equation 1.6),̂ ^ Equation 1.7: 

r(Ysv - Ysi) = Y ivcose^ Eq. 1.7 

where the subscript w indicates the contact angle on a rough surface, the 

Wenzel angle. The roughness factor, r, is defined below,Equation 1.8: 

r - actual surface ^ ^ ^ 
geometric surface 

Wenzel's angle is related to Young's angle {%) as follows,^^ Equation 1.9: 

cose^ = rcosGy Eq. 1.9 
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The roughness factor is always greater than 1 for rough surfaces and equal to 1 

for flat surfaces. If the Young angle is greater than 90° the roughness factor 

increases the contact angle and decreases the angle if it is less than 90°. This 

treatment is valid in the case of one defined energy minimum but does not 

include the effect of metastable states on the contact angle.^^ Further treatments 

which consider the angle of the rough surface at individual points predict the 

existence of a large number of metastable configurations separated by energy 

barriers.^^-^^ 

1.7.3.2 Surface Heterogeneity 

Usually real surfaces display some degree of heterogeneity, that is the surface 

molecular composition is not uniform across the entire surface region. This 

results in various regions on a sample surface possessing different wetting 

properties.^ '̂̂ ^ A basic equation to account for surface heterogeneity has been 

proposed,^° Equation 1.10: 

cosGg = cose^ + Q 2 cosGj Eq. 1.10 

where subscripts 1 and 2 refer to two different surface components, Q is the 

fractional coverage of each component, 0 is the Young angle and Qc is Cassie's 

angle, the equilibrium contact angle measured on a heterogeneous surface. 

This treatment is again concerned with the idealised situation of one energy 

minimum. Further work was required to predict the metastable states thought to 

be responsible for the range of contact angles experimentally observed.'^ 

1.7.3.3 Kinetic Contact Angle Hysteresis 

Kinetic contact angle hysteresis is time dependent and arises from the 

modification of the liquid drop towards a more stable state.^^ Such hysteresis 

can be caused by penetration of the test liquid into the solid surface. This has 
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been observed by water on polystyrene thin f i l m s . A further cause of time 

dependent contact angle hysteresis on polymer surfaces is change in the 

molecular structure in response to the nature of the test l i qu id .Fo r example, 

hydrophilic groups in poly(2-hydroxyethyl methacrylate) can reorientate towards 

water.̂ '*'̂ ^ 

1.7.4 POLYMER SURFACES IN SOLUTION 

An unequal charge distribution always exists at an interface between two bulk 

phases.^^ One side of the interface develops a net positive charge while the 

other side becomes negatively charged. A potential is therefore present across 

the interface with is termed an "electrical double l aye r .Ove ra l l neutrality is 

maintained as the net charge on one side of the interface is equal and opposite 

to the charge on the other side. The distribution of neutralising charges around a 

surface in solution is important as this distribution determines how the electrical 

potential varies with distance from the surface. Initial theories on this distribution 

of neutralising charges envisaged an ordered, parallel arrangement of 

counterions but this was soon superseded by a model which suggested a more 

diffuse layer of neutralising charges.^ '̂̂ ^ However, this model proved incorrect 

for surfaces with a high charge density and small distances because it did not 

take into account the ionic radii of the counterions. A new theory proposes that 

the solution phase portion of the interface should be separated into two different 

regions.^^ Close to the solid surface a layer of tightly bound counterions 

adsorbed onto defined sites is envisaged. Further from the surface a more 

diffuse layer of counterions exists,Figure 1.14: 
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Figure 1.14: The stern electrical double layer: (a) schematic representation 

of the counterion distribution; and (b) variation in the electrical potential 

with distance from charged surface.^ 

The potential is predicted to initially decrease quickly with increasing distance 

from the charged surface and then falls more gradually. Figure 1.14(b). It may 

even be possible for the adsorbed counterions to change the sign of the 

surface.^ The effective thickness (1/K) of the diffuse region can be calculated,"® 

Equation 1.11: 

K 47iF^ XC,Zf 
Eq.1.11 

where E t (= e/eo) is the relative static permittivity or dielectric constant of the 

solution (e is the static permittivity of the solution and EQ is the pemiittivity of a 

vacuum); R is the gas constant; T is the absolute temperature; F is the Faraday 
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constant; Z is the valence of the ion; and C, is the molar concentration of any ion 

in the solution. This thickness is a measure of how far from the surface into the 

solution phase the electrical potential has an effect. There are several 

conclusions which may be drawn from Equation 1.11:̂ ° 

• This distance is inversely proportional to the valence of the counterion 

(Z) and the square root of their concentration; 

• The distance will be increased as the temperature is raised; 

• The distance will also increase with increasing permittivity of the 

solution and since water has a high dielectric constant, electrical 

effects will be more important in aqueous systems than in organic 

solvents. 

1.7.5 SURFACTANT ADSORPTION AT THE SOLID-LIQUID INTERFACE 

The adsorption of surfactants at the solid-liquid interface is controlled by the 

following factors:̂ ®'° "̂̂ ° the chemical nature of the structural groups on the solid 

surface; the molecular structure of the surfactant (ionic or nonionic, hydrophobic 

tail length, etc.); and the environment of the aqueous phase (pH, electrolyte 

concentration, temperature, etc.). Generally, the adsorption of surfactant 

involves single surfactant ions rather than micelles.^ '̂̂ ^ There are a number of 

mechanisms by which surfactants may adsorb onto solid surfaces:^ 

1. Ion Exchange, counterions adsorbed onto the solid from solution are 

replaced by surfactant ions,̂ ®'̂ "̂̂ ^ Figure 1.15: 
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Figure 1.15: Ion exchange 58 

2. Ion paring, adsorption of surfactant ions onto unoccupied oppositely 

charged sites,̂ '̂̂ '̂̂ ^ Figure 1.16: 

e — 

© 
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© 

©-̂  

Figure 1.16: Ion pairing 58 

3. Acid-base interaction^ via hydrogen bonding "̂*"̂ ^ or Lewis acid-Lewis 

base reaction. Figures 1.17 and 1.18 respectively: 
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Figure 1.17: Adsorption via hydrogen bonding 58 
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Figure 1.18: Adsorption via Lewis acid - Lewis base interaction 58 

4. Adsorption by dispersion forces occurs via London-van der Waals 

dispersion forces. This mechanism of adsorption may supplement ail 

other adsorption types,̂ ® Figure 1.19: 

Figure 1.19: Adsorption via dispersion forces 58 
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5. Hydrophobic bonding occurs via attraction between hydrophobic groups 

on the surfactant molecule adsorbing onto the solid by aggregation of 

their cha ins ,™' ' ^ ' Figure 1.20: 
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Figure 1.20: Adsorption via hydrophobic bonding on a charged and an 

uncharged surface.̂ ® 

The mechanism of adsorption of the surfactant at the solid liquid interface and 

hydrophobic interactions between surfactant tails determine the conformation of 

the adsorbed surfactant layer. Adsorption of ionic surfactants onto an oppositely 

charged mineral surfaces has been extensively s t u d i e d . A t low 

surfactant concentrations, electrostatic interactions between the ionic surfactant 

species and the oppositely charged solid surface dominate the adsorption. As 

the surfactant concentration is increased there is a marked increase in surfactant 

adsorption due to the onset of surfactant aggregation at the surface through 

lateral interactions between hydrocarbon chains.^^ Eventually, at high surfactant 

concentrations, a plateau region is reached corresponding to maximum surface 

coverage. Due to electrostatic repulsion, further increases in the surfactant 

concentration do not lead to an increase in adsorption. 
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1.8 CHARACTERISATION TECHNIQUES 

1.8.1 PHOTOELECTRON SPECTROSCOPY 

1.8.1.1 Introduction 

X-ray Photoelectron Spectroscopy (XPS) has become well established as an 

invaluable tool for the investigation and characterisation of surfaces. During the 

period 1955 to 1970 it was realised that the chemical environment of atoms 

effected the binding energy of core level e l e c t r o n s . T h e technique provides 

information about the chemical nature of surfaces and the acronym ESCA 

(Electron Spectroscopy for Chemical Analysis) was c o i n e d . X P S involves 

irradiation of a sample with low energy X-rays. These X-rays eject electrons from 

electronic levels in atoms and m o l e c u l e s . T h e process is known as 

photoionisation and the electrons produced are termed photoelectrons/°^ Figure 

1.21(a). 

Vac Vac Vac 
Auger 
electron 

- •—•— —•—•• 
Photoelectron 

-•—•-

- • — e -
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(a) Photoionisation (b) X-ray fluorescence (c) Auger Process 

Figure 1.21: Schematic of the photoionisation process 107 
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The removal of a core electron in the photoionisation process leaves a 

"vacancy." The filling of this vacancy by an electron from a higher energy shell 

can result in two different processes, X-ray fluorescence and the emission of an 

Auger electron, Figure 1.21(b) and (c) respectively. X-ray fluorescence results in 

the emission of an X-ray photon whilst the Auger process leads to the emission 

of an Auger electron. An energy barrier must be overcome for a photoelectron to 

be ionised and escape from an atom. This energy barrier is known as the 

binding energy (BE) of an electron. The BE is characteristic of the element and 

electronic level from which the electron was ejected. It is the determination of 

this energy which is the goal of an XPS spectrometer. If the energy of incident 

photons (h-u) used in XPS is greater than the BE of an electron it will be ejected 

with kinetic energy (KE). It is this kinetic energy which is measured directly in 

XPS. The binding energy is related to the kinetic energy as shown below, 

Equation 1.12:'°^ 

BE = h D - K E Eq. 1.12 

ht) is known, but before BE can calculated a further term must be considered, the 

work function (e0). This is a combination of terms, including the work function of 

the sample 0 s (the energy required to remove an electron from the highest 

occupied electronic level inside a solid Ef to the vacuum Ev). It also includes 0sp, 

the work function of the spectrometer. e 0 is taken as a constant and the kinetic 

energy of the photoionsied electron becomes a function of a number of terms, 

Equation 1.13:'°^ 

KE = h \ ) - B E - e 0 Eq. 1.13 

Electrons are emitted with kinetic energies ranging from 0 eV to approximately 

1000 eV.''^' 

1.8.1.2 Surface Sensitivity 
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XPS is extremely surface sensitive. It is therefore ideally suited to the study of 

surface modification and thin film production. The technique is confined to the 

surface region because only electrons ionised from the surface region can 

escape to be detected. 

Electron Energy / eV 

Figure 1.22: The dependence of Attenuation Length on Electron Energy. 105 

The escape depth of an electron is dependent on energy losses from the 

electron due to excitation of phonons (lattice vibrations) and electron-electron 

excitations. Therefore the mean free path of an electron in a solid before it 

undergoes inelastic scattering will depend on its kinetic energy,^°^ Figure 1.22. 

At low kinetic energies there is insufficient energy for the excitation of the loss 

processes outlined above, so the mean free path is long. At high kinetic energy 

the mean free path is long, as the probability of excitation is low. The energy 

range of electrons important to XPS is approximately 100-1000 eV. In this region 

the mean free paths of electrons in solids are small and electrons escape only 

from the first few atomic layers. 
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1.8.1.3 Instrumentation 

The heart of an XPS machine consists of three main components: 

1) X-ray Source; 

2) The electron energy analyser; 

3) The electron detector. 

The above components and the sample chamber must be maintained in the 

ultra-high vacuum (UHV) pressure range, ideally below 1 x 10'^ mbar."° This 

level of vacuum is required to prevent the scattering of photoelectrons by gas 

particles prior to detection and contamination of the sample surface. The latter is 

actually the most stringent, for example at a pressure of 10"® mbar the surface of 

a sample would be covered with a monolayer of background gas in one 

s e c o n d . U H V is achieved and maintained by continually pumping an enclosed 

stainless steel chamber. Suitable pumps include diffusion and turbomolecular 

pumps which operate by imparting kinetic energy to gas molecules in the desired 

direction. The former require liquid nitrogen cold traps to prevent oil 

contamination and help provide efficient removal of water molecules and other 

contaminants. 

1.8.1.4 X-ray Source 

Common X-ray sources operate by bombarding a target material with high 

energy electrons. Electrons stream from an incandescent filament at ground 

potential and are accelerated towards the target which is set at a positive 

potential of several thousand volts. These electrons ionise core electrons from 

atoms within the target. Relaxation of electrons at high electronic levels within 

the atom into these "holes" results in the emission of energy as X - r a y s . T h e 

choice of target material is of vital importance. The X-rays produced must be 

energetic enough to photoionise a sufficient range of core electrons to enable 

comprehensive elemental characterisation. Furthermore, the spread of photon 

energy must be narrow enough so as not to limit the resolution of the 

spec t rome te r .E lec t ron bombardment will heat the target substantially and it 
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must therefore be constructed of materials possessing good thermal 

conductivities. Aluminium and magnesium fulfil all these criteria and are used 

extensively as anode materials. The most intense X-ray line from a Mg source is 

the Kai,2 line at an energy of 1253.6 eV with a width of 0.7 eV."^ Emission 

occurs as a result of electron decay from the 2pi/2 orbital to the Is l e v e l . A 

second emission line, due to a doubly ionised transition (a3,4), occurs 8 eV higher 

at approximately 8% of the intensity. Al produces photons with an energy of 

1486.6 eV with a line width of 0.85 eV. The photon energy spectrum produced 

from an unmonochromated source is fairly complex. Figure 1.23: 

0 5 10 
Photon Energy / keV 

Figure 1.23: X-ray Emission Spectrum in a Logarithmic intensity Plot from 

an Aluminium Target Bombarded with Electrons at 15 kV."* 

There is a continuous background called Bremsstrahlung extending up to the 

incident electron energy on which the characteristic lines are situated. 
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1.8.1.5 Electron Energy Analyser 

The most commonly used electron energy analyser in XPS is the concentric 

hemispherical analyser (CHA). This is an electrostatic energy analyser as 

opposed to designs based on magnetic fields. Figure 1.24: 

Path of 
Electrons 

Entrance Slit 
Exit Slit 

Figure 1.24: Schematic cross-section of a CHA. 105 

The analyser consists of two concentric hemispherical surfaces between which a 

potential difference is applied.''"^ The negative potential V2 is greater than V I , 

and electrons with the correct energy are forced into a hemispherical path 

equidistant between the spheres. These electrons are focused at the exit slit. 

The resolving power is given by the following. Equation 1.14:^°^ 

AE 
E 

Eq. 1.14 

where AE is the half width and E is the kinetic energy of the electron. 

Electrostatic lenses are positioned before the sample at the entrance slit. These 

retard the electrons before they enter the analyser. Two modes of retardation 

are usually employed, namely CAE, alternatively known as FAT (standing for 
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Constant Analyser Energy and Fixed Analyser Transmission respectively), and 

the CRR or FRR mode (Constant Retard Ratio and Fixed Retard Ratio 

respectively). Both these retardation regimes improve the ultimate resolution by 

reducing the value of E. 

1.8.1.6 Electron Detection 

The current of electrons entering the detector from the analyser is very small, 

approximately 10"^^ to 10'^'* A. We therefore need to amplify this current in order 

to measure it. Many spectrometers use a device known as a channeltron. This 

consists of a small spiral glass tube coated on the inside with a high resistance 

material. A high potential of approximately 3 kV is applied to the ends of the tube 

turning the surface into a continues dynode. Electrons entering the device 

collide with the walls which emit a number of secondary electrons. Further 

collisions produce an avalanche effect giving the channeltron a very high gain. 

Amplification of between 10^ and 10® is routinely achievable. 

1.8.1.7 Spectral Interpretation 

Spectra recorded from XPS instruments usually plot counts (or counts per 

second) against the kinetic or binding energy of electrons. A series of peaks are 

formed on a background. The background generally increases in intensity 

towards low kinetic energy. Distinct steps in the background occur to the low 

kinetic energy side of large peaks. These peaks result from electrons which 

initially have the same energy as the main peak, but have been inelastically 

scattered before reaching the analyser. The Bremsstrahlung background from 

unmonochromated X-ray sources provides the general background detected. 

As discussed above, other transitions in the target atoms give rise to spectral 

features known as satellites. If a Mg anode is used spectral peaks have a small 

satellite shifted 8.4 eV to higher KE (lower BE) of the principle line. Further 

additions to the spectra arise due to Auger transitions in ionised atoms. 
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Electrons from higher energy levels fall down to occupy gaps left by the 

photoionisation of core electrons in the sample. The excess energy is lost from 

the atom by ejection of a second electron, the Auger electron. Figure 1.21c. The 

kinetic energy of this electron is a function of the energy gap between the 

electronic levels i n v o l v e d . H e n c e the energies of Auger electrons are 

characteristic of the elements from which they are emitted and can be used for 

the determination of elemental composition of the sample. 

Of great importance to surface scientists was the discovery that non-equivalent 

atoms of the same element give rise to core level peaks with resolvable binding 

energy differences, termed the chemical s h i f t . E l e m e n t s in different oxidation 

states and chemical environments can be unambiguously identified. This 

chemical shift arises from the fact that the electron density around an atom is 

affected by the nature of the local environment. 

1.8.1.8 Sample Charging 

A specific problem associated with XPS analysis of polymer surfaces is sample 

charging. The vast majority of polymer films are electrical insulators, lonisation 

during analysis charges the sample surface and this charge cannot be 

dissipated. The KE of electrons leaving the positively charged surface is 

reduced as energy is lost to the field and surface charging causes peaks to be 

shifted to lower KE, i.e. higher BE. Methods for eliminating this problem include 

flooding the sample with low energy e l e c t r o n s . I n practice the charging effect 

can be accounted for at the data interpretation stage if all BE are compared to a 

reference peak. 

1.8.1.9 Peak Fitting 

Often the spectral resolution is inadequate to completely separate atoms in 

different chemical environments. The observed photoelectron spectrum is a 

convoluted envelope produced by contributions from several overlapping peaks 
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from atoms in different chemical environments. After the spectrum is offset to 

account for sample charging, peaks of the same width are added to the spectrum 

and a computer attempts to fit the manually added peaks to the acquired data by 

minimising the square of the difference between them. The factors which affect 

the peak width are: 

• linewidth of the X-ray source (section 1.8.1.4); 

• the resolution of the spectrometer (section 1.8.1.5); 

• the natural width of the core level under analysis. 

The contributions from the above factors result in a peak shape with both 

Gaussian and Lorentzian contributions. However, it has been demonstrated that 

the Lorentzian contribution can be ignored without the introduction of significant 

error. ̂ ° 

1.8.2 INFRARED (IR) SPECTROSCOPY 

A molecule may absorb a quantum of electromagnetic radiation which leads to 

an increase in the internal energy of the molecule, Equation 1.15:"^ 

he 
AE = E , - E , = hv = y Eq. 1.15 

where AE is the energy separation between two energy states En and E^ in the 

molecule, h is the Planck constant, v is the frequency, c is speed of light and X is 

the wavelength of the radiation. Electronic, vibrational or rotational energy levels 

of the molecule may be excited depending on the wavelength of the absorbed 

radiation. If electromagnetic radiation in the IR region of the spectrum is used 

then the absorption of that radiation increases the vibrational energy level of 

molecules. Different molecules absorb IR radiation of different wavelengths due 

to the excitation of different molecular vibrations. The wavelength of absorption 

is characteristic of different functional groups present in the molecule. 

IR is a very useful technique for the characterisation of polymers. Several 

attributes of IR spectroscopy make it widely applicable:^^'* 
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• It can differentiate between many different chemical functionalities; 

• The so called figure print region may enable confident identification of 

individual polymer systems; 

• If correctly calibrated the technique may be used quantitatively; 

• Collection of data is rapid and the components of an IR spectrometer 

are relatively inexpensive. 

However, IR spectroscopy suffers from some important limitations, namely:^^'* the 

signal-to-noise ratio is low; the frequency resolution is poor; and polymer 

samples have to be light transmitting. These problems have been overcome by 

the use of Fourier Transform Infrared (FTIR) spectroscopy. 

1.8.2.1 FTIR Spectroscopy 

At the heart of a FTIR spectrometer is an interferometer, the type most often 

used is based on the Michelson interferometer,^^^ Figure 1.25. The 

Interferometer splits the source radiation into two equal beams. One beam is 

reflected by a movable mirror back to the detector while the other beam is 

reflected by a fixed mirror to the detector. The beams are combined at the 

detector to produce an interference pattern. This is dependent on the difference 

between the distance each beam has travelled (6) which in turn is dependent on 

the position of the movable mirror. The source produces many wavelengths and 

the intensity at the detector is therefore a function of many different interference 

patterns. The interference pattern produced is called an interferogram. A plot of 

the wavenumber of the radiation against intensity is obtained by the procedure of 

Fourier transformation of the interferogram in a m i c r o c o m p u t e r . I f a molecule 

which absorbs at a particular wavenumber is placed in the path of one of the 

beams then the interference pattern corresponding to this wavenumber is not 

cancelled out and remains in the interferogram.''^^ 
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Figure 1.25: Schematic of the IVIichelson Interferometer 114 

.114 There are several advantages to FTIR spectroscopy: 

• All frequencies are detected simultaneously. This increases the 

signal-to-noise ratio and decreases the time required to obtain a 

spectrum compared to standard IR spectrometers. 

• No entrance or exit slits are used which might limit the radiation 

throughput. 

• The frequency readings are highly precise as a laser is used to control 

the position of the movable mirror. 

Furthermore, these advantages allow the use of a variety of different sampling 

techniques. One such technique is attenuated total internal reflectance 

spectroscopy (ATR). 
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1.8.2.2 ATR-FTIR Spectroscopy 

ATR-FTIR spectroscopy enables the IR analysis of samples which display low 

radiation transmission without the need for lengthy and potentially destructive 

sample preparation techniques. The technique involves measuring the radiation 

specularly reflected from the interface between a sample and a high reflective 

index optical element (e.g. a diamond),"^ Figure 1.26. 

Sample 

Optical 
Element 

IR Beam 

Figure 1.26: ATR Unit 115 

This technique is especially suited to the analysis of polymer surfaces because 

the sampling depth is restricted to the first few microns of the sample surface. 

The actual penetration is governed by several factors such as the angle of 

incidence between the radiation and the surface, the wavelength of the radiation 

and the refractive index of the s a m p l e . T h i s leads to the following 

observations:^^^ 

• The depth of penetration increases with wavelength and bands 

become more intense as the wavelength increases; 
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• The depth of penetration decreases as the angle of incidence and the 

refractive index of the optical element increase. 

• The depth of penetration also decreases as the refractive index of the 

sample falls. 

These factors all affect the intensity of the spectra obtained. 

1.8.3 DEPOSITION RATE MEASUREMENT 

The deposition rate of thin films can be measured using an oscillating quartz 

crystal. The technique generally involves using the oscillating frequency 

decrease on mass deposition to determine the weight of a coating on a quartz 

crystal."^"^^^ The AT-cut crystal oscillating in a thickness shear mode was found 

to produce the most accurate results. Figure 1.27. 

Figure 1.27: Schematic of a quartz crystal oscillating in the thickness shear 

mode."' 

The thickness (Xq) of an infinite quartz plate is directly related to the wavelength X 

of the continuous elastic transverse wave, the phase velocity (Vq) of that wave 

and the frequency (Vq) of the oscillating crystal,"^ Equation 1.16: 

- K - ^ 
= 2 ^ = 2 = 2 """^^ Eq. 1.16 

where iq is the period. If we now consider the area mass density (mq) of the 

quartz crystal and the density (pq) the thickness is related by the following,"^ 

Equation 1.17: 
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rriq = Pq Xq Eq. 1.17 

A change in the area mass density will therefore change the frequency. Equation 

1.18: 

A\)„ Am„ 
« - ^ Eq. 1.18 

If the area mass density change of the quartz crystal is substituted by the 

deposition of foreign material (mf), assuming that (for small mass changes) the 

foreign mass is equivalent to a corresponding change in the mass of the crystal, 

then we now have the following,^^^'^^^ Equation 1.19: 

^ . - ^ Eq. 1.19 
D mq 

which can be used to calculate the mass of the foreign deposit if the following 

limitations are noted:^^^ 

• The relation is an approximation; 

• The elastic properties of the deposited material will be different from 

the quartz crystal; 

• Experimentally the crystal is of finite size. 

Experimental data suggests that this technique is reasonably accurate when the 

mass of the deposit is less than 2% of the mass of the quartz c r y s t a l . I n many 

modern instruments the change in the period of oscillation is measured as this is 

linearly related to the change in mass,^^^ Equation 1.20: 

AT = — ^ m, = Eq. 1.20 
Va Pa Pq 
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The density of the foreign material can therefore be found from the change in the 

period of oscillation. If the density of the foreign material is known the changing 

thickness of the deposit can be monitored by digital equipment. 

1.8.4 VIDEO CONTACT ANGLE (VCA) ANALYSIS 

The VCA apparatus employs the sessile drop technique for the determination of 

the contact angles of liquid drops placed on solid surfaces. A droplet of known 

volume is dispensed by a motorised syringe and placed on the surface of the 

sample. Figure 1.28. A closed circuit television (CCT) camera captures an 

image of the droplet on the sample surface and displays it in real time on a 

monitor. A snap shot of the image is then taken and a personal computer (PC) 

calculates the angle the droplet makes with the sample surface. 

Motorised Syringe 

Liquid Droplet 

Sample 

PC 

CCT Camera 

Figure 1.28: Schematic of the VCA apparatus. 
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Care must be taken when analysing the results of such experiments. The angle 

recorded by this technique is known as a static angle.^° The droplet may not be 

in equilibrium (section 1.7.3) and no information on contact angle hysteresis can 

be obtained. 

1.8.5 DYNAMIC CONTACT ANGLE (DCA) ANALYSIS 

The dynamic contact angle apparatus (often known as the Wilhelmy plate 

method)^^^ measures the advancing, receding and dynamic contact angles of flat 

surfaces and filaments."® The sample often takes the form of a thin plate. It is 

held vertically and partially immersed in a test liquid, Figure 1.29: 

Sample 

Liquid Surface 

Figure 1.29: Profile of a vertical plate partially immersed in liquid.''^ 

The force acting on the plate (F) is,"® Equation 1.21 

F = PYC0S6 - pgAd Eq. 1.21 

Where p is the plate perimeter, y is the liquid surface energy, 6 is the contact 

angle, p is the liquid density, g is the gravitational acceleration, A is the cross-

section area of the plate and d is the immersion depth. A plot of F verses d 
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should give a straight line from which 9 can be found.'*® The experimental 

apparatus consists of a microbalance from which the plate is suspended and a 

motorised stage is used to move a beaker containing the test liquid over the 

plate, Figure 1.30: 
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Figure 1.30: Schematic of the Wilhelmy plate apparatus 50 

Advancing contact angles are obtained by immersing the plate in the liquid and 

receding angles are measured when the plate is withdrawn.'*® The advantages of 

this type of measurement technique are as follows: 

• Advancing and receding angles are measured so any contact angle 

hysteresis will be found; 

• The whole surface of the plate is used for the calculation of the 

contact angle. 
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CHAPTER TWO 

PULSED PLASMA POLYMERISATION OF ACRYLIC ACID 
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2.1 INTRODUCTION 

Low temperature plasma polymerisation is well established as a versatile, 

economic route for the deposition of polymeric coatings.^ It is a clean, solvent-

free technique, able to deposit coatings onto a wide range of substrate materials. 

The plasma process is not thermal and the dynamics of film formation are not 

described by equilibrium thermodynamics.^ Polymerisation occurs via activation 

and reaction of organic molecules in an electrical discharge.^ One of the 

limitations of the plasma polymerisation technique is that reactive processes such 

as ion bombardment, UV damage, and cross-linking reactions^ in the plasma 

produce polymer networks with complex structures which often bear little 

resemblance to the precursor molecule. Therefore, one of the challenges has 

been to produce films containing high levels of chemical specificity. Variation of 

experimental parameters (e.g. input power," '̂̂  gas composition and pressure,^'^ 

substrate temperature,^'''" substrate pos i t ion ,na tu re of substrate,'*'® reactor 

dimensions'^ etc.) offers some degree of control over the stoichiometry. For 

example, it has been found that reducing the power supplied to the plasma 

increases the retention of functional groups in many of the systems studied.'* 

However, the overall selectivity tends to remain fairly poor. More recently it has 

been demonstrated that pulsing of the excitation power source can reduce cross-

linking and functional group diversity during plasma p o l y m e r i s a t i o n . T h i s has 

been attributed to attenuated damage of the growing plasma film as a result of 

the curtailed excitation and ionisation of molecules during the off-period of the 

voltage pulse c y c l e . F u r t h e r m o r e , in some cases, it has been shown that 

conventional polymerisation mechanisms can proceed during the off-time at 

reactive sites generated within the on-period of the pulse cycle.'"* ''®'̂ ' Examples 

of structural retention during electrically pulsed plasma polymerisation include 

deposition from silicon containing monomers,'^'^^'^^ halocarbons,'^'''*''®''^'^' tin 

containing precursors,'^'^^ alcohols'^ and other reactive molecules.^® 

This chapter describes a further advancement on the theme of pulsed plasma 

polymerisation where both the electrical field and co-reactant gas were pulse 

modulated. The aim was the production of a plasma polymer surface with a high 

density of acid groups. Acrylic acid (AA) was chosen as the monomer since it 
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contains an acid group and an unsaturated carbon-carbon double bond. 

Structure 2.1. This double bond is susceptible to conventional polymerisation 

reaction pathways during the duty cycle o f f - p e r i o d . T h e formation of thin films 

by continuous wave (CW) plasma polymerisation of AA is well documented.^•^'^^ 

These plasma polymers have found use in many surface-related applications 

such as: control of substrate wettability;^ protein adsorption;'*^ modification of 

adhesion;"^'*^ interaction with biological species;^® and ultrafiltration.^^ In many of 

these applications sufficient density of functional groups on the polymer surface 

is vital. However, the incorporation of carboxylic acid groups at the surface under 

CW conditions is fairly low (20 %) . It has previously been demonstrated that the 

wettability of AA plasma polymerised thin films can be enhanced by pulsing the 

electrical discharge.'*® Here we investigate the influence of electrical pulsing and 

oxygen gas injection during AA plasma polymerisation. Oxygen introduction into 

polymer forming plasma reactions has been shown to have a marked effect on 

the chemistry of deposits thus formed.^''^ 

Structure 2.1: Acrylic acid. 

2.2 EXPERIMENTAL APPARATUS AND PROCEDURE 

All plasma polymerisation reactions were performed in an electrodeless 

cylindrical glass reactor (internal diameter of 52 mm and length of 320 mm). The 

reactor was continuously pumped by a two stage rotary pump (Edwards E2M2) 

via a liquid nitrogen cold trap. The base pressure ultimately achievable in the 

reactor was 5 x 1 0 " ^ mbar measured at the reactor outlet by a Pirani pressure 
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gauge (Edwards PRIO-k). Gas was emitted into the chamber via a leak valve 

(Edwards CV10K), Figure 2.1. 

Radio frequency (rf) power was provided by a copper coil wrapped around the 

circumference of the reactor eleven times. A home-made LC matching network 

inductively coupled the coils to a home-made radio frequency power generator. 

The generator operated at 13.56 MHz with a maximum power output of 

approximately 70 Watts. The network matched the output impedance of the 

partially ionised gas to that of the generator (50 Ohms) by minimising the 

standing wave ratio (SWR). The SWR (i.e. total power generated/power 

transmitted to the plasma) was measured by a SWR power meter (RS) in series. 

The SWR was minimised by adjusting the inductance and capacitance of the LC 

circuit after rf power had been switched on. The glass reactor and copper coils 

were completely contained in a Faraday cage to prevent rf leakage. 

Six main types of experiment were carried out: CW plasma polymerisation of AA; 

electrically pulsed plasma polymerisation of AA; CW plasma polymerisation of AA 

with oxygen gas; electrically pulsed plasma polymerisation of AA with oxygen 

gas; CW plasma polymerisation of AA with simultaneous pulsed gas injection; 

and electrically pulsed plasma polymerisation of AA with simultaneous pulsed gas 

injection. The experimental procedure and apparatus for each set of experiments 

differed in detail but some basic routines were the same in all cases. The basic 

procedure is presented below, followed by a more detailed description of the 

individual experiments. 
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Figure 2.1: Schematic Diagram of the Experimental Apparatus. 

2.2.1 EXPERIMENTAL PROCEDURE 

AA monomer (Aldrich, 99% purity) was further purified by several freeze-thaw 

cycles. The cycle involved placing the monomer into a glass tube fitted with a 

Young's tap (monomer tube) and attaching the tube via the leak valve to the 

reactor chamber. The monomer was frozen with liquid nitrogen and the 

monomer tube was evacuated then allowed to thaw. This method relies on the 

principle that the solubility of a gas in a liquid is dependent on the vapour 

pressure above the liquid. Reducing this vapour pressure reduces the solubility 

of dissolved gases.^° The freeze-thaw cycles were continued until no pressure 
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rise in the reactor system was observed on evacuation of the monomer tube 

(typically three cycles). This indicated that the majority of the dissolved gas had 

been removed. Gases (Argon, Helium, Nitrogen, Oxygen, Hydrogen, Neon and 

Carbon Dioxide, BOC Gases) were used without further purification. 

Prior to each experiment the reactor was scrubbed clean with detergent and 

scouring powder, rinsed with copious amounts of water and isopropyl alcohol 

(IPA) before finally being oven dried. Before polymerisation air was emitted into 

the reactor and a 50 W air cleaning plasma ignited at a pressure of 0.2 mbar for 

30 minutes. The reactor was pumped down to base pressure following air 

plasma cleaning, isolated from the pump and opened up to the atmosphere to 

allow insertion of a previously prepared glass slide. The slides were 

ultrasonically cleaned in detergent and water for 30 minutes followed by a one 

hour cleaning in 1:1 cyclohexane and IPA. The slides were then stored in fresh 

IPA until required. Once inserted into the reactor the slide was positioned at the 

centre of the copper coils and the system was pumped back down to base 

pressure. At this stage the leak rate of the reactor was determined (Section 

2.2.2.1) . The monomer was then introduced into the reactor at a set pressure, 

typically 0.2 mbar, via the leak valve five minutes prior to polymerisation. The 

flow rate of monomer into the plasma chamber was then calculated (Section 

2.2.2.2) . The glow discharge was then ignited and immediately balanced 

manually using the matching network. After the treatment time had elapsed the 

plasma was extinguished and the monomer was purged through the system for a 

further two minutes. 

2.2.1.1 CW Plasma Polymerisation 

CW plasma polymerisation of AA was carried out as described above. Following 

ignition of the plasma the discharge power was set according to the power meter 

and the plasma balanced. The treatment time was typically ten minutes followed 

by a further two minutes of purging with monomer vapour. The reactor was then 

evacuated to base pressure, vented to atmosphere and the slides were removed 
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and affixed to probe tips using double sided adhesive tape for immediate 

characterisation. 

2.2.1.2 Electrically Pulsed Plasma Polymerisation of AA 

For electrically pulsed plasma experiments a pulse generator supplied a pulse of 

5 V amplitude to the rf generator. The pulse duration (known as on-time) and 

frequency could be varied over a wide range (1 ^is-10 s and 1000 MHz - 0.1 Hz 

respectively). This pulse input was used to modulate the output of the rf 

generator, with power being supplied to the coils only during the pulse on-time. 

The actual minimum pulse duration achievable was limited to 5 |is by the rise and 

fall times of the rf generator which were approximately 1 and 2 [is respectively. 

The pulse output from the pulse generator was monitored by an oscilloscope via 

a standard coaxial cable. A probe consisting of a wire connected to the 

oscilloscope was placed inside the Faraday cage adjacent to the reactor. This 

probe monitored the output performance of the rf generator by detecting the rf 

signal radiated by the copper coil antenna. 

It was necessary to set the pulsing conditions prior to the insertion of the glass 

substrate as the plasma had to be balanced under CW conditions. Therefore, 

following the air cleaning plasma, air was emitted into the reactor via the leak 

valve. A plasma was ignited and the power set at the desired value. Pulsing of 

the discharge was then switched on. The overall average power (<P>) supplied 

to the system was calculated using the following equation. Equation 2.1 

Eq. 2.1 

where ton is the plasma on-time; toff is the off-time; and Pp is the peak power. The 

on-time and off-time were varied between 5-10000 |is and 0.05-64 ms 

respectively. The peak power could be set between 1.5 and 70 W. After the 

reactor had been set up it was vented to the atmosphere to allow insertion of the 

glass substrates. From this point the experimental procedure was essentially the 
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same as that for CW plasma polymerisation (Section 2.2.1.1) except that the 

plasma discharge conditions had already been determined. 

2.2.1.3 CW Plasma Polymerisation of AA with Oxygen Gas 

The reaction procedure was analogous to the CW polymerisation of AA up to the 

point of deposition (Section 2.2.1.1). The pressure of the monomer was set at 

0.2 mbar and the flow rate was measured. Oxygen was then allowed to enter the 

reactor via a second needle valve to make the total pressure up to a new value. 

The reactant mixture was purged through the system for five minutes and then 

the plasma was ignited at the required discharge power. After ten minutes the 

plasma was extinguished and the reactor purged for a further two minutes with 

the reactant mix. 

2.2.1.4 Electrically Pulsed Plasma Polymerisation of AA vwth Oxygen Gas 

The pulsing conditions were set up as described above (Section 2.2.1.2) and the 

desired reactant mixture was obtained (Section 2.2.1.3). For these experiments 

the AA pressure was maintained at 0.2 mbar but the total pressure in the reactor 

was made up to a new value with oxygen gas. 

2.2.1.5 CW Plasma Polymerisation of AA with Pulsed Gas Injection 

For the gas pulsing experiments a gas pulsing valve was driven by a dedicated 

pulse driver (General Valve Corporation). The gas pulsing valve was connected 

directly to the plasma reactor with an upstream gas pressure of 0.2 bar above 

atmospheric pressure. The gas pulsing valve consisted of a PEEK stopper 

(known as a "poppet") mechanically pressed shut by the action of a spring. Figure 

2.2. Pulses arriving from the pulse driver energised an electromagnet creating a 

magnetic field which pulled the armature up against the end plate, thus opening 

the valve. The valve remained open while power was a p p l i e d . T h e gas pulsing 
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duty cycle was expressed as a percentage and calculated as follows. Equation 

2.2: 

r 
Gas Pulsing Duty Cycle = 

on - time 
on-t ime + o f f - t ime. 

X 100 Eq.2.2 

The minimum on-time which could be set on the gas pulsing driver was 5 ^is but 

the duty cycle had to be less than 50% and the maximum frequency at which the 

valve could operate was 250 Hz. The maximum error in the electrical pulse was 

2 |is or 0.001 %, whichever was greater.^^ 

Gas in 

5 

Magnet 
Spring 

Armature 

Gas out 

PEEK Poppet 

Figure 2.2: Schematic of the lota One Gas Pulsing Valve 51 

The AA pressure was set at 0.2 mbar and the gas pulsing valve was activated 

with the required on-time and off-times. The gas pulsing valve driver's output 

was monitored on the oscilloscope via a coaxial cable connected to an auxiliary 

BNC output on the driver. The plasma was then switched on in the usual fashion 

(Section 2.2.1.1). 
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2.2.1.6 Electrically Pulsed Plasma Polymerisation of AA with Simultaneous 

Pulsed Gas Injection 

For combined gas and electrical pulsing the reaction conditions were set up prior 

to insertion of the glass substrates, as described above (Section 2.2.1.2). The 

gas pulsing driver's auxiliary output was used to modulate the rf generator 

instead of the usual pulse generator. This ensured synchronous gas and 

electrical pulsing as confirmed by the oscilloscope. 

2.2.2 FLOW AND LEAK RATE DETERMINATION 

The calculation of leak rates and gas flow rates for plasma reactor systems is 

important as a knowledge of the impurities present in the reactor volume and the 

flow rate of monomer molecules will help in the interpretation of results. Indeed, 

the composition and deposition rates of plasma polymers are often a function of 

monomer flow rates.* The unit used for the flow rate (Qm) is mol s\ This 

quantity is often confused with the throughput (Q) which is the rate of change with 

time of the product of the pressure of a gas and the volume in which it is 

conta ined.Frequent ly used units for this quantity are atm cm^ s"* and Pa m^ s'*. 

The number of moles of gas passing through an orifice per unit time (Qm) is a 

function of the gas temperature but the throughput is not.^^ The gas is assumed 

to behave ideally and the ideal gas law is applied. Equation 2.3: 

PV = nRT Eq. 2.3 

where P is the pressure (Pa), V is the volume (m^), n is the amount of gas 

(moles), R is the gas constant (J K"* mol"*), and T is the absolute temperature (K). 

The volume of the reaction chamber was estimated by attaching a small vile at 

atmospheric pressure to the chamber. The chamber was then pumped to base 

pressure, isolated from the pump and the small volume opened to the chamber. 

The volume of the reaction chamber could now be calculated using Equation 

2.3.^ This method ignored the leak rate of the reactor, which was a reasonable 
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omission, as tlie leal< rate was low, tlie time of measurement was fast (<30 s) and 

the pressure rise was comparatively large. 

2.2.2.1 Leak Rate 

To measure the leak rate, the reactor chamber was pumped down to base 

pressure, allowed at least 5 minutes to equilibrate and isolated from the pump. 

The rise in pressure with time over a relatively narrow pressure range was 

measured. The temperature of the lab was taken and all apparatus and 

materials were assumed to be in thermal equilibrium. Differentiation of the ideal 

gas law. Equation 2.3, with respect to time at constant temperature yields an 

expression that may be used to evaluate the molar leakage rate (Qmi),^^ 

Equation 2.4: 

dN 
Qm, = - = 

J d V ^ , / d P ^ 
P — + V — I dt J I dt 

RT 
Eq. 2.4 

As the volume is constant the first term is zero, thereby simplifying the 

expression. Equation 2.5: 

Qm, = 

AP 
At 

V 

RT 
Eq. 2.5 

where At is the time required for the pressure to rise over the pressure range AP. 

Note that the time interval At was small to ensure that the pressure rise was 

linear. Typical leak rates were approximately 1x10'^ mol s"\ 
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2.2.2.2 Flow Rate and Percentage Purity 

To measure the molecular flow rate of monomer into the reactor the system was 

Initially pumped down to base pressure. At this point the leak rate of the chamber 

was measured as described above (Section 2.2.2.1). The chamber was again 

pumped down to base pressure and monomer gas was allowed to enter the 

chamber at the required pressure (the pressure used for plasma 

polymerisations). The system was allowed to equilibrate for five minutes. This 

was to allow time for all components of the system to reach thermal equilibrium 

and for adsorption and desorption of monomer from the inside of the reactor 

chamber to equilibrate. At this point the temperature of the lab was measured 

and the reaction chamber isolated from the pump. The pressure rise over a 

small pressure range was measured as a function of time. Equation 2.5 was then 

used to calculate the molecular flow rate (Qm), after one small alteration," 

Equation 2.6: 

Qm = 

AP 
At 

'APo 
At 

V 

RT 
Eq. 2.6 

where APo/At is the change in pressure when the chamber is isolated from the 

pump without monomer flow (i.e. the leak rate measurement). The percentage 

monomer in the reaction chamber, with respect to other gases present due to 

leaks, could then be found," Equation 2.7: 

% Monomer = 
Flow Rate 

(Flow Rate + Leak Rate) 
X 100 Eq. 2.7 

Flow rates were kept constant at approximately 5x10"® mol s'\ Measurement 

error was approximately 10% due to the difficulties in measuring the rapid 

pressure rise on isolation of the rotary pump. This meant that the AA vapour in 

the reactor was more than 99.9% pure (except when oxygen was deliberately 

added). 
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2.2.3 CHARACTERISATION TECHNIQUES 

Samples were characterised immediately following plasma polymerisation by X-

ray Photoelectron Spectroscopy and transmission FTIR spectroscopy. Plasma 

deposition rate measurements were performed to aid in the interpretation of 

2.2.3.1 XPS Characterisation 

The glass slides were attached to a stainless steel probe stud using double sided 

adhesive tape and inserted into a VG ESCA Lab Mk II photoelectron 

spectrometer. The spectrometer was fitted with an unmonochromated 

magnesium X-ray source (Mg Kai,2 = 1253.6 eV) and operated in the constant 

analyser energy mode (CAE = 20 eV for high resolution spectra, 50 eV for survey 

scans). Photoelectrons emitted from the substrate were collected at a 30° take­

off angle with respect to the substrate normal. The spectrometer calibration was 

routinely checked using the gold 4f7/2 and silver 3d5/2 peaks at 83.8 and 368.3 eV 

respectively.^^ Elemental sensitivity factors were determined experimentally 

relative to the carbon 1s (C(1s)) peak (285.0 eV) using standard compounds. 

These were taken as C(1s) : 0(1s) : N(1s) : Si(2p) = 1.00 : 0.39 : 0.65 : 1.00 

respectively. The absence of any Si(2p) XPS feature following plasma 

polymerisation was indicative of complete coverage of the glass substrate. 

2.2.3.2 FTIR Characterisation 

An FTIR Mattson Polaris spectrometer was used for transmission IR analysis of 

the plasma polymers. The substrate used for transmission experiments was a 

polished sodium chloride plate. A spectrum of the disk was recorded prior to its 

insertion into the plasma reactor to ensure that the disk was free from 

contamination. Typically 100 scans were recorded at a resolution of 4 cm'\ 
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2.2.3.3 Deposition Rate Measurements 

Plasma polymer deposition rates were measured with an oscillating AT cut quartz 

crystal (Kronos, Inc. QM-331 Film Thickness Monitor) placed at the centre of the 

plasma reactor (Section 1.8.3). The thickness monitor employed the principle of 

period measurements to ensure linearity, accuracy, and resolution." Film 

deposition rates were measured in nanograms (ng) to avoid any assumptions 

about the density of the plasma polymer deposited. Routinely, measurements 

were not taken until 10 minutes after the plasma was ignited to allow time for the 

apparatus to reach thermal equilibrium. The change in mass of the quartz crystal 

was then recorded every minute for 10 minutes and the average mass change 

(due to the deposition of plasma polymer) per second calculated. Subsequently, 

the plasma was extinguished, vented to the atmosphere, and the crystal removed 

to allow cleaning of the reactor prior to the next set of measurements. Crystals 

were cleaned with methanol and their operational state tested as instructed" 

between each deposition. All deposition experiments were performed at least 3 

times to enable the estimation of errors. The error calculated in this manner was 

assumed to be larger than the intrinsic error in the measurement equipment (0.1 

ng at low deposition rates)." 

2.3 R E S U L T S 

High resolution XPS envelopes were fitted using a Marquardt minimisation 

routine.^^ The peak shape was assumed to be Gaussian with a fixed relative full 

width at half maximum. The C(1s) region of a typical AA plasma polymer layer 

was fitted with five different carbon functionalities" (using the hydrocarbon peak 

at 285.0 eV as a reference offset): CxHy (285.0 eV); C-C(=0)-0 (285.7 eV); C -0 

(286.6 eV); 0-C-O / C = 0 (287.9 eV); and C (=0)-0 (289.3 eV), Figure 2.3. The 

relative amount of C (=0)-0 group incorporation into the plasma polymer was 

calculated in terms of its percentage contribution to the overall C(1s) envelope 

and the 0 /C ratio was found from the 0(1s) and C(1s) peak areas (after 

correction for sensitivity). 
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Figure 2.3: 0(1 s) XPS peak fit for a 2 W CW AA plasma polymer. 
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2.3.1 CW PLASMA POLYMERISATION 

The C(1s) XPS spectra of the CW AA plasma polymer changed appearance with 

discharge power. Figure 2.4. The thin films produced under the lowest discharge 

powers bore a greater resemblance to the theoretically expected spectrum than 

the films deposited at higher powers. This dependence on discharge power has 

been previously reported in earlier studies.^'^"'^^'^^'^"'^^'^^'^ The C(=0)-0 group 

became less well defined and the relative intensities of the C-0 and 0-C-O / C=0 

groups increased with increasing discharge power. Therefore, a greater degree 

of monomer break up and film cross-linking occurred in higher power plasmas. 

The 0/C ratio reached 0.52 + 0.02 and the C(=0)-0 group retention was 18% + 

1, at a discharge power of 1.5 W, Figure 2.5. This was considerably less than the 

theoretically expected 0/C ratio of 0.67 and 33% C(=0)-0 group content, 

assuming no monomer break up. Below 1.5 W the CW plasma became unstable 

and no deposition occurred. 

The deposition rate decreased with a concomitant increase in discharge power. 

Figure 2.6. This observation was consistent with the detection of a silicon 

(Si(2p)) signal for electrical discharge powers greater than 7 W. Indeed, at 

higher powers the mass of the quartz crystal was seen to decrease indicating that 

etching processes in the plasma were becoming dominant. To factor out the 

effect of the change in power, the deposition rate per Joule was considered.^''•^^•^^ 

This is known as the deposition efficiency,^'* Equation 2.8: 

Deposition Rate _ ^ „ 
Deposition Efficiency = -r Eq. 2.8 

^ Average Power 

The deposition efficiency rose with decreasing discharge power. Figure 2.6. This 

was further evidence for film forming reactions becoming progressively dominant 

over film ablation processes at lower powers. 

73 



I-

O 
o 

C(=0)-0 

1.5W 

Theoretical 

—I ' 1 — ' — I — ' — I — ' — r 
280 284 288 292 296 

BINDING ENERGY/eV 

Figure 2.4: C(1s) XPS spectra of CW AA plasma polymer deposited as a 

function of discharge power. 
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2.3.2 ELECTRICALLY PULSED PLASMA POLYMERISATION 

The average power could be reduced further by pulsing the electrical discharge. 

Low duty cycles (shorter on-times or longer off-times) enhanced oxygen and 

C(=0)-0 group incorporation into the deposited plasma polymer. Systematically 

decreasing the plasma on-time (with a constant off-time of 4 ms and peak power 

of 5 W) or increasing the off-time (with a constant on-time of 180 ^is and peak 

power of 5 W) increased the intensity of the C(=0)-0 peak at the expense of the 

other oxygenated functionalities. Figures 2.7 and 2.8. Optimum conditions at the 

lowest average powers yielded 0/C ratios as high as 0.72 + 0.03 and C(=0)-0 

group concentrations of 30 % + 1, Figures 2.9 and 2.10. This was significantly 

better than anything achieved during CW plasma polymerisation in this study. 

The glow discharge became unstable at very low duty cycles. For a given 

average power, increasing the peak power to 70 W from 5 W during electrically 

pulsed plasma polymerisation (with a constant off-time of 4ms) reduced the 0/C 

ratio and C(=0)-0 group retention of the plasma polymer. Figures 2.9 and 2.10. 

Thus the peak power supplied to the pulsed plasma was a factor in determining 

the functionalisation of the resultant film. 

During pulsed plasma polymerisation the deposition rate reached a maximum of 

0.1 ng s''' cm'^ at 0.1 W average power. Figure 2.11. Shorter duty cycles resulted 

in a decrease in the deposition rate. The deposition efficiency per Joule was 

again considered to factor out the effect of average power. Figure 2.12. The 

deposition efficiency rose with decreasing average power, indicating that film 

forming reactions had become progressively dominant over film ablation and 

termination processes at lower average powers.^® A decrease in the efficiency at 

very low powers may have been indicative of a lack of reactive film forming 

species at these extremely low duty cycles. 
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2.3.3 CW PLASMA POLYMERISATION WITH OXYGEN GAS 

A substantial increase in the oxygen content of the CW plasma polymerised AA 

films was achieved by adding oxygen to the AA feed during CW plasma 

polymerisation (2 W), Figure 2.13. The AA pressure was first set at 0.2 mbar by 

adjustment of the needle valve and the flow rate was measured (Section 2.2.2.2). 

Oxygen gas was then introduced via a second needle valve and the total 

pressure was set at the required value. The 0/C ratio reached 0.62 + 0.03 and 

the C(=0)-0 group retention was 25% + 1, at a total pressure of 0.4 mbar. Figure 

2.14. However, functional group incorporation appeared to be non-selective and 

the concentration of all oxygenated functionalities increased with oxygen partial 

pressure. 

The deposition rate and efficiency decreased rapidly with increasing oxygen 

concentration, Figure 2.15. No evidence for polymer formation was found above 

a total pressure of 0.4 mbar, supported by the detection of a Si(2p) signal during 

XPS analysis. At these higher pressures the quartz crystal decreased in mass 

indicating that etching of the crystal was taking place at total pressures above 0.4 

mbar. 

80 



Total Pressure 

CO 

O 
O 

—I ' 1 — • — \ — ' — I — ' — 
280 284 288 292 296 
BINDING ENERGY/eV 

Figure 2.13: 0(1 s) XPS spectra of 2 W CW AA plasma polymer deposited as 

a function of added oxygen. 
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2.3.4 ELECTRICALLY PULSED PLASMA POLYMERISATION WITH OXYGEN 

GAS 

At high oxygen partial pressures the extensively oxygenated polymer surfaces 

observed during CW conditions were further enhanced by electrically pulsing the 

plasma. Figure 2.16. The proportion of oxygenated groups formed increased 

with oxygen partial pressure (at constant electrical pulsing conditions of ton = 180 

|is, toff = 4 ms and Pp = 5 W), Figure 2.17. At a total pressure of 0.6 mbar the 

0/C ratio was 1.31 ± 0.04 and the percentage C(=0)-0 group incorporation 

reached 42 % ± 1. As before, the deposition rate and efficiency decreased as the 

amount of oxygen introduced into the discharge rose. Figure 2.18. However, film 

formation was still evident at a total pressure of 0.6 mbar, significantly higher than 

CW plasma polymerisation. After a total pressure of 0.6 mbar no film formation 

could be detected and the mass of the crystal began to decrease. 

It was found that reducing the electrical pulse on-time at high oxygen partial 

pressures reduced the oxygen content and C(=0)-0 group incorporation of the 

plasma polymer, Figure 2.19. Maximum oxygen incorporation was observed at 

190 |j,s ton, where the 0/C ratio was measured to be 1.30 + 0.04 and the 

percentage C(=0)-0 group incorporation was 41 % + 1, Figure 2.20. Further 

increasing the plasma ton resulted in incomplete coverage of the substrate. 

Increasing the electrical pulse off-time decreased the functionalisation of the films 

produced. Figure 2.21. The 0/C ratio and C(=0)-0 group incorporation 

decreased with increasing off-time. Figure 2.22. These trends, observed for the 

pulsed plasma polymerisation of AA in the presence of added oxygen, were 

opposite to those found in the absence of oxygen. 
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Figure 2.16: C(1s) XPS spectra of AA electrical pulsed plasma polymer (ton 

180 ^is, toff = 4 ms and Pp = 5 W) deposited as a function of added oxygen. 
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2.3.5 CW PLASMA POLYMERISATION WITH PULSED OXYGEN INJECTION 

Greater oxygen incorporation was seen witli increasing gas pulse on-times during 

pulsed oxygen injection into a 2 W CW AA plasma, Figure 2.23. The AA 

pressure was first set at 0.2 mbar by adjustment of the needle valve and the flow 

rate was then measured (Section 2.2.2.2). Oxygen (at a pressure of 1.2 bar 

before the valve) was then injected into the plasma reactor via a gas pulsing 

valve (Section 2.2.1.5). The 0/C ratio reached 0.72 ± 0.02 and the C(=0)-0 

group retention was 25% ± 1, Figure 2.24. Below 150 [is no evidence for added 

molecular oxygen could be detected. It is possible that pulses below this value 

are of insufficient duration to open the gas pulsing valve.^^ The deposition rate 

and efficiency decreased markedly on oxygen addition, Figure 2.25. After 165 \is 

polymer production appeared to cease and the Si(2p) XPS substrate feature was 

evident. 
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Figure 2.23: 0(1 s) XPS spectra of 2 W CW AA plasma polymer with pulsed 

oxygen injection deposited as a function of gas ton (toff = 4 ms). 
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2.3.6 SYNCHRONISED PULSED GAS AND ELECTRICAL PLASMA 

POLYMERISATION 

Simultaneous pulsing of various gases during electrical pulsed plasma 

polymerisation showed that the addition of molecular oxygen produced the most 

oxidation, Figure 2.26. The electrical and gas on-time was 180 p,s, off-time was 4 

ms and the peak power was 5 W. The simultaneous electrical and oxygen pulse 

on-time was found to have a large influence on the plasma polymer composition. 

Figure 2.27. For ton values below approximately 130 jis the electrical power effect 

of the plasma was dominant, i.e. the influence of oxygen in the system was 

negligible and decreasing ton increased the C(=0)-0 group incorporation into the 

plasma polymer as noted previously. For ton values greater than approximately 

130 |xs, the oxygen partial pressure in the system started to play an increasingly 

important role. The composition of the thin films changed markedly up to a 

maximum at approximately 175 |is electrical and gas ton, where the 0/C ratio was 

measured to be 1.00 + 0.04 and the percentage C(=0)-0 group incorporation 

was 43 % + 1, Figure 2.28. 

The deposition efficiency increased rapidly with decreasing duty cycle. Figure 

2.29. The deposition rate displayed a similar ton trend to that seen for the 

absence of gas reported earlier in that it passed through a maximum. However, it 

is interesting to note that the decrease in the deposition rate with increasing duty 

cycle was far more abrupt. No evidence of polymer formation was observed for 

on-times longer than approximately 200 ^is, even though the average power was 

still quite modest. 

Increasing the electrical and gas off-time during synchronised electrical and 

oxygen gas pulsed plasma polymerisation of AA decreased the functionalisation 

of the films produced. Figure 2.30. The 0/C ratio and C(=0)-0 group 

incorporation generally decreased as the off-time increased, Figure 2.31. This 

trend was opposite to that observed for the electrically pulsed polymerisation of 

AA and may just be a manifestation of the decrease in oxygen concentration 

within the plasma as the off-time was increased. 
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The deposition rate passed through a maximum and fell markedly with increasing 

duty cycle, Figure 2.32. At very low duty cycles the deposition rate decreased to 

a point where no polymer formation was observed. The deposition efficiency also 

reached a maximum, increasing as expected with decreasing duty cycle, until at 

very long off-times the efficiency began to decrease. 
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Figure 2.26: Comparison of the 0/C ratio and percentage C(=0)-0 group 

incorporation for various gases during synchronised gas and electrical 

pulsed AA plasma polymerisation (ton = 180 ^is, toff = 4 ms and Pp = 5 W). 
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Figure 2.27: 0(1 s) XPS spectra of AA plasma polymer with synchronised 

oxygen gas and electrical pulsing deposited as a function of gas and 

electrical ton (toff = 4 ms and Pp = 5 W). 
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Figure 2.30: C(1s) XPS spectra of AA plasma polymer with synchronised 

oxygen gas and electrical pulsing deposited as a function of gas and 

electrical toff (ton = 180 ^s and Pp = 5 W). 
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2.3.7 FTIR RESULTS 

The FTIR spectrum of the AA monomer and the AA pulsed plasma polymer were 

compared. Figure 2.33. The AA monomer had the following absorbencies:^° (1) 

carboxylic acid 0-H stretching band 3300-2500 cm"''; (2) carboxylic acid C=0 

stretching band 1694 cm'^ (3) two carbon-carbon double bond C=C stretching 

bands, typical of unsymmetrical conjugated alkenes, at approximately 1630 cm" ;̂ 

(4) 0-H bending band 1431 cm"\- (5) C-0 stretching band doublet 1294 and 1236 

cm'^ and (6) 0-H out-of-plane bend at approximately 920 cm'\ The AA pulsed 

plasma polymer had the following absorbencies:^° (7) 0-H stretching band 3500-

2500 cm'^ (8) carbon dioxide (from the atmosphere) 2361 cm'\ (9) C=0 

stretching band 1709 cm'\- (10) 0-H bending band 1450 cm'\- and (11) C-0 

stretching band doublet at approximately 1230 cm'\ Much of the fine structure in 

the FTIR spectrum of the monomer was lost during plasma polymerisation. The 

carbon-carbon double bond absorbence was absent from the plasma polymer. 

Absorbencies arising from the acid group were retained in the plasma polymer 

indicating that many of these groups were incorporated into the pulsed plasma 

polymer. In both spectra the C-H stretching bands were hidden beneath the 0-H 

peak. 

98 



0 
o 
c 
CO 

o 

< 

\ 

4000 3000 2000 1000 
Wavenumber cm •1 

Figure 2.33: Transmission FTIR spectra of (a) AA monomer; and (b) AA 

pulsed plasma polymer deposited onto a NaOl plate. 
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2.4 DISCUSSION 

Plasma polymerisation of AA produced a highly oxygenated polymeric thin film. 

At a constant monomer pressure and flow rate, decreasing the CW discharge 

power produced an XPS spectra that became progressively more like the XPS 

spectra of conventional poly(acrylic acid), Figure 2.4. This trend appears to be 

general to a number of different reactor configurations and deposition 

regimes.^'^"*'^^"^""^ This behaviour may be attributed to reduced fragmentation of 

the monomer molecule in the gas phase and within the growing film. The 

discharge power has a direct influence upon the average electron energy, the 

electron energy distribution and the density of excited species in the plasma. 

Opening of the carbon-carbon double bond requires 2.74 eV as opposed to 3.61 

eV for carbon-carbon single bond dissociation.^'* A drop in the number of high 

energy electrons with decreasing average electrical power will consequently 

favour polymer forming reactions over monomer fragmentation and cross-linking 

processes.^ Therefore, as the discharge power is reduced, a greater number of 

non-fragmented precursor molecules reach the growing plasma polymer surface. 

It was found that increased incorporation of these non-fragmented molecules into 

the plasma polymer resulted in the composition of the thin film bearing a greater 

resemblance to the conventional poly(acrylic acid) polymer. A reduction in the 

number of high-energy electrons will also lower the rate of molecular excitation 

and thus the intensity of VUV induced damage of the growing polymeric film.^^ A 

corresponding reduction in plasma sheath potential (formed around the 

electrically isolated substrate)^ will curtail ion induced cross-linking and sputtering 

of the growing polymer film.^^ Furthermore, a drop in oxygen atom concentration 

within the plasma, due to reduced monomer fragmentation (carbon-oxygen single 

bond dissociation energy 3.64 eV and carbon-oxygen double bond dissociation 

energy 7.55 eV) ,^ will reduce atomic oxygen assisted chemical etching of the 

growing plasma polymer layer. 

The deposition rate of the CW AA plasma polymer, measured by the quartz 

crystal microbalance, decreased rapidly with increasing discharge power. At low 

discharge powers plasma deposition was expected to have occurred under 

energy deficient conditions.^ Under this regime an increase in the discharge 
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power would increase the deposition rate. Previously, such behaviour has been 

reported for the CW plasma polymerisation of AA under different deposition 

c o n d i t i o n s . T h e rapid decrease in deposition rate with increasing discharge 

power observed in this study may be attributed to an increase in etching of the 

plasma polymer at high powers. A possible cause of this increase in etching with 

discharge power is chemical etching by oxygen atoms.^'^^ Evidence has been 

presented which suggests that monomer fragmentation processes, which may 

yield reactive oxygen atoms, became more prevalent with increasing discharge 

power. Attack of the growing plasma polymer by oxygen atoms would yield 

carbon monoxide, carbon dioxide and water.^^'^^ Indeed, the plasma polymers 

formed at the higher discharge powers were oxygen deficient. Figure 2.5. 

Etching of surfaces exposed to AA plasmas above 7 W was evident from the 

decrease in mass of the quartz crystal at higher CW powers. 

Pulsing the electrical discharge on the ms-^is time scale enabled a further 

reduction in the average power and a significant enhancement of functional group 

retention was achieved. The deposition rate reached a maximum of 

approximately 0.1 ng s""" cm'^ at an average power of 0.1 W. At average powers 

below 0.1 W deposition occurred in the power deficient regime and increased 

with increasing average power. Above 0.1 W the deposition rate decreased with 

increasing average power vis-a-vis the CW deposition. The deposition efficiency, 

which is a direct measure of the amount of polymer formed per joule of energy 

input, increased rapidly with decreasing average power. Film forming reactions 

became progressively dominant over film ablation and termination processes as 

the average power was reduced.""^ Furthermore, the rapid increase in deposition 

efficiency with decreasing duty cycle provided evidence for film forming reactions 

in the plasma off-time. ̂ "•̂ •̂̂ ^ Structural retention increased with increasing 

plasma off-time. Chemistry occurring during the plasma off-time film growth 

period was more selective and film growth may have taken place through 

exclusive activation of the carbon-carbon double bond.''® The increase in 

structural retention with decreasing plasma on-time was a result of a reduction in 

monomer fragmentation processes occurring during on-times. Other differences 

between CW and pulsed plasma deposition may have been important. The 

negative substrate bias built up during plasma on-times decayed rapidly once the 
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plasma was extinguished (<1 ms).^^ This minimised bond breaking 

randomisation and ablation processes by energetic cationic species being 

accelerated towards the growing polymeric film.^^ Furthermore, excessive 

heating of the substrate was avoided during low duty-cycle pulsed plasmas. 

Samples removed immediately from the reactor for rapid analysis following 

pulsed plasma polymerisation were not heated above room temperature. Cooler 

substrate temperatures under pulsing conditions will increase film chemistry 

selectivity during deposition.''^•^^ 

Addition of molecular oxygen to the plasma during AA deposition increased the 

oxygen content of the polymeric film formed. 0/C ratios increased linearly with 

the amount of oxygen introduced into the plasma. Oxygen plasmas contain a 

large number of different species such as atomic oxygen (ground state), 

metastables, singlet oxygen O2 (^Ag), a small concentration of ozone, electrons 

and emitted light.^^'^^'^ Previous studies have shown that ground state oxygen 

atoms, in conjunction with vacuum ultra-violet (VUV) radiation, cause surface 

activation.^'^^'®^'^^'^^'^° This combination causes extensive unselective oxidation of 

growing plasma polymers. The oxygen atoms produced also attack organic 

m a t e r i a l . E t c h i n g of polymeric material by the reactive oxygen atoms via 

random chain scissoring^^'^^ competes with film forming processes. It was found 

that the deposition rate of the AA plasma polymer decreased rapidly as the 

concentration of oxygen in the plasma increased due to attack by atomic oxygen 

and VUV radiation. Above a total pressure of 0.4 mbar etching processes 

dominated and the mass of the quartz crystal fell. 

Introduction of molecular oxygen during electrical pulsing of the AA plasma 

increased the oxidation of the plasma polymer. The deposition rate decreased 

with increased oxygen addition as before. However, at low duty cycles a greater 

total pressure could be achieved before the onset of plasma etching. At these 

higher oxygen concentrations a highly oxidised film was formed, reaching an 0/C 

ratio of 1.36. Up to 42 percent of the carbon atoms present were in highly 

oxidised environments (C(=0)-0). Decreasing the plasma on-time reduced the 

oxidation, reflecting a decrease in the formation of reactive atomic oxygen and 

VUV. Increasing the plasma off-time also resulted in a decrease in the oxidation 
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of the polymeric films. This may be attributed to the absence of oxygen atoms 

during off-time polymer forming reactions. 

Pulsed oxygen injection into a low power CW AA plasma produced a highly 

oxidised surface when the gas pulse on-time was above a certain threshold (150 

)is gas on-time). The deposition rate decreased markedly above this point. On 

increasing the gas on-time further, the deposition rate fell rapidly and etching of 

the quartz crystal occurred above 165 ^is. From the XPS analysis of the 

polymeric films formed there appeared to be little difference between constant 

oxygen addition and pulsed oxygen injection into the CW plasma under the 

experimental conditions employed. 

The effect of simultaneous pulsed gas injection into an electrically pulsed AA 

plasma was investigated for a variety of different gases as a function of the 

surface oxygenation of the resultant polymeric thin film. Oxygen gas was seen to 

cause the greatest oxygenation. Carbon dioxide also increased the surface 

oxidation of the polymeric film. An increase in the surface oxidation of the AA 

plasma polymer was also recorded when, most notably, helium, nitrogen and 

hydrogen were injected into the discharge. Increased oxidation may have been 

due to VUV free radical formation. Previous studies have shown that significant 

oxidation of polyethylene and polystyrene can be achieved by a nitrogen glow 

discharge in the presence of oxygen gas.^^'^'' The pulsed injection of oxygen gas, 

synchronised with electrical pulsing of the AA plasma, revealed similar trends to 

the pulsed injection of oxygen into a CW plasma. Below approximately 120 |is 

gas and electrical on-time no evidence for oxygen addition could be found. The 

0/C ratio and percentage C(=0)-0 incorporation mirrored the trend obtained in 

the absence of gas pulsing. Furthermore, the deposition rate was unaffected by 

oxygen injection in this regime. It is believed that these short pulses are 

insufficient to open the gas pulsing valve.^^ Above approximately 120 ^is the 

oxidation of the plasma polymer increased rapidly with a concomitant rapid 

decrease in deposition rate. Variation in the oxidation of the polymeric film during 

electrical and gas pulsing was recorded as a function of gas and electrical off-

time. An initial increase in the 0/C ratio with increasing off-time may have been 

due to a decrease in the etching of the polymeric film by the added oxygen 
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species. As the off-time increased the proportion of oxygen in the discharge 

decreased resulting in a reduction in the oxidation of the polymeric film. The 

deposition rate, after an initial jump, steadily decreased with increasing off-time. 

It is proposed that a decrease in oxygen atom etching, on increasing the off-time, 

was responsible for the initial rapid increase in deposition rate. However, 

deposition in this region took place according to the power deficient regime.^ 

Therefore, a further decrease in the power supplied to the discharge reduced the 

deposition rate. The deposition efficiency increased due to off-time chemistry. At 

very long off-times depletion of reactive species reduced the efficiency of 

deposition. 

2.5 CONCLUSION 

The pulsed plasma polymerisation of AA produces thin films with a high degree of 

functional group retention. The oxidation of these films can be enhanced by the 

addition of molecular oxygen to the plasma. The films thus formed possess an 

extensively oxidised surface region as concluded from the XPS data. However, 

the oxidation appears to be unselective with high concentrations of several 

different oxygenated functionalities. 
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CHAPTER THREE 

SURFACE ATTACHMENT OF FLUOROSURFACTANT 

MOLECULES 
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3.1 INTRODUCTION 

Polyelectrolytes (PE) can spontaneously interact with oppositely charged 

surfactants in aqueous solution to produce PE-surfactant complexes.^ These 

systems have been extensively studied as a function of many parameters 

including surfactant tail length,^"^ nature of the PE,^'^^ density of charges along 

the PE backbone,^'^'^" ''̂  ''̂  solution pH^ and the incorporation of low molecular 

weight electrolytes.^'^'^"'"'^ Electrostatic attraction between the oppositely 

charged constituents and interactions between long chain surfactant tails can 

lead to a highly cooperative binding process and stabilisation of the PE-

surfactant complex.̂ '̂ '̂ "*'̂ '̂̂ ^"^^ Complexes formed in solution between 

polyelectrolyte and low concentrations of surfactant can exist in a 'string of 

pearls' type morphology with micelle like surfactant aggregates adsorbed along 

the polymer c h a i n . S u c h PE-surfactant complexes readily precipitate from 

water according to a strict 1:1 stoichiometry corresponding to overall charge 

balance.^'^^'^^ In the solid phase these materials tend to display a layered 

arrangement attributed to demixing of the polar PE backbone and the 

hydrophobic surfactant tails. The precise structure is governed by a number of 

factors such as relative volume fractions of ionic and alkyi phases and the 

molecular geometry of the surfactant molecules.^^ Examples of PE-surfactant 

complexes with cubic, lamellar and cylindrical morphologies are well known.''•^^•^^ 

These materials are becoming of significant technological interest. For example, 

PE-fluorosurfactant complexes are potential candidates for ultra-low surface 

energy applications such as water-repellent fabrics, self-lubricating machine 

parts, and other non-stick end-uses.^^ 

Rather than making the whole PE-surfactant complex in solution, followed by 

precipitation, a more direct approach comprising coupling surfactants to pre-

coated polyelectrolyte plasma polymer surfaces is presented. A major benefit of 

plasma polymerisation is that a wide range of substrate materials can be 

employed irrespective of their chemical nature, shape or topography.^^'^^ The 

complexation of a cationic fluorosurfactant (Structure 3.1) with highly 

functionalised acrylic acid (AA) plasma polymer thin films has been investigated 
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using XPS and contact angle analysis. Of particular interest is the liquid 

repellency of these surface PE-fluorosurfactant complexes. 

/ \ © 0 
CF3 ^ C F 2 - ^ C H 2 CH2 N(alkyl)3 I 

Structure 3.1: Fluorinated Surfactant Molecule. 

The structure of the fluorinated surfactant consisted of a trialkyi ammonium ion 

head group separated by an ethylene spacer from the fluorinated tail. 

3.2 EXPERIMENTAL 

3.2.1 PULSED PLASMA POLYMERISATION 

The experimental apparatus and procedure for pulsed plasma depositions has 

been described previously (Chapter 2). All pulsed plasma polymerisations were 

carried out using the monomers AA (Aldrich, 99% purity) or 6-Heptenoic acid 

(Aldrich, 99% purity). Monomers were further purified with multiple freeze-thaw 

cycles. After cleaning, the reactor was pumped to base pressure and AA 

monomer vapour was introduced to a pressure of 0.2 mbar and an approximate 

flow rate of 5 x 10"® mol s ' \ Under these flow conditions the purity of AA vapour 

in the reactor was better than 99.9%. 6-Heptenoic acid has a low vapour 

pressure and was therefore introduced at a pressure of 0.05 mbar with an 

approximated flow rate of 2 x 10"® mol s'\ The percentage of monomer in the 

reactor under these conditions was 95%, the remaining gas being due to air 

leaks. All plasma polymers were deposited onto ultrasonically cleaned glass 

substrates under electrical pulsing conditions of 20 |xs on-time, 4 ms off-time and 

5 W peak-power. The pulsed electrical discharge was maintained for 30 minutes 

before the rf was switched off. Prior to removing the coated substrates the 

monomer vapour was purged through the reactor for a further 2 minutes. 
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3.2.2 AQUEOUS PHASE REACTION OF PULSED PLASMA POLYMERS 

Following pulsed plasma polymerisation the coated substrates were immersed in 

a series of aqueous solutions according to several experimental protocols. 

Protocol 1, neutralisation of AA groups: pulsed plasma polymerised AA was 

placed in 1 M sodium hydroxide (NaOH) aqueous solution for varying lengths of 

time and dried under vacuum. These samples were either characterised using 

XPS or used in Protocol 2. Protocol 2, treatment with cationic trialkyi ammonium 

fluorosurfactant (CF3(CF2)nC2H5(alkyl)3N* Structure 3.1, supplied by Clariant 

GmbH, trade name Fluowet® NMQ, information about the length of the 

fluorinated segment was not given): samples neutralised according to Protocol 1 

or untreated AA plasma polymer coated substrates were placed into an aqueous 

solution of CF3(CF2)nC2H5(alkyl)3N* (10% concentration) for 1 hour. Following 

surfactant treatment the samples were rinsed in high purity water (B.S. 3978 

grade 1) for 10 minutes and dried under vacuum. The samples were then 

characterised using XPS. Several glass slides were coated on both sides with 

the AA pulsed plasma polymer and then treated with CF3(CF2)nC2H5(alkyl)3N* as 

described above. These samples were then analysed using DCA. Protocol 3, 

treatment with a second cationic fluorosurfactant (RfalkylN*R3 Structure 3.2, 

supplied by DuPont, trade name Zonyl® FSD, details of the structure of this 

fluorosurfactant are proprietary): AA pulsed plasma polymer coated substrates 

were placed into an aqueous solution of RfalkylN^Rs (10% concentration) for 1 

hour. Following surfactant treatment the samples were rinsed in high purity 

water for 10 minutes and dried under vacuum. Samples were then characterised 

using XPS. 

Rf(CnH2n)x(alkyl)3N ® cP 

Structure 3.2: Zonyl® Cationic Fluorosurfactant. 

Protocol 4, treatment of 6-heptenoic acid pulsed plasma polymer with 

CF3(CF2)nC2H5(alkyl)3N*: 6-heptenoic acid pulsed plasma polymer coated 
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substrates were placed into an aqueous solution of CF3(CF2)nC2H5(alkyl)3N* for 1 

hour. Following surfactant treatment the samples were rinsed in high purity 

water for 10 minutes and dried under vacuum. Samples were then characterised 

using XPS. Protocol 5, treatment with amphoteric fluorosurfactant: AA pulsed 

plasma polymer coated substrates were placed into an aqueous solution of 

amphoteric fluorosurfactant Rf(CnH2n)x(alkyl)2N*-0" for 1 hour. Following 

surfactant treatment the samples were rinsed in high purity water for 10 minutes 

and dried under vacuum. Samples were then characterised using XPS and 

VCA. 

3.2.3 CONVENTIONAL COMPLEX FORMATION 

Conventional PE-fluorosurfactant complexes were produced follovwng the 

procedure outlined in the literature.^^ The poly(acrylic acid)-

CF3(CF2)nC2H5(alkyl)3N^ complex precipitated readily from aqueous solution on 

addition of CF3(CF2)nC2H5(alkyl)3N* to neutralised poly(acrylic acid) solution. 

Following further purification with pure water a white gel like material was formed. 

This precipitate was dissolved in methanol and solvent cast onto a glass 

substrate. The poly(acrylic acid)-RfalkylN*R3 complex was also readily 

precipitated from aqueous solution on addition of RfalkylN"'R3 to neutralised 

poly(acrylic acid) solution. The precipitate, further purified with pure water, was a 

clear, sticky gel like material. This complex was only sparingly soluble in 

methanol. However, a sufficient quantity of the complex was solvent cast to 

completely cover a glass substrate (proven by the absence of a Si(2p) signal in 

the XPS spectra). 

3.2.4 SAMPLE CHARACTERISATION 

3.2.4.1 XPS Characterisation 

A Vacuum Generators ESCA Lab Mk. II photoelectron spectrometer equipped 

with an unmonochromated X-ray source (Mg Kai,2 = 1253.6 eV) was used for 

chemical characterisation of the samples. Photoelectrons were collected at a 
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30° take-off angle from substrate normal and energy filtered by a concentric 

hemispherical analyser (CHA) operating in constant analyser energy mode (CAE 

= 20 eV). The spectrometer was calibrated with respect to the gold Afja and 

silver 3d5/2 peaks at 83.8 and 368.3 eV respectively.^^ Elemental sensitivity 

factors were determined experimentally relative to the carbon Is (C(1s)) peak 

(285.0 eV) using standard compounds. These were taken as F(1s) : Na(1s) : 

C(1s) : 0 ( 1 s ) : N(1s): Si(2p) = 0.24 : 0.17 : 1.00 : 0.39 : 0.65 : 1.00 respectively. 

The absence of any Si(2p) XPS feature following plasma polymerisation was 

indicative of complete coverage of the glass substrate. 

3.2.4.2 DCA Characterisation 

Dynamic contact angle characterisation (DCA) was performed on samples to 

assess the liquid repellency of the fluorinated surfaces formed (Section 1.8.5). 

Thin glass slides (area 24 mm^) were coated on both sides with plasma polymer 

and treated with fluorosurfactant as described above (Section 3.2.2). These 

samples were placed into the DCA apparatus (CAHN Dynamic Contact Angle 

Analyzer DCA-322) suspended from the microbalance via a lightweight clip. The 

sample was allowed five minutes to equilibrate before analysis commenced. 

Two test liquids (high purity water, B.S. 3978 grade 1 and hexadecane, Aldrich, 

99% purity) were moved over the sample at a rate of 154 iim s'̂  until a sample 

submersion depth of 12 mm was reached. At this point the motorised stage 

paused for 60 seconds before the liquid was removed at the same rate. 

3.2.4.3 VCA Characterisation 

Due to the technical difficulties in preparing samples coated on both sides the 

wettability of many of the samples was investigated using the sessile drop 

technique (Section 1.8.4) employing video contact angle (VCA) apparatus 

(Instruments S.A. Video Contact Angle System, VCA 2500XE). A known volume 

of the test liquid, high purity water (B.S. 3978 grade 1) or hexadecane (Aldrich, 

99% purity), was dispensed through a motorised micro-syringe and brought into 
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contact with the surface of the sample. The contact angle of the liquid was 

calculated by analysis of the shape of the droplet on the sample surface. 

3.3 RESULTS 

3.3.1 NEUTRALISATION OF AA PLASMA POLYMER 

AA plasma polymer was deposited onto glass slides under the electrical pulsing 

conditions of 20 |j,s on-time, 4 ms off-time and 5 W peak power for 30 minutes. 

The highly functionalised surfaces produced were placed into 1 M NaOH solution 

for varying lengths of time to neutralise the surface carboxylic acid groups. The 

slides were subsequently dried under vacuum prior to XPS analysis. The 

elemental composition of the neutralised AA plasma polymers is tabulated below 

as a function of time in the basic solution. Table 3.1. 

Time / s %Na % C %N % 0 % S i 

0 0 61 0 29 0 

1 6 63 0 29 2 

10 6 61 28 4 

30 9 59 30 1 

60 10 61 27 1 

600 9 60 28 1 

1800 9 60 "I 29 1 

3600 8 62 27 2 

21600 6 72 22 0 

Table 3.1: Elemental composition of NaOH treated AA plasma polymer. 
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Sodium was detected after only a brief immersion in the NaOH solution. Sodium 

levels rapidly reached a plateau of approximately 10% before decreasing. The 

maximum amount of sodium incorporated was approximately half of the 

anticipated value if all C(=0)-0 groups detected by XPS were neutralised by the 

NaOH solution. It is possible that a proportion of the C(=0)-0 groups detected 

by XPS may have been ester groups or that the neutralisation reaction did not 

reach completion. Furthermore, the solution may have failed to penetrate the 

plasma polymer completely over the sampling depth. A further point to note is 

that silicon from the glass substrate was detected in the majority of samples 

investigated. This may indicate that the plasma polymer was partially soluble in 

the basic solution or that low molecular weight material was lost from the surface 

in solution. Indeed, CW AA plasma polymer was completely removed from the 

glass substrate on rinsing in aqueous media whereas pulsed plasma derived 

coatings were more stable. 

3.3.2 ADDITION OF CATIONIC FLUOROSURFACTANT 

AA pulsed plasma polymer neutralised with 1 M NaOH solution for 30 minutes, 

as described above, was placed into CF3(CF2)nC2H5(alkyl)3N"' solution for 1 hour, 

rinsed in pure water for 10 minutes, dried under vacuum and analysed using 

XPS. The C(1s) XPS envelope of the surfactant treated AA plasma polymer 

layer was fitted to several different carbon functionalities:^^ CxHy (285.0 eV); C-

C(=0)-0 or C-CFn (285.7 eV); C-0 (286.6 eV); 0-C-O, C=0 or C-F (287.9 eV); 

C(=0)-0 or CF-CFn (289.0 eV); CF2 (291.2 eV); and CF3 (293.3 eV). Due to the 

large number of overlapping C(1s) peaks only the CF2 and the CF3 functionalities 

could be identified unambiguously. The CF2 peak was therefore used as a 

reference offset. Detection of these fluorinated functionalities provided direct 

evidence for the surface attachment of surfactant molecules to the AA plasma 

polymer. Figure 3.1. The percentage of carbon atoms in the CF2 and CF3 

chemical environments was calculated to be 27% ± 2 and 5% ± 2 respectively. 

The elemental composition of the surface region of the surfactant treated AA 

pulsed plasma polymer indicated that surfactant molecules were attached to the 
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plasma polymer, Table 3.2. A small amount of sodium was detected, suggesting 

that not all of the acid salt groups in the sampling depth had reacted with the 

surfactant. The cationic surfactant counterion iodine was not detected. 
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Figure 3.1: C(1s) XPS spectra of (a) AA pulsed plasma polymer (ton = 20 ^is, 

toff = 4 ms, Pp = 5 W); and (b) AA pulsed plasma polymer neutralised with 1 

M NaOH solution and treated with CF3{CF2)nC2H5(alkyl)3N*. 
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Sample % F %Na % C %N % 0 %Si 

AA plasma 

polymer 

0 0 61 0 29 0 

NaOH 

treated 

0 9 60 1 28 1 

Surfactant 

treated 

37 1 48 1 12 1 

Table 3.2: Elemental composition of AA plasma polymer (ton = 20 MS, toff = 4 

ms, Pp = 5 W), NaOH treated plasma polymer and surfactant treated 

neutralised plasma polymer. 

3.3.3 DIRECT REACTION OF AA PULSED PLASMA POLYMER WITH 

CATIONIC FLUOROSURFACTANT 

Further investigation into the coupling of surfactant to the AA pulsed plasma 

surface revealed that similar results could be obtained without the intermediate 

NaOH neutralisation step. AA pulsed plasma polymer was deposited onto glass 

substrates (ton = 20 [js, toff = 4 ms, Pp = 5 W, 30 minutes deposition time) and 

placed directly into an aqueous solution of CF3(CF2)nC2H5(alkyl)3N*. After 1 hour 

the samples were removed, rinsed for 10 minutes in pure water and dried under 

vacuum. XPS analysis revealed that a highly fluorinated surface was again 

produced indicating that fluorinated surfactant was attached to the AA pulsed 

plasma polymer, Table 3.3. 
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Sample % F % C %N % 0 %Si 

plasma 

polymer 

0 61 0 29 0 

Surfactant 

treated 

41 44 3 12 0 

Table 3.3: Elemental composition of AA plasma polymer (ton = 20 ps, toff = 4 

ms, Pp = 5 W) and CF3(CF2)nC2H5(alkyl)3N* treated AA plasma polymer. 

The C(1s) high resolution XPS spectra of surfactant treated AA pulsed plasma 

polymer resembled the surface produced from the neutralised surfactant treated 

plasma polymer, Figure 3.2. Carbon functionalities were fitted to the C(1s) 

envelope as described in Section 3.3.2 but, again, only the CFa and the CFs 

peaks could be unambiguously identified. The percentage of carbon atoms in 

the CF2 and CF3 chemical environments was calculated to be 29% ± 2 and 7% ± 

1 respectively. 

3.3.4 ADDITION OF RfalkylN^Ra TO AA PULSED PLASMA POLYMER 

A second cationic fluorosurfactant, RfalkylN^Ra, was found to attach to the AA 

pulsed plasma polymer surface. AA pulsed plasma polymer was deposited onto 

glass substrates (ton = 20 ps, toff = 4 ms, Pp = 5 W, 30 minutes deposition time) 

and placed directly into an aqueous solution of RfalkylN^Rs. After 1 hour the 

samples were removed, rinsed for 10 minutes in pure water and dried under 

vacuum. XPS analysis revealed that a highly fluorinated surface was produced 

indicating that the fluorinated surfactant was attached to the AA pulsed plasma 

polymer, Table 3.4. 
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Figure 3.2: 0(1 s) XPS spectra of (a) AA pulsed plasma polymer (ton = 20 ^is, 

toff = 4 ms, Pp = 5 W); and (b) AA pulsed plasma polymer treated with 

OF3(OF2)nC2H5(alkyl)3N*. 
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Figure 3.3: 0(1 s) XPS spectra of (a) AA pulsed plasma polymer (ton = 20 ^ls, 

toff = 4 ms, Pp = 5 W); and (b) AA pulsed plasma polymer treated with 

RfalkylN*R3. 
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Sample % F % C %N % 0 %Si 

plasma polymer 0 61 0 29 0 

RfalkylN^Ra 

treated 

43 45 3 10 0 

Table 3.4: Elemental composition of AA plasma polymer (ton = 20 ps, toff = 4 

ms, Pp = 5 W) and RfalkylN^Ra treated plasma polymer. 

The C(1s) high resolution XPS spectra of RfalkylN^Rs treated AA pulsed plasma 

polymer again demonstrated a high percentage of fluorinated carbon 

environments. Figure 3.3. Carbon functionalities were fitted to the C(1s) 

envelope as described earlier (Section 3.3.2) but, as before, only the CF2 and 

the CF3 peaks could be unambiguously identified. The percentage of carbon 

atoms in the CF2 and CF3 chemical environments was calculated to be 33% ± 2 

and 8% ± 1 respectively. 

3.3.5 CONVENTIONAL COMPLEX FORMATION 

The conventional complexes, poly(acrylic acid)-CF3(CF2)nC2H5(alkyl)3N* and 

poly(acrylic acid)-RfalkylN*R3, solvent cast onto glass slides were analysed by 

XPS and the surface region elemental composition was calculated. Table 3.5. 

Complex % F % C %N % 0 %SI 

PAA-

CF3(CF2)nC2H5(alkyl)3N" 

40 49 2 9 0 

PAA-RfalkylN^Rs 48 44 2 6 0 

Table 3.5: Elemental composition of PAA-CF3(CF2)nC2H5(alkyl)3N* and PAA-

RfalkylN^R3 solvent cast complex. 

122 



The surface region elemental composition of the conventionally produced 

complexes was similar to the surfactant treated AA pulsed plasma polymer 

surface. Counterions were not detected in the complexes indicating that a one-

to-one stoichiometry with respect to charges has been achieved. High resolution 

C(1s) XPS spectra of the conventional complex resembled the C(1s) spectra for 

the AA pulsed plasma polymer surfactant treated surface. Figure 3.4. The 

percentage of carbon atoms in the CF2 and CF3 chemical environments was 

calculated to be 25% ± 1 and 6% ± 1 respectively for the PAA-

CF3(CF2)nC2H5(alkyl)3N* conventional complex and 41% ± 1 and 8% ± 1 

respectively for the PAA-RfalkylN^Ra conventional complex. 
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Figure 3.4: 0(1 s) XPS spectra of (a) PAA-OF3(OF2)n02H5(alkyl)3N* 

conventional solvent cast complex; and (b) PAA-RfalkylN% conventional 

solvent cast complex. 
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3.3.6 DCA ANALYSIS OF CF3(CF2)nC2H5(alkyl)3N* TREATED AA PULSED 

PLASMA POLYMER 

The wettability of AA pulsed plasma polymer deposited onto both sides of a glass 

slide treated with CF3(CF2)nC2H5(alkyl)3N* was investigated using the DCA 

apparatus, Table 3.6. Two test liquids were employed, high purity water and 

hexadecane. DCA analysis enabled both the advancing and receding contact 

angles to be measured; i.e. the amount of contact angle hysteresis was found. 

Sample Advancing 

OA 

Receding 

OA 

Difference 

AA pulsed 

plasma polymer 

Water 39°±3 37° ±2 2 AA pulsed 

plasma polymer Hexadecane 15° ±2 14° ±2 1 

plasma polymer with 

CF3(CF2)nC2H5(alkyl)3N^ 

Water 64° ±7 64° ±3 0 plasma polymer with 

CF3(CF2)nC2H5(alkyl)3N^ Hexadecane 102°± 1 28° ±3 74 

PAA-

CF3(CF2)nC2H5(alkyl)3N* 

conventional 

complex 

Water 103° ± 1 62° ± 1 41 PAA-

CF3(CF2)nC2H5(alkyl)3N* 

conventional 

complex Hexadecane 75° ±3 46° ±7 29 

Solvent cast PAA with 

CF3(CF2)nC2H5(alkyl)3N^ 

Water 59° ±2 51°± 1 8 Solvent cast PAA with 

CF3(CF2)nC2H5(alkyl)3N^ Hexadecane 75° ±1 57° ±2 18 

Glass slide treated 

with 

CF3(CF2)nC2H5(alkyl)3N' 

Water 89° ± 1 36° ±3 53 Glass slide treated 

with 

CF3(CF2)nC2H5(alkyl)3N' 

Hexadecane 68° ±5 56° ±5 12 

Table 3.6: Contact angles of conventional and plasma polymerised AA-

fluorosurfactant complexes. 

It can be seen that the advancing contact angle with both water and hexadecane 

for the AA pulsed plasma polymer increased on treatment with 

CF3(CF2)nC2H5(alkyl)3N^ This is consistent with the fluorinated character of the 
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surface.^^ It is also noteworthy that the advancing contact angle of the surfactant 

treated AA pulsed plasma polymer was higher for hexadecane than water. This 

behaviour was unexpected as hexadecane has a lower surface tension than 

water '̂* and should therefore have been harder to repel.^^ The untreated AA 

pulsed plasma polymer displayed little hysteresis. However, the surfactant 

treated AA plasma polymer displayed a large hysteresis with hexadecane. The 

conventionally produced poly(acrylic acid)-CF3(CF2)nC2H5(alkyl)3N* complex 

possessed a high advancing contact angle with water and hexadecane in line 

with the expected behaviour.^^ However, the receding contact angles displayed 

some hysteresis with both the water and hexadecane test liquids. 

Poly(acrylic acid) dissolved in methanol was solvent cast onto both sides of a 

glass slide for DCA analysis. This sample was then treated with the 

CF3(CF2)nC2H5(alkyl)3N* surfactant solution. The complex formed displayed a 

similar trend to the AA pulsed plasma polymer treated with 

CF3(CF2)nC2H5(alkyl)3N*, although not to the same extent. The advancing 

contact angle with hexadecane was again larger than the water contact angle. A 

hysteresis was evident but it was not as pronounced as in the plasma polymer 

case. A surfactant treated glass slide was also analysed as a control. Results 

indicated that some fluorinated surfactant was attached to the glass slide but the 

water contact angle possessed a large hysteresis. 

3.3.7 PULSED PLASMA POLYMERISATION OF 6-HEPTENOlC ACID 

To investigate the influence of the concentration of surface acid groups on the 

surface attachment of CF3(CF2)^C2H5(alkyl)3N^ 6-heptenoic acid was used as 

the monomer for plasma polymerisation. In theory, the dependence of the 

surfactant attachment on the density of acid groups could easily be evaluated by 

altering the pulsing conditions of the AA plasma polymerisation (Chapter 2). 

However, in practice it was found that only AA pulsed plasma polymers produced 

under lower duty cycles were stable under the surfactant treatment conditions. 

Pulsed plasma polymers formed with larger duty cycles were more readily 

dissolved in the aqueous solution. 
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Pulsed plasma polymerisation of 6-heptenoic acid was performed under the 

standard electrical pulsing conditions employed in the above study (ton = 20 ps, 

toff = 4 ms, Pp = 5 W, 30 minutes deposition time). XPS analysis of the pulsed 

plasma polymer revealed that the oxygen incorporation and percentage C(=0)-0 

group detected were much lower than for the AA plasma polymer deposited 

under similar conditions, Table 3.7, and 3.8. The difference is rationalised by 

consideration of the monomer structure, Structure 3.3. 

O 

H 2 C = C H - ^ C H 2 - ^ C — O H 

Structure 3.3: 6-Heptenoic acid. 

Plasma Polymer % C %N % 0 %Si 

AA 61 ± 1 0 29 ± 1 0 

6-Heptenoic acid 78 ± 1 0 22 ± 1 0 

Theoretical 78 0 22 0 

Table 3.7: Elemental composition of AAand 6-Heptenoic acid pulsed 

plasma polymer (ton = 20 ps, toff = 4 ms, Pp = 5 W). 
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Plasma Polymer % C«Hy % C -

0(=0)-0 

% c - o % 0=0 

/ 0-0-0 

% C(=0)-

0 

AA 37 ± 1 30 ± 1 2± 1 1 ± 1 30 ± 1 

6-Heptenoic acid 71 ± 1 13± 1 2± 1 1 ± 1 13± 1 

Theoretical 71 14 0 0 14 

Table 3.8: Composition of AA and 6-Heptenoic acid pulsed plasma polymer 

(ton = 20 MS, toff = 4 ms, Pp = 5W). 

The 6-Heptenoic acid pulsed plasma polymer deposited onto glass substrates 

was treated with CF3{CF2)nC2H5(alkyl)3N* solution using the procedure outlined 

above (Section 3.2.2). XPS analysis revealed that a highly fluorinated surface 

was produced which indicated that fluorinated surfactant was attached to the 6-

heptenoic acid pulsed plasma polymer surface. Table 3.9. 

Sample % F %0 %N %0 %Si 

6-Heptenoic acid pulsed 

plasma polymer 

0 78+1 0 22 ± 1 0 

plasma polymer-

CF3(CF2)nC2H5(alkyl)3N^ 

42 ± 1 44 ±2 3± 1 12±2 0 

Table 3.9: Elemental composition of 6-Heptenoic acid pulsed plasma 

polymer (ton = 20 \is, toff = 4 ms, Pp = 5 W) treated with 

OF3(OF2)n02H5(alkyl)3N*. 

Consideration of the C(1s) XPS spectra of the surfactant treated 6-heptenoic 

acid pulsed plasma polymer surface region demonstrated that the surface 

produced resembled the surfactant treated AA pulsed plasma polymer surface, 

Figure 3.5. The percentage CF2 and CF3 incorporation was 32% ± 1 and 7% + 1 
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respectively which compares favourably to that found for the AA pulsed plasma 

polymer. 

3.3.8 REACTION OF AA PULSED PLASMA POLYMER WITH AMPHOTERIC 

FLUOROSURFACTANT 

The AA pulsed plasma polymer was placed in an aqueous solution of amphoteric 

fluorosurfactant Rf(CnH2n)x(alkyl)2N*-0' for 1 hour, rinsed in pure water for 10 

minutes and dried under vacuum. The surfaces formed were analysed using 

XPS, Table 3.10, and VCA. 

Sample % F % C %N % 0 %Si 

plasma polymer-

Rf(CnH2n)x(alkyl)2 

N*-0-

49 43 3 6 0 

Table 3.10: Elemental composition of AA pulsed plasma polymer (ton = 20 

ps, toff = 4 ms, Pp = 5 W) treated with fluorosurfactant Rf(CnH2n)x(alkyl)2N*-0" 

A highly fluorinated surface was again formed which indicated that the surfactant 

had been attached to the AA pulsed plasma polymer. Fitting of the C(1s) spectra 

allowed calculation of the percentage of carbon atoms in the CFa and CF3 
chemical environments which were 37% ± 2 and 8% ± 2 respectively, Figure 3.6. 

VCA analysis was performed using two test liquids, water and hexadecane. The 

contact angles measured for water and hexadecane were 56° ± 4 and 88° ± 2 

respectively. Once more the surface appeared to repel hexadecane to a greater 

extent than water. 
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Figure 3.5: 0(1 s) XPS spectra of (a) 6-Heptenoic acid pulsed plasma 

polymer (ton = 20 ^is, toff = 4 ms, Pp = 5 W); and (b) 6-Heptenoic acid pulsed 

plasma polymer treated with OF3(OF2)n02H5(alkyl)3N*. 
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Figure 3.6: 0(1 s) XPS spectra of (a) AA pulsed plasma polymer (ton = 20 ̂ is, 

toff = 4 ms, Pp = 5 W); and (b) AA pulsed plasma polymer treated with 

Rf(CnH2n)x(alkyl)2N*-0-. 
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3.4 DISCUSSION 

These highly functionalised acrylic acid plasma polymer surfaces were found to 

readily undergo complexation with the cationic fluorosurfactant solution. A 

number of factors are known to govern the adsorption of surfactants onto solid 

surfaces: the chemical nature of the solid surface; the molecular structure of the 

surfactant; and the solvent environment.^'*'^ Generally, surfactant adsorption at 

low concentrations involves single surfactant ions rather than micelles.''^^^ 

Adsorption of fluorocarbon surfactant onto hydrophobic groups on polyethylene 

has been desc r ibed .However , on removal of the polyethylene from solution 

the adsorption was shown not to be site specific. Any adsorption due to 

Interactions between hydrophobic groups and the cationic fluorosurfactant used 

in this study was proved to be reversible by the analysis of 

CF3(CF2)nC2H5(alkyl)3N'' treated and rinsed polyethylene samples. Figure 3.7. 

No evidence for surfactant adsorption on polyethylene could be found from the 

C{1s) XPS spectrum. The shoulder to low binding energy of the hydrocarbon 

peak was not at a fixed binding energy (its position changed, with respect to the 

hydrocarbon peak, between separate analysis runs of the same sample). It may 

have been due to differential surface charging effects,'*'^ or be a sodium KLL 

auger line superimposed on the photoelectron spectrum.^" Such peaks were 

also noted when the AA plasma polymer samples were neutralised in the NaOH 

solution. Figure 3.1. Therefore, adsorption at hydrophobic sites on the AA 

plasma polymer surface was unlikely to be an important mechanism of surfactant 

attachment. The carboxylic acid groups at the surface of the plasma polymer 

layer will be expected to become weakly ionised in water (the degree of 

ionisation of poly(acrylic acid) in aqueous solution is 0.026)^^ and this will lead to 

a favourable electrostatic attraction between the ionised acid groups and 

oppositely charged fluorosurfactant ions.^'^^ Such interactions will orientate the 

charged surfactant head group towards the plasma polymer surface, and leave 

the fluorinated tail segment extended away towards the air-solid interface. The 

high contact angle measured for hexadecane is consistent with the 

aforementioned description. However, the observed wettability towards water is 

indicative of a polar component at the surface, something which is absent for 

conventional bulk polyelectrolyte-surfactant comp lexes ,where perfluoroalkyi 
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chains remain orientated outwards in tlie presence of both polar and non-polar 

probe liquids.'*^ One possible explanation for the observed switching in liquid 

repellency could be that the adsorbed fluorosurfactant species form a partly 

intercalated heterogeneous structure with some of the surfactant hydrophilic 

polar groups orientated away from the substrate (e.g. a bilayer).'"''^^''^'^'^" The 

driving force for such behaviour would be a balance between attraction of the 

cationic surfactant head group towards the partially ionised polyelectrolyte 

surface and the unfavourable surface tension between the fluorocarbon tails and 

water.'*^ However, this is unlikely due to the absence of any XPS signal from the 

r counterion. A more plausible scenario is that the surfactant-polyelectrolyte 

monolayer is able to reorganise in such a way so as to allow water molecules to 

interact with the hydrophilic sub-surface of the acrylic acid plasma polymer. Any 

plasma induced crosslinking during deposition of the acrylic acid plasma polymer 

layer should restrict sub-surface swelling, and therefore prevent accessibility for 

the fluorosurfactant moieties to below the surface, in turn this will suppress 

interdigitation, cooperative binding, and layering of the perfluoroalkyi tails.^''•^^ 

Such oleophobicity/hydrophilicity behaviour is potentially attractive for anti-

fogging applications, where the spreading of water droplets in combination with 

a hindrance towards oily substances is highly sought after.^^ Another area of 

interest is soil-release, where the substrate is required to repel oily substances in 

the dry state whilst allowing solvent molecules access to the surface in the wet 

state in order to assist with the removal of any adhered soil moieties.^^'^ 

Complexing of other types of cationic fluorosurfactants to anionic pulsed plasma 

polymers prepared from acrylic acid and related monomers, e.g. 6-heptenoic 

acid, were also found to display similar liquid wetting behaviour towards 

hexadecane and water (i.e. switching). Many of the systems tested 

demonstrated a large hysteresis between the advancing and receding contact 

angles. This hysteresis may be due to kinetic or thermodynamic factors (Section 

1.7.3).^^ Kinetic hysteresis arises from time dependent surface modifications 

upon wetting of the substrate by the test liquid. Possible modifications include 

swelling, penetration of the surface by the test liquid and surface group 

reorientation.^^"^^ Thermodynamic hysteresis could be due to surface roughness 

or surface heterogeneity.^" 
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The amphoteric fluorinated surfactant Rf(CnH2n)x(alkyl)2N*-0' was also attached 

to the plasma polymer surface. The greater fluorinated surface functionalities 

produced may be indicative of the increased levels of fluorination in the 

surfactant structure. 
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Figure 3.7: C(1s) XPS spectra of CF3(CF2)nC2H5(alkyl)3N* treated 

polyethylene. 
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3.5 CONCLUSION 

Fluorinated surfactant was attached to the plasma polymer surface. However, 

the liquid repellent behaviour expected of a fluorinated surface was only partially 

evident. In reality the surface produced displayed rather complicated wetting 

properties which were only partially eluded. The mechanism of surfactant 

attachment could only be hypothesized from the end product. Further work, such 

as the construction of an adsorption isotherm,^ would be required to 

unambiguously identify the method of adsorption. Such techniques present 

technical difflculties when applied to plasma systems. 
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CHAPTER FOUR 

SURFACE ATTACHMENT OF FLUOROSURFACTANT 

MOLECULES TO ALLYL AMINE PLASMA POLYMERS 
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4.1 INTRODUCTION 

Allyl amine possesses an amine group and a double bond. Structure 4.1, making 

it an ideal candidate for the fabrication of amine rich surfaces via plasma 

polymerisation. Examples of the formation of allyl amine plasma polymers have 

previously been reported in the literature.^"^ Potential uses for allyl amine plasma 

polymer surfaces include initial substrates for multilayer assemblies^ and 

surfaces for cell growth and protein attachment.'*"^ Below plasma polymerised 

allyl amine surfaces are utilised for the attachment of an amphoteric fluorocarbon 

surfactant. Structure 4.2. 

CH2—NH2 

C H 2 = C ^ 

H 

Structure 4.1: Allyl Amine. 

© 0 
Rf(CnH2n)xN(alkyl)2-0 

structure 4.2: Amphoteric Fluorosurfactant. 

The allyl amine plasma polymer coating presents a solid polyelectrolyte (PE) 

surface to bulk phases. The attachment of fluorosurfactant molecules to this PE 

surface may be a new route to the formation of liquid repellent surfaces. 

Complexes between PE and surfactant molecules are well known.®'̂ ^ Several 

features appear to be common to many of these systems: 

Complexation reactions are almost always performed in aqueous 

solution ;^'2223 

Many parameters affect the complexation reactions including surfactant 

tail length,^"^'* nature of the PE,''^"''^ density of charges along the PE 
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b a c k b o n e , s o l u t i o n pH,^^ and the incorporation of low 

molecular weight electrolytes;''^"'^' ^"''''''' ̂ ^ 

• Solid PE-surfactant complexes can be easily precipitated from aqueous 

solution;«2223 

• Such complexes are formed according to a strict 1:1 stoichiometry with 

respect to the charges.^'^^'^^ 

PE-fluorosurfactant complexes have been precipitated from aqueous solution 

and this new class of solid compounds displays liquid repellent properties.^^ 

4.2 EXPERIMENTAL PROCEDURE 

4.2.1 APPARATUS AND PROCEDURE 

The experimental apparatus and procedure for plasma depositions was 

described previously (Chapter 2). Allyl amine monomer (Aldrich, 99% purity) was 

further purified by multiple freeze-thaw cycles. Prior to each experiment the 

reactor was scrubbed clean with detergent and scouring powder, rinsed with 

copious amounts of water and isopropyl alcohol (IPA) before finally being oven 

dried. Before polymerisation, air was emitted into the reactor and a 50 W air 

cleaning plasma was ignited at a pressure of 0.2 mbar for 30 minutes. The 

reactor was pumped down to base pressure following air plasma cleaning, 

isolated from the pump and opened up to the atmosphere to allow insertion of the 

substrate. Glass slides cleaned as previously described (Section 2.2) were used 

as the substrate for XPS analysis and further reaction. Polished sodium chloride 

plates were used as substrates for ATR-FTIR analysis. The substrate was 

positioned at the centre of the copper coils and the system was pumped back 

down to base pressure. At this stage the leak rate of the reactor was determined 

(Section 2.2.2.1). Acceptable leak rates were below 1 x 10"^ mol s"\ Allyl amine 

vapour was then introduced into the reactor at a pressure of 0.2 mbar and the 

flow rate was calculated (Section 2.2.2.2). The flow rate was kept constant at 

approximately 1.5 x 10"® mol s'\ This resulted in a monomer purity in the reactor 

of above 99.9%. The glow discharge was then ignited and immediately balanced 

using the matching network. After the treatment time of 30 minutes had elapsed 
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the plasma was extinguished and the monomer was purged through the system 

for a further two minutes. 

4.2.2 CONTINUOUS WAVE (CW) PLASMA POLYMERISATION 

CW plasma polymerisation of allyl amine was carried out as described above. 

The discharge power was set according to the power meter and the plasma 

balanced. After plasma polymerisation the sample was removed from the reactor 

and immediately analysed by XPS or ATR-FTIR. 

4.2.3 ELECTRICALLY PULSED PLASMA POLYMERISATION 

For electrically pulsed plasma experiments a pulse generator supplied a pulse of 

5 V amplitude to modulate the rf generator as previously described (Section 

2.2.1.2). It was necessary to set up the reaction conditions prior to the insertion 

of the substrate as the plasma had to be balanced under CW conditions. 

Therefore, following the air cleaning plasma, air was emitted into the reactor via 

the leak valve. A plasma was ignited, the power set and the pulsing was 

switched on. The overall average power (<P>) supplied to the system was 

calculated (Equation 2.1, Section 2.2.1.2).^^ After the reactor had been prepared 

it was vented to the atmosphere to allow insertion of the substrates. From this 

point the experimental procedure was essentially the same as that for CW 

plasma polymerisation (Section 4.2.2), except that the plasma discharge 

conditions had already been determined. 

4.2.4 TREATMENT WITH AMPHOTERIC FLUORINATED SURFACTANT 

Allyl amine pulsed plasma polymer layers were deposited onto glass substrates 

under the pulsing conditions of ton = 20 |is, toff = 1000 \is and Pp = 5 W for 30 

minutes. These substrates were subsequenfly placed in an aqueous solution of 

the amphoteric fluorinated amine oxide surfactant (Rf(CnH2n)x(alkyl)2N*-0' 
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structure 4 .1 , supplied by Clariant GmbH, trade name Fluowet® OX, details of the 

structure of this fluorosurfactant were not given by the supplier) at various 

concentrations for 1 hour, rinsed in pure water for 10 minutes, and dried under 

vacuum. Following fluorosurfactant treatment the samples were analysed by 

XPS and VCA. 

4.2.5 SAMPLE CHARACTERISATION 

4.2.5.1 XPS Characterisation 

Samples were characterised immediately following plasma polymerisation by 

XPS spectroscopy. The glass slides were attached to a stainless steel probe 

stud using double sided adhesive tape and inserted into a Vacuum Generators 

ESCA Lab Mk. II photoelectron spectrometer. The spectrometer was fitted with 

an unmonochromated magnesium X-ray source (Mg Kai,2 = 1253.6 eV) and 

operated in the constant analyser energy mode (CAE = 20 eV for high resolution 

spectra, 50 eV for survey scans). Photoelectrons emitted from the substrate 

were collected at a 30° take-off angle with respect to the substrate normal. The 

spectrometer calibration was routinely checked using the gold 4f7/2 and silver 

3d5/2 peaks at 83.8 and 368.3 eV respectively.^^ Elemental sensitivity factors 

were determined experimentally relative to the carbon 1s (C(1s)) peak (285.0 eV) 

using standard compounds. These were taken as C(1s) : F(1s) : 0(1 s) : N(1s) : 

Si(2p) = 1.00 : 0.24 : 0.39 : 0.65 : 1.00 respectively. The absence of any Si(2p) 

XPS feature following plasma polymerisation was indicative of complete coverage 

of the glass substrate. 

4.2.5.2 ATR-FTIR Characterisation 

A FTIR Mattson Polaris instrument fitted with a golden gate apparatus for 

attenuated total reflection (ATR) spectroscopy was used for infrared analysis of 

plasma polymers deposited onto polished sodium chloride plates. Typically 128 

scans were acquired at a resolution of 4 cm"\ 
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4.2.5.3 VCA Characterisation 

The wettability of the samples was investigated using the sessile drop technique 

(Section 1.8.4) employing video contact angle (VCA) apparatus (Instruments S.A. 

Video Contact Angle System, VCA 2500XE). A known volume of the test liquid, 

high purity water (B.S. 3978 grade 1) or hexadecane (Aldrich, 99% purity), was 

dispensed through a motorised micro-syringe and brought into contact with the 

surface of the sample. The contact angle of the liquid was calculated by analysis 

of the shape of the droplet on the sample surface. 

4.3 RESULTS 

High resolution XPS envelopes were fitted using a Marquardt minimisation 

routine. The peak shape was assumed to be Gaussian with a fixed relative full 

width at half maximum.^^ Using the hydrocarbon peak at 285.0 eV as a reference 

offset the C(1s) region of a typical allyl amine plasma polymer layer was fitted 

with four different carbon functionalities:^'^°'^^ an unfunctionalised hydrocarbon 

group (CxHy at 285.0 eV); a carbon singly bonded to nitrogen functionality (C-

NH2 , C-NH-C, C-N=C at 285.9 eV); an imine group (C=N 286.8 eV); and an 

amide or carbonyl group (C(N)=0, C = 0 288.0 eV), Figure 4.1 . Oxygen may have 

been incorporated into the plasma polymer due to post polymerisation reacfions 

of trapped radicals in the plasma polymer with atmospheric oxygen following 

removal of the sample. Alternatively direct oxidation during plasma 

polymerisation by water desorbed from the reactor walls could also have been 

responsible.^ A small signal was present towards the high binding energy end of 

the C(1s) spectrum. This signal arose from fluorinated carbon impurities. The 

N(1s) region was fitted with one peak at approximately 399.5 eV for nitrogen 

singly bonded to carbon,^° Figure 4.2. The FWHM of this peak was large 

(approximately 2.8 eV) which indicated the presence of nitrogen atoms in 

different chemical environments.^ The N/C ratio was found from the N(1s) and 

C(1s) peak areas (after correction for sensitivity). 
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The IR spectra of the allyl amine monomer was compared with the 2 W CW allyl 

amine plasma polymer deposited onto a NaCI plate. Figure 4.3. The peaks were 

identified with reference to the literature: ̂ '̂ '̂̂ ^ (1) asymmetrical and symmetrical 

primary amine N-H stretch double absorption bands at 3370 and 3288 cm"^ 

respectively; (2) C-H stretching vibrations for = C H 2 and =CH- groups at 3079 and 

2978 cm"^ respectively;^^ (3) aliphatic C-H stretch 2914 and 2850 cm'^ (4) CHz 

out of plane deformation bending absorption for = C H 2 1800 cm"\ (5) C=C 

stretching vibration 1642 cm'\- (6) N-H primary bend absorption 1600 cm"''; (7) 

aliphatic C H 2 scissoring vibration 1451 cm"'' and C H 2 in plane deformation for 

= C H 2 1422 cm"^ (8) C-H in plane deformation for = C H 2 and =CH- 1284 cm"^ (9) 

C-N stretching vibration 1073 cm"^ (10) C-H out of plane deformation for = C H 2 

and =CH- 996 cm"^ (11) C H 2 out of plane deformation for = C H 2 and =CH- 920 

cm''' and N-H bending absorption 826 cm'^ (12) primary amine N-H stretch 

double absorption band in the monomer replaced by wide absorption band from 

primary, secondary and imine N-H stretches 3350 to 3200 cm ' \ (13) multiple C-H 

absorption bands of aliphatic groups 2960, 2940 and 2880 cm"^ (14) C O 2 

absorption from atmosphere with possibly a small contribution from a nitrile (C=N) 

group 2184 cm"^ (15) N-H primary bending absorption considerably broadened 

by a C=N imine stretch 1632 cm"^ (16) aliphatic C H 2 scissoring band 1454 cm"^ 

and aliphatic C-H symmetrical bending absorption 1379 cm"\ 
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Figure 4.1: 0(1 s) XPS spectra of 2 W CW allyl amine plasma polymer. 

147 



CO 
I -

O 
O 

* •••• i ' A w k 
• • » • • • 

T ' 1 • 1 • 1 ' r 

392 396 400 404 408 
BINDING ENERGY/eV 

Figure 4.2: N{1s) XPS spectra of 2 W CW allyl amine plasma polymer. 
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Figure 4.3: ATR-FTIR spectra of (a) allyl amine monomer; and (b) 2 W CW 

allyl amine plasma poiymer. 
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4.3.1 CW PLASMA POLYMERISATION OF ALLYL AMINE 

The C(1s) and N(1s) spectra of the CW allyl amine plasma polymer appeared to 

vary little with discharge power, Figure 4.4 and 4.5. The N/C ratio reached a 

maximum value of 0.37 at a discharge power of 2 W, Figure 4.6. Below this 

power the electrical discharge became unstable. The N/C ratio passed through a 

minimum at approximately 20 W but recovered slightly as the power was 

increased. Deconvolution of the C(1s) spectra of allyl amine plasma polymer, 

deposited as a function of CW discharge power, aided quantification of the effect 

of power on the chemical composition of the plasma polymers, Figure 4.7. The 

percentage of unfunctionalised hydrocarbon and imine groups tended to 

decrease with decreasing discharge power. The opposite trend was observed for 

carbon atoms singly bonded to nitrogen and the oxygenated carbon 

functionalities. These groups were seen to increase with decreasing discharge 

power, reaching a maximum of 29% ± 2 and 7% ± 1 respectively at the lowest 

discharge power (2 W). 
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4.3.2 EVALUATION OF PULSE PLASMA PARAMETERS 

From consideration of Equation 2.1 (Section 2.2.1.2), ttie average power 

delivered to the plasma (<P>) is a function of three variables:^^ on-time (ton); off-

time (toff); and peak power (Pp). To efficiently investigate how these variables 

affected the percentage of the C-N group incorporated into the plasma polymer a 

set of eight experiments were planned. Two values (known as levels) were 

chosen for each of the three variables (known as factors) in order to ascertain 

which factors, or combination of factors, had the greatest influence on the 

percentage of the C-N group incorporated into the plasma polymer (known as 

the response).^'* The choice of level for each factor was partly governed by 

previous experience and the limitations of the equipment (the rf generator could 

not deliver reliable pulses shorter than 20 ^is and its maximum power output was 

70 W). The choice of experimental parameters, the experiments performed and 

the responses recorded are presented below, Table 4.1, and 4.2. 

Factors 

Levels ton toff Pp 

+ 1000 fis 5000 jis 50 W 

- 20 \LS 500 |is 5 W 

Table 4.1: Levels for each experimental factor. 
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Expt. ton toff Pp Response 

1 + + + 2 6 

2 - + + 3 0 

3 + - + 2 3 

4 + + - 2 7 

5 + - - 2 8 

6 - + - 3 0 

7 - - + 31 

8 - - - 3 2 

Table 4.2: Experiments and their responses (percentage C-N group 

incorporated). 

From these results a table was constructed to evaluate the effect of each factor 

and combination of factors.^'* 

Expt ton toff Pp ton/Pp toff/Pp ton/toff ton/toff/Pp 

1 + 2 6 + 2 6 + 2 6 + 2 6 + 2 6 + 2 6 + 2 6 

2 - 3 0 + 3 0 + 3 0 - 3 0 + 3 0 - 3 0 - 3 0 

3 + 2 3 - 2 3 + 2 3 + 2 3 - 2 3 - 2 3 - 2 3 

4 + 2 7 + 2 7 - 2 7 - 2 7 - 2 7 + 2 7 - 2 7 

5 + 2 8 - 2 8 - 2 8 - 2 8 + 2 8 - 2 8 + 2 8 

6 - 3 0 + 3 0 - 3 0 + 3 0 - 3 0 - 3 0 + 3 0 

7 -31 -31 +31 -31 -31 +31 +31 

8 - 3 2 - 3 2 - 3 2 + 3 2 + 3 2 + 3 2 - 3 2 

Total -19 -1 -7 -5 5 5 3 

Table 4.3: Evaluation of factors. 
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The relative importance of each factor on the response was measured by the 

modulus of the total found in the above table. Table 4.3. The sign of each total 

dictates whether increasing the value of a factor had a positive or negative effect 

on the response. From these results it is clear that the ton had the greatest 

influence on the response. Decreasing ton and Pp increased the percentage of C-

N groups retained in the plasma polymer. The combined factors and the plasma 

toff did not have a large influence on the response over the range studied. In light 

of these results it was decided to investigate the effect of ton over the plasma 

polymerisation of allyl amine. 

4.3.3 INFLUENCE OF PLASMA ON-TIME 

The pulsed plasma polymerisation of allyl amine was investigated as a function 

of electrical plasma ton (with a constant toff = 1000 \is and Pp = 5 W). The C(1s) 

and N(1s) high resolution spectra appeared to vary little with ton. Figures 4.8 and 

4.9. However, the N/C ratio increased rapidly as the ton was decreased. Figure 

4.10. Comparison with the CW results, Figure 4.6, showed that the N/C ratio 

was enhanced at low ton- The percentage composition of the carbon 

functionalities for the allyl amine pulsed plasma polymer appeared to follow a 

similar trend with decreasing average power (i.e. decreasing ton) as in the CW 

experiments. Figure 4.11. The percentage of C-N functionality reached a 

maximum, at the lowest ton, while the fraction of hydrocarbon and C=N reached a 

minimum. The percentage of oxygenated groups again increased towards low 

average powers. 
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4.3.4 TREATMENT OF ALLYL AMINE PULSED PLASMA POLYMER WITH 

AMPHOTERIC FLUOROSURFACTANT 

Allyl amine pulsed plasma polymer layers were deposited onto glass substrates 

(ton = 20 ^is, toff = 1000 |xs, Pp = 5 W for 30 minutes). These substrates were 

subsequently placed in Rf(CnH2n)x(alkyl)2N*-0" aqueous solution for 1 hour, 

rinsed in pure water for 10 minutes and dried under vacuum. Following drying, 

the samples were characterised using XPS and VCA. A high resolution C(1s) 

peak fit revealed that surfactant had indeed been attached to the pulsed plasma 

polymer surface, Figure 4.12. A second high intensity nitrogen peak, 

corresponding to the N* group was evident at approximately 403 eV, Figure 4.13. 

Using the sessile drop method, contact angle measurements were taken of 

samples and controls. Water and hexadecane were employed as test liquids. 

Table 4.4. VCA results indicated that the fluorinated surfactant was attached to 

the plasma polymer surface which produced a high contact angle with 

hexadecane. However, the surfactant treated plasma polymer was found to 

interact strongly with water. This result was not expected in view of the surface 

fluorination detected by XPS and the oil repellent properties. 

Sample Test Liquid Sample 

Water Hexadecane 

Clean Glass 38° + 3 20°+ 3 

Allyl Amine Plasma Polymer (ton = 20 ^is, toff = 

1 ms, Pp= 10W) 

46°+ 2 <20° 

Clean Glass 10% Rf(CnH2n)x(alkyl)2N"-0-1 

hour 

50°+ 4 35° + 3 

Allyl Amine Plasma Polymer 10% 

Rf(CnH2n)x(alkyl)2N'-0-1 hour 

<20° 82°+ 2 

Table 4.4: Contact angle measurements of fluorosurfactant treated allyl 

amine plasma polymer and control samples. 
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Figure 4.12: C(1s) X P S spectra of allyl amine pulsed plasma polymer (ton 

20 ^ s , toff = 1000 us, Pp = 5 W) treated with RKCnH2n)x(alkyl)2N*-0-. 
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Figure 4.13: N(1s) XPS spectra of allyl amine pulsed plasma polymer (ton 

20 ^is, toff = 1000 ^ s , Pp = 5 W) treated with Rf(CnH2n)x(alkyl)2N*-0-. 
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Figure 4.14: Hexadecane on the surface of Rf(CnH2n)x(alkyl)2N*-O treated 

allyl amine pulsed plasma polymer. 

The attachment of fiuorosurfactant to the allyl pulsed plasma polymer surface 

was investigated as a function of bulk solution surfactant concentration. Allyl 

amine pulsed plasma polymer was deposited onto glass substrates under the 

same deposition conditions. These samples were placed in various aqueous 

solutions of different bulk solution Rf(CnH2n)x(alkyl)2N'"-0' concentrations and 

rinsed and dried following the above procedure (Section 4.2.4). High resolution 

XPS spectra of the C(1s) and N(1s) regions showed that the surface 

functionalisation varied little above a bulk solution Rf(CnH2n)x(alkyl)2N*-0' 

concentration of 2%, Figures 4.15 and 4.16. The fluorine to carbon (F/C) ratio of 

the pulsed plasma polymer, measured by XPS, demonstrated this trend further, 

Figure 4.17. 
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Figure 4.17: Graph of the F/C ratio of R((C„H2„Waii(yi)2N'-0-- treated aiiyi 

amine pulsed piasma polymer layers as a function of bulk solution 

l'((C„H2„)x(alkyl)2N*-0" concentration. 
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4.4 DISCUSSION 

Comparison of the FTIR spectra for the allyl amine monomer and its plasma 

polymer showed that during plasma polymerisation rearrangement of the 

monomer molecules had taken place. Bands present in the monomer spectrum 

were considerably broadened or even lost completely in the spectrum of the 

plasma polymer. The primary amine stretch double absorption band (1) in the 

monomer spectrum was broadened in the plasma polymer and may have arisen 

from several different nitrogen functionalities such as primary and secondary 

amines and imine groups.^ Furthermore, the primary N-H bending absorption (6) 

was considerably broadened in the plasma polymer and may have contained 

contributions from a carbon-carbon (C=C) double bond stretch, an imine stretch 

(C=N), a carbonyl stretch (C=0) or an amide stretch (C(-N)=0). However, 

absorption due to C-H stretching vibrations (2) from alkene groups (=CH2 and 

=CH) and other C-H bending absorptions characteristic of alkenes (4,7,8 and 10) 

were not retained in the plasma polymer. This is strong evidence that the alkene 

(C=C) double bond was lost during plasma polymerisation.^^ A carbon dioxide 

stretching absorption from the atmosphere was also detected in the plasma 

polymer spectrum (14). This may have contained a small contribution from the 

nitrile (C^N) absorption. From examination of the IR results it can be concluded 

that double bonds were lost and new groups such as secondary amines, imines, 

carbonyls and amides were formed during plasma polymerisation of allyl amine. 

The high resolution C(1s) spectra were peak fitted with four different carbon 

functionalities by reference to literature^'^°'^^ and the IR spectra. XPS 

spectroscopy cannot distinguish between primary and secondary amines. The 

imine functionality was fitted at 286.8 eV but this may also have included a very 

small contribution from the nitrile group. The peak at 288.0 eV arose from 

carbon doubly bonded to an oxygen atom, either as a carbonyl group or as an 

amide (C(-N)=0) functionality. From XPS analysis of the allyl amine plasma 

polymer it was evident that nitrogen elimination in the plasma increased with 

increasing discharge power. At low discharge powers, the main route for plasma 

polymer formation was expected to be via opening of the double bond,^ reaction 

(7), Figure 4.18. However, even at the lowest CW power sustainable, IR and 
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XPS results showed that a high proportion of other functionalities such as 

secondary amines, imines and amides had been incorporated into the plasma 

polymer. These functionalities must have been present as a result of monomer 

fragmentation and reorganisations (Figure 4.18).^ Reactions (1) to (4) (Figure 

4.18) lead to the formation of carbon-nitrogen multiple bonds via hydrogen radical 

abstraction due to electron bombardment of species in the glow discharge. The 

enhancement of these processes, which led to an increase in the percentage of 

hydrocarbon and imine groups with increasing discharge power, was due to an 

increase in the electron energy in the plasma. The discharge power affects the 

electron energy distribution within the reactor.^^ Increasing the power increases 

the number of high energy electrons with sufficient energy to cause monomer 

fragmentation and cross-linking processes.^^ Increasing the population of high 

energy electrons promotes the rate of molecular excitement and, therefore, the 

intensity of VUV induced damage of the growing polymeric film.^^ Increasing the 

discharge power will also produce a corresponding increase in the plasma sheath 

potential formed around electrically isolated surfaces in contact with the plasma. 

This will increase the energy at which ions formed in the gas discharge bombard 

the growing film.^^ Such ion bombardment will affect the chemical nature of the 

plasma polymer. An interesting finding is that the oxygenated functionality 

detected in the XPS spectra decreased with increasing average power. This may 

indicate that plasma polymers formed by low power discharges were more 

reactive and retained a greater proportion of intact amine functionalities than 

polymers produced under more energetic conditions. 
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Reactions leading to the formation of imine or nitrile functions: 

Chb—NH2 ^ CH2—NH + H C H = N H + H2 (1) 

^ CH NH2 + H C H = N H + H2 (2) 

C H = N H • C H = N + H ^ C = N + H2 (3) 

• C = N H + H C = N + H2 (4) 

Initiation reactions via ttie multiple bonds: 

© . © 
C H 2 = C H CH2—Nl-b • CH2—CH CH2—NH2 + 1e (5) 

© . 0 
C H = C CH2—NH2 • C H = C H CH2—NH2 + 1e (6) 

Propagation reactions via the multiple bonds: 

R + C H 2 = C H CH2—NH2 ^ R CH2—^CH—CH2—Nhb (7) 

R* + C l - ^ E C CH2—NH2 • R C H = C H — C H 2 — N H 2 ( 8 ) 

Reactions of the primary amine with radicals: 

C H , NH2 + R • CH2 NH + RH (9) 

Figure 4.18: Possible reactions in the allyl amine glow discharge.^ 

In an effort to increase the amine group retention in the plasma polymer the 

average power during plasma polymerisation was decreased further by 

electrically pulsing the discharge. Evaluation of the pulsing parameters found 

that a number of factors affected the C-N group retention. However, the plasma 

on-time was shown to have by far the greatest influence on the response. It was 

therefore decided to investigate the pulsed plasma polymerisation of allyl amine 

as a function of on-time. Enhancement of functional group retention of allyl 
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amine plasma polymers by pulsing the discharge has been reported.^ The highly 

functionalised thin films formed were used to investigate the adsorption and 

denaturation of fibrinogen.'* An increase in structural retention with decreasing 

on-time was evident from the increased proportion of C-N groups at the lowest 

on-times. Furthermore, at these short plasma on-times the proportion of C=N 

groups reached a minimum of approximately 17%. The increase in structural 

retention with decreasing plasma on-time was a result of a reduction in monomer 

fragmentation processes which occurred during the on-time. Propagation 

reactions via activation of the double bond (reactions 7 and 8, Figure 4.18) may 

also have occurred in the plasma off-time."*"^^ In the off-time reactions only 

proceed via addition of unfragmented monomer molecules to active species 

formed in the plasma on-time (reaction 7, Figure 4.18). Such processes would 

tend to increase the proportion of amine functionalities included in the plasma 

polymer. However, even at the lowest on-times, the incorporation of imine 

groups into the plasma polymer provided evidence for continued monomer 

fragmentation and rearrangement reactions. Comparison of the N/C ratio and 

the percentage contribution of the different carbon functionalities showed that the 

relative increase in the nitrogen content must have been due to an increase in 

the incorporation of unfragmented monomer molecules. An increase in the 

percentage of carbonyl or amide groups with decreasing average power, as seen 

for the CW plasma polymerisation of allyl amine, could indicate an increase in the 

amine content of the plasma polymer. Amines are powerful nucleophiles and 

may have reacted with oxygenated species within the glow discharge or carbon 

dioxide in the atmosphere on venting of the reactor."*^ 

The allyl amine pulsed plasma polymer was found to be fairly stable in aqueous 

solution."* The amphoteric fluorosurfactant Rf(CnH2n)x(alkyl)2N*-0", dissolved in an 

aqueous solution, was readily attached to the plasma polymer surface. XPS 

analysis of the N(1s) region revealed that the nitrogen group (-(alkyl)2N*-0') of 

the surfactant was present on the plasma polymer surface. Consideration of the 

F/C ratio, as a function of surfactant concentration in the bulk solution, revealed a 

rapid increase in surfactant adsorption at the plasma polymer-solution interface 

on increasing the bulk surfactant concentration from 0.2 to 2%. Such a rapid 

increase of surfactant adsorption over this bulk solution surfactant concentration 
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range may have been due to the onset of cooperative binding of the surfactant 

molecules at the plasma polymer surface (Section ^.7.5).^^'^^ Above this bulk 

solution surfactant concentration, the F/C ratio reached a plateau value indicative 

of surfactant saturation at the plasma polymer surface. The mechanism of 

surfactant adsorption to the allyl amine plasma polymer surface was difficult to 

ascertain. Treatment of the allyl amine pulsed plasma polymer with the cationic 

fluorosurfactant CF3(CF2)nC2H5(alkyl)3N'' resulted in a low amount of surfactant 

adsorption. Figure 4.19. Therefore, nucleophilic attack by the amine functionality 

cannot explain the high levels of adsorption displayed by the amphoteric 

fluorosurfactant Rf(CnH2n)x(alkyl)2N*-0'. The satellites from the fluorinated carbon 

peaks were of insufficient area to account for the shoulder observed to low 

binding energy of the hydrocarbon peak in Figure 4.19. Therefore, this shoulder 

was attributed to differential surface charging effects."*^ The differential charging 

was often observed when non-conducting polymeric samples were treated in 

ionic solutions. Under the slightly acidic conditions of the aqueous 

Rf(CnH2n)x(alkyl)2N*-0" solution (pH 6 at 20°C)''^ the amine functionalities were 

likely to be positively charged.^ Therefore, some kind of electrostatic interaction 

between the cationic plasma polymer and the amphoteric surfactant molecule 

could be envisaged."*^ 

The wettability of the fluorosurfactant coated plasma polymer samples was 

investigated using the video contact angle apparatus (Section 1.8.4). Surfactant 

treatment lowered the water contact angle of the allyl amine plasma polymer. 

This result was not expected as fluorocarbon surfaces typically increase the 

water contact angle due to their low surface energies^^ (CF2 dominated surfaces 

have approximate advancing and receding water contact angles of 116° and 92° 

respectively).''^ Furthermore, the hexadecane contact angle was significantly 

increased which is symptomatic of the formation of a low energy fluorinated 

surface.^^ Water should possess a higher contact angle on a given surface than 

hexadecane because it has a higher surface tension than hexadecane and is 

therefore easier to repel.^^ These apparently contradictory results were mirrored 

in Chapter 3 and similar behaviour has been demonstrated by adsorbed ionic 

fluorosurfactant on oppositely charged mica surfaces.^" 
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Figure 4.19: 0(1 s) XPS spectra of (a) allyl amine pulsed plasma polymer (ton 

= 20 us, toff = 4 ms and Pp = 5 W); and (b) CF3(CF2)nC2H5(alkyl)3N* treated allyl 

amine pulsed plasma polymer. 
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4.5 CONCLUSION 

Fluorosurfactant was again attached to the plasma polymer surface. The 

mechanism of surfactant adsorption is tentatively suggested to be electrostatic 

interaction between positively charged amine groups on the plasma polymer 

surface and the amphoteric surfactant head group. Low amounts of cationic 

fluorosurfactant adsorption on the allyl amine plasma polymer surface may be a 

result of electrostatic repulsion between like charges. The fluorinated surfaces 

produced displayed a complicated wetting behaviour symptomatic of a 

heterogeneous or mobile surface structure. 
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C H A P T E R F IVE 

SURFACE REACTIONS OF PLASMA POLYMERISED 

ALLYL ALCOHOL 
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5.1 INTRODUCTION 

Allyl alcohol possesses an alcohol group and a double bond. Structure 5.1, 

making it an ideal candidate for the fabrication of a hydroxyl rich surface via 

plasma polymerisation. Plasma polymers formed from allyl alcohol have been 

described in the l i terature^and applications have been found in protein and cell 

adsorption.^"* 

C H 2 — O H 

C H 2 = C ^ 
H 

Structure 5.1: Allyl alcohol. 

The retention of the hydroxyl functionality in the plasma polymer has been 

studied as a function of the monomer flow rate (F).^ It has been found that 

decreasing the discharge power/monomer flow rate ratio (W/F, where W is the 

radio frequency (rf) power supplied to the plasma) increases hydroxyl functional 

group retention.''•^•^"^ Other deposition parameters such as substrate position^'^'^ 

and substrate temperature^""*^ also have had an effect on the hydroxyl group 

retention. However, these approaches suffered from several important 

limitations. If the W/F parameter is varied over too large a range then problems 

due to powdery or oily films and poor substrate adhesion were often 

encountered.^ Furthermore, controlling substrate temperature and position had 

only a limited effect on functional group retention.^ These problems are 

addressed by the use of pulsed rf discharges.^'^'^^'^"* Pulsed plasmas have been 

shown to provide a high degree of control over thin film chemistry without the 

problems associated with the variation of other plasma parameters. Examples of 

the formation of allyl alcohol pulsed plasma polymers have demonstrated the 

applicability of this approach to increasing the hydroxyl group retention in allyl 

alcohol plasma polymerisations.^'^^ 
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This Chapter reports a further investigation into the continuous wave (CW) and 

pulsed plasma deposition of allyl alcohol and the subsequent reaction of the thin 

films thus formed. The plasma polymerised allyl alcohol thin films were 

characterised by XPS spectroscopy. However, this technique was limited by the 

relatively small difference in carbon I s (CIs) chemical shifts observed in the core 

level binding energies of the C-O-H and C-O-C groups.^ These groups cannot 

be unambiguously identified by XPS without further derivatisation reactions. The 

aim of such reactions is the chemical "tagging" of specific functional groups by 

the incorporation of new atoms which can be easily identified by XPS 

analysis.^'^'^^"^^ Several stringent standards must be met for the successful 

derivatisation and unambiguous identification of surface functional groups:^'^° 

• The reaction must be specific to one functional group; 

• A new easily identifiable chemical species must be introduced into the 

surface region; 

• The reaction must proceed to completion rapidly and under mild 

conditions; 

• Any solvents used must be able to penetrate the surface of the thin film 

at least to the XPS sampling depth to ensure complete reaction of the 

functional groups over the whole sampling range; 

• Any solvent must be benign and not react with or damage the polymer 

layer. 

The above criteria is difficult to meet for solvent based techniques because 

solvents often cause swelling of the polymer layer, reorganisation and loss of low 

molecular weight oligomers.^° For these reasons vapour phase labelling 

reactions are preferred. Trifluoroacetic anhydride (TFAA) has been used 

extensively for the vapour phase labelling of hydroxyl groups and can be easily 

identified using XPS '̂̂ '̂ ®'̂ "̂̂ ^ due to the incorporation of a CF3 group which 

possesses a large chemical s h i f t . T h i s reaction was therefore used for the 

quantitative identification of hydroxyl groups formed by the plasma polymerisation 

of allyl alcohol. The reaction generates a volatile by-product which is easily 

removed.^^ TFAA also reacts readily with epoxide groups^^ but the characteristic 

epoxide infrared adsorption between 1280 and 1260 cm'^ was not observed in 

the plasma polymer thin films formed and therefore this reaction was not 

considered important.^ 
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The hydroxyl group derivatised thin films produced were reacted with tertra(fe/t-

butoxy)zirconium to produce a surface which was reactive towards further 

derivatisation. Surface bound alkoxyzirconium species were formed by the 

covalent attachment of tertra(fe/t-butoxy)zirconium to hydroxylated metal oxide 

surfaces.^^'^^ These surfaces were further derivatised with poly(acrylic acid).^^ It 

was hoped that the technique could be successfully applied to hydroxyl 

functionalised plasma polymer surfaces to increase the applicability and utility of 

the process. Such surface bound poly(acrylic acid) complexes are candidates for 

layer-by-layer deposition of polyelectrolytes to form complexes with novel surface 

properties.^^'^° 

5.2 EXPERIMENTAL PROCEDURE 

5.2.1 APPARATUS AND PROCEDURE 

The experimental apparatus and procedure for plasma depositions has been 

described above (Chapter 2). Allyl alcohol monomer (Aldrich, 99% purity) was 

further purified by multiple freeze-thaw cycles. Prior to each experiment the 

reactor was scrubbed clean mth detergent and scouring powder, rinsed with 

copious amounts of water and isopropyl alcohol (IPA) before being oven dried. 

Before polymerisation, air was emitted into the reactor and a 50 W air cleaning 

plasma was ignited at a pressure of 0.2 mbar for 30 minutes. The reactor was 

pumped down to base pressure following air plasma cleaning, isolated from the 

pump and opened up to the atmosphere to allow insertion of the substrate. Glass 

slides cleaned as described above (Section 2.2) were used as the substrate for 

XPS analysis and further reaction. Polished sodium chloride plates were used as 

substrates for ATR-FTIR analysis. The substrate was positioned at the centre of 

the copper coils and the system pumped back down to base pressure. At this 

stage the leak rate of the reactor was determined (Section 2.2.2.1). Acceptable 

leak rates were below 1 x 10'^ mol s\ Allyl alcohol vapour was then introduced 

into the reactor at a pressure of 0.2 mbar and the flow rate was calculated 

(Section 2.2.2.2). The flow rate was kept constant at approximately 8.1 x 10"^ mol 
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s'\ This resulted in a monomer purity in the reactor of 99.9%. The glow 

discharge was ignited and immediately balanced using the matching network. 

After the treatment time of 10 minutes had elapsed the plasma was extinguished 

and the monomer was purged through the system for a further two minutes. 

5.2.2 CW PLASMA POLYMERISATION 

CW plasma polymerisation of allyl alcohol was carried out as described above. 

Following ignition of the plasma the discharge power was set according to the 

power meter and the plasma balanced. After plasma polymerisation the sample 

was removed from the reactor and immediately analysed by XPS and ATR-FTIR. 

5.2.3 ELECTRICALLY PULSED PLASMA POLYMERISATION 

For electrically pulsed plasma experiments a pulse generator supplied a pulse of 

5 V amplitude to modulate the RF generator as described earlier (Section 

2.2.1.2). It was necessary to set up the reaction conditions prior to the insertion 

of the substrate as the plasma had to be balanced under CW conditions. 

Therefore, following the air cleaning plasma, air was emitted into the reactor via 

the leak valve. A plasma was ignited, the power set and the pulsing was 

switched on. The overall average power (<P>) supplied to the system was 

calculated (Equation 2.1, Section 2.2.1.2).^" After the reactor had been prepared 

it was vented to the atmosphere to allow insertion of the substrates. From this 

point the experimental procedure was essentially the same as that for CW 

plasma polymerisation (Section 5.2.2) except that the plasma discharge 

conditions had already been determined. 

5.2.4 TFAA LABELLING OF ALLYL ALCOHOL CW PLASMA POLYMER 

Allyl alcohol CW plasma polymer deposited onto glass substrates at a discharge 

power of 5 W for 10 minutes was placed in a glass tube and evacuated. The 
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sample was then isolated from the pump and exposed to TFAA vapour at a 

reduced pressure for 30 minutes. Following TFAA exposure the sample was 

pumped down to base pressure and then vented to air. These samples were 

subsequently analysed by XPS. 

5.2.5 REACTION WITH TERTRA(rE/?r-BUTOXY)ZIRCONIUM (Zr(OC(CH3)3)4) 

AND POLY(ACRYLIC ACID) 

Allyl alcohol plasma polymers deposited under a variety of discharge conditions 

were placed into a tube and evacuated to a base pressure of 5 x 10"̂  mbar. A 

second monomer tube containing Zr(OC(CH3)3)4 liquid (Aldrich, 99% purity) was 

opened to the vacuum exposing the sample to Zr(OC(CH3)3)4 vapour at a 

pressure of approximately 0.2 mbar, with constant pumping, for 1 hour. 

Subsequently the Zr(OC(CH3)3)4 liquid was isolated from the system and the 

sample was evacuated to base pressure for a further hour to remove any 

unreacted Zr(OC(CH3)3)4 vapour physlsorbed onto the polymeric surface. The 

apparatus was then vented to atmosphere and the sample was analysed by XPS. 

Some samples treated with Zr(OC(CH3)3)4 vapour were placed in 1% poly(acrylic 

acid) dissolved in dioxane for 1 hour. Following treatment the samples were 

removed from the poly(acrylic acid) solution, rinsed in fresh dioxane for 10 

minutes, dried under vacuum and analysed by XPS. 

5.2.6 SAMPLE CHARACTERISATION 

5.2.6.1 XPS Characterisation 

Samples were characterised immediately following plasma polymerisation by 

XPS spectroscopy. The glass slides were attached to a stainless steel probe 

stud using double sided adhesive tape and inserted into a Vacuum Generators 

ESCA Lab Mk II photoelectron spectrometer. The spectrometer was fitted with 

an unmonochromated magnesium X-ray source (Mg Kai,2 = 1253.6 eV) and 

operated in the constant analyser energy mode (CAE = 20 eV for high resolution 

spectra, 50 eV for survey scans). Photoelectrons emitted from the substrate 
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were collected at a 30° take-off angle with respect to the substrate normal. The 

spectrometer calibration was routinely checked using the gold 4f7/2 and silver 

3d5/2 peaks at 83.8 and 368.3 eV respectively.^^ Elemental sensitivity factors 

were determined experimentally relative to the carbon 1s (C(1s)) peak (285.0 eV) 

using standard compounds. These were taken as C(1s) : F(1s) : 0(1 s) : N(1s) : 

Si(2p) = 1.00 : 0.24 : 0.39 : 0.65 : 1.00 respectively. The absence of any Si(2p) 

XPS feature following plasma polymerisation was indicative of complete coverage 

of the glass substrate. 

5.2.6.2 ATR-FTIR Characterisation 

An FTIR Mattson Polaris instrument fitted with a golden gate apparatus for 

attenuated total reflection (ATR) spectroscopy was used for infrared analysis of 

plasma polymers deposited onto polished sodium chloride plates. Typically 128 

scans were acquired at a resolution of 4 cm""". 

5.3 RESULTS 

High resolution XPS envelopes were fitted using a Marquardt minimisation 

routine. The peak shape was assumed to be Gaussian with a fixed relative full 

width at half maximum.^^ The C(1s) region of a typical allyl alcohol plasma 

polymer layer was fitted with three different carbon functionalities^'^ (using the 

hydrocarbon peak at 285.0 eV as a reference offset): an unfunctionalised 

hydrocarbon group (CxHy at 285.0 eV); a carbon singly bonded to an oxygen 

function ( C - 0 286.6 eV); and a carbonyl group (C=0 288.0 eV), Figure 5.1. The 

0(1 s) region was fitted with one oxygen peak,^ Figure 5.2. The 0 / C ratio was 

found from the 0(1 s) and C(1s) peak areas (after correction for sensitivity). 
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Figure 5.1: C(1s) XPS spectra of 2 W CW allyl alcohol plasma polymer. 
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Figure 5.2: 0(1 s) XPS spectra of 2 W CW allyl alcohol plasma polymer. 
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5.3.1 CW PLASMA POLYMERISATION OF ALLYL ALCOHOL 

IR absorption peaks present in the ATR-FTIR spectrunn of the allyl alcohol 

mononner were identified with reference to the literature, '̂̂ ^ Figure 5.3: 0-H 

stretching vibration with intermolecular hydrogen bonding 3310 cm^ C-H 

stretching vibrations for =CH2 and =CH- groups at 3010 and 2989 cm''' 

respectively; aliphatic C-H stretches at 2910 and 2860 cm"^ C=C stretching 

vibration 1645 cm"^; 0-H in plane bending absorption and CH? in plane 

deformation for =CH2 1424 cm"""; C-0 stretching absorption 1113 cm'^ C-H out of 

plane deformations for =CH2 and =CH- 991 cm""*; and CH2 out of plane 

deformation for =CH2 and =CH- 914 cm"\ The ATR-FTIR spectra of the CW allyl 

alcohol plasma polymer deposited onto NaCI plates showed that many 

characteristic absorbencies of the monomer molecule were broadened, shifted in 

position or lost altogether during plasma polymerisation, Figure 5.3. 

Furthermore, new peaks not present in the monomer spectrum were evident in 

the plasma polymer. The ATR-FTIR spectrum of the allyl alcohol 2 W CW 

plasma polymer had the following absorption peaks: 0-H stretching vibration with 

intermolecular hydrogen bonding 3327 cm"^ aliphatic C-H stretches at 2935 and 

2880 cm"^ C=0 stretching vibration 1705 cm ^ aliphatic CH2 scissoring band 

1458 cm'''; 0-H in plane bending absorption 1379 cm"^ and C-0 stretching 

absorption 1038 cm"''. Bands arising from the unsaturated carbon functionality in 

the monomer molecule were absent from the plasma polymer spectra. 

Absorbencies that arose from the 0-H and C-0 stretching vibrations decreased, 

relative to other absorbencies, with increasing discharge power. Furthermore, 

the carbonyl absorption became relatively more intense as the discharge power 

increased. 

The C(1s) XPS spectra of the CW allyl alcohol plasma polymer possessed a 

shoulder, to the high binding energy side of the hydrocarbon peak, which was 

identified as the C-0 functionality. This shoulder was clearly seen to increase in 

size, relative to the unfunctionalised hydrocarbon peak, with decreasing CW 

discharge power. Figure 5.4. The 0(1 s) XPS spectra of the CW allyl alcohol 

plasma polymer increased in width with increasing CW discharge power, Figure 

5.5. This indicated that at higher CW discharge powers oxygen atoms in a 
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number of chemically different environments were incorporated into the plasma 

polymer. The 0/C ratio reached a maximum value of 0.29 ± 0.01 (the 0/C ratio 

in the monomer molecule is 0.33) at a discharge power of 2 W, Figure 5.6. 

Below this power the electrical discharge became unstable. Above this minimum 

CW discharge power the 0/C ratio decreased as the power increased. 

Deconvolution of the C(1s) spectra of allyl alcohol plasma polymer, deposited as 

a function of CW discharge power, aided quantification of the effect of power on 

the chemical composition of the plasma polymers, Figure 5.7. The percentage of 

unfunctionalised carbon atoms and C=0 groups increased with increasing 

discharge power whereas the percentage of C-0 groups decreased. The 

percentage of C-0 groups reached a maximum of 29% ± 2, compared with 33% 

in the monomer molecule, at the lowest discharge power (2 W). 
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Figure 5.3: ATR-FTIR spectra of (a) allyl alcohol monomer and CW allyl 

alcohol plasma polymer deposited as a function of power; (b) 2 W; (c) 5 W; 

(d) 10 W; (e) 20 W; (f) 30 W; (g) 50 W. 

184 



siNnoo 

o 
- lO 

> 
CO 

- CO —. 
lO 

G
Y

 

CM DC 
- CO UJ 

lO 

EN
 

CO O 
- OJ z lO lO 

N
D

 

- CJ OQ 

E 
(A 
n 
Q. 

O 

IS 
"5 
0) a 
(A 
(0 
Q. 
X 

in 

I 
o a 

0 0) 

1 I 

^ c 

o c 

re 
(A 
re 
o 
'35 o a 
0) •D 

0) 

£ I 
1 1 

siNnoo 

re 
E 
(A 
re 
a 

0) 
$ 
O a 
o 

re .c o 
(A 

O 
O 

re 
>» 
75 

g 
IS 
4-1 o 
0) a 
(A (0 
Q. 
X 

IA 

o 
• • 

in 

3 

iZ 

o 
c 
q 
o c a 
re 
(A 
re 
•o 
3 
(A 
O 

a 
•o 
J£ 
E >» 
o a 



O l O l O l 

% / UOIJjSOdLLlOO 

(0 
o 
o 
O) 
re 

• J c 
0) « a 
x: 

re a 
E o 
o 

0) 
E 
>» o a 
re E 
tn 
re 
a 

o o 
re 

re 
c 
(0 
0) 

c o 
IT) 

c 

I 
a 
0) 
re 
u 
(0 

o 
c o 
c 
3 

o\V8U 0/0 

12 
0) E >. 
o a 
re 
E 
(A JS a 

•5 o 

o 
c o 
-5 c 
a 
re (/> re 
.2 
re 
o 
6 

O 
o 
re 

re 
E ^ 
c o 

re > 
• • 

3 

i l 

O 

I 
a 
? re 
JZ 
o 
(0 



5.3.2 EVALUATION OF PULSE PLASMA PARAMETERS 

In an effort to increase the C-0 group retention during the plasma polymerisation 

of allyl alcohol the average power was reduced by electrically pulsing the plasma. 

From consideration of Equation 2.1 (Section 2.2.1.2) the average power 

delivered to the plasma (<P>) was a function of three variables:^'' on-time (ton); 

off-time (toff); and peak power (Pp). To efficiently investigate how these variables 

affected the percentage of the C-0 group incorporated into the plasma polymer a 

set of eight experiments were planned. Two values (known as levels) were 

chosen for each of the three variables (known as factors) in order to ascertain 

which factors, or combination of factors, had the greatest influence on the 

percentage of C-0 group incorporated into the plasma polymer (known as the 

response).^ The choice of level for each factor was partly governed by previous 

experience and the limitations of the equipment (the rf generator could not 

deliver reliable pulses shorter than 20 [is and its maximum power output was 70 

W). The choice of experimental parameters, the experiments performed and the 

responses recorded are presented below. Table 5.1, and 5.2. 

Factors 

Levels ton toff Pp 

+ 2000 [IS 2000 lis 50 W 

- 20|is 20 |is 5 W 

Table 5.1: Levels for each experimental factor. 
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Expt. ton toff Pp Response 

1 - + - 42 

2 - + + 40 

3 - - - 30 

4 - - + 13 

5 + + - 22 

6 + + + 13 

7 + - - 15 

8 + - + 9 

Table 5.2: Experiments and their responses. 

From these results a table was constructed to evaluate the effect of each factor 

and combination of factors.^ 

Expt ton toff Pp ton/Pp toff/Pp ton/toff ton/toff/Pp 

1 -42 +42 -42 +42 -42 -42 +42 

2 -40 +40 +40 -40 +40 -40 -40 

3 -30 -30 -30 +30 +30 +30 -30 

4 -13 -13 +13 -13 -13 +13 +13 

5 +22 +22 -22 -22 -22 +22 -22 

6 +13 +13 +13 +13 + 13 +13 +13 

7 +15 -15 -15 -15 + 15 -15 +15 

8 +9 -9 +9 -9 -9 -9 -9 

Total -16.5 12.5 -8.5 -7 1 3 -4.5 

Table 5.3: Evaluation of factors. 

The relative importance of each factor on the response was measured by the 

modulus of the total found in the above table. Table 5.3. The sign of each total 



dictated whether increasing the value of a factor had a positive or negative effect 

on the response. From these results it was clear that the ton had the greatest 

influence on the response. Decreasing ton and Pp increased the percentage of C-

O groups retained in the plasma polymer. The next most important factor was 

the toff. Increasing the off-time increased the percentage of C-O groups retained 

in the plasma polymer. However, the combined factors did not have such an 

extensive influence on the response, in light of these results it was decided to 

investigate the effect of ton on the plasma polymerisation of allyl alcohol. 

5.3.3 INFLUENCE OF PLASMA ON-TIME 

The pulsed plasma polymerisation of allyl alcohol was investigated as a function 

of electrical plasma ton (with a constant toff = 2000 \is and Pp = 5 W). The ATR-

FTIR spectra appeared to vary little with increasing on-time. Figure 5.8. The 

relative intensity of C-H aliphatic stretching absorbencies generally tended to 

increase as the on-time was lengthened. In all cases absorbencies which arose 

from the unsaturated group in the monomer spectrum (C-H stretching and 

bending absorbencies from =CH2, =CH- groups) were lost during plasma 

polymerisation. The carbonyl stretch at approximately 1700 cm'̂  was of low 

relative intensity in all of the spectra. 

The C(1s) XPS high resolution spectra of the allyl alcohol pulsed plasma polymer 

displayed a large C-0 peak at the lowest on-time (20 |j,s), Figure 5.9. This peak 

decreased in relative intensity with increasing plasma on-time. The 0(1 s) XPS 

high resolution spectra appeared to vary little with ton, Figure 5.10. A graph of 

the O/C ratio as a function of the plasma on-time showed that the amount of 

oxygen incorporated into the plasma polymer increased with decreasing plasma 

on-time, reaching a maximum 0/C concentration of 0.44 ± 0.02 at an on-time of 

20 iLS, Figure 5.11. It is worth noting that this 0/C ratio was greater than the 0/C 

ratio present in the monomer molecule (0/C ratio of 0.33). This maximum 0/C 

ratio was considerably greater than that produced during the CW plasma 

polymerisation of allyl alcohol. The percentage composition of the carbon 

functionalities for the allyl alcohol pulsed plasma polymer was also calculated 
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from the XPS C(1s) peak fits, Figure 5.12. The percentage of unfunctionalised 

carbon atoms increased while the percentage C-0 group decreased with 

increasing discharge power. The maximum C-0 group incorporation into the 

pulsed plasma polymer occurred at an on-time of 20 îs and reached a value of 

40%. This was significantly larger than the maximum C-0 group detected during 

CW plasma polymerisation (29%) and the percentage of C-0 groups in the 

monomer molecule (33%). The percentage of carbonyl groups incorporated into 

the pulsed plasma polymer remained constant over a large range of on-times, 

only reaching a minimum of 4% at the shortest on-time. 
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4000 3000 2000 1000 
Wavenumber/cm" 

Figure 5.8: ATR-FTIR spectra of (a) allyl alcohol monomer and allyl alcohol 

pulsed plasma polymer deposited as a function of ton (toff = 2000 ^s, Pp = 5 

W); (b) 20 ^is; (c) 50 ^is; (d) 100 ^is; (e) 500 (f) 1000 ^is; (g) 2000 ^is. 
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5.3.4 LABELLING OF CW ALLYL ALCOHOL PLASMA POLYMER WITH TFAA 

XPS analysis is unable to distinguish between C-O-H and C-O-C carbons 

because of the very small difference in binding energy between them. Therefore 

a CW allyl alcohol plasma polymer, deposited at a discharge power of 5 W, was 

labelled with trifluoroacetic anhydride (TFAA) to enable the quantification of 

surface hydroxyl groups. '̂̂ '̂ ^ Plasma polymers deposited under 5 W were 

unstable under the labelling conditions. The hydroxyl groups were selectively 

converted to 0C(0)CF3 functionalities via the reaction shown below. Figure 5.13: 

•OH F X — C — O — C — C F s 

Surface Hydroxyl Groups 

O 

- O — C — C F c 

TFAA - Gas Phase 

CF3COOH 

Surface Attached -C(=0)CF3 Gas Phase Leaving Group 

Figure 5.13: Reaction between hydroxyl groups and TFAA. 26 

The amount of TFAA attached to the plasma polymer surface was then easily 

found using XPS due to the large binding energy shift of the CF3 group, Figure 

5.14. Tables 5.4 and 5.5 give the elemental composition and the percentage of 
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carbon groups respectively which were incorporated into the TFAA labelled allyl 

alcohol plasma polymer. 

% F % C %N % 0 %Si 

5 W CW allyl alcohol 

plasma polymer 

0 87+1 0 14 ± 1 0 

TFAA labelled plasma 

polymer 

16± 1 69 ±1 0 15± 1 0 

Table 5.4: Elemental composition of TFAA labelled CW allyl alcohol plasma 

polymer. 

% CyHy % C-0 % C-0-

C(=0)-CF3 

%C=0 %C(=0)-

O-CF3 

%CF3 

5 W CW allyl 

alcohol plasma 

polymer 

80 ± 1 17± 1 0 4± 1 0 0 

TFAA labelled 

plasma polymer 

66 ± 1 10± 1 6± 1 4± 1 7± 1 6± 1 

Table 5.5: Percentage of carbon groups before and after TFAA labelling of 

allyl alcohol plasma polymer. 

It was clear that a large proportion (over 50%) of the C-0 groups detected in the 

5 W CW allyl alcohol plasma polymer did not react with TFAA. This may indicate 

that many of the C-0 groups detected were ether functionalities (C-O-C) 

incorporated into the plasma polymer via monomer fragmentation processes. 
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Figure 5.14: C{1s) XPS spectra of (a) 5 W CW allyl alcohol plasma polymer; 

and (b) 5 W CW allyl alcohol plasma polymer labelled with TFAA. 
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5.3.5 REACTION OF ALLYL ALCOHOL PLASMA POLYMER WITH 

Zr(OC(CH3)3)4 

Allyl alcohol plasma polymers were reacted with tertra(feAt-butoxy)zirconium 

(Zr(OC(CH3)3)4) to produce a surface bound zirconium compound which was 

used to bind poly(acrylic acid) to the plasma polymer surface,^^ Figure 5.15. 

C(1s) XPS analysis of a Zr(OC(CH3)3)4 treated 3 W CW allyl alcohol plasma 

polymer showed a relative increase in the C-0 group (including a contribution 

from (CH3)3C-0-Zr) from 18% to 24%, Figure 5.16. High resolution XPS spectra 

of the Zr(3d) and Zr(3p) regions, Figures 5.17 and 5.18 respectively, provided 

clear evidence that the zirconium complex was indeed attached to the plasma 

polymer surface. Allyl alcohol pulsed plasma polymer was also treated with 

Zr(OC(CH3)3)4 vapour. Figure 5.19. The percentage C-0 group changed from 

40% ± 1 to 25% ± 1. The elemental composition was found using a calculated 

zirconium sensitivity factor^^ of 0.13 for the treated CW and pulsed plasma 

polymers. Table 5.6. 

% Z r % C %N % 0 %SI 

3 W CW plasma 

polymer 

0 85 ± 1 0 15± 1 0 

Zr(OC(CH3)3)4 

treated CW 

plasma polymer 

5 ± 1 77 ± 2 0 1 8 ± 2 0 

Pulsed plasma 

polymer 

0 69 ± 2 0 3 1 + 2 0 

Zr(OC(CH3)3)4 

treated pulsed 

plasma polymer 

6 ± 1 71 ± 2 0 23 ± 2 0 

Table 5.6: Elemental composition of 3 W CW allyl alcohol plasma polymer 

and 3 W CW allyl alcohol plasma polymer treated with Zr(OC(CH3)3)4. 
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The surface bound zirconium compound produced by Zr(OC(CH3)3)4 treatment of 

3 W CW allyl alcohol plasma polymer was placed into a 1% poly(acrylic acid) 

solution in dioxane for 1 hour (Plasma polymers produced using average powers 

below 3 W were not stable in the dioxane solution), rinsed in pure dioxane for 10 

minutes, dried under vacuum and then analysed using XPS, Figure 5.20.. 

Poly(acrylic acid) was attached to the treated plasma polymer. The elemental 

composition of the surface produced was calculated, Table 5.7. The percentage 

of the C(=0)-OH group found was 17%. 

% Z r % C %N % 0 % S i 

3 W CW plasma 

polymer 

0 85 ± 1 0 15± 1 0 

Zr(OC(CH3)3)4 

treated CW 

plasma polymer 

5 ± 1 77 ± 2 0 1 8 ± 2 0 

Poly(acrylic acid) 

treated zirconium 

complex 

1 ± 1 67 ± 1 0 32 + 2 0 

Table 5.7: Elemental composition of 3 W CW allyl alcohol plasma polymer, 

3 W CW allyl alcohol plasma polymer treated with Zr(OC(CH3)3)4 and a 

surface bound zirconium compound treated with poly(acrylic acid). 
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OH OH OH 

(a) 

Zr(OC(CH3)3)4 

-n(CH3)3COH 

(b) 1% PAA in dioxane 

AAR PAA 
PAA 

Figure 5.15: Schematic representation of (a) the vapour phase attachment 

of Zr(OC(CH3)3)4 onto an allyl alcohol plasma polymer; and (b) deposition 

from solution of Poly(acryllc acid) (PAA) onto the treated plasma polymer.^^ 
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Figure 5.16: C(1s) XPS spectra of (a) 3 W CW allyl alcohol plasma polymer; 

and (b) 3 W CW allyl alcohol plasma polymer treated with Zr(OC(CH3)3)4-
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Figure 5.19: C(1s) XPS spectra of (a) pulsed allyl alcohol plasma polymer 

(ton = 20 [is, toff = 2000 \is and Pp = 5 W); and (b) allyl alcohol pulsed plasma 

polymer treated with Zr(OC(CH3)3)4. 
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Figure 5.20: : C(1s) XPS spectra of (a) 3 W CW allyl alcohol plasma polymer; 

(b) 3 W CW allyl alcohol plasma polymer treated with Zr(OC(CH3)3)4; and (c) 

poly(acrylic acid) treated surface bound zirconium compound. 
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5.4 DISCUSSION 

The ATR-FTIR spectra of allyl alcohol, deposited as a function of CW discharge 

power, provided evidence for an increase in monomer fragmentation processes 

with increasing discharge power. Peaks due to functionalities present in the 

monomer molecule (0-H and C-0 stretching absorptions) decreased in relative 

intensity, with respect to aliphatic C-H stretching and bending absorptions, as the 

discharge power was increased. Furthermore, the carbonyl group absorption, not 

observed in the monomer spectrum, became more pronounced as the discharge 

power increased. This increase in monomer fragmentation was due to an 

increase in the proportion of high energy electrons as the discharge power was 

increased.^^'^^ Comparison of the plasma polymer ATR-FTIR spectra with the 

monomer spectrum showed that the carbon-carbon double present in the 

monomer molecule was not retained in the plasma polymer. The intensity of the 

IR absorption of the plasma polymer thin films deposited onto NaCI disks 

decreased with increasing discharge power. Such an observation suggested that 

film deposition rates decreased with increasing discharge power. An increase in 

the etching effect of species formed by the fragmentation of the monomer 

molecule may have contributed to the reduction in film production (Section 2.4). 

XPS results provided further evidence for the increased fragmentation of 

monomer molecules with increasing discharge power. The retention of oxygen 

and C-0 bonds in the plasma polymer was directly dependent on discharge 

power. At high powers the proportion of C-0 groups in the plasma polymer was 

at a minimum whereas the concentration of carbonyl groups due to monomer 

fragmentation and rearrangement processes reached a maximum. 

Previous investigations into the pulsed plasma polymerisation of allyl alcohol 

have concentrated on the effect of the plasma off-time on the retention of the C-0 

bond in the plasma polymer.^ However, in this study it was seen that the plasma 

on-time had the largest influence over the concentration of C-0 groups retained. 

The ATR-FTIR spectra of the allyl amine pulsed plasma polymer, deposited as a 

function of on-time, showed that peaks due to functionalities present in the 

monomer molecule (0-H and C-0 stretching absorptions) increased in relative 

intensity as the on-time was decreased. The absence of absorptions arising from 

204 



carbon-carbon double bonds in the plasma polymers, together with an increase in 

functional group retention with decreasing on-time, indicated that polymerisation 

may have proceeded through reaction of the double bond.^ At the shortest on-

times the percentage of C-0 group detected exceeded that present in the 

monomer molecule. Even at these low average plasma powers carbonyl groups 

were still observed, indicating that monomer fragmentation processes were still 

taking place. 

Quantification of the hydroxyl group concentration present on the surface of a 

CW 5 W allyl alcohol plasma polymer was attempted by comparison of the 

surface elemental concentration of the plasma polymer with the TFAA labelled 

plasma polymer.^'^'^^ Figure 5.13 suggests that every hydroxyl group present on 

the plasma polymer surface should have led to the incorporation of one CF3 

functionality. The 5 W CW plasma polymer had an approximate C-0 group 

concentration of 17% which should have resulted in a CF3 concentration of 

approximately 13%. The actual CF3 concentration found was 6%. This indicated 

that either: not all of the C-0 groups detected by XPS were hydroxyl groups and 

that a large proportion were ether groups;^ or that there was incomplete reaction 

over the whole sampling depth of the polymer analysed by XPS.^ Poor stability 

of the allyl alcohol film produced at lower average powers, under the labelling 

conditions, precluded them from this method of quantification. 

The vapour phase reaction of Zr(OC(CH3)3)4 with allyl alcohol plasma polymer 

resulted in the attachment of the zirconium compound to the plasma polymer 

surface. This derivatised surface was able to undergo further reaction in dioxane 

solution to produce surface bound acid groups. 
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5.5 CONCLUSION 

The Zr compound was irreversibly attached to the allyl alcohol plasma polymer 

surface via covalent bonds. This complex was able to participate in further 

surface reactions making it a candidate for layer-by-layer deposition of polymers 

to produce films with highly controllable structures and thickness (Chapter 6). 
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CHAPTER SIX 

LAYER-BY-LAYER POLYELECTROLYTE SURFACE 

MODIFICATION AND REACTION 
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6.1 INTRODUCTION 

Layer-by-layer deposition of polyelectrolytes (PE) has recently become of interest 

for the preparation of multilayer films. ̂ "''̂  Multilayer films are formed by a simple 

self-assembly process where charged surfaces are sequentially dipped into 

aqueous solutions of oppositely charged PE. Sequential adsorption of anionic 

and cationic PE reverses the surface charge as the PE is typically adsorbed in 

excess.^ Adsorption of a charged PE in solution produces a surface with the 

same charge as the solvated PE. Hence, electrostatic repulsion limits further PE 

adsorption.Self-assembly by layer-by-layer deposition has several advantages 

over other forms of multilayer assembly:^ 

• The coating process is simple, taking place in aqueous solution and 

utilizing basic apparatus; 

• An extensive range of polyions can be used as long as they are water 

soluble, e.g. linear PE,^"""*"^^ proteins,'"' viruses,''^ dendrimers,^^ clays^ 

and silica;^° 

• The overall thickness can be controlled simply by the number of 

adsorption steps. 

Numerous potential applications of these multilayer assemblies have been 

reported including conducting thin films,®'^° enzyme reactors,^^ films for nonlinear 

optics,^^ light-emitting and electrochromic thin films,^^"^^ lithographic 

development^^ and asymmetric gas separation membranes. 

Attention has formerly been focused on the adsorption of PE on charged 

inorganic surfaces. However, modification of organic polymer surfaces with PE 

assemblies has recently been reported.^•^^ ''̂  In many of the examples quoted in 

the literature the substrate has been restricted to a narrow range of surface 

functionalised polymers, for example, chemically modified 

poly(chlorotrifluoroethylene).^ However, plasma polymers present an ideal 

surface for the formation of multilayer assemblies.^ Advantages of the plasma 

polymerisation technique are outlined below:^^ 

• The choice of substrate material is not limited by the chemical 

composition of the surface; 
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• A wide range of precursors and deposition parameters allows extensive 

control over the nature and density of chemical groups formed on the 

surface; 

• Bulk properties of the substrate are not affected. 

From investigations into the adsorption of PE onto organic substrates form dilute 

aqueous solutions several general features were observed.^ Firstly, the initial 

substrate surface chemistry defines the rest of the adsorption process. The 

assembly process is not independent of the substrate even after a number of 

layers have been deposited. This observation highlights the applicability of the 

plasma polymerisation technique to these assemblies. Plasma polymerisation 

allows surface chemical modification of the substrate. Therefore, the multilayer 

assembly process will now be governed by the nature of the plasma polymer not 

the substrate material. Secondly, the assembly process has its own 

stoichiometry and no specific stoichiometric ratio of PE's is required in the bulk 

solutions. No limit to the number of layers that could be deposited was found. 

Thirdly, in the systems studied to date the individual layers deposited were very 

thin (e.g. 2.0, 2.8 and 4.1 A).^ Fourthly, although multilayer assemblies were 

found to be quite dense, resulting in good gas barrier properties, they were not 

close packed. It has been suggested that the layers are interdigitated and cross-

linked via ionic interactions.^^ Finally, differences in the XPS spectra and contact 

angles between adsorption stages demonstrate that despite interdigitation the 

different PE layers are stratified. 

This Chapter reports the formation of a multilayer assembly on pulsed plasma 

polymerised acrylic acid (AA) using the cationic PE 

poly(diallyldimethylammonium chloride) (PDADMAC), Structure 6.1 and the 

anionic PE poly(styrene sulfonoate) (PSS), Structure 6.2. PDADMAC is initially 

adsorbed onto the AA surface and a multilayer assembly is then constructed via 

electrostatic attraction between oppositely charged PE. 
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Structure 6.1: PDADMAC Repeat Unit. 
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Structure 6.2: PSS Repeat Unit. 

6.2 EXPERIMENTAL PROCEDURE 

6.2.1 PULSED PLASMA POLYMERISATION 

AA pulsed plasma polymer layers were deposited onto glass substrates using 

the method and apparatus described above (Section 2.2.1.2). The electrical 

pulsing conditions used in all the plasma polymerisations were kept constant (ton 

= 20 |is, toff = 4000 fis and Pp = 5 W). Pulsed plasma polymers were deposited 
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for 30 minutes onto glass substrates to produce a suitable surface for PE 

adsorption. 

6.2.2 MULTILAYER ASSEMBLY 

PDADMAC (Aldrich, 99% purity) and PSS (Aldrich, 99% purity) were dissolved in 

separate aqueous solutions buffered at pH 7 and pH 4 respectively. A 0.2 M 

(with respect to the repeat unit) PSS solution was used in all assembly 

experiments. The concentration of the PDADMAC was varied between 0.2 and 

20%. Adsorptions were carried out at room temperature in unstirred freshly 

prepared PE solution. The alternating layers were formed by sequential dipping 

of the AA plasma polymer into the PE solutions for 1 hour followed by rinsing in 

pure water (B.S. 3978 grade 1) for 10 minutes, Scheme 6.1. After the required 

number of layers had been deposited the sample was dried under vacuum for 1 

hour prior to analysis by XPS. 

6.2.3 FLUOROSURFACTANT ADSORPTION 

The layer-by-layer deposition process was halted after PSS adsorption to 

investigate further reactions of the PE derivatised surface. An AA-PDADMAC-

PSS functionalised sample was placed into a 1% cationic fluorosurfactant 

CF3(CF2)nC2H5(alkyl)3N* solution for 1 hour, rinsed in pure water (B.S. 3978 

grade 1) for 10 minutes, dried under vacuum for 1 hour and analysed using XPS 

and VCA measurements. 

6.2.4 SAMPLE CHARACTERISATION 

6.2.4.1 XPS Characterisation 

Samples were characterised following drying by XPS spectroscopy. The glass 

slides were attached to a stainless steel probe stud using double sided adhesive 
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tape and inserted into a Vacuum Generators ESCA Lab Mk II photoelectron 

spectrometer. The spectrometer was fitted with an unmonochromated 

magnesium X-ray source (Mg Kai,2 = 1253.6 eV) and operated in the constant 

analyser energy mode (CAE = 20 eV for high resolution spectra, 50 eV for 

survey scans). Photoelectrons emitted from the substrate were collected at a 

30° take-off angle with respect to the substrate normal. The spectrometer 

calibration was routinely checked using the gold Af^ and silver 3d5/2 peaks at 

83.8 and 368.3 eV respectively.^^ Elemental sensitivity factors were determined 

experimentally relative to the carbon Is (C(1s)) peak (285.0 eV) using standard 

compounds. These were taken as C(1s): F(1s): S(2p); Na(1s): Cl(2p): 0(1s) : 

N(1s) : Si(2p) = 1.00 : 0.24 : 0.49 : 0.17 : 0.5 : 0.39 : 0.65 : 1.00 respectively. 

The absence of any Si(2p) XPS feature following plasma polymerisation was 

indicative of complete coverage of the glass substrate. 

6.2.4.2 VCA Characterisation 

The wettability of the samples was investigated using the sessile drop technique 

(Section 1.8.4) employing video contact angle (VCA) apparatus (Instruments 

S.A. Video Contact Angle System, VCA 2500XE). A known volume of the test 

liquid, high purity water (B.S. 3978 grade 1) or hexadecane (Aldrich, 99% purity), 

was dispensed through a motorised micro-syringe and brought into contact with 

the surface of the sample. The contact angle of the liquid was calculated by 

analysis of the shape of the droplet on the sample surface. 
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Scheme 6.1: Schematic of the PE dipping procedure. 

6.3 RESULTS 

High resolution XPS envelopes were fitted using a Marquardt minimisation 

routine. The peak shape was assumed to be Gaussian with a fixed relative full 

width at half m a x i m u m . C ( 1 s ) regions were fitted with several different carbon 

functionalities depending on the elemental composition of the surface region^° 

(using the hydrocarbon peak at 285.0 eV as a reference offset): aromatic -C(H)-

(284.7 eV); CxHy (285.0 eV); C-SO3- (285.3 eV); C-C(=0)-0 (285.7 eV); C-CFn 
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(285.7 eV); C-N' (286.1 eV); C-0 (286.6 eV); CF (287.8 eV); 0-C-O / C=0 (288 

eV); CF-CFn (289.0 eV); C(=0)-0 (289.3 eV); CF2 (291.2 eV); and CF3 (293.3 

eV). The first step in multilayer assembly was the plasma polymerisation of AA 

to form a suitable surface for attachment of the PE. AA pulsed plasma polymer 

(ton = 20 ^s, toff = 4 ms, Pp = 5 W and deposition time = 30 minutes) was 

deposited onto a glass substrate as described in Chapter 2. The next stage was 

the formation of an AA plasma polymer-PDADMAC complex. Complex formation 

was investigated at a number of PDADMAC bulk aqueous solution 

concentrations. AA pulsed plasma polymer was placed into several different bulk 

PDADMAC concentrations for 1 hour, rinsed in pure water for 10 minutes, dried 

under vacuum and analysed using XPS. The N/C ratio (found from the N(1s) 

and C(1s) peak areas after correction for sensitivity) attached to the plasma 

polymer surface, and therefore the amount of PDADMAC, increased with 

increasing concentration and reached a maximum value of 0.09 ± 0.01 at a 20% 

bulk PDADMAC concentration, Figure 6.2. 

The attachment of PDADMAC at a bulk concentration of 20% was then 

investigated as a function of treatment time. AA pulsed plasma polymer was 

placed into 20% bulk PDADMAC aqueous solution for varying lengths of time, 

rinsed in pure water for 10 minutes, dried under vacuum and analysed using 

XPS. The N/C ratio did not show a large dependency on treatment time, quickly 

reaching a plateau value of approximately 0.08 ± 0.01 after 30 minutes 

treatment. Figure 6.3 and 6.4. 
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6.3.1 ATTACHMENT OF PDADMAC: LAYER 1 AA-PDADMAC 

AA pulsed plasma polymer was placed in 20% PDADMAC aqueous solution for 1 
hour, rinsed in pure water, dried under vacuum and analysed using XPS, Figures 
6.5 to 6.8. The elemental composition of the surface region was compared with 
spin coated PDADMAC polymer (from 2% methanol solution onto glass). Table 
6.1. 

%CI % C %N %0 %Si 

AA plasma polymer 0 60 ± 2 0 40 ± 2 0 

Spin coated PDADMAC 6 ± 1 77 + 1 9 ± 1 10± 1 0 

AA-PDADMAC 5 ± 1 78 ± 2 6 ± 2 13± 1 0 

Table 6.1: Elemental composition of AA pulsed plasma polymer, spin 

coated PDADMAC and AA-PDADMAC complex. 

Deconvolution of the C(1s) region enabled the identification of the chemical 

functionalities present in the surface region of the AA-PDADMAC complex, Table 

6.2. 

%C»Hy % c . 

C(=0)-0 

%C-N* %C-0 %C=0 

/0-C-O 

%C(=0)-

0 

AA plasma 

polymer 

40 ± 1 30 ± 1 0 1 ± 1 3 ± 1 29 ± 1 

Spin coated 

PDADMAC 

44 ± 1 0 41 + 1 8 ± 1 7 ± 1 0 

AA-PDADMAC 57 + 2 0 29 ± 2 9 + 2 5 ± 2 0 

Table 6.2: Percentage carbon groups present in the surface region of AA 

pulsed plasma polymer, spin coated PDADMAC and AA-PDADMAC 

complex. 
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6.3.2 A T T A C H M E N T O F PSS: L A Y E R 2 AA-PDADMAC-PSS 

An AA-PDADMAC complex formed as described above (Section 6.3.1) was 
placed in a PSS aqueous solution for 1 hour, rinsed in pure water for 10 minutes, 
dried under vacuum and analysed using XPS, Figure 6.9 to 6.11. PSS was 
attached to the PDADMAC functionalised surface resulting in a SIC ratio (found 
from the S(2p) and C(1s) peak areas after correction for sensitivity) of 0.11 ± 
0.01. The elemental composition of the surface region was calculated. Table 6.3. 

% S %CI %Na %C %N %0 

AA-PDADMAC 0 5 ± 1 0 78 ± 2 6 ± 2 13± 1 

AA-PDADMAC-PSS 7 ± 1 0 7 ± 1 65 ± 2 0 21 ± 2 

Table 6.3: Elemental composition of AA-PDADMAC and AA-PDADMAC-PSS 

complexes. 

Deconvolution of the C(1s) region enabled the identification of the chemical 

functionalities present in the surface region of the AA-PDADMAC-PSS complex, 

Table 6.4. 

% -

C ( H ) -

% C K H V % C -

SO3 

% C - N * %c.o %C=0 

/ 0 - C - O 

AA-PDADMAC 0 57 + 2 0 29 ± 2 9 ± 2 5 ± 2 

AA-PDADMAC-PSS 62 ± 2 23 ± 2 11 ± 2 0 5 ± 1 0 

Table 6.4: Percentage carbon groups present in the surface region of AA-

PDADMAC and AA-PDADMAC-PSS complexes. 
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Figure 6.9: C(1s) XPS spectra of AA-PDADMAC-PSS complexes. 
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6.3.3 ATTACHMENT OF PDADMAC: LAYER 3 AA-PDADMAC-PSS-PDADMAC 

The AA-PDADMAC-PSS complex was placed in 20% PDADMAC solution for 1 
hour, rinsed in water for 10 minutes, dried under vacuum and analysed using 
XPS. A second PDADMAC polymer layer was attached to the PSS 
functionalised surface resulting in a N/C ratio of 0.09. The elemental composition 
of the surface region was calculated. Table 6.5. 

% S %CI %Na %C %N %0 

AA-PDADMAC 0 5 ± 1 0 78 ± 1 6 ± 1 13± 1 

AA-PDADMAC-PSS 7 ± 1 0 7 ± 1 65 ± 1 0 21 ± 1 

AA-PDADMAC-PSS-

PDADMAC 

2 ± 1 5 ± 1 2 ± 1 74 ± 1 7 ± 1 10+1 

Table 6.5: Elemental composition of AA-PDADMAC, AA-PDADMAC-PSS and 

AA-PDADMAC-PSS-PDADMAC complexes. 

6.3.4 ATTACHMENT OF PSS: LAYER 4 AA-PDADMAC-PSS-PDADMAC-PSS 

The AA-PDADMAC-PSS-PDADMAC complex was placed in PSS solution for 1 

hour, rinsed in water for 10 minutes, dried under vacuum and analysed using 

XPS. A second PSS polymer layer was attached to the PDADMAC 

functionalised surface resulting in a SIC ratio of 0.11. The elemental composition 

of the surface region was calculated. Table 6.6. 
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% S %CI %Na %C %N %0 

AA-PDADMAC 0 5 ± 1 0 78 ± 1 6 + 1 1 3 + 1 

AA-PDADMAC-PSS 7 ± 1 0 7 ± 1 6 5 + 1 0 21 ± 1 

AA-PDADMAC-PSS-

PDADMAC 

2 + 1 5 ± 1 2 ± 1 74 ± 1 7 ± 1 10±1 

AA-PDADMAC-PSS-

PDADMAC-PSS 

7 ± 1 0 5 + 1 65 ± 1 1 ± 1 22 ± 1 

Table 6.6: Elemental composition of AA-PDADMAC, AA-PDADMAC-PSS, 

AA-PDADMAC-PSS-PDADMAC and AA-PDADMAC-PSS-PDADMAC-PSS 

complexes. 

6.3.5 ATTACHMENT OF PDADMAC: LAYER 5 AA-PDADMAC-PSS-

PDADMA C-PSS-PDADMA C 

The AA-PDADMAC-PSS-PDADMAC-PSS complex was placed in 20% 

PDADMAC solution for 1 hour, rinsed in water for 10 minutes, dried under 

vacuum and analysed using XPS, Figure 6.12. A third PDADMAC polymer layer 

was attached to the PSS functionalised surface resulting in a N/C ratio of 0.08. 

The elemental composition of the surface region was calculated, Table 6.7. 
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% S %CI %Na % C %N %0 

AA-PDADMAC 0 5 ± 1 0 78 ± 1 6 ± 1 13± 1 

AA-PDADMAC-PSS 7 ± 1 0 7 + 1 65 ± 1 0 21 ± 1 

AA-PDADMAC-PSS-

PDADMAC 

2 ± 1 5 ± 1 2 ± 1 74 + 1 7 ± 1 10±1 

AA-PDADMAC-PSS-

PDADMAC-PSS 

7 ± 1 0 5 ± 1 65 ± 1 1 ± 1 22 ± 1 

AA-PDADMAC-PSS-

PDADMAC-PSS-

PDADMAC 

4 + 1 1 ± 1 0 76 ± 1 6 ± 1 13± 1 

Table 6.7: Elemental composition of AA-PDADMAC, AA-PDADMAC-PSS, 

AA-PDADMAC-PSS-PDADMAC, AA-PDADMAC-PSS-PDADMAC-PSS and AA-

PDADMAC-PSS-PDADMAC-PSS-PDADMAC complexes. 
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Figure 6.12: C(1s) XPS spectra of (a) AA; (b) AA-PDADMAC; (c) AA-

PDADMAC-PSS; (d) AA-PDADMAC-PSS-PDADMAC; (e) AA-PDADMAC-PSS-

PDADMAC-PSS; (f) AA-PDADMAC-PSS-PDADMAC-PSS-PDADMAC 

complexes. 
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6.3.6 ATTACHMENT OF CATIONIC FLUOROSURFACTANT 

The ability of these RE derivatised surfaces to undergo further reaction with 

surface active agents was demonstrated by the fluorination of an AA-PDADMAC-

PSS complex with the cationic fiuorosurfactant CF3(CF2)nC2H5(alkyl)3N"'. The 

AA-PDADMAC-PSS complex was placed in an aqueous solution of 

CF3(CF2)nC2H5(alkyl)3N* for 1 hour, rinsed in pure water for 10 minutes, dried 

under vacuum and analysed using XPS, Figure 6.13. Elemental analysis of the 

surface region revealed a highly fluorinated structure and indicated a significant 

amount of surfactant attachment. Table 6.8. Deconvolution of the C(1s) XPS 

spectrum showed that 33% and 7% of the carbon atoms were in the CF2 and CF3 

chemical environments respectively. 

% F % S %CI %Na % C %N %0 

AA-PDADMAC 0 0 5 ± 1 0 78 ± 1 6 ± 1 13± 1 

AA-PDADMAC-PSS 0 7 ± 1 0 7 ± 1 65 ± 1 0 21 ± 1 

AA-PDADMAC-PSS-

3658 

41 ± 1 3 ± 1 0 0 43 ± 1 2 ± 1 11 ±1 

Table 6.8: Elemental composition of AA-PDADMAC, AA-PDADMAC-PSS and 

AA-PDADMAC-PSS-CF3(CF2)nC2H5{alkyl)3N* complexes. 

The wettability of the fluorinated surface was investigated using the VGA 

apparatus and employing 2 test liquids, water and hexadecane. The surface 

interacted strongly with water and produced a contact angle of approximately 20° 

± 5. However, the hexadecane contact angle measured was 81° ± 3. These 

unusual results were observed previously (Chapters 3 and 4). 
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Figure 6.13: C(1s) XPS spectra of CF3(CF2)nC2H5(alkyl)3N* treated AA-

PDADMAC-PSS complexes. 
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6.4 DISCUSSION 

Initial experiments were performed to determine the best conditions for the 

adsorption of PDADMAC onto the AA plasma polymer. Nitrogen was absent 

from the plasma polymer and the percentage of nitrogen detected in the surface 

region following PDADMAC adsorption was therefore a direct measure of the 

amount of PDADMAC adsorbed. The results indicated that PDADMAC 

adsorption did not occur in appreciable amounts at low bulk solution 

concentrations (less than 1%). PDADMAC adsorption increased with increasing 

bulk solution concentration and reached a maximum value at 20%. 

Investigations into the rate of PDADMAC adsorption demonstrated that the 

adsorption process was rapid, almost reaching completion after 10 minutes. The 

attachment of PDADMAC onto the AA pulsed plasma polymer was irreversible, 

the PE could not be removed by rinsing of the sample. The mechanism of 

surface attachment could be via electrostatic attraction between charged acid 

sites on the plasma polymer surface or via weaker hydrogen bonding interactions 

between the acid sites and the ammonium group.^ Unlike earlier studies,^'^ the 

PDADMAC counterion was detected in relatively large concentrations (5%). This 

observation may indicate that the adsorption process did not proceed via 

electrostatic attraction. The detection of the counterion and the high percentage 

of nitrogen incorporation (6% in the AA-PDADMAC compared with 9% in the spin 

coated PDADMAC polymer) suggests that a relatively large amount of 

PDADMAC was adsorbed. Previous studies have reported only small 

percentages (approximately 1%) of nitrogen incorporation, even when the 

adsorbing species possessed a greater amount of nitrogen in the PE structure.^ 

Furthermore, the absence of the C(=0)-0 functionality in the carbon spectra 

adds weight to the assumption that a relatively thick layer of PDADMAC was 

adsorbed (thicker than the XPS sampling depth of approximately 5 nm). The 

PDADMAC polymer molecule attached to the plasma polymer surface may exist 

in a close packed arrangement with the polymer chain extending outwards from 

the AA pulsed plasma polymer surface. Dense PE layers have been reported by 

adsorption from solutions many times more dilute than the one used in this 

study.^^ Alternatively, the detection of the counterion suggests that the surface 
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may not have possessed a high positive charge after initial PDADMAC 

adsorption. Thus electrostatic repulsion between like charges would be reduced. 

XPS analysis of the surface region following PSS adsorption revealed a S/C ratio 

of 0.11. The S/C ratio in the PSS polymer was 0.13, indicating that a large 

amount of PSS was adsorbed onto the PDADMAC. The mechanism of 

adsorption was likely to be electrostatic attraction between the surface bound 

PDADMAC PE and the oppositely charged PSS PE."* Nitrogen was absent from 

the XPS sampling region and the PSS counterion was detected in large 

quantities. This again suggests that a relatively large amount of PSS was 

adsorbed which produced a layer thicker than the XPS sampling depth. 

PDADMAC was adsorbed from aqueous solution onto the PSS functionalised 

surface to form a second PDADMAC layer with a N/C ratio of 0.9 (the N/C ratio in 

the PDADMAC polymer was approximately 0.13). Sulfur was detected in the 

XPS sampling region which indicated that less PDADMAC was adsorbed than in 

the first adsorption step or that the PE layers were significantly interdigitated. A 

second PSS layer was adsorbed onto the newly formed PDADMAC 

functionalised surface. The resulting S/C ratio was 0.11, less than the S/C ratio 

after the adsorption of the first PSS layer, indicating a decrease in PSS 

adsorption or an intercalated region. This assumption was further reinforced by 

the detection of nitrogen in large quantities (absent from the first PSS layer). 

Adsorption of a third PDADMAC layer resulted in a N/C ratio of 0.08 and an 

appreciable amount of sulfur. 

A PSS functionalised surface was fluorinated by the attachment of an oppositely 

charged fiuorosurfactant. XPS and contact angle results were similar to the 

results recorded for the attachment of the same fiuorosurfactant onto the AA 

pulsed plasma polymer surface (Chapter 3). The low water and relatively high 

hexadecane contact angles observed indicated once again that the 

fiuorosurfactant formed a complex surface structure with a proportion of the 

cationic groups oriented away from the highly oppositely charged PSS surface. 
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6.5 CONCLUSIONS 

A multilayer assembly was formed on the AA pulsed plasma polymer. The 

results indicated that more than a monolayer of PE was adsorbed during the first 

few dipping processes. Furthermore, evidence for the adsorption of relatively 

thick PE layers was gained by the detection of the PE counterions. These 

counterions may allow the PE to adsorb in a denser layer without the need to 

overcome strong electrostatic repulsion between like charges. Further dipping 

procedures resulted in either a reduced layer thickness or a substantial amount 

of layer intercalation. 

Fluorination of the PSS derivatised sample produced a surface with similar 

behaviour to fluorosurfactant treated AA surfaces. This was despite the fact that 

the PSS PE surface has a greater charge density. 
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APPENDIX 

CONFERENCE ATTENDED 

December 1998 Materials Research Society annual fall meeting, 

Boston, USA. 

EXAMINED LECTURE COURSES, UNIVERSITY OF DURHAM 

January to May 1996 Spectroscopy (Dr. Halliday). 

Electron Microscopy (Dr. Durose). 

Experimental Design (Prof. Badyal). 

Mass Spectroscopy (Dr. Jones). 

UNIVERSITY OF DURHAM, BOARD OF STUDIES IN CHEMISTRY, 

L E C T U R E S AND SEMINARS FROM INVITED SPEAKERS 

22"^ October 1996 Polymers for Biomedical Applications 

Prof. Tighe, B.J., Aston University. 

23"^ October 1996 Function Based on Organisation 

Prof. Ringsdorf, H., Johannes Gutenberg-Universitat. 

6*'' November 1996 Probing Dynamic Processes with Processes with 

Photoelectrons 

Dr. Reid, K.L., Nottingham University. 

is''' November 1996 Crossing Conventional Lines in my Chemistry of the 

Elements 

Prof. Olah, G.A., University of Southern California. 
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20'^ November 1996 Surface Light Scattering: Ripples and Relaxations 

Prof. Earnshaw, J.C., Belfast University. 

4"^ December 1996 Very High Resolution ZEKE Spectroscopy 

Prof. Muller-Dethlefs, K., York University. 

6'^ February 1997 Integrated Chemical Synthesis 

Prof. Bartlet, P., Southampton University. 

3™ March 1997 Siloxanes at Surfaces 

Dr. Owen, M. and Dr. Gravier, D., Dow Corning. 

15'^ October 1997 Studying Catalysis in Action 

Dr. Ormerod, R.M., Keele University. 

22" ' October 1997 Organoplatinum Chemistry and Catalysis 

Prof. Puddephatt, R.J., University of Western Ontario. 

29' 'October 1997 Probing Chirality with Circular Dichroism 

Prof. Peacock, R.D., Glasgow University. 

12"" November 1997 Spectroscopy of Liquid interfaces: From Bio-organic 

Chemistry to Atmospheric Chemistry 

Dr. Frey, J., Southampton University. 

26'^ November 1997 A Random Walk in Polymer Science 

Prof. Richards, R.W., Durham University. 

14*̂  January 1998 Energy Transfer and Optical Harmonics in Molecular 

Systems 

Prof. Andrews, D.L., University of East Anglia. 
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18*^ February 1998 Surprises in the Photochemistry of Tropospheric 

Ozone 

Prof. Hancock, G., Oxford University. 

11' 'March 1998 How to make Phthalocyanine Films and what to do 

with them 

Prof. Cook, M.J., University of East Anglia. 

2 0 " October 1998 Dynamic Electrochemistry: Small is Beautiful 

Prof. Unwin, P., Warwick University. 

23"" October 1998 In Search of Hypervalent Free Radicals 

Prof. Scalane, J.C., University of Ottawa. 

26 " October 1998 Reactions of the Highly Electrophilic Boranes 

HB(C6F5)2 and B(C6F5)3 with Zirconium and Tantalum 

Based Metallocenes 

Dr. Piers, W.E., University of Calgary. 

2 8 " October 1998 Tailoring Solid Surfaces 

Prof. Badyal, J.P.S., Durham University. 

18" November 1998 Biodegradable Polymers 

Dr. Cameron, R.E., Cambridge University. 

9 " December 1998 Multinuclear Solid-State Magnetic Resonance Studies 

of Noncrystalline Oxides and Glasses 

Dr. Smith, M.E., Warwick University. 

2 7 " January 1999 Foresight of Hindsight? Some Borane Lessons and 

Loose Ends 

Prof. Wade, K., Durham University. 
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10" February 1999 Surfactant Adsorption and Marangoni Flow at 

Expanding Liquid Surfaces 

Dr. Bain, CD. , Oxford University 

17" February 1999 Microelectrode Techniques for the Study of Enzymes 

and Nucleic Acids at Interfaces 

Dr. Horrocks, B.R., Newcastle University. 
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