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Two-Loop Helicity Amplitudes in
QCD

A thesis presented for the degree of
Doctor of Philosophy
by

Lee W. Garland

Abstract

We compute the O (a3) virtual QCD corrections for the process ete™ — qgg aris-
ing from the interference of the two-loop and tree amplitudes and from the self-
interference of the one-loop amplitude. The results are presented in the form of
both matrix elements and helicity amplitudes.

The calculation of the matrix elements is performed by the direct evaluation of
the Feynman diagrams and corresponding loop integrals. The helicity amplitudes
are derived in a scheme-independent way from the coefficients appearing in the
general expression for the tensorial structure of this process. The tensor coefficients
are then extracted from the Feynman diagrams by means of projectors.

The one- and two-loop integrals appearing in the amplitudes are reduced to
a small set of known master integrals by means of integration-by-parts identities.
This reduction has been automated by construction of an algorithm based on that
proposed by Laporta.

The infrared pole structure of both the matrix elements and helicity amplitudes
is shown to agree with the predictions made by the infrared factorisation formula of
Catani. The analytic results for the finite terms, regularised in conventional dimen-
sional regularisation and renormalised in the MS scheme, are presented, expressed

in terms of one- and two-dimensional harmonic polylogarithms.
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Preface

The aim of this thesis is to present the calculation of the matrix element and helicity
amplitudes for ete™ — ¢gg which until now has remained the missing component
for a full NNLO calculation of ete™ — 3 jets.

Before the presenting the main results in Chapters 4 and 5 we aim to provide
an overview of the necessary tools for such a calculation. We begin in Chapter 1
with a basic introduction to Quantum Chromodynamics (QCD). We discuss some
of the key ideas and techniques which we use throughout the thesis. In particular
we introduce the idea of perturbative calculations and motivate the importance of
higher order corrections.

In Chapter 2 we present, by way of example, the calculation of e*e~ — g+ X
matrix element highlighting the important features of the calculation. We are led to
discuss the treatment of infrared divergences and introduce the technique of Catani
and Seymour for predicting the infrared structure of matrix elements in general.

Having introduced the tools for calculating matrix elements we turn in Chapter 3
to the methods for calculating loop integrals. The main focus of this chapter is on
the technique of integration-by-parts. Here we present an algorithm based on the
work of Laporta for the automated solution of the integration-by-parts identities.

The matrix elements and helicity amplitudes, regularised in conventional dimen-
sional regularisation and renormalised in the MS scheme are presented in Chapters 4
and 5.8. They are expressed in terms of one- and two-dimensional harmonic poly-
logarithms.

Finally in Chapter 6 we provide a summary of results and discuss the remain-
ing steps to be carried out before a full Next-to-Next-to-Leading Order (NNLO)

calculation of ete™ — 3 jets can be made.



CHAPTER 1

QCD Beginnings

In this Chapter we discuss the theory of QCD!. We begin in Section 1.1 by briefly
introducing the quark model, outlining a crucial property of the quarks which gives
rise to the structure of QCD, namely colour. With the key ideas in place we move
in Section 1.2 to a more rigorous description, the Lagrangian of QCD. After intro-
ducing the idea of perturbative calculations and consequently Feynman diagrams,
we present the corresponding Feynman rules in Section 1.3. In Sections 1.4-1.7 we
cover the regularisation and renormalisation of QCD which leads naturally to the
discussion of the running coupling. Finally in Section 1.8 we discuss higher order

corrections and the motivation for such calculations within QCD.

1.1 From Hadrons to Quarks

QCD is the theory of the strong interactions. All particles which undergo the strong
interaction are called hadrons. Hadrons fall into two classes, baryons and mesons.
Baryons exhibit fermionic behaviour whilst mesons are bosonic. The spectrum of

hadrons is a broad one, spanning many hundreds of particles with varying lifetimes

1This introduction is meant to serve as an overview of the important topics in QCD which will
be used throughout this thesis. For more detailed discussions of these topics the reader is referred
to one of the many text books. For example, [1, 2, 3, 4, 5, 6] provide excellent overviews of QCD
and field theory.



1. QCD Beginnings 1.1. From Hadrons to Quarks

and decay modes [7]. Historically, the large number of hadrons was seen as a clear
indication for the possibility of underlying structure. Indeed, it was discovered that
the hadrons are not fundamental, but can be constructed from a much smaller group
of fundamental particles, the quarks (8, 9]. Quarks are spin !/ (fermionic) point-like
particles carrying fractional electric charge. The full observed hadronic spectrum
can be completely constructed with siz flavours of quark (and their corresponding

antiparticles):
Qelectric =+ 2/3 u—up, (2 charm, t— top,

Qelectric = — /3 d —down, s —strange, b - bottom.

The correct fermionic and bosonic behaviour of the baryons and mesons can be
reproduced if they are constructed in the following way: mesons to be composed of
a quark and antiquark, M = ¢g, and baryons from three (anti)quarks, (B = §gq)
B = qqq. By this construction, all hadrons carry integer electric charge, consistent
with the experimental fact that no free, fractionally electric charged particle has
been observed.

In this incomplete form, the quark model gives rise to a contradiction with the
Fermi-Dirac statistics of its constituents. To construct, for example, the At*(J =
3/,), a baryonic state, we must combine three up-type quarks. The resulting wave

function must contain three identical fermions with aligned spins
A+t = |uTuTuT),

which is clearly symmetric under the exchange of two u-quarks. This problem was
solved by the proposal, and subsequent verification, of a new quantum number
carried by quarks, called colour charge [10]. By assigning each quark a new colour

quantum number an antisymmetric wave function can be constructed:

AT = — PR |ylulul)
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providing, of course, there are at least three unique colours. It has been verified
through experiment, by measuring quantities like the R¢"¢™ ratio [11, 12, 13] (see
Section 2.2) that ezactly three colours are required. They are labelled red, green and
blue. 1t is also an experimental fact that no isolated quark has ever been observed.
This evidence led to the idea that the observed hadrons must be colourless, that is,
in combinations like red-red and red-green-blue. Confinement, as this phenomena,
is known, is believed to be a dynamical property of the quarks which, at present,
is not fully understood. The full baryonic and mesonic states in terms of coloured

quarks is then

1

V3

1 ..
B=—¢c"*gqq) and M

(Sij i_' 3
NG |%:d;)

where it is understood that the colour indices 7, j and k must form a colourless
combination.

Since its discovery, the theory of colour has been put on a more rigorous math-
ematical footing. The resulting theory, which describes the interactions of coloured
objects, Quantum Chromodynamics (QCD), is based upon the premise that hadrons
are colourless and invariant under the exchange of colour of the constituent quarks.
This local (gauge) symmetry is described by a non-Abelian gauge group, SU(3).
Postulating the invariance of hadrons under rotations of this group leads to the pre-
diction of eight colour-force carrying particles, the gluons. The non-Abelian nature
of the theory leads to the gluons themselves carrying colour. This gives rise to the
phenomena of gluon self interaction (see the Feynman rules in Section 1.3) which
has fundamental consequences for the theory, and will be explained in Section 1.7.
Gluons are the particles responsible for binding quarks together into hadrons and

ultimately hadrons into bound states like the nucleus.
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1.2 The QCD Lagrangian

The full Lagrangian density of QCD has many component parts, we therefore arrange

it into the following terms
‘CQCD = Eclassical + Lgauge-ﬁxing + Lghost . (11)

We will study the structure of each of the three terms in (1.1) and try to broadly
interpret and motivate them. Let us begin with the classical Lagrangian, L jassical-
It reflects very closely the structure of the Quantum Electrodynamics (QED) La-

grangian (see for example [1]), let us further decompose this
Lclassical = ‘Cqua,rk + £gluon . (12)

The first term, Lquark, describes the dynamical and mass properties of the quark

fields
‘Cquark = Z l/;f,(llb - mq)ij'(pg 3 (13)
. ;

where 7,/); represents a quark field with flavour ¢ and colour charge i = 1, 2, 3, that
is, a triplet representation of the colour group SU(3), m, is the quark mass, the
covariant derivative? J) will be explained shortly. The full structure of QCD is
illuminated when we require that the quark fields be invariant under local gauge
transformations. As previously explained, experimental evidence leads us to be-
lieve that physical states (the hadrons) are colour singlet combinations. We are
led to impose the condition that performing a redefinition of the component colour
fields of the quarks at every point in space and time should leave physical states

unchanged. This so-called gauge invariance is enforced by making the triplet quark

2We will make use the common ‘slashed’ notation, ¢ = a,,y", where 4# are the gamma matrices
satisfying the Clifford algebra, {vy#,v"} = 2g¥*.
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fields invariant under rotations of the SU(3) group. An SU(3) transformation can

be parameterised by

Qz) = exp (iaa(z)t?), (1.4)

where the a,(z) is the local (z dependent) transformation parameter and t* are
3 x 3 matrices which are the generators of SU(3) in the fundamental representation.

They satisfy the commutation relation
[t2, 7] = i fobeee (1.5)

where f2° are the structure constants of SU(3). There are eight such t* matrices,

a=1, ..., 8. One representation of them which is commonly used is
1
==\ 1.6
2 ) ( )

where \* are the Gell-Mann matrices [2].
Under the action of the local gauge transformation (1.4) the quark fields trans-

form as

Yy(z) = ¥ (z) = Qij(2)9j () . (1.7)

In order for the Lagrangian (1.3) to remain invariant under the gauge transforma-
tion the covariant derivative must have the following structure in the fundamental
representation

(Du)ij = 6“5,':,' — igsAat‘,‘ (18)

(T

where g, is the QCD strong coupling and Aj are eight vector gauge fields — the

gluons. Thus, the covariant derivative satisfies the commutation relation

[Dy, D] = ~ig,G%,t*, (1.9)
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where G, is the gluon field strength tensor. It is constructed from the gluon fields

A% and the structure constants f
G, = 0,A0 — 0.4 + gsfabcAZA,c, . (1.10)

It is the final term in (1.10) which separates QCD from QED and gives rise to its
unique features. The extra term represents the self-coupling of the gluon fields, that
is, since the gluons carry the colour charge they can interact with themselves pro-
ducing new vertices not present in QED (shown in Section 1.3). The self interaction
terms lead to an amazing feature of QCD known as asymptotic freedom which will
be discussed in Section 1.7.

The second piece of the classical Lagrangian, Lguon can now be constructed. In
an analogous way to QED, a dynamic term for the gluon fields A, is generated from

Ga

%y but we cannot create a gauge invariant mass term for the gluon, they remain

as massless fields. We construct

lge G | (1.11)

['gluon = _4 pv

Combing Lgyark and Lgon gives the complete form of the classical Lagrangian

Yoo g (1.12)

Lelassical = Z@Z(Zﬁ - mq)ijd)f; - 4 H
q

The Lagrangian is not complete at this point. Unfortunately when imposing
the gauge transformation the canonical quantisation of the theory is spoilt. By
allowing the gauge fields A7, the freedom of gauge transformations we are faced with
vanishing canonical momentum, consequently the canonical commutation relation,
essential for quantisation cannot be made consistent. The problem lies with trying
to describe the two physical polarisations of the spin-1 gluon with a four-component

Lorentz vector. The solution to the problem is to eliminate the freedom of the
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gauge transformation by constraining the field A§. This can be done for example

by imposing the Lorentz condition
oA =0. (1.13)

This constraint is imposed explicitly in the Lagrangian by adding a new gauge-fixing
term

1
‘Cgauge-ﬁxing = _E(auAZ)z ) (114)

where ¢ is called the gauge parameter. By adding this term to the Lagrangian
we have spoilt it’s gauge invariance, however, a physical prediction made with the
Lagrangian is gauge invariant and independent of the gauge parameter. Due to the
arbitrariness of £ several choices for this parameter exist. The Landau gauge £ = 0,
the Feynman gauge® £ = 1 and the Unitary gauge £ — oo.

There still remain unphysical degrees of freedom for the gluon fields which we
need to eliminate since we require the gluon to have only two physical polarisations.
To achieve this it is necessary to introduce unphysical anticommuting scalar fields
n® which live in the adjoint representation of SU(3). These fields and their particles
have the wrong spin statistics to be physical particles but must be included in the
Feynman diagrams (see Section 1.3) when we apply perturbation theory to cancel
the unphysical polarisations of the gluon. To describe these so called Faddeev-Popov

ghosts we add a ghost term to the Lagrangian
Eghost = —ﬁa(au(Dp)ab)nb . (115)
In the adjoint representation the covariant derivative takes the form

(Du)ab = Oubap — igs ASTS, , (1.16)

3The Feynman gauge will be adopted in the following work.
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where T are 8 x 8 matrices and satisfy an analogous commutation relation to (1.5)
[T®,T% = ife°Te. (1.17)

The structure constants f% may be used as a representation of the T
TE =ifee. (1.18)

In this form Eq. (1.17) is just the Jacobi identity. Using (1.16) and (1.18) the ghost

Lagrangian (1.15) can be written as

‘Cghost = _ﬁa(a”(D#)ab)nb
= —7%(8%0ap — ig, 0" AST o)1

= —71*(0%0as + ga0" A5, f)1" . (1.19)

We now have all the terms in the full Lagrangian (1.1) — this is the basis for all
theoretical QCD calculations.

The experiments which probe the behaviour of QCD and it’s particles, which we
would like to make theoretical predictions of, are typically scattering experiments.
The likelihood of finding some final state after the interaction (scattering) of two
initial states is determined by the cross section. The scheme for calculating the
cross section is clear, one calculates the matriz elements M of the corresponding
scattering matriz or S-matrix. However, in an interacting theory, such as QCD,
this is not easily done. In fact, there are very few ezactly solvable interacting field
theories. Instead, we have to solve the theory approzimately, the interaction terms of
the Lagrangian are treated as perturbations of the free theory. An expansion of M,
the perturbation series, is made in the coupling constant. If the coupling constant

is small enough then we might expect the perturbative series to be a reasonable
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approximation to the exact result?. Use of Wick’s theorem allows the terms in the
perturbation series to be represented diagrammatically as Feynman diagrams. The
approach therefore, when making a perturbative calculation of the matrix element,
is to construct all possible appropriate Feynman diagrams up to some specific order
in the coupling and sum their contributions. Appropriate factors corresponding to
the lines and vertices, derived from the Lagrangian in the form of Feynman rules,

are used to decorate each diagram with it’s algebraic contribution.

1.3 The Feynman Rules of QCD

As already mentioned, the Feynman rules are used to associate analytic expressions
with Feynman diagrams. The rules are derived from the expansion of the interacting
terms of the Lagrangian (1.1). Each interaction term in the Lagrangian corresponds
to a vertex. There are also the external states and the internal propagating states.

The Feynman rules for QCD are set out below. Applying these rules to the sum
of all appropriate Feynman diagrams will construct i M, the matrix element. We
denote colour indices of quarks with ¢ and j taking values 1, 2, 3 and those of gluons
and ghosts with a, b, ¢ and d taking values 1, ..., 8. The Lorentz indices are u, v,

p and 0. We begin with the external lines

Incoming quark: / = u(p), Outgoing quark: / = a(p),
(1.20)

Incoming antiquark: / = 9(p), Outgoing antiquark: / = v(p),
(1.21)

Incoming gluon: ééﬁf =¢eu(p), Outgoing gluon: ‘666666 =¢,(p).

(1.22)

4The applicabihfy of the perturbation series with regard to the size of the coupling will be
discussed in Section 1.7, for now we assume that we can make the appropriate expansion.
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1. QCD Beginnings

1.3. The Feynman Rules of QCD

Next the propagator rules

Quark propagator:

Gluon propagator:

Ghost propagator:

And finally the interaction vertices

b,v

Three-gluon vertex:

¢, p
c,p b,v
Four-gluon vertex:
d,o a, i
J
Quark-gluon vertex: >m a, j
i
c
“
Ghost-gluon vertex: TS @ [
’
.

— ;(p +2an)' 1 , (1.23)
p* —mg +10
=Tt (gw— (1 — P g
pQHO(Q (1-¢) - ,
(1.24)
i b
= v 1.25
p? + 10 (1.25)
9. [(p1 — p2) g™
= +(p2 — p3)*g"* (1.26)
+(ps — p1)"9"],
_zgz [fabefcde (gypgua _ g/,wgup)
— +facefbde (guugpa _ g;wgup)
+fadefbce (9" 97 — g"g"")],
(1.27)
= 1g9,7"t5; (1.28)
= g, fp" . (1.29)

These must be applied together with the following rules:

i. Integrate over the unconstrained momentum p appearing in each closed loop

dip

(2m)*”

with the measure /

11



1. QCD Beginnings 1.4. Regularisation

ii. Impose momentum conservation at each vertex,
iii. Multiply by a factor of (—1) for every quark and ghost loop,

iv. Multiply by an appropriate symmetry factor to allow for permutations of fields

in a diagram.

Some remarks are necessary. The gluon propagator contains the gauge param-
eter £. As already discussed, a theoretical prediction should not depend on this
parameter. We have chosen to use the Feynman gauge ¢ = 1, however, this param-
eter can be left arbitrary, and indeed its cancellation serves as a strong check on the
gauge independence of a calculation.

Also, each of the propagators contain an ¢0 term. This is known as the Feynman
prescription and is a tool to help deal with the divergences caused by the momentum
in the denominator becoming zero. The issue of divergent diagrams is discussed in

the next Section.

1.4 Regularisation

As soon as we start to apply the Feynman rules to the calculation of physical ampli-
tudes we run into an extremely serious problem, and one that plagues field theories
in general, namely that of divergences. The origins of the problem lie in Feynman
rules which, in particular, require the integration over the unconstrained momenta
appearing in loop diagrams. For clarity, consider, for example, the diagram of Fig-

ure 1.1, the self-energy of the gluon, I (p?).

Figure 1.1: The one-loop correction to the gluon self-energy.

12



1. QCD Beginnings 1.4. Regularisation

Applying the Feynman rules of the previous section we find

/ Ak tr[y*(k + m)y (K +p + my)] (1.30)
( -

i1 (p2) = —g2t5 !
2m)t (K2 —m2)((k + p)? — md)

ij Ly
This integral displays a clear divergence in the limit ¥ — oo, known as an Ultraviolet
(UV) divergence. In this limit it can be seen that the integral diverges quadratically.
In more general integrals, for example, the vertex integral, another type divergence
appears when we consider massless quarks® (m, — 0). This type, called Infrared
(IR), appear in the limit £ — 0. Notice that the IR divergences only occur in the
massless limit or in situations where the propagating particles are massless (i.e. the
same divergences occur for gluon and ghost loops). Keeping a finite mass would
render the integral finite in the ¥ — 0 limit, the mass would regulate the integral.
In this sense IR divergences are sometimes referred to as mass singularities.

The issue of the divergent behaviour of QCD and field theories in general has
historically been a huge problem with regard to making meaningful predictions.
Fortunately, much work has been done to recover finite results from such calcula-
tions. The solutions to removing the two types of divergences are very different.
As we shall see in Section 1.5, the UV divergences are removed by the process of
renormalisation. IR divergences, on the other hand, have the peculiar property that
for appropriately defined observables, they cancel between each other®. This will be
demonstrated more clearly in Section 2.2. The end result of the systematic removal
and cancellation of divergences is that the theoretical calculation of a physical ob-
servable is finite, as one might expect from a meaningful theory! The establishment
of renormalisation and theorems which guarantee the cancellation of IR divergences’
was key to the success of not only QCD but field theories in general.

Having identified the problem of divergences, and with the realisation that they

5We consider the massless quark limit here since it will be adopted in the following work.
8Observables for which the IR divergences cancel are straightforwardly called IR safe.
"The Kinoshita-Lee—Nauenberg [14, 15] and Bloch-Nordsieck theorems [16].
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must be cancelled carefully, a tool is required to deal with then a well defined way.
The technique of manipulating and extracting divergences is called regularisation.
Several prescriptions for the regularisation of integrals have been developed, each
with its own advantages. It is the disadvantages which usually determine the choice,
since many of the prescriptions break the invariances upon which field theory is
constructed.

One such simple scheme is to introduce a cut-off, A in the integration such that
only momentum scales smaller that A are integrated over. This does not respect the
gauge invariance of the theory, and of course, breaks Lorentz invariance, thus is not
suitable for perturbative calculations based on Feynman diagrams.

By far the most commonly used scheme in QCD calculations today is Dimen-
sional Regularisation (DR) [17, 18, 19]. The idea is very simple but perhaps not as
intuitive as that of cut-off regularisation. The Feynman diagrams are treated as an-
alytic functions of space-time dimensionality, D. In lower dimensions the divergent
integrals will in fact converge. The regularisation procedure is then to introduce
D = 4 — 2¢ with € small, make a calculation, and in the final result take the limit
e — 0. The divergent behaviour becomes evident as poles in €. The beauty of
DR it that it respects both gauge and Lorentz invariance. For consistency of the
theory however, we are forced to introduce some additional modifications. Perhaps,
most obviously, is that the measure of integration becomes D-dimensional, not only
in the Feynman integrals but also the phase space integrals. The Lorentz vectors
become D-dimensional, g**g,, = D, as well as the gamma matrices. More subtly,
the dimensionality of the Lagrangian needs to be fixed. By using the dimension as a
regulator, we are forced to introduce an arbitrary mass scale y — the regularisation
scale, made effective by the replacement g, — ug;. In Conventional Dimensional
Regularisation (CDR) no distinction is made between real and virtual particles,

additionally, quarks have two helicity states and gluons D — 2.
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1. QCD Beginnings 1.5. Renormalisation

1.5 Renormalisation

Having been regulated, the perturbative expression for an observable explicitly dis-
plays the divergent dependence on the regulating parameter, which for CDR will be
manifest as poles in e. Renormalisation is the process whereby we extract the diver-
gences due to the UV behaviour of the theory. A theory in which UV divergences
can be removed by renormalisation is therefore called a renormalisable theory. QCD
is one such theory [17].

The principle idea of renormalisation is that the Lagrangian and ultimately the
Feynman rules are derived in terms of so-called bare parameters, these parameters are
just the fields, couplings and masses (and also the non-physical gauge parameter).
The bare parameters are not physically observable and are hence subject to possible
rescaling. Using the freedom to rescale the unobservable parameters enables us
to reconstruct the Lagrangian with physical parameters, that is, those which are
experimentally observable. This is achieved by rewriting all bare parameters in the

Lagrangian as renormalised parameters with an appropriate multiplicative factor

i 2
Ybo = 2y ¥,

o 1/2 4a

Op — A/ Au’

9os = Z4 s (1.31)

m():me,

Each term on the left-hand side represents a bare parameter whilst those on the
right represent renormalised parameters. The renormalisation constants, Z, absorb
the UV divergences and hence represent infinite quantities. If the UV divergences
can be absorbed into the renormalisation constants order by order in the perturba-

tive series, then the theory is renormalisable. The divergences of a renormalisable
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1. QCD Beginnings 1.6. Renormalisation Group Equations

field theory will not remain in observable quantities. In practise, the multiplicative
renormalisation constants do not affect the perturbative expansion of the action (it
is effectively a rescaling of parameters) we therefore find that the Feynman rules
survive unchanged — except that they should now be considered functions of the
physical parameters.

The prescription for renormalisation is not uniquely defined. As well as absorb-
ing the singular structure into the multiplicative factors, it is also equally valid to
absorb some of the finite structure as well. This arbitrariness leads to different
renormalisation schemes. For example, in the Minimal Subtraction (MS) scheme
(when using CDR) the 1/e poles are simply removed. We usually find though, that

the poles in 1/€ are accompanied by finite terms in the following combination

)eexp(—em)

4
(47 -

=2 +In(dm) — 5+ O (). (132)

where yg = 0.5772... is the Euler-Mascheroni constant. In the modified Minimal
Subtraction scheme (MS) we remove the 1/e poles as well as all the finite terms
appearing in the right-hand side of (1.32).

The dependence of physical observables on renormalisation scheme is slightly

more subtle and leads us to discuss the renormalisation group equations.

1.6 Renormalisation Group Equations

Recall that CDR requires the introduction of an artificial mass scale, y to maintain
the correct dimensions of the Lagrangian. As a consequence, every physical quantity
R depends not only on the coupling g,® and the masses m,, but also on the scale u.

In general, o, (g,) and m, will also depend on p. If R is a dimensionless observable

8Since the ratio g2/4m appears in many calculations it is conventional to define a, = g2 /4.

16



1. QCD Beginnings 1.7. The Running Coupling

measured at an energy scale ) then it will have the following form

R = R(as(p®), mg(1?), @°/11%) . (1.33)

Since the scale pu is entirely arbitrary, it cannot be related to any physical observable,
hence physical observables should be invariant under the exchange p — p’. This

invariance can be imposed by the following condition

AR (s, mg, @2/ 1i?)
Iz a2

0
+u28_[,l/2 R(asaman2//J’2) = 0? (134)

=0

0 0
2 _ 2
B 5 = Ve (1)

q

which defines the renormalisation coefficients $ and <y, the 8 function and anoma-

lous dimension. These coeflicients take the form

500, = —,uzi omy
ou2’ ma mg Ou?

Bu?) = p (1.35)

These equations represent the Renormalisation Group Equations (RGE). The solu-
tion of the differential equations (1.35) reveal two fundamental properties of QCD
— the running coupling, o, = a,(Q?*) and running masses, m, = my(Q?). Since we
shall be considering massless quarks in further discussions we will ignore the mass
dependence for now and concentrate on the 8 function and its consequences for the

running coupling.

1.7 The Running Coupling Constant a,(Q?)

The renormalisation group equation for the running coupling constant (1.35) leads

to the following differential equation

Oa Oa
2 s _ 8 _
/'L 6“2 - (?ln[,bz - B(as)' (136)
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It is easier to consider the equation in its integral form

2 aa(Q) d
In (Q—2> =/ = (1.37)
12 as(u) ﬁ(a)
This equation governs the evolution of the coupling constant from one scale u to

another scale (). The solution to this equation can be approximately found when

the QCD f function is expanded as a perturbative series in o,

:B(as) _ Qs 2 O, 3 4
on = P (%) _’Bl<27r) —0 (), (1.38)
where
11C,4 — 4TxN
Bo=—4 - RE (1.39)
17C 4% — 10CoTrNp — 6CrTrN
,312 A Alé F FL{R F’ (1.40)

with Nr (active) quark flavours and QCD colour factors

N? -1

=N =
CA 3 CF 2N

and Tgp= (1.41)

1
5
If we solve Equation (1.37) to first order (i.e. keeping only the first Gy term in (1.38))
we get

2 CVS(/‘Z)
(@) = T30 (Bo/ 20 W (@) (142

This result, defining the running coupling a,(Q?) has important consequences for

QCD. The parameter fy given in Equation (1.39) is positive for Np < 16, this means
that for QCD (with no more than 6 possible active quark flavors) the value of o,
decreases as () increases. This property, whereby the coupling is decreasing with
increasing energy is known as asymptotic freedom. Also importantly, this equation

makes no prediction for the value of ;. a; must be measured at some energy scale,
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1. QCD Beginnings 1.7. The Running Coupling

typically the Z boson mass a,(M,), then the running equation (1.42) enables the
coupling to be evolved to a different scale.
It is convenient to re-express the definition of the running coupling a,(Q?) in

terms of a dimensionful parameter, A which is the constant of integration defined

In (%) __ /a :Q) %. (1.43)

A represents the scale at which the coupling would diverge if extrapolated too far

by

beyond the perturbative regime. The running coupling becomes

1

(Bo/27) In (Q2/A2) (1.44)

QS(QQ) =

This notation is generally disfavoured since the value of A is scheme dependent and
depends on the number of active quark flavours. In the MS scheme with five active
quarks we find A15\71§ ~ 208 MeV [7]. We are now able to comment on the applica-
bility of applying perturbation theory to make meaningful QCD predictions. With
the running coupling decreasing with increasing energy we expect that perturba-
tive calculations will be applicable in the high energy regime. Note that this is in
complete contrast to QED for which the 8 function has the opposite sign [1]. For
QED perturbative calculations are only applicable in the low energy regime. We
expect the perturbative expansion to become less reliable as the energy decreases
and approaches A, i.e. energies of the order of several hundred MeV.

Finally, we can define the full relation between the bare coupling oy and the
renormalised coupling o, = o, (u?), evaluated at the renormalisation scale p?. The

relation between the two couplings just comes from Equation (1.31)
Jostty = Zogolt® = oy’ = Zga.p™, (1.45)

where we have now included the scales po and g which are required in the DR
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procedure to give the Lagrangian the correct dimensions. Thus, to find the relation
between the couplings we see from (1.45) that we need to make a perturbative
calculation of the renormalisation coefficient, Z,;. In the MS scheme we find

Qop2S. = g [1 _b (a—) + (ﬂ—g - &> (ﬁ)2 + O(ai)] , (1.46)

€ \27 2T 27

where

S. = (4m)ce e (1.47)

and By and B, are the first two coefficients of the QCD f-function defined by Equa-
tions (1.39) and (1.40). To avoid confusing notation we take pp = p unless otherwise

mentioned.

1.8 Higher Order Corrections — from NLO to

NNLO

So far we have indicated that theoretical calculations in QCD can be carried out
perturbatively for small coupling corresponding to the high energy regime. In prin-
ciple there are an infinite number of terms in the perturbative expansion, in practise,
we can only calculate a finite number of them. This computational limit has im-
portant consequences when it comes to matching theoretical predictions to physical
observations.

The most obvious consequence of ignoring higher orders is that the theoretical
prediction has some uncertainty due to these missing higher orders. We need to have
some idea of how large the missing orders are, in order that we can safely ‘ignore’
them, or determine an uncertainty due to them. This problem is important when,
for example, measuring parameters of the theory. In QCD the strong coupling a,

is a free parameter and must be determined by comparing experimentally measured

20
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quantities to their predictions. To determine «, as accurately as possible we would
thus like to know as many of the higher order terms as possible. Uncertainties in

higher orders are directly reflected as an uncertainty in a.

1.8.1 Scale Dependence

A slightly more subtle effect of truncating the perturbative series is that of scale
dependence. Scale dependence is a consequence of the coupling constant ¢, and the
perturbative coefficients being functions of the unphysical scale p. This idea led to
the RGEs (Section 1.6) by imposing that physical observables should be independent

of this scale. Consider the perturbative expansion of a general observable

Rea(p?), @ /1®) = ra(@*/pP)aa(u®)". (1.48)

We can consider the effect of truncation of the perturbative series (to say, N terms)

by calculating its © dependence

d « 2/ 2 2\n d > 2, 3 . Mot
dln'u? ;rn(Q //'L )as(iu' ) - _dln,u2 nz%;lrn(Q /p, )as(l-ll ) ~ O (as ) ,

(1.49)
where we have employed the RGE (1.34). It can be seen that the truncated series (on
the Lh.s. of (1.49)) is dependent on the scale p as determined by the absent higher
order terms on the r.h.s. of (1.49). In other words, truncation of the perturbative
series destroys the cancellation of the scale dependence between different orders.
This unphysical dependence decreases as more terms are added to the truncated
series (N — oo). Figure 1.2 shows the scale dependence at Leading Order (LO),
Next-to-Leading Order (NLO) and NNLO of the differential cross-section for single
jet production (pp — jet), where each jet has transverse momentum E7 = 100 GeV.
For renormalisation scales up to twice the transverse energy the effect of the higher

orders is to reduce the uncertainty from around 20% to 9% to 1%. Figure 1.3 is

21







1. QCD Beginnings 1.8. From NLO to NNLO

1.8.2 Jets and Event Shapes

In typical ete™ annihilation experiments a QCD final state will always consist of a
discrete number of sprays of hadrons. Within these discrete sprays, the most highly
energetic particles are well collimated and separated by only a few tenths of a radian.
Jets, as these sprays are known, are a direct consequence of confinement, that is, the
idea based on experimental observation, that no coloured physical states exist. The
implication of confinement is that the partons in the final states of a perturbative
calculation must undergo a non-perturbative process known as hadronisation. This
is the process whereby a coloured parton ‘fragments’ into series of non-coloured
hadrons. It is because the produced hadrons remain collimated and reflect the
original path of the underlying parton that we can use experimental observations to
test perturbative predictions. In fact, the clear observation of two-jet, back-to-back
final states at PETRA confirmed the ideas of the parton model developed from deep
inelastic scattering.

An accurate description of jet physics and the modelling of jets requires the
addition of higher order corrections. After fragmentation there is clearly a mismatch
between the number of hadrons and the number of partons in an event. Better jet
reconstruction can be achieved at higher orders where more partons can be combined
to construct jets. As Figure 1.4 demonstrates, as we move to higher orders the
perturbative structure of a jet is refined. At LO an individual parton models a jet
giving no prediction for the size of the jet. At NLO two partons may be combined
to form a jet, giving some sensitivity to the shape and size of the jet. NNLO will
help to better improve the sensitivity allowing three partons to be combined to form
a single jet.

Many techniques have been developed to quantify and describe jet structure,
these jet observables are generically called event shapes. A typical example of an

event shape is Thrust, T. Thrust is essentially a measure of how ‘pencil-like’ an
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LO NLO NNLO

Figure 1.4: Schematic representation of how higher order calculations allow

more partons to be used in the construction jet cones, thus giving a more

accurate perturbative jet description.
event is, a back to back two jet-event has 7" = 1 and a completely spherical event
has T = !/,. Other examples of event shapes are spherocity and the C-parameter [2].

Among jet observables, the three-jet production rate in electron-positron anni-
hilation plays an outstanding role. The experimental observation of three-jet events
at PETRA [20], in agreement with the theoretical prediction [21], provided the first
evidence for the gluon, interpreted as the result of bremftrahlung from a quark-
antiquark pair. The observation of three-jet events as a departure from the domi-
nant simple two-jet configuration is proportional to the coupling of gluons to quarks,
consequently the three-jet rate and related event shape observables have become im-
portant experimental tools for the precise determination of strong coupling o, see
for example [22] for a review. At present, the error on the extraction of ¢, from
data is dominated by the uncertainty in the NLO calculation [23, 24, 25, 26] of the

jet observables.

1.8.3 Power Corrections

At present, comparisons between NLO data and experimental data reveal the need
for power corrections. In ete™ annihilation the NLO prediction of the average value
for 1 — Thrust lies well below the experimentally determined data. The difference is

accounted for by 1/ power corrections. The general form of the power correction
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is theoretically motivated but the magnitude must be extracted from data, and can
also be attributed to missing higher orders. The addition of NNLO calculations
should reduce the size of the power correction needed to fit data.

To see this slightly more clearly we can construct a model. We assume that the

average value of 1 — T' can be approximated by the series

(1—T) = 0.330,(Q) + 1.000,(Q)? + A30,(Q)® + =, (1.50)

Q| >

where A represents the size of the power corrections. The running coupling is given

by Equation (1.44) which for five active quark flavours becomes

6m

Ot.q(Q) = m ’

(1.51)

with A ~ 208 MeV. Figure 1.5 shows the NLO prediction with no power correction
Az =0, A = 0 and the NLO prediction with a power correction A3 =0, A =1 GeV
which we assume to model the actual data. At present the NNLO coefficient A3
is not known. If we assume that it is positive then this contribution will actually
reduce the size of the power correction needed to fit the data. For example, if we
assume that A = 3 then the NLO prediction with the power correction can be fitted
with a power correction of the same form, but A = 0.6 GeV. In effect, the power

corrections 1/ are being exchanged for a 1/log®>(Q/A) contribution.

1.9 Summary

We have presented a very brief but broad overview of the basic elements of the theory
of QCD. The aim, to introduce some of the more important tools and techniques
which will be used in the following work. The main idea is that we can make a
perturbative calculation by means of Feynman diagrams. The running coupling for

QCD means that these perturbative calculations should be valid in the high energy
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(1-7)

0 50 100 150 200
Q GeV

Figure 1.5: The average value of (1 — T') showing the NLO prediction (red),

the NLO prediction with a power correction of A = 1 GeV (green) and an

NNLO prediction with A3 =3 and A = 0.6 GeV (blue).
regime. In general, calculations are usually both IR and UV divergent but by using
regularisation and renormalisation these divergences can be brought under control
and meaningful predictions made.

Hopefully, the necessity of higher order corrections in perturbative calculations
has been demonstrated by the need for increased accuracy, reduction of scale depen-
dence and improved jet description. As we move toward the future, experimental
data is set to become more precise as machines improve and statistics increase. Ma-
chines like the planned TESLA [27] linear e*e~ collider will allow precision QCD
studies at even higher energies than LEP. The ep — (2 + 1) jets and related event
shape observables have already reached a level of precision demanding predictions
beyond NLO accuracy; further improvement on data is expected from the HERA
high luminosity programme.

With these thoughts in mind it is appropriate to introduce the work to be carried
out in this thesis. For a long time the evaluation of NNLO corrections to the three-

jet rate in e*e” annihilation has been considered an important project [28], the

reasons for which have just been described. As we shall see in Chapter 4 there are
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several components to the full calculation of this process. In this work we focus on
one particular contribution, which has for a long time proved an obstacle, namely,
we calculate the two-loop (as well as one-loop times one-loop) amplitudes for the
v* — gqg matrix elements.

The main hurdle has been the evaluation of the many Feynman diagrams and
associated loop integrals. This has only become tractable in the past two years
due to various technical developments. In particular the systematic application of
integration-by-parts relations to reduce the large number of loop integrals to a much
smaller basis set of so-called master integrals. In parallel with this we have seen the
evaluation of all the master integrals, both planar and non-planar, required for this
particular process. This was brought about by the development of techniques for
calculating master integrals with differential equations, and the systematic solution
of such systems of differential equations. With these two main developments, the
necessary tools for the evaluation of the two-loop amplitudes for the v* — qgg
matrix elements were in place and made such a calculation possible.

We begin in Chapter 2 with an example calculation of the matrix elements for
v* — ¢q. This provides an overview of the various steps for calculating a matrix
element. From the result we obtain the R¢"®” ratio and see how higher order correc-
tions improve the accuracy of the perturbative prediction. In particular we see how
the IR divergences combine in a physical observable to produce finite predictions.
This leads to the general discussion of the singular behaviour of matrix elements
and we present the results of Catani and Seymour which predict the IR singular
behaviour of one- and two-loop matrix elements.

In Chapter 3 we provide the tools to deal with loop integrals. Among these
tools we consider the technique of integration-by-parts to reduce a large number of
complicated integrals to a small set of simpler master integrals. Based on the work of
Laporta we describe an algorithm for the automated solution of the integration-by-

parts identities. We also review the techniques for calculating loop integrals directly
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and in particular we show how to construct differential equations for loop integrals
and how these can be used to calculate the master integrals.

With the necessary tools in place, we present in Chapter 4 the full matrix element
calculation of v* — ¢gg. In this Chapter we show all the contributing Feynman
diagrams and construct the insertion operator for this process. We present the
results for the one-loop times one-loop and two-loop times tree contributions and
verify that their pole structure agrees with the prediction of Catani and Seymour.
Chapter 5 is complementary to this work and here we present the helicity amplitude
for v* — qqgg, again we verify that the pole structure is in agreement with the
prediction.

Finally we conclude in Chapter 6 and give an overview of the steps still required
to take the matrix element presented in this thesis and make physical predictions for
observables at NNLO. We also provide an outlook to future work and other related

projects which stem from this thesis.
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CHAPTER 2

Matrix Elements

2.1 Introduction

From our basic discussion of QCD we have seen that a perturbative calculation
involves the calculation of Matrix Elements (ME) through Feynman diagrams. We
begin this chapter on MEs by looking at a simple example calculation of ete™ —
gq + X. We will introduce NLO corrections to this process in the form of both
real and virtual emissions. This will serve as a demonstration of the calculation
which we are tying to achieve at NNLO. In particular, we will see the appearance
of IR divergences. We will see that the complete calculation is finite, as guaranteed
by the KLN and BN theorems. We are naturally led to the concept of an IR safe
observable. We begin the discussion of the NNLO ME by considering in more detail
the cancellation of the IR divergences. We study the algorithm proposed by Catani
and Seymour for predicting the IR singular behaviour of one-loop amplitudes as
well as the extension to two-loop amplitudes made by Catani. These tools will serve
as an important check for our following calculations. Using the prediction we are

able to check the pole structure of our MEs which will enable us to guarantee the

cancellation of poles when the total cross section is constructed.
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2.2 Infrared Divergences

One of the most straightforward predictions in perturbative QCD is for Re'e” | the
ratio of the total ete~ hadronic cross section to the muon pair production cross
section. The calculation of the full cross section for ete™ — p*u~ is a simple one.

At an energy scale /s far below the Z pole (i.e. v/s < Mjz) one finds [3]

0 Ao
o

ete-optp— = 3s '

(2.1)

where « is the QED coupling. In e*e™ annihilation it is also possible to produce
hadrons in the final state. However, we know that the formation of the observed
hadrons in the final state is not described by perturbation theory. We are able
to make a perturbative prediction for this process due to the factorisation of the
short-scale physics (the perturbative cross section) and the large-scale physics (the
formation of hadrons from partons — hadronisation). In this way we consider the
cross section for ete™ — hadrons by calculating the inclusive perturbative cross
section for ete™ — g7 + X.

In this Section we begin by showing the perturbative calculation of the cross
section for the process ete™ — ¢g+X by construction of the MEs and the integration
over phase space. We extend the calculation to higher orders to demonstrate the
appearance and eventual cancellation of IR divergences. To do this will require that
we calculate both the real and virtual corrections to ete™ — ¢ + X at NLO and
show explicitly how the divergences combine to yield a finite result.

The calculation of the total cross section for ete™ — qg + X involves two steps.
The first is to calculate the ME for the process, the second is to integrate the ME
over all phase-space. We know that the ME can be calculated perturbatively® as

an expansion in the coupling constant (which for this process is a;). If we work to

1We are only interested in performing a perturbative expansion on the final ¢g state, we ignore
corrections to the initial state.
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O (a?) then there are two contributions to ete™ — q7 + X,
Mag) = IMZ) +IMG) + 0 (a2), (2:2)

and

(Magg) = IM) + O (o) . (2.3)

The notation | M) and |Mg,) leads us to mention a simplification which we will
make in this and all following calculations, namely, for practical purposes we will
only be calculating the matrix elements for v* — ¢G+ X rather than ete™ — g7+ X.
The reason for doing this is so that we can concentrate on the important part of
the calculation, the QCD ¢ + X final state. We are able to do this since the
initial electron current (e*e™ — ~*) factors out of the cross section and ultimately
cancels completely when we calculate the R®"¢™ ratio (both ete~ — p*u~ and
ete”™ — ¢d + X have exactly the same initial state configuration and kinematic

dependence). Thus,

Re+e— _ O¢te— —hadrons _ Octe— g+ X — Oy* g+ X . (24)

o-e+e—_)“+“— ae+e—__)"+“— 0‘7*_)/1'_’—”'—

With this in mind, one obtains the cross section,
Ogq+X = 7‘-/ D (Magsx|Mygix) dll, (2.5)
spin, col

and where dIl, is the differential n body phase-space. F represents a fluz factor
for the incoming particles and integration over the initial state. As we have just
explained, this factor ultimately cancels in the final result. Using (2.2) we can

expand the ¢§ component of the cross section (2.5) in the coupling constant,

Og =005+ 00g + O (), (2.6)
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where

=7 3 (MGG an e

spin, col

and

_j_-/z[ MO IMED) + (M| M) drt,

spin, col
-Fl S 2%[M53)|M“)>] (2.8)
spin, col

We can use (2.3) to expand the gdg component of the cross section (2.5) in the
coupling constant,

Oqqg = qug + 0 (ag) ) (2.9)

where

0
P =F [ 3 (MM (2.10)
spin, col
In Section 2.2.1 we calculate aqq, in Section 2.2.2 we calculate a and in Section 2.2.2

we calculate aqqg

2.2.1 ete” — qd + X at Leading Order

We begin with the lowest order contribution to the process, or LO, that is, |M<(1%)>v
there is no contribution from |ng?q) since this is one order higher in o, and con-
tributes to the NLO calculation. At this level only one Feynman diagram con-
tributes, shown in Figure 2.1. Note that we have only shown the v* — ¢g part of
the diagram for the reason already mentioned. It is a simple task to calculate the
amplitude for this diagram. After simple application of the Feynman rules (Sec-

tion 1.3) we get

iIMD) = a(ps)(—iegy")env(m) (2.11)
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y 4!
v (ew)
Q
D2
q

Figure 2.1: Feynman diagram for ete~ — ¢q at leading order.

with e, the quark charge and ¢, the photon polarisation. We square the amplitude

and sum over spins and colours (and kinematically accessible flavours) giving

ST MMy = NI ST e lap)rup)ae)r upe)ecl]  (2.12)

spin, col spin ¢

=-NY_etr[prnpe] (2.13)

where N is the number of colours and the sum over ¢ runs over all quarks which are
accessible at a scale (). Notice that we have taken the massless quark limit, m, — 0
in this expression (the mass should appear in the spin sum rules). We have also

made use of the following identity
Z €€y = —Yuv (2.14)
polarisations

to sum over the polarisation states of the virtual photon. The trace is easily per-
formed. If we work in CDR then we must apply the Clifford algebra in D dimensions.

The squared amplitude becomes

S MPIM) =2(D - 2)sN Y €2, (2.15)
q

spin, col

where we have introduced the shorthand notation

s=Q*= (p1 +p2)? = 2p1 - P2 (for massless particles). (2.16)
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The next step of the calculation is to integrate the ME over phase-space. The

integral over the phase-space for two particles is,

/ dIl, = gl—,r% (%’1)2_13/2 / dS5(S — s), (2.17)
_ %1321—__2?) (%’r)e/ds&(s _s). (2.18)

0

Combining all the terms of (2.7) and integrating gives the LO cross section o,

o D—2)[(D/2-1) [4r\ P/ )
00 = 7l F()D(_ é) )<?) qu:eq. (2.19)

Substituting D = 4 — 2¢

0o ~(2=2I'(1 =€) ;5 \1-¢ 9
%= F T30 (=) N;eq, (2.20)

we see that we can safely take the ¢ — 0 limit giving the final result,

s
agq = f%N Zeg. (2.21)
q

As we have discussed, it is traditional to present the result in the form of the Re"e”

ratio

Rpete — TeteroaatX _ TvioegtX NZeg (14 O (as)) - (2.22)
q

Oete—ptp=  Oyroptps
If we consider energies below the Z exchange threshold /s <« My, and assume
that we excite ¢ = u, d, ¢, s, b then R*™™ = 11/3 = 3.67. At /s = 34 GeV
the experimentally determined value is RZ:;_ = 3.92. One can also calculate the

contribution to the cross section from Z — ¢g, however the correction is small and

our ME result is still some 5% lower than the experimental value. To try to reduce

2 As mentioned in Chapter 1, the experimental determination of Re*¢ is a direct measurement
of the number of quark colours IV, as seen by Equation (2.22), thus establishing the fact that there
are indeed & colours.
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this discrepancy we must calculate the next order in the perturbative expansion, i.e.

the O (a;) contribution to (2.22).

2.2.2 ete” — q4 + X at Next-to-Leading Order

We now begin to work at the next order in the perturbative expansion, NLO. We see
from expression (2.8) for the cross section o, at this order that we need to include
the interference of the LO and the one-loop virtual ME. In the next section we look

at this contribution.

Virtual Emissions: The One-Loop Correction to v* — q@

At NLO we get our first contribution from loop-diagrams, for this process we need
to calculate a one-loop integral. There is only one type of contribution to virtual
emission for the process ete™ — ¢, corresponding to the emission of a gluon from

3

the outgoing quark which is absorbed by the outgoing anti-quark (and vice-versa)®.

This one-loop diagram is shown in Figure 2.2. We apply the Feynman rules as before,

Y41 q
v 0 k1
D2 q

Figure 2.2: Virtual emission contribution to ete~ — ¢g at NLO.

remembering that we are calculating the interference of LO and virtual diagrams,

S (MPIMY) = a,CpN Y €222 Dy1-D/2
q

spin, col

) /del tr [k + $2)7" (b = P vaprnsts]

2.23
WDl Rk — p0P (ks + p)? (229

3In fact, there are additional graphs in which the (anti)quark emits and reabsorbs a gluon.
These are zero in CDR but must be included in other regularisation schemes.
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We can see that this integral is divergent when any factor in the denominator be-
comes zero. This type of divergence occurs for small values of the loop momenta k;
and is hence called an infrared divergent integral. At first sight these integrals ap-
pear to kill our calculation — the result of these integrals will render the prediction
for the cross section infinite. As we will see in the next section, we are missing a
vital contribution to our calculation which in fact renders the complete cross section
IR finite. For now we continue to evaluate the expression.

The trace in (2.23) can be calculated and gives rise to terms of the form k; - p;,

ko-p2, k? etc. The integrals we are faced with calculating have the following structure:

/del ! scalar
iwD/2 k2 (ky — p1)2(k1 + p2)? ’

scalar — pinched,

/ dPk, ’714

i D/2
m / ]%(kl_pl)2(kl+p2)2

/de1 kL
P | ro7 k2 (ki — p1)?(ky + p2)?

/ dDIc1 k{‘k‘l’ tensor.
PraP2v | 5D 13 (ky — p1)2(ky + pa)?

At present we do not have the tools to calculate such integrals, these will be discussed
in Chapter 3.
The integrations can be performed and the infrared divergences become manifest

as poles in the regulating parameter e:

(0) Ly 2 —enl+2¢, —1+€_,1-€,,2¢ 1—e¢
Z <Mq<7 |qu>—asCFN2q:€q(—1) plt2ep—ltegle, (_1_26>

spin, col

In (2.24) we have factored out a combination of gamma functions, these are finite
in the € — 0 limit
['(1+4€)T?%(1 —¢)
I'(1 — 2¢)

=1+0(e). (2.25)
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The next step is to proceed to calculate o,; by equation (2.8)

O =F / D W [<M§%)IM§?>] dll; . (2.26)

spin, col

Integrating (2.24) over the two body phase-space given by (2.18) results in
2 €
1 0 ~ Os (4T 2 (=3+2vg)
0oL (Y | 2 \ToTATE)
Tqg = 9qg“Fo ( s ) [ 2T p

+(-8- (e —-3)+70)+0()|.  (2.27)

Notice that we have factored out o in (2.27). This expression clearly demonstrates
the appearance of infrared divergences in loop calculations. In the next Section
we will calculate terms which will ultimately cancel this divergence allowing us to

compute a finite cross section.

Real Emissions: The Tree-level ggg Contribution

We have seen that the simple calculation of ete™ — ¢ to NLO with only virtual
corrections leads to a divergent result. We know that the cross section must be
finite (it is experimentally measurable) so we are clearly not including all effects
in our calculation, we do not have a suitably defined inclusive cross section. The
missing contribution to the calculation comes from the radiation of real gluons from
the quark and antiquark. We will discuss later in section 2.2.3 why it is valid (and
necessary) to include these terms in our calculation. For now we assume that they
are required and complete the calculation.

At NLO there are two contributions to real emission for the process ete~ —
qq, each one corresponding to the emission of a gluon from the outgoing quark
and antiquark. These are shown in Figure 2.3. Since this process is not a loop-
process we label the ME |M,(1%)g). The cross section has a similar structure to that

of equation (2.7) except that there are now three particles in the final state and we
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Yy

y4l
Y * Q Dy [ ’)’* Dy g
b2 D2

Figure 2.3: Real gluon emission contribution to ete™ — ¢¢ at NLO.

must use the appropriate phase-space:

0%, =F / 3 (MDIMD Y drt, . (2.28)

spin, col

Applying the Feynman rules and summing over spins and colours gives the squared

matrix element

0 0 e I II
SP;,CMW%)Q'M‘(”)") _ dray? CFN; 2 [ T BT
N 111 LV
(2p2 - pg)(2p1 - Pg) (292 Pg)?)
(2.29)

where I, II, III and IV represent trace terms. Note that I is the same as IV and

IT is the same as III under the exchange p; <+ ps. The traces are:
I= tr[(zh + Po)Vupr7r" (P + ;z’g)mpw”]
= 8(D — 2)*(p1 - pg)(p2 - o) , (2.30)

IL = tr[7*(1 + Po) 7V Prvalpa + o) vt
=8(D - 2) [2(101 - p2) + 2((p1 - pg) + (P2 - pg)) (D1 - P2)

+ (D —4)(p1 - py)(p2 -pg)]- (2.31)
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For this calculation it is convenient to define energy fractions z; :

204 - 29, - 2. -
=20 g, C g Pl (232)

where by energy conservation we must have

3
» z=2. (2.33)
=1

In terms of the z;, (2.29) becomes

S (MQIMY) = 8nau®CrN Y €X(D - 2)
q

spin, col

1l—zy 1—1z Ty +x2—1
X [(D_2)(1—w2+1—$1)+4(1—x1)(1—m2)+2(D_4) . (2.34)

We have used (2.33) and chosen to eliminate the fraction 3, writing the result in
terms of z; and xz3. The next step is to integrate over the three body phase-space.

In terms of x; the phase-space is

/ alls = 12;7r3 (2 - 2¢) (%)2/ [li dei (1= x")_el 5<2 - ém) - (235)

We see in a similar way to which the virtual contribution diverges when we perform

the loop integration that the real contribution (2.34) diverges when integrated over
phase-space. That is there exist singular regions in phase space. To understand
this more clearly, it is more demonstrative to express the momentum fractions z; in

terms of the angle between the quark (antiquark) and gluon, 84 (64):

2F,F,

l—z = (1 —cosfy). (2.36)

2E,F,
; (1 — cosfyg) and 1-—2zp=

We now see the physical origins of the divergences. The factors 1 —z; in the denom-

inator of (2.34) vanish when E; — 0 — the gluon becomes soft and when 6, — 0
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or 05, — 0 — the quark (antiquark) and gluon become collinear. Since we have
regulated expressions in D = 4 — 2¢ these singularities will become manifest as poles
in e. The integrations over z; are easily performed, resulting in the cross section

s [4mu\° 2 3-2
0'0 =02170F9"(7;u> |:+_+M

99 2T 62 €

+ (3 +mte-9-16) +0@]. @3

We have factored out the LO cross section agq just as we did for the virtual contri-
bution.
In the next section we see how the combination of the real and virtual cross

sections combine to yield a finite result.

2.2.3 Cancellation of IR Divergences

We have seen that the simple perturbative expansion of the cross section for ete™ —
qq yields an infrared divergent result when we start to include higher order contri-
butions, in particular the virtual contributions diverge due to the loop integration.

It was proposed, and shown by example, that the calculation of the cross section
is incomplete if only virtual contributions are taken into account, the full, finite
cross section is found with the addition of an extra contribution from real gluon
emission., i.e. we must calculate ee™ — ¢§ + X. To finish the calculation we take

the results for the two separate divergent contributions, the virtual contribution, a,}q

0

from Equation (2.27) and real contribution o, from Equation (2.37) and we see

that the sum of these two contributions is indeed finite in the ¢ — 0 limit.

Tgdrx = Pj%("ga + 04+ Oggg) + O (), (2.38)

ol [1+ 2 +0(e?). (2.39)
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This gives the NLO correction to the R¢"¢” ratio
ete~ Qs
RIS =NY e2[1+2+0(ad)]. (2.40)
q

Taking a value of o, = 0.15 gives R¢"¢”= 3.84 which is in better agreement with the
experimental measurement jo;‘: 3.9 taken at an energy /s = 34 GeV. This simple
example shows how the addition of higher order corrections improve the theoretical
prediction of physical observables. One can imagine that adding additional higher
orders would yield an even more accurate prediction.

More importantly, we now discuss in more detail the cancellation of the IR
divergences. The cancellation of the divergences seems at first sight curious and
unmotivated but as one expects it is not. The cancellation of divergences of this
form is in fact common to all higher order calculations.

The divergence of the ete™ — ¢q cross-secfion shows that we cannot calculate
this as an ezclusive process. To calculate ete~ — hadrons we should calculate
ete” — @ + X which is suitably inclusive and finite. We have seen that the diver-
gences of the real amplitude occurred for particular configurations of the partons in
phase space — when the gluon and (anti)quark become collinear or when the gluon
becomes soft. We know experimentally about confinement which is the observation
that no physical states are coloured. In experiments we do not observe the partons
but jets. Jets are collimated beams of colourless hadrons produced by the hadroni-
sation of partons. After the hadronisation process the soft and collinear particles
become indistinguishably mixed into the jets — at least at the level of experimental
detection which is limited by finite angular and energy resolutions, see Figure 2.4. In
other words, when the gluon is very soft or collinear, the ggg state is ‘mistaken’ for
a qq state. What we measure in a detector, the observable cross section is therefore
finite and independent of the unphysical singular regions.

The general cancellation of IR divergences between the soft and collinear and
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Q)
S]]
L]

q q q
Soft gluon emission Collinear gluon emission Virtual gluon emission

Figure 2.4: The configurations whereby the gluon is either soft or collinear

are kinematically degenerate to the virtual gluon contribution and cannot

be distinguished experimentally — the jet structure is identical.
the virtual contributions is guaranteed be the Kinoshita—Lee-Nauenberg [14, 15] and
Bloch—Nordsieck [16] theorems. These theorems state that for a well defined, suit-
ably inclusive observable, i.e. one which takes into account all degenerate, physically
indistinguishable states, will be finite. Quantities for which this true are called IR
safe observables. We have already calculated on such observable, the inclusive cross-
section for e*e~ — hadrons.

The IR divergences cancel order by order in the perturbative series. For this
reason their structure is predictable. In the following Sections we look at the idea

and tools developed by Catani and Seymour to make such a prediction.

2.3 Matrix Elements in Colour Space

Having seen an example of how IR divergences appear in the calculation of ME
and how the different components of the calculation ‘conspire’ to cancel these diver-
gences, it is useful to study their structure in a more general way. In this Section
we look at an important tool developed by Catani and Seymour [26] which enables
us to predict the pole structure of IR divergent amplitudes.

Before the discussion of the IR divergent structure it is necessary to introduce
the idea of MEs in colour space. In this discussion we follow closely the notation
presented in [26].

We begin by considering the tree-level amplitude with m QCD partons in the
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final state®. It has the following structure:

M'frll,’..',cm;51,“"sm (pl’ . ,pm) = Mgv"'ycﬂl;slr-'ysm({p}) , (2.41)
where {cy,...,cn} are the colour indices, {s1,...,Sn} are the spins or helicities and

{p1,...,pm} the momenta. In particular, ¢, = {i} = 1,2,3 for (anti)quarks and
¢, ={a} =1,...,8 for gluons, also, s, = 1,2 for (anti)quarks and s, =1,...,D—2
for gluons.

Since the amplitude is a function of the colours and helicities we can consider the
amplitude living in a colour + helicity space. We introduce a basis {|c1,...,cm) ®

|$1,--.,8m)} such that

Mgemisen(p}) = (e, 0m © (51,0 ml) (). (242)

In general, we would like to calculate colour and spin summed amplitudes, these can

be written as

M ({PDI? = (Mun({p}) I Mu({p})) - (2.43)

Having established notation, we are now in a position to study the colour structure
of an amplitude. Colour interactions are represented by the association of a colour-
charge operator T',, with the emission of a gluon from each parton n. If the emitted

gluon has colour index ¢, then the colour-charge operator is
T, =T7c,), (2.44)
which acts in colour space as

(C1y- 1 Cnye oy Cny CglTalbr, oo by e b)) = Oy ”TC:bn O, b s (2.45)

[+

4We consider an e*e~ type process. The notation can be extended to include a QCD initial
state.
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where T.°, is a colour-charge matrix. It is given by
mim

4
e, if emitter is quark (¢, by = 1,2,3),
T, =9 —t,  if emitter is antiquark (cm,bm = 1,2,3), (2.46)
ifeeembm if emitter is gluon (cp,bm = 1,...,8).
\

That is, if the emitting particle is a (anti)quark then T, is a colour-charge matrix
in the fundamental representation, if the emitting particle is a gluon T',, is a matrix
in the adjoint representation (see Section 1.2).

In this language, the state | M,,({p})) is a colour singlet (all physical states must

be), so colour conservation implies

S T Mu({p}) = 0. (2.47)

In the next Section we will be dealing with colour correlated amplitudes. These
correspond to calculating the product of an amplitude for emitting a gluon from

particle n with an amplitude for the emission of a gluon by particle o,

lMﬁolz = (Mm({p})|Tn : TOIMm({p}»
— [Mg,...,cn,...,co,...,cm ({p})] *chjbnch:b,,MS;}z,m,b",m,bmm’cm ({p}) )

(2.48)

The colour algebra is simply

T, T, ifm#n,
T, T, = (2.49)

T?=C, ifm=n,

where C,, is the Casimir operator, i.e. C,, = Cp if n is a (anti)quark or C,, = Cj if

n is a gluon (see Section 1.7).
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2.4 Singular Behaviour of Loop Amplitudes

Let us begin by considering a general renormalised QCD amplitude |M) in colour
space with m external legs. We choose to work in the MS scheme and we use CDR.
The general perturbative expansion of | M) will have the following structure,

M) = (52)' [|M<°))+(;‘—;) MO+ (22) M) 10 @) |, (250)

where a, denotes the strong coupling constant, and |[M () are the i-loop contribu-
tions to the renormalised amplitude. Notice that in contrast to the perturbative
expansion we made for the ete™ — ¢g matrix element (Eq. (2.2)) we have pulled
all factors of o, out of the matrix elements |M{)). The overall coefficient in front
of the expression, (a,/27)? is general where ¢ is half-integer, the specific value is
process dependent. We know that the amplitudes |[M®), |M®), ... will contain
IR divergences. Catani and Seymour have shown [26] that we can explicitly isolate
the singularities of the one-loop amplitude from the finite part with the following

construction,

(MDY = 10 M) + | MD), (2:51)

where | M%) represents the finite part of the one-loop amplitude in the ¢ — 0
limit.
The insertion operator IV)(¢) acts in general on a colour vector |M(®) generating

the singular behaviour. It has a general structure

e'YE

—tAi; T
smg u-e Y
21"1—6 E V; E)E T;- T( 2, ) , (2.52)

J#

IW(¢)
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where i,7 = 1,2,...,m and p; is the momenta of the i-th external particle and

1 if partons ¢ and j are both incoming or outgoing,
Aij = (2.53)

0 otherwise.

The singular terms are embedded in the function VP8 (e):

Vie(e) = — + —, 2.54
me(e) = — + 2 (254
where
3, if particle ¢ is a quark or antiquark,
Vi = (2.55)

Po/c, if particle i is a gluon,

with Gy the first beta function coeflicient defined by Equation (1.39).

Catani has extended the formalism to work to two-loops [29]. At this level the
situation is more complicated, the singularities now have a more complex structure.
We can still factorise the poles from the finite part of the amplitude, and for the

two-loop amplitude have the following construction

IM®) = I (e) MD) + T ()| M) + | MEWER), (2.56)

where similarly, |M®»f") represents the finite part of the two-loop amplitude in
the € — 0 limit. The I (1)(6) operator has the same definition as before given by
equation (2.52). Acting on the one-loop amplitude |[M®), the IV)(e) multiplies the
singularities already present (both single and double poles) and produces poles 1/,

1/€?, 1/€3 and 1/€*. We have introduced a new operator, I'?(e), this term acts on

the tree level amplitude |M(®) and also produces poles up to order 1/¢*. It has the
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following structure

1®(e) = — %I(I)(e) (I(l)(e) + ZTﬂO) + e_f*;‘E(I;(i ;) 2¢) (% + K> IM(2¢) (2.57)

+ H@(e),

with,

67 w2 10
K= (ﬁ - F) Ca = 5 TaNr. (2.58)

The last term of equation (2.57) involves H®)(¢) which produces only a single pole

in € and is given by,

65713

©)| g7 (@ Oy -~
(MOIHOEMO) = e

HO(MO| MOy (2.59)

where the constant H(? is renormalisation-scheme-dependent. Using equation (2.56)
we can therefore predict the pole structure for two-loop amplitudes exactly up to
O (1/€?*), and also some of the O (1/¢) structure but its complete form can at present
only be found by explicit calculation of the amplitude with Feynman diagrams.
Using equations (2.51) and (2.56) we have factorised the IR singular contributions
of the one- and two-loop amplitudes. The pole structure of the one-loop amplitude is
completely determined and the pole structure of the two-loop amplitude completely
determined to O (1/€?). These predictions serve as a very strong test of a ME
calculation. We use these later to check the pole structure of the our complete ME

result.

2.4.1 Ultraviolet Renormalisation

Throughout we have been using renormalised amplitudes, however, in a calculation
with Feynman diagrams we construct unrenormalised amplitudes, the two are of

course related. If we consider the analogous perturbative series to (2.50) in terms
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of unrenormalised amplitudes

) = (22)" [l (52 It + (22)" L) 1 0 (03)|.
(2.60)
then the renormalised amplitudes are found by replacing the bare coupling ag with
the renormalised coupling a, as determined by Equation (1.46). After substitution
of ap and by comparison with the renormalised amplitude (2.50) order by order in

a, we find

IM(O)) - |M(O),un)’
MO = 53 pg0m) — 20y g0m), 261

IM(2)> — SE—2|M(2),un> _ (1 +GQ):BOS€—1|M(1),un> _ % (& _ :Bg(l + Q)> |M(0),un> )

€ €2

where S, is defined by Equation (1.47).

2.4.2 IW(e) for ete™ — q4

To demonstrate the use of the I!) () operator in predicting the pole structure of ME
we construct a very simple example and verify the result for ete™ — ¢g calculated
in Section 2.2.2.

From the structure of IV (e) (Equation (2.52)) we see that we need to deter-
mine the products of all the colour-charge operators for the process, which in this
example is simple since there is only one product, T, - T'3. By colour conservation
(Equation (2.47)) we have

T,=-T,;, (2.62)

so that

T, T;=-T>=-T2=—Cp. (2.63)
The equation for the insertion operator, which is a 1 x 1 matrix in colour space
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becomes

€
G 1 [1 0 3]( 4m\
BEAED) [e”ze] (" : ) | (264)

Here we have used (1.47) to write e*'® in terms of S. to make the comparison
with the virtual amplitude easier. This insertion operator acting on the tree level
amplitude |M9) should produce the singular structure |M.P*™®) of the one-loop

virtual amplitude |M,(Ié)). That is

sin, Qg
(MM = (M| (52

) 10@IMP), (2.65)

where we have contracted with the tree-level amplitude. The factor of a,/27 is
present because it was factorised out of the definition of the perturbative expansion
(Equation (2.50)). In principle the insertion operator should be acting on renor-
malised amplitudes. The relation between the renormalised and unrenormalised
amplitudes is given by (2.61) where for this process we take ¢ = 0. In this case the
tree-level amplitudes remain unchanged. Making an e-expansion of (2.65) gives the

predicted singularity structure

siny C s 4 p? ¢ 1 —-3+2
MOy _ Cr s <_ W) [__+(_+7i)

S, o s €2 2¢
-3 1
+ (- 22220 26 v o |G, oo
The notation (...|...), indicates renormalised amplitudes. To compare with the

(1)>

calculated amplitude we require (M,S%)|qu » This can be expressed in terms of
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2. Matrix Elements 2.4. Singular Behaviour

(Mg%)lM,(,%) )» (to match the previous result) by using the following trick,

1
(Mg%)lM,(I,II—))T — E( |M(1)) (renormalisation of IM%)) by (2.61))
1 0
S
1
- §r<Mé‘;>|M(°’> . (2.67)

This relation just comes from Equations (2.7) and (2.8) and uses the fact that
the integration over the two-body phase space factorises and cancels between the
two cross sections a and a ;- Combining (2.67) with the expression for 01 from

Equation (2.27) gives,

s 2\ 1 -3+2
M), - Ce (Y[ L, (22

+(_4_M+3@>+0()]<M“’|M ). (268)

Finally, from Equations (2.66) and (2.68) it can clearly be seen that the insertion
operator correctly predicts the singularity structure and also the dependence on g

— thus providing a strong check of the calculation of |Mglq)). ‘
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CHAPTER 3

Loop Integrals

3.1 Introduction

We saw in Chapter 2 that the calculation of ME, in particular, the virtual contribu-
tions, require the calculation of loop integrals. In the simple example of ete™ — ¢
at NLO only a few simple one-loop integrals were required. In general, however, for
a more complex ME at higher orders, a calculation may involve many hundreds of
integrals with multiple loops. The integrals fall into two classes, scalar and tensor,
depending on the structure present in the numerator of the integral. Tensor inte-
grals are indicative of the spin structure of the theory. The number of loops are
associated with the order to which we are working in perturbation theory.

In this thesis we calculate the NNLO O (a3) virtual contributions to the ete™ —
gdg ME. As we shall see in Chapter 4 at this order there are two components to
the virtual contributions, the two-loop times tree amplitude as well one-loop times
one-loop amplitude. Therefore, in this chapter we deal with the tools necessary to
deal with both one- and two-loop integrals arising from this process.

It is only really in the past few years that significant technical developments in
the field have made the calculation of large numbers of loop-integrals a tractable

problem. Indeed, the techniques which we discuss have recently been put to great use
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3. Loop Integrals 3.1. Introduction

in the calculation of two-loop QED and QCD corrections to many 2 — 2 scattering
processes with massless on-shell external particles [30, 31, 32, 33, 34, 35, 36].

We begin in Section 3.2 by introducing the general structure of loop integrals
and the notation used to describe them. In Section 3.2.1 we find it convenient
to introduce a practical tool called an auziliary diagram. There are two types of
auxiliary diagram corresponding to both planar and non-planar integrals. The idea
of these diagrams is to encapsulate the structure of all the possible integrals enabling
a more systematic approach to relating and reducing integrals of different kinds to
simpler ones. With the idea of the auxiliary diagram we describe the symmetries of
the integrals in Section 3.2.2.

The first approach to calculating loop-integrals considered in Section 3.3 is pa-
rameterisation. In particular we look at the Schwinger and Feynman parameteri-
sations. In some cases, use of these techniques may enable direct evaluation of an
integral, often by identification of the parameterised result as an integral represen-
tation of a hypergeometric function. However, in general, for all but the simplest
integrals, more work is needed.

It is convenient at this point to talk about tensor reduction, that is, how we can
relate integrals with tensorial structure in the numerator to simpler integrals. In
Section 3.4 we discover that we can translate the task of calculating tensor integrals
to that of calculating simpler scalar integrals in higher dimensions. Since this tech-
nique produces integrals in higher dimensions, Section 3.4.1 deals with the process
of relating scalar integrals in different dimensions.

Having reduced the problem of calculating tensor integrals to that of calculat-
ing scalar integrals we introduce in Section 3.5 the technique of Integration-by-
Parts (IBP) [17, 37, 38] a tool which is now commonly used in the calculation of
loop integrals. The principle use of IBP is to construct linear relations between
loop integrals of different complexity. By extracting more complicated integrals in

favour of simpler ones the IBP relations can reduce the problem of calculating many
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hundreds of integrals to a collection of a small set of so-called Master Integrals (MI).
More recently, a more automated approach to combining and solving the IBP
relations has been suggested by Laporta [39]. In this approach both tensor and
scalar integrals are treated on the same footing. By making this step we are able to
use an algorithmic solution of the IBP equations relating all of the tensor and scalar
integrals to a small set of MI in one fell swoop, circumventing the need for explicit
tensor reduction and the calculation of scalar integrals in higher dimensions. The
modified Laporta algorithm used in this thesis is presented in Section 3.6.

Finally, since the MI are not calculable by IBP — by definition, they must be
determined by other techniques. Fortunately, there has been significant progress in
this area too. In the past, techniques such as Mellin-Barnes (MB) and Negative
Dimensions (NDIM) have been used for the calculation of MI [40, 41, 42, 43, 44].
These techniques are complicated when an integral is a function of many scales and
the methods ultimately rely on one being able to identify the integral representation
of hypergeometric functions. However, more recently Gehrmann and Remiddi have
developed an approach to solving the MI by using differential equations [45, 46].
In fact, all the relevant MI, both planar and non-planar for eeqqg were calculated
with differential equations [47, 48] paving the way for the calculation of the ME. In
Section 3.7 we show how to construct and solve the differential equations for the

MI.

3.2 Basic Notation / Generalities

In general, the loop integrals which we need to calculate are governed by the partic-
ular physical process which they are derived from. In this thesis we must calculate
integrals which have the same generic structure characterised in Figure 3.1 by inte-
grals with up to four external legs with three on-shell and one off-shell. The on-shell

legs correspond to the ¢, § and g whilst the off-shell leg corresponds to the v*. Since
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3. Loop Integrals 3.2. Basic Notation / Generalities

we wish to calculate to NNLO in perturbation theory we require integrals with both
one- and two-loops. Our emphasis will focus more on the calculation of the two-
loop integrals, but the techniques are equally applicable to any number of loops via

appropriate modifications. =~ We begin our task by classifying the many integrals

Y41 Da

v*(ps) — q(p1) + @(p2) + 9(p3) = @
NNLO

P2 Ps

Figure 3.1: The generic integrals of interest have four external legs. Three
legs are on-shell, p? = p2 = p2 = 0. One leg is off-shell, p2 = (=p; — p2 —
p3)? # 0. In general we must consider both one- and two-loop integrals.

which may be generated by the MEs. As we shall see in Chapter 4 there are a total
(including tree, one-loop and two-loop) of 244 Feynman diagrams contributing to
ete” — qgg at NNLO, of which, three example diagrams are shown in Figure 3.2.

The first observation is that there are two types of diagram leading to two differ-

a(p2) d(p2) q(p2)
7" (pa) 9(p3) 7" (pa) 9(p3) *(pa) q(p1)
q(p1) q(p1) 9(ps)

(a) Planar (b) Non-planar (c) ‘One-loop’

Figure 3.2: Example Feynman diagrams contributing to ete™ — ¢gg.

ent classes of integral, namely planar and non-planar integrals, two examples are
shown in Figures 3.2(a) and 3.2(b). As we shall see, these are distinct and indeed
are described by different sets of propagators — the non-planar propagators cannot
be represented as a linear combination of planar propagators. A second observation
is that the integrals carry a tensor structure in their numerator. This can be seen

in the example of ete™ — ¢g in Section 2.2.2. This is a direct consequence of the
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spin structure of the particles in the interactions. A final remark is that some of
the apparent two-loop graphs are in fact products of two one-loop graphs. This
results in these integrals being far simpler than their true two-loop counterparts.
An example of a diagram which is in fact a product of one-loop integrals s shown in
Figure 3.2(c).

When referring to loop-integrals it is useful to speak about the topology of an
integral. Integrals of the same topology have equivalent propagators. By this we
mean they are either identical or can be made identical by a linear transformation
of loop-momenta and a possible re-arrangement of the external momenta.

We write our general D-dimensional scalar integral with N, loops and Ny prop-

agators in the denominator as:

D D
Pk, /d kv, 1 5.1)

ID({VN}m]:/. LY [ S
d inD/2 iwD/2 All.._ANI\:d

with propagators

1 1
el st (3.2)

The notation is straightforward. The set {vn,} represents the powers of the prop-
agators of the integral, effectively defining it’s topology. The ‘[1)’ represents the
structure of the numerator, in this case we have a scalar integral. Ultimately we

would like to consider tensorial integrals, we can represent these generically by

ID({VNd}) [ki“ e ki‘a e klu\}k Tt k‘l;\’;k] =

/del /deNk [ }’Vlk...k]‘:;k (3.3)
imD/2 iwD/2 AP A;\Z" S
All the integrals are also functions of the external momenta py,...,pn, or equiva-

lently the external scales s;; = (p; + p;)°>. We drop these presently for clarity but
will introduce them when necessary.

For the i-th propagator defined in (3.2), the P, term represents a linear combi-
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nation of loop and external momenta

N Np
P=> dikj+ ) bip;, (3.4)
j=1 j=1

with a} = —1,0,1 and b, = —1,0,1. The m; represents the mass of the propagating
particles. We will be working in the massless quark limit so for the rest of this thesis
we take m; = 0. The i0 term is the Feynman prescription which is used to specify
the analytic properties of the integral when translating between different kinematic
regions of phase space. This notation will be implied throughout but not written

explicitly for clarity.

3.2.1 Auxiliary Diagrams

As we have already discussed, the physical process of interest imposes that we should
calculate planar and non-planar two-loop graphs with four external legs. The corre-
sponding integrals have a structure that can best be described in terms of so-called
‘auziliary diagrams’. An auxiliary diagram is the most general diagram we can con-
struct which contains all of the possible propagators. For a graph with N loops
and N, independent external momenta we can form N,, = N,N; + Ni(N, +1)/2
independent scalar products. With three independent external momenta, N, = 3
and two-loops, N = 2 there are nine possible scalar-products, Ny, = 9. The idea of
the auxiliary diagram is to map these nine scalar-products as propagators. Later (in
Section 3.5.1) we will represent scalar-products in the numerator of an integral (as-
sociated with tensor integrals) by propagators raised to negative powers. Figure 3.3
illustrates the auxiliary diagram for planar integrals. This diagram is non-physical
but does satisfy momentum conservation. To obtain a real diagram one must shrink
at least two of the propagators to zero. The process of shrinking a propagator to
zero is called ‘pinching’. This also enables us to define a ‘sub-topology’ as a diagram

created from a larger topology by a pinching.
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3.2. Basic Notation / Generalities

Figure 3.3: The two-loop planar auxiliary diagram. All nine possible scalar
products are mapped to the propagators A; — Ag given by equations (3.5).

We also have the non-planar integrals. Due to the asymmetry caused by the

off-shell leg we require two auxiliary diagrams. These are illustrated in Figures 3.4

and 3.5.

D1

Az

D2

D123
Ay As

AIO
P123

Ag
Az Ag
D3

hn

Ag

D2

Aq

Ps3

Figure 3.4: The two-loop non-planar auxiliary diagram with the off-shell leg

inside.

D123

D123

Figure 3.5: The two-loop non-planar auxiliary diagram with the off-shell leg

outside.
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3. Loop Integrals 3.2. Basic Notation / Generalities

Given these auxiliary diagrams we choose to define the propagators as follows:

Al = k12, A5 - k22a

Ay = (ky — ko)?,
Ay = (k1 +p1)?, Ag = (kz +p1)?,

Ay = (k1 — kg — P123)2 ) (3'5)
Az = (k1 + p12)?, A7z = (k2 + p12)?,

Ay = (k 2 Ag = 2 A11=(k1—k2+p3)2.
4 = (k1 + p123)”, 8 = (ko + p123)”,

We have introduced a shorthand notation, p;. ; = p; + -+ + p;. Since three external
legs are on-shell and one off-shell we impose the following, ‘physically motivated’

conditions

pi=ps=p3=0, (3.6)

and

(1 + P2+ p3)® = plas = 5123 # 0. (3.7)

We will also use the following Mandelstam invariants

s12 = (p1 +p2)2, si3=(p+ Pa)z, 893 = (p2 + p3)2 ) (3.8)

which fulfil

812 + S13 + S23 = S123 . (3.9)

3.2.2 Symmetries

If we look more closely at the auxiliary diagram for the planar diagrams, Figure 3.3,
we can see that it exhibits a great deal of symmetry, this is one of the key advan-
tages of the auxiliary diagrams. The symmetries arise from the exchange of both
propagators and external momenta which leave the fundamental diagram (topol-
ogy) unchanged. It is worth briefly mentioning the symmetries because they can

greatly reduce the number of integrals that we need to calculate. The planar dia-
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gram as it stands has three main symmetries. The first is trivial and arises due to

the invariance of relabelling the loop momenta, k1 ¢ ks,

ID({I/l, Vo, V3, V4, Vs, Vg, V7, U8, Vg}, {812, 823,8123}) [1] =

IP({vs, v6, v7, v, 11, Vo, V3, Va, Vo }, {812, 823, S123}) [1] - (3.10)

Note that we have introduced the scales s;; into the integral’. The reason for this is
that the symmetries are created by exchanging propagators as well as the external
momentum, thus we need to keep track of both changes. The second symmetry is

found by exchanging the external momenta, p; < ps,

ID({VI) vy, V3, V4, Vs, Vg, V7, U3, l/g}, {312’ 5923, 8123}) [1] =

ID({V41 V3, 1,0, Vs, V7, Vg, Vs, VQ}) {523) S12, 3123}) [1] . (311)

And finally we can apply both of the above symmetries at the same time, k; < ks

and p; < ps,

ID({Vh Vo, V3, V4, V5, Vg, U7, Vg, Vg}» {312, 523, 3123}) [1] =

ID({VS) V7, Ve, Vs, V4, V3, V2, V1, VQ}, {823) $12, 3123}) [1] . (312)

As we take pinchings of the auxiliary diagram (we must pinch at least two propa-
gators to produce a physical diagram) more symmetries may appear. For example,
if we pinch propagators 4 and 8 then a p; <> p; symmetry emerges.

The non-planar diagrams do not exhibit any immediate symmetry, however, as
we take pinchings and remove propagators symmetries may become apparent. Once
we have pinched four of the nine propagators on either of the non-planar diagrams

they become inherently planar. Once we reach this stage the symmetries already

1'We choose to label the integrals in terms of the scales s;; rather then the momenta p; since
these are what actually appear in the final results of calculations.
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identified for the planar diagrams can be applied.
By using the symmetries we can eliminate all similar diagrams and calculate a
smaller set of integrals, i.e. we can remove all diagrams of the same topology which

are related by a relabelling of propagators and/or momenta.

3.3 Parameterisation

In general it is very hard to take the loop integral defined in Equation (3.1) and di-
rectly perform the loop integration. Instead we begin by parameterising the integral
in such a way that the integration over the loop momentum becomes trivial. What
we are left with is a new integral representation which is usually more amenable to
direct calculation. For many of the simple integrals these representations result in
hypergeometric functions. As mentioned earlier, we will consider the two approaches
of Schwinger and Feynman. The basic idea behind both of these approaches is to
compress the product of propagators in the denominator into one quadratic term.

By diagonalising the integral we are easily able to integrate away the loop momenta.

3.3.1 Schwinger Parameterisation

The idea of Schwinger is to use the property of the exponential function, e®e® = e

so that we can write the product of propagators a linear sum. To do this, we write

the propagators by using the following relation

1 (=0

A T(v)

/ dz 2" exp(zA), (3.13)
0
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which applied to all propagators gives

1 _ ﬁ(_l)V. /°°d$~x1‘/¢*l exp f:l-A (314)
Alfl"'Auled i= I'(wi) Jo " o

where

Ny _ 1\ 0o
/ be= [Ijl (r(}/)i) /0 dm"ﬁi_ll' (19

Since we will use this notation later we have defined the shorthand [ Dz to represent
all integrations over the Schwinger parameters z;.

The result of this parameterisation is to enable us to readily integrate away the
dependence on the loop momenta k;. To see how this is carried out it is useful to
study the structure of propagator polynomial > z;A;. We can expand this term ex-

plicitly in the loop momenta, which for a two-loop integral gives rise to the following

general quadratic structure

Ny
Za:iAizakf+bk§+26k1-k2+2d-k1+2e-k2+f, (317)

i=1

where a, b, ¢, d*, e” and f are all linear in z;. The structure of these coefficients is
determined by the particular topology of an integral. They can be calculated generi-

cally for the auxiliary diagrams. To do this we simply substitute the propagators A;

given by (3.5) into the Lh.s. of Equation (3.17), expand and compare the coefficients
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of k;. For the planar auziliary diagram of Figure 3.3 we get

a=2;+ T2+ 23+ 24+ 29,
b=x5+ x5+ 7 + T8 + T9,
C= —Ty,
(3.18)
d* = (zy + x3 + )Py + (T3 + T4)Ph + T4ph,
e* = (z6 + 7 + z8)p) + (27 + T8)Ph + Taph

[ = (z3+ z7)812 + (24 + T5) 5123 .

This result can now be used for any topology by simply setting x; = 0 for all pinched
propagators A;.

By diagonalising the polynomial of (3.17) with respect to k; and k; the corre-
sponding integrals in these variables are easily calculable. Diagonalisation can be

achieved with the following changes of variable

kb KE gKg + A (3.19)
kb — K5 + Y*, (3.20)

where

cet — bd*
= ———— 3.21
rP } ( )
u cd? — aet 3.99
= o (3:22)
and

P=ab-c*. (3.23)

Notice that X', ) and P are all bilinear in z;. We are able to make the diagonalisation
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due to a specific property of scaler loop integrals. We make use of the fact that they

are invariant under shifts of the loop momentum

dPk, dPk
/ b d (ka) = / —iﬂn/l;f (k»)  where  ky=1Fk,+4. (3.24)

Thus the process of diagonalisation by Equations (3.19) and (3.20) has no effect on

the structure of the generic loop integral. The polynomial (3.17) becomes

Ny
Y mA=aK]+ EK% L2 , (3.25)
— a P
where
Q = —ae® — bd®> +2c(e-d) + fP. (3.26)
Evaluating P and @ for the planar auxiliary diagram gives
P = ((L‘l + Ty + T3+ T4+ Ig)(I5 + T+ 7+ T8 + JJg) — :L'g2 (327)

and

Q= [((m5 + Tg + Ty + Tg + Tg)T3 + TrTs + T7g) T
+ ((z2 + z3 + z4 + z0)z7 + 1173509)-735] 512

[((335 + 26 + T7 + Ts + Tg)T4 + TsTg + ToTs)Ta
+ ((z1 + T3 + T4 + To) 25 + a:4a:g):c6] 593

[((.7:5 + 2 + T7 + Tg + To)Ty + TgTs + ToT)T1

+ ((372 + x3 + x4 + T9)T8 + :E4:E9):B5] $123 - (3.28)

We can now return our attention back to the loop integral itself to see what we have
achieved. Consider the generic integral (3.1), in the two-loop limit (for which the

polynomial (3.17) is valid). After Schwinger parameterisation (3.14) and diagonali-
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sation we can write

Na [ v oo
I°({ww, ) [1] = |:H (F(B) /0 dz; w:‘/i_ll X

=1
d°K, [dPK, , P, Q

or in shorthand notation

d°K, (dPK P Q
D _ 1 2 2
P{vn, P 1] = / Dz /mDﬂ 573 XD (aKl + K2+ —P) . (3.30)

The loop integrations are now readily integrated in K; and K, (recall that P and Q
are only functions of the Schwinger parameters z; and the external momenta p;). To
carry out these integrations we make use of an important identity, the Minkowski
space relation

dPk . 1

Applying this to each integral in turn gives
Ny

IP({un, N [1) = lH (;(2; /Oood:v,- ;E:./i_ll ’P;/z exp (%) , (3.32)

i=1
1 Q
= /’D:c P73 OXP (5) , (3.33)

the Schwinger parameterised form of the loop-integral for the auxiliary diagram. All

two-loop scalar integrals can be written in this form and the appropriate P and Q

read directly from the diagram.

3.3.2 Feynman Parameterisation

We now look at the Feynman parameterisation. This works in a similar way to the
Schwinger approach in that the method involves re-writing the product of propa-

gators in a linear form which can easily be integrated. The technique of Feynman
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parameterisation is particularly useful when one is calculating relatively simple in-

tegrals directly. We begin with the following relation

1 Ne o1t al o h
———— =T(N) S / dx; :v:."'—l 01— T; z; A; )
A A lg L(w:) Jo ; ;

(3.34)

where
Ng

N=>Y u. (3.35)

i=1
We observe that this relation produces exactly the same effect as the Schwinger
parameterisation, namely, the product of propagators have been transformed into
a linear polynomial. This polynomial is identical to that which we obtained by
Schwinger parameterisation, i.e. Equation (3.17), meaning that we can use exactly
the same changes of variables to diagonalise the loop integration. After applying
the Feynman parameterisation (3.34) to the generic integral (3.1) and after diago-

nalisation, we get

() 1] = [H o [ ] 5(1 _ Z) .

d°K, [d°K, s P, O\V

Note that K;, K, P and Q have exactly the same definition in terms of the z; as

those for Schwinger parameterisation. To integrate away the loop momentum we

make use of the following identity [1]

dPk 1 «L(@=D/2)  pjsa
/mD/z (k2 — A)® =(-1) —IWAD/ . (3.37)
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Finally for the Feynman parameterisation after integration we obtain

T2({uw}) 1] = (~1)°T(N - D) [H o | ] 6(1 - 2) x

PN—3D/2QD_N, . (3.38)

From this result we can now see an important feature of the Feynman method.
This is that due to the delta function we effectively have one less integral over the

Feynman parameters x; to carry out than we did in the Schwinger parameterisation.

3.3.3 Direct Approaches to Integration

At this point it is not clear what we have achieved. So far we have transformed
the integrations over the loop momenta to integrations over a new set of parame-
ters. For Schwinger parameterisation the number of new parameters is equal to the
number of propagators and for Feynman parameterisation is equal to the number of
propagators minus one. This means that we have effectively increased the number
of integrations! Despite the apparent increase in complexity these two parameteri-
sations are particularly useful for evaluating simple loop integrals directly. Usually
the integrations over the new parameters can be identified as the integral repre-
sentations of hypergeometric functions, thus the apparent integrations need not be

carried out explicitly at all.

3.4 Tensor Reduction

We can now turn our attention to tensor integrals. So far we have only considered
scalar integrals. We have seen how the reparameterisation can enable us to directly

evaluate simple integrals. We must now consider how we calculate tensor integrals.

The Schwinger parameterisation can be easily extended to describe tensor inte-
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grals. Since the steps in the parameterisation only dealt with the propagators in
the denominator of the loop integral, we can quite easily apply the same param-
eterisation to the tensor integral. We must however, be careful to remember that
we diagonalised the result of the parameterisation and in doing so shifted the loop
momenta. If we recall the diagonalised expression for the Schwinger integral before

we integrated out the loop momenta, i.e. Equation (3.30),

iPK, [dPK P, Q
D _ 1 2
TP ({un, 1) 1] = / De / o / o exp (aKf+ ;K§+5). (3.39)

Then we generalise this to include tensors by simply inserting them into the numer-

ator

o d°K, [dPK
(oD bk ) = Do [E00L [0

(Kt = kg 4 ) (Ko — SR + x"o) (K3 + ) (K3 + P™) x

s

~ " u v,
e kb
I3 Ha 2
K, k. 2

exp (aKl2 + —ZZK;" + %) . (3.40)

Notice that we have replaced the tensors k) and k% on the right hand side of the
generic tensor integral (3.3) with the corresponding shifted variables given by Equa-
tions (3.19) and (3.20). Again we can integrate out the loop momenta K, and K,

easily using identities similar to the Minkowski space relation (3.31). For example,

d®k 5
—pah" exp (AK) =0, (3.41)
dPk .., 9 I |
/mDﬂk"k exp (Ak?) = —ﬁg“ ADJ2 (3.42)

—= (g" g7 + " g" + ¢"° g"*) (3.43)

/ LB (AK?) =
; P T aA?

inD/2 AD/Z"
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So that, if we take a single tensor, for example Z? ({vy,}) [k{] we have,

d’K dDK c
D 1 2
(n )= [Do [0 [L08 (Kt - Skt -+ 24) x
Q

exp (aKf + gKS + 5) , (3.44)

which can now be easily integrated in K; and K5 to give,

TP ({vn,}) K] = / Dz X+ P; 75 €XP (%) (3.45)
_ / Dy & ; bd# 7311)/2 exp (%) : (3.46)

If we recall the definition of X* from equation (3.21) and the appropriate a, b, c,

d*, e* and f from equation (3.18), then we see that the numerator is a bilinear in z;
and the denominator is simply P. We therefore absorb the z; into Dz by increasing

the powers of the appropriate propagators, i.e.,

(_l)w Vi ( I)VH-] Vi .t

o) T Xz — I/ll_‘( e 1)::: yiT, (3.47)
such that,

itIP({vn D) =T, .. s+ 1, 0) (1] (3.48)

While we absorb the P into the remaining factors,

1 1 1

+
ppor  powor ~ 4 (349)

such that,
d*Z°({vn,}) (1] = Z°**({wa}) [1].- (3.50)

If we put all this together we can see what has been achieved. We now have the

ability to write tensor integrals as linear combination scalar integrals in higher di-
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mensions with increased powers of propagators.

I ({ow,}) k4] =) wavple it §Tat TP ({wn, ) (1] (3.51)

,.7)

= 2:1/,11110"117+2 vi,.. i+ 1+ 100 en) 1] (3.52)

7.7!

The sum over ¢, j and k will be determined by the particular topology of an integral,
namely particular structure of the X*. The process of writing the tensor integral as
a combination of scalar integrals can be extended for more complicated tensors, we

simply generate more terms in X" and ).

3.4.1 Dimensional Shift

We have seen how we can write tensor integrals as a sum of scalar integrals in higher
dimensions. For every tensor index present we produce an increase in dimension by
two, i.e., a fourth rank tensor will be described by a sum of scalar integrals in
D + 8 dimensions and each having eight extra powers on the propagators. After
re-expressing the tensor integrals we therefore expect to have integrals in D, D +
2,D + 4,... dimensions. Rather than calculate all of these separately it would be
convenient if they could all be related. Dimensional shift is just such a tool. The
technique uses a trick similar to that which we used for the tensor reduction itself.

If we go back to our integral after Schwinger parameterisation, equation (3.33),

ID({uNd}) 1] = /D:L' E;Wexp (%) , (3.53)

then we can add an extra factor of P to both the numerator and denominator
(leaving the integral unchanged). Recall that P is only a function of the z;, therefore,
the factor in the numerator can be absorbed into the Dz to increase powers of

propagators and the P in the denominator will increase the dimension, exactly as
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we did before in equations (3.47) and (3.49). More explicitly,

IP({ow,}) [1] = / De ,P(Tﬁﬁexp (%) , (3.54)

= ZViVjID+2(V1, Vi, e (1. (3.55)
1,J

The sum over the indices ¢ and j will be determined by the topology of an integral.
The result is very similar to that which we produced for tensor integrals. Now
however, we have a relation between scalar integrals in different dimensions. At
present we are able to go no further, the integrals on the right-hand side of the
expression all have higher powers of propagators. In Section 3.5 we will develop a
technique called IBP which will enable us to reduce these powers of propagators to
linear combinations of integrals with unit powers. Let us assume that we are able

to do this for integrals on the right-hand side of our expression. We will get,
P ) 1 =D G ({ow (1] (3.56)
J

The integrals on both sides of the expression now have unit powers. The coeflicients
C;; form an invertible matrix, these coefficients are produced by the action of the
IBP reduction. We would like to work in the opposite sense however, that is, we
would like to know integrals in D+2 dimensions in terms of integrals in D dimensions
so, the final task is to invert the system.

We must now deal with a large number of scalar integrals with increased powers
of propagators in higher dimensions. Note that for each index of a tensor integral
we must raise the power of two propagators by one and increase the dimension by
two. Then, for example, a fourth rank tensor (the highest required) will be a sum of
integrals with eight extra powers of propagators and eight extra dimensions. An es-

tablished method to deal with integrals with large numbers of powers of propagators

is Integration-by-Parts.
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3.5 Integration-by-Parts

The method of parameterisation discussed so far led to several techniques which are
extremely useful for calculating many simple topology integrals. However, as we have
seen, a matrix element calculation involves many scalar and tensor integrals. We
may know how to deal with tensor integrals but what we have learnt is that a single
tensor integral will reduce to a sum of many scalar integrals in higher dimensions
with higher powers of propagators. We are left to calculate many hundreds of scalar
integrals. Using the direct approach, is therefore, not a feasible one, it is too large
a task — we need to look for a way of reducing the number of integrals that must
be calculated by ‘brute force’. One such alternative approach is Integration-by-
Parts (IBP). IBP is a powerful technique introduced by Tkachov and Chetyrkin in
the 1980’s and is now widely used to calculate loop integrals [17, 37, 38]. The idea
of the method is to circumvent calculating every individual integral but instead to
relate integrals of different topology and with different powers of propagators to one
and other. Using these relations we can then extract the more complicated integrals
and write them in terms of the simpler ones. At the end of this reduction process
we cannot eliminate all integrals since we are not solving the integrals directly, but
what we are hopefully left with is a set of relations which will reduce many of
the complicated integrals to a small set of easier integrals. This remaining set of
integrals are known as Master Integrals (MI). It is the small number of MI which
then have to then be calculated via a different method, usually by direct methods

already discussed.

3.5.1 Construction of the IBP Identities

As mentioned, the idea behind IBP is to find relations between closed sets of integrals

of varying complexity (i.e. different powers of propagators and different topology).
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3. Loop Integrals 3.5. Integration-by-Parts

We use these relations to extract the complex integrals in terms of simpler ones.
To create these relations we make use of the translational invariance of dimen-
sionally regulated loop integrals. This is expressed by following identity for the

integral of a total derivative with vanishing surface terms

dPk, dPky, 0
P2 | ixD/2 pkF

where ¢ = 1... Ny and V# could be any linear combination of the loop momenta k'

Vl"
v, AYNg
AL AT

=0, (3.57)

and external momenta p. We have chosen to use,

Ve =k,
ki + pf,

kE 4 pt + ph, fori=1,..., Ny (3.58)

ki +pi+- -+,

With all possible independent choices of momenta for V we can construct N;gp =
Ni(Ni + N,) IBP identities. With two-loops and three independent external mo-
menta we get ten identities.

Let us consider the action of the derivative. We generate two types of term, the
first term comes from the action of the derivative on the numerator, the second from

the action on the denominator,

9
ok?

Ve
A ... AN
1 Ny

Ve 1 o 1
= IJ .
(6k£‘)Aql--.A;’:d+V <8kf‘A‘1’1---A"N’Zd) (3.59)

For the first term, the derivative acting on V* will be zero unless it contains the
momenta with which we are taking the derivative, in which case the result will simply
be D. When the derivative acts on the second term we produce more interesting

results. Firstly, it is convenient to recall our notation for the propagators A;, defined
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by equations (3.2) and (3.4),

1 1
1. (3.60)

AR (% ik T bp)

where we have taken the massless quark limit and dropped the ‘+i0’ notation for

brevity. We can now take the derivative,

0 1 —21/-@7.. . .
VH | = _ = T k- V+Y bp-V].
(akaTl_,,AI\gd> ZAlfl...A;]+1"'AN]Zd (Zaz l zl: 1P )

J
(3.61)
The sum over j on the right-hand side is to indicate that we get a contribution from
each propagator that contains the loop momentum k; with which we are taking the
derivative.

On the right-hand side of equation (3.61) we have created scalar products. Given
our choice of V# (equation (3.58)) these products will either be products only involv-
ing external momenta or products with at least one loop momenta. The first kind
can be trivially associated with the external scales, s12, $23 and s193. The latter, we
write in terms of the basis set of propagators, given by equation (3.5). For example,

with the planar propagators we can express all possible scalar products as,

kl'klel, k?'k2=A5’
ky-p1 = 1/2(A2—A1), ke pr = 1/2(A6—A5),
ky-pa = Ya(As — Az — s12), ky-pe = Ya(Ar — As — s12) ,

ki -ps = Ya(As — Az — S123 + S12), ko - ps = Y/2(Ag — A7 — s123 + $12),

k‘] . kz = 1/2(141 + A5 - Ag) .
(3.62)

In deriving these relations we have used the properties of the external legs given by

equations (3.6) and (3.7). This allows us to set p? = 0 for example.
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3. Loop Integrals 3.5. Integration-by-Parts

Now that the scalar products have been written in terms of the propagators
we are able to cancel through with the propagators already present in the integral,
i.e. those present in the denominator of equation (3.61). If a propagator is already
present and we decrease its power then we have a reducible numerator. If the propa-
gator is not present in the original integral then it will remain in the numerator and
is called an irreducible numerator. We represent Irreducible Numerators (IN) by
propagators which are raised to a negative power. Therefore, reducible numerators
create simpler integrals with smaller powers of propagators, whereas the IN create
more complex integrals with tensorial structure.

At present the introduction of IN is troublesome since we want to construct
algorithms which can reduce purely scalar integrals which have propagators with
increased powers in the denominator only. We see in the next section that we
have to construct combinations of identities which are free of IN. When we come to
consider a more automated approach to solving the IBP identities we see that we
can actually use the IN to our advantage. The IN correspond to tensor integrals,
precisely what we are trying to calculate! In the automated approach we therefore
treat scalar and tensor integrals together and we use the IBP equations to do the
tensor reduction for us. We eliminate the need for the technique which we have
discussed in section 3.4 which produces scalar integrals with very high powers and

requires a method to shift the dimensions of the scalar integrals.

3.5.2 IBP Identities for the Planar Auxiliary Diagram

We have seen how we can construct the IBP equations in a very general way. The
method that we have outlined can be applied to both the planar and non-planar
diagrams equally well. In this section we show the ten IBP equations for the planar
auxiliary diagram to clarify our notation and to demonstrate the structure of the

equations more explicitly. We use the i* and i~ notation that we have already
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introduced, where, for example,

1 _ o¥g- 1
AT AT A Ay A A

(3.63)

With this notation the ten planar IBP equations for the auxiliary diagram are,

s 1t ({un, 1) 1] =
—(D—vy—vy—2u3 — vy — VQ)ID({VNa}) (1]

+ (1F +0a2F +008%) 37+ 0% (37 - 77) )P (fuw, D (1], (3.64)

(sa3227 + s12111) IP({uw, 1) [1] =
- (D — Vi —Vy — Vg — 21/4 — I/g) ID({I/Nd}) [1]

+ ((u11+ + 2% +1537) 47 + 1597 (47 - 8_)>ID({VNd}) [1], (3.65)

(s12038% + s1230441) I°({ww,}) [1] =
— (D — 211 — Vg — V3 — 1y — V9) ID({VNd}) [1]

+ ((y22+ + g8 + v4dT) 17 + 159t (17 — 5-))19({1%}) [], (3.66)

s23vad T IP ({vn,}) [1] =

— (D — v — 20y — v3 — vy — 1) TP ({n, }) [1]

+ ((1/11+ + g8 +04d) 27 + 19T (27 — 6—))10({%}) 1], (3.67)




3. Loop Integrals ‘ 3.5. Integration-by-Parts

5120557 T° ({vw,}) [1] =
— (D —vs — vg — 2v7 — 13 — 1) TP ({wn, }) [1]

+ ((u55+ +veBt + vs8%) T + 159t (77 — 3—))10({uNd}) [1], (3.68)

(523066 + 51230557 ) ZP({vw,}) [1] =
— (D —vs —vg— vy —2ug —v I ({un, D (1]

+ ((1/55+ + 1661 + 1,7t 87 + 19t (87 — 4_))ID({1/Nd}) [1], (3.69)

(s12077F + s1231887) TP ({w, }) [1] =
— (D - 2v5 — vg — vr — v5 — 19) I° ({ww, }) [1]

+ ((V66+ + Tt + vg8Y) 57 + 197 (57 — 1_))ID({uNd}) [1], (3.70)

5238 TP ({vw, 1) [1) =
— (D —vs — 2ug — g — g — ) TP ({vw, }) [1]

+ ((1/55+ + vt + 1581) 67 + 1597 (67 — 2—))ID({1/Nd}) [1], (3.71)

(D—vs—vg—vy—vg — 2I/Q)ID({I/Nd}) 1] =
(w55 (97 = 17) +ue6* (97 —27)

+urTt (97 —87) + ug8* (97 — 4'))ID({VNd}) 1], (3.72)

76




3. Loop Integrals 3.5. Integration-by-Parts

(D—vi —vy—v3 — vy — 209) TP ({wn,}) [1] =
(m1* (97 = 57) +m2* (97 - 67)

+us3F (97 —77) + vdt (97 — 8_))ID({1/Nd}) []. (3.73)

Note that each it is accompanied by a corresponding v;, this means that it is
impossible to increase powers of a propagator that is not already present.

It is these identities and their non-planar counterparts which are the key to
realistically being able to reduce the many hundreds of scalar and tensor integrals
to a manageable number.

We use these identities and combinations of them to reduce complicated integrals
to simpler ones. When using the IBP relations we find that they divide the loop
integrals into two different groups. In the first group are diagrams which can be
completely reduced to integrals of smaller topology, i.e. sub-topologies, we refer to
these as reducible. The second group are more complicated. These integrals cannot
be completely reduced to smaller topologies. Even after application of the IBP
identities, the fundamental topology we are trying to reduce remains. The best we
can achieve with the IBP equations is to reduce the powers of these integrals to unity.
These topologies are not reducible and produce so-called Master Integrals (MI).

In the following sections we give examples of using the IBP equations to reduce

both types of integrals.

3.5.3 Example Application of IBP to a Reducible Integral

Let us consider an example of a completely reducible integral. We can take for
instance a two-scale planar-triangle integral shown in figure 3.6. For this topology we
must take the IBP identities (3.64)—(3.73) and substitute v, = v3 = v = 0. Studying
the identities reveals that we have an identity which is free of IN automatically. That

is, there are no i~ terms left which would act on propagators which are not present
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D12

D3
Figure 3.6: The two-scale planar triangle topology.

in the topology itself. More explicitly, there are no 27,3~ or 6~ terms. One such

identity is equation (3.73),

(D — V] — Uy — 2V9)ID({V1, V4, Vs, V7, Vg, VQ}) [1] =

(V11+ (9= —57) + vyt (97 — s—));rD({yl, va, vs, vr, vs, v} [1]. (3.74)

The action of this equation on the integral is represented diagrammatically in fig-

ure 3.7. We use a dot to denote a propagator with one extra power (v; — v; + 1)

P3
— v X {([ + vy X <Q: — Uy X ~<]ji

Figure 3.7: Pictorial representation of the action of the IBP equations on
the two-scale triangle integral.

and a cross to denote a propagator with one less power (v; — v; — 1).

We see that on the left-hand side we have the original integral. On the right-hand
side we have integrals where we have decreased the power of one propagator at the
expense of increasing another. The power of this identity comes when we apply it

recursively. If we keep re-applying this identity to the integrals that we produce on
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the right-hand side? we will gradually reduce the powers of propagators 5, 8 and 9 to
zero at the expense of increasing the powers of propagators 1 and 4. When we reach a
diagram in which a propagator power reaches zero we have a ‘pinching’. This means
that a propagator shrinks to zero and we are left with a simpler topology. To see the
action of a pinching figure 3.8 shows the effect of decreasing the power of propagator

9 to zero. By the repeated application of Equation (3.74) we can eventually reduce

P12 P12
D123 = D123
ps3 bs
P12
= D123 ———Ofpws X D123
D3

Figure 3.8: Pictorial representation of a pinching of the two-scale triangle
integral.

the original integral to a sum of simpler integrals. In fact, when we pinch the 9-th
propagator the two-loop integral reduces to a product of two one-loop integrals.
These are far easier to calculate than the original integral and are known explicitly
in terms of gamma functions. We will also produce simpler topologies when we pinch
the other propagators 5 and 8. Remember however, that these simpler topologies
will have higher powers of propagators caused by the reduction process.

We have just shown an example of a reducible integral. The action of the IBP
equations enabled us to completely reduce the integral to simpler ones. If enough
applications of the identity are made then the original topology can always be elim-

inated in terms of sub-topologies.

2Here we see the branching nature of the IBP equations. Every integral we create by the
equations must also be reduced by IBP. These will in turn produce yet more integrals which must
be reduced. This process keeps branching out until we finally arrive at simpler integrals which we
can calculate by other means.
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This method works extremely well for very simple integrals like the previous
reducible case. For these integrals single identities or very simple linear combinations
of identities can decrease powers of propagators in the integral. Repeated application
of these identities will always eventually result in simpler topologies with higher
powers of propagators. We hope the new integrals, i.e. the sub-topologies are
simpler to calculate.

The situation is more complex when the identities contain terms which reduce
the powers of propagators which are not present in the original integral. These terms
lead to the presence of IN. To deal with IN we must eliminate them by constructing
intricate combinations of identities. These identities often have to be applied in a
very specific way to reduce an integral. Particular problems occur when we try to
reduce an integral which is a MI. We consider the reduction of these integrals in the

next section.

3.5.4 Example Application of IBP to an Irreducible Integral

In many cases the IBP equations cannot be applied directly to an integral. For
certain topologies we have to deal with IN. Let us consider the Cbox; topology of
figure 3.9 which has this feature, it turns out that this topology is a MI and cannot
be completely reduced by IBP. We begin as we did in the reducible case, we set the

D123 8 D3

9

n 2 2!

Figure 3.9: The Cbox; topology. This topology is a MI and so each propa-
gator must be reduced to unit power individually.

propagators vs, vy, Vs and vg to zero in all the IBP identities. Let us look at the first
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of the IBP equations,

510 1Y TP ({vy, va, 7, v, 19 }) (1] = — (D — v1 — vy — 1) TP ({11, va, V7, g, 1 }) (1]

+ ((u11+ +122+) 37 + 1p9F (37 — 7_))ID({V1,1/2, ve,ve,s)) [1]. (3.75)

We can now see the problem with the identity. The Cbox; topology does not contain
the propagator As in the denominator, however, there are three terms which contain
3~. These terms produce IN, i.e., propagators with negative powers. The integrals
which are produced by these terms are more complicated than the original, they
have a tensorial structure. These terms do not help reduce the integral. To avoid
these IN we must find combinations of the IBP equations which them. The IBP
equations also produce IN corresponding to the lack of propagators 4, 5 and 6.

If we study IBP equation (3.68) we see that there is also a term with the structure
199%3~, all other terms free of IN. By taking a linear combination of this and the first
equation (3.75), we can eliminate this particular term from our equation. By taking
many more (complicated) combinations of equations which we do not demonstrate

here, we can find a set of identities free of IN. An example identity would be,

nl1t(D —2—2u; — 21y)s15 =

+ (D —2—2u)y9 7™ +2(D — 1 — v, — vy — )87~
(3.76)
- (D —-1- vy —Vp — l/g)(3D - 21/1 - 21/2 — 4;1/7 - 21/8 — 2Vg).

This identity is assumed to be acting on the integral, P ({v1, vq, v7, 18, 19 }) [1]. We
can see that this identity differs from that which we used for the reducible example.
The structure is similar, there are the v;itj~ terms and the original integral with
some polynomial coefficient in D. These terms are exactly what we had before.
The difference is the appearance of the v;1% term on the left-hand side. This term

although not an IN appears to be creating more complicated integrals by increasing
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the power of the first propagator. However, the identity can be used to decrease
the power of the first propagator. To see how this works, consider the action of the
equation on following integral, Cbox;(1,1,1,1,1) = ZP({1,1,0,0,0,0,1,1,1})[1],

we get the relation,

(D - 6)8120b0X1(2, 1, ]., 1, ].) =
(D — 4)Cboxy(1,1,0,1,2) + 2(D — 4)Chox; (1,1,0,2,1)

— 3(D — 4)*Cbox,(1,1,1,1,1). (3.77)

On the left-hand side we have the Cbox; with an increased power, on the right-hand
side we have simpler integrals, i.e. pinchings and the Cbox; with unit powers — the
Cbox; MI. If the propagator had higher powers then the identity could be applied
recursively, each application reducing the power of the propagator by one.

More explicitly, we could just take equation (3.76) and substitute v, — 13 — 1

everywhere,

() — 1)(D — 21y — 215)812 =
+(D—2—20)1y9% 7717 +2(D — vy, — vy — v 8T T 17
(3.78)
—(D—v1 — vy —15)(3D — 21y — 2vp — 4 — 205 — 29 + 2)17.
We can now see that the identity cannot be used to reduce the Cbox; with unit
powers. The v; — 1 term on the left-hand side prevents us from doing so. The
equation can only be applied recursively while v, > 1, however, this is sufficient to
reduce any higher power to unity.
We can also construct other combinations of IBP equations to reduce each of the

other propagators, we find similar identities hold. The complete set identities which
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reduce all five propagators are,

n1H(D —2—2v; — 2uy)s12 =
+(D—2—2u09)199 7T +2(D—1— vy — vy — 1) 18T

—(D—1-v, — vy —15)(3D — 2vy — 2y — dvy — 2vg — 21y),

1921 (D — 2 — 2v1 — 219) 812803 =
+ 812(D — 2 — 2ug) g9t 8™ + 2815(D — 1 — vy — vy — Vo) 7TH8”
— s123(D — 2 — 209) 19T — 28193(D — 1 — vy — vy — 1) 81T~
—(D—1—v; — vy —19)(3D — 211 — 21y — 2v7 — 4ug — 21) 519

+ (D -1- V) —Vy — Vg)(3D - 21/1 - 21/2 - 41/7 — 21/8 — 2V9)3123,

v TH(D — 2 — 2u7 — 213) 812893 =
+ 893(D — 2 — 209 g9 1™ + 2503(D — 1 — vy — vg — 1) 192117
— 5193(D — 2 — 209)g9T 27 — 28193(D — 1 — v — vy — vg)v 1727
—(D—1—v; —vg — 19)(3D — 41y — 2vy — 2v7 — 2u3 — 21g) 523

+ (D -1- Vy; — Vg — Vg)(3D — 21/1 - 41/2 — 21/7 — 21/3 - 21/9)3123,

V88+<D -2 21/7 - 21/8)323 =
+ (D -2 2Vg)l/99+2— + 2(D -1- Vg — Ug — I/g)l/11+2_

- (D —-1- Vg — g — 1/9)(3D - 21/1 - 41/2 — 21/7 - 21/8 — 21/9),
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V99+(D -2 - 21/9)312823 =
+ 812(D —2— 21/9)V99+8_ + 2812(D —1-= vy — UV — l/g)l/77+8_
+ 823(D -2 21/9)V99+7_ + 2823(D —-1- V1 — Vg — l/g)l/88+7—
— 8123(D -2 - 2V9)I/99+7_ - 23123(D —-1- vy — Vg — 1/9)1/88+7—
(3.83)
- (D —-1- Vi — Vg — Vg)(3D — 21/1 — 21/2 - 21/7 — 41/8 — 21/9)812
— (D —1—vy —vy— I/g)(SD — 21/1 - 21/2 — 41/7 — 21/8 — 21/9)823

+ (D —-1- vV — Vg — l/g)(3D - 21/1 = 21/2 - 41/7 - 2118 - 21/9)3123.

All of the above IBP relations are understood to be acting on the generic integral,
IP({v1, va, v7,v8,15}) [1]. Using each identity we can recursively reduce the power of
each individual propagator to unity. The equations have a similar structure, in fact
the symmetry between propagators 1 <» 8 and 2 <> 7 (with the exchange p; <> p3 -
the symmetry shown in equation (3.12)) can clearly be seen.

All of the identities (equations (3.79)- (3.83)) can be written in the form of
equation (3.78) so that they can be directly applied to reduce the Cbox; topology.
To construct and actual reduction algorithm from these equations is now simple.
Each equation would be applied in turn to the Cbox; integral we are trying to
reduce. Firstly, we might choose to recursively reduce the power of propagator 1
to unity using identity (3.79). We see that is done at the expense of increasing
propagators 8 and 9. However, we also see that as well as decreasing propagator
1 we are also decreasing propagator 7. Although propagator 1 cannot be reduced
to zero by this equation (because of the v; — 1 denominator), there is nothing to
prevent propagator 7 from reducing to zero — this produces the pinchings, i.e. the
simpler integrals. We would then move on to each propagator in turn and apply
exactly the same procedure to the integrals, producing more pinchings until each
power of the Cbox; had reached unity. We now see that the best we can do with

the reduction for this topology is to reduce all propagators to unit power. The fact
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that we cannot reduce the topology any further demonstrates that this topology is
a MI. At this point though, the integral will have lower powers then it started with.

We have to then use an alternative technique to calculate the Cbox; MI.

3.6 The Laporta Algorithm

So far we have developed a technique which allows us to write tensor integrals as
linear combinations of scalar integrals with higher powers of propagators. We have
seen that we can try to attack these integrals directly, but due to the large number
of them this approach is impractical. We then saw that using the power of the IBP
relations we could in fact group the different integrals together and relate scalar
integrals with different powers of propagator (and even different topology) to one
another. Using these relations we could extract the more complicated integrals in
favour of simpler ones. The large set of scalar integrals can then be reduced to a
smaller set of MI. At this point we can go no further, we have to rely on different
techniques to solve the MI, perhaps direct integration. However, since there are
fewer of them and they are in general simpler than the integrals we begin with we
assume that we can solve them. In the last section we saw how the IBP could in
some cases simply reduce an integral to simpler topologies or for more complicated
topologies with a MI reduce the high propagator powers to unity. This approach
works very well for simpler integrals, however, constructing the identities for more
complicated topologies is laborious and non-trivial. Also, the recursive nature of
the algorithms leads to very computer intensive calculations. Each time we apply
an identity to an integral we produce a handful of integrals with lower powers of
propagators, these in turn have to be reduced and also produce a number of simpler
integrals. Since we require tensor integrals of rank four we know that we will produce
scalar integrals with eight extra powers. The calculation of these integrals result in

many hundreds of integrals by the IBP equations.

85



3. Loop Integrals 3.6. The Laporta Algorithm

It was this motivation which led to the development of a more automated ap-
proach. Based on a paper of Laporta, we have implemented an algorithm which
treats the tensor and scalar integrals on the same footing allowing for a more uniform
approach to the reduction procedure and eliminates the need for the dimensional

reduction.

3.6.1 The Algorithm Explained

In this approach we consider the solution of a finite system of IBP equations. The
identities which we solve are generated from a set of chosen seed integrals. The set
of identities form a linear system of equations with the integrals as unknowns. In
general the system is under-determined and some integrals cannot be solved by the
system. These are the MI. The system is solved with an algorithm which basically
implements a Gauss elimination scheme. The final solution of the system will express
all unknown integrals (both tensor and scalar) in terms of a finite set of MI. This
approach is completely automatic and very simple and can be applied to integrals
of any topology.

In words, the algorithm follows the following method. Let _, cxW; = 0 be an
IBP equation obtained from equation (3.57). The Wj, are the integrals and the ¢, are
their coeflicients. We take all identities which we have already solved in the system
(where we have possibly expressed the integrals W, in terms of other integrals) and
substitute them into the new identity, which becomes, ), ¢,W; = 0. An integral
W/ is chosen from the new identity according to some priority and expressed in
terms of the other integrals, W/ = 3, ( °/)Wy. The new identity is added to the
system and the integral W/ is substituted into the rest of the system.

We consider reducing the generic integral (equation (3.1)). We allow the powers
of the propagators (;) to be either positive, representing the denominators of the

integral or negative, representing the IN. We assume that there are Ny positive
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powers meaning that there are N,, — Ny negative powers. Let us define the set ¢,
t={i:y; > 1}. (3.84)

This set contains the identifications of all propagators present in the denominator

(v; > 0) of an integral. Let us also define the set d,
d={A;:i et} (3.85)

This is just the set of propagators in the denominator of an integral. For example,

for the following integral,

dPk, [ dPk,
/iWD/2 /”rD/z AV]AV3AV6AV9’ (386)

with vy > 1Ly3 > 1,ug > 1 and vy > 1. We get, t = {1,3,6,9} and d =
{A11A3)A61A9}’

We must also introduce some extra notation. We define the non-negative quan-

tities My and M,

Nep—Ng
M, = Z —y;  fory; <0, (3.87)
i=1
Ny
M, = Z(V,- —1) fory; > 1. (3.88)

i=1

These correspond to the total sum of the powers of the irreducible numerators and

the sum of the powers of the denominators above unity respectively.

3.6.2 The Algorithm

1. Let n = Nk

2. Choose a combination of indices i; < i3 < +++ < i, from the ( ) possible
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combinations of the members of the set ¢t = {i: v; > 1}. Let jy < jo < -+ <

JN,,—n be the indices of the remaining propagators.

3. Consider the combinations of n different denominators chosen from the set

d={A;:1€t};let A;,..., A, be one of these combinations.
4. Choose two integer non-negative constants a; and b;.
5. Let My =0.
6. Let M, = 0.

7. Consider a ‘seed’ integrand of the form,

W(n,i,j,a,8) = A% A::,A;m . A;I\i:ipn—", (3.89)
and choose non-negative exponents a; and [ constrained such that,
n Nap—n
» (ox—-1)=M; and > Be=M,, (3.90)
k=1 k=1
that is, W belongs to the set [n; %Z]
8. Generate all the IBP identities.
9. Let,
D D
/;D"Z . /‘jﬂﬁf/"; Xk:ckwk =0, (3.91)

be one of the identities. W)}, represents a generic integrand with either n or

n — 1 denominators. Then:

(a) Substitute all previously calculated integrals into the left-hand side of the
IBP identity, i.e., equation (3.91). Let,

Pk, [dPky ,
/ inD/? / o7 O Wi =0, (3.92)
k
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be the result. If the identity is a linear combination of other identities in

the system, go to step 10.
(b) If the new identity is linearly independent, choose an integrand W/,

1
Agte Agr AP A

51

wi(n', ¢, 5’ e, B') = > (3.93)

NJ
]Nap—"'

]
ng—n.'

from the new identity, equation (3.92), according to the following priori-

ties. The integrand W] has:

(i) the greatest number of denominators n’,

(i1) the greatest M/,
(iii) the greatest M,/

(v) the greatest i}, the greatest i), ..., the greatest i/,
(v) the greatest a}, the greatest o, ..., the greatest o,
(vi) the greatest i, the greatest 3;,. .., the greatest ﬁ}vw

—n'-

(c) Substitute and add the following identity to the system;

del deN ’ del deN c;c ,
/ier/2 "'/z‘er/;W’ N ‘/mn/z "'/mnﬂk 2 (c_,) We=0

k£l
(3.94)

10. Consider the next IBP identity from the Nx(Ny + N,) possible identities gen-

erated at step 8 and go to step 9, otherwise continue.

11. Choose a new integrand W with different exponents oy and [, belonging to

the set [n; %Z] and go to step 8.
12. M, = M, + 1; if M, < a; go to step 7.

18. Mg = My+1;if My <b; go to step 6.
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14. Choose a new combination of indices 7; < i9 < -+ < i, from the (1:’;’) possible
combinations of the members of the set t = {i: 1; > 1}. Let j; < jo < -+ <
JN,,—n be the indices of the remaining propagators and go to step 3, otherwise

continue.

15, n=n+1;if n < Ny go to step 2, otherwise end.

The construction of a set of priorities for extraction of integrals is vital to the
solution of the system. The priorities have been constructed so that we extract
more complicated integrals and express them in terms of simpler integrals. The first
priority 9(b): arranges for integrals with the highest number of denominators to be
extracted first. This means that ultimately, more complicated topologies will be
expressed in terms of simpler ones. The second priority 9(b)ii deals with integrals
where the denominators have powers higher than unity. We write integrals with
higher powers in terms of those with lower powers. The third main priority 9(b)iii
deals with the tensor integrals. Here we write integrals with higher tensor power in
terms of those with lower power. Eventually, after enough applications, the process
will express tensor integrals in terms of scalar integrals. The final priorities 9(b)iv-
9(b )vi make sure that we have an absolute set of priorities. This simply means that
for any given n, M and M, there are a set of integrals [n; %Z] and we need a way of
ordering these. Note that integrals belonging to this set are of the same complexity
and therefore these priorities do not effect the mechanism of the algorithm. They
will, however, determine some of the MI we are left with at the end of the procedure.
For some integrals we require more than one MI. The result is that we end up with
both scalar and tensor MI (in the cases which we consider we deal with integrals with
two MI, one scalar and one tensor). For the tensor MI the priorities will determine
which propagator the tensor power will occur on. However, the system which we
have solved will contain relations which enable us to write one tensor in terms of

another, so we are able to change the basis set of MI, hence, these priorities do not
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directly effect the end result of the calculation3.

The algorithm contains two adjustable parameters, a; and b;. These parameters
control which identities are to be included in the system of equations which we solve.
In the algorithm, a; controls the cutoff for the sum of the powers of the tensors, b;
controls the cutoff for the sum of the powers of the denominators. We generate
seed integrands with tensor and denominator powers up to these cutoffs. These
parameters are chosen for each topology and cannot be predicted a priori.

Given a suitable choice of a; and b; the algorithm allows us to reduce all of the
needed scalar and tensor integrals to linear combinations of MI. For the integrals
which we require, namely scalar and tensor integrals up to rank four with unit
powers of denominators, we have found that choosing 1 < a; < 4 and b; = 0 was
sufficient to reduce nearly all of the topologies. However, one topology with two MI

did require setting b; = 1.

3.7 Master Integrals

3.7.1 Calculating Master Integrals

The IBP identities already discussed in Section 3.5 allow us to express both tensor
and scalar integrals of the form (3.3) as a linear combination of a few MI, that is,
integrals that are no longer reducible by IBP but have to be calculated by other
methods.

We have already discussed some of the alternative techniques in previous sections.
These techniques proved invaluable for the calculation of MI for the on-shell case,
in particular, MB was used to calculate several of the MI [40, 41, 42].

In this Section we discuss an alternative method to those already presented for

the calculation of MI. This method for the calculation of the MI avoids the explicit

3We do not know if the modification of these priorities could lead to a more efficient solution
of the system.
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integration over the loop momenta has been successfully used by Gehrmann and
Remiddi to calculate all of the planar and non-planar MI required for the calculation
of the ME for ete™ — ¢gg [47, 48]. In their calculation they derive differential
equations in the external scales s;q, s23, $123for each MI, and solve these equations

with appropriate boundary conditions.

3.7.2 Differential Equations for Master Integrals

There are different approaches to constructing the differential equations for the MI.
One simple method is to use the Schwinger parameterised form of a generic scalar

integral, that is Equation (3.33)

T2 ({wn,}) [1] = / Da ﬁ exp (%) . (3.95)

where P and Q are given by Equations (3.23) and (3.26) respectively. All of the
scale dependence of this equation is determined by the function Q. If we denote a
generic scale by S where S = s19, S23, S123 then we can write the differential of a

generic integral with respect to this scale as

—ID({uNd} (1] = /D ( ) e p(%). (3.96)

The scale dependence of @ is trivial, it is a linear in s;2, S23 and s;53 which are all

multiplied by trilinear functions of the Schwinger parameters z;, that is
Q~S Z LTk (3.97)

Thus, upon taking derivatives we produce three extra powers of Schwinger param-

eters in the numerator. As for the tensor reduction (Section 3.4), the extra z; can

be absorbed into Dz and represent propagators with increased powers.
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Things become clear if we construct the three differential equations for the planar
auxiliary diagram, for which Q is given explicitly by Equation (3.28). Using the
same notation as Section 3.4, the differential equations for the scales si2, s923 and

S123 become:

0
—71P 1] =
Boms ({vw, ) [1]
— [((1/55+ + g6 + 17T + 181 + V99+)V33+ + v Ttu5t + 1/77+1/99+)1/11+

+ ((1/22+ + 1/33+ + V44+ + 1/99+)1/77+ + 1/33+V99+)V55+] ID({UNd}) [1] (398)

0
—1IP 1] =
T2 )
— [(5* + 68% + v T+ + 18T + 19T )T + 1sB Ue6T + 1y9* 182t

+ (11 4+ 133% + vgd™ + 1y91) 18T + V44+1/99+)V66+]ID({1/Nd}) [1] (3.99)

0 .p .
e S CMIE

— [((V55+ -+ V66+ + I/77+ + 1/88+ + l/99+)1/44+ + 1/88+I/55+ + V99+1/38+)I/11+

+ (12271 + 1331 + vgd™ + 15971 )18 + u44+u99+)u55+]19({u,vd}) [1] (3.100)

The process for generating the differential equations for the MI is now simple. One
takes the differential equations and sets all v; which do not appear in the MI which
we are considering to zero. The extra powers which appear on the remaining propa-
gators are then reduced by either the IBP identities or the Laporta algorithm. Since
we are considering differential equations for MI then the IBP identities will not be
able to completely reduce the r.h.s. to simpler integrals but the MI itself will remain

with unit powers along with simpler integrals generated by the reduction. To make
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things clearer we take the simple example of the Dart, integral

5 D12
Darty(s12, 5123) = Z°({vs, vs, v8, 19 }) [1] = % §3 . (3.101)
8 D3

This is actually a two-scale integral so there are only two independent differen-

tial equations. After reducing the differential equations with the IBP identities we

obtain:

5 0 P b1z _ D —4 25193 — 512 pras/7]| b1z
123 — = )
08123 Ps 2 8123 — S12 K D3
_ 3D -8 1 D12

/4
3.102
2 8193~ 812 \_/ ( )

and

s 0  pizs Pz _ D-4 55 pias Pz
1275 — = - ——
0512 3 2 s123— 512 D3

3D -8 1 P12 m
+ . (3.103

2 8103 — S12

Equations (3.102) and (3.103) are both linear, inhomogeneous first order differential

equations of the form

M) faie) = o), (3,104

which can be solved by the introduction of an integrating factor

I(z) = exp ( / da f(a:)) , (3.105)

such that y(z) = 1/I(x) is a solution of the homogeneous differential equation. The

general solution of the inhomogeneous equation is then

y(z) = 1—(15 ( / dog(z)I(z) + 0) , (3.106)
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where C is the constant of integration satisfying the boundary conditions. The

boundary conditions can be directly read from the differential equations

P123< § P12
D3

The boundary condition for s;5 = 0 cannot be determined from (3.103). For the

_ 3D=81 pa/ N (3.107)

8123=0

s123 differential equation (3.102) we can calculate the integrating factor

1
1(3123) = D_5° (3108)

(12 — S123)S123) 2

The choice of integrating factor is not unique, we could choose

1(8123) = 1 ) . (3109)

D,
(S123 — S12)S123) 2

We select (3.108) by requiring a real integrating factor in the region —sj93 > —s12 >
0. The resulting differential equation can be solved.

It turns out that the integral can be identified as an integral representation of
the hypergeometric function ,F;. After applying the boundary condition (3.107) we

get

P123 P12 D
‘—< ) = A;(s12 — 8123) 2 “*(—$123) -2
D3

D—8 . (—s;2)P3 <D 512 )
- A hKR{—-1,1,D-2,— . (3.110
2(D - 3) 2 —38123 21 2 5123 ( )

ol

where the constants A; and A, are defined by

P n
Ar(—sp)P = 22 ) (3.111)
D2
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and

Ag(—s1p)P% = L2 O . (3.112)

Both of these integrals are one-scale and known in term of gamma functions. This
shows the ‘bottom-up’ approach to calculating the MI, i.e. we have to know the

simpler topologies in order to calculate the more complex ones.

3.7.3 The Master Integrals

The integrals appearing in the individual two-loop diagrams contain up to seven
propagators in the denominator and up to four irreducible numerators. Using the
reduction procedure described in section 3.6.2, all of the two-loop Feynman diagrams
were reduced to a basis set of MI. Owing to the presence of the additional scale there
are considerably more master topologies than in the on-shell case. Altogether there
are 14 planar topologies and 5 non-planar topologies resulting in a total of 24 MI,
as five topologies contain two MI.

The simpler MI are the single scale integrals, which can be written in terms of

gamma functions,

Sunrise(siy) = a2 O , (3.113)

Glass(sig) = 222 , (3.114)

P P
Darty (sg3) = — ) , (3.115)
P2

as well as the more complicated,

p y4i
Xtriy(s10) = —o . (3.116)
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3.7. Master Integrals

The two-scale master integrals can be written in terms of I' functions,

Tglass(si2, s123) =

P12 P123

(3.117)

%

or as generalised polylogarithms or one-dimensional harmonic polylogarithms,

Darto(s12,8103) =

Dartg(s103,523) =

Plane(si2,8123) =

Xtrip(s1e3, 812) =

D12

P123< E , (3.118)
D3
Y41

&3@ , (3.119)
D23
P12

% , (3.120)
D3
D12

L<Z: . (3.121)
D3

The three-scale MI can be written in terms of two-dimensional harmonic polyloga-

rithms. There are the planar graphs,

Abox; (s12,523,S123) =

Aboxs(s12,823,8123) =

Cbox; (812,823, 5123) =

Cbox(s12, 823, S123) =

Tbox; (812,823, S123) =

Pbox, (s12, 523, 5123) =

D123 - D3
1 — P2
D123 ~ P3
E , (3.123)
41 - D2
D123 b3
, (3.124)
D1~ P2
D123 b3
, (3.125)
D1 D2
D123 b3
, (3.126)
" D2
D123 b3
, (3.127)
yul D2 '
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D123 =) ps3
BbOX(Slz, So3, 8123) = y (3128)

D) — D2

and the non-planar graphs,

D123 D3

Ebox; (512,823, 8123 = E % , (3.129)
y4i P2
P123 —= D3

Xbmo, (12, 823, S123) = % , (3.130)
D p2
P123 —— D3

Xbmi, (s12, 523, S123) = % . (3.131)
D1 —— P2

For the Cbox,, Pbox, Ebox, Xbmo and Xbmi topologies, a second MI is required.

P123 D3

Cboxaa (s12, 823, S123) = ) (3.132)
y4i P2
D123 @ D3

Pbox; (812,523, 5123) = ) (3.133)
n P2

D123
Ebox,(s12, 823, 5123) = ! (3.134)
n
D123 — P3
Xbmogs;g, 823, S123) = % , (3.135)
D1 — D2
P23 a3
Xbmiy (812, 823, S123) = % : (3.136)
Y41 —— D2

All of the MI above were calculated in terms of one- and two-dimensional harmonic

polylogarithms (see Appendix F) by Gehrmann and Remiddi using differential equa-
tions in {47, 48].
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CHAPTER 4

The NNLO Matrix Element for

ete — qqg

In Chapters 2 and 3 we have built up the necessary tools to calculate ME and the
corresponding loop integrals. By studying the formalism of Catani we have also seen
how to analyse and predict the pole structure of the ME, enabling a positive check
of these often complicated calculations.

As previously described in Chapter 1, the NNLO O (a3) calculation of the three-
jet rate in ete~ annihilation has been considered an important project for a long
time [28]. In terms of ME this calculation requires several components. Firstly, the
tree level v* — 5 partons' amplitude where two partons become soft or collinear,
calculated in [49, 50, 51]. Secondly, the one-loop corrections to v* — 4 partons
amplitude with one parton becoming soft or collinear, calculated in [52, 53, 54, 55].
Finally, the two-loop (as well as the one-loop times one-loop) corrections to the
~v* — 3 partons amplitude. While the former two contributions have been known
for some time already, the two-loop amplitudes have presented an obstacle that
prevented further progress on this calculation up to now.

In this Chapter we present the application of the techniques previously mentioned

! As we have already done in Chapter 2, we ignore the initial e*e~ interactions and consider
7" = qqg.
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to calculation of the ME for the process ete™ — ¢dg at two-loops?. We begin by
introducing notation in Sections 4.1 and 4.2. In Section 4.3 we construct the insertion
operator IV (¢) and the explicit pole structure prediction of Catani. All diagrams
contributing to the calculation are displayed in Section 4.5. The general method for
the calculation, that is, how all of the different pieces of the calculation fit together
is described in Section 4.4. Finally, in Section 4.6 we present the finite one-loop

times one-loop and two-loop contributions to the ME.

4.1 Notation
We consider the decay of a virtual photon into a quark—antiquark—gluon system:
7' (9) — a(p1) + (p2) + g(ps) - (4.1)

The kinematics of this process can be fully described by the Mandelstam invariants

s12 = (M +p2)2, s13 = (¢ +P3)2, S23 = (P2 +P3)27 (4.2)
which fulfil
q2 = 8§19 + 813 + 823 = 8123 - (43)

At this point it is also convenient to define the dimensionless invariants

T = S12/8193, y = S13/S123, z = 83/8123, (4.4)

which satisfy z +y + 2 = 1.
We begin, as usual, by defining the perturbative expansion of the amplitude.
The conventions used are the same as those already defined in Section 2.4, we repeat

them here for clarity. The calculation is performed in CDR, where D = 4 — 2¢, and

2This Chapter is based on work carried out in [56].
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calculated from the simple Feynman diagrams,

T (e, y, 2) = 4V (1 — ¢) [(1 —¢) (% + g) it _yzz) ) BTN

where V = N2 — 1, with N the number of colours. 7¥(z,y,z) is more compli-
cated, and represents the interference of tree level and one-loop diagrams. It was
first derived in [23, 24]; we quote an explicit expression for it to all orders in € in
Section 4.3.5.

In this thesis we present the calculation of 7(6)(z,y, ). We break the calculation

into two separate pieces,
TO (z,y,2) = TOLW (g gy 2) + TO2D (g 4 2), (4.12)
where we have a contribution arising from the one-loop self-interference,
TER (7, y, 2) = (MO|MD) (4.13)
and from the interference of tree and two-loop diagrams
7O (g 4 2) = (MO| MDY 4+ (MD|MO) (4.14)

At the same order in a4, one finds also a contribution to three-jet final states from
the self-interference of the v* — ggg amplitude. The matrix element for this process
does not contain infrared or ultraviolet divergences; it was computed long ago and
can be found in (57, 58).

For the remainder of this calculation we will set the renormalisation scale u? =
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q? = s193. The full scale dependence of the perturbative expansion is given by

T(z,y,2) = 167 Z egas(,uz){T(z)(a:, Y, 2)

+ (M) [T(4)(:E,y,z) + T (z,y,2)In (;‘—D]

2T
2\ \ 2 \
+ (%) [T(ﬁ) (ZU, y’ Z) + (2b0T(4) (xi y) Z) + blT(Z) (m) y) Z)) ln (Z—z)

2

+ 2T (z,y, 2) In? (%) ] + 0 (af) } . (4.15)

4.2 Ultraviolet Renormalisation

The renormalisation of the matrix element is carried out by replacing the bare
coupling ap with the renormalised coupling a, = a,(u?), evaluated at the renormal-

isation scale u?

2 2
2ec _ 2l Bo &) Bo _Br) (e 3 4.1
Qo' Se = Qsft [1 ; (27r + (62 26) (27r) +O(Oz5)] ) (4.16)
where
Se = (4m)e™E with Euler constant yg = 0.5772... (4.17)

and ud is the mass parameter introduced in dimensional regularisation [17, 18, 19]
to maintain a dimensionless coupling in the bare QCD Lagrangian density; 8, and
B are the first two coefficients of the QCD S-function:

_ 11C4 — ATgNp
- - ,

_ 17C4* — 10CATrNr — 6CrTrNF

; (4.18)

Bo I3}

with the QCD colour factors

(4.19)
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We denote the i-loop contribution to the unrenormalised amplitudes by | M @),
using the same normalisation as for the decomposition of the renormalised amplitude

(4.5). The renormalised amplitudes are then obtained as

MO) = MO,
[MO) = S M) — Lo p Oy
€

o pq@my _ 380 g 1) 4 1) 360 n
M) = 572y - SRy - (3B oy a

This can be trivially obtained from the general result in Chapter 2 by taking the gen-
eral expression for the renormalised amplitudes, Equation (2.61), and substituting

q = /2, corresponding to the overall factor of \/a;, in front of the ME (4.5).

4.3 Infrared Factorisation

We know that we can further decompose the renormalised one- and two-loop con-
tributions to 7)(z,y, z) given by Equations (4.13) and (4.14) into a combination

of the pole structure and a finite remainder,
TON (1,4, 2) = Poles™(x,y, 2) + Finite®)(z,y, 2) . (4.21)

As we have seen in Section 2.4, Catani has shown how to organise the infrared pole
structure of the one- and two-loop contributions renormalised in the MS scheme in
terms of the tree and renormalised one-loop amplitudes, |M©®) and |M®)) respec-
tively. In this Section we construct the explicit pole structure Poles*?) in terms of

IM(e) and H?(e) and derive I () and H® (¢) corresponding to v* — ¢dg.
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4.3.1 One-Loop Pole Structure

The expression for the one-loop interference 7(®(1*1) (4.13) can be constructed from

IW(e) in the following way. Rearranging Equation (2.51) in terms of |M(1):n)
M) = ) — 1) M), (422)
and taking the product with its conjugate gives

(MW Ay — AfD)] AgD)y (M(l)lI(I)(e)|M(0))
— (M(O)Il(l)(G)TlM(1)> + (M(O)|I(1)(e)TI(1)(e)|M(O))
= (MDO|MD) _ op [(M(I)II(I)(G)IM(O))]

+ (MO IO () T () MO (4.23)

The r.h.s. of this expression contains exactly 711 = (MM®|MD)| rearranging

gives

TELND (@, y,2) = R [2MO T M)

~(MOITD (T ()| M) + (M(l),ﬁnlM(l)vﬁ")] . (4.24)

We can now identify the Finite and Poles contributions to 7E*W(z y, 2) given
by Equation (451) This is simple to do, all terms containing a factor I¥)(e) or
I'W(e)t are singular and contribute to Poles, the remainder contribute to Finite,
giving

Finite(z,y, 2) = R [(MDAs| pq1)finy] (4.25)
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and

PolesVV(z,y,2) = R [2<M<1>|1<1>(e)|/\4(°>) - (M(°>|1<1>(e)TI<1>(e)|M(°>>] :
(4.26)

4.3.2 Two-Loop Pole Structure

The expression for the contribution from the interference of tree and two-loop di-
agrams T(®[2%0) (4.14) can be constructed in terms of IM(e) and I®(e) in the

following way. From Equation (4.14) we have
TEEN(g,y, ) = (MOLM®) + [(MOM)]' = 2R [(MOIMP)]. (2.27)

The expression for |M®) in terms |M©@), | MD) TM(e) and IP(e) is given by

Equation (2.56). Upon substitution, (4.27) becomes

TOR (,y, 2) = 20 [(MOIDLMD) + (MO M)

+ (MOIM@Em] - (4.28)

Re-writing TP (€) in terms of IV (e), IV(2¢) and H® (¢) via Equation (2.57) gives

finally

Bo

TOE (3,y,2) = 2| - 2 (MOTOOIO(IM®) — 22 MOTD (0 1)
. €

+ (MO M)
(1 — 2¢)
['(1—e¢)

+ (MOIH () M)

+e " (% + K) (MO|1M(2¢)| M@y

+ (M(")lM(Q)’ﬁ“)] . (4.29)
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As for the one-loop case, we can now identify the Finite and Poles contributions
to T®2x% (g, y, 2) given by equation (4.21). All terms containing a factor IM(e),

IM(2¢) or HP () contribute to Poles, the remainder contribute to Finite, giving
Finite®(z,y, z) = 28 [(MO|MP:fin)] (4.30)
and

Poles®(z,y,2) = 2R | — %(M‘O)II DIV QM) — 2 (MO0 (| M)

€

+ (MOID (M)

T e““’E% (% 4 K) (MO|T0) (20 M)
+ (M(°)|H(2)(e)|M(°))] . (4.31)

It should be noted that, in this prescription, part of the finite terms in 7(®x4)
are accounted for by the O (e°) expansion of Poles*7). More importantly, these
finite terms coming from the expansion of the predicted IR structure do not cor-
respond to the true finite terms obtained from the ME calculation with Feynman
diagrams, it is simply the ‘left-over’ piece from the Catani prediction — if it were the
true finite remainder, we would not need to calculate the diagrams in the first place!
The finite remainder Finite*/) which is obtained by subtracting the predicted IR
structure (expanded through to O (%)) from the renormalised ME, represents this
difference.

In the following Sections we compute all the expressions needed to construct
Poles™V and Poles?*% so that we can compare them to the expressions obtained

by explicit calculation of the Feynman Diagrams. In particular we need to calculate

IM(e) and H@(e).
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4.3.3 I(l)(e) for eTe™ — qqg

We must now construct the I (€) operator. For this particular process, there is
only one colour structure present at tree level which, in terms of the gluon colour a

and the quark and antiquark colours 7 and j, is simply t7;. In colour space we have

colour fac

= (4.32)

Adding higher loops does not introduce additional colour structures, and the am-
plitudes are therefore vectors in a one-dimensional space. Similarly, the infrared
singularity operator IV)(¢) is a 1 x 1 matrix in the colour space. To evaluate IV (e)
we need to consider the contributions from the radiation of a gluon between each
pair of legs in the diagram, i.e. calculate the colour algebra T'; - T';. There are two '

distinct diagrams (we can use quark—antiquark symmetry to find the third diagram)

Cg 4C T
Cq = —tR bty = WRt?j (4.33)

(4.34)
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and

s racgbyC 1 a
=9 k =if a"t,.;;tzj=—§Nt,.j (4.35)

, (4.36)

where we have made use of two identities of the colour matrices. In the first expres-

sion we use the Fierz identity
a 4a 1
in the second expression we use
abeybye 1 . a
fUtte = éth . (4.38)
This provides the colour algebra
1
T, T;=— and T;- T,= _§N' (4.39)

Putting these terms together into Equation (2.52), the expression for IV)(e) becomes

Wy (L3, B _1 /1 33
() (1 —¢) [N (62 * de + 2Ne (15 + 520) N \ e * 2 ) "1
(4.40)

where (since we have set u? = s)23)

Si; = (— 3123)5. (4.41)

Sij
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Note that on expanding S;;, imaginary parts are generated, the sign of which is fixed
by the small imaginary part +40 of s;;. Other combinations such as (M@ ]I (e)t
are obtained by using the hermitian conjugate operator I (1)(6)", where the only
practical change is that the sign of the imaginary part of S is reversed.

The origin of the various terms in Eq. (4.40) is straightforward. Each parton
pair ¢ in the event forms a radiating antenna of scale s;;. Terms proportional to S;;
are cancelled by real radiation emitted from leg 7 and absorbed by leg j. The soft
singularities O(1/€?) are independent of the identity of the participating partons and
are universal. However, the collinear singularities depend on the identities of the
participating partons. For each quark we find a contribution of 3/(4¢) and for each
gluon we find a contribution of 8y/(2¢) coming from the integral over the collinear

splitting function.

4.3.4 HP(¢) for ete™ — qgg

The last term of Equation (4.31) involves H (2)(6) and only produces a single pole
in € and is given by equation (2.59). As with the single pole parts of I (e), the
process-dependent H® can be constructed by counting the number of radiating
partons present in the event. In this case, there is a quark—-antiquark pair and a

gluon present in the final state, so that
H® =2H® + H® (4.42)

where in the MS scheme

1 5 112 5 m? 89 Ng
H? =[2G+ —=+— | N?*+ —=Np? 4+ | —==— — | NNp — =, (4.43
g (zg"J“m+ 144) toNe 775 1) VP gy (4483)
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409  11n? 1, 41 x?
H® — N2 il — —
e ( %t 564~ 96 ) {72% " 108 " 96

4
(o 2 T) e (- B) U

2 32 48 216 N

so that

580 1172 1 41 7?
H? = (4 Ny -2 ——=——
( “tE T T ) * ( 2% " 54 48)

3 7w\ 1 19 n?
(3(3—E+4)m+(—1—8+%>NNF

The factors Héz) and H§2) are directly related to those found in gluon-gluon scat-
tering [34], quark—quark scattering [31, 32] and quark-gluon scattering [33] (which
each involve four partons) as well as in the quark form factor [59, 60, 61, 62]. We
also note that (on purely dimensional grounds) one might expect terms of the type
SZ to be present in H®. Of course such terms are 1+ O (¢) and therefore leave
the pole part unchanged and only modify the finite remainder. At present it is not

known how to systematically include these effects.

4.3.5 (MO|MO) for ete~ — qqg

Finally, since both I (1)(6) and H (2)(6) factorise completely, that is, they are just pro-
portional to identity matrix in colour space then we have, for example, the following
simplification

(MOIIO ()| MDY = 1O () (MO MDY, (4.46)

Similar simplifications occur for the other combinations which involve I'¥(¢) and
H®(e).
Therefore, with this in mind, we see from Equations (4.26) and (4.31) that

the only remaining pieces we have to calculate in order to construct Poles®*?) are
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the square of the Born amplitude, (M©|M©) which is already given by Equa-
tion (4.11), and also the renormalised interference of tree and one-loop amplitudes

(MO MO, This can be written to all orders in € using the relation

(MO|MDY = g1 AfOm| pgDmy _ %< MOan| pgO)umy (4.47)
€
where
1
MO a0y v (Nf2) + ) + 0 0). @49

The functions fi(y,2) and f2(y,z) can be written in terms of the one-loop bubble

integral and the one-loop box integral in D = 6 — 2¢ dimensions, Box?:

fl(y’z) =
1 ) 4
v (—3 + € + 2¢°)Bub(sia3) + —= + 12 — 8¢ ) Bub(ys;23)
2
+% [ (—Z + 8 — 10e + 3¢ + e3> Bub(zs123) 4 (—3 + 4¢ + €* — 2¢*)Bub(s123)

2
+ (_E + 8 — 10e + 462) Bub(y3123)]
1( /4 2 2
#=| (21249 — ¢ ) Bub(asizs) + (6 — 26 — de*)Bub(s125)

4
n (E — 12+ 85) Bub(ysm)]

+ y (1 — 6) [Bub(ZSng) - BUb(Slgg)]

(1-2)?
+ a z . [(3 — 5e + 2¢3)Bub(z5123) + (=3 + de + €% — 263)Bub(3123)]
+ (1 1 z) (4 — 3¢ — 32— 263) [Bub(slzg) - Bub(28123)]

+(4 — 9¢ + 6¢* — €)Bub(25123)
2
+(1 — 2¢) [%8(—1 +€)+ %(—2 + 4e — 2€%) + %(6 — 8¢ + 2¢%)
+ 2(—2 + 2¢ — 8¢%) + (4 — 3¢ + 3¢€?)

1
+ &‘;2(1 - 6):| 8123BOX6(y3123, Z81923, 3123) y (449)
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faly,2) =
yiz [(3 — € — 2¢%)Bub(sy23) + (% -6+ 4e) Bub((1 -y — 2)3123)}

+% [ — €2(1 — €)Bub(zs;23) + (3 — 4€ — €* + 2¢*)Bub(s123)

2
+ (; — 84 10e — 462) Bub((1 —y — z)5123)]

1
+; [6(1 — €)Bub(28123) + (=6 + 2¢ + 4¢*)Bub(s;23)

# (=2 + 12 8¢) Bub(1 -y - 2o
+@—j;)-2-2 [Bub((l g~ 2)s1) — Bub(sm)]
Mg i 37 [Bub(slgg) — 2Bub((1—y — z)slzs)]
tq _-'/z) (1—¢) [Bub(sm) — Bub(zslzg)}

5 1 (2 +e—5¢ —20) [Bub(zslgg) _ BUb(3123)]

+(2 — Te + 2€* + 3¢®)Bub(25123) + (—4 + 10€ — 4€*)Bub((1 — y — 2)s123)

+(1 — 2¢) [(8 — 4¢) — @4(1 —€) + (y + 2)(—4 + 4¢ — 66> — 2¢°)

2
+ %(—2 + 46 —_ 262)] 8123BOX6((1 - Yy — 2)8123, Z8123, 8123) . (450)

Explicit formulae for the bubble and box integrals are given in Appendix E.

4.4 Method

The calculation of the ME begins with the generation of the corresponding Feynman
diagrams. To do this requires a program whereby we can input the physical model,
namely the particle content and the vertices and output all physical topologies. This
was implemented by use of the QGRAF [63] program. In particular, the Feynman

diagrams contributing to the i-loop amplitude |M®) (i = 0, 1, 2) were all generated.
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There are 2 diagrams at tree-level, 13 diagrams at one loop and 229 diagrams at
two loops. The complete set is presented in Section 4.5.

The next step is to assign the propagators and vertices of the QGRAF output with
the corresponding Feynman rules. After projecting |[M®) by (M©| and |MM)) by
(M®)] the summation over colours and spins is performed. When summing over the

polarisations of the external gluon and off-shell photon, we use the Feynman gauge:

Zefe;’* = —g". (4.51)

spins

This is valid because the gluon always couples to a conserved fermionic current,
which selects only the physical degrees of polarisation. The use of an axial polar-
isation sum to project out the transverse polarisations (as applied in [34, 33]) is
therefore not needed. This process is particularly suited to use of the computer
algebra programs FORM2 [64] and FORM3 [65] which have built in routines to take
traces of Dirac matrices. At this stage the loop integrals are identified along with
irreducible numerators and translated into the standard Z?({v,, ..., vn,}) notation.
The calculation at this point consists of all the ME expressed as sums of both scalar
and tensor integrals.

The one-loop self-interference contribution 7®1*1) is computed by reducing all
tensorial loop integrals according to the standard Passarino—Veltman procedure [66)
to scalar one-loop two-point, three-point and four-point integrals. It has been known
for a long time that those three-point integrals can be further reduced to linear com-
binations of two-point integrals using IBP identities. After this reduction, 711
is expressed as a bilinear combination of only two integrals: the one-loop bubble
and the one-loop box, which are listed in Appendix E.

The computation of T®2%% js by far less straightforward, however, we have
presented all the necessary tools to make such a calculation possible in the previous

Sections. The calculation proceeds as follows.
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With the Laporta algorithm described in Section 3.6 the IBP relations are used
to derive the reduction to MI of all possible scalar and tensor integrals which can
possibly occur in the ME. For the process v* — ¢gg this involves the computation of
integrals with up to 7 propagators and 4 irreducible numerators. For this procedure
the computer algebra program MAPLE [67] was chosen due to its ability to simplify
and factor large equations. The reduction is implemented on a topology basis and
for each topology a file of all integrals is constructed and output in a format suitable
to be read by FORM. This procedure results in a collection of files expressing all
scalar and tensor integrals in terms of MI.

The next step in calculation is obvious, the files created by MAPLE are read into
the FORM program thus expressing the ME as a linear combination of all MI. At
this point we are almost finished. The final step is to substitute the MI with their
e-expansions. For the purposes of this calculation, both the planar and non-planar
MI were calculated by Gehrmann and Remiddi [47, 48] in terms of one- and two-
dimensional harmonic polylogarithms. The e-expansions for the MI were produced
in a format suitable for input directly into the FORM program.

The final ME now expressed as e-expansions can be compared to the Catani
prediction for the pole structure. This is done by simple subtraction of the two
expressions, the remainder, if it is indeed finite will be the Finite(*9) term discussed
in the previous sections. In Section 4.6 we present exactly these results.

The general strategy is summarised more clearly in Figure 4.1.
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e .|QCD model | Reduction of loop integrals
| QGRAF 1 | e External particles IMAPLE | | o IBP identities
_____ e Vertices e Laporta algorithm

!

All tensor integrals — MI

Feynman rules
I FORM I | e Traces ID(lvlyla _271a—17171,1)3127323)5123) ™)

_______ ¢ Sumimations -
[ a ID: + +cn "'9— g
(Sum of all diagrams (tree x loop) in terms of tensor integrals
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7:1 X ID(L 1: 17 _2, 1) _17 1) 1) 1) 512, 523, 3123)+
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|
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€ expansions of MI

4
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e | (MOM3) = Z % + Finite?*0)

=1

Figure 4.1: The general procedure for calculating matrix elements.
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4.5 Diagrams

In this Section we present all of the Feynman diagrams which contribute to the

process v* — qgg.

Tree Level Diagrams

One-Loop Diagrams

s 0L
<4
€

11
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Two-Loop Diagrams

26 27 28 29 30
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case of purely electromagnetic interactions:

(Zoe)

Np,=~~— 7/
R,

(4.52)

This term originates from diagrams containing a closed quark loop coupling to the
virtual photon which first appear at the two-loop level.

The tree-level combination of invariants
2 2
T=4+—-—4+—————, (4.53)

frequently occurs in the finite part. We therefore extract this combination by ex-

pressing 1/(yz) by T according to the above equation.

4.6.1 One-Loop Contribution to 7(®

The finite remainder of the self-interference of the one-loop amplitude is decomposed

as

finite(IXI)(:E)y’ Z) =V N2 (All(y’ Z) + All(zay)) + (Bll(y') Z) + Bll(zvy))

+ % (Cuu(y, 2) + Cu(z,y)) + NNr (Du(y, 2) + Du(z,y))

Np

+ (Bu(y,2) + Bu(z,9)) + Ne? (Fu(y, 2) + Fu(z,9)) |,

(4.54)

where the coefficients A;;, By, Ci1, D11, E11 and Fi; are given in Appendix A.
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4.6.2 Two-Loop Contribution to 7(®

The finite remainder of the interference of the two-loop amplitude with the tree-level

amplitude is decomposed as

f’in’itemxo)(a},y) Z) =V [N2 (AZO(y7 Z) + A20(zay)) + (B2O(y> Z) + B20(z)y))

1
+t 2 (Cao(y, 2) + Ca0(z,y)) + NNp (Dyo(y, 2) + D2o(2,9))
Np

+ 5 (Eao(y, 2) + Exo(2, 1)) + Np? (Fao(y, 2) + Fao(z, 7))
+ JVF,,7 (% — N) (Ggo(y, Z) + Ggo(z,y)) , (455)

where the coeflicients Agg, Bag, Cag, Dag, Fog and Fyy are given in Appendix B.
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CHAPTER 5

The NNLO Helicity Amplitude for

ete” — qaqg

In Chapter 4 we presented the calculation of the ME for ete™ — qqg averaged
over all helicities. The results were compared to the Catani prediction for the pole
structure and the corresponding Finite*7) remainders presented. In this Chapter
we extend the previous calculation to compute the two-loop helicity amplitudes for
the same process!.

As we have already discussed, the most precisely measured observables related
to ete~ — 3 jets are the jet production rate itself and a number of event-shape
variables. The calculation of these phenomenologically most relevant applications,
which also dominate the extraction of o, at NNLO accuracy requires only the he-
licity averaged squared matrix element at the two-loop level which we have just

calculated. Nevertheless, the helicity amplitudes which we calculate here are inter-

esting for a number of reasons:

e Oriented event-shape observables, which measure the spatial orientation of the
final-state jets relative to the direction of the incoming beams require, even for

unpolarised beams [69], the calculation of the polarisation tensor of the virtual

1This Chapter is based on work carried out in [68].
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photon mediating the interaction. This polarisation tensor can be recovered

from the helicity amplitudes.

e Likewise, to determine the direction of the decay leptons in the crossed process,
V +1 jet production at unpolarised hadron colliders, it is necessary to compute

the polarisation tensor of the vector boson.

e Polarisation of the beams is an important option for the future linear ete™
collider TESLA [27], thus providing a direct measurement of event-shape ob-

servables in polarised eTe~ annihilation.

e NNLO predictions for (V + 1)-jet production at the RHIC polarised proton—
proton collider and for (2+1) jet production at a currently discussed polarised
upgrade of the HERA collider do require the calculation of the two-loop he-
licity amplitudes. These observables would then form part of a full NNLO

determination of the polarised parton distribution functions in the proton.

o The study of formal aspects of two-loop matrix elements, such as their collinear
limits or their high energy behaviour can be carried out more elegantly on the

basis of the underlying helicity amplitudes.

Two-loop helicity amplitudes have up to now only been derived for 2 — 2 bosonic
scattering processes with all external legs on-shell: for gg — v [35], vy = v [36,
70] and g9 — gg [71, 72]. The latter calculation also confirmed earlier results for
the squared two-loop gg — gg matrix element [34].

In the above calculations, which were all carried out within dimensional reg-
ularisation [17, 18, 19], two different methods were used to access the helicity
structure of the matrix element: explicit contraction with the external polarisa-
tion vectors [35, 36, 71, 72] or projection onto the individual components of the
Lorentz-invariant decomposition of the amplitude [70]. Once these are applied to

expose the helicity structure, one is left with the task of computing a large num-
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ber of two-loop integrals. Using exactly the same techniques as for the calculation
of the ME in Chapter 4 these integrals can be reduced via the Laporta algorithm
(Section 3.6) to MI, which were derived for massless on-shell two-loop four-point
functions in [40, 41, 42, 46, 73, 74].

If an explicit contraction with the external polarisation vectors is performed,
one also has to compute two-loop integrals over the (D — 4) dimensional subspace
of loop momenta, which reduce however to simple vacuum diagrams [72]. For 2 — 2
scattering processes with external fermions and all external legs on-shell (ete™ —
e*e”, q¢ = ¢'q, 99 — 4q, 97 — 99, 97 — g7 and g7 — 77), only the squared,
helicity-averaged two-loop matrix elements have been computed so far [30, 31, 32,
33, 75].

The method which we employ here to extract the two-loop helicity amplitudes
for ete™ — ¢gg is similar to the approach of [70]. That is, by applying projections
on all components of the Lorentz-invariant decomposition of the amplitude. In this
approach, the corresponding one-loop helicity amplitudes have already been derived
in [25].

After carrying out UV renormalisation of the amplitudes in the MS scheme,
one is left with poles which are purely of IR origin. The IR pole structure of the
amplitudes can be predicted using Catani’s IR factorisation formula [29] just as we
did for the ME in the previous chapter. Again, we use this formalism to present the
infrared poles and the finite parts of the helicity amplitudes in a compact form.

This Chapter is structured as follows: in Sections 5.1- 5.4, we outline the general
method used to derive the helicity amplitudes. In Section 5.5 we discuss how the
helicity amplitude calculation can be related to the previous calculation of the ME
in Chapter 4. In Sections 5.6 and 5.7 we show the techniques used to extract
the ultraviolet and infrared pole structure. In Section 5.8 the two-loop helicity
amplitudes are computed in the Weyl-van der Waerden formalism, which is briefly

described in Appendix G. Finally in Section 5.9 we present the finite contributions
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to the helicity amplitudes.

5.1 Notation

We begin by defining our notation which closely follows that set out in Chapter 42.
We consider the production of a quark—antiquark—gluon system in electron—positron

annihilation

e (ps) + e (ps) = v*(pa) — q(p1) + @(p2) + 9(p3) - (5.1)

Here too, we work with the Mandelstam invariants s, $13 and s23 defined by Equa-
tion (4.2) and the dimensionless invariants z, y and z defined by Equation (4.4).

The renormalised amplitude |M) can be factorised as

(M) =V*Su(q:9:0), (5.2)

where V* represents the lepton current and S, denotes the hadron current. In the

previous Chapter we considered the unpolarised decay process

v*(ps) — q(p1) + q@(p2) + 9(ps) , (5.3)

for which the amplitude is related to Equation (5.2) by replacing the lepton current
V*# by the polarisation vector of the virtual photon €.

In a similar way to the ME, the hadron current may be perturbatively decom-

2There is a slight change of notation from the previous Chapter. Here we will denote the
momentum of the virtual photon by p4 as opposed to q.
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posed as
_ Qg _
Su(q; 9; @) = Varae/dna, T;; [Sf,“’(q;g; 7+ (%) SV(g;9;9)
a2 _
+ (57;) S g g;9)+0(23)],

(5.4)

where e, denotes the quark charge, a is the colour index for the gluon and ¢ and j are
the colour indices for quark and antiquark. «, is the QCD coupling constant at the
renormalisation scale u, and the S,(f) are the i-loop contributions to the renormalised

amplitude. As usual, renormalisation of ultraviolet divergences is performed in the

MS scheme.

5.2 The General Tensor

We begin by writing the most general tensor structure for the hadron current

Su(4,9,9)

Su(; 9, @) = W(p1)psu(p2) (Aries - p1 pry + Ar2€s - 1 Pay + Arses - 1 p3y)
+ @(p1)pau(pz) (Aznes - pa pry + Ases - p2 P2, + Agzes - p2 p3y)
+ @(p1)yuu(p2) (Bi€s - p1 + Baes - pa) (5.5)
+ @(p1)gsu(pz) (C1p1u + Capay + Capsy)
+ D1i(p1)¢spsvuu(p2)

+ Dati(p1) vuagsu(pz) ,

where the constraint e€3-p3 = 0 has been applied. All coefficients are functions of the
scales s13 $23 and s123. The above tensor structure is a priori D-dimensional, since

the dimensionality of the external states has not yet been specified. The hadron

131



5. NNLO Helicity Amplitude for ete™ — qdg 5.2. The General Tensor

current is conserved and satisfies

Su(a;9;9) Py = 0; (5.6)

it must also obey the QCD Ward identity when the gluon polarisation vector €3 is

replaced with the gluon momentum,

Su(g;9:9)(es = p3) = 0. (5.7)

These constraints yield relations amongst the 13 distinct tensor structures and ap-

plying these identities gives the gauge-invariant form of the tensor,

S,.(q; 9; @) = A11(813, 523, 5123) T11p + A12(813, S23, 5123)T124 + A13(S13, S23, S123) T30
+ A21(s13, S23, S123) To1, + A22(S13, S23, S123) Tz, + Aos(513, S23, 8123) Tos,

+ B(313) 823, 3123)T,u, )
(5.8)

where A;; and B are gauge-independent functions and the tensor structures T7z,

and T}, are given by

T = W(p)prulp)es - Pros — =5 6(p)fau(P2)pa, + 5 ulpr)fapru(pe) - (5.9)
Tosie = W(pa)pau(pa)es - papi = =5 a(p1)fau(pa)pas + =5 &m) pasu(pa) , (5.10)

7, = saa (alpnautprlen 1+ o) apran(en) )
s (Apatpdes 2+ G0 pfauen) ) .11

Each of the tensor structures satisfies both current conservation and the QCD Ward

identity. The coefficients are further related by symmetry under the interchange of
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the quark and antiquark,

A21(313, 823, 3123) = —A12(523, 813, 3123) )
A22(313, 823, 8123) = —A11(823, 513, 3123) )

(5.12)
A23(813, 523, 8123) = —A13(323, 513, 8123) )

B(s13, S23, S123) = B(S23, 513, S123) -

5.3 Projectors for the Tensor Coefficients

The coeflicients A;; and B may be easily extracted from a Feynman diagram cal-

culation, by using projectors such that

ZP 643 ¢;9,q) = X (513,523, 8123) - (5.13)

spins
The explicit forms for the seven projectors in D space-time dimensions are,
P(An) =

(82381230 + 813812(D — 2))T1 e (813 + 823)(D — 2)
253352, (D — 3)s123 i 252,5%,(D — 3)s123

Th- €

(8238123(D 2) + 313812(D 4))

_((s23+s12)D + 2813)T1 e Tt .
23128:153(D - 3)8123 13-4 28233%28%38123(D - 3) 1™

n (813 + 323)(1) — 4) Tt + (323 + 312)(D 4) T

2(D — 3)8128123813823 28235128133123(D 3)
1

— T €, 5.14

252452,(D — 3) 4 (5.14)
P(Ap) =

(813 + 823)(D — 2) 4 (D — 2)(s23512(D — 4) + 5138123(D — 2)) .

28 812(D 3)3123 2813312823(D — 3)8123(D — 4)

_ (D 2)(813 + 312) TT € + ((D - 6)(D - 2)(813 + 323) — 4812)T1 e
28%3312823(1) — 3)8123 13 4 2(D - 4)8%28133233123(D — 3) 2 4
(823812(D - 4) + 8133123(D - 2)) t * (2823 + (813 + 312)(D - 2)) t

- 2 2 T22 €4t 2 T23

2812813323(D — 3)8123 23128138238123(1) — 3)
D -2
( ) T . €, (5.15)

_2(D - 4)3%2813823(1) — 3)
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P(A3) =
_ ((823 + 812)D + 2813) Tf ) 6*
28128?3(1) —_ 3)8123 1 4

_ (D —2)(s13 + 512)
28%3312823(1) - 3)3123

Tlt2 ‘€

(s13523(D — 2) + 3128123D)T1 et ((s12 + s23)(D — 2) + 2313)T1 et
233 8128235123 D-3 134 232 812823 D-3 5123 i
13 13
(813 + 812)(D — 4) TT e — (313 + 812)(323 + Sp)(D - 4) TT e
28125133%38123(19 — 3) 2 25%38123%38123(1) e 3) B
1 .
+ Soranna (D = 3)T* €}, (5.16)
P(Azl) =
_ (8238123(D - 2) + 813812(D - 4))TT ) 6*
28%38%2323(1) - 3)8123 1 4
(—4s12 + (813 + 823)(D = 6)(D —2)) .+ .
3 Ty - €
2(D - 4)3128138238123(1) - 3)
(523 + 812)(D - 2) + 2313),1_,:r et
28%3812523(17 — 3)8123 13 4
(D — 2)(8233123(D - 2) + 313312(D - 4)) t *
+ 2 ) Ty - €
28123133233123(1) - 3)(D - 4)
_ (813 + 823)(D — 2) TT ) 6* _ (823 + 312)(D —_ 2) TT ) 6*
28%28338123(1) — 3) 2 23138%3512(D - 3)3123 3
(D —2)
Th. & .
+2(D —_ 4)8%2813523(1) —_ 3) 64, (5 17)
P(Az) =
(513 + 823)(D — 4) Th . e (523512(D — 4) + 5135123(D — 2))T]‘ et
28138%2823(1) - 3)8123 1 28%28138%3(1) — 3)8123 124
(st s12)(D—4) 1t . (S13+sw)(D=2) 1
2513523512(D — 3)s123 * 1 28%,8%,5103(D —3) 2 !
(523312(D - 2) + 3138123D) TT et — (313D + 812D + 2823) Tf e
28%38%2(D — 3)3123 2 4 28128338123(D — 3) 23 4
1 .
+ 252.5%.(D —3) Tt €, (5.18)
P(Ag;;) =
(23 +812)(D = 4) o (2523 (5154 502)(D—2) pt W
23233123%33123(D — 3) 1 4 28138%3812(D _— 3)8123 12 4
(513 + 512) (823 + 512) (D — 4) Th e (823 + 812)(D — 2) Tt . e
28%38125%35123(1) — 3) 13 4 28138%3312(D — 3)8123 21 4
_ ((s13 + s12)D + 2823)T1 et (s13823(D — 2) + 3123123D)Tt et
28128%38123(D — 3) 22 23133123%33123(1) - 3) B
1
. e, (5.19)

~ 2s%,513512(D — 3)
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P(B) = R
D -2
“2(D - 2)312 13T111 G- 2(D — 4)(3123133;(13 3)’—”12 €
D -2
+2323812(D_3)3 T3 “at 2(D - 4)5”12513323(17 3)TT1 ‘i
+2323312(D 3)TT2 - 2313312(11) 3)s3 23TT3 “
1 " €. (5.20)

+
2(D — 4)s%,813523

5.4 The Expansion of the Tensor Coeflicients

Each of the unrenormalised coeflicients A;; and B has a perturbative expansion of
the form
,un Qg un Qs 2 ,un
15 = Vimae,ira, T [ A9+ (52) A+ (52)" 4™ + 0(a)|.
2
= Vinae,/Ara, T [B(O),un n ( ;_:r ) pWun (;’_; ) B@ 4 o aﬁ)] ,

(5.21)
where the dependence on (s13, S23, S123) is implicit. At tree level,
AP (513, 523, $128) = 0, (5.22)
2
B(O)’un(sw, 593, S123) = . (5.23)
513823

The one-loop contributions can be written in terms of the one-loop box integral in

D = 6 — 2¢ dimensions, Box®(s;;, sik, i), and the one-loop bubble, Bub(s;;), as
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follows:

(1),un —
An (313, S23, 3123) =

(D —4) (D — 4)
N| - Bub(s123) —
[ 2(s13 + 812)513 (s125) 2512813

_ ((D — 2)823812 + (D - 4)823813 + 4812(812 + 513))
2512513(513 + 512)2

D—4)4 D —
B ( )(4s12 + 2)s2) Box®(s13, S23, S123)

[Bub(s13) — Bub(s123)]

[Bub(sa3) — Bub(s123)]

4512513
1[_(D-4) D
N[2(313+312)313 ub(siza) + 27, [Bub(s12) — Bub(s1zs)]

(812 + 813) (D23 + 4513) + 2523813
2(513 + 812)2‘9%3
N (D—4)(D—6)

[Bub(sas) — Bub(s123)]

Box®(s12, 513, $123)

4513

D — 2)Y(Dsy3 + 4s

+ ( )(4 223 1) Box®(s12, 523, 5123) | » (5.24)
313
Aglz)’un(sla, 23, 8123) =
(D —10)
N} — Bub(sy3) — Bub(s
[ 2512(523 + S12) [ (s13) ( 123)]

((D —10)s13 — 4512)
h Bub(ss3) — Bub
2512513(813 + S12) [Bub(szs) ub(s123)]

(4(D - 4)812 - (D — 2)(D — 10)313)
N 4812813
% [(22 2;:3) [Bub(s15) — Bub(s123)]
((D - 2)812 + 2(D — 6)823)
2893512(823 + 512)

(D — 6)(312 + 2313)
Bub(s — Bub
2512313(313 + 312) [ ( 23) (3123)]

+ (D — 2)%s12513 + 4(D — 4)512523)

Box®(s13, 23, 3123)]

[Bub(s13) — Bub(s123)]

Box®(s12, 813, S123)

4512513823
2(D—-4)(D—6
n ( 4)( )$13823 Box6(312,313,3123)
812513523
D—6)(D -2 2(D -4
+( )(( 4)312+ ( )513) Box’(s12, $23, $123) |, (5.25)
512513
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(1),un _
A13 (313, 823, 8123) =

(D —6)
N Bub(sz3) — Bub(s
[2(313+312)313 [Bub(s23) (5123)]
D—-4)(D—-6
( 4)( ) Box®(s13, 523, 5123)
513
1 (D-4) (D —4)
N Bub(s123) — Bub(s13) — Bub(s
[ s13( 823+313) ($125) 2893513 [ ub(s13) ( 123)]

4812813 — D312(813 + 823) )
2(593 + 513)%5%3523
2D - 2)s13523(513 + S23)
2(823 + 513)%5%33523
- S0 [Bub(or) — Bublous)]
(D =4)((D = 2)s12 + 4523)
4593513

(D - 2)(D812 + 2(D - 4)313)

- 452 Box®(s12, 523, 8123)] ) (5.26)
513

[Bub(s12) — Bub(s123)]

[Bub(s12) — Bub(sy23)]

BOX6(812, 513, 3123)

B(l)"m(513, 823, 5123) =

N[ D? —-3D +4

4(D — 4)s13593

4 (4(D — 3)s12(s12 + 823) + (D — 4)(D — 7)s23513) [

2512823(S23 + $12)813(D — 4)

L WD - 3)sia + (D — 2)(D — 7)s1352)
8512813523

1 [(7D — 16 — D?)
—_ Bub —
N [ 4(D — 4)313823 u (8123)

Bub(slzg)

Bub(s;3) — Bub(s12)]

Box®(s13, s23, 5123)
(812 + (D — 6)s23)
2(823 + 512)323312
(16 — 5D) ,
S Bub(s;2) — Bub
4(D — 4)s13523 [Bub(s12) — Bub(s123)]

_ (4(D — 3)823512 + (D — 4)(D — 6)813823)
4519513523

[Bub(313) - Bub(3123)]

Box®(s12, 513, S123)
(D - 2)312313

4512513523

+ {513 “ 523}. (5.27)

+ BOX6(S12, 513, S123)

Explicit expansions of the one-loop integrals around € ~ 0 in terms of HPLs and

2dHPLs are listed in Appendix E.
Similarly, the unrenormalised two-loop A(I?’““ and B@un coefficients were ob-

tained analytically in terms of a basis set of two-loop MI by the reduction of all two
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loop integrals using the Laporta algorithm (Section 3.6). This is exactly the same
procedure carried out for the ME in Chapter 4. Since we have exactly two-loop
integrals as the ME calculation the corresponding MIs are identical. As we have
seen, the e-expansions for each of the MIs have been derived in [47, 48] by solv-
ing differential equations. Therefore, the e-expansions of A?J)’un and B@ can be

obtained by directly substituting the e-expansions of the individual MlIs.

5.5 Relation to the Matrix Element Calculation

We have already considered the case where the correlations with the lepton current
are ignored in the previous Chapter 4. In this case, the squared amplitude for the

process v* — qdg, summed over spins, colours and quark flavours, is denoted by

(MIM) = les- S(g9:9)F = T(z,5,2). (5.28)

The perturbative expansion of 7 (z,y, z) was calculated previously and is given by
Equation (4.7). It was shown that the NNLO calculation of T (z,y, z) required two

pieces, the one-loop self-interference (4.13)
TELD (g, y, 2) = (MOIMD) (5.29)
and from the interference of tree and two-loop (4.14)
7O (g 4 2) = (MOIMP)Y + (MD|MO) (5.30)

It is straightforward to obtain the interference of the tree and i-loop amplitudes in

terms of the tensor coefficients, A;; and B. We find
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(M(O)lM(i)) —

v

£} {2(1 —€) ((3125123 + 512813 + 513523)

— (513 + 823) (812 + 513))A5i1)(313, 823, 5123)
+ (2(312 + 823)° — 2¢ (s123503 + (512 + 523)%)
+ 2€°(s13 + Sa23) (512 + 823))14(12(513, 823, 5123)
+2 (525 — €(513 + 923)) (5128 — €(513 + 523)) A3 (513, 523, 512)

2 2 2
+ 2(813 + S93 + 28128123 - 26(8123 — 812813 — S12523 — 813523)

+ 62(313 + 823)2) B(i)(313a 823, S123) + {P1 ¢ pz}}~ (5.31)

The above relation holds for the unrenormalised as well as for the renormalised
matrix element, involving the appropriate unrenormalised or renormalised tensor co-
efficients respectively. Similar, but more lengthy, expressions can easily be obtained
for the interference of ¢- and j-loop amplitudes. We have checked that inserting the
expressions for A?} and B® into Equation (5.31) reproduces our earlier results of
Chapter 4 at the one- and two-loop level both at the master integral level and after

making an expansion in e.

5.6 Ultraviolet Renormalisation

The renormalisation of the matrix element is carried out by replacing the bare
coupling oy with the renormalised coupling o, = o,(u?), evaluated at the renor-
malisation scale u? by exactly the same procedure as for the ME calculation and is
shown in Section 4.2.

We denote the i-loop contribution to the unrenormalised coefficients by A{)"®
and B®" using the same normalisation as for the decomposition of the renor-

malised amplitude (5.4); the dependence on (s13, S23, 5123) is always understood im-
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plicitly. The renormalised coeflicients are then obtained as

0
A =
A = 51N (5.32)

un 3 un
Af]) — SE—ZA(I?]): . ﬁO lA(l), ’

and
B — p(0)un ,

BW = g-1pMun _ @ b o, (5.33)

B(2) — S—2B(2),un _ 3ﬂ0 IB(l) un __ & _ 3_5(% B(O),un
¢ 4 8¢?

For the remainder of this calculation we set the renormalisation scale u? = ¢ =

p2. The full scale dependence of the tensor coefficients is given by

2
Apy = Varaegvina, T { (%2(:: )> A(I?

(42 S (3] ot

2 2\
= Vdrae,VAra, T {B(O) + (%) [B(l) + &B(O) In (%)]

N (as(/f"))2 [B(z) + (350 g 4 P B("))l (“_2)
27 2 q*

3 2 2
+ %B(O) In? (%) ] + O(ag)}. (5.35)

5.7 Infrared Behavior of the Tensor Coefficients

After performing ultraviolet renormalisation, the amplitudes still contain singulari-
ties, which are of infrared origin and will be analytically cancelled by those occurring
in radiative processes of the same order. As we saw in Chapter 2 Catani [29] has

shown how to organise the infrared pole structure of the one- and two-loop contribu-
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tions renormalised in the MS scheme in terms of the tree and renormalised one-loop
amplitudes. The same procedure applies to the tensor coefficients. In particular,

the infrared behaviour of the one-loop coeflicients is given by

1 1),finite
45— A,

(5.36)
B — I(l)(E)B(O) + B()fnite
while the two-loop singularity structure is
Ag?]) — I(l)(e)Ag]) + A(I?]),ﬁnite,
B®@ — (—%I(l)(G)I(l)(E) _ _ﬁeﬂI(l)(e)
( ) (5.37)
_T(1—2¢) [ By
T 24+ K ) I(2) + H?(e) | B®
Te I'l—e¢) (e+ ) (2e) + (e)
+ I(l)(e)B(l) + B(?),ﬁnite,
where the constant K is
67 w2 10
K=|—=——)Ca— —TgNp. 38
(18 6 ) AT g tRAF (5.38)

The finite remainders AY)™" and B@+nite remain to be calculated.
The insertion operator IV (¢) and H® (¢) have already been calculated in Chap-

ter 4. TW(()e) for example, is given by Equation (4.40)

ey 1 3 S 1/1 3
I =-—  IN(+ 2+ 2 ) S5 4+80)— == +~]5
(€) 2T'(1 —¢) ER P (1 + 523) v @ T2 )n
(5.39)

where, since we have set u? = s;93,

Si; = (—3123)6 . (5.40)
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5.8 Helicity Amplitudes

We can extend the results of the previous section to include Z boson exchange,

e (ps) + e (ps) = (Z*,7") (pa) — a(p1) + @(p2) + 9(ps3), (5.41)

where the off-shell vector boson now distinguishes between left- and right-handed
fermions by keeping track of the helicity of the final state quarks®. A convenient
method to evaluate the helicity amplitudes is in terms of Weyl-van der Waerden
spinors, which is described briefly in Appendix G and in detail in [76, 77, 78].

It is also straightforward to include the spin-correlations with the initial state
by contracting the hadronic current with the lepton current V,, for fixed helicities of
the initial state electron (and positron). Using the spinor calculus of Appendix G
we can express the lepton current V,, in terms of the helicities of the incident e* and

e~ (with momenta ps and pg respectively). Explicitly,

. LY
Vi(e*+ ™) = eoy"poapsn—° (5.42)
Z(+ - AB Lz
V., (e"+,e"~) = ea, PgAaPsB MZ+ T My (5.43)
, v
Vi(et = e™+) = €0, "ps ipen—=, (5.44)
Z(,+ AB RZ
Vi ("= e7+) = e0)"ps spsn— ME T, (5.45)
The hadronic current S, is related to the fixed helicity currents, S,5, by
Sula+;9%9—) = R}, ;,V20,P8,15(q+; 94, 7-) (5.46)

3Note that the full matrix element for any process should be summed over both photon and
Z-boson exchange.
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and

Sua—; g\ T+) = LY. ;, V200881 5(a—; gA T+) - (5.47)

As in Equation (5.4), the gauge boson coupling is extracted from S;5. As mentioned
earlier, the left- and right-handed currents couple with a different strength when the
vector boson is a Z.

The currents with the quark helicities flipped follow from parity conservation:
Sip(q—39Aq+) = (Spala+;9(=A);7-))" (5.48)

Charge conjugation implies the following relations between currents with different
helicities:

Sis(arg 9N Tg) = (=1)8,i5(T)g; A a),). (5.49)

All helicity amplitudes are therefore related to the amplitudes with A, = + and
Aq _ .

Explicitly, we find

plAng 2B (v, 2) p3ADP§P2B

. {p1p3)(pap2) {p1p3){p3p2)
plC‘BPSCp?,A + 5(y,z) (P1P3)*

+ ’7(y7 Z) <p1p3)(p3p2>* W (plAB +p2AB +p3AB) : (550)

Sip(g+; 9+,3-) = a(y, 2)

The other helicity amplitudes are obtained from S ;5(g+; g+; d—) by the above par-

ity and charge conjugation relations, while the coefficients , # and ~y are written in
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terms of the tensor coefficients:

523513
4

- A11(S13,823,3123)> )

a(y, Z) = (23(313, S23, 3123) + A12(813, S23, 3123)

s
By, z) = f (28233(813, S23, S123) + 2(S12 + S13) A11(813, 523, S123)
(5.51)

+ 823 (A12(313, 893, S123) + A13(s13, 823, 8123))) )

513823
’y(y,z) = 14 <A11(513,323,5123) - A13(313,323,3123)) )

8128
5(3/,2) = - 124 131411(313,323,3123)-

When the hadron tensor is contracted with €{ or the lepton current V#, the final
term of Equation (5.50) vanishes?. Furthermore, current conservation implies the

following relation between the four helicity coeflicients,

28123

aly,z) ~ By, z) — (Y, 2) — 6(y,2) =0. (5.52)

S12

This relation is fulfilled automatically once the tensor coeflicients are inserted and
does therefore not yield a further reduction of the tensor basis.

As with the tensor coefficients, the helicity amplitude coeflicients «, 5 and «y are
vectors in colour space and have perturbative expansions:

2
Q = Vara/ara, T |QO© + Zyam 4+ () @ 4o 3|,
Y 27 27

for Q = a, 8,7. The dependence on (y, ) is again implicit.

The ultraviolet and infrared properties of the helicity coefficients match those of

4And for this reason was omitted in [25].
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the tensor coefficients,

QO = Oun

Q(l) — Sé—lQ(l),un _ IS_EQ(O),un’ (553)
_ 300 o B 363

Q(Z) =S ZQ(Z),un _2F0 IQ(I),un _ {1 2 Q(O),un
€ 2¢ Se 4e 82 ’

and
QM — I(l)(e)Q(O) + Q(l),ﬁnite’

1 B
0@ = (—51(1)(6)1(1)(6) - ?01(1)(6)
(5.54)

+ e_mEFi(ll—__Z:)) (%‘3 + K> IM(2¢) + H(2)(e)) QO

+ I(l)(e)Q(l) + Q(2),ﬁnite,

where I () and H® (¢) are defined in Equations. (5.39) and (2.59) respectively.

5.9 The Finite Contributions

In this Section we present the finite contributions to the helicity amplitudes. At

leading order we simply have

adOy,2) = 0y,z) =1 and  7O(y,2)=0. (5.55)

5.9.1 One-Loop Contribution to 2

The renormalised one-loop helicity amplitude coefficients can be straightforwardly
obtained to all orders in € from the tensor coefficients using Equations (5.24)-(5.27).
For practical purposes, they are needed through to O (€2?) in evaluating the IR-
divergent one-loop contribution to the two-loop amplitude, while only the finite

piece is needed for the one-loop self-interference.
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They can be decomposed according to their colour structure as follows:
. 1
QMRE(y, 2) = N ag(y, 2) + 3 ba(y, 2) + Poca(y, 2) (5.56)

The expansion of the coeflicients through to €? yields HPLs and 2dHPLs up to weight
4 for agq, bg and up to weight 3 for cq. The explicit expressions are of considerable
size, such that we only quote the ¢’-terms (although these have been known already
for a long time [25]). The expressions through to O (€?) can be obtained in FORM

format from the author. The one-loop coefficients can be found in Appendix C.

5.9.2 Two-Loop Contribution to {2

The finite two-loop remainder is obtained by subtracting the predicted infrared
structure (expanded through to O (€°)) from the renormalised helicity coefficient.
We further decompose the finite remainder according to the colour structure, as

follows:

Q@sfinite(y 2y = N2Aq(y, 2) + Ba(y, 2) + 72Ca(y, 2) + NNrDq(y, 2)

+%EEQ(y) Z) + NF2Fﬂ(y)z) + NF,V (% - N) Gﬂ(y’ Z) ) (557)

where the last term is generated by graphs where the virtual gauge boson does not
couple directly to the final-state quarks. This contribution is denoted by Ngy and
is proportional to the charge weighted sum of the quark flavours. In the case of

purely electromagnetic interactions we find,

€
Np, = 2o : (5.58)

€q

Including Z-interactions, the same class of diagrams yields not only a contribution

from the vector component of the Z, which for the right-handed quark amplitude is
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given by
v _ 15+ R)

, , (5.59)
2RZ,

but also a contribution involving the axial couplings of the Z [79]. This contribution
vanishes if summed over isospin doublets. The large mass splitting of the third quark
family induces a non-vanishing contribution from this class of diagrams, which can
however not be computed within the framework of massless QCD employed here,
but can only be obtained within an effective theory with large top-quark mass. In
contrast to the vector contribution from these diagrams, which is finite, one could
expect divergences in the axial vector contribution, which would be cancelled by
the single unresolved limits of the corresponding axial contributions to four-parton
final states [52, 53]. Results from the four-parton final states show that this axial
contribution is numerically very small [80, 81].

The helicity coeflicients contain HPLs and 2dHPLs up to weight 4 in the A, B,
C and G-terms, up to weight 3 in the D- and E-terms (which do moreover contain
only a limited subset of purely planar master integrals) and up to weight 2 in the
F-term. The size of each helicity coefficient is comparable to the size of the helicity-
averaged tree times two-loop matrix element presented in Appendix B. Therefore,
we only quote the A- and D-terms of each coefficient, which form the leading colour
contributions, and which turn out to be numerically dominant, approximating the
full expressions to an accuracy of about 20%. The complete set of coeflicients in
FORM format can be obtained from the author. The leading colour terms can be

found in Appendix D.

5.9.3 Summary

From the QMfinite 54 Q)finite it j5 possible to recover the finite pieces of the

helicity-averaged tree times two-loop matrix elements (Appendix B) and one-loop
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the size of Finite(*V(z,y, 2) in (4.54), it becomes clear that the squared one-loop
amplitude can be evaluated much more elegantly by squaring the finite remainders

of the helicity amplitudes than by computing the squared matrix element.

149



5. NNLO Helicity Amplitude for ete~ — qgg 5.9. The Finite Contributions

squared matrix elements (Appendix A) by squaring (5.50):

Finite®O(z,y,2) =8V R

l—y l—y—Z nite 1_y nite
( )(yz )a(z),ﬁ t (y,z) + ; 13(2),ﬁ t (y,z)

_ A @dfnite(y ) 4 (y ¢ Z)] )

NI (CEVES WA TR

+ ( g— ) gy, 2)|
+(1—12/—z ) ey, )

( _y ) Q(Hfimite () 2y g+(1)fnitey )

_ (1 —y— z) a(l),ﬁnite(y, z),y*(l),ﬁnite(y’ Z)

Finite>V(z,y,2) =4V R

— (L+y + 2) gUMRRe(y, ) 0Bty 2) 4 (y 2 2) |

(5.60)

It is important to notice that (5.60) corresponds, by the very nature of the
Weyl-van der Waerden helicity formalism, to a scheme with external momenta and
polarisation vectors in four dimensions (internal states are always taken to be D-
dimensional), which is sometimes called the 't Hooft—Veltman scheme [17]. This
scheme is different from the conventional dimensional regularisation used in Chap-
ter 4, where all external momenta and polarisation vectors are D-dimensional. Nev-
ertheless, one obtains from (5.60) the same Finite*Y(z,y, z) as in Appendix A and
Finite®9(z, y, 2) as in Appendix B, since all scheme-dependent terms are correctly
accounted for by the finite contributions arising from expanding the tree level and
one-loop contributions in the renormalisation and infrared factorisation formulae.

It should also be noted that only the O(e®) terms of Q(!)finite contribute to
Finite®*Y(z,y, z), terms subleading in € are not required, since no term is multi-

plied with a divergent factor. Comparing the size of these O(€°) terms in (5.56) with
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CHAPTER 6

Conclusions and Outlock

6.1 Summary

We have seen that higher order corrections in perturbative QCD are important for
example in the calculation of event-shape variables and the precision determination
of a,. The motivation for higher orders is to increase accuracy and reduce unphysical
scale dependence.

Due to its importance, we have focused on the NNLO calculation of the three-
jet rate in e*e” annihilation. There are several components to the full calculation,
many of which have already been calculated. Firstly, the tree level v* — 5 partons
amplitude where two partons become soft or collinear, calculated in [49, 50, 51].
Secondly, the one-loop corrections to 4* — 4 partons amplitude with one parton
becoming soft or collinear, calculated in [52, 53, 54, 55]. Finally, the two-loop (as
well as the one-loop times one-loop) corrections to the v* — 3 partons amplitude.
While the former two contributions have been known for some time already, the
two-loop amplitudes for the three parton subprocess have presented an obstacle
that prevented further progress on this calculation up to now.

In this thesis, we have presented the analytic formulae for the two-loop virtual

corrections to the process v* — ¢gg, which arise from the interference of the two-loop
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with the tree amplitude and from the self-interference of the one-loop amplitude.
Together with the contribution from the self-interference of the one-loop amplitudes
for v* — ggg [57, 58], these form the full O (a?) corrections to the three-parton
subprocess, finally enabling the full calculation of ete™ — 3 jets at NNLO.

In Chapter 2 we looked at the general calculation of matrix elements. We saw
that there are two types of divergence arising from the singular behaviour of the loop
integrals, UV and IR. The UV divergences are removed by renormalisation. The
IR divergences are only eliminated when we calculate suitably inclusive quantities,
for which the divergences cancel between the physically degenerate real and virtual
contributions. This led to the discussion of the IR factorisation formula of Catani
and Seymour which predicts the pole structure of the one- and two-loop virtual
amplitudes.

The next stage in the calculation of the matrix element was to evaluate all
the one- and two-loop integrals. In Chapter 3 we discussed different techniques
for calculating loop-integrals in general. In particular we saw that by use of IBP
identities we could relate all tensor and scalar integrals to a small set of MI. The
process for solving the system of IBP identities was automated by use of an algorithm
described by Laporta. We saw that the remaining MI could be solved by differential
equations, in fact, all necessary MI for v* — ggg were calculated by Gehrmann and
Remiddi using this technique.

With the necessary tools in place we calculated the full matrix element in Chap-
ter 4. Here we presented all the components for the calculation. In particular we
showed all contributing Feynman diagrams and constructed the insertion operator
required for the factorisation formula discussed in Chapter 2. By applying the fac-
torisation formula we were subsequently able to make positive checks on our results
by verifying that the pole structure indeed agrees with the prediction.

Knowledge of the helicity amplitudes allows additional information on the scat-

tering process. In particular, observables that require knowledge of the polarisation
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tensor of the virtual photon, such as oriented event shapes in unpolarised e*e™ scat-
tering or event shapes in polarised ete™ scattering, can be described at two-loop
order. In Chapter 5 we have presented analytic formulae for the one- and two-loop
virtual helicity amplitudes to the process v* — ggg. These amplitudes have been
derived by defining projectors, which isolate the coeflicients of the most general ten-
sorial structure of the matrix element at any order in perturbation theory. Once the
general tensor is known, the helicity amplitudes follow in a straightforward manner
— they are linear combinations of the tensor coefficients. We applied the projectors
directly to the Feynman diagrams and used the conventional approach of relating
the ensuing tensor integrals to a basis set of master integrals. This latter step is
identical to that employed to evaluate the interference of tree- and two-loop graphs
in Chapter 4, apart from the fact that the projector is no longer the tree-level ampli-
tude. As anticipated, the finite remainder from the interference of tree- and two-loop
amplitudes can be reconstructed from the appropriate helicity amplitudes, with the
difference between treating the external states in D-dimensions or four dimensions

being isolated in the infrared-singular terms.

6.2 QOutlook

As already mentioned, the virtual corrections form only part of a full NNLO cal-
culation. All of the subprocesses must be combined in a way that allows all of
the infrared singularities to cancel one another. This task is far from trivial, even
though the factorisation properties of both the one-loop, one-unresolved-parton con-
tribution [82, 83, 84, 85, 86, 87] and the tree-level, two-unresolved-parton contribu-
tions [88, 89, 90, 91, 92] have been studied. Although this is still an open and highly
non-trivial issue, significant progress is anticipated in the future.

The remaining finite terms must then be combined into a numerical program im-

plementing the experimental definition of jet observables and event-shape variables.

152



6. Conclusions and Outlook 6.2. Outlook

A first calculation involving the above features was presented for the case of photon-
plus-one-jet final states in electron—-positron annihilation in [93, 94|, which involves
both double radiation and single radiation from one-loop graphs, thus demonstrat-
ing the feasibility of this type of calculation. A prerequisite for such a numerical
program is a stable and efficient next-to-leading order four-jet program, where the
infrared singularities for the one-loop v* — 4 partons are combined with the tree-
level v* — 5 parton with one parton unresolved. Four such programs currently
exist [80, 81, 95, 96, 97], each of which could be used as a starting point for a full
O (a3) NNLO three-jet program.

Similar results can in principle be obtained for (2 + 1)-jet production in deep
inelastic ep scattering or (V + 1)-jet production in hadron-hadron collisions. How-
ever, the rather different domains of convergence of the HPLs and 2dHPLs makes
this a non-trivial task, which is discussed in a separate paper [98]. Nevertheless, the
helicity approach will provide information on the direction of the decay leptons in
(V +1)-jet production (with or without polarised protons). Determination of the po-
larised parton distribution functions in polarised electron—proton scattering will also
benefit from the knowledge of the two-loop helicity amplitudes in the appropriate

kinematic region.

Note: Since the original calculations presented in this Thesis were performed,
part of the results have been confirmed by an independent calculation using the
methods described in [99, 100]. In [101], Moch, Uwer and Weinzierl obtain results
for the full one-loop amplitude (5.56) and for the contributions to the two-loop
amplitude (5.57) which are proportional to Nr (i.e. the terms Dg and Ejg), all in

agreement with the results presented here.

153



APPENDIX A

One-Loop Contribution to 7T (6)

The finite remainder of the self-interference of the one-loop amplitude is decomposed

as

finite(lxu(:c,y, Z) =V N2 (All(ya Z) + All(‘z)y)) + (Bll(ya Z) + Bll(z:y))

+ % (Cuu(y, 2) + Cu(z,¥)) + NNp (Du(y, 2) + Du(z,))

N,
+ WF (Bu(y, 2) + En(z,y)) + Np? (Fu(y, 2) + Fu(z,9) |,
(A.1)
with

An(y,2) =

1 z 1 2 L . L L '

27 ey [ — w2 — 24 — 10H(0; ) — 6H(0; 2)G(0; ) — 6H(1, 0; 2) — 10G(0; y)

+6G(1,0;y)]

¥4
+6(1 —y)? [”2(;(0; y) + 10H(0; 2)G(0; y) + 12H(0; 2)G(0,0; y)

+6H(1,0; 2)G(0; ) + 21G(0; y) + 23G(0, 0; y) — 6G(0, 1,05 ) — 12G(1, 0, 0; y)]

+5 (lz_ 3 [7r2 +372G(0;y) + 21 + 10H(0; z) + 36H(0; 2)G(0; )
+36H(0; 2)G(0,0; y) + 6H(1,0; z) + 18H(1, 0; 2)G(0; y) + 73G(0; y)
+33G(0,0;y) ~ 18G(0,1,0;y) — 6G(1,0;y) — 36G(1,0, O;y)]
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1
3(1-y)
—12H(1, 0; 2)G(0; y) — 42G(0;y) — 28G(0,0;y) + 12G(0, 1, 0; y)
+24G(1,0,0; y)]

2
+T7L2 (7% + 169 + 20H(0; 2) + 12H(0; 2)G(0; ) + 12H(1, 0; 2) + 20G(0; )
~12G(1,0;)]

+ [— 212G (0;y) — 20H(0; 2)G(0; ) — 24H(0; 2)G(0, 0; 9)

+% [ + 72 + 60H(0; 2) + 61H(0; 2)G(0; ) -+ 30H(0; 2)G(0, 0; )
—9H(0; 2)G(0, 1, 0; y) — 156H(0; 2)G(1, 0; y) — 18H(0; 2)G(1,0,0; )
+25H(0, 0; z) + 30H(0, 0; 2)G(0; y) + 18H(0, 0; 2)G(0, 0; y) + 15H(0, 1, 0; 2)
+9H(0, 1, 0; 2)G(0; y) + 36H(1, 0; 2) + 15H(1, 0; 2)G(0; y)
—9H(1, 0; 2)G(1, 0; y) + 30H(1,0,0; z) + 18H(1,0,0; 2)G(0; y)
+9H(1,0,1,0;2) + 18H(1,1,0,0; z) + 60G(0; y) + 25G(0, 0; y) — 15G(0, 1,0; y)
~36G(1,0;) — 30G(1,0,0;) +9G(1,0,1,0;) + 18G(1,1,0,031)]

Bu(y,2) =
—{—é [ — 2w H(0; 2)G(1 — z;9) — 272H(1; 2)G(—z; y) + 272G (—2,1 — z;y)

+3 — 42H(0; 2)G(1 — 2z;y) — 20H(0; 2)G(1 — 2,0;y) + 12H(0; 2)G(1 — 2,1,0; y)
+2H(0; 2)G(—2,1 — z;9) + 12H(0; 2)G(—2,1 — 2,0; )

+12H(0; 2)G(—2,0,1 — z;y) — 20H(0; 2)G(0,1 — z; y)

+12H(0; 2)G(0, — 2,1 — z;y) + 12H(0; 2)G(1,1 — 2,0; y)

+12H(0; 2)G(1,0,1 — z;y) — 4H(0,0; 2)G(1 — z;y) — 24H(0,0; 2)G(1 — 2,0;y)
—24H(0,0; 2)G(0,1 — 2;y) — 2H(0, 1; 2)G(—=z;y) — 12H(0, 1; 2)G(—2, 0; y)
—12H(0, 1; 2)G(0, —z; y) — 12H(0, 1,0; 2)G(1 — z;y) — 42H(1; 2)G(—2;y)
—20H(1; 2)G(-2,0;y) + 12H(1; 2)G(-2,1,0;y) — 20H(1; 2)G(0, —=2; y)
+12H(1; 2)G(1, —2,0; y) + 12H(1; 2)G(1,0, —z; y) + 12H(1,0; 2)G(—2,1 — 2; y)
—2H(1,0; 2)G(—z;y) — 12H(1, 0; 2)G(—=2, 0; y) — 12H(1,0; 2)G(0, —z; y)
—24H(1,0,0; 2)G(1 — z;y) — 12H(1,0, 1; 2)G(—=2;y) — 24H(1,1,0; 2)G(—2; y)
+42G(—2,1 — z;y) + 20G(—=2,1 — 2,0;y) — 12G(—=2,1 — 2,1,0;y)
+20G(—2,0,1 — 2z;y) — 12G(—2,1,1 — 2,0;y) — 12G(-%,1,0,1 — 2;y)
+20G(0, —2,1 ~ 2z;y) — 12G(1, —2,1 — 2,0;y) — 12G(1,—2,0,1 — z; )
-12G(1,0, —2,1 — z;y)]

+é [ — 7% 4 4n?H(0; 2)G(1 — z;y) + 4n2H(1; 2)G(—2;9) — 472G(—2,1 — 2;y)

—10H(0; 2) 4+ 90H(0; 2)G(1 — z;y) + 40H(0; 2)G(1 — 2,0; y)

—24H(0; 2)G(1 ~ 2,1,0;y) — 16H(0; 2)G(—2,1 — 2; y)

—24H(0; 2)G(-2,1 — 2,0;y) — 24H(0; 2)G(—2,0,1 — z;y)

+40H(0; 2)G(0,1 — z; y) — 24H(0; 2)G(0, — 2,1 — z; ) — 6H(0; 2)G(0; y)
—24H(0; 2)G(1,1 — 2,0;y) — 24H(0; 2)G(1,0,1 — z;y)
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+32H(0, 0; z)G(l — z;y) +48H(0,0; 2)G(1 — z,0;y)

+48H(0, 0; 2)G(0,1 — z; y) + 6H(0, 1; 2) + 16H(0, 1; 2)G(~=z;y)

+24H(0, 1; 2)G(—=2, 0; y) + 24H(0, 1; 2) G(0, —z; y) + 24H(0, 1, 0; 2) G(1 — z;9)

—9H(1; 2) + 96H(1; 2) G(—2; y) + 40H(1; 2) G(—2,0; y) — 24H(1; 2)G(—2,1,0;y)

+40H(1; 2)G(0, —z; y) — 6H(1; 2)G(0; y) — 24H(1; 2)G(1, —2,0; y)

—24H(1;2)G(1,0, —z;y) — 6H(1,0; 2) — 24H(1,0;2)G(—2,1 — z;y)

+16H(1,0; 2)G(—2; y) + 24H(1, 0; 2)G(—2, 0; y) + 24H(1,0; 2)G(0, —z; )

+48H(1,0,0; 2)G(1 — 2;y) + 24H(1,0, 1; 2)G(—2; y) + 48H(1,1,0; 2)G(—2; )

+9G(1 — z;9) + 6G(1l — 2,0;y) — 96G(—2,1 — z;y) — 40G(—2,1 — z,0;y)

+24G(—2,1 - 2,1,0;y) — 40G(—2,0,1 — 2;y) + 24G(—=2,1,1 — 2,0;y)

+24G(—2,1,0,1 — z;y) + 6G(0,1 — z;y) — 40G(0, —2,1 — z;y) — 10G(0; y)

124G(1, -2, 1 — 2,0;y) + 24G(1, —2,0,1 — 2 y) + 24G(1,0, —2,1 — z; y)]

+6_(1i—y)2 [ — 72G(0;y) — 6H(0; 2)G(1 — 2,0;y) — 6H(0; 2)G(0,1 — z;9)

—10H(0; 2)G(0; y) — 12H(0; 2)G(0, 0; y) — 6H(0, 1; 2)G(0; )

—12H(1; 2)G(—2,0;y) — 12H(1;2)G(0, —2; y) + 9H(1; 2) G(0; )

+12H(1; 2)G(0,0; y) — 6H(1, 0; 2)G(0; y) — 9G(1 — 2,0;y) — 12G(1 — 2,0,0; y)

+12G(-2,1 — 2,0;y) + 12G(-2,0,1 — z;y) — 9G(0,1 — z;y) — 12G(0,1 — 2,0;y)

+12G(0, —2,1 — z;y) — 42G(0;y) — 12G(0,0,1 — z;y) — 26G(0,0;y)

+12G(0,1,0;y) + 24G(1,0,0;)]

+alz——y) [ — 72 — 372G (0;y) — 42 — 10H(0; 2) — 6H(0; 2)G(1 — 2; 1)

—18H(0; 2)G(1 — 2,0;y) — 18H(0; 2)G(0, 1 — 2;y) — 36H(0; 2)G(0; y)

—36H(0; 2)G(0,0; y) — 6H(0, 1; z) — 18H(0, 1; 2)G(0; y) + 9H(1; 2)

—12H(1; 2)G(—z; y) — 36H(1; 2)G(—2,0; y) — 36H(1; 2)G(0, —=z; y)

+33H(1; 2)G(0; y) + 36H(1; 2)G(0,0;y) — 6H(1,0; 2) — 18H(1, 0; 2)G(0; y)

—-9G(1 — 2z;y) — 33G(1 — 2,0;y) — 36G(1 — 2,0,0;y) + 12G(—2,1 — z;y)

+36G(—z2,1 — 2,0;y) + 36G(—=2,0,1 — 2;y) — 33G(0,1 — z; y)

-36G(0,1 — z,0;y) + 36G(0, —2,1 — z;y) — 136G(0;y) — 36G(0,0,1 — 2;y)

—6G(0,0;9) + 36G(0,1,0;y) + 12G(1, 0; 9) + 72G(1,0, o;y)]

+ - [
(1 —y)*(y + 2)?
m [2H(1; 2)G(0;) — 2G(1 — 2,0;) — 26(0, 1 - 539) + G(0;)]

+ﬁ [ — H(l,z)G(O,y) + G(l - z,O;y) + G(O, 1— z;y) _ G(O, y)]

1
T 7 ~ 2H(L2G0:9) + G = 59) + 26(1 - 5,0,9)

+2G(0,1 — z;y)]
1
T=nw+2)

— H(1;2)G(0;y) + G(1 — 2,0;9) + G(0,1 — z; y)]

[1 + 2H(1; z) + 2H(1; 2)G(0; y) — 2G(1 — z;9) — 2G(1 — 2,0;y)
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—2G(0,1 - z;y) + 2G(0;y)]

+

STy 7 C(0) =3+ 12H(0; 2)G(1 - 2,0;) + 12H(0; 2)G(0, 1 — 23)

+10H(0; 2)G(0; y) + 12H(0; 2)G(0, 0; y) + 6H(0, 1; 2)G(0; y) — 3H(1; 2)
+18H(1; 2)G(~2,0; y) + 18H(1; 2)G(0, —z; y) — 18H(1; 2)G(0; y)
—12H(1;2)G(0,0;y) + 6H(1,0; 2)G(0;y) + 3G(1 — 2;y) + 18G(1 — z,0;y)
+12G(1 — 2,0,0;y) — 18G(—2,1 — 2,0;y) — 18G(—2,0,1 — z;y)
+18G(0,1 — 2;9) + 12G(0,1 — 2,0;y) — 18G(0, —2,1 — 2;y) + 66G(0;y)
+12G(0,0,1 — z;y) + 14G(0,0;y) — 12G(0, 1, 0; y) — 24G(1,0, O;y)]

1
T+ 22
+12H(0; 2)G(1 — 2,0;y) + 12H(0; 2)G(0,1 — z;y) — 11H(0, 1; 2)

—12H(0, 1; 2)G(0; y) — 42H(1; z) — 11H(1; 2)G(0; y) + 12H(1;2)G(1,0; y)
—11H(1,0; 2) + 12H(1,0; 2)G(1 — z;y) — 12H(1,0; 2) G(0; y) — 12H(1,0, 1; 2)
—24H(1,1,0; 2) + 42G(1 — z;y) + 11G(1 — 2,0;y) — 12G(1 — 2,1,0; y)
+11G(0,1 — z;y) — 12G(1,1 — 2,0;y) — 12G(1,0,1 — z;y)]

[ —27%H(1; 2) + 27°G(1 — 2;9) 4+ 11H(0; 2)G(1 — 2;7)

1 2
3 ; ; 2H(1, 0; 11 ;
ED [2” + 42 + 11H(0; 2) + 12H(0; 2)G(0; y) + 12H(1,0; 2) + 11G(0; y)
—12G(1,0;y)]
T ’
+=-[ 8= 2H(0;2)G(1 - z3) — 2H(0,1;2) + 3H(L; 2) — 4H(1; )G (=)

+2H(1; 2)G(0; y) — 3G(1 — z;y) — 2G(1 — 2,0;y) + 4G(~2,1 — 2; )
~2G(0, 1 - 2y) +2G(1, 03|

+% [ — 96 — 40H(0; 2) — 39H(0; 2)G(1 - 2;) — 20H(0; 2)G(1 - 2,0;)
—12H(0; 2)G(1 — 2,0, 0;y) + 6H(0; 2)G(1 — 2,1, 0;y)

+20H(0; 2)G(—2,1 - z;9) + 12H(0; 2)G(—2,1 — 2,0, y)

+12H(0; 2)G(—2,0,1 — z;y) — 29H(0; 2)G(0,1 — z;y)

—12H(0; 2)G(0,1 — z,0;y) + 12H(0; 2)G(0, — 2,1 — z;y) — 24H(0; 2)G(0; y)
—12H(0; 2)G(0,0,1 — z; ) + 6H(0; 2)G(0, 1,0; y) + 6H(0; 2)G(1,1 — 2,0; y)
+6H(0; 2)G(1,0,1 — z;y) + 10H(0; 2)G(1,0; y) + 12H(0; 2)G(1,0,0; y)
—20H(0,0; 2)G(1 — 2z;y) — 12H(0, 0; 2)G(1 — 2,0; y)

—12H(0, 0; 2)G(0,1 — 2;y) — 20H(0, 0, 1; z) — 12H(0, 0, 1; 2) G(0; y)

—9H(0, 1; z) — 20H(0, 1; 2)G(—=z;y) — 12H(0, 1; 2)G(—2,0; y)

—12H(0, 1; 2)G(0, —z; y) + 9H(0, 1; ) G(0; y) + 12H(0, 1; 2)G(0, 0; v)
+6H(0, 1; 2)G(1,0;y) — 10H(0, 1,0; z) — 6H(0,1,0; 2)G(1 — 2; )

—6H(0, 1, 0; 2)G(0; y) — 6H(0, 1,0, 1;2) — 12H(0, 1,1, 0; 2) + 36H(1; 2)
—48H(1; 2)G(—=2;y) — 20H(1; 2)G(—=2,0; y) + 12H(1; 2)G(—2, 1, 0;y)
~20H(1; 2)G(0, —=2; y) + 39H(1; 2) G(0; y) + 20H(1; 2)G(0, 0; y)
—6H(1;2)G(0,1,0;y) + 12H(1; 2)G(1, —2,0; y) + 12H(1; 2)G(1,0, —2; ¥)
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—9H(1;2)G(1,0;y) — 12H(1; 2)G(1,0,0; y) — 9H(1,0; 2)

—9H(1,0; 2)G(1 — z;y) — 6H(1,0; 2)G(1 — 2,0;y) + 12H(1,0; 2)G(—2,1 — z; )
—20H(1,0; 2)G(—=2;y) — 12H(1,0; 2)G(—2, 0; y) — 6H(1,0; 2)G(0,1 — z;y)
—12H(1,0; 2)G(0, —z; y) + 19H(1, 0; 2)G(0; y) + 12H(1, 0; 2)G(0, 0; y)
+6H(1,0; 2)G(1,0;y) — 12H(1,0,0; 2)G(1 — 2;¥) — 12H(1,0,0,1; 2)
+9H(1,0,1; 2) — 12H(1,0, 1; 2)G(—=; y) + 6H(1,0,1; 2)G(0; y)

—6H(1,0,1,0; 2) + 18H(1,1,0; z) — 24H(1, 1, 0; 2)G(—2;y)

+12H(1,1,0; 2)G(0; y) — 36G(1 — 2;y) — 39G(1 — 2,0;y) — 20G(1 — 2,0,0;y)
+6G(1 - 2,0,1,0;9) + 9G(1 ~ 2,1,0;9) + 12G(1 — 2,1,0,0; )

+48G(—2,1— z;y) + 20G(—2,1 — 2,0;y) — 12G(-2,1 — 2,1,0;y)
+20G(~2,0,1 — z;9) — 12G(—2,1,1 — 2,0;9) — 12G(—2,1,0,1 — z; )
—39G(0,1 — z;9) — 20G(0,1 — z,0;3) + 6G(0,1 — 2,1,0; )

+20G(0, -z, 1 — z;9) — 40G(0;y) — 20G(0,0,1 — z;y) + 6G(0,1,1 — 2,0;y)
+6G(0,1,0,1 — 2;y) + 10G(0,1,0; y) + 9G(1,1 — 2,0;y) + 12G(1,1 — 2,0,0; %)
-12G(1,—2,1 — 2,0;y) — 12G(1, —2,0,1 — z;9) + 9G(1,0,1 — z;y)
+12G(1,0,1 — 2,0;y) — 12G(1,0, —2,1 — z;y) + 48G(1,0; y)

+12G(1,0,0,1 — z;9) + 20G(1,0,0; ) — 12G(1, 0, 1,0;y) — 24G(1, 1,0, O;y)]

+%2 [H(O; z) — 2H(0; 2)G(1 — 2;y) — 2H(0, 1; 2) + 2H(1; 2) — 4H(1; 2)G(—2;v)
+2H(1;2)G(0;y) — 2G(1 — 2;9) — 2G(1 — 2,05 9) + 4G(—2,1 — z;9)
—2G(0,1 = zy) + G(0;y) + 2G(1, 0; y)]

+fli [21H(0; 2) — 53H(0; 2)G(1 — 2) — 52H(0; 2)G(1 - 2,0;)

—24H(0; 2)G(1 — 2,0,0; y) + 12H(0; 2)G(1 — %, l,O;y)

+22H(0; 2)G(—2,1 — z;y) + 24H(0; 2)G(—=2,1 — 2,0;y)

+24H(0; 2)G(—2,0,1 — 2;y) — 52H(0; z)G(O, 1-2zy)

—24H(0; 2)G(0,1 — 2,0; y) + 24H(0; 2)G(0, — 2,1 — z;y) + 20H(0; 2)G(0; y)
—24H(0; z)G(O 0,1 - z;y) + 12H(0; 2)G(0, 0; y) + 12H(0; 2)G(0, 1,05 y)
+12H(0; 2)G(1,1 — z,0; y) + 12H(0; 2)G(1,0,1 — 2; y) + 14H(0; 2)G(1, 0; )
+24H(0; 2)G(L, 0, 0; ) + 2H(0, 0; 2) — 4H(0, 0; 2)G(1 — 2; 1)

—24H(0, 0; 2)G(1 — 2,0; y) — 24H(0,0; 2)G(0, 1 — 2; y) + 12H(0, 0; 2) G(0; )
—40H(0, 0, 1; 2) — 24H(0,0, 1; 2)G(0; y) — 31H(0, 1;2) — 22H(0, 1; 2)G(—2; y)
—24H(0, 1;2)G(—2,0;y) — 24H(0, 1; 2)G(0, —z; y) + 30H(0, 1; 2)G(0; y)
+24H(0, 1; 2)G(0, 0; y) + 12H(0, 1; 2)G(1, 0; y) — 14H(0, 1, 0; 2)
—-12H(0,1,0; 2)G(1 — 2;y) — 12H(0, 1, 0; 2)G(0; y) — 12H(0, 1,0, 1; 2)
—24H(0,1,1,0; z) + 42H(1; 2) — 84H(1; 2)G(—2; y) — 22H(1; 2)G(—=2,0;y)
+24H(1;2)G(~-=2,1,0;y) — 22H(1; 2)G(0, —z; y) + 53H(1; 2)G(0; y)

+4H(1; 2)G(0, 0; y) — 12H(1; 2)G(0, 1,0; y) + 24H(1; 2)G(1, —=,0; y)
+24H(1; 2)G(1,0, —z; y) — 12H(1; 2)G(1, 0; y) — 24H(1;2)G(1,0,0; )
+11H(1,0; 2) — 12H(1,0; 2)G(1 — 2;y) — 12H(1,0; 2)G(1 — 2,0; y)
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+24H(1,0; 2)G(—2,1 — 2z;y) — 22H(1,0; 2)G(—2;y) — 24H(1,0; 2)G(-2,0; y)
—12H(1, 0; 2)G(0,1 — z;y) — 24H(1, 0; ) G(0, —=2; y) + 38H(1,0; 2)G(0; v)
+24H(1,0; 2)G(0, 0; y) + 12H(1, 0; 2)G(1, 0;y) + 12H(1,0,0; 2)

—24H(1,0,0; 2)G(1 — 2;y) — 24H(1,0,0, 1; 2) + 12H(1,0, 1; 2)

—-24H(1,0,1; 2)G(—-2;y) + 12H(1,0, 1; 2)G(0; y) — 12H(1,0,1,0; 2)

+24H(1,1,0; 2) — 48H(1,1,0; 2)G(—=z; y) + 24H(1, 1,0; 2)G(0; y)

—42G(1 — z;y) — 53G(1 — 2,0;y) — 4G(1 — 2,0,0;9) + 12G(1 — 2,0,1,0; 9)

+12G(1 - 2,1,0;y) + 24G(1 — 2,1,0,0;y) + 84G(—=2,1 — z; )

+22G(-2,1 - 2,0;y) — 24G(—2,1 — 2,1,0;y) + 22G(—2,0,1 — z; y)

—24G(—2,1,1 - 2,0;y) — 24G(-2,1,0,1 — 2z;y) — 53G(0,1 — 2;y)

—4G(0,1 — 2,0;y) + 12G(0,1 — 2,1,0; y) + 22G(0, —z,1 — z;y) + 21G(0;y)

—4G(0,0,1 — z; ) + 2G(0,0; y) + 12G(0,1,1 — 2,0; y) + 12G(0,1,0,1 — z;y)

-4G(0,1,0;y) + 12G(1,1 — 2,0; y) + 24G(1,1 — 2,0,0; y)

—-24G(1,—-2,1 — 2,0;y) — 24G(1, —2,0,1 — z;9) + 12G(1,0,1 — z;y)

+24G(1,0,1 — 2,0;y) — 24G(1,0, —2,1 — z;y) + 42G(1,0; y)

+24G(1,0,0,1 — 2;y) — 8G(1,0,0; y) — 24G(1,0,1,0;y) — 48G(1,1,0,0; y)],
Culy,2) =

z(1 — 2)?

7 [ —2H(0;2)G(1 — z,—2,1 — z;y) — 4H(0; 2)G(—2,1 — 2,1 — z; y)
+4H(0,0;2)G(1 — 2,1 — z;y) + 2H(0, 1; 2)G(1 — 2, —z;y)
+2H(0,1;2)G(—2,1 — z;y) — 2H(1; 2)G(—2,1 — 2z, —2;y)
—4H(1;2)G(—2,—2,1 — z;y) + 2H(1,0; 2)G(1 — 2, —2;y)
+2H(1,0; 2)G(—2,1 — z;y) + 4H(1, 1; 2)G(—2, —z;¥)
+2G(—-2,1—2,—2,1 — 2z;9) +4G(—-2,—2,1 — 2,1 — z;y)]

z
+? [ — 8H(0; 2)G(1 — 2,1 — z;y) + 12H(0; 2)G(1 — 2, 2,1 — z; )

+24H(0; 2)G(—2,1 — 2,1 — z;y) — 2H(0; 2)G(—2,1 — z; )

—24H(0,0; 2)G(1 — 2,1 — z;y) + 4H(0,0; 2)G(1 — z;y)

—12H(0,1; 2)G(1 — 2z, —2z;y) + 4H(0, 1; 2)G(1 — z;9)

—12H(0, 1;2)G(-2,1 — z;y) + 2H(0, 1; 2)G(—z;y) — 4H(1; 2)G(1 — 2, —2;y)
+12H(1; 2)G(—2,1 — 2, —2;y) — 8H(1; 2)G(—2,1 — z;9)

+24H(1; 2)G(~2,—2,1 — z;y) — 12H(1,0; 2)G(1 — 2, —2;y)

+4H(1,0; 2)G(1 — z;y) — 12H(1,0; 2)G(—=2, 1 — z;y) + 2H(1,0; 2)G(—2; y)
—24H(1,1;2)G(~z, —2;y) + 8H(1,1; 2)G(—2;9) + 4G(1 — 2z, —2,1 — z;y)
+8G(—2,1— 2,1 — z;9) — 12G(~-2,1 — 2, ~2,1 — z; y)

—24G(—2,—-2,1— 2,1 -z y)]

2
+;—2 [48(0; 2)G(1 - 2,1 = 2) - 8H(0; 2)G(1 - 2,2, 1 — 1)

—16H(0; 2)G(—2,1 — 2,1 — 2z;y) + 2H(0; 2)G(-2,1 — z; )
+16H(0,0; 2)G(1 — 2,1 — 2;y) — 4H(0,0; 2)G(1 — z;y)
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+8H(0,1; 2)G(1 — 2z, —2;y) — 2H(0, 1;2)G(1 — 2; y) + 8H(0, 1; 2)G(—=2,1 — 2;9)
—2H(0,1; 2)G(—z;y) + 2H(1; 2)G(1 — 2, —z;y) — 8H(1; 2)G(~2,1 — 2, —2z;¥)

+4H(1; 2)G(-2,1 — z;y) — 16H(1; 2)G(-2, —2,1 — 2; )

+8H(1,0;2)G(1 — 2z, —2;¥) — 2H(1, 0; 2)G(1 — z;¥) + 8H(1,0; 2)G(—2,1 — z;9)

—2H(1,0;2)G(—2;y) + 16H(1,1; 2)G(-=2, —2; y) — 4H(1, 1; 2)G(—2; y)

—-2G(1 - 2,—-2,1 — z;y) —4G(—2,1 — 2,1 — 2z;y) + 8G(—2,1 — 2, —2,1 — 2;9)

+16G(—2,—2,1 — 2,1 — z; y)]

+% [ +4H(0; 2)G(1 — 2,1 — z;y) — 4H(0; 2)G(1 — 2, —2,1 — 2; y)

—8H(0; 2)G(—2,1 — 2,1 = z;y) + 8H(0,0; 2)G(1 — 2,1 — 2;y)

+4H(0,1;2)G(1 — 2, —z;y) — 2H(0, 1; 2)G(1 — z;9) + 4H(0, 1; 2)G(—2,1 — z;y)
+2H(1; 2)G(1 — z,—z;y) — 4H(1; 2)G(—2,1 — 2z, —z;y) + 4H(1; 2)G(—2,1 — z;9)
—8H(1;2)G(-2,—2,1 — z;y) + 4H(1,0; 2)G(1 — 2, —2; )

—2H(1,0; 2)G(1 — z;9) + 4H(1,0; 2)G(—2,1 — z;y) + 8H(1, 1;2)G(—2, —2; y)
—4H(1,1;2)G(—2z;9) — 2G(1 — 2,—2,1 — z;y) — 4G(-2,1 — 2,1 — z;9)
+4G(—2,1— 2z,—2,1 — z;9) + 8G(—2,—2,1 — z,1 — z;y)]

+§ E + 14H(0; 2)G(1 — 2,1 — z;9) + 4H(0; 2)G(1 — 2,1 — 2,0; y)

—14H(0; 2)G(1 — 2, —2,1 — z;9) + BH(0; 2)G(1 — 2; y)

+4H(0; 2)G(1 — 2,0,1 — 2;y) — 2H(0; 2)G(1 — 2,1,0; y)

—28H(0;z)G(—z, 1- z, 1—z;y) + TH(0; 2)G(—2,1 — z; )

+4H(0; 2)G(0,1 — 2,1 — 2;y) — 2H(0; 2)G(1,1 — 2,0; y)

—2H(0; z)G(l,O,l 2; y) + 2H(0, 0; ) + 24H(0,0; 2)G(1 — 2,1 — z;9)
—14H(0,0; 2)G(1 — z;y) + 4H(0,0,1; 2)G(1 — z;¥) + 2H(0, 1; 2)

+14H(0, 1;2)G(1 — 2z, —2; y) — TH(0, 1; 2)G(1 — z;y) — 2H(0, 1; 2)G(1 — 2,0; )
+12H(0, 1;2)G(—2,1 — z;9) — TH(0, 1; 2) G(—2;y) — 2H(0, 1; 2)G(0,1 — z;9)
+2H(0,1,0; 2)G(1 — z;9) +4H(0,1,1; 2)G(—2; %) + TH(1; 2)G(1 — 2, —2z; y)
+2H(1;2)G(1 — 2z, —2,0; ) — H(1; 2)G(1 — z;9) + 2H(1;2)G(1 — 2,0, —2; )
—16H(1; 2)G(-2,1 — z,—2z;y) + 14H(1; 2)G(-2,1 — 2;y)

+4H(1; 2)G(—2,1 — 2,0; y) — 32H(1; 2)G(—2, —2,1 — z;y) + TH(1; 2)G(—-2; y)
+4H(1; 2)G(—2,0,1 — z;y) — 2H(1;2)G(-2,1,0;y) + 2H(1;2)G(0,1 — z, —2; y)
+4H(1;2)G(0, —2,1 — 2z;y) — 2H(1; 2)G(1, —2,0; y) — 2H(1; 2)G(1,0, —=2; y)
+2H(1,0; 2) + 14H(1,0; 2)G(1 — 2z, —z;y) — TH(1,0; 2)G(1 — 2;9)

~2H(1,0; 2)G(1 — 2,0;y) + 14H(1,0; 2)G(—2,1 — 2;y) — TH(1, 0; 2)G(—2; )
—2H(1,0; 2)G(0, 1 — z;y) + 2H(L,0,1;2)G(—2;¥) + H(L, 1; 2)

+32H(1, 1;2)G(~2, —z;y) — 14H(1,1; 2)G(-2; y) — 4H(1, 1; 2)G(—=2,0; y)
—4H(1,1;2)G(0,—2;y) + G(1 — 2,1 — z;9) — TG(1l — z,—2,1 — z; )
-2G(1-2,—-2,1-2,0;y) —2G(1 — 2,-2,0,1 — z;9) — 2G(1 — 2,0, —2,1 — z;¥)
—14G(—2z,1 - 2,1 — z;y) —4G(-2,1 — 2,1 — 2,0; y)

+16G(—2,1 - 2,—2,1 — z;9) — 7G(—2,1 — z;y) — 4G(-2,1 — 2,0,1 — z;y)




A. One-Loop Contribution to 7%

+2G(—2,1 - 2,1,0;y) + 32G(-2,—2,1 — 2,1 ~ 2z;y) — 4G(-2,0,1 — 2,1 — 2;y)
+2G(—z, 1 1-2,0;y)+2G(—2,1,0,1 - z;9) — 2G(0,1 — 2z, —2,1 — z; y)

—4G(0, —z,1 — 2,1 — z;9) + 2G(1, —2,1 — 2,0;9) + 2G(1, —2,0,1 — z; )
+2G(1,0,-2,1 — z;y ]

+$[+4—20H(0 2G(1 = 2,1 - zy) — 8H(0; 2)G(1 — 2,1 — 2,0;y)

+16H(0; 2)G(1 — 2, —2,1 — z;y) — 13H(0; 2)G(1 — z; y)

—8H(0; 2)G(1 — 2,0,1 — z;y) + 4H(0; 2)G(1 — 2,1,0; y)

+32H(0; 2)G(—2,1 — 2,1 — 2;y) — 4H(0; 2)G(—2,1 — z;y)

—8H(0;2)G(0,1 — 2,1 — z;y) + 4H(0; 2)G(1,1 — 2,0; y)

+4H(0; 2)G(1,0,1 — z;y) — 24H(0,0; 2)G(1 — 2,1 — z;y)

+8H(0,0; 2)G(1 — z;y) — 8H(0,0,1; 2)G(1 — z;y) — H(0, 1; 2)

—16H(0,1; 2)G(1 — 2z, —z;y) + 10H(0, 1; 2) G(1 — 2;y)

+4H(0,1; 2)G(1 — 2,0;y) — 12H(0, 1; 2)G(—2,1 — z;y) + 4H(0, 1; 2)G(—2; y)
+4H(0, 1; 2)G(0,1 — z;y) — 4H(0,1,0; 2)G(1 — z;y) — 8H(0, 1, 1; 2)G(—=2; y)
~gH(l; z) — 10H(1;2)G(1 — z,—z;y) — 4H(1; 2)G(1 — 2, —2,0;y)

+2H(1; 2)G(1 — z;y) — 4H(1; 2)G(1 - 2,0, —z;y) + 20H(1; 2)G(—2,1 — 2, —2; y)
—20H(1; 2)G(—2,1 — z;y) — 8H(1;2)G(—2,1 — 2,0; y)

+40H(1; 2)G(=2, —2,1 — z;y) — 14H(1; 2)G(—2;y) — 8H(1;2)G(—2,0,1 — z;y)
+4H(1; 2)G(—2,1,0;y) — 4H(1; 2)G(0,1 — 2, —z;y) — 8H(1; 2)G(0, —=2,1 — z;y)
—H(1; 2)G(0; y) + 4H(1; 2)G(1, — 2, 0;y) + 4H(1; 2)G(1, 0, —z;y) — 2H(1,0; 2)
—16H(1,0; 2)G(1 — z, —z;y) + 10H(1,0; 2)G(1 — 2; )

+4H(1,0; 2)G(1 — 2,0;y) — 16H(1, 0; 2)G(—=2,1 — 2; y) + 4H(1,0; 2) G(—2;y)
+4H(1,0; 2)G(0,1 — 2;y) — 4H(1,0, 1; 2)G(—=2; y) — 2H(1,1; 2)

—40H(1,1; 2)G(—=2, —z;y) + 20H(1, 1; 2)G(—=2; y) + 8H(1, 1; 2)G(—=,0; %)
+8H(1,1;2)G(0, —z;9) — 2G(1 — 2,1 — 2z;y) + 10G(1l — 2, —2,1 — z;y)

+4G(1 — z,~2,1— 2,0;y) + 4G(1 — 2, —2,0,1 — 2z;y) + gG(l - z;Y)

+4G(1 - 2,0,—2,1 — z;y) + G(1 — 2,0;y) + 20G(—=2,1 — 2,1 — z;y)
+8G(—2,1—-2,1—-2,0;y) — 20G(—2,1 — 2, —2,1 — z;y) + 14G(—2,1 — z;y)
+8G(—2,1—-2,0,1— z;9) —4G(—2,1 — 2,1,0;y) — 40G(—2, —2,1 — 2,1 — 2z; )
+8G(—2,0,1— 2,1 — z;9) —4G(—2,1,1 — 2,0;y) — 4G(-2,1,0,1 — 2;y)
+4G(0,1 - 2,—2,1 — 2;y) + G(0,1 — z;9) + 8G(0, —2,1 — z,1 — z;y)

—-4G(1, —2,1 - 2,0;y) —4G(1,-2,0,1 — z;y) —4G(1,0,—2,1 — z;9)
~G(1,0;)]

+2(1zfy)2 [2H(0; 2)G(1 - 2,03) + 2H(0; 2)G(0, 1 - 2) + 2H(0, 1;2)G(0; )
+4H(1; 2)G(—2,0;y) + 4H(1; 2)G(0, —z; y) — 3H(1; 2)G(0; y)

—4H(1; 2)G(0,0;y) + 3G(1 — 2,0;y) + 4G(1 — 2,0,0;y) — 4G(~2,1 — z,0;y)
—4G(-2,0,1 — z;y) + 3G(0,1 — z;9) + 4G(0,1 — 2,0;y) — 4G(0, — 2,1 — z;y)
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+7G(0;y) +4G(0,0,1 - 2; ) + 1G(0,0; y) — 2G(0, 1,0; y) — 4G(1, 0, 0; y)]

+ 7+ 2H(0; 2)G(1 — z;9) + 6H(0; 2)G(1 — 2,0; %)

z
sl
+6H(0; 2)G(0,1 — 2;9) + 2H(0, 1; 2) + 6H(0, 1; 2)G(0; y) — 3H(1; 2)
+4H(1; 2)G(—z;¥) + 12H(1; 2)G(—2,0; y) + 12H(1; 2)G(0, —z; y)
—11H(1; 2)G(0; y) — 12H(1; 2)G(0,0; y) + 3G(1 — z; ) + 11G(1 — 2,0;9)
+12G(1 — 2,0,0;y) — 4G(-2,1 — z;y) — 12G(—2,1 - 2,0; y)
~12G(-2,0,1 — z;y) + 11G(0,1 — z; ) + 12G(0,1 — 2,0; )

—12G(0, 2,1 — z;y) + 21G(0; y) + 12G(0,0,1 — z;y) — 9G(0, 0;y)
~6G(0,1,0;) — 2G(1, 0; ) - 12G(1,0,03)]

1
(1 -9y +2)?

1
t i+ [ — 2H(1; 2)G(0; ) + 2G(1 — 2,0; ) + 2G(0,1 — 2;y) — G(0; y)]

+H(1;2)G(05y) — G(1 - 2,0:9) — G(0,1 - 2) + G(03)]

+

[H(l; 2)G(0;y) — G(1 — 2,0;9) ~ G(0,1 — z; y)]

1
+(1 —y)2[
P S
(1 —-y)(y+ 2)?

1
+Eq(y+—z) [ —1-2H(1;2) + 2G(1 — z;y)]

1 i‘"y [1 — 2H(0; 2)G(1 — 2,0;y) — 2H(0; 2)G(0, 1 — z;y) + H(1; 2)

—2H(1; 2)G(~2,0;y) — 2H(1; 2)G(0, —2; ) + 3H(1;2)G(0; ) — G(1 — 25 9)
-3G(1 - 2,0;y) + 2G(—2,1 — 2,0;y) + 2G(—2,0,1 — z;9) — 3G(0,1 — 2; )
+2G(0,—2,1 — z;9) — 8G(0;y) — 2G(0, 0; y)]

1
T2y + o
+4H(0,1,1;2) + 14H(1; 2) — 4H(1;2)G(1 — z, —=2; y) + 8H(1; 2)G(1 — z; )
+4H(1; 2)G(1 — 2,0;y) — 8H(1; 2)G(-2,1 — z; y) + 4H(1; 2)G(0,1 — 2;y)
—H(1; 2)G(0; ) — 2H(1; 2)G(1,0;y) — H(1,0; 2) + 2H(1, 0; 2)G(1 — 2;y)
+2H(1,0,1;2) — 8H(1,1; z) + 8H(1,1; 2)G(—=2; y) — 4H(1, 1;2)G(0; y)
—-8G(1-2,1-z9) —4G(1 — 2,1 — 2,0;y) + 4G(1 — 2, —2,1 — 2;9)
—14G(1 — z;y) —4G(1 — 2,0,1 — z;9) + G(1 — 2,0;y) + 2G(1 = 2,1,0; y)
+8G(—2,1—2,1—2z;y) —4G(0,1 — 2,1 — z;9) + G(0,1 — z;y)
+2G(1,1 - 2,0,9) + 2G(1,0,1 - zy)]

[+ H(1;2) - G(1 - z;y)]

[— 4H(0; 2)G(1 — 2,1 — z;y) + H(0; 2) G(1 — z;y) — H(0, 1; 2)

1
D) [ - 14+ H(0; 2) - 2H(0; 2)G(1 - z;y) — 2H(0, 1;2) + 6H(1; 2)

—4H(1; 2)G(~2;y) + 2H(1; 2)G(0; ) — 6G(1 — 2;) — 2G(1 — 2,0; y)
+4G(—2,1 — z;9) — 2G(0,1 — z;9) + G(0;y) + 2G(1,0;y)]

+T [8 + 3H(0; 2)G(1 — 2,1 — 2;y) + 2H(0; 2)G(1 — 2,1 — 2,0; y)
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A. One-Loop Contribution to 7%

—2H(0;2)G(1 — 2z, —2,1 — z;y) + 4H(0; 2)G(1 — z;y)

+2H(0; 2)G(1 — 2,0,1 — z;y) — H(0; 2)G(1 — 2,1,0; y)

—4H(0; 2)G(—2,1 — 2,1 — z;y) + 2H(0; 2)G(0,1 — 2,1 — z;9)
—H(0;2)G(1,1 — 2,0; y) — H(0; 2)G(1,0,1 — z;9)

+2H(0,0; 2)G(1 — 2,1 — z;y) + 2H(0,0,1; 2)G(1 — z;y) + 2H(0,0, 1, 1; 2)
+4H(0,1; 2) + 2H(0, 1; 2)G(1 — 2z, —2;y) — H(0, 1; 2)G(1,0; y)

+H(0,1,0; 2)G(1 — 2;y) + H(0,1,0,1; z) — 3H(0, 1, 1; 2)

+4H(0,1,1; 2)G(—=2; y) — 2H(0, 1,1; 2)G(0; y) — 6H(1; 2)

+3H(1; 2)G(1 — 2, —z;9) + 2H(1;2)G(1 — 2, —2,0; y)

+2H(1;2)G(1 — —z;y) — 3H(1; 2)G(1 — z,0;y) — 2H(1; 2)G(1 — 2,0,0;y)
—4H(1; 2)G(-=2, 1 —z,—2z;y) + 6H(1;2)G(-2,1 — z;y)

+4H(1; 2)G(—2,1 - 2z,0;y) — 8H(1;2)G(—2, —2,1 — z;y) + 8H(1; 2)G(~—2z;y)
+4H(1; 2)G(-=2, 0 1—z;y) — 2H(1; 2)G(—2,1,0;y) + 2H(1;2)G(0,1 — 2, —z;9)
—3H(1; 2)G(0,1 — z;y) — 2H(1;2)G(0,1 — z,0;y) + 4H(1; 2)G(0, — 2,1 — z;y)
—4H(1;2)G(0;y) — 2H(1 2)G(0,0,1 — z;y) + H(1;2)G(0, 1,0; )

—2H(1;2)G(1, -z, 0; y) 2H(1;2)G(1,0, —z;y) + 2H(1; 2)G(1,0,0; )

+2H(1,0; 2)G (l—z ;y) — H(1,0; 2)G(1 — 2,0;9)

+2H(1, 0; 2)G(-= z;y) — H(1,0;2)G(0,1 — 2z; ) + 2H(1,0,1; 2)G(—2; y)
—H(1,0,1;2)G(0; y) + 8H(1,1; 2)G(—2, —z;y) — 6H(1,1;2)G(—2z;9)

—4H(1, 1;2)G(-2,0;y) — 4H(1, 1; 2)G(0, —z; y) + 3H(1, 1; 2) G(0; )

+2H(1,1; 2)G(0,0; y) + 3G(1 — 2,1 — 2,0;y) + 2G(1 — 2,1 — 2,0,0; %)
-3G(1—2,—2,1—2;y) —2G(1 — z,—2,1 — 2,0;y) — 2G(1 — 2z, —2,0,1 — 2;y)
+6G(1 - z;9) +3G(1 — 2,0,1 — z;y) + 2G(1 — 2,0,1 — 2,0; y)

—2G(1 - 2,0,—2,1 — z;9) + 4G(1 — 2,0;9) + 2G(1 — 2,0,0,1 — z; )
—-G(1-2,0,1,0;y) — 2G(1 — 2,1,0,0;y) — 6G(—2,1 — 2,1 — z;9)

—4G(—z, 1-2,1-2,0;y) +4G(—2,1 - 2,—2,1 — z;9) — 8G(—2,1 — z;y)

~4G(-2,1-2,0,1 — z;9) + 2G(—2,1 — 2,1,0;9y) + 8G(—2,—2,1 — 2,1 — z; )
—4G(—2,0,1 - 2,1 — z;9) + 2G(—2,1,1 — 2,0;y) + 2G(-2,1,0,1 - 2; y)
+3G(0,1 - 2,1 - 2z;y) + 2G(0,1 — 2,1 — 2,0;y) — 2G(0,1 — 2,—2,1 — 2;y)
+4G(0 1-2zy)+2G(0,1-2,0,1—2zy)—G(0,1—2,1,0;y)

_4G( y TR _le_zay)+2G(0,0a1_zyl_z;y)_G(Oalal—zaO;y)
-G(0,1,0,1 — z;) — 2G(1,1 — 2,0,0; y) + 2G(1, —2,1 — 2,0;9)
+2G(1, —-2,0,1 - z;y) — 2G(1,0,1 — 2,0; y) + 2G(1,0, —2,1 — 2z;y) — 4G(1,0;y)

11
_2G(1a O) 07 1—2z y) + G(]-: 0’ L, 05 y) + 2G(1) 1,0,0; y) + IH(la I; Z)

11 11
—ZH(1; —ny)+ =
1 (1;2)G(1 — z;9) + 2

3

G(1- 2,1~ z) + SH(L;2)G(1,0;9)

~SH(1,0,2)G(1 - z5) ~ SH(1,0,1;2) — 5G(1 ~ ,1,0;9) — 3G(1, 1 - 2,0;9)

3
—iG(l,O, 1-2z; y)]




A. One-Loop Contribution to 78

~% - gH(O; z) + 10H(0; 2)G(1 — 2,1 — 2;y) + 8H(0; 2)G(1 — 2,1 — 2,0; )
—8H(0; 2)G(1 — z,—2,1 — z;y) + 4H(0; 2)G(1 — 2;y)

+8H(0; 2)G(1 — 2,0,1 — 2z;y) — 2H(0; 2)G(1 — 2,0;y)

—4H(0;2)G(1 — 2,1,0;y) — 16H(0; 2)G(~2,1 — 2,1 — z;9)

+5H(0; 2)G(—2,1 — z;y) + 8H(0; 2)G(0,1 — 2,1 — z; ) — 2H(0; 2)G(0,1 - z; y)
—4H(0;2)G(1,1 — 2,0;y) — 4H(0; 2)G(1,0,1 — z;9) + H(0; 2)G(1,0; v)
+3H(0,0; 2) + 8H(O 0;2)G(1 — 2,1 — 2z;y) — 8H(0,0; 2)G(1 — 2;9)

—2H(0,0,1; 2) + 8H(0,0,1; 2)G(1 — 2 ) + 8H(0,0, 1, 1; 2) + 10H(0, 1; 2)
+8H(0, 1; 2)G(1 — 2z, —z; y) — 5H(0, 1; 2)G(—=z;y) — 3H(0, 1; 2) G(0; )
—4H(0, 1; 2)G(1,0; y) — H(0, 1,0; 2) + 4H(0, 1, 0; 2)G(1 — 2;y)
+4H(0,1,0, 1; z) — 10H(0, 1, 1; ) + 16H(0, 1, 1; 2)G(~2; )
—8H(0, 1, 1; 2)G(0; y) — TH(1; 2) + 10H(1; 2)G(1 — 2, —z; y)
+8H(1;2)G(1 — 2, —2,0;y) — 6H(1; 2)G(1 — z;9) + 8H(1; 2)G(1 — 2,0, —z;y)

—10H(1; 2)G(1 — z,0; y) — 8H(1; 2)G(1 — 2,0,0; )

—16H(1; 2)G(-2,1 — z,—2;y) + 20H(1; 2)G(—2,1 — z;y)

+16H(1; 2)G(—2,1 — 2,0;y) — 32H(1; 2)G(—2, —2,1 — z;y) + 14H(1; 2)G(—2; y)
+16H(1; 2)G(—2,0,1 — 2;y) — 5H(1; 2)G(—2,0;y) — 8H(1; 2)G(—2,1,0;y)
+8H(1; 2)G(0,1 — z, —z;y) — 10H(1; 2)G(0,1 — z;y) — 8H(1;2)G(0,1 — z,0; y)
+16H(1; 2)G(0, —z,1 — z;y) — 5H(1; 2)G(0, —z; y) — 4H(1; 2)G(0; y)

—8H(1; 2)G(0,0,1 — 2;y) + 8H(1; 2)G(0,0; y) + 4H(1; 2)G(0,1,0; y)
—8H(1;2)G(1, —z,0;y) — 8H(1;2)G(1,0,—z; y) + 5H(1; 2)G(1,0; y)
+8H(1;2)G(1,0,0;y) + 3H(1,0;2) + 8H(1,0; 2)G(1 — z, —z;y)

—5H(1,0; 2)G(1 — z;y) — 4H(1,0; 2)G(1 — 2,0;y) + 8H(1,0; 2)G(—2,1 — z; y)
—5H(1,0; 2)G(—z;y) — 4H(1,0;2)G(0, 1 — 2; y) + H(1, 0; 2)G(0; y)
—5H(1,0,1;2) + 8H(1,0,1; 2)G(—2z; ) — 4H(1,0,1; 2)G(0; y) + 6H(1, 1; 2)
+32H(1, 1; 2)G(—2, —2z;y) — 20H(1, 1; 2)G(—2; y) — 16H(1, 1; 2)G(—2,0;y)
—16H(1,1; 2)G(0, —z;y) + 10H(1, 1; 2)G(0; y) + 8H(1, 1; 2)G(0, 0; y)
+6G(1 — 2,1 — 2;y) + 10G(1 - 2,1 — 2,0;y) + 8G(1 — z,1 — 2,0,0; y)
—-10G(1 — z,—2,1 — 2;y) — 8G(1 — z,—2,1 — 2,0;y) — 8G(1l — 2,—2,0,1 — z; )
+7G(1 — z;y) + 10G(1 — 2,0,1 — 2;y) + 8G(1l — 2,0,1 — 2,0;y)

—-8G(1 - 2,0,—2,1 — z;9) + 4G(1 — 2,0;y) + 8G(1 — 2,0,0,1 — z;y)

—-8G(1 — 2,0,0;y) — 4G(1 - 2,0,1,0;y) — 5G(1 — 2,1,0;y)

-8G(1 - 2,1,0,0;y) — 20G(—2,1 — 2,1 — 2;9) — 16G(—2,1 — 2,1 — 2,0; y)
+16G(—2,1 — z,—2,1 — z;y) — 14G(—2,1 — z;y) — 16G(~2,1 — 2,0,1 — z;y)
+5G(—2,1— 2,0;y) + 8G(—2,1 — 2,1,0;9) + 32G(—2,—2,1 — 2,1 — 2z; )
—16G(-2,0,1—z,1 — z;9) + 5G(—2,0,1 — 2z;y) + 8G(—2,1,1 — 2,0;y)
+8G(—2,1,0,1 — z;9) + 10G(0,1 — 2,1 — 2;y) + 8G(0,1 — 2,1 — 2,0;y)
—8G(0,1 — 2,—2,1 — z;y) +4G(0,1 — z;y) + 8G(0,1 — 2,0,1 — 2; )
—8G(0,1 — 2,0;y) — 4G(0,1 — 2,1,0;y) — 16G(0, —2z,1 — 2,1 — z;y)
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A. One-Loop Contribution to 7(®

+5G(0, —2,1 — z;y) — —G(O;y) +8G(0,0,1 — 2,1 — z;y) — 8G(0,0,1 — z;y)
3G(0, O,y) 4G(0, 1, 1 —2,0;y) —4G(0,1,0,1 — z;y) + 4G(0,1,0; y)
-5G(1,1 - z,0;y) — 8G(1, l—zOO'y)+8G(1,—z,1—z,0;y)
8G(1, -2,0,1 — z;y) — 5G(1,0,1 — z;y) — 8G(1,0,1 — 2, 0; )
(
(

+

+

+8G(1,0,—2,1 — 2;y) — 7G(1,0;y) —8G(1,0,0,1—z;y)+8G(1,0,0;y)
+4G(1,0,1,0;y) + 8G(1,1,0,0; ),

D11y, 2) =
% [H(o; 2) + G(0; y)]
+Eaézﬁ[—HmwﬂH&w—2Gmﬁwﬂ
+fi(+—1;) [ - H(0;2) - 3H(0; 2)G(0;9) - G(039) — 6G(0,0;))
+ﬁ [2H(0; 2)G(0;y) +4G(0,0; y)]
ﬂ;_’é [ 22 — H(0; 2) — G(0; y)]
+1_7; [~ 1285(0; 2) — 10H(0; 2)G(0;9) — 6H(0; 2)G(0, 03) + 3H(0; 2)G(1,0;p)

~10H(0, 0; z) — 6H(0, 0; 2)G(0; y) — 3H(0, 1,0; 2) — 3H(1,0; 2)G(0; y)

—6H(1,0,0; 2) — 12G(0; y) — 10G(0, 0; ) + 3G(0, 1, 0; y) + 6G(1,0, O;y)],
En(y,2) =

% [H(o; 2)G(1 = 2,0;y) — H(0; 2)G(—2,1 — 2 9) + H(0; 2)G(0, 1 — 2; 1)

+2H(0, 0; 2)G(1 — z; y) + H(0, 1; 2)G(—=2;y) + H(1; 2)G(-2,0; y)

+H(1; 2)G(0, —z; ) + H(1,0; 2)G(-2;9) — G(—2,1 — 2,0;y) — G(—2,0,1 — 2; )

-G(0,—2,1— z;y)] |

[H(O; z) — 4H(0; 2)G(1 — 2,0; y) + 4H(0; 2)G(—2,1 — z;y)
—4H( 2)G(0,1 — z;y) — 8H(0,0; 2)G(1 — 2;y) — 4H(0, 1; 2)G(—2;¥)
—4H(1; z)G( z,0;y) — 4H(1; 2)G(0, —=2; y) — 4H(1,0; 2)G(—2;y)

+4G(~2,1 — 2,0;y) + 4G(—2,0,1 — z;y) + 4G(0, —2,1 — z; y) + G(0; y)]

6(%1;)2 [H(O; z)G(0;) + 2G(0,0; y)]

6(1'2_ m [H(O; z) + 3H(0; 2)G(0; y) + G(0; ) + 6G(0,0; y)]
1
3(1—-vy)
L1
3(y + 2)?

-G(1-2,0;y) — G(0,1 — z;y)]

+gﬁgﬂ—mma—mmd

+

-

+

[ - H(0; 2)G(03) — 2G(0,0;)

[ H(0:2)G(1 - 2 1) + H(O, 1;2) + H(1; 2)G(0;) + H(1, 05 2)
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A. One-Loop Contribution to 77(6)

+— [8H(0; 2) + 3H(0; 2)G(1 — z;9) + 4H(0; 2)G(1 — 2, 0; y)
2)G(-z,1 - z;y) +4H(0; 2)G(0, 1 — z;y) — 2H(0; 2)G(1, 0; )
4H(0,0; 2)G (1 — z;y) + 4H(0,0, 1; 2) — 3H(0, 1; 2) +4H(O,1;z)G(—z;y)
2H(0,1,0; 2) + 4H(1; 2)G(—2,0; y) + 4H(1; 2)G(0, —=z; y) — 3H(1; 2)G(0;y)
1;

T
ol
—4H(0;

(
(
—4H(1; 2)G(0,0;y) — 3H(1,0; z) + 4H(1,0,z)G(—z,y) — 2H(1,0; 2)G(0; y)
(
(0
(0

+ +

+

3G(1-2,0;y) +4G(1 — 2,0,0;y) — 4G(—2,1 — 2,0;y) — 4G(—2,0,1 —
3G(0,1 — z;y) +4G(0,1 — 2,0;y) — 4G(0, —2,1 — 2;y) + 8G(0;y)
+4G(0,0,1 — 2 y) — 2G(0,1,0; 1) — 4G(1,0,0;y)]

+

+% [H(O; 2)G(1 - z;y) + 2H(0; 2)G(1 — 2,0;y) — 2H(0; 2)G(—2,1 — z;9)
+2H(0; 2)G(0,1 — 2;y) — H(0; 2)G(0; y) — H(0; 2)G(1, 0; y) — H(0,0; 2)
+2H(0,0; 2)G(1 — z;9) + 2H(0,0, 1; 2) — H(0, 1; 2) + 2H(0, 1; 2)G(—2; )
+H(0,1,0; 2) + 2H(1; 2)G(-2,0; y) + 2H(1; 2)G(0, —2; y) — H(1; 2)G(0; y)
—2H(1;2)G(0,0;y) — H(1,0; 2) + 2H(1, 0; 2)G(—2; %) — H(1,0; 2)G(0; y)
+G(1 - 2,0;y) +2G(1 — 2,0,0;y) — 2G(—=2,1 — 2,0;y) — 2G(-2,0,1 —
+G(0,1 — z;y) + 2G(0,1 — 2,0;y) — 2G(0, —2,1 — z;9) + 2G(0,0,1 — z; y)
—G(0,0;9) — G(0,1,0;9) — 2G(1, 0,05 y)],

Fi(y,2) =

;:’;[2« + H(0; 2)G(0; ) -+ H(0, 0; 2) -+ G(0, 0; y)]
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APPENDIX B

Two-Loop Contribution to 7 (6)

The finite remainder of the interference of the two-loop amplitude with the tree-level

amplitude is decomposed as

finite(zxm(x? Yy, Z) =V |:N2 (A2O(y7 Z) + AQO(za y)) + (B20(y) Z) + BZO(zay))

+ L (Caoly, 2) + Caol2,9)) + NNp (Daoly, 2) + Daol2,3))

N2
N

+ WF (Eao(y, 2) + Eao(2,y)) + Np* (Fao(y, 2) + Fao(2,9))

4
+ Npy (N — N) (Gao(y, 2) + Go(2,9)) | » (B.1)
with
Ago(y,2) =
é [27r2 + 672H(0; 2) — 1272G(1;y) — 72¢3 + 8H(0; z) — 36H(0; 2)G(1, 0; )

—36H(0, 1,0; z) + 39H(1, 0; 2) + 39G(L, 0; ) + 72G(1,1,0; y)]

1
— = _17H1,0;2) + 17G(1, 0;
R
+§fli_y [ — 1272 — 2472H(0; 2) + 487°G(1; y) - 288(3 + 457 — 84H(0; 2)

—36H(0; 2)G(0; y) + 144H(0; 2)G(1, 0; ) + 144H(0, 1,0; z) — 306H(1, 0; 2)
—192G(0;y) — 234G(1,0;y) — 288G(1, 1, 0; y)]

+36(1z—_y)2 [ — 72 + 672H(0; 2) + 672H(1; 2) — 672G(1 — z;y) + 187°G(0; y)

167




B. Two-Loop Contribution to 7(®

—1272G(1;y) + 36¢3 — 36H(0; 2)G(1 — z,0;y) + 60H(0; 2)G(0; )
+72H(0; 2)G(0, 0; y) + 36H(0, 1,0; z) — 36H(1,0; 2)G(1 — z;y)
+36H(1, 0; 2)G(0;y) + 36H(1,1,0; z) + 36G(1 — z,1,0;y) — 355G(0; y)
+270G(0, 0; ) — 108G(0, 1,0; ) + 6G(1, 0; ) — 72G(1,0,0; ) + 72G(1, 1,0; y)]
z
361~ v)
—36m2G(1;y) + 1083 — 277 + 60H(0; z) — 108H(0; 2)G(1 — 2, 0; )
+216H(0; 2)G(0; ) + 216H(0; 2)G(0, 0; ) + 108H(0, 1, 0; z) + 36H(1, 0; 2)
—108H(1,0; 2)G(1 — 2;y) + 108H(1,0; 2)G(0; y) + 108H(1, 1, 0; 2)
+108G(1 — 2z,1,0;y) — 615G(0; y) + 594G(0,0; y) — 324G(0, 1,0; y)
+198G(1, 0;3) — 216G(L,0,0; y) + 216G(L, 1,0; y)]

[— 3372 + 18n2H(0; 2) + 1872H(1; 2) — 1872G(1 — 2 3) + 5472G(0; )

z 1172 1172
+—(y T2 [—H(l,Z) - —G(l — z;y) — 33H(0; 2)G(1 — 2,0; )

—33H(0, 1, 0; 2) — 33H(1,0; 2) — 33H(1,0; 2)G(1 — z; y) + 33H(1, 0; 2) G(0; y)
+33H(1,1,0; 2) + 33G(1 — 2,1, 0; ) + 33G(0, 1,0; ) — 33G(L, 0; y)]
z o 2272 22 2
— | — 117* — ——H(1 —_— ; 33H(0;
o~ I - T3 A1)+ 5-G(L— 5y) + 33H(0;2)
+44H(0; 2)G(1 — 2,0; y) — 66H(0; z)G(O,y) + 44H(0,1,0; z) — 22H(1,0; 2)
+44H(1,0; 2)G(1 — 2;y) — 44H(1,0; 2)G(0; y) — 44H(1,1,0; z)

—44G(1 — 2,1,0;y) — 33G(0; ) — 44G(0, 1,0; ) + 110G(1, O;y)]

z 1172
Twte) [ — 11H(0; 2) + 11H(0; 2)G(0; ) + 11H(1,0; 2)
+11G(0;y) — 11G(1,0;y)]

22

Tt
+33H(0, 1,0; z) + 33H(1,0; 2)G(1 — z; ) — 33H(1,0; 2)G(0;y) — 33H(1, 1,0; 2)

~33G(1 - z,1,0;9) — 33G(0, 1,0; y)]

22 1lx?  11a? 1172
Tl T B - =G -5y

—22H(0; 2)G(1 — 2, 0;y) + 33H(0; 2)G(0;y) — 22H(0, 1,0; 2) + 33H(1, 0; 2)
—22H(1, 0; 2)G(1 — 2;y) + 22H(1, 0; 2) G(0; y) + 22H(1,1,0; 2)
+22G(1 — 2,1,0; ) + 22G(0, 1,0;9) — 33G(1, 0 y)]

2 2
[ - S5 H(2) + 2-G(L— 239) + 33H(0; 2)G(1 - 2,051)

+ 22 [_ 7% 11H(0; 2)G(0; ) — 11H(1,0; 2) + 11G(1, 0; )]
2(y + 2)? 6 ; Y » U5 0,y
+_18(11— y_) [+ 2371’2 - 127{'2H(0, Z) _ 127‘.2H(1, Z) + 127T2G(1 —z y) . 367‘(‘2G(0’ y)

+247%G(1;y) — 72(3 + 72H(0; 2)G(1 — z,0;y) — 120H(0; 2)G(0; )
—144H(0; 2)G(0,0; y) — 72H(0, 1, 0; 2) — 18H(1, 0; 2) + 72H(1,0; 2)G(1 — z; y)
—72H(1,0; 2)G(0;y) — 72H(1,1,0; 2) — 72G(1 — 2,1,0; y) + 515G(0; y)
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B. Two-Loop Contribution to 77(®)

—432G(0, 0; y) + 216G(0, 1, 0; 9) — 138G(1, 0; ) + 144G(1, 0, 0; )
—144G(1, 1,0;y)]
1 7m? Tr?
— | — 2 H(1: el — . — % 0
t ol 3 B+ 56— 5y) + MH(0;2)6(1 - 2,059)
+14H(0,1,0; 2) + 14H(1,0; 2)G(1 — 2; y) — 14H(1, 0; 2)G(0; y) — 14H(1, 1, 0; 2)

~14G(1 - 2,1,0;y) — 14G(0, 1,0;y)]

4(yi ) [283”2 + 14;2H(1;z) - 143—”2(;(1 — zy) — 22 + 11H(0; 2)
—28H(0; 2)G(1 — 2,0;y) + 56H(0; 2)G(0; y) — 28H(0, 1,0; ) + 56H(1,0; 2)
—28H(1,0; 2)G(1 — 2;y) + 28H(1,0; 2)G(0; y) + 28H(1,1,0; z)

+28G(1 — 2,1,0;9) + 11G(0; ) + 28G(0, 1,0;5) — 56G(1, 0; y)]

+§T’T62 [ — 1045 + 147H(0; 2) + 36H(0; 2)G(1 — z;y) + 108H(0; 2)G(0; )
—~36H(0; 2)G(1;y) + 72H(0, 1; 2) + 54H(1; 2) + 72H(1; 2)G(1 — 2;9)
—72H(1; 2)G(~2;y) — 36H(1; 2)G(1;y) + 72H(1,0; z) + 36H(1, 1; 2)
—186G(1 — 2z;y) + 36G(1 — 2,0;y) — 72G(1 — 2z, L;y) + 72G(—2,1 — z;9)
—72G(0,1 — z;9) + 147G(0; y) — 72G(0, 1;y) + 36G(1,1 — 2z; y) + 132G(1;y)
—108G(1,0;9) + 72G(1, 1;y)]

T 99931 13274
— |- == 4776(; — 21 : H(L:
216 [ 12 + 5 +4776¢3 6¢3H(0; z) + 1080¢3H(1; 2)

—864¢3G(1 — z;y) — 216¢3G(0;y) — 216¢3G(1;y) + 304H(0; z)

—1116H(0; 2)G(1 — 2,0;y) — 216H(0; 2)G(1 — 2,1, 0;y)

+432H(0; 2)G(—2,1 — 2,0; y) — 432H(0; 2)G(0, 1 — z,0; y) — 144H(0; 2)G(0; y)
+1512H(0; 2)G(0, 0; ) — 216H(0; 2)G(0, 1, 0; ) + 216H(0; 2)G (1,1 — 2, 0; y)
—36H(0; 2)G(1, 0;y) — 432H(0; 2)G(1,0,0; y) + 1920H(0, 0; 2)

+1512H(0, 0; 2)G(0; y) + 432H(0, 0; 2)G(0, 0; y) + 864H(0,0,1,0; 2)

+1008H(0, 1,0; z) — 216H(0, 1, 0; 2)G(1 — 2;y) + 432H(0, 1, 0; 2) G(—2; )
+216H(0, 1, 0; 2)G(0; ) — 216H(0, 1, 0; 2)G(1; y) + 432H(0, 1, 1, 0; 2)
—1095H(1,0; 2) — 1116H(1,0; 2)G(1 — z; y) + 216H(1,0; 2)G(1 — 2,0; y)
+432H(1, 0;2)G(—2,1 — z;y) — 432H(1,0; 2) G(—2,0; y)

—432H(1,0; 2)G(0,1 — 2;y) + 1152H(1, 0; 2)G(0; y)

+216H(1,0;2)G(1,1 — z;y) — 216H(1, 0; ) G(1, 0; y) + 1512H(1, 0, 0; 2)
+432H(1,0,0; 2)G(0;y) + 864H(1,0,1,0; z) + 324H(1,1,0; z)
(
(

+432H(1,1,0; 2)G(1 — 2z;y) — 432H(1,1,0; 2)G(~-=z; y)

—216H(1,1,0; 2)G(1; y) + 432H(1, 1,0, 0; 2) + 216H(1, 1, 1,0; z)

+216G(1 — 2,0,1,0;y) + 1116G(1 — 2,1,0;y) + 432G(1 — 2,1,1,0;9)
—432G(-2,1 — 2,1,0;y) — 432G(-2,0,1,0; y) + 432G(0,1 — 2,1,0; y)
+304G(0; y) + 1920G(0, 0; ) — 432G(0, 0, 1,0; ) — 1008G(0, 1, 0; y)
+432G(0,1,1,0;y) — 216G(1,1 — 2,1,0;9) + 1095G(1, 0; ) — 1512G(1, 0, 0; )
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B. Two-Loop Contribution to 7%

+648G(1,0,1,0;y) — 792G(1, 1,0;9) + 432G(1, 1,0, 0; ) — 432G(1, 1, 1,0;y)]

+% [ _ 7% +1 — 14H(0; 2)G(0; y) — 14H(1, 0; 2) + 14G(1, 0; y)]
B20(ya )
é[_ 3H(0; 2)G(1 — 2;9) — 3H(1; 2)G(-2;9) + 3G(~2,1 — z;y)]
2

+§2- [H(O; 2)G(1 - z;y) + H(1; 2)G(—-2z;9) — G(—2,1 — z;y)]

+% [QH(O; 2)G(1 - z;y) + 2H(1; 2)G(-zy) — 2G(-2,1 - z;y)]

+F [3H(0 2) — 24H(0; 2)G(1 — z;9) + 21H(L; 2) — 12H(1; 2)G(1 — 23 3)

+12G(1 — 2,1 — z;9) + G(1 — 2;9) + 12G(1 - 2,1;9) + 6G(0, 1 — 2;9)
+36G(1;y)]
+% [ - 2763 — 903G (1 — 2 ) — 36H(0; 2) — B4H(0; 2)G(1 — 2,1 - z;y)

+18H(0;2)G(1 — 2,1 — 2,0;y) + 18H(0; 2)G(1 — 2, —2,1 — 2;¥)

+152H(0; 2)G(1 — 2;y) — 57TH(0; 2)G(1 — 2,0;y)

+36H(0;2)G(—2,1— 2,1 — z;y) + T8H(0; 2)G(—2,1 — 2; )

—18H(0; 2)G(—2,0,1 — z;y) — 18H(0; 2)G(0,1 — 2,1 — 2; )

-3H(0; 2)G(0,1 — 2;¥) + 36H(0; 2)G(0,1 — 2,0; )

+18H(0; 2)G(0, —z,1 — z;y) + 54H(0; 2)G(1,0; y)

—18H(0,0; 2)G(1 — 2,1 — z;y) — 36H(0,0; 2)G(1 — z;9)

—18H(0,0; 2)G(1 — 2,0; y) — 18H(0, 0; 2)G(0, 1 — z; y) — 9H(0,0, 1; 2)
+54H(0,0,1; 2)G(1 — z;y) — 72H(0,0, 1; 2)G(—2; y) — 9H(0, 1; 2)

+54H(0, 1;2)G(1 — 2, —z;9) + 9H(0, 1; 2)G(1 — z;9)

—18H(0, 1;2)G(1 - 2,0;y) — 108H(0, 1; 2)G(—2, —z;y) + 6H(0, 1; 2)G(—2; y)
+18H(0, 1; 2)G(—2,0; y) + 18H(0,1; 2)G(0, 1 — 2;y) — 36H(0, 1; 2)G(0, —=2;y)
+9H(0, 1,0; 2) — 36H(0, 1,0; 2)G(1 — z;¥) + 18H(0, 1,0; 2)G(—2;9)
+72H(1;2)G(1 — 2z, —2z, —z;y) — T5H(1;2)G(1 — 2, —2; )

—18H(1;2)G(1 — 2, —2, O;y) — 18H(1; 2)G(1 — 2,0, —2; )

+36H(1;2)G(—2,1 — z,—2z;y) — 84H(1;2)G(—2,1 — 2;y)

+36H(1; 2)G(—=z, — z;y) — 108H(1; 2)G(—2, —2, —2;y)
+84H(1;2)G(—z, —z; y) + 36H(1; 2)G(—2, —2,0; y) + 143H(1; 2)G(—2;9)
+24H(1; z)G(—z, 0;y) — 18H(1;2)G(0, —z,1 — 2; y) — 18H(1; 2)G(0, —2, —2; %)
—~3H(1; 2)G(0, —z; y) + 36H(1; 2)G(0, —2,0; y) + 9H(1; 2)G(0; )

+27H(1; 2)G(1,0; y) + 36H(1,0; 2)G(1 — 2,1 — z; )

—18H(1,0;2)G(1 — z,—z;y) + 5TH(1,0; 2)G(1 — 2; %)

—18H(1,0; 2)G(1 — z,0;y) — 18H(1,0; 2)G(—2,1 — z;y) — T8H(1,0; 2)G(—2;y)
+36H(1, 0; 2)G(0,1 — 2;y) — 18H(1,0; 2)G(0, —z;y)

—18H(1,0,0;2)G(1 — 2;y) — 36H(1,0,1; z) — 18H(1,0,1; 2)G(1 — 2; ¥)
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B. Two-Loop Contribution to 778

—36H(1, 1;2)G(—z, —z;y) + 84H(1, 1; 2)G(—2; y) + 18H(1,1; 2)G(0, —2; )
—18H(1,1,0; 2) — 54H(1, 1,0; 2)G(1 — 2z;y) + 18H(1, 1, 0; 2)G(—2; y)

—18G(1 — 2,1 —2,1,0;y) + 75G(1 — 2, —2,1 — z;9) + 18G(1l — 2, —2z,1 — 2,0; y)
—-72G(1 — z,—2z,—2,1 — z;y) + 18G(1 — 2,—2,0,1 — 2; )

+18G(1 — 2,0,—2,1 — z;y) — 9G(1 — 2,0;y) + 18G(1 — 2,0,1,0;y)

+54G(1 — 2,1,0;y) — 36G(1 — 2,1,1,0;y) + 84G(—2,1 — 2,1 — z; )
-36G(—2,1 — z,—2,1 — z;y) — 143G(—2,1 — 2z;y) — 24G(—2,1 — 2,0; y)
+18G(—2,1 — 2, 1, 0;y) —36G(—2,—2,1— 2,1 — 2z;y) — 84G(—2,—2,1 — 2; )
—36G(—=z — 2,0;y) + 108G(—2, -z, —2,1 — 2;y) — 36G(~2,—2,0,1 — z;y)
—24G(-=z, 0 1 z;y) + 18G(—2,0,1,0;y) — 9G(0,1 — z;y)

+18G(0, —2,1 — 2,1 — z;9) + 3G(0, —2,1 — z; y) — 36G(0, —2,1 — 2,0;y)
+18G(0, —2, —2,1 — z;9) — 36G(0, —2,0,1 — z; y) + 27G(0, 1,0; y)

—27G(1,1 — 2,0;9) — 27G(1,0,1 — z; ) + 9G(1,0; y) — 108G(1,1,0;y)]

22

e [2H(o; 2)G(1 = zy) + 2H(1; 2)G(=2y) — 2G(—2,1 — 2 y)]

+

1
T+ 2) [2H(O; z)G(1 — z;y) + 6H(0; 2)G(—2,1 — z;y) — 6H(0; 2)G(0,1 — z;9)
—2H(0, 1; 2) — 6H(0, 1; 2)G(—2; y) + 6H(1; 2)G(—2,0; y) — 6H(1; 2)G(0, —2; y)

+2H(1; 2)G(0; y) + 6H(1,0; 2)G(1 — z;y) — 6H(1,0; 2)G(—=;y) — 6H(1,1,0; 2)
—2G(1 — 2,0;y) + 6G(1 — 2,1,0;y) — 6G(—2,1 — 2,0;9) — 6G(—2,0,1 — z;y)
~2G(0,1 - 2 1) + 6G(0, -z, 1 — 2;y) + 6G(0, 1,0;9) + 2G(L, 0; y)]
+g—; [ - 3+ 3H(0; 2) + 24H(0; 2)G(1 - 2;) — 15H(1; 2) + 12H(1;2)G(1 — 23)
—-12G(1 — 2,1 — z;9) = TG(1 — z; ) — 12G(1 — 2,1;4) — 6G(0,1 — 2; )
—24G(1'y)]

1 [45

9yl 2
+139 + 57H(0; z) + 132H(0; 2)G(1 — 2,1 — 2;y) — 36H(0; 2)G(1 — 2,1 — 2,0; y)
—36H(0;2)G(1 — 2,—2,1 — z;y) — 250H(0; 2)G(1 — 2;y)
+96H(0; 2)G(1 — 2,0;y) — 72H(0; 2)G(—2,1 — 2,1 — z;y)
—210H(0; 2)G(—2,1 — z;y) + 36H(0; 2)G(—2,0,1 — 2; )
+36H(0; 2)G(0,1 — 2,1 — z;y) + 96H(0; 2)G(0, 1 — z; )
—T72H(0; 2)G(0,1 — 2,0;y) — 36H(0; 2)G(0, —z, 1 — z;y) — 9H(0; 2)G(0; y)
—T72H(0; z)G(1,0; y) + 36H(0,0; 2)G(1 — 2,1 — 2;y) + 144H(0,0; 2)G(1 — z;9)
+36H(0, 0; 2)G(1 — 2,0;y) + 36H(0, 0; 2)G(0, 1 — z;y) — 18H(0,0, 1; 2)
—108H(0,0,1; 2)G(1 — z;¥) + 144H(0,0, 1; 2)G(—2;y) + 36H(0, 1; 2)
—108H(0, 1; 2)G(1 — 2, —z;y) + 36H(0, 1; 2)G(1 — 2,0; )
+216H(0, 1; 2)G(—=z, —z; y) + 42H(0, 1; 2) G(~—=; y) — 36H(0, 1; 2)G(—2, 0; y)
—36H(0, 1; 2)G(0,1 — 2;y) + 72H(0, 1; 2)G(0, —z; y) + 18H(0, 1, 0; 2)
+72H(0,1,0; 2)G(1 — 2;y) — 36H(0, 1,0; 2)G(—2; %)

H(l;2) — —G(l — z;y) — 54(3 + 180¢3G(1 — 2;y)
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B. Two-Loop Contribution to 7(%)

—144H(1;2)G(1 — 2z, —2, —2z;y) + 132H(1; 2)G(1 — 2, —2; y)

+36H(1;2)G(1 — z,—2,0;y) + 36H(1;2)G(1 — 2,0, —2; y)

—72H(1;2)G(—2,1 — z,—z;y) + 132H(1; 2)G(—2,1 — z; y)

—T72H(1; 2)G(—2,—2,1 — z;y) + 216H(1; 2) G(—z, —2, —2; )

—168H(1; 2)G(—2, —z;¥) = 72H(1; 2)G(—2, —z,0; y) — 214H(1; 2)G(—2; y)
—30H(1;2)G(~2,0;y) + 36H(1;2)G(0, —2,1 — z; ) + 36H(1; 2)G(0, —z, —z; 1)
+96H(1; 2)G(0, —z; y) — 72H(1; 2)G(0, — 2, 0; y) — 27H(1; 2)G(0; y)
—18H(1;2)G(1,0;y) — 18H(1,0; 2) — 72H(1,0;2)G(1 — 2,1 — 2;y)

+36H(1,0; 2)G(1 — z, —2;y) — 168H(1,0; 2)G(1 — 2; y)

+36H(1,0; 2)G(1 — z,0;y) + 36H(1,0; 2)G(—2,1 — z;y)

+210H(1,0; 2)G(—2z;y) — 72H(1, 0; 2)G(0, 1 — 2; y) + 36H(1, 0; 2)G(0, —2; y)
+36H(1,0,0; 2)G(1 — z;y) + 36H(1,0, 1; 2) + 36H(1,0,1; 2)G(1 - z;y)
+72H(1,1;2)G(-2, —2;y) — 132H(1, 1; 2)G(—=2; y) — 36H(1, 1; 2)G(0, —z; y)
+72H(1,1,0; 2) + 108H(1,1,0; 2)G(1 — z;y) — 36H(1,1,0; 2)G(—2; y)

+36G(1 — 2,1 — 2,1,0;y) — 132G(1 — 2, —2,1 — z;y)

—-36G(1 — z,—2,1 — 2,0;y) + 144G(1 — 2, —2,—2,1 — 2; )

-36G(1 — 2,—2,0,1 — z;y) — 36G(1 — 2,0, —2,1 — z;9) + 27G(1 — 2,0;y)
-36G(1 — 2,0,1,0;y) — 108G(1 — 2,1,0;9) + 72G(1 — 2,1,1,0;9)
—132G(~2,1— 2,1 — z;y) + 712G(-2,1 — 2,—2,1 — 2z;y) + 214G(—2,1 — z;y)
+30G(~2,1— 2,0;y) — 36G(—2,1 — 2,1,0;9) + 72G(—2,—2,1 — 2,1 — z; y)
+168G(—2,—2z,1 — z;y) + 12G(-2,—2,1 — 2,0, y) — 216G(—2,—z,—2,1 — z;y)
+72G(-2,—2,0,1 — z;y) + 30G(—2,0,1 — 2; ) — 36G(~2,0,1,0;y)

+27G(0,1 — z; y) —36G(0,—2z,1 - 2,1 — z;9) —96G(0,—2,1 — z; )
+72G(0, —2,1 — 2,0;y) — 36G(0, — 2z, — 2,1 — z;y) + 72G(0,—2,0,1 — z; )
—48G(0; y )— 54G(0,1,0;y) + 18G(1 1 - 2,0;y) + 18G(1,0,1 — z )
—18G(1,0;y) + 144G(1, 1, o;y)]

z 1.2 2772 27m? 2772 vl — R 200
ST [ 11n? - Z2H(0;2) - —H(l 2) + 5-G(1 - %y) - 67°G(05)

+6m°G(1;y) + 225¢3 + 7H(1; 2)G(0;y) — ?G(l —2z,0;y) — EG(O’ 1-2y)
+9H(0; 2)G(1 — 2,0;y) — 72H(0; 2)G(0, 1 — z;y) + 12H(0; 2)G(0; y)

—9H(0; 2)G(0, 0; ) + 81H(0, 0, 1; 2) + 36H(0, 1; z) — 81H(0, 15 2)G(1 — ;)

—9H(0, 1; 2)G(0; y) — 81H(0, 1, 0; 2) — 81H(1; 2)G(1 — 2z, —2;y)

+36H(1; 2)G(—z;y) — 81H(1; 2)G(0, —2; y) + 27H(1; 2)G(0, 0; y) — 36H(1, 0; 2)

+81H(1,0; 2)G (1 — z;y) — 9H(1,0; 2)G(0; y) + 81H(1,0,1; z) — 81H(1,1,0; 2)

+81G(1 — z,—2,1 — z;9) — 27G(1 — 2,0,0;y) — 36G(—2,1 — z;y)

-27G(0,1 — z, O,y) +81G(0, —2,1 — z;y) + 37G(0; y) — 27G(0,0,1 — z; y)

—45G(0, 0; ) + 45G(0,1,0; y) + 30G(1, 0; ) + 36G(1,0,0; ) — 36G(1, 1, 0; y)]

z

+ — 972H(0; 2) — 97%H(1; 2) + 972G(1 — z; ) — 3672G(0; v)

i gl
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B. Two-Loop Contribution to 7(%

+36m2G(1;y) + 54(3 + 62 + 60H(0; 2) — 144H(0; 2)G(1 — z;y)
+54H(0; 2)G(1 — 2,0; y) — 108H(0; 2)G(0; y) — 54H(0; 2)G(0, 0; y)
+54H(0, 0, 1; z) — 18H(0, 1; 2) — 54H(0, 1; 2)G(1 — z; y) — 54H(0, 1; 2)G(0; y)
—54H(0,1,0; 2) + 117H(1; z) — 54H(1; 2)G(1 — 2, —z; y) — 162H(1; 2)G(~2; y)
—54H(1; 2)G(0, —z;y) + 99H(1; 2)G(0; y) + 162H(1; 2)G(0, 0; y) — 18H(1,0; 2)
+54H(1,0; 2)G(1 — z;y) — 54H(1,0; 2)G(0; y) + 54H(1,0,1; 2) — 54H(1, 1,0; 2)
+54G(1 — z,—2,1 — z;y) — 117G(1 — z;9) — 99G(1 — 2,0; )
—162G(1 — 2,0,0;y) + 162G(—2,1 — z;y) — 99G(0,1 — z; 9)
—162G(0,1 — z,0;y) + 54G(0, —2,1 — z;y) + 132G(0; y) — 162G(0,0,1 — 2;y)
—198G(0, 0;37) + 270G(0, 1, 0; ) + 18G(1, 0; ) -+ 216G(1, 0, 0; 3))
~216G(1,1, O;y)]

2
MRS
+12H(0,1,0; z) + 12H(1,0; 2) + 12H(1,0; 2)G(1 — 2; y) — 12H(1, 0; 2)G(0; y)

~12H(1,1,0;2) — 12G(1 — 2,1,0;3) — 12G(0,1,0; ) + 12G(1,0;y)]

[— 2m%H(L; 2) + 272G (1 — 23 y) + 12H(0; 2)G(1 — 2,0; y)

2 2
Gt :z)2 [27r2 + 4%H(l; z) — 4%G(l — z;y) — 6H(0; 2) — 8H(0; 2)G(1 — 2,0; y)

+12H(0; 2)G(0; y) — 8H(0, 1, 0; 2) + 4H(1,0; z) — 8H(1,0; 2)G(1 — 2; )
+8H(1,0;2)G(0; y) + 8H(1,1,0;2) + 8G(1 — 2,1,0; y) + 6G(0; y) + 8G(0, 1,0; )
—~20G(1,0;)]

+

” _T_ . [— %2 + 2H(0; 2) — 2H(0; 2)G(0; ) — 2H(1, 0; 2) — 2G(0;y) + 2G(1, O;y)]
2 2 2 2

+(1i—y)3 [ + 2%H(O;z) + 2%H(l; z) — 2%G(l )

—12¢3 + 4H(0; 2)G(0, 1 — z;y) — 4H(0, 0, 1; 2) + 4H(0, 1; 2)G(1 — 2; y)

+4H(0, 1,0; 2) + 4H(1; 2)G(1 — 2, —z; y) + 4H(1; 2) G(0, —z; %)

—4H(1,0; 2)G(1 — z;y) — 4H(1,0,1; 2) + 4H(1,1,0;2) —4G(1 — 2, —2,1 — 2; %)

—4G(0, -2, 1 — z;y)]

22

(1-y)?

- [+ 2H(0; 2)G(1 — z;y) + 2H(1; 2)G(—2; y) — 2G(—2,1 — z; y)]

+ [+ 4H(0;2)G(1 - 23) + 4H(1; 2)G(=2 ) — 46(~2, 1 - ;)]

z

-y
22

(y+2)*
—12H(1,0; 2)G(1 — 2;y) + 12H(1, 0; 2)G(0; y) + 12H(1,1,0; 2)

+12G(1 — 2,1,0; ) + 12G(0, 1, 0; y)]

1

+ [27r2H(1;z) ~2m2G(1 — z;y) — 12H(0; 2)G(1 — 2,0; y) — 12H(0, 1, 0; 2)

22

BROEEE
—12H(0; 2)G(0; y) + 8H(0, 1,0; ) — 12H(1, 0; z) + 8H(1,0; 2)G(1 — 2; y)
_8H(1’ 0; Z)G(Oa y) - SH(L 1,05 z) - 8G(1 -2z,1,0; y) - 8G(0, 1,0 y)

2 2
[— 2m? — 4:%H(l; z) + 4t%G(l — z;y) + 8H(0; 2)G(1 — 2,05 y)
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B. Two-Loop Contribution to 7%

+12G(1,0; y)]

2 2

[ 5 + 2H(0:2)G(0) + 2H(1,02) — 2G(1, 05)|

+—
(y+ 2)?
1

Ty [F +H(0;2)G(0;9) + H(1,0:2) ~ G(1, ;)]

+ 1072 4+ 1272H(0; 2) + 972H(1; 2) — 972G (1 — z;y) + 1272G(0; )

1
9(1—y) [
—2172G(1;y) — 234¢s + 54H(0; 2)G(0, 1 — 2;y) + 21H(0; 2)G(0; )
+18H(0; 2)G(0,0; y) — 18H(0; 2)G(1, 0; y) — 90H(0, 0, 1; 2) — 63H(0, 1; 2)
+90H(0, 1; 2)G(1 — 2; y) + 36H(0, 1; 2)G(0; y) + 54H(0, 1, 0; 2)
+90H(1; 2)G(1 — 2, —z;y) — 63H(1; 2)G(—2; y) + 90H(1; 2)G(0, —z;9)
—18H(1; 2)G(0;y) — 72H(1; 2)G(0, 0; y) + 63H(1,0; 2) — 54H(1,0; 2)G(1 — z; y)
—90H(1,0,1; 2) + 54H(1,1,0; 2) — 90G(1 — 2, —=z,1 — z;y) + 18G(1 — 2,0;y)
+72G(1 — 2,0,0;y) — 36G(1 — 2,1,0;y) + 63G(—2,1 — z;y) + 18G(0,1 — 2;¥)
+72G(0,1 — 2,0;y) — 90G(0, —2,1 — z;y) + 55G(0; y) + 72G(0,0,1 — z;y)
+108G(0, 0; ) — 108G(0, 1,0;9) + 3G(1, 0; ) — 90G(1, 0, 0; )
+126G(1,1,0; y)]
9+ 2)E [+ 18H(0; 2)G(1 — 2,1 — z;9) + 27H(0; 2)G(1 — 2; )

o+
—18H(0; 2)G(—2,1 — z;y) — 72H(0, 0, 1; z) + 39H(0, 1, z)

+36H(0, 1; 2)G(1 — 2;y) — 90H(0, 1; 2)G(—2; y) + 18H(0, 1; 2)G(0; y)

+18H(0, 1,0; 2) — 18H(0, 1, 1; 2} + 230H(1; 2) + 54H(1; 2)G(1 — z, —2; y)

—102H(1;2)G(1 — 2;y) — 18H(1; 2)G(1 — 2,0;y) + 36H(1; 2)G(—2,1 — z;y)

—108H(1; 2)G(~z, —z;y) + 66H(1; 2)G(—2; y) + 18H(1;2)G(—2,0;y)

—18H(1;2)G(0,1 — z;y) + 18H(1; 2)G(0, —z; y) — 27H(1; 2)G(0; y)

—27H(1,0; z) — 18H(1,0;2)G(1 — z;y) + 18H(1, 0; 2)G(—2;y) — 36H(1,0, 1; 2)

+102H(1, 1; 2) — 36H(1, 1; 2)G(—2;y) + 18H(1, 1; 2)G(0; y) + 18H(1,1,0; 2)

+102G(1 - 2,1 — 2z;9) + 18G(1 — 2,1 — 2,0;y) — 54G(1 — 2, —2,1 — 2;y)

—230G(1 — z;y) + 18G(1 — 2,0,1 — z; ) + 27TG(1 — 2,0; %)

-36G(—2z,1— 2,1 — 2z;y) — 66G(—2,1 — z;y) — 18G(—2,1 — 2,0, )

+108G(—z,—2z,1 — z;y) — 18G(—2,0,1 — z;9) + 18G(0,1 — 2,1 — 2;9)

+27G(0,1 - z;y) — 18G(0, —z,1 — z;y)]

1 3m?
[_

372
oty L~ 2 Hkie) + 56 - ziy) ~ 170 - 18H(0;2)G(1 - 249)

+9H(0; 2)G(1 — 2,0;y) — 72H(0, 1; z) + 9H(0, 1,0; z) — 123H(1; 2)

—90H(1; 2)G(—2z;y) + 18H(1; 2)G(0; ) + 18H(1, 0; 2) + 9H(1,0; 2)G(1 — 2;9)

—9H(1,0; 2)G(0; y) — 9H(1,1,0; z) + 123G(1 — 2;y) — 18G(1 — 2,0 y)

—9G(1 — 2,1,0;9) + 90G(—2,1 — z;3) — 18G(0,1 — 2; ) — 9G(0, 1, O;y)]
Tr?

+ [ - 115 - 24H(0;2)G(1 - 2;y) — 12H(0;2)G(L; ) — 12H(0, 1; 2) + TH(L; 2)
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B. Two-Loop Contribution to 7(®)

—48H(1; 2)G(1 — z;y) + 36H(1; 2)G(0; y) — 12H(1; 2)G(1;y) — 12H(1, 0; 2)
+12H(1,1;2) + 48G(1 — 2,1 — z; ) + 19G(1 — 2;y) — 24G(1 — 2,0;y)
-36G(0,1 — z;y) + 48G(0, 1; y) + 12G(1,1 — 2;y) — 26G(1;y) + 36G(1,0; )

_48G(1a 1,y)]
T 3x% 15251 357
+5 [ - % + =5 = S0 108GH (1 2) — 270GsG(1 - 259) + 1626:G(L;)

—360H(0; z) — 198H(0; z)G(l —z,1—z;y) + 108H(0; 2)G(1 — 2,1 — 2,0;y)
+108H(0; 2)G(1 — 2, —2,1 — z;y) + 78H(0; 2)G(1 — 2;y)

+54H(0; 2)G(1 — 2,0,1 — 2;y) — 180H(0; 2)G(1 — 2,0;y)

—108H(0; 2)G(1 — 2,0,0; y) + 54H(0; 2)G(1 — 2,1,0; )

+108H(0; 2)G(—2,1 — 2,1 — z;9) + 297TH(0; 2)G(—2,1 — 2z;y)

—108H(0; 2)G(—~2,—2,1 — z;y) — 108H(0; 2)G(0,1 — 2,1 — z;y)

—180H(0; 2)G(0, 1 — z;y) + 216H(0; 2)G(0, —=2,1 — z; y) — 216H(0; 2)G(0; y)
+54H(0; 2)G(0, 1,0; y) — 54H(0; 2)G(1,1 — 2,0;y)

—108H(0; 2)G(1,0,1 — z;y) + 9H(0; 2)G(1, 0; y) + 108H(0; 2)G(1,0,0; y)
—378H(0, 0; 2)G(1 — z;y) — 108H(0, 0; 2)G(1 — 2,0;y)

—108H(0, 0; 2)G(0, 1 — 2; y) + 18H(0,0,1; z) + 216H(0,0,1; 2)G(1 — 2;9)
—432H(0, 0, 1; 2)G(—=z; y) — 108H(0, 0, 1; 2)G(0; y) + 54H(0,0, 1; 2)G(1; y)
+216H(0, 0, 1, 0; z) + 348H(0, 1; 2) + 324H(0, 1; 2)G(1 — 2, —2; y)
—279H(0,1; 2)G(1 — z;y) — 162H(0,1; 2)G(1 — 2,0;y)

+108H(0, 1; 2)G(—2,1 — 2;y) — 540H(0, 1; 2)G(—2, —z; )

—63H(0, 1; 2)G(—2; y) + 108H(0, 1; 2)G(—z,0; y) + 54H(0, 1; 2)G(0,1 — z; )
—108H(0, 1;2)G(0, —2z; y) — 117H(0, 1; 2)G(0; y) + 108H(0, 1; 2)G(0, 0; y)
—54H(0, 1; 2)G(1,1 — 2; y) + 54H(0, 1; 2)G(1, 0; y) — 252H(0, 1, 0; 2)
—216H(0, 1, 0; 2)G(1 — 2;y) + 108H(0, 1,0; 2)G(—z;y) — 54H(0, 1,0; 2)G(0; )
—54H(0,1,0; 2)G(1; y) + 198H(0, 1, 1; z) — 108H(0, 1, 1; 2)G(—2; )
+108H(0,1,1,0; z) + 17H(1; 2) + 432H(1; 2)G(1 — 2, —2, —2;¥)
—477H(1;2)G(1 — z,—=z;y) — 108H(1; z)G(l —2,—2,0;y)

+297H(1; 2)G(1 — 2;y) — 108H(1; 2)G(1 — —2z;Y)

+198H(1; 2)G(1 — 2,0;y) + 162H(1; z)G(l -z, 1 ,0;9)

+216H(1; z)G(—z 1—z,—2;y) — 396H(1; 2)G(—2,1 — z;y)
—108H(1;2)G(~2,1 — 2,0;y) + 216H(1; 2)G(-2, —2,1 — z; )
—648H(1;2)G(—= —z,—z;y)+234H(1;z)G(—z,—z;y)

+108H(1; 2)G(~2, —z, 0; y) + 426H(1; 2)G(—2; y) — 108H(1; 2)G(-2,0,1 — 2;y)
+108H(1; 2)G(—2,0, —2; y) — 297H(1; 2)G(—2,0; y)

—54H(1;2)G(0,1 — 2, —z;y) + 198H(1; 2)G(0,1 — z; )

~108H(1; 2)G(0, —z,1 — z;y) + 108H(1; 2)G(0, —2, —2; y)

—297H(1; 2)G(0, —z; ) + 216H(1; 2)G(0, —z, 0; y) — 7T8H(1; 2)G(0; y)
+108H(1;2)G(0,0, —z;y) + 378H(1; 2)G(0, 0; y) — 54H(1; 2)G(0,1,0;y)
—54H(1;2)G(1,1 — 2, —2;¥) — 54H(1; 2)G(1, 0, —z; y) — 81H(1; 2)G(1,0; y)
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B. Two-Loop Contribution to 7(®

—108H(1; 2)G(1,0,0;y) — 81H(1,0; z) + 216H(1,0; 2)G(1 — 2,1 — z;9)
—108H(1,0; 2)G(1 — 2, —z;y) + 117H(1, 0; 2)G(1 — z; )

—162H(1,0; 2)G(1 — 2,0;y) — 108H(L, 0; 2)G(—2,1 — z; y)

+108H(1, 0; 2)G(—z, —z;y) — 297H(1, 0; 2)G(—=;y) — 216H(1,0; 2)G(0, —2; y)
+171H(1, 0; 2)G(0; y) + 108H(1, 0; 2)G(0, 0; y) + 54H(1,0; 2)G(1,1 — 2;y)
+54H(1, 0; 2)G(1, 0; y) — 108H(1, 0,0, 2)G(1 — #;y) — 54H(1,0,0, 1; 2)
+360H(1,0,1; z) — 162H(1,0,1; 2)G(1 — 2;y) — 108H(1,0, 1; 2)G(—2;y)
+54H(1,0,1; 2)G(0; y) + 54H(1,0,1; 2)G(1; y) + 108H(1, 0, 1, 0; 2)

—297H(1,1; z) — 216H(1, 1; 2)G(—2, —z; y) + 396H(1, 1; 2) G(—2; v)

+108H(1, 1;2)G(—2,0; y) + 108H(1, 1; 2)G(0, —z; y) — 198H(1, 1; 2)G(0;y)
+81H(1,1,0; 2) — 378H(1,1,0; 2)G(1 — z;y) 4+ 108H(1,1,0; 2)G(—2; y)
+108H(1, 1,0; 2)G(0; y) — 54H(1, 1, 0; 2)G(1; y) + 108H(1,1,0,1; 2)
+162H(1,1,1,0;2) — 297G(1 — 2,1 — z;y) — 198G(1 — 2,1 — 2,0; )

—216G(1 — 2,1 — 2,1,0;y) + 477G(1 — z,—2,1 — z;y)

+108G(1 — z,—2,1 — 2,0;y) — 432G(1 — 2, -z, —2,1 — z;9)

+108G(1 - z,—2,0,1 — 2z;4) — 17G(1 — 2z;¥) — 198G(1 — 2,0,1 — 2;9)
+108G(1 — 2,0, —2,1 — z;y) + 7T8G(1 — 2,0; y) — 378G(1 — 2,0,0; y)

+108G(1 - 2,0,1,0;y) — 162G(1 — 2,1,1 — 2,0;y) — 162G(1 — 2,1,0,1 — 2;y)
+81G(1 — 2,1,0;y) + 108G(1 — 2,1,0,0;y) + 396G(—2,1 — 2,1 — z;y)
+108G(—2z,1 — 2,1 — 2,0;y) — 216G(—2,1 — 2, —2,1 — 2;y) — 426G(—2,1 — 2;y)
+108G(—2,1 — 2,0,1 - z;y) + 297G(—=2,1 — z,0; y)

—216G(—2,—2,1 — 2,1 — z;y) — 234G(—2,—2,1 — z; y)

—108G(—2,—2,1 — 2,0;y) + 648G(—2, —z,—2,1 — z; y)

—108G(—z2,-2,0,1— z;y) + 108G(—2,0,1 — z,1 — z;y) + 297G(—2,0,1 — 2; )
—108G(-2,0,—2,1 — z;y) — 198G(0,1 — 2,1 — z;y) + 54G(0,1 — 2z, —2,1 — z;¥)
+78G(0,1 — z;y) — 378G(0,1 — 2,0;y) + 162G(0,1 — 2,1,0; y)

+108G(0, —z,1 — 2,1 — z;y) + 297G(0, —2,1 — 2;y) — 216G(0, —2,1 — z,0; )
—108G(0, —2z,—2,1 — z;y) — 216G(0, —2,0,1 — z; y) — 360G(0; y)
—-378G(0,0,1 — z;y) — 108G(0,0,—2,1 — 2; y) + 108G(0,0, 1, 0; y)
+54G(0,1,1 — 2,0;y) + 54G(0,1,0,1 — z; y) + 333G(0,1,0; y)
—-216G(0,1,1,0;y) + 54G(1,1 — 2z, —2,1 — z;y) + 81G(1,1 — 2,05 %)
+108G(1,1 — 2,0,0;y) + 81G(1,0,1 — z;y) + 108G(1,0,1 — 2,0; y)
+54G(1,0, —2,1 — z;9) + 3G(1,0; y) + 108G(1,0,0,1 — z;y) + 378G(1,0,0;y)
_216G(1,0,1,0; %) + 117G(1, 1,0; ) — 216G(L, 1,0, 0;y) + 216G(1, 1, 1, 0; y)]

+g [11 + 9H(0; 2) — 24H(0; 2)G(1 — ;) — 6H(0, 1; 2) + 8H(1; 2)
—36H(1;2)G(1 — 2;y) + 24H(1; 2)G(0; y) + 6H(1; 2)G(1;y) + 24H(1,1; 2)
+24G(1 — 2,1 — 2z;9) + 2G(1 — z;9) — 24G(1 — 2,0; ) + 12G(1 — 2, 1;y)
—6G(0,1 — z;) + 9G(0; y) + 12G(0,1;y) — 6G(1,1 — z;y) — 10G(1;y)

+24G(1,0;y) - 6G(1, 1;y)]
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B. Two-Loop Contribution to 7(%)

+11—8 [288(3 + 180¢3H(1; 2) — 360¢sG(1 — 2;9) + 180¢3G(1; ) — 188H(0; 2)
—150H(0; 2)G(1 — 2,1 — z;y) + 72H(0; 2)G(1 — 2,1 — 2,0; y)

+72H(0; 2)G(1 — 2, —2,1 — z;y) + 295H(0; 2)G(1 — z;y)

—300H(0; 2)G(1 — 2,0;y) — 36H(0; 2)G(1 — z,0,0; y)

+72H(0; 2)G(—2,1 — 2,1 — 2z;y) + 216H(0; 2)G(—=2,1 — z;y)

—72H(0; 2)G(—2, —2,1 — z;y) — 36H(0; 2)G(0,1 — 2,1 — z;y)

—156H(0; 2)G(0,1 — 2; y) + 36H(0; 2)G(0,1 — 2,0; y)

+144H(0; 2)G(0, —z,1 — z;y) + 78H(0; 2)G(0; y) — 72H(0; 2)G(0,0,1 — 2; y)
+18H(0; 2)G(0, 0; y) + 36H(0; 2)G(0, 1,0; y) — 72H(0; 2)G(1,1 — 2,0;y)
—36H(0; 2)G(1,0,1 — z;9) + 132H(0; 2)G(1, 0; y) + 36H(0; 2)G(1,0,0; y)
+36H(0; 2)G(1, 1, 0; y) + 36H(0, 0; 2) — 36H(0,0; 2)G(1 — 2,1 — 2;y)
—108H(0,0; 2)G(1 — z;y) — 36H(0,0; 2)G(1 — 2,0; y)

—36H(0, 0; 2)G(0,1 — 2;y) + 18H(0, 0; ) G(0; y) — 108H(0, 0,0, 1; 2)
+84H(0,0, 1; 2) + 180H(0,0,1; 2)G(1 — z;y) — 288H(0, 0, 1; 2)G(—2; y)
+36H(0,0, 1; 2)G(1; y) + 108H(0, 0, 1,0; 2) — 36H(0,0, 1, 1; z) + 289H(0, 1; 2)
+216H(0, 1; 2)G(1 — z, —z; y) — 222H(0, 1; 2)G(1 — z; y)

—72H(0,1; 2)G(1 — 2,0;y) + 7T2H(0, 1; 2)G(—2,1 ~ z;y)

—360H(0, 1; 2)G(—2, —z;y) + 192H(0, 1; 2) G(~=2; y) + 72H(0, 1; 2)G(—2,0; y)
~T72H(0, 1; 2)G(0, —z; y) — 60H(0, 1; 2)G(0; y) + 36H(0, 1; 2)G(0, 0;y)
—36H(0,1;2)G(1,1 — 2;y) — 114H(0, 1, 0; 2) — 144H(0, 1,0; 2)G(1 — z; y)
+72H(0,1,0; 2)G(—z;y) — 72H(0, 1, 0; 2) G(0; y) + 36H(0, 1,0; 2)G(1; )
—72H(0,1,0,1; 2) + 150H(0, 1, 1; 2) — 72H(0, 1, 1; 2)G(—=2; y)

+36H(0, 1, 1; 2)G(0; y) + 36H(0, 1, 1,0; z) — 376H(1; 2)

+288H(1;2)G(1 — 2z, —z, —z;9) — 372H(1; 2)G(1 — 2, —2;y)

—72H(1;2)G(1 — 2, —2,0; y) + 204H(1; 2)G(1 — 2; y)

—T2H(1;2)G(1 — 2,0, —z; y) + 150H(1; 2)G(1 — 2,0, y)

+36H(1;2)G(1 — 2,0,0;y) + 36H(1;2)G(1 — 2,1,0, )

+144H(1; 2)G(-2,1 — 2z, —z;y) — 300H(1; 2)G(—2,1 — z;9)
—T72H(1;2)G(~2,1 — z,0;y) + 144H(1; 2)G(—2,—2,1 — 2;y)

—-432H(1; 2)G(—2, —2, —z;y) + 408H(1; 2)G(—2, —2; y)

+72H(1; 2)G(—2, —2z,0;y) + 584H(1; 2)G(—2z; y) — 72H(1; 2)G(—2,0,1 — 2z;9)
+72H(1;2)G(~2,0, —2; y) — 216H(1; 2)G(~2,0;y) — 36H(1; 2)G(0,1 — 2, —2; y)
+150H(1;2)G(0,1 — 2; y) + 36H(1;2)G(0,1 — 2,0;y)

—72H(1;2)G(0, —2,1 — 2;y) + T2H(1; 2)G(0, — 2z, —z; y) — 216H(1; 2)G(0, —2; )
+144H(1;2)G(0, —z, 0; y) — 295H(1; 2)G(0; y) + 36H(1; 2)G(0,0,1 — 2; )
—36H(1; 2)G(0,0, —z;y) + 108H(1; 2)G(0,0; y) — 36H(1; 2)G(1,1 — 2, —z; %)
—36H(1; 2)G(1,0, —z;y) — 72H(1; 2)G(1,0,0; y) + 15H(1,0; 2)
+108H(1,0;2)G(1 - 2,1 — z;y) — T2H(1,0; 2)G(1 — 2, —z; y)
+6H(1,0;2)G(1 — z;y) — 72H(1,0; 2)G(1 — z,0;y)
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B. Two-Loop Contribution to 776

—72H(1,0; 2)G(—2,1 — z;y) + 72H(1, 0; 2)G(~z, —z; y) — 216H(1, 0; 2)G(—2; y)
+108H(1,0; 2)G(0,1 — 2;y) — 144H(1,0; 2)G(0, —z; y) + 168H(1,0; 2)G(0; ¥)
+36H(1,0; 2)G(0,0; y) — 36H(1,0; 2)G(1,1 — z; ) + 72H(1,0; 2)G(1, 0; )
+18H(1,0,0; 2) — 36H(1, 0, 0; 2)G(1 — 2;9) — 72H(1,0,0, 1; 2)

+222H(1,0,1;2) — 36H(1,0,1; 2)G(1 — 2;y) — 72H(1,0,1; 2)G(-2; y)
+36H(1,0, 1; 2)G(0; y) + 36H(1,0,1; 2)G(1; y) + 72H(1,0, 1, 0; )

—204H(1,1; z) — 144H(1, 1; 2)G(—=z, —z; y) + 300H(1, 1; 2)G(—2; y)

+72H(1, 1; 2)G(—2,0;y) + 72H(1, 1; 2)G(0, —=z; y) — 150H(1, 1; 2)G(0; y)
—36H(1,1; 2)G(0,0;y) + 54H(1,1,0; 2) — 216H(1,1,0; 2)G(1 — z; y)
+72H(1,1,0; 2)G(—2;y) + 36H(1, 1,0; 2)G(0; y) + 36H(1,1,0; 2)G(1; y)
+108H(1,1,1,0; 2) — 204G(1 — 2,1 — 2;y) — 150G(1 — 2,1 — 2,0;y)
-36G(1—2,1-2,0,0;y) —108G(1 — 2,1 — 2,1,0;y)

+372G(1 - 2z, —2,1 — z;y) + 12G(1 — 2z,—2,1 — z,0; y)

—288G(1l — z,—2,—2,1 — z;y) + T12G(1 — 2,-2,0,1 — 2z;y) + 376G(1 — z;y)
~150G(1 — 2,0,1 — z;y) — 36G(1 — 2,0,1 — 2,0;3) + 72G(1 — 2,0, —2,1 — 2; 7))
+295G(1 — z,0;y) — 36G( -2,0,0,1—2;y) — 108G(1 — 2,0,0;y)

+108G(1 — 2,0,1,0;y) — 36G(1 — 2,1,1 — 2,0;y) — 36G(1 — 2,1,0,1 — z;y)
+144G(1 — 2,1 O,y) +72G(1 - 2,1,0,0;) — T2G(1 — 2,1,1,0; )

+300G(—= —z;y) + 72G(—2,1 — 2,1 — 2,0;y)

—144G(-= —z,1—2;y) — 584G(—2,1 — z;9) + 72G(—2,1 — 2,0,1 — z;y)
+216G(-=z, 1 -z, O y) — 144G(—2,—2,1 — 2,1 — 2z;y) — 408G(—2,—2,1 — z;y)
-72G(—z,—2,1—2,0;y) + 432G(—2, —2z,—2,1 — z;y) — 72G(—2,—2,0,1 — 2;y)
+72G(-2,0,1— 2,1 — z;9) + 216G(—2,0,1 — 2;9) — 72G(~2,0, —z,1 — z;9)
—-150G(0,1 — 2,1 — z;y) —36G(0 1-2,1-20;y)+36G(0,1 — 2,—2,1 — z;y)
4+295G(0,1 — 2 y) — 36G(0,1 — 2,0,1 — z;y) — 108G(0,1 — z,0;3)

+72G(0,1 - 2,1,0;9) + 72G(0, —2,1 — 2,1 — z;y) + 216G(0, —2,1 — z;y)
—144G(0, —2,1 — 2,0;y) — 72G(0, —2, —2,1 — z;y) — 144G(0, —2,0,1 — z;¥)
—188G(0;y) — 36G(0,0,1 — 2,1 — z;y) — 108G(0,0,1 — z; )

+36G(0,0, —2,1 — 2;y) + 36G(0,0; y) + 108G(0,0,1,0;y) + 6G(0,1,0;y)
-72G(0,1,1,0;y) + 36G(1,1 — 2z, —2,1 — z;9) + 72G(1,1 — 2,0,0; )
+72G(1,1 - 2,1,0;y) + 72G(1,0,1 — 2,0;y) + 36G(1,0,—=2,1 — z; )
—310G(1,0; ) + 72G(1,0,0,1 — z;y) + 90G(1,0,0; y) — 144G(1,0,1,0;y)
+60G(1, 1,0; ) — 108G(1, 1,0,0;9) + 36G(1, 1,1,0;1),

C2O(y>z) _=
+§ 6H(0; 2)G(1 — 2;9) + 6H(1; 2)G(-2y) - 6G(=2,1 - 2; y)]
+Z_z - 2H(0;2)G(1 - ) — 2H(L; 2)G(~259) + 26(-2 1 - 7))
+y—12 | - 4H(0:2)G(1 - 9) - 4H(1;2)G(=59) +4G(-2,1 - z59)|
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B. Two-Loop Contribution to 7%

2
+% — 1+ 4H(0; z) + 10H(0; 2)G(1 — 2; ) + H(1; 2) + 6H(1; 2)G(1 — 2 y)

+10H(1; 2)G(—z;9) — 16G(1 — 2,1 — z;9) + G(1 — 2;y) + 2G(1 — 2,0; )
+4G(1 — z,1;y) — 10G(—2,1 — z; y)]

+ny" [ — 36¢3 — 16¢3G(1 — z;y) — 4H(0; 2) + 6H(0; 2)G(1 — 2,1 — 2;)
—40H(0; 2)G(1 — 2,1 — 2,0;y) + 9H(0; 2)G(1 — 2;y)

—8H(0;2)G(1 — 2,0,1 — z;y) — 24H(0; 2)G(1 — 2,0;y)

—16H(0; 2)G(—2,1 — 2,1 — z;y) + 46H(0; 2)G(—2,1 — 2; )

—40H(0; 2)G(—2,1 — 2,0;y) — 10H(0; 2)G(0, 1 — 2;y) + 12H(0; 2)G(1, 0;y)
+16H(0,0; 2)G(1 — 2,1 — 2;y) + 40H(0, 0; 2)G(1 — 2,0; y) — 4H(0,0, 1; z)
+17H(0,1; 2) + 24H(0,1; 2)G(1 — 2,1 — z;y) — 14H(0, 1;2)G(1 — 2;9)
—8H(0,1; 2)G(1 — z,0;y) — 8H(0,1; 2)G(—2,1 — z;y)

—24H(0,1; 2)G(—2, —z;y) + 14H(0, 1; 2)G(—=; y) — 8H(0, 1,0; 2)

+32H(0, 1,0; 2)G(1 — z;y) — 40H(0, 1,0; 2)G(-=2; y) — 6H(0, 1, 1; 2)
+8H(0,1,1; 2)G(—2; y) + 24H(1;2)G(1 — 2,1 — 2z, —2;y)

—8H(1;2)G(1 — 2,—z2;y) — 16H(1; 2)G(1 — 2,0, —z; y) — 6H(1; 2)G(1 — z,0;y)
—24H(1; 2)G(—2,1 — z,—z;y) + 12H(1; 2)G(—2,1 — 2;9)

+8H(1; 2)G(—2,1 — 2,0;y) — 24H(1; 2)G(—2,—2,1 — z;y)

—24H(1; 2)G(—2, —z, —2z;y) + 60H(1; 2)G(—2, —z; y) + 24H(1; 2)G(—2, —2,0; y)
+26H(1; 2)G(—2;y) + 8H(1; 2)G(—2,0,1 — z;y) + 18H(1; 2)G(—2,0; y)
—6H(1; 2)G(0,1 — z;y) — 10H(1; 2)G(0, —z;y) — 17H(1; 2)G(0; v)

+24H(1; 2)G(1, 0;y) — 13H(1,0; 2) — 40H(1,0; 2)G(1 — 2,1 — 2; )

+4H(1,0; 2)G(1 — z;y) — 24H(1,0; 2)G(—2,1 — z;y) — 46H(1,0; 2)G(—=2; y)
+40H(1, 0; 2)G(—2,0; y) + 40H(1,0,0; 2)G(1 — z;y) — 10H(1,0, 1; 2)
—16H(1,0,1;2)G(1 — 2z;y) + 8H(1,0,1; 2)G(—2; y) + 24H(1,1; 2)G(—=2, —z;y)
—12H(1,1; 2)G(—2;y) — 8H(1, 1; 2)G(—2,0; y) + 6H(1, 1; 2)G(0; y)
—20H(1,1,0; 2) + 8H(1,1,0; 2)G(1 — 2z;y) + 24H(1,1,0; 2)G(—2;y)

~24G(l1— 2,1 — 2,—2,1 — 2;94) + 6G(1l — 2,1 — 2,0;y)

+48G(1 - 2,1 — 2,1,0;y) + 8G(1 — 2z, —2,1 — z;9) + 6G(1 — 2,0,1 — z; )
+16G(1 — 2,0,—2,1 — 2z;y) + 17G(1 — 2,0;y) — 48G(1 — 2,0,1,0; y)

+18G(1 ~ 2,1,0;y) — 16G(1 — 2,1,1,0;y) — 12G(-2,1 — 2,1 — z; )
—8G(—2z,1—2,1—2,0;y) + 24G(—2,1 - 2,—2,1 — z;y) — 26G(—2,1 — 2;y)
—8G(—2,1—2,0,1— z;y) — 18G(—2,1 — 2,0;y) + 64G(—2,1 — 2,1,0; )
+24G(—2,—2,1 — 2,1 — z;y) — 60G(—2,~2,1 — z;y) — 24G(—2,—2,1 — 2,0; y)
+24G(~2,—2z,—2,1 — z;y) — 24G(—2,—2,0,1 — z;y) — 8G(-=2,0,1 — 2,1 — z;9)
—18G(—2,0,1 — z;y) + 64G(~2,0,1,0;y) + 6G(0,1 — 2,1 — 2; )

+17G(0,1 — 2;y) + 10G(0, —z,1 — 2;y) + 18G(0, 1,0; y) — 24G(1,1 — 2,0;y)
—24G(1,0,1 — z;y) — 30G(1,0;y)]




B. Two-Loop Contribution to 7%

22

+5[ - 2H(0:2)6(1 - 59)  2H(12)G(~751) +2G(~2,1 - 5 )|
+m [ —6H(0; 2)G(1 — 2,1 — z;9) — 1TH(0; 2)G(1 — 2z;y)
+18H(0; 2)G(—2,1 — z;y) — 18H(0; 2)G(0, 1 — z;y) + 17H(0, 1; 2)
+6H(0, 1; 2)G(1 — 2;y) — 18H(0, 1; 2)G(—2; y) — 6H(0, 1, 1; 2)
—6H(1;2)G(1 — 2,0;y) + 18H(1; 2)G(—2,0;y) — 6H(1;2)G(0,1 — 2; 1)
—18H(1; 2)G(0, —z;y) — 17H(1; 2)G(0; y) — 17H(1, 0; 2)

+24H(1,0; 2)G(1 — z;y) — 18H(1,0; 2)G(—2; y) — 6H(1,0,1; 2)
+6H(1,1;2)G(0;y) — 24H(1,1,0;2) + 6G(1 — 2,1 — 2,0; y)

+6G(1 — 2,0,1 — z;y) + 17G(1 — 2,0;y) + 18G(1 — 2,1,0;y)
-18G(—2,1 — 2,0;y) — 18G(—2,0,1 — 2;9) + 6G(0,1 — 2,1 — 2;y)
+17G(0, 1 — z;9) + 18G(0, —z, 1 — z;3) + 18G(0, 1,0; ) — 34G(1, 0; y)]

e

3 [ — 4H(0;2)G(1 — zy) + H(1; 2) — 6H(L; 2)G(1 — 2 y) — 4H(L; 2)G(—2; y)

+10G(1 — 2,1 — z;9) — 6G(1 — 2;9) — 2G(1 - 2,0;y) —4G(1 — z,1;y)
H4G(2,1 - 59) + G(Ly)]

+% [ — 8(3 + 80¢3G(1 — z;y) + 19 + 8H(0; z) — 12H(0; 2)G(1 — 2,1 — z;y)

+32H(0; 2)G(1 — 2,1 — 2,0;y) + 26H(0; 2)G(1 — z;y)

+16H(0; 2)G(1 — 2,0,1 — z;y) + 40H(0; 2)G(1 — 2,0; y)

+32H(0; 2)G(—2,1 — 2,1 — z;y) — 108H(0; 2)G(—=2 ' Y)

+32H(0; 2)G(—2,1 — z,0; y) + 68H(0; 2)G(0, 1 — z,y) - 16H(0; 2)G(1,0;y)

—32H(0, 0; z)G(l - 2z,1 - 2zy) — 32H(0,0; 2)G(1 — 2,0;y) — 8H(0,0, 1; 2)
—26H(0, 1;2) — 48H(0,1; 2)G(1 — 2,1 — z;y) + 36H(0, 1; 2)G(1 — 2;y)
+16H(0, 1; 2)G(1 — 2,0;y) + 16H(0, 1; 2)G(—2,1 — 2;9)

+48H(0, 1; 2)G(—2, —z; y) — 28H(0, 1; 2)G(—2; y) + 16H(0, 1, 0; 2)
—16H(0,1,0;2)G(1 — z;y) + 32H(0, 1, 0; 2)G(—=; y) + 12H(0, 1, 1; 2)
—16H(0, 1, 1;2)G(—=2; y) — 2H(1; 2) — 48H(1;2)G(1 — 2,1 — 2, —z; %)
+24H(1; 2)G(1 — 2, —z;y) + 32H(1; 2)G(1 — 2,0, —2z;y)

+12H(1; 2)G(1 — 2,0;y) + 48H(1;2)G(~2,1 — 2, —2; y)

—24H(1;2)G(—2,1 — z;y) — 16H(1; 2)G(—=2,1 — 2,0; y)

+48H(1; 2)G(—2, —2,1 — 2z;y) + 48H(1; 2)G(—2, —=2, —z;y)

—136H(1; 2)G(—z, —z;y) — 48H(1; 2)G(—2, —2,0;y)

—16H(1; 2)G(—2,0,1 — 2;y) — 20H(1; 2)G(—2,0;y) + 12H(1; 2)G(0,1 — 2;y)
+68H(1; 2)G(0, —z; y) + 30H(1; 2)G(0; y) — 24H(1; 2)G(1, 0;y) + 26H(1,0; 2)
+32H(1,0;2)G(1 — 2,1 — z;y) — 56H(1,0; 2)G(1 — 2;y)

+108H(1, 0; 2)G(—2;y) — 32H(1, 0; 2)G(—2,0; y) — 32H(1,0,0; 2)G(1 — 2;y)
+4H(1,0,1; z) + 32H(1,0,1; 2)G(1 — z;y) — 16H(1,0,1; 2)G(—=2; )
—48H(1,1; 2)G(~2, —z;¥) + 24H(1, 1; 2)G(—z; y) + 16H(1, 1; 2)G(—2,0; y)

N’ N
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B. Two-Loop Contribution to 77

—12H(1,1; 2)G(0;y) + 56H(1, 1,0; z) — 16H(1,1,0; 2)G(1 — 2;y)

+48G(1 — 2,1 —2,—2,1 — 2z;9) — 12G(1 — 2,1 — 2,0; )

—48G(1 - 2,1 — 2,1,0;y) — 24G(1 — 2, —2,1 — z;9) + 2G(1 — 2;y)

-12G(1 - 2,0,1 — 2z;y) — 32G(1 — 2,0, —2,1 — 2;y) — 30G(1 — z,0; y)

+48G(1 — 2,0,1,0;y) — 36G(1 — 2,1,0;y) + 32G(1 — 2,1,1,0; y)

+24G(—2,1 — 2,1 — z;y) + 16G(—2,1 — 2,1 — 2,0;y)

—48G(—2,1 — 2,—2z,1 — z;9) + 16G(—2,1 — 2,0,1 — z; y) + 20G(—2,1 — 2,0; y)
—80G(—2z,1—2,1,0;y) — 48G(—2,—2,1 — 2,1 — z;y) + 136G(—2,—2,1 — 2;y)
+48G(—z2,—2,1— 2,0;y) — 48G(—2,—2,—2,1 — z;y) + 48G(—2,—2,0,1 — 2; )
+16G(—2,0,1— 2,1 — z;9) + 20G(—2,0,1 — z;y) — 80G(-=2,0,1,0; y)
-12G(0,1 - 2,1 — 2z;y) — 30G(0,1 — z;y) — 68G(0, —z,1 — z;y) — 36G(0,1,0;y)
F24G(1,1 — 2,0;y) + 24G(1,0,1 — 2; ) + 60G(1, 0; ) — 8G(1, 1,0; y)]

1472 1472 272

1472
‘ [-l- 5m2 + TWH(O; z) + TH(I; z) — TG(l —z;y) + %G(O;y)

Ty
—%HG(I; y) — 923 + 28H(0; 2)G(0,1 — z; y) + 12H(0; 2)G(0; y)

+4H(0; 2)G(0, 0; y) — 32H(0, 0, 1; 2) — 16H(O, 1; 2) + 32H(0, 1; 2)G(1 — 2; )
+4H(0, 1; 2)G(0; y) + 28H(0, 1,0; 2) + 32H(1;2)G(1 — 2, —2;y)

—16H(1; 2)G(—2; y) + 32H(1; 2)G(0, —z; y) + 6H(1; 2)G(0; y)

—4H(1; 2)G(0, 0; y) + 16H(1,0; z) — 28H(1,0; 2)G(1 — z;y) — 32H(1,0,1; 2)
+28H(1,1,0;2) — 32G(1 — 2,—2,1 — z;y) — 6G(1 — 2,0; y) + 4G(1 — 2,0,0; )
—4G(1 - 2,1,0;9) + 16G(—2,1 — 2z;y) — 6G(0,1 — z;y) + 4G(0,1 — 2,0; y)
—32G(0, —2,1 — z;¥) + 23G(0; y) + 4G(0,0,1 — z;y) — 10G(0,0;y)
—8G(0,1,0;y) — 14G(1,0;3) — 8G(1,0,0;y) + 8G(1, 1, 0; y)]

+ZIE—Z:?) [%ﬂ + 6m2H(0; z) + 672H(1; 2) — 67°G(1 — 2; %)

+272G(0; y) — 472G (1;y) — 132¢3 + 17 + 4H(0; 2) + 28H(0; 2)G(1 — 23 )
+36H(0; 2)G(0, 1 — z;y) + 12H(0; 2)G(0, 0; y) — 48H(0, 0, 1; 2) + 4H(0, 1; 2)
+48H(0, 15 2)G(1 — z;y) + 12H(0, 1; 2)G(0; y) + 36H(0, 1,0; 2) — 2H(1; 2)
+48H(1;2)G(1 — 2z, —z;y) + 32H(1; 2)G(—z; y) + 48H(1; 2)G(0, —2; y)
—22H(1; 2)G(0;y) — 12H(1;2)G(0, 0; y) — 36H(1, 0; 2)G(1 — 2; y)
—48H(1,0,1;2z) + 36H(1,1,0;2) — 48G(1 — z,—2,1 — 2;y) + 2G(1 — z;y)
+22G(1 — 2,0;y) + 12G(1 — 2,0,0;y) — 12G(1 — 2,1, 0;y) — 32G(—2,1 — 2;y)
+22G(0,1 — z;9) + 12G(0,1 — 2,0; y) — 48G(0, —2,1 — z;y) + 39G(0; y)
+12G(0,0,1 — z;y) — 22G(0,0;y) — 24G(0,1,0;y) — 26G(1,0;y)
—24G(1,0,0;y) + 24G(1, 1,0; y)]

L
(¥ +2)°
+36H(0, 1,0; 2) + 36H(1,0; z) + 36H(1,0; 2)G(1 — z;y) — 36H(1,0; 2)G(0; y)

[ — 6m2H(1; 2) + 672G(1 - 2;9) + 36H(0; 2)G(1 — 2,0; )




B. Two-Loop Contribution to 7(%)

—36H(1,1,0;2) — 36G(1 — 2,1,0;y) — 36G(0, 1,0; ) + 36G(1, 0; y)]
z

(y +2)?

—24H(0; 2)G(1 — 2,0;y) + 36H(0; 2)G(0; y) — 24H(0, 1,0; z) + 12H(1,0; 2)

—24H(1,0; 2)G(1 — z;y) + 24H(1,0; 2)G(0; y) + 24H(1,1,0; 2)

+24G(1 — z,1,0;y) + 18G(0; y) + 24G(0, 1,0; ) — 60G(L, 0; y)]

+

[+ 6m% + 4n?H(1; 2) — 4n2G(1 — z;y) — 18H(0; 2)

NTT [ — 7 + 6H(0; 2) — 6H(0; 2)G(0; ) — 6H(1,0; 2) — 6G(0; ) + 6G(1, 0;y)]
Z2 27!'2 27['2 271'2
+(1 —y)3 [_ TH(O’Z) - TH(LZ) + —B—G(l - 2;y)

+12¢3 — 4H(0; 2)G(0,1 — z;3) + 4H(0,0, 1; 2) — 4H(0,1; 2)G(1 — 2;y)
—4H(0, 1,0; 2) — 4H(1; 2)G(1 — z, —z; y) — 4H(1;2)G(0, —=z; y)
+4H(1,0; 2)G(1 — z;y) + 4H(1,0,1; 2) — 4H(1,1,0; 2) + 4G(1 — z,—2,1 — z;y)
+4G(0, —2,1 — 2 y)]
2

+(1i—y)2 [ — 4H(0; 2)G(1 — z;y) — 4H(1; 2)G(~z;y) + 4G(~2,1 — z; y)]
22

o [ —2H(0;2)G(1 — 2 y) — 2H(L; 2)G(=29) + 2G(=2,1 — z; y)]

5 _z:z)4 [+ 6m2H(1; 2) — 67°G(1 — z;9) — 36H(0; 2)G(1 — 2,0; )

—36H(0,1,0; 2) — 36H(1,0; 2)G(1 — 2;¥) + 36H(1,0; 2)G(0; y) + 36H(1,1,0; 2)
+36G(1 — 2,1,0;3) + 36G(0, 1, 0; y)]
L2
(y+2)°
—36H(0; 2)G(0; y) + 24H(0, 1,0; z) — 36H(1, 0; z) + 24H(1,0; 2)G(1 — z; y)
—24H(1, 0; 2)G(0; ) — 24H(1,1,0; 2) — 24G(1 — 2,1, 0; ) — 24G(0, 1, 0; 3))
+36G(1,0; y)]
2

[ — 672 — 4n?H(1; 2) + 472G(1 — z;y) + 24H(0; 2)G(1 — 2,0; %)

2 . . . _ .
a7+ SH(02)G(050) + 6H(L,0:2) - 6G(1,0;)
b [— L 2H(0; 2)G(0; y) — 2H(1, 0; z) + 2G(L, 0; )]
1-— y—=z 3 ’ Y ' Yy yhY
1 . 8n° 4m? 42 272
_—— —_— . — . 1 o 0'
+2(1_y)[ 2n? — ZH(0;2) — —-H(1;2) + 5-G(1 - %19) + 5-G(0;)

+8—§EG(1; y) + 64¢3 — 8H(0; 2)G(1 — z,0;y) — 16H(0; 2)G(0,1 — 2;y)
+6H(0; 2)G(0; y) + 4H(0; 2)G(0, 0; y) + 8H(0; 2)G(1,0; y) + 20H(0,0,1; 2)
+12H(0, 1; 2) — 20H(0, 1; 2)G(1 — 2;y) — 4H(0, 1; 2)G(0; y) — 8H(0, 1, 0; z)
—20H(1;2)G(1 — 2, —2;y) + 12H(1; 2)G(—2; y) — 20H(1; 2) G(0, —z; y)
—-2H(1; 2)G(0; y) + 4H(1; 2)G(0,0; y) — 10H(1, 0; 2) + 8H(1,0; 2)G(1 — z;y)
+8H(1,0; 2)G(0;y) + 20H(1,0, 1; 2) — 8H(1,1,0;2) + 20G(1 — z,—2,1 — 2;y)
+2G(1 — 2,0;y) — 4G(1 — 2,0,0;y) + 12G(1 — 2,1,0;9) — 12G(~2,1 — z; )
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B. Two-Loop Contribution to 7(¢)

+2G(0,1 — 2z;y) — 4G(0,1 — 2,0, ) + 20G(0, —2,1 — z;y) — 5G(0; »)
_4G(0,0,1 — zy) — 4G(0,0;3) — 16G(1,1,0; y)]
2 2

‘o g i) - G - )
—2H(0; 2)G(1 — 2,1 — z;9) + 3H(0; 2)G(1 — 2;y) — 44H(0; 2)G(1 — 2,0; y)
—2H(0; 2)G(—2,1 — z;y) + 2H(0; 2)G(0, 1 — z;y) + 3H(0, 1; 2)
—2H(0,1;2)G(1 — z;y) — 2H(0, 1; 2)G(—=2; y) — 44H(0, 1,0; 2) + 2H(0, 1,1; 2)
+27H(1; z) — 4H(1; 2)G(1 — 2, —z;y) + 6H(1; 2)G(1 — z;9)
+2H(1; 2)G(1 — 2,0;y) — 4H(1;2)G(—2,1 — 2z;y) — 4H(1; 2)G(—2, —2; y)
+6H(1; 2)G(—2;y) + 2H(1; 2)G(—2,0; y) + 2H(1; 2)G(0,1 — 2; )
+2H(1; 2)G(0, —z; y) — 3H(1; 2)G(0; y) — 3H(1,0; 2) — 44H(1,0; 2)G(1 — 2; y)
+2H(1,0; 2)G(—=z;y) + 44H(1,0; 2)G(0; v) + 2H(1,0,1; z) — 6H(1,1; 2)
+4H(1,1; 2)G(—2; y) — 2H(1, 1; 2)G(0; y) + 44H(1,1,0; 2) — 6G(1 — 2,1 — z;y)
—2G(1 — 2,1—2,0;9) +4G(1 — 2z, —2,1 — z;9) — 27G(1 — 2;y)
—2G(1 —2,0,1 — z;9) + 3G(1 — 2,0;y) + 46G(1 — 2,1,0; y)
+4G(—2,1— 2,1 — z;9) — 6G(-2,1 — 2z;y) — 2G(—2,1 — 2,0;y)
+4G(—2,—2,1 = z;y) — 2G(—2,0,1 — z;y) — 2G(0,1 — 2,1 — z; y)
+3G(0,1 - 2z;y) — 2G(0, —z,1 — z; y) + 46G(0, 1, 0; y)]
+ 1 [_ 227

2(y + 2) 3
—4H(0; 2)G(1 — 2;y) + 12H(0; 2)G(1 — 2,0; y) — 44H(0; 2)G(0; y) — 4H(0, 1; 2)
+12H(0, 1,0; 2) + 4H(1; 2) — 4H(1;2)G(1 — z;y) — 8H(1; 2)G(—2;y)
+4H(1; 2)G(0; y) — 42H(1, 0; z) + 12H(1,0; 2)G(1 — 2;y) — 12H(1,0; 2)G(0; y)
+4H(1,1;2) — 12H(1,1,0; 2) + 4G(1 — 2,1 — 2;y) — 4G(1 — 2z;9) — 4G(1 — 2,0;y)
—12G(1 — 2,1,0;y) + 8G(—=2,1 — z;y) — 4G(0,1 — z;9) — 5G(0; y)
—~12G(0, 1,059) + 46G(1, 0; ) |

2
+% [ +29 + 6H(1; 2) + 8H(1;2)G(1 — z;y) — 16G(1 — 2,1 — 2;y) + 12G(1 - 2;y)
+8G(1 — 2,1;y¥) + 8G(0,1 — 2z;y) — 8G(0, 1; ) — 18G(1;y) + 8G(1, 1; y)]

+§ [ - %:1 + ? —60¢3 — 16¢3H(1; 2) — 16{3G(1 — 2z;y) + 32¢3G(1;y)
+18H(0; 2)G(1 — 2,1 — 2;y) + 15H(0; 2)G(1 — 2; y)

—8H(0; 2)G(1 — 2,0,1 — z;y) — 16H(0; 2)G(—2,1 — 2,1 — z;9)

+42H(0; 2)G(—2,1 — z;y) — 16H(0; 2)G(—2,—2,1 — 2; )

+16H(0; 2)G(—2,0,1 — 2;y) — 42H(0; 2)G(0,1 — z;y)

+16H(0; 2)G(0, —2,1 — z;y) — 16H(0; 2)G(0,0,1 — 2;y)

+16H(0,0; 2)G(1 — 2,1 — z;y) — 16H(0, 0, 1;2)G(1 — 2; y)

+8H(0, 0, 1; 2)G(1;y) + 16H(0,0,1, 1; 2) + 15H(0, 1; 2)

+32H(0,1;2)G(1 — 2,1 — 2;y) + 6H(0,1; 2)G(1 — 2;9)

2
— 2m2H(1; 2) + 272G(1 — z;y) — 17 — 5H(0; 2)
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B. Two-Loop Contribution to 77(%)

+8H(0,1; 2)G(1 — 2,0;y) — 16H(0, 1; 2)G(—2,1 — z; y)

—16H(0, 1; 2)G(—2, —z;y) + 42H(0, 1; 2)G(—=2; y) + 8H(0, 1; 2)G(0, 1 — 2;y)
—8H(0,1; 2)G(1,1 — 2;y) — 8H(0, 1; 2)G(1, 0; y) — 8H(0, 1, 0; 2)G(1 — 2;¥)
+16H(0,1,0,1; z) — 18H(0, 1, 1; 2) + 16H(0, 1, 1; 2)G(—z; y)

—16H(0, 1, 1; 2)G(0; ) + 16H(0, 1, 1, 0; z) — 52H(L; 2)

+32H(1;2)G(1l — 2,1 — z,—z;y) + 24H(1; 2)G(1 — 2, —2;y)
—18H(1;2)G(1 — 2;y) — 18H(1; 2)G(1 — 2,0;y) — 16H(1; 2)G(1 — 2,0, 0;y)
—8H(1;2)G(1 — 2,1,0;y) — 32H(1; 2)G(—2,1 — 2, —z;y)

+36H(1; 2)G(—2,1 — z;y) + 16H(1; 2)G(—2,1 — 2,0, 9)

—32H(1;2)G(—%, —2,1 — z;y) — 32H(1; 2)G(—2, —2, —2; y)

+84H(1; 2)G(—z, —2;y) + 16H(1; 2)G(—2, —2,0; y) + 30H(1; 2) G(—=z; y)
+16H(1;2)G(—2,0,1 — z;y) + 16H(1; 2)G(—2,0, —2; y) — 42H(1; 2)G(~2,0; y)
+8H(1;2)G(0,1 — 2z, —z;y) — 18H(1; 2)G(0,1 — 2;y)

—16H(1;2)G(0,1 — 2,0;y) + 16H(1; 2)G(0, —=2,1 — z;y)

+16H(1; 2)G(0, -z, —z; y) — 42H(1; 2)G(0, —z; y) — 15H(1; 2)G(0; y)
—16H(1;2)G(0,0,1 — 2;y) — 16H(1; 2)G(0,0, —z; y) + 8H(1;2)G(0,1,0;y)
—8H(1;2)G(1,1 — 2, —z;y) = 8H(1;2)G(1,0, —z; y) 4+ 16H(1; 2)G(1,0,0;y)
+13H(1,0; 2) + 24H(1, 0; 2)G(1 — 2;y) + 16H(1,0; 2)G(~z, —z;y)
—42H(1,0; 2)G(-z2;y) + 16H(1,0; 2)G(0,1 — z; y) — 16H(1,0; 2)G(0, —z; y)
+8H(1,0,0,1;2) — 6H(1,0,1; 2) — 24H(1,0,1;2)G(1 — 2;¥)

+16H(1,0,1; 2)G(-2z;y) — 8H(1,0,1; 2)G(0; y) + 8H(1,0, 1; 2) G(1;¥)
+18H(1,1; 2) + 32H(1, 1; 2)G(—2, —2;y) — 36H(1, 1; 2)G(—2; y)

—16H(1,1; 2)G(—2,0;y) — 16H(1, 1; 2)G(0, —z; y) + 18H(1, 1; 2)G(0; y)
+16H(1, 1; 2)G(0,0; y) + 12H(1,1,0; ) — 8H(1,1,0; 2)G(1 — z;y)
+16H(1,1,0,1;2) + 16H(1,1,1,0; 2) — 32G(1 — 2,1 — 2,—2,1 — z;y)
+18G(1 — 2,1 — z;y) + 18G(1 — 2,1 — 2,0; ) + 16G(1 — 2,1 — 2,0,0; y)
—24G(1 — 2,—2,1 — z;y) + 52G(1 — 2;y) + 18G(1 — 2,0,1 — z;y)

+16G(1 — 2,0,1 — 2,0;y) + 15G(1 — 2,0;y) + 16G(1 — 2,0,0,1 — z; )
-8G(1-2,0,1,0;y) + 8G(1 — 2,1,1 — 2,0;y) + 8G(1 — 2,1,0,1 — z;9)
—42G(1 — 2,1,0;y) — 16G(1 — 2,1,0,0;y) — 16G(1 — 2,1,1,0;y)

—-36G(—2,1—2,1—2;y) — 16G(—2,1 — 2,1 —2,0;y)

+32G(—=2,1 —z,1—z;y) — 30G(— 2,1 —z;9) — 16G(—2,1—2,0,1 — z;9)
+42G(—z,1 — z, 0 y) + 16G(—=2,1 — z, 1, 0;y) + 32G(—2,~-2,1 - 2,1 — z;9)
—84G(—2,—2,1— z;y) — 16G( —2,0;y) + 32G(—2,—2,—2,1 — z;y)
—16G(—=z2, —z, 0 1-z; y)—16G( 2, O 1-2,1-2zy)+42G(—2,0,1— z;y)
—-16G(-2,0 —z;y) + 16G(—-2,0,1,0;y) + 18G(0,1 — 2,1 — 2; )
+16G(0, 1- 2z, 1 z,0; y) 8G(0,1 — z,—2,1 — z;y) + 15G(0,1 — z;9)
+16G(0,1 — 2,0,1 — )—8G(0 1-2,1,0;y) — 16G(0,—2,1 — 2,1 — z;y)
+42G(0, —z,1—z; y) - 16G(0, -2z,1—2;y)+ 16G(0,0,1 — 2,1 — 2; )
+16G(0, 1Y) —8G(0,1,1 —2,0;y) —8G(0,1,0,1 — 2z;9)
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B. Two-Loop Contribution to 7(®

—42G(0,1,0;y) + 16G(0,1,1,0;y) + 8G(1,1 — 2z, —2,1 — 2z; y)

-16G(1,1 — 2,0,0;y) + 8G(1,1 — 2,1,0;y) — 16G(1,0,1 — 2,0; y)

+8G(1,0, -2,1 — 2z;y) — 28G(1,0;y) — 16G(1,0,0,1 — z;y) + 8G(1,0,1,0;y)
+36G(1,1,0;9) + 16G(1,1,0,0;y) — 16G(L, 1, 1,0;y)]

+%2 [9 — TH(0; 2) + 6H(0; 2)G(1 — 2;y) — 2H(0; 2)G(1; ) + 4H(0, 1; ) — 24H(1; 2)
+12H(1; 2)G(1 — 2;9) + 8H(1; 2)G(~2; ) — 4H(1; 2)G(0; ) — 6H(1; 2)G(1; y)
—2H(1,0;2) — 6H(1,1;2) —20G(1 — 2,1 — z;9) + 34G(1 — z;y) + 6G(1 — 2,0; y)
+8G(1 — z,1;y) — 8G(—2,1 - z;y) + 8G(0,1 — 2;9) — 7G(0; y) — 4G(0,1; y)
+6G(1,1 - zy) — 10G(L;y) — 4G(1,0;y)]

-l& [40(3 + 40¢3H(1; z) — 80¢3G(1 — z; %) + 40¢(3G(1; y) — 2 — 29H(0; z)
+20H(0; 2)G(1 — z,1 — 2z;y) — 32H(0; 2)G(1 — 2,1 — 2,0;y)

—4H(0; 2)G(1 — z;y) + 32H(0; 2)G(1 — 2,0;y) + 16H(0; 2)G(1 — 2,0,0;y)
+16H(0; 2)G(1 — 2,1,0;y) — 24H(0; 2)G(—2,1 — 2,1 — 2; y)

+52H(0; 2)G(—=2,1 — z;y) — 32H(0; 2)G(—2,1 — 2,0; y)

—24H(0; 2)G(—2, —2,1 — z;y) + 24H(0; 2)G(—2,0,1 — z;y)

+8H(0; 2)G(0,1 — 2,1 — z;y) — 44H(0; 2)G(0,1 — 2; )

+16H(0; 2)G(0,1 — 2,0;y) + 24H(0; 2)G(0, —z, 1 — z; y) + 40H(0; 2)G(0; y)
—24H(0; 2)G(0,0,1 — z;y) — 20H(0; 2)G(0,0; y) + 16H(0; 2)G(1,1 — 2,0; y)
—8H(0; 2)G(1,0,1 — z;y) + 4H(0; 2)G(1, 0; y) — 16H(0; 2)G(1,0,0; y)
—16H(0; 2)G(1, 1, 0; y) + 20H(0, 0; z) + 16H(0, 0; 2)G(1 — 2,1 — 2;y)
—4H(0,0; 2)G(1 — z;y) + 16H(0, 0; 2)G(1 — 2,0;y) — 20H(0, 0; 2)G(0; y)
+36H(0,0, 1; 2) — 16H(0,0,1; 2)G(1 — z;3) + 16H(0,0, 1; 2)G(1;y)
—16H(0,0,1,0; z) + 16H(0,0,1, 1; z) + 48H(0, 1; 2)G(1 — 2,1 — 2; y)
—52H(0, 1; 2)G(1 — z;y) — 24H(0,1;2)G(—%,1 — 2;y)

—24H(0,1; 2)G(—z, —z; y) + 84H(0, 1; 2)G(—=2; y) + 8H(0, 1;2)G(0,1 — 2; )
—8H(0, 1; 2)G(0; ) — 16H(0, 1; 2)G(1,1 — z;y) — 8H(O0, 1; 2)G(1,0;y)
—28H(0, 1, 0; 2) + 32H(0, 1,0; 2)G(1 — z;y) — 32H(0, 1,0; 2)G(—2; y)
+16H(0, 1,0; 2)G(0; y) — 24H(0, 1,0; 2)G(1;y) + 16H(0,1,0,1; z)

—20H(0, 1, 1; 2) + 24H(0, 1,1; 2)G(—=z; y) — 16H(0, 1,1; 2)G(0; y)
+32H(0,1,1,0; z) — 58H(1; 2) + 48H(1;2)G(1 — 2,1 — 2, —z;9)
—32H(1;2)G(1 — 2z, —2z;9) — 4H(1;2)G(1 — 2;y) — 20H(1; 2)G(1 — 2,0; y)
—16H(1; 2)G(1 — 2,0,0;y) — 8H(1;2)G(1 — 2,1,0; y)

—48H(1;2)G(—2,1 — 2, —z;y) + 40H(1; 2)G(-2,1 — z;y)

+24H(1; 2)G(—2,1 — z,0;y) — 48H(1; 2)G(—2,—2,1 — z;y)

—48H(1; 2)G(—2, —z, —z;y) + 136H(1; 2)G(—2, —2z; ) + 24H(1; 2)G(—2, —2,0; y)
—4H(1; 2)G(—z;y) + 24H(1;2)G(—2,0,1 — z; y) + 24H(1; 2)G(—2,0, —2; )
—52H(1; 2)G(—2,0;y) + 16H(1; 2)G(0,1 — z, —z;y) — 20H(1;2)G(0,1 — 2; y)
—16H(1;2)G(0,1 — 2,0;y) + 24H(1;2)G(0, —2,1 — 2;y)
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B. Two-Loop Contribution to 7

+24H(1; 2)G(0, —z, —z;y) — 52H(1; 2)G(0, —z; y) + 4H(1; 2)G(0; y)
—16H(1;2)G(0,0,1 — z;y) — 24H(1;2)G(0,0, —z; y) + 4H(1; 2)G(0,0; )
+8H(1;2)G(0,1,0;y) — 16H(1; 2)G(1,1 — 2z, —z;y) — 16H(1; 2)G(1,0, —=z;y)
+24H(1; 2)G(1, 0; y) + 16H(1;2)G(1,0,0;y) + 60H(1, 0; 2)

—40H(1,0; 2)G(1 — 2,1 — 2z;9) + 80H(1,0; 2)G(1 — z; )

+16H(1,0; 2)G(1 — 2,0;y) — 32H(1,0; 2)G(—2,1 — z;y)

+24H(1, 0; 2)G(— z, zy) — 52H(1,0; 2)G(—z; y) + 32H(1, 0; 2)G(—2,0; y)
+32H(1,0; 2)G(0,1 — z;y) — 24H(1,0; 2)G(0, —z; y) — 36H(1,0; 2)G(0; y)
—16H(1, 0; 2)G(0, 0; y) +24H(1,0; 2)G(1, 1 — 2;y) — 16H(1, 0; 2)G(1, 0; )
~20H(1,0,0; 2) + 16H(1,0,0; 2)G(1 — 2; y) + 16H(1 0,0,1; z) -+ 28H(1, 0, 1; )
—40H(1,0,1;2)G(1 — 2;y) + 24H(1,0, 1; 2)G(—2;y) — 8H(1,0,1; 2)G(0; y)
+16H(1,0, 1;2)G(1; ) — 24H(1,0,1,0,z)+4H(1,1;z)

+48H(1, 1; 2)G(—2, —z; y) — 40H(1, 1; 2)G(—2; y) — 24H(1, 1; 2)G(-=, 0;y)
—24H(1, 1; 2)G(0, —z‘y) + 20H(1,1;2)G(0; y) + 16H(1, 1; 2)G(0, 0; y)
—64H(1,1,0;2) + 16H(1,1,0; 2)G(1 — 2;y) + 32H(1, 1,0; 2)G(—=z; y)
—16H(1,1,0; 2)G(0; y) — 24H(1,1,0; 2)G(1;y) + 24H(1,1,0,1; 2)
—-8H(1,1,1,0;2) — 48G(1l — 2,1 — 2, —2,1 — z;9) +4G(1 — 2,1 — 2; )
+20G(1 — 2,1 — 2,0;y) + 16G(1l — 2,1 — 2,0,0; y) + 40G(1 — 2,1 — 2,1,0;y)
+32G(1 — z,—2,1 — 2z;y) + 58G(1 — z;y) + 20G(1 — 2,0,1 — z;y)

+16G(1 — 2,0,1 — 2,0;y) — 4G(1 — 2,0;y) + 16G(1 — 2,0,0,1 — z;y)

—-4G(1 - 2,0,0;y) — 48G(1 — 2,0,1,0;9) + 8G(1 — z,1,1 — 2,0; y)

+8G(1 — 2,1,0,1 — z;y) — 100G(1 — z,1,0;y) — 32G(1 — 2,1,0,0; )
—-32G(1 — 2,1,1,0;y) — 40G(—2,1 — 2,1 — z;y) — 24G(—2,1 — 2,1 — 2,0;9)
+48G(—2,1 — z,—2,1 — z;y) + 4G(—2,1 — z;y) — 24G(—2,1 — 2,0,1 — 2; )
+52G(—2,1— 2,0;y) + 56G(—2,1 — 2,1,0;y) + 48G(—2,—2,1 — 2,1 — z;9)
—136G(—z2,—2,1 — 2z;y) — 24G(—2,—2,1 — 2,0; y) + 48G(—2, —2,—2,1 — z;¥y)
—-24G(—-2,—2,0,1 — z;y) — 24G(—2,0,1 — 2,1 — z;y) + 52G(—2,0,1 — 2;y)
—24G(-2,0,—2,1 — 2z;y) + 56G(—=2,0,1,0;y) + 20G(0,1 — 2,1 — 2;y)
+16G(0 1 —2,1-2,0;y) —16G(0,1 — 2,—2,1 - z;y) —4G(0,1 — z; y)
+16G(0,1 — 2,0,1 — 2;y) — 4G(0,1 — 2,0;y) — 24G(0,1 — 2,1,0;y)
—24G(0,—2,1— 2,1 — z;9) + 52G(0, —2,1 — z;y) — 24G(0, — 2, —2,1 — 2; )
—29G(0;y) + 16G(0,0,1 — 2,1 — z;y) — 4G(0,0,1 — z;y)

+24G(0,0, —2,1 — z;y) + 20G(0,0; ) — 16G(0,0,1,0;y) — 8G(0,1,1 — 2,0;y)
~8G(0,1,0,1 — z;y) — 20G(0,1,0; ) + 16G(0, 1,1, 0; )

+16G(1,1 — z,—2,1 — z;y) — 24G(1,1 - 2,0;y) — 16G(1,1 — 2,0,0; y)
—8G(1,1 — 2,1,0;y) — 24G(1,0,1 — z;y) — 16G(1,0,1 — 2,0;y)
+16G(1,0,—2,1 — z;y) — 56G(1,0;y) — 16G(1,0,0,1 — z;y) + 24G(1,0,0;y)
+24G(1,0,1,03) + 40G(1, 1,0;9) + 32G(1,1,0,0; ),

G(-z,
G
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B. Two-Loop Contribution to 7(®

Dao(y, 2) =
% [ — 2H(0; z) — 3H(1,0; z) — 3G(1, O;y)]
1

+y(erZ)

1
T [ — 74 + 15H(0; 2) + 36H(L, 0; 2) + 15G(0; /) + 36G(1, 0; y)]

[~ 28(1,0;2) — 26(1, 039)]

Z 2 _ : : o) o) )
+18(1_y)2[27r 3H(0; 2)G(0;y) + 50G(0; y) — 18G(0,0; y) 12G(1,0,y)]

+_18(1z_ = [671'2 + 38 — 3H(0; 2) — 9H(0; 2)G(0; y) + 87G(0; y) — 54G(0, 0; y)

—36G(L, o;y)]
z
(y+2)°
+12H(0,1,0; ) 4+ 12H(1, 0; z) + 12H(1,0; 2)G(1 — 2z;y) — 12H(1,0; 2) G(0; y)

_12H(1,1,0; 2) — 12G(1 — 2,1,0;y) — 12G(0, 1,0;¢) + 12G(1,0;y)]

+ [— 2m?H(1; z) + 2m2G(1 — z;y) + 12H(0; 2)G(1 — 2,0;9)

z 4m? 4n?
o lir Ty A -G
+12H(0; 2)G(0; y) — 8H(0, 1, 0; 2) + 4H(1,0; z) — 8H(1,0; 2)G(1 — z; )

+8H(1,0; 2)G(0;y) + 8H(1,1,0; z) + 8G(1 — 2,1,0;y) + 6G(0; y) + 8G(0, 1,0; y)

+

[27r2 + (1 — z;9y) — 6H(0; 2) — 8H(0;2)G(1 — 2,0; y)

~20G(1,0;)]
- [- " L SH(0; 2) — 2H(0; £)G(0;y) — 2H(L, 0; 2) — 2G(0;y) + 2G(1, )]
vtz 3 ) ) ) ) Y Wy
2
+(y—i5& [27r2H(1; z) — 2m*G(1 — 2;y) — 12H(0; 2)G(1 — 2,05 y) — 12H(0, 1, 0; 2)

—-12H(1,0; 2)G(1 — z;y) + 12H(1,0; 2)G(0; y) + 12H(1,1,0; 2)
F12G(1 — 2,1, 0;y) + 12G(0, 1, 0; y)]
22 472 472
——— | —27% - —H(1;2) + —G(1 - z; H(0; 2)G(1 — 2,0;
Pl 2 T T3 A R) + G - #5y) + 8H(02)G(1 - 2,05)
—12H(0; 2)G(0; y) + 8H(0, 1, 0; 2) — 12H(1, 0; 2) + 8H(1,0; 2)G(1 — 2; y)
—8H(17 0; Z)G(Oiy) - 8H(1v 1,05 z) - 8G(1 —z,1,0; y) - 8G(0’ 1, O,y)

+12G(1,0;9))

22

+—
3(y+2)°
9(1 - y) [ - 4n® + 6H(0; 2)G(0; y) — T0G(0; ) + 36G(0,0; ) + 24G(L, 05)]

1 2n? 212
S o [5H(L2) — Z-G(1 - #y) - 4H(0;2)G(1 - ,0,9)

[7r2 + 6H(0; 2)G(0;y) + 6H(1, 0; 2) — 6G(1,0; y)]

+

—4H(0,1,0; 2) — 4H(1,0; 2)G(1 — 2;y) + 4H(1,0; 2)G(0; y) + 4H(1,1,0; 2)
+4G(1 — 2,1,0;) + 4G(0, 1, 0; y)]




B. Two-Loop Contribution to 7(®

e - - —H(l z) + G(l z;y) + 2 — H(0; 2) + 2H(0; 2)G(1 — z,0; )
(0, £)G(0:3) + 2H(0,1,0:)  4H(1,032) + 2H(1,03 )G(1 - 739
—2H(1,0; 2)G(0;y) — 2H(1,1,0;2) — 2G(1 - 2,1,0; y) — G(0; ) — 2G(0,1,0; )
+4G(1, O;y)]

2
216 [+ 431 — 12H(0; 2) + 24G(1 — z;9) — 12G(0; y) — 24G(; y)]

4
1:;[4265 38¢3 + 31H(0; 2) + 12H(0; 2)G(1 — z,0; 7))

+10H(0; 2)G(0; y) — 18H(0; 2)G(0, 0; y) + 3H(0; 2)G(1, 0;y) — 41H(0, 0; 2)

—18H(0, 0; 2)G(0; ) — 3H(0, 1, 0; z) + 29H(1, 0; 2) + 12H(1, 0; 2)G(1 — z;y)

—15H(1,0; 2)G(0; y) — 18H(1,0,0; z) — 12G(1 — 2,1,0; y) + 31G(0; y)

—41G(0,0;y) + 3G(0,1,0;y) — 29G(1,0; y) + 18G(1,0,0;y) + 12G(1,1,0; y)]
2

+75 + 2H(0;2)G(0; ) + 2H(1, 03 2) — 2G(1, 0;9)

Eoo(y, z) =
% [ —2m2G(1 — z;9) + 12H(0; 2)G(1 — 2,1 — z;y) — 4TH(0; 2)G(1 — 23 %)

+3H(0; 2)G(1 — 2,0;y) — 15H(0; 2)G(—2,1 — 2;y) + 3H(0; 2)G(0,1 — z;y)
+18H(0,0; 2)G(1 — z;y) + 9H(0, 1; 2) + 3H(0, 1; 2)G(—=2; y)
+12H(1; 2)G(1 — 2, —2;9) + 12H(1; 2)G(—2,1 — 2;y) — 12H(1; 2)G(—z, —z; 9)
—38H(1;2)G(—2;y) + 3H(1;2)G(—2,0; y) + 3H(1; 2)G(0, —2; y)
—9H(1; 2)G(0; y) + 9H(1,0; z) — 12H(1,0; 2)G(1 — z;9) + 15H(1,0; 2)G(—2; y)
—12H(1,1; 2)G(—2z;9) — 12G(1 — 2,—2,1 — 2z;9) + 9G(1 — 2,0; )
—12G(-2,1 — 2,1 — 2z;y) + 38G(—2,1 — z;y) — 3G(—2,1 — z,0;y)
+12G(—2,—2,1 — 2z;y) — 3G(—2,0,1 — 2z; ) + 9G(0,1 — 2;¥)
-3G(0,—-=2,1 — z; y)]

1
WD)

+2G(1 - 2,0;y) +2G(0,1 — z;y)]

[ — 2H(0; 2)G(1 — z; y) + 2H(0, 1; 2) — 2H(1; 2)G(0; ) + 2H(1, 0; 2)

+§ [87r2G(1 — z;y) — 38 + 3H(0; 2) — 48H(0; 2)G(1 — 2,1 — ;1)

+188H(0; 2)G(1 — 2; y) — 12H(0; 2)G(1 — 2, 0;y) + 60H(0; 2)G(—2,1 — z; y)
—12H(0; 2)G(0,1 — 2z; y) — 72H(0,0; 2)G(1 — 2; ) — 36H(0, 1; 2)

—12H(0, 1; 2)G(—z;y) — 48H(1; 2)G(1 — 2z, —z;y) — 48H(1; 2)G(—2,1 — z;y)
+48H(1; 2)G(—z, —z,y) + 152H(1; 2)G(—=;y) — 12H(1; 2)G(—=2,0; y)
—12H(1;2)G(0, —2; y) + 36H(1; 2)G(0; y) — 36H(1,0; 2)

+48H(1,0; 2)G(1 — z;y) — 60H(1,0; 2)G(—2;y) + 48H(1, 1; 2)G(-2; y)
+48G(1 — z,—2,1 — z;y) — 36G(1 — 2,0;y) + 48G(—2,1 — 2,1 — z;9)
—152G(—2,1 — z;y) + 12G(—2,1 — 2,0;y) — 48G(—2,—z,1 — z;9)
+12G(~2,0,1 — 2;y) — 36G(0, 1 — 2;y) + 12G(0, —2, 1 — z;9) + 15G(0;y)]

188



B. Two-Loop Contribution to 7(®)

z

T

+_18(12_ = [ — 672 — 38 + 3H(0; 2) + 9H(0; 2)G(0; y) — 87G(0; ) + 54G(0,0;y)

+36G(1, 0; y)]
1

9(1 —y)
1

TSt 22
—12H(1; 2)G(~=z;y) + 9H(1; 2)G(0; y) + 9H(1,0; z) — 12H(1,1; 2)
—12G(1 — 2,1 — z;9) + 26G(1 — z;9) — 9G(1 — 2,0;9) + 12G(—2,1 — 2;9)

[ — 2n% 4 3H(0; 2)G(0; y) — 50G(0; ) + 18G(0, 0; ) + 12G(L, 0; y)]

+ [27r2 — 3H(0; 2)G(0; y) + 38G(0;y) — 18G(0,0; y) — 12G(1, 0; C‘/)]

[— 9H(0; 2)G(1 — 2;y) — 3H(0, 1; 2) — 26H(1; 2) + 12H(1; 2)G(1 — z;9)

-9G(0,1 - z;y)}
1
+§m [ + 38 — 9H(0; z) — 12H(1; 2) + 12G(1 — z;y) — 9G(0; y)]
T 2
+T7(r5' [ —7+H(L;2) — 5G(1 - 2) +4G(L; )|
+HTS [ 3 40685 + 63 + T2H(0; z) + T2H(0; 2)G(1 — 2,1 — 2;9)

—147H(0; 2)G(1 — 2; y) + 36H(0; 2)G(1 — 2,0;y) — 108H(0; 2)G(—2,1 — 2; )
+36H(0; 2)G(0,1 — z;y) — 18H(0; 2)G(1,0; y) + 108H(0, 0; 2)G(1 — 2;y)
—36H(0,0, 1;2) — 201H(0, 1; 2) + 72H(0, 1; 2)G(1 — z;y) — 36H(0, 1; 2)G(—2; y)
+72H(0, 1; 2)G(0; ) + 18H(0, 1, 0; 2) — 72H(0, 1, 1; 2) + 68H(1; 2)

+144H(1; 2)G(1 — 2, —z;y) — 108H(1; 2)G(1 — 2;y) — T2H(1; 2)G(1 — 2,0;9)
+144H(1; 2)G(—2,1 — z;y) — 144H(1; 2)G(—2, —z; y) — 348H(1; 2)G(—2; y)
+108H(1; 2)G(—2,0; y) — 72H(1; 2)G(0,1 — z;y) + 108H(1; 2)G(0, —2; )
+147H(1; 2)G(0; y) — 108H(1; 2)G(0, 0; y) — 81H(1, 0; 2)

—T72H(1,0; 2)G(1 — z;9) + 108H(1, 0; 2)G(—=2; y) — 18H(1,0; 2)G(0; y)
—T72H(1,0,1;2) + 108H(1, 1; 2) — 144H(1, 1; 2)G(—2;y) + 72H(1, 1; 2) G(0; y)
+108G(1 — 2,1 — z;9) + 72G(1 — 2,1 — 2,0;y) — 144G(1 — 2, —2,1 — 2;9)
—68G(1 — z;9) + 72G(1 — 2,0,1 — 2;y) — 147G(1 — 2,0; y) + 108G(1 — 2,0,0;y)
—144G(—z,1— 2,1 — z;y) + 348G(—2,1 — z;y) — 108G(—2,1 — 2,0; y)
+144G(~z,—2z,1 — z;y) — 108G(—2,0,1 — z;y) + 72G(0,1 — 2,1 — z; %)
—147G(0,1 — z;y) + 108G(0,1 — 2,0;y) — 108G(0, —z,1 — 2;y) + 72G(0; y)
+108G(0,0,1 — z;y) — 18G(0, 1,0; y) + 228G(1,0;y) — 108G(1,0,0; )
~72G(1,1,0;9)]

+$ [27r2 + 27°H(1; 2) — 472G(1 — z;9) + 272G(1; ) + 19H(0; 2)

+12H(0; 2)G(1 — 2,1 — z;y) — 29H(0; 2)G(1 — 2;y) + 6H(0; 2)G(1 — 2,0; y)
—18H(0; 2)G(—~2,1 — 2z;y) + 6H(0; 2)G(0,1 — 2; ) — 3H(0; 2)G(0; y)

—3H(0; 2)G(1,0; y) — 9H(0, 0; z) + 18H(0, 0; 2)G(1 — z;y) — 6H(0,0, 1; 2)
—~35H(0, 1; 2) + 12H(0, 1; 2)G(1 — z;y) — 6H(0, 1; 2)G(—=z;¥)

+12H(0, 1; 2)G(0; y) + 3H(0, 1, 0; 2) — 12H(0, 1, 1; ) + 38H(1; 2)
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B. Two-Loop Contribution to 7(®)

+24H(1;2)G(1 — z, —z;y) — 12H(1; 2)G(1 — z;y) — 12H(1;2)G(1 — 2,05 y)
+24H(1;2)G(~2,1 — z;y) — 24H(1;2)G(—z, —z;y) — 64H(1; 2)G(-2;y)
+18H(1;2)G(~2,0;y) — 12H(1; 2)G(0,1 — 2z;y) + 18H(1;2)G(0, —2; y)
+29H(1; 2)G(0; y) — 18H(1; 2)G(0, 0; y) — 3H(1,0; 2) — 12H(1,0; 2)G(1 — z;y)
+18H(1,0; 2)G(—2;y) — 3H(1, 0; 2)G(0; y) — 12H(1,0, 1; 2) + 12H(1, 1; 2)
—24H(1,1; 2)G(-zy) + 12H(1,1; 2)G(0; y) + 12G(1 — 2,1 — 2;9)

+12G(1 — 2,1 — 2,0;9) — 24G(1 — 2,—2,1 — z;9) — 38G(1 — z;9)

+12G(1 — 2,0,1 — z;9) — 29G(1 — 2,0;y) + 18G(1 — 2,0, 0; y)

—24G(—2,1 — 2,1 — 2z;y) + 64G(—2,1 — z;y) — 18G(—2,1 — 2,0; y)
+24G(—z, —2,1 — z;y) — 18G(—2,0,1 — z;y) + 12G(0,1 — 2,1 — z;y)
—29G(0,1 — z;y) + 18G(0,1 — 2,0;y) — 18G(0, —2,1 — z;y) + 19G(0; y)
+18G(0,0,1 — z;y) — 9G(0,0;y) — 3G(0, 1,0; y) + 32G(1,0; y) — 18G(1,0,0;y)
~12G(1,1,03)],

Fao(y,z) =
a5 [ — 172% — 20H(0;2) + 3H(0: 2)G(0;) + 15H(0,0;2) — 20G(0;)
+15G(0, 0; y)],

GZO(y) Z) =

y_z2 — 9H(0; 2)G(1 — 2;y) — 9H(1; 2)G(—2;y) + 9G(—=2,1 — 2; y)]
2

+§5 [3H(0; 2)G(1 — z;y) + 3H(1; 2)G(—z;9) — —2,1 - z; y)]
+1—/15 H(0;)G(1 — %) + BH(L; 2)G(~7y) - 6G(~2,1 — z1)|
+29—7;2 [12H(1 2)G(1 - z;y) — 12G(1 — 2,1 — z;9) — 2G(1 — z;y)

+12G(1 - 2,0;y) — 2G(1;y)]
+% [ — 72(3G(1 — z;y) — 9H(0; z) + 12H(0; 2)G(1 — 2,1 — 2; )

—18H(0; 2)G(1 — z;9) — 4H(0; 2)G(1 — 2,0; y) — 8H(0; 2)G(-2,1 — z;9)
—4H(0; 2)G(1,0;y) + 24H(0,0,1; 2)G(1 — z;y) + 24H(0,1;2)G(1 — 2,1 — 2;y)
—8H(0,1; 2)G(1 — z;¥) — 24H(0,1; 2)G(1 — 2,0, y)

—24H(0, 1;2)G(—2,1 — 2;y) — 24H(0, 1; 2)G(—2, —z; y) + 4H(0,1,1; 2)
+24H(0,1,1;2)G(—z;y) + 24H(1;2)G(1 — 2,1 — 2z, —2z; )

+4H(1; 2)G(1 — 2, —2;y) — 24H(1;2)G(1 — 2,0, —z; y) + 4H(1; 2)G(1 — 2,0; )
—24H(1;2)G(-2,1 — 2z, —2z;y) + 8H(1;2)G(—2,1 — 2;9)

+24H(1;2)G(~2,1 — 2,0;y) — 24H(1; 2)G(—2,—2,1 — 2;9)

—24H(1;2)G(~2, —2, —z; y) — 8H(1; 2)G(—2, —z; y) + 24H(1; 2)G(—2, —z,0;y)
—18H(1;2)G(~2;y) + 24H(1; 2)G(—2,0,1 — z;y) — 8H(1; 2)G(—2,0;y)
+4H(1; 2)G(0,1 — z;.y) —4H(1; 2)G(1,0;y) — 12H(1,0; 2)G(1 — 2; y)
+8H(1,0; 2)G(—=z;y) + 4H(1,0,1; 2) — 24H(1,0, 1; 2)G(1 — 2;y)
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B. Two-Loop Contribution to 7%

+24H(1,0,1; 2)G(—z;y) + 24H(1,1; 2)G(~2, —2; y) — 8H(1,1; 2)G(—2;9)
—24H(1,1; z)G( z,0;y) — 4H(1, 1; 2)G(0;y) + 4H(1,1,0; 2)

—-24G(1 - 2,1 —2z,—2,1 — z;y) —4G(1 — 2,1 — 2,0;y)

+24G(1 — 2,1 — 2,1,0;y) —4G(1 — 2, —2,1 — z;9) — 4G(1 — 2,0,1 — 2;9)
+24G(1 — 2,0, —2,1 — z;y) — 24G(1 — 2,0,1,0;y) — 8G(—2,1 — 2,1 — z; %)
—24G(— z,l—z 1—2,0;y) +24G(—2,1 — z,—2,1 — z;9) + 18G(—2,1 — z;y)
—24G(-2,1 - 2,0,1 — z;9) + 8G(—2,1 — 2,0;y) + 24G(-2,1 — 2,1,0; y)
+24G(—z, —2z,1 — 2,1 —z;y) + 8G(—2,—2,1 — z;y) — 24G(—2,—-2,1 — 2,0;y)
+24G(-2,—2z,—2,1 — z;y) — 24G(~2,—2,0,1 — 2;y) — 24G(—2,0,1 — 2,1 — 2;y)
+8G(-2,0,1— z;y) + 24G(-2,0,1,0;y) — 4G(0,1 — 2,1 — z;9)

+4G(1,1 - 2,0;y) + 4G(1,0,1 — z;y) + 4G(1, 1,0;y)]

+-2§ [3H(0; z)G(1 — z;y) + 3H(1; 2)G(—2; ) — 3G(~2,1 — z; y)]
2
+m [Q%G(l; y) + 4H(0; 2)G(—2,1 — z;9)
+4H(0; 2)G(1,0; y) + 4H(1; 2)G(—z, —z; y) + 4H(1;2)G(—2,0; y)
+4H(1; 2)G(1, 0;y) — 4H(1,0; 2)G(—2;y) — 4G(—2,1 — 2,0; y)
—4G(—z,—2,1 — z;y) — 4G(—2,0,1 — z;y) — 4G(1,1 — 2,0;y) — 4G(1,0,1 — z; )
—4G(1, 1,0~y)]
1 272
3 —2) [ G(L;y) + 4H(0; 2)G(—2,1 — 2;9)
4H(0; 2)G(1,0; y) + 4H(1; 2)G(—2, —z;y) + 4H(1; 2)G(—2,0; y)
+4H(1, 2)G(1,0;y) — 4H(1,0; 2)G(—2;y) — 4G(-2,1 — 2,0;y)
—4G(—2,—-2,1 — z;y) —4G(—2,0,1 — z;y) — 4G(1,1 — 2,0;y) — 4G(1,0,1 — 2; y)
~4G(1,1,0;)]
el
3y(y + 2)
8H(1;2)G(1 - z,0;y) + 8H(1; 2)G(0, 1 - z;y) — 8H(1,0;2)G(1 — 2;9)
+8H(1,0 1;z) — 8H(1,1; 2)G(0; y) + 8H(1,1,0;2) — 8G(1 — 2,1 — 2,0, )
—-8G(1 —2,0,1 - 2;9y) —8G(0,1 — 2,1 —z;y)]
2

[8H(0; 2)G(1 =21 - 2;y) — 8H(0,1; 2)G(1 — 2 ) + 8H(0, 1, 1; 2)

+;r_y [ —6H(1;2)G(1 — z;y) + 6G(1 — 2,1 — z;9) + G(1 — 2z;y) — 6G(1 — 2,0; )
+G(1;y)]
+% [36C3G(1 — z;y) + 18H(0; z) — 12H(0; 2)G(1 — 2,1 — z; y)

+11H(0; 2)G(1 — z;y) — 4H(0; 2)G(1 — 2,0; y) — 2H(0; 2)G(—2,1 — z;y)
+6H(0; 2)G(0,1 — z;y) + 2H(0; 2)G(1, 0; y) — 12H(0,0,1;2)G(1 — z;¥)
—12H(0,1;2)G(1 — 2,1 — z;y) + 4H(0, 1;2)G(1 — z;y)

+12H(0, 1; 2)G(1 — 2,0;y) + 12H(0, 1; 2)G(—2,1 — z; y)
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B. Two-Loop Contribution to 7(®

+12H(0, 1; 2)G(—=z, —z;y) + 6H(0, 1; 2)G(—2;y) — 8H(0,1,1; 2)

—12H(0,1,1;2)G(—2;y) + 9H(1; 2) — 12H(1;2)G(1 — 2,1 — 2, —2; y)

—8H(1;2)G(1 — z,—z;y) + 12H(1; 2)G(1 — 2,0, —z;y) — 8H(1;2)G(1 — 2,0;y)

+12H(1; 2)G(—2,1 — 2, —z;y) — 4H(1; 2)G(—2,1 - z;y)

—12H(1;2)G(-2,1 — 2,0;y) + 12H(1; 2)G(—2, —2,1 — 2z; y)

+12H(1; 2)G(—2, —z, —z;y) + 4H(1; 2) G(—=2, —z; y) — 12H(1; 2)G(~2, —2,0; y)

+11H(1; 2)G(—z; y) — 12H(1; 2)G(—=2,0,1 — z;y) — 2H(1; 2)G(—2,0;y)

—8H(1;2)G(0,1 — z;y) + 6H(1; 2)G(0, —z; y) + 2H(1; 2)G(1, 0; y)

+6H(1,0; 2)G(1 — z;y) + 2H(1,0; 2)G(—2;y) — 8H(1,0, 1; 2)

+12H(1,0,1;2)G(1 — z;y) — 12H(1, 0, 1; 2)G(—2; y) — 12H(1, 1; 2)G(—=z, —z; y)

+4H(1, 1;2)G(—2;y) + 12H(1, 1; 2)G(—2,0;y) + 8H(1,1; 2)G(0; y)

—8H(1,1,0;2) + 12G(1 — 2,1 — z,—2,1 — z;9) + 8G(1 — 2,1 — z,0;9)

-12G(1 — 2,1 — 2,1,0;4) + 8G(1l — 2, —2,1 — z;y) — 9G(1 — z;¢)

+8G(1 - 2,0,1 - z;9) — 12G(1 - 2,0, —2,1 — z;y) + 12G(1 — 2,0,1,0; y)

+4G(—2,1 - 2,1 — 2z;y) + 12G(—2,1 — 2,1 — z,0; y)

—12G(~2z,1 = 2,—2,1 — z;y) — 11G(—2,1 — z;9) + 12G(—2,1 — 2,0,1 — z;y)

+2G(-2,1-2,0;y) — 12G(—2,1 — 2,1,0;y) — 12G(—z2,—2,1 — 2,1 — z; )

—4G(-2,—-2,1 — z;9) + 12G(—2,—2,1 — 2,0; y) — 12G(—2,—2,—2,1 — 2;y)

+12G(—2,-2,0,1 — z;y) + 12G(—2,0,1 — 2,1 — z;y) + 2G(-2,0,1 — z; y)

-12G(-2,0,1,0;y) + 8G(0,1 — 2,1 — z;y) — 6G(0, —2,1 — z;y)

_2G(1,1 - 2,0;y) — 2G(1,0,1 — 2;9) — 2G(1,1, O;y)]

TS N 2r
3(1—y—2) 3

+4H(0; 2)G(0, 1 — 2; ) — 4H(0; 2)G(1,0; ) + 8H(0,0, 1; 2)

+8H(0, 1; 2)G(—=2; y) — 4H(0, 1; 2)G(0; y) + 4H(0, 1,0; 2) — 8H(1; 2)G(-2,0;y)
—4H(1; 2)G(1,0;y) + 8H(1,0; 2)G(—=z; y) — 4H(1,0; 2)G(0; y) — 4H(1,0, 1; 2)
8H(1 1,0;2) + 8G(—=2,1 — 2,0;y) + 8G(—=2,0,1 — 2; y) — 4G(0,1,0;y)

F4G(1,1— 2,0;9) + 4G(1,0,1 — 2;9) +4G(1,1,0;y)]

2
H(L;2) - 2%G(l; y) — 8H(0;2)G(—2,1 - zy)

Z’7'l'2

3(1—y)?

ﬁ [6C3 _ 2H(0; 2)G(0, 1 — z;y) + 2H(0,0, 1; 2) + 6H(0, 1; )

—2H(0,1; 2)G(1 — z;9) — 2H(0, 1,0; 2) — 2H(1; 2)G(1 — 2z, —2;y)

+6H(1; 2)G(—2;y) — 2H(1; 2)G(0, —=2; y) — 6H(1,0; 2) + 2H(1,0; 2)G(1 — 2; 9)
+2H(1,0,1;2) — 2H(1,1,0;2) + 2G(1 — 2z, —2,1 — z;9y) — 6G(—2,1 — 2z;¥)

+2G(0, —2z,1 — z; y)]

N [_3_H(0;z)—H(l;z)-i—G(l—Z;?J)]

+

+ﬁ [3H(0; z) — 2H(0; 2)G(1 — z;y) + 3H(1; 2) — 2H(1;2)G(~2;9) — 3G(1 — 23 y)

+2G(—2,1— z;y)]




B. Two-Loop Contribution to 7(®

oz L~ SHOAG = 21— zy) - 24H(0; 2)G(1 - z3y) + 24H(0, 1;2)

+8H(0,1; 2)G(1 — z;y) — 8H(0,1,1; z) — 8H(1; 2)G(1 — 2,0;y)
—8H(1;2)G(0,1 — 2;y) — 24H(1; 2)G(0; y) + 24H(1, 0; 2)

+8H(1,0; 2)G(1 — z;y) — 8H(1,0,1; 2) + 8H(1,1; 2)G(0; y) — 8H(1,1,0; 2)
+8G(1 — 2,1 - 2,0;y) + 8G(1 — 2,0,1 — z;9) + 24G(1 - 2,0;y)
+8G(0,1— 2,1~ zy) + 24G(0,1 — z; y)]

z
R [ — 24H(0; 2) + 4H(0; 2)G(1 — 2,1 — z; ) + 16H(0; 2)G(1 — 2 3)

—16H(0, 1; z) — 4H(0, 1; 2)G(1 — 2;y) + 4H(0, 1, 1; 2) + 4H(1; 2)G(1 — 2,0; )
+4H(1; 2)G(0,1 — z;y) + 16H(1; 2)G(0;y) — 16H(1, 0; 2)

—4H(1,0; 2)G(1 — z;y) + 4H(1,0, 1; 2) — 4H(1, 1; 2)G(0; y) + 4H(1, 1,05 2)
—4G(1 - 2,1 — 2,0;y) —4G(1 — 2,0,1 — z;y) — 16G(1 — 2,0; y)

—4G(0,1 ~ 2,1 - z;y) — 16G(0,1 — z;y) + 24G(0; y)]

z
+3(y+2)
—8H(0,1,1;2) — 8H(1; 2)G(1 — 2,0;y) — 8H(1;2)G(0,1 — z;y)
+8H(1,0; 2)G(1 — 2;y) — 8H(1,0,1; z) + 8H(1,1; 2)G(0;y) — 8H(1,1,0; 2)

(

+8G(1—2,1—2,0;y) +8G(1 — 2,0,1 — z;y) + 8G(0,1 — 2,1 — z;9) —8G(0;y)]

[SH(O; z) —8H(0;2)G(1 — 2,1 — z;y) + 8H(0, 1; 2)G(1 — z; )

22

+ 3
(1-y)
—6H(0,0,1; 2) + 6H(0, 1;2)G(1 — z;¥) + 6H(0, 1, 0; 2) + 6H(1; 2)G(1 — 2, —2;y)

+6H(1;2)G(0, —z; y) — 6H(1,0; 2)G(1 — z;y) — 6H(1,0,1;2) + 6H(1, 1,0; 2)

—6G(1 —z,-2,1— z;y) —6G(0,—2,1— z;y)]

22

(1-y)?
2

+1z_ ” [3H(0; 2)G(1 — z;y) + 3H(1; 2)G(=2; y) — 3G(~2,1 — z;y)]

[7r2H(O; 2) + w2H(1; 2) — 72G(1 — z;y) — 18(3 + 6H(0; 2)G(0,1 — ;%)

+ [6H(O; z2)G(1 = z;y) + 6H(1;2)G(—2;y) — 6G(—2,1 — z;y)]
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3(1—y-z)(1-y)[_T

+4H(0; 2)G(0,1 — z;y) + 8H(0,0, 1; 2) + 8H(0, 1; 2)G(—=2;y)

—4H(0, 1; 2)G(0; y) +4H(0,1,0; 2) + 4H(1; 2)G(—2, —z; ) — 4H(1;2)G(—2,0; y)

+4H(1,0; z)G( ;) — 4H(1,0; 2)G(0; y) — 4H(1,0,1; z) — 8H(1, 1, 0; 2)
(-2

+4G —2,0;y) — 4G(~2,~-2,1 - 2;y) + 4G(—2,0,1 — z;y) — 4G(0, 1, 0; y)]

+ H(1;2) — 4H(0; 2)G(—2,1 — z;9)

1 [27r2 2
- ) —_— + —
3(1—-y—2)L 3 2
+4H(0; 2)G(0; y) — 3H(0; 2)G(1, 0;y) — 6H(0,0, 1; 2) — 6H(0, 1; 2)G(~2;y)
+3H(0, 15 2)G(0;y) — 3H(0, 1, 0; 2) — 6H(1; 2)G(~2, —2z; ) — 3H(1; 2)G(1, 0;y)
+4H(1,0; 2) + 3H(1, 0; 2)G(0; y) + 3H(1,0,1; 2) + 6H(1,1,0; 2)
+6G(_zs —Z, 1- z; y) + 3G(0’ 1, O»y) + 3G(11 1- z, 0; y) + 3G(11 01 1- Z, y)

2
+ H(1;2) - 5-G(Ly) - 3H(G 2)G(0, 1 - )
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B. Two-Loop Contribution to 7%

—4G(1,0;y) + 3G(1,1 o;y)]
n2  2r? w2

2m?
|-+ SHO )+ H(1;2) - =-G(1 - 59)

—12¢s + 4H(0; 2)G(0,1 — z;y) — (O; z)G(0;y) — 4H(0,0,1; 2) + H(0, 1; 2)
+4H(0,1; 2)G(1 — z;y) + 4H(0,1,0; 2) + 4H(1; 2)G(1 — 2, —2z; ¥)

+H(1; 2)G(—z; y) + 4H(1; 2)G(0, —z;y) — H(1; 2)G(0;y) — H(1,0; 2)
—4H(1,0;2)G(1 — z;y) — 4H(1,0,1; 2) + 4H(1,1,0; 2) — 4G(1 — 2,—2,1 — 2;y)
+G(1 - 2,0;y) — G(—2,1 — z;9) + G(0,1 — 2;y) — 4G(0, —2,1 — 2; y) + 3G(0; y)

+2G(1, O'y)]
3(y 3(y +2)? [ w2H(1; 2) + 72G(1 — z;y) — 6H(0; 2)G(1 — 2,1 — ;%)
—6H(0; z) (1 — z;y) + 6H(0; 2)G(1 — 2,0;y) — 6H(0; 2)G(—2,1 — z;9)

+6H(0; 2)G(0,1 — z;y) — 6H(0, 1; 2) — 6H(0, 1;2)G(1 — 2;y)

—6H(0, 1;2)G(—=z;y) + 6H(0, 1,0; z) + 6H(0, 1, 1; 2) + 24H(1; 2)

—12H(1;2)G(1 — 2, —z;y) — 8H(1; 2)G(1 — z;9) + 6H(1;2)G(1 — 2,0;9)

—12H(1; 2)G(—2,1 — z;y) — 12H(1; 2)G(—2, —z;y) — 12H(1; 2)G(—2; y)

+6H(1;2)G(—2,0;y) + 6H(1; 2)G(0,1 — z;y) + 6H(1; 2)G(0, —2z;9)

+6H(1;2)G(0; y) + 6H(1, 0; 2) + 6H(1,0; 2)G(1 — 2;y) + 6H(1,0; 2)G(—2; y)

—6H(1,0;2)G(0;y) + 6H(1,0,1; z) + 8H(1, 1; z) + 12H(1, 1; 2)G(—-2; y)

—6H(1,1;2)G(0;y) — 6H(1,1,0;2) + 8G(1 — 2,1 — 2;y) — 6G(1 — 2,1 — 2,0;y)

+12G(1 — 2, —2,1 — z;9) — 24G(1 — 2;y) — 6G(1 — 2,0,1 — 2z;y) — 6G(1 — 2,0;y)

+12G(-2z,1—- 2,1 y) + 12G(-2,1 — z;y) — 6G(—=2,1 — 2,0; )

+12G(~2,-2,1 — z;y) — 6G(—2,0,1 — z;y) — 6G(0,1 — 2,1 — 2; )

—6G(0,1— zy) — 6G(0, —z,1 — 2; y)]

R [7r2 + 7r—2H(1- z) — ”—2(;(1 — z;y) — 12H(0; 2) — 12H(0; 2)G(1 - 2;9)
3y +2) 2 ’ 2 ’ ' ' ’

—3H(0; 2)G(1 — 2,0;y) + 6H(0; 2)G(0; y) — 18H(0, 1; z) — 3H(0, 1, 0; 2)

—32H(1; z) — 8H(1; 2)G(1 — z;¥) — 30H(1; 2)G(—2; y) + 12H(1; 2)G(0; y)

+12H(1,0; 2) — 3H(1,0; 2)G(1 — 2;9) + 3H(1, 0; 2)G(0; y) + 8H(1, 1;2)

+3H(1,1,0;2) + 8G(1 — 2,1 — 2;y) + 32G(1 — z;¥) — 12G(1 — 2,0; )

+3G(1 - 2,1,0;y) + 30G(—2,1 — 2z;9) — 12G(0,1 — 2;y) — 12G(0;y)

+3G(0,1,03)]

2 2
+z [ - 2%G(l —-2zy) + 2%G(l;y) + 4H(0;2)G(1 — 2,1 — z;y)

—IfH(O; 2)G(1 — 2,0;y) + 4H(0; 2)G(1,0; y) — 4H(0, 1,1; 2) — 9H(1; 2)
+4H(1; 2)G(1 — z, —2;y) — 4H(1;2)G(1 — 2,0;y) + 8H(1; 2)G(—2,1 — 2;9)
—4H(1;2)G(0,1 — z;y) + 4H(1; 2)G(1,0; y) — 4H(1,0; 2)G(1 — 2; )
—4H(1,0,1; 2) — 8H(1,1; 2)G(—=; y) + 4H(1, 1; 2)G(0; y) — 4H(1,1,0; 2)
+4G(1 — 2,1 — 2,0;9) —4G(1 — 2, -2,1 — z;y) + 9G(1 — z; )

+4G(1 — 2,0,1 — 2;9) — 8G(~2,1— 2,1 — z;9) + 4G(0,1 — 2,1 — z;9)
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B. Two-Loop Contribution to 7(6)

_4G(1’ 1- 2, O)y) - 4G(1) 0’ 1- z;y) - 4G(1> 1a0; y)]

+;r—; [25 — 12H(0; 2) + 6H(0; 2)G(1 — 2 y) — 6H(0; 2)G(L;y) — 23H(L; 2)
+12H(1; 2)G(1 - 2z;y) — 6H(1; 2)G(1;y) — 6H(1,0; 2) — 6H(1, 1; 2)
—12G(1 — 2,1 — z;9) + 22G(1 — z;y) + 6G(1 — 2,0; y) — 12G(0; y)
+6G(1,1 - z;y) + G(l;y)]

+§ [72(3 + 18¢3H(1; 2) — 36¢3G(1 — z;y) + 18(3G(1;y) — 5H(0; 2)
+11H(0; 2)G(1 — 2,1 — z;y) + 5H(0; 2)G(1 — 2;9)
+6H(0; 2)G(1 — 2,0,1 — 2;y) + 4H(0; 2) G(1 — 2,0;y)
—6H(0; 2)G(—2,1 - 2,1 — z;y) + 9H(0; 2)G(—2,1 — 2; )

—6H(0; 2)G(~2, —2,1 — z;y) + 6H(0; 2)G(~2,0,1 — z;9)
+6H(0; 2)G(0,1 — 2,1 — z;y) — 22H(0; 2)G(0,1 — z; y)
+6H(0; 2)G(0,—z,1 — z; y) + H(0; 2)G(0; y) — 6H(0; 2)G(0,0,1 — 2;9)
—6H(0; 2)G(1,0,1 — z;y) — 2H(0; 2)G(1,0; y) — 2H(0,0, 1; 2)
+6H(0,0, 1; 2)G(1; y) — 11H(0, 1; z) + 12H(0, 1; 2)G(1 — 2,1 — 2; y)
—9H(0,1;2)G(1 — 2;y) — 6H(0,1; 2)G(1 — 2,0;y) — 6H(0,1; 2)G(—2,1 — z;9)
—6H(0, 1; 2)G(~z, —z;¥) + TH(0, 1; 2)G(—2; y) + 13H(0, 1; 2) G(0; v)
—6H(0, 1;2)G(1,1 — z;y) — 10H(0, 1,0; 2) + 6H(0, 1,0; 2)G(1 — 2;7)
—6H(0,1,0; 2)G(1;y) — 11H(0, 1, 1; z) + 6H(0, 1, 1; 2) G(—=z; y) — 10H(1; 2)
+12H(1;2)G(1 - 2,1 — 2z, —2;y) + 2H(1; 2)G(1 - 2, —2;y)
+16H(1; 2)G(1 — z;y) — 11H(1; 2)G(1 — z,O;y) —12H(1;2)G(—2,1 — 2z, —z;y)
+22H(1;2)G(—2,1 — 2z;y) + 6H(1;2)G(—2,1 — 2,0; %)
—12H(1; 2)G(—2, —2,1 — z;y) — 12H(1; z)G( Z,—2,—2;Y)
+16H(1; 2)G(—z, —z;y) + 6H(1; 2)G(—2, —2,0; y) — 6H(1; 2)G(—2;9)
+6H(1; z)G(—z 0,1 — z;y) + 6H(1; 2)G(—2,0, —z;y) — 9H(L; 2)G(-2,0; y)
+6H(1; 2)G(0, ,—2;y) — 11H(1;2)G(0,1 — 2; y)
+6H(1; z)G(O, —2,1— z;y) + 6H(1; 2)G(0, —z, —z; ) — 9H(1; 2)G(0, —2; y)
—5H(1; 2)G(0; y) — 6H(1; 2)G(0,0, —z;y) — 6H(1;2)G(1,1 — 2, —2;y)
—6H(1;2)G(1,0,—2;y) — 2H(1; 2)G(1,0; y) + H(1,0; 2)
—6H(1,0;2)G(1 — 2,1 — z;y) + 13H(1,0; 2)G(1 — 2;9)
+6H(1,0; 2)G(—z2, —z;y) — 9H(1,0; 2)G(—2;y) — 6H(1,0; 2)G(0, —z; )
—2H(1,0; 2)G(0; y) + 6H(1,0; 2)G(1,1 — z;y) + 6H(1,0,0, 1; 2)
+11H(1,0,1; 2) — 12H(1,0,1; 2)G(1 — z;y) + 6H(1,0,1; 2)G(—2;y)
+6H(1,0,1;2)G(1;y) — 6H(1,0,1,0; z) — 16H(1, 1; 2)
+12H(1, 1; 2)G(—z, —z; y) — 22H(1,1; 2)G(—2; y) — 6H(1, 1;2)G(—2,0; y)
—6H(1,1;2)G(0, —z;y) + 11H(1, 1; 2)G(0; y) — 12H(1, 1,0; 2)
+6H(1,1,0;2)G(1 — z;¥) — 6H(1,1,0; 2)G(1; ) + 6H(1,1,0,1; 2)
—6H(1,1,1,0;2) — 12G(1 — 2,1 — 2,—2,1 — z;y) — 16G(1 — 2,1 — z;9)
+11G(1 - 2,1 — 2,0;y) + 6G(1 — 2,1 — 2,1,0; ) — 2G(1 — 2, —2,1 — z;9)
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B. Two-Loop Contribution to 7%

+10G(1 — z;9) + 11G(1 — 2,0,1 — z; ) + 5G(1 — 2,0;y) — 6G(1 — 2,0,1,0;y)
—-24G(1 - 2,1,0;y) — 22G(—2,1 — 2,1 — z;y) - 6G(—2,1 — 2,1 — 2,0; y)
+12G(~2,1 - z,—-2,1 — z;4) + 6G(~2,1 — z;y) — 6G(—2,1 — 2,0,1 — z;9)
+9G(—-2,1 - 2,0;y) + 6G(-2,1 — 2,1,0;9) + 12G(—2,—2,1 — 2,1 — 2;y)
-16G(—2z,—2,1 — z;y) — 6G(—2,—2,1 — 2,0;y) + 12G(—2,—2,—2,1 — z;y)
—6G(—z,—2,0,1 - 2;y) — 6G(—2,0,1 — 2,1 — z;9) + 9G(~2,0,1 — z;y)
—6G(—2,0,—2,1 — z;y) + 6G(—2,0,1,0;9) + 11G(0,1 — 2,1 — 2z; )

—6G(0,1 — z,—2,1 — z;¥) + 5G(0,1 — z;y) — 6G(0, —2,1 — 2,1 — 2z; )
+9G(0,—-2z,1 — z;y) — 6G(0, —2, —2,1 — z;¥) — 5G(0; y) + 6G(0,0, —=2,1 — z;y)
+G(0,1,0;9) + 6G(1,1 — 2, —2,1 — z;y) + 2G(1,1 — 2,0; %) + 2G(1,0,1 — z; y)
+6G(1,0,—2,1 — z;y) — 6G(1,0;9) — G(1, 1, 0; y)]. (B.2)
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APPENDIX C

One-Loop Contribution to {2

The finite remainder of the self-interference of the one-loop amplitude is decomposed

as
QDI(y, 2) = N an(y,2) + 1 baly, 2) + o caly: ). €1
with
aa(yvz) =
’7T2
T SH(0:) — SH(0,2)C(05) — $H(1,0:2) — 5G(09) + 5C(1,0:1)
—ﬁH(O; 2)— ﬁu +2H(0; ) + O(6),
ba(y’z) =
2
;?(H(O; 2)G(1 — z;9) + H(L; 2)G(—2z9) — G(~2,1 - z,9)) + %( — H(0; 2)
+2H(0; 2)G(1 — z;y) — H(1; 2) + 2H(1; 2)G(—2;y) + G(1 — z;9)
—2G(-z,1—-z9)) + 2y(Tz—)H(O;z) - %H(O;z) + 4(1—1,2)2}1(0;2)
+4(11——z)(1 + 2H(0; 2)) + ; - %H(O; z) + %H(O;z)G(l —z;¥) + %H(O, 1;2)
—%H(l;Z) + H(L;2)G(-2zy) — %H(l;z)G(O; y) + zG(l - zy)+ %G(l - 2,0;y)
~G(=2,1- 2539) + 36(0,1 - z33) — 2G(1,0:9) + O(e),
ca(y,2) = .
- 7H(0;2) - 3G(053) + 5+ 0(¢),
ag(y, 2) =
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C. One-Loop Contribution to 2

_g _1”_2 + zH(O z) — %H(O 2)G(0;y) — —H(l 0;2z) — g(}(o;y) + %G(I,O;y)
WH(O,z) + O(e),
ba(y, z) =
z(12y—2 z) (= H(0;2)G(1 — 2;9) — H(1;2)G(—2;9) + G(—2,1 — z;9)) + %( — H(0; 2)

+2H(0; 2)G(1 — z;y) — H(1; 2) + 2H(1; 2)G(—2;y) + G(1 — z;9)
—2G(-2,1-zy)) + %( — 2H(0; 2)G(1 — 2z;9) + H(1; 2) — 2H(1;2)G(—2; y)

—-G(1 - z;y) +2G(—2,1 — z; y)) +

1 _1
4(1- 2) 2(y + 2)

%H(O- 2)G(1 - z'y) + 1H(o, 15 2) - %H(l;z) +H(L; 2)C(=29) - %H(l; 2)G(0;p)

m(—ﬂ(l;z)w(l—z;ym

(H(Lz) - G(1 — zy)) + g - %H(O;z)

2(y + 2)
H(0; 2) +

1
+- G(l )+ G( z,O,y)—G(—z,l—z,y)+§G(0,1—z,y) - %G(lvo’y))

+0(e) ,
Cﬁ(y’ Z) =
~7H0:2) - 60y + 7+ 00
(y,2)
- + ! H(0; 2) L (1 —H(0;2)) + O(e)
4 (1-2)2 ’ 4(1 - 2) ’ ’
b‘Y(ya z) =
% + 2‘2?( —H(0;2)G(1 - z9) — H(1;2)G(~29) + G(—2,1 - z;9))
1 1 2
291 = Z)H(O; z)+ @(H(O;z) +H(1;2) - G(1 - z;y)) + W(H(l; 2)
~G(1L - 29) ~ g5 + g (~ Bi2) + Gl - 29) - 7 HO:2)
+4(11_z)(— 1+ H(0; 2)) + O(e) ,
C‘Y(ysz) =
0.

It should be noted that these finite pieces of the one-loop coefficients can equally
well be written in terms of ordinary logarithms and dilogarithms (See for exam-
ple [23, 25]). The reason to express them in terms of HPLs and 2dHPLs here is
their usage in the infrared counter-term of the two-loop coefficients, which cannot

be fully expressed in terms of logarithmic and polylogarithmic functions.
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APPENDIX D

Two-Loop Contribution to 2

The finite remainder of the interference of the two-loop amplitude with the tree-level

amplitude is decomposed as

) 1
Q(2)’ﬁmte(y, z) — N2Ag(y, Z) + BQ(y, z) + mC’Q(y, Z) + NNFDQ(ya z)

N 4
+ WFEQ(ZI,Z) + Np*Fo(y,2) + Npy (ﬁ — N) Ga(y,2), (D.1)

with

Aa(yaz) =
1
48y(1 — z)
1
Cdgy(l-y-2)
ol z 2 571.2
16(1 - y)2G(O; ¥)= 61—y  12(1—y—2)7? [— ~ ~ SH(0;2)G(0;9)

—5H(1,0; 2) +5G(1,0;y)]

[73 — 13H(0; 2) + 6H(1,0; 2) + 6G(1, 0; y)]

[7r2 — 13H(0; 2) + 6H(1, 0; 2) + 6G(L, 0; y)]

F1 1472
+ [
16(l—y—2)L 3
+11G(0; y) — 28G(1,0;y)]
22 1172
+ |
16(1—y—2)2L 6

1 1
mG(O; y)+

— 11H(0; z) + 28H(0; 2)G(0; y) + 28H(1,0; 2)

+ 11H(0; 2)G(0; ) + 11H(L, 0; z) — 11G(1, 0; y)]

2
+ — L 4+ x2(3H(0; 2) + 3H(L; 2) — G(1 — 2y)

m[ﬁ
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D. Two-Loop Contribution to 2

+G(05)) +6¢5 — “CUH(0;2) ~ 6H(0; 2)G(L - 2,0;) + 10H(0; 2)G(0; )

+45H(0,0; z) + 12H(0, 0; 2)G(0;y) + 18H(0, 1,0; 2) — H(1, 0; 2)

—6H(1,0; 2)G(1 — z;y) + 6H(1, 0; 2)G(0; y) + 12H(1,0,0; z) + 18H(1,1,0; 2)

+6G(1 - 2,1,0;3) — 6G(0, 1,o;y)]

+ﬁ [7r2( — 8+ 9H(0; z) + 9H(1; 2) — 3G(1 — 2;9) + 3G(0; y)) + 18(s

—¥ _ 65H(0; ) — 18H(0; 2)G(1 — 2, 0; ) + 39H(0; 2)G(0; y) -+ 8LH(0, 0; 2)

+36H(0, 0; 2)G(0; y) + 54H(0, 1,0; z) — 48H(1,0; 2) — 18H(1,0; 2)G(1 — z;y)

+18H(1,0; 2)G(0; y) + 36H(1,0,0; z) + 54H(1,1,0; z) + 18G(1 — 2,1, 0;y)

+15G(0; ) - 18G(0, 1, 0;9) — 9G(1,03)|

|

48(1 — y — 2)?

_12H(1,1,0; 2) — 6G(0, l,O;y)]

1

— 272H(1; 2) — 72G(0; %) + 12¢3 — 6H(1, 0; 2)G(0; )

| — Axr2 oY 92 . _ o . .
L g z)[ An?H(1; 2) — 202G(0; ) + 24¢3 — 13H(0; z) — 12H(1, 0; 2)G(0; )
—24H(1,1,0; 2) — 20G(0;y) — 12G(0, 1,0;y)]

2
+% [ - %8 — BH(0; 2) + 12H(0; 2)G(1 — 2;3) + 36H(0; 2)G(0; )

—12H(0; 2)G(1; y) + 24H(0, 1; z) + 24H(1; 2)G(1 - z;y) — 24H(1;2)G(—2;y)
—12H(1; 2)G(1; y) + 24H(1,0; z) + 12H(1,1; z) — 44G(1 — z;y) + 12G(1 — 2,0; y)
—24G(1 — z,1;y) + 24G(—2,1 — z;y) — 24G(0,1 — z;y) + 49G(0; y) — 24G(0, 1;y)
F12G(1,1 — 2;9) + 44G(1;y) — 36G(1, 0; ) + 24G(1, 1;y)]

+% (317 — 18H(0; 2) + 90H(L; 2) — 72G(1 - 23) — 18G(0;) — 18G(1; v)]
1r% 1 89959 2149
a5+ 5[_ a1t 1z H(0;2) - 66H(0; 2)G(1 - 2,0;)

—18H(0; z)G(l 2,1,0;y) + 36H(0; 2)G(—2,1 — 2,0; )

—36H(0; 2)G(0,1 — 2,0;y) — 66H(0; 2)G(0;y) + 126H(0; 2)G(0, 0; y)
—18H(0; z)G(O 1,0;y) + 18H(0; 2)G(1,1 — 2,0;y) — 3H(0; 2)G(1,0;y)
~36H(0; 2)G(1,0,0;) + 2 H(0,0; ) + T2H(0, 03 2)G(0;)

+36H(0, 0; 2)G(0,0; ) + 72H(0, 0,1,0;2) + 3H(0,1,0; 2)

—18H(0,1,0; 2)G(1 — z;y) + 36H(0, 1, 0; 2) G(—=z; y) + 18H(0, 1, 0; 2)G(0; )
—-18H(0, 1, 0; 2)G(1; y) + 36H(0,1,1,0; 2) — 7T1H(1,0; 2)

—66H(1, 0; 2)G(1 — 2;y) + 18H(1,0; 2)G(1 — 2,0; y)

+36H(1, 0; 2)G(—2,1 — z;y) — 36H(1, 0; 2)G(—2,0; y)

—36H(1, 0; 2)G(0,1 — 2z;y) + 96H(1, 0; 2) G(0; y) + 18H(1,0; 2)G(1,1 — 2;9)
—18H(1, 0; 2)G(1, 0;y) + 72H(1, 0, 0; z) + 36H(1, 0, 0; 2)G(0; )
+72H(1,0,1,0; 2) + 36H(1,1,0; 2)G(1 — z;y) — 36H(1, 1, 0; 2)G(—2;y)
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D. Two-Loop Contribution to

_18H(1,1,0; 2)G(1; y) + 36H(1, 1,0,0; 2) + 18H(1, 1, 1,0; 2)

+18G(1 — 2,0,1,0;y) + 66G(1 — 2,1,0;y) + 36G(1 — 2,1,1,0;y)

-36G(—2,1 - 2,1,0;9) — 36G(—2,0,1,0;y) + 36G(0,1 — 2,1,0;9) + 4—39-G(0; Y)
+160G(0, 0; ) — 36G(0,0,1,0; ) — 30G(0, 1,0; ) + 36G(0, 1, 1,0; )

—-18G(1,1 - 2,1,0;y) + 71G(1,0; ) — 126G(1,0,0; y) + 54G(1,0,1,0; y)
—66G(1,1,0;5) + 36G(1,1,0,0;3) — 36G(1, 1, 1,o;y)]

, 11 1
+z7r{ - mH(O;z) + m [ — 11 — 22H(0; Z)]

4472 234 ,
+2¢3 + % [ - TW - Ffr’ — 11H(0; z) — 66H(0; ) G(0; y)
—66H(1,0; z) — 110G(0; y) + 66G(1,0;y)] },
Da(y) Z) =
1 1

12501 =2 02) — gy =50 2)

z e
jCE— [ +H(0:2)G(09) + H(L, 0:2) ~ G(1,0;)]

2

T —zy —72) [ - % + H(0; 2) — 2H(0; 2)G(0; ) — 2H(1, 0; 2) — G(0; )
+2G(1,0;y)]

22 7r2
Ty oL g~ B0AC0:) ~ H(1,0:2) + G(1,05y)]
- 12(11— ”) G(0;y) + m [,r2 + 25H(0; z) — gH(o; 2)G(0;y) — 9H(0,0; z)
+6H(1, 0; z)]
* 144(11 ) |4 + 38 + B7H(0; 2) — 6H(0; 2)G(0; ) — 36H(0, 0; 2) -+ 24H(1,0; 2)
-3G(0;y)]

1
TRi-y-2) [H(O; 2)+ 2G(0;y)]

2
% [% — H(0;2) +2G(1 - z9) — G(0;y) — 2G(Y; y)]

_%C:} + ﬁ [% - 25H(0; Z) + 24H(0; Z)G(l — 2z, O; y)

+29H(0; 2)G(0; y) — 36H(0; 2)G(0, 0; y) + 6H(0; 2)G(1, 0; y) — 28H(0, 0; 2)
—36H(0, 0; 2)G(0; y) — 6H(0, 1,0; 2) + 40H(1, 0; 2) + 24H(1,0;2)G(1 — 2; )
—30H(1,0; 2)G(0;y) — 36H(1,0,0; z) — 24G(1 — 2,1,0;y) + 53G(0;y)
—82G(0,0;9) + 6G(0,1,0; ) — 40G(1, 0; ) + 36G(1,0,0; ) + 24G(1, 1, 0; y)]

+z'7r{ ﬁH(O; z) + ml——z) [1 + 2H(0; z)]
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D. Two-Loop Contribution to Q2

1872 28
5 [T — S+ 18H(0; 2) + 12H(0; 2)G(0;y) + 12H(1, 0; 2) + 31G(0; )
~12G(1,0;)] }
Ap(y,2) =
z z z 4772
T 16(1 — y)2G(0’y) ©16(1 —y) + 16(y + z)? [ 3 H(Li2)
4772

—TG(l — z;y) — 94H(0; 2)G(1 — z,0;y) — 94H(0, 1, 0; 2) — 99H(1, 0; z)
—94H(1,0; 2)G(1 — z;y) + 94H(1, 0; 2)G(0; y) + 94H(1, 1,0; 2)
194G(1 — 2,1,0;y) + 94G(0, 1,0;y) — 99G(L, 0; y)]

+ 16(yz+ S [ _ 47;2 + 11 + 44H(0; 2) — 94H(0; 2)G(0; ) — 94H(1,0; 2) — 55G(0; y)

+04G(1,0;v)|

4% [ﬁ _ ﬁH(l;z) - W_ZG(O;y) +3¢3 + 5H(0; 2)G(0; )
12(l-y—2)2L 6 2 1

+5H(1,0; z) — gH(l,O;z)G(O;y) —3H(1,1,0;z) — gg(o, 1,0;y) — 5G(1,0;y)]

ta _Zy — [ B 19;2 + 5H(0; 2) — 38H(0; 2)G(0; y) — 38H(1,0;2) — 54_3(;(0; v)

+38G(L,0; y)]

22

T8y + 2P
+66H(0, 1, 0; 2) + 33H(1,0; z) + 66H(1,0; 2)G(1 — z;y) — 66H(1,0; 2)G(0; y)

—66H(1,1,0;2) — 66G(1 — 2,1,0;y) — 66G(0, 1,0; y) + 33G(1, 0; y)]

[— 117%H(1; 2) + 117°G(1 — 2z; ) + 66H(0; 2)G(1 — 2,0; )

z2

+ 16(y + 2)?
—132G(1,0;y)]

22

[ +22n% — 33H(0; 2) + 132H(0; 2)G(0;y) + 132H(1, 03 2) + 33G(0;9)

2 _ . . . . .
6+ 2) [1“ 11H(0; z) + 66H(0; 2)G(0; y) + 66H(1,0; 2) + 11G(0; )
—66G(1,0;1)]

2 53m2
Ry =L~ g ~ PO )C(0) - 53H(1,0:2) +53G(1,059)]
2
ol 2
1601 — v — ) - ; H(0; ; H(1,0; 11G(0;
+16(1 —y—2z) [117r 11H(0; z) + 66H(0; 2)G(0; y) + 66H(1, 0; z) + 11G(0; )
—66G(1,0;y)]
T [mzﬂ(l'z) - EG@ — 2;9) — 33H(0; 2)G(1 — z,0; )
8(y+2)l 2 ’ 2 Y ; 05y

—33H(0, 1,05 2) — 33H(1,0; 2)G(1 — 2;¥) + 33H(1, 0; 2)G(0; y) + 33H(1, 1,0; 2)
+33G(1 — 2,1, 0; ) + 33G(0, 1, 0; y)]
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D. Two-Loop Contribution to 2

23 1172
+8(y 23 [ — —5— — 33H(0;2)G(0; y) — 33H(1, 05 2) + 33G(L, 0; y)]
23 1172
T 16(y 1 2)? [ — —5— — 33H(0;2)G(0;y) ~ 33H(1, 0; 2) + 33G(L, O;y)]
P - U7 (05 £)G(0;) — 11H(L, 0; 2) + 11G(1 0;)]
8(y + 2) 6 ’ ; 05 , 0;
23 1172
+16(1 YT [ 6 T 11H(0; 2)G(0; y) + 11H(L,0; 2) — llG(l,O;y)]
23 1172

+8(1 p— [ 6 11H(0; 2)G(0;y) — 11H(1,0; 2) + 11G(1,0;y)]

+ﬁ(}(0;y) + m [WZ(% — 3H(0; 2) — 3H(1;2) + G(1 — z; )
355

—G(0;y)) — 6¢3 + —5 H(0;2) + 6H(0; 2)G(1 — 2, 0;y) — 10H(0; 2)G(0; )

—45H(0, 0; 2) — 12H(0, 0; 2)G(0; y) — 18H(0, 1, 0; 2) + H(1,0; 2)
+6H(1,0; 2)G(1 — 2z;y) — 6H(1,0; 2)G(0; y) — 12H(1,0,0; 2) — 18H(1,1,0; 2)
—6G(1 - 2,1,0;9) + 6G(0, 1, O;y)]

2

+8(y1+z)[ 12+ 73 G(1 - zy) + 14H(0; 2)G(1 — 2,0; )

+14H(0, 1, 0; z) + 25H(1,0; 2) + 14H(1,0; 2)G(1 — z; y) — 14H(1, 0; 2)G(0; y)
~14H(1,1,0; 2) — 14G(1 — 2, 1,0;9) — 14G(0, 1,0;y) + 25G(1,0;y)]

+—1__[”—2H(1- )+W—2G(0' ) — 23 + H(1,0; 2)G(0; y)
Bl_y_z)2lg HT g 3 B Y
F2H(1,1,0,2) + G(0, 1, 0;)|
o1 [13”2 + 10H(0; 2)G(0; ) + 13H(1, 0; 2) + 10G(0; )

24(1—y—2)l 6 ’ Y T Y
—~7G(1,0;9)]

2
- % _ BH(0; 2) + 12H(0; 2)G(L - 2;5) + 36H(0; 2)G(0; 9)

—12H(0; 2)G(1;y) + 24H(0, 1; ) + 24H(1; 2)G(1 — 2z;y) — 24H(1;2)G(—2;y)
—12H(1;2)G(1;y) + 24H(1, 0; z) +12H(1,1;2) — 44G(1 — z;y) + 12G(1 — 2,0; y)

—24G(1 — 2z,1;y) + 24G(—2,1 — z;y) — 24G(0,1 — z;y) + 49G(0; y) — 24G(0, 1, )
+12G(1,1 — z9) + 44G(1;y) — 36G(1,0;y) + 24G(1, l;y)]

117r C3
+250 [317 — 18H(0; 2) + 90H(1; 2) — 72G(1 — z;) — 18G(0; ) — 18G(1;y)]

1 79987 1735

|- T+ e H(0;2) — 132H(0; 2)G(1 - 2,03)

—36H(0;z)G(1 -z, 1,0 y) + 72H(0; 2)G(—2,1 - 2,0;y)

—72H(0; 2)G(0,1 — 2,0; y) — 150H(0; 2)G(0; y) + 252H(0; 2)G(0, 0; y)

—36H(0; z)G(O 1,0;y) + 36H(0; 2)G(1,1 — z,0;y) — 6H(0; 2)G(1, 0; y)
(

~72H(0; 2)G(1,0, 0; y) + 23H(0, 0; 2) + 144H(0, 0; 2)G(0; )
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+72H(0, 0; 2)G(0, 0; ) + 144H(0,0, 1,0; z) + 6H(0, 1, 0; 2)
—36H(0,1,0;2)G(1 — 2;y) + 72H(0, 1, 0; 2)G(—2; y) + 36H(0, 1, 0; 2)G(0; y)
—36H(0, 1, 0;2)G(1;y) + 72H(0, 1,1, 0; 2) — 160H(1, 0; 2)

—132H(1,0; 2)G(1 — 2z;y) + 36H(1,0;2)G(1 — 2,0; y)

+72H(1,0; 2)G(—2,1 - z;y) — 72H(1,0; 2)G(—2,0; y)

—72H(1,0; 2)G(0,1 — 2;y) + 192H(1, 0; 2)G(0; y) + 36H(1,0; 2)G(1,1 — z;y)
—36H(1,0; 2)G(1,0; y) + 144H(1,0,0; 2) + 72H(1,0,0; 2)G(0; y)
+144H(1,0,1,0; 2) + 72H(1,1,0; 2)G(1 — z;y) — 72H(1,1,0; 2)G(—2; y)
—36H(1,1,0;2)G(1;y) + 72H(1,1,0,0; 2) + 36H(1, 1,1, 0; 2)

+36G(1 — 2,0,1,0;y) + 132G(1 — 2,1,0;9) + 72G(1 — 2,1,1,0; y)
-72G(-2,1—2,1,0;y) — 72G(-2,0,1,0;y) + 72G(0,1 — 2,1,0; ) + gG(O;y)
+320G(0, 0; ) — 72G(0,0,1,0; ) — 60G(0, 1, 0;y) + 72G(0, 1, 1, 0; )
~36G(1,1 - 2,1,0;y) + 160G(1, 0; ) — 252G(1,0, 0; ) + 108G(1,0, 1,0;)
~132G(1,1,0;y) + 72G(1,1,0,0;5) — 72G(1, 1, 1,0;y)]

) 11 1 4472 1751
+zw{mH(0, z) +2¢3 + 13 [ ~ 3 T 18 " 11H(0; 2) — 66H(0; 2)G(0; y)
—66H(1,0; 2) — 110G(0; ) + 66G(L, 0; y)] }
Dﬁ(y,z) =
z 472 472
TR [ - TH(l, z)+ TG(1 — z;y) + 8H(0; 2)G(1 — z,0;y) + 8H(0, 1,0; 2)

+9H(1,0; 2) + 8H(1,0; 2)G(1 — 2;y) — 8H(1,0; 2)G(0; y) — 8H(1,1,0; 2)
~8G(1 - 2,1,0;) - 8G(0, 1,0,3) + 9G(1, ;)

z 4?2
RrD [~ — 1 - 4H(0; 2) + BH(0; 2)G(0; ) + BH(L,0; 2) + 5G(0;)

—8G(1,0; y)]

2
z ™

+m [ — & ~H(0;2)G(0y) — H(1,0;2) + G(1,0; y)]

2 [7_7,2
121—y—2)L 3
+5G(0;y) — 14G(1, 05)]

2
Ty
—3H(1,0;2) — 6H(1,0; 2)G(1 — z;y) + 6H(1,0; 2)G(0; y) + 6H(1,1,0; 2)
+6G(1 - z,1,0;y) + 6G(0, 1,0;y) — 3G(1,0; y)]

22

Ty
+12G(1,0;y)]

+ — 2H(0; z) + 14H(0; 2)G(0; y) + 14H(1,0; 2)

[wQH(l; z) — m2G(1 — z;y) — 6H(0; 2)G(1 — 2,0;y) — 6H(0, 1,0; 2)

[ — 202 + 3H(0; 2) — 12H(0; 2)G(0; y) — 12H(1, 0; 2) — 3G(0; )
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22

+4(y + 2)
2

[ — w2 + H(0; 2) — 6H(0; 2)G(0;y) — 6H(L,0; 2) — G(0; ) + 6G(1,0;y)]

z
TR —y-22?

Z2

oy
3

[0+ 510 )G 053) + 5H(L,0:2) — 5G(1,0;)]

+ — 72+ H(0; 2) — 6H(0; 2)G(0; y) — 6H(1,0; 2) — G(0 y) + 6G(1,0; )

2

2
z T T
+m [ - 7H(1, z)+ 7G(1 — z;y) + 3H(0; 2)G(1 — 2,0; y) + 3H(0, 1,0; 2)

+3H(1, 0; 2)G(1 — z;y) — 3H(1, 0; 2)G(0; y) — 3H(1,1,0; 2) — 3G(1 — 2,1,0;y)
~3G(0,1,05)]
3 2

[% + 3H(0; 2)G(0; y) + 3H(1, 0; 2) — 3G(1,0; y)]

z
+—
2(y +2)3

3 2

Yoo L7 T SHO:2)G(05) +3H(1,0;2) — 3G(1,0;)|

3 2

T2 [F +H(0;2)G(0;y) + H(1,052) - G(I,O;y)]

3

2

[ _ % — H(0;2)G(0;y) — H(1,0; 2) + G(1, 05 y)]

pETC—
23 7T2

g [+ HO26(0 ) + H(L,0:2) - G(1, 033)]
1 1

-y Yt B

—6H(1,0;z)]

_ 1
2(y + 2)
—H(0,1,0;z) — 2H(1,0; z) — H(1, 0; 2)G(1 — z;3) + H(1,0; 2)G(0; )

+H(1,1,0;2) + G(1 - 2,1,0; ) + G(0, 1, 0; ) — 2G(1, 0; y)]

[ — % — 25H(0; 2) + gH(O; z)G(0;y) + 9H(0,0; 2)

7'('2 7'('2
+ |5 H:2) - TG - 5y) - HO2)G(1 - 2,0,9)

2

1 ™
m [ . H(0; 2)G(0;y) — H(1,0; 2) — G(0; y) + G(1,0; y)]

72 1395
= [Tz" — H(0; 2) + 2G(1 — z;9) — G(0;y) — 2G(1; y)]
1 2977

19
-3+ 1 [1—8 — 10H(0; 2) + 24H(0; 2)G(1 — 2, 0; )

+29H(0; 2)G(0; y) — 36H(0; 2)G(0, 0; y) + 6H(0; 2)G(1, 0; ) — 28H(0, 0; 2)
—36H(0, 0; 2)G(0; ) — 6H(0, 1,0; z) 4+ 40H(1, 0; 2) + 24H(1, 0; 2)G(1 — 2;y)
—30H(1,0; 2)G(0; y) — 36H(1,0,0; 2) — 24G(1 — 2,1,0; y) + 56G(0; y)
—82G(0,0; 1) + 6G(0, 1,0;y) — 40G(1, 0; ) + 36G(L, 0, 0; ) + 24G(1, 1, 0; y)]

1 1 (872 46
imd — —————H(0; — | —— — — +13H(0; 12H(0; 2)G(0,
rin{ - G0 + g5 [ - F 4 15H(0:2) + 12H(02)G(0,0)

+

+12H(1,0; z) 4+ 31G(0;y) — 12G(1,0;y)] }
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D. Two-Loop Contribution to 2

Ay(y,2) =
+4—8y(%‘;) [ —m? +13H(0; 2) — 6H(L, 0; 2) — 6G(L, 0; y)]
+m [ﬂ2 — 13H(0; 2) + 6H(1, 0; 2) + 6G(1,o;y)]
+ 16(yz+ 7 [_ 11;2 H(1;2) + —113—7F2G(1 — z;y) + 22H(0; 2)G(1 — 2,0; y)

+22H(0,1,0; 2) + 55H(1,0; z) + 22H(1, 0; 2)G(1 — 2z;y) — 22H(1, 0; 2)G(0; y)
_92H(1,1,0; 2) — 22G(1 — 2,1, 0; ) — 22G(0, 1,0; ) + 55G(1, 0; y)]

z 1172
+ 16(y + 2) [ g~ — 11— 22H(0; 2) + 22H(0; 2)G(0;y) + 22H(1, 0 z)
+33G(0;y) — 22G(1,o;y)]
V4 7(2 71-2
+8(1 —y—2)? [?H(l’ z) + FG(O, y) — 2¢3 + H(1,0; 2)G(0;y)

+2H(1,1,0;2) + G(0, 1,0; y)]

z 1072
+48(1 p— [ 3 T 13H(0; ) + 20H(0; 2)G(0; ) + 20H(1, 0; 2)
+20G(0;y) — 20G(1,0;y)]
22 2272 2272
— tz) — — 1—29y)— . 1— .
T8y + 2P (55 1032) = =561~ 59) — 4H(0;2)G(1 - 2,039)

—44H(0,1,0; 2) — 33H(1,0; 2) — 44H(1,0; 2)G(1 — 2;y) + 44H(1,0; 2)G(0; y)
44H(1,1,0; 2) + 4G(1 — 2, 1,0;) + 44G(0, 1, 0; ) — 33G(1, 0; y)]

Lz E U 33H(0; 2) — 8BH(0; 2)G(0; ) — 88H(L, 05 2) — 33G(0; )
16(y + 2)? 3 ! ’ Y T Y

+88G(1,0;y)]

4 2 [_ 22 + 11H(0; 2) — 44H(0; 2)G(0; y) — 44H(1, 0; 2) — 11G(0; )
16(y + 2) 3 ' ' Y Y '

+44G(1,0;y)]

+———?2—-—[5—”3 + 5H(0; 2)G(0;) + SH(L, 03 2) — 5G(1, 0;)|
120-y—2)2L 6 £ Y T Y

S [_ 22m* | 11H(0; z) — 44H(0; 2)G(0; ) — 44H(1,0; 2) — 11G(0; 1))
16(1 —y — 2) 3 ’ ’ Y T Y

+44G(1,0;y)]

+ 2 [ - 117r2H(1~ z) + 1—1L2G(1 — z;y) + 33H(0; 2)G(1 — 2,0; y)
8(y + z)* 2 ’ 2 Y ’ Bt

+33H(0, 1,0; z) + 33H(1,0; 2)G(1 — z;¥) — 33H(1,0; 2)G(0;y) — 33H(1,1,0; 2)
~33G(1 — 2,1,0;y) — 33G(0, 1,0; y)]

23

T8y + e

[117r2

- + 33H(0; 2)G(0; y) + 33H(1, 0; 2) — 33G(1, 05 y)]
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D. Two-Loop Contribution to 2

23 [117r2

TTey 2L 2
[ 1m0 G0 + 11H(L 0:2) ~ 116(1, 053)]

+ 33H(0; 2)G(0; ) + 33H(L, 0; z) — 33G(1,0; y)]

zZ

8(y + 2)
3

z
16(1 — y — 2)?
3 [117r2

[ 1172

* 6

— 11H(0; 2)G(0; y) — 11H(1, 0; ) + 11G(1,0;y)]

4 z
8(1l-y—=2)

+48(1+z)2 [Wz(é — 3H(0; 2) — 3H(1; 2) + G(1 — z;9) — G(O;y)) — 63

+EH(O z) + 6H(0; 2)G(1 — 2,0; y) — 10H(0; 2)G(0; y) — 45H(0, 0; 2)

—12H(0, 0; 2)G(0;3) — 18H(0, 1,0; 2) + H(1,0; 2) + 6H(1, 0; 2)G(1 — 2;9)
—6H(1,0; 2)G(0;y) — 12H(1,0,0; z) — 18H(1,1,0;2) — 6G(1 — 2,1,0; y)
+6G(0, 1, 0; y)]
1 7 277
5 [77(— § + 3H(0;2) + 8H(1;2) ~ G(1 ~ z33) + G(033) + 6+ =~

48(1 — 2 6 6

4
—EH(O 2) — 6H(0; 2)G(1 — 2,0, y) + 4H(0; 2)G(0; ) + 45H(0, 0; 2)

+12H(O, 0; z)G(0;y) + 18H(0, 1, 0; 2) — TH(1,0; 2) — 6H(1,0; 2)G(1 — z;9)

+6H(1,0; 2)G(0;y) + 12H(1,0,0; z) + 18H(1,1,0; 2) + 6G(1 — z,1,0; y)

~10G(0;y) — 6G(0, 1,0; ) + 6G(1,0;)|

PN S
48(1 —y — 2)

17, 277 |

+—[ — S5 + 23H(0; 2) + 6H(0; 2)G(0;y) + 6H(1, 05 2) + 10G(0; ) - 6G(1,o;y)]

11 11
+zvr{16(1 HO2) + o [1—H(0,z)]—1—6},

D’Y(y’z)

+ 11H(0; 2)G(0; ) + 11H(1, 0; 2) — 11G(1,0; y)]

+

| - 7% + 13H(0; 2) — 6H(1, 0; 2) — 6G(1,0; y)]

1 1 z
e _H(o: - H(0D %
12y(1 — 2) (0;2) + 12y(1-y— z)H(O’ 2+ 4(y + z)?
2
—%G(l — z;y) — 2H(0; 2)G(1 — 2,0;y) — 2H(0, 1,0; 2) — 5H(1, 0; 2)
—9H(1,0;2)G(1 - z5) + 2H(1, 0; 2)G(0; ) + 2H(L, 1, 0;2) + 2G(1 = 2, 1,0;)

+2G(0, 1,0;1) - 5G(1, 0;)]

[%2H(1;z)

z 2
+Z@F:;5P_?f4'1+2H“hz)’2HU¥ZKH&y)—2Hquz)—BGUky)
+2G(1,0;)]

z 2
+m [ 3 H(0; z) — 2H(0; 2)G(0; y) — 2H(1, 0; 2) — 2G(0; y)
+2G(1,0;)]
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22

Tk
+3H(1,0; 2) + 4H(1,0; 2)G(1 — 2; y) — 4H(1,0; 2)G(0; y) — 4H(1, 1,05 2)

_4G(1 — 2, ]-a 0; y) - 4G(0’ 1’ O; y) + 3G(11 Ovy)]

272 272
[ - ——3—H(1; z) + -3—G(1 — z;y) + 4H(0; 2)G(1 — 2,0; y) + 4H(0, 1, 0; 2)

+Z(—yi—2—z)2 [4?71-2 — 3H(0; z) + 8H(0; 2)G(0;y) + 8H(1,0; 2) + 3G(0; y)
~8G(1,0;)]

22 272
i+ 2) [T — H(0; 2) + 4H(0; 2)G(0; ) + 4H(1,0; 2) + G(0; )
~46(1, ;)

22 2

Tea-y-22 [ — & ~ H(0;2)G(0;y) — H(1,052) + G(1, O;y)]
+4(1_Z—Z_z) [2?’”2 — H(0; 2) + 4H(0; 2)G(0; y) + 4H(1,0; z) + G(0; y)
~4G(1,0;y)]

P Es
20y+2)L2

—3H(0,1,0; 2) — 3H(1,0; 2)G(1 — z;y) + 3H(1,0; 2)G(0;y) + 3H(1,1,0; 2)

+3G(1 — 2,1,0;9) + 3G(0, 1,0 y)]

3

2 2
H(1;2) - 5-G(1 - 5y) - 3H(0; 2)G(1 - 2,0;)

2

[~ T - 3HO: 5)G(05y) — 3H(L 0:2) + 3G(1,0;)

+—
2(y +2)3
23
+4(y + 2)? [_
3

2
2
2
z 71'2

T o) [ - & — H(0;2)G(0;9) — H(1,0;2) + G(1,0; y)]

23 7r2
iy =22 [g +H(0; 2)G(0; ) + H(1,0;2) — G(1, O;y)]
3 2

[_ 7’_6_ — H(0; 2)G(0; y) — H(1,0; 2) + G(1, O;y)]

— 3H(0; 2)G(0; ) — 3H(1,0; z) + 3G(1,0; y)]

+—z__
2(1-y—=2)

—72(11_ 7 [ — 7% — 95H(0; 2) + gH(O; 2)G(0;y) + 9H(0,0; z) — 6H(1, 0; z)]

1 2
gy [2” 38 + 65H(0; 2) — 3H(0; 2)G(0; ) — 18H(0, 0; 2) + 12H(1, 0; 2)

+3G(0; y)]

1 19 5 1
——  _H(0;2) + — — —H(0;2) — ——G(0; il —

-+

1

WH(O; z)

+ﬁ[—1+1{(0;z)] +%}. (D-2)
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APPENDIX E

One-Loop Master Integrals

In this appendix, we list the expansions for the one-loop master integrals appearing
in (MOM®D)Y and (MDD MDY, These squared amplitudes can be expressed in

terms of only two master integrals evaluated at D = 4 — 2,

Bub(su) = P12 O y

dPk 1
= / ;3 2 2 (E-1)
(2m)P K3 (k1 + pr2)
D123 D3
Box(s23, 813, 8123) = )
D D2

. / dPk, 1
(27T)D k%(kl - P2)2(k1 —p2—p3)i(kr—pr—p2 — p3)? '
(E.2)

Note that in Chapter 4 we have written the one-loop functions f; and f; in terms
of the one-loop box integral in D = 6 — 2¢. This is straightforwardly related to the

box integral in D = 4 — 2¢ dimensions by

5138
B0X6(323>313,3123) = 13723 BOX(S23,513,8123)
2(

D — 3)812

_ ﬁ (Bub(s;3) + Bub(sg3) — Bub(se3)) . (E.3)
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E. One-Loop Master Integrals

Closed expressions for these integrals for symbolic D in terms of I'-functions and
the oF} hypergeometric function have been known for a long time (see e.g. [25, 45]).

The bubble integral reads

(4m)sT(1+€)%(1 —¢) 1

Bub(s12) = 1165 =10 — 20 (_312)_€M‘

(E.4)

In the present context, an expansion of the box integral to the second order in € is

required.

(4m)< (1 +e)I%(1 —¢€)
"1672 T T(1—2)

(—5123) X

Box(s23, 513, S123) =

S 8
1 3 ey (_;3_ 222

1 Z 312.3’ 3123) +0 (63) ’ (E5)

Yz = €t
with
lara(y,z) = 2, (E.6)
lgri(y,z) = —2H(0;2) —2G(0;y), (E.7
la10(y,2) = 2H(0;2)G(0;y) + 2H(O,0; 2) + 2H(1,0; 2) + 2G(0, 0;y) — 2G(1,0;y)

2

T
il E.8
+ 3 ) ( )

lag,-1(y,2) = 2H(0;2)G(1 — 2,05 9) + 2H(1, 0; 2)G(1 — 2;9) — 2H(1,0; 2)G(0; y)
—2H(0; 2)G(0,0; y) — 2H(0, 1,0; z) — 2H(1,0,0; z) — 2H(1,1,0; 2)
—2H(0,0; 2)G(0; ) — 2H(0,0,0; 2) — 2G(1 — 2,1,0; y) — 2G(0,0,0; y)
+2G(0,1,0;y) + 2G(1,0,0;3)
4 [CH(0:2) - H(3i2) + G(1 - 5) - G(O3w), ®9)

laa,—2(y,2) = 2H(0;2)G(1 - 2,1 - 2,0;y) + 2H(0,0,0; 2)G(0; y) + 2H(0, 0,0, 0; 2)
—2H(0; 2)G(1 — 2,0,0; y) — 2H(0, 0; 2)G(1 — 2,0;y) + 2H(0, 0, 1,0; 2)
+2H(1,0;2)G(1 — 2,1 — z; y) + 2H(0; 2)G(0, 0, 0; y) + 2H(0, 1,0, 0; 2)
—2H(1,0; 2)G(0,1 — z;y) + 2H(0, 0; 2)G(0,0; y) + 2H(0,1,1,0; 2)
—2H(0;2)G(0,1 — 2,0;y) — 2H(1,1,0; 2)G(1 — z;y) + 2H(1,0,0,0; 2)
+2H(1,1,0;2)G(0;y) — 2H(0, 1,0; 2)G(1 — z;y) + 2H(0, 1,0; 2) G(0; )
—2H(1,0;2)G(1 - 2,0;y) + 2G(1 ~ 2,0,1,0; y) + 2G(1 — 2,1,0,0; y)
+2G(0,0,0,0;y) — 2G(1 — 2,1 — 2,1,0;y) — 2H(1,0,0; 2)G(1 — 2;y)
+2H(1,0; 2)G(0,0; y) + 2H(1,0,0; 2)G(0; y) + 2G(0,1 — 2,1, 0;y)
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E. One-Loop Master Integrals

+2H(1,0,1,0; z) + 2H(1,1,0,0; 2) + 2H(1,1,1,0; 2) — 2G(0,0,1,0;y)
4

_2G(0,1,0,0;1) — 2G(1,0,0,0; ) + 1
180
7('2

+?[ — H(0; 2)G(1 — 2;y) + H(0; 2)G(0; y) + H(0, 0; 2) + H(0, 1; 2)
—G(1 - 2,0;y) + H(1; 2)G(0; ) + H(1,0; 2) + H(1,1;2) + G(0,0; y)
—H(1;2)G(1 — ) + G(1 — 2,1 — z;9) — G(0,1 — z;9)] . (E.10)
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APPENDIX F

Harmonic Polylogarithms

The generalised polylogarithms S, ,(z) of Nielsen [102] turn out to be insufficient for
the computation of multi-scale integrals beyond one loop. To overcome this limita-
tion, one has to extend generalised polylogarithms to harmonic polylogarithms [47,
48, 103).

Harmonic polylogarithms are obtained by the repeated integration of rational
factors. If these rational factors contain, besides the integration variable, only
constants, the resulting functions are one-dimensional harmonic polylogarithms (or
simply harmonic polylogarithms, HPLs) [103, 104]. If the rational factors depend
on a further variable, one obtains two-dimensional harmonic polylogarithms (2dH-
PLs) [47, 48, 105]. In the following, we define both classes of functions, and sum-

marise their properties.

F.1 One-Dimensional Harmonic Polylogarithms

The HPLs, introduced in [103], are one-variable functions H(&@; z) depending, besides
the argument z, on a set of indices, grouped for convenience into the vector @, whose

components can take one of the three values (1,0,—1) and whose number is the
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F. Harmonic Polylogarithms

F.1. 1dHPLs

weight w of the HPL. More explicitly, the three HPLs with w = 1 are defined as

H(l;zc)z/oz da’ =—1In(1-2z),

1-2

H(0;z) =Inz,

T d 7
H-Lio) = [ 17 =lnl +);
0

1+ 2

their derivatives can be written as

d
EH(a,:c) = f(a; z), a=10-1,

where the 3 rational fractions f(a; z) are given by

1
1
f(O)J") = —III-’
1
f(=1;2) = 14z

=

(F.3)

For weight w larger than 1, write @ = (a, b), where a is the leftmost component of

& and b stands for the vector of the remaining (w — 1) components. The harmonic

polylogarithms of weight w are then defined as follows: if all the w components of

a take the value 0, @ is said to take the value 0, and

- 1
H(0,;2) = - In"z,

while, if @ # 0,,
H(dz) = / do’ f(a;)H(B: 2')
0

In any case the derivatives can be written in the compact form

L (;2) = f(a;2)H(F ),
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F. Harmonic Polylogarithms F.1. 1dHPLs

where, again, a is the leftmost component of @ and b stands for the remaining (w—1)
components.

It is immediate to see, from the very definition Equation (F.5), that there are 3*
HPLs of weight w, and that they are linearly independent. The HPLs are generalisa-
tions of Nielsen’s polylogarithms [102]. The function S,,(z), in Nielsen’s notation,
is equal to the HPL whose first n indices are all equal to 0 and the remaining p

indices all equal to 1:

Sﬂ,P(x) = H(6na lp; 37) y (F7)
in particular the Euler polylogarithms Li,(z) = S,-1,1(2) correspond to

Lin(z) = H(0p_1,1; 2) . (F.8)

As shown in [103], the product of two HPLs of a same argument z and weights p, ¢
can be expressed as a combination of HPLs of that argument and weight r = p + g,

according to the product identity
H(p o)H(G2) = ) H(Fa), (F.9)

where 7 and ¢ stand for the p and ¢ components of the indices of the two HPLs,
while g’ ¢ represents all mergers of § and ¢ into the vector ¥ with r components,

in which the relative orders of the elements of ' and ¢ are preserved.
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F. Harmonic Polylogarithms F.2. 2dHPLs

The explicit formulae relevant up to weight 4 are

H(a;2)H(b; z) = H(a, b;z) + H(b, a; ), (F.10)
H(a; z)H(b, c; z) = H(a, b, c; z) + H(b, a,c; ) + H(b, ¢, a; ) , - (F.11)
H(a; z)H(b, ¢, d; z) = H(a,b,c,d; ) + H(b, a,c, d; z) + H(b, ¢, q, d; z)
(F.12)
+ H(b,c,d, a; ),
H(a, b;z)H(c, d; ) = H(a, b, ¢,d; z) + H(a, ¢, b,d; z) + H(a, ¢, d, b; z) ( )
F.13

+ H(e,a,b,d; z) + H(c,a,d, b;z) + H(c,d, a, b; z)

where a, b, ¢, d are indices taking any of the values (1,0, —1). The formulae can be
easily verified, one at a time, by observing that they are true at some specific point
(such as x = 0, where all the HPLs vanish except in the otherwise trivial case in
which all the indices are equal to 0), then taking the z-derivatives of the two sides
according to Equation (F.6) and checking that they are equal (using when needed
the previously established lower-weight formulae).

Another class of identities is obtained by integrating (F.4) by parts. These IBP

identities read:

H(my,...,mg z) = H(my; 2)H(my, ..., mq x) — H(mg, my; z)H(ms, ..., mg; )

+ oo+ (=) H(myg,...,mi;z). (F.14)

These identities are not fully linearly independent from the product identities.

A numerical implementation of the HPLs up to weight w = 4 is available [104}.

F.2 Two-Dimensional Harmonic Polylogarithms

The 2dHPLs family is obtained by the repeated integration, in the variable y, of

rational factors chosen, in any order, from the set 1/y, 1/(y — 1), 1/(y + z — 1),
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F. Harmonic Polylogarithms F.2. 2dHPLs

1/(y + z), where z is another independent variable (hence the ‘two-dimensional’ in

the name). In full generality, let us define the rational factor as

gla;y) = , (F.15)

where a is the indez, which can depend on z, a = a(z); the rational factors which

we consider for the 2dHPLs are then

1
Oy)=—,
(0, ) ”
1
g(l;y)zm,
i) ] (F.16)
g 1y —y+z_1)
1
g(_Z)y)_y-{-Z.

With the above definitions the index takes one of the values 0,1, (1 — z) and (—z).
Correspondingly, the 2dHPLs at weight w = 1 (i.e. depending, besides the vari-

able y, on a single further argument, or indez) are defined to be

G(0;y) =Iny,
G(l;y) =In(1 —y),

G(1-2zy)=In (1—

y ) (F.17)

1—-2

G(-z;y)=In (1 + %) :

The 2dHPLs of weight w larger than 1 depend on a set of w indices, which can be
grouped into a w-dimensional vector of indices @. By writing the vector as @ = (a, 5),
where a is the leftmost component of @ and b stands for the vector of the remaining

(w—1) components, the 2dHPLs are then defined as follows: if all the w components
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F. Harmonic Polylogarithms F.2. 2dHPLs

of @ take the value 0, @ is written as 0,, and

. 1.,
G(Ow;y) = a In"y, (F]-S)
while, if @ # 0.,
Y -
G(d;y) = / dy' g(a;y')G(by') . (F.19)
0

In any case the derivatives can be written in the compact form

%G(ﬁ; y) = g(a;y)G(by), (F.20)

where, again, a is the leftmost component of @ and b stands for the remaining (w—1)
components.

It should be noted that the notation for the 2dHPLs employed here is the notation
of [105], which is different from the original definition proposed in [47, 48]. Detailed
conversion rules between different notations, as well as relations to similar functions
in the mathematical literature (hyperlogarithms and multiple polylogarithms) can
be found in the appendix of [105].

Algebra and reduction equations of the 2dHPLs are the same as for the ordinary
HPLs. The product of two 2dHPLs of a same argument y and weights p,q can
be expressed as a combination of 2dHPLs of that argument and weight r = p + g,

according to the product identity

G(Fi2)G(@z) = Y G(fix), (F.21)

F=pWq

where p’ and § stand for the p and ¢ components of the indices of the two 2dHPLs,
while p'W ¢ represents all possible mergers of p and ¢ into the vector 7 with »
components, in which the relative orders of the elements of p and ¢ are preserved.

The explicit product identities up to weight w = 4 are identical to those for the
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F. Harmonic Polylogarithms F.2. 2dHPLs

HPLs (F.10)—(F.13), with all H replaced by G.
The IBP identities read:

G(my,...,mg ) = G(my;2)G(my, ..., mg; ) — G(me, my; 2)G(ms, ..., mg; T)

+ ree + (—I)Q+1G(mqa et )ml; IE) . (F22)

A numerical implementation of the 2dHPLs up to weight w = 4 is available [105].
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APPENDIX G

Weyl-van der Waerden Spinor

Calculus

The basic quantity is the two-spinor 14 or ¥ and its complex conjugate 1 4 O wA.

Raising and lowering of indices is done with the antisymmetric tensor ¢,

. 0 1
eap=¢e?B =g, =P = : (G.1)
-1 0

We define a antisymmetric spinorial “inner product”:

(Y102) = Y14€8%ap = P1a¥f = —Yihaa = —(2tr), (G.2)

and

(re)* = 0. (G.3)

Any momentum vector k, gets a bispinor representation by contraction with o*:

ks k  k
kip =0t ku = kot ks hn +ikz , (G.4)
ky —iky ko — k3
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G. Weyl-van der Waerden Spinor Calculus

where ¢? is the unit matrix and o; are the Pauli matrices. Since

oiBa”AB = 2gM, (G.5)
we have
kipp"? =2k - p. (G.6)

For light-like vectors one can show that
kip = kiks, (G.7)

where

kA _ (k?l - ikz)/\/ k() - k3 ’ (GS)

Vko — ks

so that for light-like vectors we have

2k - p = (kp)(kp)* = |(kp)|”- (G.9)

The following relation is often useful:

ot 0P = 28,657 . (G.10)

For massless spin-% particles the four-spinors can be expressed in two-spinors as

follows:
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G. Weyl-van der Waerden Spinor Calculus

(
@ = o@= (i o). (G.11)

0 —io
= , BA, (G.12)
johAB 0
so that, for example:
@4(9)7"v-(p) = 40" "p5 . (G.13)

The general electroweak vertex for vector boson V' coupling to two fermions is de-
noted by éed;; T}, 112, where i and j are the colour labels associated with the fermions

f1 and f, respectively. The vertex contains left- and right-handed couplings,

1= 1+
FL/,flfz — L}/Mz’y# ( 5 ) + RJ‘{1f27# ( 5 ) , (G.14)

where for a photon,

L}1f2 = R}lfz = —ef15f1f2v (G.15)
and for a Z-boson,

I —sin® ey, —sinfwey,

le’lfz = fife R_?lfz = Ot o (G.lﬁ)

sin By cos Oy cos Ow

Here, e; represents the fractional electric charge, I{ the weak isospin and By, the
weak mixing angle. In the Weyl-van der Waerden notation, the vertex Fl‘f’f 1f2 he-
comes,

0 —iL}’l £20uBA

v, —
INCREES (G.17)

‘pV  _AB
7’Rf'1f2 Ty 0
For the polarisation vectors of outgoing gluons and photons we use the spinorial
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G. Weyl-van der Waerden Spinor Calculus

quantities

v v sskibs
et (k) = V2 R

e/_iB(k) = \/ibAkB

(bk)*

(G.18)

(G.19)

The gauge spinor b is arbitrary and can be chosen differently in each gauge-invariant

expression. A suitable choice can often simplify the calculation.
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