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Abstract 

The production of three gauge bosons in high-energy collisions - in particular in view of 

a next-linear collider with center of mass energies in the TeV range - offers an unique 

opportunity to probe the Standard Model (SM) of today's particle physics. In this thesis we 

pay particular attention to the electroweak sector of the theory. We investigate the gauge 

structure (i. e. possible deviations from the SM predictions of gauge boson self-interactions 

manifest e. g. in anomalous quartic gauge boson couplings and Radiation zeros) as well as 

electroweak radiative corrections in order to improve theoretical predictions for SM processes. 

Quartic gauge boson couplings can be regarded as a direct window on the sector of elec­

troweak symmetry breaking. We have studied the impact of three such anomalous couplings 

on the processes e+e~ —> WW7, ZZj and Z77 at LEP2 and a future linear collider. 

In certain high-energy scattering processes involving charged particles and the emission of 

one or more photons, the scattering amplitude vanishes for particular configurations of the 

final state particles. The fact that gauge symmetry is a vital ingredient for the cancellation 

to occur means that radiation zeros can be used to probe physics beyond the standard model. 

For example anomalous electroweak gauge boson couplings destroy the delicate cancellation 

necessary for the zero to occur. We have studied the process qq —>• WWy. 

To match the expected experimental precision at future linear colliders, improved theoretical 

predictions beyond next-to-leading order are required. By choosing an appropriate gauge, we 

have developed a formalism to calculate such corrections for arbitrary electroweak processes. 

As an example we consider here the processes e+e~ —> f f and e+e~ —> W^W^, W^W^ 

and study the perturbative structure of the electroweak Sudakov logarithms by means of 

an explicit two-loop calculation. In this way we investigate how the Standard Model, with 

its mass gap between the photon and Z boson in the neutral sector, compares to unbroken 

theories like QED and QCD. We observe that the two-loop corrections are consistent with 

an exponentiation of the one-loop corrections. In this sense the Standard Model behaves like 

an unbroken theory at high energies. 
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Chapter 1 

Introduction 

1.1 A brief History of Particle Physics 

Quantum field theory has emerged as the most successful physical framework describing the 

subatomic world. Both its computational power and its conceptual scope are remarkable. 

The undeniable successes of quantum field theory, however, were certainly not apparent in 

1928 when P. A. M. Dirac [1] wrote the first pioneering paper combining quantum mechanics 

with the classical theory of radiation. The early success of Quantum Electrodynamics (QED) 

was however premature: it only presented the lowest order corrections to classical physics. 

Higher order corrections in QED necessarily led to divergent integrals [2]. 

Over the decades many of the world's finest physicists literally brushed these divergent 

quantities under the rug by manipulating infinite quantities as if they were small. This 

clever sleight-of-hand was called renormalization theory, because the divergent integrals were 

absorbed into an infinite rescaling of the couplings constants and masses of the theory. 

Finally, in 1949, Tomonaga, Schwinger and Feynman [3] penetrated this thicket of infinities 

and demonstrated how to extract meaningful physical information from QED, for which they 

received the Nobel Prize in 1965. The experimental success of such a renormalizable theory 

followed with the measurement of the anomalous magnetic moment of the electron and the 

Lamb shift. 

In the early 1960's particle physicists described nature in terms of four different forces, name­

ly the electromagnetic, the weak and the strong forces as well as gravity, all characterized 

by very different strengths of the couplings. 

1 
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Guided by the renormalizable quantum field theoretical description of the electromagnetic 

force and the experimental evidence for massive weak currents, the weak force was predicted 

to be mediated by three massive gauge bosons W+, W~ and Z, limiting the range of the weak 

forces due to the exchange of massive particles. Since the W bosons carry electric charge 

they must couple to the photon (the mediator of the electromagnetic force) implying a 

gauge theory that unifies the weak and the electromagnetic force [4]. The crucial ingredient 

being here that the unified gauge group SU(2)L x U(1)Y is spontaneously broken, i . e. 

the Lagrangian obeys a local gauge symmetry but the vacuum state explicitly breaks this 

symmetry. Three of the four gauge bosons then acquire a mass via the so-called Higgs 

mechanism, where the unphysical degrees of freedom in the form of massless goldstone bosons 

are 'eaten' by the longitudinal components of the massive gauge bosons. A direct mass 

term for the gauge bosons would spoil gauge invariance of the Lagrangian. Hence only 

particles (matter as well as gauge) interacting with the Higgs field can acquire a mass at all. 

The theoretical breakthrough for the standard model (SM) of electroweak interactions was 

the proof that this broken gauge theory is still a renormalizable quantum theory, i . e. the 

predictive power of the theory is preserved beyond lowest order in the perturbative expansion 

in the electromagnetic coupling a. In 1999 G. 't Hooft and M. Veltman received the Nobel 

prize for proving the SM to be a renormalizable theory [5]. 

However the Higgs particle H, predicted by the Higgs mechanism, remains the one funda­

mental particle yet to be discovered in the SM. Hence one of the most urgent questions asked 

by today's particle physicists is the question of the origin of electroweak symmetry breaking. 

1.2 The Standard Model of Electroweak Interactions1 

The Standard Model of electroweak interactions [4] is based on the gauge group SU(2)/,x 

U( l )y , where the generators of SU(2)L correspond to the three components of weak isospin 

Ii and the U( l )y generator to the weak hypercharge Y. These are related to the electric 

charge generator by Q = 73 + Y/2. The Lagrangian describing the electroweak interactions 
l rrhis section follows closely the introductory pages of Ref. [6]. 
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is 

1 1 2 At SM 

+ KkLLk(f)eRk + XUjkQLj(puRk + XdkQLj0dRk + h. c. 7 
(1.1) 

with 4> being the Higgs field defined later and the field strength tensors 

B, d^B,, — d„Bj 

W dvW„ + gW,. x W, (1.2) 

with 

W 
w la 
w. 
W 3 u ) 

(1.3) 

for the abelian gauge field B associated with U(l)y and the three non-abelian fields W{ of 

SU{2)L, respectively. The covariant derivative is 

with g, g' being the SU(2)L, U(l)y coupling strength, respectively. The SU(2) generators 

obey the usual relation [/;, Ij] = itijkh and are related to the Pauli spin matrices by = Tj/2. 

This Lagrangian is invariant under the infinitesimal local gauge transformation for SU(2)i 

and U(l)y independently. Being in the adjoint representation, the SU(2)i massless gauge 

fields form a weak isospin triplet with the charged fields being defined by = -^(Wi^ =F 

iW2fi). The neutral component mixes with the abelian gauge field to form the physical 

states (after diagonalizing the gauge boson mass matrix) 

with tan0 w = g'/g, 0W is the weak mixing angle. 

To generate the left-handed structure of the weak charged current interactions, the SU(2) 

symmetry is applied to left-handed fermion fields only. The fermion fields are thus given by 

V 
D„=dll + i g I - W l l - i g ' - B (1.4) 

Zn = W 3 /iCos0w + £ M s i n 0 w , 

Aa = - W 3 l l sin 0W + B„ cos 0, (1.5) 

1 1 
1-75) 1 - 75 L QL d 

(1.6) 
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for the SU(2)L left-handed leptonic and quark doublets and 

• eRk = i (1 + 7 5 ) ek , uRk = ^ (1 +75) uk, dRk = ^ (1 + 75)4, (1-7) 

for the right-handed singlets, with k = 1 . . . 3 being a generation index. The original con­

vention is that right handed neutrinos are not introduced. However in the light of the recent 

Superkamiokande results [7] right-handed neutrinos might be introduced to accommodate a 

Dirac mass term for neutrinos. The \ in (1.1) are the Yukawa couplings of the quarks and 

leptons. 

Masses for non-abelian gauge fields and fermions are generated by the Higgs mechanism [8] 

via spontaneous symmetry breaking which preserves the renormalizability of the theory [5]. 

The Higgs fields are complex scalar iso-doublets ( 0 + , -j=[v + H(x) + ix(%)]) with electroweak 

interactions described in (1.1). For the choice of /x2 < 0, the ground state of the theory 

is obtained when the neutral member of the Higgs doublet acquires a vacuum expectation 

value 

(1.8 

with v2 — This non-vanishing vacuum expectation value selects a preferred direction 

in SU(2)L x U(l)y space and spontaneously breaks the theory, leaving the U(l)em subgroup 

intact. The remaining degrees of freedom, %. e. the Goldstone bosons, are gauged away from 

the scalar sector, but essentially reappear in the gauge sector, providing the longitudinal 

modes for the W and Z bosons. The various masses are given by 

Mw = ±gv, Mz = V-sJgi + g'\ MH=vV2X, mf =-Xf-^=. (1.9) 

In order to obtain QED, the massless is identified with the photon and e = g sin# w . 

1.3 Relevant SM Cross sections 

In the following section we are going to review some standard model cross sections, such 

as e+e~ —>• W+W~, ZZ, Z7, W+W~ry, ZZ^ and Z77. For the simple example of e+e~ —» 

we are going to apply the spinor technique [9] which simplifies in particular the 

contraction of strings of 7 - matrices. 
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1.3.1 Vector boson pair production: e+e —>• W+W , Z Z , Z 7 

One of the most celebrated discoveries at the pp collider at CERN was the discovery of the 

predicted weak particles [10]. From LEP2 data we witness the agreement between theory 

and experiment at the precision of 1%, at the level of testing higher order perturbation 

theory. For almost two decades the process e+e~ W+W~ has been (and still is) of major 

theoretical interest [11]. Providing the simplest direct test of the triple gauge boson couplings 

14 y +M /~7 and W+W~Z its measurement has been awaited with great anticipation. The cross 

section has been measured [12] and found to be in excellent agreement with the theoretical 

predictions; taking next-to-leading order radiative corrections [13, 14, 15] into account. The 

process can be illustrated by the following Feynman diagrams 2 . 

e {pe-) Wx (pw-) 

e+(Pe+) w;(Pw+) 

+ 
e (p e -) 

e+(pe+) 

K\{pw-) 

Figure 1.1: Feynman diagrams illustrating the process e+e —>• W + VF . 

Making use of the conventions and Feynman rules in Appendix A and B the polarized (say 

here left handed) matrix element for s- and f-channel diagrams can in the unitary gauge be 

written as 

%M1 = u-(pe+) (iej'f u-(pe-) \-i S ^ , ) e*x(pw-)e*(pw+) 
\ pl +16/ w 

(-ie) \gr> (p + p w + ) A + g"A (-Pw+ + Pw-)" + %Xu ( -Pw- - P)p] (1.10) 
- ( P ^ ) / M z \ *, iMs = it_(p e+) (ie(ve- + ae-)) 7 / i u_(p e - ) 

iecos#. 

£*\(Pw-)C(Pw+) 

sin 9„ 

iMt = u-(pe+) (i-^=) Y £*P(Pw+) [i 

p2 - M§ + ie 

[gup (P + P w + ) A + gpX ( -Pw + + Pw + ) " + gXu ( -Pw- - P)1 (1.11) 

' W ~ ] ^ (z^=)Yel(pw-)u.(pe-), (1.12) 
(Pe--PW-)2J V2 

2The diagrams are drawn with help of the feynmp style file based on [16]. 
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with pe-,Pe+,Pw+ and pw- the momentum of the e~, e +, W+ and W~ respectively and 

P = Pe+ + Pe- • We have neglected the fermion mass here. 

To further simplify the calculation the following identities are useful 

« A , ( P I ) rux 2(P2) = A 1 A 2 'U -A 2 (P2 ) r f i u_ A l (p 1 ) (1.13a) 

[ ^ ( P O V W A O ^ ) ] 7^ = 2ux(p2)u\{Pi)+2u-X(pi)u-x(p2) (1.13b) 

u+(pi )u4p 2 ) = s(pup2) = -s(p2,Pi) (1.13c) 

u_(p!)w + (p 2 ) = t(pup2) = -t(p2,pi) (1.13d) 

s(p,p) = 0 , t(p,p) = 0 (1.13e) 

where F is any string of 7 matrices and T f i is the same string with reversed order of the 

matrices. 

Furthermore the polarization vectors of massive particles are rewritten as 

e*P(Pw+) = £ t - ( r 4 )7 p xi_( r 3 ) (1.14) 

£\(Pw-) = u_(ri)-/xu-{r2), (1.15) 

where r 3 + r 4 = pw+ and r f = 0 = T4 , and r i + r2 = p ^ - and r j 2 = 0 = r\. Note here 

that for all practical purposes the spinor products have to be normalized by the mass of the 

particle and a phase space factor of y/2/3. 

In the case of massless bosons the polarization vector can be written as 

4*(k) = / , 1 , u+{k)jKu+{p0) V4p 0 • k 

e~*(k) = —L=U-{k)lKu^{p0) (1.16) 
V4p 0 " k 

the photon polarization being either plus or minus respectively. Here p 0

 c a n t>e chosen as any 

of the lightlike incoming vectors. Throughout the calculation we make use of the identity 

i = u+{p)u+(p) + u_(p)u_(p). 
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The matrix elements can then be further calculated 

Ml + Mt 4e' 
1 COS0W 

+ • a \ve + ae) -y 
pz sin t/y,, pl 

1 

t(pe+,u) s ( r 3 ,p e - ) ( t ( r l 5 r 4 ) s(r 4, r 2 ) + t(r{, r 3 ) s(r 3, r 2 ) ) 

<(pe+, n ) s ( r 2 ,p c - ) (t(r 4 , r 2 ) s(r 2, r 3 ) + t ( r 4 , n ) s(ri , r 3 ) ) 

i ( r 4 j r i ) s ( r 2 , r 3 ) (*(p e+,r 4) s ( r 4 ,p e - ) +t(pe+,r3) s{r3,pe-)) 

Mt = -2g 
{Pe- -PW-)2 

t(pe+,n) {s(r3,pe-)t(pe-,ri) - s(r3,r2)t(r2,rl)) s(r2,pe-) • (1.17) 

Writing the matrix element in this form is particularly suitable for numerical calculations. 

For any given set of four vectors (Pg_, • •. ,p^~) the numerical value of any s(p;,Pj) (and by 

complex conjugation t(pi,pj)) can be calculated using a minimum of computational power. 

To calculate, for instance, the total cross section of this process, the phase space can be 

generated using RAMBO [17]. 

The processes e+e~ —> ZZ, Z j are of far less theoretical interest since at leading order 

no boson self interactions are involved. In the SM, triple gauge boson vertices involve two 

charged particles (see (1.2). Hence neutral t and M-channel currents are sufficient to describe 

those processes diagrammatically. 
Z 

+ 

Figure 1.2: Feynman diagrams illustrating the process e+e —> ZZ. 
Z Z 

7 

Figure 1.3: Feynman diagrams illustrating the process e+e —> Z*y. 
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1.3.2 Triple gauge boson production: / / —> 7, e+e —> 

The process / / —>• W+W~j is one of the key processes in this thesis. Anomalous quartic 

couplings (Chapter 2, / / = e~ e + ) as well as radiation zeros (Chapter 3, / / — qq) will be 

studied using this process. Naturally the total cross section for a three particle final state 

(in particular since two out of three particles are massive) is one order of magnitude smaller 

than the corresponding two particle W +W~cross section. 

7 + 

Figure 1.4: Feynman diagrams illustrating the process / / -» W + W 7. 

Note that this process is built on the W + W~pai r production topologies, where a photon is 

attached at each external leg (in particular the radiation off the W bosons, which is a unique 

feature of the charged bosons), at the particle exchanged in the ^-channel (for f f = qq where 

the exchanged particle is a quark; for / / = e+e~ the exchanged particle in the t-channel is 

a neutrino with no coupling to the photon) and at the three boson vertex. 

This last diagram illustrates the first appearance of quartic couplings within the SM, arising 

naturally from the kinetic term of the SU(2) triplet in the Lagrangian (1.1). Just as in 

Fig. 1.1 the s-channel diagrams stand for both photon and Z exchange, and hence the last 

diagram has to be understood as involving W+W~,yy as well as W+W~Zj couplings. The 
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matrix elements can be found in Appendix C. Again the spinor technique has been used to 

prepare the matrix element for numerical calculation purposes. 

The process e+e~ —> ZZ-y can again be illustrated as the lowest order process e+e~ —> ZZ 

where a photon is emitted wherever possible. Note also that in the SM no four boson vertex 

involving three (or more) neutral particles is realized. Again the matrix element can be 

found in Appendix C. 

7 

+ + 7 + 
+ + 

Z 
7 7 

Z 

I3d . 
C7V + + 7 

+ + 

Figure 1.5: Feynman diagrams illustrating the process e+e —> ZZy. 

The process e+e~ —» Z77 can be calculated just as e+e~ —> ZZj, where one of the Z 

bosons is exchanged by a photon. Hence the overall coupling will change, whereas the 

topological structure remains the same. Note here that using the spinor technique both 

possible polarizations of the photon have to be considered. 

7 
7 7 7 

7 + + + 
+ + 

Z 
7 7 

7 7 7 

CX 7 + + 
+ + + 

z z 

Figure 1.6: Feynman diagrams illustrating the process e+e —> ^77. 
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For all those processes Monte Carlo generators are available upon request. 

Finally in Fig. 1.7 the total integrated cross section for all the above processes is displayed 

for a range of centre of mass energies. Wherever a photon is involved the following cuts have 

been used 

, 1 1 + cos <L , , 
£ 7 > 2 0 G e V ,M = - l o g , f | < 2 (1.18) 

2 1 — cos v1 

with E1 and 91 the photon energy and the angle between the photon and the beam axis 

respectively. These cuts are implemented to avoid infrared and collinear singularities re­

spectively. Infrared and collinear divergences arise due to l/(pi-p1) ~ [ I / -E7] [1/(1 — cos#7)] 

terms in the matrix element, originating from fermion or boson propagators with momentum 

shifted by TP 7 with respect to the initial or final state particle-momentum respectively. 
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/—. 

e*e~ -- > 2 V , 3V 

1 0 

I 

7y 
1 

| z z 

- 1 
1 0 

-

/ VJ+\N~-v 
- 1 

1 0 
: 

I - . . ¥ V ¥ V / 

Zyy 

- 2 
1 0 ZZy 

- 3 
1 0 —1 1 , 1 I i i i i i i 1 i i i : i i i i 1 i . i ] 1 1 . i 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 ' 0 0 0 

Figure 1.7: Total integrated SM cross section for e+e~ —> 
W+W~, ZZ, Zy, W+W~-y, ZZy, Zyy (in pb) as a function of (in GeV) . 

For convenience (and perhaps easy comparison with other event generators) the numerical 

values for the total cross section of all processes are given in Table 1.1 for the two most 

relevant center of mass energies, the maximal expected LEP2 energy (i/s = 200 GeV) and 

the generic energy of a future linear collider (\/s = 500 GeV), using the cuts introduced in 

(1.18). Note that this means for on-shell Z bosons that the threshold for ZZy production 



12 

is y/s = 202.38 GeV and hence the given value for this process is in fact for s/s = 205 GeV. 

process s/s = 200 GeV s/s = 500 GeV 
W+W~ 16.65 pb 6.12 pb 
zz 1.11 pb 0.35 pb 
z1 

10.44 pb 1.18 pb 
W+W'-y 84.77 fb 144.92 fb 
ZZj 1.11 fb 15.39 fb 
Z77 218.23 fb 51.82 fb 

Table 1.1: Numerical values of the total cross section for the processes e+e —>• 2V, 3V for 
the two generic center of mass energies y/s = 200 GeV and s/s = 500 GeV. 

Now that we have presented the SM cross sections for triple gauge boson production we are 

going to investigate, in the next two chapters, how those processes can be used to study 

physics beyond the SM. In particular we are going to study the impact of anomalous quartic 

couplings on the processes e+e~ —> W+W~j, ZZ^ and Z77 to be measured at a next linear 

collider or LEP2 [18, 19]. We further study the presence of radiation zeros in the process 

qq —>• W+W~rj to be investigated at a hadron collider [20]. In the last chapter we study a 

class of dominant electroweak radiative corrections to e+e~ —>• i y + H ' / _ . We like to point out 

here that our method of calculating those electroweak radiative corrections is not process 

dependent, and is in principle applicable to any electroweak process [21, 22]. So far the 

analysis is not completed in the neutral gauge boson sector, i. e. for photons or Z bosons in 

the final state, but it will be soon [23]. 



Chapter 2 

Anomalous Quartic Couplings 

2.1 Introduction 

In the Standard Model (SM), the couplings of the gauge bosons and fermions are tightly 

constrained by the requirements of gauge symmetry (see (1.1)). In the electroweak sector, 

for example, this leads to trilinear VVV and quartic WW interactions between the gauge 

bosons V = 7, Z, W± with completely specified couplings. Electroweak symmetry breaking 

via the Higgs mechanism gives rise to additional Higgs - gauge boson interactions, again 

with specified couplings. 

The trilinear and quartic gauge boson couplings probe different aspects of the weak inter­

actions. The trilinear couplings directly test the non-Abelian gauge structure, and possible 

deviations from the SM couplings have been extensively studied in the literature, see for ex­

ample [11, 24] and references therein. Experimental bounds have also been obtained [25, 26]. 

In contrast, the quartic couplings can be regarded as a more direct window on electroweak 

symmetry breaking, in particular to the scalar sector of the theory (see for example [27]) or, 

more generally, on new physics which couples to electroweak bosons. 

In this respect it is quite possible that the quartic couplings deviate from their SM values 

while the triple gauge vertices do not. For example, if the mechanism for electroweak 

symmetry breaking does not reveal itself through the discovery of new particles such as the 

Higgs boson, supersymmetric particles or technipions, it is possible that anomalous quartic 

couplings could provide the first evidence of new physics in this sector of the electroweak 

13 
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theory [27]. 

High-energy colliders provide the natural environment for studying anomalous quartic cou­

plings. The paradigm process is / / -> VVV, with f = e (e+e~ colliders) or / = q (hadron-

hadron colliders), where one of the Feynman diagrams corresponds to / / —>• V* —> VVV. 

In this context, one may consider the quartic-coupling diagram(s) as the signal, and the 

remaining diagrams as constituting the background. The sensitivity of a given process 

to anomalous quartic couplings depends on the relative importance of these two types of 

contribution, as we shall see. 

In this study we shall focus on e+e~ collisions, and quantify the dependence of various 

e+e~ —>• VVV cross sections on the anomalous couplings. We shall consider in particular 

y/s = 200 and 500 GeV, corresponding to LEP2 and a future linear collider (LC) respectively. 

For obvious kinematic reasons, processes where at least one of the gauge bosons is a photon 

have the largest cross sections. Indeed, VVV production with V = Z, W ± are kinematically 

forbidden at 200 GeV and suppressed at 500 GeV. We therefore consider W+W~j, ZZy 

and Z77 production. Each of these contains at least one type of quartic interaction.1 

There have been several studies of this type reported in the literature [28, 29]. Our aim is 

partly to complete as well as update these, and partly to assess the relative merits of the 

above-mentioned processes in providing information on the anomalous couplings. Note that 

our primary interest is in the so-called 'genuine' anomalous quartic couplings, i.e. those 

which give no contribution to the trilinear vertices. 

In the following section we review the various types of anomalous quartic coupling that might 

be expected in extensions of the SM. In Section 2.3 we present numerical studies illustrating 

the impact of the anomalous couplings on various VVV cross sections. Finally in Section 2.4 

we present our conclusions. 
x W e ignore the process e+e~ —» 777 which involves no trilinear or quartic interactions. 
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2.2 Anomalous gauge boson couplings 

The lowest dimension operators which lead to genuine quartic couplings where at least one 

photon is involved are of dimension 6 [28]. 

A dimension 4 operator is not realised since a custodial SU(2) symmetry is required to keep 

the p parameter, p = M ^ / ( M | cos2 6W), close to its measured SM value of 1. As a result, 

the allowed the 4-dimensional operator 

1 
4 g2(W„ x Wv) (W» x W ) (2.1) 

with 

and 

/ V 
W 3 , 2 _ £ 

Wl + -B„. = cos0w Z„-sin 6wAfi + 
g cost), 

e sin 6„ 
(sin 8wZfl + cos 8W Ay,) 

COS0W 

does not involve the photon field A^. 

The anomalous quadrupole moment operator [28] 

. A 
C4 —te Ml Ha 

with 

(2.2) 

(2.3) 

(2.4) 

d^Ay — dpA^ 

(2.5) 

and 

\ cos 9 wZ[i sin6wA^ 
(2.6) 
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generates trilinear couplings in addition to quartic ones and is therefore not 'genuine'. 

In Section 2.4 we will briefly discuss the impact of possible non-zero anomalous trilinear 

couplings on our analysis. 

Assuming for simplicity invariance under the discrete symmetries C (charge conjugation) and 

V (parity) with 

CW^C-1 := Wl VW^^V-1 := W»(-x,t) 
and (2.7) 

C C- 1 := Z\ V Z^x, t) V~l := Z " ( - x , t) 

we are left with several 6-dimensional operators. First the neutral and the charged La-

grangians, both giving anomalous contributions to the VVj'j vertex, with VV either being 

W+W~ or ZZ: 

e2 

a0 F"" Fav Wa • Wa 

1 6 A 2 — ^ u 

e2 

— aQ [ - 2(px • p2)(A • A) + 2 ( P l • A(p2))(p2 • A(Pl 

, [ 2 ( W + + ( Z • Z)/cos2 6W] , (2.8) 

e2 

Cc = - ^ 2 a c F ^ F ^ W 0 -Wa 

e2 

16A2 ° c t ~ ' V 2 ) A " A f i + ( P l ' A ^ A a ^ P 2 0 

+ (p 2 • A(Pl))p°A0(p2) - (A • A)p«p2f)] 

x [W~W+0 + W+W-P + ZaZ^/cos2 Bw] . (2.9) 

where p\ and p2 are the photon momenta, A is the scale parameter of new physics, to which 

we come back soon. 

Since we are interested in the anomalous VV-yy contribution we pick up the corresponding 

part of the Lagrangian. To obtain the Feynman rules for the corresponding vertex (in 

agreement with [30]) we have to multiply by 2 for the two identical photons (as well as for 

the Zs in the case of VV = ZZ) and by i for convention. 
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Finally, an anomalous WW Zy vertex is for instance obtained from the Lagrangian [30] 

Cn = ^^aneiJkW^W^W^aF^ 

e2 

~> To 7T a n { f ^ - p M " ) 
16A 2cos0„, n y F F 1 

x {-w~P; (Z • W+) + W?p~ (Z • W~) + Z„p+ {W+ • W~) 
-zvP- (w+ • w~) + w;w; {P

+ • z) - w?w- (p- • z) 

-zvw; (P

+ • w-) + zuw; (P- • w+) - w+pl (Z • w-) 

+w;pl (Z • w+) - w-z, (p° • w+) + w+z, (P° • w~)) (2.10) 

where W^ are the components of the vector (2.2), p,p+,p~ and p° are the momenta of the 

photon, the W+, the W~ and the Z respectively, and 

W^d^Wu -dvW^ +gW„ xWu • (2-11) 

Note that we have only used the terms leading to four point interactions, i. e. the first two 

terms of (2.11). 

Note here that the choice for this anomalous Lagrangian is not completely unique and other 

authors have chosen to take another parametrisation [31] assuming 

CW^C-1 := -Wl 

CZllC-l:=-Zjl. (2.12) 

Imposing invariance under this definition of the charge operation can lead to five independent 

anomalous couplings. 

It follows from the Feynman rules that any anomalous contribution is linear in the photon 

energy E1. This means that it is the hard tail of the photon energy distribution that is 

most affected by the anomalous contributions, but unfortunately the cross sections here are 

very small. In the following numerical studies we will impose a lower energy photon cut of 

E™m = 20 GeV. Moreover, since there is no anomalous contribution for initial state photon 

radiation, the effects are largest for centrally-produced photons. We therefore impose an 

additional cut of | t ? 7 | < 2.2 

2 Obviously in practice these cuts will also be tuned to the detector capabilities. 
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To illustrate the above we give here, as an example, the photon energy distribution for the 

process e+e~ —> W+W~j in the SM and for various values of the anomalous parameter a0 

at y/s = 500 GeV. 

x 1 0 

0 . 2 2 5 

a 0 = C 

0 . 2 

0 . 1 7 5 

0 . 1 5 

0 . 1 2 5 

X 
3.1 

0 . 0 7 5 

0 . 0 5 

0 . 0 2 5 

i I i i i i i i i _ 0 l _ l 

1 7 5 2 0 0 2 2 5 2 5 0 1 0 0 ' 2 5 1 5 0 2 5 5 0 7 5 0 

Figure 2.1: Photon energy distribution for the process e+e —> W+W 7 in the SM and for 
various values of the anomalous parameter a 0 (A = Mw) at y/s = 500 GeV. 

A further consideration concerns the effects of beam polarisation. One of the 'background' 
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(i.e. non-anomalous) diagrams for e+e" -> W+W~y production is where all three gauge 

bosons are attached to the electron line. Such contributions can be suppressed by an 

appropriate choice of beam polarisation (i.e. right-handed electrons) thus enhancing the 

anomalous signal. We will illustrate this below. 

Finally, the anomalous parameter A that appears in all the above anomalous contributions 

has to be fixed. In practice, A can only be meaningfully specified in the context of a specific 

model for the new physics giving rise to the quartic couplings. One example is an excited W 

scenario W + j —> W* —> W+y, where we would expect A ~ Mw* and a, to be related to the 

decay width for W* —• W + 7. However, in order to make our analysis independent of any 

such model, we choose to fix A at a reference value of Mw, following the conventions adopted 

in the literature. Any other choice of A (e.g. A = 1 TeV) results in a trivial rescaling of the 

anomalous parameters a0, ac and an. 

2.3 Numerical studies 

In this section we study the dependence of the cross sections on the three anomalous couplings 

defined in Section 2.2. As already stated, we apply a cut on the photon energy Ey > 20 GeV 

to take care of the infrared singularity, and a cut on the photon rapidity |r?7| < 2 to avoid 

collinear singularities. We do not include any branching ratios or acceptance cuts on the 

decay products of the produced W ± and Z bosons, since we assume that at e +e" colliders 

the efficiency for detecting these is high. 

2.3.1 Vector Boson Production 

We first consider the SM cross sections for the processes of interest, i.e. with all anomalous 

couplings set to zero. Figure 2.2 shows the collider energy dependence of the e+e~ —¥ 

W+W~j, e+e~ —> ZZj and e +e" —> Z77 cross sections.3 

3Note that although these cross sections' have appeared before in the literature, we are unable to reproduce 
the results for a(Zyj) given in Figure 2 of Ref. [32]. To cross check our results we used MADGRAPH [33]. 
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E r > 2 0 G e V 
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8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 u 0 4 0 0 6 0 0 2 0 0 

Figure 2.2: Total SM cross sections for e+e -> W+W j, ZZy, Zyy (in pb) as a function 
of (in GeV). 

Next we study the influence of each of the three anomalous parameters a0,ac and an 

separately in order to gauge the impact of each on the cross section. Note that a(W+W~y) 

depends on all three parameters, while a(ZZy) and a(Zyy) depend only on a0 and ac. 

Figure 2.3 shows the dependence of the three total cross sections of Figure 2.2 at = 

500 GeV on the anomalous parameters. In each case the cross section is normalised to its 
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SM value, and the cuts are the same as in Figure 2.2. 

1 A 
0 , a = a „ = 0 
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b 
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o 
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Figure 2.3: Influence of the anomalous parameters on the total cross sections, normalised to 
their SM values, at y/s = 500 GeV. 

As expected the dependence on the aj is quadratic, since they appear linearly in the matrix 

element. The fact that the minimum of the curves is close to the SM point a« = 0 shows 

that the interference between the anomalous and standard parts of the matrix element is 

small. The anomalous parameters have a markedly different effect on the three cross sections. 

Evidently do has the largest influence, particularly on cr(ZZy). The reason for this is easily 

understood. The anomalous process e+e~ —> 7* —• ZZ^f has a much larger impact on 
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a(ZZy) since there are only six other SM diagrams. In contrast. e+e~ —> 7* —¥ W+W~j 

has a much larger SM 'background' set of diagrams to contend with. Note also that the 

anomalous contributions are enhanced by a factor 1/ cos4 9W compared to the WWyy vertex. 

At this collider energy also the possibility of longitudinal polarized W and Z bosons becomes 

evident: even though the same number of diagrams contributes to ZZ-y production as to 

Z j j production, far tighter bounds on the anomalous couplings can be expected from the 

former process. 

Of course the important question is which of the three processes offers the best chance of 

detecting an anomalous quartic coupling at a given collider energy. To answer this we need 

to combine the information from Figs. 2.2 and 2.3 to see whether enhanced sensitivity can 

overcome a smaller overall event rate. We also need to consider correlations between different 

anomalous contributions to the same cross section. Note here that the magnitude of the SM 

cross section as well as the luminosity of the collider enter the absolute sensitivity. The 

standard deviation ± 1 a on the cross section is defined as 

We consider two experimental scenarios: unpolarised e+e collisions at 200 GeV with J £ = 

150 pb" 1 , and at 500 GeV with C = 300 ft)-1/year4. Starting with the W+W~j process, 

Figure 2.4 shows the contours in the (a*, a,) plane that correspond to +2 ,+3 a deviations 

from the SM cross section at = 200 GeV. Note that there are three ellipses, one for 

each combination of the three anomalous couplings. Evidently the sensitivity to aQ and ac 

is comparable, corresponding to aj < (9(100) for this luminosity.5 The corresponding limit 

on an is some three to four times larger. Figure 2.5 shows the same contours but now at 

500 GeV. The dramatic improvement in sensitivity (now a2 < O(l)) comes partly from the 

higher collision energy (which allows for more energetic photons) but mainly from the much 

higher luminosity. A correlation between the effects of a0 and ac (solid ellipses) is noticeable 

at this energy. 
4 In the following we use the expected integrated luminosity for a run of one year [34]. 
5 Note that any anomalous parameter dj too large might result in an instability in the perturbative 

approach. Note also that for a more realistic value of A = 1 TeV the anomalous parameter are rescaled to 
even bigger values. 

<7SM 
+ (2.13) 
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i = 0 , j = c 

i = 0 , \ = n 1 0 0 0 
= c , j = n 
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n n e r 9 5 . 4 5 % CL 

_ 4 0 0 5 0 0 3 0 0 1 0 C 2 0 0 1 0 0 J 3 0 0 2 0 0 

Figure 2.4: Contour plots for +2, +3 a deviations from the SM e + e ~ -> W + W ^ total cross 
section at i /s = 200 GeV with / £ = 150 p b " \ when two of the three anomalous couplings 
are non-zero. 
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Figure 2.5: As for Figure 2.4, but for y/a = 500 GeV with / C = 300 f b " 1 . 

We have already anticipated a significant improvement in sensitivity for this process when the 

beams are polarised. Specifically, with right-handed electrons (and left-handed positrons) 

we suppress a large number of SM 'background' diagrams where the W ± are attached to 

the fermion line. The effect of 100% beam polarisation of this type is shown in Figure 2.6. 

Assuming the same luminosity we obtain a factor of approximately 3 improvement in the 

sensitivity to an individual anomalous coupling. 
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Figure 2.6: As for Figure 2.5, but w i th 100% beam polarisation. 

Turning to the sensitivity of the Z Z j and Z 7 7 processes, Figure 2.7 shows the sensitivity of 

the latter to a0 and ac at y/s = 200 GeV wi th J C = 150 p b - 1 and unpolarised beams. 6 For 

comparison, we also show the corresponding V F + V F _ 7 contours f rom Figure 2.4. The Z 7 7 

process gives a significant improvement in sensitivity, particularly for ac. Since the SM cross 

sections at this energy are comparable (see Figure 2.2), the improvement comes mainly f rom 
6 With our choice of photon cuts (Ey > 20 GeV) a(ZZ'y) is essentially zero at this collision energy. 
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the enhanced sensitivity of the matr ix element to the anomalous couplings in the Zyy case. 
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Figure 2.7: Contour plots for +2 ,+3c r deviations f rom the SM e+e~ —>• Zyy total cross 
section at y/s = 200 GeV w i t h f C = 150 p b _ 1 . For comparison, the corresponding contours 
for the e+e~ —>• V F + W ~ 7 process f rom Figure 2.4 are also shown. 

Finally, Figure 2.8 compares the sensitivity of all three processes to a 0 and ac at — 

500 GeV w i t h / £ = 300 f b " 1 and unpolarised beams. The best sensitivity is now provided 

by the ZZy process (particularly for a c ) , despite the fact that i t has the smallest cross 

section of all the three processes. Note that polarising the beams has l i t t l e effect on the 

sensitivity of the ZZy and Zyy processes to the anomalous couplings, since the left-handed 
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and right-handed couplings of the Z to the electron are similar. 
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Figure 2.8: As for Figure 2.7, but for y/s = 500 GeV wi th / £ = 300 f b " 1 and including also 
the e+e~ —>• process. 

From an experimental point of view i t is a challenge to measure the total cross section of 

tr iple vector boson production to set direct l imits on anomalous quartic couplings. Using the 

event generator here developed, for e +e^ —> W+W~^, the OPAL collaboration (at LEP2) 

was the first to present direct bounds on all three anomalous couplings [35]. This was 

followed by bounds f rom L3 (LEP2) [36] analyzing the process e +e~ —> and recently 

e+e~ —> W+W^'y [37] - again based on the comparison wi th our Monte Carlo program. 
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Clearly higher centre of mass energies and luminosities are required to exclude the possibility 

of anomalous quartic couplings. Among today's available colliders, the Tevatron pp collider 

at Fermilab seems at first sight - to be such a machine. Unfortunately the wide range 

of partonic center of mass energies s makes a universal analysis very dif f icul t , fo rm factors 

are needed. The small ta i l of the differential cross section containing hard (high energetic) 

photons is the dominant source for anomalous contributions to the total cross section pp —>• 

W+W-j. 
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Figure 2.9: Differential cross sections der/ds for the process pp —• W + V F 7 w i th various 
values for the anomalous coupling a0 — 0, 100, 500. 
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The anomalous Lagrangian described above can naturally only be understood as an effective 

low energy Lagrangian attempting to simulate new physics far below the scale A. As such 

the analysis of anomalous quartic couplings at a hadron collider becomes rather intr iguing. 

2.3.2 Vector Boson Mediation 

The WPF-fusion process e+e~ —¥ veVell has a very clean experimental signature of two 

isolated photons and missing energy. Hence we study the dependence of the e + e" —>• ye^ell 

WW-fusion cross section on the two anomalous couplings ao and ac. Note that by W W -

fusion' we mean the contribution of the Feynman diagrams shown in Fig. 2.10 to the cross 

section. 
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Figure 2.10: Feynman diagrams contributing to the WW^-fusion e + e — > ^ e f E 7 7 process. 

The SM calculation is based on M A D G R A P H [33]. As already stated, we apply a cut on 

the photon energy £" 7 > 20 GeV to take care of the infrared singularity, and a cut on the 
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photon rapidity |r/ 7 | < 2 to avoid collinear singularities. 

We do not include contributions f rom e+e^ —> Z 7 7 —> f e P E 7 7 , which obviously do not 

involve the W W 7 7 vertices. These have been studied in Ref. [18] 7 . In practice, they can 

be straightforwardly removed by imposing cuts on the missing mass MUePe ( M „ e P e < M z ) . 

Nevertheless i t has to be said that the Z Z 7 7 vertex has the identical anomalous structure, 

only the overall coupling is different. 

We first consider the SM cross section for the process of interest, i.e. w i th al l anomalous 

couplings set to zero. Figure 2.11 shows the collider energy dependence of the e+e~ f e P E 7 7 

UTT-fusion cross section. In the LEP2 energy region the total cross section is 0 ( 1 fb ) . 

i 2 

1 

0 

0 

3000 2500 1000 150C 2000 0 500 

Figure 2.11: Total SM cross section for e+e~ —> uei>ejj via WTF-fusion (in fb) as a funct ion 
of (in GeV) wi th E1 > 20 GeV and |r/ 7 | < 2. 

To study any anomalous effects on the total cross section we need to consider the correlations 

between the two different anomalous contributions. 

7Note that in the previous section [18] strictly e+e^ -» Z77 has been studied and for comparison with 
the present WW-fusion analysis the branching ratio T{Z —> ve9e) has to be taken into account as well. This 
will result in weaker bounds due to the smaller cross section. 
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To obtain quantitative results, we consider the experimental scenario of unpolarised e+e 

collisions at 200 GeV wi th fC = 150 p b " 1 . 

Figure 2.12 shows the contours in the (ao,ac) plane that correspond to +2 , +3 a deviations 

f rom the SM cross section at ^/s = 200 GeV. 
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Figure 2.12: Contour plots for +2 , +3 a deviations f rom the VFTF-fusion SM e + e" —> veveyy 
total cross section at ^/s — 200 GeV wi th J* C = 150 p b " 1 . 

From the purely phenomenological point of view the constraints obtained f rom the process 

e+e~ —> veVell via WW-fus ion are not competitive wi th those expected f rom analysing 

WW7 production and especially f rom Z 7 7 production. The reason is that although the 
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sensitivity to anomalous contributions is in general increased ( i . e. lower ratio of SM-

background to signal and increased phase space due to massless final states) the total cross 

section itself is 2 orders of magnitude smaller than those for WW'y production or Z 7 7 

production. Thus w i t h the relatively small luminosity feasible for LEP2 there is l i t t le hope 

that advantages such as the particularly clean experimental environment w i l l make up for the 

small cross section, and in that case we would expect the tighter bounds on the anomalous 

parameter to be obtained f rom analysing Z 7 7 production. 

Nevertheless, since only massless particles are produced, experimental data f rom basically 

any LEP2 centre of mass energy can be used to increase the overall integrated luminosity, 

and since the process is highly sensitive to anomalous couplings there is a chance that this 

process could actually in practice be leading to the tightest bounds. Of course in the end 

this can only be decided by a proper experimental data analysis. 

For a future linear collider, w i t h for example y/s — 500 GeV, the process e+e~ —> veVell 

becomes even less competitive, since at that energy the enlarged phase space of massless 

particles becomes even less important. Note also that at this energy the possibility of 

producing longitudinally polarised W, Z bosons does increase the sensitivity to anomalous 

couplings considerably [18]. In the W^W-fusion process we do not have that opportunity 

since the W bosons are bound to be 'internal' particles wi th no preferred polarization state. 

2.4 Conclusions 

We have investigated the sensitivity of the processes e+e~ —> W+W~7, Z Z j , Z 7 7 and 

e+e~ —> f e P E 7 7 to genuine anomalous quartic couplings (a0,ac,an) at the canonical centre-

of-mass energies y/s = 200 GeV (LEP2) and 500 GeV (LC) . Key features in determining 

the sensitivity for a given process and collision energy, apart f rom the fundamental process 

dynamics, are the available photon energy Ey, the ratio of anomalous diagrams to SM 

'background' diagrams, and the polarisation state of the weak bosons [28]. 

At y/s = 200 GeV the process e+e~ - » Z 7 7 leads to the tightest bounds on the contour 
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of (a0,ac), while the process e+e" -> W+W~y is needed to set bounds also on an. Note 

that the contours of ( a 0 , a „ ) and (ac,an) can then be improved using the knowledge of 

the tighter bounds on the contour of ( a 0 , a r ) f rom Zyy production. A t this energy Zyy 

benefits kinematically f rom producing only one massive boson, which leaves more energy for 

the photons as well as having fewer 'background' diagrams. On the other hand W+W~y 

production at this energy suffers f rom the lack of phase space available for energetic photon 

emission, although this is partially compensated by the production of longitudinal bosons, 

which gives rise to higher sensitivity to the anomalous couplings. 

A t y/s = 500 GeV, the effects mentioned above conspire in a somewhat different way. A l l 

three processes are now well above their threshold, and hence the availability of phase space 

for energetic photons is less of an issue. The importance of the longitudinal polarisation of 

the massive bosons increases and even though the same number of diagrams contributes to 

ZZy production as to Zyy production, far tighter bounds on the anomalous couplings can 

be expected f rom the former process. The production of longitudinally polarised bosons is 

comparable in the W / + V F ~ 7 and ZZy processes, but the higher signal to background ratio 

for the latter leads to a better sensitivity to a0 and a c . 8 

The abil i ty to polarise the beams leads to a significant improvement in the sensitivity of 

the W+W~~y process, since about a th i rd of the contributing diagrams are removed. W i t h 

polarised beams the tightest bounds now come f rom this process. The sensitivity of the 

e+e~ —>• ZZy process is hardly affected by beam polarisation. 

The 500 GeV comparison emphasises the importance of the longitudinal polarisation states 

of the massive bosons (ZZy and Zyy are more or less comparable otherwise). This suggests 

that the e+e~~ —> W+W~Z process should be more sensitive to anomalous couplings than 

e + e" —>• W+W~y, since all three final-state particles can be longitudinally polarised. W i t h 

the expected linear collider luminosity, the somewhat smaller cross section should not be an 

issue, and the ratio of background to signal diagrams is the same as for VF +V4 7~7 production. 

Unfortunately this process is only sensitive to a „ . 9 Furthermore, since there is no photon in 

the final state, 4-dimensional operators can also contribute to anomalous couplings (i.e. an 
8Here again W+W~y is still needed for investigating o„. 
9The ao and ac couplings stem from the VVyy vertex. 
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anomalous V F + W ZZ vertex) and the analysis becomes significantly more complicated. 

The constraints obtained f rom the process e+e~ —> f e P E 7 7 via J ^ W - f u s i o n are not com­

petitive w i t h those expected f rom analysing WWj production and especially f rom Z 7 7 

production. 

Finally i t is important to emphasise that in our study we have only considered 'genuine' 

quartic couplings f rom new six-dimensional operators. We have assumed that all other 

anomalous couplings are zero, including the trilinear ones. Since the number of possible 

couplings and correlations is so large, i t is in practice very diff icul t to do a combined analysis 

of all couplings simultaneously. In fact, i t is not too diff icult to th ink of new physics scenarios 

in which effects are only manifest in the quartic interactions. One example would be a very 

heavy excited W resonance produced and decaying as in W + y —>• W* W+ry. 

In principle, any non-zero trilinear coupling could affect the l imits obtained on the quartic 

couplings. For example, in equation (2.4) we showed explicitly how a non-zero trilinear 

coupling (A) can generate an anomalous WWJJ quartic interaction to compete w i t h the 

'genuine' ones that we have considered. The (dimensionless) strength of the former is egX, 

while for the latter i t is e2Oi(Eext.)(Eint)/A2, where E e x L and Eint. are the typical energy 

scales of the photons entering the vertex. (Here we are considering, as a specific example, 

the e+e" ->• W+W~-y process.) Since A = M w , (Eext.) ~ 25 GeV and EinL ~ [5y/s + 4(y/s-

(Eext.))]/9 ~ 190 GeV , both for y/s = 200 GeV, we see immediately that the relative 

contributions of the two types of couplings are in the approximate ratio 3A : Now, at 

LEP2 upper l imits on trilinear couplings like A are already 0(0 .1) [25, 26]. In contrast, we 

have shown that the l imits achievable on the a, are 0(100) . Hence we already know that 

the anomalous trilinear couplings have a minimal impact on our analysis. 

The same argument holds at higher collider energies. The l imits on the trilinear couplings 

w i l l always be so much smaller than those on the quartic couplings, that they can safely be 

ignored in studies of the latter. 



Chapter 3 

Radiation Zeros 

3.1 Introduction 
In certain high-energy scattering processes involving charged particles and the emission of 

one or more photons, the scattering amplitude vanishes for particular configurations of the 

final-state particles. Such configurations are known as radiation zeros or null zones. The 

study of these radiation zeros (RAZ) dates back to the late 1970s [38] , where they were 

identified in the process qq' —> W j as points in phase-space for which the tota l cross section 

vanishes. 

Today [39, 40] i t is understood that the zeros are due to a cancellation which can be regarded 

as a destructive interference of radiation patterns induced by the charge of the participating 

particles. The fact that gauge symmetry is a v i ta l ingredient for the cancellation to occur 

means that radiation zeros can be used to probe physics beyond the standard model. For 

example, 'anomalous' electroweak gauge boson couplings destroy the delicate cancellations 

necessary for a zero to occur. 

In recent years there have been many studies exploring the phenomenological aspects of 

radiation zeros, see for example Ref. [39] and references therein. Following the work on 

physical radiation zeros (e. g. wi th in the physical phase space of the process such as 

ud —> W + j [38]) unphysical radiation zeros have been found on the edge of phase space 

in the process e+v —>• W+/y [41]. Investigating the process qq' —> W 7 7 i t has been found [42] 

that the zero of the process qq' —> W-y survives for the case that the two final state photons 

36 
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are collinear. A l l those zeros have been classified as exact zeros, i . e. the cross section 

vanishes identically, the scattering amplitude is strictly zero. 

The question of approximate zeros, i.e. zeros where the cross section exhibits a dramatic 

drop, but no true zero has also been addressed [43, 40, 44] in processes like pp,pp —>• 

WW, WZ, ZZ. I t has been found that the zero remains exact for all transverse helicity 

amplitudes whereas for the longitudinal amplitudes ( i . e. the ones associated w i t h the mass 

of the gauge boson) strong gauge cancellations are st i l l taking place but the zero is no longer 

exact, in fact i t becomes energy dependent. 

On top of all this, so-called exotic zeros haven been studied, such as zeros originating f rom 

the emission of gluons instead of photons [44, 45]. There is l i t t le hope of ever experimentally 

detecting those zeros because they are washed out by the sum and/or average of the colour 

charge as well as being spoiled by hadronisation effects. Even more l iving up to their name 

are zeros caused by the emission of massless supersymmetric particles such as photinos and 

sphotinos [46] as well as szeros and xeros [47]. 

Only recently a whole new category of radiation zeros, so-called T y p e l l radiation zeros or 

planar zeros, were established by Heyssler and Stirl ing [48]. Demanding the whole scattering 

process to take place wi th in the same plane i t becomes possible to overcome the theorem of 

equal charged particles, which requires the particles taking part in the scattering process to 

have all either positive or negative charge [40]. 

Experimental evidence for the zeros predicted in [38] has also been found at the Fermilab 

Tevatron pp collider [49]. As already mentioned, the classic process for radiation zeros in 

high-energy hadron-hadron collisions is qq' —> W j , where the zero occurs in a 'visible' region 

of phase space, i.e. away f rom the phase-space boundaries. I t is natural to extend the 

analysis to more complicated processes involving multiple gauge boson production. A t the 

upgraded Tevatron pp and LHC pp colliders, the rates for such events can be quite large. 

In this chapter we study in detail the qq —> WWj process, and identify the circumstances 

under which radiation zeros occur. Unlike the Wy process, i t is not possible to write down 

a simple analytic expression for the matr ix element squared. However, making use of the 
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soft-photon approximation does allow the zeros to be identified analytically, and a numerical 

calculation of the f u l l matr ix element confirms that although the actual zeros disappear 

for non-zero photon energies, deep dips do persist for all relevant photon energies. The 

dips result f rom delicate cancellations between the various standard model photon emission 

diagrams, and are ' f i l led i n ' by contributions f rom non-standard gauge boson couplings. We 

illustrate this explicitly using anomalous quartic couplings. 

The chapter is organised as follows. In the following section we review the 'classic' radiation-

zero process, qq' —> Wy. In Section 3.3 we extend the analysis to M / + W / ~ 7 production, first 

using analytic methods in the soft-photon l imi t . We carefully distinguish between photons 

emitted in the W + W ~ production process and those emitted in the W —> / / decay process. 

We then extend the analysis to non-soft photons using a numerical calculation of the exact 

matr ix element. In Section 3.4 we show how anomalous quartic couplings ' f i l l i n ' the dips 

caused by the radiation zeros. Finally, Section 3.5 presents our summary and conclusions. 

3.2 Radiation Zeros in Production 

W+ q W+ q 7 

X X + + 

q' 7 q< 7 q< W + 

Figure 3.1: Diagrams contributing to the process qq' W + j . 

The classic scattering process which exhibits a radiation zero is qq' —» W + r j . The amplitude 

for this can be calculated analytically — there are three Feynman diagrams, shown in Fig. 3.1. 

W i t h momenta labelled as 

9 ( P I ) + 9 ' ( P 2 ) - + W + ( k + ) + j ( k ) 

w + ( k + ) ^ + , (3.1) 
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the matr ix element is 

M = Jl^kC ^ ^ P ^ ^ P ^ ^ P ^ ^ ^ P ^ + s(k,r3)t(p2,k)}} 

C = p 2 - M 2

w

 + ' ( 3 ' 2 ) 

where p = px + p2 = k+ + k. Here we have used the spinor technique of Ref. [9], w i th photon 

polarisation vector 1 e+*^(k) = (\j\jAp2 • k) u+(k)yfMu+(p2). The spinor products are defined 

by 

s{Pi,Pj) = u+(pi)u-{pj), t(pi,pj) = u-(pi)u+(pj) , (3.3) 

and all fermion masses are set to zero. 

The cross section a ~ \M\2 therefore vanishes when C = 0, i.e. 

i _ Qq 

p 2 - M 2

w 2p,-k-

We next introduce the momentum four-vectors 

pf = (EA0,E) 

p 2 " = ( £ , 0 , 0 , - £ ) 
, [4E2 + M2

V AE2-M2

V . AE2-M2

V 

{ \ E 2 - M 2

W AE2-M2

W . AE2-M2

W 

k = ' AE ' ^ - S m 0 ' ° < 4 ^ ~ " C 0 S 6 

(3-4) 

(3.5) 

where 6 is the angle between the incoming quark and the W + , Q1 = 9 + 7r, and E is the 

beam energy of the scattering particles. Substituting into (3.4) gives the condition for a 

radiation zero [38]: 

cos 6 = - 1 + 2QQ . (3.6) 

'The expression in (3.2) actually corresponds to a positive helicity photon. For a negative helicity photon, 
a similar expression is obtained. Both amplitudes exhibit the same radiation zero. 
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In other words, the cross section vanishes when the photon is produced at an angle 2 

cos0 7

 R A Z = 1 - 2Qq = - \ for q = u . (3.7) 

(3-8) 

The angle 6y for which the cross section vanishes is independent of the photon energy, in 

particular i t is unchanged in the soft-photon l imi t , W —» 0, which is realised as the beam 

energy decreases to its threshold value, 2E —> Mw In this l im i t we can use the eikonal 

approximation to locate the position of the zero. Since for more complicated processes we 

may only be able to obtain an analytic expression in this approximation, i t is worth repeating 

the above calculation in the soft-photon l im i t to check that we do indeed obtain the same 

result. 

We start f rom the matr ix element for the process qq' —> W+: 

i M 0 = u . ( p 2 ) ( i - ^ J Y U-(Pi) el(k+) . (3.9) 

In the soft-photon l imi t one can neglect the momentum k in the numerators of the internal 

fermion propagators, in the WW7 vertex, and in the overall energy-momentum conservation 

constraint (i.e. p = k+ = px +P2), which leads to 

M = ( - e ) Mo e*(A) f (3.10) 

where the eikonal factor j^1 is given by 

f = ^ ^ + ( l - ^ ) ^ - 7 ^ V (3-11) Pi • k P2 • k k+ • k 

The three terms in j M come f rom the u—, t— and s—channel diagrams respectively or, 

equivalently, a soft photon radiated off the incoming quark, incoming antiquark, and outgoing 

W + . Note that gauge invariance implies k^ • = 0. 

Radiation zeros are now obtained for e*(k) • j = 0. Choosing 

k*1 = En (1 , sin 0 7 , 0 , cos 0 7 ) 

= (0,0,1,0) 

e £ = (0, - c o s 0 7 ,O,sin 0 7 ) (3.12) 
2A similar condition holds for the process qq' -> W~^: cos<?7

 R A Z = 1 4- 2Qq = | , for q = d. 
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gives 

e,(*)-> = - * T ^ + < 1 - * ) l l ^ = 0 - (3-13» 

or equivalently 

cos0 7 ™ z = 1 - 2Qq . (3.14) 

This is exactly the same condition as (3.7), as expected. 

3.3 Radiation Zeros in PF+VF 7 Production 

In this section we extend the analysis to investigate radiation zeros in the process qq -> 
W+W~j —> / 1 / 2 / 3 / 4 7 . The contributing Feynman diagrams are shown in Fig. 3.2. Note 
that both 7 and Z exchange are included in the s—channel diagrams. 
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Figure 3.2: Feynman diagrams for the process qq —> W+W 7 —> f i f i f s f i l -
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3.3.1 The soft photon case 

We first calculate the matrix element in the soft-photon approximation. Once again the 

matrix element can be factorized: 

M = (-e) M0 f (3.15) 

where M.§ is the (qq —> W+W~) matrix element without photon radiation, and the eikonal 
current is 

r3-k r4-k k+-k) (k++ k)2 - M 
M , _ t V k j \ k2_-M /f ft ly ft Is* ft ' > \ 

2 
M 

•2 

r2-k k--kj (k^+kf-M 

P\ • k p2 • k k+ • k k_ • k / 

D+fl - D - " + P" (3.16) 

with Qi = \Qi\ > 0, Qq = —Qq, r.i the momenta of the final-state /* fermions, /c± the momenta 
of the W± and M = M w - iYwj2. This result is appropriate for both right-handed and 
left-handed quark scattering, although Mo is of course different in the two cases. In deriving 

(3.16) we have made use of the partial fraction 

1 1 1 / 1 
4 - M2 {k± + k)2 -M2 2 k± • k y k 2 ± _ M

2 ( k ± + ky _ M

2 
(3.17) 

to split the contributions involving photon emission from the final-state W bosons into two 
pieces corresponding to photon emission before and after the boson goes on mass shell [50, 51]. 
This is illustrated in Fig. 3.3. 
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Figure 3.3: Partial fractioning of photon emission off a final-state W boson. 

To obtain the cross section one has to integrate over the virtual momenta k±: 

o~ J d k 2

+ d k 2 _ \Mf 7T 

MWTW 

12 „2 

with 

Mo = Mo 
k2 -M2 k2_- M2 

1 = 
MWVW 

7T 
dk2,dk2_(-j-f) ———. 

\k\ - M2]2 \k2_ - M 2 | 2 ' 

h 

h 
7 

/ i 

h 

(3.18) 

(3.19) 

where we have put the W bosons effectively on their mass shell (k± = M2,). Performing 

the k2± integrals by completing the contours in an appropriate half plane and using Cauchy's 

theorem eventually leads to 

I = |P| 2 + |£> + | 2 + |ZT| 2 - 2Re [D+ D~*] + 2Re [P(D+* - £)"*)] , (3.20) 
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with 

|P| 2 

\D+\2 

\D-\2 

2Re [D+ D~*} 

2Re [P(D+* - D~*)] 

Q2

qP\P\ + Q\viV2 + k+k+ + k_k_ + 2QqQqplp2 

-2Qqplk+ + 2Qqp2k^ + 2Qqplk_ - 2Qqp2k+ - 2 A;+A;_ 

Ql f5?i + (1 - Q 3 ) 2 + M + + 2Q 3 ( l - Qs) ^ 

- 2 ( 3 3 ^ - 2 ( 1 - ^ 3 ) ^ 

Q 2 f 1 ? l + (1-Q 1 ) 2 f 2 7~ 2 + O l + 2 Q i ( l - g i ) f I ? 2 

- 2 g i r X - 2 ( 1 - Q i ) r S l 

-2x+_(QiQ 3 n r 3 + Qi(l - Q 3 ) f i 7 4 - Qi rxA;+ 

+ ( i - Qi)Q 3 rv=3 + ( i - Q i ) ( i - Q3) ^ 

2 X+ - Q 9 Q3 r 3Pi - Q 7 Q 3 ryp~2 + k+k- + Q 3 r3k+ - Q 3 r3A;_ 

- ( 1 - Q^QqUPi ~ (1 - Q3)QqUp2 - k+k+ 

-2x~ ( - QiQ 9 npi - QiQq rxp2 + Q1 rrk+ + - Qi rxk-

- ( 1 - Qi)Qqfm - (1 - Qi)Q<jftf2 + (1 - Qi) r2fc+ 

(1 - Qi) r2k+ - Q 3 r3k_ - (1 - Q3) r4A;_ + k+k 

(1 - Q3) r4A;+ - (1 - Q3) r4k_ + Qq k+px + Qq k+p2J + 

(1 — Qi) r2/c_ + Qq k-px + Qq fc_p2 - k-k+) 

(3.21) 

with k\ = The 'antennae' appearing in this expression are defined by 

Pi • P2 (3.22) P1P2 = Pi-k p2-k 
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and the profile functions [50, 51] by 

[(k • k+) (k • + ( T w M w f ) {TwMwf 
X+- = 

X+ 

X- = 

[(k • k+Y + { T w M w f } [(k • k^Y + ( T w M w f ) 

(TwMw)2 

(k • k + f + { T w M w y 

(TWMW)2 

(k-k.)2 + (TwMw)2 

(3.23) 

This result agrees with that given in Ref. [52], where the distribution of soft radiation 

accompanying W+W~ production in e+e~ annihilation was studied. The profile functions 

have two important limits that have to be distinguished carefully, 

(a) < I V < Mw 

The photon is far softer than the W is off mass shell, which leads to x+- = X- = X+ = 1-

The timescale for photon emission is much longer than the W lifetime, and so the photon 

'sees' only the external fermions. The whole current contributes and rather than solving 

I = 0 to find radiation zeros we can determine the values of k*1 for which 

e*(k)-j=0. (3.24) 

To simplify the calculation slightly we consider only leptonic decays of the W bosons3. 

The eikonal current then reduces to 4 

r 3 • k r i • k \pi • k p2 • k J 

Here, r 3 is the four-momentum of the outgoing antilepton with charge +1 and ?'i is the four-

momentum of the outgoing lepton with charge —1. It turns out that the only solutions of 
3 The hadronic W decay case, W —> qq' simply introduces a few extra terms, but the results are 

qualitatively unchanged. 
4Note that in the soft limit the ratio of propagators in (3.16) is * 2 —5 —> 1. 
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e*(^)'J = 0 occur when the scattering is planar, i.e. all incoming and outgoing three-momenta 
lie in the same plane.5 If, as in (3.12), we take one polarisation vector perpendicular to 
this plane, and the other t*2 in the plane and orthogonal to the photon three-momentum, 
then e*(A;) • j = 0 is trivially satisfied and e^fc) • J' = 0 leads to an implicit equation for the 
photon production angle 61 which corresponds to a radiation zero: 

with 6iy = 9\ — 9y and 0 3 7 = 9^ — 97 and where the lepton four-momentum vectors are 

Depending on the values of 9i and #3, (3.26) has either two solutions ( 9\ > (93 > 7r or 

9i < 9^ < 7r) or no solutions6. This is illustrated in Figs. 3.4(a) and 3.4(b) respectively. 

The radiation pattern given by (3.26) is plotted as a function of 9y for 'typical' values of the 

lepton production angles, chosen such that the zeros (in the former case) are clearly visible. 
5 The planarity condition gives rise to the so-called Type II zeros discovered recently [48]. 
6One solution if either 9y = 7r or #3 = 7r. 

0 9 9 9 37 i 7 
7 7 Qq COt 0 cot + tan cot (3.26) 

r f = Eifl.sinfli.O.cosfli) 

r% = £ 3 ( 1 , sin 03,0, cos 03) . (3.27) 
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Figure 3.4: The radiation pattern of (3.26). Two (a) or no (b) radiation zeros are visible. 

The generalisation to the case of arbitrary W decays is straightforward. Thus for 

(3.26) becomes 

-2Qq 

W~ -> / i ( r i , - Q 0 + / 2 ( r 2 , -Q2 = - ( 1 - Q,)) 

W + /3(r3 !Q3) + /4(r4,Q4 = l - Q 3 ) , 

+ Q i / i n ^ - ( i - Q i ) S i n ^ 2 7 

(3.28) 

sin 9 1 — cos Oly 

sin # 3 7 

1 + COS #27 

sin 9iy 

+ (l-Q») o. (3.29) 
1 — COS #37 1 + COS #47 

There are now either 4, 2 or 0 radiation zeros, depending on the relative orientation in the 

plane of the initial- and final-state particles. 

(b) Tw <C Mw When the photon is far harder in energy than the W is off 
mass shell (but still soft compared to the W masses and energies), the timescale for photon 
emission is much shorter than the W lifetime. As far as the photon is concerned, the overall 
process separates into lW production' and lW decay' pieces, with no interference between 
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them. Formally, in this limit the profile functions are x+~ = X- = X+ = 0. Therefore all 
the interference terms in (3.21) vanish, and to find zeros one has to solve 

1= \P\2 + \D+\2 + \D~\2 = 0 . (3.30) 

Since each of these quantities is positive definite they have to vanish separately: 

\P\2 = 0 RAZ of qq -> WWy 

\D+\2 = 0 RAZ of W+ - > / 3 / 4 7 

\D~\2 = 0 RAZ of W~ -> hhl • (3.31) 

Fortunately, the zeros of each are well-separated in phase space in regions that can be isolated 
experimentally. Thus in practice an energetic photon can be classified as a 'production' or 
a 'decay' photon depending on whether it reconstructs to an invariant mass Mw when 
combined with the W fermion decay products. Provided Ey ^> Fw this classification is in 
principle unambiguous. The radiation zeros for W± —> f f ' j decay have been known for 
some time, and in fact are directly analogous to those for qq' —> W / ± 7 discussed in the 
previous section. 

We therefore restrict our attention to the zeros of qq —> W+W~'y, given by \P\2 = 0, where 
the W bosons are now considered on-shell stable particles. It is straightforward to derive the 
expression for the current in this case (cf. (3.16)): 

- f = k~ + k+ - Q ( P* - P 2 ^ . (3.32) 
fc_ • k k+ • k q \pi • k pi • k ) 

Then solving e*(k) • j = 0 leads to 

-P sin 6 - 2 Qqp2 cos 6 sin 9 ± y ^ 2 sin2 6 + 4 Qq(P2 - 1) (Qq + p coTe) 
7 ~ 2(-p cose - Qq + Qqp2 sin2 G) 

(3.33) 

where (3 = (1 — M^/E2)^ < 1 is the velocity of the W, 0 is the angle between the W~ and 
the incoming quark, and E is the beam energy. Note that again these results correspond to 
all incoming and outgoing particles lying in the same plane. One interesting feature of this 
result is that there is now a certain minimum beam energy, for a given 6 and Qq, which 
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is required to set up the environment for radiation zeros (the square root in (3.33) has to 
be positive). For example, for 0 = ir/2 the critical energy is E c r i t . = M w ( l + ^Q2

q)^• For 
energies E > Ecra, four radiation zeros are present (due to the ± and the periodicity of tan). 
For E = E c r i t there are only two radiation zeros (the square root vanishes) and there are 
none for E < E c r i L . 

3.3.2 The general case 

In the previous section we have found radiation zeros in the soft-photon approximation. In 
order to extend these results to arbitrary photon energies we have to consider the full matrix 
element, i.e. the sum of all the diagrams in Fig. 3.2. Since we are interested now in the case 
when Tw -C Ey, we can again make use of the partial fraction technique to factorise the full 
matrix element into production and decay parts, exactly as in Eqs. (3.30) and (3.31). As in 
the previous section we focus on the production process: 

da = — d $ 3 d$J d$n I M 1 + M 2 + M 3 + M4 + M9 2s 
+MW + M u + Mn + Mn + Mi* | 2 (3.34) 

where the subscript refers to the diagrams of Fig. 3.2.7 The final-state fermion parts of 
these diagrams are integrated over the two-body phase spaces to give two branching ratio 
(W —>• / / ) factors. The photon can be emitted off either the two initial-state quarks, the 
two final-state W's, the internal lines (W's as well as the t—channel quark) or from the four 
boson vertex. We next have to specify the three-body phase space configuration. To 

simplify the kinematics we choose to fix the direction of the W~~ by G, and the energy and 
the angle of the photon by Ey and #7 respectively. An overall azimuthal angle is disregarded 

and, more importantly, the incoming and outgoing particles are required to lie in a plane, 
defined by $ = 0 7 = 0°.8 Given the initial quark momenta pi, p2, the W+ four-momentum 

7Note that only the first part of the partial fraction (3.17) is to be taken for M3, M4, M12 and M13. 
8 We show later that there are no radiation zeros for non-planar configurations. 
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is then constrained by energy-momentum conservation: 

Pt = £(1,0,0,1) 

P'2 = £(1 ,0 ,0 , -1) 

k" = £ 7 ( 1 , sin #7,0, cos 

kt = (Ew,y/Ew-Mw sin 6, 0, y lE2

w - Mw cos e) 

K = {2E — E-y — E\Y, — (Ej sin 9j + JE2

V-Mwsin 0),O, 

-{E1 cos 07 + y ^ 2 , _ Mw cos ©)) (3.35) 

where Ew is determined by the constraint k2

+ = and is given by 

Ew = {-2EE2 - 4 £ 3 + 6E2Ey + [E2 cos2(07 - 0) ( - 8 £ 3 £ 7 + 4 £ 2 £ 2 

+ M 2 , £ 2 cos2(07 - 0) + 4 £ 4 - 4 £ 2 M 2

K + 4EEyMw - E2M2,)] ^} 

/ [ £ 2 cos2 (07 - 0) - 4 £ 2 + 4 £ £ 7 - £ 2 ] . (3.36) 

In terms of these variables the three-body phase space integration is 

d$3{k+,k_,k) 
Ew E1 d cos 0 d$ dE1 d cos 07 d< 7̂ 

4(2?r)E 

-4E + 2 £ 7 - 2 £ w £ 7 c o s ( 0 7 - e)/y/E2

v - M2, 
(3.37) 

We first consider the differential cross section as a function of #7, with all other variables 

kept fixed. For input parameters we take [53] 

(3.38) Mw = 80.41 GeV, Mz = 91.187 GeV , e2 = 4tt/137.035, 
g — e/sin9w , sin 2#w = 0.23 , 

and in the following plots we also fix, for sake of illustration, 

2 2ir 
Qq = - , E = 500 GeV , 0 = — . (3.39) 

o o 

Fig. 3.5 shows the 61 dependence of the differential uu —¥ I4 7 +W~7 cross section, for a 

selection of photon energies £? 7

9. It is immediately apparent that an actual zero of the 
9Strictly, in order to separate out the I f ^ process in the first place we have to assume E1 3> I V -

However, to investigate and illustrate the disappearance of the zero it is convenient to formally consider all 
E1 values down to zero. Of course the lower energy limit on physically observable photons is much higher. 
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cross section is only achieved in the limit E1 —> 0. Increasing the photon energy gradually 
'fills in' the dip. The reason is that for non-soft photons additional diagrams (9 and 18 in 
Fig. 3.2) contribute and these give rise to a non-zero cross section at the positions of the 
zeros.10 The points at the bottom of the dips in Fig. 3.5 are actually the minimum values 
of the corresponding cross sections11. In fact it can be shown that for E1 not too large, 
crmin oc E7

2. At high photon energies the dips disappear altogether and the cross section 
assumes a different shape. 

1 0 This is in contrast to the process eq -» eq'y studied in Ref. [48] where all diagrams contribute in the 
soft-photon limit, and where the radiation zeros persist for E1 ^ 0. 

1 1 The angles at which the minima occur are very close to the RAZ angle in the soft-photon limit, as can 
be seen in Fig. 3.5. 
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Figure 3.5: Differential cross section for the process uu —> W+W 7. 

Note that the 'zeros'/ dips both lie in the angular region between the outgoing W~ and 
the incoming u, and by symmetry between the outgoing W+ and the incoming u. Further 
note that for a given £ 7 , amin differs by a factor ~ 100 due to the asymmetric (with respect 
to the photon emission angle) contribution from diagram 18. 

To confirm that we do indeed have a Type I I (planar configuration) radiation zero, we next 
recalculate the cos#7 distribution for 0 7 7̂  0°. We choose a small non-zero photon energy 
E1 = 10"5 GeV such that the dip is clearly visible for 0 7 = 0°. The results are shown in 
Fig. 3 .6 1 2 . For t/>7 well away from zero, there is no hint of a dip in the cross section. 

L2 Note the different scale compared to Fig. 3.5. 
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Figure 3.6: Same as Fig. 3.5 for Ey = 10^° GeV and various </>7. 

The results displayed in the above figures correspond to uu scattering. Similar results 
are obtained for dd and e+ e~ scattering, i.e. exact Type I I zeros are only found in the 
soft-photon limit where they are given by (3.33). The position of the zeros depends on the 
incoming fermions' electric charge, and on the scattering angles and velocities of the W 
bosons. For non-soft photons the dips are filled in, but still remain clearly visible for photon 
energies up to O(10 GeV). 
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3.4 Anomalous gauge boson couplings 

As discussed in the Introduction, the existence of radiation zeros is in general destroyed by 
the presence of anomalous gauge boson couplings. 
The impact of anomalous trilinear couplings on the radiation zeros in the qq' —>• W-y 
process was considered in Ref. [54]. As expected, the zeros are removed for non-zero values 
of the anomalous parameters. Such couplings would also affect the zeros in the T4714/7 
case. However there are already quite stringent limits on these trilinear couplings from the 
Tevatron pp —>• WjX [55] and LEP2 e+e" —> W+W~ processes [25, 26]. We therefore neglect 
them here and concentrate on genuine anomalous quartic couplings . The WWj process 
is in fact the simplest one which is sensitive to quartic couplings. It is natural therefore to 
consider the implications of anomalous quartic couplings on the radiation zeros discussed in 
the previous section. 

Let us consider first the differential cross section in the planar configuration as a function of 
9-y, just as we did in the previous section, but now in the presence of non-zero values of the 
three anomalous parameters a0, ac and an introduced in (2.8), (2.9) and (2.10). From the 
Lagrangian it can be seen that any anomalous contribution is linear in Ey. Soft photons are 
'blind' to the anomalous couplings and therefore the zeros in the A;'1 —> 0 limit survive. For 
moderate photon energies, the dips in the SM cross section will be filled in by contributions 
proportional to ai and a-2. The higher the photon energy, the more dramatic the effect, 
although of course the dips become less well defined too. In principle, therefore, one should 
optimize the photon energy, to make it small enough to maintain the zeros but at the 
same time large enough to gain measurable deviations from the SM prediction. Since the 
anomalous contributions originate in the four boson vertex in the s-channel, one can also 
increase the sensitivity to them by considering only right-handed initial quarks, for which 
the ^-channel contributions are absent.13 

13Unfortunately in doing so one also decreases the total cross section by roughly 2 orders of magnitude, 
so again it has to be seen whether the sensitivity to new physics is in fact increased in practice. 
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Figure 3.7: Differential cross section for the process uu —> PF+T-t7 7 with E^ = 1 GeV. The 
curves correspond to different values of the anomalous parameters introduced in the text. 

Fig. 3.7 shows the #7 dependence of the uu —> WWj cross section for E1 = 1 GeV, 
for the same configuration and parameters as in Fig. 3.5 (see Eqs. (3.38,3.39)). The curves 

correspond to different (positive) values of the anomalous parameters 1 4 . The anomalous 
contribution is approximately isotropic in 91. Therefore because the dips have different 

depths one gets filled in more rapidly than the other. This is evident in the figure, where 

the dip at cos#7 ~ 0.75 is already filled in for cii ~ 0(100), whereas the steep dip at 
cos 61 ~ —0.48 is still very apparent. This shows it is advantageous to focus on certain regions 

1 4 T o make quantitative predictions the anomalous parameter A appearing in Eqs. (2.8,2.9,2.10) has to be 
fixed. We choose A = Mjy; any other choice results in a trivial rescaling of the anomalous parameters ao, a c 

and an. See the discussion in [18]. The anomalous parameters can also be negative, which leads to results 
similar to those in Fig. 3.7. 
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of photon phase space in order to increase the sensitivity to the anomalous couplings. Of 

course, this requires very high luminosity to ensure a large enough event rate in these regions. 

3.5 Conclusions 

We have investigated the (Type II) radiation zeros of the process qq —> W+W~~/ —> 

fihhfAl- In the soft-photon limit ( I V <C E7 <C Mw) the cross section vanishes for 

certain values of the photon and production angles, for which analytic expressions have 

been derived (3.33). For non-zero photon energies the zeros disappear, but for energies not 

too large the photon angular distribution still exhibits deep dips centred on the positions 

of the soft-photon zeros. The subtle cancellations leading to the zeros in the soft-photon 

limit still takes place, but for non-soft photons two additional diagrams (9 and 18) have to 

be considered and a m j „ is exactly that contribution. In the 'classic' process qq' —> W + j 

there are no further diagrams for non-soft photons and the zeros survive for all photon 

energies. Although we have concentrated on the quark scattering process qq —> W+W~^y 

our results apply equally well to e+e~ —> W+W^~7 by setting Qq = —1. Note that, as 

for quark antiquark scattering, the zeros in the e+e~ (soft-photon) case are in the 'visible' 

regions of phase space, in contrast to those in the analogous 'classical' process e+ve —» W + j . 

Furthermore for e+e" scattering diagram 9 (scattering via ^-channel exchange) is not present 

and direct access to the four boson vertex is given for non-soft photons, i.e. the four boson 

vertex is the only contribution to the cross section at the position of the zeros. 

We have also studied the effect of including non-zero anomalous quartic couplings. These 

contributions increase with increasing photon energy and fill in the dips present in the 

standard model. In principle, therefore, the vicinity of the radiation zeros is the most 

sensitive part of phase space to these anomalous four boson couplings. 

In practice however, we learned from the previous chapter that by analyzing the ful l phase-

space of WWj production (i.e. not being constrained to planar configurations) increases 

the sensitivity to anomalous quartic couplings. Our analysis has been entirely theoretical. 

Having established that there are regions of phase space where the cross section is heavily 



CHAPTER 3. RADIATION ZEROS 58 

suppressed, the next step is to see to what extent the phenomenon persists when hadroni-

sation, radiative corrections, smearing, boost, detector etc. effects are taken into account, 

in the context, for example, of a possible measurement at the Tevatron or LHC hadron 

colliders. In this respect, a high energy, high luminosity e+e" linear collider could provide a 

cleaner environment for studying W W 7 production in this way. 

Notice that we do not anticipate a large effect from perturbative QCD corrections. This 

conclusion is based on the study of Ref. [56] where the full 0(a3) corrections to the W7 

process were calculated. It was shown (Fig. 6 of Ref. [56]) that the radiation zero present at 

Born level was essentially unchanged by the NLO corrections. 



Chapter 4 

Electroweak Radiative Corrections 

To match the expected experimental precision at future linear colliders, improved theoretical 

predictions beyond next-to-leading order are required. At the anticipated energy scale of 

y/s = 1 TeV the electroweak virtual corrections are strongly enhanced by collinear-soft 

Sudakov logarithms of the form log 2 (s /M 2 ) , with M being the generic mass scale of the 

W and Z bosons. By choosing an appropriate gauge, we have developed a formalism to 

calculate such corrections for arbitrary electroweak processes. As an example we consider 

here the processes e+e~ —> f f and e+e~ —> W^W^, W^W£ and study the perturbative 

structure of the electroweak Sudakov logarithms by means of an explicit two-loop calculation. 

In this way we investigate how the Standard Model, with its mass gap between the photon 

and Z boson in the neutral sector, compares to unbroken theories like QED and QCD. In 

contrast to what is known for unbroken theories we find that the Sudakov logarithms are not 

exclusively given by the so-called rainbow diagrams, owing to the mass gap and the charged-

current interactions. In spite of this, we nevertheless observe that the two-loop corrections 

are consistent with an exponentiation of the one-loop corrections. In this sense the Standard 

Model behaves like an unbroken theory at high energies. 

We give a description of our formalism, which is based on the Coulomb gauge, and extend 

it to reactions with transverse and longitudinal (massive) gauge bosons in the final state. 

Especially the treatment of the longitudinal gauge bosons requires some special attention. In 

order to cover all the relevant features and subtleties of our method, it is sufficient to restrict 

the discussion to the virtual corrections. In fact, since the Sudakov logarithms originate from 

59 
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the exchange of soft, effectively on-shell gauge bosons, many of the features derived for these 

virtual corrections are intimately related to properties of the corresponding real-gauge-boson 

emission processes. 

4.1 Introduction 

At the next generation of colliders center-of-mass energies will be reached that largely exceed 

the electroweak scale. For instance, the energy at a future linear e+e~ collider is expected 

to be in the TeV range [34]. At these energies one enters the realm of large perturbative 

corrections. Even the effects arising from weak corrections are expected to be of the order 

of 10% or more [57, 58], i.e. just as large as the well-known electromagnetic corrections. In 

order not to jeopardize any of the high-precision studies at these high-energy colliders, i t is 

therefore indispensable to improve the theoretical understanding of the radiative corrections 

in the weak sector of the Standard Model (SM). In particular this will involve a careful 

analysis of effects beyond first order in the perturbative expansion in the (electromagnetic) 

coupling a = e 2/(47r). 

The dominant source of radiative corrections at TeV-scale energies is given by logarithmically 

enhanced effects of the form an\ogm(M2/s) for m < 2n, involving particle masses M well 

below the collider energy ^/s. A natural way of controlling the theoretical uncertainties 

would therefore consist in a comprehensive study of these large logarithms, taking into 

account all possible sources (i.e. ultraviolet, soft, and collinear). In first approximation the 

so-called Sudakov logarithms oc an log2™ ( M 2 / s ) , arising from collinear-soft singularities [59], 

constitute the leading contribution to the large electroweak correction factors. Recent 

studies have focused on these Sudakov effects in fermionic processes like e+e~ —>• / / [60, 61, 

62] 1. Unfortunately the three independent studies are in mutual disagreement, exhibiting 

strikingly different higher-order results already for the virtual corrections. The main cause 

for the differences can be traced back to the use of different assumptions concerning the 

exponentiation properties of the Sudakov logarithms in the SM. Many of these assumptions 
1The recent paper [63] is in agreement with our findings [21] 
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are based on the analogy with unbroken theories like QED and QCD, where the resummation 

of the higher-order effects amounts to an exponentiation of the one-loop corrections (see for 

instance Refs. [59] and [64, 65, 66]). However, the SM is a broken gauge theory with a 

large mass gap in the neutral sector between the massless photon and the massive Z boson, 

making i t a theory with more than one mass scale. As such i t remains to be seen how much 

of the analogy with unbroken theories actually pertains to the SM. 

We therefore focus on the virtual Sudakov logarithms in the reactions e+e~~ —> / / , and 

e+e~ —>• W^WT, W^W^, in an attempt to clarify how the 0(a2) effects relate to the O{o) 

ones. In this way we identify to what extent the SM behaves like an unbroken theory at 

high energies. Moreover, since the Sudakov logarithms originate from the exchange of soft, 

effectively on-shell gauge bosons, many of the features derived for the virtual corrections are 

intimately related to properties of the corresponding real-gauge-boson emission processes. 

4.2 Electroweak Sudakov Logarithms in the Coulomb 
gauge 

In order to facilitate the calculation of the one- and two-loop Sudakov logarithms, we work 

in the Coulomb gauge for both massless and massive gauge bosons. In the Coulomb gauge 

the gauge fixing Lagrangian for massive W bosons2 is given by 

-GF = - A 
n 2 " 

n • d 
du r n j r 

nz 

(4.1) 

with the temporal gauge vector = (1,0,0,0). Let us select the bilinear interactions in 

the W(j) - sector from the SM Lagrangian (1.1). From the kinetic term of the W bosons we 

obtain 

- \ W " b i l i n e a r

) (0„W„ - duW„) (3"W V - a ^ W ) 

2 The Z\ and the photon sector can be treated similarly. We will give those results without explicit 
derivation later. 
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eed 1 / 1 
^ - - 2 - [a„ (w+ + w~) r (w+* + w-») - d, ( w + - w~) & {w+v - w-")] 
,ent 4 \ Z 

"2 ^ [9M (W+ + W") d" + W ^ ) - <^ (W+ - W~) dv (W+» - W-")] ^ (4.2) 

= -{dllWf){d'iW-v)+ (dllW+,i) (d"W-). 

In the 4> sector we need the covariant derivative (1.4) 

D^dn-igl-Wn + ig'^Bp 

and with 

charged 

content 

<f>(x) 

d, 0 
0 du V2 

V2 
{v + H{x)+iX{x)) 

o w; 
w~ 0 

«/>+ 

v/y/2 

(4.3) 

(4.4) 

(4.5) 

linear 
(Dp 4>) • 

charged 

Hence 

d, 7' 

\ V2 " 

t , n ^ b i l i -> ( V r + ^ w -
charged \ 2 

0 
0 

(4.6) 

= ( 0 " * - ) ( M + ) + (4.7) 

Making use of Mvy = vg/2 (1.9) and bringing the derivative in front of the W fields yields 

the bilinear Lagrangian in the Wcj) - sector in the Coulomb gauge 

Cw-oint. = { d ' W ^ W ^ - i d . W ^ W - ^ + i d ^ d ^ - ) (4.8) 

+ ; M V V [ ( C W ; > - - (d"w-)<j>+] + m i , w ; w - » 

- A 



CHAPTER 4. ELECTROWEAK RADIATIVE CORRECTIONS 63 

and hence the interaction matrix can be written as 

-i [{k2 - Ml) - k^k" + A (k" - ^ n") (k" - § n " ) ] ±z Mwk» 

±iMwku %k2 

(4.9) 

W±,k ~-,k \ 

<p±,k 
(4.10) 

with ± in (4.9) corresponding to W ± . 

The propagators in the coloumb gauge are obtained by inverting the interaction matrix and 

taking the limit A —> oo. 

V 
Mf P 

-8% 0 
(4.11) 

This leads to the explicit form of the propagators 

W ± W ± 

P = Zl 
k2-M2+ie 

. TiMw k0 

M,7 = — — — — ?V 
" k 2 - M 2

v + i t k

2 

M,f = 

</>* 4>d 

" k 2 - M l + i e p 

i 
P = 

k0 

— nu 

k 2 - M l + ie 
Ml' 

1 + 
k2 . 

(4.12) 

(4.13) 

(4.14) 

(4.15) 



CHAPTER 4. ELECTROWEAK RADIATIVE CORRECTIONS 64 

In the neutral sector the propagators for the Z boson are given by 

• P - ~^ (\r i , kMn„ + k^n^ \ 

• ^ - p - M | + ie l v

g ^ + ^ " ~ k o p J ( 4 ' 1 6 ) 

: M , = ^ ^ n , (4.18) 
k2 - M2 + ie k2 

P = ^ L f l + ^ ) » (4-19) A;2 - M | + z e \ A;2 / 

and for the photon 

• i ; . k^k„ k^n„ + k^n^ 

^ = FT7i ^ I r - 1 * e r ^ l - ( 4 2 0 ) 

The power of this gauge choice lies in the fact that in the kinematical region of interest the 

gauge-boson propagators become effectively transverse: 

k2 + W - k° [Wrf + nnv) 
P^(k) = - i 

k 2 { k 2 - M 2 + ie) 

— i 
k 2 - M 2 + ie 

k2 

Cr(k)-^n»n" . (4.21) 

The tensor 

Q^(k) = - Y l e ^ X ) < ( k ^ ) ( 4 - 2 2 ) 

is the polarization sum for the transverse helicity states. Therefore the gauge bosons are 

effectively transverse if k2 <C k2, which is the case for collinear gauge-boson emission at 

high energies (A;2 oc M2 and A;2 « k2, » M 2 ) . As a result of the effective transversality, 

the virtual Sudakov logarithms originating from vertex, box etc. corrections are suppressed3 

(provided all kinematical invariants are of the same order as the CM energy squared). 
3We will come back to that later, once we have established all the necessary ingredients. 
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Hence, all virtual Sudakov logarithms are contained exclusively in the self-energies of the 

external on-shell particles [65, 23] or the self-energies of any intermediate particle that 

happens to be effectively on-shell.4 The latter is, for instance, needed for the production of 

near-resonance unstable particles. The elegance of this method lies in its universal nature. 

Once all self-energies to all on-shell/on-resonance SM particles have been calculated, the 

prediction of the Sudakov form factor for an arbitrary electroweak process becomes trivial. 

The relevant self-energies for the calculation of the Sudakov logarithms involve the exchange 

of collinear-soft gauge bosons, including their potential mixing with the corresponding would-

be Goldstone bosons. The collinear-soft exchange of fermions and ghosts leads to suppressed 

contributions, since the propagators of these particles do not have the required pole struc­

ture 5. 

4.2.1 The external wave-function factors 

The calculation of the external wave-function factors for fermions is non-trivial [67] but no 

further complications arise in the Coulomb gauge. For massive gauge bosons, however, the 

mixing with the corresponding component of the Higgs doublet introduces an additional 

complication. For instance, consider the W boson and the would-be Goldstone boson 4>. For 

a proper description of the on-shell W bosons we have to define the asymptotic W 3 8 field in 

terms of the interacting W and <j) fields6: 

K'-w = Z~J wiw ± %^ d j ^ L + sz»n»n• w±w + sz> d*d'w{x)•(4,23) 

in such a way that the free-field propagators are retrieved for in the on-shell l imit. This 

fixes the renormalization factors Z and 5Z in terms of the self-energies of the interacting 

fields. 

However, the ful l expression in (4.23) is in fact only needed to guarantee that the asymptotic 
4 Note that similar simplifications can probably be obtained equally well by working in an axial gauge, 

see for instance Ref. [66] for massless particles. 
5 We come back to that later. 
6Neutral external gauge bosons and hence an asymptotic state containing the Z boson and the would-be 

Goldstone boson \ w u l he investigated elsewhere [23]. 
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vector field satisfies the physical polarization condition 

a " W ^ ' M ( x ) = 0 , (4.24) 

in the weak limit. 

For all practical purposes, %. e. calculating S-matrix elements, the asymptotic state will be 

connected to a source term e^(k) and it is sufficient to consider 

W ^ i x ) Z~* W±{x) + 6Zn n M n • W±(x), (4.25) 

the two terms containing <9M yielding e(k) • k = 0. In the remainder of this section we will 

denote those irrelevant terms proportional to k^ by ' . . . ' . 

Jumping ahead of ourselves we note already here that for transverse WT, the second term 

in (4.25) will also vanish (er(k) - n = 0, n being time-like) , whereas for longitudinal WL the 

ful l expression (4.25) will be of relevance. 
_ i 

In order to actually determine the renormalization factor Zw

2 and 5Znwe study the field-

theoretical prescription of the propagator as the Fourier Transform (FT) of the time-ordered 

product of the fields acting on both sides on the vacuum 

FT(0\T(W^as(x)W;^(y))\0) = 

= FT (0 |T ([Z~* W+(x) + SZn n, n- W+(x)] [ Z~l* W'iy) + SZn nu n- W~(y)]) | 0) + . . 

= FT (0 |T (Z~l W;(x) W~(y) + 5Zn Z~* n„ n- W+{x) W~(y) 

+ Z V 7 SZn W+{x)nl,n-W-(y) + SZn

2ntln-W+(x) nv n- W~{yj) | 0) + . . . . 

(4.26) 

To further specify the above we need to gain knowledge about the propagator of the inter­

acting W fields, i. e. we first have to derive the dressed propagators. 

The W ± boson self energy i E ^ ± can be decomposed into 

i E ^ ± = % [g"" £ w , g + k"k" £ w ,k + (k"n" + k " / ) E w , m + E w , n ] (4.27) 

Similarly the mixed boson/would-be Goldstone boson self energy can be written as 

«£v± 0 ± = ± * [ ^ W , t + n " W , n ] • ( 4 - 2 8 ) 
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To all orders in perturbation theory the interaction matrix (4.9) is thus 

(-i [ g ^ ( k 2 - M 2

W - E w , g ) + A(k" - k°n' i )(k I / - k 0 ^ ) 

- k"kv{\ + Ew>k) - {Wn" + k^n^w^ - n ^ n ^ ^ 

^ ±i[k"(Mw + ^w+d>+,k) + nuJ:w+<f)+tn\ z[fc2 + E 0 ] 
(4.29) 

with = E^i the would-be Goldstone boson self energy. 

The Dyson-resummed propagator matrix is obtained by inverting this interaction matrix 

and taking the limit A —>• oo. To simplify the calculation we define the following quantities7 

g" = F - k° n11 (4.30) 

QV-V = _ n M n f _ -L-L- (4.3i) 
q 2 

with the useful properties 

*v 3 ^ = % = Q"" n» = q» = 0 ( 4 - 3 2 ) 

n-q = 0, Q^Q„P = Q%, q2 = -k2 (4.33) 

The dressed-propagator matrix can be written in the generic form 

-i [A Qup + Bq„qp + C(qu np + n„ qp) +Dn„ np] ±i [E qu + F nu] \ 
• (4-34) 

±i[Eqp + Fnp] iG J 

Making use of the Ward identities we immediately find B = C = E = 0. For the other 
7Note that Q»v is identical to (4.22). 
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coefficients we find explicitly 
1 

A = 

D 

(4.35) 

k2 — M^, — £w,g — 2 k0 T,w,m — ^w,n — kl (1 4- T,w,k) 

+ 
[k0(Mw + T,w+<t>+,k) + ^>w+<p+,n] 

k2 + E . 

21-1 

F = D 

G 

kg (Mw + %w+4>+,k) + Syy+.ft+.rt 
A;2 + E^ 

A;2 + E^ D 

Hence (4.26) becomes 

FT (0 |T ( W + ^ ( x ) W~^(y)) \ 0) = (-i) Z~l [A + D n„] 

+ {-%) 5Zn [A np Qpv + Dn"n 

(4.36) 

(4.37) 

(4.38) 

p 

+ ( - i ) Zw* 5Zn nu [A rf + D rf na] 

+ (-i) 5Zn

 2 n M nu [A n" rf Qap + D np n p r f n a ] + ... 

= {-i)Z~} AQ^ + i-i) +5Zn D n„ + . . . , 

(4.39) 

where we have made use of (4.32). The wave-function factors are obtained from the free-field 

on-shell residue constraint 

(k2 - M 2

w ^ y s ) FT (0 |T (W+>»{x) W~'"(y)) | 0 > 
k ~MW,Phys. A=±,0 

A;2 

Q^{k) - — n^riy + 
A;2 

- ^ ( M ) C ( M ) 

k2-M2 

— M W , p h y s . 

(4.40) 

where MW i Phys. is the physical mass of the W boson. Using (4.35) and (4.39) we find for the 

wave-function factor Z~l 

A:2 - M ^ p h y s - E ^ g 

k2 -̂ w.phys. 
(4.41) 

k2-M2 
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Now, again jumping ahead we can simplify these expressions in the Sudakov limit. In this 

particular limit Mw = MWtPhy8, and hence no mass renormalization has to be performed, 

since this would imply an explicit energy dependence of the mass counterterm. This means 

that Ew,g ~ (k2 - M£) (see section 4.3.2). By making use of similar arguments and taking 

the W bosons on-shell, D can be simplified in the Sudakov limit (M2, <C k%) to 

Defining ZL

 2 = Zw

2 + 6Zn we find 

z _ l = e - M i > ^ 
k2 - Ml 

(4.43) 
k2=Ml 

'w 
which we will see later is the wave-function factor for longitudinal W bosons. 

A few comments are at order here. First, we like to stress the fact that for longitudinal 

W bosons the part of the propagator does not contribute and the remaining term pro­

portional to n^n^ is mass suppressed (4.42), even after multiplication with the longitudinal 

polarization vector yielding a factor k0/Mw. To be more precise, we first give the remaining 

coefficients of the Dyson-resummed propagator matrix in the on-shell Sudakov limit 

" ' k° D = - ^ — - ± — — (4.44) 
Mw k0 fc2-M2+£^ 

G ^ - M * + V <4-45> 
which indeed illustrates that, in the longitudinal sector, the only non mass-suppressed 

propagator is the one containing exclusively the would-be Goldstone bosons. This is indeed 

the essence of the so-called Equivalence Theorem. That is, a non-vanishing matrix element 

for longitudinal W bosons at high energies is equivalent to the corresponding matrix element 

with the W bosons replaced by the would-be Goldstone bosons </>. Hence, at high energies 

the would-be Goldstone bosons effectively become physical Goldstone bosons, at the expense 

of the longitudinal degrees of freedom of the massive gauge bosons. This is exactly what one 

would expect if the SM were to behave like an unbroken theory at high energies. 

Before we continue to establish the connection between the wave-function factors and the 
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calculation of the Sudakov logarithms we summarize the above. The dressed propagators 

are in the relevant Sudakov limit given by 

W ± W ± 

W ± f 

k 4 

0± w ± 
> v 

k 
(ft* ^ 

-iQ 
+ 

k 

k2 — M2, - Y,w,s + i e k2 - M^+^ + ie 

=fi M w 1 
£ ; 2 - M £ + E^ + *e A;0 " 

Ti Mw 1 
F - M ^ + E^ + ze k Q

U v 

k2 - Ml + E^ + ie' 

k2 (4.46) 

(4.47) 

(4.48) 

(4.49) 

Now, to finish this section we consider the 5-matrix element (the open circle denotes the 

amputated Green's function and the double line refers to the asymptotic state) 

i(k2-M2

w) £"(*) 
k2=M2

w 

( \ w f v ^ i (k - M2

W) [Z~> e"(k) + 5Zn nv e0(k) 
k2=M2

w 

where we have left the polarization state unspecified, bearing in mind that er(k) • n = 0 and 

ei{k) • n « k0/Mw in the high energy limit. Upon amputation of the external legs we find 

in the relevant Sudakov limit 

—i Q^v -i nMn„ / A;2 

Ml - Zw,s

 + k2-M% + \ k j 
i{k2 - Ml) Zw

2 eu(k) + SZnnue0(k) 
k2=M2

v 

k2 = M^ 

This is the most general result, from which we deduce that for transverse W bosons, with 

ej.(fc) Ql

v = ej-(^) a n ( ^ £T(k)-n = 0, the contribution of Sudakov logarithms simply amounts 
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to multiplying each external transverse W boson line of the matrix element by the factor 
i 

Zw- For longitudinal W bosons e"L(k) Q^u = 0 and eL(k) • n s» k0/Mw and we find a mass 

suppressed contribution ~ Mw/k0. 

Similarly we obtain for the mixed self-energy 

O -
i(k2 Ml) €"(fc) 

k2 = M^ 

O 

w-
i(k2-Ml) Zw* tv[k) + 6Znnu e0(k) 

and amputating the legs yields in the relevant Sudakov limit 

o - (k2 -Ml + E 0 ) 
- n„ i ( k z - M z

w ) Zw2 el(k) + 6Znn* 
ko 

M„, --Ml 

( ± ) Z 
i 
2 
L ' 

in the case of longitudinal polarization and no contribution in the case of transversely polar­

ized W bosons. That is we find for longitudinal W bosons that the dominant contribution to 

any physical process originates from the amputated Green's-function where the amputated 

leg is a would-be Goldstone boson (j>, provided that the matrix element is not mass suppressed 

to start with. The contribution where the amputated leg is a W boson contracted with the 

temporal gauge vector is mass suppressed. 

In the Sudakov limit the Equivalence Theorem comes quite naturally out of the above consid­

eration in the Coulomb gauge. This is based on the presence of mixed gauge-boson/would-

be Goldstone boson propagators. A minor complication, in the ful l assessment of the 

Equivalence Theorem, arises due to these mixed propagators. Namely we have to show that 

the 5-matrix element with the asymptotic state (j)±3S will not exhibit a leading contribution 

for the amputated Green's-function where the amputated leg is a W boson. And finally we 

will have to show that the dominant contribution is again the one where the amputated leg 

is a would-be Goldstone boson. 
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In order to study those 5-matrix elements we first have to define the asymptotic state for 
_ i 

the would-be Goldstone boson: <j)±,as{x) = 2 ^ ( x ) . For the propagator we find 

FT (0 |T ( 4>+**(x) ^-'"(y)) | 0 > = FT < 0 |T {Z~2 <f>+{x) Z^^iv)) | 0 > 

i 
Z71 

and 

( - i ) (k2 - M2

W) FT {0 |T ( ^ " . - ( y ) ) | 0) 1 

(4.50) 

(4.51) 
| *2=Af 

where we have made use of the dyson-resummed propagator (4.49) and the requirement to 

retrieve the free-field propagator for the asymptotic states in the on-shell limit. Hence the 

wave-function factor Z^1 is given by (compare to (4.43)) 

k2 - Ml + ^ 
Z7l = 

k2 - Ml 
(4.52) 

For the mixed 5-matrix element we find 

k2 = M^ k2 = M2

v 

and amputating the legs leads in the relevant Sudakov limit to 

Mw ( 1 
n» H ) (k2 - Ml) Z, 

k2 = M^ 

This again leads to mass suppression, which is what we had to show. 

Similarly we obtain for the scalar self-energy 

0± ,A±,as o- -t ( - t ) ( * * - Ml) 
k2=M2

v o - j9(-i)(k*-M*)z;* 
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and amputation yields in the usual limit 

which is not only the leading contribution, but strikingly enough identical to the leading 

contribution we obtained from the asymptotic W^33 field. In the high energy Sudakov limit 

we do not only find the Equivalence Theorem W^™ —> ± C 0 ± a s to hold in the Coulomb 

gauge for massive particles, but we find a very special case of the Equivalence Theorem, 

i. e. C = 1 to all orders in perturbation theory, meaning the identity of the two particles 

rather than mere proportionality. 

We close this section with the following observations and conclusions. For transversely 

polarized external W bosons the mixing with the (f> field vanishes and the Sudakov correction 

factor amounts to multiplying each external transverse W boson line of the matrix element 
i i 

by the factor Z^. For longitudinally polarized external W bosons the correction factor Z?v is 
mass suppressed and the dominant Sudakov correction factor amounts to multiplying each 

external longitudinal gauge boson line of the matrix element by the factor Z£. (Provided 

that the matrix element is not mass suppressed to start with). This statement is a special 

case of the Equivalence Theorem where effectively the W bosons can be substituted by their 

would-be Goldstone bosons (f> in the high energy limit. 

4.3 Electroweak one-loop Sudakov logarithms 

To establish the formalism that will be used in the following sections we are presenting here 

the one-loop calculation of the Sudakov logarithms in the Coulomb gauge [21]. For arbitrary 

final and initial state particles our calculations are in agreement with the well known one-loop 

contribution to the external wave-function factors Z = 1 + 5Z. 
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4.3.1 The fermionic self-energy at one-loop level 

As mentioned above, in order to determine the Sudakov logarithms in processes like e+e~ —> 

/ / one has to calculate the external self-energies (i.e. the wave-function factors) of all 

fermions involved in the process. 

Consider to this end the fermionic one-loop self-energy T,^l\p,n, Mx), originating from the 

emission of a gauge boson Vi with loop-momentum ki and mass Mi from an effectively 

massless fermion 8 / with momentum p: 

/ ( p ) hip-ki) f ( P ) 

Again n is the unit vector in the time direction, which enters by virtue of using the Coulomb 

gauge. In the high-energy limit the fermion mass in the numerator of the fermion propagator 

can be neglected and similarly the contribution involving a mixed gauge-boson - Goldstone-

boson propagator can be discarded. The self-energy E ^ then contains an odd number 

of 7-matrices, leading to the following natural decomposition in terms of the two possible 

structures $ and i/b\ 
2 

Y,f\p,n,Mi) « [ ^ E ( 1 ) ( n • p , p ^ M 1 ) + ^ ^ E ( 1 H n • p , p 2 , M 1 ) ] e 2 ^ / / l V / l . (4.53) 

The coupling factor I /^y, is defined according to 

r f f M = V f m - l s A f m , (4.54) 

where V j f ^ and A f f ^ are the vector and axial-vector couplings of the fermion / to the 

exchanged gauge boson Vi. In our convention these coupling factors read 

r n r C1 ~ 7s) I/-2Qf sin 29W (1 - 7s) u 

r / / 7 = - Q f , r f f z = 2 c o s 0 w S i n 0 w > ^ " a v ^ s i n ^ ' ( 4 - 5 o ) 

Here I j is the quantum number corresponding to the third component of the weak isospin, 

eQf is the electromagnetic charge, and 0W is the weak mixing angle. We have denoted the 
8 The massive case can be treated in a similar way since no mass renormalization is required. See previous 

section. 
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isospin partner of / with / ' . 

The contribution to the external wave-function factor now amounts to multiplying the self-

energy by i/p1 on the side where it is attached to the rest of the scattering diagram and by 

the appropriate fermion source on the other side. Finally the square root should be taken 

of the external wave-function factor, i.e. the one-loop contribution should be multiplied by 

the usual factor 1/2. For an initial-state fermion, for example, one obtains9 

1 i_ • 
2j>~ 

2 
-i^1)(p,n,Ml) uf(p) « e-tfm ^1\n-p,m2

f,M1) + 2E^(n-p,m},Ml) uf(p) 

1 
8 Z f U f ( p ) , (4.56) 

where m / is the mass of the external fermion and y/s = 2Po is the center-of-mass energy of 

the process e+e~ —>• / / . This contribution to the external wave-function factor Zf = 1 + 8 Zj 

can be extracted from the full fermionic self-energy by means of the projection 

d 
5Z}l){Vl) = «/(P) 1 Q « E } 1 ) ( p , n , M 1 ) \uf(p) 

2p0 

—e 

) ^ i ) — rrif + ie } 
d 4 ^ ( 7 ^ ) 7 ° ( ^ 7 M ) 

e 2 r ; / 
)4 1(P - ki)2 -m) + ie} 

d4ki ^ViiVv 

-2P^{k,)TfhVluf{p) 

f m J ( 2 T T ) 4 [(p - h f - m) + ie] 

where we have made use of (A. 176) and Uf(p) j°Uf(p) = 2p0 as well as 

(4.57) 

d 1 1 u 1 

— 7 M _ dPlM i i i 
(4.58) 

Note also that the loop-momentum k\ has been neglected in the numerator of the fermion 

propagator, since only collinear-soft gauge-boson momenta will give rise to the Sudakov 

logarithms. The mass of the fermion inside the loop, m / n is at best of the order of the 
9 For an outgoing fermion one obtains \ u/(p) 5 z j 1 ^ , where <5 zj1^ can be derived from 8 zj1' by reversing 

the sign in front of 75. 
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Z-boson mass (for the top-quark). At the leading-logarithmic level it therefore only enters 

as an independent mass scale if the exchanged gauge boson is a photon (i.e. my, = ray), 

where the fermion mass is needed for the regularization of collinear singularities. 

In the last step of (4.57) we have exploited the fact that 5Z^ will be multiplied on the right 

by u/(p), so writing Iyy^ or its projections on left/right-handed chiral couplings {Vj/lvl ± 

A f f ^ ) 2 is effectively equivalent. 

Making use of the explicit form of the propagator in the coulomb gauge (4.21) the numerator 

can be simplified 

(i) k 2 - M 2 + ie 4 i v p „ P""(A;i) « 
ki 

1 

(p- fc i ) 2 - fc ioPo2(p- fc i ) 

( p - h r - p ' - k ' t + 
4 ki o po 

-2 { p - k x ) 2 - p 2 - k 2 

(4.59) 

As we will see below, in order to obtain double logarithms the fermion as well as the gauge 

boson propagator are needed. Now p2 = m2 and the terms k\ and (p — k\)4 will kil l one of 

the types of denominators. Thus we are left with 

4&ioPo (1) k f - M i + ie 4 P l l P v P^(h) ->2 (p-kiY - m j (4.60) 

Therefore 

6Z}l){Vx) - e 2 E 
[ d*k 

J ( 2 ^ 
d4/ci 4/cioPo ,(4.61) 

r) 4 £ 2 [(p - ki)2 -m} + ie] [k\ - M2 + ie} 

Having two canonical momenta at our disposal, i.e. p and n, we define the following Sudakov 

parametrisation of the gauge-boson loop-momentum hi. 

k\ = vi q + ui q + k\x 

with 

p^ = (E,PfE,0,0) , 

q» = (E,E, 0,0) , 

Pf = y/l-myE* , 

= 0,0) , 

(4.62) 

s = 4E2, 

k?± = (0,0,kl±) -(4.63) 
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In terms of this parametrisation, the integration measure d 4 ^ , the invariants (p-ki) and k f , 

and the gauge-boson energy k® read 

d4ki = ix ̂  di>i du\ dk2

± , 

9 

&2 = sviui-k^ and /s° = ^ ( f i + w i ) . (4.64) 

The term containing the fermion mass mj is needed for the exchange of photons only, 

regulating the collinear singularity at U\ = 0. For the exchange of a massive gauge boson 

the mass Mi will be the dominant collinear as well as infrared regulator. 

The ^-integration is restricted to the interval 0 < v\ < 1, as a result of the requirement of 

having poles in both hemispheres of the complex Mi-plane. The residue is then taken in the 

lower hemisphere in the pole of the gauge-boson propagator: s v\ u[es = k2

± + M2 = svxyA. 

Finally, k2

± is substituted by y1, with the condition k2

x > 0 translating into vx yx > M f / s . 

The one-loop Sudakov contribution to SZf now reads 

POO P1 

s z f { v { ) « - - r / / l V l / dVl / dVl — 
+ - f v i ) («! +yi) 

* - ~ T f 2 m f ^ ( l < ^ ^ \ s , m ) , M u y „ Z l ) , (4.65) 
7T 7 / 1 Jo Vl Jyi Z\ 

with the integration kernel /C^ given by 

/ C ^ ^ m J . M ! , ^ , ^ ) = e ( y 1 * i - - ^ ) e ( y i - ^ z i ) • (4.66) 

Here we introduced the energy variable zi = v\ + yx and made use of the fact that 

only collinear-soft gauge-boson momenta are responsible for the quadratic large-logarithmic 

effects: yx, z\ <C 1. As a result, the gauge boson inside the loop is effectively on-shell 

and transversely polarized ( see (4.21) with k2 <C k2 in the collinear regime). The same 

result can be obtained by means of the dispersion method. The dispersion method proceeds 

via the computation of the absorptive part by applying the Cutkosky cutting rule, which 
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effectively puts both the internal gauge boson and fermion on-shell, whereas the external 

fermion becomes off-shell. Subsequently the real part is obtained by using dispersion-integral 

(Cauchy-integral) techniques, turning the internal fermion off-shell and allowing the external 

fermion to be on-shell. 

The exchanged gauge boson can either be a massless photon (7) or one of the massive weak 

bosons (W or Z). The associated mass gap gives rise to distinctive differences in the two 

types of contributions. Bearing in mind that the SM is not parity conserving and making 

use of (D.217) and (D.218) we present the one-loop Sudakov correction factors for right- and 

left-handed fermions/antifermions separately: 

< X ) (7) 

8ZP (7) 

L 7 (A, nif) — Q2f L 7 (A, rrif) 

SZ 

J f L 

(1) 

( / / ) 2 + / / y / + L 7 (A, rrif) = Q2j L 7 (A, mj) 

(W) 

0, 

(Z) 

6Z™ (Z) 

L ( M , M) 
2 sin 2 9 

L(M, M) = 
cos2 6 

cos 9 

L ( M , M) 
2 cos^ 4 sin^ 9 

(4.67a) 

(4.67b) 

(4.67c) 

(4.67d) 

-Q) L ( M , M) , (4.67e) 

L ( M , M) 

(4.67f) 

with 

L{MUM2) = 

L 7 ( A , M X ) = 

a 
47T 

a 
47T 

log 
V s 

log 

log — - log 
Ml 

(4.68) 

(4.69) 

and 5Zf^ = 8Zy for all three gauge bosons. • ( i ) 

Note that these correction factors are the same for incoming as well as outgoing particles. 

In Eq. (4.67) Y^,L denotes the right- and left-handed hypercharge of the external fermion, 



CHAPTER 4. ELECTROWEAK RADIATIVE CORRECTIONS 79 

which is connected to the third component of the weak isospin I j and the electromagnetic 

charge e Qf through the Gell-Mann - Nishijima relation Qf = Ij? + Y f

R ' L / 2 . The parameter A 

is the fictitious (infinitesimally small) mass of the photon needed for regularizing the infrared 

singularity at zx = 0. For the sake of calculating the leading Sudakov logarithms, the masses 

of the W and Z bosons can be represented by one generic mass scale M. 

In the process e+e~ —>• / / the one-loop correction factors presented in Eq. (4.67) contribute 

in the following way to the polarized matrix element, bearing in mind that at high energies 

the helicity eigenstates are equivalent to the chiral eigenstates: 

1 ^ j l — l o o p , sudakov 
•{1

+

)+SZw+5Z{

f

1)+5zY) 

e£ e, JL f R 

A ^ f " f , (4.70) 

and similar expressions for the other possible helicity combinations. 

As promised, we come back to the issue of possible contributions to the Sudakov correction 

factor from self energies with fermions or ghosts in the upper loop. We saw in this section that 

the 1/P part of the gauge boson propagator in the Coulomb gauge is crucial for obtaining 

double logarithmic contributions. Obviously the fermion propagator does not exhibit this 

feature. The ghost propagator contains the required 1/fe2, but lacks the pole structure 

l/(k2 — M2) and hence no contribution to the Sudakov correction factor can be obtained. 

To end the one-loop section on fermionic corrections we finally show the suppression of vertex 

corrections. The line of argument holds for box corrections as well. 

We consider the following vertex correction where we assume for simplicity the exchanged 

particle as well as the incoming particle to be a photon 

v^> ~ -f ( \ f d " k 4 p 1 / t P 2 l / P ^ ( f c ) 
« -u(P2) ^ M p O J — [ ( p i + fe)2_m2][(p2_fe)2_m2] • 

(4.71) 

With the Sudakov parametrisation k = xp\ + y p 2 + kj_ and say « E(l, 1,0,0) and 
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P2 ~ E(l, - 1 , 0, 0) we obtain 

i[k2 + ie\plllp2vP>w{k) = 
pv k pa - k k0 ' 

p r p 2 + ^ ^ (PioP2- k +P2oPr « ) 

2 £ ; 2 + 2 S 2 y 2 E 2 x E 2(a; + y) 2 £ 2 ( ? / + x) 
E2 (x + y)2 E2 (x + y)2 

4E2 xy 
{x + y)< 

(4.72) 

(4.73) 

(4.74) 

where we have made use of the on-shell condition 2 ~ 4E2xy and neglected mass terms. 

The remaining term will not lead to Sudakov logarithms since the numerator will ki l l both 

poles originating from the fermion propagators. Hence we conclude that the only term 

leading to Sudakov logarithms, i. e. k0 {k^nu + n^k")/k2, is effectively rendered inactive for 

vertex corrections.10 

The same argument holds for box corrections where again the g^,, part of the propagator 

cancels the for Sudakov logarithms relevant part of the propagator. 

4.3.2 The bosonic self-energy at one-loop level 

In this section we are calculating the W boson self energy. As we have seen in section (4.2.1) 

transverse and longitudinal gauge bosons have to be treated separately. To all orders in 
1 

perturbation theory the Sudakov correction factor for transverse W bosons is given by Z£, 
1 

for longitudinal W bosons by Zl, which is obtained from the scalar (f> self energy, which we 

will calculate in the next section. In this section we are calculating the one-loop Sudakov 

correction factor for transverse W bosons, %, e. 5Z^ = ZwT — 1. 

In the bosonic sector a substantial complication arises in the calculation of Sudakov log­

arithms which can be traced back to the presence of the mixed gauge-boson/would-be 

Goldstone boson propagator. The method of extracting the external wave-function factor 

Z from the ful l self energy by means of the derivative projection 'trick' has to be carefully 

reconsidered. In fact, as we will see later, the derivative-projection method is applicable for 

diagonal self energies, i. e. the amputated legs on both sides being the same particle. So 
1 0 Recall that in the case of the self energy p- p = m j w 0 and the for Sudakov logarithms relevant term 

survives. 
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it applies to the charged W bosons. In the neutral sector where we have to deal with the 

mixing of the photon and the Z bosons more care is needed in defining the proper asymptotic 

states and the ful l analysis is postponed [23]. However, in the calculation of two-loop Sudakov 

correction factors the one-loop self energies of the neutral sector are indispensable. Therefore 

we come back to the neutral sector at the end of this section and derive some important 

features. 

As we saw in section 4.2.1 the Sudakov correction factor for transverse gauge bosons amounts 
i 

to multiplying the external line of the matrix element by Zfi,- Recalling, that 

k2 - Ml --Ml 

and hence we have to calculate the g^,, part of the W self energy. We first have to select the 

contributing diagrams. The legs are amputated and hence fixed to be W bosons. That leaves 

4x4 possible combinations of scalar, mixed and gauge-boson particle states in the upper and 

lower part of the loop, which are displayed in Fig. (4.1). 

k2 

13 15 

1 2 ^ — N 

Figure 4.1: Possible contributions to the one-loop W self energy. 

The only way to obtain g^v contributions of the W self energy is if the lower particle in the 

loop, which by convention is the energetic one, is a gauge boson. The mixed- and scalar-

propagator do not contain a g ^ term and hence there is no way to contract the Lorenz 

index v through to the other side of the diagram. In principle another way to achieve this 
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is by having a gauge boson as upper (soft) particle in the loop. However, as we have seen 

in the previous section, the presence of l/\k2\ is crucial for obtaining double logarithms. 

This eliminates the ga$ term in the propagator of the soft gauge boson as well as the g / t„ 

term from the tensor reduction of k 2 f l k 2 l / / k 2 ) k2±pkii.vlk\ < 1- Hence we are left 

with the first four diagrams, out of which diagram (2) does not contribute since the scalar 

propagator exhibits the required pole structure only at next to leading order ~ M2. and an 

additional factor of originating from the two vertices leads to an overall mass suppressed 

contribution. 

We start by calculating the g^ part of the W self energy of diagram (1) (Mi = M 2 = Mw): 

V V3 f i r 
W=(kuA-h) 

\'4(*ri-fe2,M4) 

yielding 

pv ' 

d4fc2 

( 2 T T ) 4 

P°a\k2) Ppp\kx - k2) (ieG1M) V^p (ieG2i3) V p V V • (4.75) 

The totally antisymmetric coupling e Glji is the triple gauge-boson coupling with all three 

gauge-boson lines defined to be incoming at the interaction vertex, L e. (? i 3 4 G 2 4 3 = 

Gw±ViVi G w w v t v i = Gw±v3v4 in the above expression. In our convention this coupling is 

fixed according to GyW+w- — 1 and GZw+w- = - cos# w / s in# w . The tensor structures of 

the two triple gauge boson interactions read 

V, pop (fci + k2)Pgna + ( - k 2 + k i - k 2) / 1g ( 7p + ( - k i + k 2 - k i )„g 

- 4 -(2ki-k2)trg HP 

Vp'a'v (k2 - fcj + h)u$ff'p' + (ki - k 2 + ki)a> gpiv + ( - k j - k2)P> 

- 4 - (2 ^ - k2)a> 

(4.76) 

(4.77) 

where we have selected the part eventually leading to gM„ once we consider Ppp' (kx — k2) —> 

(—i) gpp'/[(kj - k 2 ) 2 - M 2 + ie] (see discussion above). 
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Let us leave the soft particle V3 unspecified for the time being, 2. e. V 3 = 7, Z, W are all 

possible. With 

(0 kl - Mo + ie (2k1-k2)a(2kl~k2)r7> Paa (k2) 

-ho ( 2 ^ - A ^ (2 kx - k 2 ) a 

2k2Q 

4 &i0 ^2 0 

- 2 
* 2 

(&2<r ? v + na k2a^j 

(2h-k2-kl){2klQ-k2(i) 

{{h - k2f - k\ - k\ + k f j . (4.78) 

we then obtain for the g ^ part of the W boson self energy 

i (V 3) « e2 G 1 3 4 G 2 4 3 1 | ^ ) 4 p . _ ^ _ M | + i £ j 

d4/c2 4A;1 0fc2o ((fei - A;2)2 - M 4

2 + M 2 - A;'2) 

( D . v W t / x 2 ^ ^ / d4A:2 ( 2 f e 1 - f c 2 ) ( T ( 2 A ; 1 - A ; 2 V i P ^ ( A : 2 ) 

- ' e2 G 1 3 4 G 2 4 3 , 7 n _ ) 4 — 2 _ h ) 2 _ M , + ^ j fe2 _ M | + u } 

— e2 G134 G 2 4 3 

f d4/c: 

7 (2 7T) 

r tfk 
J (2T 

d4/co 4A;in^ 10 ^20 (*? - M 4

2 ) 
) 4 /T2

2 - * * ) 2 - Ml + ] [kl - M | + *£ ] ' 
(4.79) 

in the Sudakov limit. 

In the case of V3 being a neutral gauge boson (N) and hence V4 being the W boson ( M 4 = 

M w ) we are left with 

* 4 i ( 7 ) = [ ^ - M 2 ] F(\,MW) 

* (S) = [*? - M 2 ] 7-(M„ Mw), sin 2 0„ 

with 

F(M3,M4) = -(e)2 J d4fc2 4A; 1 0fc 2o 
(2 T T ) 4 g2 {(h - k 2 f - M2 + ie ] [A;2 - M 2 + te ] 

Now from (4.41) we recall that 

(4.80) 

(4.81) 

. (4.82) 

6z£L = W t (k\ - Ml) 
(4.83) 
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and hence the Sudakov correction factor reads 

6Z$l(N) = (-i) Gl34G243 F(MN,MW) (4.84) 

Note here that diagrams (3) and (4) do not contribute in the above case of V3 being a neutral 

particle. Firstly the photon does not have a would-be Goldstone boson partner. Secondly 

the Zx and %Z mixing propagator is at both ends attached to two W bosons and a quick 

check of the Feynman rules in Appendix B reveals that the x does not couple to two W 

bosons. Hence the diagrams (3) and (4) don't contribute. 

Apart from the couplings (4.84) is identical to (4.61). Hence the required steps to eventually 

obtain the double logarithms are identical to the ones given explicitly in the fermion sector. 

The one-loop Sudakov correction factor for transverse W bosons is for the photon and the 

Z boson respectively 

a z $ . ( 7 ) = Q2

WL,(X,M) 

cos2 8. 
6Z$?T (Z) 

sin 2 0„ 
L ( M , M) 

sin 2 0„ Q w L ( M , M) 

(4.85a) 

(4.85b) 

with L 7 (A, M) and L ( M , M) being defined in (4.69) and (4.68). 

Now, for V3 being the W boson and hence V4 being either a photon or a Z boson we have 

to calculate diagrams (3) and (4). Leaving the charge of the mixed propagator general, we 

obtain 

/ 

W(k2) 

W ± { k x , M w ) W±{ki,Mw) 
N{k1-k2,MN) 

d k 2 (-ieGN Mw)gwY>pp'\ki - k 2 ) T ^ w , ; , i n ( r ' ( i eG W T N w±) V p > g » y (2nY 

(4.86) 

where we have introduced the abbreviation G 7 = 1 and Gz = sin# w /cos# w . Again the triple 
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gauge boson vertex can be simplified according to (4.77): Vp* a> u —> \—{2kx - ^ ^ g ^ , , ] -

Considering that the k 2 a i term contracted with rf' together with the already present k2o 
-2 

will kil l the crucial l / fc 2 we can safely ignore i t . Selecting the part this can be written 

as 
„• v( 1). A r aw\ („\in n f ^^2 2k20kl0 T^,. 
* S W l g m ) - - (e) G ^ ™ ± y ^ - ^ s - [ ( f c i _ j f c 2 ) 2 _ ^ + i £ ] [ i f c 2 2 _ M , + i e ] 

(4.87) 
and for the contribution from diagram (4) we can immediately write 

i ^ W ) - "(e) G N G W ± W , N J ^ — ^ - [ { k l _ h ) 2 _ ^ + i e ] [ k 2 2 ^ M2w + i e ] 

(4.88) 

Note that due to GW±W*N — GWTNW± (4.87) and (4.88) are identical. 

Hence upon adding up all three contributions (i. e. the gauge-boson propagator and the two 

mixed propagators) we find for the neutral particle being a photon, [Gw±w*y — Gw*yw± — ± 1 , 

Gy = l] 

i Z^(w+4>w+W4>) = ([k2 - A2] - M2

V) T(MW,X), (4.89) 

where we can neglect the photon mass A in the prefactor. 

For the neutral particle being the Z boson, [Gw±w*z — GWTZW± = Tcos# w / s in# w , 

Gz = sin 9W/cos 9W] and making use of M f cos 2#w = M2

V we find 

i X<i>f(w+*w+w+) = ( [ k \ - M2

Z] + M2

W) T{MW, Mz) 
\ sin Uy, / 

= U ^ - + M 2 ) r(MWl Mz) \ sm &w sin vw / 

= ( ^ r - [ k l - M2

W]) J-(MW, Mz), (4.90) 
\ sin' 9W ) 

with T defined in (4.82). For the Sudakov correction factor we find a contribution to SZ^ 

of the generic form 1 1 

i n „ I d4/c2 4kl0k20 -i , , 
-e G 1 3 4 G 2 4 3 / T ^ i — 7 2 - [ ( f c i _ h ) 2 _ M2 + i e ] [k22 _ M2 + < £ , (4.91) 

/• d4A 
7 (2vr 

1 1 Note that the product of the two triple gauge boson vertices is even under the replacement W + <-> W . 
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using the labelling 1 . . . 4 defined in the 'pure' gauge boson self energy. This expression is 

in perfect agreement with (4.84). Upon summation over the internal neutral particles we 

obtain 

6Z$T (W + <f)W + W4>) = —~ L ( M , M) + Q2

W L ( M , M) - L ( M , M) 
1 

sin 2 G, 
1 

sin2 6V 

L ( M , M) (4.92) 

again with L ( M , M) being defined in (4.68). 

Once having established this we might wonder whether in this particular case of a diagonal 

W self energy the derivative 'trick' would have led to the same result. Assume we could have 

used 

5Z\yT — 
2fcio 

d 
dk 10 

2 fcn •e£(*i) dku I 
d 4fc 2 

( 2 T T ) * 
P°°\k2) P""'{kx - k2) [ieGxu) V^p (ieG2i3) 

(4.93) 

Here the contraction with the transverse polarization vectors e^{k\) and e^u{k\) projects on 

—gta, and the derivative 2 ^ projects on the on-shell wave-function factor. The latter 

hinges on the fact that ~ (A; 2—M^). The vertex structures simplify to V^p ~ —2k\a g^p 

and V p i a i v « —2k\aigpiv since here we can neglect the momentum k2 with respect to k\. 

[This will at the most lead to a term ~ k2. Since the factor ki}Mi has been replaced by 

the derivative in this approach, such a term is suppressed.] Making use of eT(ki) • k\ = 0, 

er(ki) • e^(ki) = —1 and er(^i) • n = 0 we find 

d f f dAk 
bZ. -1 e 

wT 

ie 
2ku 

d f dAk 

WkTo [ J ( 2 T T 
4 klt7kla> P°° (fc2) P^ih - k2) G1U G24Z 

( -0 

— —e2 Gj34 G 2 / 
( 2 ? r ) 4 * ™ ' ^ [ ( A ; i _ f c 2 ) 2 _ M 4

2 + i € -

d 4fc 2 4fc 1 ( T/c 1 ( 7,P<" /(fc 2) 

G\3a G 134 ^243 

cr"(fci) 

4 " ( * i ) 

(4.94) 
r 2 4 3 ' ( 2 T T ) 4 [(ky - k2)2 - M2 + ie}2 

And, indeed, for the diagonal self energy (i. e. the same particle in both amputated legs) we 

find agreement between the two methods. 
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Now, we jump slightly ahead and also present the full self energy for neutral particles, 

which is needed later at two loop level for the so-called 'frog' diagrams. In those diagrams 

the neutral particles are effectively transverse, but not necessarily on-shell (being virtual 

particles). Hence the precise definition of the asymptotic states in the neutral sector is not 

an issue. I t is important to notice that we will need the ful l one-loop self energy (rather 

than the derivative) to calculate the contribution from the 'frog' diagrams, the reason being 

that the external legs are not necessarily on-shell. In the case of the one-loop 7Z-mixing self 

energy it is even impossible that both external legs are on-shell. 

From (4.79), (4.87) and (4.88), inserting the appropriate couplings, we obtain 1 2 

i Xfl^w+tw+w*) = ({k\ - M2

W] + M 2 ) ?{MW, Mw) (4.95) 

i Z^^w^w+w*) = ( [ k 2 - M2

W] - M l ) T(MW, Mw) (4.96) 
\ sin f/w / 

. , \ / c o s # W r i 9 , , , , 1 /cos# w s i n # w \ ~ \ . r , r . 
, S < ' » , g ( ^ W ) = ( - _ [ * » - < ] - - - — ) Mi) HU.,MW) 

(4.97) 

. / ^ / cos# W r , 9 , , 9 l 1 /sin(?w cos# w \ , r 9 \ _ . , r , r . 

. = ( - - ^ « - K ] + 5 ( ^ - j M l ) Mw) 
(4.98) 

with T being defined in (4.82). Hence 

i Vjft^w+tw+w*) = [k2] T{MW, Mw) (4.99) 

i ^Ijw+tw+wt) = [kl - Ml} F(MW, Mw) (4.100) 
sin t/i w 

i ^]

Ztg{w+<»w+w<t>) = i Y,Wjyv+4,w+w*) = Q*? + ^[k2 - M 2 ] j f { M w , M w ) , 

(4.101) 

or generically 

I Z N } N 2 ^ W + * W + W « ) = G i 3 4 G 2 4 3 {^[k\-M2

Nl)+l-[k\- M 2 j ) ? ( M W , M W ) , (4.102) 

1 2Note the slight change of notation. The outside legs being neutral implies that both gauge bosons in 
the loop are W bosons and we don't indicate V4 any further, but we do indicate the two possibly different 
particles in the external legs. Note also that the same results are obtained in the case of V4 being the soft 
gauge boson. 
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with G134G243 = G^w^w* G N2W±W* • From this generic expression we see that the diagonal 

self energies (with N\ = N2 = N) are proportional to the inverse pole (kf — M 2 ) . The 

corresponding proportionality factor could just as well have been derived with the derivative 

approach, as we have seen for the W boson self energy. This is not true for the mixed ( j Z ) 

self energy in view of the occurrence of two inverse poles in the full expression. 

4.3.3 The scalar self-energy at one-loop level 

As mentioned before, in the high energy limit the Equivalence Theorem applies and longi­

tudinal gauge bosons solely appear with the quantum numbers of scalars. Hence discussing 

longitudinal W ± bosons in the final state is intimately related to the study of scalar particles 

(would-be Goldstone bosons (jr^) in the final state. Again the machinery is the same but let 

us give the key formulae for completeness. 

Consider the scalar one-loop self-energy T,^\p,n, Mi), originating from the emission of a 

gauge boson Vi with loop-momentum kx and mass Mx from a would-be Goldstone boson ^ 

with the momentum p: 
Vi(ki) 

iZ$(p,n,Mi) = 
0±(p) S(p-ki) <t>±(p) 

where S is either a ^ ± if the exchanged gauge boson is a photon or a Z, or if the exchanged 

gauge boson is a W ± , S stands for either the Higgs particle H or x- The corresponding 

one-loop contribution to the external wave-function factor Z^ = 1 4- 8 Z^ can be obtained by 

means of the projection 

d 
0~Z,b { A [ ! E a . ( p , n , M l ) ] } 

2p 0 [dpo 
i 

x ( » e G ^ ± s ) (p + p - *i)„] J , 

2 f tfki Ap»pvP^{kx) 
\Gv^s\ J )4 [(p - hi)2 - M? + ie]* ' 

(4.103) 
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w i t h GVl<t>±s given in Appendix B. 

Hence we obtain the following expression for the one-loop Sudakov correction to the external 

wave-function factor for scalar particles: 

S Z ^ f r ) = Q 2 L 7 ( A , M ) , 

(1 - 2 cos2 0wf 

(4.104a) 

SZ^(Z) = 
4 cos2 9W s in 2 9V 

L ( M , M) 

1 
+ 

1 

6 Z ? ( W ) = 

4 sin 2 9W 4 cos2 0W 

1 L ( M , M), 

L ( M , M), 

2 sin 2 9V 

(4.104b) 

(4.104c) 

w i t h L 7 ( A , M ) and L(M,M) being defined in (4.69) and (4.68). 

4.3.4 General one-loop Sudakov logarithms 

Gathering the knowledge f rom the previous three sections we are now prepared to make 

general statements. Upon summation over the allowed gauge-boson exchanges, one obtains 

the following expression for the f u l l one-loop Sudakov correction to the external wave-

funct ion factor for an arbitrary particle w i th mass m, charge Q and hypercharge Y: 

8Z™ = 
C2(R) 
s in 2 0 W 

+ 
Y 

2 cos 9W 

L ( M , M ) + Q2 L 7 ( A , m ) - L ( M , M) .(4.105) 

Here (^ ( i? ) is the SU(2) Casimir operator of the external particle. So, C^ i? ) = Cp — 3/4 

for the fermions and longitudinal gauge bosons (read: Goldstone bosons), which are in the 

fundamental representation, and C2{R) = Ca = 2 for transverse gauge bosons, which are in 

the adjoint representation. Note that the terms proportional to Q2 in (4.105) are the result 

of the mass gap between the photon and the weak bosons. 

We have applied these one-loop Sudakov correction factors to the reactions e+e~ —> W^W^. 

W^W[ and found perfect agreement w i th the high-energy approximation in Ref. [58], 

which confirms the afore-mentioned differences between transverse and longitudinal degrees 
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of freedom. To illustrate the above we give two examples of transversely and longitudinally 

polarized W bosons. For e~le\ —> W^W^ the Sudakov double logarithms are obtained f rom 

l-loop,8udakoy = 2 r ^ ( l ) ^ ( 1 ) 1 ^ o r n 

1 + 2cos 2 # w + 8cos 40, 

2 cos2 0W s in 2 6L 
L ( M , M ) + 2 ( L 7 ( A , me) + L 7 ( A , M ) ) born 

(4.106) 

and for e^e^ —>• W 7^ f rom 

= 2 [ 5 Z ( i ) + < 5 Z i 1 ) l a b - r + w + w -a 

r5 - lOcos 2 0 W + 8cos 4 0 W T . , r , . T 
w . 2 L ( M , M ) + 2 ( L 7 A, m e + L 7 ( A , M ) 

L 2 cos2 6L sin 6L 
_ born 
cr _ + 

z R e L ~ " ' L L 

(4.107) 

in agreement wi th the leading contributions ~ L ( M , M ) in Eq. (12) of Ref. [58]. The overall 

factor of two originates f rom the two final and two in i t ia l state particles. 

4.4 Electroweak two-loop Sudakov logarithms 

For high precision measurements i t w i l l become crucial to probe beyond leading order in a 

and hence theoretical predictions of this accuracy are needed. Eventually i t might become 

inevitable to re-sum those large logarithms to all orders in perturbation theory. To this end 

let us start w i t h the calculation of two-loop Sudakov correction factors. Again the calculation 

is very similar for the various types of external ('baseline') particles. We use the fermion 

case as the major example to illustrate all the subtleties and then briefly give the results for 

transverse and longitudinal W bosons (that is would-be Goldstone bosons) in the following 

sections. 
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4.4.1 The fermionic self-energy at two-loop level 

A t two-loop accuracy one has to take the following five generic sets of diagrams into account: 

v. V, 

^ AA MS v2 

7̂ / f l f l f l f f fl f f f i f f i / f f i h f 
v2 (a) (d) 

v3 4> 4> w w 

Va Vi v2 v. Vo Vi 

f f l f f f l f f fl f 

(ei) (e 2) (e 3) 

The fermions fi are fixed by the exchanged gauge bosons V{. Various cancellations are going 

to take place between all these diagrams. In unbroken theories like QED and QCD merely 

the so-called 'rainbow' diagrams of set (a) survive. The same holds i f all gauge bosons of the 

theory would have a similar mass. The unique feature of the SM is that i t is only partially 

broken, w i t h the electromagnetic gauge group U(l)em ^ U(l)y remaining unbroken. As such 

three of the four gauge bosons wi l l acquire a mass, whereas the photon remains massless 

and w i l l interact w i t h the charged massive gauge bosons ( W ^ ) . As a consequence, merely 

calculating the 'rainbow' diagrams w i l l not lead to the correct result. 

To i l luminate the above let us study each of the generic five topologies separately. 

Let the outer loop-momentum of the 'rainbow' diagram of set (a) be denoted ki and the 

inner loop-momentum A^. For simplicity we use the generic mass mj for every fermion and 

do not distinguish between different fermion species. A t one-loop level we learned that the 

fermion mass is only needed as a cut-off parameter to regularize the collinear singularity i f 

the soft exchanged gauge boson is a photon. The two-loop fermion self-energy can then be 
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wri t ten as 

,(2) 

- #]) - m,f + ie 

- tfi - #2) -mf + ie 
( z e 7 ^ r / l / 2 v 2 ) 

— fix) — rrif + it 

x P^(k1)P""(k2)}uf(p) 

d% f d*k2 T ^ r ^ y J p ^ P ^ i h ) 4 / y / v P ^ \ k 2 ) 

( 2 T T ) 4 [(p - ki)2 - m ) + it}2 [(p - h - A; 2) 2 - m 2 + i f 

2 1 
+ [{p-h)2 -m) + ie] [(p-(k1+k2))2 -m2+ie} 

Making use of (4.60) and 

(4.108) 

(0 kl - Ml + ie 

4A:2oPo 

4&20P0 

k2

2 

( [ p - k 2 f - m ) ) 

k2 

( p - i h + k ^ Y - m j - ( p - h Y - m j ,(4.109) 

in leading logarithmic approximation the self-energy can be wri t ten 

d4ki f d4k2 4:k1Qp0 4k2QpQ 

)4 h 

1 

2 i T 2 

k2 

[(p - & J 2 - m 2 + ie ] [(p - + A; 2)) 2 - m 2 + ie ] [k\ - M2 + it} [k2 - M2 + it ] 

(4.110) 

For the gauge boson momentum k2 we choose a Sudakov parametrisation equivalent to the 

one used for ki, i. e. 

k2 = v2q + u2q + k2± , (4-111) 

w i t h q and q defined in (4.63). The calculation simplifies i f we perform the u2 integration 

first, taking the residue in the lower hemisphere in the pole of the corresponding gauge boson 
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propagator. Following the steps of the one-loop calculation we find 

2/2 

2 f l d V l f l d z ^ f l d y 2 / " d z 2 T . 2 

y i Z\ JO 2/2 Jy2 

x r / " / 2 l / 2 / C ( 1 ) ( S ) m J , M 2 , ? / 2 , 2 2 ) e ( y 2 - ? / 1 ) (4.112) 

wi th /C' 1) being defined in (4.66). 

Being already familiar w i t h the type of simplifications which have to be applied to the self-

energies we can omit the very first steps and give the self-energy of set (b) ('crossed rainbow') 

in the following way 

( 2 ^ J ( 2 ^ V f m V h h V i F h h V i T f h V 2 4 P » ' P v ' P " V ( f c 2 ) 

1 
X [(p - k x ) 2 -m2

f + ie] [{p - k i - k2)2 - m) + ie}[{p - k2)2 - m2

f + i7] 

1 1 1 
+ T; ; r~T7, + [(p - h ) 2 - mj + ie] [(p - ki - k2)2 - m2

f + ie] [(p - k2)2 ~ mj + it 

4/cioPo 4 / c 2 0 p 0 2 2 f d 4 ^ f d % 4kl0 

~ ^ i e ' J ( 2 T T ) 4 J ( 2 T T ) 4 F H V L H H V 2 / 2 / 3 V L I H V ' 2 -2 
k2 

[(p - k x ) 2 - m 2 + ie}[(p - k2)2 - m ) + it\[k\ - M2 + ie] [k2 - M | - H e ] " 

(4.113) 

Note here the complete factorization of the two integrals. Thus this contribution can be 

wri t ten 

'2/1 
SZj2\b) = - T f m T f l W r M a V l T f f a V 2 f ^ f ^K^\8,m%MuVx,zx) 

v " ' J O Vl Jyx

 z \ 

x ( " - ) C ^ f ^ IC^(s,m2,M2,y2,z2) , (4.114) 
V 7 T / Jo 2/2 J y 2 Z2 

Obviously the reducible contribution f rom set (c) can only be the product of the two 
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corresponding one-loop contributions 

< » W = (-2) C / ' ^ / ' ^ ( . . m j , * , , * , * ) 
v 7 T 7 JO Vl Jyi 2 1 

« ("^) r / U ^ / ' ? (4-115) 
V JO V2 J y 2 Z2 

Unfortunately life is getting harder for the two remaining sets of diagrams. The main 

complication being that more than two gauge-boson propagators are involved and hence 

a variety of possible on-shell combinations enlarges the actual number of integrals to be 

performed. The triple-gauge-boson ( 'TGB' ) diagram of set (d) can be wri t ten in the following 

way 

a 7 W ( a \ - c v* f * - * L f d ' k 2 2 P ^ P ^ P P

p i x l x l ( k i ) P p p ' ( h - k 2 ) P ^ ' ( k 2 ) v l l , p l u l 

1 W H l 6 ) J {2nY J ( 2 T T ) * [ { p - k l ) 2 - m 2 + t e } [ ( p - k 2 y - m } + ze} 

x I / / 1 V 1 ^hf2V3 I ) / 2 v 2 ^ 1 3 2 I ~, o . , + 
[(p - ki)2 - mj + ie] [(p — k2)2 — m2 + ie] I 

(Zg2)2/ I § W T f m T h h V 3 T f h V 2 G n 2 l K ( d ) ' ( 4 - U 6 ) 

wi th 

IK(d ) 
2 P l l 2 P l / 2 P p Pw'jh) P^'jh - k2) P^'(k2) V^,^ 

[(p ~ h)2 - m j + ie][(p - k2)2 - mj + ie] 

1 1 
[(p — ki)2 — m2 + ie ] [{p — k2)2 — mj- + ie 

(4.117) 

and 

V^fiv' = (2 /c 2 -A; i ) / 1 ' g 1 , 'p ' + ( - k 2 - k i ) p ' g M v ' + ( 2 k i - k 2 ) ^ g M v ' ' (4.118) 

Defining k3 = ki - k2 the integration kernel IK(d ) of (4.116) can be wr i t ten in the following 
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way 

+ 

+ 

lK(d) ^ (-i)\^2Pfl(2k2 - k^^ P^'(h)] [*pPp„Ppp'{k3)P/{k2)\ 

' - 2 P p (An + k2)p, PPP ' (k 3 ) ] [4 P f l P u p^' (h) v (k2)] 

2 p v ( 2 k l - k 2 ) l / P v , / ( k 2 ) ] [tPpPvP^'MP/ih)]^ 

( [ b - f e i ) 2 ] + l(p-k2)2] \ 
\[(p- ki)2 -m2

f + ie}2 [{p - k2)2 - mj + ie}2 J 
(4.119) 

- 2 [ ( p - M 2 - ^ ] + ^ [ ^ - ^ - ^ ] + ^ ^ [ ( p - ^ 0 2 - ^ ] + ^ ^ 
k\2 kr2 ki 

4 A;3 0 Po 
_2 [ { p - h ? - { p - k 2 f - k l + k l ] + ^ ^ [ { p - k 2 f - k l ] - 2 J ^ 

k2 k3~ k2 k3 k,2 

W o [ (p - h)2 - k \ - { p - k2)2 + k2} + k 3 0 p 0 [ { p - k2)2 - k 2

2 ) - p l [ k \ - k l - k l } 

+ 
&3 0 &20 

k3 

+ ([(p - k x ) 2 - k 2 ] - k - ^ [ - k 2 - k 2 + k2} - ^ ^ [ ( p - h)2 - k\ - (p - k2)2 + k2}) 

4 fei 0 Po 

ki k2 

[ { p - k 2 y - k 2 \ 

2kipk2Q 
C2 C2 

k\ k2 

Po k20[(p - h)2 - k ( ] + p 0 k l 0 [ ( p - k 2 f - k2

2] +p2

0[kl - k{ - k\ 

+ 
k2 

[ k3 - k\ — k2 } + 

4fc30P0 
2 [ ( p - A ; 1 ) 2 - b - A ; 2 ) 2 - f c 2 + ^ ] + ^ ^ [ ( p - f c 0 2 - f c n - 2 ^ ^ x 

ki ki k3 ki 

kioPo[{p - ki)2 - k \ - { p - k2)2 + kl} + k30p0[(p - h ) 2 - k\] +p2

0[k2

l - k\ - k2

3 

[(p-h)2} + [(p-k2)2} (~i)4 

[(p - h ) 2 -m2+ ie}2 {(p - k2)2 -m) + ie}2 [k\ - M2 + ie} [k2 - M2 + ie} [k2 - M2 + ie] 

(4.120) 
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As usual we have neglected the fermion-mass m / in the numerator. 

The integration kernel can be simplified by making use of the fact that the following generic 

contributions w i l l not lead to ( log) 4 corrections: 

• terms wi th only one gauge boson propagator 

• terms w i t h no fermion propagator 

• terms wi th one fermion propagator and only two gauge boson propagators 

• terms w i t h two fermion propagators and two gauge-boson propagators but only 

one 1/k2 

• terms ~ ( l / ^ i ) ' w i th / < 8 in the soft kt l imi t ; four of those powers w i l l be com­

pensated by the loop integrals, hence four more are required to obtain four logarithms 

Moreover we can make use of effective identities like 

( p - f c i ) 2 

[(p - k 2 f -m2+ze}2 UU [*? - M f + ze] 

&10&20 1 

k2 [(p - k 2 f - m) + ze ] n ? = 1 [ki ~ Mf 4- ie} 
(4.121) 

because the part of (p — ki)2 that is proportional to the k\ component perpendicular to k2 

w i l l not survive the ki integration. 
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A l l this leads to 
IK(d) « 

+ 

+ 

2 h o po 1 2/C20PO 1 
k,2 [ ( p - h r - m } + te][kj- ^ ? + " ] fc2

2 [ ( p - ^ 2 ) 2 -- m
2 + ie ] [fc2 -- M f + ze ] ^ ? + " ] fc2

2 [ ( p - ^ 2 ) 2 -
(4.122a) 

2k2Qp0 1 2A: 3 0po 1 
k2 { { p - k 2 y - m ) + ie][kl-- M 2 + i e ] ^ K P - f c l ) 2 — m2 + ie ] [k2 - M f + ie] 

(4.122b) 

2ki0po 1 2A;30Po 1 
£ 2 [ ( p - A ^ - m ^ e ] ^ 2 --M2 + te] £ 2 [ ( p - f c 2 ) 2 — + ie ] [fc2 - M | + ie] £ 2 [ ( p - A ^ - m ^ e ] ^ 2 -

(4.122c) 

4 Ari o po 1 
(4.122d) 

k\2 [ { p - k 2 Y - m ) + ie][k\-- M 2 + i e ] [ f c 2 - M 2 + i e ] [ A ; 2 - M | + i e ] 
(4.122d) 

4/c 2 0po 1 
(4.122e) 

k 2 [{P - k x f - m) + ie][k\-- M 2 + ie ] [k2 - M2 + ie ] [k2 - M f +ze] 
(4.122e) 

8A;30jOo 1 
(4.122f) 

fc3

2 [ { p - k 2 ) 2 - m ) + ie][k2--M2+ie}[k2-M2 + ie][kj- M f + i e ] 
(4.122f) 

1 
(4.122g) 

fc3

2 [ ( p - * i ) 2 - m } + « ] [ * ? -- M 2 + i e ] [ f c 2 - M 2 + i e ] [ f c 2 - M 2 + ie] 
(4.122g) 

2A; 1 0po 1 
[ ( p - f c 2 ) 2 - m 2 + i 6 ] [ f c 2 - - M f + ie] 

2fc 3 0Po 1 
(4.122h) 

X k f \{p-(k2 + h ) Y --mj + ie] [kl - M f + ie] 
(4.122h) 

2k20p0 1 
A 2

2 { { p - k x f - m ) + ie)[k\-- M 2 + ie} 

2&3oPo 1 
(4.122i) 

X fc3

2 [ ( p - ( ^ l - ^ 3 ) ) 2 -- mj + ie] [kl - M f + ie] 
(4.122i) 

4 fci o Po 1 
k 2 [ ( p - k ^ - m j + ieUk2-- M 2 + ie] 

2(feio - A:2o)po 1 
(4.122j) 

( f c i - f c 2 ) 2 [ ( P - ^ ) 2 - m j + ie ] - M 2

2 + ie ] 
(4.122j) 

4 fe2 o po 1 
fc*2

2 [{p - k2)2 - m) + ie][k2-- M f + ie] 

2(fcio ~ fc2o)Po 1 
(4.122k) 

( f c l - f c 2 ) 2 [ ( p - f c l ) 2 - m j + ie] [k\ - M x

2 + ie] 
(4.122k) 

Note here that the same result is obtained for the f u l l gauge boson propagator P^u as well 
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as for the purely transverse part ~ Q^, as expected in the collinear regime. 

Apar t f r o m the coupling factor T / f l V l I / , / 2 v 3 I ) / 2 v 2 GX32 the integrals in (4.116) have been 

normalized in the usual way. Therefore the first term (4.122a) is easily identified as the 

product of two one-loop contributions (4.61) wi th momenta kx and k2, i. e. 

In the second term (4.122b) the momentum kx has to be expressed through the momenta k2 

and kz, i. e. kx = k2 -\- k3, in the fermion propagator as well as in the integration variable. 

This is convenient since those are the momenta appearing in the boson propagators of 

(4.122b). (Remember that we have chosen to take the residue in the lower hemisphere in 

the pole of the gauge-boson propagators.) In doing this the 'rainbow'-like structure can be 

immediately recognized and upon integrating first the u3 variable belonging to the Sudakov 

parametrisation of fc3 we obtain instantly 

Similarly replacing k2 = kx — fc3 and subsequently reversing the sign of the k3 integration 

variable in (4.122c) leads again to a 'rainbow'-like structure and 

The following four terms are unique in the sense that they only contain one fermion prop­

agator and three gauge-boson propagators. As we w i l l see later those can be identified 

as so-called ' frog' contributions. Now having three propagators serving as potential poles 

we have to sum over all three possibilities of taking either two of them on-shell. Let us 

do this step by step at the example of (4.122d). Starting by taking kx and k2 as the 

integration variables, i. e. taking the corresponding propagators on-shell, the th i rd gauge 

boson propagator becomes 

1 
(4.122a) -> T / C ( 1 ) ( Mx,yx,zx))C^( s,mf,M2,y2,z2) s, m (4.123) 

1 
(4.1226) - / C ( 1 ) ( s. m f s,m2

f,M2,y2,z2)K,{1)(s,m2

f,M3,y3,z3)e(y3 - y2). (4.124) 

(4.122c) -> - / C ( 1 ) ( Muyx,zx)K^{ 4.125) s,mf,M3,y3,z3)e{y3 - yx) s. m 

1 1 
[k2-M2+ie] [k\-2kx-k2 + k 2 - M 2 + ie] 

1 
-2kx • k2 

1 
(4.126) 

-s(zi y2 + z2yx) ' 
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. - 2 
We need a l/(yiz2) contribution, since f rom k x o / k x and f rom l/(p - k2)2 we obtained 

1/(212/2) already. This leads to the 9-funct ion Q{z2yx - zxy2). Furthermore, performing 

the iii integration first, the th i rd gauge boson propagator restricts the vx integration range 

to 0 < v\ < v2. Hence we find for the first summand of kernel (4.122d) 

\jC{1\s, m2, M i , yx, zx)fC{l)(s, m j , M 2 , y2, z2) Q(z2 - zx) 0 ( z 2 yx - zx y2). (4.127) 

Taking kx and — k3 as the next two integration variables and performing the u3 integration 

first we obtain 

- ^JC{1)(s,m2

f,M1,yx,zx)lC{1\s,rn2

f,M3, y3, z3) S{y3 -yi)G(z3 - z1)e(z3y1 - zx y3). 

(4.128) 

Finally for k2 and k3 being the on-shell gauge-boson momenta 

- J £ ( 1 ) ( s , m2

f, M 2 , y 2 , z2) K{1){s, m2

f, M 3 , y3, z3) B(z3 - z2) Q(z2 - z3) = 0 , 

since the two O-functions cannot be simultaneously ful f i l led . Note that the first 9 - funct ion 

originates f rom the kXo = k3xx + k2o ~ k30 constraint and the second 0-funct ion arises due 

to the restricted v3 integration range. 

I n order to combine (4.127) and (4.128) we first relabel the integration variables of (4.128) 

- ^ICw(s,m2

f, Mx,yx, zx) JCw{s,m2

f, M3,y2, z2) Q{y2 - yx) Q{z2 - zx)0(z2yx - z x y 2 ) . 

(4.129) 

Adding to this the 'one-way' double ordered part of (4.127) leads to 

^)C{1)(s,m2

f,Mx,yx,zx)e(z2yx - zxy2)e{z2 - zx)e(y2 - yx) 

x [K. w ( s , m2, M2, y 2 , z2) - / C ^ ( s , m2, M 3 , y2, z2) ] 

= ]-JC(1)(s,m2

f,Mx,yx,zx)Q(z2yx - zx y2)Q{z2 - zx)e(y2 - yx) 

<6 ( y2 - — z2 @ (J/2 z2 

M | 
(4.130) 

which vanishes for all possible combinations of Mi being the photon mass or the generic 

mass M . This is t r iv ia l for M2 = M3. For M2 = A and Mx = M3 = M the two O-functions 
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Q(z2 — Zi) 0 ( j / 2 —?/i) restrict the y2, z2 integrations such that at least y2z2 > M2/s and hence 
B (y2 z2 - ^ p j - 6 [y2 z2 - ^ p j vanishes.. The same holds for M 3 = A and Ml = M2 = M. 
Hence we find for (4.122d) 

^)C^(S,m2

f,Ml,y1,zl)}C^(s,m2

f,M2,y2,z2)e(z2-zl)e(y1 - y2), (4.131) 

w i t h 6(22 2/i ~ z \ yi) being obsolete for this combination of ©-funct ions , for (4.122e) we f ind 

l- K W (s, m2, M u y i , Z l ) K : ( 1 ) (s, m2, M2, y2, z2) G(Zl - z2) S(y2 - V l ) , (4.132) 

for (4.122f) 

l- JC W(s, m2

f, M2, y2, z2) K {1)(s, m2, M 3 , y3, z3) &(z2 - z3) Q(y3 - y2), (4.133) 

and eventually for (4.122g) 

X- fC^(s, m2, Mi, yu Zl)JC^(s, m), M 3 , y3, z3) Q{z, - z3) S(y3 - V l ) . (4.134) 

Next (4.122h) can be identified as the following double ordered contribution 

(4.122/i) - ) • ^ /C ( 1 ) (s , m j , M 2 , y2, z2) / C ( 1 ) ( s , m2, M 3 , y3, z3) Q(y3 - y2) Q(z2 - z3). (4.135) 

Similarly (4.122i) becomes 

(4.122i) -+ \)Cw(s, m2, M u y u 2j) /C ( 1 ) (s , m2, M 3 , y3, z3) G(y3 - V l ) & { Z l - z3). (4.136) 

The remaining two contributions are 

(4.122j) -> \>CW(s, m2, M1,y1, z,))C^(s, m2, M 2 , y2, z2) Q(z2 - zx), (4.137) 

and 

(4.122A:) -+ rnj, Mu yu * i ) / C ( 1 ) ( « , m2, M2, y2, z2) Q(zx - z2), (4.138) 

and can be combined to 

(4.122j) + (4.122/c) -> \tC{l)(s, rn2, M u y u zx) Kw{s, m2

f, M2, y2, z2). (4.139) 
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Af te r some relabeling the two-loop correction factors originating f rom set (d) can be sum­

marized as follows 

dz2 5 z f ( d ) = \ r f m r h h V 3 r / / 2 V , g 1 3 2 { - ^ £ *f £ df I ^ £ 

JCw(s, mj, Ml,y1,z1) + /C ( 1 ) (s , m}, M 2 , y l j Z l ) 

x IC{l)(s,m2

f,M3,y2,z2)e(y2-yi) l + 3 e ( z x - z 2 ) 

+ JC{l\s,m2

f,Muyi,zx))C{l)(s,m2

f,M2,y2,z2) x 

x [3 + 6(2/1 - y2) 6(z 2 - Z l ) + Q{y2 - yx) B(zx - z2) 

(4.140) 

Eventually we calculate the ' f rog ' diagrams of set (e). Labeling the loop momenta according 

to our specification in (4.3.2) we find 

( 2 ) ^ -

where E g ^ f V g ) is given by (4.80), (4.81), (4.89), (4.90) or (4.102). Whenever the soft 

particle V 3 = W, the sum of the contributions f rom the gauge boson and the two mixed 

propagators is impl ic i t ly understood. Af ter the usual simplifications we obtain the fol lowing 



CHAPTER 4. ELECTROWEAK RADIATIVE CORRECTIONS 102 

generic result 

6Zj2)(e) = ~e4-TfflVlTfmGn4 G 243 J J ̂  xk2 16/c2oPo 
Y {(p - k r ) 2 - m2 + it] 

[ f c ? - M f ] + [ f c ? - M | ] 
[A;2 - M2 + it ] \k\ - Ml + it} [kl - M f + it ] p i - A; 2) 2 - M\ + it} 

- e 2 ) 2 ^ i 3 4 G 2 4 3 y (2 T T ) 4 / 
d 4 ^ ! f d 4 k 2 I6 /C20P0 

(4.141) 

1 

( 2 T T ) 4 J ( 2 T T ) 4 £ 2 [ ( p - f c l ) 2 - m } + * e ; 

1 
[A;2 - M f + ie ] [A:2 - M f + ie ] p i - A; 2) 2 - M 2 + it ] 

1 
+ [A;2 - Ml + ] [A;2 - M f + it ] p i - A: 2) 2 - M 2 + it ] 

(4.142) 

yielding wi th the help of the result f rom (4.122e) 

2 f 1 d y 1 [ l d Z l f i d y 2 [ l d z 2 

z2 

K{1\s,m},Ml,y1,z1) + £{1\s,m2

f,M2,y1,z1) 

Q{yi - yi)Q(zi - z 2 ) . 

K,V(s,m2,M3,y2,z2) 

(4.143) 

Throughout this calculation we have assumed that the particle V3 is the soft one (rather than 

V4). W i t h the purpose of making the bookkeeping as simple as possible for later summation 

of all possible combinations of particles in the various diagrams, we remove the explicit 

orientation in the inner loop and add the case that V4 is soft: 

A7< 2 )^ * r r r r ( a Y f d ? / 1 d z i C d y 2 C d z 2 SZF (e) = -2TfflVlTfmG^G243 [--) ^ — £ — JQ — ^ — 

IC{1\s,m2

f,Muyuz1) + }C{l)(s,m2

f,M2,yi,zl) 

/C ( 1 ) (s , m j , M 3 , y2l z2) + /C ( 1 ) (s , m2

f, M 4 , y2, z2) 

6(2/2 - 2/1) 6(*i - ^2) • (4.144) 

To summarize the whole last section we write the generic two-loop contribution of Sudakov 
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logarithms to SZ^ as: 

SZf « ( ^ ) 2 r f f ^ f ^ f t J l f ^ K l ^ y u ^ , ^ . (4.145) 

For the five different topologies the various products T j 2 ' x IC ^ of coupling factors and 

integration kernels are given by 

set (a): T f ) l V l /C ( 1 ) (s , m2

f, M l 5 yu Z l ) I } ^ /C ( 1 ) (s , m), M 2 , y2, z2)\ 0 ( y 2 - V l ) , 

set (b): - T f m V h h v 2 T h h V l Yfhv21C[l){s,m2,Mi,yuzi) Kw{s,m2

f, M2,y2, z2) , 

set (c): r//iV, /C ( 1 ) (s , m 2 , M l 5 J/!, ^ ) ] tfhy2 /C ( 1 ) (s , m), M2, j / 2 , * 2 ) 

set (d): T r//^ r^^vj, r// 2v 2 G 1 3 2 { \lC[1)(s, m^MuyuzJ + /C ( 1>(s, m2, M2 

X /C ( 1 ) (s , roj, M 3 , y2, z2) Q(y2 - V l ) [ l + 3 0 ^ - z2) 

+ fC(l)(s, m2, M u y i , zx)lC^\s, m), M2, y2,z2) x 

3 + G(yi - y2) Q{z2 - zi) + e(y2 - V l ) Q(Zl - z2) 

set (e): - T f m T f m G1U G2i3 /C ( 1 ) (s , m j , M 3 , y2, z2) + JCw(s, m2

f, M 4 , y2, z2) x 

X JC^(s, m2

f, M l i V l , z{) + ICw(s, m2, M2, yu zx) G(y2 - V l ) S ( Z l - z2) (.4.146) 

I n Appendix D we have derived all relevant one- and two-loop integrals. Here we give the 

results, using the generic notation 

*x dyx [ l dzi f l dy{ f l dzt 

A t one-loop level we found 

(_£)7'*> r**...r**. r 1 * * » , * , ) . (4.147) 
V JQ yi J y i zi Jo yz Jy. Zi 

JCW(s,m2,M,yi,Zi):lW = L(M,M) , 

X : ^ ( s , m J , A , y 1 , z i ) : / ( 1 ) = L 7 ( A , m / ) 

(4.148) 

(4.149) 
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The functions L(MX,M2) and L 7 ( A , Mx) are the ones defined in (4.68) and (4.69). A t 
two-loop level we found for the angular ordered integrals: 

£W(s, m2, M, yx, zx) K^(s, m), M, y2, z2) Q(y2 - yx) : I™ = l- L 2 ( M , M) , 

fC^is, m2

f, A, yx, zx))C^(s, m 2 , A, y2, z2) 6 ( y 2 - V l ) : I™ = ± L 7

2 (A , m f ) , 

K(1)(s, m2, M, yx, Zl)ICW(s, m2, A, y2, z2) 0 ( y 2 - yx) : 7<2> = ^ L 2 ( M , M) , 

JC^(s, m2, A, yx, Z l ) /C ( 1 ) (s , m 2 , M, y2, z2) 6 ( y 2 - yx) : / ( 2 ) = L ( M , M) L 7 ( A , m / ) 

- 1 L

2 ( M , M ) , (4.150) 

and for the double ordered integrals: 

/CW(s, m 2 , M,yx,zx)K(1)(s, m 2 , M , y 2 , z 2 ) 0 ( y 2 - yx) Q{zx - z2) : /<2> = ^ L 2 ( M , M) , 

K W(s, m), M , y i , Z l ) /C^(s, m2, A, y 2 ,2 2 ) 9 ( y 2 - yx) 0(zx - z2) : I™ = I L 2 ( M , M) , 

/ C ^ ( s , m 2 , A, yx, zx)JC^(S, m2, M, y2, z2) 6 ( y 2 - yx) Q{zx - z2) : 7<2> = ^ L ( M , M ) L ( M , m , ) 

- ^ L 2 ( M , M ) . 

(4.151) 

Note that in the case of double ordering the collinear cut-off m2 of the y 2 integral is in fact 

redundant. 

Now the task at hand is to sum all possible contributions to obtain the f u l l two-loop correction 

to the external wave-function factor. 
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'rainbow' contributions: 

V, = Z,V2 = Z : \(szjl)R(Z)SZ^/R(Z)) 

Vi = W,V2 = W : l- (szjl

L\W) 5Zjl\W)) 

(V, = 7, V2 = Z) + = Z,V2 = j ) : (8Zjl)R(7) 6Z™R(Z)) 

{yx = 7 , V2 = W) + (V, = W,V2 = 7 ) : 6Z™(W) 6Z™(7) - ~ — J — / / r / L 2 

x ̂  sin (7 w 

(VI = Z,V2 = W) + (V, = W, V2 = Z) : SZjl

L\W) SZ{

fl\Z) + 1 ifYj-l? 
J L J L 2 sin 0V

 1 ' 

where we have used the abbreviations L = L(M,M) and L 7 = L 7 (A, m/) and are 

the one-loop wave-function factors given in (4.67). And hence for the sum we obtain 

E w J H « ^ + » ^ ^ - ^ ^ ( , 1 5 3 ) 

I i « > ( z ) + « ; « ( , ) ) 2 

'crossed rainbow' contributions: 

^ = 7 , ^ = 7 : - « ; « ( T ) < ; f l ( 7 ) ) 

V ^ Z . l ^ Z : - (6Z£)R(Z)5Z}1)r(Z)) 

Vi = Z,V2 = ^ . -(6Z}l]RW6Z%R(Z)) 

V1=J,V2 = Z: ~{sZ^R(j)5Zil)R(Z)) 

( V l = W,V2 = Z) + (Vi = Z, V 2 = W ) : -26Z$m SZ^Z) + - § t -

(VX = W,V2 = ,) + (Vi = 7, V 2 = ^ ) := - 2 < W *Z<? (7) + + | ^ ] L L 7 



CHAPTER 4. ELECTROWEAK RADIATIVE CORRECTIONS 106 

leading to the sum 

(crossed rainbow) 

- (6Z}1\W) + 6Z™(Z) + SZ^^y 

+3 5Z{

fl)(W)SZ{

f

l

L\w) + 6Z}1\W) (1 + 1 I ) Y f ) [ L 7 - L] 

'reducible' contributions: 

(reducible) 

- ( ^ ( Z ) + 5 Z W ( 7 ) ) 2 

| (8z£\W) + 6z£\z) + 5 z £ \ 7 ) j 

(6Z$(Z)+5Z%(7))2 

(4.155) 

(4.156) 

'TGB' contributions: 

This topolgoy has contributions only for left-handed fermions, due to the (V — A) structure 

of the W coupling (see Appendix B). In order to account for the fact that the sign of 

the triple gauge boson vertex depends on the charge of the incoming fermion, a factor 2 I j 

emerges in the overall coupling [ e. g. G i 3 2 = GjW+w- = 1 if Q/ > 0 and I j = +1/2; 
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C132 = GyW-w+ = — 1 if Qf < 0 and If — —1/2]. The individual contributions are given by 

(V1=j,V2 = V3 = W) + (V1 = V3 = W,V2 = i ) :2 

2 

1 2 ^ / ( i ) ( - Q / ) 

L L 

l / / Q / 

7 12 
3 

S L 2 + ^ 2 ) + 3 i L L " ' 4 

4 2 sin2 ft 
3 .o 3 

4 
7 L 2 + 7 L 2 + 3 L + ^ L 2 + - L L m . — - L 2 

2 sin 2 0, w 

g 
4 L L 7 + - L L m / 

Jmf 4 

l / f < 3 / 
4 sin 2 0W 

1 //<?/• 

2 (^ L 2 + 3 ^ L 2 ) + ( 3 L 2 + 2 i L 2 ) 

4 sin 2 0W 

(Vi = Z,V2 = V3 = W) + (VI = V3 = W,V2 = Z) : 

1 2 If ( - cos# w /sin# w ) (vf + aj) 
2 sin 2 0W 

I l f ( l f - Q f s in 2 f l w ) 
2 s in 4 0 w 

2 - L 2 + 2 - L 2 + 3 L 2 + 2 - L 2 

[6L 2 ] 

1 27, (cos0 w /sin# w ) + ar>) , „, 
4 2 sin z 8W 

1 I f ( - I f - Q r s in 2 0 w ) 
[6L 2 ] 

4 sin 4 0W 

with the abbreviation L m / = L ( M , m/) . The change of sign between the first and the second 

as well as third and fourth contributions originates from the antisymmetricity of G i 3 2 . The 

sum of those contributions is given by 

£ ( T G B ) L = - 2 IfQf 
sin 2 0W 

L L 7 + - L L m / 

9 
8 sin4 9V 

L > + H J 2 « £ _ L . + 3 ^ . L , 
3 4 sin 2 0U sin 2 

= - 2 
sin 2 0W 

L L 7 + — L L m / 

+ 3 -

8 sin 4 0W 

1 
4 sin 2 0„ 

3 + 
2 sin 2 6> 

(4.158) 

'frog' contributions: 
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If Vi and V2 are neutral gauge bosons, the 'frog' diagram will contribute for both left- and 

right-handed fermions. This is reflected in the (vf + a/) and (vf — aj) couplings of the 

fermions to the Z boson. For charged gauge bosons V\ and V2 only left-handed fermions 

contribute. 

Q2 

V1 = V2 = 1,V3 = V4 = W : ^ - 2 -2 
2 L L - : L 2 

Vl = V2 = Z,V3 = V4 = W : \ < ^ - { v j ± a s f 2-2 

(4.159a) 

(4.159b) 

(Vx = >y,V2 = Z ,V3 = V4 = W) + (V1 = Z,V2 = 1,V3 = VA = W) 

7 L 2 + 7 L 2 

4 4 

Vi = V2 = V3 = , V4 = 7 
1 1 
2 2 sin2 0W 

- T 2 - T 2 

3 L + 4 L 

2 2 sin t/w 

(4.159c) 

(4.159d) 

(4.159e) 

Note that for the last two contributions we do not add a similar frog diagram with V3 = 7, Z 

being the soft gauge boson and V 4 = W, since this is implicitly done in our notation (4.144). 

For the sum of right-handed contributions we find 

£ ( f r ° g ) * = \ Q2/L L m , - I Q} L 2 + 1 ^ - i ^ - [-2 sin 2 9W Qf]2 L 2 

+ o 12a I " 2 s i n 2 ^ Q / ] ^ L L m / = 0 ^ sin c/w o 
(4.160) 

and similarly 

x 7 T 2 , 1 T 2 , cos 2 f l w t 2 , 4 J / Q ; T / / Q / T 2 

4 sin 4 0V 

L 2 + 
3 sin 2 0, 

L L m , — 
sin 2 9„ 

L 

(4.161) 

Adding up all contributions yields for right-handed fermions immediately 

« / ? = i ( « f f ( Z ) + < ' ( 7 ) ) ' (4.162) 
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and with a bit of algebra we find for the left-handed fermions 

4 sin4 0W 

+ . \ [1 + 2 / / F / ] ( L L 7 - L 2 ) - 2 ^ 
2 snr 0W

 L sin sin 2 #w 

L L-y H- — L L 
8 sin 4 6V 

+ 

7 
24 sin 2 6 

1 

4 sin 2 0.. 

L 2

+

 1 

L 2 + 3 + 
r3 yh 

2 sin 2 9V 

8 sin 4 0V 

l 2 | cos 2 fl w l 2 | 4 IfQf 
4 sin 4 6> 

L L 

1 ( ^ W + ̂ ( z ) - f ^ ( 7 ) ) 2 + 

3 s i n 2 0 w

 m f sin 20 v 

1 , 3 1 1 
1-1 1 

12 2 12 2 

3 vL 

sin 20 

_ 1 3 1 7 _ 1 1 
_~2 + 4 ~ 2 4 + 2 4 ~ 4 ~ 4 sin 2 0, 

L 2 + 
3 _ 9 1 1 
4 ~ 8 + 8 + 4 sin 6V 

(4.163) 

And hence the full two-loop fermionic Sudakov correction factor reads 

\ (sz(

l

1

L\w) + szl

f

1

l\z) + szj1

[

:1 (-,))' 
(4.164) 

From (4.164) we deduce our main statement, namely that the virtual electroweak two-loop 

Sudakov correction factor is obtained by a mere exponentiation of the one-loop Sudakov 

correction factor. This is in agreement with the corresponding results in Ref. [62] based 

on Gribov's theorem1 3. We also note that, in adding up all the contributions, we find that 

the 'rainbow' diagrams of set (a) yield the usual exponentiating terms plus an extra term 

for left-handed fermions similar to the one found in Ref. [61]. This extra term originates 

from the charged-current interactions and is only non-vanishing as a result of the mass gap 

between the massless photon and the massive Z boson. We therefore disagree with the 
1 3 T h i s theorem was formally derived for QED. Up to now its applicability to multi-scale theories like the 

SM has not been proven yet. 
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statement in Ref. [62] that only rainbow diagrams contribute in physical gauges like the 

axial or the Coulomb gauge. Whereas in Ref. [61] the extra term was interpreted as a source 

of non-exponentiation, we observe that it in fact cancels against a specific term originating 

from the triple gauge-boson diagrams of set (d). Similar (gauge) cancellations take place 

between the 'crossed rainbow' diagrams of set (b), the reducible diagrams of set (c), and 

another part of the triple gauge-boson diagrams of set (d). Finally, the left-over terms of set 

(d) get cancelled by the contributions from the gauge-boson self-energy ('frog') diagrams of 

set (e). Hence, the cancellations that take place automatically in unbroken gauge theories 

also hold in the SM, in spite of it being a theory with more than one scale in the sense that 

the on-shell poles for photons and Z bosons do not coincide and therefore lead to different 

on-shell residues. 

Comparing with the study in Ref. [60], we can make the following remark. A treatment 

of pure weak gauge-boson effects without reference to the photonic interactions obviously 

breaks gauge-invariance, since the photon has an explicit SU(2) component. This holds even 

if the photon is treated fully inclusively as in Ref. [60]. Such a separation would require a 

very careful definition, for instance in terms of the typical energy regimes that govern the 

Sudakov effects of pure electromagnetic origin (ultrasoft energies: \ / \ f s < z < M/y/s) and 

collective electroweak origin (soft energies: Mj\fs < z <C l ) . 1 4 

4.4.2 The bosonic self energy at two-loop level 

As we already saw in the one-loop calculation, the mere difference between the different 

baseline particles is in the quantum numbers (i. e. couplings). Hence making use of (4.85) 

and (4.146) we collect all the relevant contributions for the two-loop Sudakov correction 

factor for transversely polarized W bosons: 
1 4 I n a more recent paper [68] the authors of Ref. [60] agree on those points, which were also addressed in 

Refs. [61, 62]. 
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'rainbow' contributions: 

Vl = Z,V2 = Z: ~6Zwl(Z)8Z^T(Z) 

VL = Z , V 2 = y 
7 cos2 9« 
12 sin 2 0 v 

7 cos29W ^2 cos2#w 

12 sin 2 9W

 + sin 2 9V 

Vl=-y,V2 = Z : - - E ^ L 2 + r r ^ m 

1 
VI = , V2 = W : 2 ^ 6Z£1(W) 5Z£1(W) 

V, = Z , V 2 = W : i ^ f l + ^ ) L 2 

2 smz0w V sn r# w 

c o s 2 ^ ^ T T cos 2 ^,^ 7 t 2 V , = j , V 2 = W : i + ^ - n L L 7 - i + - L 
\ sin 0W / \ sin t/w / 12 

where we have used the abbreviations L = L ( M , M ) and L 7 = L 7 ( A , M ) . The factors 

<5Z^(V) are defined in (4.85) and are the corresponding one-loop correction factors. The 

factor 2 for Vi = V2 = W originates from the fact that in the inner loop the charge is not 

fixed and we have to consider the two possibilities of VF+or VF~being V 2. Note that since the 

baseline particle is a W it is not possible to have a soft W in the outer loop (V\ = W) and 

a neutral soft particle in the inner loop (V2 = N). Adding up those 'rainbow' contributions 

we find 

^ ( r a i n b o w ) = \ (SZ^(W) + * Z $ ( Z ) + *Z#> ( 7 ) ) ' 

-±6Z$l(W) (sztil(W)-6Ztil(Z)) (4.165) 

'crossed rainbow' contributions: 

^ = 7,^2 = 7 = - ^ S ( 7 ) ^ S ( 7 ) 

V L = Z , V2 = Z : - SZ^T(Z) 6Z$l(Z) 

VL = Z,V2 = y: -SZSlWSZ&lfr) 

V 1 = 1 , V 2 = Z : -5Z$l{7)6Z™(Z). 

V L = W, V2 = W : - 6Z$l(W) 8Z$T(W), 
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Hence the sum reads 

^(crossed rainbow) = - (SZ^(W) + 6Z™(Z) + S Z ^ j ) ) ' 

+ 2 8Z$l{W) (6Ztil(Z) + SZ&lfr) ) • (4.167) 

Note here that contributions with one charged and one neutral gauge-boson are not possible. 

'reducible' contributions: 

2 
^(reducible) = (6Z™(W) + SZ^JZ) + *zg(7) 

'TGB' contributions: 

(V1=~/,V2 = W ,V3 = W) + {V1 = W ,V2 = ^,V3 = W) : -

(4.168) 

1 / cos 20 v -2 7 1 + . 2 n i x 
4 V sin 2 0 v 

cos2 # w 

2 V 1 + sin 2 0 v 

4 L L 7 + ^ L 2 

(Vi = Z , V2 = W , V3 = W) + (Vi = W , V2 = Z , V3 = : 
1 cos 20w A cos2/9H 

- 2 - . o - I 1 + 
4 s i r r0 w 

1 cos 20w 1 + 

sin2 0W 

cos2 ft,. 

2 - L 2 + 2 - L 2 + 3L 2 + 2 - L 2 

2 4 4 

6 L 2 

2 sin 2 9W V sin 2 0W 

where we have explicitly summed the photon and Z contributions for the appropriate neutral 

inner baseline particle. The result is 

£ ( T G B ) = _ 2 6Z$l{W) <5Z#( 7 ) - \ SZ^W) (5Z^T(W) - S Z ^ Z ) ) 

3 6Z<»(W) 5Z^>(Z) (4.170) 
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'frog' contributions: 

V1 = V2 = j,V3 = V4 = W: | ( 2 -2 ^ L 2 - ^ L 2 ) 

(Vl = 1,V2 = Z,V3 = V4 = W) + (Vl=Z,V2 = 1,V3 = V4 = W) : 

2 sin2 0W V 3 4 4 / 

( ^ = ^2 = ^ = ^ , ^ 4 = 7) 

2 V s in 2 0 w y V [4 3 J / 

( ^ = ^ = ^3 = ^ , ^ = ^ ) : 

1 cos26W ( c o s 2 f l w \ / 2 Tl l 2 1 \ 
2 s in 2 0 w V s i n 2 0 w / V [4 J / ' 

and hence 

£ ( f r o g ) = 6ZHl(W) 5Z$l{Z) + y2 SZHI(W) (6Z$l(W) - 6Z^(Z) ) . (4.172) 

We conclude that also in the bosonic sector the two-loop Sudakov correction factor can 

be obtained from half of the square of the ful l one-loop result. Note here that the gauge 

cancellations conspire in a way very similar to what we already saw in the fermion case. 

Due to the mass gap between the massive Z boson and the massless photon, the 'rainbow' 

contributions from set (a) exhibit an extra term, which in the bosonic case is canceled in 

part by the contributions from the triple gauge boson diagrams of set (d) and in part by 

contributions from the 'frog' diagrams of set (e). The extra terms in the 'crossed rainbow' 

contribution of set (b), arising due to forbidden combinations of one charged and one neutral 

particle, are in the case of the photon compensated by contributions from the triple gauge 

Finally upon adding all five topologies we are left with 

2 5Z wT — l ( 6 z V ( W ) + 6 Z £ l ( Z ) + 8zV{<y)) (4.173) 
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boson diagrams and in the case of the Z boson by contributions from both the triple gauge 

boson diagrams and the 'frog' diagrams. Eventually we are left with the very simple result 

SZ^l ~ 2 (^^t) f ° r the two-loop wave-function correction factor. 

4.4.3 The scalar self energy at two-loop level 

Well, as we have seen in the previous sections the mere difference between the various possible 

baseline particles is indeed manifest in the couplings. Again various gauge cancellations are 

going to take place between all five topologies and finally we find for the scalar two-loop 

correction factor 

6Z™ = \ ( SZ^W) + 6Z?\Z) + 5Zll\1) ) (4.174) 

4.4.4 General two-loop Sudakov logarithms 

We conclude this section with the general two-loop Sudakov correction factor 5Z = Z — 1. 

6Z^ = 1-[6Z^)' (4.175) 

In summary we would like to point out that to calculate the two-loop Sudakov correction 

factor for any species of charged15 initial or final state particles, i. e. fermions, gauge bosons 

or would-be Goldstone bosons, the knowledge of the corresponding one-loop correction factor 

is sufficient. This is a well known fact in massless or one-mass-scale theories, such as QED, 

QCD or generally SU(N), where in fact in covariant gauges the two-loop results are effectively 

obtained from so-called ladder diagrams, corresponding to our 'rainbow' diagrams. We 

like to stress again that for the SM, as a broken theory with two mass scales, the result 

SZ^ — | [SZ^)2 is identical, but at all intermediate stages extra terms arise due to the 
1 5 A s mentioned a couple of times earlier on, the investigation of the neutral gauge boson and scalar sector 

is underway. Note that in the fermionic sector the self energy of the neutrino U( is diagonal, so no dedicated 
investigation is required in that case. 
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mass gap. Therefore the calculation of only one topology, i. e. the 'rainbow' diagrams, does 

not lead (not even effectively) to the correct two-loop Sudakov correction factor. 

4.5 Conclusions 

We have calculated the electroweak Sudakov (double) logarithms at one- and two-loop level 

in the Coulomb gauge, applicable to any high energy scattering process involving fermions 

and/or W bosons. Especially the treatment of the longitudinal gauge bosons required some 

special attention. In this special gauge all the relevant contributions, involving the exchange 

of collinear-soft gauge bosons, are contained in the self-energies of the external on-shell 

particles. 

Our one-loop results are in agreement with the calculations in the literature, including the 

distinctive terms originating from the mass gap between the photon and the weak gauge 

bosons. At two-loop level our findings are consistent with an exponentiation of the one-

loop results. We conclude that as far as the balance between the one- and two-loop virtual 

Sudakov logarithms are concerned, the SM behaves like an unbroken theory at high energies. 

This conclusion can be extended to real-emission processes in a relatively straightforward 

way. After all, since the Sudakov logarithms originate from the exchange of soft, effectively 

on-shell gauge bosons, many of the features derived for the virtual corrections will be 

intimately related to properties of the corresponding real-emission processes. 

Several of the derived features of the Coulomb gauge for massive gauge bosons are general 

and might find applications beyond this very special case of calculating Sudakov logarithms. 

In particular, any calculation involving collinear gauge bosons will be considerably simplified 

by means of this gauge. As a matter of fact, for a complete understanding of the perturbative 

structure of large logarithmic correction factors, single logarithms originating from soft, or 

collinear or ultraviolet singularities cannot be ignored [69, 70]. 



Appendix 

A Conventions and Data 

The four dimensional Dirac matrices 7M obey the Clifford algebra 

(A.176) 

with 

/ 1 0 0 0 \ 
0 - 1 0 0 
0 0 - 1 0 

\ 0 0 0 - 1 / 

Working in the Pauli-Dirac representation the 7M matrices are denned 

7 
1 0 

> 7 
0 ak 

-ok 0 0 - 1 f 

with the two dimensional unit matrix 1 and the Pauli matrices ak, k = 1, 2, 3, 

0 1 
1 0 

0 -i 
1 0 

1 0 
0 - 1 

With these definitions the following identities hold 

7°7° = 1 

and with 

7

5 = i j° jl j2

 7

3 = 0 1 
1 0 

(A.177) 

(A.178) 

(A.179) 

(A.180) 

(A.181) 

(A.182) 

(A.183) 
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{7",75} = 0 

7 5 7 5 = 1 

7 5 t = 7 5 

it follows that 

(A.184) 

(A.185) 

(A.186) 

Converting the cross section from its natural units into its conventional units we make use 

of 

[a] = 1 GeV~2 = 0.389 mb (A.187) 

and 1 barn = 10" 2 8 ™ 2 , 1 pb = 10" 1 2 barn and 1 fb = 10" 1 5 barn. 

For the numerical calculations we have made use of the following data [53] 1 6 

Mw = 80.41 GeV, Mz = 91.18 GeV, 

sin 2 6W = 0.232 , a = f | = 1/137.035 989 . 
(A.188) 

A final reminder 

M io 1 1-1 2 . 1-1*3 o 1 • 1 • 3 • 5 4 , , . . ^ , 
{l±x)W . l ± - , - ^ , 2 ± ^ , 3 _ _ _ _ _ x 4 ± . . . fcrW<l 

{l±x)-W ~ + + for|*|<l. 

(A.189) 

B Feynman Rules 

In the following all boson momenta are defined to be incoming and momentum is conserved 

at each vertex. 

Propagators 

fermion : a m ^ 9 p ( _ L ^ (B.190) 
\[p-mf)J 0 a 

1 6 T h e most recent publication of the Particle Data Group [71] was not available at the time of the 
calculations. 
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boson : —% 
p2 - M£ + it 

( 1 - 0 P/xPiA m i Q 1 \ 
P 2 - ? M 2

V J ( R 1 9 1 ) 

where £ = 1 corresponds to the 't Hooft-Feynman gauge, f = 0 to the Landau gauge and 

£ = oo to the unitary gauge. 

Vertices 

The coupling between a gauge boson and fermions ( V f f ) is 

f 

f 

i e r { V - A l 5 ) 

= % eY 1 ( 1 - 7 5 ) (y + ^) + I ( i + 7 5 ) (v-A) 

(B.192) 

(B.193) 

with 

and 

i f f 

Z f f 

W f f 

V = ~Qf, A = 0 

V = vj , A = a/ 

V = l / ( 2 > / 2 sin0 W ) , A = 1/(2^2 sin0 w) 

__ I ) - 2Qf sin 20w 

U ^ 2 sin # w cos 0W ' ^ 2 sin#w cos#w 

(B.194) 

(B.195) 

The coupling between a gauge boson and scalars (VSi S2) is 

5i(pi) 

V,tx 

with (A = ± ) 

S2{p2) 

ieG{pi -P2 ) , i 

: G 

Z(j)x(t)-X : G 

ZXH : G 

Wx(j)-XH : G 

Wx<j)-x

X 
: G 

cos2 6W - sin 2 0W 

2 sin (/w 

i 
2 sin#w c< 

A 

2 sin 1 

(B.196) 

(B.197) 

'w 
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Interchanging the two scalars S\ and 52 causes the coupling constant G to change sign. 

The coupling between a scalar and two gauge bosons (S V\ V2) is 

S — < =ieGgflu (B.198) 

V2,u 

with 

HZZ : 6= M" 
sin #w cos2 9 

HWW : G M w 

sin0 w (B.199) 
<f,Wy : G = -Mw 

*WZ : G = - M w ™ e " cos 8W 

Interchanging the two gauge bosons V\ and V2 has no influence on the coupling constant G. 

The trilinear and quartic gauge boson self interactions are derived from the kinetic part of 

the Lagrangian Eq. (1.1). To illustrate this we derive as an example the W+W~^ vertex 

from the Lagrangian 

Ckin = - ^ W ^ W " " (B.200) 

with 

= a ^ - a ^ + j w . x w , (B.201) 

(g = e/sin6w) and W M being the SM vector 

ji(W+-W-) . (B.202) 

The contribution to trilinear couplings is 

- \ { d ^ v - dyWJig W" x W ) - - PW^g x W„) 

= y ( W - ^ W M ) ( W x W ) (B.203) 

For simplicity we study each component of this vector product separately. Selecting only 

the photon component of W 3 / 1 to obtain the W+W'j vertex: 
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1. component 

-^P> i ^~iy2{(-ik+,)W+ + (-ik^)W- - (-ik+v)W+ - {—ik-„)W~) 

x[{W^+ - ]¥"-)(-sm6wA1/)+smewA'1{Wl/+ - Wv~)) 

= % S-^~^-({k+- W+ - k+- W~){A- W+) - A)(W+- W+ - W+- W~) 

+(*_• W+ - /c_- W~)(A- W ) - (&_• A)(W~- W+ - W~- W~) 

-(k+-A){W+-W+ - W+-W~) + (k+-W+ - k+-W~)(A- W + ) 

- (Jfe_- A)(W+-W~ - W~-W~) + (rc_- W+ - fc_- W~)(A- W~)j 

. s i n f t ^ ^ ^ w + _ ^ _ W - ^ A . w + j + 2 ( f c _ . _ J f c _ . T y - ) ( ^ . w - ) 

4 
- 2(Jfc+- A)(W+- W + - W + - W - ) - 2(ifc_- ,4)(W + - W~ - W~> W~)} (B.204) 

2. component 

Feynman 

T / ( ^ - ^ ( ^ + - W~) - d„-j=(W+ - W;))(W*Wl - W'W*) 

s-^l(k+tlwu

+ - k^w- - k+uw; + k-vW~) 
rules 4 

X ( J 4 " ( W + + W~) - (W+ + W»-)A") 
. sindwg 

= i ((*+• A)(VF +- W+ + W+- W~) - (k+-W+ + k+r W~)(W+- A) 
4 

-(*_• A)(W+- W- + W~-W~) + (k--W+ + ifc_- W-)(W~-A) 

-(k+- W+ + *+• W~)(W+- A) + (k+- A)(W+- W+ + W+• W~) 

+(*_• W + + W-)(W~-A) - (fc_- A ) ( W + - + (B.205) 

3. component 

S^f^-(d,Au - drAJiW^W* - W^W*2) 

Feynman^ . _ _ T ^ + T ^ - ) 

rules 2 

. s i n f l ^ ^ M/-)(V1/+. ,4) _ ( p . W+)(W~- A) - (p- W+)(A- W ) + (p- W~)(A- W+)^j 

i sm9wg((p-W-){W+-A) - {p-W+){W~• A)^j (B.206) 
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Summing up those three components results in 

V y W + w - = le (w+- W~ (fc + - A + A- W+ {p - k+)- W~ + W~-A (k- - p)-

f rom which we obtain the Feynman rules for the vertex 

k+ W+ 

A ^Jx^y = te
 (g""(k+ ~ + g ^ k - - ^ + g i / " ( p • k + ) 0 ' ( b - 2 0 7 ) 

Interchanging the W bosons results in an overall minus sign 

k^ W,: 

ie ( g ^ ( k _ - k + ) K + g / i K ( k + - p ) , + g , K (p - k _ ) „ ) . (B.208) 

Similarly the W+W~Z vertex is obtained by selecting the Z component of W^lt and ef­

fectively can be obtained f rom the W+W~-y vertex by substituting - s in# w -> cos# w . In 

summary the tr iple gauge boson couplings (NVX V~x) can be wri t ten 

w i t h 

= -ieC ( g M „ ( k A - k _ A ) K + g M ( t (k_ A - p)„ + g„ ( ( (p - k A ) „ ) (B.209) 

k-x w: 

jWxW~x : C = -X 

ZWXW'X : C = A cos 9W / sin 9W . 
(B.210) 
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Similarly the four boson vertex is obtained f rom the g2 ( W ^ x W „ ) ( W ^ x W „ ) part of Ckin 

ie2C (2 gK<$ - gw - g ^ . (B.211) 

V 3 K V 4 S 

where the coupling C for an explicit combination of ViV^V-jV^ is given by 

W + W - j j : C = 1 

W+W'Zy : C = - cos 0W / sin 9W 

W+W~ZZ : C = cos2 0 W I s in 2 0 W 

W+W+W-W~ : C = - l / s i n 2 0 w . 

(B.212) 

The Feynman rules for the anomalous four boson vertex W+W 77 are obtained f rom (2.8) 

and (2.9) and are given by 

Aa(pi) 4 s (Pa) 

. 2e^ 

4A 2 ao(g/«/((Pl -P2)ga/3 - {P\02a))) 

e 2 

-PWVP2ngva + P2„g A t a) 

-P2a(Pli/g<ii8 +Pl/xgi//s) 

+ ga^(Pli/P2^ + Pl/iP2i/)] 

(B.213) 

and similarly for the 7 7 Z Z vertex for which an extra overall factor of 1/cos 2 8 W has to be 

taken into account. 
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The Feynman rules for the anomalous four boson vertex W + W jZ (obtained f rom (2.10)) 

are 

W+(k+) 

Zpipo) 

= i 
e2 an 

16cos0,„A 2 S/tf (& ; Q / 3 ( p i • k+) - k + a p 1 0 - gap(pi • k_ ) + p i , 3 k _ a ) 

+ g / t f ( - g f a ( P l • k+) + p + g1/a(Po • Pi) - Pl^POa) 

+g«//s(gMa(Pl • k - ) - P l / ik_ 0 - gM«(P0 * Pi) + Pl/iPOa) 

+fc+/j(pi / igai/ - P i „ g a / 1 ) - k + 1 / ( p l M g a / J - Pi/jga/x) 

-k-pipwgap - Plpgai/) + k - M ( p i v g a j 8 - Pl/Jgai/) 

- P0/i(Pl/8goi/ - Pl^ga/?) + P0^(Pl/jgoji - Pl/xga/3) 

(B.214) 

C Matrix elements 
In this appendix we are going to give a few illustrative examples of matrix-elements of s— 

and t—channel diagrams. In the following all fermion momenta are taken to be in-coming, all 

boson momenta are taken to be out-coming; the flow of the charge of the fermions is assumed 

to be f rom the particle e~ to the anti-particle e+. Here we only consider left-handed fermions, 

i. e. el and hence for the fermionic current e. g. u_(p2) {—ie^) . For right-handed 

fermions the spinors become u+(p2) and and the coupling to the Z bosons changes 

f rom ve 4- ae —> ve — ae. We define p = pi + P2- We are working in the unitary gauge. 
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C . l For the process e+ e —y W + W ~ j 

e~(Pi) yK(k) WP (*-) 

e + ( P 2 ) W+(k+) 

i — I f ) — m + i e H e f l ^ W « - ( p i ) 

[(p-kY + ie) 

+ U - ( p 2 ) (»e (u e + a e ) y ) 

( ie ) ( - * _ + * + ) V * - ( k + + p ) ' g ^ + (p + k _ ) f f g ^ J e*p (k_) e; ( k + ) 

H e 7 * ) e* (fc) u_ (p i ) 

H e ) [ ^ - ( p - k y P - k ) X ] 
[ ( p - £ ; ) 2 - M z

2 - f i e 

i e cos ft 
sin ft. 

e (Pi) 

( - * _ + *+) V * - ( k + + p j ' g " * + (p + k _ ) * g " ' e! (k_) c ; ( k + 

W~(k-) 

e+(p 2 ) 7«(*) 

[ - ( ^ 2 - m + i e ] 
( - i e 7 / i ) u_ (p i ) 

[ ( p - f c ) 2 + *e] 

+ u_ (p 2 ) ( - z e 7

K ) e ^ ) 

x (—i e) 

(• e) [ ( - * _ + * + ) V ' - ( k + + p) > g"* + (p + k _ ) * g " j e ; (k_) e; ( k + ) 

(i e (ve + ae) 7 M ) « _ ( p i ) 
[-(^2 - f ) - m + i e ] 

[ ^ - ( p - k y p - k U M , 2 ! 
[ ( p - A ; ) 2 - M z

2 + ze] 

— ze cos ft 
sin6L 

( - * _ + * : + ) v * - ( k + + P ) " g « " + ( P + k _ ) * g " e: (k_) € ; ( k + ) 
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e (Pi) 

e+(p 2 ) 

7*(*0 

W+(fc+) 

x ( ie ) [ ( - * _ + * + ) V ' * - ( k + + p ) " ' g " + (p + k _ ) - g " " ' l e; (k_) < ( k + ) 

, . , [ g ^ - ( k - + k y ( k - + k ) T ? / M w

2 ] 
x ( — i e ^ x ! £„ K 

H e ) [ ( - ( - ( * + + V ' - (k_ + H O J ' g " ' + ( ( - k ) + ( - ( k + k _ ) ) K g * " 

+ u_ (p 2 ) ( i e ( u e + a e ) y ) « - ( P i ) ( ~ i e ) [p2 - Mz

2+ie] 

— ie cos#w 

sin 0 W 

( - * _ + *+) V ' * - ( k + + P ) " ' g ^ + (p + M ^ g * " ' ! ^ ( k _ ) C (k+) 

, . , [ g P > t > - ( k - + k ) p < ( k - + k y M w

2 ] , 

(-ie) [ ( - ( - ( * + *_ ) ) + * _ ) V " ( k - + ( - k ) ) " g K p + ( ( - k ) + ( - ( k + k _ ) ) ) " g K " 
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"(Pi) 

(P2) 

i . M = M-(p2) ( - i e 7 M ) w_(pi) 

x r r r ^ M [ ( - ^ + M ' / g ^ ' - ( k + + p ) p g ' / f f ' + (p + k - ) C T ' g ^ l e ; ( k _ ) < ( k + ) 
[p 2 + ze J L -I 

, . J g ^ - ^ + k ^ ^ ^ + k y M w 2 ] 
x - i e 5 —— £K(k) 

K } {(k+ + k ) 2 - M w

2 + ie] k V ' 

{-ie) [(-k+ + ( - k + - k)yg°» - ( ( - k + - k) + ( - k ) ) ' g l t " + ( ( - k ) + k + ) " g -

+ u_ (p 2 ) (z e (ve + ae) y ) zz_(Pi) H e) - S ' — [ p 2 - M / + ie] 

ze cos # v 

s in# w 

( - * _ + - (k+ + p ) ' g 1 " ' + (p + g"> e*p (k_) e*a ( k + ) 

. [ g f f l I ( - ( k + + k ) , ( k + + k y M w

2 ] 
x(—ze) o o ; eK\k) 

y ' [(k+ + k ) 2 - M w

2 + ie] 

(-ie) \(-k+ + ( - k + - *)) V " - ( ( - k + - k) + ( - k ) r g K " + ( ( - k ) + k + ) " g ^ 

7«(fc) 

e (Pi) 

e + ( p 2 ) 

W;{k.) 

W+(k+) 

*M=*-^ {wtr^) cik+)m 
< : ( * - ) 

ze 

[ fof i - # ) - m + ie] 

- - m + ie] V \ / 2 s i n ^ v 

( - ^ 7 K ) « - ( P i ) 

7 f 
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W-(k-) 

"(Pi) 

IM = U-(P2) ( - ^ 7

K ) e*K{k) 
i e 

i - - m + i e ] \ \ / 2 s i n ^ w 

^ 2 - ^ ) _ m + ^ e ] V \ / 2 s i n 0 w 

i e 

7 a C ( M 

'" (Pi) 

=+(P2) 

W-(fc_) 

7«(*) 

. M = M-CP2) 
i e 1 e 

1 - # _ - # ) - m + i e ] V V ^ s i n ^ 
2 • 

\ /2 sin ft 

v ; [(k- + k)2 - M w

2 + te} 

{ _ i e ) \(-(-(k + k-)) + * _ ) v - (k_ + ( - k ) ) " g K " + ( ( - k ) + ( - ( k + k _ ) ) ) " g

K " 
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e (Pi) 

e + ( P 2 ) 

w-(k-) 

W+{k+) 

iM = u-(p2) 

x (— ie) 

% e 
7 

% e 

[ g ^ ( k + + k u k + + ^ i e : W £ : ( W M p i ) 

7 > e!(fc_) u_(p!) 

[(A:+ + A ; ) 2 - M M , 2 + ie] 

x ( - i c ) [ ( - * + + H + - fc)) V * - ( ( - k + - k) + ( - k ^ g " " + ( ( - k ) + k + J ' g * ' 

e~(pi) W;{kJ) 

e+(p 2 ) W + ( f c + ) 

t A < = *-(&) H e 7 " ) « - ( p i ) e P ^ " ) ^ ( * + ) 

x H e 2 ) [ 2 g ^ g ^ - g ^ g ^ - g ^ g ^ ] 

ie2 cosft. 
s in0 v 
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C.2 For the process e+e —>• ZZ7 

7«(*) 

e (Pi) 

e + ( p 2 ) 

^p(fci) 

i = u_ (p 2 ) e (we + a e ) 7*0 C (^2) ! — # — #1) — m + i e 
(i e (ve + ae) 7 P ) 

x c ! ( f c i ) 
1 — I f ) — m + ie 

( - i e - f ) e*K(k) u_(p!) 

e (Pi) 

e + ( p 2 ) 

7*(*) 
Za{h) 

iM=U-(p2) ( - i e f ) e:(fc) 

[ ( ^1 - # 1 ) - m + i c ; 

[ - ( ^ 2 - JO - m + ie 

(ie{ve + a e ) Y ) e*p{h) 

(ie{ve + a e ) Y ) C ( ^ ) 

e (Pi) 

e + ( p 2 ) 

^ ( f c i ) 

7«(*0 

^ ( A : 2 ) 

. M = « - ( p 2 ) ( i e ( w e + a e ) 7 f f ) e* (A;2) 

1 — ^f].) — m + ie 

i — l f i - I f ) - m + ie] 

(ie(ve + a e ) Y ) e*p(h) 
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Plus the three it-channel diagrams, which can be obtained f rom these by k\ k2. Note 

that because of the two identical particles in the final states {ZZ) the square of the mat r ix 

element has to be divided by a symmetry factor of 2 to obtain the cross section. 

Also the diagrams for the process e+e~ —» Z77 are easily obtained f rom those above by the 

D Some useful integrals 
I n this Appendix we give all relevant one- and two-loop integrals which have been used in 

Chapter 4. 

A t one-loop accuracy we have to distinguish between two different cases, i. e. the exchanged 

soft gauge-boson being a photon wi th the fictitious mass A or a massive gauge-boson W or Z 

w i t h the generic mass M. The exchanged gauge-boson being massive we extract f rom (4.66) 

w i t h Mi — M 

exchange of ( i e (ve 4- ae) jp) —>(—z e l p ) • 

1 1 f l dyx f 1 dzi ^( M 2 \ / m) \ 

\ — eh/izx ) Q [ y x - - L z l ) 
Jo v\ y«, z \

 v
 s ) \ s ) 

J ( 1 ) ( M ) 
yi 

(D.215) 

From the first ©-funct ion we obtain the integration boundaries 

1 dz 
JM ZI JMI yi V 

m f j ( l ) ( M ) yi 

making the second O-function redundant, since m / < O(M). Therefore 

r1
 d^ n dm = f ( zx \ = f 1 d z 1 ( W s \ 

JM Z X JM! yx JM ZX

 0 % \ M V { S Z x ) ) Ju zx °g V M ) 
J ( 1 ) ( M ) 

(D.216) 

log m and w i t h t 

M 
J ( 1 ) ( M ) = 2 / 

Jo 

1 
dt t log 

0 
(D.217) 
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And similarly for M\ = A 

J(1,(A)= r ^ e L ^ w , , - ^ , ) 
Jo Vi J y i

 z i v s / \ a t 

= f l d£i p dy i + / " ^ d£i r 1 dy i 

1 / m j 

2
 L0G (T 

1 . 2 / A 2 

log 
m, 

= 4 l 0 g - 7 l o § 2 

+ - log : 

A 2 

m, 

2 / mf 

(D.218) 

The two-loop integrals f a l l into two categories, namely the angular ordered and the simulta­

neously energy and angular ordered ones. For the angular ordered two-loop integrals (4.112) 

we find for Mx = M2 = M 

r(2) ,nr M f 1 d z 1 n d y 1 [ 1 d z 2 [ z > d y 2 n ( M2\ / M 2 \ 

JLU(M,M) = 1 -yo - e ( y l Z l - ~ ) e { y 2 Z 2 - - ) o { y 2 - y i ) 
(D.219) 

By means of symmetry arguments, i. e. <d(y2 - yi) -> \ [Q{yi - Vi) + Q(y\ - y-i)} = \, we 

f ind 

log 2 

4 6 V 8 
(D.220) 

and similarly 

^angular ^ ) — 2 (D . 221 ) 
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Furthermore 

/ m2

f Z2 \ 

dzi f dyi 

} Ml 
3 Zl 

y\ 

dzi 
P 

dyi 

J Ml 
3 Zj 

y\ 

dzi 
P 

dyi 

J Ml 
S Zl 

2/i 

r 

>yi 

Z2 
(\ogz2 - log i / i ) 

J M, z\ 2 3 
l o g 3 z 1 + l o g 3 ( | | ) 

= 6 H 
(D.222) 

and hence by means of 6 ( y 2 - y i ) = 1 - 6 ( y i - y2) we f ind for Mx = X and M 2 = M 

1 2 / M 2 

- log 
4 V s i * • (T) - i * S 

7 v 12 Vs. 
(D.223) 

For the double (energy and angular) ordered integrals (4.144) we find for the M\ = M2 — M 
case again by means of symmetry arguments 

^double ordered (M, M ) — 

Jo z \ Jo Vi Jo z2 J0 y2 \ 

M 2 \ 

s 

M T 

J Q[y2z2 - — J 0 ( y 2 - y i ) 6 (21 - z2) 

(D.224) 
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and for M\ = M and M2 = A we obtain 

J. (2) 
double ordered 

(M,A) = 

J0 z \ J0 Vl JO z2 Jo V2 V S / \ S ) 

'3/. 2/2 
= /-1 d£i p dyi p d£2 r 

JM Z Y J Ml yi J Y z2 

= Z"1 d£i A 2 1 dyi 
y M y ^ y i 

\ log 2 21 - ^ log 2 yi - log y i (log zx - log y i ) 

7 . 4 / M 
+ 12

 l0g b 
= / l ^ h 3 ' 1 + 5 W Z I l 0 g (^) + 5 l° g Z l l 0 g 2 (^) 

• M S 

+ 1 2 ^ b 

(D.225) 

Finally for M i = A and M 2 = M (note here that in the ' frog' configurations no two photons 
can appear in the integration kernel) the double-ordered integral reads 

J. (2) 
double ordered (KM) 

_ r to dy , r to p to , _ @( _ ̂  e ( _ 
Jo Z\ Jo Vl Jo z2 Jo V2 ^ S J \ S ) \ S ) 

x@(y2 - y i ) - z 2 ) 

Jo zi Jo 2/1 Jo z2 Jo y2 v a / V 5 / V 5 / 

x 0 ( y i - y 2 ) e ( 2 2 - z i ) (D.226) 
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where we can write 

efoi - 2/2) e(2 2 - Z l ) = [1 - e(t/ 2 - e(z2 - ^1) 

= e(^2 - zi) - 0 ( y 2 - yx) + e (y 2 - j/i) Q{Zl - z2) 

and hence 

(2) 

(D.227) 

J. 1 2 l 0 g U J + 3 l 0 g {7I double ordered 
(X,M)-

Jo zi Jo Vi Jo z2 JQ y2 \ s 1 V s / V s / + 

1 . 4 / M 
= " 4

 l 0 g IT! 
Z"1 d£i dy i I" /" 1 d£2 T 2 dj/a 

J M ZI JMI yi J Z 1 z2 J " f i l l y2 

4 \ y j l ) +
 SM Zi jt 

y / 3 S 

1 M 
= - I l 0 g 4 l ^ J + 1 ° g ( m 

Ml yi 
log 

m i 
log Zy 

2l 
log 21 

- j log4 75 + 1 

2 log 2rx — 2 log 

M 

(D.228) 



Bibliography 

[1] P. A . M . Dirac. The quantum theory of electron. Proc. Roy. Soc. Lond., A117,610-624, 

1928. 

[2] M . Kaku. Quantum field theory: A modern introduction. New York, USA: Oxford 

Univ. Pr. (1993) 785 p. 

[3] Julian Schwinger. Quantum electrodynamics two. vacuum polarization and selfenergy. 

Phys. Rev., 75 ,651, 1948. 

R. P. Feynman. The theory of positrons. Phys. Rev., 76,749-759, 1949. 

[4] S. L . Glashow. Partial symmetries of weak interactions. Nucl. Phys., 22,579-588, 1961. 

A. Salam. Weak and electromagnetic interactions. Originally printed in *Svartholm: 

Elementary Particle Theory, Proceedings Of The Nobel Symposium Held 1968 A t 

Lerum, Sweden*, Stockholm 1968, 367-377. 

S. Weinberg. A model of leptons. Phys. Rev. Lett, 19,1264-1266, 1967. 

[5] G. ' t Hooft . Renormalizable lagrangians for massive Yang-Mills fields. Nucl. Phys., 

B35 ,167-188, 1971. 

G. ' t Hoof t and M . Veltman. Regularization and renormalization of gauge fields. Nucl. 

Phys., B44 ,189-213, 1972. 

[6] J. L . Hewett. The standard model and why we believe i t . 1998, hep-ph/9810316. 

[7] Y . Fukuda et al. Measurement of a small atmospheric v[ijve ratio. Phys. Lett., B 4 3 3 , 9 -

18, 1998. 

135 



BIBLIOGRAPHY 136 

Y . Fukuda et al. Study of the atmospheric neutrino flux in the mult i -GeV energy range. 

Phys. Lett, B 4 3 6 , 3 3 , 1998. 

Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 

81,1562-1567, 1998. 

[8] P. W . Higgs. Broken symmetries, massless particles and gauge fields. Phys. Lett., 

12,132-133, 1964. 

T. W . B. Kibble. Symmetry breaking in nonabelian gauge theories. Phys. Rev., 

155 ,1554-1561, 1967. 

G. S. Guralnik, C. R. Hagen, and T . W . B. Kibble. Global conservation laws and 

massless particles. Phys. Rev. Lett., 13,585, 1964. 

[9] R. Kleiss and W . J. Stir l ing. Spinor techniques for calculating pp —> W+~/Z° + jets. 

Nucl. Phys., B262 ,235-262, 1985. 

[10] G. Arnison et al. Experimental observation of isolated large transverse energy electrons 

wi th associated missing energy at y/s = 540 GeV. Phys. Lett, B122,103-116, 1983. 

M . Banner et al. Observation of single isolated electrons of high transverse momentum 

in events wi th missing transverse energy at the cern pp collider. Phys. Lett., B 122 ,476-

485, 1983. 

[11] K. Hagiwara, R. D . Peccei, D . Zeppenfeld, and K. Hikasa. Probing the weak boson 

sector in e+e~ W+W~. Nucl. Phys., B282 , 253 , 1987. 

[12] R. Barate et al. Measurement of W pair production in e+e" collisions at 189 GeV. 

Phys. Lett, B484 , 205 , 2000. 

P. Abreu et al. W pair production cross-section and W branching fractions in e +e~ 

interactions at 189 GeV. Phys. Lett., B 4 7 9 . 8 9 , 2000. 

[13] W. Beenakker, F. A . Berends, and A. P. Chapovsky. Radiative corrections to pair 

production of unstable particles: Results for e+e~ —> 4 fermions. Nucl. Phys., B 5 4 8 , 3 , 

1999. 



BIBLIOGRAPHY 137 

[14] A. Denner, S. Dittmaier, M. Roth, and D. Wackeroth. Electroweak radiative corrections 
to e+e~ —> WW —> 4fermions in double-pole approximation: The RACOONWW 
approach. 2000. 

[15] S. Jadach, W. Placzek, M. Skrzypek, B. F. L. Ward, and Z. Was. Monte Carlo program 
KoralW 1.42 for all four-fermion final states in e+e~ collisions. Comput. Phys. Commun., 
119,272-311, 1999. 

[16] Thorsten Ohl. Drawing feynman diagrams with latex and metafont. Comput. Phys. 

Commun., 90,340, 1995. 

[17] R. Kleiss, W. J. Stirling, and S. D. Ellis. A new monte carlo treatment of multiparticle 

phase space at high-energies. Comput. Phys. Commun., 40,359, 1986. 

[18] W. James Stirling and Anja Werthenbach. Anomalous quartic couplings in 

W+W~j, Z°Z°7 and Z°JJ production at present and future e+ e- colliders. Eur. 
Phys. J., C14,103, 2000. 

[19] W. James Stirling and Anja Werthenbach. Anomalous quartic couplings in UPJJ 

production via W W fusion at LEP2. Phys. Lett, B466,369, 1999. 

[20] W. James Stirling and Anja Werthenbach. Radiation zeros in W+W~-y production at 

high energy colliders. Eur. Phys. J., C12,441, 2000. 

[21] W. Beenakker and A. Werthenbach. New insights into the perturbative structure of 

electroweak Sudakov logarithms. Phys. Lett, B489,148-156, 2000. 

[22] W. Beenakker and A. Werthenbach. Electroweak Sudakov logarithms in the Coulomb 

gauge. Nucl. Phys. Proc. Suppi, 89,88, 2000. 

[23] W. Beenakker and A. Werthenbach. Electroweak two-loop Sudakov logarithms in the 

Coulomb gauge, in preparation. 

[24] G. Gounaris et al. Triple gauge boson couplings. 1996, hep-ph/9601233. 



BIBLIOGRAPHY 138 

[25] R. Barate et al. Measurement of triple gauge WW7 couplings at LEP2 using photonic 
events. 1998, hep-ex/9901030. 

[26] G. Abbiendi et al. VK+VF- production and triple gauge boson couplings at LEP energies 
up to 183-GeV. Eur. Phys. J., C8,191, 1999. 

[27] Stephen Godfrey. Quartic gauge boson couplings. 1995, hep-ph/9505252. 

[28] G. Belanger and F. Boudjema. 77 —>• W+W~ and 77 —> ZZ as tests of novel quartic 

couplings. Phys. Lett, B288,210-220, 1992. 

[29] Ghadir Abu Leil and W. J. Stirling. Anomalous quartic couplings in W+W~j 
production at e+e" colliders. J. Phys., G21,517-524, 1995. 

[30] O. J. P. Eboli, M. C. Gonzalez-Garcia, and S. F. Novaes. Quartic anomalous couplings 

in e7 colliders. Nucl. Phys., B411,381-396, 1994. 

[31] G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix, and A. Semenov. Bosonic 

quartic couplings at LEP2. Eur. Phys. J., C13,283, 2000. 

[32] V. Barger, T. Han, and R. J. N. Phillips. WWZ, ZZZ and WWj production at e+e~ 

colliders. Phys. Rev., D39,146, 1989. 

[33] T. Stelzer and W. F. Long. Automatic generation of tree level helicity amplitudes. 
Comput. Phys. Commun., 81,357-371, 1994. 

[34] E. Accomando et al. Physics with e+e~ linear colliders. Phys. Rept, 299,1, 1998. 

[35] G. Abbiendi et al. Measurement of the W+W~j cross-section and first direct limits on 

anomalous electroweak quartic gauge couplings. Phys. Lett, B471,293, 1999. 

[36] M. Acciarri et al. Measurement of the e+e~~ —> Z77 cross section and determination of 

quartic gauge boson couplings at LEP. Phys. Lett., B478,39, 2000. 

[37] M. Acciarri et al. Measurement of the W+W~^ cross section and direct limits on 

anomalous quartic gauge boson couplings at LEP. 2000, hep-ex/0008022. 



BIBLIOGRAPHY 139 

[38] K. O. Mikaelian, M. A. Samuel, and D. Sahdev. The magnetic moment of weak bosons 
produced in pp and pp collisions. Phys. Rev. Lett., 43,746, 1979. 

[39] Robert W. Brown. Understanding something about nothing: Radiation zeros. 1995, 
hep-th/9506018. 

[40] Robert W. Brown, K. L. Kowalski, and Stanley J. Brodsky. Classical radiation zeros in 
gauge theory amplitudes. Phys. Rev., D28,624, 1983. 

[41] R. W. Brown, D. Sahdev, and K. O. Mikaelian. W+~Z° and W+~j pair production in 

ve,pp, and pp collisions. Phys. Rev., D20,1164, 1979. 

[42] U. Baur, T. Han, N. Kauer, R. Sobey, and D. Zeppenfeld. PK77 production at the 

fermilab tevatron collider: Gauge invariance and radiation amplitude zero. Phys. Rev., 
D56,140-150, 1997. 

[43] U. Baur, T. Han, and J. Ohnemus. Amplitude zeros in W+~Z production. Phys. Rev. 

Lett, 72,3941-3944, 1994. 

[44] Stanley J. Brodsky and Robert W. Brown. Zeros in amplitudes: Gauge theory and 

radiation interference. Phys. Rev. Lett., 49,966, 1982. 

[45] C. J. Goebel, F. Halzen, and J. P. Leveille. Angular zeros of Brown, Mikaelian, Sahdev, 

and Samuel and the factorization of tree amplitudes in gauge theories. Phys. Rev., 

D23,2682, 1981. 

[46] Robert W. Brown and Kenneth L. Kowalski. Szeros. Phys. Lett, B144,235, 1984. 

[47] David DeLaney, Evalyn Gates, and Ola Tornkvist. Xeros. Phys. Lett, B186,91, 1987. 

[48] M. Heyssler and W. J. Stirling. Radiation zeros at hera: More about nothing. Eur. 

Phys. J., C4,289, 1998. 

[49] Doug Benjamin. Wj and Zj production at the tevatron. Presented at 10th Topical 

Workshop on Proton-Antiproton Collider Physics, Batavia, IL, 9-13 May 1995. 



BIBLIOGRAPHY 140 

[50] F. A. Berends and R. Kleiss. Hard photon effects in W~*~ and Z° decay. Z. Phys., 
C27,365, 1985. 

[51] V. A. Khoze, W. J. Stirling, and Lynne H. Orr. Soft gluon radiation in e+e~ —> ti. 
Nucl. Phys., B378,413-442, 1992. 

[52] Yu. L. Dokshitzer, V. A. Khoze, Lynne H. Orr, and W. J. Stirling. Soft photons in 

W+W- production at LEP200. Phys. Lett., B313,171-179, 1993. 

[53] C. Caso et al. Review of particle physics. Eur. Phys. J., C3,1-794, 1998. 

[54] Mark A Samuel and Tesfaye Abraha. Finding the radiation amplitude zero in Wj 
production. Is it unique to the standard model? 1997.,hep-ph/9706336. 

[55] H. T. Diehl. Boson pair production and triple gauge couplings. Nucl. Phys. Proc. Suppl, 
65,103, 1998. 

[56] J. Smith, D. Thomas, and W. L. van Neerven. QCD corrections to the reaction pp —> 
W^X. Z. Phys., C44,267, 1989. 

[57] P. Ciafaloni and D. Comelli. Sudakov enhancement of electroweak corrections. Phys. 

Lett, B446,278, 1999. 

M. Beccaria, P. Ciafaloni, D. Comelli, F. M. Renard, and C. Verzegnassi. Logarithmic 

expansion of electroweak corrections to four- fermion processes in the TeV region. Phys. 

Rev., D61.073005, 2000. 

[58] W. Beenakker, A. Denner, S. Dittmaier, R. Mertig, and T. Sack. High-energy 

approximation for on-shell W pair production. Nucl. Phys., B410,245-279, 1993. 

W. Beenakker, A. Denner, S. Dittmaier, and R. Mertig. On shell W pair production in 

the tev range. Phys. Lett, B317,622-630, 1993. 

[59] V. V. Sudakov. Vertex parts at very high-energies in quantum electrodynamics. Sov. 

Phys. JETP, 3,65-71, 1956. 



BIBLIOGRAPHY 141 

[60] J. H. Kuhn and A. A. Penin. Sudakov logarithms in electroweak processes. 1999, 
hep-ph/9906545. 

[61] P. Ciafaloni and D. Comelli. Electroweak sudakov form factors and nonfactorizable soft 

QED effects at NLC energies. Phys. Lett, B476,49, 2000. 

[62] V. S. Fadin, L. N. Lipatov, A. D. Martin, and M. Melles. Resummation of double 
logarithms in electroweak high energy processes. Phys. Rev., D61,094002, 2000. 

[63] M. Hori, H. Kawamura, and J. Kodaira. Electroweak Sudakov at two loop level. 2000, 
hep-ph/0007329. 

[64] V. G. Gorshkov, V. N. Gribov, L. N. Lipatov, and G. V. Frolov. Double logarithmic 
asymptotics of quantum electrodynamics. Phys. Lett., 22,671-673, 1966. 

John M. Cornwall and George Tiktopoulos. Infrared behavior of nonabelian gauge 

theories. 2. Phys. Rev., D15,2937, 1977. 

John M. Cornwall and George Tiktopoulos. Infrared behavior of nonabelian gauge 

theories. Phys. Rev., D13,3370, 1976. 

[65] J. Frenkel and J. C. Taylor. Exponentiation of leading infrared divergences in massless 

Yang-Mills theories. Nucl. Phys., B116,185, 1976. 

[66] J. Frenkel and R. Meuldermans. Infrared behavior of selfenergy functions in the axial 

gauge. Phys. Lett, B65,64, 1976. 

J. Frenkel. Behavior of leading infrared divergences of QCD in the axial gauge. Phys. 

Lett, B65.383, 1976. 

[67] K. I . Aoki, Z. Hioki, M. Konuma, R. Kawabe, and T. Muta. Electroweak theory, 

framework of on-shell renormalization and study of higher order effects. Prog. Theor. 
Phys. Suppi, 73,1-225, 1982. 

[68] J. H. Kuhn, A. A. Penin, and V. A. Smirnov. Summing up subleading Sudakov 

logarithms. 1999, hep-ph/9912503. 



BIBLIOGRAPHY 142 

[69] J. H. Kuhn, A. A. Penin, and V. A. Smirnov. Subleading Sudakov logarithms in 

electroweak processes. Nucl. Phys. Proc. SuppL, 89,94, 2000. 

[70] W. Beenakker and A. Werthenbach. Large electroweak logarithms in the Coulomb 

gauge, in preparation. 

[71] D. E. Groom et al. Review of particle physics. Eur. Phys. J., C15,l, 2000. 


