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Abstract 

The mutant mouse stargazer shows both ataxia and absence epilepsy from P14 

onwards. A PCR amplification strategy was utilised to identify adult (i.e. > 3 months) 

+/stg from +/+ mice, which share the same phenotype, for use for breeding purposes. 

The same technique was employed to identify +/+, +/stg and stg/stg neonates (i.e. < 7 

days old) for cell culture purposes, since the stargazer phenotype is not apparent at 

this age. 

G A B A A receptor subunit expression levels were significantly decreased in adult 

stargazer (stg/stg) cerebella when compared to control (+/+ and +/stg) cerebella. 

Interestingly, autoradiography using [ 3 H] Rol5-4513 revealed an apparent 

upregulation in ̂ y-containing receptors in the adult stargazer dentate gyrus. 

No significant differences in the expression of NMDAR subunits were detected 

between adult control and stargazer brain membranes. 

A significant decrease was observed in AMPAR subunit expression within the adult 

stargazer cerebellum, particularly with the GluR2 subunit, which was reduced by 

73 %. This decrease was replicated in cerebellar granule cells cultured from stargazer 

neonates, which also expressed at the cell surface only 18 % of the total GluR2 found 

in control granule cells. 

Immunohistochemistry analyses using mouse anti-stargazin antibodies revealed 

stargazin to be found throughout the adult control brain, with highest levels of 

expression being within the hippocampus and cerebellum. Stargazin protein, however, 

was not expressed in adult stargazer forebrain nor in adult stargazer cerebellar 

membranes. 

Finally, immunoaffinity columns using the anti-stargazin antibodies were prepared 

and demonstrated that stargazin could be purified from adult control mouse brain 

extracts. Moreover, AMPAR subunits co-immunoprecipitated, indicating an 

association in vivo. 
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Chapter 1 

Introduction 

The amino acid glutamate is a major excitatory neurotransmitter within the central 

nervous system, where it is involved in synaptogenesis, synaptic plasticity and in the 

pathogenesis of neuropsychiatric diseases. It may also be further metabolised to 

produce the inhibitory neurotransmitter, y-amino-butyric acid ( G A B A ) . As this work 

involved studying the potential roles of the G A B A A and glutamate receptors in the 

brain of the mutant mouse stargazer, a brief review of the published literature on the 

stargazer and an overview of the current understanding of these receptors are below. 

1.1 The mutant mouse, stargazer 
The stargazer mutation (stg) arose spontaneously in the A/J inbred strain of mice at 

The Jackson Laboratory, MA, USA, and was subsequently bred onto the B6C3Fe+ 

background strain. The mutation was found to reside on mouse chromosome 15 and 

due to a recessive mutation (Noebels et al., 1990). The stg mutation consists of an 

early viral transposon insertion into intron 2 of the stargazin gene {CacngI) that 

leads to its premature transcriptional arrest (Letts et al., 1998). The stargazin gene 

encodes for a brain-specific 36-41 kDa glycosylated protein (Letts et al., 1998; 

Sharp et al., 2001), which shows structural and amino acid similarity to the 

previously identified yl subunit of the skeletal muscle-specific voltage-operated 

calcium channel (VOCC). The distribution of both stargazin mRNA and protein is 

discussed in chapter 6. 

1.1.1 The CACNG family of y subunits 
The discovery of stargazin expanded the y family of neuronal calcium channels - to 

yi and y2 (stargazin) - whilst subsequent work by others led to the identification of 

further y subunits. Currently, eight y subunits, yi to y8, along with their genes, 

CACNG1 to CACNG8 respectively, have been identified. ^ _ 
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Rousset et al. (2001) found that transfection of human 72, 73 O R Y4 cDNA into cells 

revealed a strong expression of each of the three subunits which was localised to the 

cell membranes, indicating that their putative secondary structure involved 

transmembrane segments. Analyses of the structures of the 7 subunits have 

confirmed the presence of four transmembrane domains, along with intracellular 

carboxyl and amino termini (Moss et al., 2002; Burgess et al., 2001; Klugbauer et 

al , 2000; Letts etal., 1998). 

The tissue expression of each 7 subunit gene has been determined by both Northern 

blotting and by PCR. Whilst y\ mRNA expression has been shown to be present in 

skeletal muscle (Jay et al., 1990), it has also been detected at very low levels in the 

human brain (Burgess et al., 2001). Expression of 72 and y% mRNAs have been 

detected in the brain and in the testes whilst that of 73 was found only in the brain. 74-

7 mRNAs show a more extensive expression, being detected in the brain, the testes, 

the heart and in the lungs (Burgess et al., 2001; Chu et al., 2001; Green et al., 2001; 

Klugbauer et al., 2000). Regional differences in the expression of the various 

subunits within the brain is discussed in chapter 6. 

1.1.2 The phenotype of the stargazer mouse 
Stargazer mice exhibit ataxia, epilepsy and a distinctive upwards gaze, from which 

the mouse obtained its name ('star-gazing'). Electrocorticography revealed 

spontaneous recurrent spike-wave discharges, characteristic of absence epilepsy, and 

which were accompanied with behavioural arrest. These seizures, which occur in the 

neocortex, thalamus and hippocampus, are first manifest around PI6-18 and remain 

throughout the normal lifespan of the mouse (Nahm and Noebels, 1998; Di Pasquale 

et al., 1997; Qiao and Noebels, 1993; Noebels et al., 1990). 

The ataxia, which develops around PI4, is mild, affecting the hindlimbs. Subsequent 

behavioural testing revealed an impaired motor co-ordination in stargazer mice. The 

mice were unable to stay on a stationary rod for more than 5 seconds and fell off 

immediately when either initiating movement or when the rod was rotated. 

Swimming tests revealed that the mice had disturbed righting responses and required 

rescuing to prevent drowning (Qiao et al., 1996; Noebels et al., 1990). Stargazer 
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mice also showed a severe impairment in the acquisition of classical eye-blink 

conditioning, which is a model of learning involving the cerebellum (Qiao et al., 

1998; for a review of classical eye-blink conditioning, see Kim and Thompson, 

1997) . 

Whilst the stargazer cerebellum has a normal foliation and laminar structure, a 

delayed migration of granule cells from the external to the internal layers was 

observed. In the adult stargazer cerebellum, granule cells with elongated nuclei, 

resembling migrating immature granule cells, were also detected. Although mRNA 

levels of the neurotrophins NGF (nerve growth factor) and NT-3 (neurotrophin 3) 

were normal in stargazer cerebella, BDNF (brain derived neurotrophic factor) 

mRNA was reduced in cerebellar granule cells (Qiao et al., 1998; Qiao et al., 1996). 

Within the dentate gyrus of the hippocampus, mossy fibre axon sprouting has been 

described in the inner molecular layer, 4-6 weeks following the onset of the seizures. 

No corresponding cell death, gliosis or cellular injury, which have all been 

associated in other mossy fibre sprouting models, or increase in the intermediate 

early genes c-Fos, c-Jun and Zif/268, which are involved in mossy fibre synaptic 

reorganisation, have been found (Nahm and Noebels, 1998; Chafetz et al., 1995; 

Qiao and Noebels, 1993). 

Although stargazin interacts with calcium channel subunits in BHK cells (Letts et al., 

1998) , Xenopus oocytes (Kang et al., 2001), and in mouse forebrain (Sharp et al., 

2001), no changes in calcium currents in cerebellar granule cells were observed 

(Chen et al., 2000). However, Chen et al. (2000) indicated a role for stargazin in the 

trafficking of AMP A receptors and this is discussed further in chapter 6. 

1.2 Glutamate receptors 
The glutamate receptors can be divided into two classes: ionotropic and 

metabotropic glutamate receptors, both of which can be further subdivided. The 

former are involved in the opening of potassium/sodium/calcium permeable ligand-

gated ion channels and were initially pharmacologically distinguished as iV-methyl-
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D-aspartate (NMDA) and non-NMDA receptors. The development of more selective 

ligands allowed the identification of the non-NMDA a-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA) and kainate receptors. The metabotropic 

glutamate receptors are linked to G-proteins and, subsequently, to the second 

messengers inositol triphosphate and cyclic adenosine 3', 5'-monophosphate 

(cAMP). As the work undertaken here involved the ionotropic NMDA and AMPA 

glutamate receptors, these shall be further discussed below. 

1.2.1 NMDA receptors 
The ligand-gated NMDA receptors are multimeric complexes containing an integral 

cation-selective channel. Both glutamate (or other agonists) and glycine are required 

for the NMDA receptor (NMDAR) channel to open (Mayer et al., 1989; Kleckner 

and Dingledine, 1988; Collingridge et al., 1983). At resting membrane potentials, 

magnesium (in the form of Mg 2 + ion) binds within the channel, however, membrane 

depolarisation removes the Mg 2 + block (Nowak et al., 1984). 

The receptor itself consists of NR1 and NR2 subunits (also known as C, and e, 

respectively, in the mouse); eight splice variants of the NR1 subunit have been 

described (NRla-h) (Hollmann et al., 1993; Durand et al., 1993; Sugihara et al., 

1992; Durand et al., 1992) whilst four NR2 subunits have been identified (NR2A-D) 

(Monyer et al., 1994; Ishii et al., 1993; Monyer et al., 1992; Kutsuwada et al., 1992; 

Meguro et al., 1992). A third class of NMDAR subunit, NR3, also exists, of which 

the NR3A and NR3B subunits have been identified (Nishi et al., 2001; Ciabarra et 

al., 1995; Sucheretal., 1995). 

The subunits consist of an extracellular N-terminus, four membrane associated 

domains and an intracellular C-terminus. Of the membrane domains, three span the 

membrane whilst one (TM2) forms an intramembrane loop (Hollmann et al., 1994). 

The amino terminal contains multiple predicted glycosylation sites whilst the 

carboxyl terminal contains several predicted phosphorylation sites. All the NR1 and 

NR2 subunits share an overlap in the final eight amino acids, which contain binding 

sites for synaptic binding proteins such as PSD95 (Niethammer et al., 1996; Kornau 
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et al., 1995). The NR3 subunits, however, do not exhibit these consensus sequences 

(Nishi et al., 2001; Sun et al., 1998). 

The NMDAR is composed hetero-oligomers composed of NR1, NR2 and NR3 

subunits. Current evidence suggests that the receptor complex is either a trimer of 

one NR1 subunit and two NR2 subunits; Dunah et al., 1998; Chazot et al., 1994; Luo 

et al., 1997), a tetramer composed of two NR1 subunits and two NR2 subunits 

(Laube et al., 1998) or a pentamer of NR1 subunits and NR2 subunits (Hawkins et 

al., 1999; Premkumar and Auerbach, 1997; Ferrer-Montiel and Montal, 1996). A 

small number of receptor complexes, however, appear to be comprised of one NR1 

and one NR2 subunits (Dunah et al., 1998; Luo et al., 1997). As little is known about 

the NR3 subunit, the exact subunit composition of these receptors is still unknown. 

However, NR3A has been shown to co-immunoprecipitate with NR1 and NR2B 

subunits and that co-assembly of NR1/NR2A/NR3A subunits were required for the 

formation of functional NR3A-containing receptors (Perez-Otano et al., 2001; Das et 

al., 1998). 

The exact subunit composition of the NMDAR complex does, however, depend on 

both age and region of the brain. The NR1 subunit is ubiquitously distributed 

throughout the brain. The NR2 subunits have a more select distribution, with the 

NR2A and NR2D subunits found throughout the brain, the NR2B is found mainly in 

the forebrain and the NR2C subunit is found in the cerebellum. The distribution of 

NMDAR subunits is discussed further in section 4.3. 

The NR1 subunit is regarded as being obligatory as it is required for the formation of 

a functional receptor channel. The NR2 subunits modulate the receptor and 

expression of the individual subunits confers the biophysical and pharmacological 

properties associated with the different receptor subtypes (Monaghan and Larsen, 

1997; Ishii et al., 1993; Dceda et al., 1992). The NR3 subunits are also regulatory 

subunits but act in a dominant-negative manner, depressing the whole cell current 

(Nishi et al., 2001; Perez-Otano et al., 2001; Das et al., 1998). 
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The binding site for glutamate is formed by the NR2 subunits (Anson et al., 1998; 

Laube et al., 1997). Whilst the binding site for glycine is found on the NR1 subunit, 

the NR2 subunits modify the interaction between NR1 and glycine (Honer et al., 

1998; Wafford et al., 1995; Wafford et al., 1993). Agonists and antagonists exist for 

both the glutamate and glycine binding sites. Agonists at the glutamate-binding site 

include L-aspartate (Patneau and Mayer, 1990) and 2-(carboxycyclopropyl)glycine 

(L- and D-CCG-IV) (Kawai et al., 1992; Kudo et al., 1991). A wide range of 

competitive antagonists have been developed, and these include 2-amino-5-

phosphopentaoic acid (also known as D-AP5) (Olverman et al., 1988; Murphy et al., 

1987), 3-[(±)-2K;arboxypiperazin-4-yl]propyl-l-phosphomc acid (CPP) (Hatta et al., 

1991; Lehmann et al., 1987; Harris et al., 1986) and ifenprodil, which is a high 

affinity antagonist in NR2B-containing receptors (Gallagher et al., 1996; Priestley et 

al., 1995; Williams, 1993). 

Glycine site agonists include the amino acids D-serine and D-alanine (Mothet et al., 

2000; Matsui et al., 1995; Wroblewski et al., 1989; Fadda et al., 1988). Kynurenate 

and its derivatives, for example, 7-chloro-kynurenate and 5-iodo-7-chlorokynurenate 

(which is also known as L-683,344), act as antagonists at the glycine site (Foster et 

al., 1992; Kessler et al., 1989; Kemp et al., 1988) as do the 2-carboxyindoles (Leeson 

et al., 1991; Huettner, 1989) and GV 150526A (Mugnaini et al., 2000; Mennini et 

al., 1997). 

Non-competitive antagonists at the NMDA receptor include phencyclidine, ketamine 

and MK-801, which all act within the ion channel of the receptor (Porter and 

Greenamyre, 1995; Huettner and Bean, 1988; Wong et al., 1988). The NMDA 

receptor also contains binding sites for zinc, lead and redox agents such as 

dithiothreitol (Hollmann et al., 1993; Guilarte et al., 2000; Aizenman et al., 1989). 

NMDARs have been implicated in a number of physiological conditions such as 

pain (for review, see Chizh et al., 2001), long-term potentiation, which is a model of 

learning and memory (for reviews, see Kullmann et al., 2000, and Nicoll and 

Malenka, 1999), and excitotoxicity (for review, see Lynch and Guttmann, 2002; 

Sattler and Tymianski, 2001). NMDA receptors have also been implicated in ataxia 
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and in absence epilepsy, which are both seen in stargazer mice. These roles of the 

NMDA receptor shall be discussed further in chapter 4. 

1.2.2 AMPA receptors 
AMPA receptors (AMPARs), like NMDARs, are hetero-oligomeric receptors 

containing an ion channel. The receptor itself consists of four subunits - GluRl, 

GluR2, GluR3 and GluR4, which are also known as GluRA-D (Boulter et al., 1990; 

Keinanen et al., 1990). They share the same structure as NMDAR subunits; i.e. three 

transmembrane domains and one re-entrant membrane loop (TM2). The N-terminus 

is extracellular whilst the C-terminus is intracellular (Sutcliffe et al., 1996; Bennett 

and Dingledine, 1995). Furthermore, each subunit can exist in a flip or flop version, 

created by alternative splicing of a 115 bp region of mRNA (Monyer et al., 1991; 

Sommer et al., 1990). RNA editing of the GluR2 subunit results in a glutamine 

residue being changed to an arginine residue, thereby rendering edited GluR2-

containing receptors relatively calcium impermeable (Sommer et al., 1991; Hume et 

al., 1991). 

Various studies have been undertaken to determine the stoichiometry of the 

AMPARs. Whilst some have suggested that they are pentameric structures 

(Archibald et al., 1998; Ferrer-Montiel and Montal, 1996; Wenthold et al., 1992), 

other studies have suggested that the receptor complex is a tetrameric structure, 

comprising of two different subunits (Mansour et al., 2001; Robert et al., 2001; 

Mano and Teichberg, 1998). 

Early in development, electrophysiological approaches have revealed some synapses 

containing functional NMDARs lack AMPAR-mediated responses. As NMDARs 

are blocked by magnesium at physiological resting potentials, no currents are 

mediated by the receptors following application of glutamate, thereby leading these 

synapses to be referred to as 'silent synapses'. Later in development, these synapses 

subsequently acquire AMPARs (Pickard et al., 2000; Petralia et al., 1999; Gomperts 

et al., 1998; Isaac et al., 1997; Wu et al., 1996). A similar redistribution of AMPARs 

to the synapse can be observed following activation of synaptic NMDARs (Lu et al., 

2001; Pickard et al., 2001; Shi et al., 1999). 



The subunit expressions of the AMPARs show a developmental switch in a number 

of brain regions. Within the neocortex, PI6-21 pyramidal neurons show an increased 

expression of GluR2 when compared to P13-15 neurons. Levels of GluRl and 

GluR4 did not change, suggesting that GluR2 levels are developmentally 

upregulated relative to both GluRl and GluR4 (Kumar et al., 2002). A similar 

selective upregulation of GluR2 subunits was also observed in cultured hippocampal 

neurons (Pickard et al., 2000). Hippocampal GluR4 levels, however, show a decrease 

in expression over the same time period; whilst high levels of GluR4 were detected 

by immunoblotting in PI-5 hippocampal slices (and low levels of GluRl, GluR2 and 

GluR2/3 subunit proteins), protein levels soon decrease to undetectable levels by 

P15 (Zhu et al., 2000). In the cerebellum, whilst levels of GluRl increased only 

moderately with development, GluR4 expression increased 15-fold (Ripellino et al., 

1998). The subunit compositions of AMPARs in the adult brain are discussed further 

in chapter 5. 

A number of AMPAR agonists and antagonists have been developed. Agonists 

selective for AMPARs are based on either the structure of AMPA or of willardiine. 

Analogues of AMPA with agonist properties include (7?5)-2-amino-3-(3-carboxy-5-

methyl-4-isoxazolyl)propionic acid (ACPA) (Stensbol et al., 1999; Wahl et al., 

1996) and (5)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid 

((S)APPA) (Ebert et al., 1994a; Ebert et al., 1994b). Willardiine compounds that 

show agonist activity at AMPARs include 5-fluorowillardiine and 5-ionowillardiine 

(Hawkins et al., 1995; Wong et al., 1994). Cyclothiazdde potentiates the responses at 

AMPARs by reducing or inhibiting the desensitisation of the receptor (Donevan and 

Rogawski, 1998; Wong and Mayer, 1993; Trussell et al., 1993) whilst potassium 

thiocyanate promotes receptor desensitisation (Donevan and Rogawski, 1998; Arai et 

al., 1995). 

Competitive antagonists include the quinoxalinedione compounds CNQX and 

NBQX, however, these compounds also bind to kainate receptors but to a much 

lower degree (Wilding and Huettner, 1996; Sheardown et al., 1990; Honore et al., 

1988; Fletcher et al., 1988). An analogue of CNQX, YM90K, has also been shown to 

be a competitive AMPAR antagonist (Shimizu-Sasamata et al., 1996; Ohmori et al., 
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1994). Similarly, the Eli Lilley compound LY293558 has been shown to be a 

competitive AMPAR antagonist, however, it is also has some antagonistic activity at 

kainate receptors (Bleakman et al., 1996, Schoepp et al., 1995). 

The development of AMPAR antagonists has led to the suggestion that they may 

have therapeutic potential in a number of neurodegenerative disorders involving 

glutamate. Both NBQX and YM90K show neuroprotection in models of ischaemia 

(Kawasaki-Yatsugi et al., 1998, Umemura et al., 1997, Graham et a l , 1996; O'Neill 

et al., 1996, Pellegrini-Giampietro et al., 1994, Sheardown et al., 1993). Indeed, 

antisense oligonucleotides targeted to GluR2 mRNA led to a decrease in both GluR2 

mRNA and protein levels before causing neurodegeneration in the hippocampus. 

Administration of CNQX protected against this cell death (Oguro et al., 1999). 

GluR2 subunits have also been shown to be decreased in hippocampal pyramidal 

neurons following kainate-induced status epilepticus, prior to the degeneration of 

these cells (Grooms et al., 2000). Absence seizures, which are observed in stargazer 

mice, lead to a decreased expression of GluR2 subunits in the cerebral cortex, 

implying that a similar decrease may be observed in stargazer (Hu et al., 2001). The 

levels of expression of the AMPAR subunits in stargazer are discussed further in 

chapters 5 and 7. 

Finally, AMPARs have also been implicated in classical eye-blink conditioning, 

which is impaired in stargazer, and ataxia, which is seen in the stargazer mouse. 

These roles of the AMPAR are discussed further in chapter 5. 

1.3 GAB A receptors 
GABA is the major inhibitory neurotransmitter within the mammalian central 

nervous system. Three types of GABA receptor have been identified on the basis of 

their pharmacology and electrophysiology: the predominant type, termed GABA A , 

and a recently identified type, GABAc, are linked to chloride channels, whereas 

G A B A B receptors are G-protein coupled receptors affecting K + or C a 2 + channels (for 

reviews, see Rudolph et al., 2001; Billinton et al., 2001; Zhang et al., 2001). 
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The GABA A receptor (GABAR) is a pentameric receptor comprising of ai - a^, 

Pi - P*, yi - 73, 8, e, 7i, 9 and pi - p3 subunits (for reviews, see Sieghart and Sperk, 

2002; Barnard et al., 1998). All GABAR subunits consist of a large extracellular N-

terminus and four transmembrane domains, with a large intracellular loop between 

TM3 and TM4, and a short extracellular C-terminus (Schofield et al., 1987). Co-

expression of a, P and y subunits are required for a fully functioning receptor and 

most native GABARs appear to be composed of these subunits (Tretter et al., 1997; 

Araujo et al., 1996; Benke et al., 1994; Hadingham et al., 1992; Fritschy et al., 1992; 

Benke et al., 1991b). The 8, e, TC and 9 subunits appear to form functional receptors 

when they are co-expressed with a and P subunits (Neelands and Macdonald, 1999; 

Bonnert et al., 1999, Whiting et al., 1997; Saxena and Macdonald, 1994). 

The preferred subunit stoichiometry of the GABAR varies throughout the adult 

brain. The ai - as subunits are all expressed in the hippocampus and the cerebral 

cortex, yet only the ai subunit is present in the cerebellum in any significant amount. 

The 06 subunit, however, is found only within cerebellar granule cells and the 

cochlear nucleus. P subunits are found in the cortex, the hippocampus and the 

cerebellum, where the predominant subunit is the P2 subunit. The 8 subunit is located 

in the cerebellum, the thalamus and the dentate gyrus of the hippocampus. Whilst the 

72 subunit is found throughout the brain, the expression of the 71 and 73 subunits is 

more restricted (Pirker et al., 2000; Sur et al., 1999; Endo and Olsen, 1993; Wisden 

et al., 1991; Benke et al., 1991a). The adult cerebellum expresses GABARs 

comprising of OC1PYP372 subunits, CI6P2/P3Y2 subunits and ai06P2/P3Y2 subunits at 

granule cell synapses with both Golgi cells and mossy fibres. These receptors are 

also present on the extrasynaptic membranes, along with receptors containing the 8 

subunit (i.e. 016P2/P3S receptors) (Jechlinger et al., 1998; Nusser et al., 1998a; 

Somogyi et al., 1996; Nusser et al., 1996; Khan et al., 1996; Pollard et al., 1995; 

Baudeetal., 1992). 

immature granule cells express 02 and (13 subunits; however, these subunits are 

replaced by the ae subunit, an indicator of a mature cell (Thompson et al., 1996; 

Thompson and Stephenson, 1994). This switching on and off of the various GABAR 

subunits may be influenced by factors such as NT-3 and BDNF (Bao et al., 1999; 
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Yamada et al., 2002; Hyman et al., 1994). Immature granule cells show a 

dependence upon NT-3, however, when the granule cells mature, the levels of NT-3 

decrease whilst the levels of BDNF, which are expressed at low levels at birth, 

increase to reach adult levels by P20 (Gao et al., 1995; Maisonpierre et al., 1990). 

The GABAR contains binding sites for picrotoxin, barbiturates, neurosteroids and 

benzodiazepines, which are governed by the expression of various subunits within 

the receptor. The interface between a and P subunits is important for GABA and 

muscimol binding (Zezula et al., 1996; Schofield et al., 1987) whilst the p* subunit is 

necessary for the picrotoxin site, which is also the binding site for the convulsant t-

butylbicyclophosphorothionate (TBPS) (Zezula et al., 1996; Slany et al., 1995). 

Barbiturates act on the ion channel and it has been suggested that they bind to the 

TM2 region of P subunits (Serafini et al., 2000; Birnir et al., 1997). Multiple subunits 

regulate the action of neurosteroids: p subunits are required for steroid potentiation 

whereas a subunits regulate potency and efficiency (Belelli et al., 1996; Hadingham 

et al., 1993; Shingai et al., 1991). The 8 subunit is also thought to be involved in 

regulating the function of neurosteroids (Hevers et al., 2000; Zhu et al., 1996). The 

benzodiazepine-binding site is located at the interface between a and 72 subunits, 

however, benzodiazepines such as diazepam and flunitrazepam do not bind to c u -

and (^-containing receptors, leading to these receptors being labelled as diazepam-

insensitive GABARs (Benke et al., 1997; Huh et al., 1996; Yang et al., 1995). 

Work was undertaken to confirm previously published results and to further 

characterise the regulation and subunit expression of GABARs in stargazer brain. 

The results of such experiments are discussed in chapter 3. 
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Chapter 2 

Methods 

2.1 Animals 
Wild-type (C3B6Fe+, +/+), heterozygous (C3B6Fe+, +/stg) and homozygous 

stargazer mutant mice (C3B6Fe+, stg/stg) were derived from heterozygous breeding 

pairs obtained from The Jackson Laboratory (Bar Harbor, Maine, USA). 

Brain tissues derived from +/+ and +/stg mice were combined and used as 'control' 

material in experiments in which stg/stg parameters were compared. 

New Zealand white rabbits were obtained from Harlan, UK. 

The animals were maintained in the Life Sciences Support Unit (LSSU), University 

of Durham. Animals had unlimited access to food and water and were on a 12 hour 

light/dark cycle. All animal husbandry, breeding and experimental procedures were 

performed in accordance with the Animals (Scientific Procedures) Act 1986. 

2.2 Materials 
All reagents and chemicals used, unless indicated otherwise, were either from BDH 

or Sigma and were of the highest quality available. 

2.2.1 Antibodies and peptides 
The anti-AMPA receptor subunit-specific antibodies were from Oncogene (GluRl) 

and Santa Cruz Biotechnology (GluR2-4). The anti-NSE antibodies were from 

Affiniti Research Products whilst the anti-0-actin antibodies were from Sigma. 

The anti-GABAA receptor cti subunit-specific antibodies were a kind gift from Prof. 

F A. Stephenson, School of Pharmacy, University of London. 
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The anti-NMDA receptor subunit-specific antibodies, anti-stargazin and anti-

G A B A A receptor subunit-specific antibodies were generated within the lab. The 

peptides for these antibodies were commercially synthesised by Immune Systems 

Limited 

Rabbit anti-mouse IgG-HRP and donkey anti-rabbit IgG-HRP linked secondary 

antibodies were from Amersham Pharmacia whilst the anti-goat IgG secondary 

antibody was from Pierce. 

Both Freund's complete adjuvant and Freund's incomplete adjuvant were obtained 

from Difco. 

2.2.2 Radioligands 
[3H] AMP A, [3H]MK-801, [3H] muscimol and [3H] Rol5-4513 were all obtained 

from NEN Life Sciences. 

MK-801 was obtained from Tocris. 

Flunitrazepam and Ro15-1788 were a kind gift from Hoffman La Roche, 

Switzerland. 

The [3H] hyperfilm used for the autoradiography was obtained from both Amersham 

Pharmacia and from ICN. 

2.2.3 Cell culture solutions 
Dulbecco's Modification of Eagle's Medium (DMEM) and L-glutamine were 

obtained from ICN. 

The foetal calf serum was obtained from TCS Biologicals. 

2.2.4 PCR reagents 
The nuclei lysis solution, protein precipitation solution and the dNTPs were all 

obtained from Promega. 
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The primers (109F, E/Ht7 and ETN-OR) and DNA ladders (100 base pair markers) 

were from Gibco. Ultrapure agarose and ultrapure tris were also obtained from 

Gibco. 

The TAQ polymerase, SuperTAQ storage buffer and SuperTAQ PCR buffer were all 

supplied by HT Biotechnology. 

2.3 Antibody production 
Affinity-purified anti-peptide-directed anti-stargazin (CACNy2) (309-323) 

polyclonal antibodies and anti-NMDA receptor NR1 (17 - 35), NR2A (1381 - 1394) 

NR2B (46 - 60), and NR2C/D (1307- 1323) subunit-specific antibodies were 

generated as described by Pollard et al. (1993) and Chazot et al. (1994). 

Briefly, the protein sequence-specific peptides were chemically coupled to the 

carrier protein, thyroglobulin, using methods outlined below (section 2.3.2). The 

carrier-coupled peptides were emulsified and used to immunise rabbits (section 

2.3.3). The sera from the immunised rabbits were collected and screened by enzyme-

linked immunosorbant assay (ELISA) (section 2.3.4) and peptide-directed antibodies 

were subsequently affinity-purified from ELISA-positive sera using peptide-affinity 

columns (section 2.3.6). These methods are a modification of those published in 

Stephenson and Duggan (1991). 

2.3.1 Preparation of dialysis tubing 
Two types of dialysis tubing were used in the production and purification of the 

antibodies generated within the lab. Visking tubing with a molecular weight cut off 

between 12,000 to 14,000 Daltons (Da), hereafter referred to as high molecular 

weight tubing, was supplied by Philip Harris. CelluSep HI dialysis tubing, which has 

a nominal molecular weight cut off of 1,000 Da, was supplied by Membrane 

Filtration Products Incorporated. 
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2.3.1.1 Preparation of high molecular weight tubing 
High molecular weight tubing was placed into 1 L of 1 mM EDTA, 2 % (w/v) 

NaHC03, which had been heated to a temperature greater than 80°C (in a microwave 

oven), for 10 minutes. A 1 mM solution of EDTA (1 L) was then prepared and also 

heated to above 80°C. The tubing was placed into the EDTA solution and left for a 

further 10 minutes. The solution and tubing were then allowed to cool. The tubing 

was stored in this solution, at 4°C, until required. Immediately before use, a length of 

dialysis tubing (approximately 10 cm long) was cut and extensively washed in dH20. 

2.3.1.2 Preparation of CelluSep HI dialysis tubing 
CelluSep 1H dialysis tubing comes ready prepared and was stored in its own storage 

buffer at 4°C. Lengths of tubing (-5-10 cm) appropriate for the experiment were 

excised and extensively washed in CIH2O prior to use. 

2.3.2 Coupling of peptides used for immunisations 
Peptides corresponding to the amino sequences of the NMDA receptor subunits NR1 

(amino acid sequence 17 - 35), NR2A (amino acid sequence 1381 - 1394), NR2B 

(amino acid sequence 46 - 60) and NR2C/D (amino acid sequence 1307 - 1323) and 

to the stargazin protein (Cys-309 - 323) (Letts et al., 1998) were custom sequenced 

by Immune Systems Limited 

2.3.2.1 MBS coupling of peptides to thyrogiobulin 
This method was used to couple peptides to the carrier protein, thyrogiobulin, 

through cysteine groups. Peptides to the NMDA receptor (NMDAR) subunits NR1 

and NR2B and the stargazin peptide were coupled to thyrogiobulin using this 

method. 

Thyrogiobulin (20 mg/ml) was dissolved in phosphate buffered saline (PBS), pH 7.2, 

before dialysing, using high molecular weight tubing, against the PBS overnight at 

4°C. The high molecular weight tubing was prepared as described in section 2.3.1.1. 

The dialysed thyrogiobulin was stored at -20°C, until required. 
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3-maleirnidobenzoic acid N-hydroxysuccinimide ester (MBS) was dissolved in 

dimethylformamide (3 mg/ml) and stored at -20°C, until required. 

The carrier protein was prepared by adding 50 ul of 10 mM phosphate buffer, 

100 mg KH 2P0 4, l g Na2HP04, pH7.2, to 4mg (200 ul) diaiysed thyroglobulin. 

MBS (85 ul) was then added, drop-wise, whilst mixing. The mixtures were allowed 

to react at room temperature for 30 minutes, before dialysis in high molecular weight 

tubing, in the dark, in 2 x 1 L of phosphate buffer for 2 hr at room temperature. This 

was to ensure that any unreacted MBS was diaiysed out. 

A 4 mg/ml solution of peptide in phosphate buffer was prepared. Dithiothreitol 

(DTT, 200 mM) was then added drop-wise and the DTT/peptide mixture was 

allowed to incubate for 2 hr at room temperature. This step ensured that all cys-cys 

couplings were reduced so that XDHj-SH bonds were formed instead. 

The peptide was then diaiysed against 2 x 1 L of phosphate buffer, for 2 hr at 4°C, 

using the CelluSep HI dialysis tubing (prepared as described in section 2.3.1.2). The 

diaiysed carrier protein (MBS/thyroglobulin) was then added drop-wise to the 

diaiysed peptide (340 ul carrier protein/ml peptide). The mixture was allowed to 

react overnight at room temperature. The product was then diaiysed in high 

molecular weight dialysis tubing for 2 hr, against 2 x 1 L phosphate buffer. Once 

diaiysed, the protein-coupled peptide was flash frozen in 40 ul aliquots, using liquid 

nitrogen, and stored at -20°C until required. 

2.3.2.2 Glutaraldehyde coupBing of peptides to tbyroglobulin 
This method was used to couple peptides to the carrier protein, myroglobulin, 

through primary amines. The NMDAR subunit NR2A and NR2C/D peptides were 

coupled by this method. 

Peptides (NMDAR NR2A or NR2C/D) were dissolved in PBS at a concentration of 

4 mg/ml. 

Diaiysed thyroglobulin was prepared as described above, in section 2.3.2.1. 
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Thyroglobulin and dissolved peptide were mixed in a volume : volume ratio of 1:1. 

Glutaraldehyde (0.2 % v/v in PBS) was added drop-wise whilst stirring. The peptide-

thyroglobulin-glutaraldehyde mixture was allowed to react at room temperature, with 

stirring, for a minimum of 2 hr. 

Unreacted glutaraldehyde was quenched by adding glycine (1 M, pH7.2) to the 

peptide mixtures, giving a final glycine concentration of 20% (v/v). This was 

incubated, with stirring, at 4°C, overnight. 

Unreacted peptide was dialysed away using high molecular weight dialysis tubing, 

against 4 x 1 L PBS, at 4°C. The dialysed coupled peptides were removed from the 

dialysis tubing, aliquoted into 300 ul fractions, flash frozen in liquid N2 and stored at 

-20°C. 

2.3.3 Immunisation and collection of sera 
Adult New Zealand white rabbits were immunised in the following manner. The 

rabbit was first bled from the marginal ear vein and the pre-immune blood was 

collected in universal tubes. 

300 ul of the coupled peptide was added to 300 ul of Freund's complete adjuvant. 

The adjuvant and peptide were mixed by forcibly ejecting, through a needle and 

syringe, against the bottom of an eppendorf tube, until a cream-like consistency had 

formed. The emulsion was then left for one hour at 4°C, to ensure that a stable 

emulsion had formed; i f the mixture separated into 2 layers, it was re-emulsified. 

The coupled peptide-adjuvant emulsion (100 ul) was then injected, intramuscularly, 

into the rabbit. The rabbit was monitored, to ensure that it suffered no adverse effects 

to the injection. 

Subsequent injections were performed in a similar manner, however, the coupled 

peptide was emulsified in Freund's incomplete adjuvant. The first booster was given 
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7 days following the primary immunisation with subsequent boosters being 

administered at 3 week intervals. 

The rabbit was bled (-10 ml) from the marginal ear vein, 7-10 days following each 

injection. To extract the serum, the blood samples were incubated at 37°C in a water 

bath for 30 minutes. A glass Pasteur pipette was then rolled around the inside of the 

Perspex container, to ensure that the blood clot did not adhere to the surface of the 

Perspex container. The blood was then left at 4°C, overnight. 

The blood clot was then removed from the Perspex container and discarded. The 

remainder was aliquoted into 1 ml fractions in eppendorf tubes. The tubes were 

centrifuged in the bench-top centrifuge (Eppendorf 5415c centrifuge) for 5 minutes, 

at 16,000g. 

Following the centrifugation, the blood separates so that the serum is found at the top 

of each of the eppendorfs. The sera were removed from the eppendorfs and pooled 

together, into a 50 ml Falcon tube. The pooled sera were then aliquoted into 1 ml 

fractions, flash frozen using liquid N2 and stored at -20°C, until required. 

2.3.4 Screening of serum by ELISA 
Serum derived from rabbits immunised with peptides was screened by ELISA, in 

order to monitor the responses of the NMDA Rl , R2A, R2B and R2C/D antibodies. 

Briefly, lanes in a 96 well plate were coated with bicarbonate buffer, 50 mM 

NaHC03, 10 mM NaOH, pH 9.5, alone or with 100 ul of the respective peptide 

(1 jj.g peptide/ml bicarbonate buffer) per well and allowed to incubate at 4°C, 

overnight. 

The wells were subsequently washed 3 times with 0.25 % (w/v) gelatin in PBS 

(200 ul), hereafter referred to as PBS-gelatin. PBS-gelatin (200 ul) was then added 

to each well and the plate left to incubate for 1 hr at room temperature in order to 

block any non-specific binding sites present. The PBS-gelatin was then aspirated. 
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Serum was serially diluted in PBS-gelatin, to give a semi-log dilution series ranging 

from 1:10 dilution to 1:31,600 dilution. Serially diluted serum (100 ul) was added to 

each well and the plate left to incubate, with agitation, overnight at 4°C. 

The sera were then discarded and the plate washed 3 times with PBS-gelatin. PBS-

gelatin (200 u.1) was finally added to each well and the plate left to incubate for 10 

minutes at 37°C. The PBS-gelatin was then discarded. 

Anti-rabbit IgG-HRP, 100 ul of a 1:1000 dilution of the HRP-linked antibody in 

PBS-gelatin, was applied to each well and the plate left to incubate, in the dark, for 

1.5 hr at 37°C. The wells were then washed 3 times using PBS-gelatin, followed by 2 

washes with PBS. 

HRP substrate, 100 ul of 4 mM O-phenylenediamine, 250 mM Na2HP04, 20 mM 

citric acid, 0.004% (v/v) H2O2, was then applied to each well and the plate left to 

incubate, in the dark, at room temperature, for 5 minutes. The reaction (i.e. the 

development of the coloured product) was stopped by the addition of 50 pi of 20% 

(v/v) H2SO4 to each well. The plate was read on a plate reader at a wavelength of 

492 nm. 

2.3.5 Preparation of peptide-affinity columns 
Antibodies were affinity purified on peptide-coupled affinity columns. The NR2A 

and NR2C/D peptides were coupled to the inert column matrix by the glutaraldehyde 

method described below (section 2.3.5.1). The NR1, NR2B and stargazin peptides 

were coupled to affinity columns using the MBS protocol described below (section 

2.3.5.2). 

2.3.5.1 Coupling of peptides to the column matrix through amino 

groups 
Activated 6-aminohexanoic acid N-hydroxy succinimide ester Sepharose-4B 

(0.35 g) was swollen using dH 20, before being washed, on a sintered glass funnel, 

using 100 ml of 1 mM HC1. The washed gel was equilibrated with 0.1 M NaHCCh, 

0.5 M NaCl, pH 8.0, for 1 hr at room temperature, before being washed again on the 
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sintered glass funnel using the same buffer. The NR2A or NR2D/C specific peptides 

(5 mg) were dissolved in 1 ml of NaHCOs/NaCl buffer. They were then added to the 

gel matrix and allowed to incubate for a further 1 hr at room temperature, on the 

roller mixer (Stuart Scientific roller mixer SRT1). 

The gel was washed with 25 ml of NaHCOj/NaCl buffer before being incubated for 

1 hr at room temperature, with 3 ml of 0.1 M tris-HCl, 0.5 M NaCl, pH 8.0. 

The gel was subsequently washed in 10 ml of 0.1 M acetic acid, 0.5 M NaCl, pH 4.0, 

followed by 10 ml of 0.1 M tris-HCl, 0.5 M NaCl, pH8.0. This procedure was 

repeated a further three times, in order to ensure that all non-covalently bound 

peptide was washed off. Following the acetic acid/tris-HCl washes, the gel was 

washed further with 100 ml PBS. The gel was then transferred to a chromatography 

column (0.8 x 4 cm Poly-Prep Chromatography Column, BioRad) and washed with 

100 ml PBS. The column was then equilibrated with PBS containing 0.01 % (w/v) 

thimerosal before sealing and storing at 4°C. 

2.3.5.2 Coupling of peptides to the column matrix through cysteine 

groups 
Peptides were reduced essentially as described previously, in section 2.3.2.1. Briefly, 

5mg peptide (NR1, NR2B or stargazin) were dissolved in 1 ml PBS, pH7.4, 

containing 30.8 mg DTT and left to incubate for 1 hr at room temperature. The 

reduced peptide was then dialysed using CelluSep 1H dialysis tubing against 4 

changes of degassed wash buffer, comprising of 0.1 M tris-HCl, 0.3 M NaCl, 1 mM 

EDTA,pH8.0,at4°C. 

Activated Thiol-Sepharose 4B, 0.35 g, was swollen in dH20. The gel was then 

washed on a sintered glass funnel using 100 ml of degassed wash buffer. The washed 

gel was then suspended in 2 ml wash buffer before the dialysed peptide was added. 

The peptide was allowed to incubate with the Thiol-Sepharose gel for 2 hr at room 

temperature, on the rolling shaker. The gel was then washed, on a sintered glass 

funnel, with 25 ml wash buffer followed by 10 ml of 0.1 M citric acid, pH 4.5 with 

KOH. 
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2-mercaptoethanoI (20 mM final concentration in 0.1M citric acid buffer) was then 

added to the gel, which was left to incubate for 1 hr at room temperature. The |3-

mercaptoethanol was used in order to block any unreacted thiol groups present in the 

gel; unreacted thiol groups may potentially couple to the antibody when the immune 

serum is exposed to the gel. The gel was then washed on the sintered glass funnel 

using 25 ml of 100 mM citric acid, to terminate the blocking reaction, before being 

placed into the column and washed with 100 ml of degassed PBS. PBS containing 

0.01 % (w/v) thimerosal was then added to the column, which was sealed and stored 

at 4°C. 

2.3.6 Purification of sera 
Pre-immune sera were obtained from immunised rabbits as described previously, in 

section 2.3.3. A Watson Marlow 101U/R low-flow peristaltic pump and Watson 

Marlow silicone tubing with a bore of 0.8 mm were used in order to either circulate 

sera through or to introduce the buffers onto the peptide-affinity columns. 

The columns were washed through with 3 ml of pre-immune sera for either 2 hr at 

room temperature or overnight at 4°C. Columns were washed with 100 column 

volumes of PBS at room temperature. The column was then washed with 10 volumes 

of 50 mM glycine-HCl, pH 2.3, followed by one wash of approximately 50 column 

volumes of PBS. 

Immune serum (3 ml) was added to the affinity column and circulated, via the 

peristaltic pump, for either 2 hr at room temperature or overnight at 4°C. The 

circulated antibody-depleted serum was then allowed to run off the column. The 

column was subsequently washed with 100 volumes of PBS, at room temperature. 

Glycine-HCl (50 mM, pH2.3, 10 ml) was used to elute the antibody from the 

peptide-affinity column. Fractions (1 ml) were collected in eppendorfs containing 

1 M tris. The volume of 1 M tris used was determined prior to each elution so that 

the pH of the antibody-containing glycine-HCl-tris mixture was returned to pH 7.4. 

The volume of tris required to neutralise the glycine-HCl varied from 30-70 ul. 
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The column was then washed with ~ 50 volumes of PBS, before being finally 

washed and stored in PBS-thimerosal at 4°C. The eluted fractions were read on a UV 

spectrophotometer (Pharmacia Biotech Ultrospec 2000) at 280 nm, using glycine-

HCl-tris as the spectrophotometric 'blank' and semi-micro disposable polystyrene 

2.5 ml cuvettes (Philip Harris). 

A typical example of the results obtained are presented below: 

1.5 
Fraction 

1 0.017 
2 0.794 

1.0 3 1.241 
00 4 0.191 

5 0.088 
6 0.047 0.5 
7 0.146 
8 0.014 
9 0.014 

0.0 10 0.008 
10 8 1 

Fraction 

Table and figure 2.1 Absorbance (A 2 S ) I) of fractions eluted from the purification of 
1NR1 antibody affinity purification column. The table shows the values of the A^o of 
each of the eluted fractions. The absorbances of the fractions are represented as a line 
graph in figure 2.1. The spectrophotometer was blanked using 1 ml of 50 mM glycine-
HCI, 1 M tris, pH 7.0, before measuring the collected duate fractions. 

The fractions giving the highest absorbance readings were then collected and pooled. 

The amount of protein was determined by calculating the average absorbance 

reading and dividing the value by the A2so value for IgG (1 mg/ml IgG gives a value 

at A28o of 1.35 absorbance units). 

Using the values in the table above as an example, the amount of protein (i.e. 

antibody) present was calculated thus: 
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Average absorbance of fractions 2 - 7 = 

(0.794 + 1.241 + 0.191 + 0.088 + 0.047 + 0.146)/6 

= 2.507/6 

= 0.418 

Amount of protein = 0.418/1.35 

= 0.3095 

Concentration of antibody =310 ug/ml 

The antibody-containing fractions were then dialysed, in high molecular weight 

dialysis tubing, in 4 x 1 L PBS, pH 7.4, containing 0.02 % (w/v) sodium azide, at 

4°C. The dialysed antibody was then aliquoted out and either stored at 4°C or flash 

frozen in liquid N 2 and stored at -20°C. I f the antibody was being frozen, the 

concentration of the antibody was made up to 1 ml/ml using BSA as a 

cryoprotectant. 

2.4 Purification of stargazin from membranes 
2.4.1 Preparation of anti-stargazin antibody immunoaffinity column 
The antibody immunoaffinity column was prepared using the Pierce Immunopure 

IgG Orientation kit according to the manufacturer's instructions. 

The antibody was prepared by combining the antibody with an equal volume of 

antibody binding buffer, 50 mM sodium borate, pH 8.2. Four 3.5 ml aliquots were 

prepared and stored at 4°C, until required. 

The supplied ImmunoPure Immobilized Protein A column was drained and washed 

with 5 volumes of wash buffer comprising of 50 mM sodium borate, pH 8.2. The 

base of the column was sealed and the first antibody aliquot was applied. The 

column was sealed and the gel, ImmunoPure immobilised protein A, was suspended 

by inversion before mixing for 30 minutes at room temperature, on the roller shaker. 
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The first antibody aliquot was then drained from the column and the second antibody 

aliquot applied. The gel was suspended by inversion before mixing for a further 30 

minutes, at room temperature, on the roller shaker. This process was repeated twice 

more, using antibody aliquots three and four. The column was then washed in 10 

volumes of wash buffer. 

The antibody was covalently bound to the immobilised protein A by the application 

of the crosslinker ciimethylpimelimidate (DMP) to the column. The DMP was 

prepared by dissolving 13.2 mg of the DMP in 2 ml of a crosslinking buffer, 

comprising 0.2 M triethanolamine, pH 8.2. The gel was mixed for 1 hr at room 

temperature, on the roller shaker, before the DMP-containing crosslinking buffer was 

drained from the column. The column was then washed in 5 volumes of crc^sliriking 

buffer. 

Two volumes of blocking buffer, 0.1 M ethanolamine, pH 8.2, were then applied to 

the column and the gel was mixed for 10 minutes on the roller shaker. This allows 

the blocking buffer to block any remaining unreacted imidate groups present. The 

column was then washed with 5 volumes of elution buffer, ImmunoPure IgG elution 

buffer, pH2.8, containing primary amine. This elution buffer will elute any IgG 

from the gel that is not covalently attached to the immobilised protein A. The gel 

was then washed with 5 volumes of wash buffer. A porous disc was inserted into the 

column and placed within a few millimetres of the gel surface. The column was then 

washed with a further 5 volumes of wash buffer followed by 15 volumes of PBS. 

Uncoupled anti-stargazin antibody was then eluted off the column. The column was 

washed in 20 volumes of PBS before 5 volumes of 50 mM glycine/HCl, pH 2.8, was 

applied. The column was washed with PBS until the pH of the eluate returned to 

pH 7.0. Five volumes of glycine/HCl were again applied to the column, which was 

then washed with PBS until the pH of the eluate returned to pH7.0. This 

elution/washing process was repeated once more so that it was undertaken three 

times in total. Sodium azide, 0.02 % (w/v) in PBS, was then applied to the column, 

which was then sealed, wrapped in foil and stored at 4°C until required. 
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2.4.2 Immunoaffinity purification of brain tissue 
Detergent-solubilised control (+/+ and +/stg) forebrain and stargazer (stg/stg) 

forebrain membranes were applied to separate anti-stargazin antibody 

immunoaffinity columns, respectively. This method is a modification of that 

published by Duggan et al. (1991). 

2.4.2.1 Preparation of brain membrane homogenate 
Forebrains from both control (+/+ and +/stg mice) and stargazer (stg/stg) mice were 

used to prepare P2 membrane homogenates. The forebrains were homogenised in 

buffer A, which was comprised of 50 mM tris-acetate, pH 7.4, 5 mM EDTA, 5 mM 

EGTA, 320 mM sucrose, 1 mM PMSF, lmg/lOOml trypsin inhibitor, 1:1000 

dilution of protease inhibitor cocktail (for constituents, see appendix 1). The tissue 

was then centrifuged in a Beckman JS-HC centrifuge, using a JA-20 rotor, at lOOOg 

for 12 minutes, at 4°C. The pellet was discarded and the supernatant was centrifuged 

at 40,000g for 40 minutes, at 4°C. The supernatant was then discarded and the pellet 

was resuspended and homogenised in buffer B, which was comprised of 50 mM tris-

acetate, pH 7.4, 5 mM EDTA, 5 mM EGTA, 1 mM PMSF, 1 mg/100 ml trypsin 

inhibitor, 1:1000 dilution of protease inhibitor cocktail. The homogenate was 

centrifuged for 40 minutes at 40,000g and 4°C. The supernatant was discarded and 

the pellet was resuspended and rehomogenised in 10 ml buffer B, before being flash 

frozen in liquid N 2 and stored at -20°C. 

2.4.2.2. Detergent soiubilisation of forebrain membrane proteins 
The membrane homogenates were rapidly thawed by warming to 37°C. 

Solubilisation buffer, 50 mM tris-HCl, pH9.0, 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 0.62 % (w/v) sodium azide, 1 mg/100 ml trypsin inhibitor, 1 ug/ml aprotinin, 

1 ug/ml pepstatin A, 1 ug/ml leupeptin, 1 mM PMSF, was prepared and warmed to 

37°C. 

The solubilisation buffer (9 ml) was added to 10 ml of the homogenates. Sodium 

deoxycholate (20 % w/v) was added drop-wise to give a final concentration of 1 % 

(w/v) and the mixture was left to incubate, stirring, for 30 minutes at 37°C. 
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The mixture was then centrifuged in a Beckman Ultracentrifuge, using a 70Ti rQtor, 

at 100,000g, for 70 minutes, at 4°C. The pellets were resuspended and 

rehomogenised in 10 ml of solubilisation buffer, flash frozen in liquid nitrogen and 

stored at-2Q°C. 

The pHs of the supernatants were determined and returned to pH7.0 with the 

addition of HC1. The volumes of the supernatants were then estimated and an equal 

volume of dilution buffer, 10 mM KH 2P0 4, pH 7.4, 0.5 M KC1, 10 % (w/v) sucrose, 

0.02 % (w/v) sodium azide, 0.2 % (v/v) Triton X-100, was added 

2.4.2.3 Purification of forebrain membrane proteins 
The anti-stargazin antibody immunoaffinity columns were allowed to come up to 

room temperature and drained. Elution buffer, 50 mM triethylamine, pH 11.5, 0.5 M 

KC1, 10 % (w/v) sucrose, 0.02 % (w/v) sodium azide, 0.2 % (v/v) Triton X-100, 

10 ml, was applied to each of the columns. The columns were then washed with 

wash buffer, 10 mM KH 2P0 4, pH 7.4, 0.5 M KC1, 10 % (w/v) sucrose, 0.02 % (w/v) 

sodium azide, 0.2 % (v/v) Triton X-100, until the pH of the eluates returned to 

pH 7.0. The dilute solubilised homogenates were then added to the columns and 

circulated, via a peristaltic pump, for approximately 18 hr. 

Subsequently, the columns were washed with ~ 75 volumes of wash buffer before 

the immunopurified protein was eluted by addition of 10 ml of elution buffer to each 

of the columns. The eluate was collected in 650 ul fractions, which were neutralised 

by the addition of 350 ul of 50 mM glycine/HCl, pH 2.3. The eluted fractions were 

stored at 4°C, until required for analysis by SDS-PAGE. The columns were washed 

with ~ 80 volumes of wash buffer and stored at 4°C, in the dark, with thimerosal, 

0.01 % (w/v) in PBS. 

2.5 SBS-solubilisation of brain tissue 
The tissue prepared using this protocol was used mainly for immunoblotting. 
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Age-matched adult control (+/+ and +/stg) and stargazer (stg/stg) mice were killed 

by rising C O 2 . The heads were decapitated and stored on ice whilst the brain sections 

(forebrains and cerebella) were dissected. These were then flash frozen in liquid N 2 

and stored at -80°C until required. 

The frozen brain tissue was allowed to thaw before solublising. Tris-EDTA, 50 mM 

tris, 2mM EDTA, pH6.8, was added to the brain tissue, which was then 

homogenised using a Potter glass/Teflon homogeniser. An equal volume of tris-SDS, 

50 mM tris, 2 mM EDTA, pH 6.8, 4 % (w/v) SDS, was then added and the mixture 

homogenised further. Foaming occurred during the homogenisation process, which 

was dispersed by puncturing with a glass Pasteur pipette that had been heated in a 

Bunsen burner flame. 

The homogenate was then transferred into eppendorf tubes and heated at 95°C for 5 

minutes. The eppendorfs were then centrifuged, using the bench-top centrifuge, at 

16,000g for 1 minute. The supernatants were pooled and kept on ice whilst the 

pellets were discarded. Protein concentration was determined using the method of 

Lowry (Lowry et al., 1951). The proteins were either immediately precipitated using 

chloroform and methanol (as below) or the supernatants were aliquoted, flash frozen 

in liquid N 2 and stored at -20°C until required. 

2.6 Chloroform - methanol precipitation of proteins 
Proteins were precipitated from solubilised brain tissue and from solubilised cultured 

cells using chloroform and methanol. The method followed was devised by Wessel 

and Flugge (1984). 

Essentially, 4 volumes of methanol were added to the membrane solution, mixed and 

centrifuged for 10 seconds at 16,000g in the Eppendorf bench-top centrifuge. 1 

volume of chloroform was added, mixed and centrifuged. 3 volumes of dH 20 were 

then added, mixed and centrifuged as before. 
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The proteins form a precipitate at the interface between the two liquid layers so the 

top layer was removed and discarded. Three volumes of methanol were then added 

and the solutions were mixed by tapping before centrifuging, at 16,000g, for 5 

minutes. The supernatant was removed and the pellet placed in the vacuum 

dessicator. Once dry, the pellet was suspended in SDS-PAGE sample buffer, 20 mM 

DTT, 283 ul dH 20 and 167 ul of 3 x SDS-PAGE sample buffer stock (30 mM 

NaH2P04, 30 % (v/v) glycerol, 0.05 % (w/v) bromophenol blue, pH 7.4, 7.5 % (w/v) 

SDS). The suspended pellet was heated at 95°C for 5 minutes, vortexed and 

centrifuged in the benchtop centrifuge, at 16,000g. The sample was then allowed to 

cool and stored at -20°C until required. 

The NMDAR subunit cDNAs for NR1, NR2A and NR2C, were transfected and 

translated in HEK293 cells by Dr Paul Chazot, University of Sunderland. The 

expressed recombinant subunits were supplied for screening of antibodies by the 

calcium phosphate preparation method as described in Chazot et al. (1994). NR1 and 

NR2C recombinants, 100 ul aliquots, were precipitated using the method outlined 

above and resuspended in 100 ul SDS-PAGE sample buffer. The NR2A recombinant 

sample, 250 ul aliquot, was precipitated and resuspended in 50 ul of SDS-PAGE 

sample buffer. 

2.7 Immunoblotting 

Gel electrophoresis of proteins was carried out in order to dissociate proteins into 

their individual polypeptide subunits. This was undertaken using polyacrylamide 

gels and proteins that had been pre-treated with SDS and heated, as outlined in 

section 2.5. 

2.7.1 Preparation of gels 

The Hoefer Mighty Small II mini-gel system, which was used for the 

immunoblotting, comes with a multi-gel caster, which allows the casting of 10 

resolving gels at once. All components of the gel casting system were cleaned with 

detergent, 70 % (v/v) ethanol and acetone before use. 
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Polyacrylamide resolving gel solutions were prepared thus according to whether 

6 %, 7.5 % or 10 % resolving gels were required: 

6% 7.5 % 10% 
dH 20 29.5 ml 27.6 ml 24.47 ml 
Acrylogel-3 7.5 ml 9.4 ml 12.53 ml 
Running Buffer 12.5 ml 12.5 ml 12.5 ml 
TEMED 40 ul 20 ul 20 ul 
10 % (w/v) AMPS 0.5 ml 0.5 ml 0.5 ml 

Table 2.2. Volumes of the various solutions required to prepare either 6 %, 
7.5 % or 10 % resolving gels. The Acrylogel-3 is a 40 % solution of 
acrylamide, which has to be adjusted to prepare resolving gels containing the 
different concentrations of acrylamide. For the composition of the running 
buffer, see appendix 1. The solution was degassed, for a minimum of 15 
minutes in the vacuum dessicator, before the application of the AMPS, which 
causes the acrylamide to start crosstinking and a gel to be formed. 

The solution was then poured into the gel caster and ~ 150 ul water-saturated 

isobutanol applied to the top of each gel plate. The isobutanol was added to stop the 

gels from drying whilst they were cross-linking. 

The gels were left to set at room temperature, for approximately 1 hr. The isobutanol 

was then removed and the gels rinsed with dH^O. The gels were carefully removed 

from the gel caster, wrapped in running buffer-soaked tissue paper and stored in 

running buffer, which had been diluted 1:4 with dH 20, at 4°C, until required. 

Stacking gels were prepared immediately before use. The stacking gel solutions were 

prepared as indicated in table 2.3 below: 
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3.5 % 5% 
dH 20 3.759 ml 3.558 ml 
Acrylogel-3 0.446 ml 0.638 ml 
1 MTris,pH6.8 0.625 ml 0.625 ml 
10 % (w/v) SDS 0.05 ml 0.05 ml 
TEMED 0.01 ml 0.01 ml 
10 % (w/v) AMPS 0.1 ml 0.1 ml 

Table 23. Volumes of the various solutions required to prepare either 3.S % 
or 5 % stacking gels. The Acrylogel-3 is a 40 % solution of acrylamide, which 
has to be adjusted to prepare stacking gels containing the different 
concentrations of acrylamide. The solution was degassed, for a minimum of 15 
minutes in the vacuum dessicator, before the application of the AMPS, which 
causes the acrylamide to start crosslinking and a gel to be formed. 

A 3.5 % stacking gel was prepared for use with both 6 % and 7.5 % resolving gels 

whereas a 5 % stacking gel was used with 10 % resolving gels. The stacking gel 

solution was poured on to the resolving gel and allowed to cross-link. Once cross-

linked, the gel was loaded with protein and used for immunoblotting (section 2.7.2). 

2.7.2 Quantitative immunoblotting 

Protein (10 ng/10 jxl unless otherwise indicated) and molecular weight markers were 

loaded on appropriate percentage acrylamide mini-resolving gels and separated by 

electrophoresis (SDS-PAGE) under reducing conditions with electrode buffer, using 

the Hoefer Mighty Small I I Mini gel system and a Pharmacia Biotech 

Electrophoresis Power Supply EPS300. The prestained SDS-markers (BioRad) were 

broad range standards with weights between 6.7 kDa and 212 kDa. The proteins 

were separated at 80 V for approximately 2 - 2.5 hours, until the protein front 

reached close to the bottom of the resolving gel. 

The proteins were then electrophoretically transferred onto 0.45 um nitrocellulose 

membranes using the Hoefer Mighty Small Transphor Unit and transfer buffer. If a 

6 % resolving gel was used, the transfer process would take 2 hr 30 minutes at 50 V. 

If a 7.5 % resolving gel was used, the transfer process would take 2 hr 20 minutes at 
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50 V. If a 10 % resolving gel was used, the transfer process would take 2 hr at 50 V. 

(See appendix 1 for electrode and transfer buffers). 

Nitrocellulose membranes were then transferred into 50 ml Falcon tubes before 

incubating in blocking buffer, which comprised of 5 % (w/v) skimmed milk powder 

and 0.02 % (w/v) Tween-20 in PBS, for 1 hr, at room temperature, on the roller 

mixer. The blocking buffer was then removed and discarded. The nitrocellulose 

membranes were incubated with primary antibody in incubation buffer, which 

comprised of 2.5 % (w/v) skimmed milk in PBS, overnight, at 4°C, on the roller 

mixer. 

The concentrations of the primary antibodies used are listed in table 2.4 below. 

Antibody Concentration 
anti-NRl 1-2 ug/ml 

anti-NR2A 2 ug/ml 
anti-NR2B 2 ug/ml 

anti-NR2C/D 4 |ng/ml 
anti-stargazin 0.5-1 ug/ml 
anti-GluRl 0.5 ug/ml 

anti-GluR2, anti-GluR3, anti-GluR4 1:100- 1:1000 
anti-P-actin 1:100- 1:1000 

anti-GABA receptor ai 0.5 ug/ml 
anti-GABA receptor 1 ng/ml 

anti-NSE 1:20,000 

Table 2.4 Table showing the concentrations of the various primary antibodies 
used for immnnoblotting purposes. 

The primary antibodies were removed and the nitrocellulose membranes were 

subsequently washed three times in wash buffer, comprising of 2.5 % (w/v) 

skimmed milk powder, 0.02 % (w/v) Tween-20 in PBS. Secondary antibody, in 

2.5 % (w/v) skimmed milk powder in PBS, was used at a dilution range of 1:100 -

1:5000. Donkey anti-rabbit Ig HRP secondary antibody was used when the primary 

antibody was of rabbit origin (the anti-NMDA receptor subunit-specific antibodies, 
31 



the anti-GABAA receptor subunit-specific antibodies, the anti-stargazin antibody, the 

anti-GluRl antibody, the anti-0-actin antibodies and the anti-NSE antibodies). 

Rabbit anti-goat Ig HRP secondary antibody was used when the primary antibody 

was of goat origin (the anti-GluR2, anti-GluR3 and anti-Gl uR4 antibodies). 

The membranes were incubated with the secondary antibody for two hours, room 

temperature, on the roller mixer The secondary antibody was then discarded and the 

membranes washed three times in wash buffer followed by two washes with PBS. 

Immunoreactive species were detected using the enhanced chemiluminesence (ECL) 

Western blotting system. The ECL reagent was composed of 10 ml luminol, 680 uM 

p-coumaric acid (in DMSO) and 3 ul of H2O2 (30 % stock) and was prepared 

immediately before required. The immunoblots were incubated in the ECL reagent 

for approximately one minute before being wrapped in Saran-wrap. The 

immunoblots were then exposed to ECL Hyperfilm (Amersham Pharmacia) for 

1 minute. The films were then manually developed in Kodak GBX developer, until a 

signal could be detected at the lowest concentration of protein used, and fixed using 

Kodak GBX fixer. The films were then washed in running H2O and allowed to dry at 

room temperature. Immunoblots were then exposed to the hyperfilm for 10 seconds 

to 5 minutes, depending upon the strength of the signal. 

2.7.3 Analysis of immunoblots 

Immunoblots were quantified using the BioRad Quantity One System. Briefly, the 

films were scanned using the BioRad GelDoc 2000 system and the image intensities 

of the immunoreactive signals were obtained with the Quantity One (4.0.3) software. 

With all films, the background intensity was subtracted before the intensity of the 

immunoreactive signals was obtained. Conditions where a linear relationship 

between the amount of protein applied and the intensity of the immunoreactive 

signal were identified. Signals lying within this range were used to compare 

expression with the anti-NMDA/GABAA subunit-specific antibodies or anti-

stargazin antibodies and the expression with the antibodies anti-p-actin or anti-NSE. 
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The image intensity of the NMDA receptor subunit / GABA receptor subunit / 

AMPA receptor subunit signal was divided by that of the actin/NSE signal. This was 

performed for both control proteins and stargazer proteins. The value of the stargazer 

signal was then divided by that of the control signal, to obtain a percentage value for 

each exposure time used. The average percentage value was then determined, to 

reveal the percentage change of the appropriate protein level between stargazer and 

control brain membranes. This process was repeated for each experiment. The 

average percentage values for each experiment were then combined and expressed as 

mean ± sem. 

2.8 P2 membrane preparation 

This protocol was used to prepare a synaptic membrane preparation for use in 

radioligand binding experiments. This preparation was also used for 

immunoblotting, once the proteins had been chloroform/methanol precipitated. 

Age-matched adult mice were killed using rising CO2 and decapitated, in accordance 

with schedule I killing regimes specified within the Animals (Scientific Procedures) 

Act 1986. The heads were kept on ice whilst the brain sections (forebrains and 

cerebella) were dissected out. The brain sections were immediately frozen in liquid 

N2 and stored at -80°C, until required. 

Frozen brain tissue (from both control (i.e. +/+ and +/stg) and stg/stg mice) was 

placed into excess ice-cold buffer 1, 50 mM tris-HCl, pH 7.4, 5 mM EDTA, 5 mM 

EGTA, 200 mM sucrose, 1 mM PMSF, trypsin inhibitor (lmg/lOOml), 1:1000 

dilution of protease inhibitor cocktail, until it had thawed out. The tissue was 

homogenised in ice-cold buffer 1 using a mechanical Potter glass/Teflon 

homogeniser before being centrifuged for 10 minutes at l,000g, 4°C, using a JA-20 

rotor in a Beckman JS-HC centrifuge. The pellets were discarded while the 

supernatants were centrifuged for 20 minutes at 20,000g, 4°C. 

The supernatants were then discarded and the pellets suspended in ice-cold, 

hypotonic buffer 2, 50 mM tris-HCl, pH 7.4, 5 mM EDTA, 5 mM EGTA 1 mM 
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PMSF, trypsin inhibitor (1 nig/100 ml), 1:1000 dilution of protease inhibitor 

cocktail. The suspended pellets were rehomogenised and the homogenate re-

centrifuged for 20 minutes at 8,000g, 4°C. 

The supernatants and pellets were separated and stored on ice. The pellets were 

resuspended in a small volume of ice-cold buffer 2, whilst the supernatants were re-

centrifuged for a further 20 minutes at 48,000g, 4°C. The supernatants were then 

discarded and the pellets resuspended in a small volume of ice-cold buffer 2 and 

combined with the previous pellet suspension, before being rehomogenised. The 

homogenate was re-centrifuged for 20 minutes at 48,000g, 4°C. The supernatant was 

discarded, the pellet resuspended in 5 ml ice-cold buffer 2 and stored at -20°C for at 

least 12 hr. 

The pellet suspension was thawed on ice and an excess of assay buffer was added. 

The suspension was rehomogenised and re-centrifuged for 20 minutes at 48,000g, 

4°C. The supernatant was discarded and the suspension, homogenisation, 

centrifugation steps repeated a further four times. The final pellet was resuspended in 

5 ml assay buffer and stored at -20°C until required, with a fraction being removed 

so that the protein concentration could be determined by the method of Lowry 

(Lowry et al., 1951). 

2.9 Radioligand binding assays 

MK-801 is a non-competitive antagonist of the NMDA receptor, binding to the 

receptor in its ion channel. Radiolabeled MK-801, MK-801, was employed to 

study the binding characteristics of MK-801 to the NMDA receptor within both 

control and stargazer brains. Remacemide, an anticonvulsant that is also an NMDA 

receptor antagonist binding to the ion channel of the receptor (Ahmed et al., 1999; 

Palmer et al., 1992), was used to displace the binding of the [3H] MK-801. 

[3H] AMPA was used to determine parameters of AMPA receptors in control and 

stargazer brains. 
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2.9.1.1 f&] MK-801 binding 

Control and stargazer forebrains and cerebella were homogenised as described in 

section 2.8, with the final pellet suspended in 5 mM tris-acetate, pH 7.5. The protein 

concentrations of the final homogenates were determined using the method of Lowry 

(Lowry et al., 1951). A 1 mg protein/ml tris-acetate solution of each tissue 

homogenate was prepared and aliquoted into test tubes. 

Equal volumes of total binding mix or non-specific binding mix (see appendix 1) 

were added to the test tubes containing 100 ul of the membrane preparation. The 

tubes were left to incubate at room temperature for 2 hours. Preliminary experiments 

had determined that these were the optimal conditions for [3H] MK-801 binding to 

brain membranes. Whatman GF/B filter paper strips were left to incubate with 

polyemyleneimine (PEI), 0.1 % (v/v) in 5 mM tris-acetate, pH 7.5. 

The reactions were quenched with excess (2 ml) wash buffer, containing 5 mM tris-

acetate, pH 7.5, 0.02 % (w/v) sodium azide, and the membranes transferred onto the 

PEI-treated filter paper, using a 24 well Brandel Cell Harvester. The test tubes were 

washed a further two times with the wash buffer before the filter paper was allowed 

to dry, for a minimum of 30 minutes at room temperature. 

The filter papers were placed into scintillation vials and 4 ml scintillation fluid 

(Ecoscint) added. The vials were allowed to stand in the dark at room temperature 

for 30 minutes - 1 hr before being placed into a Packard 1600TR Liquid Scintillation 

Analyzer and the disintegrations per minute (dpm) calculated. These data were used 

to determine the parameters of [3H] MK-801 binding sites in forebrain and cerebellar 

membranes. 

2.9.1.2 Remacemide displacement of \SU\ MK-801 

Remacemide displacement of [3H] MK-801 binding was performed essentially as 

described above for f̂ FF] MK-801 binding (section 2.9.1.1). However, the total 

binding and non-specific binding solutions contained 10 nM [3H] MK-801 and 

100 nM to 10 mM remacemide (see appendix 1). Again, equal volumes of the 
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binding solutions (100 ul) were added to P2 membrane homogenates (100 ul), 

prepared as described in section 2.8. 

The remacemide/radioligand/membrane mixtures were incubated for 2 hr at room 

temperature before the ligand-bound membranes were transferred to the Whatman 

GF/B PEI-coated filter paper using the cell harvester. The filter paper was left to dry 

at room temperature before placing into scintillation vials. To each vial, 4 ml 

Ecoscint was added and the scintillation vials were left to incubate for ~ 1 hr. The 

dpm for each vial was ascertained and ligand-binding analyses were performed to 

calculate the IC50 for remacemide in control and stargazer brain membranes. 

2.9.2 [3H] AMPA binding 

2.9.2.1 Preliminary binding experiments 

[3H] AMPA binding to mouse brain membranes was performed essentially as 

described by Hawkinson and Espitia (1997), Kurschner et al. (1998) and Olivera et 

al. (1999), with minor modifications. Briefly, cerebellar and forebrain homogenates 

were prepared as described earlier (section 2.8), with the final pellet being 

resuspended in 5 mM tris-acetate, pH 7.5, to a final protein concentration of 

2 mg/ml. 

Equal volumes (100 ul) of ice-cold total binding mix, containing 5 mM tris-acetate, 

10 nM [3H] AMPA, with/without 50 mM KSCN or ice-cold non-specific binding 

mix, which contained 5 mM tris-acetate, lOnM [3H] AMPA, 1 mM glutamate 

with/without 50 mM KSCN, were added to the test tubes containing the membrane 

preparation (100 ul). 

The tubes were left to incubate on ice for up to 1 hr. GF/B filter paper strips were 

pre-incubated with PEI, 0.1 % (v/v) in 5 mM tris-acetate, pH 7.5. 

The reactions were rapidly quenched with excess wash buffer (~ 2 ml), 5 mM tris-

acetate, pH 7.5, containing 0.02 % (w/v) sodium azide. Membranes with bound 

ligand were separated from unbound ligand by filtration onto the PEI-treated filter 

paper, using a Brandel Cell Harvester. The test tubes were washed a further two 
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times with the wash buffer before the filter paper was allowed to dry for a minimum 

of 30 minutes at room temperature. 

The filter papers were placed into scintillation vials and 4 ml scintillation fluid 

(Ecoscint) added. The vials were allowed to stand, in the dark at room temperature, 

for 30 minutes - 1 hr, before being placed into a Packard 1600TR Liquid 

Scintillation Analyzer and the disintegrations per minute (dpm) calculated. The data 

were used to calculate specific binding of [3H] AMPA to the brain membranes. 

2.9.2.2 Triton-treatment of membranes 

Further experiments were undertaken following the method described by Hawkinson 

and Espitia (1997). Briefly, control mouse forebrains were homogenised in 0.32 M 

sucrose, 1 mM EGTA, pH 7.0, and centrifuged at 800g, 4°C for 10 minutes. The 

supernatant was removed and centrifuged at 48,000g for 30 minutes. The pellet was 

the resuspended in 20 ml 0.04 % (v/v) Triton X-100, 1 mM EGTA, pH 7.0, and left 

to incubate for 30 minutes at 37°C before centrifuging again for 30 minutes at 

48,000g. The pellet was then resuspended in 20 ml EGTA (1 mM, pH 7.0) and left to 

incubate for 20 minutes on ice. The suspension was then centrifuged at 48,000g for 

30 minutes. The supernatant was removed and discarded. The pellet was frozen in 

liquid N 2 and stored at -80°C before being resuspended in 100 mM tris-acetate, 

pH7.2, 50 uM EGTA. 

A 2 mg/ml forebrain homogenate was prepared using 100 mM tris-acetate, pH 7.2, 

50 uM EGTA, and 100 ul fractions were incubated for 1 hr at 20°C with 100 ul 

buffer. The buffers used all contained lOnM [hi] AMPA and contained 100 mM 

tris-acetate, pH 7.2, 50 uM EGTA, or tris-acetate and EGTA plus 1 mM glutamate, 

or tris-acetate and EGTA plus 50 mM KSCN or tris-acetate and EGTA plus 

glutamate and KSCN. The PEI was prepared using the tris-acetate and EGTA buffer. 

Membrane bound ligand was separated from unbound ligand using the cell harvester, 

onto PEI-coated filter paper. The wash buffer used was 100 mM tris-acetate, pH 7.2, 

with 0.02 % (w/v) sodium azide. The filter papers were dried, incubated with 
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scintillation fluid and the dpms obtained. The data were used to calculate the binding 

of the radioligand to the forebrain membranes. 

2.9.2.3 Effect of calcium on binding 

In order to determine the effect of calcium on the binding of [3H] AMPA to brain 

membranes, CaCl2 and the calcium chelator EGTA were added to the buffers 

(Stensbol et al., 1999; Nielsen et al., 1998; Hawkinson and Espitia, 1997). 

Membranes were prepared essentially as described in section 2.8, with the following 

modifications. The method outlined in section 2.8 was followed as far as the freeze-

thaw step. 

The pellet suspension was thawed and homogenised in 50 mM tris-acetate, pH 7.4, 

50 uM EGTA. The homogenate was centrifuged at 48,000g, 4°C for 20 minutes and 

the supernatant was then discarded. The pellet was homogenised and centrifuged 

twice more using the tris/EGTA buffer and then with dH20. The pellet was then 

suspended in dH 20 and stored at -20°C, for at least 12 hrs. 

The suspension was then thawed, homogenised in dH 20 and centrifuged at 48,000g, 

4°C for 20 minutes. The supernatant was removed and the pellet suspended in 5 ml 

dH20. Protein concentration was determined by the method of Lowry (Lowry et al., 

1951) and 2mg/ml dH 20 solutions prepared. 

The forebrain homogenate, 100 ul, was incubated for 1 hr at room temperature with 

10 nM [ 3H] AMPA in tris buffers. These buffers were 50 mM tris-acetate, pH 7.4, or 

50 mM tris-acetate, pH 7.4, and 100 uM EGTA or 50 mM tris-acetate, pH 7.4, and 

2.5 mM CaCl2. At the same time, GF/B filter paper was incubated with PEL, which 

was prepared using the 50 mM tris-acetate buffer. 

The ligand-bound membranes were transferred onto the filter paper and washed 

using the 50 mM tris-acetate buffer plus 50 mM KSCN. The filter papers were 

allowed to dry before placing into scintillation vials and the addition of 4 ml 

scintillation fluid. The papers were left to incubate before the dpms were calculated 

and analysed to determine the amount of binding. 
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2.9.2.4 Quick homogenisation protocol 
As neither the CaC^ nor the EGTA potentiated the binding seen above that observed 

with just the 50 mM tris-acetate +/- KSCN buffers, these were no longer used in the 

tris buffers. However, as the homogenisation protocol had increased in length to 3 

days, a shorter protocol was adopted. The protocol followed was that described by 

Sigel et al. (1983), with minor modifications. 

Briefly, the control and stargazer brains were homogenised in ice-cold buffer 1, 

consisting of 50 mM tris-acetate, pH 7.4, 5 mM EDTA, 5 mM EGTA, 320 mM 

sucrose, 1 mM PMSF, trypsin inhibitor (1 mg/lOOml), 1:1000 dilution of protease 

inhibitor cocktail, using the mechanical Potter glass/Teflon homogeniser and 

centrifuged for 12 minutes at 1,000 g, 4°C. The pellet was discarded and the 

supernatant was centrifuged at 40,000 g for 40 minutes, 4°C. The supernatant was 

discarded and the pellet rehomogenised in ice-cold buffer 2, which consisted of 

50 mM tris-acetate, pH 7.4, 5 mM EDTA, 5 mM EGTA, 1 mM PMSF, trypsin 

inhibitor (lmg/lOOml), 1:1000 dilution of protease inhibitor cocktail. The 

homogenate was then centrifuged at 40,000 g for 40 minutes, 4°C. The pellet was 

then rehomogenised in (SR2O and centrifuged at 40,000 g for 40 minutes, 4°C, a 

further three times. The final pellet was resuspended in dtfeO before being separated 

into three aliquots. One aliquot was used to determine the protein concentration 

using the Lowry's assay (Lowry et al., 1951); the second aliquot was stored at 4°C 

whilst the third aliquot was stored at -20°C. 

Radioligand binding was determined using 100 mM tris-acetate, pH7.4, 10 nM 

[3FfJ AMPA buffers containing 1 mM glutamate, 50 mM KSCN or glutamate and 

KSCN. A 2 mg protein/ml ctt^O solution was prepared from the stored aliquots and 

100 ul placed into test tubes. These were incubated with 100 ul of each of the 

buffers for 1 hr at room temperature. The ligand-bound membranes were then 

separated from unbound ligand onto PEI-coated GF/B filters, which were allowed to 

dry. The filter papers were then incubated with 4 ml scintillation fluid in scintillation 

vials and the dpm for each sample obtained This protocol was repeated to obtain 

dose-response graphs for [3H] AMPA binding in control and stargazer brain 

membranes. 
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2.10 Receptor autoradiography 
Mice were anaesthetised with a lethal dose of Sagatal (sodium pentobarbitone); the 

stock concentration was 60 mg/100 ml but a lethal dose was induced with a dose of 

100 ul/100 ug animal weight. The anaesthesia was determined by testing for a 

pressure reflex activity in the footpad and the nictating reflex of the eye of the 

mouse. The mouse was then transcardially perfused for 3 minutes with ice-cold 

NaNCh, 0.1 % (w/v) in PBS, followed by perfusion with ice-cold sucrose, 10 % 

(w/v) in PBS, for 10 minutes. The perfusions were done at a rate of 10 ml/min. 

Whole brains were dissected from the mice and immediately frozen in isopentane 

(-40°C) for 1 minute. Sections (16 um) were cut on a Leica CM3050S cryostat ( -

21°C) and immediately thaw mounted onto polysine-coated glass slides (BDH). Two 

control and stargazer sections were mounted onto each slide. The slides were dried at 

room temperature for a minimum of 12 hr. Sections were then stored at -20°C under 

desiccant, until required. 

Autoradiography was performed essentially as described by Jones et al. (1997), with 

minor modifications outlined below. Slide-adhering sections were incubated in the 

appropriate pre-incubation buffer (detailed below for each ligand), at 4°C, for 15-20 

minutes. The slides were then incubated in [ H]-labelled buffer or NSB buffer for 

1 hr, at 4°C, as this was deemed a sufficient amount of time for the binding to reach 

equilibrium. The slides were then washed by immersion (for 15 seconds) in three 1 L 

changes of wash buffer followed by 1 L ctt^O, all at 4°C. The slides were dried 

under cool air (the cool setting of a hairdryer) and stored at room temperature. 

The buffers used are outlined below: 

• [3H] AMPA autoradiography 

Preincubation buffer - 30 mM tris-HCl, pH 7.4 

Ligand-containing buffer- 30mM tris-HCl, pH7.4, 100mM KSCN, 20nM 

[3H] AMPA 

NSB buffer - 30 mM tris-HCl, pH 7.4, 100 mM KSCN, 20 nM [3H] AMPA, 1 mM 

glutamate 

Wash buffer - 30 mM tris-HCl, pH 7.4, 100 mM KSCN 
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• MK-801 autoradiography 

Preincubation buffer - 5 mM tris-acetate, pH 7.5, 100 uM glycine, 100 uM 

glutamate 

Ligand-containing buffer- 5 mM tris-acetate, pH7.5, 100 uM glycine, 100 uM 

glutamate, 20 nM [hi] MK-801 

NSB buffer - 5 mM tris-acetate, pH 7.5, 100 uM glycine, 100 uM glutamate, 20 nM 

[3H] MK-801,10 uM MK-801 

Wash buffer - 5 mM tris-acetate, pH 7.5,100 uM glycine, 100 uM glutamate 

• [3H] muscimol autoradiography 

Preincubation buffer - 0.31M tris-acetate, pH 7.1 

Ligand-containing buffer - 0.31 M tris-acetate, pH 7.1,20 nM [^H] muscimol 

NSB buffer - 0.31 M tris-acetate, pH 7.1,20 nM [3H] muscimol, 1 mM GABA 

Wash buffer - 10 mM tris-HCl, pH 7.4 

• Rol 5-4513 autoradiography 

Preincubation buffer - 50 mM tris-HCl, pH 7.4,120 mM NaCl 

Ligand-containing buffer ( A ) - 50mM tris-HCl, pH7.4, 120mM NaCl, 20nM 

[3H] Rol5-4513 

Ligand-containing buffer ( B ) - 50 mM tris-HCl, pH7.4, 120 mM NaCl, 20 nM 

[3H] Rol5-4513,10 uM flumtrazepam 

NSB buffer- 50mM tris-HCl, pH7.4, 120mM NaCl, 20nM fin Rol5-4513, 

10uMRol5-1788 

Wash buffer - 10 mM tris-HCl, pH 7.4 

The slides were placed into an autoradiography cassette and exposed to [ H]-

hyperfilm. The film was left to expose for between 5 days ([3H] muscimol) to 10 

weeks ([^H] AMPA). The exposed films were developed manually using Kodak 

GBX developer and fixer solutions. Images were obtained by scanning the films 

using a Canon CanoScan N1220U scanner and analysed using Scion Image software, 

Scion Corp (downloaded from the website http://www.scioncorp.com). 
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2.11 Toluidine blue staining of sections 

The sections used for autoradiography were hydrated by incubating for 5 minutes 

each, at room temperature, in decreasing concentrations of ethanol - 100 % (v/v) 

followed by 90 % (v/v) followed by 70 % (v/v) followed by 50 % (v/v). The slides 

were then incubated in dH 20 for 3 minutes before incubating in 0.02% (w/v) 

toluidine blue (aq.) for 10 minutes. Any excess toluidine blue was rinsed off by 

dipping the slides, briefly, in dH20. The slides were then dehydrated by incubating, 

for 5 minutes each, in increasing concentrations of ethanol - 50 % (v/v) followed by 

70 % (v/v) followed by 90 % (v/v) followed by TOO % (v/v). The slides were left to 

dry at room temperature for at least 24 hr before mounting DPX mountant and 

overlaid with a glass cover slip. Images were taken using the Digital Camera RT 

Slider Spot (Diagnostic Instruments Incorporated) attached to an Axiovert 135 

microscope (higher magnification sections) or a Zeiss Stemi SVL1 microscope (whole 

sections). The software used to interface with the digital camera was the Spot 

Advanced Imaging program, which came with the camera. 

2.12 Immunohistochemical localisation of receptor subunits 

Adult control (+/+ and +/stg) and stargazer mice were anaesthetised with a lethal 

dose of Sagatal, applied by intraperitoneal injection using a 1 ml syringe and a 25G 

needle. The chest cavities were then opened and the mice were transcardially 

perfused through the ascending aorta with ice-cold NaN02, 0.1 % (w/v) in PBS, for 

3 minutes. 

The perfusate was then replaced with ice-cold 4 % (w/v) paraformaldehyde (see 

appendix 1) for a further 20 minutes. The mice were initially perfused with the 

paraformaldehyde in PBS (some of the horizontal sections were from mice perfused 

with this). However, later experiments showed that the PBS appeared to be 

deleterious to the staining. For this reason, the later fixations were done with the 

paraformaldehyde in phosphate buffer, pH7.4, without saline. All the sagittal 

sections were fixed with this paraformaldehyde solution. 
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The brains were then dissected out and were post-fixed by immersion in 4 % (w/v) 

paraformaldehyde in phosphate buffer, pH 7.4, for 24 hr. They were then transferred 

to 10 % (w/v) sucrose in PBS for 48 hr at 4 C. The sucrose solution was exchanged 

for fresh sucrose solution every 12 hr. 

The brains were frozen for 2 minutes at -70°C in isopentane in an aluminium 

carriage suspended over liquid N2. The brains were then transferred to the cryostat 

and once thermally equilibrated (to -21°C), they were sectioned (30um). Brain 

sections in the horizontal and sagittal planes were prepared. The sections were 

transferred to the wells of 24-well plates containing 0.02 % (w/v) sodium azide in 

PBS and either used immediately or stored at 4°C. 

The free-floating brain slice sections were immunochemically stained using a 

modification of the VectaStain ABC Elite protocol as described by Thompson et al. 

(2000). 

Briefly, cryostat cut, free-floating sections were incubated in a methanol-peroxide 

solution, comprising of 10 % (v/v) methanol and 3 % (v/v) H2O7 in PBS, for 30 

minutes, at room temperature, to destroy endogenous peroxidase activity in the 

tissue. All the incubations were done on a Stuart Scientific 3D rocking platform 

STR9 or a Stuart Scientific platform shaker STR6. The methanol-peroxide solution 

was removed and the sections were washed three times with 0.2 % (v/v) Triton X-

100 in PBS, hereafter known as PBS-T. 

The slices were then incubated in 0.2 % (w/v) glycine in PBS, for 30 minutes, at 

room temperature, to quench any residual active fixative by binding to any unreacted 

paraformaldehyde. 

The sections were then incubated with blocking buffer, which comprised of 10 % 

(v/v) blocking serum in PBS-T, for 1 hr at room temperature. This incubation 

ensured that the serum blocked any non-specific IgG binding sites. The species of 

animal from which the blocking serum was obtained was governed by the secondary 

IgG-biotinylated conjugate used as a reporter. For example, i f the secondary IgG was 
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from goat, goat serum was used as the blocking serum; i f donkey IgG was used, the 

blocking serum was obtained from horse. 

Primary antibody, 1:100 - 1:1000 dilution or 0.125 - 1 ug/ml of primary antibody 

and 1 % (v/v) blocking serum in PBS, was applied and the sections were left to 

incubate at 4°C, overnight. 

The sections were then washed three times for 5 minutes each with PBS-T before 

incubating with biotinylated secondary antibody, 50 ul biotinylated secondary 

antibody in 10 ml PBS with 1 % (v/v) blocking serum, for 1 hr, room temperature. 

The sections were washed three times, for 5 minutes each, with PBS-T and incubated 

with the ABC reagent for 1 hr. The ABC reagent was prepared at least 30 minutes 

before it was required by adding 2 drops of solution A and 2 drops of solution B to 

5 ml PBS. The ABC reagent was mixed for 30 minutes on the roller mixer. 

The sections were washed three times with PBS-T followed by two washes with PBS 

before incubating with HRP substrate, which comprised of 1 ml of 5 mg/ml 3,3'-

diaminobenzidine, 6.67 u.1 H2O2 (30 % v/v stock) and 9 ml PBS. The sections were 

left to incubate with the HRP substrate in the dark until the stain reached the desired 

intensity, at which point they were washed with multiple changes of dH 2 0 before 

mounting onto glass slides. The sections were left to dry on the slides for at least 

12 hr at room temperature before DPX mountant and glass cover slips were applied. 

Images were taken with the digital camera and Spot Advanced Imaging software as 

described above for the toluidine blue stained slides. 

2.13 Genomic PGR 
A genomic PCR protocol was followed in order to determine whether a mouse was a 

control, wild-type mouse (i.e. +/+), a heterozygote mouse (i.e. a +/stg) or whether it 

was a stargazer mouse (i.e. stg/stg). This was important for determining which mice 

could be used for breeding purposes as, phenotypically, heterozygotes, which were 

used in the breeding programme, and wild-type mice were indistinguishable from 
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each other. The ability to determine the genotype of a mouse was also important for 

cell culture purposes as the mice were used at P5-7, an age when the stargazer 

phenotype is not apparent. 

2.13.1 Preparation/isolation of DNA 
Tail samples from tagged mice were incubated with ice-cold lysis buffer, containing 

96.8 mM EDTA, pH 8.0, 500 ul Nuclei Lysis Solution, 0.35 mg proteinase K, at 

55°C, until digested. This digestion step could take from 2 hr for samples from 

mouse neonates aged P3-4, to overnight for samples from adults. 

The digested samples were allowed to cool before the addition of 200 [il Protein 

Precipitation Solution. The samples were then vortexed and chilled on ice for 5 

minutes before centrifuging for 4 minutes at 14,000g using the Eppendorf 5415c 

microcentrifuge. 

Supernatant (600 ju.1) removed from each of the samples, was placed into a fresh, 

eppendorf tube and mixed with 600 u.1 isopropanol by inversion. During the mixing, 

the DNA strands become visible to the naked eye, as the DNA precipitates. The 

samples were then centrifuged for 1 minute at 14,000g, at the end of which the DNA 

formed a pellet at the bottom of the eppendorf tubes. 

The supernatant was removed and 600 \i\ of 70 % (v/v) ethanol was added to the 

DNA pellets. Each eppendorf tube was then inverted, in order to wash the DNA, 

before centrifuging for a further 1 minute at 14,000g. 

The DNA formed a loose pellet at the bottom of the each eppendorf tube. The 

supernatant was removed and the DNA pellet was air-dried. TE, 10 mM tris, 1 m M 

EDTA (100 uJ), was added to each sample, which were left to incubate for 1 hr at 

65°C. The samples were then stored at 4°C until required for the polymerase chain 

reaction (PCR). 

2.13.2 PCR 
The following PCR mix was prepared for each sample as below: 
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10X SuperTAQ PCR Buffer 
lOmMdNTPs 
25 pM/ul 109F Primer 
25 pM/ul E/Ht7 Primer 
25 pM/ul ETN-OR Primer 
1 unit/ul TAQ 

5 |Lil 

1 Hi 
2 u l 
2 u l 
1 ul 
1 Ml 

The PCR reactions were performed in thin walled PCR tubes, which contained 12 ju.1 

PCR mix, 12 ul autoclaved dH 2 0 and 1 ul DNA sample. Positive controls were 

prepared using DNA from mice of known genetic background such that samples 

from +/+, +/stg and stg/stg were assayed alongside the unknown test samples; 

negative controls were prepared using 12 ul PCR mix and 13 ul autoclaved dH 2 0. 

The samples were placed into the PCR machine (Perkin-Elmer GeneAmp PCR 

System 2400) and run on a programme consisting of 1 cycle of 95°C for 5 minutes, 

followed by 30 cycles of 94°C for 1 minute, 55°C for 2 minutes and 72°C for 2 

minutes. The programme is then held at 4°C until the PCR products can be removed 

from the machine and run on an agarose gel. The 95°C temperature causes the primer 

and the template to dissociate whilst the 55°C temperature will cause the primer and 

template to anneal. The 72°C temperature allows the extension of the products by the 

TAQ polymerase. 

The agarose gel was prepared using 1.2 g agarose and 80 ml TBE ( IX) . PCR product 

(5 ul) was combined with 7 ul of PCR sample buffer, 2 ul PCR loading buffer and 

5 ul autoclaved dH 2 0, and loaded onto the agarose gel. Markers, 1 ul of 100 base 

pair DNA ladder in 2 ul PCR loading buffer and 9 ul autoclaved dH 2 0, were also 

loaded and the gel was run at 70V for ~ 2 hr. The gel was then incubated with 

ethidium bromide, 10 ul ethidium bromide in 200 ml dH 2 0, for ~ 15 minutes before 

destaining in multiple changes of dH 2 0. The DNA bands were visualised under UV 

light using the BioRad GelDoc 2000 system. Photos of the gels were taken using the 

printer supplied with the system. These photos were scanned to provide the images 

used in the figures in the following chapters. 
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2.14 Primary cerebellar granule cell cultures 
+/+, +/stg and stg/stg mouse neonates were identified by the genomic DNA PCR 

amplification strategy outlined above, using DNA obtained from tail biopsies from 

the mice at P3. +/+ and +/stg cerebella were combined and used to derive age-

matched littermate control cerebellar granule cells (CGCs), which were used to 

compare against CGCs from stg/stg cerebella. 

Cell culture, polylysine-coating of the dishes and dissection of the brains were all 

undertaken in a sterile laminar flow hood. 

2.14.1 PoIy-L-lysine treatment of plastic culture dishes 
Sterile plastic petri dishes (35 mm, Nunc) were polylysine coated before using for 

primary cell culture. Poly-L-lysine hydrobromide was prepared to a concentration of 

50 ng/ml in dH^O. The polylysine solution, 2 ml per dish, was sterile filtered directly 

onto the dishes using a sterile syringe and a sterile 0.20 um membrane disposable 

syringe filter (Nalgene, BDH). The petri dishes were left to incubate overnight, at 

room temperature. 

The polylysine was then aspirated of f the dishes, which where then left to dry in the 

laminar flow hood, for 30 minutes, at room temperature. Each dish was then washed 

three times with 2 ml of sterile, autoclaved dH 2 0. The dishes were then left to dry in 

the flow hood, until required for plating of the cells. 

2.14.2 Cell culture 
The method adopted was that previously described by Thompson and Stephenson 

(1994). A l l solutions used are found in appendix 1 and were filter sterilised using 

sterile disposable syringe filters attached to sterile syringes before use. 

Briefly, cerebella were dissected from neonatal mice aged P5-P7, under aseptic 

conditions, and minced using sterile scalpel blades. The tissue was then incubated in 

trypsin solution for 15 minutes at 37°C, with agitation, in a Grant SUB6 water bath. 
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Dilute trypsin inhibitor, containing DNAse I , was then added and the tissue was 

centrifuged at lOOg for 2 minutes, using a Harrier 15/80 centrifuge. 

The supernatant was removed and concentrated trypsin inhibitor (~ 8 ml) was added 

in two tranches and the pellet was triturated, using fire-polished sterile glass Pasteur 

pipettes. The cell suspension was overlaid onto the bovine serum albumin (BSA) and 

centrifuged at 200g for 5 minutes. 

The supernatant was removed and discarded and the cell pellet was suspended in 

culture media, Dulbecco's Modification of Eagle's Medium (DMEM), 10 % (v/v) 

foetal calf serum, 2 m M glutamine, 50 ug/ml gentamycin, supplemented with 

0.033 M glucose. 

The total number of cells was estimated using an improved Neubauer 

haemocytometer (BDH) and a Nikon TMS microscope. Cells were plated out at a 

density of 2.5 x 106 cells per 35 mm plastic culture dish. The cells were stored in an 

LEEC incubator at 37°C, 95 % 0 2/5 % C0 2 , high humidity, which was maintained 

by the addition of sterile, autoclaved water to the base of the incubator. 

Sterile 5-fluoro-2'-deoxyuridine (FDU), final concentration of 8 mM, was applied to 

the cells 24 hr after plating, in order to inhibit the mitosis of non-neuronal cells. 

Media was subsequently supplemented with sterile water and glucose, as required. 

2.15 Cell surface expression of GluR2 receptors 
Determination of surface expression of the AMPAR GluR2 subunit was performed 

essentially as described in Hall and Soderling (1997) and Ives et al. (2002). The 

impermeable cross-linker bis (sulfosuccinimidyl) suberate (BS3) (Pierce) was 

dissolved in iso-osmotic saline solution (SS), 137 mM NaCl, 5.3 m M KC1,0.17 m M 

Na 2HP0 4, 0.22 m M KH 2 P0 4 , 10 mM HEPES, 33 m M glucose, 44 m M sucrose, 

pH 7.2. Cultured cerebellar granule cells, 15 DIV, were washed 3 times with SS 

before being treated with/without BS 3 for 10 minutes at 37°C. Cells were then 

washed 3 more times with SS before the cross-linker was quenched using serum-
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containing culture media. The cells were washed a further 2 times with SS before 

being collected in SDS-containing solubilisation buffer, 50 mM tris, 2 mM EDTA, 

2 % (w/v) SDS, pH 6.8, for analysis by SDS-PAGE. 

Following immunoblotting, where the blots were screened for GluR2 and P-actin 

expression, the films of the immunoblots were analysed using the GelDoc 2000 and 

the Quantity One software. The data were then incorporated into the following 

equations, adapted from Ives et al. (2002), to determine the extent of cell surface 

expression: 

Total GluR2 expression = SSGIUR2 / SSActin 

Intracellular GluR2 = BS GiuR2 /BS 3 Actin 

Extracellular GluR2 = 

[(Total GluR2 - Intracellular GluR2) / Total GluR2] * 100 

The level of expression of the GluR2 protein was determined in both cultured control 

(+/+ and +/stg) and stargazer (stg/stg) cerebellar granule cells. 

2.16 Statistical analyses 
Prism (version 3.0, GraphPad Software Incorporated) was used to generate the 

graphs used throughout. Statistical analyses (Student's /-tests) were also undertaken 

using Prism; with the null hypothesis being rejected i f P was less than 0.05. 
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Chapter 3 

GABAA receptor expression in stargazer mutant mice 

3.1 Introduction 

3.1.1 The stargazer mutation 
Although the stg/stg cerebellum is mildly hypoplastic, the overall pattern of 

cerebellar foliation appeared normal and no major structural or anatomical 

abnormalities were observed (Qiao et al., 1996). However, whilst the layout of the 

cerebellar cortex and the deep cerebellar nuclei in adult stargazer mice was the same 

as in wild-type controls, a greater number of external granule cells was found to still 

reside in the external germ layer at postnatal day 15 (PI 5) in stg/stg cerebellum 

compared to controls. This difference was no longer apparent by P20, indicating a 

delayed migration of the granule cells. Furthermore, some of the granule cells in the 

stg/stg cerebellum appeared to have elongated oval-shaped nuclei with clumps of 

coarse chiomatin, a morphology reminiscent of immature cerebellar granule cells 

(Qiao et al., 1998). 

3.1.2 The GABAA receptor in stargazer mice 
The ot<5 subunit, which is exclusively expressed by cerebellar granule cells (CGCs), 

begins to appear in the cerebellum from P7 - PI4. However, as mentioned above, 

maturation of the CGCs in the cerebellum of stargazer mice appears to be 

compromised as they have a delayed phase of migration and a sub-population of 

CGCs in the adult stargazer cerebellum that have morphological features of 

immature neurons (Qiao et al., 1998). Interestingly, adult stargazer mice have been 

reported to express much less of the GABAR ote (and p 3 ) subunit, a marker of CGC 

maturity (Thompson et al., 1998). 

Rol5-4513 is a partial agonist at GABAR with high affinity for the a* and 0̂  

subunit-containing receptors. It had previously been shown that the number of total 

specific Rol5-4513 binding sites (a measure of total number of y 2 subumt-containing 

GABAR) was not significantly different between control and stargazer cerebella. 
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The benzodiazepine-insensitive subtype, one of two components of the y 2 subunit-

containing population of GABAR, was, however, severely reduced in stargazer 

cerebellum (down to 30 % of controls). As the cerebellum does not contain the 04 

subunit, the decreased binding seen in the stargazer cerebellum was in accordance 

with the lower levels of ot̂  expressed in stargazer (Thompson et al., 1998). 

3.1.3 Work carried out 
The work in this chapter was undertaken firstly to repeat the previous published 

work on stargazer and secondly, to further characterise GABAR expression within 

the brain of stargazer mice. Previous published work used the C57BL/6J strain of 

mice as the background control strain to the B6C3Fe+ strain of stargazer mouse 

(Thompson et al., 1998). However, published studies have indicated that different 

strains of mice account for differences seen in both electrophysiological traits and 

survival of cultured cerebellar granule cells (Fujikawa et al., 2000; Bampton et al., 

1999). 

A genomic PCR amplification strategy was utilised to identify the genotype of the 

mice used (+/+, +/stg or stg/stg). Subsequently, the expression levels of the GABAR 

oti and a* subunits were quantified in +/+, +/stg and stg/stg cerebellar membranes by 

semi-quantitative immunoblotting. The anatomical expression profile of the ot̂  

subunit throughout the brain was investigated using irnmunohistochemistry. Finally, 

autoradiography was employed to determine the pharmacological profile of the 

assembled GABAR expressed in control and stargazer brain sections. 

3.2 Results 

3.2.1 Genomic Screening 
A PCR amplification strategy, as outlined in section 2.13, was utilised to identify 

+/+, +/stg and stg/stg mice. Genomic DNA was obtained for this strategy was 

obtained from tail biopsies removed from adult mice: +/+ tissue was obtained from 

wild-type (B6C3Fe+) mice; stg/stg tissue was obtained from adult stg/stg mice 

identified by their phenotype; +/stg tissue was obtained from the initial breeding 

pairs (+/stg mice) received from Jackson Laboratories. This genomic screen was 

51 



applied to genomic DNA derived from adult mice, to identify suitable breeding pairs 

(+/stg) in order to maintain the breeding programme, and to genomic DNA obtained 

from neonatal mice at P3, for primary cerebellar granule cell culture purposes. 

As illustrated in figure 3.1, a predicted single PCR product of 600bp was generated 

from DNA from +/+ mice; amplification of DNA obtained from stg/stg mice resulted 

in a predicted single PCR product of 300bp. Genomic DNA of +/stg mice, as 

expected, produced two PGR products of both 300 and 600bp. A minor ethidium 

bromide intercalated species of 800bp product was also obtained but this was only 

ever present in DNA from +/stg mice. These results (i.e. the sizes of the DNA 

fragments in +/+, +/stg and stg/stg mice) were seen in both young and adult mice. 

The validity of the genomic PCR screen was tested by allowing the screened 

neonates to mature and test for genomic background by their subsequent phenotype 

(stg/stg progeny) or as a consequence of mating assays. Mice showing just the 300bp 

product on the agarose gel do indeed go on to develop the stargazer phenotype. Mice 

showing both the 300bp and 600bp products (i.e. the heterozygotes) do not show any 

of the characteristics associated with stargazer mice. When mated, however, they 

produce offspring showing stargazer characteristics, in roughly mendelian ratios of 1 

+/+ : 2 +/stg : 1 stg/stg. The mice with only the 600bp products show neither 

stargazer characteristics nor produce offspring with the stargazer phenotype. 
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Figure 3.1 Agarose gel analysis of amplicons obtained from a genomic PCR 

amplification of adult mouse tail biopsy, using UV light following ethidium bromide 

staining. A 100 base pair marker is in lane M , and the 300 base pair, 600 base pair 

and 800 base pair products indicated. The low molecular weight band identified by 

the red arrow was due to excess PCR primers. Lanes 1-10 were products from 10 

adult mice. Negative control was in lane 11 whilst positive controls, from mice of a 

known genetic background, were in lanes 12-14. The key below indicates whether 

the sample came from a +/+, +/stg or stg/stg mouse: 

Sample Genotype Sample Genotype 

1 +/stg 6 +/stg 

2 +/stg 7 +/stg 

3 stg/stg 8 +/stg 

4 +/+ 9 +/+ 

5 +/+ 10 stg/stg 

Sample Control 

11 Negative NoDNA 

12 Positive DNA from known +/+ 

1.1 Positive DNA from Known +/stg 

14 Positive PNA from known stg/st 



800 
600 

300 

Samples Controls 



3.2.2 Semi-quantitative immunoblotting of GABAA receptor 

subunits 
It has previously been shown that the expression levels of the GABA A receptor 

(GABAR) subunits and p3 are both reduced in cerebellar membrane homogenates 

prepared from adult stargazer cerebella when compared to control cerebella. The 

levels of expression of the ai and p 2 subunits, however, were not different to control 

levels (Thompson et al., 1998). 

The C57BL/6J strain was employed as the background strain of mice and was used 

for control tissue. It is a distinct possibility that the differences observed in the 

expression levels of GABAR subunits were due to stain differences between the 

mice used and not a consequence of the stargazer mutation. Therefore, the 

expression levels of the GABAR ai and a* subunits were determined in +/+, +/stg 

and stg/stg mice that had been identified by genomic PCR, as described in section 

3.2.1. Cerebellar membranes taken from adult +/+, +/stg and stg/stg mice were 

probed with both GABAR anti-ax and anti-a6 subunit-specific antibodies, as 

previously described (section 2.7). 

3.2.2.1 Expression of ai and a 6 sublimits in cerebellar membranes 
As can been seen in figure 3.2, there was no significant difference in the levels of ai 

expressed in +/+, +/stg and stg/stg cerebellar membranes. However, when probed 

with the anti-cte antibody, 06 levels were clearly lower in membranes prepared from 

cerebella taken from stg/stg mice. No decrease was seen in cerebella from +/+ and 

+/stg mice. 

The levels of the aj and ote subunits were quantified by probing stg/stg and control 

cerebella membranes with anti-ai, anti-ac and anti-NSE subunit-specific antibodies. 

The control membrane preparation now comprised of a mixture of +/+ and +/stg 

cerebellar membranes as no significant differences in any parameter so far 

investigated had been observed. This was supported by other studies that showed 

that there was no difference in BDNF mRNA expression between +/+ and +/stg 

cerebella (Qiao et al., 1996). Similarly, no significant differences were found in the 
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Figure 3.2 Immunoblot showing the expression of GABAR a* and a* subunit 

proteins in adult wild-type (+/+), heterozygote (+/stg) and stargazer (stg/stg) 

cerebellar membranes. 

Broad range (20.5 kDa - 210 kDa) molecular weight markers were used and have 

been indicated to the left of the immunoblot. The a i protein has a molecular weight 

of 51 kDa and was the lower band present on the immunoblot; the ot̂  protein has a 

molecular weight of 56 kDa and was the upper band present on the immunoblot. As 

can be seen, both the ai and 06 proteins were present in the +/+, +/stg and stg/stg 

cerebellar membranes, although the protein was much reduced in the stg/stg 

membrane. 
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phenotype (Qiao et al., 1998) or following electrophysiological analyses (Hashimoto 

et al., 1999) of +/+ and +/stg mice. 

3.2.2.2 Quantification of «x subunit levels 
Control and stg/stg cerebellar membrane homogenates were probed with anti-ai 

antibody (0.5 fig/ml) and subsequently with anti-NSE antibody (1:20,000 dilution), 

as outlined previously. Figure 3.3A shows the expression of the ai subunit in 

differing concentrations of both control and stargazer cerebellar membrane 

homogenates. As mentioned above, the membrane was then reprobed for NSE 

expression (figure 3.3B). 

The comparative expression levels of the ai subunit were then determined and this 

was normalised against the levels of NSE expressed, using computer-assisted 

densitometry (section 2.7.3). No significant differences between the expression 

levels of cti in stargazer cerebellar membranes and control cerebellar membranes 

were observed (figure 3.5). The relative levels were 100% for control homogenate 

and 101.2 ± 6.4 % for stg/stg homogenate (values are means ± sem). 

3.2.2.3 Quantification of a 6 subunit levels 
The expression levels of and NSE in cerebellar membranes from stargazer and 

control were determined by irnmunoblotting using a concentration of membrane 

proteins to aid quantification (figure 3.4). SDS-PAGE mini-gels were loaded with 

control and stg/stg cerebellar membrane homogenates, along with control forebrain 

homogenates (at a protein concentration of 5 ug/10 ul). These were then probed with 

anti-ae subunit-specific antibody (1 ug/ml) and subsequently reprobed with the anti-

NSE antibody (1:20,000 dilution), as outlined in (section 2.7.2). 

The ratio of the 06 subunit: NSE was determined using computer-assisted 

densitometry, as outlined in (section 2.7.3). By determining the levels of the 

GABAR subunits and then normalising against the levels of NSE expressed, it is 

possible to calculate the comparative levels of expression of the GABAR subunits. 
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Figure 3.3 Immunoblots showing levels of expression of the GABA A receptor oti 

subunit protein (A) and NSE protein (B) in control and stargazer cerebellar 

membranes. Also shown is the expression of both proteins in control forebrain 

membranes (5 ug/10 ul). A range of concentrations of the cerebellar membranes 

were used - 1.25 ug/10 u i 2.5 ug/10 ul, 5 ug/10 ul and 10 ug/10 ul - as indicated on 

both immunoblots. 
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Figure 3.4 Immunoblots showing levels of expression of the GABAR subunit 

protein (A) and NSE protein (B) in control and stargazer cerebellar membranes. A 

range of protein concentrations were used - 1.25 ug/10 ul, 2.5 ug/10 ul, 5 ug/10 ul 

and lOug/lOul ~ as indicated on both immunoblots. Also shown is the expression 

of both proteins in control forebrain membranes (5 ug/10 ul). 
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Using such calculations, the following figure was obtained: 
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Figure 3.5 Bar graph showing the relative expression levels of the GABAR and 
o« subunits in control (ctl) and stargazer (stg) cerebellar P2 membranes. The 
levels were normalised to controls (100 %) using NSE as the normalising probe. 
As can be seen, there was no significant difference in the levels of the Ui subunit 
whereas there was a significant decrease in the levels of u« expression in the 
stargazer cerebellum, as determined using Student's /-test (* = P < 0.02). Results 
expressed as mean ± sem; n = 3 - 4 samples from both control and stargazer 
cerebella; immunoblotting repeated twice. 

From a visual inspection of the immunoblots in figure 3.4, it is clear that the 

GABAR a* subunit was under-represented in stg/stg cerebellum relative to controls. 

Immunoblots were quantified by image densitometry and NSE expression used as a 

normalising factor in the estimates. The levels of a$ were arbitrarily assigned a value 

of 100 % in control membranes (figure 3.5). The expression level in stg/stg 

cerebellar membranes was only 34.4 ± 1.8 % (values expressed as mean ± sem). 

3.2.3 Immunohistochemical localisation of GABAR a6 subunit 
In order to map the cellular expression patterns of the GABAR ct̂  subunit, fixed 

control and stg/stg brain sections were subjected to immunohistochemical analysis 

using the GABAR anti-ot̂  subunit-specific antibody as a probe (see figures 3.6 and 

3.7). 
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Figure 3.6 Irnmunohistochernical expression of GABA A a* subunit protein within the 

forebrain of control (A) and stargazer (B) mice. Sections were incubated with anti-ot̂  

subunit-specific antibody before staining with DAB. Staining was not seen within 

either the control forebrain or within the stargazer forebrain, although staining was 

seen within the cerebellum attached to the control forebrain section. 

Scale bars represent 1 mm. 





Control and stg/stg brain sections were incubated with 0.125 ug/ml GABAR anti-o^ 

subunit-specific antibody. The distribution of bound primary antibody was revealed 

by conventional methods using the Vecta-stain ABC elite kit with 3,3'-

diaminobenzidine horseradish peroxidase, as described in section 2.12. Both control 

and stg/stg sections were incubated with the HRP substrate for the same amount of 

time. 

As illustrated in figure 3.6A, no specific staining was seen in any of the forebrain 

structures in the control forebrain. Note that, in figure 3.6A, a section of cerebellar 

tissue was attached to the control forebrain section and it can be clearly seen that the 

antibody has identified expression in cerebellar granule cells, in accordance with 

the known distribution of this subunit (Pirker et al., 2000; Mellor et al., 1998; Laurie 

et al., 1992; Thompson et al., 1992). Stargazer forebrain sections were also incubated 

with the ct6 antibody and, as was seen in figure 3.6B, no staining was evident in 

stargazer forebrain. 

GABAR a<5 subunit-like irrmunoreaetrvity, however, was present in the cerebellum 

of both control and stg/stg brains (figure 3.7). In both tissue sections, the staining 

was specific to the granule cell layer, with no staining observed in the molecular 

layer. A decrease in staining intensity was seen in the stargazer cerebellar granule 

cell layer (figure 3.7D) when compared to the staining intensity seen within the 

control granule cell layer (figure 3.7B). 

The results obtained by both the immunoblotting of cerebellar P2 membranes and 

immunohistochemistry appeared to imply a decrease in the numbers of (^containing 

GABA A receptors in the stargazer cerebellum. 
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Figure 3.7 Immunohistochemical analysis of the expression of a$ subunit protein 

within the cerebellum. Control (A) and stargazer (C) horizontal cerebellar sections 

were incubated with anti-o^ subunit-specific antibody before staining with DAB. 

As can be seen in the whole sections, immunostaining was observed in both the 

control and stargazer cerebellum. Staining in the control cerebellum (B) was seen 

mainly within the granule cell layer (GL), with some staining within the Purkinje 

cell layer (PL). No staining was detected in the molecular layer (ML) or within the 

white matter (WM). 

A similar expression partem was seen within the stargazer cerebellum, although the 

staining intensity was reduced (D). 

Scale bars represent 100 um (B and D) or 1 mm (A and C). 
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3.2.4 Autoradiography 
Frozen whole brain sections were obtained from both control and stargazer mice and 

applied to poh/sine-coated slides. Each slide consisted of 2 x control slices and 2 x 

stg slices, allowing direct comparison of radioligand binding. The slides were 

incubated with [ 3 H] muscimol or [ 3 H] muscimol + GABA (specific and non-specific 

binding respectively), or with [ 3 H] Rol5-4513 only, [ 3 H] Rol5-4513 + 

flunitrazepam or [ 3 H] Rol5-4513 + Rol5-1788 (non-specific binding), as outlined in 

section 2.10. The treated slides were exposed to [ 3 H] hyperfilm for 5-10 days (for 

[ 3 H] muscimol binding) and 4-8 weeks (for [ 3 H] Ro 15-4513 binding) before being 

stained with toluidine blue, as described in section 2.11. 

3.2.4.1 [ H] Muscimol Autoradiography 
As can be seen in figure 3.8A, [ 3 H] muscimol binding was seen in most parts of the 

control brain, including the hippocampus, the caudate-putamen and the cortex, with 

the strongest signal obtained in the cerebellum. A similar labelling pattern was seen 

within the stargazer sections (figure 3.8E). However, the labelling seen in the 

stargazer sections appeared to be less than the labelling seen in the control sections. 

This was most apparent in the cerebellum, where the intensity of the signal seen in 

the control cerebellar sections was visibly decreased in the stargazer cerebellar 

sections. Non-specific labelling was at the level of film background in both the 

control (figure 3.8C) and stargazer sections (figure 3.8G). 

3.2.4.2 [3H] Rol 5-4513 Autoradiography 
Ro 15-4513 is an inverse GABA agonist, which binds to the benzodiazepine-binding 

site of GABA A receptors containing the y subunit. Flunitrazepam displaces Rol5-

4513 bound to benzodiazepine (BDZ)-sensitive receptors, i.e. GABAR composed of 

a t, a2, a3, or a5 and P and y 2 subunits. This displacement of the Rol5-4513 from the 

BDZ-sensitive receptors reveals labelling of the BDZ-insensitive (BDZ-IS) 

receptors, i.e. GABAR containing the 04 and/or a« subunits. Rol5-1788 is a 

competitive antagonist at the BDZ binding site and will thus compete for specific 

Rol5-4513 binding sites, displacing the [ 3 H] Rol5-4513 from those GABARs to 

which it binds with high affinity, thereby identifying non-specific binding. 

69 



Figure 3.8 Autoradiography using [ 3 H] muscimol on frozen, unfixed control and 

stargazer brain sections. [ 3 H] muscimol-treated sections were exposed to 

[ 3 H] hyperfilm for 10 days before developing. The treated control (A) and stargazer 

(E) sections were then stained with toluidine blue (B and F respectively). 

Non-specific binding on control and stargazer slices was done with [ 3 H] muscimol in 

the presence of GABA. No radiolabelling was seen with either the control (C) or 

stargazer slices (G), which were subsequently stained with toluidine blue (D and H 

respectively). 
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[ J H] Ro 15-4513 binding was observed in most parts of the control brain, including 

the cerebellum, the hippocampus, the caudate-putamen and the cortex (figure 3.9A). 

The addition of fiunitrazepam to the [3H]-containing solution led to the displacement 

of the radioligand from flunitrazepam-sensitive subtypes of GABAR. Radiolabelling 

in the presence of fiunitrazepam (BDZ-IS binding sites) was seen largely within the 

cerebellum, with labelling present but decreased within the forebrain areas 

mentioned above (figure 3.9C). This labelling pattern indicated the presence of 04 

and ae subunit-containing receptors. However, as no 04 subunits are present in the 

adult cerebellum, any labelling seen here is due to the presence of the subunit . 

The labelling pattern observed for total specific [ 3 H] Rol5-4513 binding sites in the 

stargazer slices appeared to be the same as that observed with control slices (figure 

3.9G). That is, radiolabelling was seen within the cerebellum, the hippocampus, the 

caudate-putamen and the cortex. In the presence of fiunitrazepam, the majority of 

labelling was seen within the cerebellum, with some labelling seen within the 

forebrain regions mentioned earlier (figure 3.91). 

Non-specific binding on control and stargazer slices was illustrated in figures 3.9E 

and 3.9K respectively. A small amount of radiolabelling was seen in both the non­

specific binding figures, around the outline of the slices. This could be due to the 

length of time of exposure of the film to the slides. 
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Figure 3.9 Autoradiography using [ 3 H] Rol5-4513, fiunitrazepam and Rol5-1788. 

Frozen, unfixed control sections were treated with [ 3 H] Rol5-4513 (A), [ 3 H] Rol5-

4513 + flunitrazepam (C) or [ 3 H] Rol5-4513 + Rol5-1788 (E). The same sections 

were then stained with toluidine blue (B, D and F, respectively). 

Frozen, unfixed stargazer whole brain sections were also treated with [ 3 H]Rol5-

4513 (G), [ 3 H] Rol5-4513 + fiunitrazepam (I) or [ 3 H] Rol5-4513 + Rol5-1788 (K) 

before being stained with toluidine blue (H, J and L respectively). 
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The amount of radiolabelling can be determined using Scion Image software. [ 3 H]-

standards were exposed to the [3H]-hyperfilm along with the treated slides. Using the 

ODs determined for the standards, the concentration of the radioligand bound to a 

particular tissue section can be calculated. Using this method, the concentrations of 

radioligand bound to both the control and stargazer cerebellar sections were 

determined. 
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Figure 3.10 Bar graph showing the concentrations of [3H] Rol5-4513 binding in 
control and stargazer cerebellar sections, as determined by autoradiography following 
an 8 week exposure with [3H] hyperfilm. Binding of [3H] Rol5-4513 on stargazer 
cerebellum (49.9 ± 8.5 nCi/mg) was reduced when compared to control cerebellum 
(73.2 ± 8.4 nCi/mg). The amount of binding seen in the presence of fiunitrazepam was 
significantly reduced in stargazer cerebellum (4.9 ± 1.8 nCi/mg) when compared to 
control cerebellum (16.7 ± 3.0 nCi/mg), as determined using the Student's /-test 
(* = P < 0.005). Results expressed as mean ± sem; n = triplicate measurements taken 
from 14 sections. 

As can be seen in figure 3.10, there was a small decrease in the amount of total 

specific [ 3 H] Rol5-4513 bound in the stargazer cerebellum, when compared to that 

in the control cerebellum. This decrease, however, was not significant (P > 0.05). 

Fiunitrazepam displaced the radioligand from BDZ-sensitive GABAR in both 
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control and stargazer cerebella. In this instance, however, there was a significant 

decrease in the amount of [3H] Rol5-4513 binding in the stargazer cerebellum, when 

compared to the binding observed within control cerebellum. 

As illustrated in figure 3.9C, there was very little [3H] binding, in the presence of 

fiunitrazepam, in control dentate gyrus. The dentate gyrus was present in the control 

section as revealed after toluidine blue staining (figure 3.9D). Increased binding was 

apparent in the stargazer dentate gyrus (figure 3.91). Due to limitations in the 

analysis method employed, however, it was not possible to obtain values for the 

amount of [3H] binding within the dentate gyrus. 

These results imply, therefore, that there was a decrease in the levels of the 

subunit in the stargazer cerebellum and are also comparable to previous studies 

employing [3H] Rol5-4513 binding in control (obtained from C57BL/6J mice) and 

stg/stg membranes (Thompson et al., 1998). 

3.3 Discussion 
A genomic DNA PCR screen that was established in the lab enabled the 

identification of the normal (+) or mutated (stg) allele in the mice. This screen was 

employed to identify the genotype of the offspring arising from +/stg breeders, 

which were to be used either for breeding pairs (+/stg) or for cerebellar granule cell 

cultures. Furthermore, the GABAR expression profiles were reassessed to confirm 

earlier observations reported by Thompson et al. (1998), where cerebella from a C57 

background strain was used as a control. Since stargazer mice are essentially a B6C3 

line, the C57 strain was not the ideal background strain. In light of work describing 

mouse strain-dependent differences, it was important to confirm the authenticity of 

those earlier GABAR observations in stargazer. 

When the adult +/+ and +/stg offspring of +/stg mice were used as controls, it was 

apparent that GABAR levels were significantly decreased in the cerebellum of 

stg/stg mice. These results confirmed that the impaired GABAR expression profiles 

in stg/stg cerebella were a consequence of the stg mutation and not mouse strain 
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variability. This decrease was selective to the cte subunit as no such decrease was 

observed in the ai subunit. Finally, autoradiographical analyses of frozen whole 

brain sections indicated a change in GABAR subunit expression in the dentate gyrus. 

3.3.1 Use of a genomic screen to identify the genotype of mice 
While stargazer mice older than PI4-18 have a distinctive phenotype, comprising of 

absence epilepsy, ataxia, head tossing and a sustained upward gaze ('star gazing'), 

younger mice are indistinguishable from their normal littermates (+/+ and +/stg 

genotypes) (Noebels et al., 1990). Since the stargazer mutation is recessive, it was 

not possible to distinguish +/+ from +/stg mice on the basis of the phenotype alone. 

The genetic locus of the stargazer mutation was found to reside on mouse 

chromosome 15 (Noebels et al., 1990) and was mapped to between D15MU30 and 

the parvalbumin gene (Letts et al., 1997). The identity of the mutated gene 

'stargazin' was resolved and found to arise following an early transposon insertion 

that caused premature transcriptional arrest (Letts et al., 1998). 

The DNA primers employed to identify the mutation by Letts et al. (1998) were then 

used here in the genomic screen, to identify the genotype of +/+, +/stg and stg/stg 

mice for use as breeding pairs and for the generation of primary neuronal cell 

cultures (section 3.2.1; section 7.2.1; Ives et al., 2003; Chen et al, 2000). For the 

former, it was necessary to be able to identify adult +/+ from +/stg mice since the 

stargazer mutation is recessive and so the phenotype of both strains was normal. For 

culture puiposes, mice had to be sacrificed at P5/6, which was prior to the onset of a 

discernible stg/stg phenotype that would have allowed the segregation of +/+ and 

+/stg (control mice) from stg/stg (mutant mice). 

The results obtained with the genomic DNA PCR amplification screen were verified 

by monitoring the behaviour of mature mice that had been screened prior to the onset 

of a discernible stg/stg phenotype, to ensure mice identified as stg/stg by the screen 

developed the stargazer phenotype. Further more, if the screen was effective, 

crossing mice identified as +/stg would be expected to yield stg/stg offspring. 

Neonatal mice subsequently classified as stargazers (stg/stg) did indeed show the 
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ataxic gait, the head tossing and the upward gaze, as would be expected. 

Heterozygote mice were confirmed as +/stg by the birth of stg/stg offspring whilst 

those identified as +/+ produced no offspring showing the stargazer phenotype. 

Similar studies have been previously employed to identify a number of mouse 

mutants from their heterozygous and wild-type littermates, such as BDNF knockout 

mice (Henneberger et al., 2000), NMDA z2~'~ (NR2B) mice (Tovar et al., 2000), 

scrambler mice (Usman et al., 2000), dystrophia muscularis dy2J/dy2J mice (Vilquin 

et al., 2000) and wobbler mice (des Portes et al., 1994). 

3.3.2 Mouse strain-dependent variability 
A number of electrophysiological, pharmacological and biochemical properties of 

proteins have been found to differ between mouse strains. Bampton et al. (1999) 

found that differences occurred in maximal evoked EPSP slope and population spike 

amplitudes between 129 Ola mice and a number of other strains. They also found 

that DBA/2 mice not only showed a significantly reduced paired-pulse inhibition of 

population spike, a measure of inhibitory feedback, but also had a deficit in the 

maintenance of potentiation. Jones et al. (2001) also found that DBA/2 mice showed 

a lower, shorter potentiation of the population spike when compared to C57BL/6 

mice. C57BL/6 mice also showed a much lower C a 2 + response to tetanic stimulation 

of the hippocampi when compared to the response observed with C57BL/10 mice 

(Shuttleworth and Connor, 2001). 

Vulnerability of hippocampal neurons to kainate toxicity also differs between mouse 

strains. Hippocampal neurons from C57BL/6 mice are relatively resistant to kainate-

induced excitotoxicity whereas neurons from C57BL/10 mice are vulnerable. 

Differences in dendritic calcium signalling following exposure to kainate was 

thought to underlie this vulnerability, with a large C a 2 + signal which led to a 

degenerative cascade and cell death being observed in the neurons of C57BL/10 

mice. As the dendritic C a 2 + signals in C57BL/6 mice were smaller, the secondary 

responses leading to cell death did not occur (Shuttleworth and Connor, 2001). 
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The number of proliferating cells in the dentate gyrus also differs between strains, 

with C57BL/6 mice having a significantly larger number than Balb/C, CD1 (ICR) 

and 129Sv/J mice (Hayes and Nowakowski, 2002; Kempermann et al., 1997). Whilst 

proliferation in the dentate gyrus was similar in C3H/HeJ, A/J and DBA/2J mice, 

survival of the cells after 4 weeks was significantly higher in C3H/HeJ when 

compared to DBA/2J mice. Both C3H/HeJ and A/J mice produced significantly 

more 'new' neurons, compared to DBA/2 J mice whilst the DBA/2 J mice showed 

significantly more 'new' astrocytes (Kempermann and Gage, 2002). 

With cultured cerebellar granule cells (CGCs), it has been reported that mice CGCs 

do not require a depolarising concentration of K + in the culture medium (Mogensen 

et al., 1994). However, it has subsequently been shown that this also depended on 

the strain of mouse from which the CGCs were obtained; CGCs from Balb/C mice 

did not require a depolarising concentration of K + in the culture medium whilst 

CGCs from C57BL/6 mice did not survive without an increase in K + concentration 

(Fujikawa et al., 2000). 

The behavioural responses of mice in two anxiolytic tests, the light/dark choice test 

and the elevated plus-maze, were determined using nine strains of mice. The 

benzodiazepine diazepam reduced anxiety in the elevated plus-maze test in 

C57BIV6, DBA/2, NMRI and NZB mice. However, only the Balb/C and Swiss mice 

were responsive to diazepam in both tests (Griebel et al., 2000). FlumazeniL the 

competitive benzodiazepine antagonist, has been shown to induce partial agonist-like 

effects, by reversing behavioural responses in both the above mentioned tests in 

Balb/C mice but not in C57BL/6 mice (Belzung et al., 2000). These studies indicate 

that only certain strains of mice are suitable for investigating the effects of GABAR 

ligands. 

Previous work looking at GABAR subunit expression in stg/stg cerebella relied on 

the C57BL/6J strain for control tissue (Thompson et al., 1998). The work was 

repeated here, using age-matched controls from +/+ and +/stg mice, in order to 

ensure that the differences observed were due to the mutation and not due to strain 

variabilities. No decrease in a,i expression was observed in stargazer cerebellar 
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membranes (section 3.2.2.2), confirming the results obtained by Thompson et al. 

(1998). The decrease in ote expression observed in here in stargazer cerebella, using 

immunoblotting (section 3.2.2.3), immunohistochemistry (section 3.2.3) and receptor 

autoradiography (section 3.2.4), was comparable to that observed by Thompson et al. 

(1998), indicating that the decrease was indeed due to the stargazer mutation. 

3.3.3 Consequences of GABAR a 6 subunit reduction 
Cerebellar granule cells from B6C3Fe+ mice, the background strain to stargazer, 

express 51 % of subunit at the cell surface (Ives et al., 2002). As it has been 

shown here that stargazer cerebellar membranes contain only 34 % of the 

expressed in control cerebella (section 3.2.2.3), it is likely that the amount expressed 

at the cell surface would also be decreased. This indeed has been shown in cultured 

stg/stg cerebellar granule cells (Thompson et al., 2002b; Ives et al., 2003). Since the 

ot̂ -containing GABAR also contains <Xi, p2, P3, 72 and 8 subunits (Hevers et al., 2000; 

Jechlinger et al., 1998; Pollard et al., 1995), there is the possibility that the levels of 

the other receptor subunits may also be affected. 

P subunits have been shown to be associated with the a« subunit in cerebellar granule 

cells (Jechlinger et al., 1998; Pollard et al., 1995; Laurie et al., 1992). As the 

majority (83 %) of P2/3 subunits are found on the cell surface in mouse cerebellar 

granule cells (Ives et al., 2002), any reduction in the surface expression of the ot̂  

subunit would also lead to a decrease in the expression of the p2/3 subunits. 

Thompson et al. (1998) have indeed revealed a selective decrease in p3 subunits of 

the stargazer cerebellar to 38 % of control levels. No such decrease was observed for 

P2 subunits or in ax subunit expression (section 3.2.2.2; Thompson et al., 1998). 

The distribution of [3H] muscimol, a GABA agonist that binds to all GABARs, was 

revealed by receptor autoradiography in figure 3.8 (section 3.2.4.1). Binding within 

stargazer cerebellar sections, particularly within the granule cell layer, was reduced 

when compared to the binding observed with control sections. As specific 

[3H] Ro 15-4513 binding, which labels y2-containing receptors, was not significantly 

different between control and stargazer cerebella (section 3.2.4.2), it would appear 

that the y2 subunit was not decreased in stargazer cerebella. However, in the 
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cerebellum, under autoradiographic conditions, [3H] muscimol selectively labels ô -

containing receptors (Jones et al., 1997). It would seem likely, therefore, that the 

reduction in stargazer granule cell layer binding was due to a decrease in the level of 

expression of the 8 subunit. 

Indeed, the expression of the 5 subunit has been shown to be decreased in the 

stargazer cerebellar granule cell layer and at the surface of stg/stg CGCs. However, 

as similar amounts of 5 protein were found in both control and stg/stg CGCs, the 

lack of cell surface 8 expression implied an impairment in the surface trafficking of 

this subunit (Thompson et al., 2002b; Ives et al., 2003). 

3.3.4 Inappropriate expression of GABARs in stargazer dentate 

gyrus 
Rol5-4513 binds to the benzodiazepine-binding site on y-containing GABARs and 

can be displaced from y2-containing receptors by diazepam and similar ligands. 

However, in a small subset of y2 receptors, i.e. those containing 04 or 06 subunits 

(diazepam-insensitive receptors), Rol5-4513 is not displaced (Benke et al., 1997; 

Benke et al., 1996; Yang et al., 1995; Khan et al., 1994). The use of [3H] Rol5-4513 

and its displacement by flunitrazepam allows the distribution of different GABAR 

subunits to be revealed as any binding in the presence of flunitrazepam is due to the 

presence of 04 or o -̂containing receptors. 

As can be seen in figure 3.9, very little [3H] Ro 15-4513 binding was apparent in 

control hippocampus in the presence of flunitrazepam, indicating the scarcity of aiy-

containing receptors. However, increased binding was observed in stargazer 

hippocampus, particularly within the dentate gyrus, indicating an upregulation in ô y 

receptors. Since spike-wave discharges characteristic of absence epilepsy can be 

recorded in stargazer hippocampus (Qiao and Noebels, 1993), it is possible that this 

upregulation in a specific subset of GABARs is involved. 

Whilst some y2-containing GABARs have been shown to be extrasynaptic, the 

majority are concentrated at synapses in both hippocampal and cerebellar cells 

(Scotti and Reuter, 2001; Nusser et al., 1998b; Somogyi et al., 1996). This increase 
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in (X4Y receptors observed in the dentate gyrus of stargazer mouse would therefore 

imply an increase in the number of synaptic receptors. An increase in synaptic 

GABARs has been shown to occur in the dentate gyms of a rat model of temporal 

lobe epilepsy, where an increase in the protein expression of the 04 and y 2 subunits 

were observed in the dentate gyrus (Nusser et al., 1998a; Brooks-Kayal et al., 1998; 

Schwarzer et al., 1997; Tsunashima et al., 1997). Within these models of temporal 

lobe epilepsy, increased 8 subunit mRNA transcript and protein levels were also 

observed (Brooks-Kayal et al., 1998, Schwarzer et al., 1997). 

The 5 subunit has been shown to be associated with stargazin in vivo (Thompson et 

al., 2002; Ives et al., 2003). As neither stargazer forebrain membranes nor stargazer 

cerebellar membranes contained stargazin (section 6.2.2), it was suggested that 

stargazin was involved in the assembly and trafficking of the 5 subunit in cerebellar 

granule cells (Thompson et al., 2002; Ives et al., 2003). It could, therefore, be 

proposed that 8-containing receptors are decreased elsewhere in stargazer brain, such 

as the dentate gyrus where it is co-localised with the 04 subunit (Pirker et al., 2000; 

Sperk et al., 1997; Benke et al., 1991a). 

The 8-/- mouse, whilst bearing the 8 gene, is devoid of 8 protein (Mihalek et al., 

1999). Within the cerebellum, whilst no change was observed in the 

immunoreactivities for the ot« and p2 subunits, increased irnmunoreactivities were 

observed for the <Xi, P3, and y 2 subunits, which showed the greatest increase. This 

was reflected in an increase in the number of o^Py2-containing GABARs (Tretter et 

al., 2001). As the 8 subunit has been shown to be found at the extrasynaptic 

membrane of both mouse and rat cerebellar granule cells and the y subunit mainly at 

the synapse, (Nusser et al., 1998b; Somogyi et al., 1996), it is likely that the 

localisation of the receptors had changed, to reflect their mainly synaptic 

distribution. 

If the same theory were to be applied to stargazer dentate gyrus, we would expect no 

8 subunit protein or 8-containing receptors to be expressed at the extrasynaptic 

membrane. Instead, we would expect an increase in ay-containing receptors, 

particularly at the synaptic membranes. An increase in ouyrcontaining receptors was 
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indeed observed, as evidenced by the increased [3H] Rol5-4513 signal in the 

presence of flunitrazepam (section 3.2.4.2). 

3.3.5 Conclusion 
In conclusion, it has been shown that the genotype of +/+, +/stg and stg/stg mice can 

be determined using the genomic DNA screen employed. Cerebellar membranes 

from +/+, +/stg and stg/stg mice were probed for the expression of GABAR ax and 

Of, subunits. No difference in subunit expression was observed between +/+ and +/stg 

membranes. 

GABAR ai and 06 subunit expression was then quantified in control (+/+ and +/stg) 

and stargazer (stg/stg) cerebellar membranes: no difference was observed in a x 

subunit protein however, levels, as expected, were significantly lower in stargazer. 

Receptor autoradiography also revealed a decrease in de-specific radiolabelling in 

stargazer cerebella. Interestingly, the same studies appeared to imply an increased 

047 radiolabelling in stargazer dentate gyrus. 

Work by other members of the group has revealed the subcellular distribution of the 

a* subunit to be different in stg/stg cerebellum, with little extrasynaptic and a 

reduction in synaptic a* observed. Within these cells, a decrease in the GABAR 5 

subunit, which has an extrasynaptic localisation, was also described. Further work is 

currently being undertaken to elucidate the exact role of stargazin in the assembly 

and trafficking of GABARs. 
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Chapter 4 

NMDA receptor expression in stargazer brain 

4.1 Introduction 

The stargazer mutant mouse phenotype includes absence seizures and ataxia, both of 

which become apparent around P14 - P16 (Noebels et al., 1990; Qiao and Noebels, 

1993; Qiao et al., 1996). Coincidentally, a developmental switch in the expression of 

the NMDA receptor (NMDAR) subunits is observed - expression of the NR2B 

subunit begins to decline in the cerebellum, expression of the NR2C subunit begins 

to increase in the cerebellum and expression of the NR2D subunit decreases in the 

forebrain (Didier et al., 1995; Akazawa et al., 1994). 

Direct evidence for the possible involvement of NMDARs came from 

pharmacological studies on stargazer. The spike-and-wave discharges, which are 

observed during absence seizures, were suppressed in stargazer with the application 

of the non-competitive NMDAR antagonist, MK-801 (Aizawa et al., 1997). Other 

evidence implicating a role for the NMDARs in another model of absence epilepsy 

are outlined in section 4.1.2. 

Both BDNF mRNA and protein levels are selectively decreased in the stargazer 

cerebellum (Qiao et al., 1996, and Qiao et al., 1998, respectively). BDNF has been 

shown to affect the expression levels of the NMDAR subunits in both the forebrain 

and cerebellum, as outlined below (section 4.1.1). 

4.1.1 BDNF and NMDA receptors 
Within the forebrain, BDNF has been shown to affect NMDA receptors. Application 

of BDNF to hippocampal synaptoneurosomes and postsynaptic densities increased 

phosphorylation of the NR1 subunit (Suen et al., 1997). Within cultured cortical 

neurons, exposure to BDNF for 24 hi- caused a significant increase in the expression 

level of the NR2A subunit whilst decreasing the expression levels of the NR2B 

subunit (Small et al., 1998). 
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A role for BDNF in NMDAR-mediated synaptic transmission was shown in cultured 

embryonic hippocampal neurons, where in the presence of CNQX (6-cyano-7-

nitroquinoxaline-2,3-dione), a non-NMDAR antagonist, BDNF depressed EPSCs 

(Song et al., 1998). BDNF was also shown to increase the amplitude of the inward 

current induced by glutamate in the same cell preparation, an increase that was 

reduced in the presence of AP5. IfenprodiL an NDMAR antagonist which is selective 

for the NR2B subunit, was shown to reproduce the reduction seen with AP5, 

suggesting that BDNF enhanced the activity of NR2B containing NMDARs (Crozier 

et al., 1999). 

In cultured cerebellar granule cells, application of NMDA increased BDNF mRNA 

levels, a response which was inhibited by MK-801 (Favaron et al., 1993). BDNF 

itself was shown to decrease the expression of NR2A and NR2C subunits and 

NMDA-mediated increases in intracellular calcium concentrations, indicating a 

possible downregulation of the NMDAR (Brandoli et al., 1998). 

4.1.2 NMDARs have been implicated in a model of absence seizures 
Like stargazer, the GAERS Wistar rat (Genetic Absence Epilepsy Rats from 

Strasbourg) presents with spontaneous recurrent absence seizures, which are 

characterised by bilateral synchronous spike-and-wave discharges (SWD). The use 

of NMDA and NMDAR antagonists revealed that NMDA neurotransmission within 

the thalamus played a role in the control of absence seizures (Koerner et al., 1996). 

Injection of NMDAR antagonists into the substantia nigra and muscimol, a GABA 

agonist, into the subthalamic nucleus, which projects glutamatergic afferents to the 

substantia nigra, led to the suppression of seizures (Deransart et al., 1996). NMDA 

was shown to increase, in a dose-dependent manner, the number of SWD (Peeters et 

al., 1990) and MK-801 has been shown to both reduce the number and mean 

duration of SWD in this model (Peeters et al., 1989). 

4.1.3 NMDAR sublimits and motor coordination 
Stargazer mice show a severe impairment of motor coordination and balance, as 

judged using a plastic rod test. Adult stargazer mice were unable to balance on the 
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stationary rod for more than 5 seconds and were unable to remain on the rotating rod 

for any significant length of time (Qiao et al., 1996). 

Transgenic mice engineered with either truncated NMDAR subunits or lacking one 

or more subunits also show defects in motor coordination. Mice deficient in either 

the NR2A (NR2A"/_) or the NR2C (NR2C"'") subunit showed no overt motor 

coordination problems, as measured using a wooden bar or in a rotarod test using a 

gritted roller. Mice deficient in both subunits, however, had trouble walking on the 

narrow wooden bar and failed to stay on the rotating rod (Kadotani et al., 1996). 

NR2C_/" mice and mice with C-terminal truncation of NR2C (NR2C A C / A C ) were both 

able to balance on a rotating rotarod but had trouble balancing on a stationary 

plexiglass rod, leading the authors to speculate that this was due to a deficit in the 

fine-tuning of motor control (Sprengel et al., 1998). 

Mice with C-terminal truncation of NR2A (NR2A A C / A C ) were unable to stay on either 

the stationary rod or the rotating rod for the same length of time as wild-type mice. 

These deficits in balance were reproduced by mice with truncated NR2A and NR2C 

C-terminals (NR2A / C A C / A C ) but not by N R 2 C A C / A C mice, indicating a dominance of 

the NR2A subunit and that more severe consequences arose from truncating the 

subunit than ablating it (Sprengel et al., 1998). 

Finally, mice in which cerebellar Golgi cells were ablated also showed problems 

balancing on a thin wooden bar and on a rotating rod. Both GABA immunoreactivity 

and GABA-mediated feedback inhibition of granule cell excitation were abolished 

by the Golgi cell elimination. This elimination resulted in the attenuation of 

functional NMDARs in the granule cells, indicating that both GABA inhibition and 

NMDAR activation were essential for motor coordination (Watanabe et al., 1998a). 

4.1.4 NMDAR antagonists and motor coordination 
NMDAR antagonists are thought to have a therapeutic role in conditions such as 

epilepsy and stroke, however, they also show adverse side effects including effects 

on locomotion and ataxia. MK-801 protected against NMDA-induced seizures at 
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doses that produced ataxia and a stimulation of locomotor activity. Memantine, 

ibogaine and ADO, all non-competitive NMDAR antagonists, also protected against 

NMDA-induced seizures. However, at higher concentrations, these compounds also 

produced ataxia (Geter-Douglass and Witkin, 1999). MK-801 acts as an 

anticonvulsant against kainate-induced seizures, however, in neonatal rats, the side 

effects included ataxia and limb cycling (Stafstrom et al., 1997). Intravenous 

injection of MK-801 into rats induced behaviours which consisted of 

hyperlocomotion, head-weaving and ataxia (Tortella and Hill, 1996) whilst 

subcutaneous administration of MK-801 also produced ataxia, stereotypy and 

changes in locomotion (Haggerty and Brown, 1996). 

4.1.5 Work undertaken in this chapter 
Since NMDAR have been implicated in both absence epilepsy and ataxia, which are 

both observed in stargazer, it is conceivable that the expression of the NMDAR in 

stargazer is disrupted. 

In order to elucidate the role played by NMDAR in stargazer, antibodies against the 

principal NMDAR subunits (NR1, NR2A, NR2B and NR2C/D) were generated. 

These antibodies (NR1, NR2A, NR2B and NR2C/D) were then used to both quantify 

the levels and the distribution of the NMDAR subunits expressed in the stargazer 

brain. [3H] MK-801 was also employed in pharmacological studies to deduce 

whether the number and type of NMDARs expressed in stargazer brain differed from 

those in control brain. 

4.2 Results 

4.2.1 Antibody production and purification 
Peptides to the NMDAR subunits NR1 (17 - 35), NR2A (1381 - 1394), NR2B 

(46 - 60) and NR2C/D (1307 - 1323) were commercially synthesised and coupled to 

carrier proteins, as outlined in section 2.3.2. The rabbits were immunised against the 

respective coupled-peptides, bled and sera obtained (section 2.3.3). The sera were 

screened by ELISA, in order to determine the titles of the antibodies, as described in 

section 2.3.4. 
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Figure 4.1 ELISA of NMDA receptor NR2A subunit-specific antisera, taken from the 
second bleed of a New Zealand White rabbit immunised against the peptide-
thyroglobulin conjugate to the NR2A subunit Absorbance was read at a wavelength 
of 492 nm (A491) . Total A492 for sera incubated in the presence (NR2A, 'T') and 
background A w for sera incubated in the absence of the NR2A peptide (NR2A, 'B') 
are shown, along with the specific absorbance (NR2A). The litre for this particular 
batch of sera was 1:6000 dilution. 

Immunogenic responses to the peptides were obtained in the bleeds taken from the 

rabbits. The size of the response varied from peptide to peptide and from bleed to 

bleed. Figure 4.1 shows a typical response obtained against the NR2A peptide. A 

large response was observed when the sera were incubated with the peptide. A much 

smaller response was observed when the sera were incubated with the vehicle alone, 

thereby producing the background absorbances. Specific absorbances of the sera 

over a dilution range (1/10 - 1/31600), and thus the titre, were deduced by 

subtracting the background value from the total values obtained. 

Graphs, such as those in figure 4.1, were obtained for antisera directed against the 

NR1, NR2B and NR2C/D subunit peptides. From such graphs, the titres for each of 

antisera were calculated. The titre for the sera against the NR1 peptide was 1:38 

dilution, the NR2A peptide was 1:6000 dilution, the NR2B peptide was 1:115 

dilution whilst that for the NR2C/D peptide 1:15 dilution. Further immunisations 

were undertaken to boost the immune response. Typically, an immune response titre 
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of 1:1000 was considered feasible for further use and so immunisations were 

continued until this was achieved. 

The immunised rabbits were bled and the immune sera collected, as described in 

chapter 2 (section 2.3.3). Antibodies were purified from the immune sera using the 

respective peptide-coupled affinity columns. Fractions (1 ml) were eluted from the 

columns and the antibody-containing fractions were determined by 

spectrophotometry. The peak antibody-containing fractions were combined and 

diabysed against PBS containing sodium azide (0.02 % w/v). The concentration of 

the combined antibody was determined and the antibodies were stored at either 4°C 

or -20°C, as detailed in section 2.3.6 

Purified antibodies were generated from all bleeds obtained from the rabbits. The 

concentration of the purified antibodies varied both from bleed to bleed, from 

109 ug/ml (for NR2B bleed 4) to 584 ug/ml (for NR1 bleed 4). The optimal 

concentrations of each antibody required for immunoblotting and 

immunohistochemistry were determined as described below, in sections 4.2.3 and 

4.2.4 respectively. 

4.2.2 Screening of antibodies against recombinantly expressed 

NMDAR subunits 
NMDAR subunit cDNAs for NR1, NR2A and NR2C were individually expressed in 

HEK293 cells, using the calcium phosphate precipitation method (Chazot et al., 

1994). The expressed proteins were precipitated from detergent-solubilised cells and 

resuspended in SDS-PAGE buffer, as outlined in section 2.6. 

The recombinantly expressed NMDAR subunits were analysed following SDS-

PAGE on 7.5 % acrylamide resolving mini-gels and electrotransferred onto 

nitrocellulose, as described in section 2.7. The immunoblots were probed with 1 -
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Figure 4.2: Recombinant^ expressed NMD A NR1, 2 A AND 2C subunits were 

probed with subunit-specific antibodies by immunoblotting. The recombinant 

proteins were probed with 1 ug/ml anti-NRl antibody (A and B), 2 ug/ml anti-

NR2A antibody (C) or 4 ug/ml anti-NR2C/D antibody (D). Control forebrain and 

cerebellar membranes were also probed with the anti-NRl antibody (B). The 

molecular weights are shown to the left hand side of each immunoblot, in kDa. 

The anti-NRl antibody recognises a single band in the R l lane, at approximately 

120 kDa, corresponding to the NR1 subunit. This antibody also detected a signal of 

the same weight in both the membranes. The anti-NR2A antibody recognises a band 

at approximately 180 kDa in the 2A lane, which corresponds to the NR2A subunit. 

The anti-NR2C/D antibody recognises several proteins in the 2A and 2C lanes, 

however, it is only in the 2C lane that a protein corresponding to the NR2C subunit 

(with a molecular weight of -140 kDa) is detected. 
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2 ug/ml anti-NRl, 2 |ng/ml anti-NR2A or 4 ug/ml anti-NR2C/D subunit-specific 

antibodies (figure 4.2). 

As can be seen in figure 4.2A, when the recombinantly expressed NR1, NR2A and 

NR2C proteins were probed with the anti-NRl subunit-specific antibody, only the 

NR1 recombinant was identified, at approximately 120 kDa. This clearly showed 

that the anti-NRl antibody recognised a single protein species with an Mr of 

120 kDa, as predicted for NR1, confirming the specificity of the anti-NRl antibody. 

In figure 4.2B, the anti-NRl antibody recognised a single band at ~ 120 kDa in the 

NR1 recombinant. This same band was visible in both the cerebella and forebrain 

samples. It would, therefore, appear that the NR1 protein was, as expected, present in 

both control cerebella and forebrain membranes and that the anti-NRl antibody was 

able to recognise the native mouse protein. 

The recombinantly expressed proteins were then probed with the anti-NR2A subunit-

specific antibody (figure 4.2C). The anti-NR2A antibody recognised a band of M, 

-180 kDa only in the lane containing the NR2A recombinant protein. When brain 

membranes were probed with the anti-NR2A antibody, the ~ 180 kDa band was seen 

in both the control cerebellar and forebrain membranes, confirming that the antibody 

recognised the native NR2A protein. 

Figure 4.2D shows an immunoblot where recombinant NR1, NR2A and NR2C were 

probed with the anti-NR2C/D subunit-specific antibody. No signal was detected with 

the NR1 recombinant protein. The anti-NR2C/D antibody recognised a band at 

approximately 140 kDa, which corresponded to the predicted weight for the NR2C 

protein, with the NR2C recombinant protein. Various bands were seen with the 

NR2A recombinant protein but none of these were of the correct size. 

The anti-NR2C/D antibody also recognised the same sized band in the cerebellar 

membranes as in the NR2C recombinant protein thereby implying that the anti-

NR2C antibody recognised the native protein. No band of the correct molecular 

weight was seen with the forebrain membranes. This is consistent with evidence that 
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the NR2C subunit is essentially absent from the adult forebrain but heavily 

expressed in cerebellar granule cells (Wenzel et al., 1995). 

The anti-NR2C/D antibody was raised to a peptide sequence corresponding to the C-

terminal 16 amino acids of NR2D. However, there is a high degree of sequence 

similarity at the C-terrnini of NR2C and NR2D, in that the final 7 amino acids of 

each subunit are identical. Subsequently, in cerebellar membranes, the anti-NR2C/D 

antibody recognised two immunoreactive species on immunoblots. The upper band 

at ~ 150 kDa corresponded to the NR2D subunit and was just above the band which 

corresponded to the NR2C subunit. A band of similar size was also observed in the 

forebrain membranes and also corresponded to the NR2D subunit. 

4.2.3 Immunoblotting of mouse brain NMDAR su bun its 

4.2.3.1 Detection of mouse brain NMDAR subunit immunoreactive 

species 
The optimal concentrations of each antibody were determined for immunoblotting by 

probing cerebellar and forebrain membranes (10 ug) derived from control mice with 

a range of antibody concentrations. Figure 4.3 is a representative immunoblot where 

forebrain and cerebellar membranes were probed with 0.125 ug/ml, 0.5 ug/ml or 

2 |.Lg/ml of anti-NRl antibody. However, the antibody used came from two bleeds, 

bleeds three and four. As can be seen in figure 4.3, a strong NR1 signal was seen 

even with the lowest concentration of antibody from bleed 4. This process was 

repeated for each antibody purified from every bleed in order to optimise the 

concentration of each antibody to be used for immunoblotting. 

The levels of the NR1, NR2B, NR2C and NR2D subunits were determined using the 

subunit-specific antibodies. A protein concentration range of control and stargazer 

cerebellar and forebrain membranes were loaded onto 6.5 % or 7.5 % SDS-PAGE 

resolving mini-gels. These were then transferred onto nitrocellulose, as described in 

section 2.7, and subsequently probed for the level of expression of the subunit of 

interest relative to p-actin, which was used as a normalising protein. 
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Figure 4.3 Determination of the optimal concentration of purified antibody. Control 

forebrain (FB) and cerebellar (CB) proteins were probed with anti-NRl antibody 

purified from sera collected from either bleed 3 or bleed 4. The bleed 4 purified 

antibody was used at a concentration of 0.125 ug/ml, 0.5 ML/ml or 2 ML/ml, whilst 

the bleed 3 antibody was used at a concentration of 0.5 ML/ml. All the 

concentrations used detected the NR1 protein in both the cerebellar and the forebrain 

proteins. 

The molecular weights are shown to the left of the immunoblot. 
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The NR1 subunit was present in both the control cerebellum and the forebrain, as 

can be seen in figures 4.4A and 4.4C. The NR1 subunit was also present in stargazer 

cerebellar and forebrain membranes (figures 4.4A and 4.4C respectively). 

Figures 4.5 A and 4.5B show the level of expression of the NR2B subunit and P-actin 

protein within control and stargazer cerebellar membranes. The NR2B subunit was 

present in control forebrain membranes (figure 4.5A). The NR2B subunit was also 

present within the stargazer forebrain. As can be seen in figure 4.5A, the levels of 

expression of the NR2B subunit were too low to be detected within both control and 

stargazer cerebellar membranes. The immunoblots were subsequently probed for the 

expression of P-actin and this was clearly detected (figure 4.5B), proving that these 

results are not due to protein loading errors. 

The NR2C and NR2D subunits were both detected in control and stargazer cerebellar 

membranes (figure 4.5C). Although the NR2D subunit was clearly detected in both 

control and stargazer forebrain membranes, the NR2C subunit was not detected in 

either control or stargazer forebrains, or, at least, was below the level of sensitivity 

of detection by immunoblotting. 

4.2.3.2 Quantitative immunoblotting of the NMDAR subunits 
As cerebellar and forebrain membranes were probed for NMDAR subunit-specific 

immunoreactivities and subsequently for P-actin immunoreactivity, the levels of 

expression (in both control and stargazer tissue) could be determined by computer-

assisted densitometry. The optical densities of the subunit signals were measured and 

adjusted, or normalised, according to the relative expression levels of the 

housekeeping gene protein product, p-actin. These signals were also determined by 

image densitometry. The results obtained from the stargazer membranes were 

normalised to those obtained from the control membranes, which were arbitrarily 

assigned a value of 100 %. 
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Figure 4.4 Expression of NR1 subunit protein and actin in control and stargazer 

forebrain and cerebellar membranes. Control (ctl) and stargazer (stg) cerebellar 

membranes were probed with anti-NRl antibody (A) and anti-actin antibody (B). 

Control and stargazer forebrain membranes were also probed with the anti-NRl 

antibody (C) and the anti-actin antibody (D). 

Both antibodies detected the relevant proteins in the immunoblots (red arrows). A 

range of protein concentrations was used (1.25 ug/10 ul - 10 jig/10 ul) in order to be 

used for quantitative immunoblotting. 
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Figure 4.5 Immunoblot showing expression of NR2B and NR2C/D proteins in 

forebrain and cerebellar membranes. Control (ctl) and stargazer (stg) cerebellar 

proteins were probed with the anti-NR2B antibody (A) before being reprobed with 

the anti-actin antibody (B). Also probed were control forebrain membranes (FB). 

Whilst NR2B was detected in the forebrain membranes, no signal was obtained with 

either control or stargazer cerebellar membranes. 

Control and stargazer cerebellar membranes were probed for the expression of 

NR2C and NR2D subunits (C), using the anti-NR2C/D antibody, before being 

reprobed for actin expression (D), using the anti-actin antibody. 

A range of proteins was used in order to quantify the levels of expression of the 

subunits in the control and stargazer cerebellum. 

The molecular weights are shown to the left of each of the immunoblots. 
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Figure 4.6 Bar chart showing comparative expression levels of the NMDAR subunits 
NR1, NR2B, NR2C and NR2D in stargazer forebrain and cerebellar membranes, 
relative to control tissues. Optical densities were obtained and normalised using those of 
corresponding |V-actin immunoreactivities. The immunoreactive signal obtained with 
control cerebellar and forebrain membranes was assigned an arbitrary value of 100 %. 
For actual values, see table 4.1 below, n = 3 - 4 samples from both control and stargazer 
forebrains and cerebella membranes; immunoblotting conducted 4 times. 

As can be seen in figure 4.6, the NR1 and NR2D subunits were detected in both 

stargazer forebrain and cerebellar membranes. NR2B protein, as expected, was only 

detected in both control and stargazer forebrain membranes; it was not detected in 

either control or stargazer cerebellar membranes. The NR2C subunit was detected in 

both control and stargazer cerebellar membranes whilst no NR2C protein was 

detected either in control or stargazer forebrain membrane. 

v 
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Forebrain Cerebellum 
NR1 166.5 % ± 2 7 . 1 % 128.6 % ± 28.0 % 
NR2B 141.4% ± 2 6 . 6 % 
NR2C 74.3 % ± 10.0% 
NR2D 142.8% ± 4 1 . 4 % 100.7 % ± 18.6% 

Table 4.1 Table showing levels of expression of the NMDA receptor subunits as 
percentages of control, where control = 100 %. Values are expressed as mean ± sem, 
a = 3 - 4 samples from control and stargazer forebrains and cerebella membranes; 
immunoblotting conducted 4 times. There were no significant differences in the 
expression levels of any of the NMDAR subunits in stargazer forebrain or cerebellar 
membranes when compared to tissue prepared from age-matched controls, as 
determined using Student's f-test (P > 0.05). 

As can be seen in both figure 4.6 and table 4.1, whilst expression levels of the NR1 

subunit in both the forebrain and cerebellum, the NR2B subunit in the forebrain and 

the NR2D subunit in the forebrain, were greater than the expression levels in control 

brain tissue, the expression levels of these subunits were not significantly increased. 

Similarly, although it appeared that the expression level of the NR2C subunit was 

decreased in stargazer cerebellum, this result was not significantly lower than 

control. Note also that NR2B, a marker of immature cerebellar neurons, was not 

detected in adult stargazer cerebellar membranes. 

4.2.4 Inununohistochemical localisation of NMDAR subunits 
Brain sections from paraformaldehyde-perfusion fixed adult control and stargazer 

mice were probed with the NMDAR subunit-specific antibodies, as described in 

section 2.12. Sections were originally incubated with a range of primary antibody 

concentrations (0.125 - 2 ug/ml) to optimise the specific versus non-specific signals 

obtained for each primary antibody. The anti-NRl antibodies were used at a 

concentration of 0.5 ug/ml and the anti-NR2A antibody was used at 

0.25 - 0.5 ug/ml. The anti-NR2B antibody was used at 0.5 - 1 ug/ml whilst the anti-

NR2C/D antibody was used at 1 ug/ml. 
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Figure 4.7 Control (A and B) and stargazer (C and D) mouse brain sections were 

analysed by immunohistochemistry, using anti-NRl subunit specific antibodies. 

Staining was seen within the control cerebellum (A), particularly within the granule 

cell layer (GL) and the cell bodies of the Purkinje cell layer (PL). Some staining was 

seen within the dendrites of the molecular layer (ML) whilst it was absent from the 

white matter (WM). Similar staining was observed within the stargazer cerebellum 

(D) 

Scale bars represent 1 mm (A and C) or 100 um (B and D). 
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4.2.4.1 Immunostaining with the anti-NRl antibody 
Specific anti-NRl immunostaining (figure 4.7 A and table 4.2) in the cerebellum of 

control and stargazer mice was observed within Purkinje cell bodies and cerebellar 

granule cells (figure 4.7B). Staining patterns were qualitatively similar between 

control and stargazer cerebella (figures 4.7C and 4.7D and table 4.3). 

NR1 staining was also observed within the forebrain of both control and stargazer 

mice (see tables 4.2 and 4.3). Both control and stargazer hippocampi were 

immunopositive for NR1 staining. Staining within the dentate gyrus was detected 

mainly within the molecular layer with some staining observed within the granule 

cell layer. Moderate staining was observed within the pyramidal cell layers of CA1-

CA3 regions in both control and stargazer hippocampi. 

4.2.4.2 Immunostaining with the anti-NR2A antibody 
NR2A was present throughout most of both the control and stargazer forebrain. 

Areas of strong anti-NR2A immunostaining included the cerebral cortex and the 

hippocampus (tables 4.2 and 4.3). Within the hippocampus, the immunostaining was 

detected in the stratum alveole of the CA1-CA3 regions and within the molecular 

layer of the dentate gyrus. Immunostaining was observed within the control 

cerebellum, where the cerebellar granule cells and the Purkinje cell bodies both 

showed moderate to high cell staining (figure 4.8 and table 4.2). A similar staining 

pattern was observed within the stargazer cerebellum, although the staining appeared 

less intense than that within the control cerebellum (figure 4.8 and table 4.3). 

4.2.4.3 Inimunostaining with the anti-NR2B antibody 
NR2B was thought not to be present within the adult cerebellum, although it is 

present in the adult forebrain. NR2B irnmunostaining has been shown to be 

prominent in the Purkinje cell bodies and dendrites and yet, absent from the granule 

cell layer (Thompson et al., 2000). In this study using the same antibodies, anti-

NR2B-specific staining was observed within the cell bodies of the Bergmann glia, at 

the border of the Purkinje cell layer and the molecular layer, as well as within the 

dendrites of the Bergmann glia in the molecular layer of the control cerebellum 
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Figure 4.8 Immunohistochernical analysis of NR2A within the cerebellum of control 

(A and B) and stargazer (C and D) mice. Sagittal sections were stained using the 

anti-NR2A antibody and DAB. Staining was seen within control cerebellum (A), 

particularly within the granular layer (GL), within the cell bodies of the Purkinje cell 

layer (PL) and within the dendrites of the molecular layer (ML). No staining was 

seen within the white matter of the cerebellum (B). NR2A labelling was also 

observed within the stargazer cerebellum (C), where staining was detected within the 

granular layer and the cell bodies of the Purkinje cell layer (D). Some punctate 

staining was visible within the cell bodies of the molecular layer. 

Scale bars represent 1 mm (A and C) or 100 um (B and D). 



G L M L 
M P L 



(table 4.2). A similar distribution was observed within the stargazer cerebellum 

(table 4.3). 

Some irnmunostaining was observed within the control forebrain and within the 

stargazer forebrain (tables 4.2 and 4.3 respectively). Immunoreactrvity was detected 

within the cortex, the thalamus and the hippocampus. Within the hippocampus, 

staining was observed within the CA1 and CA3 regions, mainly within the stratum 

radiatum. Within the dentate gyrus, specific irnmunostaining was observed in the 

molecular and polymorphic layers. This was observed in both control and stargazer 

forebrains. 

4.2.4.4 Immunostaining with the anti-NR2C/D antibody 
The anti-NR2C/D antibody also revealed immunostaining throughout the brain with 

the cerebellum, hippocampus, cerebral cortex and striatum stained. The CA1 and 

CA3 regions of the hippocampus showed a low level of staining in both control and 

stargazer, with no irnmunostaining evident within the pyramidal cell layer. Within 

the dentate gyrus, whilst staining was observed within the polymorphic layer, the 

most intense staining was observed within the molecular layer (see tables 4.2 and 

4.3). 

Specific immunostaining was observed throughout the control cerebellum (figure 

4.9A and table 4.2) and stargazer cerebellum (figure 4.9C and table 4.3). Within the 

control cerebellum, immunoreactivity was detected in the cerebellar granule cells 

and the Purkinje cell layer. Within this cell layer, irnmunostaining appeared to be 

localised to basket cells. Some staining was also detected within the dendrites of the 

molecular layer (figure 4.9B). NR2C/D irnmunostaining was also detected within the 

granule cell layer in the stargazer cerebellum (figure 4.9D). However, the 

immunostaining observed within the Purkinje cell layer of control cerebellum was 

reduced in stargazer cerebellum. 
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Figure 4.9 Immunohistochemical analysis of NR2C and NR2D within the 

cerebellum of control (A and B) and stargazer (C and D) mice. Sagittal sections were 

stained using the anti-NR2C/D subunit-specific antibody and DAB. Staining was 

observed within the control cerebellum (A), where the majority of immunostaining 

was seen within the granule cell layer (GL); however, some staining was also seen 

within some of the dendrites of the molecular layer (ML). Immunostaining was also 

detected in the basket cells of the Purkinje cell layer (PL). No staining was detected 

within the white matter (WM) (B). 

A similar staining pattern was observed within the stargazer cerebellum (C), with the 

majority of the staining been seen within the granular layer (D). 

Scale bars represent 1 mm (A and C) or 100 urn (B and D). 
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NR1 NR2A NR2B NR2C/D 
Cerebral Cortex ++/+++ ++/+++ ++ 

Hippocampus 
Amnion's horn 

CA1 + + +/++ + 
CA3 + + +/++ + 

Dentate Gyrus 
Molecular layer ++ +/++ ++ +/++ 
Granule cell layer + + - -

Polymorphic layer -/+ -/+ + + 

Caudate-Putamen +++ ++ ++ ++ 

Thalamus ++ ++ ++ ++ 

Cerebellum 
Granule cell layer ++ ++ - +++ 
Purkinje cell layer +++ +++ + +++ 
Molecular layer -/+ + + + 

Table 4.2 Relative expression levels of the NMD AR subunits within control brain. Levels 
were estimated by visual comparison of DAB stained sections. - = staining at 
background levels; + = low staining; ++ = moderate staining; +++ = high staining; 

l l l l = very high level of staining, n = 4 - 8 sections from 2-4 mice. 
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NR1 NR2A NR2B NR2C/D 
Cerebral Cortex +++ ++/+++ ++/+++ ++ 

Hippocampus 
Amnion's horn 

CA1 + + + + 
CA3 + + + + 

Dentate Gyrus 
Molecular layer ++ +/++ + +/++ 
Granule cell layer - /+ - - -

Polymorphic layer - /+ - /+ + + 

Caudate-Putamen +++ ++ + ++ 

Thalamus +++ ++ + ++ 

Cerebellum 
Granule cell layer ++ + - +++ 
Purkinje cell layer ++ ++ + + 
Molecular layer - /+ - /+ + + 

Table 4.3 Relative expression levels of the NDMAR sublimits within stargazer brain. 
Levels were estimated by visual comparison of DAB stained stargazer sections with 
DAB stained control sections. - = staining at background levels; + = low staining; 
++ = moderate staining; +++ = high staining; m i = very high level of staining, n = 4 -
8 sections from 2-4 mice. 

4.2.5 Radioligand Binding 
Both the previous experiments, i.e. quantitative immunoblotting and 

irnmunohistochemistry, revealed the expression levels and distribution of the 

NMDAR subunits within control and stargazer brains. This does not illustrate the 

expression of the final NMDA receptor complex. This was determined by 

radioligand binding experiments - by using both brain membrane preparations (see 

sections 4.2.5.1 and 4.2.5.2) and whole slices (see section 4.2.5.3). 

4.2.5.1 [3H] MK-801 Binding 
Initial experiments were performed in order to optimise [ 3 H] MK-801 binding using 

homogenised control forebrain membranes. The forebrain membranes were prepared 

according to the protocol for the P2 membrane preparation (see section 2.8). 
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The binding parameters for [ 3 H] MK-801 binding were determined by incubating 

control forebrain membranes with 200 nM [ 3 H] MK-801, 15 uM glutamate, 5 uM 

glycine and with 10 uM MK-801 (for non-specific binding). The effects of 

temperature and incubation time were then determined. From these initial 

experiments, it was decided to perform the radioligand binding experiments at room 

temperature and with an incubation time of 2 hrs. 

[ H] MK-801 binding, using a range of radioligand concentrations, was performed 

on control and stargazer forebrain membranes, as described in section 2.9.1.1, with 

the data then undergoing Rosenthal transformations in order to accurately determine 

K D and B m a x (figure 4.10). 
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Figure 4.10 [3H] MK-801 binding on control forebrain membranes. (A) Binding isotherm 
showing total, non-specific and specific binding. (B) Rosenthal transformation of the 
specific binding results, n = 2 experiments, each consisting of tissue from 10 - 15 control 
forebrains. 

Similar experiments were undertaken using stargazer forebrain membranes instead 

of control forebrain membranes (figure 4.11). 
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Figure 4.11 [3H] MK-801 binding in stargazer forebraln membranes. (A) Binding 
isotherm showing total, non-specific and specific binding. (B) Rosenthal transformation 
of the specific binding results, n = 2 experiments, each consisting of tissue from 10-15 
stargazer forebrains. 

B m a x and K D were determined for both control and stargazer forebrain membranes 

using Prism. The B m a x for the control forebrain was 175.7 ± 7.3 fmol/mg protein 

whilst that for the stargazer forebrain was 169.3 ±9 .1 fmol/mg protein. The K D for 

control forebrain was 6.4 ± 0.9 nM, whilst that for stargazer forebrain was 

7.8 ± 1.4 nM. Neither the B m a x nor the K D for stargazer forebrain membranes were 

significantly different from those of control forebrain membranes. 

As the B m a x of control forebrain was the same as the B m a x of stargazer forebrain, this 

would imply that the number of binding sites was unchanged in the two tissue 

preparations. The fact that the K D was the same in both the control forebrain 

membranes and the stargazer forebrain membranes would imply that the affinity of 

the radiolabel for its receptor (i.e. the NMD A receptor) was unchanged. 

Cerebellar membranes were also employed to determine the binding parameters of 

[ 3 H] MK-801 in control and stargazer cerebella. 
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Figure 4.12 [3H] MK-801 binding in control and stargazer cerebellar membranes. (A) 
Binding isotherm showing specific binding of the radioligand in cerebellar membranes. 
(B) Specific binding of 90 nM [3H] MK-801 to 100 ug protein, n = 2 experiments, each 
consisting of tissue taken from 10 - 15 control and stargazer cerebella. 

Figure 4.12A shows the amount of specific binding obtained with control and 

stargazer cerebellar membranes. These data were obtained from total and non­

specific binding curves. As can be seen, the stargazer specific binding curve lies 

along the control specific binding curve. 

Figure 4.12B shows the amount of binding with a single concentration of radioligand 

to stargazer and control cerebellar membranes. Saturation curves were plotted for 

both control and stargazer cerebellar membranes but these were unsatisfactory. Due 

to the amount of tissue required to obtain a full saturation curve, and the limited 

amount of tissue available, single point assays were undertaken instead. The amount 

of [ 3 H] MK-801 bound to control membranes was 76.6 fmol/mg whilst the amount 

bound to stargazer cerebellar membranes was 72.3 fmol/mg. 

The data were analysed using Prism to determine the maximum number of binding 

sites (B m a x ) and the dissociation constant (K D ) ; B m a x was calculated to be 

156.8 ± 80.1 fmol/mg protein in control cerebellar membranes and 

442.5 ± 507.7 fmol/mg protein in stargazer cerebellar membranes; K D was calculated 

to be 107.0 ± 85.8 nM and 396.9 ± 548.5 nM in control and stargazer cerebellar 

membranes respectively (results expressed as mean ± standard deviation). 
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It was thought that the small amount of specific binding was due to the cerebellar 

preparations having two binding sites for the radioligand. This was tested, in Prism, 

using an F-test. Testing the results from both control and stargazer cerebellar 

membranes revealed that both preparations fitted one-binding site models. 

Due to the high standard deviations obtained with stargazer cerebellar membranes, it 

was not possible to use this tissue for further radioligand binding experiments. 

However, as satisfactory results were obtained with forebrain tissue (i.e. means with 

small standard deviations), these tissues were used for remacemide displacement 

assays (see section 4.2.5.2 below). 

4.2.5.2 Remacemide displacement of [3H] MK-801 
Remacemide, an anti-epileptic that binds to NMDA receptors and inhibits the 

binding of MK-801 to the NMDAR (Subramaniam et al., 1996), was then used to 

displace [ 3 H] MK-801 from NMDA receptors. A range of concentrations of 

remacemide was used with 10 nM [ 3 H] MK-801 and displacement curves obtained 

for both control and stargazer forebrain membranes, as described in section 2.9.1.2. 
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Figure 4.13 Remacemide displacement of [3H] MK-801 from control and 
stargazer forebrain membranes. The graph represents the combined results from 
2 separate experiments with each membrane preparation. 
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Figure 4.13 shows the effect of increasing concentrations of remacemide on the 

binding of [ 3 H] MK-801 in both control and stargazer forebrain membranes. The 

IC 5 0 was determined for both tissue preparations and was calculated to be 

125.2 ± 19.0 uM for control forebrain and 126.1 ± 7.3 uM for stargazer forebrain 

(results expressed as mean ± standard deviation). Remacemide displaced the 

radioligand in both control and stargazer forebrains. As there was no difference 

between the I C 5 0 for the remacemide in either tissue preparation, this implied that the 

pharmacology was the same in both the control and stargazer forebrains. 

4.2.5.3 Autoradiographic localisation of NMDAR 
[ J H] MK-801 was also used for autoradiographic binding on frozen whole sections 

taken from both control and stargazer brains (see figure 4.14). The slides were 

prepared and incubated as described in section 2.10. For the non-specific binding, a 

high concentration of the cold ligand (10 uM MK-801) was used to displace the 

radioligand (20nM [ 3 H] MK-801). 

As can be seen in figure 4.14A, [ 3 H] MK-801 binding was seen in the control brain, 

mainly within the forebrain structures of the cortex and the hippocampus. A similar 

binding pattern was observed within the stargazer forebrain (figure 4.14E). In both 

cases, some [ J H] MK-801 binding was seen within the cerebellum, where the 

labelling appeared diffuse and weak. This radioligand, however, was not as specific 

as would be expected as some labelling was seen in both the control and stargazer 

non-specific binding slices (figures 4.14C and 4.14G respectively). 

4.3 Discussion 
Briefly, anti-NRl, anti-NR2A, anti-NR2B and anti-NR2C/D antibodies were 

generated and characterised using both recombinantly expressed NMDAR NR1, 

NR2A and NR2C subunits transiently transfected into HEK 293 cells and control 

brain membranes. The levels of expression of the NMDAR subunits were unchanged 

in control and stargazer forebrains and cerebella, as determined by the use of these 

antibodies in quantitative immunoblotting with brain membranes and 

immunohistochemistry with brain sections. The radioligand [ 3 H] MK-801 was 
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Figure 4.14 Autoradiographic exposure of control and stargazer whole brain sections 

to [ 3 H] MK-801. Horizontal sections were cut from frozen, unfixed control (A-D) 

and stargazer brains (E-H). Control sections were incubated with either 20 nM 

[ 3 H] MK-801 (A) or with the radioligand plus 10 uM MK-801 (C), to show non­

specific binding. The sections were subsequently stained with toluidine blue (B and 

D respectively). 

Stargazer sections were also incubated with the radioligand (E) or the non-specific 

binding buffer (G) before being stained with toludine blue (F and H) respectively. 

The radiolabelled slides were exposed to [ 3 H] hyperfilm for a total of 10 days before 

the film was developed and the slides stained with toluidine blue. 





employed to determine whether the characteristics of assembled NMDA receptors 

were compromised by the mutation. No differences were observed between control 

and stargazer tissue. Similarly, the IC 5 0 for remacemide-mediated displacement of 

[ 3 H] MK-801 from NMDARs in control and stargazer forebrain tissue were not 

significantly different. As remacemide is an anti-epileptic agent targeting NMDA 

receptors, it is unlikely that this would be effective in controlling seizure activity in 

stargazer mice. 

4.3.1 NMDAR sublimit levels are unchanged in stargazer brain 
No significant differences in the levels of NR1, NR2C and NR2D subunits were 

observed, by immunoblotting (section 4.2.3), between control and stargazer 

cerebellar membranes. Furthermore, no NR2B was detected by immunoblotting in 

control and in stargazer cerebella, indicating that this subunit had become 

developmentally downregulated to the levels expected in adult cerebella (Yamada et 

al., 2001; Wang et al., 1995; Wenzel et al., 1995). It is possible, however, that the 

lack of NR2B immunoreactive species was due to a very low level of expression 

within the cerebellum since faint signals have been obtained in membranes obtained 

from cerebella and cultured cerebellar granule cells (Jin et al., 1997; Portera-Cailliau 

et al., 1996; Janssens and Lesage, 2001). 

Similarly, no differences in the level of expression of the NR1, NR2B and NR2D 

subunits were observed between by quantitative immunoblotting of control and 

stargazer forebrain membranes (section 4.2.3). The NR2C immunopositive signal 

was not perceived in either control or stargazer forebrain. 

Qiao et al. (1998) reported that an unusually large number of cerebellar granule cells 

were still evident in the external granule cell layer at PI5 and that granule cells with 

an immature morphology were detected in the granule cell layer of adult stargazer 

cerebellum. It could, therefore, be predicted that these granule cells would express an 

'immature' complement of NMDAR subunits, characterised by the presence of the 

NR2B subunit. 

120 



In the cerebellum, the NMDAR subunits show a distinct developmental profile. NR1 

mRNA was detected at low levels in neonatal rats (PO) but rapidly increased to reach 

adult levels by P14 (Akazawa et al , 1994). A similar increase was observed with the 

levels of NR1 subunit protein in both rat and mouse cerebella, where maximal levels 

of expression were detected after P21 (Luo et al., 1996; Didier et al., 1995). 

NR2A mRNA transcript was detected at very low levels at P3-5 and increased in 

during development (Wenzel et al., 1997; Akazawa et al., 1994; Riva et al., 1994). 

The protein subunit also followed a similar pattern, with low levels detected by 

immunoblotting at birth (PO) and increasing levels of expression detected during the 

first three weeks of life, reaching a plateau by P21 (Laurie et al., 1997; Wenzel et al., 

1997; Portera-Cailliau et al., 1996; Wang et al., 1995; Didier et al., 1995). 

A distinct expression profile was displayed by NR2B mRNA with low levels of 

expression observed at PO. However, expression of NR2B mRNA increased, 

reaching a plateau around PI0-21 after which levels decreased, becoming 

undetectable in the adult cerebellum (Wenzel et al., 1997; Akazawa et al., 1994). 

Similarly, protein levels of the NR2B subunit were low during the first postnatal 

week, increasing during the second week and subsequently decreasing to 

undetectable levels by P21-30 (Wenzel et al., 1997; Portera-Cailliau et al., 1996; 

Takahashi et al., 1996; Wang et al., 1995; Didier et al., 1995). 

Whilst weak levels of NR2C mRNA were detected in the cerebellum around P5-8, 

the levels of the transcript increased to reach adult levels by P21 (Wenzel et aL, 

1997; Akazawa et al., 1994; Riva et al., 1994). Low levels of protein expression 

were also detected, by immunoblotting, at P5-9 and increased dramatically to reach 

adult levels by PI5-21 (Wenzel et al., 1997; Laurie et al., 1997; Didier et al., 1995). 

Finally, whilst Akazawa et al. (1994) were able to detect NR2D mRNA in the 

cerebellum from PO onwards in Purkinje cells, this signal had disappeared by P l l . 

However, transcript expression was detected in the molecular and internal granule 

cell layers from P14 onwards. NR2D protein was detected in P7, P21 and P49 (adult) 

rat cerebella (Dunah et al., 1996; Wenzel et al., 1996). 
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I f stargazer cerebellum did indeed contain immature cells, as suggested by Qiao et 

al. (1998), intermediate levels of NR1 and NR2A protein and low levels of NR2C 

and NR2D subunit proteins would be expected along with high levels of expression 

of the NR2B subunit. However, the results obtained here by quantitative 

immunoblotting revealed no significant differences in any of the NMDAR subunits 

between control and stargazer cerebella. These results, therefore, indicated that the 

expression of the NMDAR subunits in stargazer cerebella followed the predicted 

developmental profile. 

4.3.2 Anatomical distribution of the NMDAR subunits does not 

differ between control and stargazer mice 
Membranes from both forebrains and cerebella were probed for the expression of the 

NMDAR subunits by immunoblotting. Whilst this will reveal whether there are 

overall changes in the steady state level of expression of the proteins in the two brain 

tissues, it cannot reveal i f the expression of the subunits is altered in any one 

anatomically distinct nucleus of cells or brain subregion. In order to establish i f this 

was the case, the distributions of the subunits were determined, using the generated 

antibodies, by immunohistochemistry. 

No significant differences in the distribution of each subunit were observed between 

control and stargazer brain sections. The NR1 subunit was shown to have a 

ubiquitous distribution, being found throughout the brain (section 4.2.4.1); a 

distribution which was consistent with those observed by others (Thompson et al., 

2002; Thompson et al., 2000; Watanabe et al., 1998b; Hafidi and Hillman, 1997; 

Petralia et al., 1994; Brose et al., 1993). The pattern of immunostaining observed 

with the anti-NR2A antibody (section 4.2.4.2) was, as expected, similar to that of the 

NR1 subunit (Thompson et al., 2002; Thompson et al., 2000; Watanabe et al., 

1998b). Whilst the anti-NR2C/D antibody detected both the NR2C and NR2D 

subunits in the cerebellum, it only detected the NR2D subunit in the forebrain 

(section 4.2.3.1). The immunostaining revealed by this antibody was comparable to 

published results (Thompson et al., 2002; Thompson et al., 2000). 
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Immunohistochemical studies, both here (section 4.2.4.3) and by others, have 

revealed NR2B subunit protein to be expressed within a number of brain regions, 

including the hippocampus, the olfactory bulb, cerebral cortex and the striatum 

(Thompson et al., 2002; Charton et al., 1999; Watanabe et al., 1998b). Similarly, 

immunoblotting studies have demonstrated the presence of the NR2B subunit within 

the forebrain (section 4.2.3; Laurie et al., 1997; Wang et al., 1995). In the 

cerebellum, immunohistochemical studies revealed NR2B immunoreactivity within 

the Purkinje and molecular layers, where it appeared to be localised to the Bergmann 

glia (section 4.2.4.3). Immunostaining has been reported previously in both mouse 

and rat cerebella where, unlike the results observed here, Purkinje cells were stained 

(Thompson et al., 2000). 

These results indicated that the distributions of the NMDAR subunits are similar 

between control and stargazer brains. They also indicated that the distributions 

observed here are comparable to published findings. 

4.3.3 Pharmacological properties of the NMDAR complex 
Seizures induced in rats once a day for three consecutive days from PI 5 to PI7, a 

time when stargazer mice begin to show the symptoms of absence epilepsy, led to a 

decease in the density of [ 3 H] MK-801 binding sites as well as a decrease in the 

receptor dissociation constant (Doriat et al., 1999). It could, therefore, be argued that 

stargazer mice would also exhibit alterations in NMDARs. 

The immunoblotting and immunohistochemical studies undertaken here revealed 

similar levels of NMDAR subunits in both control and stargazer brains and that the 

subunits shared a similar distribution profile. However, these results did not reveal 

whether the subunits assembled into receptors or not. 

The properties of NMDARs in control and stargazer brain tissue were analysed by 

measuring the binding of the selective non-competitive NMDAR antagonist 

[ 3 H] MK-801. Since the binding site for MK-801 is located in the NMDAR ion 

channel and so is dependent on channel activation (Kloog et al., 1988; Wong et al., 
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1988; Foster and Wong, 1987), it can therefore be assumed to reflect the distribution 

of the functional receptor. 

Both control and stargazer forebrains exhibited similar autoradiographical 

distributions of [ 3H] MK-801 binding (section 4.2.5.3). In both cases, the highest 

amount of binding was observed within the forebrain; however, some binding was 

also perceived in the cerebellum. The binding was characterised using P2 synaptic 

membranes prepared from control and stargazer mice (section 4.2.5.1). No 

differences were quantified between control and stargazer forebrain tissue in either 

the number of binding sites or the affinity of [ 3H] MK-801 for the NMDAR. The 

specific binding of [ 3H] MK-801 appeared to be the same between control and 

stargazer cerebellar tissue, however, it is not possible to ascertain unequivocally i f 

the number of binding sites or affinity were the same between these two tissues since 

the saturation point was not reached. 

Remacemide, an anti-convulsant, has been shown to decrease the number of spike-

wave discharges in a genetic rat model of absence epilepsy (van Luijtelaar and 

Coenen, 1995). Currently undergoing clinical trials as adjunctive therapy in patients 

with epilepsy (Chadwick et al., 2002; Hooper et al., 2001), remacemide has also 

been shown to be involved in an improvement in motor fluctuations in patients with 

Parkinson's Disease (Clarke et al., 2001; Shoulson et al., 2001) and in the motor 

deficits seen in both mouse models of and patients with Huntington's Chorea 

(Ferrante et al., 2002; Schilling et al., 2001; Kieburtz et al., 1996). 

Studies have revealed that remacemide and its active des-gtycine metabolite are non­

competitive antagonists at the NMDAR ion channel, where they interact with the 

MK-801 binding site (Ahmed et al., 1999; Subramaniam et al., 1996; Palmer et al., 

1992). This ability to interact with MK-801 binding was utilised to displace 

[ 3H] MK-801 from control and stargazer forebrain synaptic membranes. 

Remacemide was able to displace the radioligand in both membrane preparations, 

with no significant differences apparent in the IC 5 0 (section 4.2.5.2). Interestingly, 

there appeared to be some divergence between the displacement observed in control 

and stargazer brain membranes, with low concentrations of remacemide. It is 
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possible, therefore, that the stargazer brain may be lacking in high affinity binding 

sites for remacemide. Further experiments will be needed, using radiolabelled 

remacemide, to determine whether this is true. 

The results obtained here revealed no significent differences in the binding of 

[ 3H] MK-801 and its displacement from the NMDARs in control and stargazer brain 

tissue, as measured by IC 5 0. There is some possibility, however, that the binding of 

remacemide differs between the two tissues, particularly at low concentrations. 

4.3.4 Conclusion 
Immunoblotting and immunohistochemical studies using anti-NMDAR subunit 

specific antibodies revealed the expression of NMDAR subunits in control (+/+ and 

+/stg) adult brains to be in correlation with published studies on the distribution of 

NMDAR subunits. The distributions and amounts of subunit protein did not differ 

significantly between control and stargazer brains. 

[ 3H] MK-801 and remacemide, both non-competitive antagonists that bind to the 

NMDAR ion channel, were used to determine the pharmacology of the NMDARs. 

No significant differences were observed in the binding of the radioligand or in its 

displacement by remacemide, between control and stargazer synaptic membranes. 

These studies indicated no significant differences in NMDAR expression or 

pharmacology between control and stargazer. Further evidence for a lack of defect in 

NMDARs came from Hashimoto et al. (1999), who found normal NMDAR-

mediated EPSCs at the cerebellar mossy fibre-granule cell synapse and in the 

hippocampal CA1 pyramidal cells in stargazer. 
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Chapter 5 

Characterisation of AMPA receptor expression 

within stargazer mouse brain 

5.1 Introduction 
As shown previously (chapter 4), no significant difference was observed in the 

expression of the NMDA receptor subunits between control and stargazer mice, by 

irnmunohistochernistry or by quantitative immunoblotting. No significant differences 

in [ 3H] MK-801 binding were observed between control and stargazer brain 

membranes either. Similarly, Hashimoto et al. (1999) reported no apparent 

abnormality in NMDA receptor function at the mossy fibre-granule cell synapse in 

the stargazer cerebellum. 

AMPA receptors (AMPARs), however, have been implicated in a number of 

characteristics also shown by the stargazer mutant mouse, including classical eye-

blink conditioning, epilepsy and ataxia. 

5.1.1 The role of AMPARs in classical eye-blink conditioning 
The stargazer mutant mouse has been shown to be impaired in the acquisition of the 

classical eye-blink conditioning (Qiao et al., 1998). Classical eye-blink conditioning 

is a form of sensory-motor learning and has been used to study cellular mechanisms 

underlying learning and memory, particularly within the cerebellum. Basically, a 

puff of air is given to the cornea, causing the eye to blink. This blink reflex can be 

evoked to a tone when the tone is paired to the air puff to the eye (for review, see 

Kim and Thompson, 1997; Thompson and Kim, 1996; Yeo, 1991). 

AMPARs have been implicated in the regulation of classically conditioned eye-blink 

reflex. CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione), an AMPAR antagonist, has 

been shown to reversibly abolish conditioned responses in the rabbit following 

infusion of CNQX into the cerebellum (Attwell et al., 1999). [ 3H] AMPA binding 
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was also shown to be decreased on the trained side of the cerebellar cortex following 

eye-blink conditioning elicited by paired electrical stimulation with an airpuff to the 

eye (Hauge et al., 1998). Conversely, [ 3H] AMPA binding was increased within the 

hippocampus following classical conditioning (Tocco et al., 1991) and trace 

conditioning, which is a variation of the classical conditioning paradigm (Tocco et 

al., 1992). 

5.1.2 AMPAR antagonists as anticonvulsants 
There is evidence to suggest that AMPARs play a role in epilepsy in a variety of 

models and that AMPAR antagonists could play a role as anticonvulsants (for 

review, see Rogawski and Donevan, 1999). YM90K (6-(lH-imidazol-l-yl)-7-nitro-

2,3(lH,4H)-quinoxalinedione hydrochloride), an AMPAR antagonist, was used in a 

rat amygdala-kindling model of epilepsy. Pre-treatment with YM90K retarded the 

evolution of the kindling whilst once kindling was established, the administration of 

YM90K led to a dose-dependent suppression of the seizures (Kodama et al., 1999). 

Application of NBQX (2,3-dihydrox>'-6-nitio-7-sulphamoylbenzo[f]quinoxaline-2,3-

dione), a competitive AMPAR antagonist, to the same model also inhibited the 

development of the kindling as well as suppressing the seizures in a dose-dependent 

manner (Namba et al., 1994). NBQX and GYKI 52466 (l-(4-aminophenyl)-4-

methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine), a non-competitive AMPAR 

antagonist, have both been shown to act as anticonvulsants against sound-induced 

seizures in DBA/2 mice and against AMPA-induced seizures in Swiss mice 

(Chapman et al., 1991). 

5.1.3 AMPARs have been implicated in ataxia 
Stargazer begins to show ataxia around P14 (Noebels et al., 1990). This ataxia 

consists of a mild ataxic gait and a severe impairment of both motor co-ordination 

and balance as determined by the length of time wild-type control and stg/stg mice 

remained on a stationary and a rotating rod (Qiao et al., 1996). It has been postulated 

that the deficits in motor learning, which led to the disturbances in motor co­

ordination, were due to reduced AMPAR-mediated synaptic transmission within the 

cerebellum (Hashimoto et al., 1999). 
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Further evidence for a role of AMPARs in ataxia comes from studies employing 

antagonists to the AMPA receptor. NBQX, a competitive AMPAR antagonist, has 

been shown to cause ataxia in rats at doses over 30 mg/kg (Filliat et al., 1998; Mares 

et al., 1997). Administration of NBQX to mice also produced motor-impairment, as 

did administration of a non-competitive antagonist, GYKI 52466 (Swedberg et al., 

1995; Yamaguchi et al., 1993). Ataxia is also produced in rats by YM90K, another 

AMPAR antagonist, in a dose-dependent manner (Katsumori et al., 1998). 

There is also some evidence that the GluR2 subunit is involved in the regulation of 

motor co-ordination. GluR2-/- mice do not contain GluR2 protein, as shown by 

immunoblotting using crude synaptic plasma membrane preparations. However the 

length of time they manage to remain on a moving rod is significantly less than that 

of control mice (GluR2+/+). The levels of other AMPA receptor subunits, GluRl 

and GluR4, kainate receptor subunits, GluR6 and GluR7, and NMDAR subunits 

NR1, NR2A and NR2B, in the GluR2-/- mice were comparable to the levels seen in 

GluR2+/+ mice. As only the GluR2 subunit was affected, a role for GluR2 in ataxia 

was implied (Jia et al., 1996). 

5.1.4 AMPARs in the stargazer mutant mouse 
Cultured cerebellar granule cells from stg/stg mice show few synaptic GluR4 puncta, 

although these can be clearly detected in cultured +/stg cerebellar granule cells. 

Electron microscopy of +/stg and stg/stg cerebella revealed that granule cell 

synapses in stg/stg cerebellum are devoid of GluR2/3 and GluR4 labelling, even 

though cytoplasmic GluR2/3 labelling was seen to the same extent in both +/stg and 

stg/stg granule cells (Chen et al., 2000). 

Stargazin, transfected into COS cells, interacted with GluRl, GluR2 and GluR4 

(Chen et al., 2000). GluRl was also shown to co-immunoprecipitate with y2 in brain 

extracts derived from forebrains of control (B6EiC3H) mice (Sharp et al., 2001). As 

stargazer is a null mutant for stargazin, it could be postulated that there would be a 

decrease in the levels of the AMPAR subunits, as was seen at the cerebellar granule 

cell synapse. 
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Mossy fibre-granule cell synapses from the cerebellum of the stg/stg mutant are 

deficient in the AMPAR-mediated fast component of EPSCs. Similarly, synaptic 

transmission between parallel fibres and Purkinje cells and between climbing fibres 

and Purkinje cells were also reduced (Hashimoto et al., 1999). Spontaneous EPSCs, 

which are governed by the release of glutamate onto AMPARs, are essentially absent 

in cultured stg/stg granule cells. However, transfection of stargazin into stg/stg 

granule cells restored AMPAR function as evidenced by a large number and an 

increased frequency of sEPSCs (Chen et al., 2000). 

Phosphorylation of stargazin could play a role in the modulation of AMPAR EPSCs. 

Cultured hippocampal neurons were transfected with a phosphomimetic construct of 

stargazin and mEPSCs were evaluated. The amplitude and frequency of AMPAR 

mEPSCs were significantly reduced in the transfected cells when compared to non-

transfected cells (Chetkovich et al., 2002). 

5.1.5 Work undertaken in this chapter 
The work in this chapter was undertaken to determine the expression and 

characterisation of the AMPA receptor subunits within the control and stargazer 

brain. Subunit specific antibodies were used to determine the expression of the 

AMPAR subunits throughout the brain by immunohistochemistry and within the 

cerebellum by immunoblotting. Finally, binding of [ 3H] AMPA was determined by 

both radioligand binding and autoradiography. 

5.2 Results 

5.2.1 Immunohistochemical distribution of AMPAR subunits 
Paraformaldehyde-fixed whole brain sections from adult control and stargazer mice 

were probed with antibodies specific for the AMPAR subunits. Sections were 

originally incubated with a variety of primary antibody concentrations, ranging from 

0.125 - 1 |ug/ml for the anti-GluRl antibody and 200 ng/ml - 2 ug/ml for the other 

AMPAR antibodies. The optimal antibody concentration was determined for both 

cerebella and forebrain sections using each of the primary antibodies. The 

concentrations used were 0.125 ug/ml (GluRl), 200 ng/ml (GluR2-stained cerebella 
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Figure 5.1 Immunohistochemical mapping of the distribution of GluRl in control (A 

and B) and stargazer (C and D) forebrain. Horizontal sections were immunostained 

using the anti-GluRl antibody and DAB as the hydrogen peroxide substrate. 

Immunostaining was prominent in the control hippocampus (A), particularly within 

the CA1, CA2 and CA3 areas and the molecular layer of the dentate gyrus (DG) (B). 

A similar staining pattern was observed within the stargazer forebrain (C) and 

hippocampus (D). 

Scale bars represent 1 mm. 
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sections), 800 ng/ml (GluR2-stained forebrain sections), 2 ug/ml (GluR3) and 

200 ng/ml (GluR4). 

5.2.1.1 Inununostaining with anti-GluRl antibody 
Immunostaining with the anti-GluRl antibody is seen in the same areas of the 

control (figure 5.1 A and table 5.1) and stargazer brain (figure 5.1C and table 5.2). 

Strong immunostaining was observed within the hippocampus and within the 

septum. Within the hippocampus, staining is seen in within the CA1, CA2 and CA3, 

with the most intense staining being in the CA1 region (figure 5. IB for the control 

hippocampus). However, the staining in the stargazer CA1 region (figure 5. ID) is 

slightly less intense than that seen in the control CA1. Similarly, the stargazer 

dentate gyrus appears to contain slightly fewer immunostained GluRl subunits than 

the control dentate gyrus. 

Immunostaining was also observed within the cerebella of both stargazer and control 

brains (see figure 5.2). In both, the staining was confined to the molecular layer, with 

no staining being observed within the granule cell layer (figures 5.2B and 5.2D). 

Whilst the majority of Purkinje cells did not stain for the GluRl subunit, there 

appeared to be some staining at the border of the Piirkinje cell layer and the 

molecular layer, corresponding to basket cells (tables 5.1 and 5.2). 

The distribution of the GluRl protein within the control forebrain structures, the lack 

of staining within the granule cell layer of the control cerebellum and the intense 

staining within the control cerebellar molecular layer corresponds to the distribution 

of GluRl mRNA (Sato et al., 1993; Keinanen et al., 1990). 

5.2.1.2 Inuitunostaining with anti-GluR2 antibody 
GluR2 immunostaining was found through out the control brain and the stargazer 

brain. Immunostaining was present within forebrain structures such as the cerebral 

cortex, the caudate-putamen and the hippocampus (tables 5.1 and 5.2 respectively). 

Within the hippocampi of both the control and stargazer, the staining appears to be 

the most intense within the stratum alveole of the CA1. 
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Figure 5.2 ImmunohistochemicaJ mapping of the distribution of GluRl in the 

cerebellum of control (A and B) and stargazer (C and D) mice. Sagittal sections were 

stained using the anti-GluRl antibody and DAB. Staining was seen within the 

control cerebellum (A), mainly within the molecular layer (ML). No staining was 

detected within the white matter (WM), the granule cell layer (GL) or the cell bodies 

of the Purkinje cell layer (PL) of the control cerebellum (B). A similar 

immunostaining pattern was revealed within the stargazer cerebellum (D) 

Scale bars represent 1 mm (A and C) and 100 um (B and D). 
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Figure 5.3 Immunohistochemical mapping of the distribution of GluR2 within the 

cerebellum of control (A and B) and stargazer (C and D) mice. Sagittal sections were 

immunostained using the anti-GluR2 antibody and DAB. Staining was seen within 

the control cerebellum (A), particularly within the cell bodies of the Purkinje cell 

layer (PL) and the dendrites of the molecular layer (ML) (B). Staining was detected 

within the stargazer cerebellum, however, less staining was observed than in the 

control cerebellum (C). Only some of the dendrites of the molecular layer showed 

GluR2 staining along with some of the cell bodies within the Purkinje cell layer (D). 

Scale bars represent 1 mm (A and C) and 100 um (B and D). 





Irnmunostaining for GluR2 was also observed within the control cerebellum (figure 

5.3A). As can be seen in figure 5.3B, specific immunostaining was visible within the 

cell bodies of the Purkinje cell layer and within the molecular layer, where staining 

was apparent within the dendrites of the Bergmann glia. Some staining was also 

apparent within the granule cell layer. GluR2 immunostaining was also observed 

within the stargazer cerebellum (figure 5.3C), where some staining was apparent in 

the granule cell layer. The Purkinje cells were also stained although not all the cell 

bodies were labelled (figure 5.3D). The staining observed in the dendrites of the 

Bergmann glia of the control cerebellum was not seen in the same cells of the 

stargazer cerebellum. The intensity of staining in stargazer cerebella was much 

reduced when compared to the staining obtained in control cerebella, despite the 

sections being stained in parallel. This reduction in staining intensity is reflected in 

the results obtained by quantitative immunoblotting (figure 5.12). The staining 

pattern visible within the control cerebellum and the reduction observed in stargazer 

cerebellum was similar to the immunostaining observed with anti-stargazin antibody 

(figure 6.3) possibly indicating an interaction between stargazin and GluR2. 

5.2.1.3 Irnniunostaining using anti-GluR3 antibody 
GluR3 staining was apparent throughout the control cerebellum (figures 5.4A and 

5.4B). A similar staining pattern is seen within the stargazer cerebellum, as can be 

seen in figures 5.4C and 5.4D. Irnmunostaining is also seen in the control 

hippocampus (table 5.1) and within the stargazer hippocampus (table 5.2). Some 

staining was also observed within the cerebral cortex and the striatum and thalamus 

of the stargazer forebrain. Unfortunately, the high concentration of antibody required 

for irrmiunostaining made it difficult to adequately determine staining above the 

level of background staining within the regions of the forebrain. 

5.2.1.4 Immunostaining using anti-GluR4 antibody 
GluR4 subunit-like immunoreactivity was exclusively found in the cerebellum of 

both control and stargazer mouse brains with little or no staining observed in the 

forebrain structures (see figure 5.5 and tables 5.1 and 5.2). Within the cerebellum, 

staining was restricted to the molecular layer of both the control (figure 5.5B and 

table 5.1) and stargazer brain sections (figure 5.5D and table 5.1). In the stargazer 
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Figure 5.4 Analysis of the expression of GluR3 within the cerebellum of control (A 

and B) and stargazer (C and D) mice by immunohistochemistry. Sagittal sections 

were immunostained using the anti-GluR3 antibody and DAB. Staining was seen 

within the control cerebellum (A), particularly within the granule cell layer (GL) and 

within the molecular layer (ML). Staining was absent from both the white matter 

(WM) and the Purkinje cell layer (PL) (B). Similar staining was detected within the 

stargazer cerebellum (D) 

Scale bars represent 1 mm (A and C) and 100 um (B and D). 
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cerebellum, staining was less intense than in the control cerebellum, even though 

both sections were run in parallel. This result corresponds to the results obtained by 

quantitative immunoblotting, which showed that expression of the GluR4 subunit 

was decreased in stargazer (figure 5.12). 

The pattern of immunostaining displayed by the anti-GluR4 antibody was 

completely abolished by pre-adsorption with the immunogenic (blocking) peptide 

(figure 5.6). This was also the case for the anti-GluR2 and anti-GluR3 antibodies 

used. No immunogenic peptide was available for the anti-GluRl antibody. However, 

the distribution of irnmunoreactivity observed with the anti-GluRl antibody was 

similar to that of GluRl mRNA (Sato et al., 1993; Keinanen et al., 1990). 
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Figure 5.5 Immunohistochemical mapping of the distribution of GluR4 within the 

cerebellum of control (A and B) and stargazer (C and D) mice. Sagittal sections were 

stained using the anti-GluR4 antibody and DAB. Staining was observed within the 

control cerebellum (A), mainly within the molecular layer (ML). Some staining was 

also seen within the granule cell layer (GL) whilst it was absent in both the Purkinje 

cell layer (PL) and the white matter (WM) (B). A similar staining pattern was 

observed within stargazer cerebellum (C), although there was a decrease in the 

staining intensity within the molecular layer (D). 

Scale bars represent 1 mm (A and C) and 100 um (B and D). 
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Figure 5.6 Specificity of the anti-GluR4 antibody by using the GluR4 peptide and 

immunohistochemistry within brain sections of control mice. Sagittal sections were 

stained using the anti-GluR4 antibody (A) or anti-GluR4 antibody and peptide (B) 

and DAB. Staining was only seen within the control cerebellum (A). With the 

addition of the peptide to which the anti-GluR4 antibody was raised, the staining 

seen with the antibody alone was blocked. 

Scale bars represent 1 mm. 
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GluRl GluR2 GluR3 GluR4 
Hippocampus 

Amnion's horn 
CA1 ++++ ++ ++ -

CA3 +++ ++ ++ 
Dentate Gyrus 

Molecular layer ++++ ++ + -

Granule cell layer +++ + - /+ -

Polymorphic layer +++ + - /+ -

Caudate-Putamen + +/++ +/++ -

Septum ++++ +/++ + -

Cerebellum 
Granule cell layer - ++ +/++ ++ 
Purkinje cell layer - /+ +++ ++ +/++ 
Molecular layer +++ ++ ++ ++++ 

Table 5.1 Relative expression levels of the CluR subunits within control brain. Levels 
were estimated by visual comparison of DAB stained sections. - = staining at 
background levels; + = low staining; ++ = moderate staining; +++ = high staining; 
-H-H- - very high level of staining, n = 4 - 8 sections from 2-4 mice. 

GluRl GluR2 GluR3 GluR4 
Hippocampus 

Amnion's horn 
CA1 +++ ++ ++ -
CA3 +++ + + 

Dentate Gyrus 
Molecular layer +++ +/++ + -
Granule cell layer ++/+++ + - /+ -
Polymorphic layer +++/++++ +/++ + — 

Caudate-Putamen + +/++ +/++ -

Septum +++/++++ +/++ + -

Cerebellum 
Granule cell layer + +/++ + 
Purkinje cell layer - /+ - / + - /+ -
Molecular layer +++ + ++ ++ 

Table 5.2 Relative expression levels of the CluR subunits within stargazer brain. 
Levels were estimated by visual comparison of DAB stained stargazer sections with 
DAB stained control sections. - = staining at background levels; + = low staining; 
++ = moderate staining; +•++ = high staining; MM = very high level of staining, 
n = 4 - 8 sections from 2-4 mice. 
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5.2.2 Quantitative inununoblotting of AMPAR suhunits 
Cerebellar membranes were prepared from control and stargazer mouse brains and 

samples were precipitated, as described in sections 2.5 and 2.6, for analysis by SDS-

PAGE using mini-gels. The immunoblots were probed with anti-GluRl antibodies 

(0.5 ug/ml), anti-GluR2 antibodies (1:2000 dilution = 100 ng/ml), anti-GluR4 

antibodies (1:1000 dilution = 200 ng/ml) or anti-p actin antibody (1:100 - 1:1000 

dilution). The membranes were then incubated with the relevant anti-IgG-HRP 

linked secondary antibodies before developing for immunoreactive species using the 

ECL system and hyperfilm as described in the methods chapter 2.7. 

5.2.2.1 Detection of the AMPAR subunits 
As can be seen in figure 5.7A, a single band was seen with a molecular weight of 

approximately 104 kDa, which corresponded to the GluRl protein. The GluRl 

protein was detected in both the control and the stargazer cerebellar membranes. The 

samples were probed with the anti-actin antibody, a normalising probe to 

compensate for loading errors, as can be seen in figure 5.7B. 

A single band was also seen with the anti-GluR2 antibody in both the control and the 

stargazer cerebellar membranes (figure 5.8A). This band has a molecular weight of 

approximately 105 kDa and corresponded to the GluR2 protein. The immunoblot 

was then reprobed using the anti-actin antibody and the result can be seen in figure 

5.8B. Here, a single band is detected at approximately 42 kDa, the molecular weight 

for actin. 

The cerebellar proteins were also probed for the expression of the GluR4 subunit in 

the same way, using the anti-GluR4 antibody as shown in figure 5.9A. A band at 

approximately 105 kDa, which corresponded to the molecular weight of the GluR4 

subunit, was detected in both the control and stargazer cerebellar membranes. The 

same protein samples were ran on a 10 % resolving gel and probed for the 

expression of actin, as can be seen in figure 5.9B. 

The specificity of the antibodies was further confirmed by the distinct brain 

distributions of the respective proteins in immunohistochemicalfy labelled sections. 
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Figure 5.7 Immunoblot showing the relative expression levels of GluRl and actin in 

control and stargazer cerebellar membranes. A dilution series of control (ctl) and 

stargazer (stg) cerebellar membranes were probed with anti-GluRl antibody (A) and 

anti-actin antibody (B). 

Both antibodies detected the relevant proteins in the immunoblots (red arrows). The 

range of protein concentrations used was 1.25 ug/10 ul, 2.5 u,g/10 ul, 5 ug/10 ul and 

10 ug/10 ul. 

The molecular weights (in kDa) are shown to the left of each immunoblot. 
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Figure 5.8 Immunoblot showing the relative expression of GluR2 and actin within 

control and stargazer cerebellar membranes. Control (ctl) and stargazer (stg) 

cerebellar membranes were probed with anti-GluR2 antibody (A) before being 

reprobed with the anti-actin antibody (B). 

The anti-GluR2 antibody detected a 104 kDa protein, which corresponded to the 

GluR2 protein, whilst the anti-actin antibody detected a 45 kDa protein, which 

corresponded to the actin antibody. The range of protein concentrations used here 

was 1.25 ug/10 ul, 2.5 ug/10 ul, 5 ug/10 ul and 10 ug/10 ul. 

The molecular weights, in kDa, are shown to the left of each immunoblot. 
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Figure 5.9 Immunoblot showing the relative expression levels of GluR4 and actin 

within control and stargazer cerebellar membranes. Control (ctl) and stargazer (stg) 

cerebellar membranes were probed with anti-GluR4 antibody (A) and anti-actin 

antibody (B). 

Both antibodies detected the relevant proteins in the immunoblots (red arrows). A 

range of protein concentrations was used (1.25 ug/10 ul - 10 ug/10 ul) in order to be 

used for quantitative immunoblotting. 

The molecular weights (in kDa) are shown to the left of each of the immunoblots. 
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5.2.2.2 Specificity of the antibodies using peptides 
Blocking peptides to the anti-GluR2 and anti-GluR4 antibodies were used to 

determine whether the signal was specific to the antibody. The primary antibodies 

were used at a concentration of 200 ng/ml (i.e. 1:1000 dilution) and incubated with 

either 1 ug/ml (5x) or 2 ug/ml (lOx) blocking peptide overnight at 4°C. Proteins 

precipitated from control cerebellar membranes were analysed by immunoblotting 

using the anti-GluR2 or anti-GluR4 antibodies alone or following preadsorption with 

the respective immunogenic peptides. 

The anti-GluR2 antibody produced a signal at approximately 105 kDa as can be seen 

in figure 5.1 OA. This signal was reduced in the presence of 5x blocking peptide and 

completely absent with the addition of lOx blocking peptide. The GluR4 signal 

however, was completely blocked by the presence of 5x blocking peptide (figure 

5.10B). 

5.2.2.3 Quantification of subunit levels 
Cerebellar membranes from control and stargazer mouse brains were analysed in this 

way to estimate the relative levels of expression of the various AMPA receptor 

subunits after normalising for actin levels. The immunoblots were analysed, using 

computer-assisted densitometry, as described in section 2.7.3. 
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Figure 5.10 Immunoblot showing expression of GluR2 (A) and GluR4 (B) with their 

respective peptides. Proteins from control cerebellar homogenates were probed with 

the antibodies alone or with the antibodies plus their peptides. Two concentrations of 

peptide were used - 5x (corresponding to 1 ug/ml) or lOx (corresponding to 

2 ug/ml), which were equal to five times or ten times the concentration of the 

antibody. 

As can be see in (A), the GluR2 antibody signal was blocked with the use of lOx 

peptide whilst the GluR4 signal was blocked with 5x peptide (B). 

The molecular weights (kDa) are shown to the left of the immunoblots. 
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Figure 5.11 Comparative levels of expression of the AMPA receptor subunits, 
GluRl, GluR2 and GluR4, in the cerebellum of stargazer mice relative to control 
mice. The levels were normalised to actin levels. The GluR subunit levels in the 
stargazer cerebellum were expressed as a percentage of control expression. Results 
are expressed as mean ± sem. Student's /-tests were used to determine the level of 
significance:* = P<0.05, ** = P<0.001. n = 3 - 4 samples for both control and 
stargazer cerebelia membranes per immunoblot, immunoblotting repeated 4 
(GluRl and GluR4) or 5 (GluR2) times. 

As can be seen in figure 5.11, the expression levels of GluRl, GluR2 and GluR4 

subunits were significantly lower in stargazer mice cerebella, with respect to 

controls. GluRl expression levels and GluR4 expression levels were 73.5 ± 6.6 % 

and 69.1 ± 6.5 % of control levels respectively. The level of expression of stargazer 

GluR2, however, was only 26.8 ± 4.7 % of control GluR2. This is evident in the 

immunoblots in figure 5.8 where, although the actin signal for the stargazer tissue 

was stronger than that of the control, implying a greater loading of cerebellar 

material from stargazer, the stargazer GluR2 signals were weaker than the control 

signals. The reduction in expression of GluR2 is not only detected both by 

inmiunostaining and immunoblotting of cerebellar membranes, but is also detected 

in cultured cerebellar granule cells (section 7.2.2.1). 
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5.2.3 Radioligand Sending 
[ J H] AMPA was used for radioligand binding experiments on forebrain and 

cerebellar membranes. Membranes allow a number of ligand concentrations to be 

used on the same preparation, thereby allowing the calculation of K D and B m a x , 

which would be more difficult to determine i f only one concentration was used. 

Initial experiments were performed in order to optimise [ 3 H] AMPA binding using 

control forebrain membranes. The forebrain membranes were prepared according to 

the protocol for the P2 membrane preparation (see section 2.8). The first experiment 

undertaken was to determine the binding parameters. Forebrain membrane was 

incubated for 30 minutes and for 60 minutes, at either 4°C or at 20°C and in 5 m M 

tris-acetate, pH7.5, with 10 nM [ 3 H] AMPA and the radioligand-containing buffer 

with 1 mM glutamate (to show non-specific binding). The forebrain membrane was 

also incubated in the same radioligand-containing buffers with KSCN, as KSCN has 

been shown to potentiate AMPA binding (section 2.9.2.1). 

From this experiment, it appeared as though KSCN did potentiate [ 3 H] AMPA in the 

forebrain membranes. Also, there appeared to be an increase in binding with an 

increase in incubation temperature, with the specific binding at 20°C being higher 

than that of the 4°C incubation. However, there appeared to be no difference in the 

amount of specific binding seen after a 30 minute incubation and the amount of 

specific binding seen after a 60 minute incubation. 

Subsequent experiments were performed where both control cerebellar membranes 

and control forebrain membranes were incubated in the buffers. Both aliquots of the 

buffers used previously (stored at -20°C) and buffers prepared on the day were used. 

However, these experiments failed to show any difference in the level of binding 

seen at 4°C and that seen at 20°C. Even though in the initial experiment KSCN 

potentiated the level of binding seen with [ 3 H] AMPA, this finding could not be 

repeated in the subsequent experiments. 

Following these experiments, it was decided to follow the protocol of Hawkinson 

and Espitia (1997), as the authors were able to both show [ 3 H] AMPA binding and 
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determine the saturation parameters (i.e. K D and B m a x ) (see section 2.9.2.2). Briefly, 

control mouse forebrains were homogenised in sucrose/EGTA and centrifuged. The 

pellet was incubated with Triton X-100/EGTA before centrifuging. The pellet was 

then incubated with EGTA before centrifuging again. The pellet was stored at -80°C 

before being resuspended in 100 m M tris-acetate, pH 7.2, 50 uM EGTA. 

Fractions of forebrain membrane were incubated for 60 minutes at 20°C with the 

buffers. The buffers were 100 m M tris-acetate, pH 7.2, 50 uM EGTA, 10 nM 

[ H] AMPA (here after known as radiohgand-containing buffer), radioligand-

containing buffer plus 1 m M glutamate, radiohgand-containing buffer plus 50 mM 

KSCN and radioligand-containing buffer plus glutamate and KSCN. As a control, 

forebrain membranes (P2 preparation) in 5 mM tris-acetate, pH 7.5, were incubated 

with the buffers used in the initial experiments, which were prepared on the day of 

use. 

The control forebrain preparation showed a slight increase in binding in the presence 

of KSCN, however, the level of specific binding was still lower than expected. With 

the forebrain membrane in the 100 mM tris buffer, some specific binding could be 

seen and, even though it was still lower than expected, it was higher than that seen 

with the 5 m M tris buffer. 

More control forebrain membrane was prepared according to the P2 membrane 

protocol, however, the buffers used for the protocol were all prepared using 50 m M 

tris-acetate, pH 7.4 (see section 2.9.2.3). The pellet was washed in ice-cold dH 2 0 

and stored overnight at -20°C, in order to remove any endogenous glutamate still 

remaining. An extra overnight incubation step was included towards the end of the 

protocol. 

In order to increase the level of binding seen, the buffer used to contain the 

radioligand was modified. Several groups have used tris buffers containing either 

EGTA (Hawkinson and Espitia, 1997) or CaCl2 (Stensbol et al., 1999; Nielsen et al., 

1998). [ 3 H] AMPA binding was determined using 10 nM [ 3 H] AMPA in 50 m M tris-

acetate, pH 7.4, 50 m M tris-acetate, pH 7.4, with 100 uM EGTA or in 50 mM tris-
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acetate, pH 7.4, with 2.5 mM CaCl2. The forebrain membrane was incubated with 

the various radioligand-containing buffers alone or buffers containing 50 mM 

KSCN, 1 m M glutamate or KSCN and glutamate. The incubations were for 60 

minutes and at 20°C. 
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Figure 5.12 Specific [3H] AMPA binding to control forebrain membranes, in the 
presence of 10 nM radioligand. Three tris buffers were used: 100 mM tris-acetate, 
pH 7.4 (tris), 100 mM tris-acetate, pH 7.4, 100 uM EGTA (tris + EGTA) and 
100 mM tris-acetate, pH 7.4, 2.5 mM CaCfe (tris + CaCfe). Specific binding was 
determined by subtracting the non-specific binding values (tris buffers + 1 mM 
glutamate) from total binding values (tris buffers). KSCN (50 mM) was added to 
each of the buffers (tris buffers alone and tris buffers + glutamate). Columns 
represent mean ± sem of 1 experiment done in triplicate. 

As can be seen in figure 5.12, there was no difference in the amount of specific 

binding seen between each of the three tris buffers used. KSCN, however, 

potentiated [ 3 H] AMPA binding in all three buffers used. There was no significant 

difference in the specific binding levels seen between the tris buffers plus KSCN. 

This protocol, with the extra freeze-thaw step, for the preparation of brain 

membranes was used to prepare control and stargazer cerebellar membranes. These 

were incubated, for 60 minutes and at 20°C, with 100 mM tris-acetate, pH 7.4, and 

10 nM [ 3 H] AMPA alone, radiobgand-containing buffer and 1 mM glutamate, 

radiokgand-containing buffer and 50 mM KSCN or with radiokgand-containing 
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buffer and 1 m M glutamate plus 50 mM KSCN. The KSCN potentiated the binding 

seen in both cerebellar membranes. 

However, the protocol for the preparation of the membranes had now extended to 

being three days long before the protein concentration could be determined and the 

membrane used for binding. For this reason, a shorter protocol was attempted using 

control forebrain membranes (section 2.9.2.4). 

Briefly, the forebrains were homogenised in 50 mM tris-acetate, pH 7.4, 

homogenisation buffers. The forebrains were homogenised in buffer 1 and then 

centrifuged for 12 minutes at 1,000 g, 4°C. The supernatant was then centrifuged at 

40,000 g for 40 minutes, 4°C. The pellet was then homogenised in buffer 2 before 

being centrifuged at 40,000 g for 40 minutes, 4°C. The pellet was then homogenised 

in dH 2 0 and centrifuged at 40,000 g for 40 minutes, 4°C, a further three times. The 

final pellet was resuspended in dH 2 0 before being separated into three aliquots. The 

pellet was resuspended in dH 2 0 in order to minimise any interference of buffer 

components with the solutions employed in the Lowry's assay. 

One aliquot was used for determining the protein concentration of the membrane, 

whilst the second aliquot was stored, overnight, at 4°C and the third was stored, also 

overnight, at -20°C. The second and third aliquots were used for radioligand binding 

using 10 nM [ 3 H] AMPA in 100 mM tris-acetate, pH 7.4 (radioligand-containing 

buffer), radioligand-containing buffer plus 1 mM glutamate, radioligand-containing 

buffer with 50 mM KSCN and radioligand-containing buffer plus glutamate and 

KSCN. 
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Figure 5.13 Specific binding in control forebrain membranes stored overnight 
at 4"C and at -20°C. The membranes were then incubated with 10 nM 
[3H] AMPA for 60 minutes at 20°C. KSCN potentiated the binding seen with 
[3H] AMPA. Storing the membrane overnight at 4°C did not significantly affect 
the amount of specific binding detected. Data obtained from the results of a 
single experiment, using membranes taken from 15 control forebrains. 

As can be seen in figure 5.13, no difference was observed between the binding seen 

with the radioligand in control membranes stored overnight at 4°C and that seen with 

the control membranes stored overnight at -20°C. The KSCN potentiated the 

binding seen with the radioligand but, again, there was no difference between 

whether the membrane was stored at 4°C or whether it was stored at -20°C before 

use. This was repeated using more control forebrain membrane and a similar result 

was obtained. 

Using this quick homogenisation protocol control cerebellar membranes were 

prepared. This membrane was stored at 4°C whilst the protein concentration was 

determined, before being employed to perform a full dose-response analysis using 

varying concentrations of [ 3 H] AMPA in 100 mM tris-acetate, pH 7.4, with 50 mM 

KSCN and 1 mM glutamate (to determine non-specific binding). 
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Figure 5.14 [3H] AMPA binding in control cerebellar membrane. (A) Binding 
isoform showing specific, non-specific and total binding of the radioligand in control 
cerebellar membrane. (B) Rosenthal transformation of the specific binding results. 
Data obtained from the results of a single experiment, using membranes taken from 
12 control cerebella. 

Prism was used to determine the values for B m a x and K D ; B r a a x was calculated to be 

6.9 pmol/mg protein whilst K D was calculated to be 866.6 nM. The signal to noise 

ratio, that is specific binding to non-specific binding, was also calculated and this 

was determined to be 11.2%. The data obtained was analysed using equations 

describing one and two binding sites for the (AMPA) receptor. An F-test was used to 

determine which equation fitted the data better and from this, it was calculated that 

the data fitted a one-binding site model. 

However, due to the amount of tissue that was required for each Rosenthal 

transformation, it was not possible to repeat the previous experiment or to obtain 

data using stargazer cerebella. 

5.2.4 Autoradiography 
Due to the amount of tissue that was required in order to obtain data from 

radioligand binding studies, receptor autoradiography was employed. 

Autoradiography can also reveal the cellular distribution of the receptors in question 

whereas radioligand binding, with its use of brain membranes, cannot. In this 

respect, autoradiography is acting as a complementary assay to the radioligand-

binding assay. 
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[TTJ AMPA was used for autoradiography on cryostat sectioned unfixed whole 

brains taken from control and stargazer mice (figure 5.15). Two control sections and 

two stargazer sections were mounted onto each polysine-coated slide and the slides 

were incubated in either the radiokgand-containing buffer (tris-HCl containing 

KSCN and 20 nM [ 3 H] AMPA) or the non-specific binding buffer (kgand-containing 

buffer plus 1 m M glutamate). The skdes were then exposed to [3H]-hyperfilm for up 

to 10 weeks, as described in the methods (section 2.10). 

An example of the results is presented in figure 5.15A, where [ 3 H] AMPA binding 

can be seen in the control brain. Binding is seen throughout the control brain, within 

structures including the cerebellum, the cortex, the caudate-putamen and the lateral 

septal nuclei. However, the maximum amount of binding was seen within the 

hippocampus. A similar binding pattern can be seen within the stargazer forebrain 

and cerebellum (figure 5.15E). Non-specific binding was insignificant, being at the 

level of film background in both control (figure 5.15C) and stargazer (figure 5.15G). 

All the major brain structures are present in the sections used for non-specific 

binding, as can be seen in figures 5.15D and 5.15H respectively, where the skdes 

used were subsequently stained with toluidine blue. 

The amount of radiokgand bound was determined using the Scion Image software. 

The optical densities were determined for known standards, which were exposed to 

film for the same length of time as the radiolabelled sections. For each cerebellar 

section, three representative areas were selected and the mean intensity determined. 

The binding in the cerebeUum appeared to be mainly in the molecular layer, with a 

small amount of binding apparent in the granule cell layer, and this was reflected in 

the areas chosen. The amount of [ 3 H] AMPA bound to the control and stargazer 

cerebeUar sections could then be estimated. 
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Figure 5.15 [ H] AMPA labelled adult whole brain sections as shown by 

autoradiography. Horizontal sections were cut from frozen, unfixed control (A-D) 

and stargazer brains (E-H). Control sections were incubated with either 10 nM 

[ 3H] AMPA (A) or with the radioligand plus 1 mM glutamate (C), to show non­

specific binding. The sections were subsequently stained with toluidine blue (B and 

D respectively). 

Stargazer sections were also incubated with the radioligand (E) or the non-specific 

binding buffer (G) before being stained with toluidine blue (F and H) respectively. 

The radiolabeled slides were exposed to [ 3H] hyperfilm for a total of 8 weeks before 

the f i lm was developed and the slides stained with toluidine blue. 
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Figure 5.16 Quantification of |3H] AMPA bound to cerebellar sections as determined 
by autoradiography. Control and stargazer sections were incubated with 20 nM 
[3H] AMPA before being exposed to film for 8 weeks. (A) Amount of radioligand 
bound in each of the sections. All results are shown with the mean represented as a 
bar. (B) Radioligand bound shown as mean ± sem. n - triplicate measurements taken 
from 14 sections from 1 control and 1 stargazer mouse. No significant difference in 
binding between control and stargazer cerebellar sections was apparent, as 
determined using the Student's /-test (P > 0.05). 

Figure 5.16 shows the results of densitometric analysis of [ 3 H] AMPA 

autoradiography on control and stargazer cerebellar sections. The amount of 

radioligand bound to the control cerebellar sections was determined to be 

2.40 ± 0.27 nCi/mg whilst the amount bound to stargazer cerebellar sections was 

2.09 ± 0.24 nCi/mg. 

Surprisingly, given the decrease in the subunit levels as determined by quantitative 

immunoblotting and as seen in figure 5.16, there was no significant difference in the 

amount of [ 3 H] AMPA bound to the stargazer cerebellum when compared to the 

amount bound to the control cerebellum. 

It has been suggested that synaptic AMPA receptors may be disrupted in 

hippocampal pyramidal cells of the stargazer mouse (Chen et al., 2000). I f this is the 

case, then it is possible that there may be a difference in the binding of [ 3 H] AMPA 

in the hippocampi of stargazer and control brains. Using the same autoradiographs as 

above and the Scion Image software, the amount of binding in both control and 

stargazer hippocampi was determined. In this instance, the binding in the whole 

hippocampus was measured. 
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Figure 5.17 Level of [3H] AMPA bound in control and stargazer hippocampi. 
Control and stargazer brain sections were incubated with 20 nM [3H] AMPA before 
being exposed to film for 8 weeks. (A) Amount of radioligand bound in each 
hippocampus measured. All results are shown with the mean represented as a bar. 
(B) Radioligand bound shown as mean ± sem. Measurements taken from 
hippocampi in 14 sections from 1 control and 1 stargazer mouse brain. Binding was 
significantly reduced in stargazer hippocampi when compared to control 
hippocampi, as determined using the Student's /-test (* = P < 0.05). 

Figure 5.17 shows the level of [ 3 H] AMPA binding in control and stargazer 

hippocampi after exposing to film for 8 weeks. The level of binding in the control 

hippocampi was calculated to be 17.6 ± 2.6 nCi/mg whilst that of the stargazer 

hippocampi was calculated to be 12.1 ± 1.9nCi/mg. A significant difference in the 

amount of [ 3 H] AMPA binding was detected, with the binding observed in stargazer 

hippocampi being significantly decreased when compared to control hippocampi 

(P = 0.046), supporting the observation by Chen et al (2000). 

5.3 Discussion 
AMPAR subunit expression profiles were assessed in order to determine their levels 

in both control (+/+ and +/stg) and stargazer brain tissue. The anatomical distribution 

of the AMPAR subunits was shown to be the same in both control and stargazer 

brain sections, however, the intensity of immunostaining appeared to be decreased in 

stargazer. Analysis of cerebellar membranes by semi-quantitative immunoblotting 

revealed that expression of the AMPAR subunits GluRl-4 was significantly 

decreased in stargazer. Surprisingly, this did not correlate with assembled receptor 

expression as determined by autoradiography, where no significant difference was 
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observed between control and stargazer cerebella, however, a decrease in ligand 

binding was apparent in the hippocampus. 

5.3.1 Regional distribution of AMPAR subunits is unchanged 

between control and stargazer mice 
It was reported, during the course of these studies, that the stargazer cerebellar 

mossy fibre-granule cell synapse was devoid of AMPAR-mediated EPSCs, granule 

cells exhibited no AMPAR-mediated sEPSCs and that granule cells had a reduced 

sensitivity to AMPA (Chen et al., 2000; Hashimoto et al., 1999). However, 

expression of the AMPAR subunit mRNAs did not differ between control and 

stargazer, indicating the possibility of a defect in the expression of one or more 

AMPAR subunit proteins in stargazer cerebellum (Hashimoto et al., 1999). In order 

to determine i f this was the case, the distributions of the four subunits were 

examined by immunolustochemistry. 

hnmunolabelling with the anti-GluR3 antibody revealed no apparent differences in 

the expression of the subunit between stargazer and control sections (section 

5.2.1.3) , which follows the expression of GluR3 mRNA (Sato et al., 1993; Boulter et 

al., 1990; Keinanen et al., 1990). 

No significant differences were apparent in the distribution of GluRl in stargazer 

and control sections. Specific staining was found in a number of forebrain regions; 

however, the strongest staining was evident in the cerebellum and the hippocampus 

(section 5.2.1.1). This is pattern of immunostaining was in accordance with that 

observed by others (Martin et al., 1998; Baude et al., 1994; Molnar et al., 1993; 

Martin et al., 1993; Rogers et al., 1991). 

The distribution of the GluR2 subunit was the same in both stargazer and control 

brain sections (section 5.2.1.2). The distribution observed was comparable to 

published results (Petralia et al., 1997; Vissavajjhala et al., 1996). Similarly, the 

pattern of immunostaining was similar in both control and stargazer sections (section 

5.2.1.4) . Published results have shown that the GluR4 subunit is highly enriched in 

the cerebellum, a distribution which was also exhibited here (section 5.2.1.4) 
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(Pvipellino et al., 1998; Bahr et al., 1996; Martin et al., 1993). However, GluR4 

lnRNA transcripts have been detected throughout the rat brain (Sato et al., 1993) and 

weak GluR4 immunoreactivity has also been exhibited in the rat forebrain (Bernard 

et al., 1997; Bahr et al., 1996; Baude et al., 1995; Martin et al., 1993). It is possible 

that the same cells were labelled here but were undetectable over the background 

staining. 

Within the cerebellum, the levels of expression of both the GluR2 and GluR4 

subunits were shown to be dramatically decreased in stargazer (figures 5.3 and 5.5 

table 5.2). Few synaptic GluR4 puncta were detected in cultured stg/stg granule cells 

and in intact stargazer cerebellar glomeruli; electron microscopy also revealed that 

these synapses were devoid of GluR2/3 labelling (Chen et al., 2000). These results 

confirmed a decrease in immunolabelling of the GluR2 and GluR4 subunits in 

stargazer cerebella. 

5.3.2 Decreased expression of AMPAR subunits in stargazer 

cerebellum 
The GluRl, GluR2 and GluR4 subunits were all detected in the expected anatomical 

regions of control mouse cerebellum, as shown in section 5.2.1. These subunits were 

also shown to be located in the same cell types in stargazer cerebella; however, these 

qualitative immunohistochemical studies appeared to indicate a decreased expression 

of the GluR2 and GluR4 proteins. This was in contrast to Hashimoto et al. (1999), 

however, who reported that there were no differences in the level of expression of 

the GluR4 subunit between control and stargazer cerebellar membranes. In order to 

investigate whether the expressions of the GluRl, GluR2 and GluR4 subunits were 

indeed decreased, cerebellar membranes were analysed by semi-quantitative 

immunoblotting. 

The levels of expression of GluRl and GluR4 subunits were found to be slightly, yet 

significantly, decreased in stargazer cerebellar membranes (section 5.2.2.3). Levels 

of the GluR2 subunit were found to be dramatically reduced by 73 % in stargazer 

cerebellar membranes, when compared to the controls. This result confirmed the 

decrease observed by inmiunostaining (section 5.2.1). 
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Electrophysiological studies in various neuronal cell types and brain regions have 

identified the presence of a family of AMPARs with differing functional properties. 

Correlation of these properties with results obtained from subunit immunolabelling 

experiments and the PCR amplification of mRNAs has led to estimations of the 

subunit stoichiometry of these functionally distinct AMPAR subtypes. Homomeric 

native AMPARs have been shown to exist in the hippocampus (Wenthold et al., 

1996) and in cortical neurons (Dai et al., 2001); however, the majority of native 

AMPARs are composed of heteromeric subunit combinations. In hippocampal 

neurons, functional receptors were found to be composed of GluRl and GluR4 

subunits (in non-pyramidal cells) and of GluRl and GluR2 subunits (in CA1/CA2 

neurons) (Bochet et al., 1994; Tsuzuki et al., 2000; Wenthold et al., 1996; Craig et 

al., 1993). However, a large number of receptor complexes were also found to 

consist of the GluR2 and/or GluR3 subunits only (Wenthold et al., 1996). Within the 

neurons of the subthalamic nucleus and the cortex, GluRl was co-expressed with 

GluR2 and GluR2 was also found to be co-expressed with GluR4 (Dai et al., 2001; 

Tai et al., 2001). 

Although no GluRl was detected in the control granule cell layer, there was 

considerable overlap in the expression of the AMPAR subunits through out the 

cerebellum (table 5.1). The immunohistochemical studies undertaken here revealed 

the majority of GluRl and GluR4 subunits to be expressed in the molecular layer 

(section 5.2.1). It is possible that these subunits were found in the same receptor 

complex and that a decrease in expression of one subunit would lead to a decrease in 

the expression of the other. Indeed, immunoprecipitation studies have shown these 

two subunits to interact in cerebellar membranes, although a fraction of GluRl 

subunits did not bind to GluR4 (Ripellino et al., 1998). 

It is possible, therefore, that the reduction in subunit expression observed here 

(section 5.2.2.3), could, therefore, be reflected in a decrease in the number of 

functional receptors. 
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5.3.3 The use of [3H] AMPA to determine changes in receptor 

expression 
In order to determine whether AMPARs were altered in stargazer mice, brain 

sections were used for receptor autoradiography (section 5.2.4). Although only a 

single ligand concentration was used and so, full saturation analyses cannot be 

determined, it was possible to estimate whether there were differences in the binding 

of [ 3 H] AMPA to its receptors. 

No significant differences were apparent in the binding of [ 3 H] AMPA to control and 

stargazer cerebella (figure 5.15). A decrease in binding would have been expected as 

the subunit proteins were shown to be significantly decreased in stargazer cerebellar 

membranes (section 5.2.2.3) and that functional AMPARs were also lacking in 

stargazer cerebella (Chen et al., 2000; Hashimoto et al., 1999). However, analysis of 

the autoradiographs indicated no significant decreases in binding (figure 5.16). It is 

possible that, since the majority of GluR2 subunits are intracellular (chapter 7; Hall 

et al., 1997; Hall and Soderling, 1997), that the numbers of surface expressed 

GluR2-containing receptors were only slightly decreased in stargazer cerebellum, 

thereby leading to the slight, yet insignificant, decrease in binding observed. 

However, it is not possible to deteimine the number of binding sites using this 

approach. 

It is also possible that since a saturating dose of [ 3 H] AMPA was not used, not all of 

the AMPA receptors were labelled. Indeed, i f a higher dose were used, any 

differences in the binding of [ 3 H] AMPA may have become more apparent and may 

reflect more accurately the levels of the AMPA receptor complexes within control 

and stargazer cerebella. 

Since expression of the GABAR subunits were altered in stargazer hippocampus, as 

revealed by an increase in benzodiazepine-insensitive binding, hippocampal 

AMPARs were also examined. Surprisingly, analysis of hippocampal binding on the 

autoradiographs by the Scion Image software yielded a significant decrease in the 

amount of [ 3 H] AMPA bound between control and stargazer sections (figure 5.17), 

indicating a possible decrease in AMPA receptor expression. This corresponded with 
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a slight decrease in [3H] AMPA binding to stargazer hippocampi that was observed 

in the autoradiographs (figure 5.15). 

The expression of the GluR2 subunit has been shown to be altered in a number of 

models of epilepsy. In kainate-induced status epilepticus, both GluR2 mRNA and 

protein levels were decreased in the CA3 of the hippocampus, with no change in 

GluRl levels (Grooms et al., 2000; Friedman, 1998; Friedman et al., 1994). GluR2 

knockdown by infusion of antisense oligodeoxynucleotides into the hippocampus of 

P13 rats, an age similar to when stargazer mice begin to show epileptic seizures, 

resulted in spontaneous seizure-like behaviour (Friedman and Veliskova, 1998). 

Amygdala-kindled animals show a selective decrease in GluR2 levels of 25 - 40 % 

in the piriform cortex and limbic forebrain (Prince et al., 1995) and an increase in the 

formation of GluR2-lacking AMPARs (Prince et al., 2000). In the y-hydroxybutyrate 

model of absence epilepsy, a decrease in the expression of the GluR2 subunit was 

detected 72 hours after the induction of the seizures in crude brain cortex 

homogenates (Hu et al., 2001). 

Interestingly, in the kainate-induced status epilepticus models, GluR2 was decreased 

in the CA3 and not the CA1. It is possible, therefore, that the decreased binding 

observed here with [3H] AMPA could reflect a decrease in AMPARs in the CA3, an 

area that was shown to be lacking in the expression of stargazin protein (figure 6.4; 

(Sharp et al., 2001). Conversely, Hashimoto et al. (1999) found that AMPAR-

mediated EPSCs were normal in stargazer CA1 pyramidal cells, an area where 

stargazin-like proteins were expressed in stargazer (figure 6.4; Sharp et al., 2001). 

5.3.4 Conclusion 

The anatomical distribution of the AMPAR subunits have been examined in both 

control (+/+ and +/stg) and stargazer mice, by immunohistochemistry. These studies 

revealed that the AMPAR subunits shared the same anatomical distribution, although 

expression was decreased in stargazer. Semi-quantitative immunoblotting using 

cerebellar membranes revealed significant decreases in the levels of expression of 

the GluRl, GluR4 and GluR2, with the largest decrease observed with the GluR2 

subunit. Although autoradiography indicated a decrease in the binding of a single 
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concentration of [3H] AMPA to cerebellar membranes, it was not significant. 

However, this same method revealed a significant decrease in binding in stargazer 

hippocampi. 

It is possible that stargazin interacts with the AMPAR subunits and a lack of 

stargazin would lead to a decrease in AMPAR expression. This work was 

undertaken, the results of which are described in chapter 6. The level of GluR2 cell 

surface expression in cerebellar granule cells was determined and this is described 

further on in this thesis (chapter 7). 
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Chapter 6 

Stargazin expression and sohibilisation 

from mouse brains 

6.1 Introduction 

6.1.1 The CACNG genes 

The stargazer mutation was identified as being on mouse chromosome 15 (Noebels 

et al., 1990). Later work by Letts et al. revealed the mutation to be an early 

transposon insertion into intron 2 of a novel gene termed Cacng2 (Letts et al., 1998). 

This family of genes was later expanded to include CACNG3, CACNG4, CACNG5 

(Burgess et al., 1999), CACNG6, CACNG7 and CACNG8 (Chu et al., 2001). These 

genes were subsequently predicted to encode for a family of human, rat and mouse y 

proteins, y2 (stargazin) - y8 (Chu et al., 2001; Green et al., 2001; Klugbauer et al., 

2000; Black and Lennon, 1999). 

6.1.2 mRNA distribution of the y sub units 

Stargazin (y2) mRNA was found to be expressed in adult mouse brain but not in 

heart, spleen, lung, liver, kidney, testis or skeletal muscle (which is where the jt 

subunit is expressed) (Letts et al., 1998). In situ hybridisation studies revealed that 

stargazin rnRNA was heavily expressed in the cerebellum, the CA3 and dentate 

gyrus of the hippocampus, the cerebral cortex, the thalamus, the nucleus accumbens 

and the olfactory bulbs (Chu et al., 2001; Green et al., 2001; Klugbauer et al., 2000; 

Letts et al., 1998). 

y3 mRNA expression was observed mainly within the brain, with some expression 

within the testis. Within the brain, y3 mRNA was strongly detected within the 

hippocampus, the cerebral cortex, the amygdala, the putamen and the nucleus 

accumbens (Chu et al., 2001; Green et al., 2001; Klugbauer et al., 2000). 
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The distribution of the y 4 mRNA was more widespread than that of the y 2 and y 3 

mRNAs and included the brain, the heart, the lungs and the prostate. y4 showed a 

widespread distribution throughout the brain, with a high level of expression within 

the caudate-putamen and the olfactory bulb, with lower levels observed within the 

cerebellum, the thalamus and the hippocampus (Chu et al., 2001; Green et al., 2001; 

Klugbauer et al., 2000). 

The mRNAs for y5 - y 8 were all shown to be present with in the brain, as well as in 

other anatomical structures including skeletal muscle, liver, lungs and heart (Chu et 

al., 2001; Klugbauer et al., 2000). 

6.1.3 The stargazin protein 

The Cacng2 gene was predicted to encode a membrane spanning protein (stargazin) 

which had 4 transmembrane domains and cytosolic amino and carboxy tenrrini, and 

which shared low sequence similarity (-25 %) and a predicted secondary structure 

with the y subunit of skeletal muscle voltage operated calcium channel (VOCC), yi. 

A synthetic peptide, CAA plus the stargazer C-terminal sequence 

DSLHANTANRRTTPV, was coupled to keyhole limpet hemocyanin and used to 

generate a rabbit anti-stargazin antibody. Using this antibody, stargazin was shown 

to be expressed in mouse brain synaptic plasma membranes and with a weight of 35-

38 kDa (Letts et al., 1998). 

HEK293 cells transfected with y 2 cDNA and probed with an antibody raised against 

the human y 2 subunit revealed a protein that migrated as a broad band between 33-

38 kDa, and with a deglycosylated weight of approximately 26 kDa. Immunoblotting 

B6EiC3H mouse tissue showed the expression of the protein to be confined to the 

brain (Sharp et al., 2001). 

y 2 cDNA was also fused to the myc-epitope at its C-terminus, before transfecting 

into HEK293 cells. Immunoblotting with an anti-myc antibody revealed a protein 

with a weight of between 39 and 42 kDa (Klugbauer et al., 2000). 

Immunocytochemistiy revealed the location of the protein to be at the cell surface 

(Green et al., 2001; Klugbauer et al., 2000). 
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Immunohistochemical localisation of the y subunits revealed a high level of 

expression within the hippocampus, cortex and cerebellum and a moderate level of 

expression in the striatum, olfactory tubercle and amygdala. A lower level of 

expression was detected within the thalamus and brainstem. A decreased level of 

staining was observed throughout the stargazer brain, when compared to control 

brain (Sharp et al., 2001). 

6.1.4 Proteins associating with stargazin 

Because of its shared amino acid identity with the y subunit of skeletal muscle 

VOCC (25 %) and a predicted secondary structure which resembled that of the yi 

subunit, it was suggested that j2 was an auxiliary subunit of neuronal C a 2 + channels 

(Letts et al., 1998). Co-sedimentation and immunoprecipitation experiments have 

shown that j2 and y3 subunits bind to neuronal C a 2 + channel aiAm, ĉ S and |3 subunits 

(Kang et al., 2001; Sharp et al., 2001). However, immunofluorescence studies 

indicated that there was no direct interaction between the y2 and pi subunits (Rousset 

et al., 2001) and no difference in calcium channel function was observed between 

+/stg and stg/stg cultured cerebellar granule cells (Chen et al., 2000). 

There is some evidence, however, to suggest that stargazin associates with the 

AMPAR subunits. Chen et al. (2000), using COS cells co-transfected with the 

various subunits and stargazin, were able to show that stargazin co-

immunoprecipitated with GluRl, GluR2 and GluR4 but not with the NMDAR 

subunit NR1 or the potassium channel subunit Kvl.4. They were also able to show 

an interaction between stargazin and the PDZ-motif containing MAGUK proteins 

PSD-93, PSD-95, SAP-97 and SAP-102. Sharp et al. (2001) were also able to 

demonstrate the co-immunoprecipitation of stargazin with GluRl, but from mouse 

brain extracts. 

6.1.5 Aims of this chapter 

During the course of this work, the studies by Chen et al. (2000) and Sharp et al. 

(2001) were published. Although Chen et al. (2000) were able to show that granule 

cell synapses in stargazer were devoid of GluR2/3 and GluR4 labelling, and that 
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stargazin interacted with both of these subunits in transfected COS cells, they were 

unable to show an interaction between stargazin and the GluR subunits in brain 

extracts. 

Sharp et al. (2001) were able to show that there was no stargazin protein in stargazer 

by immunoblotting and the distribution of stargazin by immunoliistochemistry. 

Furthermore, immunoprecipitation studies using their anti-human stargazin 

antibodies, which also cross-reacted with other gamma isoforms, they were able to 

tentatively imply that GluRl and stargazin co-associated in mouse brain. 

Using the mouse peptide sequence as an immunogen, as outlined by Letts et al. 

(1998), we generated anti-stargazin antibodies. These antibodies were shown to be 

effective probes in both immunoblotting and immunohistochemical studies. Hence, 

they were used to characterise the expression of stargazin protein in both control and 

stargazer brain tissue. Control and stargazer forebrains were also solubilised and 

anti-stargazin antibody-specific immunoaffinity columns were prepared. The 

solubilised proteins were run down the columns, bound proteins eluted and probed, 

by irnmunoblotting, for the presence of the AMPAR subunits and the NMDAR 

subunit NR1, using solubilised stargazer forebrain proteins as a control. 

6.2 Results 

6.2.1 Preparation of anti-stargazin specific antibodies 

A peptide corresponding to the C-terminus amino acid sequence of stargazin (amino 

acids 309 - 323, sequence DSLHANTANRRTTPV), which included an additional 

terminal cysteine residue for directional coupling to carrier and affinity purification 

column, was commercially synthesised. The cysteine-stargazin peptide was then 

coupled to thyroglobulin, using the MBS method, as outlined in section 2.3.2.1. 

A New Zealand white rabbit was immunised with the thyroglobulin-coupled peptide 

and immune sera subsequently isolated, as described in section 2.3.3. The cysteine-

coupled peptide was also used to prepare a Thiol-Sepharose peptide-affinity column 
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(section 2.3.5.2), which was used to purify the antibody from the sera taken from the 

immunised rabbit (as described in section 2.3.6). 

6.2.2 Iinmunoblotting using the anti-stargazin antibody 

The anti-stargazin antibodies were used to probe both control (+/+ and +/stg) and 

stargazer tissue (figure 6.1 A). Forebrain (10 ug/10 ul) and cerebellar P2 synaptic 

membranes (10 ug/10 ul) were analysed by immunoblotting, as described in section 

2.7.2. Immunoblots were probed with an optimised concentration of the anti-

stargazin antibody, 1 ug/ml. 

Three immunoreactive species were identified by the antibody in both the forebrain 

and cerebellum of control mice. These had molecular masses of 35-41 kDa 

('stargazin-like'), 53 kDa (NS53) and 60 kDa (NS60), (figure 6.1 A). The diffuse 

band at 35-41 kDa corresponds to stargazin and probably represents differentially 

glycosylated forms of the protein (Sharp et al., 2001; Letts et al., 1998). This 

immunoreactive species was not detected in either the forebrain or cerebellar 

membrane preparations derived from adult stargazer mice. 

Immunoblots were subsequently reprobed with anti-P actin antibodies (1:500 

dilution, figure 6. IB). In the control membranes, a signal corresponding to the actin 

protein was clearly evident. A similar robust immunopositive signal was obtained 

with the stargazer membranes, indicating that similar amounts of total membrane 

proteins had been loaded onto the gels. Note, however, that the actin immunopositive 

signal for the stargazer cerebellar membrane was stronger than that of the control 

cerebellar membrane, indicating an increased loading of stargazer cerebellar protein 

compared to control cerebellar protein. 

The lack of an anti-stargazin signal in both the stargazer forebrain and cerebellar 

homogenates cannot, therefore, be explained by a lack of protein loading as an 

immunopositive signal to actin was detected. It is possible, however, that the full-

length stargazin was either not translated or that it has an extremely rapid rate of 

turnover. 
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Figure 6.1: Itnmunoblot showing stargazin expression levels in forebrain and 

cerebellar membranes derived from control (+/+ and +/stg, ctl) and stargazer (stg). 

The membranes were probed with anti-stargazin antibody. The diffuse stargazin-like 

immunoreactive species (35-41 kDa) was clearly visible in both control forebrain 

and cerebellar membranes but not in those derived from stargazer mouse. The same 

membranes were then probed with anti-|3-actin antibody (B). All four membrane 

preparations were found to be strongly immunopositive, indicating a proficient 

loading of membrane samples to the gels and efficient transfer. 
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Figure 6.2 Immunoblot showing the specificity of the stargazin immunospecies in 

both control (ctl) and stargazer (stg) forebrain membranes in the presence or absence 

of the immunogenic peptide. The stargazin protein, along with minor bands at 

53 kDa (NS53) and 60 kDa (NS60), were detected in the control forebrain. The 

stargazin signal was absent in the stargazer forebrain membranes although NS53 and 

NS60 were still visible. All the bands were absent when the antibody was pre-

incubated with the peptide prior to application onto the control forebrain membrane. 

Refer to section 6.2.2 for concentrations of antibody and peptide used. 
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The specificity of the immunosignals obtained was tested by performing 

immunogen-blocking reactions. The anti-stargazin antibody was pre-incubated for a 

minimum of 1 hr at room temperature, with a saturating concentration of the peptide 

(1 ug/ml) to which the antibody was raised (peptide : anti-stargazin antibody molar 

ratio of ~ 100:1). This cocktail was then used to probe an immunoblot containing 

control synaptic membranes, as described in section 2.7.2. 

As can be seen in figure 6.2, stargazin, NS53 and NS60 immunosignals were 

detected in control forebrain membranes whereas stargazin was not detected in 

stargazer forebrain. Control forebrain membrane was also probed with the peptide-

blocked antibody. In this case, no stargazin immunosignal was observed nor were the 

NS53 and NS60 bands detected. 

6.2.3 Immunohistochemical localisation of stargazin 

Control and stargazer brain sections were incubated with 0.5 ug/ml anti-stargazin 

antibody in order to determine the immunohistochemical distribution of the stargazin 

protein. The method followed has been described earlier (section 2.12). 

As can be seen in figures 6.3A and 6.3B, staining of cells is visible in all cell layers 

of cerebellar sections from control mice. Staining was observed within the granule 

cell layer and within the cell bodies (in the Purkinje cell layer) and dendrites of the 

Bergmann glia (in the molecular layer) (table 6.1). 

The intensity of staining within stargazer cerebellum was decreased when compared 

to control cerebellum (figures 6.3C and 6.3D). Some staining was still evident in the 

granule cell layer, although it was not to the same extent as that observed in the 

control granule cell layer. The staining was almost completely absent from the 

Bergmann glia cell bodies in the Purkinje cell layers and processes within the 

molecular layer (table 6.1). 

hrimunostaining with the anti-stargazin antibody was also analysed within the 

forebrain of both control and stargazer mice (figure 6.4). Strong immunoreactive 

signals were observed in the various regions of the forebrain, including the 
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Figure 6.3 Immunohistochemical mapping of the distribution of stargazin within the 

cerebellum. Cerebellar sections were incubated with the anti-stargazin specific 

antibody before staining with DAB. Figures 6.3A and 6.3B show control sections, 

whilst a stargazer section is seen in figures 6.3C and 6.3D. Staining was clearly seen 

in the molecular layer (ML), the Bergmann glial bodies in the Purkinje Cell layer 

(PL) and granule cell layer (GL) of the control. No staining was seen within the 

white matter (WM) (figure 6.3B). The staining intensity was reduced in the granule 

cell layer of the stg cerebellum and appeared to be absent from the Purkinje Cell 

layer and molecular layer (figure 6.3D). 

Scale bars represent 1 mm (A and C) or 100 um (B and D). 
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hippocampus, the striatum and the cortex (figure 6.4A). The hippocampal formation 

was very strongly labelled, with intense staining observed within the subiculum and 

the molecular layer of the dentate gyrus and the highest intensity of staining being 

within the CA1 region, (figure 6.4B and table 6.1). 

hnmunostaining was greatly reduced in stargazer forebrain (figure 6.4C). Whilst 

some staining was still evident, especially within the hippocampus and the cerebral 

cortex, it was essentially absent from the other regions of stargazer forebrain. The 

hippocampal subiculum and CA1 regions still expressed some staining with the anti-

stargazin antibody, but it was much reduced when compared to control sections 

(figure 6.4D and table 6.1). As no stargazin protein is present in the brains of 

stargazer mice (section 6.2.2), it was likely that the staining present in the brain 

sections of stargazer mice was due to either cross-reactivity with unrelated proteins 

or that the antibody recognised oilier y isoforms (Sharp et al., 2001). 
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Figure 6.4 Immunohistochemical mapping of the distribution of stargazin within the 

forebrain of adult control and stargazer mice. Sagittal sections were stained using the 

anti-stargazin antibody and DAB. Staining was observed throughout the control 

forebrain (A) but was most prominent within the regions of the hippocampal 

formation (B). Staining within the stargazer forebrain was much reduced, being seen 

essentially in the cerebral cortex and the hippocampus (C). Within the hippocampus, 

the highest levels of expression of stargazin-like proteins were in the CA1, with 

staining much reduced elsewhere. 

Scale bars represent 1 mm. 
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Control Stargazer 
Stargazin-
specific 
staining 

Hippocampus 
Amnion's horn 

CA1 ++++ +++ + 
CA3 +++ ++ + 

Dentate Gyrus 
Molecular layer +++ ++ + 
Granule cell layer +/++ +/++ -

Polymorphic layer — — -

Cortex ++/+++ +/++ + 

Caudate-putamen ++/+++ - /+ ++ 

Cerebellum 
Granule cell layer +++ + ++ 
Purkinje cell layer 

Bergmann glia (cell body) ++++ - +++ 
Purkinje cells + - + 

Molecular layer ++ - ++ 
Bergmann glia (processes) +++ - +++ 

Table 6.1 Relative expression level of anti-stargazin antibody immunoreactive species in 
control ('stargazin-contpetent') and stargazer ('stargazin-less') mouse brain sections. 
Levels were estimated by visual comparison of DAB stained sections. Comparisons of 
immunoreactive species in sections from both brains revealed the distribution of 
stargazin-specific staining. - = staining at background levels; + = low staining; 
++ = moderate staining; +++ = high staining; t i l l = very high level of staining, n = 4 -
8 sections from 2 - 4 mice. 

6.2.4 Immunoaffinity purification of stargazin and stargazin-

associated protein complexes 
Chen et al. (2000) revealed that stargazin interacted with a number of proteins 

including the AMPAR subunits GluRl, GluR2 and GluR4 and the PDZ proteins 

PSD-93, PSD-95 and SAP-102. However, these studies were conducted in COS cells 

as they were unable to co-immunoprecipitate the GluR proteins with stargazin from 

brain extracts. 
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Sharp et al. (2001) were able to solubilise stargazin from mouse forebrain using 

CHAPS. By immunoprecipitation, they were also able to show that stargazin 

associated with the GluRl subunit as well as the a lB subunit of the N-type VOCC. 

The following experiments were undertaken to independently investigate whether 

these interactions occurred in vivo and to assess the specificity of these interactions 

with stargazin. The conditions that would enable the solubilisation of stargazin from 

brain tissue were deteitnined and then whether the AMPAR subunits interacted with 

stargazin. Stargazer tissue was used as a negative control; a control that Sharp et al. 

(2001) did not employ. 

Two anti-stargazin-specific antibody inimunoaffinity columns were prepared, as 

described in section 2.4.1. Sodium deoxycholate-solubilised forebrain membrane 

proteins from control (+/+ and +/stg) and stg/stg mice were prepared and applied 

separately to the immunoaffinity columns. Anti-stargazin antibody-bound proteins 

were subsequently eluted off the column, using a high pH buffer, as described in 

section 2.4.2. The eluted samples were then analysed by immunoblotting, using the 

anti-stargazin antibody, the anti-AMPAR subunit-specific antibodies and the anti-

NR1 (NMDAR) antibody as probes. 

6.2.4.1 Detection of stargazin in solubilised forebrain samples 
Samples of the detergent-solubilised forebrain membranes, the pre-centrifugation 

fraction, the detergent-soluble fraction and the detergent-insoluble fraction, were all 

analysed by immunoblotting with the anti-stargazin antibody, to determine whether 

the stargazin protein could be solubilised from control forebrain fractions. 

A sample of forebrain membrane was removed after the forebrain membrane 

homogenate was incubated with the sodium deoxycholate, this was termed the 'pre-

centrifugation fraction 1'. The other two samples were taken after the solubilised 

forebrain membranes had been ultracentrifuged; the first sample was removed from 

the supernatant, 'soluble fraction 2', whilst the second was derived from the 

resuspended insoluble pellet, 'insoluble fraction 3'. 

190 



Figure 6.5 Immunoblot showing detection of stargazin in detergent-solubilised 

control and stargazer forebrain membrane extracts. Fractions were removed before 

centrifuging (mem) and from the supernatant (sol) and pellet (insol), after 

centrifuging. 

Stargazin (red arrow) was expressed in the membrane (mem) and soluble (sol) 

fractions from control forebrain. No stargazin was expressed in either the stargazer 

membrane or soluble fractions, or in the insoluble pellets. 
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Proteins from all of the three samples were precipitated and analysed by 

immunoblotting. The proteins precipitated from fractions 1 and 2 were suspended in 

an equal volume of SDS-PAGE buffer whilst those from fraction 3 were suspended 

in 2 volumes of SDS-PAGE buffer. The suspended proteins were then probed by 

immunoblotting with 1 ug/ml anti-stargazin antibody. 

The stargazin protein, NS53 protein and NS60 protein were detected in both 

fractions 1 and 2, that is, in the pre-centrifugation/post-sodium deoxycholate 

incubation sample and also in the soluble fraction. Stargazin was not detected in 

either the insoluble fraction from control forebrain or in the fractions from stargazer 

forebrain (figure 6.5). 

6.2.4.2 Collection of eluted fractions 
The solubilised protein preparations from control and stargazer forebrains were 

applied to separate anti-stargazin antibody-specific immunoaffinity columns by 

circulation, as described in section 2.4.2.3. Stargazin, and its interacting proteins, 

should bind with high affinity to the anti-stargazin antibody in the column and 

would, therefore, be immunopurified from the circulating soluble proteins. The 

stargazin and associated proteins were then eluted off the columns and the eluate was 

collected in 1 ml fractions. The proteins in these fractions were then precipitated, as 

described in section 2.6, and suspended in 0.5 volumes of SDS-PAGE buffer. The 

suspended proteins were loaded onto 10 % resolving gels and probed with 1 ug/ml 

stargazin antibody. 

Figures 6.6A and 6.7 show the elution profile of stargazin from control forebrain 

fractions eluted off one anti-stargazin antibody immunoaffinity column. The anti-

stargazin antibody detected a large band, corresponding to a weight of 35-41 kDa i.e. 

stargazin, in the control forebrain (positive control). This signal was absent in the 

stargazer forebrain membrane sample (figure 6.6A). The 35-41 kDa anti-stargazin 

antibody-specific immunopositive species corresponding to stargazin was, however, 

clearly present in the eluted fractions. The most intense signal was obtained with 

fraction 5, but fractions 4, 6 and 7 all gave robust signals, indicating that they 

193 



Figure 6.6 Expression of stargazin in fractions eluted off the anti-stargazin antibody 

immunoaffinity columns. Figure 6.6A shows the expression of stargazin from 

control forebrain homogenates whilst figure 6.6B shows that from stargazer 

forebrain homogenates. Also run on both gels were positive controls (control 

forebrain) and negative controls (stargazer forebrain). Stargazin was seen in fractions 

4-7 from the control forebrain but not in the stargazer forebrain eluted fractions. The 

low weight band seen in fraction 4 (figure 6.6B) is not stargazin as the weight was 

lower than that of stargazin. It is more likely to be a lower band that is sometimes 

seen below the stargazin signal. 
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contained relatively large amounts of stargazin protein when compared to all the 

eluted fractions. 
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Figure 6.7 pH elution profile of stargazin (35-41 kDa) solubilised from control 
mouse forebrain, from the anti-stargazin antibody immunoaffinity column. 
Eluted fractions were collected; proteins were precipitated and probed following 
immunoblotting with the anti-stargazin-specific antibody. The films were then 
analysed using the CelDoc 2000 and BioRad Quantity One software. The optical 
densities were obtained and plotted against the eluate fraction number. 

Figure 6.6B shows the pH profile from the second anti-stargazin antibody-specific 

immunoaffinity column, which had been loaded with detergent-solubilised forebrain 

fractions from stargazer mice. Fractions were eluted, immunoblotted and probed 

with the anti-stargazin antibody. The anti-stargazin antibody clearly detected 

stargazin protein at 35-41 kDa in the control forebrain membrane (positive control) 

whilst no stargazin was detected in the stargazer forebrain membrane (negative 

control). As expected, the eluted fractions from stargazer mice did not contain the 

35-41 kDa stargazin protein, as the immunosignal associated with this protein was 

not detected with any of the eluted fractions. However, the NS60 immunospecies 

observed in both control and stargazer forebrain membranes was seen in all the 

eluted fractions. By obtaining the optical densities of the NS60 immunosignal in all 

the fractions, an elution curve was obtained (figure 6.8). 
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Figure 6.8 pH elution profile off the anti-stargazin antibody immunoaffinity 
column of the NS60 immunoreactive species solubilised from stargazer forebrain. 
Eluted fractions were immunoblotted and probed with the anti-stargazin 
antibody. Optical densities of the NS60 protein in each of the eluted fractions 
were obtained using BioRad Quantity One software. These were plotted in the 
graph above against the fraction number. 

By referring to the immunoblots (figure 6.6) and the elution curves (figures 6.7 and 

6.8), the fractions containing the highest amount of stargazin protein (35-41 kDa) or 

the NS60 protein, fractions 4 and 5, were pooled. The proteins were chloroform-

methanol precipitated from the combined fractions, resuspended in SDS-Page 

sample buffer, immunoblotted and probed with a number of antibodies directed 

against candidate stargazin-associated proteins to establish whether these interactions 

occurred in vivo. 

6.2.4.3 Stargazin is seen in the combined fractions 
Initially, the combined eluted fractions were probed with the anti-stargazin antibody 

(1 ug/ml) in order to confirm that the signal observed in the individual fractions with 

the anti-stargazin antibody was still present when the fractions were pooled. This can 

be seen in figure 6.9, where both the combined eluted fractions and forebrain 

membranes were probed, on the same immunoblot, with the anti-stargazin antibody. 

The stargazin signal was observed in both the control forebrain (positive control) and 

the combined eluted fractions from the immunopurified solubilised protein from 
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Figure 6.9 Stargazin is present in combined eluted fractions. The fractions showing 

the highest amounts of protein were combined and then probed with the anti-

stargazin antibody. The stargazin signal was still observed in the combined control 

(ctl) eluate fractions but not in the stargazer (stg) fractions. As a control, control (ctl) 

and stargazer (stg) forebrain membrane homogenates were also probed. As expected, 

the stargazin signal is only seen in the control forebrain. 
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control forebrain. The 35-41 kDa, stargazin protein was not detected in either the 

stargazer forebrain or in the immunopurified soluble protein from stargazer 

forebrain. In these latter samples, only the NS53 and NS60 proteins were observed; 

species that were not stargazin based on the predicted molecular size (Sharp et al., 

2001). 

6.2.4.4 AM FAR subunits bind to co-elute with purified stargazin 

protein from control forebrain 
The immunopurified stargazin protein from the solubilised control forebrain was 

analysed by immunoblotting using anti-AMPAR subunit-specific GluRl, GluR2, 

GluR3 and GluR4 antibodies as probes (figure 6.10). The GluR subunits all have a 

molecular weight of approximately 105 kDa. Cellular membranes from control mice 

were used as positive controls. Anti-GluR2 antibody was used at 200 ng/ml (figure 

6.1 OA), anti-GluR3 antibody at 100 ng/ml (figure 6.10B), and anti-GluR4 antibody 

at 200 ng/ml (figure 6.10C). 

It can be seen that the immunoreactive species at approximately 105 kDa were 

detected in all three cerebellar membrane samples. The GluR2 and GluR4 proteins 

were also detected in the purified stargazin samples but not the GluR3 protein. This 

would imply that whilst stargazin appeared to associate with the GluR2 and GluR4 

subunits, it did not co-associate with the GluR3 subunit. 

Purified proteins from solubilised control and stargazer forebrains eluted from the 

anti-stargazin immunoaffinity columns were probed with 0.5 ug/ml anti-GluRl 

antibody (figure 6.10D). This time, however, 500 ul of the purified samples were 

precipitated and resuspended in 100 ul of SDS-PAGE sample buffer. Samples taken 

from the forebrain membrane, which were subsequently used for the purification i.e. 

pre-centrifugation fraction 1, were run along side the purified proteins as positive 

controls. 

The stargazer and control forebrain membranes both showed an immunosignal at 

-105 kDa, which corresponded to that of the GluRl subunit. The purified proteins 
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Figure 6.10 Purification of stargazin complexes from control mouse brain. DOC-

solubilised control forebrain membranes were applied to the anti-stargazin 

immunoaffinity column. Eluted column fractions were combined (P) and screened 

for AMPAR subunit expression. In all cases, cerebellar membranes (CB) were 

probed at the same time, on the same gel. 

Combined fractions and cerebellar membranes were screened with anti-GluR2 

antibody (A), anti-GluR3 antibody (B), anti-GluR4 antibody (C) or anti-GluRl 

antibody (D). A signal was seen with the fractions probed with the GluR2 and GluR4 

antibodies, but not the GluR3 antibody. 

A signal was also seen with the GluRl antibody in both fractions from DOC-

solubilised control forebrains (ctl) and from DOC-solubilised stargazer forebrains 

(stg) (D). Here, the controls were stargazer forebrain (stg) and control forebrain (ctl) 

which both show a strong GluRl signal. 
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from the control forebrain also showed a band of the same size, indicating that 

stargazin interacted with the GluRl subunit also. 

A weak signal was also seen, however, with the anti-stargazin immunoaffinity 

column purified proteins obtained from stargazer forebrain. Since stargazer mice are 

effectively null mutants for stargazin, i.e. they do not express stargazin protein as 

shown previously (section 6.1 and figures 6.5 and 6.6), the GluRl subunit must 

weakly interact with NS53 or NS60, which were co-purified with stargazin from 

control brain and purified in the absence of stargazin from stargazer tissue. These 

possibly represent other y-subunit isoforms with which the anti-stargazin antibody 

cross-reacts. 

A similar result was observed in figure 6.11, where the immunoaffinity purified 

proteins from both solubilised stargazer and control forebrains, were probed with 

0.5 ug/ml anti-GluRl antibody, 1 ug/ml anti-GluR2 antibody and 2 ug/ml anti-NRl 

antibody. Control forebrain membranes were used as the positive controls. 

The anti-GluRl and anti-GluR2 antibodies detected weak bands at approximately 

105 kDa in both the forebrain membranes and the control purified samples, 

indicating an interaction between stargazin and the GluRl and GluR2 subunits 

(figures 6.11A and 6.1 IB respectively). The anti-NRl antibody detected a protein at 

approximately 120 kDa, which corresponded to the NMDAR NR1 subunit. This 

protein was detected only in the forebrain membrane control (figure 6.11C), 

however, i f the exposure time of the hyperfilm on the ECL-treated nitrocellulose was 

increased (to 5 minutes), NR1 was also detected in the purified proteins from both 

control and stargazer forebrains (figure 6.1 ID). 

6.3 Discussion 
An anti-mouse stargazin antibody was generated and characterised. This antibody 

was used to detect stargazin protein in cerebellar and forebrain membranes. Letts et 

al. (1998) had suggested that some stargazin mRNA was not prematurely 

transcriptionally arrested and thereby implied that some stargazin protein may be 
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Figure 6.11 Association of glutamate receptor subunits with stargazin. DOC-

solubilised control (ctl) and stargazer (stg) forebrain extracts were applied to anti-

stargazin immunoaffinity columns. Peak eluted fractions were combined and probed 

for GluRl (A), GluR2 (B) or NR1 (C and D) immunoreactivity, with forebrain 

membranes from +/+ and +/stg mice as the control (FB). 

The forebrain membranes showed strong signals with all antibodies. A signal was 

also seen when the eluted control fractions were probed with the AMPAR subunit 

specific antibodies. However, a signal in the eluted stargazer fractions was seen with 

these antibodies, indicating that the stargazin antibody is not specific. 

Initially, no signal was detected in either the control or the stargazer fractions with 

the anti-NRl antibody, indicating no direct association (C). However, when left to 

expose for longer (5 minutes), the NR1 species was detected in both fractions. 

It is likely that the antibody is also picking out other y proteins and that these 

proteins are binding to the subunits in the stargazer tissue (a tissue with no 

stargazin). 
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synthesised by stargazer mice. However, stargazin protein was not detected in either 

stargazer forebrain or stargazer cerebellar membranes in immunoblotting studies 

utilising the anti-stargazin antibody. These results revealed that stargazer mouse is a 

null mutant for stargazin protein. 

The antibody was also employed in comparative immunohistochemical studies to 

identify the anatomical distribution of stargazin protein in control mouse brain. 

Finally, this antibody was used to generate anti-stargazin immunoaffinity 

purification columns to purify stargazin in order to begin to proteomically map the 

repertoire of proteins that associate with stargazin in vivo. 

6.3.1 Distribution of stargazin and other y isoforms 

It was previously shown that stargazin mRNA was expressed in adult mouse brain 

but not in heart, spleen, lung, liver, kidney, testis or skeletal muscle (Letts et al., 

1998). Similar observations were made in rat, except that low levels of stargazin 

mRNA were detected in the testes (Chu et al., 2001). The distribution of human y 2 

mRNA differs slightly from that in the mouse. Whilst the highest level of expression 

is seen in the brain, and in the cerebellum in particular, lower levels were expressed 

in the liver, testes, spinal cord, small intestine and stomach (Burgess et al., 2001; 

Green et al., 2001). 

In mouse brain, in situ hybridisation studies revealed expression of stargazin mRNA 

in the cerebellum, the CA3 and dentate gyrus of the hippocampal formation, the 

cerebral cortex, the thalamus and the olfactory bulbs. Within the hippocampus, 

stargazin mRNA was found in the pyramidal cells whilst in the cerebellum, it was 

expressed in granule cells, Purkinje cells and in stellate cells (Chen et al., 2000; 

Klugbauer et al., 2000; Letts et al., 1998). 

The immunohistochemical studies performed here revealed a broadly similar 

distribution of stargazin protein, with high levels of immunostaining in both the 

hippocampus and cerebellum, along with the striatum and cortex. In the 

hippocampus, stargazin-specific immunostaining was detected in the CA3 region and 

in the molecular layer of the dentate gyrus. Within the cerebellum, however, 

206 



stargazin immunoreactivity was heavily expressed within the granule cell layer and 

the Bergmann glia, not in Purkinje cells (section 6.2.3). These results were supported 

by the work of Sharp et al. (2001), who also reported a similar pattern of 

irnmunostaining within the mouse brain, using an anti-human y 2 antibody. 

As both stargazer cerebellar and forebrain membranes have been shown to be devoid 

of stargazin protein (section 6.2.2; Tiwari et al., 2001; Sharp et al., 2001), it was 

expected that no irnmunostaining would be visible in the stargazer brain sections. 

However, as can be seen in section 6.2.3, Sharp et al. (2001) and Ives et al (2003), 

some immunostaining was visible in the stargazer sections, although this was very 

much reduced when compared to the control sections. It is feasible that the other 

bands observed on immunoblots (NS53 and NS60, section 6.2.2) and the low level 

of immunostaining in stargazer brain sections were due to the anti-stargazin antibody 

detecting stargazin-like proteins. 

So far, 8 isoforms of the y subunit have been identified in mouse, rat and human 

tissue. Phylogenetic analyses of protein sequences have revealed that the y isoforms 

can be divided into 3 main subfamilies. The yi and y 6 isoforms form one subfamily, 

y 5 and y 7 form another subfamily whilst the remaining subunits (y 2, y 3 , y 4 and y 8 ) 

form a third subfamily, which can be further subdivided into two more subfamilies -

| y 2 and y 3 } and { y 4 and y 8 } (Burgess et al., 2001; Chu et al., 2001; Klugbauer et al., 

2000; Burgess et al., 1999). 

Mouse y 2 (stargazin) and y 3 /y 4 share a high degree of amino acid similarity, 

particularly at their C-terrnini, and their mRNAs have been shown to occur in the 

same brain regions (Chu et al., 2001; Green et al., 2001; Chen et al., 2000; 

Klugbauer et al., 2000). It is possible that the irnmunostaining observed in stargazer 

brain sections was due to other isoforms being detected by antibodies. Indeed, 

immunoblotting with the anti-human antibodies detected both y 3 and y 4 proteins in 

the cerebral cortex, striatum and hippocampus, with only a small amount of y 4 being 

detected in the cerebellum (Sharp et al., 2001). Therefore, whilst the decreased 

immunostaining apparent in the various regions of stargazer brain was due to the loss 
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of stargazin (y2) - specific immunostaining, the remaining irnmunostaining observed 

could be due to co-expression of y3 and y 4 subunits. 

6.3.2 Solubilisation of brain proteins 

As the expression levels of AMPAR subunits were compromised in stargazer mice 

(section 5.2.2) and since stargazer is null for stargazin protein (section 6.2.2; Tiwari 

et al., 2001), it could be suggested that stargazin interacted with AMPAR subunits. 

Indeed, Chen et al. (2000) reported that stargazin associated with AMPAR subunits. 

Before any such association could be identified in brain extracts, it was necessary to 

solubilise proteins from brain tissue. 

Sodium deoxycholate (DOC) was used to solubilise the cytoskeletal proteins from 

both control and stargazer forebrains (section 6.2.4), as the conditions used here are 

harsh enough to break the bonds anchoring the proteins to the plasma membrane but 

are not so harsh as to break the bonds between associating proteins. Sodium 

deoxycholate has been used in the past to solubilise a number of receptors and their 

associated proteins. For example, sodium deoxycholate was found to solubilise both 

NMDAR NR1 and NR2 subunits from rat forebrains and the interactions between 

the NR1 and NR2A or NR2B subunits were preserved (Blahos and Wenthold, 1996). 

DOC was also used on rat hippocampal membranes, where it was found that 70 % of 

NR1 subunits and 50 % of NR2A and NR2B subunits were solubilised. Similarly, 

PSD-95, SAP102 and SAP97 were also solubilised from the same tissue preparation. 

Immunoprecipitation experiments revealed that NR1 co-precipitated with NR2A, 

with NR2B and with PSD-95 and that both NR2A and NR2B cd-immunoprecipitated 

with PSD-95 (Takagi et al., 2000). NR1 subunits were detected in DOC-solubilised 

rat thalamic and cerebellar membranes, whilst, as expected, NR2C subunits were 

found only in the solubilised cerebellar membranes. Immunoprecipitation by anti-

NR2D antibodies revealed that NR1, NR2A and NR2B subunits co-associated with 

NR2D subunits in DOC-solubilised rat cortex and thalamus (Dunah et al., 1998). 

AMPAR subunits have also been shown to be detected in DOC-solubilised 

membranes. Takagi et al. (2000) showed that ~ 85% of GluR2/3 subunits were 

expressed in DOC-solubilised rat hippocampal membranes. Immunoprecipitation 
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experiments utilising DOC-solubilised rat cortical membranes revealed that anti-

GRIP antibodies co-associated with GluRl and GluR2/3 subunits but not NR1 or 

PSD-95. Similarly, immunoprecipitation with anti-GluR2/3 antibodies revealed an 

association with GRIP and with GluRl but not with either NR1 or PSD-95 

(Wyszynski et al., 2002; Ye et al., 2000; Shen et al., 2000; Wyszynski et al., 1999). 

These data indicated that DOC-solublising strategies have been employed to 

solubilise AMPARs from brain tissue and that the protein-protein interactions were 

maintained. 

However, DOC is not the only detergent to be successfully used in the solubilisation 

of proteins from cell membranes. Solubilisation of AMPAR subunits and their 

associating proteins has been undertaken using Triton X-100. GluRl and SAP97 

were solubilised from rat brain membranes and the interaction between them was 

confirmed by immunoprecipitation studies. SAP90 and SAP 102 were more 

efficiently extracted using DOC whilst NR1 or NR2A/B subunits in rat brain 

membranes were found to be Triton X-100-insoluble (Colledge et al., 2000; 

Valtschanoff et al., 2000; Leonard et al., 1998; Blahos and Wenthold, 1996). Rubio 

and Wenthold (1999) reported that GluRl, GluR2/3 and, to a lesser extent, GluR4 

could be immunoprecipitated from solubilised rat forebrains. The interactions 

between the GluRl and GluR2/3 subunits were maintained, along with the 

interaction between the GluR4 and GluR2/3 subunits. 

Whilst DOC was more effective than Triton X-100 in solublising NMDAR subunit-

containing complexes from rat forebrain membranes, more NR1 and NR2A/B 

subunits were found in the soluble fraction i f the membranes were solubilised with 

SDS, indicating that DOC was less able to extract all the NMDAR subunits bound to 

the membranes (Blahos and Wenthold, 1996). Immunoprecipitation studies 

employing SDS-solubilised rat brain membranes revealed that the interactions 

between NR1 and NR2B subunits, NR1 and NR2D subunits, NR1 and SAP102, 

NR2D and NR2A subunits, and NR2D and NR2B subunits were all preserved 

(Dunah et al., 1998; Leonard et al., 1998; Muller et al., 1996). However, no such 

interactions were observed in rat cortex, hippocampus or cerebellum even though 

each NMDAR subunit was solubilised from the three membranes (Suen et al., 1998). 
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Similarly, whilst GluRl and GluR2/3 subunits were solubilised by SDS, the 

interactions between GluRl and GluR2/3 subunits were disrupted, indicating that 

SDS dissociated the GluR subunits from each other (Leonard et al., 1998). 

6.3.3 Identification of stargazin-associated proteins in vivo 
Chen et al. (2000) were able to show that stargazin was able to co-immunoprecipitate 

GluRl, GluR2 and GluR4. Interactions between stargazin and the synaptic PDZ-

containing proteins PSD-95, PSD-93, SAP97 and SAP102 were also observed. No 

such association was detected between stargazin and the NMDAR subunit NR1 or 

the potassium channel Kvl .4 . This work, however, was undertaken using transfected 

COS cells. They were also able to show that stargazin was enriched in Triton X-100 

insoluble brain postsynaptic density fractions, along with GluR4, NR1 and PSD-95. 

Work presented here revealed the presence of stargazin in deoxycholate-solubilised 

control forebrain membranes (section 6.2.4.1). Unlike Chen et al. (2000), who were 

unable to co-immunoprecipitate stargazin with the AMPAR subunits from brain 

extracts, GluRl, GluR2 and GluR4 were all shown to co-immunoprecipitate with 

immunopurified stargazin protein, indicating that an interaction between stargazin 

and these AMPAR subunits did actually occur in vivo. No such interaction was 

detected with the GluR3 antibody (section 6.2.4.4). 

Sharp et al. (2001) subsequently partly verified this observation. They, however, 

used CHAPS-solubilised forebrain membranes and found GluRl to co-

immunoprecipitate with stargazin. These authors did not confirm whether this 

interaction was specific for stargazin or not. In our hands, CHAPS proved to be 

ineffective in solubilising stargazin from forebrain as the majority of stargazin was 

found in the insoluble fraction (C.L. Thompson, personal communication). 

However, when a separate anti-stargazin antibody immunoaffinity column was used 

to repeat this purification strategy using DOC-solubilised proteins from stargazer 

forebrains, weak immunoreactive signals were detected for the AMPAR subunits 

GluRl and GluR2 (section 6.2.4.4). Since stargazer mice are 'stargazin-less', this 

was unexpected. However, the NS53 and NS60 immunoreactive species were still 
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observed in both solubilised membranes and eluates from this immunoaffinity 

column, when probed with the anti-stargazin antibody. It is possible that these 

proteins were interacting with the AMPAR proteins in the stargazer samples. The 

possibility that the anti-stargazin antibody was detecting other y subunits, however, 

cannot be discounted, particularly as this antibody still gave some, albeit very weak, 

immunostaining of stargazer brain sections. 

Surprisingly, these experiments, i f pushed to their limits, also revealed NR1 in both 

control and stargazer forebrain membranes. It may be possible that this weak 

interaction in control membranes was due to the known interaction between 

stargazin and PSD-95, which is involved in the synaptic expression of the NMDAR 

subunits (Choi et al., 2002; Chetkovich et al., 2002; Chen et al., 2000; Kornau et al., 

1995). As no stargazin protein was detected in stargazer brain membranes, this is 

unlikely to be the case with stargazer membranes. It is possible, however, that the 

other y isoforms (the stargazin-like proteins) identified with this antibody could be 

interacting with the NR1 subunit. 

6.3.4 Conclusion 

Stargazer was shown to be a null mutant for stargazin as no stargazin protein was 

detected by immunoblotting in either stargazer forebrain or cerebellar membranes 

using the anti-mouse stargazin antibody. This antibody was then used to determine 

the regional and cellular distribution of stargazin in adult brains, and 

immunostaining was observed in the same regions of the brain as stargazin mRNA. 

However, whilst Sharp et al. (2001) detected stargazin protein in basket cell termini 

within the Purkinje cell layer, and Klugbauer et al. (2000) detected stargazin mRNA 

in Purkinje cells, immunostaining here was detected within the granule cell layer and 

Bergmann glia cell bodies and processes in the Purkinje cell layer and molecular 

layer respectively. 

An immunoaffinity column was prepared with this antibody and GluRl, GluR2 and 

GluR4 were all shown to associate with stargazin in vivo. However, this antibody 

detected other proteins in both control and stargazer tissue by immunoblotting (NS53 

and NS60 proteins) and detected other y isoforms in brain sections in 
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inxmunoliistochernical studies. It is possible, therefore, that this antibody is not 

specific for stargazin but may also detect y 3 and y4 subunits. The generation of 

antibodies to other y subunits, or to other sections of stargazin, may resolve this 

issue. 

Stargazin has been reported to be involved in the trafficking of AMPARs to the cell 

surface (Chen et al., 2000). As stargazin, which is lacking in stargazer, was shown 

here to associate with AMPAR subunits and the AMPAR subunits GluRl, GluR2 

and GluR4 have all been shown to be significantly decreased in stargazer cerebellar 

membranes (section 5.2.2), it is possible that these subunits are not trafficked to the 

cell surface, thereby having an increased turnover rate. In order to assess the validity 

of this hypothesis, initial studies looking at cell surface expression of the GluR2 

subunit were undertaken, and these are described in chapter 7. 
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Chapter 7 

Surface expression of GluR2 

in cultured cerebellar granule cells 

7.1 Introduction 

Stargazin has been shown to be co-associated with AMPARs in vivo, both here 

(section 6.2.4) and by others (Sharp et al., 2001; Chen et al., 2000). As stargazer is a 

null mutant for stargazin (section 6.2.2), it could be suggested that the decrease in 

stargazin would lead to a decrease in the expression of AMPAR subunits. Indeed, 

immunoblotting studies have shown differences in expression levels of the AMPAR 

subunits between control and stargazer cerebellum, with the largest decrease 

observed with the GluR2 subunit (section 5.2.2.2). This decrease in expression was 

confirmed using immunohistochemistry (section 5.2.1) 

Receptor expression has been shown to be controlled at the level of individual 

synapses (Zhao et al., 1998; Rubio and Wenthold, 1997). A number of proteins have 

been shown to be involved in the trafficking of AMPARs to the cell surface, where 

the receptor complex is anchored by proteins such as glutamate receptor interacting 

protein (GRIP)/AMP A binding protein (ABP) (DeSouza et al., 2002; Burette et al., 

2001; Wyszynski et al., 1999; Srivastava et al., 1998) and N-ethylmaleimide-

sensitive factor (NSF) (Braithwaite et al., 2002; Luscher et al., 1999; Noel et al., 

1999). 

The proteins involved in the trafficking of AMPARs to the cell surface are described 

below, along with methods of measuring receptor levels at the cell surface. 

7.1.1 Proteins involved in the trafficking of AMPARs to the cell 

surface 

GluRl subunits have been shown to associate with SAP97 (synapse associated 

protein 97) in the dendritic cytoplasm and somata of cultured neurons but not at the 

213 



synapse or with internalised GluRl subunits. This led to the suggestion that SAP97 

associated with the AMPAR before the SAP97-receptor complex was delivered to 

the cell surface, where SAP97 then dissociated from the AMPAR (Sans et al., 2001, 

Valtschanoffetal., 2000). 

SAP97 itself is a PDZ-rich protein which is homologous to PSD-95 (Leonard et al., 

1998). Whilst PSD-95 was shown to bind to NMDA subunits and Shaker-type K + 

channels (Kornau et al., 1995; Kim et al., 1995), it was thought that PSD-95 was not 

able to interact with AMPAR subunits. However, in hippocampal neurons over-

expressing PSD-95, an increased GluRl immunofluorescence was observed and the 

amplitude and frequencies of AMPAR-mediated mEPSCs were augmented, 

indicating that these receptors were functional (El-Husseini et al., 2000). 

During the course of this PhD, a number of papers were published reporting an 

interaction between stargazin and PSD-95 (Schnell et al., 2002; El-Husseini Ael et 

al., 2002; Chetkovich et al., 2002; Choi et al., 2002; Chen et al., 2000). Stargazin 

was also associated with AMPAR subunits (section 6.2.4.4; Sharp et al., 2001; Chen 

et al., 2000) and the disruption of binding between stargazin and PSD-95 lead to a 

lack of AMPAR synaptic clustering and a decrease in mEPSCs. These data all 

indicate that PSD-95 (and other MAGUKs such as SAP102) indirectly associate with 

synaptic AMPARs through an interaction with stargazin. 

7.1.2 Determination of the level of cell surface expression of receptor 

subunits 

It is possible that, since stargazin has been reported to be involved in the trafficking 

of AMPARs to the cell surface, the surface expression of the receptor is 

compromised. A number of methods to determine the levels of both NMDAR and 

AMPAR subunit expression at the cell surface have been described. 

Hall and Soderling (1997) used both chymotrypsin, which cleaved surface-expressed 

proteins, and bis (sulfosuccmirnidyl) suberate (BS3), which cross-linked surface-

expressed proteins, to determine the surface expression levels of the NMDAR 

subunits NR1 and NR2B. Using both treatments, the authors calculated that 
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40 - 50 % of NR1 subunits and > 90 % of NR2B subunits were expressed at the cell 

surface (Hall and Soderling, 1997a). Chymotrypsin was also used to show the level 

of surface expression of NMDAR subunits was enhanced following incubation with 

NMDAR antagonists (Crump et al., 2001). BS 3 was also used to estimate the level of 

surface expression of GluRl + GluR2 subunits and GluR2 + GluR4 subunits in 

transfected cells. In both cases, BS 3 reduced the total subunit population by 

25 - 40 % (Hall et al., 1997). 

NHS-ss-biotin (sulfosuccinimidyl 2-(biotinamido)ethyl-l,3-dithiopropionate) has 

also been used to determine the surface expression of receptor subunits. Cell-surface 

biotinylation of transfected HEK-293 cells revealed that whilst the NR1 subunit was 

located at plasma membrane in the presence and absence of NR2A subunits, the 

NR2A subunit was only trafficked to the cell surface in the presence of NR1 (Garcia-

Gallo et al., 2001). Biotinylation was used to estimate the amount of [ 3 H] AMP A 

binding sites expressed in both transfected BHK-570 cells (Hall et al., 1997) and in 

cultured hippocampal neurons (Hall and Soderling, 1997b). In the latter, 52 % of 

total [ 3 H] AMPA were detected at the cell surface whilst in the former, ~ 30 - 40 % 

of total binding site population was detected, both of which provided an estimate of 

the surface expression of GluRl-3 subunits. 

7.1.3 Work undertaken in this chapter 

It was necessary to evaluate whether a compromised stargazin expression affected 

the cell surface expression of AMPAR subunits. It is not possible to study this using 

fixed slices or membrane preparations, as a dynamic system is required. In order to 

determine the level of surface expression, cerebellar granule cells were cultured from 

age-matched, littermate neonatal control (+/+ and +/stg) and stg/stg mice. These 

mice had been identified by genotyping using the genomic DNA amplification 

system used earlier (section 3.2.1) to identify breeding pairs. Cultured granule cells 

were then treated with the membrane impermeant, cross-linking agent BS 3 and the 

level of expression of the GluR2 subunit in both control and stg/stg granule cells was 

determined. 
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7.2 Results 

7.2.1 PCR of neonatal DNA 

The PCR amplification strategy used to identify adult heterozygous mice required 

for breeding purposes was also used to identify the genotype of P3 neonatal mice. It 

is necessary to determine whether a neonatal mouse is +/+, +/stg or stg/stg as 

neonates are used for culturing purposes at P5-6 whereas the phenotype does not 

begin to be expressed until PI4. 

Genomic DNA was obtained from tail biopsies, as outlined in section 2.13.1, from 

each of the (P3) neonatal mice born to +/stg parents. Individual mice were tagged in 

order to be identified later. The genomic DNA was then amplified using the PCR 

amplification strategy and the PCR products separated on an agarose gel and 

visualised in the BioRad GelDoc 2000 System, as described in section 2.13.2. 

As can be seen in figure 7.1, a single PCR product of 600bp was amplified from +/+ 

mice, a 300 bp PCR product amplified from stg/stg mice and both 300 bp and 600 bp 

PCR products from +/stg mice. In addition, an 800 bp product was observed in +/stg 

mice only, which was not investigated further but probably represents a hybrid of the 

300 bp/600 bp products. 

7.2.2 Cerebellar granule cell cultures 

Cerebellar granule cells (CGCs) from +/+ mice and +/stg mice were cultured 

together (control cells) whilst those from stg/stg mice were cultured separately but at 

the same time as the control cerebellar granule cells. Cells from +/+ and +/stg mice 

were cultured together as controls as no significant differences in any parameters 

investigated had been observed. All mice used were from the same litter and were 

age-matched/littermate matched mice. The method used for the culturing of the cells 

was as described in section 2.14. 

Granule cells were removed from the cerebella when the mice were at age P5-6 and 

allowed to remain in the dish until they reached DIV 11. The cells were cultured in 

5 mM K + containing media and followed a developmental pathway expected of 

cerebellar granule cells in culture (Ives et al., 2002a). The stg/stg granule cells 
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Figure 7.1 Agarose gel analysis of amplicons obtained from a genomic PCR 

amplification of mouse tail biopsy obtained from littermate offspring of +/stg 

parents, using UV light following ethidium bromide staining. A 100 base pair 

marker is in lane M , and the 300 base pair, 600 base pair and 800 base pair products 

indicated. The low molecular weight band identified by the red arrow was due to 

excess PCR primers. Lanes 1-10 are products from 10 neonatal mice. Positive 

controls (lanes 11-13) are from mice of known genetic background; negative 

controls are in lane 14. The key below indicates whether the sample comes from a 

+/+, +/stg or stg/stg mouse: 

Sample Genotype Sample Genotype 

1 +/stg 6 stg/stg 

2 +/+ 7 +/+ 

3 stg/stg 8 +/+ 

4 +/stg 9 +/stg 

5 stg/stg 10 +/stg 

ample Control 

11 Positive DNA from known stg/stg 

12 Positive DNA from known +/stg 

13 Positive DNA from known +/+ 

14 Negative No DNA 



300 

Samples Controls 



survived equally well as control granule cells; the stg/stg cells migrated and clustered 

and extended processes. 

7.2.2.1 GluR2 expression in CGCs 

Cerebellar granule cells were cultured from both control (+/+ and +/stg) and 

stargazer mice (stg/stg). The cells were cultured for 11 DTV, at which point the cells 

were collected for quantitative immunoblotting. 

The media were removed from the petri dishes and the cells washed three times with 

PBS, 37°C. Solubilising buffer, comprising of 50 m M tris, 2 m M EDTA, pH6.8, 

2 % (w/v) SDS, 0.5 ml, warmed to 37°C, was then added to each dish and the cells 

scraped off. The h/sate was then triturated, using a syringe and needle, before heating 

at 95°C for 5 minutes, flash freezing in liquid N 2 and stored at -20°C until required. 

The fysates were then rapidly defrosted and the proteins chloroform-methanol 

precipitated in the same manner as brain homogenates (section 2.6). 

Figure 7.2 shows the relative expression level of GluR2 and actin in cultured control 

and stargazer granule cells. A single band with a molecular weight of 105 kDa, 

corresponding to the GluR2 protein was seen in both control and stargazer CGCs as 

well as in both control and stargazer membranes. The immunoblot was also probed 

for the expression of actin protein, which is the lower band marked on the figure. 

As CGCs were probed for GluR2 immunoreactivity and subsequently for actin 

irrimunoreactivity, the levels of expression (in both control and stargazer CGCs) 

could be determined by computer-assisted densitometry. The optical densities of the 

subunit signals were measured and adjusted using the optical densities obtained from 

the actin signals. The results obtained from the stargazer CGCs were normalised to 

those obtained from control CGCs, as described in section 2.7.3. 
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Figure 7.2 GluR2 and actin expression in cultured control (+/+ and +/stg) and 

stargazer cerebellar granule cells, as determined by immunoblotting. Proteins of a 

range of concentrations (2.5 ug/10 ul, 5 ug/10 ul and 10 ul/10 ug) were obtained 

from control (+/+ and +/stg) and stargazer (stg/stg) cerebellar granule cells, before 

being probed with anti-GluR2 and anti-P-actin antibodies. 

The immunoreactive species recognised by the anti-GluR2 antibody has a molecular 

weight of -105 kDa, in accordance with the predicted weight of GluR2. The 

immunoreactive species recognised by the anti-P-actin antibody has a molecular 

weight of 45 kDa, in accordance with its predicted weight. As can be seen, the 

GluR2 protein is present in both the control and stargazer cerebellar granule cell, 

although it is much reduced in the stg/stg cells. 

Also shown on the immunoblot are the positive controls (10 ug/10 ul) - adult control 

(+/+ and +/stg, ctl) and stargazer (stg) cerebellar membranes. 

Broad range (21 kDa - 205 kDa) molecular weight markers were used and have been 

indicated to the left of the immunoblot. 
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Figure 7.3 Expression levels of GluR2 subunit in cultured control (+/+ and +/stg) 
and stargazer (stg/stg) cerebellar granule cells. Immunoblots, probed with anti-
GluR2 subunit-specific and anti-actin specific antibodies, were analysed by 
densitometric analysis. GluR2: actin ratio of stargazer granule cells was 
expressed as a percentage of control expression. Results are mean ± sem. The 
level of GluR2 expression was significantly reduced in stargazer granule cells, 
when compared to control granule cells, as determined by the Student's f-test 
(* = P < 0.05) (n = 3 samples of cells from 2 - 3 petri dishes from each of 2 
cultures for both control and stargazer). 

As can be seen in figure 7.3 above, GluR2 expression was significantly decreased in 

stargazer granule cells when compared to control granule cells. The level of 

expression of GluR2 in stargazer CGCs was 42.9 ± 8.0 % of control levels. Whilst 

this was not as low as was observed in stargazer cerebellar membranes, it reflected 

the decrease in GluR2 immunohistochemical staining observed in stargazer granule 

cell layer. 

7.2.2.2 Quantification of surface expression of GluR2 in cultured 

CGCs 
Cultured CGCs, derived from age-matched, littermate control and stargazer mouse 

neonates, were analysed to determine the relative level of surface expressed AMPAR 

GluR2 subunit, essentially as described by Hall et al. (Hall and Soderling, 1997b, 

Hall et al., 1997) and Archibald et al. (1998). 

Preliminary experiments with control cerebellar membranes demonstrated that an 

incubation of 10 minutes at 37°C with 1 mg/ml BS 3 was sufficient to yield an almost 
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Figure 7.4 BS 3 treatment of cultured cerebellar granule cells. Cultured control (+/+ 

and +/stg, ctl) and stargazer (stg/stg, stg) granule cells were incubated with either 

vehicle (SS) or the cross-linker BS 3 (BS) before being collected and the proteins 

precipitated. The proteins (5 ug/10 ul and 10 ug/10 ul) were then immunoprobed for 

GluR2 (A) and actin (B). 

As can be seen in A, vehicle-treated stargazer granule cells showed a decreased 

expression of GluR2, as would be expected. BS 3 treatment reduced the level of the 

105 kDa GluR2 protein and this resulted in a decreased signal with the antibody, in 

both the control and stargazer granule cells. 

10 ug/10 ul control (+/+ and +/stg) cerebellar membranes were also used as a 

positive control. 

Broad range (20.7kDa-207kDa) molecular weight markers were used and the 

respective molecular weights have been indicated to the left of the immunoblots. 
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complete reduction in GluR2 immunoreactivity. Cultured control and stargazer 

CGCs were treated with either saline solution (SS) or 1 mg/ml BS 3 , before 

harvesting and collecting, as described in section 2.15. The SS- and BS3-treated cell 

proteins were chloroform-methanol precipitated, as described in section 2.6 and 

separated by gel electrophoresis, as outlined in section 2.7, before being probed with 

anti-GluR2 and anti-actin antibodies (see figure 7.4). 

The anti-GluR2 antibody detected the 105 kDa GluR2 subunit in SS-treated control 

and stargazer cultured CGCs. Immunoblots revealed the expression levels of GluR2 

in cultured stargazer granule cells were decreased when compared to control granule 

cells. Following BS3-treatment, the residual GluR2 signal revealed the intracellular 

GluR2. The optical densities obtained from the immunoblots were then used to 

calculate the level of cell surface expression of the GluR2 subunit in stargazer CGCs, 

relative to control CGCs. 

The expression of GluR2 in SS-treated cells, both control and stargazer, was 

determined thus, using the appropriate optical densities: 

Control cells ( O D s s c n t l ) : O D s s G l u R 2 / O D s s A c t i n (= 100 %) 

Stargazer cells (OD s s s t g ) : O D s s GiuR2 / O D s s Actin 

Stg GluR2 expression (normalised to control): (ODSs stg / O D s s c n ti) * 100 

The results of such experiments and calculations can be seen in figure 7.5 below. 
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Figure 7.5 Expression of GluR2 subunit in vehicle-treated (SS) cultured cerebellar 
granule cells. Immunoblots were probed with anti-GluR2 and anti-actin antibodies 
and were analysed by densitometric analysis. GluR2 : actin ratio of stargazer 
granule cells was expressed as a percentage of control expression, which was given 
an arbitrary value of 100%. Results are expressed as mean ± sem. Expression in 
stargazer granule cells was significantly reduced when compared to the level of 
expression in control granule cells, as determined using the Student's f-test 
(* = P < 0.05) (n = 2 samples of cells from 2 - 3 petri dishes from each of 2 cultures 
for both control and stargazer). 

As can be seen in figure 7.5 above, a decreased expression of the GluR2 subunit was 

observed in SS-treated cultured stargazer CGCs when compared to SS-treated 

cultured control CGCs. The level of expression of GluR2 in SS-treated cultured 

cerebellar granule cells derived from stargazer neonates was 49.1 ± 6.6 % of that 

determined in SS-treated cultured cerebellar granule cells derived from age-matched, 

littermate control neonates. This was a significant decrease with a P value of 0.0286 

and mirrored the results observed with untreated CGCs (section 7.2.2.1). 

In order to assess the relative amount of GluR2 subunit expressed at the granule cell 

surface, the membrane impermeant protein-modifying agent, BS 3 , was used. BS 3 

effectively cross-linked cell surface expressed proteins, thereby decreasing the 

availability of the 105 kDa GluR2 protein to the anti-GluR2 antibody. BS 3 either 

disrupts the part of the GluR2 subunit that the antibody recognises and/or cross-links 

the GluR2 subunit to neighbouring proteins so that it no longer has a molecular mass 

of 105 kDa when analysed by immunoblotting. The residual signal at 105 kDa 

represents the GluR2 found intracellularly, as shown in figure 7.4. 

226 



In order to determine the extracellular levels of GluR2, the BS 3 values need to be 

subtracted from the total values (i.e. from the values obtained from SS-treated cells). 

This was calculated for control CGCs thus: 

Total expression (ODss cnti): ODSs GiuR2 / ODSs Actin (as determined above) 

Intracellular GluR2 (OD B S cnti): ODBs GIUR2 / ODBs Actin 

Extracellular GluR2: [(OD s s cnti - O D B S c„ti) / O D s s c n t l] * 100 

The same calculations were used to determine the extracellular GluR2 level in 

stargazer granule cells by replacing the ODs used above (i.e. the optical densities of 

immunoreactive species in control cells determined on immunoblots) with those 

obtained for the stargazer cells so that the following results were obtained: 

Total expression (ODSs stg): ODSs GiuR2 / O D s s Actin (as determined above) 

Intracellular GluR2 ( O D B S S T G ) : O D E S GIUR2 / O D E S Actin 

Extracellular GluR2: [(OD s s *g - O D B S s t g ) / O D s s s t s ] * 100 
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Figure 7.6 Cell surface expression of GluR2 in control and stargazer CGCs. 
Immunoblots probed with anti-GIuR2 and anti-p* actin antibodies were 
analysed by densitometric analysis. Values obtained represent extracellular 
GluR2 expressed as a percentage of the receptors labelled in SS-treated 
control and stargazer cells respectively. Results are mean ± sem; n = 2 samples 
of cells from 2 - 3 petri dishes from each of 2 cultures for both control and 
stargazer. No significant difference was found between control and stargazer 
CGCs using the Student's /-test (P > 0.05). 

The results of such calculations can be seen in figure 7.6, where the levels of GluR2 

expressed at the surface of cultured control CGCs and cultured stargazer CGCs can 

be examined. The extracellular GluR2 level in control granule cells was 43.4 ± 6.7 % 

of the GluR2 detected in SS-treated control cells whilst that in stargazer granule cells 

was 28.4 ± 4 . 8 % of the total GluR2 expression calculated in SS-treated stargazer 

cells. No significant difference between the two cell preparations was calculated. 

However, stargazer CGCs contained only 49.1 % of the total GluR2 protein detected 

control CGCs. Therefore, only 28.4 % of the 49.1 % of the GluR2 protein found in 

control cells was expressed at the cell surface of stargazer cells. In order to take this 

lower level of protein into consideration, one more calculation must be performed. 

The final calculation used was thus: 

Absolute stg GluR2 levels: ( O D s s S T G * O D B S stg) /100 

As this was a normalised value, the value for control cells was 100 %. 
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Figure 7.7 Expression of extracellular GluR2 in stargazer CGCs compared 
to total GluR2 in control CGCs. Levels of the GluR2 subunit at the cell 
surface of cultured stargazer cerebellar granule cells were expressed as a 
percentage of total GluR2 expression in cultured control granule cells. 
Results are mean ± sem, n = 2 samples of cells from 2 - 3 petri dishes from 
each of 2 cultures for both control and stargazer. 

As can be seen in figure 7.7, the level of surface GluR2 expressed in cultured 

stargazer CGCs was only 17.8 ±4.0 % of the total GluR2 exhibited by control cells. 

This was significantly less than the level of surface expression observed in control 

granule cells (P = 0.0408). 

7.3 Discussion 
Cerebellar granule cells were cultured from age-matched, littermate control (+/+ and 

+/stg) and stg/stg mice. GluR2 expression was determined and shown to be 

decreased in cerebellar granule cells derived from stg/stg, when compared to control 

cells. These data mirror the results observed earlier with cerebellar membranes 

(section 5.2.2). The cultured granule cells were then used to determine the level of 

cell surface expression of the GluR2 subunit, using the membrane impermeable 

cross-linking agent, BS 3 . 
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7.3.1 Culture media is important in the expression of receptor 

subunits 
Cultured rat cerebellar granule cells develop a survival requirement, around DIV 

2 - 4 , which can be satisfied by either culturing the cells in media containing a 

depolarising concentration of 25 niM K + or with the addition of glutamate receptor 

antagonists, such as NMDA, to the culture media (Balazs et al., 1988b; Balazs et al., 

1988a; Gallo et al., 1987). Mice cerebellar granule cells, however, show no such 

requirement and have been shown to survive in culture media containing low and 

high concentrations of K + (5 - 25 mM) (Mogensen et al., 1994). 

The expression of receptor subunits have, however, been shown to be affected by the 

concentration of K + in the culture media. Mouse cerebellar granule cells cultured 

under non-depolarising media (i.e. with 5 mM K + ) , a GABAR profile similar to that 

observed in adult cerebellar membranes was detected, that is 04.3, a«, P2-3, Y2 and 8 

subunits were expressed. Under depolarising conditions (i.e. 25 mM K+-containing 

media), the expression of certain GABAR subunits was altered. Low levels of ah a* 

and p2 were observed whilst expression of a 3, a 5 and p3 were increased (Ives et al., 

2002b). 

GABAR a* expression was shown to be decreased, by both immunoblotting and 

immunohistochemistry, in stargazer cerebellar membranes. A deficit in 

benzodiazepine-insensitive binding, an indication of a* subunit-containing receptors, 

was also exhibited by stargazer cerebellar membranes (section 3.2.4.2; Thompson et 

al., 1998). cte expression has been shown to be decreased in stg/stg granule cells 

cultured in low K + media, as was the deficit in benzodiazepine-insensitive binding 

(Ives et al., 2003), indicating that stg/stg granule cells cultured in 5 mM K + -

containing media reproduce the decrease in GABAR subunit expression observed 

in adult stargazer cerebellar membranes. 

The expression of stargazin protein was also determined in both control and stg/stg 

granule cells cultured in non-depolarising media. Stargazin, whilst present in the 

granule cell layer of the cerebellum (section 6.2.3; Ives et al., 2003), is absent from 

stargazer cerebellar membranes (section 6.2.2; Sharp et al., 2001). Whilst stargazin 
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was shown to be present in control granule cells, it was not detected in cultured 

stg/stg granule cells (Ives et al., 2003). 

Finally, the level of expression of the GluR2 subunit of the AMPA receptor was 

determined in both cultured control and stg/stg granule cells. The GluR2 protein is 

significantly decreased in stargazer cerebellar membranes (section 5.2.2.3). This 

finding was also found to be replicated in cultured stg/stg cerebellar granule cells 

(section 7.2.2). It would therefore appear that culturing murine granule cells in low 

K+-containing media replicates the properties seen in vivo. 

7.3.2 Determination of the amount of surface expression of receptor 

subunit proteins 
The level of surface expression of the GluR2 subunit was then determined in the 

cultured cerebellar granule cells. The method used involved the cross-linking of the 

surface proteins with BS 3 , a membrane-impermeable, irreversible, amine-reactive 

cross-linking reagent. This method was employed to determine the surface 

expression of NMD A receptors in hippocampal neurons, where 60 % of NR1 

subunits and over 90 % of NR2B subunits expressed were located at the cell surface 

(Hall and Soderling, 1997b). AMPAR subunits in primary cultures of hippocampal 

neurons were also analysed using BS 3 (Hall and Soderling, 1997a). The level of 

expression of GluRl was 39 % of control whilst that of GluR2/3 was 57 % of 

control, indicating that 61 % of GluRl and 43 % of GluR2/3 were expressed at the 

cell surface. 

In both instances, the level of surface expression of each of the receptor subunits was 

also determined using chymotrypsin, with the results obtained being similar to those 

produced with BS 3 treatment. Immunoreactrvities for the intracellular proteins actin, 

tubulin and calcium/calmodium-dependent protein kinase II (CaMKII) were 

unaffected by both treatments, indicating that only transmembrane proteins were 

either susceptible to cleavage by chymotrypsin or cross-linking by BS 3 (Hall and 

Soderling, 1997b; Hall and Soderling, 1997a). 
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Ives et al. (2002) used both BS 3 and chymotrypsin to determine the expression of 

GABA receptor subunits at the surface of cerebellar granule cells. Cerebellar granule 

cells, cultured from P6 - 7 C3B6Fe+ mice in 5 mM K+-containing media, were 

subsequently treated with either chymotrypsin or BS 3 before the cells were harvested 

and probed for the expression of GABAR subunits. Similar results were obtained 

with both treatments, with 74 % of oil subunits, 51 % of a$ subunits and 83 % of 

P2/P3 subunits being expressed at the cell surface. The level of expression of the 

intracellular proteins actin and neuron-specific enolase did not change following 

incubation with BS 3 , indicating that, again, only extracellular proteins were cross-

linked. 

The levels of expression at the cell surface of GABA receptor subunits were also 

determined in stargazer granule cells (Ives et al., 2003). Control (+/+ and +/stg) and 

stg/stg granule cells were cultured in low K + media for 9 - 10 days before treatment 

with BS 3 . Both control and stg/stg granule cells exhibited ct« subunit expression, 

although the level of expression was reduced in stg/stg cells, as expected. Similarly, 

the 6 subunit was found in both control and stg/stg granule cells. Treatment with BS 3 

revealed that the cell surface levels of a$ were reduced whilst the 8 subunit was 

found exclusively in an intracellular compartment of stg/stg cells. 

Applying the same method to cultured granule cells here revealed that the level of 

total GluR2 in stg/stg cells was 43% of control (section 7.2.2.1), reflecting the 

decrease seen in GluR2 levels in adult stargazer cerebellar membranes (section 

5.2.2.3). Treatment of the cells with SS, the vehicle for BS 3 , revealed that the vehicle 

had no effect on the level of GluR2 subunit, with total GluR2 levels in SS-treated 

stg/stg cells being 49.1 % of the level found in SS-treated control cells (section 

7.2.2.2). 

Treatment of the cultured cells with BS 3 revealed the level of expression of GluR2 at 

the cell surface of both control and stg/stg cells, which were 43 % and 28 % 

respectively, expressed as a percentage of total GluR2 expressed in control and 

stg/stg cells (section 7.2.2.2). The level expressed at the surface of control cells 

corresponded to the level of surface expressed GluR2/3 found by Hall et al. (1997). 
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The level of GluR2 found to be expressed at the cell surface of stg/stg granule cells 

was a percentage of total GluR2 expressed in stg/stg cells. As the total level of 

GluR2 protein expressed in stg/stg cells was much less than that expressed in control 

cells, the proportion of GluR2 expressed at the cell surface of stg/stg cells was 

calculated to be only 18 % of the total GluR2 labelling observed in control granule 

cells (section 7.2.2.2). 

7.3.3 Conclusion 
The genomic PCR technique used to determine the genotype of adult mice was used 

to determine the genotype of P3 neonatal mice, which were then used for cell 

culturing purposes at P5 - 6. Cerebellar granule cells from control (+/+ and +/stg) 

and stg/stg age-matched, littermate mice were obtained and cultured for 11 DIV. 

GluR2 protein was shown to be decreased in stg/stg granule cells by 

immunoblotting, to a similar degree as that observed in adult stargazer cerebellar 

membranes. 

Cell surface expression of GluR2 was determined using the cross-linking reagent 

BS 3 and was also found to be significantly reduced in stg/stg granule cells, indicating 

that the compromised stargazin expression decreased cell surface expression of the 

GluR2 subunit. Further work, however, is needed to determine whether only the 

GluR2 subunit is reduced at the cell surface, or whether the levels of GluRl and 

GluR4, which also associate with stargazin, are also reduced at the cell surface. 

Furthermore, it is not yet known whether the GluR2-containing receptor is stable at 

the stg/stg cell surface or the reduction observed is due to an increase in the rate of 

endocytosis. 
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Chapter 8 

Summary and future aims 

G A B A A receptors, NMD A receptors and AMP A receptors were all studied in the 

brain of the ataxic, epileptic mouse, stargazer. A genomic DNA amplification system 

was utilised to identify the genotype of +/+, +/stg and stg/stg mice, which were 

either subsequently used to maintain the breeding programme or for primary 

cerebellar granule cell cultures. 

Initial studies revealed no apparent differences in GABAR <Xi or subunit 

expression levels between +/+ and +/stg mice. Levels of a* subunit were 

significantly decreased in stargazer cerebellar membranes, when compared to control 

(+/+ and +/stg) cerebellar membranes. Autoradiographical studies revealed a 

decrease in benzodiazepine-insensitive receptors in stargazer cerebellum, i.e. in ô -

containing receptors. Interestingly, the same studies also revealed an increase in 

benzodiazepine-insensitive binding in the stargazer dentate gyrus, implying an 

increase in ^y-containing receptors and a potential decrease in extrasynaptic 0(48-

containing receptors. Further work is currently being undertaken by other members 

of the group to elucidate the role of stargazin in the trafficking and assembly of 

GABARs. 

Antibodies were generated to the NMDAR subunits and characterised using control 

tissue. These antibodies were then used to determine the level and anatomical 

distribution of expression of the NMDAR subunits in control and stargazer brains. 

No significant differences were found by either immunoblotting or by 

immunohistochemistry. These data appeared to be confirmed by radioligand binding 
• 3 

studies, where no apparent difference was found in the binding of [JH] MK-801 to 

NMDARs in control and stargazer brain sections and synaptic membranes. 

An anti-stargazin antibody was also generated and was used to determine the 

expression of stargazin protein. Whilst stargazin protein was detected in both control 
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forebrain and cerebellar tissues, no stargazin was detected in stargazer, thereby 

demonstrating that stargazer was a null mutant for stargazin. 

AMPA receptor subunits were also studied in control and stargazer brains. No 

differences were observed in the anatomical distributions of the receptor subunits; 

however, inmiunoblotting studies using cerebellar membranes did reveal significant 

decreases in the expression of the GluRl, GluR2 and GluR4 subunits, with the 

largest decrease observed in the levels of the GluR2 subunit. Interestingly, the 

anatomical distribution of the GluR2 subunit appeared to mirror that of stargazin. 

Sodium deoxycholate was used to successfully solubilise stargazin from brain 

extracts. Co-immunoprecipitation studies using anti-stargazin immunoaffinity 

columns revealed that stargazin associated with the AMPAR GluRl, GluR2 and 

GluR4 subunits in vivo. However, control experiments using solubilised proteins 

from stargazer tissue also revealed weak interactions between the antibody and GluR 

subunits. 

Since the generation of the anti-stargazin antibody, more y isoforms have been 

described by a number of other groups. It is possible, therefore, that the antibody was 

recognising other y isoforms, especially as some immunostaining was still observed 

in stargazer brain sections. The peptide, against which the anti-stargazin antibody 

was raised, consisted of the final 15 amino acids of the y2 subunit 

(DSLHANTANRRTTPV). The yi and y5.7 isoforms do not contain this sequence, 

however, there is some similarity between the C-terminus of y2 and the C-termini of 

y3, y4 and y8. These isoforms contain the NR-R/K-TTPV motif whilst the y2^ 

isoforms also share a histidine residue at position - 11 and y2 and y8 both possess a 

threonine residue and an aspargine residue at positions - 8 and - 9 respectively. 

The use of the antibodies here revealed staining to be present both in the 

hippocampus and the cerebellum of the brain of stargazer mouse, implying some 

cross-reactivity of the anti-stargazin antibodies. Whilst y3 mRNA has been shown to 

be present in the murine hippocampus, neither y3 mRNA nor y3 protein has been 

detected in the cerebellum. y4 mRNA and protein have both been identified within 
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the murine cerebellum but not within the murine hippocampus. y 8 mRNA has been 

shown to be present in both rat and human brain tissue, where it has been detected in 

both the hippocampus and the cerebellum. It is possible, therefore, that the anti-

stargazin antibodies used here were detecting the y 3 and y 8 isoforms within the 

stargazer hippocampus and the y 4 and y 8 isoforms within stargazer cerebellum. 

Indeed, since y 4 protein has been shown to have a molecular mass o f 53 kDa, it is 

possible that the NS53 species observed on the immunoblots here was the y 4 

isoform. However, further studies are required to establish the protein expression o f 

the other y isoforms within both control and stargazer brains. 

As the sequences o f other y isoforms have been elucidated, i t may be possible to 

design a peptide that is more stargazin-specific. Alternatively, immunoaffinity 

columns using a second anti-y isoform antibody could be prepared. Proteins would 

be purified down the anti-stargazin immunoaffinity column but the material would 

then be placed down the second anti-y isoform immunoaffinity column. Any proteins 

also binding to this second y isoform would then be pulled out o f the purified 

preparation, leaving only stargazin-associated complexes in the preparation. 

Work by other groups has shown that stargazin is involved in the trafficking and 

synaptic localisation o f A M P A R subunits. Since stargazin was shown here to 

associate with A M P A R subunits in vivo, it is possible that there is a decreased cell 

surface expression o f these subunits. To determine whether this was the case, control 

and stargazer cerebellar granule cells were cultured. These cells were then treated 

with the membrane-impermeant cross-linking reagent BS 3 , to allow the surface 

expression o f proteins to be evaluated. It was shown that, not only do stargazer 

cerebellar granule cells contain less GluR2 protein than control cells, the proportion 

o f GluR2 subunits expressed at the cell surface is also significantly reduced. More 

experiments would need to be undertaken to determine whether expression o f the 

other A M P A R subunits are also reduced at the cell surface. 

Although this type o f experiment reveals the amount o f protein expressed at the cell 

surface, it does not explain whether there appears to be less GluR2 because o f an 

increased turnover rate. One way of determining i f this was the case would be to 
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undertake pulse-chase labelling o f the cells. Proteins in the granule cells would be 

labelled with 3 5S-methionine and then immunoprecipitated with anti-GluR2 

antibodies. The amount o f 3 5 S immunoprecipitated would decrease over time, giving 

an indication o f the turnover rate o f the protein in control and stargazer granule cells. 

237 



Appendix 

Stock Solutions 

PBS 
136.9 m M N a C l 
2.68 m M KC1 
10.1 m M N a 2 H P 0 4 

1 . 7 6 m M K H 2 P 0 4 
pH7 .4 

Protease Inhibitor Cocktail 
Inhibits serine, cystein, aspartic proteases and aminopeptidases 

4-(2-aminoethyl)benzene sulfonyl fluoride 
Pepstatin-A 
Trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane (E-64) 
Bistatin 
Leupeptin 
Aprotinin 

Immunoblotting Solutions 
Running Buffer 

1 .5MTr i s 
8 m M E D T A 
pH8.8 
0.4 % (w/v) SDS 

Electrode Buffer 

0.01 M Tris 
0.8 M Glycine 
2.3 m M E D T A 
pH8.8 
0.2 % (w/v) SDS 

Transfer Buffer 

25 m M Tris 
192 m M Glycine 
20 % (v/v) Methanol 
p H > 8 
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Luminol 

1.25 m M Luminol 
O . l M T r i s - H C l 
pH8.5 

E C L Reagent 

Luminol 10 ml 
68 m M p-coumaric acid (in DMSO) 100 ul 
H 2 0 2 (30 % stock) 3 ul 

70% Ethanol 
Ethanol 70 ml 
dH 2 Q (final volume) 100 ml 

4 % Paraformaldehyde in 0.1 M Phosphate Buffer 
4 % (w/v) Paraformaldehyde 

Paraformaldehyde 40 g 
d H 2 0 500 ml 
1 M NaOH 3 drops 

Heat to 60°C in a fume hood. When cool, filter using 1 M Whatman filter paper. 

0.2 M Phosphate buffer, pH 7.2 

0.2 M N a 2 H P 0 4 400 ml 
0.2 M N a H 2 P 0 4 100 ml 

Paraformaldehyde in phosphate buffer 

4 % Paraformaldehyde 500 ml 
0.2 M Phosphate buffer, p H 7.2 500 ml 

PCR Solutions 
T B E (10X) 

Tris 108 g 
Orthoboric Acid 55 g 
0 . 5 M E D T A , p H 8 . 0 40 ml 
d H 2 0 (final volume) 1 L 
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P C R Loading Buffer 

10 m M Tris-HCl, p H 7.5 
50 m M E D T A 
0.25 % (w/v) Bromophenol Blue 
30 % (v/v) Glycerol 

Cell Culture Solutions 
H E B S S 

138.8 m M NaCl 
5.0 m M KC1 
25 m M HEPES 
4 . 2 m M N a H C 0 3 

1 .0mMNaH 2 PO4 .H 2 O 
p H 7 . 4 

M g S 0 4 solution 

3.82 % (w/v) M g S 0 4 

Solution 1H 

HEBSS 
Glucose 
BSA 
M g S 0 4 

4 % B S A solution 

HEBSS 5 ml 
BSA 0.2 g 
M g S 0 4 40 ul 

Trypsin solution 

Solution 1H 10 ml 
Bovine Pancreas Trypsin 2.5 mg 

Concentrated Trypsin Inhibitor 

Solution 1H 10 ml 
M g S 0 4 0.1 ml 
1300 Kunitz units/10 ml DNase I 100 ul 
Soybean Trypsin Inhibitor 8 mg 

Dilute Trypsin Inhibitor 

50 ml 
0.125 g 
0.15g 
0.5 ml 

Solution 1H 10 ml 
Concentrated Trypsin Inhibitor 1.6 ml 
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