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Abstract 

Applications of Analyt ic i ty to Scalar Meson Phenomenology. 

Stuart Nicholas Cherry. 

A thesis presented for the degree of Doctor of Philosophy, August 2001. 

The scalar mesons have caused much debate amongst hadronic physicists for many 

years. Even today the number of scalars is hotly contested, and there is almost 

no agreement on the composition of any of the experimentally observed states, 

except perhaps for the Kg (1430). This thesis attempts to shed light on both of 

these problems via the application of analyticity to two different quantities. 

Recently a number of authors have proposed the existence of a light, strange, 

scalar meson known as the K. We perform a direct search of the best available irK 

scattering data to determine whether or not this resonance exists. This is done 

by constructing contour integrals f rom these data and determining the number 

of poles present inside the contour. We do not need to model either the internal 

dynamics of the state nor the form of the background scattering. The number of 

poles found tells us the number of resonances present and their positions allow us 

to estimate the resonance parameters. We find that there is only one resonance in 

scalar TTK scattering below 1800 MeV and this is identified w i t h the established 

KQ(1430). We f ind no evidence for the K. 

Secondly, applying Cauchy's Theorem to the vacuum polarisation function 

leads to a relation between experimental and theoretical integrals known as a 

Finite Energy Sum Rule (FESR). FESRs are used to explore the scalar, isoscalar 

non-strange current and allow us to determine which of the experimentally ob

served scalar, isoscalar mesons is most likely to be the uu + dd state. We 

f ind that the lightest scalar, isoscalar uu + dd state is not the /o(980) as sug

gested by some authors, but is rather the light, broad object known as the 

/ 0 (400 — 1200). We are also able to estimate the average light quark mass and 

find mq(l GeV 2 ) = 4.7 ± 0.9 MeV which is consistent w i th the recent estimates 

of this quantity f rom unquenched lattice QCD. 
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Chapter 1 

Introduction 

1.1 The Strong Interaction 

The nucleus of an atom is made up of positively charged protons and uncharged 

neutrons. Like charges repel, thus there must exist a force stronger than elec-

tromagnetism which binds protons and neutrons into nuclei, otherwise the many 

elements that make up the universe could not exist. In a famous paper of 1935 [1] 

Yukawa suggested that this force, known as the strong force, was carried by par

ticles approximately two-hundred times more massive than the electron. These 

particles became known as mesons (meso meaning middle) as their predicted 

mass was between those of the light electron and the heavy nucleons. 

Studies of cosmic rays led to the discovery in 1947 of two distinct particles wi th 

masses around two hundred and three hundred times the mass of the electron [2]. 

The lighter of these, which had in fact been detected previously, did not interact 

strongly w i t h atomic nuclei and was later found to be a type of heavy electron: 

the muon. The heavier particle, which did interact strongly w i t h nuclei, was 

identified w i t h Yukawa's particle and was named the 7r-meson. The picture of 

the strong interaction seemed simple: atomic nuclei were collections of protons 

and neutrons bound together by the exchange of 7r-mesons (or pions). 

However, this picture soon became more complicated w i t h the unexpected 

discovery, once again in cosmic rays, of more strongly interacting particles. As 
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their existence was not expected and due to the peculiar difference between their 

production and decay rates, these particles were called strange particles. We now 

know them as the i^-meson (or kaon) and the hyperons, A 0 , E^1 and E~. 

W i t h the advent of high energy particle accelerators and colliders, the number 

of strongly interacting particles known grew rapidly. The term meson became 

redefined as any strongly interacting particle w i t h integer spin, regardless of its 

mass. The hyperons, nucleons and other strongly interacting particles w i th half-

integer spin were called baryons. By 1961 i t was clear that the baryons wi th 

spin-1/2 and positive parity made a set of eight and could be arranged into a 

distinctive patten according to their quantum numbers, see Figure 1.1(a). Gell-

Mann and Ne'eman [3] explained this phenomena by using Group Theory: this 

was the famous Eightfold Way. They predicted that the mesons w i t h spin-0 and 

negative parity should also make up a group of eight, though only seven were 

then known: three pions and four kaons. This group of eight would then form 

the same pattern as the spin-1/2 baryons, see Figure 1.1(b), implying that the 

new meson was uncharged. The eighth member of the octet, the 77, was found 

that same year. 

In 1964 Gell-Mann and Zweig [4] noticed that the patterns arising f rom the 

Eightfold Way, as illustrated in Figure 1.1, could be simply explained by assuming 

that all strongly interacting particles were made of combinations of a tr iplet of 

fundamental, spin-1/2 objects and their antiparticles. Gell-Mann named these ob

jects quarks and labelled the individual quarks u (up), d (down) and s (strange), 

see Figure 1.2. This label describes a property of the quarks that is now called 

flavour. In this model, baryons are made up of three quarks and mesons of a quark 

and an antiquark. W i t h three different flavours, there are nine possible ways to 

combine a quark and an antiquark. This means that mesons should appear in 

nonets, which we now know that they do, such as the J p = 0~ (or pseudoscalar) 

nonet consisting of three pions (TT+, 7r°, 7r~) , four kaons ( K + , K°, K°, K~) 

and two isospin zero particles, 77 and 77', and the J p = 1~ (or vector) nonet, 
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Y' Y 
K° K + n 

1/2 1/2 

o A 11 13 

1/2 1/2 o 1/2 1/2 o n n 

1/2 1/2 

K 

(a) The (b) The pseudoscalar mesons baryons 

Figure 1.1: The Eightfold Way for the spin-1/2 baryons and the pseudoscalar 
mesons. The quantities on the axes are hypercharge, Y, which is equal to 
strangeness plus the baryon number, and the th i rd component of isospin, I3, 
which is equal to the electric charge minus half the hypercharge. For mesons the 
baryon number is zero and for baryons i t is one. 

Y 

1/2 u 

1/2 1/2 

1 

Figure 1.2: The three quarks required to explain patterns of the Eightfold Way. 
Quarks have a baryon number of 1/3, as three quarks make a baryon. Thus 
quarks have fractional electric charge. 
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(p, K*, C J , <j>). The vector nonet is illustrated in Figure 1.3 along wi th the quark 

combinations that gives rise to i t . 

(uu + dd) uu - dd 
•P 1/2 

(a) The vector mesons (b) The quark substructure 

Figure 1.3: The vector meson nonet and its quark substructure. The states 
marked * and ** are linear combinations of the states uu, dd and ss. For the 
pseudoscalar mesons we get the combinations (uu + dd — 2ss) and (uu + dd + ss) 
respectively. 

1.2 Coloured Quarks and Q C D 

There were, however, problems w i t h the quark model. According to the Pauli 

Exclusion Principle (or more generally Fermi-Dirac statistics) two identical spin-

1/2 particles, such as quarks, can not exist in the same state. But this is exactly 

what seems to happen in certain hadrons, for example the 0~ . This is a baryon 

wi th strangeness —3, spin 3/2 and positive parity. Thus i t must consist of three 

strange quarks, all spinning in the same direction. This seems to violate Fermi-

Dirac statistics. Secondly, why were only certain combinations of quarks, qqq and 

qq, seen experimentally? In particular, why don't we see individual quarks? 

These problems were explained by assuming that quarks possessed another, 

hidden, degree of freedom [5], i.e. there were in fact three types of s-quark, each 
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differing by their value of this new degree of freedom. Thus Fermi-Dirac statistics 

wasn't violated in the Q~ as the three quarks were not identical. Furthermore, i f 

we assume that the only particles that can exist are those whose overall value of 

this new degree of freedom is zero, then this would explain why the combinations 

qqq and qq are seen but individual quarks aren't. As three different values of this 

new degree of freedom could combine to give zero, i t became known as colour 

by analogy w i t h red, green and blue light combining to give white. Colour is 

completely separate f r o m flavour, in particular the hadron multiplets of the quark 

model are not modified by the existence of three colours of quarks. 

The physics of electric charges is very accurately described by Quantum Elec

trodynamics or QED. This is a type of theory, known as a gauge theory, which 

combines special relat ivi ty and quantum mechanics. I n the sixties, physicists 

tried to find an analogous theory to describe strongly interacting particles. The 

result was Quantum Chromodynamics [6], or QCD, which is the gauge theory of 

colour. In this theory, quarks are bound together by gluons to form colourless 

hadrons. The massless gluons act on the colour charge of the quarks in much the 

same way as a photon acts on electric charge. The big difference is that gluons 

also carry colour charge and so can interact w i t h each other: photons are not 

charged therefore two photons cannot interact directly. I t is this that leads to the 

finite range of the colour interaction. The force that binds protons and neutrons 

into nuclei is a complicated residual effect of this gluon mediated interaction. 

Another difference between QED and Q C D is that in QCD the strength of 

the interaction is greatest at low energies. I n fact, at very high energies the 

quarks inside a proton behave as i f they weren't bound together at all . This 

has made i t possible to accurately calculate many physical quantities directly 

f rom QCD using the technique of Perturbation Theory, but only at high energies. 

A t lower energies, such as those corresponding to the mass of the proton, QCD 

calculations cannot be carried out without some form of approximation being 

made. So, although the underlying theory of the strong interaction has been 
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known for th i r ty years, the study of hadrons st i l l relies heavily on the use of 

models. 

The existence of gluons and their abil i ty to interact w i t h each other opened 

up the possibility of new types of particles. Gluons carry colour charge and so 

cannot exist in isolation. However, i t was realised very soon after the b i r th of 

QCD [7] that two or more gluons could combine to fo rm uncoloured states. These 

states, known as glueballs, should then appear in the hadronic spectrum. Another 

possibility allowed by Q C D are the so called hybrid hadrons [8] which consist of 

both quarks and gluons e.g. qqg. Thus the spectrum of hadrons wi th in QCD is 

far richer than in the naive quark model. 

1.3 Hadronic Physics 

Typical ly in quantum field theory the spectrum of states is determined by solving 

the equations of motion which arise f rom the Lagrangian of the theory. Although 

its Lagrangian has been known for th i r ty years now, we are st i l l not able to do 

this for QCD at the energies of hadronic physics. However, via a number of less 

direct approaches we have been able to gain a great deal of understanding about 

the low energy structure of QCD. We w i l l now outline a few of these approaches 

whose results have been important to the study of mesons.. 

1.3.1 Lattice Gauge Theory 

This is the most direct approach to the study of the strong interaction at low 

energies. Space-time is represented by a four-dimensional lattice, w i t h the sepa

ration between neighbouring lattices given by a. Wilson [9] discovered that when 

a gauge theory w i t h sufficiently strong interactions is formulated on this lattice, 

i t automatically displays colour confinement. To put this another way, the ad 

hoc assumption above that only uncoloured objects can exist arises as a natu

ral consequence of doing Q C D on the lattice. The l i m i t of this discrete theory 
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as the the lattice spacing goes to zero w i l l then give us QCD at low energies. 

Formulating QCD on the lattice lends itself to direct numerical calculation on a 

computer and in fact requires a great deal of computational power. Lattice Q C D 

is extremely versatile and can be used to determine the properties of hadrons, see 

for example [10, 11], as well as the parameters of the QCD Lagrangian such as 

the quark masses; for a recent review of quark mass determinations on the lattice 

see [12]. 

Although in the long term i t is believed that the lattice w i l l give the most 

reliable results, i t currently suffers f rom two problems which are slowly being 

overcome by increased computing power and improved algorithms. Firstly, Q C D 

predicts that v i r tua l qq pairs (sea quarks) are continually being emitted and ab

sorbed wi th in hadrons. To simulate this is extremely computationally expensive 

and unt i l recently most works ignored this effect. This is equivalent to assum

ing infini tely heavy sea quarks and is known as the quenched approximation. In 

the last few years i t has become possible to work w i t h unquenched lattice QCD, 

first ly w i t h 2 flavours of sea quarks, e.g. see [13], and most recently w i t h three, 

e.g. [10]. Thus we are getting closer to f u l l QCD on the lattice but the masses of 

the sea quarks are s t i l l unphysically large. 

Lattice simulations are costly and t ime consuming, the more so as the lattice 

spacing is decreased. Consequently, most studies involve runs at only a few 

different values of a. Thus the extrapolation to a = 0, the continuum l i m i t , is 

not total ly under control. 

1.3.2 The M I T Bag Model 

W i t h i n this model, first proposed in [14], quarks and gluons are confined wi th in a 

finite region of space, known as a bag, by the inclusion of a positive energy density 

wi th in the bag. The assumption of this bag pressure ensures that only uncoloured 

objects can exist and leads to equations of motion that can be approximately 

solved to give the physical states. 



1.3 Hadronic Physics 8 

In [15] the masses and other static quantities of the two lightest meson (pseu-

doscalar and vector) and baryon ( ^ + and | + ) multiplets were calculated w i th in 

the Bag Model and were found to give reasonable agreement w i t h experiment. 

1.3.3 Potential Models 

In this class of models, also called constituent quark models, conventional mesons 

are treated as a qq system bound by some (static) potential. This potential is 

phenomenological in origin and in general includes a confining part, a Coulomb-

type part and spin dependent pieces. Once this potential is formulated, the meson 

spectrum can be found by solving for the eigenvalues of the Schrodinger equation. 

The masses of the constituent quarks are then tuned to give the best agreement 

wi th experiment; these masses are not related to the quark masses that appear 

in the QCD Lagrangian. These models are non-relativistic and thus work best 

for heavy quark systems. The effects of relat ivi ty can to some extent be modelled 

by the inclusion of various parameters in the potential. For a fuller explanation 

of potential models see, for example, the discussion in [16]. 

1.3.4 Dressing and Unitarised Quark Models 

In a world wi thout interactions qq and gg systems would be absolutely stable, 

as the existence of lone quarks or gluons is forbidden by colour confinement, and 

would have fixed masses given by the quark model or quenched lattice QCD. I f we 

turn on interactions, which is equivalent to unquenching on the lattice, we allow 

these bare states to couple to mesonic channels and thus permit them to decay. 

This dressing also shifts the physical masses away f rom the bare values [17, 18]. 

Unitarised Quark Models [19, 20] apply this idea of dressing by coupling (ide

ally mixed) qq states to two meson channels only. In the isoscalar sector of a 

particular channel, the uu + dd and ss can then mix as both couple to the two 

kaon channels, gg seed states, which could affect the masses of the isoscalars, 

are not included and mult iquark effects are assumed to be small. The scattering 
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amplitude for a given channel can be calculated, or f i t to data, and the number 

and position of the resonances determined. These models have had reasonable 

success in reproducing meson spectra and scattering data in a number of sectors. 

1.4 The Scalar Meson Problem 

The quark model and QCD have enabled us to explain a large range of hadronic 

phenomena. However, the scalar ( J p c = 0 + + ) mesons s t i l l give rise to a great 

deal of debate. Whereas the placing of pseudoscalar and vector mesons into their 

familiar nonets, (it, K, rj, rj') and (p, K*,co, </>), was fundamental to the creation of 

the quark-model, this has st i l l not been done for the scalars nearly forty years 

later. A brief glance at the most recent edition of the Particle Data Guide [21] 

shows that there are currently more scalar mesons listed than are required for a 

quark model nonet. In the isospin-0 sector five mesons are listed below about 

1700 MeV, the / 0 (400 - 1200), / 0 (980) , / 0 (1370) , / 0 (1500) and / 0 (1710) . Some 

authors suggest even more (e.g. [22]) and some believe that not all the states 

listed are mesons (e.g. [23]). There are also two isospin-1 states, the ao(980) 

and a 0(1450), but only one isospin-1/2 meson, the KQ(1430). I f we glance back 

through previous editions of the PDG [24] we see that the number and masses 

of mesons listed in this sector has changed many times. Why are so many states 

listed, and why is there so l i t t l e agreement on their properties? 

Obtaining information on the scalar mesons is complicated by the fact that 

these states do not tend to dominate experimental cross-sections, their contribu

t ion being much less than higher angular momentum states. Furthermore, scalar 

states tend to be wide for their masses, making i t diff icul t to determine their pa

rameters in any model independent way. For the isospin zero states, the picture is 

complicated further by the overlapping of states, making the standard description 

of resonances via a Breit-Wigner formula impossible. 

Theoretically, the possible spectrum of states in the scalar channel is, perhaps, 

more complicated than in any other. As explained above, QCD predicts the 
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existence of glueballs. Calculations of the glueball spectrum consistently predict 

that the lightest glueball w i l l be a scalar and that the scalar glueball w i l l have a 

mass comparable to ordinary qq states [11, 25]. 

QCD also permits the existence of multi-quark states. In order to determine 

whether such states are energetically favourable i t is necessary to work w i t h i n 

models of QCD. W i t h i n one such model, the MIT-bag model, i t was found [26] 

that scalar mesons made up of two quarks and two antiquarks were not only 

possible, but their binding energy was such that these states would, in fact, be 

lighter than conventional qq scalar mesons. This implies that there should be two 

complete nonets of scalar mesons, and that the lightest scalar mesons w i l l have 

the internal structure qqqq. 

This conclusion has been contested by the authors of [27]. They showed, 

wi th in the confines of a nonrelativistic potential model of QCD, that 4g-states 

could only exist under certain very special conditions. Namely, 4q states probably 

only existed in the scalar channel, must include a ss pair and that, rather than 

the bag-model picture of four quarks all t igh t ly bound together, 4(/-states were 

loosely bound KK 'molecules'. Thus only states w i t h isospin 0 and 1 would exist 

and there would not be a second complete scalar nonet. In particular, there would 

be no light strange scalar meson. 

That the quark model leads to nonets of mesons is "a t ru th universally ac

knowledged". However, this 'fact ' has been called into doubt, at least in the 

scalar sector, by the unitarised quark models (UQMs). When applied to the 

scalar mesons [28, 29] these models found that the mass shifts due to dressing 

were far greater than for other channels and also the scalar mesons were unique 

in undergoing a phenomenon known as resonance doubling. In resonance dou

bling, a single input state can give rise to two separate physical hadrons. Both of 

these hadrons are at one level (/(/-states, but may also include large components 

of the two meson states in their wavefunctions. There are, however, some very 

significant differences between the results of the two models. In the Nijmegen 
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Unitarised Meson Model [28], resonance doubling occurs for all the scalar input 

states. Thus, they predict two complete scalar '</(/' nonets (including a light 

strange meson) and leave no room for any exotic states, except perhaps to ex

plain the / 0 (1710) . However, the Helsinki Unitarised Quark Model [29] finds that 

resonance doubling occurs only for certain input states. In particular they do not 

predict a light strange scalar meson and cannot explain the /o(1500) or /o(1710). 

The picture is more complicated yet. As all of these theoretical possibilities 

have the same quantum numbers and similar masses, quantum mechanics tells us 

that they can and w i l l mix. Thus, i t may make no sense to talk about glueballs, 

qq and Aq states as separate objects. Some authors today prefer to keep the term 

meson solely for gg-states. In this work we use meson in its older context, i.e. to 

mean any hadron w i t h integer spin, and do not imply anything about a state's 

internal structure by this name. 

We can, then, express the so called Scalar Meson Problem in three questions? 

How many scalars are there below 2 GeV? Which states are qq in origin? Wha t 

are the remaining states ( if there are any)? 

1.5 Synopsis 

The mathematical concept that underlies and links the two strands of this w rork 

is Cauchy's Theorem, which is stated here for completeness. 

This theorem is so well known that we do not include a proof, which can be found 

in any undergraduate level text book on complex analysis. 

We w i l l apply Cauchy's Theorem in two different ways to address the first 

two questions posed at the end of the preceeding section. I n Chapters 2 and 3 we 

w i l l investigate the possibility that there are two complete scalar nonets below 

2 GeV. More precisely we wi l l t ry to determine whether or not there exists a 

strange scalar meson w i t h a mass less than the established JK"O(1430). TO this 

f f ( z ) d-z = (Enclosed residues) 
27T? J c ^—' 

( 1 . 1 ) 
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end, we construct contour integrals f rom S-wave ixK scattering data. From these 

integrals Cauchy's Theorem allows us to determine the position of any poles of the 

scattering amplitude wi th in the contour. The number and positions of these poles 

give us the number of resonances present in the channel and their parameters. 

In Chapters 4 and 5 we turn to the question of the composition of the scalar 

isoscalar mesons. In particular we w i l l t ry to determine which is the lightest qq 

state in this channel. By applying Cauchy's Theorem to the qq vacuum polar

isation function in the I = J = 0 channel, we are able to relate an integral of 

experimental data to the integral of a theoretical expression wri t ten in terms of 

quark fields. Thus we can relate (/(/-states to physical hadrons. 



Chapter 2 

Hunting the K: 

Background and Framework 

2.1 Introduction 

The light, strange scalar meson (usually known as the K) has a long and some

what chequered history. The first experimental claims for i t came as far back 

as 1962 [30] and by 1966 theoreticians were predicting its existence [31] in or

der to satisfy sum rules of the Adler-Weisberger type. These sum rules relate 

axial-vector coupling constants to combinations of total cross-sections for (in this 

case) irK scattering. These cross-sections can be wri t ten in terms of low-energy 

resonances whose parameters can then be determined. 

A t about this time a number of experimental groups were reporting tentative 

'observations' of the n meson, suggesting a mass of around 725 MeV and a wid th 

< 12 — 30 MeV (for a review of these early experimental searches for the K see 

[32]). By 1967, similar theoretical methods and the experimentally favoured mass 

were used to predict a wid th for the K of ~ 20 — 30 MeV [33]. However, there 

was no consensus on the existence of the At in either the theoretical or exper

imental communities. Another theoretical analysis based on Adler-Weisberger 

sum rules [34] pointed out that uncertainties in the calculation could remove the 

13 
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need for the K while the Particle Data Guide of 1967 [32] contained the following 

statement: 

"We are beginning to think that the K should be classified along wi th 

flying saucers, the Loch Ness Monster and the Abominable Snow

man." 

I t went on to explain that many experiments had searched for the At but, at that 

point, none had found any direct evidence. The year after this statement appeared 

direct evidence for a light, strange, scalar state in the reaction K+p —> K°ir°A++ 

was reported [35]. This particle, w i t h a mass of 1100 MeV and a wid th of 

400 MeV, bore l i t t l e resemblance to that predicted in the above works. The 

authors reported, however, that i t i t d id satisfy the sum-rules upon which they 

were based. 

Dur ing the 1970s a number of experiments reported seeing the K w i t h the 

consensus being for a much broader and heavier resonance than that favoured 

in the 60s (for a summary of these experiments see the mini-review listed under 

the k(1350) in [36]). The largest statistics at this t ime came f rom a study of the 

reactions K ± p —> K±n+n and K ± p —>• K±ir~ A + + [37] which reported a resonance 

wi th a mass of 1425 MeV and a wid th around 250 MeV. These conclusions were 

supported by the LASS collaboration in 1988 [38]. Their study of the reaction 

K~p —» K~ir+n gave the highest statistics on Kir scattering currently available 

and found a strange scalar resonance of mass 1412 MeV and wid th 294 MeV. By 

this t ime the strange scalar resonance had also undergone a name change: the K 

had become the KQ. Subsequent experiments [39, 40] have found no evidence to 

support a light K, w i t h the 7^(1430) being sufficient to describe I J P — | 0 + TTK 

scattering 1 . From now on we w i l l keep the name K to mean a strange scalar meson 

below the well established /sT0*(1430). 

Theoretically too, the lightest strange scalar meson was undergoing something 

*At the time of writing rumours are beginning to appear that the E791 experiment at 
Fermilab can best describe its data on the decay D+ —> K~TT+IT+ by including a n. As yet 
final results have not been published but see [41]. 
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of a change of identity. I n 1977, Jaffe [26] used the MIT-bag model to study 

mult iquark hadrons. concluding that a broad re w i th a mass of around 900 MeV 

should fo rm part of a light qqqq nonet. However, in 1982 Weinstein and Isgur [27] 

showed that, w i th in a non-relativistic potential model of QCD, a qqqq system 

w i t h open-strangeness could not be bound into a meson. In that same year, 

Scadron [42] suggested that the spontaneous breakdown of SU(3) chiral symmetry 

leads to a low mass qq scalar nonet including a re which, w i t h a mass of 800 MeV 

and wid th of 80 MeV, was consistent w i t h the particle 'seen' in the experiments of 

the late 60s. A light re was also predicted wi th in the framework of the unitarised 

meson model [28]. Al though work in a similar model [29] found only one strange, 

scalar resonance: the (1430). 

In recent years a number of authors have revived the idea of a light ( < 1 GeV) 

re as the SU(3)/ partner of the (now widely accepted) cr-meson, arguing that i f 

the o exists then why not the re. Ishida et al. [43] reanalysed the LASS data, 

introducing a background w i t h a negative phase-shift, and found that a light re 

could be accommodated, w i t h the background 'hiding' the expected effect of a 

resonance on the phase-shifts. I n the work by Black et al [44], a model amplitude 

inspired by the large-N c expansion of QCD is compared to the real part of the 

experimental amplitude. W i t h i n this model the re is required to maintain the 

uni tar i ty of the amplitude below 1 GeV. Oiler and Oset [46] also f ind a re as a 

meson-meson state arising f rom the unitarisation of the lowest order amplitude 

obtained f rom Chiral Perturbation Theory. Anisovich and Sarentsev [47] have 

performed a K-mat r ix analysis of the LASS data concluding that the re is not 

present. 

In this new incarnation the re has been ascribed a large range of masses but 

is generally agreed to be a very wide object. In Table 2.1 we list the parameters 

obtained f rom some of the recent analyses. 

The LASS experiment provides us w i th high statistics results on the ir+K~ 

S-wave amplitude f rom 825 MeV to 2.51 GeV [38]. The re, i f i t exists, should 
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Source Mass 
(MeV) 

W i d t h 
(MeV) (MeV) 

Van Beveren [28] — — 727 - 263? 
Ishida [43] 905 545 875 - 335z 
Black [44] 897 322 911 - 158z 

Delbourgo [45] 810 — — 

Oiler [46] — — 779 - 330? 
Oiler [48] ~850 very large 770 - 250* 

Jamin [49] — — 708 - 3052 

Table 2.1: The properties of the light K resonance as found by various 
authors. 

have an effect on the LASS data i f its mass is wi th in this energy range. In fact 

due to its large wid th we can expect that the effect of the K w i l l be apparent 

in the LASS data even i f the mass is somewhat below 825 MeV. As mentioned 

above, a number of fits to these LASS (and other) data have been carried out, 

some finding evidence for the K [43, 44] and some claiming to rule i t out [29, 47]. 

However, the existence of a state is not defined by the abil i ty (or otherwise) 

to fit a certain formula to data along the real axis in the s—plane. Indeed, a 

state is wholly specified by there being a pole of the 5—matrix in the complex 

energy plane on the nearby unphysical sheet [50]. When carrying out a fit-to-data 

i t is usually necessary to separate the scattering amplitude into resonance and 

background parts. I t is the different modellings of the background, along w i t h 

its large wid th , that leads to the large range of masses for the K apparent in 

Table 2.1. Here, we w i l l use an alternative approach that does not require such 

an ar t i f ic ial separation. 

The aim of this project is to determine whether or not the best data cur

rently available on the S-wave irK scattering amplitude (i.e. the LASS data) 

require or rule out the existence of a strange scalar resonance in the mass range 

~800-1000 MeV. We do this by at tempting to directly count and locate the poles 

of the part ial wave amplitude as constructed f rom the data w i t h the min imum of 

theoretical modelling. We also consider the earlier data of Estabrooks et al. [37], 

which extends closer to threshold but w i th reduced precision. The method we w i l l 
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use, which is due to Nogova et al. [51], combines some simple statistics w i t h the 

analytic properties of the part ial wave amplitude in a way that allows us to search 

for poles in the amplitude wi thout recourse to a specific formula to parameterise 

these poles. 

The method is explained in the remainder of this Chapter and the results 

obtained are presented in Chapter 3 along w i t h a discussion of the inputs into 

the calculation. 

2.2 Conformal Mapping 

2.2.1 Analytic Structure of the nK Partial Wave Ampli

tude 

Fig. 2.1 shows the analytic structure (except for resonance poles) of the S-wave 

part ial wave amplitude for nK scattering as a function of the Mandelstam variable 

s, the square of the total centre of mass energy. The cuts shown in Fig. 2.1 arise 

in the following ways. Uni ta r i ty in the s—channel -KK —»• irK scattering leads to 

the physical cut f rom s = sth to s = oo. The left-hand cut, running f rom s = — oo 

to s = (TTIK — m*)2, comes f r o m the crossed (u—channel) ixK —> irK scattering. 

The circular cut is due to the uni tar i ty of the t—channel process, ixix —» KK. 

The origin of these cuts is discussed in more detail for the case of irN scattering 

by Hamil ton [52]. I t should be noted that in nK scattering there is no short cut 
2 

(rriK — ^ : ) 2 < s < m2K + 2 T T 4 because, unlike -KN scattering, there is no Born 

term. 

Our final goal is to determine the complex positions of the poles of the partial 

wave amplitude f rom scattering data, which is obviously collected along the real 

axis. To do this we need to carry out some form of analytic continuation. This 

continuation w i l l only be valid w i t h i n a region characterised by the distance to the 

nearest singularity. To maximise this region, we begin by conformally mapping 

the unphysical sheet of the part ial wave amplitude into the unit disc which we call 
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Sth 

Figure 2.1: The cut structure of the nK part ial wave amplitude, where 
sth = (m-K + ^ T T ) 2 and the radius of the circular cut is sc = m2

K — m\. 

the z—plane. In fact, for the scattering of unequal mass particles the cuts of the 

part ial wave amplitude split the s—plane into two separate regions (see Fig. 2.1). 

The poles associated w i t h resonances w i l l lie in the region outside the circular 

cut and so i t is this that we map into the z—plane. The mapping is designed 

so that the cuts of the part ial wave amplitude in the s—plane are mapped onto 

the circumference of the circle. So, except for the resonance poles that we wish 

to locate, the part ial wave amplitude w i l l be analytic w i th in the disc and we 

can continue the amplitude throughout the complex z—plane and thus, via the 

inverse mapping, the entire s—plane. 

Under this mapping the cuts along the real axis of the s—plane are mapped to 

the positive real axis in the y—plane w i th y{sth) = m-rr/mK ~ 0.28. The positive 

and negative real axis cuts in the s—plane are joined together in the y—plane at 

2.2.2 The Mapping 

The mapping is accomplished in two steps. Firstly, 

y(s) 
s + s 

(2.1) 
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the point y(oo) = y(—oo) = 1. The circular cut in the s—plane is mapped onto 

the negative real axis in the y—plane w i t h the point s = sc mapped to the point 

y = 0. The point s = —sc appears on both the circular cut and the left-hand cut 

in the s—plane and so has two images in the y—plane at y = ± o o . The result of 

this mapping is shown pictorial ly in Fig. 2.2. 

1 y 

y( sc) y(s,h) y(+°°) 

Figure 2.2: The cut structure in the y—plane w i t h the mapping of certain 
key values of s shown. y(sc) = 0, y(sth) ~ 0.28 and y ( ± o o ) = 1. 

Now, to map the twice cut y—plane into the uni t disc, we define 

ip^yjsj - ^y(s) - y{sth) (2.2) 
i f i y / y ( s ) + y / y ( s ) -y(sth) 

where f3 is a real parameter which is chosen so that the region of interest in the 

s—plane is mapped close to the imaginary axis in the z—plane. This minimises 

the distance the continuation must cover and increases the rate of convergence. 

I f we believe that the pole is near the (complex) point sp then we calculate /3 

using 

'y{sp) - y(sth) ^2 3^ 
P 

y(sP) 

The points s = sth and s = sc, i.e. the branch points in the y—plane, are fixed 

for any value of (3, being mapped to z = 1 and z = — 1 respectively. For all 

other points, the position in the z—plane is dependent on the value of p. Fig. 2.3 

shows the upper half of the z—plane w i t h the images of certain values of s for 

a particular value of f3. Notice that the cuts in the upper half of the s—plane 
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(such as the region where physical data lie) are mapped to the upper semi-circle 

in Fig. 2.3. 

Im z 

0.8 

0.6 

0.4 

0.2 

Rez 
0.5 0 0.5 

Figure 2.3: The z—plane showing how points in s—plane map. The map
ping parameter /3 is chosen so that s = (1.4 + 0.15«) 2 GeV 2 is mapped to 
the imaginary axis. The thicker line shows the arc covered by the LASS 
data. The inset shows an enlargement of the key region close to z = i, 
f rom where we analytically continue. The symbols mark particular val
ues of s as follows: • s = sth, • s = oo, V s = — sc, o s = isc, (} s = 
-^(sc + isc), ms = sc. 

Once the pole positions in the z—plane have been found, they w i l l need to 

be mapped back to the s—plane to understand their physical significance. The 

inverse of the mapping defined in (2.1)-(2.2) is given by 

2.2.3 Some Comments about the Mapping 

We require the mapping defined in (2.1) and (2.2) to preserve the real analyticity 

of the part ial wave amplitudes. I t is easy to check that this is the case for (2.1). 
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To see that i t is also true for (2.2) we note that the effect of the branch cut in 

the y—plane is only felt by the square-root that has the same branch-point. 

To illustrate this we consider first the point y0, see Fig. 2.4, given by 

2 _2i<5 (2.6 Vth + Q e p e 

2 _2id 2.7 yo Vth 

o 

25 2Y 

271-25 

2 Y 

Figure 2.4: The y—plane as defined by (2.1) showing how the square roots 
in (2.2) are affected by the branch points of the partial wave amplitudes 
when going f rom a point yo to its complex conjugate y$. yth = y{sth)-
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Therefore 
ipe11 — qelS 

z(yQ) = ^ ^ (2.8) 
v ; ipe^ + qet5 v ' 

Now we consider the point yl. As yjy has no branch point at yth, we can go from 

VVo ~* v/^o simply by changing 27 to —27. However, ^/y~zryth has a branch 

point at so, in order to stay on the same sheet, when going from y0 to y% we 

must go around the branch point i.e. 25 —¥ 2n — 26. Thus, 

y * = p V * 7 = yth + q 2 e 2 ^ (2.9) 

2/0 - yth = q2e2i{*-5) (2.10) 

and 

z{y0) = -• ipe-^ + qei(-n~s^ 
—ipe~11 — qe~lS 

—ipe~irf + qe~lS 

= [z(yo)Y. (2.11) 

If 5R(yo) had been less than zero, i.e. the position of the other branch-point, 

then when going from y0 to yl the vector would have crossed the branch cut 

corresponding to y/y. A similar argument to above would hold with 26 —> —25 

and 27 -> 2TT - 2j. 

From Fig. 2.3 we can see that the mapping is highly non-linear in the following 

sense. As we increase the energy from threshold to infinity, the proportion of the 

circle covered by each increment falls very sharply. I t is clear that the region 

between threshold (at 633 MeV) and the start of the data (at 825 MeV) covers a 

much longer arc than the region in which we have data (825 MeV to 2.51 GeV) 

and the region between the end of the data and infinite energy is much smaller 

still. This compression of the high energy region would suggest that the method 

is less sensitive to higher mass resonances. This apparent weakness actually 

has some benefit. As we explain in the next section, we test the scattering 

amplitude against the hypothesis that i t contains a given number of poles. The 

computational burden increases rapidly as we increase the number of poles, so if 
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we had to account for all the radial excitations in a given channel the calculation 

would soon become computationally prohibitive. Consequently, the procedure is 

only practicable for the lowest few states. 

It is obvious from this mapping that the physical region in the s—plane only 

covers a fraction of the circle. Even if we had data over an infinite range of 

energies, we could never complete the circle, see Fig. 2.3. Nevertheless, we only 

need analytically continue very close to the region of data (i.e. the solid arc in 

Fig. 2.3). We shall return to this point later. 

2.3 Analytic Continuation 

2.3.1 The Subtraction Method 

For now we assume that we have a scattering amplitude, y i 5 with errors, A ; , 2 , 

defined at discrete points all the way around our circle \z\ = 1. We define \Szi\ as 

the average distance between the ^th data point and its two nearest neighbours 

in the complex z—plane shown in Fig. 2.3. In regions where these discrete points 

are densely packed, our scattering amplitude is most tightly controlled and so we 

weight the error on each point by the density of the data points in that region, 

defining (-i(z) = A,yj \8zi \ /2i{ . We make a smooth interpolation to the amplitude, 

Y(z), and the weighted errors, e(z), so that we have continuous functions defined 

on the entire circle. This weighting procedure ensures that the small region of 

the unit circle in Fig. 2.3, where we have experimental data, controls the analytic 

continuation into the nearby region where resonance poles are expected to sit. 

If F(z) is a square integrable function on the circle, C, then we can test how 

well this function describes the data through a x 2 , defined by 

2 T h i s method requires the errors on the real and imaginary parts of the amplitude to be 
equal. This is arranged by taking the value of the error to be the larger of the error on the real 
part and the error on the imaginary part at any given energy. 

F(z) - Y(z) 2 

i 1 \dz\ X e(z) 2TT 
(2.12) 
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We now introduce a non-zero weight function g(z), which is defined to be real 

analytic and constrained by |<7(z)| = e(z) around the circle. This weight function 

will take the role of the errors in our x2, but has the analytic properties that we 

require. We expand the data and the trial function as Laurent series about the 

origin, so that 

Since partial wave amplitudes are real analytic, the coefficients ak and yk are real. 

Although we are expanding about the origin, the expansion is carried out round 

the circle, since this is where we have data. The singular Laurent coefficients will 

pick up any poles within the disc. Substituting (2.13) into (2.12) gives 

oo oo 

X 2 = X > - * - f - * ) 2 + X>*--M0 2 • (2.14) 
k=l k=0 

The pole structure of our partial wave amplitude, Y(z), can then be determined 

by finding the test function F(z) which minimises the first summation in (2.14). 

If we want to test against the assumption that there are no poles in the data 

we must use a test function that is analytic, i.e. = 0 for k > 0. Then, i f the 

amplitude has no poles, the quantity XQ — ^2k=i V-k w u ^ ^>e z e r ° 3 - I f w e think 

that the scattering data has one pair of complex conjugate poles in the z—plane 

(as is the case where there is one resonance present) then we can write our test 

function as 

/(*) = + ; + K z ) 
Z — ZQ Z — Z 0 

oo 
= E 2 ^ + fc(2) _ ( 2 1 5 ) 

fe=l 

where h(z) is some analytic function. By comparing (2.15) with (2.13) we see that, 

in this case, the analytic continuation is carried out by setting a_jt = 2S^ct^o - 1] 

and then it is the quantity x\ — ]CfcLi(^-fc~2 Sftfazo - 1]) 2 * n a ^ n a s a X2 distribution 

with iV degrees of freedom. 
3 Actual ly , due to inevitable experimental noise, \o will n ° t be exactly zero, but should fit 

a x 2 distribution with N degrees of freedom. 
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2.3.2 A Better Continuation: The Blaschke Factor Method 

There is, however, a problem with the continuation described in Section 2 . 3 . 1 . 

In effect in (2 .15) we are expanding a quantity like ( 1 — Zo) - 1 and in the actual 

computation this expansion will have to be truncated at some order. This is fine 

as long as \z0\ <C 1, but in practice \z0\ is close to one and the above procedure 

becomes unreliable. As an illustration, if \z0\ = 0.99 (a not unreasonable value 

for a resonance pole), then the quantity ( 1 — z0)~l = 100 whereas the expansion 

truncated to 40 terms gives 33.8. Even if we include the first 200 terms then the 

expansion still only gives 86.7. 

Consequently, we adopt an alternative approach which is to cancel any pole 

in the data explicitly by the introduction of the so-called Blaschke pole killing 

factor, B(z). This factor is real analytic when we are considering a function 

that is real analytic and is defined so that |JB(Z)| = 1 for \z\ = 1, so there is no 

arbitrary rescaling of our x 2 - We define the function 

m = ™ ( 2 . i6) 

and expand this as a Laurent series about the origin, i.e. 
oo 

y(z)= y*zk • ( 2 - 1 7 ) 
k=—oo 

We test this function, y(z), against the hypothesis of analyticity, i.e. we investi

gate the quantity Y2k=i(y-k)2 which will indeed obey a x 2 distribution with N 

degrees of freedom, if we have the correct Blaschke factor. 

To test for different numbers of poles we use different Blaschke factors. I f we 

believe the amplitude to be analytic, we use B(z) = 1. For a pair of complex 

conjugate poles the Blaschke factor looks like 

where z0 is the position of our test pole. From (2 .18) we can see that the Blaschke 

factor contains poles at z = l/z0 and z = which at first sight would seem 

to complicate our calculation. However, we are searching for poles inside the unit 
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circle i.e. \ZQ\ < 1 so these extra poles are outside the circle which we use as our 

contour of integration when calculating the coefficients and so do not contribute 

to them. Blaschke factors for larger numbers of poles are constructed analogously 

to (2.18). 

By cancelling out any poles before we expand our amplitude we avoid the 

need to make the expansion explicit in (2.15) and so significantly improve the 

convergence and stability of the method. 

It is worth making a few comments about the method at this point. Firstly, 

we are not making a traditional 'fit-to-data'. In particular, in the Blaschke factor 

method we create a function from the experimental data and the Blaschke factor 

and fit the singular coefficients of this function to zero. 

Secondly we are not assuming any particular form for the scattering ampli

tude, merely that it is a complex function, analytic except for those cuts shown 

in Fig 2.1 (which define our mapping) and those poles corresponding to the res

onances we wish to determine. This is why the form of the background, as long 

as it can be assumed to be smooth, should not affect our results. 



Chapter 3 

Hunting the k: 

Phenomenology and Results 

3.1 Experimental Input 

Our experimental information on the 5—wave irK partial wave amplitude comes 

in the form of the magnitudes, a(s), and phases, 4>(s), measured, for instance, by 

the LASS experiment. We normalise the amplitude on the first sheet such that 

a(s) e i (^s) 
''<*> = ' m 

where the phase space p(s) = 2q/y/s and q, the cm. 3-momentum, is given by 

g _ 1 [s- (mK + m T ) 2 ] [s - (mK - m^)2] 
2 V s 

In general, nK scattering has two possible isospin channels, 1 = 1/2 and 

/ = 3/2. The resonances we are interested in are isodoublets. The / = 1/2 

results must be extracted from the total S—wave data by subtracting an assumed 

form for the / = 3/2 amplitude1 which introduces an extra layer of uncertainty. 

Furthermore, this separation of the data into definite isospin components is only 

reliable over a restricted energy range. However, there are no known resonances 
1 Whilst it is possible to obtain purely isospin-3/2 results, by studying the reactions -n+ K + —> 

n + K + or ix~K~ -> 7 r ~ K ~ , it is not possible to study isospin-1/2 nK scattering in isolation. 

27 
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in the the 1 = 3/2 channel: so we can assume that it acts as an additional, smooth 

background to the 7 = 1/2 resonances that we are looking for and, as explained 

in Chapter 2, should not affect the pole positions found. This means that there 

is no need to separate the isospin components and we, therefore, carry out our 

analysis on the total S—wave data. Nevertheless, the 1 = 1/2 component does 

provide a valuable check, both of our results using the total 5—wave amplitude 

and of the assertion that there are no exotic 1 = 3/2 resonances. 

As is well-known, resonance poles do not appear on the physical sheet in the 

energy plane. Consequently, to determine the number of resonances in a given 

channel we must consider the scattering amplitude on the relevant unphysical 

sheet. For purely elastic scattering this would be sheet I I 2 . As inelastic channels 

open, the sheet structure of the amplitude becomes more complicated and we 

must ensure that we are considering the correct sheet. The first inelastic channel 

for TTK scattering is rjK at around 1.05 GeV. However, SU(3) flavour symmetry 

predicts that this channel will not couple strongly to nK and this is confirmed 

by the experimental results [38]. So any inelasticity can be safely neglected, until 

one reaches the rfK threshold at around 1.46 GeV. This channel opens in the 

region of a possible KQ (1430) and we must take this threshold into account when 

we change sheets. Any resonance would then be on sheet I I I . 

So we require a means of selecting the nearby unphysical sheet that can be 

used in a two channel system where the amplitude may consist of the sum of two 

isospin components. To illustrate how we go about doing this we consider the 

K—matrix formalism for such an amplitude. On the physical sheet we can write 

the partial wave amplitude as 

pi = \ a ( K a

n - i p 2 d e t K a ) 
1 - % pi - i p2 K22 ~ Pi Pi de tK a 

\b{Kbn-iP2dztKb) 
l - i px Kb

n - ip2 K%2 - pi P2 detKb ' { ' ' 

where the Roman numeral denotes the Riemann sheet, the letter denotes the 
2 T h e Riemann sheets are labelled by {r\,r2), where the rj are the signs of the imaginary 

parts of the complex phase spaces pj in particular channels, j = 1 for irK, j = 2 for i f K . Sheet 
I is ( + , + ) , sheet I I is ( - , +) and sheet I I I is ( - , - ) . 
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isospin and the Arabic numeral denotes the channel. To go to the second sheet 

we must make the change pi —> —p\ and so the amplitude looks like 

\a{K^ -ip2detKa) 
l + ipi K$x - i p2 K%2 + p1 p2 detKa 

Xb(Kb

n-zp2detKb) 
\ + i p l K \ l - i p 2 Kb + Pi P2 detKb 

While to move from the first to the third sheet we must make the changes 

P\ -» - p i and p 2 -> ~P2 giving us 

F l I I = Xa(K^+ip2detKa) 
l + ipi Kfr + % p2 - px p2 detKa 

\b(Kb

u+ip2detK») 
l + ip1Kb

l+ip2K«2-Plp2detKb ' [ ' ' 

Comparing (3.3) and (3.5), we find that, above the second threshold, FUI = F1*. 

However, below the second threshold we should use the the analytic continu

ation of the phase-space for this channel i.e. p2 = i \p2\. Then the amplitude on 

the physical sheet becomes 

p I = \a(K?1 + \p2\detK*) 
1-ipi + \p2\ K%2 - %Pl \p2\ detKa 

, Xb(Kb

n + \p2\detKb) 
l - i P l Kb

n + \p2\Ka

22 - i P l \p2\detK» ' { - ' 

and the amplitude on the second sheet is 

FH = 
n _ \a{Ktl^\p2\detKa) 

1 + iPi ATfj + \p2\ K%2 + % pi |p 2 | de tK a 

+ A 6 ( ^ 1 + | p 2 | d e t ^ ) 
l+ipi Kb

u + \p2\K$2 + i p! |p 2 | detKb ' { ' ' 

From (3.6) and (3.7) we see that below the second threshold F11 — F1*. So for 

any energy, the amplitude on the nearby unphysical sheet is just the complex 

conjugate of the amplitude on the physical sheet and the simplest way to pick 

the correct sheet is to change the sign of the phase in (3.1), i.e. 

M=!!S%r • (38) 

Note that, although it was stated that any inelasticity due to the r\K channel 

could be neglected, this method of selecting the sheet actually takes into account 
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the thresholds due to all open channels at a given energy. However, we can only 

specify which sheet we are on by knowledge of the thresholds we have passed. In 

other words, although we know we are on the correct sheet to locate a resonance 

pole we may not know exactly which sheet we are on. 

We then map the data, including errors, as described above. As noted previ

ously it is not possible to cover the circle completely with physical region data. 

The exact proportion of the circle covered by data depends on the choice of the 

mapping parameter /3. From Fig. 2.3 we see that there are two distinct arcs 

of the upper semi-circle that are not covered by the experimental data. Firstly 

there is the arc corresponding to the energy region between threshold and the 

start of the data. Our treatment of this region is slightly different for our tests 

using the model data in Section 3.2 than when we are considering the real data 

in Section 3.3 and, hence, will be detailed in the appropriate sections. Secondly 

there is the arc corresponding to the left-hand and circular cuts in Fig. 2.1. As 

we do not have information about what happens on these unphysical cuts, we 

simply make a guess. So that the guess does not unduly affect the results, we 

de-weight these guessed points by giving them very large errors and by ensuring 

that they are widely spaced (see Fig. 3.1). With the top semi-circle now spanned 

by "data" points, we make an interpolation to give us a continuous function. We 

complete the circle by reflecting the interpolated data in the upper semi-circle 

onto the lower half so as to obey the Schwarz Reflection Principle, thus ensuring 

the real analyticity of the amplitude. 

A suitable form for the weight function g(z), which fulfils all the conditions 

described above is 
N 

g(z) =exp V n n 
n=0 

(3.9) 

where the cn are found from a Fourier cosine fit to lne(z), i.e. 

2TT 
/ lne(z = ete) 

Jo 
1 

d9 en 
7T 0 

2TT 

- / 
7T Jo 

6 cosnfllne z = ew) d9 Cn>l 
0 

(3.10) 
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In practice we take N = 100. 

We are now in a position to calculate the singular coefficients of the Laurent 

expansion of the data about the origin in the usual way i.e. 

V-k = — £ ^ ¥ r z k \M , (3.11) 
y 2TT I g{z) 1 1 ' K J 

for the subtraction method of Section 2.3.1 and 

for the Blaschke factor method of Section 2.3.2. 

3.2 Tests on Model Data 

3.2.1 The Model Data 

Before attempting to analyse real experimental data, we would like to have an 

idea of the capabilities and limitations of the method outlined in Chapter 2. To 

this end a model data-set was created describing an amplitude containing a light, 

broad resonance, Ki, and a heavier, narrower resonance, «2 3- The amplitude was 

constructed using Jost functions, so the positions of the poles of the amplitude 

can be found analytically, and the lighter resonance is treated as the background 

at the second, i.e. 

fI(s) = f((s)+e2l5l{s)fl(s) (3.13) 

on the first sheet, where 

fi(a\ = -2k{s)d3 

J j K ' p{s)(k(s) + cj + idj){k{s)-cJ+idj) ' V ' 

«'W = < r e t m ( ^ r p ) • ( 3 1 5 ) 

k(s) = ^ V S ~ ( m K + m 7 r ) 2 • (3.16) 

The four parameters {cj,dj} are chosen, so that the amplitude has poles at 

s i = (0.9 ± 0 ^ ) 2 (GeV) 2 and s2 = (1.4 ± 0.15z) 2 (GeV) 2. Data are created for 
3 This generalises a model analysis discussed by Nogova et al. to two resonances. 
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energies equivalent to the full LASS data-set [38], with the error on both the 

magnitude and phase fixed at 5%. Below the energy of the LASS data, we create 

a few equally spaced points between threshold and 825 MeV. The magnitudes, a, 

and phases, </> for these "physical region data" are shown in Fig. 3.1 as a func

tion of energy. The amplitude in the unphysical region is set to a real constant 

(incidentally equal to the amplitude at threshold) with very large errors (±5). 

Fig. 3.2 shows the real and imaginary parts of the mapped test amplitude on the 

second sheet, including both the physical and unphysical regions, as a function 

of the angle around the circle, 9. 

3.2.2 Results using the Model Data 

The model data described in Section 3.2.1 were used to test both of the methods 

described in Section 2.3. The results obtained by fitting over the first 40 singular 

coefficients are shown in Tables 3.1, for the subtraction method, and 3.2 for the 

Blaschke factor method. Also tabulated for comparison are the results obtained 

when the errors on the points in the unphysical region are halved. I t was expected 

that the Blaschke factor method would be the more accurate and Tables 3.1 

and 3.2 show that this is indeed the case. They also show that the subtraction 

method is more sensitive to the input along the unphysical cuts, thus reducing 

its reliability. The Blaschke factor method was also found to be far more stable 

to variations of non-physical parameters (such as the number of terms in our 

definitions of the \ 2 a n d the weight function). Al l subsequent results have been 

obtained using the Blaschke factor method. 

It is normal when working with \ 2 t ° quote its value per degree of freedom. 

As our quantity is not a statistically rigorous x 2 w e refrain from doing this and 

prefer to interpret our results in terms of the change of the absolute value. For 

information, however, we note that all tabulated results were obtained by fitting 

the first forty singular coefficients, as defined in (3.12), to zero. When testing for 

no resonances we have no free parameters, so there are 40 degrees of freedom. 
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Figure 3.1: Magnitudes, a and phases, 0, of the test data as functions of 
the centre-of-mass energy. As calculated from (3.13-3.16). 
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Figure 3.2: Real and imaginary parts of f n as a function of 9, the angular 
position around the circle in degrees, for the model data-set. The circles 
represent data points, the solid line shows the interpolation to the data 
and the dashed line shows the interpolated weighted errors. 
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Option No. of Zpole x2 

resonances (r,0) (MeV) 
0 — — 4081 

1 1 (0.986,88.16°) 1079 ± 78i 33.8 
2 (0.961,89.85°) 1013 ± 343* 0.5 

(0.972,90.16°) 1127 ±394* 
0 — — 3759 

2 1 (0.988,87.73°) 1015± 572 57.0 
2 (0.976,89.67°) 1151± 279* 0.6 

(0.951,90.13°) 933 ± 366i 

Table 3.1: Pole positions and x 2 's for model data using the subtraction 
method outlined in Sect. 2.3.1. Option 1 has the unphysical errors set to 
5. Option 2 has the unphysical errors set to 2.5. 

Option No. of Zpole \JSpole x2 

resonances M ) (MeV) 
0 — — 4081 

1 1 (0.988,89.31°) 1201 ± 131* 281 
2 (0.993,89.98°) 1396 ± 142* 0.5 

(0.943,88.64°) 903 ± 234* 
0 — — 3759 

2 1 (0.989,89.13°) 1173 ± l l l i 417 
2 (0.993,89.97°) 1392 ± 140* 1.0 

(0.942,88.61°) 900 ± 233* 

Table 3.2: Pole positions and x 2 ' s f ° r model data using the Blaschke 
factor method outlined in Sect. 2.3.2. Option 1 has the unphysical errors 
set to 5. Option 2 has the unphysical errors set to 2.5. 

For one resonance there are two parameters (the real and imaginary parts of the 

pole position), hence 38 degrees of freedom and for two resonances we have four 

parameters and so 36 degrees of freedom. 

From Table 3.2, it is clear that the method is readily capable of identifying 

the number and position of poles even when the associated resonances are broad 

and overlapping. The decrease in \ 2 when going from no resonance to one reso

nance is large, but far less significant than the fall when we ask is there one or 

two resonances. From this Table, one would have no doubt that there are two 

resonances in the model data and their positions are well determined. 

file:///JSpole
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3.2.3 Higher Mass Resonances 

Of course the physical amplitude may contain many resonances with masses 

greater than those of our /ti and K2. As was stated earlier, this method is ex

pected to be less sensitive to these poles. To see to what extent this is true 

further tests were carried out using a different form of trial data. For these tests 

an amplitude containing an effective range background plus two resonances, a 

K2 and a heavier K3, was simulated. We use modified Breit-Wigner formulae to 

describe the resonant parts of the amplitude, so for the Kj resonance we have 

fi = 2 ^ r > (3-17) rrij — s — irrijpl j 

where rnj and Tj are the mass and width of the resonance and p is the phase 

space defined earlier. The total amplitude is given by 

/ = , * , + e 2 j 5 B O / 2 + e 2 ^ ^ ) / 3 , (3.18) 
p(cot 6BG) 

with S 2 being the argument of f 2 (the phase-shift of the K2) and 

qcot8BG = - + b-^- . (3.19) 
a 2 

Using these formulae, data were created up to various energies. Points were 

created at the same energies as the LASS data and above that at 40 MeV intervals. 

The error on both the magnitude and phase were set to 5%. These trial data are 

illustrated, over the same energy range as the data from the LASS experiment, in 

Fig. 3.3. The trial amplitude was analysed assuming zero, one and two resonances 

and the x 2's and pole positions found are shown in Table 3.3 as functions of the 

maximum energy of the data-set. 

From these results we can clearly see that, as the maximum energy of the data 

falls, the K3 becomes less necessary to describe the data in the z—plane. With 

data up to 22.5 GeV, there is a strong case for claiming that there are both the 

K2 and the K^, but their parameters are not accurately found. When the data 

only extends to 2.5 GeV, the ratio of x\ to xl 1S small enough that one would not 

be confident in claiming that the data exhibited more than one resonance. While 
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Figure 3.3: Magnitudes, a, and phases, 4> of the trial data described by 
(3.17)-(3.19). 
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Max. 
Energy 

xi xi xl A Ai A2 
MeV 

22.51 2320 43.3 2.02 1395 ± 53? 1938 ± 234? 1453 ± 137? 
12.51 2361 37.0 1.98 1394 ± 56? 1951 ± 253* 1456 ±133? 
8.51 2389 35.0 1.96 1394 ± 58? 1959 ±264? 1457 ± 130z 
6.51 2380 18.9 1.84 1395 ± 69? 2024 ±331? 1458 ±114? 
3.51 2207 11.4 1.77 1396 ± m 2099 ± 441?' 1454 ± 102? 
2.91 1959 7.33 1.70 1398 ± 84? 2178 ± 788? 1445 ± 91? 
2.51 1529 4.58 1.57 1399 ± mi 899 ± 1457?' 1422 ± 82? 

Table 3.3: x 2 ' s and pole positions for trial data described in the text. 
Maximum energies are in GeV. A is the pole position found when search
ing for one resonance. Ai and A 2 are the pole positions found when 
searching for two resonances, xl, Xi> a n d x\ a r e the x 2 's assuming 
no, one and two resonances respectively. The actual pole positions are 
1421 ± 119? MeV for the K2 and 1957 ± 106?' MeV for the K3. 

the position of the K2 is more stable, the parameters found for the K3 bear no 

resemblance to the correct values. Meanwhile, the pole parameters found when 

testing for just one pole are always recognisable as the K2. If we introduce realistic 

experimental errors and inelasticity, then the K3 becomes even more hidden. 

Similar results were found using a trial amplitude where the K2 in (3.18) was 

replaced by a Ki. However, if the trial amplitude contained no resonance below 

it then the K3 was found and its parameters were well determined. From the 

results of these tests it appears that, when an amplitude contains more than 

one resonance, the higher mass resonances cannot be found using this method if 

their mass is above some value. For irK scattering this value is somewhere above 

1600 MeV. 

3.2.4 Estimating the Errors 

Evaluating the errors on the pole positions that we obtain using this method 

is nevertheless not straightforward. The experimental errors are folded into the 

actual calculation and so their propagation cannot easily be followed. Moreover, 

as pointed out by Nogova et al. [51], the x 2 ' s obtained are not strictly statistical, 

so the standard confidence level techniques are not appropriate. 
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Figure 3.4: Expanded view of the z-plane showing the spread of pole 
positions found by varying the input parameters. • : standard values. 
0: double the number of terms in g(z). + : halve the number of terms 
in g(z). *: Double the number of terms in x2 • D ; Halve the number of 
terms in x 2 . o: Double the value of / (z ) in the unphysical region. A : 
Halve the value of f ( z ) in the unphysical region. • : Halve the errors in 
the unphysical region. •: Double the number of points in the unphysical 
region. 

Thus we resort to an order of magnitude estimate of the errors obtained by 

varying the inputs that introduce uncertainty into the calculation. These inputs 

include the number of terms in the Fourier expansion defining the weight function, 

the number of terms in the summation used to evaluate x 2 and the treatment of 

the unphysical region. The uncertainty in the pole position found in the z-plane 

due to these changes in parameters is shown in Fig. 3.4, from which we see that 

the typical uncertainty in the z-plane is of the order of (4 + 20i) x 10~5. 

Due to the non-linearity of the mapping a fixed absolute uncertainty in the 

z-plane will give different uncertainties in the E'-plane depending on the actual 

position. The minimum uncertainty in the position of the K2 is of the order of 

3 MeV on the real part and 5 MeV on the imaginary. For the K% the minimum 
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uncertainty would be 5 MeV on the real part and 15 MeV on the imaginary 

part. In contrast, for the K\ the minimum uncertainty is of the order 1 MeV 

on both parts. The pole positions listed in Table 3.2 would suggest that these 

minimum uncertainties underestimate the true uncertainty and we can expect to 

do no better than an accuracy of 10 MeV on the real part and 20 MeV on the 

imaginary part of the pole position. 

3.3 Investigation of Experimental Data 

3.3.1 Description of the L A S S Data 

From LASS [38], we have the magnitude and phase of the 7r+K~ S-wave amplitude 

from 825 MeV up to 2.51 GeV as shown in Fig. 3.5. The mapped amplitude on 

the second sheet, as normalised in (3.8), is shown in Fig. 3.6. 

Due to a Barrelet ambiguity [53], the LASS group find two partial wave ampli

tude solutions which only differ above 1.84 GeV. For our calculation we use their 

Solution A, but this choice of solution does not affect our conclusions regarding 

the K(900) and the K*0 (1430). The total S-wave amplitude for n^K" -» 7r+K~ 

is related to the amplitudes with definite isospin by 

/s(*) = / ( 1 / 2 ) + i / ( 3 / 2 ) - (3.20) 

Since resonances are only expected in the 1 = 1/2 channel, it is natural to 

consider the effect of separating out this component. Such a separation requires 

a modelling of the I = 3/2 contribution. Below 1.58 GeV, the LASS group 

group provide a model of this contribution based on the parametrisation of Es-

tabrooks [54]. This allows us to apply the method used in Section 3.2 to the 

7 = 1/2 amplitude alone, but only below 1.58 GeV. As a control on this pro

cedure, we also consider the full S—wave data over this reduced energy range, 

which we refer to as the "Short 5—wave data-set". 

The effective range type formula provided by LASS gives one possible extrap

olation of their data to threshold. This serves as a guide (and only a guide) to 
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Figure 3.5: Magnitudes, a, and phases, 4> of the total S—wave irK partial 
wave amplitude as measured by the LASS experiment [38]. 
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Figure 3.6: Real and imaginary parts of f ' 1 as a function of 9 for the 
LASS S—wave data-set. Only the actual data points are shown, with 
unweighted errors. 
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possible data points between threshold and the start of the data. Note that the 

superscript (I) is an isospin label. Al l equations for amplitudes in this section 

refer to the physical sheet. Their formula is 

1 e2iSBC 

f(n = I + ( 3 2i) 

p {cot 6{

B

n

G-i) p{cot6BW-i) ' 

where 5BG f ° r e a c h isospin channel is given by (3.19) and the resonance term, 

which only appears in the 1=1/2 case, is given by 
(m 2 -s)Eqr 

cot 6 BW = ^= , (3.22J 
mf 1 r q 

with q given by (3.2), and qr being its value at s = m 2 . The LASS f i t gave the 

threshold parameters = 2.19 GeV" 1 and b^1^ = 3.74 GeV" 1 in the 7 = 1/2 

channel and = -1.03 GeV" 1 and 6<3/2> = -0.94 GeV" 1 in the I = 3/2 

channel. For the 1 = 1/2 resonance the parameters mr = 1.412 GeV and Tr = 

0.294 GeV were found 4. It is important to recognise that though the LASS 

effective range fi t assumes the tail of a Breit-Wigner-like pole, this does not 

prejudge that such a pole exists in our analysis. We call this treatment of the 

low energy region Case A. 

While the above Case A is largely experimentally motivated, a more theoret

ically well-founded guide to low energy meson-meson scattering is provided by 

Chiral Perturbation Theory (%PT). This makes predictions for near threshold 

TTK scattering that we can input into our analysis. However, the effect of the 

higher order corrections becomes larger and less predictable as one goes much 

above threshold. Consequently, we only generate data points based on xPT 

within 100 MeV of threshold, with a precision encompassing the range of present 

calculations [55, 56, 49]. We call this Case B. We let the method determine the 

interpolation between the low energy x ? T results and where LASS data begin. 

This avoids the need for us to enter into any debate about whether higher order 

corrections in xPT are summed better by the Inverse Amplitude method or by 
4These six parameters were provided by W. Dunwoodie and are not the values quoted in 

the original paper. 
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Figure 3.7: The magnitude and phase of the total S—wave scattering 
amplitude showing Case A ( • ) , Case B (A) and the LASS data below 
1 GeV (•). 
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explicitly including resonances. Such differences are large at 825 MeV. I t is in 

this sense that we describe our method as "model independent". 

In implementing either Case A or Case B, we only create a few low energy 

"data" points so as not overly to prejudice the results. These two alternative 

sets of "data" are shown in Fig. 3.7 together with the LASS experimental results 

below 1 GeV. In both Cases the unphysical cuts are treated as for the model 

data-set of Section 3.2. 

3.3.2 Results from the L A S S Data 

In Table 3.4, we present the results of our analysis for the data shown in Fig. 3.5. 

The Table shows the pole positions found for the full S—wave data, with full and 

halved errors on the unphysical points. 

Case Option No. of Zpole \JSpole x2 

resonances (r,9) (MeV) 
0 — — 1373 

1 1 (0.994,90.07°) 1433 ± 149? 4.7 
2 (0.995,90.15°) 1432 ± 148* 1.8 

A (0.987,82.02°) 805 ± 13? 
0 — — 1629 

2 1 (0.993,90.06°) 1423 ± 157? 9.0 
2 (0.993,90.06°) 1423 ± 154? 8.8 

(0.998,86.98°) 969 ± 6? 
0 — — 1340 

1 1 (0.994,90.10°) 1444 ± 151? 16.9 
2 (0.994, 90.07°) 1436 ± 133? 1.0 

B (0.854,95.14°) 609 ± 238? 
0 — — 1694 

2 1 (0.993,90.08°) 1428 ± 168? 33.2 
2 (0.994, 90.05°) 1429 ± 132? 1.0 

(0.870,93.35°) 645 ± 260? 

Table 3.4: Pole positions and x 2 ' s f ° r LASS S—wave data [38] from 
0.825 GeV to 2.51 GeV. Cases A and B are explained in the text and 
shown in Fig. 3.7. 
Option 1: The amplitude in the unphysical region equals the amplitude 
at threshold, with an error of 5. 
Option 2: The amplitude in the unphysical region equals the amplitude 
at threshold, with an error of 2.5. 

file:///JSpole
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Option No. of Zpole \ / S p 0 i e x 2 

resonances M) (MeV) 
0 — — 210 

1 1 (0.992,90.22°) 1467 ± 224? 2.1 
2 (0.992,90.22°) 1464 ± 221? 1.1 

(0.993,82.14°) 808 ± 7? 
0 — — 367 

2 1 (0.991,90.23°) 1455 ± 245? 5.3 
2 (0.991,90.19°) 1439 ± 237? 2.4 

(0.911,100.1°) 503 ± 238? 

Table 3.5: Pole positions and x 2 's for LASS 7 = 1/2 data [38]. 
Option 1 has unphysical errors set to 5. Option 2 has unphysical errors 
set to 2.5. 

Option No. of Zpole \J Spole x 2 

resonances (r,0) (MeV) 
0 — — 170 

1 1 (0.991,90.03°) 1471 ± 242?' 2.2 
2 (0.985,90.07°) 1422 ± 553? 1.9 

(0.997,90.08°) 1457± 80? 
0 — — 283 

2 1 (0.991,90.26°) 1459 ± 264? 5.6 
2 (0.990,90.23°) 1440 ± 263? 2.4 

(0.886,101.8°) 513 ± 208? 

Table 3.6: Pole positions and x 2 ' s f ° r the short LASS S—wave data [38]. 
Option 1 has unphysical errors set to 5. Option 2 has unphysical errors 
set to 2.5. 

The results for the 1 = 1/2 and the shorter S—wave data-sets are shown in 

Tables 3.5 and 3.6. These Tables show a remarkable consistency, as one would 

hope for effects that are real. I t is worth pointing out that our method will 

'find' exactly as many poles as it is asked to. So if we search for two resonances 

then positions for two resonances will be given no matter how many resonances 

are present in the data. Resonances that really are present in the data will be 

stable to changes in unphysical parameters and result in sizeable falls in the x2 • 

Conversely, if the x2 does not fall significantly between one and two resonances 

then we can conclude that the second resonance 'found' is not really present and 

the pole position given is meaningless. Likewise, any resonance found whose pole 
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position changes wildly with variations in unphysical parameters will also be an 

artifact. 

3.3.3 The Estabrooks et al. Data 

As a further check of our results, the same technique was applied to the total 

5—wave data from an earlier SLAC experiment [37]. These data extend closer to 

threshold, so it is only necessary to create a point at threshold. Fig. 3.8 shows the 

magnitudes and phases for this data-set in the region below 1 GeV and should 

be compared with the treatment of the low energy region for the LASS data-set 

shown in Fig. 3.7. Again, we use both an experimentally motivated Case A and a 

theoretically motivated Case B. In Case A we use an effective range formula, see 

(3.19), with = 2.39 GeV" 1 and = -1.00 GeV" 1 (as only a point at 

threshold is calculated only the scattering lengths need be known). No resonance 

was assumed in this fit, so any lingering doubts that assuming the tail of the 

-£To(1430) in the low energy extrapolation introduces a prejudice is clearly not 

there in this case. In Case B the scattering lengths calculated from x ? T are 

used. The results for the Estabrooks et al. data-set [37] are shown in Table 3.7. 

3.4 Discussion 

For the real TTK experimental results, Tables 3.4-3.7 display a consistency in 

identifying a single resonance which looks very like the K^(1430). The fall in x2 

in going from no resonance to one resonance is always sizeable, ranging from a 

factor of 32 to a factor of 290. In contrast when going from one to two resonances, 

the x2 does not generally fall by a significant amount. Importantly, recall that the 

present analysis technique is always most sensitive to the lightest resonance and 

this is clearly the /<"Q(1430). SO whilst the KQ(1430) is overwhelmingly apparent, 

a lighter, broad resonance is not. When studying Case B for the LASS data there 

is also a sizeable fall in the x 2 when going from one to two resonances, but the 
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Figure 3.8: Magnitudes, as, and phases, <j>s (in degrees), for the 5—wave 
irK scattering amplitude below 1 GeV from Estabrooks et al. [37], to be 
compared with Fig. 3.7. 
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Case Option No. of Zpole •\J Spole x2 

resonances (r,0) (MeV) 
0 — — 553 

1 1 (0.991,90.20°) 1446 ± 232? 16 
2 (0.986,89.83°) 1277 ± 231? 12 

A (1.017,90.46°) 1344 ± 444? 
0 — — 812 

2 1 (0.990,90.16°) 1411 ± 250? 14 
2 (0.988,89.92°) 1323 ±221? 14 

(1.01,90.47°) 1564 ± 316? 
0 — — 551 

1 1 (0.991,90.20°) 1447 ± 231? 17 
2 (0.986,89.84°) 1286 ± 227? 14 

B (1.015,90.44°) 1382 ± 423? 
0 — — 816 

2 1 (0.990,90.16°) 1411 ± 253? 16 
2 (0.991,89.81°) 1324 ± 159? 16 

(1.001,89.89°) 1395± 18? 

Table 3.7: Pole positions and x 2 's for Estabrooks et al. [37] S—wave data. 
The Cases A and B are described in the text. 
Option 1 has unphysical errors set to 5. Option 2 has unphysical errors 
set to 2.5. 

second resonance is below the experimental range (in fact for one of the options it 

is below threshold). This suggests that i t is a result of something encoded in that 

particular extrapolation to threshold and not an effect in the data. Interestingly, 

such a state is not apparent when considering the data of Estabrooks et al. which 

extends closer to threshold, albeit with larger errors. 

Halving the assumed errors in the unphysical region should not affect the 

pole positions obtained, and from Table 3.2 we can see that this is indeed the 

case. From Tables 3.4-3.7 we see that for the assumption that there is only 

one resonance present, then halving the unphysical errors, has a small effect. 

However, when we force the amplitude to have two resonances the effect is much 

more noticeable. Generally, the resonance which looks like ^ (1430) tends to 

stay in a similar position, but the second one moves around wildly. This is what 

one would expect if this second resonance is merely an artifact of forcing the 

method to find two pairs of poles when only one is really present in the data. 
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I t was mentioned earlier that we would expect the method to be less sensitive 

to high mass resonances. This is borne out by these results. The LASS group 

provide strong evidence for a state at 1.95 GeV. With data to 2.51 GeV we would 

expect to see this state showing up, but the compression of the high energy 

portion of the amplitude has diluted the effect of the KQ (1950) so much that it is 

not needed to describe the data in the complex z—plane. This is to be expected 

from our study using model data, described in Sect. 3.2.3. The non-linearity of 

the mapping procedure (and the presence of the Kg (1430)) severely limits our 

ability to find states above 1800 MeV in TTK scattering. However, below that, and 

particularly down towards the lower end of the experimental range, the method 

is totally reliable and quite unambiguous. The results we obtain when using the 

higher statistics of the LASS experiment (Tables 3.4-3.6) indicate that there is 

just one strange, scalar resonance. This is readily identified as the K^(1430). 

In particular, the best available TTK scattering data does not contain a light K 

with a mass above 825 MeV. The supporting evidence shown in Table 3.7, would 

suggest that there is no K. 



Chapter 4 

Sum Rules in the Scalar-Isoscalar 

Channel 

4.1 Introduction 

As explained in Chapter 1, there are more scalar mesons than can be accom

modated in a single quark-model nonet. It is tempting to say that these 'spare' 

experimental states are the unconventional mesons permitted by QCD, but which 

are the spare states? In the work that follows we hope to shed some light on this 

question by attempting to determine which of the 5 scalar-isoscalar mesons cur

rently listed in the PDG is the lightest uu + dd meson in this channel. To address 

this question we will use the QCD sum rule technique. 

QCD sum rules are integral expressions that relate the hadronic and partonic 

regimes, i.e. the low energy world of resonances with the high energy world of 

(tractable) QCD. Since their conception over twenty years ago [57], QCD sum 

rules have become an established technique both for calculating hadronic prop

erties in channels where the QCD expressions are under control and, conversely, 

estimating QCD parameters (such as the masses of the quarks) in channels where 

there is good experimental information. 

These days, QCD sum rules are used in two complementary forms which are 

51 
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based on different aspects of the analyticity of the hadronic vacuum polarisation, 

II(s). In the first form, a dispersion relation (with the necessary number of 

subtractions) is written for II(s) and then the inverse Laplace (or Borel) transform 

operator is applied. This gives the Laplace (or Borel) QCD sum rule, which in 

the case where no subtractions are required can be written as 

C [U(q2)] = - / e"s'M2 Imn(s) ds , (4.1) 
K Jo 

where q2 = s, M is known as the Borel mass and 

- , 2 / n = M 2 \ 1 / 

The left hand side of (4.1) can be calculated within QCD whilst on the right hand 

side it is usual to use the 'resonance + continuum' ansatz. In this representation, 

the imaginary part of the correlator up to some cut-off, so, is assumed to be 

dominated by one or more resonances which are either modelled by data or a 

phenomenological parameterisation. Above this cut-off, the imaginary part of 

the correlator is assumed to be equal to the continuum, calculable within QCD. 

For a fuller discussion of QCD Laplace sum rules see for instance [58, 59]. In this 

work we make use of the so-called QCD Finite Energy Sum Rules, which will be 

discussed in Section 4.2. 

QCD sum rules were first applied to the scalar mesons in [60]. Here Laplace 

sum rules were used, with resonances being represented as (^-functions and the 

continuum being calculated entirely within perturbative QCD. As only the Op

erator Product Expansion (see Section 4.4) was taken into account on the the

ory side, exact mass degeneracy between the lightest isoscalar and isovector was 

found, with m / 0 = mao = 1.00 ± 0.03 GeV. The ss state was predicted with a 

mass of around 1.35 GeV. These, findings were supported by [61] who used QCD 

sum rules to calculate the couplings of the /o(980) and a0(980) to two photons. 

Again modelling the resonances with (^-functions the authors concluded that a 

qq interpretation of these two mesons could not be ruled out with the data then 

available. 
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The effects of going beyond the OPE were studied in [62], where instantons 

(see Section 4.6) were included on the theoretical side, but not in the QCD 

continuum on the phenomenological side. Once again the resonances were treated 

as 8-functions and only the isospin-1 channel was considered. It was concluded 

that the lightest qq state in this channel had a mass < 1 GeV. 

For the light scalar mesons, the zero-width approximation is not a good one 

and the first attempt to go beyond it in a sum rule investigation was by Elias 

et al [63]. Here resonances were represented by Breit-Wigner formulae, which, 

whilst better than a <5-function, still does not adequately describe the complex 

structure in the scalar sector. A further abstraction was introduced by replacing 

these Breit-Wigner shapes with a Riemann sum of rectangular pulses. Laplace 

sum rules were used, but in an integral form which requires the calculation of 

perturbative expressions at rather low energy scales. Again instantons were in

cluded, but not in the continuum. In the isovector channel, the a0(980) was found 

to decouple from the sum rule and the mass of the lightest quarkonium isovector 

was consistent with the ao(1450). In the isoscalar channel the conclusions were 

not so clear cut, it was predicted that the lightest quarkonium here should have 

a width less than half of its mass, and although the / 0(980) could not be ruled 

out a lighter state was preferred. Similar conclusions were reached in [64]. This 

study used both Laplace and Finite Energy sum rules, again requiring pertur

bative expressions to be evaluated at low energies. The authors noted, that for 

a consistent treatment of the Borel sum rules, the instanton effects should also 

be included in the QCD continuum contribution. The sum rules were dominated 

by an isoscalar with mass around 1 GeV and an isovector with mass around 

1.5 GeV, thus suggesting the /o(980) and a0(1450) as the lightest qq states in 

their respective channels. However, in the same work, a comparison to a more 

realistic resonance shape predicted resonance parameters for the lightest quarko

nium of m ~ 860 MeV and T ~ 340 MeV. These parameters are not consistent 

with the /0(980) but could describe a Breit-Wigner fi t to the / 0(400 - 1200). 
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In [65] pinched weight Finite Energy sum rules were used to calculate the 

decay constants of the a 0(980) and a 0(1450), which were then compared wi th 

the decay constant of the, presumably qq, K q ( 1 4 3 0 ) . Instantons were included 

and all QCD integrals were carried out in the complex plane, which improves 

the convergence of perturbative expressions. The isovector decay constants were 

found to be of comparable size, suggesting a similar structure for both. The 

author concluded that this favoured a UQM-l ike scenario, where two physical 

hadrons can arise f rom one 'seed' state. 

In this work we w i l l apply Q C D Finite Energy sum rules to the scalar-isoscalar 

channels. On the phenomenological side we w i l l incorporate data directly, whilst 

on the theory side we w i l l make use of the OPE and instantons. 

4.2 Finite Energy Sum Rules 

Finite Energy Sum Rules (FESRs) are a direct consequence of Cauchy's Theorem 

and, i n fact, pre-date QCD [66]. Q C D FESRs were first studied in [67] and 

require also the concept of global duality between hadronic and partonic physics 

at moderate energies. The l ink between quarks and hadrons is made via the 

vacuum polarisation, IT(s). This is defined by the correlation function of two 

currents, i.e. 

U{s) = i j d 4 x eiqx(0\T{J(x)J{0)}\0) , (4.3) 

where s = q2 = — Q2 and the currents are chosen so as to select the desired 

channel. 

This quantity is analytic everywhere in the complex s-plane except along the 

positive real (time-like) axis. Thus, for any weight function, w(s), that is analytic 

wi th in the contour shown in Fig. 4.1, Cauchy's Theorem (1.1) becomes 

1 
2m 

[ w(s + it) IT(s + it) - w(s + it) U(s + it)ds + <p w(s) Tl(s)d 
JO ^ | s |=s 0 

= 0 . 

(4.4) 

The fact that I I (s) is real for real s < 0, and assuming w(s) is real for all real s, 
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0 

L i 

Figure 4 . 1 : The complex s-plane showing the so called 'Pacman' contour 
which is used to derive the FESRs. 

allows the Schwarz Reflection Principle to be exploited, giving 

Global quark-hadron duality implies that the integral of an hadronic expres

sion is equal to the integral of an expression wr i t ten in terms of partonic degrees 

of freedom. On the left-hand side of (4.5) we have an integral in the physical 

region, and here we choose to describe the integrand using hadronic physics (ei

ther w i t h experimental data or a phenomenological parameterisation). On the 

right-hand side we have an integral in the non-physical region (complex s), and 

here we use field theory (i.e. QCD) to calculate the integrand. The assumption 

that (4.5) s t i l l holds for some values of s 0 is a statement of global quark-hadron 

duality. 

As Cauchy's Theorem applies wi th in QCD, we could choose to deform the 

contour of integration on the right-hand side of (4.5) to run around the real axis. 

This would then lead to sum rules of the type exploited in [63, 64]. However, 

this would then require that perturbative expressions be evaluated at rather low 

energies, where they are not expected to converge. Hence we choose not to follow 

this path, but to calculate the theoretical side via a complex integral. 

so 
J> w(s)n(s) 

J\s\=so 
/ tu(s)Imn(s) 

Jo 

1 1 
2iri 7T 0 

(4.5) 
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Early sum rule work used positive integer powers of s as weight functions. In 

this work we wish to investigate the lightest meson in the I = J = 0 channel, and 

so we choose a decaying exponential, w(s) = e x p ( — s / M 2 ) . On the phenomeno-

logical side, this weight function w i l l suppress the region of the integral s > M2, 

and so by varying M2 we can control which regions of the integrand contribute 

most significantly to the sum rule. I f we also include integer powers of s in the 

weight funct ion then we can build up a family of sum rules. We w i l l refer to these 

sum rules which have weight functions w(s) = ske~s^M2 as R-type sum rules and 

denote them by the symbol R^-

Almost by definition, at energies where resonances dominate the spectral den

sity, QCD does not give a good description, at least as we are currently able to 

use i t . I f this were the case then the technology of QCD sum rules would be 

redundant. This means that, for moderate values of SQ, our Q C D description 

of I I ( s ) must fa i l , at the very least, in the region of the positive real axis (see 

Fig 4.1). However, i t is believed [68] that i t is only in the region of the positive, 

real axis that the Q C D description fails and that in the rest of the s-plane QCD 

provides a good description of the correlator. Thus we introduce a second type of 

sum rule containing a weight function that has a zero at s0. We w i l l refer to this 

second type of sum rule, which have weight functions w(s) = sk (1 — S/SQ) e~s/M2, 

as T-type and denote them by the symbol T/.- Elsewhere in the literature they 

are often referred to as 'pinched weight' sum rules. When we wish to refer to 

both types of sum rule, we w i l l use the symbol Sk. 

Introducing this zero into the weight function of the T-type sum rules has a 

number of advantages. Firstly, on the theoretical side we avoid the problem, just 

described, of the failure of QCD on the part of the circle near the positive real 

axis. Secondly, on the phenomenological side, we have introduced a second factor 

wi th a tendency to suppress the higher energy portion of the integral. Thirdly, 

we would expect the zero to reduce the dependency on the parameter s 0 [69, 70]. 

For these reasons we expect that the T-type sum rules wi l l prove to be more 
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reliable. 

To recap, our two types of sum rule are 

1 rs° 
[ R ^ M 2 ) } h a d = - / s k e ^ M [lmn(s)]had ds , (4.6) 

n J Ami 

[Rk(s0, M 2 ) ] = I s * c - / « a [ n ( S ) ] Q C D d s , (4.7) 
Z 7 r * ^ | s |=s 0 

[Tk(so, M2)]had = l- f W W l - f ) [lmU(s)]had ds , (4.8) 

[Wo, M*)]QCD = ^ £ = s * e-'l* (l - ^ [ n( s)] 0 C D ds . (4.9) 

The parameter s0 is not entirely free: i t must be large enough that the 

QCD expressions we are able to calculate are expected to be a good approx

imation to the f u l l correlator yet small enough that we have experimental in

formation. The art of sum-ruling is to f ind (sensible) values of so for which 

[Sfc(so> M 2 ) ] H A D = [5fc(so, M 2 ) ] q C D over a wide range of the unphysical parame

ter M 2 . When this occurs we say that the sum rules are saturated. 

4.3 The Scalar-Isoscalar Light Quark Correlator 

In this study we are concerned w i t h the scalar-isoscalar light quark correlator, 

this is bui l t by substituting into (4.3) the RG-invariant I = J = 0 non-strange 

quark current, i.e. 

J ( x ) = -A {u{x)u{x) + d(x)d(x)} = n(x)n{x) , (4.10) 
2 \ /2 

where mq = \(mu + m^) and we use the symbol n to denote an effective light-

quark. The second equality follows because we ignore the two-gluon intermediate 

state, whose contribution to the OPE of the up/down combination is 0(m2) and 

so can be safely neglected. 

Although the current (4.10) is RG-invariant, the correlator i t gives rise to is 

not. As well as making the calculation of the correlator wi th in QCD more diff icul t , 

this would also lead to an unwanted scale dependence in our final results. The 

second derivative of this correlator, f l " ( s ) , is RG-invariant. As I l " ( s ) is also 
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analytic w i th in the contour shown in Fig. 4.1 we could choose to write our sum 

rule completely in terms of this quantity, but I m l l " ( s ) is not directly related to 

any physical quantity and so we would lose our l ink to experiment. Instead we 

use part ial integration to rewrite the theoretical side of the sum rules in terms of 

I l " ( s ) . To do this we write the integral on the theoretical side as 

i i = j> v"(s)U{s) ds . (4.11) 

We now part ial ly integrate this expression twice to give, 

i i = y'(s)n(s) - v(s)U'(s) + j w(s)n"(s)ds , (4.12) 

and arrange the constants of integration which appear in v(s) and v'(s) such that 

these functions disappear at s = s0. Then our sum rule is 

i jP w(s) M ( * ) L d a = " £ lU"^QCD ds . (4.13) 

Table 4.1 shows the phenomenological and corresponding theoretical weight func

tions required for the sum rules we consider. 

Sum Rule w(s) v{s) 

RQ e-s/M* M2\M2e-s'M\ 
+ e - s ° l M \ s - s 0 - M2)} 

RI se-s/M* M2[M2e-s/M'\s + 2M2) 
+ e-s°/M2{ss0 + sM2 - 2M2s0 

- 2 M 4 - s2)} 

To ( l - i) M 4 [ e - s / M 2 ( s 0 - s - 2 M 2 ) ( l - i) 
+ e - W M 2 ( S Q _ S + 2M2)] 

s ( l - ^ ) e-°'M2 MA[e-slM2(sso - s2 + 2M2s0 - AsM2 - 6 M 4 ) s ( l - ^ ) e-°'M2 

+ e - s ° / M 2 { s 2 - ss0-2sM2 

4- 4 s 0 M 2 + 6 M 4 ) ] 

Table 4.1: The weight functions for the phenomenological side, w(s), 
and the corresponding weight functions, v(s), which must accompany 
the second derivative on the theoretical side of the sum rule. 
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4.4 The Operator Product Expansion 

As mentioned above the central object in this analysis is the vacuum polarisation 

n(s). In order to calculate this quantity wi th in QCD we make use of the Operator 

Product Expansion (OPE) [71]. This replaces the matr ix element of the product 

of currents in (4.3) by a linear combination of local operators, 

n(5 = -Q2) = J2Cn(Q2)(On) • (4.14) 
n 

The Q 2-dependent functions, Cn, are known as Wilson coefficient functions and 

can be calculated using standard perturbation theory. The operators in (4.14) 

have the same quantum numbers as the product of currents appearing in (4.3) 

and are ordered by increasing dimensionality. As each term in the OPE must have 

the same dimensions, the dimension of the coefficient functions must decrease. 

Consequently, we expect higher dimension operators to be suppressed by factors 

of Q2d where d is the dimension of the operator. The first operator to appear in 

the OPE is the identity operator which thus gives the purely perturbative con

t r ibu t ion to the correlator. The vacuum expectation values of higher dimension 

operators are called condensates, which can be thought of as fluctuations of the 

non-tr ivial QCD vacuum w i t h infini te correlation lengths. 

The structure of the OPE is such that all the non-perturbative (i.e. long

distance or low-energy) physics is described by the vacuum expectation values of 

the operators On, whilst the Wilson coefficients describe the short distance effects. 

As explained in [72] (and references therein), in order to fu l l y separate the long 

and short distance physics i t is necessary to calculate the vacuum expectation 

values of the operators in a minimal ly subtracted scheme. The down side of 

this is that the operators of a given dimension mix under renormalisation, i.e. 

individual condensates are no longer renormalisation group invariant. However, 

the total contribution f rom all operators of a given dimension remains invariant. 

In the following, all expressions have been calculated w i th in the MS scheme. 
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4.5 The O P E in the Scalar Isoscalar Channel 

W i t h i n the framework of (4.14) we expand the correlator as 

n( s ) = n 0 (s) + n 2 (s) + n 4 (s) + n 6 (s) + . . . , (4.15) 

where Ud is the total contribution to the correlator f rom all operators of dimension 

d. A similar expansion is made for I l " ( s ) . We w i l l truncate these expansions at 

dimension 6. 

4.5.1 The Perturbative Contribution 

The Wilson coefficient of the uni t operator gives us the purely perturbative contri

but ion to the OPE for the second derivative. The general fo rm of this coefficient 

is [73] 

^ 2 ) = ^ £ a * ^ ' ( 4 - 1 6 ) 

where \J? is the renormalisation scale and as = as(/j,2)/iT. U" is renormalisation 

group invariant, which implies that 

2 9 n . . d . , d 
V o - o + P\as)a h 7 ( o s ) m „ C 1 ( Q 2 ) = 0 , (4.17) 

dj.Ll oas omq 

where /3(as) is the QCD /5-function, 7 ( a s ) is the quark mass anomalous dimension 

and our conventions for these functions are explained later in (4.36) - (4.40). 

In (4.17) each term a] \ogj(Q2//J?) must vanish separately. This means that 

the various dij are interrelated, and in fact there is only one independent constant 

for each order in o s , usually taken to be dl\. The first two of these independent 

constants have been known for a long time, the th i rd was calculated in [74] and 

the four th in [75]. Thus the perturbative contribution to the correlator is known 
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to four-loop order. The f u l l expression can be found in [76] and is given by 

i T O 2 ) = 
6 m 2 

2(4TT) 2 Q 2 
1 + as 

i i 9 1 Q2 

y - 2 l 0 g ^ 

+ at 

+ a. 

5071 35 139, Q2 17 
- - C ( 3 ) ) - — l o g ^ + log 2 Q2 

144 2 , v ~ ' / 6 " ° [i2 4 ° ^ i 2 

475 4781 bx 475 . 
^ + g + X C ( 3 ) ) + 

2720 

~ 9 " + ^ 
C O ) ) log ^ 

<52 695, 2 221 

~24~ 
log 3 

m 2 j 
(4.18) 

where 

h = 
4 748 953 91519 

C(3) - 15C(4) 
715 

C(5) 
864 36 

and £(n) is the Riemann Zeta function. 

As n"(s) is renormalisation group invariant, we are free to make any con

venient choice of the renormalisation scale. We use the 'contour improvement' 

prescription, whereby the logs in (4.18) are 're-summed' by making the choice 

ix2 = Q2. This improves the convergence of the perturbative series by removing 

the dependence on large powers of possibly large logs which would appear in the 

(unknown) higher order terms. The contour improved perturbative contribution 

to our correlator is then, 

6 m 2 (Q2) (Q2) /5071 35 

~2~ 

+ °<l(Q2) ( — + J + — C(3) (4.20) 
9 6 4 

The calculation of the running coupling and quark mass is explained in Sec

tion 4.7. 

4.5.2 Dimension 2 Operators 

Naively, the only gauge-invariant operator of dimension two that can be con

structed wi th in Q C D is the so-called mass insertion term, m2. For the light 

quarks that we are considering this term can safely be ignored. 

Some recent works have suggested that there may be mechanisms outside of 

the normal OPE which could lead to dimension two contributions to correlation 
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functions. These mechanisms include renormalons (singularities of the correlator 

related to divergent perturbative series - see [77] for a recent review), and a 

tachyonic (i.e. imaginary) gluon mass [78]. I t has been argued that, i f they do 

exist, the effects of dimension two operators would not be significant in most sum 

rule analyses and that even in calculations where they would be expected to be 

most noticeable, these effects are consistent w i th zero [79]. Hence, in this work, 

we choose to ignore them. 

4.5.3 Dimension 4 Operators 

There are three types of dimension four operator that could contribute to the OPE 

for the scalar-isoscalar correlator. These are explicit mass corrections, m4, which 

as in the dimension two case are ignored, the light quark condensate, (mqqq), 

and the gluon condensate, (asG<^lvGai11') = (asG2) where Ga^v is the gluon field-

strength tensor. To two loop order, the contribution to the correlator f rom the 

quark condensate can be found in [73] and f rom the gluon condensate contribution 

is taken f r o m [80, 72]. The overall expression is 

n 4 ( Q 2 ) = 3 K M ) 

(asG2) 
+ 8 

and taking two derivatives gives 

n 4 ' (Q 2 ) 
m 
2Qe 

9 ^6{mgqg) 

1 + as 

l + as 

l + as 

1 + as 

2 log 
»2 

13 

~3~ 
67 Q2 

1 8 " 2 1 0 6 ^ 

22 , Q2 

3 nl 

121 9 1 Q2 

2 log — 
18 & n2 

(4.21) 

(4.22) 

Apply ing the contour improvement prescription we obtain 

n?(Q2) = ^ 2 ( Q 2 ) 
2Q 6 

Q(mqqq) 

, (asG2) 

1 + 
22a s (Q 2 ) 

121as(Q2y 
18 

1 + (4.23) 

As mentioned above, correctly separating the short and long distance physics 

in the OPE leads to mixing under renormalisation of operators of a given dimen

sionality. Up to to negligible 0(m*) terms, the light quark condensate remains 
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RG-invariant [73]. However, the gluon condensate mixes w i t h the strange quark 

condensate, (msss), and the explicit strange quark mass correction [72]. I n terms 

of the two-loop RG-invariant combinations introduced in [76], (4.23) becomes 

KiQ2) = 
m2

q(Q2) 
2Q 6 

6 (mqqq) 1 + 
22as(Q2) 

+ r 4as(Q2) 3mt(Q2) 
1 Q _ _ _ 

1 + 
121a s (Q 2 ) 

18 

287T 2 

(4.24) 

where 

9 ( a s G 2 ) 
1 + 

16a, 
+4as{msss) ( 1 + 

91a s 

~24~ 

and 
, _ \ 3 m 4 

7 S = {msss) + 
1 53 

24 
(4.26) 

7n2 \ as 

The value of the light quark condensate is fixed (at lowest order in x P T ) by 

the Gell-Mann-Oakes-Renner [81] formula 

m2J2 

(mqqq) = (4.27) 

where f v = 131 MeV is the pion decay constant. The value of the gluon 

condensate at 1 GeV is taken to be (381 M e V ) 4 and the input values for the 

strange quark mass and condensate, which should not affect our final results, are 

m s ( l GeV 2 ) = 159 MeV and (msss) = - ( 195 M e V ) 4 . Deviations f rom these 

standard values w i l l be discussed in Chapter 5. 

4.5.4 Dimension 6 Operators 

A t dimension six, the most important contributions to the scalar-isoscalar corre

lator can be taken f rom [73]. In this approximation we have three terms, coming 

f rom two four quark operators and the 'mixed' operator. The f u l l renormalisation 

group properties of these operators have not yet been explored, so we follow [73] 

and take the dimension six contribution at a fixed scale of 1 GeV, thus all ref

erences to condensates, the strong coupling constant and the quark mass in this 
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section imply their values at this scale. The dimension six contribution to the 

correlator is 

2 
7X1 / 

n 6 ( Q 2 ) = ^ [m^gqo^G^^q) 

r 9 (4-28) + 7 r 2 a s (qa^X'qqa^X'q) + \(qi»\a qqi*\a q) 

where 7^ are the Dirac matrices, = | { 7 ^ , 7 1 / } and A a are the usual Gell-Mann 

matrices normalised such that T r [A a A h ] = 25ab. We follow standard practice in 

sum rule work and relate the values of the dimension six condensates to the 

dimension three (RG-variant) two quark condensate (qq). 

For the mixed condensate this is done by parameterising i t as 

(gqatluG^aXaq) = ml(qq) . (4.29) 

The constant ml can then be found f rom a sum rule analysis of a channel where 

this operator is dominant. This analysis has been carried out in [82], where the 

value ml = 0.8 ± 0.2 GeV 2 was found. However, earlier determinations of this 

constant [83] gave markedly different values, in the range ml = 0.2 — 1.1 GeV 2 . 

For the four quark operators there exists no reliable calculation of their VEVs. 

I f we invoke the so-called vacuum saturation hypothesis [57] we obtain the ap

proximations 

(qa,vXaqqo^\aq) = ~ f ( q q ) 2 , (4.30) 

< g 7 , A < W A a g > = - f ( q q ) 2 • (4.31) 

However, i t has been suggested that the vacuum saturation hypothesis is quite 

strongly violated in nature [84]. To take this into account we introduce the 

multiplicative factor Vvs. 

Put t ing all this together gives 

n 6 ( Q 2 ) = ^ (rnqml(qq) - (qq)2) , (4.32) 

Noting that, for the mixed condensate term, the RG-variant two quark condensate 

appears wi th the quark mass to give the RG-invariant combination (mqqq) and 
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taking two derivatives w i t h respect to Q2 gives 

u"/n2\ 6 m « ( 2/ - x V^asVvs 2 \ 
6 ^ ' = 2Q8 { m ^ m i q q ^ 27 ^ J ^ ^ ' 

As input, we take the standard value (qq) = —(0.225 G e V ) 3 . The effect that 

varying m 2 , and has on our f inal results w i l l be discussed in Chapter 5. 

4.6 Instantons 

The OPEs for the scalar-isoscalar and scalar-isovector channels are identical. This 

was originally interpreted as an explanation for the almost exact mass degeneracy 

of the / 0 (980) and the a 0(980) [60]. However, we know that the OPE is not enough 

to completely describe the QCD vacuum and that other effects are important , 

particularly in the scalar and pseudoscalar channels [85]. 

Instantons [86] are solutions of the classical solutions of the Euclidean version 

of a quantum field theory. They are localised in both space and t ime and can 

give a non-zero contribution to the correlation functions of that theory. W i t h i n 

the framework of QCD Laplace sum rules, instantons have been shown to give 

an important contribution to scalar and pseudoscalar correlators [87, 88, 63]. 

The complex nature of the QCD vacuum means that i t is not currently possible 

to directly solve the equations of motion of the f u l l theory. We must make use of 

approximations. In this work we choose to work in an approximation known as 

the Instanton Liquid Model [89, 90, 87]. Here the Q C D vacuum is modelled as 

a four-dimensional ' l iqu id ' of instantons, which is assumed to be dilute enough 

to make the idea of individual instantons meaningful. The l iquid is characterised 

by the average instanton size pc and four-volume density nc (or alternatively the 

average instanton separation, rc = n j 1 / / 4 ) . The Instanton Liquid model is then 

thought to be a good approximation if the ratio pc/rc is small. 

In [90], the average instanton size was estimated to be about (600 M e V ) " 1 , 

or approximately 1/3 f m , and the average separation (200 M e V - 1 ) « 1 f m (or 

1 f m - 4 ) . These are now often taken as standard values. Lattice studies 
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would seem to be consistent w i th this value of pC) but may favour a slightly larger 

value, and tend to f ind higher instanton densities (see Table 1 of [91]). There have 

also been recent suggestions [92] that the lattice determination of the instanton 

size may not be reliable as conventional lattice 'instanton finder' algorithms may 

miss larger instantons. 

W i t h i n the Instanton Liquid Model the instanton contribution to the scalar-

isoscalar light-quark correlator was found in [87, 93] to be 

where Ki(x) is a modified Bessel funct ion of the second kind (or MacDonald 

function). Taking two derivatives we obtain 

As stated above U."(s) is an RG-invariant quantity. The only quantity in (4.35) 

that could have a renormalisation scale dependence is the quark mass. This 

renormalisation scale dependence can not be cancelled out anywhere else, so we 

conclude that the quark mass appearing in (4.35) must be the quark mass at 

some fixed scale, X. A priori we do not know what this scale is. I t is reasonable 

to expect that this scale is related to the instanton scale given by l / p c or the 

hadronic scale of ~ 1 GeV, but we have no physical reason for choosing l / p c 

rather than e.g. 2/pc. Thus we take this scale as an input parameter in the 

calculation. I f this scale is found to be considerably different f rom the hadronic 

and instanton scales then i t would call into doubt our treatment of the instanton 

contribution. 

4.7 The Running Coupling and Quark Mass 

The running of the coupling constant, as and quark mass, mq, are defined by the 

Renormalisation Group Equations 

3Qzm 
n» (s) 7 

2TT2 
(4.34) 

3 P c m 

n ' ( s ) 4TT2 
(4.35) 

da 
d/J 2 

/?(a s) = a 2 V / ? a 
i>0 

(4.36) 
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and 

^ dm^ = _ m ^ a j ^ 7 ^ 0 j = as^2 l i a \ > ( 4 - 3 7 ) 
" !>0 

where a s = a s / 7 r . 

Currently, the QCD (5 and 7 functions are known to four-loop order. For three 

active flavours, the coefficients of the /3 funct ion wi th in the MS scheme are [94] 

a 9 3 8 6 3 a 140 599 445 W o , , A o t > , 
/?„ = - , ft = 4 , # 2 = , B3 = + C(3) • (4.38) 
p o 4 ' m ' 1 384 ' M 4608 32 s v ; v ; 

The coefficients of the 7 funct ion, also wi th in the MS scheme, are [95, 96] 

91 8885 5 A , 0 , 
70 = 1 , 7 l = - >72 = W - 2 C ( 3 ) , 

2977517 9295 135^.^. 125 
= ~Wm ~ W c ( 3 ) + T ^ ( 4 ) ~ l ? c < 5 ) ' ( 4 " 4 0 ) 

The values of the coupling and the quark mass are then found by solving (4.36) 

and (4.37) w i t h the four-loop (5 and 7 functions defined by (4.38) and (4.40). I.e. 

we use the exact solution of the truncated RGE and not a truncated expansion 

in l o g ( / i 2 / A g C £ ) ) of this solution. 

For the coupling, we choose to solve the impl ic i t equation 

/ 
J a. 

a s ^ 2 ) da' ( a2 \ 

iteratively using Newton's method. As input, we take the experimental value 

as(m2

T) = 0.334 ± 0.022, as measured by the A L E P H collaboration [97]. For refer

ence, had we used the standard expansion for ats, then at four-loops and w i t h three 

active flavours this central input value would correspond to AQCD ~ 365 MeV. 

For high values of as(m2), or correspondingly A.QCD, the radiative corrections 

to (4.20) become more important and start to swamp the higher dimension terms, 

i.e i t becomes more important to include higher loop corrections to the pertur

bative contribution than to include the condensates. I t has been argued [98] that 

the sum rule methodology could become invalid for A.QCD ^ 330 MeV. This is 

especially problematic for attempts to determine condensate values via the sum 

rule technique. As this is not our aim and considering the success of previous 
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sum rule works w i t h similar and higher values of as(m2) (AQCD), we feel justif ied 

in applying sum rules to this problem. 

For the quark mass, (4.37) is solved by 

mq(fi2) ~ mq(l GeV 2 ) exp 
Ja.(l 

(4.42) 

Although the instanton and OPE contributions have factors of m2 at different 

scales, wr i t ing the quark mass in this way gives an overall multiplicative factor 

of ra2(lGeV2) on the QCD side. We define [Sk{fj,2, s0)]calc via 

[Sk(M2, s 0 ) ] = m 2 ( l GeV 2 ) [Sk(M2, sQ)] calc 
(4.43) 

and i t is this quantity that is actually calculated. 

4.8 The Phenomenology Side 

4.8.1 The Coupling Schemes 

A t low energies the only hadronic process possible in the scalar-isoscalar channel 

is 7T7T scattering. As pions are made of non-strange quarks i t is reasonable to 

expect that, in the elastic region, the spectral density for the correlator is related 

to the absorptive part of the -nix —> TVTY scattering amplitude, T ( s ) . This l ink can 

be made via the scalar form-factor of the pion, d(s), which is defined by 

d(s) = (0\mqqq\Tr-K) . (4.44) 

Inserting a complete set of hadronic states into the correlator (4.3) and keeping 

only the lowest state, i.e. the two pion state, gives the spectral density in the 

elastic region, 

•\d(s)\2 , (4.45) 
7T 327T 2 

where /3(s) — y/l — 4 m 2 / s . 

Watson's Final State Interaction Theorem [99] implies that the fo rm factor 

and the scattering amplitude have the same phase. Thus, in the region where 
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elastic uni tar i ty holds, we can write 

T ( s ) = a(s)d(s) , (4.46) 

where the coupling function, a(s), is real for real s > 4 m 2 . Substituting (4.46) 

into (4.45) and making use of the elastic uni tar i ty relationship I m T = /3 \T\2 we 

obtain 

7T <52ltl al{s) 

I t is well known that TTTT scattering contains an Adler zero [100], and that this 

Adler zero does not appear in the pion fo rm factor. We now make the s impl i fying 

assumption that this is the only s-dependence appearing in a(s), i.e. 

a{s) = a{s - sA) (4.48) 

where SA is the position of the Adler zero. Substituting (4.48) into (4.47) gives 

our first ansatz 

7T \ S - S A Y 

where / is an unknown constant of proportionality. 

Al though the 4n threshold is at 560 MeV, i t is well known that mult i -pion 

channels are not significant below around 1400 MeV when quasi two-body chan

nels, e.g. aa, pp, become important [101, 102]. The first significant inelastic 

channel is irn —»• KK. Even after this has opened the rnx final state w i l l continue 

to pick out the non-strange contribution to the sum over states. Thus we might 

expect (4.49) to give a reasonable approximation to the true spectral density even 

above 1 GeV. We call this Coupling Scheme I . 

The mul t i -p ion final states mentioned above w i l l increase the nn spectral 

density, causing (4.49) to be an underestimate at higher energies. Phenomeno-

logically, we might expect the true spectral density to be enhanced by the ratio 

of the to ta l to elastic irn cross-sections, thus giving 

Imn(s ) / ( I m T ( s ) ) 2 

[3(s)(s - sAy\T(s)\2 ' 
(4.50) 
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which we call Coupling Scheme I I . In the elastic region, the two coupling schemes 

are, of course, identical. Above the KK threshold, whereas Coupling Scheme 

I ignores all inelastic channels and so will underestimate the spectral density, 

Coupling Scheme I I takes into account all inelastic channels, including those with 

hidden strangeness, and so may be an overestimate. 

0.2 0.4 0.8 1 1.2 
Energy (GeV) 

Figure 4.2: A sketch showing the absorptive part of the / = J = 0 tt-k 
scattering amplitude, based on the Bugg analysis [103] 

Figure 4.2 shows a sketch of the absorptive part of the isospin zero, 5-wave 

amplitude for nit scattering. From this we can clearly see that the /o(400 — 1200) 

and the / 0(1370) appear as peaks, while the /o(980) and the / 0(1500) show up 

as sharp dips. Thus these latter two states, and in particular the /o(980), will 

be largely decoupled from the spectral density and if saturation of the sum rules 

is achieved with either of our two Coupling Schemes, it will not be due in any 

great part to the /o(980) or / 0(1500). By varying M 2 and sQ i t may be possible 

to determine which of the /o(400 — 1200) and the / 0(1370) plays the dominant 

role in saturation, but for the evaluation of the Wilson coefficients in the OPE 

to be trustworthy, we would expect s0 to be too high to exclude the /o(1370). 
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Nevertheless, as the decaying exponential in the weight functions of our sum rules 

suppresses the integrand for s > M2, i t may still be possible to determine which 

resonance is most important for saturation. 

4.8.2 Experimental Inputs 

The 7T7T scattering amplitude is calculated from the experimentally measured 

inelasticities, 77, and phase-shifts, 5, in text-book fashion 

ne2iS - 1 

r < s > = W • < 4 - 5 1 ) 

We will consider two different data-sets. The first is a smooth curve based 

on the parameterisation due to Bugg [103]. This data-set is available up to a 

maximum energy of 2.25 GeV, but contains no experimental errors. This data-

set is illustrated in Figure 4.3, from which we see that this parameterisation is 

in good agreement with earlier, low-energy data. The second data-set is based 

upon the down-flat solution of Kamiriski et al. from their recent reanalysis [104] 

of the combined data from the polarised and unpolarised target CERN(-Cracow)-

Munich experiments [105, 106]. This data-set includes experimental errors, which 

are quite large due to the uncertainty in extracting the one-pion exchange signal, 

and is available in the energy range 600-1600 MeV. This down-flat solution is 

quite close to the earlier Ochs-Wagner analysis [107] and below 600 MeV we 

include the Roy equation extrapolation down to threshold of the Ochs-Wagner 

data carried out by Pennington and used in his discussion of 77 —> tttt [108]. As 

we expect that s0 > (1.6 GeV) 2 we also include some higher energy data from 

the Bugg parameterisation. This, somewhat composite, data-set is illustrated in 

Figure 4.4. In both data-sets we impose elastic unitarity up to the KK threshold. 

As we can see from Figure 4.3, the two data-sets are not too dissimilar and so 

we will only give results based on the Kamiriski data-set where they differ from 

those for the Bugg parameterisation. 
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Figure 4.3: The Bugg parameterisation[103] of the scalar-isoscalar phase 
shifts, S, and inelasticities, 77. Note that we have imposed elastic unitarity 
exactly up to the KK threshold. Superimposed are data points from 
Kei data of Rosselet et al. [109] (squares), Alekseeva et al. [110] (circles), 
Estabrookes and Martin [111] and the Ochs-Wagner analysis [107] of the 
CERN-Munich unpolarised experiment [105] (diamonds). 
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Figure 4.4: The phase shifts, 5, and inelasticities, rj, of the Kamiriski 
data-set based on their down-flat solution [104] (circles). These data 
are supplemented by the Pennington extrapolation to threshold [108] 
(squares) and the Bugg parameterisation [103]. Note that we have im
posed elastic unitarity exactly up to the KK threshold. 
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4.8.3 Normalisation 

Some justification for the above Coupling Schemes (4.49) and (4.50), and a value 

for the normalisation factor / , can be obtained by making a comparison with the 

spectral density obtained using an Omnes representation [112] of the form factor. 

This representation is given by 

d(s) = d(0) exp 
s f°° (f>(s') ds' 

* JAmi S ' ( S ' ~ . ) ] ' < 4 ' 8 2 ) 

where <f)(s) is the phase of / = J = 0 kit scattering. The form factor at zero 

momentum transfer, which normalises the Omnes function, can be determined 

from the Feynman-Hellman Theorem [113] and is given by 

d(0) = m°—^ . (4.53) 
omq 

To leading order in xPT, the physical pion mass is given by the GMOR for

mula (4.27) and thus we see that 

d(0) = ml . (4.54) 

Going to next-to-leading order in would introduce a correction to (4.54) of 

the order of 1% (see for example [114]), which is safe to neglect. 

To evaluate the integral in (4.52) exactly requires knowledge of the scattering 

phase in the high energy region where it is unknown. However, the integrand is 

dominated by the region around s. So if we restrict our comparison to the low 

energy region then the behaviour of the phase above some point si , where S\ 3> s, 

will not greatly effect the value of the integral. We take S\ to correspond to the last 

data point and approximate the phase above this point as a constant, <f>\. Thus, 

the spectral density, as calculated from the Omnes representation, is written 

Imn(s) 3m* . ( S l 

->P\S) ~ : e x P 
2s f S l <f>(s')ds' 

7T y 4 m a S ' ( S ' - S) 
(4.55) 

7T 3271"2 \ S i — S y 

where the bar on the integral sign denotes the Cauchy Principal Value. 

The value of the constant, / , can then be determined by fitting (4.49) to (4.55), 

this fit is carried out up to a maximum energy of 400 MeV (over this energy range 
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0.32 0.34 
Energy (GeV) 

0.36 0.38 0.4 

Figure 4.5: The spectral density below 400 MeV, as calculated from our 
Coupling Scheme (points) and from the single channel Omnes represen
tation (solid line) for the Bugg data-set. The errors come from assuming 
a 5% error on the phase-shift with the inelasticity exactly equal to 1. 

0.32 0.34 
Energy (GeV) 

0.36 0.38 0.4 

Figure 4.6: The spectral density below 400 MeV, as calculated from our 
Coupling Scheme (points) and from the single channel Omnes represen
tation (solid line) for the Kaminski data-set. 
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it does not matter which Coupling Scheme we use). The position of the Adler 

zero for isospin-0, S-wave tvtt scattering is fixed by lowest order x ? T to be \m2

x, 

and so we only have one parameter to fit for. The results of this fi t are shown in 

Figures 4.5 and 4.6. The constant of proportionality was found to be ~ 4.7 x 10~7 

for the Bugg parameterisation and ~ 6.5 x 10~7 for the Kamihski data-set, which 

can be seen to give a reasonable fi t . However, these values are quite sensitive to 

the maximum energy of the fit and should not be trusted to an accuracy better 

than 20-30%. 

With this normalisation our two Coupling Schemes are shown in Figure 4.7 

for the Bugg data-set. We see that the differences between the two Coupling 

Schemes are actually quite small, thus, except where the difference is important, 

we will only show results from Scheme I I . In Figure 4.8, we show how the spectral 

density obtained from the Bugg parameterisation compares with that implied by 

the data points shown in Figure 4.3, using Coupling Scheme I I . 
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Figure 4.7: The two Coupling Schemes as calculated from the Bugg data-
set. The solid line shows Coupling Scheme I and the dashed line shows 
Coupling Scheme I I . 
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Figure 4.8: A comparison of the spectral densities obtained, using Cou
pling Scheme I I , from the Bugg parameterisation and the experimental 
data. The labelling for the data points is the same as for Figure 4.3. 



Chapter 5 

Sum Rule Investigation of the 

Scalar Isoscalar Channel 

5.1 The sizes of the different contributions. 

In the preceding Chapter, expressions for the different contributions to the the

oretical side of our sum rules have been give. These expressions contained many 

parameters which, for ease of reference we now list in Table 5.1 along with their 

'standard' values. Unless otherwise stated, the results shown will use these pa

rameter values. Using these standard values, in Figures 5.1 and 5.2 we show the 

size of the three theoretical contributions to the lowest R and T-type sum rules 

for two values of so-

The first thing that we notice from these graphs is that, for typical values 

of s0, the dominant contribution to the theoretical side comes from the purely 

perturbative part. Next most important are the instantons, the contribution of 

which have a magnitude approximately 20-50% that of perturbation theory, with 

the condensate contribution being two orders of magnitude smaller. This shows 

that instanton effects are indeed important in understanding the scalar mesons. 

That they have quite such a large effect on the sum rules could cause some concern 

as the instanton contribution is the least well controlled of the three, being as it 

78 
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Figure 5.1: The purely perturbative (solid line), instanton (dashed line) 
and condensate (dotted line) contributions to the R-type sum rules. For 
the thinner lines So = 3.0 GeV 2, and for the thicker lines s0 = 4.0 GeV 2. 
The standard parameter values of Table 5.1 were used with X = 1 GeV 2. 
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Figure 5.2: As Figure 5.1, but for the T-type sum rules. 



5.2 Measuring the Saturation 80 

Parameter Value 
as(m2

T) Strong coupling constant 0.334 
(mqqq) Invariant light-quark condensate - | m 2 / 2 « -(95 MeV) 4 

(381 MeV) 4 

-(195 MeV) 4 

Gluon condensate 
- | m 2 / 2 « -(95 MeV) 4 

(381 MeV) 4 

-(195 MeV) 4 (msss) Strange-quark condensate at 1 GeV 2 

- | m 2 / 2 « -(95 MeV) 4 

(381 MeV) 4 

-(195 MeV) 4 

ms Strange quark mass at 1 GeV 2 159 MeV 
<W> Light-quark condensate at 1 GeV 2 -(225 MeV) 3 

0.8 GeV 2 Mixed condensate parameter 
-(225 MeV) 3 

0.8 GeV 2 

vvs 
Vacuum saturation violation 1 

Pc Average Instanton size (600 MeV)" 1 

X Instanton Quark Mass Scale Unknown 

Table 5.1: Standard values of all parameters used to evaluate the sum 
rules. 

is based on a rough model. 

Figures 5.1 and 5.2 also suggest that the T-type sum rules are more stable 

to changes in so, though in both cases the increase in the perturbative contribu

tion as so is increased is somewhat compensated by a decrease in the instanton 

contribution. We can also see that for larger s0, the instanton contribution can 

change sign and become negative for some values of M 2 . I f the instanton contri

bution becomes too negative, i t will make the whole sum rule negative. On the 

phenomenological side the sum rules must be positive (due to the positivity of 

Iml l ) , this suggests that for certain values of so, a s ( m 2 ) , X and pc our sum rules 

may break down. 

5.2 Measuring the Saturation 

In any sum rule calculation, we hope to find regions of the parameter space where 

the theoretical and phenomenological sides are equal. We measure this saturation 

of the sum rules by introducing the double ratios 

P ? ( * o , M 2 ) = • (5.1) 

[Ok+\/Jk\QCD 

This ratio is independent of the overall normalising constants on either side, 

i.e f and m 2 ( l GeV 2), and obviously is equal to one when the sum rules are 
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Figure 5.3: The stability curve for the R-type sum rules for various values 
of s0 and the standard parameter values of Table 5.1. The shaded area 
shows the 10% agreement region. 
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Figure 5.4: As Figure 5.3 but for the T-type sum rules. 
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saturated. As sum rule analyses are generally accurate to around 10-20% we set 

an agreement region of 1 ± 0.1. In practice we shall use only the lowest such 

higher sum rules increase the importance of the upper end of the integrand on 

the phenomenological side. Figures 5.3 and 5.4 show this double ratio for the R 

and T-type sum rules for the standard parameter values and various values of s0 

in the range expected to give the best saturation. 

Another way to measure whether the sum rules are saturated is by making 

a prediction for a physical quantity. As M2 is an unphysical parameter, for 

'sensible' values of SQ this prediction should be effectively independent of M2 

over a wide range. From (4.43), we see that the theoretical side of our sum rules 

contains an overall factor of m2(l GeV 2), we can thus make an estimate for the 

average light quark mass from 

If the graph of this quantity against M 2 is found to be flat then we can say 

that the sum rules are saturated. Although the actual value of the quark mass 

extracted will depend on the constant / , its M2 dependence will not, thus as a 

test of saturation (5.2) is independent of any uncertainties in the normalisation 

of the hadronic side. Once again we will use only the lowest sum rules, i.e. SQ, 

to estimate the quark mass. For the standard parameter values, the quark mass 

curves obtained with various So are shown in Figure 5.5, for the R-type, and 

Figure 5.6, for the T-type. 

The first point to notice from Figures 5.3 - 5.6 is that with the standard pa

rameters and X taken arbitrarily to be 1 GeV 2 the sum rules are not saturated. 

Al l four of these Figures make use of Coupling Scheme I I , however using Coupling 

Scheme I would not change this conclusion. In fact, for Coupling Scheme I the 

saturation is slightly worse. That saturation is not achieved is not such a great 

surprise. The scale X is a completely unknown quantity. Whilst we may intu

itively expect that it must be near the typical hadronic scale of around 1 GeV 2, 

double ratio for each type of sum rule, i.e DQ, as the integer powers of s in the 

[Sk] mJl GeV 2) had 

calc 

(5.2) 
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Figure 5.5: mQ(l GeV 2) calculated from the R-type sum rules for various 
values of so and the standard parameter values of Table 5.1, with X 
taken as 1 GeV 2. 
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Figure 5.6: As Figure 5.5 but for the T-type sum rules. 
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we do not know a priori its exact value nor how sensitive the sum rules will be 

to it . 1 GeV 2 was just a guess, and we would have been very lucky indeed if our 

first guess had turned out to be correct. Thus in Section 5.3.1 we will attempt 

to determine this scale and we shall see that it has quite a strong effect on the 

quality of the saturation. The second conclusion to be drawn from Figures 5.3 -

5.6 is the the T-type sum rules are indeed less sensitive to the choice of so- From 

now on we will in general show results based on these sum rules. 

5.3 The Instanton Parameters 

5.3.1 The Scale of the Quark Mass 

As mentioned before, the instanton contribution includes the average quark mass 

at a fixed, but unknown, scale, X. To evaluate (4.35), we introduce a new 

parameter, A, which is equal to the ratio of m2(X) to m 2 ( l GeV 2), i.e., 

A = 
mq(X) 

mq(l GeV 2) = exp 2 r m 

A , ( l G e V 2 ) P\P!) 

(5.3) 

where the second equality follows from (4.42). The instanton contribution is then 

n : ' ( 5 ) = m 2 ( l G e V 2 ) A F ( P c , Q 2 ) , (5.4) 

where F(pc,Q2) stands for the combination of Bessel functions in (4.35). Obvi

ously then, A just serves to rescale the the instanton contribution. Note that a 

value of A > 1 implies that the scale X < 1 GeV 2. 

In Figure 5.7 we show how the saturation of the sum rules, using the Bugg 

parameterisation and Coupling Scheme I I , varies with A. As shown above, (see 

Figure 5.4) the saturation curve for the T-type sum rules does not have a strong 

dependence on s0 in the region 3.0 GeV 2 < so < 4.0 GeV 2 and henceforth, unless 

otherwise stated, we use the value s0 = 3.7 GeV 2. No significance should be 

attached to this value. On the other hand, we have found that it is, in fact, not 

possible to saturate the sum rules without tuning both instanton parameters and 
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Figure 5.7: The effect of the instanton parameter A on the the saturation 
curve for the lowest T-type sum rules. The values s0 — 3.7 GeV 2 and 
pc = (500 M e V ) - 1 were used. 

1.8 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 
Energy (GeV) 

Figure 5.8: The ratio [mq{E2)/mq{\ GeV 2 ) ] 2 , as calculated from (4.42) 
using (4.41) and as(m2

T) = 0.334. Used to determine the scale X. 
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in Figure 5.7 the average instanton size has been set to the non-standard value 

pc = (500 M e V ) - 1 . This choice somewhat preempts the results of Section 5.3.2 

where we will determine the best value of this parameter more precisely. 

From Figure 5.7 we can see that the sum rules are far from satisfied when 

A = 0, i.e. when the instanton contribution is removed. However, the sum rules 

are well saturated for A = 1.2 — 1.3. From now on, for the Bugg data-set, we will 

take A = 1.25. From Figure 5.8, we see that this value corresponds to a scale 

X ~ 0.91 GeV 2. Using the Kamihski data-set gives a similar result, but the best 

value of A is found to be 1.2 corresponding io X ^ 0.92 GeV 2. 

5.3.2 The Average Instanton Size 

In Section 5.3.1 it was mentioned that the sum rules were sensitive to the average 

instanton size, and that the standard value did not give good saturation. We now 

attempt to fix the best value of the average instanton size. This parameter is not 

entirely free. Working within the Instanton Liquid Model, with the instanton 

density fixed at nc = 1 G e V - 4 , the value of pc cannot become too large, else the 

assumption of diluteness, and hence the framework within which the instanton 

contribution is calculated, will breakdown. In Figure 5.9 we show the effect that 

the instanton size has on the saturation curves for the T-type sum rules, using 

Coupling Scheme I I . 

We see that saturation is achieved when pc = (500 M e V ) - 1 and that there is a 

considerable change of shape of the saturation curve between pc = (450 M e V ) - 1 

and (500 M e V ) - 1 . In Figure 5.10 we explore this region in more detail and can 

see that good saturation is achieved for pc = (470 — 490 M e V ) - 1 , with the 'best' 

value being pc = (480 M e V ) - 1 ^ 0.42 fm. This value is slightly larger (25%) than 

the estimate [90] based on the size of the gluon condensate which has become the 

standard value employed in the Instanton Liquid Model. However, it is entirely 

consistent with current lattice determinations which tend to find sizes in the range 

0.32 - 0.43 fm. A very similar picture is found using the Kamiriski data-set 
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Figure 5.9: The saturation curve, DQ, for various values of the average 
instanton size, pc. s0 = 3.7 GeV 2, A = 1.25 and all other parameters set 
to values listed in Table 5.1. 
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Figure 5.10: As Figure 5.9 but for finer steps in pc. 
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From now on, unless stated otherwise, all results shown will make use of the 

instanton sector parameters pc = (480 MeV)""1 and A = 1.25 (or A = 1.2 for the 

Kamihski data-set). 

5.4 The O P E Parameters 

We now turn to the parameters entering into the perturbative and condensate 

contributions and investigate how they affect the saturation. 

5.4.1 The Strong Coupling Constant 

The perturbative contribution to our sum rules has only one parameter, which 

we choose to be the strong coupling constant at a fixed point. This parameter 

has been experimentally measured many times and as explained in Section 4.7 we 

take the ALEPH measurement at the mass of the r as our input. This value, after 

running, is consistent with measurements at the mass of the Z-boson. As this is 

not a free parameter we will not try to 'tune' it as we did above with the instanton 

parameters. Instead, in Figure 5.11, we just show how varying as{m2.) within the 

experimental error changes the saturation. In Figure 5.11, the instanton quark 

mass scale, X, has been kept constant. The parameter A is determined by the 

running of the quark mass, and so its value at the fixed scale X will depend on 

as{m2

T) as well as the scale. Thus when changing as(m2.) we must also change A, 

increasing a s(m^) requires that A is increased also. 

Varying as{m2) even within the experimental errors destroys the saturation 

of the sum rules. However, the quality of the saturation can be restored by re-

tuning the instanton parameter A, as illustrated in Figure 5.12. Here the value of 

A, and therefore X, has been re-tuned to the best value for each as(m2

T). These 

values are shown in Table 5.2. 
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Figure 5.11: The change in saturation as as{m2.) is varied within its 
experimental error. The dashed line corresponds to as{m2.) = 0.312 
(A = 1.17), the solid line to as(m2

T) = 0.334 (A = 1.25) and the dotted 
line to as(m2

T) = 0.356 (A = 1.49). 
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Figure 5.12: As Figure 5.11 but with the parameter A re-tuned to its 
best value for each value of ct s(m^), as listed in Table 5.2. 
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a s (m 2 ) 
Bugg Kamihski 

a s (m 2 ) A VX (GeV) A VX (GeV) 
0.312 1.46 0.82 1.34 0.85 
0.334 1.25 0.91 1.20 0.92 
0.356 1.05 0.98 0.94 1.02 

Table 5.2: The best values of the instanton parameters as OLs{m2

T) is 
varied across its experimental range, for both data-sets. 

5.4.2 The Condensate Parameters 

To measure how sensitive our results are to the size of the gluon condensate, we 

write 

(asG2) = c(asG2)0 (5.5) 

where (asG2)0 is the standard value listed in Table 5.1. The effect of varying the 

constant c in the range 0 < c < 2.5 are shown in Figure 5.13. We see that the 

double ratio is closest to one for c = 1.5 i.e. a gluon condensate 50% larger than 

our standard value. However, the size of the gluon condensate does not heavily 

effect the saturation of the sum rules. 

In Section 4.5.4 the size of the four-quark condensate was estimated via the 

vacuum saturation hypothesis of [57]. To account for the violation of this hy

pothesis we introduced the parameter, VVS, with VVS = 1 implying that vacuum 

saturation is exact.. In Figure 5.14 we show how this parameter affects the satu

ration curve for the Bugg parameterisation. We see that reasonable agreement is 

obtained in the range — 1 < VVS < 1.5. This (more than) encompasses the range 

of violation of vacuum saturation suggested in [84] and so we conclude that our 

sum rules are relatively insensitive to the violation of vacuum saturation. 

We have also looked at the consequences of varying the remaining condensate 

parameters i.e. {mqqq), ml, (msss) and ms(l GeV 2). We do not included graphs 

of these effects as in each case varying the parameter from zero to twice the value 

listed in Table 5.1 produced no noticeable change in the saturation or quark mass 

curves. 

That the condensate parameters do not greatly affect the saturation of our sum 
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Figure 5.13: The saturation curves, , for various values of the gluon 
condensate. 
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Figure 5.14: The saturation curves, Dj, for various values of the vacuum 
saturation violation parameter, Vvs. 
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rules is no great surprise. As was shown in Figure 5.2 our sum rules are dominated 

by the perturbative and instanton contributions. Sum rule investigations of the 

scalar-isoscalar channels are not a good way to determine condensate values, but 

on the other hand the results in this channel will not depend heavily on the 

uncertainties in these values. 

5.5 The Average Light Quark Mass 

As explained in Section 5.3.1 the scalar-isoscalar sum rules can be used to estimate 

the average up/down-quark mass. In Figure 5.15 we show this quark mass curve 

as calculated using the Bugg data-set and Coupling Scheme I I . 
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Figure 5.15: The quark mass curves for various values of So m the range 
where saturation was found to be good. 

As we can see, the curves are quite flat, the maximum variation over the 

entire range being of the order of 1%. This supports the evidence of Sections 5.3 

and 5.4 that the sum rules are saturated by our Coupling Schemes. I f we confine 

our investigation to the range indicated, we find that the actual value of the 
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quark mass is almost independent of SQ. This value is seen to be approximately 

4.5 MeV. 

To see how stable this value is to the various inputs, we start by considering 

the effects of the different phenomenological options. Figure 5.16 shows the quark 

mass curves for the two different data-sets and both Coupling Schemes. We see 

that, whilst the choice of Coupling Scheme has very little effect, the choice of data-

set changes the result by almost 10%. This difference between the two data-sets 

was found to be almost entirely due to the different constants of proportionality 

required on the phenomenological side. As stated in Section 4.8.3, the constant 

of proportionality was not well determined and this was found to be the largest 

single source of uncertainty in our estimate of the quark mass. 

4.8 I-

4.6 

ST 4.4 ^ 

-4.2 

3.8 

3.6 

0.5 1 - 5 o o 2 

M 2 (GeV 2 ) 
2.5 3.5 

Figure 5.16: The quark mass curves for the Bugg (solid) and Kamiriski 
(dashed) data-sets. The thinner lines come from using Coupling Scheme 
I and the thicker lines from Coupling Scheme I I . 

Next we consider the effect the instanton parameters have on the value of the 

quark mass obtained, confining our investigation to those parameter ranges that 

were seen to give good saturation in Section 5.3. In Figure 5.17 we show the effect 
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of the instanton size on the quark mass. We see that this effect is not negligible, 

varying the instanton size by about 6% changes our result by around 5%. 

4.8 -

4.6 -

5T4.4 
0) 

•4.2 

4 

3.8 

3.6 

I 1 

p c = (470 MeV)" 1 

p c = (480 MeV)-i 
p c = (490 MeV)-i 

-
p c = (500 MeV)-i 

- -

1 1 i i i i i 

0 0.5 1.5 „ 2 0 2.5 
M 2 (GeV 2 ) 

3.5 

Figure 5.17: The quark mass curves for various values of pc within the 
region where good saturation was found. 

We do not show how the quark mass varies with the parameter A as this was 

found to be negligible. This parameter was seen to markedly effect the quality 

of the saturation of the sum rules without significantly altering the final value 

obtained for the quark mass. 

The input value for the strong coupling constant does, however, have a no

ticeable effect on the quark mass, as is seen from Figure 5.18. The experimental 

uncertainty in this quantity translates into an uncertainty in the final answer of 

around 4%. 

Figure 5.19 shows how the input value of the gluon condensate affects the 

quark mass curves. As for the double ratio, the effect is not large. The quality 

of the saturation, i.e. the flatness of the curve, does not change greatly as the 

condensate value is changed and the extracted quark mass only differs by 4% over 

the range studied. 
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1.5 „ 2 „ 2.5 
M 2 (GeV 2 ) 

Figure 5.18: The quark mass curves as as(m2) is varied across its 
experimental range, with the instanton scale varied according to Ta
ble 5.2. The dashed line corresponds to as(m2) = 0.312, the solid line to 
as{m2

T) = 0.334 and the dotted line to as{m2) = 0.356. 

The effect that violating vacuum saturation has on our estimate of the quark 

mass is shown in Figure 5.20. From the flatness of the curves we again see that 

the best saturation is obtained in the range — 1 < VVS < 1, agreeing with what 

we found in Section 5.4.2. Restricting ourselves to this range, the variation in 

our estimate is about 3%. 

From the graphs in this section we estimate that the average light quark mass 

at 1 GeV 2 is around 4.7 MeV. The combined error arising from the uncertainties 

arising above is of the order of 20%. 

In Table 5.3 we list some other recent estimates of this quantity. Comparing 

our result with this Table, we see that it is consistent, though markedly lower 

than, other sum rule determinations. Our value is not consistent with the results 

of quenched lattice QCD, being approximately 20% lower. However, studies of 

the strange quark mass suggest that unquenching leads to lower predictions for 
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Figure 5.19: The variation of mq(l GeV 2) with the value of the gluon 
condensate. 
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Figure 5.20: The effect of the violation of Vacuum Saturation on our 
estimate of mq(l GeV 2). 
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Technique mq{\ GeV'') (MeV) 
Bijnens et al. [115] Pseudoscalar Sum Rule 6.0 ± 2 . 3 

Chetyrkin et al. [78] 11 5.7 ± 1.2 
Prades [116] 11 6.4 ± 2.3 

Maltman & Kambor [117] 1} 5.6 ± 0 . 8 
Dosch [118] SR for (qq) + GMOR 4.7-7 .9 

APE 98 [119] Quenched Lattice QCD 6.8 ± 0 . 6 
JLQCD 99 [120] n 6.0 ± 0 . 4 

CP-PACS 99 [121] i) 6.5 ± 0 . 3 
QCDSF 99 [122] )> 6.3 ± 0 . 3 

APE 99 [123] i i 6.8 ± 0 . 7 
CP-PACS 00 [125] n 6.2 ± 0 . 2 
SESAM 98 [124] Unquenched Lattice QCD 3.9 ± 0 . 2 

CP-PACS 00 [125] i i 4.9 ± 0 . 3 
QCDSF - UKQCD 01 [126] i i 5.0 ± 0 . 3 

Table 5.3: Recent determinations of mq(\ GeV 2). Note that Lattice QCD 
results are generally quoted as m g (4 GeV 2) and have here been scaled up 
by a factor of 1.42 as required by (4.42) with cts(m2

T) — 0.334. 

quark masses (see Table 4 of [12]) and this seems to be borne out in the non-

strange mass also [124, 125]. Our estimate is consistent with the early results of 

unquenched lattice QCD. 

5.6 Discussion 

From the results presented in this Chapter it seems clear that the Coupling 

Schemes of Section 4.8.1 are capable of saturating our sum rules. These coupling 

schemes, being based on KIT scattering, contain the /o(980) as a sharp dip. As 

such this state does not contribute greatly to the integral on the phenomenologi-

cal side. That good saturation is possible strongly suggests then that the / 0(980) 

is not important in saturating the scalar-isoscalar sum rules which in turn im

plies that it does not contain a large nn component in its wave function. This 

result is at odds with the conclusion reached in [63, 64]. However, as explained 

above, when the authors of [64] considered a more realistic approximation for the 

resonance shape the parameters found were more consistent with a Breit-Wigner 

fit to the /o(400 — 1200) than the / 0(980). From this analysis however, beyond 
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saying that i t is not strongly nn, we can make no comment on the structure of 

the / 0(980). 

Looking more closely at the saturation curves of Sections 5.3 and 5.4 we see 

that if saturation is achieved at all i t starts to set in for relatively low values 

of M 2 , i.e. around 1 GeV 2. As the exponential in (4.8) tends to suppress the 

integrand in the region s > M2, saturation at these values of M2 would suggest 

that it is the lower energy portion of the experimental data that is most important 

in saturating the sum rules. Furthermore, the /o(1370) will not contribute to the 

sum rule until M2 > (m — T/2) 2 « 1.4 GeV 2. That the sum rules are saturated 

from M2 « 1 GeV 2 thus suggests that it is the / 0 ( 4 0 0 - 1200) that plays the most 

important role in saturating the nn scalar-isoscalar sum rules. This conclusion is 

independent of the data-set and Coupling Scheme used. 

Our results again show that the Operator Product Expansion is not enough 

to fully describe the physics of the scalar mesons. We find saturation only 

when instantons are included. One slightly worrying point of this analysis is 

the need to tune the average instanton size away from its accepted value of 

pc « (600 M e V ) - 1 ^ 0.33 fm. We found that saturation was only possible when 

pc « (470 - 500 M e V ) - 1 or m 0.40 - 0.42 fm, which is about 25% larger. The 

validity of the Instanton Liquid Model relies on the average separation of instan

tons being significantly larger than their average size. If this is not true then 

neighbouring instantons will overlap significantly and it becomes meaningless to 

talk about individual instantons. The assumed average instanton separation of 

1 fm is only about 2.5 times the value of pc required by our sum rule, and so we 

are probably approaching this limit. Reassuringly though, lattice simulations of 

the topological features of the QCD vacuum seem to find average instanton sizes 

similar to the one we are forced to use (for a summary of lattice determinations 

of instanton parameters see [91]). 

The quark mass curves of Section 5.5 were found, with the appropriate choice 

of parameters, to be flat and this flatness sets in at around M 2 = 1 GeV 2. This 
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is again evidence that our Coupling Schemes are capable of satisfying the sum 

rules and that the state most important for this saturation is the /o(400 — 1200). 

The actual value found for the quark mass was 

mq{\ GeV 2) = 4.7 ± 0.9 MeV . (5.6) 

The most conservative way to interpret this result is as a consistency check. A 

number of assumptions are made in this analysis, e.g. the validity of the Cou

pling Schemes, the truncation of the OPE at dimension-6 and the perturbative 

contribution at 0{a\), the form of the instanton contribution etc. That our final 

result is of the correct order of magnitude at least reassures us that none of our 

assumptions are too far off the mark. Going further, our estimate is quite com

patible with both previous sum rule determinations and the early unquenched 

lattice estimates that are just starting to appear in the literature. 



Chapter 6 

Conclusions 

In Chapter 2 we have outlined a method, first proposed by Nogova et al, for 

determining the number of resonances in a given channel, and their parameters. 

This method involves an analytic continuation of the experimental data and does 

not make use of any model for the underlying dynamics of these states nor of the 

the non-resonant background scattering. The result of this method as applied 

to S-wave irK scattering are presented in Chapter 3. These results led us to the 

conclusion that this channel contains only one resonance in the mass range 825-

180 MeV: the established KQ(1430). We found no evidence for a light K in the 

data from the two highest statistics experiments to explore this channel. That 

there is only one strange scalar resonance below 1800 MeV obviously has serious 

implications for models that predict two complete scalar nonets [26, 28, 127]. 

In Chapters 4 and 5 we have carried out a QCD Finite Energy Sum Rule 

study of the correlator built from the light-quark scalar isoscalar current. On the 

experimental side we have argued that the spectral density can be related to TTIT 

scattering data. We found that the / 0(980) was not required to saturate these 

sum rules and that the / 0(400 —1200) plays the most important role in saturation. 

This suggests that the /o(400 — 1200) has a large uu + dd component in its wave-

function whilst / 0(980) does not and is presumably predominantly ss or KK. 

Although the /o(400 — 1200) is capable of saturating our sum rules, its large 

width would suggest that it spends much of its time in a two meson configuration 
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in keeping with the picture of [29, 18]. Furthermore, our results would suggest 

that the /o(400 — 1200) does not contain a large gluonic component. This is 

contrary to the claims of [128] that the /o(400 — 1200) and the / 0(1370) are in 

fact a single, glueball state. 

The scalar meson nonet is still very far from being understood. The KQ(1430) 

is generally assumed to be the strange member of the nonet and its mass can 

be taken as setting the natural mass scale. Our results would suggest that the 

/ 0(400 — 1200) is a manifestation of the uu+dd seed state of this nonet. Although 

its mass is not determined to any great precision, as evidenced by its name, the 

/o(400 — 1200) would appear to be much lighter than we would expect. However, 

there are mechanisms at work in the scalar sector that can significantly shift the 

masses of physical hadrons, e.g the l if t ing of the degeneracy of the the isoscalar 

and isovector due to instantons [63, 64] and the coupling of gg-states to physical 

decay channels [28, 29, 18]. Thus the large spread of masses may not be as 

implausible as it first appears. 

The two techniques used in this study could, of course, be applied to the 

other channels in the scalar sector. In particular, the pole search technique of 

Chapter 2 could be usefully applied to the isoscalar channel to determine the 

parameters of the /o(400 — 1200) more accurately. With no light K being found, 

there seems to be no argument against interpreting the 7<'g(1430) as a gg-state, 

thus, in the isospin-1/2 channel, there is little to gain from a sum rule analysis 

of the type carried out in Chapter 5. The correlators of the the isovector and 

hidden-strangeness currents, i.e mq(uu — dd) and msss, do warrant investigating 

in this way. The theoretical expressions required are already available and are 

only slightly different from those given in Chapter 4. This could, in principle, 

allow us to entirely determine the qq nonet and indicate what room, if any, is left 

for the scalar glueball. 
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