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Abstract 

I begin by developing a procedure for the construction of a Seifert surface, using 

Seifert's a lgor i thm, and the calculation of a Seifert ma t r ix for a knot f rom a suitable 

encoding o f a knot diagram. This procedure deals w i t h the inherent indeterminacy 

of the diagram encoding and is f u l l y implementable. 

From a Seifert ma t r i x one can f o r m a presentation mat r ix for the Alexander 

module of a knot and calculate generators for the Alexander ideals. But to use 

the Alexander ideals to their f u l l potential to distinguish pairs of knots one needs a 

Grobner basis type theory for A = Z[t,t~^], the r ing of Laurent polynomials w i t h 

integer coefficients. 

I prove the existence of what I call Chdtelet bases for ideals i n A. These are 

types of Grobner bases. I then develop an algori thm for the calculation of a Chatelet 

basis of an ideal f r o m any set of generators for that ideal. This is closely related to 

Buchberger's a lgor i thm for Grobner bases in other polynomial rings. 

Using these algorithms and the knot diagram tables in the program Knotscape 

I calculate Chatelet bases for the Alexander ideals of al l prime knots of up to 14 

crossings. We determine the number of distinct ideals that occur and f ind examples 

of pairs of mutan t knots distinguished by the higher Alexander ideals but not by 

any of the polynomials of Alexander, Jones, Kauf fman or H O M F L Y . 
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"Knotting ought to be reckoned, in the scale of insignificance, next to 

mere idleness." 

-Dr . Samuel Johnson ^ 

^Dictionary, 1755 (seen in [13]). 
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Chapter 1 

Introduction 

1.1 Knot Theory 

I n this section we give the definitions and relevant facts on the knot theory used in 

the rest of the thesis. I t has mainly been gathered f r o m the books of Burde and 

Zieschang [5] and Kawauchi [21]. 

1.1.1 Knots, Equivalences and Diagrams. 

Def in i t i on 1.1.1 A knot k, is an embedding of the circle in the 3-sphere 5^, 

or Euclidean space M?. The knot exterior K = — n{k), is the closure of the 

complement i n of a regular open neighbourhood n{k), of k. 

There is a natural not ion of equivalence among knots. 

D e f i n i t i o n 1.1.2 T w o knots ki and k2 are topologically equivalent i f there is an 

ambient isotopy carrying ki to k^-

This is an equivalence relation on the set of knots. I f we take our knots to be 

oriented, i.e. an embedding of an oriented S^, then we would ask that the ambient 

isotopy carry the orientation of ki to tha t of k2. 

To avoid the peculiarities of so called wild knots, at tention is normally restricted 

to the piecewise linear setting. 



1.1. K n o t T h e o r y 

De f in i t i on 1.1.3 A piecewise linear knot is a piecewise linear embedding of into 

S^. Two piecewise linear knots ki and k2 are piecewise linear equivalent i f there is 

a piecewise linear ambient isotopy carrying ki to k2-

So a tame{=non-wild) knot is defined as follows. 

D e f i n i t i o n 1.1.4 A tame knot is one tha t is topologically equivalent to a piecewise 

linear knot . 

This might leave us in two possible situations; on the one hand w i t h equivalence 

classes of tame knots w i t h respect to topological equivalence and on the other hand 

w i t h equivalence classes of piecewise linear knots w i t h respect to the piecewise linear 

equivalence. However, these two situations coincide. 

P r o p o s i t i o n 1.1.1 ( C o r o l l a r y 3.16 i n [5]) Two tame knots are equivalent i f and 

only i f the piecewise linear knots in their topological equivalence classes are piecewise 

linear equivalent. 

So i n the rest of this thesis we w i l l understand knot to mean a tame knot. 

Knots are of ten studied through their diagrams. 

Def in i t i on 1.1.5 A regular projection of a knot k to the plane is a projection of k 

whose self-intersections are al l transversal. 

Def in i t i on 1.1.6 A diagram of a knot A; is a regular projection of k to the plane 

in which the over-crossing and under-crossing parts of k are indicated, usually 

by o m i t t i n g a small por t ion of the under-crossing part . 

I n figure 1.1 we give a diagram of the figure eight knot. We shall regard two diagrams 

as essentially the same i f there is an isotopy between the projections corresponding 

to the diagrams that preserves the over-crossing and under-crossing information of 

the diagrams. 

1.1.2 Seifert Surfaces, the Seifert Form and Seifert Matrices 

Def in i t i on 1.1.7 A Seifert surface of a knot k is an orientable surface F embedded 

in such tha t the boundary of F is equal to k. 



1.1. Knot Theory 

Figure 1.1: A diagram of the figure eight knot. 

That a Seifert surface exists for any knot is a consequence of Seifert's algorithm, 

which is described in chapter 2. This is a simple strategy for constructing a Seifert 

surface from a diagram of the knot. Given an embedding of a Seifert surface tp : 

F ^ we can always thicken the embedding to produce a bi-collar of F. 

Definition 1.1.8 A bi-collar of F is an embedding : F x [-1,1] -> 5^ such that 

4){F X {0}) = (f>{F). We wil l use the notation F+ for ^ ( ( F x {1}) and F " for 

V)((F X { - 1 } ) . We wil l assume further that the bi-collar is such that F+ is in the 

positive normal direction from the surface F . 

There is essentially only one way of doing this as given a second bi-collar ^, there 

wil l always be an isotopy of between ip and ^. 

Given a 1-cycle a on F we wil l use the notation for the copy of a on F"*", and 

a~ for the copy of a on F~^. We note that if ai and a2 are two 1-cycles on F then 

the cycles af and 0:2 will be a pair of disjoint 1-cycles in S^. 

Now given any pair of disjoint 1-cycles /? and 7 in we can define their linking 

number Link(y5,7)(=Link(7,/?)) as the algebraic intersection number of 7 with b, 

where b is any 2-cycle in with db = P such that 7 and b intersect transversally. 

So to any pair of cycles ai and 0:2 on F we can associate the two linking numbers 

Link(Q;j'", 012) and Link(a2', ai). These linking numbers only depend on the homology 

classes of the 1-cycles ai and 0:2. One can also show that 

Link(aj'", 0:2) = Link(Q:J, a i ) -I- In t (a i , a^) 

where Int(o!i, is the algebraic intersection number of the 1-cycles on F . 

This allows the definition of the bilinear SeifeH form. 

(1.1) 



1.1. Knot Theory 

Definition 1.1.9 The Seifert form associated to a Seifert surface F is the form 

x F i ( F ) — > Z (1.2) 

defined by 

^{ai, as) = Link(Q;J^, 03) (1.3) 

where ai and 0:2 are cycles on F representing the elements ai and 02 of Hi{F). 

Now Hi{F) is a free abelian group of finite rank. Let { o i , . . . , a„} be a basis for 

Hi{F). Then we can represent the Seifert form with the n x n matrix S with entries 

Sij = (l){ai,aj) (1.4) 

Definition 1.1.10 Such a matrix S is called a Seifert matrix of k. 

Of course a Seifert matrix 5 is not an invariant A; as i t depends on the Seifert surface 

F oi k and the chosen basis of Hi{F). There is an equivalence relation called S-

equivalence among Seifert matrices whose equivalence classes are knot invariants. 

However we wil l be interested in some knot invariants that can be obtained from 5 

in another way. 

1.1.3 The Alexander module and the Alexander Ideals. 

Here we wil l define the Alexander module, Alexander ideals and Alexander poly

nomials which are all knot invariants. Let TTI{K) be the fundamental group of the 

exterior of a knot. Let h : TTI{K) —> Hi{K) be the Hurewicz homomorphism. The 

covering space of K corresponding the subgroup Ker{h) = [KI{K),TT]_{K)] of -KiiK) 

is known as the universal abelian covering space of K. I t is also known as the 

infinite cyclic covering space of K since the group of covering transformations is 

Hi{K) — {t), the infinite cyclic group. We shall refer to i t thus and denote i t by 

Koo- There is a well known construction of K^o using a Seifert surface for k which 

we now give. 

Let F be a Seifert surface for k. Let K' be K cut open along K C\F, with F+ 

and F~ denoting the two copies of F m K'. We take an infinite family of copies of 

K', {K-}i^z, and let F^ denote the copy of F"^ contained in K'^. Form the quotient 



1.1. Knot Theory 

Figure 1.2: Construction of K^o-

space of Uiez-^i identifying, for each i, F^ with F j ^ j . The resulting space is 

jPsToo, see figure 1.2, and the action of Hi{K) on can be visualised as follows: if 

t € Hi{K) is the class of a meridian of k, oriented so that i t has linking number -1-1 

with the knot k, then t acts on K^o by sending x € K[ to the corresponding point in 

K[j^-^. This generates an action of Hi{K) on Hi{Koo)- We shall denote the integer 

group ring of Hi{K) as A = Z[ i , t~% the ring of Laurent polynomials in the variable 

t with integer coefficients. So the action of Hi{K) on Hi{Koo) gives Hi{K^) the 

structure of a A-module. 

Definition 1.1.11 The Alexander module of k is the A-module Hx{K^). 

We can obtain a presentation matrix for the Alexander module from a Seifert matrix 

as shown by theorem 1.1.12 below. Consider the two maps induced by inclusion 

C : H,[F+) ^ H,{K') 

: H,{F-) ^ H,{K') 

(1.5) 

(1.6) 

Let { a i , . . . , a „ } be a basis for H^iF) ^ Hi{F+) ^ i ? i ( F - ) . Now Hx{K') has a 

basis {bi, . . . ,&„} that is dual to the basis { a i , . . . , a„}, i.e. Link(ai, bj) — 5ij. Note 

that 

Uii) = ^ L i n k ( a i ,aj)bj 

n 

^ L i n k ( a + , Q ; , ) ' ' j 

(1.7) 

(1.8) 

(1.9) 



1.1. Knot Theory 

So if S is the Seifert matrix of k with respect to the surface F and basis { a i , . . . , a„} 

of Hi (F) then and ^, are represented by the matrices S and S-^ respectively, with 

respect to the bases { a i , . . . , a„} and { 6 1 , . . . , 6„}. 

Theorem 1.1.12 A = tS — is a, presentation matrix for the Alexander module 

Proof: This is from chapter 6 of [23]. Define L,M C as the following disjoint 

unions 

L = [}K',, (1.10) 

^ = U^Wi (1-11) 

Note that L n M is a countable disjoint union of copies of F and that = LUM. 

The Meyer-Vietoris sequence gives us the long exact sequence of homology groups 

with integer coefficients 

. . . - ^ H i ( L n M ) - ^ / / i ( L ) © H i ( M ) •^Hi{K^) (1.12) 

^ Ho{LnM) ^ Ho{L)®Ho{M) (1.13) 

Now F and K' are connected, so Ho{F) = Ho{K') = Z. Therefore 

HoiLDM) = Ho{L)®Ho{M) = A (1.14) 

as A-modules since both are a direct sum of countable copies of Z. 

Now suppose 1 e Ho{Ln M) is represented by F^ say and Ko represents 1 G 

Hi{L)®Hi{M) then 

e,{l) = t - l (1.15) 

Hence 6^ : Ho{L D M) Ho{L) 0 HoiM) is injective. So : Hi{L) © Hi{M) 

Hi{Koa) is surjective. 

Which gives us the short exact sequence of A-modules 

Hi{L n M ) Hi{L) © i / i ( M ) ^ Hi{K^) (1.16) 

where 6^ : Hi{Lr\M) Hi(L) © Hi (M) is represented by the matrix tS-S"^. But 

Hi{L n M ) and Hi{L) © Hi{M) are both finitely generated free A-modules. Hence 

the Alexander module Hi{Koo) is presented by tS - 5^. • 



1.1. Knot Theory 

But of course the Alexander module of k can have many different presentation 

matrices. I t is a fact that any two presentation matrices of an ii-module, where R 

is any ring, are related by a sequence of the following matrix transformations and 

their inverses. Let A be a matrix with entries from R. 

1. Permuting the rows or permuting the columns of A. 

2. Multiplying a row or column of ^ by a unit of R. 

3. Adding to a row an i?-linear combination of the other rows of A or adding to 

a column an i?-linear combination of the other columns of A. 

4. Replacing A with the matrix 

A 

r 

where r is any i?-linear combination of the rows of A. 

5. Replacing A with the matrix 

^ A 0 

r 1 

where r is an arbitrary row 

In view of this fact we can see that the elementary ideals of a presentation matrix 

A are invariants of the module presented by A. 

Definition 1.1.13 Given an n x m matrix A with entries from R, the r*'' elementary 

ideal of A is the ideal of R generated by the (n — r- l -1) x (n — r - l - l ) minors of 

A. By convention we take 2^ = 0 for r < 0 and Xr — Rioi r > n. The elementary 

ideals form an ascending chain, i.e. for all r, Zr-i C 2^. 

These ideals are also known as Fitting ideals and determinental ideals. In knot 

theory we refer to the elementary ideals as the Alexander ideals. 

Definition 1.1.14 The r**" Alexander ideal of a knot k is the r'^ elementary ideal 

of a presentation matrix for the Alexander module, which we can take as tS — 

for any Seifert matrix S of k. By the length of the chain of Alexander ideals we 

mean the greatest r for which the r**̂  Alexander ideal is not the whole ring A. 
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The Alexander ideals satisfy two conditions. Let : A —> A be the ring homomor
phism that sends t to t~^. Let e : A —>• Z be the ring homomorphism that sends a 
polynomial / to / ( I ) . The following lemma is from [9]. 

Lemma 1.1.15 I f X is an Alexander ideal then I satisfies 

1 . 1 = 1 

2. e{I) = Z 

And this actually characterises the Alexander Ideals. Any ideal satisfying 1 and 2 

is an Alexander ideal of some knot as shown by Kearton [22 . 

As shown by theorem 1.1.12 an Alexander module has a square presentation 

matrix so that the 1̂ * Alexander ideal Ii of a knot is always principal. A generator, 

A i 6 A of this is known as the Alexander polynomial of k. A i is obviously only 

defined up to multiplication by units of A, i.e. elements of the form ± f , where 

i G Z. A higher Alexander ideal 1^, where r > 1, of a knot k need not be principal, 

but as A is a unique factorisation domain, every ideal of A is contained in a unique 

principal ideal. 

Definition 1.1.16 The r"' Alexander polynomial A^, is a generator of the unique 

principal ideal containing the r'^ Alexander ideal Ir. 

We would usually normalise the Alexander polynomials so that they lie in Z[t] and 

have non-zero positive constant term. 

1.2 Grobner Bases and Using the Alexander In

variants 

Suppose we have two knots k and / with diagrams and di and we want to use the 

Alexander invariants to try and decide if k is not equivalent to I. We could proceed 

as follows. We would construct Seifert surfaces Fk and Fi for k and I from their 

diagrams. Then we would choose bases for Hi{Fk) and Hi{Fi) and calculate linking 

numbers to obtain Seifert matrices Sk and Si. Next we would form the presentation 
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matrices A). — tSk ~ and Ai = tSi - Sf for the Alexander modules of k and 
I. Taking determinants of Ak and Ai we would obtain the Alexander polynomials 
Ai(/c) and Ai(Z). By inspection we could decide whether these are the same or 
not (remembering to normalise them as above). If they were unequal we could 
conclude that k and / were inequivalent knots. I f they were equal then we would 
need more information. We could then try calculating the second Alexander ideals 
X2{k) and X2{1). Calculating all the various minors of A^ and Ai would give us sets 
of generators for the second Alexander ideals, 

X2{k)^{G,)^ , I 2 ( 0 - ( G ; ) ^ (1.17) 

where Gk and Gi are the sets of minors. But we cannot tell by simple inspection of 

Gk and Gi whether the ideals X2{k) and l2(0 are the same or not; for quite different 

sets of polynomials can generate the same ideal. We could calculate the second 

Alexander polynomials as 

A2{k) = gcd{Gk) , A2(0 = gcd(Gj) (1.18) 

And inspection of these might allow us to decide the equivalence or not of k and 

/. The problem here is that by passing to the Alexander polynomials we are losing 

information. DiflFerent Alexander ideals can posses the same Alexander polynomials, 

i.e. be contained in the same principal ideal. 

So i t would be nice i f there were a practical way to decide whether Gk and Gi 

generate the same ideal or not. 

1.2.1 Grobner Bases 

This problem of deciding whether two sets of polynomials G and H, ofa polynomial 

ring R say, generate the same ideal is the subject of Grobner bases. To give a 

very brief sketch, a Grobner basis B for an ideal ^ , is a set of polynomials that 

generate the ideal and such that there is a procedure for deciding whether or not 

any polynomial / € i? is in the ideal Q. This procedure is a type of division process 

of / with respect to B that relies on fixing order on the monomials of R. We prefer 

not to give a definition here as i t is quite detailed and can vary depending on the 
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context; as for polynomial rings of more than one variable there are many different 
ways of ordering the monomials and different choices of these orderings lead to 
different division processes. 

But the important point is that a Grobner basis for Q allows the decision of 

whether / is a member of Q or not. So having Grobner bases for two ideals would 

allow one to decide whether one ideal is contained in the other or vice-versa by 

testing each element of a basis for membership of the other ideal. 

In his 1965 Ph.D. thesis [3] Buchberger introduces the subject and gives an 

algorithm for generating a Grobner basis for an ideal G = {G)j^ from any set of 

generators G for the ideal in the case of R = k[xi,... ,Xn], the ring of polynomials 

in n variables with coefficients from a field k. The algorithm generates and adds 

certain polynomials to G until G becomes a Grobner basis. 

Buchberger and others have extended this result to other polynomial rings and 

in [1] Grobner bases and algorithms for generating them are given for the case of 

R = S[t], where 5 is a principal ideal domain, which includes the case R = Z[t] of 

course. Rings of Laurent polynomials do not seem to have attracted much attention 

and in the two sources we've used, [1] and [2], they receive no mention. 

In Chapter 3 we will define what we have called Chatelet bases. These are a 

type of Grobner basis for ideals of the ring A. The definition is based on work 

of Albert Chatelet on the ring Z[t] which was published posthumously in [6] by 

Frangois Chatelet in 1967. He called his basis a reduced basis and it is actually 

equivalent to what is called a minimal strong Grobner basis in [1]. Unfortunately 

Chatelet's work does not seem to have been noticed by others and we have not 

been able to find i t in any of the bibliographies on Grobner bases. We continue in 

Chapter 3 to give a Buchberger type algorithm; one that generates a Chatelet basis 

for an ideal Q = {G}^ of A from any set G of generators for the ideal. The form of 

our algorithm is very similar to, and was developed from, that for S[t], where 5 is a 

principal ideal domain, found in [1]. But there are slight differences in the concept 

of division process used, and we replace the concept of monomial orders with the 

related concept of the length of Laurent polynomials. 

A recent paper by Pauer and Unterkircher [24] did give definitions and algorithms 
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for Grobner bases in Laurent polynomial rings by developing appropriate extensions 
of the definition of term orders and monomial orders. 



Chapter 2 

Implementing Seifert's Algorithm 

and the Calculation of the Seifert 

Matrix 

2.1 Seifert's Algorithm 

We begin this chapter by describing Seifert's algorithm, the well known procedure 

for constructing a Seifert surface of a knot from a diagram of the knot. So let D be 

a diagram in the plane, of a knot K. At each of the crossing points of D we modify 

D as indicated in figure 2.1. The result will be to change D to a collection C of 

disjoint oriented simple closed curves. 

Definition 2.1.1 We shall refer to these closed curves as the Seifert circles of the 

diagram D. 

We span each of the Seifert circles with a disk which we orient in such a way to 

agree with the orientation on the Seifert circle. 

Definition 2.1.2 We shall refer to these disks as the Seifert disks of the diagram 

D. 

Now the Seifert disks of D are not necessarily disjoint as some of them may contain 

others. We remedy this by lift ing, as necessary, some of the disks directly up-wards 

12 
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becomes 

becomes 

Figure 2.1: Modifying the crossing points of a knot diagram. 

off of the plane, into so that the Seifert disks of D are disjoint and located in 

various 'levels', x {x} of M^. For each of the crossing points of D we paste a 

twisted band to the Seifert disks lying either side of the crossing as in figure 2.2. 

So now we have a surface F that is the union of the Seifert disks and the twisted 

bands. That the surface F is orientable can be seen from figure 2.2 where we see 

how the pasted bands preserve the orientation from disk to disk. Finally we notice 

that the boundary of F is a knot of the same type of K and that the boundary of 

F projects down onto the original diagram D. We can be imprecise and refer to F 

as a Seifert surface of K. In figure 2.3 we see these stages applied to the figure eight 

knot where we have raised the disk spanning the circle C2 above that spanning the 

circle Ci-

Having constructed F we can calculate a Seifert matrix of K by choosing a set of 

cycles on F that form a basis for Hi{F) and then working out the associated linking 

numbers. At first sight this strategy sounds simple and straightforward. Indeed it 

is readily carried out by hand for diagrams with not too many crossings. However 

there are lots of arbitrary choices made, in lift ing the Seifert disks and choosing a 

basis for Hi{F). So for a complicated diagram with many crossings and levels of 

nesting i t might not be so straightforward. Indeed for a particularly nasty diagram 

it might be a task even to recognise when and how Seifert circles are nested one 

inside the other. So we would like to give a more precise description of how to carry 
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out Seifert's algorithm and the calculation of the Seifert matrix, ideally producing 
something that could be programmed on to a computer and produce a Seifert matrix 
from some type of encoding of a knot diagram. That is what we do in this chapter 
and such a program can be found on the accompanying CD-ROM. 

Others have recognised this difficulty with Seifert's algorithm and have devised 

ways around the problem. In chapter 7 of [19] Kauffman gives a procedure that 

involves changing the knot diagram to a link diagram by adding simple closed curves 

(that are unknotted and unlinked from the original knot diagram) such that the link 

diagram wil l not have any nested Seifert circles. The Seifert surface of this link is 

closely related to the Seifert surface, F , associated to the original diagram and it 

allows one to find a basis for Hi (F) and to read off the linking numbers from the new 

link diagram. In chapter 13 of [5] Burde and Zieschang present another method. 

There i t is proved that any knot diagram can be changed to a type of diagram 

(of the same knot), what they call a special diagram, that again, has no nesting of 

Seifert circles. Then they describe, in a similar way to Kauffman, a way to read off a 

basis for Hi of the surface associated to a special diagram and the associated linking 

numbers. But given an arbitrary diagram one is still left with the task of recognising 

nesting and constructing a special diagram. Also, both of these solutions seem to 

still rely on a person looking at actual diagrams and making certain observations 

about them. 

In contrast the procedure we will describe is algorithmic in the true sense of the 

word. I t operates on an encoding of a knot diagram which we call the combinatorial 

data and we have implemented i t with the mathematical computer package Maple. 
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Figure 2.2: Pasting the twisted band to the Seifert disks. 

c, 

Figure 2.3: Seifert's algorithm on a diagram of the figure eight knot. 
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Figure 2.4: The nesting graph of a diagram of the figure eight knot. 

2.2 The Nesting Graph and Standard Lift of a 

Knot Diagram 

Let D be a knot diagram in the plane . We are going to describe here a particular 

knot in X [0, oo) and Seifert surface F spanning K, such that K projects to D 

in X { 0 } . The main point that we are making rigorous from the basic description 

of Seifert's algorithm is deciding how to arrange the disks that span nested Seifert 

circles from D. 

The standard lift of D is the knot K and Seifert surface F of K defined as 

follows. Let C be the collection of Seifert circles of D. For each C € C let Fc be a 

disk spanning C. We shall locate each Fc in a level plane x [n] for some n 6 N 

according to the location of C in with respect to the other Seifert circles. This 

is done with the use of the following graph which we associate to the diagram D. 

Definition 2.2.1 Let D be a knot diagram in the plane M^. The nesting graph 

M{D) of D is the graph consisting of one node n{U) for each component U of 

- C and one edge e(C) for each Seifert circle C. The edge e(C) joins the nodes 

n{Ui) and ^([/z) where C e n dUi-

In figure 2.4 we show the nesting graph of the diagram of the figure eight knot. 

We note that M{D) is an acyclic graph. Let rioo be the node of M{D) corre

sponding to the unbounded component of - C. The nesting graph M{D) can be 

thought of as a tree, the nesting tree, with as the root. The nodes of a tree have 

depth. The root has depth 0, the children of the root have depth 1, their children 
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Figure 2.5: L and R crossings 

have depth 2 etc. Now we can say at what level x {n} we shall locate each disk 

Fc- The disk Fc is located at level n, where the edge e(C) oiM{D) joins nodes at 

depth n and n -I -1 . So in our figure eight example in figure 2.4 the disks spanning 

the Seifert circles d and C3 will be in x { 0 } , while C2 will be in x {1} . 

To complete the standard l i f t we add in the twisted bands that connect up the 

Fc, as described in the previous section. 

2.3 The Combinatorial Data of a Knot Diagram 

Let D be an oriented knot diagram with m crossings. In this section we will define 

the combinatorial data T{D) of the diagram D. This data will form the input to 

the algorithm that calculates the Seifert matrix. 

We treat D as a union of arcs, where an arc is a segment of the diagram joining 

two crossing points without going through any other crossing points. As D has 

m crossing points i t wi l l consist of 2m arcs. We label the arcs with the integers 

1 , . . . , 2m so that they run upwards as one traverses the diagram in the direction of 

orientation. 

Now to each crossing c of D we associate a sequence of five labels Pc = {a, /3,7,6, S). 

Where a, 7, S are respectively, the labels of the incoming over-cross, outgoing over-

cross, incoming under-cross and outgoing under-cross, and 5 is the letter L or R 

accordingly as the under-cross crosses the over-cross from left to right (L), or from 

the right to the left (R), see figure 2.5. 
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{(1,2,6,7.R). (5,6,2.3,R), 

(3.4.8.1.L). (7.8.4,5.1) } 

Figure 2.6: The combinatorial data of a diagram of the figure eight knot. 

Figure 2.7: Different diagrams with the same combinatorial data. 

Definition 2.3.1 Now we can define the combinatorial data V{D) of as the set 

P[D) = {Pc\c a crossing of D} (2.1) 

In figure 2.6 we show a labelling of a diagram of the figure eight knot and the 

associated combinatorial data. The combinatorial data does not uniquely determine 

the diagram as the diagrams in figure 2.7 for the figure eight knot show. These 

diagrams are not equivalent (related by an isotopy of the plane), as can be seen 

i f you draw their Seifert circles. However they are all related by isotopies of the 

extended plane U cx3. We might conjecture that this is true in general and in 

this chapter we will see how quite a lot of information about a diagram is calculated 

from its combinatorial data. For instance in section 2.5 we will see how diagrams 

with the same combinatorial data must have the same nesting graph. 
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2.4 Determining the Seifert Circles 

In this section we describe how to determine the Seifert circles from the combina

torial data V{D). Each Seifert circle will be represented as a sequence 5(C) = 

( o j i , . . . , an) of arc labels. Notice of course that the circle is represented also by any 

cyclic permutation of the labels, i.e. ( a i , . . . , Q;„) and ( 0 2 , . . . , an, cti) represent the 

same circle. This method was pointed out to me by Cherry Kearton. 

Start with any arc a i that has not yet been identified as belonging to a Seifert 

circle. The sequence (cci) is the initial segment of a representation 5(C), of some 

Seifert circle C of D. We shall denote this initial segment as 5(C). 

Now we show how to extend the initial segment 5(C) — (cui, . . . , a^) that de

scribes a portion of the Seifert circle to ( a i , . . . , a^, aj+i). Now Oj is the incoming 

arc to one of the crossings Q of D. We identify Q by searching the Pc of 7 (̂1?) to 

find ai in either the incoming over-cross or incoming under-cross positions. I f ai is 

the incoming over-cross to Cj then let a^+i be the outgoing under-cross from Cj. On 

the other hand, if ai is the incoming under-cross to Cj then let Qj+i be the outgoing 

over-cross from c,. Now if cnj+i = ai then the Seifert circle is complete and we 

record it's representation as the sequence 5(C) = ( d i , . . . , ttj). On the other hand 

if tti+i 7̂  tti then we set 5(C) = ( a i , . . . , ctj, Oi+i) and repeat the steps above until 

we have the complete representation for C. 

We continue these steps until all of the arcs have been used. So we will have 

recorded representations for the Seifert circles as sequences of the arc labels. 

2.5 Determining the Nesting G r a p h 

In this section we show how to calculate from ViD), the nesting graph N{D) defined 

in section 2.2. For a crossing c of D we will say that the two Seifert circles involving 

the arcs at c are adjacent to c and that the two Seifert circles are adjacent to one 

another. Considering the two types, L and R, of crossing shown in figure 2.5 we can 

also say to which side of c the adjacent Seifert circles lie. 

Definition 2.5.1 For a crossing c of type L we say that the Seifert circle containing 
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the incoming over-cross and outgoing under-cross lies to the right of c and the Seifert 
circle containing the incoming under-cross and outgoing over-cross lies to the left of 
c. For a crossing of type R the situation is reversed. We say that the Seifert circle 
containing the incoming over-cross and outgoing under-cross lies to the left of c 
while the Seifert circle containing the incoming under-cross and outgoing over-cross 
lies to the right of c. 

Note that these definitions are in agreement with what we actually see when we 

look at crossings the way they are presented in figure 2.5. 

Given that we have calculated representations for the Seifert circles as in section 

2.4, i t is a straightforward manner to deduce, from V{D), for each crossing c of D 

and each Seifert circle C whether C lies to the left of c, to the right of c or is not 

adjacent to c. 

Recall the Jordan curve theorem that states that any simple closed curve in the 

plane divides the plane into two regions, one bounded and the other unbounded. 

Applying this to our Seifert circles gives us the following lemma. 

Lemma 2.5.2 Each Seifert circle C splits the plane into two regions. One of these 

contains all the crossings that lie to the left of C and the other contains all the 

crossings that lie to the right of C. 

We can equally well speak of the two regions as lying to the left and right of 

C. This gives us a way to refer to the components of - C. Each Seifert circle C 

forms part of the boundary of two of the components, U and V say, of - C. One 

of these components will lie in the region of - C that lies to the right of C and 

the other will lie in the region of — C that lies to the left of C. In what follows 

we shall refer to these components U and V of - C as lying to the left or right of 

C and use the notation UL{C) and UaiC) to denote the regions of - C lying to 

the left and right respectively of C. 

Now we show how to determine M{D) from V{D). We start by forming the 

graph J\fo{D), shown in figure 2.8. Afo{D) is the graph consisting of just two nodes 

and an edge connecting the two nodes. We select any Seifert circle C and label the 

edge of Afo{D) as e(C), i.e. that edge corresponding to C. We label one of the nodes 
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n(UO e(C) 

Figure 2.8: The graph S!^{p). 

as n ( f / i ( C ) ) , i.e. that corresponding to the component of — C lying to the left 

of C and the other node as n{U}i{C)), i.e. that corresponding to the component of 

-C lying to the right of C . Clearly J\fo{D) is a subgraph ofJ\f{D). 

We now show how to take a strict subgraph N{D) of M{D) and add a new node 

and edge to i t to leave a strictly larger subgraph Sf{D) oi M{D). Choose a Seifert 

circle C such that e (C') ^ J^[D) but that C is adjacent to a circle C for which 

e ( C ) G J^{D), (since D is the diagram of a knot, and hence connected, such a C 

exists). Let UL{C') and UR{C') denote the components of - C lying to the left 

and right of C respectively. So now we want to add the edge e(C') and one of 

the nodes n ( C / L ( C ' ) ) and n{UR{C')) to M{D). Let [ / ^ ( C ) and UR{C) denote the 

components of - C lying to the left and right of C respectively. Now since C and 

C are adjacent, C lies either to the left or right of C and this can be worked out 

from the combinatorial data of D as pointed out above. Suppose C lies to the left 

of C , so C /R(C' ) = UL{C). In this situation we will add the edge e(C') and the node 

n ( f / i ( C ' ) ) to Af{D) with e (C') connecting n ( [ / L ( C ) ) ( = n ( [ / / j ( C ' ) ) ) and n ( C / i ( C ' ) ) , 

as shown in figure 2.9. Otherwise C wil l lie to the right of C , so UL{C') = UR{C) and 

we wil l add the edge e (C') and the node n(J7fl(C')) to M{D) with e(C') connecting 

n{UR{C)){= n[VL{C'))) and n ( [ / R ( C ' ) ) , as shown in figure 2.10. I t should be said, 

where we have indicated the Seifert circles C and C as dotted circles in these two 

figures that this is only to illustrate how UL{C) and UR{C) say, lie to the left and 

right of C . How C and C actually appear in D , i.e. which of the regions is the 

bounded one and which is the unbounded one, can not be deduced from V{D). 

So starting with NQ{D) we apply the process described in the previous paragraph 

until all the edges corresponding to the Seifert circles have been added and we are 

left with J^{D)=M{D). 

That the nesting graph of D is determined by it's combinatorial data proves the 

result mentioned at the end of section 2.3; that diagrams with the same combinato-
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\ n(Ui) 

n(q) =n(U'^) 
e(C) 

C 

Figure 2.9: Extending the graph M{D). 

c 

n(Uj) 
e(C) 

C 

e(C') 

Figure 2.10: Extending the graph N{D). 
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rial data possess the same nesting graph. 
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2.6 Fix ing a Diagram with Combinatorial Data 

ViD) 

In this section we reduce the ambiguity about which actual diagram our implemen

tation is calculating a Seifert matrix for and we identify the important features of the 

standard l i f t of that diagram that our implementation will record. These features 

are the configurations of the twisted bands associated to the crossing points. 

As described in section 2.2 the nesting graph of a diagram can be thought of as a 

tree when we specify the node corresponding to the unbounded component of - C 

as the root. Now our algorithm has calculated M{D) but does not know which is 

the unbounded component of - C. To any component oi U of - C there 

corresponds an isotopy 0, of the extended plane that carries £) to a new diagram D' 

with (i){U) now being the unbounded component of — (?!>(C), see the three diagrams 

of the figure eight knot in figure 2.7 for some examples. 

So we just let the algorithm arbitrarily choose one of the nodes, no = n[Uo) say, 

of M{D) to be the root and we let D' denote a diagram (/>(D) where 4> is any isotopy 

of the extended plane such that 0(?7o) is the unbounded component of — 0(C). 

We shall denote the resulting tree by N^{D'). We can tell from N^{D') in what 

level of x [0, oo) each Seifert disk Fc will be located in the standard l i f t of D'. 

The disk Fc wil l be in the level x { n } , where the edge e(C) joins nodes of depth 

n and n -I-1 in the tree M^{D'). 

We remark here that we can actually now work out the orientations on the 

Seifert circles of D', i.e. which go clockwise and which go counterclockwise, from 

the information at hand. We select one of the Seifert disks, Fco say, where e(Co) 

joins the root of N^{D') with a node of depth 1. This means that FCQ must lie 

in the level x { 0 } . In the construction of ^f{D){^ -^{D')) the root no will 

have been recorded as either n{UL{Co)) or n{UR{Co))- I f no = n(C/L(Co)) then Co 

has a clockwise orientation. On the other hand if no = n{Uii{Co)) then CQ has a 

counterclockwise orientation. The orientation on Co is extended out to the other 

Seifert circles according to the following rule. Two adjacent circles in the same level 

wil l have opposite orientations while adjacent circles in consecutive levels will have 
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the same orientation. 

This information about D'\ the levels of the Seifert disks and their orientation, 

can be combined and recorded in the form of the configuration of each of the twisted 

bands associated to the crossing points of D'. 

Definition 2.6.1 Let c be a crossing of T'(-D) and let denote the twisted band 

associated to c. Recall that c can be a type L or type R crossing, and we shall 

also refer to as type L or type R accordingly. In addition. Be will connect either 

two Seifert disks that lie in the same level or connect two that lie in consecutive 

levels. So in total there are six possibilities and we define the configuration of Be as 

L i , L 2 , L 3 , R2 or i?3 according to figure 2.11 in which the twisted bands together 

with a small portion of the Seifert disks on either side are shown. 

The diagrams in this figure should be self explanatory. Any twisted band of a Seifert 

surface of a standard l i f t will look like one and only one of those in figure 2.11. For 

example, a band of type L 2 is one associated to a crossing c of type L , where the 

Seifert disk to the left of c lies one level below the Seifert disk lying to the right of 
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R-

R: 

Figure 2.11: The six configurations of a twisted band. 
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2.7 Seifert's G r a p h and Generating Cycles for Hi{F) 

We describe a second graph associated to a diagram D. 

Definition 2.7.1 The Seifert Graph S{D) of a diagram D is the graph: 

* with one node n{C) for each Seifert circle of D 

•k and one edge e(c) for each crossing c of D, connecting the nodes corresponding 

to the two Seifert circles adjacent to c. 

I t is clear once again that two diagrams related by an isotopy of the extended plane 

have the same Seifert graph. Also i t should be clear that to calculate S{D) from 

'P(D) is a straight forward matter. We have the following lemma about the Seifert 

graph. 

Lemma 2.7.2 I f F is the Seifert surface of the standard l i f t of a diagram D then 

H,{S{D)) = HdF) (2.2) 

Proof: This is true since S{D) embeds in F and is a deformation retract of F. • 

A cycle in S{D) is a sequence of edges of S{D) and an equivalent cycle on 

wil l be any curve that goes through, in the same order the twisted bands, and only 

those twisted bands, associated to the edges in the sequence. 

Given a graph G there is a well known algorithm for generating a set of cycles 

on G that generate Hi{G), which runs as follows. We assume that G is connected. 

First we find a spanning tree T{G) of G. A spanning tree T(G) of G is an acyclic 

subgraph of G that includes all the nodes of G, or equivalently, a maximal acyclic 

subgraph of G. 

A spanning tree is found by beginning with any node no of G and form the tree 

f{G) consisting of just no as the root. Then repeat the following procedure: for 

each node n of f{G), let n i , . . . , n^ be the neighbours of n in C that are not already 

present in f{G). For each 1 < i < r we add the node n, to T(G) together with 

just one of the edges connecting n and n^, and let T(G) denote the new strictly 

larger tree, which is still a subgraph of S{G). When this procedure can no longer 

be applied then f{G) = T{G), a spanning tree of G. 
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Then to each of the edges {e € G\e ^ T{G)} there wil l correspond a generating 
cycle of Hi{G). For each node n of T{G) we let s„ be the sequence of edges from 
the root TIQ to n. Let e be one of the edges in {e € G\e ^ T{G)}. Suppose that 
e connects the nodes n i and 712- Then the sequence of edges {sni,e,s~^) will be a 
non-trivial cycle in G, where s"̂  is the sequence s reversed. This cycle is non trivial 
because T(C) is a maximal acyclic subgraph of G. 

Using this algorithm, our implementation can record a set Z of cycles that gen

erate Hi(S{D)). The cycles z e Z being recorded as sequences of the edges of S{D) 

which we recall, correspond to sequences of the crossings of the diagram D. Our 

implementation will remove any redundancy in these representations by simplifying 

the sequences as much as possible using the following rule. 

Let e be an edge and s and t any sequences of edges. A sequence of the form 

(s, e, e, t) or (e, s, e) can be simplified to (s, t) or (s) respectively. Of course this does 

not change the homological equivalence class of the cycle. 

2.8 Tracks on the Seifert Surface 

In this section we will describe a system of oriented curves on a standard l i f t Seifert 

surface F. We refer to the system of curves as the tracks on F. There shall be an 

inner and outer track. We define the tracks in two stages. First defining the tracks 

on a Seifert disk and then what the tracks look like on the twisted bands of F. 

In order to define the tracks of a Seifert disk Fc we first define the cycle band of 

a Seifert disk. 

Definition 2.8.1 The cycle band on a Seifert disk Fc is a band on Fc extending a 

small way from the boundary toward the centre with the following property. When 

projected down to x {0} the cycle bands are all disjoint so in particular any other 

Seifert circles of D that lie within C do not intersect the projection of the cycle band 

of Fc, see figure 2.12. 

Figure 2.13 shows the inner and outer tracks on a portion of a Seifert disk with 

representation ( a i , . . . , a„) say. They lie in the cycle band. We mark four points on 
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.cycle bands 

Figure 2.12: Cycle Bands 

0(a} 

cycle band 

a 
i-i 

ex. 

a i+i 

Figure 2.13: Tracks on a disk. 
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crossing point 

Seifert 
disk 

untwisted twisted band Seifert 
disk 

crossing point 

Figure 2.14: Tracks on a band. 

each of the 'jumps' made at the crossing points in the formation of the Seifert circles, 

see figure 2.1 page 13. The outer track (solid lines) is the union of some non-self 

intersecting lines 0(0:^) that run roughly parallel to the arcs aj, j = 1 , . . . , n and 

then terminate at the marked points on the 'jumps' of the crossing points. Similarly, 

the inner track (dashed lines) is the union of some non-self intersecting lines I{aj) 

that run roughly parallel to the 0{aj), j = 1 , . . . , n but shghtly nearer the centre 

of the Seifert disk and terminating at the marked points as shown. The important 

point is that they lie in the cycle band and the outer and inner track never intersect. 

Wi th figure 2.14 we show the tracks as they appear on the twisted bands that 

connect the Seifert disks together. For convenience the twisted band is shown un

twisted together with a portion of the Seifert disks on either side of the band, the 

Seifert circles having representations ( . . . , a, /?,.. .) and ( . . . , ^ - 1, a -F 1,...) for 

some 1 < a,P < 2m. The outer track is the union of the solid lines and the inner 

track is the union of the dashed lines. Notice that the outer and inner tracks meet 

up with the corresponding tracks on the Seifert disks as shown in the figure. 
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Figure 2.15: Tracks on Seifert disks of the figure eight knot. 

s(c)=+l 

Figure 2.16: Definition of linking number. 

As an example we show in figure 2.15 how the tracks would appear on the 

Seifert disks of the diagram of the figure eight knot. To make it easier to see we 

have removed the shading indicating the different orientation on the disks. 

2.9 Calculation of the Linking Numbers 

In this section we show how to calculate the Seifert matrix of the standard l i f t Seifert 

surface F of D' with respect to the cycle basis Z. We first remark that the linking 

number Link(a;, y) of two disjoint 1-cycles can be calculated from a diagram E, of x 

and y, 

L i n k ( x , y ) = 5]5(c) (2.3) 

where the sum is taken over all crossings c e E^ = {c\c is an overpassing of x over y] 

and s(c) = — 1 if c is a crossing of type L, s(c) = -1-1 i f c is a crossing of type R, see 

figure 2.16. 

Let z e Z be one of the generating cycles of Hi{S{D')) = Hi{F). We will now 

describe how to construct specific cycles on F which represent the same homological 

equivalence class as z. 
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crossing point 

crossing point 

iV, 

Figure 2.17: Extending Ro{z). 

0 ( a + l ) 

Definition 2.9.1 Let R{z) = (ci, C 2 , . . . , c )̂ be the recorded representation of z as 

a sequence of crossings of D'. We can obtain another representation for z, which we 

denote as Ro{z), by pushing z onto the outer track as follows. 

We start by setting Ro{z) := {0{ay)) where Oi is the outgoing over-cross from 

Ci. (We could equally well choose the other outgoing arc from Ci.) Ro{z) is an 

initial segment of what wil l become Ro{z)- We repeat the following procedure that 

extends Ro{z): Let 0(Q;) be the last element of Ro{z)- Let c be the crossing that 

has a as one of it's incoming arcs. Let C be the Seifert circle that has a as part of it's 

boundary, so C has the representation ( . . . , a, /?,...) (or ( ^ , . . . , a)) of arc labels of 

D' and the other Seifert circle adjacent to c has a representation ( . . . , P—l,a+l,...) 

(or (a + l , . . . , / 3 + l ) ) . 

Now i f c e R{z) then we extend the cycle by adding 0{a + l ) together with the 

line on the outer track on the twisted band joining 0{a) and 0{a+ 1), (so in effect 

the cycle crosses the twisted band corresponding to c). We record this by extending 

the representation Ro{z) to Ro{z) -{.••, 0{a), 0{a + 1)), see figure 2.17. 

On the other hand if c ^ R{z) then we extend Ro{z) by adding 0(/3) together 

with the line of the outer track on the twisted band joining 0 ( a ) with C(/3), (so in 

eflFect the cycle does not cross the twisted band corresponding to c, instead i t stays 

on the Seifert disk spanning C). We record this by extending the representation 

^o(^ ) to Ro{z) = ( . . . , 0 (a ) , 0(/3)), see figure 2.18. 
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crossing point 

0(a) 

crossing point 

Figure 2.18: Extending Ro{,z). 

crossing point 

crossing point 

Figure 2.19: Extending Ri{z). 

We repeat this procedure until the representation is complete, i.e. just before we 

add the label 0(ax) to the end of ^0(2;)- This leaves us with the representation 

i?o(^) = (0 (a i ) ,0 (a2) , - - . ) (2.4) 

for the cycle z. 

In exactly the same way we can pus/i z onto the inner track to give a represen

tation 

Ri{z) = {I{a,),I{a2),...) (2.5) 

as in figures 2.19 and 2.20. 

We wil l use the notation z'^ and z^ to denote the closed curve that is a subset of 



2.9. Calculation of the Linking Numbers 34 

crossing point 

crossing point 

Figure 2.20: Extending Ri{z). 

the outer / inner track produced by this process, as opposed to the representations 

Roiz) and Riiz) which are just sequences of labels. Of course the representations 

Ro{z) and i?/(z) are essentially the same, being just sequences of the arc labels so 

in what follows we wil l refer to a representation R{z). But note that the cycles 

and z^ are not the same (but homologically equivalent) for one runs on the outer 

track, the other on the inner track. 

The outer and inner tracks were constructed in such a way so that when we take 

two of the generating cycles Zj and Zj (allowing j = i) then the projections of z f 

and to will intersect only in the vicinity of each twisted band. And we will 

now show how our implementation can tell which of these intersections are over and 

under-crossings and from which direction they pass, i.e. all the information needed 

to calculate Link(zf z j ) using the formula (2.3). 

First we simplify our notation. We let x denote one of the generating cycles 

pushed on to the outer track and y denote one of the generating cycles pushed onto 

the inner track. For each twisted band 5 c of F , where c is a crossing of £>', we say 

that the cycle x (or y) takes one of five forms, denoted by the numbers 0,1,2,3,4. 

These are shown in figure 2.21 The cycle x is of form 0 near B \i x does not pass 

near S, 1 if i t follows the incoming and outgoing arc belonging to the the Seifert 

circle to the left of c, 2 i f i t passes across B^ from the Seifert disk on the left to 

the Seifert disk on the right of Sc, 3 if i t follows the incoming and outgoing arcs 
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Figure 2.21: Forms near a twisted band. 

belonging to the Seifert circle to the right of c and of form 4 if i t passes across Be 

from the Seifert disk on the right to the Seifert disk on the left of B^. We say that 

the form of x and y near B^ is where i is the form of x and j is the form of y 

near Be-

So there are 25 possibilities, where 0 < < 4, to specify the form of 

the two cycles x and y at a band. In the following figures 2.22 through 2.33 we 

show how each of these possibilities will appear at bands of each of the six possible 

configurations Li, L2, L 3 , Ri, R2 and R3. The cycle x is on the outer track and will 

be shown as a solid line. The cycle y is on the inner track and will be shown as 

a dashed line. The first column shows the portions of the cycles as they actually 

appear on the Seifert surface F, the second column shows the corresponding portion 

of the diagram (i.e. a projection to together with over/under-cross information) 

of the curves x'^ and y and the third column shows the portion of the diagram of 

X and In total there are 25 x 6 = 150 possible diagrams but we omit the ones 

where the form of x and y near the band is one of (0, i), {i, 0), (1,3) or (3,1), where 

0 < i < 4, since for these forms there can be no crossings in the diagram of x'^ and 

y or in the diagram of y~^ and x, as either some of the curves are not present or they 

are wholly on opposite sides of the band. In the figures we have adopted the usual 

convention of having the positive normal direction point out of the page toward the 
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reader. 

Then in the three tables, 2.1, 2.2 and 2.3 following those figures we summarise 

how each of these possibilities will contribute to the finking numbers Link(a;"'", y) 

and Link{y~^, x) as defined in equation (2.3) (remember x is the outer cycle and y 

the inner). That is, the entry in the table under L[x'^,y) shows the sum Y^s{c) 

where the sum is taken over all of the over-crossings, c, of x'^ over y that occur at 

that band and similarly the entry in the table under L{y'^,x) is ^s{c) where the 

sum is taken over all of the over-crossings, c, of y"*" over a; that occur at the band. 

Of course the omitted possibilities (0,«), {i, 0), (1,3) and (3,1), where 0 < z < 4, 

all have zero contribution to the linking since no crossings of any kind will appear at 

a band when cycles of that form are projected to M^. The forms (1,1) and (3,3) also 

always have zero contribution to the linking number but this is perhaps non-trivially 

so as they do give rise to crossing points at the bands of configuration L2, L3, R2 

and i ? 3 . 

Then all our implementation has to do is for each pair of generating cycles 

Zi, Zj G Z assign one to be pushed to the outer track and one to the inner track, 

then work out the form of zf and z^ near each of the twisted bands of F and then 

sum up the relevant contributions to the linking number by reading the tables. In 

this way the if^ entry = ljmk{zf ,Zj) and the j i " * entry = lAnk{z'^, Zi) of the Seifert 

matrix of the standard l i f t Seifert surface with respect to the generating cycles Z is 

calculated. 
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Figure 2.22: The contributions to Linking near a Band with Configuration L i . 
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4.1 

Figure 2.23: The contributions to Linking near a Band with Configuration L i , 

continued. 



2.9. Calculation of the Linking Numbers 39 

Figure 2.24: The contributions to Linking near a Band with Configuration L2. 
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Figure 2.25: The contributions to Linking near a Band with Configuration L2, 

continued. 
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Figure 2.26: The contributions to Linking near a Band with Configuration L 3 . 
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Figure 2.27: The contributions to Linking near a Band with Configuration L3, 

continued. 
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I.I 

2.1 

Figure 2.28: The contributions to Linking near a Band with Configuration i?i 
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Figure 2.29: The contributions to Linking near a Band with Configuration Ri, 

continued. 
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4 

Figure 2.30: The contributions to Linking near a Band with Configuration i?2-
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3.1 

Figure 2.31: The contributions to Linking near a Band with Configuration R2, 

continued. 
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-~- 2.2 

Figure 2.32: The contributions to Linking near a Band with Configuration R^. 
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Figure 2.33: The contributions to Linking near a Band with Configuration i ? 3 , 

continued. 
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Configuration of Band Form of x and y L{x+,y) Liy+,x) 

Li 1,1 0 0 

Li 1,2 -1 + 1 

Li 1,4 + 1 -1 

Li 2,1 0 0 

Li 2,2 0 + 1 

U 2,3 0 0 

L, 2,4 0 -1 

Li 3,2 0 0 

Li 3,3 0 0 

L, 3,4 0 0 

L, 4,1 0 0 

Li 4,2 -1 0 

Li 4,3 0 0 

Li 4,4 + 1 0 

L2 1,1 0 0 

L2 1,2 0 +1 

L2 1,4 0 -1 

L2 2,1 + 1 0 

L2 2,2 + 1 + 1 

L2 2,3 0 0 

L2 2,4 0 -1 

L2 3,2 0 0 

L2 3,3 0 0 

L2 3,4 0 0 

L2 4,1 -1 0 

L2 4,2 -1 0 

L2 4,3 0 0 

L2 4,4 0 0 

Table 2.1: The linking contributions at bands L i and L2 
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Configuration of Band Form of x and y Lix\y) Liy+,x) 

1,1 0 0 

^ 3 1,2 -1 +1 

1,4 + 1 -1 

2,1 0 0 

^ 3 2,2 + 1 +1 

L3 2,3 + 1 0 

L3 2,4 0 -1 

Ls 3,2 +1 0 

L3 3,3 0 0 

U 3,4 -1 0 

U 4,1 0 0 

U 4,2 -1 0 

Lz 4,3 -1 0 

U 4,4 0 0 

Ri 1,1 0 0 

Ri 1,2 -1 + 1 

Ri 1,4 + 1 -1 

Ri 2,1 0 0 

Ri 2,2 -1 0 

Ri 2,3 0 0 

Ri 2,4 + 1 0 

Ri 3,2 0 0 

Ri 3,3 0 0 

Ri 3,4 0 0 

Ri 4,1 0 0 

Ri 4,2 0 + 1 

Ri 4,3 0 0 

4,4 0 -1 

Table 2.2: The linking contributions at bands L 3 and Ri 
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Configuration of Band Form of x and y L(x+,2/) L{y+,x) 

R2 1,1 0 0 

R2 1,2 0 +1 

R2 1,4 0 -1 

R2 2,1 + 1 0 

R2 2,2 0 0 

R2 2,3 0 0 

R2 2,4 + 1 0 

R2 3,2 0 0 

R2 3,3 0 0 

R2 3,4 0 0 

R2 4,1 -1 0 

R2 4,2 0 +1 

R2 4,3 0 0 

R2 4,4 -1 -1 

Rs 1,1 0 0 

Rs 1,2 -1 +1 

R3 1,4 + 1 -1 

Rz 2,1 0 0 

2,2 0 0 

2,3 + 1 0 

i?3 2,4 + 1 0 

3,2 + 1 0 

i?3 3,3 0 0 

Rs 3,4 -1 0 

R3 4,1 0 0 

Rs 4,2 0 +1 

Rs 4,3 -1 0 

Rs 4,4 -1 -1 

Table 2.3: The linking contributions at bands R2 and R3 
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2.10 Summary and Example 

Here we give a summary of the main steps that the implementation takes to calculate 

a Seifert matrix associated to a knot diagram with combinatorial data V{D). 

1. Determine the Seifert circles as sequences of the arc labels of D (section 2.4). 

2. Determine the nesting graph M{D) (section 2.5). 

3. Choose a node of J\f{D) to be the root thus determining the nesting tree 

M^{D') of some diagram D' with combinatorial data V{D) (section 2.6). 

4. Hence determine the configuration of each of the twisted bands of the standard 

l i f t ofD' (section 2.6). 

5. Determine the Seifert graph S{D){= S{D')) and a set Z of generating cycles 

of i/i(<S(D)) (section 2.7). 

6. For each pair of cycles Zj, Zj G Z push one onto the outer track to get a rep

resentation Roi^i) and the other on to the inner track to get a representation 

Ri{zj). From these representations calculate the form of Zi,Zj at each of the 

twisted bands. Then calculate the if'^ and ji^^ entries of the Seifert matrix 

by reading off the contributions from the tables 2.1-2.3 (section 2.9). 

2.10.1 Example: The Figure Eight Knot. 

Recall from 2.6 the diagram D of the figure of eight knot which has combinatorial 

data 

ViD) = {(1,2,6, 7, R), (5, 6, 2,3, R), (3,4,8,1, L), (7,8,4,5, L ) } (2.6) 

We wil l number the crossings as 

c i - ( l , 2 , 6 , 7 , i ? ) (2.7) 

C2 = (5,6,2,3,i?) (2.8) 

C3 = (3,4,8,1,L) (2.9) 

C4 = (7,8,4,5,L) (2.10) 
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e(C2) e(C,) e(Ci) 
m w —w w 

\ 
n(UR(C2)) 

J 
nOi (C2)) n(Ui(C, )) 

=n(UR(C,)) =n(U^(C3)) 

n(U,(C,)) 

Figure 2.34: The nesting graph N{D). 

n(UL (C2)) 

=n(UR(C,)) 
depth 0 

n(Ui(Ci)) 
depth 2 

n(U,(C, )) n(UR(C2)) 
depth 1 n(Uj^(C3)) 

depth 1 

Figure 2.35: The nesting tree N^{D'). 

1. The Seifert circles have representations 

Ci = (1,7,5,3) 

C2 = (6, 2) 

C3 = (4,8) 

(2.11) 

(2.12) 

(2.13) 

2. The nesting graph M{D) is shown in figure 2.34 

3. Say we choose the node n{Ui{C-2)) to be the root to give the tree M^{D') in 

figure 2.35. 

4. From Af^{D') we see that the twisted bands -B^ and B^^ both have configuration 

Ri as they both join the Seifert disks F^j and Fc^ which are located in level 0. 

The band Bc^ has configuration L3 since it joins the disks Fcj and Fc^, where FQ^ 

is below Fc3 and Fc, is to the right of the crossing C3. The band B^^ also has 

configuration L3 as i t joins the disks Fc^ and Fcg, where Fc^ is below FQ^ and FQI 
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n(C2) 

n(C,) 

e(c,)\ I e(c3) 

n(Ci) 

Figure 2.36: The Seifert graph S{D). 

{ZI,Z2) 

Bci (2,2) (2,0) (0,0) 

(4,4) (4,1) (1,1) 

(3,3) (3,4) (4,4) 

Bc4 (0,0) (0,2) (2,2) 

Table 2.4: Forms of the cycles near the bands, 

is to the right of the crossing C4. 

5. The Seifert graph S{D) is shown in figure 2.36. A generating set for Hi{S{D)) 

is Z — {zi, Z2} where 

zi = (e(ci) , e(c2)), Z2 = (e(c3), 6(04)) 

6. Pushing zi and Z2 out onto the tracks will give representations 

R{z,) = {2,3,1) 

i ? ( z 2 ) - ( 4 , 5 , 3 ) 

(2.14) 

(2.15) 

(2.16) 

The forms of each pair of cycles at the bands is given in table 2.4. Then using the 

linking contribution tables we read oflF the following entries of the Seifert matrix 

Lizt,zi) = +1 

Liz+,Z2) = +1 

L{z},zi) = 0 

L{zt,Z2) = -l 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Figure 2.37: Dowker code of the figure eight knot 

2.11 Implementation: Dowker Code to Combina

torial Data 

The Maple procedure Seif ertMatrixCombData contained on the CD-ROM (see ap

pendix B for details) wil l return a Seifert matrix from the combinatorial data of a 

knot diagram. However for diagrams of more than a few crossings the combinatorial 

data is cumbersome and the redundancy in i t can become infuriating. One is better 

advised to use the Dowker code of the unoriented knot diagram, see [10]. This is a 

much more compact form of encoding. For a diagram D with n crossings the Dowker 

code is just a sequence, with signs, of n even integers. I t is formed as follows. 

Number the crossings of D with the integers 1 , . . . , 2n in order as one traverses 

the diagram, so each crossing will get two numbers, one associated to the overpass 

and the other to the underpass. This produces a parity reversing permutation on the 

numbers 1 , . . . , 2n in that each odd number is sent to an even number and vice-versa. 

The Dowker code E is the sequence of the n even numbers paired to the sequence 

(1,3, 5 , . . . , 2n — 1) of the odd numbers. The even numbers in the Dowker code are 

signed + if they belong to an underpass and - if they belong to an overpass. As 

an example, the Dowker code of the figure eight knot numbered as in figure 2.37 is 

E = (6, 8, 2,4). As with the combinatorial data there are many diagrams with the 

same Dowker code, see [10] for details. 

Now under certain conditions, which correspond to D not being obviously the 

sum of two non-trivial diagrams, the combinatorial data of a diagram with Dowker 

code E can be derived from E. The algorithm for this is given in [10] and we 
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have implemented i t as the Maple procedure CombData. Unfortunately we have not 
incorporated the checking into CombData so that if i t is invoked on a Dowker code 
not satisfying the conditions i t is likely to return an error, or even worse, apparent 
combinatorial data. But the intention is that one use the Seifert matrix procedure 
on the Dowker codes contained in the program Knotscape [12]. These are Dowker 
codes of nice diagrams of prime knots and as such will produce valid combinatorial 
data. 



Chapter 3 

Chatelet Bases and Algorithms 

3.1 Introduction 

In section 3.2 we lay out some notation for Laurent polynomials that will be used 

throughout the rest of this chapter. In section 3.3 we prove the existence of certain 

special bases for ideals of the ring of Laurent polynomials, called Chatelet bases. 

These bases are special kinds of Grobner bases and allow the decision, algorithmi-

cally, of the membership question for ideals, i.e. whether or not a given polynomial 

/ is an element of a given ideal. In addition to this Chatelet bases have a very 

nice compact form that often allows one to distinguish different ideals by simple 

inspection of the polynomials appearing in the Chatelet bases. 

The rest of the chapter is devoted to developing an algorithm that will calculate 

a Chatelet basis for the ideal Q — ( G ) A , given a finite set of generators, G, for the 

ideal. In section 3.4 we introduce a simple diagrammatic way of representing sums of 

polynomials that wil l be used in later sections. The final algorithm is then built up 

in three stages in sections 3.5, 3.6 and 3.7. The algorithms in these sections work by 

constructing successive 'approximations' to a Chatelet basis for Q. The 'algorithm' 

given in section 3.5 should not really be called an algorithm at all as i t involves the 

manipulation of infinite sets of polynomials. But i t is simple and shows some of the 

key ideas that are involved in the final implementable algorithm. In section 3.6 we 

modify the algorithm from the previous section so that i t no longer involves infinite 

sets. This algorithm is now implementable yet perhaps i t , also, should not be called 

57 
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an algorithm for, while i t does produce a Chatelet basis for G after a finite number 
of steps, i t has no way of recognising when this has been achieved and so will keep 
executing forever, vainly trying to improve the 'approximation'. In section 3.7 we 
modify this second algorithm to one that is both implementable and that terminates 
after a finite number of steps with a Chatelet basis for Q; an algorithm in the true 
sense of the word and the one that was used to produce the tables of Chatelet bases 
for the Alexander ideals of knots. 

3.2 Some Notation for Polynomials 

Let A denote the ring of Laurent polynomials, Z[ i , t~^]. Throughout the rest of this 

chapter we shall understand the word polynomial to mean an element of A. 

Definition 3.2.1 Let f { t ) be a non-zero element of A. We can write f{t) as 

f(t)^ct>ot'' + <i>,t''-' + --- + Kt''-'' (3.1) 

where n e N, a € Z and (j)o,..., (j)n E ^ such that (/>o, 0n / 0. We make the following 

definitions: 

• length(/(f)) = n, the length of f{t). 

•k \coeS{f{t)) = 00, the leading coefficient of f{t). 

•k tcoeff(/(t)) = (j)n, the trailing coefficient of f{t). 

•k ldeg(/(t)) = a, the leading degree (or just degree) of f{t). 

•k tdeg(/(i)) = a — n, the trailing degree of f{t). 

Note that length satisfies the following formula, let / , g be two non-zero polyno

mials in A then 

length{f{t)g{t)) = length(/(i)) + \ength{g{t)) (3.2) 

Remark: Throughout this chapter we shall endeavour to use lower case Roman 

letters for polynomials and lower case Greek letters for their coefficients. When 
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talking of a sequence of polynomials ^ i , . . . , 5^ in A we shall often use the following 

notation for the degrees and coefficients 

gi(t) = lifit"' + %it"'~' + • • • + 7t,n.i"'""' (3.3) 

We shall also drop the t in most cases and simply write / , g etc for elements of A. 

3.3 Chatelet Bases for Ideals in A 

In this section we extend the work of Albert Chatelet, in [6]̂  on ideals of the ring 

Z[ i ] , to ideals of the ring A = Z,[t, t " ^ ] . The constructions are similar to those in [6], 

save that the length of Laurent polynomials takes the role played by the leading 

degree (of the non-Laurent polynomials). 

Let J be an ideal of A, we wil l assume that I ^ {0} , and let n e (N - {0})u{oo} . 

Definition 3.3.1 Let £ „ ( I ) denote the set of leading coefficients of elements of I 

of length strictly less than n along with the number 0. 

Cn{I) = {0} U { l coe f f ( / ) | / G I and length(/) < n} (3.4) 

Note that £ 0 0 (1) denotes the set of leading coefficients of all the polynomials in I . 

In the rest of this section, to simplify notation we shall write £„ for £ „ ( ! ) . 

Lemma 3.3.2 £ „ is an ideal of Z. 

Proof: By definition 0 e £ „ . Let (f)o,Jo S £„ with (/)(, 0 / 70 and let f{t),g{t) € 

I be two polynomials, of length less than n, with leading coefficients ^0 and 70 

respectively. Suppose that 

f i t ) = 00^" + (̂ 1^"-' + • • • + (f>X-' (3.5) 

5 ( i ) - 7 o i ' ' + 7i*''~' + --- + 7 / " ' (3.6) 

The polynomial f{t) + t°'~''g{t) belongs to I , has length less than n and has leading 

coefficient (po + Jo, so (l>o + Jo e jCn- Similarly, assuming <f)o / 70 the polynomial 

^The work was published shortly after Albert Chatelet's death by Frangois Chatelet. 
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f{t) — t°'~^g{t) belongs to J , has length less than n and has leading coefficient -70, 

so (/io - 7o e £ „ . 

I f m e Z then the polynomial mf{t) belongs to I , has length less than n and 

has leading coefficient m^o, so m(f)Q € £„. • 

Remeirk: The £ j form an ascending chain of ideals 

{0} C £1 C £2 C • •. C £ ^ C Z (3.7) 

Note that Z is a principal ideal domain so the ideal £„ is generated by a single 

integer, A„ say. 

Cn = (A„)z (3.8) 

So every f{t) G X of length strictly less than n can be written as 

/ ( i ) = 9 A „ r - f + • • • + m<n (3.9) 

for some q , a € Z and m € N. And since the ideals form an ascending chain we 

know that A, divides Ai_i for each i. 

The ring Z has the property that any ascending chain of ideals in Z must ter

minate after a finite number of steps, i.e. there exists N e N such that £„ = Cn 

for all n> N. We let no be the smallest such A .̂ Hence every polynomial in I has 

leading coefficient a multiple of A„(,. Some of the inclusions in the sequence 

{0} C £ i C £2 C • • • C C Z (3.10) 

may not be strict. We are interested in the points in the sequence (3.10) where the 

inclusions are strict. So let no, n i , . . . , be the subsequence of no, no - 1 , . . . , 2,1 

satisfying the properties 

P I : £„ , ^ {0} for 0 < i < m. 

P2: The number n^ is the smallest j for which Cm-i-i = 

So the Cm form a strictly increasing subsequence of the sequence in (3.10) 

{0} C £ „ ^ C £„„_ , C . . . C £„ , C £„„ C Z (3.11) 
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Lemma 3.3.3 For each 0 < i < m there exists a polynomial bi in I of length - 1 

with leading coefficient A„;, where Cm = {Ki)z-

Proof: Let 0 < i < m. There are polynomials in I of length strictly less than rij 

with leading coefficient A„;. But A„; ^ Cm-i since Cm-i S j C „ ; , hence there are 

no polynomials in I of length strictly less than n, — 1 with leading coefficient . 

Hence there must be some polynomial in I of length — 1 with leading coefficient 

A„,. • 

Definition 3.3.4 We will refer to a polynomial bi in I of length nj — 1 and leading 

coefficient A„i as an i*^ reduced polynomial of I . A reduced set B for I is a set of 

m + 1 polynomials in I 

B = {b„h„...,bJ! (3.12) 

where the polynomial 6, is an i * ^ reduced polynomial of J , whose existence is assured 

by lemma 3.3.3. 

Lemma 3.3.5 I f bi is an i^^ reduced polynomial for J and / is any non-zero poly

nomial in X which, when z / 0, satisfies 

Iength(/) < n i_ i - 1 (3.13) 

then there exist polynomials e € A and g such that 

f = ebi + g (3.14) 

and where g satisfies 

g = 0 i f i = m, (3.15) 

= 0 or length(5) < - 1 otherwise. (3.16) 

Proof: Let length(/) = n and ldeg(6i) = c. We shall prove the result by induction 

on n. 

I f n < rij - 1 then setting e = 0 and g = f proves the lemma. So we will assume 

that Hi - 1 < n and that the result is true for all k < n. Now if i = 0 then the 

leading coefficient of / is a multiple of A„(,. I f i > 0 then since rii-l <n < n j _ i - 1 , 

Cn,^r-i = jCn, = ( K ) from property P2 (3.17) 



3.3. Chatelet Bases for Ideals in A 62 

So for all i > 0, / can be written as 

/ = gA„,t" + <?iir-i + • • • + 0„t"-" (3.18) 

for some 9 G Z. So we set / ' = / - qt°'~% G I and notice that 

f = qt''~% + f (3.19) 

Now i f / ' = 0 then the result is true with e = qt"-" and 5 = 0. I f / ' / 0 then 

length(/') < n so by assumption / ' = ebi + g for some e G A and g E T such that 

g = 0 OT length (5) < nj - 1 so 

/ = (e + <-=)6, + 5 (3.20) 

as required. • 

Theorem 3.3.6 A reduced set B for I is actually a basis for I in that 

I={B)^ (3.21) 

Moreover, i f a reduced set B for I is known then given any polynomial / in A one 

can determine whether or not / is an element of I 

Proof: Of course (S)^ C I since B Cl. Let / be any polynomial in I . By lemma 

3.3.5 there exists CQ G A and go ET such that 

/ = eo6o + 50 (3.22) 

and g = 0 or length(5) < no - 1 . And note that the inductive process in lemma 3.3.5 

can easily be carried out to determine Cq and 50- I f 5o 7̂  0 then applying lemma 

3.3.5 again to g^ yields polynomials ei G A and 51 G I such that 

/ = eo6o + e i 6 i + 5 i (3.23) 

and p = 0 or length(51) < n i - 1. We keep applying lemma 3.3.5 to the non-zero 

remainders gi until we have polynomials eo, e i , . . . , em such that 

/ = eo6o + ei6i + • • • + e^^m € (5)^ (3-24) 

Hence 1 C {B),^. So I = {B)j^. 
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Finally, given any polynomial / G A we can determine whether or not / is an 

element of X by carrying out the reduction process just described. Either we will 

end up with an expression like that in (3.24) which implies that / G I or the process 

wil l fail at some point in that we arrive at a non-zero remainder g (or / to begin 

with) 

s 
f = ^eibi + g ,s<m (3.25) 

such that there is no polynomial b E B for which length(6) < length(5) and lcoeff(6) 

divides lcoefr(5). By definition of the reduced elements in B this implies that g ^ I . 

But YlUo ^i^i € ^ ' hence / ^ J . • 

Definition 3.3.7 We will refer to a reduced set B for an ideal I of A as a Chatelet 

basis for X. 

Note that if we have Chatelet bases B[X) and B{J) for two ideals X and J then 

we can easily decide whether X and J are the same ideal or not by carrying out the 

reduction process in theorem 3.3.6 to see whether X C J and vice versa. Indeed we 

can say that X ^ J \ihy inspection we see that the bases do not consist of an equal 

number of polynomials with corresponding lengths and leading coefficients. 

Given / G X expressed as 

/ = eo&o(i)+ei6i + --- + e„6„ (3.26) 

we can say something about the A-coeflficients as well. Consider the equation 

/ = eô o + 50 (3-27) 

When we divide by bi to get 

5o = e i i i + 5 i (3-28) 

we see from the proof of lemma 3.3.5 that 

length(ei6i) < length(5o) < no - 1 (3.29) 

so that 

length(ei) < no - n i - 2 (3.30) 
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a a-la-2 a-n 

f 

Figure 3.1: Polynomial as line segment 

Similarly 

length(ei) < n j _ i - nj - 2 (3.31) 

for all 1 < ^ < m. 

3.4 Line Segment Diagrams of Polynomials 

For some of the discussion and proofs in the next section i t will be useful to have 

a simple conceptual model for linear combinations of polynomials. Let / be a 

polynomial in A with leading degree a and of length n, where a G Z and n G N. 

We can represent / as a line segment of length n against a number line representing 

powers of t as in figure 3.1 Note that due to the way we write polynomials with 

leading degree first the number line runs backward so to speak. The dots on the 

line segment represent the coefficients of / , some of which may be zero of course, 

but not the ones at the ends of the line segment which represent the leading and 

trailing coefficients of / . Suppose we have / expressed as a sum of polynomials 

f = Y , h (3.32) 

then we can represent this expression for / with the diagram D consisting of the 

line segments representing each of the polynomials h e H together with the line 

segment representing / at the bottom of the diagram, as shown in figure 3.2. 

Definition 3.4.1 We shall say that D is a diagram for f and that P{D) are the 

polynomials in D where P{D) = H. We define the maximum leading degree of the 

diagram D as the number 

max{ldeg{p)\pe P{D)} (3.33) 

and the minimum trailing degree of the diagram D as the number 

min{tdeg(p) |pGP(L' )} (3.34) 
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a a-la-2 a-n 

• • • • 

f 

Figure 3.2: The diagram D for / . 

In such a diagram we see how each coefficient 0 of / is obtained by summing the 

coefficients of the p G P{D) that lie directly above ^. Of course there are many 

different diagrams for / according to how we express / as a sum of polynomials. 

3.5 The First Algorithm 

Let G C A be a finite set of polynomials. In this section we show how to calculate 

a Chatelet basis, B, for the ideal Q = (G)^. 

Definition 3.5.1 Let g\,..., gm, where m > 1, be polynomials in A. A polynomial 

5 in A is a leading degree monomial combination of the ffi,. • • j^m i f 

g = mi5i + m252 + • • • + nimgm (3-35) 

where the m, are all monomials 

mi = a /* G = 1,2, . . . , m (3.36) 

and the polynomials ruigi all have the same leading degree. 

Similarly we can have polynomials lined up at their trailing coefficients 
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Definition 3.5.2 Let gi,..., gm, rn > 1 he polynomials in A. A polynomial 5 in A 
is a trailing degree monomial combination of the gi, • • • ,gm if 

g = migi + m252 + H "̂ m^m (3.37) 

where the rui are all monomials 

mi = ait'" ,ai,bieZ,i = l,2,...,m (3.38) 

and the polynomials rriigi all have the same trailing degree. 

We note that if g is a leading degree or traihng degree monomial linear combination 

of 5 i , • • • ,5m then 

length(5) < max {length(5,)|l < i < m} (3.39) 

We now define four kinds of monomial combinations. Let 51 , . . •, 5m be polyno

mials in A with leading coefficients 

lcoelT(5i) = C i , i = l,...,m (3.40) 

and trailing coefficients 

tcoefr(5i) = di, i = l,...,m (3.41) 

and let c = gcd(c i , . . . , c^) and d = gcd(di, ...,dm)-

Definition 3.5.3 A polynomial 5 in A is of type GCD, (9 i , . . . , 5^) if 5 is a leading 

degree monomial combination of 51,. . . , 5m 

5 = mi5i - fm252 + --- + "^m5m (3.42) 

mi = a/*, i = l,...,m (3.43) 

and 

aiCi + a2C2 + ••• + OmCm = c (3.44) 

Definition 3.5.4 A polynomial 5 in A is of type GCDt(5 i , . . . , 5m) i f 5 is a trailing 

degree monomial combination of 5 1 , . . . , 5m 

5 = rnigi + m^g^ H h mm5m (3.45) 

m, = o / S i = l,...,m (3.46) 
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and 

aidi + 02^2 H f- amdm = d (3-47) 

Definition 3.5.5 A polynomial g in A is of type Si{gi,... ,gm) if 5 is a leading 

degree monomial combination oi gi,... ,gm 

9 = migi + 171292 + ••• + mm9m (3-48) 

mi = ait''\ i = l,...,m (3.49) 

and 

a i C i + a2C2 H h a^Cm = 0 (3.50) 

Definition 3.5.6 A polynomial ^ in A is of type St{9i, • • • ,pm) if 5 is a trailing 

degree monomial combination oi gi,... ,gm 

9 = migi + m252 + • • • + mm9m (3-51) 

rrii - ait^', i = 1 , . . . , m (3.52) 

and 

aidi + 02(̂ 2 H 1- amdm — 0 (3.53) 

So of course for any polynomial gi, the zero polynomial is the only polynomial 

of type Si{gi) or St{gi). We note that i t is possible for a polynomial 5 in A to 

be of type GCBi{gi, ...,gm) and ^ { ( ^ i , . . . , 9m) or of type GCDi(5i, ...,9m) and 

Siigi,5m)- Also g can be of type Si{gi,..., 5m) and St{gi,..., 5m) or of type 

G C D i ( 5 i , . . . , 5 m ) and G C D t ( 5 i , . . . , 5 m ) - But 5 can not be of type G C D , ( 5 i , . . . , 5 m ) 

and 5 / ( 5 1 , . . . , 5 ^ ) or of type G C D f ( 5 i , . . . , 5 m ) and 5 ' ( ( 5 i , . . . , 5 m ) -

Of course there can be infinitely many polynomials of any of these types so we 

collect them together as follows. 

Definition 3.5.7 Given a subset H C Awe define Si{H) to be the collection of all 

leading coefficient cancelling polynomials, i.e. 

Si{H) = {f £ A\f is of type Si{hu ...,hm) where / i i , . . . , / im e (3.54) 
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Similarly we define St{H) to be the set of all trailing coefficient cancelling poly
nomials, i.e. 

St{H) = { / € A | / is of type St{hu ...,h^) where / i j , . . . , / i ^ G i / } (3.55) 

Note that if i? is a subset of the ideal Q then Si{H) and St{H) are also subsets of 

Definition 3.5.8 Let V{Q) denote the power set of Q. We define the set map 

S : V{g) ^ V{g) as follows 

S{H) = Si{H) U StiH) U H (3.56) 

We shall denote the iterates H, S{H), S{S{H)), ... etc of this map by S'^{H), 

S\H), S\H),... etc. 

Note that the iterates form an ascending chain of subsets of Q 

H c S i H ) c S ^ H ) c . . . (3.57) 

Also if the lengths of elements of H is bounded above, say 

L = m a x { l e n g t h ( / i ) | ^ e / f } (3.58) 

then from (3.39) we see that 

L = max {\ength(h)\h G 5"( i?)} (3.59) 

for all n. 

Suppose we have a non-empty set H of polynomials. We will show below how to 

construct a finite set of polynomials GCDset((if) C (i?)^ which is, in a sense that 

will be made precise later, an approximation to a Chatelet basis for the ideal {H)j^. 

The construction attempts to mimic the definition of the reduced polynomials in 

section 3.3. 

For each n > 1 we define Cn as 

CniH) = gcd{lcoeE{h)\h e H and length(/i) < n} (3.60) 

where we assume that gcd{} = 0. In the rest of this section we will write Cn for 

Cn{H). 
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Remark 3.5.9 Note that A„ divides c^, where Cn{{H)^) = {Xn)^, (see (3.8)). 

Now each c„ divides Cn-i so there must exist N € N such that Cn = CN for all 

n > N. Let no be the least such A'̂  and let no, n i , . . . , n^^ be the subsequence of 

no, no - 1 , . . . , 1 satisfying 

1. Cn^^O ,0<i<m. 

2. Ui is the smallest j for which c„._j_i = Cj, 1 < i < m. 

Now for each 0 < i < m there will exist a finite number of polynomials /ii,i,/ii,2,- • • Mji^ 

H such that length(/ijj) < for 1 < i < r, and gcd{lcoeff(/ii) | l <i<ri] = Cn^. 

Let fi be any polynomial satisfying 

fi is of type GCD((/ii,i, /Ji,2, • • •, Kn) (3-61) 

Now the sequence of polynomials F = (/o, • • •, / m ) has strictly increasing leading 

coefficients like the polynomials in a Chatelet Basis however the lengths of F might 

not be strictly decreasing like the polynomials in a Chatelet basis because some of 

our fi might be of type 5t(/i i , i , /ii,2,. • . , hi^n)-

So i f there exists an i with 0 < i < m - 1 such that length(/i) < length(/i+i) 

then let F' be the sequence F' = ( /o , . . . , / , ^ _ i ) obtained from F by omitting the 

polynomial fi+i. Make this F' our new F and keep repeating this procedure until 

we have a sequence of polynomials F - {fo,..., fr) with strictly increasing leading 

coefficients and strictly decreasing lengths, i.e. one that looks like i t might be a 

Chatelet basis for the ideal (H)^ . 

Of course we note that if the set H is finite then i t is a straightforward manner 

to compute such a sequence F from H. 

Definition 3.5.10 We shall refer to such a sequence F as GCBseii{H). I t is not 

uniquely defined as there are many choices for the polynomials hj appearing in 

(3.61). However, the ambiguity in GCDset((if) will ultimately be no greater than 

the ambiguity in the definition of the Chatelet basis itself as will be made clear by 

theorem 3.5.12. 
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Lemma 3.5.11 I f 6 e ,6 is one of the polynomials in a Chatelet basis BfoiQ = (G)^ 
then there exists an A'̂  € N such that for each m > N there is a polynomial 

b' e GCDset,(5^(G)) (3.62) 

that has the same length and leading coefficient as b. 

Proof: Let b be one of the polynomials in the Chatelet basis iS for ^ . Let lcoeff(6) = 

A„_|_i and length(6) = n. Suppose that b is given by 

b = ^ f , g (3.63) 
gee 

and that each of the polynomials fg has the form 

/ . = E ^ ^ . . * " ' - ' (3.64) 
i=0 

We wil l consider the following linear combination representation for b 

b = T.T.^9,it'''~'s (3-65) 
geG i=0 

We consider the diagram, D, for b with respect to the (j)g^it°'^~''g. We will denote the 

polynomials appearing in D as 

P(D) = {0,,ii°«-^5 I 5 e G 0<i<ng} (3.66) 

First focus on the the portion of this diagram at and to the left of the leading degree 

of b, which wil l look something like figure 3.3. The diagram D has the following 

properties (with n{D) = 0): 

L There exists n{D) € N such that all the polynomials appearing in D are 

monomial multiples of elements of S"{G) for all n > n{D). 

2. The maximum leading degree of the diagram u satisfies u > a 

I f u > a we can change this diagram D for 6 to a new diagram D' for b that also 

satisfies these two properties. The maximum leading degree u' of D' however satisfies 

u > u'. So assume u > a. Now let Pu{D) C P{D) be the set of polynomials of D 
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u a 

f—•—•—• ; 
I - - i 

I • 

Figure 3.3: The diagram D. 

with leading degree u. Now since u > a i t must be that the leading coefficients of 

the polynomials in Pu{D) cancel each other out, i.e. that 

J2 P€5;(5"(^)(G)) C5"(^'+^(G) (3.67) 
p€Pu(0) 

Let D' be the diagram consisting of the line segments representing all the polyno

mials in P(D) - Pu{D) together with the polynomial XlpGP„(D)P- Clearly this new 

diagram D' satisfies property 1 with n{D') — n{D) +1 and also property 2 for which 

the maximum leading degree u' of D' satisfies u > u'. 

We repeat this process until we arrive at a diagram, which we denote Di, for 

b satisfying properties 1 and 2 whose maximum leading degree is equal to a, the 

leading degree of b. The diagram Di will look something like that appearing in 

figure 3.4. The diagram Di satisfies three properties 

1. There exists n{Di) 6 N such that all the polynomials appearing in D are 

monomial multiples of elements of S^{G) for all n > n(D;). 

2'. The maximum leading degree of Di is equal to a, the leading degree of b. 

3. The minimum trailing degree u of the diagram satisfies u < a-n, where a-n 

is the trailing degree of b 



3.5. The First Algorithm 72 

a a-n u 

Figure 3.4: The diagram Di 

li a—n > u then we can change this diagram to a diagram D'l for b which still satisfies 

properties 1, 2' and 3 but whose minimum trailing degree u' satisfies a — n>u'>u. 

So assume that a — n > u and let F „ ( A ) C P ( A ) be the set of polynomials in Di 

of trailing degree equal to u. But as before, since a — n > u it must be that 

p 6 5 t (5" (^ 'nG))c5" (^ ' )+ ' (G) (3.68) 

So let DI be the diagram with line segments representing all the polynomials in 

P{Di) — Pu{Di) together with the line segment representing ^p^p^p^) p- Clearly D'l 

also satisfies property 1 with n{D[) = n ( A ) + 1, property 2' and property 3 with 

the minimum trailing degree u' of D'l also satisfying a — n > u' > u. 

We repeat this process until we arrive at a diagram Dt for b satisfying properties 

1,2' and 3 whose minimum trailing degree is equal to a - n the trailing degree of b. 

So Dt looks something like the diagram in figure 3.5. Let Â  = n ( A ) and let 

P = {p e P{Dt)\\deg{p) ^ a} 

Now for each p € P, length(p) < n and 

lcoeff(6) = J^lcoeff(p) 

(3.69) 

(3.70) 
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a a-n 

Figure 3.5: The diagram Dt 

By property 1 each of the polynomials p € P is a monomial multiple of a polynomial 

Sp say with Sp G S'^{G) for all m > N. Hence for each p e P, length(sp) = 

length(p) < n . Now c = gcd {lcoeff(sp) |p e P} must divide A„+i = lcoeff(6). But 

of course, for m > A ,̂ c „ + i ( 5 ' " ( G ) ) (from (3.60)) divides c. Hence c„+i(5 ' "(G)) 

divides A „ + i . But from remark 3.5.9, A„+ i divides c„+i(<S"*(G)), so 

A„+ i = c = c„+i(5™(G)) , for all m > AT (3.71) 

So in the construction of GCDset((<S"'(G)) there wil l be a polynomial 

b' G GCDset/(iS'"(G)) with leading coefficient Xn+i and of length < n. However 

length (6') = n since b, being an element of the Chatelet basis for Q has minimal 

length among those polynomials in Q with leading coefficient A „ + i . So the result is 

proved. • 

By repeated applications of this lemma we can establish the following theorem. 

Theorem 3.5.12 There exists an M G N such that for all m>M, GCDsetj(<S"'(G')) 

is a Chatelet basis for Q. 

Proof: Let B = {bo,. ..,bs} be a Chatelet basis of Q, where the bi are arranged in 

order of decreasing length. By lemma 3.5.11, for each 0 < i < s there exists A ĵ such 
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that for all m > Ni there exits a polynomial b[ e GCDset;((S"'(G)) with the same 
leading coefficient and length as 6,. I f we let M = max{A^i|0 < i < s} then for each 
m> M there is a Chatelet basis contained in GCDset;(5™(G')). 

Fix an m > M . Let B' = {b'^,... ,b'g] be the Chatelet basis contained in 

GCDset((»S'"(G)), with the b[ in order of decreasing length. By construction, 

GCDset((<S'"(G)) is a set of polynomials 

F = {fo,...Jr}cg (3.72) 

where s < r, of strictly decreasing length and with lcoeff(/i) a strict multiple of 

lcoef f ( / j_ i ) for each I < i < r. 

Now is one of these polynomials. In fact 6o = fo, for if = fi, where i > 0, 

then lcoeff(6o) would be a strict multiple of lcoeff(/o) which is a contradiction of the 

fact that the leading coefllicient of every polynomial in ^ is a multiple of lcoeff(6o). 

Similarly, suppose we have established that 6J = fi for each 0 < i < k < s. I f 

= f j for some j > k + 1 then lcoefT(6J.^J is a strict multiple of lcoeff(/fc+i). This 

contradicts the fact the every polynomial in Q of length strictly less than length(6'^) 

has leading coefficient a multiple of \coeS{b'f._^^). Hence 6'̂ ^̂  = fk+i-

So we conclude that 6- = / , for 0 < i < s. I t must be that r = s for by definition 

of the Chatelet basis there are no polynomials in Q of length less than length(6'^). 

Hence GCDset((»S'"(G)) is a Chatelet basis for g. • 

So now we can describe the first algorithm, algorithm 1. The algorithm consists 

of a number of statements which are executed sequentially. We'll briefly describe 

the notation used. A statement ^ 5 is an assignment of the value B to the 

variable A. A while loop is a statement group of the form 

while condition do 

statements 

end while 

I f the condition is false then we jump to the first statement following the corre

sponding end while. I f the condition is true then the statements are executed. 

When the end while statement is reached we return to the corresponding while 

statement and execute i t again. In algorithm 1 the 1 = 1 condition just means that 
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the while loop will execute repeatedly without end. In a later algorithm we shall 
use an if loop which is a statement of the form 

if condition then 

statements 

end if 

I f the condition is false then we jump to the first statement following the corre

sponding end if. I f the condition is true then the statements are executed until the 

statement end if is reached where execution shall continue with the first statement 

following end if. 

n ^ 0 

H 

while 1 = 1 do 

H ^ <S"(i?) 

B f - GCDset;(i/) 

n -f- n -I-1 

end while 
Algorithm 1: Calculate a Chatelet basis for G = (G)^ 

By theorem 3.5.12 after a finite number of steps and for all steps thereafter 

algorithm 1 wil l have B — B a Chatelet basis for Q = (G)^. However this algorithm 

is far from satisfactory or implementable as i t involves constructing infinite sets and 

notwithstanding this, we don't have any way of telling when a Chatelet basis has 

been reached. In the rest of this chapter we will settle these matters. First by 

altering the algorithm to one that is implementable, in that i t no longer requires 

any infinite constructions. And then by altering this second algorithm to one that 

terminates after a finite number of steps with a Chatelet basis. 

3.6 The Second Algorithm 

In this section we show how we can alter the definition of Si{H) and St{H) used in 

the definition of the set map S{H), see definitions 3.5.7 and 3.5.8, so that they only 

consist of certain polynomials of type Si{hi, /i2) and 5f(/ii, /i2) and in particular, if 
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H is a finite set of polynomials then all the iterates of the set map S will also be 

finite and hence implementable. 

Consider two polynomials gi ,g2 in A 

ft(^)=7t,oi"*+7Mi°^~' + - - - + W " - " ^ , i = l , 2 (3.73) 

Let 

c = gcd(7i,o,T2,o) (3-74) 

d = g c d ( 7 i , „ i , 7 2 , „ J (3.75) 

so that their leading and trailing coefficients factorize as 

7i,o = ^ c z - 1 , 2 (3.76) 
c 

d 

Definition 3.6.1 We define the minimal polynomials of type Si{gi,g2) and St{gi,g2) 

li,n, = ^ d 1 = 1,2 (3.77) 

as 

5 r ( 5 1 , 5 2 ) = ^ 5 1 - ^ ^ " ' - ' ^ ^ 5 2 (3.78) 

5 r " ( 5 i , 52) = ^ 5 1 - 2 ^ r - " - ( » - - ) 5 2 (3.79) 

Definition 3.6.2 Given a subset of A we define the sets S'i{H) and 5 j ( i / ) as 

Sl{H) = {Sr{huh2)\huh2 € H} (3.80) 

S[{H) = {Sr{h^,h2)\huh2 € H] (3.81) 

Similarly we define the set map S' : 'P{g) V{g) as 

S'{H) = S[{H) U S[{H) U H (3.82) 

Now we can define the second algorithm. The map <S' simply takes the place of the 

map S. 

Lemma 3.6.3 Lemma 3.5.11 also holds for algorithm 2. That is, for each polyno

mial 6 in a Chatelet basis B for g there exists an A'' € N such that for all m > A^ 

there is a polynomial 

b' e GCDseti(5""(G')) (3.83) 

that has the same length and leading coefficient as b. 



3.6. The Second Algorithm 77 

n < - 0 

H ^G 

while 1 = 1 do 

H ^ <S'"(//) 

B ^ GCDseti{H) 

n n + 1 

end while 
Algorithm 2: Calculate a Chatelet basis for Q — (G)^ 

The proof of lemma 3.6.3 is similar to that of lemma 3.5.11. First we will need some 

lemmas showing how the general Si and St polynomials can be expressed in terms 

of the minimum pairwise ones. 

Lemma 3.6.4 I f / is a polynomial of type 5;(51,52) then / is a monomial multiple 

of S'"'"(5i,52) and if / is a polynomial of type St{g\,92) then / is a monomial 

multiple of 5™" (51,52)-

Proof: Suppose / is of type 5/(51,52), so that / can be written as 

f{t) = e{ug, + ve'-'''g2) (3.84) 

for some integers a,u and v. Now since / is of type 5/(51,52) we must have 

u7i,o + w72,o = 0 (3.85) 

^ ^ ^ ^ + . ^ = 0 (3.86) 
c c 

But since ^ and ^ are co-prime ^ must divide v and ^ must divide u. Suppose 

u and V factorize as 

./72,0 
u = u 

c 
/7i,o 

V = v —-
c 

for some integers u' and v'. So we can rewrite equation 3.86 as 

(3.87) 

(3.88) 

,72,o7M + „ ' I i : £ 2 M ^ O (3.89) 

Which implies that 

u 
c c c c 

v! = -v' (3.90) 
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So from equation 3.84 we see that 

f ( t ) = r ( u ' ^ 5 i - u ' ^ t ° ' - " ^ 5 2 ) (3.91) 
c c 

= u r 5 r " ( 5 i , 5 2 ) (3.92) 

On the other hand, suppose / is of type St{gi,g2), so that / can be written as 

/ ( i ) = f n « 5 i + 52) (3.93) 

for some integers a, u and v. Now since / is of type St{gi,g2) we must have 

ti7l,ni + U72,n2 = 0 (3.94) 

^ u ^ + v ^ = 0 (3.95) 
d d 

But since and '^^^ are co-prime must divide v and must divide u. 

Suppose u and v factorize as 

./72,712 
u = u 

w = u 

d 
/7l,ni 

d 

for some integers u' and v'. So we can rewrite equation 3.95 as 

(3.96) 

(3.97) 

u d d d d 

Which implies that 

u' = -v' (3.99) 

So from equation 3.93 we see that 

f i t ) = f ' i u ' ^ g , - u'^f"">-''"=52) (3.100) 

= ^ r 5 r ( 5 i , 5 2 ) (3.101) 

Throughout the proofs of the next lemmas we shall use the hat notation to denote 

omission from products and sequences, i.e. 

C1C2 . . . C i . . • c „ C 1 C 2 . . . Ci-iCi+i ...Cn (3.102) 

{ci,C2,...,Ci,...,Cn) := iCl,C2,...,C^-l,Ci+l,...,Cn) (3.103) 
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Lemma 3.6.5 I f / is any polynomial of type GCD / (52,53, • • • , 9n) then 5,'"'"(5i, / ) 

is a linear combination of the polynomials in 

{S^{9u9^)•'2<i<n} (3.104) 

Similarly if / is any polynomial of type GCDt(52,53, • - . , 5n) then 5 f ™ " ( 5 i , / ) is a 

linear combination of the polynomials in 

{Sr{9u9i)--2<i<n} 

Proof: Recall the notation from 3.3 for the polynomials gi,. ..,g„ 

9.{t) = J i f i f ' + 7 i , i i " ^ ~ ' + - - - + 7i,n,i"*""* 

The leading coefficients of the gi will factorize as follows 

l i f t = 7i,oCiC2 - . . Q . . . c„c ,i = l,...,n 

where 

c = gcd(7i ,o ,72 ,o,-,7n ,o) 

cci = gcd(7i,o, 72,0, ", %o, - - -, 7n,o) 

These factors satisfy the following 

gcd(cj, Cj) = 1 

gccl(7^,o,Ci) ^ 1 

i<i,j<n, i j ^ j 

l<i<n 

Let / be a polynomial of type CCD/ (52,93, •••,9m) 

f = b2t'"92 + b^f'gs + ••• + bmf-gr, 

(3.105) 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

From 3.109 we have 

c c i = gcd(72,o, 73,0, • • -, 7m,o) (3.113) 

so 

lC0efr(/) = 6272,0 + ^'373,0 + • • • + 6m7m,0 = CCi (3.114) 
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Now gcd(lcoeff(5i),lcoeff(/)) = c and ldeg(/) = V2 + a2, hence 

Sri9u f ) = ci5i - (3.115) 
c 

m 

= ci5i - ^ r ^ - " ^ - " ^ J]6ir'5t (3-116) 
m m 

7i,o 7i,o = 51 - ^ r - " ^ - " ^ b.f'g, from (3.114) (3.117) 
i=2 ^ i=2 

771 TTi 

c c 
t=2 i=2 
m 

= ft. { l i l g ^ _ 2 l i ^ i a i - . , - a . + « . ^ . j (3^^g) 
i=2 ^ ^ 
m 

= Y ^ i (7i,oCiC2 . . . C i . . . c„5i - 7l,oC2C3 . - - Cmf'-^'gi) (3.120) 
t=2 
m 

= Y ^ i C 2 C 3 . . . . . . (7I0C151 - 7j,oCtt"'~°*5i) (3.121) 
i=2 
m 

= Y ^»^2C3 - - - Q . . . Cm5;'"'"(5i, 5i) (3.122) 
j=2 

Similarly if / is a polynomial of type GCDt(52,53, - - -, 5 m ) then a similar proof 

focusing on trailing coefficients shows that 
m 

Sr{9i, f ) = Y ^'^2^3 - - - Ci - - . c ^ 5 r ( 5 1 , 5 i ) (3-123) 
i=2 

L e m m a 3.6.6 Any polynomial of type 5 / ( 5 i , . . . , 5 m ) is a monomial linear combi

nation of the polynomials 

{Sr{9r,9j)--^<iJ<m, i ^ j } (3.124) 

and any polynomial of type S t { g i , . . . , 5m) is a monomial Unear combination of the 

polynomials 

{S^{g^,9J)••l<i,j<m, i ^ j } (3.125) 

Proof: We shall proceed by induction on m. The case m = 2 is true by lemma 

3.6.4. So we assume that the result is true for m = /c and let / be a polynomial of 

type 5 / ( 5 1 , 5 2 , . . . , 5*:+i)- So / can be written as 

/ - K i i ' ' > 5 i + U2f'92 + ••• + Uk+it^'+'gk+i (3-126) 
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for some integers U j and Vi and since / is of type Si{gi,g2,..., gk+i) we have that 

fc+i 

Yui^i,o = 0 (3.127) 
i = l 

Hence 
A;+l 

J]]?/j7-^oCiC2 . . . C i . . . Ck+ic = 0 from 3.107 (3.128) 

Let 1 < J < A; -t-1. Now since ccj divides 0 and ccj divides the i^^ term of the sum in 

equation (3.128) for each i ^ j \i must be that c C j divides the j^^ term of the sum 

also. Considering equations 3.110 and 3.111 we see that Cj must divide Uj. So we 

can factorize the as 

Ui = u\ci l<i<k + l (3.129) 

for some integers u-. 

Let h be any polynomial of type GCD;(52,53, • • • , 5 A ; + I ) . By multiplying / i by a 

power of t we can assume that ldeg(/i) = a i . Consider the polynomial 

S = f-u[f^Sriguh) (3.130) 

= f -u\f'{c,g,-'^h) (3.131) 

This has the effect of cancelling the contribution of gi to f . So 5 is a polynomial of 

type 5 / (^2 , . . - , gk+i) and hence by assumption a linear combination of polynomials 

in 

{Sr{gi,gj):2<i,j<k + l, z ^ j } (3.132) 

And by lemma 3.6.5 5 " ' " ( 5 1 , h) is a linear combination of polynomials in 

{Sr{gugj)-2<j<k + l,} (3.133) 

Therefore since f = S + u[t^^Sl"^"{gi, h), f is & linear combination of polynomials 

in 

{Sr{gi,gj):l<i,J<k + l, i ^ j ] (3.134) 

• 
Proof of lemma 3.6.3. The proof is based on the proof of lemma 3.5.11. The 

difference is how we construct the diagram D' from D. So assume that we have a 

diagram D for b (as in figure 3.3) satisfying the properties 
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1. There exists n{D) G N such that all the polynomials appearing in D are 
monomial multiples of elements of 5'"'(G) for all m > n{D). 

2. The maximum leading degree, u, of the diagram satisfies u> a 

U u > a then as before we let P„(D) C P{D) be the set of all the polynomials 

in D with leading degree u. Since u > a then there must be cancellation of the 

coefficients at level u, i.e. 

Y pe5/(5 '"(^)(G)) (3.135) 

But by lemma 3.6.6 YlpePu{D) P is a monomial linear combination of the polynomials 

in 

5/'(5'"(^)(G)) = {Sr{hi,h2)\huh2 G 5'"(°'(G')} (3.136) 

We can write this monomial Hnear combination as 

Y V = Y ^ h h (3.137) 
pePu(D) hen 

for some subset H C 5/'(<S'"(^'(G)) C 5 '(5 '"(°^(G)), where the mn are monomials. 

Then the diagram D' for b consisting of the polynomials 

P[D') = (P(D) - P„(D)) U {mhh\h G H} (3.138) 

will also satisfy properties 1 and 2 with n(D') = n{D) -I-1 and the maximum leading 

degree, u' of D' satisfying u > u'. 

As in the proof of lemma 3.5.11 we repeat this procedure to arrive at a diagram 

Di for b satisfying property 1 and with the maximum leading coefficient of A equal 

to a the maximum leading coefficient of b. Then turning to the trailing degree end 

of Di we construct new diagrams D'^ in a similar way to that described above until 

we arrive at a diagram Dt as in figure 3.5. 

The remainder of the proof now proceeds exactly as in lemma 3.5.11. • 

Theorem 3.6.7 Hence there exists an M G N such that for all m> M, 

GCDset/(5""(G)) is a Chatelet basis for g. 
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Proof: The proof is exactly the same as the proof of theorem 3.5.12 • 

So algorithm 2 also succeeds in constructing a Chatelet basis for Q and it is an 

implementable algorithm, in that if G is a finite set then all the iterates of the iS' 

map are also finite. However at any point during the running of the algorithm we 

have no way of telling whether a Chatelet basis has yet been reached. The third 

and final algorithm, described in the next section, addresses this. 

3.7 The Third Algorithm 

For the third algorithm we once again modify the map S'. The idea is that of all the 

extra polynomials created by the S' map only some of them will actually play a role 

in improving the approximation 5 to a Chatelet basis B. We start by formalising 

the division process described in theorem 3.3.6. 

Definition 3.7.1 Let B be a finite set of polynomials in A. Let / be a polynomial in 

A with lcoeff(/) = (j), ldeg(/) = a; and length(/) — n/. We say that / reduces to f 

with respect to B if there exists a polynomial b e B with lcoeff(6) = /?, ldeg(6) = 

and length(i) = such that rzj, < ny, <̂  = 9/3 for some ^ e Z and 

/ ' = / _ (3.139) 

We say that / is minimal with respect to B if it cannot be reduced, i.e. if / = 0 

or if there \s no h e B with l e n g t h < length(/) and lcoeff(6) dividing lcoefT(/). 

We use the notation / — > B f to indicate that / reduces to / ' with respect to B 

and / —>^ / ' to indicate that / ' is obtained from / by a chain of reductions with 

respect to B. 

Of course, if S is a Chatelet basis for the ideal Q then every polynomial f € G 

satisfies / —>g 0, see lemma 3.3.5. 

We can now give the definition of algorithm 3. First we establish that algorithm 

3 actually terminates after a finite number of steps. 

Lemma 3.7.2 Algorithm 3 terminates. 
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B 4- GCDset;(G) 

F^GUB 

S^SI{F)USI{F) 

while 5 / {} do 

choose any f E S 

S ^ S - { f } 

f —>^ / ' , where / ' is minimal w.r.t. B 

if / V 0 then 

5-( -GCDset , (BU{/ '}) 

s ^ s u {sr{b, / ) , s r i f , f ) , srib, m e s, / e F } u 

{ s r i b j ) , 5 r ( / ' , / ) , sr{bj')\b G s, / e F } 

F -e- F U S U { / ' } 

end if 

end while 
Algorithm 3: Calculate a Chatelet basis for Q — (G)^ 

Proof: It is not immediately apparent why it should stop since the algorithm 

terminates if and when the set 5 is empty. Now every run through the while loop 

results in a polynomial being subtracted from S. However, each time the if loop is 

activated polynomials are added to S. So if the if loop is activated often enough 

then the algorithm might never terminate. However we will show below, using the 

ascending chain condition for ideals in Z, that the if loop can only be activated a 

finite number of times. And therefore the set 5 can only increase in size a finite 

number of times, and after it has done so for the last time the while loop will simply 

repeat until 5 is empty and the algorithm terminates. 

Consider the set B during the running of the algorithm. Recall from (3.60) 

page 68, the definition of the numbers Cn{B), and consider the Z-ideals that they 

generate. These satisfy 

{ 0 } C ( c i ( S ) ) , C ( c 2 ( 5 ) ) , C . . . (3.140) 
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When the if loop executes the set B is recalculated to a new value which we denote 
as B'. Now B' = GCDseti(B U { / ' } ) which implies that 

{cn{B))^ C (c„(S'))z for all n (3.141) 

But / ' is a polynomial that is minimal with respect to B. That means that the 

inclusion is strict for n' — length(/') + 1 (and maybe for some other n > n') 

{cn'iB))^ C (c„,(5'))z (3.142) 

Let L be the maximum of the lengths of polynomials in G, i.e. 

L = max{length(5)|5 G G} (3.143) 

Now the / ' that are involved in the recalculation of B all satisfy length(/') < L. 

Hence every time the if loop executes at least one of the ideals {cniB)}^ with 

1 < n < L + 1 gets strictly larger, and by the ascending chain condition for ideals 

in Z the if loop executes only a finite number of times. • 

The relationship between the sets F and B in algorithm 3 is not as clear as in 

the previous algorithms. But the following is still true. 

Lemma 3.7.3 Before the first and after every execution of the while loop, B — 

GCDset,(F). 

Proof: Before the first execution of the while loop B = GCDset;(G) and F = GiJB. 

Let B = {6o,--.,^7-} where the polynomials are arranged in order of decreasing 

length and increasing leading coefl5cient. Let the lengths of these polynomials be 

length(6j) = n,, for 0 < i < r. Consider the numbers Cn{G) and c„(GUB) defined on 

page 68. From the definition of GCDset; we see that c„(G'U5) divides Cn{G) for all 

n > 1. Moreover the subsequence c„j.(G U B), j - 0,... ,s that satisfies properties 

1 and 2 on page 68 is given by nj = length(6j) for j = 1 , . . . , s = r. Hence when 

forming GCDset((G U B) with the /, of equation (3.61) we can take fi to be a 

polynomial of type GCDi{bi). So we can take = bi and hence B = GCDseti(F). 

So assume that before an execution of the while B = GCDseti(F). Let B* and 

F* denote the values of B and F after the execution of the while loop. Now if 
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the if loop did not execute then B* = B and F* = F so there is nothing to prove. 
However if the if loop does execute then 

B* = GCDseti{B U { / ' } ) (3.144) 

F* = FuB*U{f'} (3.145) 

where / ' is minimal with respect to B. By considering the numbers c „ ( F U { / ' } ) 

and Cn{B U { / ' } ) it is easy to see that 

B* = GCDseti{F[J{f'}) (3.146) 

and then applying the reasoning of the first paragraph of this proof estabhshes that 

B* = GCDset,(F U B* U { / ' } ) (3.147) 

Therefore after an execution of the while loop the statement B = GCDseti(F) 

remains true. • 

Now we can proceed to proving that algorithm 3 also succeeds in producing 

a Chatelet basis. Let Bterm and FteTm to denote the values of B and F upon 

termination of algorithm 3. 

Lemma 3.7.4 For each polynomial b in a, Chatelet basis for Q there exists a poly

nomial b' e Bterm having the same length and leading coefficient as b. 

Proof: Note that F C Fterm is always true throughout the running of the algorithm. 

Let b e Bhe one of the polynomials in a Chatelet basis for Q. Let D be the initial 

diagram constructed for b in the proof of lemma 3.5.11. That is is a diagram for 

b satisfying the following properties. 

1. Each polynomial p € P{D) is a monomial multiple of an element of Fterm-

2. The maximum leading degree u oi D satisfies u > a, where a is the leading 

degree of b. 

As in the proof of lemma 3.5.11 we form the set P„(D) of polynomials in D with 

leading degree u. Recall from (3.137) that 

p = Y^mhh (3.148) 
pePu{D) h€H 
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where H is a. subset of «S/(F(erm)- Now each element of S'i{Fterm) will have been 
an element of the set S at some point in the running of the algorithm and so will 
have been reduced with respect to B at some point, (the same polynomial may have 
been reduced and then added to S again at a later point). So for each h G H let a 
reduction calculated for it in the algorithm be 

h = Ye^b'l + h' (3.149) 

Note that the superscript h on the 6j is needed as the set B may have had different 

values when the various elements of H were reduced. 

For each h E H and 0 < i < m we can write the polynomial as 

^ = T.<3^^' (3.150) 

where e^j, af 6 Z and nf 6 N. 

So we can write 5^pgp^(£))P as 

E P= EEE '̂'̂ -̂ ''̂ "'̂ ' (3-151) 

which is an expression for Ylp^p^{D)P ^ ^ monomial linear combination of elements 

of FteTm- Now we can construct the next diagram D' for b. The polynomials P{D') 

in D are 

P{D')={P{D)-Pu{D))U 

{m^e^/'^'-^bllh e H , 0 < i < r \ 0 < j <n^]u { / ' } (3.152) 

Of course all these polynomials added to P{D) - P„(Z?) have leading degree 

strictly less than u. So the new diagram D' for b does indeed satisfy properties 1 

and 2 with the maximum leading degree, u', of D' satisfying u > u'. 

As before, we continue constructing new diagrams for b until we arrive at a 

diagram D/ satisfying property 1 and whose maximum leading degree is equal to a 

the leading degree of b. The diagram A will look something like that in figure 3.4 

on page 72. Then, focusing on the trailing degree end of Di we see that A satisfies 

properties 1 (from above) and 
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2'. The maximum leading degree of A is equal to a, the leading degree of b. 

3. The minimum trailing degree, u, of Di satisfies a — n> u. 

If a —n > u then we can construct a new diagram D[ for b using the technique above. 

This new diagram will also satisfy properties 1, 2' and 3 however the minimum 

trailing degree, u' of D[ will also satisfy u' > u. We continue in this way until 

we arrive at a diagram Dt for b satisfying property 1 and with maximum trailing 

degree and minimum trailing degree equal to the leading and trailing degree of b 

respectively. Then the argument at the end of lemma 3.5.11 is used to show that 

there is a polynomial b' € Bterm = GCDseti(FterT7i) such that b' has the same leading 

coeflScient and length as b. • 

Theorem 3.7.5 Bterm is a Chatelet basis for the ideal Q. 

Proof: By lemma 3.7.4 Bterm contains a Chatelet basis for Q and the argument in 

the proof of theorem 3.5.12 shows that Bterm is a Chatelet basis for ̂ . • 



Chapter 4 

A Conjecture on the Chatelet 

Bases of Alexander Ideals 

We know from [22] that a knot ideal T is characterised by the following two conditions 

1. T = I 

2. e(J) = Z 

where is the linear extension to A of the conjugation map i = and e is the 

augmentation map that evaluates a polynomial at 1. 

We might conjecture the following statement 

Conjecture. If an ideal ^ of A satisfies the two conditions above then Q has a 

Chatelet basis consisting of symmetric polynomials, i.e. Q has a Chatelet basis B 

for which each b EB satisfies 
b = i^a-"^ (4.1) 

where a is the leading degree of b and n the length of b. 

We have not been able to find a counter example to this among the Alexander 

ideals of prime knots of up to 14 crossings. As a step toward this conjecture we can 

prove the following result. 

Lemma 4.0.6 Let B = {bo,..., be a Chatelet basis for the ideal Q of A, with 

the polynomials arranged in order of decreasing length (i.e. bo is the longest and 

89 
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bm the shortest). If Q satisfies conditions 1 and 2 above then the polynomial 6„ is 
symmetric, i.e. it will satisfy 

bm = t"'--''"'K, (4.2) 

where and rim are the leading degree and lengths respectively of bm-

Proof: We will use the notation 

^'i=A,oi"^ + --- + A,n,i"'""' (4.3) 

for the polynomials hi, 0 < i < m. Now each /3j o is a strict multiple of A-i,o for 

each 1 <i <m. Let /3j_o = Pi - iA - i ,Oi I <i <m. 

By condition 1 we know that bm G Q. Hence by theorem 3.3.6 

—>^ 0 (4.4) 

But since length(6r„) = length(6xn) this means that 
^ = g ^ n „ - 2 a . ^ ^ (4.5) 

for some ? G Z, which implies that 

bm = q'^bm (4.6) 

Hence q'^ = 1 so q must equal 1 or —1, i.e. bm must be symmetric or anti-symmetric. 

Let us assume that q = - 1 so that bm — A consequence of this is that 

e{bm) = 0. We shall show that this is false which will prove the lemma. 

Now by condition 2, e(^) = Z. Since ;B is a basis for ^, e{g) = {e{B))^. So it 

is not true that e(6j) = 0 for 0 < i < m. Consider the polynomial <S/"'"(6o, ^i) S G-

This has length strictly less than no so reducing it with respect to B must lead to 

an equation 
m 

Sribo, bi) = pobo - = Y^Sik (4-7) 

for some polynomials G A . If e{bi) = 0 for each 1 < i < m, then from equation 

(4.7), €(6o) — 0 also. This cannot be so we conclude that it is not the case that 

e{bi) = 0 for each I < i < m. Then in the same way we consider the reduction of 

(61,62) giving 
m 

5r{bi,b2)=pA-t'^^-'^^b2 = (4.8) 
i=2 
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for some polynomials fi E A. From this we conclude that it is not true that e{bi) = 0 
for each 2 < i < m. Continuing in this way we can conclude that e{bm) 0 
contradicting the assumption made earlier. Hence the polynomial bm is symmetric. 



Chapter 5 

Some results on the Alexander 

ideals of prime knots 

5.1 Chatelet Bases for the Alexander Ideals 

The algorithms described in chapters 2 and 3 were used to calculate Chatelet bases 

for Alexander ideals of all prime knots of up to 14 crossings. These ideals are 

included on the CD-ROM forming part of appendix B. This was done using the 

computer packages Maple and Knotscape, see appendix B for more details. 

In appendix A we have reproduced the Alexander ideals for all prime knots of 

up to 12 crossings with length of the chain of Alexander ideals greater than or equal 

to 3, and the Alexander ideals for the 13 and 14 crossing prime knots with length of 

the chain of Alexander ideals equal to 3. For an explanation of the format of these 

tables we refer to the beginning of appendix B. 

5.2 Some Statistics and the Number of Distinct 

Ideals 

In table 5.1 we can see how many prime knots there are of crossing number up 

to 14 and how many have chains of Alexander ideals of length 1,2 or 3. The last 

column of the table shows for each crossing number the proportion of knots having 
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# o f # chain # chain # chain 

Crossing no. knots length 1 length 2 length 3 approx. proportions 

3 1 1 0 0 1.000 0.000 0.000 

4 1 1 0 0 1.000 0.000 0.000 

5 2 2 0 0 1.000 0.000 0.000 

6 3 3 0 0 1.000 0.000 0.000 

7 7 7 0 0 1.000 0.000 0.000 

8 21 20 1 0 0.952 0.048 0.000 

9 49 41 8 0 0.837 0.163 0.000 

10 165 148 17 0 0.897 0.103 0.000 

11 552 491 61 0 0.889 0.111 0.000 

12 2176 1896 273 7 0.871 0.125 0.003 

13 9988 8968 1001 19 0.898 0.100 0.001 

14 46972 41823 5032 117 0.890 0.107 0.002 

Table 5.1: The number of prime knots of various chain length. 

chain length 1,2 or 3. We could remark that these proportions seem to be roughly 

conserved as the crossing number increases. 

It is also interesting to see how many distinct ideals arise among the Alexander 

ideals of these knots. As mentioned in chapter 3 when we have Chatelet bases for 

two ideals we can decide whether the two ideals are the same or not. Doing this for 

the prime knots of up to 14 crossings yield the following numbers 

-k The are 20196 distinct Alexander polynomials, i.e. P' Alexander ideals. 

There are 155 distinct 2""̂  Alexander ideals. 

* There are 5 distinct 3'''̂  Alexander ideals, all of which also arise as 2"̂^ Alexan

der ideals. 

Interestingly all 30 of the principal 2"̂^ Alexander ideals and both of the two principal 

3'''' Alexander ideals appear as Alexander ideals. 
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In tables 5.2, 5.3 and 5.4 we give Chatelet bases for the 155 distinct ideals arising 
as the 2"*̂  Alexander ideals of prime knots of up to 14 crossings. 

Chatelet bases for the five ideals arising as the 3''"̂  Alexander ideals of prime 

knots of up to 14 crossings are [1], [3, t - 2], [2,t'^ -t + 1], [t"^ -t + l] and [5, t - A . 

5.2.1 Nakanishi Index 

The Nakanishi Index of an Alexander module is defined as the smallest n for which 

the module is presented by an n x n matrix. From the definition of Alexander ideals 

we see that the length of the chain of Alexander ideals is a lower bound on the 

Nakanishi index. In Kawauchi's book [21] there are presentation matrices given for 

the prime knots of up to 10 crossings for which the Nakanishi index is greater than 

1. These were take from Nakanishi's Masters thesis. However there is an omission 

from this table as the 42"*̂  alternating 10 crossing knot from Knotscape's table (= 

65**̂  alternating 10 crossing knot in Kawauchi's table) is not included in the list and 

has non-trivial second Alexander ideal, a Chatelet basis for it being {2,i^ -t + l}. 

So it's Nakanishi index must be > 2. 
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[1] [ * 2 - * + l ] [3 ,*-2] 

[7,^+1] [ * 2 - 3 * + l ] [5 ,*-4] 

[2,t^-t + l] [ 3 , * 2 - 2 ] [*̂  - 2*3 + 3*2 _ 2i + 1 

[t* - 3t^ + 3t^ -3t + l] [2,*4+<2 + l ] [11,*+1] 

[3,t'^-t + l] [5,*2 + 2 * - 4 ] [ 4 , * 2 - 3 * + l ] 

[9,3t + 3,t'^ - t + 4] [*̂  - 4*3 + 5*2 - 4* + 1] [15, *2 - 6* + 1] 

[9,3t-G,t'^ - t - 2 ] [3*2 -3t + 3,t^ + 1] [3,*3 + l] 

[13,t-12] [ 2 , * ^ - * 3 - * 2 - t + l] [7,*2 + 2<+l] 

[5, t^ + t^ -4t+ 1] [t* - 5*3 + 7*2 - 5* + 1] [9,* + l] 

[7,t'^+4t+l] [8,*2 + *4- l ] [*̂  - 4*3 + 7*2 - 4* + 1 

[4,t^-t + l] [3*2 - 7* + 3] [2*2 - 3* + 2] 

[2<2 - 5t + 2] [ 5 , * 2 + * - 4 ] [** - 2*3 + t2 - 2* + 1] 

[3, +t'^ - 2 t - 2] [3,*^ - * 3 - 2*2 + 2* + l] [3*2 - 5* + 3] 

[4*2 -4t + 4,t* - 3t^ + 4i - 3] [ l l , * 2 + 4 * - 1 0 ] [ 3 , * ^ - * 3 - * 2 - * + l ] 

[17, t + l ] [7,*2 + l] [ 5 , *^-4 ] 

[9,t'^ + 5t + l] [7, *2 - 6* - 6] [7 ,*2+3*-6] 

[ 5 , ^ 2 + 4 * - 4 ] [3, *̂  - 2*3 + * - 2] [l5,3* + 3,*2 + 4] 

[ 3 3 , 3 t - 3 0 , i 2 - 2 3 ] [8, *2 - 5* + 1] [19,*+1] 

[f^ - 3t^ + 5t'^ - 3i + 1] [5*2 - 5* + 5, *3 + 1] [ l 5 , 5 * - 1 0 , * 2 - 4 ] 

[ 1 5 , i - 1 4 ] [l4,2* + 2,*2 - * + 5] [13,*2 + 9*+ l] 

[6,2t + 2,t'^ -t^ -t"^ + t - 3 ] [8 ,*2 -3* + l] [13,*2 + 10* + 1] 

[I6,t^ + 5t + l] [21,3* + 3,*2 - 8 ] [l5,*2 + 2* + l] 

[3t^ - 3t + 3,t'^ -t^ +2t^ - t + 1] [4 ,2*2-2* + 2,*''-<2 + 2 * - l ] [27,3* + 3,*2 - < + 7] 

[5*2 - 15t + 5,t^ - 2*2 - 2* + 1] [ 9 , * 2 - 6 * + l] [23,*+l] 

[4,2*2 + 2* - 2, ** + *2 + 2* - 1] [ l l , * 2 + 3 * + l ] [35,5* - 30, *2 - * + 26] 

[2*2 - 6* + 2, ** - *2 - 18* + 7] [*̂  - 6*3 + 11*2 - 6* + 1] [*-* - 6*3 + 9*2 - 6* + 1] 

[ 9 , < 2 - 7 * - 8 ] [21,7* + 7,*2 + * - 6 ] [21,*+1] 

[3, *5 - *'' - 2*3 + *2 - i + 1] [6*2 - 9* + 6,2*3 - *2 - t + 2] [11, * 2 - 1 0 * - 1 0 ] 

Table 5.2: The ideals arising as 2"*̂  Alexander ideals of prime knots of up to 14 

crossings 
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[2i* - 5K3 + 7t^ -5t + 2] 

[I3,t^+ 7t-12] 

[9t^ -9t + 9,t^ + 1] 

9<2 - 27t + 9,3t^ - - 6f + 3, -

'4f -4t + A,t*+ 2t^ -t'^ + 2t+l] 

[if - 3t + 3,t* ~2t^ + t - 2] 

[3,t*-t^ + l] 

[n,t'^ + 8t + i] 

[W,t^ + t + l] 

[2t^ - + -6t + 2] 

[t* - 7t^ + IW^ - 7t + 1] 

[ 9 , f - 3 t - 8 ] 

[I0,2t + 2,t'^ - t - 7 ] 

[I0,2t-8,t* - t^ + t + 5] 

[ 2 5 , 5 t - 2 0 , i 2 - 3 t - 4 ] 

[3,t^ -2t^ - 2 f -2t + l] 

[U,t^ + 2t + l] 

[ll,t'^ +6t-10] 

[3f* - 3t^ + -3t + 3,t^ + 1 

[2*4 - 6*3 + 7*2 - 6* + 2] 

[ 6 , * 2 - 3 * + l ] 

[*« - 4*5 + 6*̂  - 7*3 + 6*2 - 4* + 1] 

[3, *5 - 2*4 + * + 1] 

[15,5* + 5 , *2 - 3 * + 11] 

[*4 - *3 + *2 - * + 1] 

[ l l , * 2 - 6 * + l ] 

[27,9*-18,*2 + 2*+19] 

Table 5.3: The ideals arising as 

crossings, contd. 

[2*4 - 7*3 + 9*2 - 7* + 2] 

[3,*^ + l] 

[ l 3 , * 2 - 7 * - 1 2 ] 

*3 + 5*2 - 28* + 10] [33,11* - 22, *2 - 8* - 2l] 

[ 5*2 -5* + 5,*^-4*3 + * - 4 ] 

[27 ,*- 26] 

[27,9*-18,*2 + 5* + 10] 

[14 ,*2-13*+1] 

[ l l , *2 + 7*-10] 

[2*4 - 4*3 + 5*2 - 4* + 2] 

[9*2 - 9* + 9,*^ - 4*3 + 5*2 - 4*+ 1] 

[8*2 - 8* + 8, *•• + 4*3 + 5*2 - 4* + 9] 

[25 ,*- 24] 

[2*4 - 7*3 + 11*2 - 7* + 2j 

[17, *2 + *- |- l] 

[17 ,*2-13*+1] 

[6,2* + 2 , * 2 + * - 3 ] 

[*6 - 2*5 + 4*4 - 5*3 + 4*2 - 2* + 1] 

*« - 2*5 + 3*̂  - 3*3 + 3*2 - 2* + 1] 

[35,7* + 7, *2 + * - 20] 

[7*2 - 7* + 7, *3 + 1] 

[*6 - 3*5 + 4*4 - 5*3 + 4*2 - 3* + 1] 

[*« - 3*5 + 5** - 5*3 + 5*2 - 3* + 1] 

[ 1 9 , * 2 - 1 5 * - 1 8 ] 

[ 4 , * 4 - * 3 + * 2 - * + l] 

[t' - *2 + 1] 

[ l5 ,3*-12 ,*2 + 2*-|-l] 

2"̂  Alexander ideals of prime knots of up to 14 



5.3. Comparison with the Jones and other polynomials 97 

[17, *2 + 2* + 1] [9,3* + 3, ** - *3 - *2 + 2* - 8] 

[12, *2 - 3* + 1] [10, <2 - 5* + 1] 

[26,*2 + 3* + l ] [17,*2 + 11* + 1] 

[ l 9 , * 2 - 5 * + l ] [26,2*- 24,*2 - * - 15] 

[41, *2 + 30* + 1] [6*2 - 6* + 6, *4 - 4*3 + 5*2 - 4* + l] 

[76,4* - 72, *2 - 3* - 23] [2*2 - 2* + 2, *4 - *2 + 2* - l ] 

[8,2*2 + 2* - 6, ** - *2 - 2* + 7] [27,3* - 24, *2 + 2* + 19] 

[25,5* - 20, *2 + 2* + 11] [22,2* - 20, *4 + *3 _ ^2 _ ^ ^ H j 

[55,5*- 50,*2 - * - 24] 

Table 5.4: The ideals arising as 2"*̂  Alexander ideals of prime knots of up to 14 

crossings, contd. 

5.3 Comparison with the Jones and other poly

nomials 

The well known invariant of knots and links, the Jones polynomial was found by 

Jones in [15]. It has the following characterisation in terms of so called skein relations 

found by Kauffman, see [20]. 

Proposition 5.3.1 The Jones polynomial is characterised as being the unique func

tion on the collection of oriented links, taking values in Z[i~5,i5] satisfying the 

conditions below. Let O" denote the link diagram of n unlinked unknotted compo

nents. 

1. y(0") = ( - r ^ - f ^ ) " 

2. If the three links L+,L~, LQ have diagrams that are identical outside of a small 

region, in which they appear as shown in figure 5.1 then 

r V ( L + ) - tv{L_) + (r^ - t'^)v{Lo) = 0. (5.1) 

This allows the calculation of the Jones polynomial of a knot from a diagram, one 

decomposes the knot diagram by altering the crossings as in figure 5.1 and keeping 
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X X X 
+ - 0 

Figure 5.1: Defining the Jones polynomial. 

track of the linear combinations from (5.1) until one reaches diagrams of trivial 

links. In fact it can be shown that the Jones polynomial of a knot is an element 

of A. The discovery of the Jones polynomial initiated lots of developments in knot 

theory and others subsequently found other related multi-variable polynomials such 

as the Kauffman and HOMFLY polynomials, also definable by skein relations. The 

Jones polynomial would be regarded as more powerful than the first Alexander 

polynomial but it is not strictly so. Both the Jones and Alexander polynomial 

are strictly weaker than the HOMFLY, both being obtainable from the HOMFLY 

polynomial by certain substitutions of the variables. We should remark as well that 

the Alexander polynomial also satisfies a skein relation. 

Although these invariants are very powerful, using the skein relation defining 

them it is possible to construct families of knots that are indistinguishable by them, 

see for instance [18]. 

Also the operation of knot mutation can generate inequivalent knots with the 

same polynomial invariants. But the higher Alexander ideals can distinguish some 

of these knots as we will see in the next section. 

5.3.1 Knot mutation 

Mutation is a local operation on knots first introduced by J.H. Conway in [7]. It 

is well known that mutation preserves the Alexander polynomial of a knot and the 

Jones, HOMFLY and Kauffman polynomials. 

Definition 5.3.1 Let d C S'^ he a diagram for a knot k and let B C he a. closed 

disk intersecting k in four points as shown in figure 5.2 so that rotations of 180° 

about the vertical, horizontal or perpendicular axis of the page preserve set-wise 

these four points. We can form a new knot diagram d' by rotating the disk B by 

180° in one of the three senses mentioned. We orient d' so that the orientation on 
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C 
D C 

a 

Figure 5.2: The disk B and the three rotations of i t . 

Figure 5.3: The mutating 3-ball. 

the part of d' in S'^ — B agrees with that of d. A knot k' with diagram d' is called a 

mutant of k. A pair of knots related by a finite sequence of mutations will be said 

to be related by mutation. 

We have defined mutation in terms of the rotation of a disk intersecting a knot 

diagram. Equivalently i t can be defined in terms of a 3-ball B intersecting the knot 

in S^, and we shall use this approach below. 

We now show how mutation can affect the Alexander module of a knot. Let k 

and k' be a pair of mutant knots. We can choose a Seifert surface F for k so that 

it intersects the mutating 3-ball B as shown in figure 5.3. Now Hi{F) has a basis 

{ a i , . . . ,ar,bo,bi,..., b,} where the a, are represented by cycles in F — (Fn B), the 

bi, for i > 0 by cycles in F n B and bo is represented by a cycle in F that goes 

through B. 

An important point is that we can assume that the segment of k entering B 

at p emerges at r or s. Since is a knot this must be so for either B or the 

complementary ball — B. And any mutation of k done by rotating B can be 

realised by rotating — B (modulo orientation which does not affect the Alexander 

invariants). So the cycle representing bo can be chosen to be disjoint from the bi, 
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for z > 0 by having i t stick close to the segment of A; in 5 that goes through p. Let 
Pi be cycles representing 6,, 0 < ? < s, and recall equation (1.1) relating the linking 
and intersection numbers 

Link(/?o+, A ) = Link(^+, A ) + Int(^o, A ) (5-2) 

for all 0 < i < s. But since the /3j can be chosen so that /?o is disjoint from 

Int(/3o, A ) = 0 for all 0 < i < s. Hence 

(l>{b^M) = 4>{biMioii>Q (5.3) 

So k wil l have a Seifert matrix C 

( A u 0 ^ 

T T 
V m w 

(5.4) 

y 0 w B J 
where A is the r x r matrix representing the Seifert form (f) onV — B with respect 

to the (cj), 5 the s x s matrix representing (})onVr\B with respect to the {hi), 

u, V, w are column vectors and m = (j){bQ, 6o). 

Of the three mutations p, a and r we can identify one of them as the positive 

mutation and the other two as negative mutations. 

Definition 5.3.2 A mutation given by a rotation // is positive i f the orientation on 

the the part of the Seifert surface /x(F) inside B is the same as that on the part 

of the original Seifert surface F m B. A mutation given by ji is negative i f this 

orientation is reversed. 

We wil l now show that a positive mutation preserves the Alexander module, and 

hence the Alexander ideals and polynomials. However this is not necessarily true for 

negative mutations and we shall present some examples later in this section. This 

argument comes from [8]. 

The mutant knot k' wil l have a Seifert surface F' which is one of ( p ( F ) , a ( F ) , T ( F ) ) 

where p{F) etc. denotes the surface obtained by cutting out Ff\B from F and glu

ing i t back after the appropriate rotation, the orientation on this new surface coming 

from the orientation on k'. I t is clear that { a i , . . . , â , 6o, ^ i , . . . , 6'J will be a basis 
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© ( 0 

Figure 5.4: Mutation and the Jones polynomial. 

for H i ( F ' ) , where 6- is the equivalence class of the image of the cycle Pi under the 

rotation. 

I f k' is a positive mutant of k then k' will have Seifert matrix C given by 

\ 
(5.5) 

I 

/ 
with respect to the basis { a i , . . . , â , b'^, b[,..., b'^]. But by changing the basis slightly 

to { a i , . . . , ttr, 6o, — 6 i , . . . , —b[} we see that k' also has C as a Seifert matrix and 

hence the Alexander module of k' is the same as that of k. 

For the other two mutations, k' will have Seifert matrix C given by 

/ A n , q \ 

( a u 0 
T 

V m T 
—w 

—w B 

a 

A u 

m w 

0 w B^ 

(5.6) 

with respect to the basis { a i , 

tC - C'^ = 

. ,ar,b'Q,b[,... ,b'g}. So k' will have Alexander matrix 

(i A - AT f n , - n y 0 ^ tA- A^ tu-v 

tv^ -u^ tm-m tuF - uF 

0 tw-w tB'^ -B V 

(5.7) 

and in general this does not present the same A-module as i C - C^. 

However in [8] i t is shown by a closer examination of the presentation matrices 

for the Alexander modules that all types of mutation do preserve the first Alexander 

polynomial. 

Mutation also preserves the Jones polynomial. Using proposition 5.3.1 one can 

express the Jones polynomial of a knot as a A-linear combination of Jones poly

nomials of links that outside of B are identical with k and inside of B look like one 

of the three in figure 5.4. Now note that each of these is invariant under mutation 

so when the Jones polynomial of the mutant of k is calculated one gets the same 
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answer. Using the skein relation defining the Kauffman and HOMFLY polynomials 
one can show that these too are unchanged by mutation. 

Of course recognising mutants is a non-trivial matter unless one is presented 

with their actual mutated diagrams. However we adopted the strategy that if two 

inequivalent knots have the same Jones, HOMFLY and Kauffman polynomials then 

there is a good chance that they are related by mutation. Hoste and Thistlethwaite's 

program Knotscape also contains tables of these polynomials for the prime knots of 

up to 14 crossings. By searching these and cross referencing the results with our 

tables of Chatelet bases for the higher Alexander ideals we found the following three 

pairs of knots related by a negative mutation. Each pair have the same Jones, 

Kauffman and HOMFLY polynomial but they are distinguished by their Alexander 

modules as can be seen from the Chatelet bases for their Alexander ideals. 

The notations and refer to the m"" alternating n crossing knot and the 

m"^ non-alternating n crossing knot in the Knotscape table. The knot diagrams in 

the figures 5.5, 5.6 and 5.7 in which the mutations of the pairs can be easily seen, 

were produced using Knotscape. Pairs 1 and 2 are pairs of mutant knots while pair 

3 are related by a sequence of two mutations. 

Mutant pair 1. Figure 5.5 shows 182720 on the left and 185727 ''̂ e right. 

Chatelet bases for the Alexander ideals are 

2i (182720) { 4 t « - 2it^ + hit" - 73t^ + 57̂ 2 -2At + A] (5.8) 

22(132720) {9,3t -6,t'^-t-2} (5.9) 

23(132720) {3,t- 2} (5.10) 

21(182727) { 4 t « - 2At^ + 57*'* - 78i^ + blt^ -2At + A] (5.11) 

22(132727) : {2^2 - U + 2] (5.12) 

22(182727) •.{3,t- 2} (5.18) 
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Mutant pair 2. Figure 5.6 shows 133937 the left and I32955 the right. 
Chatelet bases for the Alexander ideals are 

2^1(132937) : {2*^ - + 41^" - 55i^ + 41t'^ - 15t + 2} (5.14) 

12(13^9^) : {15, 5i - 10, t^ - 4 } (5.15) 

2^1(132955) : {2t^ - 15i^ + - 5bt^ + 41«^ - 15t + 2} (5.16) 

^2(13^9^55) : { 3 , t + 1} (5.17) 

(5.18) 

Mutant pair 3. Figure 5.7 shows 14Jo405 the left and l^iono on the right. 

Chatelet bases for the Alexander ideals are 

Xi(14^405) : {2t^ - 15^̂  + - 9lt^ + 109i* - 91i^ + 49i^ - 15t + 2} (5.19) 

^2(14?0405):{3,i + l } (5.20) 

2^i(14mio) : {2^^ - 15i^ + 49i*' - 91i^ + mt^ - dlt^ + 49^^ - 15i + 2} (5.21) 

2'2(14?o4io) : { 3 3 , 1 1 ^ - 2 2 , ^ 2 - 8 ^ - 2 1 } (5.22) 

(5.23) 

We remark that in all of these examples the Alexander polynomials of the higher 

ideals would not have detected the inequivalences of the knots. There are many more 

pairs of knots that the higher Alexander ideals distinguish but the Jones, Kauffman 

and HOMFLY polynomials do not. A closer investigation of their diagrams as 

drawn by Knotscape might show them to be mutant pairs or related by a sequence 

of mutations. 
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Figure 5.5: Pair 1: 18^720 and 13^727. 

Figure 5.6: Pair 2: 13^^^^ and 13^1^^. 

Figure 5.7: Pair 8: 14^0405 and 14?o4io-
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Appendix A 

Table of Alexander Ideals 

The entries in these tables have the same form as the entries in the . t x t files as 

explained in appendix B. However to save space we have represented polynomials 

by their coefficient lists and ommited the final trivial ideal [1] from each line. So for 

example the second line in the table below represents the 18"̂  alternating 9 crossing 

knot which has a chain of Alexander ideals of length 2. The first being generated by 

the Alexander polynomial 2t^ — llt^ + 19i^ — lit + 2 and whose second Alexander 

ideal has a Chatelet basis {3, t - 2}. 

A . l Prime knots up to 12 crossings with chain 
length 2 and 3. 

[8,0,12,2, [[1, -5,10, -13,10, -5 ,1] ] , [[1, -1,1]]] 
[9,0,18,2, [[2,-11,19,-11,2]], [[3], [1,-2]]] 
[9,0,29,2, [[3,-12,19,-12,3]], [[7], [1,1]]] 
[9,0,37,2, [[1, -7,18, -23,18, -7 ,1] ] , [[1, -3,1]]] 
[9,0,40,2, [[7,-13,7]], [[3], [1,-2]]] 
[9,1,5,2, [[2,-5,2]] , [[3], [1,-2]]] 
[9,1,6,2, [ [1 ,-7,11,-7,1]] , [[3], [1,-2]]] 
[9,1,7,2, [[1, -4 ,6 , -5 ,6 , -4 ,1 ] ] , [[3], [1,1]]] 
[9,1,8,2, [ [3 , -6 ,7 , -6 ,3] ] , [[5], [1,-4]]] 
[10,0,27,2, [[1, -7,19, -27,19, -7 ,1 ] ] , [[3], [1, -2]]] 
[10,0,42,2, [[2, -7,14, -17,14, -7 ,2] ] , [[2], [1, -1,1]]] 
[10,0,51,2, [[5, -14,19, -14,5]], [[2], [1, -1,1]]] 
[10,0,62,2, [[4, -16,23, -16,4]], [[3], [1, -2]]] 
[10,0,89,2, [[2, -11,24, -31,24, -11,2]], [[3], [1,0, -2]]] 
[10,0,94,2, [[1, -9,26, -37,26, -9 ,1] ] , [[2], [1, -1,1]]] 
[10,0,96,2, [[2, -9,18, -23,18, -9 ,2 ] ] , [[1, -1,1]]] 
[10,0,103,2, [[1, -4,10,-16,19,-16,10, -4 ,1] ] , [[1, -2,3, -2,1]]] 
[10,0,105,2, [[2, -8,17, -21,17, -8 ,2] ] , [[5], [1,1]]] 
[10,0,121,2, [[1, -6,15, -24,29, -24,15, -6 ,1] ] , [[1, -3 ,3, -3,1]]] 
[10,0,123,2, [[2, -5 ,6 , -7,6, -5 ,2 ] ] , [[2], [1, -1,1]]] 
[10,1,28,2, [[3, -10,13, -10,3]], [[2], [1, -1,1]]] 
[10,1,29,2, [ [1 , -2 ,3 , -2 ,1] ] , [[2], [1,-1,1]]] 

108 
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[10 
[10 
[10 
[10 

30,2, 
35,2, 
39,2, 
42,2, 
43,2, 
44,2, 
47,2, 
57,2, 
87,2, 
97,2, 
107,2 
123 
132 
133 
135 
143: 
155 
157 
165 
173 
181, 
196 
231 
239 
249 
263 
277, 
291 
293 
297 
314 
317 
321 
322 
329 
332 
340 
347 
352 
354 
366 
49,2, 
71,2, 
72,2, 
73,2, 
74,2, 
75,2, 
76,2, 
77,2, 
78,2, 
81,2, 
83,2, 
90,2, 
91,2, 
126,2 
133,2 

•2 , -3 ,2 , -1 ,2 , -3 ,2]] , [[2], [1,-1,1]]] 
1,-5,12,-15,12,-5,1]] , [[2], [1,1,-1]]] 
1 , -3 ,5 , -7 ,5 , -3 ,1 ] ] , [[5], [1,1]]] 
[1,-6,11,-13,11,-6,1]],[[7],[1,1]]] 
[4, -15,30, -37,30, -15,4]], [[1, -1,1]]] 
1, -5,14, -24,29, -24,14, -5 ,1] ] , [[1, -1,1]]] 
[1, -5,14, -24,29, -24,14, -5 ,1]] , [[1, -1,1]]] 
[1, -5,12, -20,23, -20,12, -5 ,1] ] , [[1, -1,1]]] 
[2, -11,28, -39,28, -11,2]], [[2] , [1,1, -1]]] 
[[2,-9,16,-17,16,-9,2E, [[2], [1,-1,1]]] 
[[2,-11,26,-33,26,-11,2E, [[2], [1,-1,1]]] 
[[9,-29,41,-29,9]], [[3], [1,-2]]] 
[[2, -13,32, -41,32, -13,2]], [[2] , [1,1, -1]]] 
[[5,-20,29,-20,5]], [[2], [1 , -1 , -1]] ] 
[[2,-13,36,-51,36,-13,2]], [[3], [1,1]]] 
[[2, -11,20, -23,20, -11,2]], [[2], [1, -1,1]]] 
[[3,-16,40,-53,40,-16,3]], [[3], [1,-2]]] 
[[1, -6,16, -28,33, -28,16, -6 ,1] ] , [[2], [1,0,1,0,1]]] 
[[2,-9,18,-23,18,-9,2]], [[2], [1,-1,1]]] 
[[2,-12,32,-43,32,-12,2]], [[3], [1,-2]]] 
[[2,-11,23,-27,23,-11,2]], [[3], [1,1]]] 
[[1, -6,17, -31,37, -31,17, -6 ,1] ] , [[7], [1, -6]]] 
[[1, -5,12, -20,23, -20,12, -5 ,1] ] , [[1, -1,1]]] 
[[1, -7,22, -42,51, -42,22, - 7 , I j , [[3] ,[1,0,1]]] 
[[2,-11,27,-37,27,-11,2]], [[3], [1,-2]]] 
[[2, -6 ,11 , -14,15, -14,11, -6 ,2] ] , [[1, -1,1]]] 
[[1, -6,17, -28,31, -28,17, -6 ,1] ] , [[3], [1,1]]] 
[[5,-14,20,-21,20,-14,5]], [[3], [1,-2]]] 
[[1, -5,12, -15,15, -15,12, -5 ,1] ] , [[3], [1, -2]]] 
[[2,-15,42,-57,42,-15,2]], [[1,-3,1]]] 
[[1, -7 ,21 , -36,41, -36,21, -7 ,1] ] , [[3], [1,1]]] 
[[3, -14,28, -35,28, -14,3]], [[5], [1, -4]]] 
[[3,-15,27,-31,27,-15,3]], [[11], [1,1]]] 
[[2, -13,36, -49,36, -13,2]], [[2], [1, -1,1]]] 
[[11,-36,51,-36,11]], [[2], [1,-1,1]]] 
[[1, -7,22, -40,49, -40,22, -7 ,1] ] , [[1, -1,1]]] 
[[4,-11,18,-21,18,-11,4]], [[2], [1,-1,1]]] 
[[2, -11,26, -33,26, -11,2]], [[2], [1, -1,1]]] 
[[2,-13,32,-41,32,-13,2E, [[3], [1,-1,1]]] 
[[9,-26,35,-26,9]], [[2], [1,-1,1]]] 
[[8,-20,25,-20,8]], [[3], [1,-2]]] 

[1,0,-3,0,1]], [[2], [1,-1,1]]] 
•[2,-7,14,-17,14,-7,2]], [[1,-1,1]]] 
[2,-9,18,-23,18,-9,2]] , [[1,-1,1]]] 
1 , -2 ,3 , -2 ,1 ] ] , [[1,-1,1]]] 
1 , -2 ,3 , -2 ,1] ] , [[1,-1,1]]] 

•[2,-7,14,-17,14,-7,2]], [[1,-1,1]]] 
•[1,-3,6,-8,9, -8 ,6 , -3 ,1 ] ] , [[1,-1,1]]] 
[ [1 , -1 , -2 ,8 , -11 ,8 , -2 , -1 ,1] ] , [ [1 , -1 ,1] ] ] 
: [1 , -3 ,6 , -8 ,9 , -8 ,6 , -3 ,1] ] , [[1,-1,1]]] 
[1 , -3 ,4 , -4 ,3 , -4 ,4 , -3 ,1 ] ] , [[1,-1,1]]] 
[3,-12,19,-12,3]], [[2], [1 , -1 , -1]] ] 
[ [2 , -7 ,8 , -7 ,8 , -7 ,2 ] ] , [[2], [1,-1,1]]] 
[1 , -8 ,13,-8 ,1]] , [[2], [1,-1,1]]] 
• [ [3 , -6 ,4 , -1 ,4 , -6 ,3] ] , [[3], [1,1]]] 
[ [ 1 , - 4 , 6 , - 2 , - 1 , - 2 , 6 , - 4 , 1 ] ] , [[5], [1,-4]]] 
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[11 1, 
[11 1, 
[11 1, 
[11 1, 
[11, 1, 
[11, 1, 
[11, 1, 
[11, 1, 
[11, 1, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12 0, 
[12 0, 
[12 0, 
[12, 0, 
[12 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 
[12 0, 

148,2, [[1, -5,10, -14,15, -14,10, -5 ,1] ] , [[5] ,[1,2, -4]]] 
157,2, [[1, -6,15, -21,15, -6 ,1] ] , [[3] ,[1,0, -2]]] 
162, 2, [[3,-14,21,-14,3]], [[2], [1,-1,1]]] 
164,2, [[1, -5,10, -13,10, -5 ,1] ] , [[1, -1,1]]] 
165,2, [[1, -7,20, -29,20, -7 ,1] ] , [[2], [1, -1,1]]] 
167,2, [[1, -5,15, -21,15, -5 ,1] ] , [[3], [1, -2]]] 
175,2, [[2, -9,14, -15,14, -9 ,2] ] , [[2], [1, - 1 , -1]]] 
183,2, [[1,1,-6,9,-6,1,1]] , [[4], [1,-3,1]]] 
185,2, [[2, -11,24, -31,24, -11,2]], [[3], [1,0,1]]] 
29,2, [[1, -7,24, -48,59, -48,24, -7 ,1] ] , [[2], [1, - 1 , -1]]] 
30,2, [[1, -7,22, -40,49, -40,22, -7 ,1] ] , [[2], [1, -1,1]]] 
33,2, [[1, -7,22, -40,49, -40,22, -7 ,1] ] , [[2], [1, -1,1]]] 
36,2, [[2, 
100 2, [[3, -21,53, -71,53, -21,3]], [[5], [1,-4]]] 
113, 2, P , -7 ,24 , --48,59,--48,24,-7, I B , [[2], [1,-1,1]]] 
114 2, [[4, -21,46, -59,46, -21,4B, [[2], [1,-1,1]]] 
116, 2, [[1, - 7 ,20 , --36,43,--36,20,-7, I B , [[2], [1,1,-1]]] 
117, 2, [[4, -21,46, -59,46, -21,4B, [[2], [1,1,-1]]] 
119, 2, [[1, - 7 ,22 , --40,49,--40,22,-7, I B , [[1,-1,1]]] 
122, 2, [[1> -7 ,20 , -•36,43,--36,20,-7, I B , [[2], [1,-1,1]]] 
157, 2, [[1, - 7 , 22,--40,49,--40,22,-7, I B , [[2], [1,-1,1]]] 
164, 2, [[1, - 7 ,20 , --36,43,--36,20,-7, I B , [[1,-1,1]]] 
166, 2, [[1, - 7 ,20 , --36,43,--36,20,-7, I B , [[1,-1,1]]] 
167, 2, [[2, -8,19, --30,35,--30,19, - 8 , 2 B , [[1,-1,1]]] 
177, 2, [[2, -15,41, -55,41, -15,2B, [[3], [1,1]]] 
182, 2, [[1, - 7 ,20 , --36,43,--36,20,-7, I B , [[2], [1,-1,1]]] 
195 2, [[1> -7 ,18 , - -28,33,--28,18,-7, I B , [[2], [1 , -1 , -1]]] 
215 2, [[1- -7 ,22 , --42,51,- -42,22,-7, I B , [[3], [1,0,1]]] 
216 2, [[1, - 7 ,18 , - -24,25,--24,18,-7, I B , [[3], [1,0,-2]]] 
218, 2, [[2, -15,42, -57,42, -15,2n, [[2], [1,1,-1]]] 
244 2, [[5, -24,56, -73,56, -24,5B, [[3], [1,-2]]] 
245 2, [[1> -7 ,24 , --49,63,--49,24,-7, I B , [[3], [1,-2]]] 
248 2, [[2, -13,34, -47,34, -13 , 2B, [[2], [1 , -1 , -1]]] 
249 2, [[2, -13,36, -49,36, -13 , 2B, [[2], [1,-1,1]]] 
253 2, [[4, -19,36, -43,36, -19,4B, [[2], [1,-1,1]]] 
265 2, [[1, -8 ,30 , --66,87,--66,30,-8, I B , [[3], [1,-2]]] 
270 2, [[6, -25,37, -25,6B, [[3], [1,1]]] 
279 2, [[2, -15,40, -55,40, -15 ,2B, [[2], [1 , -1 , -1]]] 
291 2, [[4, -17,34, -43,34, -17,4B, [[2], [1,-1,1]]] 
295 2, [[6, -23,46, -57,46, -23,6B, [[1,-1,1]]] 
297 2, [[2, -8 ,19 , --30,35,--30,19, - 8 , 2 B , [[1,-1,1]]] 
298 2, [[1, -7 ,20 , --36,43,--36,20,-7, I B , [[3], [1,-1,1]]] 
311 2, [[5, -23,42, -49,42, -23,5B, [[3], [1,1]]] 
312 2, [[9> -40,61, -40,9]], [[2], [1,-1,1]]] 
327 2, [[4, -18,40, -51,40, -18,4B, [[5], [1,1]]] 
332 2, [[2, -14,41, -57,41, - 14 , 2B, [[3], [1,-2]]] 
347 2, [[4, -23,54, -69,54, -23,4B, [[2], [1,-1,1]]] 
348 2, [[2, -17,54, -79,54, -17 , 2B, [[1,-3,1]]] 
376 2, [[4, -15,30, -37,30, -15,4B, [[2], [1,-1,1]]] 
381 2, [[3, -17,36, -43,36, -17,3B, [[3], [1,0,1]]] 
386 2, [[1: -8 ,25 , --39,43,--39,25,-8, I B , [[3], [1,-2]]] 
396 2, [[1, -7 ,22 , --40,49,--40,22,-7, I B , [[9], [3,3], [1,-1,4]]] 
408 2, [[5, -29,66, -85,66, -29,5B, [[3], [1,0,1]]] 
413 2, [[1> -8 ,29 , --62,79,--62,29,-8, I B , [[3], [1,1]]] 
427 2, [[1. -8 ,26 , --48,59,--48,26,-8, I B , [[1,-4,5,-4,1]]] 
429 2, [[4, -19,42, -53,42, -19,4B, [[2], [1,-1,1]]] 
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[12 0 433 2, [[3, 
[12 0 435 2, P, 
[12 0 444 2, [[2, 
[12 0 448 2, [[5, 
[12 0 465 2, [[1, 
[12 0 466 2, [[1, 
[12 0 475 2, [[1, 
[12 0 481 2, [[2, 
[12 0 493, 2, [[1, 
[12 0 494 2, [[2, 
[12 0 503 2, [[1, 
[12 0 554, 3, [[2, 
[12 0 561 2, [[1, 
[12 0 563 2, [[4, 
[12 0 569, 2, [[1> 
[12 0 574, 2, [[3, 
[12 0 576 2, [[1, 
[12 0 594, 2, [[3, 
[12 0 615, 2, [[7, 
[12 0 634 2, [[4, 
[12 0 647 2, [[3, 
[12 0 664, 2, [[1, 
[12 0 679, 2, [[7, 
[12 0 683, 2, [[1, 
[12 0 692, 2, [[2, 
[12 0 693, 2, [[!> 
[12 0 694, 2, [[2, 
[12 0 701, 2, [[2, 
[12 0 703, 2, [[1, 
[12 0 712, 2, [[1, 
[12 0 725, 2, [[4, 
[12 0 742, 2, [[2, 
[12 0 750, 3, [[8, 
[12 0 769, 2, [[2, 
[12 0 780, 2, [[5, 
[12 0 787, 2, [[8, 
[12, 0 801, 2, [[2, 
[12 0 806, 2, [[2, 
[12, 0 808, 2, P, 
[12, 0 810, 2, [[4, 
[12, 0, 868, 2, [[1, 
[12 0 873, 2, [[5, 
[12 0 886, 2, [[1, 
[12 0 895, 2, [[2, 
[12 0 904, 2, P, 
[12 0 905, 2, [[4, 
[12 0 906, 2, [[1, 
[12 0 907, 2, [[2, 
[12 0 921 2, [[2, 
[12 0 941 2, [[2, 
[12 0 949 2, [[2, 
[12 0 960, 2, [[4, 
[12 0 970 2, [[2, 
[12 0 973 2, [[8, 
[12 0 975, 2, [[4, 
[12 0 987 2, [[2, 

-19,44, -57,44, -19,3]], [[3], [1, -1,1]]] 
-8,26, -48,59, -48,26, -8 ,1] ] , [[2, - 2 ,2 ] , [1,0, -1 ,2 , -1]]] 
-13,30, -39,30, -13,2]\ , [[2], [1, -1,1]]] 
-26,43,-26,5]], [[2], [1,-1,1]]] 
- 8 , 26, -52,67, -52,26, -8 ,1] ] , [[2], [1,0, -1,0,1]]] 
-8,26, -44,51, -44,26, -8 ,1] ] , [[2] ,[1,0,1,0,1]]] 
-8,28, -56,69, -56,28, -8 ,1] ] , [[2], [1,0,1,0, -1]]] 
-13,28,-33,28,-13,2]], [[2], [1,-1,1]]] 
-7,22, -36,39, -36,22, - 7 , I j , [[3], [1, -2]]] 
-15,48,-71,48,-15,2]], [[2], [1,-1,1]]] 
-7,19, -27,27, -27,19, -7 ,1] ] , [[3], [1, -2]]] 
-15,45, -65,45, -15,2]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-7,25, -49,61, -49,25, -7 ,1] ] , [[5], [1,1]]] 
-16,25,-27,25,-16,4]], [[3], [1,-2]]] 
-7 ,21 , -31,33, -31,21, -7 ,1] ] , [[3], [1, -2]]] 
-9,16, -20,21, -20,16, -9 ,3] ] , [[1, -1,1]]] 
-3 ,6 , -8 ,9 , -9,9, -8,6, -3 ,1] ] , [[1, -1,1]]] 
-11,22,-27,22,-11,3]], [[3], [1,-1,1]]] 
-27,54, -67,54, -27,7]], [[3, -3,3] ,[1,0,0,1]]] 
-15,30, -37,30, -15,4]], [[3] ,[1,0,0,1]]] 
-10,20, -28,31, -28,20, -10,3]], [[2, - 2 ,2 ] , [1,0, -1 ,2 , -1]]] 
-8,22, -34,39, -34,22, -8 ,1] ] , [[13], [1, -12]]] 
-20,27,-20,7]], [[3], [1,-1,1]]] 
-7,16, -22,25, -22,16, -7 ,1] ] , [[3], [1, -1,1]]] 
-8,19, -30,35, -30,19, -8 ,2] ] , [[1, -1,1]]] 
-7,18, -28,33, -28,18, -7 ,1] ] , [[2], [1, -1,1]]] 
-10,21, -30,33, -30,21, -10,2]], [[2], [1, - 1 , -1 ] ] ] 
-10,27, -46,55, -46,27, -10,2]], [[1, -1,1]]] 
-9,32, -64, 79, -64,32, -9 ,1] ] , [[2], [1, -1,1]]] 
-9,34, -70,87, -70,34, -9 ,1] ] , [[3], [1,2, -2]]] 
-16,25,-27,25,-16,4]], [[3], [1,-2]]] 
-8,17, -26,29, -26,17, -8 ,2] ] , [[1, -1,1]]] 
-34,51, -34,8]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-16,45,-63,45,-16,2]], [[3], [1,-2]]] 
-24,51,-65,51,-24,5]], [[5], [1,1]]] 
-29,43,-29,8]], [[3], [1,-2]]] 
-8,17, -26,29, -26,17, -8 ,2] ] , [[1, -1,1]]] 
-11,27, -44,51, -44,27, -11,2]], [[2], [1, -1,1]]] 
-15,32, -41,32, -15,3]], [[2], [1, -1,1]]] 
-23,57,-75,57,-23,4]], [[3], [1,-2]]] 
-10,39, -84,109, -84,39, -10,1]\, [[2], [1, - 1 , - 1 , -1,1]]] 
-22,42,-51,42,-22,5]], [[3], [1,1]]] 
-7,24, -45,53, -45,24, -7 ,1] ] , [[3], [1, -2]]] 
-10,27, -51,63, -51,27, -10,2]], [[3], [1,1]]] 
-10,23, -36,41, -36,23, -10,2]], [[2], [1, -1,1]]] 
-20,43, -55,43, -20,4]], [[3], [1, -1,1]]] 
-8,26, -53,69, -53,26, -8 ,1] ] , [[7], [1,2,1]]] 
-11,29, -45,51, -45,29, -11,2]], [[5], [1, -4]]] 
-9 ,21 , -35,41, -35,21, -9 ,2] ] , [[5], [1, -4]]] 
-8,17, -26,29, -26,17, -8 ,2] ] , [[2], [1, -1,1]]] 
-10,25, -42,49, -42,25, -10,2]], [[2], [1, - 1 , -1]]] 
-25,66,-91,66,-25,4]], [[2], [1,-1,1]]] 
-8,15, -18,19, -18,15, -8 ,2] ] , [[2], [1, - 1 , -1]]] 
-29,53,-63,53,-29,8]], [[3], [1,1]]] 
-22,52, -69,52, -22,4]], [[5] ,[1,1,-4,1]]] 
-10,27, -46,55, -46,27, -10,2]], [[1, -1,1]]] 
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[12 0, 
[12 0, 
[12 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12 0, 
[12 0, 
[12 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12 0, 
[12 0, 
[12 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12 0, 
[12 0, 
[12 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 0, 
[12, 1, 
[12, 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12, 1, 
[12, 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 
[12 1, 

990,2, [[1, -8,26, -48,59, -48,26, - 8 , IB , [[2, - 2 ,2 ] , [1,0, -1,2, -1]]] 
1019 
1022 
1025 
1026 
1053 
1079 
1092 
1093 
1097 
1102 
1105 
1123 
1124 
1142 
1152 
1164 
1167 
1181 
1183 
1194 
1202 
1205 
1206 
1225 
1229 
1251 
1260 
1269 
1280 
1283 
1286 
1288 
55,2 
56,2 
57,2 
58,2 
59,2 
60,2 
61,2 
62,2 
63,2 
64,2 
66,2 
67,2 
144,2, 
145,2 
147,2 
219,2 
220,2 
221,2 
222,2 
223,2 
224,2, 
225,2 
229,2 

[1 , -
3,-
2,-

13, 

10,39, -80,101, -80,39, -10, IB , [[1, -5,7, -5 , 
21,58,-79,58, -21,3]], [[9], [1,1]]] 
12,31, -52,61, -52,31, -12,2B , [[7] ,[1,4,1]]] 
17,38, -49,38,-17,3B, [[8], [1,1,1]]] 

[2, -10,27, -48,59, -48,27, -10, 2B , [[3], [1,0, -2]]] 
[2, -11,31, -56,67, -56,31, -11,2]], [[2], [1,1, -1]]] 

9,29,-52,61,-52,29, -9 ,1]] , [[3], [1,1]]] 
I I , -8,25, -44,51, -44,25, - 8 , IB , [[3], [1, -2]]] 
[16,-54, 77,-54,16B,[[3],[l,0,1]]] 
[1, -8,30, -68,91, -68,30, - 8 , IB , [[2], [1,0,-1,0, -1]]] 
[1, -8,30, -64,83, -64,30, - 8 , I j , [[1, -4,7, - 4 , IB] 
[1, -9,30, -56,69, -56,30, -9 , IB , [[1, -1,1]]] 
[1, -13,50, -77,50, -13, IB , [[4], [1, -1,1]]] 
[4,-14,21,-21,21,-14,4B, [[3], [1,-2]]] 
[1, -9,34, -72,93, -72,34, - 9 , IB , [[1, -3,1]]] 

13,22,-27,22,-13,4B, [[2], [1,-1,1]]] 
[1, -10,35, -68,85, -68,35, -10, IB , [[2], [1, - 1 , 1 , -1,1]]] 
4, -16,30, -35,30, -16,4B , [[3], [1, -2]]] 
4, -15,26, -31,26, -15,4B , [[11], [1, -10]]] 
[2, -10,23, -34,37, -34,23, -10,2B , [[5], [1,-4]]] 
[9,-42,67,-42,9B, [[3,-7,3]]] 
[4, -15,26, -29,26, -15,4B , [[4], [1, -3,1]]] 
[4, -24,57, -75,57, -24,4B , [[2, -3,2]]] 
[1, -5,14, -28,41, -47,41, -28,14, -5 , IB , [[1, -1,1]]] 
[1, -5,14, -27,40, -47,40, -27,14, -5 , IB , [[2] , [ 1 , - 1 , - 1 , 1 , -1]]] 
[4, -25,62, -83,62, -25,4B , [[4], [1, -3,1]]] 
[1, -4,10, -19,27, -31,27, -19,10, - 4 , I j , [[1, -1,1]]] 
[4,-17,38,-51,38,-17,4B, [[4], [1,-3,1]]] 
[1, -9,28, -51,63, -51,28, - 9 , IB , [[3] ,[1,0, -2]]] 
I I , -3 ,6 , -10,13, -15,13, -10,6, - 3 , IB , [[1, -1,1]]] 
[ 3 , -7 ,8 , -9 ,8 , -7 ,3B, [[3], [1,-1,1]]] 
[1, -3 ,7 , -14,21, -25,21, -14,7, - 3 , IB , [[2, - 2 ,2 ] , [1,0, -1,2, -1]]] 

[2, -11,26, -33,26, -11,2B , [[2], [1, -1,1]]] 
[1 , -2 ,3 , -2 ,1 ] ] , [[2], [1,-1,1]]] 
[1 , -2 ,3 , -2 ,1 ] ] , [[2], [1,-1,1]]] 
[2, -13,30, -39,30, -13,2B , [[2], [1, - 1 , -1]]] 
[1 , -3 ,0 ,8 , -13,8,0, -3 , I B , [[2], [1,-1,1]]] 
I I , -5,12, -20,23, -20,12, -5 , IB , [[2], [1,1,1]]] 
I I , -5,12, -20,23, -20,12, -5 , IB , [[2], [1, - 1 , -1]]] 
[2, -9 ,18,-23,18,-9,2]] , [[2], [1,-1,1]]] 
[3,-10,13,-10,3B, [[2], [1,1,-1]]] 
[1, -5,10, -12,13, -12,10, -5 , IB , [[2], [1,1,1]]] 
[2,-9,18,-23,18,-9, 2B, [[2], [1,-1,1]]] 
[ 1 , -5 ,8 , -8 ,7 , -8 ,8 , -5 , I B , [[2], [1,-1,1]]] 
[[1,-7,18,-23,18,-7, I B , [[3], [1,0,-2]]] 
[[1,-6,11,-6, I B , [[2], [1,-1,1]]] 
[ [2 , -8 ,17,-21,17,-8 ,2B, [[5], [1,1]]] 
[[1, -5,12, -20,23, -20,12, -5 , IB , [[2], [1, -1,1]]] 
p , -3,0,8, -13,8,0, - 3 , IB , [[2], [1, - 1 , -1]]] 
[ [1 , -2 ,3 , -2 , I B , [[2], [1,-1,1]]] 
[[2, -13,30, -39,30, -13,2B , [[2], [1, -1,1]]] 
[[2,-11,26,-33,26,-11,2B, [[2], [1,-1,1]]] 
[[2, -9,18, -23,18, - 9 , 2 B , [[2], [1, -1,1]]] 
[[3,-10,13,-10,3B, [[2], [1,-1,1]]] 
[ [1 , -5 ,8 , -8 ,7 , -8 ,8 , -5 , I B , [[2], [1,-1,1]]] 



A . l . Prime knots up to 12 crossings with chain length 2 and 8. 113 

12 1 257 2, [[2 
12 1 261 2, P 
12 1 268 2, P 
12 1 269 2, [[1 
12 1 270 2, [[3 
12 1 273 2, [[1 
12 1 274 2, [[3 
12 1 276 2, [[1 
12 1 294 2, [[1 
12 1 297 2, [[2 
12 1 332 2, [[2 
12 1 333 2, [[3 
12 1 334 2, [[4 
12 1 355 2, [[1 
12 1 356 2, [[1 
12 1 357 2, P 
12 1 379 2, [[2 
12, 1 380, 2, [[2 
12, 1 386, 2, [[2 
12, 1 387, 2, [[1 
12, 1 388, 2, [[1 
12, 1 389, 2, [[1 
12, 1 393, 2, P 
12, 1 394, 2, [[1 
12, 1 397, 2, [[1 
12, 1 402, 2, [[1 
12, 1 403, 2, [[1 
12, 1 414, 2, [[2 
12, 1 420, 2, [[1 
12, 1 436, 2, [[1 
12, 1 440, 2, [[2 
12, 1 442, 2, [[3 
12, 1 460, 2, P 
12, 1 462, 2, [[1 
12, 1 480, 2, [[1 
12, 1 494, 2, [[1 
12, 1 495, 2, [[1 
12, 1 496, 2, [[1 
12, 1 498, 2, [[5 
12, 1 505, 2, P 
12, 1 508, 2, [[1 
12, 1 509, 2, [[1 
12, 1 510, 2, [[1 
12, 1 518, 2, [[1 
12, 1 526, 2, [[1 
12, 1 533, 2, [[1 
12, 1 546, 2, [[2 
12, 1 549, 2, P 
12, 1 553, 3, [[4 
12, 1 554, 3, P 
12, 1 555, 3, [[1 
12, 1 556, 3, [[4 
12, 1 565, 2, [[2 
12, 1 567, 2, [[3 
12, 1 570, 2, P 
12, 1 571, 2, 1 

-9,28,-41,28,-9,1]] , [[3], [1,-2]]] 

- 1 - J ~ 1 - •) -3 J J ' L L ^ J ' L ' ' JJJ 

-14,21,-14,3]], [[2], [1,-1,1]]] 
1,-7,11,-7,1,1]], [[5], [1,1]]] 
- 5 , 8 , - 6 , 5 , - 6 , 8 , - 5 , 1 ] ] , [[3], [1,0,-2]]] 
-11,22,-25,22,-11,2]], [[2], [1,-1,1]]] 
- 2 , 1 , - 2 , 2 ] ] , [[3], [1,-2]]] 
-11,17,-11,3]], [[3], [1,-2]]] 
-16,23,-16,4]], [[3], [1,1]]] 
-3 ,2 ,1 ,2 , -3 ,1] ] , [[2], [1 , -1 , -1]]] 
-5,14,-21,14,-5,1]] , [[2], [1 , -1 , -1]]] 
-9,24,-31,24,-9,1]] , [[2], [1 , -1 , -1]]] 
-7,14,-17,14,-7,2]] , [[1,-1,1]]] 
-9,18,-23,18,-9,2]] , [[1,-1,1]]] 
-4 ,3 ,2,-5,2,3, -4 ,2] ] , [[1,-1,1]]] 
- 5 , 6 , - 2 , - 1 , - 2 , 6 , - 5 , 1 ] ] , [[3], [1,-1,1]]] 
-5,10,-13,10,-5,1]] , [[3], [1,-1,1]]] 
-9,24,-31,24,-9,1]] , [[3], [1,-1,1]]] 
-12,19,-12,3]], [[2], [1 , -1 , -1]] ] 
-6 ,11 , -6 ,1] ] , [[2], [1,1,-1]]] 
-5,11,-15,11,-5,1]] , [[7], [1,-6]]] 
1,-3,3,-3,1,1]] , [[3], [1,-2]]] 
-3 ,1 ,1 ,1 , -3 ,1] ] , [[3], [1,1]]] 
- 6 , 9 , - 6 , 2 ] ] , [[5], [1,1]]] 
-7,19,-27,19,-7,1]] , [[3], [1,-2]]] 
- 5 , 6 , - 5 , 6 , - 5 , 1 ] ] , [[2], [1,-1,1]]] 
-9,18, -23,18, -9 ,2] ] , [[3, - 3 , 3 ] , [1,0,0,1]]] 
-10,13,-10,3]], [[2], [1,-1,1]]] 
-6,15,-19,15,-6,1]] , [[3], [1,-1,1]]] 
-6 ,11 , -6 ,1] ] , [[2], [1 , -1 , -1] ] ] 
-6,19,-29,19,-6,1]] , [[9], [1,-8]]] 
-5,8, -6 ,5 , -6,8, -5 ,1] ] , [[3], [1, - 1 , -2]]] 
- 3 , 6 , - 7 , 6 , - 3 , 1 ] ] , [[9], [3 , -6 ] , [1 , -1 , -5]]] 
-11,28, -37,28, - 1 1 , IB , [[3], [1,2, -2]]] 
-20,29,-20,5]], [[2], [1,-1,1]]] 
-8,24,-33,24,-8,1]] , [[3], [1,-2]]] 
-4,10, -16,19, -16,10, -4 ,1] ] , [[2, - 2 , 2 ] , [1,0, -1,2, -1]]] 
- 5 , 8 , - 7 , 7 , - 7 , 8 , - 5 , 1 ] ] , [[7], [1,1]]] 
-11,29,-39,29,-11,1]], [[11], [1,1]]] 
0, -6,16, -21,16, -6,0,1]] , [[2, - 2 , 2 ] , [1,0, -1,2, -1]]] 
- 4 , 6 , - 3 , 1 , - 3 , 6 , - 4 , 1 ] ] , [[3], [1,0,1]]] 
-4 ,8 , -12,13, -12,8, -4 ,1] ] , [[2], [1,0, -1,0,1]]] 
-8,14,-15,14,-8,2]] , [[3], [1,-2]]] 
- 3 , 6 , - 7 , 6 , - 3 , 1 ] ] , [[1,-1,1]]] 
-20,33, -20,4]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-7 ,9 , -7 ,2 ] ] , [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-9,33, -49,33, -9 ,1] ] , [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-20,33,-20,4]], [[2,-5,2]] , [[3], [1,-2]]] 
- 7 , 9 , - 9 , 9 , - 7 , 2 ] ] , [[3], [1,1]]] 
-13,26,-33,26,-13,3]], [[1,-1,1]]] 
- 3 , 6 , - 8 , 9 , - 8 , 6 , - 3 , 1 ] ] , [[1,-1,1]]] 
- 3 , 4 , - 4 , 3 , - 4 , 4 , - 3 , 1 ] ] , [[1,-1,1]]] 



A . l . Prime knots up to 12 crossings with chain length 2 and 3. 114 

[12,1,574,2, [[1, -1,0,2, -3,3, -3,2,0, - 1 , IB , [[1, -1,1]]] 
[12,1,581,2, [[3, -5 ,4, -3 ,4 , -5,3B , [[3], [1, -1,1]]] 
[12,1,582, 2, [[1,-2, 3,-2, I B , [[3], [1,-1,1]]] 
[12,1,583,2, [[5, -16,21, -16,5B , [[3], [1, -1,1]]] 
[12,1,592,2, [[1, -4 ,8 , -8 ,7 , -8,8, - 4 , I J , [[7], [1,1]]] 
[12,1,598,2, [[1, -8,24, -33,24, - 8 , IB , [[3], [1,1]]] 
[12,1,600,2, [[4, -9,12, -13,12, -9,4B , [[3] ,[1,2,1]]] 
[12,1,601,2, [[1, -3 ,6 , -7 ,6 , - 3 , IB , [[3] ,[1,0,0, -2]]] 
[12,1,602,2, [[1, -9,24, -31,24, - 9 , IB , [[3], [1,2,1]]] 
[12,1,604,2, [[1, -4,10, -16,19, -16,10, - 4 , IB , [[2, - 2 ,2 ] , [1,0, -1 ,2 , -1]]] 
[12,1,605,2, [[1, -2,0,4, -7,4,0, - 2 , IB , [[2, -2,2] ,[1,0, -1,2, - I B ] 
[12,1,611,2, [[2, -9,17, -19,17, - 9 , 2 B , [[5], [1, -4]]] 
[12,1,617,2, [[1, -3 , 0,3,0, -3 , IB , [[2], [1, -1,1]]] 
[12,1,622,2, [[1, -6,14, -19,19, -19,14, - 6 , IB , [[3], [1,1]]] 
[12,1,626,2, [[2, -15,36, -47,36, -15,2B , [[3], [1, -1,1]]] 
[12,1,630,2, [[1, -4,3,1,3, - 4 , IB , [[3], [1,0, -2]]] 
[12,1,636,2, [[1, -7,19, -27,19, - 7 , IB , [[9], [1, -8]]] 
[12,1,637,2, [[2, -13,32, -41,32, -13,2B , [[3], [1, - 1 , -2]]] 
[12,1,642,3, [[1,7, -15,7,1]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
[12,1,643,2, [[2, -8,10, -9,10, - 8 ,2 ] , [[7], [1, -6]]] 
[12,1,651,2, [[2, -11,28, -37,28, -11,2B , [[5], [1,1, -4]]] 
[12,1,652,2, [[1, -5,15, -30,37, -30,15, - 5 , IB , [[3] ,[1,0, -2]]] 
[12,1,654,2, [[2, -8 ,9 , -7 ,9 , - 8 , 2 B , [[3], [1, -2]]] 
[12,1,660,2, [[1,3, -12,17, -12,3, IB , [[2] , [1,1, -1]]] 
[12,1,666,2, [[1, -4,10, -16,19, -16,10, - 4 , IB , [[1, -1,1]]] 
[12,1,669,2, [[2, -10,23, -29,23, -10,2B , [[3], [1,2, -2]]] 
[12,1,701,2, [[3, -16,25, -16,3B , [[3], [1, -2]]] 
[12,1,706,2, [[1, -4 ,6, -8 ,11 , -8,6, - 4 , Ifl , [[1, - 2 , 1 , -2,1]]] 
[12,1,714,2, [[3, -14,30, -37,30, -14,3B , [[3] ,[1,0, -2]]] 
[12,1,717,2, [[1, -4,12, -17,12, - 4 , IB , [[3], [1,0, -2]]] 
[12,1,737,2, [[2, -7,9, -9,9, - 7 , 2 B , [[3], [1,1]]] 
[12,1,742,2, [[2, -9 ,21 , -27,21, - 9 , 2 B , [[3] ,[1,0, -2]]] 
[12,1,745,2, [[1, -10,30, -43,30, -10, IB , [[5], [1,1]]] 
[12,1,746,2, [[2, -11,28, -37,28, -11,2B , [[5], [1, - 4 , -4]]] 
[12,1,752,2, [[2, -9,20, -25,20, - 9 , 2 B , [[2], [1, - 1 , -1]]] 
[12,1,756,2, [[2, -10,23, -29,23, -10,2B , [[3], [1, -1,1]]] 
[12,1,757,2, [[1, -9,28, -39,28, - 9 , IB , [[2], [1, - 1 , - I B ] 
[12,1,760,2, [[2, -11,29, -41,29, -11,2B , [[5], [1,1]]] 
[12,1,764,2, [[3, -5,3, -1 ,3 , -5,3B , [[3] ,[1,0, -2]]] 
[12,1,779,2, [[2, -11,26, -33,26, -11,2B , [[2], [1, - 1 , -1]]] 
[12,1,781,2, [[1, -4,10, -19,25, -19,10, - 4 , IB , [[5], [1, -4,1]]] 
[12,1,798,2, [[1, -7,22, -31,22, - 7 , IB , [[2], [1, - 1 , -1]]] 
[12,1,806,2, [[4, -10,12, -11,12, -10,4B , [[3], [1,1, - 2 , - 2 B ] 
[12,1,813,2, [[2, -9,18, -23,18, - 9 , 2 B , [[9], [3, - 6 ] , [1,2,1]]] 
[12,1,817,2, [[2, -6,10, -13,10, - 6 , 2 B , [[7], [1, -6]]] 
[12,1,837,2, [[1, - 7 ,21 , -35,41, -35,21, - 7 , IB , [[13], [1,1]]] 
[12,1,838,2, [[1,-6,11,-6, IB , [[1,-3,1]]] 
[12,1,839,2, [[1, -7,18, -23,23, -23,18, - 7 , IB , [[11], [1,1]]] 
[12,1,840,2, [[1, -6,16, -24,25, -24,16, -6 , IB , [[2], [1,0, -1,0,1]]] 
[12,1,843,2, [[3, -15,34, -43,34, -15,3B , [[7], [1,1]]] 
[12,1,844,2, [[3, -12,16, -13,16, -12,3B , [[5], [1,1]]] 
[12,1,846,2, [[5, -20,31, -20,5B , [[9], [1,1]]] 
[12,1,847,2, [[1, -7,18, -23,18, - 7 , I j , [[1, -3,1]]] 
[12,1,848,2, [[1, -5,12, -16,17, -16,12, -5 , IB , [[3], [1, - 1 , -2,2, IB] 
[12,1,869,2, [[2, -12,32, -43,32, -12,2B , [[3], [1, -2]]] 
[12,1,873,2, [[1, -5,10, -16,21, -16,10, - 5 , IB , [[4], [1, - 3 , IB] 



A.2. Prime 13 and 14 crossing knots with chain length " 3. 115 

[12,1,874,2, [[1, -5 ,14 , -26,31, -26,14, -5 ,1] ] , [[2], [1, -1,1]]] 
[12,1,876,2, [[2, -8 ,18 , -25,18, -8 ,2 ] ] , [[9], [1, -8]]] 
[12,1,877,2, [[1, -7 ,20 , -32,35, -32,20, -7 ,1 ] ] , [[2], [1, -1,1]]] 
[12,1,878,2, [[1, -11,34, -47,34, -11,1]] , [[2] ,[1,1, -1]]] 
[12,1,879,2, [[1, -6 ,17 , -30,35, -30,17, -6 ,1 ] ] , [[2], [1, -1 ,1 ,1 , -1]]] 
[12,1,881,2, [[9, -30,43, -30,9]] , [[3, -5,3]]] 
[12,1,883,2, [[3, -12,22, -25,22, -12,3]], [[3], [1, -2]]] 
[12,1,887,2, [[1, -6 ,16 , -25,29, -25,16, -6 ,1] ] , [[5], [1, -4]]] 
[12,1,888,2, [[1, - 1 , - 1 , 6 , -11,13, -11,6 , - 1 , - 1 , I j , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , - 1 ] ] , [[1]]] 

A.2 Prime 13 and 14 crossing knots with chain 
length = 3. 

[13 0 1232 3,[[ 
[13 0 1238 3>[[ 
[13 0 1436 3,[[ 
[13 0 1638 3,[[ 
[13 0 1786 3,[[ 
[13 0 2720 3J[ 
[13 0 2727 3,[[ 
[13 0 3072 3,[[ 
[13 0 4740 3,[[' 
[13 0 4877, 3,[[ 
[13 1 2407, 3,[[ 
[13 1 2408, 3,[[ 
[13 1 2409, 3,[[ 
[13 1 2410, 3,[[ 
[13 1 2411, 3.[[ 
[13 1 2412 3,[[ 
[13 1 2413 3>[[ 
[13 1 2414 3J[ 
[13 1 2790 3,[[ 
[14 0 1975 3J[ 
[14 0 1977, 3,[[ 
[14 0 1983, 3,[[ 
[14, 0, 2438, 3>[[ 
[14, 0, 2455, 3>[[ 
[14, 0, 2456, 3,[[ 
[14 0 2457, 3,[[ 
[14 0 3107, 3,[[ 
[14 0 3275, 3,[[ 
[14 0 3277, 3,[[ 
[14 0 3288 3J[ 
[14 0 3734, 3>[[ 
[14 0 3735 3,[[ 
[14 0 4337 3,[[ 
[14 0 4346 3,[[ 
[14 0 4353 3,[[ 
[14 0 4363 3,[[ 
[14 0 4637 3>[[ 
[14 0 5139 3,[[ 
[14 0 5141 3J[ 
[14 0 5241 3,[[ 
[14 0 5282 3J[ 

5,[[2,-

W 
M[2,-
U [ i , -
M[4, 
5,[[4,-
5,[[2,-

m,-
5, [[16: 
5,[[2,-
5, P. 
5,[[3,-
5. P. 
M[2,-
M[5, 
M[3, 
U [2 , -
U [5 , -
M[i 
M[i 
M[i , -

U[2, 
\p, 
M[2, 
5J[2, 
M[4,-
M[5,-

U[2, 
U [2 , -
U[2,-

w>-
M[4,-
U[2,-

11,31, -54,65, -54,31, -11,2]] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
11,31, -54,65, -54,31, -11,2]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
27,54, -67,54, -27 , 7]], [[2, - 2 , 2 ] , [1,0,1,0,1]], [[2], [1, -1,1]]] 
9,21, -34,39, -34,21, -9 ,2]] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
9,33, -65,81, -65,33, -9 ,1]] , [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
24,57, -73,57, -24,4]], [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
24,57, -73,57, -24,4]], [[2, -5 ,2 ] ] , [[3], [1, -2]]] 
9,21, -34,39, -34,21, -9 ,2]] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
13,25, -34,37, -34,25, -13,4]] , [[2, -2 ,2] ,[1,0,1,0,1]], [[2], [1, -1,1]]] 

-47,63, -47,16]], [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
7,15, -22,25, -22,15, -7 ,2] ] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , - 1 ] ] , [[2], [1, -1,1]]] 
5,10, -13,10, - 5 , I j ] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , - 1 ] ] , [[2], [1, -1,1]]] 
3, -1 ,10 , -15,10, - 1 , -3 ,2 ] ] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , - 1 ] ] , [[2], [1, -1,1]]] 
11,22, -27,22, -11,3]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
5,10, -13,10, -5 ,1 ] ] , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
7,15, -22,25, -22,15, -7 ,2^ , [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1,-1,1]]] 
•21,42, -53,42, -21 , 5]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
11,22, -27,22, -11,3]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
5,5, - 2 , - 1 , - 2 , 5 , -5 ,2] ] , [[2, -2 ,2] ,[1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
24,62, -104,123, -104,62, -24,5^ , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
7,25, -56,89, -103,89, -56,25, -7 ,1 ] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
7,25, -56,89, -103,89, -56,25, -7 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
7,23, -50,77, -89,77, -50,23, -7 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
7,23, -50,77, -89,77, -50,23, -7 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
7,23, -50,77, -89,77, -50,23, -7 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
•9,24, -44,62, -69,62, -44,24, -9 ,2] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1,-1,1]]] 
•15,53, -106,131, -106,53, -15,2]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
•13,39, -70,85, -70,39, -13,2]] , [[4], [2,2, -2] ,[1,0,1,0, - 3 ] ] , [[2], [1, - 1 , -1]]] 

13,39, -70,85, -70,39, -13 , 2]], [[4], [2, - 2 , 2], [1,0, - 1 , 2 , -1 ] ] , [[2], [ 
•21,47, -70 , 79, -70,47, -21,4]], [[4], [2, - 2 , -2 ] ,[1,0,1,0, -3 ] ] , [[2], [ 
24,62, -104,123, -104,62, -24,5^ , [[9], [3,3], [1, - 1 , - 2 ] ] , [[3], [1,1]]] 
7,25, -56,89, -103,89, -56,25, -7 ,1] ] , [[9], [3, - 6 ] , [1, -1 ,7 ] ] , [[3], [1 
15,53, -106,131, -106,53, -15,2]], [[4], [2, -2 ,2] ,[1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
15,45, -82,99, -82,45, -15,2]] , [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , - 1 ] ] , [[2], [ 
15,47, -86,105, -86,47, -15,2]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -

-15,45, -82,99, -82,45, -15,2]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , - 1 ] ] , [[2], [" 
-61,128, -161,128, -61,14]], [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1,1]]] 
-37,82, -105,82, -37,7]] , [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-37,82, -105,82, -37,7]] , [[4], [2, - 2 , 2 ] , [1,0, -1 ,2 ,3] ] , [[2], [1, -1,1]]] 
-17,41, -66 , 77, -66,41, -17,4]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -
-15,45, -82,99, -82,45, -15,2]], [[4], [2,2,2], [1,0, -1 ,2 ,3] ] , [[2], [1, -

-1>1]1] 
-1,1]]] 

1]]] 

1>1]]] 
1,1]]] 
-1,1]]] 

1]]] 
,1]]] 



A.2. Prime 13 and 14 crossing knots with chain length = 3. 116 

[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[14 0, 
[[3] ' L 

[14, 0, 
[14, 0, 
[14, 0, 
[14, 0, 
[14, 0, 
[14, 0, 
[14, 0, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 

5456,3, [[1, 
5681,3, p , 
5816,3, [[2, 
5825,3, [[2, 
5828,3, [[2, 
6088,3, [[3, 
6209,3, [[2, 
7282,3, [[2, 
7690,3, [[2, 
9687,3, [[1, 
9694,3, [[2, 
10043,3, [[2 
11983,3, [[1 
11986,3, [[5 
11988,3, [[4 
11991,3, [[4 
11993,3, [[1 
11995,3, [[2 
12213,3, [[8 
12326,3, [[2 

M ] ] ] 
12787,3, [[7 
13401,3, [[2 
14268,3, [[5̂  
14270,3, [[1, 
14496,3, [[8 
17247,3, [[9 
17728,3, [[4, 
5630,3 
5631,3 
5632 
5633,3 
5634,3 
5635,3 
5636,3 
5637,3 
5638,3 
5642,3 
5643,3 
5644,3 
5645,3 
5646,3 
5647,3 
5654,3 
6284,3 
6285,3 
6286,3 
6302,3 
7211,3 
7212,3 
7213,3 
7214,3 
7215,3 
7216,3 
7217,3 
7381,3 

,[[3, 
,[[1, 
,[[!> 
,[[1, 
,[[1, 
,[[!> 
.[[3, 
,[[1, 
,P, 

,[[!>• 
,[[!,• 
,[[!,• 
,[[!>• 

,[[!>• 
J[2,-
,[[5,-
>[[!-• 

>[[2,-
,[[2,-
,[[2,-
,[[3,-

-8,31, -75,123, -145,123, -75,31, -8 ,1]] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1,1]]] 
-24,82, -158,195, -158,82, -24,3]], [[9], [3, - 6 ] , [1, - 1 , 7]], [[3], [1, -2]]] 
-13, 39, -70,85, -70,39, -13 , 2]], [[4], [2, - 2 , - 2 ] , [1,0, - 1 , - 2 , -1 ] ] , [[2], [1, -1,1]]] 
-13,37, -66,79, -66,37, -13,2]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-13,37, -66,79, -66,37, -13,2]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-21, 70, -134,165, -134,70, -21,3]], [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1,1]]] 
-13,31, -46,53, -46,31, -13,2]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , -2 ,3 ] ] , [[2], [1, -1,1]]] 
-17,64,-138,179, -138,64, -17,2]], [[9], [3,3], [1,2, - 8 ] ] , [[3], [1,1]]] 
-19,75, -163,211, -163,75, -19,2]], [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-7,23, -50,77, -89,77, -50,23, -7 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-9,24, -44,62, -69,62, -44,24, -9 ,2] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-15,45, -73,81, -73,45, -15,2]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-8 ,31 , -75,123, -145,123, -75,31, -8 ,1]] , [[9], [3,3], [1,2,1]], [[3], [1,1]]] 
-24,62, -104,123, -104,62, -24,5]], [[9], [3, - 6 ] , [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-17,41, -66,77, -66,41, -17,4]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-21,47, -70,79, -70,47, -21,4]], [[4], [2, - 2 , - 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-7 ,25 , -56,89, -103,89, -56,25, -7 ,1]] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1,1]]] 
-13,31, -46,53, -46,31, -13,2]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, - 1 , l]]j 
-36,66, -77,66, -36,8]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-19 , 73, -150,187, -150,73, -19,2]], [[9, -27 ,9 ] , [3, - 6 , - 6 , 3 ] , [1, - 1 , 5 , -28,10]], 

-42,108, -145,108, -42,7]], [[9], [3, - 6 ] , [1,2,1]], [[3], [1, -2]]] 
-9 ,22 , -38,50, -55,50, -38,22, -9 ,2] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-22,46, -66 , 73, -66,46, -22,5]], [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-7 ,25 , -52,75, -85,75, -52,25, -7 ,1] ] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-32,67, -96,107, -96,67, -32,8]], [[9], [3, - 6 ] , [1, -1 ,7 ] ] , [[3], [1,1]]] 
-58,147, -197,147, -58,9]] , [[25], [5, - 2 0 ] , [1, - 3 , - 4 ] ] , [[5], [1, -4]]] 
-15,31, -46,51, -46,31, -15,4]], [[2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-14,36, -60,71, -60,36, -14,3]], [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-4,10, -16,19, -16,10, -4 ,1]] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-4,10, -16,19, -16,10, - 4 , I j ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-6,16, -28,33, -28,16, -6 ,1]] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-4,10, -16,19, -16,10, -4 ,1]] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-6,16, -28,33, -28,16, -6 ,1]] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-16,42, -72,85, -72,42, -16,3]], [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-4,10, -16,19, -16,10, -4 ,1]] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-14,36, -60 , 71, -60,36, -14,3]], [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-5,15, -30,45, -51,45, -30,15, -5 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-3,5, - 4 ,1 ,1 ,1 , - 4 , 5 , -3 ,1 ] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-1, -5 ,22 , -43,53, -43,22, - 5 , -1 ,1]] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-3,5, - 4 ,1 ,1 ,1 , - 4 , 5 , -3 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-5,15, -30,45, -51,45, -30,15, -5 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-5,15, -30,45, -51,45, -30,15, -5 ,1 ] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-5,15, -30,45, -51,45, -30,15, - 5 , I j ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-5,13, -24,33, -37,33, -24,13, -5 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-3,3,2, -11,15, -11,2 ,3 , -3 ,1] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-5,13, -24,33, -37,33, -24,13, -5 ,1 ] ] , [[1, - 2 , 3 , -2 ,1] ] , [[1, -1,1]]] 
-7,14, -18,18, -17,18, -18,14, -7 ,2 ] ] , [[1, - 2 , 3 , -2 ,1 ] ] , [[1, -1,1]]] 
-27,62, -79,62, -27,5]], [[4], [2,2, - 2 ] , [1,0,1,0,1]], [[2], [1, -1,1]]] 
-3,6, - 7 ,6 , -3 ,1] ] , [[4], [2, - 2 , - 2 ] , [1,0, - 1 , - 2 , -1 ] ] , [[2], [1, - 1 , -1]]] 
-3,6, - 7 , 6 , -3 ,1 ] ] , [[4], [2,2, -2 ] ,[1,0,1,0,1]], [[2], [1, -1,1]]] 
-21,50, -65,50, -21,3]] , [[4], [2,2,2] ,[1,0,1,0, -3 ] ] , [[2], [1, - 1 , -1]]] 
-7,5,6, -13 ,6 ,5 , -7 ,2] ] , [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-11,29, -50,59, -50,29, -11,2]], [[4], [2, - 2 , - 2 ] , [1,0, - 1 , - 2 , -1 ] ] , [[2], [1, - 1 , -1]]] 
-11,29, -50,59, -50,29, -11,2]] , [[4], [2, - 2 , 2 ] , [1,0,1,0, - 3 ] ] , [[2], [1, -1,1]]] 
-13,26, -33,26, -13,3]] , [[4], [2,2,2], [1,0, -1 ,2 ,3] ] , [[2] ,[1,1, -1]]] 



A.2. Prime 13 and 14 crossing knots with chain length — 3. 117 

[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 
[14 1, 

[14 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 

[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 

[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 
[14, 1, 

[14, 1, 
[14, 1, 

[14, 1, 
[14, 1, 

[14, 1, 
[14, 1, 
[14, 1, 

1,7382,3, [[1, 
,7383,3, [[2, 
,7384,3, [[3, 

L , 7393,3, [[2, 
1 ,8968,3, [[5, 
.,8969,3, [[4, 
.,8970,3, [[6, 
.,8971,3, [[1, 
.,8972,3, [[1, 
,8973,3, [[1, 

.,10654,3, [[2 
-,10655,3, [[2 
.,10656,3, [[1 
1,10657,3, [[3 
1,10658,3, [[5 
1,10664,3, [[2 
.,10665,3, [[3 
.,10666,3, [[1 
.,11342,3, [[4 
,12491,3, [[1 
,12492,3, [[1 
,12493,3, [[2 

[,12776,3, [[3 
[,12777,3, [[3 
[,12778,3, [[3 
[,12954,3, [[2 
[,13279,3, [[1 
[,14347,3, [[2 
[,14348,3, [[1 
[,14349,3, [[2 
[,19386,3, [[1 
[,19734,3, [[2 
[,19735,3, [[1 
[,19736,3, [[2 
.,20057,3, [[1 
.,20058,3, [[1 
[,20076,3, [[1 
[,23439,3, [[2 
[,24690,3, [[2 
[,26223,3, [[1 

-11,30, -39,30, -11,1]] , [[4], [2, - 2 , - 2 ] , [1,0, - 1 , - 2 , -1 ] ] , [[2], [1, - 1 , -1]]] 
-9,15, -14,13, -14,15, -9 ,2]] , [[4], [2, - 2 , 2 ] , [1,0,1,0,1]], [[2], [1, -1,1]]] 
-13,26, -33,26, -13,3]], [[4], [2, - 2 , 2 ] , [1,0, -1 ,2 ,3] ] , [[2], [1, -1,1]]] 
-11,21, -26,27, -26,21, -11,2]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-14,16, - 6 , - 1 , -6 ,16, -14,5]], [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-15,30, -37,30, -15,4]], [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1,1]]] 
-31,68, -87,68, -31,6]], [[9], [3,3], [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
-5,11, - 8 , -5 ,13 , - 5 , -8 ,11, -5 ,1] ] , [[9], [3,3], [1,2, - 8 ] ] , [[3], [1,1]]] 
-7,22, -40,49, -40,22, -7 ,1]] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1,1]]] 
-7,26, -54,67, -54,26, -7 ,1] ] , [[9], [3,3], [1,2, - 8 ] ] , [[3], [1,1]]] 
-11,29, -50,59, -50,29, -11,2]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-7 ,5 ,6 , -13 ,6 ,5 , -7 ,2] ] , [[4], [2,2, -2] ,[1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
- 3 , 6 , - 7 , 6 , -3 ,1 ] ] , [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-21,50, -65,50, -21,3]], [[4], [2, - 2 , - 2 ] , [1,0, - 1 , -2 ,3 ] ] , [[2], [1, -1,1]]] 
-27,62, -79,62, -27,5]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
- 11 , 21, -26,27, -26,21, -11,2]], [[4], [2, - 2 , 2 ] , [1,0,1,0,1]], [[2], [1, -1,1]]] 
-13,26, -33,26, -13,3]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, -1,1]]] 
-11,30, -39,30, -11,1]], [[4], [2, - 2 , 2 ] , [1,0, - 1 , 2 , -1 ] ] , [[2], [1, - 1 , -1]]] 
-15,30, -37,30, -15,4]], [[9], [3, -6] ,[1,2,1]], [[3], [1, -2]]] 
-6 ,17 , -27,29, -29,29, -27,17, -6 ,1] ] , [[9], [3, - 6 ] , [1,2,1]], [[3], [1,1]]] 
- 3 , 6 , - 7 , 6 , -3 ,1 ] ] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1,1]]] 
-13,45, -88,109, -88,45, -13,2]], [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-14,36, -60,71, -60,36, -14,3]], [[9], [3,3], [1, - 1 , - 2 ] ] , [[3], [1,1]]] 
- 4 , -10,38, -53,38, -10, -4 ,3] ] , [[9], [3,3], [1,2, - 8 ] ] , [[3], [1,1]]] 
-14,36, -60,71, -60,36, -14,3]], [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
-9 ,15 , -14,13, -14,15, -9 ,2 ] ] , [[4], [2, - 2 , 2 ] , [1,0, - 1 , - 2 , -1 ] ] , [[2], [1, -1,1]]] 
-7 ,22 , -40,49, -40,22, -7 ,1] ] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-9 ,18 , -23,18, -9 ,2 ] ] , [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
-10,38, -78,97, -78,38, -10,1]], [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-15,45, -65,45, -15,2]] , [[9], [3, - 6 ] , [1, - 1 , -2 ] ] , [[3], [1, -2]]] 
- 3 , 6 , - 7 , 6 , -3 ,1 ] ] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1,1]]] 
-13,32, -41,32, -13,2]] , [[9], [3,3], [1, - 1 , -2 ] ] , [[3], [1,1]]] 
-11,44, -90,113, -90,44, -11,1]], [[9], [3,3], [1, - 1 , - 1 , 2 , - S J , [[3], [1, -2]]] 
-13,32, -41,32, -13,2]], [[9], [3, - 6 ] , [1,2,1]], [[3], [1, -2]]] 
-6 ,21 , -41,51, -41,21, -6 ,1 ] ] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-5 ,11 , -15,17, -15,11, -5 ,1] ] , [[9], [3, - 6 ] , [1, - 1 , - 2 ] ] , [[3], [1, -2]]] 
-7 ,20 , -27,13,1,13, -27,20, -7 ,1] ] , [[9], [3,3] ,[1,2, -8 ] ] , [[3], [1,1]]] 
- 4 , -5 ,24 , -35,24, - 5 , -4 ,2] ] , [[9], [3,3], [1, -1 ,7 ] ] , [[3], [1, -2]]] 
-12,29, -39,29, -12,2]] , [[25], [5, - 2 0 ] , [1, - 3 , - 4 ] ] , [[5], [1,1]]] 
-6 ,15 , -25,31, -25,15, - 6 , I j ] , [[25], [5,5], [1, - 3 , - 4 ] ] , [[5], [1,1]]] 



Appendix B 

The CD-ROM 

The CDROM contains the files 

README 3cross .txt 4cross.txt 

5cross.txt 6cross.txt 7cross.txt 

8cross.txt 9cross.txt 10cross.txt 

l l c r o s s . t x t 12cross.txt 13cross.txt 

14cross.txt knotsl-14.txt Algorithms.mws 

Process.mws 

The .txt files contain Chatelet Bases for the Alexander ideals of prime knots of 

up to 14 crossings. It is intended that these files be read and used with the Maple 

worksheet Process.mws but they can also be browsed with any text file viewer. 

In the worksheet there is an explanation of the contents of the .txt files which is 

reproduced below. The contents of the .txt files were calculated using the program 

Maple running on the Sun Ultra-80 computers of the High Performance Computing 

service of the ITS at the University of Durham. We should mention that these 

calculations used the tables of knot diagrams contained in the program Knotscape 

by J. Hoste and M.B. Thistlethwaite. 

The other Maple worksheet, Algorithms .mws, contains implementations of the 

algorithms described in the thesis. These are the algorithms that were used to 

calculate the .txt files. 

Explanation of the .txt files: 

They were obtained by running the Seifert matrix and Chatelet basis algorithms 

described in the thesis on the tables of diagram encodings of diagrams of prime 
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knots from Knotscape. There is one file for each of the crossing numbers 3 , . . . , 14 

and then a file knots l -14 . txt containing all of the knots of up to 14 crossings. 

The first line of each file is a Maple list [n], where n is the number of knots in 

that file. Then each subsequent fine contains a maple list K, containing the Chatelet 

bases of the Alexander ideals of a knot. K is structures as follows, (n.b. The entries 

of a maple list are seperated by commas and enclosed in square brackets. The i-ih 

entry of the list K is referred to by K[i\). 

K[l\ is the crossing number of the knot, K[l\ is 0 or 1 depending on whether the 

knot is alternating or non-alternating respectively, K[2,] is the position of the knot in 

the Knotscape table, K\A] is the length of the chain of non-trivial Alexander ideals. 

Then ^^'[4], K[b], ..etc is the chain of Alexander ideals, each one represented as a list 

of the Chatelet generators for the ideal. So K[4t] always consists of a single element, 

the Alexander polynomial itself. The sequence i('[4], A ' [5 ] , . . . etc. terminates with 

the list [1] representing the first trivial ideal in the chain, all the ideals after that 

one being trivial as well of course. 

Example. The last line of the file 10cross.txt is the list 

10, 1,42, 2, [t̂  - 6 * + 11 * t^ - 13 * + 11 * - 6 * t - f l ] , [7, t -I- l], [l]] 

which represents the 42nd non-alternating 10 crossing prime knot. This knot has 

two non-trivial Alexander ideals the first of which is generated by the Alexander 

polynomial 

- 6t^ + l U * - 13t^ + llt^ -Qt + l 

and the next ideal has Chatelet basis {T,t + 1} and the third and subsequent ideals 

are the whole ring A. 


