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Abstract 

Modelling the Properties of 

Galaxies and Clusters 

by Scott Thomas Kay 

This thesis examines various properties of galaxies and clusters within hierarchical models of 

structure formation. 

A simple model based on analytical scaling relations is applied to X-ray observations of clusters 

at low and high redshift, in an attempt to constrain cosmological parameters from their evolution

ary properties. It is found that the density parameter, Q0 cannot be constrained using the data alone. 

Two independent constraints on the slope of the linear power spectrum, infer values of fio < 0.7 

at 95 per cent confidence. 

The remainder of this thesis concentrates on the method of cosmological simulation, a self-

consistent approach to the modelling of structure in the Universe. A parameter-space study is 

performed for the simplest model of galaxy formation: the radiative cooling of baryons within the 

cores of dark matter haloes. It is found that the properties of the galaxies in the simulations are 

insensitive to the range of parameters studied, with the exception of those that affect the cooling 

rate of the gas. For modest resolution and reasonable choices of physical parameters, the amount 

of baryons in galaxy material is around a factor of 2 too high. 

An investigation is then performed for including the effects of star formation and energy from 

supernovae (feedback) within cosmological simulations, to reduce the amount of gas that cools. 

The star formation rate is driven by the minimum density for which the stars formation occurs and, 

for high star formation efficiencies, is limited by the cooling rate of the gas. A successful model 

for feedback is found to require the prevention of reheated gas from cooling for a short period of 

time, as an attempt to mimick the properties of a multiphase medium. 

Finally, preliminary results are presented for simulations of a galaxy cluster, including the effects 

of radiative cooling, star formation and feedback. The properties of the cluster are found to vary 

significantly between models with and without feedback, due to the feedback reducing the star 

formation rate by reheating gas that cools. 
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Chapter 1 

Introduction 

1.1 Background 

Understanding the origin and nature of structure in the Universe is one of the fundamental aims 

of modern cosmology. It is only over the past few decades that a "standard model" for structure 

formation has started to emerge. 

Cosmology, as a science, is a very young subject. Our understanding of the Universe was revo

lutionised in the early twentieth century, when two important advances were made: one theoretical 

and the other observational. The first was Einstein's General Relativity, a new theory for the force 

of gravity. General Relativity predicts that the curvature of spacetime is directly related to the 

amount of mass-energy within it. On cosmological scales, gravity is the strongest force, so the 

geometrical properties of the Universe must be determined by its content. 

Around the same time as Einstein's discovery, Hubble and his colleagues confirmed that several 

observed faint nebulae were actually large aggregates of stars (galaxies), external to our own 

Milky Way. The galaxies were also observed to be receding with velocities that increased with 

their distance from us (Hubble's Law; Hubble & Humason 1931), regardless of position on the 

sky. (Of course, this is only true in an average sense, otherwise galaxy clusters would not exist!) 

Hubble's observations led to the idea, known as the Cosmological Principle, that the Universe was 

isotropic (the same in all directions) and homogeneous (the same at all positions) on large scales. 

(Homogeneity is a conceptual idea, based on the Copernican Principle, that we do not inhabit a 

special position in the Universe. However, it naturally explains Hubble's Law, and as was argued 

by Milne, it would be difficult to conceive of a Universe with physical properties that varied from 

place to place.) 

Both General Relativity and the Cosmological Principle led to the formation of theories for 

the dynamical evolution of the Universe. The most popular of these was the Big Bang model, 
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based on the idea that the Universe is expanding from a hot dense initial state, much smaller 

than an atomic nucleus. Such a theory implies that the Universe had a violent past, resulting in 

several key predictions for observed properties at the present. However, many people were opposed 

to the idea of a Big Bang, and an alternative theory was proposed, based on the idea that the 

Universe should remain the same at all times (the Perfect Cosmological Principle). The so-called 

Steady State theory (e.g. Hoyle 1954), satisfies the Perfect Cosmological Principle by assuming 

that matter is created at a continuous rate that is sufficient to preserve the mean density of the 

Universe. The Steady State model has since fallen out of favour, largely due to the observation 

of a diffuse background radiation in the microwave region of the electromagnetic spectrum (the 

cosmic microwave background; Penzias & Wilson 1965), predicted by the Big Bang model as a 

relic from the hot dense past, when the density of the Universe had dropped sufficiently to allow 

the photons to become decoupled from matter in the Universe (the epoch of last scattering). The 

Steady State theory, by definition, makes no such prediction. 

Another major success of the Big Bang model is its prediction for the abundances of light ele

ments that formed before the first stars (nucleosynthesis). The predicted values are in remarkable 

agreement with observations (e.g. Copi, Schramm, & Turner 1995). 

Despite its triumphs, the Big Bang model is not without its flaws. An example, of particular 

importance to theories of structure formation, is known as the horizon problem. The remarkable 

discovery of tiny fluctuations in the temperature of the microwave background by the COBE 

satellite (Smoot et al. 1992) was crucial evidence of evolution in the Universe. These fluctuations 

were imprinted by primordial density perturbations at the epoch of last-scattering, which have 

subsequently grown to form the galaxies and clusters observed today. However, temperature fluc

tuations were observed by COBE on angular scales much larger than the regions able to come into 

contact with one another (known as the horizon) at the epoch of last scattering. The Big Bang 

model provides no explanation for this. 

A breakthrough came from the theory of inflation, (Guth & Pi 1982 and references therein), an 

extension to the Big Bang model that solves the horizon problem amongst others. Inflation predicts 

that a region much larger than our observable Universe underwent a brief period of exponential 

expansion a short time after the Big Bang. One of the consequences of inflation is that it allows the 

horizon scale to be significantly expanded, allowing the observable region of the Universe to come 

into causal contact early on. Another consequence of inflation is that it provides an explanation 

for the origin of structure itself. Inflation allows tiny irregularities, such as quantum fluctuations, 

in the energy-density to be amplified to the sizes inferred from COBE observations. 
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The nature of this structure cannot be completely baryonic. Nucleosynthesis places an 

upper limit on the baryon density in the Universe that is around an order of magnitude 

lower than the total contribution, inferred from a range of observational studies (e.g. see 

Dekel, Burstein, & White 1997 and references therein). Hence, the majority of material in the 

Universe must be non-baryonic and dark. Two candidate theories of structure formation emerged, 

based on the properties of the dark matter. The first, known as the Hot Dark Matter (HDM) model 

predicts that the dark matter consists of relativistic particles, such as neutrinos, whose thermal 

motions smooth out density fluctuations on scales below ~ 50 Mpc (considerably larger than the 

scale of galaxy clusters). Structure in the HDM model forms "top-down", i.e. large scales collapse 

first, subsequently fragmenting into smaller objects. 

An alternative model, based on Cold Dark Matter (CDM) was proposed for which there are 

currently no known particle candidates, although it was heavily influenced by advances made 

in particle physics theories, such as super-symmetry. Examples of possible CDM particles are the 

axion or the gravitino. CDM is slow-moving (hence its name) with no absolute cut-off scale for the 

density fluctuations. Structure in this model forms hierarchically ("bottom-up"), i.e. the smallest 

fluctuations collapse and form objects first, which merge to form larger objects. 

The CDM model is currently the most popular paradigm for structure formation, mainly due 

to comparative studies of the clustering properties of HDM and CDM, using N-body simulations 

(see Frenk 1991 and references therein). The HDM model predicts a clustering scale that is far 

too high to plausibly relate to the clustering properties of galaxies observed in the real Universe. 

(The relation between the mass distribution and the galaxy distribution is historically known as 

bias.) The CDM model was able to achieve the required clustering scale using only a simple bias 

prescription, based on the initial peaks of the density field. A huge amount of work has been done 

that is based on the CDM paradigm, mainly using A^-body simulations. Of particular importance 

is the relationship between dark matter haloes (the basic elements of virialised structure in the 

CDM model) and the formation of galaxies and clusters of galaxies. The haloes provide a natural 

"framework" for the galaxies and clusters. As shown by White & Rees (1978), the characteristic 

densities and temperatures of galaxy-size haloes co-incide with gas cooling times of the order of 

the age of the Universe or shorter, where cluster-sized haloes have cooling times much longer 

than the age of the Universe. This at least hints at the widely different properties of galaxies, 

mainly consisting of stars, and clusters, where the majority of baryons are a hot diffuse intracluster 

medium. 
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Self-consistent approaches to the modelling of baryons within dark matter haloes are presently 

our "best bet" for understanding the properties of galaxies and clusters. The overall aim of this 

thesis is to investigate various aspects of the galaxy and cluster formation process using one of 

these approaches: the method of numerical simulation. Beginning with the rest of this chapter, 

the basic mathematical elements of cosmology are outlined, that are of relevance to the work 

presented in this thesis. Chapter 2 draws on these results to measure cosmological parameters 

using a simple model based on the X-ray evolution of clusters. The rest of this thesis concentrates 

on using numerical simulations to model galaxies and clusters within the CDM model. The method 

of cosmological simulation is described in Chapter 3. Chapters 4 and 5 apply this method to 

modelling the formation of galaxies within a small volume, and Chapter 6 presents results obtained 

from applying the method to modelling a cluster of galaxies. Conclusions are drawn in Chapter 7. 

1.2 Basic cosmology 

Applying the Cosmological Principle to General Relativity requires the construction of a metric 

that satisfies both homogeneity and isotropy. Such a metric (known as the Robertson-Walker 

metric) in its most general form is 

ds2 = c2dt2 - a2 it) d X

2 + f ( x ) {dO + sin2 6 dcf>2) 

d 1 ' 2 + r2(d92 + sin 2 0 dcf>2 = c2dt2-a2(t) (1.1) 
1 — Kr2 

where x, # and <f> are the spatial comoving co-ordinates, and t is proper time (measured from the 

Big-Bang), which must be the same everywhere. The function, a(t) is the expansion factor and 
r = f i x ) , where 

sinx K = + 1 ; 

f i x ) = l X K = 0; (1.2) 

sinh x K = — 1-

The constant, K, can take three values: 1, 0 and —1, describing space with positive, zero (Eu

clidean) and negative curvature respectively. 

The expansion factor is determined from the solution of the Friedmann equation, 

4 „ ( P\ A 2 

(1.3) 

where P and p are the pressure and density source terms and A is the cosmological constant. 

The equation of state for the expanding fluid can be written as P = wpc2, where 0 < w < 1 
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is the Zel'dovich interval. For photons, w = 1/3 and for a pressureless fluid (dust), w = 0. 

Another implication of the Cosmological Principle is that the expansion is adiabatic, hence p = 

p0(a/a0)~3(1+wK where the subscript, 0 refers to the present day. For the range of epochs relevant 

to galaxies and clusters, the dust model provides a good approximation; the density of pressureless 

material evolves as p oc a3. The adiabatic assumption allows Equation 1.3 to be cast in the form 

. 9 STTG 9 A 9 9 
a2 = — p a 2 + - a 2 - Kc2, (1.4) 

where K is the curvature, with K = K/mod(K). A special model, known as the Einstein-de Sitter 

model, is the case of K = A=0. The density is just sufficient to close the Universe and is known 

as the critical density, pcr = 3H2/(8nG), where H — a/a is the Hubble parameter (the present 

value of this function is known as the Hubble constant, Ho). The density is commonly written in 

terms of the critical density, and is known as the density parameter, fi. Denning Ao = A / ( 3 H Q ) , 

the curvature of the Universe can be derived from the current value of the density parameter, 

cosmological constant and Hubble constant 

K= ^ ( f i o + A o - 1 ) , (1-5) 

which also gives the current value of the expansion factor, since ao = 1/ \/\ K \. Hence, a Euclidean 

universe satisfies Qo + Ao = 1, a universe with positive spatial curvature (known as a closed 

universe) satisfies Qo > 1 — Ao and a model with negative spatial curvature (an open universe) 

satisfies fio < 1 - A 0 . 

Equation 1.4 can then be re-written as 

d 2 = H2 [ f i 0 ( a _ 1 - 1) + Ao(« 2 - 1) + l ] • (1.6) 

Hence, values of Qo, Ao and H0 determine specific solutions to Equation 1.6. 

An alternative variable to the expansion factor that is directly observable, is redshift, z. The 

redshift of a luminous source is measured as 

z = — r , (1.7) 

where Ao and A e are the wavelengths of a photon at the time when it was observed and emitted 

respectively. Redshift is directly related to the expansion factor, as 1 + z — ao/a. Hence, objects 

observed in our past light cone have values of z > 0. 

Equations 1.1 and 1.6 allow physical quantities such as distances and lookback times to be 

calculated for arbitrary choices of cosmological parameters. For example, the angular diameter 
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distance to a luminous source is da{z) = a0 f ( x ) , where x is calculated by considering the path 

taken by a photon emitted at a redshift of z 

A related quantity to da is the luminosity distance to a source, simply defined as d-L(z) = 

da(z)(l + z). Knowledge of da allows the comoving volume element, dV(z), to be calculated, 

using 

assuming that the volume subtends the whole sky. 
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Chapter 2 

Measuring Q0 from the entropy 

evolution of clusters 

Abstract. In this chapter, the entropy-driven model of cluster evolution developed by Bower 

is extended in order to predict the X-ray evolution of galaxy clusters in a range of cosmological 

scenarios. The model is then applied to recent measurements of evolution in the Lx—T relation 

and in the X-ray luminosity function to place constraints on cosmological parameters. The data 

is insufficient to determine a particular cosmological model; an additional constraint is required 

to break the degeneracy between the effective slope of the power spectrum, n, and the density 

parameter, S7o- Two methods for achieving this are examined: a theoretical calculation of the 

relation between flo and n predicted by the CDM paradigm, and a direct measurement of n 

from galaxy clustering. The first gives fio < 0.55 (0.1 < fio < 0.7 for f i 0 + A 0 = 1), 

while the second gives Q0 < 0.6 (Q 0 < 0.65 for Qo + Ao = 1), both at the 95% confidence 

level. The rate of entropy evolution is insensitive to the values of Qo considered, although it is 

sensitive to changes in the distribution of the intracluster medium. 

2.1 Introduction 

Clusters of galaxies are the largest virialised mass concentrations in the present-day Universe. 

Evolutionary studies therefore offer a unique method for directly determining the rate at which 

these structures grow in mass. This is influenced by the competing effects of the steepness of the 

density fluctuation power spectrum, characterised by the effective slope, n, and the current values 

of the cosmological parameters, D,0 (the density parameter) and A 0 (the cosmological constant, in 

units of 3HQ, where H0 = 100 h k m s - 1 M p c - 1 is the Hubble constant). This chapter investigates 

the possibility that the value of Q0, or the combination, Q0 + A 0 = 1 (which produces a flat 

geometry), can be robustly determined from considerations based solely on the X-ray evolution 

of galaxy clusters. Such an approach can only be successful i f is able to overcome two substantial 

obstacles. Firstly, the correspondence between cluster mass and X-ray luminosity is not straight

forward, being sensitive to the way in which the gas fills the cluster's gravitational potential well. 
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Secondly, the degeneracy between the cosmological parameters and the effective slope of the 

power spectrum on cluster scales, n, must be broken before a value of Q.o can be determined. 

The first problem can be tackled by measuring the rate of luminosity evolution and cali

brating the efficiency of X-ray emission by some other means of mass estimation, such as the 

luminosity-temperature relation (e.g. Mushotzky & Scharf 1997) or gravitational lensing effects 

(Smail et al. 1997; Bower & Smail 1997). The second problem can be approached in several 

ways. The most straightforward is to adopt a fluctuation spectrum on the grounds of a physical 

hypothesis, for example the CDM model (e.g. Bardeen et al. 1986). Alternatively, an empirical 

measurement of the power spectrum could be used, for example from the large-scale distribution 

of rich clusters obtained in redshift surveys (e.g. Tadros, Efstathiou, & Dalton 1998). Perhaps the 

most appealing approach would be to use X-ray observations spanning a wide range in redshift 

and luminosity to separate the models purely on the basis of their observed evolution. 

Numerous approaches to the determination of fio have already been presented in the literature 

(e.g. see Dekel, Burstein, & White 1997, for a recent review), which range from direct arguments 

based on the peculiar motions of galaxies in the local Universe, through indirect methods using 

the baryon fraction in clusters of galaxies, to measurements of the acoustic peak in the microwave 

background spectrum. Each of these approaches has its own strengths, measuring different aspects 

of the overall cosmological model. A value based on the rate of cluster mass growth is appealing, 

however, since it measures QQ on the basis of its large-scale effect over a modest factor of the 

Universe's expansion. Convergence of all these methods will act as confirmation that our global 

cosmological picture is valid and that no crucial additional physical processes have been omitted. 

Discussion of the implications of cluster evolution is also timely given the growing area 

of sky that has now been exploited in X-ray surveys. These range in strategy from wide-

area projects based on the ROSAT all-sky survey (Ebelinget al. 1997; De Grandiet al. 1997), 

EMSS (Henry et al. 1992; Gioia & Luppino 1994) to smaller solid-angle surveys based on 

serendipitous sources identified in deep ROSAT fields (e.g. Rosati et al. 1998; Scharf et al. 1997; 

Collins et al. 1997). Some constraints are also available from very deep survey fields 

(Hasinger et al. 1998; McHardy 1998; Bower 1996) although the area covered by these fields 

is currently very small. Reliable temperature data are also becoming available for clusters 

spanning a range of redshifts and luminosities, from the ASCA satellite (e.g.Tsuruet al. 1996; 

Mushotzky & Scharf 1997; Markevitch 1998). These recent advances have motivated this study, 

but there is also a clear need to identify the places where future observations using, for example, 
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the Chandra and XMM satellites are best targeted. One crucial question is whether more progress 

is to be made by going to lower flux levels, or more uniform surveys covering a wider area of sky. 

This work is related to that of several others in the recent literature, representing a range of 

possible approaches to the problem of cluster evolution. This chapter uses a phenomenological 

model that separates the evolution of clusters into factors depending on the evolution of the mass 

spectrum and processes resulting in heating and cooling of the intracluster gas. The foundations 

of the model were discussed extensively in Bower 1997 (hereafter Paper I), providing a physical 

basis and interpretation. This allows additional theoretical input to be minimized, by using simple 

scaling relations to translate the properties of cluster samples at low redshift into their equivalents 

at high redshift. The approaches used by Mathiesen & Evrard (1998), Reichart et al. (1998) and 

Blanchard & Bartlett (1998) are related, but use an empirical model for the X-ray luminosity cal

ibration and evolution, combined with the Press-Schechter method (Press & Schechter 1974) for 

the distribution of cluster masses. The approach of Kitayama & Suto (1997) is more different in the 

sense that they achieve a match to the luminosity function data through varying the epoch at which 

the clusters form. In the case of very low values of Q0, the distinction between the epoch at which 

a cluster is observed and that when it was formed becomes important. Therefore, the model from 

Paper I has been developed to incorporate this effect. Finally, a method of direct deconvolution 

has been outlined by Henry (1997, see also Eke et al. 1998) using recent ASCA temperature data. 

A wide variety of approaches to this topic is clearly desirable in order to indicate the robustness 

of the underlying principles. The discussion therefore includes a comparison between this work 

and others, and areas of uncertainty are outlined which can be considerably improved from further 

observations. 

The layout of this chapter is as follows. In Section 2.2, the model on which this chapter is based 

is outlined and the manner in which it is readily extended to incorporate evolution in both open 

(fto < 1, Ao = 0) and flat (Qo < 1, Q0 + Ao = 1), sub-critical density universes is discussed. 

The approach used to incorporate the effects of the cluster formation epoch is also detailed. 

Section 2.3 summarises the constraints placed on the model parameters for a range of cosmologies 

using currently available X-ray cluster data. The degeneracy between fi0 and n is discussed and 

whether the methods mentioned earlier can be used to empirically distinguish between different 

cosmological models. The possibility of measuring evolution in the cluster core radius to place 

further constraints on the model is also investigated. In Section 2.4, the results of this study are 

summarised and the robustness of the assumptions made in the model are discussed. The results are 

then compared with the values that have been obtained by other authors, and differences between 
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the proposed models are explored, leading to the consideration of the overall accuracy of the 

method. With this in mind, key strategies for forthcoming X-ray surveys are identified. Finally, 

conclusions are reiterated in Section 2.5. 

2.2 X-ray evolution in different cosmologies 

2.2.1 X-ray emission and the cluster core 

X-ray emission from the intracluster medium (ICM) is dominated by collisional processes. For hot 

clusters, the most important of these is thermal bremsstrahlung. The emissivity (power radiated per 

unit volume) scales as p2Ta, where a = 0.4 [±0.1] is used for bolometric/wide-band detectors and 

a — 0 [±0.1] for low energy band-passes, although it is found that the results are not affected when 

making changes to these values within the limits quoted in square brackets. Hence, detections of 

galaxy clusters in the X-ray region of the electromagnetic spectrum are sensitive to the distribution 

of the ICM. Surface brightness profiles are traditionally fitted assuming the following (so-called 

(i - model) density profile 

(Cavaliere & Fusco-Femiano 1976), with r c defining the effective core-size of the ICM and (3 

the rate at which the density falls off with radius. A value of (3 = 2/3 is adopted for the main 

results in this chapter, appropriate for a non-singular isothermal distribution, in agreement with the 

observational average (e.g. Jones & Forman 1984). The effect of departures from this asymptotic 

slope is discussed in Section 2.4.1. The emission is thus characterised by a flattening at small 

scales (typically rc ~ 100 kpc), departing from the distribution expected if the gas traces the 

underlying dark matter. A plausible physical interpretation was given by Evrard & Henry (1991, 

hereafter EH; see also Kaiser 1991), hypothesising that the intracluster gas was pre-heated prior 

to the cluster's formation and has retained the entropy acquired from this pre-collapse phase. 

Assuming that any dissipation was negligible, this provides an entropy floor, s m ; n

 1 , forcing the 

gas to build up a mass distribution that reflects this constraint. For an isothermal distribution, sm; n 

is directly related to the core density, pc. In Paper I, this idea was developed further by allowing 

Smin to evolve, using the parameterisation 

Smin = smin(z = 0) + c„eln(l + z), (2.2) 

1 specific entropy is defined as s = cv\n(Tp1~'r), 7 is the ratio of specific heats at constant volume (cv) and constant 

pressure (c p ) ; its value is taken to be 5 / 3 , appropriate for a monatomic ideal gas 

3(3 2 

p(r) = pc 1 + (2.1) 
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where e determines the rate of core entropy evolution, which could be dominated by, for example, 

the gas being shock-heated as a result of merging (implying negative values) or conversely, 

radiative cooling (positive values). The value e = 0 corresponds to no net evolution of the core 

entropy. 

2.2.2 Evolution in an Q, = 1 universe 

The X-ray luminosity of an individual cluster is calculated by integrating over the virialised region 
r v i r 

Lx oc J r2 p2Tadr. (2.3) 
o 

Equation 2.1 is used to describe the density profile, and it is assumed that the characteristic tem

perature of the ICM is proportional to the virial temperature of the system. In practice, the integral 

is dominated by the contribution from within a few core radii, and thus the scaling properties of 

this integral depend only weakly on the shape of density profile. As in EH, extracting the scaling 

properties from the integral produces 

Lxtxp2

cr3

cTa. (2.4) 

Using Equation 2.2 to parameterise the evolution of the core entropy, the core density of the 

ICM evolves as 

pc<xTs/2 (1 + z)-3^2. (2.5) 

The core density can also be related to the virial radius, virial density and the core radius, using 

the asymptotic profile of the gas distribution, pc ~ p v i r ( r v i r / r c ) 3 ^ - Assuming that the virial radius 

scales as 7- v i r oc [M/ pv\r)ll3, where M is the virial mass of the cluster, leads to a relation for the 

core radius 

rc oc M 1 / 3 T~lIW (1 + z)-i+(i+</2)/0 { 2 6 ) 

The above relations are not appropriate for scaling the physical properties of individual clusters. 

However, assuming the Weak Self-Similarity Principle (Paper I), these relations are accurate in 

determining the mean evolution of a population. This is fully justified if a scale-free power 

spectrum is adopted to describe initial fluctuations, P(k) oc D2(z) kn (Kaiser 1986; Paper I), 

where D is the linear growth factor and the range - 3 < n < 1, appropriate for hierarchical 

models, is considered in this study. For an Q = 1 Universe, D oc (1 + z)~x (Peebles 1980). Since 

linear evolution contains no fixed physical scale, the only scale of interest at a given epoch is that 
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at which structure becomes non-linear (i.e. as the overdensity, S —• 1). This translates to a mass 

scale by considering the variance of linear mass fluctuations inside spheres of comoving radius, R 

oo 

a2

R<xD2(z) j WR{k) kn+3 dink, (2.7) 
o 

where WR(k) is the Fourier transform of the top-hat window function. A specific value of R 

(and thus <tr) will correspond to the scale of objects that are now rich clusters (Evrard 1989; 

White, Efstathiou, & Frenk 1993). This leads to a simple scaling relation for the mass of such 

objects 

M a (1 + z)~6^n+3\ (2.8) 

given that M = (4ir/3)R3p. Hence as n —> - 3 , structure formation becomes progressively more 

rapid. 

The gas virial temperature will correspondingly evolve as 

T oc M 2 / 3 (1 + z). (2.9) 

This and the above results forms a relation for the X-ray luminosity 

Lx cc (1 + z f i ' - W - f r T « + | ( 3 - ^ ) . (2.10) 

The two key observables that are used in this chapter are the X-ray luminosity function (XLF) and 

the luminosity-temperature ( L x - T) relation. The first requires the number density evolution of 

clusters to be modelled, which is generally done using Monte-carlo realisations of merger trees 

within the extended Press-Schechter formalism (Lacey & Cole 1993), or directly using numerical 

simulations. However, since only a characteristic value is sought at any given epoch, it is assumed 

that the the number density scales inversely with M, i.e. n(L) oc (1 + z)6/(™+3), a necessary 

requirement to conserve mass for a self-similar mass distribution. For the Lx - T relation, only 

the evolution in normalisation can be constrained by the model discussed here. Attempting to 

constrain the slope using this approach requires the assumption of strong self-similarity, which is 

deliberately avoided in this work (see Paper I for a more detailed discussion). 

2.2.3 Extension to fio < 1 cosmologies 

For a sub-critical density Universe, several major modifications are required to be made to 

the model. It can no longer be assumed that the dynamical evolution can be written in time-

independent form. Hence, the simple relations for the evolution of the virial quantities will no 
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longer suffice. Even for scale-free fluctuation spectra, additional knowledge is required to relate 

the typical density of collapsed objects to the background density. For a low density universe, 

the Weak Self-similarity Principle cannot be rigorously justified since the internal mass structure 

of the clusters may not be homologous, depending on the epoch at which they collapse. How

ever, these deviations are small in TV-body simulations (e.g. Eke, Navarro, & Frenk 1998, for the 

Qo = 0.3, Ao = 0.7 CDM scenario). The aim of this chapter is to compare the properties of 

clusters in flat and open universes, and thus the approach is fully adequate. 

To relate the dynamical properties of cluster populations to the background cosmology, the 

results of the spherical top-hat collapse model (e.g. Lahav et al. 1991) are used. This predicts 

that overdense spherically symmetric perturbations depart from the linear regime, turn around 

and collapse, forming virialised structures with mean internal densities given by the formula 

p v i r = Avir per, where pcr is the density required to close the Universe. The quantity A v ; r is 

a function of the background cosmology and can be approximated using the following fitting 

functions (Eke, Navarro, & Frenk 1998) 

A v i r = 178 ft0'30 (A 0 = 0) 

A v i r = 178 fi0-45 (fin + Ao = 1) (2.11) 

which returns the value of 178 for = 1. Knowledge of Qo, Ao and the redshift of collapse, zj is 

sufficient to provide an evaluation. 

Another difference with Q0 < 1 models is that the linear growth factor, D(z), evolves more 

slowly than (1 + z)~l. The appropriate relations are as follows (Peebles 1980) 

n0 < 1 : 
i 

D(x) = 1 + - + H1\_X)*H(1 + * ) * - x t ] t 
X 

1 + 2 

X2 

n 0 + A 0 = 1 : 

111 

y 0 

2(JX71 - 1)3 
1 + 2 

Accounting for these differences produces the following modified scaling relation for the X-ray 

luminosity 

Lx <x Ta (1 + z)b (1 + z } ) c [Avir{zf)/n(zf)]d; (2.13) 
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a = a + 3(3 - l//?)/2; 

b = 36(1/(2/3)-1); 

c = 3 (1 / /?-3 /2) ; 

d = 1/(3-3/2. 

Hence for (3 = 2/3, c = d = 0. The temperature scaling relation becomes 

T oc D ( Z y l ^ (1 + *,) [ A v i r ( 2 / ) / f i ( z / ) ] 1 / 3 (2.14) 

and the number density scales as n(L) oc D(z) 6/("+3). 

2.2.4 77ie epoch of cluster formation 

The above modifications are required to be made for QQ < 1 models, since the linear growth 

of structure 'freezes out' when z ~ VLQ 1 - 1 (Peebles 1980). Producing the present-day abun

dance of clusters requires structure to have formed at progressively earlier epochs for lower 

density Universes. Consequently, the epoch of cluster formation, zj can be significantly different 

from the redshift range of an observed sample, leading to inaccuracies in the scaling properties 

(Kitayama & Suto 1996). This problem is addressed by defining the epoch of formation to be such 

that the cluster has acquired a fraction, / of its total mass when observed. The characteristic mass 

can then be scaled as follows 

Material that has been accumulated between zj and z is assumed to have negligible effects on the 

normalisation of the mass distribution, even though the total mass (and therefore temperature) of 

clusters can change. 

The effect that varying / has on the X-ray luminosity is illustrated in Figure 2.1 for a typical 

median redshift of current high redshift cluster samples (z = 0.4). The following function is 

plotted 

as a function of QQ, which is the part of Equation 2.13 (substituting Equation 2.14 for T and as

suming (3 = 2/3) that depends on zj. The constant, F0 normalises the relation to the corresponding 

value at the present day (zj (z = 0)). Each relation is scaled using the Q ~ 1 value to illustrate the 

relative effect. For the Q = 1 case, the formation epoch scales in direct proportion to the observed 

M(zf(z)) = fM(z). (2.15) 

F(flo,Ao,z) = F 0 ( l + 2 , ) 
1 1 / 4 [ A v i r ( 2 / ) / f i ( z / ) ] 1 1 / i 2 ) (2.16) 
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Figure 2 .1: The X-ray luminosity factor that depends on the cluster formation redshift, z/, as a function of the 

background cosmology, normalised to the f2 = 1 value. Results are illustrated for both open (Qo < 1) and flat 

(fio + A 0 = 1) models, for the case z = 0 .4 . The solid line illustrates the variation of F for a mass fraction of 1 and 

the dashed lines show progressively lower values, in steps of 0 .1 , to / = 0 . 5 . 
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Table 2.1. Values of the parameters used to fit the (temperature) evolution of the Lx —T relation, assuming a power 

law dependence on T with slope, A and an evolution term between low and high redshift parameterised as (1 + z)v. 

Shown are the best-fit values and 95 per cent confidence levels of the slope and evolution parameters, for the median 

redshift of the high-z sample, (z) = 0.3, and a value of Qo = 0. 

Parameter Best Fit 95 per cent (min,max) 

V -0.10 (-0.63,0.43) 

A 3.45 ( 3.03,3.85) 

redshift. As the density drops below the critical value, there is a decrease in about a factor of 2 for 

f20 = 0.1, although the dependence on / is relatively weak (even for = 0.1): reducing / from 

1 —> 0.5 produces only a 40 per cent change in F, even in this extreme case. Therefore, a fiducial 

value of / = 0.5 has been selected for the results that follow. 

2.3 Using the evolution of clusters to constrain ft0 

The essence of this approach is to scale characteristic properties of a cluster population from 

one epoch to another. Therefore, data based on local samples is used as the basis for the scaling 

transformations described in the last section. The likelihood distribution of parameters can then be 

determined, by fitting the scaled relations to the data available at higher redshift. At this stage, it 

has been assumed that the free parameters are the slope of the power spectrum, n, and the entropy 

evolution parameter, e. The cosmological density parameter has been fixed at four values (with 

and without the cosmological constant) : Cl0 = 0.1,0.3,0.5,1.0, in order to clearly illustrate the 

effects of a varying cosmological background on the physical evolution of clusters. Below, the 

data-sets used to constrain the set (n, e) are discussed as well as the corresponding results. All 

data presented have been compiled with an assumed Hubble constant of Ho = 50 k m s - 1 Mpc - 1 . 

2.3.1 The Luminosity—Temperature relation 

Constraints are placed on the temperature evolution of clusters by making use of the Lx-T rela

tion, which is at present, adequately described by a power law, Lx oc T x , and an intrinsic scatter. 

The evolution of the Lx - T relation is determined by fitting a maximum likelihood model to the 

combined low and high redshift data given by David et al. (1993) and Mushotzky & Scharf (1997), 

compiled mainly from the ASCA and Einstein satellites. The distribution of X-ray temperatures is 

assumed to be Gaussian, and the 90% range in systematic errors in the temperature measurements 
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(quoted by the authors) are converted to an equivalent la value. In order to ensure that there is 

good overlap in luminosity between the high and low redshift data-sets, the comparison is limited 

to clusters with bolometric luminosities greater than 10 4 4 , 5 ergs _ 1 , although the results are not 

particularly sensitive to this choice. The model for the Lx - T correlation that was fitted includes 

an adjustable zero-point, slope and intrinsic scatter, as well as a redshift-dependent normalisation 

term that is parameterised as AlogTo = ??log(l + z) (where To is a reference temperature). 

Confidence limits are determined by minimizing over the other parameters and calculating the 

distribution of C values, where 

N 

C ' L T = - 2 ^ lnP.-fo), (2.17) 

i=l 

where the subscript i ranges over the cluster sample, P,- is the probability of measuring the cluster 

with a given temperature, luminosity and value of 77. It is assumed that AC is distributed as x2 

with one free parameter (Cash 1979). 

This treatment ignores any change in the slope of the relation, which is true if the luminosities 

of the clusters do not evolve and the evolution of the Lx - T relation is due to the temperature 

evolution of the clusters alone. In practice, however, a particular choice of the parameters (n, e) 

implies correlated changes in luminosity and temperature. For simplicity and consistency with 

other work, the evolution in both quantities has been phrased as a change in temperature at fixed 

luminosity. This correction involves the slope of the relation. However, it must be emphasised that 

this is an artifact of the way in which the normalisation is quoted. In principle, each model requires 

that the likelihood be examined as a function of a combination of 7/ and the fitted slope, A (which 

changes with the choice of (n, e) parameters); in practice, however, the slope of the relation is 

sufficiently well constrained that almost identical results are obtained if the likelihood is examined 

as a function of the single parameter, rj and finding the slope of the best-fit value. 

The preferred values of rj and A are given in Table 2.1, for the median redshift of the high-

redshift sample ((z) = 0.3) and Q0 = A 0 = 0. These values are converted to the appropriate 

cosmologies when required, since the normalisation is affected by the assumed value of Q0 through 

the distance dependence of the luminosity. In Q0 < 1 cosmologies, the luminosities of clusters are 

brighter, pushing the evolution of the temperature normalisation in the positive direction for higher 

values of Cl0. The uncertainties in the evolution rate are dominated by the intrinsic scatter in the 

relation. It is therefore noted that while the evolution of the relation is statistically well defined, 

it is sensitive to systematic error and selection (based on X-ray flux) which may have tended to 

exclude hotter (or colder) clusters. 
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Table 2.2. Details of the distant cluster survey XLF's used for constraining evolution of the ROSAT BCS XLF. The 

EMSS 2 data are not binned (*) but rather taken as a point on the cumulative luminosity function. 

Survey <*> 

SHARC (Burke et al. 1997) 4 0.44 16 

WARPS (Jones et al. 1998) 3 0.47 11 

RDCS (Rosati et al. 1998) 3 0.60 14 

EMSS 1 (Henry et al. 1992) 4 0.33 23 

EMSS 2(Luppino & Gioia 1995) * 0.66 6 

2.3.2 The X-ray Luminosity Function 

The second X-ray observable used in this chapter is the cluster X-ray Luminosity function. For 

simplicity, the X L F is assumed to take the form of a Schechter function 

( 2 - l 8 ) 

The local X L F used in this chapter is the one given by Ebeling et al. (1997) based on the ROSAT 

Brightest Cluster Sample (BCS), which contains clusters with z < 0.3, selected and flux-limited at 

X-ray wavelengths. The authors' best fit parameters to Equation 2.18 have been adopted, namely 

A = 3.32 x 1 0 _ 7 M p c _ 3 A L - 1 ; a = 1.85; L * = 5.7 x lO^ergs" 1 for the 0.5 - 2.0 keV band, 

and A = 4.95 x l O ^ M p c ^ A Z , - 1 ; a = 1.82; L* = 1.07 x lO^ergs" 1 for the 0.3 - 3.5 keV 

band. The functions are plotted as solid lines in Figure 2.2. Since they find no significant evolution 

(< 1.8<t) in their sample, this function is assumed to represent the X L F at the present day. 

Currently available high redshift cluster samples, used to place constraints on the evolution of 

the XLF, are summarised in Table 2.2. This data are also illustrated in Figure 2.2, evaluated for 

£ 2 = 1 . Figure 2.2(a) illustrates the binned, non-parametric XLF's that have been compiled from 

ROSAT data (SHARC , WARPS and RDCS ), with luminosities evaluated in the 0.5 - 2.0 keV 

band. None of these samples shows significant evolution in the cluster XLF, out to z ~ 0.5. Figure 

2.2(6) shows the EMSS 1 X L F in the 0.3 - 3.5 keV band. Clearly, this hints at negative evolution 

(i.e. a lower space density of clusters of given luminosity at higher redshift), although it must be 

noted that higher luminosity bins usually have greater median redshift values and hence applying 

one redshift to the whole sample leads to an overestimation of the evolution. Finally, Figure 2.2(c) 

shows the EMSS 2 cumulative point, also in the 0.3-3.5 keV band. Since this point is significantly 

lower than the BCS XLF, it should provide a tight constraint on n and e. 
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Figure 2.2: The X-ray luminosity functions used in this chapter compiled from data observed using the ROSAT and 

Einstein satellites. The solid line in all three plots is the best-fit Schechter function to the/?0S/47'BCS z < 0.3 sample 

as determined by Ebeling et al. (1997). Plot (a) illustrates the high-redshift non-parametric X L F data from ROSAT 

surveys, evaluated in the 0.5 - 2.0 keV pass band. The square points are from the Southern SHARC survey (Burke 

et al. 1997), the crosses from the RDCS survey (Rosati et al. 1998, private communication) and the triangles from 

the WARPS survey (Jones et al. 1998, private communication). Plot (b) illustrates the EMSS cluster X-ray luminosity 

function from the work of Henry et al. (1992) and plot (c) shows the cumulative X L F point from the EMSS distant 

cluster sample (AT(> 5 x 10 4 4 e rgs - 1 ) = 1.1 ± 0.43 x 10~ 8 Mpc~ 3 ; Luppino & Gioia 1995), both evaluated in the 

0.3 — 3.5 keV band. The vertical dashed line marks the position of L*. Data is presented assuming fi = 1. 
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A likelihood method is used to compare the data-points with each model prediction, defined 

by (n, e), for the assumed cosmology. Ideally, the model parameters would be constrained using 

a global maximum likelihood approach. Starting from the local XLF, individual likelihood proba

bilities could be assigned to each of the observed clusters (and non-detections) by combining the 

model X-ray luminosity function at the appropriate redshift with the selection function defined 

by each of the surveys. This approach would avoid all problems related to redshift binning of the 

available data, and allow cosmological corrections to be consistently applied. Unfortunately, the 

detailed survey selection functions are not generally available, so an approximate approach must 

be adopted. Since little evolution is observed, binning the data in redshift is not likely to result in 

significant bias. 

The constraints placed on the model parameters (n, e) from evolution of the various high-

redshift XLF's (relative to the BCS XLF) for a given cosmology were generated as follows. 

Firstly, the high-redshift X L F data points were rescaled to the values appropriate for the assumed 

cosmology. Luminosity scales as d\, where di is the luminosity distance (Section 1.2), therefore 

clusters are more luminous for fin < 1 cosmologies than for Omega = 1. The inferred space 

density of clusters decreases as fin is lowered since the volume out to any given redshift is larger. 

The space density is assumed to scale as 1 / F m a x , where 

and ziim is the redshift at which the luminosity infers a flux equal to the flux limit of the survey. 

For the results presented here, the space densities are always scaled using the assumption that all 

clusters are at the flux limit of the survey. However, the relative change in V m a x for clusters being 

a factor of two brighter than the flux limit is ~ 1 per cent. It was then assumed that the number of 

clusters in the i i h bin (Ncius^) were drawn from a Poisson distribution, with the expected number 

being a function of the true values (n T , eT). The C-statistic was then calculated for the range of 

model (n, e) such that -2.5 < n < 1.0 and - 6 < e < 4, where C is defined as 

N 

CXLF = l n Pi (Ndusf, Ei{n, e)), (2.20) 

i=l 

N is the number of bins in the high-redshift X L F and Pi is the probability of observing Nciusj 

clusters given £",-, the expected number calculated from the model, at the median redshift of 

the data point. Confidence regions were then calculated by differencing C with respect to the 

minimum value (i.e. corresponding to the most probable set, (no, en)), A C — C — C m j n (nn , £n). If 

(n, e) were independent parameters, A C would be distributed as x2 with t w o degrees of freedom 

dV 
V. dz max dz o 

(2.19) 
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(Cash 1979), but this is not assumed to be the case. Instead, a large number of Monte-carlo 

realisations of each X L F data-set were generated, for all the cosmologies studied. Each realisation 

involved generating a set of X L F points at the same luminosities as the real data-set, drawn from 

Poisson distributions with mean values set to the numbers of clusters predicted by the best-fit 

model. The C distribution was then taken for each realisation and the difference in C values 

was calculated, between this distribution and the one produced by the best-fit model, at the fixed 

point (no, eo)- This method allows a likelihood distribution of A C values to be constructed that 

resembles the true distribution. Confidence levels were chosen such that they enclosed 68 per cent 

and 95 per cent of the total number. 

2.3.3 Results 

For each of the fiducial values of Qo (in both open and flat Universes), the likelihood distribu

tion was determined as a function of n and e. Initially, the different data-sets were analysed 

independently. However the results show similar trends, albeit less constrained than the overall 

likelihood distribution, generated from combining all of the X L F data. Therefore the discussion is 

focussed on results from the combined X L F data-set which are shown in Figure 2.3. (Results from 

individual data-sets can be found in Appendix A.) Clearly, this illustrates how the constrained 

area of parameter space varies with the background cosmology. This is the result of an interplay 

between two contributing factors, namely the model scaling relations used to fit the high redshift 

data and the positions of the data-points relative to the local X L F and Lx - T relation. 

Constraints from the evolution of the Lx - T normalisation show a weak degeneracy between 

n and e for high values of fio- As Q.Q —>• 0, the range of e becomes independent of n (centred 

one = 0). The range of n is unconstrained for all values of fio- The reason for the degeneracy is 

straightforward. The data imply no net evolution of the Lx-T normalisation for an empty Universe 

(fio = 0)- Increasing the value of Qo pushes the high redshift sample to lower luminosities, 

prompting positive evolution in temperature for a fixed value of Lx. In an Q — 1 Universe with no 

entropy evolution (e = 0) and a power spectrum with a negative slope, the model over-predicts the 

cluster luminosities, hence positive entropy evolution is required to match the data. As n increases, 

the over-prediction becomes less severe (hence e decreases). For QQ < 1 cosmologies, the amount 

of evolution required becomes progressively weaker as Qo decreases. Since the growth of structure 

is also slower, the data become more and more consistent with e = 0 for all values of n. 

The results from constraining the evolution of the combined X L F data-sets show a degeneracy 

in the opposite sense: higher values of n demand higher values of e. This relation can be clearly 
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Figure 2.3: Constraints on the slope of the power spectrum (n) and the entropy evolution parameter (e) for seven 

different cosmological models. Solid contours are the 68 per cent and 95 per cent confidence regions from the evolution 

of the X-ray luminosity function, using data from all of the surveys studied. Dotted contours represent the 68 per cent 

and 95 per cent confidence regions for evolution of the cluster luminosity-temperature relation. Shaded regions are for 

parameters consistent with the evolution within 68 per cent limits (of both X L F and Lx — T). The vertical solid line 

is the value of n appropriate to the CDM model calculation in Section 2.3.4 and the vertical dashed line is a measured 

value of n from the APM rich cluster sample. 
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explained from the Q = 1 plot alone. Again, the model scales the X L F in such a way that for 

e = 0, the result is an over-prediction of the cluster luminosities. However, this effect becomes less 

pronounced as n decreases, leading to lower values of e. Eventually, the local luminosity function 

is shifted so much that the shape of the function becomes important, leading to an under-prediction 

of the abundance of clusters at the faint-end, where most of the data-points lie. This effect places 

a lower limit on the value of n. For lower values of £l0, the data-points are pushed to brighter 

luminosities, as well as lower values of dn/dLx. Although the faint-end data are consistent with 

no evolution for Q = 1, the re-scaling forces the points below the local X L F for lower values of 

fin- The brighter data (in particular the EMSS 2 point) is less sensitive to the change in cosmology, 

due to the steeper slope of the XLF. Coupled with the fact that the evolution of structure is weaker, 

an adequate fit to the data is allowed for more negative n. 

In comparison to the open models, the flat (Q0 + A 0 = 1) models show slight variations in the 

constrained region of parameter space. The reason for the difference is two-fold. Firstly, the data-

points themselves are scaled differently between cosmologies than their open counterparts. This is 

because the distance to a fixed redshift is larger for flat models (hence also increasing the volume 

element). This has an effect akin to having an open model with a lower value of fin- Secondly, the 

growth of structure in a flat model is more rapid than the corresponding open case, which affects 

the model scaling relations not unlike an open model with a higher effective f i 0 -

Combining the constraints from the Lx - T and X L F measurements does not favour any par

ticular value of f i 0 (with or without An): there is always a region of parameter space consistent 

with both observations. The same conclusion applies to all of the individual X L F data-sets (see 

Appendix A). Specifically, the faint-end data-points from the ROSAT surveys are unable to set 

tight constraints; however they are able to set a lower limit on the slope of the power spectrum 

that is sensitive to the value of O 0- The EMSS samples, particularly the EMSS 2 cumulative 

point, start to provide tighter limits on n and e, since these data start to probe the more sensitive 

luminosity range: brighter than L*. Therefore, future surveys will be more efficient at extracting 

information on the evolution of clusters by covering larger areas of sky, probing luminosities 

around and beyond L*. 

2.3.4 Breaking the n-Qo degeneracy 

It is evident that the model is unable to constrain f i 0 from the X L F and Lx - T normalisation 

constraints alone - a plausible range of n and e can always be found for any value of Q0. However, 

since the allowed range of n is sensitive to Q.Q, combining an independent determination of n with 
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the X-ray data will place a significant constraint on the value of QQ. There are two ways in which 

this can be achieved: using a theoretical prediction of the primordial power spectrum that gives the 

(cosmology-dependent) slope on cluster scales or using a direct measurement of n from redshift 

surveys. 

For the theoretical case, the slope of the power spectrum on cluster scales is required, neff, such 

that 

The C D M model is used, which predicts an initial power spectrum with n ~ 1 on large scales, 

turning over to n ~ - 3 on small scales. This work uses an approximation to the power spectrum, 

using the transfer function given by Bardeen et al. (1986). The turnover scale is determined by the 

shape parameter, T, which is in turn, determined by the cosmological model 

(Sugiyama 1995). The value 0& = 0.013 h - 2 is adopted from nucleosynthesis constraints 

(Copi, Schramm, & Turner 1995), although Qb only makes a small contribution to the value of 

T. The shape of the power spectrum is independent of the cosmological constant. 

To estimate k e f f , it is assumed that the virial mass of a typical rich cluster in the local Universe 

is M ~ 5 x 10 1 4 h~l M q . If the cluster formed by the top-hat collapse of a spherically overdense 

region, the comoving radius required to contain this mass (assuming present background density) 

would be R ~ 8 h~l Mpc (Eke, Cole, & Frenk 1996). This is only true for a critical density 

Universe but can easily be modified for lower densities, since R oc Q0

 3 . The value of R can then 

be converted to an effective scale on the linear power spectrum by using the following formula 

(Peacock & Dodds 1994) 

which should iteratively converge on the values (raeff, fceff), using Equation 2.21. The calculated 

values of n are represented as solid lines in Figure 2.3. Note that the value of n becomes more 

negative with decreasing values of flo- Although the effective scale of galaxy clusters is larger in a 

low mass-density Universe, the change in shape of the C D M power spectrum itself (parametrised 

by r ) dominates the shift in the value of n. As flo decreases, the position of the turnover moves 

to larger scales, leading to a more negative slope on cluster scales. Figure 2.3 shows the result 

of this calculation, plotted as a solid vertical line. Analysing the likelihood distributions for a 

t (n0 + Vzh) 
o v ' 

f = Uoh exp 
S2 

(2.22) 

i 
i ( n + l ) ! n + 3 

V5 
1 R 

(2.23) 
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Table 2.3. Upper limits on the value of £7 0 (with and without Ao), using the constraint that n = —1.6, from the A P M 

survey (Tadros, Efstathiou & Dalton, 1997). Results from both individual and combined X L F data-sets are presented. 

Limits are set using the 95 per cent confidence limits consistent with both the X L F and Lx — T constraints. Ranges in 

square brackets are for quoted uncertainties in n ( ± 0 . 3 ) 

Survey f2o(upper; AQ = 0) fi0(upper; Ao = 1 - fio) 

S H A R C 1.0 [0.6, > 1.0] 1.0 [0.5, > 1.0] 

WARPS 1.0 [0.75, > 1.0] 1.0 [0.7, > 1.0] 

R D C S 1.0 [0.65, > 1.0] 1.0 [0.6, > 1.0] 

EMSS 1 1.0 [0.7, > 1.0] 1.0 [0.6, > 1.0] 

EMSS 2 0.7 [0.4, > 1.0] 0.65 [0.3, > 1.0] 

C O M B I N E D DATA 0.4 [0.25,0.6] 0.4 [0.2,0.65] 

continuous range of fio, it is found that the C D M prediction is only consistent with the X-ray data 

for Q0 < 0.55 (Ao = 0) and 0.1 < Q0 < 0.7 (Q0 + A 0 = 1), at 95 per cent confidence. A lower 

limit can be placed on flo in the flat model since the predicted value moves to more negative n 

faster than the X L F contours, as QQ decreases. 

Another approach is to constrain n directly by measuring the power spectrum on rich cluster 

scales from wide-area sky surveys. One example (Tadros, Efstathiou, & Dalton 1998) comes from 

the A P M cluster sample, which has a median redshift (z) = 0.09, giving a slope, TIAPM = — 1 . 6 ± 

0.3. It is assumed that the underlying power spectrum has negligible curvature on the range of 

scales appropriate to this work. Ideally, cluster populations should be separated into redshift bins, 

and each population should be scaled relative to the preceeding one, using the slope of the spectrum 

at that epoch. Imminent surveys such as the Sloan Digital Sky Survey and the 2dF Galaxy Redshift 

Survey should provide the necessary data to constrain the slope at higher redshifts. Furthermore, 

the A P M result assumes that the bias (i.e. the ratio of luminous to total mass clustering amplitudes; 

see Davis et al. 1985) is approximately constant on scales of the mean inter-cluster separation. 

The range of S7o was constrained by taking the 95% limits placed on n and e from the evolution 

of the X L F and Lx - T normalisation and subsequently fixing the value of n to —1.6. For the 

X L F data, it was found that the model fits the data more and more adequately as fi0 decreases 

(for the range of n considered): this is shown in the plot by the shift in the contours. Hence, this 

prevents a lower limit from being placed on J2 0. In the flat models the geometry weakly alters 

the shape of the likelihood distribution but the overall trend is the same. Since both constraints 
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produce contours that become more aligned in lower Slo cosmologies, further conclusions cannot 

be drawn regarding the lower limit. 

What the data do infer is an upper limit for the value of QQ; the results are given in Table 2.3, 

which displays the values that are consistent with the 95 per cent confidence limits from the X L F 

and LX - T relations. Results for both the individual and combined X L F data-sets are presented. 

The ranges in brackets were determined by varying the value of n by ± 0 . 3 . It is evident that the 

value of QQ is unconstrained using the APM value, for all of the individual data-sets except the 

EMSS 2 survey. The flat models give similar results to their open counterparts, with the range 

in the upper limits being slightly larger. Combining the X L F surveys sets a tighter constraint: 

< 0.6 (or equivalently fi0 < 0.65 for Q0 + A 0 = 1). 

2.3.5 Evolution in cluster core sizes 

Finally, another constraint that could be readily obtained from X-ray data is the evolution of 

cluster core-radii. Using the model developed in Section 2.2, the characteristic core-radius of a 

cluster population scales as 

r c oc Da (1 + z)b (1 + z f ) c ( A v l r / n ) d ; (2.24) 

a = (2 / (n + 3 ) ) ( l - l / / ? ) , ; 

b = 6/(2/3),; 

c = 1/(2/3) - 1 , ; 

d = ( l / 3 ) ( l / ( 2 / 3 ) - l ) . 

Even though the core radius depends on both n and e, its evolution is much more sensitive to 

changes in the central entropy of the gas rather than to the extent of structural evolution. Figure 2.4 

illustrates this, showing regions of parameter space consistent with various amounts of core radius 

evolution, out to a redshift z = 0.5. The background cosmology and spectral index have only a 

weak influence on the evolution of r c , hence observations should quite easily place a constraint on 

the value of e - the two extremes of the shaded regions represent scaling in the core by a factor of 

~ 0.3 and 3 respectively. Core sizes that shrink with redshift demand negative values of e (i.e. the 

core entropy of clusters decreases with redshift) whereas core sizes that grow with redshift demand 

values of e that are weakly negative or higher. This approach is useful in the sense that the rate of 

entropy evolution in the core can be directly measured and can be tested for consistency with the 

other methods presented above. 
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Figure 2.4: The region of parameter space covered by evolution of the cluster core radius for various models. 

The shaded regions depict the range of cosmologies, from Q = 1 (for which structure evolves most rapidly) to 

fi = 0.1, A 0 = 0.0 (for which structure evolves least rapidly, for the models considered in this chapter). Each shaded 

area corresponds to evolution between z = 0 and z = 0.5, with the labels indicating (positive and negative) values of 

A l o g r c . 

Analyses of evolution in the cluster core size have now started to appear in the literature. Results 

are currently suggesting that there is no significant evolution in the core size out to z ~ 0.5 

(Vikhlinin et al. 1998). Given the uncertainties, the results of this chapter are consistent with this, 

but positive evolution in the cluster core radii (e > 0) is preferred. At present, the sample sizes are 

small; a more comprehensive measurement of core radius evolution will serve as an important test 

of the validity of this model. 
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Figure 2.5: An example of the effect of varying f3 using the S H A R C X L F data. The left column is for Q = 1 (the most 

mass evolution) and the right column Oo = 0.1 (the least mass evolution). The top and bottom rows for the considered 

limits for j3 (0.6 and 0.7 respectively). The effect on n is insignificant, although raising f3 lowers the range of e. 

2.4 Discussion 

Several issues regarding this work are worthy topics for discussion. Firstly, the results presented in 

this chapter are based on several important assumptions made when modelling the X-ray evolution 

of clusters, so these choices and their robustness require to be discussed. Secondly, particularly 

due to the recent publication of ROSAT and ASCA data, several results constraining Q0 using 

the evolution of X-ray clusters have now appeared in the literature. Therefore it is necessary to 

compare the results from this work with those found by other groups. Finally, it is important to 

outline a strategy for future X-ray cluster surveys (particularly with Chandra and XMM), hence 

areas are pin-pointed that will maximize future success in this field. 
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2.4.1 Model assumptions 

Although general and based on physically motivated scaling relations, the model is based on 

several key assumptions. One example is the (3 profile: the results presented in Section 2.3 assume 

that the X-ray emission profiles are well fit by the (3 - model, where the density of the intracluster 

gas tends to a constant value at small r (the core) and the isothermal result at large r, with an 

asymptotic slope of 2/3. Individual measurements of (3 do not necessarily give this value, although 

it is assumed that the average value over the population at a given epoch is well represented by 

{(3) = 2/3. However, it is important to investigate the tolerance of the model when varying the 

value of (3. Figure 2.5 illustrates the effect on the constrained range of n and e that variations in (3 

induces. Using the S H A R C data as an example, two values have been taken, (3 = 0.6 and (3 = 0.7. 

Two cosmological models have been chosen : Q. = 1 and Qo = 0.1, for which structure evolves 

the most and least rapidly (for fixed n) out of all the models considered in this study. Changing 

(3 can significantly change the range of e values but has relatively little effect on the values of n. 

This, coupled with the work on the core radius discussed in the last section, reinforces the idea that 

both n and e contribute separately to the evolution of clusters: the entropy evolution is sensitive 

to the way in which the gas is distributed, with (3 and rc defining the shape of the gas density 

profile, while the mass evolution is tied in with the background density. Hence, the dependence 

of Q,Q on /3 is weak, although certain models may be ruled out on the basis that the range of e 

may be implausible. This is evident in the figure, where the combination ((3 = 0.6, fio = 0.1) 

pushes allowed values of e into the limit set by the maximum cooling calculation (e = 2.0) given 

in Paper I. 

With the Chandra satellite now launched, it will become possible to study the emission profiles 

of distant clusters in more detail. These studies may show that the cluster profile evolves with 

redshift. For example, simulations of cluster evolution with pre-heated gas by Mohr & Evrard 

(1997) suggest that the entropy injected reduces the overall slope of the gas density profile rather 

than just that of the profile of the very centre. This effect can be parameterised by a much slower 

role over near the core radius but the scaling of the solution remains the same, since the X-ray 

emission still scales as plr^T". Thus, as Figure 2.5 shows, the (3 profile and the e parameter are 

interconnected - while observations of the emission profiles of high redshift clusters would prompt 

the revision of the physical interpretation of a particular e value, and re-examine the balance of 

heating and cooling within the cluster, it would not invalidate the phenomenological description 

provided by the model. 
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The same argument may be applied to account for the non-isothermal temperature structure 

of clusters (as suggested by Markevitch et al. 1998). The model only requires that the temperature 

structure is normalised by the virial temperature of the dark matter halo. The temperature structure 

may affect the rate at which the cluster core evolves for a given entropy change, but this should 

again taken into account when the e parameter is interpreted. 

The model has been developed under the assumption that clusters of galaxies are in dynamical 

equilibrium. Clusters that are seen during major mergers may have X-ray luminosities and average 

temperatures that are far from their hydrostatic values. Nevertheless, the description that has been 

developed here applies to the cluster population as a whole, and the properties of individual clusters 

may differ wildly from the average. In this sense, the effects of mergers are already incorporated 

through the entropy evolution described by the model, and the disruption of hydrostatic equilib

rium is mimicked by an increase in core entropy. The cluster temperatures are also susceptible 

to these departures, however, since they are weighted by the X-ray emission. Ideally, cluster 

temperatures should be measured from the outer regions of clusters where the gas temperature 

more closely reflects the virial temperature of the gravitational potential. These are not available 

for distant clusters at present, but the results will still be valid so long as the evolution of emission-

weighted temperature reflects the evolution of the cluster potential. This is a problem common to 

all methods based on the X-ray temperatures of clusters. 

The slope of the luminosity-temperature relation does not explicitly enter the determination for 

the evolution of clusters in this work. All that is required by the model is the evolution of the 

normalisation. It has been implicitly assumed that the slope remains fixed at its present-day value. 

This assertion, which corresponds to the assumption that the entropy evolution parameter (e) is 

independent of cluster temperature, is unavoidable with the limited temperature data that is avail

able for high redshift clusters. Consequently, it is important that the evolution of the normalisation 

is determined by using consistent slopes for high and low redshift data, and preferably using high 

redshift clusters representative of the clusters used to determine the luminosity function evolution. 

At present, temperature measurements are available only for the brightest clusters at high redshift. 

This situation should improve using the XMM satellite (Lumb et al. 1996); its large collecting area 

is ideally matched to the determination of temperatures for the lower luminosity, distant clusters. 

The slope of nearby (z < 0.05) clusters has been most recently determined by Markevitch (1998), 

using ROSAT luminosities and ASCA temperatures, measuring a value, A ~ 2.65. However, this 

work has made use of the older sample based on Einstein MPC data (David et al. 1993) for two 

reasons. Firstly, constraints on the evolution of the Lx - T relation are provided by Mushotzky 
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& Scharf (1997), who use this (local) sample to contrast with their higher redshift ((z) ~ 0.3) 

ASCA data. Also, the slope supplied by Markevitch has been calculated for clusters with cooling 

flows removed, in order to directly compare with models that exclude radiative components in 

the plasma evolution. Since the model presented here is based on evolution of the central entropy, 

the cooling flow clusters cannot be excluded, which probably contribute to most, if not all of 

the negative entropy evolution in cluster populations. It is argued that the dominant cause for the 

intrinsic scatter in the relation is due to each cluster having its own particular core entropy, coming 

from their individual formation histories. 

The considerations discussed above relate to the distribution of gas within the dark matter 

potential. In a low density universe, it is necessary to explicitly account for the distinction between 

the background density of the Universe when the cluster is formed, and it's value when the cluster 

is observed. These two epochs were related by assuming that the mass of the cluster grows by a 

factor of two (Kitayama & Suto, 1996). However, for Q0 > 0.1, this factor produces only a small 

change in the halo evolution. 

2.4.2 Comparison with other methods 

A number of papers have recently appeared in the literature dealing with the constraints on Q0 from 

the X-ray evolution of clusters. One of the most popular methods uses the evolution of the cluster 

abundances (e.g. Henry 1997; Eke et al. 1998; Viana&Liddle 1996; Mathiesen & Evrard 1998; 

Oukbir & Blanchard 1997; Reichart et al. 1999). To extract the value of fio> an estimator for the 

cluster virial mass is required. This can be achieved by calculating the cluster temperature function 

at any given epoch and converting this to a mass function using the Press-Schechter formalism 

with the assumption that the cluster haloes form via spherical infall. The result from this method 

is still slightly unclear - at present the majority of authors find values of Qo typically in the 

region 0.3 - 0.5 with or without A, although some authors find higher values including Q. = 1 

(e.g. Sadat, Blanchard, & Oukbir 1998, Blanchard & Bartlett 1998). An extensive discussion on 

the existence of this clash in results can be found in Eke et al. (1998). In particular, they high

light the discrepancy in the abundance of low-redshift clusters, particularly those at the highest 

temperatures, where the measured value is uncertain. Those favouring high Q0 assume a higher 

abundance of clusters in this region than those favouring low values of Q0. 

This work differs from these treatments in that it does not assume a detailed model for the 

abundance of clusters or for their temperature or X-ray luminosity distribution. Instead, the scaling 

relations have been emphasised, that must relate the properties of clusters at one epoch to those 
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at another. By introducing an additional parameter that describes the evolution of the core gas 

entropy, the approach allows cluster samples to be compared at different epochs with minimal 

further assumptions. Comparing these results with those obtained by other authors illuminates the 

constraints which are general and those which are model-specific. As an example, Reichart et al. 

(1998) also look at luminosity function evolution by adopting the Press-Schechter approach for 

the evolution of the mass function , but use the Lx - T relation to calibrate their mass to X-ray 

luminosity relation. In addition, their model differs from the one presented in this Chapter since it 

involves the slope of the Lx-T relation explicitly, resulting in a purely empirical calibration of the 

luminosity-mass conversion. By contrast, this approach uses the Weak Self-Similarity Principle 

(plus the entropy evolution) to scale the properties of clusters between epochs. As discussed 

extensively in Paper I, this is completely separate from the scaling relations between clusters of 

different mass at the same epoch. Trying to equate the two requires the Strong Self-Similarity 

Principle to be adopted; something for which there is little physical justification. Reichart et al. 

adopt the same parameterization as Evrard & Henry (1991), notably Lx oc T p ( l + z)s; assuming 

(5 = 2/3, their parameters relate to n and e as p = 13/6 and s = (13 - 3e)/4. However, it is 

emphasised, the way in which the parameters are constrained here (particularly e in this context) 

is fundamentally different, and it should not be unexpected if identical results are not obtained. 

The results presented here are compared with the work of Eke et al. (1998). These authors 

derive a value of Qo from the evolution of the cluster temperature function, using emission-

weighted temperatures obtained from ASCA data (Henry 1997). Since the cluster sample is X -

ray flux limited, they have to correct for incompleteness in their estimation of the temperature 

function. This is done by assuming a non-evolving Lx-T relation (i.e. fixed slope, normalisation 

and scatter). The advantage of this method is that it is related to the underlying mass distribution 

in a more direct manner than the approach developed in this chapter, hence their work places a 

strong constraint on Q0- = 0.43 ± 0.25 for A 0 = 0 and fi0 = 0.36 ± 0.25 with a non-zero 

cosmological constant. This was achieved with a substantially smaller data-set. Furthermore, the 

authors were able to internally constrain the shape of the power spectrum. This is possible because 

they directly link the form of the temperature function to the mass function through the Press-

Schechter model (assuming a C D M power spectrum). They arrive at a value of T of 0.08 ± 0.07 

(T = 0.09 ± 0.08 for fi0 + A 0 = 1). 

To compare the results of this work to those of Eke et al., their constrained range of T is con

verted to an equivalent range of n, using the same method discussed in Section 2.3.4. Figure 2.6 

illustrates the results. The range of Q0 is then found that is both consistent with the X-ray data and 
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Figure 2.6: The relation between n and Qo for the constrained range of T given by Eke et al. (1998), for the range of 

cosmological scenarios studied in this chapter (at z = 0). The solid lines are for the best-fit values and the dotted lines 

are the results using the quoted limits by the authors. 

the calculated range of n. It is found that Qo < 0.45(fio < 0.5 for Qo + Ao = 1) at 95 per cent 

confidence, in agreement with their upper limit. Again, a constraint on the lower limit of Qo is not 

possible. This is initially surprising, but seems to be due to systematic differences in the data. It is 

found that, for a low Qo cosmology, the available data are consistent with weak negative evolution 

of the X L F and no evolution in the L - T normalisation. By contrast, Eke et al.'s temperature 

function data (corrected for cosmology) shows a decline in temperature function amplitude at high 

redshift, suggesting that a very low value of QQ is unacceptable due to the deficit of clusters at this 

epoch. Such dependence on the particular data set is worrying, but emphasises the importance of 

using independent data-sets to establish consistent conclusions and reduce systematic biases. It is 

satisfying to find that the method presented here finds similar results, at least in determining the 

upper limit. 
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2.4.3 Future directions 

Since the results presented in this chapter were based on scaling the ROSAT B C S X L F to fit the 

higher redshift surveys, it is assumed that the two populations are well separated in redshift. This 

is not immediately obvious, since the ROSAT B C S sample has clusters out to z ~ 0.3, where 

the other samples start around this value. The saving grace is that the higher-redshift surveys have 

detected lower luminosity clusters (Lx < L*), due to the small solid angles of the surveys, whereas 

the B C S clusters in this regime are at much lower redshifts. However, this range of luminosities 

places a much weaker constraint on the model than if high redshift data were available at the 

brighter end ( L x > L*). Improved coverage will result in a better internal constraint, since the 

effects of evolving cluster number density and cluster luminosity will be more easily separated. 

As a pointer for the future, what is required is a more statistically sound description of the high-

redshift X L F from L* and above. As a hypothetical example, assume that the combined data-set 

used in this chapter is a good description of the X L F for luminosities around and below L*. A 

measurement is then made at L x ( 0 . 5 - 2.0 keV) ~ 10 4 5 erg s _ 1 , detecting 10 clusters at (z) = 0.5 

in a solid angle that resulted in a cumulative abundance in agreement with the B C S cumulative 

X L F (N(> Lx) ~ 0.25 x 10" 8 Mpc~ 3 ) . This strongly suggests a detection of no evolution, 

particularly for the Q, = 1 geometry. Using the A P M constraint on n then implies Q0 < 0.2 

at the 99 per cent level. In practice, the XMM satellite is particularly suited to this task, with its 

large collecting area and high spatial resolution, that will allow one to easily make the distinction 

between clusters and AGN. What is required, however, is a wide area survey covering at least 500 

square degrees, rather than a survey that is particularly deep. 

2.5 Conclusions 

In this chapter, the entropy-driven model for cluster evolution, detailed in Bower (1997) for an 

Q, = 1 Universe, has been modified to account for evolution in different cosmological scenarios, 

specifically open models and flat, non-zero A models. This allows us to separate contributions 

made by the hierarchical growth of structure (controlled by the slope of the power spectrum, 

n) and changes in the core entropy of the intracluster gas (controlled by the entropy evolution 

parameter, e). 

Constraints were then placed on n and e for seven reasonable cosmological models, using the 

current wave of X-ray measurements of the X-ray Luminosity Function and the Luminosity-

Temperature relation. For the Lx - T relation, the compiled low and high redshift samples 
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from David et al. (1993) and Mushotzky & Scharf (1997) respectively were used, determining 

the best-fit slope and scatter. Subsequently, 68 and 95 per cent confidence limits were placed 

on the evolution of the temperature normalisation, which is slope-dependent. For the X L F , re

cently available ROSAT samples were used, specifically the S H A R C (Burke et al. 1997), WARPS 

(Jones et al. 1998) and R D C S (Rosati et al. 1998) high-redshift, non-parametric determinations, 

as well as the older EMSS samples (Henry et al. 1992, Luppino & Gioia 1995). The amount of 

evolution in these measurements was quantified by comparing them with the local ROSAT B C S 

X L F (Ebeling et al. 1997). Using the X-ray data alone, acceptable regions of parameter space are 

found for every cosmological model considered, to a high degree of confidence. As the density 

parameter decreases, more negative values of n are tolerated, due to the weakening growth rate of 

clusters. Constrained values of e are appropriate to modify the luminosity evolution to compensate 

for the measured change in abundance, moving weakly from positive values to zero (no evolution) 

for low-density Universes. 

To break the degeneracy between n and fio, the slope of the power spectrum was calculated 

based on the C D M paradigm, by taking the typical mass of a rich cluster and calculating the 

corresponding fluctuation scales that give rise to such objects. We find that the C D M calculation 

sets a limit of fio < 0.55 (0.1 < fi0 < 0.7 for fi0 + A 0 = 1). Using the value determined by the 

APM survey (n = -1 .6 ± 0.3), it can be concluded that fi0 < 0.6 (< 0.65 for fi0 + A 0 = 1). 

All limits were calculated to 95 per cent confidence. In general, a lower limit for the value of 

fio cannot be determined, since the model fits the data much more comfortably, at fixed n, for 

lower density Universes. The evolution of the cluster core-radius was also considered, where it 

was showed that it depends much more sensitively on the entropy evolution of clusters than the 

structural evolution (determined by n and fin). Present data suggest no strong evolution out to 

z ~ 0.5 (Vikhlinin et al. 1998), roughly consistent with our results given the quoted uncertainties. 

Finally, the choice and robustness of assumptions made in the model were discussed, particularly 

the effect of varying the mass distribution of the gas (controlled by the value of (3). Again, this has 

a much stronger effect on the constrained range of e than the rate of structural evolution, and hence 

only weakly affects the determination of fio. The results were then compared to those determined 

by other groups, particularly with Eke et al. (1998). It was found that the upper limit constrained 

from this work is consistent with theirs ( f i 0 < 0.45, or fi0 < 0.5 for fio + A 0 = 1 at 95 per cent 

confidence) although a lower limit cannot be placed on fio. 

In order to provide tighter limits on the value of fi0, it will be essential to obtain an accurate 

measurement of the bright end of the X L F out to redshifts at least comparable to present distant 
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cluster samples, ideally from a wide angle survey. It is hoped that this will be provided by the 

XMM satellite. 
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Chapter 3 

Cosmological simulations: 

methodology 

Abs t rac t . In this chapter, the method of cosmological simulation is outlined. An overview of 

current techniques is first presented before introducing the system of equations necessary to 

follow the evolution of a cosmological fluid. The procedure for generating initial conditions 

for cosmological simulations follows. The remainder of the chapter focuses on the algorithms 

implemented in H Y D R A , the code used to generate results for the remainder of this thesis. In 

particular, the methods used to model gravity and hydrodynamics are presented, as well as the 

numerical integration scheme. 

3.1 Overview 

Cosmological simulations are an extremely powerful method for modelling the growth of struc

ture in the universe. The strength of this approach lies in their ability to self-consistently model 

the non-linear evolution of density fluctuations, necessary for studying the formation of objects 

such as galaxies and clusters. Analytical methods are generally not possible without introducing 

oversimplifying assumptions, such as artificial symmetries, into the problem. 

The minimum requirement for all cosmological simulations is to calculate the evolution of 

the gravitational potential. (For modelling the evolution of the dark matter, this is all that is 

required.) On cosmological scales, Newtonian gravity suffices since general relativistic effects 

produce corrections that are negligible. The most popular method for modelling the effects of 

gravity is the A^-body simulation. This method involves representing the density field by a set 

of N point-masses, or particles, each carrying its own position and velocity. Gravitational forces 

are calculated at the positions of each particle due to the presence of the other N - 1 particles. 

The forces are then used to update the positions and velocities of the particles via a numerical 

integration scheme. 

Early A^-body simulations calculated gravitational forces directly by summing the pairwise con

tributions (e.g. Aarseth 1963). The problem with this method is that it rapidly becomes impractical 
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for systems containing N greater than a few thousand, since the calculation time scales rapidly, as 

~ 0(N2). One solution is to use special-purpose hardware designed to rapidly compute A r 2 calcu

lations. An example of this is the G R A P E hardware (e.g. Sugimoto et al. 1990); several groups in

terested in cosmological problems have made use of this device (e.g. Eke, Navarro, & Frenk 1998; 

Steinmetz & MUller 1995). 

Another method is to develop a more efficient algorithm. The majority of groups have 

chosen this option. In particular, there have been two types of algorithms developed, each 

with its own strengths. One of the methods is the tree algorithm (e.g. Barnes & Hut 1986; 

Hernquist & Katz 1989). This algorithm hinges on the assumption that the level of detail required 

in calculating the potential should decrease with distance. The calculation proceeds by recursively 

subdividing the simulation volume into cells until each particle is housed within a separate cell. 

The hierarchy of cells is known as the tree, each subdivision is a branch and cells containing 

a single particle are leaves. While the tree is being constructed, multipole terms up to a finite 

order are calculated and stored for each branch. For small separations, the forces on each particle 

are calculated directly, whereas long range forces are calculated using the tree. Starting at a top 

branch, an opening angle is calculated, A = l / x , where / is the length of the branch cell and x is 

the distance to the centre of the branch cell from the position of the current particle. If A is smaller 

than some tolerance, only the multipole moments for that branch are used and all sub-branches are 

discarded. Otherwise the branch is opened and the same procedure is applied to all sub-branches 

until either the opening angle becomes sufficiently small or all leaves have been reached. 

The tree force calculation scales ~ 0(N \ogN), and is therefore much more efficient for large 

numbers of particles than direct summation. For cosmological simulations, periodic boundary 

conditions are required in order to satisfy the Cosmological Principle, i.e. the large-scale mass 

distribution should be homogeneous and isotropic. Treecodes do not automatically satisfy this 

condition. However this can be rectified by using the Ewald summation mechanism (Ewald 1921). 

The other popular method is known as the F^M (Particle-Particle, Particle-Mesh) algorithm 

(e.g. Hockney & Eastwood 1981; Efstathiou et al. 1985; Evrard 1988). This method splits the 

force calculation into two sections. Large scale forces are calculated using the Particle-Mesh 

algorithm (PM). This proceeds by smoothing the particles onto a regular cubic mesh and solving 

Poisson's equation in Fourier space (Hockney & Eastwood 1981; Efstathiou & Eastwood 1981). 

It is a very efficient method: the use of FFT's determine a computational speed which scales 

as ~ 0 ( L 3 l o g L ) , where L3 is the total number of mesh cells. For a fixed ratio of N/L3, this 
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translates to ~ O(NlogN) and, like the tree force calculation, becomes rapidly more efficient 

with increasing N than using direct summation methods. 

The disadvantage of using the PM algorithm alone is that the fixed mesh makes it very inflexible 

for cosmological problems. The mesh imposes a global minimum length scale (the Nyquist scale), 

below which no useful information can be obtained. Improving the force resolution by increasing 

the size of the mesh is both impractical and inefficient; the memory requirement of the mesh scales 

rapidly (L3), and becomes extremely wasteful in low density environments. The I ^ M algorithm 

rectifies this by calculating smaller scale forces via a direct sum over near neighbours (the PP 

method). 

The P^M method is particularly suited to cosmological simulations since using FFT's naturally 

provides periodic boundary conditions. Its main drawback is that it performs increasingly poorly as 

the level of clustering rises. The formation of structure leads to the majority of the work shifting 

from the PM algorithm (when the particles are well-separated), to the slower PP algorithm. An 

adaptive version of was developed ( A P ^ ; Couchman 1991) which redistributes work be

tween the PM and PP algorithms when such problems occur. Regions that are highly clustered are 

identified and segregated from the normal PP calculation. A submesh (or refinement) is then placed 

over each region and the P 3 M calculation is individually applied. The algorithm is recursive, hence 

refinements can themselves contain refinements. 

For many cosmological problems the evolution of the baryons is required to be included ex

plicitly in the modelling, since it is the signatures of this species that are directly observed. 

For most purposes it is assumed that the baryons behave like an ideal gas, therefore they 

are able to interact collisionally. For cosmological simulations, the most common method for 

calculating hydrodynamical forces is the Smoothed Particle Hydrodynamics algorithm (SPH; 

Gingold & Monaghan 1977; Lucy 1977). Detailed reviews of this technique are available in the 

literature (e.g. Monaghan 1992; Benz 1990). Like ./V-body methods, the SPH technique is based 

on using a set of particles to represent the baryon distribution. Quantities are calculated at the 

positions of particles by summing smoothed contributions from near neighbours; unlike gravity, 

gas forces are short-range. The SPH algorithm will be discussed in more detail below. 

The code used to perform the simulations for this thesis is H Y 

D R A (Couchman, Thomas, & Pearce 1995), which uses the A P 3 M algorithm to calculate 

gravitational forces and SPH for the hydrodynamics. The rest of the chapter is structured around 

the implementations of the algorithms Version 3 of this code. However, it is appropriate firstly to 

introduce the system of equations that govern the evolution of self-gravitating fluids within the 
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context of an expanding background; this is the purpose of Section 3.2. The method for generating 

initial conditions is outlined in Section 3.3. The main algorithms in H Y D R A are then discussed 

in more detail in Sections 3.4 ( A I ^ M ) , 3.5 (SPH) and 3.6 (numerical integration). This is not 

intended to be an exhaustive review since the method of H Y D R A is already well documented in the 

literature (Couchman 1991; Thomas & Couchman 1992; Couchman, Thomas, & Pearce 1995; 

Pearce & Couchman 1997; Thacker et al. 1998). Finally, the chapter is summarised in Section 3.7. 

3.2 The system of equations 

For studies of structure formation it is useful to write the system of equations in the comoving 

reference frame (i.e. at rest with respect to the large scale expansion of the universe) using the 

coordinate transformation x = r /a , where r is a physical position and a is the expansion factor, 

normalised to the present value. The peculiar velocity field is then av = (r — ax), where dotted 

superscripts refer to derivatives in time. Forces are calculated using the following equation of 

motion (evaluated at position x; see Peebles 1980) 

Dx 1 
a—- + 2av + V4>+ - V P = 0, (3.1) 

Dt p 

where <f>, p and P are the gravitational potential, mass density and pressure of the fluid respectively. 

The second term in Equation 3.1 is present due to the change to the comoving reference frame; its 

effect is known as the Hubble drag, since it opposes the motion of objects as a result of the Hubble 

expansion. The third term is the gravitational acceleration, V<f) = f ( x ) / a 2 ; for a Newtonian force 

law, 

m = . a f ^ ^ L , (3.2, 

assuming a density field continuous over all space. The pressure is calculated assuming the equa

tion of state 

Pi = wpiUi, (3.3) 

where u is the specific thermal energy and w is a constant between 0 and 1, known as the 

Zel'dovich interval. For collisionless material such as cold dark matter, w — 0 and for gas, 

w = 7 - 1, where 7 is the ratio of specific heats at constant pressure and volume respectively. The 

work in this thesis assumes an equation of state for a monatomic ideal gas (i.e. 7 = 5/3). 

For the gas, the evolution of the thermal energy is determined by the first law of thermodynam

ics, i.e. 

Du TT P^ r - A 
— + 2Hu + a- V . v = 0, (3.4) 
Dt p p 



Cosmological simulations: methodology 42 

where H = a/a. The second term comes from the change to comoving co-ordinates: the gas loses 

thermal energy to the adiabatic expansion of the universe. The third term is the contribution from 

additional adiabatic processes while the final term in Equation 3.4 are the contributions from heat 

sources (F) and sinks (A), able to change the entropy of the gas. 

3.3 Initial conditions 

Initial conditions are generated for cosmological simulations assuming that mass fluctuations are 

small relative to the background, and can therefore be adequately described by linear theory, in 

which analytical solutions are readily obtained (Peebles 1980). Since the gas pressure is weak at 

early times, all that is required to specify the initial positions and velocities is the gravitational 

potential. In order to calculate this, it is useful to define the overdensity field as 

, ( x ) = e £ k L £ t (3.5) 
P 

where p is the mean density of the background. Hence, for linear fluctuations, 8 <C 1. Due to the 

discrete nature of simulations, the overdensity field is not required to be known everywhere, but 

rather it is sampled at regular intervals on a cubic mesh, with L cells per side. The field can then 

be fully specified using a linear combination of Fourier modes 

1 oo 
5W = V 52 *(k) exp ( - ik .x ) , (3.6) 

n = ^ c o 

where V = 5'3 is the volume of the region under study, k = (27r/5)n and n is an integer triple. 

In order to prevent aliasing, the limits of the sum are set such that 1 < |n| < L/2, i.e. physically 

from 5 to the Nyquist interval, A = 2 5 / L . The Fourier co-efficients, S(k), are complex variables 

and hence can be separated into (real) amplitude and phase components, i.e. 

S(k) = \8(k)\exp(ifa), (3.7) 

with the phase, fa, being in the range, 0 < fa < 2n. Assuming the initial fluctuations are 

Gaussian (e.g. Bardeen et al. 1986) simplifies matters since the physical information only enters 

through the amplitudes; the phase is a random variable. Amplitudes are drawn from a Rayleigh 

distribution with mean equal to the desired power spectrum, ^ | £ (k ) | 2 ^ = P(k). The following 

approximation to the CDM linear power spectrum is used (Bond & Efstathiou 1984) 

P(k) = P0kT2(k) 
P0k 

— _ p g\ 
[1 + (6.4g+ (3.0?)1-5 + ( l . T g ) 2 ) 1 - 1 3 ] ! ^ ' 
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where PQ is the power spectrum amplitude and T(k) is the CDM transfer function that modifies the 

primordial Harrison-ZePdovich spectrum, P(k) oc k (which results from inflation). The variable 

q = k/T where V ~ £l0h is the shape parameter. The power spectrum is usually normalised such 

that it satisfies 

a i = ^2 / k2P(k)W8 (k)dk. (3.9) 
2irz JQ 

The quantity crj is the variance of linear mass fluctuations in spheres of radius 8 h"1 Mpc, obtained 

by multiplying the power spectrum with the Fourier transform of a top-hat filter, Wg\ its value is es

timated from the local abundance of rich clusters (Evrard 1989; White, Efstathiou, & Frenk 1993; 

Eke, Cole, & Frenk 1996; Viana & Liddle 1996). 

In Fourier space, the density field, 5(k) is then multiplied by the Green's function of the 

Laplacian to obtain the potential (see Efstathiou et al. 1985) 

4>{k) = * (k )G(k) . (3.10) 

Performing an inverse Fourier transform gives the potential tabulated at each mesh point. This is 

then differenced to obtain gravitational accelerations, f (x). 

Knowledge of the accelerations allows both a displacement and velocity field to be constructed. 

In the linear regime, the initial displacement field, * is related to the initial (q) and subsequent 

(x(q, t)) positions of the mass distribution as 

*«» = ^ . 

(Zel'Dovich 1970). The function, D(t) is the normalised linear growing mode solution (refer 

to Section 2.2.3). The velocity field, v ( x , t ) = ty(q)D(t) and acceleration field, a (x , t ) = 

ty(q)D(t) follow. Substituting both these equations into Equation 3.1 implies that 

* ( q ) = — £ ^ (3.12) 
K ' a2(aD + 2aD) 

The simplest method for assigning positions and velocities to the particles is to perturb them 

from the same positions on the grid where the displacement field was evaluated. An alternative 

method is to create a relaxed distribution of particles known as a glass (White 1993). This has 

the advantage that there is no artificial symmetry imposed on the initial distribution (as is the 

case with the grid). A glass is created by first placing the particles in the volume at random 

positions. They are then evolved by calculating gravitational forces with a reversed sign, until their 

velocities become vanishingly small. The displacements and velocities (evaluated on a grid) are 

then interpolated onto the particles using methods identical to those discussed in the next section. 



Cosmological simulations: methodology 44 

For the gas, the additional variables are the density, p and the thermal energy u (or equivalently, 

the temperature, T). Initial values for the gas density field are calculated by the SPH algorithm, 

based on the particle positions. Values for the initial gas temperatures depend on the problem under 

study, but are usually chosen such that the gas is placed on an adiabat below the virial temperature 

of any systems resolved by the simulation. 

3.4 Gravity 

3.4.1 The A^M algorithm 

As discussed earlier, the AF^M algorithm consists of three tasks: the PM calculation, which cal

culates long range forces; the PP calculation, which calculates short range forces; and refinement 

placing, to speed up the calculation within highly overdense regions. The PM calculation can be 

broken up into a number of steps: 

1. Mass assignment: firstly, an estimate of the density field is obtained, sampled at every mesh 

interval (or grid point), by smoothing the particles onto the grid 

where subscript i labels each of the N particles contributing to the estimate of pi at grid point 

n and W is the smoothing kernel used. Let xa = x . e a and na = n.e Q , where ea(a — 1, 2, 3) 

are orthonormal vectors along the x, y and z directions respectively. Also assume that particle 

positions are in the range 0 < < L. A simple example of mass assignment is the Nearest 

Grid Point (NGP) method, where 

0, otherwise, 

where W = W1W2W3. Hence, particles only contribute to the estimate at one cell. The prob

lem with the NGP method is that the sharpness of the kernel shape results in a discontinuous 

density field (Efstathiou et al. 1985). Smoother fields are obtained by successively performing 

a self-convolution on the kernel (the limit being a Gaussian), at the expense of more compu

tational effort as the range of the kernel increases. H Y D R A uses the Triangular Shaped Cloud 

(TSC) kernel 

N 
p(n) = mW(xi - n), (3.13) 

1 1, Lx < n a a 2' (3.14) 

< x n x n a a a 2 ' 

W a = \ 5 ( i - L \ x ° ~ n ° \ ) \ ^ L \ x < y - n c \ < §; 
(3.15) 

0 otherwise. 
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This produces continuity in both the density field and its first derivative at the expense of each 

particle contributing to the local 27 grid points. 

2. Potential Calculation: in order to calculate the potential, the density field must be convolved 

with an appropriate Green's function. It is faster to do this in Fourier space (~ 0(L3 logL)), 

since the convolution becomes a trivial multiplication. The density field is Fourier transformed 

using a standard Fast-Fourier Transform (FFT) algorithm 

This is multiplied by the Fourier transform of the chosen Green's function to obtain the Fourier 

equivalent of the potential 

before being inverse transformed, giving < (̂n). 

3. Force Calculation: the force at each mesh point is obtained by calculating potential differ

ences with neighbouring cells, using a finite (10-point) differencing scheme (Couchman 1995). 

4. Reverse interpolation: finally, the forces are interpolated back on to the positions of the 

particles by performing the reverse of step one. The same kernel must be used in order to 

conserve momentum. 

The PM force is augmented by the PP force on separations below a critical length scale, re, de

fined by the maximum error of the force calculation. For separations much larger than the Nyquist 

wavelength of the FFT mesh, the PM force accurately matches the desired force law. However, 

as the separation decreases, an error is introduced, mainly from the inability of the PM force to 

resolve density fluctuations on small scales. A balance is therefore sought between accuracy and 

efficiency: a larger value of r e leads to more accurate forces but is computationally more expensive 

since the amount of PP work increases, H Y D R A uses a value such that the maximum deviation from 

the calculated force to the true force is 7.7 per cent (Couchman, Thomas, & Pearce 1995). Typical 

force errors are much smaller than this, the rms being ~ 0.5 per cent. This sets the value of r e to 

be approximately 2.16 FFT mesh spacings. 

The PP force is calculated by searching for neighbours that lie within a distance re from each 

particle. H Y D R A achieves this by defining a chaining mesh (the PP mesh), with the number of 

cells, Ls set equal to the nearest integer below L/2.1Q, where L is the number of FFT cells/side 

p(k) = X ) ? ( n ) e x P( ik-n) . (3.16) 
n 

4>(k) = p(k)G(k). (3.17) 
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(e.g. L = 64 —>• Ls — 29). Link lists are then constructed for each cell. The PP force contribution 

at position x; is therefore 

FPP(XO = £ F f l x i - x j | ) - F P M ( | x i - x j | ) , (3.18) 

where the first term on the right hand side is the sum of pairwise forces and the second term is the 

contribution from the PM force. 

Regions with a high level of clustering are isolated from the PP calculation with the refine

ment placing algorithm. This is done by highlighting cells with constituent numbers of particles 

larger than some optimum value. Refinements (which at present, can only be cubical and non-

overlapping) are then placed by finding peaks in the cell counts and growing regions until all of 

the hot cells are covered. This is then passed through a set of optimization routines, designed to 

search for and optimize various pathological cases (for example, merging clusters of particles). 

The F^M algorithm is then performed within these regions. Hence, much of the work that would 

have been done by the PP algorithm is passed onto the faster PM algorithm. This procedure is 

recursive, hence refinements can have refinements and so on. 

3.4.2 The force law 

It is not practical to model the gravitational force using the Newtonian inverse-square law, for two 

reasons: 

1. as particles approach one another the resultant accelerations become arbitrarily large. This has 

disastrous implications for the size of the timestep, since as | A x | —>• 0, At —> 0 in order to 

preserve numerical accuracy. 

2. particles in close proximity become more susceptible to the effects of two-body encounters, 

relaxing on a timescale 

T*~%«£m\^ ( 3 - 1 9 ) 

where a is the velocity dispersion, m is the particle mass and InA is the Coulomb logarithm, with 

A being the ratio of the maximum and minimum length scale of the system under consideration. 

Clearly two-body relaxation should be viewed as unphysical since in cosmological simulations the 

point masses do not represent individual entities but are merely tracers of the mass distribution. 

Therefore the smallest value of r 2 should be large compared to the age of the Universe. 
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Figure 3.1: The Newtonian (solid line), Plummer (dotted line) and S 2 (dashed line) force shapes plotted against 

separation, in units of the Plummer softening, t . The Si law is used by HYDRA. 

Both problems are alleviated by softening the force law on small scales. This removes the 

singularity of the Newtonian law whilst increasing the value of r-i through the value of InA. 

H Y D R A uses an 52-spline softening function (Couchman 1991), parameterised by the Si softening 

length, s. Figure 3.1 illustrates the 52 force shape compared to the Newtonian and Plummer 

laws (Binney & Tremaine 1987). The Plummer softening length, e, has been chosen such that 

s = 2.34£, which produces asymptotically matching values on both large and small scales. Clearly 

the 5'2 shape approaches the Newtonian law at smaller radii than the Plummer law, making it a 

more desirable choice. 

The evolution of the softening length (in comoving co-ordinates) follows 

s(z) = min ( s m a x , s0(l + z)), (3.20) 
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where z is the current redshift and s0

 a r>d s max are the redshift zero and maximum softenings. 

Before starting the simulation, the value of s0 is input and the value of s m a x is set by the code 

to be equal to 0.3 FFT cells. For a typical calculation, the softening stays constant at s m a x until 

z ~ 1, when it shrinks, reaching the value s0 at the present day. 

3.5 Smoothed Particle Hydrodynamics 

SPH is an interpolation method, hence the estimate of a scalar, vector or tensor field at position x 

is a convolution of the true field with a smoothing kernel, W. For example, the estimate of a scalar 

field, A(x) is 

( A ( x ) ) = / ^ ( x ' W I x - x ' l . / O d x , 
Jx 

(3.21) 

where W is generally spherically symmetric and h is the kernel smoothing length. The kernel 

must satisfy two conditions. Firstly, it must be normalised to satisfy conservation laws. Sec

ondly, it must approach the Dirac delta function for vanishingly small width (W( |x — x ' | , h) -> 

<S(|x —x' | as h —> 0). The smoothing kernel used in H Y D R A is the 52-spline kernel 

(Monaghan & Lattanzio 1986) 

W{u,h) 
1 

4nh3 
(3.22) 

4 - 6 M 2 + 3 i t 3 , 0 < u < 1 

(2-u)3, l<u<2 

0, u>2 

where u — \Ax\/h. The kernel gradient is modified such that particles feel an en

hanced repulsive force when sufficiently close to one another, to prevent artificial clustering 

(Thomas & Couchman 1992) 

d W ( M 1 

du 4nhJ 

4, 0 < u < 2/3 

3«(4 - 3«), 2/3 < u < 1 

3 ( 2 - u ) 2 , 1 < « < 2 

0, u > 2. 

(3.23) 

Within the context of simulations, the continuous field must be replaced by a set of discrete 

points and therefore a discrete approximation to Equation 3.21 is used 

(A(x !)> = £ m ^ H / ( | x t - x J | , / i ) , 
Pi 

(3.24) 
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where the index j labels the particles which have mass nij, position X j , density pv Hence particles 

are used both as interpolation centres (xi) and interpolation contributors (x j ) . As an example, the 

SPH estimate of the gas density at position x; is simply 

< M x i ) > = E r a ^ ( i A x U ) ' , ( 3 - 2 5 ) 
3 

with A x = x j - x,. It is also possible to write associated vector derivatives of functions in 

this formalism to the same degree of accuracy (i.e. ~ 0(h2)), involving only the kernel gradi

ent (e.g. Hernquist& Katz 1989; Benz 1990). Thus, SPH is used to approximate solutions to the 

thermal energy equation (Equation 3.4) and the momentum equation (Equation 3.1). The energy 

equation (minus the heating and cooling terms) is used in H Y D R A in the following form 

with A v = \ j - v;. Similarly for the momentum equation (minus the gravitational term) 

^ = - £ "V ( | + ^ + V W i i (3.27) 

The r i j j term in both equations represents an artificial viscosity, necessary to capture shocks within 

the flow and efficiently convert bulk kinetic energy into heat. The viscosity is modelled using the 

standard function (Monaghan & Gingold 1983) 

-acijUij + fin}: 
= JJLl—-J^l (3.28) 

Pij 

where 

J hijVij.Tij/ir^ + v2), Vij.Tij < 0, 
fJ-ij = < (3.29) 

I 0, otherwise. 

The values of a and fi are chosen to equal 1 and 2 respectively, which determine the strength of the 

first (bulk) and second (Von Neumann-Richtmeyer) contributions to the viscosity of the fluid. The 

term ct-j = l /2(cj + Cj) is the average adiabatic sound speed of particle pairs (c; = 7(7 — l)u), hij 

is their average SPH smoothing length and v = O.Ol/i^ is a correction term to prevent numerical 

divergence when particles are in close proximity of one another. The approximation for the average 

density, pij = pi(l + (hi/hj)3)/2 is used, which avoids expensive re-calculations of neighbour 

lists (Thackeretal. 1998). 

For systems with attractive forces such as gravity, it is not ideal to use a fixed value of h for 

every particle. As regions collapse, the number of particles within a fixed radius wil l increase 

dramatically. Therefore each particle carries its own smoothing length that is adaptive in both 
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space and time. The value of h is set such that there are approximately N S P H neighbours within a 

radius of 2h of each particle (the range of the kernel). Typical values for cosmological simulations 

are NSPK — 30 - 100. Hence, particles in low density regions will have larger values of h than 

particles in high density regions. 

To avoid extensive computational effort, the value of h is set using an iterative procedure which 

converges on the correct number of neighbours for each particle, providing there are no abrupt 

changes in the flow, H Y D R A incorporates a weighted- average scheme (Thacker et al. 1998) which 

removes instabilities present in the solutions of previous algorithms (Hernquist & Katz 1989). 

The introduction of individual smoothing lengths violates the conservation laws since particles 

may have very different values of h which leads to an imbalance in the forces. To prevent this, 

quantities are calculated between particle pairs using either an average of their smoothing lengths 

or an average of the kernel itself. The latter, known as kernel averaging or symmetrization, is used 

in H Y D R A , specifically 

Wn = \[W{\ A x , I hi) + W{\ A X u |, hj)] (3.30) 

(Hernquist & Katz 1989; Steinmetz & Miiller 1993). 

3.6 Numerical integration 

Solutions to Equations 3.1 & 3.4 are approximated using a numerical integration scheme. The 

numerical integration algorithm used in H Y D R A is a simple PEC (Predict, Evaluate, Correct) 

method (Couchman, Thomas, & Pearce 1995), which utilises only the current particle positions 

and velocities (plus densities and thermal energies for the gas). This has the advantage of allowing 

for arbitrary changes in the timestep, which can happen where there are abrupt changes in the 

forces, for example in the vicinity of shocks. 

Firstly, the size of the timestep is evaluated. To obtain this, H Y D R A calculates four timescales at 

various appropriate stages of the force calculation; the first two are relevant to all particles while 

the third is relevant to the gas particles. 

1. Ata — ( e / f t m a x ) 1 / 2 , where e is the current (Plummer) softening length and a m a x is the 

magnitude of the largest particle acceleration. 

2. Atv = e / u m a x , where u m a x is the current largest particle speed. 

3. Ath = m i n ( / i / | A v | ) , where h is the gas particle's SPH smoothing length and | A v | is the 

magnitude of the velocity difference between each gas particle and one of its neighbours. 
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4. Atf{ — 1/H, where H = a/a is the Hubble parameter. 

The chosen timestep is then 

At = K min(0.4A^, 0.25A£ a, 0 .2A^, 0.0625A*//). (3.31) 

The constants are chosen to achieve sufficient numerical accuracy for the integration 

(Couchman, Thomas, & Pearce 1995); the value of K is typically set to unity for adiabatic sim

ulations (Thomas & Couchman 1992). Note that a single timestep is used to advance all particles 

- in principle, a further gain in efficiency could be obtained by implementing individual timesteps 

for each particle. 

The particles are then advanced using the PEC scheme. Let the current step be denoted by the 

subscript n. Particle positions and velocities are first predicted for step n + 1 using the current 

accelerations 

x^ + 1 = x n + v„ At + f n At2/2, (3.32) 

v'n+1 = v„ + f n At. (3.33) 

Accelerations and thermal energy derivatives ( i t = du/dt) are then evaluated for step n+ 1, based 

on the new positions and velocities 

f'n+1 = f ( x ^ + 1 X l + 1 ) , (3.34) 

un+1 = u{x'n+1,v'n+1). (3.35) 

Finally, the quantities are then corrected to include the new accelerations 

x n + i = x^ + 1 + a {f'n+l - f„) At2/2, (3.36) 

Vn+i = v n + 0 (f'n+1 - f n) At, (3.37) 

un+i = un + fi {un+1 - iin) At. (3.38) 

The values of a and ft are set to 1/3 and 1/2 respectively (Couchman, Thomas, & Pearce 1995). 

3.7 Summary 

In this Chapter, the method of cosmological simulations has been outlined with particular reference 

to H Y D R A (Couchman, Thomas, & Pearce 1995). The various stages of this method were then 

discussed, starting with the procedure of generating the initial conditions, before introducing the 

algorithms used to calculate the gravitational forces ( A P ^ ) and hydrodynamical forces for the 

gas (SPH). Finally, the numerical integration scheme was outlined. 
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Chapter 4 

Parameter tests within 

simulations of galaxy formation 

Abstract. Simulations of galaxy formation require a number of parameters. Some of these 

are intrinsic to the numerical algorithms (e.g. the timestep), while others describe the physical 

model (e.g. the gas metallicity). In this chapter, results are presented for a systematic explo

ration of the effects of varying a subset of these parameters. A fiducial model is compared to 

24 different simulations, in which one parameter at a time is varied. For reasonable choices of 

values, many parameters have relatively little effect on the galaxies, with the notable exception 

of the parameters that control the resolution of the simulation and the efficiency with which gas 

cools. 

4.1 Introduction 

Over the past few years, the use of numerical simulations to model the formation of galaxies 

within a proper cosmological context has become reality. There are two reasons for this. Firstly, 

there now exists sufficient computing power in order to probe the dynamic range required for 

resolving galaxies within large volumes (at least four orders of magnitude in length scale). This is 

due to the progress in both computer hardware, particularly massively parallel machines, and the 

development of fast algorithms to calculate forces (as discussed in the previous chapter). 

The second reason is that there now exists a physical framework in which the modelling of 

galaxy formation can take place. It was evident in early studies (Hoyle 1953) that the formation 

of stars and galaxies is driven by dissipative processes, notably radiative cooling. Several stud

ies subsequently applied this to the collapse and fragmentation of inhomogeneous gas clouds 

(Binney 1977; Rees & Ostriker 1977; Silk 1977). The results were encouraging, since they pre

dicted that the largest mass able to cool within a free-fall time is comparable to that of bright 

galaxies (~ 1O 1 2 M 0 ) . Further work (White & Rees 1978) placed this in a more physically realistic 

context, in which galaxies formed via the condensation of gas within the cores of dark matter 

haloes. This naturally explains the discontinuity in mass between galaxies and clusters, as well 
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as predicting a galaxy luminosity function in rough agreement with the observations, at least 

for the bright galaxies. An excess of faint galaxies was predicted, first revealing the need for 

non-gravitational heating processes (such as feedback from stars) to circumvent overcooling, and 

hence too much star formation at high redshift. 

The advances made in the understanding of the large-scale structure (dominated by collision-

less dark matter) allowed galaxy formation to be modelled within a proper cosmological con

text. A'-body simulations were used to calculate the clustering evolution of collisionless dark 

matter (e.g. Frenk, White, & Davis 1983; Klypin & Shandarin 1983; Centrella & Melott 1983; 

Davis et al. 1985), leading to the idea of biased galaxy formation (e.g. Frenk et al. 1988 and refer

ences therein). The statistics of Gaussian random fields (see Bardeen et al. 1986), and the formula

tion of conditional halo mass functions, based on Press-Schecter theory (Press & Schechter 1974; 

Bondet al. 1991; Bower 1991) were also developed. Thus, cosmological, ab initio galaxy for

mation was born (White & Frenk 1991; Cole 1991). These semi-analytical approaches have 

now become into an industry (e.g. Cole et al. 1994; Kauffmann, Guiderdoni, & White 1994; 

Baugh, Cole, & Frenk 1996; Somerville & Primack 1998; Cole et al. 1999) in which many suc

cessful predictions have been related to the wealth of new observations of distant objects, for exam

ple the Lyman-break galaxies (Governato et al. 1998) and quasars (Haehnelt & Kauffmann 1999). 

However, the techniques rely on several physical assumptions, many which can only be reliably 

tested using numerical simulations. 

First attempts at modelling cosmological galaxy formation using numerical techniques 

have concentrated on the simplest possible model (e.g. Katz, Hernquist, & Weinberg 1992; 

Cen & Ostriker 1992; Evrard, Summers, & Davis 1994; Pearce et al. 1999). The evolution of 

baryons and CDM are followed within a suitably large volume. The dark matter only interacts 

gravitationally whereas the gas (with a non-zero equation of state) can also interact via pressure 

forces (adiabatic heating and cooling). Furthermore, it is able to change its entropy by the ability 

to shock-heat and cool radiatively. In general, the latter process presents a formidable numerical 

challenge because in hierarchical clustering theories, cooling is most efficient in small objects 

at high redshift where cooling times are very short. As a result, the outcome of a simulation 

depends on its resolution. Hence modelling the effects of reheating/feedback is also beneficial 

from a numerical perspective; the hope is that convergent results can be obtained. 

Although resolution is the most important numerical concern in simulations of galaxy formation, 

several other numerical and physical parameters influence the outcome of a simulation. Examples 

of the former are the gravitational softening or the size of the timestep; examples of the latter are 
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the metallicity of the gas or the initial redshift. Often parameter values are set in the absence of rig

orous criteria. In this chapter a systematic study is undertaken of a limited subset of the parameters 

required in simulations of galaxy formation. Various relevant quantities are measured, for example 

the amount of gas that cools, the number and masses of the galaxies that form, etc. This is not 

intended as an exhaustive investigation, but rather as a guide to the sensitivity of simulation results 

to these parameters. For simplicity, this chapter ignores the effects of photo-ionization (studied 

previously, for example, by Weinberg, Hernquist, & Katz 1997 and Navarro & Steinmetz 1997) 

and feedback. 

The rest of this chapter is organized as follows. In Section 4.2 the numerical method is outlined, 

in particular the approach to radiative cooling is discussed. In Section 4.3 a "fiducial" simulation 

is defined its evolution is described, focussing on the distribution of gas in the temperature-density 

plane and on the properties of "galaxies." In Section 4.4 this fiducial simulation is compared to a 

set of simulations in which one parameter at a time is varied. In particular, the correspondence 

of galaxies in different simulations is considered as well as properties such as their mass distri

bution and the distribution of baryons within dark matter haloes. The results are summarised in 

Section 4.5 and conclusions are drawn in Section 4.6. 

4.2 Numerical method 

All simulations have been performed using Version 1 of H Y D R A , which uses identical gravity 

algorithms to those described in the previous chapter. However, there are several differences in the 

SPH technique for the version of H Y D R A used here, as opposed to the rest of this thesis (which uses 

Version 3). For more details of the SPH in Version 1 of H Y D R A , refer to Thomas & Couchman 

(1992). 

The basic minimum in modelling galaxy formation is the incorporation of radiative cooling 

effects, so that the gas can achieve high enough density contrasts where star formation can proceed. 

Radiative cooling requires including a sink in the thermal energy equation, as discussed previously 

(see Equation 3.4). It is assumed that the gas is locally in collisional ionization equilibrium (CIE), 

i.e. that no additional particle species are being created or destroyed. This allows the emissivity 

(power radiated per unit volume) to be factored into two independent functions of density and 

temperature 

A(n ,T) = 7 i 2 A c ( T ) , (4.1) 
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where n is the number density of free particles and A C (T) is the cooling function. Gas temperature 

is defined in the usual manner, i.e. T = (7 - l)fimp u, where 7 is the ratio of specific heats, mp 

is the mass of a proton and \i is the mean atomic mass, assumed to take the value for a primordial 

cosmological composition, /i ~ 0.59. The adopted cooling function is a simple series of power 

law fits to the optically-thin radiative cooling code of Raymond, Cox & Smith (1976) 

AC(T< 10 5 K) = {ai + a2Z)T, 

A C ( T > 1 0 5 K ) = 03 T°-B + ^ + ^ 1 , (4.2) 

where T is the temperature in Kelvin and the a;'s are (dimensional) constants, 

a i = 6.1 x 10 _ 2 8 ergs _ 1 c m 3 K - 1 , 

a2 = 7.4 x K T 2 7 e r g s - 1 c m 3 K - 1 , 

a3 = 2.3 x 10" 2 7 ergs _ 1 cm 3 K" 0 - 5 , 

a4 = 6.1 x 10- 1 8 ergs _ 1 c m 3 K , 

a 5 = 7.4 x 10 _ 1 8 e ig s - 1 c m 3 K 0 8 . 

Contributions to A c come from thermal bremsstrahlung and line cooling due to Hydrogen, Helium 

and a variable content due to heavier elements, parameterised by the gas metallicity, Z in solar 

units. Three examples of A c for Z/ZQ = 0.0,0.5,1.0 are illustrated in Figure 4.1. Overlaid is the 

cooling function taken from the work of Sutherland & Dopita (1993).(Version 3 of H Y D R A uses 

the latter cooling function.) 

In cosmological simulations, the cooling timescale is often shorter than the dynamical or sound-

crossing timescales. However it is not computationally feasible to shrink the timestep and follow 

cooling explicitly. One alternative is to restrict the timestep in such a way that each particle only 

loses up to half of its thermal energy in one step (Katz & Gunn 1991; Gerritsen & Icke 1997). The 

method used in H Y D R A takes a simpler approach: hydrodynamical forces are calculated for the 

gas particles using the adiabatic and viscous contributions to the thermal energy equation. Energy 

is then removed, at constant density, due to radiative cooling at the end of the step. The amount 

subtracted, A « t , is calculated such that 

ui—Aui 
f du At 
/ 77 ¥ \ = <4-3) 

J A(ni, Ti) pi 

with subscript i denoting the i t h particle and u, its specific thermal energy. This results in stable 

and physically reasonable behaviour, even for relatively long timesteps. 
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Figure 4.1: Illustrations of the cooling functions used in this chapter, which are power law fits (to functions generated 

by the code of Raymond, Cox, & Smith 1976). Three variations for gas metallicities, Z/ZQ = 0.0,0.5,1.0, are shown. 

Overlaid for the Z = 0.5ZQ case is a tabulated cooling function from the work of Sutherland & Dopita (1993). The 

functions are only plotted for temperatures down to 104 K since this is where the cooling is switched off. (Physically, 

negligible thermal energy is lost below this value.) 

4.3 The fiducial simulation 

4.3.1 Initial conditions 

Throughout this chapter the effects of varying various numerical and physical parameters are 

examined relative to a fiducial simulation. The fiducial initial conditions were chosen to corre

spond to the standard cold dark matter model (SCDM). This sets the value of the cosmic density 

parameter, 0 = 1 , the cosmological constant, A = 0 and the Hubble constant, h = 0.5 '. Although 

1 H0 = l O O / i k m s - ' M p c - 1 
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Table 4.1. Values of the parameters chosen for the fiducial simulation that were subsequently varied. / V is the total 

number of particles, J V S P H is the number of gas particles over which the SPH smoothing is carried out, L is the size of 

the FFT mesh, s m a x is the maximum comoving size of the softening in units of FFT cells, e0 is the effective Plummer 

softening at z = 0, K is the timestep normalisation, fib is the baryon fraction, Z is the gas metallicity, z; is the initial 

redshift and T , is the initial gas temperature. The choice of these parameters is discussed in more detail in the text. 

Parameter Value 

N 2 x 323 

NSPH 32 

L 64 

•Smax 0.3 

eo 10 h~l kpc 

K 1 

fib 0.06 

z O.5Z 0 

24 

Ti 100K 

this model is now out of favour (for example, its power spectrum cannot simultaneously fit both 

the large-scale COBE normalisation and the amplitude of small-scale galaxy clustering), it is a 

well studied model with moderately large power on all scales relevant to galaxy formation. In any 

case, the precise form of the initial conditions is not of concern here. 

The initial mass distribution was generated as described in Chapter 3, by perturbing a uniform 

distribution of particles using the Zel'dovich approximation. The amplitude of the power spectrum 

was set such that as = 0.6, consistent with measurements of the local abundance of rich clusters 

(White, Efstathiou, & Frenk 1993, Viana & Liddle 1996; Eke, Cole, & Frenk 1996). The size of 

the simulation volume (in comoving coordinates) was fixed at S = 10 h~l Mpc, with an FFT 

mesh resolution of L = 64 (implying a cell-length of 156.25 h~l kpc). Although the volume is 

not big enough to follow the evolution of large scale structure accurately (density fluctuations on 

the scale of the box are not evolving linearly at the final time), this is not important for this study 

since the results are only generated for comparison with each other and not real galaxy surveys. 

Table 4.1 summarises the fiducial values of all the parameters that are studied in this chapter. The 

mass distribution was represented by 32 3 gas and 32 3 dark matter particles. The initial softening 

was set to 0.3 FFT cells (equivalent to a comoving Plummer softening of ~ 20 h~l kpc), but after 
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z ~ 1 it switched to a fixed physical softening of 10 h~l kpc. The number of neighbours over 

which the SPH algorithm smooths was set to A^SPH = 32. The fiducial simulation was run from 

an initial epoch, zl = 24, to the present (z = 0), with the data output at regular intervals. 

Regarding the physical parameters, the baryon fraction was set equal to fib = 0.06, consistent 

with the results from nucleosynthesis calculations (Copi, Schramm, & Turner 1995). The global 

gas metallicity was chosen to be unevolving, with a value of Z = 0.5ZQ, similar to results 

obtained from spectral observations of intracluster gas (e.g. Mushotzky et al. 1996). The initial 

gas temperature was set to 100K, well below the minimum virial temperature of resolved haloes 

in the simulation (T ~ 5 x 10 5K). 

4.3.2 The baryon phase diagram at z = 0 

The two objects that are studied in this chapter are the dark matter haloes and the cold, dense 

clumps of gas subsequently referred to as the "galaxies". All comparisons are carried out at z = 

0. The selection criteria used to catalogue the haloes and the galaxies are described in detail in 

section 4.3.4, but as motivation for the galaxy selection procedure, the correspondence between the 

spatial distribution and the thermal evolution of the baryons is developed in more detail. Figure 4.2 

illustrates the temperature-density distribution of the gas at z = 0, spanning 7 orders of magnitude 

in density and 9 orders of magnitude in temperature. The thermal distribution is split into three 

phases, labelled as the uncollapsed phase, the shocked phase and the galaxy phase. Accompanying 

this figure are three dot-plots, showing the corresponding spatial distribution of each phase. 

4.3.2.1 The uncollapsed phase 

The uncollapsed phase is defined as the regime in which gas particles have T < I K and 

p < I03(p). The boundaries for this phase are chosen such that they enclose the particles 

that lie on the power law relation, which is an adiabat. These particles are still largely in free 

expansion and are, on average, cooling adiabatically with T <x (1 + z)2. Spatially, the particles 

are homogeneously distributed, as a result of occupying a small range in density. The hard lower 

limit on this quantity (visible for all temperatures) is artificial, imposed by the algorithm due to the 

maximum distance it can search for A^SPH neighbours. For the fiducial simulation, p^n ~ 1-9 (z9). 

clearly an undesirably large value. As a result, the low density gas is forced to unphysically high 

values (uncollapsed gas should have p < (p)). The latest version of H Y D R A , which is used in 

subsequent chapters) now properly accounts for low density gas and it has been checked that this 

makes no significant difference to the properties of the high density material. 
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Figure 4.2: (top-left) The temperature-density phase diagram of all baryons in the fiducial simulation at the final output 

time (z = 0). The density is displayed in units of the mean gas density and the temperature in Kelvin. Positions of the 

gas particles obeying the various selection criteria defined in the text are shown in the other three plots, specifically the 

uncollapsed, shocked and galaxy phases. It is evident that each phase shows a considerable difference in structure: the 

uncollapsed gas exhibits a large degree of homogeneity, the shocked phase particles show large fluctuations in density 

and the galaxy phase is exclusively made up of tight clumps of particles. 

4.3.2.2 The shocked phase 

The shocked gas phase contains particles with p < 103 (p) and T > I K as well as all particles 

with T > 10 5 K. Gas entered this phase due to the collapse and violent relaxation of gravitationally 

unstable regions, in which the bulk kinetic energy of the gas was transferred, via shocking, into 
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heat. As a result, the spatial distribution of this phase exhibits large fluctuations in density: halo 

atmospheres lie in this regime and the shocked gas is almost completely absent from the voids. 

4.3.2.3 The galaxy phase 

The particles in the galaxy phase lie in the regime, p > 103 (p), and T < 10 5 K. The presence 

of a strong horizontal feature at 10 4K is due to the fact that the cooling rate is taken to be zero 

at this temperature. Gas Particles with higher temperatures must lose a significant fraction of their 

thermal energy via radiative cooling before reaching the main locus, The plot of the positions of 

the galaxy phase particles highlights the fact that cold, dense gas forms very tight clumps, which 

have spatial extents of the order of the gravitational softening. To select the "galaxies" themselves, 

only particles that lie in this region of the phase diagram are used. 

4.3.3 Evolution of the baryon phase diagram 

To illustrate the global evolution that led to the baryon phase diagram of Figure 4.2, the mass 

fraction in each phase is plotted in Figure 4.3, as a function of the expansion factor (normalised 

to the present value). All phase boundaries are fixed, with the exception of the uncollapsed phase 

- the temperature threshold is modified to T < (1 + z)2K, which accounts for the adiabatic 

expansion of the uncollapsed gas. Initially, all the gas is in this phase, with a temperature of 100K. 

As the simulation progresses, some of the gas transfers to the shocked phase, as the first virialised 

haloes become resolved (z ~ 10). Gas does not start to enter the galaxy phase (forming the first 

objects) until later (z ~ 3). Both the shocked and galaxy phases continue to accrete more and 

more mass as the uncollapsed phase becomes progressively depleted. By the present day, ~ 18 per 

cent of the gas is still in the uncollapsed phase whilst the shocked gas phase contains about 64 per 

cent of the gas mass and the remaining 18 per cent has cooled into the galaxy phase. 

Another important question we have addressed is to determine the precise trajectories in the 

p - T plane, of the particles that finally end up in the galaxy phase. Figure 4.4 illustrates the two 

main paths that the galaxy particles take, for the whole duration of the fiducial simulation. The 

marked points indicate the redshifts z = (10, 5, 3,2,1, 0.5,0.1) for each trajectory. 

The first example (solid line) shows the expected evolution of a galaxy particle - it becomes 

initially shock heated to over 10 6K before cooling back down on to the 10 4K boundary and, 

on average, progressively increasing in density until the final time. The second example (dotted 

line) takes a different path - again the particle is shock heated, but only as far as 10 4 K. Both 
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Figure 4.3: The evolution of the uncollapsed, shocked and galaxy phases, plotted as the fraction of gas particles in each 

phase (with respect to the total mass of gas particles), as a function of the expansion factor, a = (1 + z) ~ 1 . The shaded 

region marks the time before the start of the simulation (a = 0.04). Redshift is indicated along the top of the figure. 

particles undergo a series of further heating events and, notably, the second one reaches its largest 

temperature at some later stage when a major galaxy merger takes place. 

Quantitatively, it is found that only ~ 11 per cent of the particles which end up in the galaxy 

phase were initially heated above 10 5K for a minimum of one timestep (~ 32 per cent initially 

reached temperatures above 12500K). The majority of the baryons that ends up in galaxies 

reach high density in the smallest haloes that are close to the resolution limit of the simulation. 

Consequently, their very short cooling times cause them to be heated above the 10 4K locus and 

subsequently cool back onto it within one timestep. 
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Figure 4.4: Two examples of particle trajectories in the p — T plane, from the initial epoch (z = 24) to the present day. 

The legends depict their maximum temperatures. The solid path illustrates a particle that is heated to high temperature 

on initial heating (i.e. the first time it crosses the 104 K boundary), whereas the dotted path illustrates the evolution of a 

particle which is only initially heated as far as 10A K . Marked points indicate redshifts z = (10, 5,3, 2,1,0.5,0.1). 

4.3.4 Selection criteria 

To select the galaxies, the subset of gas particles that lie in the defined galaxy phase (Fig

ure 4.2) were selected. These particles were then run through a friends-of-friends group finder 

(Davis et al. 1985), which links particles together to form groups until no unlinked particles remain 

that are closer to a group than the linking length, / = bn~1^3, where n is the global mean number 

density. The value b = 0.1 (/ ~ 30 h~l kpc) was adopted, which gives a linking length of the 

order of the final S2 softening length. Since the clumps are very tight and are well separated, the 
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Figure 4.5: Projected positions of the fiducial set of 53 galaxies. The dots show the particles that are linked together by 

the group finder and the circles illustrate the mass of the galaxies, centred on the median position of each galaxy with 

radii proportional to the cube root of the galaxy mass. 

output of the group finder is insensitive to variations in the choice of b: changes of the order of a 

few percent in mass were noted when varying 6 by a factor of two in each direction. 

Once this catalogue was generated it was truncated by throwing away objects containing fewer 

than NSPH particles. Objects below this mass are poorly defined because the SPH algorithm does 

not sample their properties well. For the fiducial simulation, 16 groups out of 69 were discarded 

in this manner, making up ~ 4 per cent of the mass in the galaxy phase. This constitutes most of 

the residual material in the galaxy phase that is not part of the final galaxy catalogue. 

The effects of varying the defined limits of the galaxy phase were also studied. The total mass 

of gas in this phase is used for some of the comparisons, therefore it is important to ensure that 
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a region has been selected within which most of the particles are part of objects in the galaxy 

catalogue. The most important boundary is the lower limit of the gas density (p/ (p) = 103). Since 

the 10 4K feature is visible down to the lowest densities, there are particles that have gone through 

the cooling process that lie outside the galaxy phase. Lowering the density limit by an order of 

magnitude caused only a 3 per cent increase in the total number of particles grouped into galaxies. 

On the other hand, the fraction of the galaxy phase present in the final galaxy catalogue dropped 

from 96 per cent to 80 per cent. Reducing the density by the same amount again caused no further 

change in the former quantity but the completeness again decreased to 56 per cent, indicating that 

at these low densities there is contamination from the diffuse halo gas. The temperature boundary 

for the galaxy phase includes all relevant particles for p > 103 (/>), since the hotter particles are 

still cooling down. As a check however, the upper limit on the temperature was lowered from 

10 5K to 12000K. This produced a change of less than 1 per cent to the completeness and lowered 

the number of galaxies in the catalogue from 53 to 52. 

The positions of the fiducial galaxies are illustrated in Figure 4.5. The dots are the projected 

positions of the particles linked together by the group finder. The circles illustrate the mass of the 

objects, centred on the median position of the linked particles in each group, with radii proportional 

to the cube root of the number of particles linked. 

The dark matter haloes were identified by using a spherical overdensity algorithm 

(Lacey & Cole 1994) on the positions of the dark matter particles in the fiducial simulation 

endstate. The algorithm estimates the density field which is then used to find the centres of 

overdense regions. Successive spheres are placed around each centre with growing radii, until 

the mean internal density equals some value - the usual value of 178 times the mean density is 

assumed, as predicted by the spherical collapse model for the virial radii of haloes in an Q, = 1 

universe. Iterations are performed, with the centre redefined as the centre of mass of the object, 

until the difference becomes within some tolerance. Substructure within haloes was ignored for 

the purposes of this chapter. The halo finder produces a catalogue of all haloes with more than 

Nh — 100 particles in the fiducial case, corresponding to a mass of ~ 8 x 10llh~l M 0 . Since 

the dark matter dominates the dynamical evolution, a lower limit in halo mass (rather than particle 

number) was applied when comparing different simulations. Hence, for simulations with poorer 

mass resolution, the lower limit on the number of particles was reduced in order to keep the 

halo mass threshold constant. This limit never went below 10 particles, approximately the lowest 

number that can be trusted (Efstathiou et al. 1988). 
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Figure 4.6: Projected positions of the dark matter panicles in the fiducial simulation selected by the halo finder, Only 

haloes with more than 100 particles are shown. The circles are centred on each halo's centre of mass, and their radii 

are set equal to the distance from the centre to the most outlying particle of the halo. There are 31 haloes in total in the 

fiducial catalogue. 

The output of the halo finder for the fiducial simulation is illustrated in figure 4.6. The circles 

are centred on the halo centre of mass and have radii equal to the virial radius of each halo. The 

dots represent the positions of all the dark matter particles within the virial radius of each halo. 

The largest halo has a total mass of ~ 5 x 1 0 1 3 / i - 1 M 0 , which corresponds to a virial temperature 

of ~ 10 7 K. 

The p — T distribution of the baryons located within the halo virial radii for the fiducial simula

tion are shown in Figure 4.7. Only gas within the shocked and galaxy phases are found in haloes as 

expected. The range of temperatures for the majority of the gas hotter than 10 4K agrees well with 
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Figure 4.7: Phase diagram of all the gas particles within the selected halo virial radii in the fiducial simulation. Overlaid 

are the boundaries which we have defined in order to split the gas into separate phases. 

the corresponding range of virial temperatures of the haloes, for the mass range of the simulation 

(from ~ 5 x 105 to~ 10 7 K). 

4.4 Simulation comparisons 

4.4.1 Global features 

The complete set of simulations that have been analysed are listed in Table 4.2, split into three 

sections. The first section includes simulations in which features other than simple parameter 

values were varied. The second section contains simulations in which numerical parameters (i.e. 

those that affect the algorithm) were varied. Finally, the third section contains simulations in which 
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the physical parameters were altered. For most of the parameters, there is a set of three simulations: 

the fiducial case and two additional simulations with the appropriate parameter varied about the 

fiducial value. The columns indicate the comparison number (14 in total); the alteration made 

to the fiducial parameter set; the fraction of particles identified in the uncollapsed, shocked and 

galaxy phases respectively; the number of galaxies in the final catalogue; the number of haloes in 

the final catalogue; and the completeness, defined as the fraction of particles in the galaxy phase 

that appear in the final object set. For discussion, the sections are labelled general, numerical and 

physical respectively. 

4.4.1.1 General comparisons 

The first comparison was designed to probe effects that might be present due to runs being per

formed on different computer architectures. The fiducial simulation was run on a Sun Sparcstation, 

whereas most of the comparison runs were performed on a DEC Alpha. Hence, an identical 

simulation to the fiducial case was also performed, using the latter platform. Differences can arise 

from system-specific variations of the code due to the compiler. 

Comparison 2 was performed in order to investigate the numerical effects introduced by altering 

the initial positions of the particles. Two simulations were set up to test this. The first tested 

the periodicity of the algorithm, by translating all the particles by a fixed amount (in this case 

1 FFT cell) before starting the simulation, then moving them back at the final time. The second 

was performed in order to examine how small inaccuracies in the initial positions can affect the 

results, by adding a random perturbation (tiny compared to the initial displacements) to each 

particle position at the initial time. In both this and the architecture comparison, no significant 

differences are observed in the phase fractions when compared to the fiducial simulation. These 

first two comparisons set a baseline for the size of variations that can be introduced solely by noise. 

Simulations that only differ by this amount should be viewed as being indistinguishable from the 

fiducial case. 

For comparison 3, a run was added that uses a cooling function in tabulated form, as given by 

Sutherland & Dopita (1993), rather than a series of power-law fits. The two cooling functions used 

are shown in Figure 4.1 for the fiducial metallicity, Z/Z@ = 0.5. The power-law cooling function 

fits the tabulated function relatively well for the range of relevant temperatures (104 - 10 8K), 

although the latter shows a significant enhancement in A(T) around 10 5 K, (as much as a factor of 

3) due to helium line cooling. However, as Table 4.2 shows, there is only a slight enhancement in 

the amount of gas in the galaxy phase. 
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The final comparison that was made in this section was between the fiducial simulation and the 

version of H Y D R A used by Pearce et al. (1999). The latter contains a change in the SPH algorithm 

to reduce cooling in large haloes (see also Thacker et al. 1998). It is based on a multiphase ap

proach, in which the cold, dense particles are decoupled from the hot medium: gas above 10 5K 

does not see gas below 12000K for the purposes of calculating the gas density. For all other gas 

particles, the SPH forces are calculated in the standard way. This procedure ensures that infalling 

cold diffuse particles still feel the halo's outer accretion shock and allows hot haloes to cool at 

a rate determined by only the hot gas and galaxies to dissipate energy, merge and feel drag as 

they move around the halo environment. The effects of this alteration on the phase distribution are 

evident in the table: the fraction of gas particles in the galaxy phase is reduced by 3 per cent while 

the fraction in the hot phase increases to compensate. 

4.4.1.2 Varying numerical parameters 

The first numerical parameter varied (comparison 5) was the initial (maximum) softening, s m a x . 

Increasing s m a x moves the changeover from a comoving to a physical softening to higher redshift. 

The value of the maximum softening was doubled to s m a x = 0.6, so that for the same final 

softening length, the changeover now occurred at z ~ 3 rather than at z ~ 1. More importantly, the 

softening now has a larger comoving value (equivalent to a Plummer softening of ~ 40 hrx kpc) 

before the changeover. The galaxies that form before this epoch are more loosely bound (increasing 

their effective volume), and are therefore more susceptible to the effects of ram-pressure stripping, 

tidal disruptions or accretion as they move through the hot halo gas. No significant changes in the 

final phase fractions are present however. 

The timestep normalisation value, K (comparison 6) was varied by a factor of 2 about the fiducial 

value of 1. This effectively doubles or halves the length of each timestep, causing the simulation 

to take roughly twice or half as many timesteps to run to z = 0. Doubling the fiducial value 

introduces inaccuracies in both the positions and velocities of the particles. The phase fractions 

show that there is significantly more shocked gas in the K — 2 simulation than in the fiducial run, 

at the expense of the uncollapsed gas. The galaxy phase fraction and the number of galaxies in the 

final catalogue do not change. The increased efficiency at which the gas is heated can be explained 

by the fact that the larger timesteps in the K = 2 run increased the error in particle positions and 

velocities, which leads to larger values in the velocity divergence, increasing the efficiency of gas 

heating from viscous interactions. 

As was hoped, the value K = 0.5 had no significant effect on the endstate properties of the 

galaxies and haloes, vindicating CTP95's choice of K = 1. 
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Comparison 7 consisted of halving and doubling the value of the final softening length about 

the fiducial value, eo = 10 h^1 kpc. Changing the value of eo only has an effect once the physical 

softening length has dropped below the maximum defined by s m a x . For eo = 5 kpc this occurs 

at z = 3 whilst for eo = 2 0 h~l kpc the softening is always comoving. Simulations with smaller 

softening lengths have more tightly bound galaxies which may be less susceptible to disruption. 

Doubling the fiducial value of e 0 has no significant effect on the final number of galaxies and the 

fraction of gas in each phase. However halving the final softening length systematically decreases 

the number of galaxies by ~ 15 per cent, with the residual material still in the shocked phase. It 

is possible that this is due to the effects of two-body relaxation artificially heating gas particles 

(Steinmetz & White 1997). For a dark matter halo with 50 particles forming at z — 0, the two-

body relaxation times are approximately 10.4, 7.5 & 5.9 Gyr for eo = 2 0 , 1 0 & 5 k p c 

respectively. For eo = 5 kpc the relaxation time is less than half the age of the universe. 

The value of A^SPH was varied in comparison 8. Since this parameter sets the resolution at which 

the gas density field is evaluated, large overdensities are progressively smoothed out as the value 

of ./VSPH increases. It then becomes increasingly difficult to form galaxies, since the emissivity is 

proportional to the square of the gas density. On the other hand, using a smaller value of A^SPH 

increases the noise arising from the discrete nature of the mass distribution. Thus a compromise 

in the value is sought. It is common to assume A^SPH = 3 2 , which is the fiducial value, and this 

comparison looks at the effects introduced by changing this number by a factor of two. The number 

of galaxies in each simulation clearly shows the expected trend, with more galaxy phase gas and 

more galaxies if A^SPH = 16 than if iVsPH — 64 . This material comes from the shocked phase as 

the uncollapsed phase fraction is more or less constant in all cases. The significant drop in galaxy 

number and in completeness for the A^SPH = 6 4 simulation is due to 11 groups being discarded, 

with Ng < TVSPH-

Comparison 9 consisted of changing the mass resolution by varying the total number of parti

cles. The initial power spectrum was truncated appropriately to account for the varying Nyquist 

frequency of the particle mesh. The four runs have N = 2 x ( 1 6 , 2 4 , 3 2 , 4 8 ) 3 particles respectively, 

where the 2 indicates the number of species. The masses of the two particle species in each of these 

runs are given in Table 4.3. The three runs with the largest TV were selected to quantify the result 

of increasing the mass resolution of the simulation. A run with N = 2 x 1 6 3 was also added 

to probe the regime where artificial two-body heating of the gas particles by the dark matter 

particles should significantly affect the cooling rate of the gas. Figure 4.8 shows the critical dark 

matter particle mass (defined as the mass for which the cooling time of the gas equals the two-
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Table 4.3. The masses of each particle species for the runs performed with varying values of N. 

N ^ W K P f r - i M e ) Msas{lOwh-lMe) 

2 x 16 3 6.38 0.41 

2 x 24 3 1.89 0.12 

2 x 32 3 0.80 0.05 

2 x 4 8 3 0.24 0.015 

body heating time) as a function of the gas temperature, for the metallicities and baryon fractions 

studied in this chapter (Steinmetz & White 1997). The gas fraction is assumed to be equal to the 

appropriate value of Q^, although the values can be scaled, if desired. The Coulomb logarithm is 

assumed to be 5, which is appropriate for the largest mass haloes in the simulations studied in this 

chapter (and therefore demonstrating the worst-case scenario for this effect). Overlaid as dotted 

horizontal lines are the mass of the dark matter particles for the simulations in this comparison. 

For = 0.06 and Z = 0.5Z&, both the fiducial simulation and the TV = 2 x 48 3 simulation are 

acceptable for the range of temperatures relevant to this work, and the N = 2 x 24 3 simulation is 

borderline. Since the N — 2 x 16 3 run lies well above the critical line, the amount of gas cooled in 

this simulation should be significantly affected by two-body heating. The effect is indeed severe: 

only 24 particles make it into the galaxy phase and hence no galaxies form at all. (Note that the 

cooling time at the resolution limit of this simulation is ~ 10 8 years - a small fraction of the 

age of the universe - therefore in the absence of two-body heating effects, a population of cooled 

objects should have formed.) 

For the remaining three simulations, the amount of uncollapsed gas remains roughly constant, 

and the biggest change is in the increasing amount of gas that cools from the shocked phase into 

the galaxy phase with larger N. This is reflected both in the galaxy fractions and in the number of 

galaxies present in the final catalogues. This effect is expected when varying the mass resolution 

of the simulations. When yV is increased, the sampling of the density field improves and hence 

smaller mass haloes are resolved. The smallest haloes in the simulation will, on average, form 

first, and therefore have higher physical densities than the haloes that form later. As discussed in 

Section 4.3.3, most of the galaxy mass is accumulated in these objects. 

Finally, the effect of changing the initial redshift of the simulation has been investigated by 

considering runs with 1 + Z{ = 10, 25 and 50 respectively (comparison 10). The main potential 

pitfall when choosing Z{ is that choosing too small a value will suppress the amount of small-
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scale power, causing objects on small scales to form too late. Hence the initial redshift should 

be high enough that scales of the order of the initial softening should not have already become 

non-linear (i.e. S <C 1). For the 1 + 2,- = 50 run, the fiducial boundaries of the uncollapsed phase 

are sufficient to segregate the uncollapsed gas from the rest, while for the 1 + zi = 10 run, the 

temperature boundary has been rescaled by a factor of 6.25, i.e. (25/10) 2 . Evidently, there are no 

significant changes in any of the gas phases or in the number of galaxies, when comparing all three 

runs. 

4.4.1.3 Physical comparisons 

The mass fraction of baryons was varied in comparison 11, forming the set of values fib = 

(0.03,0.06,0.12). Varying this parameter alters the masses of both the gas and dark matter 

particles, and therefore the number density of atomic particles, n. The latter affects the cooling 

rate of the gas since the emissivity scales as n 2 . Again (see Figure 4.8), it is important that the 

baryon fraction should be consistent with the critical mass of the dark matter particles, given both 

the metallicity and the value of N. Clearly for the choice of other fiducial parameters, the value 

fib = 0.03 (Z = 0.5, N = 2 x 32 3 ) is borderline and this is reflected in a reduction in the number 

of galaxies formed. Increasing the baryon fraction to fib = 0.12 has little effect upon the number 

of galaxies but they are systematically heavier. 

Comparison 12 was performed in order to examine the effect of changing the metallicity of 

the gas. Each particle is assigned a constant amount of metals (i.e. of nuclei that have an atomic 

number greater than 2). The metallicity affects the shape of the cooling function, as illustrated in 

Figure 4.1. Also affected is the critical mass of the dark matter particles (which depends on the 

cooling function) as shown in Figure 4.8. The simulation with Z = 0 is clearly on the wrong side 

of the line and the galaxy phase fractions are consequently affected: slightly more material cools 

with the higher metallicity, but the run with no metals shows a catastrophic drop in the amount of 

material in the galaxy phase, the number of galaxies and the completeness. 

Finally, in comparison 13, a set of runs were performed with different initial gas temperatures, in 

order to measure how the dynamical and thermal evolution of the gas depends on its initial thermal 

state. Two additional runs have been included, one with T; = OK and the other with T; = 1 0 7 K . 

The fiducial boundaries of the uncollapsed phase are sufficient for the run with T{ = OK. However 

the boundaries of the uncollapsed phase are redrawn for the run with T; = 1 0 7 K , such that s < 2.5 

and pj (p) < 50, where s = l o g 1 0 ( T / ( p / (p))2^) measures the specific entropy of the gas. 

(Using these constraints makes it easier to pick out the uncollapsed gas since it is isentropic.) For 

the run with T[ — OK, there are no significant differences in the measured quantities. However, 
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the run with T,- = 1 0 7 K shows a small increase in the uncollapsed gas phase at the expense of the 

shocked gas. For this run, the gas cools as expected from adiabatic expansion until z ~ 5. However 

by z = 3 the uncollapsed phase is at temperatures below 1 0 4 K , over an order of magnitude below 

the predicted temperature from adiabatic expansion. At these redshifts, the density and the cooling 

rate of the gas is high enough to allow the gas to radiate a significant fraction of its energy away. 

Consequently, only a small fraction of the gas is too hot to withstand gravitational collapse. 

4.4.2 The spatial distribution of galaxies 

The distribution of the galaxies at z = 0 for all of the simulations are illustrated in Figures 4.9 

and 4.10. The positions of the circles represent the projected positions of the galaxies, with their 

radii set proportional to the cube root of their masses. The number of galaxies in each catalogue 

are also given. 

Evident from the figures is that qualitatively similar clustering patterns are observed for all 

simulations with appreciable numbers of galaxies. This is not surprising since the sites of galaxy 

formation are determined by the structure of the underlying dark matter, whose average properties 

do not change from simulation to simulation. A more quantitative measurement of the clustering, 

for example using the two-point correlation function, is too noisy to gain anything useful (the 

number of objects in each volume is too small). 

4.4.3 The mass distribution of galaxies 

Figure 4.11 gives plots of the cumulative mass functions of galaxies (i.e. the number density of 

galaxies greater than a specified baryon mass, M9), with the fiducial simulation always plotted 

as the solid line. The dynamic range for these simulations is about 2 orders of magnitude in 

abundance and about 1.5 orders of magnitude in mass. The functions all have a characteristic 

shape: a shallow slope at low masses, turning over to a steeper slope at higher masses and a large 

tail at the high mass end. The latter feature is simply due to the existence of a single massive 

galaxy that has a baryonic mass of ~ 5 x 1 0 u / i _ 1 M 0 . Galaxies this massive are extremely rare 

in the Universe; this object is discussed below. 

The biggest differences in the mass functions occur in the physical comparisons, in which the 

gas cooling rate varies. The simulation with Z = 0 fails to produce as many galaxies as the fiducial 

simulation - the abundance is down by a factor of 5 and the galaxies that do form are much less 

massive. The large differences seen in the runs with varying baryon fraction are mainly due to the 

difference in masses of the individual gas particles, varying by a factor of two. However, when the 
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galaxy masses are scaled to take out this effect, there is still a systematic difference between each 

function. This is due to the effect the baryon fraction has on the cooling rate of the gas. 

Varying the number of SPH neighbours shows a progression in the smallest resolved galaxy 

mass due to the selection criterion that the number of constituent particles Ng > A?SPH- There 

are fewer galaxies for larger iVgpH and they are systematically less massive. This is a reflection 

of the fact that the algorithm has to smooth over a larger range, which consequently leads to a 

poorer resolution of the density field. Since emissivity scales as n 2 , the lower cooling rate inhibits 

the galaxy formation process - an entirely numerical effect. Varying the value of N shows similar 

results for the same reason, i.e. a larger number of particles enables the SPH algorithm to resolve 

higher gas densities. 

The remaining differences are relatively small. Changing the cooling function to the tabulated 

form of Sutherland & Dopita (1993) produces more cooling around 1 0 5 K , boosting the cooling 

rate and systematically increasing the mass of the galaxies by ~ 10 per cent. However, there is no 

significant difference in the shape of the mass function. 

Comparison 4 (in which the cold gas is decoupled from the hot gas) also shows a small difference 

in the mass functions. This difference is dominated by the largest object in the simulation volume, 

which is reduced in mass by a factor of 3 when the cold, dense gas is decoupled from the hot gas. 

Notably, this alteration to the algorithm has a negligible effect on the smaller objects. 

The comparison set in which the final softening length is varied shows an offset for eo = 

5 h~l kpc. This simulation produces galaxies that are systematically lighter than the simulations 

with larger values of €Q, as expected if they are being affected by two-body heating from the dark 

matter particles. 
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4.4.4 Comparison of matched galaxies and haloes 

Individual properties of the galaxies and haloes have been compared on an object-to-object basis 

between each simulation and the fiducial run. Since the number of objects in each catalogue is 

different in nearly every case, there is not a straightforward one-to-one correspondence between 

the sets. To circumvent this, the smallest object set was always taken first and subsequently 

compared to the larger set. When more than one object in the larger set was matched with the 

same object in the smaller set, the closest pair was selected. Generally, this was not a problem 

since the discarded objects are usually at considerably larger distances than their matched object. 

However, this method will inevitably produce outliers in both separation and mass differences due 

to the fact that, on occasions, an object in one simulation is fragmented into smaller objects in 

another. Therefore the median and semi-interquartile ranges were used as statistical measures of 

the offset and scatter of any relative quantity measured. Positions of the galaxies were defined as 

the median position of the linked particles and, for the haloes, their centre of mass. 

4.4.4.1 Galaxy-galaxy displacements 

The first property examined was the scatter in the positions of the matched galaxies. The results 

are illustrated in Figures 4.12 and 4.13, which show the displacement between each matched 

pair (in h~l kpc) plotted against the average object mass. The solid line illustrates the median 

separation for each comparison. The number of galaxies matched and the median plus semi-

interquartile ranges of the displacements are presented in Table 4.4, columns 3, 4 & 5. It is clear 

from the comparison between the simulations run on different computer architectures that there 

is an intrinsic offset in matched positions at the level of a few softening lengths. Furthermore, a 

significant number of matches exceed this level by as much as a factor of four. As a consequence 

of this, only those comparisons that have median offsets in excess of the level seen for these two 

simulations are regarded as significantly different. 

The first set to show a significant change is the simulations with different values of N. Varying 

the mass resolution causes differences in the number of objects formed and also affects the back

ground dark matter distribution, so it is of no surprise that the displacements show a significantly 

larger amount of scatter in these comparisons. Varying the value of N S P H also produces very 

different numbers of galaxies but this does not affect the median separation at all, demonstrating 

that it is the difference in the dark matter that primarily drives the increased scatter in the galaxy 

positions rather than mergers or interactions between the different numbers of galaxies. 
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Figure 4.12: Separations between matched pairs of galaxies in the fiducial simulation and all other simulations, plotted 

against the average galaxy mass.The labels indicate the parameter that varies in each plot. The median scatter is shown 

as a solid horizontal line. Matches above 100 hTx kpc are not plotted. 
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Figure 4.13: Separations between matched pairs of galaxies (continued). 
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A systematic difference in the matched positions is also introduced when the initial redshift of 

the simulation is changed: the median displacement increases by a factor of two in both compar

isons. Variations in the initial positions and velocities of the particles leads to asynchrony in the 

subsequent spatial trajectories of the galaxies. 

Regarding the physical comparisons, substantially increasing the initial temperature of the gas 

leads to a significant effect. Particles that have been supplied with this much thermal energy nat

urally have greater pressure support, which directly affects the equation of motion, and therefore 

the particle trajectories. 

4.4.4.2 Galaxy-galaxy masses 

Another measurement that has been performed is the differences in the masses of the matched 

galaxy pairs. Figures 4.14 and 4.15 illustrate the results by showing the logarithm of the mass 

ratio of each matched pair plotted against the average baryonic mass, always defined as the variant 

relative to the fiducial case. The solid line illustrates a ratio of unity (i.e. equal masses) and the 

dashed line illustrates the median value of the mass ratio. The median and semi-interquartile 

ranges are given in columns 6 & 7 of Table 4.4. 

Adopting the tabulated cooling function causes an increase in the mass of each galaxy, because 

of an overall enhancement in the cooling rate around the temperatures most appropriate for these 

simulations (~ 10 5 - 1 0 7 K ) . Decoupling the hot gas from the cold gas causes the masses of the 

galaxies to decrease slightly with only a few exceptions, notably the largest object. Decreasing the 

softening length from eo = 10 to 5 h~l kpc also has the effect of decreasing the masses of the 

galaxies. Similarly, a larger value of J V S P H causes the masses of the galaxies to be systematically 

lower, due to its effect on the density field and hence the cooling rate. 

The dispersion in the mass ratio for the comparisons with varying iV is large because of the 

large scatter in object positions for these runs. Thus, spurious matches much more likely. For 

N = 2 x 24 3 the objects are significantly less massive, whilst for N = 2 x 48 3 the objects are 

only a little more massive than the fiducial simulation. 

The largest differences in galaxy mass result from altering the cooling rate via the physical 

parameters, Qh and Z. For the comparisons with varying baryon fraction, the galaxies are more 

than a factor of two heavier for the larger value of fib- Furthermore, there appears to be a slight 

trend for increasing mass excess for heavier galaxies but this is difficult to measure due to the 

small dynamic range in mass. Varying the metallicity produces a similar effect to varying IV 
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Figure 4.14: The logarithm of the ratio of the masses of matched pairs of galaxies plotted against the logarithm of 

the average galaxy mass. Labels indicate the parameter corresponding to each comparison (with the relative difference 

defined as the second minus the first value). The solid line corresponds to equal masses and the dashed line illustrates 

the median value for each comparison. 
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Figure 4.15: The logarithm of the ratio of the masses of matched pairs of galaxies (continued). 
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4.4.4.3 Dark matter halo-halo masses 

The method used for comparing masses of matched galaxy pairs was also performed on the dark 

matter haloes. Results are illustrated in Figures 4.16 and 4.17; columns 8 & 9 in Table 4.4 quantify 

the differences. Overall, very tight correlations are seen for most of the simulations, as the dark 

matter is the dominant source of the gravitational potential and so is not significantly affected by 

changes in the gas dynamics. Changing the FFT resolution affects the force calculation through the 

softening and thus affects the dynamical evolution of the dark matter. Changing the cooling rate 

has a small effect on the size of the dark matter haloes for the largest baryon fraction considered. 

In this case, the larger amount of cooled material slightly deepens the potential, making it harder 

for the haloes to suffer from tidal disruption as well as causing an increase in the accretion rate. 

4.4.5 The distribution ofbaryons in haloes 

The final item investigated in this study is how parameter variations affect the final distribution of 

the baryons within haloes, as a function of the halo virial mass. In particular, the mass fraction of 

baryons present in the galaxy phase, the ratio of baryon masses for matched haloes and the halo 

baryon fractions have been analysed for each simulation. 

4.4.5.1 Fraction of baryons in galaxies 

Figure 4.18 illustrates the fraction of baryons in the galaxy phase as a function of the halo virial 

mass, for each comparison. Because of the small samples, the data is binned into histograms; the 

last bin corresponds to the single largest object. This statistic is remarkably stable; the first two 

comparisons show virtually no difference. The trend is for higher mass haloes to have less of 

their mass in galaxies, reflecting their longer (average) cooling times than the less massive haloes. 

(Since larger mass systems form later, on average, than lower mass systems, their characteristic 

densities are lower, and the cooling time, r c o o i oc p~^s.) The mass fraction varies from ~ 0.65 in 

the smallest haloes down to ~ 0.2 in the highest mass halo. The comparison between the fiducial 

simulation and the case in which the galaxy phase is decoupled from the hot gas reflects the 

reduction in the total amount of galaxy phase baryons in the latter - about a factor of three for the 

galaxy in the largest halo ( ~ 5 x 1 0 1 3 / i - 1 M 0 ) , but only ~ 10 per cent for haloes with masses 

of ~ I0nh~l M&. Other comparisons that give significant changes in the mass fractions show 

nothing unexpected. 



Parameter tests within simulations of galaxy formation 90 

0.5 

- 0 . 5 

0.5 

- 0 . 5 

- 0 . 5 

0.5 

- 0 . 5 

' l i l t 
SPARC,ALPHA 

1 | 1 . 1 1 | 1 i 1 i | . , 1 . | . 1 1 

Offset=0.0,1.0 
1 | 1 . 1 , | , I 1 ! ! 1 1 1 . | 1 ! 1 

Offset=0.0,Random 

" ^ t e u A *U 8 " *D • n 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' 1 1 1 < 1 i i . i 1 i i i i 1 i . i i 1 . i i I 1 . I I . 1 I I t . 1 I . I I 1 I I I 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Cooling = RC&S.S&D 
1 [ 1 1 1 1 | 1 1 1 1 I I 1 1 1 1 1 1 

Decoupling (No.Yes) 

r -" " n i • 

1 I I 1 1 1 I I 1 1 1 I I 1 1 1 | 1 1 1 

—iPiA^irfW • H %— • » 

1 1 1 1 1 1 1 1 t 1 1 t 1 1 1 1 1 1 1 1 1 f I 1 1 1 1 1 I 1 1 1 i 1 i i i i 1 > i i i 1 . . i i 1 i . . 
I I I I 1 I t I I I I I 1 1 I I 1 

<e=1.0,0.5 . 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

K = l . 0,2.0 
1 1 1 t 1 t i r 1 1 1 t 1 1 1 

e 0 = 10.0,5.0 h-'kpe 

1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 

0 • ? " r * ' o H - Svm' B » — a 1 B 

! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I . 1 I 1 i i i i 1 I . I 
1 I I 1 1 1 1 1 1 1 1 I I 1 1 1 | 1 1 1 

£ 0 = 10.0,20.0 h-'kpc 
1 I f 1 1 1 I I 1 1 1 I I 1 1 1 1 1 1 

: N S P H = 16,32 

" g f r p n ^ S g S ° ° ° n u a , 

1 | 1 1 1 1 [ 1 1 I 1 | 1 1 1 1 1 1 1 1 

N s p „ = 3 2 , 6 4 

' . 1 . . . . 1 . . . . 1 . . . . 1 . . . ' . 1 . . . . t . . . . 1 . . . . 1 . . . ' , 1 , , , , 1 " 

log (<M h >/h"'M 0 ) log ( < M „ > / h - ' M s ) log (<M h >/h- 'M 0 ) 
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Figure 4.17: The logarithm of the ratio of the dark matter masses of matched pairs of haloes (continued). 
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Figure 4.18: The mass fraction of baryons in the galaxy phase plotted as a function of the total halo mass. The fiducial 

simulation is the solid histogram. 
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Figure 4.19: The logarithm of the ratio of the baryon masses of matched pairs of haloes plotted against the logarithm 

of the average baryon mass for each pair. Labels indicate the parameter corresponding to each comparison (with the 

relative difference defined as the second minus the first value). The solid line corresponds to equal masses and the 
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Figure 4.20: The logarithm of the ratio of the baryon masses of matched pairs of haloes (continued). 
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4.4.5.2 Local halo baryon fraction 

The variations in the total mass of baryons within the virial radius of matched haloes are quantified 

in columns 10 & 11 of Table 4.4 (see also Figures 4.19 and 4.20). The median differences are 

slightly higher than for the dark matter, but smaller than the galaxies alone. Interestingly, the 

sign of the median difference is not always the same as the equivalent comparison for the galaxies, 

indicating that fluctuations in the total baryon content are not simply due to the galaxies alone. Sig

nificant differences are most evident in the simulations in which parameter changes have affected 

the cooling rate. Inducing a higher cooling rate causes the gas to lose some of its pressure support 

and therefore to become more compressed within its halo. The simulation with e0 = 5 / i - 1 kpc 

shows a significant change in the same direction as the change in the galaxy masses, supporting 

the idea that the gas is being more strongly heated from two-body encounters with the dark matter 

particles. 

The total baryon fraction in haloes has also been analysed as a function of the halo virial mass. 

The results are displayed in Figure 4.21. The fraction is normalised to the global value of fib for 

each simulation. The fiducial simulation has halo baryon fractions ranging from ~ 93 per cent of 

the global value in the smallest haloes to ~ 82 per cent in the largest. All simulations agree with 

the fiducial value to within ~ 20 per cent, and are consistent with the results as found by Pearce 

et al.(1999). Notably, not all simulations show a monotonically decreasing baryon fraction with 

halo mass. However, the scatter is considerable because of the small number of objects in each 

bin (with only one in the highest mass bin). For almost all of the simulations and across the entire 

range of halo masses, the baryon fraction is less than the global value. 

4.4.5.3 The mass to light ratio 

Combining results from Figures 4.18 & 4.21 gives the variation in the fraction of the total mass 

that is locked up in galaxies, i.e. MGA\/MTOT = / g a i f i b , with halo mass. Although the normalisation 

is sensitive to the amount of gas that cools (and hence it would be unfair to compare values with 

observations), all of the simulations presented here exhibit a trend of decreasing mass fraction in 

galaxies with halo mass, due to the behaviour of / g a i . This trend implies that the mass to (optical) 

light ratio (which scales inversely with M G A \ / M T O T ) increases with halo mass. Using the fiducial 

results - purely as an example - and assuming that the galaxies have M/LB ~ 5 (M/LB ~ 8 

for E/SO galaxies and M/LB ~ 3 for spiral galaxies), the value of M/LB is around 150 for 

M ~ 1 O 1 2 M 0 increasing to ~ 400 for the largest object (M ~ 1O 1 4 M 0 ) . 
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Figure 4.21: The baryon fraction in haloes as a function of the total halo mass, in units of the global baryon fraction. 

The fiducial simulation is the solid histogram. 
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Observations of the mass to light ratio from poor groups to rich clusters (i.e. for M ~ 

10 1 2 - 1O 1 6 M 0 ) have yet to agree on whether the mass to light ratio increases with halo 

mass or is constant. For example, results from the Northern CfA Redshift Survey indicate that 

the median M/LB in groups is around 250, rising by up to a factor of 4 in rich clusters 

(Ramella, Pisani, & Geller 1997). However, results using masses determined from X-ray observa

tions suggests that M/LB is approximately constant (at around 150-200) for M = 10 1 2 - 1O 1 5 M 0 

(David, Jones, & Forman 1995) Imminent results from large redshift surveys (such as the Sloane 

Digital Sky Survey and the 2dF Galaxy Redshift Survey) as well as X-ray observations from the 

new Chandra and XMM satellites should provide a significantly more robust determination of the 

mass to light ratio for a wide range of halo masses. 

4.5 Summary 

The main effects observed in the comparison are now summarised. 

In comparison 1, the effects introduced by running the simulation on different computer ar

chitectures were studied. No significant differences were found between the two simulations. 

However, the displacements between matched pairs of galaxies at z — 0 were found to be of the 

order of an 52 softening length. It is therefore incorrect to trust either the positions of individual 

galaxies or their trajectories on scales smaller than this. 

Comparison 2 was intended to look at the effects of small displacements in the positions of the 

particles at the start of the simulation. One simulation was run with the particles initially displaced 

by 1 FFT cell to test the periodic nature of the algorithm. Another simulation was performed 

with tiny random perturbations applied to the initial particle positions, to test the level at which 

differences can grow over the course of a few thousand timesteps (the typical length of each 

simulation). Again, no significant changes were detected amongst the three simulations. 

The cooling function was then changed from the series of power-law fits, used in the fiducial 

simulation, to a set of tabulated values from Sutherland & Dopita ((Sutherland & Dopita 1993)). 

A slight enhancement in the galaxy masses, at the 10 per cent level, was produced in the latter 

case, although no significant changes were produced in the positions of the galaxies. 

In comparison 4, the fiducial simulation was compared to one in which the galaxy phase gas is 

partially decoupled from hot gas in the SPH algorithm (see Pearce et al. 1999). This modification 

provides a better estimate of the hot gas density near galaxies. Specifically it prevents an over

estimate leading to an artificial enhancement in the cooling rate. Only the largest galaxy in the 

simulation was significantly affected, with its mass being reduced by about a factor of three. 
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Comparison 5 consisted of doubling the initial (maximum) softening length. This results in a 

period of time in which the softening is larger than in the fiducial simulation. This led to slight 

differences in the positions of the galaxies, although it left the mass distribution unaffected. 

The size of the timesteps was altered by a factor of two each way, in comparison 6, by changing 

the constant, k. Increasing the timestep resulted in much more shocked gas at the expense of the 

uncollapsed phase. This illustrates the effect of the timestep on the dynamics of the particles: 

introducing significant errors into their positions and velocities leads to enhanced viscous heating 

of the gas. The galaxies themselves remained largely unaffected. No significant change was evident 

when halving the value of K, thus justifying the value n — 1 which was adopted as fiducial. 

Comparison 7 consisted of changing the final value of the softening length, en. In the simulation 

with en = 5 h~l kpc, the galaxies were slightly less massive than in the fiducial simulation (en = 

10 h~l kpc), possibly due to discreteness effects caused by harder two-body encounters. A larger 

value of en = 20 h~l kpc produced no significant differences. 

In comparison 8, the value of ./VSPH was varied, making it larger and smaller by a factor of 

two, thus looking at the effects produced when the SPH algorithm uses a different number of 

neighbours when calculating the smoothing length for each gas particle. These changes had a 

dramatic effect on the simulations. The value of ./VSPH determines the minimum mass for which 

the gas density can be resolved: smaller values will resolve smaller masses at the expense of larger 

random fluctuations. It was found that the number of galaxies increases strongly with smaller 

NSPH, A S did the masses of the matched galaxy pairs, although without significantly affecting 

their positions. 

Comparison 9 consisted of changing the number of particles in the simulation, thus altering 

the mass resolution. To demonstrate the effect of spurious heating by dark matter particles, a 

simulation was run with a dark matter particle mass well above the critical value calculated by 

Steinmetz & White (1997). In this case, gas is unable to cool and form galaxies, even though 

cooling times in the smallest haloes are significantly shorter than the age of the universe. For 

the main set of comparisons, a suite of runs with N = 2 x [24, 32,48]3 were compared. The 

number and mass of galaxies increased with N. Improving the mass resolution also affected the 

final distribution of dark matter, due to the extra small-scale power. The two simulations with the 

highest resolution were in better agreement than the two with the lowest resolution, albeit that the 

discrepancies in the galaxy phase material (i.e. the fraction of cooled gas) were still large. 
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In comparison 10, the initial redshift of the simulations was changed (1 + Z{ = 10,25,50). The 

masses of the objects were not significantly altered by this change but small changes in the spatial 

distribution of the galaxies were produced. 

Comparison 11 involved changing the value of the baryon fraction (fib=0.03,0.06,0.12). The 

higher value of fib causes the cooling rate to increase (since emissivity is proportional to fij^). The 

mass of each galaxy also increases, since m is proportional to fij. The run with fib = 0.03 

has dark matter masses of the order of the critical mass for two-body heating, although the 

reduction in the cooling rate produced by this effect is confused by the fact that the cooling rate 

is significantly smaller anyway. Overall, large differences were noted in all analyses in which the 

baryon fraction was varied. In comparison 12, the value of the (unevolving) gas metallicity was 

varied (Z = 0.0,0.5,1.0 in solar units). The run with no metals differed dramatically from the 

fiducial simulation, producing very few objects by z = 0. This simulation had a dark matter mass 

well above the critical value for two-body heating. The run with Z = 1.0 showed an enhancement 

in galaxy masses relative to the fiducial simulation, although the change was far less severe. 

Finally, in comparison 13 the initial gas temperature was changed from 100K to OK and 10 7K 

respectively. No significant changes were measured between the former two. Although the uncol-

lapsed gas in the latter simulation was on a higher adiabat (T ~ 10 3K at z = 0), this had very 

little effect on the final state of the gas, with the exception of introducing significant displacements 

between the matched galaxy pairs. 

4.6 Conclusions 

This chapter has explored how variations in simulation parameters and certain aspects of the 

physical assumptions affect the population of galaxies which form in cosmological simulations. 

For this process, a minimum of physical assumptions was applied: the ability of the gas to cool 

radiatively to achieve suitably high density contrasts. A simulation was run with a fiducial set 

of carefully chosen parameters and a number of variants were performed each differing by the 

value of one parameter. Galaxy and halo catalogues were selected in a consistent manner before 

analysing the effects that the parameter changes had on the thermodynamic state of the gas, on the 

mass and spatial distribution of the galaxies, and on the baryon content of haloes. 

By carefully tracking the phase evolution of gas particles it has been shown that most galaxy 

material (around 90 per cent in the fiducial simulation) originally cools in small haloes where 

the virial temperature is ~ 10 5K. As Figure 4.18 shows, the percentage of halo baryons that are 

cold rises as the halo mass falls. Only a small fraction of the baryons cool at later stages of the 
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evolution. Mergers of these small fragments can reheat the gas briefly as massive galaxies are built 

up. This implies that the most dynamically interesting part of the process occurs at the resolution 

threshold of the simulation and is therefore sensitive to many numerical and physical parameters. 

Numerical noise leads to a scatter in the final galaxy positions that is of the order of the (52) 

softening for most galaxies but can be much higher in some cases. Individual galaxy trajectories 

should therefore be treated with caution. 

The length of timestep recommended by Couchman, Thomas & Pearce (1995) is adequate. 

Halving it caused no significant change in the galaxy catalogues, but choosing a larger value led to 

a significant increase in the amount of shocked gas at the expense of the uncollapsed gas. This can 

be attributed to errors in the particle positions and velocities, resulting in an artificial enhancement 

in the viscous heating of the gas. 

It is confirmed that simulations with dark matter particle masses greater than the Steinmetz & 

White (1997) critical mass for two-body heating do indeed show a significant reduction in the 

final amount of cooled gas and in the number of galaxies, even when the shortest cooling time 

is a small fraction of the age of the universe. The choice of dark matter particle mass should be 

comfortably below this critical value. The mass in galaxies is also strongly affected by the choice 

of baryon fraction and metallicity. 

Pre-heating of the gas to a high initial temperature (10 7K at z = 24) produces small changes in 

the final positions of the galaxies but has little effect on their final mass. Gas on a high adiabat (T > 

10 4 K) at high redshift can radiate a significant fraction of its energy away which significantly 

weakens its effect on the cooling rate of the gas. 

Increasing the mass resolution by using a larger number of particles causes both the number 

of galaxies and their masses to increase. Improved resolution of the density field enhances the 

cooling rate within haloes, particularly at high redshift when the first objects form. 

Lowering the number of neighbours used by the SPH algorithm to calculate hydrodynamical 

quantities has a similar effect on the amount of cooled material to increasing the number of 

particles in the simulation. Smaller values of N^pu enable higher overdensities to be resolved 

(therefore enhancing the cooling rate in such regions), at the expense of more contamination from 

sampling noise. 

The fraction of the baryonic material that cools within a halo and forms galaxies is a very stable 

quantity which varies inversely with halo mass. Reducing the total amount of gas affects all scales 

in a similar way. The ratio of baryonic to dark material within the virial radius of haloes is around 

80 — 90 per cent of the global value, for the range of halo masses studied. 
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This study involved using four different prescriptions for the gravitational softening. The initial 

comoving softening was varied from 20 h~l kpc to 40 / i - 1 kpc and the final physical softenings 

were varied from 5 h~l kpc to 10 h"1 kpc and 20 / i - 1 kpc. With the exception of the 5 h~l kpc 

case, this variation had very little effect on the galaxy population. The smaller final softening 

systematically reduced both the mass of galaxies and the mass of baryons within haloes by ~ 20 

per cent. This effect is probably due to the artificial heating of the gas from two-body encounters 

with the dark matter particles (Steinmetz & White 1997). 

Finally, in almost every simulation an overly massive galaxy was produced at the centre of the 

largest halo. With a baryonic mass of ~ 5 x I0uh~l M&, such an object is not expected within 

such a small volume of the universe. Decoupling the central dense gas from the hot halo material 

effectively reduces the mass of this object to a more reasonable value (see also Pearce et al. 1999). 

In conclusion, since nearly all of the baryons found in galaxies cooled in haloes at the resolu

tion threshold of the simulation (where the cooling times are generally shortest), modelling the 

galaxy formation process is extremely susceptible to numerical effects. Remarkably most of the 

parameters studied did not have a severe effect on the final mass and spatial distributions of the 

galaxies. The most important factor is the global amount of gas which cools to high density. Large 

differences are easily obtained by changing the cooling rate through the physical parameters, 

and Z, as well as by altering the mass resolution of the simulation. Although the presence of 

a resolution threshold itself limits the cooling rate of primordial gas, this limitation is clearly 

unphysical. Future simulations will undoubtedly have much improved resolution. It is therefore 

of paramount importance that physically-motivated heating processes (such as thermal feedback 

from SNe) are included in order to inhibit overcooling at early times. Without proper inclusion 

of such processes it will be impossible to obtain convergent results, independent of numerical 

artifacts, for simulations of galaxy formation, within the now standard paradigm for structure 

formation. 
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Chapter 5 

Modelling star formation and feedback 

within cosmological simulations 

Abstract A crucial ingredient of any hierarchical model of galaxy formation is a non-

gravitational heating source, able to prevent baryons from cooling catastrophically and forming 

stars at high redshift. This chapter investigates the modelling of such processes in cosmological 

simulations of galaxy formation, specifically the formation of stars and the effects of the energy 

associated with their supernovae (genetically referred to as "feedback"). First, the overcooling 

problem is illustrated explicitly, studied using a series of simulations with increasing numerical 

resolution. The box-size and mass ratio of gas to dark matter particles are also considered. 

Second, various prescriptions for turning gas into stars are investigated, demonstrating that the 

global star formation rate is determined by the cooling rate of the gas, providing most of the 

baryons in galaxies are in stars. The latter quantity is most sensitive to the densities at which 

star formation is allowed to proceed. Third, both thermal and kinetic feedback prescriptions 

are studied in various implementations. Only the thermal method gives encouraging results, 

providing the reheated gas sustains a short period without cooling. 

5.1 Introduction 

The incorporation of feedback effects into cosmological simulations presents a formidable chal

lenge, with no group claiming to have found a satisfactory solution. The reason the problem is so 

difficult is that the physical processes responsible for the redistribution of energy in the interstellar 

medium (ISM) occur on a scale that is several orders of magnitude below what can presently be 

resolved. However, as was discussed in the previous chapter, the nature of hierarchical galaxy 

formation demands additional, non-gravitational heat sources in order to prevent gas from cooling 

catastrophically and turning into stars at high redshift. Even at the resolutions currently attainable 

with simulations, the amount of cold dense gas that cools exceeds current estimates of the cosmic 

baryon budget. This suggests that only ~ 1 0 - 2 0 per cent of the baryons in the local universe 

are cold dense galactic material (mainly stars and HI atomic gas); the majority of the baryons are 

presumably in the form of a hot diffuse plasma between groups and clusters of galaxies (e.g. see 
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Fukugita, Hogan, & Peebles 1998). Furthermore, the inclusion of feedback wil l not only serve to 

avoid the cooling catastrophe but also to produce numerically convergent results. 

A number of other problems with hierarchical models have been attributed to the exclusion 

of feedback effects. For example, the formation of disks occur naturally within galaxy-sized 

haloes, providing the disk does not lose a significant amount of angular momentum to the halo 

(Fall & Efstathiou 1980). Such a loss is witnessed in numerical studies, as a result of the merging 

process (e.g. Frenk et al. 1985; Navarro & White 1993). However, i f feedback can successfully 

keep the gas hot long enough for the merger rate to settle down, the angular momentum prob

lem can be prevented (Eke, Efstathiou, & Wright 1999). On larger scales, the X-ray properties 

of galaxy clusters do not obey scaling relations expected from simple gravitational instability 

models (Kaiser 1986). As discussed in Chapter 2, the observed cores in their ICM distribution 

may be an artifact of pre-heating due to feedback effects, before the cluster formed (Kaiser 1991; 

Evrard & Henry 1991; Ponman, Cannon, & Navarro 1999). 

The main source of feedback is believed to be the supernova ejecta of stars, capable of effectively 

disrupting the cooling process in pre-galactic objects (e.g. Dekel & Silk 1986) and consequently 

reducing the faint end of the predicted luminosity function to within reasonable agreement with 

observations (White & Frenk 1991; Cole 1991). Within the context of numerical simulations, 

feedback has been studied mainly in its applications to individual galaxies, to address the angular 

momentum problem, as well as its ability to self-regulate quiescent star formation (e.g. Katz 1992; 

Navarro & White 1993; Steinmetz & Muller 1995; Gerritsen & Icke 1997; Buonomo et al. 1999). 

The true nature of the ISM is multiphase (McKee & Ostriker 1977) and is complicated by, at 

least, the presence of magnetic fields and turbulence. Hence, the treatment of both star formation 

and feedback processes in simulations is necessarily crude. Star formation is approximated by 

the conversion of gas into a collisionless fluid and feedback is modelled by injecting supernovae 

energy, using simple energetics arguments, into surrounding gas. 

Attempts to include the effects of star formation and feedback within cosmological simulations 

of random volumes have been made by several groups (e.g. Katz, Weinberg, & Hernquist 1996; 

Tissera, Lambas, & Abadi 1997; Pearce 1998). "Galaxies" within these simulations are dense 

blobs of cooled gas with internal properties hitherto unresolved. The aim of this chapter is to 

explore the effects of incorporating a selection of star formation and feedback prescriptions 

(applied to various kinds of simulations) into cosmological simulations, with the sole objective 

of reducing the global amount of gas that cools. Al l simulations performed in this chapter use 

Version 3 of HYDRA , as detailed in Chapter 3. The evolution of both baryonic (gas) and dark 
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matter species are followed using a total of N particles. Both species interact via gravity, whilst 

the gas can adiabatically heat and cool, shock heat and radiatively cool. The cooling function 

used is identical to that used in Simulation 3 of the previous chapter (taken from the work of 

Sutherland & Dopita 19931; see also Figure 4.1). 

The remainder of this chapter is organised as follows. In Section 5.2 the efficiency of radiative 

cooling is examined by studying its dependence on numerical resolution, the size of the simulation 

volume and the mass ratio of gas to dark matter particles. The effects of star formation are then 

studied in Section 5.3, comparing a set of twelve simulations, each testing different methods 

for converting gas into stars. A similar study is performed in Section 5.4, this time comparing 

simulations with differing feedback implementations. In Section 5.5, conclusions are drawn. 

5.2 The efficiency of radiative cooling 

5.2.1 Simulation details 

This section extends work accomplished in the previous chapter regarding the effects of numerical 

resolution on the thermal distribution of gas. Of primary interest is the change in the efficiency 

of radiative cooling as the resolution is varied. The effects of varying the size of the simulation 

volume and the ratio of dark matter to gas particle masses are also studied. 

Initial particle positions and velocities were generated in an identical fashion to those used in 

the previous chapter. To summarise, the standard cold dark matter (SCDM) model was adopted, 

hence setting Q = 1 (the density parameter), A = 0 (the cosmological constant) and h = 0.5 

(Hubble's constant in units of 100 k m s - 1 M p c - 1 ) . The amplitudes of the initial (linear) density 

fluctuations were determined by setting cr8 = 0.6 (the rms value for spheres of radius 8 h~l Mpc), 

in agreement with observations of rich clusters in the local universe. For the simulations with 

S = 10 h~l Mpc (as used in the previous chapter), the identical sequence of random phases were 

used so that the same large scale structure was produced. This relatively small box-size can easily 

produce fluctuations in any statistical measurement when the structure is changed. 

Table 5.1 lists the simulations that were performed and analysed in this chapter. Column 1 lists 

the run number while Columns 2 and 3 give the number of gas particles ( N s a s ) and total number 

of particles (N = Ngas + A^ark) used to sample the mass distribution. Columns 4-7 list the values 

of parameters that were varied in this study, namely the baryon fraction, box size, final (Plummer) 

softening length and the number of cells/side in the FFT mesh used by the PM algorithm. All other 

parameters were fixed at the values listed in Table 4.1. 
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Table 5.1. Various properties of the simulations analysed in Section 5.2. Column 1 indexes the simulations while 

Columns 2 and 3 give the number of gas and the total number (gas + dark matter) particles. Columns 4-7 lists values of 

the parameters that were varied in this study, namely the baryon fraction (Column 4), the simulation box size (Column 

5), the final (Plummer) softening (Column 6) and the number of cells/side in the F F T mesh (Column 7). The gas mass 

resolution of each simulation (defined in the text) is given in Column 8. Finally, columns 9-11 list the gas fractions in 

the uncollapsed ( / u ) , shocked (fs) and galaxy ( / g ) phases at redshift zero. 

Run N 
1 "gas 

N S / h ^ M p c t 0 / h _ 1 k p c L 9? / u fs h 

01 163 2 x 163 0.06 10.0 20.0 32 0.12 0.01 0.99 0.00 

02 24 3 2 x 24 3 0.06 10.0 13.0 32 0.42 0.02 0.75 0.23 

03 32 3 2 x 32 3 0.06 10.0 10.0 64 1.0 0.02 0.63 0.35 

04 48 3 2 x 48 3 0.06 10.0 7.0 64 3.3 0.02 0.56 0.42 

05 64 3 2 x 64 3 0.06 10.0 5.0 128 7.9 0.02 0.55 0.43 

06 64 3 2 x 64 3 0.06 20.0 10.0 128 1.0 0.03 0.65 0.32 

07 163 32 3 0.125 10.0 20.0 32 0.12 0.03 0.70 0.27 

08 24 3 48 3 0.125 10.0 13.0 32 0.42 0.03 0.60 0.37 

09 32 3 64 3 0.125 10.0 10.0 64 1.0 0.03 0.56 0.41 

10 163 2 x 163 0.125 10.0 20.0 32 0.12 0.01 0.98 0.01 

11 24 3 2 x 24 3 0.125 10.0 13.0 32 0.42 0.02 0.66 0.32 

12 32 3 2 x 32 3 0.125 10.0 10.0 64 1.0 0.02 0.58 0.40 

The simulations have been subdivided into three groups, separated by solid horizontal lines in 

Table 5.1. The first set (runs 1 to 5) was chosen in order to analyse the effects of increasing the 

resolution of the simulation within a fixed volume. This is similar to comparison 9 of Chapter 4, 

making two changes in addition to using a later implementation of HYDRA . Firstly, the range of 

N has been extended to include a simulation with TV = 2 x 64 3; the range in gas particle masses 

is now 64, from ~ 6.4 x 10 7 — 4.1 x 1 0 9 / i _ 1 M 0 . Secondly, the final softening length was varied 

as eo <x m 1 / 3 , where m is the particle mass. This choice of scaling for the softening is commonly 

adopted since it allows for increased force resolution with larger N, without changing the typical 

timescales for two-body encounters The value of e0 was normalised in which it was set equal to 

10 h~x kpc for run 3. The evolution of the softening is also determined by the number of FFT 

cells (the initial softening is set to the length of 0.3 FFT cells), which can only take values that are 

integer powers of two. The value of L was set equal to the nearest integer power of two greater 
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1/3 —1/3 

than or equal to 2./VD^RK. Hence for runs 1,3 and 5 the softening scales proportional to N D J K at all 

times. 

The second group (run 6, along with run 3) was devised to test the effect of varying the box size 

at fixed resolution. The difference in volume between the two runs is a factor of 8. A larger box 

will resolve more larger mass haloes at a frequency determined by the underlying mass function, 

itself determined by the choice of initial power spectrum. The number of FFT cells is set as above 

and the softening is fixed between the runs, since the mass resolution is fixed. 

Finally, runs 7-12 were performed in order to study the effects of using unequal mass particles 

between the two species (the mass of a gas particle is typically Qb/Qo times the mass of a dark 

matter particle in cosmological simulations, such that the mass distribution for each species is 

sampled using equal numbers of particles). This was achieved by labelling every eighth particle 

as a gas particle, the remaining being dark matter. A value of Q\> = 0.125 was chosen in order 

to give equal masses. Although this is around twice the value constrained by nucleosynthesis 

measurements (for the SCDM model), the choice is made for comparative purposes only. A second 

set of runs was also performed (10-12) identical to runs 1-3 except having fib = 0.125 in order 

to provide a fair comparison to runs 7-9. The number of FFT cells was chosen for runs 7-12 as 

above; the final softenings were scaled with the gas particle mass. 

5.2.2 Gas properties at z = 0 

As in Chapter 4, the baryons are split into three phases depending on their densities and tempera

tures. Figure 5.1 shows the density-temperature phase diagram of the baryons at z — 0 for run 3. 

Contrasting this plot with the top-left panel of Figure 4.2, it is evident that the hard edge at low 

density is no longer present, since the uncollapsed gas now resides on an adiabat at densities below 

the mean value. This is because the SPH neighbour search is no longer limited to the local 27 PP 

cells. The smoothing length defines a sphere that now always contains, on average, ./VSPH particles 

for every gas particle. 

The phase boundaries are defined similarly to those in shown in Figure 4.2. The uncollapsed 

phase is defined to be that with T < 0.3K and p < (p), hence picking out the particles on the 

adiabat. Galaxy phase material is defined as the region with T < 3 x 10 4K and p > 500 (p). The 

rest of the gas is marked as the shocked phase. The choice of boundaries are appropriate for all of 

the runs listed in Table 5.1. 
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Figure 5.1: The p — T phase diagram for baryons in run 3 at redshift zero. Density is in units of the mean value of the 

gas while temperature is in Kelvin. Boundaries for the three defined phases are also marked. 

The gas mass resolution of each simulation is defined by the following parameter 

10 9 

K = T T j - , (5.1) 
m g a s / M 0 

hence a gas particle with a mass of 1O 9 M 0 will have a value of 3? = 1. Values of 3? for each 

simulation are given in Column 8 of Table 5.1. For the first group, simulations with values of 

5t below unity have dark matter particle masses above the critical mass for significant two-body 

heating of the gas by the dark matter particles (Steinmetz & White 1997; see also Figure 4.8). 

Hence only runs 4 and 5 have dark matter particle masses comfortably below the critical value. 

Run 6 has the same critical mass as run 3, while for runs 7-12, the critical masses are smaller 

than their counterparts with the same number of gas particles, since the baryon fraction is higher. 
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Figure 5.2: Fractions of baryons in the three phases at redshift zero as a function of the gas mass resolution. Values for 

the uncollapsed phase are plotted as triangles, the shocked phase as octagons and the galaxy phase as squares. The solid 

shapes are the results from run 6, while values from runs 1-5 are joined by solid lines, runs 7-9 are joined by dashed 

lines and runs 10-12 by dotted lines. 

Furthermore, runs 7-9 have equal gas and dark matter particle masses, causing an additional 

increase in the value of the critical mass. 

Columns 9-11 of Table 5.1 list the z = 0 gas fractions in the uncollapsed ( / t t ) , shocked (/ , ) and 

galaxy ( f g ) phases. These are also illustrated in Figure 5.2, where values are plotted against 5i. 

Results for runs 1-5 are joined by solid lines, results for run 6 are shown as solid shapes and results 

for runs 7-9 and 10-12 are joined by dashed and dotted lines respectively. For uncollapsed gas, 

measured values are marked using triangles, shocked gas fractions are represented using octagons 

and galaxy phase gas fractions by squares. 
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The amount of uncollapsed gas is effectively constant for all runs, at 2 per cent of the total. 

This is far less than the amount of uncollapsed gas present in the fiducial simulation in Chapter 4 

and is due to the different SPH implementations. The version of HYDRA used here has improved 

shock capturing through the use of a different algorithm for the artificial viscosity (see Thacker 

et al. 1998), leading to more efficient heating of the gas within haloes at the resolution limit of 

simulations. 

Significant differences between the fractions in each phase are only evident for the shocked 

and galaxy phases, with the amounts controlled by the efficiency with which the gas can cool. 

Firstly, all of the runs have values of / g that are significantly different from the amount of cold 

gas and stars observed in nearby galaxies. Ignoring runs 1 and 10 (with drastically low values), 

the minimum fraction of gas within the galaxy phase is 23 per cent. For an f2 = 1 universe, the 

observed fraction is around a factor of two lower (Fukugita, Hogan, & Peebles 1998). 

As expected (and indeed demonstrated for a smaller set of simulations in the previous chapter), 

the fraction of gas in the galaxy phase rises with resolution for all comparisons, at the expense 

of the shocked gas fraction. For the first comparison (runs 1-5) the amount of galaxy phase 

gas increases from zero at the lowest resolution to about 43 per cent for the highest resolution. 

Comparing run 6 to 3 (3ft = 1) where the size of the simulation volume differs by a factor of 8, the 

fractions of gas in each phase are within a few per cent of one another. Note that an intrinsic level 

of scatter will be present due to the small size of both volumes. 

For runs 10-12 (i.e. the dotted lines in Figure 5.2) the fraction of galaxy phase gas is larger than 

for runs 1 -3, with the difference increasing with resolution. The larger baryon fraction in the former 

simulations has enabled more gas to cool, as found in the previous chapter. Comparing runs 10-12 

to runs 7-9 (where the gas and dark matter particles have equal masses), the difference between the 

galaxy phase fractions (comparing runs with equal 3ft) decreases with increasing resolution. This 

can be explained as follows. For the smallest value of 3ft the amount of two-body heating of the gas 

by the dark matter particles is less severe in the run with equal mass particles. Thus significantly 

more gas has cooled in this case. As the resolution increases, two-body heating becomes less 

effective and the use of unequal mass particles becomes less important. 

Another significant point of discussion regarding Figure 5.2 is the apparent convergence in the 

galaxy phase fraction (and also the shocked phase fraction) at the highest resolutions studied, in 

particular the two points with 3ft = 3.3 and 3ft = 7.9. The simplest explanation to the relatively 

small difference between these two values is that it reflects the additional mass in resolved haloes 

in the 3ft = 7.9 simulation. Since the mean cooling time in haloes at the resolution limit of both 
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simulations (around 10 particles) is considerably smaller than the age of the Universe, it would be 

expected that the additional mass fraction reflects the additional amount of cooled gas (of course 

this argument neglects halo substructure). A useful gauge for calculating the mass in haloes is to 

use the Press-Schechter ansatz (Press & Schechter 1974). This predicts that only a further ~ 1 

per cent of the total mass in the volume is resolved into haloes in the 3? = 7.9 simulation, in 

agreement with the additional fraction of gas in the galaxy phase. Hence, the apparent convergence 

is somewhat illusory, due the steep drop at lower resolutions where the level of artificial two-body 

heating becomes significant. A thoroughly consistent measurement of the galaxy phase fractions 

at both higher resolutions and larger simulation volumes wil l require a substantial increase in 

computational effort. 

5.2.3 Evolutionary properties of the gas 

The amount of gas in the uncollapsed, shocked and galaxy phases for runs 2-6 is presented in 

Figure 5.3, plotted against both time and redshift. Similarly to Section 4.3.3, the temperature 

threshold was modified to T < 0.3(1 + z)K, allowing for the adiabatic expansion of the un

collapsed gas. The evolution of the phases is clearly illustrated for z < 10 (the first output time 

of the simulations). A l l simulations plotted show qualitatively similar trends. A l l of the gas is 

initially uncollapsed, but more than half becomes shocked by z = 5, due to the formation of the 

first resolved structures. By this time, the fraction of gas that has cooled to high density (and hence 

enters the galaxy phase) starts to rise, continuing to do so until the present day. Both the shocked 

and uncollapsed phases are progressively depleted for the majority of the time. The former happens 

as more and more gas falls onto collapsed objects, however the consequent increase in the shocked 

gas is outweighed by the amount cooling into the galaxy phase. 

Comparing this scenario (in particular, run 3 with 5? = 1) to Figure 4.3, there are apparent 

differences in the evolution of each phase. The enhanced shock capturing ability in the version of 

HYDRA used in this chapter increases the amount of gas in the shocked phase by more than 20 per 

cent by z = 5. This also caused the amount of galaxy phase gas to rise. As a consequence, the 

amount of uncollapsed gas is greatly reduced. 

When the resolution is increased, no significant difference is made to the amount of uncollapsed 

gas at any time. The amount of gas within the shocked phase does not vary significantly until 

the gas begins to cool, causing the shocked fraction to peak and start decreasing around z = b. 

Simulations with higher resolution cause this peak to move to lower values at earlier times, due 

to the presence of smaller denser haloes, within which the gas can cool more efficiently. After 
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Figure 5.3: Values of the uncollapsed, shocked and galaxy phase fractions as a function of redshift for runs 1-6. Both 

time (in Gyr) and redshift are plotted along the horizontal axis. 

z ~ 1, all of the simulations have galaxy phase fractions increasing more or less at the same 

rate. For the simulations with 3? = 3.3 and 3? = 7.9 (the two highest values), the evolution of 

the phases fractions are similar. The same can be said for the runs with S = 10 h^1 Mpc and 

5 = 20 h"1 Mpc: only differences within a few percent are evident at all times. 

The gas cooling rate is shown explicitly for runs 2-6 in Figure 5.4, again plotted against both 

time and redshift. Al l of the simulations plotted exhibit a strong peak in the cooling rate around 

z ~ 3, before an exponential-like decay until z — 0. Increasing the resolution moves the peak to 

higher values at earlier times, as more of the gas cools in the newly resolved objects. Doubling the 

box-size makes no significant difference to the cooling rate. 
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Figure 5.4: The gas cooling rate density (in M 0 / Mpc 3/yr) for runs 1-6. Time (in Gyr) and redshift are labelled on the 

horizontal axis. 

5.2.4 Summary 

In this section, several issues pertaining to the numerical method of cosmological simulations 

were examined, specifically to test the effects they have on the radiative cooling efficiency of the 

gas. Three sets of simulations were performed to analyse the effects of resolution, the size of the 

simulation volume and the ratio of gas to dark matter particle masses. As in Chapter 4, the gas 

was split into three phases: uncollapsed gas, shocked gas and galaxy phase gas (material that has 

cooled to high density). 

Increasing the resolution of the simulation allows smaller objects to be resolved, in which more 

gas can cool at early times. Significantly more gas has cooled by z = 0 than is observed in the 

local universe for the majority of the simulations studied. The cooling rate of the gas is strongly 
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peaked around z = 3, moving to larger values and higher redshift for higher resolution. For the 

lowest resolution simulations studied, the rise in the fraction of cooled gas is steeper than it is for 

the highest resolution simulations. The former is within the regime where two-body heating of the 

gas by the dark matter particles is significant. 

Increasing the simulation volume by a modest factor (doubling the length of the box) makes no 

significant differences to the amount of gas in each phase at any time, even though these values 

are affected by intrinsic scatter due to the small volumes that were used. 

Finally, using a mass ratio of unity between the gas and dark matter particles showed that 

significantly more gas cooled in this case for the lowest resolution simulation than when equal 

numbers of gas and dark matter particles were used. As the resolution increases (and two-body 

heating effects become less severe) the results converge. 

5.3 Star formation 

In this section, various methods for turning gas into stars are compared to each other within the 

context of cosmological simulations. Al l of the star formation prescriptions follow the same basic 

procedure. At the end of each timestep, a subset of gas particles are identified that are eligible to 

form stars. A fraction of this gas is then converted into stars, determined by a local star formation 

rate. Subsequent evolution of the stars is then due to the force of gravity only. 

To provide a fair comparison, identical initial conditions to run 3 of Section 5.2 were used for 

every simulation in this study. Although the resolution of the simulations is modest, it allowed the 

necessary comparative set of tests to be completed on a workstation within a reasonable timescale. 

The effects of resolution wil l be investigated in future work. 

5.3.1 Overview of prescriptions 

5.3.1.1 The Pearce method 

The first two simulations studied, which will hereafter be referred to as P E A R C E 1 and P E A R C E 2 , 

use the p + T method implemented by Pearce (1998), who also used it to study the effects of star 

formation within cosmological simulations. Gas particles are eligible to form stars i f they satisfy an 

overdensity criterion, 8 > <5* and a temperature criterion, T < T*. The critical temperature is T* = 

10 5K and the critical overdensity is <5» = 5000 for P E A R C E 1 and <5* = 50000 for P E A R C E 2 . (Note 

that the choice of parameters isolates material that must have radiatively cooled, falling within the 

galaxy phase defined in the previous section.) A star formation rate is not imposed, rather every 
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gas particle that satisfies the above criteria is instantaneously converted into a collisionless star 

particle 

The overdensity threshold chosen by Pearce (1998) was <5* = 550, who justified this value by 

arguing that the fraction of gas converted into stars by z — 0 was close to the observed value. 

For the parameters used in his simulations, the threshold is only a factor of a few smaller than the 

maximum resolved gas density. (This can be estimated by considering a gas particle surrounded by 

a sphere of radius 2hmm, which encloses a further NSPH neighbours.) In this study, the effective 

maximum density is around the value chosen for P E A R C E 2 ; P E A R C E I used a threshold 10 times 

smaller. 

5.3.1.2 The hmin method 

The third simulation (HMIN) used an even simpler prescription. As in the Pearce method, gas 

particles are identified with T < 10 5 K, as well as those with SPH smoothing lengths equal to the 

minimum value (hmm — s/2, where s is the gravitational softening length), and converted into 

stars. The only additional free parameter (when compared to a simulation with no star formation) is 

the temperature threshold. The smoothing length constraint acts like a density threshold: particles 

with h — hmin will have densities around the maximum resolved by the SPH algorithm. Since / i m j n 

evolves proportional to the gravitational softening, at times before z ~ 1 it acts like an overdensity 

threshold (i.e. fixed in comoving co-ordinates) and afterwards a physical density threshold. 

5.3.1.3 The Summers method 

The fourth simulation, labelled SUMMERS 1, used the method detailed by Summers (1994), who 

also studied the effects of star formation within cosmological simulations. In his method, gas 

particles are instantaneously converted into stars i f they satisfy a temperature criterion, T < 3 x 

10 4K and a physical (number) density criterion, n > 0.1 c m - 3 . Additionally, eligible gas particles 

must also be within overdense regions, 6 > 10, so that star formation does not occur within shallow 

potentials at high redshift, when the mean density of the universe is much higher ((p) a (1 + z)3). 

The density threshold was chosen by Summers since he argued its value is around the minimum 

where star formation is observed to occur within disk galaxies. For the simulations performed in 

this study, the threshold corresponds to a baryon overdensity, S ~ 3.5 x 105 at z = 0 (assuming a 

gas of primordial composition with = 0.59). This is around an order of magnitude higher than 

the maximum density reliably resolved by the SPH algorithm, for the simulations studied in this 

chapter. This prompted the study of an additional simulation (SUMMERS2) , performed with the 

lower threshold, n > 0.01 c m - 3 . 
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5.3.1.4 The Schmidt method 

The sixth simulation carried out (labelled SCHMIDT) used a prescription based on the Schmidt law 

(Schmidt 1959; see also Kennicutt 1998 and references therein), a parameterisation of the density 

dependence of the star formation rate, inferred from the atomic gas distributions of nearby galaxies 

S S F R = A E g i , (5.2) 

where S G A S and E S F R are the surface gas and star formation rate densities, A is a normalisation 

constant, controlling the overall efficiency of star formation and N is typically 3/2. For this study, 

Equation 5.2 is converted into a relation for the mass density of the gas following the work of 

Mihos & Hernquist (1994), who used it to study the star formation properties within disk galaxies 

M B a s - A nl<2 (5 3) 

where M s a s / M g a s is the mass fraction of gas converted into stars per unit time interval. Gas 

particles are eligible to form stars i f they are within overdense regions (6 > 10, as in the Summers 

method) and a convergent flow, V . v < 0, where v is the peculiar velocity of a gas particle. 

Equation 5.3 is applied to each eligible particle by calculating the fraction of its mass that would 

form stars over the timestep, p — A (p/ (p^^At. I f the condition, r/p < 1 (where r is a random 

number drawn between 0 and 1) is satisfied, the gas particle is converted into a star particle. For 

this study, a normalisation constant of A = 5 x 1 0 - 4 c m 3 / 2 g - 1 / 2 s - 1 was adopted, inferring a star 

formation rate of around 2 M 0 v r _ 1 at an overdensity of ~ 5 x 10 4. 

5.3.1.5 The Navarro method 

The seventh simulation, labelled NAVARRO 1, the method of Navarro & White (1993) was adopted, 

who used it in their study of the formation and evolution of a centrifugally supported disk 

from a rotating isothermal sphere. This is a popular method that has been used by several other 

groups with minor modifications (e.g. Steinmetz & Miiller 1995; Tissera, Lambas, & Abadi 1997; 

Carraro, Lia, & Chiosi 1998). Gas particles are eligible to form stars i f they are within a convergent 

flow (V.v < 0) and have cooling times shorter than the local dynamical time 

_ 3pgaskT _ / 37r 
rc°o1 ~ 2pmpA(T) < T d y n ~ V 1 6 G P g a s ' P ' 4 ) 

where A(T) is the cooling function. Navarro & White note that Equation 5.4 is readily satis

fied providing the gas density exceeds a critical value, which, for a primordial composition is 

p > 7 x 1 0 ~ 2 6 g c m - 3 . (For this study, the same density constraint was applied, even though 

the gas was assumed to have a fixed metallicity of Z = 0.5Z&. Other authors, for example 
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Carraro, Lia, & Chiosi 1998 prefer to use Equation 5.4, which explicitly includes the metallicity 

of the gas.) The density threshold is almost identical to that used in SUMMERS 1 (n = 0.1 c m - 3 is 

approximately equivalent to p = 10~ 2 5 g e m - 3 ) . 

Once a particle has been identified as eligible for star formation, its star formation rate is 

calculated by the formula, 

dPgas _ d /?» _ c»/? g a s ^ 
d t d t i * 

where = Tdyn and c* = 1. Stars are formed in quantized masses of factors of two, hence the gas 

density halves in the time interval, At* = ln2£*. At a time At* after the gas particle is eligible or 

has last formed stars, its mass is halved into one gas and one star particle, which both inherit the 

phase space co-ordinates of their parents. When the mass of the gas is less than 5 per cent of its 

original mass, the remaining fraction is converted into stars. 

The prescription was repeated for an additional simulation (NAVARRO2), with one exception. 

Rather than create new particle masses, gas particles were converted into stars determined by the 

rate equation 

p = 1 - exp (^r^) • (5-6) 

As in SCHMIDT, this is applied to each particle as a probability by drawing a random number 

between 0 and 1; the particle is converted into a star particle i f the ratio r/p < 1. 

For simulation 9 (NAVARR03), the previous method was repeated with a critical density of 

p > 1 0 - 2 6 g e m - 3 , equivalent to that used in SUMMERS2. 

5.3.1.6 The Katz method 

The tenth simulation, labelled KATZ 1, replicates the star formation method used in the cosmolog

ical simulations studied by Katz, Weinberg & Hernquist (1996; see also Katz 1992). Four criteria 

are used to determine whether a gas particle is eligible to form stars: the divergence criterion, as 

used in SCHMIDT; the physical density threshold used in SUMMERS 1; an overdensity threshold, 

S > 55.7 and a "Jeans instability" condition. The Jeans condition is satisfied i f 

h 1 
- > / A n , (5.7) cs v47rG/9g a s 

where h is the particle's SPH smoothing length and cs is the local sound-speed of the gas. This 

condition depends on the resolution of the simulation since h is limited by the gravitational 

softening. 

If a gas particle is eligible to form stars, the same star formation rate is applied as in NAVARRO 1, 

except that t* = max(r c | y n , r c o o i ) . For particles with T < 30000K, t* = T d y n , since the cooling 
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Table 5.2. Details of the star formation prescriptions tested in this chapter. Column 1 lists the simulations performed 

while Columns 2 and 4 give details of the star formation methods, namely the eligibility criterion and the mechanism 

for converting gas into stars (details in the text). 

Simulation Eligibility Criteria Conversion Mechanism 

PEARCE 1 8 > 5000; T < 10 5K instantaneous + conversion 

PEARCE2 8 > 50000; T < 10 5K instantaneous + conversion 

HMIN h < hmm; T < 10 5K instantaneous + conversion 

SUMMERS 1 8 > 10; n > 0.1cm" 3; T < 3 x 10 4K instantaneous + conversion 

SUMMERS2 8 > 10; n > 0.01cm- 3; T < 3 x 10 4K instantaneous + conversion 

SCHMIDT V . v < 0; 8 > 10 s.f. rate + conversion 

NAVARRO1 V . v < 0; p > 7 x 1 0 " 2 6 g c m " 3 s.f. rate + creation 

NAVARR02 V . v < 0; p > 7 x 1 0 " 2 6 g c n r 3 s.f. rate + conversion 

NAVARR03 V . v < 0; p > 1 0 " 2 6 g c m " 3 s.f. rate + conversion 

KATZ1 V . v < 0; 8 > 10; n > 0 .1cm - 3 ; r j > r d y n s.f. rate + dual identity 

KATZ2 V . v < 0; 8 > 10; n > 0.1cm" 3; r j > r d y n s.f. rate + conversion 

KATZ3 V . v < 0; 8 > 10; n > 0.01cm" 3; r j > r d y n s.f. rate + conversion 

time becomes longer than the age of the Universe as T —> 10 4 K. Stars are created i f r/p < 1, 

using Equation 5.6. Rather than convert whole gas particles into star particles, this method gives 

each particle a dual identity (the so-called Schizophrenic method ; see also Mihos & Hernquist 

1994), by allowing it to carry both a gas mass and a stellar mass. For every gas or dual particle 

satisfying r/p < 1, a fraction, e» = 1/3 is converted into collisionless material. Gravitational 

forces are calculated using the total mass and hydrodynamical forces using only the gas mass. 

Once the gas mass has dropped below 5 per cent of its original mass, the particle becomes purely 

collisionless. 

Simulation 10 (KATZ2) used the previous method with e* = 1. Hence at any time, particles were 

either gas or stars but not both. The final simulation run (KATZ3) was identical to KATZ2 except 

that the density threshold was lowered to that used in SUMMERS2, i.e. n > 0.01 gem" 3 . 

5.3.1.7 Summary 

The various star formation prescriptions are summarised in Table 5.2. Column 1 lists the simula

tions run and columns 2 & 3 give the eligibility criteria and mechanisms for incorporating stars. 
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Figure 5.5: Cumulative mass functions of the galaxy population for different values of the (dimensionless) linking 

length, 6, for P E A R C E l . Numbers in brackets correspond to the total numberof galaxies found by the group-finder. 

5.3.2 Galaxy selection 

Galaxies were selected by extracting a subset of particles consisting of all star particles plus 

the gas particles with p > 500 (p) and T < 3 x 10 4K (these limits were used to define the 

galaxy phase Section 5.2). This subset was then passed through a friends-of-friends group-finder, 

linking particles together within a fixed separation, parameterised by the dimensionless parameter, 

b (c.f. Section 4.3.4). Any linked objects with constituent particle numbers smaller than -/VSPH 

(i.e. 32) were discarded, producing the final galaxy catalogue. 

Figure 5.5 illustrates the cumulative mass function of galaxies at z = 0 in P E A R C E l for b = 

(0.05,0.1,0.2,0.5). The number of galaxies in each catalogue is printed in the top-left of the 

figure. Unlike simulations with no star formation, the mass functions are sensitive to the choice 



Modelling star formation and feedback within cosmological simulations 120 

of b. The lack of dissipation in stellar material makes them more susceptible to disruption by tidal 

forces and mergers, producing objects that are less bound than their purely gaseous counterparts. 

To some extent this problem is numerical, since the potential wells of the galaxies are artificially 

shallow due to the large softening length employed. Hence, higher resolution simulations should 

at least partly alleviate the problem. 

One method for choosing b is that which maximises the number of galaxies in the catalogue. 

However this procedure must be treated with caution, since distinct objects within close proximity 

may be artificially linked together, even though the total number of galaxies increases. For this 

study, a value of b = 0.1 was chosen, in agreement with that used in Chapter 4. The number of 

galaxies in this catalogue is around 6 per cent less than the maximum value plotted in Figure 5.5. 

5.3.3 Results 

5.3.3.1 General properties at z = 0 

Table 5.3 lists some general properties of the twelve simulations at z = 0, plus the equivalent 

simulation without star formation (run 3 of Section 5.2; hereafter referred to as GAS). Columns 2 

and 3 list measurements of the efficiency with which each simulation was carried out. The former 

lists the number of timesteps taken to complete the simulation (from z = 24 to z = 0), while 

the latter gives the amount of CPU time used for each run, relative to GAS. To provide a fair 

comparison, the machine dependent clock rate was removed from each time by dividing the total 

time taken by the average time for the first ten steps. 

The least efficient method is NAVARRO 1, taking around a third longer to complete than GAS. 

The increase in the number of particles due to star formation increases the computational time 

spent calculating gravitational forces. The rest of the simulations all take around half of the time 

to complete than GAS, with the shortest being P E A R C E l , with one third. 

Column 5 gives the fraction of baryons (gas+stars) in the galaxy phase, / g , at z = 0. For all 

simulations, including the run with no star formation, / g = 0.34 ± 0.01. As was found by Pearce 

(1998), the conversion of cold dense gas into stars does not significantly affect the cooling rate of 

the gas. 

In Column 6, the fraction of baryons in stars, /stars, is listed for each run. The range is much 

wider for / s t a r s than it is for / g ) varying from 18 per cent (SUMMERS 1) to 28 per cent ( P E A R C E l ) . 

Increasing the overdensity threshold from 5000 ( P E A R C E l ) to 50000 ( P E A R C E 2 ) decreased the 

fraction in stars by 0.03, a relative change of ~ 10 per cent. When gas particles initially cool 

to 10 4 K, the majority of them have densities below 500 (p) (the minimum density of the galaxy 
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Table 5.3. General properties of the simulations at z = 0. Column 1 lists the simulation; Column 2 gives the number of 

timesteps taken to complete each simulation; Column 3 lists the total CPU time used (relative units); Column 4 gives 

the fraction of baryons in the galaxy phase; Column 5 gives the fraction of baryons in stars and Column 6 lists the 

number of galaxies in each simulation. 

Simulation •^steps CPU k /stars 

GAS 4366 1.00 0.35 0.00 74 

PEARCE1 2427 0.32 0.33 0.28 64 

PEARCE2 3581 0.51 0.34 0.25 70 

HMIN 2804 0.38 0.34 0.26 68 

SUMMERS 1 3732 0.56 0.35 0.18 70 

SUMMERS2 2626 0.37 0.34 0.26 66 

SCHMIDT 3227 0.48 0.35 0.24 64 

NAVARRO1 4686 1.33 0.35 0.19 69 

NAVARR02 3864 0.49 0.35 0.18 71 

NAVARR03 3318 0.47 0.34 0.25 70 

KATZ1 4223 0.67 0.35 0.18 71 

KATZ2 3975 0.63 0.35 0.18 75 

KATZ3 3095 0.43 0.34 0.25 78 

phase). However, the sudden lack of pressure support causes regions of cooled gas to collapse 

further under gravity, increasing in density (as illustrated in Figure 4.4). Eventually the gas will 

cross the density threshold for star formation and a higher threshold lengthens the time taken 

for a given particle to make this transition. HMIN has a similar stellar fraction to the previous two 

simulations. This is of no surprise since the smoothing length criterion acts like a density threshold, 

roughly equivalent to S = 50000 at z = 0. Since hmm varies as the gravitational softening, the 

threshold was initially ~ 8 times lower until z = 1, where it increased to the present value. 

A considerable difference in /stars is evident between SUMMERS 1 and S U M M E R S 2 . The latter 

run has approximately the same fraction of stars as in the previous simulations, while the former 

run has /stars = 0.18, a relative decrease of about 30 per cent. As was the case for P E A R C E I and 

P E A R C E 2 , the difference can be explained by the choice of density threshold - the value of the 

threshold in SUMMERS 1 (at z = 0) is around an order of magnitude higher than for P E A R C E 2 . 

Furthermore, this threshold is beyond the densities that the SPH algorithm can reliably resolve, 

and so the evolution of particles in this regime are purely determined by numerics. The density 
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threshold is fixed in physical co-ordinates, so at higher redshift, the equivalent overdensity is 

lower, decreasing proportional to ( 1 + z)3. At z = 3 the threshold is around 5500, similar to 

P E A R C E l . Similarly for SUMMERS2, the z = 0 overdensity threshold is approximately equivalent 

to P E A R C E 2 , decreasing to ~ 550 at z — 3. 

For SCHMIDT, the method of converting gas into stars is qualitatively different from the previous 

simulations since the probability of star formation at fixed density is non-zero for all gas particles, 

so long as they are within an overdense, converging region (as is the case when they are cooling 

within haloes). The number of stars at any given time is controlled by the value of the normalisation 

constant, A. The choice of A (5 x 1 0 - 4 c m 3 / 2 g _ 1 / , 2 s - 1 ) was made purely by trial and error, so 

that the fraction of stars at z = 0 agreed with that in P E A R C E 2 . 

NAVARRO 1 and NAVARR02 produce very similar stellar fractions even though the first creates 

stars as separate particles. Both simulations produce the same value of /stars as SUMMERS 1, while 

NAVARRO3 has value as SUMMERS2. Again, the choice of density threshold has determined the 

fraction of cooled material in stars at z — 0. The use of a divergence criterion (rather than a 

temperature threshold) as well as a star formation rate made no difference whatsoever. 

The methods of KATZl and KATZ2 produce the same fraction of stars, even though the former 

uses particles representing both gas and stars. Both these runs produced the same value as in 

NAVARRO 1 and NAVARR02, hence the "Jeans condition" has no significant effect on the amount 

of star formation that has occurred by z = 0. For gas particles with minimum smoothing lengths, 

where the condition is most stringent, the density threshold is always higher than the minimum 

density required to satisfy the Jeans condition. The same is true for K A T Z 3 , which produces the 

same fraction of stars as NAVARR03. 

The last column in Table 5.3 lists the number of galaxies in each catalogue. All runs contain 

~ 70 galaxies at z = 0 to within 10 per cent. There are no obvious systematic trends in the 

number of galaxies with other general properties. For example, a higher density threshold produces 

a larger number of galaxies when comparing SUMMERS 1 to SUMMERS2. However, the converse 

is true when comparing KATZ2 to KATZ3. 

5.3.3.2 Star formation rates 

For every star formation event in the simulations, the time and mass converted per particle was 

stored, allowing complete star formation histories to be constructed. These are illustrated in Fig

ure 5.6, plotted as star formation rate densities (in M 0 / Mpc 3/yr) against time, in Gyr. To reduce 

noise, the data was binned, with each bin 0.2 Gyr wide. 



Modelling star formation and feedback within cosmological simulations 123 

i i | i i i i | i i 

PEARCE1 

I I I | I I i I i r i ^ 

H M I N 
I I I I 1 I I 

PEARCE2 t 

SCHMIDT SUMMERS 1 SUMMERS2t 

NAVARRO 1 NAVARR02 NAVARR03 

o 
S 0.1 

KATZ1 KATZ2 KATZ3 

G 
2 0.1 

5 10 0 
t / G y r 

5 10 
t / G y r 

Figure 5.6: Star formation rate densities (in M©/ Mpc 3/yr) for all 12 simulations plotted against time, in Gyr. Each 

bin is 0.2 Gyr wide. 
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All simulations begun forming stars within the first Gyr or so. The exact value depends on 

two factors: the resolution of the simulation, which determines the time when the first haloes 

collapse, and the range of densities where star formation efficiently occurs. Since the resolution 

was fixed for all simulations studied, differences in the initial time are due to the second factor. 

Note, however, that increasing the resolution of the simulations will allow smaller mass haloes 

to collapse at earlier times, transferring more gas from the shocked phase to the galaxy phase (as 

discussed in Section 5.2). Since these haloes will have, on average, higher densities, the amount 

of star formation will also increase. 

The star formation rate of P E A R C E l rises sharply at t ~ lGyr, peaks at t ~ 2 — 3Gyr, before 

decaying for ~ lOGyr to the present day. Star formation was still occurring at the end of the 

simulation. The shape of the curve is very similar to the cooling rates illustrated in Figure 5.4, 

hence a substantial fraction of the gas was rapidly converted into stars once it had cooled. Contrary 

to this, P E A R C E 2 shows a more hump-like function, with the bulk of the star forming activity 

occurring at later times (the main peak is around 6 Gyr). The area under the curve is also smaller 

than for P E A R C E l as it is proportional to the value of /stars- As discussed earlier, the higher 

overdensity threshold in this simulation induces a delay in the conversion of many of the cooled gas 

particles into stars. This also acts to reduce the amount of stars at any given time. The depression 

in the P E A R C E 2 star formation rate at t ~ 3Gyr is a statistical fluctuation, due to the small box-size 

employed. The majority of the gas that initially cooled within the simulation (forming the peak 

of the cooling rate at z ~ 3) is related to the formation of a single object, the largest halo in the 

volume at z = 0. For P E A R C E 2 , a substantial fraction of this gas did not form stars until a time 

after the formation of other haloes, causing a brief drop in the star formation rate. 

The star formation rate of HMIN is similar to P E A R C E l even though the fraction of baryons 

in stars by z — 0 is the same as P E A R C E 2 . Before z = 1 the value of hmin is equivalent to 

an overdensity threshold similar to the value used in P E A R C E 1 , hence the star formation rates 

are similar at these times (approximately t < 5Gyr). After z = 1 the value of hmm shrinks 

proportional to (1 + z), increasingly restricting star formation until z = 0, where its value is 

equivalent to the threshold used in P E A R C E 2 . 

The high physical density threshold used in SUMMERS 1 considerably suppresses the star forma

tion rate. The peak is evident, followed by a depression and a smaller peak at later times. Similarly 

to P E A R C E 2 , the two peaks are caused by the delay converting cooled gas into stars. However, the 

first peak is stronger than the second in SUMMERS 1 due to the threshold being constant in physical 
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co-ordinates, allowing more stars to form at earlier times. In SUMMERS2, where the threshold is 

10 times lower, the familiar shape of the star formation rate is recovered. 

SCHMIDT used a continuous star formation rate over the range of densities relevant to overdense, 

converging regions. Again, much of the stars formed at early times, although the star formation rate 

drops to zero by the present. All gas at high densities (where the rate is highest) was used up and 

the maximum density of available gas determined a star formation rate that became vanishingly 

small. 

Simulations NAVARRO 1 and NAVARR02 exhibit very similar histories, demonstrating that the 

spawning of new particles makes no significant difference to the average star formation rate. The 

high physical density threshold in both simulations produces a similar rate to SUMMERS 1. The 

same applies to NAVARR02 and SUMMMERS2, albeit using a threshold that was around an order 

of magnitude smaller. 

K A T Z l and KATZ2 also have similar star formation rates, showing that the use of particles with 

dual masses makes no difference to the average star formation rate. Again, these two simulations 

and KATZ3 show similar results to those with the same choice of density threshold. 

5.3.3.3 Galaxy mass functions 

Mass functions for the galaxy population at z = 0 are given in Figure 5.7. Due to the small num

bers of galaxies in the catalogues, the functions are shown in cumulative form. For comparison, 

the mass function of GAS is displayed in all panels. All mass functions are in extremely good 

agreement with each other, demonstrating that these simulations are insensitive to any changes 

brought on by including star formation. 

The mass functions are also plotted with the cold gas subtracted from each object in Figure 5.8. 

Again, GAS is shown in all panels. The functions for all simulations with star formation are 

lower than the GAS mass function at all masses, with the deviation increasing in magnitude as 

the mass decreases. On average, galaxies contain higher gas to stars ratios at lower masses than 

they do at higher masses. The merging process, prominent in all hierarchical theories, leads to the 

trend of larger mass objects being older. The number of galaxies with a fixed stellar mass varies 

strongly with the choice of density threshold employed. Simulations with the highest thresholds 

(and hence lowest values of / s t a r s ) show the largest deviations from the total mass function. The 

only exception to this is SCHMIDT, showing significantly larger deviations even though it has a 

comparable value of /stars- This simulation suffered from more disruption than the others, with 

only 75 per cent of the stars in galaxies where the others have typically 90-95 per cent. Doubling 

the linking length increased the former only by ~ 5 per cent. NAVARR02 and NAVARRO3 have 
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Figure 5.7: Cumulative mass functions of the galaxies (cold gas plus stars) at z = 0 for simulations with star formation. 

The mass function for GAS is also plotted in each panel. 

very similar functions, even though their conversion mechanisms are different; the same is the 

case for KATZ2 and KATZ3. 

5.3.4 Summary 

In this section, various prescriptions for turning gas into stars within cosmological simulations 

were studied and compared to an identical simulation without star formation (run 3 of Section 5.2). 
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Figure 5.8: Cumulative mass functions of the galaxies (stars only) at z = 0 for all simulations with star formation. The 

mass function for GAS is also plotted in each panel. 

Twelve simulations were run to study various criteria for converting gas into stars, many which 

have already been implemented in the literature. 

It was found that the amount of gas cooled by z — 0 in simulations with star formation did not 

vary significantly (less than 5 per cent) relative to the run with no star formation. The global 

fraction of baryons in stars by z = 0, as well as the star formation history, were primarily 

controlled by the choice of density threshold; a higher threshold lengthens the timescale of the 

star formation process within cooled objects. Simulations with prescriptions which efficiently 
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converted gas into stars produced star formation rates that were limited by the cooling rate of 

the gas. 

The number of galaxies formed within the simulations was constant to within ~ 10 per cent. 

Cumulative mass functions of the galaxies (containing both stars and cold gas) were in excellent 

agreement for all simulations studied, with no difference between these and the mass function of 

the simulation with no star formation. When the cold gas was subtracted for each galaxy (leaving 

only the stars), the mass functions turned over at lower masses, signifying a higher cold gas to 

stars ratio for lower mass galaxies than for higher mass galaxies. In general, this ratio increases 

with the density threshold, for a given mass. The fraction of stars in galaxies was around 90 per 

cent or higher for all simulations except SCHMIDT, where the value was around 75 per cent. 

Many additional constraints on the star formation process served to make prescriptions unnec

essarily complicated. Examples of these are a star formation rate based on the dynamical time of 

the gas, the use of separate particles to represent stars and a "Jeans condition" to identify regions 

unstable to gravitational collapse. 

5.4 Feedback 

5.4.1 Method 

In this section, a set of 9 simulations was performed to test various mechanisms for implementing 

feedback within cosmological simulations. The main requirement for any feedback prescrip

tion is a mechanism for transferring energy from the stars (once they have been around long 

enough for supernovae to occur) to the surrounding gas. These mechanisms can be split into 

2 categories: those which heat the surrounding gas by supplying feedback as thermal energy, 

and those which transfer energy in kinetic form, by adding perturbations to the gas velocity. 

Both methods are studied in this chapter, although emphasis is placed on the thermal method, 

widely believed to be the more plausible of the two for the range of scales considered (see 

Katz, Weinberg, & Hemquist 1996 for a discussion on this subject). 

Each simulation was run from the same initial conditions used in the previous section and gas 

was converted into stars following the P E A R C E l prescription. The primary reason for choosing 

this method is its simplicity. However as was shown, the majority of the methods studied in the 

previous section converted gas into stars at a rate dictated by the choice of the density threshold. 

The P E A R C E l mechanism instantaneously converts gas particles into star particles if the former 

have overdensities exceeding 5 x 103 and temperatures below 3 x 10 4 K. 
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5.4.1.1 Energetics 

The maximum amount of energy available from supernovae was calculated using the same ar

guments as Katz, Weinberg & Hernquist (1996) for all the simulations studied. Stars with masses 

greater than 8M0 are assumed to release 10 5 1 erg of energy into the surrounding gas. The mass fre

quency of new stars was calculated using the initial mass function (IMF) given by Miller & Scalo 

(1979), with lower and upper mass limits of O.1M0 and 100MQ respectively. This implies that the 

specific energy released in supernovae is ~ 3.7 x 10 1 5 ergg - 1 , or equivalently a temperature of 

2.9 x 10 7K l . 

The size of the timesteps in the simulations (typically 3 x 106yr) is considerably smaller than 

the lifetime of an 8M0 star (rg ~ 2 x 107yr). For this reason, the feedback energy was released 

gradually, using the following function 

tt S N (Ai) = 3.7 x 10 1 5 exp( -Af /r 8 ) ergg"1, (5.8) 

where At is the time since the star particle was formed. Each star particle releases energy until 

At = 200Myr, where «SN becomes negligible. 

5.4.1.2 Simulations with thermal feedback 

The first simulation, labelled T H E R M A L 1, used a feedback prescription based on the standard 

SPH smoothing technique to distribute «SN from each star particle to the surrounding gas par

ticles. This method was originally studied by Katz (1992) and has since been used by various 

groups (e.g. Navarro & White 1993; Summers 1993; Katz, Weinberg, & Hernquist 1996). When a 

gas particle is converted into stars, both its density and neighbour list are still maintained by 

the SPH algorithm (even though hydrodynamic forces are no longer applied). Each neighbour, 

providing it is a gas particle, receives a weighted contribution of the energy available at that time. 

Hence, a gas particle (labelled with subscript i) receives a total contribution to its thermal energy 

Aui = Y , W S N ( A < ) , — Wij, (5.9) 

where the sum is over all neighbouring star particles, labelled with subscript j, with masses nij and 

densities pj. The smoothing kernel, is averaged between pairs (Equation 3.30). Note that the 

efficiency of energy transfer in this method is resolution dependent. A larger number of neighbours 

1 T = (7 — l)/jm p / fc, where 7 = 5/3 is the ratio of specific heats at constant volume and constant pressure, for 

a monatomic ideal gas; /J = 0.59 is the mean molecular weight of a gas of primordial composition; rop and k are the 

mass of a proton and Boltzmann's constant respectively. 
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(NSPHX or a higher local density will increase the fraction of energy received by the surrounding 

gas. 

The efficiency problem was circumvented by the method used in the second simulation, T H E R -

M A L 2 . Rather than smoothing over near neighbours, each star particle adds a fraction, / t , of its 

energy to the nearest gas particle. A similar method was implemented by Gerritsen & Icke (1997) 

in their simulations of disk galaxies. A value of ft = 1 was adopted for this study, i.e. adding all the 

available energy at a given time to the nearest gas particle. Such an efficiency is highly unlikely in 

real supernovae environments. However a value of unity was chosen to test the maximum possible 

effect the feedback could have. 

The third and fourth simulations, labelled D E C O U P L E 1 and D E C O U P L E 2 , were identical to the 

first two, except that the cold gas was decoupled from the hot gas. Densities for gas particles with 

temperatures above 10 5K are calculated by only summing over near neighbours with temperatures 

above 12000K. This technique has already been applied to large cosmological simulations (see 

Pearce et al. 1999) to reduce the gas cooling rate around the largest galaxies (c.f. comparison 4 in 

the previous chapter). Within the context of feedback, it was studied to observe if it had any effect 

on the cooling rate of the reheated gas. 

The next two simulations, T W O P H A S E l and TWOPHASE2 were performed to further extend the 

method of D E C O U P L E 2 . As in the latter simulation, feedback energy is supplied to the nearest gas 

particle which can then be decoupled from surrounding cold gas if is hot enough. Two additions 

have been made, one to the conversion of gas into stars and one in the heating of the gas from 

feedback. Firstly, when the gas is eligible to form stars, a star formation rate is applied using 

Equation 5.6, with = r d y n ; Tdyn is the gas dynamical time given by Equation 5.4 and c* 

is a free parameter. This introduces a short delay in the formation of new star particles, at a 

frequency controlled by c*: for T W O P H A S E l , c* = 1 and for T W O P H A S E 2 , C» = 0.1. Hence 

cold gas is prevented from turning into stars in one timestep, which causes the feedback to lose its 

effectiveness for reheating cold gas before it can turn into stars. 

The second change is to inhibit the gas from cooling for a duration of Tdyn/c+, allowing 

reheated gas more time to equilibrate with any surrounding hot gas. The no-cooling approach 

was also used by Gerritsen (1997) who argued its validity essentially from the failure to model 

the multiphase nature of the ISM. As each supernova shell explodes, most of the energy is left 

behind in a hot, ambient medium with considerably lower density (and therefore longer cooling 

times) than surrounding cold gas (McKee & Ostriker 1977). It is evidently impossible to model 

such behaviour within cosmological simulations, where internal properties of the galaxies are 
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unresolved. Furthermore, the feedback scheme has to be most effective at the resolution limit of 

the simulation (where cooling times are shortest) with objects containing a few tens of particles. 

Therefore, the hope is that the thermal effects of supernovae are mimicked, when smoothed over 

scales of 10 kpc or so. 

5.4.1.3 Simulations with kinetic feedback 

The final three simulations (KINE T IC 1, K I N E T I C 2 and K I N E T I C 3 ) assume that the feedback en

ergy is transferred via kinetic perturbations. As in T H E R M A L 1, the energy is smoothed over near 

neighbours 

A v 2 = £ A / V M S N ( A ^ , (5.io) 
j m j pj 

where the label j runs over all neighbour particles and /„ is an efficiency parameter. For K I N E T I C 1, 

f v = 0.1, K I N E T I C 2 , / „ = 0.01 and K I N E T I C 3 , f v = 0.005. Kinetic feedback was first studied by 

Navarro & White (1993) and subsequently by Mihos & Hernquist (1994). 

5.4.2 Results 

5.4.2.1 General properties at z = 0 

Details of the simulations and some of their z = 0 properties are summarised in Table 5.4. The first 

three columns summarise the simulations studied and pertinent details of the feedback schemes. 

Column 4 gives the number of timesteps taken to complete each simulation. Results for the 

simulations with thermal feedback scatter between ~ 2500 - 3000 steps, similar to the number 

in the simulations including star formation only. All of the runs with kinetic feedback took more 

steps, with the number increasing with the value of fv. The velocity perturbations added to the 

gas are large enough to cause significant disruption of the galaxies. This leads to particles being 

ejected from the objects completely, with their high velocities (and the consequent shocking of 

surrounding gas) shrinking the size of the timestep. 

Columns 5 and 6 give the fraction of baryons in the galaxy phase, / g and the fraction of stars, 

/stars, in each simulation. For the first four runs, the values of / g and /stars are within 2 per cent of 

one another, whereas for the remaining five they are significantly smaller. Several conclusions can 

already be drawn from the data in Table 5.4. Solely adding thermal energy to the gas makes no 

significant difference to the global cooling and star formation rates. As discussed in Katz (1992), 

gas receiving feedback energy has high enough density to radiate it away rapidly. When all of the 

feedback energy is added to a star particle's nearest neighbour, thus increasing the efficiency of 
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Table 5.4. Details and properties of the cooled gas at the end of each simulation with star formation and feedback. 

Column 1 gives the label used for each simulation; column 2 lists the form of feedback used; column 3 gives the value 

of parameters used; column 4 lists the number of timesteps taken to evolve each simulation to z = 0; column 5 gives the 

fraction of baryons in the galaxy phase; column 6 gives the fraction of baryons in stars and column 7 lists the number 

of galaxies in each simulation. 

Simulation Form Parameter ^steps h /stars 

THERMAL 1 thermal 3188 0.34 0.28 67 

THERMAL2 thermal 2585 0.33 0.28 74 

DECOUPLE 1 thermal 2616 0.32 0.26 67 

DECOUPLE2 thermal 2541 0.32 0.26 62 

TWOPHASE1 thermal c* = 1.0 2753 0.20 0.15 46 

TWOPHASE2 thermal c* = 0.1 3001 0.17 0.13 48 

KINETIC 1 kinetic / v = 0.1 5060 0.04 0.02 1 

KINETIC2 kinetic / v = 0.01 3618 0.11 0.08 10 

KINETIC3 kinetic / v = 0.005 3117 0.14 0.12 22 

energy transfer, again no difference is made. The same is true when the hot gas is decoupled from 

the cold gas. 

The first simulations in which the cooling and star formation activity is significantly reduced 

are T W O P H A S E I and TWOPHASE2. These runs have cooled gas fractions in reasonable agreement 

with the observations. Reducing c* by a factor of 10 allowed less gas to cool. 

The runs with kinetic feedback show drastic reductions in both / g and /stars- The velocity 

perturbations added to the neighbours of star particles are sufficiently large to unbind material 

in each galaxy, preventing more of the gas from forming stars. Ejected particles are then shock 

heated and become part of the diffuse halo gas. The amount of material ejected from galaxies will 

be overestimated for two reasons. Firstly, the softening length (and therefore spatial resolution) of 

the simulations is larger than the scale lengths of observed galaxies with similar masses (a few kpc 

or so). Thus, the softened potential makes it easier for the perturbed gas to escape the gravitational 

confinement of the galaxy. Secondly, a significant degree of thermalization should occur in the 

reheated gas via shocks. Since these shocks are unresolved, none of the feedback energy can ever 

be dissipated. Hence, the value of /„ is sensitive to the resolution of the simulation. 

In Column 8, the number of galaxies (identified using the method described in Section 5.3.2 

with a linking length of b = 0.1) are listed for each run. The first 4 runs produced similar numbers 
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of galaxies, but the last 5 simulations produced significantly fewer. In simulations T W O P H A S E l 

and TWOPHASE2, the number of galaxies was reduced by ~ 25 per cent, relative to the first 

4. Simulation K l N E T l C l , with the largest value of /„ , produced only 1 object by z = 0. The 

remaining two ( K I N E T I C 2 and K I N E T I C 3 ) also produced fewer number of galaxies, ~ 16 per cent 

and ~ 34 per cent of the number without feedback ( P E A R C E 1, in the previous section, has 64 

galaxies). Although K I N E T I C 3 has roughly the right fraction of baryons in stars, the fraction of 

stars in galaxies is around 46 per cent. 

5.4.2.2 Star formation rates 

Figure 5.9 illustrates the global star formation histories in all of the simulations, plotted as the star 

formation rate density (in units M 0 / Mpc3/yr) against time, in Gyr. To reduce noise, the data are 

shown as histograms with the width of each bin equal to 0.2 Gyr. 

The first four simulations have star formation rates similar to that found when no feedback is 

included (run P E A R C E 1 in the previous section). Hence, feedback was ineffective at reducing the 

amount of star formation for these runs. The remainder of the runs show a decrease in the star 

formation rate, with the largest reduction occurring near the peak (at ~ 2 - 3 Gyr). The greater the 

star formation rate, the more energy becomes available to reheat the surrounding gas and prevent 

it from forming stars. Note that the characteristic shape is preserved in all runs with reduced star 

formation, i.e. the peak at early times followed by a relatively long decay. 

5.4.2.3 Mass functions 

Cumulative galaxy mass functions (including both cold dense gas and stars) are illustrated in 

Figure 5.10. The results have been split into four panels for ease of comparison; also plotted 

are the cumulative galaxy mass functions of P E A R C E 1 and GAS. The first four feedback runs 

(which show no significant decrease in the star formation activity) have mass functions that are 

not significantly different from the case when feedback is not included. Simulations T W O P H A S E l 

and TWOPHASE2 have galaxy mass functions of considerably smaller amplitude at all masses, 

with the former slightly higher than the latter (reflecting the amount of star formation). Hence, 

feedback is effective for the whole range of masses studied. Run K I N E T I C 1 is shown as a point 

since it contains only one galaxy. Runs K I N E T I C 2 and K I N E T I C 3 show the same trend as the 

previous panel. 

Cumulative mass functions of the galaxies with the cold gas removed are plotted in Figure 5.11. 

Again, the results have been split into four panels and the (gas) function of P E A R C E 1 has been 

overlaid. The first four runs show no significant difference in the stellar mass function when 
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Figure 5.9: The star formation rate density (in M© / Mpc3 /yr) plotted against time, in Gyr for each of the 9 simulations 

studied with feedback. Each bin has a width of 0.2 Gyr. 

compared to the run without feedback. Runs T W O P H A S E I and T W O P H A S E 2 have similar shape 

but reduced amplitude. Run K I N E T I C 1 is shown as a point. For the remaining two ( K I N E T I C 2 and 

K I N E T I C 3 ) , the amplitude is lower, but the shape is similar at the high mass end: the low mass 

end flattens off suggesting that the kinetic feedback is more effective within low mass objects (for 

which the binding energy is generally lower). 
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Figure 5.10: Cumulative galaxy mass functions for each of the 9 feedback runs. Also shown (in all panels) is the galaxy 

mass function for an identical run except with no star formation or feedback. 

5.4.2.4 Luminosity functions 

Figure 5.12 illustrates the cumulative K-band luminosity function of the galaxies for each of the 

9 simulations with feedback. The luminosity of each galaxy was calculated by first calculating 

the K-band luminosity per unit mass, IK, of each star particle using stellar population models 

(Bruzual A. & Chariot 1993); for this, all that is required is the lookback time to when each star 

particle formed. The K-band magnitude of the galaxy is then 

MK = -2.51og(/KTm,) + M K , 0 , (5.11) 

where T is the mass-to-light ratio (i.e. T > 1, allowing some fraction of stars to be brown dwarfs), 

?n* is the mass of each star particle and MK,O is the zero-point magnitude. Also shown in the Figure 
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Figure 5.11: Cumulative stellar mass functions for each of the 9 feedback runs. Also shown (in all panels) is the galaxy 

mass function for an identical run except with no star formation or feedback. 

is the best-fit Schechter parameterization of the K-band luminosity function from the Stromlo-

APM Redshift Survey (Loveday 2000), 

<f>{MK)dMK = 0.921^* exp(-L/L*) {L/L*)1+adMK, (5.12) 

where L/L* = exp(-0.921(AfK - M£)) , M£ = -23.58 + 51og/i, a = -1.16 and <f>* = 

0.012 h3 Mpc~ 3. 

A value of T has been chosen for each simulation in order to fit the bright-end (around M£) 

of each luminosity function. The first four simulations with thermal feedback fit the bright end 

but require T = 3. Since the feedback is ineffective at reducing the amount of cooled gas in 

these models, the galaxies are too bright. Models TWOPHASEl and TWOPHASE2 require more 
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Figure 5.12: Cumulative K-band luminosity functions for each of the 9 feedback runs (points). The dotted curve is the 

best-fit Schechter function to the data presented in Loveday (2000) and the dashed vertical line illustrates the value of 

M^. Also given, in the bottom-right of each panel is the mass-to-light ratio adopted for each function. 

modest values of T (the latter providing a good fit to the bright end with all the mass in visible 

stars). However, note that they also suffer from an excess of galaxies below M£. Model KINETIC3 

provides the best-fit with T = 1 but as discussed above, more than half of the stars have been 

stripped out of the galaxies in this run. 

5.5 Conclusions 

In this chapter the inclusion of star formation and feedback within cosmological simulations 

has been investigated in an attempt to reduce the amount of baryons that cool radiatively to an 

observationally acceptable value. Firstly, the efficiency of the radiative cooling process was studied 
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in detail, testing its sensitivity to the resolution of the simulation, the size of the volume and the 

mass ratio of gas to dark matter particles. One of these simulations with moderate resolution was 

then rerun with twelve different prescriptions of turning gas into stars. A second set of 9 tests was 

performed, exploring the effects of supernovae feedback. Conclusions from the work presented in 

this chapter can be summarised as follows 

1. Increasing the resolution of the simulation increases the fraction of gas that cools, as expected 

(and demonstrated previously, in Chapter 4). The fraction varies weakly with resolution for 

simulations with the highest values. However, as the resolution is lowered, the fraction of 

cooled material decreases dramatically. Low resolution simulations with equal mass gas and 

dark matter particles (achieved by increasing the number of dark matter particles relative to 

the number of gas particles) shows a much weaker trend than for their equivalents with equal 

numbers of particles. The amount of shocked gas varies to compensate for changes in the 

amount of cooled gas; only 2 per cent of the baryons is uncollapsed and in voids, a value 

insensitive to the resolutions studied. 

2. The cooling rate of the gas shows a strong peak at around z = 2 - 3 which both increases and 

shifts (weakly) to earlier epochs when the resolution is increased. 

3. Doubling the box-size of the simulation makes no significant changes to the phase fractions 

or cooling rate of the gas, even though intrinsic scatter, arising from the volumes studied, is 

present at some level. 

4. As found by Pearce (1998), a simple prescription for turning gas into stars, based on the 

densities and temperatures of the gas particles suffices. A suitable choice of temperature and 

density threshold picks out the gas that has cooled to the highest density, where star formation is 

most likely to occur. Additional constraints are unnecessary, as subsequent processes leading 

to star formation (such as Jeans instability) occur on scales well below what are presently 

attainable with cosmological simulations. 

5. The star formation rate is primarily controlled by the efficiency with which the gas can cool, 

providing the mass in galaxies is dominated by stars. The ratio of gas to stars in galaxies is 

only sensitive to the densities at which stars can efficiently form. 

6. The cooling rate of the gas is unaffected by star formation. No differences in the resulting 

mass functions of galaxies (cold gas + stars) are observed for simulations with and without star 
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formation. Mass functions excluding the cold gas have lower amplitudes, with larger deviations 

for smaller masses. 

7. Incorporating stars by spawning child particles or giving particles dual identity (as gas and 

stars) makes no significant difference to any of the quantities measured, at the expense of 

increasing computational effort relative to simply converting whole particles into collisionless 

star particles. The latter method can reduce the total CPU time by a factor of 2 when compared 

to a simulation with no star formation. 

8. Thermal feedback is ineffective at reducing the amount of cooled material since most of 

the energy is radiated away. Giving energy to one particle rather than smoothing over near 

neighbours does not solve the problem. Neither does solely decoupling the hot gas from the 

cold gas, as an attempt to lengthen the cooling times of reheated gas particles. 

9. Kinetic feedback has catastrophic effects on the galaxy population. While successfully reduc

ing the amount of gas that cools and forms stars, it easily disrupts the objects themselves, 

reducing the number of galaxies by a factor of 3 for an efficiency of 0.5 per cent; only 1 galaxy 

remains at z = 0 for an efficiency of 10 per cent. 

10. The only scheme that successfully reduced the fraction of cooled gas and stars, while producing 

reasonable numbers of galaxies was a scheme that prevented reheated gas from cooling for a 

brief period of time, based on the local dynamical time. The overall shape of the star formation 

rate function and the mass function are similar to the case with no feedback, however this 

method over-predicts the number of galaxies with K-band magnitudes fainter than M£ = 

-23.58. 

Future work will require to look at the effects of each feedback model at various resolutions 

- the most important test for any model is whether it stabilises the amount of gas that cools. As 

smaller haloes are resolved with shorter dynamical times, the feedback should be able to regulate 

the amount of star formation. 
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Chapter 6 

Simulations of a galaxy cluster 

Abstract. Preliminary results are presented for three simulations of a galaxy cluster within 

a flat, low density universe. The cluster was chosen from a cold dark matter cosmological 

simulation and resimulated with gas at higher resolution. Gas in the first simulation could 

only change its entropy through shocks. The second simulation also included the modelling of 

radiative cooling processes. The third additionally used a model for star formation and feed

back. Various properties of all three clusters are studied, such as their density and temperature 

profiles, as well as the mass distribution of the galaxies that have formed in the simulations 

with cooling. 

6.1 Introduction 

The origin and nature of galaxy clusters is a problem that has been attacked with numerical 

simulations for nearly thirty years; their relatively simple structure (when compared to the galaxies 

themselves) being a primary motivation. Early studies using collisionless N-body simulations 

demonstrated the feasibility of galaxy clusters as gravitationally bound systems, formed via 

gravitational instability in the expanding Universe (e.g. Aarseth 1963; Peebles 1970; White 1976). 

However, it was the development of models of the large scale structure in the universe, particularly 

the cold dark matter paradigm, that placed galaxy clusters within a robust cosmological context 

(Peebles 1980). Collisionless CDM simulations verified the existence of clusters in these models, 

as the most recent objects to have formed from the merging hierarchy of dark matter haloes 

(e.g. Davis et al. 1985 and references therein). 

The success of the CDM simulations, as well as the discovery of the X-ray emitting intracluster 

medium (ICM) prompted the extension of numerical models to include gas. Both Eulerian and 

Lagrangian codes were developed and subsequently applied to modelling the structure of the 

ICM, confirming the general belief that most of the gas is in hydrostatic equilibrium within 

the cluster potential (e.g. Evrard 1990; Thomas & Couchman 1992; Cen & Ostriker 1994; 

Navarro, Frenk, & White 1995; Anninos & Norman 1996; Bryan & Norman 1998; 
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Eke, Navarro, & Frenk 1998). Such studies formed the basis for the Santa Barbara Cluster 

Comparison Project, demonstrating the general widespread agreement of results, regardless of 

the numerical code used (Frenk et al. 1999). Such studies have also led to a variety of useful 

applications, such as testing the validity of cluster scaling relations in various cosmologies and 

the shape of the X-ray temperature function. The first example was an integral part of the model 

developed in Chapter 2, and both have been used particularly to discriminate between different 

cosmological scenarios. 

One of the key assumptions in the majority of these studies is that the intracluster medium 

(ICM) can be approximated as non-radiative, an assumption that is partly justified by the long 

cooling times in all but the central regions of clusters (Fabian, Nulsen, &Canizares 1991). At 

the very least, such a model cannot be reliably used to predict cluster properties based on their 

X-ray luminosity. The emission is a collisional process (thermal bremsstrahlung), scaling with 

the square of the density. Hence, most of the flux comes from the central regions of clusters 

where cooling is important. Work incorporating the effects of radiative cooling is still in its 

infancy, largely due to the increase in computational effort required to perform the simulations. 

Nevertheless, simulations have already begun to quantify the extent to which cooling affects 

the structure of the ICM (Thomas & Couchman 1992; (Katz & White 1993); Frenk et al. 1996; 

Suginohara & Ostriker 1998; Lewis et al. 1999; Pearce et al. 1999). Such work is crucial for com

parisons with, for example, the X-ray luminosity-temperature relation and the X-ray luminosity 

function of clusters. Unlike the non-radiative models, convergence has not been established be

tween groups over how the cooling should affect the X-ray properties of clusters, mainly due to the 

way in which the process is modelled. For example, Suginohara & Ostriker and Lewis et al. both 

conclude that cooling increases the luminosity of clusters when compared to estimates from non-

radiative models. However Pearce et al. argue that the opposite is true, because the former models 

overestimate the central cooling rate of the gas. 

Of equal importance are the effects of galaxy formation on the cluster. As discussed in the 

previous two chapters, radiative cooling already provides a first step, allowing gas to condense in 

the cores of galactic-sized haloes in less than a Hubble time (White & Rees 1978). Several groups 

have also examined the interaction of the cold dense knots of gas ("galaxies") with their environ

ment and each other, circumventing overcooling by failing to resolve the haloes where the cooling 

times are drastically short (Katz & White 1993; Frenk et al. 1996) Understanding the effects of 

the cluster environment on the galaxies is important since it provides information about the galaxy 

formation process itself (e.g. Dressier 1980; Butcher & Oemler 1984; Poggianti et al. 1999). 
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A vital link that is still missing between simulations and observations is the inclusion of a 

model for star formation and feedback. Star formation allows direct studies of, for example, the 

star formation rates and colour distributions of cluster galaxies. Stars also affect the dynamical 

evolution of the galaxies, since unlike gas, they do not suffer from the effects of ram pressure 

and drag as they move through the ICM. The importance of feedback processes is perhaps even 

more important within the cluster environment. Direct observational evidence already exists in 

the high metallicities of the ICM, and many other effects have also been attributed to the effects 

of feedback, such as constant density cores in the ICM mass distribution (see Chapter 2) and the 

slope of the X-ray luminosity-temperature relation. It must be re-iterated that feedback may also 

allow numerically stable results to be achieved, preventing the gas from cooling in small haloes at 

high redshift. 

This chapter presents preliminary work for a study of galaxy clusters, self-consistently mod

elling the properties of both the dark matter and gas (baryons) within a flat, low density CDM 

model. Results are presented for three simulations of a single object. The first simulation (referred 

to as A-clus) models the gas as non-radiative, which can adiabatically heat and cool as well as 

increase its entropy from shocks. The second simulation (G-clus) additionally models the effects 

of radiative cooling. Finally, a third simulation was run (S-clus) incorporating a model for both 

star formation and feedback that was studied in the previous chapter. It must be stressed that work 

on this project is still in progress and hence a full understanding of many of the results will require 

more analysis. 

The remainder of this chapter is organised as follows. In Section 6.2, the numerical method for 

simulating the cluster is presented, detailing the procedure used for resimulating haloes in large 

cosmological simulations at higher resolution. Results are given in Section 6.3 and is summarised 

in Section 6.4. 

6.2 The simulations 

Several methods exist for simulating the formation of clusters, the most popular being cosmolog

ical simulations of large, random volumes. The advantage of this method is that there is usually 

a reasonable number of clusters of varying masses in the box, ideal for examining statistical 

properties of the objects. Furthermore, the simulations also contain the correct large-scale tidal 

forces, crucial in determining the dynamical properties of haloes. Unfortunately, the size of the 

volume also limits the resolution of the simulation, for two reasons. Firstly, only a finite number 

of particles can be stored in memory at any one time. Secondly, the cycle time for each timestep 
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scales with the number of particles to varying degrees (see Chapter 3). The problem is even harder 

if the model includes gas. 

One solution to the problem, other than waiting for faster, larger computers, is to resimulate 

individual objects one at a time, selected from previously run cosmological simulations (known 

as parent simulations). Since the position, size and mass of haloes are primarily determined from 

evolution of the dark matter, parent simulations can be purely collisionless. The region that forms 

the object of interest can then be resampled at higher resolution (as well as the addition of baryons 

and additional physical processes, such as radiative cooling), and the resolution of the remaining 

volume can be degraded, since it is only used to provide the external forces. 

The cluster that is studied in this chapter was simulated using the resimulation method. The 

remainder of this section details the procedure that was followed. 

6.2.1 The parent simulation 

The parent simulation was selected from the set of GIF collisionless cold dark matter (CDM) 

simulations run by the Virgo Consortium, designed to be used for combined N-body and semi-

analytic studies of galaxy formation (e.g. Kauffmann et al. 1999). The chosen simulation used 

identical cosmological parameters to the ACDM model of Jenkins et al. 1998, i.e. h = 0.7 (the 

Hubble constant in units of lOOkms - 1 Mpc - 1 ) ; fi0 = 0.3 (the present value of the density 

parameter) and Ao = 0.7 (the cosmological constant in units of 3HQ). Structure was normalised 

using ag = 0.9, in agreement with the local abundance of rich clusters (Eke, Cole, & Frenk 1996; 

Viana & Liddle 1996). 

The parent simulation contains N = 16777216 dark matter particles within a box of length, 

S = 141.3 h~l Mpc. The mass of each dark matter particle is therefore ~ 1.4 x 10 1 0 /* - 1 M 0 . The 

(Plummer) softening length was set to ~ 70 h~l kpc at z = 50, where the simulation was started. 

The softening evolved such that it was fixed in comoving co-ordinates until z ~ 1.4, where it 

decreased to e0 = 30 h~l kpc at z = 0 (see Equation 3.20). 

6.2.2 The choice of cluster 

Candidate haloes were identified within the parent simulation by running a spherical overdensity 

groupfinder on the particles at z = 0 (see Section 4.3.4 for an overview of the groupfinder method). 

The cut-off radius (which will hereafter be referred to as the virial radius) was chosen such that the 

mean internal density was equal to 324 (p), as predicted from the spherical top-hat collapse model 

for the cosmological parameters adopted here. Only haloes with circular velocities in the range, 
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Vc = 600 - 800 k m s - 1 were considered, which are identified with modest-sized clusters. The 

haloes were then subjected to the added constraint of being at a minimum distance of 5 h~l Mpc 

from other haloes with Vc > 500 k m s - 1 . Finally, the haloes all had to be regular in appearance, 

with no visible signs of recent major mergers. 

The chosen cluster has a virial radius, r v ; r ~ 1.1 h~l Mpc, containing a mass of Mv-lT ~ 1.49 x 

1 0 1 4 / i _ 1 M 0 ; the circular velocity, V c is therefore ~ 750 kms" 1. 

6.2.3 Resimulation details 

The first stage that was performed for the generation of the resimulation initial conditions was 

to identify the region to be resampled at higher resolution. All particles were identified within 

a sphere, centred on the cluster at z = 0, of radius, 2r v , r . (The choice of radius was examined 

by Eke (1996), who used a similar technique to resimulate clusters, and concluded that twice the 

virial radius was adequate for preserving bulk cluster properties.) The particles were then traced 

back to their initial positions at z — 50, defining the shape of the region that collapsed to form the 

cluster. A cube was placed around this region that was just big enough to enclose the particles. 

Using a cubic shape for the initial high resolution region is inefficient as the region defined 

by the cluster particles is more spherical. Hence, the cube demands using as much as a factor 

of 2 more particles than a perfect sphere. The shape of the high resolution region was defined 

by subdividing the cube into 32 3 cells and highlighting those containing the cluster particles 

(occupied cells). Any cells completely surrounded by occupied cells ("holes") were also marked 

as occupied. Additionally, empty cells adjacent to occupied cells were marked as border cells, 

creating a shell around the high-resolution region, used to protect new cluster particles from the 

surrounding mass. However, if an occupied cell was adjacent to the edge of the cube, the cube 

was grown iteratively and the procedure repeated until there was at least one empty cell between 

each border cell and the edges of the cube. The shape was stored as a three-dimensional mask of 

the high resolution region (including border cells). For the cluster studied here, the length of the 

high resolution cube is 19.159 h~x Mpc, hence the length of each mask cell is ~ 0.6 h~x Mpc. 

The mass resolution was chosen such that each mask cell would contain 8 dark matter particles, 

an increase of a factor of ~ 6.3. Hence the high resolution cube would contain 643 particles. 

The next stage was to compute the displacement fields for the resimulation, using the technique 

described in Section 3.3. The displacement field for the parent simulation is required for particles 

external to the cluster region (hereafter referred to as the low resolution region). The displacement 

field for the high resolution region had to be calculated in two parts. Firstly, the displacement field 
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for the high resolution cube was calculated for the range of power used in the parent simulation 

(also using the same phases). The increase in particle density required the original displacement 

field to be interpolated. Secondly, additional displacements were generated from the appropriate 

power spectrum, to extend the range of power capable of being resolved by the high resolution 

particles. The two were then added together. 

After the displacement fields were calculated, a uniform distribution of particles had to be cre

ated, which would be perturbed with the displacements to produce initial positions and velocities. 

The first part was to create the low resolution distribution. For this, the full volume was subdivided 

into 4723 cells, which is the number of high resolution particles required to fill the full volume. 

A sphere of radius (\/3/2)S ~ 122.4 Mpc was then placed on the centre of the volume, just 

large enough to enclose it. Assuming spherical polar co-ordinates, the sphere was subdivided along 

the radial (r) and angular directions (0 and <f>). The number of bins in each of the three orthogonal 

directions were defined singularly by the value A9. The length of each bin along r was scaled 

as A r = rAO, so that the radial size increased in proportion to the angular size. The number of 

bins in the <fi direction was obtained using the relation, A(f> = min (TT/2, AO sin 9), preventing the 

azimuthal angular size of each bin from becoming vanishingly small. A uniform mass distribution 

was then created by adding the centroid position of each of the 4723 cells to the corresponding 

spherical bin, for all cells lying outside the high resolution mask, which was placed in the centre 

of the volume. The resulting mass distribution is one that increases with distance from the centre 

of the volume and hence the cluster, hence producing a drastic reduction in the number of particles 

external to the region of study. The uniform distribution for the high resolution region was simply 

a grid of particles within the occupied and border cells. 

The particles were perturbed in the low resolution region via interpolation of the low resolu

tion displacement field onto the uniform distribution. A CIC interpolation scheme was used, as 

described in Section 3.3. For the high resolution region, the uniform distribution of particles are in 

exactly the same positions as the calculated high resolution displacement field, hence the operation 

was a trivia] addition. Velocities were prescribed using the Zel'dovich formalism (again, discussed 

in Section 3.3). 

Figure 6.1 illustrates the initial particle distribution of the resimulated cluster. The full box, with 

both high and low resolution regions is shown, as well as a zoom shot of the high resolution region. 

The low resolution region contains 27612 dark matter particles and the high resolution contains 

127488 dark matter particles. Hence the high resolution region contains less than twice the number 

of particles than if the cube was used. 
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Figure 6.1: An example of the initial particle distribution for the resimulated cluster. The smaller box illustrates a zoom 

factor of ~ 7. 
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Gas particles were given the same initial positions and velocities as the dark matter, with 

masses fixed assuming a baryon fraction, fij = 0.03. This choice is consistent with nucle

osynthesis calculations (Copi, Schramm, & Turner 1995) as well as the fraction of baryons mea

sured in clusters, which makes life difficult for an Q, = 1 universe (White et al. 1993; see also 

Gunn & Thomas 1996). The mass of each gas and dark matter particle is therefore ra^k = 

2.23 x 1 0 9 / i - 1 M 0 and m g a s = 2.23 x 1 0 8 / i _ 1 M 0 respectively. The mass of the dark matter 

particle is comfortably below the critical mass for two-body heating of the gas by the dark 

matter (Steinmetz & White 1997). The gas was given an initial temperature of 100K and a fixed 

metallicity of Z = O.SZQ was assumed, in agreement with X-ray observations of the ICM 

(e.g. Mushotzky et al. 1996). 

The resimulations were run from z = 50 to z = 0 on a linux workstation using Version 3 

of HYDRA , as detailed in Chapter 3. However, to complete the simulations within a reasonable 

timescale, the timesteps were fixed so that each simulation took approximately 10,000 steps to 

complete. Hence, the length of each step was ~ 1.36Myr (the age of the universe is ~ 13.6Gyr). 

At early times, the step was allowed to decrease to accurately account for the Hubble expansion. 

In practice, the timestep was short enough for all but the first 5 steps, after which it decreased by 

around a factor of 2. 

For the simulations that explicitly followed the cooling rate of the gas (i.e. G-clus and S-clus), 

Equation 4.3 was applied to each gas particle at the end of the step. A cooling function was adopted 

using tabulated values from Sutherland & Dopita (1993), interpolated for a metallicity of Z = 

0.3^0. The S-clus simulation also included a model for star formation and feedback. For star 

formation, the method used in the P E A R C E l simulation (Section 5.3) was adopted, converting gas 

particles with overdensities greater than 5000 and temperatures less than 30000K into collisionless 

star particles. Feedback was implemented using the method of TWOPHASE2, discussed in detail 

in Section 5.4. To briefly summarise, energy from each star particle is added to the thermal energy 

of the nearest gas particle, which is then prevented from cooling for a further 10 dynamical times, 

estimated from the local gas density. 

6.3 Results 

6.3.1 Definitions 

The centre of each cluster was defined using a simple algorithm based on the maximum density 

of the gas. Firstly, the density of each particle was estimated (using a similar technique to the 
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SPH method, as discussed in Section 3.5). For epochs after the main cluster had formed (i.e. a 

distinct central peak in the mass distribution), a sphere was centred on the gas particle with the 

maximum density and its radius was set to equal 100(1 + z) h~l kpc (i.e. constant size in physical 

co-ordinates). The procedure was repeated, using the centre of mass of the sphere, until the centre 

was displaced by an amount less than 10(1 + z) h~l kpc. For epochs before the main cluster 

formed, the initial centre was guessed by eye. (Quantitative results are only presented for z — 0 in 

this chapter). 

The virial radius of each cluster was fixed at the value calculated for the original cluster, 

i.e. r v j r = 1.1 h~l Mpc. This resulted in a mean internal density that was within a few per cent of 

the original value (~ 324 (p)). None of the results presented in this section are sensitive to using 

this definition. 

The baryons in the cluster were split into various components : cold gas (all gas with T < 

30000K), hot gas (all gas with T > 30000K) and for S-clus, stars. Galaxies were defined using 

the method described in Section 5.3.2, using a linking length 6 = 0.1(1 + z) in units of The 

redshift factor was included so that the linking length is constant in physical co-ordinates. This 

was necessary since the softening length (which defines the approximate size of the galaxies) 

scales in this way for the range of redshifts studied. 

6.3.2 The assembly of cluster material 

Figure 6.2 illustrates the dark matter distribution within the virial radius of the original cluster 

and G-clus at z — 0. The resimulated cluster contains more particles as well as exhibiting a larger 

degree of substructure. The higher resolution of the resimulated clusters results in more small scale 

power, leading to the formation of more smaller mass haloes that subsequently collapse with the 

main cluster. Furthermore, the binding energy of haloes has increased due to the smaller softening 

employed (and for this case, the condensation of cooled gas within the cores of the haloes). This 

gives smaller objects a larger chance of surviving the effects of tidal stripping as they orbit the 

cluster potential. 

The evolution of the dark matter is shown in Figure 6.3 for G-clus at six epochs: z = 

3,2,1, 0.5,0.1,0. Each box has a length of 2.2(1 + z) h'1 Mpc, i.e. twice the z = 0 virial radius 

fixed in physical co-ordinates. The filamentary origin of the cluster is evident for the z = 3 

snapshot, which collapses to form a twin core system by z = 1. The two cores have merged 

by z = 0.5 and the cluster spends the remaining time accreting mass bound in smaller objects (the 

substructure present at z = 0). 
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Figure 6.2: Projected positions of dark matter particles within the virial radius of (a) the original cluster and (b) the 

resimulated cluster (G-Clus) at z = 0. 
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Figure 6.3: Projected positions of the dark matter particles within G-clus at various epochs. 
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Figure 6.4: Projected positions of hot gas particles (T > 30000K) within G-clus at various epochs. 
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Figure 6.5: Projected positions of cold gas particles (T < 30000K) within G-clus at various epochs. 
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Figure 6.6: Projected positions of the galaxies within G-clus at various epochs. 
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The equivalent plot for the hot gas is given in Figure 6.4. Clearly the largest haloes at each 

redshift are traced by hot gas. This is because the gas is shock heated in these objects, which have 

considerably longer cooling times than the smaller haloes, where most of the gas will have cooled. 

The hot gas also exhibits a much smoother distribution than the dark matter, due to the isotropic 

nature of the pressure forces which is supporting the gas from further gravitational collapse. 

Figure 6.5 illustrates the evolution of the cold gas in G-clus. At z = 3, some of the gas is diffuse 

(yet to collapse) while some of it has cooled within small haloes, forming the tight knots identified 

with the galaxies. By z = 1 almost all of the diffuse gas has been shocked above 30000K, and 

subsequent evolution is determined by the rate at which galaxies are falling into and merging 

within the cluster potential. 

Projected positions of the galaxies themselves are illustrated in Figure 6.6 for G-clus and Fig

ure 6.7 for S-clus. Shown are circles that are centred on the centre of mass of each object with radii 

proportional to the cube root of their mass. Note that the larger galaxies in both plots (particularly 

the most massive at the centre of the clusters) are broken into smaller objects at higher redshifts, 

following the merger history of their parent haloes in Figure 6.3. 

There are two important differences between the galaxy populations in G-clus and S-clus. 

Firstly, at each epoch, the number of galaxies is considerably higher in G-clus than in S-clus 

(by 2 = 0, there are 40 galaxies in G-clus and 18 within S-clus). Secondly, many of the galaxies 

in G-clus can be identified with less-massive counterparts in S-clus, at all times. Both differences 

can be explained by the effects of feedback in S-clus. The feedback model reduces the mass of 

each object by reheating gas into the halo before it can form more stars. Although the feedback 

is more effective in smaller mass haloes (where the virial temperature is generally smaller), larger 

mass galaxies formed themselves from mergers of smaller objects. The number of galaxies de

creases since many of the galaxies which are near the resolution limit (32 particles) in G-clus, are 

unresolved in S-clus. 

6.3.3 Bulk properties 

Table 6.1 summarises the bulk properties of the three clusters at z = 0. Comparing the virial 

mass of each cluster to the original cluster (M v ; r = 1.49 x 1 0 1 4 / i _ 1 M 0 ) , all of the values agree 

to within a few per cent. The values of iVdark are all extremely close, increased by a factor of 

~ 6.3 over the original simulation. The number of baryon particles (Ngas + Nst&rs) show much 

greater variations between each simulation, also evident in the values of /bary For A-clus, / b a r y 

is around 15 per cent lower than the assumed global value (fit/fio = 0.1), due to the gas being 



Simulations of a galaxy cluster 157 

Table 6.1. Bulk properties of the resimulated clusters at z = 0. In each column, the following quantities are listed: 

(1) the simulation label; (2) the virial mass in 1 0 1 4 h _ 1 M©; (3) the number of dark matter particles; (4) the number 

of gas particles; (5) the number of star particles; (6) the bolometric X-ray luminosity in 1 0 4 4 / i _ 2 e r g s _ l ; (7) the 

emission-weighted X-ray temperature in keV; (8) the fraction of the total mass in baryons; (9) the fraction of baryons 

in gas with T > 30000K ; (10) the fraction of baryons in gas with T < 30000K ; (11) the fraction of baryons in stars. 

Simulation M v i r Ndark •̂ gas •̂ stars Lx kTx /bary /hot /cold /stars 

A-clus 1.47 66870 56801 0 0.58 1.55 0.086 1.00 0.00 0.00 

G-clus 1.45 66869 48178 0 0.88 1.14 0.074 0.26 0.74 0.00 

S-clus 1.47 66876 41871 16259 2.19 0.88 0.088 0.71 0.01 0.28 

more extended than the dark matter, resulting from a net transfer of energy in the merging process 

(e.g. Navarro, Frenk, & White 1995). However, in G-clus, where the gas is allowed to cool, the 

fraction drops from 8.6 per cent of the total mass to 7.4 per cent; the effects of cooling are counter

intuitive. Including feedback increases the /bary to a value comparable to the non-radiative result. 

The fraction of baryons in hot and cold gas again varies from simulation to simulation. For 

A-clus, all of the baryons have temperatures above 30000K. From a simple argument based on 

spherical symmetry and isothermality, the minimum resolved halo (assuming 32 gas and dark 

matter particles) should have a virial temperature, T ~ 8.5 x 10 4 K. Hence, all of the baryons, 

including those in the small haloes, have been shocked well above 30000K. In comparison, the 

hot gas fraction in G-clus has decreased to only a quarter of the total value. From Figure 6.4 it 

is clear that all baryons in haloes within the cluster, with the exception of the atmosphere of the 

cluster halo itself, have cooled. This is an enormously large fraction, clearly demonstrating the 

overcooling problem in the absence of feedback. The fractions are almost reversed for S-clus, 

where ~ 71 per cent of the baryons is in hot gas. Out of the remaining fraction, only ~ 1 per cent 

has not formed stars. 

Bolometric X-ray luminosities are estimated using the formalism of Navarro, Frenk & White 

(1995) 

L x = 3.05x l O ^ ^ p f T ^ A ^ e r g s - 1 , (6.1) 

i 

where the sum extends over all hot gas particles within the virial radius, and p, and T{ are their 

densities (in units of the mean gas density) and temperatures (in Kelvin) respectively. The inclusion 

of radiative cooling increases L x for the cluster by around 35 per cent. The increase in emission 

comes from a strong cooling flow at the centre of the cluster, onto the central galaxy. This effect 



Simulations of a galaxy cluster 158 

was also observed by several other groups (e.g. Katz & White 1993; Suginohara & Ostriker 1998; 

Lewis et al. 1999), however it is argued by Pearce et al. (1999) that the cooling rate of the hot gas 

around the central galaxy is too high, due to SPH overestimating their densities. Pearce et al. show 

that when the hot gas is fully decoupled from the cold galactic gas (see also Chapter 4, Comparison 

4), the X-ray luminosity decreases when compared to the case without cooling. 

The feedback model makes the cluster considerably brighter (around a factor of 3 or so). This 

is due to a small group of particles that have cooled onto the central cluster galaxy and have 

subsequently been reheated and temporarily prevented from cooling back down. Hence this gas is 

both hot and dense enough to dominate X-ray emission. Such strong emission is not seen within 

such galaxies, and it clear that the feedback model is not representing a physically reasonable 

scenario. Switching off the cooling is done mimick the effects of the hot diffuse medium that 

is created by supernovae in the multiphase ISM (McKee & Ostriker 1977). Hence the densities 

should not really be used in the calculation, whilst the gas is prevented from cooling. 

Emission-weighted temperatures are calculated as 

kTx = 8.62 x 1(T 8 ^ P t \ keV, (6.2) 

again summing over all hot gas particles within the virial radius of the cluster. The value of kTx 

calculated for G-clus is around 25 per cent lower than the value for A-clus, due to the inclusion 

of cooling. The emission-weighted temperature drops in G-clus, relative to A-clus because the 

dominant contribution from gas in G-clus comes from particles with lower temperatures than the 

virial temperature of the cluster, since they are within a cooling flow. In S-clus, the emission-

weighted temperature is even lower. As was discussed above, the emission comes primarily from 

reheated particles within the central galaxy, which are colder than the particles contributing to 

most of the emission in G-clus. 

6.3.4 Density profiles 

Figure 6.8 illustrates both dark matter and (hot) gas density profiles at z = 0 for all three simu

lations. Each profile was constructed by dividing the cluster into 50 spherical shells, such that the 

thickness of each shell, Alogr =constant. The radius is scaled to the virial radius and the density 

is in units of the mean density of each species. The softening scale and the virial radius are also 

marked with vertical lines. 

For the dark matter, all profiles agree extremely well except within the inner 10 per cent of the 

virial radius. The profile steepens slightly for S-clus compared to A-clus and the effect is more 
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Figure 6.8: Density profiles at z = 0, plotted in units of the mean density of each species. The vertical dashed line is 

the softening scale while the vertical dotted line marks the virial radius. 

pronounced for G-clus. The presence of the central galaxy has deepened the central potential of 

the cluster, which has drawn in more dark matter particles. 

Significant variations are present in the density profiles of the gas. First of all, the density profile 

for A-clus is flatter than its dark matter equivalent, for the inner 10 per cent of the virial radius. As 

discussed above, a net transfer of energy occurred from the dark matter to the gas within mergers. 

This caused gas in the centre to adiabatically expand, pushing the rest of the gas to larger radii. 

The gas density profile of G-clus is considerably different from that of A-clus. From around the 

virial radius, the G-clus profile becomes considerably flatter (and hence is lower than the A-clus 

profile), before turning back up at around 20 per cent of the virial radius. Further in, it becomes 

even steeper, reaching a similar density as A-clus at around 2 per cent of the virial radius, before 
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dropping to zero in the centre. The same characteristic differences are noted in Pearce et al. (1999). 

Radiative cooling provides a sink for hot gas in the centre of the cluster, allowing gas to flow 

in from outside the cluster. The gas that flows in has a higher entropy than the gas it replaces, 

hence reducing the density. However the effects begin to reverse when the cooling time becomes 

short enough for the gas to lose a considerable fraction of its entropy within the lifetime of the 

cluster. This transition occurs around where the slope of the profile becomes steeper. Further in, 

the increased cooling rate causes the density profile to rise dramatically until eventually, at the 

centre, all the hot gas has cooled. 

The gas density profile for S-clus is much straighter (and closer to the A-clus profile), for radii 

greater than a few percent of the virial radius, when compared to the previous two. The feedback 

model has reduced the amount of high entropy gas falling into the cluster. The large increase 

within the inner few per cent of the virial radius is due to the reheated gas. As discussed above, 

gas particles with the highest density are within the central galaxy, resulting from the cooling of 

the hot halo gas onto the object. 

6.3.5 Temperature profiles 

Figure 6.9 illustrates the temperature profiles of the hot gas at z = 0. The shape of the A-

clus profile is that expected for a non-radiative simulation (e.g. Navarro, Frenk, & White 1995; 

Eke, Navarro, & Frenk 1998). The temperature at the virial radius is around a factor of 2 lower 

than the peak value. For G-clus, the temperature profile is higher than for A-clus, before declining 

and eventually dropping below it then going to zero. Again, the difference is caused by the inflow 

of higher entropy gas. Gas flowing through the virial radius is less dense than the gas it was 

replacing, hence it is heated to a higher temperature to maintain pressure support. The temperature 

starts decreasing around where the slope of the density profile steepens, as the gas is able to 

radiate a significant fraction of its energy within the lifetime of the cluster. A similar, though less 

pronounced effect is present for the S-clus temperature profile; the feedback model has reduced 

the effect of the cooling flow on the hot gas. 

6.3.6 The mass distribution of galaxies 

Figure 6.10 shows cumulative mass functions for the galaxies in G-clus and S-clus at z = 0. Since 

the former has more than a factor of 2 more objects, the amplitude of the function is correspond

ingly higher. The most massive galaxy in G-clus has a baryon mass of ~ 4.6 x 1 0 1 2 / i _ 1 Mq, which 

is reduced in S-clus to ~ 6.3 x 1 0 n / i - 1 M@, nearly an order of magnitude. The former is mass 
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Figure 6.9: Gas temperature profiles for the clusters at z = 0. The vertical dashed line is the softening scale while the 

vertical dotted line marks the virial radius. 

is similar to that observed by Katz & White (1993), who stress the effects of overmerging in their 

simulation. However, a significant fraction of the central object has come from the large cooling 

flow (c.f. Comparison 4 in Chapter 4, where the largest galaxy had its mass reduced by 2/3 when 

the hot gas was decoupled from the cold gas). Hot gas in S-clus will not cool onto the central 

galaxy so quickly since its density is decoupled from the cold gas (which is negligible anyway 

since the galaxy mainly consists of stars). However, as noted earlier, the mass of the central galaxy 

was significantly reduced at an earlier time, before it formed from the mergers of smaller objects. 

The shape of the two mass functions are very similar, allowing for statistical fluctuations, 

particularly at the high mass end. Hence, the effect of feedback is to rescale the mass function 

in a mass independent manner (for the range of masses studied). 
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Figure 6.10: Cumulative mass functions of the galaxies in G-clus and S-clus at z = 0. 

Another difference between the two simulations (evident when comparing Figure 6.10 to 

Columns 11 & 12 in Table 6.1) is that the fraction of galaxy phase material in bound objects 

is significantly different. For G-clus, the fraction is 0.99 where for S-clus, the fraction 0.65. The 

lower value of the former is due to the relative ease with which star particles are stripped from 

galaxies compared to the gas particles. This is due to the former not being able to dissipate energy 

when perturbed by their neighbours. Part of this effect may be due to the effects of feedback 

and part will be due to the interaction of galaxies within the harsh environment of the cluster. The 

latter may be enhanced by the large softening scale in the simulations and it is important that future 

simulations will investigate the sensitivity of the rate at which stars are stripped to the resolution 

of the simulation. 
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6.4 Summary 

In this chapter, preliminary results are presented for three high resolution simulations of a single 

galaxy cluster. A cluster with a circular velocity of 750 km s - 1 was selected from a previously run 

collisionless cold dark matter simulation of a random volume within a flat, low density universe. 

The object was then resimulated using techniques that allows the cluster to be simulated with 

higher resolution, while degrading the resolution of the remaining volume, used to provide accu

rate tidal forces. The first resimulation explicitly included baryons, able to adiabatically heat and 

cool and additionally shock-heat via collisional interactions. The second resimulation additionally 

allowed the gas to radiatively cool, using the cooling function of Sutherland & Dopita (1993) 

with a fixed gas metallicity, Z = O.3Z 0. Finally, the third resimulation included a model for star 

formation and feedback, namely that used in the TWOPHASE2 simulation studied in Chapter 5. 

Main conclusions follow. 

1. The virial mass of all three simulations are the same as the original cluster to within a few per 

cent. The discrepancies are due to fluctuations in the mass in baryons, whose fraction is around 

20 per cent lower than the global value. 

2. Almost 75 per cent of the gas within the virial radius of the cluster had cooled by z — 0, demon

strating the cooling catastrophe present in all hierarchical models without a non-gravitational 

heat source. Including star formation and feedback lowered this value by over a factor of 2, 

with nearly all the gas in stars. 

3. Including radiative cooling increased the bolometric luminosity of the cluster by ~ 35 per cent 

and decreased the emission-weighted temperature by ~ 25 per cent. A strong cooling flow 

onto the central galaxy was responsible for both changes. As discussed in Pearce et al. (1999), 

decoupling the cold gas from the hot gas reduces the cooling flow, tending to cause the opposite 

changes in the luminosity and emission-weighted temperature. The feedback model caused 

a further increase in the X-ray luminosity by a more than a factor of two, as well as a 30 

per cent decrease in the emission-weighted temperature. Both effects are due to a subset of 

(unphysically) hot dense particles reheated from stars within the central galaxy. 

4. All dark matter density profiles agree very well except within the inner few per cent of the 

virial radius, where a small degree of steepening occurs due to the amount of cold dense gas 

and stars at the centre of the cluster. The (hot) gas profile differs significantly between radiative 

and non-radiative models. As found by Pearce et al., cooling causes material from outside the 
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cluster to be drawn in, which has a higher entropy. Consequently, the density is significantly 

lower in the outer parts of the cluster but its gradient steepens considerably at smaller radii, 

where cooling is more efficient. Introducing feedback produces a similar profile to the non-

radiative cluster, except with a significantly higher density within a few per cent of the virial 

radius. Again, this is due to dense particles being reheated by stars in the central galaxy. 

5. Significant differences are seen in the hot gas temperature profiles. When the gas is allowed 

to cool (with no star formation or feedback), the higher entropy material causes temperature 

to be higher when compared to a simulation without cooling, outside a few per cent of the 

virial radius. For the inner portion, the temperature drops below the non-radiative case due to 

the rise in the cooling rate. The cluster with feedback exhibits similar, albeit less pronounced 

behaviour than the radiative case. 

6. An extremely massive central galaxy is produced in the simulation with cooling, containing 

over 40 per cent of the gas that lies within the virial radius of the cluster. The mass of this 

galaxy is reduced by around a factor of 10 when star formation and feedback is incorporated. 

7. The 2 = 0 mass function of galaxies within the cluster is similar in shape for both runs with 

cooling, with the run including feedback lower in amplitude due to the total number of galaxies 

having decreased from 40 to 18. The feedback is effective in reducing the mass, particularly 

in small objects, which consequently reduce the mass of the galaxies to values below the 

resolution limit of the simulation. 
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Chapter 7 

Conclusions 

In this thesis, several issues concerning the properties of galaxies and clusters within hierarchical 

models of structure formation were addressed. 

Chapter 2 applied a simple phenomenological model, based on analytical scaling relations, to 

X-ray observations of clusters at low and high redshift. The aim of this chapter was to determine 

whether current measurements of the X-ray evolution of clusters are sufficient to discriminate 

between various open and flat cosmological scenarios. The model was developed as an extension 

to the entropy-driven model for cluster evolution (Bower 1997), incorporating the effects of a 

low-density universe. It was then applied to measurements of evolution in the X-ray luminosity 

function of clusters, as well as the normalisation of the luminosity-temperature relation. 

It was found that the data is insufficient to constrain the value of the density parameter, fio (for 

open and flat models), due to the degeneracy between fi0 and n, the effective slope of the power 

spectrum on cluster scales. To break the degeneracy, two independent methods were considered: 

a theoretical relation between n and fio from the CDM model and an observational measurement 

of n from the APM galaxy survey (Tadros, Efstathiou, & Dalton 1998). The first method gives 

fi0 < 0.55 (0.1 < fi0 < 0.7 for fi0 + An = 1). while the second method gives fi0 < 0.6 

(fin < 0.65 for fin + An = 1), with both results at the 95 per cent confidence level. Tighter 

constraints on the cosmological parameters will require, in particular, the amount of evolution in 

the bright end of the luminosity function to be measured. Forthcoming X-ray surveys of clusters 

with the Chandra and XMM satellites should fulfill this task. 

The remainder of this thesis concentrated on using the method of cosmological simulation, a 

self-consistent approach to modelling galaxies and clusters within a robust cosmological frame

work. Details of the method were outlined in Chapter 3, describing the techniques that were 

used for generating initial conditions, as well as the algorithms used to calculate gravitational 

and hydrodynamical forces. 
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In Chapter 4, a systematic study was undertaken of the effects of varying a subset of numerical 

and physical parameters, within cosmological simulations of galaxy formation. A simple fiducial 

model was devised, to investigate the evolution of CDM and baryon density fluctuations within 

a small volume. Besides gravity, the baryons were also able to adiabatically heat and cool, shock 

heat and radiatively cool. The latter process gives rise to clumps of cold dense material, which 

were identified as "galaxies". The fiducial simulation was compared to 24 variants, each differing 

in the value of one parameter. Various properties of the simulations were then compared, such as 

the mass and spatial distributions of the galaxies and the amount of gas that cools within the dark 

matter haloes. 

The results were stable for the range of parameter space that was explored, with the exception 

of the parameters that affect the cooling rate of the gas. Values for some of these parameters 

can be justified by other means (e.g. the global baryon fraction, from nucleosynthesis constraints) 

however some are an inherent part of the numerical model, controlling the resolution of the simu

lation. As the resolution is increased, smaller mass haloes are resolved, within which the cooling 

times are generally shorter, leading to a cooling catastrophe, in which the amount of cooled gas in 

the simulations far exceeds observed values. This problem is common to all hierarchical models 

of galaxy formation (White & Rees 1978), with the most popular solution being the inclusion of 

additional energy input from the supernovae of stars (feedback). Future simulations with higher 

resolution will require a model for feedback, not only to avoid overcooling but also to enable 

numerically convergent results to be obtained. 

In Chapter 5, a first step was taken to include the effects of star formation and feedback within 

cosmological simulations. The first part of the chapter explored the overcooling problem in detail, 

by varying the resolution of the simulation, the box-size and the ratio of dark matter to baryon 

particle masses (for a fixed baryon fraction). The amount of gas cooled by z = 0 was in excess of 

observed values for nearly all of the simulations studied, even when the dark matter particles were 

more massive than the critical threshold for artificial two-body heating (Steinmetz & White 1997). 

For simulations with resolutions above this threshold, varying the box-size or the mass ratio of dark 

matter to baryon particle masses made no significant difference to the cooling efficiency of the gas. 

The chapter continued, with an examination of various methods for turning gas into stars in 

the simulations. A total of 12 simulations were compared at fixed resolution, testing 6 different 

methods. It was found that a simple prescription, based on the densities and temperatures of the 

gas particles was sufficient to obtain a reasonable star formation rate. Additional assumptions, 

such as attempting to identify regions that are Jeans unstable, are unnecessary. The ratio of cold 
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gas to stars within the galaxies are sensitive to the densities where star formation is able to occur. 

For a low ratio of gas to stars, the star formation rate is primarily controlled by the cooling rate of 

the gas. 

One of the simplest prescriptions for star formation (similar to that used by Pearce 1998) was 

then used to investigate the effects of feedback. Both thermal and kinetic feedback models were 

considered, using a set of 9 simulations. Kinetic feedback was able to reduce the amount of cold 

gas and stars in the simulations, however this feedback significantly affected the binding energy 

of the galaxies, destroying most of the small mass objects. Thermal feedback could not reduce 

the cooling rate of the gas due to the high densities enabling them to rapidly radiate the energy 

away. This problem was circumvented by preventing reheated gas from cooling for a short period 

of time. The shape of the galaxy mass function and the star formation rate for this model are both 

preserved. 

Finally, Chapter 6 presented preliminary results for simulations of a single, modest-sized galaxy 

cluster, within a flat, low density universe (f20 = 0.3, Ao = 0.7, Ho = 70 k m s - 1 Mpc - 1 ) . Three 

simulations were performed in this study: a non-radiative model and two radiative models, with 

and without star formation and feedback. Various properties were analysed, such as the density and 

temperature profiles of the clusters and the mass distribution of galaxies in the radiative models. 

The feedback significantly reduced both the mass and number of galaxies formed in the cluster, 

without which nearly three-quarters of the gas had cooled by z = 0. All three simulations produced 

significantly different results in the central gas distribution. Hence, the X-ray properties of the 

cluster varied depending on the model used. However, it has to be stressed that more analysis is 

required before the results of this chapter are fully understood. 

To conclude, work in this thesis has merely scratched the surface of a subject that will occupy 

cosmologists for many years to come. Although the basic tools for a viable model of structure 

formation are now in place, many of the intricate details that influence the evolution of structure 

on a wide range of scales have yet to be understood. As has been stressed in this thesis, an 

important example of this is feedback. A satisfactory explanation for how the effects of feedback 

are propagated from sub-galactic scales (the ISM) to the scales of galaxies and clusters remains 

elusive. However, the process is crucial for the survival of hierarchical models. It may explain 

many, if not all, of the model's shortcomings: the formation of disks and the angular momentum 

problem; the faint end of the galaxy luminosity function and the overcooling problem; the slope 

of the X-ray luminosity temperature relation and the core in their gas distributions etc.. 
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Work is now in progress to extend the results found in this thesis. A more thorough investigation 

of the effects of feedback is under study, to determine to what extent it is able to resolve the 

aforementioned problems. Hence, the effects of feedback on other scales will also have to be 

considered. The success of a feedback model in Chapter 5 was gauged by the amount of cooled 

material in the volume at z = 0. However, it is not obvious that a model tuned to produce a specific 

stellar baryon fraction will solve, for example, the angular momentum problem in disk galaxies. 

Many of the complications in the modelling of feedback arise from the sensitivity of the methods 

to numerical resolution. Hence, from a numerical perspective, it is important to understand the 

effects of feedback models within simulations with varying resolution. Ultimately, a resolution-

independent model for feedback will be crucial, so that future high resolution simulations achieve 

numerically convergent results, and that the physical interpretation of these models can be trusted. 
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Appendix A 

X=ray evolution of clusters: results 

f r o m individual X L F datasets 

The five figures in this appendix illustrate constraints on the free parameters, n and e, of the en

tropy evolution model discussed in Chapter 2. Again, the results are shown for seven cosmological 

scenarios, the Q — 1 model and both open and flat models with f2o = (0.5,0.3,0.1). Constraints 

from the evolution of the L x - T normalisation are applied to all figures (dotted contours), while 

the X L F constraints are from individual datasets (solid contours). Figure A. 1 illustrates constraints 

using the SHARC dataset (Burke et al. 1997), Figure A.2 the WARPS dataset (Jones et al. 1998), 

Figure A.3 the RDCS dataset (Rosati et al. 1998), Figure A.4 the EMSS 1 dataset (Henry et 

al. 1992) and Figure A.5 the EMSS 2 dataset (Luppino & Gioia 1995). Shaded regions illustrate 

areas of parameter space consistent with both the L x — T and X L F data at the 68 per cent level. 

The vertical solid line is the measured value of n from the CDM theoretical calculation, while 

the vertical dashed line is the measured value of n from the APM rich cluster survey (Tadros, 

Efstathiou & Dalton 1998). Vertical dashed lines illustrate the range of n consistent with the T 

constraint set by Eke et al. 1998, using the evolution of the temperature function (Figure 2.6). 
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Figure A.2: Model constraints using the X L F data from the WARPS survey, given by Jones et al. (1998). 
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Figure A3: Model constraints using the X L F data from the RDCS survey, given by Rosati et al. (1998). 
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Figure A.4: Model constraints using the X L F data from the EMSS survey, given by Henry et al. (1992). 
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Figure A.5: Model constraints using the X L F data from the EMSS distant cluster sample, given by Luppino & Gioia 

(1995). 
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