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Abstract 

A n accurate description of the exchange-correlation energy is central to den­

sity functional theory ( D F T ) . I n this thesis a series of exchange-correlation 

functionals are developed using new approaches based on exchange-correlation 

potentials and enhancement factors. The functionals are assessed for a wide 

range of molecular properties. 

Chapter 1 describes Hartree Fock theory, introducing the key concepts 

of exchange and correlation. Chapter 2 describes the fundamental ideas of 

D F T and the implementation of Kohn-Sham theory. Chapter 3 describes a 

new approach for determining exchange-correlation functionals solely f rom ab 

initio potentials. A series of functionals are developed and assessed. Chap­

ter 4 investigates the performance of one of these functionals, which provides 

particularly high quality structural predictions. A challenging benchmark of 

sulfur-containing compounds and a new benchmark of diatomic molecules 

are considered. Results are assessed in terms of the enhancement factor. In 

Chapter 5, the enhancement factor is used to develop new functionals that 

satisfy several exact physical conditions. The potential energy curve of the 

Helium dimer is investigated, since this is known to be sensitive to the en­

hancement factor. In Chapter 6 a series of hybrid functionals are determined. 

Particular attention is paid to their performance for chemical reactions and 

the relationship of these results to self-interaction errors. Chapter 7 inves­

tigates a new definition of the exchange-correlation charge (hole), which is 

directly related to the exchange-correlation potential. The first such calcula­

tions on molecular systems are presented. Concluding remarks are presented 

in Chapter 8. 
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Chapter 1 

Theoretical background 

I n this chapter, following a brief discussion of the Schrodinger equation and 

the Born-Oppenheimer approximation, we describe in detail the Hartree-

Fock approximation, as i t contains many of the features of density functional 

theory ( D F T ) , which is the subject of this thesis. We describe how to derive 

and solve the Hartree-Fock equations. We introduce the concept of a basis 

set, explaining the reasons for their introduction in practical calculations. We 

introduce the concepts of exchange and correlation, presenting an overview 

of the correlated methods that we w i l l utilize in the following chapters. 

1.1 The Schrodinger equation 

According to quantum mechanics, any problem in the structure of matter 

is covered by the solutions of the Schrodinger part ial differential equation 

[ l ] - [3] . I n atomic units (e = h = me = 47re0 = 1) 

HV = EV (1.1) 

where H is the Hamiltonian differential operator, which contains the kinetic 

and potential energy operators of the nuclei and electrons 

ff = - E 5 § L - E f - E ^ + E ^ + E ! ^ . (i.2) 
A 2 M A i & i A

 r i A i>j Tij A > B K A B 



1.1. T h e Schrodinger equation 2 

This is the non-relativistic Hamiltonian, appropriate for relatively light atoms. 

E is the numerical value of the energy of the states, that is the energy relative 

to a state where the constituent particles are infinitely separated and at rest. 

\& is the wavefunction, which depends on the cartesian coordinates of all the 

particles and also on their spin coordinates. I t contains all the information 

that can be known about the system. 

In order to solve the Schrodinger equation i t is necessary to impose bound­

ary conditions. The wavefunction must be well-behaved everywhere; i t must 

decay to zero at inf in i ty for an atom or a molecule; i t must obey appropriate 

periodic boundary conditions for a solid. There are many acceptable inde­

pendent solutions for a given system, corresponding to different stationary 

states, and the state wi th the lowest energy is termed the ground state. 

1.1.1 The Born-Oppenheimer approximation 

The first approximation used to simplify the Schrodinger equation is the 

Born-Oppenheimer approximation [4], which is regarded as accurate and 

simple. Its underlying assumption is to consider the significant difference 

between the mass of the nuclei and the mass of the electrons. The nuclei, 

as compared to the rapidly moving electrons, move slowly. We can therefore 

consider the electrons as moving in a field of fixed nuclei; the problem can 

then be reduced to a separate nuclear and electronic problem. The electronic 

Schrodinger equation is 

= EEVE (1.3) 

where the electronic Hamiltonian HE is 

i z %A 1 l A i>j ' l3 

\I>e in Eq.(1.3) represents the wavefunction describing the motion of the elec­

trons; i t depends explicitly on the electronic coordinates and parametrically 

on the nuclear coordinates. This means that for different arrangements of 



1.2. T h e Har tree -Fock approximation 3 

the nuclei, the wavefunction \ I / e is a different funct ion of the electronic co­

ordinates. The tota l electronic energy, EE is then the sum of the electronic 

energy and the nuclear-nuclear repulsion energy. The variation of EE w i t h 

nuclear coordinates defines the potential energy surface (PES). 

1.2 The Hartree-Fock approximation 

The cornerstone among the conventional wavefunction-based quantum chem­

ical methods is the Hartree-Fock approximation [5, 6], which forms the basis 

for more accurate approximations including the effects of electron correlation. 

The wavefunction must be antisymmetric w i t h respect to the interchange of 

space and spin coordinates of any pair of electrons (Pauli principle). Hence, 

the simplest approximation, which defines Hartree-Fock theory, is a single 

determinant (Slater determinant) [7]. 

* H F ( X I , X 2 , • • • , X J V ) = 
1 

X i ( x i ) X2(xi) ••• x w ( x i ) 

X i ( x 2 ) X2(x 2 ) ••• X i v ( x 2 ) 
(1.5) 

X I ( X A T ) X2(x;v) ••• X N ( * N ) 

This is an antisymmetrized product of ./V-orthonormal one-electron spin or-

bitals X i ( x j ) , each composed of a spatial orbital v?t(r)> a n d one of two or-

thonormal spin functions a(s) , (3(s). The prefactor in f ront of the determi­

nant normalizes the wavefunction. The antisymmetric nature of the wave-

funct ion is ensured by the property of the determinant for which a change 

of two rows or columns i and j changes the sign, which corresponds to an 

interchange of the space-spin coordinates of the electrons i and j. The cen­

t ra l idea of the Hartree-Fock method is to f ind the set of spin orbitals {xi} 

that minimize the electronic energy by applying the variational principle and 

maintaining, as a constraint, that the spin orbitals remain orthonormal. 

The expectation value of the electronic Hamiltonian is the Hartree-Fock 
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energy EHF 

N i N 

EHF = < * H P | J f | * H P > = Y,{i\h\i) + W - (1.6) 

where we use the integral notation 

= / X„(x) f - ^ V 2 - E —) X , ( x ) d x (1.7) 

(Pq\rs) = [ [ x > W x * M x r W x . W ^ ( 1 8 ) 

J J |x — x'l 

assuming real orbitals. The first term in Eq.(1.6) is the sum of the kinetic 

energy and the nuclear-electron attraction. The next term is the classical 

repulsion for the electron density and the last term is the exchange energy. 

The exchange energy arises entirely f rom the antisymmetric nature of the 

wavefunction. Two electrons of like spin cannot be at the same point i n 

space. Hence, the probabili ty reduces as the two electrons approach each 

other, causing a lowering of the energy. In other words, each electron is 

surrounded by an exchange hole, also known as a Fermi hole [8, 9]. 

A n important aspect of Eq.(1.6) is the issue of self-interaction. When 

i = j , there is an unphysical behaviour, in that the Coulomb term would 

represent the interaction of the charge distr ibution w i t h itself. However the 

expression for the exchange energy is exactly the same and so cancels. This 

is not achieved in practical density functional theory (See Chapter 2). M i n ­

imizing Eq.(1.6) w i t h respect to the variations 

Xi ->• Xi + &Xi (1-9) 

subject to the constraint that the spin orbitals remain orthonormal 

(Xi\xJ)=5ij (1.10) 

gives the Hartree-Fock equations 

Fxi = EeaXi ( i-n) 
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where is the matr ix of Lagrange multipliers. This can then be transformed 

via a unitary transformation to the usual canonical form 

FXr = elXr (1.12) 

where the Lagrange multipliers £j are orbital energies and the Fock operator 

F is a one-electron operator 

1 M y 
H*i) = - r V j - E — + - f a i ) " (1-13) 

The first two terms represent the kinetic energy operator and the potential 

operator, which describes the attraction of a single electron by the nuclei. 

The other two are the Coulomb J and the exchange K operators defined by 

J ( x 1 ) x l ( x 1 ) = £ / X j ( x 2 ) — X j ( x 2 ) ( 2 x 2 X i ( x i ) (1-14) 

^ ( x i ) X i ( x i ) = E / X j ( x 2 ) — X i ( x 2 ) d x 2 X i ( x 1 ) (1.15) 

I t is important to point out the different nature of these two operators. 

The effect of the exchange operator on the spin orbital X i ( x i ) depends on 

the value of x% throughout all of space. For this reason i t is termed non-

multiplicative. A l l others operators in Eq.(1.13) are instead multiplicative; 

their values depend only on the value of Xi a t x x . The Hartree-Fock method 

formal ly scales as i V 4 w i t h the size of the system. 

1.2.1 Koopmans' theorem 

A physical interpretation for the Lagrange multipliers e\ introduced in the 

minimizat ion procedure is obtained f rom the Koopmans' theorem [10]. We 

consider the energy of a system in which one electron is removed f rom the 

orbi ta l k and assume that the system does not relax. A t this point the energy 

expressions for the two systems (closed-shell and open-shell after the electron 

removal) would be 

EN = E(«W0 + 1EE(«IW) - (ij\3i) (1-16) 
i = l Z i = l j=l 
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&N-I = £ ( 4 l * ) + l E £ W ) - (1-17) 
i = l Z i=\ j=l 

Subtracting the two energies 

EN-EK

N_, = (k\h\k)+\ jrwkk)-(ik\ki) + \ Y , { k k \ 3 j ) - ( k j \ j k ) (Lis) 
z i=i z j=i 

since the last two terms are identical, the energy difference becomes 

N 

EN - EK

N_X = (k\h\k) + ^2(kk\ii) - (ki\ik) = ek (1.19) 
i=l 

The theorem proves that wi th in the Hartree Fock approximation the orbi ta l 

energy Sk is an approximation to minus the ionization energy associated w i t h 

the removal of an electron f rom the orbi tal Xfc- See Chapter 2 for a discussion 

of Koopmans' theorem in density functional theory. 

1.2.2 Unrestricted Hartree-Fock (UHF) 

I n the unrestricted Hartree-Fock method, the spin orbitals are not con­

strained to have the same spatial form 

X,(x) = ( (1.20) 

We use an unrestricted formalism for all the open-shell calculations in this 

thesis. To define <pf and </?f we substitute the spin orbitals into the Hartree 

Fock equations and integrate over the spin functions. The resulting equations 

are 

F*tf = e f t f (1.21) 

* V = 4 d (1-22) 

where 

f ° ( x i ) = / i (x0 + J a ( x O + J ^ x O - K Q ( X l ) (1.23) 

The electrons of spin a experience a Coulomb interaction J a + due to all 

the electrons and an exchange interaction —Ka arising f rom each of the spin 

a electrons. The Fock operator for the /J spin is 

i ^ ( X l ) = h(xr) + J Q ( X l ) + J ^ x O - Kl(Xl) (1.24) 
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Equations (1.21)-(1.22) are coupled (Fa depends on the occupied /3 orbitals 

and viceversa) hence they must be solved in an iterative procedure. 

1.2.2.1 T h e Pople-Nesbet equations 

To solve the unrestricted Hartree-Fock equations i t is necessary to introduce 

a basis set expansion for the unrestricted molecular orbitals ipf and y>f 

rf = Y , C U (1-26) 

where is a set of one-electron basis functions. Substituting into Eq.(1.21)-

(1.22) we obtain 

Y,(Fa - e f ) C £ t f o = 0 (1.27) 

E ( ^ - e f ) ^ = 0 (1.28) 

Mul t i p ly ing Eq.(1.27)-(1.28) on the left by a funct ion ?7A(r) and integrating 

over the spatial coordinates gives the Pople-Nesbet equations [11] 

E ^ ^ e f E ^ (1.29) 
fl fl 

£ ^ C & = ^ E < V ? £ (1.30) 'fii fct 
fi fi 

Equations (1.29)-(1.30) can be rewritten in matr ix form as 

F Q C Q = S C V (1.31) 

F ^ C " = S C V (1.32) 

where S is the basis function overlap matr ix and F is the mat r ix represen­

ta t ion of the Fock operator in the basis 77^. The procedure to solve them is 

iterative. I t starts w i t h a guess for the F a and F^ matrices; once Eq.(1.31)-

(1.32) are solved, new values for C a and are obtained. The process stops 

only when self-consistency is achieved. 
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1.2.3 Restricted Hartree-Fock (RHF) 

In a restricted formalism the a and (3 spin orbitals are constrained to have 

the same spatial part 

/ \ I fi(r)a(s) 

The corresponding closed-shell Fock operator has the form 

F ( X l ) = M x j ) + 2 J ( X l ) - tf(Xl) (1.34) 

and the closed-shell spatial Hartree-Fock equation is 

Fipi = (1.35) 

1.2.3.1 T h e R o o t h a a n - H a l l equations 

As in unrestricted Hartree-Fock, basis sets must be introduced. The corre­

sponding equations are wri t ten as 

E ^ - ^ i ^ ) ^ (1.36) 
/' 

or in mat r ix fo rm 

F C = SCe. (1.37) 

These are the Roothaan-Hall equations [12, 13]. 

1.3 One-electron basis sets 

I t is therefore necessary to expand the molecular orbitals <pi in terms of a set 

of basis functions r)^ to solve the Hartree-Fock equations. This procedure is 

exact only i f the set of basis functions is complete. From a computational 

point of view this is impractical. However, in order to get high quality results, 

large basis sets are necessary. 

I n general, i n the major i ty of the wavefunction-based methods, the set of 

basis functions rj^ is chosen to consist of gaussian-type orbitals (GTO) [14] 
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rather than Slater-type orbitals (STO) [15]. Gaussian-type orbitals have the 

general form 

7 7 G T O ( r ) = Nxlymznexp(-ar2) (1.38) 

where N is a normalization factor ((77^77^) = 1), a is the orbi tal exponent 

which determines the amplitude of the function and L = l + m + n describes 

the character of the G T O function. Slater-type orbitals, instead, are repre­

sented as 

7 7 S T O ( r ) = Nrn~l exp(-£r)Ylm(d, <p) (1-39) 

where n is the principal quantum number, the orbital exponent is £ and 

Yim constitutes the spherical harmonics that describe the angular part of the 

funct ion. 

The reason for the high applicability of G T O basis sets is their low compu­

tational cost w i t h respect to STO basis sets [14]. However, f rom a physical 

point of view, the STO basis functions are more natural since the simple 

exponential mimics perfectly the exact orbitals of hydrogenic atoms. They 

have the correct cusp behaviour for r —> 0 and the proper exponential de­

cay for r —> 0 0 . In order to get the same accuracy as w i t h the STO, i t 

is common practice to introduce the contracted-gaussian type orbitals [16]-

[18], where several primit ive gaussian functions are linearly combined to give 

a contracted funct ion 

77 T

C G F (r) = 5 2 0 £ T O ( r ) (1.40) 

In this way i t is possible to derive appropriate values for dTa so that a CGF 

basis funct ion is as similar as possible to an STO [19, 20]. 

Different kinds of G T O are commonly used in electronic structure cal­

culations, and they assume different names according to the nature of the 

functions involved. Minimal-basis set employs enough functions to contain 

all the electrons of the neutral atoms. By doubling or t r ip l ing the num­

ber of basis functions we obtain double zeta (DZ) or tr iple zeta (TZ) basis 

sets which, i n general, provide a better description of how the electrons are 
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distributed in bonding regions. 

Basis sets can also include higher angular momentum functions, namely 

polarization functions. For calculations that do not include correlation ef­

fects, the introduction of the first set of such functions is by far the most 

important since they introduce all the charge polarization effects. I f methods 

including electron correlation are used, higher angular momentum functions 

are essential to obtain an accurate description of the electron-electron cusp. 

Finally, we mention the concept of basis set superposition error (BSSE). 

I f a calculation is performed on a system comprising of two fragments, then 

one of the fragments can art if icially lower its energy by using the basis func­

t ion on the other fragment. The conceptually simplest way to eliminate the 

BSSE is to use extremely large basis sets when these kinds of calculations 

are performed. However, this leads to very large and computationally ex­

pensive calculations. The approximate way to correct this error is to use the 

counterpoise (CP) correction [21], which approximates the BSSE error as the 

difference between monomer energies wi th the regular basis and the energies 

calculated w i t h the f u l l set of basis functions of the whole complex. 

1.4 The correlation energy 

The correlation energy is defined as the difference between the exact non-

relativistic, Born-Oppenheimer ground state energy EQ and the Hartree Fock 

energy [22] which, due to the variational principle, is always an upper bound 

EC = E0 - £ „ P (1.41) 

The correlation energy arises f rom the instantaneous repulsion of the elec­

trons and i t has t radi t ionally been divided into two contributions. The first 

one is dynamic correlation (short-range) which is related to the reduction 

of the wavefunction when two electrons get close to each other [23]. This 

phenomenon is not accounted for in the Hartree-Fock method since each 
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electron experiences only an electrostatic potential spatially averaged over 

all the other electrons. The electrons get too close to each other. 

The second contribution is non-dynamical correlation (long-range), also 

known as left-r ight correlation, which can be understood as the correlation 

effect which makes the electrons move to separate atoms as a molecule disso­

ciates. I n Hartree-Fock theory, such a phenomenon is not represented since 

the chosen Slater determinant can fa i l to describe properly the ground state 

of the molecule when there are different determinants w i t h a very similar 

energy. Consider the H 2 molecule. The RHF scheme computed at the equi­

l ib r ium distance provides a good approximation; the correlation error, which 

is mainly due to dynamic correlation, is small. However, when the molecule 

dissociates [24], the correlation energy error gets large, despite the fact that 

the dynamic correlation goes to zero. This is non-dynamical correlation. 

A simple way to overcome this incorrect dissociation problem is to ap­

ply the U H F . This solution would lead to an exact description of this long 

range behaviour, but at the same time i t w i l l change the ground state of 

the molecule. I t w i l l no longer be a singlet, but a mixture of a singlet and 

a tr iplet . Therefore the exact behavior of the energy must be considered a 

consequence of the fact that the U H F wavefunction breaks the inversion sym­

metry axis of the molecule and puts an electron w i t h spin up at one nucleus 

and the second one w i t h opposite spin at the other nucleus [25]. I n the same 

manner as for the exchange interaction, the correlation interaction gener­

ates a hole surrounding each electron, known as coulomb hole or correlation 

hole [26]. 

W i t h i n D F T the exchange and left-right correlation energies are naturally 

linked in local exchange approximation (See Chapter 3). 
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1.5 Post Hartree-Fock methods 

The correlation energy is therefore a measure of the error in the Hartree-Fock 

approximation. For a system of many interacting electrons, the exact wave-

function can never be represented by a single determinant. I t is therefore 

necessary to apply more sophisticated correlated methods. We now tu rn our 

attention towards two popular correlated methods: M0ller-Plesset perturba­

t ion theory (MP) and the coupled cluster approximation (CC), both of which 

w i l l be used later in this thesis. 

1.5.1 M0ller-Plesset perturbation theory 

M0ller-Plesset perturbation theory [28] has tradit ionally been very popular in 

quantum chemistry. Many levels of theory can be calculated. We w i l l focus 

our attention on the second order corrections (MP2) since for the proper­

ties on which we are interested MP2 covers the most important correlation 

effects [29]. 

I n M0ller-Plesset theory, correlation effects are introduced stepwise in a 

systematic manner that facilitates their analysis and the understanding of 

the correlation problem. The method is size-consistent and its computa­

t ional cost is not excessive and so medium-size and even larger molecules 

can be treated. The approach does have disadvantages. I t is not varia­

t ional , the energies can be more negative than the exact ones. A t a given 

perturbation order p, there does not exist a well-defined wavefunction. This 

makes i t impossible to define a molecular property in terms of an expectation 

value. Finally, sometimes i t is possible to observe an erratic non monotonic 

convergence behaviour of the calculated MP energies [30, 31]. 

I n M0ller-Plesset theory the electronic Hamiltonian operator H is wr i t t en 

as the sum of two parts 

H = H0 + XV (1.42) 

where H0 is the sum of the one-electron Hartree-Fock operators, V is a pertur-
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bation operator and A is a dimensionless parameter determining the strength 

of the perturbation. Increasing A to a f ini te number, the new energy E and 

the new wavefunction * associated wi th the perturbed Schrodinger equation 

are expanded as a Taylor series in terms of A 

E = \°E0 + \ 1 E L + \ 2 E 2 + ....\PEP (1.43) 

$ = A°*o + A 1 * i + A 2 * 2 + . - A p * p (1.44) 

Truncation at first order gives M P 1 , which corresponds to the Hartree-Fock 

method. Truncation at second order gives MP2, which accounts for correla­

t ion effects 

^ ijab ^ i j 

where \ prevents double counting (ij\\ab) denotes 

(ij\\ab) = (ai\bj) - (aj\bi) (1.46) 

and 
D$ = ea + e b - e i - e j (1.47) 

Formally MP2 scales as N5, making i t the most economical method for in­

cluding correlation, after density functional theory. 

1.5.2 Coupled Cluster theory 

M0ller-Plesset perturbation theory in principle adds all the types of correc­

tions to the wavefunction up to a given order. In coupled cluster theory 

(CC) [32, 33] there is no l imi ta t ion to the order [34], since all the infini te 

corrections are included. The formalism of this method is based on the rep­

resentation of the wavefunction \ I / C C in terms of the cluster operator T and 

the Hartree-Fock reference wavefunction ^ H F 

* c c = exp(T) • * (1.48) 
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where 
oo 1 1 1 exp(T) = 1 + f + - f 2 + - f 3 + ... - Yl TT\Tk ( 1 A 9 ) 

Act ing w i t h the operator T on the Hartree-Fock reference wavefunction, gen­

erates al l the excited Slater determinants 

(1.50) 
a 

occ vir 

(1.51) 
i<j a<b 

where t are the expansion coefficients. Substituting Eq. (1.48) into the 

Schrodinger equation and integrating, we obtain the expression for the coupled-

cluster energy for different excitations. Since the energy depends on the level 

of excitations, in order to obtain accurate results, i t is necessary to include 

higher excitations, but f rom a computational point of view this is unfeasible 

for all but small molecular systems. The level of excitation is defined by 

the number of terms constituting the cluster operator. Including only T\ 

w i l l provide results of the same degree of accuracy as Hartree-Fock. Hence, 

the lowest level of approximation required to include correlation effects is 

T 2 , which is then known as Coupled-Cluster-Doubles (CCD) whose compu­

tat ional cost is N6. 

A sub-category of coupled cluster methods is represented by CCSD(T) 

and CCSD(TQ) [35]. They include additional terms obtained f rom higher 

orders of perturbation theory. They are s t i l l computationally very demand­

ing ( ~ N7 for CCSD(T)) although they are cheaper than conventional coupled-

cluster methods at the same level of accuracy ( ~ A 8 ) for CCSDT [36, 37]. 

For a l l the methods discussed so far, the single excitations do not provide 

any substantial contribution to the correlation energy when the Hartree-Fock 

orbitals are used. Brueckner theory [38, 39] is a variation of the coupled 

cluster method. Brueckner orbitals are optimized so that the contribution 

f r o m the singles is exactly zero (tf = 0). Hence, the lowest level of Brueckner 

theory includes only doubles excitations, giving the acronym B D . 
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In theory, this method should provide a higher accuracy than CCSD. 

However, in practice i t provides comparable results w i th comparable com­

putational costs. Similarly, B D ( T ) is essentially equivalent to CCSD(T) [40] 

and B D ( T Q ) to CCSD(TQ). 



Chapter 2 

Density functional theory 

Since the rigorous development of density functional theory for ty years ago, 

the method has become extremely useful for understanding molecular prop­

erties. I t represents an alternative approach to the t radi t ional wave funct ion 

based methods which are described in terms of the many electron wave-

funct ion ^(TI....T^). The chief building blocks of t radit ional methods are 

single-electron orbitals ipi(r) and the many electron wavefunction bui l t f rom 

them, i n D F T instead the chief element is the electron density p(r) and in 

the Kohn-Sham approach the single-particle orbitals (pfs(r). 

In this chapter, following a definition of the electron density, we discuss 

density functional theory, f rom the early work of Thomas, Fermi and Dirac 

to the celebrated Kohn-Sham approach. Particular attention is paid to the 

exchange-correlation potential. We also present an overview of the various 

approximations to the exchange-correlation energy, which we w i l l apply in 

the later chapters. 

2.1 The electron density 

The central quantity in D F T is the electron density p( r ) , a non-negative 

funct ion, which vanishes at inf in i ty and integrates to the tota l number of 

electrons N. I t is represented as a multiple integral over the spin coordinates 

16 
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of all the electrons and over all but one of the spatial coordinates 

p ( r i ) = N j . . . J \y(xl....xN)\2dsldx2...dxN (2.1) 

I t represents the probabili ty measure of f inding any of the N electrons w i t h i n 

the volume element dri. The electron density also provides information about 

the nuclear charge Z of the nuclei due to the cusp condition [41], see Ref. [42]. 

2.2 The models of Thomas, Fermi and Dirac 

The first at tempt to use the electron density rather than the wavefunction 

as a central quantity was introduced by Thomas and Fermi i n 1927 [43]-[46]. 

They considered a quantum statistical model for a non-interacting uni form 

electron gas (UEG). Since direct expressions in terms of the electron density 

for the nuclear-electron attraction and for the classical electron-electron re­

pulsion contributions were known, Thomas and Fermi derived a correspond­

ing definit ion of the kinetic energy in terms of the electron density 

r T F b ( r ) ] = ^ ( 3 7 r 2 ) l / p f ( r ) d r (2.2) 

The tota l energy functional is then the sum of the kinetic energy functional 

Eq.(2.2) and the classical terms 

^ M r ) ] = ^ ) i / ^ - z / ^ + I Z / e ^ j W (2.3) 

This is known as the Thomas-Fermi model ( T F ) . In 1930, Dirac added an 

exchange contribution [47] 

K M * ) ] = - 1 ( I Y J pH*)<k (2-4) 

obtained by evaluating the exchange expression w i t h plane-waves orbitals, 

which are appropriate for a UEG. The | power is easily derived f rom scaling 

conditions. Suppose we write 

KD[p(r)} = J Pn(r)dr (2.5) 
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then for the scaled electron density 

P x ( r ) = X3p(Xr) (2.6) 

the exact exchange energy must satisfy 

K[px(r)} = XK[p(r)} (2.7) 

Hence, for Eq.(2.5) 

J XZnpn{Xr)dr = x j pn{r)dr (2.8) 

Substi tuting x' = Xx,y' — Xy,z' = Xz, this becomes 

A 3 ' l / / ( r ' ) ^ = A / p " ( r ) d r (2.9) 

or 

A3n-3 J p n ( T y T > = X j p n ^ d r ( 2 .10) 

which requires n to equal | . Including Eq.(2.4) in the Thomas-Fermi model 

leads to the Thomas-Fermi-Dirac model ( T F D ) [48]. 

The importance of these models stems f rom the fact that the energy was 

completely expressed in terms of the electron density p(r) and not f rom the 

accuracy of their predictions. The assumptions of a non-interacting U E G 

do not hold for atomic and molecular systems. Energy errors are typically 

15-50%, but more seriously neither T F nor T F D predict molecular binding. 

2.3 Hohenberg-Kohn theorems 

I n 1964 Hohenberg and Kohn [49] proved in their two theorems how the 

previous T F and T F D models could be considered as an approximation of 

an exact ground-state theory. 

Quoting f rom the Hohenberg-Kohn paper, the first theorem states that 

'The external potential v is determined within a trivial additive constant by 

the electron density p(r)'. Since, in turn , p(r) integrates to the number of the 
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electrons, i t follows that p(r) also determines the ground-state wavefunction 

and all the other properties of the molecule. 

The proof of the theorem is based on a reduction ad absurdum. Consider 

two external potentials vext and t / x t that differ by more than a constant, but 

give rise to the same electron density p(r). The two Hamiltonians H and H' 

then differ only by the potential 

H = f + Vee + vext ( 2 . 1 1 ) 

H' = t + Vee + v'exl ( 2 . 1 2 ) 

where T and Vee are the kinetic and electron-electron repulsion operators. 

The two Hamiltonians H and H' give two different energies and wavefunc-

tions but their associated electron density is the same. Using as a t r i a l 

funct ion for the H problem, applying the variational principle gives 

E0 < (*'\H\*') = (V\H'\V) + - H'\V) = E'0 + J p ( r ) [ v m t - v'Jdv 

( 2 . 1 3 ) 

taking instead $ as a t r ia l function for H' we have 

E'0 < (*\H'\*) = £ 0 - J p(v)[vext - v'eJdr ( 2 .14 ) 

Adding the two energy expressions above we obtain the contradiction 

E0 + E'0<E'0 + E0 ( 2 . 1 5 ) 

Hence, the electron density determines al l the ground state properties of a 

molecular system, and the total energy of a system can be wr i t ten in terms 

of the external potential as 

KeJp] = J p(r)vext(*)dr + FHK[p] ( 2 .16 ) 

where F H K [ P ] ; the Hohenberg-Kohn functional, is a universal functional of 

the electron density, including the kinetic energy of the system, the classical 

Coulomb repulsion and all the remaining non-classical terms 

-FHK[P] = T[p] + J[p] + nonclassical terms. ( 2 . 1 7 ) 
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The second theorem is the variational principle in D F T . Its existence is nec­

essary in order to ensure that the electron density used to predict the proper­

ties of interest is the exact one which minimizes the energy of the molecule. 

The theorem states that 'For a trial density p(r) such that p(r) > 0 and 

$~p(T)dT = N 

En < EVext[p] (2.18) 

where EVEXT is the energy functional above.' 

The proof is based on the wavefunction variational principle. Any t r i a l 

density p(r) defines its own Hamiltonian H and its own wavefunction ^ ; 

taking i t as a t r i a l wavefunction for the real Hamiltonian H generated by the 

true external potential f e x t ( r ) we obtain 

< t t | A | ¥ ) = / p ( r ) v e K t d r + FHK[p] = E[p] > E V B J P ] = (ik\H\ik) (2.19) 

By imposing that EVEXT is d i f ferent ia te , and introducing the Lagrange mul­

tipliers p,, to enforce the condition that the electron density integrates to the 

to ta l number of electrons, the variational principle Eq.(2.18) requires that 

the Euler-Lagrange equation 

5Ev[p] 5FHK[p] 

must be satisfied. 

2.4 The Kohn-Shani approach 

I n 1965, Kohn and Sham observed that most of the problems related w i t h the 

Thomas-Fermi and Dirac models were connected wi th the poor description of 

the kinetic energy [50]. Hence, they developed a new approach, introducing 

an auxiliary reference system of N non-interacting electrons moving in an 

external potential vs whose density equals the true density. The Hamil tonian 

Hs for this system is 

tfs = - ^ £ V ? + £ > s ( r 8 ) (2.21) 
L i i 
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and its wavefunction ^ s is a single Slater determinant 

\& s(xi,x 2, = 
1 

^ s ( X l ) ^ < s ( X l ) ••• ^ s ( X l ) 

<pf s (x 2 ) y > f ( x 2 ) . . . < ^ s ( x 2 ) 
(2.22) 

<pf{xN) ^ f ( x w ) ••• <Pw(xJv) 

The Kohn-Sham orbitals </?f s are obtained f rom the one-electron equations 

1. 
= £i<Pi* (2.23) 

The kinetic energy Ts of this non-interacting system is then 

N 
Ts[p] = £<tfE (2.24) 

and its density is 

P(r) = E K ^ S ) ( r ) | 2 (2.25) 
i 

In the Kohn-Sham approach, the Hohenberg-Kohn functional F H K [ p ] is 

rewrit ten as 

FHK[p] = Ts[p] + J[p] + Exc[p] (2.26) 

where 

Exc[p] = (T[p] - T,[p]) + ( K e H - J[p}) (2.27) 

is the exchange-correlation energy term including the difference between the 

real kinetic energy and that of the non-interacting system, and all the non-

classical contributions to the electron repulsion. The to ta l energy of the 

system is then 

E[p] = Ts[p] + j p(r)vUr)dr + J[p] + Exc[p] (2.28) 

By applying the second Hohenberg-Kohn theorem to Eq.(2.28), recalling that 

the the electron density that minimizes the tota l energy E[p] is the ground-

state electron density which satisfies the Euler equation Eq.(2.20), we obtain 

I1 = T77TT + uext(r) + ~ 7~T + 8p(r) 6p(r) 5p{r) 
(2.29) 



2.4. T h e K o h n - S h a m approach 22 

or 

H = veft(r) + (2-3°) 

where veff{r) is the effective Kohn-Sham potential 

r P(T') 
vea(r) = vext(r) + J yz^T\dT' + v™(r) ( 2 - 3 1 ) 

and 

( 2 ' 3 2 ) 

is the exchange-correlation potential. Eq.(2.30) is the same as is obtained 

in conventional D F T (Eq.(2.20)) when applied to a non-interacting system 

w i t h potential t> e f f(r). Hence, i t is possible to obtain the electron density 

that minimizes the energy of the real system by solving the N one-electron 

Kohn-Sham equations 
1, 
2 V 2 + v j r ) < ^ s ( r ) = ^ f ( r ) (2.33) 

w i t h 

P(r) = £ k K S ( r ) | 2 (2.34) 
i 

The tota l energy expression Eq.(2.28) can equivalently be wr i t t en as 

E = l L £ i - \ j P^-r'\ d T d T ' + E x c [ p ] ~ I v ^ P ^ d r ( 2 - 3 5 ) 

The Kohn-Sham and Hartree-Fock equations are very similar. However, there 

are key differences. The Kohn-Sham equations include a more general mul­

tiplicative potential, which fu l ly incorporates the exchange-correlation inter­

action. Much of this thesis attempts to derive improved expressions for the 

only unknown term E x c - The exact knowledge of i t would provide, exactly, 

both the electron density and the energy of the system. 

2.4.1 The unrestricted Kohn-Sham approach 

By analogy w i t h Hartree-Fock, in an unrestricted formalism, there are two 

spin-dependent Kohn-Sham effective potentials 

^ r ) = ^ r ) + / ^ r < + ^ f 5 (2.36) 
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^ W - - W + / ^ + ^ ^ ! , , 3 7 ) 

2.4.2 Interpretation of the Kohn-Sham orbitals 

Significant interest has been paid to the physical meaning of the Kohn-Sham 

orbitals. For a long t ime they were considered only a mathematical tool 

leading to the exact electron density, without any physical meaning [51]-[54]. 

However, this statement is not completely true. I t has been shown that the 

eigenvalue of the highest occupied Kohn-Sham orbital ^ p M O ( r ) is exactly 

equal to negative of the exact ionization energy [55, 56] 

£HOMO = -I (2.38) 

which contrast the approximate Hartree-Fock results in Eq. 1.19. This is a 

direct consequence of the long-range law for the electron density which states 

that its asymptotic behaviour is governed by the first ionization energy [57] 

p(r) ~ exp [ -2 (2 / )5 r ] (2.39) 

Hence, i f p(r) is represented by a finite number of Kohn-Sham orbitals, its 

asymptotic behaviour is determined by the one-electron energy of the highest 

occupied orbital , that has to be equal minus the ionization energy. Note that, 

this is valid only i f the Kohn-Sham orbitals are obtained f rom the exact 

asymptotically vanishing exchange-correlation potential. 

By contrast, no precise interpretations have been defined for the remain­

ing Kohn-Sham orbitals, both occupied or virtuals. To date, they have been 

used only as qualitative tools to interpret the excitation energies in D F T . Fur­

ther insights in this direction are under development w i th in time-dependent 

density functional theory [58]. 

2.4.3 The exchange-correlation potential 

The exchange-correlation potential v x c ( r ) m Eq.(2.32) is the functional deriva­

tive of the exchange-correlation energy. Since the exact energy functional is 
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s t i l l unknown, the exact potential also remains unknown. 

Nevertheless, in recent years, many investigations have been performed 

to describe the principal characteristics of the exchange-correlation potential, 

since i t is central to D F T . By its definition, i t is a multiplicative potential 

that introduces the effects of exchange and correlation wi th in the Kohn-

Sham approach. Moreover, i t has been shown that its asymptotic behaviour 

plays an important role in the description of molecular properties such as 

polarizabilities and excitation energies to Rydberg states [59, 60]. 

2.4.3.1 T h e derivative discontinuity 

I n 1982, Perdew et al. [55] demonstrated that the exact exchange-correlation 

potential has a discontinuity when passing through an integer number of 

electrons. The potentials on the electron deficient and electron abundant 

sides of the integer are parallel but shifted f rom one another by some system 

dependent amount. In practical calculations, no continuum functionals can 

reproduce such a discontinuity; they can at best provide an average descrip­

t ion [61]. Hence, as a consequence, an accurate continuum potential should 

not vanish asymptotically [55, 62, 63]. 

I n 1998, Tozer and Handy [64] argued that in an unrestricted formalism, 

the best continuum potential must have the form 

vxc{r) = v°xc + vxc(oo) (2.40) 

where v x c ( r ) is the potential which vanishes asymptotically and u ^ o o ) is 

the asymptotic potential. In asymptotic regions Eq.(2.40) behaves as 

l i m v x c ( r ) = " - - + vxc(oo) (2.41) 
r—>oo r 

From the asymptotic form of the Kohn-Sham equations [56, 57, 65], i t is then 

possible to obtain the generalized Koopmans' theorem 

£HOMO - ^xc(oo) = -I (2.42) 
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where I is the lowest ionization energy and £HOMO is the H O M O Kohn-Sham 

eigenvalues. 

I t is important to point out that rather than regarding the Koopman's 

theorem as a simple way to relate the highest occupied eigenvalue to the 

ionization potential, i t represents instead a way to define the asymptotic 

potential for all the molecular systems 

^xc(oo) = -I + eHOMO (2.43) 

which can be substituted in Eq.(2.41), to give 

lira ^ x c ( r ) = - - + / + £ H O M O (2.44) 
r—>oo T 

2.4.3.2 T h e Z h a o - M o r r i s o n - P a r r procedure 

I n recent years there has been much interest in obtaining near-exact exchange-

correlation potentials f r o m electron densities [66]-[71]. Our interest has fo­

cused on the Zhao, Morrison, Parr approach (ZMP) [72]. 

W i t h i n the Kohn-Sham framework, Z M P proposed to minimize the non-

interacting kinetic energy Ts[p\, over all the one-electron determinants which 

yield the exact density p0 [73]. Consequently, by imposing that the self-

repulsion is zero 

f f [P(r)-P0(r)}[p(r')-P0(r')]drdil = Q ( 

J J |r — r'| 

they enforced the constraint that, during the entire minimization process, 

a density p equals the exact density p0. Introducing Lagrange multipliers 

to enforce the orthonormality condition of the Kohn-Sham orbitals and A 

for the constraint in Eq.(2.45), minimizing w i t h respect to the fo rm of the 

orbitals gives 

V ( r ) = c ^ ( r ) (2.46) 

where 

^ ( r H A / ' ^ f V (2.47) 
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w i t h the superscript A indicating a dependence on the value of A. Z M P then 

introduced two more terms into the minimization. These did not affect the 

solution of the problem but gave the equation a more recognizable fo rm 

- ^ V 2 + t U r ) + ( l - i ) ^ ( r ) + ^ A (r ) ] ^ ( r ) = e ^ A ( r ) (2.48) 

where 

< U r ) = - £ r ^ - T (2.49) 

is the external potential and 

,A/„\ r P V ) 
v3 

w = / t ^ > ' ( 2 ' 5 0 ) 

is the Coulomb potential. The constraint (1 — is the Fermi A m a l d i 

factor [74]. 

Through Eq. (2.48) they obtained the orbitals that minimize the non-

interacting kinetic energy: the Kohn-Sham orbitals. Hence, Eq.(2.48) are the 

Kohn-Sham equations and the corresponding exchange correlation potential 

v x c ( r ) is rewritten as the sum of the Fermi-Amaldi contribution, which in­

troduces the correct asymptotic (—£) behaviour to the exchange-correlation 

potential, and the constraint potential vx(r) 

V*C(T)= ( - - ^ ( r ) + « c

A ( r ) ) (2.51) 

The last step of this process is the optimization of the parameter A to the 

value for which the minimizat ion returns the t r i a l density p A ( r ) equal to the 

exact density po( r ) [75]. By denoting the function to be minimized F(p) and 

the constraint G(p), then the Lagrange equations are VF + XVG = 0 f rom 

which A = V F / V G . The constraint G is quadratic in px — p0, so its gradient 

is linear in px — p0, hence V G = 0 when the equations are satisfied. We can 

therefore deduce that the l im i t for A —>• oo must be taken to ensure that the 

minimizat ion returns px = p0. In conclusion, the exact expression for the 

exchange-correlation potential is 

v xc 
( 2 ' 5 2 ) 
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The potential vanishes asymptotically and so i t represents the exact potential 

on the electron deficient side of the integer. 

2.4.4 The self-interaction problem 

As mentioned in Chapter 1, self-interaction can be a problem in D F T . Con­

sidering the to ta l Kohn-Sham energy expression Eq.(2.28) and applying i t to 

a one-electron system, i t is clear that the only relevant energetic contribu­

tions are the kinetic energy term and the nuclear-electron attraction. Hence, 

the classical repulsion term 

J\A = \S /^Hfc,*, (2.53) 

must be cancelled by Exc[p\ 

Exc[p(r)} = - J [ p ] (2.54) 

Conversely to Hartree-Fock theory, where for one-electron systems the ex­

change term does exactly cancel the Coulomb term, in density functional 

theory Eq.(2.54) is not satisfied wi th approximate functionals. 

I n 1981 Perdew and Zunger [76] proposed a self-interaction corrected 

procedure (SIC) to develop exchange-correlation functionals enforcing the 

condition i n Eq.(2.54). This lead to complicated orbital dependent equations 

that, when applied to molecules, did not provide significant improvement 

over the regular Kohn-Sham equations [77]. Nowadays, the self-interaction 

problem is s t i l l under study since i t is commonly believed to be the cause of 

the poor performance of D F T in representing the reaction barriers and the 

dissociation of radicals [78, 79]. We investigate this in Chapter 3. 

2.5 Approximations for E x c [ p ] 

I t is therefore v i t a l is to find the best approximation for the exchange-

correlation energy functional . Since the advent of D F T , many different ap­

proximations for Exc[p\ have been developed. We now introduce the three 
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main families of exchange-correlation functionals that are used in practical 

calculations. 

2.5.1 Local density approximation (LDA) 

The local density approximation (LDA) locally applies expressions that are 

appropriate for a uni form electron gas. For this approximation the expres­

sions for the exchange-correlation energy are known precisely or w i t h a very 

high accuracy. The general expression for Exc[p] can be cast in the following 

fo rm 

£ x c > ] = / p(r)exc(p)dT (2.55) 

where e x c represents the exchange-correlation energy per particle of a U E G 

of density p. e x c is then split into an exchange part and a correlation part 

£xc = £x + £c (2.56) 

where the exchange term [80] 

= --4(IY P'(r) (2-57) 

gives the Dirac expression 

r |^i07" l ( r )* (2-58) 

This case is valid when pa and pp are equal (closed-shell), however when 

Pa 7̂  Pp-, Eq.(2.58) is replaced by the local spin density approximation 

(LSDA) where the two spin densities are employed; the corresponding ex­

change energy is 

' 4 4 
Pl+pj dr (2.59) 

From Eq.(2.58) and Eq.(2.59) i t is clear that for closed shell molecules (pa = pp 

L D A and LSDA are exactly coincident. 

The correlation contribution in L D A is equally important and many stud­

ies have been performed to develop the corresponding accurate correlation 



2.5. Approx imat ions for Exc[p] 29 

energy contribution. Unfortunately, no explicit expressions are available for 

ec, however, thanks to the work of Ceperley and Alder [81] who performed 

a series of quantum Monte-Carlo calculations, accurate values for ec have 

been derived. Vosko, W i l k and Nusair ( V W N ) [82] later interpolated these 

values, providing an analytic fo rm for ec, which is amongst the most widely 

used nowadays. A more recent description of the correlation energy was 

introduced by Perdew and Wang (PW) [83]. 

I t is necessary to underline that the L D A approximation assumes a uni­

fo rm electron density. For this reason, its applicability is not recommended 

for atoms and molecules where the electron density does not approach the 

U E G situation. Nevertheless solid-state physicists consider i t satisfactory 

and for many years i t has been used, due to the slowly varying density in 

solids when pseudopotentials are employed. 

2.5.2 Generalized gradient approximation ( G G A ) 

A more accurate approximation over L D A is represented by generalized gra­

dient approximation (GGA) exchange-correlation functionals. The origin of 

this approximation is the idea of considering not only the electron density 

but also its gradient, in order to represent properly the real inhomogene-

ity. The first study in this direction considered the L D A approximation as 

the first t e rm of a Taylor expansion in which the second term, involving the 

second-order gradient of the electron density, would have represented the re­

quired correction to improve the molecular predictions. This attempt, which 

is known as the gradient expansion approximation (GEA) [84]-[87], d id not 

br ing any improvement; i t provided even worse results than L D A . A t the 

beginning of the 1980's Perdew [88] proposed to include only the gradient 

of the electron density removing any higher order, generating the so-called 

G G A functionals. The general expression for a GGA is wr i t ten 

^ x c A [ P a , ^ ] = / f(Pa,pp,VpQ,VP0)dr (2.60) 
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which can be split into exchange and correlation contributions as 

E°°A = E°aA + E°aA (2.61) 

Focusing our attention on the exchange functional we can rewrite i t as 

EOOA = E , D A f { S a ) p l { r ) d r (2.62) 
a J 

where sa is the reduced density gradient 

M r J = — 4 (2.63) 
Pl (r ) 

a dimensionless parameter describing the local inhomogeneity. Eq.(2.62) en­

sures the scaling condition, Eq.(2.7) is satisfied. 

Many studies have been carried out in order to develop the best G G A 

exchange functional and two main approaches have been followed. The first 

one, known as semi-empirical, was suggested by Becke in 1988 [89], who intro­

duced a general procedure in order to derive the parameters of the functionals 

by f i t t i ng to known thermochemical values. The first functional derived fo l ­

lowing this method is the so called B88 

/ B 8 8 = ^ (2.64) 
J 1 + 6Ps„ s i n h - 1 sa

 V ' 

where the parameter ft, was derived via a least-squares fit to the exactly 

known exchange energies of the rare gas atoms He through Rn. In the sec­

ond approach, leading to the first-principles functionals, the integrand / is 

expanded as a rational function of the electron density and of its gradient 

wi thout the introduction of any semi-empirical terms. This category includes 

the widely used PW91 functional [90, 91] 

f P w 9 i _ . L D A 1 + s ° a i s i n l T ^ a z ) + (a 3 + a^e-ba«)sl 
J ~ x 7~. • , - 1 / T ~ o (t-OO) 1 + saai sinh (saa2) + a5s£ 

where a\...a5 are suitable parameters and the Perdew Burke and Ernzerhof 

(PBE) functional [92]. 
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A n even more complicated task is to derive the corresponding G G A cor­

relation functionals. In many cases, very sophisticated mathematical expres­

sions are necessary. Among the most widely used correlation functionals, 

we mention the counterpart of the exchange P86 [93] which involves a semi-

empirical parameter determined by a fitting of the correlation energy of the 

neon atom. A few years later, Lee, Yang and Parr [94] derived the correlation 

functional LYP, involving only one parameter obtained w i t h the definit ion 

of the correlation energy of the helium atom, f rom a detailed study by Colle 

and Salvetti [95]. 

I t is important to point out that the correlation functionals, due to their 

functional expansion or the fitting procedure used to derive them, include 

only short-range correlation effects (dynamic correlation). Long-range ef­

fects (left-right or non-dynamical correlation) are not taken into account. 

Recently, Handy and Cohen [96] highlighted that left-r ight correlation ef­

fects are already included in local exchange functionals. 

Once expressions for E°ax and E°GA have been obtained and their per­

formances have been assessed, i t is possible to combine them according to 

Eq.(2.61) to create a complete G G A exchange-correlation functional. I n prin­

ciple, any exchange functional could be combined w i t h any correlation one. 

So far, however, only a few combinations are in common use and among them 

we mention BLYP, BP86 and BPW91. 

We note that i t is possible to determine G G A functionals where the ex­

change and the correlation part are derived together, simultaneously. Among 

these functionals, one of the most successful is HCTH-93 [97] which has been 

bui l t through a re-parameterisation of the B97 G G A component [98] (that 

we w i l l introduce in Section 3.1) w i th expansion parameters derived by f i t ­

t ing to thermochemical data, molecular geometries and exchange-correlation 

potentials. We w i l l describe in detail its derivation in Chapter 3. Further 

re-formulations of HCTH-93 using larger sets of fitting data led to the devel­

opment of HCTH-120 [99], HCTH-147 [99], and HCTH-407 [100]. 
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Finally, most recently, the so called meta-GGA functionals [101] were 

proposed where, besides the local density and its gradient, the laplacian or 

the kinetic energy density also enters the equations. To date, these funct ion­

als have not been widely used as their performance is no better than other 

approximations. 

2.5.2.1 T h e enhancement factor 

In order to describe the gradient dependence in GGA functionals, we intro­

duce the exchange-correlation enhancement factor f x c { r s , s ) [102]. In general, 

in the spin-unpolarized case where (pa = pp = | ) , the expression for a G G A 

functional can be wri t ten as 

£ x

G c G A = - / £ ( 3 7 r 2 p ) ^ ( r ) / ; c ( r „ s)dv (2.66) 

where f ' x c ( r s , s) is the enhancement factor. This is a funct ion of the Wigner-

Seitz radius rs 

r- = ( ^ ) 3 <2-67> 
and of the reduced density gradient s 

» W = ^ (2.68) 

The enhancement factor must satisfy a range of exact conditions: 

1. In the case of a slowly varying electron density, which corresponds to very 

small values of s 

f x c ( r s , s = 0) = f £ ° A ( r s ) (2.69) 

2. From the following fundamental scaling condition 

Exc[px] > XExc[p] for (A > 1) (2.70) 

i t follows that [103, 104] 

f L ( r ' s , s ) > f x c ( r s , s ) for (r's > r.) (2.71) 
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3. I n the high density regions, i.e. for small values of rs, i f f'xc = f'x + f'c 

\ i m f x c ( r s , s ) = f x ( s ) (2.72) 
r$ —rv 

4. A t large values of s 

Urn £(r., * ) - • ( ) (2.73) 

5. Finally, f'xc must satisfy the Lieb-Oxford bound [105], which originally 

was equal to 2.27 and recently was redefined to be 2.2143 [106] 

f U r s , s ) < 2.2143 (2.74) 

2.5.3 Hybrid functionals 

A t h i r d approximation are the so-called hybrid functionals. The exchange-

correlation functional Exc[p] is represented as a combination of G G A com­

ponents for exchange and correlation, w i t h the introduction of an amount of 

exact Hartree-Fock exchange. Since their first appearance, hybrid function­

als obtained a positive feedback among computational chemists due to their 

reduced errors compared to GGAs. 

The most natural approach would be to use the exact Hartree-Fock ex­

change and rely on approximate functionals only for the correlation contri­

bution. I f applied to atoms, this method delivers promising results, however 

when applied to molecules, i t is inappropriate. I n 1993, Becke proposed a dif­

ferent approach, known as the half-and-half (HH) approximation [107], com­

bining 50% of exact exchange and a density functional exchange-correlation 

energy 

Kc = \ K S D A + \E7 + Eo (2.75) 

Following this, Becke developed the following functional [108]. 

Exc = (1 - a ) ^ S D A + aE™ + bE»8S + E^SDA + cE™gi (2.76) 
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This is considered the cornerstone among hybrid functionals and its three pa­

rameters a, b, c weighting the different contributions, are determined through 

a f i t to experimental data. I n 1994 Stevens et al. [109] replaced the PW91 

correlation contribution wi th LYP, generating the well known B3LYP func­

tional where a = 0.20, b = 0.72 and c = 0.81. 

I n 1997 Becke proposed a more general expansion [110] 

E™ = + £ f + E%a + + Ef + c f £ f (2.77) 

w i t h all terms, except the exact exchange energy, being a polynomial expan­

sion involving the electron density and its gradient. These expansions were 

truncated at second order, to avoid over-parameterized functionals. The ten 

expansion coefficients were determined by a least-squares f i t to energetic data. 

The results obtained w i t h this functional were very successful and there have 

been further attempts to re-parameterize i t . In 1998 Hamprecht et al [97] 

derived the B97-1 hybrid functional and more recently Tozer et al [111] pro­

posed B97-2. Further re-parameterization of B97 is s t i l l in progress, as w i l l 

be discussed in Chapter 6. Important aspects regarding the quality of exper­

imental data and the amount of exact exchange to include in the functional 

s t i l l need to be addressed. 

Amongst hybrid approximations, there are also parameter-free funct ion­

als (which corresponds to the first principle category among G G A ) . Among 

the most successful ones we mention PBE0 [112, 113] which has been deter­

mined by Barone and Adamo, connecting the G G A functional P B E w i t h a 

predefined 25% of exact exchange. 

EZE0 = 0 . 2 5 £ £ F 4- 0 . 7 5 £ £ B B + E™ (2.78) 



Chapter 3 

New G G A exchange-correlation 

functionals 

The development of new approximations to the exchange-correlation energy 

functional is of v i ta l importance. I n this chapter we investigate a completely 

new approach, developing functionals solely f rom ab initio electron densities. 

A range of functionals are determined by emphasizing different regions of 

space. Functional quality is assessed by considering a wide range of atomic 

and molecular properties. Attempts are made to further improve functional 

performance. 

3.1 The HCTH-93 functional 

We commence w i t h a discussion of the HCTH-93 functional, since our new 

funct ional w i l l use the same mathematical form. The general expression for 

the HCTH-93 [97] functional is wr i t ten in terms of the G G A component of 

the B97 functional [98], developed by Becke. I t is wri t ten as the sum of an 

exchange and a correlation term where the exchange part is 

£ x = £ / <&DAMg„{£)dr (3.1) 

35 
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The ex

sJ)A(p(T) term represents the a-spin exchange energy density of a uni­

fo rm electron gas w i t h spin density equal to its local value pa and is wr i t t en 

as 

^r{Pa) = - \ { ~ ) h l . (3.2) 

gXa is the gradient factor correcting the LSDA underestimation of the ex­

change energies for inhomogeneous systems. I t depends on sa which is the 

reduced spin-density gradient (See Eq.(2.68)) and is defined as 

m 
<?Xa = £ c X ( T < a (3-3) 

j=0 

where 

uxa = 0 .0044(1 + 0 . 0 0 4 4 ) - 1 . (3.4) 

The corresponding correlation part is separated into two contributions, one 

for parallel spins E°°£ and one for opposite spins E°°p, 

£ c = + (3-5) 

I n a similar manner as in Eq.(3.1), the parallel-spin contribution is wr i t t en 

as 

Ecaa = W e^{pa)gCa(J{sl)dv (3.6) 

where the gradient correction term is wr i t t en 
m 

9caa = CCatTUl

Ca(T (3-7) 

w i t h 

u c < j a = 0 . 24 (1 + 0.2sl)-\ (3.8) 

and the opposite-spin contribution is wri t ten 

Eaap = J e^A{pa,Pf))gcap(sls)dr (3.9) 

where the corresponding gradient correction is 

m 
gca/3 = CCt*PulCap (3-10) 

i=0 
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w i t h 

u c a P = o .oo6£ g ( i + o.ooes^)-1 (3.11) 

and s^vg the average of the squared reduced density gradient for spin a and 

spin P 

*Lt = l(*L + s})- (3-12) 

I n both Eq.(3.6) and Eq.(3.9), e ^ ° A and e ^ A are uni form electron gas cor­

relation energy densities per unit volume, derived f rom the total LSDA cor­

relation energy density, using the following procedure [114] 

eL

c

s

af(Pa, pp) = e™A(pa, pp) - e ^ A ( p a , 0) - e ^ { p 0 t 0) (3.13) 

« A ( P . ) = ^ S D A U , , 0 ) (3.14) 

where e £ S D A has been derived f rom the parameterization of Perdew and 

Wang [83]. 

The parameters defining HCTH-93 were determined as follows. A set of 

93 atoms and molecules f rom the first two rows of the periodic table were 

chosen. These systems, defining the training set ( T ) , are listed in Table 3.1. 

The quantity Q, defined as 

Q = wESlE + w a f l a + wv£lv (3.15) 

where wE, wa and wv are energy, gradient and potential weights, was then 

minimized in order to ensure that the functional provided: 

1) accurate tota l energies (E) for for first-row atoms and cations A x and A + ; 

accurate ionization potentials (IP) for selected second-row atoms A2 and 

accurate atomization energies (AE) for systems M through 

18 + + 7 61 
VB = l > x c A l - EX* ] 2 + £ [ ' ^ - IP£? + j:iAE?c - AE"f (3.16) 

A i A2 M 

2) accurate nuclear gradients (G) for molecules M (i.e. zero i f the calculations 

are performed at equil ibrium geometries), through 

N M - l 

M I 

dE?c dE™ 
(3.17) 
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3) accurate exchange correlation potentials for all the 93 systems M , A j , A + , 

A 2 and A2" (indicated w i t h T ) through 

« v = E E / d r [ v Z P + k T a - < f f (r)] 2 pl(r) . (3.18) 

In i t i a l values were chosen for k T a , which represents the unknown shift between 

the near-exact Z M P potential and the exact continuum a potential for system 

T. Q was then minimized w i t h respect to the expansion coefficients { c j } 

on 
da 

= 0, (3.19) 

to obtain a set of least-squares equations for the new coefficients. The new 

coefficients were then used to determine a new set of shifts 

on 
dkTa 

0. (3.20) 

and the procedure was iterated to self-consistency. 

3.2 A new fitting approach 

The introduction of the exchange-correlation potentials in the fitting proce­

dure of HCTH-93 corrected some deficient results obtained w i t h functionals 

derived only by f i t t i n g to thermochemical data, where only integrated quanti­

ties were taken in consideration [97]. Following this consideration, we choose 

to consider a completely new approach to functional development, f i t t i n g 

solely to the exchange-correlation potentials. There are several reasons for 

this choice: 

(a) By f i t t i n g only to potentials the emphasis w i l l be shifted toward quanti­

ties related to the energy derivatives, such as molecular structures and N M R 

shielding constants. These are some of the most important theoretical pre­

dictions. 

(b) Even though not directly included in our f i t t i n g procedure, energetic in ­

formation w i l l s t i l l be taken into account since the tota l exchange-correlation 
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Table 3.1: Specification of the systems (T) in the training-set used to generate 

HCTH-93 

1. M : H 2 , L i H , BeH, CH, C H 2 ( 1 A ) , C H 2 ( 3 B ) , C H 3 , C H 4 , N H , N H 2 , N H 3 , 

O H , H 2 0 , HF, L i 2 , L i F , C 2 H 2 , C 2 H 4 , C 2 H 6 , CN, H C N , CO, HCO, 

H 2 C O , C H 3 O H , N 2 , N 2 H 4 , 0 2 , H 2 0 2 , F 2 , C 0 2 , S i H 2 ( 1 A ) , S i H 2 ( 3 B ) , 

S i H 3 , S i H 4 , P H 2 , P H 3 , HC1, Na 2 , S i 2 , P 2 , S 2, C l 2 , NaCl , SiO, CS, SO, 

CIO, C1F, CH 3 C1, CH 3 SH, HOC1, S 0 2 , HF+, HC1+ CO+, N+ , O j , 

P+, S2

+, C l 2

+ {61} 

2. A i : H , He, L i , Be, B , C, N , O, F, Ne {10} 

3. A + : L i + , Be+, B+ , C+, N+ , 0 + , F+, Ne+ { 8 } 

4. A 2 : Na, Mg, A l , Si, P, S, CI { 7 } 

5. At: Na+, Mg+, A1+, Si+, P+, S+, C l + { 7 } 

The number enclosed in the brackets indicate the number of molecules for each subset 
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energy can be wri t ten as a path integral over an appropriate funct ion of the 

exchange-correlation potential [116]. Furthermore, differences on the poten­

t i a l energy surface (such as atomization energies and reaction barriers) can 

be wr i t t en as a path integral over the nuclear derivative, which is itself de­

termined by the potential. 

(c) The exchange-correlation potential is a scalar field, so emphasizing dif­

ferent spatial regions of the field w i l l give different functionals. This w i l l 

provide information about the spatial dependence of molecular properties. 

(d) Removing the thermochemical and gradient aspects of the fit w i l l sig­

nificantly reduce the empiricism. The only experimental data w i l l be the 

structures used in the determination of the ab initio densities. They could 

be eliminated by using theoretically optimized geometries. 

(e) I t has been shown that the asymptotic contribution to the electronic en­

ergy is not insignificant [117]. Conventional functionals such as HCTH-93 

fa i l to describe this energy because their potentials vanish asymptotically. I f 

the experimental thermochemistry were to be reproduced, then the asymp­

tot ic energy contribution would be incorrectly accounted in the core/valence 

regions. Removing the thermochemical aspect of the fit w i l l eliminate this 

inconsistency. 

We note that several authors have emphasized exchange-correlation po­

tentials in their studies [64],[118]-[120]. However, these studies have generally 

focused on determining model exchange-correlation potentials, rather than 

exchange-correlation functionals. The absence of an associated functional 

can lead to a breakdown in translational invariance because the potential 

is not necessarily a functional derivative [117]. By concentrating on new 

functionals rather than potentials, we do not encounter these problems. 
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3.2.1 Functional development 

We use the same mathematical fo rm as for HCTH-93 involving 15 expansion 

coefficients { c ^ } . We also use the same training set of 93 molecules used to 

determine HCTH-93 although this t ime we w i l l f i t only to their exchange-

correlation potentials, determined using the ZMP [72] procedure described 

in Chapter 2, w i t h Brueckner doubles (closed-shell) and MP2 (open-shell) 

electron densities w i t h the TZ2P basis set [121]. Opt imum coefficients were 

therefore determined by setting 

Mols a,P . 

fi = " v = E E d r + kTa - vi:f WTa(r) (3.21) 
T O 

where WTa(r) is a spatial weighting funct ion, and minimizing Q w i t h respect 

to the coefficients and to the shifts as in Eq.(3.19) and Eq.(3.20). This 

generates a functional whose potential for each of the systems T is maximally 

parallel (shifted by kTa) to the ZMP potential of that system. A related 

approach was previously investigated in Ref. [122], although a much less 

flexible functional form was used and the f i t t i ng data set was much more 

restricted. Moreover, the spatial weighting functions were not varied and 

most importantly, the discontinuity in the potential (hence, the shifts ho) 

was not accounted for. 

I f the potential of the fitted functional could exactly reproduce the near-

exact Z M P potential then O would be zero for any weighting funct ion ^ ( r ) , 

I n the original HCTH-93 development WT(T(r) was chosen to be 

W w ( r ) = p U r ) (3.22) 

where p was fixed to | . I n the present study, we again use the same form 

for WTa(r)} but we emphasize different regions of space using the following 

range for p 

p=l- (3.23) 

where % = 0...7. Regions close to the nuclei are emphasized w i t h large values 

of p and regions far away are emphasized w i t h small values. As in previous 
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studies [63, 123], the converged shifts fczv are positive, of the order of several 

electron volts. This reflects the dominant role of the Dirac local exchange 

term (wi th prefactors close to the unity) in our new functionals, which ap­

proximately averages over the discontinuity in the potential in nonasymptotic 

regions, and so is shifted f rom the asymptotically vanishing Z M P potential. 

The resulting functionals therefore give highest-occupied molecular orbi ta l 

( H O M O ) eigenvalues that lie significantly above —/, as they should. A l l the 

expansion coefficients defining the functionals developed in this chapter are 

presented in Appendix A. 

3.3 Functional assessment 

The eight functionals were implemented in the CADPAC [124] program and 

were used to determine molecular structures, thermochemistry, polarizabil-

ities and shielding constants for a range of molecules defined in Tables 3.1 

and 3.2. Mean and mean absolute errors are presented in Table 3.3. A l l the 

calculations were performed using the TZ2P basis-set [121], unless otherwise 

stated. 

3.3.1 Molecular structures 

We determined the optimized molecular structures for the systems S defined 

in Table 3.2. This is a subset of the molecules M in Table 3.1, where the 

experimental structures are well known, p = 0 gives errors comparable w i t h 

HCTH-93 and bond angles that are a slight improvement. Increasing the 

value of p to | and § led to a significant improvement in the bond lengths, 

w i t h mean absolute errors of 0.007 A and 0.006 A, respectively. Further 

increasing p reduces the accuracy. 
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Table 3.2: Specification of the systems studied in this work 

1. S: H 2 , L i H , BeH, CH, C i t y 1 A ) , C H 2 ( 3 B ) , C H 3 , C H 4 , N H , N H 2 , N H 3 , 

O H , H 2 0 , HF, L i 2 , L i F , C 2 H 2 , C 2 H 4 , CN, H C N , CO, HCO, H 2 C O , 

N 2 , 0 2 , H 2 0 2 , F 2 ) C 0 2 , HC1, Na 2 , S i 2 , P 2 , S 2, C l 2 , NaCl, SiO, CS, SO, 

CIO, C1F {40} 

2. P: H F , H 2 0 , N 2 , CO, F 2 , N H 3 , C 0 2 , C H 4 , C 2 H 4 , P H 3 , H 2 S, S 0 2 , HC1, 

C l 2 {14} 

3. SC: HF, H 2 0 , CO, N 2 , F 2 , 0 3 , H 2 S, S 0 2 , PN, t rans-N 2 F 2 {10} 

4. Radicals: B H + , NH+, OH+, BeF, B N , BO, CF, NF , NO, OF, F j , 

A l 2 , SiCl, NS, PO {16} 

5. Others: FOOF, F N 0 2 , 0 3 , F 0 2 , C r ( C O ) 6 , N i ( C O ) 4 , [ C o ( C N ) 6 ] 3 - , N 2 , 

H 2 C O , C 6 H 6 {10} 

2 T h e number enclosed in the brackets indicate the number of molecules for each subset 
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Table 3.3: Error assessments for self-consistent molecular structures (A and 

degrees), thermochemistry (kcal/mol), isotropic polarisabilities (a.u.), and 

isotropic nuclear shielding constants (ppm and %) for systems defined in 

Table 1, as a funct ion of the power p in Eq.(3.21). 

p 

H C T H 0 1/6 2/6 3/6 4/6 5/6 6/6 7/6 
93 

Molecular structures of systems S 

Meanr 0.012 0.007 0.001 0.003 0.013 0.028 0.046 0.055 0.051 
Meanabs. r 0.013 0.013 0.007 0.006 0.013 0.028 0.046 0.055 0.051 

Mean6> -0.5 -0.3 -0.2 -0.4 -0.6 -0.8 -0.9 -0.9 -1.0 
Meanabs. 0 0.7 0.4 0.4 0.5 0.8 0.9 1.1 1.1 1.2 

Combined thermochemistry of systems M, A\, Af, and A2 

Meanabs. 3.3 44.6 13.3 20.8 29.3 72.8 104.7 123.1 132.7 

Polarisabilities of systems P 

Mean 0.32 0.39 0.20 0.16 0.49 1.26 2.09 2.69 2.55 
Meanabs. 0.36 0.62 0.27 0.24 0.50 1.26 2.09 2.69 2.55 

Shielding constants of systems SC 

Mean -57.0 -67.0 -72.3 -68.1 -61.4 -55.4 -50.7 -46.0 -41.6 
Meanabs. 57.0 67.0 72.3 68.1 61.4 55.4 50.7 46.0 43.1 

Mean abs. % 56.9 85.1 90.0 80.1 65.0 51.7 39.9 29.9 27.0 
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3.3.2 Thermochemistry 

We calculated tota l atomic energies of the systems A i , A f , ionization ener­

gies of A2 and atomization energies of M in Table 3.1 at near-experimental 

geometries [115]. The values in Table 3.3 combine all the 86 energies, and 

so we present only the mean absolute errors. For p = 0 we obtained a large 

error of 44.6 kcal /mol . This error reduces significantly as p is increased to 

\ and I although i t stays higher than w i t h HCTH-93. A further increase of 

p leads to a steady degradation in the thermochemistry. This degradation 

is not due to the divergence in the potential of the new functionals at the 

nuclei [125]; the same trend is observed when the divergent density gradient 

terms are removed f rom the functionals. 

3.3.3 Polarizabilities 

We calculated static isotropic polarizabilities of the system P presented in Ta­

ble 3.2 using the Sadlej basis set [126] at near-experimental geometries [115, 

64]. The behaviour of the polarizabilities is the same as that of the struc­

tures and thermochemistry. There is an improvement in moving f r o m p = 0 

to p — | — I and a further increase in p reduces the accuracy. Zero-point 

vibrat ional corrections (ZPVC's) [127] are not included in our calculations. 

Hence, accurate non-corrected theoretical predictions should underestimate 

the experimental values. 

3.3.4 Shielding constants 

We have determined L O R G - D F T - N M R isotropic shielding constants of the 

systems SC in Table 3.2 using the Huzinaga ( IGLO I V ) basis set [128] at 

near-experimental geometries [129, 130]. Due to the large variation in the 

absolute shieldings, we also present mean absolute percentage errors. The 

dependence on p is now very different. The mean absolute error increases 

f r o m p = 0 to p = I , although further increasing p leads to an improvement 
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in the shieldings. A t p — g the mean absolute error is 43.1 ppm compared to 

57.0 ppm for HCTH-93. This improvement is particularly marked when we 

consider the mean absolute percentage error (27.0 % compared to 56.9 % ) . 

I f the value of p increases beyond | then the errors increase again. 

Structures, thermochemistry and polarizabilities are therefore opt imal when 

the weighting is p = | — | . We therefore determined an intermediate func­

tional w i t h p = | . This functional provides structures and polarizabilities 

as accurate as those for p = | and p = | , but additionally improves the 

thermochemistry results, w i th a mean absolute error of 10.1 kcal /mol . This 

functional w i l l hereafter be denoted 7. 

3.4 Detailed assessment of \ functional 

A detailed assessment of the performance of | is now presented. A l l the 

results are compared w i t h HCTH-93 and the high quality hybrid functional 

B97-1 [97]. 

3.4.1 Molecular structures 

I n Table 3.4 we present optimized structures of molecules S in Table 3.2 

Whereas HCTH-93 overestimates the bond lengths w i t h a mean and a mean 

absolute error of 0.012 A and 0.013 A respectively, the \ functional shortens 

them and the corresponding mean and mean absolute errors are reduced to 

just 0.001 A and 0.006 A . The bond angles are also an improvement. The \ 

bond lengths are also an improvement over B97-1, whose errors are 0.005 A 

and 0.008 A . The performance of \ for the challenging L i 2 molecule is a 

notable improvement over the other functionals. This improved behaviour 

is a consequence of the fact that the functional is designed to yield accurate 

exchange-correlation potentials at the experimental geometries; the quality 

of the nuclear derivative (hence, the structures) is completely governed by 
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the quality of the exchange-correlation potential. 

We then performed an assessment of \ for molecules that are not con­

tained in the training set. In Table 3.5, we consider the bond lengths of 16 

radicals w i t h the TZ2P basis-set. Once more, HCTH-93 overestimates the 

bond lengths w i t h mean and mean absolute errors of 0.012 A and 0.012 A 

respectively . The corresponding errors for | are 0.002 A and 0.008 A once 

again a notable improvement also over B97-1. 

I n Table 3.6, we present the molecular structures for FOOF, F N 0 2 , 0 3 ) 

FO2, C r ( C O ) 6 and Ni(CO )4 , which are demanding tests for computational 

methods. For the first row atoms, we used the TZ2P basis set and for the 

transition metals the (14sl3p6d)/[8s7p4d] contraction, obtained by augment­

ing the basis set of Watchers [135]. 

HCTH-93 significantly overestimates the F - 0 and F-N bonds in FOOF 

and FN02- This overestimation is considerably reduced by ~ although the 

other bond lengths become marginally less accurate. The \ bond angles are 

as accurate as HCTH-93. For the 0 3 molecule, where the H C T H bond lengths 

are already too short, \ further shortens them. In FO2, w i t h HCTH-93 the 

F - 0 bond is reasonably accurate, although i t shortens too much w i t h \ . For 

the bond angles, the results achieved w i t h \ are an improvement over H C T H -

93. I t is important to point out that where | has been unsuccessful, B97-1 is 

also problematic. Finally, for the transition metals complexes C r ( C O ) 6 and 

N i ( C O ) 4 , the C-0 bond length improves f rom HCTH-93 to \ , although the 

metal-carbon bond shortens too much. 
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Table 3.4: Optimised geometries (in A and degrees) for molecules S using 
1/4, HCTH-93, and B97-1, with the TZ2P basis set 

Molecule Expt 1 1/4 HCTH-93 B97-1 
H 2 0.741 0.744 0.742 0.739 
LiH 1.596 1.590 1.615 1.595 
BeH 1.343 1.342 1.360 1.348 
CH 1.120 1.127 1.133 1.127 
CH 2 ( 3 B) 1.078 1.077 1.081 1.080 

136.0 135.0 135.2 135.1 
CH 2 ( 1 A) 1.110 1.114 1.119 1.113 

101.9 100.9 100.6 101.4 
C H 3 1.080 1.078 1.081 1.080 
CH 4 1.086 1.087 1.090 1.090 
NH 1.036 1.042 1.045 1.042 
N H 2 1.024 1.027 1.030 1.028 

103.3 102.6 102.2 102.8 
N H 3 1.012 1.012 1.014 1.014 

106.7 106.5 105.8 106.5 
OH 0.970 0.976 0.976 0.973 
H 2 0 0.957 0.961 0.961 0.960 

104.5 104.5 104.1 104.7 
HF 0.917 0.923 0.921 0.920 
L i 2 2.673 2.696 2.772 2.729 
LiF 1.564 1.571 1.594 1.575 
C 2 H 2 1.203 1.199 1.204 1.199 

1.063 1.064 1.066 1.064 
C 2 H 4 1.331 1.322 1.330 1.328 

1.081 1.083 1.086 1.084 
121.4 121.7 121.8 121.7 

CN 1.172 1.163 1.170 1.165 
HCN 1.065 1.069 1.071 1.068 

1.153 1.150 1.154 1.149 
CO 1.128 1.128 1.133 1.128 

Cont 
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Table 3.4: continued. 

Molecule Expt 1 1/4 HCTH-93 B97-1 
HCO 1.173 1.174 1.179 1.175 

1.123 1.124 1.128 1.125 
124.2 124.3 123.8 123.9 

H 2 CO 1.203 1.199 1.203 1.201 
1.102 1.109 1.113 1.108 
121.9 122.1 122.2 122.0 

N 2 1.098 1.096 1.099 1.095 

o2 
1.207 1.206 1.211 1.208 

H 2 0 2 1.456 1.443 1.455 1.447 
0.966 0.968 0.967 0.965 
100.5 100.3 100.1 100.5 

F 2 1.412 1.400 1.407 1.396 

co2 
1.160 1.162 1.166 1.162 

HC1 1.275 1.279 1.280 1.284 
Na 2 3.079 3.023 3.169 3.073 
Si 2 2.246 2.255 2.278 2.273 

P 2 
1.893 1.891 1.900 1.894 

s2 
1.889 1.900 1.912 1.919 

C l 2 1.988 2.000 2.014 2.023 
NaCl 2.361 2.357 2.397 2.373 
SiO 1.510 1.516 1.522 1.513 

cs 1.535 1.536 1.544 1.538 

so 1.481 1.494 1.502 1.494 
CIO 1.570 1.573 1.583 1.591 
C1F 1.628 1.641 1.650 1.647 
Mean r 0.001 0.012 0.005 
Mean abs. r 0.006 0.013 0.008 
Mean 9 -0.3 -0.5 -0.2 
Mean abs. 0 0.4 0.7 0.3 
1 Ref [115] 
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Table 3.5: Optimised bond lengths (in A) for diatomic radicals, using 1/4, 

HCTH-93, and B97-1, with the TZ2P basis set 

Expt 1 1/4 HCTH-93 B97-1 
B H + 2 E+ 1.215 1.205 1.218 1.210 
NH+ 2 n 1.070 1.084 1.084 1.078 
OH+ 3 E " 1.029 1.042 1.040 1.035 
BeF 2 E+ 1.361 1.371 1.382 1.373 
BN 3 n 1.3292 1.317 1.333 1.324 
BO 2 £ + 1.205 1.202 1.211 1.204 

c 2

+ 2 n u 1.301 1.311 1.322 1.325 
CF 2 n 1.272 1.276 1.285 1.277 
NF 3 E ~ 1.317 1.317 1.323 1.320 
NO 2 n 1.151 1.148 1.152 1.149 
OF 2 n 1.3543 1.346 1.352 1.348 

F 2

+ 1.3054 1.305 1.309 1.294 
A l 2 2.466 2.451 2.494 2.514 
SiCl 2 n 2.058 2.076 2.091 2.088 
NS 2 n 1.494 1.496 1.503 1.496 
PO 2 n 1.476 1.485 1.491 1.482 
Mean 
Mean abs. 

0.002 
0.008 

0.012 
0.012 

0.007 
0.011 

^ e f . [131] unless otherwise stated 
2Ref. [132] 
3Ref. [133] 
4Ref. [134] 
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Table 3.6: Optimised structures (in A and degrees) of FOOF, F N 0 2 , 0 3 , 

F 0 2 , Cr(CO) 6 and Ni(CO) 4 , using 1/4, HCTH-93, and B97-1. See text for 

basis set details. 

Expt 1/4 HCTH-93 B97-1 

FOOF 

TFO 1.5751 1.593 1.614 1.513 

'''oo 1.2171 1.183 1.184 1.236 

@FOO 109.51 111.3 111.8 109.1 
T 87.51 89.1 89.7 87.9 

F N 0 2 

1.4672 1.502 1.518 1.470 
1.1802 1.172 1.175 1.179 

ÔNO 136.02 136.8 136.8 135.8 

o3 

Too 1.2723 1.257 1.263 1.256 

ÔOO 116.83 118.3 118.4 118.1 
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Table 3.6: continued. 

Expt 1/4 HCTH-93 B97-1 

F0 2 

r FO 1.6494 1.630 1.654 1.603 
rQO 1.2004 1.185 1.188 1.194 
0FOO 111.24 112.1 112.5 111.2 

Cr(CO) 6 

r C r C 1.914 ±0.002 5 ,1 .916 ± 0.0026 1.886 1.907 1.921 
r c o 1.140 ± 0.0025,1.140 ± 0.0036 1.144 1.148 1.141 

Ni(CO) 4 

r N i C 1.838 ±0.002 7 ,1 .817 ± 0.0028 1.812 1.838 1.844 
r c o 1.141 ±0.002 7 ,1 .127 ± 0.0038 1.140 1.144 1.137 

1Ref. [136] 
2Ref. [137] 
3Ref. [138] 
4Ref. [139] 
5Ref. [140] 
6Ref. [141] 
7Ref. [142] 
8Ref. [143] 
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3.4.2 | thermochemistry 

The mean and mean absolute errors for atomization energies of molecules 

M in Table 3.1 are —0.6 and 7.0 kcal/mol with ^, compared with values 

of 0.9 and 3.2 kcal/mol for HCTH-93. \ therefore provides a good average 

description although individual errors are larger than those obtained with 

HCTH-93. However, since the | functional was built without including any 

explicit thermochemical information, the results achieved are very encourag­

ing, since they are comparable with those obtained with the first-principles 

PBE GGA functional [113]. 

The performance of \ for total atomic energies and ionization energies 

is much less accurate. Total energies are significantly underestimated with 

mean and mean absolute errors of —16.9 and 18.0 kcal/mol, compared to 

—0.9 and 4.2 kcal/mol for HCTH-93. Ionization energies are overestimated 

with mean and mean absolute errors of 16.3 and 16.3 kcal/mol compared 

with 0.1 and 1.6 kcal/mol for HCTH-93. 

A reason for the poor performance of the \ functional for total energies 

can be found in the work of van Leeuwen and Baerends [116], where they 

investigated the relationship between the exchange-correlation energy and 

potential. They demonstrated that a knowledge of the exchange-correlation 

potential for a given density is not sufficient to calculate the total exchange-

correlation energy at that density. It is instead necessary to know the poten­

tial along a path in density space, connecting the system in question to one 

where the density is infinitely diffuse. Such a path is poorly represented by 

our fitting data. We also note that by fitting to shifted exchange-correlation 

potentials, the total energies from \ are only defined to within any functional 

whose potential is a constant [122]. 

In order to understand the atomization energy errors we considered the 

following analysis. The atomization energy is defined as the integral of the 

nuclear derivative along a path connecting the molecule to its constituent 
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atoms 
roo QE AE 
^exp 

r°° on ^ 
jRexp dX 

By construction the | functional yields accurate nuclear derivatives close 

to equilibrium geometries, however they are not constrained to be accurate 

as the molecule dissociates. Figure 3.1 and Figure 3.2 shows the electronic 

energy and the nuclear gradient curve for the CH molecule, calculated with 

the HCTH-93 and \ functionals. 

We observe good agreement between the nuclear gradient curves around 

the equilibrium geometry, however in the region between 2.5 and 5.0 Bohr, 

the \ nuclear gradient curve lies above HCTH-93. This inaccuracy is reflected 

in Figure 3.2 where we plot the cumulative atomization energy contribution 

"« dE 
AE 

jRexp aX 

We believe that a reason for such an inaccuracy is due to the fact that the \ 

functional has been built only by fitting to potentials at experimental geome­

tries. Hence, the nuclear gradient is no longer accurate when the molecule 

dissociates. 
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Figure 3.2: Comparison between the atomization energy contribution for CH 
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3.4.3 \ polarizabilities and excitation energies 
In Table 3.7, we present the static isotropic polarizabilities of the systems P 

in Table 3.2, calculated using the Sadlej basis set [126] at near experimental 

geometries. As mentioned before, zero-point vibrational corrections would 

increase the calculated polarizabilities; Russell et al [127] have calculated 

corrections of 0.10, 0.29, 0.57, 0.90, 0.83, 0.40 and 0.15 a.u. for HF, H 2 0 , 

N H 3 , CH 4 , PH 3 , H 2S and HC1 respectively at the MP2 level of theory. In this 

thesis, where no zero-point corrections are introduced, accurate functionals 

should always give values that underestimate experimental values. 

Conventional functionals such as LDA [146] and BLYP [89, 94] overesti­

mate the polarizabilities of these systems. Mean and mean absolute errors 

are 0.83 and 0.83 a.u. for LDA [64] and 0.90, 0.90 a.u. for BLYP [64]. 

The results reflect overdiffuse electron densities caused by the poor represen­

tation of the asymptotic behavior of the exchange-correlation potential [64]. 

HCTH-93 already reduces this overestimation. However, | , having been built 

by fit t ing only to exchange-correlation potentials in relatively diffuse regions, 

has a further improved accurate asymptotic behaviour, reducing even more 

the mean and mean absolute errors to 0.15 and 0.24 a.u. respectively. The 

B97-1 (hybrid) functional provides the most accurate polarizabilities with er­

rors of 0.09 and 0.22 a.u. respectively. This can be explained by the presence 

of a fraction of exact orbital exchange [147], which introduces Hartree-Fock 

character; Hartree-Fock tends to underestimate polarizabilities [148]. 

To assess the frequency dependence of the polarizability we present in 

Table 3.9 the vertical excitation energies for N 2 ) H 2CO and CeH 6 at exper­

imental geometries (CC=1.392 A and CH=1.086 A for C 6 H 6 . For N 2 and 

H 2 CO see Table 3.4). For N 2 and H 2 CO we used the Sadlej basis set [126] 

augmented with additional diffuse functions and for CeH 6 we used the TZ2P 

basis-set augmented with a diffuse double-zeta s-p-d set at the center of the 

ring plane, with exponents 0.01 and 0.04. Al l the excitations in CeH 6 are 
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from the HOMO ix orbital e\g. 

Rydberg excitation energies depend on regions relatively far away from 

the molecule, so they are particularly sensitive to the asymptotic part of 

the exchange-correlation potential [150]. The HCTH-93 Rydberg excitation 

energies are in significant error reflecting the incorrect asymptotic form. By 

emphasizing the potential at relatively large distance, \ gives much improved 

Rydberg excitations. These values are particularly good for C6H6, where they 

are also an improvement over B97-1. Analogous improvements have also been 

observed for CO and C 2 H 4 molecules. 

Valence excitations from \ are not an improvement over HCTH-93. In­

deed several of them are slightly smaller, hence less accurate with | . This 

suggests that the improved polarizabilities obtained with | are associated 

with a better description of the higher lying virtual orbitals rather than the 

valence ones. 

Although the | potential is an improvement over HCTH-93, at large 

distances i t still does not exhibit the correct form. This is evident for N 2 

and H 2 CO where the Rydberg errors remain unacceptably large. One way to 

improve these results would be to asymptotically correct the potential [64]. 

However, we did not consider this possibility since it relies on the accurate 

calculation of the ionization energies. 
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Table 3.7: Static isotropic polarisabilities (in atomic units) using 1/4, HCTH-

93, and B97-1, with the Sadlej basis set. 

Expt 1 1/4 HCTH-93 B97-1 
HF 5.60 5.96 6.02 5.75 
H 2 0 9.64 10.11 10.25 9.81 
N 2 11.74 11.83 11.94 11.84 
CO 13.082 13.19 13.33 13.05 

F 2 8.38 8.63 8.69 8.62 

N H 3 14.56 14.82 15.08 14.54 

co2 
17.51 17.31 17.42 17.17 

CH 4 17.27 16.98 17.08 16.86 
C 2 H 4 27.70 27.56 27.96 27.92 

PH 3 30.93 31.08 31.30 30.99 
H 2S 24.71 24.91 25.18 24.99 

so2 
25.61 25.72 25.95 25.50 

HC1 17.39 17.69 17.84 17.73 
C l 2 30.35 30.71 30.89 30.91 
Mean 0.15 0.32 0.09 
Mean abs. 0.24 0.36 0.22 

xRef. [144] unless otherwise stated 
2Ref. [145] 
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Table 3.8: Singlet vertical excitation energies (in eV) for N 2 , H 2 CO, and 

C 6 H 6 using 1/4, HCTH-93, and B97-1. See text for basis set details. 

State Transition Expt1 1/4 HCTH-93 B97-1 

N 2 

•ku -> 3sag 13.24 12.15 11.48 12.15 
og 3pau 12.98 11.20 10.48 11.71 
ag ->• 3p7ru 12.90 11.23 10.49 11.69 

%+ <Jg —> 2>SOg 12.20 10.85 10.19 11.35 
TTlt —> Kg 10.27 10.16 10.08 9.79 
1TU - > 7 T g 9.92 9.70 9.73 9.34 
C7 f f - ) • TTg 9.31 9.12 9.15 9.29 

Mean -0.86 -1.25 -0.75 
Mean abs. 0.86 1.25 0.75 

H 2CO 

M 2 n —>• 3 ^ ! 9.22 7.81 7.11 8.06 
lA2 n —>• 3p^i 8.38 7.19 6.54 7.49 
lB, ( 7 - > 7 T * 8.68 8.93 8.98 9.08 
lB2 n —>• Zpai 8.12 6.96 6.38 7.30 
lA, n —> 3p62 7.97 6.92 6.33 7.30 
lB2 n —>• 3sai 7.09 6.14 5.69 6.58 
lA2 n —>• 7r* 3.94 3.84 3.92 3.95 
Mean -0.80 -1.21 -0.52 
Mean abs. 0.87 1.29 0.64 

^ e f . [149] 
2CASPT2 values 
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Table 3.9: Singlet vertical excitation energies (in eV) for C 6 H 6 using 1/4, 

HCTH-93, and B97-1. See text for basis set details. 

State Transition Expt 1 1/4 HCTH-93 B97-1 

CeH 6 

31Elg 7T —>• 3d̂ 2 7.572 7.38 6.72 7.21 
llA2g 7T ^ 3<i 2 I, 3dzg 7.81 7.60 6.84 7.38 

7T 7.81 7.58 6.83 7.36 
2 M l 9 7T ^ 3dzx, 3^^ 7.81? 7.59 6.84 7.36 
2lElg 7T ^ 3cia;2_y2, 3dXy 7.535 7.31 6.65 7.19 
llB2g 7T 7.460 7.32 6.66 7.19 
lxBlg 7T ^ 3c?x2 , 3dXy 7.460 7.30 6.65 7.19 

2 1£'iu 7T —> 3p7T 7.41 7.18 6.40 6.88 
7T ->• 3px, 3pj, 6.992 6.77 6.17 6.75 

l1-E'2u 7T ->• 3px,3py 6.953 6.75 6.16 6.70 
l M 2 t t 7T -> 3p s ,3p y 6.932 6.75 6.17 6.67 

7T 3s 6.334 6.13 5.69 6.17 
7T ->• 7T* 6.94 6.92 6.99 7.13 
7T ->• IT* 6.20 6.04 6.01 6.13 

l1B2u 
7T ->• 7T* 4.90 5.27 5.28 5.46 

Mean -0.16 -0.69 -0.24 
Mean abs. 0.19 0.73 0.32 

^ e f . [149] 
2CASPT2 values 
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3.4.4 \ and ~ shielding constants 
I t has been shown [151 , 152] that for highly correlated molecules containing 

nuclei from the first and the second rows of the periodic table, GGA shielding 

constants are more accurate than those from hybrid functionals. Although 

M P 2 accuracy can be achieved [153], existing functionals cannot compete 

with more sophisticated wavefunction based methods. 

Wilson et al [129] have presented a pragmatic new approach to improve 

DFT shielding constants. Kohn-Sham orbitals and eigenvalues calculated 

using a small amount of exact exchange (0 .04) are used in an uncoupled 

formalism to determine the shieldings. In the context of the B 9 7 functional, 

this method is denoted B97^4

A. The success of this inconsistent method, 

together with the poor performance of conventional functionals, highlights 

the difference between shielding constants and other chemical properties. 

The results in Table 3.3 also demonstrate this. 

As a final assessment, in Table 3 . 1 0 we present the | and | shielding 

constants for the systems SC (in Table 3.2) determined using the Huzinaga 

(IGLO IV) basis set [128] at near experimental geometries. We compare the 

results with HCTH-93, B 9 7 - 1 , B97QQ^, high-level ab initio studies, and exper­

imental values. Whereas | shielding constants are very poor, | is a notable 

improvement over HCTH-93 for most systems. This is a significant result 

since HCTH-93 has previously been shown [129] to offer an improvement 

over conventional hybrid and GGA functionals for these molecules. 

To understand these shielding results, we considered the calculation of the 

paramagnetic shielding contributions c r^f . The mathematical expression for 

this quantity for nucleus A can be written as 

= (3 .26) 
bj 

where is the contribution from the occupied-virtual molecular orbital 

excitation j —> b. An analysis of the quantity provides important 

insights into the behaviour of exchange-correlation functionals [155, 156]. 
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Table 3.10: Isotropic shielding constants (in ppm) using 1/4, 7/6, HCTH-93, 

and B97-1, with the Huzinaga (IGLO IV) basis set. 

Best 
Expt 1 ab initio1 B97 0 0 4 1/4 7/6 HCTH-93 B97-1 

HF F 419.7 ± 6 418.6 416.4 413.1 412.6 411.5 412.3 
H 2 0 0 357.6 ± 17.2 337.9 333.6 329.4 332.3 327.5 328.3 
CO C 2.8 ±0.9 5.6 5.3 -15.7 1.8 -7.6 -13.9 

0 -36.7 ± 17.2 -52.9 -49.9 -74.9 -66.3 -67.0 -81.0 
N 2 N -59.6 ± 1.5 -58.1 -57.7 -84.4 -68.9 -76.6 -87.7 
F 2 

F -192.8 -186.5 -194.2 -278.4 -262.9 -269.6 -241.5 
0 3 (0 '00') 0' -1290 -1208.2 -1174.3 -1526.4 -1428.9 -1477.0 -1723.6 

0 -724 -754.6 -736.4 -900.0 -846.7 -872.5 -1135.8 
H2S s 752 ± 12 754.6 739.1 718.7 763.5 720.1 716.8 

so2 s -126 ± 12 -134.2 -129.2 -214.0 -156.2 -185.6 -228.7 
0 -205 ± 17 -170.4 -213.4 -270.6 -263.4 -262.5 -280.4 

PN p 53 86 60.3 -34.0 23.9 -1.0 -30.0 
N -349 -341 -332.0 -389.4 -363.4 -375.2 -415.8 

trans-N2F2 N -181.7 -165.5 -202.1 -246.5 -217.4 -235.1 -255.8 
F 95.1 103.7 67.4 24.5 31.5 31.6 47.6 

Mean 
Mean abs. 
Mean abs.% 

8.0 
18.1 
18.2 

1.2 
18.1 
14.3 

-70.9 
70.9 
86.3 

-41.6 
43.1 
27.0 

-57.0 
57.0 
56.9 

-100.3 
100.3 
85.3 

1Refc. [129, 130] 



3.4. Detailed assessment of \ functional 63 

By contrast, diamagnetic terms are almost invariant to functional type, since 
they involve occupied orbitals only. 

In Table 3.11 we consider the for the \ and \ functionals, for 1 3 C 

and 1 7 0 nuclei in the CO and H 2 0 molecules. Since there are many occupied-

virtual molecular orbital excitations (a total of 749 and 460 in CO and H 2 0 

respectively), the analysis is limited to include only the dominant contri­

butions ( |C^ a / 3 | > 10 ppm) involving excitations to the lowest-unoccupied 

molecular orbitals (LUMO), and excitations from the HOMO. 

For comparison we also present the HCTH-93, B97-1, and B97°Q* values. 

Single origin rather than LORG shielding constants are presented because 

the former conveniently partitions the total shieldings into diamagnetic and 

paramagnetic terms (due to the large basis-sets employed in this study, the 

total shieldings obtained from both methods are almost the same). HCTH-93 

shielding constants are too low, i.e. too deshielded. Table 3.11 indicates that 

the improved performance of B97QQ^ arises because its dominant contribu­

tions to the paramagnetic shielding are less deshielded than those of HCTH-

93. Interestingly, for the first three tabulated excitations in CO and the first 

four in H 2 0 , the | contributions in Table 3.11 also exhibit a significant reduc­

tion in deshielding compared to HCTH-93. The orbitals involved in these ex­

citations are low-lying and compact, correlating qualitatively with the regions 

emphasized in the | development. For the remaining tabulated excitations, 

i t is the \ functional that generally provides a reduction in deshielding (val­

ues that are often close to those of B97QQ^)- These excitations involve more 

diffuse orbitals, which correlate better with the regions emphasized in the \ 

development. This reduction in deshielding is consistent with the increased 

excitation energies to the higher states, discussed in Section 3.4.3. In sum­

mary, for a given excitation, a general reduction in deshielding is exhibited 

by the functional which better emphasizes the region of space appropriate 

for that particular excitation. (We have also observed this general trend for 

the other dominant excitations that do not involve HOMO and LUMO). 
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Unfortunately, neither | nor | reproduces the general trend of B97QQ^ 

for all the excitations. | and \ tend to give values that are too deshielded 

relative to B97Q°^ for the higher and lower excitations, respectively, which 

corresponds to the spatial regions that are not well emphasized in their re­

spective fits. Given that the dominant contributions to the shielding are 

f rom excitations involving low-lying orbitals, | is the more accurate of the 

two functionals. 

This analysis raises an interesting suggestion. Since | and \ can inde­

pendently reduce the shieldings of the different classes of excitations, a more 

flexible functional that allow us to emphasize both regions of space simulta­

neously is necessary. We investigate this possibility in Section 3.6. 

I n view of the growing number of D F T studies involving the computation 

of metal shieldings in transition metal complexes, we conclude by consid­

ering the performance of the \ and | functionals on the 5 9 C o shielding in 

the [ C o ( C N ) 6 ] 3 complex. We choose this complex because an experimental 

shielding value (—5400 ppm) has been determined. The \ and \ shieldings 

are almost identical (—3500 and —3497 ppm, respectively) and are inferior 

to H C T H - 9 3 ( - 3 6 1 0 ppm). The B 9 7 - 1 value of - 5 2 7 7 ppm reinforces the 

fact that for the metal-shieldings in transition metal complexes, hybrid func­

tionals generally provide a dramatic improvement over G G A functionals. 
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Table 3.11: Dominant paramagnetic shielding contributions C^a/3 ( in ppm) 

involving the H O M O and L U M O for CO and H 2 0 . 

3 b a/3 7/6 1/4 HCTH-93 B97-1 B 9 7 0 0 4 

A = 1 3 C in C O a 

3 8 XX - 1 1 . 1 -15.2 -13.8 -13.4 -13.3 

4 8 XX -40.8 -52.2 -48.0 -45 .2 -45.6 

7 8 XX -252.2 -294.9 -285.7 -263.4 -258.9 

7 12 XX -53 .2 -28.9 -31.2 -43.4 -28 .2 

7 21 XX -23 .0 -15.7 -17.8 -17.8 - 1 6 . 1 

A = 1 7 0 in H 2 0 6 

3 6 yy -25 .4 -31.2 -29.9 -25.8 -28 .9 

5 6 XX -41.8 -47.8 -46.9 -40 .4 -44 .0 

5 7 zz - 5 . 6 -37 .4 -30.6 -28 .6 -30.5 

5 8 XX 15.0 13.4 12.9 11.1 13.1 

5 10 zz -26 .7 -21.3 -24.9 -20 .9 -21.5 

5 13 XX -29.0 - 1 9 . 1 -23.0 -20.5 -19.3 

5 14 zz - 7 . 4 -25.0 -23.8 -17 .4 -21 .2 

5 16 zz -71.8 -37.5 -44.5 -51.5 - 4 2 . 1 

5 18 zz 11.1 9.2 9.9 8.9 9.2 

5 26 zz -10.8 -10.4 -10 .4 -10 .7 - 1 0 . 1 

a Internuclear axis in z direction 

6 Molecule in xz plane wi th z component along C<iv axis 
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3.5 The exchange-correlation potential 

To help understand the results in Section 3.3 i t is informative to investigate 

the behaviour of the exchange-correlation potentials associated w i t h each 

functional . We considered the Neon atom, comparing w i t h the near-exact 

Z M P potential, shifted by the appropriate amount for each functional . 

Figure 3.3 examines the potentials close to the nucleus, between 0 and 

2 a.u. In moving f rom p = 0 to p = | , the agreement improves. This is 

as expected, since increasing p emphasizes regions closer to the nucleus. I n 

particular, by increasing p the description of the inter-shell peak improves. 

Keal and Tozer [157] have demonstrated that an accurate description of the 

inter-shell peak is important for accurate shieldings. Hence, this explains 

our observation in Table 3.3 that shieldings improve notably f rom p = 0 to 

p = i-

Figure 3.4 considers the region f rom 2 and 6 a.u. As expected, opt imal 

agreement is now obtained wi th smaller values of p. This explains the high-

quality Rydberg excitations f rom | . Furthermore, given that the best quality 

structures are obtained wi th smaller p, this suggests that the long-range 

potential is also important for structural predictions. 

Final ly in Figure 4.8, we plot the | exchange-correlation potential com­

pared w i t h the near-exact shifted ZMP one. We observe a very good agree­

ment in the long range part of the plot and a poor representation of the 

core-region which is consistent w i t h the molecular properties predicted w i t h 
l 
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0 0 

p = 0 p= 1/6 > -1 

0.0 0.0 0.5 1.0 .5 20 0.5 1.0 1.5 20 
r(a.u.) rfa.u.) 

0 0 

p = 2/6 p = 3/6 >- i > - i 

1.5 20 0.5 1.5 20 0.0 0.5 1.0 0.0 .0 
r (a.u.) r(a.u.) 

0 

p = 5/6 p = 4/6 > - 1 

20 0.0 0.5 1.0 .5 0.5 1.0 1.5 20 0.0 
rfa.u.) r(a.u.) 

0 0 

p = 6/6 p = 7/6 

1.5 0.0 0.5 1.0 0.5 1.5 20 0.0 1.0 
r(a.u.) r(a.u.) 

Figure 3.3: Comparison between the description of the core regions for the 

Ne atom by all the functionals developed for values of p = 0 . . . | compared to 

the ZMP+A; potential 
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i 0.4 0.4 
p = 0 p= 1/6 > 0.2 0.2 

0.0 0.0 

-0.2 -0.2 
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0.4 0.4 
x p = 2/6 p = 3/6 0.2 
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-0.4 -0.4 
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0.0 0.0 

-0.2 -0.2 
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p = 6/6 p = 7/6 > 0.2 0.2 

0.0 0.0 

-0.2 -0.2 

-0.4 -0.4 

-0.6 -0.6 

r (a.u.) r (a.u.) 

Figure 3.4: Comparison between the description of the long-range regions for 

the Ne atom by all the functionals developed for values of p = 0 . . . | compared 

to the ZMP+A; potential 
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Figure 3.5: Comparison between the | and the ZMP+A; potentials for the Ne 

atom 
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3.6 Improving functional performance 

We investigated several approaches for improving functional performance. 

A l l the coefficients for the more significant functionals are presented in A p ­

pendix A. 

3.6.1 Changing the functional form 

We considered the introduction of additional expansion terms in the func­

t ional . To prevent the number of parameters becoming excessively large, we 

in i t ia l ly considered whether all 15 terms in the original \ functional f o r m 

were important . I n Figure 3.6 we plot the trend of the minimized values of 

Q, as a funct ion of the number of expansion coefficients composing the p = \ 

functional . We observe that the most significant j ump occurs between 3 and 

55 

53 

51 

a 

49 

47 

45 
3 6 9 12 15 

Number of coefficients 

Figure 3.6: Minimized values of plotted as a funct ion of the number of 

coefficients composing the functional. 

6 coefficients. We therefore assessed the performance of the p = \ funct ional 

w i t h only 6 expansion coefficients. I n moving f r o m 15 to 6 solutions, the new 

P = \ funct ional overestimates the bond lengths, w i t h M A E errors degrading 
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f rom 0.006 A to 0.014 A. The same trend is observed for the thermochemistry, 

where the combined M A E degrades f rom 10.1 kcal /mol to 14.9 kcal /mol . 

I t is therefore clear that reducing the number of terms leads to a signif­

icant reduction in accuracy; the 6 term functional is a poor starting point 

for further functional expansion. We therefore considered adding new terms 

directly to the original 15 terms. We considered the general term 

F^ = A 8 ° - Q ° 4 | V H 2 V (3.27) 
P Vpf+0.004|Vp| 2 / 

where a and b are new coefficients to determine. The new functional fo rm is 

then 

E°C

GA = E Ci / /i(Pa, IVp f f | )dr + F e x t r a (3.28) 
i 

After coding the new term in the CADPAC package, we performed exten­

sive tests to check our implementation. We confirmed that our code was 

variational by checking agreement between the analytic dipole and the finite 

difference dipole determined f rom energies in the presence of an electric field 

(Hellmann-Feynman). We also confirmed the agreement between analytic 

and numerical polarizabilities. 

We performed extensive investigations into values of a and b, together 

w i t h the number of extra terms. Our best functional involved the addition 

of the 6 terms 
i i ! 

p'2U 

H o 

XI 3 
P

a i ( 3 - 2 9 ) 
p i 2 i r 

18 9 
p i 2 i r 

A! o 
P12«° 

using p = 0. I t provided M A E for the bond lengths of 0.007 A. A t the 

same t ime also the M A E for the shielding constants improved significantly, 

decreasing to 31.3 ppm, compared wi th the 35 ppm of HCTH-93. Shieldings 

are presented in Table 3.12 However, very poor results for polarizabilities 

and thermochemistry were observed. I t is interesting to point out that, by 
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Table 3.12: Isotropic shielding constants (in ppm) using HCTH-93, 1/4, and 

the best 21-solutions functional, w i t h the TZ2P basis set. 

Best 

Exp t 1 ab initio1 HCTH-93 1/4 21 solns 

H F H 419.7 418.6 411.5 412.2 415 

H 2 0 0 357.6 337.9 327.6 328.5 331.9 

C H 4 C 198.4 198.9 189.3 188.8 192.4 

CO C 2.8 5.6 -7 .5 -12 .9 -8 .3 

0 -36 .7 -52.9 -66.8 - 7 3 . 1 -66 .2 

N 2 N -59.6 -58 .1 -76 .9 -82 .2 -75 .2 

F 2 
F -192.8 -186.5 -269.9 -276.6 -251.2 

O'OO' 0 ' -1290 -1208.2 -1438.2 -1470.9 -1404.2 

0 -724 -754.6 -859.4 -883.4 -841.7 

P N P 53 86 - 7 . 6 -27 .8 -18 .2 

N -349 - 3 4 1 -378.5 -391.8 -377.3 

H 2 S S 752 754.6 720.1 715.5 727.6 

N H 3 
N 273.3 270.7 259.8 260.3 264 

H C N C 82.1 86.3 75.7 72.1 75.8 

N -20.4 -13.6 -33 .4 -41.3 -32 .9 

C 2 H 2 C 117.2 121.8 112.2 108.4 112.2 

H 2 C O C -4 .4 4.7 -17 .7 -24.8 -20 .7 

0 -375 -383.1 -406.7 -431.6 -414.6 

co2 c 58.8 63.5 57.5 53.7 57.7 

0 243.4 236.4 215.3 213.5 217.5 

HC1 CI 952 962.3 949.4 947.6 956.4 

so2 s -126 -134.2 -183.9 -203.8 -182.4 

0 -205 -170.4 -260.6 -267.9 -253 .1 

P H 3 
p 599.9 594 576.6 570.4 581.4 

Mean abs. 12.9 35 43.5 31.3 

^ e f s . [129] and [130] 
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contrast w i t h the assessment presented in Section 3.5, increasing the value 

of p beyond p = 0 lead to very poor geometries. 

3.6.2 Changing the weighting factor 

Next we investigated whether improved performance could be obtained by 

varying the weighting factor WT(T(r) in Eq.(3.21). In particular, we wished 

to investigate whether improved shielding constants could be obtained. I t 

is known [158] that the H O M O - L U M O contribution to the shielding can 

be particularly important . We therefore considered a weighting factor that 

emphasized the regions of space where the H O M O and L U M O orbitals are 

significant. Results are presented in Table 3.13. 

Using the original 15 expansion coefficients, we investigated different ex­

pressions for WMa(r) starting wi th 

WMa(v) = ^ O M O M + ¥>LMo(r) (3.30) 

The corresponding mean absolute error for shieldings decreased to 40.9 ppm 

compared to 43.5 ppm predicted by | , but s t i l l is not an improvement over 

the original HCTH-93. We then considered 

WMa(r)=p(r) + <plVMO(r) (3.31) 

which reduced the error to 31.7 ppm, which is not only an improvement over 

| but also over HCTH-93. Finally, we studied the possibility of removing one 

of the core-orbitals, so that the corresponding exchange-correlation potential 

could have a larger degree of freedom to represent the inter-shell peak 

W M f f ( r ) = p ( r ) - ^ 8 ( r ) (3.32) 

This f inal at tempt was particularly successful, reducing the M A E to 26.6 

ppm. These are the most accurate results obtained in this chapter. The 

removal of other core orbitals did not introduce any further improvement. 

I t is important to point out that the predictions of all the other molecular 
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Table 3.13: Isotropic shielding constants (in ppm) using HCTH-93, 1/4, and 

the best 21-solutions functional, w i th the TZ2P basis set. 

Best 

E x p t 1 ab initio1 HCTH-93 1/4 (PH + V>1) (P + f l ) (P ~ <Pls) 
H F H 419.7 418.6 411.5 412.2 411.4 411.5 410.3 

H 2 0 0 357.6 337.9 327.6 328.5 327.3 329.4 329.5 

C H 4 C 198.4 198.9 189.3 188.8 188.5 191.3 191.1 

CO C 2.8 5.6 -7 .5 -12.9 -11.8 - 3 1.8 

0 -36 .7 -52.9 -66.8 - 7 3 . 1 -70.9 - 6 6 . 1 -64.5 

N 2 N -59 .6 - 5 8 . 1 -76 .9 -82 .2 - 8 1 . 1 -73 .4 -68 .4 

F 2 
F -192.8 -186.5 -269.9 -276.6 -276 .1 -271.5 -260 .1 

O'OO' 0 ' -1290 -1208.2 -1438.2 -1470.9 -1463.8 -1422.6 -1387.8 

0 -724 -754.6 -859.4 -883.4 -873.6 -853.6 -846.5 

P N P 53 86 - 7 . 6 -27.8 -22 .7 - 7 . 1 21.3 

N - 349 - 3 4 1 -378.5 -391.8 -387.1 -374.3 -372.3 

H 2 S S 752 754.6 720.1 715.5 716.6 738.4 742.4 

N H 3 N 273.3 270.7 259.8 260.3 259.2 262.6 263.2 

H C N C 82.1 86.3 75.7 72.1 73.2 78 80.4 

N -20 .4 -13.6 -33 .4 -41.3 -37.9 -32 .2 -30 .7 

C 2 H 2 C 117.2 121.8 112.2 108.4 110.1 113.5 114.4 

H 2 C O C - 4 . 4 4.7 -17 .7 -24.8 -21.8 -15 .9 -12.8 

0 -375 -383.1 -406.7 -431.6 -419.3 -420.2 -425 .1 

C 0 2 c 58.8 63.5 57.5 53.7 55.1 58.2 58.7 

0 243.4 236.4 215.3 213.5 213.4 219 223.1 

H C l CI 952 962.3 949.4 947.6 947.9 959.9 962.1 

so2 s -126 -134.2 -183.9 -203.8 -195.9 -170.5 -158.5 

0 -205 -170.4 -260.6 -267.9 -266 -261.9 -258.1 

P H 3 p 599.9 594 576.6 570.4 571.5 592.9 596.1 

Mean abs. 12.9 35 43.5 40.9 31.7 26.6 

^ e f s . [129] and [130] 
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properties were rather poor wi th these functionals. They can be viewed as 
being designed especially for shielding calculations. 



Chapter 4 

Applications of the i functional 

Chapter 3 demonstrated that the \ functional provides very high quality 

molecular structures for molecules resembling those in the f i t t i n g data. In 

this chapter we investigate \ structural predictions for a much wider range 

of molecules; harmonic frequencies are also considered. 

First , we investigate a benchmark of sulfur containing molecules that 

have been considered a challenge for G G A functionals. We then develop a 

completely new benchmark of molecules, drawn uniformly f rom the first three 

rows of the periodic table. Results are discussed in terms of the enhancement 

factor. 

4.1 Sulfur compounds 

Several studies have been performed to assess the performance of D F T func­

tionals for benchmarks of sulfur containing compounds [159, 160]. This is 

due to the fact that, i n general, GGAs overestimate the bond lengths of these 

systems, especially when sulfur is bonded to electronegative elements such as 

F and CI . One solution to this overestimation is to apply hybrid functionals, 

which are known to shorten the bond lengths. 

Nevertheless, i t is also important to assess the performance of GGAs 

for these systems in order to understand to what extent they can provide 

76 
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satisfactory approximations. Al tmann and Handy [161] have shown that 

the HCTH-93 [97] functional improves the bond lengths and the vibrat ional 

frequencies of such molecules, w i th respect to the widely used B L Y P [89, 94] 

functional, however some molecules remain particularly problematic. We 

now investigate whether our \ functional can further reduce the inaccuracies 

in the molecular predictions. 

4.1.1 Computational details 

We considered the benchmark of 20 small sulfur containing molecules inves­

tigated by A l tmann and Handy [161]. Molecular structures were determined 

using the cc-pVTZ basis set of Dunning [162, 163], in order to be consistent 

w i t h this earlier study. Vibrat ional frequencies were calculated using a two-

point f inite difference of first derivatives. To reduce numerical integration 

errors, extensive integration grids were used. The | results are compared 

w i t h those of HCTH-93 and MP2. We have confirmed that our HCTH-93 

results are in excellent agreement w i t h those of Al tmann and Handy. 

4.1.2 Molecular geometries 

Tables 4.1 and 4.2 present the HCTH-93, \ , MP2 and experimental bond 

lengths and bond angles for the benchmark of sulphur compunds. A l l the 

molecules have been classified according to the nature of the bond. The 

errors A „ (where n = HCTH-93, ~ and MP2) are the differences between the 

calculated and experimental values. The largest sulfur-halogen errors are 

highlighted in bold. 

In general, the results show that HCTH-93 tends to overestimate bond 

lengths, particularly for F 2 SO, F 2 S, C12S and C1 2S 2 molecules. I t has been 

argued [161] that the reason for this lack of accuracy is that molecules con­

taining sulfur-halogen bonds were not included into the training set used to 

develop HCTH-93. However, our ^ functional, which has been determined 
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using the same training set as HCTH-93, reduced these errors and in gen­

eral shortens al l the bond lengths compared to HCTH-93. I n moving f rom 

HCTH-93 to \ the error in the S-F bond for F 2 SO decreases f rom 0.045 to 

0.034 A and in F 2 S i t decreases f rom 0.030 to 0.022 A. The same trend is ob­

served for the S-Cl bond length error in C12S, which decreased f rom 0.021 A 

to 0.005 A and in C1 2S 2 which decreased f rom 0.053 A to 0.032 A. I t is also 

important to point out that for CL 2 S \ gives improved geometries also com­

pared to MP2. Finally, we note that the S-0 bonds that are overestimated 

by HCTH-93 are also shortened by | , which achieves an accuracy comparable 

to MP2. 

Figure 4.1 plots values of A „ for the three different methods. I t is clear 

that \ lowers the errors of HCTH-93, and for many systems approaches the 

accuracy of MP2. These observations are also reflected by the magnitude of 

the corresponding mean absolute errors (for the bond lengths i n Table 4.1 the 

errors are 0.010, 0.011 and 0.016 A for MP2, \ and HCTH-93 respectively. 

Unlike bond lengths, HCTH-93 and \ predict almost identical bond angles 

and their differences f rom the experimental values are wi th in one degree. The 

only exceptions are SSC1 and C1SC1, where their values reduce f rom 2.8 to 

2.3 deg and f rom 2.4 to 1.9 deg respectively, for HCTH-93 and \ . 

We have therefore demonstrated that the inclusion of sulphur-halogen 

compounds in the training set used to develop a G G A exchange correlation 

funct ional is not necessary to improve the performance of the functional . 

Improvements can instead be achieved by introducing appropriate physics 

by fitting solely to exchange-correlation potentials, as in the | development. 

4.1.3 Vibrational frequencies 

Table 4.3 shows the harmonic vibrational frequencies and their errors f r o m 

experiment for the benchmark molecules using HCTH-93, \ and MP2. Since 
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Table 4.1: Experimental bond lengths in A and errors (difference between 

calculated and expt) with the triple-^ cc-pVTZ basis set. 

Mol HCTH-93 A H C T H - 9 3 1/4 A 1 / 4 MP2 r 
' exp 

ref 
S-H H 2 S 1.346 0.010 1.343 0.007 1.335 -0.001 1.336 [165] 

HSOH 1.358 1.355 1.342 

H2S2 1.353 0.011 1.351 0.009 1.339 -0.003 1.342 [166] 
HSF 1.354 1.351 1.339 

CLS2H 1.358 1.356 1.343 
S-0 F 2 S O 1.439 0.026 1.435 0.022 1.433 0.020 1.413 [167] 

S 0 3 1.445 0.025 1.441 0.021 1.442 0.022 1.420 [168] 
HSOH 1.682 1.670 1.676 
FSOH 1.636 1.625 1.625 
F S O F 1.477 1.474 1.449 

s-c cs2 
1.559 0.006 1.552 -0.001 1.562 0.009 1.553 [169] 

H 2 C S 1.611 0.000 1.603 -0.008 1.614 0.003 1.611 [170] 
OCS 1.565 0.004 1.557 -0.004 1.566 0.005 1.561 [171] 

C2H6S 1.812 0.010 1.793 -0.009 1.806 0.004 1.802 [172] 
S-F F 2 S O 1.630 0.045 1.619 0.034 1.602 0.017 1.585 [167] 

F 2 S 1.617 0.030 1.609 0.022 1.601 0.014 1.587 [173] 
FSOH 1.645 1.636 1.627 
F S O F 1.618 1.610 1.595 

HSF 1.639 1.631 1.628 

F2S2 1.670 1.661 1.641 
S-Cl C12S 2.036 0.021 2.020 0.005 2.024 0.009 2.015 [174] 

CI2S2 2.110 0.053 2.089 0.032 2.063 0.006 2.057 [174] 
C1S 2H 2.089 2.071 2.058 

S-S H2S2 2.066 0.011 2.049 -0.006 2.065 0.010 2.055 [166] 
F2S2 1.902 1.889 1.906 

CI2S2 1.939 0.008 1.929 -0.002 1.964 0.033 1.931 [174] 
C1S 2H 2.015 2.000 2.023 

S-N H 3 NS 1.830 1.812 1.826 
S-P H 3 PS 1.938 1.928 1.938 
O-H HSOH 0.964 0.965 0.963 

FSOH 0.968 0.968 0.966 
C-H H 2 C S 1.093 0.000 1.090 -0.003 1.086 -0.007 1.093 [170] 

C2H6S 1.093 0.002 1.091 0.000 1.087 -0.004 1.091 [172] 
C-0 OCS 1.164 0.007 1.160 0.003 1.168 0.011 1.157 [171] 
F - 0 F S O F 1.777 1.748 1.841 
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Table 4.2: Experimental bond angles in degrees and errors (difference be­

tween calculated and expt) with the triple-^ cc-pVTZ basis set. 

Mol HCTH-93 A H C T H - 9 3 1/4 A1/4 MP2 ^ M P 2 ' exp ref 

HSH H 2S 92.0 0.2 92.8 0.6 92.2 0.0 92.2 [165] 
FSH HSF 96.2 96.1 96.1 
FSF F 2SO 93.7 0.9 93.4 0.6 92.7 -0 .1 92.8 [167] 

F2S 99.7 1.6 99.3 1.2 98.7 0.6 98.1 [173] 
HSO HSOH 98.9 98.6 98.4 
SOH HSOH 105.9 106.5 105.8 

FSOH 108.1 109.6 107.8 
FSO FSOH 102.2 101.9 101.3 

F 2SO 106.6 -0.2 106.4 -0.4 106.7 -0 .1 106.8 m 
FSOF 108.6 108.3 109.6 

SOF FSOF 111.5 111.0 107.2 
SSH H 2 S 2 98.7 0.8 98.7 0.8 97.8 -0 .1 97.9 [166] 

C1S2H 100.0 100.0 98.5 
SSC1 C12S2 111.0 2.8 110.5 2.3 107.1 -1.1 108.2 [174] 

C12S2H 108.0 107.6 105.3 
SSF F 2 S 2 109.8 109.6 108.0 
HCS C2HgS 106.6 0.0 107.1 0.5 107.5 0.8 106.6 [172] 

C2HeS 111.5 0.7 111.4 0.6 110.8 0.0 110.8 [175] 
CSC C2HgS 99.2 0.3 99.8 0.9 96.9 -2.0 98.9 [172] 
C1SC1 C12S 105.1 2.4 104.6 1.9 102.7 0.0 102.7 [174] 
SCH H 2CS 122.3 0.7 122.2 0.6 121.8 0.2 121.6 [170] 
SNH H 3NS 110.9 110.9 110.5 
HNH H 3NS 108.1 108.0 108.4 
SPH H 3PS 118.1 118.2 117.7 
HPH H 3PS 99.6 99.6 100.2 
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the range of the vibrational frequencies is very large, A n is instead a per­

centage error 

An = ( ( J c a l c ~ • 100 (4.1) 
Wexp 

For molecules without halogen atoms, both HCTH-93 and | perform well. 

For halogen-containing molecules, the HCTH-93 accuracy degrades whereas \ 

generally performs better. Figure 4.2 is a histogram of the absolute values of 

the averaged percentage errors in Table 4.3 for each of the compounds except 

H3PS, HSF and HSOH, due to the difficulty in assigning their fundamentals. 

The figure reflects our analysis, showing that on average, relative to MP2, 

HCTH-93 and | have a similar trend for molecules without halogens, whereas 

\ is more successful for halogen-containing compounds. In particular, the 

calculated mean absolute errors for the molecules in Figure 4.2 are 2.8, 1.9 

and 2.1% for HCTH-93, \ and MP2 respectively. 
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Figure 4.1: Bond length differences: (HCTH-93 minus expt.), ( | minus expt.) 

and (MP2 minus expt.) for the different type of bonds. 
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Table 4.3: Experimental harmonic vibrational frequencies in cm 1 and per­

centage difference errors A (see text for details) with the cc-pVTZ basis set. 

Mol HCTH-93 A H C T H - 9 3 1/4 A 1 / 4 MP2 A M P 2 Ref. 

H 2S 
A, 2670 - 2 2693 - 1 2780 2 2727 [164] 

1181 0 1174 - 1 1211 2 1183 [164] 

B2 
2688 - 2 2711 - 1 2799 2 2739 [164] 

OCS 

E + 2098 2 2123 3 2100 2 2062 [164] 
874 2 892 4 890 4 859 [164] 

n 513 - 1 519 0 523 1 520 [164] 
513 - 1 519 0 523 1 520 [164] 

cs 2 

1565 2 1594 4 1625 6 1533 [164] 
667 1 681 4 676 3 658 [164] 

n u 394 - 1 400 1 402 1 397 [164] 
394 - 1 400 1 402 1 397 [164] 

C2H6S 

A, 3098 - 1 3132 0 3186 2 3136 [176] 
2994 - 2 3024 - 1 3070 0 3064 [176] 
1457 1 1434 - 1 1503 4 1447 [176] 
1339 0 1331 0 1372 3 1337 [176] 
1031 0 1032 0 1057 3 1030 [176] 
680 - 2 760 9 726 4 695 [176] 
275 - 2 263 - 6 264 - 6 280 [176] 

3098 - 1 3129 0 3187 2 3137 [176] 
2997 - 2 3016 - 1 3076 1 3058 [176] 
1452 1 1426 - 1 1495 4 1442 [176] 
1313 0 1306 - 1 1347 2 1315 [176] 
900 0 894 -1.0 922 2 903 [176] 
725 - 2 708 - 5 779 5 742 [176] 

Cont 
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Table 4.3: continued. 

Mol HCTH-93 ^ H C T H - 9 3 1/4 A 1 / 4 MP2 ^ M P 2 W e x p Ref 

A2 
3084 - 1 3104 0 3171 2 3109 [176] 
1438 1 1450 2 1479 3 1427 [25] 
945 0 933 - 1 964 2 946 [176] 
176 0 188 7 181 3 175 [176] 

B2 3075 - 1 3093 - 1 3162 2 3109 [176] 
1449 1 1443 0 1488 3 1439 [176] 
976 0 971 0 999 3 973 [176] 
225 23 183 0 193 6 183 [176] 

F2SO 
A' 1303 - 2 1319 - 1 1365 2 1333 [177] 

756 - 6 776 - 4 810 0 808 [177] 
485 - 9 490 - 8 520 - 2 530 [177] 
331 336 368 [177] 

A" 695 - 6 717 -3 749 1 740 [177] 
367 - 6 368 - 6 386 - 1 390 [177] 

C12S 
A, 506 - 2 509 - 2 544 5 518 [178] 

198 - 5 200 - 4 209 1 208 [178] 
B2 

490 - 7 522 - 1 541 3 526 [178] 

C I 2 S 2 

A 571 5 587 8 548 0 546 [178] 
417 - 1 1 437 - 6 493 6 466 [178] 
205 2 207 3 208 3 202 [178] 
97 5 97 5 95 3 92 [178] 

B 401 -12 421 - 8 482 6 457 [178] 
229 - 5 233 - 3 245 2 240 [178] 

F 2 S 2 

A 674 - 6 695 - 3 745 4 717 [179] 
628 2 656 7 621 1 615 [179] 
285 - 1 1 287 -10 294 - 8 320 [179] 
176 - 4 178 - 3 187 2 183 [179] 

Cont 
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Table 4.3: continued. 

Mol HCTH-93 ^ H C T H - 9 3 1/4 A l / 4 MP2 A M P 2 Ref. 

B 637 - 7 647 - 5 711 4 681 [179] 
303 1 306 2 325 8 301 [179] 

H 2 S 2 

A 2582 - 2 2613 0 2733 4 2621 [178] 
881 0 880 0 906 3 882 [178] 
503 - 1 521 2 537 6 509 [178] 
446 452 442 

B 2586 - 3 2618 - 2 2735 3 2669 [178] 
883 2 879 1 903 4 868 [178] 

so 3 

A\ 1024 - 4 1042 - 2 1049 - 2 1065 [180] 
465 - 7 470 - 6 485 - 3 498 [180] 

E 1352 -3 1375 - 1 1409 1 1391 [180] 
1352 -3 1375 - 1 1409 1 1391 [180] 
499 - 6 500 - 6 514 - 3 530 [180] 
499 - 6 500 - 6 514 - 3 530 [180] 

CH 2S 
Ai 3012 3039 3113 

1462 1458 1504 
1079 1099 1100 

Bi 999 999 1024 

B2 3093 3123 3209 
987 985 1014 

F 2S 
A1 806 - 4 825 - 2 856 2 839 [181] 

329 - 8 332 - 7 351 - 2 357 [181] 

B2 
782 - 4 802 - 1 832 2 813 [181] 

Cont 



4.1. Sulfur compounds 85 

Table 4.3: continued. 

Mol HCTH-93 A H 0 T H - » 3 1/4 A 1 / 4 MP2 A M P 2 tuexp Ref. 

H 3NS 

HSF 

3477 3482 3588 
3388 3399 3469 
1634 1617 1665 
1314 1303 1338 
839 835 858 
608 634 656 

3477 3482 3588 
1634 1617 1665 
839 835 858 

2342 - 1 2368 0 2499 6 2359 [182] 
2321 2347 2488 
1100 - 1 1 1095 -12 1155 - 7 1240 [182] 
1075 1072 1147 
701 700 741 
670 -22 685 -20 693 -19 858 [182] 

2321 - 2 2347 - 1 2488 5 2371 [182] 
1075 - 6 1072 - 6 1148 0 1143 [182] 
701 -37 700 -37 741 -34 1114 [182] 

2603 - 1 2627 0 2748 5 2628 [183] 
994 -3 995 - 3 1043 2 1023 [184] 
769 - 2 788 0 811 3 788 [184] 

Cont 
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Table 4.3: continued. 

Mol HCTH-93 A H C T H - 9 3 1/4 A 1 / 4 MP2 A M P 2 uexp Ref. 

HSOH 

FSOH 

FSOF 

C1SSH 

3755 7 3766 7 3830 9 3525 [185] 
2556 2582 2712 
1196 2 1185 1 1219 4 1177 [185] 
990 995 1035 
750 - 2 773 1 788 3 763 [185] 
485 9 489 10 485 9 445 [185] 

3692 3698 3787 
1194 1180 1219 
843 838 867 
738 757 793 
573 582 574 
327 334 351 

1118 1127 1369 
761 777 813 
431 450 519 
397 406 421 
289 298 241 
158 163 138 

2545 2567 2707 
879 880 906 
517 535 540 
436 455 504 
427 429 406 
198 200 208 
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Figure 4.2: Mean absolute percentage frequency differences for MP2, HCTH-

93 and \ 

4.1.4 Molecular polarizabilities 

We finally investigate the performance of HCTH-93 and \ functional for 

predicting isotropic polarizabilities. The reason of this assessment is that in 

Ref. [160], Altmann et al. calculated the polarizabilities for this benchmark of 

molecules to investigate how the performance of hybrid functionals depended 

on the choice of the basis-set. Even though our aim in this work is to compare 

the performance of GGA functionals rather than basis-sets, we consider the 

calculation of polarizabilities an interesting test to perform. 

We therefore calculated the isotropic polarizabilities at near-experimental 

geometries using the extensive Sadlej basis set [126], comparing with HCTH-

93 and experimental values (where available). Recall that an accurate func­

tional should give polarizabilities below experiment. In Table 4.4 we observe 

that for all the systems in the benchmark, \ lowers the HCTH-93 values, 

which is consistent with the results presented in Chapter 3. 
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Table 4.4: Isotropic polarizabilities in a.u. for HCTH-93 and \ with the 

Sadlej basis set. Experimental values are also shown where available. 

Mol HCTH-93 1/4 •-̂ •exp Ref 

H 2S 25.18 24.91 24.71 [186, 187] 
OCS 33.23 31.71 33.72 [186, 187] 
cs 2 54.71 54.26 55.28 [186, 187] 
CH 2S 34.74 34.24 
C12S 52.24 51.99 
F 2S 24.53 24.30 
C2HeS 78.50 76.49 50.95 [188] 
so 3 30.55 30.32 
H 3NS 40.30 39.34 
H 3PS 43.27 42.57 
HSF 27.17 26.87 
H 2 S 2 45.08 44.72 
SOF 2 28.60 28.45 
F 2 S 2 46.13 45.52 
C12S2 79.32 79.05 
HSOH 32.00 31.58 
FSOH 29.44 29.17 
FSOF 36.89 36.67 
C1SSH 60.48 60.16 
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4.2 Diatomic molecules 

We now present a systematic study of the performance of the \ functional, 

compared to several recently developed functionals, for the prediction of 

bond lengths and harmonic vibrational frequencies of ground state diatomic 

molecules. The reason for choosing diatomic molecules is that it allows 

molecules to be drawn evenly from rows of the periodic table: many re­

cently developed functionals have been parameterized by constraining them 

to be accurate for molecules high in the periodic table, often containing many 

hydrogen atoms. The performance of such functionals for molecules outside 

the training set is not well documented. We consider 45 molecules containing 

atoms Li-Br (no hydrogen), which provide a stringent test of functional qual­

ity. The DFT results are compared with MP2 and reference experimental 

data. 

4.2.1 The exchange-correlation functionals 

We choose seven different functionals. They are the GGAs HCTH-93, HCTH-

407 [100], ±, PBE [92], and the hybrids B3LYP [109], B97-2 [111] and 

PBEO [112]. 

4.2.2 Choice of diatomic molecules 

To choose the molecules consisting our benchmark we used as a criterion 

that they should be drawn evenly from rows of the periodic table. Hence, 

we considered three ful l rows: Li-Ne, Na-Ar and K-Kr neglecting Sc-Zn in 

the latter since this block is absent in the first two. This leaves the groups 1 

[Li,Na,K]; 2 [Be,Mg,Ca]; 13 [B,Al,Ga]; 14 [C,Si,Ge]; 15 [N,P,As]; 16 [0,S,Se] 

and 17 [F,Cl,Br]. Combining one group with itself generates six diatomics, 

e.g. group 1 gives L i 2 , LiNa, LiK, Na 2, NaK, K 2 . Combining two different 

groups generates nine diatomics, e.g., groups 1 and 17 give LiF, LiCl, LiBr, 

NaF, NaCl, NaBr, KF, KC1, KBr. We then used Ref. [131] to find groups or 
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pairs of groups where experimental bond lengths r e and harmonic frequencies 

w e were known for all possible singlet ground state combinations. Neglect­

ing rare-gas dimers due to the difficulty of describing dispersion in DFT, 

the following combinations were obtained: (1-1), (15-15), (17-17), (1,17), 

(13,17) and (14,16). These molecules are summarized in Figure 4.3. For 

1 13 14 15 16 17 

Li • • • B c N O F 

Na • • • A l Si P s CI 

K • • • Ga Ge As Se Br 

1-1 L i 2 
LiNa LiK Na 2 

NaK K 2 

15-15 N 2 NP NAs P 2 
PAs As 2 

17-17 F 2 FC1 FBr C l 2 ClBr Br 2 

1-17 LiF LiCl LiBr NaF NaCl NaBr KF KC1 KBr 

13-17 BF BC1 BBr A1F A1C1 AlBr GaF GaCl GaBr 

14-16 CO CS Cse SiO SiS SiSe GeO GeS GeSe 

Figure 4.3: Specification of the molecules comprising the benchmark under 

study 

LiNa, LiK, and NaK the values in ref. [131] were uncertain; by searching the 

literature [189]-[191], we found more accurate values for these systems. We 

also found a more accurate value for the bond length of K 2 [192]. The only 

other values with uncertainties in Ref. [131] are the bond lengths of PAs, Cl 2 , 

BC1, and BBr. For the last three we found more recent experimental values 

that agree within 0.001 A with the values of [131], hence we regard them as 

acceptable for this work. 
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4.3 Computational details 

We performed all calculations using the extensive 6-311+G(2df) basis set, 

which corresponds to 5s4p2dlf for [Li-Ne], 7s6p2dlf for [Na-Ar] and 9s8p4dlf 

for [K-Kr]. Since ±, HCTH-93 and B97-2 [111] were determined using the 

TZ2P basis set, i t would have been appropriate to use this basis-set for this 

assessment. However, TZ2P is not available for third row atoms. We have 

confirmed that for molecules where the TZ2P basis set is available, average 

bond length errors change little in moving from TZ2P to 6-311+G(2df). In 

order to minimize the influence of the numerical integration errors in the 

Kohn-Sham calculations, extensive numerical integration grids were intro­

duced. DFT harmonic vibrational frequencies were determined using a two 

point finite-difference of analytic first derivatives. MP2 frequencies were cal­

culated analytically. 

4.4 Results and discussions 

4.4.1 Bond lengths 

In Table 4.5 we present the experimental bond lengths and the errors for the 

seven functionals and MP2. We quote the differences between our calculated 

and experimental values to this precision so that the calculated values can 

be deduced (calculated=experiment+error). 

The alkali metal dimers, combination (1-1), are very difficult molecules, 

leading to very large errors (particularly for HCTH-93 HCTH-407 and B97-

2). Therefore we present mean errors d, mean absolute errors |d| and mean 

absolute percentage errors \d\% compared to experiment, both omitting and 

including the (1-1) combination. 

By considering the errors when the (1-1) combination is omitted, similar 

variations across the theoretical methods are observed for d, \d\ and \d\%. 

HCTH-93 bond lengths are too long with a mean absolute error of 0.022 A 
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Table 4.5: Experimental bond lengths in A and errors (calculated minus 

experiment, in x l O _ 3 A ) with the 6-311+G(2df) basis set. 

Mol. Expt. 1 HCTH 
93 

HCTH 
407 

1/4 PBE B3LYP B97-2 PBEO MP2 

(1-1) 
L i 2 2.673 88 75 14 58 33 73 56 9 
LiNa 2.8852 100 86 - 7 36 9 70 37 28 
LiK 3.3193 136 120 9 57 42 94 63 18 
Na 2 3.079 108 96 -32 11 - 2 1 65 16 26 
NaK 3.4974 150 141 -13 37 11 94 47 - 1 
K 2 3.9245 205 208 14 72 47 132 84 -35 

(15-15) 
N 2 1.098 1 - 1 -3 5 - 7 - 8 - 8 13 
NP 1.491 3 1 -3 10 - 7 -10 - 1 1 27 
NAs 1.618 0 - 2 - 7 8 - 7 -15 -16 42 
P 2 1.893 7 4 - 2 16 1 - 8 - 8 29 
PAs 1.999 7 2 - 4 16 2 -10 - 1 1 24 
As 2 2.103 6 2 - 7 14 1 -13 -16 18 

(17-17) 
F 2 1.412 -15 -18 -22 - 1 -17 ^35 -38 -17 
FC1 1.628 17 12 7 31 20 0 - 2 8 
FBr 1.759 20 17 10 32 19 1 - 3 1 
C l 2 1.988 13 3 0 27 32 2 1 4 
ClBr 2.136 17 10 2 27 32 3 - 1 - 3 
Br 2 2.281 25 21 8 32 38 9 3 0 

(1-•17) 
LiF 1.564 26 23 5 17 6 11 4 13 
LiCl 2.021 19 13 - 9 6 3 8 - 2 2 
LiBr 2.170 27 21 -5 12 9 15 3 3 
NaF 1.926 48 45 17 32 18 23 13 26 
NaCl 2.361 43 35 2 18 16 22 6 15 
NaBr 2.502 52 45 5 22 21 30 11 22 
KF 2.171 19 18 -17 3 12 6 - 3 26 
KC1 2.667 29 23 - 2 1 0 20 11 - 2 14 
KBr 2.821 42 39 -13 8 29 22 5 25 

Cont. 
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Table 4.5: continued. 

Mol. Expt. 1 HCTH HCTH 1/4 PBE B3LYP B97-2 PBE0 MP2 
93 407 

(13-17) 
BF 1.263 10 8 0 11 0 1 -3 0 
BC1 1.716 19 14 - 1 18 8 9 4 - 6 
BBr 1.888 24 20 1 22 18 14 7 -13 
A1F 1.654 35 32 24 37 24 19 16 18 
A1C1 2.130 36 33 19 36 34 22 18 10 
AlBr 2.295 48 46 26 44 45 32 26 21 
GaF 1.774 40 38 26 41 30 21 16 13 
GaCl 2.202 39 35 14 32 38 20 12 - 1 
GaBr 2.352 50 46 20 39 48 30 19 0 

(14-16) 
CO 1.128 5 3 0 9 - 3 - 4 - 5 6 
CS 1.535 8 6 0 13 - 1 - 3 - 4 0 
CSe 1.676 9 6 - 1 15 2 - 3 - 5 - 4 
SiO 1.510 13 11 7 20 4 0 - 1 16 
SiS 1.929 18 14 8 26 13 4 4 12 
SiSe 2.058 22 19 10 29 17 7 5 8 
GeO 1.625 12 10 5 20 5 - 3 - 5 17 
GeS 2.012 18 12 6 25 16 2 1 5 
GeSe 2.135 24 19 9 29 20 6 3 0 

Omitting (1-1) alkali metal dimers: 
d 21 18 3 21 14 6 1 10 
\d\ 22 19 9 21 16 12 8 12 
\d\% 1.1 0.9 0.5 1.1 0.8 0.6 0.5 0.7 

Al l molecules: 
d 36 31 2 24 15 17 7 10 
\d\ 37 32 10 24 18 22 14 13 
\d\% 1.5 1.3 0.5 1.1 0.8 0.9 0.6 0.7 
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(1.1 % ) ; in moving to HCTH-407 the error is reduced to 0.019 A (0.9 % ) . I t is 

important to point out that for the 93 molecules used to develop HCTH-93, 

its mean absolute error was just 0.013 A. The larger error in this study shows 

how the performance of the functional degrades when applied to molecules 

outside the training set. Boese and Handy [100] have already observed such 

behaviour for non-hydrogen containing molecules. 

Bond lengths for the \ functional are considerably more accurate, with 

a mean and mean absolute errors of just 0.003 A and 0.009 A. These values 

are consistent with those presented in Chapter 3, where we demonstrated the 

high quality molecular structures from \ . 

PBE instead overestimates the bond lengths with a mean absolute er­

ror of 0.021 A which is in between the mean absolute errors of HCTH-93 

and HCTH-407; this reflects its rigorous theoretical derivation using exact 

conditions. 

The widely used B3LYP hybrid functional gives a mean absolute error 

of 0.016 A. This error is reduced to 0.012 A for the recently developed B97-

2, which is comparable to MP2. Finally, PBE0, which contains only one 

parameter, is the most accurate hybrid functional. I t gives an error of 0.008 A 

which is comparable with \ . 

We have investigated the reasons for such a good performance of PBE0. 

At first, we thought i t was due to the 0.25 exact exchange, since the other 

hybrid functionals have just 0.20 and 0.21 exchange; but this was not the 

case. We reduced the amount of exact exchange in the PBE0 functional to 

0.21 (increasing the GGA exchange expansion parameter to 0.79) but the 

mean absolute error remained at 0.008 A. 

We then performed a more general assessment, including the alkali metal 

dimers. In this case HCTH-93 and HCTH-407 become particularly poor with 

mean absolute errors of 0.037 A and 0.032 A respectively. PBE performs 

better with a mean absolute error of 0.024 A. The performance of B97-

2 degrades, becoming less accurate than B3LYP, whereas PBE0, with its 
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error of 0.014 A is comparable to MP2. However, the best overall results are 

again obtained with | , which has a mean absolute error of only 0.010 A. This 

functional performs particularly well for the challenging (1-1) molecules. 

I t is often assumed that DFT functionals provide accuracy comparable 

with MP2. In this study, when all the 45 molecules are considered, only \ 

(GGA) and PBE0 (hybrid) are competitive with MP2. We also observe that 

no degradation in the accuracy of the predictions is observed in moving down 

the periodic table, for the recently developed parameterized functionals. I t is 

clear that within a given group combination, the largest percentage errors can 

be associated with molecules involving intermediate atomic number atoms. 

This is in spite of the fact that the atoms K, Ga, Ge, As, Se and Br are not in 

the molecules comprising the training set. This provides some justification 

for parameterising functionals by fitting to molecules high in the periodic 

table. 

4.4.2 Harmonic vibrational frequencies 

In Table 4.6 we present the experimental harmonic vibrational frequencies, 

together with the errors for the seven functionals under study. Since the range 

of vibrational frequencies is much larger (92-2359 c m - 1 ) than the range of 

bond lengths (1.098-3.924 A), i t is important to also present mean absolute 

percentage errors (|<i|%). 

Considering the mean absolute errors, we observe a similar quality in the 

performances of HCTH-93, HCTH-407, B97-2, PBE and MP2. PBE and 

B3LYP give more accurate results, however the most accurate predictions 

are obtained by | , which gives a mean absolute error of only 14 c m - 1 . 

Considering the mean absolute percentage errors, HCTH-93 and HCTH-

407 are poor and PBE0 is much more accurate. B97-2, B3LYP and PBE0 

are comparable to, or better than, PBE. However, once again, \ performs 

particularly well, with a mean absolute percentage error of just 2.0%. In 
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Table 4.6: Experimental harmonic frequencies and errors (calculated minus 

expt) in c m - 1 with the 6-311+G(2df) basis set. 

Mol. Expt. 1 HCTH 
93 

HCTH 
407 

1/4 PBE B3LYP B97-2 PBEO MP2 

(1-1) 
L i 2 351 -25 -20 -3 -19 -10 -15 - 1 1 30 
LiNa 257 - 2 1 -16 0 -10 - 4 -10 - 4 - 3 
LiK 2122 - 2 1 -18 - 3 - 1 1 - 9 - 9 - 6 3 
Na 2 159 -12 -10 2 -3 1 - 4 1 2 
NaK 124 -12 - 1 1 0 - 4 - 2 - 4 0 5 
K 2 92 -10 -10 0 -3 - 3 - 3 - 1 6 

(15-15) 
N 2 2359 16 31 43 -14 84 107 117 -155 
NP 1337 15 19 35 1 65 80 91 -138 
NAs 1069 31 36 50 20 70 91 102 -159 
P 2 781 5 15 19 - 4 23 42 47 -57 
PAs 604 9 16 21 4 23 41 46 -30 
As 2 430 6 9 17 5 18 31 36 -16 

(17-17) 
F 2 917 89 90 115 81 132 166 184 99 
FC1 786 -23 -16 - 1 - 3 1 - 9 23 34 14 
FBr 671 -29 -27 - 9 -30 - 8 13 24 13 
C l 2 560 -17 -12 - 1 -18 -17 10 21 24 
ClBr 444 -17 -15 - 2 -14 -13 7 17 21 
Br 2 325 -15 -15 - 4 - 1 1 -10 3 11 13 

(1-17) 
LiF 910 -56 - 5 1 -18 -35 - 9 -24 - 6 - 9 
LiCl 643 -27 -18 1 -10 - 5 -10 3 5 
LiBr 563 -24 - 2 1 - 2 - 1 1 - 7 - 1 1 0 5 
NaF 536 -46 -43 -17 -26 -10 -19 - 6 - 9 
NaCl 366 -27 - 2 1 - 7 -12 - 8 -12 - 4 0 
NaBr 302 -26 -24 - 8 -13 -10 -15 - 6 - 4 
K F 428 -37 -36 - 9 -16 -12 -15 - 6 -17 
KC1 281 -27 -25 - 5 -10 - 1 1 -13 - 5 - 8 
KBr 213 - 1 1 - 1 1 1 - 1 - 1 - 2 3 3 

Cont. 
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Table 4.6: continued. 

Mol. Expt. 1 HCTH 
93 

HCTH 
407 

1/4 PBE B3LYP B97-2 PBE0 MP2 

(13-•17) 
BF 1402 -53 -47 -13 -49 1 - 6 13 18 
BC1 839 -40 -36 -10 -36 -22 -17 - 5 24 
BBr 684 -32 -28 - 6 -27 - 2 1 -14 - 3 25 
A1F 802 -66 -62 -46 -62 -37 -32 -23 -18 
A1C1 481 - 3 1 - 3 1 -18 -27 -26 -15 -10 2 
AlBr 378 -27 -28 -16 - 2 1 -23 -15 - 9 - 5 
GaF 622 -55 -53 -34 -46 - 3 1 -23 -13 - 6 
GaCl 365 -24 -24 - 9 -15 -18 - 9 - 1 14 
GaBr 263 -16 -16 - 3 - 7 - 1 1 - 4 2 13 

(14-•16) 
CO 2170 -23 -17 7 -43 41 53 68 -36 
c s 1285 -15 - 5 10 -27 18 35 43 23 
CSe 1035 - 5 4 18 -14 22 41 50 46 
SiO 1242 -37 -36 -17 -48 10 22 31 -42 
SiS 750 -23 -19 - 9 -29 - 8 7 13 - 1 
SiSe 580 -19 -17 - 7 - 2 1 - 6 6 13 8 
GeO 986 -19 -17 - 1 -27 17 35 45 -29 
GeS 576 -16 -12 - 3 -19 - 5 11 16 15 
GeSe 409 -18 -16 - 8 -18 - 8 2 7 12 

A l l molecules: 

d -18 -15 1 -16 3 12 20 - 7 
\d\ 26 25 14 21 20 25 26 26 
\d\% 5.1 4.7 2.0 3.4 3.0 3.5 3.1 3.4 

^ e f . [131], unless otherwise stated 
2Ref. [190] 
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general, the GGA functionals tend to underestimate vibrational frequencies, 

whereas hybrid functionals overestimate them. 

4.4.3 Discussion 

The results of this study are summarized in Figure 4.4 and Figure 4.5. The 

uniform high quality performance of | is clear. I t is important to point out 

that the PBEO hybrid functional is also impressive; it involves only one pa­

rameter whereas all the others functionals have a larger number. However, 

its accuracy is due to the inclusion of a fraction of exact orbital exchange. 

By contrast, | is a GGA, without exact exchange. Hence, i t is particularly 

attractive for use in electronic structure codes that eliminate the 4-centre in­

tegrals by fi t t ing the Coulomb term. Further investigations have also shown 

that i t can be applied to study solid state systems with encouraging results. 

The improved structural prediction from | are achieved at a cost, however, 

as energy predictions (particularly total energies) and NMR shielding con­

stants are less accurate than HCTH-93. A pragmatic way to circumvent this 

problem would be to combine the \ functional with a second functional. The 

former could be used to determine the geometry and the latter could be used 

to determine quantities at that geometry. 

4.5 Exchange-correlation enhancement factors 

I t is important to understand why \ is so successful. To investigate this we 

considered the enhancement factor introduced in Chapter 2. Recall that the 

general expression for a GGA functional is 

where the enhancement factor /^ c ( r s , s) is a function of the reduced density 

gradient s and of the Wigner-Seitz radius rs. As explained in Chapter 2, the 

enhancement factor must satisfy a range of exact conditions. In particular, by 

E xc 
(4.2) 
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Figure 4.4: Trends of the average bond length accuracy for the seven meth­
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considering the variation of the exchange-correlation energy under uniform 

density scaling, it can be shown [62] that 

fL(r's,s)>f'Jrs,s); (r's>rs) (4.3) 

hence, curves associated with different rs values should not cross. In Fig­

ures 4.6-4.9, we present the enhancement factors of HCTH-93, HCTH-407, \ 

and PBE. See Ref. [62] for the enhancement factor plots of other functionals. 

I t is clear that HCTH-93 and HCTH-407 have a similar structure. Neither 

satisfy Eq.(4.3); the crossing is particularly pronounced in HCTH-407. How­

ever, in very low density regions i t is more similar to the (correct) PBE than 

HCTH-93. The \ functional has a completely different enhancement factor, 

and this is consistent with its completely different behaviour in this chapter. 

For different values of rs, the curves are approximately parallel, hence it sat­

isfies Eq.(4.3). We are extremely encouraged that this can be achieved using 

a parameterized functional. However, i t fails to satisfy the other conditions 

such as the modified Lieb-Oxford bound [105, 106]. 

The reason for the non-crossing behaviour of | derives from the fitting 

procedure used to develop i t . Functionals in Chapter 3 emphasizing regions 

close to the nuclei give enhancement factors that cross whereas function­

als that emphasize regions further out give enhancement factors that do 

not cross. In Chapter 5 we use this observation to develop new exchange-

correlation functionals. 



4.5. Exchange-correlation enhancement factors 101 

• 

2.5 

f. 2 

rs=o 
1.5 

18 > 

1 
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Figure 4.7: Exchange-correlation enhancement factor f^c(rs,s) for HCTH-

407 plotted as a function of s. 
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Figure 4.9: Exchange-correlation enhancement factor f'xc{rs, s) for PBE plot­

ted as a function of s. 



Chapter 5 

GGAs from enhancement 

factors 

In this chapter we demonstrate that for the functionals developed in Chap­

ter 3 the enhancement factor varies smoothly as a function of the weight­

ing factor. We use this observation to develop, for the first time, param­

eterized functionals that satisfy the uniform density scaling condition (i.e. 

non-crossing enhancement factor) and the Lieb-Oxord bound. Molecular 

structures, thermochemistry, polarizabilities and NMR shielding constants 

are assessed. The potential energy surface of the Helium dimer is also inves­

tigated since this is known to be sensitive to the shape of the enhancement 

factor. 

5.1 Variation of the enhancement factor 

Perdew et al. [62] have demonstrated that in practical calculations, extremely 

small values of rs and s (rs < 1 and s < 1) correspond to high density (core) 

regions, whereas 1 < rs < 6 and s < 2 emphasize valence regions. In this 

study we wish to develop new GGA functionals that satisfy exact conditions 

over a wide region of space, 0 < rs < oo and 0 < s < oo. 

Figure 5.1 presents the enhancement factors of the eight functionals de-

103 
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veloped in Chapter 3 which were obtained through the minimization of 

« = £ E / rfr&W + k T a - v Z ( T ) ] 2 f i ( r ) (5.1) 
T (7 

As p increases from 0 to | , the enhancement factors vary smoothly. From p = 

| , the order of the curves inverts, meaning that the highest curve corresponds 

to rs = 0, whereas the lowest corresponds to rs = oo. This smooth variation 

is important as i t indicates that, by choosing p appropriately, exact conditions 

can be satisfied. In particular, we can ensure that we satisfy: 

1. The uniform density scaling 

fL(r's,s)> &c(rs,s) for (r's > r.) (5.2) 

and 

2. The modified Lieb-Oxford bound 

&c(rs,s) < 2.2143 (5.3) 

To the best of our knowledge, this is the first time that these exact conditions 

have been enforced in highly parameterized exchange-correlation functionals. 

In addition to these conditions, we also investigate 

3. The uniform electron gas condition (UEG) 

f'xc(rs,s = 0) = f£DA(rs). (5.4) 

5.1.1 Enforcing the uniform electron gas condition 

For our standard functional form the uniform electron gas condition is satis­

fied if the first three expansion coefficients are set equal to unity 

ci = c2 = c3 = 1. 

The minimization of Eq. (5.1) then requires 

(5.5) 
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Figure 5.1: Exchange-correlation enhancement factors / x C ( r « ) S ) for p — | 

with i = 0...7 plotted as a function of s for different values of the Wigner-

Seitz radius rs. 
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and the original least-squares expression 

15 

Y,Al3Cj = Bi (5.7) 

reduces to 
3 15 

or 

We then define 

£ ^ + £ ^ Q --lh (5.8) 

j=i j=i 

Y.AijCi = B i - Y l A i i . (5.9) 

3 

Xi = B i - Y l A i j (5.10) 

and the new least-squares equation to solve in order to get the remaining 12 

coefficients Cj under the UEG condition is 
15 

E - V ' i = (5.11) 
j=4 

Figure 5.2 presents minimized values of f2 (Eq.(5.1)) as a function of the num­

ber of parameters for p = \, both with and without the UEG condition. In 

both cases the most significant jump in the minimized value occurs between 

3 and 6 coefficients. We therefore commenced by generating functionals with 

6 expansion coefficients, and then increased this to 9 and 12. 

Al l the expansion coefficients for the optimal functionals are presented in 

Appendix A. 

5.2 Results and discussion 

5.2.1 Uniform density scaling (non-crossing) condition 

The first part of our investigation involved determining functionals whose 

enhancement factors f x c satisfied the uniform density scaling (non-crossing) 

condition in Eq.(5.2). Perdew et al. [62] have demonstrated that, in addition 

to not crossing, enhancement factor curves should converge at large s (i.e. 
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Figure 5.2: The two different trends of the minimization process with and 

without the imposition of the uniform electron gas condition (UEG) 
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correlation vanishes). An initial value of p was therefore chosen, for which 

the curves did not cross, p was then increased in increments of 0.1, causing 

the curves to approach one another. The largest value of p for which there 

was no crossing defined our optimal functional. 

To determine whether the enhancement factor curves crossed it was nec­

essary to know their values as s —> 0 and s —>• oo. These were obtained 

using 

J ™ / x c ( r s i s ) = cx<r,0 ' / X O - . L D A W + cco<jfl • fca<r,LDA(rs) + c ca/3,0 * / c a / 3 , L D A ( r s ) 

(5.12) 

and 

J f e / x c = ( E c x ^ ) / x « 7 , L D A ( r

S ) + ( 5 - 1 3 ) 

i 

cca(j,i)fc(T(T.LDA(rs) + 
i 

(^"1 c C a / 9 , i ) / c a / 3 , L D A ( R « ) 
i 

where c X ( T ) i , c C a ( T t i and c c a p t i are the functional expansion parameters and 

/X<T,LDA> / C ^ , L D A A N D / C ^ , L D A
 a r e t h e enhancement factors of the LDA ex­

change, aa and a/3 correlation functionals. 

Figure 5.3 shows the enhancement factor plots of our optimal 6, 9 and 12 

coefficient functionals, obtained with the inclusion of the uniform electron gas 

condition, Eq. (5.4). The values of p used to determine the functionals are 

also presented. Mean absolute errors are presented for the geometries ( A r ) , 

energies (AE) and polarizabilities (Aa) of the systems in Table 3.2 and for 

isotropic shielding constants (ACT) of the systems in Table 3.12. There is no 

clear trend. The 12 coefficient functional yields high quality energies (compa­

rable to PBE) and shieldings are also reasonable (comparable to HCTH-93). 

However, geometries are very poor with a MAE of 0.019 A. 

Relaxing the UEG condition gives the three functionals whose enhance­

ment factors are presented in Figure 5.4. The best MAE for energies in this 

case is 19.02 kcal/mol associated with the 6 coefficient functional, which is 
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Figure 5.3: Exchange-correlation enhancement factors f^G(rs,s) plotted as 

a function of s for the three optimal functionals satisfying the non-crossing 

and the uniform electron gas conditions. 
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Figure 5.4: Exchange-correlation enhancement factors fxc(rs,s) plotted as 

a function of s for the three optimal functionals satisfying the non-crossing 

condition without the uniform electron gas condition. 
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much less accurate than the UEG case. However, a significant improvement 

in the molecular structures and polarizabilities is observed. The MAE for 

the geometries is just 0.007 A which is close to our | functional. 

5.2.2 Modified Lieb-Oxford bound condition 

The second part of our investigation involved determining functionals whose 

enhancement factors satisfy the modified Lieb-Oxford bound (Eq. (5.3)). As 

before, p was varied, but this time the optimal functional was the first one for 

which all the rs curves had values below 2.2143 for all values of s. Figure 5.5 

presents the enhancement factors of our best 6 and 9 coefficient functionals, 

obtained with the UEG condition. The enhancement factor of the best 6-

coefficient functional consists of almost straight lines. Hence, its behaviour 

is similar to the enhancement factor in the Local Spin Density Approxima­

tion [62], even if the small curvature at small s indicates the presence of a 

small local density gradient correction. However, a very poor MAE of 30.91 

kcal/mol is obtained, which is surprising given that the UEG condition led 

to better energies in Section 5.2.1. 

In moving from 6 to 9 coefficients, i.e. increasing the flexibility of the 

functional, the curves remain quite flat for small s but cross at approximately 

s = 3.5. The energetics, polarizabilities and shielding constants improve 

significantly, although molecular structures remain poor. 

Figure 5.6 presents the optimal functionals obtained with the relaxation 

of the UEG condition. The best 6 coefficient functional has a completely dif­

ferent enhancement-factor compared to the 6-coefficient functional obtained 

under the UEG condition. The curves cross near s = 2.5. This functional is 

a uniform improvement over the 6-coefficient functional developed under the 

UEG condition. 

The next step was to consider the optimal 9 and 12 coefficient functionals. 

However, i t was impossible to find any functional satisfying the Lieb-Oxford 
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bound condition. This is demonstrated in the last plot of Figure 5.6 where 

the large s behaviour of the rs = oo curve stays above the Lieb-Oxford bound. 

Hence, we concluded that i t is impossible to find optimal 9 and 12 coefficient 

functional. 
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Figure 5.5: Exchange-correlation enhancement factors / x C ( r «> s ) plotted as 

a function of s for the two optimal functionals satisfying the Lieb-Oxford 

bound and the uniform electron gas conditions. 
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5.3 The non-crossing HCTH-93 

I t is well known that the enhancement factor for the HCTH-93 functional 

does not satisfy the non-crossing condition in Eq.(5.2). To assess the ef­

fect of this, we determined a new HCTH-93 functional that does satisfy the 

condition. 

Using the original HCTH-93 functional form and the original fitting pro­

cedure involving thermochemical data together with exchange-correlation po­

tentials (See Chapter 3), we investigated the optimal value of p to generate 

a new non-crossing HCTH-93 functional. The optimal value of p was found 

to be 0.41 (compared to 0.67 in the original HCTH-93). In Figure 5.7, we 

present its enhancement factor, together with that of the original HCTH-93. 

Between 0 < s < 2.0 the two plots are almost identical. The effects of the 

enforcement of the non-crossing condition appear only in the large s region. 

We then performed an assessment of this new functional, but did not ob­

serve any improvement, apart from the molecular structures where the MAE 

error decreased from 0.013 A in the original HCTH-93 to 0.011 A. This is 

consistent with the observation in Chapter 3 that relatively diffuse (large s) 

regions are important for geometries; the new functional improves the large 

s region. For all the other properties there was a slight reduction in the 

accuracy, as shown in the tables of Figure 5.7. 

The results of this and the previous section demonstrate that, although they 

are exact conditions, satisfying the uniform scaling and the Lieb-Oxford 

bound condition does not lead to any overall improvement in the proper­

ties considered. 
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Figure 5.7: Exchange-correlation enhancement factor f'xc{rs,s) for HCTH-

93 and the new non-crossing HCTH-93 plotted as a function of s. (Solid line: 

rs = 0; dotted line: ra = 2; dashed lines: rs = 6; long-dashed line: rs = 18; 

dot-dashed line: r. = oo 
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5.4 The helium dimer 

GGA functionals represent a general improvement over LDA for describing 

potential energy surfaces [193,194]. However, i t is well known that, like LDA, 

they provide a poor description of van der Waals systems [195]-[198]. Some 

GGA functionals predict repulsive interactions with no minimum, whilst oth­

ers, like LDA, overbind. Zhang, Pan and Yang [79] have demonstrated that 

the behaviour of the exchange enhancement factor in low density/large gra­

dient (i.e. large s) regions is extremely important to understand quality of 

GGA predictions in the van der Waals systems. Functionals whose exchange 

enhancement factors increase rapidly with s tend to predict a repulsive inter­

action, whilst those whose enhancement factors increase more gradually tend 

to correctly predict binding. The functionals derived in Chapter 3 provide 

an excellent opportunity to test this hypothesis. 

5.4.1 Results and discussion 

In Figure 5.8 we present the exchange enhancement factors of the eight GGA 

functionals in Chapter 3, and of the | functional. For small values of s 

the differences between the curves are relatively small. For larger values, 

however the curves become very different. Following Zhang et al, we would 

expect that the functionals associated with smaller values of p should bind 

the helium dimer, whereas those associated with the larger values should 

predict repulsive curves. 

We have used these functionals to determine potential energy curves of 

He 2. We used an extensive 7s5p4d3f basis set, corresponding to the nuclear 

centered part of the DC+BS (Dcl47) basis set of Ref. [199]. We confirmed 

that BSSE corrections are negligible using this basis set. Results are pre­

sented in Figure 5.9. MP2 values are presented as a reference. In plot (a), 

the curves are exactly as predicted based on the observations of Zhang et al. 

As p increases the curves vary smoothly from attractive to repulsive. Plot 



5.4. The helium dimer 118 

(b) highlights the bonding region for p = 0, | , 4, | . Beyond these values, the 

curves are repulsive. 
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4/6 

3/6 

C/5 
^ 2.0 

7/6 
2/6 

1/4 1.5 
1/6 

0 
1.0 

• 

s 

Figure 5.8: Exchange enhancement factor f'x(s) for p = | with i = 0...7 and 

p = t plotted as a function of s. 

Finally, in Figure 5.10 we present the assessment of the new non-crossing 

HCTH-93 functional compared to the original HCTH-93. We observe that 

the new functional binds the helium dimer, whereas HCTH-93 is instead 

repulsive. This is again consistent with the exchange enhancement factor 

curves in Figure 5.8. The HCTH-93 curve increases rapidly so the He 2 curve 

is repulsive. The new functional gives a better behaved curved and corre­

spondingly binds He 2. 
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Figure 5.9: Potential energy curves for the helium dimer calculated using the 

functionals obtained for p — | with i = 0...7, p = \, and MP2 plotted as a 

function of r. 
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Figure 5.10: Potential energy curves for the Helium dimer calculated us­

ing the HCTH-93, HCTH-93 non-crossing functionals and MP2 plotted as a 

function of r. 



Chapter 6 

Investigation of hybrid 

functionals 

The diatomic molecule assessment in Chapter 4 highlighted the high quality 

structural predictions from the PBEO functional, which contains 25% exact 

orbital exchange. Other recent studies have also suggested that this fraction 

is near-optimal. In this chapter we therefore determine a new, highly param-

eterised functional containing this fraction of exact exchange. By comparing 

with PBEO and B97-2 (21%) the influence of parameterisation and fraction 

of orbital exchange is quantified. Particular attention is paid to chemical re­

action barriers and their relationship to self-interaction errors. Following the 

GGA work in Chapter 3, attempts are also made to determine new hybrid 

functionals solely from ab initio densities. 

6.1 The B97-3 hybrid functional 

The general expression for a hybrid functional is written as 

Exc[Pa, Pp] = Eic[Pa, P f i ] - \ j j Y , ^ ^ ^ ^ d r d v ' (6.1) 

where the first term is a continuum functional and the second is the fraction 

of exact orbital exchange. Wilson and Tozer [154] recently investigated the 

121 
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optimal amount of exact exchange to include in a hybrid functional to obtain 

accurate electron densities. They concluded that the optimal amount is 25%. 

This is consistent with the PBEO functional, where 25% was chosen based 

on a perturbation theory analysis. 

Among the most recently developed hybrid functionals we recall the B97-

2 functional developed by Wilson et al [111] via a fitting procedure involving 

thermochemical data and exchange-correlation potentials. The procedure is 

essentially identical to that used to determine HCTH-93 except that 

a. no gradient information was used; 

b. the potentials were determined using a modified ZMP approach, which 

accounts for the presence of a fraction of exact orbital exchange. 

Its performance is very successful in predicting molecular properties, par­

ticularly compared to B97-1 and B3LYP. B97-2 contains 21% exact exchange. 

We have therefore determined a new hybrid functional, which we denote 

B97-3, as it is a natural extension of B97-2. We developed this functional 

using the same approach that was used to develop B97-2, except we increased 

the amount of exchange from 21% to 25%. The coefficients defining B97-3 

are presented in Appendix B. 

6.2 Performance of B97-3 

A detailed assessment of the B97-3 functional is now presented comparing 

with PBEO [112] and B97-2. Molecular structures, polarizabilities and shield­

ing constants, together with an extensive range of classical reaction barriers 

are investigated. Unless otherwise stated, all the calculations were performed 

using the TZ2P basis set and the sets of molecules defined in Chapter 3. 

6.2.1 Molecular structures 

Table 6.1 presents optimized structures. Increasing the amount of exact 

exchange does reduce bond lengths; the mean error reduces slightly from 
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B97-2 to B97-3 although the mean absolute error is unchanged at 0.008 A. 

PBEO gives the most accurate mean absolute error of 0.006 A. 

6.2.2 Thermochemistry 

In Table 6.2 we present the MAE for the total energies (E), the ionization 

potentials (IP) and atomization energies (AE). As for molecular structures, 

the increase in the amount of exact exchange in B97-3 did not bring any 

substantial improvement over B97-2. However, both B97-2 and B97-3 are 

a significant improvement over PBEO. The mean absolute error for the to­

tal energies decreases from 25.6 kcal/mol for PBEO to 3.4-3.5 kcal/mol for 

B97-2 and B97-3. The mean absolute error for the atomization energies de­

creases from 3.19 kcal/mol for PBEO to 2.0-2.2 kcal/mol for B97-2 and B97-3. 

Mean absolute errors for ionization potentials are comparable for all three 

functionals. 

6.2.3 Static isotropic polarizabilities 

In Table 6.3 we present isotropic polarizabilities; zero-point corrections have 

not been included. BD(T) values are therefore also presented as a reference. 

PBEO and B97-2 underestimate experimental polarizabilities by almost the 

same extent as BD(T), with average errors of 0.07 and 0.13 compared to 

0.10 au. B97-3 also underestimates experimental polarizabilities but with an 

average error of 0.22 a.u. which is consistent with the increased fraction of 

exact orbital exchange. 

6.2.4 Shielding constants 

In Table 6.4 we present isotropic shielding constants. The columns headed 

PBEO, B97-2, B97-3 are the conventional shielding constants, calculated as 

the second derivatives of the corresponding electronic energies. The mean 

absolute error is dominated by the error for the ozone molecules, hence we 
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Table 6.1: Optimised geometries (in A and degrees) for molecules S using 

PBEO, B97-2, and B97-3, with the TZ2P basis set 

Molecule Expt 1 PBEO B97-2 B97-3 

H 2 
0.741 0.743 0.739 0.738 

LiH 1.596 1.596 1.601 1.598 
BeH 1.343 1.349 1.353 1.350 
CH 1.12 1.125 1.124 1.122 
CH 2 1.078 1.078 1.077 1.076 
CH 2s 1.11 1.112 1.11 1.109 
CH 3 1.08 1.079 1.077 1.076 
CH 4 1.086 1.088 1.087 1.086 
NH 1.036 1.038 1.038 1.036 
N H 2 1.024 1.025 1.024 1.022 

N H 3 1.012 1.012 1.009 1.008 
OH 0.97 0.971 0.97 0.968 
H 2 0 0.957 0.958 0.956 0.954 
HF 0.917 0.918 0.916 0.914 
L i 2 2.673 2.736 2.754 2.75 
LiF 1.564 1.569 1.578 1.575 
C 2 H 2 1.203 1.196 1.197 1.195 

1.063 1.064 1.062 1.061 
C 2 H 4 1.331 1.323 1.324 1.322 

1.081 1.084 1.082 1.081 
CN 1.172 1.16 1.161 1.159 
HCN 1.065 1.068 1.066 1.065 

1.153 1.146 1.146 1.144 
CO 1.128 1.124 1.125 1.123 
HCO 1.173 1.17 1.171 1.169 

1.123 1.123 1.121 1.119 
Cont 
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Table 6.1: continued. 

Molecule Expt 1 PBEO B97-2 B97-3 
H 2 CO 1.203 1.197 1.197 1.195 

1.102 1.107 1.105 1.104 
N 2 1.098 1.09 1.091 1.089 

o2 
1.207 1.196 1.198 1.194 

H 2 0 2 1.456 1.431 1.435 1.43 
0.966 0.963 0.961 0.959 

F 2 1.412 1.383 1.387 1.382 

co2 1.16 1.157 1.158 1.156 
HC1 1.275 1.279 1.275 1.274 
Na 2 3.079 3.082 3.13 3.121 
Si 2 2.246 2.257 2.258 2.254 

P 2 
1.893 1.884 1.885 1.881 

s2 1.889 1.896 1.898 1.895 
Cl 2 1.988 2.001 2.003 1.999 
NaCl 2.361 2.363 2.378 2.374 
SiO 1.51 1.508 1.509 1.506 
CS 1.535 1.532 1.533 1.531 
SO 1.481 1.485 1.488 1.485 
CIO 1.57 1.576 1.576 1.573 
C1F 1.628 1.631 1.633 1.629 
Mean r 0.000 0.002 -0.000 
Mean abs. r 0.006 0.008 0.008 
1 Ref [115] 
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Table 6.2: Error assessments of the thermochemistry (kcal/mol) for systems 

defined in Table 3.2, calculated using PBEO, B97-2 and B97-3. 

PBEO B97-2 B97-3 

Mean abs E 25.6 3.4 3.5 
Mean abs AE 3.2 2.0 2.2 
Mean abs IP 1.8 1.4 1.3 

Table 6.3: Static isotropic polarisabilities (in atomic units) using PBEO, B97-

2, and B97-3, with the Sadlej basis set. 

Expt 1 BD(T) PBEO B97-2 B97-3 
HF 5.6 5.64 5.68 5.68 5.61 
H 2 0 9.64 9.71 9.69 9.7 9.6 

N 2 
11.74 11.75 11.74 11.71 11.66 

CO 13.08 13.03 12.98 12.96 12.88 

F 2 
8.38 8.45 8.56 8.53 8.5 

N H 3 14.56 14.33 14.34 14.35 14.21 

co2 17.51 17.56 17.03 16.99 16.9 

C H 4 17.27 16.43 16.74 16.64 16.56 
C 2 i ? 4 27.7 26.91 27.61 27.56 27.48 

PH 3 30.93 30.44 30.93 30.76 30.64 
24.71 24.67 24.75 24.61 24.49 

so2 25.61 26.06 25.3 25.26 25.11 
HCl 17.39 17.43 17.53 17.42 17.34 

C l 2 30.35 30.71 30.62 30.46 30.36 
Mean (BD(T)) 0.03 -0.04 -0.13 
Mean abs. (BD(T)) 0.24 0.22 0.26 
Mean (Expt) ^0.10 -0.07 -0.13 -0.22 
Mean abs. (Expt) 0.25 0.18 0.19 0.24 
xRef [144] unless otherwise stated 
2Ref [145] 
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present the error assessment including and omitting this molecule. A l l three 

functionals provide very poor results. The reduction in accuracy in moving 

from B97-2 to B97-3 is consistent with the work of Wilson and Tozer [154] 

who demonstrated that the optimal amount of exact exchange is zero for 

conventional shielding calculations. 

The columns headed MKS(PBEO), MKS(B97-2) and MKS(B97-3) are 

shielding constants calculated using the multiplicative Kohn-Sham approach 

(MKS) of Wilson and Tozer [201]. In this method the multiplicative ZMP 

potentials are determined from electron densities. The corresponding Kohn-

Sham orbitals and eigenvalues are then used in the conventional uncou­

pled Kohn-Sham expression for the shielding constants. The MKS (PBEO), 

MKS(B97-2) and MKS(B97-3) are shielding constants obtained from the 

PBEO, B97-2 and B97-3 electron densities. In general, there is a significant 

reduction in the mean absolute errors compared to conventional shielding 

constant calculations. The MKS(B97-3) results are now an improvement 

over MKS(B97-2) and the best results are obtained with MKS (PBEO). 

6.2.5 Reaction barriers 

The calculation of chemical reaction barriers is a significant challenge for 

DFT. In many cases, GGA and hybrid functionals provide reaction barri­

ers that are significantly below the best ab initio values [202]-[204]. Lynch 

et al. [205] have demonstrated that improved results can be achieved by 

increasing the amount of exact exchange in the functional form. We might 

therefore expect PBEO and B97-3 to be more accurate than B97-2, since they 

include more exact exchange. In Table 6.5, we present 16 classical reaction 

barriers. The first column indicates the reactants, the second describes the 

nature of the transition state where in each case the horizontal line is the new 

bond formed. The next three columns are the reaction barriers calculated 

with PBEO, B97-2 and B97-3, using the TZ2P basis set. The barriers are 
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Table 6.4: Isotropic shielding constants (in ppm) using PBEO, B97-2, B97-3, 

MKS(PBEO), MKS(B97-2) and MKS(B97-3) w i t h the Huzinaga ( IGLO I V ) 

basis set. 

Expt 1 

Best 
ab initio1 PBEO B97-2 B97-3 

MKS 
(PBEO) 

MKS 
(B97-2) 

MKS 
(B97-3) 

HF H 419.7 418.6 413.5 412.5 412.8 416 414.4 415.2 

H 2 0 0 357.6 337.9 330.1 328.3 328.6 332.2 329.8 330.5 

C H 4 C 198.4 198.9 192.8 191.3 191.7 192.2 190.7 191 

CO C 2.8 5.6 -16.9 -12.4 -13.6 -3.3 -2.4 -1 .1 
0 -36.7 -52.9 -82.5 -74.1 -75.4 -46.2 -45.4 -40.8 

N 2 N -59.6 -58.1 -91.4 -85.9 -87.7 -63.5 -64 -61.1 

F 2 
F -192.8 -186.5 -240.5 -243.1 -238.6 -191.8 -202.7 -191.9 

O'OO' 0 ' -1290 -1208.2 -1736.2 -1660.4 -1707.1 -1143.2 -1174.1 -1133 

0 -724 -754.6 -1168.5 -1099.6 -1151.2 -775 -782.9 -768.4 

PN P 53 86 -54.7 -36.3 -41.2 37 37.1 47.2 

N -349 -341 -424.4 -408.4 -413.5 -338.9 -340.8 -319.9 

H 2S S 752 754.6 728.5 722.5 723.3 733.3 725.6 727.1 

N H 3 N 273.3 270.7 262.8 260.9 261.1 263.6 261.3 261.7 

HCN C 82.1 86.3 70.9 73.4 73 77.6 78.3 79 

N -20.4 -13.6 -46.9 -39.8 -40.9 -24.2 -22.2 -19.6 

C 2 H 2 C 117.2 121.8 109.2 111.7 111.6 112.5 113.9 114.4 

H 2 CO c -4.4 4.7 -21.4 -16.6 -16.6 -15 -12.5 -11.3 
0 -375 -383.1 -452.9 -424.9 -428 -354.6 -348.3 -336.9 

C 0 2 
c 58.8 63.5 53.2 55.1 54.7 58.2 58.7 59.2 

0 243.4 236.4 214.1 215.7 215.8 226.2 225.2 227.4 

HC1 CI 952 962.3 956.8 952.4 953.3 957.1 952 953.1 

s o 2 s -126 -134.2 -241 -227.5 -234.4 -171.4 -172.4 -166.8 

0 -205 -170.4 -281.7 -273.8 -275.8 -208.8 -214.7 -205.2 

P H 3 
p 599.9 594 584.8 580 580.9 585.9 580.4 581.4 

Mean 4.6 -69.6 -59.4 -64.4 - 3 -5.9 0.16 

Mean abs. 12.9 70 59.5 64.5 18.26 18.5 18.8 

O3 omitted 
Mean 2.5 -32.5 -28.3 -29.2 - 7 -8.3 10.02 

Mean abs. 8.2 32.9 28.4 29.3 10.02 11.21 10.40 
1Refe [129] and [130] 
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calculated at the corresponding D F T optimized structures. 

Surprisingly we observe that PBEO provides very poor reaction barriers 

w i t h a mean absolute error of 4.37 kcal /mol . This is a significant fai l ing. 

B97-2 and B97-3 are substantially more accurate wi th mean absolute errors 

of 2.4 kcal /mol and 2.3 kcal /mol, respectively. The increase in the amount of 

exact exchange in B97-3 provides only a small improvement in the functional 

performance. Finally, we note that we did not include any BSSE counterpoise 

correction in our calculations. The inclusion of this correction would fur ther 

increase the reaction barriers, although the effect is small for the TZ2P basis 

set [220]. 

Increasing the fraction of exact exchange f rom 2 1 % to 25% does not therefore 

lead to significant improvements. One of the key observation of this work 

is the significant fai l ing of PBEO in describing chemical reaction barriers. 

B97-2 and B97-3 are substantially more accurate. We now go on to consider 

the relationship between reaction barrier accuracy and the self-interaction 

problem. 
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Table 6.5: Classical reaction barriers (in kcal/mol) using PBEO, B97-2 and 

B97-3, w i t h the TZ2P basis set. 

Reaction TS PBEO B97-2 B97-3 Ab initio 

H + H 2 H - H 2 5.52 9.68 10.16 9.61 1 

C H 4 + C H 3 H3CH — CH3 14.34 14.47 14.47 17.5 2 ,16.6 3 

H2 + CH3 H H - C H 3 7.92 9.15 8.96 11.81 4 

H 2 + N H 2 H H - N H 2 4.72 6.28 6.32 9.51 4 

H 2 + O H H H - O H 0.9 1.9 2.11 5.62 4 ,4.87 3 

C H 4 + O H H 3 C H - OH 2.27 2.68 3.11 6 .62 5 ,5 .11 3 

H + N 2 H ^ N 2 8.78 12.76 13.31 15.2 6 ,14.5 7 

N + 0 2 N - 0 2 7.74 7.92 8.7 8.8 8 ,10.2 9 

O + H C l O - H C l 2.68 2.98 3.74 9 .78 1 0 , 10 .4 n 

H + N 2 0 H - N 2 0 6.31 10.36 10.82 9.6 1 2 

H + N 2 0 N N O H 13.55 16.91 17.02 14.5 1 2 

H + N 2 0 H - O N 2 14.47 18.75 19.41 17.5 1 2 

H + NO H - N O 0.17 3.73 3.93 4 . 1 1 3 

0 + H 2 0 - H 2 6.37 8.9 9.10 12.4 1 4 

H + H F H - F H 36.19 42.48 43.57 42.17 3 ,46 .11 1 5 

H + HC1 H - C 1 H 13.53 18.23 18.89 20.72 1 5 

Mean -4 .37 -1 .77 -1 .36 

Mean abs. 4.37 2.37 2.31 
x Ref [206] 
2 Ref [207] 
3 R e f [208] 
4 R e f [209] 
5 Ref [210] 
6 Ref [211] 
7 R e f [212] 
8 R e f [213] 
9 R e f [214] 
1 0 R e f [215] 
u R e f [216] 
1 2 R e f [217] 
1 3 R e f [218] 
1 4 R e f [219] 
1 5 R e f [203] 
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6.3 The molecule 

Zhang and Yang [221] have argued that the self-interaction error in approxi­

mate exchange-correlation functionals may be responsible for errors i n chem­

ical reaction barriers. For all the reactions i n Table 6.5 the B97-1 functional 

(21% exchange) gives a mean absolute error of 3.6 kcal /mol . The B97-2 

funct ional (also 21%) significantly reduces the error to 2.4 kcal /mol . Fol­

lowing Zhang and Yang we would therefore expect self-interaction errors to 

be smaller for B97-2. Figure 6.1 presents the exact (Hartree-Fock), B97-1 

and B97-2 potential energy curves for H j " using the extensive d aug-cc-pV6Z 

basis set w i t h functions f, g and h removed. No improvement is observed for 

B97-2 which contradicts the view of Zhang and Yang. 
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Figure 6.1: Dissociation curves for described by B97-1, B97-2 and HF. 

AE = E(Ht) - E(E) - E(E+) 

Figure 6.2 presents potential energy curves for HCTH-93 and | . The \ 

funct ional provides a much improved description of H 2 . We view this as a 
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significant observation, again highlighting the physically interesting nature 

of | . However, \ reaction barriers (not presented in this thesis) are signifi­

cantly inferior to those of HCTH-93. Once again, this suggests that there is 

no simple relationship between reaction barriers accuracy and self-interaction 

errors. 
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Figure 6.2: Dissociation curves for described by | , HCTH-93 and H F . 

AE = E(Ht) ~ E(H) - E(K+) 

6.4 Hybrid functionals from u x o 

Finally, using the ideas of Chapter 3, we consider the determination of new 

hybrid functionals by fitting solely to exchange-correlation potentials. Us­

ing exactly the same mathematical fo rm and t ra in ing set used to develop 

B97-3, again w i t h 25% exact exchange, we determined new functionals by 

minimizing 

0 = E E / M v L P M r ) + *ST - < . T ( r ) ] V . T ( r ) (6.2) 
T a J 
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We considered a range of values for p f rom 0 to | . Opt imal structures and 

thermochemistry were obtained near p = 0.21 — 0.25. 

In Table 6.6 we present a detailed analysis of the M A E for the corre­

sponding five functionals. I n moving f rom 0.21 to 0.24 the quality of the 

bond lengths is constant, comparable to B97-2 and B97-3. Only for p = 0.25 

does the mean absolute error decrease to 0.007 A. A different situation is ob­

served for the energy assessment. The removal of the thermochemical data 

in the f i t t i n g procedure leads to a dramatic increase in the mean absolute 

error for the tota l energies, as was the case for the GGAs in Chapter 3. A t -

omization energies and ionization potentials are less accurate than for B97-2 

and B97-3. However, they are an improvement over the | G G A results. We 

stress that no thermochemical information was included in the f i t t i n g proce­

dure. Unlike i n the G G A case, no functional is simultaneously opt imal for 

both structures and thermochemistry. 
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Table 6.6: Error assessments for self-consistent molecular structures (A 

and degrees), thermochemistry (kcal/mol) as a function of the power p i n 

Eq. (6.2). 

-P 
B97-2 B97-3 0.21 0.22 0.23 0.24 0.25 

Molecular structures of systems S 

M e a n r 0.002 -0.000 -0.004 -0.004 -0.004 -0.004 -0 .004 

Mean abs. r 0.008 0.008 0.008 0.008 0.008. 0.008 0.007 

Combined thermochemistry of systems M, A\, A*, and A2 

Mean abs E 3.4 3.5 78.3 73.0 67.9 63.1 58.4 

Mean abs A E 2.0 2.2 4.4 4.2 4.2 4.7 5.8 

Mean abs IP 1.4 1.3 4.8 4.6 4.4 4.3 4.2 



Chapter 7 

The exchange-correlation 

charge 

This thesis has demonstrated that the exchange-correlation potential v x c ( r ) 

is a key quantity in D F T . Another important quantity is the exchange-

correlation charge or hole. In this chapter we investigate a new, recently 

proposed definit ion of the exchange-correlation charge. We present the first 

calculations of this charge for molecular systems, paying particular attention 

to its basis set dependence and its relationship to the exchange correlation 

potential. 

7.1 Definition 

The exchange correlation charge (hole) p x c ( r , r') has conventionally been 

related to the exchange-correlation energy Exc[p] by the expression 

The dependence of the charge on both r and r' makes i t a diff icul t quantity 

to visualize. Furthermore i t has no simple relationship to the exchange-

correlation potential. In light of this, L i u et al. [225] have introduced an 

alternative definit ion of the exchange-correlation charge. The new charge, 

P ( r ) p x c ( r , r ) 1 
drdr' E xc r - r ' | 

(7.1) 
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denoted qXc{*), depends only on a single electronic coordinate and is related 

to the asymptotically vanishing exchange-correlation potential through the 

Poisson equation 

v,c(r) = f f ^ l d r ' (7.2) 
J |r — r | 

or 

V 2 v x c ( r ) = - 47 rg x c ( r ) (7.3) 

i.e. the new exchange-correlation charge is the charge distr ibution whose 

classical Hartree potential is the exchange-correlation potential. Eqns. (7.2) 

and (7.3) have also been considered by Gorling [227]. 

W i t h i n the Z M P approach [72] the exchange-correlation potential is ex­

pressed as 

Comparing Eq. (7.4) w i th Eq. (7.2), i t follows that the exchange-correlation 

charge is easily expressed in terms of the ZMP quantities 

q x c ( v ) = hm + A [p*(r) - po ( r ) ] ) (7.5) 

Given that the t r i a l electron density p A (r ) and the exact density Po( r) both 

integrate to iV electrons, integration of Eq. (7.5) gives a simple derivation of 

the sum rule 

J qxc{r)dr = - 1 (7.6) 

In practical calculations the exact density po( r ) must be replaced by an accu­

rate ab initio electron density, for this reason the exchange-correlation charge 

and the exchange-correlation potential represent approximations to the ex­

act quantities. In the next section, we solve the ZMP equations and examine 

the charge for He, Ne, HF, CO and N 2 . Diatomic molecules are chosen in 

order to facili tate graphical analysis of the charges. The method, however, 

is applicable to any molecule. 
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7.2 Computational details 

B D densities are used for all the calculations. For a finite gaussian basis 

set the t r i a l density p A ( r ) w i l l never equal the ab initio density po(r) [75]. 

I t follows that as A approaches infinity, both the potential and the charge 

w i l l also become infinite, which is unsatisfactory. Two approaches have been 

proposed to circumvent this problem. One approach [63, 75] is to use a large 

but finite value for A; a value of 900 has often been used. A n alternative 

approach is to expand the potential and the charge as Laurent expansions in 

A 
«2 

V ( r ) = £ V5(r)V (7.7) A 
xc 

i=ni 

T12 

9xc(r) = £ QiW ( 7 - 8 ) 
i=n\ 

where Vx C ( r ) a n a > 1xc(T) a r e the exchange-correlation potential and charge 

respectively determined for a specific values of A. From Eq. (7.4) and (7.5) 

9*Ac(r) = - ^ + A [ / ( r ) - r t , ( r ) ] (7.10) 

By calculating the charge and potential at appropriate values of A, the expan­

sion coefficients Vi(r) and Qi(r) can be determined and an optimal potential 

and charge defined. 

We performed extensive investigations in order to determine an opt imal 

expansion range (defined by n i and n2) together w i t h opt imal values of A at 

which the potential and the charge should be calculated. Our criteria were 

that the calculated potentials should resemble those published previously and 

that the calculated charge should resemble the published [225] and unpub­

lished results [226] of L i u et al. We concluded that the opt imal expansion 

was a five term expansion defined by n\ = — 3 and n 2 = 1. The final term 

in this expansion has a linear dependence on A and represents the basis set 

deficiency; as A approaches inf in i ty so to does this term. To determine the 
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expansion parameters in Eq. (7.7) and (7.8) we calculated the potential and 

charge at A values of 32, 64, 128, 256 and 512 and solved the resulting sets of 

five inhomogeneous linear equations. As A —> oo the first three terms in the 

expansion vanish. Given that the fifth term is the basis set error, we define 

our opt imal exchange-correlation potential and charge to be the four th terms 

in the expansions 

The next important consideration is the choice of gaussian basis set. We 

commenced by using the TZ2P basis set, but observed that the calculated 

exchange-correlation potential at the nucleus of the Ne atom was about 1 au 

less negative than the high accuracy Ne potential presented by Zhao et al. [72] 

Furthermore, our potential exhibited a flattening very close to the nucleus, 

which is not present in the potential of Zhao et al. This flattening, which 

leads to a positive spike in the associated exchange-correlation charge at the 

nucleus is a consequence of the gaussian basis set. Figures 7.1-7.4 present 

the charges and the (scaled) potentials for Ne, CO, N 2 and F 2 respectively. 

The inclusion of additional high exponent gaussian functions, which are 

much steeper at the core, completely eliminates this feature and gives a 

potential which agrees well w i t h that of Zhao et al. For C, N , O, F and Ne 

we therefore augmented the TZ2P basis set w i th three s and p functions, 

w i t h exponents 30.0, 90.0 and 270.0; for H and He we add just three s 

functions w i t h the same exponents. For this basis set, we have confirmed 

that the behaviour of the exchange correlation charge near the nucleus of the 

Ne atom closely resembles the charge of L i u et al. [226] 

Next we consider the quality of this core-augmented TZ2P basis in the 

valence and asymptotic regions. I n Figure 7.5 we present a logarithmic plot 

of the radial distr ibution of the Ne exchange-correlation charge [47 r r 2 g x c ( r ) ] , 

plotted as a funct ion of distance f rom the nucleus. For comparison we also 

V%{T) = V0(v) (7.11) 

9 £ M = Qo(r) (7.12) 
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Figure 7.1: Comparison between <7xc(r) and 10 • vxc(r) for Ne atom 
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Figure 7.2: Comparison between <7xc(r) and 3 • vxc(r) for CO 
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Figure 7.3: Comparison between qXcM and 3 • vxc(r) for N 
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Figure 7.4: Comparison between <7xc(r) and v X c ( r ) for H F 
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present the radial electron density distr ibution [47rr 2p(r)]. There is a min i ­

mum in the radial charge near the first maximum in the radial density and 

a maximum in the radial charge near the minimum in the radial density. 

The radial charge exhibits two sub-shell peaks wi th in the second peak of 

the radial density. These observations are consistent w i t h those of L i u et al. 

except that they observed three, rather than two subshell peaks, as shown 

in (Figure 7.6). We have investigated this discrepancy and at tr ibute i t to 

the use of a finite gaussian basis set. Adding additional basis functions to 

the core-augmented TZ2P basis set did not recover the extra subshell peak. 

However, a calculation using an extremely extensive sp even-tempered ba­

sis set did recover the peak, although such a basis set is not practical for 

molecular calculations, nor for determining the BD densities. 

Of course, this basis set deficiency is amplified by the r 2 factor i n the 

radial distr ibution. In Figure 7.8 we present the exchange-correlation charge 

(not the radial distribution) for the Ne atom, determined using the core-

augmented TZ2P basis set. This plot closely resembles the charge of L i u et 

al. [226] I t also demonstrates that the dominant structure i n the charge lies 

relatively close to the nucleus, where the core-augmented TZ2P basis-set is 

adequate. We therefore regard this basis set as acceptable for studying the 

general structural features of the charge, although inadequate for reproducing 

the f u l l fine structure in the radial distribution, as was found in the more 

accurate calculation of L i u et al. The core-augmented basis set is used in al l 

the following calculations. 
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7.3 Exchange-correlation charges and poten­

tials 

In Figures 7.7-7.11 we present the exchange-correlation charges for He, Ne, 

HF, CO and N 2 , respectively. A l l nuclei lie on the z-axis. For all systems 

the distance scale on the plots covers 4 au although the charge scale varies. 

For the He atom in Figure 7.7 the charge is smooth and negative. Closer 

examination of the charge does not yield any more structural features. For 

the Ne atom in Figure 7.8 the charge is large and negative at the nucleus. As 

the distance f r o m the nucleus increases the charge increases to a maximum 

and then decreases again. A detailed examination of the charge beyond that 

point highlights two additional minima and maxima, which is consistent w i t h 

the structure in Figure 7.5; these additional features are not evident on the 

scale in Figures 7.7-7.11. The same structure is observed in the vicini ty of 

the C, N , O and F nuclei in the molecular systems. 
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Figure 7.7: Exchange correlation charge qXc(r) for the He atom, plotted along 

the z-axis. 
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Figure 7.8: Exchange correlation charge qXc(*) for the Ne atom, plotted along 

the z-axis. 
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Figure 7.9: Exchange correlation charge qXc{*) for the HF molecule, plotted 

along the ^axis. 
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Figure 7.10: Exchange correlation charge qXc{r) for the CO atom, plotted 

along the z-axis. 
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Figure 7.11: Exchange correlation charge qxc(r) f ° r the N 2 molecule, plotted 

along the z-axis. 
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The calculated charges at the nuclei vary significantly with atomic num­

ber; the values are also sensitive to the quality of the basis-set in the core 

region. The molecular charges closely resemble the sum of atomic charges, 

although for HF the influence of the hydrogen atom is barely visible on this 

scale. 

The exchange-correlation charge and potential are related through Eq. (7.2) 

and so it is informative to consider these quantities on the same plot. In Fig­

ure 7.12 to 7.16 we compare the charge to the exchange-correlation potential. 

The potential decays much less rapidly with increasing distance from the nu­

clei and so the distance scale has been increased to 12 au for all systems. 

To further aid comparison, the same scale is also used throughout on the 

vertical axes. In order for the potential to be visible, this scale truncates the 

charge at —10 a.u. For the He atom in Figure 7.12 the exchange-correlation 
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Figure 7.12: Comparison between gXc(r) and f X c ( r ) for He atom 

charge is smooth and its associated potential shows no shell structure. In 

the vicinity of C, N, O, F and the Ne nuclei in Figures 7.13-7.16,the struc-
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Figure 7.13: Comparison between gXc(r) and v x c ( r ) for Ne atom 

Figure 7.14: Comparison between qXc{?) and v x c ( r ) for CO molecule 
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Figure 7.16: Comparison between qxc(*) and v x c ( r ) for HF molecule 
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ture of the charge is dominated by the characteristic maximum, whose value 

increases with nuclear charge. An additional minimum is also evident on 

this scale. The location of these turning points are closely related to those 

in the exchange-correlation potential. The minimum in the charge is close 

to the minimum in the potential while the maximum in the charge is close 

to the well known intershell maximum in the potential. The influence of the 

hydrogen atom in HF is now clearly visible and the C and O atoms in CO 

are easily distinguished. 

In conclusion, we have demonstrated that the exchange-correlation charge 

of Liu et al. can be calculated for atomic and molecular systems in a gaus-

sian basis set framework. Attention must be paid to the choice of basis 

set, particularly in the core region. The charges exhibit structure that is 

closely related to that of the associated exchange-correlation potential. The 

exchange-correlation charge may be a useful quantity to use in functional 

development. For example, an approximate charge could be determined by 

fitting to calculated values; the classical potential of this charge would then 

represent a new model potential. 



Chapter 8 

Concluding remarks 

The low computational cost and high potential accuracy of Kohn-Sham den­

sity functional theory (DFT) makes it the most widely used method in quan­

tum chemistry. Many approximations to the exchange-correlation energy 

functional have been proposed and further improvements are essential. In 

this thesis, new approaches to functional development have been investi­

gated, with particular emphasis on the exchange-correlation potential. 

A series of exchange-correlation functionals were developed by fitting 

solely to exchange-correlation potentials from ab initio densities. This new 

method reduced the empiricism and highlighted the spatial dependence of 

molecular properties. Our initial results demonstrated that the \ functional 

gave particularly accurate molecular structures. Its performance was subse­

quently investigated for a benchmark of theoretically challenging molecules 

containing sulphur atoms and a new benchmark of diatomic molecules, drawn 

evenly from the first three rows of the periodic table. To date, the | functional 

provides the highest quality structural predictions of any DFT functional. 

The quality of \ is also evident in its enhancement factor, which satisfies 

the uniform density scaling condition. By considering the variation of the 

enhancement factor as a function of spatial weighting and number of pa­

rameters, we determined a series of parameterized functionals, satisfying the 

uniform density scaling condition and the Lieb-Oxford bound. To the best 

150 
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of our knowledge these are the first parameterised functionals to be deter­

mined by enforcing such conditions. We used these functionals to study the 

helium dimer, confirming the view of Zhang and Yang [79] that the degree 

of bonding in a van der Waals molecule is dependent on the behaviour of the 

enhancement factor. 

We have also presented a series of investigations on hybrid functionals 

that, by far, are the most widely used in the chemical literature. We devel­

oped a new hybrid functional with 25% of exact exchange, which is believed 

to be an optimal amount. By comparison with existing functionals, the influ­

ence of exact exchange and parametrisation were investigated. We discussed 

chemical reaction barriers in terms of self-interaction errors. Contrary to the 

view of Yang [221], we did not observe any relationship between these two 

quantities. Attempts were also made to derive hybrid functionals directly 

from exchange-correlation potentials. 

Finally, a new definition of the exchange-correlation charge (hole) was 

investigated, which is closely related to the exchange-correlation potential. 

The first molecular results were presented. Particular attention was paid to 

the basis set dependence and extrapolation schemes. 

We regard the work presented in this thesis as a useful contribution to 

exchange-correlation functional development. The existence of the exact 

functional is a driving force for continuous work in this field. 



Appendix A 

Functional coefficients 

A . l G G A functionals 

Table A . l : The optimal coefficients of the HCTH-93 functional in Chapter 3. 

HCTH-93 
cXa,0 +0 109320D + 01 
cCaa,0 +0 222601D + 00 
cCctj3,Q +0 729974D + 00 
CXa,l -0 744056D + 00 
cCaa,l - 0 338622£> — 01 
cCotP,\ +0 335287D + 01 
cXa,2 +0 559920D + 01 
cCaa,2 -0 125170D — 01 
cCa0,2 -0 115430D + 02 
cXa,3 -0 678549D + 01 
cCaa,3 - 0 802496D + 00 
cCa/3,3 +0 808564D + 01 
cXcr,4 +0 449357D + 01 
CC(T(T,i +0 155396D + 01 
cCa0,i -0 447857D + 01 

152 
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Table A.2: The optimal coefficients defining the eight functionals developed 

in Chapter 3 (Section 3.2.1). 

p = 0 P=l 
Cxo-,0 0.974312D+-00 0.101596L> + 01 0.104650Z) + 01 0.1086132)4-01 
CC(T(T,0 0.416867D + 01 0.310238D + 01 0.252332D + 01 0.1099152)4-01 
cCaP,0 -0.250375D + 00 0.109983D + 00 -0.301155D-01 -0.2312842) 4- 00 
Cx<r,l -0.884163D + 00 -0.353246D + 00 -0.402034D + 00 -0.5913312)4-00 
CC<7(7,1 0.272896Z) + 00 0.727410D - 01 0.398635D - 02 -0.3124112) - 01 

0.704306D + 01 0.499776D + 01 0.402059D + 01 0.2892022) 4 01 
CXa,2 0.472730D + 01 0.319535Z) + 01 0.413262D + 01 0.5508492) + 01 
cCcrcr,2 -0.360448D + 01 -0.245680D + 01 -0.963358D + 00 0.5066052) + 00 
Cca/3,2 -0.193378D + 02 -0.133929D + 02 -0.146381D + 02 -0.1697632)4-02 
Cxo-,3 -0.765091D + 01 -0.4684941} + 01 -0.579274D + 01 -0.7957032) 4- 01 
CC<T<r,3 0.599030D + 01 0.381560£> + 01 0.683386D + 00 -0.2613342) + 01 
Cca/3,3 0.224504D + 02 0.130549D + 02 0.159908D + 02 0.2254772) + 02 
CX<T,4 0.412021D + 01 0.227487D + 01 0.301936D + 01 0.4979172) 4 01 
CC(T(T,4 -0.307960L) + 01 -0.194258D + 01 0.473703D + 00 0.3223132) + 01 
CCc*0,4 -0.813538D + 01 -0.298985D + 01 -0.510287D + 01 -0.1099532) + 02 

P=l P=l 
cxo-,0 0.112917D + 01 0.115469D + 01 0.116512D + 01 0.1165252) 4 01 
cC(T<rfi -0.107721D + 01 -0.290969D + 01 -0.398057D + 01 -0.3921432) + 01 

-0.338816D + 00 -0.261572Z) + 00 -0.853154Z) - 01 0.1929492) 4 00 
Cxa,\ -0.828164D + 00 -0.927528D + 00 -0.842564D + 00 -0.5830332) + 00 
Cocro-,1 -0.252626L> - 01 -0.710096D - 01 -0.304755D + 00 -0.1100982)4 01 
c C a / ? , l 0.202248D + 01 0.248808D + 01 0.152803D + 01 -0.5733352) + 01 
CXCT,2 0.633989D + 01 0.624856D + 01 0.501628.D + 01 0.2517692) + 01 
CC<T<T,2 0.104930D + 01 0.832740D + 00 0.719667£> - 01 -0.9140502) - 01 
Cca/3,2 -0.142922D + 02 -0.840428D + 01 0.7651912) + 01 0.5087572) + 02 
Cx<r,3 -0.931275D + 01 -0.873072D + 01 -0.4779472) + 01 0.3812782) + 01 
CC<T<T,3 -0.427469D + 01 -0.425342D + 01 -0.271200D + 01 -0.8597232) 4- 00 
c Ca/3 ,3 0.178096D + 02 0.428368D + 01 -0.3362072? + 02 -0.1354752)4-03 
c X ( r , 4 0.671048D + 01 0.680977Z) + 01 0.3371352) + 01 -0.5459062) + 01 
Cc<7cr,4 0.486598D + 01 0.510580D + 01 0.3971041? + 01 0.2071842) + 01 
Cca/3,4 -0.994702D + 01 -0.135816D + 01 0.2593202) + 02 0.1012682) + 03 
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Table A.3: The optimal coefficients of the \ functional in Chapter 3 (Sec­

tion 3.2.1). 

C X(T , 0 0.103161D + 01 
CC(T<7,0 0.282414D + 01 
c c a / ? , 0 0.821827Z) - 01 
cxa,l -0.360781D + 00 
CC<T0,l 0.318843D - 01 
c C a / 3 , l 0.456466D + 01 
CX<T ,2 0.351994D + 01 
CC<T(T,2 -0.178512D + 01 
c ca /3 ,2 -0.135529D + 02 
c x<r , 3 -0.495944D + 01 
CC(T(T,3 0.239795D + 01 

0.133820D + 02 
c x<r ,4 0.241165D + 01 
cCacr,4 -0.876909D + 00 
c Ca/3,4 -0.317493D + 01 
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Table A.4: The optimal coefficients defining the 21 solutions functional in 

Chapter 3 (Section 3.6) 

21 solns 
Cx<r,0 0.104182D + 01 
cCaa,0 0.265144D + 01 
c Ca/S ,0 0.455703D + 00 
c x<r,l -0.167199D + 01 
CC(T(T,1 -0.445538D - 01 
c c a / 3 , l 0.167602D + 01 
Cxa,2 -0.101615D + 01 
CC(T<T,2 -0.291895D + 01 
c Ca/3 ,2 -0.438220D + 01 

0.561694£» + 01 
CC<T<T,3 0.556343D + 01 
Cca/3,3 0.558143D + 01 
C X ( T , 4 -0.265294£> + 01 

-0.386666D + 01 
c Ca/9 ,4 -0.198258D + 01 

11 i 
p^u 

-0.104768£> + 01 
^ 2 /912 1 T 0.164314D + 01 

pi2l i° -0.830834D + 00 
18 j 

p^u -0.685821D + 00 
18 9 P12U -0.470281D + 01 
18 O 

p l 2 M ' 5 0.651618D + 01 



A . l . G G A functionals 156 

Table A.5: The optimal coefficients defining the three new functionals in 

Chapter 3 (Table 3.13). 
( V H O M O V L U M O ) (P + VIVMO) (P - ¥>?.) 

c Xcr,0 0.106477D + 01 0.115493D + 01 0.115069D + 01 
CC<T(7,0 0.209763D + 01 -0.195336D + 01 -0.463450D + 01 
c Ca/3 ,0 -0.399165Z) + 00 -0.610625D + 00 • 0.8138982) - 01 

Cx<r,l -0.336599D + 00 -0.884509D + 00 -0.899743£> + 00 

-0.423024.D + 00 -0.348237L> + 00 -0.1205172) - 01 

0.866405£> + 00 0.258221D + 01 0.2105262) + 01 

Cxo-,2 0.455163D + 01 0.589771D + 01 0.6248112) + 01 
cCera,2 0.152788D + 01 0.732469D - 01 0.1920212)+ 00 
cCaP,2 -0.919697D + 01 -0.864182L> + 01 -0.6148812) + 01 
c x u , 3 -0.724211D + 01 -0.765314£> + 01 -0.9011212)+ 01 
cCcro-,3 -0.415262D + 01 -0.256219D + 01 -0.3834102) + 01 

Cca/3,3 0.145455D + 02 0.590401£> + 01 0.2649552) + 01 
c xcr,4 0.499948D + 01 0.534050D + 01 0.7174132) + 01 

Cc(r<T,4 0.376190D + 01 0.383473£> + 01 0.5310432) + 01 
c ca /3 ,4 -0.770806D + 01 -0.155088£> + 01 -0 .1582462)- 01 
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Table A.6: The optimal coefficients defining the three new functionals satis­

fying the non-crossing and the uniform electron gas conditions in Chapter 5 

(Section 5.2.1) 

p = 0.34 p = 0.34 p = 0.43 
CX<T,0 0.100000D + 01 0.100000D + 01 0.100000D + 01 
CC<7CT,0 0.100000D + 01 0.100000D + 01 0.100000D + 01 
cCaP,0 0.100000D + 01 0.100000D + 01 0.100000D + 01 
C X (T ,1 0.779568D + 00 0.678965D + 00 0.506064D + 00 

-0.385793D + 00 0.452972D + 00 0.772524D + 00 
c c a / 3 , l -0.151157D + 01 -0.171526D + 01 -0.582344D + 00 
C X (T ,2 0.313176D + 00 0.145464D + 01 

-0.863747D + 00 -0.201001D + 01 
cCa0,2 0.185275D + 00 -0.516839D + 01 
Cxa,3 -0.657216D + 00 
cCaa,3 0.124913D + 01 
COQ/3,3 0.38271LD + 01 
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Table A.7: The optimal coefficients defining the three new functionals satis­

fying the non-crossing condition without the uniform electron gas condition 

in Chapter 5 (Section 5.2.1) 

p = 0.41 p = 0.39 p = 0.47 
Cxo-,0 0.10288LD + 01 0.103077D + 01 0.106618D + 01 

0.228621£> + 01 0.240022D + 01 0.175822P + 01 
c Ca/3 ,0 0.802715£> - 02 0.443503L* - 01 -0.309004D + 00 
C X<r,l 0.635265D + 00 0.325937D + 00 -0.145188£> + 00 
CC<7<T,1 -0.105151D + 01 -0.481403£> + 00 0.520174D - 01 
c C a / 9 , l -0.110869£> + 01 0.468063D + 00 0.353805D + 01 
C X <T ,2 0.859296D + 00 0.275753.D + 01 
cCaa,2 -0.278335£> + 00 -0.173733D + 01 
Cca/3,2 -0.200990D + 01 -0.126820D + 02 
Cxo-,3 -0.169012D + 01 
c Cao-,3 0.144247D + 01 
C c a ^ , 3 0.840624D + 01 

Table A.8: The optimal coefficients defining the two new functionals sat­

isfying the Lieb-Oxford bound and the uniform electron gas conditions in 

Chapter 5 (Section 5.2.2) 
p = 0.22 p = 0.38 

C X ( T , 0 0.100000D + 01 0.100000D + 01 
CC0-<T,O 0.100000D + 01 0.100000D + 01 
Cca/3,0 0.100000D + 01 0.100000D + 01 
C x <r,l 0.448878D + 00 0.673829D + 00 
CC(7<T,1 0.500058£> - 01 0.292385£> + 00 
c c a / 3 , l -0.582402D + 00 -0.174515D + 01 
Cxo-,2 0.530934D + 00 
CC(T(T ,2 -0.703429D + 00 

-0.247287D + 00 



A . l . G G A functionals 159 

Table A.9: The optimal coefficients defining the two new functionals sat­

isfying the Lieb-Oxford bound condition without the uniform electron gas 

condition in Chapter 5 (Section 5.2.2) 
p = 0.44 p = 0.43 

CX<T,0 0.103597D + 01 0.104136D + 01 
CC(T<T,0 0.210252£> + 01 0.216345D + 01 
Cca/3,0 -0.685795D - 01 -0.772438£> - 01 
CX<7,1 0.620618D + 00 0.263864D + 00 

-0.112796D + 01 -0.542737D + 00 
c C a / 3 , l -0.122457D + 01 0.847730D + 00 
Cxo-,2 0.108915£> + 01 
cCaa,2 -0.209074D + 00 
C C a/3,2 -0.282054D + 01 

Table A. 10: The optimal coefficients defining the non-crossing HCTH-93 

functional in Chapter 5 (Section 5.3) 

non-crossing HCTH-93 
C X<T ,0 0.107785D + 01 
CCcr<7,0 0.492391£> + 00 
c Ca,8 ,0 0.622261D + 00 
Cxa,l -0.520534D + 00 
CC(T(T,1 0.855389D - 01 
CCQ/3,1 0.370296£> + 01 
Cxo-,2 0.471345D + 01 
cCcr<r,2 0.199153J9 + 00 
CcaP,2 -0.149002D + 02 
Cxo-,3 -0.575813D + 01 
cCo-u,3 -0 .184414D + 01 
c Ca/3 ,3 0.157020£> + 02 
CXCT ,4 0.312925L* + 01 
CC(T<7,4 0.218076D + 01 

-0.606736D + 01 



Appendix B 

Functional coefficients 

B . l Hybrid functionals 

Table B . l : The optimal coefficients defining the B97-3 functional in Chap­

ter 6 (Section 6.1) 

B97-3 

Cx(j,0 0.782710D + 00 
CC(T<T,0 0.583888D + 00 

Cca/9,0 0.104862D + 01 

Cxu,l 0.836109D - 01 
CC<7(T,1 -0.637128D + 00 
CGQ/3,1 0.914349D + 00 

Cx<r,2 0.159875D + 01 
CC<7<7,2 0.344944D + 00 
cCaP,2 -0.685967D + 01 
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Table B.2: The optimal coefficients defining the five hybrid functionals de­

veloped in Chapter 6 (Section 6.4). 

p = 0.21 p = 0.22 p = 0.23 

Cxo-,0 0.740024D + 00 0.742280D + 00 0.744385D + 00 
C C<Tcr ,0 0.171478D + 01 0.168957D + 01 0.166739D + 01 
c Ca/3 ,0 0.717198D + 00 0.690113D + 00 0.662486D + 00 

Cxo-,1 0.290147D + 00 0.296841D + 00 0.303004D + 00 
C C(7£T,1 -0.152687D + 00 -0.154569D + 00 -0.157039£>-|-00 

Cca/3,1 -0.501937D + 00 -0.482845D + 00 -0.464499D + 00 

Cxa,2 -0.237640D - 02 0.119607D - 01 0.282230D - 01 
C C ( T l T , 2 -0.418198D + 00 -0.410399D + 00 -0.401076D + 00 

Cca/9,2 0.282656D + 00 0.232128£> + 00 0.179684D + 00 
p = 0.24 p = 0.25 

Cxtr.O 0.746356D + 00 0.748209L* + 00 
CC<T<T,0 0.164780D + 01 0.163036D + 01 
c Ca/3 ,0 0.634397D + 00 0.605938D + 00 

Cxa.l 0.308602D + 00 0.313595D + 00 
CC(7<7,1 -0.160096D + 00 -0.163735D + 00 
cCa/3,l -0.446577D + 00 -0.428725D + 00 

Cxa,2 0.464109D - 01 0.665032£» - 01 
C C ( T O - , 2 -0.390277D + 00 -0.378074Z) + 00 

Cca/3,2 0.124923D + 00 0.674690D - 01 
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Publications and Conferences 

C . l Publications 

Atomic and molecular exchange-correlation charges in Kohn-Sham theory. 

Phys. Chem. Chem. Phys. 2, 3739 (2000) 

Emphasizing the exchange-correlation potential in functional development. 

J. Chem. Phys. 114, 3958 (2001). 

Diatomic bond lengths and vibrational frequencies: assessment of recently 

developed exchange-correlation functionals. Chem. Phys. Lett. 360, 38 

(2002) 

C.2 Conferences and Poster Presentations 

University of Cambridge, 23rd June 2000 

Afternoon of Computational Chemistry 

University of Durham, 23-25th Apri l 2001 

Application performance optimisations on Sun Systems. SunTune Training 
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San Lorenzo de E l Escorial, Madrid, 10-14th September 2001 

Poster presentation at the 9th International Conference on the applications 

of the DFT in Chemistry and Physics DFT 2001 

University of Nottingham, 31st July-2nd August 2002 

Poster presentation winner at the international meeting Exploring Modern 

Computational Chemistry 

Jesus College, University of Oxford, 18-23rd August 2002 

Poster presentation at the Molecular Physics and Quantum Chemistry Sum­

mer School 
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