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Abstract: Perirhinal Cortex and the neural basis of object memory in the rat. 
Thesis submitted for degree of Doctor of Philosophy, University of Durham, 2002 
G. Norman 

This thesis aimed to investigate the role of the perirhinal cortex in object memory in the rat. 

The first experiment tested the hypothesis that the perirhinal cortex is critical to memory 

for relationships between objects by testing postoperative learning of novel visual-visual 

stimulus associations following lesions of the perirhinal cortex. The hypothesis was not 

supported: postoperative performance was not impaired. Experiments 3.1-3.4 tested the 

hypothesis that perirhinal cortex is crucial to the integration of multiple features into a 

representation of an object using spontaneous object recognition with either reconfigured 

objects or multiple objects. The hypothesis was supported: perirhinal lesions caused 

disproportionate impairment on tasks involving feature ambiguity. Experiments 4.1-4.7 

investigated the effects of, perirhinal, postrhinal or fornix lesions on aspects of memory for 

object-context associations. The hypothesis that postrhinal and fornix lesioned animals 

would be more impaired than perirhinal animals was confirmed. Postrhinal lesions 

impaired memory for object-context associations, as, less severely, did fornix lesions; 

perirhinal lesions impaired memory when another object was used as the context. 

Experiment 5.1 used a novel model for episodic-like memory and tested the hypothesis that 

postrhinal or fornix, but not perirhinal lesions would cause impairment. One of these 

predictions was supported: fornix but not postrhinal or perirhinal lesions caused severe 

impairment of episodic-like memory. The fornix impairment was not due to an impairment 

of memory for object-place associations (experiment 5.2). Finally, experiments 6.1-6.7 

investigated the possible function of L-type calcium channels in perirhinal cortex. The 

dihydropyridine nimodipine was successfully used to reverse the effects of the muscarinic 

antagonist scopolamine on the spontaneous object recognition task. 

It is concluded that perirhinal lesions in the rat result in impairments of memory 

which involve the processing of objects and the relation of their constituent features to each 

other. They do not impair memory for the association either of distinct objects or of objects 

and background contexts or locations. This is contrasted with the impairment of memory 

for object-in-context which results from postrhinal lesions and the impairment of episodic-

like memory which results from fornix lesions. The importance of the cholinergic system 

in object recognition is confirmed and the importance of L-type calcium channels to such 

memory is suggested. 
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Chapter 1: Introduction 

1.1: The Medial Temporal Lobe and Memory. 

This thesis wil l consider the role of medial temporal lobe structures in memory. It 

will concentrate on the contributions of the perirhinal and postrhinal cortices to 

aspects of object memory, including the relationship of an object to the wider 

environment. Where appropriate these contributions wil l be compared with that of 

the hippocampal formation. This chapter wil l outline the anatomy of the structures 

under consideration and wil l also examine the development of research into the 

functions of these structures and some of the aspects of memory to which they may 

contribute. 

The role of the medial temporal lobe in memory became a major focus of research 

following the use of psychosurgery as a therapeutic tool. Penfield (1958) found that 

stimulation of the exposed temporal lobe produced vivid recollection of past events in 

his conscious epileptic patients. Conversely, Bickford, Mulder, Dodge & Svien et al. 

(1958) found that stimulation of the mid-temporal gyrus could induce transitory 

amnesia which was both retrograde and anterograde to the stimulation. The 

employment of bilateral temporal lobe resection for the treatment of psychosis or 

epilepsy was found to cause severe anterograde amnesia where the hippocampus 

proper and the hippocampal gyrus constituted part of the tissue removed (Scoville & 

Milner, 1957). A particularly severe example of this effect was provided by patient 

HM who had undergone a radical bilateral temporal lobe resection in order to relieve 

his intractable epilepsy. The notes of the operating surgeon indicate the removal of 

the anterior two thirds of the hippocampus proper, the amygdala, the rhinal and 

parahippocampal cortices and the hippocampal gyrus. Subsequent psychological 

testing of H M showed severe anterograde and partial retrograde amnesias, the latter 

extending for three years previous to the surgery. With the advent of MRI scanning it 

has become possible to examine the exact extent of HM's lesion. Corkin, Amaral, 

Gonzalez & Johnson et al. (1997) found that it does not appear to be as extensive as 

originally thought, as there is some intact tissue in the hippocampus and the perirhinal 

and parahippocampal cortices. This would indicate that heavy cell loss in these 

structures is sufficient to cause severe anterograde amnesia in humans. 
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Further studies of FTM have revealed intact learning and memory for motor and skill 

based tasks (Corkin, 1984) as opposed to his dense amnesia for episodic experience. 

Studies on other amnesic patient showed residual ability to form certain types of new 

memories, (Weiskrantz & Warrington 1979; Brooks & Baddeley 1976; Warrington & 

Weiskrantz 1970). Such findings suggested that memory could not be considered as a 

single entity resulting from a single global system with integrated function (Squire, 

1992; Tulving, 1983; Weiskrantz 1987). Work using animal models of memory has 

suggested that both memory and the memory system within the medial temporal lobe 

are capable of division into largely independent sub-systems. In order to consider this 

further it is necessary to consider some of the constituent structures of the medial 

temporal memory system. 

The amnesia seen in HM was attributed to the ablation of his hippocampus partly 

because of previous reports of memory impairments among patients with bilateral 

hippocampal damage (Von Bechterev; Glees & Griffith, cited in Mumby, 2001) and 

partly because of the apparent correlation between the extent of hippocampal damage 

and severity of memory impairment among patients with bilateral medial temporal 

lobe resections (Scoville & Milner, 1957). However, evidence began to accumulate 

which cast doubt upon the interpretation of memory deficits as resulting from 

hippocampal damage. For example, Gol & Faibish (1967) found that there was a 

greater correlation between the extent of neocortical damage and the severity of 

amnesia than there was between amnesic severity and the extent of hippocampal 

damage. Horel (1978) argued against the hippocampus-centred view of memory on 

several grounds. First, he claimed that the extent of damage to the white matter of the 

temporal lobe known as the temporal stem (which necessarily increased with the 

extent of hippocampal resection) was partly responsible for the impairments. 

Connected to this was his view that the interaction of the temporal lobe and prefrontal 

areas was essential to memory. His second argument was that the effects of 

hippocampal or fornix lesions were primarily impairments in the processing of spatial 

information, rather than impairments of memory, and that it was this that accounted 

for the observed pattern of impairments in memory tasks. As Gaffan (2001) and 

Mumby (2001) argue, Horel's views showed remarkable prescience and have 

subsequently been largely vindicated by research findings. 
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Meanwhile evidence from animal studies was accumulating which cast doubt on the 

attribution of such a central role in memory to the hippocampus. As early as 1954 it 

had been found (Mishkin, 1954) that monkeys with bilateral hippocampal lesions 

showed only slight impairments on pre-operatively acquired visual discriminations, 

and, more significantly, no impairment in the learning of new discriminations, even 

under conditions designed to promote interference. It was in precisely such tasks that 

human amnesia were severely impaired. Clearly i f an animal model of amnesia were 

to be developed, structures apart from the hippocampus required investigation. The 

following section wil l therefore consider the anatomy and some relevant 

electrophysiology of some of the candidate regions. The perirhinal cortex, as the 

principal focus of this thesis, is discussed in greater detail than are other structures, 

with particular attention being given to some of its cytoarchitectural properties which 

may support object recognition. 

1.2: The Anatomy of the Medial Temporal Lobe 

Within the medial temporal lobe are a number of structures which form part of the 

limbic system. The concept of the limbic system derives from the idea of a "limbic 

lobe" comprised of the phylogenetically primitive three-layered allocortex, organised 

into gyri which enclose the brain stem. In addition to the parahippocampal, cingulate 

and subcallosal gyri, the limbic lobe also includes the hippocampal formation 

comprising the hippocampus proper, the dentate gyrus and the subiculum. In the 

human the hippocampus and the fornix are closely interconnected with the cingulate 

and parahippocampal gyri, despite their separation by the corpus callosum. 

1.21: The hippocampal formation and the hippocampus proper 

In the rat the hippocampal formation extends rostrodorsally in a C-shape from the 

septal nuclei of the basal forebrain passing over and behind the diencephalon. It is 

composed of six cytoarchitecturally distinct regions which make up the structure at 

different septotemporal levels. These are the dentate gyrus, the hippocampus proper, 

the subiculum, presubiculum and parasubiculum (sometimes grouped together as the 

subicular formation) and the entorhinal cortex. These structures are included under 

the label of "hippocampal formation" largely because of the strong and primarily 

unidirectional projections which link them one to another. Unidirectional projections 
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are rare among cortico-cortical connections which is why the structures linked in this 

way are considered as a single formation. 

Within the hippocampus proper there are three divisions; CA1, CA2, CA3, which 

may be functionally as well as structurally discrete. Cytoarchitecturally they are 

distinguished by the size of the pyramidal cells which are considerably larger in CA2 

and CA3 than in CA1. More importantly, the CA3 cells receive mossy fibre input 

from the dentate gyrus while the CA1 cells do not. In the rat the septal levels of the 

hippocampus receive more cortically derived afferents than temporal levels. This is 

suggestive of a functional distinction between these areas (Burwell & Amaral, 1998). 

The hippocampus has strong connections, via the perforant path, with the rhinal and 

parahippocampal cortex in both primates (Suzuki & Amaral, 1994) and in rodents 

(Burwell Witter & Amaral., 1995) (see figures 1.1 and 1.2 for the anatomy of the 

temporal lobe in, respectively, the macaque monkey and in the rat). 

Perirhinal cortex 

Entorhinal cortex 

Parahippocampal cortex 

Amygdala 

I 1 
I j Hippocampus 

Figure 1.1: Medial (A) and ventral (B) views of the right hemisphere of a 

macaque brain showing the location and extent of various structures in the 

medial temporal lobe. The amygdala and hippocampus are buried deep within 

the medial temporal lobe whereas the perirhinal, entorhinal and 

parahippocampal cortices are located on the surface of the brain. Taken from 

Murray, Bussey, Hampton & Saksida (2000). 
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Figure 1.2: Lateral (A), ventral (B) and caudal (C) surface views of the rat brain 

illustrating the locations of the perirhinal, postrhinal and entorhinal cortices. 

The perirhinal cortex (PER) is shown in gray, area 36 in dark gray and area 35 

in light gray. The postrhinal cortex (POR) is shown with a cross-hatched pattern. 

The entorhinal cortex is shown in gray with diagonal stripes, dark stripes for the 

medial entorhinal area (Entm) and light for the lateral entorhinal area (Entl). 

(D) an unfolded map of the perirhinal and postrhinal cortices showing regional 

and subdivisional borders. Taken from Burwell (2001). 
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The fornix is the term applied to the major fibre bundle which consists partly of the 

fibres which originate in the pyramidal cells of the hippocampus and the subiculum 

and which innervate the contralateral hippocampus as well as subcortical structures 

such as the mammillary bodies. Initially the bundle is known as the fimbria before 

the fibre bundles descend into the forebrain, at which point they form the columns of 

the fornix. The fornix divides around the anterior commissure to form a rostrally 

directed component innervating the septal nuclei and a caudally directed component 

which is directed toward the diencephalon. This postcommisural tract divides in turn 

to innervate the anterior hypothalamus and the anterior thalamic nuclei. As well as 

carrying efferent fibres from the hippocampus the fimbria and fornix also carry 

afferent fibres to the hippocampal formation. It can clearly be seen that the fimbria-

fornix is crucial to hippocampal function as part of an integrated memory system 

including diencephalic structures. 

1.22: The rhinal cortices 

The rhinal cortices are comprised of the entorhinal cortex (although this is sometimes 

considered to form part of the hippocampal formation), the perirhinal cortex and the 

postrhinal cortex. In the macaque monkey the rhinal cortices surround the rhinal 

sulcus on the ventromedial aspect of the temporal lobe, and are therefore vulnerable to 

damage during surgery on the hippocampus proper. 

Entorhinal Cortex 

Although the entorhinal cortex is considered to form part of the hippocampal 

formation it is not, properly speaking, archicortex and is included primarily because 

its projectional properties (see above). The major portion of the entorhinal cortex is 

sited both caudal and ventral to the other structures comprising the hippocampal 

formation, with its lateral border being defined by the caudal half of the rhinal sulcus. 

In both the monkey and the rat the entorhinal cortex and the constituent areas of the 

perirhinal cortex lie adjacent to each other: in the ventrodorsal plane in the rat and the 

mediolateral plane in the monkey. It is defined by the strong projection from layer I I 

to the molecular level of the dentate gyrus. The entorhinal cortex receives over 95% 

of cortical input from other polymodal association areas, including the perirhinal and 

parahippocampal (parahippocampal cortex in monkeys; postrhinal in rats - see 
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discussion below: p 11) cortices, as well as the orbitofrontal cortex, the retrosplenial 

cortex and the cortex on the dorsal bank of the superior temporal sulcus. The lateral 

area of the entorhinal cortex receives strong projections from the piriform cortex and 

from temporal and frontal regions, while the more medial area receives more afferents 

from the cingulate cortex and parietal and occipital areas (Burwell & Amaral, 1998). 

In both rodents and primates the entorhinal cortex provides a strong output to the 

dentate gyrus via the perforant path. In contrast to the perirhinal and 

parahippocampal cortices there are no unimodal visual inputs from areas TE, TEO or 

V4 to the entorhinal cortex. Indeed, around two-thirds of the cortical inputs to the 

entorhinal cortex originate in the perirhinal and parahippocampal cortices (Insausti, 

Amaral & Cowan 1987), which has been regarded as an indication that the entorhinal 

cortex is of a higher order, functionally speaking, than the other rhinal cortices. 

Perirhinal Cortex 

The perirhinal cortex consists of areas 35 and 36. In monkeys these form a band of 

cortex situated lateral to the ful l rostro-caudal extent of the rhinal sulcus. The 

perirhinal cortex extends anteriorly to include the medial portion of the temporal pole 

and laterally to include a substantial area of the cortex on the inferotemporal gyrus 

(Suzuki & Amaral, 1994a; Insausti et al., 1987; Amaral, Insausti & Cowan, 1987). 

In rats there has been more controversy over the exact extent of the perirhinal cortex. 

Since Deacon, Eichenbaum, Roseberg & Eckman's (1983) comprehensive study of 

the rat perirhinal cortex and the cortical afferents to it there has been a substantial 

revision of the boundaries of this cortical area. Burwell, Witter & Amaral (1995) 

found that the perirhinal cortex surrounds the posterior portion of the rhinal sulcus. It 

is bounded medially by the entorhinal cortex and laterally by temporal association 

areas. The posterior boundary is formed by the postrhinal cortex which has 

connectional similarities with the parahippocampal cortex in the monkey. The 

postrhinal cortex was originally regarded as forming the caudal section of the 

perirhinal cortex, but has been re-classified as a separate structure due to the pattern 

of connectivity shown (Burwell et al. 1995). 

The perirhinal cortex receives inputs from several areas including areas TE and TEO. 

Cells in area TE respond to specific features of stimuli, and, for the first time in the 
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ventral stream of visual processing, are organised into columns of cells which respond 

to similar stimulus properties (Tanaka, 1996) ; and both of these areas are known to 

be important in the visual identification of visual objects. The inputs to the perirhinal 

cortex from areas TE and TEO are extremely robust in the monkey (Suzuki & Amaral 

1994a), suggesting that visual object identification is an important part of the function 

of the perirhinal cortex. The view that this function is object identification per se is 

supported by the fact that perirhinal cortex also receives inputs from somatosensory 

association areas of the insular cortex, and from an area of the superior temporal 

gyrus in which cells respond to both auditory and visual stimuli (Suzuki & Amaral 

1994a). Whilst there are substantial feedback projections from the monkey perirhinal 

cortex to sensory cortical areas these efferents are much weaker in the rat (Burwell & 

Amaral, 1998). The perirhinal cortex also receives robust connections from the 

orbitofrontal cortex and the dorsal bank of the temporal sulcus, both of which are 

polymodal association areas (Suzuki & Amaral, 1994, Suzuki, 1996). The perirhinal 

cortex also has interconnections with the amygdaloid complex, particularly the lateral 

nucleus of the amygdala, although there are also minor reciprocal connections with 

the accessory basal nucleus (Amaral, Price & Pitkanen et al., 1992; Suzuki, 1996). 

While such detailed studies have yet to be carried out in the rat, studies by Burwell 

and colleagues indicate a similar pattern of connectivity (Burwell et al., 1995; 

Burwell, Witter & Amaral, 1998). Taken together this pattern of connections is 

consonant with the perirhinal cortex having a substantial involvement in the 

identification of individual objects on the basis of information which may be 

integrated from a number of different modalities, although in the monkey the 

information may be primarily visual. 

As wil l be discussed later, the perirhinal cortex is important in many aspects of object 

memory. The mechanisms by which such memories may be formed or consolidated 

and maintained are therefore of particular importance. In addition to its connectional 

characteristics, the perirhinal cortex appears to have certain cytoarchitectonic and 

neurochemical properties which may render it uniquely suited to stimulus recognition. 

Perirhinal cortex contains neurons with some unusual properties (e.g. McGann, 

Moyer & Brown, 2001; Beggs, Moyer, McGann & Brown, 2000). The existence of 

certain cell types with firing patterns which are, so far, unique, and the demonstration 

of several types of long term synaptic plasticity both point to a system with the 
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capacity for differential response to novel and familiar stimulus events. Taken in 

conjunction with the evidence of cell firing patterns in response to novel objects this 

could be the basis of an object recognition system. 

In particular, layer V I of perirhinal cortex contains a predominance of late-spiking 

(LS) neurons (McGann et al., 2001). These are neurons which delay the onset of their 

spiking trains by several seconds relative to the onset of a depolarising current step 

and then sustain firing for the duration of the step. These neurons have only 

previously been found in very small numbers in a limited number of cortical areas. 

Layers I I and I I I of the perirhinal cortex also contain substantial numbers of LS 

neurons which have been found to show persistent delayed firing in response to a train 

of excitatory synaptic inputs (Beggs et al., 2000). The second most common type of 

cell in layer V I are single-spiking neurons which issue only a single action potential 

even in response to extreme depolarisation (McGann et al., 2001). These have not 

been documented elsewhere in neocortex, and have previously been found only in the 

amygdala. This layer of perirhinal cortex contained almost no regular spiking 

neurons, making it unique among cortical areas so far studied. This unique pattern of 

neuronal composition is suggestive of a role which requires very particular neuronal 

properties, and, in particular, the property of limited response to repeated stimulus 

exposure. 

Layers I I I and V of the perirhinal cortex have been found to contain a substantial 

proportion of neurons whose membrane potential oscillations are at theta-frequency 

(Bilkey & Heinemann, 1999). When these neurons were depolarised past spike 

threshold they tended to fire in clusters. The within-cluster inter-spike interval was 

close to the peak-to-peak activity of the membrane potential oscillation. These 

intrinsic properties may be important to the synchronisation of a proportion of 

perirhinal neurons with hippocampal theta activity and may therefore enhance 

communication between the two structures. This might potentially support perirhinal 

involvement in processing an object-in-context scenario such as those discussed in 

chapter 4. 

Finally, layers V and V I of the perirhinal cortex, in common with layers I I and I I I of 

the entorhinal cortex, show a large number of cells which express the messenger RNA 
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brain derived neurotrophic factor (Hashimoto, Okuno, Tokuyama & Li et al., 2000). 

The laminar distribution of this messenger RNA, and of neurotrophin 3, which is 

found predominantly in layers I I and I I I of entorhinal cortex suggests that they are 

primarily expressed in projection neurons. This may be indicative of a particular role 

in regulating feed-forward and feed-back projections from the rhinal cortex, and in the 

regulation of functional reorganisation underlying long-term memory formation and 

maintenance. 

The connectional and cytoarchitectural characteristics outlined above, together with 

the variety of synaptic plasticity found in the perirhinal cortex (see chapter 6 ppl93 

for a detailed discussion) would seem to support its position as the principal candidate 

for the neural basis of a system which is involved in the high-level processing of, and 

in memory for, objects. 

Postrhinal Cortex 

Postrhinal cortex in the rat is considered to be the homologue of parahippocampal 

cortex in monkeys, because of the connectional similarities between the two structures 

(Burwell & Amaral, 1998). Whilst the equivalence is not perfect it is sufficiently 

useful for work on the monkey parahippocampal cortex to have relevance to a study 

of the postrhinal cortex in the rat. In monkeys the parahippocampal cortex lies caudal 

to the entorhinal and perirhinal cortices, consisting of areas TH and TF. These areas, 

unlike the constituent areas of the perirhinal cortex, cannot be treated as a single 

entity since they receive different inputs. Area TF receives projections from the areas 

of the posterior parietal cortex concerned with visuo-spatial processing (Andersen, 

Anasuma & Essick & Siegal, 1990; Burwell & Amaral, 1998). It also receives inputs 

from other polymodal areas such as the dorsolateral prefrontal and retrosplenial 

cortices and the dorsal bank of the superior temporal cortex, which are in turn 

interconnected with the posterior parietal cortex. Area TH receives similar polymodal 

inputs, but also receives unimodal auditory information from area TPT of the superior 

temporal gyrus. By comparison with the perirhinal cortex the parahippocampal cortex 

receives very little input from area TE, although it does receive unimodal visual input 

from VT1 and V4, which is concentrated in projections to area TF. 
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The boundaries of the postrhinal cortex in the rat have provided considerable 

demarcation difficulties based purely on cytoarchitectonic criteria, as, to a lesser 

extent, have those of the perirhinal cortex. A clearer picture of the boundaries 

emerges only when chemoarchitectonic and connectional data are also considered. 

Taking these factors into account Burwell et al. (1995) define the postrhinal cortex as 

being composed of the caudal levels of area 35 and the caudal levels of area 36, the 

medial border being with the entorhinal cortex. The dorsal border of postrhinal cortex 

is with association cortex, but it is unclear whether this is polymodal association 

cortex or visual association cortex. 

Connections between the rhinal cortices 

Suzuki & Amaral (1994b) used anterograde and retrograde tracers to investigate the 

topographic and laminar organisation of reciprocal projections between the entorhinal 

and the perirhinal and postrhinal cortices in the monkey. Both the perirhinal and 

parahippocampal cortices have distinct but partially overlapping interconnections with 

the entorhinal cortex. The perirhinal cortex connects reciprocally with the rostral 

two-thirds of the entorhinal cortex, whilst the parahippocampal cortex connects 

reciprocally with the caudal two-thirds of the entorhinal cortex. A l l regions of the 

perirhinal cortex project in a highly convergent manner on to both rostral and lateral 

portions of the entorhinal cortex. In contrast, the outputs of the parahippocampal 

cortex have a topographic organisation such that the medial parahippocampal cortex 

projects to the caudomedial entorhinal cortex, while the lateral parahippocampal 

cortex projects to the caudolateral entorhinal cortex. In the rat anterograde tracing has 

shown that the perirhinal cortex preferentially projects to the lateral entorhinal cortex, 

whereas the postrhinal cortex mainly sends fibres to the medial entorhinal cortex 

(Naber, CalleroBleda, JottismaByham & Witter, 1997). 

The perirhinal and parahippocampal cortices, which receive input from both unimodal 

and polymodal association cortices of the temporal, frontal and parietal lobes and also 

output to these cortices, form 60% of the input to the entorhinal cortex (Insausti et al, 

1987). The degree of reciprocity of the projections between the rhinal cortices varies. 

A l l the connections between the entorhinal and parahippocampal cortices have a high 

degree of reciprocity. The degree of reciprocity of connections between the perirhinal 

and entorhinal cortices varies depending on the mediolateral position of the 
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projection's origin within the perirhinal cortex. The medial perirhinal cortex gives 

rise to projections which have a higher degree of reciprocity than does the lateral 

perirhinal cortex. Projections from the perirhinal and parahippocampal cortices to the 

entorhinal cortex resemble a feed-forward projection, whilst those from the entorhinal 

cortex to these cortices resemble a feed-back projection (Suzuki & Amaral, 1994). 

This is supportive of the view that the entorhinal cortex may, in functional terms, be 

higher order than the other rhinal cortices. As with the projections from the perirhinal 

to the sensory cortices, the feedback projections from the entorhinal cortex to the 

perirhinal cortex are considerably weaker in the rat than in the monkey (Burwell & 

Amaral, 1998). As we have seen the entorhinal cortex outputs to the rest of the 

hippocampal formation via the perforant path. 

1.3: Memory 

Research into memory has primarily focused on episodic memory; the explicit 

memory for events which is lost in amnesia. Implicit learning which can be tested by 

tasks such as priming is spared in amnesia (Weiskrantz & Warrington 1979; Brooks 

& Baddeley 1976; Warrington & Weiskrantz 1970; Hamann & Squire, 1997). Human 

amnesia appears to result from damage to the Delay-Brion (Delay & Brion, 1969) 

system, which involves structures in the medial temporal lobe, the diencephalon and 

the basal forebrain. It consists of the hippocampus, the entorhinal and perirhinal 

cortices, the mammillary bodies, the mammillo-thalamic tract and the anterior 

thalamic nucleus (Kopelman, 1995). There is growing evidence that damage to one 

of these regions impacts on the function of other structures in the system. For 

example, amnesic patients with differing aetiologies and damage to disparate 

anatomical structures have all been found to show bilateral metabolic depression in 

the frontal basal cortex, the hippocampal region, the thalamus and the cingulate gyrus 

(Fazio, Perani, Gilardi & Cappa et al., 1992), while the differential c-fos expression in 

the perirhinal cortex and area TE following exposure to novel and familiar objects is 

abolished by lesions of the medial thalamus (Dix, Wan & Aggleton & Brown, 1998). 

Despite the evidence that lesions to one area can impair the function of other 

structures, research continues the attempt to isolate the contribution each of these 

structures is making to the function of the memory system. 
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Lesion studies in animals largely stemmed from the dramatic evidence outlined earlier 

that damage to specific brain regions causes profound impairments in humans 

(Scoville & Milner, 1957). However there was considerable difficulty in producing 

an animal model of the global memory deficits found in classic cases of anterograde 

amnesia. It became apparent that monkeys with severe hippocampal damage were 

unimpaired on standard tests of visual memory such as the object discrimination test 

(Orbach, Milner & Rasmussen, 1960), despite having lesions of the hippocampus 

similar to those received by H M (Scoville & Milner, 1957; Corkin et al., 1997). 

Hippocampal damage in non-human primates appeared to produce primarily spatial 

deficits (Morris, Garrud, Rawlins & O'Keefe, 1982; Rasmussen, Barnes & 

McNaughton, 1989; Riedel, Micheau & Lam et al., 1999), in contrast to the patients 

with hippocampal lesions who were severely impaired on all tasks that required 

episodic memory, even when damage was known to be restricted to area CA1 of the 

hippocampus (Zola-Morgan, Squire & Amaral, 1986). H M was profoundly impaired 

on tasks such as delayed pair comparison (Milner, Corkin & Teuber, 1968) and 

delayed matching to sample (Sidman, Stoddart & Mohr, 1968). However animals 

with hippocampal lesions performed normally on such tasks (Orbach et al., 1960). A 

primarily spatial model of hippocampal function, with the hippocampus as an 

allocentric spatial mapping system emerged (O'Keefe & Nadel, 1978) and has been 

largely supported by subsequent work. However, the problem of reconciling human 

and animal data remained, even allowing for the uncircumscribed nature of the 

majority of the lesions found in humans. 

It gradually became apparent that the problem of modelling amnesia in animals might 

lie in the precise nature of the task used. Freed & Corkin (1988) found that even HM 

was able to remember certain things for long periods i f the task were structured in the 

right way. When the standard object recognition tasks used to test primates were re­

examined it was realised that they were not necessarily engaging episodic memory, or 

indeed a form of memory analogous to episodic memory. When an animal version of 

a human episodic memory test is developed it is often difficult to determine whether 

explicit rather than implicit memory is required for task completion. Only with the 

development of tasks for primates in which success required the engagement of 

aspects of episodic memory, such as the object-in-scene test (Gaffan & Harrison, 

1989), has it become possible to demonstrate deficits analagous to those found in 
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human amnesia. A similar study in rats found that fornix transection reduced 

sensitivity to object-scene combinations (Simpson, Gaffan & Eacott, 1998). 

Demonstrating impaired object memory in monkeys as a result of hippocampal 

damage requires relatively sophisticated tasks. The development of such tasks and 

the demonstration of a primate analogue to the impairment of episodic rather than 

specifically spatial memory found in human amnesic patients (Gaffan, 1994), is a 

breakthrough in the understanding of hippocampal function. However, for a full 

understanding of the impairments produced it is necessary to look at the neural bases 

of both spatial and object memory. The scope of this thesis necessarily requires that a 

considerably more detailed discussion be devoted to object memory than to spatial 

memory 

1.31: Spatial memory 

Numerous studies have clearly indicated that the hippocampus plays a central role in 

the processing of allocentric spatial information. Performance on tasks which require 

such spatial processing such as delayed non-matching-to-place (DNMTP), radial 

maze, and Morris water maze is severely impaired by hippocampal or fornix lesion. 

While the involvement of the hippocampus is clear (Morris et al., 1982; Rasmussen et 

al., 1989; Riedel et al., 1999), the evidence for a role for entorhinal cortex in spatial 

memory is equivocal. A large number of studies using aspiration lesions in rodents 

have shown deficits on spatial tasks including the Morris maze (e.g. Schenk & Morris, 

1985) the radial maze (e.g. Olton, Walker & Gage 1978) and DNMTP on a T-maze 

(Loesche & Steward, 1977). The findings from studies using excitotoxic lesions, 

which spare the fibres of passage to the hippocampus (Cho, Berracochea & Jaffard, 

1993; Cho & Jaffard, 1994; Holscher & Schmidt 1994; Pouzet, Welzl, Gubler & 

Broersen et al., 1999) suggested milder impairments of spatial reference memory, 

while Bouffard & Jarrard (1988) found no impairments. Bannerman, Yee, Lemaire & 

Wilbrecht et al., (2001) found that entorhinal cortex lesions impaired DNMTP, but 

did not affect performance on a spatial reference memory task in the Morris maze. 

The authors suggest that the bulk of the evidence supports a role for the entorhinal 

cortex in supporting some aspects of spatial memory which only the more sensitive 

behavioural tests detect. The probability seems to be that the entorhinal cortex is 
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involved in supporting spatial memory in normal animals (Vann, Brown & Erichsen 

& Aggleton, 2000) but is not required for performance to be maintained in lesioned 

animals. 

The role of the postrhinal cortex in memory is not clear. This area of cortex has been 

included in some of the studies that have used large lesions of the medial temporal 

area, but there have been very few studies that have employed circumscribed lesions 

of the postrhinal cortex in rats or the parahippocampal gyrus/cortex in monkeys. In 

particular the postrhinal area was not included in the lesions used by Wiig & Bilkey 

(1994) or Phillips & LeDoux (1995). 

It seems possible that the postrhinal cortex is involved in spatial memory. It does not 

appear to be involved in object memory (Murray & Gaffan, 1993; Ramus, Zola-

Morgan & Squire, 1994), although an FMRI study (Gabrielli, Brewer, Desmond & 

Glover, 1997) suggested that parahippocampal cortex in humans is involved in 

encoding complex object-position configurations. A study of patients with lesions 

which affected the perirhinal or parahippocampal cortex found that those with 

parahippocampal damage were impaired on a memory-guided eye movement task 

contralateral to the lesioned side, whereas those with perirhinal damage were not 

affected (Ploner, Gaymard, Rivaud Pechoux & Baulac et al., 2000), and another 

lesion study in humans supports a role for the parahippocampal cortex (Bohbot, Allen 

& Nadel, 2000). Rolls & O'Mara (1995) found evidence of cells in parahippocampal 

cortex which respond to differences in visual fixation. Wan, Aggleton & Brown 

(1999) found that postrhinal cortical cells, like those in hippocampal area CA1 

responded differentially to novel arrangements of familiar objects but, unlike cells in 

the perirhinal cortex, did not respond differentially to novel objects. This result is 

consonant with the lack of input from area TE of the inferotemporal cortex compared 

to the projections received by the perirhinal cortex (Suzuki & Amaral, 1990) and the 

robust projections it receives from the posterior parietal cortex which is heavily 

implicated in spatial processing (Andersen, et al., 1990). Behavioural studies in 

primates would appear to support the involvement of the parahippocampal cortex in 

aspects of spatial memory. Lesions of the area cause impairments in object-place 

associations (Malkova & Mishkin, 1997), spatial reversal tasks (Teng, Squire & Zola 

1997) and spatial orientation tasks (Habib & Sirigu, 1987). 
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However, there is some evidence that postrhinal lesions do not cause comparable 

behavioural impairments in rodents. Performance on allocentric spatial memory tasks 

such as the Morris maze and radial arm maze is unimpaired by combined perirhinal 

and postrhinal cortex lesions (Bussey, Muir & Aggleton, 1999). Myhrer (2000) found 

that postrhinal as well as perirhinal lesions impaired acquisition of a three-choice 

visual discrimination task, but that postrhinal lesions did not affect retention, whereas 

perirhinal lesions did. This would suggest that the postrhinal cortex is not necessary 

for spatial memory processing in rodents and may be more involved in object 

memory. This may imply that functionally, i f not anatomically, there may be little 

equivalence between the parahippocampal cortex in the monkey and postrhinal cortex 

in the rat. 

1.32: Object Memory 

The debate about the role of the hippocampus in memory was clarified by the 

realisation that large temporal lobe lesions, which did impair visual recognition 

memory in monkeys, included damage to the areas of rhinal cortex overlying the 

hippocampal formation as well as to the hippocampus and amygdala. Impairments 

which had previously been attributed to combined hippocampal and amygdalar 

damage in both monkeys (Mishkin, 1978) and humans were in fact due to the rhinal 

cortex damage that occurred with these combined lesions of the hippocampus and 

amygdala. This was clearly demonstrated by the use of circumscribed excitotoxic 

lesions of both the amygdala and hippocampus which did not impair object 

recognition memory as measured by performance on a delayed non-matching to 

sample (DNMS) task (Murray & Mishkin 1998). This finding contrasted with the 

classic H+A+ lesion (involving hippocampus, amygdala and surrounding cortex) 

which caused severe mnemonic impairments (Mishkin, 1978). This difference in 

behavioural impairments appeared to be due to the extensive damage to the rhinal 

cortices which was caused by the single H+A+ lesion, but not by the separate 

excitotoxic lesions. These excitotoxic lesions did not impair performance even when 

there was near total cell loss in both structures. Alvarez, Zola-Morgan & Squire 

(1995) did find that hippocampal animals were impaired on DNMS at very long 

delays, but this is a single result which is at odds with the bulk of the evidence: 

Murray & Mishkin (1998) failed to confirm this result in their study when they 
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replicated the forty minute delay used by Alvarez et al. (1995). Much more typically 

it is found that hippocampal lesions fail to affect memory of object discriminations, 

even at very long delays, contrasting sharply with the impairments on spatial tasks at 

all delays (Mumby, Astur, Weisend & Sutherland, 1999). It is possible that the 

impairment observed by Alvarez et al. (1995) may represent deficient identification of 

context rather than deficient stimulus recognition per se. Also, this study used 

radiofrequency lesions which may have damaged fibres of passage from the rhinal 

cortex. It is possible that disruption of this connection would be sufficient to disrupt 

object memory. The difficulty in identifying such damage as the cause of an 

impairment, and the ease with which conventional hippocampal lesions can damage 

the rhinal cortices can be seen from the discussion of the anatomy of the medial 

temporal lobe (pp4 above). 

It therefore seems likely that some of the severe impairments of explicit object 

memory found in human amnesic patients are at least partially due to damage to the 

perirhinal cortex as well as to hippocampal damage. The precise role of the rhinal 

cortices in memory has been investigated extensively in the monkey. The deficits in 

stimulus memory observed in monkeys with rhinal cortex lesions appear similar to 

those found in humans who have sustained damage to the ventromedial temporal 

cortex (Kapur, Ellison, Parkin & Hunkin et al., 1994). Gaffan & Murray (1992) 

found that rhinal cortex lesions in monkeys produced an impairment equivalent to the 

traditional H+A+ lesion, in contrast to intact performance following circumscribed 

amygdalar and hippocampal lesions. Other studies have supported the theory that 

circumscribed lesions of the rhinal cortices are both necessary and sufficient to cause 

the severe deficits on tasks that required visual recognition memory, which had 

previously been attributed to combined damage to the hippocampal and amygdalar 

structures (Zola-Morgan, Squire, Amaral & Suzuki, 1989; Gaffan & Murray, 1992; 

Meunier, Bachevalier & Mishkin & Murray, 1993; Suzuki, Zola-Morgan, Squire & 

Amaral, 1993). 

Gaffan & Murray (1992) found that rhinal cortex ablations produced impairment in 

re-acquisition of pre-operatively learnt concurrent discrimination problems using 24 

hour inter-trial intervals, but no impairment in the post-operative acquisition of new 

discriminations. Area TE was also damaged during surgery, and such damage is 
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known to impair object recognition memory (e.g. Gaffan & Weiskrantz, 1980), but it 

also impairs learning of concurrent discriminations (Phillips, Malamut, Bachevalier, 

& Mishkin 1988). As no global visual impairment was observed, it is unlikely that 

the observed memory impairment was due to incidental damage to area TE rather than 

to the rhinal cortex lesions. This interpretation is supported by Buffalo, Ramus, Clark 

& Teng et al.'s (1999) study which found that monkeys with perirhinal lesions 

displayed a different pattern of impairments to monkeys with lesions of area TE. This 

pattern suggested that whilst the perirhinal cortex was involved in multi-modal 

mnemonic processing, area TE was primarily involved in visual perceptual 

processing. 

In monkeys the perirhinal cortex has been found to be the most important of the rhinal 

cortices for visual recognition, when the volume of the lesion is considered relative to 

the magnitude of the impairment. Although combined lesions of the entorhinal and 

perirhinal cortices produced an impairment greater than lesions to either structure 

alone (Meunier et al., 1993; Leonard, Amaral, Squire & Zola-Morgan, 1995) the 

differential was slight compared to the difference in lesion size. Lesioning the 

parahippocampal cortex alone produced little or no impairment on object memory 

(Ramus et al., 1994), raising again the question of the nature of this structure's 

mnemonic function. 

The view that the entorhinal cortex does in fact make a contribution to object memory 

is supported by work on humans. Owen, Milner, Petrides & Evans (1996) carried out 

a PET study on encoding and retrieval of object memories and found that, when 

subjects were retrieving the objects from memory, there was an increase in the 

regional cerebral blood flow in the region of the right hippocampal gyrus 

corresponding to the entorhinal cortex. Whilst the lateralisation effect would be 

predicted to be restricted to humans, the involvement of the entorhinal cortex is 

interesting, given that lesion work (Meunier et al., 1993; Leonard et al., 1995) 

suggested a minimal role for the entorhinal cortex. It is possible that the discrepancy 

between the two sets of evidence could be due to a distinction between anatomical 

and functional damage. It is plausible that the entorhinal cortex, which receives a 

substantial proportion of its cortical afferents from the perirhinal cortex, is 

metabolically affected by perirhinal lesions although the histology shows it to be 
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untouched by the lesion. Therefore, a considerable amount of the memory 

impairment which has been attributed to perirhinal damage could, in fact, be due to 

indirect damage to entorhinal cortex function. 

The role of the perirhinal cortex itself in object memory is supported not only by the 

pattern of its connections with other cortical areas but also by various 

neurophysiological studies. There is also evidence from electrophysiological studies 

that cells in the perirhinal cortex have differential responses to novel and familiar 

stimuli (Brown, Wilson & Riches, 1987; Fahy, Riches & Brown 1993; L i , Miller & 

Desimone, 1993; Riches, Wilson & Brown, 1991; Zhu, Brown, McCabe & Aggleton 

1995) . Neurons in monkey perirhinal cortex respond to visual, somatosensory, 

auditory or a combination of these stimulus modalities (Desimone & Gross, 1979). In 

the rat both odour-responsive and visually-responsive neurons have been documented 

(Zhu, Brown & Aggleton, 1995). Unlike hippocampal neurons, the firing patterns of 

perirhinal neuron have not been found to have stable spatial correlates (Burwell et al., 

1998). Perirhinal neurons which respond to visual stimuli are, like those in the 

adjacent unimodal area, TE, stimulus selective (e.g. Miller, L i & Desimone., 1993). 

Their responses, also like those of neurons in TE, are invariant for changes in size or 

location (Lueschow, Miller & Desimone, 1994). 

Comparison of the time courses of perceptual and memory retrieval signals show that 

the perceptual signal reaches area TE before perirhinal cortex; while the reverse is 

true of the memory retrieval signal (Naya, Yoshida & Miyashita, 2001). Xiang and 

Brown (1999) used a task in which the geometrical arrangement of three shapes 

determined the correctness of a behavioural response. They found that 50% of 

neurons in perirhinal cortex, entorhinal cortex and area TE responded differentially to 

different types of trial, while only 13% of hippocampal neurons did so. The 

differential responses that would allow tasks to be solved using a conditional rule 

were twice as common as were those which indicated a spatial rule. The differential 

latencies for the responses allowing a conditional response were also considerably 

shorter. However, the level of hippocampal responsiveness was such that, while 

animals may adopt conditional strategies, spatial solutions are open to them as an 

alternative. C-fos studies have supported the electrophysiological findings (Brown, 

1996) that perirhinal neurons respond differentially to novel objects (Wan et al., 1999) 
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or pictures (Zhu, Brown, McCabe & Aggleton, 1995)., but not to novel arrangements 

of familiar objects (Zhu, McCabe, Aggleton & Brown, 1997). Tassoni, Lorenzini, 

Balsi & Sacchetti et al. (1999) used a reversible inactivation by tetrodotoxin to 

demonstrate that perirhinal cortex was involved in retrieval of a passive avoidance 

response, and in the late consolidation of the memory, but not in the early stages of 

memory acquisition. This supports the behavioural findings that rats (Machin & 

Eacott, 1999) and monkeys (Thornton, Rothblat & Murray, 1997) with perirhinal 

ablation showed a deficit in reacquisition of pre-operatively learned object 

discriminations but no deficit in the acquisition of new object discriminations. 

It is clear from the evidence outlined above that the perirhinal cortex is important to 

memory for objects. The role of the perirhinal cortex in visual memory should not, 

however, be regarded as simple or stand-alone object memory. Monkeys with 

bilateral lesions of the perirhinal cortex are impaired on concurrent discrimination 

learning tasks, either when the number of objects involved is a large (Eacott, Gaffan 

& Murray 1994) or when the number is small but the objects are presented in a 

number of different orientations (Buckley & Gaffan 1998a). Such animals are also 

impaired in the visual identification of familiar objects which are presented in novel 

orientations or which are presented embedded in a scene (Buckley & Gaffan, 1998b). 

Monkeys with rhinal or perirhinal lesions are impaired on visual discrimination 

learning (Buckley & Gaffan, 1997; Buckley & Gaffan, 1998a), visual paired associate 

tasks (Buckley & Gaffan 1998b; Murray, Gaffan & Mishkin, 1993; Parker & Gaffan 

1998) and visual discrimination reversal (Eacott et al., 1994; Murray, Baxter & 

Gaffan, 1998) while rats with such lesions show poor performance on visual 

discrimination tasks (Eacott, 1998) and on retention of that learning (Kornecook 

Anzarat & Pinel, 1999; Kornecook, Lui, Duva & Anzarat et al., 1995; Machin & 

Eacott, 1999; Wiig, Cooper & Bear, 1996) as well as on stimulus-stimulus association 

learning (Bunsey and Eichenbaum, 1993; Herzog & Otto, 1998). 

It has been argued (Eichenbaum, Otto & Cohen, 1994, 1996) that the 

parahippocampal region (i.e. the rhinal cortices) has the mnemonic function of 

retaining representations of individual items for a more extended period of time than 

the neocortical areas. This theory is reminiscent of the temporal discontinuity theory 

of hippocampal function proposed by Rawlins (1985), although it is not entirely based 
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on the role of the hippocampus as a medium term memory store. They argue that, 

since the hippocampus does not maintain single item representations but only the 

relations between items, the integrity of the parahippocampal region is required for 

normal hippocampal function, but not vice-versa. I f this theory were correct then it 

would be impossible to obtain a double dissociation of the effects of hippocampal and 

rhinal cortex lesions. 

There is, however, very considerable evidence for just such a double dissociation. A 

study by Gaffan (1994b) demonstrated that the effects of fornix lesion and perirhinal 

lesion could be doubly dissociated in monkeys. Using rats, Ennaceur, Neave & 

Aggleton (1996) found that, whilst fornix lesions impaired performance on spatial 

tasks but not on object recognition, the converse was the case when perirhinal lesions 

were employed. Contrary to Eichenbaum et al's (1994, 1996) view, both Gaffan 

(1994b) and Ennaceur et al. (1996) found that lesions to the parahippocampal region -

and specifically to the perirhinal cortex - impaired object recognition without 

affecting performance on spatial tasks. It now seems clear that, despite the 

anatomical connections which exist between the rhinal cortices and the hippocampus, 

lesions of the former do not functionally disconnect the latter. This is despite the fact 

that studies using c-fos imaging (Vann et al., 2000) support the involvement in 

allocentric spatial processing of the entorhinal, postrhinal and retrosplenial, though 

not the perirhinal cortices. 

It is also possible to argue that Ennaceur et al (1996)'s study is not definitive, and that 

i f complete rhinal lesions, which included the entorhinal and postrhinal cortices as 

well as the perirhinal cortex, had been employed then the rhinal lesions would have 

disrupted hippocampal function. It is true that the evidence is somewhat 

contradictory on this point. Although Ennaceur et al's (1996) finding that rhinal 

lesions produced no impairment on T-maze spatial alternation is supported by other 

studies (Aggleton, Keen, Warburton & Bussey, 1997; Bussey, 1997) there is evidence 

that animals with rhinal lesions do experience problems on other spatial tasks. These 

include the radial arm maze (Liu & Bilkey 1999; Nagahara, Otto & Gallagher 1995) 

and the Morris water maze (Otto, Wolf & Walsh, 1997). However, Glenn & Mumby 

(1998) found no impairment even at long delays in the water maze, whilst Machin 
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Vann, Muir & Aggleton (2002) found no impairment on any version of either task at 

substantial delays. 

Conversely, fornix-transected monkeys have been found to be impaired on non-spatial 

reversal learning problems (Gaffan & Harrison, 1984), although even neonatal 

hippocampal lesions have only extremely mild effects on object recognition 

(Bachevalier, Beauregard & Alvarado, 1999). A meta-analysis of studies using a 

delayed nonmatching to sample paradigm with monkeys given either hippocampal or 

rhinal cortex lesions (Baxter & Murray, 2001) found reliable differences in the 

magnitude of deficits. Hippocampally lesioned monkeys were consistently less 

impaired than those with rhinal lesions. Some studies such as Buffalo et al. (1998) 

and Teng et al. (2000) have concluded that impaired performance on concurrent 

learning, apparently resulting from hippocampal lesions, is in fact due to damage to 

inferotemporal cortex or to the tail of the caudate nucleus. Despite the fact that rats 

with perirhinal lesions do experience some mild impairments on some spatial tasks it 

seems reasonable to attribute these to the processing of non-spatial information by the 

perirhinal cortex, which is useful but non-essential to successful performance of the 

spatial task (Mumby & Glenn, 2000). 

It is possible to argue that fornix transection is not equivalent to hippocampal 

ablation, and indeed there would seem to be some support for this view from the 

studies of human patients with bilateral fornix transection. Patients with fornix 

transection following the removal of colloid cysts are not densely amnesic, although 

they do have some memory impairments (Aggleton, McMackin, Carpenter & Hornak 

et al., 2000; Gaffan, Gaffan & Hodges, 1991; Hodges & Carpenter, 1991; McMackin, 

Cockburn, Anslow & Gaffan, 1995). In particular, they are unimpaired on the 

Warrington Recognition Memory Test (Warrington, 1984), developed specifically for 

the detection of amnesia. It should be noted that some patients with bilateral 

hippocampal cell loss as a result of ischemic incidents show similar patterns of 

memory loss, rather than the dense amnesia that might have been predicted (Rempel-

Clower, Zola, Squire & Amaral 1996). This may be indicative of the fact that 

"hippocampal" lesions in humans are rarely circumscribed, while cases such as that of 

the dense amnesic with damage limited to CA1 (Zola-Morgan et al., 1986) are 
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extremely rare, with amnesic patients customarily having damage to structures other 

than the hippocampus proper. 

There is strong evidence that the effects on measurable performance of hippocampal 

ablation and fornix transection in rodents are identical. On a simple spatial task such 

as delayed non-matching to position (DNMTP) in an operant chamber, fornix-

transected and hippocampal animals are indistinguishable (Aggleton, Keith, Rawlins 

& Hunt et al., 1992). In fact fornix lesions may be argued to represent a more 

circumscribed removal of hippocampal function than a hippocampal lesion itself. 

Although fornix transection severs outputs from the subiculum and the perirhinal and 

entorhinal cortices (Aggleton, Desimone & Mishkin, 1986), aspiration lesions of the 

hippocampus actually remove the underlying parahippocampal cortex and part of the 

posterior entorhinal cortex (Murray, 1996). More recent work (Aggleton & Brown, 

1999) emphasises the importance of hippocampal efferents to the diencephalon via 

the fornix in an extended hippocampal system comprising the hippocampus, the 

fornix, the mammillary bodies and the anterior thalamic nuclei. This suggests the 

reverse: that a fornix transection may be a more complete as well as a circumscribed 

removal of hippocampal function. 

However, the nature of the memory process which permits the recognition of an 

object or of knowledge about an object is less clear. There are several processes 

which are involved in the recognition of an object as familiar, not least the integration 

by which several features are resolved into a whole or "gestalt" which can be treated 

as a single entity. Other related processes are those by which the relationship of 

objects to each other (or their integration into a single construct) and the context in 

which objects are viewed. Ultimately object memory must by its very nature form 

part of an episodic memory which may be conceived of as "what" (object); "where" 

(place) and "when" (timing) (e.g. Clayton & Dickinson, 1998). It is the role of medial 

temporal lobe structures in these aspects of memory which this thesis seeks to 

examine and, i f possible, to differentiate. 

1.33: Associative memory 

The rhinal cortex is also implicated in associative memory performance (Buckley & 

Gaffan, 1998c). Although some studies had suggested that the amygdala is critical for 
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cross-modal stimulus-stimulus associations (Murray & Mishkin, 1985, Gaffan & 

Harrison, 1987) it now appears that amygdalar lesions produce an equal impairment 

of intra-modal associative learning. Additionally, Murray et al., (1993) compared the 

effects of rhinal cortex lesions, lesions to the amygdala and the underlying cortex, 

lesions to the hippocampus and the underlying cortex and lesions to both 

hippocampus and amygdala together with the underlying cortex. Murray et al. (1993) 

found that monkeys with rhinal cortex lesions were as severely impaired on an 

associative memory task as monkeys with the combined lesions of the hippocampus 

and amygdala which included much of the underlying cortex. By contrast, removal of 

the hippocampus and underlying cortex or amygdala and underlying cortex produced 

no impairment. This demonstrates that the rhinal cortex, but not the amygdala or 

hippocampus, is crucial to the acquisition of stimulus-stimulus associations. The 

view that the amygdala is not of paramount importance is given additional support by 

the fact monkeys with neurotoxic amygdalar lesions can still learn to associate two 

stimuli with each other, although learning about the strength of the reinforcement is 

affected (Malkova, Gaffan & Murray, 1997). This would indicate that the primary 

amygdalar function is concerned with the reward value of stimuli, not the ability to 

learn about stimuli per se. Baxter, Hadfield & Murray (1999) argue that aspiration, 

but not neurotoxic, lesions of the amygdala cause severe damage to stimulus-stimulus 

learning because of the disruption of connections with other areas including the rhinal 

cortices. It now seems probable that the observed deficits in such studies were 

attributable to damage to the rostral section of the rhinal cortex. This is confirmed by 

Buckley and Gaffan (1998c) who found that monkeys with circumscribed lesions to 

the perirhinal cortex were impaired on visual paired-associate learning. In this form 

of the task subjects had to learn which of two possible stimuli was associated with a 

cue stimulus in order to gain a food reward. 

This has been found to be the case for cross-modal stimulus-stimulus associations, 

including auditory-visual associations (Gaffan & Eacott, 1995; Nicholson & Freeman, 

2000) and flavour-visual associations (Parker & Gaffan, 1998), as well as visual-

visual stimulus associations (Murray et al., 1993). Electrophysiological studies 

(Erickson & Desimone, 1999; Messinger, Squire, Zola & Albright, 2001; Sakai & 

Miyashita, 1991) have found changes in responses of perirhinal neurons in monkeys 

to frequently paired stimuli, as compared to responses to infrequent pairings, that 
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were indicative of linking of representations of the frequently paired stimuli. These 

patterns of neuronal activity are consonant with memory for visual paired associates. 

The inferotemporal cortex, which is involved in discriminative learning, also contains 

neurons that potentially code for visual paired associate learning. Lesions of the 

entorhinal and perirhinal cortex (which send and receive large projections to and from 

the inferotemporal cortex) prevent such responses to paired associates being formed 

in the inferotemporal cortex (Higuchi & Miyashita, 1996), suggesting that it is the 

rhinal cortical areas that are crucial for this form of learning. There is also evidence 

that experience can cause the clustering of neurons with similar properties in adult 

macaque perirhinal cortex (Erickson, Jagadeesh & Desimone, 2000). 

Little work using rats has been carried out on the role of perirhinal cortex in the 

formation and maintenance of stimulus-stimulus associations. The available literature 

does however indicate that its role in rats may be broadly similar to that found in 

monkeys. Otto & Eichenbaum (1992) found that while orbitofrontal cortex lesions 

impaired acquisition of odour-guided non-matching to sample they did not impair 

performance (except when interference was introduced); combined perirhinal and 

entorhinal lesions did not impair acquisition but did impair performance at delay and 

fornix lesions impaired neither acquisition nor performance in any condition. The 

experiment described in chapter 2 of this thesis examines whether visual-visual 

stimulus associations are dependent upon perirhinal cortex in the rat. 

1.34: Configural Processing and Memory 

The weight of the evidence discussed so far suggests that the perirhinal cortex is 

important not just for recognition per se, but for knowledge about objects. It is 

involved in knowledge about objects such as the associations between objects which 

appear together either simultaneously or sequentially. In particular, the view is that 

the perception and representation of an object as a whole rather than as the sum of its 

component parts requires an intact perirhinal cortex. This view is supported by 

connectionist modelling which locates the relationships between features in the more 

rostral regions of the ventral visual stream (Bussey & Saksida, 2002). I f indeed the 

perirhinal cortex is required for what has been described as a " 'gestalt' representation 

of a complete stimulus" (Murray et al, 1998 pi46) then two clear predictions arise. 

The first of these is that not only visual recognition memory, but also performance on 
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any task requiring the use of more than one feature of the object would be impaired by 

perirhinal lesions. The second and more specific prediction is that any task in which 

recognition of an object requires a configural strategy would be impaired in animals 

with perirhinal lesions. The greater the reliance which must be placed upon a 

configural approach, the more severe the predicted impairment. 

The question arises of when an object representation results from the perception of a 

number of features. For example, i f two objects are always seen in absolute proximity 

to each other, wil l a single object representation result? Is it possible to differentiate 

such a configuration from an association between objects? Another issue that needs 

to be addressed is at what point a group of features, which are always seen together, 

cease to be processed as a single object, and are instead processed as an object in a 

particular context comprised of other features. 

The hippocampus has been implicated in configural learning, with hippocampal 

lesions impairing learning of negative patterning tasks (Rudy & Sutherland, 1989). 

However, subsequent studies have not replicated this result (Davidson, McKernan & 

Jarrard 1993; Deacon & Rawlins, 1996). Hippocampal lesions have also been found 

not to impair other forms of configural learning such as biconditional discrimination 

tasks (Murphy, McDonald & Baker, 1998). Indeed hippocampal lesions which spare 

rhinal cortices may actually facilitate configural learning (Bussey, Warburton, 

Aggleton & Muir, 1998). Ennaceur & Aggleton (1994) failed to find a fornix 

impairment on a version of the object recognition task which used a reconfigured 

version of the familiar object and tested discrimination between this and the original 

or the novel object. It has been found (Cho & Kesner, 1995; Han, Gallagher & 

Holland, 1998) that rats with hippocampal lesions which spare the rhinal cortices are 

actually facilitated on configural learning tasks. This suggests that, without the 

information about relations between objects normally supplied by the hippocampus, 

the encoding of object attributes is no longer divided up into information about 

individual objects, but is fused into a configural representation. Under such an 

interpretation the role of the hippocampus is the provision of support for cortically 

based configural representations (Rudy & Sutherland, 1995). This supports the 

findings of Parker & Gaffan (1995) that it is information flow between the rhinal 
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cortices and the hippocampus which is required for the identification of an individual 

object in a context of other objects. 

It seems possible that the perirhinal cortex codes not for objects, but rather for groups 

of properties. The role of the perirhinal cortex in the formation of associations 

between stimuli has already been discussed However, the definition of a stimulus can 

in some senses be regarded as the arbitrary decision of the experimenter (particularly 

when two stimuli always appear in conjunction). In such circumstances the 

association of properties which are defined as belonging to the same stimulus would 

seem to be a closely related function. It is not, therefore, implausible that the 

processing of a stimulus' associative properties might be closely linked to the 

processing of the object's features as constituting a single entity. 

The evidence for hippocampal or rhinal cortical involvement in configural memory 

processing is conflicting. Ennaceur et al. (1996) reported a pattern of results which 

suggest that, at least at short delays, perirhinal lesions might actually facilitate 

configural processing. Bussey, Dias, Redhead & Pearce et al. (2000) found intact 

negative patterning in rats with combined perirhinal and postrhinal lesions as well as 

in those with fornix lesions. However, as the feature ambiguity inherent in the task 

increases so does the severity of the impairment in monkeys with perirhinal lesions 

(Bussey, Saksida & Murray, 2002). Eacott, Machin & Gaffan (2001) also found that 

rats with perirhinal cortex lesions were impaired when processing of more than one 

overlapping feature was required to identify a two dimensional stimulus uniquely, but 

not when identification could be made on the basis of one feature, even when the 

figures involved were complex. Buckley & Gaffan (1998c) report similar findings of 

impairment following perirhinal lesions in primates. Using a naturalistic paradigm 

Ennaceur et al. (1996) found a complex picture which seemed to indicate that 

perirhinal cortex might facilitate recognition using configural processing under certain 

circumstances, whilst impairing it in others. 

Overall the picture of perirhinal cortex involvement in the processing of feature 

ambiguity is unclear. Some of the literature would appear to indicate that an intact 

perirhinal cortex is crucial to processing of the feature ambiguity inherent in a 

configural paradigm, whilst other studies appear to show no effect or even to suggest 
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that perirhinal lesions may actually facilitate such processing. The experiments in 

chapter 3 therefore represent a systematic examination of the effects of different 

levels of feature ambiguity on animals with perirhinal lesions. 

1.35: Context and Memory 

There is a considerable body of evidence for a clear role for the hippocampus in 

memory for context. Many of these studies use paradigms such as place conditioning 

which cannot strictly speaking be related to aspects of object memory (for a brief 

review of such studies see chapter 4). However, Mumby, Gaskin, Glenn & Schramek 

et al. (2002) found that hippocampal lesions not only impaired performance on the 

object in place task, but also impaired performance on an object in context task. It 

could be argued that Gaffan's (1994) object-in-place task is actually a test of memory 

for context. Certainly the deficits following hippocampal lesions in monkeys reported 

by Ridley, Hardy, Maclean & Baker (2001) of object choice which was conditional on 

the background to the object would seem to be a test of object-in-context. Bucci, 

Phillips & Burwell (2000) investigated the role of the perirhinal and postrhinal 

cortices in such contextual memory processing, and found that lesions to either 

structure produced impairments in fear conditioning to context, but not to an auditory 

stimulus, suggesting that both structures are involved in contextual learning. 

The object-in-place task, which Gaffan (1994b) used to demonstrate a primate 

analogue of human amnesia and the involvement of the hippocampus in object-

memory, has also been used to demonstrate the contributions of both the hippocampus 

and the rhinal cortex to such relatively complex mnemonic exercises. Gaffan & 

Parker (1996) carried out a unilateral perirhinal ablation combined with contralateral 

fornix section, also sectioning the body and splenum of the corpus callosum, the 

anterior commissure, and carrying out a partial forebrain commissurotomy. The 

surgery was carried out in two stages. After either a unilateral fornix section or a 

unilateral ablation of the perirhinal cortex animals exhibited mild impairment on the 

object-in-place task. After surgery was completed the impairment was severe, and 

comparable to that found after bilateral fornix section (Gaffan, 1994a) , bilateral 

mammillary body lesions (Parker & Gaffan, 1997a), or bilateral lesions of the anterior 

thalamic nuclei (Parker & Gaffan, (1997b). The flow of visual information from the 

perirhinal cortex through the fornix to the mammillary bodies and the anterior 
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thalamus was disrupted by the complete surgery, and object-in-place memory is 

clearly dependent on this flow. This task requires the hippocampus (accessed via the 

fornix) for memory of the spatial arrangement of the scene, but not for memory of 

multiple individual objects. It also requires the perirhinal cortex for the complement 

of this function - memory for multiple individual objects but not the spatial relations 

between them. 

Easton & Gaffan (2000) found that, while the perirhinal cortex was critical to the 

learning or retrieval of scene problems, it was not necessary for the retrieval of pre-

operatively learned object-reward relationships. This contrasted with crossed lesions 

of the medial forebrain bundle and inferior temporal cortex, which resulted in 

impairment of all new learning but the preservation of previously learnt information. 

This suggests that isolation of inferior temporal cortex from its basal forebrain and 

midbrain afferents results in dense anterograde amnesia, whereas the involvement of 

the perirhinal cortex is dependent on task difficulty. 

Parker & Gaffan (1995) argue that this information flow represents the co-operation 

between the predominantly spatial fornix-mammillary memory system and the object-

based memory system of the rhinal cortices. Alternative views suggest that there is 

functional specialisation within a single memory system. However this debate seems 

to resolve on the issue of what constitutes a memory system. Parker & Gaffan (1995, 

1997a, 1997b) established the functional unity of the fornix-mammillary system, in 

that by lesioning one part the mnemonic function of the whole was impaired. 

However it is possible to regard a memory system as involving parallel as well as 

serial processing, with the possibility of double dissociation of function on some but 

not all tasks. The definition that is chosen determines the answer to the question of 

whether there is co-operation between or within memory systems, but what is clear is 

that co-operation between functionally specialised anatomically distinct structures is 

required for intact performance on this type of task. Even i f we regard this as co­

operation between two distinct systems, it would be advisable to bear in mind the 

contributions made by structures other than that which has been lesioned. 

The use of the term "object-in-place" to describe the task used by Gaffan and 

colleagues is potentially confusing. It is not clear whether the results found reflect the 
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processing of an object in place, taken literally as a spatial location which is 

allocentrically determinable, or whether they reflect the processing of an object in the 

context of a particular background pattern. It is also not clear whether the rhinal 

cortices, as well as the hippocampus, are involved in processing the object in context 

in rodents where fear conditioning is not involved. Bussey, Dias, Amin & Muir et al. 

(2001) found that perirhinal lesions impaired learning of what would appear to be a 

pure object-place task. This used a Y-maze, but the question still arises of whether 

arms within a Y-maze can be considered purely as places, or whether the locations are 

so large as to constitute contexts. 

1.36: Episodic Memory Revisited 

The issue that is perhaps central to the nature of memory systems in the medial 

temporal lobe is the question of whether episodic memory is more than the sum of its 

parts? Answering this question effectively wi l l tell us whether episodic memory is 

effectively additive: memory for what combined with memory for where and when; or 

whether it is functionally dissociable from its component parts. As discussed in 

relation to the role of the hippocampus, finding an animal model of episodic memory 

has been a matter of considerable difficulty. Tulving (1985) defined episodic memory 

as 

"receiving and storing information about temporally dated episodes or events and 

temporal-spatial relations among these events." (Tulving 1983) 

Episodic memory therefore provides information about the 'what' and 'when' of events 

('temporally dated experiences') and about 'where' they happened ('temporal-spatial 

relations'). Most tests of animal memory tend to examine, at most, two elements of 

the three that constitute episodic memory, with the "when" element being omitted. 

However, as well as the concise and relatively undemanding definition above, 

Tulving also emphasised the autonoetic nature of episodic memory, and such aspects 

of human episodic memory have been regarded as precluding the development of a 

true animal model of episodic memory. 

However, an elegant paradigm which takes the "what, where and when" criteria as the 

basis of a potential model has been developed by Clayton, Griffiths, Emery & 
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Dickinson (2001). This model, which exploits the storage habits of scrub jays and the 

differential decay rate of the foodstuffs stored, includes all three parameters in its 

mnemonic requirements and has been described as modelling episodic-like memory. 

However, this has not yet been used to examine the effects of lesions to the 

hippocampus or other structures, although it is known that lesions to the hippocampus 

can impair retrieval of stored food in black-capped chickadees (Clayton & Dickinson., 

1998; Clayton et al., 2001). Even i f episodic memory were so complex as to be 

confined to humans (and this would seem to be debatable), an adequate model for 

some of its fundamental parameters can nonetheless be developed. Indeed it is 

arguable that some of the higher level requirements provided by some definitions of 

episodic memory can be more accurately considered as describing autobiographical 

memory (Conway, 2001, Review). 

1.4: Conclusions. 

The studies reviewed here suggest that the hippocampus and the rhinal cortices all 

contribute to a memory system which in humans supports episodic memory. 

However, it is clear that the specific contributions of these structures are non-

identical, and, in some cases, capable of being doubly dissociated. In particular it is 

clear that the contributions of the hippocampus and of the perirhinal cortex are 

distinct. The roles of the entorhinal cortex and the postrhinal cortex are less clearly 

distinguished from those of these, as yet more extensively investigated structures. It 

does, however, seem probable that the postrhinal cortex is involved in supporting 

memory for the positions objects occupy, while the entorhinal cortex may play a 

similar role. 

The extent to which the disparate functions of the structures of the medial temporal 

lobe are integrated into a single memory system which is responsible for the 

integrated representations involved in episodic memory is open to question. Indeed 

Gaffan (2001) questions the usefulness of such a "system" concept at all, arguing that 

memory formation may simply be a very vulnerable process and that damage to areas 

which contribute to processing of aspects of memory, such as spatial location, wil l , of 

necessity, damage memory. Under such a view the various structures implicated in 

memory should be seen more as processors of a particular type of information, for 

which memory formation is incidental to function rather than its raison d'etre. 
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This thesis has a broad aim of further investigating the mnemonic functions of the 

perirhinal cortex, and comparing it with the roles of the postrhinal cortex and of the 

hippocampus. Bearing in mind the possibility that memory may indeed be incidental 

to their function, there is considerable evidence; behavioural, electrophysiological and 

neuroanatomical, that they are involved in supporting aspects of memory in rats. The 

perirhinal cortex very clearly has a considerable role in object memory. It seems clear 

that it is involved, not merely in simple object recognition but in aspects of learning 

and memory such as associations between stimuli (Buckley & Gaffan, 1998c) and 

associations between aspects of stimuli (Bussey et al., 2002; Eacott et al., 2001). The 

postrhinal cortex appears to be involved in aspects of spatial memory, but its 

relationship with hippocampal function is unclear. 

The specific aims of this thesis include the further elucidation of the role of the 

perirhinal cortex in the binding together of features into objects and the limits of such 

binding. The experiment in chapter 2 was designed to determine the importance of 

the perirhinal cortex to a visual stimulus-stimulus association task where there were 

no overlapping features. Following from this, the experiments in chapter 3 

investigated the role of the perirhinal cortex in the formation of a single gestalt 

representation as opposed to the formation of an association between two such distinct 

and separate representations. 

The experiments in chapter 4 examined the point at which information, rather than 

being processed as either of the associative relationships outlined above, is processed 

as background or context to an object. This is examined in respect of the 

contributions of the perirhinal and postrhinal cortices and the hippocampus. Chapter 

5 was a logical extension of this, with experiments investigating a potential rodent 

model of episodic-like memory and the possible role of the rhinal cortices and the 

hippocampus in supporting such memory. 

Finally, the experiments in chapter 6 examined the role of intracellular calcium and 

the cholinergic system in the perirhinal cortex in object recognition with a view to 

expanding an understanding of the neurochemical basis of object memory. An 
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extensive discussion of the background to this work can be found in the introduction 

to chapter 6, as it is somewhat tangential to the work which is introduced above. 
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Chapter 2: Perirhinal cortex and stimulus-stimulus association learning 

2.1: Introduction 

As outlined in chapter 1, damage to the perirhinal cortex has been implicated in a wide 

range of learning and memory impairments in both monkeys and rats. These 

impairments include visual discrimination learning (Buckley & Gaffan, 1997; 1998a; 

Eacott, 1998) and retention (Kornecook et al., 1999; Machin & Eacott, 1999; Wiig et 

al, 1996), delayed match (and nonmatch) to sample (Gaffan & Murray, 1992; Eacott et 

al, 1994; Otto & Eichenbaum, 1992; Zola-Morgan et al, 1989) and stimulus 

associative learning (Buckley & Gaffan, 1998b; Bunsey & Eichenbaum, 1993; Eacott 

et al., 2001; Herzog & Otto, 1998; Murray et al., 1993; Parker & Gaffan, 1998). 

These impairments have been interpreted by some as revealing a deficit in learning 

about the characteristics of discrete objects (Eacott & Heywood, 1995; Gaffan, 1994; 

Murray, 1996; Murray & Bussey, 1999). 

One important characteristic of an object may be its association with other stimuli. 

Indeed, studies have suggested that neurons within monkey perirhinal cortex code the 

association between two visual stimuli (Higuchi & Miyashita, 1996; Sakai & 

Miyashita, 1991; 1994). Moreover, lesion studies have supported the suggestion that 

rhinal or perirhinal cortex plays an important role in learning to associate two stimuli, 

whether they be both visual (Murray et al., 1993), two odours (Bunsey & Eichenbaum, 

1993) flavour-visual (Parker & Gaffan, 1998) or tactile-visual associations (Goulet & 

Murray, 2001). 

There are extensive reciprocal connections between the perirhinal cortex and the 

amygdala (Aggleton, Burton & Passingham, 1980; Stefanacci, Suzuki & Amaral, 

1996), and perirhinal cortex would therefore seem well placed to be involved in 

associating a stimulus and reward. However behavioural studies have not supported 

such a role and instead suggest that, despite the extensive anatomical connections, the 

perirhinal cortex is not involved in associating objects directly with a reward value 

(Thornton, Malkova & Murray, 1998), although it may have a role in associating 

visual stimuli with motivational significance (Lui, Murray & Richmond, 2000). It 

would appear that, as long as a visual stimulus can be efficiently discriminated, 

associating it with a reward value is not impaired by lesions to the perirhinal cortex. 
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What the literature does suggest is that the ability to associate a stimulus with another 

stimulus, as opposed to directly with reward, is impaired by perirhinal lesions. 

Baxter et al. (1999) investigated the ability of monkeys with rhinal or perirhinal cortex 

lesions to learn visual discriminations for an auditory secondary reinforcer. This task 

requires that the monkey use an association between an auditory stimulus which has 

previously been associated with reward and the visual discriminanda to perform the 

task. Correct choices are reinforced by the auditory reinforcer, an initially neutral 

stimulus which has gained reinforcing properties though its association with primary 

food reward. While there were early reports that lesions of the amygdala impaired 

ability to learn this task (Gaffan and Harrison, 1987), it was subsequently shown that 

they did so only because of collateral damage to efferent fibres from rhinal and 

perirhinal cortex (Malkova, Gaffan & Murray, 1997). Baxter et al. (1999) therefore 

proposed the view that damage to the rhinal or perirhinal cortex might be sufficient to 

result in an impairment in such learning. In fact, they found that rhinal or perirhinal 

lesions had only a mild effect on learning such tasks, far milder than the effects of the 

amygdala lesions of Gaffan and Harrison (1987). They therefore concluded that 

"perirhinal cortex is not required for associating neutral visual stimuli with 

reinforcement, regardless of modality and whether the reinforcement is primary or 

secondary" (Baxter et al. p251). 

However, learning for secondary reinforcement may take place in at least two ways 

(Gaffan and Harrison, 1987). First, there may be a direct association between the 

discriminandum and primary reward. In Baxter et al.'s (1999) study, this would mean 

that the visual discriminanda became associated with reward or nonreward via the 

association with the secondary reinforcer, even though the discriminanda themselves 

had never been directly paired with reward or nonreward. Alternatively, the visual 

discriminanda may become associated with the presence or absence of the secondary 

reinforcer which is itself associated with the primary reinforcer. The difference 

between these two explanations lies in the nature of the association which is formed in 

learning new discriminations using an existing secondary reinforcer. In the first case, 

learning a new discrimination involves making a new stimulus-reward association {via 
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an existing stimulus-reward association), whereas in the second case, it involves 

making a new stimulus-stimulus association. 

In practice, of course, it is likely that learning for a secondary reinforcer involves 

learning both types of associations to some extent. Perirhinal cortex lesions do not 

generally impair stimulus-reward associations, as simple visual discrimination 

learning for food reward may proceed normally in animals with perirhinal lesions 

(Astur, Mumby & Sutherland, 1995; Machin & Eacott, 1999; Thornton et al., 1998). 

Perirhinal lesions would not, therefore, be predicted to impair this aspect of learning 

for secondary reinforcement. However, perirhinal cortex lesions do affect stimulus-

stimulus associative learning (Buckley & Gaffan, 1998b; Bunsey & Eichenbaum, 

1993; Herzog & Otto, 1998; Eacott, Machin & Gaffan, 2001; Murray et al, 1993; 

Parker & Gaffan, 1998). 

A plausible interpretation of the mild impairment in learning for an auditory secondary 

reinforcer reported by Baxter et al.(1999) would be that it resulted from the disruption 

of stimulus-stimulus associative learning mechanism which would normally operate in 

conjunction with the still intact stimulus-reward associative mechanism. In such a 

situation, the observed effect might be only a mild impairment, although neither 

mechanism is itself only mildly impaired. In light of this argument, it is possible that 

Baxter et al's conclusion that the perirhinal cortex is not significantly involved in the 

formation of stimulus-reward associations, even when reinforcement is secondarily 

associated with the stimulus, should be modified. The degree to which learning in any 

individual secondary reinforcer study is dependent on stimulus-reward associations or 

stimulus-stimulus associations, and thus its dependence on perirhinal cortex, is likely 

to vary with the particular conditions used in that study. 

Using visual-visual associations, as opposed to cross-modal associations gives rise to 

the issue of whether stimuli are perceived as separate but associated (paired) or as 

elements of a single stimulus (configured). The possibility of a configuration of the 

representations of the stimuli being formed is an important consideration, and every 

effort was made to prevent this occurring in the present study. I f such a configuration 

were formed it would no longer be possible to regard the problem as requiring 

stimulus-stimulus association: it would become one which required configural rather 
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than elemental processing. Given that there is already some persuasive evidence that 

the perirhinal cortex is implicated in configural processing (Bussey et al., 2002) this 

would be likely to give rise to artefactual results in an experiment designed to 

investigate stimulus-stimulus association. 

Therefore, in order to further investigate this interpretation of the impairment reported 

by Baxter et al. (1999), this study examined visual learning for a secondary reinforcer 

in the rat following bilateral lesions to perirhinal cortex. The task was designed so as 

to emphasise those aspects of the task which have been hypothesised to encourage 

stimulus-stimulus learning over direct stimulus-reward associations. For example, it 

has been shown using normal animals in secondary reinforcer paradigms that 

stimulus-stimulus associations are most easily made when the stimulus and reinforcer 

are in the same modality and are spatially close together (Rescorla, 1980; 1985). 

Conversely, they are harder to associate together when they are in different modalities 

and are spatially separated (Rescorla, 1980; 1985). Temporal contiguity has also been 

shown to be important in determining the nature of the association formed. 

In support of the view that learning for similar and disparate secondary reinforcers 

differ, Gaffan and colleagues have found that visual learning for a visual, but not an 

auditory, secondary reinforcer can recover from the effects of bilateral amygdalectomy 

(Gaffan, Gaffan & Harrison, 1989; Gaffan & Eacott, 1995), suggesting the availability 

of an alternative learning strategy in the former, but not the latter. According to these 

principles, the study of Baxter et al., (1999) would have favoured direct stimulus-

reward associations over stimulus-stimulus associations, as the discriminanda and the 

secondary reinforcer differed in modality and spatial location. In the present study, 

therefore, we used a secondary reinforcer which was both in the same modality and in 

the same spatial location as the visual discriminanda. In this way, we hoped to 

encourage the learning of the task by formation of stimulus-stimulus associations over 

stimulus-reward associations. Thus we predicted that perirhinal lesions would have a 

deleterious effect on learning. 
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2.2: Methods and Materials 

Subjects 

Twenty male Dark Agouti rats (Bantin & Kingman, Hull, UK) were used in this 

experiment. Of these eleven reached the preoperative training criteria for surgery and 

were operated. Three operated animals died due to respiratory infection in the 

postoperative period. Animals were housed in pairs in diurnal conditions (12h light/ 

12h dark cycle) and all testing was carried out during the light phase. Throughout the 

study animals had free access to water except when in the testing apparatus. During 

training and testing they were fed on a restricted diet to maintain body weight at 

approximately 85% of normal weight. They were weighed regularly to ensure that 

weight was maintained within this limit. Immediately before and following surgery 

they were given ad libitum access to food. At the start of testing they were aged 

approximately 3 months. They were tested five or six days a week. 

Apparatus 

Al l training and testing was carried out in a computer controlled testing apparatus 

(Gaffan & Eacott, 1995). It consisted of a computer controlled Y-maze (Figures 2.1 

and 2.2). The maze was composed of three identical arms. The end of each arm was 

composed of 2 angled monitors on which computer generated forms could be 

displayed. The floor of the maze was made of wood cut to fit against the edges of the 

monitors. The centre of each monitor screen was situated 46.5cm from the centre of 

the maze. The sides of the maze were made from aluminium painted black and were 

22cm high. The maze was covered by a Perspex lid in four sections. The central 

section was removed to place rats into the maze. 

The maze was housed in a room lit by a partially covered 40W bulb at a height of 2m 

above the floor. A constant level of background noise was provided by white noise 

during all testing. This also served to mask any extraneous noise. Activity within the 

maze was viewed in an adjacent room via a video camera suspended 160cm above the 

floor of the maze. The computer controlling the maze was also situated in the 

adjacent room. This computer used a program which monitored the animals' reaction 

times to stimuli onset and reward collection, the number of trials and errors made in 

each session and the length of each session. 
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Figure 2.1: Schematic aerial view of the computer controlled Y-maze 
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Figure 2.2: Photographic illustration of the computer controlled Y-maze. 
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The monitors at the ends of each arm had maximum image areas of 18.5cm by 23cm. 

The monitors in each arm were separated by an automated food well 7cm wide. Each 

well had a Perspex door covering a food tray which animals had to push open to 

collect 45mg food pellets which were delivered as a reward by a dispenser situated 

above the food well. The dispenser released pellets into the food tray via a plastic 

tube encased in black aluminium. Delivery of a food pellet triggered the illumination 

of the food tray by a 3 W, 24V bulb. The opening and closing of the door to the food 

well was sensed by a microswitch that signalled that the pellet had been collected and 

switched the bulb off. 

The animal's position in the Y-maze was determined by photodetector beams which 

crossed the arms of the maze at 23cm and 30cm from the monitors and were situated 

3cm above the floor. An approach to the end of an arm in which the correct stimulus 

was displayed on the screens could be automatically rewarded by delivery of reward 

pellet(s) to the dispenser between the two monitors in that arm. 

The computer controlling the maze was a 486 DX 66 HZ Viglen computer with 4 MB 

ram, 2 x 325 MB hard disks and 8 full length expansion slots. A locally built 

interface operating at 24 V DC fed information to the computer on the status of 

foodtray flaps and photodetector beams and sent signals to the traylights and feeders 

in response to this information. 

The monitors were 6 black and white Viglen monitors driven by 3 dual VGA plus 

cards each with 2 x 512 Kbytes video RAM. Graphics were sent to the maze 

monitors and a text display for the experimenter was provided on a standard Brother 

monitor. A l l experimental programs were written in-house in turbo Pascal V 6.0. 

Surgery 

Surgery was performed on all eleven animals which attained the preoperative criterion 

in training. Each rat was anaesthetised using halothane, its head was shaved and it 

was positioned in a stereotaxic headholder. 0.5ml of the analgesic vetagesic was 

administered subcutaneously. An incision of the scalp was made along the midline 

and bregma was measured at an angle of 12°. The top of the skull was then measured 

at three points: 3.0, 4.0 and 5.0mm posterior to bregma and 5.1mm lateral to bregma. 
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Using a dental drill, an area of the skull overlying the rhinal sulcus was removed. 

The dura was cut to allow the insertion of an electrode into the brain. Lesions were 

made using an RFG4-A RF lesion generator (Radionics Inc). The electrode, (0.3mm 

tip length, 0.25mm diameter) was lowered at an angle of 12° at three points: 3.0, 4.0 

and 5.0mm posterior to bregma and lateral to bregma by 5.1mm (measured at an angle 

of 12°). At each point the electrode was lowered to 6.6mm below the top of the skull 

and current was passed such that a temperature of approximately 75°C was achieved 

for one minute. Bregma was then measured at an angle of -12° and the procedure 

performed contralaterally. The scalp was then closed using wound clips and 

antibacterial wound powder was applied. Each animal received 5ml warmed saline 

and 0.3ml of the respiratory stimulant milophyline subcutaneously. 

Perfusion 

For histological purposes, at the end of testing operated animals were perfused 

intracardially with a 5% formal saline solution. Their brains were removed, 

embedded in wax and coronally sectioned into 10(a slices. Every 10 th section was 

stained with cresyl violet (Nissl stain). 

Training 

Habituation and Pre-Training 

Al l animals received initial training in the maze which habituated them to the testing 

apparatus. During these sessions they learnt to approach the illuminated food wells 

and collect rewards and to respond to changes in visual stimuli on the monitor 

screens. Initial sessions took place with the doors of the food wells fixed open and 

the wells constantly illuminated. Pellets were placed inside the food trays and were 

also scattered around the food wells. Over several sessions the doors were gradually 

closed and the pellets placed only inside the food trays until the animals were opening 

the doors in order to retrieve the pellets. The mean time to complete this stage of 

training was 9 sessions (range 8-13 sessions). 

During the next stage of training only one food well at a time was illuminated and 

would dispense pellets when approached. This taught the animals that only 

illuminated wells would dispense pellets, and also accustomed them to the sound 
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made by the automated dispenser. At this stage the trial was not ended by an 

approach to an incorrect arm, allowing rewarded self-correction by the animal. When 

animals were performing well at this stage visual stimuli were introduced. Up ti l l this 

point the screens had been switched on but showed only a background grey. At this 

stage a rewarded stimulus (S+ ) was introduced. This was a white bar of dimensions 

1.5 x 23.5cm, and 7cm above the bottom of the screen on a black background which 

appeared across the monitors in one arm of the maze. I f the animal approached the 

S+ a reward pellet was dispensed. Collection of this pellet resulted in a new trial 

beginning following a brief inter-trial interval of 1 minute. I f the animal left the arm 

in which it had been rewarded before this interval had elapsed it had to return to that 

arm before the next trial would begin. Animals completed up to 50 trials a day at this 

stage. When they were performing well the task was altered so that an error ended the 

trial, with the stimulus presentation disappearing and a new trial beginning. 

The final stage of training, which started after the animals had attained a performance 

of 80% correct on the previous task, was to introduce a non-rewarded stimulus (S-). 

This was a display of small white dots across the screen with an identical level of 

luminance to the S+. At this stage animals learnt to discriminate between two 

concurrently presented stimuli on the basis of reward. Again they were required to 

reach a performance level of 80% before progressing. 

In the final stage of training a number of different rewarded stimuli were gradually 

introduced in order to ensure that animals responded to stimuli in any part of the 

screen. The stimuli were white bars 1.5cm deep but of varied length and presented at 

different horizontal positions on the monitor screens. These were presented in 

opposition to the original S-. Initial training was complete when animals achieved 

80% correct on this phase of the training. 

Training: Experiment 2 

Following the initial training described above, animals were trained in a 

discrimination between two stimuli (Figure 2.3). An approach to the correct stimulus 

(S+) was followed by the secondary reinforcer, which was a white bar, appearing over 

the S+ and remaining there for a period of 5 seconds (Figure 2.4). Ultimately primary 

reinforcement to be delivered on an FR5 schedule (five 45mg pellets delivered only 
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after there had been five correct responses). Because this was a difficult task training 

took place in several stages. 

Animals initially learnt a series of discriminations between stimuli on a reward 

schedule of FR1. This meant that all correct choices were followed by a primary 

reward of one 45mg food pellet. However the secondary reinforcer always appeared 

immediately after a correct response and only after a delay of 3 seconds was primary 

reinforcement delivered. When animals reached a criterion of 5 errors or fewer in 40 

trials, the number of correct choices before primary reward was delivered was 

gradually increased through 2, 3 and 4 until criterion was maintained at FR5. 

At this point a "probe" session was carried out. In this the animal was presented with 

a different pair of objects on each of 100 trials. The stimulus which was the S+ 

appeared with a white bar identical to the secondary reinforcer across it. Every 

correct choice was rewarded. The aim of this session was to determine whether the 

animals had formed an association between the secondary reinforcer and reward. 

Results of this session indicated that there was significant learning of this association. 

The number of errors ranged from 14-44 (mean = 26.95). 

At this point a new discrimination was introduced each day, regardless of daily 

performance, with an initial FR of 2. I f 8 or fewer errors were made during the final 

40 trials (a performance of 80% correct) then the problem was considered to have 

been solved. When an animal solved 7 out of 10 consecutive problems then the FR 

was increased. After 18 sessions of training in this phase those animals which had not 

yet reached FR3 were reassessed. Those rats which had not achieved an average of 

70% over the final 20 trials in each problem were given additional training in 3 novel 

problems which were repeated across training sessions until a strict criterion of 87.5% 

correct over 40 trials was achieved. Following this extra training they were returned 

to the original schedule in which new problems were introduced each day. 

After 40 sessions of training an additional criterion for moving on to higher levels of 

FR was introduced. Rats progressed to FR3 i f they had achieved at least 72.5% 

correct on the final 20 trials of each problem over the previous 10 sessions. Animals 

which failed to meet this criterion continued to train until they met either this criterion 
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or the previous one of solving 7 out of 10 problems. This alternative criterion of 

72.5% over final 20 trials was also used after animals had completed at least 25 

sessions of FR3 and 15 sessions of FR4. 

Training was almost complete when animals had reached the stage of learning 

problems using FR5 to the criterion of 5 or fewer errors over the final 40 trials (80% 

correct). At this stage the number of trials per problem was gradually decreased from 

100 to 40, maintaining an FR of 5. In this final phase of training the stimulus chosen 

by the animal on the first trial was designated correct (S+) or incorrect (S-) on 

alternate problems, thereby controlling for initial stimulus preferences. For this 

reason performance on trial 1 was of necessity at chance regardless of the animal's 

choice. Therefore, correct choices on the first trial of any problem did not count 

towards the FR requirement. 

Rats performed up to 120 trials a day and thus at the end of training could perform up 

to 3 problems, each of 40 trials in one day. Rats were tested once a day five or six 

days a week until they were able to show significant learning before delivery of the 

first primary reinforcement (i.e. at trial 6). At this point all animals which reached 

criterion underwent bilateral perirhinal ablation. After surgery and at least 2 weeks 

recovery the animals were tested on a further 60 problems with secondary reinforcer 

atFR5. 

2.3: Results. 

2.31: Histological 

Histological analysis indicated that all 8 of the animals which completed testing and 

survived surgery had perirhinal lesions which were largely as intended. The lesions 

extended from approximately 3.5 mm to 6.5 mm posterior to Bregma. Figure 2.5 

shows representative sections from rat R102 which was judged to be a typical lesion, 

while Figure 2.6 shows the smallest (R101) and largest (R103) lesions drawn on to 

standard sections taken from Paxinos & Watson (1998). The estimated range of 

damage to the perirhinal cortex was 29% - 82% of the total extent of the perirhinal 

cortex. This was calculated using lesion drawings on four standard sections from 

Paxinos & Watson (1998) (as shown in figure 2.6) copied on to squared paper to 

enable the calculation of damage proportional to the total area of the perirhinal cortex. 
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As can be seen from figure 2.6, there was some unintended hippocampal and 

entorhinal damage in a number of animals. However, this damage was extremely 

partial and almost always unilateral, while the perirhinal lesions were extensive and 

bilateral. In the light of the behavioural results reported below there is no indication 

that this extra-perirhinal had any behavioural effects. Figure 2.7 shows the pre- and 

post-operative performance over the first block of trials (before any primary 

reinforcement could be received) of the animals with the largest and smallest lesions in 

relation to the group as a whole. As can be seen there is no indication that lesion size 

affected the postoperative performance. 
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Figure 2.5: Three representative sections of a bilateral perirhinal 
lesion from R102 
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Watson(1998). 
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Figure 2.7: Pre- and post-operative performance of animals with largest and 

smallest lesions in relation to the cohort. 

2.32: Behavioural 

The task was a hard one to learn. Those rats which reached criterion took an average 

of 111 sessions to reach the criterion for surgery (range 92-132). Furthermore only 11 

of the 20 rats who began training in this task reached this level, training of the 

remainder being abandoned due to lack of sufficient progress at earlier stages (mean 

number of sessions is not reported here, as training of animals which failed to meet 

intermediate criteria was discontinued at different points). However the results of the 

eight animals which completed the preoperative stages of testing and which survived 

surgery are reported here. The mean number of sessions to reach the surgical criterion 

for these eight animals was 116 (range 97-132). 

In the final stages of preoperative training and in all postoperative training, the animals 

were learning discriminations using an FR5 reward schedule (in which the first trial of 

any problem did not count towards the FR ratio). For this reason, even an animal 

whose performance was 100% correct (but see below for trial 1) could not receive 

primary reinforcement until after trial 6 had been completed. A pure measure of 
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learning using the secondary reinforcer is therefore performance over the first 6 trials 

(i.e. before any primary reinforcement has been delivered). In these final stages, the 

discriminandum chosen on the first trial of any problem was designated correct or 

incorrect on alternate problems, controlling for initial stimulus preferences. However, 

analysis of performance at trial 6, before any primary reinforcement had been 

received, showed that performance in problems in which the initial choice was 

designated correct did not differ from those in which initial choice was designated 

incorrect, either preoperatively (mean when initial choice was correct = 63.8%, when 

initially incorrect = 62.6%; t < 1, df = 7, p > 0.05) or postoperatively (mean when 

initial choice was correct = 63.4%, when initially incorrect = 60.6%; t < 1, df = 7, p > 

0.05). In view of this, problems in which the animal's initial choice was designated 

correct and incorrect were pooled and are considered together for the purposes of all 

further analysis. 

Figure 2.8 shows the performance of the rats over trials 1-6 over the final 30 

preoperative problems and the 60 postoperative trials. Performance over these trials 

shows learning on the basis of secondary reinforcement alone, as no primary 

reinforcement could have been received before this point. From this figure it can be 

seen that both pre and post-operatively the animals were able to learn for secondary 

reinforcement. When performance averaged over the block of trials 2-6 was tested the 

animals were above chance on both the first and second sets of 30 post-operative 

problems (first set: t = 2.60, df = 7, p < 0.05; second set: t = 3.21, df = 7, p < 0.05) 

although this was not the case pre-operatively (t = 2.07, df = 7 , p > 0.05). 

Performance was significantly above chance on trial 6, before first delivery of primary 

reinforcement, both preoperatively (t = 3.57, df = 7, p < 0.01) and for the second set of 

30 postoperative problems (t = 2.87, df = 7, p < 0.05). For the first set of post­

operative problems performance was not above chance (t = 1.96, df = 7, p = 0.091). 

When the two sets of post-operative problems were combined performance was again 

above chance (t = 2.87, df = 7, p < 0.05). The measure of performance averaged over 

trials 2-6 is less susceptible to variability and might be expected to show less evidence 

of performance above chance, including as it does data from trials earlier than trial 6. 

The balance of the evidence is therefore that, both pre and postoperatively, the rats 

were capable of performing at above chance levels before the first delivery of primary 

reinforcement. 
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Figure 2.8: Performance over the first 6 trials (before any primary reinforcement 

has been received) for the last 30 pre-operative problems and the first 60 

postoperative problems. 

The lack of a postoperative impairment is further emphasised by comparison of pre-

and postoperative performance on trial 6 alone, before primary reinforcement, which 

reveals no significant difference between the pre and post operative performance 

levels either when analysed using a three (operated condition) x 1 (trial) repeated 

measure ANOVA (F < 1, df = 2,14, p > 0.05) or when the two sets of postoperative 

problems were combined (t < 1, df = 7, p > 0.05) (see figure 2.9). 
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Figure 2.9: Pre- and post-operative performance on trial 6, the final trial before 

primary reinforcement could be received. 

Furthermore, comparison of the mean performance over the entire block (trials 2-6) 

also reveals no evidence of a difference between the groups. These trials were initially 

analysed using a 3 (operated status) x 1 (trial block) repeated measures ANOVA, 

which contrasted the final 30 pre-operative problems with the first 30 post-operative 

problems and the second 30 post-operative problems. This found no effect of operated 

condition (F < 1, df = 2,14, p > 0.05). When the two blocks of postoperative trials 

were combined and the data analysed using paired-samples T-test there was no 

difference between pre- and post-operative problems (t < 1, df = 7, p > 0.05). Indeed, 

using this measure the animals' performance was marginally better on postoperative 

than on preoperative problems (mean preoperative = 58.6%; postoperative = 59.9%) 

(see figure 2.10). There is therefore no evidence that lesions of the perirhinal cortex 

disrupted the ability to learn two choice discriminations for secondary reinforcement 

before receiving any primary reinforcement. 
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Figure 2.10: Pre- and post-operative performance averaged over the first block of 

trials 2-6, before any primary reinforcement was received. 

Although a rat which, following the initial trial made all choices correctly, effectively 

performing at 100% accuracy, could obtain primary reinforcement following trial 6, in 

practice, this would be only rarely achieved (as discussed above, the mean 

performance was approximately 60% on postoperative trials). In fact the mean 

number of trials before reinforcement was received was 8.4. Therefore, when 

choosing between discriminanda on trial 11, for example, a rat has received a 

maximum of only one episode of primary reinforcement (following the f i f th correct 

response after trial 1), yet up to 10 episodes of secondary reinforcement. Equally, 

performance on trial 16 follows a maximum of 2 primary reinforcement episodes, yet 

up to 15 secondary reinforcement episodes. Therefore, at any point after trial 6, even 

though primary reinforcement may have been received, an animal learning purely on 

the basis of information received through primary reinforcement would have been 

significantly disadvantaged over one which was able to learn using secondary 

reinforcement as an additional, i f not as the sole learning strategy. The performance of 

the animals was therefore also examined over 30 trials for each problem. Figure 2.11 

shows the performance of the rats averaged over blocks of 5 trials (excluding trial 1, as 

before). As before the data were initially analysed using a 3 (operated status) x 6 (trial 

blocks) repeated measure ANOVA. This showed no effect of surgical condition (F = 

1.15 df = 2,14, p > 0.05) although as was expected there was an effect of trial block (F 

= 5.84, df = 5,35, p = 0.01) as performance improved over the course of a problem. 

There was no interaction between surgical condition and trial block (F < 1, df = 5,35, 

p > 0.05). As there was no difference between the first and second sets of post­

operative problems these were collapsed. A 2 (surgical condition) x 6 (trial blocks) 

repeated measure ANOVA also reveals no effect of surgical condition (F < 1, df = 1,7, 

p > 0.05). Again, as expected, there was a main effect of block (F = 4.85, df = 5, 35, p 
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< 0.01), as the animals' performance improved over the blocks as they learned each 

problem. However, importantly, there was no interaction of surgical condition and 

trial block (F = 1.25, df = 5, 35, p > 0.05), revealing that this learning did not differ 

between pre and postoperative problems. There is no evidence that perirhinal lesions 

disrupted at any point the animals' ability to learn two-choice discrimination for 

secondary reinforcement. 

1 2 3 4 5 6 

Trial block 

Figure 2.11: Pre- and post-operative performance over the full problem (30 trials 

in 6 blocks of 5, excluding trial 1). 

In summary, over a number of measures of learning, either solely measuring 

secondary reinforcement or allowing primary reinforcement aided by secondary 

reinforcement, there was no evidence of an effect of perirhinal lesions. 

2.4: Discussion 

The results of this experiment showed that the ability of rats to learn visual 

discriminations for visual secondary reinforcement was not affected by bilateral 

perirhinal lesions. This result was found over a number of measures despite the fact 

that the task had been designed to maximise the chances of finding such a deficit, had 

one existed. The only exception to this pattern of results was that the first set of post­

operative problems did not show performance above chance on trial 6. The 

significance of this result is, however, substantially reduced by the fact that 

performance over the block of trials 2-6 was above chance for both sets of post­

operative problems, whereas this was not the case pre-operatively. On neither measure 

did performance on this set of immediate post-operative problems differ either from 
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preoperative performance or from later post-operative performance. This further 

suggests that the failure to find performance significantly above chance on this 

particular trial does not reflect a genuine impairment. 

The discriminanda and the secondary reinforcer were in the same modality and spatial 

location, both of which have been found to encourage indirect stimulus-stimulus 

associations (Rescorla, 1980; 1985) hypothesised to be impaired in perirhinal lesioned 

animals. This study therefore supports the conclusions of Baxter et al. (1999) that the 

perirhinal cortex does not appear to play a critical role in learning for visual secondary 

reinforcement. In addition this conclusion can be extended to include perirhinal 

function in rats as well as monkeys. The rat perirhinal cortex receives a considerably 

smaller proportion of its afferents from visual areas than does the same area in the 

monkey, and provides substantially weaker feedback to sensory areas (Burwell & 

Amaral, 1998). In the light of this it would have been a slightly anomalous finding 

had the perirhinal cortex proved to be more essential for visual secondary 

reinforcement in the rat than in the monkey. 

The finding that perirhinal lesions caused no impairment in the learning of the 

discrimination is surprising, as it had been predicted that there would be a deficit as a 

result of a stimulus-stimulus associative learning impairment, which would at least 

slow learning in this task. The only sign of a mild impairment was the fact that the 

animals were not significantly above chance on trial 6 in the first set of post-operative 

problems. However, given that their performance over the first block of trials as a 

whole was above chance, and that this measure included earlier trials on which poorer 

performance would be expected, the importance of this result should not be over­

estimated. This is particularly the case as no difference between performance was 

found when the different sets of problems (pre-operative and first and second post­

operative) were compared. A stimulus-stimulus associative impairment after lesions 

to the rhinal region has been seen in monkeys (Buckley & Gaffan, 1998; Goulet & 

Murray, 2001; Murray et al., 1993; Parker & Gaffan 1998) and in rats (Bunsey & 

Eichenbaum 1993). However, it is possible that, despite the design of the current 

study which was intended to favour stimulus-stimulus solutions to this task, the rats 

learned to use the alternative strategy of using the indirect stimulus-reward 
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association, discussed earlier, and thus the intact discrimination learning seen did not 

involve any stimulus-stimulus learning at all. 

Although this explanation of the results cannot be ruled out, it would appear to be 

improbable for two reasons. First, the design of the task is one that favours stimulus-

stimulus associations, and, second, the initial acquisition of the task took place before 

surgery, when there would be neither a necessity nor an advantage in using stimulus-

reward associations as opposed stimulus-stimulus associations. Following surgery, 

learning to use direct stimulus-reward associations would have been an advantageous 

strategy, but the study found no deficit over 60 postoperative problems. In particular, 

there was little evidence of a postoperative deficit using learning over the first 6 trials 

(before the delivery of any primary reinforcement) as a measure. As discussed above, 

the value of the evidence that in the first set of post-operative problems animals did 

not differ from chance on trial 6 is limited by the fact that they were above chance on 

the block of trials 2-6. This was clearly a difficult task even for intact rats to learn and 

thus the suggestion that they may have acquired an alternative learning strategy after 

surgery in under 60 problems appears implausible, particularly given the fact that there 

was no difference in performance between the first 30 problems after surgery and the 

subsequent 30 problems, either on the trials before any primary reinforcement was 

received or on the problem as a whole. 

It is, of course, possible, i f not probable, that both strategies were initially used, but 

that when, during postoperative training only the strategy of stimulus-reward 

association was available (Thornton et al., 1998), this was sufficient to maintain 

performance at the preoperative level. However, a stimulus reward association cannot 

explain the above chance discriminations observed across trials 2-6 before any primary 

reinforcement was available. Therefore, whilst this is a possible explanation for the 

lack of impairment across entire problems, it cannot explain the spared performance 

over the first five trials. Additionally, it does not appear to be the most likely given the 

ratio of primary : secondary reinforcement involved, and therefore the relative reliance 

likely to have been placed on each strategy during preoperative training. It is, 

however, impossible to dismiss the possibility that both strategies were employed 

during the later stages of each problem: the difficulties inherent in designing a task in 

which only one of the two strategies is possible (as opposed to probable) are 
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considerable, given the motivational requirement for some primary reinforcement. 

This is particularly the case when rodents rather than monkeys are used. Whether or 

not preoperative performance involved some element of stimulus-reward association, 

there is clearly reason to believe that the intact performance was based on an intact 

ability to form stimulus-stimulus associations following perirhinal cortex lesions. 

This result may initially appear to be paradoxical in suggesting that the perirhinal 

lesioned animals had no problem forming stimulus-stimulus associations in order to 

learn for secondary reinforcers, despite evidence that in other tasks perirhinal lesions 

impair such stimulus-stimulus learning. One possible solution to this quandary is to 

suggest that perirhinal cortex is not involved in stimulus-stimulus associations per se, 

but in knowledge about objects. This knowledge about objects has been described as 

"the precise specification of objects by associating together the various visual features 

inherent in particular objects" (Gaffan, 1994, p421), 

or as providing 

"a 'gestalt' representation of a complete stimulus." (Murray et al., 1998 pl46). 

It is therefore possible that perirhinal cortex may be involved in associating together 

elements which form a single meaningful whole stimulus, but not for associating 

together different discrete stimuli. Of course, defining whether two associated stimuli 

should be viewed as a single entity, or merely as two associated entities wil l depend on 

a great many factors. Amongst these factors may be the extent to which the 

occurrence of the associated stimuli is correlated in time and space but also whether 

each stimulus has any independent meaning. For example, in the currently reported 

task, the secondary reinforcer was seen in every problem and had a clear meaning in 

signalling the availability of primary reinforcement which was independent of any 

other discriminanda. The fact that animals learned to respond for this secondary 

reinforcer demonstrates that they had learned this meaning. In this way, the secondary 

reinforcer may have been processed as an object in its own right, rather as a part of 

any other discriminandum. Thus although efficient learning in this task relied upon 

forming an association between the correct discriminandum and the secondary 

reinforcer, they did not themselves form a "a 'gestalt' representation of a complete 
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stimulus." (Murray et al., 1998 pl46), but rather an association between two separate 

entities. 

This contrasts with the situation in a recent study (Eacott et al., 2001) in which 

perirhinal lesioned rats were impaired in a biconditional configural learning task for 

primary reinforcement. In that study, the authors argued that rats were impaired at 

learning to associate two visual elements of a stimulus to form a configural stimulus. 

As in the current study, the association was between two visual stimuli which 

appeared in the same spatial location as each other. However, unlike the current study, 

none of the visual elements had a consistent reward value independent of its configural 

associate. With such complete feature ambiguity, efficient learning relied upon 

associating the two elements to form a meaningful whole, a task which was impaired 

by perirhinal lesions. On this basis this thesis proposes that perirhinal cortex is not 

crucial for forming stimulus-stimulus associations per se, but is crucial for combining 

the representations of visual elements so as to produce a single representation of an 

object. 

This interpretation can also be examined in other tasks in which deficits in stimulus-

stimulus associative tasks have been seen after lesions in this region in monkeys 

(Buckley & Gaffan 1998c, Goulet & Murray 2001, Murray et al., 1993, Parker & 

Gaffan 1998) and in rats (Bunsey & Eichenbaum 1993). A l l the tasks given to 

monkeys were similar in having a one-to-one correspondence between a stimulus and 

its paired associate. In each case, given a stimulus cue, the animals were trained to 

choose the associated stimulus over an unassociated stimulus. The study which used 

rats (Bunsey & Eichenbaum, 1993) differed slightly in that rats were presented with 

two stimuli which either formed an (arbitrarily designated) pair or were a mismatched 

pair, while reward was earned by distinguishing pairs from mismatches. However, all 

these tasks are similar in that no stimulus had an independent association with reward 

in the absence of its associate and thus had meaning only when associated with 

another stimulus in its correct pair. In this way the pair could be regarded as forming a 

single meaningful entity, with the seemingly independent stimuli in fact serving as no 

more than elements which only carried significance in the context of the whole. This 

common property is shared by all these tasks which are impaired by lesions to the 

perirhinal or rhinal region. In contrast, in the current task, the secondary reinforcer 
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had an independent association with reward, and could therefore be regarded as a truly 

independent entity. Since the formation of associations between this stimulus with 

others was not impaired by perirhinal lesions it would seem possible that it is the 

meaning of the stimuli involved in associative learning, and in particular the question 

of whether they possess independent significance, rather than their appearance or 

modality, which is critical in determining perirhinal involvement. 

In summary, this study supports the conclusion of Baxter et al. (1999) that the 

perirhinal cortex is not required for associating neutral visual stimuli with a secondary 

reinforcer even when both are in the same modality. In addition this conclusion can be 

argued to include rats as well as monkeys. Finally, from contrasting this result with 

other positive findings of a perirhinal or rhinal impairment, we suggest that the role of 

perirhinal cortex is in "within-object" associations between elements, and that 

perirhinal cortex plays a much lesser role in stimulus-stimulus associations between 

discrete objects. This theory is explored extensively by the experiments described in 

chapters 3 and 4, which examine the effect of perirhinal lesions on object recognition 

for which a configural as opposed to a primarily elemental representation of an object 

is required for successful discrimination. These experiments wi l l also explore the 

possible role of the perirhinal cortex in processing context, which is often considered 

intrinsically to involve configural processing of multiple elements. 
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Chapter 3: The Perirhinal Cortex and Configural Processing 

3.1: Introduction 

As outlined in earlier chapters, the weight of the evidence suggests that the perirhinal 

cortex is important not just for recognition per se, but for knowledge about objects. 

The experiments in this chapter aim to examine more precisely the role of the 

perirhinal cortex in object identification, or, perhaps more accurately, in object 

specification. The distinction is important: it has been clear for some considerable 

period of time that lesions of the perirhinal cortex cause severe impairments in object 

recognition. What has not been clear, and which the experiments discussed here aim 

to elucidate, is the nature of the perirhinal contribution to object recognition. 

As discussed in chapter 2, the perirhinal cortex is involved in knowledge about 

objects, such as the associations between objects which appear together either 

simultaneously or sequentially. In particular, the idea has been put forward that the 

perirhinal cortex is necessary for the identification of complex objects which have 

visual features in common (Eacott & Heywood, 1995). A more general statement 

would be that the perception and representation of an object as a whole rather than as 

the sum of its component parts requires an intact perirhinal cortex. I f the perirhinal 

cortex codes for groups of properties rather than objects, then its associative 

properties for relations between stimuli (see chapter 2) could also be applicable to the 

summing of features to form an object representation. This line of argument leads to 

the idea that configural processing, rather than being necessarily a function of the 

hippocampus (Rudy & Sutherland, 1989, 1995), may in fact be dependent on the 

perirhinal cortex. The evidence which indicates that hippocampal involvement in 

configural processing is probably incidental to the processing of spatial information 

has been discussed already (see chapter 1 pp27), but the evidence which implicates 

the perirhinal cortex in configural processing bears further elaboration. 

It should be noted that the experiments in this chapter do not attempt to examine the 

role of the perirhinal cortex in processing configuration of any sort, but purely the 

particular question of whether processing the configuration of features within an 

object are dependent on perirhinal function. The issue of the relationship between 

objects and the context in which they occur, whether background or other objects is 

explored in the experiments in chapter 4, where an appropriate discussion of the 
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possible role of configural processing in perception and memory of context can be 

found. 

The argument for perirhinal involvement in configural processing is supported by 

connectionist modelling which locates the relationships between features in the more 

rostral regions of the ventral visual stream (Saksida, 1999; Bussey & Saksida, 2002), 

and particularly, though not exclusively, in the perirhinal cortex. This perceptual-

mnemonic feature conjunction (PMFC) model postulates a rostral-caudal stream of 

increasing levels of feature integration in the ventral visual stream. This visual stream 

is of course considered to be concerned with the "what" aspects of visual processing 

(Ungerleider & Mishkin, 1982). This PMFC model has been shown to account for a 

considerable amount of data on the effects of perirhinal lesion. 

I f indeed the perirhinal cortex is required for what has been described as a '"gestalt" 

representation of a complete stimulus" (Murray & Bussey, 1999) then two clear 

predictions arise. The first of these is that not only visual recognition memory, but 

also performance on any task requiring the use of more than one feature of the object, 

would be impaired by perirhinal lesions. The second and more specific prediction is 

that any task in which recognition of an object requires or is aided by a configural 

strategy would be impaired in animals with perirhinal lesions. The greater the reliance 

which must be placed upon a configural approach the more severe the predicted 

impairment. Such a theory predicts that not only mnemonic tasks which contain 

configural demands, but also concurrent discriminations which do so, wil l produce 

impairments in animals with perirhinal lesions. 

This prediction was supported by a task which used increasing levels of feature 

ambiguity. Bussey et al. (2002) found that the level of perirhinal impairment in 

lesioned monkeys increased with the level of feature ambiguity in the stimuli used. 

The lesioned monkeys were unimpaired in the minimum ambiguity condition where 

there were no explicitly ambiguous features, mildly impaired in the condition in 

which half of the features were explicitly ambiguous, and severely impaired in the 

maximum ambiguity condition in which all features were explicitly ambiguous. This 

finding is supported by Eacott et al. (2001) who found that rats with perirhinal lesions 

were impaired when processing of more than one overlapping feature was required to 
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identify a two dimensional stimulus uniquely, but not when identification could be 

made on the basis of one feature, even when the figures involved were complex. 

Buckley & Gaffan (1998c) provide further support, reporting similar findings of 

impairment following perirhinal lesions in primates. These findings should be 

contrasted with those which show intact performance on negative patterning tasks in 

rats with combined perirhinal and postrhinal lesions as well as those with fornix 

lesions (Bussey et al., 2000). 

In addition to the deficits reported on tasks which explicitly involve feature 

ambiguity, there have been findings of deficits on concurrent discrimination when 

large numbers of objects are used as stimuli, but not when only a small number are 

used (Buckley & Gaffan, 1997; Eacott et al., 1994). A possible explanation for these 

findings emerges when they are considered together with those of the studies when 

configural processing was required in order to perform the discrimination. The PMFC 

connectionist model accounted for deficits when there was explicit feature ambiguity 

in terms of a hierarchically structured system within the ventral visual stream in 

which the more rostral regions represented feature conjunctions and resolved feature 

ambiguity. The model accurately predicted that it would not be the number of objects 

in a stimuli set per se which is responsible for deficits in perirhinally lesioned 

animals' performance, but the level of feature ambiguity. However, it is clear that the 

level of feature ambiguity wi l l tend to increase de facto with the number of objects in 

a stimulus set as it becomes more likely that some objects wil l share distinctive 

features. This is, of course, not the only reason that task difficulty increases i f a larger 

number of objects are employed in a stimulus set, but the nature of the stimuli used in 

such studies makes it a plausible explanation in this instance. 

As is indicated by the forgoing discussion, there is a distinction between object 

identification and object recognition. The former is dependent upon retrieval of a 

specific memory, whilst the latter may occur merely as a result of a feeling of 

familiarity. It is probable that most object recognition in the standard paradigms does 

in fact result from this second form of less specific memory, and that this is 

particularly the case with the object recognition test developed by Ennaceur & 

Delacour (1988). This one-trial test of object memory relies on the preference for 

novelty of the normal rat, which, given a free choice, wi l l explore a novel object for 
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longer than an identical copy of a familiar object (copies are employed so as to 

eliminate the effect of odour marking). However, where there is mnemonic failure 

the animal wi l l explore both objects equally. It has been shown that perirhinal lesions 

prevent discrimination between novel and familiar objects in this task both alone 

(Ennaceur et al, 1996) and when combined with fornix lesions (Ennaceur & Aggleton, 

1997). 

By introduction of the need for multiple feature identification and for identification of 

spatial relationships between features the task of object recognition can be converted 

into one which requires object specification. This has previously been attempted by 

Ennaceur & Aggleton (1994) who used objects constructed from plastic and metal to 

examine the effects of object reconfiguration on sham-operated and fomix-transected 

rats. They found that fornix lesions did not impair the ability of the animals to 

distinguish between a familiar object (A) and that object reconfigured (A*) or 

between A* and a novel object (N). This contributed to the mounting evidence that 

an account of configural memory based on hippocampal function could not be 

sustained. This was confirmed by the authors' subsequent work which examined the 

effects of reconfiguring objects on animals with either fornix or perirhinal lesions 

(Ennaceur et al., 1996). This study produced results which did not provide a clear 

pattern of impairment: all groups performed equally in discriminating between A* 

and A, whilst the perirhinal group produced counter-intuitive results on the A*/N 

discrimination, showing preference for A* at a 1 minute delay, but preference for N at 

a 15 minute delay, in contrast to the same animals' performance on an A/N 

discrimination, where they did not discriminate between the objects. 

Whilst these results are indicative of a heightened sensitivity to stimulus configuration 

by animals with perirhinal lesions, at least at short delays, there is clearly a degree of 

confusion about the effects of perirhinal lesions on recognition of objects once feature 

ambiguity is introduced. In particular it is unclear precisely what is remembered or 

results in a feeling of familiarity, and what the time course of such memories is. In 

particular the experiments discussed above are suggestive of a non-linear interaction 

between memory for the whole of an object (the "gestalt") and memory for certain 

features. 
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The experiments discussed here attempt to examine in detail the effects of 

reconfiguring stimuli on object recognition in animals with perirhinal lesions, as 

compared to sham-operated controls. Initially an experiment was designed which used 

the automated Y-maze to teach rats discriminations for which configural processing 

was required. However, despite extensive training over a period of months the 

animals failed to learn the initial stages of the task which used partial feature 

ambiguity. A different approach was therefore taken, and experiments using 

naturalistic objects were designed. Rather than the specifically constructed objects 

used in the studies discussed above, these experiments employed objects assembled 

from plastic construction blocks (Duplo™). This had the advantage of permitting the 

rapid construction of a large number of unique objects, which were ideally suited to 

reconfiguration without the introduction of novel features. This allowed the use of a 

wide range of delays in each experiment (between 1 and 15 minutes in all 

experiments, between 1 minute and 24 hours in some experiments) and permitted easy 

repetition of experiments. 

There is a possibility that stimuli which permit reconfiguration are in some way 

intrinsically different to standard objects such as bottles and jars which are hard or 

impossible to reconfigure. Because of this great care was taken, first of all to establish 

that performance by the animals used in this study was similar to that on previous 

studies which employed the standard version of this task (discrimination between 

familiar (A) and novel (N). Secondly an attempt was made to ensure that the Duplo 

objects employed to allow reconfiguration also produced such expected results. An 

attempt was then made to replicate the results of Ennaceur et al. (1996) on a 

discrimination between (A*) and (A). 

The next experiment exploited the fact that with small stimulus sets feature ambiguity 

may increase only marginally with stimuli number, although the mnemonic task 

difficulty wil l increase for other reasons. The use of explicit feature ambiguity is 

therefore contrasted with the use of a still small, but nonetheless larger than usual 

stimulus set from which one object is then used as (A) in a discrimination between 

(A) and (N). Caution should always be employed when stating that a task does not 

require configural strategies for successful discriminations between stimuli - as 

Healey & Gaffan (2001) demonstrated, learning of configural strategies may occur 
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without training which requires such learning. However, this task used a total of only 

five objects in its stimulus set, as compared to the usual two, and the objects were 

selected to be as different from each other as possible. It is therefore extremely likely 

that the level of feature ambiguity remained low, whilst the level of difficulty 

compared with the baseline task (A/N) was increased. 

The final experiment sought to establish the pattern of preference between the familiar 

object reconfigured (A*) and N over increasing delay, and, i f possible to elucidate the 

complex pattern of results found by Ennaceur et al. (1996). The authors of this study 

used only two delays, and it is unclear what pattern would be predicted for delays 

lying intermediate between 1 minute and 15 minutes. In particular it is hoped that the 

conflict between a lack of discrimination on the standard (A/N) task and the apparent 

discrimination between (A*) and (N) (though not between (A*) and (A)) can be 

resolved. In particular, the ability to discriminate between A* and N and the 

preference at the 1 minute delay for A* (an object which was only partially novel) 

over N (an object which was wholly novel) requires clarification. 

3.2: Methods and Materials 

Subjects 

Twenty Dark Agouti rats (Bantin & Kingman, Hull, UK) were used in this 

experiment. They had previously undergone extensive training in the automated Y-

maze (see chapter 2 for a description) as part of an experiment which proved to be 

impractical (see above). They were housed in pairs in diurnal conditions (12h light/ 

12h dark cycle) and all testing was carried out during the light phase. Throughout the 

study animals had ad libitum access to both food and water. At the time of surgery 

animals were approximately three months old. One animal died due to post-operative 

complications. Nineteen animals (10 perirhinal and 9 sham-operated) took part in the 

experiments presented here. 

Apparatus 

All testing was carried out in a maze made of wood of base dimensions l m 2 and 

height 48 cm. The base was painted matt black and the walls matt white. The objects 

were placed into the maze equidistant from the sides of the maze. Standard objects 

used included bottles, jars, tubs and bowls. Other objects were constructed in house 
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from Duplo , manufactured by the LEGO Group, the base blocks of which were 

weighted with wax (figure 3.1 - pictures of objects). These weighted blocks were 

only ever used to form the bases of objects. Testing took place in a room lit by a 40W 

anglepoise bulb positioned so that light was directed away from the maze, resulting in 

low-level lighting. Noise was kept to a minimum in the region of the testing room. A 

number of sessions were videotaped to allow tests experimenter consistency and 

rei 

Figure 3.1: Typical objects made of Duplo 
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Surgery 

Surgery was performed on all animals. 10 animals received bilateral lesions of the 

perirhinal cortex and 9 animals were sham-operated. Surgery was identical to the 

procedure described in chapter 2. Procedure for the sham animals was identical 

except that the electrode was not lowered into the brain. 

Perfusion 

Procedure was identical to that described in chapter 2. 

Task 

Habituation 

Prior to the start of testing animals received three habituation sessions in which they 

were allowed to explore the maze. The first of these took place in cage-mate pairs 

and lasted for 10 minutes. The two subsequent sessions took place individually and 

each lasted 5 minutes. For each habituation session a different novel object was 

placed in the centre of the maze. 

Establishment of a baseline 

Baseline performance for the two groups at different delays was established by 

replicating the results of Ennaceur et al. (1996) on a standard object recognition task. 

Animals were placed individually in the maze which contained two identical copies of 

a novel object, placed equidistant from the sides. They were allowed to explore freely 

until they had spent a total of 30 seconds exploring the objects. I f they failed to 

explore for 30 seconds they were removed after 5 minutes, returned to their home 

cage, and the time spent exploring was noted. After a delay of 1 minute, 3 minutes, 5 

minutes, 10 minutes, 15 minutes, 1 hour, 4 hours or 24 hours they were returned to the 

maze which now contained a new copy of the object they had previously explored and 

a novel object, placed equidistant from the sides of the maze (figure 3.2). They were 

allowed to explore for 3 minutes and the time spent exploring each object was 

recorded for each of three 1 minute periods. Different pairs of objects were used for 

each test. Intrinsic interest of objects was controlled for by varying the designated 

familiar and novel objects between rats. Effects of place were controlled for by 

alternating the position of the novel and the familiar objects across both animals and 
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delay points. The experiment was repeated twice at each delay, each time using 

different objects. 

l m 
Exploratory phase 

delay 
1 in 

lm 
Test phase 

Figure 3.2: Exploratory and test phases for the establishment of a baseline. 

Experiment 3.1: A vs. N (Duplo) 

Experiment 3.1 exactly repeated the procedure used to establish a baseline using 

objects constructed out of Duplo (figure 3.3) at the same delays. It was repeated 

twice at each delay using different objects for each repetition 

Exploratory phase 

Test phase 

N 

Figure 3.3: Exploratory and test phases for Duplo A vs. N 



69 

Experiment 3.2: A vs. A* 

Experiment 3.2 also used objects constructed out of Duplo. The exposure phase was 

identical to that previously described, with two identical copies of a Duplo object 

placed in the maze. In the test phase the maze contained a new copy of the familiar 

object and a reconfigured version of this object (figure 3 .4). Care was taken to ensure 

that the reconfigured object did not contain novel features not found in the original 

object. Object position and the configuration which was experienced as novel were 

controlled for between animals. Because performance of the sham animals fell to 

chance at a delay of 15 minutes, longer delays were not used in this experiment. It 

was repeated twice at each delay used. 

Exploratory phase 

A* 

Test phase 

Figure 3.4: Exploratory and test phases for A* vs. A 

Experiment 3.3: Multiple objects 

Experiment 3 .3 was designed as a control for the effects of discrimination difficulty as 

opposed to the effects of a discrimination requiring a configural strategy. In the initial 

exploration phase the maze contained four different objects placed equidistant from 

the corners of the maze. During the test phase the maze contained a different copy of 
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one of the four objects explored during the test phase and a novel object placed 

equidistant from the sides of the maze (figure 3.5). Animals were placed in the maze 

and allowed to explore until they had explored the object pre-designated as the 

familiar object in the test phase for 15 seconds. Al l animals remained in the maze for 

a minimum of 2 minutes, even i f they completed this 15 seconds of exploration in a 

shorter time. I f they failed to explore the designated object for 15 seconds they were 

removed from the maze after 5 minutes and the time spent exploring the object was 

noted. After a delay of 1,3, 5, 10 or 15 minutes the animal was returned to the maze 

for 3 minutes and allowed to explore the novel and the familiar object. Time spent 

exploring each object was recorded for each of three 1 minute periods. The position 

of the 4 objects in the exploration phase remained constant but intrinsic interest was 

controlled for between rats by varying the object which was used for the test phase 

and the object which was experienced as novel. The position of the objects in the test 

phase was controlled for by alternation between rats. The experiment was repeated 

twice using a different set of objects each time. 

• • A t A B Delay c D • • A N 

Exploratory phase Test phase 

Figure 3.5: Exploratory and test phases for multiple objects 

Experiment 3.4: A* vs. N 

Experiment 3.4 used objects constructed out of Duplo. The exposure phase was 

identical to that previously described for experiments 3.1 and 3.2, with two identical 

copies of a Duplo object placed in the maze. For the test phase the maze contained a 

novel object and a reconfigured version of the familiar object. The object was 

reconfigured by altering the position of one or more features within the object (figure 

3.6). The positions of the objects and the object which was experienced as novel were 
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controlled for between animals. The experiment was repeated twice at each delay, 

using different objects. 

Expl< Exploratory phase 

A * N 

Test phase 

Figure 3.6: Exploratory and test phases for A* vs. N 

Data analysis 

Following Ennaceur & Delacour (1988), the difference in exploration of the objects in 

seconds at a given time-point was calculated (Dl) . Secondly, the difference between 

the time spent exploring the objects was calculated as a proportion of the total time 

spent exploring both objects (D2). The data from the baseline and experiments 3.1 

and 3.3 were analysed according to the calculation below: 

D l = Total exploration of N - Total exploration of A 

D2 = Total exploration of N - Total exploration of A 
Total exploration of N + Total exploration of A 

In experiment 3.2 the reconfigured object (A*) was designated as " N " for the 

purposes of calculating these variables, so: 
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D l = Total exploration of A* - Total exploration of A 

while 

D2 = Total exploration of A* - Total exploration of A 
Total exploration of A* + Total exploration of A 

In experiment 3.4 the reconfigured object (A*) was designated as "A" for the 

purposes of calculating these variables, so: 

D l = Total exploration of N - Total exploration of A* 

while 

D2 = Total exploration of N - Total exploration of A* 
Total exploration of N + Total exploration of A* 

Repeated measures ANOVA's were carried out on each of these measures, followed 

by post-hoc Tukey's test. Simple effects were also calculated where appropriate. 

A number of sessions were scored on videotape by both the experimenter and another 

person experienced in object recognition testing. These scores were compared with 

the original scoring by the experimenter using one-way ANOVA's. The experimenter 

also re-scored the tapes blind after an interval of approximately 18 months and 

compared this with the original scoring of the videotape using paired-sample t-tests. 

3.3: Results 

3.31: Histological 

One animal (R207) died before perfusion could take place. Histological analysis 

revealed that in all other cases the perirhinal lesions were essentially as intended, 

extending approximately 3.5 mm - 6.5 mm posterior to Bregma, although they were 

not complete lesions. The estimated damage to the perirhinal cortex ranged from 26% 

- 67% of the total extent of perirhinal cortex. However, the smallest lesion shown 

(R215) was atypical and was considerably smaller than the other lesions. Figure 3.7 

shows representative sections from animal 202. Figure 3.8 shows the extent of the 

smallest (R215, semi-transparent grey) and largest lesions (R210, diagonal stripes) 

drawn on to standard sections taken from Paxinos & Watson (1998). As can be seen 

from the behavioural results described below it is unlikely that the size of the lesions 

affected the behavioural impairments, as these were both extensive and in accordance 

with the majority of the extant literature. In addition the performance of the perirhinal 
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animals on each experiment at the 15 minute delay was plotted and neither animal 

with the largest nor the smallest lesion was atypical (see figure 3.9). The performance 

of the animal which died before perfusion could be performed (R207) is also shown. 

As can be seen from figure 3.9, this animal shows no indication of deviating from the 

performance of the cohort. 
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Figure 3.7: Three representative sections of a bilateral perirhinal 
lesion from animal R202 
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Figure 3.9: Performance of animals with largest, smallest and typical lesions on 

each experiment at a delay of 15 minutes. Animal R216 for which no histology is 

available is also shown 

3.32: Behavioural 

The results of each experiment were analysed separately on both the D l and the D2 

measures using repeated measures ANOVA's with simple effects analysis. The 

absolute, as opposed to the relative performance of each group at each delay was also 

analysed using one-sample T-tests to establish whether discrimination was above 

chance. 

Three experiments involved discrimination between a familiar object and an object 

which had not previously been presented. These were the baseline task, in which the 

unfamiliar stimulus was an object; experiment 3.1, in which the unfamiliar stimulus 

was a novel duplo construction and experiment 3 .2 in which the unfamiliar stimulus 

was a reconfigured version of the familiar. Performance on experiments 3.1 and 3.2 is 

analysed in comparison with baseline performance established on a standard version 

of the object recognition task (see below) in order to establish whether tasks requiring 

configural processing are differentially harder for animals with perirhinal lesions than 

for sham animals. The effect of difficulty is controlled for by the inclusion of a task 

(experiment 3.3, multiple objects) which is more difficult than the baseline task but in 

which discrimination of the two objects does not require configural processing. The 

experiment in which discrimination is between a novel object (N) and a novel 

configuration of familiar elements (A*) is also analysed in comparison with baseline 
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performance to establish whether this task, requiring configural processing, is 

differentially more difficult for the perirhinal animals. 

Inter-experimenter Reliability 

The results of video scoring by the experimenter and another experienced 

experimenter were compared using a 2 (observer) x 3 (task scored) repeated measures 

ANOVA on the D l measure. As expected there was a main effect of task scored (F = 

7.46, df = 2,70, p < 0.01). There was no main effect of observer (F < 1, df = 2,70, p < 

0.01) and no interaction between task and observer (F < 1, df = 1,36, p > 0.05), 

indicating that the experimenters' scores agreed on each task. 

Intra-experimenter Reliability 

The results of on-line scoring by the experimenter and video scoring by the 

experimenter were compared using a 2 (viewing) x 3 (task scored) repeated measures 

ANOVA on the D l measure. As expected this showed an effect of task (F = 3.87, d f = 

2,36, p < 0.05). There was also an effect of viewing (F = 3.74, df = 2,18, p < 0.05) 

but no interaction between viewing and task (F < 1, df = 2,36, p > 0.05), with the 

video scores lower than the on-line score. It seemed probable that this was due to the 

greater difficulty in detecting very short periods of exploration on video. To test this 

the original scoring of the videos by the experimenter at the time of testing was 

compared with a second scoring carried out approximately two years later by the 

same experimenter. A repeated measures ANOVA showed that there was no 

difference between the two scores for each task (F < 1, df = 1,18, p > 0.05). As 

expected there was an effect of task (F = 3.87, df = 2,36, p < 0.05), but there was no 

interaction between score and task (F < 1, df = 2,36, p > 0.05). This suggests that 

scoring was stable across different tests, and that any differences found were due to 

the medium used (on-line or video). 
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Standard Objects: Baseline 

This experiment replicated the results of previous studies by showing clear perirhinal 

impairments at the longer delays on both the D2 (F = 29.267, df =1,17, p < 0.001) and 

the D l (F = 17.739, df = 1,17, p = 0.001) measures. Results using the two measures 

differ slightly, and so are presented separately. 

D2 

The perirhinal animals were impaired compared to the shams on the D2 measure as is 

shown by the main effect of lesion (F = 29.267, df =1,17, p < 0.001). There was also 

a main effect of delay (F = 9.175, df = 7, 119, p < 0.001) and an interaction between 

delay and lesion (F = 2.632, df =7,119, p < 0.05) reflecting the fact that perirhinal 

performance declined with increasing delay, as can be seen in figure 3.10a. Analysis 

of this interaction using simple effects showed that the perirhinal animals were 

impaired compared with sham performance at delays of 10 minutes (F = 9.65, df = 

1,134, p < 0.01), and delays of 1 hour and above (1 hour: F = 5.50, df = 1,134, p < 

0.05; 4 hours: F = 9.76, df = 1,134, p < 0.01; 24 hours: F = 9.92, df = 1,134, p < 0.01). 

The lack of an impairment at the 15 minute delay may be due to increased variance in 

the performance of the sham animals (see figure 3.10a). 

Analysis of the animals' absolute performance showed that the perirhinal animals did 

not discriminate between the objects at the two longest delays: one sample T-tests 

showed that the perirhinal animals' performance did not differ from zero at 4 hours or 

24 hours, whilst sham animals performed above chance at all delays (see table 3.1). 
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Figure 3.10: Discrimination between novel (N) and familiar (A) objects at increasing delays, 

(a) D2 measure, (b) D l measure * indicates p < 0.05 ** indicates p<0.01. 
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Sham (DF = 8) Perirhinal (DF = 9) 
Delay T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 8.422 O.001 Yes 6.425 <0.001 Yes 
3 minutes 7.754 <0.001 Yes 10.372 O.001 Yes 
5 minutes 8.549 O.001 Yes 8.477 <0.001 Yes 
10 minutes 5.677 <0.001 Yes 3.317 0.009 Yes 
15 minutes 5.355 0.001 Yes 4.811 0.001 Yes 
1 hour 9.185 O.001 Yes 2.346 0.044 Yes 
4 hours 4.916 0.001 Yes 0.727 0.486* No 
24 hours 5.212 0.001 Yes 1.181 0.268* No 
Table 3.1: One-sample T-tests on perl brmance o: ' each group at increasing delays 

on standard object discrimination of N and A: D2 measure. * indicates 

performance was at chance 

Dl 

As with the D2 measure, the perirhinal animals were impaired compared to the shams 

(F = 17.739, df = 1,17, p = 0.001). There was also a main effect of delay (F = 6.216, 

df = 17,119, p < 0.001) as both groups performed more poorly with increasing delay 

(see figure 3.10b). Although there was no interaction between delay and lesion (F = 

1.553, df = 7,119, p > 0.05), the delay-dependent nature of the impairment of the 

perirhinal animals' impairment can be seen in figure 3.10b, and is also partially 

confirmed by one-sample T-tests. Analysis of the animals' performance at each delay 

using simple effects with a Bonferroni correction for 8 multiple comparisons showed 

that the perirhinal animals were impaired at delays of 4 hours (F = 10.253, df = 1,134, 

p < 0.05) and 24 hours (F = 13.917, df = 1,134, p < 0.05). 

As with the D2 measure, analysis of the animals' absolute performance confirmed 

that the perirhinal impairment in discrimination between the objects was not uniform 

across delay. One sample T-tests showed that the perirhinal animals' performance did 

not differ from zero at 4 hours or 24 hours, while that of the sham animals was greater 

than zero at all delays (see table 3.2). 
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Sham (DF = 8) Perirhinal (DF = 9) 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 5.605 0.001 Yes 4.742 0.001 Yes 
3 minutes 4.995 0.001 Yes 7.013 <0.001 Yes 
5 minutes 12.992 <0.001 Yes 9.600 O.001 Yes 
10 minutes 6.283 O.001 Yes 2.886 0.018 Yes 
15 minutes 6.618 <0.001 Yes 4.579 0.001 Yes 
1 hour 11.430 <0.001 Yes 2.340 0.044 Yes 
4 hours 3.742 0.006 Yes 0.714 0.493* No 
24 hours 4.835 0.001 Yes 1.181 0.268* No 
Table 3.2: One-sample T-tests on peri brmance ol ' each group at increasing delays 

on standard object discrimination of N and A: Dl measure. * indicates 

performance was at chance 

Exploration 

There was no difference between the groups in the total amount of time spent 

exploring in the test phase (F < 1, df = 1,17, p > 0.05). There was a main effect of 

delay (F = 3.983, df = 1,7, p = 0.001) but there was no interaction between delay and 

lesion (F = 1.616, df =1,7, p > 0.05). The effect of delay would appear to result from 

non-linear variation in the exploration of both groups, which was probably due to the 

varying intrinsic interest of the objects selected at each delay. 

Summary 

Overall the perirhinal animals were impaired compared to the shams. Performance of 

both groups fell with increasing delay and this was particularly the case for the 

perirhinal animals, whose performance was at chance at the two longest delays used. 

Total exploration did not differ between the groups 

Experiment 3.1: Duplo A vs. N 

This experiment aimed to replicate the results of the baseline by showing that both 

perirhinal and sham operated animals discriminated novel and familiar Duplo objects 

in the same way that they discriminated between standard objects such as those used 

by other researchers. However, whilst the perirhinal animals were impaired compared 

to the shams on both the D2 (F = 22.003, df = 1,17, p < 0.001) and the D l (F = 8.602, 

df = 1,17, p< 0.01) measures, the pattern of impairment differed somewhat from that 



82 

with standard objects, with the task seemingly being more difficult for both groups. 

The results of the two measures also differed somewhat and so are presented 

separately 

D2 

The perirhinal animals were impaired compared with the shams (F = 22.003, df = 

1,17, p < 0.001). There was also a main effect of delay (F= 3.217, df = 7, 119, p < 

0.01), although there was no interaction between lesion and delay (F < 1, df =1,7, p 

>0.05). However, the impairment was not uniform across all delays as is shown in 

figure 3.11a, and, as can be seen from one-sample T-tests (table 3.3), absolute 

performance certainly differed across delays. 

Analysis of the effects of increasing delay using simple effects with a Bonferroni 

correction for 8 multiple comparisons showed that the perirhinal animals were 

impaired compared to the sham animals at a delay of 5 minutes (F = 10.416, df = 

1,136, p < 0.05). The failure to find a difference between the groups at longer delays 

would seem to be due to poorer performance by the shams at these delays, rather than 

to any decrease in the perirhinal impairment (see figure 3.11a). 

This interpretation of the pattern of impairment is supported by analysis of the 

absolute performance of the two groups at each delay: one sample T-tests showed that 

perirhinal animals were performing at chance at delays of 5 minutes and longer (see 

table 3.3) whereas the sham animals performed above chance at all delays. 
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Sham Perirhinal 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 6.372 O.001 Yes 4.424 0.002 Yes 
3 minutes 3.495 0.008 Yes 3.885 0.004 Yes 
5 minutes 5.436 0.001 Yes 1.730 0.118* No 
10 minutes 3.745 0.006 Yes 0.633 0.542* No 
15 minutes 2.855 0.021 Yes 0.281 0.785* No 
1 hour 2.393 0.044 Yes 0.112 0.914* No 
4 hours 3.618 0.007 Yes 0.246 0.811* No 
24 hours 3.310 0.011 Yes 0.182 0.860* No 
Table 3.3: One-sample T-f ests on per brmance ol ' each group at increasing delays 

on Duplo object discrimination of N and A: D2 measure. * indicates performance 

was at chance 
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Figure 3.11: Discrimination between novel (N) and familiar (A) Duplo objects at increasing 

delays, (a) D2 measure, (b) D l measure.* indicates p < 0.05. 
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Dl 
As with the D2 measure, the perirhinal animals were impaired relative to the shams (F 

= 8.602, df = 1,17, p< 0.01). Although there was no effect of delay on this measure 

(F = 1.675, df = 7,119, p > 0.05) the impairment was not uniform across all delays as 

can be seen from figure 3.11b and analysis of absolute performance (table 3.4). 

Analysis using simple effects with a Bonferroni correction for 8 multiple comparisons 

showed that the perirhinal animals were impaired compared with the shams at a delay 

of 5 minutes (F = 7.593, df = 1,135, p < 0.01). As with the D2 measure it seems 

probable that, as can be seen from figure 3.11b, the lack of impairment at longer 

delays was, with the exception of anomalous performance at the delay of 15 minutes, 

due to a reduced discrimination by the sham animals, rather than to a bimodal 

distribution of the impairment of the perirhinal animals. 

This is supported by analysis of absolute performance: one-sample T-tests showed 

that perirhinal animals were performing at chance at delays of 5 minutes and longer 

(see table 3.4) whereas the sham animals performed above chance at all delays. 

Sham Perirhinal 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 6.097 O.001 Yes 4.660 0.001 Yes 
3 minutes 3.288 0.011 Yes 3.186 0.011 Yes 
5 minutes 4.658 0.002 Yes 1.540 0.158* No 
10 minutes 3.560 0.007 Yes 0.664 0.542* No 
15 minutes 4.913 0.001 Yes 0.771 0.461* No 
1 hour 3.714 0.006 Yes 0.441 0.670* No 
4 hours 2.888 0.020 Yes 0.555 0.593* No 
24 hours 4.212 0.003 Yes -0.353 0.732* No 
Table 3.4: One-sample T-tests on perl brmance o: ' each group at increasing delays 

on Duplo object discrimination of N and A: D l measure. * indicates performance 

was at chance. 

Exploration 

There was a main effect of lesion (F = 4.717, df = 1,17, p < 0.05) as the perirhinal 

animals explored the objects for longer than the shams and a main effect of delay (F = 

7.884, df = 7,119, p < 0.001), but no interaction between delay and lesion (F = 1.636, 

df = 7,119, p > 0.05). The main effect of delay would seem to be due to non-linear 
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variation in exploration by both groups, probably resulting from differences in the 

intrinsic interest of the objects used. As before, where there is a difference in 

exploration between the groups the D2 measure is more reliable than the D l measure. 

Summary 

Overall the perirhinal animals were impaired compared with the sham animals. The 

poor performance by the perirhinal animals persisted at all delays of 5 minutes and 

longer, as they performed at chance, whilst the sham animals were above chance at all 

delays. The perirhinal animals showed more total exploration than the shams. 

Experiment 3.2: Duplo A* vs. A 

This experiment explicitly introduced the necessity for configural processing in order 

to discriminate between the two objects presented, by requiring the animals to 

discriminate between a familiar object (A) and the same familiar object reconfigured 

(A*). 

On this task perirhinal animals were impaired compared to sham animals on both the 

D2 (F = 33.672, df = 1,17, p < 0.001) and the D l measures (F =32.366, df = 1,17, p < 

0.001). Unlike the previous experiments, there was no effect of delay (D2: F = 1.646, 

df = 4,68; D l : F = 1.623, df = 4,68, p > 0.05). There was also no interaction between 

delay and lesion (D2: F < 1, df = 4,68, p > 0.05; D l : F < 1, df = 4,68, p > 0.05) with 

the perirhinal animals showing a uniform impairment at all delays. This absence of an 

effect of delay can be clearly seen in figures 3.12a and 3.12b. Although there was no 

effect of delay, analysis of the main effect of lesion using simple effects with a 

Bonferroni correction for 8 multiple comparisons showed that the perirhinal animals 

were only impaired relative to the sham animals at the 3 minute delay (D2: F = 

14.346, p < 0.01; D l : F = 18.692, p < 0.01) and at the 5 minute delay (D2: F = 8.275, 

p < 0.05; D l : F = 9.675, p < 0.05). This was clearly due to the poor performance of 

the sham animals at the longer delays (figures 3.12a and 3.12b). 

The difficulty of the task became evident during testing, and analysis of absolute 

performance showed that the perirhinal animals were performing at chance at all 

delays used on both the D l and the D2 measures (tables 3.5 and 3.6), while the sham 

animals performed at chance at the 10 minute delay on both measures, with marginal 
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performance at 5 minutes on the D2 measure and chance performance at 1 minute on 

the D l measure. In view of the uniformly poor performance of the perirhinal animals 

and the decline in the sham animals' performance, testing at delays longer than 15 

minutes was considered to be unnecessary. 

Sham (DF = 8) Perirhinal (DF = 9) 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 2.618 0.031 Yes 0.788 0.451* No 
3 minutes 3.906 0.005 Yes -1.590 0.146* No 
5 minutes 2.241 0.055* No -1.738 0.116* No 
10 minutes 0.885 0.402* No -1.005 0.341* No 
15 minutes 2.528 0.035 Yes 0.547 0.598* No 
Table 3.5: One-sample T-tests on performance of each group at increasing delays 

on Duplo object discrimination of A* and A: D2 measure. * indicates 

performance was at chance 

Sham (DF = 8) Perirhinal (DF = 9) 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 1.906 0.093* No 0.177 0.863* No 
3 minutes 5.183 0.001 Yes -1.299 0.226* No 
5 minutes 2.547 0.034 Yes -1.718 0.120* No 
10 minutes 0.783 0.456* No -0.956 0.364* No 
15 minutes 2.347 0.044 Yes 0.348 0.737* No 
Table 3.6: One-sample T-tests on per brmance o ' each group at increasing delays 

on Duplo object discrimination of A* and A: Dl measure. * indicates 

performance was at chance 
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at increasing delays, (a) D2 measure, (b) D l measure. * indicates p < 0.05; ** indicates p < 0.01. 
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Exploration 

There was a main effect of lesion (F = 7.946, df = 1,17, p < 0.05) as the perirhinal 

animals spent more time exploring the objects than the sham animals did, and a main 

effect of delay (F = 8.613, df = 4,68, p < 0.001) but no interaction between delay and 

lesion (F < 1, df = 4,68, p > 0.05). The main effect of delay resulted from an 

increased amount of exploration at the longer delays. It is therefore possible that both 

the lesion and the delay effects result from more exploration occurring where the 

familiarity of the familiar object is reduced. As previously stated, the D l measure is 

sensitive to exploration duration, and is therefore less reliable when the groups differ 

on this variable; the D2 measure is, however, unaffected. 

Summary 

This task was extremely difficult for both groups. The perirhinal animals were 

impaired compared with the shams and performed at chance at all delays. The sham 

animals did not discriminate between the objects at delays of 5 and 10 minutes, 

whereas on previous experiments they discriminated at delays of 24 hours. The 

perirhinal animals explored the objects more than the sham animals and both groups 

explored more at longer delays. 

Comparison of Standard Objects Baseline, Duplo A vs. N and Duplo A vs. A* 

This is a comparison of the three sets of data which compare a familiar object (A) 

with a novel (N) or novel configuration of standard object (A*) object in order to 

examine the effects of increasing the difficulty of discrimination or of increasing the 

configural processing required in order to discriminate between the objects. Because 

the A* vs. A task did not use delays of longer than 15 minutes, the results of longer 

delays in the earlier experiments are not included in this analysis. 

Only the D2 measure, the more reliable of the two is used in the comparison of the 

data sets. This is because of the inevitable problem of disparity in levels of 

exploration between tasks which use different types of object, particularly when, as is 

the case with the A* vs. A task, there is a much smaller total level novelty in the 

objects explored. As previously discussed the D l measure is liable to be unreliable 

where there are differences in the levels of exploration, whilst the D2 measure is 

designed such that it does not reflect these differences. 



90 

The data were analysed using a 3 (task) x 5 (delay) x 2 (group) repeated measures 

ANOVA. The perirhinal animals were clearly impaired compared to the shams (F = 

33.323, df = 1,1, p < 0.001). There was also a main effect of delay (F = 5.391, df = 

1,4 p = 0.001) but no interaction between delay and lesion (F < 1, df = 1,4, p > 0.05) 

showing that while the tasks became more difficult with increasing delay this was not 

particularly the case for the perirhinal animals. There was a main effect of task (F = 

36.022, df =1,2, p < 0.001) as successive tasks increased in difficulty and, more 

importantly, an interaction between task and lesion (F = 4.341, df = 1,2, p < 0.05) (see 

figures 3.13a and 3.14a). Analysis of this interaction using simple effects showed that 

the perirhinal animals' performance was impaired relative to the sham animals' on the 

Duplo A vs. N (F = 6.773, df = 2,20, p < 0.01) and on the A vs. A* (F = 33.672, df = 

2,20, p < 0.01) tasks but not on the baseline task (F = 3.545, df = 2,20, p > 0.05). The 

lack of a perirhinal impairment on the baseline task, when analysis of this data alone 

showed such an impairment (see p67 above), is due to the exclusion of the three 

longest delays here in order to produce a balanced analysis. However, there was no 

interaction between delay and task (F = 1.777, df = 1,8, p = 0.087) and no three-way 

interaction between delay, task and lesion (F = 1.507, df =, 1,8, p > 0.05). The lack of 

such interactions between the main effect of delay and the other variables would seem 

to indicate that, whilst the other tasks were more difficult, and particularly more 

difficult for the perirhinal animals, they did not become differentially more difficult 

with increasing delay, but rather the effect of delay in increasing difficulty remained 

constant across the tasks for each lesion group. 

Summary 

The first two experiments discussed here were both more difficult than the baseline 

tasks, and this was especially the case for the A vs. A*. It is possible to interpret this 

result as representing the introduction of a demand for configural processing of the 

tasks. This is implicit in the case of the Duplo A vs. N where objects have features 

which resemble one another and, despite the attempt to avoid it, may have features in 

common, and explicit in the case of the A* vs. A, where identification of a configural 

structure is essential to the discrimination. In order to rule out the possibility that this 

result represents not the effects of configurality, but simply of difficulty, the next 
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experiment attempted to increase the difficulty of the task but without the introduction 

of configural processing. 
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Figure 3.13: Duplo A vs. N compared with baseline. D2 measure 
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Figure 3.14: Duplo A vs. A* compared with baseline. D2 measure 
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Experiment 3.3: Multiple objects 

This experiment was designed as a control for the increased difficulty, compared to 

baseline, of experiments 3.1 and 3 .2 discussed above, as opposed to the increased 

requirement for configural processing. In order for the experiment to be a successful 

control for difficulty it must have represented a more difficult discrimination than the 

baseline. The 2 tasks were therefore compared for difficulty using a 2 (tasks) x 5 

(delays) x 2 (groups) repeated measures ANOVA, before the results of the multiple 

objects experiment were analysed. 

Comparison of baseline and multiple objects tasks. 

D2 

Analysis of the 2 tasks using the D2 measure found that, as can be seen from figure 

3.15 the animals performed significantly more poorly on the multiple objects than on 

the baseline task (F = 20.901, df = 1,17, p < 0.001). The perirhinal animals were 

impaired compared with the shams (F = 4.773, df = 1,17, p < 0.05), but this effect was 

delay-dependent as was shown by the interaction between delay and lesion (F= 3 .194, 

df = 4,17, p < 0.05). Importantly there was no interaction between task and lesion (F 

< 1, d f = 1,17, p > 0.05), showing that both groups found the multiple objects task 

equally hard compared with the baseline task. 

•—Base l ine Sham 
.2 & 

•—Base l ine Perirhinal 

• - - Multiple objects 
Sham 

Multiple objects 
Perirhinal 

1 rrinute 3 minutes 5 rrinutes 10 minutes 15 minutes 

Log delay (minutes) 

Figure 3.15: Multiple standard objects compared with baseline. D2 measure 
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Analysis of multiple objects data 

D2 

The multiple objects data were analysed using a 5 (delay) x 2 (group) repeated 

measures ANOVA. There was no main effect of lesion (F = 1.686, df = 1,17, p > 

0.05) or of delay (F < 1, df = 4,68, p > 0.05) and no interaction between delay and 

lesion (F = 1.151, df = 4,68, p > 0.05) on the D2 measure. 

Analysis of absolute performance using one sample T-tests showed that both groups 

were above chance at all delays (see table 3.7). Although the marginal significance of 

the sham's performance at the 3 minute delay should be noted, in the light of the 

above chance performance at all longer delays it would seem to represent a statistical 

anomaly. 

Sham (DF = 8) Perirhinal (DF = 9) 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 2.586 0.032 Yes 5.609 <0.001 Yes 
3 minutes 2.292 0.051* No 2.529 0.032 Yes 
5 minutes 3.539 0.008 Yes 5.369 0.000 Yes 
10 minutes 7.423 O.001 Yes 2.332 0.045 Yes 
15 minutes 3.659 0.006 Yes 2.627 0.027 Yes 
Table 3.7: One-sample T-tests on perl brmance o ' each group at increasing delays 

on standard object discrimination using multiple objects: D2 measure. * 

indicates performance was at chance 

Dl 
There was no main effect of lesion (F = 1.547, df = 1,17, p > 0.05) or of delay (F < 1, 

df = 4,68, p > 0.05) and no interaction between delay and lesion (F = 1.306, df = 4,68, 

p > 0.05 ) on the D l measure. 

Analysis of absolute performance using one-sample T-tests indicates considerable 

variability on the D l measure (see table 3.8). The sham animals performed at chance 

at the 3 minute delay, while the perirhinal animals were at chance at the 10 and 15 

minute delays. However, both groups showed consistent performance of on the D2 

measure. This, together with the lack of any effect of lesion would seem to indicate 

that this task - although known to be harder than the standard task - is not 
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differentially harder for the perirhinal animals. In this respect the task clearly differs 

from experiment 3.2 which requires configural processing, and perhaps also, as wil l 

be discussed later, from experiments 3.1 and 3.4. 

Sham Perirhinal 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 2.446 0.040 Yes 6.745 <0.001 Yes 
3 minutes 1.309 0.227* No 2.452 0.037 Yes 
5 minutes 3.759 0.006 Yes 5.491 <0.001 Yes 
10 minutes 4.962 0.001 Yes 1.953 0.083* No 
15 minutes 3.183 0.013 Yes 1.535 0.159* No 
Table 3.8: One-sample T-tests on perl brmance o ' each group at increasing delays 

on standard object discrimination using multiple objects: D l measure. * 

indicates performance was at chance 

Exploration 

There was no effect of lesion (F < 1, df = 1,17, p > 0.05). There was an effect of 

delay (F = 2.813, df = 4, 68, p < 0.05), but there was no interaction between delay and 

lesion (F < 1, df = 4,68, p >0.05). The effect of delay would seem to be due to non­

linear variation in both groups' exploration, probably resulting from the differing 

intrinsic interest of the objects used at each delay. 

Summary 

The groups did not differ from each other and showed no decrease in discrimination 

with increasing delay. They discriminated between the objects at all the delays tested 

(see comments above on anomalous result of shams at 3 minute delay). Despite this 

strong performance by both groups the task was more difficult than the baseline task, 

with both groups performing more poorly on this task. 
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Figure 3.16: Discrimination between novel (N) and familiar (A) standard objects at 

increasing delays, when multiple objects are seen at exposure, (a) D2 measure, (b) D l 

measure 
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Experiment 3.4: Duplo A* vs. N 

This experiment differs somewhat from the others presented here in that animals are 

not asked to discriminate between a novel object (or a novel configuration of a 

familiar object) and a familiar object: instead they are asked to discriminate between a 

totally novel object (N) and a novel configuration of a familiar object (A*). It 

attempts to further examine the effects of introducing into the object recognition task 

a benefit of employing configural processing in order to discriminate between two 

objects. Data were analysed using an 8 (delay) x 2 (group) repeated measures 

ANOVA for both the D l and the D2 measures. In this experiment perirhinal animals 

were impaired compared to sham animals on both the D2 (F = 51.202, df = 1,17, p < 

0.001) and the D l measures (F = 21.475, df = 1,17, p < 0.001). As the results of the 

two measures differed somewhat, they are presented separately. 

D2 

As with the previous experiments, the perirhinal impairment relative to the sham 

animals (F = 51.202, df = 1,17, p < 0.001) was not uniform across all delays (see 

figure 3.17a). There was also a main effect of delay (F = 3.119, df = 7,119, p < 0.05). 

Although there was no interaction between delay and lesion (F = 1.805, df = 7,119, p 

> 0.05), further analysis of the main effect of lesion using simple effects with a 

Bonferroni correction for 8 multiple comparisons found that the perirhinal animals 

were impaired at delays of 3 minutes (F = 20.275, df = 1, 136, p < 0.01), 5 minutes (F 

= 14.197, df = 1, 136, p < 0.01), and 15 minutes (F = 7.515, df = 1, 136, p < 0.05). 

The failure to find a perirhinal impairment at delays of 10 minutes or longer than 15 

minutes was almost certainly due to the decline in the performance of the sham 

animals rather than an improvement in that of the perirhinal group (see figure 3.17a). 

This interpretation, and the difficulty of the task were confirmed by analysis of the 

absolute performance of the two groups. One-sample T-tests showed that perirhinal 

animals' performance did not differ from chance at delays of 3 minutes and longer, 

whilst sham animals' performance did not differ from chance at delays of 4 hours or 

24 hours (see table 3.9) 
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Sham (DF = 8) Perirhinal (DF = 9) 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 4.232 0.003 Yes 4.942 0.001 Yes 
3 minutes 4.662 0.002 Yes -1.925 0.086* No 
5 minutes 7.177 O.001 Yes 0.745 0.475* No 
10 minutes 4.859 0.001 Yes 0.529 0.610* No 
15 minutes 4.608 0.002 Yes 0.945 0.370* No 
1 hour 3.153 0.014 Yes -0.691 0.507* No 
4 hours 0.870 0.410* No -0.425 0.681* No 
24 hours 1.742 0.120* No 0.661 0.525* No 
Table 3.9: One-sample T-tests on perl brmance ol ' each group at increasing delays 

on Duplo object discrimination of N and A*: D2 measure. * indicates 

performance was at chance 

D l 

As with the D2 measure, the perirhinal animals were impaired compared with the 

sham animals (F = 21.475, df = 1,17, p < 0.001). There was no main effect of delay (F 

= 1.956, df = 7,119, p > 0.05) and no interaction between delay and lesion (F < 1, d f = 

7,119, p > 0.05). However, analysis using simple effects with a Bonferroni correction 

for 8 multiple comparisons showed that the perirhinal animals were impaired at delays 

of 3 minutes (F = 19.618, df = 1,130, p < 0.01), 5 minutes (F = 12.272, df = 1,130, p < 

0.01), 10 minutes (F = 7.897, df = 1,130, p < 0.05) and 15 minutes (F = 13.873, df = 

1,130, p < 0.01). As with the D2 measure, and as can be seen from figure 3.17b, the 

failure to find an impairment at the longer delays was clearly due to the decline in the 

performance of the sham animals at these long delays of an hour or more, rather than 

to an improvement in the performance i f the perirhinal animals. 

As with the D2 measure, this interpretation, and the overall difficulty of the task, was 

confirmed by the analysis of the absolute performance of both groups. One-sample T-

tests showed that perirhinal animals' performance did not differ from chance at delays 

of 3 minutes and longer, whilst sham animals' performance did not differ from chance 

at delays of 1 hour and longer (see table 3.10). 
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Figure 3.17: Discrimination between novel (N) and reconfigured familiar (A*) Duplo objects 
at increasing delays, (a) D2 measure, (b) D l measure * indicates p < 0.05; ** indicates p < 
0.01. 
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Sham (DF = 8) Perirhinal (DF = 9) 
T P Differs 

from 
chance 

T P Differs 
from 

chance 
1 minute 5.245 0.001 Yes 5.569 O.001 Yes 
3 minutes 4.533 0.002 Yes -1.847 0.098* No 
5 minutes 5.138 0.001 Yes 1.057 0.318* No 
10 minutes 6.212 <0.001 Yes 0.418 0.686* No 
15 minutes 5.715 O.001 Yes 0.313 0.762* No 
1 hour 2.038 0.076* No -0.398 0.700* No 
4 hours 2.010 0.079* No 0.192 0.852* No 
24 hours 2.091 0.070* No 0.848 0.418* No 
Table 3.10: One-sample T-tests on performance of each group at increasing 

delays on Duplo object discrimination of N and A*: D l measure. * indicates 

performance was at chance 

Exploration 

There was a main effect of lesion (F = 4.818, df =1,17, p < 0.05) due to the perirhinal 

animals spending longer exploring the objects than the shams, and a main effect of 

delay (F = 14.198, df = 7,119, p < 0.001) due to both groups spending more time 

exploring at the longer delays, but there was no interaction between lesion and delay 

(F = 1.389, df = 7,119, p >0.05). It is possible that when the familiar object is less 

clearly remembered (because of a perirhinal lesion or because of a long delay) then 

more overall exploration results, although such exploration is not concentrated on 

either object. Where there are such differences in exploration time the D l measure 

should be treated with caution; the reliability of the D2 measure, however, is 

unaffected. 

Summary 

The perirhinal animals were impaired compared with the shams. They performed at 

chance at all delays except that of 1 minute, whereas the shams discriminated between 

the objects at all delays less than an hour. Performance declined with increasing 

delay for both groups with the groups differing at delays of between 3 and 15 minutes. 

The perirhinal animals explored the objects for longer than the sham animals and both 

groups explored for longer at the longer delays. 
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Comparison of Baseline with A* vs. N 

This analysis compares the results of discrimination between a novel (N) and a novel 

configuration of a familiar object (A*) object with the baseline of A vs. N using 

standard objects in an attempt to explore the relative difficulty of the tasks for the two 

groups of animals. Unlike the other comparative analyses reported, this involves 

eight delays up to a maximum of 24 hours. As with previous post hoc comparative 

analyses only the D2 measure, the more reliable of the two measures is used. This is 

because of the inevitable problem of disparity in levels of exploration between tasks 

which use different types of object, even when, as was not the case previously, there 

remains a strong element of novelty in the objects explored. As previously discussed 

the D l measure is liable to be unreliable where there are differences in the levels of 

exploration, whilst the D2 measure is designed such that it does not reflect these 

differences. 

The data were analysed using a 2 (task) x 8 (delay) x 2 (group) repeated measures 

ANOVA. The perirhinal animals were impaired compared to the sham animals as is 

shown by the main effect of lesion (F = 86.281, df = 1,17, p < 0.001). The tasks 

became more difficult with increasing delay, (F = 7.336, df = 1,7, p < 0.001), but this 

was not particularly the case for the perirhinal animals as there was no interaction 

between delay and lesion (F < 1, df =1,7, p > 0.05). The A* vs. N task was more 

difficult than the baseline task (F = 40.589, df = 1,1, p < 0.001) and this was 

differentially the case for the perirhinal group, as is shown by the interaction between 

task and lesion (F = 10.125, df = 1,1, p < 0.01) (see figure 3.18). The A* vs. N task 

became differentially difficult at increasing delays as is shown by the interaction 

between delay and task (F = 2.875, df =1,7, p < 0.01), and this effect was significantly 

greater for the perirhinal animals than for the shams, as is demonstrated by the three-

way interaction between delay, task and lesion (F = 3.225, df = 1,7, p < 0.01). 

Summary 

This second explicitly configural experiment was clearly much more difficult for the 

perirhinal animals than the baseline task. It was a more difficult task for the shams 

too, but it was disproportionately difficult for the perirhinal animals, and became 

more so with increasing delay. 
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Figure 3.18: Duplo A* vs N compared with baseline. D2 measure 

Results Summary 

As table 3.11 shows, the absolute performance of each group on each task differs 

considerably, with disproportionate difficulty occurring for the perirhinal animals on 

the three experiments which used Duplo and hence some element of configural 

processing whether implicit (Duplo A vs. N) or explicit (Duplo A* vs. A; Duplo A* 

vs. N). This contrasted with the intact discrimination of this group on the multiple 

objects task, which was nevertheless shown to be clearly more difficult than the 

baseline task. 

L \ MAT 2003 
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Baseline Duplo A/N Duplo A*/N Duplo A*/A Multiple 

objects 

Delay Sham Prh Sham Prh Sham Prh Sham Prh Sham Prh 

1 min Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

3 min Yes Yes Yes Yes Yes No Yes No Yes Yes 

5 min Yes Yes Yes No Yes No No No Yes Yes 

10 min Yes Yes Yes No Yes No No No Yes Yes 

15 min Yes Yes Yes No Yes No Yes No Yes Yes 

1 hour Yes Yes Yes No Yes No - - - -

4 hour Yes No No No Yes No - - - -

24 hour Yes No No No Yes No - - - -

Table 3.11: Summary table of both groups' discrimination at each delay in each 

task. D2 measure. "Yes" indicates above chance performance on a one-sample t-

test; "No" indicates performance at chance; - indicates no testing in that task at 

that delay. 

3.4: Discussion 

The baseline task reported here demonstrated the impairment of spontaneous object 

recognition with perirhinal lesions that has been repeatedly demonstrated by other 

researchers (Ennaceur et al., 1996; Ennaceur & Aggleton, 1997). Having established 

that there was a perirhinal impairment in object recognition in a standard (Ennaceur & 

Delacour, 1988) paradigm, it was possible to examine the effects of introducing 

elements of configural processing into the task. 

Unexpectedly it was found that a novel/familiar object discrimination using objects 

made out of Duplo (experiment 3.1) did not replicate the results of the baseline which 

employed standard objects. Animals with perirhinal lesions failed to discriminate 

between the objects at a shorter delay than on the baseline task, although the sham 

animals performed as well as they did on the baseline task. This failure to 

discriminate at shorter delays was marked, with perirhinal animals performing at 

chance at a delays of 5 minutes or longer, as opposed to delays of 4 hours or longer on 
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the baseline task. This finding indicates a substantial increase in the difficulty of the 

discrimination for the perirhinal animals, whilst the task difficulty did not increase for 

the shams. 

Given that the only difference between experiment 3.1 and the baseline was the nature 

of the objects - constructed from Duplo rather than everyday objects such as bottles 

or jars, this must be the origin of the earlier mnemonic failure of perirhinal animals. 

As with the standard objects, the two objects used in each test were deliberately 

selected or constructed so as to differ from each other as much as possible. In the 

light of this fact there are two possible accounts for the fact that the Duplo version of 

the discrimination was more difficult for the perirhinal animals. The first of these is 

that two objects made out of Duplo are inherently more similar to each other than are 

standard objects, simply because both of them are necessarily constructed from the 

same material. The task having been made more difficult through this introduction of 

greater similarity, the animals with a weaker memory for objects naturally find the 

discrimination more difficult. The second possible explanation is, not that the 

material of the objects is more similar, but that the form of the objects, through their 

being constructed from the same building blocks, is more similar. This is because, at 

some level, and despite the best efforts of the experimenter, the objects contain 

similar constituent elements (such as long base blocks or towers). These are arranged 

in very different formations, but nevertheless require processing as part of a 

configuration in order for the objects to be distinguished. Whilst such implicit feature 

ambiguity is a possibility, it is also possible that similar results would be found i f 

standard objects were used but similarity were increased by, for example, using only 

objects made of glass, as opposed to the mix of glass, plastic and metal employed 

here. This exploration of pure similarity is a control which should be carried out 

before definite conclusions can be drawn as to the cause of the difference reported 

here. 

Explicit configurality and a high level of feature ambiguity was introduced with the 

task which required the animals to discriminate the familiar object reconfigured (A*) 

from the familiar object (A) (experiment 3.2). The perirhinal animals' complete 

failure to discriminate even at a delay of 1 minute suggested that, where 

discrimination was heavily dependent on a configural processing of the objects, they 
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regarded A* as being as familiar as A. The alternative explanation would be that they 

failed to recognise A and treated both objects as equally novel rather than as equally 

familiar. This explanation is, however, rendered unlikely by the same animals' clear 

recognition of a familiar Duplo object in the previous experiment which compared A 

with an entirely novel object N. It is possible that, i f it had been possible to carry out 

a test in a "no delay" condition, the perirhinal animals would have shown no 

impairment in the A/A* discrimination. However, given that this experiment in fact 

involved a condition of maximum feature ambiguity, a condition in which Bussey et 

al. (2002) found a perirhinal impairment on a concurrent discrimination task, it is 

plausible to argue that the failure to discriminate between the objects at a 1 minute 

delay results not from a specifically mnemonic impairment, but rather from a 

processing failure. This would place the results reported here in accordance with the 

view of the perirhinal cortex as involved in feature integration both concurrently and 

retrospectively (Bussey et al., 2002). 

However, it is probably necessary to proceed with caution before interpreting this 

result as firm support for the PMFC model of perirhinal cortex function. The 

argument that configural processing requirements were responsible for the perirhinal 

impairment on the Duplo version of the normal task and the explicitly configural 

comparison of A* and A depends for its validity on exclusion of the possibility that 

these tasks were merely increasingly difficult. I f perirhinal animals simply had 

weakened memory for objects then it would be predicted that any task that was more 

difficult than the baseline task would affect disproportionately their ability to 

discriminate between two objects on the basis of familiarity. It was to exclude the 

simple explanation of mere difficulty that the task difficulty was increased in a way 

which did not explicitly introduce a requirement for configural processing. 

Although both sham-operated and perirhinal animals performed more poorly on the 

task involving multiple objects (experiment 3.3) than on the baseline task, this was 

not especially the case for the perirhinal animals. This supports the contention that it 

is feature ambiguity, involving a requirement for configural processing, rather than 

simple difficulty or memory load which increases the difficulty of the discrimination 

for the perirhinal animals. 
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As discussed earlier, the possibility of increased feature ambiguity resulting from the 

increased number of objects was considered. It is possible to argue that our use of 

multiple (four) objects at the initial exposure stage could have increased the similarity 

of all the objects to one another, but great care was taken to select objects which 

appeared (to the experimenter, of necessity) conspicuously different to one another 

and which, as far as was possible, lacked shared features. It is much more likely that, 

as was intended, the mnemonic load was increased by the use of multiple objects, all 

of which wil l have been separately encoded. The difficulty of the task was also 

incidentally increased by the requirement that the animals explore the object 

designated for use as (A) for at least 15 seconds, as opposed to the minimum of 30 

required for the baseline task. The reason for this was purely practical, there was only 

one copy of each object as opposed to the two employed in the standard task and, with 

four objects in the maze, the exploration period would have become impracticably 

long had the 30 second requirement been maintained. 

Experiment 3.4 involved a different discrimination to the other experiments in this 

chapter, in that the discrimination was between a novel object and a familiar object 

reconfigured, rather than between a familiar object and another object (novel or 

reconfigured). In this experiment the perirhinal animals clearly preferred the novel 

object (N) at the 1 minute delay (see figures 3.17a and 3.17b). However, at 3 minutes 

they showed a non-significant preference for A*. As can be seen from figures 8a and 

8b, performance at longer delays showed no evidence of discrimination between the 

objects. It would be reasonable to interpret this finding as indicating that the perirhinal 

animals discriminated between the objects at the 1 minute delay but not at delays of 3 

minutes or longer. The results of this study do not provide any support for an 

interpretation of a true preference for A* as might have been predicted i f 

reconfiguration were itself of intrinsic interest. Rather, they suggest that an 

intermediate level of feature ambiguity is responsible for a perirhinal impairment at 

delays intermediate between that produced by no minimal feature ambiguity (baseline 

and experiment 3.1) and total feature ambiguity (experiment 3.2). 

There is only one extant study to which the present study is directly comparable, and 

this requires some comparative discussion. Ennaceur et al., (1996) used objects 

constructed of metal and plastic to test rats at delays of 1 or 15 minutes on versions of 
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the object recognition test (Ennaceur & Delacour, 1988) which required an A/N, an 

A*/A or an A*/N discrimination. Their results are summarised briefly. On the A/N 

discrimination they report a perirhinal deficit at the 15 minutes but not at the 1 minute 

delay. On the A*/A discrimination they report that neither the perirhinal nor the 

shams discriminated at the 15 minute delay though both did so at the 1 minute delay. 

Finally they report that on the A*/N discrimination the perirhinal animals preferred 

A* at the 1 minute delay, with this preference being reversed at the 15 minute delay. 

It is, however, difficult to compare their findings with those of the present study for 

several reasons. The first of these is that Ennaceur et al. only tested at delays of 1 or 

15 minutes. This means that where there was an impairment only at the longer delay 

as was the case on both the A/N and the A*/A discriminations, it is impossible to 

ascertain whether their study would have found a perirhinal deficit at intermediate 

delays, or whether 15 minutes represented the genuine time point for the onset of an 

impairment. 

A second difficulty arises from the fact that Ennaceur et al's study used only one 

discrimination for each paradigm whereas the present study used two. It is also the 

case that a greater number of experiments, each with multiple delays, were carried out 

in the present study, so that over a long period of time the total stimulus set was much 

greater. It has been shown that monkeys (Buckley & Gaffan, 1997; Eacott et al., 

1994) with perirhinal lesions are impaired on stimulus-discrimination learning tasks 

where a large stimulus set is employed, but are not impaired when the set is restricted 

to a small number of stimuli. It is therefore possible that the larger number of stimuli 

encountered by the animals in the present study could itself be responsible for a 

perirhinal deficit. However, i f this is a possible explanation it does not appear a likely 

one for the simple reason that the perirhinal animals would seem much less likely than 

the shams to be affected by objects seen several days or weeks previously when they 

did not discriminate between objects at delays counted in minutes. In addition, i f this 

were part of the reason for the deficits observed, one would have predicted that the 

performance of the perirhinal animals would have become worse with increasing 

numbers of experiments. The animals' performance on successive experiments 

clearly demonstrated that this was not the case. 
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In the absence of another explanation for the difference in performance between the 

studies on the A*/A discrimination it seems probable that the different nature of the 

objects in the two studies allows an explanation in terms of a difficulty differential, 

resulting perhaps from different spatial properties of the objects in the Ennaceur et al. 

(1996) study. Indeed it is possible that, unlike the objects in this study, those in their 

study permitted the formation of unique features as a result of reconfiguration 

(although care was taken not to introduce novel features), meaning that there was not 

complete feature ambiguity in their experiment. 

The results of the A*/N discrimination reported here are in direct contrast to those 

reported by Ennaceur et al. (1996). That study found that at the 1 minute delay the 

perirhinal animals explored the reconfigured object (A*) more than they explored the 

novel object (N)- The authors interpreted this as being indicative of a particular 

interest in the rearrangement of the object A's features. However, in view of the fact 

that neither the control nor the fornix lesioned groups in that study discriminated 

between the objects at the 1 minute delay, it would seem unreasonable to attach too 

much weight to the finding. This should be contrasted with the finding that the sham 

animals in this study showed a strong preference for N over A*, a preference which 

persisted up to a delay of an hour. It is probable, though by no means certain in the 

absence of data at intermediate delays in the Ennaceur et al. study, that the nature of 

their objects rendered them easier to discriminate in the partial feature ambiguity 

paradigm presented by A*/N than were the Duplo objects employed here. However, 

whilst this would adequately explain their finding of a preference for N at the 15 

minute delay it leaves the explanation of the data reported at the 1 minute delay as a 

statistical anomaly. This however, would seem to be the most probable explanation 

for their apparently paradoxical results; that it was a statistical anomaly, perhaps 

generated at least in part by the poor performance of all groups. Discrimination by 

animals at delays as short as 1 minute is sometimes lower than would be predicted 

given their performance at longer delays. This is probably due to the anxiogenic 

effects of being returned to the home cage and then removed again almost 

immediately, and it provides a possible explanation for anomalous performance at 

delays of 1 minute. Such an explanation is lent weight by the fact that by 15 minutes 

the perirhinal animals in the Ennaceur et al. study showed a preference for N, as did 

the control animals in the study. 
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A final possibility which must be considered is that the differences result in part from 

differences in lesion technique. The present study employed electrolytic lesions 

whilst that of Ennaceur et al. used NMDA lesions. This leaves open the possibility 

that the electrolytic lesions used here caused damage to fibres of passage and 

therefore disrupted hippocampal function to a greater extent than would be found with 

NMDA lesions. I f this were the case then it is possible that the combined functional 

damage to the two structures would result in more severe deficits such as the lack of 

discrimination at shorter delays seen here. However, given the failure of other studies 

to implicate the hippocampus in processing of object recognition (including the 

performance of Ennaceur et al.'s fornix lesioned group) this explanation seems 

inherently unlikely as an account of the different patterns of results between their 

study and the present one. 

It wil l be remembered that the explanation advanced for the failure of the perirhinal 

animals to discriminate between A* and A (experiment 3.2) was that, due to the 

maximum feature ambiguity of the objects, they did not recognise the novelty of A*, 

and therefore behaved as i f it were A. However, this explanation becomes 

problematic when considered alongside the results of the discrimination between A* 

and N (experiment 3.4). In this task the perirhinal animals did not discriminate 

between the objects at delays of 3 minutes or longer, whereas the sham animals 

discriminated at delays of up to 1 hour. This failure to discriminate would suggest 

that at a delay of 3 minutes the perirhinal animals treated A* as essentially novel, just 

as they did N . Taken in conjunction with their failure to discriminate between A* and 

A at the same delay this presents a paradox. At a delay of 3 minutes perirhinal 

animals regard A* as essentially familiar because they do not distinguish it from A, 

but they also regard it as essentially novel because they do not distinguish it from N. 

There is therefore a situation which, represented mathematically, is absurd: 

If A* = A 

and A* = N 

.-. A = N 

This representation of the familiarity relationship cannot possibly be accurate because 

i f A = N were true then perirhinal animals at this delay would not discriminate 
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between A and N, which the baseline and experiment 3.1 have clearly demonstrated 

that they did, whether the objects were standard ones or constructed from Duplo. 

A possible explanation for the results found in the series of experiments reported here 

would be in terms of increasing feature ambiguity. The baseline established using 

standard objects represented a condition of minimum feature ambiguity, effectively 

permitting purely elemental discriminations. The perirhinal animals were able to 

discriminate in these conditions at delays up to 1 hour. The much shorter delay of 5 

minutes at which perirhinal animals failed on the Duplo version of the same A/N 

discrimination had not been predicted, but, on consideration, probably represents the 

implicit introduction of a degree of feature ambiguity simply because the same type of 

blocks were used to construct each object. When a condition of total feature 

ambiguity was used with the A*/A discrimination the perirhinal animals showed a 

complete and non delay-dependent impairment, as would be predicted by the PMFC 

model (Bussey & Saksida, 2002). This model would also predict that a condition of 

explicit partial feature ambiguity would result in a milder impairment than the 

maximum feature ambiguity condition, but a more severe one than the minimum 

feature ambiguity achievable with Duplo objects (the A/N discrimination). When 

animals were tested in such a condition by the use of the A*/N paradigm this was 

exactly what we found: in contrast to the counter-intuitive and slightly complex 

results of Ennaceur et al. (1996) the results of this study showed a clear effect where 

the perirhinal animals showed a total impairment at a delay of 3 minutes, intermediate 

between that of the Duplo A/N discrimination (5 minutes) and that of the A*/A 

discrimination (1 minute). This was in clear contrast to the results of the multiple 

objects paradigm where, although both groups performed more poorly than they did 

on the baseline task, and although the perirhinal animals performed more poorly than 

the shams, (as they had on all tasks), this perirhinal decrement was not 

disproportionate. In contrast, task analysis revealed that the perirhinal animals did 

perform disproportionately more poorly than the shams on each of the tasks in which 

Duplo objects had been employed. However, the issue of the extent to which the 

perirhinal animals do in fact perceive A* to be novel remains unanswered. 

While the results reported here are necessarily discussed primarily in the context of 

previous findings where the same paradigms were employed, they should also be 
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considered in the context of other studies where feature ambiguity has been employed 

(Buckley & Gaffan, 1998c; Bussey et al., 2002; Eacott et al., 2001). These studies 

have used an explicit motivational element which is not present in the object 

recognition test. However, the assumption in this study that animals process objects 

configurally in the absence of any explicit training, is supported by the finding of 

Healey & Gaffan (2001) that rats spontaneously process concurrent features as a 

configuration. The present study used 3-dimensional objects, in contrast to most other 

studies which used 2-dimensional images. This is unlikely to have affected the results 

though, as perirhinal lesions have not been found to affect complex discriminations in 

monkeys (Buckley, Gaffan & Murray, 1997). 

The literature tends to support the theory that perirhinal cortex function can be 

explained in terms of the processing of feature ambiguity, and memory which is 

dependent upon that processing (Bussey & Saksida, 2002). Bussey et al., (2002) 

showed that increasing feature ambiguity increased the severity of the impairment 

shown by monkeys with perirhinal lesions. Our results are also in accordance with 

those of Eacott et al. (2001) who found that perirhinal rats were impaired on a 

biconditional learning task, markedly more so than on a visual discrimination task of 

increased difficulty, but with only a partial configural element. The findings of this 

study also agree with those of Buckley & Gaffan (1998c) who found deficits in 

configural processing following perirhinal lesions in monkeys. However, Bussey et 

al. (2000) report intact negative patterning in monkeys with combined perirhinal and 

postrhinal lesion, a finding which may be explicable in terms of the PMFC model. 

The experiments discussed in this chapter show that animals with perirhinal lesions 

are impaired in tasks which require configural processing. The delay required to 

cause this impairment is shorter the more reliant the task is on configural processing. 

Where there is complete feature ambiguity the perirhinal animals are impaired at even 

the shortest delay. This study therefore supports the findings of Bussey et al. (2002) 

and suggests that in rats the perirhinal cortex is as critical to the processing of feature 

ambiguity as it is in monkeys. This finding concerns objects and the processing of the 

relationship between the features of a single object. However, much of the literature 

which is concerned with configural processing is concerned with contexts rather than 

with objects. The hippocampus has traditionally been considered to be critical to 
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contextual memory, and the work of Gaffan and colleagues (Gaffan, 1994a, 1998; 

Gaffan & Harrison, 1989; EA Gaffan, Bannerman, Warburton & Aggleton, 2001) has 

confirmed that there is hippocampal involvement in the processing of an object within 

a scene. There is, however, some indication that the perirhinal cortex, and also the 

postrhinal cortex, are also involved in contextual processing (Bucci, Saddoris & 

Burwell, 2002, Buckley & Gaffan, 1998b, Corodimas & LeDoux, 1995). The 

experiments described in chapter 4 therefore contrasted the effects of perirhinal, 

postrhinal or fornix lesions on processing of objects within a context. 
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Chapter 4: Memory for Context: A comparison of lesions to the Perirhinal 

Cortex, the Postrhinal Cortex and the Fornix. 

4.1: Introduction 

The experiments in this chapter examine the role played by the context in which an 

object appears in object recognition and compare the effects of lesions to the 

perirhinal cortex with those of postrhinal or fornix lesions. The evidence as to the 

precise roles of these structures in contextual processing and memory is somewhat 

unclear. While there is a substantial body of evidence which suggests that the 

hippocampus is implicated in memory for context it is by no means clear that this 

contribution is both necessary and sufficient. The probability is that the hippocampal 

contribution, while substantial, may be neither necessary nor sufficient in tasks which 

do not depend upon conditioning or learned responses, but which do require 

recognition of a combination of object and context. Indeed it seems likely that the 

postrhinal cortex, and, to a lesser extent, the perirhinal cortex may play a role in 

memory for an object-in-context. The possible involvement of configural processing 

in such contextual memory is considered along with what this might imply about the 

involvement of both the hippocampus and the rhinal cortex. 

Much of the work on hippocampal involvement in memory for contextual information 

has concerned aspects of fear conditioning, with studies showing that the disruption of 

hippocampal function prevents extinction of context-specific freezing to a conditioned 

stimulus (CS) (Corcoran & Maren, 2001), and that hippocampal lesions disrupt only 

those processes which require an association between the unconditioned stimulus 

(US) and context (Frohardt, Guarraci & Bouton, 2000). Such context-specific results 

have also been found in other Pavlovian paradigms, with reversible inactivation of the 

hippocampus preventing context-specific latent inhibition, indicating that retrieval of 

context is dependent on hippocampal function (Maren & Holt, 2000), and 

hippocampal lesions apparently removing the association between conditional and 

contextual cues (Winocur, 1997). However, the evidence is not uniform on this point. 

McNish, Gerwitz & Davis (2000) found that while hippocampal lesions disrupted 

contextual freezing they did not disrupt contextual blocking. Contextual fear-

potentiated startle is also unaffected by hippocampal lesions which disrupted 

contextual freezing (McNish, Gerwitz & Davis, 1997). 
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Moving away from conditioning studies, there is a considerable amount of evidence 

which suggests that the context in which an object is encountered is an aspect of 

object memory for which hippocampal function is important. Studies examining the 

role of a stimulus in context have shown a deficit in recognition of a stimulus in a 

particular context following fornix lesions in both monkeys (Gaffan & Harrison, 

1989, Gaffan, 1994a) and in rats (Simpson, Gaffan & Eacott, 1998). Parker & Gaffan 

(1997a) demonstrated that lesions of the mammillary bodies caused an equivalent 

impairment to that following fornix lesions, and that combined lesions of the two 

structures did not result in a more severe impairment. They also showed (Parker & 

Gaffan, 1997b) that lesions of the anterior thalamic nuclei caused similar 

impairments. This would suggest that it is the functional unity of a memory system 

(which includes both the hippocampus and the mammillary bodies as well as other 

structures such as the anterior thalamic nuclei) rather than the hippocampus itself 

which is required for object in scene memory. 

Work by Good, de Hoz & Morris (1998), found that hippocampal lesions disrupted 

only incidental acquisition of contextual learning; where such learning was necessary 

for successful performance of an appetitive biconditional task it was unaffected by the 

lesions, explaining the intact contextual learning found in conditioning tasks 

following hippocampal lesions (e.g. Gisquetverrier & Schenk 1994; Hall, Purves & 

Bonardi, 1996). This provides a possible explanation for some of the results 

discussed: hippocampal processes are the preferred and automatic method of learning 

about context, but where they cannot be employed and such learning is required it can 

be supported by other structures. 

Bucci et al. (2002) found that lesions of the fornix, the perirhinal and postrhinal 

cortices all individually produced deficits in fear conditioning to context, although 

neither perirhinal nor postrhinal lesions affected fear conditioning to an auditory 

stimulus. However, Sacchetti, Lorenzini, Baldi & Tassoni et al. (1999) found that 

temporary inactivation (using tetrodotoxin) of the perirhinal cortex impaired 

conditioning to both these types of stimuli. The question of whether the perirhinal 

cortex plays a role in context conditioning at all, let alone a specific role as suggested 

by Bucci et al. would seem to be open to doubt. Indeed Otto and colleagues (Otto 

Cousens & Herzog, 2000; Herzog & Otto, 1998) found that rats with lesions of the 
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anterior perirhinal cortex exhibited an attenuation of fear conditioned to the explicit 

olfactory cue, but no attenuation of fear conditioning to the training context. This is 

balanced by the finding of Corodimas & LeDoux (1995), who found that animals with 

perirhinal lesions showed differential freezing to a conditioned stimulus in a novel 

and a familiar context, still displaying an impairment relative to controls in the 

conditioned context, but significantly less so than in the novel context. It seems 

possible that the perirhinal cortex is more sensitive to context when there are no 

explicit cues available. 

Some studies have found that lesions of the entorhinal cortex produce deficits in 

contextual fear conditioning equivalent to those produced by fornix or hippocampal 

lesions (Maren & Fanselow, 1997), although it is possible that this reflects the 

supporting role which some theories (e.g. Sharp, 1999) propose for the entorhinal 

cortex. However the role of the entorhinal cortex is not clear either: Phillips & 

LeDoux (1995) found that even combined lesions of the entorhinal and perirhinal 

cortex did not affect contextual fear conditioning that was affected by fornix lesions. 

The experiments discussed in this chapter attempt to use a naturalistic paradigm in the 

form of a version of the spontaneous object recognition task (Ennaceur & Delacour, 

1988) to investigate the possible contributions of the hippocampus, the perirhinal 

cortex, and also the postrhinal cortex in memory for three-dimensional objects in 

context. Dellu, Fauchey, LeMoal & Simon (1997) used such an approach in the Y-

maze and found that, in normal animals, context change between acquisition and 

recognition trials affected object recognition. Dix & Aggleton (1999) also 

demonstrated this in a version of the spontaneous object recognition paradigm, 

demonstrating the role of context even in simple object recognition. Moreover, 

Mumby et al. (2002) found hippocampal impairments on both object-in-place and 

object-in-context versions of the spontaneous object recognition task. This result is 

perhaps unsurprising in the light of Good et al.'s (1998) finding that hippocampal 

animals only acquired contextual learning when success in an appetitive task 

depended upon it. In the spontaneous object recognition task there is no explicit 

motivational element and, therefore, while acquisition of context may be possible, 

there is no indication from the observed behaviour that it in fact occurs. Although 

there is evidence that processing of object-in-place information is impaired by fornix 
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lesions but not by perirhinal lesions (Mumby et al., 2002; Gaffan et al., 2001) 

(although see Bussey et al., 2001 for evidence of integrated function), little work has 

been carried out on the role of the perirhinal cortex in contextual processing or 

memory, while the possible role of the postrhinal cortex is uncertain. Bussey, Duck, 

Muir & Aggleton (2000) found that combined lesions of the perirhinal and postrhinal 

cortices in monkeys caused impairments on the object-in-place task at least as severe 

as those caused by fornix lesions. 

The postrhinal cortex is known to be involved in some aspects of memory involving 

memory for context. Experiments using fear conditioning had suggested such a role 

(e.g. Bucci et al., 2002), but the nature of this role remained unclear. Gabrielli et al.'s 

(1997) FMRI study suggested that parahippocampal cortex in humans was involved in 

memory for combinations of objects and places. In particular c-fos studies have 

shown that while the perirhinal cortex and area TE showed differential activation for 

novel objects over familiar objects, it is novel arrangements of familiar items which 

cause increased activation in the postrhinal cortex as well as in area CA1 of the 

hippocampus (Wan et al., 1999). This would certainly indicate postrhinal 

involvement in the spatial arrangement of objects, and is suggestive of involvement in 

contextual processing of objects. The involvement of the postrhinal cortex but not the 

perirhinal cortex in tasks with a spatial component is supported on the basis of c-fos 

studies (Aggleton, Vann, Oswald & Good, 2000; Vann et al., 2000) as much as lesion 

studies, which often show only relatively mild deficits on spatial tasks. For example 

Bussey et al. (2000) found that combined lesions of the perirhinal and postrhinal 

cortices did not impair performance on a spatial alternation task on the T-maze, but 

did impair object recognition (as would be predicted with a perirhinal lesion). 

It has been suggested that the hippocampus is involved in memory for context 

because of its role in configural processing. It is argued that its role lies in the 

integration of the various environmental features which define a context into a 

meaningful construct. Findings by Rudy and colleagues (Rudy, Barrientos & 

O'Reilly, 2002; Rudy & O'Reilly, 1999) found that, in contexts formed from a 

conjunction of multiple features, animals with hippocampal lesions showed impaired 

contextual conditioning, while pre-exposure to a context but not to its separate 

features facilitated both contextual fear conditioning and generalisation of that 
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conditioning. When long-lasting background cues were employed in a conditioning 

task in the place of more conventional contexts, hippocampal lesions did not affect 

contextual conditioning (Rawlins & Tanner, 1998), supporting the view that the 

hippocampus is important in the integration of multiple contextual elements. This 

would be in accordance with the revised theory of Rudy & Sutherland (1995) which 

argues for an extrahippocampal location of configural associations required for 

contextual learning. However, use of a configural interpretation of context processing 

in order to explain the findings of hippocampal impairments in contextual tasks (e.g. 

Fanselow, 2000) may be misguided. Firstly, as Gerlai (2001) argues context can often 

be identified by largely elemental processes, and secondly, as has been discussed 

extensively in chapter 3, configural processing itself may not depend on an intact 

hippocampus at all. Certainly Bucci et al. (2002) demonstrated that fear conditioning 

to context was particularly impaired by either perirhinal or postrhinal lesions when the 

context was constructed in such a way as to encourage a configural rather than an 

elemental identification of context, while Bussey et al.'s (1998) finding of enhanced 

configural learning following fornix lesions provides a clear challenge to views such 

as Rudy & Sutherland's. 

Such results stand in contrast to the standard findings that fornix lesions do not impair 

stimulus recognition per se (e.g. Ennaceur et al., 1996). They are supported by 

findings on human amnesic patients with hippocampal damage, who show impaired 

implicit contextual learning while retaining intact implicit perceptual learning (Chun 

& Phelps, 1999). However, there is also convincing evidence for the contribution of 

cortical areas to such learning. Buckley & Gaffan's (1998b) study found perirhinal 

impairments in recognition of familiar stimuli against novel backgrounds. When 

Gaffan & Parker (1996) used crossed unilateral lesions of the fornix and the perirhinal 

cortex (together with a partial forebrain commissurotomy) they found that memory 

for object in scene was mildly impaired by the first surgery (either unilateral lesion of 

the fornix or of the perirhinal cortex) but was severely impaired following the 

completion of all lesions. This is interpreted by the authors as being indicative of the 

perirhinal cortex providing visual information on the object to the hippocampus and 

related structures. 
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This study compared the effects of lesions of the fornix and of the perirhinal or 

postrhinal cortex on aspects of memory for object-in-context. I f context is to be 

considered as a spatial problem then one would predict that lesions of the fornix and 

possibly of the postrhinal cortex, but not of the perirhinal cortex would produce 

impairments on an object-in-context version of the spontaneous object recognition 

task. It would be predicted that perirhinal lesions would only produce an impairment 

i f the object itself could not be remembered. Therefore, i f the delays used were 

sufficiently brief that perirhinal lesions would not cause a recognition deficit in a 

standard version of the task it would be predicted that there would be no impairment, 

and any impairment that was found would be attributable to the contextual aspects of 

the discrimination. Control tasks were used to ensure that the repetition of 

exploratory phases and the delays involved did not themselves cause deficits in 

discrimination. A task which examined the effect of an incongruent context on the test 

phase of discrimination between a novel (N) and a familiar (A) object was also 

included, as was a task which used objects rather than conventional contexts as a basis 

for discrimination. It was hypothesised that performance of these discriminations 

would be more vulnerable to perirhinal damage than the object-in-context task, given 

that the perirhinal cortex's primary function would appear to be the processing of, and 

memory for, objects and aspects of objects (see chapter 3 for an extensive discussion 

of this view). 

Although results indicating that configural processing may be important in memory 

for context (Rudy et al., 2002; Rudy & O'Reilly, 1999) were considered in the design 

of the contexts used here, it was felt that examination of context, and the possible 

configurations involved in context, were a separate issue from the configurations of 

objects used in chapter 3, and which generated such striking perirhinal deficits. The 

contexts used in this chapter were extremely simple and involved combinations of 

walls and flooring in the maze which contained no feature ambiguity. In addition 

particular care was taken to ensure equal familiarisation with both the contexts used, 

as there is evidence that a lack of such familiarisation can itself be a cause of 

impairment in object recognition (Besheer & Bevins, 2000). 

Care was taken to ensure that the order in which objects appeared was controlled for, 

as was the context in which testing occurred as it is known that at delays of 1 hour 
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animals wil l discriminate on the basis of recency of exploration (Mitchell & Laiacona, 

1998). Although the delays used here were considerably shorter than 1 hour it was 

considered a possibility that order of presentation might form a basis for 

discrimination, and in each case a control experiment was therefore employed in 

addition to the counterbalances described in order to assess this possibility. 

4.2: Methods and Materials 

Subjects 

Fifty Dark Agouti rats (Bantin & Kingman, Hull, UK) were used in this experiment. 

Four died during surgery or of post-operative complications, so forty-six animals were 

used in the experiments presented here and in the experiments presented in chapter 5. 

They were housed in pairs in diurnal conditions (12h light/ 12h dark cycle) and all 

testing was carried out during the light phase. Throughout the study animals had ad 

libitum access to both food and water. At the time of surgery animals were 

approximately three months old. 

Apparatus 

As in the experiments in chapter 2, all testing was carried out in an open field made of 

wood, of base dimensions 1 m and height 48 cm. The maze floor and walls could be 

changed to provide two different contexts. In context 1 the base was painted matt 

black and the walls matt white. In context 2 the base consisted of a 1.5 cm 2 mesh of 

white plastic-coated wire overlaid on a black base and the walls were natural wood. 

The objects were placed into the open field equidistant from the sides of the maze. 

Standard objects used included bottles, jars, tubs and bowls. 

Surgery 

Surgery was performed on all animals. Three animals died during surgery due to 

anaesthetic complications, and one animal died from post-operative complications. 

Of the remainder, 12 animals received bilateral lesions of the perirhinal cortex, 12 

animals received bilateral lesions of the postrhinal cortex, 11 animals received 

bilateral lesions of the fornix and 11 animals were sham-operated. 

Perirhinal Lesions 

The procedure for this group of animals was identical to that described in chapter 2. 
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Postrhinal lesions 

The initial procedure was the same as that for the perirhinal lesions, with the 

exception that, before surgery began, ear bar zero was measured. Following a midline 

incision both bregma and lambda were measured. Three lesions sites were calculated 

using measurements based on these three landmarks. The calculations were as shown 

in the following table. 

Site 1 Site 2 Site 3 

EBZ Br Lmd EBZ Br Lmd EBZ Br Lmd 

AP +0.2 -5.8 +2.0 -1.3 -7.1 +0.7 -1.8 -7.6 +0.4 

ML +/-6.1 +/-6.1 +/-6.1 

DV +2.8 -8.5 -6.6 +3.8 -7.8 -5.8 +4.2 -6.8 -4.8 

Table 4.1: Calculation of lesion sites for postrhinal lesions relative to landmarks 

of ear bar zero (EBZ), bregma (Br) and lambda (Lmd). All measurements are 

given in mm. Other abbreviations are anterior-posterior (AP), medio-lateral 

(ML) and dorso-ventral (DV). 

Where the calculations based on these sites differed from one another the mean was 

used, or where two calculations closely agreed and differed from the third, the mean 

of those in close agreement was taken. The top of the skull was measured at each of 

the selected sites. The dura was cut to allow the insertion of an electrode into the 

brain at each of the three sites in turn. Using a dental drill, an area of the skull 

overlying the rhinal sulcus was removed. The electrode was lowered vertically to a 

depth calculated using the final row of table 1. Current was then passed such that a 

temperature of approximately 75° C was achieved for 1 minute. The procedure was 

then repeated contralaterally. The scalp was then closed with the procedure identical 

to that for the perirhinal lesions. 

Fornix lesions 

The initial procedure was the same as for the postrhinal lesions. Once the midline 

incision had been made bregma was measured, and the first lesion site was calculated 

as 5.3 mm anterior and 0.7 mm lateral to ear bar zero. The calculation was also made 
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as 0.4 mm posterior and 0.7 mm lateral to bregma. Where the anterior/posterior 

positions differed between the two calculations a mean was used. A second injection 

site was calculated in the same way but using a mediolateral measurement of 1.7 mm 

lateral to both bregma and ear bar zero. The skull overlying these sites on each side 

of the midline was removed in a single section using a dental drill. The top of the 

dura was then measured at each of the previously calculated lesion sites. The dura 

was then cut at each site and at the first lesion site the electrode was lowered to a 

depth of 4.5 mm relative to the top of the skull measured at bregma and a depth of 3.7 

mm relative to the top of the dura at the lesion site. At the second lesion site the depth 

was 4.6 mm relative to the top of the skull at bregma and 3.8 mm relative to the top of 

the dura at the lesion site. Current was then passed as previously described. The 

procedure was repeated at the contralateral lesion sites. The scalp was then closed 

with the procedure described for the perirhinal and postrhinal lesions. 

Sham surgery 

Initial procedure for the sham animals was identical to that for the animals in the 

lesion group. Four of the animals had the skull removed as i f for a perirhinal lesion, 

four as i f for a bilateral postrhinal lesion, and three as i f for a bilateral fornix lesion. 

In each case the procedure was identical to that for the relevant lesion, except that the 

electrode was not lowered into the brain. 

Perfusion 

The animals used in these experiments were also used in the experiments in chapter 5. 

Therefore they were not perfused immediately at the end of these experiments. For 

histological purposes, when testing was completed, operated animals were perfused 

intracardially with a 5% formal saline solution. Their brains were removed, embedded 

in wax and coronally sectioned into 10|J. slices. Every 10 th section was stained with 

cresyl violet (Nissl stain). 

Testing 

Habituation 

Prior to the start of testing animals received six habituation sessions. Three of these 

took place in the maze configured as context 1 and three with the maze configured as 
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context 2. The first session in each context took place in cage-mate pairs and lasted 

for 10 minutes. The two subsequent sessions in each context took place individually 

and lasted 5 minutes. For each habituation session a different novel object was placed 

in the centre of the maze. A l l objects used were standard, as described in chapter 2, 

with examples being bottles, candlesticks and bowls. This type of object was used for 

all the experiments in this chapter. 

Experiment 4.1: AB in incongruent context 

Experiment 4.1 was designed to measure the effect of appearing in an appropriate 

context on an object's familiarity. There were two exposure phases in the experiment 

followed by a test phase (see figure 4.1). For the first exposure phase the maze was 

configured as context 1 and contained 2 identical copies of an object (A), placed 

equidistant to the sides of the maze. The animal was placed in the maze and allowed 

to explore until 30 seconds had been spent exploring the objects. The rat was then 

removed from the maze and returned to its home cage. I f animals failed to explore for 

30 seconds they were removed after 5 minutes, returned to their home cage, and the 

time spent exploring was noted. The maze was reconfigured as context 2 and two 

identical copies of a different object (B) were placed in the maze as before. After an 

interval of 2 minutes from the end of the first exposure phase the animal was returned 

to the maze and allowed to explore as before. After removal from the maze after the 

second exposure phase there was an interval of either 2 or 5 minutes before the test 

phase. In the test phase the maze was configured as context 1 and contained a copy of 

each of the congruent object (A) and the non-congruent object (B). The animal was 

returned to the maze after the appropriate interval and allowed to explore freely. The 

time spent exploring the two objects was recorded for each of three 1 minute time 

bins. The order in which the contexts and objects were initially explored was 

controlled for between animals (for half the animals in each group context 2 was seen 

first), as was the pairing of the objects and contexts (for half the animals object (B) 

was seen in context 1). The left/right position of the objects in the test phase was also 

controlled between animals. There were four repetitions of the experiment at each of 

the 2 delays used. In 2 of these the context used in the test phase was reversed, with 

the context seen in the second exploration phase being used, controlling for recency 

effects, and also the effects of interspersing of a different context. Different objects 

were used for each repetition. 
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Figure 4.1: Exploratory and test phases for AB in incongruent context 

Experiment 4.2: AB in congruent context 

Experiment 4.2 was a full control for experiment 4.1. It took an identical form, 

except that each animal only ever explored in one context (see figure 2). In the first 

exposure phase the maze was configured as context 1 and contained 2 copies of object 

(A). In the second phase the maze remained configured as context 1 and contained 2 

copies of object (B). In the test phase the maze remained as context 1 and contained 

one copy each of A and B. Exploration by animals was as previously described for 

each phase. The positions of objects and the order in which they were explored were 

controlled for as described above (experiment 4.1). The context used was also 

controlled for between animals, with half the animals in each group exploring in 

context 1 and half in context 2. There were 2 repetitions of this experiment at each of 

the 2 delays used (2 and 5 minutes) and different objects were used in each. 
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Figure 4.2: Exploratory and test phases for AB in congruent context. 

Experiment 4.3: AN in in congruent context 

Experiment 4.3 was designed to test whether a comparison between a novel and a 

familiar object would be affected by the familiar object appearing in a non-congruent 

context. It was identical to experiment 4.1 with the exception that in the test phase the 

object in the maze consisted of a familiar object, seen in one of the exposure phases, 

but now seen in a different context, and a novel object. In the first exposure phase the 

maze was configured as context 1 and contained 2 identical copies of object (A). In 

the second exposure phase the maze was configured as context 2 and contained 2 

identical copies of object (B). In the test phase the maze was configured as context 1 

and contained a copy of (B) and a novel object (N) (see figure 4.3). Exploration was 

as previously described in each phase. The positions of objects, the order of contexts 

and the context/object combinations were controlled for between animals as 

previously described (experiment 4.1). The object which was novel in the test phase 

was also controlled for between animals, with, for example half the animals who saw 

objects (A) and (N) in the test phase experiencing (N) as novel, and half experiencing 

(A) as novel. The context used in the test phase was controlled for between repetitions 

of the experiment, of which there were four for each of the 2 and 5 minute delays, 

each using different objects. 
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Figure 4.3: Exploratory and test phases for AN in incongruent context. 

Experiment 4.4: AN in congruent context 

Experiment 4.4 was a control for experiment 4.3, and was identical except that 

context remained invariant for each rat throughout the experiment. In the first 

exposure the maze was configured as context 1 and contained 2 identical copies of 

object (A). In the second exposure phase the maze was configured as context 1 and 

contained 2 identical copies of object (B). In the test phase the maze remained as 

context 1 and contained a copy of (A) and a novel object (N) (see figure 4.4). The 

context used and the order of objects used were controlled for between animals, as 

was the designated novel object. There were 2 repetitions of the experiment at each 

of the 2 delays used (2 and 5 minutes as above), each using different objects. 

AA in Context 1 

1st Exposure Phase 

BB in Context 1 

2nd Exposure Phase 

'77S'f:>Sit'.jI 

A N in Context 1 

Test Phase 

Figure 4.4: Exploratory and test phases for AN in congruent context. 



125 

Experiment 4.5: Object-as-context 

Experiment 4.5 was designed to explore the limits of context by using small objects 

such as plates or ashtrays as the context within which standard objects were seen. 

Objects designated with capital letters (A) are (for example) candlesticks, jars or 

bottles; objects designated with lower case letters (a) are (for example) saucers, soup 

plates or ashtrays. The maze was configured as context 1 for the whole experiment. 

In the first exposure phase the maze contained two copies of an object (A) standing on 

or in another object (a). In the second exposure phase the maze contained two copies 

of an object (B) standing on or in an object (b). In the test phase the maze contained 

one copy of (A) standing on (a) and one copy of (A) standing on (b) (see figure 4.5). 

Exploration in each of the phases was as previously described. The order in which 

objects were seen, the position of objects and the combinations of objects used were 

all controlled for between animals. The experiment was repeated twice at each of the 

two delays (2 and 5 minutes) used. 

Aa Aa 

1st Exposure phase 

WW-

t t u - w i - M - ^ y i f 

li»iiH 

Bb Bb 

2nd Exposure phase 

Figure 4.5: Exploratory and test phases for object-as-context. 

MP 

Ab Aa 

Test phase 

Experiment 4.6: Simple control 

Experiment 4.6 was designed as a control to check that animals were capable of 

performing a simple discrimination of novel and familiar objects. Because of the 

design used for the context experiments, with two exposures being employed, the 

maximum time between an object being initially explored and being encountered at 

test was 10 minutes. In view of evidence that deficits in object recognition can be 

found at such delays experiment 4.6 was a simple object recognition experiment in 
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which animals explored two identical copies of an object (A) in the maze until they 

had spent 30 seconds exploring them. They were then returned to their home cage. 

After a delay of 2, 5 or 10 minutes they were returned to the maze which now 

contained a new copy of the familiar object (A) and a novel object (N) and allowed to 

explore for 3 minutes. The time spent exploring each object was recorded for each of 

three 1 minute periods. 

Data analysis 

Following Ennaceur & Delacour (1988), the difference in exploration of the objects in 

seconds at a given time-point was calculated (Dl) . Secondly, the difference between 

the time spent exploring the objects was calculated as a proportion of the total time 

spent exploring both objects (D2). In experiment 4.1 the object in the incongruent 

context was designated as " N " and the object in the congruent context was designated 

as "A". The data from experiment 4.2 were analysed with the first object encountered 

arbitrarily designated as " N " and the second designated as "A". In experiments 4.3, 

4.4 and 4.6 the objects were familiar (A) and novel (N) and were analysed 

appropriately. In experiment 4.5 the object in the context of the incongruent object 

was designated as " N " and the object in the context of the congruent object was 

designated as "A". Repeated measures ANOVA's were carried out on each of these 

measures, followed by post-hoc Tukey's test. The performance of each group was 

also analysed for difference from chance at each delay using one-sample T-tests. 

Experiment 4.7: Locomotor activity 

This experiment was designed to detect any change in locomotor activity associated 

with the lesions, which may have had an impact on exploration. Apparatus were 

Perspex boxes with removable lids, of base dimensions 42 x 46 cm and height 25 cm 

equipped with infra-red beams which detected movement, and when broken 

consecutively, detected ambulatory activity which was the measure used to assess 

activity. Animals were placed in the boxes for a 10 minute habituation period. The 

following day they were placed in the box again and activity was recorded for two 

consecutive 5 minute periods. Data were analysed using a one-way ANOVA. 
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4.3: Results 

4.31: Histological Results 

The histological analysis reported below is of the animals which completed the 

experiments described in chapter 5 as well as those reported here. 

Perirhinal group 

One animal (R311) died before perfusion could take place. Histological analysis 

revealed that in all other cases the perirhinal lesions were essentially as intended, 

extending approximately 3.0 mm - 6.5 mm posterior to Bregma, although they were 

not complete lesions. The estimated damage to the perirhinal cortex ranged from 46% 

(R316) to 80% (R304) of the total extent of perirhinal cortex. Figure 4.6 shows the 

extent of the smallest (R316, semi-transparent grey) and largest lesions (R304, 

diagonal stripes) drawn on to standard sections taken from Paxinos & Watson (1998). 

As can be seen from the behavioural results described below it is unlikely that the size 

of the lesions affected the behavioural impairments, as these were both extensive and 

in accordance with the majority of the extant literature. In addition the performance 

of the perirhinal animals on each experiment at the 15 minute delay was plotted and 

neither animal with the largest nor the smallest lesion was atypical (see figure 4.7). 

The performance of the animal which died before perfusion could be performed 

(R311) is also shown. As can be seen from figure 4.7, this animal shows no 

indication of deviating from the performance of the cohort. 
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Figure 4.6: The extent of the smallest (R316, semi-transparent grey) and largest 
(R304, diagonal stripes) perirhinal lesions drawn on to standard sections taken from 
Paxinos & Watson (1998). 
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Figure 4.7: Performance at the 5 minute delay of perirhinal animals with the 

largest and smallest lesions on the experiments described here and in chapter 5 

at a delay of 5 minutes (averaged over both contexts where appropriate). The 

performance of animal R311 which died before perfusion is also shown. 

Postrhinal 

As intended the lesions were all posterior to those found in the animals with perirhinal 

lesions. There was considerable variation in the extent of the lesions, as can be seen 

from figure 4.8 which shows the extent of the largest (R306) and the smallest (R326) 

lesions drawn on to standard sections taken from Paxinos & Watson (1998). However, 

the extent of the lesions as a percentage of the total extent of postrhinal cortex has not 

been estimated. This is because, although work by Burwell and colleagues (Burwell 

et al., 1995; Burwell & Amaral, 1998; Burwell, 2001) has gone a considerable way 

toward mapping the extent of the postrhinal cortex, this work has not yet reached the 

stage where a full stereotaxic atlas such as Paxinos & Watson (1998) incorporates the 

postrhinal cortex on standardised charts. As can be seen from figure 4.9, there was no 

indication that the size of these lesions affected behavioural performance. 
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Figure 4.8: The extent of the smallest (R326, semi-transparent grey) and largest 
(R306, diagonal stripes) postrhinal lesions drawn on to standard sections taken 
from Paxinos & Watson (1998). 
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Figure 4.9: Performance at the 5 minute delay of postrhinal animals with the 

largest and smallest lesions on the experiments described here and in chapter 5 

at a delay of 5 minutes (averaged over both contexts where appropriate). The 

performance of animal R313 which died before perfusion is also shown. 

Fornix 

All the animals had extensive bilateral damage to the fornix. In all animals the fornix 

was completely transected at anterior levels, although the anterior-posterior extent of 

the damage varied. All animals had bilateral damage to the posterior part of the lateral 

septum in addition to the fornix lesions. There was some hippocampal damage in 

those animals with more extensive lesions, with two animals showing bilateral 

damage in this area and three showing unilateral damage. There was no visible 

damage to the corpus callosum. Figure 4.10 shows the extent of the largest lesion 

(R308) and the smallest lesion (R337) drawn on to standard sections taken from 

Paxinos & Watson (1998). There was no evidence that the anterior-posterior extent of 

the lesion affected behavioural performance, as can be seen from figure 4.11 which 

shows the performance of the animals with the largest and smallest lesions in relation 

to the rest of the cohort. 
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Figure 4.10: The extent of the smallest (R337, semi-transparent grey) and 
largest fornix lesions drawn on to standard sections taken from Paxinos & 
Watson (1998). 
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Figure 4.11: Performance at the 5 minute delay of fornix animals with the largest 

and smallest lesions on the experiments described here and in chapter 5 at a 

delay of 5 minutes (averaged over both contexts where appropriate). 

Behavioural Results 

Experiment 4.1. AB in incongruent context 

This experiment examined discrimination on the basis of whether a familiar object 

was encountered in the same context or a different context relative to previous 

experience of that object. As can be seen from figures 412 a and 4.12b, all lesion 

groups were impaired compared with sham animals' performance on both the D2 (F = 

8.256, df = 3,42, p < 0.001) and the D l (F = 12.434, df = 3,42, p < 0.001) measures. 

Although the performance of all the lesion groups is impaired it is not uniformly so, 

and there is some evidence for a specific postrhinal impairment at the 2 minute delay. 

Because the results differ slightly between the 2 measures they are presented 

separately. 

D2 

The results were analysed using a 2 (delay) x 2 (context) x 4 (lesion) repeated 

measures ANOVA. Post hoc analysis of the main effect of lesion D2 (F = 8.256, d f = 

3,42, p < 0.001) showed that all lesion groups were impaired compared with the sham 
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animals, with the postrhinal animals being the most impaired and the perirhinal 

animals the least impaired. (Difference between sham and perirhinal animals, p < 

0. 05; difference between sham and postrhinal animals p < 0.001; difference between 

sham and fornix p < 0.01). There was no main effect of delay (F = 1.989, df = 1,42 p 

> 0.05) and no interaction between delay and lesion (F = 2.619, df = 3,42, p > 0.05). 

There was no effect of context (F < 1, df = 1,42, p > 0.05) and no interaction between 

context and either delay (F < 1, df = 1,42, p > 0.05) or lesion (F = 1.545, df = 3,42, p 

> 0.05). Nor was there a three way interaction between delay, context and lesion (F < 

1, df = 3,42, p > 0.05). The fact that there was no effect of context and no interaction 

between context and lesion is surprising. As figure 4.12 shows, at the 2 minute delay 

the perirhinal and fornix groups appeared to be only impaired relative to the shams in 

context 1. It must be assumed that the relatively large variance observed prevented 

this effect from reaching significance. 

Analysis of absolute performance provides some support for the view that 

performance differs between the two contexts. One-sample T-tests showed that at the 

2 minute delay in context 1 neither the postrhinal nor the fornix groups differed from 

chance, while in context 2 only the postrhinal group did not differ from chance (table 

4.3). When the contexts were combined, again only the postrhinal group did not 

differ from chance (table 4.3). At the 5 minute delay the postrhinal and fornix groups 

did not differ from chance in context 1, while in context 2 none of the lesion groups 

differed from chance. When the contexts were combined none of the lesion groups 

differed from chance (table 4.2). This suggests that the task is a hard one at 5 

minutes, as all lesion groups fail, but that at 2 minutes there is a selective postrhinal 

impairment (see table 4.3). It also suggests that the fornix animals only fail at 2 

minutes when there is a longer delay due to the order of context presentation. 

D l 

Again, the results were analysed using a 2 (delay) x 2 (context) x 4 (lesion) repeated 

measures ANOVA. Post hoc analysis of the main effect of lesion (F = 12.434, df = 

3,42, p < 0.001) showed that, as can be seen in figure 4.12b, all lesion groups were 

impaired compared to the sham animals (difference between sham and perirhinal and 

postrhinal < 0.001; difference between sham and fornix < 0.01). There was also a 

main effect of delay (F = 4.317, df = 1,42, p < 0.05), although there was no interaction 

between delay and lesion (F = 1.525, df = 3,42, p > 0.05). There was also no effect of 
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context (F = 1.630, df = 1,42, p > 0.05) and no interaction between context and either 

lesion (F = 2.175, df = 3,42, p > 0.05) or delay (F < 1, df = 1,42, p > 0.05). There was 

also no three-way interaction between delay, context and lesion (F = 1.437, df = 3,42, 

p > 0.05) The lack of interactions between delay, lesion and context is surprising. 

From figures 4.12d and 4.12f it is clear that all lesion groups are impaired at both 

delays compared to sham performance in context 1, whilst in context 2 only the 

postrhinal animals are impaired at the earlier delay, although all groups are impaired 

at the 5 minute delay. It seems possible that the failure to find such interactions is due 

to the relatively large variance in the lesion groups' performance. 

Analysis of absolute performance confirmed the relative performance results, showing 

that while all lesion groups were impaired relative to the shams, the postrhinal 

animals' performance was particularly poor at the 2 minute delay, although rather 

surprisingly this was not the case at the 5 minute delay (see table 4.2). One-sample T-

tests showed that at 2 minute delay in context 1 neither the postrhinal nor the fornix 

groups differed from chance, while in context 2 only the postrhinal group did not 

differ from chance (see table 4.3). This chance performance by the postrhinal animals 

was also found when the contexts were combined. At the 5 minute delay a different 

pattern was found. Although, as at 2 minutes, the postrhinal and fornix groups did no 

differ from chance in context 1, in context 2 it was the perirhinal and fornix groups 

which did not differ from chance. This perirhinal impairment was also found when 

the contexts were combined: the perirhinal group did not differ from chance (see table 

4.2). 
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Figure 4.12: Discrimination of A in a congruent context from B in an incongruent context 
over both contexts, (a) D2 measure (b) D l measure 
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D2 
Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 5.831 <0.001 Yes 11.474 <0.001 Yes 

Perirhinal 3.906 0.002 Yes 1.637 0.130 No 
Postrhinal 1.130 0.282 No 1.824 0.095 No 

Fornix 5.740 <0.001 Yes 1.895 0.087 No 
D l 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 5.093 O.001 Yes 12.124 <0.001 Yes 

Perirhinal 3.776 0.003 Yes 1.617 0.134 No 
Postrhinal 1.006 0.336 No 2.205 0.050 No 

Fornix 6.691 O.001 Yes 2.548 0.029 Yes 
Table 4.2: One-sample T-tests on each group's performance on an A/B 

discrimination with context incongruent. 
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D2 
Testing in Context 1 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 5.231 < 0.001 Yes 6.173 <0.001 Yes 

Perirhinal 3.176 0.009 Yes 2.836 0.016 Yes 
Postrhinal 1.200 0.256 No 0.641 0.534 No 

Fornix 1.186 0.263 No 0.983 0.349 No 
Testing in Context 2 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 4.917 O.001 Yes 12.07 <0.001 Yes 

Perirhinal 2.938 0.014 Yes 0.586 0.570 No 
Postrhinal 0.038 0.970 No 2.041 0.066 No 

Fornix 3.060 0.012 Yes 1.735 0.114 No 
Dl 

Testing in Context 1 
Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 4.373 0.001 Yes 6.324 O.001 Yes 

Perirhinal 2.948 0.013 Yes 2.227 0.048 Yes 
Postrhinal 1.187 0.260 No 0.517 0.615 No 

Fornix 1.235 0.245 No 1.081 0.305 No 
Testing in Context 2 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 4.620 O.001 Yes 13.030 O.001 Yes 

Perirhinal 2.942 0.013 Yes 0.602 0.560 No 
Postrhinal 0.097 0.924 No 3.105 0.010 Yes 

Fornix 4.204 0.008 Yes 2.195 0.0529 No 

Table 4.3: One-sample T-tests on each group's performance in each context on 

an A/B discrimination with context incongruent. 

Exploration 

There was a trend towards an effect of lesion (F = 2.799, df =3,42, p = 0.052) which 

would appear to be due to the perirhinal animals exploring the objects less than the 

shams. There was also an effect of delay (F = 10.130, df = 1,42, p < 0.01), but no 

interaction between delay and lesion (F < 1, df = 3,42, p > 0.05) with all groups 

exploring less at the 5 minute delay than at the 2 minute delay. There was no effect of 
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context (F < 1, df =1,42, p > 0.05) but there was an interaction between delay and 

context (F = 8.051, df = 1,42, p < 0.01) with the decline in exploration at the 5 minute 

delay more pronounced in context 2 than in context 1. There was no interaction 

between context and lesion (F < 1, df = 3,42, p > 0.05) and no three-way interaction 

between delay, context and lesion (F < 1, df = 3,42, p > 0.05). 

Summary 

This discrimination was clearly a difficult one which all lesion groups were impaired 

compared with shams. At 5 minutes all lesion groups performed at chance on some 

measures. At 2 minutes the picture is more interesting, and it is clear that postrhinal 

animals are severely impaired and do not differ from chance on any measure, whilst 

fornix animals fail to discriminate only on some measures and perirhinal animals 

discriminate between the objects on all measures. 

Experiment 4.2: AB in congruent context (control) 

This experiment was designed to control for the effect of the order in which objects 

were experienced in experiment one, and the possibility that animals would 

experience the object seen most recently as significantly more familiar than the object 

seen previously. As can be seen from figure 4.13, the results of this experiment 

confirm that this is not the case, as animals did not discriminate between the object 

presented first and the object presented second when all presentations were in the 

same context. A 2 (delay) x 4 (lesion) repeated measures ANOVA was carried out. 

On neither the D2 (F < 1, df = 3,42, p >0.05) nor the D l (F < 1, df = 3,42, p > 0.05) 

measures were there any differences between the groups. There were also no effects 

of delay in D2 (F < 1, df = 1,42, p > 0.05) or D l (F < 1, df = 1,42, p > 0.05). There 

was no interaction between lesion and delay on either the D2 or the D l measure (D2: 

F < 1, df = 3,42, p > 0.05; D l : F < 1, df = 3,42, p > 0.05). 

More significantly, when absolute performance was examined using one sample T-

tests, on both measures none of the groups differed from chance at either the 2 minute 

or the 5 minute delays (see table 4.4). This indicates that none of the groups is 

discriminating between the objects on the only possible basis for discrimination -

delay between presentation and test. 
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2 minutes 
Measure D2 Dl 
Lesion T P Differ 

from 
chance? 

T P Differ 
from 

chance? 
Sham 0.122 0.906 No 0.090 0.930 No 

Perirhinal 0.232 0.821 No 0.565 0.583 No 
Postrhinal 0.913 0.381 No 0.947 0.364 No 
Fornix 0.159 0.878 No 0.102 0.921 No 

5 minutes 
Measure D2 Dl 
Lesion T P Differ 

from 
chance? 

T P Differ 
from 

chance? 
Sham 1.055 0.316 No 1.006 0.338 No 

Perirhinal 0.193 0.851 No 0.110 0.914 No 
Postrhinal 0.730 0.481 No 1.097 0.296 No 
Fornix 1.434 0.182 No 2.024 0.070 No 
Table 4.4: < 3ne-sample T-test for each group at both d elays on control A/B 

condition. 

Exploration 

There was a main effect of lesion (F = 4.512, df =3,42, p < 0.01) which post-hoc 

analysis revealed to be due to the sham animals showing greater exploration than the 

perirhinal animals (p < 0.05). There was also a main effect of delay (F = 18.409, df = 

1,42, p < 0.001) and an interaction between delay and lesion (F = 6.029, df =3,42, p < 

0.01). This interaction is due to the sham and fornix groups exploring more at the 5 

minute delay than at the 2 minute delay, whilst the perirhinal and postrhinal groups do 

not differ in their exploration across the delays. 

Summary 

There was no effect of lesion with all groups failing to discriminate between the 

objects at all delays, indicating that there was no effect of recency in object 

preference. 



143 

0.15 

2 

0.05 
• Sham 
n Perirhinal 
• Postrhinal 
• Fornix 

-0.05 

8 
c -0.1 

-0.15 
2 minutes 5 minutes 

Delay (minutes) 

•Sham 

[ f-l Perirhinal 
: 

• Postrhinal 
8 
c 

• Fornix 1 

2 minutes 5 minutes 

Delay (minutes) 
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Experiment 4.3 (AN in incongruent context) 

A 2 (delay) x 2 (context) x 4 (lesion) repeated measures ANOVA was carried out. A l l 

lesion groups performed more poorly than the shams on this task on both a D2 (F = 

15.261, df = 3,42, p < 0.001) and a D l measure of performance (F = 19.832, df = 3,42 

p < 0.001). However, as can be seen from figure 4.14a and 4.14b the fornix animals 

were considerably less impaired than the perirhinal and postrhinal animals on both D l 

and D2 measures. Because the results from the two measures differ slightly they wil l 

be discussed separately. 

D2 

Post-hoc analysis of the effect of lesion (F = 15.261, df = 3,42, p < 0.001) following 

the repeated measures ANOVA confirmed that all other groups were impaired 

compared with the sham animals, and that the perirhinal and postrhinal groups were 

more impaired than the fornix group (differences between sham and both perirhinal 

and postrhinal, p < 0.001; between sham and fornix p < 0.05). Confirming this 

differential impairment, perirhinal animals were significantly more impaired than 

fornix animals (p < 0.05). There was no effect of delay (F < 1, df = 1,42, p > 0.05) 

and no interaction between delay and lesion (F < 1, df = 3,42, p > 0.05). There was 

no effect of context (F < 1, df = 1,42, p > 0.05) and no interaction either between 

context and lesion (F = 1.111, df = 3,42, p > 0.05) or between context and delay (F = 

1.075, df = 1,42, p > 0.05). There was also no three-way interaction between delay, 

context and lesion (F < 1, df = 3,42, p > 0.05). Again this failure to find an effect of 

context is surprising. As can be seen from figures 4.14c and 4.e the main effect of 

lesion appears to be the result of group differences during testing in context 1, with 

much less impairment of the lesion groups being observed when testing was in the 

second context. It seems probable that the failure to find an effect of context, or 

interactions between context and lesion or delay was due to the large variance 

observed in some of the groups. 

The absolute performance of the animals in the lesion groups is less clear. When 

actual ability to discriminate is examined by testing performance against chance 

(zero) using one-sample T-tests the picture is somewhat confused at the 2 minute 

delay (see table 4.6). At the 2 minute delay the postrhinal animals did not differ from 

chance during testing in context 1. When animals were tested in the second context 

the perirhinal and fornix animals did not differ from chance at a delay of 2 minutes. It 
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seems probable that these results, which at first glance do not seem to be supported by 

graphical representation of the data (figures 4.14c and 4.14e) reflect the large standard 

deviations shown by these groups, which may have also contributed to the failure to 

find effects of context in the analysis of relative performance. This view is supported 

by the fact that when the data are analysed with both contexts combined all groups 

differed from chance, with variance being reduced, at least partially by the necessary 

doubling of the number of repetitions of the test to form this variable (see table 4.5). 

At a 5 minute delay all groups differed from chance in both contexts and when 

contexts were combined (see tables 4.5 and 4.6). 

D l 

Analysis of the D l measure is largely in agreement with that of D2. As with the D2 

measure, post hoc analysis of the main effect of lesion (F = 19.832, df 3,42 p < 

0.001) confirmed that all other groups were impaired compared with the sham 

animals. However, the perirhinal and postrhinal animals were more impaired than the 

fornix animals. (Difference between sham animals and both perirhinal and postrhinal 

animals, p < 0.001; difference between sham and fornix animals, p < 0.01). The 

lesser impairment of the fornix animals is confirmed by the fact that they, as well as 

the shams, also differed from perirhinal and postrhinal animals (difference between 

fornix animals and perirhinal animals, p < 0.01; difference between fornix animals 

and postrhinal animals, p < 0.05). There was no main effect of delay (F < 1, df = 

1,42, p > 0.05) and no interaction between delay and lesion (F < 1, df = 3,42, p > 

0.05). There was also no effect of context (F < 1, df = 1,42, p > 0.05) and no 

interactions between context and either lesion (F = 2.145, df = 3,42, p > 0.05) or 

delay (F = 1.046, df = 1,42, p > 0.05). There was also no three-way interaction 

between lesion, delay and context (F < 1, df = 3,42, p > 0.05). 

When absolute performance is examined the same pattern as with the D2 measure is 

found (see tables 4.5 and 4.6). One-sample T-tests showed that at a delay of 2 

minutes the postrhinal animals did not differ from chance in context 1. In context 2 

the perirhinal and fornix animals did not differ from chance. Again, when both 

contexts were combined all groups differed from chance. In contrast to the D2 

measure, at a 5 minute delay in context 1 the postrhinal animals did not differ from 
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chance. In context 2, and when the contexts were combined the results accorded with 

those of the D2 measure and all groups differed from chance. 
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D2 
Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 10.05 O.001 Yes 15.930 <0.001 Yes 

Perirhinal 4.628 O.001 Yes 4.679 O.001 Yes 
Postrhinal 3.284 0.007 Yes 4.041 0.002 Yes 

Fornix 5.399 O.001 Yes 6.209 O.001 Yes 
D l 

Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 10.280 O.001 Yes 12.520 <0.001 Yes 

Perirhinal 4.077 0.002 Yes 4.467 0.001 Yes 
Postrhinal 3.209 0.008 Yes 3.569 0.004 Yes 

Fornix 4.839 <0.001 Yes 6.727 O.001 Yes 
Table 4.5: One-sample T-tests for each of the groups' performance in both 

contexts at both delays on a discrimination between N and A in the incongruent 

context. 
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D2 
Testing in Context 1 

Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 8.226 <0.001 Yes 11.92 O.001 Yes 

Perirhinal 2.357 0.038 Yes 3.331 0.007 Yes 
Postrhinal 2.096 0.060 No 2.325 0.040 Yes 

Fornix 8.515 <0.001 Yes 4.390 0.001 Yes 
Testing in Context 2 

Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 4.045 0.002 Yes 8.522 O.001 Yes 

Perirhinal 1.744 0.109 No 2.484 0.030 Yes 
Postrhinal 2.386 0.036 Yes 3.237 0.008 Yes 

Fornix 1.682 0.124 No 4.843 0.001 Yes 
D l 

Testing in context 1 
Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 8.582 O.001 Yes 8.676 <0.001 Yes 

Perirhinal 3.340 0.007 Yes 3.500 0.011 Yes 
Postrhinal 2.067 0.063 No 1.486 0.165 No 

Fornix 7.082 O.001 Yes 4.520 0.001 Yes 
Testing in Context 2 

Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 4.326 0.002 Yes 9.095 O.001 Yes 

Perirhinal 1.803 0.099 No 2.331 0.040 Yes 
Postrhinal 2.446 0.033 Yes 3.623 0.004 Yes 

Fornix 1.632 0.134 No 5.257 <0.001 Yes 
Table 4.6: One-sample T-tests on each group's performance in each context on 

an A/N discrimination with context incongruent. 

Exploration 

There was a main effect of lesion (F = 3.552, df = 3,42, p < 0.05). Post hoc analysis 

revealed that this was due to the perirhinal animals showing less exploration than the 

sham animals. There was no main effect of delay (F = 1.000, df = 1,42, p > 0.05), but 

there was an interaction between delay and lesion (F = 5.702, df = 3,42, p < 0.01) as 

this difference between the shams and the perirhinal animals only occurred at the 2 

minute delay. There was also an interaction between delay and context (F = 9.339, df 

= 1,42, p < 0.01) although there was no main effect of context (F = 2.465, df = 1,42, p 

> 0.05), as the groups explored more in context 2 than in context 1 at the 2 minute 

delay, but not at the 5 minute delay. There was no interaction between context and 
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lesion (F < 1, df = 3,42, p > 0.05) and no three-way interaction between delay, context 

and lesion (F < 1, df = 3, 42, p > 0.05). 

Summary 

Al l lesion groups were impaired compared to the shams on both measures. The 

perirhinal and postrhinal groups were also more impaired than the fornix group on 

both measures. However the lesion groups did not consistently fail to discriminate 

between the objects and there is no clear pattern in the circumstances in which each 

group failed to discriminate. 

Experiment 4.4: AN in congruent context (control) 

A 2 (delay) x 2 (context) x 4 (lesion) repeated measures ANOVA was carried out. 

Although there were differences between the groups on both the D2 (F = 5.148, df = 

3,42, p < 0.01) and D l (F = 8.951, df = 3,42, p < 0.001) measures there were 

differences in the pattern of results found for each measure, as can be seen from 

figures 4.15a and 4.15b. They are therefore discussed separately. 

D2 

Post hoc analysis of the main effect of lesion (F = 5.148, df = 3,42, p < 0.01) showed 

that the postrhinal animals were impaired compared to the sham animals (p < 0.01) 

and, to a lesser extent that the fornix animals were also impaired (p < 0.05). The 

perirhinal animals were not impaired (p > 0.05). There was a significant interaction 

between delay and context (F = 9.618, df = 1,42, p < 0.01). As can be seen from 

figures 4.15c and 4.15e this was primarily due to the differences between the contexts 

in performance by the perirhinal and fornix animals at the 2 minute delay. At this 

delay both these groups performed much better in context 2 than in context 1, and this 

difference was absent at the 5 minute delay. This analysis of the context/delay 

interaction was not contradicted by simple effects analysis which showed that there 

was no difference between the groups in either context at the 2 minute delay. This 

may also reflect the large standard deviation of all the lesion groups. At the 5 minute 

delay the groups differed in context 1 (F = 5.3, df = 1,83, p < 0.05), but not in context 

2(F = 0.8, d f = 1,83, p > 0.05). 

When absolute performance was assessed the analysis of deficits in performance by 

the perirhinal and fornix groups as specific to context 1 was supported (see table 4.8). 
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At the 2 minute delay the postrhinal and fornix groups did not differ from chance in 

context 1, whilst in context 2 all groups differed from chance (see table 4.7). When 

the contexts were combined all groups differed from chance, supporting the view that, 

at least in the case of the perirhinal animals, large standard deviations were partly 

responsible for the appearance of poor performance. At the 5 minute delay the 

postrhinal animals did not differ from chance in context 1, while the perirhinal 

animals did not differ from chance in context 2 (see table 4.8). When the contexts 

were combined all the groups differed from chance (table 4.7), again supporting the 

view that when variance is reduced the groups were performing above chance. 

D l 

As well as the main effect of lesion (F = 8.951, df = 3,42, p < 0.001), there were also 

significant two-way interactions between context and lesion (F = 2.865, df = 1,42, p < 

0.05) and between delay and context (F = 12.995, df = 1,42, p = 0.001) and a three-

way interaction between delay, context and lesion (F = 3.334, df = .3,42, p < 0.05). 

Po^t-hoc analysis of the main effect of lesion showed that all les;|)n groups were 

impaired compared with the sham animals. The postrhinal impairment was greatest, 

followed by the perirhinal impairment, with the fornix animals being the least 

impaired. (Difference between sham and perirhinal animals p < 0.01; between sham 

and postrhinal animals p < 0.001; between sham and fornix animals p < 0.05). 

ASjilysis of the interactions between lesion^ context and delay shov|Ithat, as can be 

seen from figures 4.15d and 4.15f, at 2 minute delay, but not at 5 minute delay all 

operated groups, and in particular the perirhinal and fornix groups, performed much 

better when tested in context 2 than in context 1. In context 1 there was no effect of 

delay, whilst there was in context 2. The effect of delay in context 2 was to reduce 

the performance of the perirhinal and the fornix groups, although the postrhinal 

impairment was unchanged. This analysis is confirmed by simple effects which 

showed that there was no difference between the groups in either context at the 2 

minute delay. Again, in context 1 this would seem to be due to the high level of 

variance in all groups. At the 5 minute delay the groups differed in context 1 (F = 6.7, 

df=1,83, p < 0.05) but not in context 2 (F = df=1,83, p > 0.05). 

Analysis of the absolute performance of the groups supports this account of the 

difference between the performance in the different contexts (see table 4.8). At the 2 
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minute delay none of the lesion groups differed from chance in context 1, whilst in 

context 2 all groups differed from chance. When the contexts were combined all 

groups differed from chance. Performance at the 5 minute delay is less clear cut. In 

context 1 the postrhinal animals did not differ from chance, while in context 2 the 

perirhinal animals did not differ from chance. Again when the contexts were 

combined all the groups differed from chance. 

D2 
Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 6.470 O.001 Yes 12.394 O.001 Yes 

Perirhinal 5.014 O.001 Yes 3.541 0.005 Yes 
Postrhinal 3.980 0.002 Yes 4.149 0.002 Yes 

Fornix 4.596 0.001 Yes 4.152 0.002 Yes 
D l 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 6.916 O.001 Yes 9.335 O.001 Yes 

Perirhinal 4.779 0.001 Yes 3.328 0.007 Yes 
Postrhinal 3.721 0.003 Yes 3.699 0.004 Yes 

Fornix 5.739 <0.001 Yes 4.597 0.001 Yes 
Table 4.7: One-sample T-t ests for each o the groups at both delays on 

discrimination between N and A in the congruent context. 
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D2 
Testing in Context 1 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 4.992 0.001 Yes 10.883 <0.001 Yes 

Perirhinal 2.435 0.033 Yes 3.179 0.009 Yes 
Postrhinal 1.969 0.075 No 1.857 0.090 No 

Fornix 0.871 0.404 No 2.579 0.027 Yes 
Testing in Context 2 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 8.049 O.001 Yes 6.765 <0.001 Yes 

Perirhinal 4.551 0.001 Yes 2.020 0.068 No 
Postrhinal 4.385 0.001 Yes 3.938 0.002 Yes 

Fornix 6.414 0.001 Yes 4.685 0.001 Yes 
Dl 

Testing in Context 1 
Delay 2 minutes 5 minutes 
Lesion T p Differ from 

chance? 
T P Differ from 

chance? 
Sham 5.772 <0.001 Yes 7.009 <0.001 Yes 

Perirhinal 2.041 0.066 No 2.941 0.013 Yes 
Postrhinal 1.536 0.153 No 1.094 0.297 No 

Fornix 1.286 0.227 No 2.650 0.024 Yes 
Testing in Context 2 

Delay 2 minutes 5 minutes 
Lesion T P Differ from 

chance? 
T P Differ from 

chance? 
Sham 7.908 O.001 Yes 5.631 O.001 Yes 

Perirhinal 4.632 0.001 Yes 2.038 0.066 No 
Postrhinal 4.673 0.001 Yes 5.154 O.001 Yes 

Fornix 7.172 <0.001 Yes 5.314 <0.001 Yes 

Table 4.8: One-sample T-tests for each of the groups in each of the contexts at 

both delays for the A/N in congruent context discrimination. 
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Exploration 

There was a main effect of lesion (F = 2.888, df = 3,42, p < 0.05), but post hoc 

analysis showed only a trend for the shams to explore more than the postrhinal 

animals (p = 0.057). There was a main effect of delay (F = 29.257, df = 1,42, p < 

0.001) with all groups exploring less at the 5 minute delay than at the 2 minute delay, 

but no interaction between delay and lesion (F = 1.957, df = 3,42, p > 0.05). Although 

there was no effect of context (F < 1, df = 1,42, p > 0.05), there was an interaction 

between context and delay (F = 13.745, df = 1,42, p = 0.001) with all groups 

exploring more in context 2 than context 1 at the 2 minute delay, but displaying the 

opposite pattern of behaviour at the 5 minute delay. There was no interaction 

between context and lesion (F < 1, df = 3,42, p > 0.05), and no three-way interaction 

between context, delay and lesion (F < 1, df = 3,42, p > 0.05). 

Summary 

The postrhinal animals were the most consistently and the most severely impaired. 

The fornix animals showed a lesser impairment, while the perirhinal animals were 

only impaired on the D l measure, which is the less reliable of the 2 measures, 

particularly since the groups differed in total exploration time. The impairment was 

more apparent in context 1 than in context 2. The results indicate that there is an 

effect of recency on the discrimination of a novel and familiar object when there are 

two exploratory phases. However, they also indicate that all groups were able to 

discriminate when the contexts were combined. 

Experiment 4.5: Object as context (Aa Bb Ab Aa) 

There was a main effect of lesion on both the D2 (F = 13.488, df = 3,42, p < 0.001) 

and the D l measure (F = 13.036, df = 3,42, p < 0.001). There was no effect of delay 

on either measure (D2: F < 1, df=1,42, p > 0.05; D l : F < 1, df = 1,42, p > 0.05) and 

no interaction between lesion and delay (D2: F < 1, df = 3,42, p > 0.05; D l : F < 1, df 

= 3,42, p > 0.05). Post hoc analysis of the main effects showed that, as can be seen 

from figure 4.16a, on the D2 measure perirhinal animals were impaired compared 

with the sham animals (p < 0.001). They were also impaired compared with the 

postrhinal and fornix animals (p < 0.01 in both cases). There were no other 

differences between the groups. On the D l measure post hoc analysis also showed 

that, as can be seen from figure 4.16b, the perirhinal animals were impaired compared 
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with the sham animals (p < 0.001). They were also impaired compared with the 

postrhinal (p < 0.01) and with the fornix animals (p < 0.001), with no other 

differences between the groups. 

The perirhinal impairment at both delays was confirmed by analysis of absolute 

performance, which showed that that the perirhinal animals did not differ from chance 

at either the 2 minutes or the 5 minute delay on either the D l or the D2 measure (table 

4.9). 

2 minutes 
Measure D2 D l 
Lesion T P Differ 

from 
chance? 

T P Differ 
from 

chance? 
Sham 4.847 <0.001 Yes 3.420 0.007 Yes 

Perirhinal 1.036 0.322 No 1.175 0.264 No 
Postrhinal 2.674 0.022 Yes 2.543 0.027 Yes 
Fornix 3.765 0.004 Yes 3.961 0.003 Yes 

5 minutes 
Measure D2 D l 
Lesion T P Differ 

from 
chance? 

T P Differ 
from 

chance? 
Sham 5.013 <0.001 Yes 6.283 O.001 Yes 

Perirhinal 1.704 0.117 No 1.613 0.135 No 
Postrhinal 2.342 0.039 Yes 2.849 0.016 Yes 
Fornix 3.328 0.008 Yes 3.075 0.012 Yes 
Table 4.9: One-sample T-Tests for each group at both delays on the object-as-

context test. 

Exploration 

There was no effect of lesion (F < 1, df = 3,42, p > 0.05). There was also no effect of 

delay (F = 3.224, df = 1,42, p > 0.05) and no interaction between delay and lesion (F 

= 2.338, d f = 3,42, p > 0.05). 

Summary 

There was a clear perirhinal impairment at both delays and in both contexts. The other 

lesion groups were not impaired. 
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Experiment 4.6: Simple control 

This experiment was designed to check that all groups were able to discriminate a 

novel object from a familiar object at all the delays used. Because the delay between 

the first experience of an object and the test was a maximum of 10 minutes in the case 

of the 5 minute delay, delays of 2,5 and 10 minutes were employed. None of the 

lesion groups were impaired compared to the sham animals on the D2 measure (F = 

2.3, df = 3,42, p > 0.05) (figure 4.17a). However, there was a main effect of lesion on 

the D l measure (F = 3.6, df = 3,42, p < 0.05). Post hoc analysis of this effect showed 

that the perirhinal group were impaired relative to the sham (p < 0.05). There was 

also a main effect of delay, which, as can be seen from figure 4.17b resulted from the 

reduction in performance of the lesion groups at the 5 minute and 10 minute delays. 

Since analysis using simple effects showed no difference between the groups at any 

delay, it seems probable that the perirhinal impairment resulted from a relatively mild 

decrement at all delays. 

Despite this slight impairment of the perirhinal animals (detected only on the less 

reliable of the 2 measures), assessment of absolute performance with one-sample T-

tests confirms that all animals can perform a simple A N discrimination at all the 

delays encountered in the experiments previously discussed, as all groups were above 

chance at all three delays (see table 4.10). 
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2 minutes 
Measure D2 Dl 
Lesion T P Differ 

from 
chance? 

T P Differ 
from 

chance? 
Sham 8.085 O.001 Yes 6.762 O.001 Yes 

Perirhinal 6.798 <0.001 Yes 6.248 O.001 Yes 
Postrhinal 11.55 O.001 Yes 6.237 O.001 Yes 
Fornix 6.183 O.001 Yes 7.229 O.001 Yes 

5 minutes 
Measure D2 Dl 
Lesion T p Differ 

from 
chance? 

T p Differ 
from 

chance? 
Sham 6.174 O.001 Yes 5.604 O.001 Yes 

Perirhinal 2.644 0.029 Yes 2.578 0.026 Yes 
Postrhinal 4.821 O.001 Yes 4.547 <0.001 Yes 
Fornix 3.062 0.012 Yes 2.555 0.029 Yes 

10 minutes 
Measure D2 D1 
Lesion T P Differ 

from 
chance? 

T P Differ 
from 

chance? 
Sham 5.577 O.001 Yes 5.604 O.001 Yes 

Perirhinal 3.784 0.003 Yes 2.578 0.026 Yes 
Postrhinal 6.163 O.001 Yes 4.547 <0.001 Yes 
Fornix 3.801 0.004 Yes 2.555 0.029 Yes 

Table 4.10: One-sample T-Tests for each group at all three delays on a simple 

control A/N paradigm. 

Exploration 

There was no effect of lesion (F = 1.775, df = 3,42, p > 0.05). There was a main 

effect of delay (F = 17.250, df - 2,84, p < 0.001) as all groups explored the objects 

more at the 10 minute delay than at the 2 minute or 5 minute delay. There was no 

interaction between delay and lesion (F = 1.404, df = 6,84, p > 0.05). 

Summary 

The D2 measure - the more reliable of the two measures - indicated that none of the 

lesion groups was impaired at any delay, while the D l measure indicated a mild 
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perirhinal impairment. However, all groups discriminated between the objects at all 

delays. 

As the results presented above are relatively complex, a summary of the results of the 

memory experiments reported here is given in table 4.11 

Experiment Exposure Test Experiment 

1 2 

Test 

1) AB incongruent AA BB AB 

2) AB congruent AA BB AB 

3) AN incongruent AA - AN 

4) AN congruent AA BB AN 

5) Object as context AaBb - AaAb 

6) Simple control AA - AN 

Table 4.11: Summary of results of experiments 4.1-4.6, showing the paradigm 
used for testing. 1 I Indicates phase took place in context 1, BBI indicates 
phase took place in context 2. (Order of contexts was controlled for). 

Experiment 4.7: Locomotor Activity 

The lesion groups did not differ from each other either when the 10 minute test period 

was considered as a whole (F < 1, df = 3,42, p > 0.05) (see figure 4.12), nor when the 

two 5 minute time bins were considered separately (F < 1, df = 1,3, p > 0.05).). As 

can be seen from figure 4.18, there was a difference between the two time bins, with 

all groups showing less activity in the second time bin than the first time bin when the 

two bins were included in the analysis separately (F = 97.9, df = 1,1, p < 0.001). 
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Figure 4.18: Total number of consecutive beam breaks over a 10 minute time bin 

4.4: Discussion 

The results presented here provide some support for the predictions made, suggesting 

that the hippocampus and, in particular, the postrhinal cortex are heavily involved in 

the processing of, and memory for, the context an object is experienced in. In 

contrast, the results suggest that the perirhinal cortex is only involved in such 

processing where the context is such that it is possible that it and the designated object 

are perceived as a single whole. This presents a double dissociation between a 

postrhinal (and lesser fornix) impairment of memory for object-in-classical context 

and a perirhinal impairment where the context is formed by another object. 

The results of the locomotor activity tests (experiment 4 .7) were somewhat surprising. 

There have been a number of studies which have shown that hippocampal lesions 

produce hyperactivity (e.g. Jarrard, 1968; Kimble, 1965), while fornix lesions have 

been found to replicate this (e.g. Mittleman, Bratt & Chase, 1998). The effect is 

thought to be due to disruption of glutamatergic projections from the subiculum via 

the fimbria-fornix to the nucleus accumbens (e.g. Kelley & Domesick, 1982). The 

fact that we did not find such an effect is puzzling, particularly in view of the fact that 

we obtained deficits in the discrimination of objects-in-contexts in the experiments 

discussed above (and see below chapter 5 for a discussion of further behavioural 

impairments). The histology would indicate that all the animals had the fornix 
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completely transected at the anterior levels (see histological analysis, above ppl30), 

while the behavioural evidence shows clear evidence of mnemonic impairments in 

this group. 

The histological analysis also showed that all animals, in addition to transection of the 

fornix, had sustained damage to the lateral septum. However, this additional damage 

is unlikely to have been responsible for a diminution of the hyperactivity normally 

observed in animals with fornix lesions. Bannerman, Gilmour, Norman & Lemaire et 

al. (2001) performed a temporary inactivation of the fornix and reported no difference 

between animals in which the cannulae terminated in the lateral septum and those in 

which they terminated in the fornix, either on locomotor measures or on a DNMTP 

task, while Poucet & Buhot (1994) reported similar impairments on a radial maze 

following inactivation of the medial septum. The septal damage in the animals in the 

fornix group is unlikely to have altered their performance on the memory tasks 

discussed in this and the following chapter. There is considerable evidence that 

lesions of the septum result in mnemonic impairments which parallel those found in 

animals with hippocampal or fornix damage. Indeed Vann, Brown, Erichsen & 

Aggleton (2000b) found that fornix lesions themselves caused significant reduction in 

Fos activity in the lateral septum. It seems probable that the failure to find 

hyperactivity in the fornix group resulted from insufficient habituation periods rather 

than from the location of the lesions. 

Experiment 4.1 was a test of whether the context an object had been previously 

encountered in was a determinant of its familiarity as Dix & Aggleton (1999)'s study 

indicated. It is clear that the sham animals explored an object previously encountered 

in a different context more than one encountered in the same context. Although all 

the lesion groups showed less discrimination than the shams, the perirhinal animals 

discriminated between the objects at the 2 minute delay regardless of whether the test 

was in the first or second context, whereas the postrhinal animals did not discriminate 

in either context and the fornix animals only discriminated when tested in the second 

context. At the 5 minute delay the postrhinal and fornix animals did not discriminate 

in either context, whereas the perirhinal animals only discriminated in the first 

context. (This summary concerns the D2 measure, but although the picture is less 

clear when the D l measure is considered the ubiquity of the postrhinal impairment is 
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also found here. As there was a trend towards an effect of lesion in the amount of 

exploration, the D2 measure should be considered as providing a more reliable 

account of performance.) 

The impairment of the fornix and postrhinal groups is in accordance with the findings 

of Bucci et al. (2002) who found impaired fear conditioning to context in both these 

groups as well as in a group with perirhinal lesions. The finding of a mild perirhinal 

impairment at longer delays is perhaps unsurprising, and would seem to support the 

contention of Bussey et al. (2000) that the perirhinal cortex and the hippocampus 

normally function cooperatively. The more pronounced postrhinal deficit is in 

agreement with C-fos studies which supported the view that the postrhinal cortex was 

involved in spatial tasks while the perirhinal cortex was not (Aggleton et al., 2000; 

Vann et al., 2000). Wan et al., (1999) found that novel arrangements of familiar items 

caused increased fos activity in the postrhinal cortex as well as in hippocampal area 

CA1, suggesting that it was involved in object-place memory. The evidence of lesion 

studies (e.g. Bussey et al., 2000) that postrhinal lesions do not cause impairment on a 

spatial paradigm such as delayed non-matching to place on a T-maze would point 

towards the postrhinal cortex being involved specifically with the combination of 

objects and locations, whether the location is a place or a context. 

The results of experiment 4.1 would suggest that the postrhinal animals were severely 

impaired in their memory for which object had been previously encountered in which 

context. Indeed it is open to question as to whether the deficit is in fact mnemonic or 

whether it is primarily a processing deficit. A means of reducing the mnemonic 

component of the test, at least partially, should be found in order to establish whether 

such a deficit is in fact delay-dependent. Although there would be problems of 

context-delineation with such an approach, it would be possible to construct a 

paradigm in which the two objects and contexts are experienced concurrently rather 

than consecutively, and this would permit testing at a total delay of only 1 minute, 

considerably reducing the mnemonic element of the discrimination. 

It is important to note that even when the animals fail to discriminate between the 

objects we do not find a simple preference for the object which was first experienced 

at the longest delay; which might be expected i f a simple failure to recognise this 
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object as familiar were occurring. That failure to discriminate did not result from a 

failure of memory for the object(s) is made clear both by the results of experiment 4.2 

and by those of experiment 4.6. Experiment 4.2 demonstrated clearly that, where 

context was always congruent for both objects none of the animals, including the 

sham animals discriminated between the objects, indicating that the effect of delay did 

not produce a familiarity gradient between the object seen in the first exposure phase 

and that seen in the second exposure phase. Moreover, experiment 4.6 showed that, 

even at the longest effective delay encountered between exposure and test, all groups 

discriminated between a novel and a familiar object, indicating that an object is still 

recognised as familiar at such delays. 

The deficits displayed by the perirhinal and fornix animals present in a more complex 

fashion than that of the postrhinal animals. It is possible that the results from the 5 

minute delay can be explained in terms of the fact that the delay between initial 

exploration (of the incongruent object) and test depends on which context testing 

occurs in. This is longer when testing is in the second context (see figure 4.19 below). 

Context 1 

A B 
B-B = 5 minutes 

Context 1 Context 2 
OR B 

Context 2 

A-A ~ 10 minutes A B 

Figure 4.19: Illustration of time between first exploration of object and test 

exploration in incongruent context at 5 minute delay: 5 minutes when testing in 

first context; ~ 10 minutes when testing in second context. 

I f the hippocampus were more involved in memory for context than the perirhinal 

cortex, as numerous studies (Ennaceur & Aggleton, 1994; Ennaceur et al., 1996; 

Mumby et al., 2002) would lead one to expect, then animals with fornix lesions might 
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be predicted to show impaired discrimination at a shorter delay between experiences 

of the object which requires more processing: the object which is in an incongruent 

context. This is in fact what we find when the delays imposed by the paradigm are 

considered (see figure 4.19 above). 

However, an alternative explanation for this data might be that animals with marginal 

memory for context are only impaired when something occurs to disrupt memory for 

the context in which an object is experienced: namely the interposing between that 

experience and the test of another exposure phase. This would be a reasonable 

explanation i f the assumption is made that it is memory for the object in the congruent 

context which is crucial. In effect the two explanations assume opposing premises. 

The argument based on increasing delay presupposes that it is the familiar context of 

the object which appears congruently at test which must be retrieved and is vulnerable 

to memory deficits: in effect that it is the comparator for novelty which is important. 

Conversely, the argument based on the interposing of the second exposure as a 

disrupter of memory instead presupposes that it is the memory of the previous context 

of the object which appears incongruently at test which is crucial; that it is the object 

itself which is crucial to the detection of novelty, not that with which it is contrasted. 

Whilst both these factors are probably important the issue can be partly resolved by 

examining the results of experiment 4.3, in which there is no familiar object in a 

congruent context but only a familiar object in a non-congruent context and a novel 

object (N). 

The results of experiment 4.3 are at first glance difficult to explain in a way that is 

compatible with the possible explanations advanced for the results of experiments 4.1 

and 4.2. Whilst all groups were impaired compared with the sham animals' 

performance, the postrhinal and perirhinal animals were more impaired than were the 

fornix animals. This would seem to be problematic i f directly compared with the 

results of experiment 4.1, in which the postrhinal and, to a lesser extent the fornix 

animals, were more impaired than the perirhinal animals. However the two 

experiments are fundamentally different. Experiment 4.1 poses a discrimination 

between two equally familiar objects (see experiment 4.2 for confirmation of this) and 

allows discrimination to occur purely on the basis of the congruency of the context to 

each object. The discrimination involved in experiment 4.3, however, provides a 
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discrimination between (A) and (N) which have a strong familiarity differential and 

tests whether this differential is reduced by the effects of context. In such a 

discrimination the prediction would be that animals with perirhinal lesions, which are 

known from the experiments discussed in chapter 3 to show impairments at shorter 

delays when a familiarity differential is reduced, would be the animals with the 

greatest impairments. In fact animals with both perirhinal and postrhinal lesions show 

clear impairments when tested in either context. 

Interestingly the animals with fornix lesions show a greater impairment when tested in 

the second context. In this context there is both a longer delay and the interposition of 

an irrelevant set of objects (B) between initial exploration of A and the A/N test. 

Unfortunately this does not help to elucidate the question of whether it is memory for 

the congruent or the non-congruent object which is crucial in experiment 4.1. It does, 

however, suggest that memory for context may be dependent on a hippocampal 

contribution where there are a sequence of explorations of objects rather than a simple 

delay between exposure and test which is spent in the home cage. This was 

confirmed by the results of experiment 4.4, which was designed as a control for 

experiment 4.3. 

Experiment 4.4 repeated experiment 4.3, but with the difference that the test of A/N 

occurred with A in a context congruent with that of its first exposure. The most 

interesting aspect of the results of this experiment is that the fornix animals showed a 

more severe impairment when testing was carried out in the first context, although 

this was only apparent at the 2 minute delay. In this experiment, because testing was 

carried out in the congruent context for (A), it is when A/N is tested in the first 

context that a set of irrelevant objects (B) is interposed. It is also testing in the first 

context which produces the longest delay between first exploration of (A) and the 

A/N test. What has become clear from examining the results of experiments 4.3 and 

4.4 is that it is the delay between exposure to an object and test and/or the interposing 

of a set of objects between exploration and test which is crucial in determining the 

severity of the impairment of animals with fornix lesions. As previously discussed, 

the results of experiment 4.6 showed that none of the lesion groups was impaired at 

any of the delays experienced in experiments 4.1 - 4.4. This is quite strongly 

suggestive of the fact that it is not differences in the absolute delay between exposure 
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memory for context in which objects appear. Lesions to the perirhinal cortex caused 

impairment principally when the discrimination was primarily one between novel 

object and familiar object, and the role of the context in which the object appeared 

served merely to affect the familiarity of the familiar object. 

The results of experiment 4.5 serve to confirm emphatically that the perirhinal cortex 

is involved in the processing of, and memory for, information about objects. This 

experiment, which used objects such as ashtrays and soup bowls to provide the 

context in which another object appeared. In this experiment the perirhinal animals 

were severely impaired, performing at chance at both the 2 and the 5 minute delays. 

In contrast both the postrhinal and the fornix groups showed no impairment at any 

delay. These results form a double dissociation with the results of experiment 4.1 

which showed strong postrhinal impairments with milder and more specific fornix 

impairments. This difference in results would indicate that the objects and contexts in 

experiment 4.5 were being processed in different ways, with the context provided by 

the appearance of the whole maze not being paralleled by that of an object on which 

another object stands. 

This result is particularly interesting in view of the fact that explanations for 

hippocampal involvement in contextual processing have often centred on the 

configural processing required in order to construct a representation of a context. 

However, as has been discussed the role of the hippocampus in configural processing 

has been thrown into doubt by results such as those of Bussey et al. (1998), while the 

experiments presented in chapter 3 of this thesis suggest that configurations of 

elements within objects to form a meaningful entity is a process which requires an 

intact perirhinal cortex. The most parsimonious explanation for the marked difference 

in the pattern of impairment between the results of experiment 4.5 and those of 

experiments 4.1, 4.3 and 4.4 is that the object designated as a context in experiment 

4.5 was not perceived as such by the rats. It was instead processed as constituting one 

element of a single whole which was formed by the object and the context. Rather 

than being perceived as object (A) in context (a) the combination was processed as an 

object (Aa). Under this interpretation the deficit which was observed exclusively in 

the perirhinal animals supports the conclusion of chapter 3, namely that the perirhinal 

cortex is engaged in configural processing which involves feature ambiguity within 
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to object A and the test in experiments 4.3 and 4.4 which is responsible for 

differences between testing in the 2 contexts, but rather the interposition of a second 

exposure phase between exposure and test. This is made particularly clear when the 

results of experiment 4.4 are compared to those of experiment 4.6. The only 

difference between the experiments is that in experiment 4.4 some of the delay 

between exposure to (A) and the A/N test is spent exploring (B) rather than the in the 

home cage. This would suggest that it is the interference produced by such 

intermediate exploration which is responsible for a failure of memory particularly in 

those animals with fornix lesions, but also in those animals with perirhinal lesions. It 

is noticeable that the animals with postrhinal lesions were impaired in both 

experiments when tested in either context. 

The postrhinal animals were also the most uniformly impaired in the purely 

contextual discrimination between the familiar objects A/B in experiment 4.1. The 

postrhinal animals show a clear deficit in all the experiments in which the shams 

discriminate either between familiar objects in a congruent/incongruent context 

(experiment 4.1) or between novel and familiar objects with the involvement of 

context, whether congruent to (A) (experiment 4.4) or not (experiment 4.3). Whilst 

the fornix group was also impaired on each of these experiments the impairment was 

more severe where there was an exploration period interposed between exposure to 

the incongruent but familiar object, or in the case of experiment 4.4, simply the 

familiar object. 

The perirhinal animals were most severely impaired in experiment 4.3 in which the 

discrimination was effectively between a novel object (N) and a familiar object (A) 

rendered less familiar by the context in which it appeared. They showed no 

impairment in experiment 4.4 (A/N in congruent context), indicating that, in contrast 

to the postrhinal and fornix animals they are able to discriminate between a novel and 

a familiar object even when there is an irrelevant exploration period of another object 

(B) between exploration of (A) and test. The perirhinal animals were only impaired on 

the A/B discrimination in experiment 4.1 at the longest delay when testing was carried 

out such that there was an exploration period between the first exploration of the 

object which is incongruent at test and the test. This pattern of results would tend 

towards the conclusion that the perirhinal cortex is only peripherally involved in 
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objects. Moreover this experiment would suggest that the perirhinal cortex is not 

merely necessary for such processing but is also sufficient. 

The results of the experiments outlined in this chapter indicate that lesions to the 

perirhinal cortex, while causing mild impairments in memory for objects-in-context 

do not prevent discriminations based on such memory. Lesions to the postrhinal 

cortex, however, do cause serious impairments to such memory and prevent 

discriminations based on it at even very short delays. Fornix lesions cause 

impairments which prevent discrimination at longer delays but not at shorter delays. 

There is, however, a double dissociation between the results of experiment 4.1 (AB in 

incongruent context) and those of experiment 4.5: (Object-as-context). In experiment 

4.1 the postrhinal animals are do not discriminate at any delay whilst the perirhinal 

animals, although impaired relative to the shams, discriminate at all delays. 

Conversely, in experiment 4.5 the postrhinal and fornix animals are unimpaired 

relative to the shams while the perirhinal animals do not discriminate at any delay. 

This double dissociation clearly suggests that whilst the perirhinal cortex is not 

critically involved in memory for object-context combinations it is critically involved 

where the designated context is such that it is perceived as forming a single gestalt 

with the designated object. It is also clear that the postrhinal cortex, by contrast is not 

critically involved where the context and the object are perceived as forming a single 

entity, but is critically involved, to a greater extent than the hippocampus, in memory 

for object-context where the context is not formed by a second object. The perirhinal 

and postrhinal impairments are both supportive of the roles suggested by previous 

studies. It has been made clear that the perirhinal cortex is critical to the processing 

of, and memory for, objects. As is discussed in chapter 3 it is clear that this is 

particularly the case where an object discrimination contains a degree of feature 

ambiguity. 

The impairments seen in the fornix animals are in accordance with the bulk of the 

literature which suggests that fornix lesions cause impairment of memory for objects-

in-context and scene memory, as well as for object-in-place (Gaffan & Harrison, 

1989, Gaffan, 1994a,b). The fornix impairments found are also in accordance with 

the findings of Mumby et al. (2002), who found a hippocampal impairment on a 

paradigm similar to experiment 4.1, although the animals in their study were still able 
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to discriminate between the objects. This more severe impairment following fornix 

lesions may indicate that it is the hippocampus and its subcortical connections rather 

than the hippocampus alone which is involved in memory for object-in-context. This 

view would be supported by the results of Parker & Gaffan (1997a, 1997b) who found 

that lesions of the mammillary bodies or the anterior thalamic nuclei caused an 

impairment of object-in-context memory in monkeys equivalent to that produced by 

fornix lesions. The results of the present study are also in accordance with those of 

Simpson et al. (1998) who found impairment of object-in-place encoding (which was 

effectively a test of object-in-context) following fornix transection in rats. 

Given that, as with the experiments in chapter 3, there was no appetitive motivation 

involved in experiment 4.5, it is possible that the perirhinal animals may have shown 

no impairment i f such a motivational component had been used. As has been 

discussed with reference to the experiments in chapter 3, this is certainly something 

that would bear investigation using 3-dimensional objects and a system of food 

rewards. However, the prediction would be that such an experiment would not find 

intact performance by the perirhinal animals although it might detect some savings 

which were not apparent in the current paradigm. This prediction is based on two 

premises. First, that the discrimination is performed easily by intact animals and 

animals with postrhinal lesions; second, that there is no indication that the perirhinal 

impairment is delay-dependent. Both of these suggest that, while perirhinal cortex 

may not be essential to the discrimination, it is certainly the means of choice for the 

processing and memory involved. Again, Buckley & Gaffan (1998c)'s results 

indicated that monkeys with perirhinal lesions failed to learn a similarly configural 

task where there was a substantial motivational component, while Parker & Gaffan's 

(1997a, 1997b) work indicated a failing in object-in-context memory following 

lesions to subcortical structures. 

The results in this chapter indicate that lesions of the postrhinal cortex and, to a lesser 

extent, of the fornix cause impairments in the processing of object-in-context. This, 

however, forms part of a double dissociation with the perirhinal impairment when the 

context is formed by a second object. There was also a more severe perirhinal 

impairment when the discrimination was between A in an incongruent context and N , 

further indicating that object recognition involves perirhinal function. The clear 
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dissociation of the effects of perirhinal lesions and postrhinal or fornix lesions 

supports the view that the postrhinal cortex is not primarily involved in object 

recognition, whilst the perirhinal cortex is only tangentially involved in the processing 

of object-in-context. The experiments in chapter 5 explore a possible model of 

episodic-like memory, with the prediction that the postrhinal and fornix groups would 

show an impairment on such a task, while the perirhinal animals would not. 
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Chapter 5: A possible model for episodic-like memory in rats 

5.1: Introduction 

Chapters 2-4 examined memory for aspects of objects and the contexts in which they 

appear. However, such experiments do not address a common form of memory in 

humans, namely episodic memory - memory for events. The nature of episodic 

memory is such that it has often been thought to be exclusive to humans and possibly 

primates. Tulving himself (Tulving, 1983) emphasised the autonoetic character of 

episodic memory, which placed a primary emphasis on conscious recollection. In the 

absence of language it seemed improbable that such recollection could exist in species 

other than humans, and an impossibility to test its existence. In particular, emphasis 

was placed on the ability to remember a previously presented item as opposed to 

merely knowing that it was familiar (Mandler, 1980). This definition, while valuable, 

places an emphasis on the role of the recollecter, whose explicit "remembered" 

memory is comprised of multiple episodes, and seems further to preclude the 

possibility of an animal model of true episodic memory. This is particularly the case 

when one considers that the great majority of tasks which could be used to explore 

such memory do not require explicit recognition of past events. That one can only test 

for implicit memory does not preclude the existence of explicit memory. 

A useful model of "episodic-like" memory can be formed i f one considers that a 

primary feature of episodic memory is its power to describe an event in terms of the 

thing(s) that happened (what); the spatial location it happened at (where) and the 

temporal location of the happening (when). In episodic-like memory, basic 

components of episodic memory (what, where and when) are considered without the 

requirement for active retrieval which is considered to be implicit in the categorisation 

of a memory as episodic. The approach of investigating "episodic-like" memory is 

supported by the comment by Tulving himself that: 

"The presence or absence of episodic memory is no more an all-or-none matter 

between species than it is within them. " Tulving (1984), cited in Aggleton & Pearce 

(2001). 

That memories which include all three of the "what, where, when" criteria can be 

formed in animals is clearly demonstrated by the work of Clayton and colleagues 
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(Clayton & Dickinson, 1998; Clayton et al., 2001). Clayton and colleagues utilised 

the food storing habits of scrub jays to show that the type of food (what), the location 

of food (where) and how long ago the storage took place (when) can all be retrieved 

and used for successful cache retrieval of food which takes account of whether it is 

highly perishable (worms) or not (nuts). This is an elegant model of a type of 

memory which further work would imply it may be both possible to implement in rats 

and dependent upon hippocampal function (N Clayton, personal communication). 

Testing of the "when" element of the episodic-like triad has been one of the more 

problematic aspects of task-development in the attempt to test such memory in 

animals. This arises from the fact that "when" clearly defines a purely temporal 

context. However, on consideration, it seems possible that context might also be 

crucial to episodic or episodic-like memory. Gaffan & Harrison (1989) first 

demonstrated that memory for the combination of an object and a context was 

impaired following fornix transection. This was the first indication that aspects of 

object memory were as dependent on hippocampal function as was episodic memory 

in humans. Subsequent work has confirmed that scene memory is sensitive to lesions 

of the hippocampus and its diencephalic projections in both monkeys (Gaffan, 

1994a,b; Gaffan & Parker, 1996, Parker & Gaffan, 1997a, 1997b) and humans 

(Aggleton et al., 2000). E. Gaffan & colleagues (Gaffan & Eacott, 1997; Gaffan et al., 

2000; Simpson & Gaffan, 1999; Simpson et al., 1998) have developed scene-learning 

tasks for rats which parallel those used with primates. The balance of the evidence is 

that such scene memory in rats is vulnerable to hippocampal damage as is the case in 

monkeys. However, there are some contradictory results which suggest that 

hippocampal damage may paradoxically enhance scene-leaning abilities (Gaffan et al. 

2001; Simpson et al., 1998) just as fornix transection may facilitate some types of 

configural learning (Bussey et al., 1998). 

In view of this, and of clear evidence from the experiments in chapter 4 that animals 

discriminate context, even when not specifically rewarded for doing so, a novel 

paradigm has been developed which is a version of the object recognition test. This 

version exploits and combines the ability of normal animals to discriminate objects in 

a novel place (relative to that object's previous position) and objects in a novel 

context. Experiment 5.1 was designed such that at test animals discriminated between 
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two objects which they had encountered before, had encountered in that physical 

location, and had encountered in that context. The objects differed only in that one 

had not previously been encountered in that location in that context before - the 

configuration of "what, where and context" was novel. The other object, by contrast 

had previously been explored in the same position and context as it was encountered 

at test. I f animals possessed the episodic-like memory for this "what, where, 

context" combination then it would be expected that they would explore the object 

which was novel in this configuration - though not novel in any of the individual 

elements. 

Based on the evidence available, both from the work reported in previous chapters of 

this thesis, and from the other studies in this area, one might predict that all three of 

the lesion groups used in this experiment would be impaired on such a task. 

However, the results of the experiments on recognition of objects in context in the 

previous chapter showed that, at the short delays used perirhinal animals were only 

severely impaired when context was incidental to the task of object recognition. (In 

that the fundamental discrimination was between a novel (N) and a familiar object (A) 

where the familiarity of (A) was modified by its being presented in an unfamiliar 

context.) This would suggest that the perirhinal group would only be mildly impaired 

on the task outlined here which used short delays. It would, however, be predicted 

that the animals with postrhinal lesions would be severely impaired on such a task, as 

it has been demonstrated (chapter 4) that they are severely impaired on tasks 

involving object-context combinations. Bussey et al's work with combined perirhinal 

and postrhinal lesions (1999), combined with the evidence that perirhinal lesions 

alone do not impair object-place memory, would also suggest that postrhinal animals 

would be impaired on the task because of the object-location element of the "what, 

where, context" combination. It was also predicted that the animals with fornix 

lesions would be impaired on the task. There is considerable evidence that the 

hippocampus, or a neuroanatomical system of which the hippocampus is a part, is 

required for the processing of episodic or episodic-like memory (Rempel-Clower et 

al., 1996; Squire, 1992). 
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5.2: Methods and Materials 

Subjects 

The forty-six Dark Agouti rats used in these studies were those used in the 

experiments in chapter 4. Testing began approximately three weeks after the 

completion of those experiments. As before they were housed in pairs in diurnal 

conditions (12h light/ 12h dark cycle) and all testing was carried out during the light 

phase. Throughout the study animals had ad libitum access to both food and water. 

At the start of these experiments animals were approximately 8 months old. There 

were 12 animals with perirhinal lesions, 12 animals with postrhinal lesions, 11 

animals with fornix lesions and 11 animals who had undergone sham surgery. 

Apparatus 

As in the experiments in chapter 4, all testing was carried out in an open field made of 

wood, of base dimensions 1 m 2 and height 48 cm. The maze could be configured to 

provide two different contexts. In context 1 the base was painted matt black and the 

walls matt white. In context 2 the base consisted of a 1.5 cm mesh of white plastic-

coated wire overlaid on a black base and the walls were natural wood. The objects 

were placed into the open field equidistant from the sides of the maze. Standard 

objects used included bottles, jars, tubs and bowls. 

Perfusion 

For histological purposes, at the end of testing operated animals were perfused 

intracardially with a 5% formal saline solution. Their brains were removed, embedded 

in wax and coronally sectioned into lOu slices. Every 10 th section was stained with 

cresyl violet (Nissl stain). 

Testing 

Habituation 

Because the animals had previously been used in the experiments in chapter 4, and 

had therefore been thoroughly habituated to the maze configured for both contexts, no 

further habituation sessions were carried out. 
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Experiment 5.1 

Experiment 5.1 was designed to test the effects of a combination of object, place and 

context on object familiarity. There were two exposure phases followed at a delay of 

2 or 5 minutes by a test phase. In the first exposure phase the maze was configured as 

context 1 and contained a copy of object (A) on the left side of the maze and a copy of 

a different object (B) on the right side of the maze. The second exposure phase the 

maze was configured as context 2 and contained a copy of object (B) on the left side 

of the maze and a copy of object (A) on the right side of the maze. In the test phase 

the maze was configured as context 1 and contained 2 copies of object (A), one on the 

left and one on the right (Figure 5.1). These objects were equidistant from the sides 

of the maze. For each of the two exposure phases the animal was placed into the 

maze and allowed to explore until they had spent 15 seconds exploring each of the 

two objects. They remained in the maze for a minimum of 2 minutes. They were 

then removed from the maze. I f they failed to explore the objects for 15 seconds each 

they were removed after 5 minutes and the time they had spent exploring was 

recorded. After an interval of 2 minutes the animals were returned to the maze for the 

second exploration phase. After the second exploration phase there was a delay of 

either 2 or 5 minutes before the animals were returned to the maze for the test phase. 

In the test phase the animals were placed in the maze for three minutes, and the time 

spent exploring each of the 2 copies of object (A) was recorded for each of three 1 

minute periods. The side of the maze on which object appeared in each context was 

controlled for between animals, as was the object used in the test phase. The order in 

which the contexts were experienced was controlled for between repetitions, of which 

there were four for each delay. Different objects were used for each repetition. 

1st exposure phase 2nd exposure phase Test phase 

i i Pt3 

S»4 

I: =«!: 

8 

A (Left), B (Right) B (Left), A (Right) A (Left), A (Right) 
in context 1 m context 2 in context 1 

Figure 5.1: Exposure and test phases for experiment 5.1: episodic like memory. 
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Experiment 5.2 

Experiment 5.2 was designed as a control for the effect of place alone on the 

familiarity of an object in experiment 5.1. The maze was configured as context 1 

throughout this experiment. In the exploration phase the maze contained a copy of 

object (A) on the left and a copy of a different object (B) on the right. Animals were 

placed in the maze and allowed to explore until they had spent 15 seconds exploring 

each of the 2 objects. They remained in the maze for a minimum of 2 minutes. I f 

they failed to explore the objects for 15 seconds each they were removed after 5 

minutes and the time they had spent exploring was recorded. After a delay of 2 or 5 

minutes the animal was returned to the maze for the test phase. For the test phase the 

maze contained 2 copies of object (A), one on the left and one on the right. The test 

phase lasted 3 minutes, and the time spent exploring each of the 2 copies of object A 

was recorded for each of three 1 minute time periods (Figure 5.2). The side of the 

maze on which each object appeared in the exposure phase was controlled for 

between animals, as was the object which was used in the test phase. 

r 
• 

• at 

4 J mmmm 

A(Left), B(Right) A(Left), A(Right) 

Exposure phase Test phase 

Figure 5.2: Exposure and test phases for experiment 5.2: object in place. 

Data analysis 

Following Ennaceur & Delacour (1988), the difference in exploration in seconds at a 

given time-point was calculated as the difference between the time spent exploring the 

object in the novel object-place-context combination and the time spent exploring the 

object in the familiar object-place-context combination (Dl ) . Secondly, the 

difference between time spent exploring the objects in the novel and familiar object-

place-context combinations was calculated as a proportion of the total time spent 

exploring both objects (D2). Repeated measures ANOVA's were carried out on each 
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of these measures, followed by post-hoc Tukey's test. The performance of each group 

was also analysed for difference from chance at each delay using one-sample T-tests. 

5.3: Results 

5.31: Histology 

As the animals used in the experiments described here were those used in the 

experiments described in chapter 4, histological analysis can be found on pp 126-132. 

5.32: Behavioural 

Experiment 5.1: "Episodic-like memory" 

A 4 (lesion) x 2 (context) x 2 (delay) repeated measures ANOVA was performed. 

There was a large difference between the groups on both the D2 (F = 17.581, df = 

3,40 p < 0.001) and the D l (F = 23.018, df - 3,40, p < 0.001) measures. Post hoc 

analysis of these main effects of lesion showed that, as can be seen from figure 5.3, 

the fornix animals were severely impaired compared with the sham animals (p < 

0.001) on both the D l and the D2 measures. They were also severely impaired 

compared with the perirhinal and postrhinal animals (p < 0.001) on both measures, 

whilst these other lesion groups did not differ from the shams. There were no effects 

of delay (F = 1.995, df = 1,40 p > 0.05) or of context (F < 1, df =1,40, p > 0.05) and 

no interactions between the variables, indicating that the fornix deficit was consistent 

across both delays and testing contexts. 

Analysis of the absolute performance of the groups confirms this uniform and highly 

selective fornix deficit. One-sample T-tests showed that the fornix group was 

performing at chance in both contexts and at both the 2 minute and the 5 minute 

delays (see figure 5.3 and table 5.1), whilst all other groups performed well above 

chance levels in all conditions. Since there were no differences between any of the 

groups' performances in the two contexts, only data for the contexts combined are 

shown. 
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D2 
Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 5.573 O.001 Yes 6.450 O.001 Yes 

Perirhinal 5.468 O.001 Yes 7.098 O.001 Yes 
Postrhinal 5.470 <0.001 Yes 7.692 <0.001 Yes 

Fornix 0.0438 0.966 No -1.112 0.292 No 
D l 

Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 5.226 O.001 Yes 4.807 0.001 Yes 

Perirhinal 4.864 O.001 Yes 6.286 O.001 Yes 
Postrhinal 4.878 O.001 Yes 8.440 <0.001 Yes 

Fornix 0.205 0.841 No -0.922 0.378 No 

Table 5.1: One-sample T-tests for all groups at both delays. 

Exploration 

There was no difference between the groups in the amount they explored the objects 

(F = 1.079, df = 3,40, p > 0.05). There was also no effect of delay (F = 1.483, df = 

1,40, p > 0.05) and no interaction between delay and lesion (F < 1, df = 3,40, p > 

0.05). 
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Figure 5.3: Discrimination of object in place in context, contexts combined, (a) 
D2 measure, (b) D l measure. 
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Experiment 5.2: Place 

This experiment was designed to control for the effect of place in experiment 1. A 4 

(lesion) x 2 (delay) repeated measures analysis was performed. There were no 

differences between the groups on either the D2 (F < 1, df = 3,40, p > 0.05) or the D l 

(F < 1, df = 3,40 p > 0.05) measure of performance. There was no effect of delay on 

either the D2 (F < 1, df = 1,40, p > 0.05) or the D l (F = 1.738, df = 1,40, p > 0.05) 

measure of performance. As can be seen from figures 5.4a and 5.4b, this lack of 

difference between the groups reflects the fact that all groups perform well on this 

task with no lesion impairments. 

Analysis of absolute performance using one sample T-tests largely supported this 

interpretation, although they did show that the perirhinal animals performed at chance 

at the 2 minute delay on both the D l and the D2 measures of performance (see table 

5.2). As all groups performed above chance at the 5 minute delay on both measures, 

this would seem to be a statistical anomaly, resulting from a high level of variance in 

this data point, when taken in conjunction with the lack of effects of lesion or of 

delay. 

D2 measure 
Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 4.541 0.001 Yes 7.511 O.001 Yes 

Perirhinal 2.027 0.070 No 3.287 0.008 Yes 
Postrhinal 3.269 0.007 Yes 3.289 0.007 Yes 

Fornix 3.570 0.005 Yes 3.954 0.003 Yes 
D l Measure 

Delay 2 minutes 5 minutes 
Lesion T P Differ T P Differ 
Sham 4.197 0.002 Yes 6.393 O.001 Yes 

Perirhinal 1.937 0.082 No 3.442 0.006 Yes 
Postrhinal 4.153 0.002 Yes 3.285 0.007 Yes 

Fornix 2.401 0.037 Yes 3.946 0.003 Yes 
Table 5.2: One-sample T-tests for all groups at both delays 

Exploration 

There was no main effect of lesion (F = 2.640, df = 3,40, p = 0.063), but there was a 

main effect of delay (F = 8.908, df = 1,40, p < 0.01) and an interaction between delay 

and lesion (F = 3.396, df = 3,40, p < 0.05). This resulted from all groups except the 
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fornix animals showing less exploration at the 5 minute delay than at the 2 minute 

delay, with the fornix animals displaying the opposite pattern of behaviour. 

0.45 

c 5 0.25 
• S h a m 
n Perirhinal 
• Postrhinal 
•Fornix 

2 minutes 5 minutes 

Delay 

• Sham 

C Perirhinal 

• Postrhinal 

• Fornix 

2 minutes 5 minutes 

Delay 

Figure 5.4: Discrimination of object in place, (a) D2 measure, (b) D l measure 
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5.4: Discussion 

The results of the experiments in this chapter are clear-cut. Whether the paradigm 

used in experiment 5.1 is in fact a test of episodic memory, it is clear that the animals 

with fornix lesions were severely impaired at both delays and whichever context the 

test session occurs in. Conversely, and contrary to our predictions the animals with 

perirhinal or postrhinal lesions showed no impairment compared with the controls. 

The possibility that the fornix deficit was purely a result of the introduction of an 

"object-in-place" element into the task seemed a strong one, as fornix animals have 

repeatedly been found to be impaired on such a task (Ennaceur & Meliani, 1992b; 

Ennaceur, Neave & Aggleton, 1997). Indeed it was partly on the basis of such studies 

that the prediction of a fornix impairment was predicated. However, the delays used 

in these experiments were extremely short compared with the standard 15 minute 

delay used by many studies, so that the failure to find a deficit in any of the groups is 

less surprising than it might at first seem. An impairment at longer delays than were 

used here might reasonably be predicted. 

The results of this attempt to model episodic-like memory in rats, although 

straightforward, are surprising. It had been predicted that the perirhinal animals 

would display only a mild impairment or no impairment at all, and it was also 

predicted that the fornix animals would be impaired. However, the impairment of the 

fornix animals was predicted to result primarily, at least at the 2 minute delay, from 

the effects of object-place combination. That this cannot be the case is demonstrated 

by the results of experiment 5.2, in which the fornix animals were not impaired at all. 

As the impairment shown by the fornix animals in the experiments in chapter 4 was 

neither as uniform nor as severe as that found in experiment 5.1 here, it must therefore 

be concluded that the fornix impairment is produced in large part by the combination 

of object, place and context, rather than singly by any one of these elements alone. At 

the very least it would appear that the combination of place and context - the "where" 

and the "context" of the configuration is not remembered in animals without an intact 

fornix. 

However, the apparently paradoxical results of the animals with postrhinal lesions 

require further consideration. It is important to remember that the object recognition 



188 

and similar tasks contain no motivational element save for the intrinsic motivational 

properties of novelty (Ennaceur & Delacour, 1988). As has been discussed in chapter 

4, lesions to the hippocampus may impair context recognition that is incidental to a 

motivated task, while sparing context recognition which is integral to task completion. 

It seems possible that the postrhinal animals retain the ability to discriminate context 

but do not actually do so when there is no motivation to so discriminate. This 

explanation is, however, rather problematic given the lack of an explicit motivational 

element in the current discrimination. 

The problem of the fornix deficit on experiment 5.1, in conjunction with apparently 

intact performance on experiment 5.2 and only limited deficits on the experiments in 

chapter 4 remains. A possible explanation is that it is the simple additive effect of 

processing multiple aspects of a discrimination (what, where, context) which 

cumulatively produces a major impairment. However, this explanation is 

incompatible with the combination of intact postrhinal performance observed in 

experiment 5.1 and the severe postrhinal impairment observed on the object-in-

context experiment (experiment 4.1) in chapter 4. In this case we find that the 

introduction of an additional element (place) to the discrimination effectively 

eliminates a postrhinal impairment. This would seem to render an explanation of the 

fornix deficit emerging purely due to an increased processing load in a more complex 

paradigm inherently unlikely. 

A possible solution to this dichotomous performance would be that the situation in 

experiment 5.1 is in fact processed by a different memory system to that involved in 

processing the object-in-context (experiment 4.1) or the standard spontaneous object 

recognition (e.g. experiment 4.6) tasks. Such a memory system would appear to 

depend upon an intact hippocampus, either in and of itself, or as part of an extended 

memory system concerned with episodic and episodic-like memory. Under such an 

account the more restricted fornix impairments found in our studies of object-in-

context paradigms and by other authors using hippocampal lesions in such tasks 

(Mumby et al., 2002) would reflect the lesser involvement of such a system in a 

"object in context" discrimination. The pattern of postrhinal impairments would 

reflect the fact that an intact hippocampus is both necessary and sufficient for 

discrimination in the test of episodic-like memory, but that, where such a system is 
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minimally engaged, postrhinal function becomes paramount in processing of the 

information involved in the object-in-context. This explanation is not particularly 

parsimonious in its account of the data, but it is both coherent and comprehensive. In 

the absence of an account which is both equally strong and also able to adhere more 

closely to the doctrine of Occam's razor it would appear deserving of serious 

consideration. 

Some support comes from the work of Morris and colleagues (Day & Morris, 2002), 

who have developed a model of "what and where" which contains a motivational 

element and involves a "what, where" discrimination from a multiplicity of possible 

"wheres". Their work would also suggest that an intact hippocampus is not essential 

for the simple "where" element of the discrimination, but only for the combination of 

"place" with "object". It could be argued that this is a combination of two elements 

rather that the "what, where and context" used here, but it seems reasonable to 

suppose that a task in which the number of possible "where's" was very much greater 

(49) than the two used here would be more likely to engage an episodic memory 

system even without the additional demands of a contextual element. 

The account proposed here is not necessarily that it is the presence of "what, where 

and when" alone, and only these three elements which would determine whether a 

hippocampally based system for episodic-like memory were engaged. The argument 

is rather that when a critical "situation remembering requirement" is reached -

whether through the paradigm proposed here, that used by Clayton et al. (2001) or 

that being developed by Morris and colleagues, then the episodic-like memory system 

wil l become primarily engaged and an intact hippocampus correspondingly necessary 

for successful task completion. At levels of information where the spatial component 

is relatively low (e.g. context but not place information) processing may rely 

primarily on structures such as the postrhinal cortex, although a lesser role is played 

by the hippocampal formation, as evidenced by the milder fornix impairment found 

here and the hippocampal impairment reported by Mumby et al. (2002). 

However, the argument is not that there is a difficulty criterion for hippocampal 

involvement. In fact it is arguable that, for intact animals, as for humans, episodic 

memory is more natural and effortless than other forms of memory. This view would 
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seem to be supported by the results of experiment 5.1, in which not only the control 

animals but also the perirhinal and postrhinal animals performed well above chance. 

This contrasts with the impairment (albeit sometimes mild) showed by all lesion 

groups on the object-in-context discrimination (experiment 4.1). The very fact that 

there is such a clear fornix impairment in the absence of any other lesion effects, and 

without an impairment of object-in-place at these delays, is perhaps supportive of the 

view that the "object, place, context" paradigm is in fact a model for episodic-like 

memory. In that it does not require either motivation, or, apparently, effort, the object, 

place, context task resembles not merely episodic-like memory but episodic memory 

itself. A further discussion of the relationship between object memory, memory for 

object-in-context and episodic-like memory can be found in chapter 7. Chapter 6, 

which follows, is somewhat tangential to the thesis so far in that it attempts to 

examine the role of calcium channels and the cholinergic system in object 

recognition. 
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Chapter 6: The role of calcium and the cholinergic system in object recognition: 

a neurochemical approach to the perirhinal cortex. 

The majority of work in this chapter has appeared as: 

Norman G, Brooks SP, Hennebry GM, Eacott M J & Little H J (2002). Nimodipine prevents 
scopolamine-induced impairments in object recognition. Journal of Psychopharmacology 16: 
153-161. 

6.1: Introduction 

The experiments in this chapter aimed to examine the role of the cholinergic system in 

object recognition. It is clear from the discussion in preceding chapters that the 

perirhinal cortex is involved in object recognition, and that perirhinal lesions prevent 

discrimination between novel and familiar objects at delays of 15 minutes or longer 

(Ennaceur et al., 1996). The work of Ennaceur and colleagues (Ennaceur, Cavoy & 

Delacour 1989; Ennaceur & Meliani, 1992) has shown that the task can be disrupted 

by the systemic administration of nootropic or anticholinergic agents and, in 

particular, by scopolamine. The experiments reported in this chapter have therefore 

further investigated the mechanism by which the cholinergic system supports object 

recognition. 

Support for the circumstantial evidence which had suggested the cholinergic 

innervation of the perirhinal cortex as a possible candidate for supporting object 

recognition was provided by studies which used intracerebral injections. Stimulus 

recognition in monkeys is severely impaired by local administration of the muscarinic 

acetylcholine (ACh) receptor blocker, scopolamine, when it is microinjected into the 

perirhinal cortex but not when it is injected into area TE or into the dentate gyrus 

(Tang, Mishkin & Aigner, 1997). This suggests that stimulus memory formation is 

critically dependent on cholinergic-muscarinic activation of the perirhinal area. This 

finding has been replicated in rats (Abe & Iwasaki, 2001). Brown, Warburton & 

Duguid (2000) found that scopolamine administered before initial exposure disrupted 

both spontaneous object recognition and differential fos expression in the perirhinal 

cortex of rats, following exposure to novel and familiar objects. Further support for 

the critical role of the cholinergic system in aspects of memory is provided by the 

finding that loss of cholinergic innervation of the hippocampus or neocortex (as a 

result of immunotoxic lesions of the basal nucleus of Meynert and/or the vertical limb 

of the diagonal band of Broca) causes damage which is functionally equivalent to 
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structural lesions of the areas which are targets of the cholinergic innervation (Ridley, 

Pugh, Maclean & Baker, 1999). 

Dihydropyridine calcium channel antagonists have been found to prevent or reverse 

memory deficits that result from a variety of causes (Izquierdo, 1990; Schuurman, 

1993). Nimodipine has been shown to ameliorate age-related memory impairments as 

measured by a trace conditioning response and by habituation to an open field (Deyo, 

Straube & Disterhoft, 1989). Performance following hippocampal lesions was 

improved by nimodipine on a variety of tasks including the radial arm maze (Nelson, 

Bawa & Finger., 1992), the holeboard test (Weichman, McMurray, Knuttinen & 

Mudd et al, 1994) and a delayed response latency task (Finger, Green, Tarnoff & 

Mortman et al., 1990). The amnesic effects of electric shock are alleviated by 

nimodipine as measured by a passive avoidance paradigm (Hoffrneister, Benz, Heise 

& Krause et al., 1982). Nimodipine also reduced the impairment in habituation to a 

novel environment that resulted from chronic administration of corticosterone (Dachir 

Robinzon, Grauer & Levy, 1995). Nimodipine has been found to reverse the 

impairment of object recognition produced by acute systemic injection of ethanol 

(Brooks, Hennebry, McAlpin & Norman et al., 2002). There is some evidence that 

nimodipine may also alleviate the symptoms of Alzheimer's disease in humans 

(Tollefson, 1990) and it is licensed as a treatment for Alzheimer's in a number of 

countries. 

Despite the high density of dihydropyridine binding sites in temporal cortex and their 

alleviation of memory deficits; they have little effect on behaviour or neural activity 

in the normal brain, although there are reports that chronic administration may 

improve memory performance in normal animals. McMonaglestrucko and Fanelli 

(1993) studying spatial learning in the Morris maze; Deyo et al. (1989) studying 

associative learning; Vetulani, Bettaglia & Sansone (1997) studying acquisition of an 

avoidance response and Kane and Robinson (1999) using the Barnes circular platform 

task, all showed beneficial effects of nimodipine on learning in normal animals. 

There is evidence that neuronal calcium channels may be critically involved in 

learning which is primarily centred on the perirhinal cortex. A possible neuronal 

basis for learning about objects, and object recognition in particular, is long-term 
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depression (LTD). By reducing future synaptic activation this inhibitory mechanism 

may form the basis for differential response of perirhinal neurons to novel and 

familiar stimuli (Zhu & Brown, 1995; Zhu et al., 1995). Long or short lasting LTD in 

the perirhinal cortex can be induced by electrical stimuli in the adjacent layers of the 

entorhinal or temporal cortex. The duration of synaptic depressions appears to be 

dependent on the type of metabotropic glutamate (MGlu) receptor involved, with 

group I or group I I I MGlu receptor agonists inducing long lasting depression, while 

group I I MGlu receptors induce more transitory synaptic depression (McCaffery, Cho, 

Bortolotto & Aggleton et al., 1999). One form of LTD in the perirhinal cortex is 

dependent on the interaction of two groups of MGlu receptors, with group I I MGlu 

receptors facilitating increases in intracellular calcium levels that are mediated by 

group I I I MGlu receptors (Cho, Kemp, Noel & Aggleton et al., 2000). However, i f 

NMDA receptor function is enhanced by depolarisation this removes the requirement 

for the activation of group I I MGlu receptors, and thus facilitates LTD. There is 

strong evidence (Cho, Aggleton, Brown & Bashir, 2001) that the magnitude of LTD 

in the perirhinal cortex is dependent on the magnitude of the increase in intracellular 

calcium concentration. 

Abe & Iwasaki (2001) also found that retention of object discrimination is impaired 

when the NMDA antagonist D,L-2-amino-5-phosphopentanoic acid (AP5) is 

microinjected into the perirhinal cortex, which is suggestive of LTP within the 

structure being involved in object memory. Certainly long-term depression induced 

by low frequency stimulation following LTP in the perirhinal cortex is NMDA 

receptor-dependent and metabotropic glutamate receptor-independent (Ziakopoulos, 

Tillett, Brown & Bashir 1999). Conversely, the activation of muscarinic ACh 

receptors in the perirhinal cortex has been found to induce long-term depression 

(LTD) of synaptic transmission that is dependent on activation of muscarinic M l 

receptors (Massey, Bhabra, Cho & Brown et al. 2001). This form of LTD requires 

neither NMDA receptor activation nor synaptic stimulation, nor can it be blocked by 

protein kinase C or protein phosphotase inhibitors. However, its magnitude is 

reduced by the administration of agents which either deplete intracellular calcium 

stores (cyclopiazonic acid) or inhibit protein synthesis (anisomycin), again suggesting 

a critical role for calcium channel activation in the support of such learning. In the 

light of these findings, this study attempted to examine the effects of administering a 
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dihydropyridine calcium channel antagonist in conjunction with the muscarinic 

antagonist scopolamine. 

Dihydopyridine calcium channel antagonists are selective for the "L"-subtype of high 

voltage-activated calcium channel (Docherty and Brown, 1984; Nowycky, Fox & 

Tsien, 1985). Peripherally administered dihydropyridines easily enter the brain and 

have high affinity binding sites in the CNS. In human brain the highest density of 

[H3]nimodipine binding sites is in temporal cortex. The terminal half-life of 

nimpdipine is 8-9 hours, but the decline in plasma concentration is more rapid at 1-2 

hours. 

A task that relies on differential exploration of objects to provide a measure of 

amnesia, such as the spontaneous object recognition test used here, is potentially 

vulnerable to being confounded by other effects of an agent, such as alterations in 

locomotor activity. As scopolamine is known to decrease locomotor activity in rats in 

a dose-dependent manner (Sipos, Burchnell & Galbicka, 1999), the lowest dose of 

scopolamine (0.125 mg/kg) that has been reported to be effective on any mnemonic 

task (Sessions, Pilcher & Elsmore, 1998) was used. Sessions et al. (1988) reported no 

alterations in locomotor activity at this dose of scopolamine in rats. Scopolamine has 

a half-life of approximately 2.5 hours. Neither of the two doses of nimodipine used in 

this study have been found to cause changes in locomotor activity in mice when 

administered alone (Landauer, Castro, Benson & Hogan et al., 2001), although 

nimodipine at 10 mg/kg can cause decrements in activity when administered in 

conjunction with other agents such as phosphorothioates (Landauer et al., 2001). In 

order to assess any such effect when administered with scopolamine 0.125 mg/kg, 

locomotor activity tests were carried out at all the doses and post-injection delays 

used in the object recognition task. In assessing the object-recognition data itself, two 

indices of discrimination were used in order to minimise potential effects of any 

alterations in locomotor activity by providing both a direct and a proportional measure 

of the difference in exploration times of the novel and familiar object. 

Scopolamine is an antagonist at muscarinic receptors and is known to disrupt memory 

on a variety of tasks including the object recognition task and the radial maze 

(Ennaceur and Meliani, 1992). Ennaceur and Meliani found that memory 
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impairments occurred only at the relatively high dose of scopolamine 0.50 mg/kg, 

compared with the 0.125 mg/kg used in this study, and that this was particularly the 

case on the object-recognition task. They concluded from this that the object 

recognition task was less sensitive to cholinergic function than radial-maze 

performance. Interestingly, Ennaceur and Meliani found that the cholinesterase 

inhibitor physostigmine also disrupted object-recognition performance at short delays 

at a dose of 0.20 mg/kg. This effect was the reverse of physostigmine's effect on 

other memory tests (Ennaceur, 1998). This may be indicative of extreme sensitivity 

of the task to cholinergic function, with imbalances in either direction producing 

deficits. The integrity of cholinergic transmission has been clearly implicated in the 

object recognition task by studies using nootropic drugs such as aniracetam. These 

restored cholinergic function simultaneously with object recognition, in rats which 

were hypocholinergic due to ageing, administration of scopolamine, or lesions of the 

nucleus basalis (Bartolini, Casamenti & Pepeu, 1996). 

This study aimed to examine the possible effect of calcium channel blockade in 

reversing the impact on memory processes of muscarinic receptor antagonism induced 

by scopolamine. The general nature of nimodipine's efficacy is indicative of an 

action which impacts on several neural areas, including cerebral cortex as well as 

hippocampus. Endogenous acetylcholine has a role in regulating L-type calcium 

flow, causing reductions in the amplitude of L-type calcium current (Pemberton & 

Jones, 1997). This, along with other studies demonstrating the ameliorative effects of 

nimodipine on memory deficits, suggests that deficits induced by a cholinergic 

antagonist may be ameliorated by a dihydropyridine. It has been suggested (Bartolini 

et al., 1996) that decreases in cholinergic transmission in aged rats, which occur as 

part of extensive changes in brain neurotransmitter function (Pepeu & Giovannelli, 

1994), may prevent acquisition rather than retention of object memories. In view of 

this, this study investigated the impact of administration of scopolamine both before 

and after the exploration period in which memories are formed. Two doses of 

nimodipine, 1 mg/kg and 10 mg/kg were used in order to investigate possible dose-

dependency of its action 
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6.2: Methods and Materials 

Subjects 

Subjects were 6-8 month old male Lister hooded rats bred in house. Animals were 

housed under reversed phase lighting conditions (lights on 19.00 - 07.00; lights of f 

07.00 - 19.00) and all testing was carried out between 07.00 and 19.00. Animals had 

ad libitum access to both food and water throughout the experiment. 

Drugs 

Al l injections were made by the intraperitoneal route with a volume of 1 ml/kg. 

Scopolamine was dissolved in distilled water and nimodipine was suspended in 

Tween 80 (0.5% in distilled water) and sonicated. The suspension was protected from 

light throughout the studies. 

In experiment 6.1 (retrieval) the drug treatment groups were:- scopolamine 0.125 

mg/kg + tween vehicle; water plus nimodipine 10 mg/kg; scopolamine 0.125 mg/kg + 

nimodipine 10 mg/kg; water plus tween vehicle. In experiment 6.2 the groups were 

the same but with 1 mg/kg nimodipine substituted for the 10 mg/kg dose. A l l drugs 

were administered immediately after initial exploration was completed. The same 

doses were used for experiments 6.3 and 6.4 (acquisition) respectively. In these 

experiments all drugs were administered 15 minutes prior to initial exploration. In 

experiments 6.5 and 6.6 (scopolamine at long delay) two drug treatment groups were 

used. These were scopolamine 0.125 mg/kg and vehicle. In experiment 6.7 

(locomotor activity) there were 6 drug treatment groups which were all those used in 

experiments 1 - 4 . In all cases control animals received equal volumes of the 

corresponding vehicle. N values were 8 - 1 2 per treatment group for the object 

recognition experiments and 5 - 6 per treatment group for the locomotor activity 

experiment 

Apparatus 

Object recognition 

As in the experiments in chapters 3, 4 and 5, the tests were carried out in an open field 

made of wood of base dimensions l m 2 and height 48cm. The base was painted matt 

black and the walls matt white. The objects were placed into the open field 
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equidistant from the sides of the maze. Objects used included bottles, jars, tubs and 

bowls. 

Testing 

Habituation 

Prior to the test day animals received three habituation sessions. These took place in 

cage-mate pairs and lasted for 10 minutes. For each habituation session a different 

novel object was placed in the centre of the maze. 

Experiment 6.1: Acquisition paradigm; nimodipine at 10 mg/kg 

Animals were placed individually in the open field which contained 2 identical copies 

of a novel object, placed equidistant from the sides. They were allowed to explore 

freely until they had spent a total of 30 seconds exploring the objects. I f they failed to 

explore for 30 seconds they were removed after 5 minutes and the actual time spent 

exploring was noted. Immediately after they were removed from the open field the 

rats were injected with one of four drug combinations. 

Following injection they were returned to their home cage. 15 minutes after injection 

they were returned to the open field which now contained a new copy of the object 

they had previously explored and a novel object, placed equidistant from the sides of 

the maze. They were allowed to explore for 3 minutes and the time spent exploring 

each object was recorded for each of three 1 minute periods. There were 3 subsequent 

tests. These took place at 1 hour 15 minutes, 5 hours 15 minutes and 29 hours 15 

minutes post-exploration. For each of these a new copy of the familiar object and a 

different novel object were used. These absolute delays represented relative delays 

since the last exploration of the familiar object of 15 minutes, 1 hour, 4 hours and 24 

hours. 

Intrinsic interest of objects was controlled for by varying the designated familiar and 

novel objects at each delay point between rats. Effects of place were controlled for by 

alternating the position of the novel and the familiar objects across both animals and 

delay points. 
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Experiment 6.2: Acquisition paradigm; nimodipine at lmg/kg 

For experiment 6.2 the methodology was identical with that employed for experiment 

6.1, except that a dose of nimodipine 1 mg/kg was substituted for that of nimodipine 

10 mg/kg. 

Experiment 6.3: Retrieval paradigm; nimodipine at 10 mg/kg 

For experiment 6.3 the methodology was identical with that employed for experiment 

6.1, except that all injections were given 15 minutes before the initial exploration 

phase. 

Experiment 6.4: Retrieval paradigm; nimodipine at 1 mg/kg 

For experiment 6.4 the methodology was identical with that employed for experiment 

6.3, except that a dose of nimodipine 1 mg/kg was substituted for that of nimodipine 

10 mg/kg. 

Experiment 6.5: Acquisition paradigm; testing at 29 hours 15 minutes only 

For experiment 6.5 the methodology for the initial exploration phase was identical to 

that for experiment 6.1. Following initial exploration, and immediately on removal 

from the maze animals, were injected with one of two drugs. Following injection they 

were returned to their home cage. After a delay of 29 hours 15 minutes they were 

returned to the maze which now contained a new copy of the object they had 

previously explored and a novel object. They were allowed to explore for three 

minutes and the time spent exploring each object was recorded as described for 

experiment 6.1. 

Experiment 6.6: Retrieval paradigm; testing at 29 hours 15 minutes only 

For experiment 6.6 the methodology for the initial exploration phase was identical to 

that for experiment 6.3. Fifteen minutes before exploration animals were injected 

with one of two drugs. They were then returned to their home cage for fifteen 

minutes before being place in the maze for the initial exploration. Following initial 

exploration the animals were returned to their home cage. After a delay of 29 hours 

15 minutes they were returned to the maze for the test phase as in experiment 6.5. 
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Data analysis 

Following Ennaceur & Delacour (1988), the difference in exploration in seconds at a 

given time-point was calculated as the difference between the time spent exploring the 

novel object and the time spent exploring the familiar object (Dl) . Secondly, the 

difference between time spent exploring novel and familiar objects was calculated as 

a proportion of the total time spent exploring both objects (D2). Repeated measures 

ANOVA's were carried out on each of these measures, followed by post-hoc Tukey's 

test. One-sample T-tests were also carried out on each group at each delay to 

determine whether performance was better than chance. 

Experiment 6.7 (Locomotor activity) 

This experiment was designed to detect any change in locomotor activity associated 

with the drugs administered for the object recognition tests, which may have had an 

impact on exploration. Apparatus was Perspex boxes with removable lids, of base 

dimensions 42 x 46cm2 and height 25cm equipped with infra-red beams which 

detected movement, and when broken consecutively, detected ambulatory activity 

which was the measure used to assess activity. Fifteen minutes prior to test animals 

were injected with one of 6 drug combinations. These were: 

Nimodipine 10 mg/kg + scopolamine 0.125 mg/kg 

Nimodipine 1 mg/kg + scopolamine 0.125 mg/kg 

Nimodipine 10 mg/kg + vehicle 

Nimodipine 1 mg/kg + vehicle 

Scopolamine 0.125 mg/kg + tween 

Vehicle + tween 

Fifteen minutes after the injections animals were placed in one of the boxes for a 

period of 10 minutes during which their activity was recorded. Subsequent tests took 

place at 1 hour 15 minutes, 5 hours 15 minutes and 29 hours 15 minutes post-

injection. 

Data analysis 

A repeated measures analysis followed by post-hoc Tukey's test and simple main 

effects was carried out on the ambulatory data. 
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6.3: Results 

Experiment 6.1: Acquisition Nimodipine 10 mg/kg 

There were significant differences between the drug groups on both the D2 (F = 

9.134, df = 3,36, p < 0.001) and the D l (F = 4.470, df = 3,36, p < 0.01) measures of 

performance. As the results on the two measures differ somewhat, they are presented 

separately. 

D2 

Post hoc analysis of the main effect of drug (F = 9.134, df = 3,36, p < 0.001) revealed 

that the scopolamine + tween group was impaired compared to all the other groups 

(compared with vehicle + tween group: p < 0.001; compared with the nimodipine 10 

mg/kg + scopolamine group: p < 0.01; compared with the nimodipine 10 mg/kg + 

vehicle group: p = 0.01). There was also a main effect of delay (F = 4.006, df -

3,108, p < 0.05). There was no interaction between drug and delay (F = 1.67, df = 

9,108, p > 0.05). However, as can be seen from figure 6.1a, the scopolamine + tween 

group did not appear to be impaired compared to the other groups at the 29 hour 15 

minute delay. It seems probable that the failure to find an interaction was due to the 

variance in the control groups. 

This interpretation was confirmed by the analysis of absolute performance of the 

groups. One sample T-tests showed that the scopolamine + tween group performed at 

chance at the 15 minute, the one hour 15 minute and the five hours 15 minutes delays, 

but was above chance at the 29 hour 15 minute delay. The nimodipine 10 mg/kg + 

vehicle also performed at chance at the five hours 15 minutes delay, although this 

would appear to be an anomaly in an otherwise strong performance (see figure 6.1a). 

Al l other groups performed above chance at all delays (see table 6.1). 

D l 

Post hoc analysis of the main effect of drug (F = 4.470, df = 3,36, p < 0.01) revealed 

that the scopolamine + tween group was impaired compared to the vehicle + tween 

group (p < 0.01) and compared with the nimodipine 10 mg/kg + scopolamine group (p 

< 0.05). There was also a main effect of delay (F = 15.318, df = 3,108 p < 0.001) 

although there was no interaction between drug and delay (F = 1.15, df = 9,108, p > 

0.05). As with the D2 measure, the scopolamine + tween group did not appear to be 
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impaired compared with the other groups at the 29 hour 15 minute delay (see figure 

6.1a). It seems probable that the failure to find an interaction was due to the variance 

in the control groups. 

This interpretation was supported by analysis of the absolute performance of the 

groups, which showed that the scopolamine group performed at chance at all delays 

except the longest 29 hour 15 minute delay, whilst all other groups were above chance 

at all delays (see table 6.1). 
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Figure 6.1: Discrimination when drugs were administered 15 minutes before 
initial exploration. Nimodipine at 10 mg/kg. (a) D2 measure, (b) D l measure. 
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15 minutes 
Measure D2 D l 
Group T P Differ T P Differ 
Vehicle + tween 8.122 <0.001 Yes 5.190 0.001 Yes 

Scopolamine 0.125mg/kg + -0.489 0.637 No -0.567 0.584 No 
tween 
Nimodipine 1 Omg/kg + 3.261 0.010 Yes 3.303 0.009 Yes 
scopolamine 0.125mg/kg 
Nimodipine 1 Omg/kg + 3.126 0.012 Yes 3.219 0.011 Yes 
vehicle 

1 hour 15 minutes 
Measure D2 D l 
Group T P Differ T P Differ 
Vehicle + tween 15.027 O.001 Yes 6.713 O.001 Yes 

Scopolamine 0.125mg/kg + -0.109 0.916 No 0.948 0.368 No 
tween 
Nimodipine 1 Omg/kg + 4.512 0.001 Yes 4.128 0.003 Yes 
scopolamine 0.125mg/kg 
Nimodipine 1 Omg/kg + 9.404 O.001 Yes 3.976 0.003 Yes 
vehicle 

5 hours 15 minutes 
Measure D2 D l 
Group T P Differ T P Differ 

Vehicle + tween 5.892 <0.001 Yes 5.560 O.001 Yes 

Scopolamine 0.125mg/kg + 1.150 0.280 No 2.066 0.069 No 
tween 
Nimodipine 1 Omg/kg + 5.974 <0.001 Yes 3.742 0.005 Yes 
scopolamine 0.125mg/kg 
Nimodipine 1 Omg/kg + 1.372 0.203 No 3.612 0.006 Yes 
vehicle 

29 hours 15 minutes 
Measure D2 D l 
Group T P Differ T P Differ 

Vehicle + tween 9.985 O.001 Yes 4.102 0.003 Yes 

Scopolamine 0.125mg/kg + 9.793 <0.001 Yes 5.731 <0.001 Yes 
tween 
Nimodipine 1 Omg/kg + 10.072 <0.001 Yes 5.077 0.001 Yes 
scopolamine 0.125mg/kg 
Nimodipine 1 Omg/kg + 18.471 <0.001 Yes 5.869 O.001 Yes 
vehicle 
Table 6.1: One-sample T-tests for each d rug group at each delay with 

nimodipine at 10 mg/kg in an acquisition paradigm. "Differ" indicates whether 

performance differed from chance. 
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Total Exploration 

The drug groups did not differ (F = 1.663, df = 3,36, p > 0.05). There was a main 

effect of delay (F = 12.658, df = 3,108, p < 0.001) but no interaction between delay 

and lesion (F < 1, df = 9,108, p > 0.05) as all groups explored the objects more with 

increasing delay. 

Summary 

The results of this experiment demonstrate that whilst the nimodipine 10 mg/kg + 

scopolamine group was unimpaired at all delays, the scopolamine + tween group was 

impaired relative to the control groups. At the first three delays the scopolamine + 

tween group did not differ from chance. 

Experiment 6.2: Acquisition Nimodipine 1 mg/kg 

The drug groups differed on both the D2 (F = 10.69, df = 3,42, p < 0.001) and the D l 

(F= 9.52, df = 3,42, p < 0.001) measures. As the results on the two measures differ 

somewhat, they are presented separately. 

D2 

Post hoc analysis of the main effect of drug (F = 10.69, df = 3,42, p < 0.001) showed 

that the scopolamine + tween group was impaired compared with the vehicle + tween 

and the nimodipine 1 mg/kg + scopolamine groups (p < 0.001). The nimodipine 1 

mg/kg + vehicle group was also impaired compared with the vehicle + tween and the 

nimodipine 1 mg/kg + scopolamine groups (p < 0.05). Although there was no main 

effect of delay (F = 1.25, df = 3,126, p > 0.05), and no interaction between drug and 

delay (F = 1.05, df = 9,126, p > 0.05), it can be seen from figure 6.2a that the 

scopolamine deficit was not uniform across all delays with no apparent impairment at 

the longest delay. 

This interpretation was confirmed by analysis of the absolute rather than the relative 

performance of the groups. One sample T-tests showed that the scopolamine + tween 

group performed at chance at the 15 minutes, the 1 hour 15 minutes and the 5 hours 

15 minutes delays (see table 6.2). The nimodipine 1 mg/kg + vehicle group also 

performed at chance at the 15 minutes, the 1 hour 15 minutes, and the 29 hour 15 

minutes delays. This poor performance by the nimodipine 1 mg/kg + vehicle group as 

well as the chance performance of the scopolamine + tween group was surprising, 
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particularly in view of the strong performance of the nimodipine 1 mg/kg + 

scopolamine group. The fact that the nimodipine 1 mg/kg + scopolamine group 

performed above chance at all delays would seem to indicate that nimodipine at 1 

mg/kg prevented a scopolamine-induced performance decrement. 

D l 

Post hoc analysis of the main effect of drug (F= 9.52, df = 3,42, p < 0.001) showed 

that the scopolamine 0.125 mg/kg + tween group was impaired compared with the 

vehicle + tween (p < 0.001), with the nimodipine 1 mg/kg + scopolamine 0.125 mg/kg 

group (p < 0.001) and with the nimodipine 1 mg/kg + vehicle group (p < 0.01). There 

was no main effect of delay (F = 1.713, df = 2.49,129 p > 0.05) and no interaction 

between drug and delay (F < 1, df = 7.49,129, p > 0.05). 

Analysis of the absolute performance of the groups showed that, as can be seen from 

figure 6.2b, the scopolamine + tween group performed at chance at delays of 15 

minutes, 1 hour 15 minutes and 5 hours 15 minutes delays, while the nimodipine 1 

mg/kg + vehicle group performed at chance at the 15 minute delay. In contrast to the 

scopolamine + tween group, the nimodipine 1 mg/kg + scopolamine group performed 

above chance at all delays, indicating that nimodipine prevented the scopolamine-

induced performance decrement whenever it occurred (see table 6.2). 

Exploration 

There was no effect of drug group (F < 1, df = 3,43, p > 0.05). There was also no 

effect of delay (F = 2.217, df = 3,129, p > 0.05) and only a trend towards an 

interaction between drug group and delay (F = 1.924, df = 9,129, p = 0.54) which 

results from the tendency for all groups except the vehicle + tween group to explore 

the objects more with increasing delay. 

Summary 

The results of this experiment demonstrate that whilst the nimodipine 1 mg/kg + 

scopolamine group was unimpaired at all delays, the scopolamine + tween group was 

impaired at the first three delays in absolute terms. Although it was not possible to 

isolate the delays at which the scopolamine + tween group was impaired relative to 

the control groups, figures 6.2a and 6.2b indicate that this may be limited to the 

shortest delay. 
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Figure 6.2: Discrimination when drugs were administered 15 minutes before 
initial exploration. Nimodipine at 1 mg/kg. (a) D2 measure (b) D l measure. 
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15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 5.974 <0.001 Yes 4.801 0.001 Yes 

Scopolamine 0.125mg/kg + 
tween 

-0.773 0.456 No -1.047 0.318 No 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

2.500 0.030 Yes 2.863 0.015 Yes 

Nimodipine 1 mg/kg + 
vehicle 

1.257 0.235 No 1.857 0.090 No 

1 hour 15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 4.449 0.001 Yes 3.765 0.004 Yes 

Scopolamine 0.125mg/kg + 
tween 

1.445 0.176 No 0.739 0.475 No 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

3.821 0.003 Yes 3.677 0.004 Yes 

Nimodipine 1 mg/kg + 
vehicle 

1.759 0.106 No 2.502 0.029 Yes 

5 hours 15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 1.788 0.104 No 2.055 0.067 No 

Scopolamine 0.125mg/kg + 
tween 

-0.335 0.744 No 0.471 0.647 No 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

5.867 <0.001 Yes 5.935 O.001 Yes 

Nimodipine 1 mg/kg + 
vehicle 

1.978 0.074 No 2.488 0.030 Yes 

29 hours 15 minutes 
Measure D2 D l 
Group T P Differ T P Differ 
Vehicle + tween 4.008 0.002 Yes 2.745 0.021 Yes 

Scopolamine 0.125mg/kg + 
tween 

3.615 0.004 Yes 2.906 0.014 Yes 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

4.160 0.002 Yes 3.060 0.011 Yes 

Nimodipine 1 mg/kg + 
vehicle 

1.192 0.258 No 2.735 0.019 Yes 

Table 6.2: One-sample T-tests for each drug group at each delay with 

nimodipine at 1 mg/kg in an acquisition paradigm. "Differ" indicates whether 

performance differed from chance. 
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Experiment 6.3: Nimodipine 10 mg/kg retrieval 

The drug groups differed from each other on both the D2 (F = 9.757, df = 3,28, p < 

0.001) and the D l measures (F= 5.135, df = 3,28, p < 0.01). The results differ 

somewhat between the two measures so they are presented separately. 

D2 

Post hoc analysis of the main effect of lesion (F = 9.757, df = 3,28, p < 0.001) 

revealed that the scopolamine + tween group was impaired compared with the vehicle 

+ tween group (p < 0.01) and that this group was also impaired compared with the 

nimodipine 10 mg/kg + vehicle (p = 0.001) and the nimodipine 10 mg/kg + 

scopolamine groups (p < 0.001). There were no other differences between the groups. 

There was only a trend towards an effect of delay (F = 2.871, df = 2.31,84, p = 0.056), 

and there was no interaction between delay and drug group (F = 1.859, df = 6.94,84, p 

> 0.05). As can be seen from figure 6.3a, the absence of an impairment at the 1 hour 

15 minute delay would seem to be due to the poorer performance of the other groups, 

rather than to an improvement in the performance of the scopolamine + tween group. 

This view is supported by the analysis of the absolute performance of the groups (see 

table 6.3). One sample T-tests showed that the scopolamine + tween group did not 

differ from chance at delays of 15 minutes, 1 hour 15 minutes and 5 hours 15 minutes. 

They also showed that one of the control groups, the nimodipine 10 mg/kg + vehicle 

groups did not differ from chance at the 5 hour 15 minutes delay. 

D l 

Post hoc analysis of the main effect of lesion (F= 5.14, df - 3,28, p < 0.01) revealed 

that the scopolamine + tween group was impaired compared with the vehicle + tween 

group (p < 0.05) and that this group was also impaired compared with the nimodipine 

10 mg/kg + vehicle and the nimodipine 10 mg/kg + scopolamine groups (in both 

cases p < 0.05). There were no other differences between the groups. There was no 

effect of delay (F = 1.812, df = 2.32,84, p > 0.05) and no interaction between drug and 

delay (F = 1.59, df = 6.95,84, p > 0.05). As can be seen from figure 6.3b, the 

scopolamine + tween group did not appear to be impaired at the longest delay, 

although there was an appearance of impairment at the shorter delays. 

This view is supported by the analysis of the absolute performance of the groups (see 

table 6.3). One sample T-tests showed that the scopolamine + tween group did not 
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differ from chance at delays of 15 minutes, 1 hour 15 minutes and 5 hours 15 minutes, 

whilst all other groups differed from chance at all delays. 
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Figure 6.3: Discrimination when drugs were administered immediately after 
initial exploration. Nimodipine at 10 mg/kg. (a) D2 measure, (b) D l measure. 
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Figure 6.4: Discrimination when drugs were administered immediately after 
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Figure 6.4: Discrimination when drugs were administered immediately after 
initial exploration. Nimodipine at 1 mg/kg. (a) D2 measure, (b) D l measure. 
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15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 4.271 0.002 Yes 4.260 0.002 Yes 

Scopolamine 0.125mg/kg + 
tween 

0.771 0.457 No 0.255 0.804 No 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

5.767 <0.001 Yes 5.148 <0.001 Yes 

Nimodipine 1 mg/kg + 
vehicle 

2.387 0.036 Yes 3.558 0.004 Yes 

1 hour 15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 6.508 O.001 Yes 3.594 0.005 Yes 

Scopolamine 0.125mg/kg + 
tween 

1.035 0.323 No 1.052 0.315 No 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

2.760 0.019 Yes 3.258 0.008 Yes 

Nimodipine 1 mg/kg + 
vehicle 

6.158 <0.001 Yes 4.293 0.001 Yes 

5 hours 15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 3.971 0.003 Yes 3.359 0.007 Yes 

Scopolamine 0.125mg/kg + 
tween 

2.219 0.048 Yes 2.061 0.064 No 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

6.252 <0.001 Yes 3.626 0.004 Yes 

Nimodipine 1 mg/kg + 
vehicle 

2.199 0.050 No 3.265 0.008 Yes 

29 hours 15 minutes 
Measure D2 Dl 
Group T P Differ T P Differ 
Vehicle + tween 7.391 O.001 Yes 4.017 0.002 Yes 

Scopolamine 0.125mg/kg + 
tween 

12.486 <0.001 Yes 5.944 <0.001 Yes 

Nimodipine 1 mg/kg + 
scopolamine 0.125mg/kg 

4.459 <0.001 Yes 4.377 0.001 Yes 

Nimodipine 1 mg/kg + 
vehicle 

6.728 O.001 Yes 3.919 0.002 Yes 

Table 6.4: One-sample T-i tests for each d rug group at each delay with 

nimodipine at 1 mg/kg in a retrieval paradigm. "Differ" indicates whether 

performance differed from chance. 
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Experiment 6.5: Acquisition: testing only at 29 hours 15 minutes delay. 

This experiment was designed to establish whether the recovery of the scopolamine + 

tween group's performance seen at the longest delay in experiments 1 and 2 resulted 

from the disappearance of the scopolamine's effects or from learning which took 

place at the 5 hour 15 minutes test when those effects were diminishing. As can be 

seen in figures 6.5a and 6.5b, the groups differed due to an impairment of the 

scopolamine group compared to the vehicle group on the D2 measure (T = 1.97, df = 

30, p < 0.05) and there was a trend for the groups to differ on the D l measure (T = 

2.66, df = 30, p = 0.057). The reported statistics are for a one-tailed T-test because 

there was a well-founded prediction, which was that the scopolamine group would be 

impaired compared with the vehicle group. As table 6.5 shows, this prediction was 

further confirmed by analysis of absolute performance which showed that the 

scopolamine group did not differ from chance on either measure, whilst the vehicle 

group was performing above chance. 

D2 D l 

Group T P Differ T P Differ 

Vehicle 2.236 0.041 Yes 2.536 0.023 Yes 

Scopolamine 0.125mg/kg -0.738 0.472 No 0.053 0.959 No 

Table 6.5: One-sample T-tests for both groups on a 29 hour test in an acquisition 

paradigm. Dl and D2 measures. "Differ" indicates difference from chance. 

Exploration 

The groups did not differ in their exploration of the objects (T = 

0.05). 

0.97, df = 30, p > 
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Figure 6.5: Discrimination when drugs were administered 15 minutes before 
initial exploration. Testing only at delay of 29 hours 15 minutes, (a) D2 measure, 
(b) D l measure. 
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Experiment 6.6: Retrieval: testing only at 29 hours 15 minutes delay. 

This experiment was designed to establish whether the recovery of the scopolamine + 

tween group's performance seen at the longest delay in experiments 3 and 4 resulted 

from the disappearance of the scopolamine's effects or from learning which took 

place at the 5 hour 15 minutes test when those effects were diminishing. As can be 

seen from figures 6a and 6b, there were no differences between the scopolamine and 

the vehicle groups, on either the D l (T= 0.76, df = 14, p > 0.05) and D2 (T = 1.21, df 

= 9.82, p > 0.05) measures. One sample T-tests also showed that both groups were 

above chance on both measures (see table 6.6). This would indicate that the recovery 

seen in experiments 3 and 4 resulted from the disappearance of the scopolamine's 

effects. 

D2 D l 

Group T P Differ T P Differ 

Vehicle 3.089 0.018 Yes 2.525 0.040 Yes 

Scopolamine 0.125mg/kg 2.742 0.029 Yes 3.699 0.008 Yes 

Table 6.6: One-sample T-tests for )oth groups on a 29 hour 1 test in a retrieval 

paradigm. D l and D2 measures. "Differ" indicates difference from chance. 

Exploration 

There was no difference between the groups in their exploration of the objects (T= 

0.40, df = 14, p > 0.05). 

Summary of experiments 6.5 and 6.6 

When testing only took place at a delay of 29 hours 15 minutes the scopolamine 

group was impaired compared to the vehicle group in the acquisition paradigm 

(experiment 6.5) and performed at chance. However, in the retrieval paradigm 

(experiment 6.6) the groups did not differ and both performed above chance. 
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Figure 6.6: Discrimination when drugs were administered immediately after 
initial exploration. Testing only at delay of 29 hours 15 minutes, (a) D2 measure, 
(b) D l measure. 
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Experiment 6.7: Locomotor Activity 

The groups did not differ from each other overall (F < 1, df = 1,5, p > 0.05). There 

was, however, a strong effect of delay (F = 20, df = 20,210, p < 0.001) and an 

interaction between delay and drug group (F = 2.453, df = 15,5, p < 0.01). Analysis 

using simple effects revealed that the groups did not differ at any of the delays used. 

As can be seen from figure 6.7, any significance in the repeated measures ANOVA 

would appear to come from the lower activity shown by the nimodipine 10 mg/kg + 

scopolamine group at the 1 hour 15 minutes and the 5 hour 15 minutes delays. 

700 

15 minutes 

I Vehicle + tween 

I Nimodipine 1 mg/kg + vehicle 

I Nimodipine 10mg/kg + vehicle 

1 hour 15 minutes 5 hours 15 minutes 29 hours 15 
minutes 

Delay 
D Scopolamine 0.125mg/kg + tween 

• Nimodipine 1 mg/kg + scopolamine 0.125mg/kg 

• Nimodipine 10mg/kg + scopolamine 0.125mg/kg 

Figure 6.7: Number of consecutive beam breaks over a 10 minute period by 
animals in each of the 6 drug groups used in experiments 1-4. 

6.4: Discussion 

In the acquisition experiments (experiments 6.1 and 6.2), when both drugs were given 

15 minutes before the initial exploration of the familiar object, nimodipine at both 10 

mg/kg and at 1 mg/kg prevented the scopolamine-induced impairment. In the retrieval 
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experiments (experiments 6.3 and 6.4), when both drugs were given immediately after 

the initial exploration in the first exposure to the objects, nimodipine at both 10 mg/kg 

and at 1 mg/kg prevented scopolamine-induced impairment in retrieval of information 

about the familiar object. In each case, the higher dose of nimodipine had a longer and 

more consistent duration of effect. Nimodipine therefore completely prevented the 

effects of scopolamine in both in the retrieval and in the acquisition paradigms. The 

higher dose of nimodipine, 10 mg/kg, was in the same range as that reported in other 

studies (see Introduction) to have beneficial effects on learning and memory. The 1 

mg/kg nimodipine dose clearly had some effect, but less than the higher dose. 

The retrieval impairment produced by scopolamine corresponds well with that 

reported by Bartolini et al. (1996), in that it resulted from a relatively low dose 

compared with the 5 mg/kg found by Ennaceur and Meliani (1992) to be necessary. 

The duration of the impairment we report is also in keeping with that found in other 

studies which report impairments persisting at delays of 60 minutes but not of 24 

hours (Ennaceur and Meliani, 1992; Bartolini et al., 1996). 

On the basis of these experiments, it would be impossible to determine the effects of 

nimodipine on an acquisition deficit, as administration of scopolamine before initial 

exploration failed to produce a performance deficit at a delay of 29 hours 15 minutes. 

This might be taken to indicate that scopolamine administered 15 minutes before 

experience does not prevent memory formation, but merely renders the memories 

formed inaccessible for the time-course of scopolamine's action. However, another 

explanation is that acquisition of a representation of the familiar object took place at 

the 5 hour 15 minute test, when the action of scopolamine was diminishing, and it was 

as a result of this that the animals in the scopolamine 0.125 mg/kg group 

discriminated between the novel and familiar objects in the final 29 hour 15 minute 

test. This second interpretation is supported by the contrasting results of experiments 

6.5 and 6.6 which used acquisition and retrieval paradigms respectively and tested 

only at a delay of 29 hours and 15 minutes. In experiment 6.5 the scopolamine 0.125 

mg/kg group were impaired compared to the vehicle group and performed at chance, 

while in experiment 6.6 the two groups did not differ, and both discriminated between 

the novel and familiar objects. Therefore the results of this study support the view 

that scopolamine impairs both acquisition and retrieval of object memory, but must be 
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administered prior to the initial exploration of the objects in order to block 

acquisition. 

It is unlikely that the effects of scopolamine were due to alterations of motor co­

ordination or alertness, since the total exploration time in the object recognition test 

was not significantly altered. This contrasts with the Bartolini et al.'s (1996) and 

Ennaceur and Meliani's (1992) studies, which found decreases in exploration at the 

exposure and test sessions respectively. This is probably due to differences in 

intervals between injection and test and to differences in dose. Bartolini et al. used a 

comparable dose of scopolamine (0.20 mg/kg), but administered it 60 minutes prior to 

initial exposure, whilst Ennaceur & Meliani used a dose of 0.50 mg/kg and 

administered it 30 minutes prior to exposure. 

When locomotor activity was measured at the post-injection delays used in the object 

recognition task, a difference was found only at 75 minutes post-injection when 

scopolamine was administered in conjunction with nimodipine at 10 mg/kg: this 

group differed from that given nimodipine 10 mg/kg and vehicle. This difference 

represented a reduction in activity, rather than the increase that would normally result 

from administration of scopolamine. Such an effect is clearly incapable of explaining 

the effects we report not merely at 75 minutes, but also at 15 minutes and 5 hours 15 

minutes. 

When given alone nimodipine neither altered behaviour in the object recognition test 

nor had any effect on locomotor activity. This was not due to a ceiling effect, as there 

was scope for measurement of improvements in memory, as well as deficits, in the 

test. The majority of studies have examined alleviation of memory and learning 

deficits by dihydropyridine calcium channel antagonists, but as discussed previously, 

Deyo et al. (1989) and McMonangle-Strucko and Fanelli (1993), Vetulani et al., 

(1997), and Kane and Robinson (1999) all showed beneficial effects of nimodipine on 

learning in the absence of any specific memory deficits. 

It has not yet been fully established whether the anti-amnesic actions of nimodipine 

are due to neuronal actions or increased cerebral blood flow, but there is strong 

evidence indicating the former mechanism. The distribution of high affinity 
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dihydropyridine binding sites in the CNS is consistent with a neuronal rather than a 

vascular location. Parallel electrophysiological studies have demonstrated effects of 

nimodipine on hippocampal neurones that may be related to the improvements in 

learning and memory (Disterhoft, Moyer, Thompson & Kowalska, 1993). 

Administration of the dihydropyridine nifedipine directly into the hippocampus also 

had a beneficial effect on avoidance learning (Quevedo, Vianna, Daroit & Born et al., 

1998). In addition, the dose relationship of the effects of nimodipine on avoidance 

learning in rabbits did not parallel that of changes in cerebral blood flow. 

It is particularly interesting that we have found nimodipine preventing scopolamine-

induced amnesic effects on an object memory task. The bulk of research on 

dihydropyridines has concentrated either on conditioning (e.g. eye-blink conditioning 

(Disterhoft, Golden, Read & Coulter et al., 1988)) or on forms of learning which are 

dependent on the septo-hippocampal system, and especially on spatial tasks such as 

the Morris maze (Bannon, McMonaglestrucko & Fanelli, 1993). There is a 

considerable, i f sometimes contradictory, body of work, which implicates damage to 

the hippocampus, and its subcortical connections in spatial reference memory 

impairments, and nimodipine has been found to ameliorate or eradicate these 

impairments. However, as discussed extensively in previous chapters, the object 

recognition task is dependent on the integrity, not of the hippocampus, but of the 

rhinal cortices, and, specifically, of the perirhinal cortex. 

While it is undoubtedly true that deficits in object recognition in animals can be 

obtained as a result of hippocampal lesions, relatively sophisticated tasks which 

require primates to perform tasks which engage episodic-like memory, such as the 

object-in-scene test (Gaffan & Harrison, 1989) are necessary. Spontaneous object 

recognition, however, is impaired by lesions to the perirhinal cortex (Ennaceur et al., 

1996), with a more restricted contribution from the entorhinal cortex (Leonard et al., 

1995; Meunier et al., 1993). In the light of this, any potential mechanism for the 

antagonism by nimodipine of the action of scopolamine is strengthened because this 

action is shown not to be limited to the hippocampus and its subcortical connections, 

but were also capable of including the perirhinal cortex. 
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Models of Alzheimer's disease have linked intra-cerebral infusions of P-amyloid to 

reductions in acetylcholine as well as dopamine (Nag, Yee & Tang, 1999), and there 

is clear evidence that spatial memory tasks which depend on the integrity of the septo-

hippocampal system are severely disrupted by such P-amyloid infusions (Chen, 

Wright & Barnes, 1996; O'Hare, Weldon, Mantyh & Ghilardi et al., 1999; Sweeney, 

Luedtke, McDonald & Overmier, 1997). However, the object recognition task is not 

primarily dependent on hippocampal integrity (Ennaceur 1998; Aggleton and Brown, 

1999), and performance on this has also been shown to be impaired by p-amyloid 

(Nag, Tang & Yee, 2001). 

The impairments caused by P-amyloid cannot with certainty be ascribed to damage to 

cholinergic systems without further work. Nag et al's (2001) study found that such 

deficits were not reversible by administration of physostigmine, as might have been 

expected i f the impairment were due to reduced synaptic levels of acetylcholine. 

However, as Ennaceur and Meliani (1992) demonstrated, the effect of physostigmine 

alone is not straightforward. The success of the cholinesterase inhibitor tacrine in 

reversing both reduced levels of extracellular acetylcholine and memory impairments 

on the object recognition and step-through tasks (Scali, Giovannini, Prosperi & 

Bartolini et al., 1997) supports the role of an intact cholinergic system in episodic 

memory in the rat. Nootropic drugs (piracetam and pramiracetam) have been shown 

to improve performance on the object recognition test (Ennaceur et al., 1989). Further 

evidence that the integrity of the cholinergic system is crucial to memory, not least 

non-spatial memory, is provided by the fact that such improvements co-occur with 

improvements in extracellular acetylcholine levels in previously hypocholinergic aged 

rats. This is the case when animals are treated, either with nootropic drugs such as 

aniracetam (Bartolini et al., 1996), or with intracerebroventricular perfusions of neural 

growth factor (Scali, Casamenti, Pazzagli & Bartolini et al., 1994). Aniracetam also 

reversed the deficit in object recognition performance, which resulted from 

scopolamine treatment. 

Although there have been many studies demonstrating the anti-amnesic actions of 

nimodipine and other dihydropyridine calcium channel antagonists, the mechanism of 

this action is not yet fully understood. Some causes of cognitive deficits in which 
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dihydropyridines had beneficial effects, for example administration of glucocorticoids 

(Dachir, Kadar, Robinzon & Levy, 1997), and brain trauma (Westernbroek, Bausch, 

Lin & Franck et al., 1998), have been associated with increased calcium flux through 

voltage-activated channels. In old age, increased calcium-dependent 

hyperpolarisation has been suggested to be involved in the deficits in memory and 

learning (Campbell, Hao, Thibault & Balock et al., 1996), and this phenomenon is 

decreased by dihydropyridine calcium channel antagonists (Disterhoft et al., 1993; 

Norris, Halpain & Foster, 1998). I f this hyperpolarisation were linked to the diffuse 

decrease in cholinergic transmission in aged brains (Pepeu & Giovannelli, 1994) then 

it would be reasonable to assume that it was nimodipine's direct action on the voltage-

gated calcium channels of cholinergic neurons which was responsible. 

That this is in fact the case is suggested by the fact that endogenous acetylcholine 

reduces the amplitude of L-type calcium current in cells transfected with muscarinic 

receptors. Different receptor subtypes appear to mediate this action by different 

mechanisms; with m2 receptors and m4 receptors inhibiting L-type calcium 

conductance through reduction of cAMP concentration, and m l , m3 and m5 receptors 

producing a reduction by their activation of PKC (Pemberton and Jones, 1997). As 

scopolamine is a muscarinic antagonist, and N-methyl-scopolamine binds to subtype 

m2 - m5 receptors (Tayebati, Codini, Gallai & Mannino et al., 1999) in both 

hippocampus and cortex, its application would be predicted to increase L-type 

calcium flux through both the proposed mechanisms. Nimodipine, as an L-type 

calcium channel antagonist, has an action which opposes that of scopolamine by 

preventing the excessive calcium current induced by scopolamine. As excessive 

calcium flow is known to be detrimental to learning and memory this is a plausible 

mechanism for the prevention of scopolamine-induced deficit by nimodipine. Such a 

mechanism would be predicted to occur in both hippocampal tissue and in cerebral 

cortex. 

In summary, at a dose of 0.125 mg/kg, scopolamine caused clear effects in tests of 

both acquisition and retrieval. The fact that animals given scopolamine 0.125 mg/kg + 

tween in the acquisition task showed no deficit at the longest delay does not, as might 

at first be thought, suggest that we failed to block acquisition of information but rather 

that acquisition took place during a later test phase. When only one test was given at a 
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delay of 29 hours 15 minutes, scopolamine caused no deficits in a retrieval paradigm 

but a severe impairment in an acquisition paradigm. This would indicate that the lack 

of impairment of the scopolamine + tween group at 29 hours 15 minutes in 

experiments 1 and 2 resulted from new learning at earlier tests rather than from a 

genuine recovery. Nimodipine at 10 mg/kg prevented the deficits caused by 

scopolamine, while a smaller preventative effect was found for a dose of 1 mg/kg. 

Nimodipine appears to have a protective effect on spontaneous object recognition 

which is otherwise impaired by scopolamine. This is the case when both drugs are 

administered prior to the exploration phase of the object recognition task and when 

both drugs are administered immediately following this exploration phase. This study 

confirms previous findings (Brooks et al., 2002) that nimodipine is able to prevent 

impairments on the spontaneous object recognition task. This is indicative of the fact 

that its effects are not limited to tasks which are primarily dependent on subcortical 

structures as might be indicated by previous work (Nelson et al., 1992; Weichman et 

al., 1994; Finger et al., 1990; Hoffmeister et al., 1982). Dachir et al., 1995). It is 

argued that the preventative effect found in this study results from nimodipine 

preventing excessive calcium flux induced by scopolamine's antagonism at 

muscarinic receptors. The general nature of nimodipine's efficacy and, in particular, 

the question of whether its action in the intact brain differs from that exerted on the 

damaged brain remain issues which require further work. 
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Chapter 7: General Discussion 

7.1 Introduction 

This discussion aims to give an overview of the findings and conclusions presented in 

the thesis and to discuss possibilities for future work which are suggested by these 

findings. A summary of the main results reported is provided in section 7.2 followed 

by a discussion of the implications and possible future work suggested by each broad 

area of findings. Section 7.3 deals with the implications for our understanding of the 

function of perirhinal cortex in the rat of the experiments presented here. Section 7.4 

considers the involvement of the postrhinal cortex and the hippocampus in memory 

for object-in-context. Section 7.5 examines the evidence presented for a memory 

system, involving the hippocampus and its subcortical connections, which is engaged 

by situations which are episodic-like. Section 7.6 briefly considers the implications of 

the findings of chapter 6, that nimodipine prevents scopolamine-induced deficits in 

object recognition. Finally section 7.7 provides a broad conclusion to the work 

presented here and outlines some directions for future work which are suggested by it. 

7.2 Summary of results 

The prediction that perirhinal lesions would cause an impairment in the learning of 

visual-visual stimulus associations was not supported (experiment 2). On a number of 

measures perirhinal lesions were shown not to have a deleterious effect. The only 

evidence that there might be such an impairment was that the first post-operative 

problems produced a chance performance on trial 6 - the last trial before any primary 

reinforcement was received. However, the significance of this was negated by the 

fact that performance was above chance on the block of trials 2-6, for which poorer 

performance would have been expected. This in fact represented an improvement on 

pre-operative performance. In the light of this, the unimpaired performance over the 

whole problem and the lack of an effect of operated condition in the comparative 

analysis it must be concluded that lesions of the perirhinal cortex do not impair visual-

visual associative learning. 

Predictions that perirhinal lesions would cause impairments in object discrimination 

where configural processing was required were supported (Experiments 3.1-3.4). A 

clear relationship between the level of feature ambiguity in a discrimination and the 

severity of the perirhinal impairment was found. The lack of such a disproportionate 
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impairment in experiment 3.3, where difficulty was introduced by increasing the size 

of the stimulus set, suggested that the impairments observed in experiments 3.1, 3.2 

and 3.4 were not merely the result of increased difficulty. 

The prediction that lesions of both the fornix and the postrhinal cortex, but not of the 

perirhinal cortex, would cause impairments in memory for object-in-context were 

supported (experiments 4.1-4.4). However, the postrhinal impairment was more 

severe and more uniform than the fornix impairment. When a second object was used 

as a context there was a perirhinal impairment but no impairment in the other lesion 

groups. This therefore represents a double dissociation. 

The prediction that both fornix and postrhinal lesions, but not perirhinal lesions would 

cause an impairment in the model of episodic-like memory was partially supported 

(experiment 5.1). There was a clear impairment of the fornix group but no other 

group was impaired. The fornix impairment was shown not merely a result of an 

impairment of memory for object-in-place, as experiment 5.2 showed no impairment 

of the fornix group on such a discrimination. 

The prediction that nimodipine would prevent the scopolamine-induced deficit on 

object-recognition tasks was confirmed. The fact that it prevented deficits at a low 

dose (1 mg/kg; experiments 6.2 and 6.4) as well as at a higher dose (10 mg/kg; 

experiments 6.1 and 6.3) was interesting. Also of interest was the fact that it 

prevented impairments both of acquisition (experiments 6.1 and 6.2, see also 6.5) and 

of retrieval (experiments 6.3, 6.4, see also 6.6). 

7.3 The object-centred role of the perirhinal cortex 

The results of experiment 2 (chapter 2) strongly suggested that perirhinal cortex is not 

critically involved in the formation of visual-visual stimulus associations. This was 

contrary to the prediction made on the basis of much of the literature, which 

suggested that lesions to the perirhinal cortex disrupted the formation of associations 

between stimuli whether or not those stimuli were of the same modality (Bunsey & 

Eichenbaum, 1993; Goulet & Murray, 2001; Murray et al., 1993; Parker & Gaffan, 

1998). It was also surprising in view of studies which have suggested that neurons 

within perirhinal cortex code the association between two visual stimuli (Higuchi and 
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Miyashita, 1996; Sakai and Miyashita, 1991; 1994). It is clear that the results of 

experiment 2 stand in contrast to those of Murray et al., (1993) who found that 

monkeys with perirhinal lesions were impaired on such a visual-visual stimulus 

association task, albeit only mildly impaired. This is not unreasonable given that 

visual afferents make up a substantially higher proportion of inputs to the monkey 

perirhinal cortex than is the case in the rat, and that the suggestion of pair-coding in 

the perirhinal cortex was provided by studies involving monkeys. It should also be 

noted that only Bunsey & Eichenbaum (1993) had previously demonstrated an 

impairment of stimulus-stimulus association learning following perirhinal lesions in 

rats. This result wil l be further considered and contrasted with later findings below. 

Unlike experiment 2, the results of the experiments in chapter 3 are in accordance 

with the majority of the literature. They support the contention that the perirhinal 

cortex is required for the resolution of feature ambiguity, and therefore for configural 

processing of objects or stimuli. In this they are in accordance with those of Bussey 

et al. (2002) and Buckley & Gaffan (1998c), using monkeys, and Eacott et al. (2001), 

using rats, who have all found that perirhinal lesions cause impairments on tasks 

which require configural processing but not on control tasks of equal difficulty. In 

contrast to the results of Ennaceur et al. (1996), the adaptation of the object 

recognition task employed here produced results which clearly suggest that the 

severity of impairment following perirhinal lesions increases in relation to the level of 

feature ambiguity in a given discrimination. Moreover, it is shown that, independent 

of absolute difficulty, the introduction of feature ambiguity into an object 

discrimination task has a disproportionate effect on the performance of the perirhinal 

animals, compared to that of the control animals. Therefore, although this thesis 

cannot support the view that perirhinal cortex is crucial to the formation of stimulus-

stimulus associations in the rat, it provides strong support for the view that one of the 

functions of perirhinal cortex is the formation of within object associations. To place 

the emphasis slightly differently, an intact perirhinal cortex is critical to the formation 

of a gestalt which corresponds to an object. In this the present study supports the 

work of Bussey & Saksida who proposed the PMFC model of perirhinal function 

(Bussey & Saksida, 2002). This hypothesised that as feature ambiguity within a 

discrimination increased the severity of impairment following perirhinal cortex 

lesions would also increase. 
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It would seem that this dependence upon perirhinal cortex for the resolution of 

problems containing sufficient feature ambiguity to require a configural solution is 

restricted to the processing of information which may reasonably be considered as an 

object, at least in the rat. Experiment 2 used stimuli which did not have a concurrent 

onset and which did not form unique features when the secondary reinforcer was 

super-imposed on to the S+. These elements of the design were deliberately included 

in order to prevent the formation of a single configural stimulus. In contrast 

experiments 3.1, 3.2 and 3.4 used single stimuli within which the feature 

configuration could be manipulated. The marked difference between the effects of 

perirhinal lesions in these two different paradigms suggests that it is integration of 

features within a single representation which requires an intact perirhinal cortex. 

It should, however, be noted that experiment 2 contained a strong appetitive 

motivation for an animal to successfully discriminate between the stimuli. This was 

not the case with the experiments in chapter 3 which relied on the intrinsic value of 

novelty as a motivational element. There is another major difference between the two 

paradigms. This is that the discrimination in experiment 2 was extremely difficult for 

intact animals to learn, while the discriminations in the chapter 3 experiments were 

performed by sham animals without difficulty. This leaves open the possibility that 

with a sufficient motivation the perirhinal animals could perform discriminations in 

paradigms in which intermediate or absolute feature ambiguity was present at delays 

which caused a failure of discrimination in the present study. However, a number of 

studies, including that of Bussey et al. (2002) in monkeys and Buffalo et al.(1999) in 

rats suggest that this would not be the case. 

However, a motivational version of the tasks used would still be of interest. As was 

noted in chapter 3, this was originally attempted using the automated Y-maze but was 

abandoned due to the failure of intact animals to acquire a version of the task which 

involved an intermediate level of feature ambiguity. It therefore seems that a version 

of the task using 3-dimensional stimuli and a motivational element would therefore be 

a reasonable approach. Based on the PMFC model, the fact that perirhinal animals 

failed to discriminate between objects at any delay in a condition of complete feature 

ambiguity, and the ease with which intact animals discriminated, it would be 
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predicted that the introduction of a motivational element would not affect their 

performance. Bussey et al.'s (2002) task included a motivational element and 

monkeys with perirhinal lesions nonetheless failed to discriminate where feature 

ambiguity was a factor in the discrimination. 

Although there have been some studies which have suggested that the perirhinal 

cortex may be involved in memory for context (Bucci et al., 2002; Sacchetti et al., 

1999), this thesis cannot support the contention that it is critical to memory for object-

in-context. The experiments in chapter 4, taken together with those in chapter 3, 

indicate that the critical contribution of the perirhinal cortex to processing and 

memory for feature ambiguity is limited to feature ambiguity of objects or 

combinations of features that are perceived as objects. Experiment 3.1 demonstrated 

that the perirhinal animals were not disproportionately affected by a condition of 

complete feature ambiguity when that feature ambiguity was produced by the 

interaction of an object with a context, in the classical sense of "context" as a 

background feature. However, the perirhinal animals were disproportionately 

affected by an identical level of feature ambiguity, when that condition resulted from 

the combination of two objects where those objects together could be construed as a 

single gestalt (experiment 3.5). This clearly suggests that the introduction of feature 

ambiguity through reconfiguration of objects results in severe impairment of 

perirhinal animals. This is the case whether the reconfiguration is conceived of as 

within object (chapter 3) or between objects (experiment 4.5). There was also some 

evidence of impairment in experiment 3.3 which simply used context as an adjunct to 

a discrimination between novel and familiar objects, with the context as a modifier of 

object familiarity. 

7.4 The postrhinal cortex is critical to memory for object-in-context 

The above finding forms part of a clear double dissociation demonstrated by the 

experiments in chapter 4. Whilst perirhinal animals are able to perform the classical 

context based discrimination (experiment 4.1) at delays of 2 minutes, the postrhinal 

animals are severely impaired, to a greater extent even than the fornix group which 

was included for comparison purposes. Conversely the severe impairment of the 

perirhinal animals on the object based task (experiment 4.5) is in contrast to the 

complete lack of an impairment displayed by both the postrhinal and the fornix 
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groups on this task, even at the longer of the two delays. This is a striking result 

which serves to emphasise the primacy of perirhinal function in the processing and 

remembering of objects as unique gestalts. Along with the results of the experiments 

in chapter 3, it stands in contrast to the results of experiment 2, which demonstrated 

that the perirhinal cortex is not critical to the association of two stimuli which do not 

present as a single entity. 

The impairment of the fornix and postrhinal groups in experiment 4.1 is in accordance 

with the findings of Bucci et al. (2002) who found impaired fear conditioning to 

context in both these groups, although they also found a perirhinal impairment. It is 

also in agreement with C-fos studies which supported the view that the postrhinal 

cortex was involved in spatial tasks while the perirhinal cortex was not (Aggleton et 

al., 2000; Vann et al., 2000). Wan et al., (1999) found that novel arrangements of 

familiar items caused increased fos activity in the postrhinal cortex, suggesting that it 

was involved in object-place memory. The evidence of lesion studies (e.g. Bussey et 

al., 2000) that postrhinal lesions do not cause impairment on a spatial paradigm such 

as delayed non-matching to place on a T-maze would again point towards the 

postrhinal cortex being involved with the combination of objects and locations. 

The impairments seen in the fornix animals are in accordance with the bulk of the 

literature which suggests that fornix lesions cause impairment of memory for objects-

in-context and scene memory, as well as for object-in-place (Gaffan & Harrison, 

1989, Gaffan, 1994). The fornix impairments found are also in accordance with the 

findings of Mumby et al. (2002), who found a hippocampal impairment on a 

paradigm similar to experiment 4.1, although the animals in their study were still able 

to discriminate between the objects. This more severe impairment following fornix 

lesions in the present study may indicate that it is the hippocampus and its subcortical 

connections rather than the hippocampus alone which is involved in memory for 

object-in-context. This view would be supported by the results of Parker & Gaffan 

(1997a, 1997b) who found that lesions of the mammillary bodies or the anterior 

thalamic nuclei caused an impairment of object-in-context memory in monkeys 

equivalent to that produced by fornix lesions. The results of the present study are also 

in accordance with those of Simpson et al. (1998) who found impairment of what was 
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termed object-in-place encoding (which was effectively a test of object-in-context) 

following fornix transection in rats. 

Given that, as with the experiments in chapter 3, there was no appetitive motivation 

involved in experiment 4.5 (object as context), it is possible that the perirhinal 

animals would show no impairment i f such a motivational component were used. As 

has been discussed with reference to the experiments in chapter 3, this is certainly 

something that would bear investigation using 3-dimensional objects and a system of 

food rewards. However, the prediction would be that such an experiment would not 

find intact performance by the perirhinal animals although it might detect some 

savings, which were not apparent in the current paradigm. This prediction is based on 

two premises. First: that the discrimination is performed easily by intact animals and 

animals with postrhinal lesions; second: that there is no indication that the perirhinal 

impairment is delay-dependent. Both of these suggest that, while perirhinal cortex 

may not be essential to the discrimination, it is certainly the means of choice for the 

processing and memory involved. Again, Buckley & Gaffan (1998c)'s results 

indicated that monkeys with perirhinal lesions failed to learn a similarly configural 

task where there was a substantial motivational component, while Parker & Gaffan's 

(1997a, 1997b) work also indicated a failing in object-in-context memory following 

lesions to subcortical structures. 

This double dissociation between the perirhinal impairment in chapter 3 experiments 

and in experiment 4.5 and the postrhinal impairment in experiment 4.1 (AB in 

incongruent context) is of considerable interest and provides a possible explanation 

for some of the rather contradictory evidence which exists as to the mnemonic role of 

the perirhinal cortex. It seems clear that the role of the perirhinal cortex is defined by 

the concept of the object as a single entity or gestalt. This capacity can be tested by 

the introduction of feature ambiguity into an object discrimination task. The fact that 

there was a perirhinal impairment in experiment 3.3 in which the element of context 

incongruity was secondary to a discrimination between a novel and a familiar object 

again suggests that it is object-based processing which is primarily processed by the 

perirhinal cortex. 
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Therefore what this thesis suggests is that there is a double dissociation between the 

effects of perirhinal and postrhinal lesions, with perirhinal lesions causing 

impairments on tasks which require the configuration of features within an object (or 

perceived object) while postrhinal lesions and, to a lesser extent, fornix lesions, cause 

impairments on tasks which require the configuration of objects and contexts. Both of 

these types of tasks rely on the intrinsic interest of novelty and, as previously 

discussed, it is possible that the animals could learn to perform discriminations of 

these types i f there were a motivational component to the task. Nonetheless, it is clear 

that when relatively naturalistic behaviour is observed using these adaptations of the 

object recognition task (Ennaceur & Delacour, 1989) a clear double dissociation is 

observed. A clear possibility for future work is the exploration of whether postrhinal 

lesions cause impairments on the within-object configurations, which were employed 

in the experiments in chapter 3, or the between-object associations, which were used 

in experiment 2. However, on the basis of the work in this thesis, it would be 

predicted that such an impairment would not be found. 

The postrhinal impairment in experiment 4.1 was found even at the shortest delay 

which could be tested using the experimental design employed. This means that it 

cannot be ascertained whether the deficit was primarily an impairment of memory or 

of processing. While this is of less interest than the issue of whether there is any 

saved performance to be tapped by a motivated task, it is a possible avenue for future 

work. It would be difficult to test memory for object-in-context in a "no-delay" 

condition but it would be possible to design an experiment which would permit 

testing at delays of 1 minute. I f the impairment were as severe as these results 

indicate, it would be predicted that the postrhinal animals would not discriminate in 

such a condition. 

7.5 Fornix lesions impair episodic-like memory 

The postrhinal impairment on the object-in-context discrimination of experiment 3.1 

forms part of a double dissociation between the effects of postrhinal lesions and the 

effects of fornix (and by extrapolation hippocampal?) lesions. Whilst postrhinal 

lesions caused a serious impairment on a task which was discrimination of an object 

in context, fornix lesions caused only a milder impairment. In contrast to this finding, 

experiment 4.1 found that postrhinal animals, like perirhinal animals, were 
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unimpaired on a task which used the combination of object, context and place to test 

episodic-like memory. Fornix animals, however, were more severely and more 

uniformly impaired on this task than they were on the object-in-context task. This 

presents something of a paradox. Since object-in-context recognition is clearly an 

essential part of the episodic-like memory task it seems counter-intuitive that a group 

which failed to discriminate this alone should perform normally when discriminating 

object-in-place-in-context. The explanation proposed by this thesis for this pattern of 

results postulates a separate system which processes episodic-like memory. 

This explanation relies on the fact that there is no motivational element in the 

paradigm used in experiment 4.1. It is proposed that the postrhinal impairment 

observed in the object-in-context paradigm is dependent upon the fact that there is no 

benefit to the animal in discriminating between the objects. There is a clear method 

of testing this hypothesis, which would be to design a version of the task in which an 

appetitive reward was available on the choice of the novel object-context 

combination. I f it is the case that postrhinal impairments on object-in-context tasks 

occur only when discrimination is not essential for a hedonic gain (c.f. Good et al., 

1998 on hippocampal involvement in context processing) then it is possible that these 

functions can also be served by the hippocampus, and are preferentially processed by 

the hippocampus in an episodic-like scenario. Under this view the hippocampus is 

critical to episodic-like memory, though it is not critical to the individual aspects of it, 

at least at short delays. The evidence from the literature is in fact overwhelming in 

suggesting that the hippocampus is indeed not merely sufficient but necessary to 

episodic-like memory. Preliminary results from Clayton & colleagues (N. Clayton, 

personal communication) and Morris & colleagues (R. Morris, personal 

communication) both indicate that hippocampal lesions in rats impair place-learning 

and the flavour-place learning respectively. Certainly scene memory is vulnerable to 

lesions of the hippocampus and its diencephalic projections in both monkeys (Gaffan, 

1994; Gaffan & Parker, 1996; Parker & Gaffan, 1997a, 1997b) and in rats (Gaffan & 

Eacott, 1997; Gaffan et al., 2000; Simpson & Gaffan, 1999; Simpson et al., 1998). 

Although there are some contradictory results which indicate that hippocampal 

damage may facilitate scene-learning ability (Gaffan et al., 2001; Simpson et al., 

1998), these would seem to fall into the same category as Bussey et al's (1998) 

finding of facilitated configural learning following fornix transection. 
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7.6 Intracellular calcium is implicated in memory for objects 

Whilst the experiments in chapter 6 are somewhat tangential to the bulk of this thesis, 

they are illuminating in their implications for the nature of the contribution of the 

perirhinal cortex to object recognition. It is clear that muscarinic antagonists injected 

into the perirhinal cortex (but not area TE or the dentate gyrus) impaired object 

recognition in both monkeys (Tang et al., 1997) and rats (Abe & Iwasaki, 2001). This 

confirmed the central role of the perirhinal cortex in object recognition, as did the 

finding that scopolamine simultaneously disrupted Fos expression in the perirhinal 

cortex of rats and object recognition (Brown et al., 2000). The fact that nimodipine 

prevented the scopolamine-induced deficit in object discrimination suggests that 

intracellular calcium is critical to the neural plasticity underlying stimulus 

recognition. This, together with the evidence of the cortically unique neuronal 

composition of the perirhinal cortex is in accordance with the possibility that long-

term depression may form part of the basis of stimulus recognition. The relationship 

of these results to the general nature of nimodipine's efficacy in reversing or 

preventing memory deficits is unclear. However, the explanation advanced in chapter 

6 would certainly be compatible with its efficacy in reversing the effects of septal 

lesions (McMonagle-Strucko & Fanelli, 1993) and its apparent usefulness in the 

treatment of Alzheimer's' disease. The suggestion that nimodipine's action on the 

cholinergic innervation of the medial temporal is critical is certainly worthy of further 

investigation. 

7.7 Conclusion 

The experiments reported in this thesis serve to expand an understanding of the types 

of memory in which the perirhinal cortex is critically involved. Of equal importance 

is the contribution they make in clarifying those aspects of object memory in which 

the perirhinal cortex appears to play at most a peripheral role. A number of doubly 

dissociated impairments are identified, contributing to understanding of the way in 

which information about objects and their surroundings is processed and remembered. 

Broadly speaking the experiments described in this thesis contribute to the conclusion 

that the perirhinal cortex is primarily involved in the perceptual and mnemonic 

processes which contribute to representation of an object. This includes aspects of 

processing which are internal to the object, and which concern relations between 
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features or elements of the object, but does not include those which are exclusively or 

primarily concerned with relations between objects or between objects and the scene 

or context and place in which they appear. Such relational processing would appear, 

from the comparative studies in this thesis to be the province of the postrhinal cortex 

and/or the hippocampal formation. There is a clear double dissociation between the 

effects of lesions to the perirhinal cortex, which cause object-related impairments, and 

those of lesions to the postrhinal cortex, which cause impairments of memory for 

objects-in-classical context. 

This thesis also proposes that there may be a memory system which is engaged when 

a discrimination requires episodic-like memory, and which is, broadly speaking, 

hippocampally dependent. There is a double dissociation between the effects of fornix 

lesions and the effects of postrhinal lesions. While fornix lesions cause only mild 

impairments of memory for object-in-context but severely impair episodic-like 

memory, postrhinal lesions cause severe impairments of memory for object-in-context 

but do not impair episodic-like memory. Finally, the ability of a dihydropyridine 1-

type calcium channel antagonist to prevent both acquisition and retrieval 

scopolamine-induced impairments of object memory is demonstrated. The crucial 

contribution of the cholinergic system in object memory is confirmed, and its 

dependence upon intracellular calcium concentrations established. 

This thesis opens up a number of interesting possibilities for future work. The double 

dissociations we have found are supportive of a distributed model of memory. 

However, the experiments of Parker & Gaffan (1995) suggest that a temporal lobe 

memory system, while distributed may nonetheless be integrated. The use of crossed 

unilateral lesions of the perirhinal cortex or postrhinal cortex with the fornix might 

provide an avenue for future research on the processing of, and memory for, objects-

in-context. This would seem to be a particularly interesting direction to explore given 

that this thesis suggests (chapter 4) that context may form a critical aspect of episodic 

memory. In the light of work which has suggested that the hippocampus functions as 

part of a distributed system involving multiple subcortical structures (Aggleton & 

Brown, 1999) it would also be desirable to explore the possible function of structures 

such as the mammillary bodies and the anterior thalamic nuclei in the episodic-like 

discriminations described here. Finally, given that perirhinal cortex does not appear 
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to be critical to the learning of visual-visual stimulus associations (experiment 2), 

some studies of the role played by other structures thought to be involved in aspects 

of object memory would seem to be called for. 
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