
Durham E-Theses

Requirements engineering for business work�ow

systems: a scenario-based approach

Strassl, Johann Gerhard

How to cite:

Strassl, Johann Gerhard (2001) Requirements engineering for business work�ow systems: a

scenario-based approach, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4136/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4136/
 http://etheses.dur.ac.uk/4136/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Requirements Engineering
for Business Workflow

Systems: A Scenario-based
Approach

Johann Gerhard Strassl

Submitted for the degree of Doctor of Philosophy

University of Durham

Department of Computer Science

The copyright of this thesis rests with
the author. No quotation from it should
be published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis

. must be acknowledged apprOIJriately.

April 2001

Workflow implementations require a deep understanding of business and

human cooperation. Several approaches have been proposed to address

this need for understanding, but largely in a descriptive way. Attempts to use

them in software development have had mixed results.

The work reported here proposes that these approaches can be used in a

generative way, as part of the requirement engineering process, by (a)

extending requirements engineering modelling techniques with underlying

cooperation properties, (b) integrating these techniques through the use of a

derivation modelling approach, and (c) providing pragmatic heuristics and

guidelines that support the real-world requirements engineering practitioner

to ensure a high probability of success for the business workflow system to

be developed.

This thesis develops and evaluates a derivation modelling approach that is

based on scenario modelling. It supports clear and structured views of

cooperation properties, and allows the derivation of articulation protocols

from business workflow models in a scenario-driven manner. This enables

requirements engineering to define how the expectations of the cooperative

situation are to be fulfilled by the system to be built - a statement of

requirements for business workflow systems that reflects the richness of

these systems, but also acts as a feasible starting point for development.

The work is evaluated through a real-world case study of business workflow

management.

The main contribution of this work is a demonstration that the above

problems in modelling requirements for business workflow systems can be

addressed by scenario-based derivation modelling approach. The method

transforms models through a series of properties involving cooperation,

which can be addressed by using what are effectively extensions of current

requirements engineering methods.

2

ma6Iea~llntents.:::·:::··: .••••• :.: ((·::;;:;;;:::···;·;;:;;:iiiii:t.i::;;:;;::
.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.;.:.:.:.:::::::::::::.:::::.:.:.:::::::::::::::::;:::;::::=::;:.:.:::::::::::::::;:;:;:;:;:;:::::;:::::::;:;:;:;:.:.:.:;:;:;:;:::; •...... :.:.:.:.:.~:~:~:~:~:~t:~:~t~~r:~:;:~.:.::·:·~tt~~~~::::;:;:;:;:;:::::::::::);:;:;:;:;:;:;

Abstract 2

Table of Contents 3

Table of Figures 9

Table of Tables 11

Acknowledgements 12

Declaration 13

Statement of Copyright 14

1 Introduction 15

1.1 Software development for business workflow systems 15

1.1.1 Requirements engineering

1.1.2 Modelling

1.2 Problem statement

1.3 Assumptions

1.4 Proposed solution

1.5 Method

1.6 Results

1.7 Contribution

1.8 Outline of the thesis

2 Requirements Engineering for Business Workflow Systems

2.1 Business Workflow Systems

3

16

18

19

20

21

22

22

23

24

27

27

2.1.1 Business process support 28

2.1.2 Workflow 29

2.1.3 Workflow management 33

2.1.4 Workflow management systems for businesses 36

2.1.5 Critical success factors in designing business workflow

systems 37

2.1.6 Limitations 38

2.2 What can Requirements Engineering do? 42

2.3 Derivation modelling 44

2.4 Conclusions 47

3 Scenario-based requirements engineering 49

3.1 Introduction 49

3.2 Properties of cooperative work 50

3.3 Articulation work 52

3.4 Scenarios in requirements engineering 54

3.4.1 Role of scenarios in requirements engineering 54

3.4.2 Definitions of a scenario 58

3.4.3 Scope of scenarios 60

3.4.4 Representation of scenarios 62

3.4.5 Bridging the gap between CSCW and requirements

engineering 62

3.5 Scenario-based approaches for requirements engineering 63

3.6 Evaluation 68

3.6.1 Articulation work 68

3.6.2 Articulation protocols 69

3.6.3 Methodological support 69

3.6.4 Contextual description 70

4

3.6.5 Visual representation 71

3.6.6 Summary 71

3.7 Remainder of the thesis 72

4 Scenario-based Derivation Modelling in Requirements Engineering

for Business Workflow Systems 74

4.1 Introduction 74

4.1.1 Problem context 75

4.1.2 Purpose 77

4.1.3 Overview of the method 78

4.2 Business workflow model 79

4.2.1 Modelling workflow behaviour 80

4.2.2 Use Case Maps 80

4.2.3 Deriving the business workflow model with scenarios 83

4.2.4 Derivation rules 84

4.2.5 Example: Scheduling a meeting 85

4.3 Actor model 89

4.3.1 Mapping 89

4.3.2 Derivation rules 91

4.3.3 Meeting scheduler example continued 92

4.4 Cooperation model 93

4.4.1 Deriving the cooperation model 95

4.4.2 Meeting scheduler example continued 95

4.5 Articulation model 96

4.5.1 Articulation work 97

4.5.2 Articulation protocols 97

4.5.3 Meeting scheduler example continued 100

4.6 Summary 100

5

5 Case study: Complaint Management in a Bank 103

5.1 Introduction 103

5.2 Case study approach 105

5.3 Complaint management in a bank 106

5.3.1 Indicative business workflow model 107

5.3.2 Indicative system architecture 108

5.4 Optative complaint management model 109

5.4.1 Business workflow model 110

5.4.2 Actor model 112

5.4.3 Cooperation model 114

5.4.4 Articulation model 116

5.4.5 Business workflow system architecture 120

5.5 Lessons learnt 122

5.5.1 Separation of tasks 122

5.5.2 Collaboration dependencies 123

5.5.3 Distinction between cooperative interaction and

articulation protocols 124

5.6 Refined derivation modelling method 124

5.7 Summary 126

6 Heuristics for Analysis and Construction 127

6.1 Introduction 127

6.2 Types of questions for analysis 128

6.3 Heuristics for the business workflow model 131

6.4 Heuristics for the actor model 135

6.5 Heuristics for the cooperation model 137

6.6 Heuristics for the articulation model 138

6.7 Summary 139

6

7 Evaluation 140

7.1 Design rationale 140

7.1.1 History 141

7.1.2 Major problems and their resolutions 142

7.1.3 Summary 145

7.2 Assessment 146

7.2.1 Scenario-based approach 147

7.2.2 Derivation modelling 148

7.2.3 Strengths and weaknesses of the derivation modelling

method 150

7.2.4 Suitability of Use Case Maps 157

7.2.5 Method applied to case studies 158

7.3 Summary 159

8 Summary and Conclusions 162

8.1 Thesis summary 162

8.1.1 Properties of cooperative work 163

8.1.2 Derivation modelling method 164

8.1.3 Pragmatic heuristics and guidelines 164

8.2 Proposed solution revisited 165

8.3 Future work 168

8.3.1 Improvements of the method 168

8.3.2 Tools support 168

8.3.3 Further applications 169

8.4 Concluding remarks 170

7

Appendix A - Glossary

Appendix 8 - Use Case Maps Overview

References

8

171

175

195

Figure 1: Produced models of this approach 79

Figure 2: Examples of UCMs 81

Figure 3: High-level workflow model of scheduling a meeting 86

Figure 4: Plug-ins for scheduling a meeting 88

Figure 5: Symbols used in cooperation model 95

Figure 6: Cooperation model for scheduling a meeting 96

Figure 7: Indicative business workflow for complaint management 108

Figure 8: Indicative business workflow systems architecture 109

Figure 9: Optative business workflow model for complaint management 112

Figure 10: Cooperation model for complaint management 115

Figure 11: Optative business workflow system architecture 122

Figure 12: Refined derivation modelling method 126

Figure 13: A simple UCM path 176

Figure 14: Unbound map 180

Figure 15: Bound map 180

Figure 16: Static components 182

Figure 17: Dynamic components 183

Figure 18: Movement notation of UCM for dynamic components 184

Figure 19: Creation of a single component along a path 184

Figure 20: Path segment coupling 185

9

Figure 21: Combination of path segment coupling

Figure 22: Waiting places

Figure 23: Static stub

Figure 24: Dynamic stub with multiple plug-ins

Figure 25: A UCM scenario ensemble

Figure 26: Asynchronous path interactions

Figure 27: Synchronous path interactions

Figure 28: Composite use case maps

Figure 29: Scenario ensemble and composite maps

10

187

187

189

189

190

191

191

192

193

Table 1: Derivation mapping UCM to Actor model elements 89

Table 2: Actor model for meeting initiator 92

Table 3: Actor model for meeting participant 93

. Table 4: Articulation protocols for the different relationships 99

Table 5: Articulation model for scheduling a meeting 100

Table 6: Actor model for customer 113

Table 7: Actor model for agent of service centre 114

Table 8: Actor model for supervisor of service centre 114

Table 9: Actor model for agent of branch 114

Table 10: Articulation protocol types for relationships in the case study 117

Table 11: Cooperative interaction between customer and agent (service

centre) 118

Table 12: Articulation protocol between customer and agent (service centre)

120

11

I would like to express my sincere thanks to my supervisor, Dr. Cornelia

Boldyreff, who made it possible for me to come to Durham and her help and

guidance in the development of this thesis.

I would like to express my deep thanks to Dr. Simon Smith. Working

together with him from the first day in Durham was very inspiring. His

meticulous commenting on reports, ideas, and drafts is highly acknowledged.

I also would like to acknowledge my colleagues at Durham on the Toll-Bridge

project, Phil Bevan and Gill Mallalieu, with whom I learnt a great deal during

the early stages of this work.

I also thank my colleagues earlier at Softlab and now at Nortel Networks for

interesting discussions.

I would like to thank those who gave me encouragement and support through

other means, while I completed this work, in particular Prof. Keith Bennett

and my family.

Finally, I would like to thank Sandra. Her love, encouragement, and support

enabled me to finish this work.

I dedicate this thesis to my parents.

12

This work was partly carried out between October 1994 and February 1997

while the author was working as a Research Assistant in the Department of

Computer Science at the University of Durham on the Toll-Bridge project.

This project was funded by ICI pic under the Strategic Research Fund. This

earlier work appears in [Strassl 1996] and [Strassl and Smith 1997].

An early version of some material from Chapters 3 and 4 is presented in

[Strassl and Smith 1998].

The complaint management case study presented in Chapter 5 is the original

work of the author, which was carried out while working at Softlab and Nortel

Networks in Munich, as all other work in this thesis, except as acknowledged

in the text.

13

• .. s .• · .•.•.• · .•.•.•.•.•.•. t ...•.• ·.a .. • .. • .. • .. ·.:·.· .. · .• ·.t .• · .• · .• · ...•. e .•.•.• · .•. · ...• ·.m.·.·.· .. · .. ·· ..• · .. •· ..• · ..• ·.B ..• · .. ·· ..• ·.h .. ·· .•• · .. ··.t ..• · ..• · ..• • ..• · .. o ..• · ..• • ..• · ..• · .. f ..• · ..• · .•••. i.<; ..• · .. • •..• • ..• • .. o ..• • ..••..•.•• • ... ·.R.· ••..•.••. n .• •.• •. • •.••. n.· •.••. ~ .•• • .. g··.··.···.·.· .•. n .•.•.•.•.•.•.•.•. t..................................... .. ,': ... ::... : : .. ? •.•.•.• : .•.• : ...• :1=: .. ;.;.;.;.:.:.:.:.:.:.:.:.;.:.:.:.:.:.:.:.:.:.;.:.:.:.:.:.:.:.:.:.:.:.:

The copyright of this thesis rests with the author. No quotation from it should

be published without their prior written consent and information derived from

it should be acknowledged.

14

This chapter introduces software development for business workflow

systems as a modelling process, and describes the role of

requirements engineering within this process. An overview of the

thesis is given, along with a synopsis of each of the following

chapters.

1.1 Software development for business workflow systems

The development of software-based business workflow systems has

been of increasing interest in both research and industry as the

potential benefits of building systems which more closely support

human processes become established.

Traditional software development has created many kinds of

software products, and a diverse set of development methods

associated with their production. However, software systems

development is based on the understanding of a general

15

development process. In this general process, several activities

must be carried out in order to develop the software system, and the

products of one activity feed into, or back to, another. A typical

software system development process consists of requirements

engineering, design, implementation and maintenance (e.g. [Boehm

1988] [Sommerville 1992]). The final product should be a

satisfactory software system.

A successful business workflow system supports the coordination

and cooperation of work activities as is needed to satisfy business

workflow processes.

This thesis is concerned with two aspects of software development

for business workflow systems: requirements engineering and

modelling. Each of these aspects is discussed briefly in the following

sections, by way of introduction to the remainder of the thesis.

1.1.1 Requirements engineering

The core measure of the success of a software system is the degree

to which it meets the objectives for which it was intended. In this

sense, software systems requirements engineering is the process of

discovering these objectives, by identifying stakeholders and their

needs, and documenting these in an appropriate form that is

amenable to analysis, communication, and subsequent

implementation. However, it is well documented that there are a

number of inherent difficulties in this process. Stakeholders (e.g.

16

customers, users, support staff, developers) may be numerous and

distributed. They may not be involved in the process early enough.

Their needs may vary and conflict, depending on the environment in

which they work and the tasks they have to accomplish in the

business. Their needs may not be to explicit or may be difficult to

articulate and, inevitably, may be misidentified, which is one of the

most significant sources of dissatisfaction with delivered software

systems (e.g. [Macaulay 1996] [Lubars et al. 1993] [McGraw and

Harbison 1997]).

The role of requirements engineering for software systems

development is concerned "with real-world goals for, functions of,

and constraints on software systems. It is also concerned with the

relationship of these factors to precise specifications of software

behaviour, and to their evolution over time and across software

families." [Zave 1997] The definition points out two main issues: first,

it is real-world oriented since it highlights the importance of real-world

goals that motivate the development of a software system. And

second, the definition captures the evolution over time, which

considers the reality of a changing world.

The context in which requirements engineering takes place is usually

a human activity system, and the problem owners are people

[Macaulay 1993]. Engagement in a requirements engineering

process assumes that a new software system may be useful, but

such a system will change the activities that it supports. Therefore,

requirements engineering for business workflow systems needs to be

sensitive to how people perceive and understand business

17

processes, how actors interact and cooperate in the business, and

how it affects their work.

1.1.2 Modelling

Modelling is one of the fundamental activities in requirements

engineering. It is the construction of abstract descriptions that are

amenable to interpretation. For example, given a business process

or work situation, a model represents abstract descriptions of the

business processes in which the envisioned workflow system will

operate.

Business workflow models are confronted with the aspects of

cooperation and coordination. These aspects do not have an

objective on its own but are prerequisites for the business to reach its

objectives. As Bannon and Schmidt [Bannon and Schmidt 1991]

say: "Cooperative work is constituted by work processes that are

related as to content, that is, processes pertaining to the production

of a particular product or service." Such model representations bring

to light a variety of new problems, as it corresponds to much more

fluid, less structured concepts and practices.

A variety of modelling approaches in requirements engineering exist

(e.g. enterprise modelling, domain modelling, data modelling, goal­

based approaches), which do not address such cooperation aspects

sufficiently.

18

In this thesis, a major concern is the better understanding of the

cooperative work aspects and how these can be used as part of the

requirements engineering process for business workflow systems.

1.2 Problem statement

The overall problem addressed by this thesis is the activity of

modelling and analysing requirements for business workflow

systems. In general, there is a lack of support by current

requirements engineering methods with respect to the provision of

how the complexity of business work is managed.

Several approaches in sociology have been proposed to address the

need for understanding cooperative work in a largely descriptive and

analytical manner. Attempts to use these descriptive results in

software development have had mixed results.

The ultimate goal of building a business workflow system is to solve

some problem of a business (such as increase of profit or customer

satisfaction). Understanding and analysing requirements of business

processes results in a requirements specification, which is used for

communication among stakeholders and may be part of a formal

contract. Therefore, a requirements engineering method needs to

describe workflow, actor behaviour and cooperation dependencies in

an expressive manner that allows communication among people.

19

In Chapters 2 and 3, it is argued that a method to support the

understanding of business and human cooperation as part of the

requirements engineering process must work in a generative way

that helps people think and explain complex behaviour. Thus, it must

be possible:

• to extend requirements engineering modelling techniques with

underlying cooperation properties,

• to integrate these techniques in such a way that it is clear how

these can lead into and support each other, and

• to provide pragmatic heuristics and guidelines that support the

real-world requirements engineering practitioner to ensure a high

probability of success for the business workflow system to be

built.

1.3 Assumptions

The main assumption of this thesis is that modelling and analysing

requirements for business workflow systems should be visual

scenario-based and of lightweight nature, in order to stimulate

thinking and discussion about business workflow issues.

This is a reasonable, reality-proven assumption to make. It is

adopted as an assumption rather than as a point to be demonstrated

in greater length in this thesis, since the benefits of visual scenario-

20

based requirements elicitation and modelling have been convincingly

demonstrated not just in principle (e.g. [Haumer et al. 1999]), but

also increasingly in practice (e.g. [Weidenhaupt et al. 1998]).

1.4 Proposed solution

It has been shown that 'separation of concern' [Parnas 1972]

approaches can lead to more manageable and traceable methods for

analysis and reasoning. This thesis attempts to extend this result to

the area of requirements engineering.

Particularly, this work suggests that a new approach, called

derivation modelling, will:

• provide clear and structured views of cooperation properties,

• allow the derivation of articulation protocols from business

workflow models in a scenario-driven manner,

and so provide a requirements engineering method that defines how

the expectations of the cooperative situation are to be fulfilled by the

workflow systems to be developed.

21

1.5 Method

The method chosen for developing and evaluating the proposed

solution is as follows:

• identify characteristics which should form part of a derivation

modelling method to model and analyse requirements for

business workflow systems,

• devise a way of describing business workflow behaviour with this

method,

• derive a set of heuristics to provide support for the modelling

process,

• evaluate the work in the context of a real-world case study, and

• adjust the method according to the results of the case study.

The main decision made in the choice of this method was the

possibility of using existing visual notations for investigating the

derivation modelling approach. An alternative would have been to

invent a new notation. However, this is not the objective of this

thesis.

1.6 Results

This work reports the following main results:

22

• the identification of a set of underlying modelling properties for

cooperation as part of the requirements engineering process,

• the development of a derivation modelling method based on

scenarios, and

• the provision of pragmatic heuristics and guidelines that support

requirement engineering practitioners.

1.7 Contribution

The contribution made by this thesis may be summarised as follows:

• An evaluation of a derivation modelling approach is given on the

basis of scenarios for modelling requirements for business

workflow systems.

• It is demonstrated that a derivation modelling approach in which

requirement models are transformed through a series of

modelling aspects involved in coordination and cooperation can

be addressed by using what are effectively extensions of current

requirements engineering methods.

Limitations of the work presented in this thesis and possibilities for

future work are discussed in Chapters 7 and 8.

23

1.8 Outline of the thesis

Chapter 2 presents the notion of workflow systems to support

business processes called business workflow systems, and

describes some of the current limitations of these systems that can

be related to insufficient reqUirements engineering methods. Based

on this understanding, three needs are formulated for requirements

engineering for business workflow systems: the need to use

derivation modelling, to consider cooperative work aspects, and to be

able to provide methodological support for the requirements

engineering process.

In Chapter 3, the aspects of cooperative work are discussed and

scenarios are identified as an appropriate means for understanding

cooperative work in business workflow situations. A variety of

scenario-based approaches are discussed and evaluated. Three

main problems are highlighted: the issue of articulation work, visual

representations and methodological guidance in scenario-based

requirements modelling.

Chapter 4 presents a scenario-based derivation modelling method,

which allows modelling and analysing requirements for business

workflow systems. The method provides a means of both visualising

the behaviour of actors and defining how cooperative behaviour is

achieved. The first section describes and explores the problem

context and purpose of this approach. Further sections describe its

types of models. A standard requirements engineering example,

scheduling a meeting, is used to exemplify the approach.

24

Chapter 5 presents the application of the scenario-based derivation

modelling method defined in Chapter 4 to a real-world case study

example of complaint management in a bank. As a result, the

derivation of articulation protocols from business workflow models

define the expectations of the cooperative situation can be fulfilled by

the system. Various subtleties were found during the case study,

which suggest refinements to the method. The refined method is

presented at the end of this chapter.

Chapter 6 describes heuristics for analysis and construction used by

requirements engineering practitioners applying the derivation

modelling method. These heuristics are a set of rules, which guide

the requirements engineering practitioner towards higher rate of

success for analysing the available information and for constructing

the models. They were derived from experiences and observations

in applying the method in both the initial meeting scheduler example

and the complaint management case study.

Chapter 7 presents the evaluation of this work. It describes the

principal ideas behind the method and indicates major problems

found while developing the method and justifying this approach. It

reiterates the properties that such a method should display; it then

evaluates the work by discussing its weaknesses and strengths with

regard to these properties. Finally, this chapter examines the

suitability of the visual scenario-based technique and discusses

experiences while applying the method to case studies.

25

Chapter 8 summarises the work of this thesis, revisits the solution as

proposed in the first chapter, and suggests possibilities for future

work.

26

This chapter presents the notion of workflow systems to support

business processes called business workflow systems, and

describes some of the current limitations of these systems that can

be related to insufficient requirements engineering methods. Based

on this understanding, three needs are formulated for requirements

engineering for business workflow systems: the need to use

derivation modelling, to consider cooperative work aspects, and to be

able to provide methodological support for the requirements

engineering process.

2.1 Business Workflow Systems

The workflow concept has evolved from the notion of process in

manufacturing and administration. Such processes have existed

since the industrialisation and are results of a search to increase

efficiency by concentrating on the routine aspects of work activities.

27

They typically separate work activities into well-defined tasks, roles.

etc., which regulate most of the work. Initially. processes were

carried out entirely by humans who manipulated physical objects.

With the introduction of information technology, processes have been

partially or fully automated by software systems. i.e. software

programs performing human tasks and enforcing rules which were

previously implemented by humans.

Today, workflow management is predominant in a wide range of

business and administration tasks (e.g. banking, insurances. or other

services). A huge variety of commercial workflow management

systems is available to re-engineer, streamline, automate, and track

business processes [Sheth and Kochut 1997] [Georgakopoulos et a!.

1995]. Market trends (presented by analysts such as Delphi Group

or Giga) still show a steady growth of workflow management systems

with a lot of potential for applications (e.g. Customer Relationship

Management, E-commerce [Muth et al. 1998] [Alonso et al. 1999]).

Further. the Internet offers many possibilities and will provide

effective and low cost services worldwide to be able to track

transactions across enterprise boundaries and to offer services which

are adapted to market needs [WfMC 1998].

2.1.1 Business process support

Business processes are descriptions of an organisation's activities

implemented as information or material processes. That is, a

business process is engineered to fulfil a business contract or satisfy

28

a specific customer need. Once an organisation captures its

business in terms of business processes, it can re-engineer each

process to improve it or adapt it to changing requirements. Business

process re-engineering might be for increasing customer satisfaction,

improving efficiency of business oRerations, increasing quality of

products and services, reducing costs, or meeting new business

opportunities by changing existing processes or introducing new

ones.

More formally speaking, a business process is "a set of one or more

linked procedures or activities which collectively realise a business

objective or policy goal, normally within the context of an organisation

structure defining functional roles and relationships." [WfMC 1998]

In the following section, the concept of workflow is highlighted as it is

closely related to re-engineering and supporting business processes

in an organisation through software systems.

2.1.2 Workflow

A workflow may describe business process tasks at a conceptual

level necessary for understanding, evaluating, and re-designing

business processes. On the other hand, it may describe some tasks

at a level that captures requirements for software system functionality

or human skills. However, there is a variety of notions around in the

literature for workflow. The perspective on the term workflow comes

29

from the fact that some describe rather business perspectives, others

software systems perspectives.

Despite the efforts for standardisation there is still little agreement as

to what workflow is. Often, workflow is used casually to refer to a

business process, specification of a process, software that

implements and automates a process, software that simply supports

humans who implement a process. It is used to distinguish workflow

specifications from their implementation, or as a collection of tasks

organised to accomplish some business processes (e.g.

[Georgakopoulos et al. 1995] [Sheth and Kochut 1997]

[Hollingsworth 1995]).

Tasks can be performed by one or more humans supported by

software systems, or a combination of these. A workflow defines the

order of task invocation or constraints under which tasks must be

invoked and by whom. Human tasks include interaction with

software systems, e.g. providing some input commands or using the

system to indicate task progress.

Another characterisation of workflow (which was first given by

McCready [McCready 1992]) distinguishes between three kinds of

workflows: ad hoc, administrative, and production:

• Ad hoc workflows perform office procedures, such as product

documentation or sales proposals, where there is no set pattern

for moving information among people. Ad hoc workflow tasks

typically involve human coordination and cooperation. The

coordination of tasks in ad hoc workflow is not automated but is

30

instead controlled by humans. A typical example may be a

meeting scheduler for groups.

• Administrative workflows involve repetitive, predictable processes

with simple task coordination rules, such as routing an expense

report or travel request through an authorisation process. The

coordination of tasks can be automated in administrative

workflows. In an administrative workflow, users are prompted to

perform their task with the support of some software system.

• Production workflows involve repetitive and predictable

processes, such as loan applications or insurance claims.

Production workflow encompasses and involves complex

processes, which may access to multiple other software systems.

The coordination of tasks in such workflows can be automated.

The automation of production workflows is highly complicated due

to the process complexity and the exchange of data with other

software systems.

Another characterisation of workflow has been presented by Aalst et

al. [Aalst et al. 1998] . They divide workflow into structured,

unstructured, information centric, and process centric. However, this

characterisation does not separate workflow semantics from the

software system that supports it.

Yet another characterisation of workflow presents a range from

human-oriented to system-oriented [Georgakopoulos et al. 1995].

On the one hand, human-oriented workflow involves humans

31

collaborating in performing and coordinating tasks. In this case, the

requirements for a workflow system is to support the coordination

and cooperation of humans. Humans, however, must ensure the

consistency of documents and workflow results. On the other hand,

system-oriented workflow involves software systems that perform

tasks. While human-oriented workflow systems often control and

coordinate human tasks, system-oriented workflow systems control

and coordinate software tasks (typically with as little as possible

human intervention). Consequently, system-oriented workflow

systems must include various mechanisms for concurrency control

and recovery to ensure consistency and reliability. This in turn is not

required by workflow systems that support human-oriented workflow.

Human-oriented workflows have process semantics (e.g., capture

where to route a document) but have no real knowledge of the

semantics (i.e. the information) being processed. System-oriented

workflows have more knowledge of semantics (e.g. synchronisation

of information).

Consequently, in human-oriented workflow the main issues to be

addressed include understanding how people need or prefer to work

or how they may interact with the workflow system. In system­

oriented workflow, the main issues to be addressed include matching

business process requirements to functionality and data, finding

appropriate support by the system to perform workflow tasks, and so

on.

The research area of CSCW overlaps with workflow issues, where

workflow involves predominantly human tasks, as it is the case in

32

businesses. The development of workflow systems to support

cooperative work activities in businesses is faced with challenges

similar to those addressed in CSCW, such as dynamic and flexible

coordination and cooperation processes.

In the rest of this thesis, the term workflow is used to refer to

business processes in which humans participate in organisational

activities to achieve a particular goal with the support of software

systems.

2.1.3 Workflow management

This work considers workflow management as the modelling of

business processes. A. variety of methodologies have been

proposed to carry out process modelling for workflow systems, in

particular modelling for business workflow systems. These can be

characterised as being communication-based or activity-based.

• Communication-based methodologies are based on

"Conversation for Action Model" by Winograd and Flores

[Winograd and Flores 1986]. This methodology assumes that the

objective of business process re-engineering is to improve

customer satisfaction. It reduces every action in a workflow to

four phases based on communication between a customer and a

performer. In the preparation phase, a customer requests an

action to be performed or a performer offers to do some action.

In the negotiation phase, both customer and performer agree on

33

the action to be performed and define the criteria for satisfaction.

During the performance phase, the action is performed according

to the criteria established. In the acceptance phase, the customer

reports satisfaction (or dissatisfaction) with the action performed.

Each workflow loop between a customer and a performer can be

joined with other workflow loops to complete a business process.

The ActionWorkflow Analyst tool [Medina-Mora et al. 1992] from

Action Technologies is based on the Winograd/Flores model.

• Task-based methodologies focus on modelling the work instead

of modelling the commitments among people and do not capture

business objectives such as customer satisfaction. Most

commercial business workflow systems provide activity-based

workflow models (e.g. InConcert or Staffware). These workflow

models consist of tasks, whereby each of the task may be

comprised from subtasks. Each task has dependencies on the

tasks at the same level and has an assigned role, which is the

proxy for people of software system to perform the task.

In addition to the above two methodologies, object-oriented

methodologies, such as the one proposed by Jacobson [Jacobson

1992] may be useful in defining workflow models. For example,

Jacobson describes how to identify objects that correspond to actors,

to identify the dependencies between those objects, to use object

techniques such as inheritance to organise specifications, and to

describe use cases which are essentially a sequence of tasks

34

needed to complete some business processes. However, object

orientation provides no explicit support for workflow models.

The above workflow management methodologies address the issue

of workflow modelling with respect to system orientation, i.e. how the

system should be implemented. However, the methodologies do not

explicitly support the workflow model of what it means for a workflow

to be correct, e.g. what tasks must be completed for the workflow to

be considered successful. For example, stakeholders provide the

most suitable resource to provide useful and realistic viewpoints on

the system for business support. In particular, in terms of business

objectives and their impact on the systems supporting the business

can be seen as a highly valuable to elicit and validate the

requirements of the system to be proposed.

Another problem with these methodologies is that they do no

integrate properties such as cooperation or coordination explicitly. -

The importance and positive impacts of these issues have been

addressed in the research area of CSCW.

Finally, workflow methodologies have not addressed different

interests and viewpoints. For businesses that rely on their workflow

system, modelling requires multiple models for workflow, actors,

cooperation between actors, and how the cooperation is achieved.

35

2.1.4 Workflow management systems for businesses

Several hundred products that provide support for workflow

management exist in the market today, focussing on supporting the

business environment with emphasis on coordinating human

activities, and facilitating document routing, imaging, and reporting

[Sheth and Kochut 1997] [Georgakopoulos et al. 1995] [Alonso et al.

1997] [Mohan 1997].

The Workflow Management Coalition defines a workflow

management system as "a set of tools providing to support the

necessary services of workflow creation, workflow enactment, and

administration and monitoring of workflow processes." [Hollingsworth

1995].

Workflow systems can be characterised by the following functional

components:

• modelling and representation of workflow processes and their

constituent activities,

• selection and instantiation of processes for activation in response

to a user request or key events,

• scheduling of activities to agents and resulting tasking of the

agents, and

• monitoring and adaptation of executing processes.

36

The following sections describe critical success factors in designing

business workflow systems and some of the limitations of business

workflow systems with regard to problems in current software

engineering.

2.1.5 Critical success factors in designing business workflow

systems

In this section, four major critical success factors in designing

business workflow systems are identified in the context of this work.

These factors are suitability, adaptability, correctness, and

stakeholder involvement and are described below:

• Suitability: a business workflow system must be suitable for

purpose of the business. It needs to incorporate structural and

behavioural aspects of processes, interactive aspects, and

temporal aspects.

• Adaptability: a business workflow system must be adaptable, i.e.

it needs to be designed in a way that the system is able to deal

with changes. These changes may range from ad-hoc changes

(such as changing the order to two tasks for an individual case) to

the redesign of a workflow process (may be as part of a business

re-engineering project).

• Correctness: a business workflow system needs to provide the

necessary correctness and reliability properties in the presence of

37

concurrency and failures. These aims at both data and workflow

consistency in a syntactic and semantic way.

• Stakeholder involvement: adequate stakeholder identification and

involvement is a major success factor in designing a business

workflow system. Stakeholders are people who are responsible

for design and development, people with financial interest, people

who are responsible for operations or people who have some

interest in its use. However, identifying the right set stakeholders

in an organisation-wide workflow implementation of the set of all

stakeholders at the right phase of such a project is far from trivial.

The following section describes some of the limitations of current

business workflow systems.

2.1.6 Limitations

Due to the number of commercially available business workflow

systems, a huge variety of limitations has been documented in the

development of workflow systems. Many products have been

developed without a clear understanding of user requirements and

thus these products are often highly unprepared to meet the

demands placed upon them by users embedded in the business.

One of the reasons may be that commercial business workflow

systems can be traced back to work done in database and distributed

systems, system architecture, and transaction systems. Recently,

38

issues such as scalability, reliability, concurrency control, recovery,

high availability, Internet-technology, and interoperability with other

system components have been a focus in this research (e.g. [Sheth

and Kochut 1997] [Alonso et al. 1997] [WfMC 1998]).

Business workflow systems are systems for supporting coordination

and cooperative work. However, observers have argued that

business workflow systems make business processes too rigid, not

allowing their cooperating users to react freely to the breakdown

occurring during their evolution [Bowers et al. 1995]. Some seem to

blame the responsibility of this rigidity on their using formal workflow

models; others criticise the strict coupling between modelling and

executing they introduce (e.g. [Suchman 1987] [Oourish et al.

1996]). An extensive discussion on the pros and contras of this can

be found in the papers of Lucy Suchman [Suchman 1994] and Terry

Winograd [Winograd 1994].

Clearly, business workflow systems should be oriented towards

making businesses as flexible and adaptable as possible and to

supporting changes. Furthermore, business workflow systems

should allow users to change the flow of work in order to let them

handle exceptions and breakdowns without changing it. Business

workflow systems should get their flexibility both from the case of

dynamically changing them and from not to need continuous frequent

changes. Recent research efforts attempt to deal with adaptation

and change on a technological basis (e.g. [Aalst et al. 1998] [Koksal

et al. 1999] [Sheth and Kochut 1997] [Ellis et al. 1995]). However,

39

most existing business workflow systems appear to be inadequate

with respect to change.

This work takes the assumption that these limitations should not be

attributed solely to technological issues, but also to the

understanding of the cooperating users and their requirements to

work in the business efficiently and effectively.

Another major limitation is the support incorporating aspects of

cooperation and coordination. There has been major research

efforts in the CSCW area to establish effective software systems

support for cooperative work and impressive, but mostly small-scale,

research prototypes (e.g. [Bogia and Kaplan 1995] [Schmidt and

Simone 1996] [Oourish et al. 1996]). However, little result has been

produced as to whether software systems can be successfully

designed to support cooperative work for business workflow

processes, and so regulate routine coordination activities and

thereby enable cooperative actors to perform reliably and effiCiently.

Schmidt and Bannon [Schmidt and Bannon 1992] discuss the

relevance of articulation work within cooperative work arrangements.

Articulation work deals both with the meshing of tasks and

performers within a cooperative work process and with the

interleaving of different processes within the work time of a

performer. Moreover, it deals with the continuous changes of

cooperative work arrangements. Therefore, systems supporting

articulation work must on the one hand liberate actors as much as

possible from the routine articulation work they need for coordination

40

themselves. On the other hand, systems need to support actors to

become aware of the situation where they are performing and to

negotiate whenever a breakdown occurs. Finally, they need to be

open to continuous change in order of both routines and exceptions.

Existing CSCW systems, such as workflow systems, have been

emerging slowly with their progress in gaining widespread

acceptance despite growth in network and Internet availability. A

number of researchers have presented different arguments for this

apparent failure of CSCW systems (e.g. [Grudin 1988]). These

issues are not surprising since the main focus of such systems has

rarely been the development within a more industrial context.

Incorporating an understanding of the nature of the domain has been

an issue, which has plagued more traditional forms of systems

development. For example, Curtis et al. [Curtis et al. 1988] have

identified the lack of application domain expertise as the most

significant problem in requirements engineering.

One of the distinctive characteristics in CSCW is the extent in which

it is able to focus more on work than being technologically-driven, as

many previous approaches to systems development were, and to

some extent, still are. A number of researchers have argued for the

need to seriously treat the understanding of the nature and the users

of cooperative work as part of the development process. Not

surprisingly, however, there has been much reticence on how it can

be achieved, since this has been done in a highly analytical manner

(e.g. [Heath and Luff 1992] [Hughes et al. 1992] [Star 1995]).

41

2.2 What can Requirements Engineering do?

Before a business workflow process can be modelled, the

requirements of the stakeholders need to be understood. This is

usually done by interviewing stakeholders with domain knowledge

about the process. A variety of methodologies for systems design

are used for conducting such interviews to obtain knowledge about

the processes.

This traditional way of engineering systems is through conceptual

modelling which produces a workflow specification of the system to

be developed. The specification concentrates on what the system

should do, that is, on its functionality. Such specifications act as a

prescription for system construction. This may be done under the

assumptions that business workflow systems requirements are stable

and given.

However, a number of studies show (e.g. [Lubars et al. 1993]

[McGraw and Harbison 1997]) that systems fail due to an insufficient

understanding of requirements they seek to address. Further, the

amount of effort needed to fix these systems has been found very

high (e.g. [Niessink and Vliet 1998] [Ramage and Bennett 1998]). To

correct this situation, it is necessary to address the issue of

requirements modelling and representation in a utmost focused

manner. The expected benefit is that future systems will be more

acceptable. The field of requirements engineering has emerged to

meet this expectation.

42

Requirements engineering attempts to go beyond an understanding

of what a system does, or should do, to why the system is as it is, or

should be as proposed. In other words, software systems are seen

as fulfilling a particular purpose in the business and requirements

engineering supports in conceptualisation of these systems.

Furthermore, requirements engineering considers the potential users

of the system as most suitable to provide useful and realistic

viewpoints on the system to be developed. Such an exploration

leads to the identification of normal and exceptional activities.

An appropriate way of doing requirements engineering must be

guided by appropriate models for the problem at hand. Furthermore,

as being a complex task, requirements engineering must provide

guidance on which activities are appropriate in given situations as

well as on how these activities are to be performed.

Taken together, the research results briefly reviewed above suggest

that in order to deliver accurate and valid specifications,

requirements engineering for business workflow systems must

address three main issues:

• the need to have appropriate modelling concepts with cooperation

aspects in ensure that purposeful business workflow systems are

built,

• the need for the integration of such modelling concepts, and

43

• the need for methodological support during the requirements

engineering process.

These three issues affect both the system to be developed and the

process aspects of requirements engineering. However, considering

these aspects will result in workflow models that are suitable for

businesses [Barros et al. 1997]. Suitability implies a close

connection between modelling concepts and features, and those

required by the particular domain. In terms of suitability for business

workflow modelling, it needs the incorporation of often neglected

aspects, such as combining structural and behavioural aspects.

2.3 Derivation modelling

Models in requirements engineering serve as a means for

communication and validation. Without models, different views on a

particular aspect can not be considered. Thus, models help to

expose different views, enabling stakeholders to enhance their

shared understanding of the phenomenon in question during the

requirements engineering process.

The purpose of modelling is to create a clear and structured view of

the aspect to be described and helps to restrict to the relevant

information and so to account for the separation of concern [Parnas

1972] and problem decomposition [Jackson 1995]. A clear and

structured view is not something that can be measured objectively. It

44

is rather a property that depends on the person for whom and the

purpose for which the model is intended. Moreover, this work

assumes that visual model representations are highly useful,

because of the expressive power they have.

This work has identified the need in Chapter 2.1.3 to use for more

than one model for requirements modelling for business workflow

systems to understand all aspects of business workflow processes -

workflow, actors, cooperation, and articulation between them, and

how this is achieved. Moreover, the models need to be derived in a

highly flexible manner.

The requirements engineering phase starts from a set of highly

informal requirements and may include the capture of the

requirements, involving extensive discussions with stakeholders of

the future system. Nevertheless, the derivation of various models,

from e.g. business workflows, reduces the distance between highly

informal and incomplete requirements models and more rigorous

methods for designing systems by providing a method which reflects·

earlier the. richness of cooperative work properties as usual.

Reducing this distance is one of the main goals of this work, and a

primary aim of a derivation modelling method. The results provided

by the derivation modelling method is a model, which can then be

used as the starting point of a more formal design process.

One approach for creating a derivation modelling method is to

indicate heuristics and guidelines to be applied during the

requirements engineering process. ifhese heuristics and guidelines

45

support the analysis, construction, and evolution of the models.

Derivation modelling must consider both in-model heuristics and in­

between model heuristics:

• In-model heuristics focus on statements for construction and

evolution of one particular model.

• In-between model·heuristics consider statements that support the

derivation from one model aspect to another, if there is enough

information in the initial model so that the subsequent model can

be derived.

Modelling of multiple perspectives and viewpoints has been

discussed within the requirements engineering community (e.g.

[Nissen and Jarke 1999] [Nuseibeh et al. 1994]. However, these

works differ from the above described need for derivation modelling

in that they try to derive one valid model from different models

covering all the same conceptual aspects. This work, in contrast,

attempts to have several models considering the different aspects

and merging them at the end.

A large body of work takes a narrower, but much more rigorous

approach to model development. This work is not a rigorous or

formal refinement or transformation method in the manner of e.g.

[Lamsweerde et al. 1995]. It is called a derivation modelling method,

as it is not formal, but includes a set of notations together with a

strategy to be followed and pragmatic heuristics. While formalisation

of the approach would be possible, the derivation modelling

46

approach based on heuristics rather than formal transformation is

likely to provide sufficient rigour, appropriate for the human-based

subject matter being modelling as suggested by literature on domain

knowledge or CSCW.

2.4 Conclusions

This chapter suggests that requirements engineering for business

workflow systems is a modelling activity, in which requirements need

to be analysed, constructed and evolved.

Four kinds of models are necessary to describe requirements for

business workflow systems: workflow, actor, cooperation, and

articulation. The essence of the approach described is that these

models are concerned with all aspects of business workflow

processes.

Three basic needs can be discerned from the above:

• the need to have appropriate modelling concepts with cooperation

aspects in ensure that purposeful business workflow systems are

built,

• the need for the integration of such modelling concepts, and

• the need for methodological support during the requirements

engineering process.

47

The discussion in Chapter 2.3 argues that the way in which

requirements for business workflow systems takes place generates a

fourth need as a consequence of the four models (i.e. business

workflow, actor, cooperation, and articulation) identified:

• Derivation modelling: a method which produces a set of models

that include properties that reflect cooperative properties and can

be used as a means for constructing models that can then be

used as a better starting point for software development.

These needs are described in more detail and are used to evaluate

related work in the following chapter, and are later used to evaluate

the work described in the remainder of this thesis.

48

The need for a derivation modelling method is identified in the

previous chapter. In this chapter, the aspects of cooperative work

are discussed and scenarios are identified as an appropriate means

for understanding cooperative work in business workflow situations.

A variety of scenario-based approaches are discussed and

evaluated. Three main problems are highlighted: the issue of

articulation work, visual representations and methodological

guidance in scenario-based requirements modelling.

3.1 Introduction

This thesis is concerned with the activity of modelling in requirements

engineering for business workflow systems, and the possibility of

reasoning about the models produced. However, this requires a

deep understanding of business and human cooperation. Several

49

approaches have been proposed to address this need for

understanding, but typically based on descriptive technqiues.

In this chapter, the properties of cooperative work are explored

(Sections 3.2 and 3.3). The use of scenario modelling techniques

(Section 3.4) is discussed, and their application to requirements

engineering research is reviewed (Section 3.5). This work is

evaluated in Section 3.6 and some problems with this work are

described.

3.2 Properties of cooperative work

After 15 years of the emergence of the research field of CSCW,

researchers still struggle with what CSCW exactly means. Kling

[Kling 1992] argues that CSCW may be best characterised as an

arena of - and not so much a field of - research. Researchers from

multiple research communities actively participate in the CSCW

arena, which offers fundamentally new possibilities of computer

support for work. Researchers still disagree about the definition of

CSCW, though the current emphasis focuses on the first part of the

acronym, the computer support. The commercial interest has

dramatically increased in products labelled groupware, and business

workflow system is one category within these.

There is still some disorder about what is meant by cooperative work

- the second part of the acronym of CSCW. Since business

50

workflow systems support cooperative work, it is important to

conceive clearly what cooperative work means.

Although a variety of definitions of cooperative work have been

brought forward, almost all of them agree on the concept of people

working together to achieve a shared goal. Schmidt [Schmidt 1991]

characterises cooperative work as a situation "when multiple actors

are required to do the work and therefore are mutually dependent in

their work and must coordinate and integrate their individual activities

to get the work done." Work is always socially situated and socially

organised, yet the work process itself is not always intrinsically

cooperative in the sense that it requires multiple actors who are thus

interdependent in their work [Schmidt 1991] [Hughes et al. 1992].

Studies (e.g. [Luff et al. 1992] [Hughes et al. 1992]) have shown

that it is difficult to differentiate an activity as being individual or

cooperative.

For a long time, the focus of how people carry out work together has

concentrated on positive aspects, such as cooperation, collaboration,

and commitment, and disregarded troublesome aspects, such as

competition, conflict, and control. Thus, CSCW has been critiqued

for being limited in its understanding of cooperative work [Kling

1992]. Workplace studies have shown that an important aspect of

work coordination embodies the heterogeneous goals and motives

for coordination activities of the different actors [Symon et al. 1996]

[Bowers et al. 1995].

51

The reasons for the existence of cooperative work are multifarious

(e.g. [Schmidt 1991] [Bardram 1997]): actors are being able through

cooperative work to accomplish tasks that would be infeasible for

actors to achieve individually; different viewpoints, goals, motives,

heuristics, etc., are integrated by semi-autonomous actors; the

manifold ontological structures and representations are temporary

and local closures [Gerson and Star 1986] and need to be

synthesised as part of the cooperative work process.

Actors who are engaged in cooperative work are mutually dependent

in their work, transforming and controlling an aggregation of

interacting objects and processes, often called 'field of work',

'organisational setting', 'work setting', 'system' or 'context' (e.g.

[Schmidt 1994] [Malone and Crowston 1994]). Mutual dependence

in work means that one actor relies positively on the quality and

timeliness of another actor's work and vice versa. Mutual

dependence in work can thus be primarily conceived of as a positive,

though by no means necessarily concordant, interdependence.

3.3 Articulation work

Cooperative work is distributed in the sense that cooperating semi­

autonomous actors have to co-ordinate, schedule, monitor, mesh,

integrate, allocate, etc., their individual activities to accomplish an

overall task (e.g. to make profit or to satisfy the customer).

Sociologists have termed this kind of work articulation work [Schmidt

1994].

52

The concept of articulation work was developed largely by Anselm

Strauss [Strauss 1986] and Gerson and Star [Gerson and Star 1986] .

In the words of Strauss [Strauss 1986], articulation work is "a kind of

supra-type of work in any division of labo[u]r, done by the various

actors".

Articulation of cooperative work is essential in multiple aspects: who

is doing what, where, when, how, etc.? Therefore, articulation may

be expressed in terms of actors, responsibilities, tasks, activities,

conceptual structures, and resources. Articulation work is never

done in the abstract, but it is always related to the wider context of

work environment and organisational setting.

Articulation work is considered as requiring reciprocal awareness

through monitoring the activities of cooperating actors or making the

activities of one's own activities publicly available to cooperating

actors. This may be done by directing attention to other cooperating

actors to express a certain state or a potential difficulty, to control

activities, etc., by for example pointing, nodding, talking, writing,

marking. Articulation work may also include the handing-over of

responsibility or assigning a task for a certain process from one actor

to another cooperating actor. The articulation of distributed work

embodies the use of 'protocols', encompassing a set of explicit

conventions and procedures supported by an artefact that stipulates

and mediates the articulation of the cooperating actors. Such

protocols as characterised by Schmidt [Schmidt 1991J as

'mechanisms of interaction'.

53

The above approaches have attempted to address the need for

understanding cooperative work in a largely descriptive and

analytical way. Attempts to use them in software development have

had mixed results (e.g. [Bowers et al. 1995] [Grudin and Palen

1995]). One of the reasons being that these has been developed

mostly in a research environment rather than in an industrial context.

This work proposes that the understanding of cooperative work can

be used in a generative way, as part of the requirement engineering

process.

The following sections explore and evaluate scenario-based

techniques, its use in requirements engineering and their usefulness

for understanding and modelling cooperative work properties.

3.4 Scenarios in requirements engineering

3.4.1 Role of scenarios in requirements engineering

Most requirements engineering methods are built on model-based

approaches, ranging from Structured Analysis [Yourdon 1989] to

UML [OMG 1999]. These approaches neglect the essential

importance of the socially situated context of current and future

situations in which the computer system to be developed is used.

Rather, they endeavour to establish a complete, consistent and

unambiguous requirements specification [Pohl 1994].

54

Recently, there has been a growing appreciation of contextualism in

requirements engineering. The term contextualism strives to obtain

an understanding of the richness of actors' interactions among

themselves or with a computer system in a social context [Potts and

Newstetter 1997] [Potts and Hsia 1997]. Contextualism fits in well

with approaches such as participatory design or ethnography

[Goguen 1994], etc. The synthesis of formal technical and socially

situated issues in the practice of requirements engineering is

fundamental for building computer systems that work successfully in

their social context. The value of such a synthesis has been

considered as important just recently in research but is almost non­

existent in practice.

In general, requirements are stated in terms of phenomena and

relationships that are of interest to the system's stakeholders

(manager, user, etc.). Therefore, requirements engineering is

concerned with the process of describing requirements for computer

systems whose construction is essentially a software development

task. Its goal is to provide software that ensures satisfaction of the

requirements.

Requirements are located in the environment, which is part of the

world, with which the computer system (in the words of Michael

Jackson: 'the machine') to be built will interact. The effect of the

computer system will be perceived and assessed in the environment.

Jackson and Zave [Jackson and Zave 1995] [Jackson 1997] argue

that the description of requirements consists of at least two parts -

an optative (what is desired) and an indicative (what is given)

55

description. An optative description expresses phenomena of the

environment that wants to be achieved by installing the computer

system. As the introduction of a new computer system usually

changes the environment, an indicative description expresses

properties of the environment, as they will be when the system is in

operation. Unavoidably, the quality of such models depends on the

knowledge elicited and modelled from the stakeholders and their

successful involvement in the requirements engineering process

[Macaulay 1993] .

The emergence of object-oriented software engineering [Jacobson

1992] has led to an enormous popularity of scenarios in practice. A

recent state-of-practice survey [Weidenhaupt et al. 1998] of

scenarios in requirements engineering has revealed that scenarios

are used in practice for a variety of reasons. Scenarios

• are used when abstract modelling fails,

• to enforce interdisciplinary learning,

• to require coexistence with a prototype,

• to reduce complexity, in this case scenarios can be considered as

a structuring device, and

• to facilitate partial agreement and consistency.

In this thesis, scenarios are considered as an engine for design

[Mack 1995] during requirements elicitation and validation to

56

stimulate, facilitate and document shared understanding between

stakeholders of both indicative and optative properties - its

occurrences, assumptions, action opportunities and risks. The

transition from informal to formal is a crucial point in requirements

engineering.

Conceptually, cooperative systems can be defined of as three

interacting worlds (see e.g. [Kuutti 1995]). The first world is that of a

cooperative system consisting of both hardware and software. The

second world is that of conceptual analysis and design, which helps

to define 'solutions in principle' on a purely abstracted logical level,

which has been the focus in traditional requirements engineering.

The third world is the real world of work processes, which describes

ways in that cooperative systems are used. The use of cooperative

systems is always embedded in work processes and becomes

meaningful through those work processes. People have also

experienced that if a new computer system is introduced in an

environment, the situations change. It has become evident over the

past few years that those situations must be explicitly studied as well.

Software engineering research has recognised the need to deal with

third world issues. Christiane Floyd's [Floyd 1987] seminal paper

'Outline of a paradigm change in software engineering' contrasts two

different perspectives in software engineering: a product-oriented

view and a process-oriented view. The product-oriented view regards

software systems as a product standing on its own, consisting of a

set of programs and related defining texts. In doing so, the product­

oriented view abstracts from the characteristics of the given base

57

machine and considers the usage context of the product to be fixed

and well understood, thus allowing software requirements to be

determined in advance. The process-oriented view considers

software in connection with human learning, work, and

communication, taking place in an evolving world with changing

needs. Processes of work learning and communication occur in both

software development and use.

In contrast to purely model-based approaches, scenarios offer a

sufficiently deep middle-level abstraction [Carroll 1995] between

models and reality, promoting a shared understanding of contextual

properties of an existing system and its future system requirements.

Recently, some researchers have started to recognise the need to

make the goal hierarchies driving a scenario-based requirements

engineering process explicit [Ant6n 1996] [Dardenne et al. 1993]

[Lamsweerde et al. 1995] [Yu and Mylopoulos 1994]. The

combination of these two extensions has also been conceived as

highly relevant for guiding change management [Haumer et al.

1998].

3.4.2 Definitions of a scenario

Despite the popularity of scenario-based approaches, there is no

generally accepted definition of what a scenario is, what it should

entail, or how it should be used. The definition of Carroll [Carroll

58

1995] seems to be a good outset of what a scenario for requirements

engineering of cooperative systems should cover:

"The defining property of a scenario is that it projects a concrete

description of activity that the user engages in when performing a

specific task, a description sufficiently detailed so that design

implications can be inferred and reasoned about. Using scenarios in

system development helps keep the future use of the envisioned

system in view as the system is designed and implemented; it makes

use concrete ... " (p. 3-4).

Unfortunately, this broad definition does not provide answers on the

novelty of scenario descriptions in contrast to traditional requirements

specifications. It neither gives an answer how concrete the

description of activities should be nor what an activity represents in

this context. Furthermore, the definition fails to explain what

implications are meant and what the role of the computer system

plays in the scenario description. Finally, it is unclear how a scenario

in form of textual representation can help the envisioning of a future

use situation.

A variety of scenario-based approaches have their origin in the

human-computer interaction area and have thus purely concentrated

on the interaction between a computer system and a user, but rarely

on actual work situations in the environment context.

Most recently, members of the CREWS project [Jarke et al. 1999]

have aimed at developing a definition based on the current

understanding in both research and practice:

59

"A scenario is a description of the world, in a context and for a

purpose, focusing on task interaction. It is intended as a means of

communication among stakeholders, and to constrain requirements

engineering from one or more viewpoints (usually not complete, not

consistent and not formal)."

However, none of the above definitions is entirely satisfactory in the

context of this thesis. Requirements engineering methods for

supporting cooperative systems development must be concerned

with modelling the interaction of cooperating actors who have to

articulate their individual activities to accomplish an overall task.

Such methods inherently enable us to understand socially situated

and socially organised cooperative work processes.

3.4.3 Scope of scenarios

Scenarios may be categorised according to the scope they address:

• Internal system scenarios describe the interaction between

internal system components without consideration of external

context of the system.

• Interactional scenarios describe the direct interaction between the

system and the actors of the environment and express

constraints, which the environment places on the system. Those

kinds of scenarios are the most frequent approaches found in

research and practice. The main reason for this may be that

60

since the late 1980s researchers in the area of human-computer

interaction (HC!) have used scenarios as tool for eliciting and

representing system requirements to improve communication

between system developers and stakeholders. In the past few

years, interaction scenarios have gained enormous popularity in

particular through Ivar Jacobson's approach [Jacobson 1995].

which has also fed into the efforts to establish a Unified Modeling

Language (UML) for systems engineering based on the object­

oriented approach. Other examples of interaction scenario­

approaches can be found in [Nielsen 1995] [Nardi 1995]

[Cockburn 1997] [Potts et al. 1994].

• Contextual scenarios describe the interaction between the

environment and between the system and its environment. They

consider the organisational work context [Kyng 1995] including

issues such as goals, resources, business processes, etc., based

in the environment. This approach is reflected in the participatory

design area, acknowledging that an explicit and active

involvement of stakeholders in the design process constitutes

good computer support in their context of work. In addition,

research in CSCW (e.g. [Suchman 1987] [Rogers and Ellis 1994]

[Bowers et al. 1995] [Jordan 1996] [Star 1995]) has convincingly

revealed that supporting work context as it is actually done in real

life calls for a more intrinsic understanding and description of

work processes.

61

Since this thesis is concerned with cooperative work processes, a

method must at least be able to represent contextual issues

independently of a computer system. This is in the same vein as

Jackson's world and machine approach - adequate elicitation and

analysis of requirements starts with modelling the environment and

successively changing the model by identifying new indicative and

optative properties.

3.4.4 Representation of scenarios

Scenarios are very often represented using informal or semi-formal

text. One advantage of text is to express a problem in a

comprehensible way [Karat 1995].

However, conclusions from industrial case studies of scenarios in

requirements engineering indicate that text representation is

insufficient and graphical representations are suggested for

representing scenarios [Weidenhaupt et al. 1998].

3.4.5 Bridging the gap between CSCW and requirements engineering

With the advent of groupware products, CSCW has evolved as a

research arena separated from traditional software systems

engineering but is now bridging the existing gap. Indicators for this

development are found in an increasing number of papers (e.g.

[Potts and Newstetter 1997] [Goguen 1994]) that both must evolve to

62

accommodate the strengths of each other to produce effective

methods of deriving requirements for computer systems that support

cooperative work. Nevertheless, there is still a gap between these

two disciplines.

The suggestion of this work is to bridge the gap by developing a

method as a means to integrate the research results found in CSCW

into requirements engineering. A scenario-based approach seems to

offer the potential as a basis for achieving this.

The issues in the previous sections provide bounds to the following

review of scenario-based approaches, and are addressed explicitly in

the subsequent evaluation section.

3.5 Scenario-based approaches for requirements engineering

The principal approaches of interest in this thesis are those that

• allow organisational work context to be expressed,

• provide support for the construction and evolution of scenarios,

and

• serve some degree to describe cooperative behaviour.

This section reviews the most prominent approaches whose

underlying representation is textually and graphically oriented.

63

Structured or semi-structured text using natural language is the

underlying representation of most scenario-based approaches in

requirements engineering. Studies such as [Rolland et al. 1998a] or

[Weidenhaupt et a!. 1998] have shown that in both research and

industry more than a dozen scenario-based approaches suggest the

use of natural language. Its popularity comes from the fact that

natural language provides a way to express problems in a relatively

easy to understand representation (e.g. [Kyng 1995]).

Jacobson [Jacobson 1995] has developed a use case approach that

is essentially a narrative informal description of use, responsibilities

and services within the object-oriented area and aims to support the

capture of system requirements. Use cases are expressed in entity

types, like customer or supplier. In his context, a scenario is a use

case instance with concrete actor names, event parameters, states,

and conditions.

Use cases are centred around behavioural requirements.

Jacobson's approach allows only the interaction between the system

and its environment to be covered. Organisational information (such

as goals or non-functional requirements (e.g. performance)) or

system internal issues that may not be observed by the user are

excluded from the description.

The use case approach of Jacobson provides only modest

methodological guidelines for constructing scenarios in the form of

sequences of tasks to be carried out: find actors, find use cases,

prioritise use cases, describe use cases, select metrics, review.

64

Methodological rules for situations, alternative ways of working, etc.,

are not taken into account within the use case approach.

Some researchers have made proposals to extend the use case

approach. Cockburn [Cockburn 1997] suggests the concept of 'goal'

as an important element of use cases. Used as a structuring

mechanism for use cases, every interaction between an actor and

the system is connected to a goal assigned to either an actor or the

system (which is basically an actor, too). Interactions between an

actor and the system end when a goal is delivered or abandoned.

Therefore, a use case is discovered each time a goal is discovered.

Regnell's approach [Reg nell et al. 1995] [Reg nell 1999] is an

extension of the use case driven approach proposed by Jacobson

[Jacobson 1995]. However, the use case description uses a more

formal notation. Use case specifications are used to refine use case

descriptions. Descriptions use events, condition and problem

domain objects as the underlying concepts. Specifications use time,

atomic operations, and abstract interface objects as the underlying

concepts. Structured text and graphical representation are used to

describe use case descriptions and specifications. Regnell's

approach allows to describe both interactional scenarios (as in

Jacobson's approach) and internal system scenarios. Internal

system scenarios are captured at the level of atomic operations.

Rolland et al. [Rolland et al. 1998b] have proposed an approach

which allows the coupling of intentional and operational descriptions

in the form of goals and scenarios. Their aim is both the refinement

65

and the discovery of goals. The process is centred around the notion

of a 'requirement chunk', which is a pair of a goal and a scenario.

Requirement chunks are constructed through composition,

alternative, or refinement relationships. The composition relationship

links requirement chunks that are required defined a complete
I

requirements model. The alternative relationship characterises some

alternatives to reach the same goal. Refinement is used to describe

requirement chunks at different levels of abstraction and is therefore

used as a mechanism to hide details in order to focus on essential

aspects. In general, such relationships, which have formerly been

suggested in requirements engineering (see e.g. [Dardenne et al.

1993] and [Yu and Mylopoulos 1994]), aim to support the exploration

of alternatives and completeness and the refinement of

requirements. Scenarios are represented using semi-structured text

based on formal semantics clauses [Rolland and Achour 1998] .

Potts et al. [Potts et al. 1994] propose a requirements analysis

model called Inquiry Cycle which aims to support the documentation,

discussion and evolution of requirements. Scenarios are

represented in textual form following some tabular notations and are

expressed at the instance level referring to specific agent names or

events with concrete argument values. In situations where entities

such as agents of the same type interact, or when several entities of

one type interact with an entity of another type, it may be beneficial to

have entity instances to avoid confusion. Hence, the use of concrete

scenarios is intended to reduce ambiguities. In the example of Potts

et aI., the initiator, Esther, has scheduled a particular meeting that

requires that attendance of Annie (active), Kenji (important) and Colin

66

(ordinary). The meeting must be held next week, but Kenji and Colin

can attend only on days when Annie is out of town. The brief

example show that dealing with instances helps to understand why

no meeting is feasible.

The requirements engineering process within the Inquiry Cycle is

supported by a hypertext tool in which scenarios and requirements

are annotated with requirements discussions, rationales, and change

requests.

The Inquiry Cycle allows the requirements engineer to take into

account both internal system scenarios and system interactions.

However, two main criticisms can be levelled at the Inquiry Cycle:

• contextual scenarios are utterly excluded, and

• no support of how to construct scenarios in the Inquiry Cycle is

provided.

The problem for contextual scenarios rest with the use of goals, work

situations, etc. Kyng's [Kyng 1995] scenario activities are organised

in a five-step approach, each based on a specific type of scenarios

that captures organisational context. The approach includes

functional, non-functional and intentional aspects. Scenarios are

represented through informal text. Bardram [Bard ram 1998]

suggests a similar approach. He distinguishes four kinds of scenario

descriptions: organisational, person-oriented, object-oriented, and

setting-oriented. Both approaches are solely text-based.

67

3.6 Evaluation

Each of the above approaches has its strengths and weaknesses.

The following evaluation, which is essentially informal, is carried out

with regard to each of the issues given in Sections 3.2, 3.3, and 3.4,

concerning the nature of cooperative work and the use of scenarios

in requirements engineering. The final section concludes with a

summary of what can be learnt from these approaches.

3.6.1 Articulation work

The distinction between cooperative work and articulation work is

fundamental, because cooperating semi-autonomous actors have to

articulate their individual activities to accomplish an overall task. The

distinction should be made in scenario-based requirements

engineering approach.

Jacobson's approach expresses relationships between actors but

lacks expressiveness of how actors co-ordinate themselves in their

tasks. Regnell's use case descriptions describe the articulation work

done by one actor implicitly when modifying the work objects and

processes.

An action triggers an interaction with an another actor in the

approach of Cockburn. The interaction may allow achieving the

actor's goal by calling the responsibility of the regarding actor.

68

However, the approach does not make explicit the variety of

expressions necessary to articulate distributed activities.

Kyng and Bardram both emphasis the issue of cooperatively working

actors who need to co-ordinate their work and thus provide some

rudimentary descriptions about articulation work (what is done?

where and when is it done? who is doing it? why? and how is it

done?). However, they are not made explicit and therefore difficult to

distinguish from the actual cooperative work.

3.6.2 Articulation protocols

Articulation protocols arrange the articulation of activities among

cooperating actors through artefacts. The state of the protocol is

distinct from the state of the underlying work processes.

Bardram's work activity scenarios describe mechanisms of

interaction in the form of who is doing what, when and why,

distinguishing how it is done today (maybe without a computer

system) and how it may be done with some cooperative system.

3.6.3 Methodological support

Requirements elicitation methodological guidelines for the

construction and evolution of scenario descriptions are crucial,

because some instrument to control the level of granularity of

69

scenarios is essential. Cockburn [Cockburn 1997] does not suggest

methodological guidelines of how to associate goals with scenarios

or how to track goals. Regnell's [Regne" et al. 1995] approach lacks

methodological guidelines.

In contrast to step-by-step methods Roland et al. [Rolland et al.

1998b] suggest a non-linear method: it allows the process to start at

each goal discovered so far. A variety of guiding rules can be

applied at different levels of abstraction. The difficulty with this

approach is the degree of detail at each goal.

Kyng [Kyng 1995] provides a high-level process, but gives no

justification of the stepwise activities and the specific types of

scenarios.

3.6.4 Contextual description

Jacobson's approach [Jacobson 1995] covers only the interaction

between the system and its environment.

The approaches of Regne" [Regne" et al. 1995] and Potts et al.

[Potts et al. 1994] allow both the description of interactions between

the system and its environment, and internal system interactions.

Both Kyng and Bardram include in their scenarios organisational

work context.

70

3.6.5 Visual representation

Requirements modelling is usually done together with stakeholders.

Visual representations of scenarios are easier to understand than

purely textual representations. Jacobson uses a very simple

graphical representation beside a textual one to describe

relationships between actors. Regnell uses some sort of flow

diagram expressing user and system actions. Both approaches do

not allow goals etc. to be expressed.

The other approaches mentioned in section 3.5 use textual

representation only.

3.6.6 Summary

As a result of the above evaluation, it can be concluded that three of

the key features to be provided by such a method for business

workflow systems supporting cooperative business processes are:

• the distinction between articulation work and cooperative work

(Chapters 3.3 and 3.6.1),

• an ability to express articulation protocols for the cooperative

work process (Chapter 3.3 and 3.6.2), and

• a visual-based representation to provide smooth understanding

for communication and discussion with stakeholders (Chapter

3.4.4 and 3.6.5).

71

Visual representations have been investigated in the area of

describing distributed processes for telecommunication systems with

Use Case Maps [8uhr and Casselman 1995] [8uhr 1998]. These

techniques seem to have potential to address issues that have not

adequately addressed by current work.

3.7 Remainder of the thesis

In this chapter, scenario-based methods are reviewed and evaluated

in Sections 3.5 and 3.6.

Chapter 4 presents a derivation modelling method, which allows

modelling and analysing requirements for business workflow

systems. The method provides a means of both visualising the

behaviour of actors and defining how cooperative behaviour is

achieved.

Chapter 5 presents the application of the method defined in Chapter

4 to a real-world case study example of complaint management in a

bank. The business workflow model, the actor model, the

cooperation model, and the articulation model of the example are

systematically explored, using the method.

Chapter 6 describes heuristics and guidelines to support the

requirements engineering practitioner to use the derivation modelling

method.

72

Chapter 7 presents the evaluation of this work and Chapter 8

summaries this work.

73

This chapter presents a scenario-based derivation modelling method,

which allows modelling and analysing requirements for business

workflow systems. The method provides a means of both visualising

the behaviour of actors and defining how cooperative behaviour is

achieved. The first section describes and explores the problem

context and purpose of this approach. Further sections describe its

types of models. A standard requirements engineering example,

scheduling a meeting, is used to exemplify the approach.

4.1 Introduction

This chapter is mainly devoted to the provision of concepts within a

method for modelling, analysing and communicating requirements for

the design of business workflow systems. A visual scenario-based

technique is used to give a bird's eye view of the system as a whole

74

and to provide a starting point for developing specifications to satisfy

requirements.

The main novel aspect of this work is that it encourages a scenario­

based derivation modelling approach in which requirement models

are developed through a series of transformations, in which humans

can manipulate models in order to derive other models. The further

novel aspect is that an articulation model is explicitly derived in form

of a requirements model, so that stakeholders can understand how

cooperative work can be achieved through the system to be

developed.

The approach starts with a business workflow modelling phase. The

goal of this phase, apart from modelling the actors and their

relationships, is to produce models that capture the high-level

workflow structure and behaviour. Further modelling provides an

actor model, a cooperation model, and an articulation model. The

goal is to have a clear understanding of the behaviours, the actors

that cooperate, and their dependencies, as well as the further

activities to coordinate their interdependent activities.

4.1.1 Problem context

The past ten years have seen the application of sociology (e.g.

ethnography) become increasingly more prevalent in both of the

research areas, requirements engineering and CSCW. A variety of

studies have been performed in diverse domains, including

75

underground control rooms [Heath and Luff 1992], air traffic control

[Hughes et al. 1992]. and hospital work [Symon et al. 1996]

[Bard ram 1997]. These studies have uncovered delicate facets of

the social character of cooperative work that are central to the

successful functioning, although these facets seem to be so trivial

that traditional methods of requirements engineering may fail to

notice them. However, sociological techniques, such as

ethnography, are limited in an industrial environment, because they

are time-consuming, produce textual descriptions, and lack a

methodical approach.

This work represents an approach to integrate some of the important

results on articulation work in the CSCW research area within the

field of requirements engineering. In particular, the method draws on

results from the sociologists, Anselm Strauss [Strauss 1986], Elihu

Gerson and Susan Leigh Star [Gerson and Star 1986], and Kjeld

Schmidt [Schmidt 1994].

To understand the nature and character of the development of

business workflow system, the first thing to do is to look at the

business workflow system context. In the words of Jackson [Jackson

1997], the context is made up of those parts of the world that affect

the system and are affected by it; the parts of the world that you

would eventually look at to judge whether the system is fulfilling its

function and serving its purpose successfully.

Business workflow systems can be found in many areas of

administration and business with a range of different brands and

76

purposes, though in which the pivotal function and purpose of the

system is to support the work of cooperating actors within an

organisation or between an organisation with the environment, such

as suppliers, customers, etc. Recently, business workflow systems

have been discovered as a platform for electronic commerce

applications [Muth et al. 1998].

4.1.2 Purpose

This work assumes that requirements engineering for different

systems calls for different methods. The characteristics and scope of

a method must be adapted to the characteristics and scope of its

context, of the functions it serves, and the problems it solves. The

development of a method that is suitable for the development of

business workflow systems requires an understanding and an

identification of the nature of cooperative work. It further needs

understanding of how business workflow systems are used in such

situations. The main characteristics have been identified in Chapters

2 and 3.

This method aims primarily to improve modelling, analysing, and

communicating user requirements among stakeholders. The

practicality of the approach was confirmed by the application of the

method to a real-world case study (Chapter 5).

77

4.1.3 Overview of the method

Four types of models are used within this approach during the

requirements engineering process (Figure 1):

• The Business workflow model identifies actors and their

behaviour. It gives a high-level view of the actors and workflows,

and provides a starting point for deriving the details of the other

models. It is generated by tracing workflow scenarios that

describe tasks, actors, and their behaviour along the way.

• The Actor model describes the behavioural structure of the actors

discovered in the business workflow model. The actor model is

derived from the high-level workflow model and is described in

terms of their goals and tasks.

• The Cooperation model describes actor relationships in terms of

cooperation dependencies.

• The Articulation model describes what articulation protocols need

to exist for actors to cooperate with each other using a business

workflow system. The articulation model is derived from the actor

model and the cooperation model. It defines what articulation

protocols need to exist to fulfil the dependencies identified in the

cooperation model.

78

Business
Workflow Actor Model

Model

Cooperation Articulation
Model Model

Legend:
-... derives

Figure 1: Produced models of this approach

The above four models satisfy the need for modelling concepts with

cooperation properties. The use of derivation rules supports the

integration to each other.

4.2 Business workflow model

The Business workflow model identifies actors and their behaviour. It

gives a view of the actors and workflows, and provides a starting

point for deriving the details of the other models. It is generated by

tracing workflow scenarios that describe tasks, actors, and their

behaviour along the way.

79

4.2.1 Modelling workflow behaviour

The aim of business workflow model is the modelling of requirements

that leads to a high-level view of actors and their behaviour in a first

step. One of the main goals is the need to describe system

boundaries. These boundaries define, at a high-level, where the final

delivered system will fit into the current operational environment.

Identifying a system's boundaries affects all subsequent modelling

efforts.

The result of the requirements modelling phase is

• the definition of operational aspects of the model, such as tasks

of actors, and system changes caused by the performance of

some tasks, and

• the macroscopic behaviour at the level of cooperating actors

achieving some specific purpose supported by a system.

4.2.2 Use Case Maps

Use Case Maps (UCMs) [8uhr and Casselman 1995] [8uhr 1998] are

precise structural entities that enable the description, in a high-level

way, how the organisational structure and the emergent behaviour

are intertwined. UCMs provide a notation that helps humans to

visualise, think about and explain the big picture in terms of causal

sequences in form of paths. Causal sequences are called scenarios.

80

In general, UCMs may have many paths. However, for simplicity

reasons, the example in Figure 2 shows only one path. The causality

expressed by the paths is understood by humans due to the visual

nature of UCMs.

a) Example of a UCM

b) UCM with a stub

Figure 2: Examples of UCMs

A filled circle indicates a start point of a scenario path, the point

where stimuli occur causing an activity to start progressing along the

path. A bar indicates an end point, the point where the effect of

stimuli is felt. Paths trace causal sequences between start and end

points. The causal sequences connect responsibilities, indicated by

name points along paths (Figure 2a). Paths are superimposed on

boxes representing operational components (e.g. C1, C2, and C3), to

indicate where components participate in the causal sequences. A

component may be a human or system actor. Individual paths may

81

cross many components and components may have many paths

crossing them.

The basic assumption is that stimulus-response behaviour can be

represented in a simple way with paths. This is a very common

characteristic of business workflow situations which is also of

concern in this thesis. The result is a path-centric view rather than a

conventional actor-centric (i.e. component-centric) view.

UCMs may be decomposed using a generalisation of responsibilities

called stubs (e.g. S in Figure 2 b). Stubs may be positioned along

paths like responsibilities but are more general than responsibilities

in two ways:

• they identify the existence of sub-UCMs, and

• they may span multiple paths.

Stubs enable to draw UCMs that give a high-level overview of the

general trend of paths, while leaving details that might obscure the

big picture to sub-UCMs shown in separate diagrams. A plug-in may

involve additional components not shown in the main UCM.

More features of UCM are described in the Appendix B.

UCMs are used to model the business workflow activities for the

following reasons. They are

82

• able to simply and successfully depict the model ·of complex

systems, and

• provide a powerful visual notation for review and detailed critique

of the model.

4.2.3 Deriving the business workflow model with scenarios

This work uses UCMs in a scenario-driven approach for the

description of business workflow system requirements. It is intended

to bridge the gap between "early" informal requirements and a first

high-level design and thus to improve the maturity of the

requirements engineering process.

The business workflow model can be derived by tracing scenarios

describing functional behaviour as paths. This leads to identifying

actors and responsibilities (responsibilities can be considered as

tasks performed by actors), and stubs along the way. Generally, one

starts with some scenarios and some knowledge of the actors

required realising them. However, there is no requirement that all

actors or all scenarios are known beforehand. One may start from

very general ideas about both scenarios and actors. For example,

UCMs may be used to elicit actors to realise paths that represent

scenarios, or they elicit new paths that traverse known actors.

The intention of this scenario-driven strategy is to produce a first

business workflow model. It is aimed to define a set of scenarios as

83

complete and consistent as possible. The goal is to produce

aggregated, closely related, scenarios ("scenario clusters") instead of

individual and sequential scenarios ("traces"). This provides

alternative outputs to the same input and one valid and several

exceptional scenarios. Further, the composition of multiple scenarios

into one is simplified by the visual nature of UCMs. However, this

work does not try to manage all aggregated scenarios together to

synthesise a global model.

4.2.4 Derivation rules

The steps involved in the business workflow modelling phase can be

summarised as follows:

• identify scenarios and major components involved,

• draw paths that connect the identified components,

• flush out the scenarios by identifying more components and their

roles,

• identify precondition and postconditions for each scenario,

• identify responsibilities and constraints for each component in a

scenario, and

• identify responsibilities that can be achieved by different sub­

scenarios and replace them with stubs.

84

The following section provides a case study example of how UCMs

can used of workflow modelling for business workflow systems.

4.2.5 Example: Scheduling a meeting

This section gives an example of a business workflow model with the

use of UCMs. The example is based on the meeting scheduler

problem of Lamsweerde et al. [Lamsweerde et al. 1992] and Potts et

al. [Potts et a/. 1994]. The meeting scheduler problem can be seen

as a typical business workflow problem and has been treated as a

research benchmark tool in requirements engineering research

[Feather et al. 1997] in recent years.

A meeting scheduler system supports people to schedule rooms and

equipment for meetings. A meeting is requested by an initiator and it

may have two or more participants. The initiator proposes some time

constraints for the meeting, and the potential attendees respond with

their available and preferred times, location and/or equipment

requirements.

This section does not intend to provide a full specification of the

meeting scheduler system requirements but focuses to demonstrate

some of the important features to produce a business workflow

model.

85

Figure 3 shows a UCM for a basic scenario of scheduling a meeting.

The precondition of scheduling a meeting is that an initiator wants to

schedule a meeting.

Initiate
Meeting a

Knows
participants

Reponsibilities and stubs:
a. Define preference and exclusion sets
8. Process sets, check participants list
C. Process sets
d. Inform on date
e. Direct attention on status

Know
d date

Precondition:
Meeting initiator invites for a meeting

Postconditions:
Initiator informed on who attends
Participants know meeting date

Figure 3: High-level workflow model of scheduling a meeting

The scenario shows two actors, the meeting initiator at the left and

the stack that describes one or more instances of participants at the

right. However, the initiator and the participants are two distinct

roles, but the initiator may also be a participant of the meeting. The

two roles are separated to make the high-level workflow easier to

understand.

The scenario path begins with responsibility a, where the initiator

defines preference and exclusion sets for the meeting to be

scheduled. After the definition of the preference and exclusion sets,

the path leads to stub B, which processes the defined sets and also

checks the list of participants for the meeting. Stub B has two

outgoing ports, band c. Port b is followed when the participant exists

86

and can be invited for the meeting. Port c is followed in case the

participant does not exist and the meeting initiator is informed about

this (responsibility e).

In the case each of the invited participants exist (port b is followed),

the path leads to stub C, which processes the sets to each of the

invited participants. Stub C has three outgoing ports, b, C, and d.

Port b followed only if the all the participants accept the proposed

date. Port c is followed to inform the meeting initiator about

scheduling status. The scheduling status informs the meeting

initiator if the invited participants can attend the meeting, if they

accepted or refused the invitation. An example of situations when a

participant refuses the invitation is when the participant has already

scheduled another meeting. Port d is the means by which a

participant and the meeting initiator negotiate on the preference or

exclusion sets. If the negotiation between the meeting initiator and

the participants find an acceptable date, the path leads to

responsibility d, which means all participants are informed on the

meeting date. The postcondition of this scenario is that the

participants know the meeting date.

Figure 4 illustrates two plug-ins for the decomposition of stubs. In

these plug-ins, the points from which the main path continues are

labelled.

87

r:;T
Initiator plug-in Participant plug-in "illilr

iiii:i.

dlllt'----__

list of
send

a __ --~--~--------tib

Clllllt-----
c 1IIIt--~ __ ...

Figure 4: Plug-ins for scheduling a meeting

Stub B can be decomposed to the following: The path begins by

checking the participants list. If the participant is in the list, the

request is refused. This is illustrated by the fork in the path that

follows the check responsibility. The simple fork in the path

immediately after the check responsibility is called an or-fork, and

indicates alternative scenario paths. Otherwise, the meeting request

is sent to the participants.

Plug-in for stub C decomposes behaviour into the following: The

plug-in starts with an or-fork. If the participant cannot accept the

invitation for a particular reason, the path labelled withdraw is

followed and the initiator is informed that the participant has

withdrawn from the meeting. Otherwise, the path is forked into three

concurrent paths. The fork, with the bar across it, is called an and­

fork, and indicates that the scenario proceeds concurrently along

88

three paths. One fork allows the participants to know the proposed

preference and exclusion sets of the meeting. The second

negotiates with the meeting initiator in case of conflicts. The third

informs the initiator on the status of the participants.

4.3 Actor model

The Actor model describes the actors and their behavioural structure

discovered in the business workflow model. The actor model is

derived from the business workflow model and is described in terms

of their goals and tasks.

In the following sections, the derivation mapping and rules are

described.

4.3.1 Mapping

The mapping from UCMs to actor models elements is as follows (see

Table 1):

USE CASE MAPS ACTOR MODEL ELEMENTS

Path segments that traverse an actor Goal column

Responsibilities Actor task

Stubs Set of tasks

Preconditions Preconditions

Postconditions Postconditions

Path segment connecting two actors Interaction
. .

Table 1: DerivatIon mappmg UCM to Actor model elements

89

Path segments that traverse an actor represent goals, static stubs

represent sets of actor tasks, path preconditions and postconditions

help to form preconditions and postconditions. Responsibilities along

the path constitute the actor's tasks. In addition, the model captures,

if needed, the causality relationship in business workflows. This is

done by converting path segments connecting two actors in a UCM

to tasks in the actor model. Each of these tasks is basically

responsible for causing tasks for other actors to be started.

The actor model is represented in tabular form with five columns:

• The goal column lists goals an actor wants to achieve.

• The precondition column lists conditions that must hold in order

for goals or tasks to be performed.

• The postcondition column lists the effects of performing a

successful goal or task.

• The task column lists all the actor tasks, including subgoals that

are required to fulfil each goal. A goal may be decomposed into

subgoals, which provide detailed or alternate ways of achieving

that goal. These subgoals are shown in the task column as well

as in the goal column.

• The comment column contains a textual explanation.

If a path segment has responsibilities or more than one stub, then the

path segment should be mapped to a goal in the actor model.

90

UCMs allow different scenarios to share a common path segment.

Sometimes the only thing these scenarios have in common is the

responsibilities along the common path segment. A requirements

engineer must decide if a common path segment should be mapped

to one goal for all scenarios or to a goal for each scenario.

4.3.2 Derivation rules

The process of building the actor model from business workflow

models can be summarised as follows:

• Analyse each path segment that traverses an actor and associate

a goal with it and tasks with its responsibilities.

• For each path segment, identify preconditions and postconditions

and map them to preconditions and postconditions in the actor

model.

• Analyse path segments that connect actors and identify actor

tasks that are responsible for causing tasks for other actors.

Tables are used to describe an actor model, where for each actor

exactly one table is built.

91

4.3.3 Meeting scheduler example continued

This section continues the examples of scheduling a meeting from

Section 4.2.5. In order to derive the actor model, the different UCM

path segments that cross them need to be examined.

In the scenario in Figure 3, it is shown that there is one path segment

for the initiator and one for the participants that cross them. Each of

these segments is mapped to a goal and inserted into the actor

model, as shown in row 1 in Table 2 and in row 1 Table 3.

The preconditions and postconditions of each path segment are

inserted in the corresponding row. Stubs along paths are inserted as

tasks in the tasks column. Each of these stubs is mapped into tasks

in the actor model. Responsibilities for each plug-in are captured in

the task row.

The actor model for the meeting initiator is presented in Table 2.

GOAL PRE POST TASK COMMENT

Initiate Meeting Meeting Define Initiator in main
meeting initiation request preference and UCM and plug-

decided transferred to exclusion sets in
participant or Check list of
participant not participants
allowed

Send request

Refuse
participants

Inform on Status Initiator Direct attention Initiator in main
status changed informed on on status UCM

status
..

Table 2: Actor model for meetmg Initiator

The actor model for the meeting participant is presented in Table 3.

92

GOAL PRE POST TASK COMMENT
Process Meeting is Participant is Withdraw from Initiator in main
initiation initiated withdrawn or meeting UCM and plug-

negotiates or Negotiate about in
accepts the date
meeting
request Accept meeting

request

Inform on date Date decided Participant Inform on Initiator in main
informed and meeting date UCM
date is known

Table 3: Actor model for meeting participant

4.4 Cooperation model

The Cooperation model describes actor relationships in terms of

cooperation dependencies. It describes cooperation dependencies

between actors (either human or system). A dependency relates an

actor that provides a service to an actor that requires that service.

An example of dependencies are goals to be achieved and tasks to

be performed.

This work has identified five types of actor dependencies: goal, task,

resource, state, and interaction dependencies. The goal, task and

resource dependencies are similar to the dependencies described by

Eric Yu [Yu and Mylopoulos 1994] for capturing numerous kinds of

constraints and relationships that are frequently encountered in

business processes.

The following gives a description of these dependencies:

93

• Goal dependency indicates that an actor is dependent on another

actor to achieve a certain goal. However, the dependent actor

does not specify how the other actor should fulfil the goal.

• Task dependency indicates that an actor requires a specific task

to be performed.

• Resource dependency indicates that an actor is dependent on a

supplying actor to provide it with a specific resource.

• State dependency indicates that an actor is dependent on another

actor to direct attention to a particular state.

• Interaction dependency indicates that an interaction is required to

fulfil the dependency. The identification of these dependency

types helps in choosing the interaction.

Figure 5 illustrates the different symbols used in the cooperation

model. A dependency is shown in the cooperation model diagram as

an arrow going from a dependee (i.e. a supplier) to a dependent

actor. The figure illustrates the five types of graphical symbols used

to differentiate dependencies.

94

dependee -----i .. ~ dependent

Figure 5: Symbols used in cooperation model

4.4.1 Deriving the cooperation model

The cooperation model is derived from the path segments in the

business workflow model that connect two actors, i.e. where two

actors cooperate. Each connecting path segment generates a

dependency in the cooperation model. This is exemplified in the

meeting scheduling example in the following section.

4.4.2 Meeting scheduler example continued

Figure 6 continues the example of scheduling a meeting. The

dependencies are derived from the business workflow model in

Figure 3 where there are three paths that connect the actor initiator

95

and the actor participant. The middle path segment is determined to

be a resource dependency, because the participant is dependent on

the initiator to provide preference and exclusion sets for a potential

meeting. The upper path segment constitutes a state dependency

indicating a requirement for directing the status of the meeting to be

scheduled. The lower path segment indicates an interaction

dependency, because the initiator is dependent on the participant to

be informed on the most appropriate meeting dates.

Initiator
Preference and

1--------1 exclusion sets ,-----11.1

Figure 6: Cooperation model for scheduling a meeting

4.5 Articulation model

The purpose of the Articulation model is to identify what protocols

need to exist for actors to cooperate with each other. The articulation

96

model is derived from the actor model and the cooperation model.

The model is described in a tabular format (a table for each actor).

4.5.1 Articulation work

The notion of articulation work is a result of extensive studies in

clinical work mainly carried out by the sociologists Anselm Strauss

[Strauss 1986] and Elihu Gerson and Susan Leigh Star [Gerson and

Star 1986]. Articulation work describes the number of secondary

activities of coordinating and integrating cooperative structure and

work processes. In other words, cooperating actors have to

articulate (Le. to divide, allocate, co-ordinate, schedule, mesh,

interrelate, etc.) their individual activities: Who is doing what, where,

when, how, etc.? With these significant issues, articulation work has

recently been adapted as a foundation in CSCW research in

particular by Kjeld Schmidt and Carla Simone [Schmidt and Simone

1996] and Geraldine Fitzpatrick [Fitzpatrick 1998] for the

development of CSCW toolkits such as wOrlds [Fitzpatrick et al.

1996]. The concept of articulation work is described in Chapter 3.3.

4.5.2 Articulation protocols

Based on the notions of articulation work, this work introduces an

articulation model into requirements engineering to identify what

actors (human or software system) need to articulate with each other

in order to achieve some goal.

97

Articulation protocols provide cooperating actors the context for their

individual tasks and facilitate the group progress to achieve the work

process goal. These articulation protocols may include monitoring of

other activities, directing attention to other actors, assigning tasks, or

handing over ownership.

The articulation model is derived from the actor model and the

cooperation model.

When actors cooperate with each other in a particular business work

situation, they articulate themselves. The identification of the

relationship type helps in choosing the right articulation protocol.

Each type of relationship has a set of predefined articulation

protocols associated with it:

• Goal dependency: A goal dependency has an Achieve and a

Maintain protocol type. For example, the Achieve protocol takes

a goal name or a condition to be achieved as one of its

parameters.

• Task dependency: A task dependency has a Perform, a

Disapprove, an Accomplish, an Order, and a Reject protocol. The

protocol parameters specify what task to perform.

• Resource dependency: A resource dependency is associated

with a Provide, a Reserve, an Allocate, an Obtain, an a Locate

protocol. The resource is provided when an actor makes a

statement. For example, a provide protocol may contain entities

of a complaint such as address.

98

• State dependency: A state dependency is associated with a

Monitor or Direct attention protocol. The protocol parameters

specify what state to monitor.

• Interaction dependency: An interaction dependency is associated

with an Inform or a Request protocol. The protocol parameters

specify what interaction to use.

The articulation protocols are summarised in Table 4.

ACTOR PROTOCOL TYPE COMMENT
RELATIONSHIP

GOAL dependency Achieve Achieve a goal

Maintain Maintain a goal

TASK dependency Perform Perform a task

Disapprove Disapprove a task

Accomplish Accomplish a task

Order Order to do a task

Reject Reject to carry out a task

Accept Accept a task

RESOURCE Provide Supplier provides resource to
dependency dependent (Information resources

(such as documents or files), material,
technical. infrastructure)

Reserve Reserve a reserve

Allocate, locate Allocate a resource

Obtain/block access Obtain access of a resource

Locate Locate a resource

STATE dependency Monitor Monitor state

Direct attention Direct attention to a particular state

INTERACTION Inform Individual inform interaction «direct
dependency attention or hand-over)

Request Individual request interaction (assign a
task)

Table 4: Articulation protocols for the different relationships

The list of articulation protocols types is by no means a

comprehensive one. New protocols may be added with different

relations as needed.

99

4.5.3 Meeting scheduler example continued

In the cooperation model, the cooperation dependency between the

initiator and the participants is identified as a resource dependency.

A resource dependency has five types of articulation protocols

associated with it. The tasks captured in the actor model, in

conjunction with the cooperation dependency identification, help to

construct the articulation protocol in Table 5.

PROTOCOL TYPE MEDIUM DATA COMMENT
OBJECT

Provide(preference system(send Name, date initiate meeting
and exclusion sets) email)

Table 5: Articulation model for scheduling a meetmg

Here, only an example of discovering the articulation protocol for the

resource dependency is shown. Articulation protocols for other

dependencies can be discovered in the same way.

The one line of the articulation model shows what is being sent,

defining the medium and data objects.

4.6 Summary

This chapter presents a derivation modelling method that allows the

modelling, analysing and communicating of requirements for

business workflow systems. It provides a means of both visual ising

the behaviour of actors and defining how cooperative behaviour can

be achieved.

100

The method is split into four main models, which are required to

analyse and model requirements for business workflow systems:

• The Business workflow model identifies actors and their

behaviour.

• The Actor model describes the actors behavioural structure of

actors discovered in the business workflow model.

• The Cooperation model describes actor relationships in terms of

cooperation interdependencies.

• The Articulation model describes what articulation protocols need

to exist for actors to cooperate with each other using a software

system.

The novel aspect of this work can be stated as follows:

• It presents a scenario-based derivation modelling approach in

which models are transformed through a series of modelling

aspects involving coordination and cooperation which are

addressed by using what are effectively extensions of current

requirements engineering methods.

• It supports clear and structured views of cooperation properties,

and allows the derivation of articulation protocols from business

workflow models in a scenario-driven manner. This allows

requirements engineering to define how the expectations of the

cooperative situation are to be fulfilled by the system to be built.

These novel aspects attribute the statement of requirements

engineering for business workflow system that reflects the richness

of these systems and also acts as a feasible starting point for

development.

The scheduling of a meeting example has been used to illustrate the

application of the approach.

• The approach integrates some of the important results from

sociological work in the CSCW research area with the field of

requirements engineering. In particular, the method draws on

results from the sociologists Anselm Strauss [Strauss 1986], and

Elihu Gerson and Susan Leigh Star [Gerson and Star 1986] .

Chapter 5 presents a real-world case study in which this method is

applied to.

102

This chapter presents the application of the scenario-based

derivation modelling method defined in Chapter 4 to a real-world

case study example of complaint management in a bank. As a

result, the derivation of articulation protocols from business workflow

models define the expectations of the cooperative situation can be

fulfilled by the system. Various subtleties were found during the case

study, which suggest refinements to the method. The refined method

is presented at the end of this chapter.

5.1 Introduction

One of the motivations for the method presented in Chapter 4 is the

ability to deal with business workflow situations: to support humans in

expressing and reasoning about cooperative behaviour, in search for

an appropriate set of articulation protocols to define how the

103

expectations of the cooperative situation can be fulfilled by the

system to be developed.

The method describes guidelines in terms of rules supporting the

derivation modelling approach.

This chapter presents fragments of a real-world example. The

example, complaint management in a bank, is used in this chapter to

evaluate the method presented in the previous chapters. This

approach is based on the concept of "industry-as-Iaboratory" [Potts

1994] research. The case study of complaint management was

chosen to try out the proposed method in a real problem situation

and to ensure that the problem reflects enough reality in terms of size

and complexity.

Section 5.2 describes the case study approach and the method

applied.

Section 5.3 presents an informal description of the complaint

management problem.

Sections 5.3.1,5.4.2,5.4.3 and 5.4.4 give the samples of the derived

models using the complaint management example. Section 5.4.5

presents a candidate workflow system architecture for the complaint

management case based on the results of the derivation modelling

approach.

Section 5.5 describes several lessons learnt, which helped to refine

the derivation modelling approach presented in Section 5.6.

104

5.2 Case study approach

The approach taken for this case study is an iterative and

incremental one. This is the common approach in early-phase

requirements elicitation and modelling, since the knowledge for the

system to be built is distributed among many stakeholders and

nowhere recorded in a systematic written form.

However, the novel aspect of this work maps to the needs of

requirements engineering for business workflow systems as

described in Chapter 2.2. In particular, it encourages a derivation

modelling approach in which the various models properties support a

clear and structured view of the described concepts identified in

Chapter 3.

In the first step, the business workflow model is constructed, using

slightly modified Use Case Maps [8uhr 1998], which superimposes

causal paths for scenarios on a structural substrate of actors and

organisational entities. In this step, the model aims at defining

operational aspects (e.g. tasks of actors) and macroscopic behaviour

of cooperating actors with some specific purpose.

In the second step, the actor model is derived from the business

workflow model. It describes the behavioural structure of the actors

involved in the business workflow.

In the third step, the cooperation model describes the actor

dependencies. The dependencies are derived from the coordination

expressed in the business workflow model. Coordination is captured

105

in the model by path segments that connect two actors. In addition,

the analysis of tasks may lead to the discovery of cooperation

dependencies.

In the fourth step, the articulation model identifies what protocols are

needed in order for the actors to cooperate with each other for the

workflow. The articulation model is derived from the actor model and

the cooperation model. The content of articulation protocols is

determined by the goals that satisfy the expectations of the

cooperative situation.

The practicality of the approach is demonstrated in the following

sections by modelling and analysing the requirements for the

complaint management problem of a bank. However, the lessons

learnt are presented in Section 5.5.

The next section gives an informal description of the case study.

5.3 Complaint management in a bank

This section describes informally the current complaint management

situation. The current situation is described in order to discover what

is currently unsatisfactory, and dually what could be considered

satisfactory. The description of the current situation is called an

indicative description; and what the situation should be like is called

an optative description [Jackson and Zave 1995]. The indicative

business workflow model and the current system architecture are

106

described in the following. The optative business workflow model

and the derivation modelling are described in order to derive a

candidate business workflow system architecture based on

articulation protocols.

5.3.1 Indicative business workflow model

The bank in question currently has got some complaint management

in place. All complaints are considered as negative comments

expressed by customers with the purpose to improve the commented

issue.

The goals of the complaint management are to regain customer

satisfaction and to increase customer loyalty, and to recognise

weaknesses, which indicate to enhance processes.

Customers can express complaints through a variety of channels of

the bank. The customer can place complaints either orally (i.e. by

phone or personally) or written (e.g. letter, fax).

Figure 7 illustrates the current business workflow at the bank. The

business workflow model explains how the complaint management

workflow is carried out by actors. Interactions are not explicitly

shown to prevent unnecessary cluttering of the diagram. Interactions

are implicitly shown by the UCMs. In the model, the UCM scenario

paths show the activities performed for a specific scenario.

107

All complaints are handled via branches. The complaint

management workflow is hardly structured and predictive.

Customer Br nch

Mana er

Figure 7: Indicative business workflow for complaint
management

5.3.2 Indicative system architecture

The current system used to support complaint management is

illustrated in Figure 8. Based on a simple database system, only

actors and the supervisor are able the directly use the system. They

are able to submit and query complaints. In addition, supervisors are

able to generate reports.

108

C-Database

Figure 8: Indicative business workflow systems architecture

5.4 Optative complaint management model

The previous section gives a brief overview of the complaint

management situation in the bank. Due to increasing competition in

the market, the bank has felt the need to provide better services in

terms of handling customer complaints.

In the following sections, the derivation modelling method is applied

to derive articulation protocols from business workflow models, to

define how the new situation can be satisfied by a workflow system.

109

5.4.1 Business workflow model

In this section, the revised business workflow model is presented. It

explains how actors should do the business workflow in the future.

Several new basic principles for complaint management are essential

for the bank:

• customers can choose the complaint communication channel

(e.g. a branch or new Service Centre) and medium (e.g.

personally or letter),

• all complaints are registered,

• as many complaints as possible are closed during the first

contact,

• customers can be notified anytime about the status of their

complaints, and

• systematic analysis of complaints is done for future improvement.

Based on these principles, particular interest in this example is the

development and implementation of a complaint management

workflow system in the bank. The system should enable the

submission and processing of complaints as well as the ability to

support workflow processes in order to transfer complaints between

different organisational units. Employees of the bank register

complaints without considering the medium how customers express

110

complaints. People of the organisational units are able to view

complaint information from the system. Therefore, transparency of

complaints increases in terms of its processing.

In addition to the new system, a new complaint Service Centre is

introduced in the bank where customers are able to express

complaints. The aim is to process as many complaints as possible at

the Service Centre, most of them during the first contact, in order to

shorten processing times and to decrease the processing effort for

branches. Customers of the bank can contact the complaint Service

Centre by a variety of communication media.

In general, complaint management in the bank is divided into three

phases: entry, processing, and closure. During the placement of a

complaint, the question of responsibility within the bank is clarified.

Complaints are processed to the responsible agent and customers

receive confirmation. In the second phase, complaints are

processed. Solutions are developed and ideas about future

enhancements of similar problems are proposed. After that, the

customer is notified about the proposed problem solution and the

complaint is closed, which may include the initialisation of payments.

The bank allows several channels for complaints (such as branch,

service centre) and media (e.g. personal, telephone, e-mail, letter,

fax). Customers can choose the media for placing their complaints at

the bank. Confirmations of and solutions proposals for complaints

may be communicated through these media, too.

111

Through the introduction of the new Service Centre into the bank­

wide complaint management, branches forward complaints to the

Service Centre agent.

The workflow system should support the basic principles and the

phases described. Branches and Service Centre, which are involved

in the complaint management, will use the system in some respect.

Figure 9 presents the business workflow model for complaint

management as is defined for the future.

Figure 9: Optative business workflow model for complaint
management

5.4.2 Actor model

The actor model describes the behavioural structure of the actors

discovered in the business workflow model. Actors are described in

112

terms of their tasks. Initially, it was suggested in Chapter 4.3 to

describe be behaviour of actor in terms and goals. However, during

the case study it turned out that the distinction between goals and

tasks is a very difficult one to make, though the business workflow

model was easier to understand. It was decided to describe actors

only in terms of their tasks, preconditions, and postconditions.

The mapping from the business workflow model to actor model

elements has been done as follows: In order to derive the actor

models for the actors (customer, agent of branch, agent of Service

and supervisor of Service Centre) involved in the complaint

management workflow, the different UCM path segments that cross

them were examined. From the business workflow model (Figure 9),

each of the tasks identified is inserted into the actor model table.

The preconditions and postconditions are captured in the

corresponding row. The actor models are shown in Table 6

(Customer), Table 7 (Agent of service centre), Table 8 (Supervisor of

service centre), and Table 9 (Agent of branch). Preconditions and

postconditions are omitted partially and are only exemplified in

certain tasks.

TASK PRECONDITION POSTCONDITION COMMENT

Submit complaint Customer has Complaint
valid account no. expressed

Receive confirmation Complaint placed Customer notified

Receive rejection

Receive report

Query solution

Accept solution

Reject solution

Receive payment

Table 6: Actor model for customer

113

TASK PRECONDITION POSTCONDITION COMMENT

Place complaint

Check complaint

Clarify complaint

Propose solution

Pay compensation

Table 7: Actor model for agent of service centre

TASK PRECONDITION POSTCONDITION COMMENT

Clarify complaint

Receive escalation

Monitor complaint

Table 8: Actor model for supervisor of service centre

TASK PRECONDITION POSTCONDITION COMMENT

Place complaint Complaint
submitted

Complaint placed

Table 9: Actor model for agent of branch

5.4.3 Cooperation model

The cooperation model describes the actor relationships in the

complaint management workflow. The relationships are derived from

the cooperation and tasks expressed in the business workflow

model. Cooperation is captured in the business workflow model by

scenario path segments that connect two actors in the complaint

management workflow, as described in Chapter 4.4

114

The cooperation model relates an actor that provides a service to an

actor who requires that service in the complaint management

workflow. Figure 10 shows the cooperation model on the basis of the

business workflow model presented in Figure 9. Each scenarios

path segment in the Use Case Map that connects two actors

generated a dependency in the cooperation model. For example, the

dependencies between the actor Customer and the actors Agent

(Service Centre) and Agent (Branch) have each determined a goal

dependency called 'submit complaint'. The agents are dependent on

the customer to place a complaint at the bank, if the customer is not

satisfied with a particular circumstance.

Customer

Agent (SelVice
Centre)

Agent (Branch)

transfer
complaint

Supervisor (SelVice
Centre)

Figure 10: Cooperation model for complaint management

An interesting dependency can be found with the collaboration

dependency. A collaboration dependency, as for example in

'accept/reject solution', constitutes a loop indicating a requirements

for negotiation. The Agent (Service Centre) and the Customer may

115

need to collaborate and negotiate to determine a final and acceptable

resolution for the particular problem. This observation is in vein with

Schal's [Schal 1996] definition of collaboration, where collaboration

requires actors to work together to achieve a common goal, under

the condition that a contribution is needed by each participating

actor.

Collaboration dependencies can be considered as one of the difficult

situations within workflow management. Such dependencies cannot

be simply seen as one-way interaction, but as situations where

actors need to articulate through protocols. This is described in the

next section.

5.4.4 Articulation model

As describe in Chapter 4.5, the purpose of the articulation model is to

identify what protocols need to exist for actors to cooperate with each

other. The articulation model is derived from the actor model and the

cooperation model. The articulation model basically defines what

protocols need to exist to fulfil the dependencies identified in the

cooperation model. The content of such articulation protocols is

determined by tasks that satisfy the dependencies, which are

captured in the actor model.

During the derivation of the articulation model in the course of the

case study using the steps described in Chapter 4.5, various issues

were found that led to a refinement of the articulation model.

116

The revised approach for the articulation model consists of two steps.

First, a cooperative interaction model identifies the interactions

needed for the actors to cooperate with each other. Second, a

articulation protocol specifies the services provided to each other. It

defines the expectations of how actors can fulfil identified

cooperation dependencies.

Cooperative interactions are described in tabular form - a table for

each actor. The table has three columns: actor, receive, and do.

The actor column contains the actor that receives and does the

interaction. The receive column defines the interactions received by

the actor. The do column defines all possible responses to each

received interaction.

Table 10 shows the protocol types defined for the case study. The

collaboration dependency resulted into four protocol types: Propose,

Re-propose, Accept, and Reject. These four protocol types together

can be seen as a general collaboration mechanism between actors

to achieve a common goal.

COOPERATION PROTOCOL TYPE DESCRIPTION
RELATIONSHIP

GOAL dependency Achieve Achieve a goal

TASK dependency Perform Perform a task

RESOURCE Provide Supplier provides resource to
dependency dependent (Information resources

(such as documents or files), material,
technical, infrastructure)

Request Reserve a resource

COLLABORATION Propose Propose an issue
dependency Re-propose Re-propose the issue

Accept Accept proposal

Reject Reject proposal
. .

Table 10: Articulation protocol types for relationships In the
case study

117

For example, a collaboration dependency was identified for the

proposal of a problem solution to the customer. The agent proposes

a solution and the customer may respond. The agent may get from

the customer in return a modified solution (often some sort of

payment), or the customer accepts or rejects the solution completely.

If the agent receives a re-proposal, then the agent in return needs to

evaluate the proposal and get back a proposal again to the customer

(see Table 11).

ACTOR RECEIVE DO

Agent Propose solution

Customer Propose solution Accept or reject solution

Customer Re-propose solution

Agent Re-propose solution

Table 11: Cooperative interaction between customer and agent
(service centre)

One major result of the case showed that articulation protocols

should not only be considered as simple interactions that must occur

in order for actors to cooperate. Articulation protocols define some

sort of a contract that is established between actors in terms of

services provided to each other.

The purpose of articulation protocol is to define expectations of how

actors can fulfil cooperation dependencies as well as the tasks they

have defined by the actor model. Cooperative interactions are used

as guidelines for discovering those expectations.

An articulation protocol consists of four parts: actors, permitted

services, guaranteed services, and rules of service. The actors list

the actors involved in the articulation protocol. The permitted

118

services section specifies the services that actors can make available

for each other. The guaranteed services section specifies which

services an actor must provide or use.

It is simple to decide if a service is a permitted or a guaranteed

service. A service that is required by an actor becomes a

guaranteed service by the other actor. A service owned by an actor

belongs to the guaranteed service section if the actor permits or

requires the other actor to use that service. For example, the bank

provides to their customers an e-mail service as a guaranteed

service for submitting their complaints. For some reason, the bank

decides to not continue providing this service.

The rules of service section specifies quality and capacity of services

and information on their usage. Rules of services are either

mandatory or desirable. For example, a customer always needs to

provide a customer identification number when submitting a

complaint, otherwise the complaint cannot be place at the bank. It is

always desirable to provide the customer with precise information on

the status of the complaint placed.

In the following, the way of building an articulation protocol is

provided. The examination of the different cooperation

dependencies captured in the cooperation model and the decision

whether an articulation protocol is needed to capture the cooperation.

If an articulation protocol is needed, it needs to be decided what

permission, guarantees, and rules for the protocol have to be

captured in the protocol.

119

Table 12 illustrates an example of an articulation protocol. The

protocol is between the customer and the agent of the service centre.

In this protocol, the agent of the service centre guarantees the

customer to provide a solution proposal. The agent guarantees to

use a personal communication channel if the complaint was placed

personally (e.g. phone) or a written channel, respectively. The

customer has the permitted services to receive a solution proposal.

The rules of service clause states that if the customer cannot be

reached within 48 hours to propose a solution for the problem

personally, then the solution has to be provided to the customer in

written form.

CUSTOMER AGENT (SERVICE CENTRE)

Permitted services

Solution proposal

Report medium change

Guaranteed services

Provide: solution proposal

Use: personal channel if personal
submission

Use: written channel if written submission

Rules of service

Mandatory: report medium change: instead
of personal proposal, written solution
proposal if customer cannot be reached
personally within 48 hours

Table 12: Articulation protocol between customer and agent
(service centre)

5.4.5 Business workflow system architecture

The previous sections describe systematic derivation modelling

approach. The method captures effectively the complexity of

120

business workflow problems, actor structure, cooperation

dependencies, and articulation protocols. The practicality of the

approach was confirmed by the application of the method to a real­

world case study.

In this section, an architectural solution of the business workflow

system is presented (Figure 11). It is based on the results derived

from the derivation modelling approach, starting with the business

workflow model and deriving finally articulation protocols, which

provide detailed information of what a systems to be proposed needs

to provide. The system architecture is presented using Use Case

Maps. The business workflow system architecture is based on a 3-

tier architectural style in which the system is decomposed into three

major components: database, business functionality, and user

interface. The division reflects the principle of separation of concern:

a component should be responsible for one task only. Following this

principle minimises the impact of change of one component on other

ones. Furthermore, a 3-tier architectural style stands for

distributed ness and scalability, both of which are important quality

attributes in business workflow systems.

121

Figure 11: Optative business workflow system architecture

5.5 Lessons learnt

5.5.1

The above sections demonstrate that the method provided in

Chapter 4 can be used for modelling and analysing real-world

business workflow problems. The case study yielded various

lessons, which are described in the following.

Separation of tasks

It was found valuable in the case study to separate tasks in the

business workflow model to avoid cluttering in UCMs by expressing

them separately. Previously, when employing it at the meeting

scheduler example, no clear distinction was made. During this case

study, however, it was chosen to express these tasks as follows: all

122

tasks (those that express actors' tasks) where included separately

with rounded rectangles. For example, the tasks 'query solution' and

'accept/reject solution' may be seen as one task, i.e. providing a

solution to the customer. However, the distinction is a remarkable

one, since the initiation of the scenarios is on the different actors

involved. Thus, it proved to be a very valuable thing to do.

This separation of tasks from responsibilities helped to make the

business workflow model using UCMs more comprehensible and

more precise for deriving the actor and cooperation model. The

resulting business workflow model affords the ability to construct a

more comprehensible model, while facilitating the construction of

more complete and realistic derived models.

5.5.2 Collaboration dependencies

At times it was found beneficial to include a collaboration

dependency in the cooperation model. For example, the

dependency 'accept/reject solution' is a situation in which

collaboration between actors may occur. The dependencies were

refined in the sense that the collaboration dependency was

introduced by using a generic protocol type: Propose, Re-propose,

Accept, Reject. The inclusion of this collaboration dependency

ensured that such collaboration situations are explicitly considered in

the articulation protocols.

123

5.5.3 Distinction between cooperative interaction and articulation

protocols

According to Jackson, separating concerns is simply a matter of

structuring a complex topic as various more simple topics that can be

considered separately [Jackson 1995]. In this case study, it was

found that the original kinds of articulation protocols were not

sufficient to express how cooperation work can be achieved between

actors using a workflow system. It was clear that a better way to

distinguish between the cooperative interaction and the services the

needs to be provided must be identified. It was done during the

course of this case study by the following:

Cooperative interactions express interactions that must occur in

order to cooperate with each other. Depending on the dependency

type, protocols provide generic mechanisms for the interaction.

The articulation protocol is to define expectations of how actors can

fulfil cooperation dependencies as well as the tasks they have

defined by the actor model.

This distinction between the cooperative interaction and the

articulation protocol offers a clear separation of concerns for the

interaction that must occur and by the services it is achieved.

5.6 Refined derivation modelling method

This section presents the refined derivation modelling method.

124

Five types of models are used within this approach during the

requirements engineering process (Figure 12):

• The Business workflow model identifies actors and their

behaviour. It gives a high-level view of the actors and workfJows,

and provides a starting point for deriving the details of the other

models. It is generated by tracing workflow scenarios that

describe tasks, actors, and their behaviour along the way.

• The Actor model describes the behavioural structure of the actors

discovered in the business workflow model. The actor model is

derived from the high-level workflow model and is described in

terms of their goals and tasks.

• The Cooperation model describes actor relationships in terms of

cooperation dependencies.

• The Cooperative interaction model describes the interactions

needed for the actors to cooperate with each other.

• The Articulation model specifies the services provided to each

other. It defines the expectations of how actors can fulfil identified

cooperation dependencies. Identified cooperative interactions are

used as guidelines for discovering those expectations.

Articulation protocols consist of four parts: actors, permitted

services, guaranteed services, and rules of service.

125

Business
Workflow Actor Model

Model

Cooperation
Cooperative

Articulation
Model

Interaction
Model

Model

Legend:
---. derives

Figure 12: Refined derivation modelling method

5.7 Summary

The previous two chapters introduce a method, which was developed

for modelling and eliciting requirements for workflow business

systems. The method is based on a derivation modelling approach,

in which articulation protocols are derived from business workflow

models through defined steps to be carried out.

The case study presented in this chapter has been carried out by

working through real-world examples how the method can be used to

provide scenario-based support in requirements engineering. Some

lessons learnt were found during the case study, which led to the

refined derivation modelling method presented in Section 5.6.

126

This chapter describes heuristics for analysis and construction used

by requirements engineering practitioners applying the derivation

modelling method. These heuristics are a set of rules, which guide

the requirements engineering practitioner towards higher rate of

success for analysing the available information and for constructing

the models. They were derived from experiences and observations

in applying the method in both the initial meeting scheduler example

and the complaint management case study.

6.1 Introduction

The objective of this chapter is to describe some typical heuristics

used by requirements engineering practitioners applying the method

described in this thesis. In this thesis, heuristics are sets of rules,

which guide the requirements engineering practitioner towards a

higher rate of success. This method provides heuristics for the

127

identification of requirements and for construction for each of the

models. The heuristics identified are described around requirements

engineering for business workflow systems.

The lessons learnt in applying the meeting scheduler problem seNed

as the origin for the ideas to formulate this method. The heuristics of

this chapter were derived from these experiences and from

experiences and obseNations made during the real-world case of

complaint management, which was described in the previous

chapter.

Section 6.2 presents a set of questions for analysis to support

requirements engineers in applying the method. Since the utilisation

of the heuristics depends upon the particular model with which the

requirements engineer is involved at any given time, the sets of

heuristics (6.3, 6.4, 6.5, and 6.6) are presented according to the four

models described, with discussion of the application of the heuristics

to specific activities.

6.2 Types of questions for analysis

This work offers a set of recurring questions, which follow the inquiry

cycle approach [Potts et al. 1994] instantiated for requirements

analysis. They have been adjusted to comprehensively explore and

guide workflow situations in this work. This section discusses these

types of questions; subsequent sections in this chapter suggest

appropriate guidelines based upon the answers derived from the

128

questions asked. The types of questions are summarised below and

discussed throughout this chapter:

• What-is: This question requests specific information regarding

terminology, which is unclear to some stakeholder with no

knowledge of the application domain.

• Who-is: This question requests specific information of the actor

responsible for the given task or workflow.

• Why: This question requests reasons, which underlie work

activities. For example, "Why is this information routed?"

• What-kinds-of: This question requests further refinements on

some concepts. For example, "What kind of complaints should

be supported?"

• What-if: This question may be asked if requirements engineers

may try to explore a situation further in which an unexpected

action might occur. An example may be: "What happens if a

complaint cannot be solved at a branch?" These questions lead

to the consideration of other actor and workflows that would be

affected.

• How-to: This question requests some information how some

action is performed.

129

• When: This question requests timing constraints for a given

event. For example, "When is a customer complaint to be

escalated?"

• Relationship: This question asks how one actor is related to

another or how one task is related to another so that interaction

can be established. For example, requirements engineers may

consider each task and ask: "What tasks are prerequisites for this

task?", "What tasks must follow this task?", and "What actor

depends on this goal for completion of their task?"

These question types support requirements engineers in knowing

when and how to apply the heuristics by providing guidance as to

how much detail is needed before one can be reasonably confident

that the user requirements are fully elaborated.

The following sections distinguish between two kinds of heuristics:

• Heuristics for analysis (HA): this type of heuristic provides rules

and guidelines for identifying and analysing requirements of the

business problem at hand.

• Heuristics for construction (HC): this type of heuristic provides

rules and guidelines for constructing the various models defined

in the previous Chapter.

Both kinds of heuristics are numbered sequentially throughout this

chapter.

130

6.3 Heuristics for the business workflow model

This section presents heuristics for the business workflow model.

They are based around the identification of tasks, actors,

preconditions and postconditions, and constraints.

The elicitation and analysis is the process of exploring

documentation, from information about the organisation to system­

specific information, and discussions with stakeholders.

Scenario analysis heuristics support requirements engineers in

uncovering concrete situations and circumstances. This section

presents the heuristics to guide scenario analysis and construction.

(HA 1) An effective way to identify candidate scenarios for

construction is to ask: What are the circumstances under

which this workflow can occur? The identified scenarios are

elaborated by listing the activities that must occur should the

scenario take place.

(HA2) The scenarios which requirements engineers should pay

particular attention to are those which violate others.

(HC1) A scenario is represented as Use Case Map.

Example 1: Consider Figure 3 and Figure 4 for

illustration for a scenario and decomposition of the scenario.

131

In business workflow systems requirements, the identification of

tasks is one of the crucial issues. T asks may be identified before or

after the identification of actors.

(HA3) Tasks are named in a standardised subset of natural

language in which the first word is a verb that describes the

kind of task being named.

(HC2) Tasks can be modelled as responsibilities in UCM

terminology. A responsibility may consist of more than one

task.

(HC3) Stubs allow the hierarchical decomposition of complex

UCMs. Stubs enable to draw UCMs that give a high-level

overview of the general trend of paths, while leaving details

that might obscure the big picture to sub-UCMs shown in

separate UCM diagrams.

(HA4) Actions words that point out some state that is or can be

achieved once the task is completed are candidates for the

system. They are identified by asking: Does this behaviour

or task denote an action to be performed?

The task heuristics offer requirements engineers approaches to

identify tasks, based on the available information. The actor

heuristics allow requirements engineers to identify and analyse

actors. They are discussed in the next section.

132

Actor analysis heuristics support requirements engineers in

identifying and analysing actors who are responsible for particular

tasks. Every task has at least one responsible actor, be it a person,

organisation, or even a system. This section presents the heuristics

to guide actor identification and task allocation.

(HA5) At least one actor must be responsible for a task. If it is not

possible to allocate responsibility for a task, then it can be

assumed that the task lies beyond the scope of the proposed

system.

(HA6) Actors may be identified by considering each task and

asking: Who or what actor could be responsible for that task?

The answer to this question will be the name of the

responsible actor.

(HA 7) Actors may be a human, an organisation, or the system.

Example 2: In a complaint management system, the

task escalate complaint is the responsibility of the system.

Depending on the desired implementation, the actor may be

either the workflow system or a human actor.

(HC4) Actors are modelled as components in UCMs.

(HAB) Different actors may be responsible for the completion of a

task at different times.

133

(HAg) Multiple actors may be associated with one task.

(HC5) Multiple actors are represented by stack in UCMs. Stacks

imply that each actor is distinct but operationally identical

from the perspective of the traversed path.

Example 3: Consider Figure 9 of the complaint

management example. Service Centre agents are modelled

as stack, because they may be more than one agent at a

time.

The actor heuristics offer requirements engineers approaches to

identify and classify actors. The pre- and postcondition heuristics

allow requirements engineers to identify and analyse conditions.

They are discussed in the next section.

Pre- and postconditions place some constraint on the achievement of

a scenario or task. Pre- and postcondition heuristics support the

requirements engineer in identifying pre- and postconditions for

scenarios. These heuristics are presented in this section.

(HA 10) Each scenario has a precondition and one or more

postconditions.

(HA 11) Pre- and postconditions can be identified by considering

each scenario and asking: What condition is imposed on the

scenario?

134

(HA 12) Preconditions can be identified by searching for temporal

connectives (i.e. during, before, after, etc.). When a scenario

can be completed, then the precondition can be become

true.

Example 4: Chapter Figure 9 illustrates how the

identification of the temporal connective before led to the

identification of the precondition: complaint at branch can not

start, before a customer complains at a branch.

(HA 13) Postconditions can be identified by the required result of a

scenario.

Example 5: In the meeting scheduler example in Figure

3, this scenario has two postconditions. First, the initiator is

informed on whom attends the meeting, and second, the

participants know the meeting date.

6.4 Heuristics for the actor model

This section presents heuristics for the actor model. Heuristics for

the actor model allow the requirements engineer to derive the actor

model from the high-level workflow model. The heuristics in this

section support in mapping path segments from high-level workflow

models to goals in the actor model.

135

(HC6) Path segments that traverse an actor represent goals to be

achieved by an actor,

Example 6: Table 2 in Chapter 4,3.3 illustrates how the

path segments Initiate meeting and Inform on status in the

meeting scheduler example are represented as goals to be

achieved by the meeting initiator.

(HC?) Scenarios may share some common path segment.

(HC8) Stubs represent sets of tasks. If a path segment has

responsibilities or more than one stub, then the path segment

should be mapped to a goal in the actor model.

(HC9) Pre- and postconditions map to pre- and postconditions.

Preconditions must hold in order for goals or tasks to be

performed. Postconditions are the effects of performing a

successful goal or task.

Example 7: Consider for example Table 6 of Chapter 5

in the complaint management problem. The precondition

Complaint initiated and the postcondition Complaint

assessed are allocated to goal Problem evaluated.

(HC10) Responsibilities along a path constitute task,

136

6.5 Heuristics for the cooperation model

This section presents heuristics for the cooperation model.

Heuristics for the cooperation model allow the requirements engineer

to derive the cooperation model from the high-level workflow model.

(HA 14) The cooperation model identifies five types of actor

dependencies: goal, task, resource, state, and interaction

dependencies.

(He 11) Each path segment that connects two actors in the high-level

workflow model derives a dependency in the cooperation

model.

Example 8: Figure 6 in the scheduling a meeting

problem illustrates how the dependencies are derived from

the high-level workflow model.

The heuristics for the cooperation model offer requirements

engineers approaches to derive the dependencies of the cooperation

model, based on the high-level workflow model. The heuristics for

the articulation model allow requirements engineers to derive the

articulation model from the actor model and the cooperation model.

They are discussed in the next section.

137

6.6 Heuristics for the articulation model

This section presents heuristics for the articulation model. Heuristics

for the articulation model allow the requirements engineer to derive

the articulation model from the actor model and the cooperation

model.

(HA 15) Each type of actor relationship has a set of predefined

articulation protocols associated with it.

Example 9: Table 4 shows the protocols types for all

actor relationships.

(HC12) The articulation model is described in tabular form, using one

table for each actor.

(HC13) An articulation model consists of a set of articulation

protocols, which describe services provided to each other. It

defines the expectations of how actors can fulfil identified

cooperation dependencies. Identified cooperative

interactions are used as guidelines for discovering those

expectations. Articulation protocols consist of four parts:

actors, permitted services, guaranteed services, and rules of

service.

138

6.7 Summary

The chapter presents a set of heuristics for analysis and

construction, which support the requirements engineering practitioner

in applying an inquiry-based approach. The heuristics detailed in this

chapter are:

• Heuristics for the high-level workflow model

• Heuristics for the actor model

• Heuristics for the cooperation model

• Heuristics for the articulation model

The following chapter discusses the evaluation of this method.

139

This chapter presents the evaluation of this work. It describes the

principal ideas behind the method and indicates major problems

found while developing the method and justifying this approach. It

reiterates the properties that such a method should display; it then

evaluates the work by discussing its weaknesses and strengths with

regard to these properties. Finally, this chapter examines the

suitability of the visual scenario-based technique and discusses

experiences while applying the method to case studies.

7.1 Design rationale

This section discusses briefly the history of this research, focusing on

the most significant problems that were addressed before it reached

the final stage presented in Chapter 5.6.

140

7.1.1 History

The development of the method mainly benefited from being applied

to different problems of business workflow systems and regular

literature surveys.

Initially, the starting point of the research was to take a small number

of concepts that seemed promising for describing and understanding

business work context. The concepts provided a general way of

describing dependencies between actors and the various

mismatches that might exist. The concepts were applied to a case

study of collaborative authoring among scientists and engineers of a

multi-national chemical company [Strassl 1996].

Some concepts for 'intention' and 'behaviour' were subsequently

provided, implementing a distinction made most famous by Lucy

Suchman between 'plan' and 'action' [Suchman 1987]. The insight

here was that it is both possible and useful to relate these models of

dependencies to models of behavioural interaction between the

proposed system and the actors who are playing roles identified in

the intentional dependencies.

Building on the work on intention, simple graphical concepts for

modelling commitments and expectations between cooperating

actors were used [Strassl and Smith 1997] until the appearance of

Buhr's Use Case Maps [Buhr and Casselman 1995] [Buhr 1998],

which influenced the method and helped considerably in developing

it to its current form.

141

Later, the particular issue in cooperative settings - articulation work -

was addressed to account for work being done about work. The

fundamental distinction was originally introduced by the sociologist

Anselm Strauss [Strauss 1986] in order to account for the

observation that cooperating actors need to articulate their individual

activities by considering who is doing what, where, when, how, by

means of which, and under which constraints [Strassl and Smith

1998].

In summary, the method, as described in this thesis, is a result of

successive refinements and the effort to encapsulate cooperative

work aspects into this method.

This chapter explains the problems that were faced during the

development of the method. It discusses the decisions made and

explains why some solutions were rejected in favour of others. The

next section discusses the most significant problems that were to

solve, before it reached the stage presented in Chapter 5.6.

7.1.2 Major problems and their resolutions

This section discusses the most significant problems to be solved in

order to develop the method:

• Set of models: A significant decision was to define the set of

models to be used in the method. The first solution in the

collaborative authoring design study made use of an intentional

142

model and a dependency model. The dependencies between the

actors involved were described using concepts of commitment

and expectation. For example, a role may have a commitment to

do something for other roles or provide something for it. In the

collaborative authoring example, a coordinator commits to

defining the document structure, and to setting reasonable

deadlines for authors and reviewer to submit their contributions.

However, this did not sufficiently describe all aspects needed. It

was necessary to define further models, using aspects of

cooperative work - such as collaboration and articulation. In this

way, the richness of business workflow situations can be

adequately reflected.

• Articulation protocols: An articulation protocol serves to define

expectations of how actors can fulfil their cooperation

dependencies and so to achieve some task or goal. The first

solution was to define the protocol type, a medium by which the

task may be achieved, and the data objects used. However, it

was discovered that this solution is unsatisfactory, because it did

not provide enough information on what kind of services are

permitted or guaranteed between the cooperating actors, and so

problems may occur later in the development of the system. For

this reason, articulation protocols consists of permitted services,

guaranteed services, and rules for these services.

• Derivation modelling: After having decided on the various aspects

to be described in the models, a method was required to derive

articulation protocols from other models, allowing a requirements

143

engineer to define how cooperative business workflow situations

are to be fulfilled by a system. Given that the models were

represented either in graphical from (e.g. Use Case Maps for the

business workflow model) or in tabular from (e.g. for articulation

protocols), it turned out to be one of the difficult problems that

was to be solved. The introduction of derivation rules and the

application of the derivation modelling method to case studies

helped to provide pragmatic heuristics and guidelines that support

real-world requirements engineering practitioners.

• Role of scenarios: After having defined business workflows and

cooperative work models, it turned out to be of high value in

talking to stakeholders to be able to show alternatives and

exception handling situations. Initial graphical models for

commitments and expectations offered only limited help in

modelling scenarios, because it had been necessary to define the

use of scenario from scratch, which was not the focus of

research. The appearance of Use Case Maps influenced this

work, since they offered the possibilities of represent scenarios as

hereby to intertwine behaviour and structure. Soon the role of

scenarios expanded since they helped enormously in

understanding the expected dynamic behaviour of the system,

and in identifying articulation protocols between actors during the

requirements engineering phase.

• Cooperation dependencies: Initially, cooperation dependencies

between actors were described using concepts such as

commitments and exceptions that should satisfy behavioural

144

models of such situations. It came to light that this approach is

not sufficient. Instead, it was decided to use cooperation

dependencies similar to those introduced in Yu's Strategic

Dependency Model, which provides a variety of dependency

relationships among actors [Yu and Mylopoulos 1994] [Yu 1995].

However, these types of dependencies were not enough for our

purposes, as highlighted in the case studies. Dependency types

such as state and interaction were integrated into the cooperation

model. Finally, during the complaint management case the

cooperation dependencies were refined again, because the need

to express and reason about negotiation was found in numerous

situations. The collaboration dependency in the cooperation

model constitutes a generic mechanism for negotiation for

cooperating actors to achieve one common result, whereby a

contribution is needed by all parties involved.

7.1.3 Summary

The previous sections describe the progression in the ideas

developed in this work. Major problems found while developing this

method, justifying the approach, were presented. It discusses the

most significant problems that were to be solved in the development

of the derivation modelling method. These are:

• the decision on the appropriate set of models,

145

• the definition of the articulation protocol,

• the introduction of derivation rules and heuristics,

• the integration of scenario modelling techniques, and

• the definition of cooperation dependencies to express and to

reason about negotiation.

During this discussion, the temporary solutions adopted were

described along with the reasons that led to rejection. The final

method is presented in Chapter 5.6.

7.2 Assessment

The method presented in Chapter 5.6 is the final method of this work

while investigating the advantages of a scenario-based derivation

modelling approach to requirements engineering for business

workflow systems. Existing methods suffer from two fundamental

problems, as explored in Chapter 2:

• the lack of modelling concepts with cooperation aspects, and

• the lack of methodological guidelines.

146

A scenario-based derivation modelling method should exhibit a

number of properties. In subsequent sections, the following

properties are analysed and assessed:

• the ability to derive articulation protocols from business workflow

models through scenario-based derivation modelling,

• the ability to use articulation protocols as a starting point for

development, and

• the ability to use Use Case Maps as the visual modelling notation

for these purposes.

Finally, the main findings made are presented from observations

made during the application of this method to several case studies.

7.2.1 Scenario-based approach

Business workflow system implementations require deep

understanding of business and human cooperation. This work is

concerned with enhancing part of the requirements engineering

process for such systems.

Chapter 3 proposes that the use of a derivation modelling approach

that is based on a scenario modelling technique, such as Use Case

Maps, during the requirements engineering process can overcome

many deficiencies. As a matter of fact, Use Case Maps are good at

147

describing, in a high-level way, how the organisational structure and

the emergent behaviour of complex business workflow situations are

intertwined. Moreover, the notation is not a behavioural specification

technique in the ordinary sense, but a notation for helping humans to

visualise, think about, and explain the big picture. It represents

causal scenario paths as a set of lines threading through

components without the scenarios actually being specified in a too

detailed manner. The composition of scenario paths can be easily

described as visual behaviour structures. Since paths are

continuous and notational lightweight, many workflow paths may be

combined in a single map in a way that enables "the mind's eye" both

to see them together and to distinguish them.

This work considers scenarios as an engine for design [Mack 1995]

during requirements modelling for business workflow system to

stimulate, facilitate and document shared understanding between

stakeholders - its occurrences, assumptions, action opportunities

and risks.

7.2.2 Derivation modelling

It would be good to be able to reason formally about requirements of

a new business workflow system as soon as possible in the

development process. The advantage gained would be the ability to

show that a specification met the requirements and maybe use

prototyping to refine the requirements and to correct errors,

148

ambiguities and inconsistencies early. However, it is impossible to

develop an approach that formalises such a process.

In reality, the requirements engineering phase starts from a set of

highly informal requirements and may include the capture of the

requirements, involving extensive discussions with stakeholders of

the future system. Thus, an analysis method cannot provide a formal

process, as it is impossible in practice to expect stakeholders being

mathematicians, able to express their needs and goals by means of,

for example, a set of equations. The point of the 'formal' and the

'informal' is also well observed by Joseph Goguen [Goguen 1992]

[Goguen 1996].

Nevertheless, the derivation of articulation protocols from business

workflows reduces the distance between highly informal and

incomplete requirements models and more rigorous metho"ds for

designing systems by providing a method which reflects earlier the

richness of cooperative work properties as usual. Shortening this

distance is one of the main goals of this work, and a primary result of

the derivation modelling method. The final output provided by the

derivation modelling method is a set of articulation protocols which

can then be used as the starting point of a more formal design

process, as mentioned in Section 7.1.2.

In order to allow derivation, the method has the following

characteristics:

• It produces a set of articulation protocols, which includes

important properties that reflect cooperative work settings.

149

• It proposes methodological steps to be followed when

constructing the intermediate models and final models (the

business workflow model is based on Use Case Maps; the actor

model and the cooperation model can be produced from

information in the business workflow model; the articulation model

can be created by following the heuristics).

• It provides a development process, by offering a set of derivation

rules, heuristics, and mappings from the business workflow model

to articulation protocols.

Therefore, this work is not a rigorous or formal refinement or

transformation method (e.g. [Lamsweerde et al. 1995]). It is called a

derivation modelling method, as it is not formal, but includes a set of

notations together with a strategy to be followed and pragmatic

heuristics.

This work assumes that it has achieved an important goal: it provides

a means for constructing articulation protocols from visual and

scenario-based information. These articulation protocols can then be

used as a starting point for development.

7.2.3 Strengths and weaknesses of the derivation modelling method

This section describes the strengths and weaknesses of the method

developed in this research, taking as its criteria the following:

150

• the ability to derive articulation protocols from business workflow

models through scenario-based derivation modelling,

• the use of cooperation properties, such as cooperation and

articulation, and

• the ability to use Use Case Maps as the visual modelling notation

for these purposes

as set out in Chapters 2.3 and 3.6.5.

Derivation modelling

The first major strength of the derivation modelling method is that it

combines requirements engineering modelling techniques with

underlying modelling concepts of cooperation. The derivation

modelling method promotes cooperation properties in an area where

they are hardly used and, on the other hand, it adds clear and

structured views of appropriate set of cooperation concepts. The

articulation protocols resulting from the application of the derivation

modelling method to a business workflow problem acts as feasible

starting point for systems development trajectory where the

articulation protocols can be transformed into an requirements

specification and finally into a design specification.

The derivation modelling method builds on work already available for

scenario-driven modelling methods. By using a visual scenario-

151

based technique such as Use Case Maps, the derivation modelling

method produces models, which may also be used for validating the

requirements.

The derivation modelling method has some weaknesses, too. Some

of which can be avoided by changing parts of the method:

• For instance, the derivation modelling starts with the business

workflow model. This is not a weakness in itself, but favours

problems starting where actors and tasks in the business process

can be described initial/y. If not all information is available, it may

be difficult to produce an articulation protocol, as some situations

in the application to the complaint management case study

showed. Currently, this research proposes reverse derivation

rules in capturing the services to be provided described in the

articulation protocol and then use that information to construct the

business workflow model.

• The use of Use Case Maps may be considered to be a weakness

in the derivation modelling method in requirements engineering

for business workflow systems. However. the derivation

modelling method may easily be adapted to embrace other visual

scenario-driven techniques. This would be a starting point for

future investigation.

152

Importance of models used within the method

• Business workflow model: Use Case Maps are used in order to

build the business workflow model. These define actors and their

behaviour in a high-level way in terms of scenarios. Depending

on the information available, the construction can be started by

identifying candidate cooperating actors or organisational units or,

if the workflow tasks are clear, the construction may begin with

modelling the workflow scenario paths.

• Actor model: The actor model describes the actors' behavioural

structure based on the business workflow model in terms of their

tasks.

• Cooperation model: The cooperation model describes the actor

relationships in terms of their dependencies. It helps to reason

about the necessary services an actor provides to another actor

who requires those services. The different types of dependencies

describe how the cooperation dependencies between actors can

be achieved.

• Articulation model: The derivation modelling method offers

heuristics and derivation rules on how to build an articulation

model. An articulation model is a set of articulation protocols,

which defines the expectations of actors and how their

cooperation dependencies as well as their tasks in the actor

model can be fulfilled. These are described in terms of permitted

services, guaranteed services, and rules of services for each pair

of cooperating actors.

153

Other models that might have been used

The derivation modelling method presented in this work uses

business workflow models, actor models, cooperation models, and

articulation models. In addition to the four main models, it would

have been possible to use further models to describe workflow

properties, e.g.: a temporal scheduling model or an authorisation

model. The authorisation model is briefly outlined below.

The authorisation model would describe the organisation of actors in

terms of their authority status, i.e. it relates superior and subordinate

actors. The actors could be placed in the authorisation hierarchy

with the actor that has the highest authorisation at the top. Actors

would use their authorisation relationship to allocate permissions and

restrictions. The identification of the authorisation relationship says

how actors communicate with each other. For example, a

subordinate actor can not reject a request from a superior actor.

Since Use Case Maps, by definition, do not show interactions

between components, a requirements engineering practitioner must

identify if a path segment connecting two actors represents a direct

or indirect relationship. In case of a direct relationship, the two actors

coordinate their activities while in the case of indirect relationship,

there is another actor, who facilitates the coordination.

The rules under which an actor works may change depending on the

role she plays in an organisation. For example, a superior actor may

disallow call waiting for a subordinate actor when the subordinate

actor has the role of the help desk attendant. The identification of

154

roles and the actors that can fill them allows creating an authorisation

hierarchy that takes into consideration all the roles actors can play.

The authorisation hierarchy may have a number of fundamental

properties that are useful for modelling requirements for business

workflow systems. In particular, it

• describes the resolution of conflicts. In case of a conflict, an actor

may try, using the authorisation status, to resolve the conflict.

• describes the organisational mechanism for informing each other

about modification, creation, or removal of any kind of resources.

Assessing Use Case Maps

While assessing business workflow models produced by using Use

Case Maps in the derivation modelling method, three main questions

come to mind:

• Do business workflow models based on Use Case Maps reflect

the appropriate concepts needed?

• Does the derivation from business workflow model represented

by Use Case Maps to other models work?

• Are heuristics for business workflow models based Use Case

Maps comprehensible and repeatable by others?

155

Use Case Maps have a very rich set of constructs, which allow

expressing many different ideas. For example, scenarios are

represented as architectural entities that give a view of intertwined

behaviour (sets of paths) and structure (components). Scenarios are

not specified, only paths for scenarios are identified. This makes the

notation more useful than stand-alone scenario notations, such as

[Reg nell 1999]. Causality is shown directly, avoiding the need to

infer it from diagrams that express scenarios in terms of temporal

sequences along timelines, such as use cases of [Jacobson 1992].

The difficulties of understanding model descriptions and

specifications, in particular among stakeholders, are familiar.

However, Use Case Maps are of lightweight nature and notational

elements stand back from details to focus on high-level aspects.

They provide a more complete scenario picture than other

techniques, in the sense of being able to include more scenarios

without unreasonable effort. The notation provides visual patterns for

thinking and discussion about business workflow situations or

systems issues.

However, Use Case Maps are by no means a complete nota.tion for

all issues that arise in business workflows or cooperative work

situations. This is not the aim of Use Case Maps. Rather, the aim is

to get a high-level view of structure and behaviour, because this is so

difficult to achieve in practice. Use Case Maps supplement other

techniques that may give more detailed views. It has been recently

shown that Use Case Maps can be integrated into other software

engineering methodologies and design processes, such as the

156

Unified Modeling Language (UML) [OMG 1999] [Amyot and

Mussbacher 2001].

7.2.4 Suitability of Use Case Maps

In Chapter 3, the reasons that led to choosing Use Case Maps to

model business workflow situation were discussed. The

characteristics of Use Case Maps, which make it the obvious

candidate, are:

• UCMs are able to produce scenario-based models,

• UCM support tools are available,

• UCMs are executable and so prototyping can be used, and

• UCMs can be integrated into other software engineering

methodologies.

However, the work of Chapter 5 shows that Use Case Maps may not

be ideal. They have shortcomings that will be discussed now:

• The first criticism is that Use Case Maps do not directly support

cooperative work properties.

• Another criticism is that Use Case Maps, though visually

displayed, do not mean a lot to stakeholders without proper

documentation, which must at least include conventions and

157

content used. Documentation is a very important issue. Each

scenario must have a name and an indication of which route is

followed. Responsibilities, preconditions, postconditions can be

defined textual descriptions.

In general, however, Use Case Maps are a high-level visual

scenario-technique, which can stimulate thinking and discussion. It

is generally accepted within requirements engineering work that this

is a good thing in itself.

Even with its shortcomings, this research developed some

experience with Use Case Maps, found it to be a good choice within

the derivation modelling method to support the requirements

engineering for business workflow systems.

7.2.5 Method applied to case stUdies

While developing a new analysis method, it is wise to apply it to one

or more case studies. Otherwise, one cannot be sure that different

types of requirements can be dealt with appropriately within the new

approach.

For this work, it was important to apply the method to one minor case

study (i.e. the meeting scheduler problem) and one major case study

(i.e. complaint management in a bank). With the application to the

meeting scheduler problem, the method is validated conceptually.

The complaint management case study was chosen for this research

158

to validate and improve the method, since it represents a real-world

problem and not one, made up in a research laboratory. By applying

the method to one minor and one major case study, a variety of

aspects were identified, which improved the method substantially.

The application to one or more other case studies could have

identified further characteristics for further enhancement of the

method. However, it is believed that the application to other case

studies would not have resulted in further fundamental insights with

regard to the objectives set out for this work.

7.3 Summary

This chapter presents the principal ideas behind this work. Section

7.1 presents the evolution of the method, justifying the current

version. The derivation modelling method developed in this thesis is

a result of successive refinements and the effort to encapsulate

cooperative work aspects into this method:

• Concepts were provided that describe dependencies between

actors and the various mismatches that might exist.

• Concepts for intention and behaviour were incorporated.

• Graphical concepts for modelling commitment and expectations

between cooperating actors were used.

• Articulation was taken into account as a major concept for the

method.

159

The most significant problems to be solved in order to develop the

method to its current state were to:

• to define an appropriate set of model, which includes the

necessary aspects - workflow, cooperation, collaboration, and

articulation,

• to define articulation protocols as permitted or guaranteed

services and rules for these services,

• to define derivation modelling rules and appropriate heuristics and

guidelines,

• to define the use of scenarios in this method, and

• to define cooperation dependencies for cooperating actors.

Section 7.2 begins by discussing properties that a reqUirements

engineering method for modelling requirements for business

workflow systems should display:

• the ability to derive articUlation protocols from business workflow

models through scenario-based derivation modelling,

• the ability to use articUlation protocols as a starting point for

development, and

• the ability to use Use Case Maps as the visual modelling notation

for these purposes.

160

Then, it evaluates the work, by discussing its weaknesses and

strengths of derivation modelling, the importance of the models used

within the method, and the choice in using Use Case Maps for visual

representation for business workflow models ..

161

This chapter summarises the work of this thesis, revisits the solution

as proposed in the first chapter, and suggests possibilities for future

work.

8.1 Thesis summary

The work in this thesis presents a novel contribution in the area of

requirements engineering for business workflow systems by

developing and evaluating a scenario-based derivation modelling

method. It is motivated by the fact that workflow implementations

require a deep understanding of business and human cooperation.

Previous approaches have addressed this need for understanding,

but to a large extent in a descriptive and analytical manner. Various

attempts to use such approaches in software development have had

mixed results.

162

This thesis presents a modelling method, which has been developed

to support the requirements engineering process with properties of

cooperation and integrating these through the use of a derivation

modelling approach. The provision of pragmatic heuristics and

guidelines supports real-world requirements engineering practitioners

and thus ensure a high probability of success for the business

workflow system to be developed.

This method provides clear and structured views of cooperation

properties such as collaboration and articulation, and allows the

derivation of articulation protocols from business workflow models,

allowing to define how the expectations of the cooperation between

actors are to be fulfilled by a system. This provides a statement of

requirements for business workflow systems that reflects the

richness of these and also acts as a feasible starting point for

development.

As indicated in Chapter 1, three major results can be stated from this

thesis: the modelling properties for cooperation, the derivation

modelling method, and pragmatic heuristics and guidelines.

8.1.1 Properties of cooperative work

The various properties of cooperative work being used in the

derivation modelling method are intended to capture the highly

complex situations of workflow scenarios in business and human

cooperation. These properties are mainly collaboration and

163

articulation. Collaboration is the process where actors cooperate

while they produce some product or service. This process is often a

negotiation process. The process results in one unified result of all

the contributions made by the individual actors.

Articulation is the work about cooperative work. An Articulation

model describes a set of articulation protocols, which define the

expectations of cooperating actors and how their objectives can be

successfully fulfilled in terms of permitted and guaranteed services.

8.1.2 Derivation modelling method

The derivation modelling method presented in Chapters 4 and 5

provides a means for constructing articulation protocols from visual

and scenario-based business workflow models.

It builds on already available work for scenario-driven modelling

methods. In this work, Use Case Maps are used to produce

business workflow models and architectural solutions, which can also

be used for validation of requirements.

8.1.3 Pragmatic heuristics and guidelines

Chapter 6 is devoted to the provision of pragmatic heuristics and

guidelines for requirements engineering practitioners. This method

164

provides heuristics for the construction for each of the models and

the derivation of one model from one another.

The lessons learnt are emphasised in applying the meeting

scheduler problem, which serves as the origin for the ideas to

formulate this method. The heuristics defined in Chapter 6 in this

thesis were derived from experiences and observations during the

application of the derivation modelling method to the complaint

management case studies.

8.2 Proposed solution revisited

The proposal made in Chapter 1 states the following:

')!:\ derivation modelling method will:

• provide clear and structured views of cooperation properties,

• allow the derivation of articulation protocols from business

workflow models in a scenario-driven manner,

and so provide requirements engineering to define how the

expectations of the cooperative situation are to be fulfilled by the

workflow systems to be developed."

The needs of a derivation modelling method are defined in Chapter

3. The method has the following characteristics:

165

• It produces a set of articulation protocols, which includes

important properties that reflect cooperative work settings.

• It proposes methodological steps to be followed when

constructing the intermediate models and final models (the

business workflow model is based on Use Case Maps; the actor

model and the cooperation model can be produced from

information in the business workflow model; the articulation model

can be created by following the heuristics).

• It provides a development process, by offering a set of derivation

rules, heuristics, and mappings from the business workflow model

to articulation protocols.

Chapter 5 shows that the separation of tasks from responsibilities

helps to make the business workflow model using UCMs more

comprehensible and more precise for deriving the actor and

cooperation model. The resulting business workflow model affords

the ability to construct a more comprehensible model, while

facilitating the construction of more complete and realistic derived

models.

Moreover, the inclusion of a collaboration dependency in the

cooperation model ensures that collaborative situations are explicitly

considered in articulation protocols by use of a generic negotiation

mechanism. The articulation protocol is to define expectations of

how actors can fulfil cooperation dependencies as well as the tasks

they have defined by the actor model. This distinction between the

166

cooperative interaction and the articulation protocol offers a clear

separation of concerns for the interaction that must occur and by the

services it is achieved. These examples are shown in Chapter 5.

However, when applied to the case study in Chapter 5, some

limitations of the derivation modelling method are noticeable, as

outlined in Chapter 7.2.3. These limitations have two aspects:

• The derivation modelling starts with the business workflow model.

This is not a weakness in itself, but favours problems starting

where actors and tasks in the business process can be described

initially. If not all information is available, it may be difficult to

produce an articulation protocol, as some situations in the

application to the complaint management case study showed.

• The use of Use Case Maps may be considered to be a weakness

in the derivation modelling method in requirements engineering

for business workflow systems. The method should be easily

adapted to embrace other visual scenario-driven techniques.

It can be concluded that the development and evaluation of the

proposed solution results in contributions to the area of requirements

engineering for systems that support cooperative work, in particular

business workflow systems. The limitations lead to considerations

for further work, discussed briefly in the next section.

167

8.3 Future work

The limitations revealed by the evaluation in Chapter 7 point out that

the development of the derivation modelling method is not complete.

There are three main areas in which future work could usefully be

carried out: improvement of the method itself, useful tools to support

the method, and broader applications.

8.3.1 Improvements of the method

One area of further investigation is concerned with reverse derivation

modelling. The derivation modelling method needs more flexibility in

the sense that the manipulation in one model has an effect on the

others. The effects are defined in the derivation rules. For example,

a change of a service in the articulation protocols must result in the

appropriate change in the business workflow model.

A related area of work would be to Use Case Maps so that other

scenario-based modelling language, such as UML, can be used.

This would involve refining the derivation rules.

8.3.2 Tools support

The development of a software tool can support the application of the

derivation modelling method. This can be seen twofold: In a first

step, the tool can provide support that helps the requirements

168

engineering practitioner to derive the articulation protocols based on

heuristics. The systematic approach that is provided by the

derivation modelling method supports the practitioners, with tool

assistance, to manipulate the business workflow model and derive

the next model until articulation protocols are derived.

In a second step, the tool would support traceability between the

various models. The practitioner would be able to trace the chain of

derivation forward and backward from any part of any model. Also, a

change in any part of any model would cause all effected attributes to

be highlighted. This aids the practitioner in identifying places where

changes should be made and ensuring the models remain

consistent.

8.3.3 Further applications

During the time of this research, the method was applied and

improved by applying it to case studies. However, another

application could be explored to a type of problem, which is of

increasing importance today - the area of e-commerce systems.

In the development of e-commerce systems, a justification of the

business idea needs to be established to build up confidence among

stakeholders in the feasibility of the idea. The strong relationship

between the business workflow model and articulation protocols

could be measured in terms of cost and profit drivers, which leads to

an extension of the method. For example, each task performed by

169

an actor has a certain value. Each articulation protocol is a service

for another actor to be provided, whereby each service has a certain

value, either for themselves or for others, too. An estimation of the

cost and profit per scenario and/or per actor can be taken into

account, which can be obtained from the articulation model. This

extension of the method would help stakeholders to understand the

direct impact of their business workflow model in terms of

quantifications of profits and costs during the requirements

engineering phase.

8.4 Concluding remarks

In summary, this thesis demonstrates that it is possible to derive

articulation protocols from business workflow scenarios by means of

a derivation modelling method in a practical and effective way and so

to accommodates for human and business cooperation properties. It

is believed that it is possible to apply the method to create initial

requirements models, which can then be used as a feasible starting

point of a business workflow system development strategy.

170

This appendix gathers a glossary of the main terms that are used in

this thesis in a non-standard way, or used to refer to specific features

of the method presented in this work.

Actor model The actor model describes the behavioural

structure of the actors discovered in the

business workflow model. The actor model is

derived from the high-level workflow model

and is described in terms of their goals and

tasks.

Articulation protocol An articulation protocol defines expectations

of how actors can fulfil cooperation

dependencies as well as the tasks they have

defined by the actor model. An articulation

protocols is described in terms of permitted

and guaranteed services and the rules for

these services.

Business workflow

model

A business workflow model identifies actors

and their behaviour. It gives a high-level view

of the actors and workflows, and provides a

starting point for deriving the details of the

171

Collaboration

Cooperation model

other models.

Collaboration requires actors to work together

to achieve a common goal, under the

condition that a contribution is needed by

each participating actor.

A cooperation model

relationships in terms

dependencies.

describes actor

of . cooperation

Derivation modelling Derivation modelling proposes

Heuristic

Method

methodological steps to be followed when

constructing the intermediate models and

final models. It provides a development

process, by offering a set of derivation rules,

heuristics, and mappings from the business

workflow model to articulation protocols.

Heuristics are sets of rules, which guide the

requirements engineering practitioner in the

identification and analysis of requirements

and for construction of the different models.

They can be considered as a collection of

hints and rules-of-thumb and may be applied

wherever they make sense.

A method is a generic guide to help

performing some activity. This work presents

172

Model

a method, which applies for doing

requirements engineering for business

workflow systems. Typically, a method

consists of the following components:

• a set of modelling concepts for

capturing semantic knowledge

• a set of views and notations for

presenting underlying modelling

information to people that allow

understanding them

• a development process for

constructing models, which may

be described at various levels of

details, from overall management

down to specific steps of how to

build low-level models

• a collection heuristics and

guidelines, which are not

necessarily organised into steps

to be followed, but may be applied

wherever they seem useful

A model is a representation of the world in

which the problem is located, described at a

173

Scenario

certain level of abstraction. It is built out of a

collection of modelling concepts, which seem

most useful for describing requirements of the

application domain.

A scenario is a description of the world in a

particular context, including the structure and

behaviour of actors and sufficient context

information. It is intended as a means of

communication among stakeholders, and to

constrain requirements engineering from one

or more perspectives.

174

This appendix presents the Use Case Maps as used in this thesis.

UCM [8uhr and Casselman 1995] is a high-level scenario modelling

technique defined for real-time object-oriented system design. It is

based on a simple and expressive visual notation that allows

describing scenarios at an abstract level in terms of causal

sequences of responsibilities over a set of components.

The primary objective of the UCM technique is to capture, model,

and analyse system requirements and behaviour at an abstract level.

The technique supports individual scenario descriptions, scenario

interactions, responsibility allocations and, inter-component

communication.

UCM also provides important features, such as:

• Superimposition of scenarios on system structure: This enables to

visualise scenarios in the context of system structure for

architectural reasoning. It also provides a mechanism by which

responsibilities can be allocated to system components.

• Combining sets of scenarios in a single diagram: This enables to

express scenario clusters and scenario interactions in a graphical

175

manner. It also provides a mechanism that can be used to

analyse the overall system behaviour that emerges from scenario

combinations.

The next sections describe the UCM terminology and notation used

as a basis in this thesis. Additional notations required in the different

examples and case studies will be described as they are used.

A use case path represents a path along which scenarios flow in a

system. They express the sequences of responsibilities that need to

be performed by system components in order to achieve the overall

objective of the system in response to a given triggering event.

This section describes the basic notation used to describe paths, and

then it is described.

In Figure 13, the basic elements that compose a use case path are

illustrated.

responsibilities

r1/0~
r2 ~"---1

\
start point

path

r
end bar !

Figure 13: A simple UCM path

176

The following sections describe the elements of a use case path -

start point, responsibilities, scenario, end bar, and path.

The performance of a use case path begins at a start point. A start

point is illustrated in UCM by means of a filled circle placed at the

origin of a scenario (see Figure 13).

A start point is defined by means of possible triggering events

(stimulus) and maybe a precondition. If a precondition is specified,

this precondition must be true to perform the path.

A use case path describes a sequence of responsibilities that need to

be performed by components in response to a given stimulus. At the

UCM modelling level, these responsibilities are high-level ones.

Thus, responsibilities are informal elements of a model that are

usually more precisely defined in later stages of the development

process.

Responsibilities are visually illustrated in UCMs by means of named,

short, prose descriptions (r1, r2, and r3 in Figure 13) of some actions

along paths. Whether a responsibility point is visible or not along a

path, the existence of at least one is always implied. To avoid the

creation of cumbersome UCMs, the responsibility points that are

placed along the path are usually short identifiers, i.e. one, two or,

three characters (letters and digits).

Two responsibilities along a path have a cause-effect relationship.

The original cause is the stimulus. The next effect is that the first

responsibility along the path is performed. This in turn is a cause

177

relationship to the next responsibility point along the path after that,

etc., as the causes accumulate to result in each next effect.

The path ends where the ultimate effect happens. A path is

progressive in the sense that each responsibility point along a path

advances the path towards an end. The cause-effect relationship is

a property of each path and the preconditions that cause it. If there

is a cause-effect relationship between two responsibility points along

one path, this does not mean that they have the same relationship

along another path.

This work considers responsibilities as prose descriptions.

Responsibilities may also be expressed in some formal language that

treats them like states of the underlying system and the

transformation of preconditions into postconditions by series of

responsibilities.

A path segment expresses an ordered sequence of path elements

(such as a responsibility or a waiting place) that need to be

performed by components. It is visually illustrated by means of a

"wiggly" line joining together the sequence of path elements. Path

segments show the operation of the components, but do not model

the way in which responsibilities change the system state, cause

information flow, etc.

A use case (e.g. in terms of Ivar Jacobson's approach [Jacobson

1992]) is a prose description of a path segment or of a set of them of

a user's interactions with a system seen as a black box.

178

The performance of a path terminates at an end bar. A thick

rectilinear line placed at the end of a path visually illustrates an end

bar in an UCM. An end bar is defined by means of some resulting

event or postcondition (effect).

A path may have any shape as long as it is continuous. It is

composed of one of more coupled path segments. Although a path

may be able even to cross itself, this can create visual ambiguity

related to other aspects of the notation.

A basic path as a complete unit of a map is a path with a start point

(in general represented by a waiting place) and an end presented by

a bar. In addition, the direction of a path may be indicated in

complicated or fragmented maps by an arrow to show directions.

UCMs consist of paths that traverse one or more components and

therefore are a means of explicitly linking views of behavioural

patterns of systems. Maps with no visible components are called

unbound maps (Figure 14) and maps with visible components along

their paths are called bound maps (Figure 15).

Unbound maps provide a visual notation for use cases. They are

useful for illustrating transitions at the highest level of abstraction.

179

x

Figure 14: Unbound map

Bound maps show how a system's components contribute jointly to

achieve properties of the environment. Components are visually

illustrated using labelled rectangles. At this level, the system

structure is only defined as a set of components. Interaction among

components is not yet defined.

In bound use case maps, responsibilities are allocated to

components. For example in Figure 15, responsibility x is allocated

to component B, responsibility y is allocated to component C, and

responsibility z is allocated to component D.

A B x c

D

Bound map

Figure 15: Bound map

180

The boxes used so far for illustrating components in this section in

use case maps are useful as representations of components of

uncommitted types. In order to be able to define components and

make judgement about the architecture of a system, the most

important ones are introduced; they are divided into static and

dynamic components.

The following static component types are described: teams,

processes and, objects:

• Teams: Teams are abstractions for components at the level of

use case maps. They are mainly introduced into maps to hide

details without committing to whether they will actually exist as

components with interfaces or will actually have members. In

general, a team is an operational grouping of components that

may include members of any or all of objects, processes, other

teams, etc.

• Processes: Processes are autonomous components that may

operate concurrently with other processes. A process has no

other concurrent elements inside, the only concurrent elements

are the processes themselves.

• Objects: Objects perform their own responsibilities but do not

have ultimate control of when they perform them. The control

comes from processes, although it may also come indirectly

through other non-process components, such as teams or other

objects. In use case maps, objects are not further decomposable

into teams of finer objects.

181

Team Process Object

Figure 16: Static components

The following dynamic component types are described: slots and

pools (Figure 17):

• Slots: Slots are organisational components that may be

temporarily occupied by different dynamic components (one at a

time) or are empty. Slots are fixed components in maps in the

sense that they are assumed to have fixed positions and fixed

responsibilities along paths that they traverse. Occupants of slots

are assumed to be able to fulfil the required slot responsibilities.

• Pools: Pools are placeholders for dynamic components with the

aptitude to move into slots. A dynamic component is one that

may be created and destroyed at any time during the lifecycle of

the map that has a slot for it, and may move in or out of this slot

at any time. Paths may not drawn across pools to indicate the

performance of responsibilities along the path.

182

,--------1

, '~ 1 , , , , ,
:--------:

Slot Pool

Figure 17: Dynamic components

Slots and pools are sources and destinations of transitions into and

out of paths. The possibility of dynamic components being created

or destroyed along paths and of them moving into, along, and out of

paths can be included in use case maps. Buhr and Casselman [Buhr

and Casselman 1995] suggest to use suitably annotated small

arrows with either their heads or their tails touching paths (Figure

18):

• Move: Used for unaliased moves from a path to a slot, or vice

versa.

• Move-stay: Used for aliased moves.

• Create: The component moved is created before the move.

Initialisation is assumed to be part of the create responsibility.

• Destroy. The component moved is destroyed after the move.

• Copy: This is similar to move-stay, except that, instead of moving

the same component, a copy of it moves.

183

Their notation offers both unaliased and aliased moves. An

unaliased move is the default. The aliased move ends up with the

same component in more than one slot. An aliased move may be

compared with a human organisation, where a person can play

different roles at the same time. Aliasing is different from copying,

which results into different but identical components in more than one

slot.

~ ~

move move-stay

+ • ~

create destroy

I + •
copy

Figure 18: Movement notation of UCM for dynamic components

The example below (Figure 19) illustrates the creation of a single

component along the path, ends up aliased in slots 81 and 82 and

another component that was in the pool ends up in slot 83.

81 82 83
r------- r-------

: 1: ~ : 1 ; \ : '---+'-. r I ~ I
_ I I I I I
~ I I I I I

L ______ : L ______ ! ~ L ______ !

Figure 19: Creation of a single component along a path

184

In the previous sections, purely sequential paths have been used.

UCM offers also more complex cases that involve concurrent or

alternative path coupling constructs.

The UCM technique uses path segment coupling with the following

constructs: AND-fork, AND~oin, OR-fork, and OR-join. These

coupling constructs are illustrated in Figure 20. In this figure, each

path segment is labelled with a different responsibility point. The

performance of the four path diagrams given in this figure goes from

left to right.

AND-fork AND-join

OR-fork OR-join

Figure 20: Path segment coupling

In the following sections, each of the scenario coupling constructs is

described in more detail.

An AND-fork is used to illustrate a point along a path where the

performance of a single scenario splits into two or more concurrent

paths that may proceed independently and, if concurrency is allowed,

concu rrently.

Once the performance of a path is complete, then the concurrent

performance of paths band c may start.

185

An AND-join is used to illustrate a point along a path where several

concurrent scenarios synchronise together and result in the

performance of one path.

Once the performance of scenario d and e is finished, then the

performance of path segment f may start.

An OR-fork is used to show a point along a path where alternative

branches may be followed. Each branch is associated with a distinct

path segments.

Once the performance of scenario g is finished, then the

performance of scenario h or i will be triggered.

An OR-join is used to illustrate a point along a path where two or

more incoming scenarios merge into a single one without requiring

any synchronisation or interaction between the incoming path

segments.

The performance of either scenario j or k will result in the

performance of path I. Thus, the OR-join diagram illustrates two

possible paths: one formed by path segments j-I, and one formed by

path segments k-I.

This set of path segment coupling constructs which have been

described in the above sections can be combined together to

describe more complex paths scenarios. Some examples of the type

of path constructions that can be described by combining these

constructs are illustrated in Figure 21.

186

• c)

Figure 21: Combination of path segment coupling

Two other types of the UCM notations of Buhr are used in this thesis:

waiting places and static and dynamic stubs.

Waiting places are used to indicate a point along a path where the

progression of the path is blocked until a predefined event occurs.

Two different types of waiting places can be identified: a regular

waiting place, and a timer. The according notation is illustrated in

Figure 22 and is describes below.

\.

Waiting place

triggering
path

normal
path

normal
path

timeout

Timer path

Figure 22: Waiting places

A waiting place is identifies a point along the normal path at which

the progression of a path is blocked until an event occurs, e.g. by a

triggering path. Visually, waiting places are illustrated using filled

circles place along a path. Waiting places are used to illustrate

187

points along paths where interactions with other paths or with the

environment of a system occur. They may be associated with both

synchronous and asynchronous interactions. The starting point

constitutes a special use of a waiting place.

A timer is a special type of waiting place that will only wait for a

certain period before the scenario continues. If the timer runs out,

before a trigger occurs it proceeds at the timeout path. If the trigger

occurs before the time out, the scenario proceeds at the normal

paths. A clock-like icon placed along a path visually represents

timers.

The UCM modelling technique provides a mechanism for path

abstraction, called stub. A stub illustrates part of a path that is

abstracted in the context of a use case map in which it is used in

order to defer details. In an use case map, the expansion of a stub is

either described in separate maps (called plug-ins), or remains to be

defined at a later stage when details will be added to the map.

Stubbing constitutes an important mechanism for iterative

development. It also reduces confusion of models by hiding details

that are less important in the context of a given map.

The stub in Figure 23 is static (a static stub would be indicated by a

dashed outline), since no dynamic selection of different plug-ins is

implied. The plug-in in the enclosed circle has been collapsed into a

stub.

188

Figure 23: Static stub

Stubs were originally viewed in [8uhr and Casselman 1995] as static

decomposition technique for paths. The concept of dynamic stubs

and plug-ins is a new one relative to earlier UCM work [8uhr 1998].

The stub in Figure 24 is dynamic in the sense that the available plug­

ins can be selected dynamically when a scenario arrives at the stub .

•
Plug-in 2

Figure 24: Dynamic stub with multiple plug-ins

If a scenario arrives at the dynamic stub, one of the plug-ins is

selected based on a predefined precondition.

In this thesis, a set of paths segments of a use case map that can be

triggered from a single starting point is called scenario ensemble. A

scenario ensemble is composed of a starting point, a set of paths, a

189

set of coupling constructs, and a set of end bars (each indicating a

distinct path termination).

An abstract example of a scenario ensemble is given in Figure 25.

Figure 25: A UCM scenario ensemble

A scenario ensemble constitutes a cohesive logical entity, since it

can be started from a single triggering event and it is a set of paths.

An important aspect of the Use Case Map modelling technique is that

it allows describing asynchronous and synchronous path interactions.

In this thesis, two asynchronous types of interaction are used: trigger

after completing path performance and trigger in passing.

Trigger after completing path performance is used to illustrate cases

where the completion of the performance of a path triggers another

path that is waiting on a waiting place. The waiting can be either a

start point or a waiting place along a path. Both cases are shown in

Figure 26.

190

~." .. }~
trigger after completing
path performance

A .~

trigger in passing

Figure 26: Asynchronous path interactions

Trigger in passing is used to illustrate cases where a waiting place is

triggered by another path in an asynchronous manner.

Three types of synchronous interaction are used in this thesis: AND­

join, rendezvous, synchronisation and, abort (Figure 27).

~~ A and BAND-join

Aand B

:_: ___ ~rendezvouS

B synchronisation :::=--:-r= A

A~abort
B:::'j::··"············=·.,, ~ :

Figure 27: Synchronous path interactions

The AND-join is used to illustrate cases where the synchronisation of

two or more paths results in the performance of one.

Rendezvous is used to illustrate cases where two or more paths

synchronise together to perform a certain scenario (sequence of

responsibilities) before returning to the performance of their own

respective path.

191

Synchronisation is used to illustrate cases where two or more paths

synchronise together and then return to the performance of their own

respective path.

Abort notation is used to illustrate cases where the performance of a

path interrupts the performance of another.

An important feature of use case maps is that several scenario

ensembles can be coupled into a more complex diagram, called

composite use case map.

interactions and concurrency.

s

This allows expressing scenario

Figure 28: Composite use case maps

Figure 28 illustrates two abstract examples of composite use case

maps. In the left example, scenario S1 triggers scenario S2 in

passing, and then waits for the completion of scenario S2 before

continuing its performance. In the right example, a more complex

inter-scenario relationship composite map between scenarios S3, 34,

and 35 is given. This example shows the use of a synchronous

interaction and a timer.

192

A UCM model is composed of a set of UCM maps and a set of UCM

scenario ensembles. A UCM map is either a simple or a composite

map, which describes relationships among scenarios. So, a UCM

map is composed of paths, paths of interactions, components and

may be some responsibility allocations that links responsibilities to

components.

Scenario ensembles constitute the building blocks of UCM maps.

They are the basic elements from which composite maps are built. It

should be noted that a scenario ensemble can be involved in several

UCM maps to illustrate different scenario relationships. Each path in

a UCM model is contained in a scenario ensemble.

In Figure 29, the definition of a composite map from two scenario

ensembles is illustrated.

S1

UCM3

. ...•......•.•.•...•.......

,1·1··_···1/1 ;.2;::r:]

D
UCM2

Figure 29: Scenario ensemble and composite maps

193

UCM 1 and UCM 2 are two simple maps that each contains a

scenario ensemble. UCM 3 is a composite map that defines a

relationship between scenario 81 and scenario 82.

194

Aalst, Wv, Basten, T, Verbeek, H, Verkoulen, P and Voorhoeve, M

1998. Adaptive Workflow - On the interplay between flexibility and

support. Paper Presented at First International Conference on

Enterprise Information Systems, Setubal, Portugal.

Alonso, G, Agrawal, 0, Abbadi, AE and Mohan, C 1997. Functionality

and Limitations of Current Workflow Management Systems. IEEE

Expert 12(5).

Alonso, G, Fiedler, U, Hagen, C, Lazcano, A, Schuldt, H and Weiler, N

1999. Wise: Business to Business E-Commerce. Paper Presented at

IEEE 9th International Workshop on Research Issues on Data

Engineering. INFORMATION TECHNOLOGY FOR VIRTUAL

ENTERPRISES (RIDE-VE'99), Sydney, Australia.

Amyot, D and Mussbacher, G 2001. Bridging the

Requirements/Design Gap in Dynamic Systems with Use Case Maps

(UCMs). Paper Presented at 23rd International Conference on

Software Engineering (ICSE'01), Toronto, Canada.

Ant6n, A 1996. Goal-Based Requirements Analysis. Paper Presented

at Second IEEE International Conference on ReqUirements

Engineering (lCRE'96), Colorado Springs, Colorado.

195

Bannon, L and Schmidt, K 1991. CSCW: Four Characters in Search of

a Context. In Studies in Computer-Supported Cooperative Work:

Theory, Practice and Design (Bowers, J and Benford, S), 3-16.

Bardram, J 1997. Plan as Situated Action: An Activity Theory

Approach to Workflow Systems. Paper Presented at Proceedings of

the 5th European Conference on Computer Supported Cooperative

Work (ECSCW '97), Lancaster, UK.

Bardram, J 1998. Collaboration, Coordination and Computer Support:

An Activity Theoretical Approach to the Design of Computer Supported

Cooperative Work. PhD thesis, Department of Computer Science,

University of Aarhus.

Barros, A, Hofstede, At and Proper, H 1997. Essential Principles for

Workflow Mode"ing Effecitiveness. Paper Presented at Third Pacific

Asia Conference on Information Systems (PACIS'97), Brisbane,

Australia.

Boehm, B 1988. A Spiral Model of Software Developoment and

Enhancement. IEEE Computer 21(2): 61-72.

Bogia, D and Kaplan, S 1995. Flexibility and Control for Dynamic

Workflows in the wOrlds Environment. Paper Presented at Conference

on Organisational Computing Systems, Milpitas, CA.

Bowers, J, Button, G and Sharrock, W 1995. Workflow from Within

and Without: Technology and Cooperative Work on the Print Industry

Shopfloor. Paper Presented at Fourth European Conference on

196

Computer Supported Cooperative Work (CSCW'95) , Stockholm,

Sweden.

Buhr, R 1998. Use Case Maps as Architectural Entities for Complex

Systems. IEEE Transactions on Software Engineering, Special Issue

on Scenario Management 24(12): 1131-1155.

Buhr, R and Casselman, R 1995. Use Case Maps for Object-Oriented

Systems. USA: Prentice-Hall.

Carroll, JM 1995. Introduction: The Scenario Perspective on System

Development. In Scenario-Based Design: Envisioning Work and

Technology in System Development (Carroll, JM), 1-17.

Cockburn, A 1997. Using goal-based use cases. Journal of Object­

Oriented Programming (JOOP) 10(7): 56-62.

Curtis, B, Krasner, Hand Iscoe, N 1988. A Field Study of the Software

Design Process for large Systems. Communications of ACM 31(11):

1268-1287.

Dardenne, A, lamsweerde, Av and Fickas, S 1993. Goal-directed

requirements acquisition. Science of Computer Programming 20(1-2):

3-50.

Dourish, P, Holmes, J, Maclean, A, Marqvardson, P and Zbyslaw, A

1996. Freeflow: Mediating Between Representation and Action in

Workflow Systems. Paper Presented at Conference on Computer

Supported Cooperative Work (CSCW'96), Cambridge, MA.

197

Ellis, C, Keddara, K and Rozenberg, G 1995. Dynamic change within

workflow systems. Paper Presented at Organizational Computing

Systems, Milipitas, CA.

Feather, M, Fickas, S, Finkelstein, A and Lamsweerde, Av 1997.

Requirements and Specification Exemplars. Automated Software

Engineering 4(4): 419-438.

Fitzpatrick, G 1998. The Locales Framework: Understanding and

Designing for Cooperative Work. PhD Thesis, Department of

Computer Science and Electrical Engineering, The University of

Queensland.

Fitzpatrick, G, Kaplan, S and Mansfield, T 1996. Physical spaces,

virtual places and social worlds: A study of work in the virtual. Paper

Presented at Proceedings of the Conference on Computer-Supported

Cooperative Work (CSCW '96), Boston, Mass.

Floyd, C 1987. Outline of a Paradigm Change in Software

Engineering. In Computers and democracy - a Scandinavian

challenge (Bjerknes, G et al.), 191-212.

Georgakopoulos, 0, Hornick, M and Sheth, A 1995. An Overview to

Workflow Management: From Process Modeling to Workflow

Automation Infrastructure. Distributed and Parallel Databases 3 119-

153.

198

Gerson, E and Star, SL 1986. Analyzing Due Process in the

Workplace. ACM Transactions on Office Information Systems 4(3):

257-270.

Goguen, J 1992. The dry and the wet. In Information Systems

Concepts (Falkenberg, E et al.), 1-17.

Goguen, J 1994. Requirements Engineering as the Reconciliation of

Technical and Social Issues. In Requirements Engineering: Social and

Technical Issues (Goguen, J and Jirotka, M), 165-199.

Goguen, J 1996. Formality and informality in requirements

engineering. Paper Presented at International Conference on

Requirements Engineering (lCRE'96), Colorado Springs, Colorado.

Grudin, J 1988. Why CSCW applications fail: Problems in the design

and evaluation of organizational interfaces. Paper Presented at

Conference on Computer-Supported Cooperative Work (CSCW'88) ,

Portland, Oregon.

Grudin, J and Palen, L 1995. Why Groupware Succeeds: Discretion of

Mandate? Paper Presented at Fourth European Conference on

Computer-Supported Cooperative Work (ECSCW '95), Stockholm,

Sweden.

Haumer, P, Heymans, P, Jarke, M and Pohl, K 1999. Bridging the Gap

Between Past and Future in RE: A Scenario-Based Approach. Paper

Presented at Fourth IEEE International Symposium on Requirements

Eng. (RE'99) , University of Limerick, Ireland.

199

Haumer, P, Pohl, K and Weidenhaupt, K 1998. Requirements

Elicitation and Validation with Real World Scenes. IEEE Transactions

on Software Engineering 24(12): 1036-1054.

Heath, C and Luff, P 1992. Collaborative Activity and Technological

Design: Task Coordination in London Underground Control Rooms.

Computer Supported Cooperative Work 1 (1-2): 69-94.

Hollingsworth, D 1995. Workflow Management Coalition: The

Workflow Reference Model. The Workflow Management Coalition

Specification (TCOO-1003).

Hughes, J, Randall, D and Shapiro, D 1992. Faltering from

Ethnography to Design. Paper Presented at Proceedings of the

Conference of Computer Supported Cooperative Work (CSCW '92),
I

Toronto, Canada.

Jackson, M 1995. Software Requirements and Specifications.Addison­

Wesley.

Jackson, M 1997. The meaning of requirements. Annuals of Software

Engineering 35-21.

Jackson, M and Zave, P 1995. Deriving SpeCifications from

Requirements: an Example. Paper Presented at International

Conference on Software Engineering (ICSE-17), Seattle, USA.

Jacobson, I 1992. Subject-Oriented Software Engineering - A Use

Case Driven Approach. New York: Addison-Wesley.

200

Jacobson, I 1995. The Use-Case Construct in Object-Oriented

Software Engineering. In Scenario-based Design - Envisioning Work

and Technology in System Development (Carroll, J), 309-336.

Jarke, M, Bui, XT and Carroll, J 1999. Scenario Management: An

Interdisciplinary Approach. Requirements Engineering Journal 3(3-4):

154-173.

Jordan, B 1996. Ethnographic Workplace Studies and CSCW. In The

Design of Computer Supported Cooperative Work and Groupware

Systems (Shapiro, D et al.).

Karat, J 1995. Scenario Use in the Design of a Speech Recognition

System. In Scenario-based Design - Envisioning Work and

Technology in System Development (Carroll, J), 109-134.

Kling, R 1992. Cooperation, coordination and Control in Computer

Supported Cooperative Work. Communications of the ACM 34(12):

83-88.

Koksal, P, Cingil, I and Dogac, A 1999. A Component-based Workflow

System with Dynamic Modifications. Paper Presented at Next

Generation Information Technologies and Systems (NGITS'99), Israel.

Kuutti, K 1995. Work Processes: Scenarios as a Preliminary

Vocabulary. In Scenario-based Design - Envisioning Work and

Technology in System Development (Carroll, J), 19-36.

201

Kyng, M 1995. Creating contexts for Design. In Scenario Based

Design: Envisioning Work and Technology in System Development

(Carroll, J), 85-108.

Lamsweerde, Av, Darimont, Rand Massonet, P 1992. The Meeting

Scheduler System - Problem Statement. Universite Catholique de

Louvain, Departement d'ingenierie Informatique, Louvain-Ia-Neuve

(Belgium).

Lamsweerde, Av, Darimont, Rand Massonet, P 1995. Goal -Directed

Elaboration of Requirements for a Meeting Scheduler: Problems and

Lessons Learnt. Paper Presented at International Symposium on

Requirements Engineering (ISRE '95), York, UK.

Lubars, M, Potts, C and Richer, C 1993. A review of the state of the

practice in requirements modeling. Paper Presented at Symposium on

Requirements Engineering, San Diego, CA.

Luff, P, Heath, C and Greatbach, 0 1992. Tasks-in-interaction: paper

and screen based documentation in collaborative activity. Paper

Presented at Conference of Computer Supported Cooperative Work

(CSCW '92), Toronto, Canada.

Macaulay, L 1993. Requirements Capture as a Cooperative Activity.

Paper Presented at IEEE International Symposium on Requirements

Engineering, San Diego, California.

Macaulay, LA 1996. Requirements Engineering. London, UK: Springer

Verlag.

202

Mack, R 1995. Discussion: Scenarios as Engines of Design. In

Scenario-based Design - Envisioning Work and Technology in System

Development (Carroll, J), 361-386.

Malone, T and Crowston, K 1994. The Interdisciplinary Study of

Coordination. ACM Computing Surveys 26(1): 87-119.

McCready, S 1992. There is more than one kind of Work-flow

Software. Computerworld.

McGraw, K and Harbison, K 1997. User Centered Requirements, The

Scenario-Based Engineering Process. Mahwah, New Jersey, USA:

Lawrence Erlbaum Associates Publishers.

Medina-Mora, R, Wong, H and Flores, P 1992. The ActionWorkfiow

Approach to Workflow Management. Paper Presented at 4th

Conference on Computer-Supported Cooperative Work (CSCW'92),

Toronto, Canada.

Mohan, C 1997. Recent Trends in Workflow Management Products,

Standards and Research. Paper Presented at Proceedings NA TO

Advanced Institute (ASI) Workshop on Workflow Management

Systems and Interoperability, Istanbul, Turkey.

Muth, P, Weissenfels, J and Weikum, G 1998. What Workflow

Technology can do for Electronic Commerce. Paper Presented at

Euro-Med Net '98 Conference, Electronic Commerce Track, Nicosia,

Cyprus.

203

Nardi, B 1995. Some Reflections on Scenarios. In Scenario-based

Design - Envisioning Work and Technology in System Development

(Carroll, J), 387-399.

Nielsen, J 1995. Scenarios in Discount Usability Engineering. In

Scenario-based Design - Envisioning Work and Technology in System

Development (Carroll, J), 59-84.

Niessink, F and Vliet 1998. Two Case Studies in Measuring Software

Maintenance Effort. Paper Presented at International Conference on

Software Maintenance Information Systems, Bethesda, Maryland.

Nissen, HW and Jarke, M 1999. Repository Support for Multi­

Perspective Requirements Engineering. Information Systems - Special

Issue on Meta Modeling and Method Engineering 24(2): 131-158.

Nuseibeh, B, Kramer, J and Finkelstein, A 1994. A Framework for

Expressing the Relationships Between Multiple View in Requirements

Specification. IEEE Transactions on Software Engineering 20(10):

760-773.

OMG 1999. Unified Modeling Language Specification. Version 1.3,

htp://www.omg.org.

Parnas, D 1972. On the criteria to be used in decomposing systems

into modules. Communications of the ACM 15(12): 1053-1058.

Pohl, K 1994. The Three Dimensions of Requirements Engineering: A

Framework and its Applications. Information Systems 19(3): 243-258.

204

Potts, C 1994. Software Engineering Research Revisited. IEEE

Software 19-28.

Potts, C and Hsia, I 1997. Abstraction and context in requirements

engineering: Toward a synthesis. Annuals of Software Engineering 3

23-61.

Potts, C and Newstetter, WC 1997. Naturalistic Inquiry and

Requirements Engineering: Reconciling Their Theoretical

Foundations. Paper Presented at International Conference on

Requirements Engineering (lCRE'97), Washington, DC.

Potts, C, Takahashi, K and Anton, AI 1994. Inquiry-Based

Requirements Analysis. IEEE Software 11(1): 21-32.

Ramage, M and Bennett, K 1998. Maintaining Maintainability. Paper

Presented at International Conference on Software Maintenance,

Washington.

Regnell, B 1999. Requirements Engineering with Use Cases - a Basis

for Software Development. PhD Thesis, Department of

Communication Systems, Lund University, Lund Institute of

Technology.

Regnell, B, Kimbler, K and Wesslen, A 1995. Improving the Use Case

Driven Approach to Requirements Engineering. Paper Presented at

Second IEEE International Symposium on Requirements Engineering

(leRE '95), York, UK.

205

Rogers, Y and Ellis, J 1994. Distributed Cognition: An alternative

framework for analysing and explaining collaborative working. Journal

of Information Technology 9 119-128.

Rolland, C and Achour, B 1998. Guiding the construction of textual

use case specifications. Data & Knowledge Engineering 25(1): 125-

160.

Rolland, C, Achour, CB, Cauvet, C, Ralyte, J, Sutcliffe, A, Maiden, N,

Jarke, M, Haumer, P, Pohl, K, Dubois, E and Heymans, P 1998a. A

proposal for a scenario classification framework. Requirements

Engineering Journal 3(1).

Rolland, C, Souveyet, C and Achour, CB 1998b. Guiding Goal

Modeling Using Scenarios. IEEE Transactions on Software

Engineering 24(12): 1005-1071.

Schal, T 1996. Workflow Management Systems for Process

Organisations. Berlin: Springer-Verlag.

Schmidt, K 1991. Riding a Tiger, or Computer Supported Cooperative

Work. Paper Presented at 2nd European Conference on Computer­

Supported Cooperative Work, Amsterdam, The Netherlands.

Schmidt, K 1994. Social Mechanisms of Interaction. COMIC, Esprit

Basic Research Project 6225.

206

Schmidt, K and Bannon, L 1992. Taking CSCW Seriously: Supporting

Articulation Work. Computer Supported Cooperative Work. An

International Journal 1 (1-2): 7-40.

Schmidt, K and Simone, C 1996. Coordination Mechanisms: Towards

the conceptual foundation of CSCW systems design. Computer

Supported Cooperative Work 5 155-200.

Sheth, A and Kochut, KJ 1997. Workflow Applications to Research

Agenda: Scalable and Dynamic Work Coordination and Colloboration

Systems. Advances in Workflow Management Systems and

Interoperability.

Sommerville, I 1992. Software Engineering. Wokingham: Addison­

Wesley.

Star, S 1995. The Politics of Formal Representations: Wizards, Gurus,

and Organizational Complexity. In Ecologies of Knowledge. Work and

Politics in Science and Technology (Star, S), 88-118.

Strassl, J 1996. Reasoning about work activity during CSCW systems

design. Paper Presented at 11th Meeting of CSCW-North Special

Interest Group, Durham, UK.

Strassl, J and Smith, SR 1997. Modelling and reasoning about work

activity during systems design for cooperative working. Paper

Presented at Workshop on Representations in Interactive Software

Development, London, UK.

207

Strassl, J and Smith, SR 1998. Using scenarios to determine and

represent requirements for workflow systems. Paper Accepted at

Workshop of Understanding Work and Designing Artefacts, York, UK.

Strauss, A 1986. Work and the Division of Labor. The Sociological

Quarterly 26(1): 1-19.

Suchman, L 1987. Plans and Situated Actions. The problem of

human-machine communication. Cambridge, UK: Cambridge

University Press.

Suchman, L 1994. Do Categories Have Politics? The language/action

perspective reconsidered. Computer Supported Cooperative Work

2(3): 177-190.

Symon, G, Long, K and Ellis, J 1996. The Coordination of Work

Activities: Cooperation and Conflict in a Hospital Context. Computer

Supported Cooperative Work 5 1-31.

Weidenhaupt, K, Pohl, K, Jarke, M and Haumer, P 1998. Scenario

Usage in System Development: A Report on Current Practice. IEEE

Software 33-45.

WfMC 1998. Workflow and Internet: Catalysts for Radical Change,

Workflow Management Coalition, http://www.wfmc.org.

Winograd, T 1994. Categories, Disciplines, and Social Coordination.

Computer Supported Cooperative Work 2(3): 191-197.

208

Winograd, T and Flores, R 1986. Understanding Computers and

Cognition: A new foundation for design. MA: Addison-Wesley.

Yourdon, E 1989. Modern Structured Analysis. Englewood Cliffs, NJ:

Yourdon Press.

Yu, E and Mylopoulos, J 1994. Understanding "Why" in Software

Process Modelling, Analysis, and Design. Paper Presented at

Proceedings of 16th International Conference on Software

Engineering (ICSE '94), Sorrento, Italy.

Yu, ES 1995. Modelling Strategic Relationships for Process

Reengineering. PhD Thesis, Graduate Department of Computer

Science, University of Toronto.

Zave, P 1997. Classification Of Research Efforts In Requirements

Engineering. ACM Computing Surveys 29(4): 315-321.

209

