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Vortices in Trapped Bose-Einstein Condensates 

Brian Jackson 

A b s t r a c t 

I n this thesis we solve the Gross-Pitaevskii equation numerically in order to model 

the response of trapped Bose-Einstein condensed gases to perturbations by electro

magnetic fields. First, we simulate output coupling of pulses f rom the condensate 

and compare our results to experiments. The excitation and separation of eigen-

modes on flow through a constriction is also studied. 

We then move on to the main theme of this thesis: the important subject of 

quantised vortices in Bose condensates, and the relation between Bose-Einstein 

condensation and superfluidity. We propose methods of producing vortex pairs and 

rings by controlled motion of objects. Full three-dimensional simulations under 

realistic experimental conditions are performed in order to test the validity of these 

ideas. We link vortex formation to drag forces on the object, which in tu rn is 

connected w i t h energy transfer to the condensate. We therefore argue that vortex 

formation by moving objects is intimately related to the onset of dissipation in 

superfluids. We discuss this idea in the context of a recent experiment, using 

simulations to provide evidence of vortex formation in the experimental scenario. 

Superfluidity is also manifest in the property of persistent currents, which is linked 

to vortex stabili ty and dynamics. We simulate vortex line and ring motion, and f ind 

in both cases precessional motion and thermodynamic instabili ty to dissipation. 

Strict ly speaking, the Gross-Pitaevskii equation is valid only for temperatures 

far below the BEC transition. We end the thesis by describing a simple finite-

temperature model to describe mean-field coupling between condensed and non-

condensed components of the gas. We show that our hybrid Monte-Car lo /FFT 

technique can describe damping of the lowest energy excitations of the system. 

Extensions to this model and future research directions are discussed in the conclu

sion. 

1 



Acknowledgements 

I owe a huge debt of gratitude to many people for their help and support over the 

course of my PhD. First of all I would like to thank Charles Adams, whose patient, 

insightful and enthusiastic supervision has made this work possible. I am also es

pecially indebted to J im McCann for his help, encouragement and for sharing his 

deep knowledge of science, and to Lydia Heck for maintaining the computers and 

unfail ing assistance wi th my frequent computer problems. Thanks also to Thomas 

and Ifan for much help and many interesting discussions, to Mark for proof-reading, 

and to Richard and Hilary for (very) regular coffee breaks and for managing to put 

up w i t h me for three years. Outside of work, I would especially like to thank Mark, 

Mark, Steve, Dave, Mar t in , Corinne, James, Adrian and Stephanie for many vis

its and top weekends away. Cheers also to Chris, Chris and Dave for being great 

house-mates, and to Paul for being such a good friend for so long. 

Last but certainly not least, a big thanks to mam and dad and all of the family for 

their continued love, support and encouragement. 

2 



Contents 

1 Introduct ion 8 

2 B E C and the Gross -P i taevsk i i equation 13 

2.1 Basic theory 13 

2.1.1 Bose-Einstein condensation in an ideal gas 13 

2.1.2 The mean-field description and second quantisation 16 

2.1.3 The Gross-Pitaevskii equation 17 

2.2 Numerical solution of the GP equation 18 

2.2.1 Harmonic oscillator units (h.o.u.) 18 

2.2.2 Time evolution 19 

2.2.3 Time independent solutions 20 

2.3 The output coupler 24 

2.3.1 The coupled Gross-Pitaevskii equations 24 

2.3.2 Results 26 

2.4 Flow through a constriction 28 

3 Superf luidi ty and vortex formation 32 

3.1 Superfluidity and quantised vortices 33 

3.1.1 The Bogoliubov spectrum 33 

3.1.2 The Landau criterion 34 

3.1.3 Quantised vortices 35 

3.2 Vortex formation 37 

3.2.1 Background 37 

3.2.2 Two dimensional simulations 38 

3.2.3 Three dimensional simulations 43 

4 Two-component condensates, mutua l drag, and vortex rings 48 

4.1 Multi-component condensates 49 

4.2 Dynamics of component separation 50 

3 



4.3 Vortex ring formation and mutual drag 54 

4.3.1 Quantum f lu id mechanics and drag 54 

4.3.2 Results 57 

5 Vor tex line and ring dynamics 60 

5.1 The vortex state 61 

5.2 Single vortex motion 63 

5.2.1 Two dimensions 63 

5.2.2 Three dimensions 69 

5.3 Vortex ring motion 70 

6 Vor tex creation and dissipation 75 

6.1 Simulations 76 

6.2 A discussion on critical velocities 86 

7 F i n i t e temperature dynamics 89 

7.1 Equations of motion 90 

7.2 Approximations 91 

7.2.1 Hartree-Fock-Bogoliubov (HFB) and Popov approximations 91 

7.2.2 Semi-classical approximation 93 

7.2.3 The kinetic equation 95 

7.3 Monte Carlo simulations 100 

7.3.1 Classical gases and evaporative cooling 100 

7.3.2 Bose gases 103 

7.3.3 Coupled Monte Carlo and GP simulations 104 

7.4 Damping of collective excitations 106 

8 Conc lus ion 111 

Append ix : N u m e r i c a l methods 114 

A . l Split-step F F T method 114 

A.2 Crank-Nicholson method 115 

A.3 Cylindrical and spherical coordinates 116 

A.4 Rotat ing frame 117 

4 



List of Figures 

2.1 Condensate density versus position for the ground state of a I D har

monic trap 21 

2.2 Density against position for the I D first excited state 22 

2.3 Density against position for the I D second excited state 22 

2.4 Chemical potential as a function of C in I D 23 

2.5 Contour plots of density for an output coupled condensate 27 

2.6 Images taken f rom the M I T output coupling experiment 27 

2.7 Centre-of-mass motion of the parent condensate after output coupling 28 

2.8 Flow of a weakly interacting condensate (C = 10) through a con

striction 30 

2.9 Flow of a condensate (C — 200) through a constriction 31 

3.1 Density profile i l lustrat ing vortex formation by a moving object in 2D 39 

3.2 Velocity field plot showing vortex pairs 39 

3.3 Time evolution of the phase-slip 41 

3.4 Time evolution of the velocity field 42 

3.5 Cross-sections showing the time evolution of the density 43 

3.6 Column density plots of vortex formation in 3D simulations . . . . 45 

3.7 Vortex position as a function of time after creation 47 

3.8 Evolution of a vortex line after creation 47 

4.1 Density profiles for components |1) and |2) during separation . . . . 52 

4.2 Cross-sections of the density profiles at t = 8.52 53 

4.3 Centre-of-mass motion of the two components 53 

4.4 Cross-sections through density profiles before vortex ring formation 55 

4.5 Time dependence of the mutual acceleration 58 

4.6 Peak mutual attraction (drag) as a function of velocity 58 

5.1 Density isosurface plots of spherical condensates wi th a vortex line 

and ring 62 

5 



5.2 Cross-section through a singly quantised vortex line 63 

5.3 Energy as a function of vortex displacement in a rotat ing condensate 64 

5.4 Vortex motion in 2D, superimposed upon a energy contour plot . . 65 

5.5 Vortex state energy as a function of rotation angular velocity . . . . 66 

5.6 Vortex precession frequency, u>, in a 2D condensate 67 

5.7 Vortex line precession frequency in a 3D condensate 70 

5.8 Vortex ring motion in 3D, superimposed upon an energy contour plot 71 

5.9 Equi l ibr ium ring radius as a funct ion of C in a spherically symmetric 

condensate 73 

5.10 Vortex ring motion after creation by an object 73 

6.1 T ime dependent condensate energy and drag in 2D simulations . . . 77 

6.2 Mean rate of energy change as a funct ion of velocity (2D) 78 

6.3 Cross-sections through the condensate, w i th an object moving below 

the crit ical velocity 79 

6.4 The drag force as a function of velocity (2D and 3D) 79 

6.5 Number of vortex pairs against beam velocity 80 

6.6 Number of vortex pairs against rate of energy transfer 81 

6.7 Cri t ical velocity as a function of potential height 82 

6.8 Density isosurface plots showing the formation of 3D vortices . . . . 83 

6.9 Velocity isosurface plots showing the formation of 3D vortices . . . 84 

6.10 Mean rate of energy change as a funct ion of velocity (3D) 85 

7.1 Condensate and non-condensate densities and numbers as a funct ion 

of temperature in a spherical trap 96 

7.2 Condensate number as a function of temperature in a cylindrical t rap 97 

7.3 Column densities as a function of temperature in a cylindrical trap 97 

7.4 Evaporative cooling of a classical gas 102 

7.5 Impact of Bose statistics on the equilibrium position and energy dis

tributions 104 

7.6 Effect of Bose statistics on the mean collision time 105 

7.7 Quadrupole oscillations (m = 0) at f inite temperatures 108 

7.8 Damping rate and frequency of quadrupole oscillations as functions 

of temperature 108 

7.9 Quadrupolar oscillations in the thermal cloud and condensate at T = 

240 n K 109 

6 



7 

Statement of Copyright : 

The copyright of this thesis rests w i th the author. No quotation f rom i t should be 

published wi thout their prior consent and information derived f rom i t should be 

acknowledged. 

B. Jackson 



Chapter 1 

Introduction 

The first experimental observation of Bose-Einstein condensation (BEC) in magnet

ically trapped alkali atoms in 1995 [1, 2, 3] was a precursor to an explosion of interest 

in the properties of weakly-interacting Bose gases. The experimental progress since 

has been nothing short of spectacular [4, 5], not only in the expansion of the field 

to include many more groups f rom around the world (around twenty at the t ime of 

wr i t ing [6]), but also in the exciting avenues of research opened up, most notably in 

possibilities of constructing an atom laser and probing the fundamental nature of 

superfluidity. Theoretical understanding of Bose systems [7] has also been greatly 

enhanced by interaction w i t h experiment and an influx of talented researchers f rom 

adjacent fields. Despite this, BEC st i l l presents fresh challenges and opportunities, 

and one can be sure that many more surprises remain in the study of this rich 

system. 

In several ways the first BEC experiments were a culmination of many years of 

experience in the fields of laser cooling and trapping of neutral atoms [8], and the 

search for BEC in spin-polarised hydrogen [9, 10]. From the former came methods 

for confining neutral alkali atoms, and cooling them to ultra-cold temperatures. To 

this one must add the atom optical techniques developed for manipulation of atomic 

clouds using electromagnetic fields that have proved so invaluable in BEC experi

ments, as w i l l be discussed below. From the latter came the techniques of magnetic 

t rapping and evaporative cooling [11, 12] where the most energetic atoms are se

lectively removed f rom the trap, potentially leading to the increase in phase-space 

density required to reach the BEC transition. The study of BEC itself possesses an 

illustrious history (see e.g. [13]) w i th roots in the original work of Bose and Einstein 

in the 1920s, and including the discovery of superfluidity in l iquid helium. As this 

history has a direct bearing on the subject of this thesis, we shall now give a brief 

review. 

8 



CHAPTER 1. INTRODUCTION 9 

Superfluidity and B E C 
A t very low temperatures helium possesses a unique property. Relatively weak 

interactions between atoms of small mass lead to helium remaining l iquid at atmo

spheric pressure, even in the l im i t of absolute zero. Remarkable phenomena result, 

the most str iking of which occurs for 4 He below a phase transition at T\ = 2.17 K . 

This state, sometimes referred to as H e l l , is marked by a complete lack of viscosity 

or thermal resistance, and was discovered in 1938 by Allen, Misener and Kapitza 

[14, 15]. Fritz London [16] immediately suggested a l ink between this superfluid 

phase and the work of S. N . Bose [17] and Einstein [18] on the quantum statistics 

of particles w i t h integer spin. In contrast to Fermi-Dirac statistics, many bosons 

can occupy the same quantum state; moreover, bosons preferentially scatter into 

highly-occupied states. Thus, when the phase-space density is sufficiently high (or 

equivalently when T < Tc) bosons tend to congregate into a single state to fo rm a 

Bose-Einstein condensate. The condensate exhibits long-range coherence, which is 

directly responsible for superfluidity. This picture was developed further by Tisza 

[19] and Landau [20] in the two-fluid model, which explained properties of H e l l in 

terms of a condensate coupled to a 'non-condensed' or 'normal ' fluid of quasiparticle 

excitations. 

Particularly interesting in the context of our discussion is the response of super-

fluid helium to rotation and flow through a narrow constriction. In the former, the 

famous ' rotat ing bucket' experiment [21], one would expect that the irrotat ional su

perfluid would possess zero moment of inertia and remain stationary w i t h respect to 

the laboratory frame. However, experiments demonstrate rigid-body rotat ion above 

some crit ical angular velocity. Similarly, in the case of superfluid flow through a 

channel dissipation is expected only above a critical velocity. According to Landau, 

viscosity in a quantum fluid arises due to the creation of elementary excitations 

(i.e. phonons and rotons), which occurs only when energetically favourable [20]. 

The crit ical velocity thus defined is found to be several orders of magnitude larger 

than that observed [22]. Feynman [23] explained both effects as arising due to the 

formation of quantised vortices. Superfluid rotation is accounted for by creation of 

a vortex lattice, which possesses a net angular velocity. In the latter case, dissipa

t ion arises f rom the motion of the vortices and their interaction wi th the normal 

component [24]. In both of the situations we have discussed, vortex formation may 

be thought of as being responsible for the 'breakdown' of superfluidity, revealing 

part of the fundamental nature of this phenomenon. 

Problems arise when attempting to describe this vortex formation process in de-
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ta i l . Al though the two-fluid model is successful in explaining superfluid properties 

on a hydrodynamical level, for example in describing second sound [25], a satisfac

tory microscopic theory for 4 He is notoriously diff icul t to formulate. This is due 

to the strong interactions that result in an appreciable quantum depletion: indeed, 

typically only around 10% of atoms are in the condensate even at zero temperature 

[26]. In contrast, the fundamental many-body theory of BEC is well understood for 

a dilute, weakly-interacting system, where interactions can be treated wi th in mean-

field theory as a perturbation on the ideal gas case [27]. In particular, for such a 

system at very low temperatures where non-condensed atoms can be neglected, the 

condensate dynamics may be modelled using a nonlinear Schrodinger equation for 

the macroscopic wavefunction, or Gross-Pitaevskii (GP) equation [28, 29]. Fortu

nately, experiments on trapped alkali vapour condensates lie in this dilute, weakly-

interacting regime, and evaporative cooling can be extended to obtain almost pure 

condensates. Thus, the GP equation provides an accurate description of trapped 

Bose condensates at low temperatures, and the system is ideal for elucidating some 

of the fundamental properties of quantum fluids. 

I t would be impossible to end a section concerning Bose-Einstein condensation 

wi thout mentioning some of the other systems that display this phenomenon. In 

deed, BEC is ubiquitous in nature, arising for example in neutron stars, amongst 

excitons in semiconductors, as a pairing of quarks and anti-quarks wi th in elementary 

particles and the vacuum state, and as a BCS transition in 3 He [30]. In addition, 

a superconductor can be considered to be a Bose condensate of Cooper pairs of 

electrons, and shares many analogous features w i t h superfluids (wi th additional 

complications due to the non-zero charge density). More generally, BEC is an ex

ample of a spontaneous symmetry-breaking phase transition, famil iar in many areas 

of physics [31]. A particularly compelling example concerns the early universe. The 

phase transitions that accompanied symmetry-breaking as the universe cooled in 

the aftermath of the Big Bang may have been sufficiently rapid to produce topo

logical defects. These include domain walls and cosmic strings (analogous to vortex 

lines in superfluids) which may have had a bearing on early structure formation. 

This process, known as the Kibble mechanism [32], is a subject of interest in l iquid 

helium, where vortices are detected after a rapid quench though the phase transi

t ion [33]. Equivalent experiments have also been proposed in trapped Bose gases 

[34], though i t remains to be seen whether this system can be used to shed further 

light on cosmology. 
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Trapped Bose-Einstein condensed gases 
Apart f rom the existence of an accurate mean-field description, as mentioned in 

the previous section, a further advantage of trapped atomic systems is the wealth 

of techniques available to probe the condensate. The shape of the magnetic t rap 

confining the atoms can be varied, allowing study of collective excitations of the 

condensate. Far-off resonance light has also been used to trap [35] and manipulate 

[4] condensates. For example, in a landmark experiment by Ketterle and co-workers 

at M I T [36], a condensate was split using the repulsive optical dipole force f rom a 

blue detuned laser, creating two independent condensates separated by an energy 

barrier. On release of the barrier interference fringes were observed, providing 

compelling evidence of long-range phase coherence in the condensate. Superfluidity 

is intimately linked to this phase coherence: indeed, the local superfluid velocity is 

proportional to the gradient of the phase. 

Another enticing consequence of phase coherence is the possibility of construct

ing atom lasers. I n analogy w i t h optical lasers, the output consists of an intense 

beam of coherent atoms, or a matter wave. Potentially, this could revolutionise the 

field of atom optics. A n atom laser requires two principal building blocks: a source 

of coherent atoms, and a way of extracting an output. The first output coupling 

scheme was developed at M I T [37] using radio-frequency ( R F ) radiation to excite 

a fraction of the atoms to an untrapped hyperfine level, where they were free to 

fa l l under gravity. This may be thought of as realising a simple pulsed atom laser, 

though subsequently more elaborate quasi-continuous schemes have been developed 

[38, 39]. R F radiation has also been of particular importance when creating mu l t i -

component condensates [35, 40, 41, 42]. Moreover, a modified form of this technique 

has been successfully employed to produce the first vortex state in a trapped Bose 

condensate [43, 44]. 

Structure of the thesis 

In this thesis we shall explore some of the themes introduced in this chapter. In 

Chapter 2 we discuss the Gross-Pitaevskii equation wi th in mean-field theory, and 

describe the numerical methods used to solve i t . We utilise the GP equation to 

model condensate dynamics, in particular the output coupling of atoms [37] and 

flow through a constriction, where excited states can be created. This particular 

theme is developed further in Chapter 3, where we present simulations of flow of the 

condensate around an obstacle, formed for example using a focused far-off resonance 
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laser beam. We demonstrate vortex pair formation in both 2D and 3D simulations, 

and propose this mechanism as an experimental scheme to produce vortex lines. We 

also propose a method to create vortex ring states, whereupon two components of a 

trapped binary condensate mixture [40] are translated w i t h respect to one another, 

as discussed in Chapter 4. 

I n Chapter 5 we discuss vortex line and ring dynamics in terms of the underlying 

fluid mechanics of the condensate, w i t h particular reference to the Magnus force, 

and explain the observations of previous chapters in terms of this formalism. I t also 

serves to introduce the concept of vortex energy, which is useful for the discussion 

in Chapter 6 of recent M I T observations [45] of condensate heating when perturbed 

by an oscillating laser beam. We explain the observed dissipation in terms of vor

tex formation above a critical velocity. This serves as a natural extension to the 

material of earlier chapters; however, the analysis is incomplete as str ict ly speaking 

simulations are valid only in the l imi t of zero temperature. We discuss in Chapter 

7 a method to extend our simulations to finite temperatures, and apply i t to model 

collective excitations. We finally conclude and highlight future research directions 

in Chapter 8. 

The topics discussed in this thesis are also covered in the following publications: 

B. Jackson, J. F. McCann, and C. S. Adams, "Vortex formation in inhomoge-

neous Bose-Einstein condensates," Phys. Rev. Let t . 80, 3903 (1998). 

B. Jackson, J. F. McCann, and C. S. Adams, "Output coupling and flow of a 

dilute Bose-Einstein condensate," J. Phys. B: A t . M o l . Opt. Phys. 31, 4489 

(1998). 

B. Jackson, J. F. McCann, and C. S. Adams, "Vortex rings and mutual drag in 

trapped Bose-Einstein condensates," Phys. Rev. A 60, 4882 (1999). 

B. Jackson, J. F. McCann, and C. S. Adams, "Vortex line and r ing dynamics in 

trapped Bose-Einstein condensates," Phys. Rev. A 61, 013604 (2000). 

B. Jackson, J. F. McCann, and C. S. Adams, "Dissipation and vortex creation 

in Bose-Einstein condensed gases," Phys. Rev. A 61, 051603(R) (2000). 



Chapter 2 

B E C and the Gross-Pitaevskii 
equation 

Much of the theoretical work on weakly-interacting Bose condensates over the years 

has focused on solution of the Gross-Pitaevskii (GP) equation [7]. The long-range 

phase coherence fundamental to BEC allows a description in terms of a macroscopic 

wavefunction. The GP equation governs the evolution of this wavefunction at low 

temperatures, and follows f rom mean-field theory where interactions between atoms 

are modelled by a pseudopotential w i t h an amplitude proportional to the s-wave 

scattering length. Early comparisons to experiment showed that the GP equation 

gives an accurate description of the shape [46] and dynamics [47, 48, 49, 50] of 

dilute condensates at low temperatures. As a result, the GP equation provides 

us w i t h a powerful tool for elucidating the rich phenomena inherent in condensate 

dynamics. The present chapter introduces the equation and displays solutions in 

a I D harmonic trap. We then discuss further applications concerning simulations 

of output coupling and flow through a constriction. First, however, we w i l l discuss 

some of the more fundamental aspects of BEC. 

2.1 Basic theory 
2.1.1 Bose-Einstein condensation in an ideal gas 

Quantum statistical mechanics divides the world into two types of particles: bosons, 

which possess integer spin; and fermions, which are characterised by half-integer 

spin. This results in widely divergent behaviour in the quantum degenerate regime 

where many particles can occupy a small region of phase space. Fermions obey the 

Pauli exclusion principle, where each quantum state may only be occupied by a 

maximum of one particle. This is fundamental to many diverse systems, ranging 

13 



2.1. Basic theory 14 

f rom the structure of the atom to the structure of a white dwarf star. Bosons, in 

contrast, are subject to no such constraints, and in principle many particles can con

gregate into the same quantum state. In fact, Bose-Einstein statistics goes further 

in predicting that bosons w i l l preferentially scatter into already highly-occupied 

states, an effect analogous to stimulated emission of light. As a result, macroscopic 

occupation of the lowest energy state is possible even at non-zero temperatures, 

on condition that the phase space density is sufficiently high. This phenomenon is 

known as Bose-Einstein condensation (BEC). 

The transit ion temperature for BEC is readily calculated for an ideal, non-

interacting system of particles. We start f rom the par t i t ion function for the grand 

canonical ensemble [31]: 

Tr e - f ) { H - v . N ) (2.1) 

where fi is the chemical potential, while /3 = l/kBT is defined at the temperature 

T. Similarly, the Hamiltonian and number operator are represented by H and 

N respectively. Bose statistics and thermodynamic relations [27] yield the to ta l 

number of atoms in terms of a sum over the mean occupation of states of energy ef 

N = J 2 e x m e i _ f l ) ] _ 1 - (2-2) 

We now consider bosonic atoms confined wi th in a trap. To a good approximation, 

the bot tom (low energy region) of both magnetic and optical dipole traps is given 

by the harmonic form: 

K r a p ( r ) = | ( ^ . r 2 + a ; y + c z V ) . (2.3) 

Equation (2.2) now becomes a sum over eigenstates of the single-particle Hamil to

nian, w i t h energies: 

enx,ny,nz = ( n x + ^ hwx + (^ny + ^ hwy + ( n z + 0 hwz. (2.4) 

In the classical l i m i t , — —> oo, yielding the usual Boltzmann distr ibut ion for (2.2). 

In the opposite l i m i t , the population in the ground state becomes macroscopic when 

the chemical potential approaches the min imum energy, i.e. / i —>• fic = eooo- Note 

that this differs f rom the case of a homogeneous system in the thermodynamic l i m i t , 

where fic = 0. 

The number of particles outside the ground state in the quantum degenerate 

l im i t can now be calculated f rom (2.2) by replacing the discrete summation by an 

integral [7], which is valid under the assumption that the level spacing is much 
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smaller than the relevant excitation energies. Hence, this semi-classical approxi

mation is expected to be good under the condition ksT ! » hu, where Q is the 

geometric mean of the trap frequencies, UJ = {u>xu)ywz)ll3. Evaluating the integral 

then yields: 

where Q(x) is the Riemann zeta function. The transition temperature Tc° readily 

follows by setting N0 = 0: 

Inserting (2.6) into (2.5) gives the T dependence of the condensate fraction: 

The criterion (2.6) may be recast in terms of the phase space density, n 0 A ^ > 

( ( 3 / 2 ) , where n 0 is the peak number density of the cloud whilst Ay = (27 r / i 2 /mA; B T) 1 / 2 

is the thermal wavelength. From this one realises the f u l l scale of the task that faced 

experimenters when striving to obtain the first BEC in alkali vapours. Laser cool

ing techniques have been developed [8] w i t h the abil i ty to cool to sub-microkelvin 

temperatures. However, these optical schemes generally fa i l at the relatively high 

densities required for BEC due to reabsorption of spontaneously emitted photons 

and light-induced collisions, and conventional laser cooling schemes are typically 

only capable of reaching phase space densities five orders of magnitude away f rom 

quantum degeneracy.1 Evaporative cooling bypasses these problems by using R F 

radiation to selectively induce spin flips in atoms at the edge of the trap. Atoms in 

a magnetic trap are spin-polarised in low-field seeking states, w i t h those of highest 

energy tending to be found at the edge. Transitions to high-field seeking states expel 

these atoms, so that rethermalisation of the remaining atoms leads to a lower tem

perature. This technique eventually results in the required enhancement of phase 

space density w i t h a relatively modest loss of atoms. I n the first successful exper

iment on 8 7 R b [1], condensation was achieved at Tc ~ 170 nK w i t h N ~ 2 x 10 4 

atoms, at a number density of ~ 2.6 x 1 0 1 2 c m - 3 . Subsequent experiments have 

produced condensates of up to N ~ 10 7 atoms at densities of around 1 0 1 5 c m - 3 [6]. 

A t these densities, interatomic collisions become increasingly important , w i t h often 

1Note that phase space densities of up to 0.1 have been achieved using special schemes, e.g. 
sub-recoil cooling or the intercombination transition in strontium (see [51] and references therein). 

kBT 
N - N 0 = C 3 (2.5) 

1/3 N o 
C 3 

(2.6) 

T o 
1 c N 

(2.7) 
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dramatic repercussions for the condensate properties. Fortunately, interactions re

main sufficiently weak to allow a Hartree-Fock mean-field description, where each 

atom is treated as moving in a field composed of interactions w i t h all of the other 

atoms, as w i l l now be discussed. 

2.1.2 The mean-field description and second quantisation 

To simplify the discussion of the many-body problem, the method of second quan

tisation is often employed. In this formalism, field operators are defined as linear 

combinations of single-particle wavefunctions and creation and annihilation opera

tors on the many-particle Hilbert space. The fields are wr i t t en as V'a(r), where 

a here represents any internal degrees of freedom (e.g. spin) while r indicates 

the position vector. Commutation and anti-commutation relations are satisfied: 

[ ^ a ( r ) , ^ J ( r ' ) ] T = 6ap6{r - r ' ) and [V>Q(r), ^ ( r ' ) ] ^ = 0, where the upper (lower) 

sign refers to bosons (fermions). This highlights one of the major advantages of 

second quantisation, i n that the quantum statistics is included in the field opera

tor. We shall, however, restrict our attention to bosons here. Neglecting spin, the 

Hamiltonian of the system can be represented by: 

" h2 

H = J d 3 r ^ ( r ) ^ ( r ) 

+ d W r ' ^ r ^ V M r y M O ^ r ) , (2.8) 

where interactions between particles are represented by U{v,v'). 

The single-particle density matrix can be expressed as a correlation function 

between fields at the points r and r ': 

P l ( r , r ' ) = (^(r)V)(r ' ) ) . (2.9) 

The diagonal elements simply give the density of the condensate, e.g. P i ( r ) = 

| i / j ( r ) | 2 . However, the off-diagonal elements are of considerable interest in our discus

sion as they furnish the Penrose-Onsager criterion for Bose-Einstein condensation 

[30]: 

{ft(r)t(r>)) | r " - ^ ° ° * * ( r ) * ( r ' ) , (2.10) 

where \&(r) = (V>(r)) ^ 0 is the condensate wavefunction, which is a complex 

number possessing a magnitude and phase. We see that the Hamiltonian (2.8) is 

invariant under a constant phase change of ^ ( r ) ; however, as the ensemble average of 

the field is non-zero, then a 'preferred' phase must be selected when the condensate 

forms. This concept is referred to as broken gauge symmetry. Furthermore, we see 
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that to satisfy the Penrose-Onsager criterion the phase of ip(r) must be spatially 

correlated over the entire system. This phenomenon is known as off-diagonal long-

range order (ODLRO) . 

I n view of the previous discussion, the field operator can be wr i t ten as a sum 

of the condensate wavefunction and an operator representing the non-condensed 

bosons: 

V>(r) = tf(r) + ^ ( r ) , ( 2 . 1 1 ) 

where (V>(r)) = 0 by definition. Substituting into the density matr ix ( 2 . 9 ) yields: 

P l ( r , r ' ) = ** ( r )* ( r ' ) + ( ^ ( r ) ^ ( r ' ) ) . ( 2 . 1 2 ) 

We immediately see that a pure condensate exhibits perfect first order spatial co

herence, which is related to its phase coherence over the entire system. Conversely, 

the non-condensate exhibits a rapid Gaussian decay to zero over a length scale 

equal to the thermal wavelength, A t [ 52 , 5 3 ] . Thus, the off-diagonal elements of 

the density matr ix tend at inf in i ty to a value equal to the condensate fract ion. A 

beautiful recent experiment [54] has demonstrated this by measuring the vis ibi l i ty 

of the interference pattern between two spatially separated regions of a trapped 

condensate. 

2.1.3 The Gross-Pitaevskii equation 

We now neglect the fluctuations of the field, and consider only the condensate 

wavefunction, ^ ( r ) . This is valid near to T = 0 and for weak interactions, where 

the condensate depletion due to thermal and quantum fluctuations is negligible. I n 

effect, this corresponds to treating the wavefunction as a classical field w i t h well 

defined phase, though i t remains 'quantum' in the sense that the wavefunction is 

s t i l l described by a Schrodinger equation. We discuss the generalisation to finite 

temperatures in Chapter 7. 

A further approximation is to treat the interatomic potential as a hard-body 

sphere of infinitesimally small radius. This is valid for dilute condensates where the 

mean inter-particle separation far exceeds the range of interactions, also allowing us 

to treat only binary collisions. This assumption is a good one for the present BEC 

experiments. As we consider low temperatures, interatomic collisions are dominated 

by s-wave scattering. In this regime, the bosonic cross-section is a = 87ra2, where 

a is the scattering length. These assumptions allow us to treat interactions using a 

pseudopotential [55] of the form U(r, r ' ) = g5(r — r ' ) , w i t h g = 4irh2a/m. 
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Substitution into the Hamiltonian (2.8) yields: 

i / ( i ) = | d 3 r ( V ( M ) - | V + K r a p M ) * ( r , f ) + ! | * ( r , t ) | 4 ) , (2.13) 

where we have re-introduced the time dependence. The evolution of the wavefunc-

tion is then found using the Heisenberg equation of motion for the field operator, 

ihdttp = [i>,H]. This gives: 

i f i J U ( r , i ) = ( - | ^ V 2 + V t r a p ( r , t ) + i V p | * ( r , i ) | 2 ) * ( r , t ) , (2.14) 

where we have renormalised \I> to remove N, the number of atoms, in order that: 

| * | 2 d 3 r = l . (2.15) / 
We see that (2.14) has the form of a Schrodinger equation, w i t h an additional 

interaction term proportional to the number density, n c ( r , t) = AT|^(r , t)\2. For this 

reason i t is known as the time dependent nonlinear Schrodinger equation (NLSE), 

or Gross-Pitaevskii (GP) equation [28, 29]. 

2.2 Numerical solution of the GP equation 

Given the GP equation (2.14), we now wish to solve i t in order to determine the 

equil ibrium properties of the condensate and to simulate the dynamics subject to a 

time dependent potential. In this section we describe the basic ideas underpinning 

our numerical methods, wi th further details given in the Appendix. Af te r discussing 

scaled units, we briefly discuss time evolution, before presenting time independent 

solutions in Sec. 2.2.3. 

2.2.1 Harmonic oscillator units (h.o.u.) 

For ease of discussion, we w i l l in i t ia l ly consider solution of the NLSE in I D , where 

extension to 2D and 3D is conceptually straightforward, as discussed below. More

over, i t is convenient to rewrite the NLSE in terms of dimensionless units. For 

a trapped gas the most natural scale is the so-called harmonic oscillator length, 

£ = (h/2mtux)1/2, where u>x is the trapping frequency introduced in (2.3). Similarly, 

the units of t ime and energy can be wri t ten in terms of tux. This yields harmonic 

oscillator units (h.o.u.) [56]: 

* = * M w *• ( 2 - 1 6 ) 
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t' = wxt, (2.17) 

E' = (2.18) 
nojx 

where x', t', and E' now represent length, time and energy respectively. W i t h the 

change in length scale, the normalisation of the wavefunction is modified. Thus, 

requiring that: 

/

oo />oo 

| * ( x , i ) | 2 d x = / \^'(x',t')\2dx' = 1, (2.19) 
•oo J —oo 

implies V(x',t') = lxl2V{x,t). 
W i t h these re-scalings, the I D NLSE becomes: 

i ^ ' ( x ' , t ' ) = ( - ^ + ^ ' 2 + l̂*'(̂ '>0|2) (2.20) 

where we have introduced a nonlinear parameter, C = iiTNa(2h/mux)1^2, which 

w i l l be of prime importance in this thesis. The form of C for higher dimensions 

is dependent upon the normalisation condition (2.19). In particular, denoting the 

number of simulation dimensions by 7, C can be shown to be: 

AnhNa / 2 m u x V / 2 

C = — — ^ . (2.21) 
mu)x \ H ) 

Note that for 7 < 3 the definition of TV also changes, in order that C remains 

dimensionless. For I D , N is defined as the number of condensate atoms per unit 

area in the y — z plane, while for 2D i t is the number per unit length along z. 

I n general, we use lower numbers of dimensions for computational convenience as 

f u l l 3D simulations can be time consuming. However, 3D w i l l be used to check 

whether our 2D results are physical and to investigate behaviour not apparent in 

lower dimensions. A n alternative is available when the problem possesses one or 

more rotational axes of symmetry. In these cases, f u l l 3D simulations (in Cartesian 

coordinates) can be reduced to quasi-lD (spherical symmetry) or 2D (cylindrical 

symmetry) problems. We describe procedures for dealing w i t h these situations in 

the Appendix. 

For the remainder of the thesis, we shall drop the primes on the scaled units. 

Whether scaled or natural units are used shall be obvious f rom the context, and we 

w i l l often indicate the conversion factors between the two systems when comparing 

w i t h experiments. 

2.2.2 Time evolution 

We may wri te the scaled NLSE in the following form: 

i— = H,% (2.22) 
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in which case the evolution of the wavefunction over a short t ime At can be wr i t t en 

in terms of a unitary evolution operator: 

tf(r, t + At)= e - i / f ' ( r ' * ) A t * ( r , t) + 0(At2). (2.23) 

The error arises due to the time dependence of the Hamiltonian, Hi(r, t). Numerical 

methods diverge in the way in which the evolution operator is represented. In the 

split-step method, the evolution operator is divided into kinetic and potential parts, 

where the former is dealt w i th using Fast Fourier Transform (FFT) routines. I n 

Crank-Nicholson, the evolution operator and the kinetic part of the Hamil tonian 

are represented using finite differences. We discuss these methods in more detail in 

the Appendix. 

2.2.3 Time independent solutions 

The numerical methods discussed so far describe the t ime evolution of the wave-

funct ion. However, i t w i l l be useful to be able to obtain time independent solutions 

by these techniques, i n order to investigate the properties of the condensate in 

equil ibrium as well as providing ini t ia l states in our simulations. Time indepen

dent solutions may be wri t ten in the fo rm * ( r , it) = * ( r ) e _ l M ' , so that the I D t ime 

independent NLSE is given by: 

d2 1 
p*(x) = { ^ - ~ + \x2 + C\*(x)\2) Hf(x), (2.24) 

where n is the chemical potential. A t this juncture we should mention a useful 

approximation in the large C l im i t . In this situation the interaction term predomi

nates, and the wavefunction curvature is sufficiently small so that the kinetic term 

can be neglected. Consequently, the wavefunction takes a parabolic form: 

l * ( * ) | 2 = ^ = ^ - (2-25) 

This has proved invaluable in analytical studies, and is commonly known as the 

Thomas-Fermi (TF) approximation [57]. This approximation also furnishes us w i t h 

an estimate for the chemical potential. Substituting (2.25) into the normalisation 

condition (2.19) gives: 

^° F=(f ;) 2 / 3 . (2-26) 

In 2D the trap potential can be wri t ten as V t r a p ( : r , y ) = \{x2 + rjy2), where r] = 

U J 2 / U J 2 . The chemical potential is thus: 

"S = ( ^ f . (2'27) 
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Figure 2.1: Condensate density oc | * | 2 , plotted against position (in h.o.u.) for the 
ground state in I D , w i t h nonlinear coefficient C = 0,30, 60, 90,120. As C increases, 
the edges of the symmetric condensate spread out, unt i l at high C the density tends 
towards the Thomas-Fermi profile (2.25), plotted as a dashed line for C = 120. 

while 3D is characterised by a trap potential of V t i a p ( x , y, z) = \{x2 + r\y2 + ez2), 

yielding: 

To numerically obtain time independent solutions of (2.24), one can begin w i t h 

an analytic ground or excited state solution in the absence of the nonlinear term. 

For a harmonic trapping potential the n- th order solution is simply wr i t t en in terms 

of the Hermite polynomial, Hn(£) [58]: 

* n ( X ) = ( 2 2 n + % ( n ! ) 2 ) l / 4 e " 3 ; " H n ( ^ ) • (2-29) 

The solution is then propagated through real t ime using the Split-Step Fourier 

method, while at each time-step the value of the nonlinear constant is increased 

adiabatically ('ramped') unt i l reaching the desired value of C. In practice, this 

consists of inserting a time dependent pre-factor P(t) = [1 — cos(7rt /r r )] /2 in front 

of the nonlinear term [56], where the ramp time r r 3> 1. 

This method can be used to evaluate ground and excited states for a range of 

C, yielding the wavefunctions shown in Fig. 2.1, 2.2 and 2.3. We consider here only 

positive C, corresponding to repulsive interactions. As a result, the wavefunction 

tends to spread out as C increases, the ground state solution approaching the T F 

parabolic profile (2.25) at high C (apart f rom a small region near to the condensate 
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Figure 2.2: Condensate density oc |\I>|2 against position (in h.o.u.) for the first 
excited state of a I D harmonic trap, w i th nonlinear coefficient C = 0,30,60,90,120. 
As repulsive interactions increase the condensate edges spread out; however, the 
wid th of the central node remains vi r tual ly unchanged. 
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Figure 2.3: Condensate density oc | ^ | 2 against position for the second excited state 
for I D , w i t h nonlinear coefficient C = 0,30, 60,90,120,150. As interactions increase 
the nodes of the symmetric condensate converge, tending towards a fixed separation 
at high C. 
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Figure 2.4: Chemical potential, fi ( in units of hux) as a funct ion of C for a I D 
harmonic trap. The first three energy levels are plotted w i t h solid lines, where the 
ground state converges to the Thomas-Fermi result (dashed line, 2.26) at high C. 

edge). This asymptotic behaviour is also evident in the chemical potential versus 

C plot of Fig. 2.4; the I D ground state fx increases f rom the bare harmonic t rap 

value of fi = 1/2 (in units of huix) to the T F value (2.26) at the high C l i m i t . In 

addition, the level spacing decreases f rom [i — 1 at C = 0 towards a l imi t ing value of 

Afi ~ 0.7 at large C. This is similar to the energy of solitons in 3D condensates [59]: 

indeed, the first excited state in I D can be thought of as containing a stationary 

dark soliton at the t rap centre. The behaviour of the excited state energies can be 

understood in terms of the wavefunctions. As seen in Fig. 2.2 and 2.3, the edges 

spread out as C increases in a similar fashion to the ground state. However, for 

the first excited state the wid th of the central node barely changes as C increases, 

while in the second excited state the two nodes asymptotically approach a fixed 

separation, A x ~ 1. I n Sec. 2.4 we wi l l demonstrate how such modes could be 

excited by flow of a condensate through a constriction. 

The procedure described above is diff icul t to implement for C > 150, requiring 

long computation times—a problem compounded in 2D and 3D. A n alternative 

scheme for finding ground state solutions is to propagate in imaginary time, t —» —it. 

In contrast to real t ime, the resulting t ime evolution operator is nonunitary, so 

that the wavefunction must be renormalised after each time-step. Simpson's rule 

integration was found to be sufficiently accurate for this purpose. The ratio of the 
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norms then provides a convenient estimate for the chemical potential: 

^ 2At 
/ l * M ) | 2 d r (2.30) 

. / | # ( r , £ + A*) | 2 d 3 r_ 

I n imaginary time excitations are exponentially damped, so that the adiabatic ramp

ing required in real t ime is unnecessary, and both $ and fi rapidly converge to a 

stationary solution (typically in t < 10). In general this is the ground state, unless 

one applies special constraints, as w i l l be discussed for vortex states in Chapter 5. 

In the case of excited states, sometimes a more convenient technique is to rewrite 

the time independent GP equation using finite differences, and solve the resulting 

simultaneous nonlinear equations using an iterative scheme (e.g. Newton's method). 

In general we shall not use this method in this thesis; however, i t has proved useful 

for studying uniform flow solutions (see [60] for more details). Impor tant ly for our 

purposes, i t also provides a convenient test of the numerics, and we f ind that the 

values of \x obtained by this method agrees w i t h the results of imaginary t ime wi th in 

a very high precision. 

2.3 The output coupler 

The last section described how one can obtain stationary solutions of the GP equa

t ion, which are useful as in i t i a l conditions in simulations. For the remainder of 

this chapter we w i l l describe two applications. First, we model a M I T experiment 

demonstrating output coupling of Bose condensed 2 3 N a atoms f rom a magnetic trap 

[37], by dr iving an R F transition to a untrapped state. Previous theoretical studies 

of R F output coupling have considered I D motion without gravity [61], or have 

modelled the process by neglecting kinetic energy [62] or interaction terms [63] in 

the GP equation. Here we solve coupled GP equations in 2D, w i t h the inclusion 

of gravity, to model the evolution of both an output pulse and the condensate 

remaining in the trap. 

2.3.1 The coupled Gross-Pitaevskii equations 

For 2 3 N a (or 8 7 R b ) condensates, the F = 1 ground state is composed of the trapped 

state Mp = — 1 , the magnetically insensitive level Mp — 0, and the anti-trapped 

state Mp = 1. Condensed atoms in each state may be represented by a Bose 

wavefunction ^ ( r , £), where i G { — 1 , 0 , + 1 } . Given that the magnetic substates 

are orthogonal, the conservation of probability can be expressed as: 

J d s r £ | * , ( r , t ) | 2 = l (2.31) 
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The Hamil tonian of the system can now be constructed in a similar manner to (2.8), 

including gravitational and magnetic trapping potentials, hyperfine interactions, 

and the R F coupling term — \i • B ( r , t ) . Using the Heisenberg equation of motion, 

or equivalently by applying the variational principle, one can obtain a set of coupled 

equations describing the dynamics of the parent ( ^ - i ) and daughter condensates 

(*o , * i ) : 

ih—*k(T,t) = h 2 V 2 + I 4 ( r ) + 7 V ^ ( ^ | W | ^ ) 
2m 

^k{T,t) + h J 2 ^ k j ^ j ( r , t ) , 

(2.32) 

where Vfc(r) represents the sum of the gravitational and trap potentials in the sub-

state k, and Q,kj is the Rabi frequency describing coupling between sublevels, defined 

by hStkj = {^fe| — fJ' • B | \ & j ) . Atom-atom scattering appears as the mat r ix element 

(tyj\U\tyj). Assuming that scattering lengths between all atoms are the same, we can 

replace the interaction wi th a pseudopotential, as we did for the single-component 

case. 

In the experiment, the R F pulse was of short duration and small area [37], 

leading to the following simplifications. First, due to the small area (| / fl+i;odt\ <C 

1) coupling to the Mp = + 1 state is small and may be safely ignored, and also 

back-coupling (i.e. Rabi oscillations) are negligible. A n example of strong coupling, 

where Rabi oscillations are important, has been considered by Ballagh et al. [61] in 

a I D weightless model. Secondly, the short pulse duration, T , results in broadband 

excitation, so that we may assume resonant coupling across the trap and neglect 

the spatial dependence of the coupling term, fi(r, t). In addition, we may assume 

that the parent condensate is 'frozen' during the interaction (UJXT >C 1), in which 

case the daughter condensate is created suddenly as a shadow of the parent, i.e.: 

2 

| * o ( r , T ) | 

and, 

2 ^ [ (ft'fi(r,£')*-i(r,0 / | * _ ! ( r , 0 ) | 2 , (2.33) 

| 0 M r , T ) | 2 * ( l - / ^ ( r , 0 ) | 2 , (2.34) 

where / , the fraction of atoms coupled out of the trap, is equal to the square of the 

pulse area. 

Subject to these simplifications, we obtain a pair of coupled t ime dependent GP 

equations in 2D: 

iflfctf-i = ( - V 2 + | ( x 2 + y2) + C O ^ I 2 + l ^ o l 2 ] ) * - ! , (2.35) 

id*Q = ( - V 2 + Gy + C [ | * 0 | 2 + | * - i | 2 ] ) * o , (2.36) 
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where G — (m/2fiwl)1/2g. Note that gravity is absent f rom Eq. (2.36), as the term 

simply gives rise to a constant shift in the energy and centre-of-mass of the trapped 

condensate. W i t h in i t i a l conditions given by Eq. (2.33) and (2.34), equations (2.35) 

and (2.36) are solved to model the dynamical behaviour of the parent and daughter 

condensates for t > T. A t each time-step the equations are propagated sequentially, 

which is accurate so long that At is sufficiently small. We now discuss the results 

of the simulations. 

2.3.2 Results 

To simulate the M I T experiment we consider the parameters C = 200 and G = 3.0, 

corresponding to trap frequencies of uix = ooy ~ 2ix x 200 Hz and i V « 2 x 10 4 2 3 N a 

atoms per h.o.u. respectively. Density plots of the output pulse (for / = 0.2) are 

presented in Fig. 2.5. Af te r creation, the output pulse is subject to gravity, a repul

sive internal force, and a strong repulsion f rom the residual parent condensate. We 

see in Fig. 2.5 that even at early times, a combination of these effects dramatically 

changes the shape of the output. The curvature of the daughter condensate is found 

to be less pronounced for weaker interaction strengths. A t later times the output 

pulse expands freely, resulting in a 'crescent-shaped' density profile, characteristic of 

the M I T experiment (see Fig. 2.6) [4, 37]. This suggests that the zero-temperature 

approximation, inherent in the coupled Gross-Pitaevskii equations, is appropriate 

for modelling the dynamics of the output. The curvature of the output pulse was 

not observed in previous theoretical studies [63], due to a different trap geometry 

and subsequent neglect of the interaction term in the axial direction. 

The mutual repulsion between parent and daughter leads to a small recoil of 

the more massive, trapped condensate. The subsequent motion of the parent can 

be inferred by studying its centre-of-mass, given by Y = J y\^\2dxdy. Simulations 

of a condensate in free-fall show that calculations of the centre-of-mass agree w i t h 

the classical result, Y = —Gt2, to five significant figures. The centre-of-mass co

ordinate of the parent condensate along wi th its acceleration, Y, are displayed in 

Fig. 2.7. The repulsive force f rom the output pulse reaches a maximum at t ~ 0.75. 

Subsequently, as the coupling term falls to zero due to the decreasing overlap, the 

parent undergoes harmonic motion at the trap frequency, as expected. Fig. 2.7 also 

illustrates that the recoil is less for smaller output fractions. Given that the output 

coupling for small / does not seriously perturb the parent, further coherent pulses 

may be produced, and one would expect that the recoil on the parent would be 

negligible for slow, continuous output coupling [38]. 
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Figure 2.5: Contour plots of \^(x, y, t)\2 for an output coupled Bose condensate 
fal l ing under gravity, w i t h C = 200, / = 0.2, and G = 3.0, at times t = 0 (offset 
x -> x - 3 0 ) , t = 1.2 (offset x -> a;-10) and t = 2.4 (offset x ->• rr+20). Nine equally 
spaced contours are drawn for each time-frame, up to peak densities of 1^(0, 0, 0 ) | 2 = 
5 . 6 7 x l 0 " 3 , | * ( 0 , - 7 . 8 1 , 1 . 2 ) | 2 = 2 . 3 6 x l 0 - 3 , and | # (0 , -22 .19 ,2 .4 ) | 2 = 1.25 x l O - 3 . 
The repulsive force f rom the condensate remaining in the trap, combined w i t h free 
expansion under gravity, creates a characteristic 'crescent shaped' output profile 
(see Fig. 2.6). 

0 Density scale (arbitrary units) 1 

Figure 2.6: Images taken f rom the output coupling experiment [37], for comparison 
to results of our simulations (Fig. 2.5). A pulse is created every 5 ms, so that our 
simulations model behaviour at the beginning of the output process (top of image). 
Courtesy of the M I T BEC group home page (ht tp : / /amo.mit .edu/~bec/) . 

http://amo.mit.edu/~bec/
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Figure 2.7: Vertical position (Y, f u l l curve) and acceleration (Y, broken) of the 
centre-of-mass of the trapped parent condensate (C = 200 and G = 3.0) as a 
funct ion of t ime. Repulsion f rom the output pulse induces a recoil, which excites 
the parent into oscillatory motion (dipole mode). Results are presented for / = 0.2 
(heavy curves) and / = 0.05 (light curves). 

Given the agreement between these dynamical simulations and experiment, we 

surmise that the same numerical methods can be employed to model the dynamics 

of the condensate in other interesting situations. A n example is discussed in the 

following section, while applications to vortex formation and motion w i l l be the 

subject of much of this thesis. 

2.4 Flow through a constriction 
We now consider the flow of a weakly-interacting condensate through a constriction. 

In the 2D simulations presented here, the condensate is released f rom an isotropic 

trap and falls under gravity down a focused, far-off resonance laser beam. The beam 

is approximated by a harmonic potential in which the spring constant varies w i th 

position along y. Any variation in potential along the y-axis (e.g. due to an increase 

in intensity near to the focus) is neglected. This situation may be realised using a 

blue detuned doughnut mode laser (see e.g. [8]). The model also assumes that there 

is no delay between release f r o m the trap and switching on the laser beam. Under 

this model, for t > 0, the evolution of the condensate is given by the equation: 

idtm = ( -V + 4 

i i + ivllvl) 
i + {y-Vm)2lyl\ 

2 
.2 x2 + Gy + C\V\2 (2.37) 
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so that the horizontal oscillation frequency, u = {yl+y^)/[y2+{y—Vm)2], is matched 

to the in i t i a l trap frequency at the 'release' position, y = 0, and increases by a factor 

of [1 + (ym/yo)2] at y = ym. The l im i t y0 —> oo corresponds to a collimated laser 

beam. I n this case, the simulations demonstrate that the laser acts as a waveguide 

for output-coupled condensates. 

A n interesting situation arises when the laser is tightly-focused. Fig. 2.8 displays 

results of the simulation for a small nonlinear coefficient (C = 10). The density 

plot at t = 2.0 illustrates that three peaks are formed above the constriction. By 

rescaling, one finds that the peaks approximately match the positions of the maxima 

in Fig. 2.3, suggesting that the second excited state is populated. The probabil i ty 

that the condensate w i l l be excited f rom the ground state is related to the rate of 

change in the Hamiltonian compared to the excitation spectrum [64]. For example, 

in the adiabatic regime the upper l im i t to the probabili ty of excitation between 

eigenstates a and b is given by: 

4 l W f l * a ) l 2 

h2u>t 
Pba < • (2.38) 

Jba 

One immediately sees that because dH/dt is an even function, then the excita

tions connects only states w i t h the same parity. In addition, mode excitation is 

more probable for small constrictions and higher C, where a rapid variation in 

the Hamil tonian is induced. Conversely, for wider constrictions, the Hamil tonian 

changes slowly and the fluid can adjust adiabatically. 

A t subsequent times (t = 2.5 in Fig. 2.8) the excited ' t a i l ' remains above the 

constriction, while the 'bulk' of the condensate in the ground state continues to 

fa l l . To understand this separation of eigenmodes, consider the simple case of a 

non-interacting condensate, C = 0. As the condensate falls into the constriction, 

the increase in oscillation frequency, 5LO, leads to a rise in the chemical potential 

by 8[i= (n+ 1/2) 8OJ. This increase in energy is offset by a change in the gravita

t ional potential, Gy. Equating the energies gives an expression for the equil ibrium 

position, ye: 

ye = ym + + y - J m K

G

 2 ) - yl (2.39) 

So, for the n- th mode to be trapped, the following inequality must hold: 

n > 2G ( y m + s f i l + y f j - \ (2.40) 

In the case of Fig. 2.8, equation (2.39) predicts ye ~ —4.3 for n = 2, just below 

the actual position as expected, because the small nonlinearity tends to push the 
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Figure 2.8: Flow of a weakly interacting condensate (C = 10, G = 3.0) through a 
constriction, where the horizontal oscillation frequency increases by a factor of 11.5 
between y — 0 and ym — —6. Density contours are shown at t = 2.0 (offset left) 
and t = 2.5 (offset r ight) . The excited ' t a i l ' of the condensate remains above the 
constriction while the ground state falls under gravity, leading to spatial separation 
of eigenstates. The contours are drawn w i t h an equal spacing of 7 x 1 0 - 3 . 

mode upwards. In addition, the inequality (2.40) gives n > 1.2, confirming that 

only excited states are trapped above the constriction. The constriction thus acts 

as a mode ' f i l ter ' , and could provide a convenient means to generate and study 

the decay of excitations. However, for a light-induced potential this would require 

tight-focusing: typically spot sizes of 1 fim or less. 

For large C , the interaction term in the chemical potential dominates. Thus, 

in addit ion to the rise in energy due to the changing LU, there is an increase in the 

density and therefore the interaction energy. As a result, the relative difference 

between eigenvalues is much lower than for C = 0, and mode separation tends not 

to occur. In Fig. 2.9, one can see that, for C = 200, two maxima form above a wide 

constriction. Parity is s t i l l conserved, but the ' t a i l ' in this case consists mainly of 

a superposition of ground and second excited states. I f narrower constrictions are 

used many modes are excited, and the situation becomes increasingly complex. 



2.4- Flow through a constriction 31 

0 

10 

15 

20 

_25 I i i i i i I 
-10 -5 0 5 10 

X 

Figure 2.9: Flow of a condensate (C = 200, G — 3.0) through a constriction at 
a t ime t = 2.0, where the horizontal trap frequency increases by a factor of 2.5 
between y = 0 and ym = —6. Similarly to the weakly interacting case, the potential 
induces excitations in the condensate. Contours are drawn wi th an equal spacing 
of 3.03 x 10" 3 . 



Chapter 3 

Superfluidity and vortex 
formation 

In the previous chapter we related how spontaneous symmetry-breaking below the 

BEC transition leads to phase coherence, and hence to a macroscopic wavefunction 

which represents the condensate. The properties of the wavefunction can be de

scribed in terms of the Gross-Pitaevskii equation, which we solved for ground and 

excited states. However, the GP equation also admits solutions that are topologi-

cally non-tr ivial , in that they cannot be continuously deformed to the ground state. 

In these states, the wavefunction phase forms a singularity, corresponding to a de

fect in the order parameter. Defects can take various forms, ranging f rom domain 

walls to monopoles. However, vortices take centre stage in our discussion, where 

a non-zero f lu id circulation is accompanied by a zero in the condensate density. 

Importantly, the single-valuedness of the wavefunction constrains the circulation to 

possess multiple values of h/m; in other words, vortices are quantised, a unique 

feature intrinsic to quantum fluids [22]. 

This chapter describes a technique for creating vortex-antivortex pairs using 

a moving object. In some ways the process is analogous to the turbulence that 

develops in classical fluids when the Reynolds number exceeds some critical value, 

and indeed vortices are nucleated wi th in the superfluid only above a crit ical flow 

velocity. However, the special significance of this process can only be understood by 

first realising that the condensate is a quantum fluid, which according to Landau 

[20] can transfer or absorb energy solely in quantised units corresponding to the 

excitations of the condensate. Hence dissipation, and therefore viscosity or f r ic t ion , 

can arise only as a result of the creation of vortices, phonons, or (in H e l l ) rotons. 

In the presence of interactions among particles, excitations become energetically 

favourable above a crit ical velocity. Thus, superfluidity is a consequence of the 

quantum nature of the fluid, coupled wi th the dispersion law of the excitations 

32 
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(hence an ideal condensate is not superfluid). The important point is that both for 

superfluid helium and for dilute Bose gases the critical velocity for vortex formation 

is generally lower than that for phonons or rotons. The creation of vortices is 

therefore responsible for dissipation and the 'breakdown' of superfluidity in these 

scenarios. 

In trapped Bose gases the 'object' can be created using the repulsive potential 

arising f rom a blue detuned far-off resonance laser beam. The beam is focused 

at the centre of the trap, producing a toroidal condensate. I t is then swept out 

towards the edge at a constant velocity. Here we present 2D and 3D simulations 

that demonstrate vortex pair formation by the object; first , however, we w i l l briefly 

review superfluidity and quantised vortices in BEC. 

3.1 Superfluidity and quantised vortices 

3.1.1 The Bogoliubov spectrum 

Much of our present understanding of the relation between BEC and superfluidity 

is due to the pioneering work of Bogoliubov [65] on the excitation spectrum of dilute 

Bose condensates. The essential idea is that the Hamiltonian (2.8) can be diago-

nalised by expressing the field operator ^ as a linear combination of quasiparticle 

operators aj and a j : 

^ = X ) [ u j ( r ) a i ( * ) - t ; ; ( r ) a J ( t ) ] . (3.1) 
3 

This leads to the Bogoliubov equations: 

fiLujUj(r) = [HQ-n + 27Vs|*(r) | 2 H(r) - Ng{9(r)}\(T)t (3.2) 

- / ^ • ( r ) = [H0-» + 2AT 5 |*(r) | 2 ]^(r) - Ng{**(r)}2us(r), (3.3) 

where H0 = —h2V2/2m + V r

e x t ( r ) . Solving the set of coupled equations yields 

the excitation frequencies Uj, while the eigenfunctions satisfy the normalisation 

condition: 

J dr[tt?(r)u,-(r) - <(r) V j (r)] = (3.4) 

which follows f rom the constraint that the operators aj and a ] satisfy Bose com

mutat ion rules. 

In a uni form gas, u and v can be rewritten as plane waves and the Bogoliubov 

dispersion law follows f rom (3.2) and (3.3): 

x2 (n2k2\ (h2k2 \ , , <*"> S ^ j U r + H ' (3-5) 
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where k is the wave vector of the excitation. For large momenta the spectrum 

coincides wi th the free-particle energy fko = h2k2/2m, while at low momenta the 

dispersion takes the phonon form u> = csk, where: 

is the sound velocity. This simple form for the quasiparticle spectrum in a dilute, 

homogeneous condensate is modified most notably for l iquid 4 He and for trapped 

gases. I n the former case the interaction potentials are particularly strong, so that 

they play an important role when excitations are of a wavelength comparable to the 

interatomic spacing. As a result the dispersion curve possesses a so-called 'roton 

min imum' at high frequencies. 

In trapped Bose gases the finite size of the condensate discretises the excitation 

spectrum. This is particularly important when the excitation wavelengths are com

parable to the condensate size, so that the lowest energy modes are standing wave 

phonons dubbed collective excitations. The dispersion law for collective excitations 

was determined analytically in a seminal paper by Stringari [50], and was found to 

agree very accurately w i t h experimental results at low temperatures [47, 48]. This 

has been taken to be excellent confirmation of the accuracy of mean-field theory 

(and by extension, the GP equation) in this regime. The lowest energy collective ex

citations include the dipole modes (simply rigid-body centre of mass oscillations at 

the trap frequency), monopole 'breathing modes', and quadrupole oscillations. A t 

higher frequencies phonons propagate through the condensate in a similar manner 

to sound waves [66, 67], w i th a velocity equal to the Bogoliubov result (3.6). These 

modes have been observed experimentally in a quasi-ID geometry [68]. Finally, 

excitations can take on a single particle character, though the simple energetic d i 

viding line w i th phonons is more blurred in a trap than in the Bogoliubov spectrum, 

because low-energy single particle excitations can exist in the low density regions 

of the cloud [69]. 

3.1.2 The Landau criterion 

The elementary excitations discussed in the previous section take on a particular 

importance when considering superfluid flow in a channel, or equivalently, around 

an object. Recall that, according to Landau, dissipation can arise only by creation 

of elementary excitations wi th energy e and momentum p. I f we consider a frame 

co-moving w i t h the fluid at a constant velocity v, and perform a Galilean trans

formation wi th respect to the laboratory (object) frame, then excitations become 

m 
(3.6) 
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energetically favourable only when v > e/p. This immediately yields the Landau 

criterion for the critical flow velocity: 

« . = ( ! ) . . ( " J 
\r / nun 

For superfluid helium, the critical velocity is determined f rom the roton min imum, 

which yields vc ~ 58ms" 1 [26]. In a dilute Bose condensate, by contrast, the 

phonon part of the dispersion curve suggests that vc = cs. We w i l l return to this 

case later, especially w i t h respect to recent experiments at M I T [45, 70]. However, 

the important point to note at this stage is that experiments on superfluid He flow 

though narrow channels yield critical velocities two or more orders of magnitude 

lower than that expected for rotons. Feynman [23] postulated the existence of 

another branch of the spectrum, which described the creation of topological rather 

than elementary excitations. These quantised vortices are the subject of the next 

subsection. 

3.1.3 Quantised vortices 

The first step in our discussion of superfluid vortices is to use the Madelung trans

formation [22] to represent the condensate order parameter in terms of its density 

nc(r,t) and phase S(r,i), so that: 

= V ^ e < s - ( 3 - 8 ) 

The superfluid velocity can then be calculated using the usual quantum mechanical 

expression: 
H ( * * V * - # V # * ) , (3.9) 

8 2 i r a | # | 2 

which yields the important relation: 

—VS. (3.10) 
m 

Thus there is an explicit l ink between the superfluid velocity and gradient of the 

phase. I f we consider an arbitrary closed loop in the fluid, then the phase change 

on traversing the loop is constrained to 2nn, where n is an integer. Hence, the 

circulation is: 

K = & v d l = — . 3.11 
Jc rn 

This quantisation of circulation is extremely important, as amongst other things i t 

implies that there is an energy barrier between non-vortex and vortex states. The 
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superfiuid therefore prefers to remain irrotational everywhere except at singular 

points (2D) or lines (3D), so that | V x v s | = ^27TOj5 ( r — r 0 i ) . These correspond 

to the centres of point vortices or vortex lines at r = roi, and we can define a 

circulation vector K on the vortex axis, which has magnitude K and a direction 

parallel to V x v , . 

The above constraint on the phase immediately leads to an expression for the 

tangential velocity: 

v = , 3.12 
mr± 

where is the distance of a point f rom the vortex centre. The centrifugal forces 

associated w i t h this circulation field leads to a density zero at the core, which 

increases to the bulk value over a length-scale of order the healing length [57]: 

i = w b ^ - <3-13) 

Thus, a vortex is evident as a density 'hole' wi th in the condensate. 

The properties discussed so far are a consequence of the quantised nature of 

circulation in this system. However, superfiuid vortices share many properties w i t h 

their counterparts in classical hydrodynamics [71]. For example, circulation w i th in 

any closed fluid loop is conserved, a result known as Kelvin's theorem. I n addition, 

vortices are subject to Helmholtz's theorems. The first states that the vortices 

cannot terminate in the fluid: they must be closed or terminate on boundaries. 

The second implies that a vortex moves wi th the surrounding fluid, although an 

important exception arises when an external force acts on the fluid. We see in 

Chapter 5 that the vortex motion can then be described in terms of classical fluid 

mechanics using a Magnus force argument. 

Feynman [23] calculated the minimum superfluid velocity required to create a 

single vortex ring in a channel of diameter D, which f rom the Landau criterion (3.7) 

gives: 

This expression is an improvement on the roton vc in 4 He, as its value lies closer to 

measurements. I t also increases as the channel size decreases, something which is 

generally observed. However, this simple energetic argument ignores the nucleation 

mechanism of the vortex, which is of importance in describing the experimental 

dependence of vc on temperature and surface roughness [26]. As we shall see later, 

these arguments are also inadequate for describing analogous effects in trapped 

condensates. We shall begin to investigate this case in the next section. 
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3.2 Vortex formation 

3.2.1 Background 

Experimental progress has recently culminated in the detection of vortices in trapped 

Bose-condensed gases. The first observation was made at J I L A in 1999 [43], where 

the condensate was excited between two hyperfine states while a laser beam rotat

ing around the periphery of the cloud imparted angular momentum [44]. The f inal 

result was a two component condensate, w i th one component containing a vortex. 

A subsequent experiment at ENS [72] also used a rotat ing beam, though here i t 

acted to introduce a trap anisotropy in the radial plane. Above a crit ical angular 

velocity this rotation led to a vortex line. St i l l higher angular velocities resulted in 

vortex arrays, reminiscent of the rotating bucket experiment of l iquid helium [21]. 

Recent exciting experiments have begun to probe some of the properties of rotat ing 

condensates, in particular vortex dynamics and lifetimes [73, 74], and measurements 

of angular momenta [75]. 

I n addit ion to this experimental activity, other schemes have been proposed the

oretically for creating vortices in trapped BECs. Marzlin and Zhang [76] suggested 

uti l is ing a configuration of four far-detuned laser beams, where frequency differences 

result in a rotat ing light force that transfers angular momentum to the condensate. 

A n alternative approach involves using a Laguerre-Gaussian mode of a laser, where 

a Raman scheme is employed to avoid spontaneous emission [77, 78]. However, 

in i t i a l ly resonant Raman pulses may become non-resonant during the interaction 

owing to nonlinearities wi th in the condensate. Adiabatic tuning of the pulse was 

proposed in [79] to circumvent this problem. A different route was followed by Do-

brek et al. [80], where far-off resonance light was passed through an absorption plate 

in order to ' impr in t ' the required phase winding onto the condensate. Recently, a 

similar method was successfully employed experimentally to generate dark solitons 

[81, 82]. Finally, Caradoc-Davies et al. [83] suggested that vortex states could be 

produced by st irr ing the condensate wi th a laser beam. 

A n alternative scheme proposed here is to focus a blue detuned far-off resonance 

laser beam wi th in the trapped condensate. The net effect is that of a repulsive con

servative potential, so that one can consider the beam to be equivalent to a Gaussian 

'object' . Mot ion of the object can lead to the formation of vortex pairs w i th in the 

condensate. In this respect, the behaviour is close to that of 2D simulations of 

homogeneous superfluid flow past cylindrical obstacles [84, 85, 86], where vortex 

formation was observed above a critical velocity of vc ~ 0.4c s. I n particular, for 

an impenetrable cylinder w i th a radius much larger than £, a simple argument [84] 
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leads to vc/cs ~ y/2/11. However, for the inhomogeneous condensate and penetra

ble object treated here, the situation is considerably more complex because both 

the cri t ical velocity and the sound speed are functions of position. Consequently, 

the conditions for vortex creation depend upon the shape of the condensate and 

fo rm of the object potential. For example, even for low object speeds, vortices are 

nucleated towards the edge of the condensate due to the decrease in the speed of 

sound. 

3.2.2 Two dimensional simulations 

In general, we solve the usual form of the GP equation in scaled units: 

ify* = ( - V 2 + K + C | l f (3.15) 

where V represents a t ime dependent "object" potential superimposed upon a sta

tionary trap: V = V t r a p + V 0b. In these 2D simulations we have that: 

K r a p = \(X2+V2), (3.16) 

Voh = aexp{-/3[x2 + ( y - v t ) 2 } } . (3.17) 

This potential could correspond experimentally to a quasi-2D configuration where 

a laser beam propagates along the minor axis of a 'disk'-shaped condensate, though 

we provide a detailed comparison to realistic situations when discussing our 3D 

simulations in Sec. 3.4. Here we present results for C = 500, a = 30 and /3 = 3. 

Most of the calculations were performed using a square box of side 10 divided into 

a grid of 256 x 256 points. A larger grid (side 20, 512 x 512 points) was used to 

check for edge effects. 

We first calculate the wavefunction w i t h a stationary object centred at (0,0) 

and then begin to propagate the solution at t = 0. Instantaneous extinction of the 

object potential excites sound waves, which propagate w i t h speed cs = y / 2 C | ^ r | 2 

(in h.o.u.). For the parameters considered here, cs ~ 4.3 at the peak density of an 

unperturbed condensate. Translation of the object displaces the condensate centre 

of mass, and leads to vortex pair creation as illustrated in Fig. 3.1. A t t = 3, the 

object and vortex pair are centred at (0, 6) and ( ± 2 , 3.5) respectively. We observe 

that the densities at the vortex centres vanish to zero, w i th in a tolerance defined 

by the grid. 

One can gain insight into the process of vortex formation by studying the evo

lut ion of the f lu id velocity and the phase of the wavefunction. Fig. 3.2 shows a 

quiver plot of the f lu id velocity (3.9) in the vicini ty of the object, for the same time 
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Figure 3.1: Condensate density \%>{x,y)\2 for v = 2.0 at t ime t = 3.0. The object 
and vortex pair are centred at (0.0, 6.0) and ( ± 2 . 0 , 3.5) respectively. 
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Figure 3.2: Plot showing the f lu id velocity field, vs, in the vic ini ty of the object, for 
the same parameters as Fig. 3.1. The characteristic circulation patterns of vortices 
are clearly evident. 
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as plotted in Fig. 3.1. One sees that vortices are formed in pairs w i t h opposing 

vorticity, and that the circulation velocity is inversely proportional to the distance 

f rom the vortex core, as expected f rom (3.12). Two pairs are discernible in Fig. 3.2: 

one at y = 3.5, which corresponds to the density zeros in Fig. 3.1, and a second at 

y — 5.9 (not visible in Fig. 3.1 because the vortices are yet to separate f rom the 

object). The second pair appears due to the rapid accumulation of phase slip at 

the edge of the condensate, as discussed below. 

By calculating the wavefunction phase, S(x,y,t), one can verify that the phase 

changes by 27r on circulation of the vortex, confirming that they are singly quantised. 

Moreover, the evolution of the phase illustrates the t ime scale for vortex formation. 

A t t — 0 the phase is uniform. Subsequently, the motion induces a dephasing or 

'phase slip' centred on the object. The phase slip between two neighbouring points 

along the y-axis is defined as: 

AS(y, t) = a rg{# (0 , y + Ay, t)} - a r g { * ( 0 , y, t)}, (3.18) 

w i t h —7r < a r g { ^ } < ir. The maximum phase slip, AS^ax, occurs at a y-coordinate 

directly behind the centre of the object. Fig. 3.3 plots the time dependence of AS^ax 

for various object speeds. For v = 2 and v = 3, the phase slip accumulates gradually, 

reaching a value of TT before changing sign. The sign change coincides w i t h a reversal 

of the flow, and may be taken to define the moment of vortex creation. The rate 

of change of the phase slip is related to the speed of sound, which determines the 

time scale over which the condensate can respond to an external perturbation. For 

a smaller C, i.e. lower sound velocity, the phase slip accumulates more rapidly and 

the vortex pair is created earlier (compare curves for C = 200 and C = 500 in Fig. 

3.3). Af te r the vortices are created, the phase slip builds again unt i l a second pair 

forms, and so on. For low object speed (e.g. v = 1.3, upper plot in Fig. 3.3) the 

phase slip in i t ia l ly saturates before increasing as the object approaches the edge 

of the condensate, where the density and therefore the local speed of sound are 

lower. This explains the sudden formation of a vortex pair as the object leaves the 

condensate (e.g. the second pair for v = 2 which appears i n Fig. 3.2 and 3.3). 

The evolution of the velocity field during vortex formation is i l lustrated in Fig. 

3.4. Before formation (top) the on-axis flow is in a direction opposing the object 

motion, as the fluid tries to f i l l the void left by the departing object. However, 

the fluid velocity is l imited by the local speed of sound, and the resulting chemical 

potential imbalance leads to a phase slip along the y-axis, as shown in Fig. 3.3. 

When the phase slip reaches 7r, the on-axis flow reverts to a forward direction, 

creating the dipolar pattern illustrated in Fig. 3.4 (centre). The wavefunction nodes 
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Figure 3.3: Time evolution of the maximum phase-slip, AS'max, for v = 1.3 (top), 
v = 2.0 (middle), and v = 3.0 (bottom). Simulations are performed at C = 
500; however, for v = 2.0 we display an additional curve for C = 200 (dotted) 
which illustrates that the vortex shedding frequency increases as the speed of sound 
decreases. Note that the 'fringes' evident on some of the curves are artifacts of the 
finite grid size. 
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Figure 3.4: Plot showing the velocity field in the vicini ty of the object for v = 2.0, 
at times spanning the instant of vortex formation: t = 1.0 (top), t = 1.1 (middle) 
and t = 1.2 (bot tom). 

(separated by less than a grid point at this stage) are pulled apart due to the gradient 

in the object potential. In the bot tom plot, their separation is comparable to the 

healing length, and the pattern of vortex flow is beginning to emerge. 

The t ime evolution of the density is plotted as cross-sections in Fig. 3.5. The 

repulsive beam ini t ia l ly creates a density minimum at the condensate centre. On 

translation of the object, a transient sound wave is produced, which is evident as 

a density dip behind the beam and a peak in front . This simply arises due to the 

finite compressibility of the condensate. Importantly, the condensate density at the 

object then rapidly evolves to zero. Vortex pairs are nucleated f rom this point of 

zero density. In fact, this is a general requirement following f rom Kelvin's theorem, 

in order to conserve vort ici ty wi th in an arbitary closed loop. For infini tely high 

potentials [84, 86] vortex pairs are nucleated at the surface on opposite sides of the 

obstacle, so that naively one could say that the vortici ty wi th in a loop intersecting 

the surface is not conserved. However, this loop is not closed, as f lu id particles 

cannot enter into the object. Hence, Kelvin's theorem is not violated in this case. 

As a matter of interest, we also note that vortex formation also occurs in sim

ulations of a red detuned laser, as illustrated in Fig. 3.5 (bot tom). In this case 
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Figure 3.5: Time evolution of the density in 2D simulations, i l lustrated by x — 0 
cross-sections for a = 30.0, v = 2.0 (top) and a = -30.0 , v = 3.0 (bot tom). The 
bold curves plot the density at t = 0.1, while subsequent curves are plotted in steps 
of 0.2 up to t = 1.3. 

the attractive potential creates an enhanced peak in the condensate. However, on 

translation a trough is created immediately in front of the beam. The amplitude 

of the trough increases wi th time, and a vortex pair is created when its density 

reaches zero. In this respect the behaviour is similar to that of a repulsive object, 

and strongly suggests that vortex formation is a general consequence of some kind 

of 'wavefunction instabil i ty ' wi th in the GP equation. We shall return to this point 

in Chapter 6. 

3.2.3 Three dimensional simulations 

I n the previous section we studied vortex formation using 2D simulations of a mov

ing laser beam. In this section, we present 3D results which more accurately reflect 

experimental situations. We find that vortex pairs are s t i l l produced, which can be 

imaged using standard experimental techniques. We also investigate the dynamics 

of vortex formation in 3D trap geometries. 

Our simulations employ a f u l l 3D cartesian grid (typically w i t h 128 x 128 x 32 

points) to solve (3.15) w i t h the generalised potentials: 

Vtrap = ^ 2 + W 2 + ^ 2 ) , (3.19) 
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V, exp ob 
2[x2 + (y - ?;£)2] 

( 3 . 2 0 ) 

where w0 = w0(2mux/h)1^2 is the beam waist at z = 0 while (7 = 1 + ( z / z 0 ) 2 [ 8 7 ] . 

The Rayleigh range is ZQ = irwl/X, where A is the laser wavelength. The potential 

at the centre of the focus (0,vt,0) is given in h.o.u. by: 

where r and J s a t are the atomic lifetime and saturation intensity respectively, while 

P and A are the laser power and detuning [ 8 ] . Typical parameters for our simula

tions are C — 5 0 0 , £/ 0b = 5 0 and w0 ~ 1.22, which correspond to N = 5 x 1 0 4 2 3 N a 

atoms w i t h P ~ 1 2 . 0 / i W and and a beam waist of 8 . 4 3 / i m for ux = 2TT x 4 . 6 H z . Note 

that experimentally this represents a rather 'loose' trap; however this has the ad

vantage of expanding the length scale, so that a less t ight ly focused laser beam can 

be used. Addit ionally, we use a laser wavelength of A = 5 0 0 nm ~ 7 .23 x 1 0 ~ 2 h.o.u. 

and rj = 1 , corresponding to an isotropic trap in x-y plane, a general feature of 

existing experiments. 

First, we perform simulations for e = 9, corresponding to a 'disk'-shaped con

densate. Fig. 3.6 shows results for six different time-frames up to t = 3 .0 . The 

column density is plotted, which is defined by: 

This is intended to model experimental observations, where imaging techniques 

probe the density along a line-of-sight. We see that at later times vortices are 

clearly discernible as dark regions, representing density minima wi th in the conden

sate. Str ict ly speaking, the plots in Fig. 3.6 would correspond to phase-contrast 

images [ 8 8 ] , where the condensate is probed in situ. The healing length in this 

simulation is equivalent to £ ~ 2.7/xm, so direct imaging of the cores may be possi

ble. Alternatively, vortices can also be imaged after a period of ballistic expansion, 

where the vortex cores expand at approximately the same rate as the condensate 

The dynamics of vortex formation in the 3 D configuration is also of interest. 

We can study the line motion in our simulations by detecting the minima of the 

wavefunction, and recording their position (x, y) as a funct ion of z and t. Quadratic 

interpolation between grid-points is used to estimate the positions more accurately. 

We f ind that the inhomogeneity of the light intensity and the condensate density 

along the axis of the beam results in emergence of the vortex pair at different times 
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Figure 3.6: Results of 3D simulations of a moving laser beam w i t h c = 9.0 and 
v = 2.0, plotted as column densities integrated along the ^-direction. The plot on 
the top left shows the density at t = 0, while subsequent frames are plotted in steps 
of t = 0.6. Vortices are clearly evident at later times (right) . 
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along z. In this case, the lines separate first near to z = 0 at t ~ 0.46, before the 

formation extends out to the edge. However, as we shall discuss below, the fo rm 

of this process is heavily dependent on the details of the beam focusing and trap 

geometry. The result is the formation of curved vortex lines, which subsequently 

separate in the x-direction. Inhomogeneities in the condensate lead to the curvature 

becoming more pronounced, so that a velocity is induced at each point by the 

remainder of the line. This results in propagation of helical Kelvin waves along the 

vortices [22]. 

The fundamental Kelvin mode can be studied by comparison of the x, y coor

dinates of the vortex minima at z — 0 and near to the edge, and is plotted in Fig. 

3.7. This shows an elliptical motion of the line. The sense of the rotat ion can be 

understood by arguments based upon the Magnus effect, as we shall see in Chap

ter 5. Despite the importance of Kelvin waves, i t is likely that their experimental 

detection w i l l be very diff icul t . This can be discerned f rom Fig. 3.6, where one 

might expect to observe a modulation in the density in the region of an oscillating 

vortex. However, because the vortex curvature is slight and is most pronounced 

in low-density parts of the cloud, then any variation is diff icul t to detect. Ballistic 

expansion would make detection even more troublesome, w i t h a tendency to stretch 

the line. One solution to this problem is to create more highly curved lines. W i t h 

this aim in mind we repeated our calculations wi th the parameters U0(0)/huj = 200, 

e = 77 = 1 and w0 — 0.217, corresponding to a spherical condensate pierced by a 

tightly-focused laser beam. Plots of the line minima are displayed in Fig. 3.8, show

ing that highly curved lines are created. Note that in this case the lines in i t ia l ly 

separate near to the condensate edge. The vortices then undergo wave motion in a 

similar manner as previously. 

We f ind that the subsequent vortex motion is very complicated—not only does 

the condensate inhomogeneity and line curvature contribute to the dynamics, but 

there is induction f rom the anti-vortex, as well as any other pairs that are created 

further along the path of the beam. I t is therefore simpler, as well as more instruc

tive, to study a case w i t h intrinsic cylindrical symmetry, effectively reducing the 

problem to 2D. Such a system w i l l be considered in Chapter 5. 
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Figure 3.7: Vortex position as a funct ion of time after creation, where e = 9.0 and 
v = 2.0. The upper plot shows x- (solid) and y- (dashed) positions at z = 0, while 
the lower plot displays the x- and y- positions at z = 1.75 minus those at z = 0. 
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Figure 3.8: Evolution of a vortex line after creation by a moving beam, where the 
position of the density min imum at z is plotted ctS ciS £t funct ion of x ( left) and 
y ( r ight) . Parameters are given in the text, w i th Uo(0)/hojx = 200, e = 1.0, and 
v = 2.0. Each line represents the following times: t = 1.2 (solid), 1.3 (dotted), 1.4 
(dashed), 1.5 (long dashed), 1.6 (dot-dashed), 1.7 (faint, solid), 1.8 (faint, dotted), 
and 1.9 (faint, dashed). Note that only a single vortex is plotted above z = 0, as 
the system is invariant under reflections in the re- and z- axes. 



Chapter 4 

Two-component condensates, 
mutual drag, and vortex rings 

In the previous chapter we discussed vortex pair formation by a localised object 

moving wi th in a trapped Bose-Einstein condensate. We proposed that such an 

object could be formed using a focused far-detuned laser beam. In general, the 

laser Rayleigh length is much larger than the cloud radius, so that the object is 

approximately cylindrical. This symmetry is responsible for the creation of vortex 

pairs rather than, for example, vortex rings, where the ends of the line jo in together 

to fo rm a closed loop. To nucleate rings, a object of roughly spherical symmetry 

should be used. In this chapter, we describe how such structures could be produced 

by manipulating a two-component condensate, where a small 'object' condensate is 

dragged through a larger, more loosely confined condensate, the ' f lu id . ' The process 

is analogous to r ing nucleation by moving ions in superfluid 4 He [91], albeit on a 

much larger scale. Moreover, we find that this realises an attractive system for 

studying drag and its relation to vortex formation. As we shall show, the drag is 

related to the centre-of-mass motion of the condensate, which could be measurable 

in current experiments. 

However, we shall begin by discussing the general properties of multi-component 

condensates. We then show that we can accurately model these systems by simu

lat ing an experiment at J I L A [42], which studied the dynamics of component sep

aration after creation by a two-photon transition. In some ways this is similar to 

the simulations of output coupling discussed in Chapter 2 in that we utilise coupled 

GP equations to describe each component. However, the results differ markedly be

cause both condensates remain in the trap. The component separation in this case 

arises f rom inter-condensate repulsion and an offset in the equilibrium positions of 

the condensates w i th in the magnetic field. We observe the formation of structures, 

in good agreement wi th the experiment. We also attempt to explain the observed 
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experimental damping in terms of mode mixing and finite temperature effects. 

4.1 Multi-component condensates 

Production of multi-component mixtures of Bose-Einstein condensates involves si

multaneously trapping atoms in more than one spin state. This is possible, for 

example, in optical dipole traps [35] which can confine atoms in any spin state, 

allowing study of so-called spinor condensates [92, 93]. Spin therefore comprises 

an additional degree of freedom, and the order parameter is a vector rather than 

a scalar quantity. A two-component system was first realised at J I L A [40], where 

a magnetic trap confined the \F = 2, MF = 2) and \F = l,MF = — 1) hyperfine 

states of 8 7 R b . In the small-field l imi t , the magnetic energy of a state characterised 

by a magnetic moment in a field B , is: 

U = -»-B = gFMFvBB. (4.1) 

States for which the product gFMF is positive minimise their energy in low fields, 

and may be trapped in the minimum of a magnetic field. For 8 7 R b , this leads to 

three trappable states: the |2,2) and |2,1) states in the F = 2 hyperfine manifold 

(where gF = + 1 / 2 ) and the | 1 , — 1) state in the F = 1 manifold (where gF = —1/2). 

The positions of the condensates are dependent on gravity and their respective 

magnetic moments, which determines how t ight ly confined they are. This means 

that the |2,2) and | 1 , — 1) clouds 'sag' under gravity by different amounts, so to 

enhance the spatial overlap of the components the |2,1) and 1) states were 

used in later J I L A experiments. The transition between the two states was driven 

w i t h a two-photon RF/microwave pulse. This facilitated interesting studies of, for 

instance, relative condensate phases [94] and vortex states [43]. Subtle behaviour 

arising f rom the rotat ing magnetic field of the T O P trap [95] allowed experimenters 

to vary the relative positions of the condensates. For example, the centres of the 

two components could be aligned to obtain the maximum spatial overlap. 

Many properties of the system can be understood in terms of identical and 

distinguishable particle collisions. I f we denote the states by |1) and |2), then 

scattering lengths between atoms in the same hyperfine level can be signified by a\ 

and a 2 , while a i 2 represents scattering between hyperfine states. The configuration 

of the system is then determined by the relative strengths of the interactions. As an 

example, consider the case where the condensate centres coincide, and a i 2 > 0 (i.e. 

repulsive interactions). For small au, the condensates intermingle, while for larger 

a 1 2 phase separation occurs, where the two components occupy different regions 
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of space. To minimise the energy of the configuration, the state w i t h the larger 

scattering length tends to fo rm a low density shell around the other species [96, 97]. 

This behaviour is related to the critical value for instabilities (negative eigenvalues) 

in the excitation spectrum, a\2, which can be estimated wi th in the Thomas-Fermi 

approximation [98]: 

K 2 | - y/aioi- (4-2) 

Numerical studies [99] confirm this result. For an attractive inter-species potential 

ai2 < 0, such that |ai21 > | a j 2 1, the instabilities are associated w i t h collapse of 

the system, analogous to a single condensate wi th attractive interactions [3]. For 

repulsive interactions, the condition > \a\2\ corresponds to the phase separation 

process described above. More generally, the repulsion results in breaking of the 

spatial symmetry of the system, either spontaneously [100] or by the trapping fields. 

I n the case of the experiment described in [42] the equilibrium position of the two 

condensates differed slightly, breaking symmetry along the direction of gravity. The 

inter-component repulsion thus excited oscillatory motion of the centre-of-masses, 

in addition to structures wi th in the condensates. We w i l l simulate this scenario in 

the following section. 

4.2 Dynamics of component separation 

As in Section 2.3 we employ the 2D coupled dimensionless GP equations: 

id&i = [ - V 2 + Vi + C ( a ^ l 2 + I t f / ) ] %, (4.3) 

where i , j = 1,2 (i ^ j). We define the ratios between the scattering lengths as 

Oil = Oi/ai2 and = 0,2/(1x2- We assume that a condensate in i t ia l ly in a state |1), 

w i th trapping potential V\ = (x2+ey2)/4, is subject to an interaction which transfers 

50% of the population into state |2). The latter experiences a displaced potential 

V2 = [x2 + e(y — yo) 2 ] /4 , where y0 is the offset. Parameters in our simulations 

are chosen to reflect closely those in the experiment [42]. In particular, e = 8, 

ux = 2tt x 59/ V8 , C = 3160 and y0 = 0.24 ~ 0.4 fxm. Ratios of the scattering 

lengths are taken to be a.\ = 1.03 and a2 = 0.97, where a 1 2 = 5.5 nm for 8 7 R b . 

The displaced potential causes the two components to separate and subsequently 

oscillate at large amplitudes. Nonlinear mixing [56, 101, 102, 103] leads to excitation 

of higher order modes, that appear as structures in the density profiles (Fig. 4.1). 

Comparison w i t h the experimental images reveals remarkable agreement for early 

times. A t later times higher order structures start to appear i n our simulations, 

which are also shown in a density cross-section at t = 8.52 (corresponding to 65 ms) 
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in Fig. 4.2(a). However, in the experiment most of the structure had disappeared 

by this t ime. This disparity may be due to Landau damping at finite temperatures, 

where condensate excitations are absorbed by the thermal cloud. More explicitly, 

the damping mechanism involves processes in which an excitation (v) of low energy 

(Ev <C n,T) and a high energy thermal excitation (7) are annihilated, to create 

another thermal excitation (7'): 

^ + 7 ^ 7 ' . (4.4) 

As indicated, the inverse process is also possible. To simulate this effect phenomeno-

logically, we propagate the GP equations (4.3) in complex t ime t —> (1 + iA)t [104]. 

The GP equations then become: 

idt*i = (1 + iA)[-V2 + V{ + C(oi\%\2 + | t f / ) - (4.5) 

where the imaginary part represents dissipation in the system. Thus, components 

w i t h an energy E decay exponentially at a rate proportional to the damping con

stant, A < 0, and to E — / i , , in agreement wi th theory for the collisionless low-energy 

regime [105, 106, 107, 108]. Higher frequency excitations are preferentially damped, 

reducing the density variations wi th in the condensate [Fig. 4.2(b)]. Note that to 

compare simulated lifetimes to physical results, we excited quadrupolar modes in 

a single condensate and propagated in complex time. Using this procedure, we 

estimate that a damping rate of A = —0.01 corresponds to typical experimental 

values [47, 109]. However, we present results for A = —0.025, to clearly illustrate 

the physical effects of Landau damping. 

Fig. 4.3 shows the centre-of-mass position, Yi(t) of the two condensates as a 

funct ion of t ime. Population of the high-energy excitations results in damping of 

the dipole mode, in agreement wi th previous work [110]. However, this mechanism 

alone is insufficient to explain the observed experimental damping. Propagation in 

complex time results in further damping, but at a relatively slow rate. We also in 

vestigate the effect of an offset in the x direction, which may arise as a consequence 

of the experimental geometry [111]. Due to the anisotropy of the trap, the dipole 

mode corresponding to oscillations along the 'slow' z-axis possesses a lower energy 

than along y. Displacement of the trap in i t ia l ly leads to oscillations along the 'fast' 

axis as above; however, the broken symmetry now results in transitions that grad

ually populate the lower level. This 'mode-mixing' effect may be more significant 

than finite-temperature effects in explaining the observed damping (see Fig. 4.3), 

although i t is likely that a combination of these mechanisms is responsible. 
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Figure 4.1: Density profiles for components |1) (left) and |2) (r ight) . Time-frames 
are shown for (top to bottom) t = 1.5h.o.u., t = 2.0, t = 3.3, t = 5.2, and t = 8.52. 
For the experimental trap frequency, wx ~ 131s - 1 , these times would correspond 
to t ~ 11, 15, 25, 40, and 65 ms respectively. 
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Figure 4.2: Cross-sections through 2D density profiles, | ^ i | 2 (dashed) and |^2 | 2 

(solid), at x = 0 and t = 8.52, showing results of (a) undamped, and (b) damped 
(A = —0.025) propagation. 
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Figure 4.3: Centre-of-mass oscillations, Yi(t), in |1) (top) and |2), for undamped 
(solid) and damped A = —0.025 (dashed) propagation. The dot-dashed lines show 
the effect on undamped propagation of an additional offset, x0 = 0.240, where decay 
of the oscillations are more marked than even a large Landau damping. 
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4.3 Vortex ring formation and mutual drag 
As is apparent in Fig. 4.3, over short timescales (t < 2) thermal damping is negli

gible and the undamped GP equations provide a reliable model of two-component 

dynamics. We now tu rn to the situation where one condensate flows through the 

other, in direct analogy wi th an object moving through a fluid. This may be re

alised experimentally by using a magnetic trap to confine atoms in state |2), whilst 

an optical dipole trap, moving wi th relative velocity —v, loosely confines atoms in 

a magnetically insensitive level We employ the coupled equations (4.3), w i t h 

Vi = (x2 + y 2 ) / 4 and V2 = Vi + (x2 + (y — vt)2). As our conclusions are unaffected 

by the relative values of the scattering length, we set ct\ = a2 = 1. The repulsive 

mean field arising f rom the 'object' (|2)) creates a local min imum in the centre of 

the density profile of the ' f lu id ' (|1)) [96]. The depth of the min imum depends on 

the interaction strength C, and on the fraction of atoms in the fluid, / . 

Displacement of the object potential (F 2 ) at t > 0 induces motion of the object, 

which leads to the min imum in the background fluid becoming progressively deeper 

at a rate which increases wi th v (see Fig. 4.4). When the density min imum reaches 

zero, i t evolves into a vortex ring. This behaviour is reminiscent of that il lustrated 

in Fig. 3.5: the main differences are that here the object is deformable and of finite 

mass. I n the next chapter we shall discuss the vortex ring motion after its creation, 

while the remainder of this chapter w i l l concentrate on the issue of drag. The 

motion of the object creates a response in the f lu id implying a back action, or drag, 

on the object. We derive an expression for the drag in the next section and discuss 

its relationship to the centre-of-mass motion of the object. 

4.3.1 Quantum fluid mechanics and drag 

In this subsection we w i l l invoke the fundamental connection between the GP equa

t ion and the equations of classical f lu id mechanics. For example, i t is well known 

that by performing the Madelung transformation (3.8) one can derive a continu

ity equation and a modified Bernoulli equation [22] f rom the GP equation. These 

'hydrodynamical equations' have proved to be very useful in studies of both ho

mogeneous and trapped Bose condensates: for instance, they were employed by 

Stringari to elucidate the low-lying collective modes of the condensate [50]. Here 

we shall use fluid mechanical equations to derive the drag force on a moving object. 

This may be considered to be a generalisation to a trapped condensate of the result 

for homogeneous flow around an impenetrable obstacle [84, 86]. 

We begin by defining the mass density p = mN\^\2 = mnc and the momentum 
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Figure 4.4: Cross-sections through 2D density profiles at x = 0. Condensate |2) 
(the 'object ' , solid line) moves through |1) (the 'background fluid', dashed), due to 
displacement of trap potentials at constant velocity, v — 3; C — 1050, / = 0.95 
(where / is the fract ion of atoms in |1)). Two time-frames are shown: (a) t = 0.75, 
where drag arises f rom a process analogous to phonon emission f rom the accelerating 
object, (b) t = 1.3, where deformation of the object and surrounding fluid leads to 
an additional drag. 
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current density J . I f the index k denotes the vector component, then Jk = pvk, 

where f r o m (3.9): 
Nh 

Jk = ^(^dk* - *dk**). (4.6) 
1% 

Taking the spatial derivative of Jk, and using the GP equation (2.14) for * and \P* 

yields: 

dtp + dkJk = 0, (4.7) 

while considering the time derivative of Jk gives: 

dtJk + djTjk + pdk = 0. (4.8) 

Equations (4.7) and (4.8) can be immediately recognised as fluid mechanical equa

tions of conservation of mass (i.e. the continuity equation) and momentum [112], 

where the momentum flux density tensor takes the form: 

Nh2 N2a 
T j k = —(dj**dk* - Vdjdk* + c.c.) + ~^<M*|4. (4.9) 

The force on an obstacle moving through a condensate can be calculated f rom 

the rate of momentum transfer to the f lu id . By integrating equation (4.8), one finds 

that the A;-th component of the force: 

Fk = dt [ d n j k = - f dS njTjk - f dQ pdk ( - ) , (4.10) 
Jn Js i n \ m / 

where S is a control surface, Q, is the volume enclosed by S, and rij is the j-

t h component of the normal vector to S. In the case of homogeneous flow past 

an impenetrable object, the wavefunction vanishes on the object surface and the 

potential is uniform elsewhere: hence, only the first term contributes. I n contrast, 

for a penetrable object in a trapped condensate considered here, f2 may be taken 

to encompass the entire fluid, and the first term is found to be negligible compared 

to the second. In this case, the drag force creates a back-action on the condensate, 

which excites centre-of-mass motion in the trap. In particular, choosing S to be the 

'surface' of the condensate (where p —>• 0) at some particular instant of t ime, the 

centre-of-mass acceleration is related to the drag by Fk = NmRk- This implies the 

important relation: 

Rk(t) = ~ - [ d 3 r \ V \ 2 d k V = - / d 3 r V«9 f e|tf | 2 , (4.11) 
m Jv m j v 

where because | ^ | 2 = 0 at inf in i ty the integration can be taken over all space. 

In our 2D simulations on coupled condensates, the potential for component i 

in h.o.u. is V = V~i + C | * j | 2 , where the first term is the trap potential while the 
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second arises f rom mean field interactions wi th the other component. Thus, the 

acceleration can be treated as being made up of two separate contributions (where 

motion is considered in the y direction): 

The integrations can be evaluated numerically on our computational grid, as the 

wavefunction is very small at the edges. Considering one condensate as the 'object' , 

the mutual acceleration (4.13) is seen to be particularly interesting in addressing 

the issue of drag. For steady flow of a homogeneous fluid wi thout vorticity, the drag 

(4.10) vanishes [84, 86], implying superfluidity. However, for a finite inhomogeneous 

system there is no steady state and a different criterion should be sought. We now 

present results for the mutual drag in the case of the coupled two-component system. 

Fig. 4.5 shows the calculated mutual acceleration as a funct ion of t ime. A t later 

times (t > 2) the condensates repel due to the inhomogeneity in the background 

f lu id . For t < 2 the acceleration is negative, implying an effective attraction, or 

equivalently a drag on the object. For t < 1 and low velocities, Fig. 4.5 (inset), 

the force results f rom the slow response of the f lu id to the object acceleration. The 

object moves to the front of the potential well i t creates in the mean field of the 

f lu id , resulting in a restoring force which persists unt i l the fluid can respond (Fig. 

4.4(a)). The maximum attractive drag (i.e. the minima in Fig. 4.4) is plotted as a 

funct ion of velocity in Fig. 4.6. This process, which is equivalent to phonon emission 

by an accelerating object, is responsible for the linear section of the drag curve. 

For velocities near to the speed of sound in the object, c 2 = y /2C|^P, the 

object begins to deform, wi th the result that the overlap between the two fluids 

is reduced behind and enhanced in front (Fig. 4.4(b)). This increases the drag, 

producing the additional minima at t > 1 in Fig. 4.5 (inset). The onset of this 

process is rapid w i t h increasing velocity, giving rise to a sharp transition in the 

drag curve. This transition can be compared to that between superflow and normal 

flow in the homogeneous system [84, 86]. However, due to the finite size of the 

background fluid there is no steady flow condition, and drag is produced even at 

low velocities. 

W = - 2 / / l K da; dy i,trap dy 
(4.12) 

and, 
8 

^i,mut \t) 2C Vj\ dx dy 
dy 

(4.13) 

4.3.2 Results 
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Figure 4.5: Plot of Y 2 i m a t ( t ) for C = 600, / = 0.83; v = 1,2,3,4. The 'drag' 
is evaluated f rom the minima of the curves, which increases in magnitude as the 
velocity rises. Inset shows a similar plot (C = 1050, / = 0.95) for v = 0.25 to 
v = 1.75 in steps of 0.25. A t low v the local minima arise due to the f ini te response 
of the background f lu id , |1). A t higher v an additional min imum appears at t > 1 
due to the compressibility of the object. The position of each min imum coincides 
w i t h the moment of vortex formation. 
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Figure 4.6: Peak mutual attraction (drag) as a function of velocity. Curves are 
shown for: * C = 600, / = 0.83; AC— 1100, / = 0.91; DC = 1200, / = 0.83; • 
C = 1050, / = 0.95. The curves show linear dependence of drag at low velocities, 
and enhanced drag at high velocity due to the compressibility of the condensates. 
The magnitude of the additional drag is enhanced for highly compressible object 
condensates i.e. when 1 — / is small, or when the mean-field interaction between 
condensates is large. 
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The drag force increases w i t h time unt i l the local minimum in the background 

f lu id reaches zero (Fig. 4.4(b)), f rom which a vortex ring is formed. Subsequent 

expansion of the ring results in the condensate min imum being fil led, thereby de

creasing the pressure imbalance across the object. The object returns to a more 

symmetric shape, and the drag decays, as is apparent in Fig. 4.5. Hence, vortex 

formation in this context tends to l imi t or reduce the drag. 

I n summary, we simulate a scheme where one condensate is pulled through 

another, and identify mutual drag effects, and vortex ring creation which acts to 

suppress drag. Although vortex rings would be diff icul t to detect directly, we have 

shown that they produce a significant change in the mutual drag which could be 

observable. I n principle, the system could also be used for studying superfluidity; 

however, as we have seen the analysis is complicated by the creation of excitations in 

the object. In Chapter 6 we w i l l return to the case of a laser beam object, studying 

the drag as i t oscillates wi th in the condensate. In this scenario the object moves 

along the long axis of the condensate, so that i t remains in regions of approximately 

constant density. This allows us to determine the crit ical velocity, as well as relating 

the drag to the rate of energy transfer f rom the object to the condensate. I n 

addition, the object is now incompressible, so that the transition in the drag-velocity 

curve is directly associated w i t h the onset of vortex formation. 



Chapter 5 

Vortex line and ring dynamics 

In the last two chapters we have focused on vortex formation by moving objects. I n 

this chapter, by contrast, we w i l l be concerned w i t h the question of what happens 

to the vortices after their formation. To be exact, we w i l l study the dynamics of 

quantised vortices in trapped condensates. This subject was touched upon at the 

end of Chapter 3 where we observed the curved vortex lines undergoing ell iptical 

motion over short timescales after creation. This so-called 'Kelvin wave' is just one 

example of the normal modes of the vortex, apparent as a spectrum of positive 

eigenfrequencies when one solves the Bogoliubov equations (3.2) and (3.3) for a 

vortex state [113, 114, 115]. However, for trapped condensates an eigenmode ap

pears in the excitation spectrum which possesses negative energy wi th respect to 

the ground state [under the condition of a positive norm (3.4)]. The existence of 

this mode therefore implies thermodynamical instability, as the system can arbi

t ra r i ly lower its energy by creating quasiparticles for that mode. However, some 

kind of 'reservoir' is required to conserve energy and angular momentum, i.e. a 

non-condensed cloud. I t follows that a vortex in a pure condensate is metastable. 

This so-called 'anomalous' mode [116, 117] can be understood physically by 

realising that the spatial inhomogeneity of the condensate results in a variation of 

the vortex energy as a function of its position, w i th a maximum at the centre of a 

non-rotating trap. As w i l l be discussed later in this chapter, the vortex motion can 

be related to classical hydrodynamics, w i t h particular reference to the Magnus effect 

[112]. As a consequence, a single vortex precesses around the condensate centre, 

which corresponds to the aforementioned anomalous mode. Since the vortex energy 

decreases as i t nears the edge, dissipation at f inite temperature w i l l lead to its 

eventual expulsion f rom the cloud [118, 119]. This is the physical origin of the 

thermodynamic instabili ty of the vortex. 

This precessional mode tends to be one of highest amplitude and therefore great-
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est importance compared to, for example, the Kelvin modes. In this chapter we 

w i l l study this mode for vortex lines and rings, by numerical solution of the GP 

equation. First , we w i l l look at the vortex energy as the function of position in 

non-rotating and rotat ing frames, and relate this to 2D and 3D measurements of 

the precession frequency using a Magnus force argument. We w i l l then consider 

vortex rings, where we find that they also perform a cyclical motion. A stationary 

state can be found which corresponds to a ring wi th maximum energy. This point 

of unstable equilibrium is equivalent to that of a single vortex line in the centre of 

a non-rotating condensate. We apply this knowledge in order to understand the 

motion of a vortex ring after formation by an object, as introduced in Chapter 4. 1 

5.1 The vortex state 
Before discussing vortex motion, we wi l l continue our introduction to quantised 

vortices begun in Section 3.1.3. Recall that a superfluid is irrotational everywhere 

apart f rom vortices at r = roj. In a trapped condensate, a stationary state exists for 

a single vortex line at ro = 0. I f for simplicity we assume a non-rotating cylindrically 

symmetric trap, V ^ p = ( m w 2 / 2 ) [ r 2 + ez2], then this state can be represented by 

(3.8) in terms of the quantum number n: 

V(r,<P,z) = Vp(r,z)ein'l>, (5.1) 

where here p = \^\2. Substitution into the polar form of (2.14) gives: 

d2f ldf d2f n2f h2Lo2, _2w t f 3 n 

where f = ( 2 m / i ) 1 / 2 r / f t , z = ( 2 r a ^ ) 1 / 2 z / f t , and / = { N g p / p f 1 2 = ( p / p 0 ) l / 2 . Equa

t ion (5.2) yields the following asymptotic forms: 

( \ 2 n 2 

~ ) , r < £ , (5.3) 

and p = 0 for r > Rx and \z\ > Rz, where R\ — 2/x/rau;2 and R2 = 2p,/muj2. 

Equation (5.4) is presented in [118, 120, 121] and is analogous to the T F approx

imat ion for the ground state in the large Ng l i m i t . However, this approximation 
1 Movies illustrating some of the work covered in this and the next chapter can be found at the 

web page http://massey.dur.ac.uk/bj/. 

http://massey.dur.ac.uk/bj/
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Figure 5.1: Density isosurface plots of C = 1000 condensates in isotropic traps 
(e = 1), where the surface is drawn at | \ l / | 2 = 1.25 x 1 0 - 3 . Portions of the surfaces 
are removed to reveal a vortex line (left) and a vortex ring (right) . 

provides a poor description of the vortex core structure. For the special case n = 1, 

Eqs. (5.3) and (5.4) can be interpolated by a simple function, which generalised to 

a straight, off-axis vortex at r 0 is: 

>-(^)Hi) 2 - ( i ) 2 ) . <-» 
where p = 0 when the right-hand side is negative. 

Imaginary t ime propagation is used to find the vortex state numerically. A 2nn 

phase winding is imposed during the first few time-steps, i.e.: 

S(x, y, z) = rearctan ^ - ^ . (5.6) 

This imprints the characteristic circulation pattern of a vortex, so that a low den

sity core region rapidly develops in the wavefunction due to centrifugal effects. A 

three-dimensional isosurface plot in Fig. 5.1 shows the vortex line structure. The 

core size increases as one moves towards the low-density edge, due to an increase 

in the healing length £ (3.13). Off-axis vortices can also be produced using this 

phase winding technique—however in this case the wavefunction is not a station

ary solution, so that the vortex w i l l tend to d r i f t towards the edge in imaginary 

time. This may be overcome by imposing the phase at all time-steps. Fig. 5.1 also 

shows a vortex ring, which can be created in cylindrical polar coordinates using this 

technique. We w i l l discuss ring dynamics in Sec. 5.3. 

Fig. 5.2 shows a cross section of a vortex line at y = 0, z — 0. Equation 

(5.5) is also plotted for comparison, and is seen to provide a good estimate for 
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Figure 5.2: Cross-section through a singly quantised vortex line, showing the con
densate density as a function of position. The solid line plots the exact 3D wave-
funct ion as calculated f rom imaginary time propagation of Eq. (5.7), for C = 4000, 

= 0 and e = 1. The dashed line represents the analytic approximation (5.5), w i t h 
Po ~ 2.443 x 10~ 3 , £ ~ 0.3199, r 0 = 0, and R± = Rz ~ 6.252. These parameters 
are calculated f rom the Thomas-Fermi chemical potential //JjJp 

(2.28). 

the condensate density, especially in the high N l im i t . In a similar manner to the 

T F approximation, the analytical expression breaks down at the outer edges of the 

condensate, and in addition slightly underestimates the core size. Nevertheless, we 

w i l l use Eq. (5.5) in our analytical studies later in the chapter. 

5.2 Single vortex motion 

5.2.1 Two dimensions 

In this section we study the dynamics of a singly quantised (n = 1) vortex line 

in a non-rotating condensate. We first generalise our discussion of the previous 

section to the case of a rotat ing trap. We consider a frame rotat ing about the z 

axis w i t h angular velocity Q, where the angular momentum operator is given by 

Lz = i(ydx — xdy). The GP equation in this frame then becomes: 

«a 4 * = ( - V 2 + F + C | * | 2 - O L , ) * . (5.7) 

A vortex state can be found using the imaginary time method described previously, 

but w i t h the rotation operator represented by finite differences (we use a hybrid 
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Figure 5.3: Energy, E, as a function of n = 1 vortex displacement, in a 2D conden
sate rotating with angular frequency, f2 (C = 1000). The top solid curve corresponds 
to Cl = 0, where f2 increases in steps of 0.05 as one moves towards the lowest curve. 
The dashed line marks the energy of the condensate without a vortex, so that the 
critical angular velocity for a central vortex to become energetically favourable is 
O c = 0.24. 

FFT/Crank-Nicholson code for this purpose—see the Appendix for details). We 
are also interested in the free energy per particle of the condensate: 

E = j d 3 r ( j V * | 2 + V | $ | 2 + ^ | * | 4 - m*Lt^j . (5.8) 

For a stationary solution it can be simply shown from (5.7) and (5.8) that: 

£ = / x - | y d 3 r | * | 4 , (5.9) 

where imaginary time propagation minimises the chemical potential, [i. 
If we consider a vortex at position r 0 relative to the axis of a non-rotating trap, 

then the free energy of the system, Eq. (5.8), is found to attain a maximum when 
r 0 = 0 (see Fig. 5.3). So, a vortex initially at the origin will remain stationary, 
but is unstable to infinitesimal displacements. The GP equation implies that the 
system is Hamiltonian, and therefore an off-axis vortex will follow a path of constant 
energy corresponding to precession around the trap centre (Fig. 5.4). The presence 
of dissipation will lead to drift towards lower energies, causing the vortex to spiral 
out of the condensate [118, 119]. Note that vortex precession in a non-uniform light 
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Figure 5.4: Vortex energy in a 2D condensate (C = 1000) as a function of position 
in a non-rotating trap. Twelve energy contours are plotted, equally spaced between 
8.5479 and 8.7349. The bold line illustrates the motion of the vortex, which pre-
cesses around the energy maximum. The small oscillations in the precession radius 
is due to centre-of-mass motion of the underlying condensate. 

beam has recently been observed and discussed in terms of the nonlinear Schrodinger 
equation [122]. 

If the trap is rotated with angular velocity, fl, then the energy of a central 
vortex, Erot, decreases such that Erot = En — n f i (see Fig. 5.5 and [115]). This 
effect is reminiscent of Zeeman splitting in atomic hyperfine levels, where the ro
tation is analogous to the magnetic field while the condensate angular momentum 
replaces the magnetic moment of the atom. The appearance of a vortex becomes 
energetically favourable when EI0t < E0, so that the critical angular velocity is 
simply: 

For n = 1 in the TF limit [116, 120, 123]: 

a = ^ ( ^ + S 2 ) l n ( ^ ) . (5.11) 

For \Q\ > fic, an on-axis vortex attains global stability; however, there remains an 
energy barrier for vortices entering from the edge (see Fig. 5.3). 

Inspection of Fig. 5.3 reveals that above an angular velocity f i m , the vortex 
attains a local minimum, so a vortex is metastable when Clm < < f2 c . In the 
TF limit, f 2 m = 3Q c/5 [116], while in the non-interacting limit Q,m —> Qc [117]. In 
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Figure 5.5: Vortex energy at the trap centre, En(r0 = 0), as a function of rotation 
angular frequency fl. Results are shown for a singly quantised vortex (n = 1, 
dashed), n = 2 (long dashed) and n = 3 (dot-dashed), where one can see in each 
case that ETOt — En — nQ. The solid line indicates the energy of the condensate 
without a vortex. 

both the weak and strong coupling limits, f 2 m ~ — uja, where ua is the frequency of 
the so-called 'anomalous' mode obtained from solution of the Bogoliubov equations 
[113, 114, 116, 117]. I t is thought that u)a corresponds to the frequency of vortex 
precession, thus linking vortex dynamics and instability. 

First, we consider the simplest case of a vortex in two dimensions, which corre
sponds experimentally to a condensate confined in an axisymmetric cylindrical trap 
(where e —>• 0). For 17 = 0, simulations show that an off-centre vortex accelerates 
from its initial condition, soon attaining a near-constant angular velocity u around 
the trap centre, such that the instantaneous velocity is VL — uik x r . The angular 
velocity, u>, is plotted as a function of interaction strength and initial position in Fig. 
5.6. For small C, LU is averaged over a few cycles (e.g. 3 revolutions for C — 200). 
However, for higher C, numerical instabilities arising from the FFT method can 
restrict the simulations to less than a half-cycle: the error bars reflect the resulting 
uncertainty. 

The precession frequency decreases as a function of increasing interaction strength, 
C. An intuitive semi-analytical argument for this behaviour can be formulated in 
terms of the Magnus effect, familiar from classical hydrodynamics and in superfluids 
and superconductors [124, 125]. When the background fluid flows past the circulat-
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Figure 5.6: Vortex precession frequency, u, in a 2D condensate at r 0 = 0.5, as 
a function of C. Filled circles show the results of numerical simulations. The 
triangles indicate the Magnus force estimates, obtained from the gradient of the 
numerical values of EQ. The analytical Magnus force estimate, Eq. (5.15), and Eq. 
(5.16) are plotted with dot-dashed and dashed lines, respectively. The TF vortex 
metastability frequency, f A E 1 , is plotted as a solid line. Inset: u> as a function of 
vortex position r 0 , for C = 1000. 
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ing fluid connected with the vortex, a pressure imbalance is created perpendicular 
to the direction of the background flow. The resulting Magnus force must balance 
the force due to the variation of energy E with position, i.e.: 

dE 
— = mpK x v L , (5.12) 
ore 

where vL is the velocity of the vortex line relative to the ambient condensate. Note 
that the Magnus force can also be produced by flow of the condensate around a 
stationary vortex, as in a rotating trap. So, one expects that OJ ~ Qm. 

We find E by evaluating the functional, Eq. (5.8), using a wavefunction grown in 
imaginary time with Q, — 0. Performing the Madelung transformation, the first term 
splits into a 'quantum pressure' and a 'kinetic energy' term: | V * | 2 = {Vy/p}2 + 
p(VS)2. A numerical differentiation of E with respect to r 0 gives an estimate for 
u) using the Magnus force argument (plotted as triangles in Fig. 5.6). However, 
these estimates are sensitive to small numerical errors in the energy. To obtain an 
analytical estimate, we observe that \x is approximately constant at small r 0 and 
high C. This may be shown by using the decomposition ty(x,y) = <&(x, y)Q(x, y), 
where an off-set vortex core ($) is imprinted on the TF ground-state (0) , as implied 
by Eq. (5.5). Starting from the GP equation (2.14), and noting that in the TF limit 
0 is slowly varying (i.e. V 2 ( 0 $ ) = 0 V 2 $ ) , then it is a simple matter to show that: 

h2 

V 2 $ + ^ T F | $ | 2 $ = /z$, (5.13) 
2m 

where /z T F = V + Ng\Q\2. As the Laplacian is spatially invariant, i t follows that 
H is independent of the offset at small TQ. This can also be justified numerically, 
though the approximation only becomes valid at high C. Using Eq. (5.9) it follows 
that: 

dE C d \ f 2 2 1 
7T— ~ —z~~T;— / P d'r . (5.14) 
dr0 2dr0[J ^ \ V ' 

Substituting Eq. (5.5) for p then gives an estimate for the precession frequency (to 
logarithmic accuracy): 

(5.15) \UJ\ 

This result may be compared to the expression obtained by Svidzinsky and Fet
ter [116], using an asymptotic matching technique and a time dependent variational 
analysis: 

. , Shu;2 / R ± \ 
M = V n ( f ) ' ( 5- 1 6 ) 

again valid for small ro. These expressions are plotted together with the numerical 
results in Fig. 5.6. In addition, we plot Q m = f A.E, where AE is the energy 
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difference between the ground and n = 1 vortex states. Recall that one expects 
that u) ~ Qm in the TF limit, and we see a convergence of the frequency data towards 
the f l m curve in the limit of large C. In addition, all of the curves reproduce the 
correct functional dependence at high C. Note that these expressions are only valid 
for small r 0 ; the vortex precesses faster as it nears the edge of the condensate, as 
shown in Fig. 5.6 (inset). 

Compressibility effects become important when the vortex is accelerating or 
when the velocity is an appreciable fraction of the speed of the sound. In an infinite 
compressible fluid, phonons may be emitted by a moving vortex, leading to a drift 
of the vortex to lower energies [126]. On the other hand, no net drift is expected in 
a finite condensate where excitations remain confined in the region of the vortex. 
At the beginning of the simulations, we observe an increase in radius of precession, 
together with excitation of an elliptical centre-of-mass mode at the trap frequency. 
In addition, surface waves are created when the vortex is near the condensate edge. 
However, as expected we do not observe a sustained vortex drift (for times up to 
110, corresponding to ~ 6 ful l cycles for C = 200). A drift to lower energies would 
be expected where a thermal cloud damps the motion (i.e. at finite temperatures). 
Nevertheless, theory predicts long vortex lifetimes, especially for large numbers of 
atoms [119]. This conclusion is supported by recent experiments, where the lifetime 
was measured to be approximately Is in the ENS experiment [72] and exceeding 
10s at JILA [74, 127]. 

5.2.2 Three dimensions 

Vortex dynamics become more complex in 3D, as the vortex line can deform along 
its length. In classical and quantum fluids, this results in the propagation of waves 
along the line—the so-called Kelvin modes [22]. In simulations of 3D vortex motion, 
we have observed line deformation and oscillations. However, the inhomogeneity 
of the condensate complicates matters, and the motion is difficult to resolve into 
simple Kelvin waves characteristic of the bulk condensate. The amplitude of the 
oscillations are typically small, and as a consequence waves are likely to be difficult 
to detect experimentally. Moreover, it is worth noting that the energy of the vortex 
increases as it lengthens. Hence, in the presence of the dissipation the line will tend 
to straighten, effectively damping the Kelvin modes. 

Fig. 5.7 compares numerically measured values of the precessional frequency 
with the TF result of Svidzinsky and Fetter, Eq. (5.16) [116]. I t can be seen 
that the frequency dependence is well described; however, the numerical results 
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Figure 5.7: Vortex line frequency, to, in an oblate, spheroidal 3D condensate (e = 9) 
at r 0 = 0.5, plotted as a function of C. Squares display numerical results, while the 
dashed line plots Eq. (5.16). The solid line shows the TF metastability frequency, 

are significantly higher (~ 20%), but converge slowly to the analytical expression 
towards high C. This disparity may be due to effects resulting from the curvature of 
the line, which will modify predictions that assume a rigid line motion. Numerical 

observed precession frequencies. 

5.3 Vortex ring motion 

The motion of a vortex ring in a trapped BEC may be understood in terms of a sum 
of two contributions to the velocity of each element in the ring. First, the precession 
due to the inhomogeneity of the condensate, as discussed for a single vortex in the 
previous section; and second, the velocity induced by the remainder of the ring, v-m, 
which is directed along its axis (defined as the z-axis). For a spherical condensate, 
the total velocity on each element is given by: 

AE. 

values of the TF metastability frequency, ' 5 \AE, are also found to be lower than the 

v = D I NZ + U K x r , (5.17) 

where k defines the direction of the circulation at the element, and u is the pre
cession frequency. In a homogeneous Bose fluid t>jn = (h/2mRr)[ln(8Rr/£) — 0.615] 
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Figure 5.8: Vortex ring energy in a cylindrically symmetric condensate (e = 1, 
C — 2000) as a function of radius, r, and z-position. The energy contours are 
equally spaced between 5.6179 and 6.1159. The bold line shows the motion of one 
element of the vortex ring, where the circles represent the position at equally-spaced 
times (every T = 1). The ring begins at (1.5,0), marked by an arrow, and cycles 
around the energy maximum in a clockwise direction. 

[128], where Rr is the ring radius. Consider a ring at z — 0, r = Rj.. I f the radius 
is small, the induced velocity dominates and the ring moves in the +z direction, 
while if Rr is large the precession dominates and it travels backwards. In addition, 
the precessional term leads to ring expansion for z > 0 and contraction for z < 0. 
Thus, the two terms produce an oscillatory motion of the ring. 

One can also understand the ring motion as a trajectory around an energy 
maximum, in analogy with the single line vortex. To demonstrate this, we plot the 
energy of an on-axis ring as a function of its radius, r, and ^-position in Fig. 5.8. 
Without dissipation one would expect the ring motion to follow an energy contour. 
As is apparent in Fig. 5.8 this is not entirely correct. Acceleration of the ring at 
the beginning of its motion results in a back-action on the condensate, exciting 
a centre-of-mass mode, and the subsequent ring dynamics are complicated by the 
underlying motion of the condensate. In addition, for small C we observe a decay 
of the ring to lower energies over the first cycle of its motion. As for a single vortex, 
this effect is associated with the compressibility of the condensate, which results in 
acoustic emission from the oscillating ring [129]. 

The energy maximum at r — Req, z = 0, corresponds to the point where the two 
velocity contributions in (5.17) are equal and opposite, leading to a ring in unstable 

0 0 
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equilibrium. To obtain an analytical estimate for this position, we approximate the 
ring energy by taking the energy of a single 2D vortex, Ev, and integrating around 
a circle of radius Rr, such that Er = 2nRrEv. The dominant contribution to Ev 

is given by the kinetic energy, so Ev = (m/2) / d2rpv^. Taking vs = K X r/27rr 2, 
where we translate the cylindrical coordinate system so that the origin lies on the 
vortex axis, and using (5.5) gives: 

Er 

m 
1 ~ ~ " 2 

(5.18) 

neglecting terms of order £ 2 and higher. For a ring of radius Rr at z0, r% = R% + z%. 
This expression describes the qualitative features of Fig. 5.8; however, it tends to 
over-estimate the energy near to the peak (~ 10% at C = 2000) and is a poor ap
proximation as Rj. —> 0. Nevertheless, we can obtain an estimate for the equilibrium 
position from Eq. (5.18), which yields zQ = 0 and: 

where j3 = (mux/h)2. In the TF limit (R± -> oo), Req « RJ\/Z ~ 0.577i?x, which 
is close to the results from numerical solution, where Req ~ 0.54i?± at high C (Fig. 
5.9). 

An experimental technique for ring production was proposed in Chapter 4. Re
call that the method utilises a two-component BEC, such that when the smaller 
component, |2), is translated with respect to the other, vortex rings are created in 
the larger condensate |1). We will now study the subsequent dynamics of the ring by 
solution of the coupled GP equations (4.3) in cylindrical coordinates. An example 
of the motion is illustrated in Fig. 5.10. The trajectories roughly follow a contour 
of constant energy (see Fig. 5.8). The ring is created from zero radius at t & 1.6 
and y « 1.8. It then expands and travels forward, before turning and progressing 
backwards along the edge of the condensate. Finally, it turns again and collapses 
to a point, where the ring is annihilated. The annihilation produces a sound wave, 
which decreases in amplitude as it propagates along the z-direction. The sound 
wave then disappears at the edge of the cloud. Note that, in general, annihilation 
will eventually occur for any ring in the presence of dissipation as a culmination 
of a decay to lower energies. This is equivalent to the instability mechanism for a 
single vortex line (Sec. 5.2). 

The expansion of the ring immediately after creation is due to the density de
pression created by the object, which means that the vortex ring energy increases 
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Figure 5.9: The equilibrium ring radius, Req, as a function of C in a spherically 
symmetric condensate. The lower plot shows the ratio of R^q to the Thomas-Fermi 
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Figure 5.10: Vortex ring motion in a condensate (e = 1) after creation by an 
object. The trajectory of the ring is determined by solving Eq. (4.3), with v = 1.75, 
C = 1100 and / = 10/11. The upper plot shows the ring radius (solid line) and z-
coordinate (dashed) as a function of time, while a parametric plot (bottom) displays 
the ring radius, r, against position z. 
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as one moves away from the object axis. The ring is nucleated behind the axis so 
that the sense of precession leads to ring expansion. However, after a short time 
the ring cannot keep pace with the object, so that it no longer influences the vortex 
motion. The effect of the object is perhaps more clearly illustrated for a single 
vortex, where near to the object dE0/dr0 > 0 rather than dE0/dr0 < 0 as in Fig. 
5.4. The vortex precession is therefore in the opposite direction to that shown in 
Fig. 5.4, and the vortex is now stable. This is the basis of proposals to use a laser 
beam to stabilise a vortex line (see e.g. [130]) 

Vortex ring detection is likely to present considerable challenges to experimen
talists. Absorption imaging after a period of ballistic expansion presents one pos
sibility. However, for rings the density minima at the cores would be obscured by 
the rest of the condensate along any line-of-sight. A solution would be to view 
slices of the expanded condensate using light sheets to selectively 'pump' atoms 
to the desired state. As discussed in the previous chapter, rings may also be de
tected indirectly by studying the centre-of-mass motion of the coupled condensates, 
yielding details of the mutual drag that reveal vortex ring formation. One could 
also speculate whether a vortex ring could significantly change the frequencies of 
other collective modes. For example, a vortex line lifts the degeneracy of counter-
rotating quadrupole modes of the condensate [121, 131]. This results in a precession 
of the quadrupolar breathing mode (consisting of a superposition of m = — 2 and 
m — 2 modes) which was utilised in a recent experiment to measure the angular 
momentum of vortex states [75]. Unfortunately, this scheme is unlikely to work for 
vortex ring detection as in this case the condensate does not possess a net angular 
momentum. 

Note that the ring dynamics described here are qualitatively similar for vor
tex pairs, because the energy of a pair also increases as they separate. Our 2D 
simulations (as discussed in Sec. 3.3) also reveal a vortex precession and eventual 
annihilation at later times. However, in 3D the dynamics become more complicated 
due to the ability of the line to stretch and deform (see Sec. 3.4). I f more than one 
pair is produced by the object then they may interact, introducing another layer 
of complexity to the problem. These issues become relevant in the next chapter, 
where we return to the scenario of pair formation by a laser beam object. 



Chapter 6 

Vortex creation and dissipation 

This chapter extends our previous simulations to address a recent experiment at 
MIT by Raman et al. [45], where the condensate was probed by an oscillating laser 
beam. The laser was detuned far above the atomic resonance to produce a repulsive 
Gaussian potential. The condensate fraction was measured after approximately one 
second of probing, which indicated significant heating of the cloud only above a 
critical velocity and therefore a transition to a dissipative regime. The heating was 
found to depend upon the existence of a condensate, indicating that i t must be 
due to the production of excitations that subsequently populate the non-condensed 
fraction. 

The observation of a critical velocity might suggest the creation of vortices, as 
shown by our simulations of Chapter 3. However, vortices were not observed in the 
experiment, probably due to the small core sizes resulting from the high density 
of the condensate. More indirect evidence must therefore be sought, such as the 
heating rate and the low value of the critical velocity (vc <C cs). The aim of this 
chapter is to attempt to clarify the role of vortices in the experiment by presenting 
2D and 3D simulations of an oscillating repulsive potential in the condensate. The 
motion transfers energy to the condensate and we observe that the transfer rate 
increases significantly above the critical velocity for vortex formation. We relate 
the energy transfer to the drag on the object and characterise transfer below and 
above the transition as 'phonon' and 'vortex' heating respectively. We also present 
predictions of the critical velocity as a function of system parameters, furnishing 
possible experimental tests that could provide further evidence of vortex formation. 
Finally, we show that the low value of vc measured experimentally is due to the 3D 
geometry of the condensate, where vortices are first nucleated at the low density 
edge. We compare our simulations to other theoretical models of the system, with 
particular emphasis on the question of critical velocities. 

75 



6.1. Simulations 76 

Before describing the results of our simulations we should note that the M I T 

experiment [45] is just one of several recent studies of superfluidity in trapped Bose 

gases. For example, vortex formation seems to be possible only for 'macroscopic' 

objects, and the MIT group has observed suppression of collisions from microscopic 

impurities below the Landau critical velocity for phonons [70]. Observation of vor

tices [43, 72] can be seen as a manifestation of the superfluid property of persistent 

currents, while a scissors mode experiment at Oxford provides a striking demonstra

tion of the irrotational nature of condensate flow [132]. Al l of these experiments are 

complementary in pointing towards the existence of superfluid behaviour in these 

systems: however, as we shall discuss when concluding in Chapter 8, our definition 

of superfluidity may have to be slightly modified in order to incorporate these new 

results. 

6.1 Simulations 

Our simulations are similar to those described in Sec. 3.2, in that we solve the GP 

equation (3.15) with the object potential given by the Gaussian form (3.20). The 

position of the centre of the focus in this case is generalised to (0,y'(t),0). To recover 

the essential physics behind the experiment of Raman et al. [45], we describe the 

oscillatory motion by: 

where T = t — s/f and s is the number of completed oscillations. The velocity 

between the motion extrema is constant, v = ± 4 a / y , where a is the amplitude 

and / is the frequency. The condensate is anisotropic, with its long axis along y 
(rj < 1). As a result, for small a the beam moves through regions of near-constant 

density. The initial condition contains the object at y = a, which in time dependent 

simulations nucleates vortices when v > vc. 

The creation of phonons or vortices increases the energy of the condensate, which 

was calculated numerically using the energy functional (5.8). The energy is related 

to the drag force on the object F o b by: 

The drag can be calculated independently over the whole condensate using F 0 b = 
— (pVFob) (see Sec. 4.3), allowing a numerical check. Superfluidity corresponds to 

the situation where E remains constant when V^, is time dependent; i.e. when there 

a — vT if y'(T) 
vT - 3a if 

T < 1/2/, 
1/2/ < T < 1 / / , (6.1) 

dE 
Fob-v 

dt 
(6.2) 
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Figure 6.1: Time dependent 2D simulations of laser beam oscillation, with grid 
spacing of 0.156 (512 x 128 points) and parameters C = 1000, n — 0.0625, a = 4, 
J70b = 20 and WQ = 1.0. Condensate energy as a function of time are plotted for (a) 
/ = 0.05 and (b) / = 0.2. The drag F0b is also plotted for both frequencies in (c) 
and (d) respectively. 

is no drag on the object. Fig. 6.1 shows the energy and drag as a function of time, 
as calculated for two different frequencies in 2D simulations. At low frequency, 
the energy transfer is relatively small and characterised by 'jumps' at the motion 
extrema, whereas at the higher frequency the energy transfer is two orders of mag
nitude larger and more continuous. Further insight can be gained by considering 
the drag. At low / , there is little drag except at the motion extrema [Fig. 6.1(c)], 
while at high / appreciable drag is observed at all times [Fig. 6.1(d)]. 

To measure the average rate of energy transfer, a linear regression analysis is 
performed on the energy-time data. The gradients are plotted against v in Fig. 6.2. 
I t can be seen that the curves are characterised by two different regimes. Small 
energy transfer at low v gives way to enhanced heating above the critical velocity, 
vc. At high v, the three plots follow a single linear curve. 

Energy transfer below vc arises due to emission of sound waves at the motion 
extrema. This process (henceforth referred to as phonon heating) is found to ap
proximately scale with v3, indicating that at each extremum (which are reached at 
a rate oc v) a sound wave with energy ~ v2 is emitted. Note that phonon emission 
by the object is not inconsistent with Landau's criterion. In particular, the Landau 
argument relies on use of Galilean invariance (Sec. 3.1.2) which breaks down when 
the condensate density varies, or when the velocity changes abruptly. The process 
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Figure 6.2: Mean rate of energy change as a function of velocity, for a = 3 (tri
angles), a = 4 (squares) and a = 5 (bullets). Otherwise, parameters are the same 
as in Fig. 6.1. The dashed line shows the speed of sound in the condensate centre, 
cs = ^/2~jl ~ 3.55. The plot shows a sharp transition between phonon heating (low 
v) and vortex heating at vc ~ 0.4cs. 

can also be viewed from the perspective of drag. For constant motion [Fig. 6.3(a)] 
the fluid is distributed symmetrically around the object, and the net drag is zero. 
When the object accelerates [Fig. 6.3(b)] the fluid fails to respond rapidly enough 
to the abrupt change in velocity, and the asymmetry in the overlap between the 
fluid and the object leads to drag. The fluid then relaxes by the emission of a sound 
wave. 

For the parameters we have explored, phonon heating is found to be relatively 
small compared to the energy transfer from vortex formation above vc. The heating 
rate in the latter regime is found to scale approximately linearly with v. This 
implies that the drag force is constant. Indeed, we observe that the drag saturates 
at high v (see Fig. 6.4). This behaviour contrasts with that of steady flow, where 
the drag oc vk (where k ~ 1 at v close to vc, and k —» 2 for v > cs) [84, 86]. The 
difference arises from the oscillatory motion: as the object travels back through its 
own wake, a large pressure imbalance across the object does not develop. 

We can also study the vortex heating process by counting the number of vortices 
formed above the critical velocity within a fixed time. We find that the shedding 
frequency scales roughly linearly with v (Fig. 6.5). Fig. 6.6 plots the mean energy 
transferred against the number of vortex pairs. The energy transfer per vortex 
pair is approximately constant, leading to estimates of the pair energy plotted as a 
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Figure 6.3: Cross-section through the 2D condensate pierced by a Gaussian laser 
beam 'object' (also shown), (a) If the object is moving with constant velocity 
v = vc, the fluid density is symmetric around the object, and the drag is zero, 
(b) When the object accelerates at the motion extremum the fluid cannot adjust 
sufficiently rapidly, leading to an asymmetric fluid distribution around the object 
which produces drag (i.e. the second peak in Fig. 6.1(c)). 
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Figure 6.4: The drag force, {dE/dt)/v, as a function of velocity for a C = 1000 
condensate and U0b = 20 beam. The triangles, squares and bullets correspond to 
2D simulations with different oscillation amplitudes (see Fig. 6.2). The diamonds 
represent 3D simulations. 
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Figure 6.5: Number of vortex pairs created up to t = 10 against beam velocity, 
v. Simulation parameters are the same as in Fig. 6.1, w i t h a = 4 and C = 2000 
(squares), C = 3000 (circles), C = 4000 (diamonds), and C = 5000 (triangles). 

funct ion of C in Fig. 6.6 (inset). The energy of a vortex pair in an homogeneous 

condensate is given by: 

where £ is the healing length and d is the distance between the vortices. Equation 

(6.3) is valid for the inhomogeneous condensate when £ <C d <C R, where R is 

the radial extent of the condensate. Eq. (6.3) w i t h d = 2w0 is plotted in Fig. 6.6 

(inset), and is found to agree w i t h the numerical data. Recall that the vortex pair 

separates immediately after formation, when the pair s t i l l resides w i th in the density 

min imum created by the object. The pair also moves in the direction of the object 

motion: however, i t is slower, and is eventually left behind. A t this point, i t has an 

energy approximately equal to E p a i l , and the formation process is complete. The 

heating rate can be expressed as dE/dt = E v a x T f s [45]. As the shedding frequency, 

fa is approximately proportional to v, then this accounts for the linear dependence 

of the energy transfer rate. 

The subsequent vortex dynamics involve interplay between velocity fields in

duced by other vortices, and effects arising f rom the condensate inhomogeneity. I n 

the absence of the object, an isolated pair follows a trajectory similar in character 

to that of a vortex ring (Sec. 5.3), culminating in self-annihilation. However, the 

object moves back through its wake, interacting w i t h the original pairs and creating 

2wph2 d 
E n pair m 

(6.3) 
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Figure 6.6: Number of vortex pairs created up to t = 10 against rate of energy 
transfer. Simulation parameters and symbols are the same as in Fig. 6.5, w i t h 
C = 2000 (f i t w i t h a solid linear regression line), C = 3000 (dotted line), C = 4000 
(dashed), and C = 5000 (long dashed). The data points closely follow the regression 
lines, suggesting a constant energy for each vortex pair. Inset: the average pair 
energy against C, where the dashed line shows the pair energy predicted by (6.3). 

more vortices. The circulation of a pair depends upon the direction of the object 

motion when i t is created (Sec. 3.2). This means that vortex pairs of opposite circu

lation are formed and interact when sufficiently close. This leads to situations where 

vortices annihilate or move towards the edge. The number of vortices remaining 

wi th in the condensate bulk is found to reach an equilibrium value. 

The critical velocity for vortex formation, function of potential height 

and nonlinear coefficient is shown in Fig. 6.7. The critical velocity is not as well 

defined as in the homogeneous case [84, 85, 86] for a number of reasons. First, 

a density inhomogeneity along the direction of motion leads to a variation in cs, 

and therefore vc. However, this is less than ~ 3% in the simulations considered 

here. The oscillatory nature of the object motion is important. The t ime taken 

for a vortex pair to form diverges to inf ini ty as v approaches vc f r om above. So, 

the measured value of vc increases f rom its true value as a decreases. In addition, 

the object travels through its own low-density wake, where cs is lower. Vortices 

can therefore be formed after the first half-oscillation, when v is slightly below vc. 

Nevertheless, we can obtain a good estimate for vc by choosing intermediate values 

of the amplitude (e.g. a = 4) and considering only vortex formation during the first 

half-cycle. Fig. 6.7 demonstrates that vc decreases as a function of increasing object 

potential height, [/0b> allowing an experimental diagnostic for vortex formation at 

I E? 0.12 

0.1 

5> 0.08 

r 06 
3000 4000 5000 2000 
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Figure 6.7: Cri t ical velocity for vortex formation at C = 2000 as a funct ion of 
potential height U0\)) expressed as a fraction of the speed of sound at the condensate 
centre, cs. Inset: cri t ical velocity plotted against C, w i t h £ / 0 b = 20. The other 
parameters i n both plots are a = 4 and WQ = 1. 

varying beam intensities. This behaviour agrees wi th simulations of I D soliton 

creation [133] and vortex ring formation in 3D [60]. We have also studied the case 

of U0b < 0, which corresponds to a red detuned laser. Fig. 6.7 (inset) shows vc as 

a funct ion of C. The critical velocity tends to a constant value as C increases. 

Simulations were also performed in 3D. Isosurface stills are shown in Fig. 6.8. 

We see the condensate immediately after the beam has turned at the extremum 

(a = 3) and an emitted sound wave propagating towards the bo t tom of the page is 

clearly evident. A vortex pair is also in the process of formation, where the nucleated 

lines are highly curved. This is because the beam intersects the condensate edge 

where the speed of sound is lower. Accordingly, vortex lines first appear in these 

regions and penetrate into the centre, as shown for a lower v in Fig. 6.9. This 

leads to a much smaller critical velocity in 3D than in 2D, as shown in Fig. 6.10 

where the mean energy transfer rate as a funct ion of velocity is plotted. This 

conclusion agrees w i t h the experiment [45], where a relatively low crit ical velocity 

was measured. Note that to simulate the experiment directly, the appropriate 

parameters would be: e ~ 0.077, wQ ~ 3.5, Uoh ~ 220, and C ~ 3.6 x 10 5 . Such 

simulations require large grid sizes, making them computationally intensive. We 

therefore at tempt to gain some insight by increasing the value of C while keeping 

the ratio £ / 0 b / / / T F constant and equal to the experimental value ~ 6.2. We see in 

Fig. 6.10 (inset) that the critical velocity slowly tends to a constant value as C 
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Figure 6.8: Isosurface plots at | ^ | 2 = 6 x 10" 5 showing the creation of a curved 
vortex pair by a moving object (centre of each picture). Time-frames are shown 
for (left to right) t = 10.8, t = 12.0, and t = 13.2. The simulation parameters are 
v = 1.2 (c./. speed of sound at the condensate centre, cs = 2.54), C = 1000, and 
Uoh = 20. 
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Figure 6.9: Isosurface plots at v2

a = 10 3, where vs is the superfluid velocity, showing 
the evolution of the vortices at (A) t = 6.8, (B) t = 7.6, and (C) t = 8.4. Also 
shown in (B) is a dashed circle in the x — y plane w i t h the Thomas-Fermi radius, 
R T F = 3.59. The direction of beam motion is normal to the circle (i.e. into the paper 
and towards the bot tom). Vortices are seen to nucleate at the condensate edge as 
half-rings, before penetrating into the bulk to eventually reconnect as a vortex pair. 
Simulation parameters are the same as in Fig. 6.8, apart f rom a velocity of v = 0.6. 

increases. The values are roughly in agreement w i th the measured vc ~ 0.25c s in 

the first M I T experiment [45], though improved calorimetric techniques in a more 

recent experiment [134] suggest a much lower crit ical velocity of vc ~ 0.1c s. The 

difference might be explained by the asymptotic behaviour of vc as a funct ion of C 

and Uob1. recall that in 2D the vc-C curve tends to flatten while the vc-U0^ does not. 

Similar behaviour in 3D might account for the low crit ical velocity. In addition, 

dependence of vc on the beam waist WQ may be important . In 3D we also see an 

enhanced heating for vc > cs, due to phonon emission between the extrema. This 

difference between 2D and 3D is also apparent in the drag curve plotted in Fig. 6.4. 

The experimental system included a significant thermal cloud, which presum

ably is also heated by scattering f rom the moving beam. However, the impl ic i t 

assumption in this chapter (and the experiment) is that the density of the normal 

component, and therefore the overlap w i t h the beam, is so low that the heating 

is negligible. We test this supposition by performing a Monte Carlo simulation 

(see Chapter 7) to model an oscillating laser beam in a classical gas of 2 3 N a , at 

twice the transition temperature. To compare w i t h our 3D simulations of a con

densate, we model N = 26500 atoms (equivalent to C = 1000) at T = 110 nK, in 

a trap w i t h parameters UJX = cuy = 2n x 65 Hz and e = 0.0625, and a beam height 
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Figure 6.10: Mean rate of energy change versus velocity, for 3D simulations w i t h 
grid spacing 0.234 (256 x 64 x 64 points). Parameters are C = 1000, rj = 0.0625, 
e — 1, a = 3.0, w0 = 1, and A ~ 0.281. The speed of sound at the condensate 
centre c s ~ 2.54 is represented by the dashed line. For f / 0 b = 40 (bullets) the 
crit ical velocity is vc ~ 0.13c s, while for Uob = 20 (triangles) i t is vc ~ 0.20c s. Inset: 
crit ical velocity as a funct ion of C, where the potential height is adjusted so that 
the ratio f / 0 b / H T F — 6.2 is constant. 
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equivalent to t/ 0b = 20. We find f rom our simulations for v = 2.4 h.o.u. over 0.5 s 

that (dE/dt) = 2.08 x 10~ 3 2 Js~x per atom, which is over two orders of magnitude 

smaller than the corresponding energy transfer for the condensate, 5.60 x 1 0 - 3 0 J s _ 1 

per atom. We expect these conclusions to be unchanged for a Bose gas under the 

transition temperature. We also see that heating of the thermal cloud and phonon 

heating of the condensate occur at comparable rates. Thus, to observe phonon 

heating experimentally one must use clouds at very low temperatures where the 

thermal fraction is negligible. 

6.2 A discussion on critical velocities 

We conclude this chapter by discussing other models that claim to account for the 

experimental observations of critical velocities. We also expand our discussion of 

vortex formation by reviewing the existing literature on the process in homogeneous 

systems, showing that vortex nucleation is a general consequence of instabilities in 

nonlinear Schrodinger flow. 

So far theories have focused on the observation of a low critical velocity relative 

to both the Landau criterion for phonons and the 2D result for uni form flow past 

a cylinder [84, 85, 86]. In our 3D simulations we have demonstrated that the small 

value is due to intersection of the beam w i t h low density regions of the condensate 

where vortices nucleate first. Nore et al. [135] simulated 3D uniform flow past a 

cylinder w i t h a vortex already attached. 'Dissipation' below the 2D crit ical velocity 

arises f r o m vortex stretching, where energy f rom the flow is transferred to the 

vortex. However, the line always remains fixed to the cylinder so that the process 

is in principle reversible. Another objection is that the model does not explain how 

the vortex is created in the first place. The authors suggest thermal or quantum 

fluctuations may be responsible for nucleation at subcritical velocities. The impact 

of the non-condensed component on the formation process is very much an open 

question; however, i t is probable that the thermal fraction in the experiment is too 

low for this effect to be significant. 

A n alternative explanation for the low critical velocity is that vortices are not 

responsible at al l . The spatial inhomogeneity of the condensate means that sound 

waves w i t h wavevector k ~ 1/R possess group velocities significantly smaller than cs 

[66]. Fedichev and Shlyapnikov [136] solved the Bogoliubov equations in an infini tely 

long cylindrical condensate to obtain a dispersion curve for phonons. This yielded 

vc < cs, where the critical velocity decreased w i t h increasing interaction strengths. 

For the experimental parameters the authors find that vc m 0.42c,, which is much 
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larger than the experimental value. The authors also do not consider the presence of 

the beam, which is likely to change the modes significantly for these wavelengths. I t 

is not clear whether the modes can be excited by the moving object, or whether they 

would contribute significantly to the energy transfer. We have found no evidence in 

our simulations that sound is emitted during constant motion at subsonic speeds. 

Two recent papers have recently attempted to find analytical estimates for the 

crit ical velocity. Crescimanno et al. [137] calculated the energy and momentum of 

a vortex pair at a separation d, and used the Landau criterion to estimate vc. As 

we have seen, vortex pairs emerge f rom a point near to the axis of a penetrable 

object, meaning that according to the analysis vc would diverge to infini ty. Their 

expression for vc is also largely independent of the density, in contrast to results 

of simulations and recent experiments [134], and yields a numerical value much 

lower than that observed. This approach highlights the danger of using the Landau 

criterion, in that i t is a simple energetic argument which provides a lower bound to 

vc but ignores completely the nucleation mechanism. As we saw in Chapter 3, vortex 

formation is a culmination of a complicated process involving evolution of density 

and phase fields in the region of the object. The important point is that there is a 

continuous evolution between states without and wi th vorticity, so that nucleation 

requires different criteria to that of a simple energy ' jump ' . This behaviour is 

manifest in the dispersion curve for objects in homogenous superfiow in two [85] 

and three [60] dimensions. Laminar flow and vortex solutions occupy different 

branches separated by an energy barrier, but are joined at the crit ical velocity by a 

saddle-node bifurcation. Vort ic i ty can therefore emerge as a continuous trajectory 

along the curve, w i th an intermediate state involving a localised low density pulse 

w i t h no vort ici ty (termed a 'rarefaction pulse' in the context of freeflow by Jones 

and Roberts [138]). 

A more f r u i t f u l approach may be to consider instead the dynamic stability of 

the flow. By performing a linear stability analysis, one can determine the growth 

rates of the modes in the system. Above cri t icali ty the amplitude of one of the 

modes is found to increase exponentially, signalling instabili ty of the system. This 

is the basis of the analysis by Stiessberger and Zwerger [139], where the lowest 

unstable mode is found to be purely complex, corresponding to phase fluctuations 

which create vortices. Note that stability analyses have also been employed to 

study vortex formation in superflow past a wall [140] and in a rotat ing vessel [141], 

where agreement w i th numerical simulations is excellent. For uni form flow past 

a cylinder or sphere, the authors of [139] found that vc oc h/mR, where R is the 

radius of the object. Hence, similarly to Crescimanno et al. [137], they find that 
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the crit ical velocity is independent of the speed of sound. The R dependence is 

also in disagreement w i t h other work [60, 142, 143], which predicts that the cri t ical 

velocity is equal to the speed of sound for R = 0, while tending to a constant value 

for R —> oo. These anomalies may arise in their assumption of incompressible flow, 

in that although i t is possible that v <C cs at infinity, i t is not necessarily true in 

the region of the obstacle. 

We see f rom the previous discussion that deriving a critical velocity for the ex

perimental situation is in fact a very complex problem, open to many subtleties and 

misconceptions. Progress has been made, in contrast, on the 'simplified' scenario 

of uni form flow past an impenetrable cylinder and sphere. The idea here is that 

vortices nucleate when the flow velocity exceeds the speed of sound locally [84]. The 

flow speed at the equator of the object is a maximum and exceeds the velocity at 

inf ini ty, accounting for the fact that vc < c3. This picture must be modified to in

clude the 'quantum pressure', which arises f rom the curvature of the wavefunction 

near to the object surface and tends to stabilise the flow. Vortices first appear when 

the the flow becomes locally supersonic and the quantum pressure term is zero at 

some point a few healing lengths f rom the surface [144]. This stabilising effect of 

the wavefunction curvature is responsible for the dependence of vc on the object 

radius, as discussed in [142]. 

A particularly intr iguing question is the possible connection, suggested in [145], 

between the vortex formation in superfluids and the Eckhaus instabil i ty in pattern 

forming systems [146, 147]. In the latter, an order parameter can be defined in terms 

of an amplitude and phase in a similar manner to a superfluid. The gradient of the 

phase yields the 'wavevector', k , which remains stable to small perturbations so long 

as its magnitude remains wi th in a range of values, the 'Busse balloon'. Above the 

upper l i m i t (the Eckhaus instability boundary, H E ) the system becomes unstable, 

and a pair of singularities appear and separate. This removes 2tt of phase f r o m the 

pattern, bringing the wavevector back to wi th in the stable range. Al though the 

two systems differ in some respects (pattern forming systems tend to be dissipative, 

while superfluids as described by the Gross-Pitaevskii equation are conservative), 

the similarities to the vortex pair formation process in superfluids and between 

ks and vc are compelling. However, quantitative extension of these ideas to more 

general conditions (e.g. a penetrable obstacle) for comparison to experiment remains 

a considerable challenge for the future. 



Chapter 7 

Finite temperature dynamics 

Up un t i l now in this thesis we have looked at the dynamics of Bose condensates 

at low temperatures wi th in the framework of the Gross-Pitaevskii equation. This 

culminated in the previous chapter in a model of an oscillating laser beam, where we 

demonstrated that energy is transferred to the condensate by vortex creation. Our 

analysis, however, is incomplete. Recall that in the M I T experiment [45] heating 

is observed by a reduction in the condensate fraction. Experimentally, energy (and 

atoms) must therefore be transferred f rom the condensate to the thermal cloud. 

Hence, the observed heating involves the indirect transfer of energy f r o m the object 

to the thermal atoms, w i t h the condensate acting as an intermediary (recall f rom 

Chapter 6 that direct heating is negligible because of the small thermal cloud den

sity). Transfer f rom the condensate to the thermal cloud is facilitated by damping 

of excitations; i.e. by decay of moving vortices, or phonons produced by vortex pair 

annihilation or at the object motion extrema. 

The above example highlights the importance in some dynamical scenarios of 

including finite temperature effects. We touched on vortex decay in Chapter 5, 

where mutual friction [22] between the condensate and non-condensate results in 

dissipation [119]. Another problem, which has attracted considerable experimental 

and theoretical attention, is that of the damping of collective excitations. This may 

be explained in terms of mean-field interactions between the condensate and thermal 

component, which leads to Landau and Balieav damping. A t higher densities, 

collisions between condensed and non-condensed atoms may also be important . 

Atoms are transferred between the two components when they are not in diffusive 

thermal equil ibrium w i t h each other, resulting in damping of low-energy excitations 

of the condensate. This effect is discussed in terms of a hydrodynamic model in 

[148, 165, 166]. 

In general, the finite temperature problem is a very diff icul t one to solve com-

89 
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pletely. Approximations must be made in order to render the problem amenable 

to analytical and numerical treatments. A popular approach involves solving the 

Hartree-Fock-Bogoliubov (HFB) equations [effectively generalised versions of (3.2) 

and (3.3)] i n order to f ind the mode frequencies of the condensate in the presence of 

the thermal component. As we shall discuss later, this method becomes inconsistent 

at higher temperatures because i t neglects the motion of the thermal cloud. In this 

chapter we account for this by modelling the thermal component using a Monte 

Carlo approach. The condensate is simulated using the Gross-Pitaevskii equation, 

which now includes a mean-field f rom the thermal cloud. In effect, we use a two-

f lu id model, where the high-energy quasiparticles are treated as a Bose gas w i th in 

the semi-classical, Hartree-Fock, and random phase approximations, while the low-

energy collective excitations are described together w i th the condensate by the GP 

equation. This dichotomy between high and low-lying excitations is the essence of 

our approach. Af te r describing the model, we use i t to study mean-field damping 

of collective modes, and f ind that our results compare favourably to experimental 

and theoretical results. We conclude by suggesting future extensions. 

7.1 Equations of motion 

We begin our discussion of finite temperature dynamics by sketching the derivation 

of the equations of motion for the condensate and thermal cloud. Further details 

can be found in e.g. [52, 148]. Our starting point is the system Hamil tonian (2.8), 

where we again substitute the pseudopotential U = gd(r — r'). Using the Heisenberg 

equation of motion and the Bose commutation relations for the field operators: 

zfc -VKr, t) = ( - — V 2 + V(v, t ) j V>(r, t) + ^ ( r , t ) f c , t $ (r, t). (7.1) 

We now follow Eq. (2.11) by separating the field operator into a condensate part, 

^(r,t) = (i/>(r, £)) (recalling that the non-zero ensemble average reflects the un

derlying broken gauge symmetry) and non-condensate part, tp(r,t). Substi tuting 

(2.11) into (7.1) and taking the expectation value yields an equation of motion for 

the condensate: 

h2 

%n~dt 2 m V 2 + V + g(nc + 2n) ^ + gmV* + g^iptp). (7.2) 

Subtracting (7.2) f rom (7.1) gives the equation for the non-condensate field operator: 

V> - 2ghijj + g-fy2^ + g^*(^ - m) 

+ 2 0 * ( $ t ^ - n) + g{i)]i)i> - (V>W)). (7-3) 

h2 

- — + V + 2gn 
2m 
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The condensate and non-condensate densities are given by n c ( r , t) = | \P ( r , £ ) | 2 

(where \& is normalised to Nc in this case) and n(r , t) = {$(T, t)^)(r, t)), while 

n(r,t) = nc(r,t) + n(r, t) defines the total density and m(v,t) = {^(r, ^ ( r , t)) 

is the 'anomalous' off-diagonal non-condensate density. Equations (7.2) and (7.3) 

fo rm the basis of our discussion of finite temperature dynamics. In the next section 

we introduce approximations that make the equations more amenable to solution. 

Note that (7.2) reduces to the GP equation in the absence of the non-condensate 

$ = o). 

7.2 Approximations 

7.2.1 Hartree-Fock-Bogoliubov (HFB) and Popov approxi
mations 

We now take a slight detour by briefly discussing the H F B equations, as they are 

of particular importance in the finite temperature literature [149, 150, 151, 152, 

153]. These are akin to the Bogoliubov equations (3.2) and (3.3) apart f r o m the 

inclusion of h and TO, which are neglected wi th in the Bogoliubov approximation. 

The derivation is similar to that outlined in Sec. 3.1.1 [149], starting f rom the grand 

canonical Hamiltonian K = H — (JLN, where H is given by (2.8), and performing the 

decomposition (2.11). The key simplification of the H F B mean-field approximation 

is its treatment of terms cubic and quartic in ip: 

fo'ijj'ip ~ 2hip + rh$, (7.4) 

tp^ip^ipxjj ~ Ihifi'ij) + m f f l f f i + TO*V>i/>. (7.5) 

The expanded Hamiltonian can then be diagonalised wi th the Bogoliubov transfor

mation (3.1), so that: 

* ( r ) - $ > i / d r M r ) | 2 

3 

+ ^ E j a } a j , (7.6) 
3 

when Uj(r) and Vj(r) satisfy the coupled H F B equations: 

- 7 
K M = / d r f ( r ) 



7.2. Approximations 92 

Here the operator is t = -h2V2/2m+V(r)-fj,+2gn(r), while m ( r ) = ^ 2 ( r ) + m ( r ) . 

Using (3.1) one can verify that: 

n(r) = £ { [ M r ) | 2 + M r ) ! 2 ] ^ ) + K ( r ) | 2 } , (7.8) 
j 

m ( r ) = -^UjirWrWNiEj) + 1], (7.9) 
i 

where, 

N(Ej) = (a]o!j) = (7.10) 

is the Bose distr ibut ion for the quasiparticle excitations. I n principle, equations 

(7.7)-(7.10) can be solved self-consistently wi th the time independent version of 

(7.2): 

[C - <?n c(r)#(r)] + ^ m ( r ) * * ( r ) = 0, (7.11) 

where (fotpip) = 0 in the mean-field approximation. We see f r o m (7.8) that the 

HFB approximation equates the thermal cloud w i t h the spectrum of quasiparticle 

excitations upon a static ground state condensate. Note also that the thermal 

density is non-zero even at zero temperatures due to the | i> j ( r ) | 2 term. Physically 

this is the quantum depletion which is so important in l iquid 4 He. However, in dilute 

Bose-condensed gases the quantum depletion is very small: less than 1% in current 

experiments [7]. 

The H F B approximation satisfies the usual conservation laws for quasiparticle 

number, energy and momentum [149]. However, according to the Hugenholtz-Pines 

theorem, the H F B quasiparticle spectrum possesses a gap in the l im i t of long wave

lengths. In other words, E ^ 0 at k — 0, where E and k are the energy and 

wavevector of the excitation respectively. This is clearly unphysical, but can be 

remedied by simply setting rh = 0 in (7.7)-(7.10). This Popov approximation is 

valid at high temperatures (n 3> m) and at very low temperatures where both n 

and m are negligible. The Popov approximation not only yields a 'gapless' spec

t rum, but also simplifies the self-consistent solution of the H F B equations, and 

has been used to calculate the excitation frequencies of the condensate at finite 

temperatures [150, 151]. Note that gapless spectra can also be obtained by varia

tional expansion to higher terms than in the first-order H F B approximation, or by 

renormalisation of the coupling constant, g [154, 155, 156]. 

Another l imi ta t ion of the H F B approximation is of particular importance to our 

discussion. The approximation treats excitations in the condensate, but neglects 

collective motion of the non-condensed thermal cloud. This can lead to unphysical 
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behaviour at higher temperatures where the thermal component is large. For exam

ple in Refs. [150, 151] the frequency of the centre-of-mass dipole mode was found to 

deviate slightly away f rom the trap frequency as the temperature increased. This 

is in defiance of the generalised Kohn theorem [157], which states that a cloud 

in a harmonic potential undergoes rigid-body oscillations at the trap frequency. 

This l imi ta t ion is also of considerable importance when comparing frequencies and 

damping rates to experiments [4, 109, 158], as coupling between the condensate and 

thermal cloud is expected to play an important role at temperatures approaching 

the transition. We shall return to this point later. 

7.2.2 Semi-classical approximation 

To solve the H F B equations, one must solve a set of 2j+l equations self-consistently 

up to some cut-off energy. This is time-consuming but can be simplified greatly 

by using a semi-classical approximation [159], where in a harmonic trap of fre

quency u)0 the discrete energy levels can be replaced by a continuous funct ion 

C H F = P2/2m + V(r) + 2gn(r) — \x (which corresponds to the energy of a single 

particle moving wi th in the mean-field). As discussed in Sec. 2.1.1, the semi-classical 

approximation is expected to be valid under the condition that ksT ^> hw0 and 

when the number of trapped atoms is large. Indeed, results of the semi-classical 

approximation agree favourably w i t h those of a comprehensive path-integral Monte 

Carlo calculation [160]. The calculations also rely upon the local density approxi

mation, under which the condensate is assumed to vary sufficiently slowly so that 

the thermal density h(r, t) is determined entirely by the local potential and tem

perature, and can therefore be treated locally as i f the gas were homogeneous. Note 

that e H F represents the Hartree-Fock spectrum, which neglects low-lying collective 

modes. However, here we shall consider the thermodynamic properties i n equilib

r ium, where single-particle excitations are overwhelmingly more important [7] 

In the Popov approximation, Eq. (7.2) reduces to: 

ih-V(r, t) = -—— + V(r, t) + gnc(r, t) + 2gh(r, t) #(r, t), (7.12) 

which is similar to the Gross-Pitaevskii equation, but w i th an additional term n(r, t) 

representing the non-condensate density. W i t h i n the semi-classical approximation 

the summation in (7.8) can be replaced by an integration . —>• J dp(27rft)~ 3 , so 

fi2V2 

2m 

that: 

l l z 
dp 

n r 
r l e / V / 2 m (7.13) 
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where the fugacity z = e x p [ — p { V ( r ) + 2gn(r) — / / } ] . Integrating yields: 

(7.14) 

where A t = {2irh2/mkBT)1/2 is the thermal wavelength, and gQ(z) = Yl^i z*'I^°'• 

The to ta l number of atoms in the system is then given by N = Nc+f hdr = Nc+N, 

where Nc and N are the numbers in the condensate and thermal cloud respectively. 

Self-consistent solution of (7.12) and (7.14) yields good approximations for the 

condensate and non-condensate densities at equilibrium. The following numerical 

procedure is implemented: 

(i) Eq. (7.12) is solved for a particular Nc and w i t h h = 0, using imaginary t ime 

propagation. This yields n co(r) and fj,0. 

( i i ) Eq. (7.14) is evaluated for a particular value of T , w i t h n c 0 ( r ) and no f r om 

step ( i ) . This yields new values for n ( r ) (discretised on the same grid as the GP 

equation) and N. 

( i i i ) Step (i) is repeated wi th the new value for n(r). This then yields new values 

of n c ( r ) and f j , for step ( i i ) , and so on. Iteration continues unt i l /x and N converge 

to a predetermined tolerance, typically Error(/x) < 10~ 7 and E r r o r ( N ) < 1 0 - 3 . 

(iv) To obtain a desired value of iV = Nc + N, a further level of i teration 

is utilised. Af te r obtaining N f rom steps ( i ) - ( i i i ) , iV and ATC are rescaled thus: 

Af = N/N and A^c = Nc/N. Steps ( i ) - ( i i i ) are repeated, and iteration continued 

unt i l constant N is achieved to a tolerance: Error(AQ < 10~ 2 . 

For a particular N, the in i t ia l value of Nc may be found using the relation for the 

condensate fraction as a funct ion of temperature (2.7) for non-interacting atoms in 

the thermodynamic l i m i t . However, a more accurate in i t i a l condition is yielded by 

including mean-field interactions between condensed atoms. A n analytical estimate 

can be derived f rom the semi-classical approximation, but w i t h interactions between 

the thermal atoms neglected [161]: 

Results of the calculations for 20000 8 Rb atoms in a spherical trap are plotted 

in Fig. 7.1. The density plots in Fig. 7.1(a) show that the thermal cloud is more 

spatially extended and less dense than the condensate, tending to occupy a 'shell' 

around the condensate. Fig. 7.1(b) plots the condensate fraction as a funct ion of 

temperature: the condensate can be seen to be depleted at all temperatures due 

to interactions. The numerical data also follow closely the result of (7.15), where 

'TO 
x c N 

3 
« 2 ) 

31 2 / 5 

2[C(3)]2/3 
(7.15) 
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a Newton-Raphson iteration was used to evaluate the condensate fraction at each 

temperature. Note that there are no numerical results at temperatures just below 

T c : this is due to divergence of the Bose function (z > 1) at the condensate surface 

where the density is small. 

Figures 7.2 and 7.3 show results for a cylindrically symmetric condensate w i t h 

similar parameters to the first J I L A experiments: N = 20000, LJX = u)y = 2 7 r x l 3 l H z 

and uz — u)x/y/8 [1, 162]. Fig. 7.2 shows the same dependence of condensate fraction 

on T as Fig. 7.1(b), while Fig. 7.3 displays the column densities: nc0\(x,z) (wi th 

the probe beam directed along the y-axis). The plot shows the famil iar sequence 

of images as the gas cools: just below Tc there appears a bimodal distr ibution w i t h 

a parabolic condensate superimposed upon an extended thermal cloud, where the 

latter disappears at lower T. The plots also show that there is a substantial column 

density of thermal cloud near to the trap centre for higher temperatures. 

7.2.3 The kinetic equation 

The HFB-Popov equations discussed in Sec. 7.2.1 have been successfully solved 

to find the collective mode frequencies of the condensate at finite temperatures 

[150, 151]. However, as mentioned in our discussion, this approximation neglects 

the dynamics of the thermal cloud, which is of particular importance when ad

dressing higher temperatures. Bij lsma and Stoof [163] have utilised a variational 

method to include coupling between the condensed and non-condensed fractions in 

the collisionless regime, while Zaremba, Nikuni and Gr i f f in [148, 164, 165, 166] have 

considered the hydrodynamical regime and derived coupled equations analogous to 

the Landau two-fluid equations. In i t ia l ly only collisions between thermal atoms 

were included in this treatment [164], corresponding to the case where the two 

fractions are in local equilibrium w i t h each other. However, in [148, 165, 166] the 

model was extended to include collisions between condensed and thermal atoms 

(i.e. exchange of atoms between the two components). This was used to predict 

hybridisation between the collective modes of the two components, which may be 

responsible for the anomalous behaviour of the condensate quadrupole frequencies 

at high temperatures [109]. 

While the hydrodynamical equations are of considerable interest when studying 

high density systems such as 4 He, experimental Bose-condensed gases tend to re

side in the collisionless regime [5], or between the collisionless and hydrodynamical 

regimes [4]. I t would therefore be useful to have a model which is not dependent 

upon assumptions about collision times or local equilibrium conditions. One ap-
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Figure 7.1: (a) The condensate (bold) and non-condensate (faint) densities for 
N = 20000 8 7 R b atoms in a spherical trap of frequency uj = 2TT X 200 Hz, at 
temperatures T = 50nK (solid), T = lOOnK (dashed line), T = 150nK (long 
dashed), and T = 200nK (dot-dashed), where Tc° = 245nK. (b) The number of 
atoms in the condensate as a function of temperature. Circles plot the numerical 
results, while the lines plot the analytical functions: (dot-dashed line) in the non-
interacting l i m i t (2.7), and (solid line) w i th interactions between condensate atoms 
(7.15). 
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Figure 7.2: The number of condensate atoms as a function of temperature, for N = 
20000 atoms in a cylindrically symmetric trap. As in Fig. 7.1(b), the circles, dot-
dashed and solid lines represent numerical results, Eqs. (2.7) and (7.15) respectively. 
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Figure 7.3: Column densities for (a) T = 180 nK, (b) T = 160 nK, and (c) T = 
120 nK. The tota l densities in x and z are shown in the top plots, while cross-
sections are shown in bold in the bot tom plots. In addition, the condensate and non-
condensate column densities are plotted wi th solid and dashed lines respectively. 
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proach is to consider thermal cloud dynamics in terms of transport processes using 

a Boltzmann kinetic equation, which includes stimulated Bose scattering to reflect 

the quantum nature of the gas. The kinetic equation can be derived f rom the equa

tion of motion (7.3) under the semi-classical approximation. The starting point is 

the Wigner function: 

/ ( p , r , t) = J d r ' e * r ' / f t ^ ^ r +

 T->t^ (r - ^ t ^ , (7.16) 

which defines a quantum mechanical analogue of the classical distr ibution funct ion. 

Accordingly, the non-condensate density is given by: 

S ( M ) = / ( 2 S ) 5 / ( P ' M ) - ( " 7 > 

Assuming that Ues(r, t) = V ( r , t) + 2gn(r, i) varies slowly in space (where excitation 

energies are considered on the level of the Hartree-Fock approximation) one can 

derive a kinetic equation for the gas: 

< 9 / ( p , M ) p df 
— - + — • V / p , r , t) - W e f f • V p / p , r,t = — 

at m at 
(7.18) 

coll 

The second and th i rd terms on the left-hand side define the so-called free-streaming 

operator, while the right-hand term gives the scattering rate out of state p . The col-

lisionless Boltzmann equation (df /dt\co\\ — 0) can be readily derived via a Green's 

function analysis wi th in the Hartree-Fock approximation (see e.g. Chapter 7 of Ref. 

[52]). This is equivalent to (7.3) w i t h only the term in square brackets on the right-

hand side. The particles in the H F approximation travel wi thout colliding through 

a potential consisting of external fields and the mean-field f rom the other atoms. 

I t is important to note that here we consider the thermal gas to be composed of 

atoms rather than quasiparticle excitations as in the Bogoliubov picture. Indeed, 

in the H F approximation the two approaches are equivalent, as one treats only the 

high-energy single particle excitations. As a result, the particle and quasiparticle 

distr ibution functions coincide [159]. This treatment of the thermal cloud as a gas 

of particles is the basis of our Monte Carlo simulations, as described later. 

The derivation of the collision integrals on the right-hand side of (7.18) is more 

dif f icul t , involving evaluation of higher-order terms in the equation of motion (7.3) 

(see Appendix A of Ref. [148] for details). Using the notation of [148] the collisional 

term can be wri t ten: 
df 
dt 

= C l 2 [ f ] + C 2 2 [ f ] . (7.19) 
coll 
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The second term represents two-body collisions between atoms in the thermal cloud 

wi th in the Born approximation [52]: 

C W ] = j D P 2 J d P3 j dp 4^(P + P2 - P3 - P4) 

x8(ip + ~eP2 - eP3 - e P 4 ) [ ( l + / ) ( 1 + f 2 ) h h ~ / / 2 ( 1 + / 3 ) ( 1 + / 4 ) ] , (7.20) 

w i t h / = / (p, r, t) and fi = /(pi, r, t). Locally, an excited atom has the H F energy 

e p (r, t) = p 2 / 2 ra+[ / e f f ( r , t). We immediately see that this is the ordinary Boltzmann 

equation for a Bose gas in the absence of the condensate (see also Chapter 9 of [52] 

for a derivation). The collision integral here differs f rom that of a classical gas [31] 

by the inclusion of (1 + f i ) factors that represent Bose enhancement of scattering 

into occupied states. The first collision integral in (7.19) involves a condensate 

atom: 

Ci2[f] = (2 )̂2^4 / d p i / d p 2 / dP^(mvc + p i - p 2 - Ps) 

x6(ec + c p i - e p 2 - eP3)[<Hp - P i ) - <HP - P2) - <KP - P3)] 

x [ ( l + / O / 2 / 3 - / i ( l + / a ) ( l + h)}, (7.21) 

where a condensate atom locally has energy ec(r,t) — / i c ( r , t) + | m v 2 ( r , t). Note 

that condensate atoms can be excited by collision w i t h a thermal atom, and vice-

versa. Thus there is an exchange of atoms, which in the absence of local equil ibrium 

between the two components leads to damping. The generalised Gross-Pitaevskii 

equation then includes a dissipative term: 

d _ , / ft2 

* f c ^ ( r , t ) = ( ^ - ^ v 2 + ^ M ) + 0[2n(r,<) + n c ( r , t ) ] - i\{r,t)J * ( r , 0 , 

(7.22) 

where, 
K^=lJ<£wCM- (7'23) 

In Refs. [148, 164, 165, 166], moments of the kinetic equation (7.18) were taken 

to yield hydrodynamical equations [31]. These can be solved explicit ly under cer

ta in conditions using a variational method [148]. A n alternative approach is to 

solve (7.18) directly. In general, this is very diff icul t owing to the six-dimensional 

nature of phase-space. One possibility is to work under the assumption of suffi

cient ergodicity. Ergodicity assumes that the distr ibution of atoms in phase-space 

depends only on their energy. Then (7.18) reduces to an equation of motion for 

/ ( e ) . This assumption is well-known in the literature and has been used to model 

evaporative cooling [167, 168] and condensate growth [169, 170, 171] in Bose gases. 
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However, ergodicity assumes that any deformation in momentum or position space 

is isotropic, or that the ergodic mixing time is shorter than the elastic collision time. 

In general, non-equilibrium situations (e.g. vortex and collective mode dynamics) 

this assumption is not valid. In addition, we are pr imari ly interested in the gas 

dynamics in position space and its coupling to the condensate. Hence, a Monte 

Carlo technique [172, 173, 174] is more appropriate here. In particular, we utilise a 

direct simulation Monte Carlo (DSMC) method, as performed to model evaporative 

cooling in Bose gases [173, 174], and described in detail for classical gas dynamics 

in [175]. We w i l l discuss our extension of this model to simulate the thermal cloud 

coupled to the condensate in the next section. 

7.3 Monte Carlo simulations 
7.3.1 Classical gases and evaporative cooling 

The direct simulation Monte Carlo method was first developed by B i rd to describe 

classical gas flows [175]. I t is equivalent to solving the Boltzmann equation in phase-

space, except that i t recognises the discrete nature of the gas on a microscopic level. 

I n principle, the trajectory of each atom could be followed at al l times, so that the 

state of the system is completely described by storing (r, v) for all atoms. However, 

the calculation becomes unfeasible in the presence of interparticle collisions. Bird's 

method makes the key assumption that the free particle motion and collisions are 

uncoupled over a short t ime interval, At. This provides an accurate description 

of the gas so long that At T C O H , where T C O U is the mean collision t ime. Hence 

the DSMC method is most appropriate for describing gases in the Knudsen regime, 

where the mean free length is much larger than the size of the system. The technique 

is therefore well suited to dilute alkali gases. 

We w i l l first describe the method for the classical case, where the generalisation 

to quantum gases is discussed in the next subsection. First, the atoms are moved 

over distances appropriate to their velocity components, v n , such that r n + i = r„ + 

v„ At, before collisions are treated. To ensure that collisions only take place between 

near neighbours, position space is divided into cubic cells of a size much smaller 

than the dimensions of the cloud. The number of atoms is counted in each cell to 

furnish the local density n(r). Pairs of atoms in a cell are then chosen at random, 

and the following algorithm is used to decide whether they collide. First, the mean 

number of collisions locally in time At is calculated using: 

r)(r) = h(r)avrFAt, (7.24) 
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where a - 8na2 is the scattering cross-section for bosons in a hard sphere model, 

and vr = |v 2 - is the relative velocity of the two atoms. A 'quantum scattering 

factor', F, is also included, although here F = 1 (note that the indistinguishability 

of the bosons is treated here, but the quantum enhancement of scattering is not) . 

The number of collisions follows a Poisson distribution. As fj(r) <C 1, then the 

collision probabil i ty is given by: 

Pcon = l-e-f>V. (7.25) 

A random number, RQ, is compared to P c o U . I f RQ > P c o l l then nothing happens, 

and the algori thm moves on to the next pair in the cell. On the other hand, i f 

RQ < -Pcoii then a collision takes place. To account for energy and momentum 

conservation the collision is most conveniently treated in the centre-of-mass frame 

of the atoms. Two further random numbers, Ri and R2, are chosen to determine 

the scattering angles </> = 27ri?i and cos# = 1 - 2R2, where RX}2 G [0,1]. Note 

that the collision products are distributed isotropically, corresponding to s-wave 

scattering. Once this procedure has been repeated for all of the atoms in each cell, 

the f inal part of the time-step involves updating the atom velocities to account for 

gradients in the external potential, v n + 1 = v n + A v n , where: 

A v j j = _ ^ e f f ( r ) A t 

m 

I n this case, Ueg(r) = V(r) — mu)2r2/2, while the gradient operator is evaluated 

computationally using central differencing. 

A good test of the classical model described here is to simulate evaporative 

cooling [173]. Recall that this is an experimental scheme to cool gases down to 

ultralow temperatures, and has been used to reach the phase-space densities re

quired for quantum degeneracy. We model the R F 'scalpel' by removing 8 7 R b 

atoms at position x2 + y2 > r 2

u t , where rcut(t) = e ~ * / T e v a p . This '2D forced evap

oration' roughly corresponds to experimental realisations. Our in i t i a l condition is 

a Maxwell-Boltzmann distr ibution of N = 10 5 atoms at T = 90 in an isotropic 

harmonic trap w i t h UJ = 2ir x 240 Hz. The in i t ia l cut is made at rmit = 300 ^ m , and 

is ramped down over t — 40 s w i th a time constant T E V A P = 30 s. The tota l energy 

of the gas can be simply calculated using Etot = Yla^a (a e { X , V , Z } ) , where 

Ea = (m/2) van + Uaan *s summed over all atoms. This yields the effective 

temperature T = Etot/3NkB, as plotted in Fig. 7.4(a). We also define effective 

temperatures along each dimension T a = Ea/NkB shown in Fig. 7.4(b). Note that 

Tz tends to lag behind T x and T y , reflecting the t ime required for collisional re

laxation. This justifies our suspicion of the ergodic approximation in this situation 
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Figure 7.4: Results of a classical Monte Carlo model of evaporative cooling, (a) 
shows the effective temperature, T , as a function of time, while (b) plots the effective 
temperature along each dimension: T x and T y (solid) and T z (dashed); (c) gives the 
number of remaining atoms, while (d) plots the phase-space density. The radius of 
evaporation is ramped down f rom r c u t = 300 / j m over t = 40 s w i t h a t ime constant 
of T R A M P = 30 s. For t > 40 s the cut radius remains at r c u t ~ 79 /xm. 

(the same is true of the quadrupolar oscillations treated later in this chapter). Once 

the forced evaporation ramp has been stopped the three directions re-equilibrate 

after a few collision times. This relaxation time accounts for the further decrease 

in temperature after t = 40 s. Over the time-scale of our simulation we f ind that 

the number of atoms in the trap [Fig. 7.4(c)] has dropped to N = 18160 at a 

final temperature of T = 11.3/xK. The phase-space density n 0 A y can be esti

mated using the peak density of a Maxwell-Boltzmann distr ibut ion at equilibrium: 

n 0 = Nu)3(m/2irkBT)3/2. We find [Fig. 7.4(d)] that the phase-space density in 

creases by two orders of magnitude f rom 2.1 x 1 0 - 7 to 1.9 x 10" 5 , compared to a 

one order of magnitude decrease in the number of atoms. This scaling behaviour is 

characteristic of evaporative cooling, indicating its u t i l i t y in creating Bose-Einstein 

condensates in the laboratory. 
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7.3.2 Bose gases 
We can extend our Monte Carlo method to account for Bose enhancement of scat

tering. This effect is represented in the collision integral (7.20) by 1 + fi factors, 

indicating that in a Bose gas the probabili ty of scattering into states that are already 

occupied is increased (similarly 1 — fi factors are responsible for 'Pauli blocking' 

in Fermi-degenerate gases). We include this consequence of Bose statistics into our 

simulations by setting F — [1 + / ( p 3 , r, t)][l + / ( p 4 , r, t)} in (7.24), where p 3 and P4 

are the momenta of the collision products. The distr ibution funct ion can be esti

mated by counting the number of atoms wi th in subcells in momentum space, which 

in tu rn are subdivisions of the positional cells mentioned in the previous section. 

Str ict ly speaking, each phase-space subcell should have a volume of h3, which is 

the min imum value allowed by the uncertainty principle. However, the computa

tional t ime required to sort the atoms increases linearly w i t h the tota l number of 

subcells, and can become prohibitively large without some form of coarse graining 

(which indeed is the definition of / inherent in the Boltzmann equation descrip

t ion) . We therefore count the number of atoms J\fsc w i th in larger subcells, which is 

renormalised to yield: 

f ( p , r , t ) = K c ^ , (7.27) 

where V p and V r are the volumes of cells in momentum and position space respec

tively. We f ind that our results are largely independent of the number of cells and 

subcells for sufficiently large numbers. For example, for the computations described 

below we use 8000 cells subdivided into 9261 subcells. Note that to calculate the 

collision probabili ty (7.25) the momenta of the products must now be known in ad

vance. Thus, the scattering angles for each pair are chosen a priori and the collision 

accepted or rejected on the basis of the collision probability. 

We can look at the effect of the Bose enhancement factors by beginning w i t h a 

Maxwell-Boltzmann distr ibution at some temperature T , then allowing the gas to 

relax to a new equilibrium. Our results are shown in Fig. 7.5, where we simulate 

N = 10 5 8 7 R b atoms in a spherical harmonic trap of frequency LO = 2ir x 150 Hz, 

corresponding to a crit ical temperature of Tc° = 314 nK. We look at the atomic 

distr ibution in position space and energy by plot t ing histograms, where the energy 

is expressed in terms of ksT (note that T now represents an 'effective' temperature 

associated w i t h the in i t i a l classical distr ibution). For T > 300nK, the distr ibution 

remains classical. However, for T < 300 nK a peak appears at low energies and near 

to the centre of the trap in position space, as would be expected f rom Bose statistics. 

A fur ther consequence, as shown in Fig. 7.6, is that the mean collision rate increases 
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Figure 7.5: The impact of Bose statistics on the equilibrium position and energy 
distributions, where TV = 10 5 8 7 R b atoms are modelled in a spherical trap, (a) 
shows a histogram of the number of atoms against x for five effective tempera
tures: ( f rom top to bottom) T = 100 nK, 200 nK, 300 nK, 400 nK, and 500 nK. 
Energy histograms for the same temperatures are plotted in (b), where one sees the 
characteristic low-energy enhancement of atom number at low temperatures. 

w i t h the respect to the classical result l / r c o n = \Z2nav, where v = y^8ki,T/irm is 

the mean atomic velocity while n = n0/y/8. This effect is due to the enhanced 

density in low momentum regions of the gas, and contributions f rom higher order 

terms in the collision integral [172]. 

7.3.3 Coupled Monte Carlo and GP simulations 

Given that we can model the thermal atoms, we are now in a position to couple our 

Monte Carlo simulations to the Gross-Pitaevskii equation for the condensate. As 

a first approximation we w i l l consider here only mean-field coupling between the 

components, while neglecting collisions which remove atoms f rom the condensate 

(i.e. C12 = 0 and Cyi ^ 0). The simulations then become a matter of performing 

alternating Monte Carlo and GP propagation steps during each time-step, At, where 

the condensate propagates in a potential V(r, t) +g[2h(r, f ) + n c (r , £)], while thermal 

atoms move in an effective potential: 

UeS{r,t) = V(Tyt) + 2n(r,t). (7.28) 

file:///Z2nav
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Figure 7.6: Effect of Bose statistics on the mean collision time, r c o n , for the same 
parameters as Fig. 7.5. From the measured data (bullets) one sees a sharp decrease 
in the collision time at low temperatures, while at higher temperatures the data 
tends towards the classical result r c o u = l/(\/2nav) 

The thermal gas density is calculated at each point by counting atoms in each cell. 

The cells do not necessarily correspond to the GP grid, so cubic spline interpolation 

is used to smooth n. This is to avoid discontinuities in the mean-field potential, 

that may lead to instabilities in the F F T method used to propagate the condensate 

wavefunction. 

The first stage of the simulation is to f ind the in i t ia l state for a prescribed 

temperature, T. The numbers of condensate and thermal atoms are found by 

the semi-classical algorithm described in Sec. 7.2.2. The equil ibrium condensate 

density evaluated by this method, as well as a Maxwell-Boltzmann dis t r ibut ion for 

the thermal atoms, are used as an in i t ia l state for the MC-GP algori thm. The 

condensate is propagated through imaginary time while the thermal cloud relaxes 

to equil ibrium. A time dependent trap potential V(r,t) is then applied and the 

system allowed to propagate in real time. This allows simulations of many different 

dynamical scenarios. A n application to modelling quadrupole collective excitations 

is discussed in the next section. 
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7.4 Damping of collective excitations 
Amongst the most compelling evidence for the validity of the GP equation for low 

temperatures is its quantitative agreement w i th experiment for the low-energy col

lective modes. However, consistent theoretical descriptions at higher temperatures 

have proved much more elusive, where experiments have demonstrated marked fre

quency shifts and damping of the condensate modes in the presence of a significant 

non-condensed component [109, 158]. Studies have tended to concentrate on one of 

two regimes, depending upon the density and temperature of the system. A t high 

densities, where collisions are sufficiently rapid to force the system into local equi

l ib r ium, the system can be described by a set of coupled hydrodynamical equations 

[148, 164, 165, 166]. Damping mechanisms in this case are of a dissipative type 

(i.e. viscosity and thermal relaxation). For very dilute systems at low temperatures 

the mean free path of the elementary excitations become comparable to the size 

of the system and collisions play only a minor role. Damping in this regime is not 

related to thermalisation processes but to coupling between excitations, and can 

be described wi th in the framework of mean-field theories (see [108] and references 

therein). The collisionless regime may be appropriate for the J I L A experiments 

[5, 109] while the M I T experiments lie between the collisionless and hydrodynami

cal regimes [4, 158]. One of the advantages of our model is that we can study this 

intermediate region. 

We simulate collective excitations using 40000 atoms in a disk-shaped trap 

(uix = ujy — 2ir x 131 Hz, UJZ = y/8u)x). These are similar parameters to the J I L A ex

periment [109]. We first find our in i t ia l condition for a given temperature using the 

method described in the previous section. A quadrupole mode is then excited using 

a sudden change in the trap parameters at t = 0. 1 We study the m = 0 mode, which 

is excited by a 10% increase in the radial frequencies, OJX and u>y. The subsequent 

condensate oscillations are shown in Fig. 7.7. We clearly observe damping at higher 

temperatures, which is absent at T — 20 nK. Note that we determine the widths 

of both the components by calculating the standard deviation ax = y/(x2) — (x)2, 

where we use (xn) = J d 3 r z n | \ I > | 2 for the condensate and (xn) — Yl%xi/N for the 

thermal cloud. To avoid large statistical fluctuations in the normal cloud, especially 

at low temperatures, we simulate ten times the physical number of atoms (equivalent 

to repeatedly running our simulations: a time-consuming process). For consistency 

the density and phase-space density of the gas are rescaled appropriately. 

1A 'softer' drive is also imposed by varying the trap frequencies over several oscillations. We 
find that our results are largely independent of the form of the excitation, apart from a slight 
dependence on the oscillation amplitude for large values. 
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We use a least squares method to fit the condensate widths along x and y to an 

exponentially decaying sine function: 

ai{t) = Ae~rt cosut + B. (7.29) 

The condensate decay rate, T, and frequency, UJ, are plotted against temperature 

in Fig. 7.8. The damping increases f rom zero at low temperatures, before tending 

towards a linear dependence at intermediate values (T < 0.7T°) . This is in agree

ment w i t h the expected behaviour of Landau damping in homogeneous and trapped 

condensates, where in the l im i t of zero temperature the damping has a T ~ T 4 de

pendence, while at higher temperatures T ~ T [105, 107, 108, 177]. We also observe 

quantitative agreement w i t h previous theory [107, 177, 178] and experiment in this 

regime. For example, at T = 200 nK (T/T c ° ~ 0.7) we find that T ~ 45.3 s- 1, in fair 

agreement w i t h the experimental value of 90 ± 40 s - 1 [109]. We note that Landau 

damping is a purely mean-field effect. This is evident in a particularly transparent 

treatment by Giorgini [108] who showed that Landau damping is due to mean-field 

coupling between fluctuations in the condensate wavefunction, 5$, and in the non-

condensate density, 5n. Physically this is equivalent to absorption of a quantum of 

the collective mode by a thermal excitation (4.4). Note that we find no damping 

at low temperatures, implying that Balieav damping is not observed. This mecha

nism involves the decay of the collective mode into two lower frequency excitations, 

and occurs even at zero temperature. I t is equivalent to coupling between 6^ and 

fluctuations in the anomalous density, 5m [108], which are neglected in our model. 

However, this decay mechanism is expected to be suppressed in trapped condensates 

due to the discrete nature of the levels at low energy. 

We observe a dip of the damping rate in the region 0.7TC° < T < 0.8TC°. This 

is related to an interesting 'beating' effect in the condensate oscillation. I n this 

temperature range the oscillations are seen to damp rapidly at early times, before 

reviving at a smaller amplitude after approximately ten oscillations. As a result, the 

fitting funct ion (7.29) tends to under-estimate the damping rate. As shown in Fig. 

7.9, the condensed and normal components oscillate at slightly different frequen

cies due to their weak coupling, and the condensate is much more highly damped 

than the thermal gas. The latter is a consequence of the more massive thermal 

cloud at this temperature (so that the back-action f r o m Landau damping has less 

of an impact) and the small ' internal' damping of the cloud f rom thermalisation 

processes. As a result the thermal cloud acts as a kind of energy reservoir. When 

the oscillations of the two components are in anti-phase the condensate oscillations 

are strongly damped; however, when they are in phase the thermal cloud tends to 
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Figure 7.7: Quadrupole (/ = 2, m = 0) oscillations of a condensate at T = 20 n K 
(solid) and T = 160nK (dashed). The wid th of the condensate is represented by 
the standard deviation along x, ox. Damping is observed at higher temperatures 
due to coupling w i t h the non-condensed thermal cloud. 
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Figure 7.8: The damping rate, T (top) and frequency u (bottom) of quadrupole 
m = 0 oscillations in a cloud of 40000 atoms. The x-axis is plotted as funct ion of 
temperature, T /T c ° , where Tc° = 286 nK is the ideal crit ical temperature, while the 
y-axes are plotted w i t h respect to the trap frequency ux = 2n x 131 Hz. 
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V 

Figure 7.9: Quadrupolar oscillations in the thermal cloud (top) and condensate 
(bottom) at T = 240 nK. A revival of the condensate oscillations occurs at t ~ 
40 ms. 

drive the condensate oscillations. This beating effect is most noticeable when one 

component is significantly larger than the other. Correspondingly, we see the same 

effect in the thermal cloud at low temperatures, though this is not evident in Fig. 

7.8. 

The condensate oscillation frequencies are also plotted in Fig. 7.8. The figure 

shows a small downward shift in frequency for T < 0.6TC° [109, 178]. A n increase in 

frequency above 0.6TC° is also observed; however, this is not as large as that seen in 

the J I L A experiment [109], where the frequency approaches 2UJX in this region. A 

possible explanation for this behaviour was provided by Bij lsma and Stoof [163], who 

suggested a cross-over between normal modes where the two components oscillate 

in phase and anti-phase. However, as noted previously we find that the components 

oscillate at slightly different frequencies, and this description is inappropriate here. 

We may be able to see this effect at higher temperatures, though unfortunately the 

condensate in this regime is small and more sensitive to local fluctuations in the 

thermal cloud density, leading to unacceptable errors. The experimental data also 

suffers f rom large errors in this region, making a direct comparison dif f icul t . 

To summarise, in this section we have studied frequency shifts and Landau 

damping due to mean-field coupling between the condensate and the thermal cloud. 

This should not be confused wi th the C i 2 damping mechanism discussed in Sec. 

7.2.3, which is due to collisions between thermal and condensate atoms. For exam-
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pie, Landau damping is a three excitation process as opposed to the four excitations 

involved in collisional damping. Our approach is justif ied as a first approximation 

because for our parameters the magnitude of collisional damping is significantly 

smaller than Landau damping [176]. The next step would be the inclusion of the 

C\2 collisions in our Monte Carlo simulations. In addition to an accurate modelling 

of collective excitations, this could also be used to study condensate format ion in 

systems far f rom equilibrium. Another application of the model would be to study 

vortex dynamics at finite temperatures. A vortex in this case would be an 'obstacle' 

i n the mean-field experienced by non-condensed particles, leading to scattering and 

hence a net force on the vortex. This should result in a d r i f t of the vortex to the 

condensate edge, as expected, and allow direct determinations of vortex lifetimes. 

Similar models could also facilitate a fu l ly consistent description of the dissipative 

processes discussed in Chapter 6. 



Chapter 8 

Conclusion 

I n this thesis we have studied the theory of Bose-Einstein condensation in trapped 

alkali gases. We have particularly focused on the dynamics of Bose condensates, 

mainly in the l im i t of very low temperatures where the evolution of the conden

sate wavefunction can be described by a nonlinear Schrodinger equation, or Gross-

Pitaevskii equation. The nonlinear nature of this equation allows a rich tapestry of 

behaviour, including the existence of topological defects such as solitons and quan

tised vortices. Most of this thesis has concentrated on the properties of vortices. 

We have demonstrated that vortices can be nucleated by local disturbances w i th in 

the condensate, produced, for example, by moving obstacles through the f lu id . We 

suggest that in experiments obstacles could be produced by focused far-detuned 

laser beams or by t ight ly confined condensates of a different species. We have 

also related vortex formation to drag and energy dissipation, and shown that these 

effects arise only above a critical velocity. Recent experiments on cri t ical veloci

ties in Bose-condensed gases [45, 70, 134] have begun to address these questions, 

and provide evidence of the l ink between dissipation and vortices. However, many 

interesting problems remain for the future, especially in relation to a fundamen

tal understanding of the vortex formation process, and evaluation of the critical 

velocity for penetrable objects in spatially inhomogeneous condensates. 

The experimental creation and observation of vortex states in Bose-Einstein 

condensates defined an important landmark in the development of the field [43, 

72]. Much of the future work w i l l concentrate on the dynamics and stabil i ty of 

vortex lines, which have been connected together by previous studies. I n this thesis 

we have studied vortex dynamics using numerical simulations, and explained the 

motion using an intui t ive physical picture involving the Magnus effect. We have 

also demonstrated that the l ink between vortex line precession and decay is also 

true of more complex configurations such as vortex rings. 

I l l 
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The existence of quantised vortices is intimately related to the phenomenon of 
superfluidity. Generally speaking, vortices in homogeneous quantum fluids are sta
ble, so that the fluid circulation demonstrates the superfluid property of persistent 
currents. The response of the condensate to an external probe is also a fundamen
tal manifestation of superfluidity. No dissipation is evident at low flow speeds, but 
arises above a critical velocity due to vortex formation. One may hope that the 
observation of these effects in trapped gases, as well as other consequences of su
perfluidity, may shed light on other systems such as liquid helium as well as being 
interesting in their own right. However, care must be taken as previous definitions 
of superfluidity have usually dealt with large systems rather than inhomogeneous 
trapped gases with relatively small numbers of atoms. One may imagine that future 
experiments will facilitate studies of much larger condensates; nevertheless in the 
meantime we must contend with finite vortex lifetimes (albeit long ones) and the 
need to oscillate objects due to the small length-scale of the condensate, producing 
excitations even at very low velocities. More general definitions are needed in order 
to include trapped condensates. In effect, this extension is similar to that required 
for the phenomena of ODLRO and phase coherence in finite condensates. 

As well as the low temperature case, we have also studied the dynamics at higher 
temperatures where the non-condensed component is no longer negligible. We sim
ulate the non-condensed cloud using a direct Monte Carlo method, which is coupled 
via mean-fields to the condensate (described by a generalised Gross-Pitaevskii equa
tion). In common with other finite temperature studies, we simulate quadrupole 
oscillations in the system, and measure damping rates and frequency shifts as a 
function of temperature. So far most finite temperature theories have attempted to 
explain these effects in collective modes, which reflects the relative simplicity of the 
system as well as the availability of experimental data for comparative purposes. 
The focus of future work will be to model more complex systems, such as vortex 
states. One would expect that finite temperature condensate dynamics will be even 
more rich than its low temperature counterpart. The challenge is to describe the 
new physics in terms of existing fundamental theories. The flexibility of our ap
proach in modelling the system under a wide range of conditions makes i t ideally 
placed to meet this challenge. 

As discussed in the Introduction, Bose-Einstein condensation is of great impor
tance in a wide range of phenomena. To understand BEC is to understand a major 
part of physics. Conversely, many specialised topics must be combined when study
ing BEC. We have touched on some of these in this thesis: statistical mechanics, 
quantum mechanics and quantum field theory, atomic physics and atom optics, fluid 
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mechanics, and condensed matter physics. However, the frenzy of experimental and 
theoretical work over the last five years has established the study of BEC in trapped 
gases as a subject in its own right, and one that is certain to fascinate researchers 
for a long time to come. 



Appendix 

Numerical methods 

In this appendix we describe some of the numerical methods that can be employed 
to solve the nonlinear Schrodinger equation in time dependent and time independent 
cases. The split-step Fast Fourier Transform (FFT) and Crank-Nicholson methods 
both make unitary numerical approximations to the evolution operator, facilitating 
numerical propagation of the wavefunction. They can also be readily applied to 
finding stationary solutions of the time independent equation using imaginary time. 
We also describe how the FFT method can be extended to cylindrical and spherical 
coordinates, and to include an angular momentum operator in a rotating frame. 

We begin our discussion at Eq. (2.23) for the evolution of the wavefunction over a 
short time-step At. By expansion one can readily prove that: 

where V and T are the potential and kinetic parts of the Hamiltonian. The expres
sions (A. l ) and (A.2) correspond to full-step and half-step expansions respectively, 
where the errors in At are due to the non-commutability of the V and T opera
tors. We use the half-step scheme throughout this thesis. The potential operators 
(including the trap and interaction potentials) are relatively easy to apply, simply 
corresponding to the phase shifts of the wavefunction. The kinetic step, in contrast, 
involves expansion on a Fourier basis. 

The numerical procedure begins with discretisation on a spatial grid of N points 
with spacing Ax in the interval [—A, A) (for illustrative purposes we consider only 
I D at this stage). The wavefunction at each point is then multiplied by the first 

A . l Split-step F F T method 

iH,At iVAt iTAt + 0(At2), (A . l ) 

iVAt 2a-iTAta-iVAt 2 Mr At + C?(Ai 3), (A.2) 
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potential half-step, i.e. f ^ t ) = e ^ ^ 1 - ^ * ' / 2 ^ ) . The function is transformed 
to momentum space using a Fast Fourier Transform (FFT) routine [179]: 

A ( ' ) = 7^ £ f j e - M i k / N ; * = - y , . . . . 0, 1. (A.3) 

The function is then multiplied by a phase factor corresponding to free particle 
propagation in momentum space: fk(t + At) = e" r 2 f e 2 A* /'A 2/fc- We inverse FFT back 
to position space: 

N/2-1 

fj(t + At) = ^= £ fk(t + A t ) e ^ N . (A.4) 

Finally, the function is multiplied by the second potential half-step: \Pj(t + At) = 

e - t V ( j A x - y M ) A t / 2 ^ £ _ | _ ^ ^ _ ^he extension to multiple dimensions is straightforward 
using the appropriate FFT routines. We find that the FFT method is very efficient 
for these multi-dimensional problems. However, the method is not appropriate for 
modelling hard-edged potential (e.g. an impenetrable obstacle) due to the creation 
of high energy excitations in Fourier space. Excitations can also arise for high C as a 
result of mode mixing, leading to instabilities in the wavefunction that can become 
significant over long propagation times. We find that coarser grids (i.e. larger Ax) 
and smaller time-steps help to combat these instabilities. The simulations discussed 
in this thesis typically use time-steps of around A t = 10~3. 

A.2 Crank-Nicholson method 

An alternative route to the split-step operator technique is to use finite differences. 
To represent the evolution operator, Cayley's form is used: 

=\i§M+o{M% (A-5) 

which is unconditionally stable and unitary. Discretising the wavefunction in I D 
space as well as time (x = jAx — A, t = nAt) gives: 

^1 + ^iH?+1A?J = ( l - \iHiA*j * j • ( A - 6 ) 

The Hamiltonian can now be represented using finite differences: 

t A t (ibn+l - otyn+1 4- V n + 1 ) 4- — U n + 1 $ n + 1 

j 2(Az) 2 1 J + 1 1 + + 2

 3 1 

iAt iAt 
= *" + 2{AxY ^ ~ 2 ^ + " TV?*!' ( A - 7 ) 



A.3. Cylindrical and spherical coordinates 116 

where U? = V? + C|#?| 2 . We see immediately that this may be represented by the 
matrix equation A • * n + 1 = B where is the column vector . . . ) , 
and A and B are the tridiagonal matrices: 

/ 1 + A + X U f + 1 - A / 2 0 • • • \ 

- A / 2 ••• ••. 

o ••. ••. ••. 
V 

(A.8) 

/ 1 - A - XU? A/2 0 

A/2 

0 

V 

(A.9) 

where A = iAt/(Ax)2 and x — iAt/2. The problem then reduces to matrix inver
sion of A, which can readily performed using standard methods [179]. Note that 
evaluation of £ / " + 1 requires knowledge of the wavefunction at time t + At. For time 
dependent simulations an iterative procedure is required, where for each time-step 
the above process is repeated until the wavefunction converges to an appropriate 
tolerance level. 

For multiple dimensions, alternating direction implicit (ADI) methods are used. 
These are discussed in more detail in e.g. [179]. However, the basic idea involves 
splitting the Hamiltonian into operators that difference in each direction. For ex
ample, in 2D we can write Hi = Hx 4- Hy, so to first order: 

iAt 
1 + -H„ 

2 y 
(A.IO) 

The problem now consists of solving the I D matrix equation in the z-direction for 
each fixed y, then solving in y to find VP"^1-

Both the FFT and Crank-Nicholson methods can be extended to finding sta
tionary solutions of the GP equation using imaginary time propagation, where one 
simply substitutes At —> — iAt in the above equations. This basically corresponds 
to artificially changing the conservative system to one that is purely dissipative, so 
that the initial condition relaxes after some time to the ground state (minimum 
energy) solution. 

A.3 Cylindrical and spherical coordinates 

The FFT method discussed in Sec. A . l is valid for Cartesian coordinate space, 
where the computational time grows rapidly with the number of dimensions. I t is 
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therefore desirable to exploit any symmetries in the problem to effectively reduce 
the number of dimensions. For example, in cylindrical symmetric simulations one 
can use polar coordinates r = \J x2 + y2, z. The Hamiltonian operator in a trap, 
e — uj2

z/uj2, then becomes: 

I d * d2V d2V 1 , 2 2 . , l 2 , , 1 1 N 

H < = , - r » : F ' d* + I ( r ' + " } + C ' ^ ( r ' g ) l ; ( A ' U ) 

Hi H2 

We use a split-step technique, i.e.: 

* ( r , i + At) ~ e - i H l A * { e _ i H 2 A * * ( r , z, t)}, (A.12) 

where i / 2 is treated simply using the FFT method described in Sec. A . l , while Hi 
is approximated with finite differences (r = jAr): 

The second expression is simply the central differencing approximation, which how
ever diverges at r = 0. For this case we use the relation for an even function: 
( l / r ) 3 r / | r = 0 = /"(0) (which can proven simply using a Maclauren series expansion 
in 8r and taking the limit 8r —> 0). Using ^f(Ar) = \&(—Ar) then yields the first 
equation in (A.13). The spherically symmetric case, V 2 = (2/r)dr + drr, can be 
treated in exactly the same way. We find good agreement between polar and 3D 
Cartesian coordinates for both time dependent and time independent calculations. 
As an example, we evaluated the stationary state for a C = 500 spherical conden
sate using imaginary time. In cylindrical coordinates we found that /x = 4.529628 
(where At = 10" 3, A r = 0.0390625, and Az = 0.15625), while in ful l 3D we found 
fi = 4.529618. Note that small A r is required, as the approximations (A.13) are 
accurate only to first order. 

A.4 Rotating frame 

To consider the condensate in a frame rotating around the z-axis requires an addi
tional term in the Hamiltonian — flLz, where Lz is the angular momentum operator 
[see Eq. (5.7)]. In a similar manner to the polar coordinate case (above) we split 
the Hamiltonian, where Hi is dealt with using FFT while H\ is approximated by: 

Hy = itl[kAy8x - jAx6y]. (A. 14) 
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Central differencing in x and y are represented here by Sx and dy, where Sx = 
(tyj+i,k — ,J ,j_i>fc)/2Aa;. Cayley's form is then used to propagate over a partial 

time-step At, with (1 + iHiAt/2) given by: 

1 - * A y A f f l y ( A 1 5 ) 

2 

The problem is therefore solved using a two dimensional ADI procedure. 
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