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Abstract

We study the properties of the BFKL evolution of a t-channel gluon exchange in the high
energy limit. In particular we formulate a solution to the BFKL evolution equation in
terms of an explicit sum over emitted gluons, which allows for a Monte Carlo integration
of the resulting rapidity ordered multi~gluon phase space. This formulation allows for an
introduction of the running of the coupling to the BFKL evolution. More importantly,
the Monte Carlo implementation of the solution to the BFKL evolution equation allows
for studies of the exclusive final states resulting from the exchange.

The full control over the gluon radiation allows for energy and momentum conserva-
tion to be observed when calculating the hadronic cross sections. This is in contrast to
the standard analytic approach to BFKL physics, which solves the BFKL equation by
effectively summing over any number of gluons emitted and integrating over the full ra-
pidity ordered allowed phase space. It is therefore impossible to reconstruct the parton
momentum fractions exactly, and thus energy and longitudinal momentum conservation
is violated. Although the effect is indeed formally subleading, we show that the numerical
impact at present and planned collider energies is very significant. The reduction in parton
flux due to the increased energy consumption by the BFKL evolution is sufficient to change
the parton level result of an exponential rise of the dijet cross section as a function of the
rapidity separation of the leading dijets to a situation much like the LO case. However, we
identify the azimuthal correlation between the dijets as an observable sensitive to BFKL
effects but more stable under the observation of energy and momentum conservation. We
also apply the BFKL MC to a study of dijets at the Tevatron.

Finally we consider W + 2-jet production, a process which in the limit of large rapidity
separation between the two jets exhibit the same factorisation into two impact factors and
a t—channel gluon exchange as dijet production. We identify observables in this setup, for

which BFKL effects could be important.
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Chapter 1

Introduction to Perturbative
Quantum Chromodynamics

Quantum Chromodynamics (QCD) is one of the three gauge theories of the Standard
Model of elementary particle physics. The Standard Model describes the interactions
between leptons, quarks (the constituents of hadrons), and the gauge bosons mediating
the interactions. So far, the Standard Model has been very successful in describing results
from high energy experiments, in which perturbative methods can be applied. The Electro-
Weak interactions are described by the direct product of the gauge-groups SU(2) x U(1)
where the well known QED interaction forms a U(1) subgroup of the direct product.
The electro-weak mixing described by the direct product generates the mass difference
between the gauge-bosons W+ and Z° of the weak interaction, and leaves the photon
massless. This is facilitated through the spontaneous symmetry breaking generated by
the Higgs mechanism. The Strong interaction, binding quarks into hadrons and ultimately
also hadrons into nuclei, is described by the gauge group SU(3) with the corresponding 8
gauge bosons called gluons.

The success of perturbation theory applied to data from high energy experiments is
explained by two facts. First of all, although the strength of the QED-like interactions
described by the electro-weak part of the theory rises with energy, it is generally weak
enough to allow for perturbative treatments at all accessible energies. The strength of
the QED coupling « rises in this way from about 1/137 at zero momentum transfers to
about 1/127 at energies of the mass of the Z° gauge boson. Contrary to this, the coupling
strength of the QCD interactions o, is generally larger but decreasing with increasing
momentum transfers. In numbers we have a;(M2) = 0.120 and a,(M2) = 0.334, where
Mz =91 GeV and M, = 1.777 GeV [1]. This will, it is hoped, allow QCD to explain both
the non-perturbative effects like confinement of quarks into hadrons, and certainly the

much celebrated asymptotic freedom of quarks at high energies, as two effects of the very




Section 1.1. The QCD Lagrangian 2

same theory but with the coupling strength evaluated at two different energies. At reaction
energies of a few GeV or more, the dynamics of the fundamental quarks can be read off
from the observed hadrons in the final state due to quantum incoherence between the two
effects of hard scattering and hadronisation. This is because the hard and soft interactions
of QCD are caused by low and high energy interactions respectively and are happening
with different typical time scales. The energy scale of change is somewhat sloppily taken to
be Aqcp, the scale at which the coupling becomes “strong”. The evolution of the coupling
is predicted theoretically from perturbative calculations. However, as we will see, care
has to be taken when interpreting quantities from perturbative calculations, since they
in general depend on unphysical parameters introduced to the calculation. This includes
the coupling constant, which so far has only been defined perturbatively, and Aqcp which
is derived from the coupling. The successes of perturbative treatments of high energy
QCD experiments is due to the fact that the ambiguities introduced by the unphysical
parameters scale with the coupling, and since the coupling of QCD decreases with energy,
the predictions become more reliable at higher energies. Furthermore, if the coupling is
small, fewer terms are needed in the perturbative expansion to get reliable results, just
from the point of view of perturbative series in general.

It has to be stressed that confinement is one of the least well understood properties
of the strong interactions, and has so far not been strictly derived from the basic field
equations of QCD. This has to do with the fact that our understanding of realistic quan-
tum field theories is based solely on perturbation theory, since the field equations are so
complicated that we cannot solve the dynamics exactly. However, the confinement ensures
that we only observe hadrons and not free quarks. Therefore, the non—perturbative parts
of QCD play a key role in any experiment involving quarks, even at very high energies.

This chapter will give an overview of QCD and elaborate on some of the details men-
tioned above. We will, however, not give a general introduction to simple spinor algebra,
gauge theories and quantum field theories. Such introductions can be found in excellent

text books like Ref. [2, 3, 4].

1.1 The QCD Lagrangian

Quantum Chromodynamics is a quantum field theory based on the gauge principle. The
theory is formulated on the basis of a Lagrangian containing the quark fields of the Stan-
dard Model. They come in six different flavours termed up (u), charm (c), top (t) and
down (d), strange (s), bottom (b). The up—type (u,c,t) quarks have electrical charge —2/3e
with e being the charge of the electron, whereas the down-type (d,s,b) quarks have electri-

cal charge 1/3e. Each flavour comes in three different charges with respect to QCD, called
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colours. Starting from the freely propagating quark fields we require the Lagrangian to
be invariant when the fields transform as ¢(z) — ¢'(z) = U(z)v(z), which amounts to a
redefinition of the charges and is called a gauge transformation. Specifically, we require the
Lagrangian to be invariant when the quark fields transform according to U(z) belonging
to the group SU(3). This will be elaborated upon in Section 1.1.1. As in QED we are
then led to introduce gauge fields to make the derivatives of the quark fields transform in
a gauge-invariant way. In QCD these gauge fields are called gluons, and eight gluons are
needed to allow for a gauge transformation of the three charges of QCD. The demand of
local SU(3) invariance, and the addition of a kinetic part for the introduced gauge fields

leads to the following classical Lagrangian

Ny
c [GLG 4 Y i (1Dl — méiy) vy (L.1)

classical = = 4 “uv
flavours

The 4,7 = 1,2, 3 indices on the quark fields refer to the three entries in the “colour vector”
1 (one ¢ for each quark flavour) of Dirac spinor fields. The G are field strength tensors
for the a’th (a = 1,...,8) gluon field A%, and D is the covariant derivative. D ensures
invariance under local gauge transformations of the quark and gluon fields and introduces
the coupling between the quarks and gluons (Df; = 065 — igT{3 A with 4, j being colour
indices, g the coupling of QCD and T3 colour matrices (see 1.1.1)). The coupling between
the gluon fields are introduced in the field strength terms (G4 = 9* A — 8" AL+ g fop AL AY
with fupe the structure constants of the chosen representation of the gauge group). We
will be concerned with the massless approximation, i.e. setting m = 0 in (1.1) (in the
Standard Model the mass terms are generated by couplings to the Higgs field and do not
enter directly as in (1.1). This is, though, irrelevant for our current purpose). The mass
of the quarks determines the energy at which the respective flavour is included in the sum
in (1.1).

Just as for QED, it is necessary to add a term to this classical Lagrangian to describe
the gauge-fixing required to remove the unphysical degrees of freedom introduced to the
gluons, both through the gauge-theory and the covariant formulation. We choose the
Fadeev-Popov gauge-fixing method which is based on removing the zero-modes of the
Gaussian operator for the gluon fields corresponding to the different gauge transforma-
tions of the physical field configurations. By choosing a specific gauge we get rid of this
redundancy and can invert the quadratic operator to find the propagator and thereby

start doing perturbation theory. The Fadeev—Popov gauge fixing will contribute to the
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final QCD Lagrangian with the following two terms:

L 0" 4%)° (1.2)

1
gauge-fixing = 7 9y (
Lohosy =" (~0%6% — go* e 48) . (13)

The first term is completely identical to the term introduced to fix the gauge in QED.
And as for QED, the physical cross sections or decay rates calculated will be independent
on the choice of gauge, even though the intermediate steps in the calculations can appear
very different. This in general provides a non-trivial check of the validity of a calculation.
In calculations we will often choose a specific value for the parameter A, and it will turn
out that for A = 1 (the Feynman gauge) the propagator for the gluon is particularly simple
(as for the photon in QED). Another popular choice is A — 0 (the Landau gauge).

As opposed to the case of QED, in QCD the integration measure in the Path Integral
changes when performing the Fadeev—Popov gauge fixing. The ghost fields are introduced
to describe the Jacobian resulting from the change of fields to integrate over in the func-
tional integral. This addition to the classical Lagrangian takes away the unphysical degrees
of freedom for the massless gluon fields introduced by making a Lorentz covariant theory
(i.e. the effects of the introduced longitudinal polarisations for the massless gluons are
removed). The Fadeev-Popov ghost fields 7%, (a = 1,...,8), are anti—commuting spin-1
fields (bosons) and therefore clearly cannot represent physical particles. The final QCD

Lagrangian is then given as the sum

EQCD = Lclassical T Cgauge—ﬁxing + Eghost (1.4)

Of course the gauge fixing had to be done even if we could solve the theory exactly
since the gauge transformation maps a field configuration to another field configuration
corresponding to the same physical situation. In the Path Integral formulation of field
theory we have to integrate only over different physical field configurations. We have
chosen to use covariant gauge fizing which maintains the Lorentz covariance of the theory.
It is also possible to do gauge fixing by other methods, e.g. Axial gauge fixing, which

however breaks Lorentz covariance! but as a pay-off has no need for ghosts.

1.1.1 Colour SU(N)

In this subsection we will look a bit more into how the colour Lie group SU(N) is im-

plemented, having the choice N = 3 for QCD in mind. As already mentioned, the ¥’s

!The Lorentz covariance is of course only broken in intermediate steps. The calculated S-matrix ele-
ments are still Lorentz covariant just as they are gauge invariant even though we break gauge invariance

in our intermediate calculations.
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in (1.1) are N-tuples where each entry is a Dirac spinor field (with 4 Dirac indices). The
QCD Lagrangian is constructed to be invariant under local gauge transformations, i.e. ro-
tations of the colour vector ¢(z) — 9'(z) = U(z)¢(x), where U(z) belongs to the class of
N x N unitary matrices (UTU = 1 = UU' with unit determinant) generated by (N2 — 1)
N x N matrices T® : U(x) = e~*97"4a(%), Formally, the T%s belong to the fundamental
representation of the Lie algebra, but in a sloppy language we say that the quarks “live”
in the fundamental representation since they are acted on by matrices belonging to this
representation. In the same manner of speaking we say that the gluon fields 4,(z) “live”
in the adjoint representation, since we can define an action on the T%’s whose elements
in group theory language belong to the adjoint representation. The action of an element
of the adjoint representation will (since the T%'s span the considered space of matrices)
amount to a rotation of the gluon field A(z) = T?A,(z). In the case of QCD the T%'s
are known as colour matrices, and since 1 = det(U) = det (e_igTaA“(‘”)) = ¢~ TH(T* Aa(2))
it follows that the T%’s are traceless. We choose to normalise our coupling g so that the

colour matrices obey

1
Tr(T°T?) = Tpé® with Tr =3 - (1.5)

With this convention the quadratic Casimir operators of the fundamental and adjoint

representation become

2
-1
STS = Crop with Cp="— (1.6)
Felf*? = Gy with Gy =N, (1.7)

where the structure constants f%¢ are defined through the relation [T“,Tb] = jfobere
and are therefore clearly basis dependent. The relations (1.6) and (1.7) are a result of the
structure of SU(N) only and are therefore independent of the number of quark flavours

included in the theory.

1.2 Feynman Rules

The Lehmann, Symanzik and Zimmermann (LSZ) reduction formula relates the physical
transition amplitudes to the amputated, one particle irreducible (1PI) Green’s functions
derived from the Lagrangian. Specifically, with the S-matrix describing the transition
amplitude related to the scattering matrix T through S = 1 + T, the LSZ reduction

formula relates T to the invariant matrix element M by

pirh-e ) = (@) (Yoph - Soph)iM(phoeh)  (18)

<p{p£ o lz‘T
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for the scattering process with p¥, pb,- -+ incoming and p{ , pg ,*++ outgoing momenta. M
is here the full 1PI (n + m)-point Green’s function. For a 2 — n scattering process the

differential cross section becomes

M (pl pm)PdQ

do =

F
= ,VA - VB|2EA2EB = 4\/(pApB)2 et m2Asz (19)
A o/
_ 45(4) _ b Pm
dQ = (2m)%0 (pA + pB ;Pm) l;[ 2m)320L,

F describes the flux of the incoming particles while dQ is the phase space measure for the
final state particles and |M|? is the absolute square of the invariant matrix element for

the scattering. For the decay rate of a particle with mass m 4 one finds

M (ma = ph) P2
d
F
F=2my : (1.10)

dpl,
= (27) 45(4)( me) H )32Ef

m

dl' =

in an obvious notation.

Having set up the Lagrangian of QCD we should therefore now discuss the solutions in
terms of physical cross sections. Unfortunately, one cannot solve the functional integrals
for M exactly, and so we need to apply perturbative methods. The Feynman rules provide
a convenient tool of book-keeping in the calculation of the terms in this perturbative
expansion of M. They are based on the division of the Lagrangian into a “free” part
consisting of the terms quadratic in the fields, and an “interacting” part consisting of
the rest. The trick here is that the free part can be solved exactly and the interacting
part is treated as a perturbative expansion in the coupling g. In this way, a contribution
to a transition amplitude can be calculated as consisting of particles propagating freely
in—-between vertices of interaction. This gives rise to Feynman diagrams where freely
propagating particles are pictured with lines and interactions as crossing of lines. Every
type of propagating particle field has its own type of line assigned to it. In this way,
propagating fermions are depicted with straight lines with an arrow (—s—), gluons using
curly lines (\QQQ,) and finally ghosts using dashes ( - -»- ). The propagator lines have an
arrow to indicate the flow of momentum if the corresponding field is anti-commuting. The
contribution to a specific transition amplitude is then given as the sum of all topologically
different diagrams with the specific initial and final state and a number of momentum
conserving vertices in-between. The exact mathematical expression to substitute for each

component of such diagrams can easily be derived from the Lagrangian. Combined with
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some simple additional rules they constitute the Feynman rules of QCD. Specifically, for

a given diagram we would

1. Replace for each component of the Feynman-diagram the corresponding expression
(see Table 1.1 p. 8). This should be done in a way as to preserve the correct order
of the Dirac matrices. This is obtained by following the fermion lines “upstream”

when converting the diagrams into formulas.
2. Multiply by (—1) for every anti-fermion line connecting the initial and the final state
3. Multiply by (—1) for every fermion or ghost loop
4. Impose momentum conservation at each vertex
d*k

5. Integrate over each undetermined momentum k: / —
: (2m)4d

=2}

. Multiply by the symmetry factor

The symmetry factor is needed to account for the correct counting of contributions from
diagrams with identical particles, and can either be applied as a factor in the phase space
or directly in the calculation of the matrix element. In Table 1.1 we have listed the
Feynman rules in momentum space. There is a similar formulation in position space,
which is simply obtained by a Fourier transformation of the rules listed. Furthermore,
we have ignored the so-called “+ie”—prescription to propagators, which is used to remind
you that the integrals have to be Wick-rotated to Euclidean space before obtaining the
final result. The u(p), u(p), v(p), v(p) enlisted are the Dirac spinors parameterising the
free-field solutions to the Dirac equation. We have listed the Feynman rules without the
spin (and colour) indices of the Dirac spinors and gluon polarisation vectors, since we will
often be interested in cross section summed over spins (and colours) of the final states

and averaged over spins (and colours) of the initial states. The Dirac spinors satisfy the

following spin sums
Suap) =p+m S B E) =p-m, (1.11)

where we have used the standard notation v,p" = p. For unpolarised cross sections one

can in the Feynman gauge make the following substitution for sum over polarisations of

the polarisation vector product for external gluons
Ak A
ZE# (p)gu(p) - —Guv- (112)
A

However, this substitution includes a sum over unphysical polarisations of the external

gluons (indeed one sees from the above that 4 polarisations have been summed over).
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Incoming Outgoing
particles particles
u _
/p/ (») / u(p)
p _ p
/ o(p) / v(p)
399%99’ ) ﬁ bt
Propagators Vertices
a,
. . i (p +m) .
e gy 97T
¢ J
P a,
. gret [(p —p2)Pg™”
a, b Z8ab —(1=X kb Hgve
HQQOQ by " (g — (1= N +(p2 — pa)g
+(ps — p1)" 97
D3, CpP D2, b, v
a, p
10,
a---p---}p k;b é P gfabcpp
k RAEN
¢ b
a, i b,v
_z'gZ[fabefcde(gp.pgua _ g;wgup)
+facefbde (g;wgpa _ g;.wgvp)
+fadefbce(gp.vguo' _ gupgua)]
Gp d,o

Table 1.1: The Feynman rules for iM of QCD in momentum space. Note that the momentum flow
of anti—fermion lines is opposite to the direction of the arrow on the fermion propagator
line. We have neglected the so—called “+ie” prescription to propagators. Notice
also that only the 3-gluon and the gluon-ghost vertices are momentum dependent.
The direction of all the momenta in the 3-gluon vertex is incoming. In other words
(p1 + p2 + ps) = 0. For the incoming and outgoing anti-fermions, the momentum is

understood to be opposite to the direction of the fermion arrow (charge flow).
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Gi.f, P4 Q. f, D3

e ,n €+, P2
Figure 1.1: The leading order contribution to ete™— hadrons at low energy: the electromagnetic

production of a gg-pair of flavour f and (anti-)colour .

These degrees of freedom are removed by adding the contribution from external ghosts.
While this is the preferred prescription for higher order calculations because of the more
direct relation between the virtual and real corrections (and cancellation of the divergences
mentioned in the next sections), for a tree-level calculation it often proves easier to instead
explicitly sum over only the physical, transverse polarisations of the gluon by use of the
following relation

2
Ao A NPy + NyPy | NPupy
E e (pes(p —>—(g - + >, 1.13
rolll v(p) w n-p (n-p)? (1.13)

where n#* is an arbitrary 4-vector.

1.3 Renormalisation

After setting up the Feynman rules, we can now start calculating perturbative quantities.
There is, however, one complication. The Feynman rules derived from the Lagrangian
will in many cases result in infinities arising in the calculation. We will first consider the
generic example of the total cross section for hadron production in ete™ annihilation for
massless QCD at an energy scale where the interference from weak physics can be ignored.
We will see how all the divergences in the intermediate steps will either cancel or can be
regularised.

The leading order contribution to the relevant matrix element for hadronic production
is given by the Feynman Diagram in Fig. 1.1. At this level, gluon interactions do not
enter, and all the vertices come from the QED (or rather electro-weak, but we are ig-
noring interference from Z%’s) part of the Standard Model Lagrangian with electrons and
three colours of the quarks. Using the Feynman rules with a photon—quark vertex factor
(iQrev*) with (Qse) being the charge of the quark of flavour f one obtains, using the
Feynman gauge and letting ¢ = (p1 + p2),

—iQse?
iM = fj (9(p2)y*u(p1)) (a(p3)vuv(pa)) (1.14)
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i, f> D4 qi.fs D3

e ,;m e+)p2
Figure 1.2: The one loop diagram contributing to ete~— hadrons at NLO. By interference with
the LO contribution, this diagram will give a correction proportional to g* to the LO

cross section.

where we have left out the spin, flavour and colour indicies on the spinors. Using the
properties in Eq. (1.11) and trace technology one finds for the unpolarised cross section

summed over the three possible colours of the produced massless quarks

4, 47l'a2 il 2
o(eTe™— hadrons) = P NZQi. (1.15)
i=1

Here we implicitly use that the gg-pair will produce hadrons at 100% probability. This
result is the basis for the study of the so—called R-ratio

o(ete”— hadrons) i
olete™ = putu~) Pt @ (1.16)

at leading order.

Let us now study what happens at the next order in QCD perturbation theory (higher
order QED corrections can be ignored, since the value of the QED coupling is much
smaller than the value of the QCD coupling). This order will have contributions from the
interference between the leading order amplitude and amplitudes with one gluon loop. For
massless QCD, the only? loop diagram that contributes is depicted in Fig. 1.2.

Using the Feynman rules (for the Feynman gauge) we find

“This is true in the MS renormalisation scheme. Also, in the massive case, external field renormalisation

generates diagrams with loops on the external quark legs.
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D, v, b

D3, 7

(P4 —p),h (p3 —p), ! =77(P2)(—ie’Yu)u(pl)(;l—;”;?(iQfe)(ig)z
d*p —itj(p3)v” (P5 — PIY*(—p, — P)rvi(pa)
(p1+p2), 1@ / (2m)% TiThy (p3 = p)*(ps + p§2p2

(1.17)

e ,m 6+,p2
Here, the minus in front of p , in the numerator is caused by the fact that the antifermion
momentum (p4) flows in the opposite direction of the fermion line. The interference with
the leading order diagram in Fig. 1.1 will not introduce any new loop integrals, and by
applying the rules in Eq. (1.9) we find that the contribution to the cross section from the

virtual correction at NLO can be written in the form|[3]

1 d3p3 d3p4 45(4)
ov(pL,p2) = ¢ (37525, (2w)32E4(27f) 6 (p1 4+ p2 — p3 — pa)Fy (1.18)

with
4
Fy = (Z Qf) %T‘F%W“?ﬂ’\]ﬁ[]z@,l\um%\] +c.c. (1.19)

where “c.c.” denotes the complex conjugate and

d'p 1 — +
M [ G e 20

describes the one loop QCD corrections to the ggy—vertex. The traces in Eq. (1.19) are

over the implicit spinor indicies.

1.3.1 Regularisation

The integral in (1.20) is divergent in many regions of phase space. First of all it is divergent
in the soft and collinear regions where p?> — 0 or p is (anti-)parallel to ps (ps). We will
term these divergences infrared divergences, and we will discuss them later in Sec. 1.4.1.

For now, we will ignore them and concentrate on the so-called ultra violet divergence of

the integral®.

3The treatment of UV divergence depends on the exact form of the chosen regularisation. We will follow

the approach of Ref.[3] where the massless result is obtained as the massless limit of the massive result.
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Eq. (1.20) is seen to be logarithmically divergent simply by counting the powers of p in
the integrand: For large p the integrand has a p~* behaviour, and by changing integration

variables to spherical coordinates in 4 dimensions the integral takes the form

d*k ®© k3dk o [ dk

which is logarithmically divergent in the & — oo region. This feature is shared by all loop
diagrams and, as we have seen, is a direct consequence of the Feynman rules derived from
the QCD Lagrangian, which nonetheless describes the interaction we want to study. We
therefore have to make meaning of the integrals, and the trick we use is very simple to
state. We start by noting that if we reduce the number of space-time dimensions, the
number of conjugate variables to integrate over in the momentum space integrals will also
be reduced. Next we note that we can make the integral of (1.21) convergent by reducing
the dimension of momentum space to d = 4 — 2¢,e > 0. By then calculating all the
integrals in the reduced number of dimensions, we will get an answer which depends on e.
The claim now is that the correct answer is obtained in the limit € — 0.

However, it does not quite work this simply. First of all, the mass dimension of the
Lagrangian (or more correctly the Lagrangian density) changes as we change the dimension
of space-time, and since we want the particle and gauge fields to keep their mass dimensions
and the coupling to remain dimensionless we have to introduce a dimension-full factor by
hand. We enforce the right dimension on the Lagrangian by replacing g with gu¢, where
4 is a quantity with the dimension of mass. The magnitude of y is not constrained in a
massless theory; if the masses were included, p could be specified by the requirement that
the pole of the propagator appears at the physical mass of the particle [5]. To calculate
the integral in Eq. (1.20) we introduce the Feynman parametrisation for the propagator

factors

ﬁ Alt_,i =nL(al—/1 (ﬁdmim?‘—l> ——i(l_—x)a, (1.22)
=1 i=1

n n
a = E g, T = E ;.
1=1 1=1

Here, T is the standard Gamma—function. Although this introduces an extra integral, it

proves very efficient in the calculation. The integral is then Wick rotated (for convenience)
to go from the Minkowskian space time signature to a standard Euclidean one. This
amounts to a change of coordinates for the time-like coordinate pg — ¢Fy. Changing the
space time dimension to D = 4 — 2¢, the basic integral (for the slightly simpler case of

diagrams of the self-energy type) becomes, expressed in terms of the Beta and Gamma
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functions[3, p.113]

d°K 1 B(D/22-D/2) pp-
/ (2m)P (K2 + L%)2? ~ (4m)P/2T(D/2) Lo, (1.23)

The Beta function fulfills

I'(p)T'(q) (1.24)

B(p,q) = T tq)’

and so the loop integrals can now be rewritten in terms of I'-functions. These are then
expanded in the limit € — 0, and the result will at one loop always include the factor

I1—(1;—6)(4#)5 = % + In(47) — vg + O(e), (1.25)
where g is the Euler Constant and the divergence is now parameterised in terms of the
% term. It is now possible to render the Green’s functions of the theory finite by adding
counter terms to the Lagrangian, which effectively are new interactions introducing the
same 1/e—-divergences, just with the opposite sign. These new interactions amount to a
redefinition of the quantities in the old Lagrangian, which become divergent in the limit
e — 0 and are called bare quantities. Again we introduce some arbitrariness into the
theory since it is not uniquely defined, how much of (1.25) to include in the counter term,
as long as the final result for S-matrix elements is finite.

This way of regularising the divergent integrals is called Dimensional Regularisation
and preserves the Lorentz structure and local gauge invariance of the Lagrangian. A

Renormalisation Scheme (RS) consists of the choice of renormalisation scale y and how

many terms of (1.25) to include in the counter terms.

1.3.2 The Renormalisation Group

Dimensional Regularisation has the property that the unrenormalised or bare quantities
of the Lagrangian can be written as a factor (depending on €) times the renormalised

quantity. For example the relation between the bare and renormalised wave functions is

written
Yp = Zdﬂ:ba AZB = ZA“AZa 772}3 = Zna’r]z, (126)

(Some prefer to define these relations with Z 2 instead of just Z). This Multiplicative
Renormalisation carries through to the 1 Particle Irreducible (1PI) Green’s functions of
the theory, so Green’s functions in two different RS’s (denoted by barred and unbarred

quantities) would be related to the bare Green’s functions I'p by

I =2T'g, [ =2Tp, (1.27)
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where Z, Z is a product of different wave function renormalisation factors, one for each
external leg on the 1PI diagram corresponding to the Green’s function. Clearly, the two

renormalised Green’s functions are related by
VA
I'=2zT =— 1.28
oL, 2=, (1.28)

where 2 is finite for € — 0, since Z, Z have the same structure of divergences. The z
relating different renormalisations of the bare Green’s function would then be products of
Z’s, which gives rise to the term Renormalisation Group.

The independence of the bare Green’s functions on the chosen renormalisation scale
1 can now be exploited to calculate how the renormalised Green’s functions scale with
momentum. Consider a 1PI Green’s function with n4,np external gluon and quark legs

with momenta g;, g; respectively. The relation between the bare and renormalised Green’s

function reads
ZZAZ(?FF%AJLF (gza Qi /\a g) = [manF (gz, Qi /\(,U/), g(,u), ,U,) (129)

Applying ,u% to the right hand side of this equation we get

d n,
M@F AIE (i sy M), g(p), 1) = (1.30)

(8 g 0 ox 0

AT
S+ e ) T (65 ) 9040, )

Noting that Z7* = "4 InZ4 it is easy to use the y—independence of I' to get the following

relation for the renormalised Green’s function

(3 + B0) 55 — arale) = e (6) + (6) 2 ) T g M), 1) 10 = O,

We will now use this equation to derive how I'™"F transforms under a scaling of momenta.

If D is the mass dimension of the Green’s function, it will satisfy the following relation
D78 (tg;, tai, M), g(1), t) = tPT™ (g, 43, Mus), g(), 1) (1.33)
This means that ™™ (g;, q;, A(1), g(1), p) satisfies the following relation

d
£ L™ (283, ti, M), 9(k), tp) = D™ (tgs, tai, Aw), g k), te) (1.34)
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By expanding (tdit) as (t% + /45%) we find that

0 0 -
— — n, ,TL 3 . = 1-
(t—a L+ h o D> ™ (tg;, tas, A(w), g(1), 1) = 0 (1.35)

Using (1.31) to eliminate the derivative wrt. u we find the following scaling relation

8 0 0
(‘t'a‘t *hla)gg ~narale) = neye(s) +6(9) 55 - D) (1.36)

(T4 (tg;, b, Mp), 9(1), 1) = 0

The characteristic equations of this first order partial differential equation are given by:

15~ B, at=1)=g (1.37)
ta—git—) =86(\(1), Mt=1)=A (1.38)

and the solution to the differential equation (1.36) is

L7 (g, tqs, A(w), 9(p), 1)
_ 1D i e

) (1.39)
L™ (g, g4, A(t), §(2), p)-

This gives the scaling of I" with energy, and from (1.37) it follows that the energy (t) and

u dependence of the running coupling ¢ are interchangeable.

1.3.3 The Running Coupling

Equation (1.39) expresses how we may find a Green’s function at one energy scale by
knowing it at another and just substituting the values of the gauge parameter and the
coupling with the solutions to (1.37) and (1.38). In general, however, 3(g), and 14
can be calculated only perturbatively. Special attention is drawn to (1.37) since we may
find the energy dependence of many dimensionless observables by just substituting the
coupling with the solution to (1.37).
It has become customary to define a quantity a; similar to the fine structure constant
of QED
=L (1.40)

= E’
and call this the strong coupling constant . The running of a; is basically determined from
the same S—function as that of g, since

2
6g_1tag _s Oag

gta = 5 E = ’/Talnt = 27T,303(C¥s), (141)
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where (,,() is traditionally called the S—function of QCD, which, as already mentioned,
can only be calculated perturbatively. Unfortunately different conventions are used in

defining the S—function. Often the notation

Oas 1 0as 1
Blas) = dlnt? ~ 20Int 25%(&3) (1.42)

is used, but as we see the J-functions differ only by a factor of 2. Different conven-

tions for the definition of the f—function are used in different fields of study. To find

B(9),v4(g9),vr(g) and §(g) of (1.31) to a given order in a5 we would have to calculate all
the Feynman diagrams that will contribute to the Green’s function at the given order and
apply (1.31) to each of the Green’s functions. This will leave us with enough constraints
to determine all the unknown functions.

However, perturbation theory suffers from a serious problem. The cancellation of
the p and generally RS dependence in the theory happens between different orders in
the perturbative series, so when terminating the series at a certain order, we introduce
a RS dependence to the theory. If we, as suggested above, demand that the Green’s
function of the theory to each order obey (1.31), the RS dependence will manifest itself
as a dependence of e.g. S, (cs) on the chosen RS.

It should come as no surprise that different renormalisation prescriptions will define
different couplings, which can be related in perturbation theory. Consider for example the

strong coupling constant in two different RS denoted by a5 and a;:

as = a, (1+V10zs+1/2a3+~~), (1.43)
where v, can be calculated. Each coupling runs according to it’s own S—function
Oa
8ln—222 = — foa’ — Pral — Pros — Pzl — -+ (1.44)
oa s 0 33 3 e
%*‘52‘ = — Bod; — pr@2 — Padis* — Psas — - (1.45)

It is not hard to show by inserting the expansion of (1.43) into (1.45) and comparing with
(1.44) that the first two B-function coefficients are universal, and they are found to be

1672 3
where Ny is the number of light quark flavours included in the theory. B2 and 3 have

Bo = % (11 -2/3Nf), B = = <102 - §Nf) (1.46)

been calculated in the MS-scheme and are given by [6] :

1 (/2857 5033 325
'32_647r3( 2 T T 54Nf)
1 149753 1078361 6508
= 4¢s ) — N 1.47
T <( g T30 <3) ( 62 27 43) f (1.47)
50065 | 6472, ) o 1093
( 162 C"’) a9 Vi )

where ¢, = ((n) is the Riemann g function.
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1.4 Factorisation and Infrared Safety

It is now time for a discussion of the infrared divergences arising in the higher order correc-
tions. We will start with a discussion of the infrared divergences of the NLO contribution
to ete™— hadrons and discuss how the divergences cancel once all the contributions to
a physical observable are taken into account. Finally we will extend the discussion to
divergences arising from radiation off QCD initial states, which are important for hadron

collisions.

1.4.1 Infrared Singularities

As we saw in Section 1.4, the application of Feynman rules to higher orders corrections in
the process ete™— hadrons generates infrared divergences in the resulting integrals. These
divergences can be studied by applying the same dimensional regularisation as used in the
regularisation of the ultra violet divergences. However, for discussing the origin of these
divergences, it proves more convenient to regularise them by introducing a small mass v
for the gluons* and m for the quarks. It then becomes clear that a class of divergences
appear in the v — 0 limit. This is the so-called soft divergences for p? — 0 in Eq. (1.20).
If the massless gauge field couples to itself or to another massless field like the quark it
turns out that another class of divergences appear. This is called the collinear divergence
because of the behaviour already pointed out in Section 1.3.1.

Although these infrared divergences arise in the loop integrals, it will turn out that they
are canceled by other infrared divergences of opposite sign when the sum over all states
contributing to a physical process is taken into account. If one considers the radiation of
a real gluon (or photon) off the final state ¢g pair in the process e*e~— hadrons, then in
the soft limit of vanishing energy of this gluon (or photon), the three particle final state
is physically indistinguishable from the two particle g7 final state. This real radiation
is infrared divergent in the soft limit with a opposite sign and cancels the soft infrared
divergence of the virtual vertex correction. For QED this is the so-called Bloch-Nordsieck
theorem[7]. For QED with a non-vanishing electron mass, this guarantees the cancellation
of all the infrared divergences when the sum over all relevant particle configurations is
performed. One can even show that the cancellations occurs within classes of diagrams
arising from considering different cuts to diagrams representing the square of the amplitude
(see Ref.[3, p.344] for further details).

The situation for QCD is slightly more involved. This is because that even for non-

“A simple quadratic mass term proportional to v of the gauge field will break the gauge invariance of
the QCD Lagrangian at the v? level[3]. This is why the Higgs mechanism is necessary to give masses to

the electro-weak gauge fields without breaking the gauge invariance.
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vanishing quark masses, collinear divergences are generated from the gluon-splitting at
higher orders (stemming from the triple and quartic gluon vertices). For ete™— hadrons
at NLO the structure of the infrared divergences is similar in QCD and QED final state
radiation, since the triple and quartic gluon vertex.does not yet enter. At higher orders
though, even soft and collinear radiation of ghosts have to be taken into account when
considering which final states will contribute to a physical process. Despite all these
complications, it has been possible to show that the total hadronic cross section in ete™
is infrared finite to all orders in perturbation theory in QCD[8, 9]. However, the more
complicated structure of the infrared divergences results in a break down of the simpler
Block-Nordsieck theorem (which applies only to soft divergences) for more complicated
processes, for example at the NNLO order of quark—(anti-)quark scattering. Despite the
complications of QCD infrared divergences, it is believed that the general Kinoshita-Lee—
Naunberg theorem is valid for QCD perturbation theory — and to date no examples of
a breakdown of the cancellation of all (soft and collinear) divergences have been found in
QCDI3]. The Kinoshita-Lee-Naunberg theorem[10, 11] states that the transition rates of
a massless theory are infrared finite when all soft and collinear degenerate final and initial

states are summed over.

1.4.2 Infrared Safety

It should be apparent from the discussion in the previous section that care has to be taken
when defining observables so that they are sufficiently inclusive to allow for the cancellation
of infrared divergences between the virtual and real soft and collinear corrections at higher
orders. This cancellation happens for total cross sections as mentioned in the previous
section. If we consider ete™ collisions, most observables Z can (within the perturbative
framework) be written on the following form in terms of (fixed energy) e*e~ — n—particle

parton cross sections o, and functions S, (see Ref. [12])

_ 1 d0'2 0oy
I= 5 /szdQQSQ(ppm)
1

dO’3

+ = d2d F3dd3 —————S3(py, 5, p§ 1.48
31 2 3 3 192 1E3 193 3(p1:p2’p3) ( )
+——1 dQ22d E3d23d E4d2 4 Sa( oY "p’\)

T 2053030304 4]92 1 E3dQad BadSly 4\P1:P2,P3: P4
4.

Examples of observables that can be written on this form is obviously the total hadronic
cross section (with all the S, = 1), the n—jet cross sections and the thrust event—shape
variable[12]. The cancellations of infrared divergences between the real and virtual correc-

tions of the total hadronic cross section then implies that the observable Z will be free of
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infrared divergences if (assuming that the functions §,, are symmetric under permutations

of the arguments)
Sn(PY, -, pn) = Snaa(pf, -, (1= Ny, Apy) (1.49)

for 0 < A < 1. In words this means that the functions S, should be insensitive to the
emission of a soft or collinear particle and should not distinguish between the final state
with two collinear particles and the state where these two are replaced by one carrying the
total momentum of the two collinear ones. This is completely similar to the conditions
under which the total cross sections are infrared finite.

Some observables, like the total dijet rate in hadronic collisions, even though infrared
finite will still be sensitive to some infra red regulator, like the minimum transverse mo-

mentum of the dijet sample.

1.4.3 Factorisation and Parton Density Functions

The parton model first introduced to describe data on deep inelastic electron-proton scat-
tering relies on one of the fundamental characteristics in the interplay between confinement
and the perturbative regime of QCD called factorisation. This describes how the inelas-
tic scattering can be described heuristically by a hard scattering between a constituent
of the proton (called a parton) and an electron multiplied by the probability of finding
this parton within the proton. This property is a consequence of the quantum mechan-
ical incoherence between the long time-scale infrared properties of confinement and the
short time-scale properties of a hard scattering. Using this formalism, all the infrared
sensitivity involved in the (short term) “deconfinement” of a parton to take part in the
hard scattering is.factorised into process independent, hadron dependent parton density
functions (pdfs), and all the process dependent pieces enter in the hard scattering matrix

elements. The canonical example is the DIS structure function Fy which is now calculable

as[12]

1
M, Q%) =) / d¢ CY* (z/€, Q% /u?, w3/ 12, s (1?)) Bijn(€ 13, u®).  (1.50)
15670

Here V describes which vector boson is exchanged (e.g. photon or W), and h denotes which
hadron is being probed, while 4 is the parton index. C’;/ ¢ describes the perturbative hard
scattering between the vector boson V' and a parton of flavour %, and it is independent of the
specific hadron involved. The function ¢/, (¢, p,fc, ©?) is the process-independent parton
density function whiqh depends on the parton momentum fraction in the hadron £ (which
at leading order coincide with the Bjorken z-variable), the renormalisation scale u and the

factorisation scale py. pg discriminates between the soft physics of ¢ and the hard physics
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of the perturbative coefficient C'. The observables should of course be independent of this
arbitrary parameter (just as for the renormalisation scale u), and this constraint allows
the evolution of the parton density functions to be calculated perturbatively, even though
they themselves cannot be calculated from first principles. One can think of this evolution
in py as the result of resolving the perturbative structure of partons with increasing p.
The gluon resolved at py;1 might have split into a quark-anti~quark pair at a g > py.
The evolution of the pdfs is described by the famous DGLAP-equation and illustrated by
the variation in shape with py for selected parton distributions of the proton plotted in
Figure 1.3. In these figures the gluon distribution has been divided by 10 to fit on the
same plot.

The most remarkable property of the parton density functions measured in DIS is that
not only are they universal within the class of observables in electron—proton collisions, but
the very same pdfs are applicable also for the calculation of observables in hadron-hadron
collisions. This relies on the fact that the soft confining colour fields of the two protons
do not interact on the time scale of the hard perturbative interaction. This means that
e.g. the (leading-twist contribution to the) total cross section for a hard interaction in a

proton-proton collision factorises into the following form[12] (setting pf = p)

1 1
o : % / T /0 déaA dép qsa/P(gaa #2)|Mab|2 (l‘a/fa) xb/éba ) /“L/Qa aS(lu’)) ¢b/P(£ba .U'2)
” (1.51)

Here the dots symbolise the variables necessary to fully specify the four momenta of the

particles of the process in question.

1.5 Dijet Production at Hadron Colliders

At hadron colliders, the production of two perturbative jets is the simplest exclusively
QCD process to be studied. This process will be utilised in later chapters to study the
properties of the gluon exchange in certain limits of the momentum transfer.

Since the two incoming partons (extracted from the colliding hadrons) in general will
not have equal and opposite momenta, it proves convenient to use boost-invariant vari-
ables to describe the two-particle scattering. Neglecting any transverse momentum of the
incoming partons®, the two outgoing partons emerging from the scattering will be back to

back in the azimuthal plane and have transverse momentum of equal size. Their momenta

5The transverse momenta of partons inside a proton is neglected in the normal sets of pdfs, but the
transverse momentum distribution of especially gluons is currently being studied using so-called “uninte-

grated gluon distribution functions”.
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along the beam axis will depend on the momenta of the incoming partons, and so to de-

scribe the longitudinal motion we will use the variable rapidity (y) defined for a particle
with energy F and longitudinal momentum p, by

1 E+p,

=-In{=——]. 1.52

v=gin (g2 (152

The rapidity variable is convenient since rapidity differences are invariant under boosts

(along the z-axis). To describe a 2 — 2 particle scattering (p1,p2) — (p3, ps) it is conve-

nient to use also the Mandelstam variables defined by

5(1 — cos®) (1.53)

where we have used the hat to signify that it is the parton—parton scattering rather than
the hadron-hadron one that is being considered. Also given is the value of ¢ and 4 for a
scattering at the square of the energy § and a centre of mass scattering angle 6. Using
Eq. (1.9) expressed in terms of the Mandelstam variables, we find for the 2 — 2 parton

scattering

6 -

T = 5T L MPS o1 + 22— 71 = ). (154
where 5 symbolises the standard spin and colour average (sum) over the initial (final) state
partons. All the different parton processes that contribute to dijet production at lowest
order can be calculated from the diagrams in Fig. 1.4 by use of standard tricks like crossing,
although the colour and spin sum and averaging complicates the relations between the
diagrams slightly. By use of the factorisation theorem (Eq. (1.51)) the differential dijet
cross section can be written as

3 2 2y —
d°o 1 Z ¢a($anu' )¢b(‘1;:ﬂ )ZlMab—)kl|2 1 (1'55)

dygdy4dp3_ "~ 16ms? Yy To 140’

where s is the hadronic center of mass energy, § = z,xps, and we have used the property

dp.
= E. 1.56
dy E (1.56)

The Kronecker delta dy; takes care of avoiding double counting of identical final state parti-

cles. The parton momentum fractions z,, z; are calculated through energy and momentum

conservation to be

Tq = i)/—lg(exp(yg) +exp(ya)) 7= —=(exp(—ys3) + exp(—ya)), (1.57)

5
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Figure 1.4: The diagrams needed for the calculation of the lowest order contribution to dijet

production at hadron colliders.

where p, is the transverse momentum of the parton. The square of the colour and spin
averaged and summed matrix element for the different processes contributing to dijet
production (obtained by applying the Feynman rules to the diagrams in Fig. 1.4) is listed
in Table 1.2 (taken from Ref.[2]), where q and ¢’ denotes massless quarks of different
flavour. Also listed is the value of the matrix element squared for a scattering angle of
7/2. The gluon scattering sub-process dominates because of the bigger colour charge of

the gluons compared to quarks.

1.5.1 Limiting Behaviour of the Partonic Cross Section

The dependence on the scattering angle of the different contributions to dijet production
turn out to have a very interesting feature. The dominant subprocesses have a very
similar dependence on the scattering angle. This is shown in Fig. 1.5, where the ratio of
the quark-anti-quark and quark—gluon to the gluon—gluon scattering cross section is shown
as a function of the absolute value of the cosine of the centre of mass scattering angle.
When considering jets at the leading order level, the quark, anti—quark and gluon jets are

indistinguishable, so when studying dijet cross sections, the scattering angle is only defined
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Process | Number | Class il./\/lﬁ/g4 @=m/2
99 — qq' 1 (a) ng ; @ 2.22
99 — q¢ 2 (a) 48 +a° 2.22

9 {2

qq9 = qq 3 (b) g(§2;ﬂ2 +§2;EZ> —%g 3.26
@—dqd| 4 (a) gi:;—ﬂz 0.22
qq — qq 5 (b) %(52;a2+a2;9> —2;871‘—: 2.59
qq — g9 6 © | ~ g—i—t? ;uz - gfz ;ag 1.04
99 — 44 7 (c) égz;ﬁz - gp:fﬂ 0.15
99 — 9q 8 (c) —g s ;uz 17’2;; & 6.11
99 = 99 9 (d) 2(3—2—2—%—5—2) 30.4

Table 1.2: The square of the invariant matix element for the different processes contributing to
dijet production. Also listed is the diagram class according to Fig. 1.4 that contribute
to the specific cross section. Without spin and colour summation and averaging, the

cross sections within one class would be obtained though simple crossing.

modulo 7/2. This means that in the plot, the numerator is the sum of the contributions
from cos(6) and — cos(8), whereas the denominator already has been symmetrised since the
final states particles are identical. The observation that the ratios are almost constant (at
the values 4/9 and (4/9)2, as a result of the fact that for every substitution of a gluon with
a (anti-) quark, the partonic cross section is reduced by a factor 4/9 = Cr/Cy, which is
the relatively strength of the vertices) means that to a good approximation the total cross
section can be obtained by rescaling just the gluon—gluon scattering cross section. This is
called the single effective subprocess approzimation(13], and within this approximation the
total hadronic dijet cross section is obtained by convoluting the gluon-gluon scattering

cross section with two copies of the effective pdf given by

S@w) =g+ 2 () +ay(m ). (1.58)

feflavours






Section 1.5. Dijet Production at Hadron Colliders 26

become
8~ —0 ~ p? exp(Ay) (1.60)
it~ —pt
We therefore find that in the large Ay limit
Ay =~ In (—%) ) (1.61)

In fact, considering Eqgs. (1.54) to (1.61) we see that the large Ay limit is equivalent to
the high-energy (large §) limit at fixed momentum transfer (fixed £) (hereafter called the
HE limit).

We can examine which processes contribute to dijet production in this limit by taking
only the leading contribution in Ay according to Eq. (1.60) from the results of Tab. 1.2.
For process number 9, the gluon-gluon scattering, we find

[Mogsql® = gg 5 (1.62)
One can trace back this behaviour to the diagrams of class (d) in Fig. 1.4 with a gluon
exchange in the ¢ channel, i.e. the second one. A calculation of this diagram retaining only
terms to leading O(§/t) and only physical polarisations of the external gluons, one obtains
exactly the result of Eq. (1.62) (as we will see in Sec. 2.1) [14]. Whereas the contribution of
specific diagrams to a cross section is obviously gauge dependent, Eq. (1.62) is the leading
contribution to the full gluon-gluon scattering in the limit of large Ay. Examining the
rest of the subprocess in Tab. 1.2 we find that the processes 4, 6, and 7 do not contribute
with a leading term in §/f to the total dijet cross section, whereas the result for the other

processes is

9 Ay—)oo 2 Ay—)oo 2 Ay—)oo 8
| | l

|MQQ"*qq
9 t2 (1.63)

|qu’—>qq |qu—>qq

Mool 2% 2915
These results are consistent with the observation that a gluon exchange in the ¢ channel
provides the leading contribution to scattering at large Ay. Of all the different sub-
processes in dijet production, only those including a gluon exchange in the ¢ channel have
a term of dominant order in §/f.

Taking the ratios of the results in the large Ay limit in Egs. (1.62) and (1.63) we regain

the result of the single effective subprocess approximation

Ay—oo 9 Ay— 9 2
Mopoaol” 2% §Magagl? 2 (3) Mgl (1.64)




Chapter 2

Resummation of BFKL
Logarithms

In this chapter (and in most of the rest of this thesis) we will consider certain higher
order corrections to the gluon—gluon scattering which are logarithmically enhanced in the
limit of large rapidity separation between the dijets studied in the previous chapter. The
logarithmic enhancement of terms in the perturbative expansion is a general property
of cross sections whenever more than one energy scale is involved in the process. A
standard (massless) fixed—order perturbative calculation assumes that there is only one
hard scale @ and that furthermore this is comparable to the hadron centre of mass energy
Vs = Q (this last requirement is coming from the use of standard collinear factorisation).
However, we saw in the last chapter that a large rapidity separation corresponds to the
phase space region § > |f| (see Eq. (1.61)). This is the so-called semi-hard region, where
V5 > /5> Q, where Q is the scale of the momentum transfer. Of course Q still has to be
big enough to accommodate a perturbative approach to the calculation. This means that
the region of phase space where the resummation of the logarithmically enhanced terms
Is important is only accessible at the highest energy colliders at present (and even there
only maybe so). Since § = z,zs we can write

1

P~ (2.1)

ln& =lnw—1a+lné+ln
This splitting up of the logarithm helps to illustrate that when /s > @, large logarithms
can arise from either the evolution of the pdfs (In1/z,,In 1/z;) or from the hard scattering
(In3/Q?). We will be concerned solely with logarithms of the last type, and for dijet
production in the semi-hard region we can keep the parton momentum fractions relatively
large to ensure that the normal pdfs are suitable to describe the processes. We will follow

the presentation of Ref.[14] closely. A different introduction to the subject is available in

27
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D2, A2,Q2 D4, Adq,04

Figure 2.1: gg — gg scattering with a t—channel gluon exchange. The external gluons have been

labeled with momentum, helicity and colour indicies.

Ref.[15] which also discusses the application of the resummation of the same logarithms

to deep inelastic scattering.

2.1 A Further Look at Gluon Gluon Scattering

In this section we will explicitly calculate the gg — gg scattering in the limit of large
rapidity separation and show that the result agrees with Eq. (1.62). Furthermore we will
calculate the corrections at the next-to-leading order in this limit, consisting of gg — ggg
real corrections and gg — gg with one loop. We will show that the higher order corrections

are logarithmically enhanced and discuss how this generalises to all orders.

2.1.1 gg — gg at Leading Order

We will start by applying the Feynman rules using the notation from the diagram in

Fig. 2.1. With p; ingoing and ps, ¢ outgoing, the upper triple-gluon vertex takes the form
9 (pL + p3) g + (—p3 + @)1 " + (—g — p1)**g""). (2.2)

In the HE limit that we are considering, all the components of q are small compared
to the components of pi,p3, so they can be dropped in sums. Furthermore, since the
external gluons are on-shell, we can drop terms proportional to pj* and p5® since such
terms contract with the polarisation vectors to give zero. Therefore, in the HE limit this

upper vertex can be approximated by
2gfHascgtrispy. (2.3)

Using the equivalent form for the lower triple-gluon vertex and the relations

(p1+p3)®

5~ =P p3=7, t=¢q% (2.4)

[ SN IV

one arrives at the following expressions for the matrix element

. . 98
IMGIISER, = —2ig" s f1ee fosicgrs ket (p)er® (po)eld (po)e (o). (25)
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The square of the matrix element is now found by multiplying by the complex conjugate

and using Eq. (1.7) repeatedly for the colour sums
falagcfalagc’faga40fa2a4c CZ(SCC 5cc ( _ 1) (26)

"To perform the sum over helicities we apply Eq. (1.13) where the vector n is chosen to be
p2 for the polarisation sum over p; and p4 for the polarisation sum over ps etc. to always
have an easy relation between the dot products and 3. Keeping only the leading term in

5/t and averaging over initial colour and helicity of the gluons we finally arrive at

[Mgosggl® = ‘9 Tz + O(3/1), (2.7)

in agreement with the result in Sec. 1.5.1, Eq. (1.62). The calculation here is obviously
gauge-dependent, but only in sub-leading terms in /£, as long as only physical polarisation
of external gluons are considered (otherwise the diagrams with external ghosts would have
to be included too), and as we have seen, including all the relevant diagrams to restore
gauge invariance does not change the result in the HE limit.

We would now like to find a formula for the total cross section in the HE limit. Let
us therefore first investigate the phase space in the large Ay limit. Using Eq. (1.9) and
Eq. (1.56) we find for the 2—particle phase space

_ dyad2kaJ_ dybd2kb_|_ 4¢(4)
dQ2 = / 47 (2m)? / 4 (2m)? (2m)°8 (Pa + po — ko — Ks) (28)

where we have denoted the outgoing momenta of the gluon with the highest rapidity k,
and the lowest rapidity k;.When studying the HE limit it is often beneficial to change

coordinates to so-called light-cone coordinates given by
= E +p,, (2.9)

and the transverse coordinates are left unchanged. The scalar product between two light-
cone 4-vectors is p-q = (ptq~ +p q*)/2 — p1 - q1. In this notation the only non-zero
component of p, is p} = 1/sz, and for p, the only non-zero component is P, = \/sTp, and

the momenta for the outgoing particles are given by
ki = (kiL exp(y:), kiL exp(—yi); ki) (2.10)

Using light-cone coordinates we can rewrite the integral over y,,y, and two of the 4-

functionals of Eq. (2.8) as
d d
[ [ Rnsed+ 58 - K2 - k)60 + 5} - K2~ kD)

i ; (2.11)
_2/ ya/ yb )25(pa +pb k+ k+)5(pa +Dy — kg _kb_)a
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where the factor two is coming from the Jacobian of the coordinate transformation. Using
the HE approximation for the kinematics inside the §-functionals we obtain
dy dyb _ 1

/ a/ 2m)28(p} +pf — kf — k) )o(pg +py — kg — k) & 55 (2.12)

Using this in Eq. (2.8) we find

d?k, d’ky; 1
dQ ~ / = / 2 —(2m) %@ (ko + ko)

(2m)2 J (27)2 23 (2.13)
:/d2kali: dk?, 1 '
(2m)2 23 dr 28

where the last rewriting remains true, as long as the integrand is independent of the
azimuthal angle. This is true for the HE limit of the gg — gg scattering, and therefore

the differential 2 — 2 gluon scattering cross section in the HE limit is given by

d‘}gg%gg _ |—Mgg—>gg|2 ~ 994 (2.14)

dk? 16782 32nf2’

where we have used the flux factor F = 25 as can easily be verified using Eq. (1.9). The
total partonic cross section can be found by integrating Eq. (2.14) above some lower cut-off

for the transverse momentum of the dijets.

2.1.2 gg — ggg in the Multi-Regge Limit

Before discussing the 2 — 3 process in detail, we will introduce the variables we will use to
describe a general 2 — n parton process and furthermore discuss the so—called multi-Regge

kinematics. With the 4-momenta of the incoming particles given by

Do = (:L'a\/g/27 0’ Oa ma\/g/z)
= (26v/5/2,0,0, —z41/5/2)

and the 4-momenta of the outgoing particles described in terms of their transverse mo-

(2.15)

menta k; | and rapidity y;, we find using momenta conservation for the 2 — 2 4 n process

n+1

0=> ki
=0

n+1 ki_!_
o Z == exp(y;) (2.16)

where we have used k;| to denote the magnitude of the vector k;,. This is all just the

straightforward generalisation of the situation for 2 — 2 scattering in Eq. (1.57). We can
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furthermore define new Mandelstam variables §;; by[14]

n+1
§=aamps = Y kiLkjy exp(yi — ;)
1,7=0
n+1
84i = ~2pq ki = — Z kirk;y1 exp(y; — vs)
=0
n+1
8= =25 ki == kjikis exp(yi — y;)
i=0

8i5 = 2k; - ky = 2k; 1 kj ) (cosh(y; — y;) — cos(¢i — ¢5)),

(2.17)

where ¢; is the azimuthal angle of the ith particle. We note that the Mandelstam variables
only depend on differences between particle rapidities and therefore are boost invariants.
The multi-Regge region of phase space is where the rapidity of the outgoing particles

are ordered and the transverse momenta are similar in size
YOS YLD Y>> Ynql kiy = k. (2.18)

It is in this region that certain higher order corrections are logarithmically enhanced and
can be resummed. Dropping all subleading contributions, the Mandelstam variables of

Eq. (2.17) become in this limit

§ ~ koLkn+11 €xp(Yo — Ynt1) (2.19)
Sai & —koLkiyL exp(yo — i) (2.20)
86 ~ ~ki1 knt11 exp(yi — Ynt1) (2.21)
i = ki k1 exp(|lys — y;1). (2.22)

The 5 diagrams contributing to the leading term in §/f are the ones with a t—channel
gluon[14] and are depicted in Fig. 2.2. The upper and lower vertices can still be approx-
imated by the HE limit of the triple-gluon vertex (Eq. (2.3)), and omitting the helicity

labels for the external gluons we find that the amplitude for the first diagram is given by
 AGeasaoaraz - [ 9 faaaoct 1
Ao pppoppz = igf t71‘pal/1
g (@ + @) g7 + (—g2 + k1) g7 + (k1 — 1) g"1) (2.23)
1
: <2igf“”“2c2 :-pbuz) ,
12)

where we have defined

ti=q¢’ ~ -2, (2.24)




Section 2.1. A Further Look at Gluon Gluon Scattering 32

Figure 2.2: gg — ggg scattering through t—channel gluon exchange. The external gluons have

been labeled only with momentum indicies, but colour and helicites will follow the

same numbering.

where subleading terms have been dropped. This formula can be verified for e.q. ¢
¢ = (pa— ko)’ = qiy, (2.25)

which is obtained using Eq. (2.15). In Eq. (2.23) no approximation has yet been made to

the g1k1g2 three gluon vertex.
We now want to keep only the leading terms in §/f of the contractions with the g;k1ga—

vertex. We first define
2
C.l/lil = gpaw ((QI + QQ)”lguluz + (_Q2 + kl)l/lgwu1 + (_kl - QI)Wng#l)prz’ (2'26)

where apart from the contraction, we have also included one of the factors of two from
Eq. (2.23) and divided by § (which of course will have to be multiplied into Eq. (2.23)
when Eq. (2.26) is inserted). Rewriting Eq. (2.26) in terms of the Mandelstam invariants
we find

ch = pin (2% n ssﬂ) —pi (2‘2&1 n %) + (g1 + @)™ (2.27)
We now note that in the multi-Regge limit, 8y > 82 and 841 >> 840, and the subleading
terms will subsequently be dropped.

To proceed further we first decompose the metric tensor g*¥ as

Hov VM
v PaPy + PP
g = 2Pe b_§ o _ ghv, (2.28)
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where 8/ is a Kronecker & operating only on the “transverse” parts of a vector (i.e. it
will form a dot-product of the z,y coordinates in the given frame with p,,p, along the
z-axis). This decomposition can be derived using p,, pp in the form of Eq. (2.15) as a basis

for polarisation vectors (see e.g. Ref. [14]). Using Eq. (2.28) we can rewrite (g1 + g2)** as

S S 8
(@1 + @) = (g1 + q2) g™ = o} ( + 2i°) - (% Zz) + (g + @)}
(2.29)

where ¢/* = (0,q1,0) such that ¢/"q,,, = ¢ -1 = —q.% Dropping the subleading
terms (actually, half of them cancel out) we find by substituting Eq. (2.29) into Eq. (2.27)

Ch ~ p‘“ -} :1 (a1 + @) (2.30)

Putting it all into Eq. (2.23), we find that the contribution from the first diagram can be

put in the form

QaQpaAQa1a2 . aa0061
'Aua,ubuomuz 23 (igf Gptapo)

(2.31)

ISHI,_.SHlP—‘

- (igfre21CRY (q1, g2)

) (igfabazczg#buz) .

This form resembles the form of the gg — gg matrix element of Eq. (2.5), with just the
middle line added and the factors of £ changed.

The calculation of the contribution to the matrix element for gg — ggg scattering in
the HE limit from the rest of the diagrams in Fig. 2.2 follows along the same line. One
finds (see e.g. Ref.[14]) that in the HE limit, the full gg — ggg amplitude can be written

as

0qQpA0A102 AaapC1
M8 218 (ig 2 g, o) =

Ha b0 [1 142 E
(igfarem oM (g, q2')) - (2.32)
2
: (igfaba202gubu2) )

where C#1(qy, ¢2) is the so—called Lipatov-vertex, which sums up the contribution from

an insertion of the third gluon either along the t—channel or as a bremsstrahlung gluon

C"(q1,q2) = ((q1 + @) + (§“ )p’“ (3‘“ b ) oy ) . (2.33)
_ s b1

Sal

The contribution proportional to #; is from bremsstrahlung from the upper line, and i,

from the lower. The Lipatov vertex is non-local, but still gauge invariant (as can be verified

by contracting it with Eq. k1, ).
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By squaring the matrix element M of Eq. (2.32) and summing and averaging over
helicities and colours (use FORM([16]) and noting that §,1851 = k23 when the approximate
forms for the Mandelstam invariants (2.19)-(2.21) are used, we find

16N3g5 42

2
= . 2.34
|Mgg—)ggg| Nc2 1 kglk%LkSJ_ ( )

This result can, not surprisingly, also be obtained by taking the HE limit of the full
99 — ggg matrix element, just as for the gg — gg calculation. It is worth noting that the
result has no collinear divergences. This is because that in the HE limit, all products of
four—vectors of different particles are large.

We now want to show that the gg — ggg in the HE limit is logarithmically enhanced
compared to the gg — gg cross section. In order to find the cross section for gg — ggg we

need the three-particle phase space in the HE limit starting from the exact form

dyad’ka / dypd’key / dy1d®kis . 4
dQs = 2 21)4 0™ (po + pp — ko — k1 — ks) . (2.35
s / @) | anzn? | TanmE 20 (Patpe— ke =k — k). (2:35)
The arguments for the rewriting of the integrals over the phase space for particles a and
b given in Sec. 2.1.1 still holds for the HE limit of the three particle phase space, and in
the HE limit Eq. (2.35) can therefore be rewritten

d2k 1 d2kb_J__ ]. dy1d2k1_]_ 9
~ 3 — 21)26(2) _ _
W= | enz | G2 / im0 (Kar Fkas ko). (2:36)

Using this and the flux factor F = 23 one readily finds[14]

d9gg-r999  _ Neog Ay (2.37)
dk2 dk2 d¢ dm k2 k2 (K2, + k2| + 2kq k) cos @)’

where ¢ is the azimuthal angle between the momenta of gluon @ and b, and Ay = y, —
(the range for the integration of y1). With Ay = In(§/|#|) this shows that the 2 — 3 gluon
scattering is logarithmically enhanced compared to the 2 — 2 process in the HE limit.
Eq. (2.34) also shows that in this approximation the third gluon is emitted with equal
probability in rapidity in the interval y, < y; < y,. Obviously, though, the multi-Regge

kinematics is not a good approximation in all of this region.

2.1.3 gg — gg at NLO in the Multi-Regge limit

At the NLO of gg — gg scattering in the HE limit the virtual corrections are given by the
diagrams in Fig. 2.3, corresponding to a t—channel gluon exchange in the physical s-region

and u-region. One obtains for the sum of the two diagrams [14]

%a(ﬂ. (2.38)

- » faapbay ~ _ 92 2f adag rbday
IM o = —219 tAf S Guapo Gy In
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Figure 2.3: Diagrams contributing to virtual corrections to gg — gg at the NLO in the HE limit.

where

d’k 1
ot N,
(0 = /27r2k2 (g— k)%
o N, QJ_
_Gelle)
4ar n,uz

(2.39)

and £ = —qi. The remarkable feature of Eq. (2.38) is that only the colour octet piece
of the interaction has a leading term in 5/f, and the colour structure of the exchange is
therefore the same as for the exchange of a single gluon calculated in Eq. (2.5). Arﬁong the
diagrams giving a subleading contributions (and which have therefore been discarded) are
the diagrams contributing to the gluon self-energy and the vertex—corrections that give
rise to the running of the coupling. Therefore, in resumming only the leading contribution
in 4/t we have kept the coupling fixed.

The integral in Eq. (2.39) is IR divergent and has been regularised by a simple cut-off
u?. This IR divergence arises when the external gluons are taken on-shell, and can be
rigorously regularised as was done in Ref. [17, 18]. It will turn out that the kernel of the
integral equation describing the t—channel gluon exchange in the HE limit is IR safe and

independent of the regularisation of Eq. (2.39).

2.2 The BFKL Equation

Comparing Eq. (2.38) and Eq. (2.5) we find that in the HE limit, the contribution from the
virtual corrections included in Fig. 2.3 is logarithmically enhanced compared to the tree
level contribution. In fact it turns out that the feature of the HE limit of the two—gluon
exchange of the colour structure resembling that of a single gluon exchange carries through
to all orders. This is the so—called reggeisation of the gluon. This furthermore implies
that the sum of an infinite number of successive gluon exchanges in the t—channel can

be obtained by simply replacing the 1/f of the tree-level diagram with 1 /t - (aff) In £ i tI
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obtained from the exchange of n + 1 gluons summed to all n, i.e.
1 1/ §\°®
7 — 7 (—%) s 7 eXp (a(b)Ay) . (2.40)

The tree-level amplitude in the HE limit for 2 — n + 2 gluon scattering of Fig. 2.4
also generalises to the form already suggested by Eq. (2.32)

. Aa@hA0a1"Antl ., 9 4 (; - £2aC0C]
iMyapppopr gt = 268 (19*%° guapo)

(igfr2C* (qu, q2))

G’wl,_.:"’lb—*

(2.41)

1

: (ingnananCltn (Qn; (In+1)) z
tn—i—l

(19 Q)

It is now conjectured that the reggeised gluon propagator taking into account the virtual

corrections in the HE limit can be substituted into Eq. (2.41) by simply making the

substitutions
1 1/ -1,\°® 1
e (— Zf”) ~ — exp (a()(yi-1 — v))) (2.42)
t; t; t; t;

Qm Cn

dn+1,Cn+1

n+1
Figure 2.4: Multigluon emission amplitudes contributing to the HE limit. The dotted vertices

denote the use of Lipatov effective vertices taking into account bremsstrahlung.
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ql:clJf

g2,c2 4

gnCn 4

dn+1,Cn+1 {

n+-1
Figure 2.5: Multigluon emission amplitudes including the virtual corrections contributing to the

HE limit. The dotted vertices denote the use of Lipatov effective vertices taking into

account bremsstrahlung, and the zigzag lines denote the use of the reggeised gluons.

resulting amplitude is depicted in Fig. 2.5 and given by
e an o 1 R
ZMZaZZZ%LEl"?#:-:I ~ 28 (zgfaaaoqg“aﬂo) E exp (a(tl)(yo - yl))

(igfanCM (g, ) }p (ex) (11 — 1))
(2.43)

. 1 -
. (ngCnCn+1(lnC,un (Qn, Qn+1)) 7 . exp (a(tn+1)(yn — yn+1))
n+

’ (igfaban+lcn+lg#bun+1) :

This constitutes the resummation of the leading logarithms to the scattering amplitude
for 2 — (n+2) gluon scattering to all orders in a5 and its form was first proved in Ref.[18].

Looking at the form of Eq. (2.43) it should come as no surprise that the scattering
cross section can be found as a solution to a recursive equation. In fact, in the HE limit
the total cross section for gg — (n + 2)¢g summed over n > 0 can be written in the form

(from now on we use pq, py to denote the momentum of the outgoing leading dijets)

d644(Ay) <C)10‘s) Caass
~ f(q 1,9b1, Ay) ) (244)
d?p,1d®ps1 P2, ¢ Py

where the terms in brackets are so—called impact factors and f(qq.1,ds1, Ay) is the solution
to the BFKL equation to be discussed shortly, and q,1 = pa1,91 = —Ps.. The impact
factors are simply the square of the first and last terms in brackets in Eq. (2.43) including
a factor of their respective 1/£;. The leading order result for the asymptotic cross section
is obtained by substituting a transverse momentum conserving delta functional for f,

thereby requiring the dijets to be back to back.
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The recursive relation for f can be found in the Laplace transformed variable for
Ay (a trick performed to disentangle the nested integrations over the rapidities of the

intermediate gluons),

Fdar, @pr,w) = /0°°dAy e A f(Qar, qbL, Ay) (2.45)
and is given by
w f(Qar, QL w)= % 5@ (a1 — le)-i-%/%f((qai, av1, ki), (2.46)
with
g, = 4 (2.47)
is

and where the kernel K(q,),qs1,k) is given by

2
K k 3 1 qa 3
Qot, AL, Ki) =J{Qal 1L, qpl,W J\Qal, QoL W), 2.48
( al ) f( ) ]2 (q ] )2 ( a bl ) ( )

The virtual corrections enter through the factor w on the left hand side of the recursive
relation Eq. (2.46) and in the second term of the BFKL kernel. The first term of the BFKL
kernel accounts for the real radiation. One notices that the BFKL equation is independent
of the scale 12 used to regularise the divergent integral arising from the virtual corrections
(Eq. (2.39)). The p—dependence cancels in the construction of the BFKL equation, since
p~independent terms of the form a(f1) — a(f;) arise in the iterative solutions, ultimately
resulting in the w—factor on the left hand side of the BFKL equation. Also, it is worth
noting that the BFKL equation is infrared finite in the sense that the kernel (Eq. (2.48))
vanishes as k| — 0 i.e. the soft real and virtual corrections cancel.

It is possible to solve the BFKL equation analytically by writing f(qa 1,dp1,w) as
a Fourier transform with respect to the azimuthal angle between q,; and qp; and the

variable log(qg_L/qu), (see e.g. Ref.[19, 20]). Specifically, we rewrite
N 1 . 1 [ - 2 24\ F
Far, o1, w) = o Zexp(m&ﬁ)ﬁ; dzexp (—izlog(gz) /a5 )) fa(2,w).  (2.49)

By substituting this into the BFKL equation one finds [19, 21]

. 1 .
wfn(zaw) IS +OJ0(TL, z)fn(zaw)a
V a5

(2.50)

where

wo(n, 2) = (af“> 2xn(2), (2.51)
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are the eigenvalues of the BFKL equation with (obtained through some rewritings(14])

1+
Xxn(z) = Re [¢(1) - ( 2' | +1z )} (2.52)
1) is the logarithmic derivative of the gamma function. The inverse Laplace transform is
given by
1 c+i00 AuF
f(Aar, b1, Ay) = 5“/ dwe*™ f(Qa1,qb1,w) (2.53)
T Je—ico

with ¢ chosen so that all the singularities of f (da1,ds1,w) have a real part less than the

real part of c. Applying this to Eq. (2.50) we find the solution to the BFKL equation

f(dar,qp1, Ay) = e'n? (qbl) ewo(n2)Ay, (2.54)
(27T) \/q? Z / G

J_qu_ n=-00

It is worth noticing that this way of solving the BFKL equation effectively has summed
over the radiation of any numbers of gluons (the exponential is a power series in c)
and integrated over the phase space of any radiated gluon. Also, one observes that the
solution of Eq. (2.54) is symmetric under exchange of q,; and g, as expected from
physical principles. f is the Green’s function for the evolution of a t-channel BFKL gluon
exchange evolving the transverse momentum from q,; to qp;. Described like this, it

should be symmetric under the exchange of the two transverse momenta.

2.3 Dijet Production and BFKL

It is possible to push the analytic solution even further to find a closed expression for the
full partonic dijet production of Eq. (2.44) including the full effects of the BFKL radiation.
By inserting Eq. (2.54) into Eq. (2.44) and integrating p,; and pp; above some cut-off
DL min one finds[19]

2,712 ot oo
. asCim o1 1
Ggg = 233_14. ] ¢_ § : 6znqSé;/oodz 2 1 T exp (2a;sxn(2)Ay) . (2.55)
min v — n——oo - 4

Performing the integral over the azimuthal angle, only the contribution from n = 0 sur-

vives, and we find

22 oo}
. oG 1 _
Ogg = 4pimin /— dZm‘ exp (2asxo(z)Ay) . (256)

This result for the dijet BFKL cross section as a function of the rapidity separation Ay
is compared to the prediction in the HE limit of pure dijet production (2.14) in Fig. 2.6.
Expanding xo(z) around the saddle point at z = 0 we find







Section 2.4. Problems of the BFKL Solution 41

2.4 Problems of the BFKL Solution

The exponential rise in the partonic cross section is one of the most dramatic predictions
derived from the BFKL equation. However, as we will discuss in this section, it is not
obvious that this seemingly bulletproof signature of BFKL is a precision observable, since
an additional dependence on the rapidity separation is introduced into the hadronic cross
section by including the parton density functions. Traditionally, when calculating BFKL
predictions, the pdfs are estimated by their values at the leading approximations of the
parton momentum fractions implicit in Eq. (2.19), and at a Q? similar to the lower bound
on the transverse momentum of the dijets. The hadronic cross section for dijet production

is therefore often written as (see e.g. Ref. [20])

do 0c7..0 .2 0a/..0 2 dd4q(Ay)
= an(m » D min)m S(QZ » P min) g ’ (259)
d°po. 2P dyadys @ FLmin e Emin) q2p | d2pyy
with
20 = Pal v z) = Zﬂe—yb’ (2.60)

Y Vs
and S(z, u?) the effective pdf given by Eq. (1.58). While the leading logarithmic approxi-
mation might be valid for the hard scattering matrix element, it will only be valid for the
pdfs as well if they are slowly varying in the relevant region of z. This is certainly not the
case for BFKL searches in dijet production at present colliders, where medium to large
values of z (0.01 < z < 0.6) of the dominating gluon distribution are being probed (at
large z, the gluon pdf is falling off approximately as (1 — z)7).

Recognising the problem of the pdf dependence, other observables have been suggested
in the search for BFKL signatures. Among these is the average azimuthal angle between
the two leading jets [19, 23]. It is the hope that most of the pdf dependence cancels in
forming the average. With Cy,(t) given by by the last integral of Eq. (2.55)

1 [ dz
)= — | —— exp (2dsxn(2)Ay), 2.61
0= |y oo (261)

it is found[19, 24] that the average dijet azimuthal angle A¢ = |¢; — ¢o| — 7 is given by

C1(2)
Co(t)

{cos Ag)(Ay) = (2.62)

with ¢ = a,Ay. Based on this prediction it is seen that as Ay — oo the dijets become
completely uncorrelated in azimuthal angle, because of all the extra BFKL gluons being
emitted. However, even if the pdf dependence would cancel to a large extent in forming
this ratio, it is clear that as the edge of available phase space is approached when Ay — oo

(or rather Ay — 11 for the LHC with a minimum transverse momentum of the dijets of
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20 GeV), the amount of BFKL radiation will decrease (due to lack of phase space) and
therefore the dijets should return to the LO back to back configuration. This feature will
be completely missed if the Bjorken zs are evaluated using only the kinematics of the dijets
and not including the full contribution from all the BFKL gluons. However, it is also clear
that by the very nature of the fully inclusive solution of the partonic BFKL equation (2.54),
the information on the number of BFKL gluons emitted and their respective momenta is
lost. Therefore, with the analytic solution to the BFKL equation it is not possible to take
into account the energy consumed by the BFKL gluons when it comes to evaluating the
total centre of mass energy of the collision. In other words, using the analytic solution
to the BFKL equation, the BFKL gluons are emitted at no cost in energy. Although the
terms neglected are formally subleading, their numerical impact might be considerable at

present day colliders.

2.5 Reformulation of the BFKL Solution

Summing up the discussion of the last few sections we remind the reader of the following

facts of the analytic LL BFKL approach

1. The LL BFKL resummation is performed at fixed coupling constant, and thus
any variation in the scale at which «; is evaluated appears in the next-to-leading-

logarithmic (NLL) terms.

2. Because of the strong rapidity ordering, any two-parton invariant mass is large. Thus
there are no collinear divergences in the LL. BFKL resummation; jets are determined

only at LO and accordingly have a trivial structure.

3. Energy and longitudinal momentum are not conserved, and since the momentum
fractions z of the incoming partons are reconstructed from the kinematic variables
of the outgoing partons, the BFKL theory can severely and systematically underesti-

mate the exact value of the z’s, and thus grossly overestimate the parton luminosities.

In fact, if n + 2 partons are produced, energy-momentum conservation gives

Vs Vs

n
1 bl _ kit
:vb=pLe y“+&e y”+Z :
-1 VS

n
kit o
Za zp._a’l eY¥e + Z:;_]__ e¥ 4 E il eYi
5 i=1
(2.63)
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The momentum fractions in the high-energy limit (2.60) are recovered by imposing the

strong rapidity ordering (2.18). However, the requirement z,,z; < 1 effectively imposes
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an upper limit on the transverse momentum integrals of the BFKL gluons, which has been
neglected in the analytic solution of the BFKL equation.

In an attempt to go beyond the analytic leading-logarithm BFKL results, a Monte
Carlo approach has been adopted [24, 25, 26]. The basic idea of the Monte Carlo BFKL
model is to solve the BFKL equation while maintaining kinematic information on each
radiated gluon. This is done by unfolding the integration over the rapidity-ordered BFKL
gluon phase space and introducing a resolution scale u to discriminate between resolved
and unresolved radiation. The latter combines with virtual corrections to form an IR safe
integral. Thus the solution to the BFKL equation is recast in terms of phase space integrals
for resolved gluon emissions, with form factors representing the net effect of unresolved
and virtual emissions. Besides addressing the first and last of points mentioned in the

list above, the BFKL MC therefore also allows for the details of the final state to be

investigated.

2.5.1 Solution for Fixed Coupling

By solving the BFKL equation (2.46) by iteration, which amounts to unfolding the sum-
mation over the intermediate radiated gluons and making their contributions explicit, it
is possible to include the effects of both the running coupling and the overall kinematic
constraints. It is also straightforward to implement the resulting iterated solution in an
event generator.

The first step in this procedure is to separate the k| integral in (2.46) into ‘resolved’
and ‘unresolved’ contributions, according to whether they lie above or below a small
transverse energy scale p. The scale p is assumed to be small compared to the other
relevant scales in the problem (the minimum transverse momentum p ;. for example).
The virtual and unresolved contributions are then combined into a single, finite integral.
The BFKL equation becomes

- 2
w f(Qat, qbL,w) = %5(2)((1@_ —qp1) + % /k2 i % F(Qar + k1,051, w)
L
qﬁl f(qal; QpL, w)
k2 + (qer +ky)? |
(2.64)

as [ d°k,
T T
1

l:f(QaJ_ + ki, qp,w) 0 — k%) —

This is just a rewriting of the integrals and is p~independent. The combined unre-
solved/virtual integral can now be simplified by noting that since for the unresolved

contribution ki & qg qu | by construction, the k; term in the argument of f can be
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neglected, giving
(w — w0(qa1)) f(Qas, b1, w)

1 ds ko - (265)
- -2-6(2)(qaL—qbl) + —/ — F(dar + ki, Q1 w)

where (see Appendix A).

& [ H m ] _ ( : )
== (p” —ky) — 4 =a;In{ 5. 2.66
oo =50 T PR s ey T e ) 0

Neglecting the k;—dependence in the unresolved integral obviously introduces some p-
dependence into the solution. This, however, turns out to be very weak for reasonable
choices of 4, and the p~dependence of the final result can be checked by simply varying p.
The virtual and unresolved contributions are now contained in wy and we are left with an
integral over resolved real gluons. We can now solve (2.65) iteratively. Since f depends
only on the rapidity separation, let us for simplicity assume that y, = Ay,yp = 0. The
solution for the general case can be obtained by simply shifting the rapidities after f has
been calculated. By iterating (remembering that wy depends on the first argument of f
relevant in each step of the iteration) and performing the inverse transform we quickly

find

o0

flaa,a51,89) = Y F™(qar, b1, Ay) - (2.67)
=0
where
FO(Qar, ap1, Ay) = [ﬁ;—} v 150 N Qar — ab1),
9ot 2
F72(Qas, @1, Ay) = 2*2 {f[ k) dy; } %5(2)(qu — QL - gku),

(a1 + Zz 1kj1)? s
) .

0(k?) — 1?) 0(yi-1 — i)
CHIED e

(2.68)
The form of f(*) is found by performing the inverse transform of the m’th (m > n) iterative
solution to Eq. (2.65) and picking out the n’th term. For example we find f(® as

1
2mi ¥

= '2‘6(2)(Qal — qp1 )Res <

ctioo ~
/ dw exp(wAy) fO(qar, qb1,w)

—%00
exp(wAy) >
- ,Wp
w — Wy

FOquy, qpr, Ay) =

(2.69)

3

2 }ozsC}aAy/7r

1
= 55(2)(qal — Qp1) [E
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where Re(c) < wg, and Res(f(z), o) is the residue of f at zg. Thus the solution to the
BFKL equation is recast in terms of phase space integrals for resolved gluon emissions,
with form factors representing the net effect of unresolved and virtual emissions. In this
way, each f(® depends on the resolution parameter i, whereas the full sum f does not.
Changing p simply shifts parts of the cross section from one f(™ to another. We will
present the result of the numerical evaluation of the integrals in Chapter 4. Here we will
Jjust mention that for a choice of p) i, = 20 GeV, choosing 1 = 1 GeV will guarantee the
result to be close to the p — 0 GeV limit, and at the same time the number of resolved
gluons to integrate over is kept manageable. Lowering u will obviously increase the number
of resolved gluons in the sum (2.67). The strong ordering of the rapidities for the gluons
emitted along the BFKL chain is made explicit in Eq. (2.68) by the 6(y;_; —y;)—functionals.

It is interesting to note that the leading order in oy result of the HE limit with

f(Qai,qQpr,Ay) = %5(2)(qal — gp1 ) has been modified by a form factor

2 7asAy
[“TJ <1 (2.70)
Qg1

This is underlining the fact that the enhancement of the cross section found by including
BFKL evolution of the t—channel gluon exchange requires gluons to be radiated and fill
the rapidity interval separating the two leading dijets. Compared to the case of LO
dijet production, the BFKL cross section with the extra requirement that no gluons are
radiated between the dijets is reduced by the form factor of Eq. (2.70). This, as well as

the corresponding form factors arising in the terms of multi-gluon emissions

[(Qai + 30 kj_L)Z} ot (2.71)
(ot + 25 k)2 ] '

is a consequence of the summation of unresolved gluon radiation in the relevant rapidity
intervals. With the solution in the form of Eq. (2.68) it is easy to see that when Ay — 0,
the LO configuration is obtained with the jets back to back and the correct normalisation.

But as soon as Ay > 0, the rapidity interval is filled with BFKL radiation, gradually

reducing the azimuthal correlation between the leading dijets.
It is also worth noting that the symmetry between q,; and qp, apparently is broken in
this new solution to the BFKL equation. However, this asymmetry is only apparent, and

it can be tested by explicit numerical calculations that the final result is indeed symmetric

in q,; and qp; .

2.5.2 Solution for Running Coupling

The treatment in the last section is valid when the coupling a; is kept fixed, as required

by the LL formulation of BFKL. The running of the coupling enters in the NLL piece
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of the BFKL kernel, an area of active research over the past 10 years. It is found that
the NLL contribution to the BFKL kernel can be split into a part from the running of
the coupling, and a part from “genuine” NLL corrections. The effects of the running
of the coupling are expected to be sizeable and possibly even dominate in the region of
phase space relevant for dijet production. We can estimate the effects of introducing the
running of the coupling into the BFKL kernel simply by moving the factors of a; in the
modified BFKL equation (2.64) inside the momentum integrals. Potentially this could
lead to problems with the divergence of the coupling in the infrared region, and we will
therefore have to regulate this behaviour. We will however later see that the dependence
on the infrared behaviour of the coupling is very weak, as long as suitable cuts are placed
on qq,qs1- We will choose to introduce the lowest order running of the coupling since
this is what will be introduced by the NLL terms of the BFKL equation. Therefore, the
coupling evaluated at the scale qi is given by

1

as(ql) = b /A2 (2.72)

with b = By of Eq. (1.46) (Ny = 4, and we will choose A = 200MeV). We will simply

regulate the behaviour at q_2L — 0 by freezing the value of o at some scale Qo > A

ao = s(QF) for i <QF

(2.73)
os(q?) for ¢% > Q3

In practice, we will often choose to freeze the evolution of the coupling below scales
resulting in as(g?) > 1, so ap = 1, but as already mentioned we will see that the results
are insensitive to any reasonable choice.

Including the running of the coupling and splitting the integration region into a resolved

and unresolved phase space, the BFKL equation becomes

d’k; as(k2)C -
1 (k) Af(QaJ_'*'k.L;CIbJ_:w)

- 1
w f(an_; qu_aw) = 5 5(2)((111_1_ - Qb.L) T ~/k2 2 k2 w2
Lo L

d’k; as(k)Ch | - 2 2 62, f(dal,abL,w)
k ) —k7) — =% .
(2.74)

Approximating again f(qq1 + ki, qs1,w) by f(Qa1,qs1,w) in the last integral over the
unresolved phase space we rewrite Eq. (2.74) as

- 1
(w—wo(Qa1)) f(Qas,qpL,w) = 3 6D (qar — abr)

A’k os(k2)C -
+/ 2_]_ s( _5) Af

(2.75)

(Qer + ki, qp1,w),
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where we have assumed Q3 < u?, and

deJ_ as(ki)C}g [ 2 2 q2_|_
wo(Qa1) = O(p” — k1) — 5
( a ) ki 7T2 ( _L) ki‘i‘(Qa_L+kJ_)2 (2 76)
_ Q41 <&s(q¢21_L))
= ol =55
b as(p?)
with
Q) %0b 2 2
fi <
&s(cﬁ_) = a0 (q.L) or L= QO . (2,77)

as(q? for ¢} > Q}

The problem is put in exactly the same form as in the previous case with a constant
coupling, with just a different wy(q,) ) and therefore different form factors. Following the
same path for finding the solution as for the constant coupling, we write the solution for

f in the form

f(qaL$ LS Ay) = Z f(n) (an_7 qpl s Ay) . (278)
n=0
where now
~ 9 \1CGiAy/(wb)
(0) _ [slea)) L@y, _
F Y (Qar, abr, Ay) [ 32 50 (dar — 1) (2.79)
and

>1 &S(qz ) GalAy/(mb) ((n \
£ (Qar, b, Ay) = [ oL } H/d k; ) dy; F;
i=1

&S(Nz)
1 o n
. 55( Nt — apL — ;ku) (2.80)
~ i Gayi/(mb)
Fi= —as(ki)alﬂ(kfﬂ ~ 1)0(yi-1 — us) Fo((dot + 351 ki )) "
k) ' &s((Qar + 2577 kjin)?)

A consistent use of the running of the coupling would require the coupling also to run in
the impact factors at either end of the chain. Without BFKL evolution of the t—channel
gluon, running coupling effects in the impact factors would result in a LO HE prediction
(for similar cuts) lying below the black line of Fig. 2.6, since «; there has been evaluated at
P1min- There is no immediate analytic result available in the literature to compare with the
numerical solution of Egs. (2.79)-(2.80), although some research into the introduction of a

running coupling to the LL BFKL evolution has been undertaken (see e.g. Ref. [27, 28]).



‘Chapter 3

Monte Carlo Techniques

In this chapter we will discuss techniques for an efficient numerical evaluation of the in-
tegrals Eq. (2.67)-(2.68) and Eq. (2.79)-(2.80) arising from the rewriting of the BFKL
equation by the introduction of a resolution scale. We will take a slightly sloppy defini-
tion of the term efficient to mean fast and stable. By fast we will generally mean that
the numerical integration will require few evaluations of the integrand, while stable im-
plies that the estimated numerical value of the integral converges to the correct result,
and the estimated uncertainty of the numerical integral is reliable during the process of
convergence.

We will start the discussion by a short review of integration of one-dimensional func-
tions, which will serve as a background to the solution of the problem at hand, namely the
numerical integration of multi-dimensional functions. Finding the solution for the BFKL
evolution will typically require integration over a function depending on 24 to 60 variables
(three for every BFKL gluon emitted in addition to what is needed for the LO process).
It will turn out that many of the neat tricks for numerical integration of one-dimensional
functions will not work in multiple dimensions, and we will therefore apply the technique
of Monte Carlo integration, which, just as most other numerical integration algorithms,
relies on the fact that the average value of a function is given by the integral over a domain
divided by its area (or generally volume). The Monte Carlo procedure makes extensive use
of the generation of (pseudo-) random numbers. Finally we will discuss how the numerical
evaluation of multi-dimensional integrals can be parallelised to run on multiple computers
simultaneously, thereby reducing the real time necessary to obtain a reliable estimate of

an integral.

48
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3.1 Numerical Integration in One Dimension

We will start the discussion of numerical integration by briefly reviewing some standard

solutions to the problem of obtaining a numerical evaluation of the integral

b
I=/ dz f(z). (3.1)

Many of these are related in one way or another to the relation between the integral in

Eq. (3.1) and the average value (f(z)) of f on the interval [a, b]

b
Ju 42 (@) (3.2)

b—a

(f(@))zelat) =

The first few standard methods for the numerical evaluation use equally spaced points for

the evaluation of the integrand given by

(3.3)

Zn=a+(n—-1)h, n=12,...,N, h=
We will also make use of the notation
fn = fzp). (3.4)

Using all of this, the Trapezoidal rule for estimating the integral (3.1) reads (see e.g.
Ref. [29])

I=h (%fl " %b) + O™, (3.5)

where f” denotes the second derivate of f evaluated somewhere in the interval. As in-
dicated by the behaviour of the remainder, this formula will integrate any first order
polynomial (a straight line) exactly. Furthermore, this formula clearly displays the rela-
tion of Eq. (3.2). The equally well known Simpson’s rule, evaluating f at three points in

the interval, states
_ 1 4 1 5 ¢(4)
I_h<3f1+3f2+3f3>+(’)(hf ) (3.6)

We see here that the three evaluation of the function are given different weights in the
calculation of the average of the function. Simpson’s rule will integrate any third order

polynomial exactly.
Both the trapezoidal and Simpson’s rule can be applied iteratively to subdivide the

interval [a, b]. The result for the composite trapezoidal rule is

—_ \3 £/
r=h (S hrnrs s gm) o (S5 0) 0 e
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displaying explicitly the dependence of the error estimate on the number evaluations of

the function. The composite Simpsons rule reads
1 4 2 4 2 4 1
T=hl ot ctyt 2 fad oty bt 2 fven b —Fyog+ = O(N* 3.8
(3f1+3f2+3f3+3f4+ +3fn-2+3fN 1+3fN)+ (N1, (338)

where we have indicated the dependence of the error on N only. N here has to be odd
and greater than one, since Eq. (3.8) is derived by applying Eq. (3.6) to non-overlapping
subintervals of the interval [a, b].

Much more sophisticated methods of numerical integrations exists; among other the
Gaussian quadratures which will integrate exactly polynomials of remarkably high order
for a given number of functional evaluations. In fact, the Gaussian quadratures can, for
a given number of abscissas N, be tailored to integrate exactly any function consisting
of the product of polynomials of order 2N — 1 and a function W(z), which has to fulfill
certain analyticity requirements. This very high degree of polynomials integrated exactly
is obtained by a clever choice of the position of the abscissas and weights, based on finding

the roots of a orthonormal set of polynomials with respect to the inner product

b
(7lg) = | deW(@)1(@)g(o) (3.9)

For a given N, the integral is then estimated by
b N
[ ew@@ 3wt (3.10)
a ]=1

where the error is a function of the 2N ’th derivative evaluated somewhere in the integration
interval.

The last method we would like to introduce for evaluating integrals numerically may
seem very crude compared to the methods already presented, but it will nevertheless
prove superior in higher dimensions. The method is based on the simple formula Eq. (3.2)
relating the average of the function in an interval [a, b] to the integral over the same interval,
and is called the Monte Carlo method. It simply consists of evaluating the function f at
random points in the interval. As long as the distribution of random numbers in the
interval is flat, the central limit theorem guarantees that the integral estimated in this

way will converge to the right value

/bdxle(ﬁil W (3.11)

with [ the length of the interval, | = (b — a), and

1 & 1 &
Nl=x > fz), (A= N > ). (3.12)
i=1 i=1
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It is seen that the error estimate behaves like N~1/2 and therefore the method generally
converges far slower than any of the other methods mentioned so far. Also, there is no
guarantee that the error is distributed as a Gaussian, and the estimate should therefore
only be taken for what it is: an estimate of the error. If the estimates obtained were

distributed according to a Gaussian, then the error estimate would correspond to the one

standard deviation.

3.2 Numerical Integration in n > 2 Dimensions

Numerical integration in multiple dimensions is significantly harder than its one-dimen-
sional counterpart. First of all, the required number of function evaluations to reach a
certain accuracy grows with the power of the dimension D for any of the methods based
on abscissas placed along the coordinate axes. Therefore, in D dimensions the generalised
trapezoidal rule will have an error estimate behaving like O (N -2/ D) while Simpson’s
rule converges slightly faster as O (N -4/D ), with N the total number of evaluations of
the integrand. Secondly, the integration domain can be arbitrarily complicated and is in
general no longer described by just the endpoints of intervals. This problem significantly
complicates the use of any of the methods that work so well for one-dimensional integrals.

The Monte Carlo method generalised to n dimensions still converges according to the
Central Limit theorem, i.e. with an error estimate decreasing as N ~3. This means that for
sufficiently high number of dimensions of the integral, the Monte Carlo method will conver-
gence faster than any of the other methods. For multiple dimensions the straightforward

generalisation of the Monte Carlo estimate of the integral is given by

/de%V(f):i:V M, ' (3.13)
v N

—IEN: ; 2—1§Nj2- 3.14
(f)—ﬁi=1 flz:), (f)—ﬁiﬂf (zi)- (3.14)

where V is the volume to integrate over. Apart from the faster convergence in higher
dimensions, the Monte Carlo methods benefit from the ease of implementing complicated
integration domains. As long as there is a way of testing whether a given point lies within
the boundaries, the random points can be generated in a domain fully containing the
integration domain, and the value of the function is then set to zero if the sampled point

happens to lie outside the integration domain. This simply corresponds to the rewriting

of the integral

/Vde _ /W da flv, (3.15)
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with V' C W. The reason that this does not work for other integration routines is that
simply constraining f to have non-zero values in V spoils some of the analyticity properties
on W assumed in the derivation of the methods (f|y will generally not be smooth on W).
W should obviously be chosen to be not too much bigger than V. This is because the
domain W \ V will increase the error estimate in Eq. (3.11) (now with W substituted for
V). Sample points in this region will not reduce the variance, but the volume has been
increased.

So far we have not been concerned about the generator of the random numbers used
in the Monte Carlo algorithm. It is however apparent that the higher the dimensionality
of the problem, the more requirements the random number generator has to fulfil for the
algorithm to work well. Consider for example a one—dimensional problem on the interval
[0,1]. If the random numbers are taken from the string (z1,1 — z1,22,1 — z2,...) with
Z1,T3,... random, then the Monte Carlo estimate of the integral will still converge to the
central value, since all which is required of the random numbers in the one dimensional
problem is that they are generated at equal probability in any sub-interval of the inte-
gration interval. However, if the same series is used in the two—dimensional problem on
[0,1] x [0,1] to generate the sample points (z,y), then the function f(z,y) will only be
sampled along the line y = 1 — z, which obviously will not generally result in a good
estimate of the average on the square. For multi-dimensional problems, it is therefore

necessary to worry about possible correlations between elements in the series of “random”

numbers.

3.3 Importance Sampling

In Eq. (3.13) the Monte Carlo error estimate is written in the form

Buc = 2MC (3.16)

\/N,

where opc is a Monte Carlo estimate of the standard deviation on the integration volume

J2=V/Vdﬂf2—(/vdﬂf>2, (3.17)

where V' denotes both the domain and the measure (size or volume) of the domain (in

of the integrand

a hopefully obvious notation). It is therefore possible to improve the convergence of the
Monte Carlo method by reducing the variance of the function. This can be done by clever
coordinate transformations, and is often called importance sampling since the coordinate
transformations which will improve the convergence will turn out to correspond to simply

sampling the integrand where it contributes the most to the integral.
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To be specific we will consider just a one—dimensional integral, we can think of picking

one of the many in the integral over V. The specific integral can then be rewritten

/abdxf(a:)zfabdxg(m) (%) :/abdxg(a:)h(a:), (3.18)

where to begin with the trick is to find a h(z) = f(z)/g(z) that is more slowly varying
than f (so that the variance is decreased). Obviously, just applying Eq. (3.18) as it stands

will not lead to any improvements. The trick is to make a change of variables and rewrite
the integral
b G(b)
[ degom@) = [ “ayn (6Vw), (3.19)
a G(a)

where dG(z)/dz = g(z) (the boundary condition is unimportant since any constant added
to G will just have to be subtracted from the inverse function G(-1). g(z) can be nor-

malised so that
b
/ dz g(z) =1, (3.20)
a

and the fundamental theorem for Monte Carlo integration then states that
b b
f(=z) <f($)> \/(f2($)/92(33)) — (f(=)/9(x))?
d:cfacz/dxgm—z ——)+ . 3.21
[ st = [ amater s ~ (505 N &2
Choosing g(z) = 1/l we recover Eq. (3.11). It can now be shown (see e.g. Ref.[30]) that

an optimal choice for g(z), i.e. one that reduces the variance the most, is one that is

proportional to |f(z)|. The method of importance sampling is however only useful, if the

following requirements are met
1. g(z) is non-negative in the region of integration

2. The function G(z), dG(z)/dz = g(z) must be known analytically. If the integral of
9(z) is normalised to 1, then G(z) can be chosen to vary between 0 and 1 (G(a) =

0, G(b) = 1), and G(z) will describe the probability of picking a z; with z; < z.

3. G(z) must be invertible (to be used in Eq. (3.19)), or it must be possible to generate

random numbers distributed as g(z).

Obviously, the function f(z)/g(x) has also to vary less than f(z) for the procedure to im-
prove the convergence properties of the numerical integration. These requirements severely
limits the applicability of importance sampling. First of all a detailed understanding of
the behaviour of the function f(z) on the interval of integration is necessary to choose
g(z). Secondly, this choice is constrained by the requirement that g(z) be integrable ana-

lytically and that the integral has an analytic inverse. The problem becomes even clearer
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when one remembers that we have set out to integrate f(z) numerically in the first place,
presumably since it is too complicated to integrate analytically. The optimal choice of
g(z) proportional to f(z) in this method would require us to be able to integrate f(z)
analytically in the first place. However, this paradox is not as bad as it might seem at
first, which we will illustrate by an example, which will also help to illustrate the method
in general.

Consider the integral

1+ exp(z
flz) = T()
1.0 1.0 (3.22)
/ de f(z) = [—e"p—(‘“) + Ei(x)] ~ 20.8514,
0.1 z 0.1
where Ei(z) is the exponential integral function
. *  exp(z) z z2 3
E — _ =1 e 2
i(z) / do B _ng g Eo g I Ty (3.23)

We have chosen a function which can actually be integrated (semi-)analytically, but in real
life physics examples this would generally not be the case. f(z) is plotted for the relevant
interval on Fig. 3.1. On the interval of integration, the most important behaviour is the
1/x? suppression, which can be integrated analytically with an analytic inverse. We will

therefore perform a change of variables according to the following choice (see Eq. (3.18))

o@)= 3o y=06) = -5, G =—, (3.24

where we have normalised g(z) according to Eq. (3.20). The integral of Eq. (3.22) is

therefore rewritten

/0.11.0 do £(&) = /0.110 dzz~? (14 exp(z)) = 9/;://;) dy (1 + exp <—%)) (3.25)

The new integrand (including the factor of 9) is plotted in Fig. 3.2. Comparing with f(z)
in Fig. 3.1 we see that the variance is significantly reduced. In fact, the variance can be

calculated analytically by Eq. (3.17) applied to one dimension

o?= l/bdac [f(2)]? - [/abd:vf(x)r. (3.26)

a
Using this we find that oy ~ 31.16 while o, = 2.63. Since the Monte Carlo algorithm
converges with an error estimate of o/ VN this means that the required accuracy will be
reached by a factor 140 fewer function evaluations by integrating h instead of f. This is
illustrated in Fig. 3.3, where we compare the Monte Carlo estimates for the integral of
Eq. (3.22) and Eq. (3.25) versus the number N of evaluations of the integrand. The error

estimates turn out maintain an almost constant factor of proportionality given by the












Section 3.4. Random Number Generators 58

example has also helped to highlight the connection between the change of variables in
the example of variance reduction of Eq. (3.19) and the concept of importance sampling
of Eq. (3.27). Importance sampling is simply a special case of variance reduction with a
coordinate transformation to the interval [0, 1].

Finally we should mention that there are other strategies for improving on the con-
vergence of the naive Monte Carlo like stratified sampling, and furthermore there are
standard programs like VEGAS([31] that applies adaptive Monte Carlo techniques to multi-
dimensional integrals. This is done by seeking out intervals of each variable contributing
most to the integral, and sample these areas more often (just like in importance sam-
pling). However, these algorithm converge very slowly for problems of higher dimensions
(say, more than 10 dimensions), since they have to first “learn” about the behaviour of
the integrand by sampling randomly, before they adapt the sampling grid. Certainly,
VEGAS proved completely inadequate for the problem at hand of evaluating numerically

the integrals arising in the BFKL solution.

3.4 Random Number Generators

The series of random numbers generated by the computer during a Monte Carlo integration
is often strictly speaking not random, but rather a deterministic series of numbers, which
mimic many of the properties of a truly random series. Such series are called pseudo-
random, and while it might at first seem strange to consciously choose not to use truly
random numbers gathered from e.g. radioactive decay experiments or electronic noise, it
does have its merits. It allows for the properties of the algorithm for the pseudo-random
number generator to be studied, and the same sequence of pseudo-random numbers can be
used for calculations over and over again, which can help in debugging. More importantly,
though, is the fact that it is possible to make sure that different random numbers are
being used if the calculation is split up to run on different computers, with the final result
being combined from each individual computer. We will discuss how to do this in the next
section.

The most basic multiplicative linear congruential pseudo-random number generators
constructs a series s; of integers in the interval [0, m — 1], where m is some (big) integer,
e.g. the biggest which can be represented by the computer. The float z; = s;/m will then
belong to the interval [0, 1[ (it is customary not to generate 1 in the series). Starting from

a seed s;, the next number in the pseudo-random series is then generated according to

the formula

si+1 = (as; +¢) mod m, (3.32)
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with a, ¢ integers. This formula highlights a potential problem of all deterministic random!
number generators running on a computer. The generator only has a finite number of
internal states (specified by s;), and so the series of numbers generated will repeat itself
after a given time (called the period). This is though a well understood problem, and far
from the worst faced by the linear congruential random number generators. While such
generators will indeed give a flat distribution of random numbers in the interval [0, 1[ with
only a small and negligible correlation between two consecutive points in the series, it was
realised that in higher dimensions the points sampled by these algorithms cluster together
in planes, thus sampling the n dimensions unevenly — much like the example of the series
(z1,(1 — z1),...) of Sec. 3.2.

We will therefore in our Monte Carlo routines choose a better random number gener-
ator called RANLUX [32, 33], which is based on the dynamics of a classical chaotic systems.
The properties of more advanced random number generators are generally less well un-
derstood than those of multiplicative linear congruential ones, but recent progress in the
understanding of RANLUX has been made. It has a very long period, and passes the by now
standard DIEHARD set of tests for a random number generator (which many linear con-
gruential generators fail). It is of course difficult to set up rigorous finite tests of random
number generators (since per definition you will only have tested a finite part of the series),
so instead of making sure to use a random number generator with no correlations between
elements, you have to just make sure not to use a random number generator that is known
to fail the tests. Another good random number generator is RAN2 of Ref.[29], which we
used at the beginning of our project. The CLHEP project[34] has implemented many of the
commonly used (and good!) random number generators, and using this framework it is
very easy to change from one generator to another, thus testing whether a result is just a

“statistical fluctuation” or real physics.

3.5 Parallelising Monte Carlo Calculations

There are several added benefits of the Monte Carlo method not mentioned previously.
Firstly, the estimate of the accuracy of the numerical integration can be calculated after
each evaluation of the function. This means that one can continue the numerical integra-
tion until a target accuracy has been met. While this is in principle also possible for say
the Gaussian Quadratures, all the previous evaluations of a function are thrown away if it
is decided that a higher accuracy is needed. This is because the positions of the abscissas

depend on the number of function evaluations and therefore on the accuracy requested (in

1n the context of pseudo-random number generators, we will use the word random to mean psedu-

random.
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fact, the position of the abscissas for a m + 1 point Gaussian quadrature lies in-between
the points for the m point evaluation method).

Secondly, and this is particularly important for applications in particle physics, once
a Monte Carlo integration of the cross section has been constructed, it is very easy to
calculate the differential distribution of any quantity derived from the event configuration.
If we let do/d2 describe the differential cross section for a process and z; being the four-
momenta of the participating particles, then we could imagine wanting to know how the
average total energy depended on the maximum rapidity separation between particles in
the ensemble. The total energy of the process is calculable from the four-momenta, and

the average is then given by

(s) = / d02s(z:)do/d0 / / d0do /d0. (3.33)

So far this would apply equally well to other approaches than Monte Carlo. However, the
Monte Carlo method excels when we come to ask for the differential distribution of (s) as
a function of the maximum rapidity separation y, which leads us to the concept of binning.
d(s)/dy can be found by simply calculating y for each of the phase space points sampled in
the Monte Carlo evaluation of the two integrals in Eq. (3.33) and then form the ratio bin
by bin. The differential quantity is then found in the limit of the bin width going to zero.
This is completely identical to the correspondence between differentials and derivatives.
For the Gaussian quadrature method, one would have to find the intervals contributing to
each bin for each and every integration variable and then tailor the integration routine to
them.

The binning process can be viewed as running the calculation for the integrated cross
section with different cuts for each bin. The contribution to bin n will come from a phase

space slice V,,, and the Monte Carlo estimates are given by

In=/Vnde=/def|Vn

%V(flv,,)viV\/<f2lV">V]\; (flva)¥ (3.34)

=V flv.v £ va)2lvn>‘zv— (Vflv,,)%,’

where we have found the last trivial rewriting particularly useful in constructing and

analysing the Monte Carlo algorithms.

Each generation of a set of momenta required to evaluate the differential cross section
at a certain point in phase space will use a certain number of random numbers, and the
generation of the phase space point is completely independent of the generation of the

previous and next phase space point. As long as a different set of random numbers is used



Section 3.5. Parallelising Monte Carlo Calculations 61

on each computer, the Monte Carlo estimate can therefore be formed from evaluations
of the integrand made on different computers. This is where it becomes useful that the
random number generators produce a series of numbers, and that the internal state of the
generator can be described by a few parameters. This means that we can start the Monte
Carlo calculation with different seeds to the random number generator and so run several
independent calculations simultaneously, and just make sure that the calculations stop
before the set of random numbers used in the calculations start to overlap. Practically
this is ensured by running once the random number generator and saving the status of
it for every say, 2 - 10° random numbers generated, and then making sure that each
individual calculation does not use more. The CLHEP framework proved to be very useful
in programming this solution.

If each of the distributed calculations perform the same number of evaluations, then
the central value (for any bin) for the combined result will be given by the average of the
Monte Carlo estimates (of the central value for any bin). We can also find the estimated
error on the combined calculation. Let us first rewrite the square of the error estimate for
a single calculation with N evaluations

(V2 lvalv = (VFlva)¥
N

—Z( it xz) ) <Z Vo xz>2’ (3.35)

ieN ieN

where N is the set of configurations ¢ of the random number generator contributing to

E? =

the Monte Carlo estimate (for the simple random number generators, ¢ is an integer and
N is a set of such), and x; is the set of four-momenta corresponding to a specific choice
of random numbers. N is the number of different configurations in N, i.e. the number of
“events” generated. Now, if we add together two independent calculations each consisting
of the same number N of evaluations we find with N; = 2N being the total number of

function evaluations

E? = Z (%f'VH(xi)>2+ Z (%f’w("‘ﬂ)2

€N 1EN?
2 (3.36)
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These formula are easily generalised to the case of combining more than two calculations.
Since the sums depend on N, the number of events generated in each calculation, this
formula shows how it is not necessary to decide how many independent calculations have
to be performed when they are started. If after say 10 independent calculations each of
10° events the error is still not sufficiently small, one can start the next ten calculations
and add the result in the end. It is seen from Eq. (3.36) that the leading contribution to
the error is the sum of the squares, and that the term consisting of the square of the sum
is suppressed by the number of evaluations. Therefore this last term is often dropped in
the estimation of the error (which anyway assumes a Gaussian distribution of the errors),

but we have left it in for completion.



Chapter 4

Dijet Production and BFKL

In the previous chapters we have developed the formalism and techniques necessary for
implementing a Monte Carlo for the BFKL evolution of a t—channel gluon exchange. In this
chapter we will present some results for dijet production obtained using this approach. The
BFKL Monte Carlo will allow for energy and momentum conservation to be incorporated,
which was the main motivation for constructing it. It will, as we will see, also help answer
questions about the event topology, and help shed light on the question of the relevant scale
for a; for the fixed coupling BFKL exchange. We will start by studying the characteristics
of partonic cross section and then study the impact of the energy conservation on the
hadronic dijet cross section at the LHC and the Tevatron. Finally, we present a study on

Mueller—Navelet dijet ratios at the Tevatron published in Ref.[35].

4.1 Characteristics of the Partonic Cross Section

The first valid question to ask is if the BFKL Monte Carlo approach with fixed coupling
reproduces the known solution of Eq. (2.56) to the BFKL equation for partonic dijet
production. In Fig. 4.1 we compare the predictions of the analytic BFKL solution plotted
in Fig. 2.6 with that obtained from the Monte Carlo reformulation with a p = 1 GeV
and extending the sum over resolved gluons n to 20 (we will later see that these are
sensible choices). The red crosses are obtained using the Monte Carlo approach on the
fixed order solution of Egs. (2.67)-(2.68) (with the same value.of ¢ as in Fig. 2.6) whereas
the green circles are obtained using a running coupling in the BFKL chain with a value of
A =200 GeV, Ny = 4 and freezing the running at a scale corresponding to as(Q3) = 1.
In the last case, the running coupling is also applied to the impact factors, which is why
the green circles do not line up with the black lines in the Ay — 0 limit. This is the

limit where the BFKL effects vanish (since there is no rapidity—ordered phase space for
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Cross section vs. rapidity difference
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Figure 4.1: The cross section for partonic dijet production including the prediction from the
analytic solution to the BFKL equation (black rising line), the Monte Carlo fixed

(red crosses) and running (green circles) coupling solution. a, = 0.164.

gluon emission) and the LO result is regained. We see that the iterative solution to the
BFKL equation and the subsequent Monte Carlo implementation agrees very well with
the analytic result. In fact the two results are indistinguishable. Unfortunately there is no
analytic prediction available in the literature for dijet production in the case of LL BFKL
supplemented by a running coupling (although it may be possible to obtain such a result
from the work in Ref.[27]). Both Monte Carlo results are obtained within a reasonable
running time corresponding to about 5-10 CPUminutes for every point. Understanding
the behaviour of the nested integrals of rapidities proved to be the key in constructing
a efficient importance sampling routine that allows a fast integration over the rapidity
ordered multi—gluon phase space (see Appendix B).

In Fig. 4.2 we have fixed the rapidity separation between the leading dijets at Ay =3
and also zoomed in on values of the differential dijet cross section between 0.55ub and
0.65ub. The cross section is seen to be only weakly dependent on the choice of y, in fact
varying p between 0.2 GeV and 7 GeV only leads to a variation in the predicted cross

section of 12% for this particular choice of the coupling, rapidity difference and minimal
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Figure 4.2: The p-dependence of the Monte Carlo prediction for the partonic dijet cross section

including BFKL evolution at Ay = 3.

transverse momenta of the leading dijets (20 GeV). All the results presented in this chapter
are calculated with a choice of 4 = 1 GeV, and from Figs. 4.1-4.2 we see that this is indeed
a good choice. In fact one could have chosen p slightly bigger and still have obtained a valid
result. The benefits thereby would be that the average dimension of the resolved gluon
phase space would be reduced (fewer BFKL gluons passing the higher cut on transverse
momenta are emitted), but since the running time of the numerical integration routine is

not a problem we will just choose 1 =1 GeV.

4.1.1 Radiation from the BFKL chain

Having justified that the reformulation of the solution to the BFKL equation does repro-
duce the known analytic solution, we can now begin to ask more detailed questions, where
the answer is not known beforehand. Let us first study how the solution to the Monte
Carlo BFKL is distributed on the different number of resolved gluons. This is plotted
in Fig. 4.3 for the standard choice of the resolution scale 4 = 1 GeV and for different
choices of the rapidity separation between the leading dijets. Each curve integrates to

give the cross section at the specific choice of rapidity separation. This figure shows that
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The contribution from the BFKL radiation to the centre of mass energy is formally
subleading compared to the contribution from the leading dijets. Indeed we see in Fig. 4.6
that asymptotically (which is reached fast), the two curves have the same slope, even
though they are offset by about 1.5 units of rapidity. This means that the kinematic limit
of dijet production with BFKL evolution at hadron colliders is reached 1.5 units of rapidity
before an estimate based on only the energy of the leading dijets. The rapid decrease of
the pdfs as the kinematic limit is approached means that the horizontal lines of interest
for a given hadron collider lie considerably lower than the lines indicated on the figure.
Therefore, the effect of including the contribution from the BFKL radiation in the energy
and momentum conservation is bigger than it may seem at first glance. When considering
the implications on the cross section it must also be remembered that the BFKL evolution
predicts an exponential rise with the rapidity span Ay. Therefore, effectively reducing the
available rapidity span has a big impact on the prediction for the cross section.

We can see explicitly why the two curves in Fig. 4.6 have the same asymptotic be-
haviour. We have already seen that the radiation from the BFKL chain is distributed
evenly in rapidity along the chain. We can approximate the Bjorken z’s given by Eq. (2.16)
by assuming that all the k,; are equal to k and that the gluons are distributed evenly
spaced over the rapidity span Ay, separated by Ay;. The Bjorken z's for the 2 — n
scattering then become (with y = e™®¥% and assuming that yo + yn = 0. The centre of

mass energy is independent of this last assumption)

v Ay/2 2 v Ay/21 y !
xa—mb—\/,e (1+y+y y) \/_6 (4 )

In the large Ay limit, n — oo when the radiation is evenly spaced. Therefore we find in
the large Ay limit

1
a 2_A
Sk e ym)—Q, (42)

which has to be compared with the pure dijet prediction § « k%e®¥ with the same de-
pendence on Ay. It is radiation from the region of the chain close to the endpoints that
contribute the most to 3, since the middle part of the chain will give exponentially sup-
pressed contributions to the energy (this is just a refinement of the asymptotic argument
for dropping the contribution from the chain all together). This is why asymptotically
there is only a difference in the normalisation and not the shape of the two curves in
Fig. 4.6. From Eq. (4.2) we see that the smaller Ay;, the bigger the difference in normal-
isation. A small Ay; can be achieved by increasing a;, thereby increasing the amount of
radiation in the region close to the endpoints of the chain.

The observation that there is insufficient energy available at present day colliders for

all the BFKL radiation resummed in the analytic approach has led some to introduce
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reduced effective rapidity separations [38] to be used when making phenomenological pre-
dictions of BFKL signatures for comparison with data. The idea behind this is simply to
somehow emulate the reduction of phase space for BFKL radiation dictated by energy and
momentum conservation by reducing the rapidity span Ay that is fed into the solution to
the BFKL equation. It should be clear that the available BFKL Monte Carlo takes such
effects into account exactly (the reduction in effective rapidity separations were estimated

using the BFKL Monte Carlo approach of Ref.[25]).

4.1.3 The Running Coupling Case

In this section we will compare the results obtained in the Monte Carlo formalism incorpo-
rating the running of the coupling to that of the fixed coupling case of the previous section.
The introduction of the running of the coupling leads to a significant overall increase in
the number of gluons being emitted for a given rapidity span of the chain compared to
the fixed coupling scenario, see Fig. 4.7-4.8. This, of course, is partly due to the choice
of scale for the coupling in the constant coupling case. A lower renormalisation scale
would have led to more radiation. Fig. 4.8 is very interesting in that it shows that the LL
prediction of a uniform distribution of the BFKL radiation along the chain is changed in
the running coupling case. There is increased activity at the ends of the chain before a
plateau of activity is reached about 1.5 units of rapidity from the ends (at least for the
Ay = 7 case). We also see that most of the additional radiation is soft, and so the number
density of “harder” BFKL gluons emitted at the plateau is not much different from the
fixed coupling case, although again the endpoints show increased radiation also of harder
gluons. This effect is still being investigated. In Fig. 4.10 we see that (3) for the running
coupling case grows faster than for the constant coupling case. This is a consequence of
the bigger number of gluons radiated (and therefore the slower growth of (3) for the con-
stant coupling case is a consequence of the chosen lower value of the coupling). However,
we also see that asymptotically, the two subleading effects (first of all the effects of the
running of the coupling, and secondly the effects of the gluon radiation on the centre of
mass energy) are less pronounced, and the slope of the running coupling curve becomes
similar to the slope of the leading dijet curve. The reason for the running coupling curve
to start lower than the leading order fixed coupling one is that the transverse momentum

spectrum is softer in the running coupling case.

4.1.4 The Relevant Scale of a, in the BFKL Chain

In this section we will investigate which choices of scale for evaluating the coupling can

" be considered sensible in the constant coupling BFKL formalism. Since the Monte Carlo
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Therefore, perhaps the contributions to the plot should be weighted, so that each event
configuration only contributes according to its contribution to the cross section, instead
of the contribution to the cross section times the number of BFKL gluons (+1) in the
event. This could perhaps also help to make a more direct relation between the shape
of the figure and the amount of radiation. For example, we know from Fig. 4.9 that the

density of emitted gluons is constant along the chain, which is not at all apparent from

Fig. 4.11.

4.2 The Hadronic Cross Section

Until now we have been concerned solely with the partonic cross section. It is now time
to consider the impact of taking into account the energy taken up by the BFKL radiation.

We assume factorisation and the differential hadronic cross section is then given by
do = o f(Ta, i} Tof (26, %) 45, (44)

with z,, zp given by Eq. (2.63). We will choose a factorisation scale of up = (pa1 +pb1)/2-
The cross sections in Eq. (4.4) are differentials with respect to the phase space of all
involved particles. In the standard analytic approach to BFKL, the partonic cross section
has already been integrated over the BFKL radiation, so the factorisation formula of

Eq. (4.4) for dijet production is often approximated- by [19, 20, 23]

do 0a(.0 .2 0ar.0 .2 dégg(Ay)
=T S(xmp in)m S(:E » D min) ) 45)
d*pa1d®pordyedyy Lmin/Ep TR Ehmin 2, | d2py. (
where Sg(z, pur) is the effective pdf of Eq. (1.58), and
0 _ Pal v o) = Ple-w (4.6)

Zg \/E ) b \/g
are the Bjorken parton momentum fractions in the high-energy limit. a and b label the for-
ward and backward outgoing jet, respectively (except in the Bjorken momentum fractions,
where a,b label the incoming gluons). The reason for choosing the minimum transverse
momentum for the leading dijets as the factorisation scale is that the partonic cross sec-
tion will be dominated by this region of phase space. Sometimes the Bjorken z’s are
approximated by the exact 2 — 2 scattering form of Eq. (1.57). Whichever of these last
two approximations are chosen, the BFKL gluons are emitted at no cost in energy or
longitudinal momentum of the incoming partons. This is because in the high-energy limit,
the scattering cross section with BFKL evolution when written on the following form has
already been integrated over the BFKL gluon phase space

dﬁgg(Ay) [CAQS} Caoa,
= f(Qar,qap,, Ay . 4.7
d?pard®ps. P, ( b1s B9) Phy @7
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Figure 4.13: The hadronic dijet cross section for running coupling. The cuts are the same as
those used in Fig. 4.12. The predictions using only the leading contribution to the
parton momentum fractions has been left out, since the running coupling is only
implemented in the BFKL MC, and therefore there is no analytic calculation to

compare with.

very steeply falling in z for the region in x of interest. This means that even the slightest
change in z has a dramatic impact on the parton flux. The leading-order QCD prediction
for the hadronic dijet cross section is therefore only slightly modified when including BFKL
evolution of the t-channel gluon to an almost no-change situation at the LHC. Note that
the overall normalisation of the LL. BFKL cross section is questionable, since first of all
the relevant scale for evaluating the coupling might well be different from the chosen scale
of the transverse momentum of the leading dijets. Secondly, we have not at all discussed
the (related) variation of the results with varying renormalisation scale. Therefore, the
relevant question to ask is not if the BFKL predictions lie slightly above or below the LO
predictions, but whether a different shape in the distributions is predicted.

It turns out that dijet production with a simple cut on the minimum transverse mo-
mentum of the jets is extremely infra-red sensitive due to incomplete cancellations of
higher order virtual and real corrections on the region of phase space where both jets are
close to the lower limit [40]. This problem will be discussed further in Sec. 4.3.4. Here
we will just note that the curves in Fig. 4.12— 4.13 have been produced with a lower cut

on the transverse momenta of the dijets and a lower cut on the sum of the size of the

transverse momenta
Dal,Pbl > Plmins Pal + Pl > 2P1imin + 6. (4.8)

While at leading order this effectively amounts to just one single cut on the transverse
momenta, it has a different effect for higher order corrections and for the BFKL prediction.
With the expected fingerprint of BFKL, the exponential rise of the cross section with

increasing rapidity separation between the leading dijets, completely annihilated by the
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section we will discuss an observable less sensitive to the steepness of the gluon pdf.

4.2.1 Angular Decorrelation

The leading dijets will at leading order be back-to-back. However, the distribution of
the azimuthal angle between the jets is smeared by gluon radiation and by hadronisation.
Part of the gluon radiation originates from the mechanism responsible for BFKL effects,
namely from gluon radiation in the rapidity interval between the jets. Accordingly, the
transverse momentum imbalance [23, 41] and the azimuthal angle decorrelation [19, 23,
- 24, 38, 42] have been proposed as observables sensitive to BFKL effects, even when the
pdf suppression is taken into account. This is because that the pdf dependence to some
extent will cancel in forming the ratio when calculating the average azimuthal angle of the
leading dijets, and therefore the result will be closer to what is expected from the partonic
calculation. _

To be specific, we will study. the average azimuthal angle between the dijets as a
function of the rapidity difference between them. The partonic prediction can be calculated
analytically by use of the closed form Eq. (2.54) of the solution to the BFKL equation.
Although the pdfs will cancel to some extent for the full hadronic prediction, there is
still some residual dependence on the energy of the event. As the kinematic limit of
dijet production is neared, the event configuration must go back to the pure dijet case of
only two partons produced. This means that the leading dijets go back to the back—to—
back LO configuration. This feature will be completely missed in the analytic approach,
where the energy—consumption of the BFKL radiation is not taken into account. This will
potentially pose a big problem for the analytic approach, since it will first of all predict a
too big decorrelation between the dijets with increasing rapidity span of the BFKL chain,
and secondly it will predict this to continue to the kinematic limit. It is not clear a priori
in which region of rapidities the analytic prediction will be valid, since first “asymptotic
values” of the rapidity span has to be reached for the formalism to be valid, but these
“asymptotic values” cannot be too big in order not to be in conflict with the total energy
available at the collider. In essence, examining this problem is what the construction of
the Monte Carlo approach is all about.

It is clear that the LO prediction of the back—to—back dijets is very sensitive to higher
order corrections. It is also very sensitive to any cut in phase space that might spoil the
cancellation between virtual and real higher order corrections. Therefore, in Fig. 4.19 we
have plotted the average azimuthal angle between the leading dijets as a function of the
rapidity separation between them with the same cut on the sum of the transverse momenta
of the leading dijets mentioned earlier. We have plotted the numbers for both the case

of the asymptotic versions of the pmf and that of the exact form. A striking feature of
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Figure 4.19: The average azimuthal angle of the leading dijets as a function of the rapidity
separation between them. The black points is obtained using the exact form of the
parton momentum fractions, whereas the green points are those obtained using the
asymptotic version. The MC errors are underestimated on this plot, since the same
random numbers were used in forming the numerator and denominator of the of
relevant fraction, and therefore the respective errors are correlated. This was not

taken into account in calculating the MC errors of the figure.

the plot is the apparent linear decrease of the cosine of the average azimuthal angle with
increasing rapidity separation in the region of rapidity separation between roughly 2 and
6. This linear behaviour is expected if every extra unit of rapidity span is filled with the
same amount of radiation, which is exactly what the conclusion from the equivalent of
Fig. 4.18 for a short rapidity span, where the plateau of radiation is reached closer to the
ends of the chain. Therefore, one might argue that the BFKL evolution is relevant at the
LHC only for rapidity separations between say 2 (before Asymptotia is reached) and say
6-7 (where the effects of the finite energy available sets in). The exact numbers obviously
depends on the specific cuts applied. But the idea remains the same. When conserving
energy and momentum, there is both a lower and an upper limit on the rapidity span for
the validity for the BFKL approach.

An earlier study [24] of the dijet angular correlation showed reasonable agreement
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between the Monte Carlo BFKL approach and data from the Tevatron. A NLO QCD
calculation gives too little decorrelation between the leading dijets, but both this and
the BFKL prediction should be taken as only preliminary results in a comparison with
data, since any parton level prediction has to be supplemented with parton showering
and hadronisation before comparison with the hadron level data is made. In this way,
the LO prediction of back-to-back jets is changed to describe data to the same degree of
satisfaction when showering and hadronisation is applied according to the event generator
HERWIG[43]. However, this particular study was carried out with equal and opposite cuts
~on the leading dijets leading to a very high sensitivity to Sudakov logarithms due to the
incomplete cancellations between higher order virtual and real corrections. This means
that the BFKL logarithms get “polluted” with other logarithms, and it is not clear which
leads to the biggest effect. It would therefore be interesting to repeat the experimental

study with the choice of a more suitable set of cuts to minimise the Sudakov logarithms.

4.3 Dijet Production at the Tevatron

In this section we will describe a study where we have applied the Monte Carlo approach
to BFKL to a study of dijet production at the Tevatron run 1. The study was published
in Ref.[35] and contains work from other authors. Specifically, the NLO QCD calculations
were performed by Stefano Frixione, and the analytic BFKL calculations are the original
work of Vittorio Del Duca and Carl Schmidt. However, for completion we will describe
the full work in this thesis.

Long ago Mueller and Navelet suggested [20] to look for evidence of BFKL evolution
by measuring dijet cross section at hadron colliders as a function of the hadronic centre-
of-mass energy +/s, at fixed momentum fractions Zqp of the incoming partons. This is
equivalent to measuring the rates as a function of the rapidity interval Ay = |y, — ]
between the jets. In fact, at large enough rapidities we have seen that the rapidity interval
is well approximated by the expression Ay ~ In(§/|¢]), where 3 = z,23s and || ~ p)op.1s,
with p, 4 being the moduli of the transverse momenta (i.e., the transverse energies) of the
two jets. Thus, since the cross section tends to peak at the smallest available transverse
energies, Ay grows as In s at fixed 4.

It is clear that the measurement proposed by Mueller and Navelet is not feasible at
a collider run at a fixed energy; on the other hand, to look for the BFKL-driven rise
of the parton cross section directly in the dijet production rate do/Ay as a function
of Ay is difficult due to the steep fall-off of the parton densities, as explained in the
previous sections. However, as we have seen, the emission of BFKL gluons in the rapidity

span between the leading dijets will lead to some degree of decorrelation in the azimuthal
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angle. The azimuthal angle decorrelation has indeed been studied by the DO Collaboration
at the Tevatron Collider [45]. As expected, a NLO partonic Monte Carlo generator,
JETRAD [46, 47], predicts too little decorrelation. However, the analytic BFKL formalism
predicts a much stronger decorrelation than that observed in the data. In fact, the data are
well described by the HERWIG Monte Carlo generator [43], which dresses the basic 2 — 2
parton scattering with parton showers and hadronisation. This hints at a description of
the azimuthal angle decorrelation in terms of a standard Sudakov resummation [48). It
therefore appears that, in the presence of Sudakov logarithms, it is quite difficult to cleanly
extract the presence of BFKL logarithms from this observable, not least because the latter
are expected to be smaller than the former in the energy range explored at present. It
thus comes as no surprise that DO Collaboration [45] find no strong evidence of BFKL
effects in their data.

Recently, the DO Collaboration [49] has revisited the original Mueller-Navelet proposal,

and has measured the ratio

_ 2(vBa) (4.9)
o(/35)
of dijet cross sections obtained at two different centre-of-mass energies, /s, = 1800 GeV
and /5, = 630 GeV. The dijet events have been selected by tagging the most for-
ward /backward jets in the event, and the cross section is measured as a function of the
momentum transfer, defined as Q2 = p, 1 py1, and of the quantities
z = 2?/“; e¥ cosh(Ay/2), Ty = 2—\1;%6_17 cosh(Ay/2), (4.10)

with § = (ya +1)/2, Ay = ya —yp > 0, and y, (yp) are the rapidities of the most forward

(backward) jet. The dimensionless quantities ¢y and z9 are reconstructed from the tagged
jets using Eq. 4.10, irrespective of the number of additional jets in the final state. In
leading-order kinematics, for which only two (back-to-back) jets are present in the final
state, we have ;1 = z, and z3 = z3, the momentum fractions of the incoming partons.
Higher-order corrections will spoil this relation; however, if one assumes that x; = z, and
x9 = x are still reasonable approximation, this implies that when the ratio in Eq. (4.9) is
computed at fixed z; and z2, the contributions due to the parton densities cancel to a large
extent, thus giving the possibility of studying BFKL effects without any contamination
from long-distance phenomena.

In the analysis performed by DO [49], jets have been selected by requiring k.51 >
20 GeV, |yap| < 3, and Ay > 2. The cross section was measured for ten (zy,z3) bins,
of which we list in 4.1 the six with the upper bound of the range in z; smaller than or
equal to the upper bound of the range in z (the others may be obtained by interchanging
z1 > z2). Finally, a cut on the momentum transfer, 400 < Q? < 1000 GeV?, has been
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Ty range | Tz range
bin 1 || 0.06-0.10 | 0.18-0.22
bin 2 || 0.10-0.14 | 0.14-0.18
bin 3 || 0.10-0.14 | 0.18-0.22
bin 4 || 0.14-0.18 | 0.14-0.18
bin 5 || 0.14-0.18 | 0.18-0.22
bin 6 || 0.18-0.22 | 0.18-0.22

Table 4.1: (z1,z2) bins, with the upper bound of range in z; not larger than the upper bound

of the range in zj.

imposed. With larger statistics, a binning in Q? would also be possible. These cuts
select dijet events at large rapidity intervals. To have a crude estimate of the typical
Ay values involved, we observe that, in a given (z1,z2) bin, the data accumulate at the
minimum z; and z2 in order to maximise the parton luminosity, and at minimum k; in
order to maximise the partonic cross section. We can then use the LO kinematics (4.10)
to obtain the effective rapidity interval. For instance, in bin 5 we find Ay, ~ 5.3 at
V/5,=1800 GeV, and Ay, ~3.1 at \/s; =630 GeV. In addition, we see that in the
large-Ay limit, Ay, — Ay, +1In(s,/sy).

The data collected by DO are compared to BFKL predictions as given by Mueller
and Navelet, and an effective ‘BFKL intercept’ is then extracted (see Eq. (4.22) below).
However, we argue in this analysis that the different reconstruction of the z’s used by DO as
compared to the original Mueller-Navelet analysis (see Eqgs. (4.10) and (4.17)), and some of
the acceptance cuts imposed in the experimental analysis, like the introduction of an upper
bound on the momentum transfer Q?, actually spoil the correctness of this procedure, and
require modifications of the Mueller-Navelet formulae. These modifications are subleading
from the standpoint of the BFKL theory, however they have an impact on the extraction
of the BFKL intercept at subasymptotic energies. Furthermore, the fact that dijet events
are selected by means of transverse momentum cuts which are the same for the two tagged
jets poses additional problems: large logarithms of (non-BFKL) perturbative origin enter
the cross section, and thus the ratio of Eq. (4.9) is affected by the same kind of problems
as the azimuthal decorrelation.

In this study we address the quantitative importance of these issues on the D0 analysis
using a combination of analytic and numerical techniques and several different theoretical

approximations for dijet production.
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4.3.1 The Standard Mueller-Navelet Analysis

By integrating out the azimuthal angles in the solution of the BFKL equation Eq. (2.54),

one finds the azimuthally averaged solution -

B 1 00 ” 7 iv
f(gat, g1, Ay) = W/—oodye ()ay (ﬁ) , (4.11)
where
w(v) = —2a; [Rey (1/2 +iv) — ¢(1)] (4.12)
=A- B+ 004, (4.13)
with 9 the digamma function, and
as = asN./m, A = 4a;ln2, B = 14((3)as, (4.14)

Furthermore, with the pmf given by the asymptotic values of Eq. (2.60) we can write the
hadronic cross section in the approximation of Eq. (4.5) as [20]

#ﬁmg = /dpgldpgls(mg,ﬂF)S(i’?g,uF)W, (4.15)

In order to elucidate how the DO Collaboration [49] evaluates the effective BFKL
intercept, we follow the original Mueller-Navelet approach [20], i.e. we substitute Eq. (2.44)
and Eq. (4.11) into Eq. (4.15) and integrate it over the size of the transverse momenta
pet and pp, above a threshold F |, at fixed coupling o, and fixed xg, :vg. The rapidity
interval Ay = |y, — yp] in Eq. 4.11 is determined from the z’s (Eq.2.60),

z0z0s

PalDbl
and since it depends on p, | ppi, it is not a constant within the integral. However, the
dominant, i.e. the leading logarithmic, contribution to Eq. 4.11 comes from the largest
value of Ay, which is attained at the transverse momentum threshold, thus in Ref. [20]
Ay is fixed at its maximum by reconstructing the z’s at the kinematic threshold for jet

production and setting them in a one-to-one correspondence with the jet rapidities

E E
2N = EL v N = e, (4.17)

YA Vs
" Then the factorisation formula (4.15) is evaluated at fixed N, 2MN. Having fixed the

rapidity interval (4.16) to

(4.18)
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the integration over p, | and p, can be straightforwardly performed!, and the gluon-gluon

cross section Eq. (2.44) becomes

R WCiaf
Ggg(PaL>E 1, pp1 >E1) = 52 F(Ay,1), (4.19)
1
with
F L[, e wint 4.20
(Z,t)—%‘/—oo VmCOS(VII). ( )

For asAy < 1, we can expand Eq.(4.20) and obtain [20]

mC%a?
282

&gg(pa_]_>E_|_,pb_|_>EJ_) = [1 + 0 ((dsAy)2)] . (4.21)

On the other hand, for Ay > 1 we can perform a saddle-point evaluation of Eq. (4.20), and

using the small-v expansion (4.13), we obtain the asymptotic behaviour of the gluon-gluon
cross section [18, 50]

2 .2 AA

58V (pe1 > E1,ppr >EL) = nggs \/:BTyy/él :

At very large rapidities the resummed gluon-gluon cross section grows exponentially

with Ay, in contrast to the LO (O(a?)) cross section (4.21), which is constant at large Ay.

From the asymptotic formula (4.22) the effective BFKL intercept aprxi, = A+ 1 can be

derived. In the experiment of Ref. [49] the BFKL intercept is measured by considering the

ratio of hadronic cross sections, Eq. (4.15), obtained at different centre-of-mass energies

(4.22)

and at fixed z1,2 and scale. This, it is hoped, allows the dependence on the parton densities
to cancel, and the ratio of hadronic cross sections is therefore approximately equal to that
of partonic cross sections evaluated at the relevant Ay values.

In Eq. (4.19) and Eq.(4.22) we have summarised the standard Mueller-Navelet analysis
in which it is assumed that the z’s are reconstructed through Eq. (4.17), and that the jet
transverse momenta are unbounded from above. However, this is not the case for the D0
analysis, since

a) DO collect data with an upper bound on Q? = p,1Pp1, Which is of the same order of

magnitude as the square of the lower cut on the jet transverse momenta, and thus

cannot be ignored in the integration over the transverse momenta.

b) DO reconstruct the z’s through Eq. (4.10), which is well approximated by Eq. (2.60),
but not by Eq. (4.17). As we have seen, any BFKL radiation will introduce further
corrections in the form of Eq. (2.63), which can have a significant impact on the

value of the pdfs.

In order to do the integrals analytically, it is necessary to fix the factorisation scale ur in Eq. (4.15),

e.g. UF = EJ_.
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We examine these two issues, and the modifications they entail on Eq.(4.19) and Eq.(4.22),

in turn.

4.3.2 Dijet Production with an Upper Bound on Q2

In the Mueller-Navelet analysis the integration over the transverse momenta is taken up
to infinity on the grounds that a finite and large upper bound on the transverse momenta
would entail a contribution which is power suppressed in the ratio of the jet threshold to
the upper bound. However, DO collect data with an upper bound on Q? = p,) pp. , namely
Q2. = 1000 GeV?, while Q% = E? =400 GeV?. When Q2 ~ QZ,,, the upper bound
cannot be ignored in the integration over the transverse momenta.

In order to assess what the modification on Eq. (4.19) and Eq. (4.22) is, we integrate
the gluon-gluon cross section of Eq. (4.7) over the transverse momenta p,) and py; above

a threshold E; with the upper cut Q% < Q2. imposed. We obtain

N 7C2%a? E? E?
Ugg(paL >EJ_)pr_>ELapa_Lpb_L< Q?na.x) = 4 I:J:(Ay) 1) - —#_g (Aya z-L )] »

2EJ2_ max max
(4.23)
with rapidity interval Ay defined in Eq. (4.18), F defined in Eq. (4.20), and
1 [ e’z sin (2vint)
t) = t) — — 4.24
G(ert) = Flert) = 3= | v s (424

The analytic form of Eq. (4.23) depends on the particular definition of the upper cutoff
2 . that DO uses, and changes substantially the shape of the gluon-gluon cross section

(see Fig. 4.20) and in particular its subasymptotic dependence on Ay. At a;Ay < 1, we
expand the exponentials in Eq. (4.23) and obtain

- 2 wCﬁag E.2L ~
Gg9(Pal >E 1,061 >E1,pa1P01< Qpax) = 552 l1- == +0(aAy)| . (4.25)
1 max

Thus for the DO cuts, Q2,, = 1000 GeV?, Eq. (4.25) lowers the LO cross section (4.21)

max

by 40%. At Ay > 1 a saddle-point evaluation of Eq. (4.23) yields

2 2
1Cy 0 ALY

GV (po1 > E1,pyt > E1,Pa1Po1< Qinax) = EYh (4.26)
1
X eBAy/4 & ln( r2nax/EJ2_) + BAy/2 _ % \4 BAy _ Ei & (In( glax/E?L)
VBAy 2 Pnax VBAy ’

with the error function

d(z) = — /0 " et (4.27)
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Using the asymptotic expansion of the error function at = >> 1, for very large rapidities

vBAy > 1 and at fixed Q2,,/E? we obtain
max 1

5 Ay>>1)( B Q2 )= C Ay . 2 . 2

0 Pal;Pol > E1,Pa1Pb1 < Qmax A - 1+In=22% 1,
2E_J_ vV WBAy/4 [ ?nax ( E

(4.28)

which is simply the asymptotic cross section of Eq. (4.22) reduced by a constant factor.
For the DO values of E? 1 and Q2 .., this corresponds to a reduction by a factor of about
4.3 in the standard asymptotic formula (4.22).

Although it might appear from Eq. (4.28) that the only effect of the Q2 cut is to
change the normalisation relative to Eq. (4.22), which would drop out of the ratio of
cross sections, one has to keep in mind that both equations are derived (from Egs. (4.23)
and (4.19) respectively) in the asymptotic limit Ay > 1. In Fig. 4.20 we plot both the
integral formulae and their asymptotic solutions. We see that the differences 644 — &§§y>> D
are roughly constant with respect to Ay, and thus the relative differences get smaller with
increasing Ay. However, at the Ay values relevant to DO analysis, it appears that non-
negligible subleading corrections to the asymptotic formulae should be taken into account
when determining the effective BFKL intercept. As can be inferred from Fig. 4.20, these
effects are more important when a Q2 cut is imposed, since in this case it takes longer for
the exponential rise with Ay to set in.

In conclusion, the effect of an upper bound on the product of the jet transverse mo-
menta can have a significant effect on both the normalisation and Ay dependence of the
gluon-gluon cross section. For the DO values, the increase of the cross section from small
to large Ay is weakened by a factor of approximately 2, as shown in Fig. 4.20. Care must

therefore be taken in attributing any observed cross section increase exclusively to the

A2y ‘BFKL’ factor.

4.3.3 Dijet Production at z’s Fixed as in the D0 Set-up

In the analysis performed by DO, the z’s are reconstructed through Eq. (4.10). Since the
jets are selected by requiring that Ay > 2, Eq. (4.6) is a good approximation to Eq. (4.10).
Conversely, the z’s (4.17) used in the Mueller-Navelet analysis are by definition a good
approximation to the DO z’s (4.10) only at the kinematic threshold for jet production.
Therefore in this section we shall examine the modifications induced on Eq. (4.19) and
Eq. (4.22) by defining the z’s as in Eq. (4.6). First, we note that in this case the jet
rapidities are not fixed, rather in a given (z3, z0) bin all the transverse momenta and
rapidities contribute which fulfil Eq. (4.6). Thus the rapidity interval between the jets

cannot be used as an independent, fixed observable. For convenience, we rewrite the
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Integrating then the gluon-gluon cross section (4.7) over p,, and psy above E|, at fixed

0, mg and fixed coupling a;, we obtain

. 10202 [ ~ E* ~(. E
G99(Par>E1,P01 > B1,Pa1Po1< Q) = 25~ | F(V, 1) = =G | Y, || ,
2E_j_ Qmax max
(4.32)
with
F L (74 ki “0) cos(2v1 4.33
(z,t)—%/_oo v ) [1+w(l/)]2t cos(2vint), (4.33)
V24 ST
4
~ ~ 1 [ ev(v)z sin (2v1nt)
= - w(v) el el 7 .
G(z,t) = F(z,t) 5 /_oo dv . 1ot t“V(1 + w(v)) 5 ,  (4.34)

4

and w(v) as in Eq. (4.12). Note that as Y — 0 in Eq. (4.31), the upper bound on Q? goes
to the kinematic threshold, @2,,, — E2, and accordingly the cross section (4.32) vanishes.
Note also that the tilde functions F (4.33) and G (4.34) reduce to the functions F (4.20)
and G (4.24) for a; < 1 but oY ~ 1. This is understandable because the limit o, < 1
is equivalent to neglecting subleading corrections, since (a;)?Ay < asAy, and therefore
to neglecting differences in the definition of the rapidity interval, Ay =Y. For Y > 1 we

perform a saddle-point evaluation of Eq. (4.32), and obtain the asymptotic behaviour

5§§’>>1) (Par>EL,por > E1,Parps1< Qhay)

2.2 AY 1 B2 \1t4 2
’/TCA;'YS € - 1— ( 1 ) (1 + (1 + A) In man)
2EJ_ vV 7I'BY/4 (1 + A) max E_]_

We can also use the above analysis to include the D0 experimental cuts of Q2 < 1000 GeV?

and Ay > 2. In this case the analysis holds unchanged except that the upper bound on

(4.35)

Q? is given by

2 =min(1000GeV?, E2e(Y~2)), (4.36)

max

where we have used the fact that Ay > 2 imposes the second effective upper bound on
Q?. The shape of the cross section as a function of ¥ depends crucially on whether
the upper bound on Q? is given by Eq. (4.31) or (4.36) (see Fig. 4.21). This is more
clearly apparent in the asymptotic region, Y > 1, since for the upper bound (4.31) we
can safely take Q2. — 0o, with only the first term in the square brackets of Eq. (4.35)
contributing; conversely, when the upper bound is given by Eq. (4.36), the sharp cutoff

2 =1000 GeV? is much more restrictive than the bound (4.31) and depletes the cross

max

section, which is given by the whole Eq. (4.35).
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Using Fig. 4.21, we can get some idea of the expected effect of the Ay > 2 cut on the

cross section ratio measured by DO. From Eq. (4.36) we see that this cut is inconsequential

when

Y > 2+ In(1000 GeV?/E?) ~ 2.92, (4.37)

where we have used E; = 20 GeV. Conversely, this cut removes the entire cross section
for Y < 2. For /s = 1800 GeV we find Y > 2.92 for all bins, so the cut has no effect.
However, for /s = 630 GeV we find Y = 2.37in bin 1, Y = 2.63 in bin 2, and Y = 2.88 in
bin 3, where we have used the minimum z; and zs in each bin to evaluate Y. Thus, bins
1 and 2 (and to some extent bin 3) get depleted at 630 GeV, simply due to the Ay > 2
cut.. In section 4 we will see that this leads to a large cross section ratio in these bins,
independent of the BFKL dynamics.

Finally, we note that the asymptotic cross section Eq. (4.35) has the same shape in
Y as Eq. (4.22) in Ay but different normalisation: at ca,(Q? = 400 GeV?) = 0.164, the
normalisation of Eq. (4.35) with upper bound (4.31) is a factor 2.1 smaller than the one of
the standard asymptotic formula (4.22), which becomes a factor 5.4 smaller than the one
of Eq. (4.22) if the upper bound (4.36) is used. However, as Fig. 4.21 shows, for the values
of rapidity interval relevant to the D0 analysis we are far from the asymptotic region, and
thus all the caveats made at the end of Sec. 4.3.2 on the extraction of the BFKL intercept
from the D0 data apply in this case as well.

4.3.4 Equal Transverse Momentum Cuts: a Dangerous Choice

We now take a closer look at the set-up specific to the DO analysis of Ref. [49]. As a
preliminary observation, we might say that the values Ay probed are quite far from the
asymptotic region where Eq. (4.22) is expected to hold, particularly at /s = 630 GeV,
where Ay is of the order of 2 to 3; unfortunately, here the only solution is to wait for
the LHC to come into operation. A more serious, but solvable, problem is the following:
dijet rates are quite sensitive to the emission of soft and collinear gluons, in the case in
which they are defined by imposing equal cuts on the transverse energies of the two tagged
jets. In this sense, a dijet total rate is completely analogous to the azimuthal correlation
mentioned above. A detailed discussion on this point is given in Ref. [40], and will not be
repeated here. In the current study, we will limit ourselves to illustrating the discussion
of Ref. [40] by means of examples relevant to dijet production at the Tevatron. We will do
this in two steps. First, in Subsection 4.3.5, we will report on a study on this issue using
a fixed-order perturbative computation, showing that dijet cross sections defined with

unequal transverse momentum cuts do not have the same problems as those defined with
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Figure 4.22: Dijet rates, as defined in Eq. (4.38), for various cuts C. The cases of /s = 630 GeV
(left) and of /s = 1800 GeV (right) are both considered. Dotted curves and circles
have been rescaled by factor of 10 (left) and 50 (right). See the text for details.

where C generically indicates a set of cuts to be added to transverse-momentum cuts. As

already mentioned, DO have
C: |yl <3, Ay>2, Q%< 1000 GeV? (4.39)

(1 = a,b), together with some additional cuts on z; and z3; furthermore, E; = 20 GeV.

The rates defined in Eq. (4.38) are shown in Fig. 4.22, the left (right) panel presenting
the case of \/s = 630 GeV (/s = 1800 GeV). Each plot consists of three sets of results,
corresponding to different choices of C; for each of these choices, both the NLO results
(displayed by the solid, dashed, and dotted curves) and the LO results (displayed by the
boxes, diamonds and circles) are given. The solid curves and the boxes are obtained by
imposing only the pseudorapidity cuts |y;] < 3. The dashed curves and the diamonds
correspond to the previous cuts on y; plus the cut Ay > 2. Finally, the dotted curves and
the circles are relevant to the cuts given in Eq. (4.39), plus those that define bin number 1
(see Table 4.1). Notice that the results relevant to bin 1 have been multiplied by a factor
of 10 and 50 at /s = 630 GeV and /s = 1800 GeV respectively, so that they can be
shown together with the other results on the same plot.

From the cross section definition in Eq. (4.38), it is clear that the smaller D, the larger
the phase space available; thus, one naively expects that the smaller D, the larger the cross
section. This is indeed what happens at the LO level, regardless of the cuts C. On the
other hand, the NLO cross section increases when D decreases only if D is not too close to
zero; when D approaches zero, o(D) has a local maximum, and then turns over, eventually
dropping below the LO result. As discussed in Ref. [40], at D = 0 the NLO result is finite
(i.e., does not diverge), but the slope do/dD is infinite. Fig. 4.22 thus clearly shows that

at D = 0 (which corresponds to the definition adopted in the experimental analysis) the
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NLO Born

D=0 | D=2 | D=4 D= D= D=4
bin 1 || -0.12(6) | 1.55(4) | 2.62(7) || 1.681(3) | 2.340(7) | 4.16(3)
bin 2 || -0.16(4) | 1.14(3) | 1.46(4) || 1.265(3) | 1.417(4) | 1.739(8)
bin 3 || -0.16(5) | 0.92(3) | 1.13(4) || 1.074(3) | 1.098(5) | 1.138(6)
bin 4 || -0.19(6) | 0.92(4) | 1.15(5) || 1.036(4) | 1.045(6) | 1.068(8)
bin 5 || -0.35(5) | 0.82(3) | 1.01(4) || 1.026(4) | 1.027(6) | 1.020(7)
bin 6 || -0.45(9) | 0.82(7) | 1.08(9) || 1.015(9) | 1.01(1) | 1.00(1)

Table 4.2: Fixed-order predictions for the ratio defined in Eq. (4.9). Numbers in parentheses
give the statistical error, which affect the last digit of the results shown. The values

of D are given in GeV.

cross section is affected by large logarithms, that can spoil the analysis performed in terms
of BFKL dynamics, exactly as in the case of the azimuthal decorrelation.

Fig. 4.22 already suggests a possible solution to this problem: simply define a dijet rate
by considering different transverse momentum cuts on the two jets (that is, D > 0). From
the plots, we can expect that the potentially dangerous logarithms affecting the region
D = 0 are not large starting from D of the order of 3 or 4 GeV. The figure might also at
first sight seem to imply that a similar problem arises in the large D region in the case in
which the (physically relevant) cuts on z; and z are imposed (dotted curves and circles).
However, it is easy to understand that in such a case the large difference between the NLO
and LO results is simply due to phase space: in fact, at LO D > 0 effectively forces both
jets to have k; > E| + D; at NLO, this is no longer true.

Let us therefore consider again the ratio of Eq. (4.9), now rewritten to indicate explic-

itly the cuts adopted:
R(D,C) = o(D,C;+/s = 1800 GeV)/o(D,C; /s = 630 GeV), (4.40)

with C given in Eq. (4.39), and additional (binning) cuts on z; and z3. Our predictions
for R, both at NLO and LO, are presented in Table 4.2, where we show the results for all
of the bins of Table 4.1. The entries relevant to D = 0 display a pathological (negative)
behaviour at NLO. However, even if they were positive, they could not be considered
reliable, since any fixed-order QCD computation (beyond LO) is unable to give a sound
prediction in this case. On the other hand, we see that for larger values of D the situation
improves, in the sense that it reproduces our naive expectation: the ratio should converge
towards one, for increasing Ay (i.e., larger bin numbers); while for D = 2 GeV the NLO
results are still sizeably different from the LO results, in the case of D = 4 GeV the NLO
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V5 =18 TeV /5 =0.63 TeV
D=0 | D=2 | D=4 | D= D=2 | D=
bin 1 || 31.01(3) | 21.24(3) | 14.19(2) || 18.46(3) | 9.080(2) | 3.399(1)
bin 2 || 22.66(2) | 15.52(2) | 10.36(2) | 17.91(2) | 10.98(2) | 5.969(2)
bin 3 || 13.50(2) | 9.22(2) | 6.16(2) || 12.57(2) | 8.39(2) | 5.41(2)
bin 4 || 12.11(3) | 8.29(2) | 5.54(2) || 11.69(3) | 7.20(2) | 5.19(2)
bin 5 || 7.19(1) | 4.90(1) | 3.26(1) || 7.10(1) | 4.78(2) | 3.19(1)
bin 6 || 4.25(2) | 2.89(2) | 1.92(1) | 4.19(2) | 2.85(2) | 1.92(1)

Table 4.3: Cross sections in nanobarns as given in Eq. (4.38), at the LO and for two different

centre-of-mass energies. Statistical errors are given in parentheses.

and LO results are statistically compatible (within one standard deviation) for bins 3-6,
and they are both approaching one. '
Inspection of Fig. 4.22 and Table 4.2 tells us that, in order to avoid the presence
of large logarithms of non-BFKL nature in the cross section, a value of D = 4 GeV is
probably a better choice than D = 2 GeV. Of course, the larger D, the smaller the cross
section, and therefore the fewer the events. In order to give an estimate of the loss of
events that one faces when going from D = 0 to larger values, we present in Table 4.3 our
LO predictions for the rate defined in Eq. (4.38), with the cuts of Eq. (4.39) and our six
bins. Of course, it is well known that NLO corrections are mandatory in jet physics to
get good agreement with data. However, here we just want to have a rough idea of the
number of events lost when increasing one of the transverse energy cuts; this number is
sensibly predicted by the ratio o(D)/o(D = 0), even if ¢ is only computed at LO. From
the table, we see that at D = 4 GeV the number of events decreases, compared to the
case D = 0, by a factor slightly larger than two; this factor gets much larger only for the
first two bins at /s = 630 GeV, which are however less relevant from the point of view of

BFKL dynamics.

4.3.6 Dijet Production in the BFKL Theory with an Asymmetric Cut

We now turn again to the BFKL equation, and study the dependence on the offset D in-
troduced in the previous subsection. We start by integrating the gluon-gluon cross section

(4.7) over p,y > E,| and py; > E; + D with the upper cut Q? = pa1pp1< 1000 GeV?, and
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with the z’s defined as in the Mueller-Navelet analysis, Eq. (4.17),

) 7C%a?
Gg9(Dat >EL, 061 >E1 + D, pa1Pp1 < QAax) = m@ii—p) (4.41)
E. E (EL+D) [ ( B} ) ( (B + D)2)J
X ~7: A ) - A 3 A sy T A0 3
{ (s 555) - Pag 19 (dv ) +9 (40 B

with F and G defined in Eq. (4.20) and Eq. (4.24). Repeating the calculation as in
Sec. 4.3.3, with the z’s defined as in Eq. (4.6), yields a cross section of the same form
as Eq. (4.41) up to replacing the rapidity interval (4.18) with the constant (4.30), the
upper bound Q2. above with Eq. (4.36) and the function F (G) with F (G), Eq. (4.33)
Eq. (4.34). At D = 0 we recover Eq. (4.23) and Eq. (4.32) respectively. However, near
D = 0 Eq. (4.41) and its analogous one with the tilda functions display the same qualitative
behaviour when expanded to NLO as the exact NLO cross section [40]. In order to see
this, we take Eq. (4.41) in the limit Q2,, — oo, such that only the first term on the right

hand side of Eq. (4.41) survives. We analyse its NLO term by expanding its exponential
to O(as),

699(Par >E1,pp1>E1 + D)

G © 1 _2a,Ay [Retp(1/2+i)—9(1)] [ Er \**
" 4E,(E, + D) /_oody vi+1/4 (EL+D> (4.42)

+0 ((a;Ay)?) .

The denominator has poles at v = +i/2. For the LO term, the integration over v is

straightforward. For the NLO term, we use the integral representation of the digamma

function,

(4.43)

and after performing the integrals over v and z, we find

699(PaL >E1,pp1 >E + D)

mC%a2 | 1 _ —2E,D-D? -2E,D-7D? E, +D
— [1-aA 1 21 8(-D
5 B o (B, +D)? n %] +2In A (-D)

1 B 2E,D+7D? 2E,D+7D? E;
— |1 -aA 1 21 6(D
*(Eum?{ % y( Z= @ oo e +p)) P

+0 ((asAy)?) .
(4.44)

At LO, transverse-momentum conservation forces the cross section to behave like 1/ E?

for D < 0 and like 1/(E; + D)2 for D > 0, even though the cuts over the transverse
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momenta are asymmetric, see Fig. 4.23. For D = 0, Eq. (4.44) reduces to Eq. (4.21). For
|D| <« E|, Eq. (4.44) becomes

. 7C% a2 B 2|D 2|D _
Gg9(Par >E 1, b1 >E, +D) = # [1 - asAy g—ll In }_l?—ll + O(D)} +0 ((asAy)?) .
1

(4.45)

The slope of Eq. (4.44) with respect to D is negative (positive) for D < 0(> 0), and
infinite at D = 0, in agreement with Ref. [40]. In addition, by using Eq. (4.45) to evaluate
the ratio (4.9) and remembering that asymptotically Ay, — Ay, + 21n(1800/630), we
find that the NLO BFKL ratio also goes to 1 as Ay grows, in agreement with Table 4.2.

In the BFKL Monte Carlo approach, the implementation of asymmetric cuts on the
jets is straightforward. For fixed s and no additional cuts or parton densities, the analytic
result of Eq. (4.41) is reproduced, see Fig. 4.23.

Finally, we can use the BFKL Monte Carlo to calculate the ‘D0’ cross section ratios
defined in Eq. (4.9), in the various bins. Table 4.4 gives the predictions using the Monte

Carlo run in two modes:

Naive: fixed a;, no kinematic constraints, parton densities evaluated at Bjorken z’s given

in Eq. (4.6).

Full: running «;, energy—-momentum conservation applied, parton densities evaluated at

T, Tp values given in Eq. (2.63).

Evidently neither the naive BFKL nor the BFKL MC calculation shows the ‘pathological’
behaviour of the exact NLO calculation at D = 0 (this is already apparent from Fig. 4.23).
Instead the numbers are quite stable against variations in D. For all D the naive BFKL
calculation shows an initial decrease in the cross section ratios, before reaching a minimum
around bin 4 where the expected rise due to BFKL dynamics sets in. The initial decrease is
simply the subasymptotic effect of the Ay > 2 cut on the cross section at /s = 630 GeV, as
discussed in Section 4.3.3, and consistent with the qualitative behaviour of the Born cross
section ratios in Table 4.2. On the other hand, if the effects from the parton densities
did factorise out cofnpletely, one would expect an asymptotic (in bin number) ratio of
R = (84/8B)* with X\ = %‘14ln2 ~ 0.45 [26]. This gives R = 2.6 for the DO values.
However, we have already argued that such a rise is not expected in the D0 analysis,
mainly because of the rather stringent Q2 cut (see Fig. 4.20 and Fig. 4.21). Furthermore,
the expected rise is also slightly decreased by the cut in z,, 2, < 1, and hence on p, and
Pyl , introduced by the parton densities. The full BFKL MC calculation ratios also show
an initial decrease to a minimum around bin 4. However now the ratio is below 1 already

from bin 3 onwards. Such an effect was already reported and explained in Ref. [26]. It
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Naive BFKL BFKL MC

D=0|D=2|D=4|| D=0 | D=2 | D=4
bin 1 || 2.16(4) | 2.56(5) | 3.61(8) || 1.615(3) | 2.013(5) | 2.922(8)
bin 2 || 1.47(4) | 1.53(4) | 1.73(4) || 1.048(2) | 1.114(2) | 1.289(3)
bin 3 || 1.22(4) | 1.16(4) | 1.10(3) || 0.866(2) | 0.851(2) | 0.872(2)
bin 4 || 1.18(4) | 1.12(4) | 1.14(4) || 0.806(4) | 0.783(2) | 0.787(2)
bin 5 || 1.26(6) | 1.14(5) | 1.11(5) || 0.847(2) | 0.824(2) | 0.820(3)
bin 6 || 1.31(8) | 1.28(7) | 1.20(6) || 0.863(3) | 0.841(3) | 0.838(3)

Table 4.4: BFKL predictions for the ratio defined in Eq. (4.9). Numbers in parentheses give the
statistical error, which affect the last digit of the results shown. The values of D are

given in GeV.

is a kinematic effect due to an effective upper limit on the transverse momentum allowed
for each emitted gluon. As the rapidity separation between the dijets is increased towards
its maximum allowed value, the BFKL gluon phase space is squeezed from above and
the ‘naive’ cross section is heavily suppressed. The higher the collision energy the more

dramatic the effect, and hence the ratio R falls below 1.

4.4 Conclusions

In this chapter we started by analysing the characteristics of the BFKL evolution using
the BFKL. MC approach developed in earlier chapters. We started by observing that
the BFKL MC does indeed reproduce the partonic cross section obtained in the analytic
approach, and it is stable under variations of the resolution scale. We then analysed in
detail some characteristic radiation patterns from the BFKL chain to back the analysis
of the energy consumption by the BFKL evolution. Here we found that the contribution
to the centre of mass energy results in a given energy being reached about 1.5 units of
rapidity before an estimate based solely on the leading dijets. This in turn implies that
the contribution from the BFKL evolution to the parton momentum fractions significantly
reduces the parton fluxes at present (Tevatron) and future (LHC) collider energies. This
implies that the parton level prediction of a BFKL rise of cross section over the leading
order result does not carry through to the hadronic level at the given collider energies.
We therefore studied the azimuthal angle correlation and found that it is possible to get
a prediction for this observable that is much more stable under the observation of energy
and momentum conservation. However, the angular correlation is very sensitive to other

logarithms when too simplistic cuts are placed on the dijet transverse momenta. However,
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712, a reduction of the systematic errors, since in the ratio of the cross sections measured
at different centre-of-mass energies the dependence on the parton densities cancels to a
significant extent. We have shown that, at the level of partonic cross sections, the upper
bound on Q2 and the z’s used in the D0 analysis reduce the Mueller-Navelet cross section
by a factor of more than 5. On the other hand, the dependence on such a cut, as well
as the dependence on the precise definition of the z’s, cancel out when considering the
ratio of cross sections obtained at different energies. However, this is only true when the
asymptotic forms of the cross sections are considered. Unfortunately, at the energies and
rapidity intervals probed at the Tevatron, it appears that the asymptotic expansions dp
not reproduce accurately enough the exact analytic results; in particular, the quality of
the approximations are worse in the case in which an upper cut on Q? is imposed. We are
therefore led to conclude that, regardless of the use of cross sections or of rates of cross
sections to study BFKL physics, the effect of an upper bound on Q? cannot be ignored.
As far as the cuts on the transverse momenta of the trigger jets are concerned, we
have pointed out that in the case in which such cuts are chosen to be equal, even the cross
sections (and not just the azimuthal angle correlation) are plagued with large logarithms
of perturbative, non-BFKL origin. In this sense, the total dijet rates are therefore on
the same footing as the azimuthal decorrelations. We therefore believe that a much safer

choice is to have different cuts on the transverse momenta of the two jets.



Chapter 5

W Production with Associated
J ets

In this chapter we will discuss another application of the BFKL Monte Carlo to a process
in the limit of § 3> £. A motivation for the analysis of processes in the limit § > £, and
in particular for dijet production in hadron collisions at large rapidity intervals, inclusive
or with a rapidity gap, is to use it as a test ground for the production of a Higgs boson
in association with jets at the LHC. A Higgs boson is mainly produced via gluon fusion,
g9 — H, mediated by a top-quark loop. If the Higgs-boson mass is above the threshold
for vector-boson production, the Higgs boson decays mostly into a pair of W or Z bosons.
The signal, though, is likely to be swamped by the W W, QCD and t# backgrounds.
A Higgs boson of such a mass is also produced in gqq — qgqH via electroweak boson
fusion, WW and Z Z — H, though at a smaller rate [52]. However, this would have a
distinctive radiation pattern with a large gap in parton production in the central rapidity
region, because the outgoing quarks give rise to forward jets in opposite directions [53, 54],
with no colour exchanged between the parent quarks that emit the weak bosons [55, 56].
Accordingly, the topology of the final state has been used to reduce the overwhelming
W W 4 2-jet background [57]. In fact, requiring two forward jets in opposite directions in
W W + 2-jet production, which implies a large dijet invariant mass, will mean that the
parton sub-processes become dominated by gluon exchange in the crossed channel, with
the W’s produced forward in rapidity.

In this chapter, we analyse forward W production in association with jets as a natural
extension of dijet production at hadron colliders, and as a process that for large dijet
invariant masses shares the same dynamical features (i.e., gluon exchange in the crossed
channel) as WW + 2-jet production with forward jets, but is considerably simpler to

analyse. There are additional reasons to consider this process: firstly, it could be exper-
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imentally easier to pick up forward W bosons that decay leptonically than forward jets;
once a forward lepton has triggered the event, one observes the jets that are associated
to it, with no limitations on their transverse energy. Conversely, in a pure jet sample one
usually triggers the event on a jet of relatively high transverse energy, thus the triggering
jet cannot be too forward. Secondly, W production in association with jets lends itself
naturally to extensions to the high-energy limit, since it favours configurations with a
forward W boson, as we shall see in Sec. 5.1.2.

This study has been published in Ref.[58] and contains work by other authors. We will
here concentrate on the work performed with the BFKL Monte Carlo but include other

parts of the analysis where this helps in putting this into context.

5.1 Kinematics of W + 1-jet and W + 2-jet Production

In this section we analyse in detail the kinematics of W production in association with one
or two jets, and we show that in pp colliders asymmetric configurations with a forward
W boson are naturally favoured.! The results presented here have been obtained using
tree-level matrix elements generated by MADGRAPH [59] and analysed by F. Maltoni,
V. Del Duca and W.J. Stirling.

5.1.1 W + 1-jet Production

We consider the hadroproduction of a W boson with an associated jet. At leading order
(LO), the parton subprocesses are g — W g and ¢g — W ¢. The momentum fractions

of the incoming partons are given through energy-momentum conservation by

— Mew + T_J-eyw

R Vi (5.1)

Ty = |pﬂ|e—y;‘ + ﬂe—yw

Vs s ’

with p;, the jet (and the W) transverse momentum and m; = \/m2, +|p;, |? the W

transverse mass.

We would like to study the typical distributions in y; and in yw. At proton-antiproton
colliders, the subprocess ¢§ — W g is leading; since the incoming quark and antiquark
are valence quarks and the up and the down quark distribution functions have different
shapes, this impose an asymmetry in the rapidity distribution of W versus W~ bosons,
both in fully inclusive (Drell-Yan) W boson production [2] and in W 4 1-jet production,

and accordingly a large plateau for the rapidity distribution of the W boson as a whole.

1Unless stated otherwise, we always understand W to include both W+ and W~ production.
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subprocesses o(W*) o(W™)
gg—>Wqq 170 170
GG Wagg+Waqq| 580 400
70— Waqgq 400 300
g9 —>Waqg 3300 2200

Table 5.1: Total cross sections (pb) for the production of W* boson in association with two
jets with transverse momentum pj, ,, > 30 GeV and interjet distance R(j1,j2) =

V@i = ¥5)2 + (¢5, — 65,)? > 0.4 on the rapidity-azimuthal angle plane.

with p;, ,  the jet transverse momenta and m, = \/ m¥; + |Pj,. + Pj,. |* the W transverse
mass. For the four subprocesses of Eq. (5.2), the total cross section for the production of
a W boson in association with two jets is given in Tab.5.1.

Next, we would like to study the rapidity distributions of the W boson and the two
jets. In Fig.5.3 and Fig.5.6 we plot the rapidity distributions of the W and of the two
jets in W + 2-jet production. The renormalisation and factorisation scales, ur and pp,
are taken to be equal to (|pj,, | + [pj,, | +m1)/2. The subprocess gg — W qq is perfectly
symmetric, thus the W boson and the two jets are produced mostly in the central rapidity
region. However, in the other subprocesses this is not the case: looking at the distributions
in yw (Fig.5.3) we see that as we move from (a) to (d) the W boson tends to be produced
more and more forward in rapidity. Examining the distributions in y;, (Fig.5.4), where jo
is the jet that is closest to the W, we see that this jet tends to follow the W in rapidity.
From the distributions in y;, — y;, (Fig.5.5), we see that in (a) and (b) jet 1 tends to be
produced more centrally; in (d) it follows the W boson and jet 2, thus emphasizing the
kinematical features already noted in W + 1-jet production (the twin peaks observed in
Fig.5.5 in (a), (b) and (d) are due to requiring two jets with interjet distance R(j1,7j2) >
0.4); finally in (c) it tends to be produced far in rapidity from the W boson and jet 2.

To understand how these configurations come about, we consider gg — W qg and
follow the analysis of Sec.5.1.1, i.e. we identify z, as the gluon and z; as the quark
momentum fractions. To make z, as small as possible at the price of increasing zy, the
W boson is produced forward (Fig.5.3). Note that with respect to Sec.5.1.1 this is made
easier by the presence of two jets, which let the W boson have a transverse momentum
as small as kinematically possible: ultimately, when the jets are balanced in transverse
momentum, the W transverse mass reduces to the mass, m; — mw. In addition, one jet,
say j2, is always linked to the W boson via a quark propagator as in W +1-jet production,
so it tends to follow the W in rapidity, as in Fig.5.4, however the position of the other jet

is a dynamical feature peculiar of W + 2-jet production: thanks to the gluon exchanged















Section 5.2. The Production Rate for W + 2 Jets 113

the high—energy limit defined in this case as

Yw =Yg > yg, lpw, | = Ipg,| 2 IPg, |- - (5.5)
This is the approach chosen in Ref.[58]. In the high energy limit, the squared matrix
element factorises into two impact factors connected with a t—channel gluon exchange,
just as in the dijet case. We can then identify an outgoing parton with a (anti)quark,
while the other, which we will call &', we can take to be a gluon according to the effective
subprocess approximation. The squared amplitude summed (averaged) over final (initial)

colours and helicities, reduces to

— 452
Ing—)qul2 = tTIqW(paapq:pW7 Q)Ig(pb’pb’) ) (56)
with
g g4 tabb AN
I (e, Pos W q) = ————g* ¥ |m3, 2 z+ = —t(1+29], 6.7
(P, Pq ) 2Nctapytapy = 2 W tarnr tabb’ ( ) (5:7)
where we have defined the light—cone momentum fraction
+
p
q (5.8)

== 5>
Pq + Py
and Lorentz invariants

tasy = (o + pw)? = 17 D3y — low, %, (5.9

taby = (Pg +pw)®
In Eq. (5.7), ¢ describes the momentum flow into the impact factor from the crossed

channel. In this formulation, the Kronecker delta 6° combines with a similar 6 from

the one—jet gluon impact factor
CA /
5.
NZ2-1
We see that this gluon impact factor indeed does lead to the same result as in Eq. (2.44),

(5.10)

I%(pj,pjr) = g*

if the matrix element squared for dijet production is written on the same factorised form
as Eq. (5.6). This is in fact how the W + ljet impact factor can be found starting from
the W + 2jet matrix element squared. By assuming HE factorisation in the high energy
limit of Eq. (5.5), one can divide the known matrix element squared by the known one-jet
impact factor and keep only the leading terms in 5/f. This will then be the W + ljet
impact factor.

Assuming an asymptotic form of factorisation, the differential hadronic cross section
for W + 2—jet production is then given by

do
d?pq, d*py_d*pw, dyedyy dyw

I 6% ga, —gp,)
= ngQi(wg,ufw)wSS(wg,M%)32W5|q EPE L, (5.12)
i ay L
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where g,, = —pq, —pw, and g, = Py, » and where we have substituted 2 with |g, l|2|qb N 2.
In the first pdf the sum is over (anti)quark flavours, and the impact factors are given in
Egs. (5.10) and (5.7). The last term is the LO term of the BFKL resummation. Thus,
to obtain the BFKL-resummed cross section we just need to replace 6()(qq, — qb, )/2

with f(qa,,qs, , Ay) given in Eq. (2.54). The asymptotic parton momentum fractions are

given by
0 _ L Yq yw
Lq \/E (qu_e +mye )
4 (5.12)
0 _ Yor
:I)b = —

\/gpbl_Le

However, in Eq. (5.11) energy and longitudinal momentum are not conserved. The
parton momentum fractions in the high-energy limit, =3 and z¥, given in Eq. (5.12) un-
derestimate the exact ones (5.3) and accordingly the pdfs can be grossly overestimated.
Thus for numerical applications and for a comparison with experimental data, it can be
convenient to perform the high-energy limit only on the dynamical part of Eq. (5.4), by
writing the squared amplitude in the factorised form (5.6), while leaving the kinematics
untouched. This leads to

do
d%pq, d®py, d*pw, dyedyy dyw

1 [I"WI-"] 6*(qa, — @, )

= Z 2aQi(Tq, p%) 255 (s, ,11%1)32”5 o 5 (5.13)

For the invariants ¢ and tgpy, implicit in the square brackets, two options are possible:2

(a) they are taken to be exact, namely { = 2py-py and tewy = (por +pw)?. For instance,
the dashed lines of Fig. 5.6 have been obtained from Eq. (5.13) with option (a);

(b) £ and tyuy are in the high-energy limit, as defined in Eq. (5.9) and by ¢ ~ —|q¢ |

Note that Eq. (5.13), with the two approximations for the dynamics above, and Eq. (5.11)
have the same theoretical validity, however their numerics may be rather different. In
order to examine this in detail, in Fig.5.7 we consider W + 2-jet production as a function
of the rapidity interval between the jets Ay = |y;, — yj;,|- For the renormalisation and
the factorisation scales we keep the same choice as in Sec.5.1.2. The solid curve is the
exact production rate (5.4); the dot-dashed curve is the production rate in the high-energy
limit (5.11); the two dashed curves are given by the production rate (5.13), with the two
approximations listed above: (b) is the upper dashed curve, and (a) is the lower one.

Note that the exact production rate is contained between curves (a) and (b), with (b)

2The invariant £, is the same in the exact and high-energy kinematics.
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be evaluated as

pJu_y szJ_y Yy
xa—\/gefl+\/geﬂz+ ew+z

(5.14)

Pirs -yj +sz¢ ~Yjs +

Vs Vs

where the sum is over the gluons emitted from the BFKL evolution. Using the parton

Ty =

momentum fractions of Eq. (5.14) will observe energy and momentum conservation, but
similar to the dijet case, it would only be possible to use the asymptotic versions of
Eq. (5.12) in an analytic approach.

From Eq. (4.11) we see that in order to detect evidence of a BFKL-type behaviour in
a scattering process, we need to obtain Ay as large as possible. In the context of dijet
production this can be done by minimizing the jet transverse energy, and maximizing
the parton centre-of-mass energy §. Since § = z,2ps, in a fixed-energy collider this is
achieved by increasing the parton momentum fractions z, 5, and then measuring the dijet
production rate do/dAy. However, in dijet production the following three effects hinder
the characteristic growth of the BFKL ladder (4.11) with respect to LO production, as we

have seen in the previous chapter:

as the z’s grow the parton luminosities fall off, making it difficult to disentangle the
eventual BFKL-driven rise of the parton cross section from the pdfs fall off [23, 19]

(see the results of the previous chapter);

the implementation of the exact z’s Eq. (5.14) in the BFKL Monte Carlo [26], rather
than using xgyb (Eq. (5.12)) as prescribed by the high—energy limit, shifts the pdfs
toward smaller values, and thus further suppresses the production rate. This effect

is already present at O(a3) [38];

in dijet production both the tagged jets have typically the same minimum transverse
energy; at NLO, the dijet cross section as a function of the difference D between the
minimum transverse energies of the two jets turns out to have a slope do/dD which
is infinite at D = 0 [40, 35]. This hints to the presence of large logarithms of Sudakov
type, which can conceal the logarithms of type In(3/f) characteristic of the BFKL

dynamics.3

In Fig.5.8 we consider W + 2-jet production as a function of Ay, and with acceptance
cuts yw, ¥j, = 1 and y;; < —1, or yw, yj, < —1 and y; > 1. For all of the curves of

Fig.5.8 and Fig.5.13, we choose gy = p;,, and pgo = (pj,, +m,)/2 as renormalisation

3Logarithms of Sudakov type are contained in the BFKL solution (4.11), however they lack the running

of a, and they are not consistently resummed.
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In Fig.5.8 the diamonds represent the exact production rate (5.4); the dashed curve
is the production rate in the high—energy limit (5.13) with option (a); the dotted curve
is the same with option (b); the solid curve includes the BFKL corrections. In Fig.5.8
and Fig.5.13 we have computed the BFKL corrections using Eq. (5.13) with option (b).
However, the particular option we choose is immaterial since the uncertainty related to
the choice of option in Eq. (5.13) is much smaller than the uncertainties intrinsic to the
BFKL resummation, the latter being due to the leading-log approximation, the choice of
scale of as and the approximation on the incoming parton momentum fractions. Note
that the curve of Fig.5.8 is both qualitatively and quantitatively different from do/dAy
in dijet production: the peak in Fig.5.8 is a striking confirmation of the dominance of
the configurations asymmetric in rapidity, discussed in Sec.5.1.2. In fact the symmetric
acceptance cut strongly penalises the asymmetric configurations when Ay approaches its
minimum value; since the asymmetric configurations dominate the W + 2-jet production
rate, the effect is a strong depletion of the latter. In addition, the BFKL ladder (solid
curve), which includes energy-momentum conservation (Eq. (5.14)), shows a substantial
increase of the cross section with respect to the LO analysis (dotted and dashed curves),
as opposed to a decrease in the dijet case. .

To understand how this comes about, we note that the presence of at least three par-
ticles in the final state makes the threshold configurations, and thus the logarithms of
Sudakov type, much less compelling than in the dijet case. Secondly, the implementa-
tion of the kinematic constraint (5.14) in the BFKL Monte Carlo, rather than using a:g,b
(Eq. (5.12)) in the high-energy limit, has a much lesser impact than in the dijet case.
This is due to the fact that the valence quark distribution in gg — qgW is much less
sensitive to x variations than the gluon distribution in gg — ¢gg. To analyse this more
precisely, we consider in Fig.5.9 the ratio f(z° u%)/f(z, u%) of the pdf as a function of
the z%’s (Eq. (5.12)) in the high-energy limit versus the pdf as a function of the exact =
(Eq. (5.14)). The ratio is calculated for each event in the Monte Carlo as the ratio of the
pdf evaluated at z° compared to an evaluation at z, weighted with the contribution of
this event to the cross section according to (5.13) with option (b) and the BFKL ladder
added. Finally, this distribution is binned in Ay. To be definite, since the high-energy
factorisation implies that each impact factor is associated to one of the two incoming
partons, we can term the ratio f(z9, u%)/f(zq, p%) as the one associated to the impact
factor for W + 1-jet production, and the ratio S(z, u%)/S(zs, p%) as the one associated
to the impact factor for jet production. As we see from Fig.5.9, the solid curve is much
further away from 1 than the dashed-dotted curve. Since the effective pdf is dominated
by the gluon distribution, this implies that the ratio S(z{, u%)/S(zp, p%) is much more

sensitive to variations of the z’s than the ratio f(z%, u%)/f(zq, u%), which is made by va-


















Section 5.4. Conclusions 124

in the crossed channel which loosens the bound between the W boson and a jet on one
(rapidity) side, and the other jet on the other side.

In Sec. 5.2 we have compared several high-energy approximations at LO to the exact
production rate. The range between the most extreme high-energy approximations may
be considered as the theoretical uncertainty on the high-energy limit at LO.

In Sec. 5.3 we have considered some BFKL footprints, most notably the rate do/dAy
and the azimuthal angle decorrelation do/dA¢ as functions of the rapidity interval Ay
between two tagged jets. These observables had already been considered in inclusive
dijet production, however because of the dominance of the configurations asymmetric
in rapidity and the presence of at least three particles in the final state, which makes
threshold configurations less relevant, in W + 2-jet production do/dAy and do/A¢ take
on a completely new light. In addition, we have considered the mean number of jets,
which as expected rises approximately linearly with Ay. Finally, we have computed the
transverse momentum distribution of the impact factor for W + 1-jet production. At LO
this is bound from below by momentum conservation at the minimum transverse energy
of the jet opposite to the W + 1-jet configuration, but with additional gluon radiation it
is allowed to reach zero, where the distribution is finite. The implicit requirement that
one of the incoming partons is a quark with a much flatter pdf in the relevant region of
the parton momentum fractions means that the BFKL effects stand a much better chance
of surviving the inclusion of the pdfs than in the pure dijet case, where the very steeply
falling gluon pdf suppresses the BFKL gluon evolution. Combined with the hope that the
W + 2jet setup is less sensitive to pollution from other logarithms this means that this
setup might be far better suited for BFKL studies, despite the slight complication of the
inclusion of an electroweak particle. In particular we note that all the observables in this
study depend only on the QCD partons, and the duty of the W is only to introduce a

hard lepton that might help trigger the event, and to require an incoming quark.



Chapter 6

Conclusions

We have formulated a solution to the BFKL evolution equation that consists of an explicit
sum over the phase space of “resolved” gluons, while the effects of unresolved and virtual
contributions are also taken properly into account. In this way, the implementation of the
numerical integration of the resulting solution reproduces the results obtained in the stan-
dard analytic approach, where such are available. Furthermore it is possible to introduce
the running of the coupling into the BFKL solution.

In the study of dijet production we saw that the BFKL Monte Carlo solution to the
BFKL evolution provides first of all an efficient tool in calculating cross sections when
complicated cuts are placed on the leading dijets. This was demonstrated in the study of
dijets at the Tevatron. Secondly, and much more importantly, the BFKL MC provides a
tool for studying in detail the radiation from the BFKL chain. The study of these exclusive
states require a very fast and stable implementation of the Monte Carlo integration, which
is achieved through the techniques reviewed in Chapter 3. We have studied the number of
jets produced in the BFKL evolution, and the amount of energy going into this radiation.
We have thereby verified that the contribution from the BFKL radiation to the total centre
of mass energy for dijet production is indeed subleading in the sense that the asymptotic
behaviour is unchanged. However, we also showed that the energy consumption of the
BFKL evolution is sufficient to make an impact at energies reachable by colliders in the
foreseeable future. This is partly because the gluon density function of the proton is
very steeply decreasing at the values of the parton momentum fractions probed in dijet
production. Therefore, the extra energy taken up by the BFKL radiation compared to
the pure dijet case is enough to introduce a significant drop in the parton fluxes and a
corresponding decrease in the hadronic cross sections. The result is that the partonic
prediction of a rise in cross section over the LO result as a function the rapidity span is

modified to an almost no—change situation.
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We then presented a study of the dijet angular decorrelation, for which the effects of
the pdfs cancel to a large extent. This analysis shows clearly how the event configuration
returns to the LO setup as the rapidity separation between the leading dijets closes in on
the maximum allowed value at a given energy. This suggests that the BFKL resummation
at hadron colliders has an area of applicability limited from two sides in the rapidity
span. From below since the logarithms resummed have to be large, and from above since
there has to bee sufficient energy available to produce the gluon radiation that is being
resummed.

We concluded the dijet study by a detailed examination of an analysis of a dijet sample
from the Tevatron. Here we showed that the set of experimental cuts applied severely
limits the predictive power of the data sample with respect to the extraction of a BFKL
intercept.

Finally we considered W + 2—jet production at hadron colliders. This process share
many properties with dijet production in the sense that when the dijets are required to
be produced at large rapidity separations, the process factorises into two impact factors
connected by a t—channel gluon exchange. One of the scattering centers will at leading
order consist of an incoming quark and an outgoing quark and W. The other impact factor
will consist of a incoming and outgoing parton. In the large Ay limit, where Ay is the
rapidity difference between the two outgoing partons, the t—channel gluon is susceptible
to BFKL evolution. It turns out that in this case the BFKL evolution does indeed lead
to an increase of the hadronic cross section over the LO prediction, since the quark pdf
varies sufficiently slowly with the parton momentum fraction that the pdf suppression
from an increased centre of mass energy due to the BFKL radiation does not cancel the
rise in the partonic cross section predicted from the BFKL evolution of the {—channel
gluon exchange. Since the normalisation of the cross section might not be stable against
higher order corrections, we suggested another BFKL observable, namely the azimuthal
angle between the two (leading) jets. This shows considerably larger decorrelation in the
case of BFKL evolution than at the leading order.

The Monte Carlo BFKL and the impact factor framework can be applied to many other
processes than the two described in this thesis. We are currently investigating the process
gg — bbbb at hadron colliders, which will dominate the forward b-production channel at
the LHC. Furthermore, we are investigating the possibilities of applying the MC BFKL to
processes such as v*g — ¢gg at ep colliders and v*v* — qgqq at e*e™ colliders. All these

processes show dominance of the t—channel gluon exchange in the forward channels.



Appendix A

Solving for wy

In this appendix we will show how the integral of Eq. (2.66) is performed, since this is
central to the reformulation of the fixed coupling BFKL solution. The relevant integral is
d%k

2
I(qy, 42 =/ [@ 2_k2) - Al . Al

We start by using
d’k; = kdkdé, (A.2)

where k = |k |. We can now perform the resulting integral over ¢

9 ©dk [ 9 2 'S
I(q, p*) /0 k /0 d [ G 2k2+q2—l—2chos9]

i A.3)
—or / 9k o2 = k?) - ¢ K Tkata
0

k %2 +2kq+¢2 |’

were we have dropped the L index and set ¢ = |q|. The last remaining integral is most
easily performed by splitting it into the two integration regions of k < u and k > p. One

thereby readily (at least by using any of the available algebraic manipulation programmes)

obtains
(2

In the running coupling case, the relevant integral contains an additional logarithm of ¢,
but the integral is performed similarly, with just one more split in the integration region

at the scale for the freezing of the evolution.
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Appendix B

The Only Difficult Integral of the
BFKL MC

Of all the integrals arising in the BFKL MC of Eq. (2.67)-(2.68) and Eq. (2.79)-(2.80),
only the nested integrals over rapidities is a problem. The integrals over the transverse
momenta of the BFKL gluons and the phase space integrals over the impact factors can all
be performed efficiently using the importance sampling distribution of Eq. (3.30)—(3.31)
with suitable choices of the parameters, which are easily optimised by comparing the
resulting g(z) with the distribution of the cross section in any of the variables. The same is
true for the integration over the rapidity of the particles emerging from the impact factors.
Here, the valid integration region is often so small that a simple flat distribution is often
sufficient, although other slightly more optimised distributions have often been chosen for
hadronic quantities due to the rapid fall-off in rapidity due to the pdf suppression.

The reason that the nested integrals over rapidities of the BFKL gluons is difficult
to optimise is exactly that the rapidities are not independent variables. The nesting
of the integrals complicates the importance sampling procedure, since the integration
limits of every single integration variable varies with the choice of the other integration
variables. However, some analytic insight can be gained, which will help in constructing

the importance sampling. The nested integrals can be written on the form

Ay (o1 Y2 Yn—1
I, = dy; AV / dys A / dys A -- / dy, AY, (B.1)
0 0 0 0

where each A, is given in the constant coupling scenario by

A, = [(qai +3500 ku)2rs , (B.2)

(dat + 2751 kjn)?
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and in the running coupling case by

~ ; Ca/(mb)
Qs + 57 ki )?
as((Qar + 251 kj1)?)
The difference between Eq. (B.2) and Eq. (B.3) will prove to lead to a significantly different

numerical behaviour in the two cases. In both cases, the length of the vector sum will

not change much from one emission to the next (especially so when we are considering
A, with n not too small). This is because the BFKL chain is dominated by soft gluon
emissions, and each step in the approximately random walk from qa, to qp is small.
This means that the fractions in the A,, are of the order one, although all the physics lies
in the deviation frdm one. It is also seen that whereas the A, in the constant coupling
case Eq. (B.2) will be closer to one than the fraction (since d; < 1), the A, in the running
coupling case will tend to be pushed away from one since Gy /(7b) = 1.44. It is interesting
to note that if we assume all the A,, are so close to one that we can ignore the dependence
of the integrand on any of the y,, the value of the integral is (Ay)™/n!. In fact it is possible
to solve the nested integrals analytically. One such closed formula consisting of the sum

over just n 4 1 terms is

n n
1
oY I o9
= " 0w 108(Bi/Bj)

where
j=k
By =[] 4 (B.5)
Jj=1

and By = 1. This however highlights a problem of all the analytic solutions we have dealt
with: They are extremely sensitive to any of the A; getting close to one (or in this case any
product of them coming close to one), which of course is the case where one of the nested
integrals become trivial. In fact, it proved almost impossible to get a stable numerically
prediction using the above analytic solution (or any of the many variants tried). The
analytic solution is of course also not the aim of the method, since it would integrate out
part of the gluon phase space and thereby it would not be possibly to reconstruct the total
energy and momentum of the BFKL gluons.

Instead it proves useful to rewrite the nested integrals as (taking n = 3 as an example)

1 1 1
Iz = /0 dzy /O dzy /O dzg A AVAD 2B gR125 AY(NY3 25, (B.6)

This rewriting highlights the different power like behaviour due to the nesting and the

exponential behaviour due the A, terms. For the constant coupling case, since the A4;’s
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are all close to one, the z;’s are now generated according to the distribution 2™* (the
g g i

number n of nested integrals in this case is n = 3):

1 1 1
/ dzl/ dz2/ dnggAy)zlAgAy)zlzzAgAy)zlzzn(Ay)3z%zz (B.7)
0 0 0
, [Um 1/(n—1) 1/(n—2)
=(Ay) / dey / dep / dcs
0 0 0
/ein vein "/ cz(n— e "/ ca(n—1) "/ c3(n—
AgAw vem AgAy)\/l— Vea(n-1) AgAy)\/l_ Vea(n—1) ""{/es( 2N (B.8)

where we have set de; = z{‘_l dz; etc. This is the basis of the Monte Carlo integration
of the nested rapidity integral in the constant coupling case. The rapidities are found
using 11 = (Ay)zi, etc. Finally, the contribution for this specific choice of rapidities to

the integral is found as

1

(R B.
n+1—2 (B.9)

(g [ 4% =
i=1

The method above proves to converge very fast for the constant coupling case. How-
ever, it also proves next to useless for the running coupling case, since the power behaviour
of the z; in Eq. (B.6) is less dominant (and therefore the importance sampling according to
the power behaviour might actually increase the variance rater than reducing it). Instead,
for the running coupling case we just pick the rapidities uniformly in the allowed inter-
vals, which coincides with the preferred method if all A; = 1. The different importance
sampling techniques can in this case easily make up a factor 100 in the necessary running

time for a satisfactory result for rapidity spans of more than 4 units of rapidity.
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