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Synthesis and Characterisation of Some Main-Group Compounds with Bulky 

Electron-withdrawing Substituents 

Several new group 13, 14 and 15 derivatives with the ligands 2,4,6-(CF3)3C6H2 (Ar), 2,6-

(CF 3) 2C 6H 3 (Ar') and / or 2,4-(CF3)2C6H3 (Ar") have been prepared. They have been 

characterised by multinuclear NMR spectroscopy and, for all isolated compounds, by 

elemental analysis and, where possible, single crystal X-ray diffraction. 

Reaction of ArLi or the mixture Ar'Li/Ar"Li with BCI3 has led to the characterisation of 

several mono- and disubstituted compounds, but attempted substitution in A1C13 was 

unsuccessful. Reaction of ECU (E = Si, Ge, Sn) with the Ar'Li/Ar"Li mixture yielded 

predominantly the less sterically hindered disubstituted product Ar" 2ECl 2 for E = Si and Ge 

but to Ar' 2ECl 2 for E = Sn. In the case of B or Si, chlorine exchange is observed and Ar2BF, 

Ar2SiF2 and Ar' 2SiF 2 have been synthesised. Ar2SiF2 is the only product identified in the 

reaction of ArLi with SiCL,. 

Reaction of ArLi or the Ar'Li/Ar"Li mixture, in an appropriate ratio, with group 15 

derivatives gave rise to several mono-or disubstituted compounds of the type ArEX2, Ar2EX, 

Ar'EX 2, Ar"EX2, Ar" 2EX and Ar'Ar"EX (E = P or As; X = H, CI or Br). 1 9F NMR spectra of 

Ar'Ar"EX show that, for the two ortho-CF^ groups of the Ar' moiety, there is free rotation of 

the aryl group around the central atom. A series of variable temperature studies has been 

carried out, and allowed the determination of the rotational energy barrier of the molecule. 

For the first time, the molecular structures of derivatives containing three fluoroxyl ligands 

have been determined (Ar"3B and Ar'Ar"2Sb). 

The synthesis of some new platinum complexes has been facilitated by reaction of 

phosphanes with the platinum dimer [(PtCl2(PEt3)]2 or [(PtBr2(PEt3)]2. Reactions of the 

platinum dimer with arsane derivatives have not been successful. Halogen exchange was 

observed between bromophosphane ligands and CI groups on the platinum. 

Attempts have been made to synthesise new P=E derivatives containing the electron-

withdrawing substituents Ar or Ar' via reaction with the chlorine abstractor W(PMe3)6. 

ArP=PAr and Ar'P=PAr' have been prepared. Synthesis of the first phosphaalkyne 

containing Ar or Ar' has been attempted by reacting a phosphaalkene with a Pt(0) species. 

Stephanie Cornet 
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1.1 Bulky and electron-withdrawing substituents 

1.1.1 Introduction 

The synthesis of multiple bonds between main group elements is generally achieved 

using kinetic stabilisation methods by the use of sterically demanding substituents.1 The 

employment of a substantial number of bulky ligands appeared to be successful: t-butyl, 

mesityl, 2,4,6-tri(i-propyl)phenyl, 2,4,6-tri-(t-butyl)phenyl (supermesityl), 

tris(trimethylsilyl)methyl, etc. Bulky amido ligands such as -N(SiMe3)2, -N(SiMe2Ph)2 or 

-Nmes(Bmes2)2 have also shown great ability for the stabilisation of transition metal 

complexes with low coordination numbers. In addition, the use of bulky substituents to 

prepare multiple bond compounds such as Si=N,3 Si=P,4 and As=As^ has been 

described. Thus, the ligands 2,4,6-tris(trifluoromethyl)phenyl (fluoromes) and 2,6-

bis(trifluoromethyl)phenyl (fluoroxyl) should also be regarded as capable of stabilising 

the same kinds of compounds. 

1.1.2 l,3,5-tris(trifluoromethyl)benzene (FluoromesirylH, ArH) 

1.1.2.1 Introduction 

l,3,5-Tris(trifluoromethyl)benzene was first prepared by McBee and Leech in 1947.6 

Later, Chambers et aO reported a new synthesis of this compound. This method involves 

the fluorination of benzene-1,3,5-tricarboxylic acid with SF4 at high temperatures, to 

obtain the compound in 33% yield after work-up. Subsequently, Edelmann and co­

workers** managed to increase this yield to 95%. 
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COOH CF 

HOOC 
423K 
130 atm. press. 

S F 4 

+ S 0 2 + HF + S F 4 

COOH C F 3 

Equation 1.1: Synthesis ofArH 

Fluoromes is a very interesting ligand because of the ability of ArH to react with n-BuLi 

to give the lithiated product ArLi. 

The first report concerning ArLi dates back to 1950 by McBee and Sanford.9 In 1987, 

Chambers et afl described an improved synthesis via direct metallation of ArH with n-

It has been found very convenient to prepare ArLi in situ and use the resulting solutions 

in diethyl ether/hexanes without further purification for subsequent reactions. 

[ArLi.Et20]2 can be isolated by complete removal of the solvent and recrystallisation of 

the residue from hexanes.1^ 

ArLi can be used to prepare numerous organometallic compounds. It can also be included 

in compounds of main group elements such as P, Ge, Sn, As, etc, usually by reaction with 

a suitable halogeno-derivative of the element. 

BuLi. 

CF C F 

n-BuLi 
Li 

Et 2 0 
78"C 

CF C F 

Equation 1.2: Synthesis of ArLi 
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1.1.2.2 Advantages of ArH 

• Properties 

Pure 1,3,5(CF3)3C6H3 is a stable colourless liquid which boils at 118°C under 

atmospheric pressure. It has a faint, characteristic odour. 

• Comparison with aryl or alkyl groups 

By comparison with other aryl and alkyl groups, Ar is more oxygen- and moisture-stable 

when bonded to a main group element. Sterically, Ar is more bulky than 2,4,6-

trimethylphenyl (mesityl), and less than 2,4,6-tri-tbutylphenyl (supermesityl). 

When fluoromes is bonded to another element, the positions of the CF3 groups play an 

important role: 

- ortho and para CF3 groups cause a withdrawal of electrons from the atom to 

which they are bonded. This element becomes then less electron-rich and less 

susceptible to electrophilic attack; 

- as CF3 groups are bulky electron-withdrawing groups, they are sterically 

hindering when they are in the ortfto-position. Thus, any attack on the element to 

which the fluoromes ligand is attached is restricted. The CF3 groups can also 

interact with this atom. 

1.1.2.3 Reaction with heavier main group elements or transition metals 

During the last 15 years, the Ar ligand has been demonstrated to be a highly versatile 

building block in main group chemistry. Due to its ideal combination of sterically and 

electronically stabilising effects, it has been successfully employed in the stabilisation of 

low coordination numbers around various main groups elements (groups 13, 14, 15, 16) 

and transition metals. 

The easiest way to attach an element to the ligand is to react the lithiated compound ArLi 

with a metal halide, as described by Chambers and co-workers:7 
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x ArLi + M X r A r x M X n . x + x LiX 

• Group 13 derivatives 

Very little use of the fluoromes ligand has been made in the context of the group 13 

elements. 

Goodwinll>12 f i r s t reported the reaction of ArLi with boron trichloride to prepare 

ArBCl 2 , Ar2BCl, and AX3B. Interestingly, the formation of Ar 2BF via a chlorine/fluorine 

exchange was also mentioned. 

ArLi + B C I 3 ^ ArBCl 2 

2 A r L i + BCl 3 ^ Ar 2BCl 

3 A r L i + BCl 3 ^ Ar 3 B 

Ar 2BCl F / C l e x c h , Ar 2BF 

More recently, Gibson et a/ 1 3 reported the synthesis of a new boronic acid Ar2B(OH) and 

the preparation of transition metal complexes containing -OBAr 2 . In a study of 

fluorophenylboron azides, Fraenk and co-workers14 described the preparation and 

molecular structure of A r 2 B N 3 and Ar 2BOH. 

CF N 

B 

CF 
CF3F3C 

Figure 1.1: Molecule ofA^BNs 

No attempts have been reported with aluminium or thallium so far. 



6 

In 1993, Schluter et afi$ synthesised the first Ar derivatives of indium and gallium, and 

proved the capability of the fluoromes ligand to stabilise either Ga(III) or In(III) 

derivatives with M-M bonds: 

MC1X + ArLi E t 2 ° ». Ar 2 M-MAr 2 (M= In, Ga) 
-78°C 

The Ar ligand has also permitted the isolation of triaryl compounds Ar3ln or Ar3Ga.^ 

Interestingly, the reaction of ArLi with GaCl3 gives a diethyl ether adduct, which when 

heated to 75°C leads to a dimeric product [ArGa(u-Cl)Cl]2 

ArLi + GaCl 3.Et 20 7 5 ° c , [ArGa(u-Cl)Cl] 2 

The trans isomer is formed preferentially because this conformation minimises the 

repulsions between the Ar moeties. 

The chemistry of the 2,4,6-tris(trifluoromethyl)phenyl ligand with group 13 elements 

leads to the formation of mono, di- and tri-substituted compounds. M-M bonds and 

dimeric products have also been prepared. However, this group of elements remains an 

open field for the study of the Ar ligand, since just a few examples have been published. 

• Group 14 derivatives 

Contrary to group 13, there has been a wide use of the Ar ligand with group 14 elements. 

This includes a variety of purely organic compounds. A number of carbon-carbon 

reactions have been studied by Chambers and Filler. 7' * 7 Among the products is the 

carboxylic acid ArCOOH, the synthesis of which is simple and straightforward. Due to 

its strong steric hindrance, ArCOOH failed to undergo reactions such as esterification 

with ethanol.l7 Aldehydes and alcohols have also been prepared. 
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CF CF 

CO 
Li 

H 3 0 + 

CF CF 

COOH 

Equation 1.3: Synthesis ofArCOOH 

Only four silicon derivatives have been described: ArSiMe3,7 Ar2SiF2, 1 8 A^SiHF and 

Ar2SiH2.19 Ar2SiF2 is the only isolable product when ArLi is reacted with SiCU in a 2:1 

ratio. The formation of this difluoride compound is the result of a fluorine exchange 

reaction involving the CF3 groups of the fiuoromes ligands. 

F 3 C 

C F C F C F 

) 
n-BuLi 

S C I 

\ // Et20 V 78°C 

C F C F 3 ' 2 C F 

[pel 

C F 

C F 

Si 

C F 

Equation 1.4: Possible Mechanism for the formation of the difluoride derivative^ 

This Cl/F halogen exchange also occurred in the reaction of trichlorosilane with ArLi: 19 
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2 ArLi + HSiCl 3 
Et 2 0 Ar2SiHF 

The first germanium derivative was synthesised by Bender et afi® as a Ge(II) compound: 

Ar2Ge formed by the reaction of ArLi with GeC^.dioxane. To explore the issue of M-Ge 

% bonding, [(PPh3)2NiGeAr]2^ has been synthesised. Ar2GeH 2

2 1 was also prepared. The 

reaction of ArLi with GeCU leads to Ge(IV) derivatives, ArGeCb and A ^ G e C b 2 2 

Tin derivatives have been more extensively studied. The reaction of ArLi with SnCb led 

to the formation of the first monomeric diarylstannylene Ar2Sn.23 This compound is 

stabilised by intramolecular fluorine-tin contacts (Figure 1.2). A^Sn represents a useful 

starting material for the preparation of novel tin(IV) derivatives containing the Ar 

ligand. 2 4* 2 5 

The reaction of A^Sn with PhSnSnPh or Ag(C>2CCF3) gives rise to Ar2Sn(SnPh)2 and 

Ar2Sn(C>2CCF3)2 respectively. 

Some dimeric species have been isolated. Oxidation of Ar2Sn in the presence of CI" led to 

the formation of the p.2-oxo bridged dimeric tin(IV) species Ar2(Cl)Sn(u.2-0)Sn(Cl)Ar2.27 

One crystal modification of A^Sn consists of the dimeric compound Ar2Sn-SnAr2 (as 

found for In and Ga) that shows a very weak tin-tin interaction. A^Sn is a useful 

precursor for cycloaddition reactions leading to three-, four-, or five- membered tin-

F 

v 
- c 

Sn CF \ // \ // 
C ' F - C 

/ F / \ 
Figure 1.2: Intramolecular Sn—F interactions^ 



Chapter t~Em<frmBm<sSki>m 9 

containing rings systems.28 Figure 1.3 below summarizes a series of heterocycles, which 

can be formed: 

N 

/ / Ar->Sn 

\ 
S 

Ar 2 Sn N 

C 

Ar 2 Sn 

\ ( g ) 
00 

g) 
( a ) / a 

SMe 

C F N 

(9 Ph Ar->Sri 

\ \ / (b) N Ph Sn C F 

S Me Ar?Sn 
C F 

7 e X (d Me 

. C 

\ 
Me 

C Ph 

\ N Ar 2 Sn 

b 
Ph 

f \ Ar,Sn 

N 

0 Me 

Reagents: (a) t-Bu2C=C=0, (b) Ph2C=C=0, (c) Me20C=NPh, (d) Ph2C=ONC6H4Me-/?, (e) t-
Bu2C=C=S, (f) Me3SiN=S=NSiMe3, (g) 3,5-di-t-butyl-o-benzoquinone, (h) S 4 N 4 

Figure 1.3: Formation of heterocycles from Ar2Sn 
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Ar/2Sn readily undergoes oxidation reactions to afford the corresponding Sn(IV) species. 

For example, treatment of A^Sn with AsFs yields Ar2SnF2. 2 5 In addition, fluorination of 

Ar2Sn using XeF2 also provides Ar2SnF2. Ar2SnCl 2 can be prepared by chlorinating 

Ai2Sn with elemental chlorine. 

Ar- c AsF 2 or XeF 2 ion Ar 2SnF 2 

Ar 2Sn CI, 
Ar 2SnCl 2 

Tin(IV) derivatives can also easily be prepared by reacting ArLi directly with SnCU: 2 2 

. C F , 

2 F X - \ / -Li + SnCI 4 

Et 20 

C F , 

Equation 1.5.'Synthesis oj'A^SnCh 

The steric properties of Ar also allowed the preparation of the first diarylplumbylene by 

the reaction of ArLi with PbC^. 2 9 

C F 3 

2 F 3 C - \ / -u + PbCI2 

Et 20 
F , C 

C F , 

F , C 

F 3 C 
C F , 

Equation 1.6: Synthesis ofAr2Pb 
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This compound is far less reactive than its tin homologue Ar2Sn:23,30,31 ^ P b does not 

undergo reaction leading to organolead(IV) compounds. The only other lead derivatives 

containing the Ar ligand reported are the plumbylene (SiMe3)ArPb=PbAr(SiMe3)32 and a 

thiolate cluster Pb 50(SAr)8.2C 7H8. 3 3 

• Group 15 derivatives 

The 2,4,6-tris(trifluoromethyl)phenylamino ligand has shown a great ability to stabilise 

group 15 compounds as well as transition metal derivatives. 2,4,6-

tris(trifluoromethyl)phenylamine reacts with KH to give ArNHK. The latter can react 

with main group element halides such as PCb or AsCb, leading to the formation of a 

dimer. 3 4 

4 ArNHK + 2 MCI 3 

Ar 

N 

Ar 

-2 ArNH 2 

-4KC1 Ar 

C l * - M ^ ICI 

N 

Ar 

CIS trans 

Equation 1.7: Formation of dimer 

Recently, Roesky et al described the preparation of 2,4,6-

tris(trifluoromethyl)phenylamine in a four-step synthesis.3^ The phenylamine ligand can 

then be used in various reactions to form monosilylated and bisilylated amines. 

Phosphorus derivatives containing the fluoromes substituent constitute a fairly large and 

well-investigated class of compounds. Treatment of ArLi with the appropriate amount of 
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phosphorus trichloride leads to the formation of the mono- or di-substituted compounds, 

ArPCl 2 or Ar 2 PCl . 8 . 1 1 

2 F 3 C 
E t 2 0 
-78 C 

F 3 C 

F 3 C 

F 3 C 

Equation 1.8: Synthesis ofArPCl2/Ar2PCl 

The dichlorophosphane ArPCk is easily reduced by U A I H 4 8 or Bu3SnH 1 2> 3 6 to give the 

primary phosphane ArPH 2. The action of SbF3 on ArPCl 2 leads to the formation of 

ArPF2. ArP(CN)2 is obtained by cyanide substitution of chloride. Ar 2PH was obtained by 

reduction of Ar 2PCl. However, the fluorination of the di-substituted product with SbF3 

only led to a very small amount of Ar2PF (5% conversion).^7 Steric hindrance around the 

P-Cl bond makes substitution reactions ( S n I or Sn2) difficult. 

ArPCl 2 + 2 Bu3SnH ^ ArPH 2 + 2 Bu3SnCl 

ArPCl 2 + l / 2 UAIH4 ^ ArPH 2 + l / 2 L iAlCl 4 

ArPCl 2 + SbF3 ^ ArPF2 + SbCl2F 

ArPCl 2 + 2 AgCN ^ ArP(CN)2 + 2 AgCl 
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Ar2PH was used as a starting material to synthesise the first phosphonium phosphide 

(Ph3PMe)+(Ar2P)":38 

Ph3P=CHR + Ar 2PH t o l u e n e » (Ph3PCH2R—-PAr2) 

ArPCb appears to be a good precursor to form phosphorus compounds containing the Ar 

ligand.39 

Li(C 5Me 5) + ArPCl 2 ^ C5Me5P(Cl)Ar + LiCl 

The fiuoromes ligand has also allowed the formation of multiple bonded compounds. The 

condensation of ArPCb with ArPH2 has led to the first diphosphene containing the Ar 

ligand. 8 ' 1 1 This compound has shown an unusual stability. The chemistry of 

diphosphenes will be more extensively described later in this chapter (section 1.2). In 

addition, Dillon and co-workers^O first reported the preparation of phosphaalkenes 

containing the Ar group on phosphorus. 

CHLiCl 2 + ArPCl 2 ^ ArP(CHCl2)Cl D B U » ArP=CCl2 

Much less is known about fiuoromes derivatives of the heavier group 15 elements. A 1:1 

ratio reaction between ArLi and AsCh was attempted and resulted in the formation of the 

di-substituted product A^AsCl , 4 1 whose crystal structure was reported very recently by 

Burford et al.6^ The synthesis of the dichloroarsane ArAsCb was first described by 

Roesky and co-workers,43 and more recently by Xue.22 
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CF CF 

f \ E t 2 0 2 ArLi + AsCI + AsCI CF As 
78°C 

CF CI 

CF 

Equation 1.9: Synthesis of ArAsCh/ArzAsCl 

ArLi readily reacts with ASF3 to give the disubstituted product Ar2AsF. LiAlFL; reduction 

of Ar2AsF produces the secondary arsine A^AsH.^ 5 Treatment of ArAsCh with 

potassium 2,4,6-tris(trifluoromethyl)anilide led to the formation of the first 

iminoarsane.43 

Antimony trichloride reacts with ArLi in a 1:1 or 1:2 ratio to give ArSbCh or A^SbCl 

r e s p e c t i v e l y . T h e reaction of Ar2SbCl with AgOSC^CFs afforded crystals of 

Ar 2Sb(OS0 2CF 3). 4 2 

Only two well-characterised bismuth derivatives are known: A^BiCl and A ^ B i . 4 4 The 

latter was the first example of a group 15 atom accommodating three bulky Ar ligands. 

3ArLi + 2SbCl 3

 E t 2 ° » ArSbCl2 + Ar2SbCl 
0°C 

5ArLi + 2BiCl 3

 E t 2 ° » Ar 2BiCl + Ar 3 Bi 

• Group 16 derivatives 

The chemistry of fluoromes with this group of elements has been focused on ArOH and 

ArSH, which have been found to be highly valuable precursors for a number of unusual 

Ar derivatives. 
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ArOH is prepared by reacting ArLi with Me3SiOOSiMe3:45 

CF 
CF 

f S EUO 
t \ 78°C Li F3C + Me-jSiOOSiMe O-SiMe, 

LiOSiMe 

CF 
CF 

HC 
MeiSiCl 

CF 

f \ OH 

CF 3 

Equation 1.10: Synthesis of ArOH 

The phenol served as a starting material for a variety of main group and transition metal 

phenoxides. 

Alkali metal phenoxides can be prepared by direct reaction of ArOH with n-BuLi or NaH 

to give LiOAr.Et20 and NaOAr.THF respectively. ArOH can also react with 

MN(SiMe 3) 2 (M=Li, Na, K), leading to the formation of [MOAr(THF) x ] 2 . 4 6 > 4 7 

Bis(phenoxides) have also been isolated as their THF adducts.(ArO)2M(THF)x (x = 1, M 

= Ba, Be, Sn; x = 2, M = Cd,; x = 3, M = Mg, Ca, M n ) . 4 6 Edelmann et a/ 4 5 were first to 

describe the preparation of the ArO- ligand. Like Ar, the ArO- ligand has been found to 

stabilise low-coordination numbers around metal atoms: for example T1(I) and In(I) 

derivatives.48 
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2 ArOH + 2T10Et 
-2EtOH 

CF 

•i 
f V A CF 

CF 

•< 
In f w \ CF 

,CF 3 F 3C 

2 ArOH + 2 (ti 5 -C 5 H 5 )In 

CF 3 F 3C 

Equation 1.11: Synthesis of (ArOTl)2and (ArOIri)2 

These compounds represent the first structurally characterised examples of two-

coordination at thallium and indium. 

A C-F bond activation has been noticed in an attempted synthesis of (ArO)3Bi by reaction 

of BiCl3 with NaOAr in THF. Instead, this led to the formation of a highly crowded 

condensation product arising from the coupling of the ArO units with elimination of three 

ortAo-fluorine atoms (Equation 1.12).44 

B i C l 3 + 3/ 2 [NaOAr. (THF) 2] 6THF + 6NaCl + Bi(OAr) 3 

CF 

1 f \ 
CF 3 

CF \ 

f \ CF 

CF 

Equation 1.12: Attempted synthesis of (ArO)$Bi 
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2,4,6-tris(trifluoromethyl)phenol can also react with the lanthanide compounds (C 5 H 5 )3Ln 

(Ln = Nd, Sm, Yb) to give the mononuclear bis(cyclopentadienyl)lanthanide alkoxides 

(C5H5)2Ln(THF)(OAr)49 

Another precursor is the thiol ArSH, which was first prepared by Chambers et alP by 

treatment of ArLi with elemental sulfur. 

ArLi + S8 ArSH 

Like ArOH, ArSH can be used to prepare various main group and transition metal 

derivatives. Two main routes are used to synthesise these compounds:^ 

- metathesis reactions between NaSAr and metal halides 

- protolysis of metal bis(trimethylsilyl)amides with ArSH. 

For example: 

PbCl2 + 2 NaSAr 

ZnCl 2 + 2 NaSAr E t 2 ° 

PbAr2 + 2 ArSH n-hexane 
»-

E t 2 0 

Zn(SAr)2 + 2 NaCl 

Pb(SAr)2 + 2 ArH 

Pb(SAr)2 + 2 NaCl 

Mn((NSiMe 3) 2) 2.THF + 2 ArSH t o l u e n e ^ Mn(SAr)2.THF + 2 HN(SiMe 3) 2 

Some thallium and indium derivatives have also been described.^1 

TlOEt + ArSH 

T1 2C0 3 + 2 ArSNa 

1/n [TlSAr] n + EtOH 

2/n [TlSAr] n + Na 2 C0 3 

Coordination of three fiuoromes ligands has been observed in the indium derivative 

(ArS)3In(Et20). 
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Like the phenol ligand, ArSH reacts with lanthanide compounds such as YtyCsHs^ in 

THF to give (C 5H5) 2Yb(thf)(SAr). 2 5 

Selenium also provides a rich field in fluoromes chemistry. Selenium may be inserted 

into ArLi to give the intermediate ArSeLi, which appears to be highly air-sensitive. 

Complete air-oxidation of ArSeLi leads to the formation of ArSe-SeAr.^2 

ArLi + l / 8 Se8 ^ ArSeLi 

ArSeLi + 2 H 3 0 + + l / 2 0 2 ^ [ArSe]2 + 2 L i + + 3 H 2 0 

[ArSe]2 is cleaved by Cl 2 or Br 2 to produce ArSeCl or ArSeBr respectively. These 

halogeno-compounds have served as starting materials to form new selenium-nitrogen 

bonds: 

[ArSe]2 + X 2 ^ 2 ArSeX (X=C1, Br) 

2 ArSeX + (Me3SiN)2S ^ [ArSeN]2 + 2 XSiMe 3 

ArSeX + Me3SiNSO ^ ArSeNSO + XSiMe 3 

The discovery of the stable selenol ArSeH allowed the formation of various main group 

and transition metal selenolate derivatives containing the ArSe moiety. The synthetic 

method involves the reaction of metal bis(trimethylsilyl)amides with appropriate amounts 

of ArSeH (M=Mn, Zn, Cd, Hg, Ge, Sn, Pb): 5 0 

M[N(SiMe 3) 2] 2 + 2 ArSeH ^ M(SeAr)2 + 2 HN(SiMe 3) 2 

Indium, antimony and bismuth ArSe derivatives are prepared by reacting metal halides 

with the corresponding alkali metal selenophenolates: 

MC1 3 + 3 NaSeAr M(SeAr)3 + 3 NaCl 
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Recently, Edelmann and co-workers-^ reported the synthesis of a tin(IV) complex 

Sn(SeAr)4. The latter was obtained by treatment of the tin(II) complex of 

bis[bis(trimethylsilyl)amide] with ArSeH 

Insertion reactions of carbenes and carbene fragments have been studied. ArSe-SeAr 

reacts with diazomethane to give rise to ArSe-CH2-SeAr. Complexes containing Sm-E 

bonds (E = S, Se, Te) have also been synthesised by reaction of [ArSe]2 with 

Cp2*Sm(THF)2.53 

The chemistry of tellurium compounds is not well developed.25 It was found that ArLi 

does not react directly with elemental tellurium to form the corresponding ArTeLi. 

However, this intermediate is formed when Bun3PTe is used as a soluble tellurium source. 

ArTeLi is readily oxidised to form [ArTe] 2. [ArTe] 2 decomposes under the influence of 

heat or light to form Ar2Te:^9 

2 Sn[N(SiMe3)2]2 + 4 ArSeH Sn(SeAr)4 + Sn° + 4 HN(SiMe 3) 2 

l / 2 [ArSe], + Cp2*Sm(THF)2 

toluene 
-THF 

Cp Cp 
V / 

Sm 

Se CF 

Equation 1.13: Synthesis ofArSe(Cp2*Sm(THF)) 

ArLi + Bun

3PTe 

2 ArTeLi + 0 2 

Te 2Ar 2 

ArTeli + Bu n

3P 

Ar 2 Te 2 + L i 2 0 

Ar 2Te + Te 
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• Transition and other metal derivatives 

The chemistry of transition metal containing a-bonded fluoromes ligand remains an open 

field. Because of the possibility of short M—F interactions involving the 0-CF3 groups, 

the Ar ligand was thought to be an interesting ligand for transition metals. Several points 

of interest can arise with fluoromes ligand: 

- crowding restricts rotation around M-C bonds; 

- M—F interactions are frequently found in Ar complexes involving 0-CF3; 

- fluoromes should give a high degree of axial protection in a square planar 

configuration. 

Initial studies have indicated that Ar is not likely to be a good ligand for early transition 

metals. Treatment of NbCls or WC^ with various equivalents of ArLi did not produce 

any isolable compounds.25 The preparation of ArRe03 has been reported by reaction of 

Ar 2Zn with Re207 2 5 More recently, Gibson and co-workers54 reported the synthesis of 

vanadium complexes obtained by treatment of ArLi with [VCbOhfb]. Group 6 transition 

metal (Cr or Mo) complexes containing a-bonded fluoromes ligand have also been 

described.55'5*) These compounds contain M—F secondary interactions, which play a 

significant role in stabilising the structures of Ar complexes of group 6 transition metals. 

These interactions seem to lengthen the C ipso-C ortho distances. 

C F 

F F — M 

Fieure 1.4: Interactions between the metal and the fluorine atoms 
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Some complexes containing group 9 and 10 elements have been reported: Ar2Co, 

Ar 2 Ni 5 7 and Ar2Ni(MeOCH2CH 2OMe). 5 8 Variable temperature NMR studies of the latter 

Ni complex have shown that only two of the fluorines in 0-CF3 groups interact with the 

Ni centre. Some palladium complexes have been prepared by treatment of ArLi with a 

variety of chloro complexes of palladium(II).59 The coordination of two bulky Ar groups 

on Pd(II) led to the formation of very crowded square planar complexes. 

Few examples have been given with group 11 elements. A complex containing Cu(I) has 

been mentioned. Recently, Espinet et al reported the first Ar derivatives of Au(I) and 

Au(I I I ) . 6 0 

ArLi + [AuCl(tht)] ^ [AuAr(tht)] 

[AuAr(tht)]* is a general precursor for various gold complexes, (tht) can easily be 

replaced by others ligands such as PPli3 or P(o-tol)3. 

2 

CF CF 

+ MCI M CF 
L C 

CF CF 

M= Zn, Cd, Hg 

Equation 1.14: Synthesis ofAr2M(M = Zn, Cd, Hg) 

Significant results have been obtained with Ar derivatives of the group 12 elements. ArLi 

reacts with anhydrous ZnCl 2 to give Ar 2Zn.6! 

The corresponding cadmium and mercury7 compounds were prepared analogously from 

cadmium diiodide or mercury dichloride. The two-coordinate monomeric structure of 

Ar2Zn represents a new structural type for zinc diaryls. 

' tht: tetrahydrothiophene 
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Using the Metal Vapour Synthesis method (MVS), Sequeira^2 prepared a series of 

71-complexes containing l,3,5-tris(trifluoromethyl)benzene as a ligand.: M(r| 6-ArH)2 with 

M=Cr, V, Nb, Ru. The ArH ligand has demonstrated the ability to bind to metals in a r\6-

arene fashion. 

M + 2 ArH 

M= Cr, V, Nb, Ru 

CF 

M 

CF 

F 3 C 

Equation 1.15: Synthesis of M(rf-ArH)2 

• Conclusion 

In most of the Ar main group element compounds, structural analyses have shown that 

the M-C bond distance is longer than in the mesityl analogues, reflecting the large steric 

demands of the Ar ligands. However, in some cases, this is also due to electrostatic 

ligand-ligand repulsions, which lead to a lengthening of the bond rather than a widening 

of angles. 

M—F intramolecular interactions between the central atom and some of the fluorines of 

the ortho-CFi groups are also responsible for the stabilisation of complexes containing 

the fiuoromes ligand. The potential of forming weak M—F interactions means that the Ar 

group is capable of inhibiting oligomerisation, which is shown, for example, by its ability 

to stabilise a diaryl stannylene.2** 
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1.1.3 l,3-bis(trifiuoromethyl)benzene (FluoroxylH, Ar'H) 

1.1.3.1 Properties 

Fluoroxyl groups are quite similar to fluoromes. Instead of containing three CF3 groups, 

they only have two. This substituent can easily be bonded to main group elements via a 

lithiated product. Like fluoromes, fluoroxyl is strongly electron-withdrawing. This is 

particularly caused by the position of the CF3 groups, which can be both in the ortho, or 

one in the ortho and one in the para position. The boiling point of 1,3-

bis(trifluoromethyl)benzene is 116°C 

1.1.3.2 Comparison between ArH and Ar 'H 

Fluoromesityl and fluoroxyl are both bulky and strongly electron-withdrawing 

substituents, due to the presence of CF3 groups in the ortho position. The greatest 

differences between them are the number of bulky trifluoromethyl groups, and then the 

number of reaction sites. In fluoromesityl, there is only one reaction site available, 

resulting in two CF3 groups in ortho positions and one CF3 group in the para position 

(site A, Figure 1.6). Fluoroxyl has three different reaction sites (Figure 1.6): 

C F 

C F 

Fieure 1.5: l,3-bis(trifluoromethyl)benzene 

- two CF3 groups in the ortho position (site B) 

- one CF3 group in the ortho position and one in the para (site C) 
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two CF3 groups in the meta position (site D) 

C F 

< 
C F 

A D 

C F 

B 

C F 

Fluoromes Fluoroxyl 

Figure 1.6: Substitution sites in Fluoromes and Fluoroxyl 

The reaction site D is the least likely site in the reaction with BuLi because of the absence 

of CF3 groups in the ortho position, which play an important role in the stabilisation of 

the molecule. D is also disfavoured because the activated sites for Li substitution are the 

positions ortho and para to CF3 groups. 

Like ArH, Ar 'H reacts easily with BuLi to form a lithiated compound. The lithiation of 

fluoromes leads to only one product. In fluoroxyl, due to the directional functionality of 

the CF3 groups, the ortho and para positions will become electron-deficient, and then the 

hydrogen atom will be susceptible to nucleopilic attack by the butyl group. 

C F 

Li Li \ // 
C F 

Ar'Li Ar"Li 

Figure 1.7: Probable lithiation sites for Fluoroxyl 
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With two ortho-CFi groups in the Ar'Li compound, the lithiated site is sterically 

hindered. An interaction between L i and some of the fluorine atoms is therefore probable. 

In the Ar"Li compound, one CF3 group only hinders the lithiated site and L i — F 

interactions may thus be fewer than in Ar'Li . The reaction of a metal chloride MX3 (for a 

group 13 or 15 element) with lithiated compounds can lead to mono and di-substituted 

products. (Figure 1.8) 

C F 

MX 

C F C F 

C F 

Li V / C F CF 3 nBuLi MX C F C F M V / \ // 78"C, E t , 0 -78°C, Et ,0 C F 

C F 
Li 

C F 

M 

C F 

• Q 

CF \ // 
C F 

CF 

Ar'MXj 

Ar"MX 2 

Ar'jMX 

Ar" 2 MX 

Ar'Ar"MX 

Figure 1.8: Different products of the reaction of A'Li/Ar"Li with MX3 

1.1.3.3 Reaction with heavier main group elements or transition metals 

To date, little has been published about the 2,6-(CF3)2C6H3 group as a substituent, partly 

because of the complications in the chemistry of the precursor 1,3-

bis(trifluoromethyl)benzene, Ar'H. As explained earlier, this can lithiate in two positions, 

giving rise to a mixture of 2,6-(CF3)2C6H3 (Ar') and 2,4-(CF3)2C6H3 (Ar'') derivatives. 
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• Group 14 derivatives 

Xue 2 2 synthesised a series of Si and Ge derivatives, which are symmetrical molecules 

containing two Ar" moieties; Ar'^SiCfe and Ar'^GeCb. They were prepared by reaction 

of the mixture Ar'Li/Ar"Li with SiCU or GeCU respectively and were characterised by 

elemental analyses, 1 9F NMR spectroscopy and single crystal X-Ray diffraction. 

C F 

Li 

C F 
3 CI CI \ / C F 

M X . 

C F E t 2 0 
78°C 

C F 

Li \ // 

Equation 1.16: Synthesis of Ar "2MCI2 

Tin compounds were the first derivatives containing a fluoroxyl ligand reported. 

Ar'SnMe3 and Ar"SnMe3 were prepared from Ar'Li/Ar"Li with Me3SnCl. The lithiated 

mixture reacts with SnCb to give a tin(II) derivative Ar ' 2 Sn. 6 3 

2 Ar'Li. TMED + SnCl2 ^ Ar'2Sn 

Ar^Sn can be a precursor for the preparation of other tin derivatives containing a 

fluoroxyl ligand. 

Ar'2Sn + MeOH b e n z e n e » Ar'Sn-OMe + Ar'H 
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Xue 2 2 synthesised some tin(IV) derivatives. Reaction of Ar'Li/Ar"Li with SnCU led to 

the formation of Ar'2SnCl2, which was characterised crystallographically. 

• Group 15 derivatives 

The first chlorophosphine containing Ar' has been described by Escudie et al?^ 

Me2N NMe2 pru 
Ar'H + n-BuLi + \^ ^ F C ' 3 , Ar'PCl 2 

Roden^ has prepared a series of phosphorus derivatives containing fluoroxyl. Treatment 

of the mixture Ar'Li/Ar"Li with an appropriate amount of PCI3 gave rise to a mixture of 

three different products: Ar'PCk, Ar'TCb and the unsymmetrical disubstituted molecule 

Ar'Ar"PCl (Figure 1.9).64 

. C F , C F , 

U /> PCI 2 F 3 C <\ A PCI 2 

C F , 

Ar'PCl 2 Ar"PCI 2 

.CF , 

CI 

\ / 
/ 

- R .CF, 

C F , 

C F 3 

Ar*Ar"PCl 

Figure 1.9: Different products of the reaction between Ar'Li/Ar"Li and PCI3 
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Ar'PEta and Ar"PBr2 can be prepared from PBr3. Reduction of the chloride compounds 

with Bu3SnH or LiAlRj leads to the formation of the hydride derivatives. Fluorination 

with SbF3 affords the fluoride substituents. 

Ar'PX2

 B u 3 S n H » Ar'PH2 

Ar'PX2 SbF, t Ar'PF2 

Treatment of the Ar'Li/Ar"Li mixture with PF2C1 yields Ar"PF2 and Ar'Ar'TF, the first 

disubstituted compounds containing fluoroxyl ligands described in the literature.^5 

The 1 9 F NMR spectra of Ar'Ar'TCl or Ar'Ar"PF showed a broad singlet for the two CF 3 

groups of the Ar' moiety, reflecting the inequivalence of the trifluoromethyl groups. 

Some multiple-bond compounds, such as Ar'P=PAr', have also been described; this 

compound has had its X-ray structure ascertained.66 

Some preliminary work on the synthesis of arsenic derivatives has been attempted by 

Xue. 2 2 

No examples have been published with antimony or bismuth. 

• Transition metal derivatives 

The only example of a transition metal complex containing the Ar' ligand is a 

chromacene. This compound contains the Ar' ligand in a sandwich complex with 

chromium.67 

1.2 Diphosphenes 

Simple substituted diphosphene derivatives, RP=PR (R=Alkyl, aryl) are usually highly 

unstable. In 1981, Yoshifuji et afi% reported the synthesis of the first stable diphosphene 
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(by reaction between Ar*PCl2 and Mg metal) containing a bulky electron-withdrawing 

substituent as a protecting group (2,4,6-tris-tbutylphenyl) (supermes or Ar*). 

*Ar \ BuL Mg Ar*PCI \ PCI MgCl, 
Ar* 

Equation 1.17: Synthesis ofAr*P=PAr* 

Therefore, it has been thought that substituents like 2,4,6-tris(trifluoromethyl)phenyl or 

2,6-bis(trifluoromethyl)phenyl could be good ligands to stabilise such species. 

1.2.1 Fluoromes 

1.2.1.1 Synthetic route 

The first diphosphene containing the Ar ligand was obtained by reaction of ArPCb with 

ArPH 2 in the presence of a base (DBU): 8 ' 1 ^ 6 9 

. C F . 

Ar, 

F 3 C - \ / -PCl 2 + ArPH 2 

2 DBU \ 
-2 DBU.HCI \ 

Ar 

C F 3 

Equation 1.18: Synthesis of ArP=PAr 
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This diphosphene can also be prepared via the Mg route, and via a reaction of 

dechlorination with a base, l,3,l\3\-tetraemyl-2,2'-bis(imidazolidine).8>70 

Another synthetic route to the diphosphenes was discovered by Dillon, Gibson and 

Sequeira:71 transition metal-catalysed metathesis of double bonds. They used the highly 

reducing nature and labile coordination sphere of the zerovalent tungsten complex, 

W(PMe3)6, as an efficient chloride ion abstractor. Dichlorophosphines react with 

W(PMe3)6 in benzene smoothly over several hours to give the diphosphene RP=PR 

[R^^d-tris-'butylphenyl, 2,4,6-tris(trifluoromethyl)phenyl, 2,6-

tris(trifluoromethyl)phenyl]. The proposed mechanism is shown below (Equation 1.19). 

W(PMe 3) 6 + Ar*PCI 
*Ar C 

W—CI 

(PMe3)6-n 

*ArP=PAr* 

+ 
Ar*PCI 2 

M e 3 P ^ | ^ P M e 3 

CI 

Ar* 
Me3P/ / / / ( || ^ C l 

W 
WCI 4(PMe 3) 3 

Equation 1.19: Synthesis ofAr*P=PAr* with W(PMe3)6 
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1.2.1.2 Coordination chemistry 

ArP=PAr is surprisingly an air- and moisture stable solid at room temperature and binds 

less strongly to transition metals than its hydrocarbon analogues. 

Several modes of coordination are possible with diphosphenes. They can coordinate to 

suitable acceptors either in a rj1-fashion, via a lone pair on phosphorus, or in a ri2-mode, 

via the 7t system of the double bond, or by combination of these modes. 

Ar. 

P = P . 

L n M 
Ar 

An \ 
P = R 

M U 

Figure 1.10: Coordination chemistry of diphosphene 

Although the reactivity of ArP=PAr is apparently low, the synthesis of a few stable 

carbonyl complexes have been mentioned: (ArP=PAr)MLn (MLn= Fe(CO)4, Cr(CO)s, 

Mo(CO)5).25 Dillon and Goodwin reported the synthesis of ArP=PAr.Mo(CO)5, 

ArP=PAr.W(CO)5, and of cw-[Pt(ArP=PAr)(PEt3)Cl2].69 

The synthesis of the first complexes containing r|2-bonded ArP=PAr has been described 

more recently 7 2 

ArPCl2 served as the starting material for the synthesis of a number of interesting 

diphosphenyl metal complexes,73,74 s u c h a s Cp*(CO)2Fe-P=P=Ar. Apparently, no 

attempts have been made to synthesise multiple-bonded compounds with heavier group 

15 elements containing fluoromes such as ArAs=AsAr. 
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1.2.2 Fluoroxyl 

The first diphosphene containing the Ar' group (Ar'P=PAr') was synthesised by Escudie 

et ctl.66 The behaviour of this compound was unexpected, and very different from that 

previously reported for other diphosphenes: such derivatives react with electrophiles, 

nucleophiles or transition metals.7^ However, no addition reactions to the P=P double 

bond of Ar'P=Ar'P have been observed. 
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In this work, we have been especially interested in the reactions between fluoromes or 

fluoroxyl compounds and boron trihalides. Attempts have also been made to prepare 

aluminium derivatives, but without success so far. 

2.1 Introduction 

There are three important methods to prepare alkyl (or aryl) boron dihalides or dialkyl (or 

diaryl) boron halides. 1>2 

• Interaction of organometallic compounds with boron halides or substituted 

boron halides: 

Zn(C 6 H 5 ) 2 + BF 3 ^ C 6H 5ZnF + C 6 H 5 BF 2 

ArHgX + BX 3 - ArBX 2 + HgX 2 

Al(Me) 3 + 3 BBr 3 - 3 MeBBr 2 + AlBr 3 

Me 3SnC 6F 5 + 2 BC13 ^ Me2SnCl2 + MeBCl 2 + C 6F 5BC1 2 

• Reaction of triarylborons or aminodialkyl borons with a halogenating agent: 

B(Bu3) + HBr ' B u H » Bu2BBr 

• Reaction of trimethyl boroxine with boron halides: 

(MeBO)3 + 2 BF 3 3 MeBF 2 + B 2 0 3 
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• Arylhalogenoboranes 

The chemistry of arylhalogenoboranes ArBX2 (X=F, CI, Br, I) is well-established. 

However, there are few communications concerning fluoro-containing 

aryldifluoroboranes 3,4t Recently, Frohn et afi, reported the preparation and NMR 

studies of some fluoroaryldifluoroboranes. The possible routes for the preparation of 

C6F5BCI2 or C6F5BF2 are as follow: 

In the last decades, few examples have been published of boron compounds containing 

bulky and/or electron-withdrawing ligands such as mesityl^ or very recently 

fluoromesityl.7 

Boron trihalides (BX3) can undergo rapid scrambling or redistribution reactions on being 

mixed, with formation of mixed halides BX 2 Y and BXY2. The related systems 

RBX 2/R'BY 2 (and ArBX 2 /Ar 'BY 2 ) also exchange X and Y but not R or Ar . 8 Goodwin9 

has also observed some fluorine/chlorine exchange in the reaction of BCI3 with ArLi. 

• Triarylboranes 

The chemistry and particularly the conformation of triarylboranes have been 

studied; 1 1 their main features are the propeller-shaped conformations, and 

stereodynamics via the flip of aryl rings. The interest was to investigate the effect of 

bulky substituents such as mesityl or naphthyl groups on the conformation. More 

recently, Goodwin9 synthesised A ^ B (Ar: 2,4,6-tris(trifluoromethyl)phenyl) but no 

structure has been determined so far for this compound. Additionally, the structure of 

tris-[3,5-bis(trifluoromethyl)phenyl]borane has been briefly mentioned,^ and structural 

C6F5HgEt + BCl 3 C 6 F 5 BC1 2 + EtHgCl 

C 6 F 5 BC1 2 + 2 HF C 6F 5BF 2 + 2 HC1 
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and dynamic NMR studies of tris[2-(trifluoromethyl)phenyl]borane have been carried 

out. 1 3 

Usually, in organoborane compounds the carbon link has a largely single a B-C bond. 

Tri-coordinate organoboranes have a trigonal planar structure, with the potential for back 

bonding to the empty boron orbital from adjacent groups containing an unshared electron 

pair or a conjugated 7t-bond. ^ 

2.2 Reaction with 2,4,6-tris(trifluoromethyl)phenyl lithium (ArLi) 

This reaction was carried out following the method of Goodwin.9 ArLi was added slowly 

to a BCh.Et20 solution at room temperature. The 1 9F NMR spectra showed a number of 

peaks, including a doublet at -57.3 ppm ( 5 J F - F 14.3Hz) suggesting the presence of AT2BF. 

The n B NMR yielded signals at 45.1 and 26.0 ppm. ArLi was then added gradually into 

the solution, and 1 9F and n B NMR spectra were recorded after each addition. The 

reaction was carried out until no further changes were observed in the NMR spectra. The 

final spectra exhibit the presence of a mixture of four different species: ArBCb, ArBF2, 

Ar2BF and A ^ B . NMR data are listed in Table 2.1. ArBF2 and A ^ B could not be 

isolated, although ArBCb was isolated by distillation under vacuum (Bp 60°C) as a 

yellow oil and AJ2BF as a white solid. In addition, some typical boron halide species 

were observed in solution (BFCl 2.Et 20, BF 2Cl.Et 20, BF 3.Et 20) (Table 2.2), confirming 

that halogen exchange had occurred. These values agree with the shifts found by 

Goodwin.^ 
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6 1 9 F (ppm) 5 nB(ppm) 

ArBCl 2 -56.3 (s, 6F, o-CF3) 

-63.9 (s, 3F,/?-CF3) 

56.8 

ArBF 2 -54.1 (t, 5JF.F15.8Hz, 6F, 0-CF3) 

-64.2 (s, 3F,/7-CF3) 

-107.3 (m, 2F, BF 2) 

26.0 

Ar 2BF -57.3(d, 5JF.F14.3Hz, 12F, 0-CF3) 

-64.0 (s, 6F5jp-CF3) 

-131.5 (m, IF, BF) 

45.1 

Ar 3 B -60.2 (s, o-CF3) 

-63.5 (s,jp-CF3) 

?* 

Table 2.1: F and B NMR data for the products of the reaction between ArLi and BCI3 

, yF(ppm) "B(ppm) 

BF 3.Et 20 -151.2 (s) 0 

BF 2Cl.Et 20 -128.4 (q, ' J B - P 30.0 Hz) 3.9 ( t , 1
 J B - F 29.0 Hz) 

BFCl 2.Et 20 -114.3(q, ' J B . F 5 7 . 6 H Z ) 7.9 (d, 'JB-F58.1 Hz) 

BCl 3 .Et 20 10.7 

Table 2.2: NMR Data for BFnCl3.n.Et20 adducts (3<n<0). 

* The 1 'B NMR has been reported by Goodwin at 31.6 ppm. However, this shift does not agree with the 
literature values for R 3 B compounds. In this work, no signal could be assigned with certainty. 

http://'Jb.f57.6Hz
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The signal at -57.3ppm was confirmed as a doublet by recording the spectra were at 

different frequencies (188.16 and 376.35 MHz). This conclusion disagrees with the 

statements made by Goodwin^ and Gibson et a/,*5 where these signals were assigned to 

two different singlets for the 0-CF3 groups, due to non-equivalence of the aryl rings. 

The presence of ArBF2 and Ar 2 BF can be explained by a chlorine/fluorine exchange 

while the reaction is taking place. The only sources o f fluorine atoms in the solution are 

the CF3 groups in the A r L i compound. The mechanism proposed for this exchange could 

be as shown below: 

C F CI C F C F C 

B B L i 

CI 

a BC,Et,0 

F 

C F C F C F 

F© 

C F 

B 

C F 

Equation 1.1: Proposed mechanism for the fluorine/chlorine exchange. 

In order to identify the different species arising from the F/Cl exchange, a reaction 

between BCl3.Et20 and BF3.Et20 was carried out. 1 9 F and n B N M R spectra show the 

presence o f BCl 3 .E t 2 0 , BF 3 .E t 2 0 , BF 2 Cl.Et 2 0 and BFCl 2 .E t 2 0. N M R data are listed in 

Table 2 .2. 
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• X-ray structure o f A ^ B F : 

A J 2 B F was isolated as a white solid which was purified by recrystallisation from 

dichloromethane. Crystals were submitted for X-ray diffraction. The structure was 

determined at 120 K by A . L . Thompson and is shown in Figure 2.1. 

F(29) 
11 FID 

R 2 7 I FI28) 
F ( 3 ) FI12) 

8(1) 

F 2 3 ) RIB) 

R221 

FC21 F(18 

F 7 

Figure 2.1: Molecular structure of Ar2BF 

A r 2 B F crystallises in the monoclinic space group P21/n with Z=4. Selected bond 

distances and angles are listed in Table 2.3 below: 
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Bond distance (A) Angles (°) 

B(l)-C(21) 1.588(4) F(l)-B(l)-C(10) 115.2(2) 

B ( l ) - C ( l l ) 1.594(4) F(l)-B(l)-C(21) 116.0(2) 

B ( l ) - F ( l ) 1.313(3) 

B(l)-F(13) 2.763 C(21)-B( l ) -C( l l ) 128.5(2) 

B(l)-F(19) 2.792 

B(l)-F(23) 2.795 

B(l)-F(28) 2.785 

F ( l ) - F ( l l ) 2.763 

F(l)-F(13) 2.583 

F(l)-F(28) 2.624 

F(l)-F(29) 2.711 

Table 2.3: Selected Bond Distances and Angles for Ar2BF 

The B( l ) -C distances are 1.588(4) and 1.594(4) A. Angles F(l)-B(l)-C(10) and 

F(l)-B(l)-C(21) are 115.2(2) and 116.0(2)° respectively. The two />ara-trifluoromethyl 

groups appear to be disordered, as often observed in compounds containing these 

substituents, for example A ^ A s C l , Ar2SbCl, 1 6 Ar2BiCl and A ^ B i . 1 7 

The B-C distances are slightly shorter than those found in Ar2BN3 (1.62 A) and 

Ar2B(OH) (1.60 A ) 7 the only structures containing B and Ar published so far. The C-B-C 

angle in 2,6-(F2C6H3)2BCl is 123.1(2)° 7 compared with 128.5(2)° for Ar 2 BF. The latter 

is bigger due to the presence o f the bulky C F 3 substituents in the ortho position. 

Four short contacts between B—F are observed, for F(13), F(19), F(23) and F(28) (Table 

2.3) at an average interatomic distance o f ca. 2.78A. This value is shorter than the sum of 

van der Waals radii o f B (ca. 2.08 A) and F (ca. 1.40 A ) . 1 8 Moreover, some of the F(l)-F 

distances are found to be shorter than others, reflecting possible F—F interactions 

between some of the fluorines o f the trifluoromethyl groups and the fluorine atom 

directly bonded to the central boron atom (Table 2.3). 
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2.3 Reaction with a 2,6-bis(trifluoromethyl)phenyl lithium / 2,4-

bis(trifluoromethyl)phenyl lithium mixture (Ar'Li/Ar"Li) 

A solution of A r ' L i / A r " L i * was added to a BCI3 solution in diethyl ether. The 1 9 F and H B 

N M R spectra indicated different species in solution ( A r ' B C l 2 , Ar" 2 BF, Ar ' ^B) , and some 

species arising from direct fluorine/chlorine exchange (BF3 .Et20, BFCb.EtaO, 

BF2Cl .Et20) , for which data are listed in Table 2.2. Compounds were separated by 

distillation under reduced pressure (0.05 Torr). 

e A r ' B C l 2 

C F C F 

< < f \ f \ BCl B C I 

C F C F 

Equation 2.2: Synthesis of Ar 'BCl2 

This fraction was collected at 48°C as a yellow oi l . The 1 9 F N M R spectrum showed a 

singlet at -56.8 ppm corresponding to two ortho-CF^ groups. The n B N M R consisted of 

one singlet at 57.5 ppm. 

• Ar" 2 BF 

2 

C F C F 
C F 

B 

BCl 
L i 

C F 

Equation 2.3: Synthesis o/Ar'^BF 

* The Ar'Li/Ar"Li mixture was used because the lithiated compounds, Ar'Li and Ar"Li, could not be separated due to 
their close boiling points, caused by their similar molecular mass. 
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The 1 9 F N M R spectrum of the fraction collected at 92°C showed a doublet at -57.2 ( 5J F- F 

14.7 Hz, 6F, 0-CF3), a singlet at -63.3 (6F,/>-CF 3), and a multiplet at -86.6 ppm (IF , B-

F). The n B N M R exhibited a broad singlet at 47.8 ppm. 

• A r " 3 B 

C F 

C F 

f \ BC1 

C F C F 

T 
C F 3 

Equation 2.4: Synthesis ofAr'^B 

After distillation, a white solid remained in the flask. This was washed three times with 

hexanes and dried under vacuum. The 1 9 F N M R spectrum consisted o f a singlet at -56.6 

(9F, 0-CF3) and a singlet at -63.8 (9F,/?-CF3) ppm. 

In order to investigate the rotation of the ring around the boron atom, 1 9 F N M R spectra of 

A r ' ^ B were recorded between 10°C and -80°C. No changes were observed until -40°C 

where a new set of signals started to appear. The spectrum at -80°C showed the signal 

corresponding to A r ' ^ B (e.g. two singlets at -56.6 and -63.8 ppm) and two singlets at 

-56.2 and -62.2 ppm. A r ' ^ B can exist in two different conformations as shown in Figure 

2.3, so the second set o f singlets could be explained by the rotation of an aryl ring to be in 

conformation B. However, these two sets o f signals are in a 5.5:1 ratio (Figure 2.2). For 

conformation B, two sets of 0-CF3 signals and two sets for p-CF^ signals are expected, 

both in a 2:1 intensity ratio, whereas for conformation A only one 0-CF3 and one p-CFi 
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signal would be expected, giving an overall 3:3 olp ratio. It therefore seems probable that 

the chemical shifts coincide for all three aryl rings in conformation A and for two of the 

rings in conformation B . Equal populations of both conformations would then lead to two 

0-CF3 and two /J-CF3, in a 5:1 ratio for each set. The calculated energy difference 

between the two conformations is only 0.5 kcal/mol (value calculated by Dr M.A. Fox 

using the Gaussian 98 package) so this provides a reasonable explanation for the low-

temperature results. 

9 0 ° C 

-40°C 

- 8 0 ° C 

r 

1 
1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 u 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-57 -59 -61 p p m 

Figure 2.2: Variable temperature 19FNMR spectra ofAr'^B 
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In their studies on tris[2-(trifiuoromethyl)phenyl]borane, Toyota et al^ noticed that the 

singlet observed at room temperature was decoalesced at -100°C and separated into two 

singlets at -117°C. Unfortunately, due to solvent restrictions, it has not been possible to 

study A r " 3 B at a temperature below -80°C. 

C F C F i n 
C F 

C F C F 

B B 

C F C F 
C F C F 

Conformation A Conformation B 

Figure 2.3: Different conformations for Ar "3B 

The chemical shift in the U B N M R is 73.6 ppm and is within the typical range for 

tricoordinated boron atoms with three aryl substituents.1^ 

A 1 3 C N M R spectrum was recorded at room temperature. Table 2.3 shows the 

assignments for each carbon. 

B B 

CF3 

Figure 2.4: Lettering scheme for Carbon Assignments in Ar^ "B 
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Carbon 5 (ppm) J (Hz) 

A 143.7 broad singlet 

B 133.5 q, 2JC-F 33.7 

C 121.1 broad singlet 

D 133.6 q, 2JC-F 33.7 

E 135.2 s 

F 127.3 s 

G 123.1 q, 'JC-F 274.2 

H 122.9 q, 1 JC-F 274.2 

Table 2.4: SUC (ppm) forAr"3B 

13 

The C N M R spectrum shows the presence of only one ipso carbon, which confirms the 

symmetrical character o f the molecule. These values are in agreement with those found 

for Mes 3 B. 6 

The *H N M R shifts are given in Table 2.4 below: 

Hb 

F3C He 

Ha B 

CF 3 

Figure 2.5: Lettering scheme for Hydrogen Assignments in Ar3 "B 
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H 8 (ppm) J (Hz) 

a 8.0 s 

b 7.8 d, 3 J H - H 7 .75 

c 7.4 d, 3 J H - H 7.8 

Table 2.5: 8'H (ppm) for Ar "3B 

• X-ray structure o f A r ' ^ B 

Crystals were grown by recrystallisation from dichloromethane. The molecular structure 

at 120 K, as determined by A . L Thompson, is shown in Figure 2 .6 . 

F(22) 

R21) R23) 

BCD 

F<13) 
H32 

(36) 
F12I 

Fill) 
F 3 5 F(34! 

FI31 F(33 

Figure 2.6: Molecular structure of Ar "3B 
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A r ' ^ B crystallises in the triclinic P-l space group with Z=2. Like PhsB 1 1 and Mes3B 1 0 , 

A r ' ^ B exists in a propeller-like conformation in the ground state, with the three aryl 

groups twisted out o f the plane defined by the three carbons attached to boron. The three 

rings are twisted by 46.7°, 53.7° and 68.9° towards the reference plane made by the three 

carbons bonded to the boron atom, C( l 1), C(21) and C(31). These angles are larger than 

those observed in triphenylborane (28.3°) and are more comparable to those found in 

mesitylborane ( 4 0 ° - 6 0 ° ) n and tris-[2-(trifluoromethyl)phenyl)]borane (40° -55° ) 1 3 , 

reflecting the steric size o f the ortho substituents. 

B-C distances are 1.582(4) A and are similar to those found in A ^ B F (1.59A). 

The C-B-C angles are 117.6°, 117.0° and 124.7° respectively for C ( l 1)-B(1)-C(21), 

C(21)-B(l)-C(31) and C(l)-B(l)-C(31), reflecting the trigonal geometry of the boron 

atom. As in A ^ B F , some short B—F contacts are observed with the fluorines o f the 

ortho-CF3 groups: F(13),F(32) and F(23) with an average interatomic distance of ca. 

2.8A (Table 2.7). The average distance is very similar to that found in tris-[2-

(trifluoromethyl)phenyl]borane (see Table 2 .7 ) . 1 3 The distance F(32)~-F(23) o f 2.688 A 

is shorter than the other F—F distances (3.921 A for F(32)-F(21), 3.125A for F ( l 1)-F(33), 

4.601A for F(31)-F(21) and 4.179A for F(31)-F(23)). These short distances can be 

explained by a smaller C-B-C angle, which allows closer F—F interactions. 

Another interesting feature is the bond angles at C ( l 1), C(21), and C(31): a significant 

bending deformation, for example C(12) -C( l l ) -B( l ) 126.7° and C(16)-C( l l ) -B( l ) 

116.8(2)°, results from the avoidance o f steric interaction between B and the C F 3 

moieties. 

Table 2.6 shows selected bond lengths (A) and angles (°) for Ph^B 1 ! Mes3B, 1 0 (2-

CF 3C6H4)3B 1 3 and Ar"3B. The bonds and angles appear to be very similar, even though 

the presence of a more bulky group should bring more steric hindrance. 

The molecular structure shows the molecule in conformation B (Figures 2.3 and 2.6) 

which is the more stable conformation. The short F—F interactions help to stabilise the 

molecule. 
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Table 2.7 lists short B—F contacts in (2-CF3C6H4)3B and Ar"3B. The intramolecular B — 

F distances are similar, which is not surprising, the only difference between those two 

compounds being the presence of para-CY^ groups in A r ' ^ B which do not interact with 

the boron central atom. 

(2-CF 3C 6H4) 3B A r " 3 B 

B — F( l ) 2.845(13) 

B — F(4) 2.816(4) 

B—F(7) 2.763(3) 

B(l)—F(13) 2.800 

B(l)—F(23) 2.802 

B(l)—F(32) 2.815 

Average 2.808 2.806 

Table 2.7: Short B—F contacts (A) in Ar*3B andAr"3B 

2.4 Boronic Acids 

Over the last decade, boronic acids have been found to be very good catalysts in the 

Suzuki-Miyaura cross-coupling reaction. Arylboronic acids containing electron-

withdrawing substituents such as 2,4,6-tris(trifluoromethyl)phenyl or 3,5-

bis(trifluoromethyl)phenyl groups act as highly efficient catalysts in the amidation o f 

carboxylic acids by amines.20 

2,4-Bis(trifluoromethyl)phenyl boronic acid (Ar"B(OH)2) has been used as a powerful 

catalyst in the catalytic asymmetric allylation o f aldehydes with allyltrimethylsilanes.2^ 

• Bis[2,4,6-tris(trifluoromethyl)phenyl] boronic acid ( A r 2 B ( O H ) ) : 

A r 2 B ( O H ) was obtained by hydrolysis of A ^ B F . An N M R tube containing A ^ B F was 

left standing for a few weeks. 
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• N M R 

The 1 9 F N M R spectrum shows two singlets at -56.2 (12F, 0-CF3) and -63.8 (6F, /7-CF3) 

ppm. Unfortunately, the n B N M R could not be recorded, since the sample was not 

concentrated enough. 

• X-ray structure o f Ar2B(OH) 

Crystals were grown by slow hydrolysis o f A ^ B F . Long exposure of an N M R tube 

containing A ^ B F to the air afforded white crystals o f Ar2B(OH) suitable for X-ray 

diffraction. The molecular structure o f Ar2B(OH) at 120 K was determined by A . L 

Thompson and is shown in Figure 2.7: 

R21) 

0(1) R13) 

R 2 3 I FI22) 
F 2 F11 

F 2 8 
R19) 

(271 

18 F 7) 

Figure 2.7: Molecular structure of AnBfOH) 

The structure o f Ar 2 B(OH) at 200 K has already been determined by Fraenk et afl where 

it was obtained as a partially hydrolysed product, Ar 2BN3 and A ^ B O H . Their results are 

very similar to those obtained at 120 K in the present work; the discussion below refers to 

the data at 120 K . Selected bond distances and angles are included in Table 2.10. 
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The B - C distances average 1.61 A and are similar to those found in A r 2 B F . The 

0(1)-B(1)-C(21) angle is 112.65°, whereas 0(1)-B(1)-C(11) is 121.62° An 

intramolecular OH—F bridge is found for the hydrogen atom of the OH group to one 

fluorine atom of a CF3 group. The OH distance is 0.84 A, while the H(l)—F(13) and 

H(l)—F(12) distances are 2.188 A and 2.737 A respectively. As in A ^ B F and Ar'^B, 

short B - - F contacts are also observed: B(l)-F(12) 2.914 A, B(l)-F(19) 2.816 A, B( l ) -

F(23) 2.823 A and B(l)-F(28) 2.829 A (ca. 2.85 A average). 

• 2,6-Bis(trifluoromethyl)phenyl boronic acid (Ar'B(OH)2) 

Ar'B(OH)2 was obtained by slow hydrolysis of Ar'BCb, leaving the flask exposed to air. 

• NMR 

The 1 9 F NMR spectrum exhibited a singlet at -55.2 ( 6 F , 0-CF3) ppm. 

• X-ray structure of Ar'B(OH) 2 

Ar'B(OH)2 crystals were grown in an NMR tube containing a solution of A r ' B C ^ after 

one month of standing and were submitted for X-ray diffraction. The structure at 120 K 

was ascertained by A.L Thompson, and is shown in Figure 2.8: 

R4 

3li' 

nil F 31 

Fisure 2.8: Molecular structure of Ar'B(OH)2 
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Ar 'B(0H)2 crystallises in the orthorhombic space group with Z=4. Selected bond 

distances and angles are included in Table 2.11. The B ( l ) - C ( l ) distance is 1.597(2) A, 

and is slightly shorter than the one found in A r 2 B O H (1.613 A). The average B - 0 

distance is 1.35 A. As in A r 2 B O H , some H—F intramolecular contacts were observed: 

F(6)-H(1B) 2.714 A and F(3)-H(2B) 2.707 A. Short B—F contacts from the CF 3 groups 

in the ortho position were detected as in all other compounds: B-F(2) 2.622 and B-F(4) 

2.634 A. Hydrogen atoms of the OH groups appeared to be disordered. 

2.5 Discussion 

2.5.1 Comparison of the chemical shifts 

The n B N M R chemical shifts are listed in Table 2.8: 

A r B C I 2 A r B F 2 A r 2 B F Ar 2 B(OH) A r 2 B N 3 

9 
A r 3 B 

8 U B (ppm) 56.8 26.0 45.1 - 49.3 ? 

A r ' B C l 2 A r " 2 B F A r ' B ( O H ) 2 A r " 3 B 

8 u B ( p p m ) 57.5 47.8 - 73.6 

MesBF 2 Mes 2 BF Mes 2 B(OH) Mes 2 BNH 2 Mes 3 B 

8 n B (ppm) 25.7 53 51.4 43.8 79.2 

Table 2.8:11B NMR chemical shifts for RBX2 or R2BX compounds 

The chemical shifts for R3B and R 2 B X are at higher frequency than those for RBX 2 . The 

overall order is R 3 B>R 2 BX>RBX 2 . Trigonal boron is a good a donor and n acceptor, 

whereas halogens are a and n donor ligands (Figure 2.9). High electron density around 

the nucleus and the n donor effect causes shielding. The 2p n orbital rises in energy with 

an increase in fluorine substitution, but the combined inductive effect is greater and hence 

the boron becomes progressively more positively charged.23 
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A r 3 B compounds only have o interactions and no pit interactions (B-C bonds); the 

electron density on boron decreases, causing a deshielding effect. Replacement of an aryl 

ring by halogens creates a shielding effect due to jt back donation to the boron, on which 

the electron density is higher. The more halogens are bonded to the boron, the higher the 

electron density becomes on boron and thus causes a shielding effect. 

Furthermore, the proximity of fluorine atoms from the fluoromes or fluoroxyl ligand to 

the boron centre (Table 2.10) may allow pji interactions, resulting in the partial 

occupation of the vacant orbital on boron, and an increase in shielding. 

Figure 2.9: Electron donation from fluorine to boron 

A series of ab initio calculations has been carried out (at the GIAOHF/6-31G*//HF/6-

31G* level) by M.A Fox using the Gaussian 98 package.2 4 All calculations have been 

carried out on compounds containing no para-C¥y groups (e.g. Ar or Ar" derivatives). 

Results are listed in Table 2.9: 
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Model Compounds 

(for calculations) 

8 n B calc (ppm) Compound 8 U B exp (ppm) 

tris-(2-CF3C6H4) 68.7 Ar" 3B 73.6 

Ar' 2BF 44.1 Ar 2BF 45.1 

Ar' 2B(OH) 41.2 Ar'B(OH) 

Ar' 2B(OH) 41.2 Ar2B(OH) 

Ar'BF 2 22.6 ArBF 2 26.0 

Ar 'BCl 2 59.3 Ar 'BCl 2 57.5 

Ar 'BCl 2 59.3 ArBCl 2 56.8 

Ar'B(OH) 26.4 Ar'B(OH) 2 

Table 2.9: Comparison between 5 B calculated and experimental 

Calculated values are in good agreement with to those found experimentally. 

2.5.2 Comparison of the molecular structures 

Table 2.10 lists selected bond lengths (A) and angles (°) for Ar 2BF, Ar 2BOH and 

A r 2 B N 3 . 7 

The B-X distance (X=F, OH or N 3 ) depends on the X substituents. The bigger the group 

X is, the longer the bonds will be. The same characteristics apply to the B-C distances: 

1.620(6) A for Ar 2 BN 3 , 1.61 A for Ar 2BOH and 1.59A for Ar 2BF. Hence, the ligand X 

seems to have a direct effect on the B-C bond distances. 

This is also observed in Ar'B(OH) 2 (Table 2.11), where the B-C distance is intermediate 

between those in Ar 2 BN 3 and Ar 2BF. 
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Ar 2BF Ar 2BOH Ar 2 BN 3 

B(l)-F(l) 1.313(3) B(l)-0(1) 1.340(2) B(l)-N(l) 1.404(6) 

B(l)-C(21) 1.588(4) B(l)-C(21) 1.608(2) B(1)-C(11A) 1.620(6) 

B( l ) -C( l l ) 1.594(4) B( l ) -C( l l ) 1.618(2) B(10)-C(11B) 1.620(6) 

F(l)-B(l)-C(21) 116.0(2) 0(1)-B(1)-C(21) 112.65(13) C(11A)-B(1)-N(1) 115.0 

F(l)-B(l)-C(l l) 115.5 0(1)-B(1)-C(11) 121.62 C(11B)-B(1)-N(1) 115.0 

C(21)-B(l)-C(ll) 128.5 C(21)-B(l)-C(ll) 125.73 C(11A)-B(1)-C(11B) 

Table 2.10: Selected Bond Lengths (A) and Angles (°) for AnBX compounds 

Ar'B(OH) 2 Ar" 3B 

B(l)-0(1) 1.355(2) 

B(l)-0(2) 1.360(2) 

B(l)-C(l) 1.597(2) 

C(l)-B(l)-0(1) 118.15(14) 

C(l)-B(l)-0(2) 121.03(14) 

0(l)-B(l)-0(2) 118.3(3) 

B( l ) -C( l l ) 1.582(4) 

B(l)-C(21) 1.582(4) 

B(l)-C(31) 1.582(4) 

C(ll)-B(l)-C(21) 117.6(2) 

C(ll)-B(l)-C(31) 124.7(2) 

C(21)-B(l)-C(31) 117.0(2) 

Table 2.11: Selected Bond Distances (A) and Angles C) for Ar'B(OH)2 andAr"3B 
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2.5.3 Short contact distances 

In all the compounds, short B—F contacts are observed. The number of contacts depends 

of the number of C F 3 groups in the ort/io-position. These are listed in Table 2.12. B—F 

contacts are shorter in compounds containing only one aryl ring. In Ar2B(OH), the range 

2.829-2.914A is broader, probably because of the F—H interaction discussed earlier. 

Ar 2BF Ar 2B(OH) Ar'B(OH) 2 Ar" 3 B 

B-F 2.763-2.796 2.829-2.914 2.622-2.634 2.800-2.815 

No. of Contacts 4 4 2 3 

No. of ortho-

fluorines 12 12 6 9 

Table 2.12: Short B—F Contacts (A) 

2.5.4 Optimised geometry 

The geometry of the compounds structurally characterised has been optimised (at the 

HF/6-31G* level) by M.A. Fox with a Gaussian 98 package^. The structure was 

simulated and bond distances and angles evaluated (Appendix A). 

Table 2.13 compares the calculated distances with the experimental data. Values are very 

similar. In each case, short B—F contacts are found. The optimised values for boronic 

acids (Ar'B(OH)2 and Ar'2B(OH)) also show the presence of an intramolecular F—H 

bridge. 
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2.6 Attempted reactions with Aluminium Chloride 
Apparently, no previous attempts have been made to synthesise aluminium derivatives 

containing fluoromes or fluoroxyl ligands 

2.6.1 Reaction with 2,6-bis(trifluoromethyl)phenyl lithium (Ar'Li) / 2,4-

bis(trifluoromethyl)phenyl lithium (Ar"Li) 

A solution of Ar'Li/Ar"Li in diethyl ether was added slowly to an AlCb solution in 

diethyl ether. The 1 9F NMR showed a set of signals corresponding to ortho-CF^ and 

para-CF} but none of them has been assigned. This reaction appears to give rise to a 

mixture of mono- and di-substituted compounds. 

2.6.2 Reaction with 2,4,6-tris(trifluoromethyl)phenyl lithium (Ar'Li) 

A solution of ArLi was added to an AICI3 solution in diethyl ether at 0°C. A number of 

signals corresponding to 0 - C F 3 and p-CFi were observed, indicated the presence of a 

mixture of different products in solution. However, a peak of high intensity 

corresponding to the starting material ArLi showed that aluminium chloride does not 

react very well with ArLi. 
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2.7 Experimental 

2.7.1 Introduction 

® NMR spectroscopy 

All manipulations, including NMR sample preparation, were carried out either under an 

inert atmosphere of dry nitrogen or in vacuo, using standard Schlenk procedures or a 

glovebox. Chemicals of the best available commercial grades were used, in general 

without further purification. 1 9F NMR spectra were recorded on a Varian Mercury 200, 

Varian VXR 400, or Varian Inova 500 Fourier-transform spectrometer at 188.18, 376.35, 

and 470.26 MHz respectively. 1 lB NMR spectra were recorded on the Varian Mercury 
1 13 

300 or Varian Inova 500 spectrometer at 96.22 and 160.35 MHz respectively. H and C 

NMR spectra were recorded on the Varian VXR 400 instrument at 400 and 100.57 MHz 

respectively. Chemical shifts were measured relative to external C F C I 3 ( 1 9F) or BF3.Et20 

( n B ) , with the higher frequency direction taken as positive. 

• C,H,N analysis 

Microanalyses were performed by the microanalytical services of the Department of 

Chemistry, using micro-combustion on a Perrkin Elmer CE 440 Elemental Analyser. 

• X-ray Crystallography 

Single crystal structure determinations were carried out from data collected at 120 K, 

using graphite monochromated Mo Ka radiation (A, = 0.71073 A) on a Bruker SMART-

CCD detector diffractometer equipped with a Cryostream N2 flow cooling device.25 In 

each case, series of narrow ©-scans (0.3°) were performed at several (p-settings in such a 

way as to cover a sphere of data to a maximum resolution between 0.70 and 0.77 A. Cell 

parameters were determined and refined using the SMART software,2^ and raw frame 

data were integrated using the SAINT program.2 7 The structures were solved using direct 

methods and refined by full-matrix least squares on F 2 using SHELXTL. 2^ 
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• Computation section 

All ab initio computations were carried out with the Gaussian 98 package.24 The 

geometries discussed here were optimised at the HF/6-31G* level with no symmetry 

constraints. Frequency calculations were computed on these optimised geometries at the 

HF/6-31G* level for imaginary frequencies. Theoretical U B chemical shifts at the GIAO-

HF/6-31G*//HF/6-31G* level have been referenced to B2H6 (16.6 ppm 2 9 ) and converted 

to the usual BF3.OEt2 scale: 8 n B = 123.4 - CT(hB). 

2.7.2 Synthesis of ArH 

The vacuum line used for this reaction was specifically designed for the use and 

manipulation of SF4. The inside of the line was coated with Teflon to prevent corrosion 

of the steel from the highly reactive gas. The vacuum system is outlined below (see 

figure) 

An upper reservoir of known volume (425 cm ) was filled over a period of 15 min with 

SF4 from a cylinder. The mass of this gas was equal to approximately 150g. This was 

subsequently transferred to a small sample bottle (Teflon lined steel), using vacuum 

transfer methods. From the initial tare of the bottle the quantity of SF4 transferred could 

be determined. This process was then repeated until the desired quantity of SF4 (550g, 5.1 

moles) had been obtained. The bottle was then allowed to warm to room temperature 

4.251 Reservoir 
) 

SR Lecture 
Bottle 

To Vacuum Pump 

1 1 Autoclave 

Figure 2.11 Steel Vacuum Line for SF4 Transfer 
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tin 

Vend 1M 

Q K b i 

taa, 

Fieure 2.11: Autoclave for SF4 Fluorination Reactions 

Trimesic acid (benzene- 1,3,5-tricarboxylic acid) (126g, 0.6 moles) was introduced into a 

1000 cm3 bomb. It was then evacuated and cooled to 76 K in liquid air. 

The contents of the steel bottle were then carefully condensed into the bomb and the tare 

of the bottle checked to ensure that all the SF4 had been transferred. The bomb was then 

place in a furnace, and heated with the help of thermocouples to a temperature of 150°C, 

which was maintained for the duration of the reaction (12 hours). The reaction was then 

allowed to cool to room temperature and the bomb was transferred to a fume cupboard. 

C 6 H 3 (COOH) 3 ^ ^ C 6 H 3 ( C F 3 ) 3 

423K 
130 Atmos.Pressure 

The by-products of the reaction are SO2, HF, and any unreacted SF4. These gases need to 

be scrubbed, neutralised, and not allowed into the atmosphere. The gases were slowly 

passed over a funnel, which was placed in a big beaker filled with water. 
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After scrubbing the gases, the contents of the bomb were then tipped onto crushed ice to 
remove any unreacted trimesic acid and HF. The mixture was then filtered, and the 
filtrate washed three times with NaOH. The oily yellow compound was then separated 
and dried overnight over anhydrous magnesium sulphate. 

The product was then purified by distillation using a fractionating column to yield a 

colourless oil (Bp 114°C). Yield 95g (75.4%) 
1 9 F NMR (CDC13): 5 -63.5 (singlet) ppm; ! H NMR (CDC13):8 8.1 (singlet) ppm. 

2.7.3 Preparation of ArLi 

CF CF 

n-BuLi 
Li \ / Et,0, -78°C 

CF CF 

BuLi (41.75ml, 1.6 M in hexanes, 78 mmol) was added dropwise over 10 min to a 

solution of ArH (78 mmol) in diethyl ether at -78°C. The solution was allowed to warm 

to room temperature and stirred for 4 hours, giving a brown solution. 
1 9 F NMR ( C D C I 3 ) : 8 -53.6 (s, 6F, 0 - C F 3 ) , 8-63.6 (s, 3F,/7-CF3) 

2.7.4 Preparation of Ar'Li/Ar"Li 

CF CF CF 3 

< 
n-BuLi 

+ LI 

V // \ // \ // Et,0, -78°C 

CF CF 
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BuLi (57 ml, 1.6 M in hexanes, 91.2 mmol) was added dropwise over 10 min to a 

solution of Ar 'H (91.2 mmol) in diethyl ether (200 ml) at -78°C. The solution was 

allowed to warm to room temperature and stirred for 4 hours, giving a dark brown 

solution. 

1 9 F NMR (CDC13): Ar 'Li 5 -63.9 (s); Ar"Li 5-62.4 (s), -63.2 (s) ppm. 

2.7.5 Synthesis of ArBCl 2 

ArLi + BC13 

CF 

t Et,0 
BCI \ // 78°C 

CF3 

A solution of ArLi (50 ml, 20 mmol) was added dropwise to a BCI3 solution (20 ml, 1M 

in p-xylene, 20 mmol) in diethyl ether at -78°C. A white precipate of LiCl immediately 

formed. The solution was stirred for 5 hours, giving a yellow solution. The solution was 

then filtered and solvents were removed under vacuum (0.01 Torr), leaving a yellow oil, 

which was distilled; a yellow oil was collected at 60°C. 
1 9 F NMR (CDCI3): 8 -56.3 (s, 6F, 0-CF3), -63.9 (s, 3F5jp-CF3) ppm; n B NMR (CDCI3): 

8 56.8 ppm (s). 

2.7.6 Synthesis of Ar 2 BF 

CF CF 

I © Et.0 ArL + BC B BCI V // 78°C CF 
CF 

CF 

CF3 
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In the synthesis described previously for ArBCl 2 , another product of the reaction is 

Ar2BF. When the solvents were removed, a yellow oil and a white solid appeared. The 

latter was filtered off and washed three times with hexanes and dried in vacuo. Crystals 

were obtained by recrystallisation from dichloromethane. Yield 1.5g (13%). 

Elemental analysis for C18H4BF19 (592.02): Calc C 36.56, H 0.68%; Found C 35.04, H 

0.98%. 
1 9 F NMR: 8 -57.3 (d, 5J F . F 14.3Hz, 12F, 0-CF3), -64.0 (s, 6F,/?-CF3), -131.5 (m, IF, B-F) 

ppm; n B NMR: 8 45.1 ppm (s). 

2.7.7 Synthesis of Ar'BCl 2 

A solution of Ar'Li/Ar"Li mixture in Et 2 0 (100 ml, 45.6 mmol) was added dropwise to a 

solution of BCI3 (22.8 ml, 1M in ^-xylene, 22.8 mmol) at -78°C. The solution was 

allowed to warm to room temperature for 3 hours leaving a brown solution. A white solid 

of LiCl formed. The solution was filtered and the solvents removed under vacuum, 

leaving a brown oil, which was distilled under reduced pressure (0.05 Torr). A fraction 

was collected at 48°C. 
1 9 F NMR (CDCI3): 8 -56.8 (s, 6F, 0-CF3) ppm; n B NMR (CDC13): 8 57.5 ppm. 

C F 

Et 20 Ar'Li + BC BCI 
78°C 

C F 3 
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2.7.8 Synthesis of Ar" 2 BF 

CF CF 

-d--6 / EUO 2Ar"Li + BC1 BCI \ // B CF V V 78°C 

2 

CF3 

In the synthesis of Ar'BCb described previously, another product of the reaction is 

Ar'^BF. Using the same reaction, this compound was distilled under reduced pressure 

yielding a colourless oil [Bp=92°C (0.05 Torr)]. 
1 9 F NMR (CDC13): 8 -57.2 (d, 5 J F . F 14.7 Hz, 6F, 0 - C F 3 ) , -63.3 (s, 6Y,p-CY^), -86.6 (m, 

IF, B-F) ppm; n B NMR (CDC13): 8 47.8 ppm. 

2.7.9 Synthesis of Ar" 3B 

CF 

CF 
EUO 3Ar Li + BCI 

B 78°C 

CF CF 

In the synthesis of Ar'BCb described previously, a by-product of the reaction is Ar" 3 B. 

After distillation, a white solid remained in the flask. This solid was washed 5 times with 

dichloromethane and purified by sublimation under vacuum. This afforded some white 

crystals. 
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1 9 F NMR (CDCb): 5 -56.6 (s, 9F, 0-CF3), -63.8 (s, 9F,/?-CF3) ppm; n B NMR (CDC13): 

8 73.6 ppm; 1 3 C NMR (CDCI3): 8 143.7 9 (broad singlet), 135.2 (s), 133.6 (q, 2 J C - f 33.7), 

133.5 (q, 2 J C - f 33.7) 127.3 (d, J 3.6), 123,1 (q, JC-f 274.2), 122.9(q, J C . F 274.2), (121.1 

(broad singlet) ppm; J H NMR (CDC13): 8 8.0 (s), 7.8 (d, 3 J H -h 7.75), 7.4 (d, 3 J H -h 7.8) 

ppm 
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3.1 Introduction 

Steric encumbrance in substituents bound to main group elements has led to kinetic 

stability in complexes. A number of bulky organic substituents has been used to stabilize 

compounds of group 14 elements, such as mesityl, t-butyl, bis(trimethylsilyl)methyl, 

tris(trimethylsilyl)methyl, 2,4,6-tri(t-butyl)phenyl and 2,4,6-tri(i-propyl)phenyl.1>2 

Surprisingly, little has been published about group 14 species containing fluoromes or 

fluoroxyl substituents. In this chapter, the preparation of a series of tetravalent group 14 

derivatives (Si, Ge and Sn) is described. 

3.1.1 Organosilicons 

Organosilicon compounds have a considerable stability due to the strength of the Si-C 

bond. There are three general methods to form organosilicon compounds: 

- reaction of SiCU with organolithium, organoaluminium, or Grignard reagents: 

- hydrosilation of alkenes 

Catalytic addition of Si-H across C=C double bonds (except for methyl and phenyl 

si lanes) 

RLi + SiCl 4 

R3A1 + 3 SiCl4 

RMgX + SiCl4 

RSiCl3 + LiCl 

3 RSiCl3 + A I C I 3 

RSiCl3 + MgClX 

RCH=CH2 + HSiR3 RCH 2CH 2SiR 3 
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- direct reaction of RX or ArX with silicon in the presence of Cu as a catalyst 

(industrial method)^ 

2 MeCl + Si Cu powder^ Me 2SiCl 2 

300°C 

3.1.2 Organogermanium derivatives 

Preparative routes to organogermanium compounds parallel those for organosilicon 

compounds (see equations above), via an organolithium or Grignard reagent. Most of the 

several known organogermanium compounds can be considered as derivatives of 

RnGeX4.n or ArnGeX4-n where X=hydrogen, halogen, OR, ... 

3.1.3 Organotin compounds4'5 

Organotin chemistry has been much more extensively investigated that those of 

germanium or silicon. 

There are three synthetic routes: 

- reaction with a Grignard reagent: 

4RMgCl + SnCl4 - SnR4 + 4 MgCl 2 (also with ArMgCl) 

- reaction with an organoaluminium compound: 

4AlR 3 + 3SnCl 4 ^ 3SnR4 + 4 A l C l 3 

- direct reaction of RX with the element: 

2RX + Sn R 2SnX 2 (and R ^ n X ^ (alkylonly) 
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A few examples containing the f luoromes substituent attached to group 14 elements 

have been reported in the literature: A r S i M e 3 , 6 A r 2 S i F 2 , 7 A r 2 S i H F , A ^ S i t ^ and 

A r 2 G e H 2 , 9 w h i c h w a s synthesised from the precursor A r 2 G e . T h e reaction o f A r L i 

w i th P l i 3 S n C l gave A r S n P h 3 . 1 ( ^ A ^ S n can undergo oxidation reactions to lead to 

t i n ( I V ) compounds . T h u s , A r 2 S n F 2 is prepared by reaction o f A s F s w i th A r 2 S n . T h e r e 

are two general routes to prepare A ^ S n C ^ : * ^ 

- Ch lor inat ion o f A ^ S n : 

A r 2 S n + C l 2 ^ A r 2 S n C l 2 

- R e a c t i o n o f A r L i w i th S n C U 

2 A r L i + S n C l 4 ^ A r 2 S n C l 2 + 2 L i C l 

T h e only examples containing A r ' or A r " are t in derivatives: A r ' S n M e 3 , 1 2 > 1 3 

A r " S n M e 3

1 2 > 1 3 and A r ' 2 S n . 1 4 

2 A r L i + S i C l 4 F/Cl exchange t A r 2 S i F 2 

2 A r L i + H S i C l 3

 F / c l e x c h a n g e , A r 2 S i H F 

A r 2 S i H F + L i A l H 4 ^ A r 2 S i H 2 

2 A r ' L i . T M E D + S n C l 2 ^ A r ' 2 S n 

Pre l iminary w o r k has been done on S i , G e and S n derivat ives by X u e . 1 5 A general 

reaction between A r L i or A r ' L i / A r " L i wi th E C U ( E = S i , G e , S n ) w a s used. Tetravalent 

derivat ives A r " 2 S i C l 2 , A r G e C l 3 , A r " 2 G e C l 2 , A r 2 S n C l 2 and A r ' S n C l 2 were structurally 

characterised. 
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3.2 Silicon derivatives 

3.2.1 Reaction of SiC! 4 with 2,4,6-tris(trifluoromethyl)phenyl lithium 

2 

CF CF 

\ CF S C I 
L Si Hexanes 

78°C 

CF CF 

CF 

Equation 3.1: Synthesis of Ar2SiF2 

The reaction was carried out following the general method of reacting the lithiated 

compound ArLi with silicon tetrachloride SiCl4. 

ArLi was added slowly to a SiCU solution in hexanes at -78°C. The 1 9F NMR spectrum 

showed a triplet at -57.3 ( 5J F. F 12.8 Hz), a singlet at - 64.2 and a multiplet at -124.5 ( 5J F. F 

12.8 Hz) ppm. The presence of a triplet at the chemical shift corresponding to the 0-CF3 

suggests F-F coupling. This is confirmed by a multiplet at -124.5 ppm, assigned to the 

fluorines bonded directly to silicon. These signals suggest that only Ar2SiF2 can be 

isolated from the reaction. This has already been reported by Buijink et alJ The 

compound was isolated as a yellow oil (Bp 85° at 0.01 Torr). 

The presence of Ar2SiF2 can be explained by a Cl/F exchange while the reaction takes 

place. This phenomenon has also been observed with the reaction with boron trichloride 

(Chapter 2), where a similar mechanism to the following has been proposed: 
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CF CI CF CI CF 

Si CI Si Li 

Ar Ar sc 
CF 

F 

CF CF 

CF 

Si 

Ar 

CF 

Scheme 3.1: Possible mechanism of the formation oj"Ar2SiF2 

In order to check when the exchange occurs, an NMR tube reaction between ArH and 

SiCU was attempted. The 1 9F NMR spectrum only exhibited the presence of the starting 

material ArH at -63.5 ppm. This proves that the halogen exchange takes place once the Si 

(or B) atom is bonded to the ligand. 

3.2.2 Reaction of SiCLi with a 2,6-bis(trifluoromethyl)phenyl lithium / 2,4-
bis(trifluoromethyl)phenyl lithium mixture (Ar'Li/Ar"Li) 

The mixture Ar'Li/Ar"Li was added to SiCU in hexanes at -78°C. The 1 9F NMR 

spectrum indicated the presence of different species in solution: Ar^SiCfe, Ar'^SiCk, 

Ar' 2SiF 2 and Ar" 2SiF 2 (Figure 3.1). Only Ar" 2SiCl 2 and Ar" 2SiF 2 have been isolated, as a 

yellow oil and a white solid respectively. Table 3.1 lists the chemical shifts of the 

different products of the reaction. 
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S i C l 4 

EtjO 

-78°C 

A i ^ S i C l , 

C F 3 A r " 2 S i C l 2 

C F 3 A r " 2 S i F 2 

Ar'jS iFj 

F 3 C 

Scheme 3.2: Different products of the reaction between Ar'Li/Ar"Li and SiCl4 

o-CFj of 
A r " 2 S i C l 2 

o-CF 3 of 
A r ' 2 S i F 2 

P-CF; O f 
Ar' ,SiCh 

0-CF3 of 
Ar" ,S iF , 

p - C F 3 of 
A r " 2 S i C I 2 

p - C F 3 of 
A r " 2 S i F 2 

1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—r I 1 1 1 1 I 
-57 -58 -59 -60 -61 -62 -63 -64 ppm 

Figure 3.1:19F NMR spectrum of the reaction between Ar 'Li/Ar "Li and SiCl4 



Chapter 3° Group 14 Derivatives 81 

Compound 5 for 0-CF3 (ppm) 8 for /J-CF3 (ppm) 5 for Si-F (ppm) 

Ar" 2SiCl 2 -57.95 s (6F) -64.2 s (6F) 

Ar' 2 SiCl 2 -58.9s(12F) 

Ar" 2SiF 2 -59.21, 5 J F - F 12.4HZ 
(6F) 

-64.1 s(6F) -133.0 septet, 
5JF.F12.3Hz(2F) 

Ar' 2SiF 2 -57.5 t, 5 J F . F 12.3Hz 
(12F) 

-125.5 m, 5 J F . F 12.5Hz 
(2F) 

Table 3.1: 8 Ffor the different products of the reaction between Ar 'Li/Ar "Li and SiCU 

A r ' 2 S i F 2 

A r " 2 S i F 2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-125 -127 -129 -131 ppm 

Fisure 3.2: F NMR region for the Si-F2 signals in Ar '2S1F2 and Ar "2SiF2 
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• Ar" 2SiCl 2 

Crystals were obtained by recrytallisation from pentane by Xue. 1 5 The crystal structure 

has been determined by A.S. Batsanov (Figure 3.3). 

Cl(2) 

cm 

R13 R12) 

F(1i FI2I 

R3) 

Figure 3.3: Molecular structure of Ar "2S1CI2 

• Ar' 2SiF 2 

Ar' 2SiF2 was isolated as a white solid and purified by sublimation under vacuum (110°, 

0.02 Torr). Crystals were submitted for X-ray diffraction. The structure was determined 

at 120K by A.L. Thompson and is shown in Figure 3.4: 

R15I 
Fiat R22) 

Fill 

FI16I FI23! FI14I R21) 

Fill) 
F24) 

F(25l 
F13! FI26) FI12) 

Figure 3.4: Molecular structure of Ar'2SiF2 
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Ar'2SiF2 crystallises in the triclinic P-l space group with Z=2. The compound exhibits an 

approximate tetrahedral geometry at the silicon with a C(l 1)-Si-C(21) angle of 

115.53(8)°C. This angle is larger than normal for Si, and is due to the steric bulk of the 

aryl substituents. It is similar to the angle found in Ar2SiHF (115.8(11)°),^ and smaller 

than the one reported for Ar2SiF2 (119.1(2)°7). The F-Si-F angle in Ar2SiF2 was 

105.8(2)°, and is 104.06(6)° in Ar' 2SiF 2 . The Si-C distances, Si-C(ll) 1.895(2) A, Si-

C(21) 1.8991(19) A, are similar to those found in A^SiHF and Ar2SiF 2 ; and are within 

the range of values observed for other tetracoordinate silicon compounds (Si-C values in 

diarylsilicon dihalides reported to lie between 1.872(17) and 1.895(15) A 1 6 ) . 

The Si-F distances are 1.5790(3) and 1.5694(11) A and are slightly longer than those 

found in Ar2SiF2. Table 3.2 lists selected bond distances (A) for A^SiHF, 8 Ar2SiF27 and 

Ar' 2SiF 2 . 

As found in Ar2SiHF and Ar2SiF2, four short Si—F contacts are observed in Ar'2SiF2, 

within the range 2.745-3.073 A, at an average interatomic distance of ca. 2.9162 A. This 

value is shorter than the sum of van der Waals radii of 3.57 A. 17 

Figure 3.6 shows the Si—F short contacts (covalent bonds are shown by a solid line and 

weaker interactions are designated by a dashed line). 

Figure 3.7 shows the environment around the central atom. 

This reveals a (4+4) coordination environment, which approaches a distorted tetracapped 

tetrahedron. The four Si—F contacts occupy approximate faces of the tetrahedron defined 

by the bonded atoms C( l l ) , C(21), F(l) and F(2). This was also found for Ar 2 SiF 2

8 and 

Ar2SiHF as well as for bis[2,6-(dimethylaminomethyl)]silane, where the lone pair of each 

N was coordinated to S i . 1 8 
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I 

Figure 3.5: Si—F Short Contacts (covalent bonds are shown by a solid line and weaker 

interactions are designated by a red line) 

hi 

Figure 3.6: Coordination Environment around Silicon 
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3.3 Germanium derivatives 

3.3.1 Reaction of GeCU with 2,4,6-tris(trifluoromethyl)phenyl lithium (ArLi) 

ArLi was added to a solution of GeCU in hexanes. The 1 9F NMR spectrum showed the 

presence of two species in solutions: ArGeCb and A^GeC^. These were isolated as an 

oil and a solid respectively. 

• ArGeCl3 

CF CF 

CI 

G e C 
Cl Ge 

Hexanes 
CI 78°C 

C F 3 C F 3 

Equation 3.2: Synthesis ofArGeCh 

This compound was purified by distillation under vacuum, leaving a yellow oil which 

crystallises on standing. 

The 1 9F NMR spectrum of ArGeCb showed a singlet (6F) at -52.9 ppm for the ortho-CFs 

and a singlet (3F) at -63.5 ppm corresponding to thepara-CFi groups. 

ArGeCh was previously synthesised by Xue,^ and its crystal structure determined by 

A.S. Batsanov (Figure 3.7). 
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Hi. 

FI3I 

i in 

;-:>•> 

Figure 3.7: Molecular structure ofArGeCU 

The geometry of the germanium atom is close to tetrahedral. There is a mirror plane 

through the molecule, with two of the chlorines and the 0 - C F 3 groups on the phenyl ring 

being symmetry-related. There is some asymmetry in the Cl-Ge-Cl bond angles which 

range from 99.82(3)° to 108.46(17)°. This probably arises from the Ge-F interactions 

with the fluorines in the ortho C F 3 groups. The Ge-C bond (Ge-C(l) 1.981(2)) distance is 

within the literature range for Ge-C bonds in Ar-Ge derivatives (1.942(1)-2.081(3)A).9>19 

The/7-CF3 groups are found to be disordered. 

• Ar 2GeCl 2 

2 

CF CF 

CI 

\ CF CI G e C -

ft 

Li Ge 
hexanes 
78°C 

CF 

CF 

Equation 3.3: Synthesis ofA^GeCh 
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Ar^GeCfe was isolated as a beige solid, which was purified by recrystallisation from 

dichloromethane. The 1 9F NMR spectrum exhibited two singlets at -54.4 (12F) and 

-64.1(6F) ppm respectively, corresponding to the 0 - C F 3 and^-CF3 groups. 

• X-ray structure of A^GeCfe 

Ar2GeCh was isolated as a beige solid and recrystallised from dichloromethame. Crystals 

were submitted for X-ray diffraction. The structure was determined at 120K by A.L. 

Thompson, and is shown in Figure 3.8: 

FL21I 
F18 CK25 

F22) 
FI17) 

F(19) 

R13 

R12) 
F11 

R28I 

F(27l 

R29) 

Figure 3.8: Molecular structure of AriGeCh 

Ar2GeCl2 crystallises in the monoclinic P2(l)/c space group with Z=4. One of the para 

C F 3 group is disordered. A distortion from tetrahedral geometry is observed, with a C-

Ge-C angle of 120.07°. The Ge-C bond lengths are 1.997(3) A for Ge-C(21) and 2.072(3) 

A for Ge-C(ll). These distances are similar to those found in A^Ge (2.081(3) and 

2.072(3) A) 1 9 and are slightly longer than those in ArGeCl 3 : 1 5 Ge-C(l) 1.981(2) A. This 

is probably due to the steric hindrance imposed by a second fluoromes ligand. The Ge-Cl 

distances are in the same range as those found in ArGeCb and slightly shorter than those 
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in Ar'^GeCb.1^ However, this compound shows some asymmetry in the Ge-Cl distances, 

of 2.1174(9) A and 2.1513(9) A. Selected bond lengths (A) and angles (°) for ArGeCb, 

Ar2GeCl2 and Ar'^GeCb are listed in Table 3.3 and Table 3.4. The four C-Ge-Cl angles 

in the disubstituted compounds vary between 96.65(9)° and 118.17(9)°. 

Bond Distance (A) Angle (°) 

Ge-C(l) 1.981(2) C(l)-Ge-Cl(2) 111.89(6) 

Ge-Cl(12) 2.1117(8) C(l)-Ge-Cl(l) 113.72(4) 

Ge-Cl(l) 2.1277(4) Cl(2)-Ge-Cl(l) 108.461(17) 

Ge-Cl(l)#l 2.1277(4) C(l)-Ge-Cl(l)#l 113.72(4) 

Cl(2)-Ge-Cl(l)#l 108.461(17) 

Cl(l)-Ge-Cl(l)#l 99.82(3) 

Table 3.3: Selected Bond distances (A) and Angles (°) for ArGeCh^ 
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Three short Ge—F interactions are observed within the range 2.757-3.009A, with an 

average interatomic distance of ca. 2.88A. The distance is shorter than the sum of van der 

Waals radii of 3.66 A . ^ 

3.3.2 Reaction of GeCU with a 2,6-bis(trifluoromethyl)phenyl lithium / 2,4-
bis(trifluoromethyl)phenyl lithium mixture (Ar'Li/Ar"Li) 

Ar'Li/Ar"Li was added to a solution of GeCU in hexanes. The 1 9F NMR spectrum 

showed predominantly the presence of Ar'^GeCb, with two singlets at -58.7 (6F, 0 - C F 3 ) 

and -64.1 ppm (6F, p-CFi). A single resonance at -53.8 ppm was assigned to the 

symmetrical molecule Ar^GeCb, since there were no signals of corresponding intensity 

for the P-CF3. There were other low intensity peaks present in the spectrum however, and 

the signal at -53.8 ppm could possibly arise from ArGeCb, which should also give a 

single 1 9F resonance (Figure 3.9). 

Ar" 2 GeCl , 

A r ' 2 G e C l 2 or 
Ar 'GeCl 3 

I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

-53 -54 -55 -56 -57 -58 -59 -60 -61 -62 ppm 

Figure 3.9: F NMR spectrum of the reaction between Ar 'Li/Ar "Li with GeCU 
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3.4 Tin derivatives 

3.4.1 Reaction of SnCU with 2,4,6-tris(trifluoromethyl)phenyl lithium (ArLi) 

A solution of ArLi was added to a SnCU solution in hexanes. The 1 9F NMR spectrum 

indicated the presence of ArSnCU and A^SnCfe. 

• ArSnCl3 

CF CF 

ci 

f \ / SnCl 
Sn Li C 

Hexanes 

78°C a 
C F 3 C F , 

Equation 3.4: Synthesis of ArSnCh 

This compound was isolated as an oil and purified by distillation under reduced pressure 

(0.01 Torr)(Bp 85°C). 

The 1 9F NMR spectrum consisted of two singlets, one with Sn satellites at -55.9 Ĉ Jsn-F 

19.2Hz, 6F, o-CF3) and one at -63.0 (3F,/?-CF3) ppm. The u 9 Sn NMR spectrum showed 

a singlet at -140.7 ppm. 

• Ar 2SnCl 2 

CF CF 

c CI CI 

-< -< \ / CF SnCl 

Sn hexanes 

78°C 

CF C F 

CF 

Equation 3.5: Synthesis ofAr2SnCh 
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Ar2SnCl2 was isolated as a solid and recrystallised from diethyl ether. 

The 1 9F NMR spectrum exhibited singlets at -56.9 (with Sn satellites, 4JSN-F 10.0Hz, 12F, 

o-CF3) and -63.9 (6F, p-CF3) ppm. The 1 1 9Sn NMR spectrum consisted of a singlet at 

-146.7 ppm. 

AraSnCb has already been synthesised by Xue, 1 5 and its crystal structure ascertained by 

A.E Goeta (Figure 3.10). 

CH2) (3; R10) 
CK1 

R12) FliU 
nil 

F<8> F<16> 

F(9I 

Figure 3.10: Molecular structure ofAr2SnCh 

The Sn-Cl bond lengths are similar (2.2977(17) and 2.3259(18) A) to the values found for 

the only ArSnCl compound which has been structurally characterised, Ar2ClSn(p,2-

0)SnClAr2, of 2.310(1) and 2.319(2) A . 2 0 

3.4.2 Reaction of SnCLt with a 2,6-bis(trifluoromethyl)phenyl lithium / 2,4-
bis(trifluoromethyl)phenyl lithium mixture (Ar'Li/Ar"Li) 

An Ar'Li/Ar"Li solution in diethyl ether was added to a solution of SnCU in hexanes at 

room temperature. The 1 9F NMR spectrum showed the presence of two species in 

solution: Ar' 2SnCl 2 and Ar" 2SnCl 2 (Figure 3.11) 
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Ar" 2 SnCl 2 

A r S S n C I 

jj 
i i i i r r r n M I i 

62 60 58 ppm 

Fisure3.ll: FN MR spectrum ofAr^SnCh/Ar'^SnCh 

• Ar' 2SnCl 2 

2 

CF CF 

CI CI 

V / 
CF SnCl 

Sn 
V / 

hexanes 

CF CF 

Equation 3.6: Synthesis of Ar 'JSnCh 

Ar^SnCb was isolated as a beige solid and recrystallised from pentane and diethyl ether. 

http://Fisure3.ll
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One singlet with Sn satellites was observed in the 1 9F NMR spectrum at -56.7 ppm (4JsN-F 

10.0 Hz, 12F, o-CF3). The 1 1 9Sn NMR spectrum showed a singlet at -141.1 ppm. 

The X-ray structure of Ar' 2SnCl 2 has been determined by A. E. Goeta from previous 

work by Xue (Figure 3.12). 1 5 

1 171 F12) CII21 
CUD 

R1 

Sn1 FB 

FI10I -14) 

F 2) 

I (f,i FIS F i l l ! 

Figure 3.12: Molecular structure of Ar ^SnCh 

The Sn-C bond distance (2.176(2)) is slightly shorter than in ArSn(IV) and ArSn(II) 

derivative, which range from 2.179(6) to 2.316(9) A . 2 1 " 2 3 ' 1 0 ' 2 0 * 2 4 " 2 6 

• Ar" 2SnCl 2 

2 

CF 
CF 

CF SnCl 

rx v / 
Sn hexanes 

CI CI 

CF 

Equation 3.7: Synthesis of Ar '^SnCh 
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This compound was synthesized as an oil, which was purified by distillation under 

reduced pressure. The 1 9F NMR spectrum consisted of two singlets at -58.9 (6F, 0 - C F 3 ) 

and -63.8 (6F, p-CYi) ppm. The 1 1 9Sn spectrum showed a signal at -97.4 ppm. 

3.5 Discussion 

3.5.1 Solution-state NMR Spectroscopy 

1 9F NMR data for all the silicon derivatives are given in Table 3.5. 

Compound 5 for 0 - C F 3 (ppm) 8 for / 7 - C F 3 (ppm) 8 for Si-F (ppm) 

Ar" 2SiCl 2 -57.9, s(6F) -64.2, s (6F) 

Ar' 2 SiCl 2 -58.9, s (12F) 

Ar" 2SiF 2 -59.2, t, 5J F.F 12.4Hz 
(6F) 

-64.1, s(6F) -133.0, septet, 5JF-F 
12.3Hz (2F) 

Ar' 2SiF 2 -57.5, t, 5J F . F 12.3Hz 
(12F) 

-125.5 m, 5J F . F 12.5Hz 
(2F) 

Ar 2 SiF 2

7 -57.3, t, 5JF.F12.8Hz 
(12F) 

-64.2, s (6F) -124.5 m, 5JF.F12.8H 
(2F) 

Table 3.5: FNMR data for Silicon (IV) Compounds 

With either ArLi or the mixture Ar'Li/Ar"Li a Cl/F exchange is observed. However, this 

exchange appeared to be slower for fluoroxyl since chloride compounds such as 

Ar' 2 SiCl 2 and Ar" 2SiCl 2 could be identified in the 1 9F NMR spectrum. Interestingly, there 

was more of the less sterically hindered chloride, Ar" 2SiCl 2 present than Ar' 2 SiCl 2 , but 

more Ar' 2SiF 2 than Ar" 2SiF 2 (Figure 3.1). This possibly indicates that Ar' 2 SiCl 2 
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undergoes faster chlorine/fluorine exchange than Ar'^SiCh. The overall order of 

exchange rate could then be: Ar2SiCl2>Ar'SiCl2>Ar"2SiCl2. 

No halogen exchange has been observed for Ge or Sn derivatives. 

Table 3.6 lists the NMR data ( 1 9F and U 9Sn) for Ge and Sn derivatives: 

Compound 5 1 9F (ppm) for o-CF3 5 1 9F(ppm)for/?-CF3 5 1 1 9 Sn 

ArGeCl3 -52.9 s (6F) -63.5 s (3F) 

Ar 2GeCl 2 -54.4 s (12F) -64.1 s(6F) 

Ar" 2GeCl 2 -58.7 s (6F) -64.1 s(6F) 

Ar' 2GeCl 2 -53.8s(12F)a 

ArSnCl3 -55.9 s with sats, 4JS N-F 19.2 Hz (6F) -63.0 s (3F) -140.7 

Ar 2SnCl 2 -56.9 s with sats, 4 J S n . F 10.0 Hz (12F) -63.9 s (6F) -146.7 

Ar' 2SnCl 2 -56.7 s with sats, 4 J S n . F 10.0 Hz -141.1 

Ar" 2SnCl 2 -58.9s(6F) b -63.8 s (6F) -97.4 

Table 3.6:19F NMR and "9Sn NMR data for Germanium (TV) and Tin (TV) Compounds 

The 6 1 9F values are all in the same range for the three elements studied (Si, Ge, Sn) and 

correspond to the shifts found in all compounds containing ortho and para CF3 group. 

When these elements are reacted with the fluoroxyl mixture, the less sterically hindered 

compound Ar'^ECb is found to be predominant with E=Si or Ge. However, with Sn, the 

solution contains mainly the more sterically hindered disubstituted product Ar^SnC^. 

a See text 
b The Sn Satellites from this weak signal could not be observed 
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The larger size of the tin atom relative to silicon or germanium will reduce the steric 

hindrance between ligands in these i|/-tetrahedral structures, and probably explains the 

reversal in isomeric ratio between Ar^ECfe and Ar'^ECb. 

3.5.2 X-ray Crystallography 

AR2GECL2 and A^SnCk 1^ are isostructural. Ar'^GeCb and Ar '^SiCb 1 5 have also been 

found to be isostructural. A^GeCb and A^SnCk both have a very marked distortion 

from tetrahedral geometry as reflected in the C-E-C and C-E-Cl angles (Table 3.7). The 

largest angle around the E central atom is the C-E-C angle, being 120.07(12)° for C(l 1)-

Ge-C(21) and 120.3(2)° for C(l)-Sn-C(ll). In Ar 2GeCl 2, the C-Ge-Cl angles vary from 

96.65(9) to 118.17(9)°, a variation of more than 21°. Similarly, in Ar 2SnCl 2 the C-Sn-Cl 

angles vary between 96.14 and 118.94°. 

The structures of compounds containing fluoroxyl ligand have shown some disordered 

para-CFi groups. 

Close E-F contacts are found to two or more fluorine atoms in all synthesised 

compounds, and are listed in Table 3.8. They are all shorter than the expected sum of the 

van der Waals radii for E and F. Similar secondary interactions between group 14 

elements and fluorines in 0 - C F 3 groups have been described in the literature. In the case 

of A R 2 S I F 2 , A R 2 S I H F , and A r ' S I F 2 , four secondary Si—F interactions are observed 

between 2.715 and 3.056 A , 2.713 and 3.075 A , and 2.745 and 3.073 A (Table 3.8) 

respectively. The coordination environment approaches a distorted tetracapped 

tetrahedron. Such a structure does not apply for tin or germanium compounds, which 

exhibit only three E—F short contacts, although in all instances there are further fluorines 

at longer distances. The secondary bonding appears to play a crucial role in determining 

the overall geometry of the compounds, and can lead to considerable distortion of the 

bond angles in the ^-tetrahedron. 
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3.6 Experimental 

3.6.1 Introduction 

• NMR spectroscopy 
U 9 Sn NMR spectra were recorded on the Varian Inova 500 spectrometer at 186.37 MHz. 

Chemical shifts were measured relative to external Me4Sn, with the higher frequency 

direction taken as positive. 

• X-ray Crystallography 

Single crystal structure determinations were carried out from data collected at 120 K, 

using graphite monochromated Mo Ka radiation (k = 0.71073 A ) on a Bruker SMART-

CCD detector diffractometer equipped with a Cryostream N 2 flow cooling device.2 7 In 

each case, series of narrow (o-scans (0.3°) were performed at several (p-settings in such a 

way as to cover a sphere of data to a maximum resolution between 0.70 and 0.77 A. Cell 

parameters were determined and refined using the SMART software,2** and raw frame 

data were integrated using the SAINT program.2^ The structures were solved using direct 

methods and refined by full-matrix least squares on F 2 using SHELXTL. 3 0 

3.6.2 Synthesis of Ar 2 SiF 2 

C F CF 

r CF S C I 

si Hexanes 

78°C 

C F CF 

CF 
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A solution of ArLi (100 ml, 30 mmol) in diethyl ether was added dropwise to a solution 

of SiCU (2.5g, 1.72ml, 15 mmol) in hexanes at -78°C. The solution was allowed to warm 

to room temperature and stirred for 5 hours. A white precipitate formed. The solution was 

filtered and solvents were removed under vacuum, leaving a yellow oil. This oil was 

distilled under reduced pressure (0.01 Torr), giving a yellow oil, Bp 85°C. 

Elemental analysis for C,8H4F2oSi (628.28), Calc: C 34.41, H 0.64%; Found: C 32.9, H 

0.75%. 
1 9 F NMR (GDC13): 5-57.3 (t, 5JF.F12.8Hz), 12F, 0-CF3), -64.2 (s, 6F,/?-CF3), -124.5 (m, 
5JF.F12.8Hz, 2F). 

3.6.3 Synthesis of Ar" 2 SiCl 2 

An Ar'Li/Ar"Li (50ml, 20 mmol) solution in diethyl ether was added dropwise to a 

solution of SiCU (l-7g, 10 mmol) in pentane at -78°C. The solution was allowed to warm 

to room temperature and stirred for 3 hours. A precipitate of LiCl formed. This was 

filtered off and the solvents and excess SiCU were removed under vacuum, leaving a 

yellow sticky oil which was distilled under reduced pressure (0.01 Torr). A fraction was 

collected at 120°C. Ar" 2SiCl 2 was purified by recrystallisation from pentane. Yield: 1.8g 

(32.4%). 

Elemental analysis for Ci 6H 6Cl 2Fi2Si (525.20), Calc C 36.6, H 1.15%; Found C 36.8, H 

1.24% 

CF CF 

ci 

-< 
CF S C CI 

\ i 
Si Hexanes 

78°C 

CF 

19 'F NMR (CDCI3): 5-57.9 (s, 6F, 0-CF3), -64.2 (s, 6F5jp-CF3) ppm. 
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3.6.4 Synthesis of Ar' 2 SiF 2 

CF CF 

C 
CF S C I a 3 

Si Hexanes 
78°C 

CF CF 

Cl/F exchange CF 

Si 

CF 

CF, 

An Ar'Li/Ar"Li (50ml, 40 mmol) solution in diethyl ether was added dropwise to a 

solution of SiCU (3.39g, 2.3 ml, 20 mmol) in hexanes at -78°C. The solution was allowed 

to warm to room temperature and stirred for 3 hours. A precipitate of LiCl formed. This 

was filtered off and the solvents and excess SiCU were removed under vacuum, leaving a 

yellow oil (Ar" 2SiCl 2) and a white solid (Ar' 2SiF 2). This solid was washed three times 

with hexanes and purified by sublimation under vacuum, giving white crystals. Yield: 

2.5g (12.7%). 

Elemental analysis for Ci 6H 6Fi 4Si (492.29), Calc C 39.04, H 1.23%; Found C 38.3, H 

1.24% 
1 9 F NMR (CDC1 3 ) : 8-57.5 (t, 5JF-F 12.3HZ, 12F, 0-CF3), -125.5 (m, 5 J F . F 12.5 Hz, 2F, Si-

F) 

3.6.5 Synthesis of ArGeCb 

CF CF -f \ G e C 

Hexanes 

78°C 

CF CF 

CI 

Ge CI 
/ CI 

An ArLi (50 ml, 30 mmol) solution in diethyl ether was added dropwise to a GeCU 

solution (3.2g, 1.71 ml, 15 mmol) in hexanes at -78°C. The solution was allowed to warm 

to room temperature and stirred for 4 hours. A white precipitate of LiCl appeared which 
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was filtered off. The solvents and excess GeCU were removed under vacuum, leaving a 

yellow oil and a white solid. The yellow oil was filtered and then distilled under reduced 

pressure (0.01 Torr), giving a colourless oil of ArGeCb, bp 85°C. After one month, fine 

crystals formed. Yield: 2.6g (19%) 

Elemental analysis for C^CbFgGe (460.07), Calc C 23.50, H 0.44%, Found C 24.1, H 

1.16% 

1 9 F NMR (CDC13): 6-52.9 (s, 6F, 0-CF3), -63.5 (s, 3F,p-C¥3) ppm. 

3.6.6 Synthesis of A^GeCh 

An ArLi (50 ml, 30 mmol) solution in diethyl ether was added dropwise to a GeCU 

solution (3.2g, 1.71 ml, 15 mmol) in hexanes at -78°C. The solution was allowed to warm 

to room temperature and stirred for 4 hours. A white precipitate of LiCl appeared which 

was filtered off. The solvents and excess GeCU were removed under vacuum, leaving a 

yellow oil and a white solid. The white solid was filtered off and washed 3 times with 

hexanes. Yield: 3.17g (30%). Crystals were grown by recrystallisation from 

dichloromethane. 

Elemental analysis for CigFLtCkFigGe (705.72), Calc C 30.64, H 0.57%, Found C 30.59, 

H 0.58% 
1 9 F NMR (CDCI3): 5-54.4 (s, 12F, 0-CF3), -64.1 (s, 6F, j?-CF3) ppm. 

CF CF 

CI 

-< f \ 
CF CI G e C l 

ft 

Ge 
Hexanes 

78°C 

CF CF 

CF 
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3.6.7 Synthesis of Ar" 2 GeCl 2 

•O 
CF 

CF 

•Li 
Hexanes 

-78°C 

G e C l , 

CF 

C 
CF CI 

ft 

Ge 

CF 

A solution of Ar 'Li/Ar"Li (60 ml, 40 mmol) in diethyl ether was added dropwise to a 

solution of GeCU (4.29g, 2.6 ml, 20 mmol) in diethyl ether at -78°C. The solution was 

allowed to warm to room temperature and stirred for 2 hours. A white precipitate of LiCl 

formed. The solution was filtered and the solvents were removed under vacuum, leaving 

a black oil. This oil was distilled under reduced pressure (0.01 Torr) and a fraction was 

collected at 80-90°C. Yield: 5.8g (51%). After one week, small crystals formed. 

Elemental analysis for CieHeCbF^Ge (569.72), Calc: C 33.7, H 1.06, CI 12.45%; Found: 

C 32.4%, H 1.53, CI 12.8%. 
1 9 F NMR (CDC13): 5 -58.7 (s, 6F, o-CF3), -64.1 (s, 6F,/?-CF3) ppm. 

3.6.8 Synthesis of ArSnCl3/Ar2SnCI2 

An ArLi (50 ml, 30 mmol) solution in diethyl ether was added slowly to a solution of 

SnCU (3.90g, 2.75ml, 15 mmol) in hexanes at -78°C. The solution was then allowed to 

warm to room temperature and stirred for 5 hours. A white precipitate of LiCl appeared. 

The solution was filtered and the solvents were removed under vacuum, leaving a brown 

CF CF CF 

a c / CF CI SnCl 

ft 

Sn a Sn 
Hexanes 

C 

CF CF CF 

CF, 
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oil and a solid. The oil was filtered and distilled under reduced pressure (0.01 Torr), 

giving a yellow oil of ArSnCl3 (Bp 85°C) in a small quantity. The solid was washed 3 

times with hexanes and dried under vacuum (A^SnCb). Crystals were obtained by 

recrystallisation from diethyl ether. Yield 3.8g (51%). 

Elemental analysis for dgFLtWigSn (751.82), Calc: C 28.76, H 0.54%; Found: C 28.60, 

H 0.78% 
1 9 F NMR (CDC13): ArSnCh: 8-55.9 (s with Sn satellites, 4JSN-F 19.2Hz, 6F, o-CF3), -63.0 

(s, 3F, p-CF3) ppm; Ar?SnCb: 8 -56.9 (s with Sn satellites, 4 J S n . F 10.0Hz, 12F, o-CF3), 

-63.9 (s, 6F, p-CF3) ppm; 1 1 9 Sn NMR (CDC13): ArSnCh: 8-140.7 ppm. Ar?SnCb: 

8 -146.7 ppm. 

3.6.9 Synthesis of Ar^SnCh/Ar'^SnCb 

CF 

CF CF 

CI CI 
CF Cr C a SnC 

Sn Sn 
Hexanes CF 

CF 

CF 

CF 

An Ar'Li/Ar"Li (250 ml, 94 mmol) solution in diethyl ether was added dropwise to a 

solution of SnCU (12.24g, 8.63 ml, 47 mmol) at room temperature. The solution was 

stirred for 4 hours. A white precipitate of LiCl appeared. The brown solution was filtered 

and solvents and excess SnCU were removed under vacuum, leaving a brown sticky oil 

and a brown solid. The oil was filtered (Ar'^SnCfe) and the solid washed with pentane 

and dichloromethane and dried in vacuo, giving a beige solid (Ar'sSnCh.). Crystals were 

grown by recrystallisation from pentane and diethyl ether. 
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Yield (Ar' 2SnCl 2) 3.48g (57%). 

Elemental analysis for CieHeChFuSn (615.82), Calc: C 31.21, H 0.98%; Found C 29.7, 

H 1.26%. 
1 9 F NMR (CDC13): Ar' 2SnCl 2: 8-56.7 (s with Sn satellites, 4 J S n - F 10.0Hz, 12F, 0-CF3) 

ppm; Ar"?SnCl?: 5-58.9 (s, 6F, 0-CF3), -63.8 (s, 6F, /?-CF3) ppm; 1 1 9 Sn NMR (CDCI3): 

Ar^SnCb: 5-141.1 ppm, Ar"2SnCb: 5-97.4 ppm. 
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4.1 Introduction 

Many researches have been devoted to low coordinate species of group 15 in the last 30 

years. Since the preparation of the first stable diphosphene Ar*P=PAr* (Ar*: 2,4,6-tri-

'butylphenyl),1 and phosphaalkyne, P^C'Bu2 in 1981, the field of low coordinate 

organophosphorous chemistry has rapidly expanded. Low coordination P-chemistry is now 

a major area of study that has been the subject of numerous reviews3"8 and several 

books.9>10 Although low coordinate arsenic compounds are generally less stable than 

their phosphorus analogues, their chemistry has been well-developed,11 and both arsenic 

and phosphorus are now widely used in organo-group 15 chemistry and as ligands in 

organometallic synthesis. Until recently, the organic chemistry of antimony and bismuth 

had been little investigated, mainly because of the decrease of stability of these 

compounds relative to those of P or As. However, some advances have been made in this 

field over the last five years.12 

Group 15 elements (E) have three common oxidation states (I, I I I , V) and are known to 

have coordination numbers from one (RC=E) to six ([ECk]"). Low coordinate species are 

considered to be those with coordination number three or lower. 

• Three coordinate species 

There is a vast amount of E(III) chemistry (particularly of phosphorus and arsenic 

compounds), much of which is based around the derivatisation of EX3 (X= CI, Br, I) and 

the formation of E-F and E-H derivatives. A very common reaction is that between an 

organolithium species and EX3 to form the lithium halide and the desired product REX2. 

RLi E X 3 » REX 2 + LiX 
ether 

Phosphorus and arsenic can also form R2EX and R3E, depending on the bulk of the R 

group. For example, PPI13 can be synthesised but A^P has never been prepared. The only 



Chapter A-Group 15 Derivatives 112 

example containing three Ar ligands is AraB, 1 3 which has a different geometry but which 

has not been structurally characterised. 

The hydride derivatives R E H 2 or R 2 E H can be prepared by reduction of the chloride 

compounds with Bu3SnH or U A I H 4 . Fluorination of R E C I 2 or R 2 E C I leads to the 

formation of fluoro-derivatives. 

R E C 1 2 + 2 Bu3SnH „ REH 2 + 2 Bu3SnCl 

R E C 1 2 + l / 2 U A I H 4 ^ REH 2 + l / 2 L iAlCl 4 

R E C 1 2 + SbF3 ^ REF2 

4.2 Phosphorus Derivatives 

A number of phosphorus derivatives containing the Ar, Ar' or Ar" ligand has been 

reported in the literature: ArPCl 2 , 1 4 > 1 5 Ar 2 PCl , 1 4 ArPCIF, 1 4 ArPF 2 , 1 4 A r P H 2 , 1 4 ' 1 5 

Ar 2 PH, 1 6 Ar 'PCl 2 , 1 7 A r ' P H 2 , 1 8 A r ' A r ' T C l , 1 9 Ar 'Ar"PF 2 0 and Ar" 2 PF. 2 0 A general 

method has been used in these syntheses, with PCI3 or PBr3 reacting directly with ArLi or 

Ar'Li/Ar"Li at low temperature with continuous stirring for a few hours. 

4.2.1 Reaction with 2,4,6-tris(trifluoromethyl)phenyl lithium (ArLi) 

4.2.1.1 ArPCl2 

CF CF 

-! P C 
PCI Li 

E t , 0 , -78°C 

CF CF 

Equation 4.1: Synthesis of ArPCh 
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ArPCb was purified by distillation under reduced pressure (Bp 60°C), yielding a 

colourless liquid. The 3 1P NMR spectrum gave a septet at 145.6 ppm (4Jp.F 61.3Hz) 

(Figure 4.1). The 1 9F NMR showed a doublet and a singlet at -53.3 ( 4J P. F 61.3 Hz, 0 -CF3) 

and at -64.2 ppm (J3-CF3) respectively. 

These values agreed with those found by Goodwin^ and Rodent 1 

1 1 
p - i - i 

1 1 1 1 

1 4 4 1 4 3 1 4 2 1 4 9 1 4 8 1 4 7 1 4 6 1 4 5 ppm 

Fieure 4.1: P NMR spectrum ofArPCh 

4.2.1.2 Ar2PCl 

CF CF 

CI 

I 
P. 

PC 
CF 2 F . C E t , 0 , -78°C 

CF CF 

CF 

Equation 4.2: Synthesis ofAr2PCl 
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This compound was obtained by reaction of two equivalents of ArLi with PCI3. Ar2PCl 

was distilled under reduced pressure (Bp 100°C) to give a clear yellow oil. 

• NMR spectrscopy 

The 3 1P NMR spectrum exhibited a multiplet (13 lines) at 74.9 ppm ( V f 41.9Hz, 12F). 

The 1 9F NMR spectrum showed a doublet at -54.4 ( 4J P. F 41.2Hz, 12F, 0 -CF3) and a 

singlet at -64.1 (6Y,p-CYi) ppm. 

• X-ray crystallography 

Crystals were grown by recrystallisation from dichloromethane and submitted for X-ray 

diffraction. The structure was ascertained by A.L. Thompson at 120K and is shown in 

Figure 4.2: 

R12) 
F(29) 

n i l F13 

FC28I 
PI1) 

FIB) 

F I 7 I FI21I 
FI18 

Figure 4.2: Molecular Structure of A^PCl 

Ar2PCl crystallises in the monoclinic P2(l)/n space group with Z=4. Selected bond 

lengths (A) and angles (°) are listed in Table 4.1 below: 
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Bond Distances (A) Angles (°) 

P(1)-C1(1) 2.0628(10) 

P(l)-C(l l ) 1.882(3) 

P(l)-C(21) 1.885(5) 

C(ll)-P(l)-C(21) 109.87(12) 

C(11)-P(1)-C1(1) 103.68(9) 

C(21)-P(1)-C1(1) 92.95(9) 

Table 4.1: Selected Bond lensths (A) and Angles (°) for Ar2PCl 

P-C bond distances are slightly longer than those found in A r ' A r ' T C L ^ ^ l the only 

Ar2PCl compound structurally characterised so far [P-C(l) 1.854(2), P-C(ll) 1.857(2) 

A]. This is due to the steric hindrance imposed by the CF3 groups in the ortho position. 

The P-Cl bond length is 2.0628(10) A and is the similar to the P-Cl bond distance in 

Ar'Ar'TCl (2.061(1) A). However, these P-Cl bond distances are relatively short in 

comparison with previously reported R2PCI (where at least one of the R groups is alkyl) 

structures (CSD). This distance varies from 2.06 to 2.35 A. The P-Cl distance is sensitive 

to electronic effects from other groups bonded to phosphorus, and its shortening here can 

be attributed to the electron-withdrawing properties of the CF3 groups on the aromatic 

rings. 

An interesting feature of the crystal structure is the asymmetry in the C-P-Cl bond angles, 

which differ by more than 10° (Table 4.1). Similar observations have been reported 

without comment in the literature for Ar 2 AsCl , 2 2 Ar 2 SbCl 2 2 and A r 2 B i C l 2 3 (Table 4.2). 

This asymmetry might arise as a consequence of secondary interactions between group 

15 elements and fluorines of the ortho-CF^ groups. 

In Ar 2PCl, five short contacts are observed between phosphorus and the fluorine atoms of 

the 0-CF3: P—F(12) 2.843, P—F(13) 3.796, P—F(23) 3.111, P—F(28) 3.001, P—F(29) 

2.954A 
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4.2.1.3 ArPBr2 

ArLi was added to a PBr3 solution in diethyl ether at -78°C. ArPBr2 was obtained as an 

orange oil which, after distillation under reduced pressure, gave colourless crystals. 

• NMR spectroscopy 

The 3 1PNMR spectrum consisted of a septet at 130 ppm ( 4J P. F 62.3 Hz). The 1 9F NMR 

spectrum showed a doublet at -53.1 (4JP-F 62.4 Hz, 6F, 0 -CF3) and a singlet at -64.1 (3F, 

P-CF3) ppm. 

• X-ray crystallography 

Crystals were obtained after distillation and submitted for X-ray diffraction without any 

further purification. The structure was determined by A.S. Batsanov at 11 OK and is 

shown in Figure 4.3: 

CF CF 
Hi 

/ 
P. 

!>Bl 

d i e t h y l e ther 

78°C Br 

CF CF 

Equation 4.3: Synthesis of ArPBr2 

X 
F'7i 

/ 
•( iii 

PHI 

FIV 

••V ' (3) 

Figure 4.3: Molecular structure of ArPBr2 
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ArPBr2 crystallises in the triclinic PI space group with Z=4. It crystallises with two 

independent molecules in the asymmetric unit. Selected bond distances and angles are 

listed in Table 4.3. 

P(l)-Br(l) 2.2228(8) P(2)-Br(3) 2.2166(8) 

Bond distances 
(A) 

P(l)-Br(2) 2.2153(8) P(2)-Br(4) 2.2194(8) 

P(l)-C(l) 1.879(3) P(2)-C(ll) 1.887(3) 

C(l)-P(l)-Br(2) 102.10(8) C(ll)-P(2)-Br(4) 102.41(8) 

Angles (°) C(l)-P(l)-Br(l) 102.52(9) C(ll)-P(2)-Br(3) 103.22(8) 

Br(2)-P(l)-Br(l) 105.35(3) Br(3)-P(2)-Br(4) 104.90(3) 

Table 4.3: Selected Bond distances (A) and Angles (°) for ArPBr2 

The P-C bond length is similar to those found in Ar 2PCl and Ar 'Ar"PCl. 1 9 These values 

are also in the same range as those found in other R2PBr structures24 (where P-

C=1.885(6) and 1.891(6)). The Br-P-Br angles (Br(2)-P(l)-Br(l) 105.35(3); Br(3)-P(2)-

Br(4) 104.90(3)) are slightly larger than the value reported in the literature for 

Ph3P=C(Me)PBr2

 2 5 Ph3P=C(Tms)PBr2

 2 5 (Table 4.4) and C 5H(CHMe 2) 4PBr 2

2 6 which 

range from 93.5(1)° to 96.06(7)°. The sum of the bond angles in ArPBr2 (ca. 310°) is also 

larger when compared with the first two compounds mentioned above, where it varies 

from 295.8 to 305.7°, reflecting the greater steric demand of the ortho-CF^ groups. 

The P-Br bond lengths 2.2228(8), 2.2153(8), 2.2166(8), 2.2194(8) are slightly shorter 

than usually found in organophosphorus bromides (for example values between 2.268(2) 

and 2.489(3) A), 2 4 " 3 0 although shorter distances have been observed in PBr3 complexes 
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with Cr (CO) 5

3 1 ' 3 2 and W(CO) 5

3 2 . This parallels the observation of a shorter P-Cl bond 

in Ar2PCl and A r ' A r ' T C l . 1 9 

Short P—F secondary interactions are found in this compound in the range 2.865-3.208 

A for P(l) and 2.877-3.217 A for P(2). The distance are shorter in all instances than the 

sum of the empirical van der Waals radii of P (1.91 A) and F (1.40 A),33as well as the 

theoretical ones (estimated as 2.05 and 1.42 A respectively3^). 

The para-CFi groups are found to be disordered, as often observed in this kind of 

compound. 
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4,2.1.4 Ar2PBr 

Attempts have been made to form Ar2PBr from the reaction of two equivalents of ArLi 

and PBr3. However, the formation of this product has never been observed in the solution 

state NMR spectroscopy. This is probably due to the steric hindrance of the Ar ligand and 

the bromine atom compared with the chlorine. 

4.2.2 Reaction with 2,6-bis(trifluoromethyl)phenyl lithium (Ar'Li) / 2,4-
bis(trifluoromethyl)phenyl lithium (Ar"Li) 

When the Ar'Li/Ar"Li mixture reacts with PX3, it can give rise to a series of five 

different mono- or disubstituted products. 

C F 

Li 

PX C F 

78°C, C F 

L 
V J 

C F 

0-PX, 

C F CF 

PX 
V t 

A r * P X , 

A r " P X j 

C F 

4 
C F 

-78°C, E t 2 0 

nBuLi 

-78°C, E t 2 0 

CF 

/ CF 
V // A r ' 2 P X 

C F 

FC C F V / A r " 2 P X 

C F 

CF 

CF 

Ar'Ar ' -PX 

Scheme 4.1: Different products of the reaction between Ar'Li/Ar"Li and PCI3 



Chapter 4-Group 15 Derivatives 122 

4.2.2.1 Ar'PCl 2 

CF CF 

c / 
R 

PCI 3 

L 
E U O , -78°C 

CI 

CF CF 

Equation 4.4: Synthesis of Ar 'PCh 

This compound was synthesised as a yellow oil. 

The 3 1P N M R of this compound consisted of a septet at 8148.4 ( 4J P .F=61.3 HZ). The 1 9F 

N M R spectrum showed a doublet at 8-53.2 (4JP.F=61.3 HZ), corresponding to the two 

ortho-CFi groups. 

4.2.2.2 Ar"PCl 2 

CF CF 

CI 

/ 
p. 

PCI 
L 

V / E t , 0 , -78°C CI 

Equation 4.5: Synthesis of Ar" PCI2 

This product could not be separated from the first substitute Ar'PCl 2 because of their very 

close boiling points, caused by their identical molecular mass. 

The 3 1P N M R exhibited a quartet at 8151.6ppm ^JP.F 83.8 Hz). This coupling constant is 

different than the one for Ar'PCl 2 because of the position of the CF3 groups. In fact, in 

Ar"PCl2 > there is only one CF3 in the ort/io-position whereas there are two in Ar'PCl 2. 

Comparing the coupling constants between both compounds (JAT'PCI2 < JAr"Pci 2), it is 

possible to say that the 0-CF3 groups in Ar"PCl 2 interacts more with the phosphorus 
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atom. This could imply that the distance between the phosphorus atoms and the fluorine 

atom is shorter in Ar'TCfe than in Ar'PCb. The 1 9F NMR spectrum showed two signals, 

a doublet at -56 .5 (4JP-F 83.8 Hz, 0-CF3) and a singlet at - 6 3 . 6 (p-CF^) ppm. 

A r ' P C l , 

A r ' T C l , 

jJUU 
1 1 1 1 

160 
1 I 1 1 1 1 I 
145 140 

\ I I I 1 I I I 

170 165 155 150 135 ppm 

Fieure 4.4: JJP NMR of the mixture ofAr'PCl2/Ar"PCl2 

4.2.2.3 Ar"2PCl 

CF CF 

CI / 
P. 

P C 

Li CF 

E t , 0 , -78°C 

f \ 

Equation 4.6: Synthesis ofAr'^PCl 

• N M R spectroscopy 

The 3 , P N M R spectrum shows a septet at 68.1 ppm (4JP.F 65.6HZ), implying two CF3 

groups in ortho positions. 
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The 1 9F N M R consists of a doublet at -57.3 ppm (6F, 4JP-F 65.6 Hz) and one singlet at 

8 -63.7 ppm (6F), corresponding to the two para-CFi groups. 

The 1 9F N M R spectrum of a solution of Ar'^PCl in toluene-dg was recorded at -80°C and 

+95°C for comparison with the spectrum at ambient temperature described above. 

Values of 5 56.9 ppm (4JP.F63.9Hz) were observed at -80°C and 8 57.4 ppm ( 4J P. F 66.6 

Hz) at +95°C. Only very small changes in either chemical shifts or coupling constants for 

the doublet were noticed, showing that the two Ar" groups remain equivalent over this 

temperature range 

There is no steric hindrance between them. Ar" groups rotate and, due to the perfect 

symmetry of the molecule, they are always in an equivalent position. This explains why 

no changes are observed in the spectra. 

The 1 3 C{ 'H} N M R spectrum was recorded for a ds-toluene solution at room temperature. 

Table 4.5 shows the assignments of each carbon. This spectrum only exhibits the 

existence of one type of ipso carbon, confirming that the molecule is perfectly 

symmetrical. 

H 
CF 

Fieure 4.5: Lettering scheme for carbon atoms in Ar "2PCI 
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Carbon 8(ppm) J (Hz) 

A 140.3 d,Vc 56.8 

B 133.1 q, 2JC-F 33.9 

C 123.7 s(broad) 

D 133.1 q, 2JC-F 33.9 

E 129.1 s 

F 123.6 d , 2 J P . C 1.9 

G 123.6 q.'Jc-F 275.8 

H 123.4 qd, 'JC-F 273 .05 , 3 J P . c l -74 

Table 4.5: Signal assignments for C spectrum of Ar "2PCI 

• X-ray crystallography 

Crystals were obtained by recrystallisation from hexanes. The structure was determined 

at 100 K by A.E. Goeta and is shown in Figure 4.6: 
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F12 

RIO) 

FI11) 

P(1) F I 6 i 

! !5! 

F4! 

CM) 

Figure 4.6: Molecular structure ofAr'^PCl 

Ar'^PCl crystallises in the monoclinic I2/a space group with Z=8. Selected bond lengths 

and angles are listed Table 4.6. 

Bond Distances (A) Angles (°) 

P(1)-C1(1) 2.0619(9) 

P(l)-C(l) 1.854(2) 

P(l)-C(ll) 1.885(2) 

C(l)-P(l)-C(ll) 100.37(10) 

C(1)-P(1)-C1(1) 97.38(7) 

C(11)-P(1)-C1(1) 100.95(7) 

Table 4.6: Selected Bond distances (A) and Angles (°) for Ar "2PCI 

P-C and P-Cl bond distances are similar to those found in A^PCl, although the P-C 

bonds are slightly longer in A^PCl, due to the steric demand of the four CF3 groups in 

ortho positions in comparison to only two in Ar'^PCl. The same feature applies to the C-

P-C angles, being 100.37(10)° in Ar"2PCl and 109.87(12)° in Ar2PCl. Three P—F short 

contacts are observed: P—F(10) 2.874A, P—F(4) 3.048A, P—F(5) 3.124A. The average 
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atomic distance is 3.015 A, and is shorter than the sum of the van der Waals radii (3.31 

A)33 

4.2.2.4 Ar'Ar'TCl 

CF 

CI 

f w CF 

X f \ CF 

CF 

Figure 4.7: The Ar'Ar'TCl molecule 

This compound was synthesised and crystallised by Roden.^l The 3 1P NMR spectrum 

showed a complex multiplet at 867.3 ppm, caused by the presence of three ortho-CF^ 

groups. (Figure 4.8) 

The 1 9F spectrum for a toluene solution was expected to be composed of two doublets, 

(one having double intensity) (from the Ar' group) and one singlet. At ambient 

temperature, however, a doublet at 8 -59.3 ppm (4Jp.F 59.1 Hz) and two singlets (a broad 

double intensity line at -55.4 ppm and a sharp peak at -64.1 ppm) were observed (Figure 

4.9) 

I I I I I | I I I I | I I I I | l I I I | I I I I | i I I I | I I I I | I I I I | I I I I | I ! I I | I I I I | I I I I 

71.5 70.0 68.5 ppm 

Figure 4.8: ilP NMR spectrum ofAr 'Ar"PCl 
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p-CF3 from Ar" 

p-CF3 from Ar" 

o-CFi from Ar' 

1 
I I I I I I i i I I I I I ' I I I I I I i I I I I 1 I I I I M I i I I I I I I I I I i I I I I I I I I I I I I I I I I 

-54 -56 -58 -60 -61 p p m 

Fisure 4.9: FNMR spectrum ofAr'Ar'TCl 

The 1 3 C{ 'H} NMR spectrum was also recorded for a toluene/CDCb solution at ambient 

temperature. Probable assignments (Figure 4.10) are shown is Table 4.7, though some of 

these are necessarily tentative. The carbons to which the CF3 groups were attached could 

not be assigned with confidence, since these signals were of low intensity and were 

overlapped with stronger signals. The presence of two distinct ipso carbon signals 

confirms the asymmetric nature of the Ar'Ar"PCl, as does the observation of three 

different CF3 signals, one of double intensity. 
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K 
CF 

N 
CI 

v W CF 
B rx. N 

CF, E 

CF 3 

M 

Figure 4.10: Lettering Scheme for Carbon Atoms in Ar 'Ar "PCI 

Carbon 8 (ppm) J (Hz) 
A 137.6 d,'Jp.c 67.9 

B 136.7 d , 1 ^ 84.0 

C 132 .11 S s 

D 131.1 s (broad, double intensity) 

E 134.2 d, 2JP.c 8.7 

F 128.0 d, JP-C 3.4 

G 123.7 m, 3 J P . C 5.0 
K 123.18 3 q, 'JC-F 275.8 (double intensity) 

L 123.24 3 qd, 'JC-F 2 7 5 . 5 , 3 J P . C 3.4 

M 123.1 q, 1 JO.F 272.6 

N 132.06 3 m 

0 132.3 m 

P 131.8 m 

Table 4.7: 5 C Assignments 

a Although the absolute accuracy of the chemical shifts is only quoted to one decimal place, a further digit 
is given when two signals are very close but resolved 
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• X-ray Crystallography 
The structure was determined by A.S. Batsanov at 150K and is shown in Figure 
4.11.19,21 j h j s compound was the first structurally characterised diarylchlorophosphane. 

RSI F(7) 

R2 

81 
POI 

F(3 
R1) 

111! 

•-(6) 

Figure 4.11: Molecular structure of Ar 'Ar "PCI21 

The P-C and P-Cl bonds distances (P-Cl 2.061(1), P-C(l) 1.875(1), P-C(9) 1.852(1) A) 
are similar to those found in Ar 2PCl and Ar'^PCl. The P-C(l) bond is longer than that for 
P-C(9), reflecting the steric demand of the two CF3 groups in ortho positions of the Ar' 
moiety. 
The three covalent bonds around the phosphorus have a pyramidal configuration, 
complemented by two short intramolecular interactions: P—F(l) 2.890(1) A and P—F(8) 
2.897(1) A. Overall, four short P—F distances are found in the range 2.890-3.25A. These 
contacts are shorter than the sum of the van der Waals radii of 3.31 A.33 
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4.2.2.5 Ar'PBr 2 

CF CF 

Br 
PBr 

/ 
R J Li 

V / E t , 0 , -78°C 
Br 

CF CF 

Equation 4.7: Synthesis of Ar 'PBr2 

A solution of Ar'Li/Ar"Li was added to a PBr3 solution in diethyl ether at -78°C. The 

resulting oil was distilled under reduced pressure (Bp 60°C) to give a yellow oil. 

The 3 1P NMR spectrum showed a septet at 5134.1 ( 4J P. F 62.8Hz) ppm. The 1 9F NMR 

spectrum consisted of a doublet 5 -52.9 (4JP-F 62.8Hz, 6F, 0-CF3) ppm. 

4.2.2.6 Ar"PBr2 

CF CF 

Br 

/ 
R 

PBr 

Li \ t E t , 0 , -78°C Br 

Equation 4.8: Synthesis of Ar"PBr2 

This product could not be separated from the first substitute Ar'PBr2 because of their 

very close boiling point, caused by their identical molecular mass. 

The 3 1P NMR consisted of a quartet at 141.0 ( 4J P. F 85.5Hz). The 1 9F NMR showed a 

doublet at -56.9 ( 4J P. F 85.8Hz, 3F, 0-CF3) and a singlet at -62.8 (3F,/?-CF3) ppm. 
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4.2.2.7 Ar"2PBr 

CF C F 

Br 

/ 
R 

PBr 

CF 

V / E t j O , -78°C 

t \ 

Equation 4.9: Synthesis of Ar "2PBr 

Two equivalents of the Ar'Li/Ar"Li mixture were added to a solution of PBr3 at -78°C to 

give an brown oil, which was purified by distillation under reduced pressure (Bp 120°C). 

This afforded a yellow oil, which crystallised on standing. 

• NMR spectroscopy 

The 3 1P NMR spectrum showed a doublet at 57.4 ( 4J P. F 65.8 Hz) ppm and the 1 9F NMR 

spectrum consisted of a doublet at -57.7 ^JP-F 65.8 Hz, 0-CF3) and a singlet at -63.7 (p-

CF3) ppm. 

• X-ray crystallography 

Crystals were grown by recrystallisation from hexanes. The structure was determined by 

A.S. Batsanov at 103 K and is shown in Figure 4.12: 
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R10) 

R i l l 

i ifi 
R 4 ) 

B r 

Figure 4.12: Molecular structure o/Ar'^PBr 

Ar'^PBr crystallises in the monoclinic I2/a space group with Z=8. 

Selected bond distances and angles are listed in Table 4.8: 

Bond Distances (A) Angles (°) 

P(l)-Br(l) 2.2340(5) 

P(l)-C(l) 1.8572(18) 

P(l)-C(ll) 1.8591(17) 

C(l)-P(l)-C(ll) 100.51(8) 

C(l)-P(l)-Br(l) 96.99(6) 

C(ll)-P(l)-Br(l) 101.31(6) 

Table 4.8: Selected Bond Distances (A) andAngles(°) forAr"2PBr 

Bond distances and angles are very similar to those found in the analogous compound 

Ar'^PCl. The P-Br bond distance is in the same range as the P-Br bond distances found in 

ArPBr2. Ar"2PCl and Ar"2PBr are isostructural. 

As in ArPBr2 and Ar" 2PCl, short P—F contacts are found between the phosphorus and 

three of the fluorine atoms of the ortho-CP^ groups: P—F(4) 3.067 A, P—F(5) 3.122 A, 
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P—F(10) 2.887 A, with an interatomic average distance of ca. 3.025 A. This distance is 

shorter than the sum of the van der Waals radii (3 .31 A). 3 3 

4.2.2.8 Ar'Ar"PBr 

CF CF CF 

t 
Br 

/ 
P. 

PBr 
CF V / E t , 0 , -78°C 

Cf CF 

C F , 

Equation 4.10: Synthesis ofAr'Ar"PBr 

This compound was present in solution as a disubstituted product of the reaction between 

the Ar'Li/Ar"Li mixture and PBr3. Distillation under reduced pressure of the solution 

gave at 120°C an oil, which NMR revealed to be a mixture of Ar'^PBr and Ar'Ar'TBr. 

Although Ar'^PBr could be isolated, Ar'Ar"PBr could not. 

The 3 IP NMR exhibited a multiplet ( 1 3 lines) at 58.9 ppm. The 1 9 F NMR showed three 

different signals: a broad singlet at -55.2 (6F, 0-CF3 in Ar') , a doublet at -58.8 ( 4JP-F 56.6 

Hz, 3F, 0-CF3 in Ar") and a singlet at -63.5 (3F,/>-CF3) ppm. 

4.2.2.9 Ar" 2PH 

CF CF 

H CI 

/ 
R 

L AH 
CF CF 

V / diethyl ether 

f \ f \ 
CF CF 

Equation 4.11: Synthesis of Ar "2PH 
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Ar'^PH was obtained by reduction of Ar'^PCl with LiAlHj , yielding a white solid. The 
3 1P {*H} spectrum consisted of a septet at -48.7 (4JP-F 36.7 Hz) ppm. The 
3 1P, 'H coupled spectrum showed a doublet of septets at -49.0 ( 4J P. F 36.8 Hz, V H 270.4 

Hz) ppm. 

The 1 9F NMR spectrum exhibited a doublet at -60.0 Ch-v 37.1 Hz, 6F, o-CF3) and a 

singlet at -63.8 (s, 6F,p-CFi) ppm. 

Four signals were found in the'H NMR spectrum. These are listed in Table 4.9 below. 

CF Ha 

H 
/ 

R CF 

He 

C F 3 

Figure 4.13: Lettering Scheme for Ar "2PH 

Hydrogen 8 'H (ppm) J (Hz) 

Ha 7.9 s 

Hb 7.7 d, 3JH-H 7.8 

He 7.4 d, 3JH.H7.9 

H 6.2 doublet,1 J P.H 274.5 

Table 4.9: 81 H assignments for Ar" 2PH 



Chapter 4-Group 15 Derivatives 136 

4.2.2.10 Ar'Ar"PH 

CF CF 

c H 

/ 
R 

/ 
R 

L i A l H 
CF CF V / V // E t , 0 

f \ CF CF 

C F 3 C F , 

Equation 4.12: Synthesis of Ar 'Ar "PH 

Ar'Ar"PH was prepared by reduction of the chloride Ar'Ar"PCl with LiAlFLj. The 

product was isolated as a white solid. 

The proton-decoupled 3 1P N M R spectrum consisted of a multiplet at -67.2 ppm. The 

proton-coupled 3 1P N M R spectrum showed a doublet of multiplets at -67.6 ('JP-H 240.7 

Hz) ppm. The 'JP.H coupling constant is in the same range as the one found in Ar'PH2 

('JP-H 216.7 Hz) 21 

The 1 9F N M R spectrum exhibited a broad singlet at -57.7 ppm (6F, 0-CF3 in Ar') , a 

doublet at -61.2 ( 4J P. F 43.7 Hz, 3F, 0-CF3 in Ar") and a singlet at -63.4 (3F,/?-CF3) ppm. 

The *H N M R spectrum confirmed the presence of a P-H bond with a doublet at 5.7 ppm 

( V H 240.4Hz). 

Crystals of Ar'Ar"PH were grown by recrystallisation from pentane. Data were collected, 

but the structure could not be solved. 
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4.2.2.11 Attempted synthesis of Ar'Ar'TF 

CF CF 

CI F 

/ 
P. 

/ 
R 

SbF 3 
CF CF 

CH,C1 

f \ t \ CF CF 

CF CF 

Equation 4.13: Attempted Synthesis of Ar 'Ar "PF 

SbF3 was added to a solution of Ar'Ar"PCl in dichloromethane. No change was observed 

in the 1 9F or 3 1P NMR spectra, which showed only the presence of the starting material. 

4.2.2.12 Attempted synthesis of Ar"2PF 

CF CF 3 

r -

CI F 

/ 
R -A / 

R 
SbF 

CF CF 
C H , C 

f \ 

C F 3 C F 3 

Equation 4.14: Attempted Synthesis of Ar "2PF 

SbFi was added to a solution of Ar'^PCl in CH2CI2. The mixture was stirred for a few 

days and then refluxed for two weeks. No change was observed in the 1 9F or 3 1P NMR 

spectra. 

The direct fluorination of the chloride derivatives containing two Ar' or Ar" groups does 

not seem to occur. Roden2! noticed the same results with the reaction between AX2PCI 
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and SbF3, where only a very small amount of Ar2PF was obtained. The steric hindrance 

around the P-Cl bond, imposed by two fluoromes or fluoroxyl substituents, makes the 

substitution reactions difficult. 

4.2.2.13 ArAr'PCl/ArAr"PCl 

CF 

CI 

/ 
P. CF 

CF CF CF 

0r 
ArAr'PCl 

CF 

U + F,C PCU 

V / EuO 

CF CF CF 

C 

CF 

ArAr PCI 
CF 

C F , 

Equation 4.15: Synthesis ofArAr'PCl/ArAr"PCl 

The mixture of the chloro-derivatives was obtained by reaction of Ar'Li/Ar"Li with 

ArPCl 2 in an overall 1:1 molar ratio. The mixture was purified by distillation giving a 

yellow oil, but the compounds could not be separated. Attempted recrystallisation from 

hexanes afforded a white powder of the mixture. 

The 3 1P NMR spectrum for ArAr'PCl showed a multiplet at 76.6 ppm. For ArAr"PCl a 

multiplet was also observed at 69.9 ppm. Three signals were observed in the 1 9F NMR 

spectrum of ArAr'PCl: two doublets at -54.1 ( V F 42.1HZ, 6F, O-CF 3) and -54.3 ( 4 J P . F 

42.1Hz, 6F, o-CF 3 ) ppm, and a singlet at -64.0 (3F, /?-CF 3 ) . The 1 9F NMR spectrum of 

ArAr"PCl consisted of a broad signal at -55.5 (6F, 0-CF3 in Ar), a doublet at -58.6 (4Jp.F 

58.3Hz, 3F, 0-CF3 in Ar") and two singlets at -63.6 (3F,p-CF 3) and -64.1 (3F,p-CF 3). 

This compound is the first synthesised product containing fluoromes and fluoroxyl 

ligands within the same molecule. The coupling constant in ArAr'TCl is larger than the 
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one in ArAr'PCl ( 4J P. F 42.1Hz in ArAr'PCl, 58.1 Hz in ArAr"PCl). This has been 

observed in the monosubstituted products Ar'PCh and Ar'TCfe, reflecting the fact that 

one of the CF3 groups in the ortho position interacts more with the phosphorus than the 

other one. 

No evidence was found for the formation of Ar^PX. This is probably due to the steric 

demand of the two Ar' substituents containing two CF3 groups in ortho position. 

However, A^PX has been isolated. In the case of the reaction with Ar'Li/Ar"Li the 

formation of the less sterically hindered products Ar'^PCl and Ar'Ar"PCl is preferred. 

4.3 Arsenic Derivatives 

Only a few arsenic derivatives containing fluoromes ligands have been reported. The first 

arsenic derivatives prepared were A ^ A s F ^ by reaction of 2 equivalents of ArLi with 

ASF3. ArAsF was reduced to A^AsH via L iAf f lU . 1 5 More recently ArAsC^ 3 5 and 

AJ*2ASC1 2 7 were synthesised. A^AsCl is the only arsenic derivatives containing Ar to be 

structurally characterised. No examples of fluoroxyl-containing derivatives have been 

described. Xue 3 6 attempted the reaction between Ar'Li/Ar"Li and AsCb, which afforded 

a mixture of different mono- and di-substituted products. These could not be separated. 

A general method has been used in these syntheses with AsCb or AsBr3 reacting directly 

with ArLi or Ar'Li/Ar"Li at low temperature with continuous stirring for a few hours. 
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4.3.1 Reaction with 2,4,6-tris(trifluoromethyl)phenyl lithium (ArLi) 

4.3.1.1 ArAsCl 2 

CF CF 

A s C 

U AsC V // \ // 
CF CF 

Equation 4.16: Synthesis ofArAsCh 

ArAsCb was isolated as a yellow oil and purified by distillation under reduced pressure 

(Bp 60°). The 1 9F NMR showed two singlets at -53.5 (s, 6F, 0-CF3) and at -64.2 (3F, p-

CF3) ppm. 

4.3.1.2 Ar 2AsCl 

CF CF 

r -i CI CF A s C 

/ 3 

Li As 
EtjO 

CF CF 
Cf Cf 

Equation 4.17: Synthesis of Ar2AsCl 

Ar2AsCl is a di-substituted product from the reaction above. It has been isolated as a 

white solid. 

The 1 9F NMR consisted of two singlets at -54.6 (12F, 0-CF3) and at -63.9 (6F, /?-CF3) 

ppm respectively. The structure of this compound has recently been determined and 

reported by Burford et al?^-
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4.3.1.3 ArAsBr2 

CF CF 

A s B r 

V / AsBr 
Et,0 

CF CF 

Equation 4.18: Synthesis of ArAsBr2 

This compound was isolated as a yellow oil after distillation under reduced pressure (Bp 

120°C). Two different singlets were observed in the 1 9F NMR spectrum at -53.2 (6F, o-

CF3) and -63.8 (6F,/>-CF3) ppm. 

4.3.1.4 Ar 2AsBr 

2 

CF 

Br CF A s B r 3 

Li V / As 
Et,0 

CF C F 

CF 

Equation 4.19: Synthesis of Ar2AsBr 

Ar2AsBr is the disubstituted compound arising from the reaction of ArLi with ArBr3 in a 

2:1 molecular ratio. The compound was separated from ArAsBr2 by distillation (Bp 

150°C). The 1 9F NMR spectrum exhibited two singlets at -54.4 (12F, 0-CF3) and -63.9 

(6F, p-CFy) ppm. 
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4.3.1.5 ArAsH 2 

CF CF 

-i LiAlH 
AsCI AsH \ // n-hexane 

C F , C F , 

Equation 4.20: Synthesis of ArAsH2 

ArAsH2 was prepared by reduction of ArAsCb with LJAIH4. This afforded a yellow oil. 

The 1 9 F N M R showed two signals: a triplet at -61.4 (5JF.H 6.4 Hz, 6F, 0-CF3) and singlet 

at -64.2 (3F, p-CYi) ppm. A broad singlet was observed at 6.2 ppm in the 'H NMR 

spectrum, assigned to the H bonded to As. 

4.3.1.6 Ar 2AsH 

CF CF 

C H 

/ / LiAlH 
C F CF As As 

•3 n-hexane 

CF C F 

CF CF 

Equation 4.21: Synthesis of Ar2AsH 

Reduction of AraAsCl by LiAlFLt gave A^AsH as a colourless oil. The 1 9F NMR 

consisted of a doublet at -58.7 ( 5J F.H 3.6 Hz, 12F, 0-CF3) and a singlet -64.2 (6F,/?-CF3) 

ppm. The ! H NMR spectrum showed a broad singlet 8-6.4 ppm corresponding to H 

bonded to As. 
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These *H NMR chemicals shifts correspond to those found previously in the literature for 

for Ar2AsH. 1 5 Scholz et al reported 1 9F NMR data showing a doublet at -64.1 ppm 

corresponding to the 7J coupling between thepara-CV^ groups and the hydrogen.^ This 

coupling has not been noticed in the present work. 

4.3.2 Reaction with 2,6-bis(trifluoromethyl)phenyl lithium (Ar'Li) / 2,4-
bis(trifluoromethyl)phenyl lithium (Ar"Li) 

As for phosphorus compounds, the reaction of Ar'Li/Ar"Li with ASCI3 can give rise to a 

mixture of five different products, two monosubstituted (Ar'AsCl2 and Ar"AsCl2) and 

three disubstituted (Ar' 2ArCl, Ar" 2AsCl and Ar'Ar"AsCl). 

4.3.2.1 Ar'AsCl 2/Ar"AsCl 2 

CF CF 

C < 
AsCl 

AsCI Li V // \ // hexane 

CF CF 

CF CF 

A s C l 
AsC Li V // \ / hexane 

Equation 4.22: Synthesis of Ar 'AsCl/Ar "AsCh 

These two compounds could not be separated by distillation because of their close boiling 

points. The mixture was isolated as a yellow oil (Bp 115°C). The 1 9F NMR spectrum of 

Ar'AsC^ consisted of a singlet at -52.9 (6F, 0-CF3) ppm; for Ar"AsCl2 it showed two 

singlets at -57.7 (3F, 0-CF3) and -63.7 (3F,/?-CF3) ppm. 
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4.3.2.2 Ar'Ar"AsCl 

CF 

\ / C F 

C CF A s C 
As + 

hexane CF 

'r < 
CF 

CF 

C F 3 

Equation 4.23: Synthesis of Ar 'Ar "AsCl 

Ar'Ar"AsCl was isolated by distillation under vacuum (Bp 150°C), and purified by 

recrystallisation from n-hexane. 

• NMR spectroscopy 

The 1 9F NMR spectrum showed a broad singlet at -54.8 ppm (6F), corresponding to the 

ortho-CYz groups of the Ar' moiety, a singlet at -58.8 (3F) for the ortho-CFi of the Ar" 

substituent and a singlet at -63.5 (3F, j9-CF3) (Figure 4.14). 
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.CF, 

/ 
-As 

C F 3 

Ar' C F 3 

V V ' 
Ar" 

0-CF3 from 
Ar" 

0-CF3 from 
Ar' 

• 

J i l 

p-CF 3 from 
Ar" 

1 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ! I I I 

-53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 ppm 

Fieure 4.14:19F NMR spectrum o/Ar'Ar"AsCl 

Data for the ' H NMR are listed in Table 4.10. 

Ha CF 

CI CF 
Hb 

As 

He 

CF 
He 

CF 

Hd 

Fieure 4.15: Lettering scheme for Ar 'Ar "AsCl 
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Hydrogen 8 'H (ppm) J (Hz) 

Ha 7.28 d, 3JH-H 8 

Hb 6.6 t , 3 J H - H 7 .6 

He 8.1 d, 3 J H . H 8 

Hd 7.26 d, 3JH-H7.6 

He 7.7 

Table4.10: S!HAssignments 

• X-Ray crystallography 

Crystals were grown by recrystallisation from hexane. The structure of Ar'Ar"AsCl was 

ascertained by A.E. Goeta at 100 K and is shown in Figure 4.16. 

F(5 F(4! 
F(9) 

FI71 
F(6) F(8 

Asd! 

cm 

F(12) 

Fill) 
F i m 

Fieure 4.16: Molecular structure of Ar 'Ar "AsCl 
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Selected bond distances and angles are listed Table 4.11, with those for A ^ A s C l 2 2 for 

comparison. 

Bond distance (A) Angle(°) 

Ar'Ar"AsCl 

As(l)-Cl(l) 2.2074(5) 

As(l)-C(l) 1.9880(18) 

As(l)-C(l l ) 2.0182(17) 

C(l)-As(l)-C(ll) 102.98(7) 

C(l)-As(l)-Cl(l) 100.08(6) 

C(ll)-As(l)-Cl(l) 98.84(5) 

Ar 2 AsCl 2 2 

As(l)-Cl 2.1920(12) 

As(l)-C(l) 2.023(4) 

As(l)-C(2) 2.016(4) 

C(l)-As(l)-C(2) 107.53(16) 

C(l)-As(l)-Cl(l) 101.3(9) 

C(2)-As(l)-Cl(l) 88.4(9) 

Table 4.11: Selected Bond Distances (A) and Angles (°) inAr'Ar"AsCl andAr2AsCl22 

The As-Cl bond length of 2.2074(5) A is similar to that in the orthorhombic modification 

of Ar2AsCl (2.1920(12) A ) , 2 2 and slightly shorter than in AsCU^ 7 or other organo-

derivatives with one As-Cl bond.38-40 The As-C bond lengths are slightly longer in 

Ar2AsCl. Angles are also larger in A^AsCl than in Ar'Ar"Cl, reflecting the greater steric 

demand of the Ar ligands in comparison to the Ar" substituents. 

Some short As—F contacts are found: As—F(5) 2.701 A , As—F(8) 2.851 A, As—F(9) 

3.171 A, As—F(ll) 3.292 A, with an average interatomic of ca. 3.003 A. This is shorter 

than the sum of the van der Waals radii of As (2.00 A) and F (1.40 A ) . 4 1 
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4.3.2.3 Ar'AsBr 2/Ar"AsBr 2 

CF C F 

A s B r 
AsBr 

\ // hexane 

CF CF 

CF CF 

AsBr 
As8r Li 

hexane 

Equation 4.24: Synthesis of Ar'AsBr2/Ar"AsBr2 

Ar'Li/Ar"Li was added to a solution of AsBr3 in hexanes. The product was purified by 

distillation under reduced pressure (0.01 Torr), and a yellow oil was collected at 81°C. 

Ar'AsBr2 and Ar"AsBr2 could not be separated. The 1 9F NMR exhibited a singlet at -52.7 

(6F, 0-CF3) for Ar'AsBr2. For Ar"AsBr2 two singlets were observed at 8-58.5 (3F, 0-CF3) 

and -62.8 (3F,/T-CF 3) ppm. 

4.3.2.4 Ar'Ar"AsBr 

CF 

Li V / CF 

Br CF A s B r 

ft 

As V // hexane CF 

CF 

\ // C F 

C F 3 

Equation 4.25: Synthesis of Ar 'Ar "AsBr 
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Ar'Ar"AsBr was isolated by distillation (Bp 110°C) as a mixture with Ar'^AsBr. The 

mixture was dissolved in hexanes and left in the freezer where, after a month, crystals of 

Ar'Ar"AsBr appeared. 

• NMR spectroscopy 

As found in the analogous compound Ar'Ar"AsCl, three signals were observed in the19F 

NMR spectrum: a broad signal at -54.9 (6F) corresponding to the ortho-CFi groups of 

the Ar' ligand; the 0-CF3 group of the Ar" moiety has a shift of -58.8 (3F) ppm, while a 

singlet at -63.5 (3F) ppm corresponds to the CF3 group in the para position. 

• X-ray crystallography 

Crystals were formed by recrystallisation from hexanes. The structure was ascertained at 

120 K by A.L. Thompson, and is shown in Figure 4.17. 

R14) 

F124I 

F25I 
R15) 

F(26) 
As<1) 

F<23) 

BHD 
R21) 

F{22) 

Fieure 4.17: Molecular structure of Ar 'Ar "AsBr 
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The As-Br bond distance of 2.3530(3) A is similar to those found in the literature, lying 

between the values of 2.31 A for AsBr3 4 2 and 2.40(1) A for PhaAsBr.43. It is similar to 

the corresponding bond length in Mes2AsBr of 2.34(2) A at low temperature and 

2.3846(4) A at higher temperature.44 

The As-C bond lengths are similar to the ones found in Ar'Ar"AsCl, and the angles are in 

the same range too. Four short As—F contacts have been observed in this molecule: As~ 

-F(16) 2.707 A, As—F(22) 3.277 A, As—F(24) 3.157 A, As—F(26) 2.840 A, with an 

average interatomic distance of ca. 2.99 A. This is shorter than the sum of the van der 

Waals radii (3.40 A)M These intramolecular interactions are similar to those found in 

Ar'Ar"AsCl. 

4.3.2.5 Ar"2AsBr 

2 

CF CF 

Br 
AsBr 

As CF 

hexane 

Equation 4.26: Synthesis ofAr "2AsBr 

Ar'^AsBr is a product of the reaction of two equivalents of the Ar'Li/Ar"Li mixture with 

AsBr3. This compound was obtained in a mixture with Ar'Ar"AsBr. Ar'^AsBr was 

isolated as a yellow oil after recrystallisation of Ar'Ar"AsBr. The 1 9F NMR spectrum 

showed two singlets at -58.4 (6F, 0-CF3) and -63.6 (6F,/?-CF3) ppm. 
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4.3.2.6 Ar'Ar"AsH 

H CF 

ft 

As 

CF 3 

CF 

CI CF 

•A 
As 

CF 

CF 

hexane 

LiAlH, 

Equation 4.27: Synthesis of Ar 'Ar "AsH 

Reduction of Ar'Ar"AsCl by UAIH4 afforded a white solid of Ar'Ar"AsH. 

• NMR Spectroscopy 

Three signals were observed in the 1 9 F NMR spectrum: the ortho-CY^ groups of the Ar' 

moiety appeared as a broad singlet at - 5 8 . 2 (5JF-H 7.1 Hz, 6F) ppm. The Ar" substituents 

showed two different signals, a singlet at -61.2 (3F) ppm corresponding to the ortho-CFi 

and a singlet at -63.8 (3F) ppm assigned to thepara-CFi groups. 

Data for the *H NMR spectrum in ds-toluene are listed in Table 4.12: 

Ha CF 

H CF 
Hb 

As 

He 

CF 
He 

CF 

Hd 

Figure 4.18: Letterins scheme for Ar 'Ar "AsH 
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Hydrogen 5 'H (ppm) J (Hz) 

Ha 8.06 d, 3 J H -H 8 

Hb 7.7 t, 3JH-H 8 

He 6.9 d, 3JH-H7.6 

Hd 7.4 d, V H 8 

He 7.9 s 

H 5.99 broad singlet, As-H 

Table 4.12: 8 'H assignments for Ar Ar "AsCl 

• X-ray crystallography 

Crystals suitable for X-ray diffraction were obtained by sublimation under vacuum. The 

structure of Ar'Ar"AsH was determined at 120 K by A.L. Thompson, and is shown in 

Figure 4.19: 

R36I 
F35) 

F141 
R34) 

R16) R46I HG1 R26 
R44) 

Asl3 Ft24 311 

R41) R251 F145J 
Asll) FI43) 

R42) 

FK22 

F23 

R21) 

Figure 4.19: Molecular structure of Ar 'Ar "AsH 
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There are two distinct molecules in each asymmetric unit, one of which has the arsenic 

disordered over two almost equally-populated sites (55% and 45% occupation 

respectively). Data for the non disordered As(l) atom are quoted in Table 4.13. 

Bond distance (A) Angle (°) 

As( l ) -H(l l ) 1.37(6) C(ll)-As(l)-C(21) 98.11(18) 

As(l)-C(l l) 1.980(5) C(l l ) -As( l ) -H(l l ) 102(2) 

As(l)-C(21) 1.995(5) C(21)-As(l)-H(ll) 126(2) 

As(31)-H(31) 1.63(12) C(31)-As(31)-C(41) 96.5(2) 

As(31)-C(31) 2.007(6) C(31)-As(31)-H(31) 97(4) 

As(31)-C(41) 2.006(6) C(41)-As(31)-H(31) 94(4) 

As(32)-H(32) 1.42(10) C(31)-As(32)-C(41) 97.9(2) 

As(32)-C(31) 1.984(5) C(31)-As(32)-H(32) 94(4) 

As(32)-C(41) 1.983(5) C(41)-As(32)-H(32) 116(4) 

Table 4.13: Selected Bond distances (A) and Angles (°) for Ar'Ar"AsH 

The As-C distances are similar to those found in the analogous compounds, Ar'Ar"AsCl 

and Ar'Ar"AsBr, ranging from 1.980(4) to 2.007(6) A. It is not possible to be precise 

about distances and bond angles involving the H atom attached to As. The As(l)-H(l 1) 

bond length is 1.37(6) A and in the disordered molecule 1.42(10) A for As(32)-H(32) and 

1.63(12) A for As(31)-H(31). The As-H bond distances found for Ar'Ar"AsH are within 

the range of the values found for some structurally characterised compounds containing 

an As-H bond: 1.484(18) A in a primary organoarsine,4^ 1.519 A in ASH3, 4 6 1.520 A in 

[Cp*Mn(CO) 2]AsH 4 7 and 1.5(2) in Cp2Nb(HAsEt2)(H3BAsEt2).4 8 As in Ar'Ar"AsCl 

and Ar'Ar"AsBr, four short contacts between the As atom and some of the fluorines of 
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the ortho-CF} groups are found, lying between 2.934 and 3.186 A for As(l), 2.859 and 

3.326 A for As(31), and between 2.880 and 3.247 A for As(32). 

4.4 Antimony and bismuth derivatives 

Although the chemistry of low-coordinate phosphorus and arsenic is well developed, it 

has been little extended to low-coordinate organo-antimony or bismuth compounds. Only 

two Sb derivatives containing the fluoromes ligand are known: A r S b C ^ 1 4 ' 2 2 ' 4 9 and 

A^SbCl . 2 2 The bismuth atom has proved large enough to be able to bear three aryl rings; 

A ^ B i C l 2 ^ and AraBi 2^ have been reported. 

4.4.1 Antimony derivatives 

The Ar'Li/Ar"Li mixture was added to a solution of SbCb in hexanes at room 

temperature in a 2:1 molecular ratio. Solution-state spectroscopy showed a mixture of 

five different products, which was separated by distillation under reduced pressure. 

4.4.1.1 Ar'SbCl2/Ar"SbCl2 

CF CF 

SbC 
SbCI L V // hexane/EUO 

CF CF 

CF CF 

y y -< -< SbC 
SbCI LI V / hexane/EtjO 

Equation 4.28: Synthesis ofAr'SbCl2/Ar"SbCl2 
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An orange oil was collected at 95°C. The 1 9F NMR spectrum showed the presence of two 

products, which could not be separated. Ar'SbCb exhibited a singlet at 8-53.2 (6F, 0-CF3) 

ppm. The spectrum of Ar"SbCl2 showed two singlets at 8-54.9 (3F, 0-CF3) and -63.6 (3F, 

p-CFi) ppm. 

4.4.1.2 Ar'2SbCl/Ar"2SbCl 

Another fraction was collected at 120°C as a yellow oil. This oil was dissolved in 

hexanes and cooled down to -30°C overnight. A white solid formed. The 1 9F NMR 

spectrum of this solid showed the presence of two products. 

A singlet at -55.1 (12F, 0-CF3) ppm was observed for Ar^SbCl. Two other singlets were 

found at -58.4 (6F, 0-CF3) and -63.7 (6F,/>-CF3) ppm, assigned to Ar"2SbCl. 

CF CF 

CF 

/ CF SbC 3 
Sb 

hexane/Et,0 

CF CF 3 

CF CF 

-< -< 
a 

s / 
SbCl 

CF Li \ // \ / hexane/EuO 

CF 

Equation 4.29: Synthesis ofAr'2SbCl/Ar"2SbCl 
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4.4.1.3 Ar'Ar" 2Sb 

2 

CF CF 
CF 

- i . 

CF SbCl 

XX 
Li Sb + 

hexane/EtjO 

CF 
CF 

CF 

Equation 4.30: Synthesis of Ar 'Ar "2Sb 

Ar'Ar'^Sb appeared as a sticky solid, which was purified by recrystallisation from 

dichloromethane. This is the first antimony compound containing three fluoroxyl ligands 

prepared so far. 

• NMR spectroscopy 

The 1 9F NMR spectrum exhibited three singlets at -55.5 (6F, o-CF3 in Ar') , -58.4 (s, 6F, 

o-CF3 in Ar") and -63.6 (s, 6F,/?-CF3) ppm. 

Variable temperature 1 9F NMR spectra were recorded at -50°C and 100°C, but no change 

was observed within the temperature range. As discussed for Ar'^B (Chapter 2), any 

exchange probably occurs at a lower temperature. Because of solvent restrictions, a lower 

range of temperatures could not be run. 

A 1 3 C{ 'H} NMR spectrum was recorded in dg-toluene. Data are quoted in Table 4.14 
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M 

CF 

i 

K 
B 

Sb 

D 
CF 

CF E 

Figure 4.20: Lettering scheme for Ar'Ar "2Sb 

Carbon 8 (ppm) J (Hz) 
A 139.9 broad singlet 

B 142.8 broad singlet, double intensity 

C 132.1 q, 2JC-F33.4 

D 130.4 q, 3JC-F5.9 

E 139.9 s 

F 124.5 q, 'JCF 275.8 

G 128.9 s 

H 128.0 s 

I 137.6 q, 2JC-F31.5 

J 123.1 m 

K 136.7 q,2Jc-F31.5 

L 123.5 q, 'JC-F 275.8 

M 124.1 q, 'JC-F 275.8 

Table 4.14: SUCfor Ar'Ar"2Sb 
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• X-ray crystallography 

Crystals of Ar'Ar'^Sb were obtained by recrystallisation from dichloromethane. The 

structure was determined at 120 K by A.E. Goeta, and is shown in Figure 4.21: 

R13) 

FI14) 
F<4) F(5) F(18l 

F(6) 

fa FIT6I 

F B I 

F(1! 

F(3) 

(91 

FI8 
F l 0 

F(7) 

F(12l F111I 

Figure 4.21: Molecular structure of Ar 'Ar "2Sb 

The molecule crystallises in the monoclinic P2(l)/c space group with Z=4. The Sb atom 

exhibits a trigonal geometry with the C-Sb-C angles ranging from 92.46(10) to 

108.31(10)°. This difference (~16°C) is probably due to the unsymmetrical character of 

Ar'Ar'^Sb and the presence of bulky CF3 groups in the ortho position. The C-Sb-C bond 

angles for triaryl antimony compounds described in the literature, range from 105.3° in 

Mes 3Sb, 5 0 104.7° in (2,6-dimethylphenyl)3Sb,51 97.3° in (p-tolyl) 3Sb, 5 2 97.4° in (o-

tolyl) 3Sb, 5 3 to 95° in Ph 3Sb. 5 4 Asymmetry in the bond angle was observed, which seems 

to occur with the Ar, Ar' or Ar" substituents. This can be explained by the presence of 

short Sb—F contacts between the fluorine of the CF3 in the ortho position and the central 

Sb atom. Three intramolecular interactions are observed (Table 4.15) with an interatomic 



Chapter A-Group 15 Derivatives 159 

average distance of ca. 2.94A, which is shorter than the sum of the van der Waals radii of 

3.74 A. 4 1 These values are similar to those found in Ar 2 SbCl. 2 2 

The geometry of the antimony atom (sum of the bond angles at Sb: 296.03°) is 

comparable to those observed in Ar2SbCl22 and SbAr2OS02CF322 (where the sums of 

the bonds angles are 296.7 and 287.8° respectively). 

Two of the Sb-C (Sb(l)-C(21) 2.184(3) and Sb(l)-C(ll) 2.194(3) A) bond distances are 

shorter than those found in Ar2SbCl and SbAr2OS02CF3.22 This is due to smaller steric 

demand of the Ar" groups in comparison with the Ar substituents. The third Sb(l)-C(l) 

bond length is longer due to the presence of trifluoromethyl groups in the ortho position. 

The average Sb-C distances in tris(2,6-dimethylphenyl)stibine is 2.190A 51. Sb-C 

distances are longer than in Ph3Sb (average 2.155(9) A), probably as a result of steric 

interactions with the 0-CF3. 

Ar'Ar" 2Sb Ar2SbCl SbAr2OS02CF3 

Bond 
distance 

(A) 

Sb(l)-C(21) 2.184(3) 

Sb(l)-C(ll) 2.194(3) 

Sb(l)-C(l) 2.234(3) 

Sb(l)-F(3) 2.911 

Sb(l)-F(9) 3.024 

Sb(l)-F(15) 2.889 

Sb(l)-C(l) 2.22(3) 

Sb(l)-C(10) 2.25(3) 

Sb(l)-C(l) 2.21(1) 

Sb(l)-C(10) 2.23(1) 

Angle 
(°) 

C(21)-Sb(l)-C(ll) 95.26(11) 

C(21)-Sb(l)-C(l) 108.31(10) 

C(ll)-Sb(l)-C(l) 92.46(10) 

C(l)-Sb(l)-Cl 101.3(9) 

C(10)-Sb(l)-Cl 88.4(9) 

C(l)-Sb(l)-C(10) 107.0(7) 

C(l)-Sb(l)-0 94.8(4) 

C(10)-Sb(l)-O 87.7(4) 

C(l)-Sb(l)- C(10) 105.3(4) 

Table 4.15: Selected Bond distances (A) and Angles (°) for Ar'Ar" 2Sb, Ar2SbCl and 

SbAr2OS02CF3.22 
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4.4.2 Bismuth derivatives 

Several attempts have been made to react the Ar'Li/Ar"Li mixture with BiCh. The 1 9F 

NMR spectrum showed the presence of different products in solution. Unfortunately, 

none has been separated from the mixture. It was difficult to assign any peak in the 

spectrum. 

4.5 Discussion 

4.5.1 Solution-state NMR spectroscopy 

1 9F NMR and 3 1P NMR data for all phosphorus compounds are listed in Table 4.16. 
1 9F NMR chemical shifts are similar for all compounds containing the same Ar (or Ar' or 

Ar") substituents. However, a slight shielding is observed for the hydride derivatives 

where the shifts of the ortho-CF} groups of the Ar" moiety are - 6 0 . 0 ppm in Ar" 2PH and 

-61 .2 ppm in Ar 'Ar 'TH, being between -56 .5 and -59 .3 ppm for the other derivatives 

containing an Ar" substituent. The shielding is more noticeable in the 3 'P NMR spectrum: 

57.4 ppm for Ar"2PBr and -48.7 ppm for Ar" 2PH. 

The same shielding effect is observed in arsenic derivatives in the 1 9F NMR data (Table 

4.17). For example, the chemical shifts for the CF3 groups in the ortho position are -53 .5 

ppm in ArAsCl 2 and -61.4 ppm in ArAsH 2. In the room temperature 1 9F NMR spectra of 

all compounds containing one Ar" substituent and one Ar or Ar' substituent, a broad, 

unresolved resonance occurred for the two ortho-CF^ groups of the Ar or Ar' moiety. 

Similar observations have been previously reported for A r ' A r ' T C l , 1 9 Ar 'Ar"PF 2 0 and 

Cp*ArPCl, 5 5 with 4 J P F not resolved, although interestingly a 4JPF value of 31.6 Hz was 

recorded for Cp*ArPH. These results suggest that there is a rotational barrier present in 

the more sterically hindered species. A detailed temperature-dependence study for some 

P and As derivatives, will be described in Chapter 5. 
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l 9 F (8 ppm) 3 , P (5 ppm) 
Ar' Ar" Ar 'H decoupled 'H coupled 

ortho para ortho para 

ArPCl2 -53.3 -64.2 145.6 

Ar2PCl -54.4 -64.1 74.9 

Ar'PCl 2 -53.2 148.4 

Ar"PCl2 -56.5 -63.6 151.6 

Ar'Ar'TCl -55.4 -59.3 -64.1 69.1 

Ar"2PCl -57.3 -63.7 68.3 

ArPBr2 -53.1 -64.1 130.1 

Ar'PBr2 -52.9 134.1 

Ar"PBr2 -56.9 -62.8 141.0 

Ar'Ar"PBr -55.2 -58.8 -63.5 58.9 

Ar"2PBr -57.7 -63.7 57.4 

Ar" 2PH -60.0 -63.8 -48.7 -49.0 

Ar'Ar"PH -57.7 -61.2 -63.4 -67.2 -67.6 

Table 4.16: 8 F and P(ppm) for phosphorus compounds with Ar, Ar " and/or Ar " 

substituents 



Chapter A-Group 15 Derivatives 162 

A T ' Ar" Ar 

ortho para ortho para 

ArAsCl 2 
-53.5 -64.2 

Ar 2AsCl -54.6 63.9 

Ar'AsCl 2 -52.9 

Ar"AsCl 2 
-57.7 -63.7 

Ar'Ar"AsCl -54.8 -58.8 -63.5 

ArAsBr2 -53.2 63.8 

Ar 2AsBr -54.4 -63.9 

ArAsH 2 -61.4 -64.2 

Ar 2AsH -58.7 -64.2 

Ar'AsBr 2 -52.7 

Ar"AsBr2 -58.5 -62.8 

Ar'Ar"AsBr -54.9 -58.8 -63.5 

Ar"2AsBr -58.4 -63.6 

Ar'Ar"AsH -58.2 -61.2 -63.8 

Table 4.17: S,9F chemicals shifts of arsenic compounds. 

4.5.2 X-ray Crystallography 

Table 4.18 lists selected bond distances and angles for phosphorus compounds. The P-C 

bond lengths are all similar in Ar"2PCl and Ar"2PBr. They are slightly longer in Ar2PCl 

and ArPBr2, due to the presence of two ortho-CFs groups instead of one in the Ar" 2PX 

compounds. 

A marked asymmetry in the C-P-Cl bond angles is noticed in Ar2PCl (they differ by more 

than 10°), which is almost certainly due to the P—F secondary interactions. Only minor 
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differences in the C-P-X (X=C1 or Br) angles are apparent for the less sterically hindered 

compounds Ar" 2PCl, Ar"2PBr, A r ' A r ' T C l 1 9 with a maximum value of ca. 4.6° in 

Ar"2PBr. 

Disorder was found for the para-CFj groups in ArPBr2 and Ar"2PBr. This is often 

observed in compounds containing these substituents, for example in Ar 2 AsCl 2 2 , 

Ar 2 SbCl 2 2 , A r 2 B i C l 2 3 and Ar 3 Bi 2 3 

Data for arsenic derivatives Ar'Ar"AsCl, Ar'Ar"AsBr and Ar'Ar"AsH are quoted in 

Table 4.19. The As-C distances are similar in all instances, ranging from 1.980(4) to 

2.007(6)A 

The As-X distances are in the range of those reported in the literature for similar 

compounds. 

Phosphorus or arsenic derivatives exhibit a pyramidal geometry around the central atom, 

with the sum of the bond angles ranging from 298.7 to 310.53° 
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Secondary interactions between the group 15 elements and some of the fluorines of the 

ortho-CFi groups are found in all the compounds. This was observed previously in 

Ar2AsCl, AraSbCl and Ar'Ar"PCl. These short E—F contacts are given in Table 4.20. At 

least three such interactions are observed for six fluorines in 0-CF3 groups, four for nine 

fluorines and five for the only example studied with twelve fluorines (A^PCl). The 

distances are shorter in all instances than the sum of the van der Waals radii. These 

secondary interactions play a vital role in the stabilisation of the molecule. They are also 

probably responsible of the large asymmetry found in the C-E-Cl angles in A^ECl. 

Similar interactions for fluorines from ortho-CFi groups in Ar ligands have also been 

reported with transition metals V , ^ 6 Cr , 1 8 > 5 7 and M o . 1 8 
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4.6 Experimental 

4.6.1 Introduction 

<» NMR spectroscopy 

The 3 1P NMR spectra of phosphorus-containing starting materials were checked, to 

confirm the absence of any major impurities. 1 9F NMR spectra were recorded on a Varian 

Mercury 200, Varian VXR 400, or Varian Inova 500 Fourier-transform spectrometer at 

188.18, 376.35, and 470.26 MHz respectively. 3 1P NMR spectra were recorded on the 

same instruments at 80.96, 161.91 or 202.32 MHz. *H and 1 3C NMR spectra were 

recorded on the Varian VXR 400 instrument at 400 and 100.57 MHz respectively. 

Chemical shifts were measured relative to external CFCI3 ( 1 9F) or 85% H3PO4 (3 1P), with 

the higher frequency direction taken as positive. 

• X-ray crystallography 

Single crystal X-ray diffraction experiments were carried out at low temperature, 100 to 

120 K, using graphite monochromated Mo Ka radiation (k = 0.71073) on a Bruker 

SMART (CCD 1 K area detector) diffractometer equipped with a Cryostream N2 flow 

cooling device.^8 Series of narrow co-scans (0.3°) were performed at several cp-settings in 

such a way as to cover a sphere of data to a maximum resolution between 0.70 and 0.77 

A. Cell parameters were determined and refined using the SMART software,^ and raw 

frame data were integrated using the SAINT program.60 The structures were solved by 

direct methods and refined by full-matrix least squares on F using SHELXTL 

software.61 

The reflection intensities were corrected by numerical integration based on measurements 

and indexing of the crystal faces for Ar'^PBr and Ar'Ar"AsCl (using SHELXTL 

software).6lFor the remaining structures, the absorption corrections were carried out by 

the multi-scan method, based on multiple scans of identical and Laue equivalent 

reflections (using the SADABS software).**2 
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Non-hydrogen atoms were refined anisotropically, except in some cases where 

there was disorder (see Results and Discussion). For structures ArPBr2, Ar'^PCl and 

Ar'Ar"AsCl the hydrogen atoms were found in difference Fourier maps and in the case of 

ArPBr2 constrained accordingly. For structures Ar2PCl, Ar"2PCl and Ar'Ar"AsBr, the 

hydrogen atoms were positioned geometrically and refined using a riding model. In the 

special case of Ar'Ar"AsH, the hydrogen atoms were found in the Fourier difference 

map, one constrained and the other allowed to refine freely. The remaining hydrogen 

atoms were positioned geometrically and refined using a riding model 

4.6.2 Synthesis of ArPCl 2 

An ArLi (150 ml, 80 mmol) solution in diethyl ether was added dropwise over 20 

minutes to a PCI3 (7 ml, 80 mmol) solution in diethyl ether at -78°C. A precipitate of 

LiCl formed. The solution was allowed to warm to room temperature and stirred for 5 

hours. The solution was filtered and the solvents and excess PCI3 were removed under 

vacuum, leaving a yellow oil, which was distilled under reduced pressure (0.02 Torr) 

giving a colourless solution (Bp 60°C). 
3 1 P NMR (CDCI3): 8 145.6 (septet, 4 J P . F 61.3 Hz) ppm; 1 9 F NMR (CDC1 3): 8 -53.3 (d, 
4JP-F 61.3 Hz, 6F, 0-CF3), -64.2 (s, 3F,/?-CF3) ppm. 

CF CF 

-< P C 
PCU Li 

E t , 0 , -78°C 

CF CF 
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4.6.3 Synthesis of Ar 2 PCl 

CF CF 

CI 

/ 
P. 

PCI 
CF 

\ // E t , 0 , -78°C 

CF CF 

CF 

A solution of ArLi (100 ml, 48 mmol) was added dropwise to a solution of PCI3 (2.09 ml, 

24 mmol) in diethyl ether at -78°C. The solution was allowed to warm to room 

temperature and stirred for 2 hours. A white precipitate of LiCl appeared. The solution 

was filtered and the solvents and excess PCI3 were removed under vacuum, leaving a 

yellow oil, which was distilled under reduced pressure (0.01 Torr). Fractions were 

collected at 60°C (ArPCl2) and 100°C (Ar2PCl). Crystals were grown by recrystallisation 

from dichloromethane. 

Elemental Analysis for QgFLtClFigP (628.5), Calc: C 34.36, H 0.60 %, Found C 34.1, H 

0.60 %. 
3 1 P NMR (CDC13): 674.9 (multiplet, 4 J P . F 41.9Hz) ppm; 1 9 F NMR (CDC13): 8-54.4 (d, 
4JP.F41.2Hz, 12F, 0-CF3), 8-64.1 (s, 6F,/?-CF3) ppm. 

4.6.4 Synthesis of ArPBr 2 

CF C F 

r 
Br 

-< / 
P. 

PBr 
Li 

V / diethyl ether 

Br 

C F CF 3 3 

A solution of ArLi (100ml, 48 mmol) was added to a PBr3 (2.25 ml, 24 mmol) solution in 

diethyl ether (100 ml) at -78°C. The solution was allowed to warm to room temperature 

and stirred for 2 hours. A white precipitate of LiBr appeared. The solution was filtered 
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and the solvents and excess PBr3 were removed in vacuo, leaving an orange oil . This oil 

was distilled under reduced pressure (0.03 Torr), giving colourless crystals. Yield (based 

on ArH): 4.80g (20.3%). 

Elemental Analysis for C9H2Br2F9P (472), Calc: C 22.88, H 0.4 %; Found: C 22.76, H 

0.45%. 

3 1 P N M R (CDC13): 8130.1 (septet, 4 J P . F 62.3Hz) ppm; 1 9 F N M R (CDC13): 5-53.1 

(doublet, 4J P. F62.4Hz, 6F, 0-CF3), 8-64.1 (s, 3F,p-CF 3) ppm. 

4.6.5 Synthesis of A r ' P C l 2 / A r " P C l 2 

CF C F C F CF 

PC 
Li Li PCU PCI, 

EtjO, -78°C 

OF, C F 3 

The A r ' L i / A r " L i (96 mmol) solution was added dropwise over 20 min to a solution of 

P C I 3 (25.2g, 16 ml , 96 mmol) in diethyl ether (100 ml) at -78 °C. This solution was 

allowed to warm to room temperature and stirred for 4 hours. A white solid o f LiCl 

appeared. The solution was filtered and solvent and P C I 3 in excess were removed in 

vacuo giving a brown oi l . The product was purified by distillation under vacuum (Bp 

86°C, 0.01 Torr). Yield (based on A r ' H ) : 15.7g (52.1%). 

3 1 P N M R (CDCI3): Ar'PCl? 8148.4 ppm (septet, 4J P- F61.3), A r ' T C b 6151.6 (q, 4JP.F83.8); 

1 9 F N M R (CDCI3) Ar 'PCb 8-53.2 (d, 4 J P . F 61.3, 6F, 0-CF3), Ar"PCl 2 : . 8-56.5 (d, 4 J P . F 

83.8, 3F, 0-CF3), 8-63.6 (singlet, 3F,/?-CF3). 
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4.6.6 Synthesis of A r " 2 P C l 

CF CF 

c 

- A 

/ 
P. 

PCI 

Li CF 

E t , 0 , -78°C 

A solution of A r ' L i / A r " L i (100 ml , 162 mmol) in diethyl ether was added dropwise over 

20 min to a solution o f PC13 (25.2g, 16 ml , 96 mmol) in diethyl ether (100 ml) at -78 °C. 

This solution was allowed to warm to room temperature and stirred for 4 hours. A white 

precipitate o f LiCl appeared. The solution was filtered through a fine sinter, and solvent 

and PCb in excess were removed in vacuo, giving a brown oi l . The product was purified 

by distillation under vacuum (0.02 Torr), and two different fractions were collected at 

86°C (Ar 'PCl 2 /Ar"PCl 2 ) and 140°C (Ar" 2 PCl). Crystals were grown in hexanes. Yield 

(based on A r ' H ) 11.68g (25%). 

Elemental Analysis for Ci6H 6ClF, 2P (492.5), Calc: C 38.97, H 1.22%; Found: C 38.96, H 

1.35%. 
3 1 P N M R (CDCb): 868.3 (septet, 4 J P . F 65.5Hz) ppm; 1 9 F N M R (CDC13): 5-57.3 (d, 4 J P . F 

65.8Hz, 6F, 0-CF3), -63.7 (s, 6F, p-CF 3) ppm; 1 3 C NMR (C 7 D 8 ) : 8140.3 (d, 'jp-cSe^Hz), 

133.1 (q, 2 J F . C 33.9HZ), 133.1 (q, 2 J F . C 33.9Hz), 129.1 (s), 123.7 (broad singlet), 123.6 (d, 
2 J P . c 1.9Hz), 123.6 (q, 'JC-F275.8HZ), 123.4 (qd, Vc273 .1HZ, 3 J C -F 1.74HZ) ppm. 

4.6.7 Synthesis of Ar'PBr2/Ar"PBr 2 , and A r " 2 P B r / A r ' A r ' T B r 

CF C F CF CF 

Q -
PBr 

PBr L PBr Li 
Et,0, -78°C 

CF CF 
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CF CF 

Br 

- i 
/ p. 

PBr 
CF Li 

E t , 0 , -78°C 

A solution of A r ' L i / A r " L i (100 ml) was added slowly to a PBr 3 (8 ml, 85 mmol) solution 

in diethyl ether (100 ml) at -78°C. The solution was allowed to warm to room 

temperature and stirred for 5 hours. A white precipitate of LiBr appeared. The solution 

was filtered and the solvents and excess PBr3 were removed in vacuo, leaving a brown 

oil . This oil was distilled under reduced pressure (0.01 Torr), and fractions were collected 

at 60°C (Ar 'PBr 2 /Ar"PBr 2 ) and 120°C (Ar" 2PBr/ A r ' A r ' T B r ) . Yield o f Ar" 2 PBr :(based 

on A r ' H ) : 4.52g (9%). It proved possible to isolate Ar" 2 PBr but not Ar 'Ar"PBr. 

Elemental Analysis for C 1 6 H 6 BrFi 2 P (537), Calc: C 35.78, H 1.13 %; Found: C 35.69, H 

1.15%. 

3 1 P NMR (CDCI3): Ar'PBr?: 8134.1 (septet, 4 J P . F 62.8Hz) ppm; Ar"PBr 7 : 8 141.0 (q, 4 J P . F 

85.5Hz); Ar"?PBr 557.4 (septet, 4 J P . F 65.8Hz) ppm; A r ' A r ' T B r 8 58.9 ppm (m) ppm ;

 1 9 F 

N M R ( C D C I 3 ) : Ar'PBr?: 8 -52.9 (d, 4 J P .F 62.8Hz, 6F, 0 - C F 3 ) ppm; Ar'TBr?: 8 -56.9 (d, 

4JP_F 85.8Hz, 3F, 0 - C F 3 ) , -62.8 (s, 3F, ^ - C F 3 ) ; Ar" z PBr: . 8-57.7 (d, 4 J P . F 65.8Hz, 6F,o-

CF 3), 8-63.7 (s, 6F, p-CF 3 ) ppm; A r ' A r ' T B r : 8 -55.2 (broad singlet, 6F, 0 - C F 3 in A r ' ) , -

58.8 (d, 4 J P . F 56.6Hz, 3F, 0 - C F 3 in Ar" ) , -63.5 (s, 3F,/?-CF3) ppm. 

4.6.8 Synthesis of A r " 2 P H 

CF CF 

H CI 

/ P. / P. 
L A H 

CF CF 

V // \ // diethyl ether 

f \ f \ 

CF CF 
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LiAlFL, (0.57 ml, 0.57 mmol) was added dropwise to a solution of Ar" 2 PCl (0.56g, 1.13 

mmol) in diethyl ether. The solution was stirred overnight. A white precipitate of LiCl 

appeared. The solution was filtered and solvents were removed under vacuum, leaving a 

yellow solid, which was washed twice with hexanes. Yield: 0.46g (89%). 

Elemental Analysis for C i 6 H 7 Fi 2 P (458): Cal C 41.92, H 1.52%; Found C 41.90, H 

1.51%. 
3 1 P { J H ) N M R (CDCI3): 8 -48.7 (septet, 4 J P . F 36.7 Hz) ppm; 3 1 P coupled) (CDCI3): 

8 -49.0 (d o f septet, 4 J P . F 36.8 Hz, V H 270.4 Hz) ppm; 1 9 F NMR (CDC13): 8 -60.0 (d, 
4 J P . F 37.1 Hz, 6F, 0 - C F 3 ) , -63.8 (s, 6F,p-CF 3) ppm; *H N M R (CDC13): 8 7.9 (s, Ha), 7.7 

(d, 3JH-H 7.8 Hz, Hb), 7.4 (d, 3 J H - H 7.9 Hz, He), 6.2 (d, ' j p . H 274.5) ppm. 

4.6.9 Synthesis of A r ' A r ' T H 

LiAlFLt (0.09 ml , 1.0M in ether, 0.09 mmol) was added to an A r ' A r ' T C l (0.08g, 

0.18mmol) solution in diethyl ether (5ml). The solution was stirred for one day. A white 

precipitate o f LiCl appeared; the solution was then filtered and solvents were removed 

under vacuum, leaving a white solid, which was washed three times with diethyl ether. 

Yield 0.05g(60%). 

Elemental analysis for Ci6H 7 PF 1 2 (458.2), Calc C 41.90, H 1.54%; Found C 39.95, H 

2.12%. 
1 9 F NMR ( C D C I 3 ) : 8 -57.7 (broad singlet, 6F, 0 - C F 3 in A r ' ) , -61.2 (d, V F 43.7HZ, 3F, 

0 - C F 3 in Ar" ) , -63.4 (s, 3F, p-C¥3) ppm; 3 1 P { X H } NMR (C 7 D 8 ) : 8-67.2 (multiplet); 

CF CF 

H CI 

/ 
R 

/ 
P. L AH CF CF V // \ // E t , 0 

f \ f \ CF CF 3 

CF CF 
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3 1 P ( 1 H coupled) NMR (C 7 D 8 ) : 5-67.6 (d o f multiplets, ' j P . H 240.7Hz); ! H NMR (C 7 D 8 ) : 

8 7.5-6.2 (aromatic region), 5.7 ( d , 1 J P . H 240.4Hz, P-H) ppm. 

4.6.10 Attempted synthesis of A r " 2 P F 

CF CF 

CI F 

/ 
R 

/ 
P. 

SbF 
CF CF V // C H , C 

f \ f \ 

CF 3 CF 3 

SbF3 (0.35g, 1.9 mmol) was added to a solution o f Ar" 2 PCl (0.78g, 1.5 mmol) in CH 2C1 2 . 

The mixture was stirred for a few days and then refluxed for two weeks. No change was 

observed in the 1 9 F and 3 1 P N M R spectra. 

4.6.11 Attempted synthesis of A r ' A r ' T F 

CF CF 

CI F 

/ 
P. 

/ 
P. 

SbF 
CF CF 

\ // C H , C 

CF CF 

CF CF 

SbF3 (0.27g, 1.5 mmol) was added to a solution o f A r ' A r ' T C l (0.52g, 1.04 mmol) in 

dichloromethane. The solution was stirred at room temperature for a few days and then 

refluxed for a week. No change was observed in the 1 9 F and 3 I P N M R spectra. 
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4.6.12 Synthesis of A r A r ' P C I / A r A r ' T C l 

a 

C F C F P F 3 

C F 3 

PCt, U + F , C 

\ // \ // EhO 

C F 3 Q F 3 

C F 3 C F 3 

a 
/ 

p. CF F3C 

\ / 
C F 3 

A solution of A r ' L i / A r " L i (20 ml, 6.6 mmol) was added dropwise to a solution of ArPCl 2 

(2.52g, 6.6mmol) in diethyl ether. A precipitate o f LiCl immediately formed. The 

solution was filtered and distilled under reduced pressure (0.01 Torr), giving a yellow oil , 

(Bp l l 0 °C) . 
1 9 F N M R (CDCI3): ArAr 'PCl : 8 -54.1 (d, V F 42.1HZ, 6F, 0-CF3), -54.3 (d, 4 J P . F 42.1Hz, 

6F, 0-CF3), -64 (s, 3F, p-CFs) ppm; ArAr"PCl: 8-55.5 (broad singlet, 6F, 0-CF3 in Ar) , 

-58.6 (d,4JP.F 58.3Hz, 3F, 0-CF3 in Ar" ) , -63.6 (s, 3F, p-CF$), -64.1 (s, 3F, p-CF3) ppm; 
3 1 P NMR (CDCI3): A r A r ' P C l : 876.6 (m) ppm; A r A r ' T C l 869.9 (m) ppm. 

4.6.13 Synthesis of A r A s C l 2 / A r 2 A s C I 

C F C F C F 

C 

-< 
C F / AsC 

As A s C 

Et,0 

C F C F C F 3 

' C F , 

A diethyl ether solution o f A r L i (100 ml, 35 mmol) was added dropwise to an AsCl 3 

(6.45g, 3 ml , 35 mmol) solution in diethyl ether (50 ml) at -78°C. The solution was left to 

warm to room temperature and stirred for four hours. A white precipitate of LiCl 
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appeared. The solution was filtered and solvent and excess AsCb were removed under 

vacuum, leaving a yellow solution and a white solid. The solution was filtered and 

distilled under reduced pressure (0.02 Torr), giving a yellow oil o f ArAsCl 2 , Bp 60°C. 

The white solid was washed twice with diethyl ether and dried under vacuum (Ar 2 AsCl). 

The solid was purified by recrystallisation from dichloromethane. Yield: ArAsCl 2 : 5.2g 

(34.8%); Ar 2 AsCl : 4.8g (20.4%). 

Elemental analysis for CisFjgHjAsCl (612.4), Calc C 32.14, H 0.60%; Found C 32.19, H 

0.62%. 

1 9 F N M R (CDC13): A r A s C k 8 -53.5 (s, 6F, 0-CF3), -64.2 (s, 3F, /?-CF3) ppm; Ar?AsCl: 

8 -54.6 (s, 12F, o-CF 3), -63.9 (s, 6F, jp-CF 3) ppm. 

4.6.14 Synthesis of ArAsH2 

LiAlFU (1M in E t 2 0 , 1.08 ml , 1.08 mmol) was added dropwise to a solution of ArAsCl 2 

(0.93g, 2.16 mmol) at room temperature. The solution was stirred for a few days. 

Solvents were removed under vacuum, giving a yellow oi l . 
1 9 F N M R (CDCI3): 8-61.4 (t, 5 J F . H 6.4 Hz, 6F, 0-CF3), -64.2 (s, 3F,p-CF 3) ppm. 

4.6.15 Synthesis of ArAsBr2/Ar 2AsBr 

C F CF 

L A H 
A s K AsCI V / V / 

n-hexane 

CF CF 

2 F 3 C 

CF CF CF 

r 
Br 

- A 

CF / AsBr 
As AsBr Li \ // E t , 0 

CF CF CF 

CF 
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A diethyl ether solution of A r L i (10 mmol, 50 ml) was added dropwise to an AsBr3 

(1.36g, 5 mmol) solution in diethyl ether (50 ml) at -78°C. The solution was left to warm 

to room temperature and stirred for four hours. A white precipitate o f LiBr appeared. The 

solution was filtered and solvent and excess AsBr3 were removed under vacuum, leaving 

a brown solution. The solution was distilled under reduced pressure (0.02 Torr), giving a 

yellow oi l . Fractions were collected at 120°C (ArAsBr 2 ) and 150°C (Ar 2 AsBr). 
1 9 F NMR (CDC1 3): ArAsBr?: 8 -53.2 (s, 6F, 0-CF3), -63.8 (s, 6F, CF 3) ppm; Ar?AsBr: 

8 -54.4 (s, 12F, 0-CF3), -63.9 (s, 6F,/?-CF3) ppm. 

4.6.16 Synthesis of Ar2AsH 

CF C F 

'( 
C H 

/ / L i A H 
CF C F As As 

V // V // n-hexane 

C F CF 

CF CF 

UAIH4 (1M in E t 2 0 , 3.1 ml , 3.13 mmol) was added dropwise to a solution of Ar 2 AsCl 

(0.42g, 0.27 mmol) at room temperature. The solution was refluxed for two days. 

Solvents were removed under vacuum, giving a colourless oi l . 

1 9 F NMR (CDCI3): 8-58.7 (d, 5 J F . H 3.6 Hz, 12F, 0-CF3), -64.2 (s, 6F, p-CF3) ppm; l H 

NMR (CDCI3): 8-6.4 (broad singlet, As-H) ppm. 

4.6.17 Synthesis of Ar'AsCl 2 /Ar"AsCl2/Ar'Ar"AsCl 

CF CF CF CF 

0r 
AsCl 3 

Li AsCl AsCl, 

\ // \ // \ // \ // hexane 
CF3 CF3 
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CF CF CF 3 

CI CF AsCI 

ft 

L U As 
hexane 

CF CF 

CF 

A solution of A r ' L i / A r " L i (100 ml, 94 mmol) in diethyl ether was added dropwise to a 

solution of AsCl 3 (13.5 ml, 160 mmol) in hexanes (100 ml) over a period of 20 minutes at 

-78°C. The mixture was allowed to warm to room temperature and stirred for four hours. 

A precipitate of LiCl formed. This was filtered off and the solvents and excess AsCU 

removed in vacuo, leaving a brown oil . . This oil was distilled under reduced pressure 

(0.01 Torr), and three different fractions were collected at 100°C (Ar 'AsCl 2 ) , 115°C 

(Ar"AsCl 2 ) and 145°C (Ar 'Ar"AsCl) . Ar 'Ar"AsCl was purified by recrystallisation from 

hexanes. Yield (based on A r ' H ) : 4.5g (9%) 

Elemental analysis for C i 6 H 6 A s C l F 1 2 (536.4), Calc C 35.79, H 1.12%; Found C 35.33, H 

1.10% 

1 9 F NMR (CDCI3): Ar 'AsCl 2 : 5 -52.9 (s, 6F, 0-CF3) ppm; Ar"AsCl 2 : 5 -57.7 (s, 3F, 

0-CF3), -63.7 (s, 3F, p-CF 3 ), Ar 'Ar"AsCl : -54.8 (broad singlet, 6F, 0-CF3 in A r ' ) , -58.8 

(s, 3F, 0-CF3 in Ar" ) , -63.5 (s, 3F, p-CF 3) ppm; 'H NMR (CDCI3): Ar 'Ar"AsCl : 8.1 (d, 
3 J H - H 8Hz) , 7.7 (s), 7.28 (d, 3 J H - H 8Hz) , 7.26 (d, 3 J„ - H 7 .6Hz) , 6.6 (t, 3JH-n7.6Hz) ppm. 

4.6.18 Synthesis of Ar 'AsBr 2 /Ar"AsBr 2 , Ar" 2 AsBr and Ar'Ar"AsBr 

CF CF CF CF 

-< 
AsBr 

AsBr Li AsBl 

hexanc 

\ 
CFa CF, 
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CF P F 3 

-< 
Br 

AsBrj 
CF As Li 

V / hexane 

CF 

CF CF P F 3 

t V Br CF AsBr3 

ft 

As Li Li F 3 C 

V // \ // hexane 

C F 3 CF 

C F 3 

A solution o f A r ' L i / A r " L i (50 ml, 19 mmol) in diethyl ether was added dropwise to a 

solution o f AsBr3 (3.2 g, 10 mmol) in hexanes (25 ml) over a period o f 20 minutes at 

room temperature. The mixture was allowed to warm to room temperature and stirred for 

four hours. Solvents and excess AsBr3 were removed in vacuo, leaving a brown oil 

Solvents were removed under vacuum, leaving a brown oil which was distilled under 

reduced pressure (0.01 Torr). Fractions were collected at 81°C (Ar'AsBr2/Ar"AsBr2) and 

110°C (Ar 'Ar"AsBr/Ar" 2 AsBr) . Yield for Ar 'AsBr 2 /Ar"AsBr 2 3.8g (42%) 

The Ar 'Ar"AsBr/Ar" 2 AsBr mixture was dissolved in hexanes and left in the freezer. 

After one month colourless crystals of Ar 'Ar"AsBr appeared. Yield for Ar 'Ar"AsBr 

0.98g(31%). 

Elemental analysis for C 1 6 H6AsBrFi 2 (581.03), Calc C 33.08, H 1.04%; Found C 33.46, 

H 1.04% Yield 3.8g (42%) 
1 9 F N M R ( C D C I 3 ) : Ar'AsBr?: 8-52.7 (s, 6F, 0 - C F 3 ) ; Ar"AsBr 2 : 8-58.5 (s, 3F, 0 - C F 3 ) , 

-62.8 (s, 3F,/?-CF3) ppm; Ar 'Ar"AsBr: 8 -54.9 (broad singlet, 6F, 0 - C F 3 in A r ' ) , -58.8 (s, 

3F, 0 - C F 3 in Ar" ) , 8 -63.5 (s, 3F,p-CF 3) ppm; Ar"?AsBr: 8 -58.4 (s, 6F, 0 - C F 3 ) , -63.6 (s, 

6F , />-CF3) ppm. 



Chapter 4-Group 15 Derivatives 181 

4.6.19 Synthesis of Ar 'Ar"AsH 

CF CF 

H CF CI LiAlH CF 

ft 

As AS 
hexane 

CF CF 

CF C F 3 

LiAlFLj (0.2 ml , 1M in ether, 0.2 mmol) was slowly added at 0°C to an Ar 'Ar"AsCl 

(0.2g, 0.4 mmol) solution in hexanes. The solution was left to warm to room temperature 

and stirred for four days. Solvents were removed in vacuo, and the resulting white solid 

washed three times with hexanes (3*2mL). Crystals were grown by sublimation under 

vacuum. Yield 0.15g (71%). 

Elemental analysis for C i 6 H 7 A s F i 2 (502.1), Calc C 38.27, H 1.41%; Found C 37.98, H 

2.03% 
1 9 F N M R (C 7 D 8 ) : 5 -58.2 (d, 5 J F . H 7.1 Hz, 6F, 0 - C F 3 in A r ' ) , -61.2 (s, 3F, 0 - C F 3 in Ar" ) , 

-63.8 (s, 3F, p - C F 3 ) ppm; ' H N M R (C 7 D 8 ) : 58.06 (d, 3JH-H 8HZ), 7.9 (s), 7.7 (t, 3 J H . H 

8Hz), 7.4 (d, 3JH-H 8HZ), 6.9 (t, 3 J H - H 7 .6Hz) , 5.99 (broad singlet, As-H) ppm. 

4.6.20 Synthesis of Ar'SbCl2/Ar"SbCl2/Ar'2SbCl/Ar"2SbCI/Ar'Ar"2Sb 

2 Ar'Li + 2 Ar"Li ^ Ar'SbCl2+ Ar"SbCl 2 + Ar'2SbCl + Ar" 2SbCl + Ar'Ar'^Sb 
hexane/EtjO 

A solution o f A r ' L i / A r " L i (100 ml, 127 mmol) was added slowly to a SbCb solution in 

hexanes/Et20 at room temperature. A precipitate o f LiCl formed. The solution was stirred 

for 5 hours. The solution was filtered and the solvents and excess SbCh were removed 

under vacuum, leaving a brown oil , which was distilled under reduced pressure (0.02 

Torr): fractions were collected at 95°C (orange oi l , Ar'SbCl 2 /Ar"SbCl 2 ) , and 120°C 

(yellow sticky oil) . The latter yellow oil was dissolved in hexanes and left in the freezer 
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overnight. A white solid formed, which was filtered o f f and washed twice with CH2CI2 

(Ar^SbCl/Ar'^SbCl). Solvents were removed from the filtered yellow solution leaving a 

sticky solid, which was recrystallised, from dichloromethane giving white crystals o f 

Ar 'Ar" 2 Sb. 

Elemental analysis for CwHsFuSb (761.06), Calc C 37.88, H 1.19%; Found C 37.72, H 

1.19%. 

1 9 F NMR (CDCI3): A r ' S b C k 8 -53.2 (s, 6F, 0-CF3) ppm; Ar"SbCb: 8-54.9 (s, 3F, 

0-CF3), -63.6 (s, 3F, p-CF 3) ppm; ArSSbCl: 8-55.1 (s, 12F, 0-CF3) ppm; Ar" 2 SbCl: 

8 -58.4 (s, 6F, 0-CF3), -63.7 (s, 6Y,p-C^) ppm; Ar 'Ar" 2 Sb: 8 -55.5 (s, 6F, 0-CF3 in A r ' ) , 

-58.4 (s, 6F, 0-CF3 in Ar" ) , -63.6 (s, 6F,/?-CF3) ppm. 

4.6.26 Attempted reaction between A r ' L i / A r " L i and B i C b 

A solution of A r ' L i / A r " L i (50 ml , 30 mmol) was added slowly to a B i C l 3 (4.922g, 15.6 

mmol) solution in Et20 at room temperature. A precipitate of LiCl formed. The solution 

was stirred for overnight. The solution was filtered and the solvents and excess SbCh 

were removed under vacuum, leaving a beige solid. Attempt was made to dissolve this 

solid in CDC13 but the material was only partially soluble, and no peaks could be 

assigned in the 19F N M R spectrum. The mixture was not further investigated. 
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5.1 Introduction 

Rotations of chemical bonds may involve some barrier to rotation. NMR is the most 

common method to determine energetic barriers to dynamic processes in molecules. 

As described in the previous chapter, the 1 9F NMR spectra of Ar'Ar"EX (E=P or As; 

X=C1, Br, H) at room temperature exhibit a broad singlet of double intensity 

corresponding to the two CF3 groups of the Ar' moiety in the ortho position. 

p-CF-i from 
Ar' CF 

CI 

\ // 
CF 

CF o-CF 
from Ar 

Ar 

OF, from 
Ar 

A 
n n n T 

59 -60 53 -54 55 56 -57 58 -61 -62 -63 ppm 

Fieure 5.1: Room Temperature F NMR spectrum of Ar'Ar "AsCl 

This broad signal shows the inequivalence of the two CF3 groups, due to hindered 

rotation of the aryl ring around the central atom (P or As). This signal was resolved using 

variable temperature NMR studies over the range -80 to 100°C. The rate at which the 

aromatic ring rotates is governed principally by the dynamics of neighbouring groups, 

which must move aside to allow the ring to flip. I f the rate is comparable to the frequency 

difference between the lines (as for Ar'Ar"EX at room temperature), a broad signal is 
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shown. I f the rate is very slow (low temperature), separate signals appear, and i f the rate 

is very high (high temperature) a sharp single line is observed. 

• Rate measurements 

The temperature range over which measurements are made can be increased by using a 

combination of techniques. In the slow exchange regime, the exchange rate can be 

determined by selective inversion-recovery. When the rate is of the same order as the 

frequency difference between the lines in question, their appearance becomes strongly 

dependent on the exchange rate. 

Some lineshape NMR experiments over a wide range of temperature have permitted 

determination of these rates in the slow, intermediate and fast exchange regimes. The 

temperature range has been extended to a point, where the free energy AG* can be 

separated into two contributions: the enthalpy (AH*) and entropy (AS*) of activation. 

When exchanges are comparable to chemical shift differences, characteristic line 

broadening and coalescence occur in the spectrum. This can be simulated using classicJ^ 

or newer approaches,̂  in order to estimate the exchange rate. 

Quoting the Gibbs free energy of activation, AG*, is equivalent to quoting the rate, since 

transition state theory says that the rate is given by the following equation; 

kT -AG'/RT rate constant - — e 1 

h 

_^[_e-bH*lRTe-tsS*l R 

~ h 

Where k is Boltzmann's constant, h is Planck's constant and the transmission coefficient 

is assumed to be unity. 

In order to separate the enthalpy and the entropy of activation, the rate constant is 

measured as a function of temperature, T, and an Eyring plot of ln(rate constant/T) vs 

(1/T) is constructed. This plot (y=ax+Z>) yields a slope a and intercept b. From this, the 

enthalpy and entropy can be easily determined: 



Chapter 5-VTNMR Studies 190 

AG*= AH* - T AS* 

AH*=-aR 

AS* = R (6-23.76) 

To obtain reliable thermodynamic data, it is important to measure the rate over as wide a 

range of temperatures as possible. 

5.2 Phosphorus compounds 

5.2.1 Ar'Ar'TCl 

• Variable temperature 1 9F NMR measurements 

At ambient temperature, a doublet at -59.3 ppm ( 4J P. F 59.1 Hz) and two singlets (a broad 

double intensity line at -55.4 and a sharp peak at-64.1 ppm) were observed. 

Spectra were recorded for a toluene solution, every 10°C from -80°C to +100°C. (Figure 

5.2). 
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Figure 5.2: Variable temperature F NMR Spectra for Ar'Ar "PCI 
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Figure 5.3: Inequivalent CF3 groups in the FNMR at low temperature 

As the temperature is decreased, the peak broadens, then decoalesces near 10°C. The A 

and B signals then begin to resharpen. 

At low temperature, two doublets and two singlets are observed. Signals assigned to the 

Ar" group are detected at similar positions to those at room temperature (8 -58.8, d, 4JP-F 

59.1 Hz and 8 -62.8 ppm), suggesting either that rotation about the P-Ar" bond is rapid 

on the NMR timescale even at low temperature, or that there is a single fixed 

conformation about the P-C bond. The Ar' moiety shows a doublet at -53.4 ppm (4JP_F 

76.7 Hz )at -83°C and a singlet at -55.8 ppm. 

D 

C 

1 
-54 -56 -58 

5 (ppm) 
-60 -62 

Fieure 5.4: FNMR spectrum at -90°C 
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As the temperature is raised, the broad peak sharpens and the broad signal is resolved into 

a doublet (5 -54.9, 4J P . F 36.5 Hz ) at 70°C. At 100°C, a sharp doublet is also observed at 

-54.9 ppm (4JP.F 41.7 Hz). This shows that the rotation about the P-C bond is fast enough 

on the NMR timescale for the two CF3 groups to become equivalent. 

A doublet 

CF 

C doub et C 

/ 
R CF 

f \ CF 

doublet 
CF 

Figure 5.5: Equivalent CF3 groups in the F NMR at high temperature 

Assignment 

Sa(ppm) 

Ar' 

5b(ppm) 

Ar' 

5c(ppm) 

Ar" 

8d(ppm) 

Ar"(para) 

high temp. 98°C -54.9a -58.8b -64.0 

ambient temp. 22°C -55.5C -58.9d -63.6 

low temp. -83°C -53.4e -55.8 -58.8f -62.8 

Table 5.1: Comparison of fluorine chemical shift data at different temperatures 

a Doublet ( double intensity) %. F 41.7 Hz. b Doublet 4 J P . F 56.8 Hz. 0 Broad, double intensity. d Doublet 

Vr- 58.3 Hz. e Doublet 4 J P . F 76.7 Hz . f Doublet 4 J P . F 59.5 Hz 

The values of 4Jp.F in this kind of system involving Ar'P or Ar"P bonds may contain a 

strong contribution from through space effects. Therefore, this implies that not only the 

two CF3 groups in Ar' are not equivalent but also that one of them may be further away 

from the phosphorus atom. This was confirmed by the crystal structure, where 

intramolecular P—F interactions are observed (see chapter 4). 
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• Rotational barrier calculations 

The Ar' group rotation was investigated in detail by bandshape fitting for temperatures 

between -80°C and +100°C. Lineshapes were simulated by P. Hazendonk using 

MATLAB (section 5.5.3) and compared visually with the experimental spectra (Figure 

5.6). 

OB 
OB 

OA 

02 

•02 2 202 204 2D8 2 08 2.1 2.12 2.14 

xlD* 

Figure 5.6: Simulated (red line) and experimental (blue line) F NMR spectrum at -20°C. 

The exchange rates are summarized in Table 5.2 and the Eyring Plot is shown in Figure 

5.7. 

Temp(°C) Rate Temp 1000/T Ln(Rate/T) 
(S-) (K) 

-13. 125 260 3.852 -0.730 
-1 390 272 3.683 0.362 
2. 475 275 3.623 0.543 
12 1130 285 3.508 1.377 
21 2100 294 3.396 1.964 
30 4250 303 3.300 2.640 
38 7130 311 3.215 3.132 
48 11800 321 3.115 3.604 
58 22700 331 3.021 4.228 
68 45000 341 2.932 4.882 
78 81000 351 2.842 5.439 
88 150000 361 2.766 6.028 

Table 5.2: Rates Determined by Lineshape Analysis. 
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1 0 0 0 / T (K?) 

Figure 5.7: Eyring Plot for Ar 'Ar "PCI 

The Eyring Plot enables the enthalpy and entropy of the rotation to be determined. The 

ring flip process has a barrier of AH* = 51.0 kJ.mol"1. The entropy AS1 is -7.6 J.mol"1.K"1. 

5.2.2 Ar'Ar'TH 

• NMR 

As in Ar'Ar"PCl, at room temperature, the same kind of spectrum is observed, with a 

broad singlet at -57.6 ppm corresponding to the two CF3 groups of the Ar' moiety. As the 

temperature decreases, the broad signal decoalesces near -20°C. The components then 

begin to resharpen. At -90°C, a doublet at -56.0 ppm (4Jp.F 57.8 Hz) and a singlet at -58.6 

ppm are observed. At high temperature (90°C), the singlet sharpens as the two ortho 

trifluoromethyl groups of the Ar' ring become equivalent. A doublet is shown at -57.6 

ppm (4JP.F29.3 HZ) (Figure 5.8). 



Chapter S-VTNMR Studies 196 

8a(ppm) 8b(ppm) 8c(ppm) 8d(ppm) 

Assignment Ar' Ar' Ar" Ar"(para) 

high temp. 90°C -57.6a -61.0" -63.8 

ambient temp. 22°C -57.6° -61.l d -63.4 

low temp. -86°C -56.06 -58.6 -61.5f -62.5 

Table 5.3: Comparison of fluorine chemical shift data at different temperatures 

" Doublet (double intensity) 4 J P . F 29.15 Hz. b Doublet 4 J P . F 45.1 Hz. c Broad, double intensity,dDoublet 4 J P . F 

43.7Hz.e Doublet 4 J P . F 57.84 Hz. f Doublet 4 J P . F 40.0 Hz 

90°C 

40°C 

RT 

20°C 

50°C 

85°C J 

| I I I I | I I I I | I I I I | I I I I | M I I J I M I | I I I I | 

-56.0 -57.0 -58.0 ppm 

Fieure5.8: Section of the VT FNMR spectra ofAr'Ar"PH 



Chapter S-VTNMR Studies 197 

• Rotational barrier calculations 

The Eyring plot of the rate derived from lineshape analysis gave the enthalpy and 

entropy: AH* = 42.4 kJ.mol"1 and AS* -14.9 J.mor'.K"1. Due to a smaller steric demand of 

the hydrogen atom in comparison with the chlorine atom, the energy required for the ring 

to rotate is larger in Ar'Ar"PCl. 

8 

y = -5.1003x + 21.964 
0.9993 

1 

1 «' 1 

1000/T 

Figure 5.9: Eyring plot for Ar 'Ar"PH 

5.2.3 ArAr'TCI/ArAr'PCl 

• NMR measurements 

As explained in chapter 4, the products ArAr'PCl and ArAr"PCl could not be separated. 

The 1 9 F NMR spectrum at room temperature for ArAr'PCl shows two very close doublets 

at -54.1 ( 4 J P . F 42.1Hz) and -54.2 ppm (4JP-F 42.1HZ), corresponding to the CF3 groups in 

ortho positions for the Ar and Ar' moieties. 
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•53.4 -53.8 -54.2 -54.6 ppm 

Figure 5.10:19FNMR spectrum of the ortho-CF^ groups ofArAr'PCl at room 

temperature 

In ArAr"PCl, at ambient temperature, a broad singlet at -55.5 ppm is observed for the two 

0-CF3 groups of the Ar moiety and, a doublet at -58.6 (4JP-F 58.3 Hz) for the 0-CF3 groups 

in the Ar" moiety. 

The broad singlet decoalesced near 0°C, and was resolved at -50°C into a doublet at -53.9 

ppm (4Jp.F 80.9 Hz) and a singlet at -56.4 ppm (Table 5.4). At a lower temperature, the 

doublet overlapped the signals from the ortho-CF^ of ArAr'PCl (Figure 5.11). 

-90°C 

-80°C 

-50°C 

-20°C 

ArAr PCI 

I 1 ' 1 1 I 

•54 -55 -56 •57 ppm 

Figure 5.11: Low temperature l9FNMR spectra oj'ArAr "PCl/ArAr'PCI (the weaker 

peaks are those from ArAr "PCI) 
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At high temperature, the broad singlet is resolved into a doublet at -55.7 ppm as the C F 3 

groups of Ar become equivalent. 

Fast fluorine exchange is also observed for ArAr'PCl. The two doublets at -54.1 and 

-54.3 ppm become a single doublet at -20°C and a broad singlet at -90°C. Unfortunately, 

due to solvent restrictions, it has not been possible to extend the series to lower 

temperature. At 60°C, the doublet becomes an apparent triplet due to overlapping of the 

two doublets (Figure 5.12). This overlapping is due to accidental degeneracy (the 

chemical shifts move with the temperature change). At low temperature the exchange 

occur. 

60°C ij 

-20°C 
| I <l I | U I I | I I I I | I I I I | I I I I | 

•53.8 -54.2 

J 
M 1 1 1 1 I r m - i n-m-n r r r m 

•53.4 •54.6 ppm 

Figure 5.12: Section of the FNMR spectra ofArAr 'PCI 
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Assignment 

8a(ppm) 

Ar' 

8b(ppm) 

Ar' 

8c(ppm) 

Ar" 

8d(ppm) 

Ar"(para) 

high temp. 59°C -55.3a -58.4b -63.8 

ambient temp. 22°C -55.5C -58.6d -63.4 

low temp. -63°C -53.9e -58.6 -58.5f -62.5 

Table 5.4: Comparison of fluorine chemical shift data at different temperatures 

a Broad singlet, overlapped with signal from ArAr'PCl. b Doublet 4 J P . F 59.7 Hz . 0 Broad, double intensity.d 

Doublet 4 J P . F 58.3Hz.e Doublet 4 J P . F 80.9 Hz . f Doublet 4 J P _ F 59.7 Hz 

• Rotational barrier calculations 

Simulations have only been done for ArAr'TCl. Calculations for ArAr'PCl would require 

variable temperature NMR spectra at a lower temperature than -90°C. 

The Eyring plot of ArAr'PCl is shown in Figure 5.13. 

6 

1 

y = -6.2475x + 22.722 
0.9985 

1000/T 

Figure 5.13: Eyring Plot ofArAr"PCl 
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The enthalpy and entropy determined from the Eyring plot are: AH* = 51.9 kJ.mol"1 and 

AS* = -8.6 J.mor'.K"1. The enthalpy is similar to the one found in Ar'Ar"PCl. This is due 

to the fact that the two molecules only differ by the presence of one more para-CF^ group 

from the Ar moiety. Para-CFi groups are not expected to have any influence on the 

rotational energy barrier. The 4JP-F coupling constants determined at different temperature 

also reflect the rotation of the molecule (Table 5.5). The molecule is in a different 

conformation and the ortho-CFi groups are closer or further away from the phosphorus 

atom. The presence of through space interactions (found in the crystal structure) 

contributes to the change in the coupling constants. As the molecule rotates, the CF3 

groups are closer or further away from the phosphorus atom. 

4JP-F (Hz) 

Ar'(or Ar) Ar" 

High Temp. Room Temp. Low Temp. High Temp. Room Temp. Low Temp. 

Ar'Ar"PCl 41.7 76.7 56.8 58.3 59.5 

Ar'Ar"PH 29.1 57.5 45.1 43.7 40.0 

ArAr"PCl 77 80.9 59.7 58.3 59.7 

Table 5.5: Jp-F coupling constants at different temperatures 

At high temperature, the two CF3 groups of the Ar' groups are equivalent; they are 

equidistant from the central atom. When the temperature decreases, they become 

inequivalent and one CF3 is further away from the phosphorus atom. Only one P-F 

coupling is seen in the NMR spectrum, which shows a doublet and a singlet. 
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5.3 Arsenic compounds 

5.3.1 Ar'Ar"AsCl 

• NMR measurements 

The room temperature 1 9F NMR spectrum of Ar'Ar"AsCl is shown in Figure 5.1. As for 

the phosphorus derivatives, the spectrum exhibits a broad singlet corresponding to the 

two 0 - C F 3 groups of the Ar' moiety. Variable temperature spectra were recorded in d%-

toluene over the range -80°C to 60°C (Figure 5.14). 

At the temperature is lowered, the signal broadens, then decoalesces near -5°C, and 

resharpens to give two distinct singlets from -60°C. As the temperature rises, the signal 

sharpens and a singlet is observed at 60°C. Table 5.6 summarises the fluorine chemical 

shifts at different temperatures. 

C F CI 

1 J 80°C C F 

30°C 

1 10°C 

RT 

40°C i 

A 60°C 
M I 1 1 1 1 1 11 1 1 1 

-52 -54 -56 ppm 

Figure 5.14: Section of the Variable Temperature NMR spectra ofAr'Ar"AsCl 
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At -80°C, the width of the two singlets differs. This can be explained by through-space 

interaction with some fluorines from one of the 0-CF3 groups and the arsenic atom 

(chapter 4). 

Assignment 

8a(ppm) 

Ar' 

Sb(ppm) 

Ar' 

8c(ppm) 

Ar" 

Sd(ppm) 

Ar"(para) 

high temp. 50°C -54.7 -58.8 -63.6 

ambient temp. 22°C -54.7 -58.8 -63.5 

low temp. -80°C -52.9 -55.6 -58.2 -62.7 

Table 5.6: Comparison offluorine chemical shifts at different temperatures for 

Ar'Ar"AsCl 

» Rotational barrier calculations 

Rate constants were calculated by lineshape analysis and the Eyring plot was constructed 

(Figure 5.15). The Eyring plot gave AH* = 48.7 kJ. mol"1 and AS* = 0.4 J.mol"1. K"1. 

5.8598X + 23.803 
0.999 R 

a> 2 

c 1 

0 
125 

1000/T (1/K) 

Figure 5.15: Eyring Plot for Ar 'Ar "AsCl 
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The enthalpy is slightly lower than for the analogous phosphorus compound, Ar'Ar'TCl. 

5.3.2 Ar'Ar"AsBr 

• NMR measurements 

Variable temperature 1 9F NMR spectra showed the same behaviour as those for 

Ar'Ar"AsCl. The broad signal at room temperature broadens as the temperature 

decreases, and decoalesces at about 0°C to give two sharp singlets at -50°C (Figure 5.16). 

The 0-CF3 groups are then inequivalent. 

When the temperature is increased, the broad singlet sharpens and a sharp singlet appears 

at 100°C, indicating the equivalence of the CF3 groups in the ortho position. 

-53 -54 -55 -56 -57 -58 -59 -60 -61 -62 ppm 

Figure 5.16:19F NMR spectrum ofAr'Ar"AsBr at -50°C 

r n 

J 
T 

-53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 

Figure 5.17: FNMR spectrum ofAr 'Ar "AsBr at 100°C 
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Over the whole range of temperature, the signals from the CF3 groups of the Ar" aryl ring 

are found at almost the same chemical shifts (Table 5.7). 

Assignment 

8a(ppm) 

Ar' 

8b(ppm) 

Ar' 

Sc(ppm) 

Ar" 

5d(ppm) 

Ax"(para) 

high temp. 100°C -54.8 -58.9 -63.9 

ambient temp. 23°C -54.8 -58.7 -63.5 

low temp. -50°C -53.4 -55.6 -58.5 -62.8 

Table 5.7: F chemical shifts at different temperatures for Ar 'Ar "AsBr 

• Rotational barrier calculations 

The Eyring plot shown in Figure 5.18, gave AH* = 49.0 kJ. mol"1 and AS* = -3.0 J.mol"1. 

K-'. 

25 

20 y = -5.898X + 23.401 
0.9997 

15 

10 

1 1 

1000/T 

Figure 5.18: Eyring plot for Ar'Ar "AsBr 
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5.3.3 Ar'Ar"AsH 

Spectra were recorded from -80°C to +100°C. The room temperature spectrum did not 

show a broad singlet but a sharp one for the 0-CF3 groups. This started to broaden at -

10°C and decoalesced near -50°C. The spectrum at -80°C showed two singlets at -56.3 

and -58.1 ppm (Figure 5.19). These two signals were still broad signals, and while studies 

at a lower temperature are expected to sharpen them, low temperature experiments were 

limited by the solvent, which freezes at -90°C. Spectra at high temperature showed a 

sharp singlet. 

Assignment 

5a(ppm) 

Ar' 

8b(ppm) 

Ar' 

8c(ppm) 

Ar" 

8d(ppm) 

Ar"(para) 

high temp. 90°C -57.6 -60.7 -63.8 

ambient temp. 21°C -57.6 -60.8 -63.4 

low temp. -87°C -56.3 -58.1 -61.0 -62.5 

Table 5.8: Comparison of the fluorine chemical shifts at different temperatures for 

Ar'Ar"AsH 

1 1 I J 

-60 -62 57 58 -59 -61 ppm 

Fleure 5.19: FN MR spectrum ofAr'Ar"AsHat -87°C 
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• Rotational Barrier calculations 

Simulated spectra (red line) are shown Figure 5.21. Those were compared with the 

experimental spectra (blue line). 

The Eyring plot (Figure 5.20) derived from lineshape analysis gave AH* = 37.8 kJ. mol"1 

and AS* = -7.6 J.mor'.K-1. 

25 

y = -4.5442X + 22.848 20 
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Fieure 5.20: Eyring Plot of Ar 'Ar "AsH 
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5.4 Discussions. 

The thermodynamic parameters and the temperature of coalescence Tc, are listed in 

Table 5.9. 

AH^kJ.mol"1) AS^J.mor'.K"') AG*(298K)(kJ) Tc (°C) 

Ar'Ar"AsH 37.8±0.2 -7.6±1 40.0 -50 

Ar'Ar"AsCl 48.7±0.4 0.4±2 48.6 0 

Ar'Ar"AsBr 49.0±0.2 -3.0±1 50.0 -5 

Ar'Ar"PH 42.4±0.5 -14.9±1 46.9 -20 

Ar'Ar 'TCl 51.0± 0.6 -7.6± 3 53.2 10 

ArAr'TCl 51.9±0.4 -8.6±1 54.5 0 

Table 5.9: Thermodynamic parameters for Ar'Ar"EX and ArAr"PCl (E = P or As; X = 

H, CI or Br) 

The enthalpy of activation of arsenic derivatives increases from Ar'Ar"AsH to 

Ar'Ar"AsBr: AH*A SH < AH*ASCI < AH*AsBr- This is also observed in phosphorus 

compounds. AH* PH < AH* PCI. This reflects the steric demand of the bromine atom in 

comparison with the hydrogen atom. The bigger the atom X is, the more energy the 

molecule will need to rotate. 

In analogous compounds, the enthalpy of activation is larger for phosphorus than for 

arsenic (AH* Asci < AH* PCI) reflecting a greater space around the larger atom. This is 

confirmed in the crystallographic data (Table 5.10 and 5.11). Due to less steric demand of 

the hydrogen, bond distances and angles are shorter in Ar'Ar"EH derivatives. The longer 

the E-C distance is, the less energy is required for the rotation. The same applies to the 

bond angles. They are much smaller in Ar'Ar"AsH than in all other compounds 

containing halogens. The C'-E-C" angle does not seem to play an important role in the 

rotational energy. In fact, angle C'-As-C" is smaller than C'-P-C" in the chlorine 
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derivatives and the enthalpies of activation are very close to each other (AH 1

 A s c i = 48.7 

kJ.mol"1 and AH*Pci= 51.0 kJ.mol"1). 

Bond distances (A) Ar'Ar"AsH Ar'Ar" AsCl Ar'Ar" AsBr Ar'Ar'TCl 

E-X 0.98 2.20 2.35 2.06 

E-C' a 1.99 2.02 2.01 1.88 

E-C"a 1.98 1.99 1.98 1.85 

Table 5.10: Bond distances (A) in Ar'Ar"EX compounds. 

a C is the ipso carbon from the Ar' moiety and C"is the one from the Ar" moiety. 

Angles (°) Ar'Ar"AsH Ar'Ar"AsCl Ar'Ar" AsBr Ar'Ar'TCl 

X-E-C 79.20 98.00 98.91 100.23 

X-E-C" 83.50 100.08 101.43 102.10 

C'-E-C" 98.09 102.98 103.15 109.23 

Table 5.11: Bond Ansles (°) in Ar'Ar "EX compounds 

Except for Ar'Ar"AsCl, all the entropy values are negative. This indicates that the 

transition state is more ordered than the optimum geometry, and that there is a preferred 

orientation of the ring. This orientation is due to the intramolecular interactions found in 

all the compounds structurally characterised, where four short E—F contacts are 

observed in each case (chapter 4). Two of those contacts come from the same CF3 group 

in the Ar' moiety. 

In Ar'Ar"AsCl, the entropy change is negligible and the rotational energy is just 

governed by the enthalpy factor. Entropy values are larger in the arsenic compounds than 
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in phosphorus derivatives. This can be explained by less steric constraint, due to a larger 

size of the As central atom. 

5.5 Experimental 

5.5.1 Syntheses 

All the compounds have been prepared in the laboratory, and syntheses are described in 

Chapter 4. 

5.5.2 NMR spectroscopy 

NMR measurements were performed on a Varian VXR 400 (Ar'Ar'TCl) or a Varian 

Inova 500 spectrometer at 376.34 MHz and 470.26 MHz respectively. For low 

temperature, the probe was cooled using liquid N2 and allowed to equilibrate for a few 

minutes at each temperature before each acquisition. Al l NMR spectra were recorded in 

d8-toluene. Temperature calibration was done by chemical-shift difference between the 

OH resonances and CH n resonances in either methanol (for low temperature) or ethylene 

glycol (for high temperature). 

5.5.3 Lineshape analysis 

The simulation program was written using MATLAB, assuming that the CF3 groups were 

rotationally averaged to be equivalent. The phosphorous-containing compounds were 

simulated as an AX system exchanging with an MX, where the nuclei A and M are 

observed, representing the CF3 groups. The chemical shift of A and M as well as the 

couplings JAX and JMX were used as free parameters, along with their spin lattice 

relaxation times, T2A and T2B. 

Simulations were performed by varying the rate of exchange, and comparing the results 

with the experimental spectrum. The chi-squares (%) were computed between the 

simulated and measured data points. The rate with the lowest chi-squares (x ) was taken 

as the measured rate. 
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6.1 Introduction 
The chemistry of platinum has been widely developed over the last 50 years due to its 

nobility and catalytic properties. Its properties depend on the large number of valence d-

electrons, which provide a series of orbitals of a range of energies and symmetries 

capable of bonding with a large range of compounds. 

6.2 Platinum complexes 
Platinum exists in different oxidation states, on which depends the geometry of the 

complexes (Table 6.1). 

Oxidation states Coordination 

number 

Stereochemistry Examples 

0 (d'°) 3 planar [Pt(PPh3)3] 

4 tetrahedral [Pt(PF3)4] 

2(d 8) 4 square planar [PtCl4]2" 

5 trigonal bipyramidal [Pt(qas)ir 
3(d 7) 4 square planar [Pt(C6Cl5)4]' 
4(d 6 ) 6 octahedral [PtCl 6] 2 ' 

8 "piano-stool" Pt0i 5-C 5H 5)Me 3] 

5(d 5) 6 octahedral P W 

6(d 4) 6 octahedral PtF6 

Table 6.1: Different oxidation states of platinum 

• Oxidation State 4 (d6) 

Al l complexes in this oxidation state which have been characterised, are octahedral and 

diamagnetic, with a low spin t2 g

6 configuration. 

There are several Pt(IV) complexes. These compounds are thermodynamically stable and 

kinetically inert. Those with halides, pseudo-halides and N-donors are especially 

qas: tris-(2-diphenylarsinophenyl)arsine, As(C6H4-2AsPh2)3 
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numerous: [PtX6] ", [PtXtLi], [PtL6] have been characterised. O-donor ligands such as 

OH- also coordinate to Pt(IV), but S-, Se-, P- and As-donor ligands tend to reduce it to 

Pt(II). 

• Oxidation state 3 (d7) 

This oxidation state is much less encountered. However, the most abundant examples of 

Pt(III) are dinuclear compounds of the type [Pt2(L-L)4L2]n~ 1 with single Pt-Pt bonds and 

a tetrabridged structure. 

• Oxidation state 2 (d8) 

This is the most abundant oxidation state. 

The complexes of Pt(II) are diamagnetic and square planar. The diagram below shows the 

change in energy of the d-orbitals on the metal as the axial ligands are removed from an 

octahedral complex. Any orbital containing "z" character (d z

2, dxz, dyz) lowers in energy, 

and the other orbitals rise in energy accordingly. These effects cause the crystal field 

splitting pattern of the d orbitals to change dramatically, thus causing the pairing of the 

eight electrons. 

d x V 

dz2 

t 2g 

• • 

Figure 6.1: Electron pairing in a square planar complex 
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Not many complexes are formed with O-donor ligands, although complexes [PtX4]2" (X = 

CI, Br, I , SCN, CN) can easily be obtained. Complexes with ammonia and amines of the 

types [PtL4]2 + or PtL2X 2 are also numerous. 

• Oxidation state 0 (d 1 0) 

Complexes in oxidation state 0 are compounds of the type [Pt(PR.3)4]. They are air stable 

with a tetrahedral geometry. Their most important property is their readiness to dissociate 

in solution to form three-coordinate planar [Pt(PR.3)3]. 

6.2.1 Platinum complexes as chemotherapeutic agents 

The discovery of the cytotoxic properties of cis-dichlorodiammineplatinum(II) 

[PtCl2(NH3)2], now known as anticancer cisplatin, was made by the physicist Rosenberg 

and coworkers in 1965.2 They also noticed that the active complexes Pt(NH3)2Cl2 and 

Pt(NH3)2Cl4 were only active in their cw-configuration.^ Since then, the search for anti-

tumour active platinum complexes has been intense and extensive, with a multiplicity of 

ligand combinations being studied. However, some attempts to replace nitrogen donors 

with phosphorus have not generally been successful. This has been attributed to a strong 

trans effect exerted in dichlorophosphane-Pt(II) compounds. Fluorophosphanes are 

believed to overcome this effect due to their strong a-donor and 7i-acceptor properties.4'5 

The complex c/'.y-[Pt(ArP=PAr)(PEt3)Cl2], containing a low-coordinate phosphorus 

ligand, has shown anti-tumour properties, however, against a range of cancers.̂  

6.2.2 NMR spectroscopy 

When considering characterisation of compounds using NMR, bonding any phosphorus 

species directly to platinum has one advantage. Both Pt(0) and Pt(II) are diamagnetic and 

do not broaden the signal due to unpaired electrons. 

In square planar platinum(II) complexes containing phosphane ligands (PR3), the 3 1P 

NMR spectrum of the complex provides valuable information about the cis or trans 

arrangement of the ligands. The isotope 1 9 5Pt, 1=1/2, constitutes 33.8% of naturally 
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occurring platinum; in a 3 1 P NMR spectrum of a complex such as [PtCl2(PEt3)]2, there is 

spin-spin coupling between the 3 1 P and the I 9 5 Pt nuclei which gives rise to satellite peaks. 

If the PR.3 group are mutually trans, the value of Jp.pt ~ 2000-3000 Hz but if the ligands 

are cis, the coupling constant is much larger, ~ 3000-3500 Hz.7 While the values vary 

somewhat, comparison of the 3 1 P NMR spectra of cis and trans isomers of a given 

complex enables the configuration to be assigned. 

When two different phosphorus donors are present, as in the present work where PEt3 is 

usually ligated to platinum because of the starting material used (section 6.2), the 2 J 

coupling between the phosphorus atom of the new phosphane ligand and the phosphorus 

from PEt3 (2Jp.p) shows a great difference: for the trans isomer 2Jp.p varies between 400 

and 800 Hz, whereas it is very small in the cis isomer (about 15Hz). The coupling 

constant between the phosphorus and the platinum ('jpt-p) is revealed to be greater in the 

cis isomer ('jpt.p from 3000 to 6000 Hz) than in the trans isomer ('Jpt.p from 2000 to 3000 

Hz). Goodwin** and Roden^ demonstrated that the value of the coupling constant also 

depends on the groups attached to phosphorus. They showed that the largest coupling 

constants were formed in the compounds where there were the greatest electron 

withdrawal, for example 1 Jpt.p for Ar'PCb is bigger that that for Ar'PH2. 

6.3 The "platinum dimer" 
The platinum(II) dimer has been used initially in previous work on fluoromes and 

fluoroxyl systems because the diphosphene ArP=PAr did not react with similar Pt(II) 

compounds (PtCb, PtCl2(PhCN)2). This dimer is prepared in three steps according to the 

reaction shown in Equation 6.1.1^ 

http://Jp.pt


Chapter 6 - Synthesis ofPt complexes 219 

PhCN N C P h . > P h C N > P E t , 
PtCI2 :pf Pt: 

135°C CI CI CH2CI2 CI CI 

PtCI2 

CI E U P CI 

Pt Pt 

CI CI P E t 

Equation 6.1: Synthesis of Pt Dimer 

6.3.1 Reactions with low coordinate phosphorus species 

The synthesis of this kind of complex involved the addition of one equivalent of Pt dimer 

to two equivalents of phosphorus compound in dichloromethane, at room temperature. 

• with phosphanes 

The platinum dimer can form complexes with phosphanes containing bulky electron-

withdrawing substituents such as ArPCb, ArPF2, Ar'PCb, etc. Goodwin** and Roden^ 

have found that there are two possible isomeric products, the cis and trans complexes. 

The actual mechanism for the reaction is likely to be analogous to normal substitution in 

a square planar complex,11 by formation of an initial five coordinate species, which then 

loses one of the original substituents to leave the square planar product. The mechanism 

proposed by Roden^ is as follow: 
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ArPY 

ArPYz E L P c ArPYz CI Et ,P 
1 R PI Pt p 

ArPV 

CI CI P E U CI CI CI PEt 
CI 

cw-isomer PYz 

2) 

ArPY 

CI Et ,P C CI EUP CI Et .P 
\ / YzPAr>v / 

C 
Pt P 

R R R 
CI CI P E t , CI ArPYz C P E 

C 

/nms-isomer 
ArPYz 

Figure 6.2: Formation of the two possible isomers 

The initial product of the reaction is often the trans isomer but it rearranges to give the 

thermodynamically more favourable product, the cw-isomer. The formation of the trans 

isomer as the initial product is due to the trans effect, which is often seen in reactions of 

phosphanes with platinum complexes,12 and this affects the reaction of the complex and 

the nature of the isomeric products. 

Another factor could be that i f the phosphane approaches on the opposite side of the 

molecule to the PEt3 group, it is sterically more favourable to form the trans product first. 

It has been noticed that the time taken for the rearrangement varies with the phosphane. 

This could be due to: 

- during the rearrangement, the steric bulk of the phosphane may 

influence the approach of the detached PEt3 group. The larger the steric 

bulk of the phosphane, the more likely the PEt3 group is to coordinate 

in the trans position. (Figure 6.3) 

- the strength of the Pt-P bond may directly influence the formation of 

the necessary intermediate. 
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CI loss of PEt Cl jArP 
free rotation of groups sbout Pt PI pt c CI atom ci P E t 

PAiC I 

P E t CI C I A P Cl jArP 
Pt Pt 

CI CI CI P E U 

PEt3 attacks forming the trans isomer 

Fisure 6.3: Rearrangement of the initial tram product to give the thermodynamically 

more stable cis product. 

The intermediate species formed in these types of rearrangements has been shown to be 

three-coordinate. This is formed by the loss of the most labile ligand on the platinum 

centre. The Pt-Cl bond are stronger than the Pt-P bonds, and X-ray studies on the 

compounds have shown that the PEt3 groups bonded to the platinum are more weakly 

bound than electronegative phosphanes or phosphaalkenes.9 This would imply that the 

Pt-PEt3 bond is the weakest bond in the complex (the average Pt-PEt3 bond length is 

2.31A, whereas it is ~2.18 A for other phosphane ligands containing the strongly 

electronegative substituents Ar, Ar' or Ar"9). 

• with diphosphenes 

In complexation with diphosphenes, r|'-coordination is preferred.13-15 The phosphorus 

atoms become inequivalent (even in a symmetrical diphosphene) so they are easily 

detectable in NMR spectroscopy. With unsymmetrical compounds, the coordination takes 

place at the less hindered phosphorus.5 
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6.4 Synthesis of some Platinum-Phosphane Compounds 

6.4.1 Synthesis of the Pt dimer 

2PhCN + PtCl2 

PtCl2(PhCN)2 

PtCl2(PEt3)2 + PtCl2 

C H 2 C ' 2 » c«-[PtCl 2(PhCN)] 2 

2PEt3 

-2PhCN 

(CHC12)2 

_ ^ PtCl2(PEt3)2 

frans-[PtCl2(PEt3)]2 

Equation 6.2: Synthesis of trans-[PtCl2(PEt3)J 2 

PtCb was dissolved in a CH2CI2 solution of PhCN at 70°C, forming a yellow solution. As 

the solution cooled, yellow crystals formed and were isolated. The product 

[PtCbCPhCNh] was then added to a solution of PEt3 in dichloromethane. The resulting 

compound was dissolved at high temperature in a solution of PtCk in (CHCbh to form 

the Pt dimer. This was recrystallised from dichloromethane to give yellow crystals. The 
3 1P NMR of the Pt dimer showed a singlet at 11.6 ppm with platinum satellites ('jp.pt 

3833.9 Hz) (Figure 6.4). 

http://'jp.pt
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I I I I I I I I I I I I I I I I I I I I I I I I I I I 

40 30 20 10 ppm 

Fieure 6.4:31P spectrum of [PtCl2(PEts)]2 

The structure has been determined in the department by A.S. Batsanov at 100K (Figure 

6.5), but was also previously reported1^ at room temperature. 

a 

am 

r. 

Fieure 6.5: Molecular structure of [PtCl2(PEt3)J2 
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As shown in Table 6.2, the difference in temperature has little effect on the structure. 

Room temperature16 100K 

Pt-P 2.212(3) 2.2199(11) 

Pt-Cl(l) 2.318(3) 2.3194(11) 

Pt-Cl(2) 2.282(3) 2.2891(11) 

P-Pt-Cl(l) 89.43(10) 89.03(4) 

Cl(l)-Pt-Cl(2) 174.59(9) 175.00(4) 

P-Pt-Cl(l) 179.07(9) 179.02(4) 

Table 6.2: Comparison of selected bond distances (A) and angles (°) of [PtCh(PEt3)]'2 at 

different temperatures. 

6.4.2 Reaction between Ar'Ar'TCl and Pt dimer 

C F 

C F 
CI 

[PtCl2(PEt,) mi 

\ CI 
CI CH,C1 Pt 

/ \ CI 
P E t , 

C F C F 

Equation 6.3: Synthesis oftrans-[PtCl2(PEt3)(Ar'Ar "PCI)] 

Ar'Ar'TCl was added to a solution of [PtCl2(PEt3)]2 in (CHC12)2 and the solution was 

allowed to stir for two days. The 3 1P NMR shows a doublet with platinum satellites at 

21.2 ppm ( ' jp .p t 2760.3Hz, 2Jp.p 562.0 Hz) corresponding to the PEt3 signal, and another 

doublet at 94.5 ppm ( ' jp .p t 2531.4 Hz, 2Jp.p 562.0 Hz) for the phosphane. This reveals the 

complex to be a trans isomer. 

http://'jp.pt
http://'jp.pt
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The 1 9F NMR spectrum exhibits two doublets at -53.4 (double intensity, 4 J P . F 12.7 Hz) 

and -56.4 (4Jp.F 61.2 Hz) and a singlet at -62.8 ppm. As explained in chapter 4, there is a 

difference in the coupling from the CF3 groups in the Ar' groups and the one in the Ar" 

moiety. Al l the CF3 groups are inequivalent and this explains the difference in the 

coupling constant from one trifluoromethyl group to the other one. This confirms the 

results found by Roden.9 

Stirring for a longer period did not allow the compound to rearrange to the c/s-isomer. 

The NMR spectra did not show any change. 

6.4.3 Reaction between Ar" 2 PCl and [PtCl 2(PEt 3)] 2 

The Pt dimer was added to a solution of Ar'^PCl in dichloromethane and the resulting 

yellow solution was allowed to stir for a few days. 

/raHS-[PtCl 2(PEt 3)] 2 + Ar" 2PCl 

C F 

CF 

h 

CH,C 

U7V CI 

CI P E t 

Equation 6.4: Synthesis of trans-[PtCl2(PEt3)(Ar "2PCl)] 

The 3 1P NMR showed distinctive peaks with satellites, indicating the coordination of the 

phosphanes to the platinum. Resonances assignable to the PEt3 group (8 17.5 ppm, Jp.p 

562.2 Hz, ' jpt .p 2752.4 Hz) showed the formation of a trans isomer. The signal for the 

phosphorus on the phosphane group was detected at 91.0 ppm as a doublet of septets 

(2JP.P 563.3 Hz, V p 2685.9 Hz, 4JP.F 8.0 Hz). 

The 1 9F NMR spectrum exhibited a doublet at -55.7 ( 4J P. F 7.3 Hz) and a singlet at -64.0 

ppm. 
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Fieure 6.6:31P NMR spectrum of [PtCh(PEt3)(Ar"2PCl)] 

The solution was allowed to stir for two weeks to see i f any rearrangement from a trans 

to a cis isomer occurred, but no changes were observed in the NMR spectrum. 

6.4.4 Reaction between Ar" 2PH and [PtCl 2(PEt 3)] 2 

C F C F 

A 
C F C F C F C F 

H [PtCUPEt,) CI 

H Pt CH,C / P E t 
CI 

Equation 6.5: Synthesis of [PtCl2(PEt3)2(Ar"2PH)] 
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[PtCl2(PEt3)]2 was added to an Ar'^PH solution in dichloromethane at room temperature. 

The resulting yellow solution was stirred for a few hours. The 3 IP NMR spectrum showed 

the formation of the trans isomer, with two doublets with Pt satellites at 93.8 and 16.4 

ppm. 

PEt3 P o-CF3 p-CF3 

8 (ppm) 16.4 93.8 -57.8 -63.9 

'Jpt-p (Hz) 2551.7 2676.8 4JP.F 2.8 
2Jp-p(Hz) 501.4 501.4 

Table 6.3: 8ilP and FNMR data for [PtCl2(PEt3)(Ar"2PH)] 

6.4.5 Reaction between ArPBr 2 and [PtCl2(PEt3)]2 

C F C F 

Br 

f w f \ [PtCUPEt,)] 3/J2 
PBr Br \ CH,C1 P E t 

Pt 
CI \ 

Equation 6.6: Synthesis of [PtCl2(PEt3)(ArPBr2)J 

The Pt dimer was added to a solution of ArPBr2 in dichloromethane and the resulting 

yellow solution was allowed to stir for a month. NMR samples were made regularly to 

check any change in the reaction mixture. 

The first complex formed was the c/s-isomer. The 3 1P NMR spectrum showed, for the 

PEt3 group, a doublet with satellites at 16.6 ppm ('jpt.p 2966.4 Hz, 2Jp.p 13.4 Hz), and the 

signal corresponding to the phosphorus from ArPBr2 was a septet with platinum satellites 

at 90.5 ppm ( V P 5287.5 Hz, 4J P . F 11.8 Hz). The 1 9F NMR showed a doublet with 
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platinum satellites at -49.2 ppm (4JP-F 12.4 Hz, 5Jpt-F 30.3 Hz, 6F, 0-CF3), and a singlet at 

-64.0(3F,p-CF3). 

After a week new peaks started to appear in the spectra: in the 3 1P NMR spectrum a 
2 1 

doublet at 14.4 ppm ( Jp.p791.8 Hz, JP.pt 2731.6 Hz), indicating the presence of a trans-

isomer, together with a weak doublet of multiplets at 92.4 ppm (2Jp.p 792.4 Hz). 

Unfortunately, the signal was too weak to be able to see any platinum satellites. The 1 9F 

NMR spectrum displayed a doublet with platinum satellites at -49.8 ppm(4Jp.F 13.7 Hz, 
5JP,.F 30.5 Hz) 

Spectra were recorded regularly and a number of new signals became visible in the 

phosphorus spectra, notably some multiplets at 145.8 (4JP-F 61.0 Hz), 138.2 ( 4 J P . F 62.5 

Hz), and 130.2 (4JP-F 63.0 Hz) ppm. The chemical shifts and the coupling constants 

corresponding to these multiplets suggest the presence of ArPCb, ArPBrCl and ArPBr2 

respectively in solution. The 1 9F NMR spectrum confirms this hypothesis, with the 

presence of doublets at -53.0, -53.4 and -53.5 ppm with coupling constants of 60.9, 61.6 

and 62.9 Hz respectively. The existence of these species implies that halogen exchange 

occurs in solution between the chlorine of the platinum dimer and the bromine atoms of 

the phosphane. 

Attempts to grow crystals out of the solution gave orange crystals (not suitable for X-ray 

diffraction). The 3 1P NMR of these crystals consisted of a singlet at 10.9 ppm with Pt 

satellites ('Jpt-p 3701 Hz) corresponding to the chemical shifts and coupling constant 

found in [PtBr2(PEt3)]2. This also shows that a Br/CI exchange has occurred. 

Usually, a cw-complex is the most thermodynamically stable compound and does not 

rearrange itself to the trans isomer. Initial formation of a cw-complex, however, followed 

by halogen exchange, allows the formation of a trans complex. 

6.4.6 Reaction between Ar'PBr 2/Ar"PBr 2 and [PtCl 2(PEt 3)] 2 

[PtCl2(PEt3)]2 was added to a solution of Ar'PBr2/Ar"PBr2 in dichloromethane. The 

solution was stirred for three weeks until no change was observed in the spectra. 
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Initially, the 3 1P NMR spectrum showed the formation of two c/s-isomers. (Table 6.4) 

Unfortunately, the signals from coordinated Ar"PBr2 were to weak to allow 

determination o f 1 Jpt.p 

Ar'PBr 2 Ar"PBr2 

PEt3 P PEt3 P 

5 (ppm) 15.7 92.2 15.4 89.0 

'jpt-ptHz) 3004 5274.1 3174.7 

2Jp-p(Hz) 13.9 14.2 10.8 

Table 6.4: Initial SJIP NMR data for [PtCl2(PEt3)(Ar'PBr2)J and 

[PtCl2(PEt3)(Ar"PBr2)J 

In the 1 9F NMR spectrum, two doublets and one singlet were observed. 

Ar'PBr 2 Ar"PBr2 

o-CF3 p-C¥3 

8 (ppm) -49.0 -55.5 -63.4 

4JP-F (Hz) 10.6 6 

5Jpt-F (Hz) 28.8 ? 

Table 6.5: 8 FNMR data for [PtCl2(PEt3)(Ar'PBr2)] and [PtCl2(PEt3)(Ar"PBr2)] 

After a few days, many other peaks appeared in the spectrum. In the PEt3 chemical shift 

area, (~ 11-17 ppm), six different signals with Pt satellites were distinguished but these 

could not be assigned (Table 6.6). The observation of new signals at 69.7 (septet) and 

67.7 (quartet) ppm, with coupling constants of 65.5 and 61.3 Hz respectively, suggests 

the possible formation of Ar'PClBr and Ar"PClBr. The 1 9F NMR spectrum also 

contained a number of new doublets. 
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8 (ppm) 1J Pt.p (Hz) 2 J p.p (Hz) Isomer 

15.4 3210.2 13/7 cZT" 

12.9 2573.5 561.12 fruws 

13.4 3204.1 15.2 cis 

13.0 3204.1 10.7 cis 

Table 6.6: P chemical shifts and coupling constants of different products of the reaction 

between Ar 'PBr2/Ar "PBr2 and [PtCl2(PEt3)]2 

As already discussed in the reaction with ArPBr2 some CI/Br exchange seems to occur 

when reacting the Pt chloride dimer with a bromophosphane. 

6.4.7 Reaction between Ar" 2PBr and [PtCl 2(PEt 3)] 2 

CF 

v / 
F 3 C 

B r 
[PtCl,(PEt,) 

\ CI 
Br CH,C! Pt 

CI 

C F CF 

Equation 6.7: Synthesis of [PtCl2(PEt3)(Ar "2PBr)J 

A solution of [PtCl2(PEt3)]2 in dichloromethane was added to a solution of Ar"2PBr. The 
3 1P NMR spectrum showed the formation of a trans complex: 5 12.9 ppm (d, 2 J P . P 562.5 

Hz, VP, 2654 Hz) (Figure 6.7); 5 86.3 ppm (d of septets, 2JP.P 562.3 Hz, 'JPI-P 2637.6 Hz, 
4JP.F 5.5 Hz) (Figure 6.8). 
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rm 

96 92 88 84 80 ppm 

31 Fieure 6.7: J'P NMR spectrum of [PtCl2(PEt3)(Ar"2PBr)]. (Phosphane region) 
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F/gwg &&• 3 / P NMR spectrum of the reaction between [PtCl2(PEt3)(Ar"2PBr)](PEt3 

region) 

The I 9 F N M R spectrum displayed a doublet with platinum satellites at -55.3 (4JP.F 6.0HZ) 

and a singlet at -63.8ppm. 

This sample also showed some halogen exchange after being stirred for a while. 
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All the bromophosphane derivatives reacted with the "platinum dimer" seem to undergo 

some exchange between the bromine and the chlorine atoms of the platinum compounds. 

To prevent this exchange from happening, the bromophosphane compounds were reacted 

with the platinum bromide dimer [PtBr2(PEt3)]2. 

6.4.8 Synthesis of [PtBr 2(PEt 3)] 2 

PtBr2 was dissolved in a solution of PhCN at 70°C, forming a yellow solution. As the 

solution cooled yellow crystals formed and were isolated. The product, [PtBr2(PhCN)2], 

was then added to a solution of PEt3. The resulting compound was then dissolved at high 

temperature in a solution of PtBr2 in (CHC12)2 to form the Pt dimer. The 3 1P NMR of the 

Pt dimer showed a singlet at 10.9 ppm with platinum satellites ( ' jp .p t 3701 Hz). The 

chemical shift and coupling constant are very similar to those found in [PtCl2(PEt3)]2. 

Crystals were submitted for X-ray diffraction and the structure was ascertained at 120 K. 

(Figure 6.9). Selected bond distances and angles are listed in Table 6.7 and compared 

with the values found for [PtCl2(PEt3)]2. The Pt-P bond distances are slightly longer in the 

bromide derivative, due to more steric demand. 

r J 

1 

f 

BH2) 

J 

Pttl) 

BrID 

Figure 6.9: Molecular structure of [PtBr2(PEt3)J'2 
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[PtCl2(PEt3)]2at 

100K 

[PtBr2(PEt3)]2 

120K 

Pt-P 2.2199(11) 2.2265(12) 

Pt-X(l) 2.3194(11) 2.4229(7) 

Pt-X(2) 2.2891(11) 2.4455(7) 

P-Pt-X(l) 89.03(4) 90.54(3) 

X(l)-Pt-X(2) 175.00(4) 173.294(17) 

P-Pt-X(2) 95.91(4) 95.26(3) 

Table 6.7: Comparison of crystal data between [PtCl2(PEt3)]2and [PtBr2(PEt3)j2 

6.4.9 Reaction between ArPBr 2 and [PtBr 2(PEt 3)] 2 

A solution of [PtBr2(PEt3)]2 in CH2C12 was added to a solution of ArPBr2 in 

dichloromethane. The solution was stirred for 6 hours and NMR spectra were monitored 

regularly for four weeks. After just a few hours, the spectrum did not show any signs of 

the formation of a complex. After 10 days, the 3 1P NMR spectrum displayed peaks 

corresponding to the presence of a c/s-isomer. 

3 1 p i y F 

PEt3 P o-CF3 p-CF3 

8 (ppm) 15.5 79.6 -52.9 -64.1 

'Jpt-p (Hz) 3221.1 5681.8 V F 4.5 
2Jp-p (Hz) 18.4 18.3 

Table 6.8: 8ilP and FNMR data for [PtBr2(PEt3)(ArPBrz)J 
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6.4.10 Reaction between Ar" 2PBr and [PtBr 2(PEt 3)] 2 

trans-[PtBT2(PEt3)]2 + Ar"2PBr C H , C 1 , 
F , C 

5 

Br s \ 

Equation 6.8: Synthesis of [PtBr2(PEt3)(Ar "2PBr)] 

A solution of [PtBr2(PEt3)]2 in CH 2 C1 2 was added to a solution of Ar"2PBr in 

dichloromethane. The spectrum ran after just a few hours showed the formation of a trans 

complex but some peak from the starting material remained. After 1 0 days, the 3 1P NMR 

spectrum displayed peaks corresponding to the presence of a frww-isomer 

J 1P , y F 

PEt3 P o-CF3 p-CF3 

8 (ppm) 12.0 72.0 -54.7 -63.9 

V P (HZ) 2691.8 2516.5 4JP.F 2.7 
2JP-P (Hz) 562.8 562.4 

Table 6.9: S31P and19 FNMR data for [PtBr2(PEt3)(Ar"2PBr)] 

The cw-isomer has not been formed. 

6.4.11 Reaction between Ar'PBr 2/Ar"PBr 2 and [PtBr 2(PEt 3)] 2 

/rarts-[PtBr2(PEt3)]2 + Ar'PBr2/Ar"PBr2 

CH,C1, 
F , C - V i 7 > ( 

Br PEt , 

Br + F , C 

. C F , 

.Br 

Br / " 

Et ,P Br 

Equation 6.9: Synthesis of [PtBr2(PEt3)(Ar 'PBrJ] and [PtBr2(PEt3)(Ar "PBr2)] 
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A solution of [PtBr 2 (PEt 3 )] 2 in CH 2 C1 2 was added to a solution of Ar 'PBr 2 /Ar"PBr 2 in 

dichloromethane. The 3 1 P N M R spectrum showed a number o f peaks, indicating the 

formation of at least three complexes, two cw-isomers and a trans-isomer. 

Ar'PBr 2 cis Ar"PBr 2 cis Ar"PBr 2 trans 

PEt 3 P PEt 3 P PEt3 P 

5(ppm) 13.5 113.4 14.1 11.9 108.6 

'Jpt-p (Hz) 3211.5 3201.7 2846.5 2756.7 

%-p(Hz) 11.5 11.6 682.7 682.3 

Table 6.10: 8 51P NMR data for [PtBr2(PEt3)(Ar"PBr2)]and [PtBr2(PEt3)(Ar'PBr2)] 

Because o f weak signals, 1 Jj>t-p for the cis complexes could not be determined. The signals 

corresponding to the phosphorus o f the phosphane ligands have not been observed for 

cw-Ar"PBr 2. 

Signals corresponding to Ar 'PBr 2 were still visible in the 3 1 P and 1 9 F N M R spectra. 

Ar"PBr 2 formed a cis and a trans complexes whereas Ar 'PBr 2 only formed a trans 

complex. 1 9 F N M R data are listed in Table 6.11. 

Ar 'PBr 2 cis Ar"PBr 2 trans Ar"PBr 2 cis 

o-CF 3 o-CF 3 p-CF3 o-CF 3 jt?-CF3 

5(ppm) -52.8 -47.6 -62.7 -50.8 -63.7 

4 J P - F ( H Z ) 11.1 8.5 2.8 

5Jpt-F(Hz) 30.3 32.5 

Table 6.11: 8 ,VF data for [PBrl2(PEt3)(Ar "PBr2)Jand [PBrl2(PEt3)(Ar 'PBr2)] 
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6.5 Attempted synthesis of Platinum-Arsane Compounds 

[PtBr2(PEt3)]2 was added to a series o f arsenic derivatives such as ArAsCl 2 , Ar 2 AsCl and 

Ar 'Ar"AsCl . No reaction was apparent from the 1 9 F N M R spectra, even after refluxing 

over a number of days. 

The "platinum dimer" does not seem to coordinate to these arsenic derivatives, although 

many As-Pt complexes have been reported in the literature. 

6.6 Discussion 

6.6.1 Change in the chemical shifts 

Chemical shifts upon bonding to platinum are listed in Tables 6.12 and 6.13. 

Phosphane Isomer Phosphane 8 before bonding 8 after bonding 

(ppm) (ppm) 

Ar 'Ar"PCl trans A r ' A r ' T C l 67.3 94.5 

Ar" 2 PCl trans Ar" 2 PCl 68.3 91.0 

Ar" 2 PH trans Ar" 2 PH -48.7 93.8 

Ar" 2 PBr trans Ar" 2 PBr 57.4 86.3 

ArPBr 2 cis ArPBr 2 130.1 90.5 

Ar 'PBr 2 cis Ar 'PBr 2 134.1 92.2 

Ar"PBr 2 cis Ar"PBr 2 141.0 89.0 

Table 6.12: Comparison of the chemical shifts upon bonding to the chloro-dimer 
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Phosphane Isomer Phosphane 8 before bonding 8 after bonding 

(ppm) (ppm) 

Ar" 2 PBr trans Ar" 2 PBr 57.4 72.0 

ArPBr 2 cis ArPBr 2 130.1 79.6 

Ar 'PBr 2 cis Ar 'PBr 2 134.1 113.4 

Ar"PBr 2 trans Ar"PBr 2 141.0 108.6 

Table 6.13: Comparison of the chemical shifts upon bonding to bromo-dimer 

When bonding to platinum, the chemical shift o f the monosubstituted phosphanes moves 

to a lower frequency. There is an increase o f electron density at the phosphorus centre, 

due to the back donation of electrons from the platinum to the phosphorus. 

t \ 'O M orbital 

p o o M 
0 % 

Figure 6.10: Back donation of electrons from the metal to the phosphorus atom 

When the platinum dimer is coordinated to a disubstituted derivative, the chemical shift 

moves to a higher frequency. The presence of two aryl rings w i l l increase the electron-

withdrawing effect, and therefore decrease the electron density on the phosphorus. 

The difference in chemical shifts for Ar" 2 PH is much larger than in the other cases. 

There, the dominant factor could be the cr-bonding. The hydrogen atom has 

approximately the same electronegativity as phosphorus, 1 7 and w i l l not have back 

donation from the platinum atom. 
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A l l phosphorus compounds containing two bulky substituents (Ar ' or Ar" ) form trans-

isomers with the platinum dimer. No rearrangement to the cw-isomer has been observed. 

This is probably due to the steric hindrance imposed by the presence o f the two fluoroxyl 

groups. 

6.6.2 Comparison of the coupling constants 

The coupling constants ('jpt-p and 2Jp.p) of the prepared complexes are listed in Table 

6.14. 

The magnitude of 1 Jp.?t in phosphane complexes is proportional to the s-character o f the 

phosphorus lone pa i r . 1 8 When the second phosphorus ligand is cis to P E t 3 , the Jpt.p value 

is larger than when the two phosphorus ligands have a trans configuration. In the latter 

case, the ligands compete for electrons, giving a trans influence ̂  and hence reducing the 

'jp.Pt coupling. 

The sequence of phosphorus ligands, in term of increasing 'jpt.p values, for the cis 

complexes is as follows: 

ArPH 2 <Ar 'Ar"PCl <Ar 'PCl 2 <Ar 'PBr 2 <Ar"PCl 2 <ArPBr 2 <ArPCl 2 <Ar 'PF 2 <ArPF 2 

3809 4783 5260 5274 5488 5491 5511 6195 6252 

H<C1~BKF 

Ar '<Ar"<Ar 

The coupling constant generally increases with the electronegativity of the atom(s) X 

bonded to the phosphorus atom. The largest coupling constant appears in the compounds 

where there is the greatest electron withdrawal from the groups attached to the 

phosphorus, with a 'jpt-p range from 3800 to 6200 Hz. This increase is due to the amount 

of back donation occurring from the platinum to the phosphorus atom. 



Chapter 6 - Synthesis of Ft complexes 239 

Compounds Isomer 'Jp-pt (Hz) 2Jp-p(Hz) Ref 

ArPCl 2 
cis 

trans 

5511.0 

2885.8 679.0 

8 

ArPBr 2 cis 

trans 

5491.2 9.9 

792.4 8 

ArPF 2 cis 6252.1 8 

A r P H 2 cis 3809.1 20.6 8 

Ar 'PCl 2 cis 5260 9 

Ar"PCl 2 cis 5488.1 9 

Ar 'PBr 2 cis 

trans 

5274.1 14.2 This work 

Ar"PBr 2 cis 10.8 This work 

Ar 'PF 2 cis 

trans 

6194.8 

2723 

42.6 

690.6 

9 

Ar 'Ar"PCl cis 

trans 

4783.3 

2531.4 562.0 

9 

This work 

Ar" 2 PCl trans 2685.9 563.3 This work 

A r " 2 P H trans 2676.8 501.4 This work 

Ar" 2 PBr trans 2637.6 562.3 This work 

Table 6.14: Coupling constant data for some Pt(II) complexes ofphosphanes with Ar, Ar' 

or Ar " substituents 
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For the first time in this kind of complex, coupling between fluorine atoms and the 

platinum has been observed in the 1 9 F N M R spectrum. The 5Jpt-F is about 30 Hz. 

Some Jpt-F couplings constant have been reported in the literature. For a trifluoromethyl 

triphospholene3 complex, a through space Pt—F interaction is observed with a coupling 

constant o f 11 Hz.20 Some short P—F contacts have been observed in all the structurally 

characterised phosphane complexes, and it is possible that the Jpt-F coupling come from 

some through space interaction between the fluorines of the 0-CF3 groups and the Pt 

atom. This could be confirmed by X-ray analysis, but unfortunately all crystals grown 

were not suitable. 

6.7 Experimental 

6.7.1 Introduction 

• N M R spectroscopy 

The 3 1 P N M R spectra o f phosphorus-containing starting materials were checked, to 

confirm the absence of any major impurities. 1 9 F N M R spectra were recorded on a Varian 

Mercury 200 or Varian V X R 400 Fourier-transform spectrometer at 188.18 and 376.35 

MHz respectively. 3 1 P N M R spectra were recorded on the same instruments at 80.96 or 

161.91 MHz. Chemical shifts were measured relative to external CFCI3 ( 1 9 F) or 85% 

H3PO4 ( 3 I P), with the higher frequency direction taken as positive. 

• X-ray crystallography 

Single crystal X-ray diffraction experiments were carried out at low temperature, 100 to 

120 K, using graphite monochromated Mo Ka radiation (X, = 0.71073) on a Bruker 

SMART (CCD 1 K area detector) diffractometer equipped with a Cryostream N2 f low 

cooling device.21 Series o f narrow co-scans (0.3°) were performed at several cp-settings in 

such a way as to cover a sphere o f data to a maximum resolution between 0.70 and 0.77 

A. Cell parameters were determined and refined using the SMART software, 2 2 and raw 

triphospholene: (CF3)P(CF3)P(CF3)P(CF3)C=C(CF3) 
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frame data were integrated using the SAINT program.23 The structures were solved by 

direct methods and refined by full-matrix least squares on F 2 using SHELXTL 

software. 2^ 

6.7.2 Synthesis of c/s-[PtCl 2(PhCN) 2] 

2PhCN + PtCl 2 • cw-[PtCl 2(PhCN)] 2 

PtCl 2 (2.09, 7.8 mmol) was added to PhCN (20 ml) and was heated to 100°C for half an 

hour, yielding a bright yellow solution. This solution was cooled down and a yellow 

precipitate appeared. The solution was then filtered and the solid washed with petroleum 

ether and dried under vacuum. Yield 3.0g (95%). 

Elemental analysis; Calc C 35.60, H 1.91, N 5.94%; Found C 35.63, H 2.10, N 5.93% 

6.7.3 Synthesis of cft-[PtCl 2(PEt 3)2] 

PtCl 2(PhCN) 2
 2 P E T 3 » PtCl 2 (PEt 3 ) 2 

-2PhCN 

PtCl 2(PhCN) 2 (2.2g, 4.66 mmol) was dissolved in CH 2 C1 2 (15ml). PEt 3 ( l . l g , 2.86ml, 

9.33 mmol) was added to the solution and the reaction was stirred during 3 hours. Solvent 

was removed in vacuo and the solid obtained washed twice with hexanes (20ml). A white 

solid appeared which was dried in vacuo. Yield 2.05g (88%) 

Elemental analysis: Calc C 28.70, H 6.02 %; Found C 29.33, H 6.19 % 
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6.7.4 Synthesis of fra/w-fPtCl 2 (PEt 3 )] 2 

PtCl 2 (PEt 3 ) 2 + PtCl 2 fra«.s-[PtCl 2 (PEt 3 )] 2 

Cw-PtCl 2(PEt 3) 2 (2.04 g, 2.6 mmol) was added to a solution of PtCl 2 (1.46 g, 5.3 mmol) 

dissolved in (CHC1 2) 2 and heated to 150°C during 2 hours. After cooling, yellow crystals 

appeared. The solvent was removed under vacuum and the crystals were purified by 

recrystallisation from CH 2 C1 2 Yield 3.15g (77.5%) 

Elemental analysis: Calc C 18.71, H 3.91%; Found C 18.74, H 3.95% 
3 1 P NMR (CDC1 3): 811.6 (singlet with Pt satellites, 3833.9 Hz) ppm. 

6.7.5 Synthesis of/r<ws-[PtCl 2(PEt 3) 2(Ar'Ar"PCI)] 

A solution o f [PtCl 2(PEt3)] 2 (0.68 g, 0.10 mmol) in dichloromethane was added to a 

solution o f Ar 'Ar"PCl (0.1 g, 0.2 mmol) in dichloromethane. The solution was stirred 

overnight. 
3 I P NMR: 8 94.5 (d o f septets with Pt satellites, ' ^ 2 5 3 1 . 4 Hz, 2J P. P562.0 Hz), 21.2 (d 

with Pt satellites, 'jp,.? 2760.3 Hz, 2J P. P562.0 Hz) ppm; 1 9 F NMR: 8 -53.4 (d, 4 J P . F 12.7 

Hz, 6F, 0-CF3), -56.4 (d, 4 J P . F 61.2, 3F, 0-CF3), -62.8 (s, 3F,/?-CF3) ppm. 

6.7.6 Synthesis of *ra/is-[PtCl 2(PEt 3)(Ar" 2PCI)] 

Ar 'Ar 'TCl 
[PtCl 2(PEt 3)] 2 [PtCl 2(PEt 3)(Ar'Ar"PCl)] 

Ar" 2 PCl 
fPtCl 2(PEt 3)] 2 [PtCl 2(PEt 3)(Ar" 2PCl)] 
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A solution o f [PtCl 2 (PEt 3 )] 2 (0.68 g, 0.10 mmol) in dichloromethane was added to a 

solution of Ar" 2 PCl (0.10 g, 0.20 mmol) in dichloromethane. The solution was stirred 

overnight. 
3 1 P N M R : 8 91.0 (d o f septets with Pt satellites, 'Jm- 2685.9 Hz, 2 J P . P 563.3 Hz, 4 J P . F 8.0 

Hz), 17.5 (d with Pt satellites, 1 JR-P 2752.4 Hz, 2 J P . P 562.2 Hz) ppm; , 9 F N M R : 8-55.7 (d, 

4 J P . F 7.3 Hz, 6F, o-CF 3), -64.0 (s, 6F,/?-CF3) ppm. 

6.7.7 Synthesis of /ra/is-[PtCl 2(PEt 3)(Ar" 2PH)] 

A r " 2 P H [Ptci 2(PEt 3)] 2 ^ [PtCl 2(PEt 3)(Ar" 2PH)] 

[PtCl 2 (PEt 3 )] 2 (0.36g, 0.43 mmol) was added to a solution o f Ar" 2 PH (0.40g, 0.87 mmol) 

in dichloromethane. The solution was stirred overnight. 

3 1 P N M R (CH 2C1 2): 8 93.8 (d with Pt satellites, %.!>, 2676.8 Hz, 2 J P . P 501.4 Hz), 16.4 (d 

with Pt satellites, V P 2551.7 Hz, 2 J P . P 501.4 Hz) ppm; 1 9 F N M R : 8-57.8 (d, 4 J P . F 2.8 Hz, 

6F, o-CF 3), -63.9 (s, 6F,^-CF 3) 

6.7.8 Synthesis of cis- [PtCl 2 (PEt 3 )(ArPBr 2 )] 

ArPBr 2 P ,tCl 2(PEt 3)] 2 ^ rptci 2(PEt 3)(ArPBr 2)] 

[PtCl 2(PEt 3)] 2 (0.37 g, 0.48 mmol) was added to a solution of ArPBr 2 (0.45 g, 0.96 

mmol). The solution was stirred for a month. 
3 1 P N M R (CDC13): 8 90.5 (septet with Pt satellites, ^Jn-p 5287.5 Hz, 4 J P . F 11.8 Hz), 16.6 

(d with Pt satellites, 2966.4 Hz, 2 J P . P 13.4 Hz) ppm; 1 9 F N M R (CDC13): 8-49.2 (d 

with Pt satellites, V F 12.4Hz, ^ 3 0 . 3 Hz, 6F, o-CF 3), -64.0 (s, 3F,/?-CF3) ppm. 
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6.7.9 Synthesis of c/s-[PtCl 2(PEt 3)(Ar"PBr 2)]and c/s-[PtCl 2 (PEt 3 )(Ar'PBr 2 )] 

Ar'PBr 2 + Ar"PBr 2

 [ P t C l 2 ( P E t 3 ) ] 2 . [PtCl 2(PEt 3)(ArTBr 2)] + [PtCl 2(PEt 3)(Ar"PBr 2)] 

[PtCl 2(PEt 3)] 2 (0.22 g, 0.42 mmol) was added to a solution of Ar 'PBr 2 / Ar"PBr 2 (0.34g, 

0.84 mmol) in dichloromethane. The solution was stirred during a few days. 3 1 P N M R 

(CH 2C1 2): q,s-rPtCl9(PEhVAr"PBr 7)1: 5 89.0 (s with Pt satellites, 'jp.pt ? Hz), 15.4 (d with 

Pt satellites, 'jp.pt 3174.7 Hz, 2JP.P10.8 Hz) ppm; cis-\PtCU?EU)(Ar'PBr?)]: 8 92.2 (s 

with Pt satellites, V w 5274.1 Hz, 2 J P . P 14.2 Hz), 15.7 (d with Pt satellites, V p t 3004 Hz, 
2 J P . P 13.9 Hz); 1 9 F N M R (CH 2C1 2): ct\y-[PtCl 2rPEt^(Ar"PBr^1: 8-55.5 (d, 4 J P . F 6Hz, 3F, 

o-CF 3), -63.4(s, 3F,^-CF 3 ) ppm; cHPtCkfPEhVAr 'PBr?)] : 8-49.0 (d, 4 J P . F 10.6 Hz, 

F 28.8 Hz, 6F, 0-CF3) ppm. 

6.7.10 Synthesis of f/wis-[PtCl 2 (PEt 3 )(Ar" 2 PBr)] 

Ar" 2 PBr [Ptci2(PEt3)]2 ^ [PtCl 2 (PEt 3 )(Ar , ,

2 PBr)] 

[PtCl 2(PEt 3)] 2 (0.17g, 0.24 mmol) was added to a solution o f Ar" 2 PBr (0.26g, 0.48 mmol) 

in dichloromethane. The solution was stirred during three days. 

3 1 P NMR (CH 2C1 2): 8 86.3 (d o f septets with Pt satellites, V P 2637.6 Hz, 2 J P . P 562.3 Hz, 

4 J P . F 5.5 Hz), 12.9 (d with Pt satellites, lipt.P 2654.0 Hz, 2 J P . P 562.5 Hz) ppm; 1 9 F NMR: 

8-55.3 (d with Pt satellites, 4J P.F 7.5 Hz, 5J P t. F75.8 Hz, 6F, o-CF 3), -63.8 (s, 6F,^-CF 3) 

http://'jp.pt
http://'jp.pt
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6.7.11 Synthesis of cw-[PtBr 2(PhCN) 2] 

2 PhCN + PtBr 2 ^ m-[PtBr 2 (PhCN)] 2 

PtBr 2 (1.48g, 4.2 mmol) was added to PhCN (10ml) and was heated to 100°C for half an 

hour, yielding a bright orange solution. This solution was cooled down and a yellow 

precipitate appeared. The solution was then filtered and the solid washed with petroleum 

ether and dried under vacuum. Yield 1.89g (81%). 

Elemental analysis for C i 4 H 5 Br 2 N 2 Pt (556): Calc C 30.27, H 1.44, N 5.01%; Found C 

30.21, H 1.79, N 4.95%. 

6.7.12 Synthesis of c/s-[PtBr 2(PEt 3) 2] 

PtBr 2(PhCN) 2
 2 P E T 3 > PtBr 2 (PEt 3 ) 2 

-2PhCN 

PtBr 2(PhCN) 2 (1.77g, 3.18 mmol) was dissolved in CH 2 C1 2 (15ml). PEt 3 (1.75g, 2.18 ml , 

6.36 mmol) was added to the solution and the reaction was stirred during 3 hours. Solvent 

was removed in vacuo and the solid obtained washed twice with hexanes (20 ml). A 

white solid appeared which was dried in vacuo. Yield 1.48g (83%). 

Elemental analysis for C i 2 H 3 0 Br 2 P 2 Pt (591): Calc C 24.38, H 5.11%; Found C 28.26, H 

6.30%. 

6.7.13 Synthesis of /ra/w-[PtBr 2 (PEt 3 )] 2 

PtBr 2 (PEt 3 ) 2 + PtBr 2 • fra>w-[PtBr2(PEt3)]2 

C«-PtBr 2 (PEt 3 ) 2 (1.45g, 2.5 mmol) was added to a solution o f PtBr 2 (1.03g, 2.9 mmol) 

dissolved in (CHC1 2) 2 and heated to 150°C during 4 hours. After cooling, yellow crystals 
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appeared. The solvent was removed under vacuum and the crystals were purified by 

recrystallisation from CH 2 C1 2 Yield 2.18 (79%). 

Elemental analysis for Ci 2 H 3 0 Pt 2 Br4P 2 (946.09): Calc C 15.23, H 3.20%; Found C 15.27, 

H 3.23% 
3 1 P NMR (CDC1 3): 510.9 (singlet with Pt satellites, 'j P.pt3701 Hz) ppm. 

6.7.14 Synthesis of c/s-rPtBr 2 (PEt 3 )(ArPBr 2 )] 

A r P B r 2 [PtBr 2(PEt 3)] 2 ^ [PtBr 2(PEt 3)(ArPBr 2)] 

[PtBr 2(PEt3) 2] 2 (0.45 g, 0.48 mmol) was added to a dichloromethane solution o f ArPBr 2 

(0.46 g, 0.97 mmol). The solution was stirred for one month. 
3 1 P N M R (CH 2C1 2): 579.6 (d with Pt satellites, V P 5681.8Hz, 2 J P . P 18.3Hz), 15.5 (d 

with Pt satellites, V P 3221.1 Hz, 2 J P . P 18.4Hz) ppm; 1 9 F NMR (CH 2C1 2): 5-52.9 (d, 4 J P . F 

4.5Hz, 6F, 0-CF3), -64.1 (s, 3F, jp-CF 3) 

6.7.15 Synthesis of /ra«s-[PtBr 2 (PEt 3 ) (Ar" 2 PBr)] 

Ar" 2 PBr ^ ( P E t d h , [PtBr 2(PEt 3)(Ar" 2PBr)] 

[PtBr 2(PEt 3)] 2 (0.14 g, 0.15 mmol) was added to a dichloromethane solution of Ar" 2 PBr 

(0.20g, 0.36 mmol). The solution was stirred overnight. 
3 1 P N M R (CH 2C1 2): 8 72.0 (d with Pt satellites, V P 2516.5 Hz, 2 J P . P 562.4 Hz), 12.0 (d 

with Pt satellites, V P 2691.8 Hz, 2 J P . P 562.8 Hz) ppm; 1 9 F NMR (CH 2C1 2): 8-54.7 (d, 
4J P . F2.7 Hz, 6F, 0-CF3), -63.9 (s, 6F,/>-CF3) ppm. 
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6.7.16 Synthesis of ro-[PtBr2(PEt3)(Ar'PBr2)], fra/is-[PtBr 2(PEt 3)(Ar"PBr 2)] and 

cis-[PtBr 2 (PEt 3 )(Ar"PBr 2 )] 

/ ra»s- [PtBr 2 (PEt 3 ) ] 2 + Ar'PBr/Ar" 2PBr 

CH 2 C1 2 

cw-[PtBr 2(PEt 3)(Ar'PBr 2)] + / ra«5 [PtBr 2 (PEt 3 ) (Ar"PBr 2 ) ] + CM-[PtBr 2(PEt 3)(Ar"PBr 2)] 

[PtBr 2 (PEt 3 )] 2 (0.73 g, 078 mmol) was added to a dichloromethane solution of 

Ar 'PBr 2 /Ar"PBr 2 (0.63g, 1.56 mmol). The solution was stirred for three days. 
3 1 P N M R (CH 2C1 2): fra»,s-rPtBr7(PEtO(Ar"PBr?)1: 5108.6 (d with Pt satellites, V P 

2756.7Hz, 2Jp.P682.3 Hz), 11.9 (d with Pt satellites, V P 2846.5 Hz, 2 J P . P 682.6 Hz) ppm; 

c/.y-rPtBr9(PEh)(Ar'PBr7)l: 5 113.4 ppm (m), 13.5 (d with Pt satellites, V P 3211.5 Hz, 
2JP.p 11.5 Hz); m -rPtBr 7 (PEti¥Ar"PBr 7 )1: 8 14.1 (d with Pt satellites, lJn.P 3201.7 Hz, 

2 J P . P 11.6 Hz); 1 9 F N M R (CH 2C1 2): /yq^-rPtBnfPEtOCAr'TBr^: 8-47.6 (d, 4 J P . F 8.5 Hz, 

V F 32.5 Hz, 3F, o-CF 3), -62.7 (s, 3F, p-CF3) ppm; m-rPtBr^PEtOfAr'PBr,)!: 8 -52.8 

ppm (d with Pt satellites, 4 J P . F 11.1 Hz, 5Jp,.F 30.3 Hz, 6F, 0-CF3); cis-

rPtBr^fPEtOrAr'TBr^l: 8 -50.8 ppm (d, 4 J P . F 2.8 Hz, 3F, 0-CF3), -63.7 (s, 3F, p-CF 3) 

ppm 

6.7.17 Attempted synthesis of [PtCl 2 (PEt 3 )(ArAsCI 2 )] 

ArAsCl 2 [Ptci2(PEt3)]2 ^ [PtCl 2(PEt 3)(ArAsCl 2)] 
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[PtCl2(PEt3)]2 (0.25g, 0.33 mmol) was added to a ArAsCl 2 (0.28g, 0.66 mmol) solution in 

dichloromethane and allowed to stir. No reaction was apparent in the I 9 F N M R spectrum, 

even after extended refluxing over a number of days. 

6.7.18 Attempted synthesis of [PtCl 2 (PEt 3 )(Ar 2 AsCl)] 

Ar 2 AsCl [PtCl 2(PEt 3)] 2 t [PtCl 2 (PEt 3 )(Ar 2 AsCl)] 

[PtCl 2 (PEt 3 )] 2 (0.25g, 0.33 mmol) was added to a Ar 2 AsCl (0.28g, 0.66 mmol) solution in 

dichloromethane and allowed to stir. No reaction was apparent in the 1 9 F N M R spectrum, 

even after extended refluxing over a number of days. 

6.7.19 Attempted synthesis of [PtCl 2 (PEt 3 )(Ar'Ar"AsCl)] 

Ar'Ar"AsCl [PtCi 2(PEt 3)] 2 ^ [PtCl 2(PEt 3)(Ar'Ar"AsCl)] 

[PtCl 2 (PEt 3 )] 2 (0.08g, 0.12 mmol) was added to a Ar 2 AsCl (0.13g, 0.23 mmol) solution in 

dichloromethane and allowed to stir. No reaction was apparent in the 1 9 F N M R spectrum, 

even after extended refluxing over a number of days. 
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7.1 Double bonded compounds between heavier group 14 and 15 
elements 

7.1.1 Diphosphates 

The history of diphosphenes started in 1877, when Kohler and Michaelis1 first 

synthesised, by reacting PhPFfe with PhPCh, what they called "phosphobenzene" by 

analogy with azobenzene. Some researches continued in this field, but chemists were 

discouraged by the emergence of the "classical double bond rule".2 This rule stipulated 

that elements possessing a principal quantum number greater than 2 should not be able to 

form P„-P„ bonds with themselves or other elements. "Phosphobenzene" has since been 

shown not to be a diphosphene, but a polymer. 

However, in 1981, Yoshifuji et aQ reported the synthesis of the first stable diphosphene 

(by reaction between Ar*PCl2 and magnesium metal), containing a bulky substituent as a 

protecting group (2,4,6-tri-tbutylphenyl = supermesityl (Ar*)) 

HI 

Ar \ BuLi Mg Ar*PCI \ PC13 MgCl, 
Ar* 

Subsequently, much research has been carried out in this area and other synthetic routes 

have been discovered in order to form double bonds between heavier group 14 and 15 

elements. 
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7.1.2 Other multiple-bonded main group derivatives 

These species are less common than diphosphenes. The first disilene Mes2Si=SiMes2 was 

obtained by West et a/, 4 and in 1982, Satge" et afi reported the first heteronuclear double 

bonds in a germanophosphene [Me2Ge=PPh] and a stannaphosphene [Me2Sn=PPh]. Both 

phosphaarsenes [e.g. (Me3Si)3C-As=P-C(SiMe3)3]6 and diarsenes have also been 

generated, although only a few structures have been published of diarsenes7_10 

7.1.3 Synthetic routes 

There are several synthetic methods to prepare double bond dipnictenes of heavier main 

groups elements. 

• Thermolysis11 

P 2 H 4 
P2H2 + H2 

P2H2 is not a stable derivative. 

• Photochemical elimination4 

2 Mes2Si(SiMe3)2 

-Me 3SiSiMe 3 Mes2Si=SiMes2 

Dehalogenation of R n E X 2

6 ' 1 2 - 1 6 

R n E X 2 will react with a halide-abstracting agent such as elemental magnesium, potassium 

or an alkyllithium. 



Chapter 7 - Synthesis of multiple bonded phosphorus compounds 254 

2RECl 2 + 2 Mg(K) RE=ER + 2MgCl2 (E = P, As, Sb, Bi) 
2 R 2 GeCl 2 + LiNap • R2Ge=GeR2 

3 (Me3Si)3C-PCl2 + 3 (Me 3Si) 3C-AsCl 2 

BuLi 

(Me3Si)3C-P=P-C(SiMe3)3 + (Me3Si)3C-As=As-C(SiMe3)3 + (Me3Si)3C-P=As-C(SiMe3)3 

• Dehydrohalogenation of R n E X - H E R ' m

1 7 ~ 2 0 

This is a widely used method to synthesise symmetrical and unsymmetrical compounds. 

It consists of reacting R n E X 2 and R ' m E H 2 in the presence of a base. 

ArPCl 2 + ArPH 2 + 2DBU 

RPC12 + R T H j +2 DBU 

ArPH 2 + Mes(Bu)GeCl2 + BuLi 

RPH 2 + R'R"SiCl2 + BuLi 

This reaction has proved to be the most useful for the formation of symmetrical double 

bonds between main group 14 and 15 elements, and has occasionally been used to 

prepare unsymmetrical double bond compounds. 

• 2 D B U H C 1

> ArP=PAr 

• 2 D B U H C 1 > RP=PR' 

_^ Mes(Bu)Ge=PAr 

_^ RP=SiR'R" 
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• Transition metal "catalysed" metathesis of double bonds 2 1' 2 2 

RPC12 + W(PMe3)6 • RP=PR 

Dillon et afil used the highly reducing nature and labile coordination sphere of the 

zerovalent tungsten complex, W(PMe3)6, as an efficient chloride ion abstractor. 

Dichlorophosphanes react with W(PMe3)6 in benzene smoothly over several hours to give 

the diphosphene RP=PR [R: 2,4,6-tris-tbutylphenyl, 2,4,6-tris(trifluoromethyl)phenyl, 

2,6-bis(trifluoromethyl)phenyl]. The proposed mechanism is shown below (Figure 7.1). 

*Arv. / C I 
W(PMe3)6 + Ar*PCl 2 " n P M e 3 > . 

C—CI 
I 

(PMea)^ 

*ArP=PAr* P A r * 
Ar*PCl2 Me3?////t II %xXsCl 

Me 3 P^ ^PMe 3 

WCl 4(PMe 3) 3 c l 

Equation 7.1: Mechanism of the formation of diphosphenes with W(PMej)6 
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The key intermediate that is proposed in this mechanism is the tungsten phosphinidene 

complex. Although a few have been characterised, double bond transition metal 

phosphinidene complexes are relatively rare.23-26 

Surprisingly, when different starting materials ArPCh and Ar*PCl2 reacted with 

W(PMe3)6, only the unsymmetrical diphosphene ArP=PAr* was produced in a good 

yield. During the reaction, it was seen that the symmetrical diphosphene ArP=PAr was 

formed first, but was then converted to the unsymmetrical diphosphene ArP=PAr*. 

However, upon removal of the reaction solvent, the symmetrical diphosphenes were 

precipitated with the unsymmetrical signal almost lost from the 3 I P NMR spectrum, as 

shown in Figure 7.1 below: 

Figure 7.1: (a) 3'P NMR spectrum of R'P-PR2, generated upon treatment of a 1:1 mixture of 
PJPCl2 and tfPCl] with W(PMe^6 in benzene (* and A indicate resonances due to the 
symmetrical diphosphenes, R P=PRl and R2P=PR2, respectively, (b) 31P NMR spectrum of the 
precipitated solids? 1 
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The result indicates that the presence of a particular species in solution is capable of 

rapidly catalysing the exchange of the diphosphene PR end-groups. This exchange does 

not occur in the absence of the tungsten species, since on addition of a W(PMe3yArPCl2 

mixture to the symmetrical diphosphenes ArP=PAr and Ar*P=PAr*, they changed into 

the unsymmetrical diphosphene ArP=PAr*. The possible mechanism for this reaction 

could be PR end-group exchange that involves a phosphinidene intermediate. 

CF XX CF 

XX CF 
CF CF 

XX CF 
f 

Fisure 7.2: Metathesis mechanism 

To isolate the unsymmetrical compound, it is first necessary to destroy the catalyst. The 

most convenient method is to treat the solution with benzaldehyde, a procedure 

analogous to that used to destroy well-defined alkylidene olefin metathesis catalysts. 

This is the only route so far using different dichlorophosphanes to prepare unsymmetrical 

diphosphenes. 
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7.1.4 Synthetic routes and Chemical shifts of RP=ER' systems 

• Phosphasilenes 

Many synthetic routes have been found to synthesise Si=P derivatives: 

- dechlorination of a chlorophosphane by alkyllithium 2 7» 2 8 

- dehydrofluorination of a fluorosilylphosphane by an alkylithium27'2** 

- reaction of water or an alkyl halide with a diphosphasilaallylanion29 

- addition of two equivalents of butyllithium to a mixture of primary 

phosphane and dichlorosilane28 

\ / / 
\ / / 

Si—PH 
/ 

F SiH 

H,OorRX 

CI 

Si—PH 
, / RLi RLi -RH 

-LiF 

\ 
c / 
S i = P 

\ 
-2BuH 
-2LiCl 

\ 2E 

I \ 
BuLi 

\ iHCl, + Li,P -PH2 + CljSi 

Equation 7.2: Synthetic routes to phosphasilenes 

• Germaphosphenes 

Germaphosphenes species can be prepared as follows: 

- dehydrofluorination of a fluorogermylphosphane by tert-butyllithium^0-36 
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dehydrochlorination of a chlorogermylphosphane by a phosphorus ylide or 

D B U 30-36 

reaction of a difluorogermane with a dilithium phosphatide3^3 5 

Me3P=CH2 

-Me^Cl 
Ge—PH 

\ / / 
Ge—PH 
/ 

F 

\ 
Ge=P 

/ 
^GeF2 +-PLij \ DBU 

-DBU.HC1 

Equation 7.3: Synthetic routes to germaphosphenes 

• Stannaphosphenes 

There are two different routes to prepare stannaphosphenes: 

- dehydrofluorination of a fluorostannylphosphane by tert-

butyllithium 3 2. 3 5- 3 7 

- defiuorosilylation of a fluorostannyl(silyl)phosphane32'3^"37 

\ / / tBuLi \ \ / / 
Sn—PH • S n = P — Sn—P. 

F -iBuH / -MeaSiF / \ M 

-LiF 

Equation 7.4: Synthetic routes to stannaphosphenes 

P chemicals shifts of selected M=P compounds are listed in Table 7.1: 
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Phosphasilenes 

8 3 ,P(ppm) 8 2 9 Si (ppm) 

'jp-siCHz) 

Reference 

Mes2Si=PMes* 136 151 

148.5 

27 

Is(Mes)Si=PMes* 122.7 148.7 

152 

28 

Germaphosphenes 

Mes2Ge=PMes* 175 30,31,36,38 
tBu2Ge=PMes* 157 33 

Mes(lBu)Ge=PMes* cis Mes 169 

trans Mes 157 

33 

Stannaphosphenes 

8 1 1 9Sn(ppm) 

' J ' - V P C H Z ) 

[(Bis)2CH]2Sn=PMes* 205 658 

2295 

38,39 

Is2Sn=PMes* 171 500 

2208 

35,37 

Is2Sn=PIs 125 601 

2182 

40 

Is2Sn=PBis 169 606 

2264 

40 

Mes = Is = Bis = (Me3Si)2CH 

Table 7.1: S31P, 29Si and ,l9Snfor metallaphosphenes 
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7.2 Disphosphenes and related species 

The reactions were carried out following the method described above, using the tungsten 

compound W(PMe3)6 as a chlorine abstractor.21 Because of a very small amount of the 

catalyst being available, reactions have been attempted on an NMR scale or a very small 

scale. 

7.2.1 Reaction of ArPCb with W(PMe3)6 

Two equivalents of ArPCU were added to a solution of W(PMe3)6 in benzene-d6 at room 

temperature. The reaction immediately turned from yellow to red. The mechanism of the 

formation of the diphosphene is shown in Equation 7.1. The 3 1 P NMR spectrum showed a 

multiplet (13 lines, 'jp-p 22.7 Hz) at 473 ppm, corresponding to ArP=PAr. A signal 

assigned to the W(TV) by-product WCU(PMe3)3 was found at 32.2 ppm and a singlet at 

-61.1 ppm indicated the presence of free PMe3. 

The characteristic 3 , P chemical shift of the diphosphene is due to an increase in the 

paramagnetic shielding term caused by the existence of low-lying excited states. The 1 9 F 

NMR spectrum displayed a triplet at -55.9 ppm ( 4 J P . F 22.7 Hz) and a singlet at -63.1 ppm. 

This triplet has been observed in similar systems, for example Ar'P=PAr'.38 

2 ArPCl 2 + W(PMe3)6 
benzene 

CF 

CF 

CF 

Equation 7.5: Synthesis ofArP=PAr 
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7.2.2 Reaction of Ar'PCli/Ar'TCh with W(PMe 3) 6 

2 Ar'PCl2/Ar"PCl2 + W(PMe3)6 

benzene 

CF 

V // 
CF 

Equation 7.6: Attempted synthesis of Ar 'P=PAr' 

Two equivalents of the mixture Ar'PCl2/Ar"PCl2 were added to a solution of W(PMe3)6 

in benzene-cU at room temperature. After stirring overnight, the solution turned red. The 
3 1 P NMR spectrum exhibited a multiplet at 479.8 ppm ('jp.p 45.2 Hz). This confirms the 

formation of the symmetrical diphosphene.38 The quartet corresponding to Ar"PCl2 was 

still visible in the spectrum. The 3 I P NMR spectrum run after a week showed the 

appearance of a small multiplet at 506.0 ppm (the coupling constant could however not 

be determined for this signal). This signal could arise from the symmetrical species 

Ar"P=PAr". 

7.2.3 Reaction between ArPCl 2 , ArAsCl 2 and W(PMe 3) 6 

ArPCl 2 + ArAsCl 2 + W(PMe3)6 

benzene 
F,C-

CF 

As CF V // \ // 
CF 

Equation 7.7: Attempted synthesis ofArP=AsAr 
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ArPCl 2 and ArAsCl 2 were added to a W(PMe3)6 solution in benzene-d6 at room 

temperature. The solution was stirred overnight and a red coloration appeared. Only the 

signal corresponding to ArP=PAr at 473.9 ppm was observed in the 3 1 P NMR. No 

apparent signal of ArAs=PAr has been detected. However, no signal of the starting 

material W(PMe3)6 remained in the spectrum. 

7.2.4 Reaction between ArPCI 2 , Ar 2 GeCl 2 and W(PMe 3) 6 

ArPCl2 + Ar 2GeCl 2 + W(PMe3)6 

FjQ 

CF V / 

Equation 7.8. Attempted synthesis ofArP=GeAr 

ArPCl 2 and Ar 2GeCl 2 were added to a W(PMe3>6 solution in benzene-d6 at room 

temperature. A red coloration appeared immediately. Only the signal corresponding to 

ArP=PAr at 473.9 ppm was observed in the3*P NMR. No apparent signal of Ar2Ge=PAr 

has been detected. The 1 9 F NMR spectrum only showed the presence of ArP=PAr and the 

starting material Ar 2GeCl 2 

7.2.5 Reaction between ArPCl 2 , Ar 2 SnCl 2 and W(PMe3)6 

ArPCl2 + Ar2SnCl2 + W(PMe3)6 -< CF V / 
CF 

Equation 7.9: Attempted synthesis of ArP=SnAr 
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ArPCb and Ar^SnCk were added to a W(PMe3)6 solution in benzene-c^ at room 

temperature. The reaction was stirred for three days. The only signal visible in the 3 1 P 

NMR spectrum was the one corresponding to ArP=PAr. 

7.2.6 Conclusion 

As previously described in the literature, ArP=PAr and Ar'P=PAr' were prepared. The 

attempt at making some ArP=EAr (E = As) or ArP=EAr2 (E = Ge or Sn) does not seem to 

have been successful. The W(PMe3)6 catalyst might not be able to withdraw the chlorine 

atom from those elements. 

However, all the reactions have been done on an NMR scale using very small quantities, 

which were not always very accurate. It would be interesting to scale up some of these, in 

order to check and confirm these results. In case the tungsten catalyst reacts very slowly 

to remove the chlorine atoms from arsenic, reacting two equivalents of ArAsCb with 

W(PMe3)6 would be the next step. The study could not be done due to the unavailability 

of 1 9 F NMR spectroscopy at the time, and lack of more W(PMe3)6 catalyst. 

7.3 Phosphaalkenes and Phosphaalkynes 

7.3.1 Phosphaalkenes 

The chemistry of phosphaalkenes has only been developed in the last 25 years. In 1960, 

Dimroth and Hoffman first reported the synthesis of compounds containing a P=C double 

bond. 4 1' 4 2 In 1976, the first stable acyclic species was described.4^ However, these 

compounds were only stable in the absence of air and moisture. Kinetic stabilisation 

using bulky substituents on phosphorus has facilitated the development of several 

synthetic routes to prepare stable phosphaalkenes.44 

The first phosphaalkene containing the Ar ligand, ArP=CR'R2 (R'=R2=C1; R^SiMes, 

R2=H; R 1 = Ph, R2=H), were reported by Dillon and Goodwin.17 4 5 The method used for 

the first of these syntheses consists of two reactions: 
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CH 2C1 2 + BuLi 

CHLiCl 2 + ArPCl 2 

CHLiCl 2 

ArP(CHCl2)Cl 
DBU Ar=PCCl2 

The coordination chemistry of these compounds with platinum has also been studied4^ 

and indicated the formation of V-bonded complexes. 

7.3.2 Phosphaalkynes 

The first phosphaalkyne HCP was synthesised in 1961 by Gier4^ but appeared to be 

very unstable. Twenty years later, the first stable phosphaalkyne, BuCP was prepared.47 

Since, a variety of stable phosphaalkynes has been synthesised. 

The inorganic and organic chemistry of phosphaalkynes has been extensively developed 

in the recent years and numerous routes to prepare phosphaalkynes have been found. 4 4 

Among them, the synthesis of RCP (where R=Supermes), by the reaction of the 

phosphaalkene RP^CCh with Pd(PPh3)4, was described by Sanchez et a / 4 8 with a 

mechanism involving the rearrangement of the intermediate species [RP=C:] 

/ 
c 

\ 
PdLj 

L=PPh, 

Pd 

R P ( X 

PdL,CI 

R P = C 
/ 

C 

\ CI 

PdL,CI, 

P r. R R P = C 

Equation 7.10: Proposed mechanism for the synthesis of a phosphaalkyne using PdL4 

andRP=CCl2 
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This reaction is identical to the one published by Angelici et al^ in which some crystal 

structures of the intermediates are shown. They described the formation of a four-

membered ring between a C=C bond in the aryl ring and the P=C phosphaalkene bond 

(Equation 7.11). 

The chemistry of phosphaalkynes is quite diverse and work has mainly been done with 

aryl and alkyl substituents on C. The alkyl group used, such as 'Bu, tend to be electron-

donating ligands, and increase the electron density at the C=P triple bond. So far, no 

phosphaalkyne containing fluoromes or fluoroxyl substituents has been reported. 

However, some attempts have been made by Goodwin17 and Roden̂ O but have not been 

successful. Using "Angelici's method", Roden found that ArP=CCl2 reacts with 

Pt(PPh3)4 to form a stable complex fra/w-[Pt(PPh3)2Cl(C(Cl)=PAr')] which has been 

structurally characterised.^ 

\ / P R ' » 
M \ PR \ 

C 
3 

M 
\ 9 M(PR\) 

cx 
X R 

RP 
i Bu R' = PEtj,PPh3 

M = PLPd t Bu 

I Bu 

P ^ C R +M(PPhs)2X2 

Equation 7.11: Mechanism demonstrated by Angelici et al4^ 
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7.3.3 Preparation of Phospfaaalkemes 

7.3.3.1 Synthesis of ArP(Cl)CHCl2 

This compound was synthesised by reaction of ArPCl 2 with a solution of lithiated 

CH2CI2, CHCfeLi, at -130°C. ArP=CCl2 was purified by distillation, yielding a colourless 

oil. 

CH 2 C1 2 

BuLi 

-130°C 
4:1:1 pent:THF:EtjO 

CHCl 2 Li 

PS 

CHCljLi 

-130°C 
4:1:1 pent:THF:EtjO 

F,C ^ PCI(CHCy 

CF, 

Equation 7.12: Synthesis ofArP(Cl)CHCl2 

The 3 , P NMR spectrum showed a septet at 63.1 ppm P . F 49.3 Hz). The 1 9 F NMR 

spectrum displayed a doublet at -55.3 ppm (?Jp.f 49.3 Hz) corresponding to the 0-CF3 

groups, and a singlet at -64.5 ppm (p-CFj). These values agree with those found by 

Goodwin and Roden.17'50 



Chapter 7 - Synthesis of multiple bondedphosphorus compounds 268 

7.3.3.2 Synthesis of ArP=CCl2 

CF 

CF 

•PCKCHCIJ) 
- DBU.HC1 

THF 

DBU 

CF 

f \ 
CF, 

:CCI, 

Equation 7.13: Synthesis ofArP=CCl2 

This phosphaalkene was prepared by addition of DBU to an ArP(Cl)CHCl2 solution in 

THF at -78°C. The product was purified by distillation, giving a colourless oil. 

A septet at 202.4 ppm was observed in the 3 1 P N M R spectrum ( 4 J P .F 20.6 Hz). The 1 9 F 

N M R spectrum exhibited a doublet at -60.0 ppm ^JP-F 21 Hz, 0-CF3) and a singlet at 

-63.9 ppm (p-CF3). 

rm rm rm rm rm rm 

204 202 200 ppm 

Fieure 7.3:31P NMR spectrum ofArP=CCl2 
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11 I I | 1 1 1 ! 11111 11 111 11 11 11I 11 I | I I 111 I 11 I | I 11 I | I 11 I | I I I I | I I I 11 

-60.0 -61.5 -63.0 ppm 

Figure 7.4:19FNMR spectrum ofArP=CCl2 

7.3.3.3 Synthesis of Ar'P(Cl)CHCl2 

BuLi 
C H 2 C I , CHC1,L 

130°C 
4:1:1 pent:THF:Et,0 

CF 

3 CHCKLi f \ PCU PCI(CHCL) 
I30°C 

4.1:1 pentTHF:Et,0 
CF CF 

Equation 7.14: Synthesis ofAr 'P(Cl)CHCl2 

This product was prepared following the same synthesis as described above for the 

preparation of ArP(Cl)CHCl2.. The mixture Ar'Li/Ar"Li was reacted with a solution of 
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lithiated CH2CI2 at -130°C. This compound was purified by distillation under reduced 

pressure. 

The 3 I P NMR spectrum showed a septet at 65.3 ppm ( 4 J P . F 48.8 Hz). A doublet at -53.9 

ppm ^JP-F 48.9 Hz) was observed in the 1 9 F NMR spectrum. 

As observed by Roden, Ar"PCl2 does not form the product Ar"P(Cl)CHCl2. The signals 

from the starting material Ar"PCl2 are still visible in both 3 1 P and 1 9 F NMR spectra. 

7.3.3.4 Synthesis of Ar'P=CCl2 

NMR spectroscopy showed a septet at 207.6 ppm ( 4JP.F20.7 HZ) in the 3 1 P spectrum and 

a doublet at -59 .6 ppm ( 4 J P . F 21.1 Hz) in the 1 9 F spectrum. 

These results are similar to those found by Roden. 50 

Comparison of the chemical shifts between the starting material ArPCl 2 or Ar'PCl 2 and 

the final products ArP=CCl2 and Ar'P=CCl2 shows that 8 1 9 F values are at lower 

frequency for the phosphaalkenes than for the phosphanes, and that 5 3 1 P moves to a 

higher frequency. This implies more shielding and electron density on the CF3 groups. 

The electron-withdrawing effect is facilitated by the formation of the P=C double bond. 

CF CF 

f \ DBU 
PCKCHCIJ) ecu 

DBU.HCl 
THF 

CF CF 

Equation 7.15: Synthesis ofAr 'P=CCl2 
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The P-F coupling constant is significantly smaller in the phosphaalkene than in the 

phosphane. The formation of the P=C bond decreases the p character of the phosphorus 

hybrid orbitals. The phosphorus becomes more positive and the chemical shifts move to 

higher frequency. In the meantime, the electron density in the CF3 groups increases, 

moving the fluorine shifts to a lower frequency (Table 7.2). 

8 3 1 P 

0-CF3 

6 1 9 F 

p-CFi 

4Jp-F 

ArPCl 2 145.6 -53.3 -64.2 61.3 

ArP(Cl)CHCl2 63.1 -55.3 -64.5 49.3 

ArP=CCl2 202.4 -60.0 -63.9 20.6 

Ar'PCl 2 148.4 -53.2 61.3 

Ar'P(Cl)CHCl2 65.3 -53.9 48.8 

Ar'P=CCl2 207.6 -59.6 21 

Table 7.2: Comparison of 5 P and F between phosphanes andphosphaalkenes 

7.4 Attempted preparation ofphosphaalkynes 

According to Angelici's report,4 9 reaction of phosphaalkenes with Pt(0) or Pd(0) 

compounds leads to an intermediate Pt or Pd complex, which undergoes rearrangement to 

give a phosphaalkyne. 

7.4.1 Reaction between ArP=CCl 2 and Pt(PPh3)4 

• NMR spectroscopy 

ArP=CCl2 was added to a solution of Pt(PPli3)4 in toluene at room temperature. 

The 3 1P NMR spectrum exhibited two multiplets with Pt satellites at 203.7 ( 2J P t- P 282.6 

Hz, 4Jp.F 22.6 Hz) and 198.1 ( V P 369.2 Hz, 3 J P . P 45.4 Hz, 4 J P . F 22.6 Hz) ppm, assigned 
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to the phosphaalkene ligand. Three different signals were assignable to PPh3 bonded to 

platinum: a doublet at 24.6 ( 3J P. P 27.5 Hz, 2963.5 Hz), a doublet of doublets at 17.3 

(3JP.P 48.4 Hz, 3JP.p 17.8 Hz, 'jpt-p 1897.2) and a pseudo triplet at 14.1 ppm ( 2J P. P / 3J P . P 

15.3 Hz, 'jpt-p 4063.8 Hz). A signal for the free PPI13 was also observed at -6 ppm. The 

multiplets in the phosphaalkene region should, in fact, be a doublet of doublets of septets 

for the m-isomer, due to the coupling with the fluorines of the two 0-CF3 groups (7 

lines) and the phosphorus from the PPli3, groups and a triplet of septets for the trans-

isomer. The signal at 198.1 ppm has a greater intensity than the one at 203.7 ppm. The 

resonance at 14.1 ppm appeared as a triplet but should be a doublet of doublets. The Jp.p 

and 3Jp.p coupling constants are very similar and could not be distinguished. These results 

indicate the presence of two complexes in solution. 

The 1 9F NMR spectrum exhibited two close doublets at -57.8 ( 4 J P .F 23.7 Hz) and -57.9 

( 4 J P -F 23.0 Hz) ppm, and two singlets at -62.9 and -63.0 ppm. 
1 9F NMR spectroscopy also indicated the presence of two different species in solution. 

Neither of these corresponds to the starting material, and comfirms that two new 

complexes have been prepared, ascribed to cis- and /ra«.y-isomers. In the case of the trans 

isomer, the two PPI13 groups are equivalent, and should only give a doublet in the P 

NMR spectrum. The cis complex should give two different doublets of doublets for the 

PPI13 groups with a cis and a trans coupling. Resonances in the l 9 F NMR spectrum were 

assigned according to their relative intensities when compared with the 3 1P NMR 

spectrum. Suggested assignments are listed in Table 7.3. 

C F C F 

CI CI / f \ / 
c 

Pc Pc P P h P .Ph \ / 
Pt Pt 

\ PhsP C 
C F CI C F P „ P h 

trans-isomsr 

Figure 7.5: Trans and cis 

cis- isomer 

-fPtCl(PEt3)2(ArP=CCl)J 
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cis trans 

5 (ppm) Jpt-pa JJp-p a % - / 8 (ppm) Jpt-ap 3Jp-p a 

31p 

NMR 

Pa 14.1 4063.8 15.3 

Pb 17.3 1897.2 48.4 17.8 

Pc 198.1 369.2 45.4 22.6 ( 4 J P . F ) 

24.6 2963.5 27.5 

203.7 ? 22.6 (4JP.F) 

1 9F 

NMR 

4 T a 
JP-F 

o-CF3 -57.9 23.7 

P-CF3 -63.0 

4 T a 
Jp-F 

-57.8 23.0 

-62.9 

all coupling constants are given in Hz; 'jpj.p for P a and Pb; 2Jpt-p for P c 

Table 7.3: Assignments for cis and trans isomers 

The solution containing those two isomers was stirred in dichloromethane in order to try 
31 

and obtain a phosphaalkyne. No changes were observed in the P NMR spectrum. 

» X-ray crystallography 

After standing for two month, orange crystals formed. They were submitted for X-ray 

analysis. The structure was determined by A.L. Thompson at 120K and is shown in 

Figure 7.6. 

rraHs-|TtCl(CCl=PAr)(PPh3)2] crystallises in the triclinic P-l space group with Z=2. 

Selected bond angles (°) and distances (A) are listed in Table 7.4. They are similar to 

those found in /ro«5-[PtCl(CCl=PAr')(PPh3)2].50 
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P(3) 
FJ18 

CM) 

R19) P(1I 

R12 

F113) 
Rill 

Figure 7.6: Molecular structure oftrans-[PtCl(CCl=PAr)(PPh3)2] 

Bond distances (A) Angles (°) 

Pt(l)-C(10) 2.0143(4) C(10)-Pt(l)-P(3) 92.43(5) 

Pt(l)-P(3) 2.3205(4) C(10)-Pt(l)-P(2) 93.93(50 

Pt(l)-P(2) 2.3284(4) P(3)-Pt(l)-P(2) 173.693(16) 

Pt(l)-Cl(l) 2.3629(5) C(10)-Pt(l)-Cl(l) 173.63(5) 

P(l)-C(10) 1.6882(19) P(3)-Pt(l)-Cl(l) 89.043(16) 

P(l)-C(l l) 1.874(2) P(2)-Pt(l)-Cl(l) 84.603(16) 

Cl(ll)-C(10) 1.7653(19) C(10)-P(l)-C(ll) 123.021(11) 

Table 7.4: Selected bond angles (°) and distances (A) 

The platinum is in a square planar environment which is defined by the two PPI13 {trans 

to each other), CI, and [C(=PAr)Cl] ligands. The atoms Pt, P(2), P(3), Cl(l) and C(10) are 



Chapter 7 - Synthesis of multiple bonded phosphorus compounds 275 

nearly coplanar. The C(10)-P(l) distance (1.6882(19) A) is very similar to that of a C=P 

bond, as found in [Pt(PEt3)2C(Cl)=PMes*)Cl]49 (1.678(5) A)and Ph(Me3Si)C=P-Mes* 

(1.676(6) A).^ 1 Three short contacts between some fluorines of the 0-CF3 groups and the 

phosphorus atom are found: P(l)—F(12) 3.039, P(l)~-F(13) 3.160, P(l)—F(18) 2.911 A. 

They are all shorter than the expected sum of the van der Waals radii for P(l .91 A) and 

F(1.40 A). 

7.4.2 Reaction between Ar'P=CCl 2 and Pt(PPh3)4 

Ar'P=CCl 2 was added to a Pt(PPli3)4 solution in benzene and the resulting yellow 

solution stirred. The initial 3 1P NMR showed a multiplet with platinum satellites at 202.4 

(2Jpt-p 376.5 Hz, 3 J P . p 46.1 Hz, 4 J P . F 24.4 Hz), a doublet of doublets with Pt satellites at 

17.1 ( ' j Pt.p 1954.1 Hz, 2 J P . P 16.7 Hz, 3 J P . P 47.1 Hz) and apseudo triplet at 13.5 ppm ( ' j ^ p 

3936.1 Hz, 2 J P . p / 3 J P . p 18.7 Hz). A doublet at -57.8 ppm ( 4 J P . F 21.1 Hz) was observed in 

the 1 9F NMR spectrum. These resonances indicate the formation of the cw-complex. 

Half of the solvent was removed from the solution, and a white solid was isolated which 

displayed a resonance at 15.3 ppm ('jpt-p 3272.6 Hz) in the 3 1P NMR spectrum. This 

compound is cis- [Pt(PPh 3) 2Cl 2]. 4 9 The solid was filtered off and spectra of the filtrate 

were recorded regularly to see any change occurring. After two weeks, new peaks 

appeared in the 3 1P and 1 9F NMR spectra. In addition to the signals described above, a 

multiplet at 208.3 ppm (2JPI-P 456.7 Hz), and a doublet with Pt satellites at 24.3 ppm ( 'JR. 

P 2989.9 Hz, 3 J P .P 27.5 Hz) were found. Cis- and toms-isomers were present in solution. 

The 1 9F NMR exhibited two sets of doublets at -57.6 ( 4J P. F 23.9 Hz) and -57.8 ( 4J P. F 21.1 

Hz) ppm. Assignments of these signals were made according to the relative intensities of 

the peaks, in comparison with the resonances in the 3 1P NMR. 
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C F C F 

CI CI 

/ 
C 

/ 
C 

Pc Pc PPh P.Ph \ / \ / 
Pt Pt 

\ Ph,P CI 
CI C F C F P„Ph 

/ratts-isomer c/s-isomer 

Figure 7.7: Trans and cis ~[PtCl(PEt3) 2(Ar T=CCl)] 

cis trans 

5 (ppm) J pt-pa 
ir a 

J p.p 
2 T a 

J p.p 8 (ppm) Jpt-pa 
3 T a 

J p.p 

Pa 13.5 3936.1 18.7 

24.3 2989.9 27.5 

NMR Pb 17.1 1954.1 47.1 16.7 

Pc 202.4 376.5 45.4 208.3 456.7 
i y F 4 T a 

Jp-F 
4 T a 

Jp-F 

NMR -57.8 21.1 -57.6 23.9 

all coupling constants are given in Hz 

Table 7.5: Assignments for cis and trans isomers 

Solvent was removed under vacuum, leaving a yellow/brown oil which was dissolved in 

toluene. 

The 3 1 P NMR did not show the presence of the cis and trans isomers, but new signals of 

small intensity were observed in the spectrum: a multiplet at 131.5 and a peak at 26.3 

ppm. No platinum satellites were found, probably due to the low intensity of the signals. 
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The I 9F NMR spectrum displayed a doublet at -58.6 ( 4J P. F 8.1 Hz) and a singlet at -63.2 

ppm. These could be assigned to an intermediate parallel to the one described by 

Angelici 4 9 (Figure 7.8). 

CI 

\ PPh 
Pt 

\ 
C 

CI Ph,P 

C F 

Figure 7.8: Possible intermediate in the reaction 

Spectra of this intermediate were monitored after a month to see i f any rearrangement to 

phosphaalkyne had occurred. A number of new peaks appeared in the spectra but none of 

them could be assigned. This could be due to degradation of the compound in the NMR 

tube. 

No apparent signal corresponding to the phosphaalkyne has been found, but the presence 

of an intermediate species has been proved. 

7.5 Experimental 

7.5.1 Introduction 

All manipulations, including NMR sample preparation, were carried out either under an 

inert atmosphere of dry nitrogen or in vacuo, using standard Schlenk procedures or a 

glovebox. Chemicals of the best available commercial grades were used, in general 

without further purification. We thank Johnson Matthey for the loan of platinum salts. 
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• NMR spectroscopy 

- diphosphenes and related species 
3 1P NMR spectra were recorded on a Bruker 300 spectrometer at 121.5 MHz. 

- phosphaalkenes 
1 9F NMR spectra were recorded on a Varian Mercury 200 or Varian VXR 400 Fourier-

transform spectrometer at 188.18 and 376.35 MHz respectively. 3 1P NMR spectra were 

recorded on the same instruments at 80.96 or 161.91 MHz. Chemical shifts were 

measured relative to external CFCI3 ( 1 9F). or 85% H3PO4 ( 3 IP), with the higher frequency 

direction taken as positive. 

• W(PMe3)6 was prepared by J. Grundy and Dr M. P. Coles at the University of 

Sussex. Al l manipulations with this catalyst were carried out at the University of 

Sussex. 

7.5.2 Synthesis of ArP=PAr 

2 ArPCl 2 + W(PMe 3) 6

 C < P ' » ArP=PAr 

ArPCl 2 (O.lg, 0.45 mmol) and W(PMe3)6 (O.lg, 0,21 mmol) were placed in an NMR tube 

and dissolved in CeD6. The solution changed colour from yellow to red. The resulting 

solution was stirred for 18 hours. 
3 1 P NMR (C 6D 6): 5 473.0 (m, V F 22.7 Hz) ppm, 1 9 F NMR (C 6D 6): 8 -55.9 (t, 4 J P . F 22.7 

Hz, 12F, 0-CF3), -63.1 (s, 6 F , / J - C F 3 ) ppm. 
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7.5.3 Synthesis of Ar'P=PAr' 

2 Ar'PCl2/Ar"PCl2 + W(PMe 3) 6 ^ » Ar'P=PAr' 

Ar'PCl 2/Ar"PCl 2 (O.Olg, 0.045 mmol) and W(PMe3)6(0.01g, 0.021 mmol) were placed in 

an NMR tube and dissolved in CeD6. The solution changed colour from yellow to red. 

The resulting solution was stirred for 18 hours. 
3 1 P NMR (C6D6): 5 479.8. (m, 1 JP.F 22.7 Hz) ppm. 

7.5.4 Attempted synthesis of ArP=AsAr 

ArPCl 2+ArAsCl 2 + W(PMe 3) 6 ^ » ArP=AsAr 

ArPCl 2 (0.05g, 0.022 mmol), ArAsCl 2 (0.006g, 0.022 mmol) and W(PMe3)6 (O.Olg, 0.021 

mmol) were placed in an NMR tube and dissolved in C6D6. The solution changed colour 

from yellow to red. The resulting solution was stirred for 3 days. The P NMR spectrum 

only showed the formation of ArP=PAr. 

7.5.5 Attempted synthesis of ArP=GeAr2 

ArPCl2+ Ar 2GeCl 2 + W(PMe 3) 6

 C < s D 6 . ArP=GeAr2 

ArPCl 2 (O.Olg, 0.022 mmol), Ar 2GeCl 2 (0.015g, 0.022 mmol) and W(PMe3)6 (O.Olg, 

0.021 mmol) were placed in an NMR tube and dissolved in CeD6. The solution changed 
31 

colour from yellow to red. The resulting solution was stirred for 3 days. The P NMR 

spectrum only showed the formation of ArP=PAr. 

7.5.6 Attempted synthesis of ArP=SnAr2 

ArPCl2+ Ar 2SnCl 2 + W(PMe 3) 6

 6 6 . ArP=SnAr2 
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ArPCl 2 (0.0lg, 0.022 mmol), Ar 2SnCl 2 (0.016g, 0.022 mmol) and W(PMe3)6 (0.0 lg, 

0.021 mmol) were placed in an NMR tube and dissolved in C6D6. The solution changed 
31 

colour from yellow to red. The resulting solution was stirred for 3 days. The P NMR 

spectrum only showed the formation of ArP=PAr. 

7.5.7 Synthesis of Pt(PPh3)4 

K 2[PtCl 4] + 2 KOH + 4 PPh3 + EtOH • Pt(PPh3)4 + 4 KC1 + CH3CHO + 2 H 2 0 

PPh3 (15.4g, 5.9 mmol) was dissolved in 200 ml of absolute ethanol at 65°C. When the 

solution was clear, a solution of 1.4g of KOH in a mixture of 32 ml of ethanol and 8 ml 

of water was added. Then, a solution of potassium tetrachloroplatinate (II) (5.24g, 1.26 

mmol) in water was slowly added to the alkaline triphenylphosphine solution while 

stirring at 65°C. The addition was completed in about 20 min. A pale yellow compound 

began to separate within a few minutes of the first addition. After cooling, the compound 

was recovered by filtration, washed with warm ethanol (150 ml), then with cold water (60 

ml) and again with cold ethanol (50 ml). The resulting pale yellow powder was dried 

under vacuum. 

Elemental analysis for PtC72H60P4 (1243.08): Calc C 69.50, H 4.86 %, Found: C 69.8, 

4.75%. 

7.5.8 Synthesis of ArP(Cl)CHCI 2 

CH 2C1 2 + BuLi • CHLiCl 2 

CHLiCl 2 + ArPCl 2 • ArP(CHCl2)Cl 

BuLi (7.4 ml, 11.8 mmol, 1.6M in hexanes) was added dropwise to a solution of CH2C12 

(0.85 ml, 11.8 mmol) in a 4:1:1 mixture of pentane:THF:Et20 at -130°C with vigorous 

stirring. The mixture was allowed to stir for one hour and was then added rapidly through 
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a pre-cooled cannula to a solution of ArPCl2 (4.52g, 11.8 mmol) in diethyl ether at 

-130°C. The solution was allowed to warm up and stirred for 4 hours. A precipitate of 

LiCl formed. The solution was filtered and the solvent removed under vacuum. The 

product was purified by distillation under reduced pressure, giving a colourless oil, Bp 

70°C (0.03 Torr). 
3 1 P NMR (CDC13): 8 63.1 (septet, 4 J P . F 49.3 Hz) pm; 1 9 F NMR (CDCI3): 8 -55.3 (d, 4 J P . F 

49.3 Hz, 6F, 0-CF3), -64.5 (s, 3F,jp-CF3) ppm. 

7.5.9 Synthesis of ArP=CCl 2 

ArP(CHCl2)Cl D B U » Ar=PCCl2 

DBU (1.05g, 0.97 ml, 7 mmol) was added dropwise to a solution of ArP(Cl)CHCl2 (3g, 7 

mmol) in THF. The solution was stirred for two hours giving an orange solution. The 

solvent was removed under vacuum, and the product purified by distillation under 

reduced pressure. (Bp 60°C). 
3 1 P NMR (CDCI3): 8 202.4 (septet, 4 J P . F 20.6 Hz); 1 9 F NMR (CDC13): 8 -60.0 (d, 4 J P . F 21 

Hz, 6F, o-CF3), -63.9 (s, 3F,/?-CF3) ppm. 

7.5.10 Synthesis of Ar'P(Cl)CHCl 2 

CH 2C1 2 + BuLi ^ CHLiCl 2 

CHLiCl 2 + Ar'PCl2/Ar"PCl2 • Ar'P(CHCl2)Cl 

BuLi (15.6 ml, 25 mmol, 1.6M in hexanes) was added dropwise to a solution of CH2C12 

(1.6 ml, 25 mmol) in a 4:1:1 mixture of pentane: THF: Et 20 at -130°C with vigorous 

stirring. The mixture was allowed to stir for one hour and was then added rapidly through 

a pre-cooled cannula to a solution of Ar'PCl 2/Ar"PCl 2 (6g, 20 mmol) in diethyl ether at -

130°C. The solution was allowed to warm up and stirred for 4 hours. A precipitate of 
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LiCl formed. The solution was filtered and the solvent removed under vacuum. The 

product was purified by distillation under reduced pressure, giving a colourless oil, Bp 

65°C (0.03 Torr). 
3 1 P NMR (CDC13): 5 65.3 (septet, 4J P . F 48.8 Hz) ppm; 1 9 F NMR (CDC13): S -53.9 (d, 
4JP.F 49.3 Hz, 6F, 0-CF3) ppm. 

7.5.11 Synthesis of Ar'P=CCl 2 

Ar'P(CHCl2)Cl D B U » Ar'=PCCl2 

DBU (2.85g, 2.8 ml, 18.8 mmol) was added dropwise to a solution of ArP(Cl)CHCl2 

(6.8g, 18 mmol) in THF. The solution was stirred for two hours, giving an orange 

solution. The solvent was removed under vacuum and the product purified by distillation 

under reduced pressure. (Bp 62°C). 
3 1 P NMR (CDCI3): 8 207.6 (septet, 4 J P . F 20.7 Hz); 1 9 F NMR (CDCI3): 8 -59.6 (d, 4 J P . F 

21.1 Hz, 6F, o-CF3)ppm. 

7.5.12 Synthesis of [PtCl(ClC=PAr)(PPh3)2] 

Pt(PPh3)4 

Ar=PCCl2 ^ PtCl(ClC=PAr)(PPh3)2 

A solution of ArP=CCl2 (0.24g, 0.6 mmol) in toluene was added to a solution of 

Pt(PPh3)4 (0.75g, 0.6 mmol) in toluene. The resulting yellow solution was allowed to stir. 
3 1 P NMR (C 7D 8): c/,s-rPtCl(CCl=PAr)(PPh^1: 8 198.1 (multiplet with Pt satellites, 

369.2 Hz, 3 J P . P 45.4 Hz, 4 J P . F 22.6 Hz), 17.3 (dd with Pt satellites, V P 1897.2,3JP.P48.4, 
3 J P . P 17.8 Hz), 14.1 (t with Pt satellites, ' J ^ F 4063.8 Hz, 3 J P . P 15.3 Hz); trans-

fPtCKCCl=PAr)(PPh3)9: 8 203.7 (multiplet with Pt satellites, 2ln-v 282.6 Hz, 3J P . F 22.6 
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Hz), 24.6 (d with Pt satellites, VP 2963.5 Hz, 3J P . P 27.5 Hz) ppm; 1 9 F NMR (CDC13): 

m-rPtCirCCl=PAr)fPPh^9 8 -57.9 (d, 4J P . F 23.7 Hz, 6F, 0-CF3), -63.0 (s, />CF3) ppm; 

ft-a/w-rPtCl(CCl=PAr)(PPhO?: 8 -57.8 (d, 4 J P . F 23.0 Hz, 6F, 0-CF3), -62.9 (s,p-CF3) ppm. 

7.5.13 Synthesis of [PtCl(CCl=PAr')(PPh3)2] 

pt(PPh3)4 

Ar'=PCCl2 ^ PtCl(ClC=PAr,)(PPh3)2 

A solution of Ar'P=CCl2 (0.5 lg, 1.6 mmol) in benzene was added to a solution of 

Pt(PPh3)4 (1.9g, 1.5 mmol). The resulting yellow solution was allowed to stir. 
3 1 P NMR ( C 7 D 8 ) : crs-fPtCKCCl-PArnfPPh^l: 8 202.4 (septet with Pt satellites, 2JFI.P 
376.5 Hz, 3Jp.P45.4 Hz, 4JP.F24.4 Hz), 17.1 (dd with Pt satellites, VP 1954.1,3JP.P47.1, 
3 J P . P 16.7 Hz), 13.5 (t, VP 3936.1 Hz, 3 J P . P 18.7 Hz); frara-rPtCl(CCl=PAr)(PPh^: 

8 208.3 (m with Pt satellites, V P 456.7 Hz), 24.3 (d with Pt satellites, 1 JR.? 2989.9 Hz, 

VP 27.5 Hz) ppm; 1 9 F NMR (CDCI3): c/s-[PtCKCCl=PAr)rPPhQ7 8 -57.8 (d, VF 21.1 

Hz, 6F, 0-CF3) ppm; frq».s-rPtCl(CCl=PAr)fPPh3)?: 8 -57.6 (d, VF 23.9 Hz, 6F, 0-CF3) 

ppm. 
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Conclusions and Future Work 

A series of new derivatives containing bulky electron-withdrawing substituents and some 

elements of groups 13,14, and 15 has been synthesised. 

Coordination of fluoromes or fluoroxyl ligands to boron or silicon revealed a 

fluorine/chlorine exchange, leading to the synthesis of A^BF, Ar2SiF2 and Ar^SiFj, 

which have been structurally characterised. 

For the first time, the crystal structures of derivatives containing three fluoroxyl ligands 

have been determined (Ar"3B and Ar'Ar^Sb). Phosphorus and arsenic derivatives have 

been extensively studied, with the isolation of ArEX2, ArjEX, Ar'EX2, Ar"EX2, Ar"2EX 

and Ar'Ar"EX where E = P or As and X = H, CI or Br. For compounds containing Ar or 

Ar' and Ar", detailed T-dependence studies have allowed the calculation of rotational 

barriers. However, with group 14 elements, only chlorinated derivatives have been 

prepared so far. This could be extended to the bromide and hydride compounds, at least 

with tin and germanium derivatives, as halogen exchange might occur with silicon. 

Synthesis of Ar'Ar"BX should be tried as well in order to carry out variable temperature 

NMR studies to determined the rotational barrier of the molecule and compare it with 

those calculated in this work. 

All derivatives structurally characterised have shown some intramolecular interactions 

between the fluorines of some of the 0 - C F 3 groups and the central atom. These short 

contacts are believed to play an important role in the stabilisation of such molecule 

containing bulky electron-withdrawing substituents 

New platinum cis and trans complexes have been prepared by treatment of phosphane 

derivatives with [PtCl2(PEt3)]2 or [PtBr2(PEt3)]2. Halogen exchange was observed when a 

bromophosphane was reacted with the chlorodimer. Cis isomers could be screened for 

anti-cancer activity. 
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Some advances have also been made in the field of multiple bonded main group 

derivatives. Attempts have been made to prepare new P=E (E= As, Ge, Sn) derivatives. 

ArP=PAr and Ar'P=PAr' have been prepared, but reaction between an arsane and a 

phosphane or a phosphane and a group 14 derivative has not been successful. However, 

this is a field of considerable interest, and some reactions could be tried, such as the 

synthesis of ArAs=AsAr by reacting ArAsCb with W(PMej)6 in a 2:1 ratio, to check the 

ability of the tungsten catalyst to remove chlorine from a derivative other than 

phosphorus. 

If the synthesis of a P=As compound is successful, reaction with [PtCl2(PEt3)2]2 should 

be attempted in order to study the coordination of the platinum. According to the results 

found in this work, platinum should only coordinate at the phosphorus atom. The reaction 

of certain phosphaalkenes with Pt(PPh3)4 clearly showed the formation of platinum(II) 

complexes and, in one case, the formation of a phosphabicyclo intermediate has been 

observed by NMR spectroscopy. 

Alternative synthetic routes to phosphaalkynes could be explored, such as the reaction of 

ArCOCl and P(SiMe3)3: 

P(SiMe,), 
ArCOCl 

[ArCOPfSiMejJJ 
Me,S 

/ !=P(SIMej) 
-<SiMe,)CI 

Ar 

Base 

Me3SiOSiMe, + ArC^=P 
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Appendix A 

Calculations for Boron derivatives 



Ar'B(OH) 2 

Optimized geometry at HF/6-31G* level 

F<16) 

F( 21 
C(6) 

C(5) 
0(8) C(4I 

C(11) 
C(1) 

F(14) 
C(2) F(17) 

C(9I 
C<3) 

B(7) 

F(15) 0(13) 

F(10) 

I N T E R A T O M I C D I S T A N C E S 

C 1 C 2 C 3 C 4 C 5 C 6 

c 1 0 0 0 0 
c 2 1 396 0 0 0 0 
c 3 2 378 1 3 9 6 0 . 0 0 0 
c 4 2 7 5 6 2 4 3 0 1. 3 8 6 0 . 0 0 0 
c 5 2 3 9 9 2 814 2 . 3 9 9 1 . 3 8 1 0 . 0 0 0 
c 6 1 386 2 4 3 0 2 . 7 5 6 2 . 3 8 5 1. 3 8 1 0 . 0 0 0 
B 7 2 616 1 5 9 9 2 . 6 1 6 3 . 9 0 3 4 . 4 1 3 3 . 9 0 3 
0 8 3 5 3 2 2 524 3 . 2 6 5 4 . 5 5 8 5 . 1 7 6 4 . 7 5 2 
c 9 3 7 7 7 2 5 2 2 1 . 5 0 8 2 . 4 7 8 3 7 5 9 4 . 2 6 2 
F 10 4 166 2 800 2 . 3 5 1 3 . 5 4 9 4 . 7 0 2 4 . 9 4 5 
c 11 1 5 0 8 2 5 2 2 3 . 7 7 7 4 . 2 6 2 3 . 7 5 9 2 . 4 7 8 
F 12 2 3 5 1 2 800 4 . 1 6 5 4 . 9 4 5 4 7 0 2 3 . 5 4 9 
0 13 3 2 6 5 2 524 3 . 5 3 2 4 . 7 5 2 5 . 1 7 6 4 . 5 5 8 
F 14 4 407 3 190 2 . 3 5 3 3 . 1 8 6 4 . 4 1 1 4 . 9 0 6 
F 15 4 695 3 5 9 6 2 . 3 4 7 2 . 7 1 0 4 . 074 4 . 8 9 2 
F 16 2 3 4 7 3 5 9 6 4 . 6 9 5 4 . 8 9 2 4 . 074 2 . 7 1 0 
F 17 2 3 5 3 3 190 4 . 407 4 . 9 0 6 4 4 1 1 3 . 1 8 6 
H 18 3 8 2 9 3 3 9 6 2 . 134 1. 0 7 3 2 1 3 1 3 . 3 5 9 
H 19 3 374 3 8 8 8 3 . 374 2 . 1 3 5 1 074 2 . 1 3 5 
H 20 2 134 3 3 9 6 3 . 8 2 9 3 . 3 5 9 2 . 1 3 1 1 . 0 7 3 
H 21 4 127 3 382 4 3 5 9 5 . 6 3 3 6 . 0 9 7 5 . 4 5 6 
H 22 4 3 5 9 3 3 8 2 4 1 2 7 5 . 4 5 6 6 0 9 7 5 . 6 3 3 

B 7 0 8 C 9 F 10 C 11 F 12 

B 7 0 000 
0 8 1 352 0 0 0 0 
c 9 3 0 0 1 3 2 9 5 0 . 0 0 0 
F 10 2 606 2 9 5 6 1. 3 2 8 0 . 0 0 0 
C 11 3 0 0 1 3 852 5 . 044 5 . 1 7 3 0 . 0 0 0 
F 12 2 6 0 6 3 110 5 . 1 7 3 5 . 1 2 6 1. 3 2 8 0 . 0 0 0 
0 13 1 352 2 402 3 . 8 5 3 3 . 1 1 1 3 . 2 9 5 2 . 9 5 6 
F 14 3 458 3 2 2 0 1 . 3 2 2 2 . 1 2 9 5 . 5 9 9 5 . 5 1 4 
F 15 4 2 3 1 4 6 0 5 1 . 324 2 . 1 2 9 6 . 0 6 2 6 . 3 5 7 
F 16 4 2 3 1 4 9 0 9 6 . 0 6 2 6 . 3 5 7 1 . 324 2 . 1 2 9 



F 17 3 458 4.535 5 .599 5.514 1 322 2 .129 
H 18 4 751 5 .299 2.654 3.845 5 335 5.994 
H 19 5 487 6.225 4.612 5.633 4 612 5 .633 
H 20 4 750 5 .592 5 .335 5.994 2 654 3 .845 
H 21 1 967 2 .570 4 .486 3.578 3 976 3 .387 
H 22 1 967 0 .946 3 .976 3.388 4 486 3 .578 

0 13 F 14 F 15 F 16 F 17 H 18 

0 13 0 000 
F 14 4 535 0.000 
F 15 4 909 2.124 0.000 
F 16 4 605 6.514 7.031 0.000 
F 17 3 220 6.361 6.514 2.124 0 000 
H 18 5 592 3.258 2.384 5.936 5 948 0 .000 
H 19 6 225 5 .213 4 .709 4 .709 5 214 2 .459 
H 20 5 299 5 .948 5 .936 2.384 3 258 4.248 
H 21 0 946 5.030 5.554 5 .239 3 853 6.441 
H 22 2 571 3 .853 5 .239 5.554 5 030 6 .165 

H 19 H 20 H 21 

H 19 0 000 
H 20 2 459 0.000 
H 21 7 154 6.165 0.000 
H 22 7 154 6.441 2 .379 0.000 

D ANGLES 
2 3 C2 C2 C2 116.839 
2 7 C2 C2 B 121.580 
6 5 C2 C2 C2 120.157 
6 20 C2 C2 HC 119.889 

11 12 C2 C3 F 111.852 
11 16 C2 C3 F 111.780 
11 17 C2 C3 F 112.333 

2 1 6 C2 C2 C2 121.719 
2 1 11 C2 C2 C3 120.546 
2 3 4 C2 C2 C2 121.718 
2 3 9 C2 C2 C3 120.548 
2 7 8 C2 B 03 117.337 
2 7 13 C2 B 03 117.338 
3 2 7 C2 C2 B 121.581 
3 4 5 C2 C2 C2 120.158 
3 4 18 C2 C2 HC 119.889 
3 9 10 C2 C3 F 111.854 
3 9 14 C2 C3 F 112.334 
3 9 15 C2 C3 F 111.777 
4 3 9 C2 C2 C3 117.722 
4 5 6 C2 C2 C2 119.408 
4 5 19 C2 C2 HC 120.296 
5 4 18 C2 C2 HC 119.952 
5 6 20 C2 C2 HC 119.953 
6 1 11 C2 C2 C3 117.724 
6 5 19 C2 C2 HC 120.296 
7 8 22 B 03 H 116.567 
7 13 21 B 03 H 116.558 
8 7 13 03 B 03 125.325 

TORSION ANGLES 
1 2 3 4 - 0 . 0 9 3 2 3 4 5 0 .186 
1 2 3 9 178.652 2 3 4 18 -179 .518 
1 2 7 8 -108 .490 2 3 9 10 33 .380 
1 2 7 13 71 .508 2 3 9 14 -86 .867 
2 1 6 5 0 .186 2 3 9 15 153.104 
2 1 6 20 -179 .518 2 7 8 22 -177 .370 
2 1 11 12 33.382 2 7 13 21 -177 .364 
2 1 11 16 153.108 3 2 7. 8 71 .503 
2 1 11 17 - 8 6 . 8 6 0 3 2 7 13 - 1 0 8 . 4 9 9 



3 4 5 6 - 0 . 0 9 1 7 2 3 9 -1 341 
3 4 5 19 179.909 8 7 13 21 2 634 
4 3 9 10 -147 .826 9 3 4 5 -178 593 
4 3 9 14 91.927 9 3 4 18 1 703 
4 3 9 15 - 28 .101 11 1 2 3 178 655 
4 5 6 1 - 0 . 0 9 1 11 1 2 7 -1 352 
4 5 6 20 179.613 11 1 6 5 -178 595 
6 1 2 3 - 0 . 0 9 2 11 1 6 20 1 701 
6 1 2 7 179.901 13 7 8 22 2 633 
6 1 11 12 -147 .823 18 4 5 6 179 613 
6 1 11 16 - 2 8 . 0 9 6 18 4 5 19 -0 387 
6 1 11 17 91 .936 19 5 6 1 179 910 
7 2 3 4 179.914 19 5 6 20 -0 387 

Ar'B(OH) 2 

Calculated NMR (GIAO-HF/6-3 lG*//HF/6-31G*) 

For 1 9 F shift use 213 - value 
22 
CsHgBFeOa « C1 » , GIAO RHF / 6-31G* OPT RHF / 6-31G* -1077.04895445 
C 1 69.1616 132.538 
C 2 64.8629 136.837 
C 3 69.1607 132.539 
C 4 71.7215 129.978 
C 5 77.3422 124.358 
C 6 71.7228 129.977 
B 7 97.0015 26.3985 
O 8 255.3898 
C 9 92.5724 109.128 
F 10 315.5568 
C 11 92.5720 109.128 
F 12 315.5491 
O 13 255.3883 
F 14 303.1253 
F 15 320.3522 
F 16 320.3577 
F 17 303.1226 
H 18 24.6522 10.3478 
H 19 25.1207 9.8793 
H 20 24.6522 10.3478 
H 21 29.7736 5.2264 
H 22 29.7727 5.2273 

1 1Bref= 123.4 1 3Cref= 201.7 1Href=35 

C8H5BF602 « C1 » NIMAG= 0 ZPE= 91.04038 E(RHF) / 6-31G(d) FC= 1 // 
OPT RHF / 6-31G* -1077.04895445 



Ar ' 2 BF 
Optimized HF/6-31G* geometry 

F(24) 

C(4) C(5) 
C(9 

F(25) C 6 C 3 

F(10) 

CO C2) F23 ) 
F(22) 

F(8 
F(20 C( ) C( 9) 

F(2) 
F(27) 

C(14) 
F(34) C( 3) 

C< 5) 
C( 8) 

C(28) F(36) 

R35) C(16) 
C( 7) 

INTERATOMIC DISTANCES 

c 1 C 2 c 3 C 4 C 5 c 6 

c 1 0 000 
c 2 1 403 0 .000 
c 3 2 388 1.406 0 000 
c 4 2 756 2 .436 1 386 0.000 
c 5 2 399 2 .822 2 402 1.380 0 000 
c 6 1 387 2 .437 2 760 2 .380 1 378 0 000 
B 7 2 657 1.604 2 603 3 .896 4 426 3 934 
F 8 3 653 2 .471 3 010 4.354 5 110 4 820 



A-6 

c 9 3 . 813 2 . 568 1.518 2 .460 3 .751 4.274 
F 10 4.283 2 . 920 2.372 3.517 4.704 5.007 
C 11 1. 513 2 . 551 3.804 4.265 3.748 2 .462 
F 12 2 . 348 2 . 862 4.204 4.933 4 .655 3 .493 
C 13 3 . 538 2 . 898 4.017 5.236 5 .596 4.882 
C 14 4. 020 3 . 538 4 .526 5.607 5.900 5 .213 
C 15 5 . 213 4. 882 5 .910 6.960 7 .169 6.386 
C 16 5 . 900 5. 596 6.737 7.867 8.058 7 .169 
C 17 5 . 607 5 . 236 6.428 7.633 7.867 6.960 
C 18 4. 526 4. 017 5 .189 6.428 6.737 5.910 
C 19 3 . 886 3 . 401 4.047 4.921 5 .247 4.795 
F 20 5. 134 4. 691 5 .199 5.977 6.305 5 .927 
H 21 6. 889 6. 649 7 .792 8.899 9 .049 8 .126 
F 22 3 . 230 3 . 197 3 .880 4.447 4.457 3 .902 
F 23 3 . 888 3 . 020 3 .256 4.205 4.848 4.715 
F 24 4.720 3 . 644 2 .348 2 .640 4.010 4.868 
F 25 4. 385 3 . 175 2 .349 3.200 4.414 4.888 
F 26 2 . 348 3 . 630 4 .705 4.855 4 .009 2 .647 
F 27 2 . 364 3 . 182 4.442 4.958 4.475 3 .243 
C 28 4. 959 4. 415 5.508 6.753 7 .105 6.316 
H 29 6. 440 6. 107 7.314 8.530 8.747 7.798 
H 30 5. 825 5. 561 6.488 7.436 7 .607 6.872 
H 31 3 . 827 3 . 401 2 .132 1.071 2 .125 3 .351 
H 32 3 . 374 3 . 896 3 .376 2.133 1.074 2 .133 
H 33 2 . 133 3 . 401 3 .832 3 .353 2 .125 1.072 
F 34 4. 216 3 . 806 4 .891 6.018 6.278 5 .485 
F 35 5. 942 5. 591 6.752 7.946 8.180 7.274 
F 36 5. 708 4. 885 5 .728 7.051 7 .626 7 .035 

B 7 F 8 C 9 F 10 C 11 F 12 

B 7 0. 000 
F 8 1. 313 0. 000 
C 9 3 022 2 881 0.000 
F 10 2 753 2 591 1.321 0.000 
C 11 3 . 103 4 171 5 .113 5.371 0.000 
F 12 2 818 3 634 5.278 5.429 1.323 0.000 
C 13 1 604 2 471 4.415 3 .806 3 .400 3 .020 
C 14 2 657 3 653 4 .960 4 .216 3 .885 3 .888 
C 15 3 934 4 820 6.316 5.486 4 .795 4.715 
C 16 4 425 5 111 7 .105 6.278 5 .246 4.848 
C 17 3 896 4 354 6 .753 6.019 4 .920 4.205 
C 18 2.603 3 010 5.508 4.891 4 .047 3 .256 
C 19 3 103 4 171 4 .509 3 .825 4 .163 4.580 
F 20 4 365 5 336 5.514 4.700 5 .352 5.803 
H 21 5 499 6 159 8 .153 7.288 6.144 5 .755 
F 22 3 460 4 693 4 .730 4.395 3 .501 4 .265 
F 23 2 818 3 633 3 .396 2.621 4 .580 4.948 
F 24 4 285 4 187 1.325 2 .119 6.132 6.458 
F 25 3 389 2 765 1.321 2.131 5 .576 5 .485 
F 26 4.365 5 336 6 .113 6.536 1.323 2.124 
F 27 3 459 4 692 5.671 5.681 1.322 2 .127 
C 28 3 021 2 881 5.721 5 .276 4.508 3 .396 
H 29 4 735 5 021 7 .606 6.889 5 .645 4 .773 
H 30 4 789 5 725 6 .899 6.039 5 .456 5 .563 
H 31 4 735 5 021 2 .615 3.760 5 .336 5.978 
H 32 5 499 6 158 4.594 5.610 4.594 5.568 
H 33 4 789 5 725 5 .345 6.062 2 .622 3.757 
F 34 2 753 2 591 5 .276 5.141 3 .825 2 .621 
F 35 4 285 4 187 7.031 6.599 5.227 4 .016 
F 36 3 389 2 765 5 .589 5.023 5 .535 4 .492 

C 13 C 14 C 15 C 16 C 17 C 18 

C 13 0.000 
C 14 1.403 0 000 
C 15 2 437 1 387 0 .000 
C 16 2 822 2 399 1.378 0.000 
C 17 2 436 2 756 2 .380 1.380 0 .000 
C 18 1 406 2 388 2 .760 2.402 1.386 0 .000 
C 19 2 551 1 513 2 .462 3.748 4.265 3.804 



F 20 
H 21 
F 22 
F 23 
F 24 
F 25 
F 26 
F 27 
C 28 
H 29 
H 30 
H 31 
H 32 
H 33 
F 34 
F 35 
F 36 

3.630 
3 .896 
3 .183 
2.862 
5.591 
4.885 
4.691 
3.197 
2 .568 
3.401 
3 .401 
6.107 
6.649 
5.561 
2 .920 
3.644 
3 .175 

C 19 

2 .348 
3.374 
2 .364 
2 .348 
5 .943 
5.708 
5.134 
3 .229 
3 .813 
3 .827 
2 .133 
6.440 
6.889 
5 .825 
4 .283 
4 .720 
4.384 

F 20 

2 .647 
2 .133 
3 .243 
3 .493 
7.274 
7 .035 
5 .926 
3 .901 
4.274 
3 .351 
1.072 
7 .798 
8 .126 
6 .872 
5 .007 
4 .868 
4 .888 

H 21 

4 .009 
1.074 
4 .475 
4 .656 
8.181 
7 .627 
6.304 
4 .456 
3 .751 
2 .125 
2 .125 
8.747 
9 .049 
7 .606 
4.704 
4.010 
4.414 

F 22 

4 .855 
2 .133 
4.958 
4.933 
7 .947 
7.051 
5.976 
4 .446 
2 .460 
1.071 
3 .353 
8.530 
8.898 
7 .435 
3.517 
2 .640 
3 .200 

F 23 

4 .705 
3 .376 
4.442 
4.204 
6.752 
5.728 
5 .199 
3 .879 
1.518 
2 .132 
3 .832 
7.314 
7.792 
6.488 
2 .372 
2.348 
2 .349 

F 24 

c 19 0.000 
F 20 1.323 0 000 
H 21 4.594 4. 623 0 .000 
F 22 1.322 2. 121 5 .288 0.000 
F 23 1.323 2 124 5 .568 2 .127 0.000 
F 24 5.227 6 052 9.204 5.374 4 .016 0 000 
F 25 5 .535 6 602 8 .685 5 .811 4.492 2 122 
F 26 5.352 6 471 7 .115 4.514 5.803 7 042 
F 27 3 .500 4 514 5 .260 2 .765 4.264 6 641 
C 28 5.113 6 113 4.594 5.671 5 .277 7 031 
H 29 5 .336 5 891 2 .452 6.007 5.978 8 834 
H 30 2 .622 2 278 2 .454 3 .325 3.757 7 728 
H 31 5 .645 6 593 9.778 5.246 4.773 2 260 
H 32 6.144 7 116 10 .019 5.261 5.756 4 618 
H 33 5 .456 6 521 8 .500 4 .416 5.563 5 907 
F 34 5.371 6 536 5 .610 5.681 5 .429 6 599 
F 35 6.132 7 042 4 .618 6.641 6.458 8 346 
F 36 5 .576 6 505 5 .221 6 .325 5 .485 6 851 

F 25 F 26 F 27 C 28 H 29 H 30 

F 25 0.000 
F 26 6.505 0 .000 
F 27 6.325 2 .121 0 .000 
C 28 5 .589 5.514 4 .730 0.000 
H 29 7.775 6.593 5 .246 2 .615 0.000 
H 30 7.743 6.520 4 .415 5 .345 4.237 0.000 
H 31 3 .289 5 .891 6 .007 7 .605 9.434 8.228 
H 32 5 .221 4 .623 5 .288 8 .153 9.778 8.500 
H 33 5 .923 2 .278 3 .325 6.899 8.228 7.310 
F 34 5 .023 4 .700 4 .395 1.321 3.760 6.062 
F 35 6.851 6.052 5 .374 1.325 2 .259 5 .907 
F 36 5.290 6.602 5 .810 1.321 3 .289 5 .923 

H 31 H 32 H 33 F 34 F 35 

H 31 0.000 
H 32 2.452 0 .000 
H 33 4.237 2 .454 0 .000 
F 34 6.889 7 .288 6.038 0.000 
F 35 8.833 9 .203 7 .728 2 .119 0.000 
F 36 7.774 8.684 7 .743 2 .131 2.122 0.000 

37 

BOND ANGLES 
1 2 3 C2 C2 C2 116.423 
1 2 7 C2 C2 B 124.015 



1 6 5 C2 C2 C2 120.368 
1 6 33 C2 C2 HC 119.809 
1 11 12 C2 C3 F 111.581 
1 11 26 C2 C3 F 111.611 
1 11 27 C2 C3 F 112.831 
2 1 6 C2 C2 C2 121.778 
2 1 11 C2 C2 C3 122.042 
2 3 4 C2 C2 C2 121.476 
2 3 9 C2 C2 C3 122.752 
2 7 8 C2 B F 115.403 
2 7 13 C2 B C2 129.186 
3 2 7 C2 C2 B 119.543 
3 4 5 C2 C2 C2 120.564 
3 4 31 C2 C2 HC 119.774 
3 9 10 C2 C3 F 113.177 
3 9 24 C2 C3 F 111.145 
3 9 25 C2 C3 F 111.513 
4 3 9 C2 C2 C3 115.742 
4 5 6 C2 C2 C2 119.360 
4 5 32 C2 C2 HC 120.294 
5 4 31 C2 C2 HC 119.662 
5 6 33 C2 C2 HC 119.822 
6 1 11 C2 C2 C3 116.168 
6 5 32 C2 C2 HC 120.342 
7 13 14 B C2 C2 124.015 
7 13 18 B C2 C2 119.543 
8 7 13 F B C2 115.411 

13 14 15 C2 C2 C2 121.778 
13 14 19 C2 C2 C3 122.044 
13 18 17 C2 C2 C2 121.476 
13 18 28 C2 C2 C3 122.751 
14 13 18 C2 C2 C2 116.422 
14 15 16 C2 C2 C2 120.367 
14 15 30 C2 C2 HC 119.808 
14 19 20 C2 C3 F 111.610 
14 19 22 C2 C3 F 112.832 
14 19 23 C2 C3 F 111.581 
15 14 19 C2 C2 C3 116.166 
15 16 17 C2 C2 C2 119.359 
15 16 21 C2 C2 HC 120.342 
16 15 30 C2 C2 HC 119.822 
16 17 18 C2 C2 C2 120.564 
16 17 29 C2 C2 HC 119.663 
17 16 21 C2 C2 HC 120.294 
17 18 28 C2 C2 C3 115.744 
18 17 29 C2 C2 HC 119.773 
18 28 34 C2 C3 F 113.177 
18 28 35 C2 C3 F 111.145 
18 28 36 C2 C3 F 111.514 

T O R S I O N A N G L E S 
1 2 3 4 -1 919 3 4 5 32 -179 .974 
1 2 3 9 176.014 4 3 9 10 -141 .356 
1 2 7 8 -132 695 4 3 9 24 - 2 1 . 6 7 3 
1 2 7 13 47 301 4 3 9 25 97 .219 
2 1 6 5 -0 104 4 5 6 1 - 1 . 1 2 0 
2 1 6 33 -179 .558 4 5 6 33 178.333 
2 1 11 12 39 373 6 1 2 3 1.588 
2 1 11 26 158 725 6 1 2 7 179.974 
2 1 11 27 -81 232 6 1 11 12 -139 .376 
2 3 4 5 0 779 6 1 11 26 -20 .024 
2 3 4 31 -179 209 6 1 11 27 100.019 
2 3 9 10 40 601 7 2 3 4 179.621 
2 3 9 24 160 284 7 2 3 9 - 2 . 4 4 5 
2 3 9 25 -80 824 7 13 14 15 179.974 
2 7 13 14 47 303 7 13 14 19 1.303 
2 7 13 18 -134 352 7 13 18 17 179.609 
3 2 7 8 45 640 7 13 18 28 - 2 . 4 5 5 
3 2 7 13 -134 364 8 7 13 14 -132 .701 
3 4 5 6 0 788 8 7 13 18 45.645 



9 3 
9 3 

11 1 
11 1 
11 1 
11 1 
13 14 
13 14 
13 14 
13 14 
13 14 
13 18 
13 18 
13 18 
14 13 
14 13 
14 15 
14 15 
15 14 
15 14 
15 14 
15 16 
15 16 
16 17 
16 17 
17 18 
17 18 
17 18 
18 13 
18 13 
19 14 
19 14 
21 16 
21 16 
29 17 
29 17 
30 15 
30 15 
31 4 
31 4 
32 5 
32 5 

4 5 
4 31 
2 3 
2 7 
6 5 
6 33 

15 16 
15 30 
19 20 
19 22 
19 23 
28 34 
28 35 
28 36 
18 17 
18 28 
16 17 
16 21 
19 20 
19 22 
19 23 
17 18 
17 29 
18 13 
18 28 
28 34 
28 35 
28 36 
14 15 
14 19 
15 16 
15 30 
17 18 
17 29 
18 13 
18 28 
16 17 
16 21 

5 6 
5 32 
6 1 
6 33 

-177 .291 
2 .720 

-177 .092 
1.291 

178.649 
- 0 . 8 0 4 
- 0 . 1 0 5 

-179 .558 
158.702 
-81 .254 

39 .351 
40.614 

160.295 
- 8 0 . 8 1 1 

- 1 . 9 2 2 
176.013 

- 1 . 1 2 2 
179.653 
- 2 0 . 0 4 7 

99 .996 
- 1 3 9 . 3 9 9 

0 .790 
- 1 7 9 . 2 2 1 

0 .780 
- 1 7 7 . 2 9 2 
-141 .341 

- 2 1 . 6 5 9 
97.234 

1.591 
- 1 7 7 . 0 8 9 

178.649 
- 0 . 8 0 5 

-179 .974 
0 .026 

- 1 7 9 . 2 0 9 
2 .718 

178.331 
- 0 . 8 9 4 

-179 .223 
0 .026 

179.654 
- 0 . 8 9 3 



A-10 

A r ' 2 B F 
Calculated NMR (GlAO-HF/6-31G*//HF/6-31G*) 

For 1 9 F shift use 213 - value 
36 
Ci 6 H 6 BFi 3 « C1 » , GIAO RHF / 6-31G* OPT RHF / 6-31G* -1926.91110689 
C 1 65.1547 136.545 
C 2 67.6085 134.091 
C 3 63.9750 137.725 
C 4 71.5189 130.181 
C 5 73.3267 128.373 
C 6 72.3828 129.317 
B 7 79.3457 44.0543 
F 8 258.4726 
C 9 93.2754 108.425 
F 10 312.9838 
C 11 93.6223108.078 
F 12 302.9631 
C 13 67.6135 134.087 
C 14 65.1516 136.548 
C 15 72.3813 129.319 
C 16 73.3253 128.375 
C 17 71.5198 130.18 
C 18 63.9766137.723 
C 19 93.6231 108.077 
F 20 319.0227 
H 21 24.8938 10.1062 
F 22 303.7638 
F 23 302.9779 
F24 319.8013 
F 25 301.1984 
F26 319.0315 
F 27 303.7624 
C28 93.2763108.424 
H29 24.4427 10.5573 
H30 24.623610.3764 
H 31 24.4427 10.5573 
H 32 24.8939 10.1061 
H 33 24.6237 10.3763 
F 34 312.9771 
F35 319.8064 
F36 301.2021 

1 1Bref= 123.4 13Cref=201.7 1H ref= 35 

Ci 6 H 6 BFi 3 « C1 » NIMAG= 0 ZPE= 141.48440 E(RHF) / 6-31G(d) FC= 1 // 
OPT RHF/6-31G*-1926.91110689 



A - l l 

Ar'2B(OH) 
Optimized HF/6-31G* geometry 

R35) 

C( 17) 
C(16) 

C 2 8 

C(15) F(36 C(18) 
F(34) 

C( 13) 
F(12) 

C(14) F(27) B(7) 
F(20 

F 2 6 C( ) C( 9) 0 8 
F22 ) F(23) 
CO C(2 

F( 0) 
C(6 

C(3 

C(9 
C(4) F(25 

C 5 
F(24) 

INTERATOMIC DISTANCES 

C 1 C 2 C 3 C 4 C 5 C 6 

c 1 0 000 
c 2 1 403 0 .000 
c 3 2 385 1.408 0 .000 
c 4 2 748 2 . 4 3 7 1.388 0 .000 
c 5 2 397 2 . 8 2 8 2 .4 0 7 1.379 0 000 
c 6 1 387 2 . 4 4 2 2 .763 2 .377 1 377 0 000 
B 7 2 664 1.615 2 . 6 2 0 3 .912 4 442 3 945 
0 8 3 632 2 . 4 6 6 3 .012 4 .344 5 091 4 795 
c 9 3 822 2 . 5 8 5 1 .521 2 . 4 5 0 3 747 4 277 



A-12 

F 10 4 317 2 953 2 388 3 .532 4 728 5 .039 
C 11 1 511 2 548 3 800 4 . 2 5 6 3 743 2 .457 
F 12 2 349 2 864 4 211 4 .934 4 658 3 .494 
C 13 3 523 2 893 4 017 5 .230 5 587 4 . 8 6 6 
C 14 3 978 3 497 4 477 5 .549 5 844 5 .162 
C 15 5 142 4 834 5 855 6 .882 7 079 6 .294 
C 16 5 829 5 565 6 713 7 .815 7 979 7 . 0 7 6 
c 17 5 558 5 230 6 441 7 .623 7 827 6 .898 
c 18 4 509 4 033 5 226 6 .450 6 738 5 .889 
c 19 3 862 3 354 3 965 4 .838 5 187 4 .760 
F 20 5 108 4 648 5 118 5 .889 6 239 5 .886 
H 2 1 6 804 6 .612 7 760 8 .833 8 950 8 .013 
F 22 3 194 3 129 3 757 4 .312 4 353 3 . 8 4 1 
F 23 3 910 3 O i l 3 212 4 . 1 7 6 4 . 852 4 . 7 3 9 
F 24 4 710 3 647 2 346 2 . 6 2 5 3 . 991 4 .852 
F 25 4 416 3 221 2 354 3 .163 4 . 388 4 .892 
F 26 2 350 3 632 4 707 4 . 8 5 2 4 . 008 2 . 6 4 5 
F 27 2 .363 3 176 4 431 4 .943 4 . 466 3 .238 
C 28 4 992 4 482 5 608 6 .845 7 . 172 6.354 
H 29 6 392 6 110 7 342 8 .533 8. 713 7 . 7 3 6 
H 30 5 740 5 495 6 405 7 .325 7 . 486 6 .759 
H 31 3 820 3 402 2 132 1 .071 2 . 121 3 .346 
H 32 3 373 3 902 3 380 2 . 1 3 4 1 . 074 2 .133 
H 33 2 133 3 405 3 834 3 . 3 5 0 2 . 125 1.072 
F 34 4 332 3 982 5 112 6 .227 6. 448 5 .608 
F 35 6 061 5 711 6 888 8 .088 8. 320 7 .400 
F 36 5 652 4 845 5 721 7 .044 7 . 602 6 .989 
H 37 4 475 3 346 3 905 5 .258 6. 027 5 .694 

B 7 0 8 C 9 F 10 C 11 F 12 

B 7 0 000 
0 8 1 . 336 0 000 
C 9 3. 067 2 936 0 000 
F 10 2 . 809 2 676 1 320 0 .000 
C 11 3 . 100 4 150 5 127 5 .407 0 . 000 
F 12 2 . 805 3 602 5. 307 5 .468 1 . 324 0 .000 
C 13 1 . 625 2 575 4 . 457 3 . 8 6 9 3 . 375 3 .004 
C 14 2 . 671 3 751 4 . 945 4 .243 3 . 851 3 .877 
C 15 3 . 955 4 949 6. 312 5 . 5 3 1 4 .723 4 .685 
C 16 4 . 459 5 270 7 . 151 6 .365 5 . 153 4 .802 
C 17 3 . 934 4 520 6. 841 6 . 1 3 1 4 . 834 4 .153 
C 18 2 . 643 3 163 5. 608 5 .002 3 . 993 3 .218 
C 19 3 . 114 4 236 4 . 433 3 .798 4 . 169 4 . 5 9 6 
F 20 4 . 379 5 415 5. 435 4 . 6 7 1 5 . 353 5 .816 
H 2 1 5 . 533 6 324 8. 198 7 .377 6 . 036 5 .702 
F 22 3 . 467 4 725 4 . 612 4 . 3 4 1 3 . 525 4 . 3 0 1 
F 23 2 . 837 3 689 3 . 328 2 . 5 8 4 4 . 614 4 .974 
F 24 4 . 320 4 .252 1 . 329 2 . 1 1 4 6 . 123 6 .474 
F 25 3 . 480 2 855 1 . 321 2 . 1 3 2 5 . 628 5 .569 
F 26 4 . 362 5 302 6 . 129 6 .573 1 . 323 2 .123 
F 27 3 . 463 4 . 702 5 . 678 5 .718 1 . 324 2 .128 
C 28 3 . 070 3 . 026 5 . 884 5 .417 4 . 492 3 .380 
H 29 4 . 775 5. 192 7 . 717 7 .018 5 . 551 4 .715 
H 30 4 . 803 5. 844 6 . 862 6 .059 5 . 382 5 .535 
H 3 1 4 . 752 5. 015 2 . 594 3 .762 5 . 327 5 .980 
H 32 5 . 516 6 .136 4 . 583 5 . 6 3 1 4 . 591 5 . 5 7 1 
H 33 4 . 797 5. 694 5 . 348 6 .095 2 . 616 3 .753 
F 34 2 . 894 2 . 786 5 . 561 5 .393 3 . 848 2 . 6 1 1 
F 35 4 . 361 4 . 322 7 . 201 6 .722 5 .323 4 .134 
F 36 3 . 316 2 . 785 5 . 646 5 .050 5 . 454 4 .415 
H 37 1 . 966 0 . 946 3 . 640 3 .118 4 . 814 4 . 1 1 1 

C 13 C 14 C 15 C 16 C 17 C 18 

C 13 0 . 000 
C 14 1 . 404 0 . 000 
C 15 2 . 444 1 . 388 0 . 000 
C 16 2 . 835 2 . 401 1 . 376 0 .000 
C 17 2 . 445 2 . 753 2 . 375 1.379 0 . 000 
C 18 1 . 411 2 . 383 2 . 755 2 .403 1 . 386 0 .000 



A-13 

c 19 2 558 1 . 513 2 . 454 3 . 743 4 262 3 .806 
F 20 3 634 2 . 347 2 . 635 3 . 995 4 843 4 .698 
H 2 1 3 909 3 . 376 2 . 133 1 . 074 2 134 3 .377 
F 22 3 194 2 . 363 3. 220 4 . 453 4 947 4 .445 
F 23 2 873 2 . 350 3. 495 4 . 665 4 945 4 . 2 2 0 
F 24 5 607 5. 886 7 219 8. 182 8 004 6 .830 
F 25 5 000 5. 763 7 . 116 7 . 774 7 248 5 .927 
F 26 4 665 5 . 097 5 842 6 . 190 5 871 5 .136 
F 27 3 159 3 . 187 3. 800 4 . 315 4 310 3 .788 
C 28 2 570 3 . 809 4 . 266 3 . 746 2 454 1.517 
H 29 3 409 3 . 824 3. 345 2 . 122 1 071 2 . 1 3 2 
H 30 3 406 2 . 133 1 . 072 2 . 123 3 348 3 . 8 2 6 
H 3 1 6 105 6 . 381 7 . 721 8 . 702 8 532 7 .347 
H 32 6 639 6 . 831 8. 027 8. 959 8 850 7 .788 
H 33 5 539 5. 773 6 769 7 . 490 7 347 6 .448 
F 34 2 983 4 . 333 5. 022 4 . 686 3 484 2 . 3 8 0 
F 35 3 670 4 . 731 4 . 864 3 . 996 2 620 2 . 3 5 5 
F 36 3 104 4 . 324 4 . 874 4 . 453 3 258 2 . 3 4 9 
H 37 2 666 3 . 871 4 . 906 5 . 052 4 202 2 .924 

C 19 F 20 H 2 1 F 22 F 23 F 24 

C 19 0 000 
F 20 1 324 0 . 000 
H 2 1 4 587 4 . 606 0 000 
F 22 1 322 2 . 120 5. 259 0 . 000 
F 23 1 321 2 . 121 5. 576 2 . 129 0 000 
F 24 5 096 5 . 905 9. 200 5. 187 3 908 0 .000 
F 25 5 510 6 . 571 8 836 5 . 738 4 456 2 . 1 2 0 
F 26 5 358 6 . 472 6 .979 4 . 539 5 842 7 .038 
F 27 3 523 4 . 528 5 102 2 . 831 4 314 6 .614 
C 28 5 121 6.108 4 587 5 . 691 5 299 7 . 1 8 9 
H 29 5 333 5 . 876 2 450 5. 995 5 991 8 .920 
H 30 2 606 2 .259 2 453 3 . 288 3 749 7 .628 
H 3 1 5 551 6 . 491 9 720 5. 096 4 731 2 . 2 3 9 
H 32 6 085 7 . 047 9 905 5. 157 5 762 4 .593 
H 33 5 433 6 . 492 8 358 4 . 380 5 598 5 .889 
F 34 5 457 6 . 607 5 576 5. 774 5 553 6 .886 
F 35 6 156 7 . 037 4 594 6. 710 6 478 8 .508 
F 36 5 500 6 . 431 5 283 6. 257 5 399 6 .918 
H 37 4 559 5 . 627 6 060 5. 243 4 .060 4 .905 

F 25 F 26 F 27 C 28 H 29 H 30 

F 25 0 000 
F 26 6 553 0 . 000 
F 27 6 376 2 . 121 0 000 
C 28 5 863 5 . 490 4 671 0 . 000 
H 29 8 005 6 . 474 5 098 2 . 607 0 000 
H 30 7 787 6 . 432 4 320 5. 336 4 232 0 .000 
H 3 1 3 221 5 . 888 5 990 7 . 712 9 452 8 .114 
H 32 5 178 4 . 623 5 . 2 8 1 8. 219 9 735 8 .368 
H 33 5 927 2 . 274 3 321 6. 914 8 134 7 .188 
F 34 5 408 4 . 697 4 375 1 . 315 3 692 6 .078 
F 35 7 136 6 . 156 5 411 1 . 320 2 215 5 . 9 0 1 
F 36 5 463 6 .526 5 706 1 . 339 3 394 5 .907 
H 37 3 477 5. 985 5 242 2 . 614 4 769 5 . 8 4 1 

H 31 H 32 H 33 F 34 F 35 F 36 

H 3 1 0 000 
H 32 2 448 0 . 000 
H 33 4 234 2 . 456 0 000 
F 34 7 117 7 . 453 6 121 0. 000 
F 35 8 982 9 . 346 7 844 2 . 116 0 000 
F 36 7 782 8. 662 7 686 2 . 130 2 123 0 .000 
H 37 5 889 7 . 076 6 565 2 . 700 3 852 2 .027 

H 37 

H 37 0 .000 



BOND ANGLES 
1 2 3 C2 C2 C2 1 1 6 . 1 3 1 
1 2 7 C2 C2 B 123 .804 
1 6 5 C2 C2 C2 120 .294 
1 6 33 C2 C2 HC 119 .843 
1 11 12 C2 C3 F 111 .790 
1 11 26 C2 C3 F 111 .833 
1 11 27 C2 C3 F 112 .776 
2 1 6 C2 C2 C2 122 .156 
2 1 11 C2 C2 C3 121 .893 
2 3 4 C2 C2 C2 121 .342 
2 3 9 C2 C2 C3 123 .893 
2 7 8 C2 B 03 113 .029 
2 7 13 C2 B C2 126 .455 
3 2 7 C2 C2 B 120 .013 
3 4 5 C2 C2 C2 120 .902 
3 4 3 1 C2 C2 HC 1 1 9 . 6 8 1 
3 9 10 C2 C3 F 114 .219 
3 9 24 C2 C3 F 110 .680 
3 9 25 C2 C3 F 111 .672 
4 3 9 C2 C2 C3 114 .725 
4 5 6 C2 C2 C2 119 .155 
4 5 32 C2 C2 HC 120 .362 
5 4 31 C2 C2 HC 119 .417 
5 6 33 C2 C2 HC 119 .860 
6 1 11 C2 C2 C3 115 .947 
6 5 32 C2 C2 HC 120 .480 
7 8 37 B 03 H 117 .913 
7 13 14 B C2 C2 123 .498 
7 13 18 B C2 C2 120 .857 
8 7 13 03 B C2 120 .512 

13 14 15 C2 C2 C2 122 .129 
13 14 19 C2 C2 C3 122 .428 
13 18 17 C2 C2 C2 121 .878 
13 18 28 C2 C2 C3 122 .758 
14 13 18 C2 C2 C2 115 .644 
14 15 16 C2 C2 C2 120 .569 
14 15 30 C2 C2 HC 119 .700 
14 19 20 C2 C3 F 111 .452 
14 19 22 C2 C3 F 112 .716 
14 19 23 C2 C3 F 111 .833 
15 14 19 C2 C2 C3 115 .442 
15 16 17 C2 C2 C2 119 .083 
15 16 2 1 C2 C2 HC 120 .518 
16 15 30 C2 C2 HC 119 .730 
16 17 18 C2 C2 C2 120 .648 
16 17 29 C2 C2 HC 119 .505 
17 16 2 1 C2 C2 HC 120 .392 
17 18 28 C2 C2 C3 115 .306 
18 17 29 C2 C2 HC 119 .847 
18 28 34 C2 C3 F 114 .198 
18 28 35 C2 C3 F 112 .052 
18 28 36 C2 C3 F 110 .566 

TORSION ANGLES 
1 2 3 4 - 1 . 4 4 1 2 7 13 14 45 .980 
1 2 3 9 176 .132 2 7 13 18 - 1 3 3 . 5 3 0 
1 2 7 8 - 1 2 9 . 0 8 4 3 2 7 8 48 .203 
1 2 7 13 50 .153 3 2 7 13 - 1 3 2 . 5 6 0 
2 1 6 5 - 0 . 1 1 7 3 4 5 6 0 . 6 4 6 
2 1 6 33 - 1 7 9 . 5 8 7 3 4 5 32 - 1 7 9 . 9 7 4 
2 1 11 12 3 9 . 7 4 0 4 3 9 10 - 1 4 3 . 7 8 9 
2 1 11 26 159 .198 4 3 9 24 - 2 4 . 4 2 6 
2 1 11 27 - 8 0 . 8 3 8 4 3 9 25 93 .765 
2 3 4 5 0 . 5 4 1 4 5 6 1 - 0 . 8 5 4 
2 3 4 31 - 1 7 9 . 4 3 8 4 5 6 33 178 .616 
2 3 9 10 38 .493 6 1 2 3 1.238 
2 3 9 24 157 .857 6 1 2 7 178 .622 
2 3 9 25 - 8 3 . 9 5 3 6 1 11 12 - 1 3 9 . 5 6 8 
2 7 8 37 - 1 7 5 . 1 7 1 6 1 11 26 - 2 0 . 1 1 0 



6 1 
7 2 
7 2 
7 13 
7 13 
7 13 
7 13 
8 7 
8 7 
9 3 
9 3 

11 1 
11 1 
11 1 
11 1 
13 7 
13 14 
13 14 
13 14 
13 14 
13 14 
13 18 
13 18 
13 18 
14 13 
14 13 
14 15 
14 15 
15 14 
15 14 
15 14 
15 16 
15 16 
16 17 
16 17 
17 18 
17 18 
17 18 
18 13 
18 13 
19 14 
19 14 
21 16 
21 16 
29 17 
29 17 
30 15 
30 15 
31 4 
31 4 
32 5 
32 5 

11 27 
3 4 
3 9 

14 15 
14 19 
18 17 
18 28 
13 14 
13 18 

4 5 
4 31 
2 3 
2 7 
6 5 
6 33 
8 37 

15 16 
15 30 
19 20 
19 22 
19 23 
28 34 
28 35 
28 36 
18 17 
18 28 
16 17 
16 2 1 
19 20 
19 22 
19 23 
17 18 
17 29 
18 13 
18 28 
28 34 
28 35 
28 36 
14 15 
14 19 
15 16 
15 30 
17 18 
17 29 
18 13 
18 28 
16 17 
16 21 

5 6 
5 32 
6 1 
6 33 

99 .854 
- 1 7 8 . 9 3 1 

- 1 . 3 5 8 
- 1 7 7 . 5 2 1 

2 . 9 1 8 
177 .279 

- 5 . 6 1 9 
- 1 3 4 . 8 3 5 

45 .655 
- 1 7 7 . 2 4 1 

2 . 7 8 0 
- 1 7 8 . 0 2 7 

- 0 . 6 4 3 
179 .189 

- 0 . 2 8 1 
5 . 5 4 1 

- 0 . 2 3 9 
- 1 7 9 . 9 1 1 

158 .249 
- 8 2 . 0 5 3 

39 .043 
4 8 . 1 8 1 

169 .823 
- 7 2 . 1 8 9 

- 2 . 2 6 8 
174 .834 

- 1 . 3 9 3 
179 .512 
- 2 1 . 3 4 0 

98 .359 
- 1 4 0 . 5 4 6 

1 .136 
- 1 7 8 . 8 2 6 

0 . 7 5 9 
- 1 7 6 . 5 4 6 
- 1 3 4 . 5 4 1 

- 1 2 . 8 9 9 
105 .089 

2 .013 
- 1 7 7 . 5 4 8 

1 7 9 . 3 5 1 
- 0 . 3 2 1 

- 1 7 9 . 7 6 8 
0 .270 

- 1 7 9 . 2 7 9 
3 . 4 1 6 

178 .280 
- 0 . 8 1 5 

- 1 7 9 . 3 7 6 
- 0 . 0 2 6 

179 .784 
- 0 . 7 4 6 



A-16 

Ar' 2BOH 
Calculated NMR (GIAO-HF/6-31GV/HF/6-31G*) 

For 1 9 F shift use 213 - value 
37 
C16H7BF12O « CI » , GIAO RHF / 6-31G* OPT RHF / 6-31G* -1902.906152 
C 1 67.0750 134.625 
C 2 63.0825 138.617 
C 3 64.4014 137.299 
C 4 70.4017 131.298 
C 5 75.2847 126.415 
C 6 72.4715 129.228 
B 7 82.1982 41.2018 
O 8 193.2527 
C 9 92.7587 108.941 
F 10 313.9048 
C 11 93.2112 108.489 
F 12 304.1103 
C 13 63.9653 137.735 
C 14 64.5180 137.182 
C 15 71.0359 130.664 
C 16 74.5341 127.166 
C 17 71.5206 130.179 
C 18 67.0307 134.669 
C 19 93.7025 107.997 
F 20 318.0035 
H21 24.9482 10.0518 
F 22 303.3974 
F 23 304.7300 
F 24 316.5183 
F25 299.5801 
F 26 319.2283 
F 27 303.4489 
C 28 92.3704 109.33 
H 29 24.4424 10.5576 
H 30 24.5788 10.4212 
H31 24.4290 10.571 
H 32 25.0050 9.995 
H 33 24.6865 10.3135 
F 34 311.1170 
F 35 321.6589 
F36 296.1438 
H 37 26.5677 8.4323 

n Bref= 123.4 1 3Cref= 201.7 'Href=35 
C6H7BF12O « C1 » NIMAG= 0 ZPE= 150.11538 E(RHF) / 6-3 lG(d) FC= 1 // OPT 
RHF/6-31G* -1902.90615158 



Tris-(2-CF 3C 6H 4) 

Optimized geometry HF/6-31G* 

F(29) 

F( 16) C(15) C(12) 
COD FI31) 

C(13) F 3 2 
F(30) C(0) 

CG7 
C(8) C(24) 

F(28) C(9 
CG5) 

C23) 
C(20 C(22) B(7 

C(21) C 2 
C 3 

F(33) 

C( 8) C(1) 
F(34) C(4) 

F(19) C(5 
C6) 

INTERATOMIC DISTANCES 

C 1 C 2 C 3 C 4 C 5 C 6 

c 1 0 .000 
c 2 1 .401 0 000 
c 3 2 .383 1 396 0 . 0 0 0 
c 4 2 .764 2 433 1.386 0 000 
c 5 2 .403 2 815 2 . 3 9 6 1 382 0 000 
c 6 1.386 2 430 2 . 7 5 4 2 389 1 384 0 000 
B 7 2 .685 1 600 2 .547 3 855 4 409 3 945 
C 8 3 .866 2 699 3 .172 4 503 5 277 5 008 
C 9 4 .082 3 225 3 .748 4 887 5 484 5 132 



A-18 

c 10 5 396 4 530 4 833 5 .893 6 .576 6 .346 
c 11 6 331 5 257 5 356 6 .476 7 .365 7 .290 
c 12 6 200 4 953 4 959 6 .179 7 . 2 0 6 7 .206 
c 13 5 .102 3 804 3 925 5 .246 6 .239 6 . 1 7 1 
H 14 3 514 3 012 3 753 4 .736 5 .069 4 .530 
C 15 5 596 4 242 4 218 5 .510 6 .595 6 .627 
F 16 6 085 4 849 5 107 6 .435 7 .392 7 .239 
H 17 3 362 2 138 1 074 2 .122 3 .360 3 .827 
C 18 1 506 2 531 3 784 4 . 2 6 9 3 . 7 6 1 2 .475 
F 19 2 348 3 604 4 692 4 .890 4 .068 2 . 7 0 2 
C 20 3 465 2 753 3 753 4 . 9 5 9 5 .373 4 . 7 4 9 
C 2 1 3 658 3 092 3 850 4 .845 5 .214 4 . 7 0 6 
C 22 4 864 4 454 5 186 6.094 6 .385 5 .837 
c 23 5 709 5 318 6 206 7 .228 7 .503 6 .820 
c 24 5 587 5 137 6 163 7 . 3 2 1 7 . 6 2 6 6 .852 
c 25 4 598 4 028 5 098 6 .329 6 .689 5 .937 
H 26 3 249 2 679 3 163 3 .988 4 . 3 8 6 4 .072 
C 27 5 .195 4 631 5 733 7 .016 7 .382 6 . 5 8 1 
F 28 4 561 4 172 5 360 6 .562 6 . 8 0 1 5 .919 
F 29 6 733 5 344 5 061 6 . 2 3 1 7 .442 7 .654 
F 30 4 913 3. 571 3 366 4 . 5 6 6 5 .667 5 .807 
F 31 5 901 5 076 5 953 7 . 3 1 1 7 .887 7 . 2 6 6 
F 32 6 225 5 828 6 996 8 .243 8 .508 7 .597 
F 33 2 344 2 . 803 4 157 4 . 9 3 6 4 . 6 9 0 3 .534 
F 34 2 356 3. 205 4 438 4 .939 4 .437 3 .203 
H 35 5 860 5. 188 5 523 6 .447 6 .995 6 .717 
H 36 7 341 6. 294 6 324 7 .377 8 .279 8 .252 
H 37 7 138 5. 836 5 715 6 .904 8 . 0 2 1 8 .115 
H 38 6 495 6 084 7 150 8.333 8 .617 7 .785 
H 39 6. 684 6. 356 7 216 8 .190 8 .428 7 .739 
H 40 5 352 5. 027 5 590 6 .322 6 .572 6 .132 
H 41 3 839 3 . 399 2 134 1.075 2 . 1 3 6 3 .367 
H 42 3 . 376 3 . 890 3 374 2 .139 1.075 2 .135 
H 43 2 . 133 3 . 397 3 826 3 . 3 6 1 2 . 1 3 2 1.073 

B 7 C 8 C 9 C 10 C 11 C 12 

B 7 0 . 000 
C 8 1 . 595 0 . 000 
C 9 2 . 546 1 . 395 0 000 
C 10 3 . 852 2 . 429 1 384 0 .000 
C 11 4 . 402 2 . 810 2 395 1.382 0 . 0 0 0 
C 12 3 . 935 2 . 428 2 755 2 . 3 9 0 1.384 0 . 0 0 0 
C 13 2 . 673 1 . 400 2 384 2 .764 2 . 4 0 2 1.386 
H 14 2 . 680 2 . 137 1 075 2 .123 3 . 3 6 1 3 . 8 2 9 
C 15 3 . 115 2 . 527 3 781 4 . 2 6 9 3 .763 2 . 4 7 9 
F 16 3 . 478 3 . 159 4 409 4 .945 4 .477 3 .254 
H 17 2 . 679 2 . 896 3. 658 4 .567 4 . 8 2 1 4 . 2 5 2 
C 18 3 . 137 4 . 352 4 . 421 5 . 7 4 1 6 .792 6 .763 
F 19 4 . 376 5 . 434 5 246 6 . 4 6 1 7 . 6 3 9 7 .784 
C 20 1 . 590 2 . 827 3 857 5 .088 5 .502 4 .855 
C 2 1 2 . 524 3 . 912 5 031 6 .286 6 .636 5 .852 
C 22 3 . 838 5 . 133 6. 269 7 .482 7 .755 6 .893 
c 23 4 . 397 5 . 502 6. 563 7 .689 7 . 9 2 9 7 .105 
c 24 3 . 942 4 . 807 5. 729 6 .764 7 .032 6 .334 
c 25 2 . 694 3 . 481 4 . 350 5 .418 5 .774 5 .177 
H 26 2 . 647 4 . 070 5. 169 6 .442 6 . 8 1 1 6 .032 
C 27 3 . 187 3 . 378 3 . 872 4 . 7 0 1 5 .094 4 . 7 5 6 
F 28 2 . 961 3 . 068 3 . 119 4 .003 4 . 7 2 1 4 . 7 0 9 
F 29 4 . 374 3 . 618 4 . 707 4 .897 4 .065 2 . 6 9 5 
F 30 2 . 805 2 . 827 4 . 169 4 .932 4 .674 3 .518 
F 31 3 . 506 3 . 143 3 . 692 4 .212 4 . 2 7 6 3 .833 
F 32 4 . 460 4 . 679 5. 036 5 .746 6 .134 5 .874 
F 33 2 . 784 3 . 699 3 . 594 4 .852 5 .938 6 .019 
F 34 3 . 566 5 . 002 5. 334 6 . 6 9 1 7 .624 7 . 4 1 6 
H 35 4 . 679 3 . 396 2 . 133 1.075 2 .137 3 . 3 6 7 
H 36 5 . 476 3 . 885 3 . 373 2 .139 1.075 2 . 1 3 4 
H 37 4 . 804 3 .395 3 . 827 3 .362 2 . 1 3 1 1.073 
H 38 4 . 819 5 . 506 6 . 315 7 .236 7 . 4 6 9 6 .832 
H 39 5 . 471 6 . 553 7 . 615 8 .714 8 .913 8 . 0 5 6 
H 40 4 . 657 5 . 993 7 . 157 8 .386 8 .635 7 . 7 2 0 



A-19 

H 41 4 . 680 5. 136 5 . 543 6 .397 6 .829 6 .485 
H 42 5 . 484 6. 315 6 . 463 7 . 4 9 1 8 .283 8 . 1 6 1 
H 43 4 . 815 5 . 912 5. 922 7 .123 8.158 8 .157 

C 13 H 14 C 15 F 16 H 17 C I B 

C 13 0 . 000 
H 14 3 . 363 0 . 000 
C 15 1 . 506 4 . 657 0 . 000 
F 16 2 . 359 5 . 211 1 . 321 0 .000 
H 17 3 . 279 3 . 961 3 . 442 4 .487 0 .000 
C 18 5 . 683 3 . 681 6 . 246 6.474 4 . 6 6 1 0 . 0 0 0 
F 19 6 . 808 4 . 339 7 . 486 7 .758 5 .652 1.324 
C 20 3 . 539 3 . 972 3 . 476 3 .254 3 . 8 8 6 3 . 4 6 9 
C 2 1 4 . 475 5 . 113 4 . 040 3 .825 4 . 0 3 9 3 .838 
C 22 5 . 549 6 . 362 4 . 904 4 .378 5 . 3 4 1 4 . 8 2 1 
C 23 5 . 858 6 . 678 5 . 273 4 .450 6 .315 5 . 3 7 9 
C 24 5 . 200 5. 861 4 . 876 3 .984 6 .240 5 .109 
C 25 4 . 032 4 . 491 3 . 996 3 .354 5 .172 4 .225 
H 26 4 . 652 5. 220 4 . 209 4 .293 3 .425 3 . 7 9 6 
C 27 3 . 920 4 . 037 4 . 299 3 .688 5 .759 4 . 6 8 3 
F 28 3 . 969 3 . 018 4 . 734 4 .463 5 .530 3 .948 
F 29 2 . 351 5 . 671 1 . 323 2 .123 4 . 1 2 0 7 .495 
F 30 2 . 347 4 . 853 1 . 333 2 . 1 2 9 2 . 6 1 4 5 .743 
F 31 3 . 234 4 . 181 3 . 621 2 .962 5 .746 5 .644 
F 32 5 . 162 5 . 110 5 . 479 4 .693 7 .068 5 .473 
F 33 5 . 053 2 . 835 5 . 799 5 .935 4 .835 1.327 
F 34 6 . 216 4 . 731 6 . 517 6 .532 5 .260 1.323 
H 35 3 . 839 2 . 437 5 . 345 5 .995 5 .372 6 . 1 0 1 
H 36 3 . 375 4 . 251 4 . 612 5 .293 5 .753 7 .794 
H 37 2 . 134 4 . 902 2 . 656 3 .358 4 . 8 8 6 7 . 7 4 7 
H 38 5. 831 6 . 452 5. 563 4 .539 7 . 2 0 6 5 .873 
H 39 6 . 841 7 . 730 6 . 163 5 .243 7 .319 6 . 2 9 1 
H 40 6 . 362 7 . 237 5. 590 5 .133 5 .762 5 .420 
H 41 5 .665 5. 514 5. 829 6 .862 2 .435 5 .345 
H 42 7 . 244 6 . 017 7 . 580 8 .412 4 . 2 5 0 4 . 6 0 9 
H 43 7 . 138 5 . 193 7 . 629 8 .173 4 .900 2 .648 

F 19 C 20 C 2 1 C 22 C 23 C 24 

F 19 0 . 000 
C 20 4 . 779 0 . 000 
C 21 5 . 120 1 . 395 0 . 000 
C 22 6 . 021 2 . 438 1 . 387 0 .000 
C 23 6 . 540 2 . 816 2 . 389 1.378 0 .000 
C 24 6 . 263 2 . 429 2 . 747 2 .389 1.387 0 .000 
C 25 5 . 432 1 . 407 2 . 385 2 .772 2 .407 1.383 
H 26 5 . 023 2 . 135 1 . 074 2 . 1 1 9 3 .352 3 .820 
C 27 5 . 739 2 . 552 3 . 797 4 .280 3 . 7 6 1 2 . 4 6 6 
F 28 4 .852 2 . 883 4 . 221 4 .968 4 . 6 8 0 3 .502 
F 29 8 . 713 4 . 776 5. 212 5 .978 6 .352 6 .027 
F 30 6 . 997 3 . 145 3 . 302 4 . 2 4 1 4 .932 4 . 8 4 9 
F 31 6 . 736 3 . 167 4 . 407 4 .943 4 . 4 6 9 3 .243 
F 32 6 . 395 3 . 641 4 . 713 4 .888 4 . 0 3 9 2 . 6 6 2 
F 33 2 . 129 3 . 153 3 . 972 4 .963 5 .246 4 . 6 4 2 
F 34 2 . 123 3 . 301 3 . 336 4 . 0 0 6 4 . 5 2 9 4 .477 
H 35 6 . 628 5 . 928 7 . 151 8 .355 8 .533 7 . 5 5 6 
H 36 8 . 580 6 . 555 7 . 693 8 .787 8 .915 7 . 9 7 9 
H 37 8 . 806 5 . 575 6 . 468 7 . 4 0 6 7 .587 6 . 8 7 0 
H 38 6 . 943 3 . 397 3 . 819 3 .358 2 . 1 3 0 1.072 
H 39 7 . 388 3 . 890 3 . 370 2 . 1 3 6 1.075 2 . 1 3 5 
H 40 6 . 550 3 . 403 2 . 136 1.075 2 .135 3 . 3 6 9 
H 41 5. 934 5 . 792 5 . 611 6 .816 7 .997 8 .145 
H 42 4 . 694 6 . 417 6 . 172 7 .276 8 .436 8 .628 
H 43 2 . 371 5 . 478 5 . 407 6 .416 7 .342 7 .393 

C 25 H 26 C 27 F 28 F 29 F 30 

C 25 0 .000 
H 26 3 . 365 0 . 000 
C 27 1 . 510 4 . 678 0 . 000 



F 28 2 355 4 . 9 2 2 1.324 0 000 
F 29 5 253 5 .286 5 .490 5 952 0 .000 
F 30 4 045 3 .199 4 .738 5 113 2 . 1 2 9 0 .000 
F 31 2 355 5 .213 1.324 2 130 4 .644 4 . 3 9 9 
F 32 2 351 5 .685 1.325 2 123 6 .604 5 .962 
F 33 3 597 4 . 2 0 6 3 .673 2 743 7 .072 5 .578 
F 34 3 921 3 .420 4 .672 4 242 7 . 7 9 6 5 .927 
H 35 6 207 7 .298 5 .367 4 495 5 .943 5 .979 
H 36 6 754 7 . 8 7 1 5 .973 5 603 4 .688 5 .593 
H 37 5 836 6 .648 5 .462 5 590 2 . 3 5 0 3 .804 
H 38 2 130 4 .892 2 . 6 3 3 3 763 6 .649 5 .715 
H 39 3 376 4 .244 4 .602 5 586 7 .158 5 .835 
H 40 3 847 2 . 4 3 2 5 .355 6 018 6 .554 4 .762 
H 41 7 172 4 . 6 9 9 7 .867 7 466 6 .345 4 .858 
H 42 7 733 5 .294 8 .443 7 837 8 .359 6 .612 
H 43 6 558 4 . 8 3 6 7 . 1 7 1 6 441 8 . 6 9 1 6 .827 

F 31 F 32 F 33 F 34 H 35 H 36 

F 31 0 000 
F 32 2 122 0 .000 
F 33 4 623 4 .438 0 .000 
F 34 5 776 5 .298 2 . 1 3 0 0. 000 
H 35 4 968 6 . 2 9 1 5 .175 7 . 151 0 . 0 0 0 
H 36 5. 066 6 .914 6 .908 8. 659 2 . 4 7 1 0 . 0 0 0 
H 37 4 . 398 6 .509 7 . 0 3 1 8. 333 4 .255 2 .453 
H 38 3 347 2 . 2 9 4 5 . 2 7 1 5. 241 7 .972 8 .348 
H 39 5. 280 4 .645 6 .196 5. 327 9 .555 9 .876 
H 40 5. 990 5 .932 5 .764 4 . 515 9 . 2 7 1 9 .669 
H 41 8. 043 9 .127 5 .984 5. 988 6 .956 7 .653 
H 42 8. 961 9 . 5 5 1 5 .616 5. 237 7 .843 9 .155 
H 43 7 . 974 8 .074 3 .828 3 . 276 7 . 3 9 1 9 .104 

H 37 H 38 H 39 H 40 H 41 H 42 

H 37 0 . 000 
H 38 7 . 321 0 .000 
H 39 8. 474 2 . 4 4 9 0 . 0 0 0 
H 40 8. 183 4 .252 2 . 4 7 2 0 . 000 
H 41 7 . 094 9 .169 8 .935 6 . 9 6 1 0 . 0 0 0 
H 42 8 . 952 9 .624 9 .322 7 . 363 2 . 4 7 1 0 .000 
H 43 9 . 097 8 .276 8 .202 6 . 666 4 .255 2 . 4 5 4 

H 43 

H 43 0 . 000 

4D ANGLES 
1 2 3 C2 C2 C2 116 .855 
1 2 7 C2 C2 B 126 .813 
1 6 5 C2 C2 C2 1 2 0 . 3 7 6 
1 6 43 C2 C2 HC 119 .824 
1 18 19 C2 C3 F 111 .966 
1 18 33 C2 C3 F 111 .495 
1 18 34 C2 C3 F 112 .617 
2 1 6 C2 C2 C2 121 .362 
2 1 18 C2 C2 C3 121 .022 
2 3 4 C2 C2 C2 121 .987 
2 3 17 C2 C2 HC 119 .326 
2 7 8 C2 B C2 115 .273 
2 7 20 C2 B C2 119 .325 
3 2 7 C2 C2 B 116 .310 
3 4 5 C2 C2 C2 119 .937 
3 4 41 C2 C2 HC 119 .772 
4 3 17 C2 C2 HC 118 .685 
4 5 6 C2 C2 C2 119 .442 
4 5 42 C2 C2 HC 120 .599 
5 4 41 C2 C2 HC 120 .285 
5 6 43 C2 C2 HC 119 .799 
6 1 18 C2 C2 C3 117 .612 
6 5 42 C2 C2 HC 119 .952 



7 8 9 B C2 C2 116 .626 
7 8 13 B C2 C2 126 .279 
7 20 2 1 B C2 C2 115 .310 
7 20 25 B C2 C2 127 .947 
8 7 20 C2 B C2 125 .122 
8 9 10 C2 C2 C2 1 2 1 . 8 7 1 
8 9 14 C2 C2 HC 119.284 
8 13 12 C2 C2 C2 121 .264 
8 13 15 C2 C2 C3 120 .807 
9 8 13 C2 C2 C2 117 .084 
9 10 11 C2 C2 C2 119 .925 
9 10 35 C2 C2 HC 119 .805 

10 9 14 C2 C2 HC 118 .839 
10 11 12 C2 C2 C2 119 .517 
10 11 36 C2 C2 HC 120 .555 
11 10 35 C2 C2 HC 120 .266 
11 12 13 C2 C2 C2 120 .299 
11 12 37 C2 C2 HC 119 .814 
12 11 36 C2 C2 HC 119 .924 
12 13 15 C2 C2 C3 117 .925 
13 12 37 C2 C2 HC 119 .886 
13 15 16 C2 C3 F 112 .904 
13 15 29 C2 C3 F 112 .206 
13 15 30 C2 C3 F 111 .372 
20 21 22 C2 C2 C2 122 .434 
20 21 26 C2 C2 HC 119 .205 
20 25 24 C2 C2 C2 121 .030 
20 25 27 C2 C2 C3 122 .035 
2 1 20 25 C2 C2 C2 116 .680 
2 1 22 23 C2 C2 C2 119 .607 
2 1 22 40 C2 C2 HC 119 .877 
22 2 1 26 C2 C2 HC 118 .358 
22 23 24 C2 C2 C2 119 .547 
22 23 39 C2 C2 HC 120 .667 
23 22 40 C2 C2 HC 1 2 0 . 5 1 1 
23 24 25 C2 C2 C2 120 .670 
23 24 38 C2 C2 HC 119 .484 
24 23 39 C2 C2 HC 119 .783 
24 25 27 C2 C2 C3 116 .934 
25 24 38 C2 C2 HC 119 .846 
25 27 28 C2 C3 F 112 .246 
25 27 31 C2 C3 F 1 1 2 . 2 5 1 
25 27 32 C2 C3 F 1 1 1 . 8 5 1 

TORSION ANGLES 
1 2 3 4 2 . 1 6 6 6 1 18 34 - 9 3 . 7 9 6 
1 2 3 17 - 1 7 8 . 3 5 7 7 2 3 4 - 1 7 6 . 2 1 1 
1 2 7 8 125 .278 7 2 3 17 3 .265 
1 2 7 20 - 6 0 . 4 9 1 7 8 9 10 - 1 7 8 . 9 0 4 
2 1 6 5 - 0 . 9 7 0 7 8 9 14 0 .167 
2 1 6 43 178 .576 7 8 13 12 - 1 7 9 . 7 7 3 
2 1 18 19 - 1 5 2 . 8 2 3 7 8 13 15 - 0 . 3 8 2 
2 1 18 33 - 3 3 . 2 3 6 7 20 2 1 22 - 1 7 5 . 5 1 2 
2 1 18 34 87 .030 7 20 2 1 26 3 .818 
2 3 4 5 - 1 . 8 4 3 7 20 25 24 176 .468 
2 3 4 41 179 .033 7 20 25 27 - 3 . 9 0 7 
2 7 8 9 - 6 2 . 2 9 1 8 7 20 2 1 1 3 6 . 2 9 1 
2 7 8 13 116 .482 8 7 20 25 - 4 0 . 6 7 9 
2 7 20 2 1 - 3 7 . 3 2 9 8 9 10 11 - 1 . 7 3 4 
2 7 20 25 1 4 5 . 7 0 1 8 9 10 35 178 .924 
3 2 7 8 - 5 6 . 5 3 0 8 13 15 16 81 .355 
3 2 7 20 1 1 7 . 7 0 1 8 13 15 29 - 1 5 7 . 8 9 4 
3 4 5 6 0 .034 8 13 15 30 - 3 8 . 6 0 5 
3 4 5 42 - 1 7 9 . 0 4 5 9 8 13 12 - 1 . 0 0 4 
4 5 6 1 1.342 9 8 13 15 178 .386 
4 5 6 43 - 1 7 8 . 2 0 4 9 10 11 12 - 0 . 0 2 6 
6 1 2 3 - 0 . 7 5 9 9 10 11 36 - 1 7 9 . 2 6 4 
6 1 2 7 177 .425 10 11 12 13 1.190 
6 1 18 19 2 6 . 3 5 0 10 11 12 37 - 1 7 8 . 5 0 9 
6 1 18 33 145 .937 11 12 13 8 - 0 . 6 6 4 



11 12 
12 13 
12 13 
12 13 
13 8 
13 8 
14 9 
14 9 
17 3 
17 3 
18 1 
18 1 
18 1 
18 1 
20 7 
20 7 
20 21 
20 21 
20 25 
20 25 
20 25 
2 1 20 
2 1 20 
2 1 22 
2 1 22 
22 23 
22 23 
23 24 
23 24 
24 25 
24 25 
24 25 
25 20 
25 20 
26 21 
26 21 
35 10 
35 10 
36 11 
36 11 
37 12 
37 12 
38 24 
38 24 
39 23 
39 23 
40 22 
40 22 
41 4 
41 4 
42 5 
42 5 

13 15 
15 16 
15 29 
15 30 

9 10 
9 14 

10 11 
10 35 

4 5 
4 41 
2 3 
2 7 
6 5 
6 43 
8 9 
8 13 

22 23 
22 40 
27 28 
27 31 
27 32 
25 24 
25 27 
23 24 
23 39 
24 25 
24 38 
25 20 
25 27 
27 28 
27 31 
27 32 
2 1 22 
2 1 26 
22 23 
22 40 
11 12 
11 36 
12 13 
12 37 
13 8 
13 15 
25 20 
25 27 
24 25 
24 38 
23 24 
23 39 

5 6 
5 42 
6 1 
6 43 

179 .974 
- 9 9 . 2 3 4 

21 .517 
140 .806 

2 .2 0 7 
- 1 7 8 . 7 2 2 

1 7 9 . 1 9 1 
- 0 . 1 5 1 

178 .677 
- 0 . 4 4 7 

178 .384 
- 3 . 4 3 3 

179 .860 
- 0 . 5 9 5 

123 .860 
- 5 7 . 3 6 7 

- 1 . 6 9 4 
179 .063 
- 4 0 . 5 8 0 

80 .088 
- 1 6 0 . 3 0 0 

- 0 . 4 6 6 
179 .159 

0 .165 
- 1 7 9 . 1 6 9 

1.146 
- 1 7 8 . 6 1 7 

- 0 . 9 8 8 
179 .369 
139 .060 

- 1 0 0 . 2 7 3 
19 .340 

1.814 
- 1 7 8 . 8 5 7 

178 .970 
- 0 . 2 7 2 

179 .323 
0 .075 

- 1 7 9 . 5 5 8 
0 .744 

179 .034 
- 0 . 3 7 3 

178 .774 
- 0 . 8 7 0 

- 1 7 9 . 5 1 4 
0 .724 

179 .403 
0 .068 

179 .153 
0 .074 

- 1 7 9 . 5 7 3 
0 . 8 8 1 
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Tris-(2-CF 3 C 6 H4) 
Calculated NMR (GIAO-HF/6-31 G*//HF/6-31 G*) 

For 1 9 F shift use 213 - value 
43 
C21H12BF9 « C1 » , GIAO RHF / 6-31G* OPT RHF / 6-31G* -1721.93116055 
C 1 69.0553 132.645 
C 2 59.1304 142.57 
C 3 69.2908 132.409 
C 4 72.6025 129.097 
C 5 74.7433 126.957 
C 6 75.7721 125.928 
B 7 54.7365 68.6635 
C 8 60.2709 141.429 
C 9 69.0112 132.689 
C 10 72.6327 129.067 
C11 75.1646126.535 
C 12 76.6275125.072 
C 13 70.0198 131.68 
H 14 25.0729 9.9271 
C 15 92.4742 109.226 
F 16 304.6034 
H 17 25.1602 9.8398 
C 18 92.7480 108.952 
F 19 319.5586 
C20 64.2878137.412 
C21 64.3056137.394 
C22 73.8062 127.894 
C23 72.1965 129.503 
C 24 76.4204 125.28 
C 25 66.1320 135.568 
H 26 25.3747 9.6253 
C 27 93.0241 108.676 
F 28 305.0373 
F 29 321.8004 
F 30 303.5305 
F 31 302.8778 
F 32 321.2807 
F 33 306.0993 
F 34 304.1364 
H35 25.0865 9.9135 
H 36 25.1601 9.8399 
H 37 24.8703 10.1297 
H 38 24.8491 10.1509 
H 39 25.0665 9.9335 



A-24 

H 40 25.2008 9.7992 
H41 25.1000 9.9 
H42 25.1117 9.8883 
H43 24.7945 10.2055 

11Bref= 123.4 13Cref=201.7 1Href=35 

Tris-(2-CF3C 6H4) 

C 2 iH 1 2 BF 9 « C1 » NIMAG= 0 ZPE= 196.97611 E(RHF) / 6-31G(d) FC= 1 // 
OPT SP -1721.93116027 



A-25 

Ar'BF2 
Optimized HF/6-31G* geometry 

FI13) FI20) 

C(3 C(5) CM) R18) 

F (6 ) 

C(1 CI11) C2 ) C 6 C(12) 
F(14) B(10) 

F(17) 
FI15) 

F(19) 

1 C 2 C 3 C 4 C 5 C 6 

c 1 0.000 
c 2 1.393 0.000 
c 3 2.426 1.385 0.000 
c 4 2.807 2.397 1.382 0.000 
c 5 2.426 2.757 2.388 1.382 0.000 
c 6 1.393 2.378 2.757 2.397 1.385 0.000 
H 7 3.393 2.134 1.074 2.133 3.364 3.830 
H 8 3.881 3.372 2.135 1.074 2.135 3.372 
H 9 3.393 3.830 3.363 2.133 1.074 2.134 
B 10 1.590 2.604 3.890 4.398 3.890 2.604 
C 11 2.513 1.505 2.481 3.760 4.261 3.771 
C 12 2.513 3.771 4.261 3.760 2.481 1.506 
F 13 3.248 2.347 3.113 4.354 4.896 4.444 
F 14 3.552 2.344 2.768 4.120 4.903 4.669 
F 15 2.730 2.339 3.576 4.714 4.924 4.109 
F 16 3.552 4.669 4.903 4.120 2.768 2.344 
F 17 3.248 4.444 4.896 4.355 3.114 2.347 
F 18 2.730 4.109 4.924 4.714 3.576 2.339 
F 19 2.522 3.506 4.742 5.189 4.592 3.299 
F 20 2.522 3.298 4.592 5.189 4.742 3.506 

H 7 H 8 H 9 B 10 C 11 C 12 

H 7 0.000 
H 8 2.461 0.000 
H 9 4.254 2.461 0.000 
B 10 4.738 5.472 4.738 0.000 
C 11 2.661 4.615 5.335 2.980 0.000 
C 12 5.335 4.615 2.662 2.980 5.026 0.000 
F 13 3.139 5.133 5.938 3.575 1.320 5.657 
F 14 2.493 4.776 5.950 4.141 1.320 6.008 
F 15 3.903 5.660 5.971 2.467 1.330 5.081 
F 16 5.950 4.775 2.492 4.141 6.009 1.320 
F 17 5.938 5.133 3.140 3.574 5.656 1.320 
F 18 5.972 5.660 3.903 2.467 5.082 1.330 
F 19 5.572 6.242 5.346 1.306 3.779 3.341 
F 20 5.346 6.242 5.572 1.306 3.341 3.779 

F 13 F 14 F 15 F 16 F 17 F 18 

F 13 0.000 
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F 14 2 .124 0 .000 
F 15 2 . 1 3 0 2 . 1 3 4 0 .000 
F 16 6 .486 6 .992 6 .219 0 000 
F 17 6 .493 6 .485 5 .568 2 124 0 000 
F 18 5 .569 6 .218 4 .879 2 134 2 130 0 .000 
F 19 4 . 5 8 1 4 .727 2 .955 4 614 3 462 2 .797 
F 20 3 .463 4 .614 2 .797 4 728 4 580 2 .955 

F 19 

F 19 0 .000 
F 20 2 .245 0 .000 

BOND ANGLES 
1 2 3 C2 C2 C2 121 .625 
1 2 11 C2 C2 C3 120 .162 
1 6 5 C2 C2 C2 121 .624 
1 6 12 C2 C2 C3 120 .155 
1 10 19 C2 B F 120 .774 
1 10 20 C2 B F 1 2 0 . 7 7 1 
2 1 6 C2 C2 C2 117 .162 
2 1 10 C2 C2 B 121.418 
2 3 4 C2 C2 C2 120 .019 
2 3 7 C2 C2 HC 119 .869 
2 11 13 C2 C3 F 112 .176 
2 11 14 C2 C3 F 111 .977 
2 11 15 C2 C3 F 111 .010 
3 2 11 C2 C2 C3 1 1 8 . 2 0 1 
3 4 5 C2 C2 C2 119 .550 
3 4 8 C2 C2 HC 120 .227 
4 3 7 C2 C2 HC 120 .112 
4 5 6 C2 C2 C2 120 .020 
4 5 9 C2 C2 HC 120 .108 
5 4 8 C2 C2 HC 120 .223 
5 6 12 C2 C2 C3 118 .209 
6 1 10 C2 C2 B 121 .420 
6 5 9 C2 C2 HC 1 1 9 . 8 7 1 
6 12 16 C2 C3 F 111 .980 
6 12 17 C2 C3 F 112 .173 
6 12 18 C2 C3 F 1 1 1 . 0 1 1 

TORSION ANGLES 
1 2 3 4 0 267 
1 2 3 7 -179 456 
1 2 11 13 -95 725 
1 2 11 14 143 768 
1 2 11 15 23 891 
1 6 12 16 143 831 
1 6 12 17 -95 662 
1 6 12 18 23 950 
2 1 6 5 - 0 137 
2 1 6 12 178 569 
2 1 10 19 -105 320 
2 1 10 20 74 688 
2 3 4 5 - 0 133 
2 3 4 8 179 867 
3 2 11 13 83 031 
3 2 11 14 -37 477 
3 2 11 15 -157 354 
3 4 5 6 - 0 129 
3 4 5 9 179 593 
4 5 6 1 0 268 
4 5 6 12 -178 462 
5 6 12 16 -37 420 

' 5 6 12 17 83 087 
5 6 12 18 -157 300 
6 1 2 3 - 0 131 
6 1 2 11 178 581 
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6 1 10 19 74 687 
6 1 10 20 -105 305 
7 3 4 5 179 590 
7 3 4 8 - 0 410 
8 4 5 6 179 871 
8 4 5 9 - 0 407 
9 5 6 1 -179 455 
9 5 e 12 1 815 

10 1 2 3 179 876 
10 1 2 11 - 1 413 
10 1 6 5 179 857 
10 1 6 12 - 1 437 
11 2 3 4 -178 469 
11 2 3 7 1 807 

Ar'BFz 
Calculated NMR (GIAO-HF/6-31G7/HF/6-31G*) 

For 1 9 F shift use 213 - value 
20 
C 8 H 3 BF 8 « C I » , GIAO RHF / 6-31G* OPT RHF / 6-31G* -1125.06399170 
C 1 72.1070 129.593 
C 2 68.6716 133.028 
C 3 71.4235 130.276 
C 4 74.6736 127.026 
C 5 71.4257 130.274 
C 6 68.6767 133.023 
H 7 24.5921 10.4079 
H 8 24.9397 10.0603 
H 9 24.5921 10.4079 
B 10 100.8070 22.593 
C 11 93.1203 108.58 
C 12 93.1207 108.579 
F 13 303.6077 
F 14 317.7998 
F 15 318.0259 
F 16 317.8329 
F 17 303.5929 
F 18 318.0160 
F 19 310.8167 
F 20 310.8134 

n B r e f = 123.4 1 3 C r e f = 201.7 XH r e f = 35 

Ar*BF2 

Frequency calculation to check it is a minimum 
(NIMAG = number of imaginary frequencies - if NIMAG = 0 then it is a minimum) 

C8H3BF8 « C I » NIMAG= 0 ZPE= 74.72291 E(RHF) / 6-31G(d) FC= 1 / / 
OPT RHF / 6-31G* -1125.06399170 
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Ar'BCI 2 

Optimized HF/6-31G* geometry 

CK20) 

C(5) C(4) C 3 F( 10) 
F(14) 

F(2) C(1) 

F 9 C6 C(2) C7) cm 
B( 5) F(13) F(8 

CK19) 

1 C 2 C 3 C 4 C 5 C 6 

c 1 0 . 000 
c 2 1 . 398 0 . 000 
c 3 2 . 430 1 . 386 0 .000 
c 4 2 . 815 2 . 400 1.380 0 .000 
c 5 2 . 430 2 . 756 2 .382 1.380 0 000 
c 6 1 . 398 2 . 381 2 . 7 5 6 2 . 4 0 0 1 386 0 . 0 0 0 
c 7 2 . 534 1 . 507 2 .468 3 .753 4 2 6 1 3 .787 
F 8 2 .774 2 346 3 .568 4 . 7 2 1 4 949 4 . 1 5 4 
F 9 3 . 571 2 . 343 2 . 7 3 6 4 . 0 8 9 4 885 4 . 6 7 5 
F 10 3 . 260 2 . 346 3 .098 4 . 3 4 1 4 888 4 . 4 5 0 
C 11 2 . 534 3 . 787 4 . 2 6 1 3 .752 2 468 1.507 
F 12 3 . 570 4 . 675 4 .885 4 .089 2 736 2 . 3 4 3 
F 13 3 . 260 4 . 451 4 .888 4 .340 3 098 2 . 3 4 6 
F 14 2 . 774 4 . 154 4 .949 4 . 7 2 1 3 568 2 . 3 4 6 
B 15 1 . 594 2 . 613 3 .898 4 .409 3 898 2 . 6 1 3 
a 16 3 . 395 3 . 829 3 .358 2 . 1 3 1 1 073 2 . 1 3 1 
H 17 3 . 889 3 . 375 2 .135 1.074 2 135 3 .375 
H 18 3 . 395 2 . 131 1.073 2 . 1 3 1 3 358 3 . 8 2 9 

C I 19 2 . 906 3 . 835 5 .053 5 .508 4 917 3 .654 
C I 20 2 . 906 3 . 654 4 .918 5 .509 5 053 3 . 8 3 6 

C 7 F 8 F 9 F 10 C 11 F 12 

C 7 0 . 000 
F 8 1 . 327 0 . 000 
F 9 1 . 321 2 . 131 0 .000 
F 10 1 .321 2 . 129 2 .124 0 .000 
C 11 5 . 067 5 . 167 6 .039 5 .688 0 000 
F 12 6 . 038 6 . 299 7 . 0 0 1 6 .509 1 321 0 .000 
F 13 5 . 689 5 . 647 6 . 5 1 1 6 .519 1 321 2 . 1 2 4 
F 14 5 . 167 5 . 018 6 .299 5 .645 1 327 2 . 1 3 1 
B 15 3 . 019 2 . 543 4 .187 3 .606 3 019 4 . 1 8 6 



H 16 5 335 5 .999 5 930 5 929 2 633 2 437 
H 17 4 602 5 .659 4 734 5 114 4 602 4 734 
H 18 2 633 3 .872 2 437 3 113 5 335 5 930 

C I 19 4 082 3 .215 4 966 4 931 3 680 4 970 
C I 20 3 680 3 .195 4 970 3 651 4 083 4 965 

F 13 F 14 B 15 H 16 H 17 H 18 

F 13 0 000 
F 14 2 130 0 .000 
B 15 3 607 2 .542 0 000 
H 16 3 112 3 .872 4 744 0 000 
H 17 5 113 5 .660 5 483 2 461 0 000 
H 18 5 929 5 .999 4 744 4 249 2 461 0 000 

C I 19 3 652 3 .194 1 755 5 650 6 547 5 856 
C I 20 4 932 3 .215 1 755 5 857 6 548 5 650 

C I 19 

C I 19 0 .000 
C I 20 3 .028 0 .000 

BOND ANGLES 
1 2 3 C2 C2 C2 121 .588 
1 2 7 C2 C2 C3 121 .404 
1 6 5 C2 C2 C2 121 .587 
1 6 11 C2 C2 C3 121 .415 
1 15 19 C2 B C I 120 .357 
1 15 20 C2 B C I 120 .382 
2 1 6 C2 C2 C2 116 .858 
2 1 15 C2 C2 B 121 .570 
2 3 4 C2 C2 C2 120 .347 
2 3 18 C2 C2 HC 1 1 9 . 6 2 1 
2 7 8 C2 C3 F 111 .589 
2 7 9 C2 C3 F 111 .714 
2 7 10 C2 C3 F 111 .924 
3 2 7 C2 C2 C3 116 .989 
3 4 5 C2 C2 C2 1 1 9 . 2 7 1 
3 4 17 C2 C2 HC 120 .365 
4 3 18 C2 C2 HC 1 2 0 . 0 3 1 
4 5 6 C2 C2 C2 120 .348 
4 5 16 C2 C2 HC 120 .035 
5 4 17 C2 C2 HC 120 .364 
5 6 1 1 C2 C2 C3 116 .980 
6 1 15 C2 C2 B 121 .572 
6 5 16 C2 C2 HC 119 .617 
6 11 12 C2 C3 F 111 .716 
6 11 13 C2 C3 F 111 .929 
6 11 14 C2 C3 F 111 .586 

TORSION ANGLES 
1 2 3 4 0 196 
1 2 3 18 - 1 7 9 . 5 4 0 
1 2 7 8 25 013 
1 2 7 9 145 015 
1 2 7 10 -9 4 . 9 6 1 
1 6 11 12 144 923 
1 6 11 13 -95 045 
1 6 11 14 24 926 
2 1 6 5 -0 089 
2 1 6 11 178 309 
2 1 15 19 -100 880 
2 1 15 20 79 .108 
2 3 4 5 -0 092 
2 3 4 17 179 .912 
3 2 7 8 - 1 5 6 . 5 2 8 
3 2 7 9 36 .526 
3 2 7 10 83 498 
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3 4 5 6 - 0 . 0 9 8 
3 4 5 16 1 7 9 . 6 4 1 
4 5 6 1 0 .192 
4 5 6 11 - 1 7 8 . 2 7 4 
5 6 11 12 - 3 6 . 6 0 9 
5 6 11 13 8 3 . 4 2 3 
5 6 11 14 - 1 5 6 . 6 0 6 
6 1 2 3 - 0 . 1 0 4 
6 1 2 7 178 .285 
6 1 15 19 7 9 . 1 1 3 
6 1 15 20 - 1 0 0 . 8 9 9 
7 2 3 4 - 1 7 8 . 2 6 0 
7 2 3 18 2 . 0 0 4 

15 1 2 3 179 .890 
15 1 2 7 - 1 . 7 2 2 
15 1 6 5 179 .918 
15 1 6 11 - 1 . 6 8 5 
16 5 6 1 - 1 7 9 . 5 4 8 
16 5 6 11 1.986 
17 4 5 6 179 .898 
17 4 5 16 - 0 . 3 6 3 
18 3 4 5 179 .643 
18 3 4 17 - 0 . 3 5 3 

Ar'BCfe 
Calculated NMR (GIAO-HF/6-31G*//HF/6-31G*) 

For 1 9 F shift use 213 - value 
20 
CsHaBCIaFe « C1 » , GIAO RHF / 6-31G* OPT RHF / 6-31G* -1845.09903185 
C 1 65.6504 136.05 
C 2 70.5682 131.132 
C 3 70.8305 130.869 
C 4 75.0294 126.671 
C 5 70.8257 130.874 
C 6 70.5635 131.136 
C 7 93.4035 108.296 
F 8 312.9332 
F 9 316.6493 
F 10 302.2696 
C 11 93.3985108.301 
F 12 316.6281 
F 13 302.2944 
F 14 312.8876 
B 15 64.1020 59.298 
H 16 24.6423 10.3577 
H 17 25.0166 9.9834 
H 18 24.6420 10.358 
C119 800.2158 
CI 20 800.2881 

n B r e f = 123.4 1 3 C r e f = 201.7 XH r e f = 35 

Frequency calculation to check it is a minimum 



Appendix B 

Crytallography Data 



All crystallographic data are listed in the CD enclosed at the end of the thesis. 
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(CF3)2C6H3]12,4-(CF3)2C6H3]PC1 (Ar'ArTCl) and Its Crystal Structure at 
150 K: Andrei S. Batsanov, Stephanie M. Cornet, Lindsey A. Crowe, Keith B. 
Dillon, Robin K. Harris, Paul Hazendonk, and Mark d. Roden, Eur. J. Inorg. 
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