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statistical Analysis of Child Growth Data 

Submitted for degree of Doctor of Philosophy by Jennifer Argyle 

The study of child growth is complex. There are many clinical questions to 
answer but not necessarily the statistical methodology to deal with these questions. 
Human growth begins at conception and continues into adult life. 

In chapter 1 we discuss the characteristics of the growth process from conception 
to maturity and the purpose of growth monitoring. In chapter 2 we summarise the 
mathematical approaches to growth data. In chapter 3 we summarise the approaches 
that have been used to detect growth faltering. In this chapter we introduce the 
conditional gain Z-score. 

The data set analysed within this thesis is from the Newcastle growth and de
velopment study. In infancy we have routine weights of 3415 term infants. A 
sub-sample of these infants were followed-up at 7-9 years as part of a research study. 
These children belonged to three subgroups: cases were children that were defined 
as failing to thrive in infancy, controls were matched to cases and a 20% systematic 
sample. The school entry data of the sub-sample followed at 7-9 years were retrieved 
from school health records. 

In chapter 4 we carry out a preliminary analysis of the routine infancy weight 
Z-scores. The infancy data provided the opportunity to generate the correlation 
structure of routine weight Z-scores in infancy. In chapter 5 we develop a model 
for this correlation structure. In chapter 7 we explore patterns in the conditional 
weight gain Z-scores and also suggest some alternative criteria for identifying growth 
faltering in infancy. 

In chapters 6, 8 and 9 we analyse the anthropometric data obtained at follow-
up and school entry. In childhood, the conditional gain Z-score is used to contrast 
height with mid-parental height and height at follow-up with height at school entry. 
The anthropometric data of the case and control children will be compared. 



To my Nanna, Agnes Argyle (1918-1996). She is sadly missed hut 
her strength of character will he with me forever. 
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Chapter 1 

Clinical issues in the study of child 
growth 

The study of child growth is complex. There are many clinical questions to answer 
but not necessarily the statistical methodology to deal with these questions. Human 
growth begins at conception and continues into adult life. Is this process regular and 
predictable? What influences a child's path to final adult size? From a clinicians 
point of view, the main question is: given this child's weight or height at this age, 
is this child 'normal'. Does their pattern of weight or height gain cause concern? 
Many of the approaches in use only consider one or two weight (or height) measures. 
Growth is not a process that occurs only between two points, so the primary issue 
is how we interpret weight or height measures as they evolve. 

The interest in child growth spans many disciplines: statistics, medicine, nu
trition, psychology, education and anthropology. In statistics the study of 'growth 
models' initiated by PotthofF and Roy (1964) has become a field in its own right. 
However the majority of work developed in this area is only applicable to individuals 
with complete data and with all measurements taken at the same time-points. Even 
in a research study setting it is unlikely to arrive at data of this quality. 

The monitoring of the growth process raises statistical complexities in itself. Con

sider weight and height, which are usually monitored at school entry. The actual 

height or weight measures are subject to error, either by the process of measuring 

or biological variation^ In a research study setting there are issues of missing data, 

weight and height measures that are correlated, interpretation of the longitudinal 

^For example: humans are taller in the morning than in the evening. This is termed 
diurnal variation. 
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element and expected variability of measures themselves. In a routine setting, there 
are many more issues: irregularly spaced data, height and weight measures are them
selves subject to more error, 'missing' data may be absent for a reason, variability 
in the number of weight measures and potential sources of bias because light infants 
may be weighed more frequently, short or heavy children monitored more closely. 

In section 1.1 we look at the general pattern of growth for the typical child. 
The growth process from birth to adulthood is briefly described and the observed 
differences in males and females highlighted. Although the discussion in this section 
covers all phases of the growth process, the majority of the work within this thesis 
focuses on the infancy period from birth to about 18 months. Section 1.2 discusses 
the need for a growth reference and introduces the revised UK 1990 reference (Cole 
et al. 1998). Within this same section we also stress the advantages of working on a 
Z-score scale in contrast to the other alternatives. In section 1.3 we discuss the influ
ence of hereditary and environment on growth. We also discuss the main disorders 
of growth, placing emphasis on growth faltering in infancy, termed failure-to-thrive. 
Finally, in section 1.4, we conclude with a summary of the current guidelines with 
regards to growth monitoring. 

1.1 Physical growth from conception to maturity 

1.1.1 Characteristics of the human growth curve 

In general when we talk about the curve of human growth we are referring to the 
growth in height. However the process of a child's growth is intricate; it doesn't only 
involve an increase in linear dimensions. For example, over the course of a child's 
life (and even into adulthood), a child's weight will, in general, increase. This in 
itself reflects changes in body composition^, lengthening of bones (and thus increase 
in bone weight) and biological variation^. Nevertheless, most body measurements 
as good as follow the growth curves described below for height (Tanner 1989). 

Physical growth is a complex, stepwise process that requires the 

orchestration of hormonal regulatory systems, adequate energy 

and other nutritional resources, and the necessary antecedent bi-

^In nutrition literature, body composition refers to relative proportions of fat, lean 
body mass and water that contribute to overall weight. 

^Biological variation refers to fluctuations in body weight observed due to foods and 
liquids consumed, as well as material excreted. 
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ological events. . . . Ongoing growth is not only dependent upon 
current and future physiological and nutritional resources but also 
upon past physiological experiences (Woolston 1991, p p l l ) . 

Definition of height velocity 

where Hi and H2 are the two height measurements, and At is the time interval 
between measurements. 

In the growth literature, the human growth curve is often considered to be made 
up of three sequential phases: 

Infancy: This term is often used to refer to the age period from birth 
until about 2 years. Infancy is characterised by a period of rapid 
growth, that rapidly decelerates. 

Childhood: This term is used to describe the period after infancy, 
from 2 years until the onset of puberty. This period is characterised by 
a steady and slowly declining growth. In childhood, growth occurs at 
about 5-6 cm per year. 

• Adolescence/Puberty: This term usually refers to the time period 
between the start of the pubertal spurt and age when final adult height 
is reached. Growth in adolescence is characterised by a rapid growth 
spurt at puberty followed by a rapid deceleration in growth. At the 
peak of the growth spurt, height velocity is about 8-12 cm per year 
depending on the gender. The age of peak velocity for males is about 
2 years later than for females and the peak velocity reached is higher. 

Further descriptions of growth during these three phases are outlined below, along 

with prenatal and post-adolescent growth. 

1.1.2 Prenatal growth 

Prenatal growth refers to the time period between conception and birth. Growth in 
the prenatal period is fundamental to the child's future well-being (Tanner 1989). 
Traditionally the gestational age of the foetus is calculated from the first day of the 
last menstrual period. On average this is about two weeks before ovulation, but 
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this can vary by up to six days in either direction. Therefore 40 weeks is the most 
frequent gestational age at birth, but in fact only represents 38 weeks of true foetal 
age (Tanner 1989). Lengths of gestation from 37 to 42 weeks are regarded as normal. 
Babies born earlier than 37 weeks are considered to be 'pre-term', whereas babies 
born within the normal age range are said to be 'term' deliveries (Tanner 1989). 

In the embryonic period, the first two months, the velocity is low (Tanner 1989). 
Following this period the foetus experiences a high rate of growth until around 20 
weeks, the age at which peak velocity is reached. However, this peak velocity can 
occur up to six weeks later (Tanner 1989). The peak in velocity, during gestation, 
corresponds to the highest peak in the velocity growth curve from conception to 
maturity (Woolston 1991). Growth in the weight of the foetus follows a similar 
pattern. However, the peak velocity is reached later, at about 34 weeks (Tanner 
1989). During the last ten weeks of gestation the foetus stores very considerable 
amounts of energy in the form of fat and this is viewed to serve as a protective 
mechanism for the critical period after birth (Tanner 1989). After the peak velocity 
in length (weight) is reached it is then followed by a period of deceleration in length 
(weight) gain until birth. Tanner (1989) states that there is substantial evidence 
that, beginning at 34 to 36 weeks, the growth of the foetus slows down due to the 
influence of the uterus, whose available space is by then becoming fully occupied. 

Birth weight is influenced by many factors, many of them maternal. Tanner 
(1989) states that poor environmental circumstances, in particular nutritional status 
of the mother, can result in lowered birth weights and this seems to be largely 
due to a reduced rate of growth in the last 2 to 4 weeks. Roddam (1998) used 
a graphical modelling approach to explore relationships between maternal factors 
and a child's height or weight from birth until 5 years for 1163 infants born in two 
small towns in south Wales in 1972-73. Roddam (1998) found birth weight to be 
associated with birth length, child's sex, maternal height, maternal weight, mothers 
weight gain between 20 and 36 weeks, smoking status at 36 weeks, maternal age and 
parity, and oedema and albumin status at 20 weeks. Birth weight was not found 
to be associated with maternal blood pressure or social class. The latter finding 
contradicts the opinion held by some authors. Sinclair (1985) states that mothers 
of lower socio-economic class have smaller babies. 

1.1.3 Growth in infancy 

In infancy, babies have their birth weights routinely monitored. Up until the age of 2 

years, the supine length of an infant is measured: this is on average about 1 cm more 
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than the measurement of standing height taken on the same child (Tanner 1989). In 
infancy, weight is easier to measure than length. Infancy is an important phase of 
a child's growth, the nutritional demands are high for this period of rapid growth. 
Thus poor nutrition or illness can greatly influence a child's growth progress. Skuse 
et al. (1994) suggested that the first few months of life may constitute a 'sensitive 
period' in terms of mental development. 

In the first few days after birth the infant experiences a transient loss in weight, 
usually about 5% of birth weight (Sinclair 1985). Birth weight is regained in about 
10 days (Sinclair 1985). This weight loss is due to a diminished intake of fluid 
(Sinclair 1985) and represents a period of adjustment to breast or bottle feeding. 

In the first year of life, linear growth and weight gain continue 
at a rate that is still remarkable, although less spectacular than 
during fetal life. By 1 year, the normally developing infant has ac
cumulated generous stores of adipose tissue, has tripled its birth 
weight, and has grown 25 additional centimetres, an increase of 
50% of birth length. In the second year, there is continued decel
eration of linear growth rates; by the age of 2 years, linear growth 
has stabilised at a rate that is characteristic of the childhood 
years. Growth velocity for weight gain follows similar patterns. 
(Woolston 1991, ppl3) 

After this initial weight loss, the first twelve weeks after birth sees a rapid increase 
in height velocity (Tanner 1989). Tanner (1989) hypothesises that this rapid growth 
after birth represents a period of catch-up growth for those new-borns that have 
been delayed the most in the uterus. On average, the smaller the baby, the more it 
grows at this time (Tanner 1989). However Garn and LaVelle (1984) hold conflicting 
views, namely that there is no strong inverse relationship between birth weight and 
subsequent weight gain, but the latter may be associated with maternal weight. 
After this peak in height or weight velocity, the velocity of height or weight growth 
decelerates rapidly until about 2 years. At around 1.75 years in girls and 2 years in 
boys respectively, a child will be about half as tall as they will be as adults (Tanner 
1989). 

Another measure often monitored in infancy is head circumference, because this 
is associated with brain size. At birth, a baby has a proportionally large head. The 
peak in velocity of head circumference occurs before birth, at a gestational age of 
about 15 to 17 weeks (Tanner 1989). This relatively high velocity continues until a 
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gestational age of about 32-34 weeks (Tanner 1989). After this age the deceleration 
in head circumference growth is rapid (Tanner 1989). The head circumference of 
boys tends to be larger than in girls (Roche et al. 1986). After infancy, head 
circumference is rarely monitored but continues to increase until 18 years and also 
has a pubertal spurt (Roche et al. 1986). In the revised UK 1990 reference, growth 
in head circumference is essentially complete by the age of 5 years (Cole et al. 1998). 

Other measures that are sometimes monitored are skinfold thickness in certain 
sites of the body. These tend to be prone to more error in the untrained hand. In 
third world countries arm and abdominal circumferences are sometimes also moni
tored. 

1.1.4 Childhood growth 

Childhood represents the period of growth from the age of 2 years until the onset 
of puberty. It is usually characterised by relatively stable rates of gain in height (5 
to 7.5 cm/year) and weight (2 to 2.5 kg/year) (Woolston 1991). During childhood 
there is a slight deceleration in linear growth rate but a slight acceleration in weight 
gain. Resulting in a gain in adipose tissue in the years prior to puberty (Woolston 
1991). However this is not the ful l story. Butler et al. (1990) examined longitudinal 
height data from 135 children (80 boys and 55 girls) in the Edinburgh growth study. 
These children were measured 6 monthly between the age of 3 years and the onset of 
adolescence. A spurt was defined as an height velocity increase that was more than 
twice the measurement error of velocity (± 1.8 mm) (Butler et al. 1989). Butler 
et al. (1990) identified the usual mid-growth spurf* at an age of about 7 and 6.7 
years in boys and girls, respectively. In addition Butler et al. (1990) also identified 
two other spurts, they termed these the 'pre-school spurt' (at 4.8 and 4.6 years in 
boys and girls, respectively) and 'late-childhood spurt' (at 9.2 and 8.6 years in boys 
and girls, respectively). Some children were also found to have a further spurt just 
before the onset of puberty, Butler et al. (1990) observed this spurt in children with 
average-to-late pubertal onset. 

''The mid-growth spurt has been identified by several authors but isn't always a feature 
of a child's growth profile. 
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1.1.5 Growth at adolescence: gender differences in the pat
tern of growth and differences in tempo 

At all ages until adolescence the typical boy tends to be taller than the typical 
girl (Tanner 1989). The difference in tempo starts about halfway through the fetal 
period. At birth the typical boy grows slightly faster than the typical girl but these 
velocities converge at around 7 months (Tanner 1989). From this point until the age 
of 4 years, the velocity of height growth for girls is higher than boys (Tanner 1989). 
After 4 years, the velocity in both sexes is then about the same until adolescence 
(Tanner 1989). 

On entering adolescence, starting at around 10.5 years and reaching peak velocity 
at about 12 years, the typical girl overtakes the typical boy in attained height 
(Tanner 1989). She surpasses the typical boy at about 11 years, but is then overtaken 
again by the typical boy at around 14 years (Tanner 1989). The pubertal spurt for 
boys is higher than that for girls, with the typical boy starting and reaching his peak 
some 2 years later than the typical girl (Tanner 1989). I t is this delay in onset of 
the pubertal spurt and its higher peak that is thought to contribute to the observed 
difference in height between males and females (Tanner 1989). 

The pattern observed for weight is similar to that of height. The typical girl 
weighs a little less than the typical boy at birth, their weights then converge at 
about 8 years, the typical girl then becomes heavier from around 9 to 10 years until 
14.5 years (Tanner 1989). Sinclair (1985) states that the spurt in weight lags behind 
the peak velocity for height by about 3 months. The timings quoted here were 
published just over 10 years ago. At that time Tanner (1989) stated that children 
in the USA reached their peak at around 6 months earlier than in the UK. This 
difference arises due to the 'secular trend'^ with the US being in advance of the UK. 
Thus the actual timings for the typical boy and girl may be slightly earlier than 
quoted here. 

The timing of the pubertal spurt differs from one individual to the next, even in 

the same sex. However the sequence of events is the same. The onset of hormonal 

changes associated with puberty can be as young as 8 in girls or 9-10 in boys (Bee 

1995). The different rate of maturation isn't a phenomenon of adolescence, but does 

become evident then (Tanner 1989). 'Tempo of growth' is the term used to describe 

the tendency for development to be rapid or slow (Tanner 1989). The possible 

^The 'secular trend' refers to tendency over the last hundred years for children within 
industriahsed countries, to be larger and grow to maturity more rapidly (Tanner 1989). 
There is some evidence to suggest that in the USA that this may have levelled off. 
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influences on tempo are discussed in section 1.3.1. This difference in tempo leads 
to problems in creating growth charts in adolescence, because the pubertal spurt 
wil l be averaged over early and late maturers leading to a flattening in the curve 
(Tanner 1989). 

1.1.6 Post-adolescent growth 

Growth of the skeleton does not entirely cease at the end of adolescence (Tanner 
1989). Although growth in length of limbs ceases; the vertebral column continues 
to grow until about 30 years. Thus leading to a very small increase in height after 
adolescence, on average 3 to 5 millimetres (Tanner 1989). In the age period 30 to 
45 years attained height remains static. After the mid-forties height then begins 
to decline. For some individuals, a greater loss in height is experienced because of 
curvature in the spine due to osteoporosis. 

Growth in stature is defined to have virtually ceased, when thereafter only some 

2% of height is added (Tanner 1989). Using this definition, in western countries, 

the average boy and girl stop growing, at 17.5 years and 15.5 years, respectively 

(Tanner 1989). There is a normal range of variation of 2 years, in either direction, 

about these values (Tanner 1989). 

The behaviour of weight post adolescence is less straight forward. Some indi
viduals experience fluctuations in their attained weight whereas others maintain the 
same weight. In general there tends to an increase in weight in middle age. 

This subsection and the last were included here to provide a 'full-picture' of the 
growth process. The maximum measurement age is around 9 years for the growth 
data discussed within this thesis, thus the issues generated by the timing of the 
pubertal growth spurt will not be considered further here. 

1.2 The use of Growth charts 

1.2.1 Purpose of growth reference 

The normal growth process described in the last section describes a child's journey to 

adult height if the child is adequately fed, is not deprived, grows up in a nurturing 

environment and experiences no illness. Tanner (1989) views the child's curve of 

growth to be a 'target seeking' function, where 'target' refers to the child's genetic 
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potential. The term 'canalization' is used to describe this power to stabilise and 
return to a predetermined growth curve after being pushed off course (Tanner 1989). 
Life events such as illness and starvation are situations in which a child's growth 
could be affected. The rapid growth after a period of growth restriction is termed 
'catch-up' growth (Tanner 1989; Prader et al. 1963). Tanner (1989) stated that 
there were two ways in which catch-up could occur and that it was likely to be a 
combination of these responses: 

1. an increase in velocity to such an extent that the original curve is 

attained and then growth proceeds normally 

2. a delay in maturity, so that growth is resumed at the correct velocity 

for bone age^ 

One thing seems clear about canalization. Regulation is better 
in females than in males. . . . Similarly, girls recover from growth 
arrest more quickly than boys. The physiological reason for the 
greater stability is not known. (Tanner 1989, ppl71) 

If circumstances don't improve, then 'catch-up' may not occur, resulting in a 
final height that is lower than expected. The term used for this is 'stunted', a child 
is said to be stunted if they don't reach a final adult height within the region of 
their genetic potential. However, parents themselves may have been subjected to 
poverty and poor nutrition and thus may not provide the best indicator of genetic 
potential. This issue will be expanded on in Chapter 2. The term 'stunting' is used 
to describe the process of slowing up in height growth, the deficit in attained length 
or height compared to a reference (defined below) (Waterlow 1988). 

The motivation for the study of child growth differs between developed and 
underdeveloped countries. In underdeveloped countries, there are often seasonal 
fluctuations in weight gain or even weight loss and observed stunting in height 
growth is the norm. Therefore in underdeveloped countries, children's growth is 
viewed to be a sensitive index of the health and nutrition of the population (Tanner 
et al. 1966). In developed countries, where infectious diseases are well controlled and 
children are in general adequately fed, it is desirable to detect growth disorders early 

®Bone age is a measure of developmental age and is based on successive stages of devel
opment of the skeleton. It is usually assessed by scoring a radiograph of the wrist region, 
but such study has gone out of vogue because of the risks from exposure to radiation. 
This is viewed to be more representative than chronological age in assessing how far an 
individual has progressed along his or her road to maturity (Tanner 1989). 
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so that catch-up growth is likely to occur (Tanner et al. 1966). In other words, the 
purpose of growth monitoring in the developed world is to detect organic conditions, 
poor nutrition and growth disorders such as Growth Hormone deficiency and Turners 
syndrome; whereas in poorer countries the main interest is in malnutrition and the 
possible consequences. A growth reference can be used to monitor a child's growth 
in order to identify individuals at risk, they may be used to monitor the response 
to treatment or, as described above, as an indicator of the general health/nutrition 
of a population (Tanner 1989). 

Currently there is much interest in references for the body mass index (BMI), 
defined by equation (1.2), because this is viewed to be an indirect method of as
sessing obesity and malnutrition. The use of BMI does have drawbacks: i t may 
be dependent on stature, affected by relative leg length or sitting height and may 
reflect both lean and fat tissue (Garn et al. 1986). There is a worrying trend of 
increasing obesity that has generated much public health interest, in terms of future 
health outcomes for the obese individual. Power et al. (1997) suggest that there 
are elevated risks of adult obesity for overweight children, but that the prediction of 
adult obesity from child adiposity measures was only moderate. However, research 
from the thousand families cohort study in Newcastle suggests that the tracking 
from childhood overweight to adult obesity was poor (Wright et al. 2001). 

1.2.2 The growth reference 

In order to say anything about a child's height or weight on a one off occasion 
we need to compare i t to a reference. Growth references are used to compare an 
individual relative to other children of the same age and sex. The quality of this 
comparison depends on how accurately the sample population represents the whole 
population (Tanner 1989). 

A growth standard or growth reference is a dataset represent

ing the distribution of a given anthropometric measurement as 

it changes with some covariate - usually age - in the two sexes, 

based on a specified reference sample of children. (Cole 1993, 

pp21) 

Growth standard and growth reference are often used interchangeably in the 
growth literature. A growth standard is taken to represent an attained height or 
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weight to aspire to; in other words 'good' or optimal growth (Cole 1993). The im
plication is that a standard is prescriptive, with no need to for continual revision 
(Voss and Mulligan 1999a). Tanner et al. (1966) used the term standard for the 
previous British growth charts. A growth reference provides a reference (Cole 1993), 
in the sense that i t describes the status-quo and requires updating (Voss and Mulli
gan 1999a). The current UK growth charts are termed growth references (Freeman 
et al. 1995). 

Growth references are derived from cross-sectional data and require large sample 
sizes, Eveleth and Tanner (1990) state that a sample of about 1000 of each sex 
are required for each age group. Furthermore, the number of children measured in 
each group should be approximately proportional to the rate of growth (Eveleth and 
Tanner 1990). The quality of the height and weight data is important, in particular 
the measurement technique used. Thus routinely collected data would be unsuitable 
in the construction of a growth reference; because of clothing, poor installation of 
measuring equipment and multiple observers. 

The distribution of a growth reference is usually summarised by selected centiles 
which, in the case of height, are symmetric about the median (50th centile). The 
extreme centiles, such as the third centile, are subject to greater sampling error than 
the more central centiles (Eveleth and Tanner 1990). Centile charts are easy to use 
fairly accurately if the height or weight falls within the more central centiles (Cole 
1993). However, in the tails the distribution of the centiles are very widely spaced 
(Cole 1993) and determining the location of children above or below the extreme 
centiles is problematic. This is likely to be the case, for children that have growth • 
disorders. One advantage of using centiles is that in order to derive them we do not 
need to know the form of the underlying distribution (Cole 1993). 

One alternative to centile specification, used frequently in the nutrition literature, 

is percentage of median: 

— ^ X i»» 
median weight for age and sex 

This can be used similarly for height. One advantage of this approach is that it 

is still interpretable in the extremes of the distribution for height or weight (Cole 

1993). Stunting is usually defined as less than 90% height-for-age and wasting is 

defined as less than 80% weight-for-height. The downside to using the percentage-

of-median approach is that the interpretation of the observed deficit depends both 

on the measurement and measurement age (Cole 1993). 
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An alternative, advocated by Waterlow et al. (1977), is to use the Z-score. This 
is the approach used in this thesis. Z-scores are by definition normally distributed, 
with mean 0 and a standard deviation of 1. There are many advantages to using 
Z-scores: they are interchangeable with centiles if the underlying distribution is 
known, they can be as large or as small as necessary so heights and weights below 
the third or above the ninety seventh can be represented (Cole 1993). In addition, 
if the growth reference adequately adjusts for age, children of slightly different ages 
can be easily compared. 

The distribution of height is close to normal for the majority of childhood (Cole 
1993). As height appears to be normal distributed the Z-scores for height are defined 
in the usual way. 

• u height - median (mean) height for age and sex 
SD of height for age and sex 

However, weight is not normally distributed, with more of the population having 
high weights rather than low weights. The distribution of weights has a long right 
tail in comparison to the left tail. This results in centiles that are more widely spaced 
above the median, than below (Cole 1993). The same is true for BMI and skinfold 
data. Cole (1988) devised the LMS method, based on the Box-Cox transformation 
(Box and Cox 1964). This works by removing the skewness in the non-normal data 
to give a symmetric distribution. The LMS method and other alternatives will be 
discussed in more detail in Chapter 2. However, the basics of the LMS method are 
outlined below. Using the LMS method a Z-score is defined by equation (1.5). 

[Measurement/M(i)]^W - 1 

where measurement refers to child's measurement (e.g. height, weight, BMI, etc.), t 
is age, L{t) is the power transformation, M{t) is the median and S{t) is the coefficient 
of variation (ratio of standard deviation to median). In the case of height, which is 
already normally distributed, the power transformation iL(t)) is 1 at all ages. The 
centiles can then be obtained from L{t), M{t) and Sit) using equation (1.6). 

Ciooa(f) = M ( t ) ( l + L ( i ) 5 ( t ) ^ J^ / ^« (1.6) 

where Ciooa(^) is the centile curve plotted against t and Za is the normal equivalent 

deviate for that centile. 

Growth references are based on cross-sectional data; thus they are only useful for 
one-off measures. Tanner et al. (1966) refers to this type of reference as a 'distance' 
standard. However a child's size at one given age represents growth since conception. 
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it doesn't tell you anything about the process of how the child reached this height 
or weight. I f we have two weight or two height measures then we are able to say 
something about a child's growth between these two points. Tanner et al. (1966) 
gave this type of reference the term 'velocity' standard. These will be discussed in 
more detail in Chapter 3. 

Growth references are created and used for the monitoring of height, weight, 
BMI , weight-for-height, head circumference and skinfolds. In some poorer countries 
there are local references for arm and abdominal circumferences. 

1.2.3 Tanner-Whitehouse charts 

Tanner et al. (1966) developed the first growth chart for British children. The 
Tanner-Whitehouse growth charts (Tanner et al. 1966) were derived from London 
children measured in 1959 but adjusted slightly to be appropriate for 1965. The 
major height and weight centiles on the Tanner-Whitehouse chart were 3rd, 10th, 
25th, 50th, 75th, 90th and 97th (Tanner et al. 1966). The height and weight data 
that contributed to the standard were derived from three sources: Supine lengths, 
heights and weights from birth to 5.5 years were from a longitudinal sample of 
around 80 children from central London measured at the London Child study centre 
(Moore et al. 1954); heights and weights from 5.5 to 15.5 years were a cross-sectional 
sample (approximately 1000 boys and 1000 girls for each year of age) taken from 
the London County Council survey of 1959 (Scott 1961); and heights and weights 
from 16.5 to 20 years were a longitudinal sample of 30 children from the Harpenden 
Growth study (Tanner et al. 1966). 

In infancy, the sample size on which the Tanner-Whitehouse charts is based 
is very small, in view of infancy being such a critical period of a child's growth. 
However Tanner et al. (1966) does suggest that these measures are in reasonable 
agreement with those taken on 250 children (of each sex) in the Oxford Child health 
survey (Tanner (1958) in Tanner et al. (1966)). In addition, growth of children in 
London may not represent the full picture of growth experienced in other areas of 
the UK. 

Obviously, at the time of creation of these charts the computing technology was 
far behind what is possible today, so much of the smoothing of centile curves was 
done by eye (Tanner et al. 1966). In adolescence, children mature at different 
rates. Tanner et al. (1966) gives this the term 'phase-difference'. The shape of 
the distance curve at adolescence was derived from 49 boys and 41 girls from the 
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Harpenden Growth study that had sufficient data over the adolescent time period. 
There is a break in the Tanner-Whitehouse height charts at 2 years, the time at 
which length measurement switches to height measurement. Tanner et al. (1966) 
also presented the first British height and weight velocity references; discussion of 
these will be delayed until Chapter 3. 

1.2.4 National Centre for Health Statistics (NCHS) growth 
reference and its revision 

On average, children in North America have a slightly faster tempo of growth and 
grow to a slightly greater adult height than British children (Tanner 1989). The orig- ^ 
inal NCHS growth reference (Hamill et al. 1977) was derived from three sources: 
Fels longitudinal study (1929-1975)'' from birth to 3 years and nationally representa
tive data from the National Health Examination Surveys (NHES I I and I I I : 1963-70) 
and the first Health and Nutrition Examination Survey (HANES I : 1971-74) from 2 
to 18 years. 

The NCHS created references for two age groups: birth to 36 months and 2 
to 18 years. This resulted in a discontinuity in the growth reference, with some 
discrepancy in the age range 2-3 years. In the age range, birth to 3 years, charts 
were created for weight, length, weight-for-length and head circumference. From 2 
to 18 years; charts were created for height and weight. Weight-for-height charts were 
only created for prepubescent boys and girls (Hamill et al. 1979). Major centiles 
on these growth charts were the 5th, 10th, 25th, 50th, 75th, 90th and 95th. These 
were smoothed using least-squares-cubic-splines (Hamill et al. 1979). More extreme 
centiles were not obtained as the numbers in each yearly age group varied between 
300 and 600 (Tanner 1989). 

The NCHS growth reference was adopted in the late 1970's by the World Health 
Organisation (WHO) to provide an international growth reference (Waterlow et al. 
1977). However, work by WHO has illustrated that this reference is sufl[iciently 
flawed to interfere with the health and nutritional management of infants and young 
children (de Onis and Blossner 1997). The main problem is that in infancy, the Fels 
infants are primarily formula fed, introduced to solids very early^ and homogeneous 

'''The growth data from the Fels longitudinal study is unique in terms of following 
participants into adulthood and representing 3 or 4 generations of the same family (Roche 
1992). 

^ Early introduction of sohds can be detrimental in underdeveloped countries because 
of the risks from contaminated food 
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in terms of genetic, geographic, socio-economic backgrounds (de Onis and Garza 
1997). The sample sizes that contributed to this reference under the age of 5 were 
also very small (Guo et al. 2000). The childhood weight-for-height reference is also 
criticised for assuming age-independence (Cole 1985). 

After many calls for updating this reference, the NCHS/WHO reference has un
dergone revision and is now known as the Centers for Disease Control and Prevention 
(CDC) 2000 growth reference (Kuczmarski et al. 2000; Ogden et al. 2002). Major 
changes to the NCHS reference are the inclusion of the third and ninety-seventh 
centiles, Fels longitudinal infancy data replaced by nationally representative data, 
extension of charts to 20 years and elimination of disjunction between curves for 
infants and older children (Kuczmarski et al. 2000). The CDC 2000 growth charts 
include a new BMI-for-age reference covering the age range: 2 to 20 years (Ogden 
et al. 2002). The B M I growth chart also includes the 85th percentile because this is 
the recommended threshold for identifying overweight children (Kuczmarski et al. 
2000). The CDC 2000 growth reference was constructed from five national health 
examination surveys collected from 1963 to 1994 (NHES I I and HI , and NHANES I , 
I I and I I I ) and five supplementary data sources (Kuczmarski et al. 2000). In order 
to avoid the influence of increased body weight and BMI in the most recent national 
survey, data from NHANES H I above the age of 6 years was excluded. Kuczmarski 
et al. (2000) suggest that this national data provide a better representation of the 
racial or ethnic diversity and the size and growth patterns of combined breast- and 
formula-fed infants in the USA. 

The centiles of the CDC 2000 growth reference were derived using a two stage 
process. Initially the empirical centile curves were smoothed using either parametric 
or non-parametric approaches depending on the growth variables considered (Kucz
marski et al. 2000). In infancy the Guo et al. (1988) model was appHed to length, 
weight and head circumference data. Whereas in childhood a non-linear model was 
applied to stature data, a polynomial regression model was applied to weight-for-
stature data, and a locally weighted regression procedure was applied to weight and 
B M I data (Kuczmarski et al. 2000). In the final stage smoothed centile curves were 
estimated using a modified LMS estimation procedure (Kuczmarski et al. 2000; 
Ogden et al. 2002). 

1.2.5 The UK 1990 reference and its revision 

Tanner et al. (1966) stated at the time of publication of their standard that the 

growth reference should be updated every 10 to 15 years. Many authors (Wright 
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et al. 1993; Wright et al. 1992; Voss et al. 1987; Whitehead et al. 1989b) raised 
their concerns that the Tanner-Whitehouse reference was out of date and in need of 
revision. The main concerns were that the growth data that formed the reference 
was from the South East of England (mainly London) and the secular trend to earlier 
maturity and greater adult height (Freeman et al. 1995). The Tanner-Whitehouse 
references were based primarily on 'bottle-fed' children, whereas present day feeding 
practices promote breast-feeding. In infancy use of the Tanner-Whitehouse reference 
for Cambridge infants that were breast-fed lead to the impression that the child's 
growth was faltering from 3-4 months after having an initial advantage (Whitehead 
et al. 1989b). In Newcastle (the data set studied within this thesis), where the 
proportion of breast-fed and bottle-fed children is unknown, a similar pattern was 
observed for both the NCHS and Tanner-Whitehouse references (Wright et al. 1993). 

Conventionally, growth charts had always been characterised by the 3rd, 10th and 
25th centiles below the median and 75th, 90th and 97th centiles above. The World 
Health organisation uses cut-offs based on Z-scores (Cole 1994b). Cole (1994b) 
proposed that the format of a growth chart should be revised from a 7 to 9 centile 
chart, with each centile spaced two-thirds of a Z-score apart. Thus making the 
interpretation of Z-scores and centiles compatible. In the production of the UK 
1990 reference this proposal was put into action. The distribution of UK 1990 
reference is summarised by the 0.4th, 2nd, 9th, 25th, 50th, 75th, 91st, 98th and 
99.6th centiles. Using the 0.4th centile as a cut-off results in only one normal child 
in 260 that lie below this cut-off (Cole 1994b). 

Growth data from seven sources were used to create the UK 1990 growth ref
erence for height and weight (Freeman et al. 1995). The reference sample totalled 
over 25000 individuals from growth surveys between 1978 and 1990 (Freeman et al. 
1995). The National Study of Health and Growth (NSHG) (Rona and Chinn 1986; 
Rona and Chinn 1987) height and weight measurements were used as the reference 
data set as these were the most recent (Freeman et al. 1995). The other data 
frames were then adjusted accordingly. Ethnic minorities were excluded because 
these populations are known to exhibit different growth patterns (see section 1.3.1). 

Cole et al. (1995) published the first UK reference for the body mass index. This 
was derived from the same data sources as the original UK 1990 reference (Freeman 
et al. 1995). The body mass index of children changes substantially with age (Cole 
et al. 1995). In infancy it rises steeply to a peak at about 8 months, it then falls in 
the preschool years and flattens out around 5.5 years (often termed the 'adiposity 
rebound'^) and finally rises into adulthood (Cole et al. 1995). There is also a greater 

^The timing of the 'adiposity rebound' is often thought to be indicative of later obesity, 
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degree of skewness in the distribution of body mass index than for weight (Cole et al. 
1995). 

The original UK 1990 reference was shown to have a sex bias for weights in 
infancy (Wright et al. 1996). There were two and half times more girls than boys 
with weights below the third centile during the first year. The UK 1990 reference 
was then revised (Preece et al. 1996) and according to Cole et al. (1998) there is 
no longer a sex bias in the current reference. 

In the construction of the revised UK 1990 Growth reference data for weight, 
height, body mass index and head circumference were constructed from 12 sources 
(17 distinct surveys, all cited from Cole et al. (1998)): 

1. Human Measurements Anthropometry and Growth (HUMAG) infants, 
toddlers, boys, and girls (British Standards Institution 1990) 

2. HUMAG men and women (Jones et al. 1993) 

3. National Study of Health and Growth (NSHG) (Rona and Chinn 1986; 
Rona and Chinn 1987) 

4. Tayside growth study (no ref.) 

5. Cambridge infant growth study (Whitehead et al. 1989b) 

6. Whittington birth data study (Colley et al. 1991) 

7. National Diet and Nutrition Survey (NDNS) (Gregory et al. 1995) 

8. MRC Dunn Nutrition Unit Premature Baby Study (Lucas et al. 1984) 

9. Cambridge Rosie Premature Neonates 1985-94 (no ref.) 

10. Cambridge Rosie Neonates 1992-93 (no ref.) 

11. Northern Region Premature Neonates 1991-92 (no ref.) 

12. Edinburgh Growth Study (RatclilTe et al. 1994) 

The data from these surveys were analysed by maximum penalised likelihood 
using the LMS method (Cole and Green 1992). I t assumes that for independent 
positive data t/i at ages ti [i = 1 , . . . ,n) an age-specific Box-Cox transformation 

there is an increased risk of adult obesity the earher the adiposity rebound (Cole et al. 
1995) 
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(Box and Cox 1964) can be applied to the data to make them normally distributed. 
In general the ti are replicates from a smaller set of distinct ordered ages T, [j = 
1 , . . . , m). The distribution of at Tj (where ti = T,) is summarised by the median 
M{Tj), coefficient of variation S{Tj), and Box-Cox power L{Tj). The formula below 
converts the measurement yi to its Normal equivalent deviate Zi: 

Zi = < (1.7) 

The quantities L, M and S are natural cubic splines with knots at each Tj, and are 
estimated by maximum penalised likelihood. The required centile curves were as 
follows: 

/ M ( T , ) ( l + L(r , )5(r , )Z„)W) ( L ( T , ) ^ 0 ) 

[M{T,)exp[S{T,)Z,] {L{T,) =^ 0) 

where Za is the normal equivalent deviate of size a. 

The LMS coefficients are available in Microsoft Excel format or as text files from 
the Child Growth Foundation (Child Growth Foundation 1996b). LMS values are 
available from 23 weeks gestation to 23 years for weight, 33 weeks gestation to 23 
years for height, 33 weeks gestation to 23 years for BMI and 23 weeks gestation to 
17 (boys) or 18 (girls) years for head circumference. In the postnatal period, LMS 
values are given every calendar month (twelfths of a year). Linear interpolation 
between these values can then be used to obtain the values of L, M and S for the 
child's decimal age. The UK 1990 centile chart for boys (pre-term to 52 weeks) can 
be found in figure 1.1. 

Recently concern has been expressed that there are several growth references in 
use in clinics and hospitals in the UK (Wright et al. 2002; Cameron 2002). Wright 
et al. (2002) considered the following references: Tanner-Whitehouse (Tanner et al. 
1966), Gairdner-Pearson (Gairdner and Pearson 1971; Gairdner and Pearson 1985), 
Buckler-Tanner (Tanner and Whitehouse 1976; Buckler and Tanner 1997) and the 
UK 1990 growth reference (Freeman et al. 1995; Cole et al. 1998). These four growth 
references are widely used at present or in the past (Wright et al. 2002). The overall 
consensus was that the Tanner-Whitehouse and Gairdner-Pearson references were 
obsolete and that for clinical purposes the use of the revised UK 1990 reference 
is advocated (Wright et al. 2002). However, there are no suitable references for 
head circumference beyond infancy (Wright et al. 2002). The Buckler-Tanner chart 
is an update of the clinical longitudinal chart of Tanner-Whitehouse (Tanner and 
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Whitehouse 1976) formed using the amalgamated data set from Freeman et al. 
(1995) and longitudinal data from 198 Sheffield adolescents (Cameron 2002). It 
is suggested that the Buckler-Tanner charts are suitable for assessing height after 
the age of 2 (Wright et al. 2002) and its use is advantageous in the monitoring 
of individual children in adolescence (Cameron 2002). However concern has been 
expressed that the longitudinal source sample in the Buckler-Tanner charts is too 
small and may only be valid for a subgroup of adolescents (Preece (1998) in Cameron 
(2002) and Wright et al. (2002)). However, Cameron (2002) concluded that the 
Buckler-Tanner reference should be used wisely in adolescence. 

1.3 Growth disorders 

1.3.1 Interaction of heredity and environment 

In this section we consider the factors that influence a child's path to adult size. 
Tanner (1989) viewed child growth to be a product of the continuous and complex 
interaction of heredity and environment. 

Heredity refers to the genetic make-up of a child. Children of tall parents tend to 
be taller than children of short parents providing environmental circumstances are 
adequate. There is also thought to be a genetic influence on the tempo of growth, 
thus a late maturing girl may have a late-maturing father or a late-maturing mother 
(Tanner 1989). However, Tanner (1989) held the opinion that the genetic control of 
tempo was largely independent of genetic control of final adult height. 

Environmental influences include nutritional, ethnic, seasonal, illness, psychoso
cial stress, urbanisation, socio-economic status and family size (Tanner 1989). 

1. Nutrition: Malnutrition delays growth. Children subjected to an 
episode of acute starvation recover more or less completely by the 
'catch-up' process, described above, provided the adverse conditions 
are not too severe and do not last too long (Tanner 1989). Children 
that experience chronic undernourishment during the majority of their 
childhood end up with lower final adult heights (Tanner 1989). Infancy 
is the period when the child is most at risk from malnutrition (Eveleth 
and Tanner 1990). In Western countries, today, there is more of a 
problem with over-nutrition. Research by Reilly and Dorosty (1999) 
suggests that in children, with ages from 6 to 15 years, there may be 
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an increasing trend of obesity with age. 

2. Ethnic: Populations of different ethnic origin differ in their average 
adult size, tempo of growth and final shape (Tanner 1989). Asian and 
Japanese children are shorter (Tanner 1989). American children of 
African descent have almost identical curves to the Americans (Tanner 
1989). Europeans of African descent have a higher tempo growth than 
Europeans at all ages (Tanner 1989). An additional complication is 
that children of ethnic origin grow differently in other countries than 
in their country of origin, largely due to other environmental influences. 
Furthermore, mixed marriages also complicate the issue. Thus, in gen
eral, ethnic minorities are excluded in the creation of growth references. 
I t has been suggested that the centiles of the revised UK 1990 reference 
could be shifted upwards or downwards for different ethnic minorities 
(Chinn et al. (1996) in Cameron (2002)). 

3. Season: In European countries, children aged 7-10 years grow faster 
in height in spring and summer than in autumn and winter (Marshall 
1971). In tropical countries, seasonal variations arise because of rainy 
and dry periods, which in turn influence food availability and infection 
(Tanner 1989). 

4. Illness: Obviously illness has a major impact in poorer countries due to 
lack of medical resources. However, in well-nourished children in richer 
countries the effects on growth of minor illness are minimal (Tanner 
1989). Complete catch-up growth after illness may not occur in children 
with poor diets (Tanner 1989). For instance in children that fail-to-
thrive, poor nutrition leads to a higher frequency of minor ailments 
which in turn influences food intake (Woolston 1991). 

5. Psychosocial stress: Growth faltering can occur in children that 
experience psychosocial stress. Two mechanisms for this delay are pro
posed (Tanner 1989): alterations in appetite and inhibition of growth 
hormone secretion. The views of Tanner (1989) feed into the 'food 
versus love' debate, in the origin of failure-to-thrive; see Chapter 3. 
Taitz and King (1988) illustrated that catch up could occur in abused 
children placed in foster homes. 

6. Urbanisation: In industrialised countries children in urban areas are 
usually larger and have a more rapid tempo of growth than children 
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from rural areas (Tanner 1989). Tanner (1989) attributes this to rural 
children eating less and expending more energy, whereas in urban areas 
there is access to: food, health services, education and welfare facilities 
(Tanner 1989). 

7. Socioeconomic status: In most societies children from different so
cial classes diflFer in size and in tempo of growth (Tanner 1989). Upper 
class children tend to be taller and reach maturity earlier (Tanner 1989). 
Only the weight-height relationship is affected diff'erently, with lower 
classes having higher levels of obesity (Tanner 1989). 

8. Family size: Children from large families tend to grow slower (Tan
ner 1989). This is thought to be due to having more mouths to feed 
and increased incidence of infections (Tanner 1989). During childhood, 
first-born children tend to be taller than later-born children with the 
same number of siblings, because the first-born child has had a period 
of being an only child (Tanner 1989). 

1.3.2 Disorders of child growth 

Table 1.1 summarises the main conditions affecting a child's growth (adapted from 
Hall (2000)). Jellinek and Hall (1994) found that in a survey of parents that had 
children with growth disorders, that the majority (46%) of growth disorders were 
first identified because of parental concern whereas only 8% of children's growth 
disorders were identified using routine height monitoring. 

In childhood, research focuses on children with short stature. However, in in
fancy, the emphasis is on growth faltering, usually weight. This is given the term 
'failure-to-thrive', which is categorised as non-organic and organic failure-to-thrive. 
The latter is growth faltering due to some medical cause, such as Down's syndrome. 
Failure-to-thrive and growth faltering will be discussed further in Chapter 3. It is 
generally accepted that 'failure-to-thrive' in infancy can lead to reduced attained 
height in childhood or shorter than expected final adult height. 

Epidemiological surveys using longitudinal data have shown many 

short children at school-entry failed to thrive during infancy (Skuse 

1998, pp342) 

Thus, there is some overlap in the populations that are studied for 'short stature' 

and for 'failure-to-thrive' in childhood. 
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Table 1.1: A summary of the main conditions affecting growth (adapted from 
Hall (2000)) 

Short Stature or growth failure Tall stature or accelerated growth 

Isolated growth hormone deficiency Marfan's Syndrome 
Multiple pituitary hormone deficiency Klinefelter's syndrome (XXY) 
Turner's syndrome (girls) XYY syndrome 
Psychosocial deprivation Soto's Syndrome 
Silver-Russell syndrome Thyrotoxicosis 
Skeletal dysplasias and bone disorders Congenital adrenal hyperplasia 
Noonan's syndrome Premature sexual maturation 
Neurofibromatosis Pituitary gigantism 
Hypothyroidism 
Inflammatory bowel disease 
Coeliac disease 
Chronic renal disease 

Short stature can be due to genetic shortness, deprivation, malnutrition or of 
organic origin (or a combination of these). The majority of research focuses on the 
psychological consequences of short stature (Skuse 1987; Siegel et al. 1991) and 
influence on mental ability. Lacey and Parkin (1974) carried out a study of children 
of short stature in Newcastle at the age of 10 years. Lacey and Parkin (1974) found 
that there was a tendency for children from poor homes to be shorter, have less 
subcutaneous fat and to have greater delay in skeletal maturation. All these short 
children scored poorly in tests of mental ability and attainment (Lacey and Parkin 
1974). This work has been replicated recently by Voss et al. (1989). They identified 
180 children whose height at school entry lay below the third percentile using the 
Tanner-Whitehouse standards (Tanner et al. 1966) from 14,346 children in 2 health 
districts entering school during two consecutive years (1985-7). One hundred and 
forty of these short normal children (remaining 32 excluded for pathology, 5 from 
ethnic minorities and 3 non-compliant) were matched with 140 controls of average 
height. The controls were matched with cases for age, sex and school class. However, 
the children in the Wessex growth study were selected on the basis of height alone; 
the socio-economic status (SES) of the short participants is lower than that of the 
control group (Stratford et al. 1999). This cohort of children have been followed over 
the last 12 years (Voss 1999) at 6 monthly intervals for height, with two psychometric 
follow ups in 1989/91 and 1994/96. Downie et al. (1997) concluded that until 11 to 
13 years that social class had more infiuence than height on a child's psychological 
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development. 

1.4 The Coventry Consensus - current guidelines 
for growth monitoring 

1.4.1 Health for all children 

Hall (1996) reviewed the role of growth monitoring. In relation to weight monitoring 
in infancy, Hall (1996) stated that there was little justification for regular weighing 
once the parent and primary care team were satisfied that the baby is feeding nor
mally and gaining weight. Hall (1996) proposed that length should be measured at 
6-8 weeks and that height should be checked at 1.5-2 years, 3.5 years, 5 years and 
proposed a further check at 7. The following guidelines were proposed for identifying 
slow-growing children (Hall 1996): 

1. In pre-school children (less than 5 years) referral was recommended if 
height crosses two channel widths between any pair of measurements.^" 

2. In school age children (5-9 years) referral was recommended if a child's 
height crosses one or more channels between any pair of measurements. 

As pointed out by Mulligan et al. (1998) these guidelines are ambiguous, be
cause growth rate requires both the change in height and the time interval between 
measurements to be considered. Mulligan et al. (1998) considered the change in 
height Z-score between 5 and 8 years for children measured in a research study 
and community setting. Considering a change in height Z-score greater than 0.67 
to indicate 'slow' or 'fast' growing, they found this would not result in an excess 
number of inappropriate referrals. Although more girls than boys were identified as 
'slow-growing' (Mulligan et al. 1998). 

The above guidelines have been revised as a result of the 'Coventry Consensus'. 

This was a meeting of a multidisciplinary team of health professionals held in Coven

try (July 1998). The issues raised at this meeting are summarised by Hall (2000) 

and Wright (2000) for children over and under 2 years old, respectively. As a result 

of the consensus i t was 

^"channel width refers to the distance between major centiles in a growth reference 
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agreed that the potential benefits of growth monitoring include: 
identification of chronic disorders; provision of reassurance to par
ents; monitoring the health of the nation's children; and support
ing future research. (Hall 2000, pplO) 

1.4.2 Growth monitoring in infancy 

In infancy, as discussed above, the primary role of weight monitoring is to identify 

children at risk of failure-to-thrive (Wright 2000). In clinical practice, the full picture 

is considered, not just the child's weight chart. The overall conclusion from the 

Coventry consensus was that infants should be weighed less often but with more 

attention paid to the recorded weights (Wright 2000). The recommendations from 

the Coventry consensus with regards to growth monitoring in children under 2 years 

were: 

• Birth weight (but not length), related to gestational age, is 
essential both for growth monitoring and as an important 
epidemiological marker. 

• No justification has been found for the routine monitoring 

of length before the age of 2 years, except where there is 

concern. 

• Length should be measured only where there is concern 

about a child's growth or weight gain. 

• Babies who are growing normally should only be weighed at 
immunisation and surveillance contacts, and should not be 
weighed more than once every two weeks under the age of 6 
months and once a month thereafter. 

• A child should be weighed whenever there is clinical concern. 

• Average children (initially > 9th and < 91st centile) often 

cross through one centile space during the 1st year. A sus

tained fall through two weight centile spaces justifies a more 

detailed assessment, which should initially be primary care 

based. (Wright 2000, pp7. Table 1) 
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1.4.3 Growth monitoring in childhood 

In childhood, the primary justification for growth monitoring is for the identification 

of short stature due to growth hormone deficiency or Turners syndrome (Hall 2000). 

These are the only disorders of growth from table 1.1 with few other clues except 

short stature (Hall 2000). The main conclusions from the Coventry consensus with 

regards to height monitoring, of interest here, were: 

• Single height measurements with a cut-off using the 0.4 cen

tile on the 1990 charts, come closest to satisfying the criteria 

for screening. 

• School entry offers a good opportunity to screen the whole 
population. The theoretical advantages are low marginal 
cost when combined with other school entry screening proce
dures, potentially high coverage, an acceptable yield of new 
cases of isolated Growth hormone deficiency and Turner's 
Syndrome, secondary benefits in case-finding for other dis
orders and (when combined with weight) a contribution to 
a core data set for child public health. 

• Correction for parental height should not at present be un

dertaken as part of screening. 

• Because the school entry measurement provides the best 
opportunity to identify growth disorders, the measurement 
must be done to a high standard, so reliable equipment must 
be supplied and correctly assembled or installed, and staff 
training is essential. 

• Children whose height is above the 99.6 centile need be re
ferred only if there are other unexplained symptoms or signs. 

• Height measurement at other ages, using the 0.4 centile to 
trigger action, is good clinical practice. I t should be under
taken on an opportunistic basis when a child is seen for other 
reasons, whether in primary or secondary care, but should 
not be regarded as a total population screening programme. 
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• Routine growth monitoring to detect centile crossing has too 
low a sensitivity and specificity to be regarded as screening. 
(Hall 2000, ppl3) 

The situation with regards to weight monitoring after infancy is still less clear. I t 
is usual to judge a child's weight with reference to their height, this can be achieved 
by using the UK 1990 reference for BMI (Cole 1995). Voss and Mulligan (1999b) 
compared the body mass indices of 120 children of average height at school entry 
to the UK 1990 B M I reference. Before puberty the mean BMI was on the 45th 
centile, whereas at 16-17 years the mean BMI was on the 65th centile (Voss and 
Mulligan 1999b). This would seem to suggest a trend to increasing obesity over a 
very short time scale (Voss and Mulligan 1999b). However, the policy with regards 
to the current UK 1990 BMI reference is to be 'freeze' it at its present state, in 
order to compare prevalence of overweight with reference to situation in 1990 (Cole 
et al. 1999). Cole and Roede (1999) have also suggested using BMI centiles derived 
from Dutch children in 1980 as a baseline to assess obesity. The working party for 
obesity (Dietz and Robinson 1998) have suggested identifying centiles corresponding 
to adult cut-offs of 25 and 30 Kg/m^ and extrapolating back to childhood. Cole et al. 
(2000) have put this suggestion into action, producing an international reference 
with these suggested cut-offs. However the underlying assumption in the creation 
of this reference is that prevalence of overweight or obesity is the same throughout 
childhood (Mulligan 2000). The 'Coventry Consensus' concluded that 'screening' 
for obesity would not fulf i l accepted criteria (Hall 2000), but that recording height 
and weight together would have greater clinical and public health value than height 
alone. The consensus concluded that: 

monitoring the changing weights and BMI's of the nation's chil
dren is important in view of the high and increasing prevalence 
of obesity, and could be facilitated by a policy of universal mea
surement when children start school. (Hall 2000, ppl3) 

There are no formal referral guidelines for weight, but community guidelines suggest 

the following rule-of-thumb: a child's weight centile that deviates from their height 

centile by over 2 centile bands (Schilg and Hulse 1997). This is equivalent to a 

difference in weight and height Z-scores of more than four thirds. 
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1.5 Summary of thesis content 

In this chapter we have discussed the physical features of the growth process for 
children growing 'normally'. We have highlighted the importance of a growth refer
ence in terms of assessing a child's attained weight or height status. In this thesis, 
the child's anthropometric measures will be converted to Z-scores using the revised 
UK 1990 reference. Some of the possible disorders of growth were introduced. The 
focus in this thesis will be primarily on children whose weight gain falters in infancy. 
We concluded by presenting current guidelines for growth monitoring. 

A statistical literature review of the various aspects of human growth can be 
found in chapter 2. The approaches used to derive centiles for growth references will 
be discussed, along with the techniques that have been used to model, primarily, 
the human height growth curve. We conclude chapter 2 by introducing the concept 
of mid-parental height. 

Chapter 3 focuses on the approaches that can be used to detect growth faltering. 
In infancy the focus is on weight faltering whereas in childhood the focus is on height 
faltering. In this chapter we introduce the conditional gain Z-score. A conditional 
weight gain Z-score provides a way of assessing a child's weight gain between two 
occasions, provided the correlation between weight Z-scores at these two time-points 
is known. Within this chapter we also discuss the numerous approaches used to 
detect failure-to-thrive in infancy. Currently there isn't an agreed research definition 
of failure-to-thrive, so published results on outcome after growth faltering in infancy 
are not comparable. 

In chapter 4 we introduce the infancy data from the Newcastle growth and de
velopment study. This data frame includes routine weights on 3415 term infants 
resident in Newcastle in 1989, at the time aged 18-30 months. Within this chapter 
we carry out a preliminary analysis of the routine weight Z-scores and compare the 
Newcastle children to those children that contribute to the growth reference. The 
infancy data frame is the main focus of this thesis. This rich source of data provides 
the opportunity to develop the correlation structure of routine weight Z-scores in 
infancy. In chapter 5 we develop a model for this correlation structure. In chapter 
7 we explore patterns in the conditional weight gain Z-scores obtained using the 
model derived for Newcastle correlations. 

A sub-sample of the infants were followed-up at 7-9 years. These children be

longed to three subgroups: (a) cases where children that were defined as failing to 

thrive in infancy using the 'thrive index' approach (see Chapter 3 for definition). 
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(b) controls were matched to cases in terms of age and level of deprivation and (c) a 
20% systematic sample. In chapter 6, weight, height, BMI and head circumference 
data from the systematic sample are compared to the revised UK 1990 reference and 
the correlation of a child's height with reported parental heights will be established. 
The Z-scores for height, weight, B M I and head circumference of the case and control 
children are compared. 

I t is routine to monitor a child's height and weight at school entry. The school 
entry data of the sub-sample followed at 7-9 years were retrieved from school health 
records. In chapter 8, we perform a preliminary analysis of the routine childhood 
height and weight data. In chapter 9 the childhood data are analysed longitudinally. 
Systolic blood pressure at 7-9 years will be related to current and earlier size. Height 
at 7-9 years is contrasted with earlier height. 
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Figure 1.1: Boys 4-in-l growth chart (pre-term to 52 weeks): revised UK 
1990 growth reference for weight, length and head circumference (reproduced 
here with kind permission of Child Growth Foundation, copyright 1996) 
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Chapter 2 

Statistical approaches used in the 
study of child growth 

The intention of this chapter is not to provide an exhaustive review of all statistical 
approaches applied to the study of child growth. Instead it aims to give a brief 
overview falling mainly into two areas: deriving growth references (in section 2.1) 
and modelling the growth process at the individual or population level (in sections 
2.2, 2.3, 2.4 and 2.5). In section 2.6 we introduce the concept of mid-parental 
height as an indicator of genetic potential that is often used in clinical practice for 
the assessment of short stature. A comprehensive review is provided for methods 
used within this thesis, such as the LMS method, and use of mid-parental heights. 
Discussion of mathematical approaches to the velocity of child growth is deferred to 
the next chapter, where the focus is on growth faltering. 

2.1 Approaches to the construction of growth ref
erences 

Age-related reference intervals are not only used in the monitoring of child growth, 

although the construction of 'growth charts' was probably the first example (Wright 

and Royston 1997). Age-related reference intervals are constructed for other vari

ables such as CD4 counts, weight gain during pregnancy, serum cholesterol and 

blood pressure. They are commonly used in the routine monitoring of individuals, 

where interest is in detecting extreme values, such as those below the second centile 

or above the ninety eighth, possibly indicating abnormality (Wright and Royston 

1997). 

61 
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The quality of a growth reference depends on two factors, namely the data used 
to derive it and the statistical approach used to arrive at the centiles. The essence 
of the problem is captured by Cole (1993) in his summary of the criteria introduced 
by Waterlow et al. (1977): 

. . . they require the reference population to be well nourished, 
the sampling procedure to be clearly defined and reproducible, 
the sample to be cross-sectional and of adequate size, the mea
surements to include all those that are relevant and to be of 
good quality, and finally the data and smoothing procedures to 
be available. (Cole 1993, pp36) 

Good measurement techniques are of utmost importance in growth studies, es
pecially if height or weight measures are then going to be used for the purpose of 
constructing velocity references (Tanner 1989) (see next chapter for discussion of 
velocity references). The purpose of a growth reference is to compare an individ
ual's attained height or weight to other children of the same age and sex. Thus 
the quality of this comparison depends on how accurately the sample population 
is representative of the whole population and whether the sample is of adequate 
size (Healy 1986). Precise percentile estimates require large sample sizes and this is 
especially true for extreme percentiles such as the second and ninety eighth centile 
(Healy 1986; Guo et al. 2000). The requirement of cross-sectional data is not always 
met in the creation of growth references: from birth to 5.5 years and birth to three 
years within the Tanner-Whitehouse reference (Tanner et al. 1966) and NCHS ref
erence (Hamill et al. 1977), respectively, there is a longitudinal component. Even 
in the current revised UK 1990 reference (Cole et al. 1998) there is longitudinal 
element in infancy for all anthropometric measures and over the full age-range for 
head-circumference. In infancy (4 weeks to 2 years) the majority of the anthropo
metric data is from the Cambridge infancy study (Whitehead et al. 1989b) and over 
the ful l age range (birth to 17/18 years) the head-circumference data is from the 
Edinburgh growth study (Ratcliffe et al. (1994) in Cole et al. (1998)). 

. . . centile curves are constrained by links in both horizontal 
and vertical directions, the former representing consistency with 
changing age and the latter a well behaved distribution within 
age. The first of these constraints is explicit, in that the curves 
are smoothed across ages. The second constraint, that the fre
quency distribution of the measurement at each age should be 
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consistent in some sense, and hence that the centile curves should 
be consistently spaced relative to their neighbours, is less gener
ally accepted (Cole 1993, pp39). 

Cole and Green (1992) used the term 'commonality' to describe centile curves being 

linked in position to their neighbours. The simplest example of this is when centiles 

arise f rom a normal distr ibution (Cole 1993). Wi thou t commonality centile curves 

can touch or even cross (Cole and Green 1992). 

I f the normal distr ibution is used in order to derive the centiles, then these can 

be defined by the mean and standard deviation (SD) of the distribution (Cole 1993): 

measurement centile = mean + SD x z (2.1) 

where z is the normal equivalent deviate for the required centile. The main advan

tage in assuming a normal distr ibution in the construction of centiles is that (on 

the proviso that the normality assumption is reasonable) the standard errors of the 

estimated centiles are greatly reduced which is especially true in the tails of the dis

t r ibu t ion (Healy 1974). However i f the assumption of normality is not reasonable, 

then the extreme centiles w i l l be biased (Cole 1993). 

I f the assumption of normality is reasonable then the distribution at each age can 

be derived using the approach described above. However, although height is known 

to have a distr ibution that is close to normal during most of childhood (Cole 1993); 

Cole (1989b) found that during puberty there is a time-period when the height 

distr ibution of the NCHS and Dutch reference is skewed to the right. Although an 

additional consideration is that pooling over one year can create detectable skewness 

and kurtosis (Healy 1974), there is likely to be some element of grouping in the 

creation of both of these references. 

In section 2.1.1 we focus on the LMS method and maximum penalized hkelihood, 

the approach used in the creation of the revised U K 1990 reference (Cole et al. 1998). 

This reference w i l l be used to convert anthropometric data f rom the Newcastle 

study to Z-scores. I n section 2.1.2 we consider the three approaches that have been 

widely used for creating references: LMS method, the shifted log transformation 

and distribution-free HRY method. In section 2.1.3 we discuss some of the other 

approaches proposed for creating age-related references. 
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2.1.1 The LMS method 

One approach to the creation of growth references for non-normal data is to use 

the LMS method. The LMS method assumes that anthropometric data can be 

transformed to normahty using a power transformation, thus removing any skewness 

(Cole 1990). The anthropometic data is grouped according to age and the optimal 

power for each age group is calculated. The smoothed series of powers that vary wi th 

age is known as the L curve: the power of the transformation (Cole 1990). After 

transforming back to the original scale; the smoothed M and S curve summarise the 

trend wi th age of the median and coefficient of variation (Cole 1990), respectively. 

Given the L , M , and S curves, centile curves can be derived using equation (1.6). 

Cmait) = M{t)il + L ( t ) 5 ( i ) z J i / ^ W (1.6) 

where Ciooa (t) is the centile curve plotted against t and Za is the normal equivalent 

deviate for that centile. 

Cole (1988) expanded on the approach proposed by Van't Hof et al. (1985); who 

used the Box-Cox transformation to remove the skewness in skin-fold measures at 

each age. Van't Hof et al. (1985) suggested that the power of the transformation 

could vary smoothly w i t h age and hence skewness would vary smoothly wi th age. 

Cole (1990) took this one step further and assumed that the transformation to 

remove the skewness resulted in a normally distributed variable. Thus the mean 

and standard deviation of the transformed distribution also change smoothly wi th 

age, allowing the construction of centile curves (Cole 1990). 

Assuming that the variable of interest y, for example weight, is positive and has 

median fi. Suppose that (or log(y) i f A = 0) is normally distributed. Consider 

the family of transformations 

X = 
A 

( A ^ O ) 
y > 0 (2.2) 

H I ) (A = o) 

proposed by Box and Cox (1964), where the value of A is to be estimated. I f A = 1 

then the measurement is unchanged, i f A = 0 then we have the natural log transform 

of measurement and A = —1 gives the reciprocal of measurement (Cole 1993). The 

maximum profile likelihood estimate of A both minimises the skewness and optimises 

the fit to normali ty (Cole 1988). 

The transformation in equation (2.2) translates the median 12 oi y to x = 0. and 

is continuous at A = 0 (Cole and Green 1992). I f A = 1 the standard deviation of x 

is exactly the coefficient of variation of y, which remains approximately true for all 
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moderate A (Cole and Green 1992). The optimal value of A minimises the standard 
deviation of x (Cole and Green 1992). 

The Z-score of x and hence of y is given by 

X 

- = < 

a H I ) 

( A / 0 ) 

y > 0 (2.3) 

(A = 0) 

where a is the standard deviation of x (therefore the coefficient of variation of y) 

and z is assumed to have a standard normal distr ibution (Cole and Green 1992). 

I f we now assume that the distribution of y varies w i th time and that A, ^ and 

cr at ^ are read off the smooth curves L{t)^ M{t) and S{t), then i t follows (Cole and 

Green 1992) that 

z{t) 

( ( ^ ) ^ w - i)ims{t) m ^ 0) 

y > 0 (2.4) 

s(t) W) = 0) 

I f equation (2.4) is rearranged, then the lOOa centile of y at t is given by 

jMit)il+L{t)S{t)Z^)W^^ m ^ O ) 
(^10Qa[t) = < (2.5) 

[M{t)exp[S{t)Zc,] {L{t) = 0) 

where is the normal equivalent deviate. Thus i f the L , M and S curves are smooth 

then the centiles derived f rom them wi l l also be smooth (Cole and Green 1992). 

To establish a growth reference using the LMS method, the data has to be 

divided into distinct age groups. Cole (1990) suggested that each age group should 

be as narrow as possible (ideally 1 year or less), w i th adequate numbers in each 

age group (at least 100 individuals). For each age group the best Box-Cox power is 

identified by selecting the one that gives the smallest coefficient of variation (Cole 

1988). Once the powers for each age group are obtained the next issue is smoothing 

these, so that the L , M and S values change smoothly wi th age. Suggestions for 

how this smoothing could be achieved were to use: cubic splines, kernel methods, 

polynomials, or other functions for individual growth curves; see section 2.2 (Cole 

1988) and exponential or fractional polynomials (Cole et al. 1998). 

I f the method of maximum penalized likelihood is used to provide smooth esti

mates of the L , M and S curves directly, then there is no need to group the data 

(Cole and Green 1992). The only decision to be made is the degree of smoothing of 
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the three curves (Cole and Green 1992). The penalized likelihood approach avoids 
identifying individual age groups that are good fits or outliers as i t treats the entire 
data set as a single entity (Cole and Green 1992). 

Assuming we have n independent observations yi,... ,yn at corresponding co-

variate values ^ i , . . . , t „ - The log-likelihood function derived f rom equation (2.4) 

(excluding an additive constant) is 

l = l{L,M,S) = J2( Liu) log - l o g S { t , ) - 0.5zf (2.6) 

where the Zi are the Z-scores corresponding to the y^. The curves L ( t ) , M ( t ) and 

S(t) are estimated by maximising the penalized likelihood: 

/ - 0.5 {ax j L"{tfdt + y M"{tfdt + j S"{tfdt^ (2.7) 

where a\, and are smoothing constants. The three integrals in equation (2.7) 

provide roughness penalties, so that maximising this equation strikes the balance 

between staying true to the data and smoothness of the L , M and S curves (Cole 

and Green 1992). Using this form of penalties leads to natural cubic splines wi th a 

knot at each value of t (Cole and Green 1992). The complexity of each fitted cubic 

spline is measured by the 'equivalent degrees of freedom' (Cole and Green 1992) 

which is analogous to the number of terms in a polynomial (Cole et al. 1998). 

The LMS method and maximum penalized likelihood were used to create the 

original U K 1990 growth reference for B M I (Cole et al. 1995), height and weight 

(Freeman et al. 1995). However, this reference was revised because of a sex bias for 

weights in infancy. The sex bias was a consequence of merging data sets separately 

for each sex^ (Cole et al. 1998). In the revised reference, the data set adjustments 

made were the same for both sexes (Cole et al. 1998). The L curve, the power 

transformation, for weight starts f rom normality around b i r th ( L = l ) to a log trans

form (L=0) around 1 year (Cole et al. 1998), i t then continues to decrease taking 

on negative values unt i l maturity. The L-curve for height and head-circumference is 

fixed at a value of 1 over all ages. 

Wade and Ades (1994) used parametric functions to describe the L, M and S 

curves; for example exponential models and maximum likelihood were used to create 

age-related references for CD4 lymphocyte counts for uninfected children born from 

mothers w i t h H I V status. This approach guarantees that centiles are asymptotic 

^The timing of the growth surveys (see section 1.2.5 for details) varied between 1978 
and 1994 (Cole et al. 1998). All data sets were adjusted to be comparable to the NSHG 
survey which was one of the most recent (Freeman et al. 1995). 
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at adult values and avoids edge effects (Wade and Ades 1994). Wade and Ades 
(1994) in i t ia l ly randomly sampled a CD4 count f rom each child in order to achieve 
a cross-sectional sample. Later work by the same authors, explicitly modelled the 
correlation structure so that all CD4 counts on each child could be incorporated in 
the reference (Wade and Ades 1998). 

In using the LMS method there is no guarantee that once the skewness is removed 

the resulting distr ibution w i l l be normal. Cole (1993) states that after the power 

transformation the distr ibution w i l l be nearer to normal, in particular, the mean 

and median w i l l be closer together on the transformed scale than on the original 

scale. However, there is no certainty that the higher moments of the transformed 

distr ibution, such as the kurtosis, w i l l coincide w i t h those f rom the normal distribu

t ion (Cole 1993). Nevertheless, kurtosis tends to be less important than skewness 

as a contributor to non-normality (Cole and Green 1992). 

2.1.2 Performance of the three main approaches to creating 
age-related references 

The two main alternatives to the LMS method are the logarithmic-transformation 

(LOG method) of Royston (1991) and distribution-free method (HRY method) of 

Healy et al. (1988). The former transforms the anthropometric variable Y to nor

mali ty using a shifted logarithmic function log(F - r ) (Royston 1991), whereas the 

latter is a distr ibution free method that extends the scatterplot smoother approach 

of Cleveland (1979) to estimate the centiles empirically (Healy et al. 1988). However 

both these approaches use polynomials to achieve smooth centile estimates, which is 

a potential weakness because polynomials are not very good at modelling processes 

w i t h an asymptote. Wright and Royston (1997) noted that time varying skewness 

is not easily accommodated by the shifted log-transform method. 

Goldstein and Pan (1992) adapted the distribution-free method of Healy et al. 

(1988) to overcome the l imi ta t ion generated by using polynomials in the HRY 

method: the empirically derived centiles were smoothed using piece-wise polyno

mials. Low order polynomials were derived for data that had already been split 

into contiguous age groups, these low-order polynomials were then smoothly joined 

ensuring that the derivatives of a desired order were continuous (Goldstein and Pan 

1992). 

Wright and Royston (1997) compared the shifted log-transform (Royston 1991), 

LMS method and HRY method on three data sets: serum cholesterol in men (rela-
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tionship between serum cholesterol and age is weak), fetal abdominal circumference 
(relationship between abdominal circumference and age is strong but simple) and 
triceps skin-fold (relationship wi th age is complex). The centile curves derived for 
the cholesterol data were similar around the centre of the data using each of the ap
proaches, but differences were evident in the extremes (Wright and Royston 1997). 
Wright and Royston (1997) concluded that all the approaches seemed to provide a 
good fit for the cholesterol data. The centile curves produced for the fetal abdominal 
circumference data using all three methods were again similar (Wright and Royston 
1997). However, the distribution of the Z-scores for the abdominal circumference 
data had longer tails than the normal distribution (Wright and Royston 1997). The 
LMS method gave the most satisfactory centile curves for the tricep skinfold data 
(Wright and Royston 1997). The HRY and LOG method did not perform well 
on the skin-fold data wi th overfitting at higher ages (Wright and Royston 1997). 
Comparative papers of Pere (2000) and Healy (1992) also reached similar overall 
conclusions. 

Overall, the LMS method seems best and i t is the approach now adopted by 

numerous authors in the creation of growth references. The only downsides to this 

approach are (i) some non-normal kurtosis may remain and (ii) Z-scores have to be 

calculated f rom tabulated LMS values. The shifted log and Box-Cox transformation 

both include the normal and the log-normal as special cases (Cole 1993). The shifted 

log-normal, unlike the Box-Cox, can accommodate negative values such as velocity 

measurements (Cole 1993). However, the shifted Box-Cox method is also able to 

cope w i t h negative values. 

2.1.3 Other approaches to the creation of smooth centiles 

In recent years numerous approaches have been put forward for deriving centile 

curves (Royston and Wright 1998; Rossiter 1991; Heagerty and Pepe 1999; Fatti 

et al. 1998; Shi et al. 1996; Sorribas et al. 2000; Tango 1998; Wellek and Merz 

1995). These procedures usually suggest alternative ways of smoothing centiles, 

incorporating longitudinal element, transforming to normality or avoidance of dis

t r ibut ional assumptions. 

Royston and Wright (1998) proposed a parametric approach that uses an alterna

tive transformation to normality and fractional polynomials for smoothing. Royston 

and Wright (1998) suggest the exponential normal transformation (or modulus ex

ponential normal transformation) to remove non-normal skewness (and/or kurtosis). 
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The shape parameter in this transformation is more directly re
lated to skewness than is the power parameter in the Box-Cox 
transformation (Royston and Wright 1998, pp80). 

Fractional polynomials, discussed in section 2.2.3, are used to model each parameter 

of the (modulus) exponential normal density (Royston and Wright 1998). 

Heagerty and Pepe (1999) proposed a semi-parametric approach which does not 

use any underlying assumption for the distribution. The centiles are represented by 

a location function, scale function and a base-line distribution function (Heagerty 

and Pepe 1999). The scale and location functions are modelled using natural splines, 

whereas the base-line distr ibution function is estimated by local kernel smoothing of 

the empirical distr ibution function (Heagerty and Pepe 1999). Heagerty and Pepe 

(1999) illustrate how their semi-parametric approach can be used to condition weight 

on height-for-age and age. 

Fat t i et al. (1998) and Shi et al. (1996) both proposed approaches that took into 

the account the longitudinal nature of the individual profiles. Fat t i et al. (1998) 

take a Bayesian perspective: an individual's past history (such as previous weight 

gain profile of a pregnant mother) forms a prior distribution, which when combined 

w i t h the reference distribution at that age gives a conditional distribution for that 

individual 's weight gain. This then forms the prior distribution for the next mea

surement occasion (Fatt i et al. 1998). The philosophy of this approach has much in 

common w i t h the conditional approaches discussed in Chapter 3. Shi et al. (1996) 

considered the longitudinal nature of the profiles of CD4 counts. In this approach 

the fixed and random effects are linear combinations of B-splines which are viewed 

to be more flexible than random effects models that use low order polynomials (Shi 

et al. 1996). 

2.2 Parametric models for individual growth 

2.2.1 Model requirements 

Over the years there have been numerous models fitted to a child's individual growth 

in length or height. Some of the infancy models (see subsection 2.2.5) have also been 

fitted to weight data. In this section we discuss the parametric models that are most 

frequently cited in the growth literature. As Tanner (1989, pp8-9) puts i t : 

Many attempts have been made to find mathematical curves 
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which fit, and thus summarise, human and animal growth data. 
Most have ended in disillusion or fantasy; disillusion because fresh 
data failed to conform to them, fantasy because the system even
tual ly contained so many parameters (or 'constants') that i t be
came impossible to interpret them biologically. What is needed 
is a curve or curves w i t h relatively few constants, each capable 
of being interpreted in a biologically meaningful way; yet the fit 
to actual data must be adequate, wi th in the l imits of measuring 
error. . . . But fitting a curve to the individual values is the only 
way of extracting the maximum information about an individ
ual's growth f rom the measurement data. . . . The individual's 
consistency can only be measured by deviations f rom his own 
growth curve. 

There are many advantages and disadvantages to modelling individual curves 

using parametric models. The main advantage in using a parametric function to 

describe the growth process is that the shape of the human growth curve can be 

summarised using relatively few parameters. Furthermore, predicted heights or 

weights at times other than measurement times can be obtained using the parametric 

equation: this was the approach use by Berkey et al. (1983a) to obtain correlations 

between heights and log-weights at the exact year time-points. Furthermore, velocity 

and acceleration curves can be obtained by differentiating the parametric equations 

w i t h respect to time. However, i f the growth data to be modelled is f rom a large 

data frame, then i t can be t ime consuming to fit models individually. Especially 

when using nonlinear least squares and the Gauss-Newton method. When fitting a 

non-linear model parameter estimates are obtained iteratively and this can result in 

problems wi th convergence. Convergence may be very slow or the procedure may fai l 

to converge at all , even when the starting values are close to the solution (Thisted 

1988). Furthermore, the predicted values f rom nonlinear regression models wi l l be 

biased and the extent of this bias depends upon the quantity known as the 'intrinsic 

nonlinearity' of the model or data set combination (Ratkowsky 1983). Providing a 

linear model is an 'adequate fit', i t has a slight advantage over non-linear models 

because they are easy to fit and goodness-of-fit can be assessed using standard 

methods. I f we were interested in deriving a mean growth curve f rom individual 

non-linear growth curves then the mean parameter curve^ is not equivalent to the 

population mean curve. The mean parameter curve may systematically overestimate 

or underestimate mean size at each age, depending upon the curvature of the non-

^Mean parameter curve refers to the mean over parameter values 
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linear funct ion (Merrell 1931). 

A downside to a parametric model is that i t imposes a fixed algebraic form on 

the growth process which may be too rigid to capture the true complexities of the 

process (Healy 1989a). This is especially true of curves based on few parameters 

(Healy 1989a), whereas models w i t h a large number of parameters w i l l be able to 

handle more complexities. A disadvantage in using a highly parameterised model 

is that a large number of height measures for each individual are required in or

der to achieve a reliable fit. However, even a highly parameterised model wi l l not 

be able to take into account any unexpected short term variation i f i t is not de

signed to accommodate this (see section 2.5 for models developed to handle the 

fluctuations in the growth process, termed 'saltation and stasis' by Lampl et al. 

(1992)). Furthermore, interesting local variations, such as growth spurts, may be 

missed (Goldstein 1986a). Parametric models are also unable to account for growth 

variation attributable to other characteristics measured at each occasion (Goldstein 

1986a), such as deprivation and seasonal variation. 

Addi t ional considerations are the assumptions made when fitting a model using 

ordinary least squares: namely, uncorrelated residuals w i th constant variance. Such 

requirements are unlikely to be met in a growth context (Healy 1989a). Negative 

correlations may occur i f the t ime between measures is less than 1 year, because of 

seasonal variation (Healy 1989a). Large positive correlations could be a result of the 

continuity of the growth process (Healy 1989a): a child that is large on one occasion 

is likely to be large on the next. Other authors construe that positively correlated 

residuals indicate model mis-specification (Healy 1989a). However, non-constant 

variance and autocorrelation can be dealt wi th at the model fitting stage using 

weighted or generalised least squares. A n alternative approach, discussed in section 

2.3, is to use a multilevel model or random effects model that takes into account 

w i th in and between individual parameter correlations (Goldstein 1986a; Laird and 

Ware 1982; Berkey and Laird 1986). 

Some models are fitted to the whole growth curve f rom b i r th to maturity (see 

section 2.2.4). However, more often than not, different functions are fitted to dif

ferent parts of an individual's growth curve, such as infancy and childhood models; 

see sections 2.2.5 and 2.2.6. In general, childhood models are highly parameterised 

and thus use requires a large number of height measurements during childhood. In 

a routine setting this is unlikely to be the case. However, the package A U X A L of 

Bock et al. (1994) employs Bayesian methods to fit the B T T (Bock et al. 1994) or 

JPA2 (Jolicoeur et al. 1992) model (see subsection 2.2.6) to incomplete height data. 
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2.2.2 Polynomials 

A statistician's first approach might be to model attained height as a polynomial 

funct ion of time, the complex shape of the growth process being accommodated by 

increasing the order of the polynomial. However, Joossens and Brems-Heyns (1975) 

(in Preece and Heinrich (1981)) found a polynomial of order 18 was necessary. Fur

thermore, polynomials are not very good in modelling processes wi th an asymptote, 

and i t can be diff icul t to determine the appropriate order (Healy 1989a). Healy 

(1989a) views polynomials to be useful i f growth is studied over a relatively short 

t ime. I t is presumed that the time period studied does not include early infancy, 

the pubertal spurt or the asymptote reached at maturity. 

2.2.3 Fractional polynomials 

Some of the models outlined later in this section (Reed, Count and Guo models) 

are special cases of the fami ly of fractional polynomials described by Royston and 

A l t m a n (1994). A fractional polynomial is a regression function where the terms 

are powers of age but the choice of powers is widened to include negative as well as 

positive integers, w i t h the addition of powers of 0.5 (square root), 0 (natural log) 

and -0.5 (inverse square root) . This approach increases the flexibility of the form of 

the fitted curve in contrast to polynomials. Conventional low order polynomials do 

not always fit the data well and high order polynomials may follow the data closely 

but often fit badly at the extremes of the observed range (Royston and Al tman 

1994). Furthermore polynomials do not have asymptotes, thus they cannot fit data 

where hmi t ing behaviour is expected (Royston and Al tman 1994); for example, a 

child approaching final adult height. 

Royston and Al tman (1994) introduced the family of curves, fractional polyno

mials, whose power terms were restricted to a small predefined set of integer and 

non-integer values, and include conventional polynomials. 

A fractional polynomial of degree m is a function 
m 

<f>m{X;^,p) = ^o + J2(,X^'^^ (2.8) 

where X is a positive covariate, m is a positive integer, p i , - . . ,Pm are powers wi th 

Pi < •• • < Pm, ^0,^1, • • • ,Cm are real coefficients, and 

I n X ifp_j = 0 
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the Box-Tidwell transformation. Royston and Al tman (1994) suggested that non-
integer powers outside [-1,1] would not be found to be useful. Royston and Al tman 
(1994) proposed a step-wise procedure for covariate selection and model fitting when 
several covariates were available. Cole (1995) chose to model the correlation struc
ture of weight Z-scores in infancy using fractional polynomials, this application wi l l 
be discussed in chapters 3 and 5. 

2.2.4 Component-wise birth to maturity models 

A parametric model covering the whole growth process has to accommodate the 

features of the whole growth process, described in section 1.1 in Chapter 1. In 

general, the model needs to capture: the steadily fal l ing growth velocity in early 

life, the growth spurt in adolescence and plateau at maturity. Not an easy task 

for one model! The approach used in the past has been to model several adjoining 

segments of the growth curve. Some of the more recent childhood models, e.g. the 

JPPS, J P A l and JPA2 models (Jolicoeur et al. 1992), can be applied to infancy 

data providing there is height data throughout childhood to maturi ty - these models 

are discussed in section 2.2.6. Two such component wise parametric models due to 

Karlberg (1987) and Reed and Berkey (1989) aim to model height from bir th to 

maturity. 

Karlberg (1987) devised the Karlberg ICP model on his beliefs about the hor

monal regulation of the growth process. The approach of Karlberg (1987) is to split 

the growth process into three additive and super-imposed components; equations 

(2.9), (2.10) and (2.11). Each component of the model corresponds to known fea

tures of the endocrinological regulation of the growth process that can be considered 

in isolation f rom one another (Karlberg 1987). 

1. The Infancy component is a constantly decelerating component which 

starts before b i r th and tails off by 3-4 years of age. 

y = ai+ bi{l - exp{-cjt)) + e (2.9) 

2. The Ch i ldhood component commences during the first year of life 

at age tc- The onset occurs usually between 6 and 12 months and 

is typically abrupt (Karlberg et al. 1987). The childhood component 

slowly decelerates to matur i ty at age t^-

y = ac + bct + cct^ + e (2.10) 
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3. The P u b e r t y component represents the additional growth induced 
by puberty. I t accelerates unt i l age at peak velocity (ty) and then 
decelerates unt i l growth ceases ( tg) . 

^ = l + e x p ( - X ( i - M ) ' ' ' 

where t is age in years in all 3 components (Karlberg 1987). 

The fitting procedure for the ICP model involves multiple steps and is computer 

intensive: i t requires the identification of age of onset of childhood component ( i c ) 

and age when growth ceases (IE)- Karlberg (1987) determines the t iming of the 

components by observing individual velocity curves. This approach has been used 

to create an ICP based growth chart (Fryer and Karlberg (1985) in Karlberg et al. 

(1987)). Karlberg et al. (1987) analysed supine length data f rom 191 individuals 

between b i r th and 3 years. Karlberg et al. (1987) found that the onset of the 

childhood component was earlier in girls than boys and is related to the magnitude 

of the infancy component. 

Berkey and Reed (1987) originally developed their model to describe growth be

tween b i r th and six years. This model, see equation (2.12), is linear in its parameters 

and is essentially the model of Count (1943) wi th the addition of increasing powers 

of reciprocal in age. 

y = a + bt + c\og{t) + ^ + ^ + ^ + --- + e (2.12) 

Two versions of the general Reed model were proposed for early childhood, equa

tions (2.12.1) and (2.12.2), which were not thought to suffer f rom the Count model 

age related bias (Berkey and Reed 1987). 

First order Reed model 

y = a + bt + clog{t) + ^ + e (2.12.1) 

Second order Reed model 

y=:a + bt + clog{t) + ^ + ^ + e (2.12.2) 

As log of zero is undefined i t is usual to add a constant to the actual age when using 

the Reed (and Count) models. Reed and Berkey (1989) extended the approach 

used for early childhood to cover the whole period of growth. This involves joining 

two Reed models using splines, one covering childhood and the other adolescence 

(Reed and Berkey 1989). A t the age where the two models jo in , the distance and 
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velocity curves should be continuous (Reed and Berkey 1989). The resulting model 
has between 6 and 8 parameters depending on the order of the Reed model required 
in childhood and adolescence. Reed and Berkey (1989) suggested the following Reed 
models for childhood and adolescence: 
childhood 

d e 
y = ac + bcx + Cc log{x) + — + + e (2.13) X x'^ 

adolescence 

y = aA + c^ log(x) + ^ + ^ + + , (2.14) 
CC X X 

where 2; is a linear transformation of chronological age and y is length or weight. 

The term b^x is excluded in the adolescent part, this is because 6^ represents the 

asymptotic velocity which is zero at maturi ty (Reed and Berkey 1989). A reciprocal 

cubic was added to the adolescent component to improve flexibility (Reed and Berkey 

1989). The transformed age variable has its origin a; = 0 near conception (9 months 

subtracted f rom bir th) and a; = 1 is near the 'boundary' between childhood and 

adolescence. Equations (2.13) and (2.14) are combined by the use of an indicator 

variable z which is zero during childhood and one when x > 1. The resulting 

equation is discontinuous where the two functions are joined, but Reed and Berkey 

(1989) resolved this by using the spline conditions for continuity in attained size and 

velocity, to give the 8 parameter equation: 

y = bi + b2 log(x) + — + ^ + b5{z + x - zx + z \og{x)) 
X x'^ 

+ be{-2z - x + zx + - ) + bji-Sz - 2x + 2zx + 4 ) (2-15) 
X x^ 

+ b8(-4:z - 3x + 3zx + ~ ) 
x^ 

Reed and Berkey (1989) illustrated this approach on 2 boys and 2 girls. For the 

examples given their model faired better than the triple logistic model of Bock and 

Thissen (1980); see section 2.2.6. Reed and Berkey (1989) suggested that for large 

data frames the boundary should be fixed at some reasonable age for children of 

the same sex. However children mature at different rates, so using this approach in 

practice may not be as straightforward as implied. 

There are no published comparative papers on the Karlberg ICP model or Reed 

linear model f rom b i r th to maturity. One reason these models may not have sub

sequently appeared in the research literature is that they both contain a subjective 

element: determination of t iming of components in ICP model and location of the 

jo in point of two Reed models. 
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2.2.5 Infancy models 

W i t h i n this section we summarise the models derived primarily for infancy length 

data, but many have also been applied to weight data. In table 2.1 we present the 

infancy models in chronological order. Table 2.2 summarises the characteristics of 

the infancy models applied to length data. In general, i t seems that between 3 and 

5 parameters are adequate for modelling growth in infancy. 

Two early models for length data were the non-linear Jenss and Bayley (1937) 

model and the linear Count (1943) model. Jenss and Bayley (1937) developed 

a model for length over the age range b i r th to six years and also applied the 

same model to weight data. Jenss and Bayley (1937) termed exp(d) the term 

'growth/acceleration constant'. Byrad et al. (1991) applied the Jenss model to 

length and weight data f rom the Fels longitudinal study. They concluded that the 

Jenss model was designed to fit the usual pattern of growth and that minor varia

tions f rom this pattern could result in extreme parameter values. Berkey (1982a) 

used the empirical Bayes approach to fit the Jenss model, using the prior distribution 

of growth-model parameters estimated f rom a large sample. Berkey (1982a) viewed 

this approach to be beneficial for infants that had missing observations and on av

erage, to be less sensitive to measuring errors. Count (1943) originally proposed 

a three component model to cover the whole period of growth. However only the 

infancy component, see table 2.1, has been utilised in the literature. Count (1943) 

applied his model to several sources of data f rom differing nationalities. Often 1 is 

added to time to avoid taking the log of zero when fitting the Count model. Count 

Table 2.1: Infancy models: y denotes length or weight, t denotes age 

(which is adjusted i f model includes a log(t) term) and e denotes the error 

term (adapted f rom Berkey and Reed (1987)) 

Jenss-Bayley model (1937) y = a + bt — exp(c + dt) + e 
Count model (1943) y = a + bt + clog(t) + e 
Bialik model (1973) log(y) = a + b\og{t) + c(log(f))2 - i - e 
Kouchi model (1985) y = a + bf^ + e 

1st order Reed model (1987) y = a + bt + clog{t) + j + e 

2nd order Reed model (1987) y = a + bt + clog(i) + f + f + e 
Karlberg infancy comp. (1987) y = a + b{l — exp(—ci)) + e 
Guo model (1988) y = a + by/i + clog{t) + e 
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(1943) suggested that age at conception could be zero. Berkey and Reed (1987) 
explored the effect of varying the constant when fitting the Count and Reed mod
els (discussed above) but came to no clear solution. However changing the constant 
added to age could affect the shape of the curve (Berkey and Reed 1987). Berkey and 
Reed (1987) suggested that t = "^°"ths since birth+9 intuitively appealing trans

formation of time. Smith et al. (1983) found that the Count model was applicable 

to the weight patterns observed in 22 premature infants, and the only discrepancies 

were in the first few days when weight loss was most rapid and variable. Berkey 

(1982b) compared the fit of the Jenss and Count models on longitudinal weight and 

length data of 229 children f rom the Harvard Growth study. The Harvard children 

had up to 14 measures near targets ages of 3 to 12 months in 3 month intervals and 

every 6 months f r o m 1 to 6 years (Berkey 1982b). Berkey (1982b) concluded that 

the Count model did not give a satisfactory fit for length or weight in this age-range 

and was found to have systematic age-related deficiencies. Berkey (1982b) found the 

Jenss model performed well for both length and weight. However use of the Jenss 

model may present 'minor problems' around the age of 6 months (Berkey 1982b). 

The Reed first and second order models are essentially extensions of the Count 

model (Berkey and Reed 1987). Berkey and Reed (1987) found that the Reed model 

described the growth in length as well as the Jenss model. One advantage of the 

Reed model is that i t can accommodate points of inflection and possibly provide a 

representation of some abnormal patterns of growth (Berkey and Reed 1987). 

The model proposed by Bialik et al. (1973) is included in table 2.1 because i t was 

derived f rom infancy weight data, the focus of the major i ty of the analysis in this 

thesis. However, since publication, i t has not been utilised in the growth literature. 

Table 2.2: Properties of infancy models 

Model No. of Linear in Limit of Vel. 
parameters parameters as age increases 

Jenss-Bayley model (1937) 4 N b 
Count model (1943) 3 Y b 
Kouchi model (1985) 3 N b 
1st order Reed model (1987) 4 Y b 
2nd order Reed model (1987) 5 Y b 
Karlberg infancy comp. (1987) 3 N 0 
Quo model (1988) 3 Y 0 or 1 or (X) (*) 

(*) depends on the magnitude and sign of c — 1 
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Bial ik et al. (1973) applied their model to weight data f rom 449 infants in a rural 
area of Israel, w i t h an average of 17.5 weights per child f rom bir th to 1 year. 

The model proposed by Kouchi et al. (1985b) was developed on length data from 

the Fels longitudinal study. The model was fitted to 441 individuals (229 males, 212 

females), who had five to seven length measures recorded f rom 1 month to 2 years, 

born between 1931 and 1974. Kouchi et al. (1985a) also applied their model to 

weight data f rom the Fels longitudinal study: 344 infants (176 male, 168 female), 

born between 1930 and 1970, that had at least six data points including bi r th weight. 

The parameters of the Kouchi model were given interpretations, a was bi r th weight 

or length at 1 month, b was intrinsic growth rate and c was pattern of growth 

(Kouchi et al. 1985b; Kouchi et al. 1985a). Kouchi et al. (1985a) and Kouchi et al. 

(1985b) explored relationship of the parameters wi th in the Kouchi model and adult 

status. Two results of interest to this thesis were that head circumference at 18 and 

30 years was found to be significantly correlated wi th rate of growth in infancy and 

correlation between rates of growth in infancy and adult stature were found to be 

as high as those between stature at 2 years and adult height (Roche 1992). 

The model proposed by Guo et al. (1988) was also derived f rom data from 

the Fels longitudinal study. Head circumferences f rom 462 infants (247 boys, 215 

boys) and weight (and length) data f rom 504 infants (265 males, 239 females) were 

used for the purpose of the construction of a 1 month increment reference for head-

circumference (Guo et al. 1988), weight and length (Roche et al. 1989). The Guo 

model was used to interpolate monthly values for head-circumference, weight and 

length in order to create the increment reference; see section 3.3.3 in chapter 3. 

Simondon et al. (1992) compared five of the infancy growth models: the Count 

model, the Kouchi model. Reed first- and second-order models and the Karlberg 

infancy component. Simondon et al. (1992) considered the fit to weight data of 95 

Congolese infants, this was a selective sample f rom 2429 children measured on at 

least 7 occasions, between b i r th and 13 months of age. The Kouchi model provided 

a poor fit w i t h an unacceptably high degree of collinearity and i t failed to fit five 

curves (Simondon et al. 1992). In agreement wi th Berkey (1982b), the Count model 

was also found to provide a poor fit. The I-component of the Karlberg model was 

viewed to be the best three parameter model i f i t was used between the ages of 2 and 

12 months. The Reed models provided the best fit, but the five parameter model 

was not viewed to be superior to the four parameter model (Simondon et al. 1992). 

Simondon et al. (1992) did not consider the Jenss and Guo model. 

Peerson et al. (1993) compared nine models: the Count model, the Guo model. 
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the Jenss model, the Reed first- and second order models and the Karlberg model 
(six infancy models) and three polynomial models (quadratic, cubic and quartic). 
The models were fitted to length, weight, and head circumference of 39 breast-fed 
and 31 formula-fed infants f rom the D A R L I N G study to compare breast and bottle 
fed infants over the age range 1 to 24 months. Peerson et al. (1993) considered the 
infancy and childhood component of the Karlberg model but excluded the quadratic 
term. Peerson et al. (1993) recommended the Karlberg model for length data of 
both breast-fed and bottle-fed infants. The Jenss model was suitable for describing 
weight growth in formula-fed infants and this model was thought to be appropriate 
for head circumference growth in both formula-fed and breast-fed infants (Peerson 
et al. 1993). Peerson et al. (1993) viewed none of the models to be adequate to 
describe weight curves of breast-fed babies. Peerson et al. (1993) did not consider 
the Kouchi model. 

2.2.6 Childhood models 

In this section we summarise models that have been applied to childhood height 

data, these models usually cover growth after infancy and are able to accommodate 

the pubertal growth spurt. In the literature, none of the more recent models appear 

to have been applied to weight data. I n table 2.3 we summarise the parametric 

models applied to height data in childhood. 

The earliest models applied to longitudinal height data were the Gompertz (1825) 

model (in Preece and Heinrich (1981)) and the logistic function. The logistic curve 

formed the th i rd component of the component-wise model of Count (1943). Quo 

(1953) applied the logistic curve to average weight f rom 13 years to maturity. Laird 

(1967) applied a Gompertz style equation, in three phases, to weight data of males. 

Deming (1957) applied the Jenss model (infancy and childhood) and Gompertz 

model (adolescence) to length data of 24 boys and 24 girls. Marubini et al. (1971) 

compared the fit of the Gompertz and logistic models to height measures of 121 

girls during adolescent growth and concluded that both models were adequate for 

describing the growth process. However, the logistic model gave the better quality of 

fit in terms of residual variance (Preece and Heinrich 1981). The Gompertz function 

is later used in the model developed by Shohoji and Sasaki (1987b), discussed below. 

Preece and Baines (1978) adopted a different approach to the derivation of mod

els for height data, they derived three models f rom the difi'erential equation: 

f^=s{t)x{y,-y) (2.16) 
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Table 2.3: C h i l d h o o d models: y usually denotes height, t usually denotes 

age f rom b i r th (unless stated otherwise) and e denotes the error term 

Gompertz (1825) 
logistic 

y — P + K exp(- exp(a - ht)) 

y ~ P + l+exi![a-6f) 

P represents height at start of adolescence 
K represents gain in height during adolescence 

Pearl polynomial logistic (1925) 

Revised Pearl (1992) 
y ~ l+exp[C+Dit+D2f^+D3f^+D4t*+D5t5] ^ 

A 
l+exp[f+C+Dit+D2t^+D3t3+D4t'i+Dit^] y = + e 

Preece-Baines (1978) y ^ y ^ exp[so(t-e)]+exp[si(t-0)] 

Double logistic (1973) 

lYiple logistic (1976) 

B T T (1994) 

y " l+exp [ -6i («-ci )J + l+exp[ - ( )2 ( t -C2) ] 
/ is the height at maturity 

y = " 1 (^l+expl-h{t-ci)\ + l + e x p M 2 ( t - C 2 ) ] 

+ l + e x p H ' 3 ( t - C 3 ) J + ^ 

y = [ l + e x p l - M t - c i ) ) ) " ! + [ l + e x p { - t 2 { t - C 2 ) ) ] ' ' 2 

^ [ l + e x p ( - 6 3 ( « - C 3 ) ) ] ' ' 3 

+ e 

SS (1987) y = (1 - exp(- exp{A - Bt)))[C + Dt + E\og{t)) 
+Uexp(- exp(^ - Bt)) + e 

KS6 (1990) y = C + Dt + Elog{l+t) 
+ exp( - exp(A - Bt))[U - C - Dt - Elog{l + t)] + e 
U is adult height 

SSC (1993) y = AW{t) + f{t)[l-W{t)\ + e 
W^(t) = e x p [ - e x p B ( G - i ) ] 
f{t) = C + Dt + E\og{t) 

JPPS (1988)* 

JPAl (1992)* 

JPA2 (1992) 

y = A\i-- 1 
/ . / i \ t-'3 I ^ 

7/ = ^ exp + € 

+ e 

(*) t is measured from conception rather than birth 

where y is height at time t, y i is final (or adult) height and s{t) is a function of time 

which differs between models. A l l models were applied to height data f rom 35 boys 

and 23 girls belonging to the Harpenden Growth study. The three models derived by 
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Preece and Baines (1978) performed better than the double logistic model (discussed 
below), f rom the age 2 to maturity, and were found to be better than anything else 
available at that t ime. The best model overall was the Preece-Baines Model 1: 

2(l/i - ye) 2̂ 17) 
^ e x p [ s o ( t - ^ ) ] + e x p [ s i ( t - ^ ) ] ^ ' ^ 

where 5o and Si are rate constants ( ^ = (si — s)(s — S Q ) ) , ^ is a time constant 

(related to age at peak velocity (Preece and Heinrich 1981)), yi is an estimate of 

adult size and ye is height att = 9. Hauspie et al. (1980) applied the Preece-Baines 

model 1, double logistic, logistic and Gompertz models to height data of 35 Belgian 

girls followed f rom b i r th to 18 years. Considering the height data between 2 and 

18 years, the Preece Baines model 1 provided a better fit than the double logistic 

model (Hauspie et al. 1980). Neither model coped wi th height data at ages less than 

1 year (Hauspie et al. 1980). During adolescence the double logistic curve fitted 

slightly better than the Gompertz curve (Hauspie et al. 1980). 

Bock et al. (1973) proposed the double logistic model for recumbent length to 

cover the age range 1 year to maturity. In order to use this equation the height 

(or length) at matur i ty ( / ) is required. The first term represents the prepuber

ta l component, this continues in a reduced degree unt i l maturity, and the second 

represents the contribution of the adolescent spurt (Bock et al. 1973). The dou

ble logistic model was applied to length data of 56 boys and 51 girls f rom the 

Pels study (Bock et al. 1973). Bock and Thissen (1976) (in Bock and Thissen 

(1980)) then proposed the triple logistic model. The first two components (early-

and mid- childhood) of the triple logistic model represent prepubertal growth. Bock 

and Thissen (1980) suggested using Bayes estimation i f data were incomplete. Guo 

et al. (1992) applied the Preece-Baines model 1, the triple logistic model and kernel 

regression (discussed below) to heights of 143 boys and 84 girls over the age-range 

2 to 18 years f rom the Pels study. Guo et al. (1992) found that the Preece-Baines 

model could not accommodate a mid-growth spurt. Guo et al. (1992) recommended 

the triple logistic model or kernel regression, w i th the latter been preferable as i t 

required comparatively less data. Bock et al. (1994) (in Pan (1995)) later pro

posed the Bock-Toit-Thissen ( B T T ) model which is equivalent to the triple logistic 

model if di = d2 = = 1. The B T T model is employed in the growth package 

A U X A L , which also uses Bayesian methods of estimation to cope wi th incomplete 

data. A U X A L also fits the JPA2 model and also uses the non-structural approach 

of kernel smoothing (Gasser et al. 1984), both described below. 

The model developed by Shohoji and Sasaki (1987b) (SS) was applied to height 

data of 2567 males and 971 females f rom the Hiroshima growth study over age-range 
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6 to 22 years. However, Shohoji and Sasaki (1987b) noted that the majori ty of the 
height data is in the age range 12 to 16 years. This function contains components 
that correspond to the Count model and Gompertz function. Cole (1993) suggested 
replacing the Count function w i t h the Jenss function (SSC) and later put this into 
practice (Ledford and Cole 1998). The SS model has also been applied to average 
weight data of the Savannah Baboons (Shohoji and Sasaki 1987a; Shohoji and Sasaki 
1985). The SS model is not invariant to change in time scale (Jolicoeur et al. 1992). 
The Kanefu j i and Shohoji (1990) six parameter (KS6) model was a revision of the 
SS model to allow the inclusion of b i r th length, which was achieved by adding one to 
t in the log terms. The KS6 model, JPPS model (Jolicoeur et al. 1988) and Preece-
Baines model were fitted to height data of 365 Japanese girls. Kanefuj i and Shohoji 
(1990) concluded that the KS6 model provided the best fit. They also demonstrated 
an application of empirical Bayesian methodology wi th their model. 

Jolicoeur et al. (1988) proposed the JPPS model for height f rom infancy to 

maturi ty. Jolicoeur et al. (1988) illustrated the better fit of their model, over 

Preece-Baines model and Shohoji-Sasaki model, on 13 boys and 14 girls wi th data 

f r o m 1 month to 19 years. The JPPS model was revised to give the J P A l model 

(includes prenatal data) and JPA2 model (for postnatal data) (Jolicoeur et al. 1992). 

Jolicoeur et al. (1992) compared the fit of eight models: JPPS, J P A l , JPA2, KS6 

and KS7 (adaptation by Jolicoeur et al. (1992)), Preece-Baines model 1, triple 

logistic and Pearl polynomial logistic (adapted by Jolicoeur et al. (1992)) applied 

to stature of 27 healthy children (41 height measures on each child) f rom the French 

Auxological survey. Jolicoeur et al. (1992) found that both the J P A l and JPA2 

provided better fits than the in i t i a l JPPS model. Overall Jolicoeur et al. (1992) 

found the JPA2 model provided the best fit to the French height data. Bock (1995) 

(in Ledford and Cole (1998)) compared an improved version of B T T , JPA2 and KS7, 

concluding that the JPA2 and B T T models were similar in performance. Abidi 

et al. (1996) demonstrated the application of empirical Bayes approach to the 

height records of 13 boys w i t h four growth models ( JPAl , JPA2, triple logistic and 

modified SS model), they viewed this approach to be of value when height data were 

incomplete, but emphasised that the quality of the prediction would depend on the 

quali ty of prior information. 

Ledford and Cole (1998) compared three models (JPPS, Shohoji-Sasaki model 

adapted by Cole (SSC) and Preece-Baines model 1) applied to the stature of 91 

individuals (48 males, 43 females) w i th 26 measurements, f rom 1 to 17 years, from 

the French Auxological study. Ledford and Cole (1998) have made comparisons of 

the childhood growth models on the same data-frame used by Jolicoeur et al. (1992) 
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but these individuals have fewer height measures. Ledford and Cole (1998) chose 
not to use the modifications of JPPS model as these would only be of value i f height 
data at ages less than 1 year were to be used. Overall the JPPS model provided the 
best fit, closely followed by the SSC model (Ledford and Cole 1998). However the 
JPPS model may give an impression of a mid-growth spurt when none is present 
(Ledford and Cole 1998). They also highlighted the similarities between the SSC 
model and Karlbergs ICP model. However the former model is non-monotonic and 
can decline after reaching peak height. They also found that height data in early 
infancy was important in the fitting of both the SSC and JPPS model, because 
wi thout this models for 3 children failed to converge. 

2.3 Population approaches to growth data 

I n the last section we considered models that have been applied to, predominantly, 

an individual 's height profile. The methods discussed in this section view individuals 

as belonging to a population. The overall aim is to describe the growth process of a 

population and use the information on the population to improve the estimates of 

an individual 's own parameters. These approaches can be valuable for comparing 

growth in different populations and in considering the impact of other factors (Pan 

1995). A series of height or weight observations are usually highly correlated f rom 

one occasion to the next. Therefore such correlation must be accounted for in the 

estimation and tests for parameters (Morrison 1976). 

2.3.1 Generalised multivariate analysis of variance 

Potthoff and Roy (1964) generalised multivariate analysis of variance (MANOVA) to 

encompass growth curve problems by adding a design matrix. Rao (1966) (in Geisser 

(1980)) demonstrated that the analysis of Potthoff and Roy (1964) was inadequate. 

M A N O V A assumes that the expected values of individual serial growth data follow 

a multivariate normal distr ibution wi th mean values, polynomial functions of time, 

and a unstructured covariance matr ix (Rao (1966) in Guo et al. (1992)). Grizzle 

and Allen (1969) incorporated covariates into the model proposed by Potthoff and 

Roy (1964) and Rao (1966). Geisser (1980) suggests that the Potthoff-Roy model 

was prolific because i t provided a general format for a variety of growth situations. 

The 'growth curve model' is now a field of study in its own right and Von Rosen 

(1991) provides a review of developments since the model was established. A mult i 

dimensional extension of the Potthoff-Roy model has been established to deal wi th 
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the situation where several responses are simultaneously measured (Kshirsagar and 
Smith 1995). Often assumptions are required about the structure of the variance-
covariance matr ix i f the number of individuals is not large enough (Kshirsagar and 
Smith 1995). Furthermore, most of the research literature on growth curve models 
deals w i t h the situation where the covariance matrix of the observations on an 
individual at different time-points has a 'patterned' structure (Kshirsagar and Smith 
1995). 

Geisser (1970) considered the model proposed by Potthoff and Roy (1964) f rom 

a Bayesian viewpoint. Fearn (1975) adopted a different approach where individuals 

are treated as exchangeable wi th respect to their growth curve, making use of the 

theorem discussed by Lindley and Smith (1972). In this approach both the popu

lat ion trends and individual trends are modelled (Darby and Fearn 1979). Darby 

and Fearn (1979) applied the Bayesian growth curve model to longitudinal blood 

pressure data. Darby and Fearn (1979) also suggest that this approach allowed the 

inclusion of individuals w i t h some missing observations. 

A major l imi ta t ion to this approach is the requirement that all children have 

the same number of height measures and be measured at the same time; even in a 

research study this is a ta l l order. Thus in order to apply this approach we have to 

case-wise delete children that don't have the required number of height measures or 

impute missing height measures. Furthermore, this model is unsuitable i f individuals 

are measured at irregular times. 

2.3.2 Random effects models 

Two-stage random efll'ects models can be applied to longitudinal data that is irregu

larly spaced and has missing observations (Laird and Ware 1982). Laird and Ware 

(1982) presented a general linear random-effects model that included growth models 

as a special case. In this formulation, the probability distribution for the multiple 

measurements has the same form for each individual, but the parameters of that 

distr ibution vary over individuals (Laird and Ware 1982). The distribution of these 

parameters, termed the 'random effects', in the population forms the second stage 

of the model (Laird and Ware 1982). Laird and Ware (1982) proposed a unified 

approach to fitting the two stage model based on a combination of empirical Bayes 

and maximum likelihood estimation of model parameters and using the E M algo

r i t h m . Berkey et al. (1989) applied the Reed model for adolescence to the heights 

of 62 boys f rom the Harvard growth study covering the age range 8 to 18 years. The 

random-effects model of Laird and Ware (1982) was then used to study the effect of 
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protein intake (Berkey et al. 1989). I f a non-linear model is suitable for describing 
the growth curve of individuals then the two-stage approach described by Berkey 
and Laird (1986) is appropriate. Berkey and Laird (1986) explored the impact of 
gender and protein intake on parameters of the Jenss model fitted to recumbent 
length data of 229 children f r o m the Harvard growth study covering the age range 

3 months to 6 years. 

Strenio et al. (1983) developed an approach related to the random effects model 

discussed above. The approach adopted was to incorporate additional information 

f r o m the population to improve the estimation of individual growth curves (Strenio 

et al . 1983). I t was suggested that any reasonable method for combining individual 

data w i t h cross-sectional data ought to take into account reliability of measurements 

and the number of measurements per individual (Strenio et al. 1983). Strenio et al. 

(1983) felt that empirical Bayes methodology met these requirements and applied i t 

to the problem of estimating growth curves. They also incorporated growth-related 

covariates into the model. 

One of the advantages in using the random eflfects model to describe longitudinal 

growth over the Potthoff-Roy model (discussed above) is that i t can sti l l provide a 

growth curve for a child w i t h only one height measure (Berkey et al. 1989). Further

more, information f rom each individual contributes to the estimation of covariate 

effects and mean population curves. 

2.3.3 Multilevel modelling 

Multi-level modelling was ini t ia l ly developed in the educational context; pupils be

long to classes that are wi th in schools (Goldstein 1986b). The clustering of pupils 

w i th in classes (wi thin schools) imposes a correlation structure on the data that re

flects the shared experiences of pupils wi th in the same classroom (or school) (Rice 

and Leyland 1996). The philosophy behind multilevel modelling is to specify a model 

that takes the hierarchical structure of the data into account at the fitting stage. In 

a standard linear model there may be a high degree of collinearity between param

eter estimates; whereas the multi-level model approach takes wi th in- and between-

individual parameter correlations into account. 

Multi-level models can also be used in a repeated measures context; the mea

surement occasions are clustered wi th in individuals (Goldstein 1995). The main 

advantage in using multi-level models for repeated measures data is that there is no 

requirement that all children have the same measurement ages (Goldstein 1986a). 
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The multi-level model incorporates the random effects model, discussed above, as a 
special case (Pan 1995). 

Longitudinal data falls into a two-level hierarchy wi th the level 2 units repre

senting the individual and the level 1 units representing the measurement occasions 

for that individual (Goldstein 1995). There is typically more variation at level 2 

than level 1 (Goldstein 1995) as this represents say the variation in heights between 

individuals. The basic two-level model for individual i on measurement occasion 

t = 1,... ,ni {ui is the number of measurement occasions for individual i) is (Gold

stein 1986a): 

Vit = X] ^ij^t + ^ (^kZitk + eu (2.18) 
j k 

where 

I n the above equation xt is the age at occasion t and j = l , . . . , p indexes the 

coefficients of the polynomial. The first summation in equation (2.18) represents 

the polynomial fitted to the set of say height measurements; whereas the second 

summation is over a set of further explanatory variables indexed by k (Goldstein 

1986a). The eu and Uij are the level 1 and level 2 residuals, respectively. The level 

1 residuals have cov{eit,e[f.) = 0 and var(ej() = a^. The level 2 residuals have zero 

expectation but are not necessarily independent (Goldstein 1986a). 

Instead of a polynomial in age i t is possible to consider other linear models such 

as the Count (1943) model (Goldstein 1986a). A non-hnear model in age may be 

more appropriate for growth data than a polynomial model; in particular in infancy 

where growth is rapid or late adolescence where growth reaches an asymptote at 

adult height (Goldstein 1995). For example. Steward (1994) applied the Jenss model 

(Jenss and Bayley 1937) using multi-level modelling to length data f rom two Welsh 

towns (collected 1973-75). Steward (1994) experienced convergence difficulties in 

fitting the non-linear Jenss model and suggested that further work was required to 

assess the reliabili ty and accuracy of estimates obtained. Multi-level models were 

fitted to height and head circumference data f rom the Edinburgh longitudinal growth 

study, spanning b i r th to maturity, using extended spline models (Pan 1995; Pan and 

Goldstein 1998). These extended spline models were viewed to be more flexible than 

polynomials; they allow variable order functions and fractional polynomials (Pan 

1995; Pan and Goldstein 1998). In the two-level model above we assume that the 
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level one residuals are uncorrelated. However i f height measures are made close in 
t ime they are likely to be highly correlated. Goldstein et al. (1994) suggested using 
first or second order autoregressive models for the level 1 residuals. I t is also possible 
to incorporate measurement error into the multi-level analysis (Goldstein 1995). A 
multivariate extension of multi-level models has also been developed to deal wi th 
the situation of modelling several responses as functions of the explanatory variables 
(Goldstein 1995). This approach is adopted in L G R O W to establish longitudinal 
growth norms for height and weight (Pan and Goldstein 1997), see section 3.6 in 
chapter 3 for further discussion. 

Multi level models have also been applied to cross-sectional height and weight 

data. Pan et al. (1992) used a two-level model w i t h grafted piece-wise polynomials 

for cross-sectional weight data. Goldstein (1989a) and Goldstein" (1989b) ciistustj the • 

use of two-level models for predicting adult heights f rom serial height measures. 

Specialist software is required to estimate the coefficients wi thin a multilevel 

model e.g. M L n uses iterative generalised least squares, and H L M and BUGS adopt a 

Bayesian approach to estimating coefficients. Unlike GIN^ANOVA, multi-level models 

are able to deal w i th missing data and different t iming in measurement occasions for 

each child. However, the multi-level approach assumes that measures are missing 

at random and that the t iming of measurement is not related to actual measure. 

Thus multi-level models can not easily accommodate bias, such as light infants being 

weighed more often. 

2.4 Non-parametric approaches 

The disadvantage in using a parametric approach to model child growth is that the 

imposed functional fo rm may be too rigid to capture the true complexities of the 

growth process (Healy 1989a). The overall aim of non-parametric approaches are to 

impose a less r igid structure upon the fitted curve but at an expense of introducing a 

larger number of parameters (Healy 1989a). The non-parametric approach is largely 

data driven and tend to be only suitable i f there are a large number of measurements 

for each individual. The philosophy behind non-parametric approaches is that no 

assumptions are made about the form of the curve for each subject and the shape 

is determined locally by the data. I t usually involves a decision to be made on the 

smoothing parameter; i f this is too small we w i l l be modelling random variation 

but i f i t is too large interesting local variations w i l l be missed (Goldstein 1986a). 

Therefore, the process of smoothing is subjective, i t involves some trade-off between 
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smoothness and goodness of fit (Cole 1993). Goldstein (1986a) suggests that one of 
its advantages is its abil i ty to identify local events of interest, such as growth spurts. 
The disadvantages of non-parametric approaches are that they are computationally 
intensive and they do not yield compact expressions for prediction (Royston and 
A l t m a n 1994); so usually have to be specified as tabulated values (Cole 1993). 
Furthermore, smoothing procedures tend to underestimate the peak velocity and 
the smoothed velocity pattern depends on the location of time-points and the time 
interval between measures (Milani 2000). 

Here we discuss the following non-parametric approaches: spline functions, ker

nel estimation, longitudinal principal components and curve registration. Another 

alternative is to use the method of penalised likelihood, see discussion in section 

2.1.1, which was used to produce LMS curves to obtain smooth centile curves for 

the revised U K 1990 reference (Cole and Green 1992; Cole et al. 1998). 

2.4.1 Spline functions 

A spline function is a curve made up of a series of piecewise polynomials (often 

cubics) joined at a sequence of points called knots and constrained so that both 

the slope and the curvature of adjacent pieces are equal at the knot (Healy 1989a). 

The smoothness of the splines is determined by the number and placing of the 

knots. Greater fiexibility in the shape of the non-parametric curve can be achieved 

by increasing the number of knots (Healy 1989a). Healy (1989a) warns that the 

derivatives of spline curve are less smooth than the curve itself. 

A cubic spline was used to smooth empirical percentile values for weight, height 

and head circumference in the construction of the NCHS reference (Hamill et al. 

1979). Largo et al. (1978) applied cubic smoothing splines to the velocity curve 

of height in adolescence for children f rom the Zurich study and found that this 

approach gave results very similar to those of kernel estimation. Variable knot cubic 

splines have been used to fit height curves for children aged four to eleven years, 

but were found to be inadequate for early childhood and adolescence (Berkey et al. 

1983b). 

2.4.2 Kernel estimation 

Kernel estimation is based on a weighted averaging of the observations wi th in spec

ified age intervals, in which the weights are obtained by integrating a pre-specified 
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kernel function (Guo et al. 1992). When applying kernel estimation, the kernel 
functions and the bandwidth have to be fixed (Gasser et al. 1989). The kernel func
t ion is usually derived f rom some mathematically optimal conditions (Guo et al. 
1992). The lengths chosen for the specified age intervals determine the extent of 
smoothing and the goodness of fit; short intervals lead to less smoothing but result 
in a better fit. Gasser et al. (1989) suggests that the optimal choice of smoothing 
parameter is usually dependent on the particular growth pattern and the amount of 
variability. I t is suggested that, depending on the problem, the minimum number 
of measurements per individual to employ kernel estimation lies in practice between 
12 and 15 (Gasser et al. 1989). 

Gasser et al. (1984) and Gasser et al. (1985) have used kernel estimation to 

determine the distance, velocity and acceleration curves for children f rom the Zurich 

study. Kernel estimation has been used to determine the t iming of the mid-growth 

spurt and pubertal spurt f rom the acceleration curve (Gasser 1985). Gasser (1985) 

found that the t iming of the mid-growth spurt was similar in boys and girls. Guo 

et al. (1992) compared kernel estimation to the triple logistic and Preece-Baines 

models applied to height data (2 to 18 years) f rom the Fels study. Guo et al. 

(1992) found that the kernel estimation and the triple logistic model provided similar 

descriptions of the pubertal spurt. Pan and Ratcliffe (1992) used kernel estimation 

to determine the distance (height) curve, numerical diff"erentiation was used to derive 

the velocity and acceleration curves. 

2.4.3 Shape-invariant modelling 

The shape-invariant model (SIM) of Stiitzle et al. (1980) is a semi-parametric ap

proach; i t is intermediate between the parametric and nonparametric approaches. 

The SIM approach employs a mathematical algorithm, ini t ial ly some guess about 

the functional fo rm of the growth process is provided and this is improved iteratively 

using the data (Stiitzle et al. 1980). Stiitzle et al. (1980) chose to model the velocity 

curve over the distance curve because i t was felt that this was closer to reflecting 

the dynamics of the growth process. I t should be noted that the velocities were 

derived f rom the distances. The in i t ia l functions chosen were non-linear and this 

in i t i a l choice was then modified by the addition of a B-spline (Stiitzle et al. 1980). 

Stiitzle et al. (1980) applied their SIM approach to height velocity data of a random 

sample of 45 boys and 45 girls (longitudinal height data f rom 1 to 20 years). I t was 

found that the same model structure was adequate for boys and girls (Stiitzle et al. 

1980). 
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2.4.4 Longitudinal principal components 

Kent (1975) (in Berkey and Kent (1983)) developed longitudinal principal compo

nent (LPC) analysis based upon a model suggested by Rao (1958). In using LPC 

analysis we are not restricted to any particular curve type or age range (Berkey and 

Kent 1983). The LPC approach defines a set of functions f rom the sample data and 

then expresses each individual's growth data as a linear combination of these func

tions (Berkey and Kent 1983). A n extension of this approach summarises growth 

curves for several variables simultaneously (Berkey and Kent 1983). 

In using the LPC approach, the need is to determine the number of principal 

components which account for as much of the variation in the data as possible. 

I t was suggested that the variation unaccounted for could relate to pre-specified 

estimate of measurement error variance (Berkey and Kent 1983). In this approach 

the eigenvectors and factor scores are rescaled to simplify parameter interpretation 

(Kent (1975) in Berkey and Kent (1983)). A polynomial of degree seven was then 

fitted to each of the re-scaled eigenvectors (Berkey and Kent 1983). 

Berkey and Kent (1983) applied LPC method to longitudinal height and weight 

data in early childhood (3 months to 6 years) f rom the Boston study. Berkey and 

Kent (1983) compared the fit of the four component LPC model wi th fit of the 

Jenss curve (Jenss and Bayley 1937). Berkey and Kent (1983) concluded that the 

four component LPC model was superior to the Jenss curve for length, but not for 

weight. 

A disadvantage of the LPC approach is the requirement that every individual 

has the same set of target ages (Berkey and Kent 1983). The ability of the LPC ap

proach, developed by Kent, to cope wi th incomplete data is viewed as an advantage 

(Berkey and Kent 1983). However, Berkey and Kent (1983) suggest that i f there 

are numerous missing observations and irregular measurement ages then the Jenss 

curve should be used in preference for early childhood data. 

2.4.5 Curve registration and structural averages 

The aim of curve registration as applied to growth data is to display i t in a way 

that highlights the characteristics of the growth process, i.e. spurts, troughs and 

levelling off. Once this is achieved, we can then look at important sources of pattern 

and variation. For example, do individuals that differ f rom the general form do so 

in some systematic way? 
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The basic philosophy of functional data analysis is that we should 
th ink of observed data functions as single entities, rather than 
merely a sequence of individual observations (Ramsay and Sil
verman 1997, pp37). 

A record of a functional observation x consists of n pairs {tj,yj), where yj is a 

observation of x{tj), a snapshot of the argument value tj (often time). A n essential 

preliminary to a functional data analysis is often the registration or alignment of 

salient curve features by suitable monotone transformations hi of the argument t, so 

that actual analyses are carried out on the values Xi{hi{t)) (Ramsay and L i 1998). 

The motivation behind this curve registration is that the rigid metric of physical 

t ime might not be directly relevant to the internal dynamics of the real-life system 

(Ramsay and Silverman 1997). 

The Zurich team (Gasser et al. 1990) devised a process for av

eraging tempo between individuals over the whole curve, shift

ing individual curves on age continuously and non-linearly to an 

average development age scale. The result, called a 'structural 

average', or later, 'registration' curve is probably the best repre

sentation of the average or typical human growth curve that we 

have at present (Tanner 1999, pp9-10). 

The aim of the 'structural average' approach devised by Gasser et al. (1990), 

was to arrive at an average curve that gives a parsimonious description of the data 

which ideally is able to show the typical pattern of growth, irrespective of individual 

peculiarities. This would then facilitate the comparison of groups, for example boys 

and girls. 

A set of characteristic times or ages in development are defined which can be 

found in most individual curves, these are ages were maxima and minima occur 

(either in the curve itself or one of its derivatives), start and end point, and points 

of proportions of decrease or increase (Gasser et al. 1990; Ramsay and Silverman 

1997). 

For growth, the distance curve reflects the dynamics less well than 

velocity and acceleration curves, and the maxima and minima 

of the latter are thus of prime importance (Gasser et al. 1990, 

pp463). 
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Kernel estimation was used by Gasser et al. (1990) to compute characteristic time 
points. Using a pr ior i knowledge of height growth in childhood, i.e. the existence of 
a pubertal spurt (PS) and the mid-growth spurt (MS), the following characteristic 
ages were chosen: 

• TO: age where infant velocity has dropped by 50% from its value at 1 

year to a childhood baseline 

• T l : age of minimal velocity prior to MS 

• T2: age of maximal acceleration during the MS 

• T3: age of maximal velocity during the MS 

• T4: age of maximal deceleration at the end of MS 

• T6: age of minimal velocity before the PS 

• T7: age of maximal acceleration during the PS 

• T8: age of maximal velocity during the PS 

• T9: age of maximal deceleration during PS 

The defining of characteristic points can be time consuming, because of presence 

of individual non-systematic fluctuations that mimic a spurt - so there is a need 

to differentiate between systematic and non-systematic fluctuations. Gasser et al. 

(1993) chose to use the characteristic points of height for skin-fold data because i t 

was diff icult to discern a clear pubertal and mid-growth spurt. Weight and skin

fold data are right skewed, so heavier children could dominate the pattern when 

forming a structural average. Thus skin-fold data was transformed before defining 

characteristic points and the 'structural median' curve was taken. Gasser et al. 

(1993) found that weight^^/^) pattern is similar to accumulation of adult height. 

Once the curves are aligned on a transformed time-scale they look more similar 

since one type of inter-individual variability has been eliminated. The average of the 

transformed curves, i.e. the structural average corresponds to the pattern seen in 

individual curves. By construction, characteristic times should occur in the average 

curve at the average age wi th the average intensity. 

The definition of an average sample growth curve starts f rom the 

premises that the pattern of growth is fundamentally the same in 

all children, whereas the growth process proceeds wi th a different 
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t iming (or dynamic) and a different intensity f rom child to child 
(Gasser et al. 1989, pp25). 

However i t should be noted that this assumption may not be true for children wi th 

growth problems, girls w i t h Turners syndrome grow at a slightly slower than average 

rate throughout childhood and fa i l to experience a pubertal growth spurt (Lyon et al. 

1985). 

Gasser et al. (1990) illustrated their methodology on height and weights of a 

subset of 112 girls and 120 boys f rom 413 Swiss children, enrolled in 1954 as part 

of the co-ordinated longitudinal studies of the Centre International se I'Enfance in 

Paris (Falkner 1960). These children were measured at 4, 13, 26, 39 weeks, then 

at 1, 1.5 and 2 years, then annually up to 9 years in girls and 10 years in boys, 

then every 6 months unt i l the annual increment in height was less than 0.5cm in 2 

years. Children excluded f rom this subset had failed to attend on more than two 

occasions or two successive occasions. 'Structural ' average curves were also derived 

for other anthropometric measures; trunk, leg and arm lengths (Gasser et al. 1991); 

shoulder, hip and bicondylar widths (Gasser et al. 1991); circumferences and body 

mass indices (Gasser et al. 1994; Gasser et al. 1994). 'Structural averaging' was used 

to compare the registration curves for acceleration of the Fels, Zurich and Berkley 

growth study data (Ramsay et al. 1995), and to compare children wi th high BMI's , 

to children w i t h low BMI ' s by taking a sample of 40 in each ta i l - by doing this the 

authors were pr imari ly interested in dynamics of obesity (Gasser et al. 1994). 

The non-parametric approach used in structural averaging is heavily reliant on 

having large quantities of data for each individual, however this is not really ex

panded on in recent literature. Ramsay and Silverman (1997) suggest that the 

sampling rate or resolution of the raw data is a key factor in determining the poten

t ia l of functional data analysis. They also suggest that the most important aspect 

is essentially the local properties of the data relative to the amount of curvature in 

the data (note that the curvature depends on the amount of error). In the develop

ment of 'structural averages' i t was suggested that both the number of subjects and 

number of t ime points should not fa l l below 10 to 12 (Gasser et al. 1989). Gasser 

et al. (1989) suggests that the 'structural averaging' approach copes reasonably well 

w i th missing observations. Recent research by James et al. (2000) has potential for 

curve registration where individuals are measured at irregular times and data are 

sparse. 
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2.5 Approaches used to address the short term 
variation in growth data 

In i t ia l ly hotly debated, i t is now generally accepted that growth does exhibit short 

term variation. Historically growth was thought to be a continuous and regular pro

cess; only in recent years the consensus has changed. As the measurement interval 

in time decreases the pattern of height increments becomes more irregular (Her-

manussen et al. 1998). Wales (1998) suggested short term growth was non-linear 

and unpredictable. 

Butler et al. (1990) suggested that height velocity curves had a cyclical nature. 

Height data f rom the Edinburgh longitudinal growth study, where children were 

measured at six-monthly intervals, suggested that in addition to the mid-growth 

spurt there was evidence of a pre-school spurt and late childhood spurt (Butler 

et al. 1989). 

Greco et al. (1990) observed weight gain patterns of a pulsatile nature in very 

low b i r th weight infants that were weighed on a daily basis. Gladstone et al. (1998) 

found that weight, length and head-circumference measures had an oscillatory nature 

for very low b i r th weight infants. Lampl et al. (1992) considered serial length 

measures of a small sample of infants that were measured at weekly, semi-weekly and 

daily intervals. They found that growth in length was discontinuous and proposed 

the saltation-stasis model for growth; namely: 

Individual serial growth data were modelled as a series of puta

tive, distinct, stepwise (saltatory) increases or jumps separated 

by variable intervals of no change (Lampl et al. 1992, pp801). 

They hypothesised that human length growth during the first two years occurs in 

intervals of less than 24 hours and were of an episodic nature. Similar patterns were 

observed for height measures of one adolescent boy measured daily (Lampl and 

Johnson 1993). However, Hermanussen (1995) suggested that there was no evidence 

of saltation, but there were periods of stasis wi th in their data. Lampl and Johnson 

(1997) suggest that, in infancy, i f the time between measurements exceeded 2 to 5 

days then the chance of identifying saltatory growth patterns decreases. Ti l lmann 

et al. (1998) supported a similar model to Lampl et al. (1992), but suggested that 

height and weight velocities in a 1 year interval had a bi-phasic nature which were 

superimposed on strong seasonal trends (Thalange et al. 1996). Giani et al. (1996) 

suggested using a system dynamics approach to model the pulsatile nature of weight 
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gain in the first year of life. 

2.6 The use of parental heights 

2.6.1 The role of parental heights in a child's growth assess
ment 

If a child is referred to a paediatrician for a suspected growth disorder, then at the 
time of assessment the heights of both parents will be measured. These are taken in 
order to assess whether the child is small/tall but appropriate for parental heights, 
if this is the case then the child will be said to have normal short/tall stature. As 
pointed out in community guidelines (Schilg and Hulse 1997), wherever possible, 
parents heights should be measured and recorded. I t is also important to ensure 
that the heights recorded are those of the child's biological parents; i.e. make sure 
that the child is not adopted or fostered. These days there are also more single 
parent families. An additional consideration is that at the time of assessment one 
of the parents may be absent; thus the clinician may have to rely on the reported 
height of the absent parent. 

In short, parental heights may provide a useful indication of a child's growth 
potential. This is assuming that the parents themselves do not have a growth dis
order (Schilg and Hulse 1997) or failed to achieve their genetic potential in height 
because of economic problems (Tanner et al. 1970). In general there are two ap
proaches to the use of parental height data. Firstly, the parents heights may be used 
to obtain the mid-parental height along with a target centile range for their child; 
see section 2.6.2. Alternatively, the parent's heights can be combined with current 
anthropometric data to predict final adult height; see section 2.6.3. 

2.6.2 Mid-parental height 

Galton (1886) coined the term mid-parental height; this is defined to be the mean 
of the heights of a child's mother and father. The child's target height is the mid-
parental height adjusted for the child's sex, see equation (2.19). Tanner et al. (1970) 
used mid-parental height in their creation of a height growth standard for children, 
aged 2 to 9 years, allowing for their parents' heights. Tanner et al. (1970) suggests 
adjusting the parental heights if the parents are over 45 years to account for reduction 
in height at this age. 
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. . , ^ father's height + mother's height , ^ ^ „ N 
target height = 2—— ^ ± 6.5 (2.19) 

where the convention is to add 6.5 cm if calculating for a boy and subtract 6.5 cm if 
calculating for a girl. Tanner (1986b) chose to add 6.5 centimetres to mid-parental 
height as this is half the difference observed in adult height between males and 
females.^ 

The target height can be converted to a Z-score (Zmph) using the revised UK 
1990 growth reference or plotted on a child's centile chart at 18 years. The target 
centile range for the child's adult height is then within ± 8.5 cm of target height 
(Tanner et al. 1970), although current charts suggest ± 10 cm e.g. Child Growth 
Foundation (1996a), Child Growth Foundation (1996c). Thus if a child's height falls 
within their target centile range then that child's height is appropriate for parents 
heights. However, Wright and Cheetham (1999) found that i f the parents were 
unusually short or tall then target height^ was a poor predictor of attained height. 
This is because short parents on average have less short children, the regression to 
the mean effect as first described by Galton (1886). Therefore use of mid-parental 
height could be misleading when used to assess short stature (Wright and Cheetham 
1999). 

Luo et al. (1998) used adult heights of 3560 Swedish children and their reported 

parental heights to derive two alternative equations to equation (2.19): 

1. Boys target height = 45.99 + 0 . 7 3 ^ ^ ^ ^ ' ^ ' - ' ^ ^ ^ ' ^ ' ^ ^ 

2. Girls target height = 37.85 + 0.75father's height+î other-s height 

Luo et al. (1998) viewed their function to be better than equation (2.19) as the 
approach of Tanner et al. (1970) underestimates target height for children with 
parents of short stature. 

Mid-parental height does not treat the two parents equally in centile terms; Cole 
(2000a) suggested increasing the mothers height by a factor of about 1.08 before 
averaging. A valid alternative to calculating target height Z-score using equation 
(2.19) is to average the two height Z-scores of the parents (Cole 2000a); see equation 

^Cole (2000a) presented the difference in adult height from 17 national height references 
and found the mean to be 13.2cm. 

''Wright and Cheetham (1999) used the gender correction of 7 cm with mid-parental 
height, this target height was then converted to a Z-score using the revised UK 1990 
reference. 
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(2.20). The benefit in using this approach is that it attaches a greater weighting to 
the mothers height and the same formula can be used for both genders (Cole 2000a). 

Zmph — ^ ^ — - (2.20) 

where Z^ph is Z-score for mid-parental height, Zm is Z-score for mothers height, Zj 
is Z-score for fathers height. 

The use of mid-parental height does not take into account that maternal height 
has a smaller variance than paternal height (Cole 1996). A better approach is 
to use equation (2.21) which takes into account the correlation between parental 
heights (Cole 1996). The correlation between parental heights is about 0.3 due 
to assortative mating (Cole 1996)^, this approach is adopted in chapter 6 when 
considering reported parental height data. 

mid-parental height Z-score 

Z . , . = J - ^ ^ ^ (2.21) 

where Zmphi Zm and Zf are as defined above and r(m, / ) is the correlation between 
parental heights. 

A conditional gain Z-score, equation (3.11) defined in section 3.4.2 of chapter 3, 
can be used to compare a child's height with their mid-parental height. Here Z2 is 
the child's height Z-score {Zch) and Zi is the mid-parental height Z-score obtained 
using equation (2.21) and r is the correlation between the child's height [ch) and 
the mid-parental height (mph). Alternatively the conditional gain Z-score could be 
used with just the Z-scores of the mothers, fathers or siblings height (aged 2-9 years) 
instead of mid-parental height Z-score. 

The correlation (r) in equation (3.11) depends on the child's age. Tanner et al. 
(1970) used a correlation of 0.53 for boys and 0.49 for girls between the ages of 2 
and 9. However Himes and Roche (1981) (in Cole (2000b)) found the values for 
correlation between height and mid-parental height in four studies varied between 
0.4 and 0.55. Cole (2000b) has recently developed a chart to identify non-familial 
short stature. A value of 0.4 was used for the correlation because this provided 
a compromise between the correlations of child's height with mid-parental height 

^Assortative mating: Designating mating which is not random, but correlated with the 
possession by the partners of certain similar (or dissimilar) characteristics (Oxford Talking 
Dictionary (CD-ROM), The Learning Company). 
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(r=0.4-0.55); with one parents height (r=0.3) and with sibling (aged 2-9 years) of 
same age (r=0.45-0.52 Byrad et al. (1983))(Cole 2000b). 

Cole (2000b) (appendix 1) shows that on theoretical grounds, the height Z-score 
correlation with either parent alone should be 0.8 times the mid-parental height 
correlation. This is outlined below. 

rimph, ch) = Co<Z^v>^^Z,n) (2.22) 
^VaT{Z^,^)VaT{Z,H) 

As E{Zm) = E { Z f ) = E{Zch) = 0 and Var{Zmph) = Var{Zch) = 1 then:-

Zm + Zf 
r{mph, ch) = E 1.6 

= ^[r{m,ch)+r{f,ch)] (2.23) 

Assuming that the correlation r between child height and parental height is the 

same for both parents, then: 

r (m, ch) = r ( / , ch) = 0.8r{mph, ch) (2.24) 

2.6.3 Some examples of applications that use mid-parental 
height 

There are three main approaches to the prediction of adult height: Bayley-Pineau 
(Bayley and Pinneau 1952), Roche-Wainer-Thissen (RWT) (Roche et al. 1975; 
Khamis and Guo 1993) and Tanner-Whitehouse (Tanner et al. 1975; Tanner et al. 
1983) (all in Gnat (1995)). Only the latter two incorporate parental height data, 
the original T W method allowed for mid-parental height but this was dropped in 
the revision (Gnat 1995). Mid-parental height along with skeletal age, chronological 
age, weight and height are used in the revision of the RWT method. Wainer et al. 
(1978) illustrated that there was only a small increase in error of the prediction of 
adult height if the population mean values were substituted in for skeletal age or 
paternal height, if these were unknown. 

Koziel (1997) fitted the Preece-Baines model 1 (Preece and Baines 1978) to the 

height data of 183 boys from the Wroclaw growth study. Koziel (1997) found that 

mid-parental height influenced the centile position: in particular, the height at take-

oflf, height at peak velocity and adult height. 
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2.7 Discussion 

In chapter 4 we introduce the data frame studied within this thesis, in which (i) we 
have routine infancy weight data from 3415 infants within a Newcastle birth cohort 
with a longitudinal element and (ii) in childhood there is a partial follow-up of this 
sample at school entry and 7-9 years. In section 2.1 we discussed approaches to the 
creation of cross-sectional references. As highlighted here, the 'quality' of the data is 
of utmost importance in the creation of a growth references. The Newcastle data is of 
a routine nature and as already pointed out in chapter 1 this makes the weight data 
unsuitable for creating a local reference. Therefore many of the methods discussed in 
section 2.1 are unsuitable. However, an approach that incorporates the correlation 
similar to Wade and Ades (1998) may be plausible and the Bayesian approach of 
Fatti et al. (1998) may be viable but these are not pursued here. There is also an 
issue of bias: children that are a cause for concern are likely to be monitored more 
frequently and to have lower weights. 

The LMS method was discussed in more detail because the current UK 1990 
reference was derived using the approach outlined in section 2.1.1. The revised 
UK 1990 reference is used within this thesis to convert anthropometric data to Z-
scores. In chapters 4, 6 and 8 we assess the adequacy of the UK 1990 reference for 
monitoring attained growth in Newcastle children. There are numerous advantages 
to using a growth reference: providing the reference is adequate and adjusts for age, 
there is no real concern about the slightly different timings of measurement ages 
between individuals; a child's one off weight or height measure can be compared to 
the children that contribute to the growth reference and a conditional gain Z-score 
can be derived from weight Z-scores and this can be used to assess weight gain (see 
chapters 3, 5 and 7). 

It would be possible to carry out a comparative study of the infancy models 
applied to routine weight data. This would be of value because (i) no study has 
compared all the models discussed in section 2.2.5 and (ii) comparative studies 
have always concentrated on a highly selective sample from a large study. However 
there is a danger, in doing this, that we might be trying to model abnormal growth 
which the Reed models can accommodate (Berkey and Reed 1987). This will not 
be pursued here but is a possibility for future research. 

Childhood models have only been applied to height data. Whether they can be 

utilised on childhood weight data is an issue still to be addressed. However the data 

beyond infancy for the Newcastle data set is sparse. Thus, this issue can not be 

explored here. 
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The use of curve registration on infancy data is an area that has not been ex
plored. This is beyond the scope of this thesis, but is the next natural approach. 
I t would involve identifying characteristic points in infancy. Although we have a 
rich source of data; it still falls short in terms of using a non-parametric curve reg
istration approach that is utilised in the package to do this. Sparse data can create 
numerous problems when a non-parametric approach is applied. To conclude the 
methods of Ramsay and Silverman (1997) and Gasser et al. (1990) are not directly 
applicable to the Newcastle data. However, the approach proposed by James et al. 
(2000) applied to the infancy weight data is a potential area of further research. 



Chapter 3 

Detection of growth faltering 

In this chapter the focus is on growth faltering and the mathematical approaches 
to the problem. However much of the methodology discussed in this chapter is also 
applicable to excessive weight or height gain. 

In infancy the focus is on monitoring weight gain, primarily for detecting infants 

at risk of failure-to-thrive. In childhood, this switches to height gain e.g. response of 

child that is growth hormone deficient to treatment with growth hormone. Weight 

monitoring is routinely carried out in infancy but this is in part due to the difficulty 

in obtaining accurate length measures in infancy, although Doull et al. (1995) do 

not support this. However i t is generally accepted that weight is often the first 

thing affected if a child receives some nutritional or environmental insult during the 

growth process. 

. . . the rate of growth during infancy, especially during early in
fancy, is rapid, and abnormalities in growth rate may often be 
detected in just a few months. There is little question that dur
ing infancy a decrease in growth rate is the earliest indication of 
nutritional failure. . . . Acceptable data on increments in weight 
are more readily obtained than acceptable increments in length, 
and in nearly all circumstances in which nutritional deprivation 
influences growth, low gain in weight can be demonstrated before 
low gain in length (Fomon 1991, pp415). 

In section 3.1 we concentrate on growth faltering in infancy, termed failure-to-
thrive. We discuss the lack of consensus, in terms of a definition, with regard to 
identifying infants at risk of failure-to-thrive and briefly mention the various weight 
criterion used. Towards the end of this section we focus on the approach used in 

101 
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Newcastle, termed the 'thrive index' methodology. This approach was developed on 
the infancy data considered in this thesis. 

The cross-sectional charts, introduced in Chapter 1, provide no guidance in a 
longitudinal context. I f we note the current weight or height of a child, but want to 
say something about a child's growth since the last weight and height measure: then 
we need to use a velocity/increment reference^ or take a conditional approach to the 
problem, see sections 3.2 and 3.3, respectively. The conditional approach to growth 
monitoring will be one of the main focuses within this thesis. In section 3.4 we 
consider chart based approaches to assessing weight gain. We conclude this chapter 
by discussing the package LGROW that employs longitudinal growth norms. 

3.1 Detection of growth faltering in infancy and 
failure-to-thrive 

3.1.1 Failure to thrive 

Failure to thrive and its definition is subject to ambiguity in the medical literature: 

The term 'failure to thrive' (FTT) has been used for more than 50 
years to describe the infant or young child whose growth falls sub
stantially behind that of his or her peers. Currently the predom
inant use of FTT is to describe a child's growth failure resulting 
from caloric or maternal deprivation or both. Despite widespread 
use, the term FTT lacks a clarified definition (Wilcox et al. 1989, 
pp391). 

Although this statement was made over ten years ago, the same is true today; 

currently there is no accepted 'gold standard' method for identifying infants at risk 

of failing to thrive. 

One thing authors do tend to agree on is some kind of criterion involving weight 

for defining the presence of FTT (Editorial 1990). Al l the various methods used 

involve children who fail to gain weight adequately and therefore do not achieve a 

velocity and increment reference are essentially the same, the former term tends to 
be used in the creation of yearly velocity charts (units centimetres per year) whereas the 
latter term tends to be used for periods of less than a year (sometimes has same units as 
velocity but can be centimetres added in time period). 
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normal or expected rate of growth, according to whatever criteria is employed. The 
definition of FTT can sometimes also involve a slowing or disruption in acquiring 
emotional and social developmental milestones (Woolston 1991). Secondary charac
teristics are deceleration of linear growth and head circumference growth (Woolston 
1991). 

FTT is often (but not always) a consequence of insufficient calories, sometimes 

given the term undernutrition. 

Many studies have demonstrated the primal role of energy under
nutrition in FTT (Pollitt and Leibel 1980; Berkowitz 1985; Skuse 
1985) and that FTT infants will grow better if their intake is in
creased (Bithoney et al. 1989) (Wright and Talbot 1996, pp226). 

There will be a variety of factors contributing to the undernutrition (e.g. illness, dis

ease, weaning difficulties, late weaning, family disturbances, poor parenting, parent-

child interactions (Boddy and Skuse 1994), socio-economic deprivation, child abuse 

and neglect (Taitz and King 1988)) and these are likely to interact (e.g. malnutrition 

leads to susceptibility to illness, which in turn may affect the child's ability to eat 

(Woolston 1991)). Wright and Birks (2000) suggest that undemanding behaviour, 

poor appetite and poor feeding skills may contribute to the onset and persistence 

of FTT. 

It is generally accepted that FTT in infancy is associated with an increased 
risk of lasting deficits in growth (Kristiansson and Failstrom 1987; Dowdney et al. 
1987; Dowdney et al. 1998; Drewett et al. 1999; Wright et al. 1998; Boddy et al. 
2000). Kristiansson and Failstrom (1987) found that attained weight at 4 years was 
more effected than height for children with non-organic failure-to-thrive, but par
tial catch-up was possible for infants with low social scores that were subjected to 
intervention. Poor weight gain in infancy has also found to be associated with an in
creased risk of cardiovascular disease in adult life (Barker 1999; Berglund and Rabo 
1973), developmental delay (Heptinstall et al. 1987) and problems with emotional 
and social adjustment (Hufton and Gates (1977) and Gates et al. (1984) in Dowdney 
et al. (1987)). Some population based studies have found that FTT in infancy was 
associated with poor cognitive development and reductions in Intelligence Quotient 
(IQ) (Dowdney et al. 1987; Skuse et al. 1994; Dowdney et al. 1998). Corbett 
(1994) in a study of cases selected by the criterion of Edwards et al. (1990) (defined 
in section 3.1.2) in two deprived areas of Newcastle found that 'thrive index' (de
fined in section 3.1.3) was associated with IQ. However, the Newcastle growth and 
development study (the data considered within this thesis) found that there was 
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no significant difference in IQ and reading abilities for 107 cases matched with 117 
controls (Drewett et al. 1999). A similar conclusion was reached by Boddy et al. 
(2000). At the age of 6 years, they considered 42 cases matched with 42 controls 
identified from a year cohort resident in an inner-city area of South London in 1986. 
At the age of 15 months the case group showed significant deficits in cognitive ability 
but by the age of 6 years there was little evidence of cognitive disadvantage (Boddy 
et al. 2000). I t is suggested that adverse effects of growth faltering in infancy on 
cognitive function may diminish over time (Boddy et al. 2000; Drewett et al. 1999). 
The research seems to suggest confiicting views on cognitive outcome, but the case 
populations are not directly comparable: the case children of Dowdney et al. (1987) 
had all experienced a long period of growth delay and there were strict exclusion 
criteria. Therefore, the major source of differences observed in childhood as a con
sequence of FTT in infancy is the wide range of selection criteria used to identify 
cases (see next section). A further issue, in early studies on FTT, is referral bias 
(Wright et al. 2000). 

In addition to the problems of defining FTT and arriving at an appropriate 

weight gain criterion (see next section), there is much debate about the preva

lence; differentiating between FTT associated with physical illness (organic failure 

to thrive) and FTT not associated with such illness (non organic failure to thrive -

NOFTT); the contribution of emotional deprivation and that of malnutrition (i.e. 

food versus love debate). 

In clinical practice, decisions are made on the basis of the whole clinical picture 
rather than from the weight chart alone. Currently, a child presenting themselves 
below the third centile or exhibiting slow weight gain might be diagnosed as FTT. 
In addition, the clinician would also take into consideration other factors such as: 
whether the child's birth weight was below the third centile, the height and build 
of the parents (although parental short stature should be interpreted with caution, 
parents may themselves have a growth disorder and/or suffered deprivation in their 
own childhood) and possibly a medical. 

Other plausible reasons for growth faltering are (Maggioni and Lifshitz 1995): 

• Familial short stature 

Most babies who gain weight slowly or whose weight gradu
ally crosses centile lines downwards are simply adopting their 
own genetically determined growth trajectory. There is no 
reason to assume that every baby should continue on the 
same centile from birth onwards. About 50% of babies cross 
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at least one channel on the weight chart between 6 weeks of 
age and 12 to 18 months. Up to 5 per cent fall across two 
channels. Babies who are large at birth are more likely to 
show falls of this magnitude (Hall 1996, ppl l2) . 

• constitutional growth delay This term typically refers to infants that 
are late maturers. 

• intrauterine growth retardation(IUGR) This refers to infants whose growth 
was compromised in the uterus because of environmental, maternal, 
placental or fetal factors (Maggioni and Lifshitz 1995). They then fail 
to catch-up. 

• breast-fed baby The Cambridge infant study, concluded breast-fed and 
artificially fed infants exhibited different growth patterns (Cole et al. 
1989). The DARLING study found that breast-fed infants gained 
weight more slowly than formula-fed infants from similar socio-economic 
and ethnic backgrounds during the first 9 months of life (Dewey et al. 
(1992) in Peerson et al. (1993)). 

There seems to be three important considerations when considering long term 
consequences, regardless of criterion used for detection (Skuse et al. 1994): 

1. Age of onset Cole (1997, personal communication) felt it would be use
ful to show quantitatively the timing of detection of FTT, which he 
suspected was in the time region of 1 to 4 months. Retrospective study 
of the growth patterns in FTT children referred to the Parkin Ser
vice in Newcastle, revealed that the onset of growth faltering is usually 
within weeks of birth, and that 50% of the cases seen met their screen
ing criteria (see section 3.1.3) by 6 months (Wright and Talbot 1996). 
Skuse et al. (1994) found that the first few months of life represented 
a 'sensitive period' for the relationship between growth and mental 
development. 

2. Duration of episode of FTT The quantification of this will depend on 
criteria used to identify infants at risk. An additional issue is whether 
this is timed from the point where the infants growth falters or the 
time when the child's weight (gain) Z-score falls below the screening 
threshold. Wright (1996) used the latter to quantify duration. 
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3. Severity The severity is to some extent refiected in the age of onset 
of FTT and duration of FTT. However, degree of malnutrition is also 
an important factor (Woolston 1991). Wright (1996) used the lowest 
thrive index of a FTT infant as an indicator of severity. 

Shrimpton et al. (2001) considered the timing of growth faltering in developing 
countries. Mean weights start to falter at about 3 months and length falters from 
birth in developing countries (Shrimpton et al. 2001). 

3.1.2 Various weight criterion used for detecting F T T 

In the medical research literature there is no consistent definition of the disturbance 
in weight gain indicative of FTT, so the diagnosis is at present arbitrary (Smith and 
Berenberg (1970) in Skuse (1985)). Most studies use different criteria for selecting 
infants with FTT in their study. Hufton and Oates (1977) study identified infants 
whose weight lay below the 10th centile, whereas Hannaway (1970) and Shaheen 
et al. (1968) used the 3rd centile (Dowdney et al. 1987). Boddy et al. (2000) used 
weight below the 3rd centile for at least 3 months. Less explicit criteria involve a 
rapid fall through centiles (Berwick et al. 1982) or an acceleration in weight gain 
after hospitalisation (Rosenn et al. (1980), Ayoub et al. (1979) and Ellerstein and 
Ostrov (1985) in Dowdney et al. (1987)). A rate of weight gain below -2 SD (Fomon 
1974; Kristiansson et al. 1981) is also sometimes used. Some criteria also involve 
weight-for-height and height-for-age either alone or in addition to weight-for-age 
(Wilcox et al. 1989). 

Dowdney et al. (1987) identified children that had failed-to-thrive in infancy ret
rospectively at the age of 4 years. The cases identified were white, full term single
tons, whose weight and height lay below the tenth centile of the Tanner-Whitehouse 
standards (Tanner and Whitehouse 1976) at 4 years of age (their last clinic weight 
was also required to be below the tenth centile), with no medical disorder and height 
allowing for parental height (Tanner et al. 1970) was also below the tenth centile 
(Dowdney et al. 1987). 

Retrospective analysis of clinic weight data revealed that cases 

could have been discriminated on the basis of declining trajectory 

of weight gain in the first 12 months of life (Dowdney et al. 1987, 

pp538). 

The strict criterion for inclusion meant that these children had experienced an ex-
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tended period of growth retardation that had persisted beyond infancy. 
Another alternative criterion was: 

'A child whose weight deviates downwards across two or more 
major centiles from the maximum centile achieved at 4 to 8 weeks 
for a period of a month or more' (Edwards et al. 1990, ppl264). 

where major centiles are 3rd, 10th, 25th, 50th, 75th, 90th and 97th. 
Using this criterion, Edwards et al. (1990) identified 63 infants with poor weight gain 
out of 306 children attending child health clinics in two deprived areas of Newcastle. 
Corbett (1994) followed up these cases again at 6-7 years. However, Corbett et al. 
(1996) found that this screening criteria identified children with mainly borderline 
FTT, thus leading to the conclusion that definition supplied by Edwards et al. (1990) 
was over-inclusive. The 'thrive index' methodology discussed in the next section was 
motivated by the approach of Edwards et al. (1990). 

3.1.3 The 'thrive index' methodology: the approach used in 
Newcastle 

Wright and Talbot (1996) outline the process by which the Parkin Service identifies 
and manages children in the Newcastle area with different levels of severity of FTT. 
A child should have shown a substantial fall down the centile chart, since a baseline 
weight in the first 6 weeks of life, before the Parkin service are involved (Wright and 
Talbot 1996). The 'thrive index' approach is discussed below, this was developed 
from the approach used by Heimendinger and Laird (1983) to measure the effect of 
intervention on attained length. 

• Choice of baseline weight Estimating an infant's expected growth pat
tern presents difficulties (Whitehead et al. 1989a). The birth weight 
centile may be used for this purpose, but it is determined largely by 
maternal factors (Edwards et al. 1990). Furthermore, the use of the 
birth weight centile has been discredited by Edwards et al. (1990); 
who found the maximum weight centile attained between age of 4 and 
8 weeks to be superior in the prediction of weight centile at 12 months. 
Wright et al. (1998) used an average of weight Z-scores between birth 
and two months as a baseline weight Z-score, whereas weight Z-score 
at 6 weeks was used in development of the 'thrive index' (Wright et al. 
1994). 
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• Diagnostic criteria Falling below a predetermined centile on a weight-
for-age chart, such as the 2nd or 0.4th on the UK 1990 reference, is 
usually taken to be indicative of abnormality. Using the second centile 
may identify children that are constitutionally small (i.e. i f the child 
has short parents) but will fail to identify children that have had a 
substantial fall from a high centile (Wright et al. 1994). Therefore, a 
measure of weight gain is needed rather than an indicator of atypical 
weight. The 'thrive index' methodology was developed by Wright et al. 
(1994) to address this issue. 

There is a further issue, namely 'regression to the mean'. This phenomenon was 
first described by Galton (1886); he noted that there was a tendency for tall fathers to 
have less tall sons. I t is essentially a statistical phenomenon, an individual measured 
once and then on a later occasion is more likely, on average, to be nearer then median 
on the second occasion than on the first (Cole 1995). Regression to the mean always 
occurs unless there is perfect correlation (Bland and Altman 1994a). Furthermore, if 
the two measures are weakly correlated then regression to the mean will have greater 
impact (Bland and Altman 1994b). Therefore the amount of regression to the mean 
depends critically on the magnitude of the correlation between these two measures 
(Cole 1995). In order to allow for regression to the mean we need to quantify the 
correlation between the two measures (Cole 1995). 

In infancy, weight exhibits regression towards the mean (Cole 1994a). Thus a 
very light infant is more likely to exhibit upward centile crossing than an average 
or large infant (Cole 1994a). The reverse is true for a very heavy infant. In the 
literature the former is often termed 'catch-up' growth, whereas the latter is termed 
'catch-down' (Cole 1994a). Thus a clinician may interpret this centile crossing as a 
cause for concern, when often i t is not (Cole 1994a). Furthermore, not every light 
infant will 'catch-up'; just the majority will (Cole 1995). 

If we consider two weight measurements with Z-scores Zi and Z2 at and t2, 
respectively. Then, if Z2 is regressed on Z^: 

Z2 = a + bZi+e (3.1) 

where a,b and e are the intercept, gradient and error. 

Routine infancy weight data from an annual cohort of 3418 full-term children 
(the data considered within this thesis - see Chapter 4) were converted to weight 
Z-scores using the Cambridge reference (Whitehead et al. 1989b). The Cambridge 
reference was used because at the time of publication the UK 1990 reference had 
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yet to be created. Furthermore, birth weights were not converted to weight Z-scores 
as the Cambridge reference did not cover this period. Wright et al. (1994) used 
equation (3.1) to regress last available weight Z-score at 9-24 months on weight 
Z-score at 6 weeks to give the following equation: 

^predict = 0.225 + 0.62Z6 
weeks 

which had a residual SD of 0.90. The 'thrive index' was then defined by: 

TI = ^actual ~ -̂ predict = •̂ actual ~ 0.62^6 weeks " 0.225 

and a cut off of-1.48 (0.9 x - 1 .6449) would identify the slowest growing 5% (Wright 
et al. 1994). Wright et al. (1994) chose to define the T I in this way to ensure that 
the T I would have zero mean and standard deviation equal to the residual standard 
deviation when fitting equation (3.1). 

The thrive index methodology has subsequently been applied to other infants 
(Corbett et al. 1996; Wright et al. 1998), using the following equation for the T I : 

TI = Ziate - 0.65Zearly (3.2) 

where Zeariy is the initial weight Z-score at an age <10 weeks and ^late is the later 
weight Z-score before the age of 2. Here the weight Z-scores are derived from the 
revised UK 1990 reference. Corbett et al. (1996) point out that the late weight Z-
score could be recorded at any age between 6 and 18 months because the coefficient 
(b) in equation (3.1) is close to 0.65 in this age range. To identify the slowest growing 
5%, using equation (3.2), a cut off of-1.26 was used (Corbett et al. 1996). Corbett 
et al. (1996) used the following cut-offs as indicators of severity of FTT: -0.9 for 
mild FTT, -1.26 for moderate FTT and -1.64 for severe FTT. 

Two weight Z-scores below the screening threshold of the T I are required before 
the Parkin service becomes involved (Wright and Talbot 1996). However, although 
the T I approach identifies infants that are gaining weight slowly (an 'at risk' group), 
further assessment is then required (Wright and Talbot 1996). Wright and Talbot 
(1996) discuss this further assessment stage and suggest that NOFTT is best man
aged in the community. 

Raynor and Rudolf (2000) compared five anthropometric methods of classifying 
under-nutrition in failure-to-thrive: % median weight-for-age, % median weight-
for-height, % median weight/height ratio for age, BMI and thrive-index discussed 
above (early weight Z-score was birth weight Z-score so b = 0.4 in equation (3.1)). 
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Raynor and Rudolf (2000) found the T I approach identified the highest propor
tion of severe cases. In agreement with Wright et al. (1994), Raynor and Rudolf 
(2000) found that classification of under-nutrition varied widely between anthropo
metric indicators. Raynor and Rudolf (2000) also found no relationship between the 
five anthropometric indices and indicators of developmental delay or dietary intake. 
Raynor and Rudolf (2000) concluded that severity of FTT was best addressed by 
the clinician. 

In conclusion, research is needed to establish: 

The definition, identification, and management of slow weight 
gain, FTT and NOFTT, and the role of conditional reference 
charts in managing these problems. The relevance of regular 
weighing to the detection of psychosocial deprivation needs fur
ther evaluation (Hall 1996, ppl24). 

Furthermore, there is a need to refine the definition of the syndrome of failure-to-
thrive to identify those children for whom weight faltering in infancy is linked to 
poor cognitive outcomes (Boddy et al. 2000). 

3.2 Tracking indices, distance charts and centile 
crossing 

The term 'tracking' is often used in child growth or blood pressure context to refer 
to maintenance of rank order within a group of peers over time (Roche 1992). If a 
group of individual growth curves do not intersect then this is viewed to be perfect 
tracking (Foulkes and Davis 1981). The term tracking is sometimes used to mean 
the prediction of future values (Ware and Wu 1981). The correlation coefficient is 
sometimes used as a measure of tracking, but the disadvantage in using this is in
formation on observed heights or weights is lost (Foulkes and Davis 1981). In 1981 
several tracking indices were proposed: Foulkes-Davis index (Foulkes and Davis 
1981), McMahan index (McMahan 1981) and Goldstein's growth constancy and 
separation indices (Goldstein 1981b). Ten years later Frongillo et al. (1990) devel
oped a tracking score based on Goldsteins growth constancy index. None of these 
tracking indices have been applied extensively in the growth literature. Steward 
(1994) applied the Foulkes-Davis, McMahan, Goldsteins tracking indices plus other 
approaches to a cohort of pre-school children from two towns in Wales; he found that 
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all these tracking indices were of little value in identifying unusual growth patterns. 
Steward (1994) found that it was possible to achieve the necessary discrimination 
using linear regression of Z-scores. 

Growth references are based on cross-sectional data, thus they are only really of 
use for one off measures. However, in clinical practice, it is common to interpret 
downward 'centile crossing', for example, attained height crossing down two (or 
more) major centiles during childhood. Cross-sectional growth references are not 
designed for this purpose! Recall that the Coventry consensus (see Chapter 1 for 
more details), concluded that routine growth monitoring to detect centile crossing 
had too low a sensitivity and specificity to be used for screening purposes (Hall 
2000). 

Park et al. (1997) and Li et al. (1998) used the term canal to refer to the 
area between the major centiles (5th, 10th, 25th, 50th, 75th, 90th and 95th) on the 
NCHS charts (Hamill et al. 1977). The term 'decanalization' was used to describe 
movement over a specified time interval to a non-neighbouring canal (Park et al. 
1997; Li et al. 1998). Anthropometric data from the Pels longitudinal study was 
used to calculate probabilities of decanalization over: 6 or 12 month intervals in 
infancy (Park et al. 1997) and 1 or 2 year intervals in childhood (Li et al. 1998). 
Park et al. (1997) found that the probabilities of decanalization in infancy were 
larger for weight than for length or head-circumference and that decanalization was 
associated with birth weight. In childhood and adolescence decanalization was found 
to be less common than in infancy (Li et al. 1998). Li et al. (1998) found that the 
probability of decanalization for weights was generally larger than for heights, but 
movements towards the median were more common than movements away from 
median for both variables. L i et al. (1998) are describing 'regression to the mean' 
but no reference is made to this. In childhood transitions to levels outside the normal 
range were found to be more common than decanalization (Li et al. 1998). 

Cole (1997a) worked on a Z-score scale to quantify the notion of centile crossing. 
If we consider the difference Z2 — Zi (where Zi is the first measurement and Z2 is 
the second and both are normally distributed with zero mean and variance 1), then: 

E{Z2 - Zi) = E{Z2) - E{Zi) = 0 (3.3) 

Var(Z2 - Z,) = Var(^2) + Var(Zi) - 2Cov(Zi, Z2) = 2 - 2r = 2(1 - r) (3.4) 

where r is the correlation between Z2 and Zi. Therefore the change in Z-score 

(centile change) can be expressed as a Z-score by using: 
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unconditional gain Z-score 

Z2 — Zi Z — Z 
Z-score for centile change = —, (3.5) 

Equation (3.5) can be used to compare centiles derived from the UK 1990 growth 
reference, on the proviso that we know the relevant correlation coefficient. Cole 
(1997a) presented the age-on-age correlations for annual height measurements over 
the age range 2 to 9 years. These correlations were derived from 204 to 318 children 
(sexes combined) belonging to the French longitudinal study (Falkner (1961) and 
Sempe et al. (1979) in Cole (1994a)) (Cole 1997a). The correlation between height 
measures at different ages was higher between measurements made close in time and 
at older ages (Cole 1997a). This approach can also be used to compare a child's 
weight and height centile at the same age. Cole (1997a) proposed the use of the 
term 'centile bandwidth' as an alternative 'centile crossing', because the latter term 
is ambiguous. 

Centile crossing over time is not an effective screening instrument, 
because the chart provides no information to quantify it . How 
much centile crossing is acceptable? Does it depend on age? Does 
it depend on starting centile? (Cole 1998a, pp2698) 

3.3 Velocity or increment charts 

3.3.1 Velocity references and tempo-conditional references 

The use of a longitudinal growth chart is preferable to the approach described in 
the last section. In particular, a child's height or weight velocity is thought to be a 
more sensitive indicator than height or weight distance of pathology (Tanner 1989). 

. . . velocity represents what is happening now, whereas distance 

represents the sum of all that has happened in the past (Tanner 

1989, ppl88). 

A velocity reference can be constructed using longitudinal data, but the spacing 
of the centile curves is influenced by the time between measurements (Cole 1993). 
Thus a velocity reference has to be derived and used on a set time interval, usually 
one year, because of seasonal variation and relative importance of measurement 
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error in comparison to actual growth (Tanner 1989). The eff"ect of measuring error 
wil l be more important i f an increment is observed to be less than the third centile 
(Tanner 1986a). We have already discussed how a child stays relatively close to their 
'distance' centile after infancy until puberty. However, this is not the case with 
velocity references (Tanner 1986a). Tanner et al. (1966) suggested that velocity 
plots should be viewed to have a more episodic nature. 

Tanner et al. (1966) derived height (weight) velocity standards from whole year 
increments of height (weight). These charts could only be used on the basis that the 
height (weight) measurements were made a year apart. They are used by calculating 
the change in height (weight) divided by the time elapsed and then plotted at the 
mean age of the two measurement ages. 

In monitoring individuals velocity or incremental standards are 
much more effective than 'distance' standards, and tempo-conditional 
standards are essential over the age of 9 (Tanner 1986a, ppl31). 

Tanner and Whitehouse (1976) updated these charts to create tempo-conditional 
references (or clinical longitudinal references) during puberty; a shaded region was 
added to the velocity charts to accommodate growth monitoring of early and late 
maturers. This shaded region corresponded to the area two standard deviations 
above and below the age of peak height (weight) velocity (Tanner and Whitehouse 
1976). More recently. Buckler and Tanner (1997) updated the Tanner-Whitehouse 
clinical longitudinal reference using the amalgamated data set from Freeman et al. 
(1995) and longitudinal data from 198 Sheffield adolescents (Cameron 2002). Tanner 
and Davies (1985) also produced similar longitudinal height velocity charts for North 
American children based on the NCHS reference children using coloured lines for 
early and late maturers. 

Berkey et al. (1993) used a different approach in their creation of longitudinal 
height velocity standards from 7 to 18 years. These were not created from a na
tionally representative sample but from children belonging to the Harvard six cities 
study from 1974-1989 (Berkey et al. 1993). This velocity reference was created 
by splitting the children into three groups: early, typical and late maturing. Peak 
height velocity for girls at 9, 11 and 13 years corresponded to the early, typical and 
late groups. Peak height velocity for boys at 11, 13 and 15 years corresponded to 
the early, typical and late groups. Centiles were created for each maturity group by 
first using an approach similar to the HRY method (Healy et al. 1988) (discussed in 
Chapter2) using four-month windows, then using the derivative of the triple logistic 
model (Bock and Thissen 1976) (also discussed in Chapter 2) to smooth the monthly 
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velocities (Berkey et al. 1993). Berkey et al. (1993) presented the 3rd, 50th and 
97th centiles for early, typical and late maturing on the same chart. There is some 
debate in the research literature as to whether it is useful to monitor height velocity 
in childhood. Brook and Hindmarsh (1991) view the monitoring of height velocity 
to be a useful indicator of growth hormone secretion and advocate the Middlesex 
height velocity chart (Brook 1983) for this purpose. Brook (1998) later emphasised 
the importance of having the same trained personnel for both height measurements 
when using the Middlesex chart. Voss (1999) holds a conflicting view with regards 
to height velocity monitoring. Voss et al. (1991) suggested that monitoring height 
velocity was not useful, because a single height velocity even over 12 months lacks 
precision due to measuring error. Moreover, Voss et al. (1992) suggested that a 
single height measurement at school entry was the most sensitive indicator of silent 
disease (for example growth hormone deficiency. Turners Syndrome). Current guide
lines (Hall 2000), support this latter view. 

3.3.2 Increment charts: use of 'warning' and 'action' limits 

Healy et al. (1988) considered longitudinal measurements of supine length of 427 
infants (229 boys, 198 girls) from Sudan, taken at 4 week intervals. Four- and eight-
weekly increments were obtained for each child and any negative increment more 
than 2 cm was excluded.^ Healy et al. (1988) created the centiles empirically because 
of non-normality and then smoothed the resulting values by using the derivative of 
the Jenss-Bayley model (Jenss and Bayley 1937) (see chapter 2) to arrive at the 
increment chart. Healy et al. (1988) stated that this approach worked well for the 
8-week interval but some 'manual smoothing' was needed for the 4 week intervals. 
Healy et al. (1988) suggested using these increment charts by setting an 'action limit ' 
at the fifth centile and a 'warning limit ' at a centile closer to the median. Where 
the latter could be the twenty-fifth centile and if a child falls below the 'warning 
limit ' on two successive occasions^ then this could be taken to indicate abnormality 
(Healy et al. 1988). Healy et al. (1988) viewed this approach to be appropriate in a 
velocity context as the correlation between one measurement and the next is quite 
low. Healy et al. (1988) found that by using this approach; measurements made 
over a short time interval were quicker to detect growth deficiency but at a cost; 

^It is unlikely that a real decrease in length occurs over a short period (Healy et al. 
1988). However negative increments are to be expected because of measurement error 
when the true growth in length is small (Healy et al. 1988) 

^The chance of a false positive: a normal child with two successive increments below 
the 25th centile, is approximately 6.25% 



3 Detection of growth faltering 115 

with a substantial increase in the false alarm rate. 

Zumrawi et al. (1992) used the same approach as Healy et al. (1988) on the 
weight measurements of the same children from Sudan. However Zumrawi et al. 
(1992) created two and four week increment charts for weight. Zumrawi et al. 
(1992) presented the correlation between successive weight increments and initial 
(birth) weight, and found the expected pattern: namely that early correlations are 
negative because large babies grow more slowly than small babies as the influence 
of maternal size dies away. However these correlations were small, indicating that 
little was lost in judging the growth velocity of a baby if birth weight is ignored 
(Zumrawi et al. 1992). Zumrawi et al. (1992) reached the same conclusion as Healy 
et al. (1988), namely that a given growth deficit will be picked up sooner by the 
shorter measurement interval (i.e. 2 weeks), but at a cost! 

3.3.3 Increment tables 

An alternative to the chart-based approach used in the USA is to publish increment 
tables (Baumgartner et al. 1986; Quo et al. 1988; Roche et al. 1989; Quo et al. 
1991). These tables present age-range, for example 1-2 months, versus the mean and 
standard deviation of increment in weight (g/day) (recumbent length (cm/day)) 
along with tabulated 5th, 10th, 25th, 50th, 75th, 90th and 95th centiles for that 
age-range. 

The initial increment charts were published for six month intervals (Roche and 
Himes 1980); the centiles were empirically derived from the Fels longitudinal study 
data and smoothed across age using low-term fourier transforms: recumbent length 
and head circumference between birth and 3 years, stature between 2 and 18 years 
and weight between birth and 18 years. These were later published as increment 
tables to allow increments to be compared directly with numerical values (Baum
gartner et al. 1986). Later monthly increment tables were published for head cir
cumference (cm/month), weight (kg/month) and length (cm/month) from 1 to 12 
months (Guo et al. 1988; Roche et al. 1989). These were also in the form of charts 
with 5th, 50th and 95th centiles because at later ages the centiles were too close 
together to give a meaningful representation (Roche et al. 1989). In the creation of 
these increment tables, the Guo model fitted to each child's longitudinal data, was 
used to interpolate monthly values for head-circumference, weight and length (Guo 
et al. 1988; Roche et al. 1989). Roche et al. (1989) suggested that falling below 
the 5th centile for length gain or weight gain on two consecutive months was more 
likely to be due to poor nutrition or illness rather than biological variation. 
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One-monthly increments were published to allow earlier evaluation of growth 
velocity (Roche et al. 1989). However the timing of these increments was later 
revised to take into account apparent weight gain due to food intake and waste out 
and to minimise the effect of measuring error on length increment (Fomon 1991). 

The increment tables for length (cm/day) and weight (g/day) covered the age 
range birth to 24 months (Guo et al. 1991). However the length and weight data 
from the Pels study was supplemented with data from the Iowa infant study (Guo 
et al. 1991). This lead to the final table being derived from the Iowa data from 
birth to 3 months, both between 3 and 6 months, and the Pels data from 6 to 24 
months (Guo et al. 1991). 

Up to the age of 6 months, increments in weight were presented at monthly 
intervals because after this age, the day-to-day variation in weight is large in relation 
to 1-month weight gains (Guo et al. 1991). One month intervals were not published 
for length increments because measurement error^ of length is a relatively large 
proportion of the actual increment (Guo et al. 1991). Instead 2 monthly intervals 
were presented for length increments from birth to 6 months (Guo et al. 1991). Two 
monthly intervals were also presented for weight increments from birth to 1 year 
(Guo et al. 1991). Three monthly intervals for both weight and length increments 
were presented from birth to 24 months. 

Guo et al. (1991) believed these increment tables to be useful in screening for 
deviations from normal growth, for example, identifying infants that may be at risk 
of failing-to-thrive or excessive weight gain. 

Children from the Pels longitudinal study had their weights and lengths measured 
at 1, 3, 6, 9, 12, 18 and 24 months (Roche et al. 1989). Piwoz et al. (1992) used 
the monthly increment tables from 1 to 12 months (Roche et al. 1989) on monthly 
weight and length gains of 96 Peruvian infants from 2 to 12 months. Piwoz et al. 
(1992) found that the median weight and length of the Peruvian infants were close 
to the reference median at 2 months, but the median then dropped progressively 
lower than the increment reference. However after 2 months of age the variance of 
monthly weight and length gains of Peruvian infants were greater than the reference 
(Piwoz et al. 1992). Piwoz et al. (1992) used the same approach as Roche et al. 
(1989) to create the reference for Peruvian children, only using weight and length 
measures at 1, 3, 6, 9 and 12 months. The same pattern was observed, namely 
the variance of the raw gains were greater than the Peruvian reference (Piwoz et al. 
1992). Piwoz et al. (1992) concluded that the curve-fitting and interpolation used in 

^Measurement error of length in well-trained personnel is about 0.4 cm (Fomon 1991) 
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the creation of the increment reference produced an artificially narrow distribution 
of weight and length gains. The revised increment tables (Guo et al. 1991) may not 
fair quite as badly as the monthly reference, because this incorporated data from 
the Iowa study; these children had routine birth weight and were measured at 8, 14, 
28, 42, 56, 84 and 112 days. 

Kolsteren et al. (1997) carried out similar comparisons on the mean monthly 
length and weight velocities of infants from Madura, Indonesia (age-range 1 to 11 
months). The focus in Kolsteren et al. (1997) was on the mean pattern of weight 
or length gain, but the tabulated standard deviations of the Indonesian sample are 
greater than the US reference. In addition, Kolsteren et al. (1997) also considered 
the published raw weight and length increments from the Wroclaw study (Borys-
lawski 1988); they found that the Wroclaw mean curve had a different shape to the 
mean curve from the increment reference derived from the Fels study. 

3.4 Conditional height gains and conditional gain 
Z-scores 

3.4.1 Conditional height gains 

The main restriction in using the velocity charts described in the last section, is the 
requirement of a set measurement interval. Another disadvantage of the velocity 
chart is that two charts are required ('distance' and 'velocity' standard) and the 
data need to be plotted twice. Healy (1974) first suggested a regression approach as 
an alternative to a height velocity reference. A reference is constructed for height 
at age t + 1 conditional on height at age t, where t is the age in years. 

These should be more sensitive than the difference standards and 
would avoid ascribing abnormally low velocities to children who 
happen to be fortuitously above their expected stature at the 
start of the interval (Healy 1974, pp44). 

The principle behind a 'conditional' reference is that a child's measurement is 
interpreted in the light of other covariates in addition to the usual age and sex. This 
type of approach has been used for height and height velocity during puberty, where 
tempo is adjusted for (discussed above) (Tanner and Whitehouse 1976), conditioning 
height on mid-parental height (discussed in section 2.6.2)(Tanner et al. 1970) and 
within-family standard for birth weight (Tanner et al. 1972) (Cole 1993). 
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Regression to the mean (discussed in section 3.1.3) occurs in child growth during 
infancy and puberty for both height and weight (Cole 1994a); in order to compen
sate for this a conditional reference is required. In this section we will consider the 
approach put forward by Healy (1974), namely current height conditional on height 
one year earlier. The methods discussed in this section are relevant to height mon
itoring in childhood and would be useful for detecting height faltering. In section 
3.4.3 we consider conditional weight gain Z-scores, these will be the focus of this 
thesis, which are of interest in infancy. 

Cameron (1980) was the first to put the suggestion made by Healy (1974) into 
action. Cameron (1980) published conditional standards for growth in the height of 
British children from 5 to 15.99 years of age, using data from the London County 
Council 1966-67 growth survey. Each age-sex group required a separate chart leading 
to a set of 22 charts (Cameron 1980), thus leading to a reference that was unwieldy 
to use in practice. 

Berkey et al. (1983a) presented conditional standards for length and log weight 
in pre-school (3 months to 6 years) children of the Harvard longitudinal study in 
the USA. Berkey et al. (1983a) fitted the Jenss model (Jenss and Bayley 1937) to 
each individual's lengths and weights within the reference sample. The purpose of 
this was to interpolate the child's height and weight at yearly intervals after the 
age of 1 year. However the downside is that a structure is imposed on the child's 
growth curve. The interpolated yearly weights and lengths were then used to create 
the standard, with the underlying assumption that the population lengths and the 
natural logarithm of population weights were multivariate Normal at each age and 
each combination of ages (Berkey et al. 1983a). Berkey et al. (1983a) presented 
means, standard deviations and correlations at year intervals from one to six years. 

If we consider height now (at time t) regressed on height one year earlier (at time 

t — 1), then: 

Ht = htHt-i + Ct + et (3.6) 

where ht is the regression coefficient, Q is the intercept, and tt N{0,a'^) (Cole 

1994a). I f equation (3.6) is rearranged then: 

Ht - btHt-i =ct + et (3.7) 

The left hand side of equation (3.7) is defined as the 'conditional height velocity' 

and by definition is uncorrelated with Ht-i (Cole 1994a). 

The regression coefficient bt is much less than 1 in infancy and puberty but 
greater than 1 for most of childhood (Cole 1994a). Height velocity and conditional 
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height velocity are the same if it happen that bt = 1 (Cole 1994a). The variability of 
conditional height velocity tends to be less than that of height velocity and is also 
unbiased (Cole 1994a). This latter point is of practical importance in the assessment 
of children with short or tall stature (Cole 1994a). Conditional height velocity is a 
function of attained height, leading to the requirement of different velocity centiles 
for children of different heights (Cole 1994a). 

The conditional height velocity Z-score of a child growing from height Ht-i to 
height Ht is defined to be (Cole 1994a): 

Ht - E{Ht\Ht_,) Ht-btHt_^~Ct 

Thus for a child growing along the lOOath conditional velocity centile, height at age 

t is given by (Cole 1994a): 

Ht = htHt-i + Q + atZa (3.9) 

where Za is the normal equivalent deviate corresponding to centile lOOa. 

Cole (1994a) also extended equation (3.6) to incorporate height two years earlier 
{Ht-2); this equation was fitted to height data from the French longitudinal study. 
Cole (1994a) found that during childhood there was no real advantage in including 
Ht-2, but its use was of value either side of the peak height velocity in adolescence. 

3.4.2 Conditional gain Z-score approach 

Suppose that heights (weights) are converted to Z-scores, using for example, the 
revised UK 1990 reference. Now consider two height (weight) measurements with 
Z-scores Zi and Z2, with a correlation between them of r. Then, if Z2 is regressed 
on Zi we arrive at equation (3.1) given above. On the proviso that the Z-scores have 
not being derived from poorly matched references equation (3.1) can be simplified 
further (Wright et al. 1994): 

Z2 = rZi + e (3.10) 

As Zi and Z2 are Z-scores, the mean of both Zi and Z2 is zero; so a = 0 by 
definition. Furthermore, the standard deviations of both Zi and Z2 are one; so 
6 = r by definition. Therefore the expected value of Z2IZ1 is rZi, and the expression 
{Z2 - rZi) is a measure of change between Z2 and its expected value. Furthermore 
the standard deviation of {Z2 - rZi) is given by i / ( l - r^), which leads to the 
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conditional gain Z-score (Cole 1995): 

_ Z2-rZ^ 

The variable derived from equation (3.11) has a mean of zero and a standard devi
ation of one, and is a Z-score of Z2 conditional on Zi. Therefore a conditional gain 
Z-score greater (less) than 0 indicates a gain that is faster (slower) than expected. 

Therefore the only information required to use equation (3.11) is a growth ref
erence to convert the weight (height) measurements to Z-scores and the correlation 
r between the two weight (height) Z-scores (Cole 1993). This correlation will de
pend on the age and sex of the child. Although Cole (1993) states this may well 
be available in the literature, this is not the case for weight Z-scores beyond in
fancy. However, Cole (1995) published correlations for weight Z-scores in infancy 
and yearly correlations are available for height in childhood (Cole 1997a; Cole 1994a; 
Cameron 1980; Bailey 1994; Berkey et al. 1983a). 

3.4.3 Conditional weight gain Z-scores 

Weight velocity is usually viewed to be a far more sensitive indicator of growth 
than weight attained in the detection of weight faltering (Cole 1989a). A condi
tional weight gain reference is a weight velocity reference that also compensates for 
regression to the mean (Cole 1995). A conditional reference addresses the follow
ing question: 'Knowing the infant's previous weight, what is his/her likely weight 
now?'(Cole 1995). 

Cole (1995) generahsed the approach used by Wright et al. (1994) in their 
development of the 'thrive index' outlined in section 3.1.3. Cole (1995) presented 
the correlation matrix for the weight Z-scores of individuals seen on all 15 occasions 
in the Cambridge infant study, see table 3.1. The purpose of the Cambridge infant 
growth study was to monitor the growth patterns of infants that were being fed in 
line with Department of Health guidelines (Whitehead et al. 1989b). The Cambridge 
infants were weighed and measured every 4 weeks from 4 to 52 weeks, and at 18 and 
24 months (Cole 1995). 

Cole (1995) originally avoided using the term velocity, opting instead to use the 
term 'gain'. I f children are measured at 4 weekly intervals then the correlation 
can be obtained from table 3.1 and inputted into equation (3.11). If we now use 
Zt\ and Zt2 to denote the weight Z-scores at initial and later time and let r be 
the correlation between these weight Z-scores. It is unlikely that a clinician will 
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Table 3.1: Cambridge correlation matrix excluding birth weight (N=105, 

n=223): original correlation matrix for weight Z-scores at 15 ages during 

early infancy, based on data for 223 infants (114 boys and 109 girls) seen on 

all 15 occasions 

week 4 8 12 16 20 24 28 32 36 
8 0.911 
12 0.823 0.945 
16 0.752 0.881 0.958 
20 0.659 0.788 0.892 0.959 
24 0.611 0.738 0.845 0.918 0.967 
28 0.588 0.705 0.811 0.891 0.945 0.971 
32 0.565 0.680 0.779 0.859 0.915 0.947 0.971 
36 0.535 0.651 0.745 0.830 0.880 0.919 0.950 0.981 
40 0.504 0.624 0.718 0.800 0.850 0.893 0.924 0.961 0.979 
44 0.488 0.599 0.687 0.771 0.823 0.867 0.901 0.940 0.959 
48 0.474 0.587 0.673 0.755 0.809 0.851 0.890 0.925 0.949 
52 0.467 0.572 0.659 0.740 0.792 0.830 0.871 0.906 0.927 
78 0.464 0.544 0.609 0.671 0.713 0.737 0.771 0.802 0.820 
104 0.483 0.584 0.634 0.680 0.706 0.727 0.746 0.764 0.775 
week 40 44 48 52 78 
44 0.975 
48 0.963 0.977 
52 0.946 0.965 0.973 
78 0.849 0.877 0.890 0.910 
104 0.804 0.822 0.826 0.850 0.929 

Table 3.2: Cambridge correlations excluding birth weight (N=105, n=223): 
Regression of Fisher's transformation of correlation coefficients on functions 
of the time difference (t2-tl) and mean time (tl-|-t2)/2 

Value Std. Error t-value 
intercept 
log{{tl+t2)/2) 
log(i2 - tl) 
i/{t2-n) 
log{{tl + t2)/2)log{t2-tl) 
{log{{n+t2)/2))' 

2.98165 
0.58888 
-1.66617 
-2.05740 
0.25100 
-0.10351 

0.13201 
0.07957 
0.05805 
0.16158 
0.01419 
0.01585 

22.586 
7.401 

-28.701 
-12.733 
17.685 
-6.530 

_PrMt\) 
< 2 xlO-^" 
4.50 x l O - i ^ 
< 2 xlO -16 
< 2 x lO^i^ 
< 2 xlO -16 
2.84 x lO -3 

i?^^0.9938, E^(adi)=0.9934, residual SE=0.03872 on 99 df 

see a child every 4 weeks. To compensate for this Cole (1995) chose to model the 
correlation between two weight Z-scores as a function of the mean ( ^ ^ ) and the 
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time gap {t2 - tl) between the ages. Fisher's transformation was applied to the 
correlations in table 3.1. Cole (1995) fitted the model given in table 3.2 to the 
Cambridge infancy correlation matrix for weight Z-scores (table 3.1). Cole (1995) 
validated the equation in table 3.2 using pairs of weights from the Cambridge study 
and a subsample of 761 infants from the Newcastle data considered within this 
thesis. Cole (1998a) actually refitted this same model to the Cambridge correlations 
but this time including the correlation with birth weight Z-score, see chapter 5 for 
further details. 

Cole (1995) also presented a conditional weight chart for boys and girls; this 
represented the median pattern of weight gain overlaid on the UK 1990 reference, 
see chapter 7 for further discussion of this chart. 

More recently, Blair et al. (2000) used the conditional weight gain Z-score ap
proach, using the model of Cole (1998a) for the correlation between weight Z-scores, 
to investigate growth patterns that may influence risk of sudden infant death syn
drome (SIDS). Blair et al. (2000) found that the growth of SIDS infants from birth 
to final weight was significantly poorer than controls. Blair et al. (2000) also found 
that SIDS infants of normal birth weight had poorer weight gain than those of low 
birth weight. Blair et al. (2000) suggested that the conditional weight gain Z-score 
between birth and 6 weeks may provide a useful indication of infants at risk. 

3.5 Conditional weight charts 

3.5.1 Sheffield weight chart 

The Sheffield chart was the first to combine distance and velocity information on the 
same chart. The Sheffield chart (Foundation for the study of infant deaths (1985) in 
Emery et al. (1985)) was devised for monitoring infants at possible risk of cot death^, 
because previous studies had indicated that some babies have a 'substandard' weight 
gain before death (Emery et al. 1985). The Sheffield weight chart consists of a 
number of equidistant lines which form a series of channels. Over a period of two 
weeks an infant's attained weight was not expected to move up or down by more 
than one channel width (Emery et al. 1985). In addition, over a period of eight 
weeks a child was not expected to move up or down two channel widths (Emery 
et al. 1985). The frequent monitoring of weight (every 2 weeks) in order to assess 

^For example, care of next infant (CONI), for the child born subsequent to an infant 
lost to cot death. 
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a child's weight gain was justified because the chart was designed for infants at risk 
of cot death (Cole 1998a). However, more recently, current guidelines recommend 
that infants be monitored no more frequently than fortnightly up to the age of 6 
months (Wright 2000). This chart has its disadvantages: no allowance is made 
for regression to the mean and the channel widths are uninformative for weight 
measurements taken more than eight weeks apart (Cole 1995). 

3.5.2 Cole's 3-in-l weight-monitoring chart 

Cole's 3-in-l chart is designed for weight monitoring in infancy over 4 week inter
vals (Cole 1997b). It combines distance, velocity and conditional reference on one 
chart (Cole 1997b). The chart consists of the centiles for weight from the UK 1990 
reference over the age range birth to one year with lines overlaid that cut across 
the centiles (Cole 1997b). Cole (1997b) gave these lines the term 'thrive lines' (the 
construction of these lines is described below); these provide a cut-off for identify
ing infants at risk of failing to thrive. Each thrive line rises with age (indicating 
weight gain), flattens off and then starts to fall again (indicating weight loss) (Child 
Growth Foundation 1996d). The downward trend with age of the thrive line after 
the age of 7 months means that an infant can lose weight without failing to thrive 
(Child Growth Foundation 1996d). The 3-in-l weight monitoring chart for girls 
is reproduced in figure 3.1. In order to use this chart a child needs to have their 
weight monitored twice (with the two measurement occasions separated by a 4 week 
interval). After the attained weights are plotted, these two points are joined by a 
straight line. The gradient of this line is then compared to the nearest thrive line 
(Child Growth Foundation 1996d). I f the slope (gradient) is greater than the thrive 
line then this child is no cause for concern, whereas if the slope (gradient) is less 
than the thrive line then this infant is at risk of failing-to-thrive (Cole 1997b). Cole 
(1998a) later suggested a similar procedure to that described in section 3.3.2 for 
using the 3-in-l chart (Cole 1997b), namely assessing the weight gain over the past 

4 weeks, and if it is below the fifth centile then to assess the past 8 weeks. 

Thus a child who grows parallel to or slower than the thrive line 

for 2 months or more is clearly failing to thrive (Cole 1998b, 

pp67). 

Now consider two weight measurements with Z-scores Zi and Z2, with a corre
lation between them of r (this correlation is obtained from 223 Cambridge infants 
measured 4 weekly). Then if Z2 is regressed on Zi we arrive at equation (3.2) and 
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the residual standard deviation of Z2 from the regression is given by y/l - r^. Thus 

the conditional lOOath velocity centile is given by (Cole 1998a): 

^2|i,iooa = rZ, + V l - r^z^ (3.12) 

where Za is the normal equivalent deviate and takes on the value of 1.645 (for the 

conditional fifth centile) in the creation of the 'thrive lines' in Cole's 3-in-l chart 

(Cole 1997b). Cole (1998a) has since created a weight chart with these 'thrive lines' 

plus the 95th conditional weight gain centile overlaid. 

Cole's 3-in-l weight chart has not been tested in clinical practice, the charts 

sensitivity and specificity still need to be assessed. 

The ability of a test to distinguish between the two groups is 

summarised by the sensitivity, specificity, predictive values and 

ROC curve for the test. However, the methodology is difficult to 

apply to growth charts, largely because the ' i l l ' group is hard to 

define (Cole 1998a, pp2705). 

A disadvantage of Cole's 3-in-l chart is the requirement of weight monitoring at 4 

week intervals: at ages closer (further apart) in time more (fewer) than 5% of children 

will show weight faltering (Cole 1997b). I t seems unlikely that children will always be 

routinely monitored at 4 weekly intervals, in the Newcastle infancy data (considered 

in this thesis) there is some evidence of small peaks around 4 week intervals. Cole 

(1997b) also raises the issue that data of poorer quality, such as routine weight data, 

is likely to lead to more than 5% of children exhibiting weight faltering. Cole (1998a) 

holds the view that using the slope of curves is mathematically correct and more 

flexible, than say the distance between curves used in both the Sheffield or Wright 

chart (see next section for details). However, it is suspected that there may be some 

difficulty in utilising the 3-in-l chart for borderline cases, because the chart relies 

on comparing gradients. 

3.5.3 Wright chart 

The Wright chart (Wright et al. 1998) has non-equidistant channels, which are wider 

at the top of the normal range and progressively narrower at the lower end of the 

normal range. This refiects the phenomenon of regression to the mean (Healy and 

Goldstein 1978; Cole 1995; Wright et al. 1994) discussed above, namely large babies 

tend to fall and smaller babies tend to rise in terms of centile position. 
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The relationship between early and late centile positions (using the revised UK 
1990 reference) was defined by using routine weight data from a cohort of 3418 full 
term infants from Newcastle (the data frame considered later in this thesis) (Wright 
et al. 1998). The 'early' Z-score (Zi) of each child was obtained by taking the average 
of routine weight Z-scores at birth and the grouped ages of 1 and 2 months, termed 
the baseline Z-score (Wright et al. 1998). An average Z-score was used as a baseline 
to minimise the effect of possible distortion by individual measurement error or short 
term illness (Wright et al. 1998). The 'late' Z-score {Z2) was defined to be the last 
available weight for each individual between the age 9 and 18 months (Wright et al. 
1998). Using the same approach described in section 3.1.3 the following regression 
equation was arrived at (Wright et al. 1998)^: 

Z2 = 0.58Zi + 0.08 (3.13) 

After rounding the coefficient of Zi to 1 decimal place and dropping the constant 
term, the 'thrive index' (TJ = Z2 - O.6Z1) was calculated for every child. This 
allowed the normal range and lower limits of the T I to be calculated; suggesting 95% 
of children had values above -1.4 (Wright et al. 1998). A range of centile lines were 
selected; these had to meet the following requirement, namely that a fall through the 
equivalent of two adjoining channel widths (from any starting position within the 
normal range) would represent growth faltering that placed this child in the slowest 
gaining 5% (equivalent to fall in Z-score of 1.4) (Wright et al. 1998). However, it was 
not possible to achieve this whilst producing a chart that consistently represented 
more severe falls through the normal range (Wright et al. 1998). Although Wright 
et al. (1998) stated that i f a child had a starting weight above the fiftieth centile, 
then a fall through three channel widths would place this child in the slowest gaining 
1% of children, whereas a child whose starting weight was below the fiftieth centile 
would have to fall through four channel widths to be amongst the slowest 1%. 

The Wright chart consists of 11 solid lines depicting 10 channels. The lines have 
starting Z-score values (with corresponding major centiles if they coincide) of 2.2, 
1.1, 0 (50th), -0.67 (25th), -1.33 (9th), -1.8, -2.15, -2.4, -2.67 (0.4th), -2.85 and -3 
(Wright et al. 1998). Additional guidance lines are added at Z-scores of -4 and -5 
(Wright et al. 1998). The Wright chart for girls in the first year of life is reproduced 
in figure 3.2. The lower limit of the chart is at 32 weeks gestation, but Wright et al. 
(1998) state that the chart should be used with caution in this age range. The upper 

^This is a different regression equation to that arrived at in section 3.1.3 because a 
different baseline Z-score was used and the revised UK 1990 reference has since been 
pubUshed. 
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age limit of the chart was 5 years because FTT often persists up to this age (Wright 
1996). Although Wright et al. (1998) state that this chart should not be used to 
identify new cases after that age of 2. 

Guidelines for using the Wright chart are: a fall through two channels is indica
tive of moderate failure to thrive, whereas a fall through 3 or 4 channels is indicative 
of severe failure to thrive (Wright 1998). Recovery is defined to be catch-up within 
1 channel width of baseline (Wright 1998). Wright et al. (1998) evaluated the ef
fectiveness of this chart and found that the new format significantly increased the 
proportion of correctly rated charts, with the greatest impact in severe cases. 

The Wright chart is designed to monitor over longer periods of time than Cole's 
3-in-l chart. However i t is only designed to monitor weight trends over periods of 
at least 6 months from baseline (Wright et al. 1998). The Wright chart does suffer 
from similar limitations discussed above for centile crossing, namely a child falling 
through two channels may have started near or far from one of the 11 solid lines. 

3.6 Multilevel models for longitudinal growth norms 
and LGROW 

As highlighted above, one of the problems with both the velocity and conditional 
reference charts is the restriction that a child must be measured at exactly yearly 
intervals for height during childhood or 4 weekly intervals for weight in infancy. 
I t is unlikely, outside a research setting, that a child would be measured at such 
regular intervals. Furthermore a child is unlikely to have just have two measures. In 
the Newcastle data considered within this thesis, a child may have up to 11 weight 
measures in infancy plus weights and heights in childhood that are between 1.6 and 
8.7 years apart. 

Pan and Goldstein (1997) developed longitudinal growth norms, using a 2-level 
model fitted to repeated measures Z-scores, to address the issues outlined in the last 
paragraph. The development of longitudinal growth norm involves three stages. Ini
tially a sample of repeated measurements, such as heights or weights, are converted 
to Z-scores using the LMS method (Cole 1988; Cole and Green 1992) as described 
in section 2.1.1. Assuming the LMS method provides normally distributed Z-scores, 
and treating % as a response. Pan and Goldstein (1997) construct the following 
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2-level model: 
p q 

- J2 Pht% + ""^A + (3-14) 
h=0 h=0 

E = e,,^N{0,all) 

U = Uh,^N{0,Du) 

where i = 1,... , n^; j = 1 , . . . , m, is the number of measurement occasions (level 
1) for the the j t h individual and m is the number of individuals. There are p 
fixed coefficients and q random coefficients (Pan and Goldstein 1997). Considering 
equation (3.14), the 'fixed' part of the model corresponds to the first summation, 
which represents the average polynomial trend with age (Pan and Goldstein 1997). 
I t is assumed that the level 1 residuals (e^) in equation (3.14) are independently 
distributed with constant variance (Pan and Goldstein 1997). Pan and Goldstein 
(1997) do point out that this latter assumption was likely to be violated if measures 
were taken close in time and suggest that equation (3.14) could be extended to 
incorporate autocorrelated residuals. In the final stage the estimated parameters 
from equation (3.14) are used to provide longitudinal growth norms. 

Equation (3.14) is used for serial height or weight Z-scores, if norms are to be 
constructed for weight Z-score conditional on current height Z-score or previous 
height and weight Z-scores then the bivariate extension given by equation (3.15) is 
required (Pan and Goldstein 1997). 

h=0 h=0 
P' _ 

(3.15) 
1-/1=0 h=0 

where (') represents random variables associated with weight. Pan and Goldstein 
(1997) illustrated use of equations (3.14) and (3.15) on longitudinal height and 
weight data of 91 boys, aged 2 to 18.5 years, from the Edinburgh growth study. 

The package LGROW uses the multi-level approach described above to construct 
longitudinal growth norms from several European growth studies. The diflterences 
between these samples were adjusted for and some attempt was made at adjusting 
the growth rates (Goldstein and Pan 1998). LGROW can be used to assess patterns 
of height and weight measurements from 3 months of age to maturity (16 for girls 
and 18 for boys). The infancy period is avoided as the rapid change at this age was 
too difficult to model and there were some problems with stabihty of the function 
at both ends of the age-range (Goldstein and Pan 1998). However, the time period 
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between birth and three months is when a large number of infants are routinely 
monitored. 

3.7 Discussion 

In order to detect growth faltering, height (weight) velocity is a more sensitive indi
cator than attained height (weight). However height (weight) velocity depends on 
the initial height (weight), is subject to measurement error and makes no allowance 
for regression to the mean, although Carpenter (2000) views the effect of regression 
to the mean to be trivial over short time intervals. An alternative approach is to 
use a conditional reference. The conditional reference charts are subject to the same 
limitations as velocity charts; namely, they are restricted to a set age interval, such 
as 4 weeks or 1 year. However Cole's 3-in-l chart and the Wright chart are superior 
to the attained weight chart because they provide some guidance in a longitudinal 
context. The multi-level approach employed in LGROW appears to be of value for 
weight or height measures taken several years apart during childhood but requires 
specialist software. A multi-level approach was also used by Royston (1995) for 
constructing conditional centiles of estimated foetal weight. 

The approach preferred in this thesis is to use the conditional gain Z-score, given 
by equation (3.11) because this is flexible, with no restrictions been placed on time 
between weight (height) measures. An additional consideration is the time interval 
over which to calculate a conditional weight gain Z-score. I f the interval is too short 
the conditional gain Z-score is likely to be more variable (due to a combination of 
measurement error and biological variation) than a conditional gain Z-score over 
a longer time interval (Cole 1995). For these reasons, Cole (1995) advocated the 
calculation of a conditional weight gain Z-score over the longest possible time interval 
as this also minimised the degree of negative correlation. However if a child's growth 
is faltering then we wouldn't want to wait over the longest time interval possible. 

In order to obtain a conditional weight gain Z-score a correlation is required. 
Heimendinger and Laird (1983) stated that the correlations should be pertinent to 
the population under study. Cole (1995) had developed a model for the Cambridge 
correlations. However the Cambridge infancy weights may be unrepresentative of 
routine infancy weights in general; as research conditions may lead to higher correla
tions but this may be partly offset by the homogeneity resulting from the screening 
procedures employed by mid-wives to recruit Cambridge infants (Cole 1998a). In 
chapter 5 we explore the correlation structure of routine Newcastle infancy weight 
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data and develop a model for the correlation structure. 

The conditional weight gain Z-score provides a way of comparing two weight 
measures. If there are more than two weight measures then this increases the number 
of conditional weight gain Z-scores that can be obtained, and it raises the question 
of how to interpret and utilise these as they evolve. A further issue is how many 
previous weight Z-scores is it useful to condition on? This has been addressed 
for height in childhood by Cole (1994a) and Pan and Goldstein (1997). Pan and 
Goldstein (1997) concluded that conditioning on 2 or 3 height measures was different 
to conditioning on 1, but Cole (1994a) suggested that it was only useful to condition 
on two previous heights around puberty. These issues are considered further in 
reference to routine infancy weight data in chapter 7. 
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Figure 3.1: Cole's 3-in-l weight-monitoring chart for girls (reproduced here 
with kind permission of the Child Growth Foundation, copyright 1996) 
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Figure 3.2: Wright chart for girls over age range pre-term to two years (re
produced here with kind permission of Dr C M . Wright) 
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Chapter 4 

The Newcastle infancy data 

This chapter concentrates on a year birth cohort of routine infancy weight data 
collected in Newcastle. In section 4.1 the role of weight monitoring in infancy is 
briefly discussed. Section 4.2 provides a summary of the possible sources of error 
within routine infancy weights. A description of all variables within the Newcastle 
infancy data frame can be found in section 4.3. Section 4.4 summarises the main 
publications on the infancy data. In section 4.5 we obtain summary statistics and 
histograms for the weight Z-scores at grouped ages. The adequacy of the revised 
UK 1990 reference for attained weight of infants from Newcastle is also explored. 
In section 4.6, the approach used in the research study to identify children at risk 
of failure-to-thrive is described. In section 4.7 we consider all the routine weight 
Z-scores in the infancy data frame. Within this section there are many exploratory 
plots of weight Z-scores versus age with a lowess curve (Cleveland 1979) overlaid. 
This allows us to explore the trends within the infancy weight data. In this thesis 
graphical displays are placed at the end of chapters. 

4.1 Weight monitoring in infancy 

A child's first weight is recorded within minutes of being born. After birth, weights 
are routinely monitored by health visitors, usually when a mother visits the baby-
clinic for a review appointment or an immunisation. However, a baby is likely to be 
monitored more frequently if there is concern about the child's attained weight or 
weight gain on the clinician's or mother's part. In monitoring a child's weight the 
main concern is to determine whether it is within the normal range. 

Current guidelines (Wright 2000), recommend that a child need only be weighed 

132 
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at birth, at immunisation times and at surveillance checks until the age of 1 year. 
Furthermore, a baby should not be weighed more than once every 2 weeks under 
the age of 6 months and no more than once a month thereafter. However, a child 
should be weighed whenever there is clinical concern and weight checks should be 
continued beyond 1 year in this instance. 

Paediatricians and primary care workers throughout the world 
use weight gain as one of their most basic measures of health and 
well-being in early childhood (Wright et al. 1994, pp356). 

Growth monitoring in infancy may facilitate detection of a variety of disorders, such 
as organic and non-organic failure-to-thrive. Parents value weight monitoring in 
infancy and the babies weight gain may provide an opportunity to discuss nutrition 
and other aspects of child rearing (Hall 1996). Poor weight gain and growth faltering 
in infancy have been shown to be associated with cot death (Sinclair-Smith et al. 
(1976) in Wright et al. (1994)), developmental delay (Dowdney et al. 1987; Dowdney 
et al. 1998) and ischaemic heart disease (Barker et al. 1989). However, in the 
past, doubts have been expressed about the usefulness of weight monitoring as a 
preventative or diagnostic method (Hall 1996; Editorial 1992). 

As a routine procedure there seems little justification for regular 
weighing after the first few months of life once the parent and 
primary care team are satisfied that the baby is feeding normally 
and has begun to gain weight. We are not convinced that the ad
vantages conferred by regular weighing after the first few months 
of life justify the resources required or anxiety generated by un
certain or inexpert interpretation of growth charts (Hall 1996, 
pp l l4 ) . 

More recently, in a systematic review. Garner et al. (2000) concluded that growth 
monitoring has been inadequately evaluated. 

A child's birth weight is influenced by maternal stature and conditions during 

pregnancy. However birth weight along with gestational age is essential for growth 

monitoring and is also an important epidemiological marker (Wright 2000). In 

particular, Barker et al. (1989) and Barker (1999) found an association between 

size and shape at birth and subsequent risk of ischaemic heart disease, obesity, 

hypertension and glucose intolerance. 
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Weight is a measure of the varying combination of height, body fat, water and 
muscle bulk. In addition, it is subject to error due to biological variations and 
clothing weight (see next section for further details). Therefore, weight is a less 
straightforward measure of growth than height (Wright et al. 1994). However, 
the practical value of weight monitoring is its widespread availability, the ease of 
measurement and its accuracy in infancy and early childhood (Wright et al. 1994). 
In infancy, until the age of 2 years, the measurement of supine length requires two 
observers, specialist equipment and training. Thus, length measurements taken by 
the skilled professional are still subject to high levels of measurement error (Wright 
et al. 1994). However, Doull et al. (1995) measured 38 infants and found that the 
standard deviation of a single length measurement in infants younger than 1 year 
was comparable to the standard deviation of a single height measurement in older 
children. As a result of the Coventry Consensus, current guidelines suggest that 
there is no justification for routine monitoring of length before the age of 2 years 
and length should only be measured when there is concern about a child's growth 
or weight gain (Wright 2000). 

4.2 Accuracy of routine weights in infancy 

Accurate weighing requires that the baby be weighed nude unless there are spe
cial circumstances (Hall 1996). Davies and Williams (1983) drew attention to poor 
weighing methods, cold rooms, babies weighed in different states of undress, inac
curate weighing scales and insufficient use of growth charts. In addition, observers 
were found to have inadequate understanding of normal variations in weight gain 
and a poor understanding of the nutritional influences on weight gain. 

Although it is generally accepted that routine weight measures in infancy will 
contain some element of error. There is actually very little written about this topic 
in the literature, Alsop-Shields and Alexander (1997) carried out a study of the 
errors that can occur when weighing infants, but this only involved 7 babies. 

The following list outlines issues of accuracy and reproducibility: 

1. instrument error Each clinic will have a different set of scales, although 

these should be routinely checked for accuracy. Modern scales, if prop

erly maintained, weigh to within 10-20 grams (Hall 1996). 

2. intra-observer error Repeat weight measurements made on the same 

child are rarely the same, even when the same instrument is used by 
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the same observer. Alsop-Shields and Alexander (1997) found that for 
each observer, the difference between repeat weights was between 0 and 
lOg. 

3. test-retest stability This is the weighing of the same infant at different 
times. Willett (1990) found this to be less than the source of varia
tion in weight measurements from biological factors such as intake and 
hydration. 

4. inter-observer error Weight measurements made by different members 
of staff on the same infant will vary. Alsop-Shields and Alexander 
(1997) found that between observers this was a maximum of 20g. 

5. bias Readings of weight are subject to bias if the observer knows pre
vious readings or has preconceived ideas as to whether or not the child 
is growing 'normally' (Hall 1996). 

6. biological variation Within a day the babies weight is effected by the 
timing of feeding, urination and defecation, i.e. intake and output. 
Weight may fluctuate by several hundred grams, depending on the 
contents of bowel, bladder, and stomach, as well as minor fluctuations 
due to intercurrent illness (Hall 1996). Fomon (1991) suggests that the 
weight of a single feeding is about 180g. 

7. weight of clothing Ideally a baby would be stripped down before weigh
ing, but in practice the infant could be weighed in their nappies and 
possibly in light clothing. Unused disposable nappies can weigh be
tween 30 and 60 grammes, towelling nappies weighed between 128 and 
141 grammes (Alsop-Shields and Alexander 1997). Obviously soiled 
nappies would weigh more than this. 

8. short term variability Growth rates vary with the season of the year, 
intercurrent illnesses and other factors. Therefore even the most precise 
measurements made over a short period of time (6 months or less) are 
likely to be misleading (Hall 1996). 

9. errors in recording weights The babies weight is recorded on their 'well-

baby' card. Errors may occur at this stage due to recording error or if 

the weight is only noted on the chart. Ideally, weights should be noted 

in the records and plotted on a growth chart. 
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4.3 Newcastle Infancy data 

An annual birth cohort of 3653 children, resident in Newcastle in November 1989 
and aged 18-30 months, were identifled using the Newcastle-upon-Tyne Child Health 
computer system. These infants were born between 1st April 1987 and 31st March 
1988. Al l the baby clinics in the city were visited and the child health records of 
these infants were reviewed by Dr C M . Wright to obtain data on birth weight, 
gestation and all routine weights together with limited medical information. Only 
47 children were identified in their records as having a chronic medical disorder that 
might have affected their growth (Wright et al. 1993). 

There were 3418 term infants within the birth cohort and children born before 37 
weeks of gestation were excluded. The full infancy data frame contains birth weight 
and up to 10 additional routine weights. For each infant the routine weights nearest 
six target ages (6 weeks, 3, 6, 9, 12 and 18 months) were identified. Wright (1997) 
defined the child's health record to be inadequate if there was less than one clinic 
weight before or after the age of 6 months. There were 703 (20.6%) children with 
inadequate records, 257 (7.5%) of these had no clinic weights (i.e. weights recorded 
after birth weight) and 446 (13.0%) only had weights in the first or second half of 
the first year (Wright 1997). Wright (1997) found that the children with the most 
weights were consistently lighter while children with inadequate records, if weighed, 
were heavier. 

In the process of carrying out the follow-up study at 7-9 years (see Chapter 6), 
it was discovered that one of these records was actually a duplicate (ID's 1873 and 
2987, data on 2987 was retained) and two individuals (ID's 1090 and 2715) were 
actually born pre-term (32 and 36 weeks, respectively). Therefore, the infancy data 
frame now contains weight data on 3415 term infants, 1711 males and 1704 females. 
There are 1055 (30.9%) infants with birth weight and weights in all six age groupings 
and 90 (2.6%) infants with no recorded weights. 

The infancy data frame consists of the following variables for each individual: 

1. I D An identification number was allocated to each infant from the 

birth cohort. 

2. Ges Gestational age is the term used for age in prenatal period, this 
tends to be measured from the first day of the last menstrual period 
(Tanner 1989). Lengths of gestation of 37 to 42 weeks are regarded 
as normal. In the Newcastle infancy data gestational age varied be-
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tween 37 and 43 weeks, and 784 (23.0%) infants had no gestational age 
recorded. 

3. S E S Every child in the birth cohort was matched using their post
code to a predefined neighbourhood. The level of deprivation was then 
calculated using the Townsend score, which summarises census data 
based on car and home ownership, overcrowding and unemployment 
rates (Wright et al. 1994). S E S is a categorical variable that 
has three levels, deprived, intermediate and affluent, coded 3, 2 and 
1, respectively. This variable provides a crude indicator of the child's 
socio-economic status at the end of infancy. There are 379 (11.1%), 
2353 (68.9%), and 683 (20.0%) infants defined as afliuent, intermediate 
and deprived, respectively. 

4. Sex Coding: 1 for males and 2 for females. 

5. Agel This is a column of zeroes corresponding to age for birth weight. 

6. Age2, Age3, Age4, Age5, Age6 and Age7 is the actual age in 

months which fell into the six age-groupings of 6 weeks, 3, 6, 9, 12 and 

18 months. 

7. Weight 1 is the birth weight in Kilograms. 

8. Weight2, Weights, Weight4, Weights, Weights and Weight? 
are the routine weights in Kilogrammes at ages defined in point 6. 

9. Zscorel, Zscore2, Zscore3, Zscore4, ZscoreS, Zscore6 and 
ZscoreT are the weights defined in points 7 and 8 converted to Z-scores 
using the L, M and S values from the revised UK 1990 growth reference 
(Freeman et al. 1995; Preece et al. 1996; Cole et al. 1998). The birth 
weight Z-score is calculated using L, M and S values at age zero in the 
reference, because within this data frame all infants are born at term. 

4.4 Previous research on the Newcastle infancy 

data 

The purpose of retrieving weight data from a routine whole year birth cohort resi
dent in Newcastle was to explore limits of normal variation in weight gain in infancy. 
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At the time of collecting the infancy data, there was no modern UK growth refer
ence. The Tanner-Whitehouse charts (Tanner et al. 1966) and the Gairdner-Pearson 
charts (Gairdner and Pearson 1971; Gairdner and Pearson 1985) for premature and 
other infants were used in child-health clinics. Wright et al. (1993) explored the 
validity of using the Tanner and Whitehouse standards (Tanner et al. 1966), the 
National Center for Health Statistics (NCHS) growth standards (Hamill et al. 1977) 
and the Cambridge standards (Whitehead et al. 1989b) for the Newcastle weight 
data. The main conclusions where that both the NCHS and Tanner-Whitehouse 
Standards were unsuitable for use before the age of 1 year, as the Newcastle children 
show a rise above both of these standards up to 3 months, then a downward fall to 
18 months. Thus, both the NCHS and Tanner-Whitehouse standards would give the 
impression of growth faltering after the age of 3 months. The Cambridge standards 
showed less of a discrepancy overall. The early weights of Newcastle children were 
similar to the Cambridge children but then showed a gradual gain on the standards. 
Wright et al. (1993) combined the Z-scores of boys and girls when they compared 
Newcastle children to the NCHS, Tanner-Whitehouse and Cambridge standards. 

Wright et al. (1994) developed the 'thrive index' (TI), which has already been 
discussed in Chapter 3. The last available weight Z-score for each individual in the 
time period 9-24 months was regressed on their Z-score at 6 weeks. The pair-wise 
correlations derived from the Newcastle infancy data at grouped ages were used to 
derive expected and lower tabulated limits for an hypothetical child on the major 
centiles (3rd, 10th, 25th, 50th, 75th, 90th and 97th) of the Cambridge standards at 
6 weeks. 

Wright et al. (1994) explored the relationship between deprivation and weight 
gain. The T I was calculated for each child using the last available weight Z-score 
between 9 and 18 months and weight Z-score at 6 weeks. Wright et al. (1994) found 
that children from deprived areas were lighter at all ages and by one year they were 
three times as likely as affluent children to be below the third centile. Twice as many 
deprived children were found to be below the 5% screening threshold compared to 
intermediate. However, there was also an excess of affluent children below the 5% 
threshold compared to intermediate. Thus, the overall conclusion was that cases of 
failure-to-thrive could come from a wide social background. 
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4.5 Prehminary analysis of the Newcastle infancy 
weight data at grouped ages 

4.5.1 Data summaries 

In this section, the infancy data frame with birth weight and up to 6 routine weights 
allocated to grouped ages of 6 weeks, 3, 6, 9, 12 and 18 months will be considered. 
Al l the publications discussed in the last section are concerned with this data frame. 
The ful l infancy data frame will be summarised later in this chapter. The num
ber of routine weight measures per individual by sex can be found in table 4.1. 
The distribution of the number of weight measures is similar for males and females 
{x^=6.6225, p=0.4692). The number of routine weight measures per individual by 
level of deprivation can be found in table 4.2. The distribution of the number of 
weight measures is related to the level of deprivation (x^=36.8653, p=0.0008). In 
particular, there are fewer than expected affluent infants having 5 weights, there 
are fewer than expected deprived children with 7 weights and more than expected 
deprived children with 2 weights. 

Table 4.3 summarises the age distribution in each of the age groupings for all 
infants. In all age groups the mean is pretty similar to grouped age, but the variances 
are larger for age groups 6 months and older, especially in the last age grouping of 
'18 months'. There are also more 'missing' weights in the later age groups, post 
9 months a third of the birth cohort have no weight measurements taken in that 
particular age grouping. 

Table 4.1: Infancy: Summary of number of weight measures in six age-
groupings and at birth by sex 

No. male female Total 
seven 503 552 1055 
six 393 355 748 
five 300 283 583 
four 171 189 360 
three 112 112 224 
two 77 68 145 
one 110 100 210 
none 45 45 90 
Total 1711 1704 3415 
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Table 4.2: Infancy: Summary of number of weight measures in six age-
groupings and at birth by SES 

Number of weights 
SES 0 1 2 3 4 5 6 7 total 
1 12 29 19 32 31 42 87 127 379 
2 62 146 83 141 246 415 511 749 2353 
3 16 35 43 51 83 126 150 179 683 

Table 4.3: Infancy: Summary statistics of distributions of actual age within 
each age grouping 

Age Min. LQ Median Mean UQ Max. SD Missing 
Ges 37 39 40 39.58 40 43 1.25 786 
6 weeks 0.750 1.380 1.740 1.641 1.930 2.100 0.3497 595 
3 months 2.070 2.890 3.020 3.048 3.180 4.490 0.3328 689 
6 months 4.520 5.670 5.970 5.949 6.260 7.480 0.5466 750 
9 months 7.510 8.590 9.050 9.059 9.570 10.490 0.6883 1310 
12 months 10.52 11.74 12.03 12.04 12.36 13.48 0.5749 1221 
18 months 13.51 15.69 17.64 17.56 18.82 23.97 2.3375 1694 

Standard deviation scores (Z-scores) by definition should be symmetrically dis
tributed, with mean zero and a standard deviation of one. At birth and 6 weeks, 
the centre of the Z-score distribution for both boys and girls is shifted to the left 
of zero; see figure 4.1. If we consider the upper panel of figure 4.3: the histograms 
and quantile-quantile plots for weight Z-scores at 9 months for boys and girls. This 
figure illustrates the typical features observed for weight Z-scores of boys and girls 
at grouped ages in infancy (see figures 4.2, 4.3 and 4.4). The histogram for boys 
weight Z-scores at 9 months is reasonably symmetric with some outlying high neg
ative Z-scores. The histogram for girls weight Z-scores at 9 months indicates that 
the mean is shifted to the left of zero and we have a long tail to the left. The 
quantile-quantile plots indicate that distribution of weight Z-scores in infancy are 
reasonably normal however they may have slightly fatter tails, which in part could be 
due to cases defined later (see section 4.6). The histograms and summary statistics 
of weight Z-scores for age-grouping by sex given in table 4.4 indicate that in early 
infancy, children in Newcastle tend to be lighter than those children that contribute 
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to the reference, this will be discussed further in the next section. A general feature 
that will be discussed in more detail below, is the mean Z-score for girls weight is 
consistently below zero at around -0.2. 

4.5.2 The adequacy of the revised UK 1990 reference for 
Newcastle infants 

Wright et al. (1996) used the Newcastle infancy data to illustrate that the original 
UK 1990 reference (Freeman et al. 1995) had a sex bias in infancy. I t was found 
that two and half times as many girls as boys had weights below the third centile 
during the first year. The UK 1990 reference was revised (Preece et al. 1996) and 
according to Cole et al. (1998) there is no sex bias in the current reference. In 
the first year of life the UK reference is derived predominantly from the Cambridge 
infant growth study and the only other weights are provided by the HUMAG infants 
(this study was designed to be nationally representative). 

The revised UK 1990 reference (Freeman et al. 1995; Preece et al. 1996; Cole 
et al. 1998) was used to convert the Newcastle infancy weight data to Z-scores. 

Table 4.4: Summary statistics of Z-scores for weight by sex, for birth and 
age groupings 6 weeks, 3, 6, 9, 12 and 18 months 

Boys 
Age Min. LQ Median Mean UQ Max. SD no. 
birth -3.6300 -0.9690 -0.2560 -0.2695 0.4004 3.0040 1.0244 1588 
6 weeks -4.4800 -0.6575 -0.0700 -0.0602 0.5600 3.0900 0.9551 1402 
3 mths -4.6100 -0.6300 0.0200 0.0003 0.6600 3.7700 0.9870 1358 
6 mths -4.9000 -0.6600 0.0300 0.0454 0.73000 4.0000 1.0222 1328 
9 mths -4.6400 -0.6000 0.0800 0.0826 0.7725 5.0400 1.0653 1060 
12 mths -4.3100 -0.6000 0.1100 0.1035 0.8000 4.2400 1.0529 1081 
18 mths -4.6700 -0.6275 0.0350 0.0527 0.7500 3.9600 1.0513 846 

Girls 
Age Min. LQ Median Mean UQ Max. SD no. 
birth -4.0560 -0.9452 -0.2486 -0.2749 0.4262 3.1050 1.0835 1580 
6 weeks -4.0400 -0.8300 -0.1850 -0.2081 0.4100 2.9400 0.9748 1418 
3 mths -3.8100 -0.8825 -0.1800 -0.2027 0.4600 3.5000 1.0021 1368 
6 mths -3.7600 -0.8800 -0.1500 -0.1522 0.5700 2.9700 1.0618 1337 
9 mths -4.0500 -0.8400 -0.1700 -0.1184 0.6300 2.9700 1.0894 1045 
12 mths -3.5400 -0.8100 -0.1200 -0.0857 0.6800 3.2300 1.0795 1113 
18 mths -4.4000 -0.8825 -0.2200 -0.1919 0.5300 3.6000 1.1115 876 
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However, it is important to be aware of the effect of using an inappropriate reference. 
For example, if the mean weight Z-score of Newcastle children was consistently below 
zero then we may find more children than expected below the third centile. Cole 
(1993) defined the mismatch between data and a reference in terms of the offset and 
trend. The oflFset is defined as the mean Z-score of the weight data, while the trend 
is the regression coefficient of the Z-score of the weight data on age. Cole (1993) 
states that if the offset and trend are near zero then the data and reference are well 
matched. No guidance is provided in terms of the size of the age range this approach 
could be applied to. It is suspected that in infancy and puberty, when growth 
changes are rapid, intervals of much less than one year are required to assess the 
adequacy of the growth reference for any anthropometric data. During childhood an 
interval of a year is probably appropriate as there are seasonal variations in height 
growth, with children growing more in spring and summer than in autumn and 
winter. 

In the approach described above, if the offset is non-zero but we have no linear 
trend with age, then the reference adjusts the data appropriately for age. However 
we should be cautious in using cut-offs as there will be either a deficit or excess of 
children below say the third centile. A non-zero linear trend with age indicates that 
the reference fails to adjust for age and the offset will be meaningless as this will 
also vary with age. I f the age trend is assumed to have been removed when it has 
not then this may lead to spurious correlations between anthropometry and other 
age related variables (Cole 1993). In infancy or puberty there is the possibility of a 
quadratic age trend, but the approach defined above only detects a linear trend. 

We used a t-test to assess whether or not the mean Z-score is zero within each 
sex-age grouping, the resulting t-values can be found in table 4.5. There may be 
some reason to doubt the null hypothesis that the mean weight Z-score is zero for 
boys at birth and for the age groupings 6 weeks, 9 and 12 months. There is strong 
evidence against the null hypothesis that the mean weight Z-score is zero in all age 
groups for girls, with Newcastle girls being consistently lighter than the reference 
children. 

Results of testing that the variance of weight Z-scores within each sex-age group
ing is one can be found in table 4.6. The F-test was used to test the null hypothesis 
that the variance is one. However, the sampling theory for is sensitive to non-
normality so results from this test should be interpreted cautiously if there are 
serious departures from normality (Armitage and Berry 1987). There may be some 
reason to doubt that the variance of the weight Z-scores is one at birth, 6, 9, 12 and 
18 months for girls. I t is suggested that the variance of weight Z-scores in Newcas-
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tie girls, from 6 months onwards, is greater than those girls that contribute to the 
revised UK 1990 reference. There may be some reason to doubt that the variance of 
the weight Z-scores is one at 6 weeks, 9, 12 and 18 months for boys. I t is suggested 
that the variance of weight Z-scores in Newcastle boys, from 9 months onwards, is 
greater than those boys that contribute to the revised UK 1990 reference. I t should 
be noted that infant weight Z-scores within the '18 months' group have an age range 
of 10 months. 

Table 4.7 summarises the results of linear regression of Z-score for weight on age 
in months at 6 weeks, 3, 6, 9, 12 and 18 months. The regression is not done for the 
birth weight Z-scores as this is not an age grouping as the Z-scores are calculated for 
all term individuals assuming that age at birth is zero. The results from table 4.7 
indicate that there is no reason to doubt the null hypothesis of zero slope, indicating 
that the infancy data may be appropriately adjusted for age by the revised UK 1990 
growth reference. 

Table 4.5: Infancy: Results of testing that the mean weight Z-score is zero 
in each age-group (by sex) 

Boys weight Z-scores 
Age group t P 95% CI 
Birth -10.4826 < 2.2 X 10 -16 -0.3199, -0.2190 
6 weeks -2.3618 0.0183 -0.1103, -0.0102 
3 months -0.0096 0.9923 f-0.0528, 0.05228 
6 months 1.6193 0.1056 f-0.0096, 0.10041 
9 months 2.5248 0.0117 0.0184, 0.1468 
12 months 3.2322 0.0013 0.0407, 0.1663 
18 months 1.4592 0.1449 [-0.0182, 0.1237] 

Girls weig ht Z- scores 
Age group t P 95% CI 
Birth -10.0852 < 2.2 X 10" -Ib [ -0.3284, -0.2214 
6 weeks -8.038 1.908 xlO--15 

[ -0.2588, -0.1573 
3 months -7.4807 1.317 xlO" -13 

[ -0.2558, -0.1495 
6 months -5.2417 1.847 xlO -7 [-0.2092, -0.0952 
9 months -3.513 0.0005 [ -0.1845, -0.0523 
12 months -2.647 0.0082 [ -0.1491, -0.0222 
18 months -5.1103 3.95 xlO" -7 [-0.2656, -0.1182 



4 The Newcastle infancy data 144 

Table 4.6: Infancy: Results of testing that the variance of weight Z-score is 

one in each age-group (by sex) 

Boys weight Z-scores 
Age (n-l)s^ 

0-2 
approx. 95% CI 

group p-value 
Birth 1665.32 0.1645 0.9800, 1.1264 
6 weeks 1277.98 0.0201 0.8482, 0.9837 
3 months 1321.86 0.5000 0.9048, 1.0518 
6 months 1386.59 0.2474 0.9697, 1.1292 
9 months 1201.87 0.0019 1.0441, 1.2381 
12 months 1197.22 0.0117 1.0207, 1.2083 
18 months 933.96 0.0305 1.0070, 1.2187 

Girls weight Z-scores 
Age (n-l)s^ approx. 95% CI 
group p-value 
Birth 1853.72 1.0160x10-" 1.0962, 1.2604 
6 weeks 1346.36 0.1845 0.8839, 1.0242 
3 months 1372.69 0.9133 0.9329, 1.0839 
6 months 1506.12 0.0010 1.0465, 1.2180 
9 months 1238.93 1.9909 xlO-^ 1.0911, 1.2955] 
12 months 1295.85 9.6819 xlO-5 1.0742, 1.2686] 
18 months 1081.04 8.4203 xlO-^ 1.1274, 1.3599] 

Table 4.7: Slope coefficients from regression of weight Z-scores in infancy on 

age 

Boys 
Z(6 weeks) 
Z(3 months) 
Z(6 months) 
Z(9 months) 
Z(12 months) 
Z(18 months) 
Girls 
Z(6 weeks) 
Z(3 months) 
Z(6 months) 
Z(9 months) 
Z(12 months) 
Z(18 months) 

Estimate Std. Error t value Pr(> \t\) 
0.01313 
-0.04735 
-0.06079 
-0.03321 
-0.05008 
-0.02588 

0.07259 
0.08291 
0.05029 
0.04653 
0.05486 
0.01534 

0.181 
-0.571 
-1.209 
-0.714 
-0.913 
-1.687 

0.857 
0.568 
0.227 
0.476 
0.361 
0.0919 

Estimate Std. Error t value Pr(> \t\) 
0.02786 
-0.05445 
-0.03959 
0.01233 
-0.01253 
0.004663 

0.07446 
0.07920 
0.05429 
0.05021 
0.05717 
0.016179 

0.374 
-0.687 
-0.729 
0.245 
-0.219 
0.288 

0.7083 
0.492 
0.466 
0.806 
0.827 
0.773 
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4.6 Regression on a baseline Z-score 

The routine Newcastle infancy data was also grouped differently in early infancy. 
Instead of a 6 week grouping there is a 1 and 2 month grouping. One of the 1 or 2 
month weights will have previously been the 6 week weight. The summary statistics 
of the weight Z-scores for 1 and 2 month groupings can be found in table 4.8. The 
mean weight Z-score for girls at 1 and 2 months is shifted to the left of zero at about 
-0.2. A negative offset is also observed for the boys weight Z-scores at 1 month but 
there is some indication of a catch up with the reference at 2 months. 

4.6.1 Original analysis 

A baseline weight Z-score (Z(base)) was derived for each individual using the average 
of weight Z-scores at birth and at age groupings of 1 and 2 months. So for example, if 
an infant only had weights at birth and one weight in the age grouping of 2 months, 
then: 

, Z(birth) + Z(2 mths) 
Z(base) = ^ ' — ^ 

An average baseline weight Z-score was chosen over one early weight Z-score, 
say the 6 week weight Z-score, as this was viewed to be less prone to distortion by 
individual measurement error or short term illness (Wright et al. 1998). 

In earlier work Wright et al. (1994) used weight Z-score at 6 weeks in the 
development of the 'thrive index'. There were two reasons for this. At the time of 

Table 4.8: Infancy: Summary statistics of Z-scores for weight by sex; for age 
groupings 1 and 2 months 

Boys 
Age Min. LQ Median Mean UQ Max. SD no. 
1 mth 
2 mths 

-3.3690 -0.7282 -0.1630 -0.1514 0.4775 2.6940 0.9464 1354 
-4.4840 -0.6320 -0.0200 -0.0310 0.6025 3.0890 0.9743 1263 

Girls 
Age Min. LQ Median Mean UQ Max. SD no. 
1 mth 
2 mths 

-4.0380 -0.8770 -0.2070 -0.2479 0.4060 3.3140 0.9897 1363 
-4.3390 -0.8095 -0.2090 -0.2034 0.4265 2.9440 0.9874 1259 
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publication only the Cambridge standards were available and these did not include 
L, M and S values for birth and weight Z-score at 6 weeks was more highly correlated 
than birth weight Z-score with later weight Z-scores (Wright 1996). 

In the original analysis, carried out by Dr C M . Wright, Z-scores at 3, 6, 9,12 and 
18 months were regressed on baseline weight Z-score, giving regression coefficients 
for Z(base) of 0.82, 0.70, 0.62, 0.63 and 0.60 at 3, 6, 9, 12 and 18 months, and 
corresponding thrive index (TI) equations: 

T/(3 mths) = Z{3 mths) - 0.82Z(base) 

r / (6 mths) = Z{6 mths) - 0.70Z(base) 

TI{9 mths) = Z{9 mths) - 0.62Z(base) 

r/(12 mths) = Z{12 mths) - 0.63Z(base) 

T/(18 mths) = Z{18 mths) - 0.60Z(base) 

Thrive indices for each infant were then calculated, and the 5% threshold was 
derived empirically from the thrive indices at grouped ages of 3, 6, 9, 12 and 18 
months. This gave cut-offs of -0.95 at 3 months, -1.19 at 6 months, -1.36 at 9 
months, -1.33 at 12 months and -1.46 at 18 months. The constant in the regression 
equation was not included in the calculation of the thrive index, the effect of which is 
that the mean thrive index will not be zero but close to the constant in the regression 
equation. 

A 5% threshold for each thrive index was chosen for two reasons (Corbett 1998). 
Firstly, earlier population based work in Newcastle (Corbett 1994) suggested that 
falls of this magnitude were associated with significant cognitive deficits, and sec
ondly that the threshold observes recommended convention (Drotar (1990) in Cor
bett (1998)). 

An infant was classified as a case if its 'thrive index' value was below the 5% 
threshold in 2 or more of the age bands, between 3 and 18 months. 

The requirement that the thrive index be below the 5th centile on 
two or more occasions ensured that the weight faltering persisted 
over at least 3 months for a child to be screened as a case, and 
ensured that a child could not be identified as failing to thrive on 
the basis of a single erroneously recorded weight (Drewett et al. 
1999, pp 553). 
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This approach identified 136 cases, a high risk group that in practice would merit 
further clinical investigations, rather than a definite diagnostic group (Wright 2000). 

4.6.2 Regression analysis after correction to birth Z-score 

The above regression analysis was repeated as there are now 3415 term infants and 
all the birth weight Z-scores in the original analysis were slightly out because of a 
numerical error in the FORTRAN code used by Dr C M . Wright. As the baseline 
Z-score is based on up to 3 early weights the impact of this was expected to be small. 
The baseline Z-score for each individual was obtained by taking the average of the 
weight Z-score at birth, 1 month and 2 months, if present. Summary statistics for 
the baseline Z-scores by sex can be found in table 4.9. One hundred and seventy 
(5%) individuals (90 boys, 80 girls) had no baseline weight Z-score. Table 4.10 
cross-tabulates the number of early weights against number of late weights. Only 
the individuals highlighted in bold within this table could be identified as cases 
using the above approach as we need at least two late weights that are less than the 
5% threshold. 

The Z-scores at 3 months, 6 months, 9 months, 12 months and 18 months were 
then regressed on this baseline Z-score. The results of these regressions with an 
intercept can be found in table 4.11. The intercept term in all of these regressions 
is significantly different from zero, which means that when we use equations (4.1), 
given below, to obtain TI's, the mean TI{j) {j=3, 6, 9, 12 and 18 months) will be 
non-zero. 

Table 4.9: Summary statistics of baseline Z-scores for weight by sex 

Z(base) Min. LQ Median Mean UQ Max. SD no. 
Boys -3.9390 -0.7581 -0.1801 -0.1739 0.4587 2.6080 0.9308 1621 
Girls -3.9900 -0.8435 -0.2118 -0.2407 0.3832 2.9770 0.9726 1624 
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Table 4.10: Table of number of early versus late weight measurements, where 
early is birth and groupings of 1 and 2 months, and late is groupings of 3, 
6, 9, 12 and 18 months. Figures highlighted in bold have enough weights to 
be detected as cases if two or more late weights fall below the 5% threshold, 
those highlighted in italics don't. 

no. early no. late weights 
wei ̂ hts 0 1 2 3 4 5 
0 90 43 27 3 7 0 
1 159 60 48 34 37 11 
2 46 78 120 163 129 94 
3 15 78 177 388 612 996 

T/(3 mths) = Z(3 mths) - 0.85Z(base) 

T/(6 mths) = Z(6 mths) - 0.73Z(base) 

T7(9 mths) = Z(9 mths) - 0.64Z(base) 

r7(12 mths) = Z(12 mths) - 0.65Z(base) 

T/(18 mths) = Z(18 mths) - 0.63Z(base) 

(4.1) 

Table 4.12 contains the summary statistics and empirical 'cut-offs' for the cal
culated thrive indices. As discussed above, a child is defined as a case if that child's 
thrive indices at 3, 6, 9, 12 and 18 months were below the 5% thresholds (defined 
in the second from the right column in table 4.12) two or more times. Table 4.13 
contains counts of the number of individuals that fell below the cut-offs x amount 
of times. This approach identified 136 cases, the ID's of these children can be found 
in table 4.14. 

The error in the birth weight Z-score has had little impact, again we have 136 

cases, but now individuals with ID's 507, 1120, 1168 and 2780 are no longer cases by 

the protocol definition and these are replaced with individuals with ID's 863, 1889, 

3192 and 3558. 
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Table 4.11: Regression of weight Z-score at grouped ages of 3, 6, 9, 12 and 
18 months on baseline weight Z-score 

Weight Z-score at 3 months 
Value Std. Error t-value Pr(> |t|) 

(Intercept) 0.07027 0.01188 5:9l6 3.71 xlO"^ 
Z(base) 0 85209 0.01243 68.555 < 2 x IQ-^^ 
i?^=0.6337, i?^(adj)=0.6335, residual SE=0.6055 on 2717 df 

Weight Z-score at 6 months 
^ Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.10223 0.01582 6^62 1.23 xlO"^" 
Z(base) 0.73200 0.01649 44.382 < 2 x IQ-i^ 
ii'^=0.4269, i?^(adj)=0.4267, residual SE=0.794 on 2644 df 

J Weight Z-score at 9 months 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.13435 0.02038 6.593 5.46 xlO" 
Z(base) 0.64312 0.02112 30.455 < 2 x 10"^^ 
i?'̂ =0.3085, il^(adj)=0.3082, residual SE=0.901 on 2079 df 

Weight Z-score at 12 months 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 0.13961 0.01928 7̂ 242 UTxW^ 
Z(base) 0 65257 0.02012 32.436 < 2 x 10'^^ 
it:^=0.3275, i?^(adj)=0.3272, residual SE=0.8763 on 2160 df 

Weight Z-score at 18 months 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.08610 0.02311 3726 0.000201 
Z(base) 0 62918 0.02381 26.428 < 2 x 10"^^ 
i?^=0.2951, i?'^(adj)=0.2947, residual SE=0.9121 on 1668 df 

4.7 A preliminary analysis of all the routine weight 
Z-scores 

4.7.1 Comparing attained weights of Newcastle infants with 
the revised UK 1990 growth reference 

The oflFset and linear trend of the Newcastle weight Z-scores for boys and girls was 
addressed in section 4.5.2. However, as mentioned earlier, infancy is a period of rapid 
growth and there is the possibility of a curvilinear trend. An appealing approach is 
to use a scatterplot smoother such as lowess (Cleveland 1979) to arrive at a pictorial 
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Table 4.12: Summary statistics and cut-offs for thrive indices at 5th and 10th 
percentile 

New T l Min. LQ Median Mean UQ Max. NA's 5% 10% 
3 mths -4.022 -0.308 0.070 0.070 0.455 3.528 696 -0.88 -0.66 
6 mths -4.116 -0.446 0.069 0.102 0.634 3.254 769 -1.13 -0.87 
9 mths -3.965 -0.479 0.106 0.134 0.735 3.681 1334 -1.31 -1.00 
12 mths -2.706 -0.468 0.137 0.139 0.724 3.173 1253 -1.27 -0.96 
18 mths -3.641 -0.536 0.063 0.086 0.695 3.360 1745 -1.41 -1.08 

Table 4.13: Frequencies for the number of times an individual fell below a 
cut-off 

no.(x) 0 1 2 3 4 5 
Frequency 3087 192 65 47 17 7 

Table 4.14: Identification numbers of cases 

53 348 576 973 1382 1764 1973 2260 2596 2824 3144 3366 3624 
127 407 592 975 1412 1766 1983 2266 2638 2828 3184 3371 3633 
149 419 631 1006 1432 1798 2030 2289 2657 2833 3192 3394 3662 
165 423 633 1008 1575 1813 2046 2333 2680 2834 3204 3426 3679 
175 450 688 1040 1599 1833 2128 2371 2687 2844 3272 3442 
193 451 720 1089 1609 1870 2132 2397 2695 2960 3288 3499 
203 471 863 1104 1614 1881 2139 2398 2705 2987 3289 3512 
269 494 884 1163 1629 1889 2153 2421 2717 3054 3290 3533 
301 535 918 1251 1674 1910 2157 2430 2726 3091 3325 3550 
339 559 956 1258 1731 1927 2188 2448 2786 3119 3339 3558 
345 561 967 1366 1761 1947 2255 2472 2792 3121 3352 3569 

representation of any curvilinear trend. This would allow us to compare the growth 

of Newcastle children to those infants that contribute to the growth reference. It 

would also permit us to assess the adequacy of the revised UK 1990 growth reference 

for Newcastle children. 
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Lowess is a procedure that uses robust locally linear fits. A window is placed 
at each point x. The data points that lie within this window are weighted so that 
nearby points get the most weight and a robust weighted regression is used to predict 
the value y{x) at x (Venables and Ripley 1997). 

The full infancy data frame (3415 individuals with up to 11 weights) was utilised. 
A scatterplot of weight Z-score versus age for boys and girls can be found in figure 
4.5. Before the age of 1 year a large proportion of children are weighed leading to a 
dense scatter in this region. Above 1 year markedly fewer children are weighed which 
results in a sparse scatter in this age region. A lowess curve^ was added to both of 
these plots to see how children in Newcastle compare to the growth reference. The 
upper plots in figure 4.5 for boys indicate that at birth Newcastle boys tend to be 
lighter than the children that contribute to the reference, but from about 13 weeks 
the boys are slightly heavier than those children that contribute to the reference. 
First impressions of the same plots for girls indicate that girls in Newcastle are 
lighter than the reference at all ages. 

Figures 4.6 and 4.7 contain scatterplots of weight Z-score versus age for boys and 
girls, respectively. These plots are all drawn on the same scale to aid comparisons. 
The upper panel in figure 4.6 show a scatterplot of weight Z-scores for case boys 
versus age with a lowess curve overlaid. This shows that the trajectory of weight 
Z-scores for case boys dips from birth to about -2 and attained weight status slowly 
improves but appears to be below zero at the end of infancy. The lower panel in 
figure 4.6 shows a scatterplot of weight Z-scores for all boys excluding cases versus 
age with a default lowess curve overlaid. This plot has a similar trend to the plot 
for all boys in figure 4.5. There is one boy with an outlying high negative weight 
Z-score (Z=-5.61) within the plot for boys excluding cases. This boy has ID 1773 
and only has one recorded weight at 2.89 years. 

The upper panel for case girls in figure 4.7 shows a similar trend to case boys. 
The lower panel in figure 4.7 of weight Z-score versus age for girls excluding cases, 
indicates that Newcastle girls are lighter at birth than those children that contribute 
to the reference. The apparent negative offset discussed above and in section 4.5.2 for 
girls is largely due to the case children dragging the mean Z-score of the population 
downwards in a negative direction. The downward trend towards the end of infancy 
in all of the plots in figures 4.6 and 4.7 reflects that weight data after 1 year is 
sparser and that infants weighed after this age tend to be lighter. Figure 4.8 looks 
at the effect on the lowess curve by varying the values of the span. The default 

^The default span (f) is 2/3. The span controls the window size and is the proportion 

of the data which is included. 
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span is 2/3, with a span of 1/3 the lowess curves are less regular. However with a 
span of 1, some of the features are lost. The default span seems to be a reasonable 
compromise. 

Figure 4.9 contains a summary of all the default lowess curves discussed above. 
The lines in red and blue correspond to the girls and boys, respectively. The fitted 
values from lowess at birth and 6 grouped ages can be found in table 4.15. The case 
boys and girls trajectory is almost identical with case boys falling from a slightly 
higher weight Z-score at birth and being weighed until slightly older ages. The 
pattern for girls (excluding cases) and boys (excluding cases) are fairly similar, with 
girls mean weight Z-scores tending to be just below the zero line and boys mean 
weight Z-scores just above the zero line. The eflfect of excluding the case children is 
to shift the trend curves in an upward direction, which leads to the impression that 
Newcastle boys on average seem to be heavier than the reference boys in infancy 
and Newcastle girls on average are slightly lighter than the reference girls. 

The noticeable feature of the Newcastle infancy weight data is that the mean 
weight Z-score is below zero for both boys and girls at birth. So it seems reasonable 
to explore if allowing for gestational age would reduce this negative offset because we 
know the gestational age of 2516 infants. The weight Z-score at birth was obtained 
allowing for gestational age if known. The distribution of gestational ages can be 
found in table 4.16, the majority of infants have a gestational age between 38 and 41 
weeks. I f no gestational age is recorded then it was assumed that this was 40 weeks. 
The summary statistics for the birth weight Z-score allowing for gestational age can 
be found in table 4.17. Incorporating the gestational age increases the mean weight 
Z-score for both sexes, however the mean birth weight Z-score is still significantly 
different from zero; see table 4.18. Thus the negative offset at birth (and possibly in 
the early weeks) could be partly due to length of gestation. In table 4.19 we regress 
the birth weight Z-score allowing for gestation on gestational age. There appears to 

Table 4.15: Infancy data (excluding cases) Fitted values from lowess of 

Z-scores for weight by sex at birth and ages: 6 weeks, 3, 6, 9, 12 and 18 

months 

Age (days) 0 42 91 182 351 364 546 
Boys 
Girls 

-0.237 
-0.266 

-0.110 
-0.208 

0.027 
-0.142 

0.103 
-0.073 

0.135 
-0.022 

0.134 
-0.024 

0.097 
-0.048 



4 The Newcastle infancy data 153 

be a negative trend in the birth weight Z-scores with gestational age, see figure 4.10. 
Thus suggesting that the revised UK 1990 reference may not adjust appropriately for 
age at birth. Gestational age only provides an indication of length of gestation and 
is recorded to the nearest week. In constructing the revised UK 1990 reference, the 
LMS values in the age range around birth are derived from splining prenatal, birth 
weight and postnatal data (personal communication, Dr C M . Wright, April 2002). 
Therefore, weight Z-scores should be interpreted cautiously at birth and within the 
first month of life. 

Table 4.16: Infancy data: Summary of gestational ages by sex 

Ges (weeks) 37 38 39 40 41 42 43 
Boys 68 216 249 480 211 77 3 
Girls 76 210 288 491 186 71 5 

Table 4.17: Summary statistics of birth weight Z-scores (after allowing for 

gestation) by sex 

Min. LQ Median Mean UQ Max. SD no. 
Boys 
Girls 

-3.6300 
-3.8650 

-0.7786 
-0.7655 

-0.1112 
-0.1040 

-0.1191 
-0.0952 

0.5101 
0.5544 

4.2230 
3.6340 

0.9969 
1.0255 

1588 
1580 

Table 4.18: Birth weight Z-score (allowing for gestation): Results of testing 
that the mean is zero and variance is one (by sex) 

t P 95% CI 
Boys -4.7614 2.098 xlO-'^ -0.1682, -0.0700 
Girls -3.6883 0.0002 -0.1458, -0.0446 

(n-l)s^ 
0-2 

approx. 95% CI 
p-value 

Boys 1577.08 0.8603 [0.9281, 1.0667J 
Girls 1660.68 0.1461 [0.9821, 1.1291] 
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Table 4.19: Slope coefficients from regression of birth weight Z-score on ges

tational age 

Z(Ges) Estimate Std. Error t value Pr(> \t\) 
Boys -0.15919 0.02136 -7.454 1.48 xlO"^^ 
Girls -0.09975 0.02227 -4.480 8.00 xlO-^ 

4.7.2 Trend curves of weight Z-scores by level of deprivation 
and number of weights 

In an ideal world, displaying a connected plot of the weight Z-scores for each indi
vidual would be desirable. However there are 3415 individuals within the infancy 
data set so an effective display of all these growth curves is not feasible. An alter
native approach is to produce scatterplots for subsets of the infancy data and add 
summary lowess curves. In the last section lowess curves were produced for boys, 
girls and case children. The boys and girls are at different levels on the Z-score 
scale, with mean Z-score of girls tending to be below zero and the mean Z-score for 
boys above zero. Hence if we were interested in the subgroups with different levels 
of deprivation, say, we would split these subgroups by sex. 

Table 4.20 contains a summary of the number of boys and girls within each level 
of deprivation. The distribution of level of deprivation is similar for boys and girls 
(x^=0.6044, p=0.7392) and the majority of individuals are within the intermediate 
category. Scatterplots of the weight Z-score versus age for the different levels of 
deprivation can be found in figure 4.11. Again these are all drawn on the same scale 
to aid comparison. Figure 4.12 contains a summary of the default lowess curves for 
affluent, intermediate and deprived children. The red and blue lines represent the 
girls and boys, respectively. The intermediate group for both sexes have a similar 
trend curves to those displayed in figure 4.5. At birth the affluent children tend 
to have higher weight Z-scores than the intermediate, and the intermediate have 
higher weight Z-scores than the deprived. The lowess curves for the girls exhibit 
the expected features: the deprived children have consistently lower weight Z-scores 
than the intermediate children, although there is some indication of catch up in 
attained weight status by the end of infancy. The trend curve for the affluent girls 
doesn't extend as far into infancy and seems to agree reasonably well with the growth 
reference, indicating that possibly affluent girls may be similar to the Cambridge 



4 The Newcastle infancy data 155 

girls. The boys as a whole all overtake the reference in early infancy and attained 
weight status for both affluent and deprived children is higher than intermediate up 
until the age of 1 year. Its at the end of infancy that level of deprivation appears 
to influence attained weight status for boys. There is a downward trend for affluent 
and deprived boys at the end of infancy, although how much weight this observation 
carries is debatable as the data is sparse in this region. The unexpected steep 
downward trend for affluent boys appears to be largely due to two individuals with 
weights at just under 3 years (these individuals are not cases). 

Table 4.21 contains a summary of the number of boys and girls with y routine 
weights in infancy. The distribution of number of routine weights is similar for boys 
and girls (x^=l 1-2983, p=0.4186). Figure 4.13 contains the default lowess curves 
of weight Z-scores split according to number of routine weights and by sex. We 
may have expected that infants weighed more frequently may be lighter or show a 
downward trend towards the end of infancy. The upper panel represents individuals 
with 2 to 5 weights, there are a lot of fluctuations within these trend curves and no 
consistent pattern. The lower panel represents individuals with 7 or more weights, 
the patterns within these plots are more regular and the majority of curves exhibit 
a downward trend towards the end of infancy, with the exception that girls with 
10 or 11 routine weights and boys with 9 routine weights exhibit an upward trend 
towards the end of infancy. In particular, the girls with 10 or more weights exhibit 
the opposite behaviour to what we'd expect. 

4.8 Discussion and Conclusions 

The routine Newcastle infancy weight data were converted to weight Z-scores using 
the revised UK 1990 growth reference (Freeman et al. 1995; Preece et al. 1996; 
Cole et al. 1998). A growth reference is required to say anything about the attained 
growth status of a child. An advantage of using a growth reference is that the growth 

Table 4.20: Summary table of level of deprivation by sex 

SES 1 2 3 
Boys 188 1189 334 
Girls 191 1164 349 
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Table 4.21: Counts of the number of routine weight measures for each indi

vidual by sex 

No. of weights (y) male female Total 
None 41 42 83 
1 102 91 193 
2 67 66 133 
3 70 72 142 
4 91 85 176 
5 111 124 235 
6 116 127 243 
7 161 128 289 
8 161 147 308 
9 199 177 376 
10 201 200 401 
11 391 445 836 

status of children can be compared even if the children are not weighed at the same 
age because a growth reference should adequately account for the age of the child. I t 
is important to be aware of the impact of using an inappropriate growth reference. 
As demonstrated by Wright et al. (1993) use of the Tanner-Whitehouse reference 
(Tanner et al. 1966) would lead to the impression that after 3 months the majority 
of Newcastle childrens growth would appear to falter. The original UK 1990 growth 
reference (Freeman et al. 1995) was found to have a sex bias when applied to the 
routine Newcastle weight data (Wright et al. 1996), with an excess of girls with 
weight Z-scores below the third centile. A similar observation was made for the 
weight Z-scores of female Sheffield infants (Wales 1996). It is now claimed that 
there is now no longer a sex bias in the revised UK 1990 growth reference (Preece 
et al. 1996; Cole et al. 1998). 

Initial preliminary analysis indicated that the sex bias towards girls appeared to 
be still present in the revised UK 1990 reference. However, the mean weight Z-score 
of girls is about -0.2 throughout infancy but this is not of clinical significance^. It 
would appear that the 84 case girls exert a downward pull on the mean weight Z-score 
of the Newcastle girls as a whole, leading to an exaggeration in the negative offset. 
Newcastle children are significantly lighter at birth than children that contribute 
to the reference even after allowing for gestational age if known. In general, for 

^The general consensus is that if the difference was more than half a centile space 

(i.e. mean Z-score above 0.335 or below -0.335) then this would be of clinical significance 

(personal communication, Dr C M . Wright, Apri l 2002). 



4 The Newcastle infancy data 157 

Newcastle infants, the girls tend to be slightly lighter and the boys slightly heavier 
than the reference children. There is a negative linear trend with age if the birth 
weight Z-score is obtained allowing for gestational age. There is no strong linear 
trend of the weight Z-scores with age after the age of 6 weeks, indicating that the 
reference adequately adjusts for age. However, there is some evidence of a curvilinear 
trend but this is in part expected because the Newcastle weights are routine data, so 
infants that are lighter are weighed over a longer time period leading to a downward 
trend at the end of infancy. 

In infancy the revised UK 1990 reference is derived mainly from infants that 
belong to the Cambridge growth study (Whitehead et al. 1989b). The Cambridge 
data is likely to include a high proportion of educated mothers as Cambridge is 
a University City and these children are likely to belong to affluent families. The 
rationale for using the Cambridge data is that a high proportion of children are breast 
fed and weaned according to current guidelines. In Newcastle a high proportion of 
children are bottle-fed which could explain why the boys appear to be slightly heavier 
than the reference children. It is well known that breast and bottle fed infants show 
different growth patterns (Dewey et al. 1992). An interesting feature of the data for 
Newcastle girls was that the more deprived children had lower weight Z-scores and 
the affluent girls followed a trend that was similar to the growth reference. The effect 
of deprivation seemed to be less problematic for boys in terms of attained weight 
status, only at birth were more deprived boys lighter. It appears that affluent and 
deprived boys both tend to be heavier than intermediate boys from about 12 weeks 
until 1 year. 

Overall, it is not entirely unreasonable to use the revised UK 1990 reference to 
convert Newcastle weight data to Z-scores. The revised UK 1990 growth reference 
seems to adequately account for age and it appears that girls tend to be slightly 
lighter and boys slightly heavier than the reference children. The biases described 
in this chapter may affect children in the tails of the distribution. However, the case 
children show a downward trend from birth whereas the rest of the children show 
an upward trend. As long as we are aware of these patterns there are no problems 
with using the revised UK 1990 growth reference until the age of 1 year. This is 
an agreement with Savage et al. (1999) findings. A sample of 127 healthy children 
from the Glasgow infant growth study were assessed monthly to 6 months, then at 
9, 12, 18 and 24 months. Savage et al. (1999) found small differences for weight 
between the revised UK 1990 reference and their data, but viewed these as clinically 
not important. They also found a small excess of girls (but a deficit of boys) below 
the tenth centile. The mean weight Z-scores in the Glasgow sample follow a similar 
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pattern to the Newcastle data, boys and girls mean weight Z-score tending to be 
above and below the zero line, respectively. The mean Z-scores of Glasgow infants 
look marginally higher than the Newcastle infants, in particular at birth and at the 
end of infancy. 

The approach used in the Newcastle research study to identify case children at 
risk of failure-to-thrive selects a subset of children with a markedly different growth 
pattern to the rest of the cohort. The trajectory of weight Z-scores for case children 
dips from birth to about -2 and attained weight status slowly improves but is still 
below zero at the end of infancy. The growth pattern of case boys and girls is 
remarkably similar. A later cohort of 229 children in Newcastle (Wright et al. 1998) 
were identified as failing to thrive using the 'thrive index' approach by contrasting 
an early and late weight. 120 of these children were within intervention practices 
and 109 in control practices. 

Both groups, however, reached the same lowest points at similar 

ages, suggesting that this represented the same underlying growth 

trajectory (Wright et al. 1998, pp572) 

Future work could focus on the characterisation of this growth trajectory, which in 
itself could possibly lead to earlier detection of growth faltering. Identification of the 
age when children are more at risk of failing-to-thrive would be clinically valuable. 
The approach used for identifying potential cases, the number of times the child falls 
below the threshold, could also provide a crude index of severity and this may merit 
further research. For example, is the number of times the thrive index falls below 
the threshold related in any way to severity of future outcome; that is, does a T I 
less than the threshold 5 times lead to more severe stunting or wasting in childhood. 
Other research has shown that the severity and duration of failure-to-thrive are 
important in terms of future outcome (Woolston 1991). Another possibility would 
be to incorporate errors detailed in section 4.2 into the analysis, as a child's weight 
gain will encompass both real weight gain, biological variation, change in clothing 
and measurement error. 

As shown in the preliminary work within this chapter, the patterns of growth in 

infancy show some interesting features. Past research has avoided working exten

sively with weights in infancy as they are harder to characterise, Cole (1995) and 

Wright et al. (1994) being the exceptions. 

Is it not high time that methods that have been applied to the 
height-growth curve were extended and modified to cope with 
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more awkward measurements such as weight and skinfold thick
ness? (Healy 1989a, pp20) 

is equally applicable today, especially beyond infancy. Does canalisation, the power 
to stabilise and return to predetermined growth curve after being pushed off trajec
tory, occur in infancy. Further work could look at issues of variability and movement 
from higher to lower centiles or vice-versa. Is it possible that more variability is ob
served for children growing 'abnormally'? In the Cambridge infancy study, they 
observed shifts rarely greater than 0.3 on Z-score scale in either direction. In early 
infancy the Newcastle weight data are likely to show shifts of this magnitude be
cause all the children growing well are catching up with the reference children at 
this stage. So future work could concentrate on weight Z-scores after the age of 3 
months. 

To conclude, it seems appropriate to convert weights of infants from Newcastle 
to weight Z-scores using the revised UK 1990 reference. In general, female infants 
from Newcastle tend to be slightly lighter than those children that contribute to the 
reference. Whereas male infants from Newcastle tend to be slightly heavier than 
those children that contribute to the reference. The variance of weight Z-scores 
in late infancy appears to be slightly greater than one. Therefore, in late infancy 
we should be cautious in the interpretation of weight Z-scores in the tails of the 
distribution. The Lowess procedure of Cleveland (1979) was found to be a valuable 
tool in assessing trends within scatterplots of the weight Z-scores. It appears that 
infants that fail-to-thrive in infancy have a characteristic growth curve. 
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Figure 4.1: Upper panel Histogram and quantile-quantile plot of weight 
Z-scores at birth for boys and girls, on left and right, respectively. Lower 
panel Histogram and quantile-quantile plot of weight Z-scores at 6 weeks for 
boys and girls, on left and right, respectively 
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Figure 4.2: Upper panel Histogram and quantile-quantile plot of weight Z-
scores at 3 months for boys and girls, on left and right, respectively. Lower 
panel Histogram and quantile-quantile plot of weight Z-scores at 6 months 
for boys and girls, on left and right, respectively 
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Figure 4.3: Upper panel Histogram and quantile-quantile plot of weight Z-
scores at 9 months for boys and girls, on left and right, respectively. Lower 
panel Histogram and quantile-quantile plot of weight Z-scores at 12 months 
for boys and girls, on left and right, respectively. 
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Figure 4.4: Histogram and quantile-quantile plot of weight Z-scores at 18 

months for boys and girls, on left and right, respectively 
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Figure 4.5: Plots of weight Z-score versus age Upper panel Plot of 
weight Z-score versus age for all boys with default lowess curve. Lower panel 
Plot of weight Z-score versus age for all girls with default lowess curve. 
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Figure 4.6: Boys Upper panel Plot of weight Z-score versus age for case boys 
with default lowess curve. Lower panel Plot of weight Z-score versus age for 
all boys excluding cases with default lowess curve. 
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Figure 4.7: Girls Upper panel Plot of weight Z-score versus age for case girls 
with default lowess curve. Lower panel Plot of weight Z-score versus age for 
all girls excluding cases with default lowess curve. 
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Figure 4.8: Lowess curves Upper panel Lowess curve for case and other 
boys with varying span. Lower panel Lowess curve for case and other girls 
with varying span. 
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Figure 4.9: Default Lowess curves for case boys, case girls, boys excluding 

case boys and girls excluding case girls 
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Figure 4.10: Infancy data Plot of birth weight Z-score (allowing for gesta

tion) versus gestational age 
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Figure 4.11: Left Scatterplots of weight Z-score versus age for boys by level 
of deprivation Right Scatterplots of weight Z-score versus age for girls by 
level of deprivation 
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Figure 4.12: Default Lowess curves for affluent, intermediate and deprived 
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Figure 4.13: Default Lowess curves for number of routine weights by sex 
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Chapter 5 

Correlation structure of Newcastle 
infancy weight Z-scores 

The first two-thirds of this chapter concentrate on early exploratory work of the 
correlation matrix (based on 1055 children) for weight Z-scores at birth and the six 
grouped ages. I t tells the story of the process of model development for the correla
tion structure. In section 5.1 the role of the correlation between weight Z-scores, in 
weight monitoring in infancy is described. In section 5.2, the correlation matrix for 
weight Z-scores at birth and the six grouped ages is presented and the scaled inverse 
correlation matrix is obtained. Within section 5.2, principal components analysis 
is carried out on the correlation matrix. In section 5.3 we explore the possibility 
that the correlation matrix has a pattern assuming that the weight measures are 
equally spaced. The developments in section 5.3 provide the inspiration for the 
model developed using regression techniques in section 5.4. The model derived in 
section 5.4 was initially from the correlations within the (7 x 7) correlation matrix. 
In section 5.5 the original routine weights are regrouped to provide finer detail of 
the correlation surface we wish to model. The model derived in section 5.4 is then 
fitted to the correlations generated for the weight Z-scores grouped to the nearest 
week or fortnight. In section 5.6 we explore whether the derived functional form is 
applicable to the correlation matrix derived from the weight Z-scores in the Cam
bridge infant study (Cole 1995). We conclude by applying the derived functional 
form to the combined Newcastle and Cambridge correlations; see section 5.7. 

173 
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5.1 The role of the correlation matrix in monitor
ing weight gain in infancy 

An infant's weight is usually monitored regularly in the first year of life and the 
attained weight is compared to a cross-sectional reference such as the revised UK 
1990 reference (Freeman et al. 1995; Preece et al. 1996). Centile crossing is often 
interpreted by the clinician as a sign of abnormal growth under the premise that a 
child growing normally stays close to his or her weight centile. It is not appropriate to 
use growth references in this way, because they cannot quantify changes in weight as 
they are derived from cross-sectional data (Cole 1995). In addition, the definition of 
'centile crossing' is somewhat arbitrary. For example, consider two children whose 
attained weight crosses two major centiles. One may have been just above the 
50th centile and fallen just below the 25th centile, whereas the other child may 
have started initially nearer the 75th centile and fallen to a weight just above the 
9th centile. Both children have crossed 2 major centiles, however we'd be more 
concerned about the second child's growth. 

I t is generally accepted that to detect factors causing weight faltering, weight 
velocity is a far more sensitive indicator than weight attained (Cole 1989a). Lon
gitudinal data is required to create a weight velocity chart, consisting of mean and 
standard deviation (SD) of weight increments between specified ages. Both the mean 
and SD change with age, but in addition the SD depends on the time between mea
surements (Cole 1995). The measurement error is greater over shorter time intervals 
(Cole 1993). In addition, a saltatory pattern (Lampl et al. 1992) or weight gain 
of a pulsatile nature (Greco et al. 1990) would increase the variability over short 
time periods. However one of the main disadvantages in using weight velocity is 
that in order to use velocity charts, the child is required to be weighed at set times. 
For example, the USA increment weight tables for infancy are for 1 month intervals 
from birth to 6 months, 2 month intervals from birth to 12 months and 3 month 
intervals from birth to 24 months (Guo et al. 1991). The child's weight velocity also 
depends on the starting weight. Light children have a higher expected velocity than 
heavy children (Cole 1995). An alternative is to use a conditional reference, this is a 
weight velocity reference that compensates for regression to the mean (Cole 1995). 

One of the questions to address when assessing a child's growth, is 'Given we 
know the infant's previous weight, what is his/her likely weight now?' Recall from 
Chapter 3, that one of the ways a conditional gain Z-score (equation (3.11)) can be 
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used is to evaluate a child's weight gain between two time-points. 

- ^ (3.n, 

where tl < t2, Zn is the initial weight Z-score at tl, is the later weight Z-score 

at and r is the correlation between weight Z-scores at t\ and 12. 

The only information needed to use equation (3.11) is a growth reference to 
convert weight measures to Z-scores and the correlation between the two weight 
Z-scores (Cole 1993). The required correlation will depend on the age and sex of 
the particular child (Cole 1993). 

. . . i t would be straightforward to construct a mathematical model 
for r, using existing longitudinal data, which would then predict 
the appropriate correlation for any pair of ages. (Cole 1993, pp35) 

I t would be advantageous i f a simple model could be found for the correlation. The 
clinician would be able to convert both weights to Z-scores then obtain the correla
tion between these two weight Z-scores by just inputting the two measurement ages 
into the functional form. The two weight Z-scores can then be contrasted using equa
tion (3.11) and a judgement made as to whether this child is growing 'normally' or 
not. Currently this facility does exist within the Child Growth Foundation (1996b) 
disk: a SDSGAIN function is available for Microsoft Excel users. This uses the func
tional form published by Cole (1995). This function is for use on weights at any 
2 ages between 4 weeks and 2 years, and the later age should be at least 4 weeks 
greater than the initial age. This same function was revised by Cole (1998a) (see 
section 5.6.2) to incorporate birth weight, which was initially excluded because i t 
was not obtained by the research study team. 

5.2 Correlation matrix for infancy weight data 

5.2.1 The correlation matrix 

There are 3415 term infants within the birth cohort (3418 minus duplicate and two 
pre-terms discovered during follow-up study). The routine weights of each child were 
assigned by Dr C M . Wright to target ages of 6 weeks; 3, 6, 9, 12 and 18 months. 
Table 5.1 contains the correlations observed between weights and weight Z-scores 
for 1055 children (503 boys and 552 girls) that had weights at birth and in all 6 
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Table 5.1: Correlation matrix for 1055 individuals with weights 
in 7 age-groupings (above diagonal - correlation between raw weights, 
below diagonal - correlation between weight Z-scores in bold) 

birth 6 wks 3 mths 6 mths 9 mths 12 mths 18 mths 
birth 1.000 0.643 0.596 0.499 0.466 0.464 0.446 
6 wks 0.724 1.000 0.757 0.672 0.594 0.587 0.521 
3 mths 0.605 0.885 1.000 0.854 0.778 0.753 0.638 
6 mths 0.487 0.734 0.863 1.000 0.898 0.861 0.734 
9 mths 0.452 0.644 0.779 0.909 1.000 0.927 0.798 
12 mths 0.439 0.622 0.742 0.865 0.935 1.000 0.858 
18 mths 0.442 0.578 0.672 0.775 0.849 0.898 1.000 

age groupings. As can be seen from table 5.1, in general the correlation between 
the weight Z-scores is higher than the observed correlation between the raw weight 
data. This correlation matrix also indicates that the correlation is higher between 
consecutive weight Z-scores i.e. weight Z-scores at birth and 6 weeks, 6 weeks and 
3 months, 3 months and 6 months etc. The highest correlation is observed between 
weight Z-scores at 9 and 12 months. A slightly lower correlation is observed between 
weight Z-scores at 12 and 18 months because this correlation is over a longer time 
period of 6 months. Surprisingly the correlation between weight Z-scores at birth 
and 18 months is marginally higher than the correlation between weight Z-scores 
at birth and 12 months. The lowest correlations within this matrix tend to be 
between the weight Z-score for birth and later weight Z-scores (i.e. 6 weeks to 18 
months), this is not entirely unexpected as i t is usually recognised that birth weight 
is representative of weight gained in the uterus and therefore is largely dependent 
on the mother (Tanner 1989). 

Wright et al. (1994) presented the pair-wise correlations within table 5.2 (exclud
ing correlation with birth weight). In 1994 there was no UK 1990 growth reference: 
Wright et al. (1994) used the Cambridge growth reference (Whitehead et al. 1989b). 
However the correlations in table 5.2 agree with those published. The correlations 
highlighted in bold within table 5.2 were used to define lower Umits for expected 
weight at 3, 6, 9, 12 and 18 months for boys and girls with weights on the major 
centiles (i.e. 3rd, 10th, 25th, 50th, 75th, 90th and 97th percentiles). 

The correlation matrix in table 5.2 is included here to accompany the matrix 
of scatterplots in figure 5.1. In figure 5.1, within plots of later weight Z-score ver
sus birth weight Z-score, the points are positively correlated but widely dispersed. 
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Within this matrix of scatterplots there are a handful of outlying individuals that 

have large positive or large negative Z-scores. The matrix of scatterplots illustrates 

the general feature that weight Z-scores taken close in time are highly correlated. 

5.2.2 Inverse correlation matrix 

The inverse of the correlation matrix within the lower diagonal of table 5.1 can be 

found in table 5.3. Al l the elements within table 5.3 are non-zero. I f an element 

of the inverse correlation matrix was found to be zero then this would indicate 

that the corresponding variables were conditionally independent given the remaining 

variables (Whittaker 1990). Each diagonal element of the inverse correlation matrix 

is related to the proportion of the variation in the corresponding variable explained 

by regressing on the remaining variables. In fact, each diagonal element of the 

inverse correlation matrix equals 1/(1 - B?) where R is the multiple correlation 

coefficient between that variable and the rest. So for example, the proportion of 

explained variation for the weight Z-score at 18 months given the rest of the weight 

Table 5.2: Infancy: Correlation matrix of weight Z-scores for pair-wise com

plete observations (sample sizes are in parenthesis) 

birth 6 wks 3 mths 6 mths 9 mths 12 mths 18 mths 
birth 1.000 0.708 

(2747) 
0.567 
(2654) 

0.460 
(2579) 

O.4O8 
(2032) 

0.429 
(2107) 

0.432 
(1635) 

6 wks 1.000 0.868 
(2547) 

0.716 
(2476) 

0.604 
(1961) 

0.611 
(2037) 

0.568 
(1551) 

3 mths 1.000 0.869 
(2473) 

0.761 
(1953) 

0.733 
(2029) 

0.672 
(1542) 

6 mths 1.000 0.903 
(1935) 

0.861 
(2033) 

0.773 
(1531) 

9 mths 1.000 0.930 
(1654) 

0.847 
(1326) 

12 mths 1.000 0.900 
(1380) 

18 mths 1.000 
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Z-scores is: 

-R^(Z-score at 18 months; rest of Z-scores) = (5.268 - l)/5.268 = 0.810 

i.e. 81.0%. The right hand column of table 5.3 contains the multiple correlation 
coeflBcient for the Z-score at each of the grouped ages given the rest. Therefore the 
Z-score at 9 months is the most predictable and the Z-score at birth is the least. 
Here we are assuming that we have all the other variables, but in practice would be 
difficult to predict weight Z-score at 3 months from the weight Z-score at 18 months. 

Table 5.4 contains the inverse correlation matrix in table 5.3, scaled so that 
there are units along the diagonal. The off diagonal elements of this scaled inverse 
correlation matrix are the negatives of the partial correlation coefficients between 
the corresponding pair of variables given the remaining variables (Whittaker 1990). 
The notable feature is that all the correlations are near zero, except the leading off-
diagonal where the correlation between consecutive weight Z-scores persists. This 
suggests that the original correlation matrix has a near Markov correlation structure. 

5.2.3 Principal components analysis of the correlation ma
trix 

Principal components analysis is a dimension reduction technique for a large number 
of interdependent variables which tries to retain most of the variation in the original 
data in fewer dimensions. Principal components are uncorrelated linear combina
tions of the original variables. The first few principal components contain most of 
the variation in the original variables and are often useful for revealing the structure 

Table 5.3: Inverse correlation matrix of correlation matrix for infancy 

weight Z-scores with weights in all 7 age groupings 

Z-score birth 6 wks 3 mths 6 mths 9 mths 12 mths 18 mths i?2 

birth 2.170 0.539 
6 wks -1.876 6.369 0.843 
3 mths 0.277 -4.893 8.537 0.883 
6 mths 0.407 -0.258 -3.575 9.088 0.890 
9 mtlis -0.280 1.009 -0.646 -4.821 11.866 0.916 
12 mths 0.214 -0.150 0.146 -1.042 -6.370 11.655 0.914 
18 mths -0.329 -0.086 0.158 0.354 -0.644 -4.352 5.268 0.810 
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Table 5.4: Scaled inverse correlation matrix for weight Z-scores in infancy 

Z-score birth 6 wks 3 mths 6 mths 9 mths 12 mths 18 mths 
birth 1.000 
6 wks -0.505 1.000 
3 mths 0.064 -0.664 1.000 
6 mths 0.092 -0.034 -0.406 1.000 
9 mths -0.055 0.116 -0.064 -0.464 1.000 
12 mths 0.042 -0.017 0.015 -0.101 -0.542 1.000 
18 mths -0.097 -0.015 0.024 0.051 -0.081 -0.555 1.000 

in the data. In this instance the original variables are the weight Z-scores at birth 

and grouped ages: 6 weeks, 3, 6, 9, 12 and 18 months. 

Letting V represent the sample correlation matrix of a data matrix X {p x 1). 
Then V is apxp matrix that is symmetric and non-negative definite. The spectral 
decomposition of V is given by equation (5.1). 

V = U^AU (5.1) 

where C/̂  = {ui, • • • ,Up) and A = diag(Ai, . . . ,Ap). So is a matrix whose 
columns are eigenvectors and A is a diagonal matrix of eigenvalues. 

Assuming Ai > A2 > . . . > Ap then the jih principal component is given by 

equation (5.2). 

Y, = uJX (5.2) 

and Var{Yj) = = 1 , . . . ,p) and Cov{Yj,Yk) = 0,j 7̂  k (uncorrelated). There
fore Yi has the largest variance and Yp has the smallest variance. I f the first two 
principal components explain the 'majority' of the variation then a scatterplot of the 
objects on these two dimensions will give a reasonable representation of the overall 
distribution of the data (Mardia et al. 1979). 

The correlation matrix in table 5.1 (based on 1055 infants) was subjected to 
principal components analysis. A summary of the results can be found in table 5.5 
and a scree plot of the variances of the principal components is produced in figure 5.2. 
The first principal component was found to be an 'average' of all weight Z-scores, 
possibly representing some measure of 'overall size'. The second principal component 
contrasted late weight Z-scores (6 to 18 months) with early weight Z-scores (birth to 
3 months), this is in effect some measure of 'weight gain'. The remaining principal 
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components are less easy to interpret but only make a contribution of 11% to the 
variation explained. In figure 5.3 we plot the second principal component (PC2) 
versus the first principal component (PCI) labelled by case status. Only 63 cases 
had weights in all 7 age groupings, but all of these individuals are clustered in 
the bottom left hand corner of the upper panel in figure 5.3. This is not entirely 
surprising as the thrive index approach used to identify cases contrasts late weight 
Z-scores with an average of up to three weight Z-scores in the first two months. Plots 
of PC2 versus PCI labelled by sex, SES and Ges can be found in the lower panel of 
figure 5.3, upper panel of figure 5.4 and lower panel of figure 5.4, respectively. The 
plot labelled by sex looks reasonably random and there is no evidence of clustering. 
In the plot labelled by level of deprivation, there is a preponderance of deprived 
children with high negative values on PCI but there are some deprived children 
with high positive values on PCI. In the plot labelled by gestational ages, the 
ages were grouped according to whether gestational age was less than 40 weeks, 
40 weeks or greater than 40 weeks. This was done as labelling by each gestational 
age overloaded the scatterplot with too much information. The gestational age was 
categorised in this way because 40 weeks is considered to be the expected gestational 
age and also the mode value for gestation. I f a baby was born before 40 weeks we 
might expect that the infant might not have quite reached their full growth potential 
and babies born post 40 weeks may have had their growth restricted because of 
intrauterine environment (Tanner 1989). However around expected delivery date 
all babies could be subject to intrauterine growth restriction regardless of their 
gestational age. There are a preponderance of infants born at a gestational age of 
less than 40 weeks on the left and upper parts of the scatter, indicating possibly 
that growth may have been slowed by early than expected delivery but there was 
some degree of catch-up after delivery. 

5.3 Covariance matrices with pattern 

5.3.1 Proposed pattern for correlation matrix 

Recall that, in section 5.2.2 we considered the scaled inverse correlation matrix and 

concluded from tables 5.3 and 5.4, that the original correlation matrix is a near 

Markov correlation matrix. So if we assume for the moment that the weight Z-

scores are equally spaced. Then a correlation matrix with pattern (equation (5.3)) 

could be appropriate, as correlations for two weight Z-scores close in time are higher 

than those further apart in time. 
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Table 5.5: Results from principal component analysis of correlation matrix 
for weight Z-scores in infancy at birth and six grouped ages (prop. var. and 
cum. prop, denote 'Proportion of Variance' and 'Cumulative Proportion' 
respectively) 

Comp.l Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 
Z(birth) 0.285 -0.667 0.607 0.299 0.108 -0.061 0.036 
Z(6 wks) 0.367 -0.446 -0.321 -0.435 -0.471 0.383 -0.068 
Z(3 mths) 0.397 -0.189 -0.474 -0.106 0.379 -0.654 -0.008 
Z(6 mths) 0.407 0.139 -0.283 0.441 0.390 0.564 0.266 
Z(9 mths) 0.403 0.291 0.030 0.384 -0.315 -0.098 -0.704 
Z(12 mths) 0.398 0.333 0.184 0.026 -0.469 -0.272 0.635 
Z(18 mths) 0.376 0.325 0.434 -0.606 0.390 0.145 -0.157 
SD's 2.304 0.960 0.623 0.418 0.294 0.263 0.227 
prop. var. 0.758 0.132 0.056 0.025 0.012 0.010 0.007 
cum. prop. 0.758 0.890 0.945 0.970 0.983 0.993 1.000 
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This form of covariance matrix plays an important role in stochastic processes and 
time-series analysis (Morrison 1976). The partial correlation of the [i - l)st and 
[i -\- l)st variates with the zth held constant is 

p' 
Pi-l,i+l,i 

PP 
I-P' 

z = 2, . . . ,6 

0 

In the time series context this implies that a variate Xi is dependent on its prede

cessors with smaller subscripts only through its immediate neighbour Fixing 

the value of that random variable leaves Xi and Xi-2 uncorrelated. 
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5.3.2 Maximum likelihood approach to estimation of p from 
the correlation matrix 

If the Newcastle correlation matrix took on the form given by equation (5.3), then 
we would only need to have an estimate of p in order to ascertain the correlation 
structure. The approach used below is to assume that the weight Z-scores are a 
random sample from a multivariate Normal distribution with mean /x and variance 
<7 .̂ We will also assume that the covariance matrix E = a'^R. Then starting with 
the log-likelihood for the multivariate normal distribution, we will maximise this 
log-likelihood and arrive at maximum likelihood estimates of p and a .̂ 

I f we now consider the maximum likelihood estimation of a mean vector p, and 

the variance matrix E in a multivariate normal population. Given a random sample 

xi,.. .,Xn from Np{p, E), then the log-likelihood for p and E is: 

L{p, E) log27r - ^ log |E| - ~ Y.{x, - p f ^ ' \ x , - p) (5.4) 
i=l 

It can be shown that the maximum likelihood estimate of p is x, p can then be 

substituted in to the log-likelihood and after some algebra equation (5.4) can be 

written as: 

n L ( A , E ) = C - F - log E-^5* - trace(E-i5*) 

where 

C n p\og2Tr + log 15*1 

(5.5) 

and S* is the modified sample variance matrix S* = ^ S . As n is large, 

and hence 5* ~ S. 

n-l 
n 

If we now consider the general case of a A; x A; pattern covariance matrix: 

S a 

/ I P P' 
1 P 

V 

(5.6) 

Then the inverse of this covariance matrix is: 

/ 1 -P 
' -P 1 + 

(1 - p2)a2 

0 
-p 

-p 1 + p' -p 
-p 1 / 

(5.7) 
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Therefore: 

and: 

log( |E-^5|) = constant - {k - l ) l o g ( l - p^) - kloga^ (5.9) 

Suppose we write the general k x k matrix 5* as: 

5* 

^ 'S'li 5i2 . . . Sik \ 
'S'21 • • • 

V Ski • • • ) 

(5.10) 

then: 

t race(E-5*) = trace(g) + --2pEt^ ( 5 ^ ) 

(1 - p2)(72 

So substituting results from equations (5.9) and (5.11) into equation (5.4), we 

then have to maximise the following function: 

L{p,cy') = \ constant - kioga"^ - {k - I) log(l - p̂ ) 

trace(5) + S^^ -2pEl"i'%+i 
(1 - p 2 ) a 2 

So differentiating (5.12) with respect to gives: 

(5.12) 

a L _ trace(S) + p̂  YHZI SU - ^p^-J gj.i+i J3̂  

Therefore setting (5.13) to be zero gives the following maximum likelihood estimate 
of 

trace(5) + p̂  E S S^^ - 2 P E S % ± I 
a 2 

(1 - P')k 

Equation (5.12) is now differentiated with respect to p to give: 

(5.14) 

dL 2p{k - 1) (2pEt"2 S^^ - 2 S^,^+l){l ' p'W 
dp - ( i - p 2 ) {i-P^no^Y 

_ 2p(7^(trace(5) + p^ E S ~ Y^i=\ Si,i^\) ,^ y-s 
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If (5.15) is now set to zero and substitute cr̂  defined in equation (5.14) then after 

some algebra get: 

H ^ ' l ) J : S ^ ^ + p H - , - A J : S^,^.. + p ( ~ ^race(5) - X : 5' 
1=2 1=1 1=2 

k-l 

- F ^ 5 , , + i = 0 (5.16) 
1=1 

Equation (5.16) can then be solved for p to obtain the maximum likelihood 

estimate of p . 

5.3.3 Determining p from the Newcastle covariance matrix 

Table 5.6 contains the covariance matrix for the Newcastle weight Z-scores; this 
is based on 1055 individuals with weights at birth and in 6 age groupings defined 
by Dr C M . Wright. I f the revised UK 1990 reference was 'perfectly matched' to 
the Newcastle infancy data then the correlation and covariance matrix would be 
identical. Now assuming for the moment that the weight data is equally spaced, 
then using equation (5.16) we arrive at the cubic on the left in figure 5.5. The cubic 
only crosses the zero line once in the range -1 to 1, leading to value of p « 0.87 and 
cr̂  ^ 1.07. The matrix derived from this value of p and CT^ is given in table 5.7. 

The value of p derived above assumes that the data is equally spaced when in 
fact the difference between the grouped ages varies between 6 weeks and 6 months. 
Another alternative which would give approximately equally spaced weight Z-scores, 
is to take age groupings, created by Dr C M . Wright, from birth to 1 year in steps 

Table 5.6: Covariance matrix for weight Z-scores at birth and six grouped 

ages (1055 infants) 

Z-score birth 6 wks 3 mths 6 mths 9 mths 12 mths 18 mths 
birth 1.058 
6 wks 0.718 0.930 
3 mths 0.618 0.847 0.987 
6 mths 0.524 0.741 0.897 1.094 
9 mths 0.506 0.676 0.842 1.035 1.185 
12 mths 0.484 0.642 0.789 0.970 1.090 1.148 
18 mths 0.493 0.605 0.724 0.880 1.003 1.043 1.177 
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Table 5.7: Estimate of covariance matrix, assuming weight Z-score data is 
equally spaced with p = 0.87 and = 1.07, for weight Z-scores at birth and 
six grouped ages (1055 infants) 

Z-score birth 6 wks 3 mths 6 mths 9 mths 12 mths 18 mths 
birth 1.070 
6 wks 0.931 1.070 
3 mths 0.810 0.931 1.070 
6 mths 0.705 0.810 0.931 1.070 
9 mths 0.613 0.705 0.810 0.931 1.070 
12 mths 0.533 0.613 0.705 0.810 0.931 1.070 
18 mths 0.464 0.533 0.613 0.705 0.810 0.931 1.070 

of 3 months. Table 5.8 contains the covariance matrix for 1526 individuals with 
weight Z-scores in the 5 age groupings. The plot on the right in figure 5.5 contains 
the cubic derived from this covariance matrix. Again the cubic only crosses the zero 
line once in the range -1 to 1, leading to value oi p ^ 0.83 and ^ 1.12. 

In order to compare the estimated covariance matrix with the sample covariance 

matrix, the null hypothesis, E = EQ was considered. In this instance EQ represents 

the sample covariance matrix and E = E , where E is the estimated covariance 

matrix for maximum likelihood estimates of p and a^. 

Consider a single random sample of n observation vectors from the p-dimensional 
multinormal population with mean vector p and positive definite covariance matrix 
E . Then the test statistic is given by equation (5.17) (Morrison 1976, pp248). 

Table 5.8: Covariance matrix for weight Z-scores at birth and grouped ages 

3, 6, 9 and 12 months (1526 infants) 

Z-score birth 3 mths 6 mths 9 mths 12 mths 
birth 1.051 
3 mths 0.601 1.021 
6 mths 0.514 0.927 1.123 
9 mths 0.487 0.856 1.055 1.200 
12 mths 0.470 0.799 0.982 1.096 1.152 
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Table 5.9: Estimate of covariance matrix, assuming weight Z-score data is 
equally spaced with p = 0.83 and = 1.12, for weight Z-scores at birth and 
grouped ages 3, 6, 9 and 12 months (1526 infants) 

Z-score birth 3 mths 6 mths 9 mths 12 mths 
birth 1.120 
3 mths 0.930 1.120 
6 mths 0.772 0.930 1.120 
9 mths 0.640 0.772 0.930 1.120 
12 mths 0.532 0.640 0.772 0.930 1.120 

L = u{log\T,Q\ - log\T,\ -F trace(SEo ) - p) (5.17) 

where u is the degrees of freedom parameter for E. When n is large then L is 
distributed as a chi-squared variate with p{p -\- l ) / 2 degrees of freedom if the null 
hypothesis is true. 

When comparing the estimated covariance matrix in table 5.7 with sample co-

variance matrix in table 5.6: 

Eol = 1.74 X IQ-

u = 1054 

E| =3.31 X 10-^ 

p = 7 L 

tr(EEo ^) = 8.305 

1054 X 0.663 = 698.8 

L is much greater than 41.34, the 5% cut-off point for chi-square distribution with 28 
degrees of freedom, leading us to reject the null hypothesis that the two covariance 
matrices are equal. 

When comparing the estimated covariance matrix in table 5.9 with sample co-

variance matrix in table 5.8: 

Eol = 6.2 X 10"^ 

u = 1525 

|E| = 1.65 X 10" 

p = 5 

tr(EEo-^) = 7.112 

L = 1525 X 1.133 = 1728.1 

L is much greater than 25.00, the 5% cut-off point for chi-square distribution with 15 

degrees of freedom, leading us to reject the null hypothesis that the two covariance 

matrices are equal. 

In both instances the agreement between the sample covariance matrix and the 
estimated covariance matrix is poor. I t would seem that the fit of the suggested 
pattern matrix, given by equation (5.6), is not that good. 
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5.4 Exploratory regression modelling of the New
castle correlations 

5.4.1 Proposed functional form 

As a result of work discussed in the last section it is plausible that the correlation 

may be a function of the form: 

rut, = P^^'"'^^ (5.18) 

where r^tj is the actual correlation in row i and column j of matrix given in table 
5.1, p is an unknown constant and f{ti, t j ) is a function of ti and tj where < tj. 

If we log both sides of equation (5.18) then: 

log{rut,) = f{t^,t,)\og{p) (5.19) 

One possibility would have been to fit an appropriate analytic model f{ti,tj) 
and use a similar approach to the previous section. However this is not feasible 
in practice, because using the likelihood approach would be labour intensive and 
there is no satisfactory way of comparing the estimated covariance matrix with the 
sample covariance matrix. An additional consideration is that the weight data are 
not in fact all measured at the same time. A reasonable alternative is to model 
the correlation by regressing \og{rt^tj) on some function of ti and tj. The fit of any 
derived model can then be assessed using standard regression techniques. At this 
stage it should be noted, that Cole (1995) and Cole (1998a) do not propose this 
form for the correlation structure. 

5.4.2 Properties of the correlation coefficient 

The greater the number of observations, the better the sample correlation approxi
mates the true correlation. In the normal case the variance of the sample correlation 
coefficient is given by equation (5.20) (Kendall and Stuart 1979). However, equa
tion (5.20) is of little value in practice as the distribution of r tends to normality so 
slowly that it is unwise to use i t for n < 500 (Kendall and Stuart 1979). 

Var{r) = (5.20) 
n 
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Fisher's transformation (1921) 

= J l o g ^ = tanh-i(r) (5.21) 
2 1 — r 

Fisher's transformation (equation (5.21)) of r tends to normality very much faster 

than r and when n > 50 has approximate variance: 

Var(zr) ^ (5.22) 
n — 3 

which is independent of p. However, higher order terms of the Var{zr) involve p. 

If n > 50, then •^J~^i is adequate to estimate the standard deviation of Zr 

(Kendall and Stuart 1979). Therefore, an approximate confidence interval (CI) for 

a correlation (Sheskin 1997) is: 

C / . , , _ „ , = . . ± . . y ^ (5.23) 

where Zr is the Fisher transformation of r and z^^ is the Normal equivalent deviate for 

tail area | . For fixed n the width of the CI increases with decreasing r. For fixed r 

the width of the CI decreases with increasing n. Therefore, provided n is large or the 

correlation is high, then we have reasonably narrow confidence intervals. However, 

if the sample correlation coefficient is obtained from a sample with less than about 

50 pairs of observations, then use of equation (5.23) to obtain the confidence interval 

for the correlation is unsafe. An alternative would be to use (5.24) to construct a 

confidence interval (Sheskin 1997). 

t = ' ~ ^ ^ , d f = n-2, (5.24) 
V l — 

so that a confidence interval for a correlation is given by: 

C/ . = r ± t „ _ 2 , i - t ^ ^ (5.25) 

Using small samples (n < 50) results in very large confidence intervals for the calcu

lated correlation. Furthermore the upper and lower bounds of confidence intervals 

given by equations (5.23) and (5.25) may be outside the (-1,1) region. 

5.4.3 The general linear regression model and weighted least 
squares 

As already discussed in section 5.4.1, we suspect that log correlation is in some 

way related to the measurement ages, tl and t2. Linear regression is a means of 
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arriving at some functional form for the correlations. In using linear regression, 
it is possible to explore various functional forms of tl and t2 and then assess the 
goodness of fit of the proposed model. However, as already discussed in section 5.4.2 
we have wider confidence intervals around low correlation coefficients or correlation 
coefficients derived from small samples. In effect, the variance of the correlations 
are not all equal. In this situation, i t is appropriate to use weighted least squares. 

The general linear regression model 

Suppose the model under consideration can be written in the form given by: 

y = Xp-\-e (5.26) 

where y is an ( n x 1) vector of observations, X is an ( n x p) matrix of known form, 
/3 is a (p X 1) vector of unknown parameters and e is an (n x 1) vector of errors. The 
E(e) = 0 and Var{e) = la^, so the elements of e are uncorrelated. 

The error sum of squares is given by equation (5.27) and the least squares esti

mate of P is the value b, which when substituted in (5.27) minimises e'e. 

e'e = {y- Xp)'{y - Xp) = Y'Y - 2P'X'Y - f 0'X'Xp (5.27) 

The value of b can be determined by differentiating equation (5.27) with respect 
to /5, substituting b for j3 and setting the resulting matrix equation to zero. This leads 
to the normal equations given by (5.28). If the p normal equations are independent, 
X'X is non-singular and its inverse exists then the solution to the normal equations 
is given by equation (5.29). 

{X'X)b = X'Y (5.28) 

b = {X'Xy^X'Y (5.29) 

The solution b has the following properties (Draper and Smith 1998): 

1. Z> is an estimate of /3 that minimises the error sum of squares irrespective 

of any distribution properties of the errors. 

2. The elements of b are linear functions of the observations F i , . . . ,Yn and 
provide unbiased estimates of the elements of /? which have minimum 
variance irrespective of any distribution properties of the errors. 



5 Correlation structure of Newcastle infancy weight Z-scores 190 

3. If the errors are independent and ~ ^^(0 , CT^), then b is the maximum 
likelihood estimate of (3. 

The assumption that the errors are normally distributed is not needed to estimate 

b. However, it is required in order to make tests that depend on assumption of 

normality, such as t and F-test and in the obtaining of confidence intervals based 

on the t and F distributions. 

Weighted least squares 

If i t happens that the variances of the observations are not all equal or the obser

vations are correlated, then we might assume E{e) = 0 and the Var{e) = Va^ for 

some appropriate V, and so assume e ~ N{^,Vo^). In this instance the ordinary 

least squares estimate (equation (5 .29) ) does not apply and instead weighted or gen

eralised least squares can be used to obtain estimates. Draper and Smith (1998) 

uses the terms: 

'weighted least squares' to describe the situation when F is a diagonal 

matrix with unequal diagonal elements. 

• 'generalized least squares' to describe the situation when the off di

agonal elements of V are non-zero, this approach is used when the 

observations themselves are correlated. 

The basic idea behind weighted least squares is to transform the observations 
Y to other variables Z which do appear to satisfy the usual tentative assumptions 
(Draper and Smith 1998) . I t is often possible to find a unique non-singular sym
metric matrix P such that: 

P'p = pp = p'^ = v 

If we now write / = P-^e, then E { f ) = 0 and / ~ A^(0,/CT2). Equation (5.26) is 

premultiplied by to arrive at the new model: 

P~^Y = p-^Xf5 + p-h (5.30) 

or 

Z = QI3 + ! (5.30) 
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The residual sum of squares is: 

/'/ = e'V-h = {Y- XP)'V-'{Y - Xp) 

and 

b= {X'V-^X)-^XV~^Y 

(5.31) 

(5.32) 

If weighted least squares were called for but ordinary least squares was used 

instead, then the estimates would be still unbiased but would not have minimum 

variance (Draper and Smith 1998). 

We are proposing to model the log correlation, where the variances of each log 
correlation are not equal. Therefore we need to use weighted least squares in order 
to fit the model. I f we can approximate the yar(log(r)) we will be able to get a 
handle on the form of the weight matrix V. An alternative approach would be to 
use ordinary least squares and use the resulting residual plots to arrive at some 
approximation for V (Draper and Smith 1998). 

Consider a variable X with mean and variance u^. If we wish to obtain the 

expectation and variance of some function of X , say Y — f { X ) , then one approach 

is to use the method called propagation of error or 6 method (Rice 1995). If we use 

a Taylor series expansion of / about //, then to first order: 

Y = f { X ) ̂  fiix) + (X - //)/ '(//) (5.33) 

So E{Y) ^ /(|u) and Var{Y) = a^[/ '(^)]^. The adequacy of the above approxima

tion depends on how non-linear / is in a neighbourhood of fx and on the size of cr 

(Rice 1995). 

In this instance f { X ) is log(r), so equation (5.34) provides an approximation of 
the variance of log correlation. In order to estimate yar(log(r)) we also need to 
estimate u^, this could be approximated by using equation (5.20). 

2 

Var{\og{r)) ^ ^ (5.34) 

Logically it seems reasonable in the first instance to choose V to be: 

/ M ^ 0 0 \ 

0 . . . 0 0 n2rl 

\ 0 0 
0 

(5.35) 

as we have shown that approximately yar(log(r)) 
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5.4.4 Summary plots of Newcastle correlation matrix 

Table 5.10 contains a data frame of the 21 correlations derived from 1055 individuals 
with weight Z-scores at birth and at the six grouped ages (weights allocated to target 
ages by Dr C. M. Wright). The grouped ages are now in weeks and assume that 
Time2 {t2) is always greater than Timel (tl). In figure 5.6 we produce a three 
dimensional representation of the correlation matrix viewed from 4 perspectives. 

A two dimensional representation of the correlation matrix can be found in figure 
5.7; here the red line corresponds to correlations with birth weight Z-score, yellow 
line to correlations with weight Z-score at 6 weeks, green line to correlations with 
weight Z-score at 13 weeks, cyan line to correlations with weight Z-score at 26 weeks, 
indigo line to correlations with weight Z-score at 39 weeks and magenta point to cor
relation between weight Z-scores at 52 and 78 weeks. Weight Z-scores close in time 
are highly correlated but as time elapsed between weight measurement increases the 
correlation between weight Z-scores decreases. The correlation between birth weight 
Z-score and weight Z-score at 1 year and at 18 months are of similar magnitude in
dicating that the correlation with birth weight Z-score may have reached a plateau. 
However, the weight Z-scores in the 18 month grouping cover a wide age range. 

Table 5.10: Data frame used to model correlations derived from 1055 indi

viduals 

r{tl,t2) Timel{n) Time2{t2) r{tl,t2) Timel{tl) Time2{t2) 
0.7236 0 6 0.8635 13 26 
0.6048 0 13 0.7789 13 39 
0.4868 0 26 0.7416 13 52 
0.4525 0 39 0.6722 13 78 
0.4391 0 52 0.9090 26 39 
0.4415 0 78 0.8654 26 52 
0.8846 6 13 0.7754 26 78 
0.7342 6 26 0.9350 39 52 
0.6436 6 39 0.8491 39 78 
0.6217 6 52 0.8977 52 78 
0.5780 6 78 



5 Correlation structure of Newcastle infancy weight Z-scores 193 

5.4.5 Identification of potential functions of the initial (tl) 
and later {t2) time points 

Log correlation is likely to be modelled by some function of tl, t2 and t2 — tl, 
i.e. it depends on the age at measurement and time elapsed between measurement 
occasions. A standard approach used in regression to select suitable functions of 
tl, t2 and t2 - tl, is to produce scatterplots of log correlation versus functions of 
tl, t2 and t2 — tl. However, in this instance these plots are not very informative. 
The purpose of these scatterplots is to look for linear associations between the 
response and functions of the variables of interest. An alternative was to look at 
the linear regression of \og{r{tl,t2)) on a function of tl and then to compare the 
multiple correlation coefficients for the various transformations. A similar process 
would then be repeated for log correlation on functions of t2 and log correlation on 
functions of t2 — tl. Instead of examining the multiple correlation coefficient, other 
alternatives would have been to compare the residual mean squares (s^) or Mallow's 
Cp (Draper and Smith 1998). 

In transforming tl and t2 we are assuming that the predictor variables are not 
subject to some error. This is not strictly true as the correlations are derived from 
grouped ages. The usual transformations considered are square roots, squares, logs 
and inverses. In addition the negative exponential transformation was considered 
as the decrease in correlation with increasing time elapsed is similar to an exponen
tial decay. For convenience unity was arbitrarily added to tl and t2 to avoid the 
complications of logging zero or inverting zero (the effect of varying this constant 
is explored further in section 5.4.7). It is important that the correlation between 
birth weight Z-score and later weight Z-scores is modelled because preliminary plots 
in Chapter 4 indicated that there was a downward trend from birth for infants that 
experienced growth faltering. 

In table 5.11 we present the results of regressing log correlation on single pre
dictors. The single predictors were various functions of tl, t2 and t2 - tl. For 
comparative purposes the results of regressing log correlation on functions of the 
average of the time points is included because this term was within the model for 
correlation proposed by Cole (1995). It appears that any function of tl is likely to 
be a good predictor, with log(tl -t-1) being the best. 

Taking log(!!l -I- 1) as the best single predictor, the effect of adding other terms 
to this model was explored. log{r{tl,t2)) was regressed on log{tl + 1) and other 
functions of t2, t2 - tl and {tl +12)/2; see table 5.12. In table 5.12, AIC refers to 
the Akaike Information Criterion and is defined as minus twice log likelihood plus 2p 
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Table 5.11: Multiple correlation coefficient (i?^) for the linear regression of 

log{r{tl,t2)) on single predictors. The single predictors were functions of tl, 
t2, t2~tl and {tl + t2)/2 (where / ( t l ) refers to functions of n , f{t2) denotes 

functions of t2, f{t2 - tl) denotes functions of t2 - tl and f{{tl + t2)/2) 
denotes functions of {tl + t2)/2) 

fitl) f{t2) i?2 

tl 0.517 t2 0.002 
login +1) 0.701 \og{t2 + 1) 0.004 

0.674 v/t2 0.003 
i/{ti +1) 0.619 ll{t2 + l) 0.005 
exp(—fl) 0.572 exp(-t2) 0.002 
f{t2 - tl) f m + t2)l2) 
t2 - tl 0.324 {tl+t2)l2 0.083 
\og[t2 - tl) 0.279 log[(il + t2)l2] 0.028 
yjt2 - tl 0.313 y/{tl+t2)/2 0.056 
l/{t2-tl) 0.170 2/{tl+t2) 0.001 
exp{tl -12) 0.015 exp[-(i l + i2)/2] 0.002 

where p is the rank of the model (the number of effective parameters). The model 

which has the lowest AIC value and largest F-value in table 5.12 provides the best 

fit. 

The two-variable model, equation (5.36), provides the 'best' fit. At this stage, 

for simplicity and convenience, we will now call models of the form given by (5.36), 

the 'Argyle model'. 

Argyle model 

log(r( t l , t2)) = A \og{tl + 1)+B \og{t2 + l) + C-\-e (5.36) 

A summary of the fit of the Argyle model using ordinary least squares can be 

found in the upper table of table 5.13, this model explains 98% of the variation 

within the data. The coefficients within this model are of similar magnitude and 

the intercept term in equation (5.36) is not significantly different from zero. So in 

effect, this model involves a difference of time on a log scale. 

The correlations in table 5.10 are all derived from the same number of individuals 
but the correlations between weight Z-scores are of differing magnitude. Therefore 
i t is appropriate to use weighted least squares to fit equation (5.36) to the Newcastle 
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Table 5.12: Impact of adding various functions of t2, t2 - tl and {tl -\-12)/2 
to linear model \og{r{tl,t2)) = alog(tl + 1) + e (AIC refers to the Akaike 
Information Criterion) 

variable added 
none 
log(i2 + 1) 
\og{t2 - tl) 
log[(il + t2)l2] 
1/(̂ 2 + 1) 
ll{t2 - tl) 
2/ ( i l -f-12) 
y(*2) 
s/t2 - tl 
^{tl + t2)l2 
exp(-i2) 
exp(n - 1 2 ) 
exp[-(a + i2)/2)] 

Sum of Sq RSS AIC 

0.350 
0.341 
0.336 
0.326 
0.340 
0.278 
0.317 
0.314 
0.286 
0.135 
0.198 
0.141 

^:375 
0.024 
0.034 
0.039 
0.048 
0.035 
0.097 
0.057 
0.061 
0.089 
0.239 
0.176 
0.234 

-80.550 
-136.063 
-128.941 
-126.056 
-121.550 
-128.576 
-106.999 
-117.994 
-116.820 
-108.835 
-87.963 
-94.364 
-88.421 

260.41 
180.33 
154.88 
121.49 
176.92 
51.763 
99.764 
93.356 
58.135 
10.181 
20.222 
10.802 

correlations. So a V matrix of the following form may be appropriate: 

V = 

0 

V 

0 

0 

0 

(5.37) 

as discussed in section 5.4.3 the ^ar(log(r)) oc '^'2'' ' '• equation (5.37), r i cor
responds to the correlation between weight Z-scores at birth and 6 weeks, T2 to 
the correlation between weight Z-scores at birth and 13 weeks, . . . and r2 i is the 
correlation between weight Z-scores at 52 and 78 weeks. Therefore: 

P - 1 = 

0 

0 0 

0 
0 

0 

\ 

(5.38) 

The weights in the call to Im in R correspond to the diagonal elements of P ^ 
and these vary between 0.54 (for correlation between weight Z-scores at birth and 52 
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weeks) and 7.4380 (for correlation between weight Z-scores at 39 and 52 weeks). The 
resulting fit from using weighted least squares can be found in the lower table within 
table 5.13: there is a slight improvement in the multiple correlation coefficient, the 
coefficients have marginally increased and the intercept term is now just significantly 
different from zero. 

In figure 5.8 we plot the standardised residuals versus fitted values for the mod

els given in table 5.13. When the model is fitted by weighted least squares, the 

standardised residuals were obtained by multiplying the residuals by and then 

dividing by the standard deviation (SD=0.0404) of the weighted least squares resid

uals. Using weighted least squares has improved the residual plot, although there is 

still a slight excess of negative residuals. 

5.4.6 Other model that provides a reasonable fit 

In table 5.12 the regression of log correlation on the \og{tl +1) and \og{t2 — tl) also 

provided a reasonable fit. Table 5.14 details the fit of this model, the upper table is 

the result from using ordinary least squares and the lower table from using weighted 

least squares. Surprisingly using weighted least squares leads to a reduction in the 

multiple correlation coefficient but this is because in using weighted least squares 

Table 5.13: Original Newcastle correlations [N=21] (based on 1055 

individuals with weight Z-scores in 7 age groupings): Regression of log trans

formation of correlation coefficients on functions of initial time ( t l -I-1) and 

later time {t2 -\-1) 

unweighted log{r{tl,t2)) = alogjil + 1) + blog{t2 -H) + c-h e 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.076429 0.047922 1395 0.128 
log{tl + 1) 0.198595 0.006588 30.144 < 2 x lO-^^ 
log(i2-M) -0.226499 0.014036 -16.137 3.77 x10-^2 
i?^=0.9807, i?^(adj)=0.9785, residual SE=0.03669 on 18 df 

weighted \ogir{tl,t2)) ^a\ogitl + l) + blog{t2 + l) + c + e 
Value Std. Error t-value Pr(> |t|) 

(Intercept) 0.095707 0.034143 2:803 0.0118 
\og{tl + 1) 0.205850 0.006089 33.806 < 2 x 10^'^^ 
\og{t2 + l) -0.235010 0.011308 -20.784 4.95 xlO-^^ 
i?2=0.9845, i?''^(adj)=0.9828, residual SE=0.036 on 18 df 
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we now have a strong linear trend and some indication of heteroscedasticity in the 
residual plot. This leads us to conclude that this model doesn't provide as good a 
fit as the Argyle model, equation (5.36). 

5.4.7 Effect of varying the constant added to time points 

In the above regressions of log correlation on initial and later time, one was added 
arbitrarily to the time points to avoid the complication of logging zero. I t might 
seem reasonable to add 39 weeks (length of gestation is approximately 9 months) 
to both time points, so that age at conception is zero. In table 5.15 we present a 
summary of the fit of the Argyle model when 39 weeks is added to the time points. 
The addition of 39 weeks to the time point results in a reduction in the multiple 
correlation coefficient and a change in magnitude of the coefficients and intercept 
term. 

Argyle model with constant c added to measurement age 

log(r(n, t2)) = A \og{tl -\-c) + B \og{t2 + c) + C e (5.39) 

Table 5.14: Original Newcastle correlations [N=21] (based on 1055 
individuals with weight Z-scores in 7 age groupings): Regression of log trans
formation of correlation coefficients on functions of initial time ( i l -I-1) and 
time elapsed {t2 — tl) 

unweighted log(r(a,^2)) = alog{tl + I) + b\og{t2 -tl) + c-\-€ 
'^SeS. VaEe Std. Error t-value Pr(> |^|) 
(Intercept) -0.07699 0.04669 T649 0 : i lT 
log(il + l ) 0.14692 0.00685 21.448 2.86 xlQ-^'' 
log{t2-tl) -0.17791 0.01325 -13.429 8.09 xlQ-^^ 
i?^=0.9728, i?^(adj)=0.9698, residual SE=0.04346 on 18 df 

weighted log{r{tl,t2)) = a\og{tl -\-1) + blog{t2 - tl) + c +e 
Value Std. Error t-value Pr(> |^|) 

(Intercept) -0.096201 0.044726 XIST 00453 
log(n + l ) 0.131161 0.007746 16.932 1.67 x10-^2 
log{t2-tl) -0.160250 0.013428 -11.934 5.51 xlO-i° 
ii!'̂ =0.9566, i?^(adj)=0.9518, residual SE=0.0603 on 18 df 
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Table 5.15: Original Newcastle correlations [N=21] (based on 1055 
individuals with weight Z-scores in 7 age groupings): Regression of log trans
formation of correlation coefficients on functions of initial time {tl -\- 39) and 
later time {t2 + 39) 

unweighted log{r{tl,t2)) = alog{tl -\- 39) + b\og{t2 39) -h c -h e 
Value Std. Error t-value Pr(> \t\) 

(Intercept) -2.14529 0.42308 5̂̂ 071 7.97 xlO"^ 
log(il + 39) 0.99505 0.10719 9.283 2.77 xlO"* 
log(t2-^39) -0.48400 0.09517 -5.086 7.71 xlQ-^ 
i?^=0.8277, i?'^(adj)=0.8086, residual SE=0.1095 on 18 df 

weighted log{r{tl,t2)) ^ alog{tl + 39) + b\og{t2-\-39) + c +e 
Value Std. Error t-value Pr(> \t\) 

(Intercept) -1.29086 0.30573 4̂:222 0.000512 
log(il + 39) 0.82671 0.09096 9.089 3.81 xlO-« 
log(t2 + 39) -0.52093 0.08789 -5.927 1.31 xlO-^ 
i?^=0.8213, i?^(adj)=0.8014, residual SE=0.1224 on 18 df 

In order to explore how changing the constant (c) affected the fit of model given 
by equation (5.39), the value of c was allowed to vary between 0.5 and 10 (in steps 
of 0.5). The resulting deviance, which is proportional to the residual sum of squares, 
and coefficients were plotted against the constant term. The best fit is obtained if the 
constant added is around 1.5 weeks; see figure 5.10. As the constant added increases 
beyond 2 weeks, the deviance and the coefficient of log(tl + c) increase, whereas the 
intercept and coefficient of log(t2 + c) decrease. This process was repeated by adding 
a constant between 1 and 2.5 (in steps of 0.1) in order to locate the constant that 
provided the optimum fit. It would appear that the addition of about 1.6 weeks is 
optimum; see figure 5.10. We summarise the fit of the Argyle model with constant 
1.6 weeks in table 5.16. The effect of changing the constant from 1 to 1.6, leads to 
a decrease in the residual standard error and an increase in the magnitude of the 
coefficients. 



5 Correlation structure of Newcastle infancy weight Z-scores 199 

Table 5.16: Original Nevircastle correlations [N=21] (based on 1055 

individuals with weight Z-scores in 7 age groupings): Regression of log trans

formation of correlation coefficients on functions of initial time {tl + 1.6) and 

later time {t2 -I-1.6) using weighted least squares 

weighted log{r{tl, t2)) = a \og{tl + 1.6) + 6 \og{t2 + 1.6) + c + e 
Value Std. Error t-value Pr(> t\) 

(Intercept) 0.056211 0.028084 2.002 0.0606 
\og{tl + 1.6) 0.233038 0.005569 41.846 < 2 X 10-^^ 
\og{t2 -f 1.6) 
r>2 n nonn 7 

-0.248243 
y j / ^ j n _ A no 

0.009485 -26.171 
JT?_n noni T 

8.88 xlO-^*^ 
1Q Af 

5.5 Development of model for correlation struc
ture on full Newcastle infancy data frame 

5.5.1 The individuals with measurements in all 7 age group

ings 

In section 5.4, the correlations modelled were based on 1055 children, just less than 

a third of the birth cohort. This raises the possibility that these children may not be 

representative. Table 5.17 summarises the level of deprivation of the 1055 children 

(503 boys, 552 girls) that contribute to the correlation matrix and of the remaining 

2360 children (1208 boys, 1152 girls) of the birth cohort. The socio-economic class 

distribution for these two populations are significantly different (chi-square test: 

X^=9.2085, df=2, p=0.010), because there is a large deficit in deprived children 

within the group of 1055 children with weights in all 7 age groupings and an excess 

of deprived children in the remaining 2360 children. The sex distribution within 

the two populations is not significantly different (chi-square test: A''2=3.4513, d f = l , 

p=0.063). 

It may well be that children with weights in all seven age groupings are lighter. 

Figure 5.11 contains variable width notch box plots for the 1055 individuals with 

weights in all 7 age groupings and the remaining 2360 infants from the whole birth 

cohort. There appears to be a slight tendency for the median weight Z-score for 

individuals with weights in all 7 age groupings to be slightly lower, but this only 

reaches statistical significance at the grouped ages of 3 and 6 months. Results of 
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testing that that the mean weight Z-score in each age group is the same for both 
groups can be found in table 5.18. With the exception of birth and 18 months, 
the children that contribute to the correlation matrix are significantly lighter than 
the rest of the birth cohort. However, the scatterplot in figure 5.12 indicates that 
the case children within the correlation matrix may be unduly influencing the mean 
Z-score in age groups after birth. 

The correlations in table 5.10 were obtained using weight Z-score data grouped 
into six age groupings, these being 6 weeks, 3, 6, 9, 12 and 18 months. When data 
are grouped, information on individual values is lost. Table 5.19 summarises the 
age range these age groupings represent for the 1055 individuals that contribute 
to the correlation matrix. The maximum range is 10.5 months for the 18 month 
grouping and within the first year there is an age range of 2.5 to 3 months for each 
age-grouping. 

Healy (1962) discusses the effect of age grouping in the construction of height 

Table 5.17: Level of deprivation for individuals that contribute to the cor

relation matrix and rest of birth cohort (where 1, 2 and 3 denote affluent, 

intermediate and deprived, respectively) 

1 2 3 
7 weights 127 (12%) 749 (71%) 179 (17%) 
Rest 252 (11%) 1604 (68%) 504 (21%) 

Table 5.18: Results of test that mean weight Z-score of two groups (1055 chil
dren with 7 weights, remaining 2360 children) is same in each age-grouping 

Grouped mean mean t P CI 
age 7 weights Rest 
birth -0.2997 -0.2584 -1.0524 0.2927 [-0.118, 0.0361 
6 wks -0.1973 -0.0971 -2.6671 0.0077 [-0.174, -0.027 
3 mths -0.2002 -0.0397 -4.0996 4.286 xlO-5 [-0.237, -0.084 
6 mths -0.1272 -0.0056 -2.9358 0.0034 [-0.203, -0.040 
9 mths -0.0657 0.0316 -2.0644 0.0391 [-0.190, -0.005 
12 mths -0.0587 0.0690 -2.7959 0.0052 -0.217, -0.038 
18 mths -0.0699 -0.0746 0.0885 0.9295 [-0.101, 0.111] 
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Table 5.19: Summary statistics of distributions of actual age (months) within 
each age interval for 1055 individuals that contribute to correlation matrix 

Age Min. 1st Qu. Median Mean 3rd Qu. Max. range 
6 weeks 0.750 1.440 1.840 1.709 1.970 2.100 1.35 
3 months 2.070 2.890 3.020 3.014 3.110 4.490 2.42 
6 months 4.690 5.800 6.000 6.017 6.230 7.410 2.72 
9 months 7.510 8.620 9.020 9.079 9.570 10.490 2.98 
12 months 10.56 11.84 12.07 12.07 12.36 13.48 2.92 
18 months 13.51 16.07 17.70 17.62 18.72 23.97 10.46 

growth standards. I f over the time-period the height of a child increases then: 

the sample standard deviation will be larger than the 'instanta

neous' figure (Healy 1962, pp49). 

Therefore, the effect of grouping ages in calculating the correlation coefficient will 
be to inflate the variance of a growth measurement when calculated from a sample 
spanning an age range during which the average value of a measurement changed 
(Healy 1962). Healy (1962) presented a correction factor that could be calculated 
to obtains an estimate of the 'instantaneous' variance, under the assumptions that 
measurements were normally distributed and that the mean and variance increased 
linearly with age. Goldstein (1981a) expanded on this work to give the correction for 
covariance and correlation due to age-grouping, assuming that ratio of the variances 
is constant and the correlation is constant over the age range. 

In the current situation we are working on a Z-score scale, so if the data and 
growth reference were perfectly matched then the mean and variances of the Z-score 
over that age range would be expected to be zero and one respectively. However, 
exploratory data analysis in Chapter 4 indicated that in general Newcastle infants 
are substantially lighter than the reference in the early weeks of life and after the 
age of 1 year the weight Z-scores have a downward trend. So for example, in the age 
grouping '6 weeks' both the boys and girls will be catching up with the reference, 
resulting in an inflation in the variance of weight Z-scores in this age-range. The 
correlation of earlier weight Z-scores with the '18 months' weight Z-score is likely 
to be affected the most as this is over an age range of 10 months and there is a 
downward trend for both boys and girls in this time-period. 

In an attempt to get a better handle on the correlation structure of weight Z-
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scores the ful l infancy data frame with age in days was utilised, as described in 
the next subsection. I f we can reduce the impact of grouping on the correlation 
coefficient by calculating correlations based on individuals whose ages differ only by 
days rather than months, there is then no need for corrections based on assumptions. 

5.5.2 The full infancy data frame 

There are 3415 term infants in the birth cohort, within this data frame an infant has 

birth weight and up to ten routine weights in infancy. This data frame was refined 

to select only infants that had two or more routine weights, as we need at least two 

weights to be able to say anything about an infants growth, for example to detect 

growth faltering. There were 3139 individuals (91.9%) that had two or more weights. 

The individuals with no weights or one weight may be in some way different to the 

individuals that have two or more weights. Table 5.20 summarises the sex, level of 

deprivation and gestational age of the 3139 individuals with 2 or more weights, and 

the 276 individuals with less than two weights. The two groups are similar in terms 

of sex distribution, level of deprivation and gestational age (chi-square test for sex: 

X2=0.3192, d f = l , p=0.5721; chi-square test for level of deprivation: ^^=2.395, 

df=2, p=0.3019 and chi-square test for indicator of gestational age: ^^=1.2727, 

df=2, p=0.5292). One hundred and forty eight children with less than two weights 

have a birth weight, this group has a mean birth weight Z-score of -0.278. This 

mean was compared to the mean Z-score of -0.149, from the 3020 individuals that 

had a birth weight within the 3139 individuals that had two or more weights (t-test 

t=-1.3071, p=0.1931). Therefore, there is no reason to doubt that the mean birth 

weight Z-score is the same in the two groups. To conclude, it appears that the 

individuals dropped in considering children with two or more weights do not differ 

significantly; in terms of level of deprivation, sex, gestational age and birth weight; 

from the individuals that we will study from this point. 

A further data frame was then created with all pair wise combinations of ages 

and corresponding weights for all individuals that had two or more weights. This 

led to a data frame with 99856 rows and this was constructed in such a way that 

tl was always less than t2. Using tl and t2 to denote initial age and later age, 

respectively. There are 31538 distinct (tl,t2) pairs when the age is in days format. 

The number of individuals within a particular {tl,t2) combination varied between 

1 and 227. The peaks in the distribution of values of tl and t2 are at birth and 1 

year respectively. The initial time-point ( t l ) can vary between birth and 1 year 4 

months. The later time point (t2) can vary between 12 days and 3 years 1 month. 
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Table 5.20: Sex distribtion, distribution of level of deprivation, distribution 
of gestational age of individuals that have 2 or more weights and individuals 
that have less than 2 weights (sex: 1 males, 2 females. Level of deprivation: 
1, 2 and 3 denote affluent, intermediate and deprived respectively) 

sex level of deprivation Gestational age indicator 
no. of weights 1 2 1 2 3 < 40 40 wks > 40 
> 2 
< 2 

1568 1571 
143 133 

343 2160 636 
36 193 47 

1089 955 540 
18 16 13 

The time elapsed {t2 — tl) between the two of the measurement instances can vary 
between 4 days and 3 years. 

5.5.3 Effect of age grouping on obtaining correlations be

tween weight Z-scores 

At this stage we introduce the following notation. Let n denote the number of 
individuals used to calculate the correlation between weight Z-scores for a given 
pair {tl,t2) and N be the number of correlations calculated. 

The age in days, t l and t2, were grouped to the nearest 4, 7, 14 and 28 days. The 
data were grouped to 28 days to explore whether this affected the smoothness of the 
correlation rather than for the purpose of modelling. Age grouping was achieved 
by rounding the age in days divided by the smoother (4, 7, 14 or 28). For example 
when grouping to the nearest week, a value of t l or t2 between 4 and 10 would fall 
into the grouped age of 1 week. The initial program rejected any groups with less 
than 10 weight Z-score pairs before calculating a correlation. However, as discussed 
in section 5.4.2, if the sample size is less than 50 the sample correlation coefficients 
obtained are likely to have large confidence intervals. Furthermore, there are still a 
large number of correlations generated for samples with greater than 50 individuals; 
see table 5.21. Table 5.21 contains a summary of the number of correlations obtained 
and the percentage of data they represent with age groupings of 4, 7, 14 and 28 days. 
Therefore, we will concentrate only on correlations obtained for samples with more 
than 50 individuals. 

Figures 5.13 and 5.14 contain a graphical display of the number of individuals 
(n > 50) that contribute to the correlations versus the initial time-point, later time-
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point and time elapsed. With the exception of the data obtained by grouping age 
to 28 days, the first three plots are on the same scale as the fortnightly correlations. 
Table 5.21, figure 5.13 and figure 5.14 indicate that grouping to the nearest fortnight 
seems to be a compromise between representing a high percentage of data and 
obtaining a large number of correlations. Grouping to the nearest fortnight also 
provides reasonable coverage of t l and t2 values. 

The upper plots in figure 5.15 provide a two dimensional graphical representation 
of the correlations calculated with age smoothed to nearest fortnight versus later 
time point (t2) and difference (t2 - t l ) . Points within these plots that have the 
same t l value are connected, so the red line represents the correlation between 
later weight Z-scores with birth weight Z-score. The lower plots in figure 5.15 are 
plots of the Fisher transformed correlations versus t2 and t2 — t l . The Fisher's 
transformed correlations are less variable than the untransformed correlations. As 
the time elapsed between weight Z-scores increases, the connected plot of correlation 
exhibits a downward trend with irregular spikes. This could be due to different 
groups of individuals contributing to the correlation, the variation in the number of 
individuals used to calculate the correlation or measurement error. The Newcastle 
weights are routine weights, so the weights were obtained on different scales, in 
different states of undress and recorded by different observers. 

Similar plots for correlations obtained from age to nearest week were quite 
crowded. A first attempt to improve these graphical representations of the weekly 
correlation structure was to obtain lowess curves (Cleveland 1979) (see Chapter 4 
for description of lowess procedure) for each set of points with the same value of 
t l . The resulting lowess curves can be found in figure 5.16, some of these exhibit 
an upward trend towards the end of the infancy period (if t l is birth or 5 weeks). 
The upward turn could in part be due to the scatterplot smoothers default span of 
two-thirds used in the lowess procedure. In general, the lowess curves do illustrate 
that there tends to be a general downward trend with increasing t2. 

Table 5.21: Table of the number of correlations (N) obtained and percentage 
of data they represent with age groupings of 4, 7, 14 and 28 days 

4 days 7 days 14 days 28 days 
300 496 385 212^ 

% of data 33.7 62.4 86.8 96.8 
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Similar plots for the correlation between weight Z-scores calculated with age 
grouped to 4 and 28 days were produced. In contrast to the weekly correlations, 
clearer plots are obtained for grouping age to nearest 4 days, this is largely due to 
there being fewer points for values of t l greater than 0. The plots for correlations 
obtained for age grouped to nearest 4 days indicated that the coverage of t l and t2 
values is poor. Therefore, i t would not be worth modelling these correlations. In 
addition, i t is also rare that infants are monitored this frequently, with the possible 
exception being in a hospital setting. The plots of correlation for age grouped to 28 
days were a little more regular but still had a spiky appearance. In addition, the 
effect of grouping the data to the nearest 28 days extends the t2 time scale. However, 
these correlations will not be considered any further and were only included for 
comparison purposes. 

5.5.4 Modelling of correlations derived from Newcastle data 

with age grouped to nearest fortnight 

Equation (5.36) was fitted using ordinary least squares to the correlations derived 
from the Newcastle weight Z-scores with age grouped to nearest fortnight and the 
upper table in table 5.22 details the fit. A plot of the standardised residuals versus 
fitted values for the Argyle model fitted by ordinary least squares can be found 
on the left of figure 5.17. There is some evidence of heteroscedasticity within this 
residual plot with more variability observed for low correlations, this is largely due 
to the larger confidence intervals around the calculated correlations for the lowest 
correlations. Therefore, using weighted least squares to fit equation (5.36) should 
lead to an improvement in the fit of this model. Weighted least squares with a V 
matrix of the form given by equation (5.35) was then used to fit the Argyle model 
to the fortnightly correlations. The weights vary from a minimum of 3.555 (correla
tion between weight Z-scores at 6 and 80 weeks, r=0.397, n=57) to a maximum of 
362.700 (correlation between weight Z-scores at 22 and 26 weeks, r=0.967, n=578). 
The use of weighted least squares improves the fit of the model in terms of increas
ing the adjusted multiple correlation coefficient, see lower table in table 5.22. The 
magnitude of the coefficients of the log terms have slightly increased and we now 
have a significant intercept. The coefficients are also similar in magnitude to those 
obtained in table 5.13 for the original Newcastle correlations. A plot of the stan
dardised residuals versus fitted values for the model fitted by weighted least squares 
can be found on the right of figure 5.17. This plot looks reasonably random, al
though there is some indication of slightly more variability for high correlations (the 
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heteroscedasticity is now in the reverse direction), see upper panel in figure 5.18. A 
plot of standardised residuals versus fitted values, labelled by an indicator of sample 
size can be found in the lower panel of figure 5.18. A cut-off point of 500 was chosen 
as the approximation for variance, given by equation (5.20) is only really suitable 
for n > 500. This residual plot indicates a slight excess of negative residuals for 
sample sizes greater than 500. 

There are two extreme standardised residuals with values greater than 4, these 
correspond to the correlation between weight Z-scores at birth and 4 weeks {r = 
0.811, n = 1413), and at birth and 6 weeks (r = 0.755, n = 1308), the fitted 
values are lower than the actual correlations. One method of detecting influential 
observations, is to calculate the Cook's distance. The influence of the ith. data point 
may be measured by the squared scaled distance: 

D. = iy-n)y(y-n)) 

where, Y = Xb is the usual vector of predicted values, Y{i) — Xb{i) is the vector of 
predicted values from a least squares flt when the ith. data point is deleted, p is the 
number of parameters and is the residual mean square. A plot of Cook's distance 
versus index can be found on the left of figure 5.19. This plot indicates that points 
within the first few rows are influential, namely the correlation between weight Z-
scores at birth and 4 weeks, and at birth and 6 weeks. Table 5.23 summarises the fit 
of the Argyle model if we exclude each of these two correlations identified by Cook's 
distance. Excluding the correlation corresponding to birth and 4 weeks leads to 
the largest improvement in the adjusted multiple correlation coefficient. There is a 
small improvement in the adjusted multiple correlation coefficient if the correlations 
corresponding to (0,4) and (0,6) weeks are excluded. Notice that excluding both 
influential correlations leads to the log terms having coefficients of similar magnitude. 

Using the same approach as described in the section 5.4.7, the constant added to 
the time-point was varied (see figure 5.20), and it appears that the addition of 2.3 
weeks to the time-point appears to be optimal. Table 5.24 details the model fit when 
2.3 weeks is added to the time-points, the adjusted multiple correlation coefficient 
improves slightly and the coefficients of log terms have increased in magnitude to 
about 0.27. The plot of standardised residuals versus fitted values can be found 
on the left of figure 5.22, the two outlying standardised residuals are no longer as 
extreme but there is still slightly more variability for higher correlations. However 
using Cook's distance, see plot on right of figure 5.19, the same two correlations 
are still influential, along with the correlation between birth weight Z-score and 76 
weeks (r=0.519). Excluding the two most influential observations leads to a slight 
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Table 5.22: Newcastle correlations based on data grouped to nearest 

fortnight [N=385]: Regression of log correlation coefficients on log{tl + 1) 

and log{t2 + 1). Upper table presents results f rom unweighted least squares 

and lower table presents results f rom weighted least squares 

unweighted Value Std. Error t-value Pr(> ^|) 
(Intercept) 0.003302 0.033973 OMl 0923 
log(U + 1) 0.219986 0.004564 48.195 < 2 x 10-^^ 
log{t2 + 1) -0.231024 0.009279 -24.898 < 2 x 10"^^ 
i?^=0.8697, i?^(adj)=0.8691, residual SE=0.09043 on 382 df 

weighted Value Std. Error t-value Pr(> ^|) 
(Intercept) 0.037439 0.016539 2:264 00242 
log( i l + 1) 0.227741 0.003757 60.623 < 2 x 10-^^ 
log{t2 + 1) -0.240101 0.005687 -42.217 < 2 x 10"^^ 
i?^=0.9083, i?^(adj)=0.9078, residual SE=0.3284 on 382 df 

improvement in the adjusted multiple correlation coefficient; see lower table of table 

5.24. 

I f we now consider the impact of excluding the two most influential observations 

on the constant added to time in the Argyle model. I t is found that the addition of 

2 weeks appears to be optimum; see figure 5.21. A summary of the fit of the Argyle 

model w i t h c = 2 can be found in table 5.25. There is a very slight improvement 

in the adjusted multiple correlation coefficient and the coefficients of the log terms 

are slightly reduced in magnitude. A plot of the standardised residuals versus fitted 

values can be found on the right of figure 5.22. 

5.5.5 Modelling of correlations derived from Newcastle data 
with age grouped to nearest week 

A similar approach to the previous section was used but now the correlations are 

derived f rom age smoothed to nearest week. In general the weekly correlations 

are based on fewer individuals. The fit of equation (5.36) using weighted least 

squares can be found in table 5.26, again using weighted least squares leads to 

an improvement in the adjusted multiple correlation coefficient. The weights used 

varied f rom 1.599 (correlation of 0.191 between weight Z-scores at bir th and 59 

weeks derived f rom a sample of 65) to 272.900 (correlation of 0.972 between weight 
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Table 5.23: Newcastle correlations based on data grouped to nearest 

fortnight [N=385]: Regression of log correlation coefficients on \og{tl + 1) 

and \og{t2+l) using weighted least squares. Upper table presents results f rom 

excluding correlation corresponding to b i r th and 4 weeks, next table presents 

results f rom excluding correlation corresponding to b i r th and 6 weeks and 

final table presents results f rom excluding correlation corresponding to (0,4) 

and (0,6) 

excl. (0,4) Value Std. Error t-value Pr(> \t\) 
(Intercept) 0.018744 0.016746 1.119 0.264 
login +1) 0.230031 0.003712 61.973 < 2 X 10-^^ 
\og{t2 + 1) -0.236790 0.005614 -42.176 < 2 X 10-1^ 
i?'^=0.9124, i?^(adj)= =0.912, residual SE=0.3211 on 381 df 

excl. (0,6) Value Std. Error t-value Pr(> \t\) 
(Intercept) 0.026179 0.016528 1.584 0.114 
log( i l + 1) 0.229789 0.003732 61.566 < 2 X 10-1^ 
\og{t2 + 1) -0.238685 0.005603 -42.597 < 2 X 10-1^ 
R'=0.91U, i?^(adj)= :0.9109, residual SE=0.3228 on 381 df 

excl. (0,4) & (0,6) Value Std. Error t-value Pr(> \t\) 
(Intercept) 0.005186 0.016702 0.311 0.756 
login +1) 0.232420 0.003677 63.215 < 2 X 10-1^ 
log(i2 + 1) -0.235018 0.005511 -42.647 < 2 X 10-1^ 

Z-scores at 17 and 21 weeks derived f rom a sample of 238). The coefficients of the 

model for the weekly correlations are of a similar magnitude to those derived from 

the for tnight ly correlations. A plot of the standardised residuals versus fitted values 

for the Argyle model using ordinary least squares can be found on the left of figure 

5.23, this has an unusual pattern but there is some evidence of heteroscedasticity. 

A plot of the standardised residuals versus fitted values for the Argyle model using 

weighted least squares can be found on the right of figure 5.23, there is slightly more 

variabil i ty at low and high correlations but less variability at medium correlations. 

A plot of Cook's distance versus index can be found on the left of figure 5.24. There 

are four influential points and these correspond to the correlation between weight 

Z-scores at b i r th and 3 weeks (r = 0.857, n = 173), b i r th and 4 weeks (r = 0.809, 

n = 771), b i r th and 5 weeks (r = 0.799, n = 773) and b i r th and 6 weeks (r = 0.764, 

n = 840). These influential points are in the same time region as the extreme values 

identified for for tnight ly Newcastle correlations. 
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Table 5.24: Newcastle correlations based on data grouped to nearest 

fortnight [N=385]: Upper table Regression of log correlation coefficients 

on log{tl -i- 2.3) and log{t2 + 2.3) using weighted least squares Lower table 

Impact of excluding two most influential observations 

log(r( t l , t2)) = a log( t l + 2.3) + 61og(^2-F2.3)-hc + error 
Value Std. Error t-value Pr(> |^|) 

(Intercept) -0.028695 0.016300 -1.76 0.0791 
log{tl + 2.3) 0.279877 0.004212 66.45 < 2 x IQ-^^ 
log(f2 + 2.3) -0.268651 0.005630 -47.72 < 2 x IQ-^^ 
il'^=0.9225, i?'^(adj)=0.9221, residual SE=0.3018 on 382 df 

excl. (0,4) &: (0,6) Value Std. Error t-value Pr(> \t\) 
(Intercept) -0.04792 0.01693 ^2:831 0.00489 
login + 2.3) 0.28240 0.00421 67.071 < 2 x lO-^^ 
log(^2 + 2.3) -0.26550 0.00562 -47.240 < 2 x IQ-^^ 
i?^=0.9249, i?^(adj)=0.9245, residual SE=0.2975 on 380 df 

Table 5.25: Newcastle correlations based on data grouped to nearest 

fortnight [N=383]: Regression of log correlation coefficients on \og{tl + 2) 

and log(t2 - I - 2) using weighted least squares after excluding the two most 

influential points 

\og{r{tl, t2)) =a logjn + 2) + blog{t2 + 2) + c + error 
Value Std. Error t-value Pr(> \t\} 

(Intercept) -0.036832 0.016628 0.0273 
\og{tl + 2) 0.272855 0.004056 67.267 < 2 x 10"^^ 
log(i2 + 2) -0.259777 0.005521 -47.050 < 2 x IQ-^'^ 
ii:^=0.9252, i?^(adj)=0.9249, residual SE=0.2967 on 380 df 

Using the same approach as described in section 5.4,7, the constant added to the 

time-point was varied; see flgure 5.25. I t appears that the addition of 2.9 weeks to 

the time-point appears to be optimal. This constant is greater than the constant 

identified for the for tnight ly correlations. The upper table wi th in table 5.27 details 

the fit of the Argyle model when 2.9 weeks is added to the time-points, there is an 

improvement in the adjusted multiple correlation coefficient and the magnitude of 

the coefficients of the log terms increase. The plot of standardised residuals versus 
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Table 5.26: Newcast le correlations based on data grouped to nearest 

week [N=496]: Regression of log correlation coefficients on l o g ( t l - f l ) and 

log(t2- | - l ) . Upper table presents results f rom unweighted least squares and 

lower table presents results f rom weighted least squares. 

unweighted Value Std. Error t-value Pr(> |^|) 
iTntercept) 0.043054 0.037751 1.14 0.255 

log( i l + 1) 0.229727 0.005652 40.65 < 2 x 10-^^ 
log(t2 + l ) -0.252773 0.010811 -23.38 < 2 x 10"^^ 
i?^==0.7994, i?^(adj)=0.7986, residual SE=0.1223 on 493 df 

weighted Value Std. Error t-value Pr(> |^|) 
(Intercept) 0.049215 0.018411 2:673 0.00776 
login + 1) 0.228679 0.004149 55.122 < 2 x 10"^^ 
Iog(^2 + 1) -0.243298 0.006459 -37.670 < 2 x 10"^^ 
i?^=0.866, i?^(adj)=0.8654, residual SE=0.358 on 493 df 

fitted values can be found on the left in figure 5.27. This residual plot has a similar 

pattern to that observed when one was added to the time-points, but the outlying 

residuals are not as extreme. A plot of Cook's distance versus index can be found on 

the right of figure 5.24. The same four points are identified as influential along wi th 

the correlation between weight Z-scores at b i r th and 79 weeks (r = 0.555, n = 80). 

In figure 5.26 we consider the impact on the constant added to time-point i f the most 

influential point is excluded (the correlation between weight Z-scores at bir th and 

5 weeks). This plot suggests that the addition of 2.8 weeks to time-point appears 

to be optimal. Therefore, excluding the most influential observation has had l i t t le 

impact on the constant added to age. A summary of the fit of the Argyle model 

w i t h c = 2.8 can be found in the lower table of table 5.27. A plot of the standardised 

residuals versus fitted values for this model can be found on the right of figure 5.27. 

This model provides a pretty similar fit to the Argyle model wi th c = 2.9. When 

age is grouped to the nearest week the optimal constant added to the time-points is 

greater than when age is grouped to the nearest fortnight. 
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Table 5.27: Newcastle correlations based on data grouped to nearest 

week [N=496]: Upper table Regression of log correlation on log( t l -h 2.9) 

and log(t2 + 2.9) using weighted least squares Lower table Regression of log 

correlation on log(U + 2.8) and log{t2 -\- 2.8) using weighted least squares 

(after excluding one influential observation) 

log(r(a,^2)) =a log(n-h2 .9) + 61og(^2-f 2.9) -l-c + error 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 
log(n + 2.9) 
log(^2 - f 2.9) 

-0.066204 
0.317833 
-0.288520 

0.018965 
0.005198 
0.006591 

-3.491 
61.142 
-43.775 

0.000525 
< 2 x 10"^^ 
< 2 x 10-1^ 

i?''^=0.8884, i2''^(adj)=0.888, residual SE=0.3265 on 493 df 

logirjtl, t2)) = a\og{n + 2.8) + blog{t2 + 2.8) + c + error 
excl. (0,5) Value Std. Error t-value Pr(> \t\} 
(Intercept) 
login -\- 2.8) 
log(^2 + 2.8) 

-0.069870 
0.315450 
-0.285154 

0.019092 
0.005139 
0.006552 

-3.66 
61.39 
-43.52 

0.00028 
< 2 X 10-1^ 
< 2 X 10-16 

i?^=0.8897, i?^(adj)=0.8893, residual SE=0.3249 on 492 df 

5.6 Cambridge infant study and model proposed 
by Cole (1995) 

5.6.1 The Cambridge infant study and correlation matrices 

The Cambridge infant growth study was set up in 1983 to monitor the growth pat

terns of infants being fed according to Department of Health guidelines (Whitehead 

et al. 1989b). These infants had their weights and other anthropometric measures 

taken every 4 weeks f rom 4 weeks to 52 weeks and at 18 months and two years. 

These measurements were all taken wi th in ± 3 days of target age. The Cambridge 

infants were all at least 35 weeks gestation and no adjustment was made by Cole 

(1995) for gestational age. 

In the original analysis of Cole (1995), b i r th weight was not included in the 

correlation matr ix as this was not taken by the study team. Two hundred and 

twenty three infants (114 boys and 109 girls) were seen on all 15 occasions, see table 

3.1 in chapter 3 for original correlation matrix. The two sexes were not significantly 

different, so their data was combined in the formation of the correlation matr ix 
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(Cole 1995). Cole (1998a) later considered the correlation matr ix for the Cambridge 

infants including routine b i r th weight; see table 5.28. There are now 221 infants 

w i t h weights on all 16 occasions. The analysis wi th in this section wi l l concentrate 

on the Cambridge correlation matr ix in table 5.28, because preliminary analysis in 

Chapter 4 indicated that children that exhibited growth faltering, did so soon after 

b i r th . Therefore i t is important that the correlation w i t h b i r th weight Z-score is 

incorporated in any model of the correlation structure. 

Plots of the Cambridge correlations, given in table 5.28, versus t2 and (t2 — tl) 

can be found in the upper plots of figure 5.28. Points wi th in these plots that have 

the same t l value are connected, so the red line represents the correlation between 

later weight Z-scores w i t h b i r th weight Z-score, similarly the orange line corresponds 

to correlation between later weight Z-scores wi th weight Z-score at 4 weeks, . . . and 

the uppermost violet line corresponds to the correlation between later weight Z-

Table 5.28: Cambr idge correlation matr ix including b ir th weight 

N=120,n=221]: Correlation matr ix for weight Z-scores at 16 ages during 

early infancy, based on data for 221 boys and girls seen on all 16 occasions 

Age 0 4 8 12 16 20 24 28 32 
0 1.000 
4 0.771 1.000 
8 0.646 0.911 1.000 
12 0.589 0.829 0.945 1.000 
16 0.545 0.759 0.880 0.957 1.000 
20 0.496 0.667 0.786 0.889 0.959 1.000 
24 0.482 0.635 0.747 0.849 0.922 0.968 1.000 
28 0.463 0.608 0.710 0.811 0.892 0.945 0.970 1.000 
32 0.446 0.583 0.682 0.777 0.860 0.915 0.945 0.970 1.000 
36 0.426 0.550 0.652 0.742 0.830 0.880 0.917 0.950 0.981 
40 0.411 0.525 0.630 0.719 0.803 0.851 0.892 0.924 0.961 
44 0.400 0.497 0.596 0.682 0.770 0.822 0.863 0.900 0.939 
48 0.392 0.485 0.585 0.667 0.753 0.807 0.847 0.889 0.924 
52 0.379 0.468 0.561 0.646 0.733 0.786 0.823 0.867 0.903 
78 0.383 0.460 0.526 0.590 0.658 0.701 0.725 0.762 0.795 
104 0.363 0.476 0.563 0.613 0.665 0.693 0.713 0.736 0.755 

36 40 44 48 52 78 104 
36 1.000 
40 0.980 1.000 
44 0.959 0.975 1.000 
48 0.948 0.962 0.977 1.000 
52 0.925 0.945 0.965 0.972 1.000 
78 0.814 0.844 0.873 0.887 0.908 1.000 
104 0.768 0.797 0.818 0.822 0.848 0.928 1.000 
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scores and weight Z-score at 1 year. There is a downward trend in the connected 
plots of correlation versus t2 unt i l t2 takes on the value of one year. In general 
we might expect that as the time between two weight measures increases that the 
correlation between the two weight Z-scores decreases or plateaus. However the plot 
of correlation versus t2 indicates that this is not always the case for the Cambridge 
correlations. When tl takes on values of 4, 8, 12 and 16 the correlation between 
weight Z-score at t l and 2 years is higher than the correlation between weight Z-
score at tl and 18 months. No reference is made to this feature wi thin Cole (1995) or 
Cole (1998a). The lower plots in figure 5.28 contain plots of the Fisher's transformed 
correlations versus t2 and (t2 — t l ) . The upward trend post 18 months is less marked 
in these plots. 

5.6.2 Model proposed by Cole (1995) applied to Cambridge 
correlations 

Cole (1995) chose to model the Cambridge Fisher's transformed correlations using 

fractional polynomials (Royston and Al tman 1994). The transformed correlations 

were then modelled as a function of the two ages, mean ( t l + t2)/2 and difference 

t2 — t l . A summary of the fit of the original 5 variable model plus intercept can 

be found in chapter 3, table 3.2. Cole (1995) does not give details of how the final 

model choice was arrived at. 

The conditional weight gain Z-score should have a mean of zero, standard de

viation of 1 and ought to be uncorrelated wi th the in i t ia l weight Z-score. Cole 

(1995) validated the model in table 3.2 using data f rom the Cambridge infancy 

study (223 infants that derived Cambridge correlation matr ix plus 183 infants f rom 

later cohorts) and a sub-population of 761 infants f rom the Newcastle growth and 

development study (described in chapter 4). Considering all possible age pairs in 

the Cambridge and Newcastle infancy data frame led to 26264 and 15405 pairs, re

spectively. Weight gain Z-scores were obtained using equation (3.11) and the model 

in table 3.2. The calculated conditional weight gain Z-scores were then split into 

16 groups which corresponded roughly wi th the 15 grouped ages. Excluding pair 

combinations w i t h fewer than 50 points for the Newcastle data, led to 90 and 108 

age gap combinations for the Newcastle and Cambridge data, respectively. For each 

group the mean and SD of the conditional weight gain Z-score, and its correlation 

wi th in i t ia l weight Z-score were calculated. Cole (1995) concluded that on the whole 

there was reasonable agreement between Newcastle and Cambridge, suggesting that 

the conditional reference could be applied to other data. 
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Table 5.29 summarises the model Cole (1998a) fitted to the Cambridge correla

tions (including b i r th weight). The coefficients in this model are of the same sign 

although the magnitude of all the coefficients have changed slightly. The quadratic 

term in the model proposed by Cole (1995) appears to serve the purpose of fitting 

the upward trend at the end of infancy. A plot of standardised residuals versus fitted 

values for this model can be found in top left hand corner of figure 5.29, this looks 

reasonably random w i t h a few extreme residuals. A plot of Cook's distance versus 

index can be found on the right of figure 5.29. There are two points identified as 

influential, the correlation between weight Z-scores at: 48 and 52 weeks (r=0.972) 

and 32 and 36 weeks (r=0.981). These two influential points are derived f rom weight 

Z-scores 4 weeks apart and both correlations are of similar magnitude. 

5.6.3 Model proposed by Cole (1995) applied to Newcastle 
correlations 

In this section we consider the flt of the model proposed by Cole (1995) to the 

Newcastle for tnight ly and weekly correlations. Weighted least squares was used to 

flt the model proposed by Cole (1995) to the Newcastle correlations derived from 

age grouped to the nearest fortnight. In this instance, i t seems reasonable to choose 

Table 5.29: Model proposed by Cole (1995,1998) fltted to Cambridge corre

lations (including b i r th weight) 

Value Std. Error t-value Pr(> t ) 
3.177449 0.099103 32.062 < 2 x 10" -16 

0.326505 0.037146 8.790 1.8 x lO" 14 

-1.482101 0.047966 -30.899 < 2 x 10" -16 

-2.023555 0.159455 -12.690 < 2 x 10" -16 

0.199544 0.011698 17.058 < 2 X 10" -16 

-0.046462 0.009176 -5.063 1.6 xlO" -6 

intercept 
log((tl + t2)/2) 
logit2 - tl) 
l/it2~n) 
log((t l + t 2 ) / 2 ) I o g ( t 2 - t l ) 
ilogiin + t2]/2))^ 
R'=0.9936, i2^(adj)=0.9933, residual SE=0.04159 on 114 df 
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V to be: 

V = 

7 1 1 - 3 
0 
1 

n 2 - 3 

as the Varizr) 

V 0 

for n > 50. Hence: 
n—3 

0 

0 
0 

0 
1 

(5.41) 

/ y/ni - 3 
0 - 3 

V 

0 
0 

(5.42) 

0 V^fh^^ J 

Table 5.30 summarises the fit of the model proposed by Cole (1995) to the Newcastle 

for tn ight ly correlations using unweighted and weighted least squares. The weights 

vary between 6.928 (correlations derived f rom samples of size 51, namely correlations 

between weight Z-scores at 14 and 66 weeks, and at 22 and 74 weeks) and 39.050 

(correlation between weight Z-scores at b i r th and 8 weeks derived f rom sample size 

of 1528). Using weighted least squares improves the fit of the model proposed by 

Cole (1995). The coefficient of the quadratic log mean term is not significantly 

different f rom zero. W i t h the exception of the coefficient for the log mean term, the 

coefficients are of the same sign and have a slightly smaller magnitude than those 

derived f rom the Cambridge correlations. The quadratic term of the model proposed 

by Cole (1995) was excluded and the model refitted. The resulting model can be 

found in the lowest table of table 5.30, this leads to a very similar adjusted multiple 

correlation coefficient. 

A plot of the standardised residuals versus fitted values for the model proposed 

by Cole (1995) can be found on the left of figure 5.31. In this plot there is some 

evidence of curvature possibly due to the model overfitting the upturn. There is also 

some indication of slightly more variability for high correlations. A plot of Cook's 

distance versus index can be found on the left of figure 5.32, this indicates that there 

are two points that are influential, the correlation between weight Z-scores at: 0 and 

4 weeks (r=0.811) and 4 and 8 weeks (r=0.852). Both of these influential points 

are in early infancy. 

Similarly the model proposed by Cole (1995) was fltted to the Newcastle weekly 

correlations using ordinary and weighted least squares; see table 5.31. Using weighted 

least squares, weights vary between 6.928 (for samples of size 51) and 32.880 (for 
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Table 5.30: Newcast le correlations based on data grouped to nearest 

fortnight [N=385]:Regression of Fisher's transformation of correlation co

efficients on functions of the time diflference ( t 2 - t l ) and mean time ( tH- t2 ) /2 . 

Upper table presents results f rom unweighted least squares and middle table 

presents results f rom weighted least squares. Lowest table presents model 

proposed by Cole (1995) without quadratic term of l o g ( ( t l + t 2 ) / 2 ) 

unweighted Value Std. Error t-value Pr(> |^|) 
(intercept) 
logiin + t2)/2) 
logit2 - n) 
l/it2-tl) 
logiin + t2)/2) logit2 - ^1) 
(log((^l + ^2)/2))2 

3.15689 0.16125 19.577 < 2 x 10" 16 

0.26654 0.06344 4.201 3.31 xlO -5 

-1.48806 0.08713 -17.079 < 2 x 10- 16 

-1.91155 0.18268 -10.464 < 2 X 10- 16 

0.22579 0.02257 10.006 < 2 X 10" 16 

-0.05019 0.01621 -3.097 0.0021 
i?^=0.9302, i?^(adj)=0.9293, residual SE=0.1201 on 379 df 

weighted Value Std. Error t-value Pr(> t\) 
(intercept) 
logiin+ t2) 12) 
iogit2 - n) 
i/it2-n) 
logiin+t2)/2)logit2 
ilogiin + t2)/2)f 
i?^=0.9389, i?^(adj)=0.9381, residual SE=0.4106 on 379 df 

tl) 

3.09387 0.14234 21.736 < 2 X 10-16 

0.15993 0.05315 3.009 0.00279 
16 -1.35966 0.07533 -18.048 < 2 X 10-16 

-1.78715 0.17360 -10.295 < 2 X 10-16 

0.18945 0.01983 9.556 < 2 X 10-16 

-0.01481 0.01401 -1.057 0.29123 

excl. quadratic Value Std. Error t-value Pr(> t ) 
(intercept) 
logiin+ t2)/2) 
iogit2 - n) 
i/it2-n) 
logiin+ t2)/2) iogit2-n) 

3.05914 0.13851 22.086 < 2 X 10- 16 

0.11534 0.03232 3.568 0.000405 
-1.30373 0.05363 -24.309 < 2 X 10- 16 

-1.71525 0.15974 -10.738 < 2 X 10" 16 

0.17402 0.01341 12.980 < 2 X 10- 16 

i?'-^=0.9387, i?^(adjj=0.9381, residual SE=0.4106 on 380 df 

the correlation of 0.561 between weight Z-scores at b i r th and 13 weeks derived f rom 

a sample of size 1084). Notice that the quadratic term in this model is significantly 

difl^erent f rom zero, but the signs of the linear and quadratic terms of log mean 

age are opposite to those derived f rom the Cambridge correlations. A plot of the 

standardised residuals versus fitted values for the model proposed by Cole (1995) 

can be found on the right of figure 5.31. This plot looks reasonably random, there is 

s t i l l slightly more variabili ty at higher correlations. A plot of Cook's distance versus 

index can be found on the right of figure 5.32, there are 2 points identified as infiu-

ential, the correlation between weight Z-scores at: 5 and 7 weeks (r=0.831,n=65) 
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and 7 and 9 weeks (r=0.969, n=60). Both these correlations are in the early weeks 

of life and are between weight Z-scores that are two weeks apart. 

5.6.4 The relationship between Fisher's transformed corre
lation and correlation 

Fisher's transformation is a variance stabilising transformation, see section 5.4.2. In 

order to look at the relationship between Fisher's and log transformation of corre

lation, the Cambridge correlations were compared on the two scales, see flgure 5.30. 

The box-plot in the top left of figure 5.30, indicates that Fisher's transformation 

does disperse the transformed correlations over a larger range than the log of the 

correlation. Both the distribution of log correlation and correlation have a long ta i l 

to the left , whereas Fisher's transformed correlation has a long ta i l to the right. 

The scatterplots in figure 5.30 do show a strong curvilinear relationship between 

Fisher's transformation of the correlation and the original correlation or the log 

Table 5.31: Newcast le correlations based on data grouped to nearest 

week [N=496]:Regression of Fisher's transformation of correlation coeffi

cients on functions of the time difference ( t 2 - t l ) and mean time ( t H - t 2 ) / 2 . 

Upper table presents results f rom unweighted least squares and lower table 

presents results f r o m weighted least squares. 

unweighted Value Std. Error t-value Pr(> |^|) 

(intercept) 
log((tl +12)/2) 
logit2 - t l ) 
l / ( t 2 - t l ) 
l o g ( ( t H - t 2 ) / 2 ) l o g ( t 2 - t l ) 
(log((tl + t2)/2))^ 
i?^=0.8991, i?'^(adj)=0.8981, residual SE=0.1398 on 490 df 

2.93747 0.21545 13.634 < 2 X 10- lb 

-0.09173 0.07943 -1.155 0.2487 
16 -1.06170 0.11281 -9.411 < 2 X 10- 16 

-1.78338 0.27433 -6.501 1.97 x lO-•10 

0.09736 0.02181 4.464 9.99 xlO--6 

0.07944 0.03088 2.572 0.0104 

weighted Value Std. Error t-value Pr(> t ) 

(intercept) 
log((tl -I- ^2)/2) 
log(t2 - t l ) 
l / ( t 2 - t l ) 
log((t l - | - t2)/2)log(t2 
(Iog((tl -f-12)/2))2 

t l ) 

2.96336 
-0.14928 
-1.02862 
-1.69516 
0.07061 
0.11118 

0.18473 
0.05884 
0.09774 
0.25240 
0.02695 
0.01824 

16.042 
-2.537 
-10.524 
-6.716 
2.621 
6.096 

< 2 X 10-^" 
0.01150 

< 2 X 10-1^ 
5.18 x l O - i i 

0.00905 
2.21 xlO"^ 

ii;^=0.9144, i?'^(adj)=0.9135, residual SE=0.4175 on 490 df 
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transformation. 

5.6.5 Fit of Argyle model to Cambridge correlations 

Table 5.32 summarises the fit of the Argyle model to the Cambridge correlations. 

Using the weights given by equation (5.38), these vary between 0.418 (correlation 

of 0.363 between weight Z-scores at b i r th and 104 weeks and 26.060 (correlation 

of 0.981 between weight Z-scores at 32 and 36 weeks). In terms of the multiple 

correlation coefficient, the Argyle model explains 97% of variation in the original 

data. I t is not meaningful to compare models in tables 5.32 and 5.29 because 

the correlations have been subjected to dilferent transformations, namely log and 

Fisher's transformation, respectively. A plot of the standardised residuals versus 

fitted values for the Argyle model can be found on the left of figure 5.33, there 

is some evidence of heteroscedasticity wi th in this plot. However, the standardised 

residuals of the model proposed by Cole (1995) are spread over a wider range of 

values than the standardised residuals f rom the Argyle model. A plot of Cook's 

distance versus index can be found on the right of figure 5.33, this indicates that 

there is one influential observation, this being the correlation between weight Z-

scores at b i r t h and 4 weeks (r=0.771). 

Using the same approach as described in section 5.4.7, the constant added to the 

time-point was varied (see figure 5.34), and i t appears that the addition of 1.9 weeks 

to the time-point appears to be optimal. The lowest table in table 5.32 details the 

model fit when 1.9 weeks is added to the time-points, multiple R-squared improves 

slightly, the magnitude of the intercept term has decreased and the coefficients have 

increased in magnitude to about 0.29. The plot of standardised residuals versus 

fitted values and plot of Cook's distance versus index for the Argyle model wi th 

c=1.9 can be found in figure 5.35. There are several extreme negative residuals and 

using Cook's distance identifies 3 influential observations, these being the correlation 

between weight Z-scores at: 4 and 8 weeks (r=0.991), 48 and 52 weeks (r=0.972) 

and 8 and 12 weeks (r=0.945). These are different influential observations to those 

identifled by Cook's distance when we fitted the Argyle model wi th c = l . These 

are points close in t ime wi th high correlations. Therefore the final model for the 

Cambridge correlations is: 

l o g ( r ( t l , t2)) = -0.0372 + 0.2863 log(U + 1.9) - 0.2923 log(t2 + 1.9) (5.43) 

where tl and t2 are the in i t ia l age and later age (given in weeks). This model is 

similar to that derived for the Newcastle for tnight ly correlations, a similar constant 
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Table 5.32: Cambr idge correlation matr ix including birth weight 

N=120,n=221]: Regression of log transformation of correlation coefficients 

on log in i t ia l t ime ( t l -|- c) and log later t ime (t2 -h c) 

unweighted log(r( t l , t2)) = Qlog(tl 1) + 61og(t2 + l) + c + e 
Value Std. Error t-value Pr(> |t]I 

(Intercept) 0.072342 0.032106 2:253 0.0261 
log(tl + 1) 0.241906 0.004697 51.507 < 2 x 10-^^ 
log(t2 -t- 1) -0.264686 0.009321 -28.397 < 2 x IQ-^^ 
i?^=0.9584, i2'^(adj)=0.9577, residual SE=0.05386 on 117 df 

weighted log(r( t l , t2)) = Qlog(tl - H ) -h blog(t2 - H ) -h c-H e 
Value Std. Error t-value Pr(> |t|) 

(Intercept) 0.081295 0.017884 4546 1.34 xlO"^ 
log(tl + 1) 0.252039 0.004095 61.544 < 2 x 10"^^ 
log( t2 -H) -0.272435 0.006111 -44.582 < 2 x 10'^^ 
it:'^=0.9706, i?'^(adj)=0.9701, residual SE=0.05277 on 117 df 

weighted log(r( t l , t2)) = alog( t l + 1.9) - f 61og(t2 + 1.9) + c + e 
Value Std. Error t-value Pr(> |t|) 

(Intercept) 0.037194 0.015761 0 6 0.0199 
log(tl - I - 1.9) 0.286294 0.003939 72.69 < 2 x 10"^^ 
log(t2 + 1.9) -0.292317 0.005437 -53.77 < 2 x 10"^^ 
i?^=0.9787, i?'^(adj)=0.9784, residual SE=0.04485 on 117 df 

is added to age and the coefficients of the log terms in the Cambridge model are of 

a slightly greater magnitude. 

5.6.6 A comparison of a subset of Newcastle weekly corre
lations with Cambridge correlations 

Research data correlations for weight Z-scores are likely to be higher than for routine 

weight measurements (Cole 1997a). Cole (1993) stated that modelling correlation 

in a research study and then applying to routinely collected data may lead to poorly 

specified SD scores and that 

in such cases i t may be possible to 'shrink' the correlation to take 

into account increased measurement error (Cole 1993, pp36). 
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Cole (1997a) discussed the elfect of measuring error in relation to height measure

ments and suggested that each correlation r could be scaled down to r' using: 

r = r{ 1 
a' 

(5.44) 

where a is the standard deviation of height, e is the likely measurement error of 

height in research studies and 5 is the likely measurement error in routinely collected 

data. Cole (1997a) suggested that a took on a value of about 5cm, e was between 0.1 

and 0.4 cm, and 5 is currently uncertain, but made suggestion of 0.8. However the 

error in weights can be diff icult to quantify in infancy and there is no generally agreed 

value for measurement error or standard deviation. Furthermore the distribution of 

weight is skewed, so the correlation between weight measurements is not the same 

as the correlation between weight Z-scores. 

Below an informal comparison is made between the correlations f rom routine 

Newcastle weights and research Cambridge weights. The Newcastle correlations 

w i t h age grouped to nearest week were used for these comparison purposes as the 

Cambridge weights are taken wi th in ± 3 of target age. A set of correlations were 

extracted f rom the weekly Newcastle correlations, these were at the same time points 

as the Cambridge data (table 5.28), see table 5.33. In the early weeks of life the 

Newcastle correlations are based on a greater number of individuals; for itl,t2) values 

of (0,4),(0,8) and (4,8); than the Cambridge data. The Newcastle correlations are 

only available up to the later age of 18 months (with the exception of b i r th and 104 

weeks). I t w i l l be apparent f rom table 5.33 that the sample sizes for some of the 

correlations are small, so equation (5.25) was used to calculate confidence intervals 

for the Newcastle correlations. W i t h the exception of the correlation between weight 

Z-scores at b i r th and 8 weeks, the correlations f rom the Cambridge study are within 

the confidence intervals of the Newcastle weekly correlations (see tables 5.34 and 

5.35). 
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Table 5.33: Derived correlation matr ix for Newcastle data (Age is in weeks), 

number of individuals that correlation is derived f rom is in brackets and NA 

means correlation not available for Newcastle data 

Age 0 4 8 12 16 20 24 28 32 
0 1.000 
4 0.8085 1.000 

(771) 
8 0.6974 0.8748 1.000 

(762) (271) 
12 0.6326 0.7895 0.9376 1.000 

(467) (158) (191) 
16 0.5145 0.7688 0.8466 0.9308 1.000 

(371) (102) (133) (100) 
20 0.5089 0.7284 0.8272 0.9018 0.9583 1.000 

(252) (71) (73) (50) (50) 
1.000 24 0.4478 0.6185 0.8268 0.9122 0.949 0.9441 1.000 

(273) (68) (78) (59) (54) (31) 
0.9683 1.000 28 0.4587 0.6492 0.6837 0.8476 0.9052 0.9332 0.9683 1.000 

(262) (71) (68) (42) (39) (28) (29) 
NA 1.000 32 0.4337 0.5593 0.6941 0.7315 0.857 0.8513 0.9576 NA 1.000 

(114) (36) (30) (25) (16) (19) (11) 
NA 36 0.3817 0.6044 0.747 0.7347 0.8416 0.9267 0.8811 0.9344 NA 

(227) (67) (74) (43) (35) (25) (20) (29) 
0.8892 40 0.3816 0.3436 0.5274 0.7958 0.7573 0.7874 0.8755 0.8039 0.8892 

(236) (58) (67) (41) (29) (23) (26) (24) (10) 
44 0.3663 0.4048 0.4545 0.5357 0.6936 0.7449 0.8399 0.903 0.954 

(226) (69) (72) (43) (30) (18) (21) (25) (10) 
48 0.4865 0.4748 0.6906 0.8154 0.8283 0.8510 0.8516 0.9011 NA 

(188) (51) (56) (40) (31) (15) (16) (22) 
0.9068 52 0.4574 0.559 0.6191 0.6099 0.7865 0.7747 0.9266 0.8947 0.9068 

(462) (108) (130) (68) (58) (29) (49) (42) (11) 
78 0.2957 0.5298 0.479 0.6245 0.3208 0.7271 0.43 0.7857 NA 

(97) (34) (36) (15) (10) (11) (11) (14) 
NA 104 0.0801 NA NA NA NA NA NA NA NA 

(10) 
36 40 44 48 52 78 104 

36 
40 

44 

48 

52 

78 

104 

1.0000 
0.9854 

(15) 
0.9415 

(29) 
0.9616 

(12) 
0.9343 

(37) 
0.946 
(10) 
NA 

1.0000 

0.8807 1.0000 
(24) 

0.9618 NA 1.0000 
(20) 

0.9435 0.9604 0.9849 
(46) (66) (31) 

0.9584 0.9501 NA 
(17) (17) 
NA NA NA 

1.0000 

0.9395 
(19) 
NA 

1.0000 

NA 1.0000 
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Table 5.34: Comparison of derived correlation matrix for Newcastle data 

(Age is in weeks) w i t h Cambridge correlation matrix 

t l t2 Newcastle n Cambridge lower upper 
correlation correlation 

0 4 0.8085 771 0.771 0.7668 0.8502 
0 8 0.6974 762 0.646 0.6464 0.7484 
0 12 0.6326 467 0.589 0.562 0.7032 
0 16 0.5145 371 0.545 0.4267 0.6023 
0 20 0.5089 252 0.496 0.4017 0.6161 
0 24 0.4478 273 0.482 0.3409 0.5547 
0 28 0.4587 262 0.463 0.3502 0.5672 
0 32 0.4337 114 0.446 0.265 0.6024 
0 36 0.3817 227 0.426 0.2603 0.5031 
0 40 0.3816 236 0.411 0.2626 0.5006 
0 44 0.3663 226 0.4 0.2438 0.4888 
0 48 0.4865 188 0.392 0.3601 0.6129 
0 52 0.4574 462 0.379 0.3759 0.5389 
0 78 0.2957 97 0.383 0.1011 0.4903 
0 104 0.0801 10 0.363 -0.7326 0.8928 
4 8 0.8748 271 0.911 0.8166 0.933 
4 12 0.7895 158 0.829 0.6924 0.8866 
4 16 0.7688 102 0.759 0.6419 0.8957 
4 20 0.7284 71 0.667 0.5639 0.8929 
4 24 0.6185 68 0.635 0.4254 0.8116 
4 28 0.6492 71 0.608 0.4665 0.8319 
4 32 0.5593 36 0.583 0.2704 0.8482 
4 36 0.6044 67 0.55 0.4071 0.8017 
4 40 0.3436 58 0.525 0.0922 0.595 
4 44 0.4048 69 0.497 0.1818 0.6278 
4 48 0.4748 51 0.485 0.2221 0.7275 
4 52 0.559 108 0.468 - 0.3993 0.7187 
4 78 0.5298 34 0.46 0.2244 0.8352 
8 12 0.9376 191 0.945 0.8877 0.9875 
8 16 0.8466 133 0.88 0.7546 0.9386 
8 20 0.8272 73 0.786 0.6942 0.9602 
8 24 0.8268 78 0.747 0.6983 0.9553 
8 28 0.6837 68 0.71 0.5044 0.863 
8 32 0.6941 30 0.682 0.4154 0.9728 
8 36 0.747 74 0.652 0.5908 0.9032 
8 40 0.5274 67 0.63 0.3169 0.7379 
8 44 0.4545 72 0.596 0.2422 0.6668 
8 48 0.6906 56 0.585 0.4933 0.8879 
8 52 0.6191 130 0.561 0.4818 0.7564 
8 78 0.479 36 0.526 0.1731 0.7849 
12 16 0.9308 100 0.957 0.8575 1.0041 
12 20 0.9018 50 0.889 0.7764 1.0272 
12 24 0.9122 59 0.849 0.8035 1.0209 
12 28 0.8476 42 0.811 0.678 1.0172 
12 32 0.7315 25 0.777 0.4374 1.0256 
12 36 0.7347 43 0.742 0.5207 0.9487 
12 40 0.7958 41 0.719 0.5997 0.9919 
12 44 0.5357 43 0.682 0.2694 0.802 
12 48 0.8154 40 0.667 0.6253 1.0055 
12 52 0.6099 68 0.646 0.4151 0.8047 
12 78 0.6245 15 0.59 0.1565 1.0925 
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Table 5.35: Comparison of derived correlation matrix for Newcastle data 
(Age is in weeks) with Cambridge correlation matrix (continued) 

t l t2 Newcastle n Cambridge lower upper 
correlation correlation 

upper 

16 20 0.9583 50 0.959 0.8754 1.0412 
16 24 0.949 54 0.922 0.8613 1.0367 
16 28 0.9052 39 0.892 0.7636 1.0468 
16 32 0.857 16 0.86 0.5616 1.1524 
16 36 0.8416 35 0.83 0.6503 1.0329 
16 40 0.7573 29 0.803 0.4994 1.0152 
16 44 0.6936 30 0.77 0.4147 0.9725 
16 48 0.8283 31 0.753 0.6155 1.0411 
16 52 0.7865 58 0.733 0.6212 0.9518 
16 78 0.3208 10 0.658 -0.4514 1.093 
20 24 0.9441 31 0.968 0.8189 1.0693 
20 28 0.9332 28 0.945 0.7883 1.0781 
20 32 0.8513 19 0.915 0.5828 1.1198 
20 36 0.9267 25 0.88 0.7646 1.0888 
20 40 0.7874 23 0.851 0.5077 1.0671 
20 44 0.7449 18 0.822 0.3913 1.0985 
20 48 0.851 15 0.807 0.5363 1.1657 
20 52 0.7747 29 0.786 0.525 1.0244 
20 78 0.7271 11 0.701 0.2094 1.2448 
24 28 0.9683 29 0.97 0.8697 1.0669 
24 32 0.9576 11 0.945 0.7404 1.1748 
24 36 0.8811 20 0.917 0.6469 1.1153 
24 40 0.8755 26 0.892 0.6719 1.0791 
24 44 0.8399 21 0.863 0.5793 1.1005 
24 48 0.8516 16 0.847 0.5511 1.1521 
24 52 0.9266 49 0.823 0.8163 1.0369 
24 78 0.43 11 0.725 -0.2508 1.1108 
28 36 0.9344 29 0.95 0.7937 1.0751 
28 40 0.8039 24 0.924 0.5409 1.0669 
28 44 0.903 25 0.9 0.7177 1.0883 
28 48 0.9011 22 0.889 0.6988 1.1034 
28 52 0.8947 42 0.867 0.752 1.0374 
28 78 0.7857 14 0.762 0.3966 1.1748 
32 40 0.8892 10 0.961 0.5162 1.2622 
32 44 0.954 10 0.939 0.7096 1.1984 
32 52 0.9068 11 0.903 0.5889 1.2247 
36 40 0.9854 15 0.98 0.8834 1.0874 
36 44 0.9415 29 0.959 0.8084 1.0746 
36 48 0.9616 12 0.948 0.7682 1.155 
36 52 0.9343 37 0.925 0.812 1.0566 
36 78 0.946 10 0.814 0.6817 1.2103 
40 44 0.8807 24 0.975 0.6713 1.0901 
40 48 0.9618 20 0.962 0.8262 1.0974 
40 52 0.9435 46 0.945 0.8428 1.0442 
40 78 0.9584 17 0.844 0.8013 1.1155 
44 52 0.9604 66 0.965 0.8908 1.03 
44 78 0.9501 17 0.873 0.7784 1.1218 
48 52 0.9849 31 0.972 0.9191 1.0507 
52 78 0.9395 19 0.908 0.7642 1.1148 
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5.7 Combining the Newcastle and Cambridge cor
relations 

We wish to explore whether the Cambridge and Newcastle correlations can essen

tially be described by the same function. The fortnightly correlations from the New

castle infancy data were merged with the correlations from the Cambridge study. 

These correlations need to be assigned to two levels in order to take into account 

their different sources (Cambridge versus Newcastle, research versus routine). A 

dummy variable (ind) was created that was 0 i f the correlation was from Cambridge 

study and 1 if the correlation was from the Newcastle study. 

5.7.1 Argyle model applied to combined Newcastle and Cam
bridge correlations 

In this section we consider the interaction of the Newcastle-Cambridge indicator 

variable with the Argyle model. Hence we are interested in the following model: 

log(r) =A + Bind + C \og{tl + c) + D log(i2 + c) + Bind : \og{tl + c) 

+ Find : log{t2 + c) + e (5.45) 

Weighted least squares was used to fit the Argyle model, given by equation (5.45), 

to the combined Cambridge and Newcastle correlations. The weights vary from 

a minimum of 3.555 (correlation between Newcastle weight Z-scores at 6 and 80 

weeks, r=0.397, n=57) to a maximum of 387.5 (correlation between Cambridge 

weight Z-scores at 32 and 36 weeks, r=0.981, n=221). Table 5.36 summarises the 

fit of the Argyle model to combined Cambridge and Newcastle correlations. A plot 

of Cook's distance versus index for the model given in table 5.36 can be found on 

the left of figure 5.36. This plot indicates that there are two influential Newcastle 

correlations: correlation between weight Z-scores at birth and 4 weeks, and birth 

and 6 weeks. These two influential observations were excluded and the impact of 

varying the constant added to the initial and final time point was explored; see 

figure 5.37. I t would appear that the addition of 2 weeks appears to optimise the fit 

of the Argyle model, which is the same constant that was added when considering 

Newcastle correlations alone. A summary of the fit of this model can be found in 

table 5.37, this model explains about 94% of the variation in the original data. This 

model would suggest that the effects of log{tl + 2) and log(t2 + 2) are different for 

Cambridge and Newcastle and that the intercept term for both models is different. 

The coefficients of the log terms for Newcastle correlations are of smaller magnitude 
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than the Cambridge correlations. Suggesting that the Cambridge weight Z-scores 

are more correlated than the Newcastle weight Z-scores. A plot of the standardised 

residuals versus fitted values labelled by Newcastle or Cambridge can be found on 

the right of figure 5.36. This residual plot has a similar pattern to that for the 

Newcastle fortnightly correlations and there appears to be slightly more variability 

in the residuals for the Newcastle correlations. 

Table 5.36: Cambridge &c Nevircastle correlations [N=505]: Regres

sion of log correlation coefficients on \og{tl + 1), log(t2 + 1) interacted with 

Newcastle-Cambridge indicator variable (ind) using weighted least squares 

(Intercept) 
login +1) 
log{t2 + 1) 
ind 
log(il + l):ind 
log(^2-H):ind 

Value Std. Error t-value Pr(> t\) 
0.081295 0.026696 3.045 0.002448 
0.252039 0.006113 41.230 < 2 x lO-^^ 
-0.272435 0.009122 -29.867 < 2 x lO-^^ 
-0.043856 0.030768 -1.425 0.154677 
-0.024298 0.007032 -3.455 0.000596 
0.032334 0.010530 3.071 0.002252 

i?^=0.9257, ii:'^(adj)=0.925, residual SE=0.3037 on 499 df 

Table 5.37: Newcastle & Cambridge correlations [N=503]: Regression 

of log correlation coefficients on log(tl -I- 2) and log(t2 + 2) interacted with 

Newcastle-Cambridge indicator variable (ind) using weighted least squares 

(after excluding influential Newcastle correlations corresponding to (0,4) and 

(0,6)) 

Value Std. Error t-value Pr(> t\) 
(Intercept) 0.032920" 
log(n + 2) 0.289351 
log{t2 + 2) -0.294040 
ind -0.069752 
login+ 2):ind -0.016496 
Iog(i2 + 2):ind 0.034263 
72^=0.9402, i?^(adj)=0.9396, residual SE=0.2727 on 497 df 

0.024954 
0.006278 
0.008610 
0.029262 
0.007301 
0.009995 

1.319 
46.092 
-34.150 
-2.384 
-2.259 
3.428 

0.187704 
< 2 X 10-1^ 
< 2 X 10-16 

0.017513 
0.024296 
0.000658 
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5.7.2 Model proposed by Cole (1995) applied to combined 
Newcastle and Cambridge correlations 

In this section we consider the interaction of the Newcastle-Cambridge indicator 

variable with the model proposed by Cole (1995). Hence we are interested in the 

following model: 

Zr = A + Bind -t- Clog(m) + Dlog(d) + E\ + Flog(m) log(d) + G{\og(m)? 
a 

+ Hind : log(m) + find : \og(d) + Jind : ^ + Kind : log(m) log(d) 
d 

+ Lind : (log(m))2 + e (5.46) 

where Zr is the Fisher's transformed correlation, m = {tl +12)/2 and d = t2 - tl 

{tl < t2). Weighted least squares was used to fit the model proposed by Cole (1995), 

given by equation (5.46), to the combined Cambridge and Newcastle correlations. 

The weights vary from a minimum of 6.928 (sample size of 51) to a maximum of 

39.050 (sample size of 1528). A summary of the fit of the model proposed by Cole 

(1995) applied to the Newcastle and Cambridge correlations can be found in table 

5.38. A plot of Cook's distance versus index can be found on the left of figure 5.38, 

this indicates that there is one influential point: the correlation between Newcastle 

weight Z-scores at birth and 4 weeks (r = 0.811, n = 1413). A summary of the fit of 

the model proposed by Cole (1995) after excluding this one influential observation 

can be found in table 5.39, this model explains about 95.5% of the variation in 

the original data. As the coefficient of the Cambridge-Newcastle indicator and the 

coefficients of the Cambridge-Newcastle indicator interacted with terms of model 

proposed by Cole (1995) are not significant, it would appear that the Cambridge 

and Newcastle correlations could be described by the same model. A plot of the 

standardised residuals versus fitted values, labelled by Newcastle or Cambridge, can 

be found on the right of figure 5.38. There appears to be slightly more variability 

for high correlations. 

5.8 Discussion and Conclusions 

A selection of routine weights for infants in the whole birth cohort were allocated to 

target ages of 6 weeks; 3, 6, 9, 12 and 18 months by.Dr C M . Wright. This chapter 

has dealt with initial exploratory work carried out on the correlation matrix obtained 

for 1055 individuals with weights at all 7 occasions. This correlation matrix exhibits 

the expected behaviour, that weight measurements made close in time were highly 
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Table 5.38: Cambridge & Newcastle correlations [N=505]: Summary of fit 

of model proposed by Cole (1995,1998) 

Value Std. Error t-value 
intercept 
log((!;i -h t2)/2) 
logit2 - tl) 
i/it2-n) 
iogiin + t2)/2)iogit2-n) 
(Iog((«+^2)/2))2 
ind 
log((il -|-^2)/2):ind 
logit2 - tiy.ind 
l/it2-tl):ind 
logiin+t2)/2)logit2-tl): 
(log((n + ^2)/2))^:ind 
i?^=0.9556, i?''(adj)=0.9546 

ind 

3.17745 
0.32650 
-1.48210 
-2.02355 
0.19954 
-0.04646 
-0.08357 
-0.16658 
0.12244 
0.23640 
-0.01009 
0.03166 

0.22826 
0.08556 
0.11048 
0.36726 
0.02694 
0.02113 
0.26151 
0.09793 
0.12949 
0.39888 
0.03228 
0.02458 

13.920 
3.816 

-13.416 
-5.510 
7.406 
-2.198 
-0.320 
-1.701 
0.946 
0.593 
-0.313 
1.288 

Pr(> \t\) 
< 2 X 10-1" 

0.000153 
< 2 X 10-16 
5.79 xlO-8 
5.67 X10-13 

0.028385 
0.749417 
0.089575 
0.344804 
0.553674 
0.754706 
0.198468 

residual SE=0.3681 on 493 df 

Table 5.39: Cambridge & Newcastle correlations [N=504]: Summary of fit 

of model proposed by Cole (1995,1998) after excluding one influential obser

vation 

Value Std. Error t-value Pr(> t ) 

n) 

intercept 
log((n +12) /2) 
logit2 - tl) 
i/it2-n) 
logiin+t2)/2) \ogit2 
(log((n+i2)/2))2 
ind 
log((n -^i2)/2):ind 
log(i2 - i l ) : i n d 
l / ( i 2 - i l ) : i n d 
logiin+t2)/2)logit2 
(log((i l+f2)/2))2 : ind 
R^=0.%58, i?^(adj)=0.9549, residual SE=0.3674 on 492 df 

il):ind 

3.17745 
0.32650 
-1.48210 
-2.02355 
0.19954 
-0.04646 
-0.16694 
-0.11376 
0.12493 
0.24526 
-0.01070 
0.02328 

0.22781 
0.08539 
0.11026 
0.36654 
0.02689 
0.02109 
0.26548 
0.10247 
0.12924 
0.39813 
0.03222 
0.02502 

13.948 
3.824 
•13.442 
-5.521 
7.421 
-2.203 
-0.629 
-1.110 
0.967 
0.616 
-0.332 
0.930 

TT" 

13 

< 2 X 10 
0.000148 

< 2 X 10-16 
5.47 xlO-^ 
5.15 xlO 

0.028078 
0.529759 
0.267464 
0.334197 
0.538154 
0.739997 
0.352625 

correlated but less so the greater the time elapsed between weight measurements. 

Examination of the scaled inverse correlation matrix indicated that the correlation 



5 Correlation structure of Newcastle infancy weight Z-scores 228 

between weight Z-scores may have an approximate Markov correlation structure. 

Principal component analysis was used as an exploratory approach on the corre
lation matrix for the weight Z-scores. The first principal component was found to be 
a measure of overall size. The second principal component contrasted late weights 
with early weights, so a tentative conclusion was that this represented some measure 
of weight gain. Principal component analysis provided the opportunity to arrive at 
a 2-dimensional representation of the data which captured a large proportion of the 
total variation. When the second principal component was plotted against the first 
principal component, the case children were clustered in the lower left hand corner of 
this plot. However the case cluster was not distinct from the rest of the data. This 
observation was not surprising because the 'thrive index' approach used to select 
cases contrasts late weights with early weights and the case children are markedly 
lighter at the end of infancy. 

Preliminary analysis using the log-likelihood of the Normal distribution indicated 
that a correlation matrix with pattern might not be entirely unreasonable. The 
correlation function in a Markov correlation structure is p{ti,tj) = pi*'"*-"!. Thus 
modelling log correlation seemed to be a suitable starting point. We suspected 
that log correlation may be modelled by some function of tl, t2 or the difference 
between the two time-points t2 — tl. Preliminary exploratory analysis concentrated 
on the (7 x 7) correlation matrix at grouped ages, allocated by Dr C M . Wright. Log 
correlation was regressed on individual functions of tl and t2. The Argyle model 
(equation (5.39)) was put forward as an alternative to the model proposed by Cole 
(1995) and Cole (1998a) for modelling the correlation between weight Z-scores in 
infancy. 

The infants contributing to the (7 x 7) correlation matrix had fewer deprived 
children than expected and had a lower median weight Z-score at grouped ages 
of 3 and 6 months. Therefore, these infants may not be typical of the Newcastle 
population as a whole. The ful l set of Newcastle routine weights were then utilised, 
this had birth weight and up to 10 routine weights. Individuals that had two or more 
weights were considered further. The infants that had less than two weights were 
not found to be different to those remaining in the data frame in terms of sex, level 
of deprivation, gestational age if known and birth weight Z-score. A new data frame 
was created with all pair wise combinations for each infant that had two or more 
weights. Correlations between weight Z-scores were then obtained by regrouping the 
age in days to the nearest 4 days; 1, 2 and 4 weeks. Correlations were retained for 
sample sizes that were greater than 50. Grouping to the nearest fortnight seemed 
to be optimal in terms of coverage of t l and t2, sample size and retaining a large 
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proportion of the original data frame. In addition, current guidelines recommend 
that infants should not be weighed more frequently than every fortnight in the first 

6 months (Wright 2000). 

The Argyle model was fitted to the correlations generated from the weekly and 
fortnightly Newcastle weight Z-scores using weighted least squares. The weights 
used were derived from the first order approximation of the variance of the corre
lation. The Argyle model provided a good fit in terms of the multiple correlation 
coefficient, however even after using weighted least squares there was some evidence 
of heteroscedasticity. Further exploration revealed that this dispersion was related 
to the size of the correlation, with more variability for high correlations. This has 
been noted elsewhere (Ghosh 1966), the variance approximation works well for large 
sample sizes and \p\ < 0.9. Further improvements in terms of heteroscedasticity 
might be possible if higher order approximations for the variance were used for the 
weights. There is also the possibility that the correlations themselves might be cor
related, this could also be accounted for using weighted least squares. However this 
facility is not available in R and there is no strong evidence of autocorrelation in 
the residual plots. The correlations between birth weight Z-score and a later weight 
Z-score in the age region of 4-6 weeks are influential observations for both weekly 
and fortnightly correlations. Further work could concentrate on the scatter-plots of 
these subset of correlations to see whether these are unusual in some way. However 
it may be that over this time period, the Newcastle children are catching up with 
the reference children leading to elevated variances for these age groupings. 

In the Argyle model, one was added to the time-point to avoid logging zero. 
The effect of varying this constant was explored. Constants of 2 and 2.8 weeks; for 
fortnightly and weekly correlations, respectively; were found to be optimal. Berkey 
and Reed (1987) had previously explored the effect of changing the constant in the 
flt of the Count (1943) and Reed models (Berkey and Reed 1987) on length data 
from Harvard growth study. Berkey and Reed (1987) didn't arrive at any clear-cut 
answer and suggested assigning t — 0 to conception and t = 1 to birth using the 
following transformation of time scale: t = (12a; + 9)/9 where x is the age in years. 
For data where the age is in weeks, this equates to t = iy -\- 39)/39 where y is age 
in weeks. However, we effectively fitted this model in table 5.15 and found that this 
transformation of time scale did poorly when modelling log-correlations. 

The correlation structure of weight Z-scores in infancy has only been modelled 
explicitly by Cole (1995). Cole (1995) modelled the correlations from 223 infants 
in the Cambridge infant study. Fisher's transformation of correlation was modelled 
using 5 variables: log mean age and its quadratic, log age difference, inverse of 
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age difference and interaction of log mean age and log difference in age, plus an 
intercept. The model proposed by Cole (1995) was also fitted to the weekly and 
fortnightly Newcastle correlations. This model also provided a good fit, in terms of 
the multiple correlation coefficient, however there was some evidence of curvature 
in the residual plots for fortnightly correlations. Moreover, the coefficient for the 
quadratic term of log mean age was not significantly different to zero. Thus the 
model proposed by Cole (1995) without the quadratic term provides a better fit for 
the fortnightly correlations. This is likely to be due to the model proposed by Cole 
(1995) over-fitting the upturn at the end of infancy. The model proposed by Cole 
(1995) provided a better fit to the weekly Newcastle correlations, which is largely 
due to there being some evidence of a upward turn for the correlations with birth 
weight Z-score at the end of infancy. In addition, the Cambridge correlations are in 
effect derived from age grouped to nearest week. However, when the model proposed 
by Cole (1995) is fitted to Newcastle weekly correlations, the coefficients for the log 
mean age are of opposite sign to those in the same functional form fitted to the 
Cambridge correlations. 

The Argyle model was fitted to the Cambridge correlations. This model provided 
a reasonable fit, in terms of the multiple correlation coefficient, however again there 
was evidence of heteroscedasticity within the residual plots. The effect of changing 
the constant added to the time-points to 1.9 weeks in the Argyle model was to 
improve the adjusted multiple correlation coefficient but led to several very large 
negative residuals for high correlations. However, no monotone decreasing function 
of tl and t2 can hope to model the Cambridge tails. 

The assumptions behind the linear model are homogeneity of variance, simplic
ity of structure for the expected value of the response and at least approximate 
normality of the additive errors (Atkinson 1985). I f these three requirements are 
not met on the original scale of measurement of the response, then it may be that 
a non-linear transformation of the response may lead to homogeneity of variance 
and at least approximate normality (Atkinson 1985). Fisher's transformation of 
correlation used by Cole (1995) aims to do the latter. An empirical indicator that a 
transformation might be helpful is if the response is non-negative, which is certainly 
the case for correlations of weight Z-scores. I f the response is non-negative it cannot 
follow a normal distribution. Atkinson (1985) also points out that if all values of 
the response are far from zero and the scatter in the observations is relatively small, 
the transformation will have little effect. The correlations between weight Z-scores 
are all positive so using Fisher's transformation will not map them onto negative 
values, it just disperses them over a wider range of positive numbers. However, the 
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approach used here was to model log correlation as we believed that the correlation 

matrix was near Markov. Log correlation maps the high positive correlations onto 

negative values but does not disperse them over a wider age range. The downside to 

modelling log correlation is that we need to derive weights for use in weighted least 

squares to have homoscedasticity in the residual plots. The advantages in modelling 

log correlation are that the model derived has fewer parameters than that derived 

by Cole (1995). Considering the Argyle model fitted to fortnightly correlations with 

constant 2 weeks added to age, leads to the following model: 

log(r) = -0.037 + 0.273 log(n -f 2) - 0.260 log(t2 -I- 2) + e (5.47) 

Exponentiating the above equation, the model for correlation on the original 

scale, gives: 

( f l -\- 2)''-273 

Note that we are assuming a multiplicative error on the original scale. An alternative 

one variable version of the Argyle model would be to regress log(r) on log(tl + c) — 

Iog(t2 -I- c), i f c is chosen in such a way that the coefficients of the log terms are 

similar. 

Contrast this with the model proposed by Cole (1998a): 

Fisher(r) = 3.18-f 0.33 log 
n + t2 

1.481og(t2 - a) -
2.03 

t2 - tl 

0 . 2 0 1 o g ( — ^ l o g ( t 2 - U ) - 0 . 0 5 log 
2 / V V 

tl^t2 

Transforming this back to a correlation gives: 

a - 1 

where 

a = 578.25 x 

a-l-1 

exp( 
4.06 

( ^ ) i - 0 4 ( t 2 - n ) 2.56 

The practical implications of using equation (5.47) to model correlation, in terms of 

obtaining a conditional weight gain Z-score, will be explored further in Chapter 7. 

We considered whether the Cambridge and Newcastle correlations could essen

tially be described by the same function. The fortnightly correlations from the New

castle infancy data were merged with the correlations from the Cambridge study. We 
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considered the interaction of the Newcastle-Cambridge indicator variable with the 
Argyle model and the model proposed by Cole (1995). When applying the Argyle 
model to the combined Cambridge-Newcastle correlations i t would appear that the 
addition of 2 weeks appears to optimise the fit of the Argyle model. Furthermore, 
the effects of log(tl - I - 2) and \og{t2 + 2) are different for Cambridge and Newcastle 
and that the intercept term for both models is different. The coefficients of the 
log terms for Newcastle correlations are of smaller magnitude than the Cambridge 
correlations. Suggesting that the Cambridge weight Z-scores are more correlated 
than the Newcastle weight Z-scores. When applying the model proposed by Cole 
(1995) to the combined Cambridge-Newcastle correlations the terms involving the 
Cambridge-Newcastle indicator were not significant. I t would appear that the Cam
bridge and Newcastle correlations could be described by the same model. 

A further consideration, is that the correlations between weight Z-scores from 

the Cambridge study might not be representative of correlations observed between 

weight Z-scores obtained routinely. Cole (1998a) does raise this issue in his discus

sion, 

the Cambridge study infants were screened by midwives before 

recruitment, and those thought to be at risk were excluded. For 

this reason the study population is likely to be unusually homo

geneous. (Cole 1998a, pp2706) 

However the research conditions for the Cambridge study are likely to elevate the 

correlations in comparison to community weights, but this is partly counteracted 

by the issue of homogeneity (raised in the previous point) which is likely to re

duce the correlations. The plots for the Cambridge correlations are very regular in 

comparison to those obtained from the Newcastle weekly or fortnightly correlations, 

which is largely due to the issues discussed above and the same group of individuals 

contribute to each correlation. The Cambridge study weights were obtained in a 

research study setting, i.e. the same set of scales, state of undress and observer were 

used. This is likely to lead to reduced measurement error and may lead to a more 

regular appearance of the correlation structure than that obtained from the routine 

Newcastle data (these weights were obtained on different scales, in different states 

of undress and recorded by different observers). 

An additional issue, already raised earlier, is that the Cambridge correlations 

exhibit an upward trend towards the end of infancy. This seems counter intuitive, 

as we might expect the correlation to plateau or decrease. However there may be 

some indication of this feature in the weekly Newcastle correlations between later 
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weight Z-scores with birth weight Z-score. Otherwise, the correlations obtained 
from the routine Newcastle weight data don't really extend much beyond 1 year. 
Boryslawski (1988) presented correlations with birth weight for 100 boys and 100 
girls born in Wroclaw, Poland between 1973 and 1975. These samples excluded 
children that were born at less than 37 weeks gestation or whose birth weight was 
below 2.3 Kg. The children were monitored at monthly intervals in the first year 
of life and three month intervals in the second year of life. These are correlations 
between raw weights, but they show the expected trend that as time elapse increases 
to beyond 1 year the correlation decreases, see table 5.40. An additional point with 
regards to the Wroclaw weights is that the correlations for boys decrease to 6 months 
and then increase to 9 months, the correlations then continue to decrease. A similar 
pattern is observed for girls until the age of 1 year, but there is again a peak in the 
correlation at 15 months and a gradual decrease until 2 years. This observation on 
the raw weight scale may be due to variability observed in raw weights at different 
ages. 

In the statistical literature, explicit modelling of the correlations is rare. In gen
eral the correlations tend to be modelled as an afterthought to improve the fit of 
a specific model or to incorporate non-independent measurements into a reference. 
Wade and Ades (1998) incorporated the correlation in the construction of refer
ences for CD4 counts of uninfected children born to HIV-1 infected woman. Wade 
and Ades (1998) looked at five models (where cr̂  represents measurement error), 
previously proposed by Grady and Helms (1995): zero correlation; constant cor
relation; time (continuous) dependent correlation (pij = cr^p^j-*'); time (discrete) 
dependent correlation (py = cr^p^'j-'')''); and age and time (discrete) dependent 
ip^ - = a'^ipi + P2 log(ii))^*^~*'^^). Wade and Ades (1998) concluded that incorpora
tion of the correlation had little effect on choice of model or on precision of fitted 

Table 5.40: Correlation of birth weight with weights up to 2 years for 100 

boys and 100 girls from Wroclaw, Poland. 

Age (months) 1 2 3 4 5 6 7 8 
Boys 
Girls 

0.87 
0.82 

0.76 
0.58 

0.62 
0.53 

0.52 
0.49 

0.47 
0.44 

0.45 
0.43 

0.41 
0.44 

0.43 
0.44 

Age (months) 9 10 11 12 15 18 21 24 
Boys 
Girls 

0.46 
0.46 

0.46 
0.46 

0.43 
0.45 

0.40 
0.45 

0.34 
0.48 

0.33 
0.47 

0.28 
0.45 

0.27 
0.41 
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centiles. 

Diggle (1988) discussed modelling correlation in the context of a linear model 
for repeated measures. Diggle (1988) suggested using the empirical semi-variogram 
on the residuals from the linear model to suggest a suitable model or check a 
model for the correlation structure. The n x n variance matrix V incorporates 
parameters for measurement error, variation between experimental units and se
rial correlation within units. The serial correlation component, took on the form 
p{\tj — ti\) = exp{—a\tj — ti\'^) where c is 1 (equivalent to AR(1)) or 2. Donnelly et al. 
(1995) applied the empirical Bayes approach of Laird and Ware (1982) to the longi
tudinal model proposed by Diggle (1988). Diggle and Verbyla (1998) later estimated 
the covariance structure non-parametrically by using kernel weighted local linear re
gression smoothing of the sample variogram ordinates and squared residuals. More 
recently. Hooper et al. (2002) estimated the covariance structure of estimated foetal 
weight Z-scores over gestational age using a non-linear regression technique. This 
method was developed to aid diagnosis of intrauterine growth restriction. Hooper 
et al. (2002) used a linear combination of logistic basis functions to model the 
covariance as a function of age. The model for covariance of Z-scores provided a 
breakdown of the variance into components attributable to measurement error and 
other factors, that varied with gestational age (Hooper et al. 2002). Hooper et al. 
(2002) felt that the multi-level approach of Pan and Goldstein (1997), that usually 
assumes that the error variance is constant, was not appropriate for foetal weights 
because the error variance decreases substantially over time in pregnancy. 

To conclude, i t appears that the Cambridge correlations exhibit an upward trend 
at the end of infancy. The model proposed by Cole (1995) and Cole (1998a) for the 
correlation structure of weight Z-scores appears to include a quadratic term to model 
this upturn. The correlations generated from the Newcastle weight Z-scores do not 
exhibit this trend when age is grouped to the nearest fortnight. Exploratory research 
suggested that the correlation structure of weight Z-scores was near Markov. Thus 
suggesting that it may be worth modelling log-correlation. The Argyle model, given 
by equation (5.39), was found to be a promising model for the correlation structure 
of weight Z-scores in infancy. The Argyle model has two coefficients and a constant 
term, and is much simpler than the model proposed by Cole (1995). There is scope 
for further research on weightings used in weighted least squares to improve the fit 
of the Argyle model. In Chapter 7 we will explore the adequacy of the Argjde model 
for calculating conditional weight gain Z-scores. 
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Figure 5.1: Matrix of scatterplots for weight Z-scores at birth and grouped 
ages of 6 weeks; 3, 6, 9, 12 and 18 months 
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Figure 5.2: Scree plot of variances for principal components 
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Figure 5.3: Plot of second principal component versus first principal compo

nent labelled by: Upper panel case or other Lower panel sex 
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Figure 5.4: Plot of second principal component versus first principal compo
nent labelled by: Upper panel level of deprivation Lower panel indicator of 

gestational age if known 
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Figure 5.5: Plots of two cubics derived from covariance matrix of weight Z-

scores: Left Cubic 4.58p^ - 4.022p2 - 6.426p + 5.631. Right Cubic 2.676p^ -
2.207p2-4.454p +3.679 

Cubic derived from covariance matrix 
for152B Individuals <5 grouped ao««} 
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Figure 5.6: Surface plot of correlation at various Timel (tl) and Time2 {t2) 
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Figure 5.7: Newcastle correlations for original age grouping: Scatter-
plots of correlations versus t2 and t2 — tl (points that take on the same value 
of tl are connected) 
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Figure 5.8: Original Newcastle correlations [N=21] (based on 1055 

individuals with weight Z-scores in 7 age groupings): Plots of standardised 

residuals versus fitted values for Argyle model with c = 1 using ordinary and 

weighted least squares 
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Figure 5.9: Original Newcastle correlations [N=21] (based on 1055 
individuals with weight Z-scores in 7 age groupings): Plots of standardised 
residuals versus fitted values for log correlation regressed on log(il + 1) and 
log(i2 - t l ) using ordinary and weighted least squares 

log(r<t1,t2))>=a log(t1+1) + b log(t2-t1) + c + error 
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Figure 5.10: Original Newcastle correlations[N=21]: Exploratory plots 
to see how constant (c) added in model \og{r{tl,t2)) = A\og{tl -I- c) + 
B log(i2 -I - c) H- C -I- e effects model fi t , term coefficients and intercept (using 
weighted least squares) 
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Figure 5.11: Variable width notch box plot of weight Z-scores for birth and 
six age groupings (6, 13, 26, 39, 52 and 78 weeks). The first and second 
box-plot for each age group represents Z-scores for 2360 individuals in rest 
of birth cohort and 1055 individuals with weights in all 7 age groupings, 
respectively 
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Figure 5.12: Plot of weight Z-score versus age for 1055 individuals with 
weights in all 7 age groupings (black points correspond to 63 cases and grey 
points to other children) 
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Figure 5.13: Plot of number of individuals contributing to correlation for 
various age groupings versus tl and t2 
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Figure 5.14: Plot of number of individuals contributing to correlation for 

various age groupings versus t2 - tl 
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Figure 5.15: Newcastle correlations with age smoothed to nearest 
fortnight: Scatterplots of transformed and untransformed correlations ver
sus t2 and t2 — tl (points that have same value of tl are connected) 
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Figure 5.16: Newcastle correlations with age smoothed to nearest 
week: Scatterplots of transformed and untransformed correlations versus t2 
and t2 — ^1 (points that take on the same value of tl are of the same colour, 
the lowess curves for each value of ^1 are the same colour as the scatter of 
points that derived them) 
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Figure 5.17: Age to nearest fortnight: Scatterplots of standardised resid
uals versus fitted values for Argyle model (c = 1). Left Argyle model fitted 
using ordinary least squares Right Argyle model fitted using weighted least 
squares 
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Figure 5.18: Age to nearest fortnight: scatterplots of standardised resid
uals versus fitted values for Argyle model using weighted least squares: 
Upper panel labelled by size of correlation, red points through to vio
let points are low correlations (min(r)=0.32) through to high correlations 
(max(r)=0.98) Lower panel labelled by indicator of sample size (n < 500 or 
n > 500) 

Plot of standardised residuals vs. fitted values 
labelled by sample correlation (r) 

Plot of standardised residuals vs . fitted values 
labelled by sample size (n) 
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Figure 5.19: Age to nearest fortnight: Plot of Cook's distance versus 
index Left Argyle model (c=l) Right Argyle model (c=2.3). Index runs 
from 1 to 385, where 1 is the correlation between weight Z-scores at birth 
and 2 weeks, and 385 is the correlation between weight Z-scores at 52 and 
80 weeks. These indexes represent ordering of the correlations by tl values, 
then ordered by t2 values. 
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Figure 5.20: fortnightly correlations: Exploratory plots to see how con
stant (c) added in model \og{r{tl,t2)) = A\og{tl-\-c) + B\og{t2-\-c)-\-C-^e 
effects model fit, term coefficients and intercept 
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Figure 5.21: fortnightly correlations (excluding two most influential): 
Exploratory plots to see how constant (c) added in model \og{r{tl,t2)) = 
A\og{tl + c) + B\og{t2 + c) + C + e effects model fit, term coefficients and 
intercept 
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Figure 5.22: Age to nearest fortnight: Scatterplots of standardised resid
uals versus fitted values. Left Argyle model with c = 2.3. Right After 
excluding two most influential observations: Argyle model with c = 2. 
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Figure 5.23: Age to nearest week: Scatterplots of standardised residuals 
versus fitted values Left Argyle model with c = 1 fitted using ordinary least 
squares Right Argyle model with c = 1 fitted using weighted least squares 
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Figure 5.24: Newcastle correlations derived from age grouped to 
nearest week: Plot of Cook's distance versus index Left Argyle model 
(c = 1) Right Argyle model (c=2.9) 
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Figure 5.25: Weekly correlations: Exploratory plots to see how constant 
(c) added in model log{r{tl,t2)) = yllog(t l + c) + Slog(i2 + c ) + C + e effects 
model fit, term coefficients and intercept 
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Figure 5.26: Weekly correlations (excluding correlation between weight 
Z-scores at birth and 5 weeks): Exploratory plots to see how constant (c) 
added in model log(r(n, t2)) = A \og{tl + c) + B \og{t2 + c) + C + e effects 
model fit, term coefficients and intercept 
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Figure 5.27: Age to nearest week: Scatterplots of standardised residuals 
versus fitted values Left Argyle model fitted with c = 2.9 using weighted 
least squares Right Argyle model fitted with c = 2.8 using weighted least 
squares (after excluding the most influential observation) 
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Figure 5.28: Cambridge correlations ( including b i r t h v^^eight): Scat
terplots of transformed and untransformed correlations versus t2 and t2 - tl 
(points that take on the same value of are connected) 
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Figure 5.29: Cambridge correlation matrix (including birth 
weight)[N=120,n=221]: Left Plots of standardised residuals versus fitted 
values for Cole's (1995,1998) model Right Plot of Cook's distance versus in
dex for Cole's (1995,1998) model (Index runs from 1 to 120, where 1 is the 
correlation between weight Z-scores at birth and 4 weeks, and 120 is the cor
relation between weight Z-scores at 78 and 104 weeks. This index represent 
ordering of the correlations by tl values followed by ordering oit2 values). 
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Figure 5.30: Cambridge Correlation matrix (excluding birthweight) 
Top left Box-plots of correlation, Fisher's transformation of correlation and 
log correlation, Top right Plot of Fisher's transformation of correlation vs. 
correlation. Bottom left Plot of log correlation vs. correlation. Bottom right 
Plot of log correlation vs. Fisher's transformation 
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Figure 5.31: Newcastle correlations: Plots of standardised residuals ver
sus fitted values for model proposed by Cole (1995) 
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Figure 5.32: Newcastle correlations: Plots of Cook's distance versus index 
for model proposed by Cole (1995) Left Newcastle correlations derived from 
age grouped to nearest fortnight Right Newcastle correlations derived from 
age grouped to nearest week 
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Figure 5.33: Cambridge correlation matrix (including birth 
weight)[N=120,n=221]: Left Plots of standardised residuals versus fitted 
values for Argyle model Right Plot of Cook's distance versus index for Ar
gyle model (c = 1) (Index runs from 1 to 120, where 1 is the correlation 
between weight Z-scores at birth and 4 weeks, and 120 is the correlation be
tween weight Z-scores at 78 and 104 weeks. This index represent ordering of 
the correlations by tl values followed by ordering of t2 values). 
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Figure 5.34: Cambridge correlations (including birth weight): Ex
ploratory plots to see how constant (c) added in model \og{r{tl,t2)) = 
A log{tl + c) + B log{t2 + c) + C + e eflPects model fit, term coefficients and 
intercept 
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Figure 5.35: Cambridge correlation matrix (including birth 
weight)[N=120,n=221]: Left Plots of standardised residuals versus fitted 
values for Argyle model with c=1.9 Right Plot of Cook's distance versus in
dex for Argyle model with c=1.9 (Index runs from 1 to 120, where 1 is the 
correlation between weight Z-scores at birth and 4 weeks, and 120 is the cor
relation between weight Z-scores at 78 and 104 weeks. This index represent 
ordering of the correlations by U values followed by ordering of t2 values). 
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Figure 5.36: Newcastle & Cambridge correlations: Argyle model in
teracted with Newcastle-Cambridge indicator variable Left Plot of Cook's 
distance versus index for Argyle model with c = 1 Right Plot of standard
ised residuals versus fitted values (after excluding two influential Newcastle 
correlations (0,4) and (0,6)) 
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Figure 5.37: Newcastle & Cambridge correlations [N=503] Ex
ploratory plots to see how varying constant (c) added to the time points 
effects fit and coefficients in Argyle model interacted with Newcastle-
Cambridge indicator variable (using weighted least squares) 
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Figure 5.38: Newcastle & Cambridge correlations: Model proposed by 
Cole (1995) interacted with Newcastle-Cambridge indicator variable Left Plot 
of Cook's distance versus index Right Plot of standardised residuals versus 
fitted values (after excluding one influential observation) 
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Chapter 6 

Follow up study at 7-9 years 

In this chapter we introduce data from the Newcastle follow-up study at 7-9 years. 
In section 6.1 we briefly outline the motivation behind the follow-up study and in 
section 6.2 we discuss the variables measured in the research study. In section 6.3 we 
summarise the published research on the case-control study data considered within 
this chapter. A preliminary analysis of data from the systematic sample and case-
control sample can be found in sections 6.5 and 6.4 respectively. We finally conclude 
this chapter with an analysis of the reported parental height data and obtain mid-
parental height Z-scores for children (where possible) within the follow-up study; 
see section 6.6. 

6.1 Motives for follow up study 

In Chapter 4 we introduced the routine infancy weight data. The routine weights 
were retrieved in 1989 for a complete birth cohort of 3415 term infants born in 
Newcastle-upon-Tyne between 1st April 1987 and 31st March 1988. Five years 
later, in 1996, two subsets of these same children formed part of a follow-up study. 
At the time these children were aged 7 to 9 years. 

The primary motivation for the follow-up study was to look at the long term im
plications of failure-to-thrive; in terms of attained growth and cognitive outcome. As 
discussed in chapter 3, infants that experience failure-to-thrive in infancy may later 
have delayed growth, delayed cognitive development, poor educational attainment 
and behavioural problems. Early research in the area of failure-to-thrive concen
trated on children referred to hospital. However the decision to refer a child is often 
made on the basis of their psycho-social background and not on their rate of weight 

271 
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gain (Batchelor and Kerslake (1990) in Drewett et al. (1999)). Therefore hospital 
samples are unlikely to be representative of all children that fail to thrive in infancy. 

Al l the Newcastle infancy data was retrieved from child health records and pri
mary health care professionals. The children and their parents were contacted for 
the first time at the start of the follow-up study. Therefore it seems unlikely that 
there will be any intervention effect on the children that failed to thrive in infancy 
(Corbett 1998). In carrying out the follow-up study it was discovered that only nine 
out of 136 cases had been investigated solely for growth problems or failure-to-thrive 
and two exclusively for feeding problems (Drewett et al. 1999). Similarly, a popu
lation study, carried out in an inner city area of London, found that only four out 
of their 23 cases had been investigated for failure-to-thrive (Dowdney et al. 1987). 

6.2 Data collected in follow-up study and mea
surement technique 

A total of 810 children were singled out to take part in the follow-up study. One 
subset of 326 children were chosen to take part in a case-control study to explore the 
outcomes of failure-to-thrive in infancy. Half of this first subset were identified as 
cases using the 'thrive index' methodology (Wright et al. 1994). The second subset 
of 562 children formed a 20% systematic sample of the birth cohort. These children 
were selected from the 2182 infants that had at least three weights in infancy, with 
every fifth child followed-up (Wright and Cheetham 1999). This was designed to 
achieve a representative sample of Newcastle children. These two subsets give a total 
of 888 children, hence 78 children were selected to be part of the case-control study 
and the systematic sample. The parents of 27 individuals within the case-control 
study agreed to height and weight measurement but not to psychological testing 
(Drewett et al. 1999). So we have anthropometric data on 82% of cases and 91% 
of controls. Of the 562 eligible children for the systematic sample, 448 (80%) were 
successfully traced and measured. 

A study consent form was sent to parents of all children involved in the follow-up 

study to gain a report of both their heights. The heights, weights, head circumfer

ence and blood pressure of the follow-up study children were measured in school by 

the same research nurse. 

Height was measured to the nearest 0.1 cm using the Leicester Height Measurer. 

The children removed their shoes and were positioned with their feet on the marked 
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area. In measuring the height the child was stretched by applying gentle upward 
pressure to the mastoid process. This is supposed to minimise diurnal variation 
(i.e. humans are taller in the morning than in the afternoon) (Whitehouse et al. 
1974). Although this is a recommended procedure, Voss and Bailey (1997) found 
that this process didn't reduce the effects of diurnal variation. Each auxologist that 
uses the stretching procedure has their own measuring error. However, all the height 
measures were taken by the same research nurse and we know roughly the time of 
day of the height measure as this was noted when the blood pressure was taken. 

Weight was measured to the nearest lOOg using portable electronic scales (SECA 
Scales, Model Number 835). Digital scales were used to obtain weights, as dial scales 
are subject to more problems with reader error. The children involved in the study 
were asked to wear light clothing (e.g. shorts and T-shirts or leggings and T-shirt 
or summer dress) and were weighed without shoes. Some of the children failed to 
wear these items either because i t was cold or they forgot, so a code between 1 
and 6 was used for various additional items. Similar items of clothing were subject 
to test weighing. The light clothing weighed between 0.16 Kg for a summer dress 
and 0.28 Kg for leggings and a T-shirt, so a correction of 0.2 Kg was suggested for 
these individuals. The individuals not wearing light clothing were assumed to be 
wearing a T-shirt, which lead to a correction of 0.1 Kg on the top of the average 
weight of coded clothing. Table 6.1 contains the results of test weighing along 
with the suggested average correction. The child's recorded weight was adjusted for 
the weight of clothes worn, this is a standard approach suggested by Tanner et al. 
(1966). 

Head circumference was measured to the nearest 0.1 cm using a circular Leicester 

Table 6.1: Dress coding and suggested weight corrections for various items 
of clothing 

Type of clothing DRESS code Average weight (Kg) Suggested correction (Kg) 
Baseline NA 0 0.2 
Trousers 1 0.25 0.35 
Jeans / dungarees 2 0.6 0.7 
Jogging bottoms 3 0.25 0.35 
Pinafore dress 4 0.25 0.35 
Corduroy trousers 5 0.4 0.5 
Sweater/jumper 6 0.35 0.45 
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measure positioned above the supra orbital ridges. This may be subject to some 
error due to random variation, hair thickness and slippage of tape. 

Systolic blood pressure was recorded using a mercury sphygmomanometer and a 
Doppler probe. This was taken three times in succession, by convention the systolic 
blood pressure and time were both noted on each occasion. Children of this age 
are not used to having their blood pressure taken, so the initial observation may be 
slightly elevated and any data analysis would be based on the last recorded blood 
pressure. The systolic blood pressure at 7-9 is of interest because poor weight gain 
in infancy has been shown to be linked to ischaemic heart disease (Barker et al. 
1989). Analysis of the systolic blood pressure data is deferred to chapter 9. 

The follow-up study data set has the following variables for each individual: 

1. I D Unique identifier from infancy study. 

2. Date.fol - Date at which height, weight, head circumference and blood 
pressure were recorded, which was between February and October of 
1996. 

3. Sex 

4. Date of birth - Age.fol age (in years to 2 decimal places) at follow-
up was derived from taking the time between the date of birth and date 
of follow-up. 

5. Height.fol - Height is to the nearest 0.1 cm and is recorded in cen
timetres. 

6. Weight.fol - Weight is to the nearest 0.1 Kg and is recorded in Kilo
grams. 

7. Head.fol - Head circumference is taken to the nearest 0.1 cm and is 
recorded in centimetres. 

8. S Y S l , S Y S 2 , and S Y S 3 are the systolic blood pressure taken at 
times B P T I M E l , B P T I M E 2 , and B P T I M E 3 , respectively. 

9. D R E S S - code of 1 to 6 for various items of clothing additional to 

'light clothing'. 

10. BMI.fol - The body mass index was derived from the weight adjusted 

for clothing and child's height. 
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11. Mother and Fathers reported heights - These were obtained from 
the consent form for the follow up study. This provided an estimate of 
the fathers and mothers height in inches, which were later converted to 
metric heights. 

In using the reported parental heights we should be aware that adults tend 
to overestimate their heights (Ziebland et al. 1996) and Beyer and Doerr (1998) 
found that estimated heights of short mothers with children of short stature were 
not reliable. However Wright and Cheetham (1999) compared the heights of 48 
measured mothers with the rest of the reported mothers heights and found the 
mean height to be similar within these two groups, although the standard deviation 
was larger for the reported mothers heights. 

The heights, weights, head circumference and B M I were converted to Z-scores 

using the revised UK 1990 growth reference (Freeman et al. 1995; Cole et al. 1995; 

Cole et al. 1998), to give ZscoreH.foI, ZscoreW.foI, ZscoreC.foI and Zs-
coreB.foI, respectively. 

There is also an additional case-control indicator ( C A C O ) . This variable has 9 

codes (including missing) which represent: 

• 1 = Cases however sampled 

• 2 = Controls for 1 

• 3 = Cases identified using original UK 1990 reference 

• 4 = Controls for 3 

• 5 = Cases identified using revised UK 1990 reference 

• 6 = Controls for 5 

• 7 = Cases identified using original UK 1990 reference with sex correc

tion 

• 8 = Controls for 7 

• NA = not within case-control study 

As discussed in chapter 4, the Newcastle infancy data indicated that there was 
a sex bias towards females (Wright et al. 1996) in the original UK 1990 reference 
(Freeman et al. 1995). Combining individuals with CACO 1 and 3 will give cases 
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identified using original UK 1990 standard (Freeman et al. 1995), combining 1 
and 5 gives cases using revised UK 1990 standard (Preece et al. 1996) and similarly 
combining 1 and 7 gives cases identified using a sex correction with obsolete standard 
(this was a temporary measure taken while standards were being revised). The 
number of children within each of the above codings can be found in table 6.2. 

6.3 Published results from case-control study at 
7-9 years 

The children within the case-control study were also studied as part of a project 
for a PhD thesis within the Psychology department in the University of Durham, 
the focus here was on the results of psychological and reading ability tests (Corbett 
1998). Corbett (1998) overall study aim was to ascertain whether there is an asso
ciation between failure to thrive (FTT) in infancy and enduring psychological and 
educational deficits. The children's Intelligence Quotient (IQ) and reading ability 
were tested in school. The mothers of these children were also given an IQ test 
and their heights measured. In addition an extensive interview was carried out at 
home with the mother to collect social, economic, demographic and educational data 
along with a medical history of the child (Corbett 1998). If a mother reported a 
medical problem that might have been associated with poor weight gain, then the 
child's notes were retrieved and reviewed by Dr C M . Wright (blind to case status) 
to rate whether the child could have an organic condition that would 'definitely' 
or 'possibly' result in poor weight gain (Corbett 1998). Fourteen individuals within 
the case-control study had conditions that could possibly or definitely affect growth. 
Two cases and one control were identified as having a medical condition that would 
definitely affect growth. Nine cases and two controls had a medical condition that 
could possibly affect growth. 

The cases within this published research (Drewett et al. 1999) are taken to be 

Table 6.2: Number of children taking part in case-control follow-up study 

CACO 1 2 3 4 5 6 7 8 Total 
No. of children 129 129 19 19 7 7 8 8 326 
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the individuals with CACO indicators 1 and 5, with corresponding controls having 
CACO indicators 2 and 6. Of the 136 cases (52 boys and 84 girls) and 136 controls, 
107 of cases (79%) and 117 of controls (87%) were successfully studied (a slightly 
higher follow-up rate was observed for controls as the 14 individuals that had moved 
outside of the area were replaced). The main conclusions from this research were 
(Drewett et al. 1999; Corbett 1998): 

• At eight years old, mothers in the case-group reported more feeding 
problems in infancy and more organic conditions (i.e. medical condi
tions that may effect growth and cognition). 

• From the interview with the mother, the only statistically significant 

differences were in the proportion of mothers reporting feeding prob

lems and the reported height of fathers. 

• The only further differences observed between case and control groups, 

were birth weight and gestational age. The control group had a slightly 

lower birth weight (see graph 6.1) and shorter reported gestational age 

than cases. 

• The cases were significantly shorter, lighter, thinner and had smaller 
head circumferences than controls (see table 6.3). After adjusting for 
parental heights (using linear regression) a difference of 4.4 cm in mean 
height between case and control children (95% CI 2.92 to 5.90 cm). 

• There were no statistically significant differences in IQ and reading 
ability either before or after adjusting for maternal IQ. 

Several possible explanations were offered within Corbett (1998) and Drewett 
et al. (1999) for finding no significant difference in cognitive outcome. These in
cluded statistical power (the numbers in this study provide a power of between 
75% and 80% to detect a 5-point difference in IQ), exact definition of FTT, that 
as children aged the effect of failure to thrive in infancy diminished and lastly the 
chronicity of FTT is a key variable. The chronicity of FTT refers to the duration. 
Dowdney et al. (1987) and Dowdney et al. (1998) found persisting cognitive differ
ences between their cases and controls, retrospective analysis of clinic weight data 
revealed that cases could have been discriminated on the basis of their declining 
trajectory within the first 12 months of life, however their case criterion for FTT 
required that both height (allowing for parental height) and weight were below the 
tenth percentile at four years so these cases had enduring poor growth. The overall 
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Table 6.3: Comparing anthropometric measures of case and control children 

at 7-9 years (adapted from table in Drewett et. al. (1999)) 

Cases ( N = l l l ) Controls (N=122) 
Mean Mean t P 

Height (cm) 126.0 130.7 6.3 <0.01 
Head circumference (cm) 51.9 52.8 3.86 <0.01 

Median Median x' P 
Weight (Kg) 23.8 27.9 27.9 <0.001 
BMI (Kg/m2) 14.9 16.3 26.3 <0.001 

conclusion by Corbett (1998) was that failure to thrive may affect individuals by 

disrupting their physiological development which predisposes them to health prob

lems in later life, or may be indicative of poor appetite with the potential to lead to 

eating disorders, or may adversely affect emotional and behavioural development. 

Future research plans to investigate behaviour problems and psychiatric disorders in 

this group; in particular, the possibility of continuing problems relating to food and 

food intake in children who have failed to thrive in infancy (Drewett et al. 1999). 

A further study has been conducted on just the case-control group, which involves 

re-measuring individuals and administering various psychological questionnaires. 

My research is only on the anthropometric and blood pressure data, so the results 

from IQ and reading tests will not be discussed in any further detail in this chapter. 

As already discussed in Chapter 4, the birth weight Z-scores in the original analysis 

were slightly out because of a numerical error in the FORTRAN code used by Dr 

C M . Wright to obtain the weight Z-scores at birth. The identification numbers of 

children defined as cases can be found in table 4.14. 

6.4 Preliminary analysis of systematic sample 

6.4.1 Summary plots and statistics 

The systematic sample data frame contains data for 561 individuals (277 boys, 284 

girls), because data for ID 1090 was discovered as part of the case-control study to 

have been born at 32 weeks. Seventy seven of these individuals also belonged to the 
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case-control study. Obviously we should be aware of the 34 individuals that belong 
to the case arm of the study because these children have poor attained heights, 
weights, head circumferences and BMI's at follow-up (Drewett et al. 1999). I t wcis 
felt that the presence of the case children could unduly influence our assessment 
of the revised UK 1990 reference. Therefore, we will only consider the systematic 
sample excluding cases in our data analysis below. This leaves 527 children (263 
boys, 264 girls). 

Boxplots of the Z-scores for height, weight, BMI and head circumference by sex 
are produced in figure 6.2. The boxplots of Z-scores for height, weight and B M I 
look reasonably symmetric about zero. However, the distribution of Z-scores for 
head circumferences are shifted below zero and there are several females with outly
ing head circumference Z-scores. ID 3594 had an extremely high head circumference 
(head circumference = 62.9cm, Z = 5.62); either due to measuring error or because 
he is also the heaviest child. Therefore this child's head circumference Z-score was 
excluded from the boxplot for head circumference and the summary statistics pre
sented in table 6.4. 

Summary statistics for boys and girls are given in tables 6.4 and 6.5, respec
tively. We have weight and height data for 428 individuals (214 boys, 214 girls), 
head circumference data for 426 individuals (213 boys, 213 girls) and systolic blood 
pressure for 420 individuals (211 boys, 209 girls). We have height and weight data 
for 7 additional individuals compared to previously published work (Wright and 
Cheetham 1999), because some individuals that were thought to belong only to the 
case-control study were discovered to be part of the systematic sample as well. As 
noted above, the distribution of Z-scores for head circumference are shifted to left 
of zero and the variance of the head circumference Z-scores for girls appears to be 
higher than the boys. 

6.4.2 Adequacy of U K 1990 growth reference for Newcastle 
children at 7-9 years 

As discussed in chapter 4, Z-scores, by construction, are expected to be symmetri

cally distributed and have a zero mean and variance of one. Quantile-quantile plots 

were produced for the Z-scores for height, weight, BMI and head circumference by 

sex. The quantile-quantile plots indicated that there was no reason to doubt the 

normality of the Z-scores for weight, height, B M I and head circumference (boys 

only). However, the quantile-quantile plot of the head circumference Z-scores for 
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Table 6.4: Boys: Summary statistics of measurements made in follow-up 
study (systematic sample excluding cases) 

Min. LQ Median Mean UQ Max. SD no. 
Age.fol 7.720 8.340 8.565 8.559 8.788 9.220 0.301 214 
Height.fol 
ZscoreH.foI 

118.5 
-2.450 

127.5 
-0.590 

130.9 
-0.005 

130.9 
-0.003 

134.1 
0.600 

146.5 
2.310 

5.3 
0.934 

214 
214 

Weight.fol 
ZscoreW.foI 

19.20 
-2.560 

24.90 
-0.635 

27.30 
0.080 

28.37 
0.088 

30.49 
0.710 

50.40 
3.020 

5.127 
1.059 

214 
214 

BMI.fol 
ZscoreB.fol 

11.80 
-3.900 

14.95 
-0.655 

15.92 
0.000 

16.46 
0.117 

17.40 
0.865 

29.07 
3.550 

2.319 
1.123 

214 
214 

HeadC 
ZscoreC.foI 

49.00 
-3.170 

52.20 
-1.120 

53.15 
-0.580 

53.34 
-0.473 

54.40 
0.190 

62.90 
2.120 

1.631 
0.9486 

214 
213 

SYS BP 65.00 82.00 90.00 88.55 95.00 112.00 9.615 211 

Table 6.5: Girls: Summary statistics of measurements made in follow-up 

study (systematic sample excluding cases) 

Min. LQ Median Mean UQ Max. SD no. 
Age.fol 7.820 8.320 8.600 8.585 8.838 9.220 0.320 214 
Height.fol 
ZscoreH.foI 

113.8 
-3.120 

126.0 
-0.798 

129.5 
-0.160 

129.8 
-0.130 

133.9 
0.505 

145.5 
2.430 

6.0 
1.009 

214 
214 

Weight.fol 
ZscoreW.foI 

17.70 
-2.980 

25.00 
-0.678 

27.70 
-0.090 

28.43 
-0.004 

31.60 
0.705 

44.80 
2.690 

5.213 
1.0482 

214 
214 

BMl.fol 12.50 15.12 16.28 16.74 17.71 25.53 2.282 214 
ZscoreB.fol -2.610 -0.590 0.070 0.100 0.728 2.800 1.038 214 
HeadC 48.00 51.20 52.20 52.27 53.20 57.30 1.612 213 
ZscoreC.foI -4.280 -1.650 -0.810 -0.790 -0.110 3.320 1.296 213 
SYS BP 64.00 80.00 88.00 87.46 96.00 116.00 9.526 209 

girls indicated that this distribution has heavier tails than the normal distribution. 
There is no reason to doubt that the mean Z-score for height, weight and BMI is 
zero. However there is strong evidence to suggest that the mean Z-score for head 
circumference is less than zero; see table 6.6. There is no reason to doubt that the Z-
scores for height, weight, B M I (girls only) and head circumference (boys only) have 
a variance of 1. There is reason to doubt that the variance of the head circumference 
Z-scores for girls is 1. However we should be aware that the F-test is sensitive to de
partures from normality and quantile-quantile plots indicated that the distribution 
of the Z-scores for head circumference had heavy tails for girls. Furthermore, the 
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elevated variance is partly a result of the 8 outlying Z-scores for head circumference 
(see figure 6.2). There is also reason to doubt that the variance of BMI Z-scores for 
boys is 1. Again, the elevated variance is partly due to 4 outlying Z-scores for BMI 
(see figure 6.2). 

The World Health Organisation (WHO) has produced guidelines for assessing the 
standard deviation of height-for-age and weight-for-age Z-scores (WHO 1995). The 
standard deviation (SD) of Z-scores should be close to the expected value of 1. A 
SD significantly lower than 0.9 describes a distribution that is more homogeneous, 
or one that has a narrower spread, compared to the reference population (WHO 
1995). Similarly if the SD is between 1.1 and 1.2, the distribution is wider spread 
than the reference (WHO 1995). A SD above 1.3 indicates inaccurate data due to 
measurement error or incorrect age reporting (WHO 1995). According to WHO 
guidelines (WHO 1995), the expected range of SD's of the Z-score distribution for 
the anthropometric indicators are: 

1. height-for-age Z-score: 1.1 to 1.3 

2. weight-for-age Z-score: 1.0 to 1.2 

The standard deviation of weight Z-scores for boys and girls are within the region 
suggested in point (2). The standard deviation of height Z-scores for girls is within 
the range suggested in point (1). However the standard deviation of height Z-scores 
for boys is a little lower than one. 

As discussed in chapter 4, we are also need to examine whether there is any linear 
trend in the Z-scores with age. Plots of the Z-scores for height, weight, BMI and 
head circumference versus age can be found in figures 6.3 and 6.4. There appears 
to be some indication of a negative linear trend with age for the height and weight 
Z-scores of boys. Table 6.7 summarises the results of regressing the Z-score for 
weight, height, B M I and head circumference on age by sex. The results from table 
6.7 indicate that there is no reason to doubt the null hypothesis of zero slope for 
B M I and head circumference, indicating that the BMI and head circumference data 
at 7-9 years may be appropriately adjusted for age by the revised UK 1990 growth 
reference. In table 6.7, for girls, there is no reason to doubt the null hypothesis of 
zero slope for height and weight. However, the same isn't true for the boys' height 
and weight Z-scores. Thus indicating there may be some trend in the Z-scores for 
weight and height with age for boys. 

The main conclusion from assessing the adequacy of the revised UK 1990 growth 

reference is that children in Newcastle tend to have smaller head circumferences at 
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Table 6.6: Systematic sample (excluding cases): Results of testing that (a) 
the mean Z-score for height, weight, B M I and head circumference is zero (by 
sex) and (b) the variance of the Z-score for height, weight, BMI and head 
circumference is one (by sex) 

Z-score sex t p 95% CI 
Height Boys 

Girls 
-0.0424 0.9662 
-1.8883 0.0604 

-0.1286, 0.1232 
-0.2662, 0.0057 

Weight Boys 
Girls 

1.2126 0.2266 
-0.0515 0.959 

-0.0549, 0.2305 
-0.1449, 0.1375 

BMI Boys 
Girls 

1.5191 0.1302 
1.4133 0.159 

-0.0347, 0.2680 
-0.0396, 0.2400 

Head 
Circumference 

Boys 
Girls 

-7.277 6.539 x lO" '̂̂  [-0.6011, -0.3449] 
-8.8925 2.647 x 10"^^ [-0.9647, -0.6146] 

Z-score sex ^ ^ ^ 4 ^ approx. 95% CI 
p-value 

Height Boys 
Girls 

185.95 0.1900 
216.82 0.8531 

0.7283, 1.0658 
0.8492, 1.2427 

Weight Boys 
Girls 

238.9907 0.2079 
234.007 0.3088 

0.9361, 1.3698 
0.9165, 1.3412 

BMI Boys 
Girls 

268.6928 0.0070 
229.2591 0.4308 

1.0524, 1.5400 
0.8980, 1.3140 

Head 
Circumference 

Boys 
Girls 

190.7841 0.3029 
356.0492 2.6403 xlO'^^ 

0.7505, 1.0992 
1.4006, 2.0514 

7-9 years than those children that contribute to the UK reference. Furthermore, it 
is not entirely unreasonable to use the revised UK 1990 reference to convert weight, 
height and B M I of Newcastle children to Z-scores at 7-9 years. 

Table 6.7: Slope coefficients from regression of Z-scores for height, weight, 

BMI and head circumference on age of follow-up assessment (by sex) 

Sex Z-score Estimate Std. Error t value Pr(> \t\) 
Boys Height 

Weight 
BMI 
HeadC 

-0.4643 
-0.5668 
-0.3842 
-0.1718 

0.2104 
0.2381 
0.2545 
0.2158 

-2.206 
-2.380 
-1.510 
-0.796 

0.0284 
0.0182 
0.133 
0.427 

Girls Height 
Weight 
BMI 
HeadC 

0.1192 
0.0038 
-0.1050 
0.3760 

0.2166 
0.2252 
0.2228 
0.2778 

0.55 
0.017 
-0.471 
1.353 

0.583 
0.987 
0.638 
0.1774 
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6.4.3 Impact of socio-economic status on attained height, 
weight, B M I and head circumference 

Historically it has been found that children of a lower socio-economic status end up 
smaller adults. For example, in the 1872-3 survey, urban children who worked in 
factories and had parents that did the same, were 4 centimetres shorter and 2 Kg 
lighter by the age of 12 than children who lived in non-factory rural or suburban 
districts (Tanner 1981). More recently in the UK, the diflference in height between 
children of professional and unskilled manual fathers, is: 

1. For boys, nearly 2 cm at age 3 rising to 4 cm at adolescence and falling 

again to 3 cm in young adulthood. 

2. For girls, i t is about 1.5 cm at three rising to 3 cm at adolescence and 
falling to 2 cm in adults (Rosenbaum et al. (1985) in Tanner (1989)). 

Wenlock et al. (1986) (in Tanner (1989)) found that the weight differences tended 

to be somewhat less than height differences, because the worse-off children have a 

higher weight for height. 

In 1989, each child was matched to a neighbourhood using their postcode, the 
levels of deprivation for these areas were then assessed using the Townsend score, 
which summarises census data on car and home ownership, overcrowding and un
employment rates (Wright et al. 1994). The child's socio-economic status may have 
changed since this mapping, e.g. moved house, father becoming unemployed, di
vorce etc. However, Lasker and Mascie-Taylor (1989) found that growth in stature 
and weight after age seven is little aff'ected by social class as most differences are 
already established by this age. Thus it seems reasonable to consider the impact of 
level of deprivation (in infancy) on anthropometric measures at 7 to 9 years. 

Table 6.8: Summary of the number of children that have anthropometric 

data by sex and level of deprivation 

SES level Boys Girls Total 
affluent I 21 TT 38" 
intermediate 2 147 151 298 
deprived 3 46 46 92 
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In table 6.8 we summarise the number of children with anthropometric data at 
7 to 9 years by sex and level of deprivation. The sample sizes under consideration 
for the deprived and affluent children are small. Thus, the data analysis is purely 
exploratory and the discussion that follows only provides tentative conclusions. We 
would require much larger sample sizes to explore the impact of level of deprivation 
on attained height, weight and BMI at 7 to 9 years. In figures 6.5 and 6.6 we 
produce variable width notch box-plots for the systematic sample (excluding cases) 
of the Z-scores for height, weight, B M I and head circumference by sex and level 
of deprivation. The boxplots for B M I and head circumference, by sex, indicate 
that there is no difference in medians for different levels of deprivation (see figure 
6.6), thus suggesting that level of deprivation has little impact on BMI and head 
circumference. I f we consider the boxplots for height and weight Z-scores by level 
of deprivation for girls, see figure 6.5, there is a significant difference between the 
medians for deprivation levels 2 and 3 (W = 4513, p = 0.0021 for height Z-score 
and W — 4251, p = 0.0216 for weight Z-score). I f we now consider the boxplot for 
height Z-scores by level of deprivation for boys, see figure 6.5, there is a significant 
difference between the medians for deprivation levels 1 and 2 (W = 2159.5, p = 
0.0032). Although the notches in boxplot for weight Z-scores by level of deprivation 
for boys in figure 6.5 overlap, there is some evidence to suggest that the median 
weight Z-scores for deprivation levels 1 and 2 are different (W = 1954, p = 0.0493). 
Thus, in agreement with previous studies, there is some indication that level of 
deprivation may influence height and weight Z-scores at 7-9 years. Furthermore, the 
impact of level deprivation appears to be different for girls and boys suggesting that 
the intermediate level of deprivation may not be well discriminating. 

6.5 Preliminary analysis of case-control sample 

There have been very few long term studies on the consequences of failure to thrive 
(Wright 2000). In the pre-school years there tends to be a gradual improvement; 
i.e. partial catch up growth (Kristiansson and Failstrom 1987; Wright et al. 1998) 
but it is not known if there is any lasting deficit (Wright 2000). As discussed in 
the introduction to this chapter, the role of the case-control study was to establish 
whether failure to thrive in infancy had any effect on later IQ and reading ability 
at 7-9 years. However, we are also interested in the impact that failing to thrive 
in infancy has on future growth outcome. Dowdney, Skuse, Heptinstall, Puckering, 
and Zur-Szpiro (1987) in 1984 identified 25 cases of growth retardation at the age 
of 4 years from health clinic records in a socioeconomically disadvantaged inner-city 
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area of London from 1868 children. The cases identified were significantly, shorter, 
lighter and leaner than a comparison group at 11 years (Dowdney et al. 1998). A 
group of 42 cases, that had weights below the third centile for at least 3 months, 
were identified from a one year cohort in an inner-city area of south London (Boddy 
et al. 2000). At 6 years, these case children were considerably smaller than matched 
comparisons (Boddy et al. 2000). 

There are 136 individuals (52 boys, 84 girls) in the case data frame and 133 
individuals (54 boys, 79 girls) within the control data frame. Summary statistics 
were produced for the case and control groups by sex and these can be found in tables 
6.9 and 6.10. I t would appear that distribution of the Z-scores for case children is 
shifted to the left of control children. 

In performing a t-test we assume that the cases and controls comprise two inde
pendent normal random samples. Quantile-quantile plots for the Z-scores for height, 
weight, B M I and head circumference were produced for the case-control study boys 
and girls. The quantile-quantile plots suggested that the assumption of normality 

Table 6.9: Case-control study: Summary statistics of measurements made in 

follow up study for boys 

group Min LQ Median Mean UQ Max SD no. 
Age Case 

Control 
7.870 
8.130 

8.305 
8.370 

8.480 
8.600 

8.501 
8.556 

8.740 
8.710 

9.070 
9.210 

0.309 
0.246 

43 
45 

Height Case 
Control 

115.0 
119.9 

122.0 
128.0 

125.4 
131.5 

125.7 
132.1 

128.9 
134.9 

136.7 
148.6 

5.196 
5.850 

42 
45 

ZscoreH Case 
Control 

-2.770 
-1.750 

-1.595 
-0.560 

-0.870 
0.150 

-0.878 
0.205 

-0.195 
0.590 

1.190 
2.960 

0.930 
0.984 

42 
45 

Weight Case 
Control 

19.45 
20.85 

21.30 
26.10 

23.28 
28.80 

23.57 
29.33 

25.06 
31.80 

29.05 
47.90 

2.609 
5.561 

42 
45 

ZscoreW Case 
Control 

-2.620 
-1.850 

-1.728 
-0.370 

-1.110 
0.380 

-1.086 
0.286 

-0.543 
1.030 

0.490 
2.710 

0.876 
1.0419 

42 
45 

BMI Case 
Control 

12.96 
12.95 

14.10 
15.34 

14.72 
16.25 

14.86 
16.73 

15.44 
17.29 

17.34 
29.07 

1.038 
2.757 

42 
45 

ZscoreB Case 
Control 

-2.470 
-2.420 

-1.360 
-0.420 

-0.770 
0.200 

-0.779 
0.222 

-0.293 
0.730 

0.770 
3.550 

0.785 
1.177 

42 
45 

Head Case 
Control 

49.10 
50.70 

51.35 
52.30 

52.20 
53.40 

52.41 
53.44 

53.25 
54.40 

57.30 
56.40 

1.710 
1.367 

43 
45 

ZscoreC Case 
Control 

-3.090 
-2.120 

-1.750 
-1.110 

-1.120 
-0.410 

-1.019 
-0.383 

-0.475 
0.190 

2.080 
1.460 

1.096 
0.863 

43 
45 

SYS BP Case 
Control 

68.00 
68.00 

78.00 
84.00 

86.00 
92.00 

83.72 
90.22 

89.00 
100.00 

100.00 
110.00 

8.172 
11.129 

43 
45 
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Table 6.10: Case-control study: Summary statistics of measurements made 
in follow up study for girls 

group Min LQ Median Mean UQ Max SD no. 
Age Case 7.910 8.360 8.600 8.571 8.840 9.270 0.325 69 Age 

Control 7.780 8.320 8.540 8.558 8.790 9.150 0.301 77 
Height Case 108.5 122.5 126.5 126.3 130.0 144.0 6.110 69 Height 

Control 113.8 125.6 129.9 129.6 132.9 141.9 5.838 77 
ZscoreH Case -3.780 -1.400 -0.650 -0.738 -0.050 2.110 1.060 69 

Control -2.920 -0.790 -0.170 -0.154 0.450 1.900 0.987 77 
Weight Case 17.30 21.75 24.83 24.77 27.40 33.80 3.968 68 Weight 

Control 20.55 24.95 26.90 28.51 31.10 43.40 5.075 77 
ZscoreW Case -3.690 -1.705 -0.610 -0.825 -0.030 1.000 1.055 68 

Control -1.740 -0.670 -0.120 0.049 0.700 2.000 0.936 77 
BMI Case 12.76 14.09 15.17 15.41 16.55 20.60 1.661 68 

Control 13.51 15.14 . 16.23 16.86 17.95 22.76 2.104 77 
ZscoreB Case -2.390 -1.330 -0.625 -0.561 0.078 1.750 0.925 68 

Control -1.660 -0.570 -0.020 0.191 0.800 2.170 0.913 77 
Head Case 47.30 50.60 51.70 51.49 52.50 56.00 1.735 65 

Control 47.00 51.40 52.50 52.34 53.30 56.50 1.830 77 
ZscoreC Case -4.900 -2.090 -1.230 -1.407 -0.550 2.120 1.414 65 

Control -5.060 -1.500 -0.600 -0.722 0.070 2.520 1.470 77 
SYS BP Case 60.00 78.00 86.00 84.94 94.00 108.00 10.303 64 

Control 70.00 82.00 88.00 88.17 94.00 128.00 10.762 76 

was not entirely unreasonable. Results of the two-sample t-test on case and con
trol samples (assuming unequal variance) can be found in table 6.11. It appears 
that case children are significantly shorter, lighter, leaner and have smaller head 
circumferences than control children. 

In figure 6.7 we have produced a variable width notch boxplot for the Z-scores 
for weight, height, BMI and head circumference by case-control status and sex. For 
height, weight and BMI the difference in medians between case and control boys is 
greater than the difference in medians for case and control girls. In table 6.12 we 
summarise results from testing that the median of the Z-scores for height, weight, 
B M I and head circumference are the same in case and control children by sex. Again, 
it would appear that the case children are significantly shorter, lighter, leaner and 
have smaller head circumferences than control children. 

With the exception of control boys, the boxplots for height Z-score are reason

ably symmetric (see figure 6.7). There is a case girl (ID 1813) with an extremely 

low height Z-score (ZscoreH.foI = -3.78); she is an organic case with a condition 
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Table 6.11: Case-control study: Results of testing that the mean Z-score for 

height, weight, B M I and head circumference is the same in cases and controls 

(by sex) 

Z-score 
ZscoreH.fol 

ZscoreW.fol 

ZscoreB.fol 

ZscoreC.foI 

sex 
Boys 
Girls 
Boys 
Girls 
Boys 
Girls 
Boys 
Girls 

t 95% CI 
-5.2813 
-3.436 
-6.6589 
-5.2505 

9.718 x l O - ' 
0.0008 

2.670 x lO-^ 
5.751 x lO-^ 

-4.6978 
-4.9186 

1.125 x lO-^ 
2.406 xlO-6 

-3.0137 
-2.8253 

0.0035 
0.0054 

-1.4916, 
-0.9206, 

-0.6757 
-0.2481 

•1.7808, 
•1.2041, 

•0.9617 
•0.5452 

•1.4260, 
•1.0549, 

•0.5770 
•0.4500 

•1.0551, 
•1.1647, 

-0.2158 
-0.2056 

Table 6.12: Case-Control study: Results of testing that the median Z-score 

for height, weight, B M I and head circumference is the same in cases and 

controls (by sex) 

sex Case notches Control notches W p 
ZscoreH.fol Boys 

Girls 
(-1.179,-0.561) (-0.097,0.397) 416 7.144 x10-"^ 
(-0.883,-0.417) (-0.390,0.050) 1798 7.702 xlO-^ 

ZscoreW.fol Boys 
Girls 

(-1.371, -0.849) (0.079, 0.681) 294 3.277 x lO"" 
(-0.900, -0.320) (-0.364, 0.124) 1526 1.528 xlO-^ 

ZscoreB.fol Boys 
Girls 

(-1.029, -0.511) (-0.047, 0.4470 442.5 2.006 xlO"^ 
(-0.869,-0.381) (-0.264,0.224) 1504 1.024 x10"^ 

ZscoreC.foI Boys 
Girls 

(-1.399, -0.841) (-0.690, -0.130) 611.5 0.003 
(-1.495, -0.965) (-0.879, -0.321) 1781.5 0.003 

that would definitely affect growth. The boxplots for weight Z-scores are reasonably 

symmetric for the boys but not for the girls (see figure 6.7). There are three control 

boys with extreme BMI Z-scores (see figure 6.7). If we now consider the boxplot for 

head circumference Z-scores, there are four girls with extremely low head circumfer

ence Z-scores (see figure 6.7): these are two cases (IDs 1766 and 2188: both have a 

medical condition that could affect growth) and two controls (IDs 342 and 639; ID 

639 also has a outlying low height Z-score). 
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6.6 Reported parental height data 

In section 2.6 we discussed the role of parental height data in the assessment of a 
child's attained height. Here we carry out a preliminary analysis of the reported 
parental height data. We then go on to obtain mid-parental height Z-scores and use 
the conditional approach to contrast a child's height Z-score at 7-9 years with their 
reported mid-parental height Z-score. In the follow-up study parents were asked to 
report their heights on the consent form for the follow-up study in feet and inches. 
In addition, mothers of children that participated in the case-control study were 
measured by Dr S.S. Corbett and were also asked to report the fathers height. The 
reported heights were then converted to centimetres and Z-scores were obtained for 
all parental heights using the LMS values at the age of 23 from the revised UK 1990 
growth reference (Freeman et al. 1995; Preece et al. 1996).^ 

6.6.1 Parental height data - systematic sample 

The summary statistics for the mothers and fathers reported heights within the sys
tematic sample can be found in table 6.13. We have reported heights for 397 fathers 
and 406 mothers with 396 children having both. There is slightly more variability in 
the reported parental heights than the adult heights that contribute to the UK 1990 
reference. The mean of the reported fathers heights was just over 5'9", whereas the 
mode and median was 5'10". The mean of the reported mothers heights was 5'4", 
whereas the mode and median were 5'2" and 5'4", respectively. There appears to be 
an outlying reported height for a mother of 6'5.5" (her partner is 6'2.5"). As can be 
seen from table 6.14, the majority of parents reported their heights to the nearest 
whole inch, with mothers giving their heights in fractions of an inch more frequently 
than men (Chi-square test on table 6.14 after combining height measures given to 
quarter and half inch in one column: x^=4.787, p=0.029). The mean paternal height 
is 176.3 cm and the mean maternal height is 162.3 cm, giving a sex difference of 
14 cm which is the same as the recommended sex correction. A histogram of the 
reported imperial parental heights can be found in figure 6.8, this indicates that the 
reported heights of the mothers are fairly normally distributed with one outlier as 
mentioned above. However, the histogram of the reported fathers heights indicates 
a much higher proportion of fathers reporting heights of 5'10"or 5'ir', this could 

^Cole (2000b) suggested using LMS values at the age of 22 years to convert parental 
heights to Z-scores because the macro to calculate Z-scores in Excel does not allow a Z-
score to be calculated at the age of 23. This will not be of practical importance as the 
LMS values change little at this age. 



6 Follow up study at 7-9 years 289 

reflect the tendency for adults to overestimate their heights (Ziebland et al. 1996). 
Therefore the distribution of reported fathers heights is skewed with tail to left; 
indicating that the distribution of fathers reported height measures are not normal. 

I f we carry out a t-test on the null hypothesis that the mean of the Z-scores for 
the reported heights is zero, then t-values are -4.31 (p = 2.06 xlO~^) and -4.86 (p = 
1.71 xlO~^) for mothers and fathers, respectively. However this result is not exactly 
surprising, as the current UK 1990 growth reference is based on modern data and in 
the UK there is a continuing secular trend in height. The implication of the secular 
trend in height means that the average height of adults today is greater than i t 
was say 30 years ago. I f we consider the obsolete Tanner-Whitehouse standards for 
height (Tanner et al. 1966), the 50th centile for boys is at 174.7 cm at 18 years and 
the 50th centile for girls is 162.2 cm at 16 years, these values are slightly lower than 
the median reported parental heights. 

A box-plot of the reported parental heights (converted to metric units) by socio
economic status can be found in figure 6.9. The sample sizes under consideration 
for the parents of deprived and affluent children are small. Thus, the data analysis 

Table 6.13: Summary statistics for reported heights in systematic sample 

Height Min. LQ Median Mean UQ Max. SD 
Fathers (n=397) 
(feet) 
(em's) 
Z(Father) 

5.000 5.583 5.833 5.783 6.000 6.500 0.262 
152.4 170.2 177.8 176.3 182.9 198.1 7.998 

-3.7810 -1.1780 -0.0629 -0.2855 0.6807 2.9120 1.171 
Mothers (n=406) 
(feet) 
(em's) 
Z (mother) 

4.833 5.167 5.333 5.325 5.500 6.458 0.231 
147.3 157.5 162.6 162.3 167.6 196.9 7.036 

-2.7370 -1.0520 -0.2090 -0.2496 0.6336 5.4790 1.167 

Table 6.14: Pattern of reporting in mothers and fathers 

parent inch 1/2 inch 1/4 inch 
father 369 26 2 
mother 358 41 7 
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is purely exploratory and the discussion that follows only provides tentative conclu
sions. We would require much larger sample sizes to explore the impact of level of 
deprivation on reported parental height. The median reported heights of fathers for 
classes 1 and 2 are very similar, however the median height of fathers from class 3 is 
markedly shorter. The notches for affluent are at (174.91,180.69) and for deprived at 
(171.27, 174.17); these notches do not overlap indicating there is some evidence that 
the median heights of affluent and deprived are different (W = 1640, p = 0.0484). 
A similar pattern is observed for the reported mothers heights. The notches for 
affluent are at (162.76,167.44) and for deprived at (158.57, 161.47); these notches do 
not overlap but the difference in medians fails to reach 5% significance level when 
we apply the Wilcoxon (Mann-Whitney) test (W = 1698, p = 0.0899). 

The mid-parental height was calculated for 396 children using equation (2.19). 
The target centile range for each individual was obtained by adding and subtracting 
10 cm to the mid-parental height and then obtaining the corresponding Z-score. 
Three hundred and thirty one children had heights at 7-9 years within their target 
centile range, fifty six were outside their target centile range (38 children were taller, 
18 were shorter). 

6.6.2 Parental height data - case-control study 

Table 6.16 contains the summary statistics for the parental height data from the 
case-control study. A two sample t-test (for independent samples) was applied 
to the mothers measured heights because the assumption of normality (see figure 
6.10) was reasonable. The t-value from the two-sample t-test was -1.547 (p=0.123) 
(Wilcoxon Mann-Whitney test W=5029.5, p=0.084); which indicates there's no rea
son to doubt the null hypothesis that the mean height of the case mothers is the same 
as the mean height of the control mothers. A t-test was not applied to the reported 
fathers heights (by mothers) as the box-plot for the case fathers showed evidence of 

Table 6.15: Summary statistics for reported mid-parental heights in system

atic sample 

(n=396) Min. LQ Median Mean UQ Max. SD 
MPH 147.9 162.2 170.8 169.5 176.7 191.1 8.98 
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skewness. I f instead we use the non-parametric Wilcoxon (Mann-Whitney) test, we 
find that W = 4598.5 (p = 0.0054). Therefore there is strong evidence against the 
null hypothesis that the median reported heights of fathers in the case and control 
arms of the study are the same. A box-plot of the measured mothers heights and 
reported fathers heights can be found in figure 6.11, with the exception of the case 
fathers the distribution of measured and reported heights are reasonably symmetric. 
As expected; the notches of the box-plots for case and control fathers do not overlap 
indicating the medians are significantly different at the 5 percent level. 

We only have measured and reported heights for 24 mothers and as can be seen 
from figure 6.12 there appears to be no systematic pattern in terms of whether moth
ers over or under estimates in relation to actual height. The majority of mothers 
actually underestimate their heights, which is at odds with previous reports (Zieb-
land et al. 1996; Himes and Roche 1982), although these authors results are based 
on much larger samples. There are 25 fathers with two reported heights (on consent 
form and reported by mother), 10 of these agree, 6 mothers report lower heights and 
9 mothers report higher heights. 

Table 6.16: Summary statistics for measured and reported parental heights, 

and mid-parental heights in case-control study (reported fathers height is 

taken from mother). 

Group Min. LQ Median Mean UQ Max. SD no. 
Measured 
mothers 

case 
control 

142.5 157.0 161.1 161.4 165.0 179.0 6.22 104 
142.5 158.9 162.4 162.7 167.0 181.6 6.52 112 

Z (Mother) case 
control 

-3.536 -1.135 -0.443 -0.403 0.196 2.518 1.031 104 
-3.536 -0.812 -0.244 -0.181 0.532 2.949 1.082 112 

Reported 
fathers 

case 
control 

157.5 170.2 172.7 174.6 180.3 195.6 7.81 104 
154.9 172.7 177.8 177.0 182.9 193.0 7.24 113 

Z(Father) case 
control 

-3.037 -1.178 -0.807 -0.535 0.309 2.540 1.144 104 
-3.409 -0.807 -0.063 -0.181 0.681 2.168 1.060 113 

MPH case 
control 

149.8 159.3 166.1 166.6 172.7 188.3 8.83 104 
153.7 160.9 166.3 168.2 175.6 189.0 8.89 112 
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6.6.3 Obtaining Z-scores for height conditional on mid-parental 
height 

In the above analysis for the systematic sample we just considered the reported 
height data. I f we now consider all the parental data for the systematic sample, 
then it seems reasonable to take the measured mothers height (over reported) if the 
child was also part of the control arm of the follow-up study. However for the fathers 
height data, we will only take the mothers report of the fathers height, if there was 
no fathers height reported on the consent form. One of the reasons for doing this, 
is that whoever completed the consent form may have consulted their partner. 

These data can be used to obtain estimates of the correlation between reported 
parental heights and child's height. There are 417 children with both parents heights 
and 10 single mothers within the systematic sample. The correlation between the 
mothers and fathers reported heights is 0.2209 (95% CI [0.1276, 0.3104]), which is 
lower than quoted by Cole (1996). However, the 95% confidence interval for this 
correlation contains 0.3. Taking r ( m , / ) to be 0.3 in equation (2.21), the Z-score 
for mid-parental height was obtained from the reported/measured mothers height 
Z-score and reported fathers height Z-score. Summary statistics of the Z-scores for 
mothers, fathers and mid-parental heights can be found in table 6.17. 

The correlations between parental height Z-scores and child's height Z-score at 
follow-up can be found in table 6.18. I t appears that there is a tendency for girls 
heights to be more correlated with mothers, fathers and mid-parental heights than 
boys heights. This contradicts Tanner et al. (1970) and Byrad et al. (1983) obser
vations, but we are dealing with reported heights. The use of a correlation of 0.4 by 
Cole (2000b) seems reasonable because this value is within the confidence intervals 
for the correlation of mid-parental height with child height. 

Table 6.17: Summary statistics of Z-score for mothers, fathers and mid-

parental heights 

Min. LQ Median Mean UQ Max. SD no. 
Z(Mother) 
Z (Father) 
Z(MPH) 

-2.7370 
-3.7810 
-3.8120 

-1.0520 
-1.1780 
-1.1370 

-0.2090 
-0.0629 
-0.3378 

-0.2299 
-0.2957 
-0.3238 

0.6336 
0.6807 
0.3846 

5.4790 
2.9110 
4.3960 

1.1488 
1.1651 
1.1250 

427 
417 
417 
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Table 6.18: Correlation between Z-score for height at follow^-up and 
parental height Z-scores: correlation coefficients and approximate 95% 
CI's 

Z-score group correlation n 95% CI 
mothers height all 0.3447 416 0.2571, 0.4267 mothers height 

boys 0.3168 210 0.1895, 0.4336 
girls 0.3819 206 0.2587, 0.4928 

fathers height all 0.3677 406 0.2804, 0.4490 fathers height 
boys 0.2511 202 0.1172, 0.3762 
girls 0.4659 204 0.3509, 0.5669 

mid-parental height all 0.4572 406 0.3766, 0.5309 
boys 0.3721 202 0.2467, 0.4852 
girls 0.5322 204 0.4260, 0.6240 

In order to assess whether a child is an appropriate height for their parents 
heights we need to condition the child's current height Z-score on their mid-parental 
height Z-score. Substituting a child's height Z-score and their mid-parental height 
Z-score into equation (3.11) leads to the following equation: 

Zh- rZmph 
^h\mph 

where r is the correlation between Zh, the child's height Z-score and Zmph, their 
mid-parental height Z-score. In the follow-up study the correlation between height 
and mid-parental height is about 0.46 (see scatterplot on left of figure 6.13). 

Summary statistics of the Z-score for height conditional on mid-parental height 
can be found in table 6.19. I t would appear that there is no reason to doubt that 
the variance of the Z-score for height conditional on mid-parental height is one (see 
table 6.20). There is no reason to doubt that the mean of the Z-scores for height 
conditional on mid-parental height is zero for girls. However, there is reason to doubt 
that the mean of the Z-scores for height conditional on mid-parental height is zero 
for boys. Therefore, it would be appropriate to use conventional cut-offs (±2.67) 
for detecting girls with unusually low or high heights given mid-parental height. 
However, if the same cut-offs were used with the Z-score for height conditional on 
mid-parent height for boys we would detect too few boys with unusually short heights 
and too many boys with unusually high heights. This may indicate the need to use 
a sex-specific correlation between child's height Z-score and mid-parental height Z-
score. I t is also desirable that the Z-score for height conditional on mid-parental 
height is uncorrelated with the mid-parental height Z-score, in fact the correlation 
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is small (r = -0.0841). 

Boxplots of the Z-score for height conditional on mid-parental height at follow-
up by sex can be found on the right of figure 6.13. The median Z-score for height 
conditional on mid-parental height exhibits the same pattern as the mean, namely 
that there is reason to doubt that the median is zero for boys (V = 12611, p = 
0.0046). In figure 6.14 we produce a variable width notch boxplot of the Z-score 
for height conditional on mid-parental height by level of deprivation; the noticeable 
feature is that there is less variability in the conditional Z-scores within the affluent 
group. 

If we now consider the parental height data from the case-control study. In figure 
6.15 we produce a scatter plot of the Z-score for child's height at follow up versus 

Table 6.19: Systematic sample (excluding cases): Summary statistics 

of Z-score for height at follow-up conditional on mid-parental height 

Z(h.fol|mph) Min. LQ Median Mean UQ Max. SD no. 
An -2.5270 -0.5486 0.1246 0.1311 0.7900 2.7820 0.9741 406 
Boys 
Girls 

-2.2400 
-2.5270 

-0.4686 
-0.6430 

0.2092 
0.0081 

0.2121 
0.0508 

0.8318 
0.7723 

2.7820 
2.4180 

0.9949 
0.9488 

202 
204 

Table 6.20: Systematic sample (excluding cases): Results of testing 
that (a) the mean Z-score for height conditional on mid-parental height is 
zero (by sex) and (b) the variance of the Z-score for height conditional on 
mid-parental height is one (by sex) 

A l l 
Boys 
Girls 

A l l 
Boys 
Girls 

95% CI 
2.7113 0.0070 "0.0360, 0.22611 
3.0304 0.0028 [0.0741, 0.3502j 
0.7652 0.445 f-0.0801, 0.1818] 

/T2 approx 
p-value 

95% CI 

384.31 0.4673 
198.95 
182.73 

0.9184 
0.3144 

0.8307, 1.0945 
0.8216, 1.2158 
0.7478, 1.1045 
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the Z-score for mid-parental height labelled by case-control status. The scatterplot 
indicates that the case and control group form two overlapping clusters. If we now 
initially just consider the mid-parental height Z-score for the case and control groups. 
Summary statistics for the mid-parental height Z-score by case-control status can 
be found in table 6.21. Quantile-quantile plots indicate that there seems no reason 
to doubt normality of mid-parental height Z-scores. I f we compare the means of 
the mid-parental height Z-scores in the case control study, we find that they are 
significantly different (t = -2.4793, p = 0.0139). On the left of figure 6.16 we 
produce a notch boxplot of the mid-parental height Z-scores by case control status, 
the notches don't overlap indicating that the median mid-parental height Z-score is 
significantly different in the case and control groups (W = 4593.5, p = 0.0074). 

The Z-scores for height conditional on mid-parental height for individuals within 
the case-control study were calculated using equation (6.1) with r = 0.46. Summary 
statistics for the Z-score of height at follow up conditional on mid-parental height can 
be found in table 6.22. In contrast to the cases, the Z-scores for height conditional 
on mid-parental height of controls cover a larger range. In figure 6.16 we produce a 
notch boxplot of the Z-scores for height conditional on mid-parental height by sex. 
At follow-up the notches on the case and control boxplots by sex do not overlap 
indicating that the medians within the case and control groups are significantly 
different (W = 413, p = 1.449 xlO"^ for boys and W = 1481, p = 0.0024 for girls). 

The quantile-quantile plots of Z-scores for height conditional on mid-parental 
height (see figure 6.17) indicate that there may be some reason to doubt normality 
(one outlying individual in plot for case girls and evidence of skewness in plot for 
controls). Thus tests to compare means in case and control groups were not pursued 
further. 

Table 6.21: Case-Control study: Summary statistics for mid-parental height 

Z-scores 

Group Min LQ Median Mean UQ Max SD no. 
case -2.7050 -1.2230 -0.7655 -0.58160 0.0500 1.9120 1.0263 104 
control -3.6160 -0.8396 -0.2571 -0.2292 0.4332 2.4330 1.0622 112 
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Table 6.22: Case-Control study: Summary statistics of Z-score for height 

conditional on mid-parental height at follow-up 

Sex Group Min LQ Median Mean UQ Max SD no. 
Boys case 

control 
-2.7900 
-1.3280 

-1.6670 
-0.5965 

-0.6907 
0.0813 

-0.7259 
0.3046 

0.0851 
0.7817 

0.9009 
2.8180 

0.9823 
1.0844 

39 
41 

Girls case 
control 

-4.9780 
-1.8630 

-1.2970 
-0.5318 

-0.4808 
0.0598 

-0.5024 
0.0742 

0.2749 
0.6391 

2.3210 
2.4360 

1.1905 
0.8408 

62 
69 

6.7 Discussion and Conclusions 

In this chapter we have considered the growth outcomes of the Newcastle sample at 7-
9 years. I t is assumed that the systematic sample (excluding cases) is representative 
of children in Newcastle at 7 to 9 years. Anthropometric data from the systematic 
sample was used to assess the adequacy of the revised UK 1990 growth reference for 
converting height, weight, B M I and head circumference measures to Z-scores. There 
seems to be no reason to question the normality of the Z-scores for height, weight, 
B M I and head circumference (boys only). There is no reason to doubt that the 
mean of weight, height and B M I Z-scores is zero. There is no reason to doubt that 
variance of Z-scores is one for height, weight and BMI (girls only). However, there 
is reason to doubt that the variance of the B M I Z-scores for boys is one. I t would 
appear that the Z-scores for BMI, height (girls), weight (girls) are appropriately 
adjusted for age. However, there is some indication that the Z-scores for weight and 
height for boys may not adjust completely for age. The main conclusion, is that it 
not entirely unreasonable to use the revised UK 1990 reference to convert weight, 
height and B M I to Z-scores at 7-9 years. 

The conclusion that the UK 1990 reference is suitable for converting BMI to 
Z-scores at 7 to 9 years is at odds with the observations made in the Wessex growth 
study (Voss and Mulligan 1999b). Voss and Mulligan (1999b) observed the change 
in BMI of 120 children of average height from school entry until 16 to 17 years, they 
found at five that the distribution of B M I corresponds reasonably closely to the UK 
1990 reference (mean BMI close to 45th centile), however by 16-17 years the mean 
B M I was close to the 65th centile. Rudolf et al. (2000) also noted a similar trend 
of increasing B M I Z-score with age in their study of children aged 7 to 10 years 
from schools in the Leeds area. Reilly et al. (1999) also noted a tendency for an 
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increasing prevalence of overweight and obesity with age, from 6 until 15 years, in 
a nationally representative sample of 2360 children. 

There is strong evidence to suggest that the mean Z-score for head circumference 
is less than zero. Thus indicating that children in Newcastle have smaller head 
circumferences than those that contribute to the UK 1990 growth reference. There 
is no reason to doubt that the variance of head circumference Z-scores is one for boys. 
However, the head circumference data for girls has several outlying measurements 
which results in a variance for the head circumference Z-scores that is greater than 
one. I t would appear that the Z-scores for head circumference are appropriately 
adjusted for age. One possible reason for the poor match between the Newcastle 
children and the revised UK 1990 reference is that Newcastle children may have a 
higher level of deprivation- resulting in smaller head circumferences. Wright et al. 
(1992) found that the mean head circumference of primary school children was lower 
in a sample of 219 children from a deprived area of Newcastle compared to a sample of 
1016 children from Oxfordshire (with few areas of deprivation). Another possibility 
is that the revised UK 1990 reference for head circumference may not be nationally 
representative because this is derived from children within the Edinburgh growth 
study (RatcliflFe et al. 1994) beyond infancy (Cole et al. 1998). I t should also be 
noted that in the creation of the head circumference references (Cole et al. 1998), 
slight evidence of skewness was observed for the girls and the tails were relatively 
heavy. Recent consensus also suggests that there is a need for revision of the UK 
1990 reference for head circumference beyond infancy (Wright et al. 2002). 

Rudolf et al. (2000) assessed the adequacy of the revised UK 1990 growth ref
erence using weight and height measures from children aged 7 to 10 years from 10 
primary schools in the Leeds area. Rudolf et al. (2000) found that children in Leeds 
were marginally heavier and taller than those children the contributed to the UK 
1990 growth reference but concluded this could reflect participation in the APPLES 
project. Rudolf et al. (2000) also noted a tendency for an increasing mean Z-score 
with age for weight in boys and both weight and height for girls. Rudolf et al. 
(2000) supported the use of the revised UK 1990 growth reference for converting 
height, weight and BMI to Z-scores. Reilly et al. (1999) assessed the suitability of 
the revised UK 1990 reference for converting heights and weights to Z-scores at 7.5 
years. Reilly et al. (1999) found that there was no reason to doubt that the mean 
Z-score for height and weight was zero. However Reilly et al. (1999) didn't consider 
the variance of the Z-scores but did note an excess of girls below the 10th centile 
for weight. 

The effect of level of deprivation (in infancy) on each of the anthropometric 
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measures at 7-9 years was tentatively explored. It would appear that level of depri
vation has little impact on B M I and head circumference at 7-9 years. Other authors 
have also noted that level of deprivation has little impact on BMI because the more 
deprived tend to have an appropriate weight for their lower height (Tanner 1989). 
There may be some indication that level of deprivation may influence the height 
and weight Z-score at 7 to 9 years. There may be a tendency for the more deprived 
to be shorter and lighter but sample sizes involved are too small to be conclusive. 
A similar pattern is observed for parental heights, with the more deprived fathers 
being shorter. 

The anthropometric data at 7 to 9 years from the case-control study was con
verted to Z-scores. The case children were found to be significantly shorter, lighter, 
leaner and to have smaller head circumferences than control children. These obser
vations are in general agreement with the follow up study of Dowdney et al. (1998) 
on infants with prolonged growth retardation (weight gain faltered in first year of 
life and below tenth centile for weight and height at 4 years) followed up at 11 years. 
A rough comparison on the Z-score scale suggests that the case children participat
ing in the Dowdney et al. (1998) study tend to be shorter, lighter, leaner and have 
smaller head circumferences than the cases within the Newcastle study. It would 
also appear that the observed differences in height, weight, BMI and head circum
ference Z-scores are greater between case and control boys than case and control 
girls. Research in Peru arrived at a similar conclusion, namely that girls that had 
FTT demonstrated better catch up than boys that had FTT when followed up for 
15 years (Rudolf and Hochberg 1990). 

The measured mothers heights and reported fathers heights from the case-control 
study were considered. I t was found that there was no difference in the mean heights 
of mothers from the case and control study. However, i t was found that the median 
of the reported heights of case fathers was significantly lower than that of control 
fathers. We should be aware that this difference is related to mothers reporting of 
fathers heights, although Himes and Roche (1982) found that mothers tended to 
overestimate their husbands heights by about 1.3 cm. Hypothetically, the shorter 
reported heights of case fathers could indicate that some of the children with faltering 
weight gain were just homing in towards their genetic potential. Smith et al. (1976) 
found that birth length related predominantly to maternal size whereas by two 
years of age the length correlated best to mean parental height, reflecting genetic 
growth factors of both parents. Smith et al. (1976) also observed that those shifting 
downward did not decelerate until after the first 3-6 months, indicating those that 
were 'lagging down' did so in mid-infancy. A further possibility is that the case 
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fathers may not have achieved their genetic potential because of deprivation in their 
own childhood. A literature research revealed that the observation that fathers of 
FTT infants tend to be shorter has not been noted elsewhere. 

Research on adult outcome of 'normal' short^ and underweight children at 7 years 
suggests that one in three of these children became short or underweight adults 
(Greco et al. 1995). The long term implications of failure-to-thrive in infancy 
are unknown, these results in mid-childhood indicate that the growth status of 
these children is affected, which in turn may have future implications, for example: 
delayed puberty, failure to achieve genetic potential in height and may effect peak 
bone density. There are also psychological consequences for children that have short 
stature (Skuse 1987), although recent research by Voss and Mulligan (1994) (in 
Stratford et al. (1999)) found that there were no differences between short and 
normal height children on any measures of self-esteem, intelligence or behaviour. 
However teachers ratings of attainment were lower for the shorter group but this 
difference was removed when an allowance was made for the difference in socio
economic distribution between the groups. Many of the children within the Wessex 
growth study are aware of the group to which they belong (Stratford et al. 1999). 

Data collected on reported parental heights was converted to Z-scores using the 
revised UK 1990 growth reference values for height at 23 years. I t was found that 
a child's height Z-score was reasonably correlated with their mid-parental height Z-
score (r = 0.46). There was also a slight tendency for girls height Z-scores to be more 
correlated with parental height Z-scores than boys. This observation contradicts 
Tanner et al. (1970) although we are dealing with reported heights here rather 
than measured heights. The Z-score for height conditional on mid-parental height 
was calculated using a correlation of 0.46. I t was found that the Z-score for height 
conditional on mid-parental height exhibited the desirable properties: uncorrelated 
with mid-parental height Z-score, no reason to doubt variance of Z-scores is one and 
no reason to doubt mean of Z-scores is zero (girls only). However, there is reason to 
doubt the mean of the Z-score for height conditional on mid-parental height is zero 
for boys. This may indicate the need for a sex-specific correlation in the calculation 
of the conditional gain Z-score. So we should be cautious when assessing a boys 
height given his mid-parental height. 

The Z-score for height conditional on mid-parental height was calculated for 

children within the case and control study. It was found that the median of the 

^Only children with organic causes of short stature were excluded. Greco et al. (1995) 
acknowledge that short stature may be a consequence of psychosocial causes such as failure-
to-thrive. 
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Z-scores for height conditional on mid-parental height in the case and control group 
were significantly different. This suggests that even after accounting for mid-parental 
height, case children were shorter than control children. 

To conclude, the use of the revised UK 1990 reference to convert weight, height 
and B M I to Z-scores is not entirely inappropriate. However, some caution may be 
needed when interpreting the Z-scores for BMI of boys. I t was found that girls 
height Z-scores were more correlated with reported parental height Z-scores than 
boys. The use of the Z-score for height conditional on mid-parental height to assess 
a child's current height looks promising. However, this conditional Z-score should 
be interpreted cautiously at the extremes for boys. As reported by Drewett et al. 
(1999), case children were found to be significantly shorter (even after adjusting 
for mid-parental height), leaner and lighter than control children. Furthermore, it 
appears that boys are more sensitive than girls to failure-to-thrive in infancy. The 
significant difference between reported fathers' heights of case and control children 
suggest that there may be some genetic component to the growth faltering observed 
in infancy. 
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Figure 6.1: Mean weight Z-scores for cases and controls, with 95% confidence 

intervals (after correction to birth weight Z-score) 
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Figure 6.2: Systematic Sample (excluding cases): Box-plots of Z-scores 
for heights, weights, BMI's and head circumference by sex 
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Figure 6.3: Systematic Sample (excluding cases): Plot of Z-scores for 
height, weight, BMI and head circumference versus age for boys 
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Figure 6.4: Systematic Sample (excluding cases): Plot of Z-scores for 
height, weight, B M I and head circumference versus age for girls 
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Figure 6.5: Systematic Sample (excluding cases): Variable width notch 
box-plots of Z-scores for heights and weights by sex and level of deprivation 
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Figure 6.6: Systematic Sample (excluding cases): Variable width notch 

box-plots of Z-scores for BMIs and head circumferences by sex and level of 

deprivation 
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Figure 6.7: Variable width notch boxplots of Z-scores for height, weight, BMI 
and head circumference at follow up assessment (grouped by case-control 
status and sex) 
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Figure 6.8: Systematic sample: Histograms of reported parental heights 
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Figure 6.9: Boxplots of reported parental heights (metric) grouped by SES 
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Figure 6.11: Notch boxplots of Z-scores for measured and reported parental 

heights grouped by case-control status 
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Figure 6.12: Plot of discrepancy between measured and reported mothers 

heights versus measured mothers heights 
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Figure 6.13: Systematic sample (excluding cases): Left: Plot of Z-score 
for height at follow-up versus mid-parental height Z-score Right: Boxplot of 
Z-score for height conditional on mid-parental height by sex 
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Figure 6.15: Case-control study: Plot of Z-score for height at follow-up 

versus mid-parental height Z-score 
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Figure 6.16: Case-control study:Left: Notch boxplot of mid-parental 

height Z-score by case-control status Right: Notch boxplot of Z-score for 

height conditional on mid-parental height by case-control status and sex at 

follow-up 
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Figure 6.17: Quantile-quantile plots of Z-score for height at follow up condi

tional on mid-parental height (case-control study) 
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Chapter 7 

The utilisation of conditional 
weight gain Z-scores 

7.1 Introduction 

In chapter 5 we developed a model for the correlation structure of weight Z-scores 

in infancy. Given a model for the correlation between any two time-points we can 

now calculate a conditional weight gain Z-score. In this chapter we explore possible 

ways of using and interpreting conditional weight gain Z-scores when we have more 

than two weights. 

In section 7.2 we develop a one variable version of the Argyle model for the 

correlation structure. This allows us to calculate all possible conditional weight 

gain Z-scores for each child. In section 7.3 we consider the summary statistics of 

the conditional weight gain Z-scores generated when age is grouped to the nearest 

fortnight. 

A conditional weight gain Z-score can be used to assess a child's weight gain 

between two measurement ages. However, infants are rarely weighed just twice in 

infancy; in the Newcastle infancy data frame only 133 (3.9%) infants have just two 

routine weights. Even then, there may only be two weights in the data frame because 

some of the clinic weights may have gone astray. The conditional weight gain Z-

score methodology allows one to contrast two weights. I f we stick to using pair-wise 

comparisons, then what is a meaningful way to interpret these? For example, an 

infant weighed 7 times in infancy would generate 21 pair-wise conditional weight 

gain Z-scores. 

316 
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An additional issue is the short term variability of conditional weight gain Z-
scores. The problem with a short interval is that the amount of growth will be small 
compared to the variability from measuring error and other causes (for example, 
biological variation, a saltatory pattern (Lampl et al. 1992) or pulsatile pattern 
(Greco et al. 1990) of growth). Cole (1995) suggests that conditional weight gain 
Z-scores calculated over short time periods should be interpreted cautiously because 
even normally growing children are likely to throw up occasional significant weight 
gains simply by chance owing to the large number of possible measurement pairs. 
Cole (1995) demonstrates the variability of conditional weight gains using the routine 
weights of one infant (ID 2149) from the Newcastle dataset. Cole (1995) advocates 
using the longest available time interval to calculate a conditional weight gain Z-
score so that the effect of measurement error is reduced. However, if a longer interval 
is used, a slowing-down in growth may persist for some time before a measurement 
occasion makes it possible to detect i t . Moreover, a clinician who is concerned 
about a child's weight gain doesn't want to wait for more time to elapse before they 
act. I f there are more than two weight measures then this increases the number of 
conditional weight gain Z-scores that can be obtained, and it raises the question of 
how to interpret and utilise these as they evolve. 

In clinical situations, often a sequence of measurements is available. I t would 
be desirable to use these measurements efficiently to judge the 'typicality' of the 
growth pattern rather than simply the growth at one point in time. This leads to 
the issue of how we characterise growth in such circumstances. An additional issue 
is the number of weight measures that are useful to condition on. In using the 
conditional weight gain approach contrasting a late weight with an early weight or 
a combination of weights, there is the implicit assumption that this early weight is 
in itself not 'abnormal' (Healy 1986). 

The routine infancy data set has up to 11 weights for any individual leading to 

a maximum of 55 conditional weight gain Z-scores for each individual. This is a lot 

of weight Z-scores and conditional weight gain Z-scores to throw away in order to 

just contrast two weight measurements and derive one gain. The patterns exhibited 

by the conditional weight gain Z-scores may possibly tell us something about an 

infants growth and provide some indication of the variability. We may expect an 

infant that fails to thrive in infancy to have a high proportion of conditional weight 

gain Z-scores that are negative. Whereas for an infant growing 'normally' we may 

anticipate a set of conditional weight gains Z-scores that are 'close' to zero, perhaps 

fluctuating either side of zero. 

I t seems sensible to look at patterns in 'runs' of these conditional weight gain 
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Z-scores. The list below gives some sequences of conditional weight gain Z-scores 
that may be of interest for a child that has n weights at times t i , . . . , t„: 

1. Z{t2\ti) Z{tM ... Z{tn\tl) 

In the majority of children, the first weight Z-score {Z{ti)) will be the 

Z-score that corresponds to birth weight. However, birth weight is 

strongly influenced by maternal factors. 

2. Z{ts\t2) ZitM ••• Z{tn\t2) 

We may view the first weight Z-score after the birth weight Z-score to 

be a more useful indicator of expected growth. 

3. Z{t2\t,) ZitM ... Z{tn\tn-l) 

Here we compare a child's current weight Z-score to their last weight 

Z-score; this enables us to say something about recent growth. This 

pattern of conditional weight gain Z-scores is likely to identify unusual 

conditional weight gain Z-scores sooner. However this may be at a cost, 

owing to increased variability due to short term variation in growth. 

4. Z{t2\ti) Z{t,\tut2) . . . Z{tn\ti,... ,tn-l) 

This pattern assumes that the growth trajectory the infant is expected 

to follow is continually updated at each time point from birth. 

5. Some weighted combination that utilises possibly all of the conditional 

weight gain Z-scores, but also takes into account the short term vari

ability of conditional weight gain Z-scores 

In section 7.4 we consider the implications of using the model developed in section 

7.2 to calculate conditional weight gains in situations (3) and (4) above. We will 

find that the model developed for correlation between weight Z-scores in infancy has 

an effect on how we assess weight gain patterns in infancy. 

In section 7.5 we explore trends in the sequence of conditional weight gain Z-

scores suggested above. We also consider the impact of level of deprivation and sex 

on the conditional weight gain Z-scores. In section. 7.6 we explore patterns in runs 

of conditional weight gain Z-scores. We also suggest other possible strategies for 

detecting infants that are experiencing growth faltering. We also propose a possible 

cost mechanism to aid the decision of arriving at a suitable threshold for 'no change' 

in weight Z-score. 
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We conclude by discussing the graphical display of conditional weight gain Z-
scores, see section 7.7. In this section we present the expected pattern of weight gain 
derived from the model proposed for the correlation between weight Z-scores. We 
conclude this section by presenting the conditional fifth centile for this same model. 

7.2 Developing a practical model for the correla
tion structure of weight Z-scores in infancy 

In chapter 5, we developed the Argyle model and arrived at the 'best' model, in the 

least squares sense for the correlation structure. The final model from table 5.25 

was: 

log(r(n, t2)) = -0.0368 + 0.2729 log(n + 2) - 0.2598 \og{t2 + 2) (5.47) 

where tl and t2 are the initial age and later age (given in weeks). 

A desirable feature of any correlation model is that it predicts a correlation in 
the range -1 to 1, inclusive and equal to one when tl = t2. I f equation (5.47) is 
used to predict correlation in the age range birth to 2 years, then this model falls 
down in late infancy. For example if t l=404 and t2=425 days, then the predicted 
correlation is 1.0039. I t is suspected that in late infancy the correlation may be 
close to 1. In figure 7.1 we produce a contour plot for the correlation generated from 
equation (5.47); the correlation is greater than one in the area between the dashed 
line (representing tl = t2) and the contour representing r = 1. 

An alternative approach is to use a one variable version of the Argyle model, 
developed below. To arrive at a one variable model, the constant added to the time-
point is varied, in the same way as described in Chapter 5. However, instead of 
trying to minimise the deviance, we now want the coefficients of both log terms to 
be of similar magnitude. The addition of 1.6 weeks gave coefficients that were of the 
same magnitude to three decimal places, see upper table in table 7.1 for summary 
of fit. The lower table provides a summary of the fit if the Argyle model has one 
coefficient and a constant. The accompanying residual plots for both models in table 
7.1 can be found in figure. 7.2, these illustrate that the one coefficient model gives 
as good a fit as the two coefficient model. A plot of the Cook's distance for the one 
variable Argyle model versus index, indicates that there are three influential points 
(see figure 7.3); corresponding to the correlation between birth weight Z-score and 
weight Z-score at: 76, 4 and 6 weeks. The affect of excluding these three influential 
points on the constant added to age was explored. I f all three correlations were 
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excluded then the optimum constant was 1.1 weeks. A summary of the fit of this 
model can be found in the uppermost table of table 7.2. The middle table in table 
7.2 summarises the fit of the one variable Argyle model with a constant. Notice that 
the constant term is not significantly different from zero. In general, assuming a zero 
intercept is a very strong assumption and is in general not justifiable (Draper and 
Smith 1998). Possible exceptions are when there is data in the region of the origin or 
when the model is 'known' to pass through the origin (Draper and Smith 1998). I f 
we consider excluding the constant term, which although this is a strong assumption 
does give a correlation of 1 when tl = t2. Therefore for practical purposes it seems 
appropriate to use the model in the bottom table of table 7.2 (note that the summary 
statistics are excluded here, because the multiple correlation coefficient provides a 
measure of the usefulness of all the terms in the model with the exception of the 
intercept). In figure 7.4 we plot the standardised residuals versus fitted values for 
the one coefficient models in table 7.2; the impact of excluding the intercept term 
appears to be negligible. A contour plot of the correlation derived from equation 
(7.2) can be found in figure 7.5. Therefore, from this point onwards, the correlation 
between weight Z-scores is obtained using equation (7.2). 

log(r(n, ^2)) = 0.24[log(a + 1.1) - log(i2 + 1.1)] (7.1) 

where tl and t2 are the initial and later age in weeks. 

In figure 7.6 we plot the fitted curve for the Argyle model (c = 1.1), along with 
the confidence and prediction intervals on a log-scale and the original scale. The 
Newcastle fortnightly correlations are well within the prediction intervals. 

7.3 Properties of conditional weight gain Z-scores 

Conditional weight gain Z-scores should (by definition) be normally distributed, have 

zero mean and variance one and be uncorrected with initial weight Z-score (Cole 

1995). However, we should be most concerned with the standard deviation of the 

distribution of the conditional weight gain Z-scores, because an inflated standard 

deviation would result in more individuals than expected having extreme gains (Cole 

1995). 

I t is only possible to consider the properties of conditional weight gain Z-scores 
generated from individuals that contributed to the correlations modelled, otherwise 
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Table 7.1: Newcastle correlations based on data grouped to near
est fortnight [N=385]: Regression of log correlation on Iog(^l + 1.6) and 
log{t2 + 1.6), and log(il - f 1.6) — \og{t2 + 1.6) using weighted least squares. 

log(r(n, t2)) = a logjtl + 1.6) 4- b\og{t2 + 1.6) +c + e 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.003906 0.015972 0:245 0.807 
log{tl + 1.6) 0.255243 0.003912 65.251 < 2 x lO'^^ 
log(i2 + 1.6) -0.255246 0.005519 -46.247 < 2 x 10-^^ 
i?^=0.9198, i2'^(adj)=0.9194, residual SE=0.307 on 382 df 

log(r(tl, t2)) = a[log(tl + 1.6) - Iog(̂ 2 + 1.6)] + 6 + e 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.003896 0.003252 L198 0:232 
log(tl-H.6) - log(f2 + 1.6) 0.255243 0.003850 66.293 < 2 x 10'^^ 
i?^=0.9198, i?''(adj)=0.9196, residual SE=0.3066 on 383 df 

Table 7.2: Newcastle correlations based on data grouped to near

est fortnight [N=382]: Regression of log correlation on \og{tl + 1.1) and 

log(t2 -I-1.1), and log(tl + 1.1) - log(i2 + 1.1) using weighted least squares 

(after excluding three most influential points: correlations at(0,4), (0,6) and 

(0,76)) 

log{r{tl, t2)) ^ alog{tl + 1.1) + 61og(̂ 2 + 1.1) +c + e 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 0.002110 0.016334 0l29 0.897 
log(U + 1.1) 0.238981 0.003675 65.037 < 2 x IQ-^^ 
\og{t2 + 1.1) -0.239950 0.005420 -44.272 < 2 x lO'^^ 
i?^=0.9205, i?'^(adj)=0.9201, residual SE=0.3056 on 379 df 

log{r{tl,t2)) = a\\ogitl + 1-1) - log(t2 + 1.1)] + b + e 
Value Std. Error t-value Pr(> |^|) 

(Intercept) -0.001170 0.003187 OT7 0.714 
logjtl + 1.1) - log{t2 + 1.1) 0.239123 0.003604 66.341 < 2 x 10"^^ 
i?^=0.9205, it:^(adj)=0.9203, residual SE=0.3052 on 380 df 

log{r{tl,t2)) = allogitl + 1.1) - log(^2 + 1.1)] + e 
Value Std. Error t-value Pr(> |t|) 

\og{tl + 1.1) - \og{t2 + 1.1) 0.240031 0.002617 91.72 < 2 x 10 
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we would be considering the properties of conditional weight gain Z-scores gener
ated from small sample sizes. Even then there are still 385 groups of conditional 
weight gain Z-scores. Plots of the mean, standard deviation, minimum and maxi
mum for each group of conditional weight gain Z-scores are presented in figures 7.7 
to 7.10. These summary statistics were plotted against the time-elapsed between 
measurements and the mean of two measurement ages. This approach was used 
because plotting summary statistics against initial and later age was found to be 
uninformative. However, preliminary work on individuals with extreme conditional 
weight gain Z-scores suggested that gains for weight measurements made closer in 
time were more variable. 

In figure 7.7 we plot the mean of the conditional weight gain Z-scores versus time 
elapsed and average age. There appears to be a tendency for the mean conditional 
weight gain Z-score to be positive and more variable for weight measures made 
close in time. However there are more extreme positive conditional weight gain Z-
scores than extreme negative conditional weight gain Z-scores: which are likely to be 
influential on the mean. There is no obvious trend in the plot of mean conditional 
weight gain Z-score against average age. The resulting t-values from testing that 
the mean conditional weight gain Z-score is zero were also plotted against the time 
elapsed and average age; see figure 7.11. Informally using a cut-off value of 2 for 
the t-values (the sample size is greater than 50), there are 125 (32.5%) sets of 
conditional weight gain Z-scores that have a mean significantly different from zero. 
The two most extreme t-values correspond to groups of conditional weight gain Z-
scores calculated for weight Z-scores close in time: a t-value of 6.34 when tl and 
t2 are 14 and 18 weeks, respectively and a t-value of -3.79 when tl and t2 are 0 
and 4 weeks, respectively. Recall that the correlation between birth weight Z-score 
and weight Z-score at 4 weeks was identified as an influential point when fitting 
models to the Newcastle correlations. The t-values appear to have a linear trend 
with average age with higher values in the early weeks of infancy which gradually 
decrease in late infancy. 

In figure 7.8 we plot the standard deviations of the conditional weight gain Z-
scores against time elapsed and average age. These plots illustrate that for weight 
measures close in time the standard deviation of the conditional weight gain Z-
score is more variable. The two most extreme standard deviations (SD !v 1.8) 
correspond to conditional weight gain Z-scores obtained between 48 and 54 weeks, 
and 40 and 44 weeks. An unexpected feature of the plot of the standard deviation 
of the conditional weight gain Z-score versus average age; is the upward trend in the 
magnitude of the standard deviation as average age increases. In figures 7.9 and 7.10 
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we plot the minimum and maximum of the conditional weight gain Z-scores versus 
time elapsed and average age, respectively. These show the expected trend, that 
when the two measurement occasion are close the minimum and maximum of the 
conditional weight gain Z-scores are of greater magnitude. In figure 7.12 we plot the 
approximate p-values from testing that the variance of the conditional weight gain 
Z-scores is one, against the time elapsed and average age. There is no apparent trend 
with age in the resulting approximate p-values from testing that the variance is one. 
However, we must remember that the F-test is sensitive to non-normality. There is 
reason to doubt that the variance is one for 241 (62.6%) groups of conditional weight 
gain Z-scores. Further work is needed to establish the cause of the elevated variance 
of conditional weight gain Z-scores. The apparent trend in variance with age could 
be related to the smaller sample sizes as age increases. In figure 7.13 we plot the 
approximate p-value, from testing that the variance is one, against sample size to 
explore i f there was any relationship between sample size and resulting p-values. 
Again there doesn't appear to be any strong trend in relation to sample size. The 
elevated variance of the conditional weight gain Z-scores may be a result of elevated 
variances in the original weight Z-scores or indicative of some deficiency in the model 
for correlation between weight Z-scores. Recall from chapter 4, that the variance of 
the weight Z-scores for the ful l sample from 6 to 9 months onwards were elevated. 
Thus the elevated variance on the original weight Z-score scale will contribute to the 
elevated variance of the conditional weight gain Z-scores. We also explored whether 
there was a relationship between t-values and approximate p-values from testing if 
variance is one; see figure 7.13. I t would appear that there is no apparent trend 
between significant t-tests and significant variance tests. 

In theory, the conditional weight gain Z-score should be uncorrelated with the 
initial weight Z-score. We calculated the correlation between the initial weight Z-
score and the conditional weight gain Z-score. In figure 7.14 we plot this correlation 
against average age and time elapsed. There appears to be no strong trend in the 
correlations with relation to age, with the majority of correlations between -0.3 
and 0.3. Two correlations are close to -0.4, these are from conditional weight gain 
Z-scores calculated, close in time, towards the end of the first year {tl = 44 and 
t2 = 54 weeks, and tl = 40 and t2 = 44 weeks). 

In theory, the conditional weight gain Z-scores are expected to be normally dis
tributed. In figure 7.15 we plot the p-values from the Shapiro-Wilk normality test 
against average age and time elapsed. There is no apparent trend with average age 
or time elapsed. However, in first few weeks of infancy (average age less than 5 
weeks) there appears to be reason to doubt the normality of the conditional weight 
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gain Z-scores. There is no reason to doubt the normality of the conditional weight 
gain Z-scores for 238 (61.8%) groups of conditional weight gain Z-scores. 

7.4 Implications of correlation model 

In assessing an infants pattern of weight gain we may be interested in following 

two sequences of conditional weight gain Z-scores: conditioning on previous weight 

Z-score and conditioning on all previous weight Z-scores. In this section we consider 

the implications of using the one variable Argyle model, given by equation (7.2), 

for modelling the correlation between weight Z-scores on these two sequences of 

conditional weight gain Z-scores. 

When conditioning on all previous weight Z-scores, we wish to obtain the follow

ing conditional weight gain Z-score: 

^Var{Zt+r\Z) 
At+l - -t^K^t+ll^) fry o\ 

Zt+l\l,...,t = /. . , „ . ^ F " I'-'^J 

Therefore we need to obtain the conditional expectation and conditional variance. 

Assuming that the Z-scores are multivariate Normal then the conditional expectation 

and variance are given by equations (7.4) and (7.5), respectively. 

E{Zt+i\Z) = E{Zt^i) + Cov{Zt+uZ)VaT-\Z){Z - E{Z)) 

= Cov{Zt+uZ)Var-\Z)Z as E{Zj) = 0 for j = 1 , . . . , t -I-1 (7.4) 

= r'^R-'Z 

where Var{Zj) is assumed to be 1 for j = 1 , . . . , t + l , r = (pi,t+i, p2,t+i, • • • ,Pt,t+i) 

and 

T 

/ 1 Pl,2 • • • Pi,t \ 

P2,l 1 ••• P2,t 

\ PtA ^ J 
Similarly, 

Var{Zt+,\Z) = Var{Zt+i) - Cov{Zt+i,Z)Var-\Z)Cov{Z,Zt+i) 

= 1 - r^R-'r (7-5) 

Equation (7.2) is used to determine p^j, so pij can be written as: 

u 
Pi,j 

(7.6) 
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where Vi and Vj are functions of ti and tj, respectively and Vi < Vj for ti < tj. 
Exploratory research suggested that conditional weight gain Z-scores obtained by 
conditioning on previous weight Z-score were the same as those obtained by condi
tioning on all previous weight Z-scores. 

Theorem 

Z{tn\ti, . . . ,tn-l) — Z{tn\tn-l) 

if Pi J = — where ti < t j 

(7.7) 

Thus suggesting that: 

EiZn\Zn-l...Z,) = E{Zn\Zn-,) 

Var{Zn\Zn-i ...Zi) = Var{Zn\Zn-i) 
V' 

if pij = — where ti < t j 

(7.8) 

(7.9) 

Proof 
We need to find: 

E{Zm+i\Zm ...Z,) = rjR-'z = 

Var{Zm+i\Zm...Zi) = l - r j R - ' r 

(7.10) 

(7.11) 

If we let R be the m x m symmetric matrix given by: 

R = 

1 
V2 

1 
V2 
V2 

V3 Vm 

and let r (the correlation between ( ^ i , . . -, Zm) and Zm+i) and e be both m x 1 

vectors: 

r — 

-0--0-
Km+l and e = 

0 
Vm . 1 . 

- I ' m + 1 -
. 1 . 

Then 

Re 

- Vl -

"ill 

r- Vl -. - Vl -

"ill 
Vm+l 

V2 

Vm Vm+l Vm+l 

Vm 

Vm 
Vm 

-Vm-

Vm+l (7.12) 
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We need to evaluate As Re — ^^^^r, then: 

R-ir = ^ R - ' R e = (7.13) 

So if we substitute the result given by equation (7.13) into equations (7.10) and 

(7.11), we find: 

VaT{Z^+,\Zm...Z,)^l-rjR-h_ 

E{Zm+l\Zra...Zi)=Z^R-'r = 1 _ J ^ ^ T ^ 

- „,2 
_ -, _ 
~ ^ ,2 

E{Zm+l\Zm) ^ - + 1 

= Var{Zm+i\Zm) 

Alternatively: 

Putj 
t, + l.V''' 
tj-^1.1^ 

= exp(0.241og(ti + 1.1) - 0.241og(i, + 1.1)) '̂''"^^^ 

= exp \Ti - Tj 

Equation (7.14) is Markov with a rescaling of the time axis. Therefore the data imply 
a model which has the Markov property. In assuming that the weight Z-scores are 
normally distributed and that the model for the correlation between weight Z-scores 
in infancy is given by equation (7.2) we arrive at a Markov property. Therefore, in 
order to assess a child's progress, we only need to consider the current weight Z-
score conditioned on the last weight Z-score. Implicitly the child's previous weight 
Z-score contains all the information of all previous weight Z-scores. It also answers 
the question of how many previous observations is it useful to condition on, namely 
the last available (or one). 

7.5 Exploring trends in conditional weight gain 

Z-scores 

In this section we aim to explore whether infants with failure-to-thrive exhibit differ

ent growth patterns to 'normally' growing infants. We will consider three diflferent 

ways of using conditional weight gain Z-scores; namely conditioning on first weight 

Z-score, conditioning on first weight Z-score after birth and conditioning on previous 
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weight Z-score. As discussed in section 7.4, using equation (7.2) to model correla
tion, conditioning on all previous weight Z-scores is the same as conditioning on just 
the previous weight Z-score. 

In figures 7.16, 7.17 and 7.18 we plot the conditional weight gain Z-scores versus 
current age for conditioning on: first weight Z-score, first weight Z-score after birth 
and previous weight Z-score, respectively. Plots with lowess trend curves overlaid 
were produced for the ful l sample, cases, controls and others. Where 'others' refers 
to all the Newcastle infants excluding the infants identified as cases. 

The lowess curves for the three sequences indicate that: 

• Conditioning on first weight Z-score (see figure 7.16) The case group, 
have conditional weight gain Z-scores that drop away from zero at birth 
to about -2, they then experience a slight increase in conditional weight 
gain Z-score towards the end of infancy. In general, the case children 
still have negative conditional weight gain Z-scores at the end of infancy 
but their rate of deceleration in weight gain is slowing down. Indicating 
that individuals within the case group drop from relatively normal birth 
weights to subnormal weights mid-infancy. Whereas the control and 
others groups experience a slight increase in the time period soon after 
birth then level around the zero line. 

• Conditioning on first weight Z-score after birth (see figure 7.17) The 
case group, have conditional weight gain Z-scores that drop away from 
first weight Z-score after birth to just above -2, they then experience a 
gradual increase towards the end of infancy (approaching a conditional 
weight gain Z-score of about -1). Indicating that individuals within 
the case group drop from their first weight Z-score after birth that is 
just below zero (median of -0.4 for first weight Z-score after birth) to 
subnormal weights mid-infancy. The control group, have conditional 
weight gain Z-scores that rise from first weight Z-score after birth to 
around 0.5 towards the end of the first year, there is then a slight de
crease in value to around 0.25 at the end of infancy. Whereas the others 
group has conditional weight gain Z-scores around the zero line. It is 
likely that the different conditional weight gain pattern of control in
fants is a consequence of selecting individuals that are above the tenth 
centile T I cut-oflt. 

• Conditioning on previous weight Z-score (see figure 7.18) The case group 
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drop away sharply from birth until about 6 months (conditional weight 
gain Z-score about -0.8), they then experience a gradual increase in 
their conditional weight gain Z-score relative to their attained low 
weight as they approach the end of infancy (the trend curve crosses 
the zero line at about 18 months). Indicating that the growth faltering 
of the infant relative to their previous position is 'slowing up'; repre
senting a deceleration in the lack of growth. Whereas the others and 
control groups tend to fluctuate from just above the zero line to just 
below the zero line at about 1 year. 

One interesting feature of these plots is the presence of a few extreme conditional 
weight gain Z-scores when conditioning on previous weight Z-score in early infancy. 
Cole (1995) has discussed the short term variability in weight gain, it is well known 
that the first year represents a period of rapid growth and it is possible that some 
kind of individual error is also incorporated in these plots. To explore the issue 
of variability in conditional weight gain Z-scores further, a random sample of 20 
infants was taken from the 'Case' and 'Other' groups. The connected plots for the 
case and other samples were produced on the same scale to aid comparisons. A 
connected plot of weight Z-score versus ages for the case and other samples are 
produced in figure 7.19. The case sample's weight Z-scores have a downward trend 
in early infancy but there are some fiuctuations in weight Z-score towards the end 
of infancy. Whereas the others sample's weight Z-scores fluctuate more in early 
infancy where weight measures are closer together in time than in late infancy. A 
connected plot of the conditional weight gain Z-score when conditioning on birth 
weight Z-score (or first weight Z-score) versus age for case and other samples are 
produced in figure 7.20. The majority of the case sample have negative conditional 
weight gain Z-scores from birth, with a few not experiencing negative conditional 
weight gain Z-scores until the third or fourth measurement occasion. In general, 
when conditioning on first weight Z-score, the case sample have a downward trend 
in early infancy, experience some fluctuations mid-infancy and then an upward trend 
towards the end of infancy. Whereas the connected plots for the others sample don't 
really have a general pattern and a few infants experience conditional weight gain 
patterns similar to those of the case children. A connected plot of the conditional 
weight gain Z-score when conditioning on first weight Z-score after birth versus age 
for case and other samples are produced in figure 7.21. The noticeable feature for the 
case sample is that the majority of the conditional weight gain Z-scores are negative 
and the pattern in general is similar to that observed when conditioning on birth 
(or first) weight Z-score. Again the plot for other sample has no general pattern. A 
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connected plot of the conditional weight gain Z-score when conditioning on previous 
weight Z-score versus age for case and other samples are produced in figure 7.22. 
In both of these plots there are more fluctuations in the conditional weight gain 
Z-score when conditioning on previous weight Z-score than in figures 7.20 and 7.21 
where we were conditioning on birth weight Z-score or first weight Z-score after 
birth, respectively. The conditional weight gain Z-scores for the case sample tend to 
oscillate below zero whereas for the other sample the majority oscillate about zero. 

A further issue when interpreting conditional weight gain Z-scores is the influ
ence of one 'unusual' weight Z-score. In figure 7.23 we produce connected plots for 
weight Z-scores and conditional weight gain Z-scores of four individuals, from the 
others sample, to illustrate the impact of an unusually low or high weight Z-score 
(relative to rest of weight Z-scores) in early infancy. Conditioning on birth weight 
Z-score mirrors the weight Z-score pattern to some extent. Whereas conditioning on 
previous weight Z-score 'exaggerates' any fluctuation. These examples illustrate the 
caution needed when interpreting conditional weight gain Z-scores in early infancy. 
Furthermore, they also show the impact of conditioning on an 'unusual' weight Z-
score. 

I t would be of interest to see i f other factors, such as sex and level of deprivation 
exert any influence on the conditional weight gain Z-scores in infancy. In figures 
7.24, 7.25 and 7.26 we have produced lowess trend curves for the three sequences of 
conditional weight gain Z-scores by sex and SES for the full infancy sample excluding 
cases (others). I t would appear that female infants in general tend to have slightly 
lower conditional weight gain Z-scores than boys but both sexes have trend curves of 
a similar shape. A similar trend was observed on the original weight Z-score scale; 
see Chapter 4. An interesting trend is observed when considering conditioning on 
the previous weight Z-score; the most deprived children tend to have lower condi
tional weight gain Z-scores. Thus suggesting that level of deprivation may exert 
some influence on rate of weight gain between consecutive clinic weighing. When 
conditioning on the first weight Z-score after birth it would appear that the con
ditional weight gain Z-scores drop away more rapidly in late infancy for affluent 
infants. When conditioning on first weight Z-score both the affluent and deprived 
have similar conditional weight gain Z-scores in late infancy. The negative trend 
observed at the end of infancy in all of the plots produced in figures 7.24, 7.25 and 
7.26 possibly reflects that children growing less well are monitored for longer. 
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7.6 Interpretation of conditional weight gain Z-
score patterns 

It was thought that patterns in conditional weight gain Z-scores may be informative 
about a child's weight gain and also provide some indication of the variability. We 
may expect an infant growing 'normally' to have conditional weight gain Z-scores 
that are 'close' to zero, perhaps fiuctuating either side of zero. Whereas an infant 
with slow weight gain may have a high proportion of 'negative' conditional weight 
gain Z-scores. Similarly an infant with excessive weight gain may be expected to 
have a high proportion of conditional weight gain Z-scores that are 'positive'. Thus 
it seemed sensible to look at patterns in 'runs' of these sequences of conditional 
weight gain Z-scores: conditioning on first weight Z-score, conditioning on first 
weight Z-score after birth, and conditioning on previous weight Z-score. 

7.6.1 Preliminary work on patterns of conditional weight 
gain Z-scores 

Starting with the conventional approach used when applying the 'runs' test to a 
series of data, a child was said to have a ' - I - ' if their conditional weight gain Z-
score was positive and a ' —' if their conditional weight gain Z-score was negative. 
Considering a subset of the data which had weights in the seven grouped ages 
allocated by Dr C M . Wright. Tabulation of the individual patterns for the runs 
from birth revealed that the series of conditional weight gain Z-scores were unlikely 
to come from a completely random process. When conditioning on previous weight 
Z-score, the run of signs appear to be more random (possibly because the sample 
size is smaller) than when conditioning on first weight Z-score. We found that in 
general the 'number of negatives' was more informative for detecting poor weight 
gain than the run length of a series of conditional weight gain Z-scores. Preliminary 
analysis also indicated that control children exhibited similar growth patterns to the 
rest of the birth cohort. So here we only consider two groups of children, the cases 
and others, where others refers to children that are not cases. 

Counting the number of negatives is not an effective way of comparing the case 
and others groups, because a child can have between 1 and 10 conditional weight 
gain Z-scores when conditioning on first weight Z-score or previous weight Z-score. 
Instead, the approach used here is to calculate the proportion of negatives. However 
this still has the downside that a child with only one conditional weight gain Z-score 
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that is negative is treated the same has a child that has all 10 conditional weight 
gain Z-scores that are negative. 

The uppermost histograms in figure 7.27 summarise the distribution of the pro
portion of negatives in the case and other groups when conditioning on first weight 
Z-score. The cases have a high proportion of negatives (all above 0.5) with the 
majority of cases having all negative conditional weight gain Z-scores. This is not 
a surprising result because the case children were identified as an at risk group by 
using the 'thrive index' approach (see section 3.1), this contrasts late weight Z-scores 
with a weighted average of weight Z-scores at birth and grouped ages of 1 and 2 
months. The others group have a both a high and low proportion of negatives, with 
a flattening in the distribution between proportions of 0.1 and 0.9. 

The uppermost histograms in figure 7.28 summarise the distribution of the pro
portion of negatives in the case and other groups when conditioning on previous 
weight Z-score. Again the cases have a high proportion of negatives (all above 0.3). 
However the highest proportion of negatives in the others group is around 0.5, with 
the proportion of negatives forming a bell shape distribution but with slightly more 
children having a lower proportion of negative weight Z-scores. 

7.6.2 Introduction of a threshold 

In the standard 'runs' approach, i f 0 would be taken as the median then anything 
above zero would be classed as positive and anything below as negative. In doing 
this we are saying that Z-scores, such as -0.01 and 0.01, are distinguished as being of 
different sign when in fact they are not very different. Therefore various thresholds 
were explored between 0 and 1 in increments of 0.2. A threshold of 0.2 is taken to 
mean that the conditional weight gain Z-score is: 

• positive (+) if it's greater than 0.2 

• negative ( - ) if it's less than -0.2 

• the same (0) if it's between -0.2 and 0.2 

In introducing a threshold we were hoping to exclude individuals that may have 
some negative conditional weight gain Z-scores but are growing 'normally'; that 
is those children that exhibit the usual weight gain fluctuations seen in infancy. 
The effects of introducing a threshold are as expected; as the size of the threshold 
increases the proportion of negatives decreases for both the cases and others. 
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Histograms of the distribution of the conditional weight gain Z-scores (when 
conditioning on first weight Z-score) as the threshold increases, for both cases and 
others, are displayed in figure 7.27. At around a threshold of 0.4 to 0.6, the propor
tion of negatives is low for the others group but still quite high for cases. Histograms 
of the distribution for the conditional weight gain Z-scores (when conditioning on 
previous weight Z-score) as the threshold increases, for both cases and others, are 
displayed in figure 7.28. At around the same threshold value, 0.4 to 0.6, the distri
bution of the conditional weight gain Z-scores of the others group is shifted towards 
the left while the distribution of the case group is more symmetric. Thus suggesting 
that a thresholds of around 0.5 and -0.5 may be appropriate for determining whether 
a conditional weight gain Z-score is 'positive' and 'negative', respectively. 

7.6.3 An alternative approach for detecting growth faltering 

I t would be ideal to identify infants at risk of failing-to-thrive early so that remedial 
action can be implemented. I t was with this philosophy we decided to explore the 
use of the criteria that the first two consecutive conditional weight gain Z-scores 
are 'negative' as an indicator of failure to thrive, i.e. the conditional weight gain 
Z-score between first and second weight, and second and third weight are both 
below the lower threshold. This approach may pick up infants at risk of failing-to-
thrive earlier as their weight gain is slowing up rather than waiting for the infant's 
weight to fall below say the third centile or below the 'thrive index' cut-off in late 
infancy. A cautionary note at this point is that we may arrive at a higher frequency 
than expected of negative conditional weight gain Z-scores immediately after birth 
because in this time period there are often problems adjusting to feeding, resulting 
in a slight loss in weight or delay in weight gain. Inevitably, the large number of 
others and the small number of cases will lead to a large number of 'false positives' 
(i.e. others detected as FTT). 

The use of this mechanism for identifying children at risk of failing to thrive was 
explored in both the case and other groups. In figure 7.29 we present bar charts of 
the proportion of cases and others that have the first two conditional weight gain 
Z-scores negative, again the threshold is varied between 0 and 1 in steps of 0.2. As 
the threshold is increased the percentage of cases and others satisfying the first two 
conditional weight gain Z-scores negative decreases. Even with a zero threshold, 
this criterion identifies a high proportion of cases. At the same time this criterion 
also identifies just under one fifth of the others group as an at risk group. In figure 
7.30 we present the conditional weight gain Z-scores when conditioning on previous 
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weight Z-score for cases (upper panel) and others (lower panel). The scatter within 
these plots are coloured grey if the criterion is true and in pink if the criterion is 
false, using the zero threshold as an example. A black and red lowess curve are 
overlaid for the group of children were the criterion is true and false, respectively. 
The upper panel in figure 7.30 for the case infants indicates that the children that 
satisfy the criterion, falter earlier in infancy in comparison to the group that don't 
satisfy the criterion. The lower panel in figure 7.30, for the other infants, indicates 
that the children that satisfy the criterion experience a period of temporary growth 
faltering immediately after birth. These may be the infants that are experiencing 
problems with initial feeding, but this group of children then go on to improve. 

The first three weights (hence the first two conditional weight gain Z-scores) are 
often in the first two months of life. In figure 7.31 we explore whether taking the 
first three consecutive conditional weight gain Z-scores to be negative is a viable 
alternative. I t would appear that this is also a promising criterion, identifying a 
similar percentage of cases but a lower percentage of others with zero threshold. 
In figure 7.32 we consider taking the first four consecutive conditional weight gain 
Z-scores to be negative. This approach still identifies a large proportion of cases 
and very few others. However, this criterion could be too stringent and growth 
retardation may have persisted for a long time by the fifth weight measure in infancy. 
Finally, we considered the impact of ignoring birth weight and explored the impact 
of a criterion requiring that the second and third consecutive conditional weight gain 
Z-scores are negative, see figure 7.33. I t would appear that with a zero threshold 
this criterion identifies 80% of case children and a similar percentage of 'others' as 
conditioning on first two weight Z-scores negative. Here we have presented some 
suggestions of how conditional weight gain Z-scores could be used to detect growth 
faltering. This is a potential area for future work, in collaboration with child growth 
experts. 

7.6.4 Introducing a cost mechanism 

So far we have not really arrived at any clear cut answers with regards to deciding an 

appropriate threshold, assuming for the moment that the case group were a definite 

diagnostic group, then a high proportion of the cases are identified as having their 

first two conditional weight gain Z-scores negative but at a cost that some of the 

others group are also identified (these may be vulnerable infants). As the threshold 

increases the percentage of children identified using the 'two negatives' criterion is 

reduced, but the same is true in the case group. 
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It is suspected that the distinction between the two groups, cases and others is 
not as clear cut in early infancy, with the case group experiencing a prolonged period 
of growth faltering whilst infants in the others group may experience temporary 
growth faltering. 

Cost benefit analysis makes i t possible to determine, firstly, whether 

an individual intervention offers an overall net welfare gain and, 

secondly, how the welfare gain from the intervention compares 

with that from alternative interventions (Palmer et al. 1999, 

ppl349) 

Cost-benefit analysis is an approach adopted in many disciplines. However, its use 
in health care has been limited because of objections to valuing health benefits in 
monetary terms and practical measurement difficulties (Palmer et al. 1999). Kelnar 
(2000) suggested that a cost-benefit approach may be the way forward in deciding 
when to use growth hormone therapy with children of short-stature. Here the issue 
is to discriminate between children with idiopathic short stature, growth hormone 
deficiency and other potential causes of short stature. Furthermore, the benefits of 
growth hormone treatment for these different groups of children is debatable. 

One possible approach to determining a suitable threshold is to use a cost mech

anism. Given an infants weight, there are 4 possibilities: 

1. FTT detected, leading to cost of deaUng with. 

2. FTT not detected, resulting in no cost of dealing with but possibly big 

costs later in terms of treatment and ethically. 

3. Non-FTT classified as non-FTT resulting in no costs. 

4. Non-FTT incorrectly classified as FTT which leads to costs of dealing 

with and possible inconvenience for parents. 

Therefore we are mainly choosing a classification rule to balance (2) and (4). If 

we for example take the following costs: 

1. FTT and classified FTT = treatment costs = k 

2. FTT and classified Non-FTT = future treatment and ethical costs = 

ak 
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3. Non-FTT and classified non-FTT = zero cost 

4. Non-FTT and classified as FTT = treatment and inconvenience costs 

= k + hk 

This is a hypothetical set up as the true costs are not available, so for arguments 

sake we take k=l and h=0. 

Then if we consider those infants whose first two conditional weight gain Z-scores 

are 'negative', then for a particular threshold we have the following costs: 

E(cost)=p(FTT and classified FTT) + p(Non-FTT and classified FTT) + a p(FTT 

and not classified FTT) 

The criterion that the first two conditional weight gain Z-scores are negative 
was used and the costs tabulated using the cost mechanism described above (the 
threshold varied between 0 and 1 in steps of 0.1 and a took on values between 1 
and 10 in steps of 1), see table 7.3. The overall aim is to minimise the cost. For low 
values of a the tabulated costs decrease as the threshold increases. As soon as the 
value of a is about 5-6 then the threshold is that minimises the cost is about 0.8, as 
a increases the threshold that minimises the cost decreases to about 0.5. However 
when a reaches 9 or 10, there are several thresholds which give local minima. 

Table 7.3: Contrasting others with cases: Tabulated costs for various thresh

olds and different values of a 

Threshold 1 2 3 4 5 6 7 8 9 10 
0 0.262 0.275 0.288 0.300 0.313 0.326 0.338 0.351 0.364 0.376 
0.1 0.221 0.236 0.251 0.266 0.281 0.296 0.311 0.326 0.341 0.356 
0.2 0.180 0.198 0.217 0.235 0.254 0.272 0.291 0.309 0.328 0.346 
0.3 0.155 0.177 0.199 0.221 0.243 0.265 0.287 0.309 0.331 0.353 
0.4 0.131 0.155 0.179 0.204 0.228 0.252 0.276 0.301 0.325 0.349 
0.5 0.112 0.138 0.165 0.192 0.219 0.245 0.272 0.299 0.326 0.352 
0.6 0.096 0.125 0.155 0.184 0.213 0.243 0.272 0.301 0.330 0.360 
0.7 0.082 0.114 0.146 0.178 0.210 0.241 0.273 0.305 0.337 0.369 
0.8 0.072 0.105 0.139 0.173 0.207 0.240 0.274 0.308 0.341 0.375 
0.9 0.064 0.100 0.137 0.173 0.209 0.245 0.282 0.318 0.354 0.390 
1 0.056 0.094 0.131 0.169 0.206 0.244 0.281 0.319 0.356 0.394 
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7.7 Graphical display of expected pattern of weight 
gain 

The graphical display of conditional weight gain Z-scores is an area where there 
may be scope for further research. In this chapter we have adopted the approach 
of plotting the conditional weight gain Z-score at the time of the current weight 
measure because it is at this time point the clinician would make an evaluation of 
the child's weight gain. We have also assumed that the conditional weight gain 
Z-score was zero at the first measurement occasion. I t could be argued that the 
conditional weight gain Z-score is a measure over the time period between the two 
weight measures, so i t may be appropriate to plot the conditional weight gain Z-
score at the average time (in a similar fashion to velocity charts) or use the approach 
adopted by Cole (1995) discussed below. 

The conditional lOOa centile is given by (Cole 1998a): 

^t2 | i l , 100Q rZn+z^VT^ (7.15) 

where r is the correlation between weight Z-scores at tl and t2, and Za is the normal 

equivalent deviate. 
•V. 

Cole (1995) presented the median pattern of weight gain derived from the Cam
bridge correlation matrix (excluding birth weight) for 223 infants, see table 3.1 
in chapter 3. Cole (1995) considered a set of hypothetical infants; these had 
weight Z-scores from -4 to 4 in steps of two-thirds at 4 weeks (i.e. at 4 weeks 
Z-score = ( ± 4 , ± 3 | , ± 2 | , ± 2 , ± l i , ± | , 0 ) ) . The predicted Z-score at 8 weeks was 
then obtained by multiplying the Z-score at 4 weeks by the correlation between 
weight Z-scores at 4 and 8 weeks. The correlations on the leading off-diagonal of the 
Cambridge correlation matrix were used in a similar fashion to obtain the median 
pattern of weight gain for these hypothetical infants up to the age of 2 years. This 
gave a Z-score chart of the expected pattern of weight gain over a 4 week interval. 
Cole (1995) overlaid isoponds on these weight gain Z-score charts; with these con
tours corresponding to constant weights in kilograms. Thus enabling a child's actual 
weight to be plotted directly on the weight gain chart. Cole (1995) also overlaid the 
median pattern of weight gain over the UK 1990 weight reference. 

Cole (1998a) presented the conditional 5th and 95th weight gain centiles using 

the model for correlation derived from the Cambridge correlations including birth 

weight. The thrive lines in the 3-in-l chart (Cole 1997b) correspond to the condi

tional 5th weight gain centiles. Cole (1998a) chose the 5th and 95th centiles as it was 
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only feasible to present these two extremes without the chart becoming cluttered. 
In a similar fashion to the median pattern of weight gain, these conditional centiles 
were then overlaid on the original weight growth chart. 

We now produce similar charts, but starting with Z-scores between -4 and 4 in 
steps of thirds at birth. The correlation at 4 week intervals is obtained by using 
equation (7.2). The expected pattern for weight gain Z-scores, using the one variable 
Argyle model, is represented by the black lines on the left plot of figure 7.34. The 
conditional fifth centile of weight gain is also obtained for these same starting Z-
score values at birth and these can be found on the right of figure 7.34. The red lines 
within both plots in figure 7.34 represent the expected pattern of weight gain and 
the conditional fifth centile of weight gain generated by using the model proposed 
by Cole (1998a). The Argyle model generates expected weight gain Z-scores that 
regress towards the mean sooner than those generated by the model proposed by Cole 
(1998a) model. This is probably due to the weaker correlations observed between 
the routine Newcastle weight Z-scores. The conditional fifth centile using the Argyle 
model drops away from the starting Z-score value earlier than the model proposed 
by Cole (1998a). However for birth weight Z-scores that are -2 or less the conditional 
fifth centiles are similar for both models. Thus suggesting that children with initially 
high weight Z-scores would have to experience a more rapid deceleration in weight 
gain to fall below the conditional fifth centile generated by the Argyle model than 
with the model proposed by Cole (1998a). 

Cole (1995) presented ID 2149's conditional weight gain Z-scores as an example 
of chart usage and variability of conditional weight gain Z-scores. These are pre
sented here using the one variable Argyle model to obtain the conditional weight 
gain Z-scores. Cole (1995) presented conditioning on previous weight Z-score and 
all possible conditional weight gain Z-scores. Cole (1995) chose to present the con
ditional weight gain Z-scores as dotted lines from age of first weight to age of second 
weight and these were overlaid on the expected pattern of weight gain chart. In 
figure 7.35 we use the same approach as Cole (1995), but the expected pattern of 
weight gain is represented by grey lines and two charts are produced to avoid in
formation overload. The chart on the left of figure 7.35 presents conditional weight 
gains Z-scores when conditioning on previous weight Z-score. The chart on the right 
of figure 7.35 presents conditional weight gains Z-scores when conditioning on birth 
weight Z-score. Similar charts are also produced for a case child with ID 3662 for 
comparison purposes; see figure 7.36. 

As discussed in chapter 3, velocity charts are restricted to height measurements 

made one year apart. Similarly, the charts produced in figure 7.34 have limited 
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use because they are only suitable for conditional weight gain Z-scores over a four 
week interval. Furthermore, Cole (1995) acknowledges that the chart for expected 
pattern of weight gain fails to identifying growth that departs from the median. An 
approach favoured here is the use of the conditional weight gain Z-score, because 
this index can be applied over any time interval and in theory should be distributed 
with zero mean and variance one. The only caution is that this conditional weight 
gain Z-score is likely to be more variable over shorter time intervals. 

7.8 Discussion and Conclusions 

At the start of this chapter we developed the one variable version of the Argyle 
model; this achieved the desirable property of a correlation of one when tl = t2. 
Furthermore, the one variable Argyle model developed has an interesting and useful 
result; i t has a Markov property. The properties of conditional weight gain Z-
scores generated using the Argyle model given by equation (7.2) were considered. I t 
was only possible to consider 385 groups of conditional weight gain Z-scores; these 
were the same infants that derived the model for correlation. Therefore we were 
unable to assess conditional weight gain Z-scores of individuals that have out of 
sample correlations because the sample sizes of these groups would be too small 
{n < 50). In considering the properties of these 385 sets of conditional weight 
gain Z-scores, grouped by tl and t2, we found that the conditional weight gain Z-
scores generated using equation (7.2) tended to have a mean that was greater than 
zero. The magnitude of the standard deviation and mean was greater for weight 
measurements made close in time. Thus suggesting that we should be cautious 
about using cut-off points with conditional weight gain Z-scores. 

Cole (1995) verified his model for correlation on all data from Cambridge infant 

study and a sub-sample of the Newcastle data considered here. Cole (1995) grouped 

each set of conditional weight gains according to mean and gap ages, because these 

were the two variables within his model for correlation. These groupings corre

sponded to the mean and gap ages' generated by the Cambridge correlation matrix. 

In the set of conditional gains from Newcastle; Cole (1995) discarded any groups 

with fewer than 50 individuals. Cole (1995) found that the Newcastle data gener

ated more extreme gains than the Cambridge data. Cole (1995) advocated using his 

model for time periods greater than 4 weeks, but my research suggests that there 

is still the odd extreme group of conditional weight gain Z-scores at age intervals 

greater than 4 weeks. 
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An additional issue arises when we need to calculate a conditional weight gain 
Z-score by extrapolating outside the age range that the Newcastle correlations were 
modelled. This applies to infants that have late weights at an age greater than the 
grouped age of 88 weeks, and an early weight at a grouped age greater than 52 weeks. 
In total there are 3111 (3.1%) conditional weight gain Z-score pairs that would 
involve extrapolation. This is only a small percentage, but an alternative would 
be to use the model proposed by Cole (1998a) because this models the correlation 
between weight Z-scores up to the age of 2 years. In using the model proposed by 
Cole (1998a) we would be extrapolating for 1052 (1.1%) conditional weight gain 
Z-score pairs. 

Exploring trends in sequences of conditional weight gain Z-scores verifies that 
case infants experience a different pattern of weight gain in contrast with the rest 
of the Newcastle infancy data. The trend is for case infants to drop to conditional 
weight gain Z-scores around -2 mid-infancy with a slowing up in weight faltering 
towards the end of infancy. I t appears that the majority of case infants experience 
decelerating weight gain from birth. 

We considered several possible criteria for detecting growth faltering in early 
infancy. However, consultation with an expert on child growth is required to draw 
any firm conclusions. The use of the criterion that the first two (or three) consecutive 
conditional weight gain Z-scores are 'negative' to detect growth faltering seemed 
to be sensible. The 'two negatives' criterion selected a large percentage of the 
children identified as failing to thrive using Dr C M . Wright's 'thrive index' approach. 
However there were still a small proportion of children identified from the others 
group. However preliminary analysis suggested that this group of children exhibited 
a period of temporary growth faltering immediately after birth. Furthermore, it is 
not unusual for infants growth to slow in the early weeks of life due to adjusting 
to feeding (Tanner 1989). A further consideration is that the baseline Z-score, see 
Chapter 4, is an average of Z-scores for weights at birth and grouped ages of 1 and 
2 months. Thus a child whose first two conditional gain Z-scores are 'negative' may 
have a much lower baseline Z-score and hence have to drop even further before being 
detected as a case. 

A similar approach has been used in the past for raw length increments by Healy 

et al. (1988), as discussed in chapter 3. Healy et al. (1988) suggested using a 25th 

percentile 'warning' limit with their increment chart for length, i.e. if the infants 

length increment was below the 25th percentile on two consecutive occasions then 

action was taken. 
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Quantifying the measuring error of weights in infancy could be of potential value 
in the use and interpretation of conditional weight gain Z-scores. However quantify
ing the measurement error is not a straightforward task, because very little has been 
done on the measurement errors of weight in infancy, Alsop-Shields and Alexander 
(1997) being the exception ^ When we explored patterns in conditional weight gain 
Z-scores we introduced a threshold to allow for normal variation in the growth pro
cess along with a cost mechanism, this threshold could be based on measuring error. 
However, i f we could quantify the measurement error in infancy in general, then on 
a Z-score scale we would arrive at a threshold that varies with age. It would also 
be useful to determine an optimal measurement interval for contrasting two weights 
using the conditional weight gain Z-scores. I t is possible that measurement error 
could in some way be taken into account when a conditional weight gain Z-score is 
interpreted. However, even if there is way of quantifying the measurement error, 
there are still issues of biological variation and the possible haphazard nature of the 
growth process. 

To conclude, we have explored a variety of approaches to using conditional weight 
gain Z-scores. I t is felt that there is some value in using more than the conventional 
one conditional weight gain Z-score to assess a child's weight gain. For example, 
i f we consider conditioning on the previous weight Z-score, then the use of criteria 
such as the first two or three conditional weight gain Z-scores 'negative' for detecting 
growth faltering in early infancy would be a valuable asset for monitoring a child's 
growth. Use of lowess to assess the trend in sequences of conditional weight gain 
Z-scores indicate that case infants do exhibit a markedly different growth pattern 
in infancy when contrasted with the remaining infants in the Newcastle cohort. I t 
appears that case infants weight gain decelerates rapidly from birth with a slowing 
down of the deceleration in growth towards the end of infancy. An interesting, and 
important, result is that the use of the one variable Argyle model to model the 
correlation between weight Z-scores in infancy is that conditioning on the previous 
weight Z-score is the same as conditioning on all previous weight Z-scores. Thus 
to assess recent weight gain we only need to consider the previous weight Z-score. 
This result could have implications for other areas of research that could use the 
one variable Argyle model to approximate some process. 

^The measurement error in a research study setting is addressed briefly in the measure
ment technique section of the paper on the UK 1990 reference, "the teams were trained and 
tested for within and between observer error which were ̂ 0.4cm for stature and ^0.05Kg 
for weight in all cases" (Freeman et al. 1995, ppl9) 



7 The utilisation of conditional weight gain Z-scores 341 

Figure 7.1: Birth to 2 years: Contour plot of correlation between weight 
Z-scores generated from the Argyle model with two coefficients and constant 
{c — 2 weeks added to age). The line in dashes represents tl = t2. 

r=exp[-0.04+0.27log(t1+2)-0.26log(t2+2)] 

tl (weeks) 
t1<t2 
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Figure 7.2: Age to nearest fortnight: Scatterplots of standardised residu
als versus fitted values. Left Argyle model with two coefficients and constant 
(c = 1.6) Right Argyle model with one coefficient and constant (c = 1.6) 

log(r(t1 .ta)>-a log(t1+1.6Hb log(t2+1.6)+c+«rror log(r(l1 .t2))-a(log(t1 +1.6)-log(t2+1.6)J+b+«>Tor 
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Figure 7.3: Age to nearest fortnight: Plot of Cook's distance versus index 

for Argyle model with one coefficient and constant (c = 1.6) 

Plot of cook's distance 
one variable Argylo model (c-1.6> 
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Figure 7.4: Age to nearest fortnight: Plot of standardised residuals versus 
fitted values for Argyle model with one coefficient (c = 1.1 weeks added to 
age) and with/without intercept term 
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Figure 7.5: Birth to 2 years: Contour plot of correlation between weight Z-

scores generated from the Argyle model with one coefficient and no constant 

(c = 1.1 weeks added to age) 

r=[(t1+1.1)/(t2+1.1)]'^0.24 

t1 (weeks) 
t1<t2 
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Figure 7.6: Plot of Newcastle fortnightly correlations with fitted curve (Ar

gyle model, c — 1.1), confidence interval and prediction interval 
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Figure 7.7: Plots of means of conditional weight gain Z-scores versus average 
age (on left) and time elapsed (on right). Age is in weeks 
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Figure 7.8: Plots of standard deviations of conditional weight gain Z-scores 
versus average age (on left) and time elapsed (on right). Age is in weeks 
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Figure 7.9: Plots of minimum values of conditional weight gain Z-scores 

versus average age (on left) and time elapsed (on right). Age is in weeks 
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Figure 7.10: Plots of maximum values of conditional weight gain Z-scores 

versus average age and time elapsed. Age is in weeks 
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Figure 7.11: Graphical display of results from testing that the mean of the 

conditional weight gain Z-scores is zero: Plot of t-values versus time elapsed 

(on left) or average age (on right). Age is in weeks 
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Figure 7.12: Graphical display of results from testing that the variance of the 
conditional weight gain Z-scores is one: Plot of approximate p-values versus 
time elapsed (on left) or average age (on right). Age is in weeks 
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Figure 7.13: Graphical display of results from tests that variance of the 

conditional weight gain Z-score is one: Plots of approximate p-values from 

testing that variance is one versus sample size (on left) and t-value (on right). 
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Figure 7.14: Graphical display of correlation between initial weight Z-score 

and conditional weight gain Z-score (age in weeks) 
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Figure 7.15: Graphical display of results from testing Normality of condi
tional weight gain Z-scores: Plot of p-values (Shapiro-Wilk Normality test) 
versus time elapsed (on left) or average age (on right). Age is in weeks 
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Figure 7.16: Conditioning on first weight Z-score: Plots of conditional weight 
gain Z-score versus age for ful l sample, cases, controls and others 
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Figure 7.17: Conditioning on first weight Z-score after birth: Plots of con

ditional weight gain Z-score versus age for full sample, cases, controls and 

others 
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Figure 7.18: Conditioning on previous weight Z-score: Plots of conditional 
weight gain Z-score versus age for ful l sample, cases, controls and others 
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Figure 7.19: Connected plots of weight Z-score versus age for a random 
sample of 20 infants from the case and other groups 
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Figure 7.20: Connected plots of conditional weight gain Z-score (when condi
tioning on first weight Z-score) versus age for a random sample of 20 infants 
from the case and other groups 
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Figure 7.21: Connected plots of conditional weight gain Z-score (when con
ditioning on first weight Z-score after birth) versus age for a random sample 
of 20 infants from the case and other groups 
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Figure 7.22: Connected plots of conditional weight gain Z-score (when con

ditioning on previous weight Z-score) versus age for a random sample of 20 

infants from the case and other groups 
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Figure 7.23: Four individuals with extreme conditional weight gain Z-scores 
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Figure 7.24: Conditioning on first weight Z-score: Lowess trend curves for 

conditional weight gain Z-score versus age by sex and level of deprivation 
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Figure 7.25: Conditioning on first weight Z-scores after birth: Lowess trend 
curves for conditional weight gain Z-score versus age by sex and level of 
deprivation 
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Figure 7.26: Conditioning on previous weight Z-score: Lowess trend curves 
for conditional weight gain Z-score versus age by sex and level of deprivation 
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Figure 7.27: Conditioning on first weight Z-score: Histograms of proportion 

negative by case or other status (the same threshold is varied in steps of 0.2 

until 1) 
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Figure 7.28: Conditioning on previous weight Z-score: Histograms of propor

tion negative by case or other status (the threshold is varied in steps of 0.2 

until 1) 
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Figure 7.29: Conditioning on previous weight Z-score: Barplots of percent
age of cases and others which have first two conditional weight gain Z-scores 
negative as the threshold varies between 0 and 1 in steps of 0.2 (the propor
tion of the bar shaded black represent the percentage of cases (others) where 
criterion 'first two conditional weight gain Z-scores negative' is true) 
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Figure 7.30: Conditioning on previous weight Z-score: Plots of conditional 
weight gain Z-score (conditioning on previous weight Z-score) versus age with 
lowess trend curves for individuals where 'two negatives' criterion is true and 
false (Threshold=0) Upper panel: Cases lower panel: Others 
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Figure 7.31: Conditioning on previous weight Z-score: Barplots of percentage 
of cases and others which have first three conditional weight gain Z-scores 
negative as the threshold varies between 0 and 1 in steps of 0.2 (the propor
tion of the bar shaded black represent the percentage of cases (others) where 
criterion 'first three conditional weight gain Z-scores negative' is true) 
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Figure 7.32: Conditioning on previous weight Z-score: Barplots of percent
age of cases and others which have first four conditional weight gain Z-scores 
negative as the threshold varies between 0 and 1 in steps of 0.2 (the propor
tion of the bar shaded black represent the percentage of cases (others) where 
criterion 'first four conditional weight gain Z-scores negative' is true) 

Threshold=0 Threshold=0.2 

I S 
1 5 

others cases others 

Threshold=0.4 Threshold=0.6 

others 

Threshold^O.8 

s 
s -I 

— 
cases others 

Threshold=1 

IKl!-. 
others others 



T i e utilisation of conditional weight gain Z-scores 368 

Figure 7.33: Conditioning on previous weight Z-score: Barplots of percentage 
of cases and others which have second and third conditional weight gain Z-
scores negative as the threshold varies between 0 and 1 in steps of 0.2 (the 
proportion of the bar shaded black represent the percentage of cases (others) 
where criterion 'second and third conditional weight gain Z-scores negative' 
is true) 
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Figure 7.34: Plot of median pattern and fifth centile of weight gain generated 
by one variable Argyle model and Cole's (1998) model fitted to Cambridge 
correlations (including birthweight) 

Expected pattern of weight gain Fifth centile for conditional weight gain Z-score* 
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Figure 7.35: Plot of median pattern of weight gain generated by one variable 
Argyle model, along with conditional weight gain Z-scores for infant with ID 
2149. Left Conditioning on previous weight Z-score. Right Conditioning on 
birth weight Z-score. The weight Z-scores are connected by a solid line. The 
conditional weight gain Z-scores are connected by dotted lines from age of 
first weight to age of second weight. 

ID 2149: Conditioning on previous weight Z-score ID 2149: Conditioning on birth weight Z-score 

Age (weeks) 
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Figure 7.36: Plot of median pattern of weight gain generated by one vari
able Argyle model, along with conditional weight gain Z-scores for a case 
infant with ID 3662. Left Conditioning on previous weight Z-score. Right 
Conditioning on birth weight Z-score. The weight Z-scores are connected by 
a solid line. The conditional weight gain Z-scores are connected by dotted 
lines from age of first weight to age of second weight. 

Case with ID 3662: Conditioning on previous weight Z-score Case with ID 3662: Conditioning on birth weight Z-score 

Age (weeks) 



Chapter 8 

School entry data 

This chapter details the school entry height and weight data of children that partic
ipated in the follow-up study. I retrieved this data from school health records held 
in Newcastle clinics. This chapter also provides a preliminary analysis of this data. 

In section 8.1 we discuss the role of school entry examination and discuss possible 
sources of error inherent in routine school entry data. Section 8.2 provides details 
of the data collection process and summarises the variables within the school entry 
data frame. Sections 8.3 to 8.5 provide a preliminary analysis of the school entry 
data. In section 8.4, we compare the attained heights and weights of the systematic 
sample to those children that contribute to the revised UK 1990 growth reference. In 
section 8.5 we compare attained heights and weights of children in the case-control 
study. 

8.1 The role of the school entry examination 

8.1.1 Routine height and weight monitoring after infancy 

Children are routinely screened on entering school for their heights and weights. In 
addition the school entry examination provides the opportunity to screen for vision 
and hearing defects, and is useful for identifying children that may have missed out 
on pre-school health care (Hall and Stewart-Brown 1998). Over the j'ears there has 
been much debate about the value of growth monitoring (CM) and whether height 
or weight should be monitored more frequently than at present. Recent guidelines 
suggest that school entry heights offer the best opportunity to identify conditions 
such as growth hormone deficiency and Turners syndrome (Hall 2000). The situation 

372 
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with regard to weight monitoring after infancy is still less clear. However, recording 
both height and weight, in order to obtain the BMI of a child, would be of clinical 
value and public health interest (Hall 2000). Use of the BMI reference (Cole et al. 
1995; Cole et al. 1998), for the school entry data appears to be appropriate (Voss 
and Mulligan 1999a). However guidelines for underweight children are not readily 
available. The main source of discussion and publications in the medical literature 
are with regard to the use of BMI for assessing obesity, because this affects a larger 
proportion of the population. There is no known literature on applying appropriate 
cut-offs for anorexic, very underweight and underweight children when using the UK 
1990 BMI reference. This latter situation is likely to apply to a greater proportion 
of the school entry data, because children that failed to thrive in infancy may be 
wasted (low weight-for-height) and stunted at school entry. 

High coverage is easily achieved at school entry because it is policy to assess all 
5 year old children when starting school (Hall and Stewart-Brown 1998). Laing and 
Rossor (1996) examined the medical records of 327 children from eight schools in 
Lambeth, a deprived inner city area of London. Out of these, 262 children (80%) 
had their heights monitored at the age of 5 years, with coverage varying between 
61% to 98% for different schools (Laing and Rossor 1996). A recent survey of current 
growth screening practice found: 

Pre-school and school age height screening took place in 75% 
and 81% of districts respectively, but most children were only 
measured once before school or at school (Hulse and Schilg (1995) 
in Schilg and Hulse (1997, pp3)). 

The number of individuals with height and weight measures in the 20% systematic 
sample would provide some indication of the coverage achieved in the Newcastle 
area at that time, i.e. 1991-1993. 

8.1.2 The accuracy of school entry measurements 

If a trained observer measures the height of a child to the nearest 
millimetre and then repeats the measurement, experience shows 
that the results will usually not be identical, indeed that dif
ferences of 3 to 5 mm are not uncommon. If the observer is 
inadequately trained larger differences will occur, and still larger 
differences are found when the two measurements are made by 
different observers. The height of a child does not change over a 
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period of few minutes, and the discrepancies between measures 
must be due to failure of the recorded figures to correspond ex
actly to the true height; in brief to measurement error (Healy 
1989b, pp893). 

The equipment used to measure height and weight at school entry and its ac
curacy will vary from one school to the next. Laing and Rossor (1996) carried out 
a survey of measuring equipment in 59 schools in Lambeth; noting both the type 
and location of measuring equipment. A metre rule and 10 Kg were used to check 
the scales and height measures in each school (Laing and Rossor 1996). Laing and 
Rossor (1996) found that 27 scales weighed within ±100 g of the 10 Kg weight (range 
7.5 Kg to 11.95 Kg) and 23 height measures were within ±0.5 cm of the metre rule 
(range 98 cm to 102 cm). Voss et al. (1990) used a metre rule to check the instal
lation of 230 measuring instruments in health centres, hospitals, schools and CP 
surgeries in Wessex and found the readings obtained ranged from 90 to 108.5cm. 

At school entry the measurements are taken by different nurses, so the measure
ment techniques used may be different and each nurse will have their own individual 
degree of error when measuring height. Cotterill et al. (1993) considered the relia
bility (reproducibility and accuracy) of 7 school nurses' measurements in comparison 
to a trained auxologist. Seven groups of 10 children, aged 5-6 years, were measured 4 
times using the same technique (twice by both nurse and auxologist). Cotterill et al. 
(1993) found that the pooled standard deviation of the differences between repeat 
measures recorded by the school nurses were comparable to those of the auxologist 
(0.32cm versus 0.35cm, respectively). The difference between mean values of mea
surements made by the school nurse and the auxologist were taken to represent the 
accuracy of the school nurses measures; the range of the school nurses measurements 
were -0.53 cm to +0.64 cm in contrast to the auxologists (Cotterill et al. 1993). 

A child's height is also affected by the time of day, children are taller in the 
morning than in the afternoon and this is termed diurnal variation. Voss and Bailey 
(1997) stated that most authors agreed that the loss in height over the day was 
between 2 and 3 cm. There is also the question of whether the child was stretched 
or not, community guidelines recommend that gentle upward pressure is applied to 
the mastoid process to encourage the child to stand tall (Schilg and Hulse 1997). 
Voss and Bailey (1997) found that by using this technique the recorded height was 
significantly affected by an average of 0.28 cm. Voss and Bailey (1997) saw no 
advantage in stretching as it didn't minimise diurnal variation and recommended 
that the child should be measured at the same time of day on each measurement 



8 School entry data 375 

occasion, preferably in the afternoon. 

Errors can be made when recording heights and weights. For example there 
may be the absence of a date, so the exact age can not be calculated or the nurse 
may only plot the height and weight data rather than writing the numerical value 
down. Laing and Rossor (1996) looked at the latter and found that for 85 out 
of 327 records, there were only plotted points with no numerical value recorded. 
When a measurement had both the numerical value noted and was also plotted on a 
child's growth chart, Laing and Rossor (1996) found that 10 measures were plotted 
incorrectly (error ranged from 2 to 10 cm). 

Although the guidelines for weighing children over 2 indicate that children should 
wear no more than light clothing with shoes off (Schilg and Hulse 1997), children 
undergoing a school entry assessment are likely to be fully clothed. The date of 
the school entry assessment will provide some indication to whether the child is in 
summer or winter clothing. However thin children are more likely to wear thicker 
clothes and children from a lower socio-economic class are more likely to wear jeans. 
Children from the case-control study come predominantly from deprived areas of 
Newcastle. Sumner and Whitacre (1931) (in Alsop-Shields and Alexander (1997)) 
found that for half of their sample of 100 Texan children (aged 10-11 years), weight 
variations in a child's clothing could equal or exceed their monthly change in weight. 

The data collected, see section 8.2, will be on children of a variety of ages and the 
accuracy of these may be influenced by the child's age, a young child is more likely to 
move when being weighed or having their height measured. The standard deviation 
of a single height measurement is around 0.2-0.3 cm in school age children, leading to 
95% confidence limits of about ±0.5cm (Hall 2000). However these confidence limits 
are wider for younger children; about ±lcm for two year olds (Hall 2000). Ahmed 
et al. (1990) assessed the accuracy of height measurements made by two sets of 
four health visitors on two groups of ten children, aged 3 and 4.5 years, respectively. 
These measurements were then compared to a trained auxologists measurements on 
a different piece of equipment. Ahmed et al. (1990) found that a substantial part 
of the variance in the observed measurement bias was attributable to the three year 
olds; due to difficulty in obtaining accurate measurement at this age. A further 
consideration is that the time of school entry examination may be influenced by 
other factors, such as a delayed start to schooling. 

As can be seen by the discussion in this section, much emphasis is placed on the 
accurate measurement of height by school nurses as this provides the best opportu
nity to detect growth problems of an organic aetiology. Little emphasis is placed on 
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the accurate measurement of weight as it is assumed that: 

. . . weight is easy to determine accurately. Weight measurements 
do not, however, provide us with sufficient information for the 
assessment of linear growth. If a child's weight increases with 
time we only know that he has become heavier - but whether 
this is due to excess fat, increased bone or muscle, or retention of 
body fluid as a result of some pathological condition is unknown 
(Ahmed et al. 1990, ppl347). 

However if it is viewed that BMI is an important quantity to monitor then surely 
the accuracy of a child's weight is vital too. 

8.2 Practicalities of collecting school entry data 

8.2.1 Motives for data retrieval 

The motives for retrieving the school entry data were: 

1. that it was policy to give all individuals entering school an assessment 

2. this data was readily available in school medical records for the indi
viduals involved in the follow-up study 

3. this data would ' f i l l ' the gap between the infancy and follow-up study 
data 

The weights already obtained in infancy only indicate how well the child grew 
in infancy and tell us nothing about the length of the individual at this stage as 
these were not routinely taken. The BMI obtained from the follow-up data only 
tells us whether the child is underweight (overweight) at their present height and 
doesn't provide any indication of whether this child has always been underweight 
(overweight). 

An additional motive, at the time, was to provide a crude indicator of the child's 
height velocity as this is often monitored by specialists when testing for growth 
hormone secretion (Brook and Hindmarsh 1991). Recent publications (Voss 1999; 
Hall 2000) concluded that monitoring height velocity was not useful because of the 
lack of precision (Voss et al. 1991). However, the inherent lack of precision would be 



8 School entry data 377 

amplified in inexperienced hands (such as in a routine setting) because of elevated 
measurement error in individual height measurements. 

In individuals that had failed to thrive in infancy, the school entry measure 
would provide some indication of whether the child had growth problems that had 
persisted beyond infancy and may provide some indication of presence or absence 
of stunting or wasting in this population at school entry. 

The overall aim was to obtain school entry data (date measurement taken, height 
and weight) for individuals in the case-control study and the systematic 20% sam
ple. In addition, if any other subsequent height and weight measurements were 
documented then these were also noted. 

8.2.2 The location and collection of school entry data 

The school entry data was retrieved over a period of 2-3 months; data collection 
was completed by the end of June 1998. In order to trace the children's records, the 
original database for the follow-up study was utilised, this had last been updated 18 
months earlier. This database contained information on 808 individuals. From this, 
the child's school was used to identify the clinic where the child's school health record 
(MIO) should be located. Some individuals had moved schools since the follow-up 
study, in particular pupils within the west area of Newcastle had moved from first 
school to middle school. Children that had moved schools were traced by using clinic 
out-books or the child health computer at information services, Newcastle General 
Hospital. 

The most difficult records to locate were those children that had changed sur
name. Further some files were unavailable through being with clinic staff. Other 
children had moved just outside the Newcastle area and some records were 'centrally 
held' (this usually means the family have moved out of the district and the notes 
haven't been requested from their new health authority yet). Centrally held records 
were stored in date of birth order at Newcastle General Hospital. 

In Newcastle the health services are divided into four regions, within these are 
a total of 11 clinics and 5 special schools. These clinics and special schools hold 
a child's MIO until the child moves to secondary school. The original follow-up 
study database was read into the software package ACCESS and a database file was 
created for school-clinic allocation. A query option was defined within ACCESS to 
create forms in alphabetic order for each clinic to aid data collection. All heights 
and weights documented since infancy were recorded. Within a child's MIO their 
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school entry height and weight were supposed to be recorded on the front page of 
their file along with any subsequent heights or weights. In practice, most of the 
records had a standard loose sheet attached with the height and weight recorded 
along with details of vision and hearing tests. Sometimes the heights and weights 
were in a school interview form. Some individuals had their heights and weights 
recorded and plotted on a growth chart (mainly east clinics and special schools) 
and others were within school nurse notes. In the east district area it was policy 
to give all children nine-pluses, these measurements were taken after the follow-up 
study and have also been documented. Children in special schools tended to have 
almost yearly measures, although the numerical value wasn't always recorded and 
often points were just plotted on a growth chart. In special schools, if the child had 
'Downs' then their height and weight were plotted on a growth chart for children 
with Downs syndrome. 

Out of the 807 records (1 child had died), 5 (0.6%) of these were not found, 68 
(8.4%) had no 'school-entry' measure and 71 (8.8%) had moved outside the area. 
School entry assessment data for height and weight were obtained for 567 (249 
boys, 318 girls) and 569 (250 boys, 319 girls) children, respectively. In general most 
individuals had a school entry assessment measure, with the exception of children 
attending private school. 

The school entry data set has the following variables for each individual: 

1. ID 

2. DOB 

3. Sex 

4. Date.ent Date of school entry assessment; this was usually during 
the calendar years of 1991-93. This was used to derive Age.ent, the 
age at school assessment (which in general was between 4 and 6 years). 
Occasionally, only the month and year when height and weight mea
surements were monitored was recorded in the MIO. In this situation, 
if a clinic visit was recorded within the notes in the same month then 
this date was used. In one instance the 15*'' of that particular month 
was used. In using the middle of the month there would be less bias 
than taking either the beginning or the end of the month. In theory 
the age will be out by at most 15 days. 

5. Weight.ent The child's weight was taken down as recorded, the ma
jority of these were in metric. The few that were in imperial measures 
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were converted to Kilogrammes using 1 lb ~ 0.4536 Kg. 

6. Height.ent The child's height was taken down as recorded. If recorded 
in imperial units, the measurement was converted to centimetres. 

7. BMI.ent This was derived from the heights and weights. 

The heights, weights and BMI were converted to Z-scores using the revised UK 
1990 growth reference (Cole et al. 1998), to give ZscoreH.ent, ZscoreW.ent and 
ZscoreB.ent, respectively. 

8.3 Age distribution of school entry assessment 

Originally the school entry data was taken to be the first weight and height measure 
after infancy. In this first data set the age range covered was 1.94 to 8.43 years. On 
further examination of the most extreme individuals: 

1. ID 1870 has a weight and height measure at the end of infancy. This 
individual is identified as a case although the Z-score for height at 
1.94 years is 0.91 (which is above the median of the reference) and the 
Z-score for BMI is -0.50 (which is below the median but would not 
classify the child as wasted). This is one of the cases that does show 
some kind of recovery by the end of infancy. No later height or weight 
measures were taken, so we have no information on this individual's 
growth between infancy and the follow up study. 

2. ID 1197 has an assessment at 8. This individual is part of the system
atic 20% sample but as there is no follow up data it is presumed that 
this individual's parents did not consent. These routine measures could 
potentially be included in the follow up study data set. This individual 
has extremely low height (Z-score = -4.05) and weight (Z-score = -3.40) 
but a BMI (Z-score = -0.76) in the normal range. 

3. ID 3600 had 12 measurement occasions after infancy. On two occasions 
only the weight was monitored, indicating that there was some concern 
about this individual's weight (at 3.5 years this individual had a Z-
score of 3.09 for BMI but at 5 years this was reduced to 2.26). This 
individual belongs to the systematic sample and had their first weight 
and height taken at 2.5 years. The measurements made closest to 5 
years were selected. 
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The boxplot in the upper panel of figure 8.1 illustrates that most of the school 
entry assessments were made between 3.5 and 6 years, but there are still 12 outliers. 
These outliers were not excluded from the school entry data set because they provide 
a 'link' between the infancy and follow-up study data. Details of these outliers 
including their Z-scores can be found in table 8.1. These individuals tend to be 
members of the systematic sample or controls, with the exception of ID 3662, he 
has a height, weight and BMI below the second centile. 

The final data frame for school entry, contains weights for 569 individuals (250 
boys, 319 girls) and heights for 567 individuals (249 boys, 318 girls). A histogram 
of the distribution of the age at school entry assessment can be found in the lower 
panel of figure 8.1; age varies from 3 years and 2 months to 7 years and 4 months. 
This was of interest because: 

It is national policy to offer a child health surveillance review to all 
children at around 3.5 years of age and this is usually undertaken 
by the family's health visitor. The coverage varies widely, from as 
low as 40% to over 80% (Hall and Stewart-Brown 1998, pp941). 

Therefore we may have expected to see a peak around 3.5 years as well as 5 years in 
the histogram of the age distribution. However this is certainly not the case, with 
only 3 individuals (only two shown in histogram plus ID 3600's earlier assessment) 

Table 8.1: Details of 12 individuals with outlying age at school entry as
sessment (where age is in years, sex is 1 for male and 2 for female, CACO 
is case-control indicator defined in Chapter 6, HSDS is the height Z-score, 
WSDS is the weight Z-score and BSDS is the BMI Z-score) 

ID age sex CACO HSDS WSDS BSDS 
862 6.18 2 NA -0.9955 -0.8817 -0.415 
940 6.16 1 NA 1.9977 1.7557 0.9054 
1920 6.22 2 NA 1.6936 1.2324 0.4429 
2131 6.38 1 2 -0.2433 -0.5302 -0.6048 
2416 6.46 1 NA 1.4587 1.5616 1.0579 
2459 6.59 2 NA -0.4625 -0.4203 -0.2515 
2825 6.20 2 NA 0.7936 0.8499 0.5368 
3195 6.18 1 2 0.5027 -0.0606 -0.6518 
3640 3.19 2 NA 0.1616 1.5934 1.9762 
3662 7.34 2 1 -2.2459 -3.607 -2.8981 
3702 6.22 2 NA 0.5765 -0.001 -0.5404 
3741 6.37 1 NA 0.1753 0.7907 0.9621 
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having weight and height measures taken close to 3.5 years. The majority (96%) of 
school entry assessments are done between the ages of 4 and 5.75 years. 

8.4 Preliminary analysis of school entry data for 
individuals within the systematic sample 

8.4.1 Summary plots and statistics 

There are 561 individuals in the systematic sample. There are 395 individuals 
(70%) that have a school entry assessment, which is ten percent lower than the 
coverage achieved by the research follow up study. The systematic sample contains 
some individuals that are cases and as these children have poor attained growth 
outcomes at 7-9 years (Drewett et al. 1999; Corbett 1998), we would expect a 
similar outcome at school entry. In order to assess the adequacy of the revised UK 
1990 growth reference for Newcastle children at school entry, the data for the cases 
were excluded as the inclusion of these children may lower the mean Z-scores for 
the systematic sample. The school entry data is over an age range of 3.5 years, 
so in order to assess the adequacy of the growth reference, the children from the 
systematic sample were grouped according to the nearest full year. Grouping to 
nearest year was thought to be appropriate because of seasonal variation in growth. 
Children grow faster in height in spring and summer than in autumn and winter 
(Marshall 1971). Summary statistics at grouped ages of 4, 5 and 6 years can be 
found in tables 8.2 and 8.3 for boys and girls, respectively. For example, children 
that have school entry assessment in the age range (3.5,4.5] are considered to belong 
to the 4 year old group. However, for both boys and girls the 4 year old group 
represent ages 4 to 4.5 and anthropometric measures are taken mainly between 
September and December. Two girls had school entry data outside of these age 
groupings (ID 3640 and ID 2459 measured at 3 years and 2 months, and 6 years and 
7 months respectively). Tables 8.2 and 8.3 indicate that the majority of school entry 
assessments lie within the grouping of 5 years and relatively few individuals have 
school entry assessments at the grouped age of 6 years. In each age-sex grouping the 
mean SES was calculated, this provides a rough indication of whether children within 
these groupings have a similar socio-economic status to the Newcastle population. 
Recall that from the birth cohort of 3415 infants, 379 individuals had SES indicator 
of 1, 2353 individuals had SES indicator of 2 and 683 individuals had SES indicator 
of 3. The mean SES within this birth cohort was 2.089, only the 5 year old boys had 
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a significantly different mean SES (t=2.59, p=0.011, 95% CI [2.120, 2.324]). This 
leads us to suspect that the 5 year old boys within the systematic sample may be 
more deprived than the general Newcastle population. 

Variable width boxplots for the Z-scores of height, weight and BMI can be found 
in figure 8.2. The width of each box in these plots is made proportional to the 
square root of the number of children within the corresponding age-sex specific 
group (McGill et al. 1978). We should be aware that the 6 year olds only represent 
a small group and as discussed above the 4 year olds are a 6 month age grouping 
measured predominantly in the winter months. The boxplots for height Z-score of 
boys in all age groups are reasonably symmetric and there are no outliers. There 

Table 8.2: Boys: Summary statistics for height, weight and BMI measures 
and corresponding Z-scores (systematic sample excluding cases) 

Age 4 to nearest year (n=56, av. SES=2.071) 
Min. LQ Median Mean Max. SD 

Age.ent 4.070 4.250 4.360 4.328 4.420 4.500 0.1124 
Height, ent 
ZscoreH.ent 

98.0 102.0 104.8 104.9 107.9 113.0 3.6197 
-1.8030 -0.6329 0.0187 0.0231 0.5852 1.700 0.8331 

Weight.ent 
ZscoreW.ent 

13.50 16.00 17.50 17.82 19.00 25.20 2.1635 
-2.1900 -0.5504 0.1039 0.2180 0.7853 2.8570 0.9686 

BMl.ent 
ZscoreB.ent 

Age 5 to ne 

13.93 14.99 15.97 16.17 16.78 19.84 1.4754 
-1.6240 -0.5674 0.2630 0.2933 0.8252 2.6260 1.0708 

irest year (n=108, av. SES=2.222) 
Min. LQ Median Mean UQ Max. SU 

Age.ent 4.510 4.765 4.965 4.964 5.125 5.480 0.2510 
Height.ent 
ZscoreH.ent 

95.0 106.0 108.9 108.8 112.0 119.3 4.5319 
-2.6230 -0.7261 -0.0370 -0.1001 0.5188 1.7860 0.9738 

Weight.ent 
ZscoreW.ent 

13.00 17.00 19.00 18.88 20.13 27.60 2.4498 
-2.73900 -0.7109 0.1567 0.0456 0.7823 3.1740 1.0348 

BMl.ent 
ZscoreB.ent 

Age 6 to ne 

12.63 14.97 15.71 15.90 16.74 20.94 1.4121 
-3.0590 -0.5242 0.1372 0.1558 0.8812 3.0960 1.0756 

arest year (n=16, av. SES=1.938) 
Min. LQ Median Mean UQ Max. SD 

Age.ent 5.510 5.575 5.660 5.828 6.108 6.460 0.3280 
Height.ent 
ZscoreH.ent 

103.0 111.4 114.6 115.3 119.1 126.7 6.3Y82 
-2 1100 -0.4425 0.0726 0.0838 0.6074 1.9980 1.0398 

Weight.ent 
ZscoreW.ent 

17 00 18.75 21.00 21.61 24.30 27.20 3.6446 
-1.2760 -0.5912 0.1988 0.2873 1.3220 1.9370 1.1288 

BMl.ent 
ZscoreB.ent 

13 97 14.71 16.45 16.15 16.99 18.86 1.5070 
-1 4030 -0.6502 0.7002 0.3508 0.9993 2.0810 1.0817 
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Table 8.3: Girls: Summary statistics for height, weight and B M I measures 

and corresponding Z-scores (systematic sample excluding cases) 

Age 4 to nearest year (n=65, av. SES=2.138) 
Min. LQ Median Mean UQ Max. SD 

Age.ent 4.090 4.270 4.350 4.343 4.430 4.500 0.1061 
Height.ent 
ZscoreH.ent 

90.0 100.0 102.4 102.9 106.5 114.0 4.6697 
-3.2010 -0.8783 -0.3612 -0.2507 0.5239 2.4430 1.1131 

Weight, ent 
ZscoreW.ent 

12.50 15.50 17.00 17.01 18.00 23.80 2.1731 
-2.7330 -0.6754 0.0339 -0.0448 0.5999 2.5800 1.0117 

BMl.ent 
ZscoreB.ent 

Age 5 to ne 

13.39 15.00 15.96 16.02 17.00 20.40 1.4650 
-1.8410 -0.4455 0.2728 0.2080 0.9258 2.6010 0.9921 

irest year (n=107, av. SES=-2.15) 
Min. LQ Median Mean UQ Max. HD 

Age.ent 4.510 4.745 4.920 4.948 5.120 5.460 0.2542 
Height, ent 
ZscoreH.ent 

93.7 104.0 107.0 107.2 110.0 117.5 4.4442 
-2.9490 -0.8988 -0.2917 -0.2723 0.3127 2.4500 0.9872 

Weight.ent 
ZscoreW.ent 

13.00 16.45 18.00 18.13 19.60 25.40 2.4452 
-2.5750 -0.8570 -0.0085 -0.1249 0.5228 2.6300 1.0271 

BMl.ent 
ZscoreB.ent 

Age 6 to ne 

11.57 14.80 15.68 15.74 16.70 21.58 1.5451 
-3.6620 -0.5324 0.1268 0.0583 0.7720 2.9990 1.0236 

arest year (n=17, av. SES=1.765) 
Min. LQ Median Mean UQ Max. bD 

Age.ent 5.510 5.640 5.680 5.831 6.100 6.220 0.2583 
Height, ent 
ZscoreH.ent 

104.5 110.0 115.5 114.2 118.5 125.0 5.8128 
-2.2550 -0.8136 0.2223 -0.0233 0.7936 1.6940 1.1330 

Weight, ent 
ZscoreW.ent 

15.00 18.20 20.00 20.25 22.00 25.50 3.1213 
-2.4570 -0.8533 -0.0010 -0.0804 0.7242 1.6780 1.0989 

BMl.ent 
ZscoreB.ent 

13.19 14.31 15.17 15.47 16.51 19.12 1.5640 
-1.7890 -0.8267 -0.1930 -0.1090 0.6405 1.8950 1.0102 

is some evidence of skewness wi th in the boxplots for height Z-scores of girls aged 4 

and 6 years old. The boxplots for weight Z-scores are reasonably symmetric. The 6 

years old boys appear to be more homogeneous group but these are f rom a winter 

6-month period. There is evidence of skewness wi th in the boxplot for B M I Z-scores 

of 6 year old boys. 

8.4.2 Adequacy of UK 1990 growth reference for Newcastle 
children at school entry 

To assess the adequacy of the revised U K 1990 reference we assume that the sys

tematic sample excluding case children is representative of children in Newcastle 
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at school entry. In order to assess the adequacy of the revised U K 1990 growth 

reference for Newcastle children at school entry, we need to test the null hypotheses 

that the mean Z-score is zero and the variance of the Z-scores is one for each age-

sex grouping. There are very few individuals w i t h grouped age of 6 years, so i t is 

unlikely that the boys and girls wi th in this sample are representative of Newcastle 

as a whole. We produced quantile-quantile plots of Z-scores for height, weight and 

B M I respectively, these indicate that the Z-scores at school entry are reasonably 

normal. A t-test was used to assess whether the mean Z-score was zero in each 

age-sex grouping, the resulting t-values can be found in table 8.4. There may be 

some reason to doubt the nul l hypothesis that the mean height Z-score is zero for 

5 year old girls. I t appears that this sample of 5 year old girls f rom Newcastle are 

generally shorter than those children that contribute to the reference. There is some 

reason to doubt the nul l hypothesis that the mean B M I Z-score is zero for 4 year 

old boys. This indicates that 4 year old boys may have a higher B M I than those 

children that contribute to the reference. However, these 4 year old boys represent 

the age group 4 to 4.5 years measured in winter. We should be aware that these 

differences are not viewed to be clinically significant; less than half a centile space 

difference. 

The standard deviations of the Z-scores for each age-sex grouping can be found 

in tables 8.2 and 8.3. According to W H O guidelines (WHO 1995), i f the standard 

deviation of the Z-scores are above 1.3, this suggests inaccurate data either due 

to measurement error or incorrect age reporting. None of the standard deviations 

Table 8.4: Sys temat ic sample: Results f rom tests that mean Z-score is 

zero 

Z-score Age sex t P 95% CI 
ZscoreH.ent 4 Boys 0.2073 0.8365 -0.2000, 0.2462 

4 Girls -1.816 0.0741 -0.5265, 0.0251 
5 Boys -1.0678 0.288 -0.2858, 0.0857 
5 Girls -2.853 0.0052 [-0.4615, -0.0831] 

ZscoreW.ent 4 Boys 1.6842 0.09782 -0.0414, 0.4774 
4 Girls -0.3567 0.7225 -0.2954, 0.2059 
5 Boys 0.4574 0.6483 -0.1518, 0.2429 
5 Girls -1.2578 0.2112 -0.3217, 0.0720 

ZscoreB.ent 4 Boys 2.0498 0.04516 [0.0066, 0.5801] 
4 Girls 1.69 0.0959 -0.0379, 0.4538] 
5 Boys 1.5055 0.1351 -0.0494, 0.3610] 
5 Girls 0.589 0.5571 -0.1379, 0.2545] 
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Table 8.5: Sys temat ic sample: Results f rom testing that the variance of 

Z-scores is one 

Z-score Age sex (n - l ) s2 approx. 95% CI 
p-value 

ZscoreH.ent 4 Boys 38.17 0.1086 0.4933, 1.0487 
4 Girls 79.29 0.1765 0.9010, 1.8113 
5 Boys 101.46 0.7048 0.7378, 1.2640 
5 Girls 103.31 0.8535 0.7575, 1.3011 

ZscoreW.ent 4 Boys 51.60 0.7461 0.6669, 1.4177 
4 Girls 65.50 0.8943 0.7443, 1.4963 
5 Boys 114.58 0.6043 0.8332, 1.4275 
5 Girls 111.82 0.6896 0.8199, 1.4082 

ZscoreB.ent 4 Boys 63.07 0.4417 0.8150, 1.7327 
4 Girls 62.99 0.9289 0.7158, 1.4389 
5 Boys 123.79 0.2511 0.9002, 1.5422 
5 Girls 111.06 0.7284 0.8143, 1.3987 

for the Z-scores for height, weight, or B M I are above 1.3, indicating that any of 

the measuring error inherent in school entry data discussed above, doesn't appear 

to inflate the standard deviations of the Z-scores. In table 8.5 we summarise the 

results of testing that the variance of the Z-scores are one for each age-sex grouping. 

I t would appear that at school entry there is no reason to doubt that the variance 

of the Z-scores for weight, height and B M I is one. 

In table 8.6, we regress the Z-scores for height, weight and B M I on age; i f the 

age interval is accounted for then the slope of these regressions would be zero. Plots 

of the Z-scores for height, weight and B M I versus age are produced in figure 8.3, 

these are included here as a curvilinear relationship wi l l not be detected by linear 

regression. The results f r o m table 8.6 indicate that there is only reason to doubt 

the null hypothesis of zero slope for B M I indicating that there may be a negative 

linear trend w i t h age for girls. However, i f we consider the bottom right hand plot 

of figure 8.3 there are two outliers which may be influential, so the linear regression 

was repeated without these two individuals (see row labelled Z(BMI.2) in table 8.6). 

To conclude, there is no apparent trend wi th age for the Z-scores of height, weight 

and B M I indicating that the school entry data are appropriately adjusted for age 

by the U K 1990 growth reference. 
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Table 8.6: Slope coefficients f rom regression of Z-scores on age of school 

entry assessment (Z(BMI.2) represents the Z-scores for B M I after excluding 

two outliers) 

Boys Estimate Std. Error t value Pr(> \t\) 
Z(height) 
Z(weight) 
Z(BMI) 

-0.0148 0.1465 -0.101 0.92 
-0.0026 0.1600 -0.016 0.987 
0.0168 0.1678 0.100 0.92 

Girls Estimate Std. Error t value Pr(> t\) 
Z(height) 
Z (weight) 
Z(BMI) 
Z(BMI.2) 

-0.0365 0.1495 -0.244 0.807 
-0.2065 0.1471 -1.403 0.162 
-0.3122 0.1446 -2.159 0.0321 
-0.2269 0.1437 -1.579 0.1160 

8.4.3 Child's height at school entry conditional on mid-
parental height Z-score 

As discussed in Chapter 6, in order to assess whether a child is an appropriate height 

for their parents heights then we need to condition the child's current height Z-score 

on their mid-parental height Z-score. Recall: 

h\mph 
Zh - rZ, mph (6.1) 

where r is the correlation between Zh, the child's height Z-score and Zmph, their 

mid-parental height Z-score. Correlations between a child's height at school entry 

and their mid-parental height, along wi th the confidence interval for this correlation 

can be found in table 8.7. These correlations show a similar pattern to the corre

lations obtained w i t h child's height at follow-up, that girls heights tend to be more 

correlated w i t h the reported parental heights than boys. 

A scatterplot of the child's height Z-score at school entry versus their mid-

parental height Z-score can be found in the upper panel of figure 8.4. The outlying 

high mid-parental height corresponds to the child whose mother reported a height 

of 6'5". The other outlier wi th in the scatterplot is for a girl wi th I D 2510, she has 

a high mid-parental height Z-score but a negative school entry height Z-score (this 

child's weight Z-score dropped to -3.14 at 18.6 months). 

A correlation of 0.48 was used in equation (6.1) to obtain the Z-score for height 

conditional on mid-parental height. Table 8.8 contains the summary statistics of 
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Table 8.7: Corre la t ion between Z-score for height at school entry 

and parental height Z-scores: correlation coefficients and approximate 

95% CI's 

Z-score group correlation n 95% CI 
mothers height all 0.3228 328 0.2223, 0.4165 

boys 0.3077 162 0.1611, 0.4409 
girls 0.3562 166 0.2155, 0.4823 

fathers height all 0.4222 321 0.3279, 0.5082 fathers height 
boys 0.3746 156 0.2310, 0.5022 
girls 0.4617 165 0.3323, 0.5740 

mid-parent height all 0.4766 321 0.3874, 0.5570 mid-parent height 
boys 0.4476 156 0.3125, 0.5650 
girls 0.5135 165 0.3914, 0.6178 

the Z-score for height conditional on mid-parental height. The Z-score for height 

conditional on mid-parental height should have zero mean, variance of one and be 

uncorrelated wi th the mid-parental height Z-score. Table 8.9 summarises the results 

f rom testing that the mean and variance of the Z-scores for height conditional on 

mid-parental height are zero and one, respectively. There is no reason to doubt 

that the mean of the Z-score for height conditional on mid-parental height is zero 

for girls. However, there is some indication that the mean of the Z-score for height 

conditional on mid-parental height is non-zero for boys. There is no reason to doubt 

that the variance of the Z-score for height conditional on mid-parental height is one 

for both sexes. The correlation of the Z-score for height conditional on mid-parental 

height w i t h mid-parental height Z-score is small (r=-0.0845). Therefore, we should 

be cautious in using conventional cut-offs when conditioning a boy's height on their 

mid-parental height. 

Boxplots of the Z-score for height conditional on mid-parental height at school 

entry can be found in the lower panel of figure 8.4. The outlier corresponds to child 

w i th I D 2510 and this is the only child below the 0.4th centile. 

8.4.4 Does canalization occur between school entry and follow-
up? 

Tanner (1989) used the term 'canalization' to describe the process by which a child's 

growth tends to return to its original path or channel i f environmental circumstances. 
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Table 8.8: Summary statistics of Z-score for height at school entry conditional 

on mid-parental height 

Z(h.ent|mph) Min. LQ Median Mean UQ Max. SD no. 
A l l 
Boys 
Girls 

-3.6490 
-2.3930 
-3.6490 

-0.6062 
-0.5302 
-0.7400 

-0.0125 
0.1655 
-0.1209 

0.0423 
0.1839 
-0.0916 

0.6587 
0.8399 
0.5485 

2.9130 
2.9130 
2.4320 

1.0063 
0.9858 
1.0101 

321 
156 
165 

Table 8.9: Sys temat ic sample (excluding cases): Results of testing that 

(a) the mean Z-score for height conditional on mid-parental height is zero (by 

sex) and (b) the variance of the Z-score for height conditional on mid-parental 

height is one (by sex) 

t p 95% CI 
Ah 0.753 0.452 -0.0682, 0.1528 
Boys 
Girls 

2.3298 0.0211 [0.0280, 0.3398J 
-1.1646 0.2459 [-0.2468, 0.0637] 

^̂ 4̂̂  approx 95% CI 
p-value 

AH 324.05 0.8729 0.8724, 1.1899 
Boys 
Girls 

150.63 0.8041 
167.33 0.8541 

0.7872, 1.2304 
0.8310, 1.2829 

such as starvation, have pushed i t off course. In order to crudely investigate whether 

attained growth status 'tracks' f rom school entry to 7-9 years, indicator vectors were 

created for the Z-scores for height, weight and B M I at school entry and follow-up. 

The current U K 1990 reference chart has major centiles spaced approximately two-

thirds of a Z-score apart and current guidelines recommend referral i f height is below 

the 0.4th (Z=-2.67) centile. The indicator vectors created contained whole numbers 

f rom 1:10, these are the corresponding codings and range of Z-scores they represent: 

1 - O O < Z < -2 .67 6 0 <Z < 0.67 
2 -2 .67 < Z < - 2 7 0.67 <Z < 1.33 
3 - 2 < Z < - 1 . 3 3 8 1.33 < Z < 2 
4 -1 .33 < Z < -0 .67 9 2 <Z < 2.67 
5 -0 .67 < Z < 0 10 2.67 < Z < oo 

Table 8.10 summarises the number of children between each of the major centiles 
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for height, height conditional on mid-parental height, weight and B M I at school 
entry and follow-up. I t would appear that for height most children maintain their 
height between the same centiles or move to a neighbouring centile range. A similar 
pattern is observed for weight and B M I although there might be a slight tendency 
for children to move to a neighbouring centile range above rather than below. The 
major i ty of children's height Z-scores conditional on mid-parental height Z-score lie 
on the diagonal or just off the diagonal wi th in table 8.10; this is illustrated in figure 
8.6. A t follow-up there are no children wi th in the systematic sample wi th height 
conditional on parental height below the 0.4th centile. A t school entry there is one 
child below the height conditional on mid-parental height 0.4th centile; I D 2510 
discussed above. 

The number of individuals in the systematic sample that fa l l below the 0.4th 

centile for height would provide some indication of the number of individuals likely 

to be referred after school entry check-up in the Newcastle area. A t school entry 

there are three individuals wi th in the systematic sample below the 0.4th centile for 

height (ID'S 2287, 2464, 3317); this represents 0.8% of children (with heights at 

school entry) w i th in the systematic sample excluding cases. 
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Table 8.10: Correspondence between height, height conditional on mid-

parental height, weight and B M I Z-scores at school entry and follow-up 

(coding 1 corresponds to a Z-score in range (-oo,-2.67], 2 is (-2.67,-2], 3 

is (-2,-1.33], 4 is (-1.33,-0.67], 5 is (-0.67,0], 6 is (0,0.67], 7 is (0.67,1.33], 8 is 

(1.33,2], 9 is (2,2.67] and 10 is (2.67,oo]) 

Height follow up 
school entry 1 2 3 4 5 6 7 8 9 10 
1 1 2 0 0 0 0 0 0 0 0 
2 2 4 1 0 0 0 0 0 0 0 
3 0 4 13 7 2 0 1 0 0 0 
4 0 0 7 33 21 2 1 0 0 0 
5 0 0 1 11 56 22 1 1 0 0 
6 0 0 0 3 15 42 17 0 0 0 
7 0 0 0 0 0 8 22 6 0 0 
8 0 0 0 0 0 1 7 12 4 0 
9 0 0 0 0 0 0 1 1 2 0 
10 0 0 0 0 0 0 0 0 0 0 
h mph follow up 
school entry 1 2 3 4 5 6 7 8 9 10 
1 0 1 0 0 0 0 0 0 0 0 
2 0 3 3 1 0 0 0 0 0 0 
3 0 1 7 8 1 0 1 0 0 0 
4 0 0 4 25 12 3 0 0 0 0 
5 0 1 2 17 43 24 3 0 0 0 
6 0 0 0 1 13 39 24 1 1 0 
7 0 0 0 0 1 12 19 11 1 0 
8 0 0 0 0 1 2 1 14 5 0 
9 0 0 0 0 0 0 3 5 2 0 
10 0 0 0 0 0 0 0 0 0 1 
Weight follow up 
school entry 1 2 3 4 5 6 7 8 9 10 
1 0 0 0 1 0 0 0 0 0 0 
2 3 2 4 1 0 0 0 0 0 0 
3 1 2 5 4 3 0 0 0 0 0 
4 0 0 13 27 14 7 0 0 0 0 
5 0 0 1 17 37 14 2 2 0 0 
6 0 1 0 3 26 32 16 8 0 0 
7 0 0 0 0 3 27 19 7 2 2 
8 0 0 0 0 0 2 7 11 0 0 
9 0 0 0 0 0 0 0 5 1 0 
10 0 0 0 0 0 0 0 1 1 0 
B M I folio w up 
school entry 1 2 3 4 5 6 7 8 9 10 
1 1 1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 2 6 8 4 2 1 0 0 0 
4 0 1 6 20 13 7 1 0 0 0 
5 0 0 5 20 28 12 5 0 0 0 
6 0 0 0 7 31 28 12 5 4 0 
7 0 0 0 0 11 25 16 9 5 0 
8 0 0 0 1 2 5 9 9 0 1 
9 0 0 0 0 0 0 3 3 2 1 
10 0 0 0 0 0 0 0 0 2 0 
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8.5 Preliminary analysis of school entry data for 
individuals within the case-control study 

In this section we consider the height, weight and B M I of children f rom the case-

control study. Table 8.12 contains the summary statistics for the height, weight 

and B M I Z-scores by sex for case and control children. I t would appear that the 

distr ibut ion of the case Z-scores is shifted to the left of the control Z-scores for all 

anthropometric measures. Quantile-quantile plots of the Z-scores for height, weight 

and B M I by sex and case-control status were produced and these plots indicated that 

the Z-scores were reasonably normal. There are 33 (63.5%) case boys and 35 (64.8%) 

control boys w i t h school entry assessment, note that the control anthropometric 

measures are over a slightly wider age range. There are 64 (63.5%) case girls and 57 

(64.8%) control girls w i th school entry assessment, note that the case anthropometric 

measures are over a slightly wider age range. Table 8.11 contains a summary of the 

number of individuals in the age groupings, 4, 5 and 6 by sex and case-control status 

for height. 

A t school entry i t is recommended that a child whose height is below the 0.4th 

centile should be referred. None of the control boys have a height below the 0.4th 

centile. However, one control g i r l ( ID 639) has a height below the 0.4th centile at 

both school entry and follow-up. There are two case children wi th heights below the 

0.4th centile at both school entry and follow-up; a boy wi th I D 975 and a girl wi th I D 

3288. As described above, a correlation of 0.48 was used in equation (6.1) to obtain 

the Z-score for height conditional on mid-parental height for cases and controls. 

The summary statistics of the Z-score for height conditional on mid-parental height 

for cases and controls can also be found in table 8.12. Quantile-quantile plots of 

the Z-score for height conditional on mid-parental height, see figure 8.5, indicate 

Table 8.11: Age distribution of cases' and controls' school entry height as

sessment by sex 

Group 4 years 5 years 6 years 
Boys cases 9 19 4 

controls 9 23 3 
Girls cases 22 39 1 

controls 21 32 4 
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that there is no reason to doubt normality for case boys and girls, and control girls. 

However there is some evidence of skewness wi th in the quantile-quantile plot for 

control boys. 

One of the questions of interest is whether failure to thrive in infancy affects 

attained growth status at school entry. A t-test for two independent samples was 

carried out on the weight, height and B M I Z-scores f rom the case and control sam

ples; the results of which can be found in table 8.13, these indicate that the case 

boys and girls are significantly shorter, lighter and leaner than the control boys and 

girls. 

There was evidence of skewness in the quantile-quantile plot of the Z-score for 

height conditional on mid-parental height for control boys. Thus, the Wilcoxon 

Mann-Whitney test was used to compare case and control boys, this gave a W 

value of 184 (p=0.0002). As there was no reason to doubt the normality of the 

Z-score for height conditional on mid-parental height for girls a t-test was used, 

the results of which can be found in the bottom row of table 8.13. Therefore, even 

Table 8.12: Case-control study: summary statistics of Z-scores for height, 

weight and B M I at school entry by sex and case-control status 

Boys Group Min. LQ Median Mean UQ Max. SD no. 
Age.ent cases 

controls 
4.12 4.48 4.90 4.90 5.27 5.76 0.48 33 
4.19 4.50 4.85 4.87 5.13 6.38 0.51 35 

ZscoreH.ent cases 
controls 

-2.91 -1.65 -0.90 -0.99 -0.24 1.59 0.99 32 
-2.14 -0.64 0.23 0.13 0.58 2.52 0.96 35 

ZscoreW.ent cases 
controls 

-5.25 -1.73 -1.07 -1.19 -0.54 0.64 1.07 33 
-1.75 -0.38 0.61 0.27 0.84 1.67 0.84 35 

ZscoreB.ent cases 
controls 

-3.24 -1.11 -0.60 -0.56 0.02 1.50 1.02 32 
-1.93 -0.27 0.19 0.26 0.82 2.55 0.97 35 

Z(h.ent|mph) cases 
controls 

-2.97 -1.70 -1.01 -0.99 -0.31 0.85 1.02 28 
-1.30 -0.52 -0.11 0.24 0.53 2.97 1.10 30 

Girls Group Min. LQ Median Mean UQ Max. SD no. 
Age.ent cases 

controls 
3.59 4.45 4.65 4.76 5.05 7.34 0.51 64 
4.09 4.39 4.65 4.73 5.00 5.97 0.43 57 

ZscoreH.ent cases 
controls 

-3.10 -1.66 -0.62 -0.82 -0.24 2.02 1.01 63 
-2.92 -0.66 -0.16 -0.13 0.50 2.05 1.00 57 

ZscoreW.ent cases 
controls 

-3.61 -1.65 -1.11 -1.15 -0.54 1.02 1.04 64 
-2.01 -0.60 -0.01 0.05 0.47 2.86 0.93 57 

ZscoreB.ent cases 
controls 

-3.21 -1.36 -0.61 -0.82 -0.16 1.71 0.95 63 
-1.62 -0.30 0.09 0.20 0.64 2.92 0.89 57 

Z(h.ent|mph) cases 
controls 

-3.02 -1.25 -0.79 -0.68 -0.08 2.24 1.04 53 
-2.09 -0.49 -0.07 0.07 0.49 2.38 0.92 50 
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after conditioning on mid-parental height case children are significantly shorter than 

control children. 

Figure 8.7 contains variable wid th notch boxplots for the case-control Z-scores 

of height, weight, B M I and height conditional on mid-parental height by sex. These 

boxplots indicate that anthropometric differences between case and controls are 

more marked for boys than for girls, although there are fewer boys identified by 

the ' thrive index' methodology as F T T in infancy (52 boys and 84 girls). In table 

8.14 we summarise the results of testing that the median Z-score of weight, height 

and B M I is the same in case and control children. Recall that the same pattern 

was observed in boxplots that were produced for the follow-up study. In order to 

establish whether this sex difference existed towards the end of infancy, a box-plot 

was created for the last weight Z-score in infancy, see figure 8.8. A t the end of 

Table 8.13: School entry: results f rom tests that mean Z-score of cases equals 

mean Z-score of controls 

Z-score 
ZscoreH.ent 

ZscoreW.ent 

ZscoreB.ent 

Z(h.ent|mph) 

sex 
Boys 
Girls 
Boys 
Girls 
Boys 
Girls 
Girls 

t 95% CI 
-4.6557 
-3.7792 

1.672 x lO-^ 
0.00025 

6.2338 4.819 x l Q - " 
6.6919 7.621 x l0 -^° 

-3.3619 0.00131 
-6.0342 1.897 xlO" 
-3.9125 0.000166 

•1.5867, 
•1.0548, 

-0.6339 
-0.3294' 

•1.9236, 
•1.5536, 

-0.9892 
-0.8441 

•1.3047, 
•1.3498, 

•0.3320 
-0.6828 

•1.1363, -0.3717 

Table 8.14: C a s e - C o n t r o l study: Results of testing that the median Z-

score for height, weight and B M I is the same in cases and controls (by sex) 

sex Case notches Control notches W p 
ZscoreH.ent Boys 

Girls 
(-1.216, -0.584) (-0.035, 0.490) 219 8.573 xlO" ' ' 
(-0.868, -0.381) (-0.370, 0.042) 1121 0.0003971 

ZscoreW.ent Boys 
Girls 

(-1.329, -0.808) (0.345, 0.869) 144 1.087 xlO 
(-1.304, -0.915) (-0.199, 0.182) 708.5 7.05 x lO-^ 

ZscoreB.ent Boys 
Girls 

(-0.850,-0.340) (-0.048,0.421) 305 0.001147 
(-0.815, -0.403) (-0.081, 0.252) 766 6.387 x lO-^ 
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infancy the median weight Z-score of the case boys and girls are similar. Similarly 
the median weight Z-score of control boys and girls are similar at the end of infancy. 
However, there appears to be less variability in the last weight Z-score in infancy 
for control boys. 

Some of the outliers wi th in the boxplots attend special schools. Some of the 

children attending special schools have 'Downs', these children wi l l follow a different 

growth pattern to normal children. Children wi th Downs syndrome end up wi th 

shorter than average stature; this is a result of slow growth during foetal life and in 

the early years after b i r th (Cronk 1978). The 'thrive-index' methodology (Wright 

et al. 1994) probably does pick up children wi th 'Downs' because their growth wi l l 

falter and these children would be considered as individuals wi th organic causes of 

failure-to-thrive. Table 8.15 provides information on the 9 individuals attending 

special schools, 5 of the children attending special schools are cases. Only ID's 1766 

and 1813 were identified as individuals that had organic conditions that could affect 

growth (personal communication, Dr S.C. Corbett, October 1999). 

8.6 Discussion and Conclusions 

There are 807 children (1 child had died) in the follow-up study data base and 

569 (70.5%) had a school entry assessment height and weight. This coverage is 

Table 8.15: Characteristics of 9 children that attend special schools (where 

W is the number of weights in infancy; CACO is the case-control indicator; 

ZH.ent and ZH.fol are the Z-scores for height at school entry and follow-up, 

respectively; and ZW.ent and ZW. fo l are the Z-scores for weight at school 

entry and follow-up, respectively) 

ID SES Sex W CACO ZH.ent ZW.ent ZH.fol ZW.fo 
85 3 2 7 NA -2.25 -2.58 -2.70 -2.98 
639 3 2 8 2 -2.92 -2.02 -2.92 -1.72 
1089 2 2 8 1 -1.00 -1.86 -0.53 -0.53 
1432 3 2 8 1 NA -2.57 NA NA 
1609 3 1 7 1 NA -5.26 NA NA 
1766 3 2 6 1 -1.48 -0.92 -0.56 -0.03 
1813 3 2 5 1 -1.99 -1.59 -3.78 -0.7 
1920 2 2 5 NA 1.69 1.23 1.35 0.81 
2287 2 2 5 NA -2.94 -2.74 -3.12 -0.8 
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in reasonable agreement w i t h other studies (Laing and Rossor (1996), Hulse and 
Schilg (1995) in Schilg and Hulse (1997)). Out of the school records located only 
68 (8.4%) had no school entry assessment. In general most individuals had a school 
entry assessment measure, w i t h the exception of children attending private school. 
The few children attending special schools had their growth monitored on almost a 
yearly basis. In the east district area a 9-plus height and weight were also obtained. 
There are 2 sets of twins w i th in the data set. A gir l and boy, ID 1621 (systematic) 
and 1622 (control) respectively and gir l twins, I D 2164 (systematic) and 2615 (not 
followed up). In retrospect, at the time of data collection the nurses that recorded 
the height and weight measures could have been noted; because each nurse wi l l have 
a different observer error. Addi t ional height and weight data (other than school 
entry) was sparse: only 113 children had additional heights or weights and this 
data has not been used. The school entry measures seem in reasonable agreement 
w i t h follow-up measures; namely, children appear to be 'canalised' wi th a tendency 
to remain between the same major centiles or move to neighbouring centiles. The 
standard deviation of the Z-scores for height and weight are not above 1.3, indicating 
that the effect of measuring error is negligible (de Onis and Blossner 1997). 

The revised U K 1990 reference is adequate for use on Newcastle anthropometric 

data at school entry as there is no apparent linear trend wi th age in the Z-scores 

for height, weight and B M I , indicating that the school entry data are appropriately 

adjusted for age. However, 5 year old girls f rom Newcastle may be shorter than those 

children that contribute to the reference. There is some indication that 4 year old 

boys may have a higher B M I than those children that contribute to the reference but 

this conclusion is reached on the basis of a 6-month age group of children measured 

in winter. I t should be noted that these differences are not viewed to be clinically 

significant. Using current guidelines of referring children below the 0.4th centile for 

height would lead to a referral of 6 children (ID's 2287, 2464 and 3317 from the 

systematic sample, I D 639 f rom the controls, ID's 975 and 3288 from the cases). 

Cot ter i l l et al. (1996) considered school entry heights of children from Hackney 

(inner-city London) and found that the proportion of children below the 0.4th and 

3rd centiles were as expected using the U K 1990 reference. However, Cotterill et al. 

(1996) felt that the use of the 0.4th centile would miss a significant proportion of 

children wi th abnormality and proposed that the 2nd centile be used instead. 

The case-control data was split by sex as there was some indication that Newcas

tle girls were shorter than those children that contribute to the U K 1990 reference. 

A t school entry, the case children were shorter, lighter and leaner than control 

children. Even after conditioning on reported mid-parental height, the significant 
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difference in heights persists. Variable width notch boxplots indicate that this at
tained growth difference may be more marked in boys. This observed difference 
may indicate that boys recover less well than girls after fai l ing to thrive in infancy. 
Tanner (1989) observed that girls recovered more rapidly than boys after an insult 
to the growth process. Graham et al. (1982) (in Rudolf and Hochberg (1990)), in 
a study on infant malnutr i t ion in Peru, found that the girls growth caught up wi th 
their sisters, whereas the boys lagged behind their brothers. Another explanation 
for this observed diflference could be the excess of girls identified as fail ing to thrive, 
Skuse et al. (1994) (in Wright et al. (1996)) observed that failure-to-thrive has 
an even sex divide. However Rudolf and Hochberg (1990) found an excess of boys 
admitted w i t h non-organic failure-to-thrive and suggested that boys may be more 
vulnerable to psycho-social deprivation. Boddy et al. (2000) considered the routine 
heights and weights at 6 years of 42 cases (matched wi th 42 controls) belonging to 
a 1-year b i r th cohort, f r o m inner-city London, that had weights in infancy below 
the th i rd centile for at least three months. Boddy et al. (2000) also noted that the 
physical stature, at 6 years, of the case children had been compromised but did not 
make gender comparisons. 

Dowdney et al. (1987) used weight and height below the 10th centile according 

to the Tanner-Whitehouse standards (Tanner and Whitehouse 1976) at four years 

as part of their selection criteria for individuals that had failed to thrive in infancy, 

selecting individuals w i t h persisting growth problems. The mean weight, height 

and B M I Z-scores of case children at school entry i n Newcastle are not as low as 

those in the deprived inner city study (Dowdney et al. 1987; Dowdney et al. 1998). 

The Newcastle children are slightly older (mean age 4.81 years) than the London 

children (mean age 4.02 years) and cover a wider age range. The criteria employed 

by Dowdney et al. (1987) specified that both height and weight should be less than 

the tenth centile of the Tanner-Whitehouse reference at 4 years, but i f we informally 

use the tenth centile of the revised U K 1990 reference at school entry, then only 27 

case children (20 girls, 7 boys) have both heights and weights less than the tenth 

centile (Z-score < -1 .28) . I n addition, Dowdney et al. (1987) required that the 

height at four years be less than the 10th centile when using "parent-allowed-for" 

charts (Tanner et al. 1970). I f instead we use height conditional on mid-parental 

height Z-score, then the number of children below the tenth centile for height, weight 

and height conditional on mid-parental height is reduced to 16 children (4 boys, 12 

girls). I f children w i t h possible organic causes are excluded, then this would leave 

13 children (2 boys, 11 girls). Thus the Newcastle case children are not comparable 

w i t h the cases selected in the inner city study, the cases in the inner-city study have 
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persistent growth faltering f rom infancy unt i l school entry. 

To conclude, the revised U K 1990 reference appears to be adequate for converting 

weights, heights and BMIs to Z-scores at school entry. The school entry measures 

seem to be in reasonable agreement wi th the follow-up measures, because children's 

anthropometric measures tend to remain between the same major centiles or move to 

neighbouring centiles. The use of the Z-score for height conditional on mid-parental 

height to assess a child's current height seems promising. However, in agreement 

w i t h observation at 7-9 years, extreme values of this conditional Z-score should be 

interpreted cautiously for boys. Case children are significantly shorter, lighter and 

leaner than control children at school entry. Furthermore, i t appears that the impact 

of growth faltering in infancy is more detrimental, in terms of attained growth status, 

for boys. 
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Figure 8.1: Upper panel Boxplot of age in years at school entry assessment 

Lower panel Histogram of age in years at school entry assessment 

Boxplot of age at school entry assessment 

Histogram of age at school entry 

s H 
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Figure 8.2: Variable width boxplots of Z-scores for height, weight and BMI 
at school entry assessment (grouped by age to nearest year and sex) 
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Figure 8.3: Systematic sample (excluding cases): Plots of Z-scores for 
height, weight and B M I versus age at school entry assessment (Left Boys, 

Right Girls) 

Plot of Z-«cara tor Weight vs. ago 
(Soys) (Girls) 

(Girls) 
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Figure 8.4: Upper panel: Plot of Z-score for height at school entry versus mid-

parental height Z-score Lower panel: Boxplot of Z-score for height conditional 

on mid-parental height by sex 
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Figure 8.5: Case-control sample: Quantile-quantile plots of Z-score for height 

at school entry conditional on mid-parental height 
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Figure 8.6: Plot of Z-score for child's height conditional on mid-parental 

height at follow-up versus school entry 

Plot of Z—score for height conditional on MPH 
at follow—up versus school entry 
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Figure 8.7: Case-control sample: Variable width notch boxplots of Z-scores 

for height, weight and BMI at school entry assessment (grouped by case-

control status and sex) 
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Figure 8.8: Variable width notch boxplots for last weight Z-score in infancy 

(grouped by case-control status and sex) 
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Chapter 9 

Analysis of growth data beyond 
infancy 

This chapter explores the relationships between data collected in the follow-up study 
(anthropometric data and systolic blood pressure) and earlier anthropometric data 
(school entry heights and weights and weights in infancy). In section 9.1 we briefly 
look at the variability of the three systolic blood pressures taken on each child, 
these measures were taken a matter of minutes apart. Concentrating then on the 
last systolic blood pressure, we investigate its relationship to current and earlier size. 

In section 9.2 we explore the feasibility of obtaining conditional gain Z-scores. 
Height correlations from the French longitudinal growth study (Cole 1997a) are 
modelled as a function of the age at school entry and age at follow up. The model 
developed is then used to obtain conditional height gain Z-scores for the Newcastle 
data between school entry and follow-up. We then explore the feasibility of obtain
ing conditional weight gain Z-scores by conditioning on birth weight Z-score and 
weight Z-score at 1 year. Only conditioning on birth weight or weight at 1 year is 
considered because birth weight is noted routinely and weight at 1 year is the next 
most common. The conditional approach is also used to look at the relationship 
between weight and height at school entry and at follow-up. In section 9.3 lowess 
trend curves for weight Z-scores from birth to 7-9 years are produced for the cases, 
controls and systematic sample. 

406 
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9.1 Analysis of blood pressure data 
9.1.1 The fetal origins hypothesis 

The 'fetal origins hypothesis' is a term coined by Barker et al. (1989); 

small body size or shape at birth (or subsequently) has been seen 
as a marker of poor fetal nutrition, which, it is suggested, results 
in fetal adaptations that programme future propensity to adult 
disease. (Lucas et al. 1999, pp245) 

Barker (1992) (in Lucas et al. (1999)) have shown that small size at birth or in 

infancy is associated with an increased tendency to adverse outcomes in adulthood, 

which includes hypertension and death from ischaemic heart disease. 

Barker et al. (1989) found that men who had the lowest weights at birth and at 
one year had the highest death rates from ischaemic heart disease. Postnatal factors 
add to the effects of low birth weight (Barker 1999). The highest prevalence of non-
insulin dependent diabetes was found to be within individuals that had low birth 
weights but then became obese adults (Barker et al. (1991) in Barker (1999)). The 
risk of disease associated with size at birth is modified by growth during childhood; 
for example, men who were thin at birth but then went on to have accelerated weight 
gain during childhood were found to have the highest death rates from coronary heart 
disease (Eriksson et al. (1999) in Barker (1999)). 

Many authors have explored the relationship between adult systolic or diastolic 
blood pressure with measures of current size and size at birth. A critique on the 
statistical methods used to explore the fetal origins of adult disease hypothesis was 
published by Lucas et al. (1999). The two main points were (Lucas et al. 1999): 

• When size in early life (e.g. birth weight) was found to be related to 
later health outcomes, only after adjusting for current size (e.g. current 
weight or BMI), then i t was probably the change in size between these 
two time-points rather than the fetal biology that was implicated. 

That even when early size is directly related to outcome, then we should 

explore whether this is partly or wholly explained by postnatal fac

tors rather than prenatal factors. I t was suggested that this could 

be achieved by introducing intermediate body sizes into the regression 

model. 
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Lucas et al. (1999) recommended fitting four models: 

1. Early model: regression of later outcome, such as blood pressure, on 

early size. 

2. Combined model: regression of later outcome on both early and later 

size. 

3. Interaction model: Combined model with interaction of early and later 

size. 

4. Late model: regression of later outcome on later size alone. 

In the follow up study there are three systolic blood pressure (Systolic BP) 

measures for each individual. These measurements were taken in quick succession, 

with each measurement being a matter of minutes apart. At the time of data 

collection the child's blood pressure was taken three times, because children of this 

age are not used to having their blood pressure taken. Data analysis will concentrate 

on the last systolic blood pressure. 

Regression will be used as a tool to explore the relationships between systolic 
blood pressure at 7-9 years and current weight, height, BMI and head circumference 
Z-scores. We hope to select the best regression equation. Stepwise regression is to 
be used to identify a potential model from the 4 variables. This is allowed to move in 
'both directions', so if we start from the additive model with all the current Z-score 
variables in the model (ZscoreW.fol, ZscoreH.fol, ZscoreC.fol, ZscoreB.fol), we com
pare the magnitudes of the Akaike information criterion (AIC) statistic generated if 
we drop each of the individual variables one at a time or add an interaction of two of 
the variables one at a time. I f the current model has the lowest AIC statistic then we 
stop. I f not then the model with the variable dropped or added that has the lowest 
AIC is selected. This process is then repeated until we reach the 'best' regression 
model. Allowing the stepwise procedure to move in 'both directions' has advantages 
over the forward selection procedure, as a variable can be dropped again even after 
addition to the model (Draper and Smith 1998). This process was undertaken on 
the additive model with weight Z-scores at birth and 1 year, school entry height 
and weight Z-scores and follow-up height and weight Z-scores. In starting with this 
model we are hoping to determine which Z-scores are most important in determining 
systolic blood pressure at 7-9 years. Is the current weight Z-score and birth weight 
Z-score the most important or some other intermediate weight or height Z-score? A 
potential problem is that all the Z-scores in this initial model are highly correlated. 
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9.1.2 Variability of systolic blood pressure measures 

At the time of collecting the data, Ms. J. Galium (research nurse that measured 
children) suspected that the initial observation may be slightly elevated in contrast 
to later recorded systolic blood pressures. To explore the issue of variability within 
the systolic blood pressure measures we concentrated initially on the recordings from 
the systematic sample excluding cases. Case children were excluded because their 
poor weight gain in infancy may exert some unknown influence on systolic BP. 

A matrix of scatterplots for the systolic blood pressures suggested that the vari

ance of the initial systolic blood pressure measure was greater than the variance 

of the final systolic blood pressure measure (F = 0.6882, p = 0.0036 for boys; F 

= 0.6669, p = 0.0019 for girls). In the systematic sample (excluding cases), 407 

children have a systolic blood pressure on all three occasions. If for simplicity we 

just contrast the first and last systolic blood pressure: 256 children have a lower 

final systolic BP, 111 children have a higher final systolic BP and 49 have the same 

initial and final systolic BP. A box-plot of the difference in systolic blood pressure 

between initial and final measurement occasion (SYS3-SYS1) can be found in figure 

9.1. The noticeable feature is that there are more outlying differences for boys than 

girls. 

At the moment no allowance is being made for current size and we are just 
tentatively comparing the distributions of the systolic blood pressure by gender 
and case-control status. The upper panel in figure 9.2 contains a notch boxplot 
of the final systolic blood pressure (SYS3) by gender for the systematic sample. 
The notches on the boxplots overlap, indicating at the 5% level that there is no 
reason to doubt that the median systolic blood pressure for boys and girls is the 
same. The lower panel in figure 9.2 contains a box-plot of the systolic blood pressure 
(SYS3) by gender for individuals within the case-control study. The notches on the 
boxplots overlap for case and control girls; indicating that the median systolic BP's 
for these two groups are not significantly diflFerent at the 5% level. However the 
notches on the boxplots for the boys don't overlap ([88.5598, 95.4402] for control 
boys, [83.5898,88.4102] for case boys) indicating that the median systolic BP's are 
significantly different in the case and control boys (Mann Whitney test W = 584, 
p-value = 0.001340). 
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9.1.3 Relationship of systolic blood pressure to current size 

If we consider the 420 children that have a final systolic blood pressure within the 
systematic sample (excluding cases), then the correlation between the systolic BP 
and the Z-scores of anthropometric measures at 7-9 years are 0.197, 0.244, 0.274 and 
0.177, for height, BMI , weight and head circumference, respectively. Thus systolic 
BP is most correlated with current weight Z-score and least correlated with Z-score 
for head circumference. Figure 9.3 contains scatterplots of the systolic BP versus the 
Z-scores for height, weight, B M I and head circumference at follow-up. The discrete 
nature within these scatterplots is due to systolic blood pressure being recorded to 
the nearest mm Hg. 

Systolic BP was regressed on all the anthropometric Z-scores at follow-up. Al 
though i t seems unlikely that head circumference would be an important predictor it 
was included here because Berkey et al. (1998) found that the systolic BP of females 
at age 30 was related to head circumference at birth. Using this regression model as 
a starting point, a stepwise procedure was then used. A 'both ways' procedure was 
used to allow the addition of an interaction or the dropping of a single variable. The 
final model arrived at using this procedure (see table 9.1) can be found in the upper 
table of table 9.2, this is essentially the same model derived by Wright et al. (1999). 
However the Z-scores for weight and BMI, and weight and height are highly corre
lated. Thus the initial starting model would be i l l conditioned due to collinearity, 
leading in the second step of the stepwise procedure to the exclusion of the Z-score 
for weight at follow-up. The lower table in table 9.2 summarises the fit when we 
regress systolic BP on just the weight Z-score at follow up. The adjusted multiple 
correlation coefficient for both models in table 9.2 are of the same magnitude. Nei
ther of the models are that predictive, only explaining about 7.3% of the variation 
in the systolic blood pressure data. Both these models essentially serve the purpose 
of providing a description of the relationship between systolic blood pressure and 
current weight Z-score or height and BMI Z-scores. Residual plots for both models 
given in table 9.2 were produced, both plots looked fairly similar and there was no 
evidence of heteroscedasticity. 

9.1.4 Relationship of systolic blood pressure to current size 
and earlier size 

The standard approach described in section 9.1.1 is to regress adult blood pressure on 

current size and birth weight. As discussed in this same section it could be that blood 
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Table 9.1: Systematic sample (excluding cases): Sequence of steps taken 

in the reduction of the Akaike information criterion (AIC) in the 'both-ways' 

stepwise procedure. Starting model regressed systolic BP on Z-scores for 

weight, height, B M I and head circumference at follow-up 

Step Df Deviance Resid. Df Resid. Dev AIC 
1 415 35355.5 1871.8 
2 drop ZscoreC.fol 1 34.8 416 35390.2 1870.3 
3 drop ZscoreW.fol 1 45.3 417 35435.5 1868.8 

Table 9.2: Systematic sample (excluding cases): Regression of systolic 

BP on: upper table Z-scores for BMI and height at follow-up lower table 

Z-score for weight at follow-up 

Regression of SYS3 on ZscoreB.fol and ZscoreH.fol 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 
ZscoreB.fol 
ZscoreH.fol 

87.8784 
1.8400 
1.4045 

0.4540 
0.4397 
0.4937 

193.562 
4.185 
2.845 

< 2 X 10^^" 
3.48 xlO-^ 

0.00466 
i?''̂ =0.07754, i?^(adj)= :0.07311, residual SE= 9.218 on 417 df 

Regression of SYS3 on ZscoreW.fol 
Value Std. Error t-value Pr(> 

(Intercept) 
ZscoreW.fol 

87.8748 
2.5452 

0.4504 
0.4363 

195.100 
5.834 

< 2 X 10-'*' 
1.09 xlO-* 

O 01 Q / l l 8 r\f 

pressure is partly or wholly explained by postnatal factors, such as intermediate 
size variables or weight gain, rather than prenatal factors. In order to investigate 
whether birth weight Z-score, weight Z-score at 1 year, weight or height Z-scores at 
school entry were in anyway related to systolic blood pressure at 7-9 years a stepwise 
regression procedure was used. This provided an exploratory tool, starting with the 
regression of systolic blood pressure on weight Z-scores at birth, 1 year, school entry 
and at follow-up, and height Z-scores at school entry and at follow-up. 

I t wasn't feasible to consider all of the weight Z-scores at grouped age allocated by 
Dr C M . Wright in infancy because only 122 children had weight Z-scores at all the 
grouped ages in infancy along with school entry and follow-up heights and weights. 
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The correlations between infancy weight Z-scores and systolic BP at 7-9 years can be 
found in table 9.3. The weight Z-score at 1 year is the most correlated with systolic 
BP at 7-9 years and birth weight Z-score is the least correlated. Therefore weight Z-
score at 1 year was considered as a candidate because i t was the most correlated with 
systolic BP, birth weight Z-score was included as an indicator of prenatal growth, 
intermediate heights and weights at school entry were also considered as i t might 
be the weight gain in childhood that is influential on systolic blood pressure at 7-9 
years. However there is likely to be a high degree of collinearity in this starting 
model as all the weight and height Z-scores are highly correlated. An alternative 
would be to regress on the first few principal components of the correlation matrix 
for all variables in the starting model, if we believed that all of these variables would 
be related to the systolic blood pressure at 7-9 years. This approach is considered 
in section 9.1.5. 

A summary of the sequence of steps employed by the stepwise procedure can be 
found in table 9.4. A summary of the fit can be found in the upper table of table 
9.5, neither of the coefficients for the weight Z-score at 1 year (Zscore6) or birth 
weight Z-score (Zscorel) are significantly different from zero at the conventional 5% 
level. The addition of the birth weight Z-score and Z-score at 1 year leads to a 
small improvement in the adjusted multiple correlation coefficient. I t would seem 
that current weight Z-score is more important than birth weight Z-score in terms 
of predicting systolic BP at 7-9 years. Within this model the birth weight Z-score 
is contrasted with weight Z-score at 1 year. Therefore, the weight gain in infancy 
may also have some influence on systolic blood pressure at 7-9 years. In order to 
explore this issue further, the conditional weight gain Z-score between birth and 1 
year was calculated for each individual in the systematic sample using equation (7.2) 
to obtain the correlation between weight Z-scores. The systolic blood pressure, was 
regressed on weight Z-score at follow-up and this conditional weight gain Z-score (see 

Table 9.3: Systematic sample excluding cases: Correlation of weight Z-

scores in infancy with systolic BP at 7-9 years (where N denotes the number 

of individuals contributing to each correlation coefficient) 

Z (weight): birth 6wks Smths 6mths 9mths 12mths 1 Smths 
systolic BP 
N 

0.0297 
410 

0.1116 
399 

0.1450 
395 

0.1677 
387 

0.1397 
320 

0.1766 
332 

0.0926 
238 
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middle table in table 9.5), this led to a small reduction in the multiple correlation 
coefficient in contrast to the model selected by the step-wise procedure. Comparable 
adjustable multiple correlation coefficients are obtained if systolic blood pressure is 
regressed on birth weight Z-score, conditional weight gain Z-score and Z-score for 
weight at follow-up (see lower table in table 9.5). 

Consider now, for comparative purposes, the models suggested by Lucas et al. 
(1999) discussed in section 9.1.1. The fit of the 'late model' can be found in ta
ble 9.2, whereas the fit of the 'early', 'combined' and 'interaction' models can be 
found in table 9.6. Regressing systolic BP on birth weight Z-score alone provides a 
very poor fit. The addition of weight Z-score at 7-9 years and the interaction Zs-
corel:ZscoreW.fol leads to an increase in the multiple correlation coefficient. Resid
ual plots were produced for all models in tables 9.5 and 9.6 and there were no 
indication of heteroscedasticity. 

9.1.5 Regression of systolic blood pressure on principal com
ponents 

One approach to dealing with intercorrelated predictor variables is to regress on 
the principal components of these variables instead. The obvious advantage to 
regressing on the principal components is that they are uncorrelated, because they 
are orthogonal to each other by construction. Above we found that weight Z-scores 
in infancy and at follow-up were related to systolic blood pressure. Furthermore, 
the weight Z-score at school entry is highly correlated with the weight Z-score at 

Table 9.4: Systematic sample (excluding cases): Sequence of steps taken 

in the reduction of the Akaike information criterion (AIC) in the 'both-ways' 

stepwise procedure. Starting model: regressed systolic BP on Z-scores for 

weight and height at school entry and follow-up, weight Z-scores at birth 

and 1 year 

Step 

2 drop ZscoreW.ent 
3 drop ZscoreH.fol 
4 drop ZscoreH.ent 

Df Deviance Resid. Df Resid. Dev AIC 
242 21587.2 1125.1 

1 2.0 243 21589.2 1123.2 
1 6.5 244 21595.7 1121.2 
1 3.6 245 21599.3 1119.3 
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Table 9.5: Systematic sample (excluding cases): Upper table Regression 

of systolic BP on birth weight Z-score, weight Z-scores at 1 year and follow-

up Lower tables Regression of systolic BP on weight Z-score at follow-up, 

birth weight Z-score and conditional weight gain Z-score between birth and 

1 year (Z(lyr|birth)) 

Regression of SYS3 on ZscoreW.fol, Zscorel and Zscore6 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 87.8447 0.5293 165.951 <JxW^ 
Zscorel -0.9495 0.5767 -1.647 0.101 
Zscore6 0.7878 0.6479 1.216 0.225 
ZscoreW.fol 2.6576 0.5954 4.464 1.12 xlQ-^ 
i?^=0.09526, i?^(adj)=0.08681, residual SE=9.002 on 321 df 

Regression of SYS3 on ZscoreW.fol and Z(lyr birth) 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 88.0396 0.5050 174.332 <YxW^ 
ZscoreW.fol 2.4243 0.5652 4.289 2.37 xlQ-^ 
Z(lyr|birth) 0.7444 0.5961 1.249 0.213 
i?^=0.0911, i?'^(adj)=0.08546, residual SE=9.009 on 322 df 

Regression of SYS3 on ZscoreW.fol, Zscorel and Z(lyr birth) 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 87.8442 05293 165.956 <2VW^ 
ZscoreW.fol 2.6551 0.5954 4.459 1.14 xlO'^ 
Zscorel -0.6389 0.5223 -1.223 0.222 
Z(lyr|birth) 0.7293 0.5957 1.224 0.222 
i?'̂ =0.09532, i?-^(adj)=0.08686, residual SE=9.002 on 321 df 

follow-up. Therefore, it seem reasonable to take weight Z-scores at birth, 1 year, 
school entry and follow-up to provide some indication of size. Principal component 
analysis has already been discussed in detail in Chapter 5. The principal components 
for the correlation matrix in table 9.7 were obtained, these can be found in table 
9.8. The first principal component is an average of all weight Z-scores, providing a 
measure of overall size and the second principal component contrasts weight Z-scores 
in childhood with weight Z-scores in infancy, reflecting some measure of weight gain. 
The third principal component contrasts weight Z-score at 1 year with weight Z-
scores at birth and follow-up, and the fourth principal component contrasts school 
entry weight Z-score with weight Z-scores at 1 year and follow-up. 

Draper and Smith (1981) suggested that some selection rule, such as the principal 

components that explain more than 75% of the variation in the data, could be used 
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Table 9.6: Sys temat ic sample (excluding cases): Upper table Regression 

of systolic BP on b i r th weight Z-score ('early model') middle table Regres

sion of systolic BP on weight Z-score at follow-up and b i r th weight Z-score 

('combined model') lower table Regression of systolic BP on weight Z-score 

at follow-up, b i r th weight Z-score and their interaction ('interaction model') 

Regression of SYS3 on Zscorel 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 88.0010 04987 176.455 < 2 x lO"^" 
Zscorel 0.2844 0.4745 0.599 0.549 
i?^=0.0008797, i?^(adj)=-0.001569, residual SE=9.589 on 408 df 

Regression of SYS3 on Zscorel and ZscoreW.fol 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 87.5771 04848 180.651 < 2 x lO"^"^ 
Zscorel -0.6971 0.4857 -1.435 0.152 
ZscoreW.fol 2.7866 0.4740 5.879 8.63 x lQ-^ 
i?^=0.07907, i?^(adj)=0.07455, residual SE=9.218 on 407 df 

Regression of SYS3 on Zscorel*ZscoreW.fol 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 87.3934 05085 171.859 < 2 x lO"^*' 
ZscoreW.fol 3.0180 0.5121 5.893 7.98 x lO-^ 
Zscorel -0.7021 0.4855 -1.446 0.149 
Zscorel :ZscoreW.fol 0.5123 0.4305 1.190 0.235 
i?'^=0.08227, i?'^(adj)=0.07549, residual SE=9.213 on 406 df 

to arrive at principal components that could then be utilised in the least squares 

procedure. Therefore, i t seems sensible to regress systolic BP on the first and second 

principal components. A summary of the fit for this model can be found in table 

9.9, this actually explains less of the variation than regressing on current weight 

Z-score alone. However, both the coefficients of the first two principal components 

are significantly different f rom zero. When regressing systolic BP on the first two 

principal components we arrive at equation (9.1). Therefore, the following weight 

Z-scores (in order of importance) are related to systolic BP at 7-9 years: the current 

weight Z-score, weight Z-score at school entry, weight Z-score at b i r th and small 

contribution f r o m weight Z-score at 1 year. 

SYS3 = 87.6008 - 1.0336Zscorel + 0.2197Zscore6 + 1.2368ZscoreW.ent 

+ 1.5306ZscoreW.fol (9.1) 
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I t would appear that regressing systolic blood pressure on first two principal 

components is not worthwhile as this leads to a poorer fitting model. To conclude, 

i t is better to regress systolic blood pressure on current weight Z-score alone. I f bir th 

weight Z-score is also included in the regression there is a very slight improvement 

in fit and the coefficient of b i r th weight Z-score is negative. These observations are 

in reasonable agreement wi th other authors (Berkey et al. 1998; Barker et al. 1989; 

Law et al. 1993). 

Table 9.7: Sys temat ic sample (excluding cases): Correlation matrix for 

weight Z-scores at b i r th , 1 year, school entry and follow-up (252 children -

119 boys & 133 girls) 

Zscorel ZscoreG ZscoreW.ent ZscoreW.fol 
Zscorel 1.0000 0.5472 0.4371 0.3516 
Zscore6 1.0000 0.6884 0.5343 
ZscoreW.ent 1.0000 0.7986 
ZscoreW.fol 1.0000 

Table 9.8: Results f rom principal component analysis of correlation matrix 

for weight Z-scores at b i r th , 1 year, school entry and follow-up (prop. var. 

and cum. prop, denote 'Proportion of Variance' and 'Cumulative Proportion' 

respectively) 

Comp.l Comp.2 Comp.3 Comp.4 
Zscorel 0.4130 -0.7863 -0.4587 -0.0262 
Zscore6 0.5160 -0.1942 0.7807 0.2942 
ZscoreW.ent 0.5531 0.3143 0.0033 -0.7715 
ZscoreW.fol 0.5072 0.4951 -0.4244 0.5635 
SD's 1.6435 0.8596 0.6253 0.4113 
prop. var. 0.6752 0.1847 0.0977 0.0423 
cum. prop. 0.6752 0.8600 0.9577 1.0000 
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Table 9.9: Sys temat ic sample (excluding cases): Regression 

of systolic BP on first and second principal components (where 

PCl=0.4130Zscorel+0.5160Zscore6+0.5531ZscoreW.ent-f0.5072ZscoreW.fol 

and PC2=-0.7863Zscorel-0.1942Zscore6-f0.3143ZscoreW.ent+0.4951ZscoreW.fol 

Value Std. Error t-value Pr(> |^|) 
(Intercept) 87.6008 06241 140.352 < 2 x IQ-^*^ 
PCI 1.1469 0.3602 3.184 0.00164 
PC2 1 9167 0.6749 2.840 0.00489 
i?^=0.06691, ii^(adj)=0.05932, residual SE=9.386 on 246 df 

9.2 Correlation of infancy weight Z-scores with 
childhood height and weight Z-scores 

9.2.1 Growth monitoring 

The Newcastle data set has weights in infancy, weights and heights at school entry 

and follow-up. I n chapters 4, 6 and 8 we concentrated on analysing the data up to 

18 months, at school entry and at follow-up, respectively. Here we attempt to say 

something about the longitudinal element of the Newcastle data. 

Recall f rom chapter 3, that the raw change in height (weight) Z-score can not 

be used to assess growth f rom one occasion to the next because this does not take 

into account the correlation between the two height (weight) Z-scores. Equations 

(3.11) and (3.5) represent the unconditional and conditional weight gain Z-scores, 

respectively. Equation (3.11) takes into account regression to the mean. Equations 

(3.11) and (3.5) give similar results i f r is close to 1, however i f r is smaller then the 

conditional gain Z-score should be used in preference (Cole 1996). As the anthro

pometric measurements taken after infancy are several years apart then we wi l l use 

the conditional gain Z-score approach. 

Z2 — Zi 
Z{Z2-Zi) = it,, ^, (3-5) 

. . . - ^ ( 3 . U , 
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where r is the correlation between Zi and Z2, this depends both on the child's age 
and the interval between measurements. 

The only information required to use the conditional approach is a growth ref

erence to convert the measurements to Z-scores and the correlation r between the 

two measurements. The correlation w i l l depend on the age and sex of the child. 

Although Cole (1993) states this may well be available in the literature, this is not 

the case for weight Z-scores beyond infancy. However, yearly correlations are avail

able for height (Cole 1997a; Cole 1994a; Cameron 1980; Bailey 1994; Berkey et al. 

1983a). 

9.2.2 Correlation observed between infancy weights and later 
anthropometric measures 

Tanner (1989) reported that the correlation coefficient between length at bir th and 

adult height is only about 0.3. However, during the first year of life this coefficient 

rises sharply and by the age of 2 this has reached 0.80 (Tanner 1989). Weight 

is correlated w i t h height, so we may expect weights in infancy to be reasonably 

correlated w i t h later anthropometric measures. The correlations between weight Z-

scores at b i r th and 1 year, and all follow-up anthropometric Z-scores are presented in 

table 9.10 for the systematic sample excluding cases. The weight Z-scores in infancy 

are reasonably correlated wi th weight and height Z-scores at 8 years, the correlation 

between weight Z-score at 1 year and later weight Z-score or height Z-score is about 

0.54. The correlation between weight Z-scores in infancy and B M I Z-score is the 

lowest, possibly reflecting that high weights observed in infancy are not a strong 

predictor of later obesity. 

Table 9.10: Correlation of weight Z-scores in infancy wi th Z scores for weight, 

height, B M I and head circumference in follow-up study (based on 328 indi

viduals) 

Z ( l year) ZscoreW.fol ZscoreH.fol ZscoreB.fol ZscoreC.fol 
Z(birth) 
Z ( l year) 
ZscoreW.fol 
ZscoreH.fol 
ZscoreB.fol 

0.5257 0.3460 
0.5449 

0.2759 
0.5406 
0.7071 

0.2733 
0.3727 
0.8548 
0.2468 

0.3543 
0.5151 
0.5301 
0.4587 
0.3988 
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Scatterplots of all pair-wise combinations of Z-scores for height, weight, B M I and 
head circumference at follow-up, for the systematic sample excluding cases, can be 
found in figure 9.4. There is some evidence of heteroscedasticity wi th in the plot of 
weight Z-score versus B M I Z-score, children wi th negative B M I Z-scores have a more 
variable weight Z-score. The correlations for every pair-wise combination of Z-scores 
at follow-up can be found above the diagonal in table 9.11. The body mass index 
( B M I ) is commonly used in adults for assessing adiposity. Weight and height are 
strongly correlated during childhood, so a child's weight centile tends to be strongly 
influenced by their height centile. In children the B M I changes substantially wi th 
age, rising steeply in infancy, then fal l ing during the pre-school years and again rising 
unt i l adulthood (Cole et al. 1995). The correlation between weight Z-score at 8 and 
B M I Z-score is high whereas correlation between height Z-score at 8 and B M I Z-
score is low. We may have expected this as the B M I is supposed to reflect adiposity 
and i t is desirable that an index of weight-for-height should be independent of height 
(Freeman et al. 1995). The correlations between the Z-scores of the anthropometric 
measures tend to be higher than the correlations observed between the raw data, 
w i t h the exception of the correlation between weight and B M I . In agreement wi th 
Cole (1997a), the correlation between the Z-scores for height and weight at 7-9 years 
is about 0.7. 

A similar matr ix of scatterplots were produced for individuals wi th in the case-

control study, labelled by organic case, case and control; see figure 9.5. A l l these 

scatterplots, show two overlapping clusters, w i th cases tending to occupy the lower 

left hand corner and controls tending to occupy the upper right hand corner. Some 

of the children that have case status possibly due to organic causes can be found on 

the edges of the case cluster wi th in these plots. 

Table 9.11: Correlation between weight, height, B M I and headcircumference 

at 7-9 years (based on 426 individuals) Correlations between Z-scores are 

above diagonal and correlations between raw anthropometric data are below 

diagonal 

weight height B M I HC 
weight 1 0.7053 0.8696 0.5254 
height 0.6610 1 0.2735 0.4754 
B M I 0.8852 0.2424 1 0.3890 
HC 0.5051 0.4876 0.3498 1 
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Table 9.12 contains the correlation matrix for weight Z-scores in infancy and 
weight and height Z-scores at school entry and follow-up. The weight (or height) 
Z-scores at school entry are over a 3 year age range. Similarly weight (or height) 
Z-scores at follow-up are over a 1.5 year age range. The correlation of later weight 
Z-scores w i t h b i r th weight Z-score exhibits the expected feature, as the time between 
weight measures increases the correlation decreases. The correlations between weight 
Z-score at 1 year and weight and height Z-score at follow-up are very similar. A 
scatterplot matr ix for all the Z-scores in table 9.12 can be found in figure 9.6. There 
is a strong linear relationship between the Z-scores for height at school entry and 
follow-up. 

9.2.3 Conditional height gain Z-score 

Deriving a model for the correlation structure of heights in Newcastle is not a viable 

option, owing to the small sample size. Cole (1997a) gave annual height correlations 

f rom the French longitudinal growth study, see table 9.13. These correlations were 

based on between 204 and 318 children, aged 2-9 years, w i th the sexes averaged. 

Height is normally distributed, so the correlation between heights is the same as 

the correlation between height Z-scores. I t would be preferable to have correlations 

specific to each gender, however these are only available for consecutive 6-monthly 

or yearly correlations (Bailey 1994; Cole 1994a). A plot of the French height cor

relations versus later t ime and time diff"erence can be found in figure 9.7. I f height 

measures are made close in time then correlation is high. In the age group of interest, 

for the Newcastle height data, the correlation of height at 4 years wi th subsequent 

Table 9.12: Correlation matr ix for weight Z-scores at bi r th , 1 year, school 

entry and follow-up, and height Z-scores at school entry and follow-up (based 

on 252 individuals in systematic sample excluding cases) 

Z( l year) ZscoreW.ent ZscoreH.ent ZscoreW.fol ZscoreH.fol 
Z(birth) 0.547 0.437 0.326 0.352 0.291 
Z ( l year) 0.688 0.560 0.534 0.532 
ZscoreW.ent 0.730 0.799 0.697 
ZscoreH.ent 0.597 0.880 
ZscoreW.fol 0.719 
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heights is above 0.9. 

The t iming of measurements was sufficiently close to the nominal 

ages for adjustment to be unnecessary. (Cole 1994a, pp2479) 

I n order to obtain a conditional height gain Z-score between school entry and the 

follow-up study for a child, we would need to interpolate between the correlations 

in table 9.13, to obtain the 'exact' correlation for a child. However we don't know 

the sample size for each of the correlations wi th in table 9.13, but we do know that 

the sample size was greater for height measurements made a year apart than for 

those height measures made several years apart (personal communication. Prof. 

T .J . Cole). Using a similar approach to chapter 5, we w i l l consider plausible models 

for the correlation structure in table 9.13. A l l the correlations in table 9.13 are near 

one, so any model would predict a correlation close to one. Therefore expansions 

for Fishers transformation of correlation may converge slowly as the correlation is 

above 0.9 (Ghosh 1966). The height correlation is highly correlated wi th ini t ia l time 

(r — 0.772) and time elapsed (r = -0.851) but has negligible correlation with later 

t ime point (r = -0.079). The response variable could be correlation, log-correlation 

or Fishers transformed correlation. In table 9.14 we present the correlations be

tween transformations of the French height correlations and functions of the ini t ial 

and later ages in years {tl and t2, respectively). As in infancy all functions of 

tl are highly correlated w i t h transformations of the height correlation. The high

est observed correlation is between Fishers transformed correlation and Vtl. The 

highest correlation, involving t2 is also the square root function, namely \^t2^^tl. 

Exploratory analysis revealed that the height correlations could be modelled well by 

Table 9.13: Correlation matr ix of height for 204 to 318 children belonging to 

the French longitudinal study (Age in years) 

Age 
2 
3 
4 
5 
6 
7 

1 
0.941 1 
0.888 0.958 1 
0.860 0.934 0.975 1 
0.835 0.912 0.958 0.981 1 
0.824 0.893 0.944 0.971 0.985 1 
0.800 0.875 0.926 0.957 0.970 0986 1 
0.772 0.857 0.907 0.939 0.954 0.975 0.988 
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several two variable models; all giving a multiple R-squared of around 95-97%. 

As there was l i t t l e diff'erence in the predictive capability of several models, the 

model for correlation developed in chapter 5, was applied to the French height 

correlations. The fit of this model using unweighted least squares can be found 

in the upper table of table 9.15. The sample size for each of the French height 

correlations is unknown, so the assumption was made that the sample size for each 

of the correlations was 'similar' and only the magnitude of the correlation was taken 

account of in the weighting. The fit of the Argyle model using weighted least squares 

can be found in the lower table of table 9.15, there is a slight reduction in the 

mult iple correlation coefficient. I t is interesting that the same simple model, the 

Argyle model, is suitable for modelling the correlation between weight Z-scores (0 

to 2 years) and the correlation between heights (2 to 9 years). 

Table 9.14: Correlation between transformations of French height correla

tions and potential predictor variables in tl and t2 

variable r log(r) Fishers(r) 
tl 0.772 0.761 0.859 
log{tl) 0.818 0.810 0.859 

0.799 0.789 0.864 
1/tl -0.831 -0.825 -0.829 
exp(—tl) -0.814 -0.813 -0.768 
exp(il) 0.422 0.410 0.597 
t2 -0.079 -0.088 0.027 
logit2) -0.079 -0.088 0.031 
\/t2 -0.079 -0.088 0.030 
l/t2 0.079 0.088 -0.032 
exp{-t2) 0.073 0.080 -0.026 
exp{t2) -0.076 -0.084 -0.001 
t2 - tl -0.851 -0.849 -0.832 
log{t2 - tl) -0.791 -0.784 -0.839 
y/t2 - tl -0.829 -0.824 -0.843 
l/{t2-tl) 0.696 0.685 0.793 
exp{tl - t2) 0.666 -0.653 0.776 
exp(i2 - tl) -0.715 -0.732 -0.553 
{tl+t2)/2 0.400 0.388 0.512 
log[{tl + t2)/2] 0.341 0.329 0.451 
^{tl + t2)/2 0.373 0.361 0.484 
2/{tl + t2) -0.267 -0.255 -0.375 
exp[-{tl + t2)/2] -0.113 -0.103 -0.213 
exp[{tl +12)/2] 0.427 0.416 0.563 
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Table 9.15: F r e n c h height correlations [N=28] (204 to 318 children be

longing to the French longitudinal study): Regression of log correlation on 

log ( t l ) and log(t2) 

unweighted Value Std. Error t-value Pr(> t\) 
(Intercept) -0.018621 0.015311 T2T6 0235 
log(n) 0.171941 0.005927 29.012 < 2x10-^6 
log{t2) -0.151281 0.009107 -16.612 5.11 xlO"^^ 
i?'^=0.9714, i?^(adj)=0.9691, residual SE=0.01198 on 25 df 

weighted Value Std. Error t-value Pr(> \t\) 
(Intercept) -0012098 0.013678 ^0884 0385 
log(U) 0151311 0.006468 23.393 < 2 x l 0 - i ^ 
log{t2) -0.139759 0.009697 -14.412 1.29 x lO '^^ 
i?^=0.9571, i?^(adj)=0.9537, residual SE=0.03213 on 25 df 

In order to see i f we could improve the fit of the Argyle model the impact of 

adding a constant to age was explored. Ini t ia l ly two weeks were added to the age in 

years to see i f the model developed for weight in infancy was of the same format for 

height correlations in childhood. The fit of this model can be found in the upper table 

of table 9.16, this model provides a similar fit to the model w i th no constant. Using 

a similar approach to chapter 5, we then explored the effect of varying the constant 

added to the t ime point on the fit of the model. Adding a constant to the time points 

led to an increase in the deviance, whereas subtracting a constant led to a decrease in 

the deviance. Exploratory work suggested that the minimum deviance was achieved 

when 70 weeks was subtracted f rom the time points (see figure 9.8), the fit of this 

model can be found in the lower table of table 9.16. A plot of standardised residuals 

versus fitted values can be found on the left in figure 9.9, this suggests that there 

may be slightly more variabil i ty for correlations close to 1. A plot of Cook's distance 

versus index can be found on the right in figure 9.9, this suggests that there are three 

influential points: the most extreme corresponds to the correlation between heights 

at 2 and 3 years which is underestimated; the correlation between heights at 3 and 

4 years which is overestimated and the correlation between heights at 2 and 9 years 

which is also overestimated. The impact of excluding these influential observations 

is considered in table 9.17. So the final model for the correlation between height 

Z-scores is given by equation (9.2). 

log(r) = 0.0158 + 0.0929 \og{tl - 70/52) - 0.0997 log(t2 - 70/52) (9.2) 

where tl and t2 are the in i t i a l age and final age in years, respectively and tl < t2. 
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Table 9.16: F r e n c h height correlations [N=28] (204 to 318 children be

longing to the French longitudinal study): Regression of log correlation on 

log{tl + c) and \og{t2 + c) 

hgirjtl, t2)) = a log(U + 2/52) + 61og(^2 + 2/52) +c + error 
Value Std. Error t-value Fr (> \t\) 

(Intercept) -0.020158 0.015620 T 2 9 0.209 
log( i l -h 2/52) 0.173818 0.006057 28.70 < 2x10"!^ 
log(t2 + 2/52) -0.152322 0.009267 -16.44 6.44 xlQ-^^ 
i2''^=0.9562, i?^(adj)=0.9527, residual SE=0.03246 on 25 df 

\og{r{tl,t2)) = a\og{tl - 70/52) + 61og(^2 - 70/52) + c + error 
Value Std. Error t-value Pr(> |^|) 

(Intercept) 0.020524 0.005621 3:651 0.00121 
l o g ( U - 70/52) 0.094375 0.002282 41.358 < 2 x l 0 - i ^ 
log(^2 - 70/52) -0.103543 0.004145 -24.978 < 2 x l 0 - ^ ^ 
^•^=0.9859, it:'^(adj)=0.9847, residual SE=0.01845 on 25 df 

Table 9.17: F i t of Argyle model to height correlations after excluding influ

ential observations 

Excluding correlation between heights at (2,3) years 
Value Std. Error t-value Pr(> K|) 

(Intercept) 0.013159 0.006181 2 l29 M m 
l o g ( n - 70/52) 0.094567 0.002122 44.566 < 2x10-^^ 
log(i2 - 70/52) -0.099628 0.004234 -23.532 < 2x10-1^ 
i?''^=0.9882, i?'^(adj)=0.9872, residual SE=0.01714 on 24 df 

Excluding correlation between heights at (2,3) and (3,4) years 
Value Std. Error t-value Pr(> |t|y 

(Intercept) 0.019201 0.007121 2:696 0.0129 
l o g ( n - 70/52) 0.094896 0.002070 45.844 < 2x10-^^ 
l o g ( t 2 - 70/52) -0.103131 0.004672 -22.073 < 2x10-1'^ 
i?^=0.9894, i?'^(adj)=0.9885, residual SE=0.01663 on 23 df 

Excluding correlation between heights at (2,3), (3,4) and (2,9) years 
Value Std. Error t-value Pr(> \t\) 

(Intercept) 0.015821 0.006340 2:496 0.0206 
log( i l - 70/52) 0.092932 0.001938 47.961 < 2x10"!^ 
log(t2 - 70/52) -0.099692 0.004261 -23.395 < 2x10-^6 
i?^=0.9908, i?^(adj)=0.99, residual SE=0.01455 on 22 df 
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The model developed for the French height correlations, given by equation (9.2), 
was used to calculate a conditional height gain Z-score between school entry and 
follow-up for each child wi th in the systematic sample (excluding cases). Boxplots 
of the conditional height gain Z-scores by gender can be found in figure 9.10; both 
these boxplots are reasonably symmetric wi th four and three outlying points for the 
boys and girls, respectively. There are two individuals w i th conditional height gain 
Z-scores above 6: I D 2210 has a conditional height gain Z-score of 6.90 (he has a 
height Z-score of -0.52 and 1.84 at school entry and follow up, respectively) and I D 
3489 has a conditional height gain Z-score of 6.39 (she has a height Z-score of -1.33 
and 0.72 at school entry and follow up, respectively). I t is possible that the height 
measurements for these two individuals at school entry are subject to measurement 
or recording errors. The presence of these two individuals w i l l elevate both the mean 
and standard deviation of the conditional height gain Z-scores. 

In figure 9.11 we plot the conditional height gain Z-score versus: age at school 

entry, age at follow up and t ime elapsed. There is no strong trend in any of these 

scatterplots suggesting that the conditional height gain Z-score appears to be un-

correlated wi th in i t i a l age, final age and time elapsed. The conditional height gain 

Z-score should be uncorrelated w i t h the in i t i a l height Z-score. A plot of the condi

t ional height gain Z-score versus in i t ia l height Z-score can also be found in figure 

9.11. There is no apparent linear trend in this scatterplot and the correlation be

tween height Z-scores at school entry and conditional height gain Z-scores was found 

to be small (r=-0.10). 

The summary statistics of the conditional height gain Z-scores by gender, ini t ia l 

age group and t ime elapsed can be found in table 9.18. The age at school entry 

and t ime elapsed was rounded to the nearest year to make groups of a viable size 

for obtaining summary statistics. I t would appear that the mean of the conditional 

height gain Z-scores is significantly different f rom zero for the girls. However there 

is no reason to doubt that the mean of the conditional height gain Z-scores is zero 

for the boys (see table 9.19). The variance of the conditional height gain Z-scores 

are significantly diff"erent f rom 1 (see table 9.19). However, we should be aware that 

this test is sensitive to non-normality and quantile-quantile plots (see figure 9.13) 

indicate that the distr ibution of conditional height gain Z-scores has heavy tails. 

To conclude, we should be wary when interpreting extreme conditional height gain 

Z-scores because we w i l l have more extreme gains than expected. 

Ideally we would like to look at the distributional properties of the conditional 

height gain Z-scores grouped by age and t ime elapsed. Figure 9.12 summarises 

the distribution of the measurement ages at school entry and follow-up. The time 
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elapsed between height measures can vary between 1.73 and 5.98 years. However, 
f r o m figure 9.12, there appears to be two clusters of data points: age at school entry 
of 4 years and t ime elapsed of 4-5 years, and age at school entry of 5 years and time 
elapsed of 3-4 years. The summary statistics for these two groups of children are 
considered in table 9.20. There is no reason to doubt that the mean of the conditional 
height gain Z-scores is zero for these two clusters of children (t = 0.5987, p = 0.5506 
when age at school entry is 4 years and time elapsed is 4 to 5 years; t = 0.5987, p = 
0.5506 when age at school entry is 5 years and time elapsed is 3 to 4 years). Again 
there is reason to suggest that the variance of the conditional height gain Z-scores 
is significantly different f rom 1 (S = 155.53, p ^ 0.0012 when age at school entry is 
4 years and t ime elapsed is 4 to 5 years; S = 323.30, p 0 when age at school entry 
is 5 years and t ime elapsed is 3 to 4 years). 

Table 9.21 contains the summary statistics of the conditional height gain Z-scores 

for children in the case and control samples by gender. The noticeable feature is 

that the variance of the conditional height gain Z-scores of case girls is higher than 

the control girls (F = 1.8077, p = 0.02799). However there is no reason to doubt 

that variance of the conditional height gain Z-scores for case and control boys are 

the same (F = 1.0617, p = 0.864). There is no reason to doubt that the mean 

conditional height gain Z-scores for case and control children are the same (t = 

-1.3604, p = 0.1791 for boys; t = 1.0554, p = 0.2936 for girls). Thus indicating that 

there is no diflFerence in the rate of height gain between school entry and follow-up 

Table 9.18: Systematic sample: Summary statistics of conditional height 

gain Z-scores by gender, age-group at school entry and t ime elapsed between 

height measures 

Min. LQ Median Mean UQ Max. SD no. 
A l l -4.604 -0.641 0.136 0.182 0.982 6.899 1.347 334 
Boys 
Girls 

-4.604 -0.728 0.133 0.097 0.932 6.899 1.358 161 
-3.314 -0.590 0.159 0.262 1.086 6.393 1.336 173 

Initial age 
4 years 
5 years 
6 years 

-4.604 -0.538 0.038 0.074 1.030 2.406 1.196 110 
-3.790 -0.696 0.126 0.194 0.868 6.899 1.410 194 
-1.855 -0.396 0.259 0.467 1.199 4.846 1.482 28 

Time elapsed 
2 years 
3 years 
4 years 
5 years 

-1.855 -0.128 0.673 0.770 1.310 4.846 1.582 17 
-3.790 -0.407 0.370 0.410 1.143 6.393 1.364 112 
-3.314 -0.821 -0.081 0.021 0.831 6.899 1.306 150 
-4.604 -0.732 0.083 -0.039 0.701 2.406 1.264 54 
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Table 9.19: Systematic sample: Results of testing that the mean conditional 

height gain Z-score is zero and variance is one (by gender, age-group at school 

entry and time elapsed between height measures) 

t p 95% CI 
A l l 2.4752 0.0138 |0.0374, 0.3274J 
Boys 
Girls 

0.9055 0.3665 [-0.1144, 0.3082J 
2.5798 0.01072 fO.0615, 0.4625] 

Initial age 
4 years 
5 years 
6 years 

0.6476 0.5186 
1.9173 0.0567 
1.6682 0.1068 

-0.1521, 0.2998 
-0.0056, 0.3939 
-0.1075, 1.0421 

Time elapsed 
2 years 
3 years 
4 years 
5 years 

2.0075 0.0619 [ 
3.1831 0.0019 
0.1961 08448 
-0.2256 0.8224 

-0.0431, 1.5833 
0.1549, 0.6657 
-0.1898, 0.2317 
-0.3839, 0.3062 

J 

^^^^ approx. 95% CI 
p-value 

A l l 604.21 0 |1.5676,2.1250J 
Boys 
Girls 

294.95 4.5741 xlO"^* [1.4978,2.3248] 
306.99 3.3884 x lO '^^ [1.4604,2.2313] 

Initial age 
4 years 
5 years 
6 years 

155.83 0.0015 
383.95 0 
59.33 1.0877 xlO"^ 

1.1148,1.9004 
1.6453,2.4546' 

[1.3735, 4.0708 
Time elapsed 
2 years 
3 years 
4 years 
5 years 

40.03 2.1592 xlO"^ [1.3877,5.7949] 
206.54 1.4328 xlO'^^ [1.4540,2.4666] 
254.26 1.0790 x lO-^ [1.3767,2.1713] 
84.70 0.0021 [1.1293,2.4355] 

Table 9.20: Systematic sample: Summary statistics of conditional height 

gain Z-scores by age-group at school entry and time elapsed between height 

measures 

Min. LQ Median Mean UQ Max. SD no. 
4, 4-5 years 
5, 3-4 years 

-4.604 
-3.790 

-0.542 
-0.702 

0.038 
0.107 

0.069 
0.221 

1.031 
0.850 

2.406 
6.899 

1.200 
1.483 

109 
148 

for case and control children. 
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A notch boxplot of the conditional height gain Z-scores by gender and case-
control status can be found in figure 9.14. The notches on the boxplots for the boys 
overlap, indicating that there is no reason to doubt that the median conditional 
height gain Z-scores are the same for the case and control boys. The notches on the 
boxplots for the girls don't overlap ([-0.50794, 0.03439] for control girls, [0.05736, 
0.6401] for case girls), suggesting that the median conditional height gain Z-scores 
are significantly different in the case and control girls. However, i f the Wilcoxon 
Mann-Whitney test is used then W = 2016 and p = 0.0638, so difference just fails 
to reach statistical significance. There are four case girls wi th outlying conditional 
height gain Z-scores: I D 559 (her height Z-score drops f rom 0.39 at school entry 
to -1.68 at follow-up); I D 1813 (her height Z-score drops f rom -1.98 at school entry 
to -3.78 at follow-up, this child was a definite organic F T T ) ; I D 2289 (her height 
Z-score rises f rom -0.33 at school entry to 1.11 at follow-up) and I D 3121 (her height 
Z-score rises f rom -1.68 at school entry to -0.03 at follow-up). There are two control 
children w i t h extreme high conditional height gain Z-scores: I D 1185 (her height 
Z-score rises f rom 0.36 at school entry to 1.45 at follow-up) and I D 2016 (his height 
Z-score rises f rom -0.81 at school entry to 0.32 at follow-up). 

We w i l l use the suggested value of -2.67 as a cut-off, which in theory should 

represent the 0.4th centile. W i t h i n the systematic sample there are five children 

(1.5%) wi th conditional height gain Z-scores less than -2.67 (ID's 235, 313, 989, 

1621 and 3689). Three case children (the two discussed above plus I D 3624) and 

one control child ( ID 1380) have a conditional height gain Z-score less than -2.67. I f 

we now consider 2.67 as a cut off, which in theory should represent the 99.6th centile. 

W i t h i n the systematic sample there are nine children (2.7%) wi th conditional height 

gain Z-scores greater than 2.67 (ID's 838, 1060, 1158, 1402, 1543, 2210, 2280, 2825, 

Table 9.21: Case-control study: Summary statistics of conditional height 

gain Z-scores 

Min. LQ Median Mean UQ Max. SD no. 
cases 
controls 

-5.4410 
-3.0170 

-0.6841 
-0.7029 

0.2747 
0.0101 

0.0856 
0.0343 

1.0210 
0.7611 

4.8060 
3.2340 

1.5426 
1.2182 

88 
89 

Case boys 
Control boys 

-2.6050 
-2.0060 

-0.9039 
-0.4649 

-0.0721 
0.2960 

-0.1244 
0.2747 

0.7933 
0.8752 

2.0420 
2.9850 

1.1576 
1.1234 

28 
33 

Case girls 
Control girls 

-5.4410 
-3.0170 

-0.5947 
-0.9272 

03487 
-0.2368 

0.1836 
-0.1074 

1.0680 
0.5685 

4.8060 
3.2340 

1.6926 
1.2589 

60 
56 
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3489). Two case children (ID's 2289 and 3121) and two control children (ID's 1185 
and 2016) have conditional height gain Z-scores greater than 2.67. Assuming that 
the systematic sample is representative of children in Newcastle; i t would seem 
that using cut-offs of -2.67 and 2.67 are not appropriate. As mentioned above, the 
conditional height gain Z-scores have a variance greater than 1; thus leading to more 
than expected individuals w i t h extreme gains. However, i f sample size allows, the 
use of boxplots appears to be a viable means of detecting individuals wi th unusual 
height gains. 

9.2.4 Conditional weight gain Z-scores 

I n infancy weight is routinely monitored and i t would be nice to link these weights 

up w i t h weights at school entry and at follow-up. One approach would be to use a 

conditional weight gain Z-score. However i n order to do this would need to know 

the correlation structure for weights f rom b i r th to 9 years. This is not available 

in the literature, Berkey et al. (1983a) published yearly correlations for log weight 

f rom 1 to 6 years (see table 9.22).^ However over this time period the power term in 

the LMS method decreases f rom 0.04 to -0.71 for boys and from -0.081 to -0.68 for 

girls. A n additional consideration is that these correlations may not be calculated 

using the actual weights. In infancy the Harvard weights and heights were adjusted 

to exact age using the Jenss model (Jenss and Bayley 1937) to generate correlations 

and i t is suspected that the same is true for the weights and heights in childhood. 

Earlier work indicated that weight Z-scores needed to be grouped to the nearest 

6 months at follow-up in order to achieve sample sizes of more than 50, that had 

^The log transformation was used to achieve approximate normality for the weights 

Table 9.22: Correlation matr ix of log(weight) for 229 Boston children (Age 

in years). Boys above diagonal and girls below 

Age 1 2 3 4 5 6 
1 1 0.925 0.844 0.766 0.697 0.638 
2 0.929 1 0.970 0.908 0.839 0.776 
3 0.854 0.976 1 0.980 0.940 0.896 
4 0.791 0.928 0.984 1 0.988 0.965 
5 0.736 0.871 0.950 0.989 1 0.993 
6 0.686 0.812 0.905 0.963 0.992 1 
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both a b i r th weight and weight at follow up. In order to get an handle on the 

correlation structure beyond infancy, pair-wise correlations between weight Z-scores 

at b i r th (one year) and weight Z-scores at school entry and follow-up were obtained. 

The resulting correlations are tabulated in tables 9.23 and 9.24 (for the moment we 

are ignoring the small sample sizes). Plots oft2 versus correlation for the tabulated 

values in tables 9.23 and 9.24 can be found on the left and right of figure 9.15, 

respectively. There appears to be a linear relationship in the correlations wi th weight 

Z-score at one year. One possibility would be to fit the line r = 0.929 — 0.046^2 

(obtained using weighted least squares) to these correlations and then use this line 

to predict the correlation between weight Z-score at one year and weight Z-scores 

at school entry. 

Table 9.23: Correlation between weight Z-scores in childhood and bi r th 

weight Z-score (where r and n denote correlation and sample size, respec

tively) 

Age 6wks 3mths 6mths 9mths 12mths ISmths 4yr 
r 0.689 0.599 0.511 0.469 0.523 0.513 0.455 
n 484 480 467 388 394 296 24 
Age 4.5yr Syr 5.5yr 6yr 8yr 8.5yr 9yr 
r 0.445 0.400 0.437 0.164 0.252 0.370 0399 
n 144 134 45 12 62 225 129 

Table 9.24: Correlation between weight Z-scores in childhood and weight 

Z-score at 1 year (where r and n denote correlation and sample size, respec

tively) 

Age ISmths 4yr 4.Syr Syr S.Syr 
r 0.8676 0.7446 0.7174 0.6576 0.6535 
n 247 21 112 97 38 
Age 6yr Syr S.Syr 9yr 
r 0.6651 0.6093 0.5281 0.5438 
n 11 51 178 106 
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9.2.5 Conditioning weight on height 

A conditional index, equation (3.11), can be used to compare the current height and 
weight of a child. I t is suggested that the correlation between weight and height 
is 0.7. The correlation between weight and height Z-scores is 0.7184 (95% CI is 
0.6652,0.7643]) at school entry and 0.7145 (95% CI is [0.6647,0.7579]). So letting 

r = 0.7, equation (9.3) can be used to compare current height and weight. 

Z(weight) - 0.7Z(height) 

vTi - 0.7') 
(9.3) 

The summary statistics of the Z-score for weight conditional on height at school 
entry and follow-up can be found in table 9.25. The Z-score for weight conditional 
on height appears to cover a wider range at follow-up than at school entry. In table 
9.26 we summarise the result of testing that the Z-score for weight conditional on 
height has a mean of zero and variance of one. At school entry there is reason to 
doubt that the Z-score for weight conditional on height has a mean of zero for both 
genders. Similarly, at follow-up there is reason to doubt that the Z-score for weight 
conditional on height has a mean of zero for girls. However, for boys, there is no 
reason to doubt that the mean of the Z-score for weight conditional on height is 
zero at follow-up. Furthermore, there is no reason to doubt that the variance is 
one for the Z-score for weight conditional on height at school entry and follow-up. 
Therefore, caution is needed when using this conditional index at school entry. 

A plot of this index, given by equation (9.3), against the Z-score for BMI at 
follow-up and school entry can be found in figure 9.16. There is generally a linear 
relationship between the conditional weight on height Z-score and the Z-score for 

Table 9.25: Systematic sample (excluding cases): Summary statistics of Z-
score for weight conditional on height by gender 

school entry Min. LQ Median Mean UQ Max. SD no. 
Al l -2.8270 -0.8873 -0.2400 -0.2188 0.4146 2.7740 0.9669 371 
Boys -2.8270 -0.8073 -0.1822 -0.1819 0.4568 1.6730 0.9082 180 
Girls -2.4420 -0.9911 -0.2715 -0.2537 0.3759 2.7740 1.0203 191 
follow-up Min. LQ Median Mean UQ Max. SD no. 
Al l -3.5850 -0.7103 -0.1400 -0.1343 0.4670 3.2790 0.9554 428 
Boys 
Girls 

-3.5390 
-3.5850 

-0.6298 
-0.7929 

-0.0735 
-0.2233 

-0.0899 
-0.1787 

0.4649 
0.4624 

2.1160 
3.2790 

0.9239 
0.9860 

214 
214 
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Table 9.26: Systematic sample (excluding cases): Results of testing that the 
mean Z-score for weight conditional on height is zero and variance is one (by 
gender) 

t P 95% CI 
school entry A l l -4.3594 1.693 x lO-^ [-0.3176, -0.1201] 

Boys -2.6866 0.0079 -0.3155,-0.0483 
Girls -3.4362 0.0007 -0.3993,-0.1081 

follow-up A l l -2.9083 0.0038 [ -0.2251,-0.0435 
Boys -1.4228 0.1563 -0.2144,0.0346] 
Girls -2.652 0.0086 [ -0.3116,-0.0459] 

(n-l)s^ approx 95% CI 
p-value 

school entry A l l 345.94 0.3765 0.8136,1.0858 
Boys 147.66 0.0976 0.6775,1.0265' 
Girls 197.81 0.6889 0.8598,1.2868 

follow-up A l l 389.73 0.2022 [0.8017,1.0487 
Boys 181.83 0.1309 0.7122,1.0421 
Girls 207.06 0.7736 [0.8110,1.1868] 

BMI. At follow-up there is slightly more variability in the conditional index as the 
B M I Z-score increases. The unconditional index, equation (3.5), could be used to 
compare current height and weight centiles. It has been suggested that if the height 
and weight centiles differ by more than three major centiles then this would be a 
cause for concern. However as the correlation between weight and height is smaller, 
Cole (1997a) states the conditional index should be used in preference. 

9.3 Lowess trend curves for weight growth from 
infancy to 7-9 years 

The lowess procedure was used to draw trend curves for the full curve of growth. A 
potential problem in using the lowess procedure is that the data is in three distinct 
clusters. Altering the span has little impact on smoothing the unusual appearance 
of the lowess curve as it enters or leaves a cluster, see figure 9.17. The case children 
have lowess curves that drop away from zero after birth, reaching a minimum around 
the first year, there is then a gradual improvement in childhood; see figures 9.18 
and 9.19. However, the weight Z-scores for case children at 7 to 9 years are still 
substantially below zero. The control boys have lowess curves that increase above 
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zero in early infancy and remains just above the zero line into childhood; see figure 
9.18. The control girls have similar lowess curves in infancy to control boys, but in 
childhood their lowess curve runs along the zero line; see figure 9.19. After 1 year 
girls and boys within the systematic sample have lowess curves that are just below 
and above the zero line, respectively (see figure 9.20). Figure 9.21 summarises all 
the default lowess trend curves for the cases, controls and systematic samples. 

9.4 Discussion and Conclusions 

Relationships between the systolic blood pressure at 7-9 years and current Z-scores 
of anthropometric measures have been explored previously (Wright et al. 1999). For 
individuals within the systematic sample, Wright et al. (1999) regressed the systolic 
blood pressure on the Z-score for B M I and height. The adjusted blood pressure was 
obtained using the results from this regression to arrive at the following equation^: 

Adjusted BP = systolic BP - 1.56Height SDS -I- 1.75BMI SDS 

Even after adjusting for height and BMI, Wright et al. (1999) found that the blood 
pressure was still slightly lower in the FTT group. This lead to the conclusion that 
children that had failed to thrive in infancy had no tendency to increased blood 
pressure (Wright et al. 1999). The study of the systematic sample was not designed 
to compare the relative influence of birth weight and subsequent weight gain for 
children growing within normal limits, however weak associations would suggest 
that accelerated weight gain in infancy may predict better later hypertension than 
absolute size at birth (Wright et al. 1999). 

Final systolic blood pressures were similar in boys and girls. This is in agree
ment with Barker et al. (1989), they found that men had higher blood pressure 
than women but at 10 years the blood pressure of boys and girls were little dif
ferent. I f a stepwise procedure is used to identify a model for the systolic blood 
pressure then the same model choice as derived by Wright et al. (1999) is arrived 
at. However, the Z-score for Weight is highly correlated with the Z-scores for BMI 
and height. Regressing systolic blood pressure on the current weight Z-score leads 
to simpler model with an identical adjusted multiple correlation coefficient to the 
model derived when regressing systolic BP on the Z-scores for height and BMI. 
Barker et al. (1989) found that systolic blood pressure in 10 year old boys and girls 

^coefficients slightly different to model obtained on systematic sample (excluding cases) 
as some children's data were not included in Wright et al. (1999), as they were not coded 
correctly as belonging to this sample 
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was associated with current weight. I f weight Z-scores from infancy are considered 
then the weight Z-score at birth and 1 year make a much smaller contribution to 
explaining the variation in the systolic BP than current weight Z-score alone. The 
sign of the coefficient in this model for the birth weight Z-score is negative, which is 
an agreement with other authors, that after allowing for current size, a low weight 
at birth would lead to a higher systolic BP at 7-9 years. 

Singhal et al. (2001) suggested that the nutritional programming of blood pres
sure may not manifest itself until puberty or adulthood. Barker et al. (1989) 
reported a stronger inverse relationship between systolic blood pressure and birth 
weight at 36 years than at 10 years. Berkey et al. (1998) arrived at a model for 
systolic blood pressure at 17 and 30 years using a similar stepwise approach, con
sidering: height, weight and B M I measures at 17 and 30; length, weight, ponderal 
index^, head and chest circumference at birth. Berkey et al. (1998) regressed sys
tolic BP at 17 for women on B M I at 17, whereas at 30 systolic BP was regressed on 
head circumference at birth, systolic BP at 17 and change in BMI between 17 and 
30 years. For males, Berkey et al. (1998) regressed systolic BP at 17 on BMI at 
17 and ponderal index at birth, whereas at 30 systolic BP was regressed on BMI at 
17 and birth weight. The sample sizes in this exploratory work were much smaller 
than considered here; between 49 and 67 for females and 60 to 62 for males. An 
additional point, is the issue of 'spurious correlation', the correlation between ratios 
that exists even if all the component variables are uncorrelated (Kronmal 1993). 
Kronmal (1993) cautions against regressing on ratios such as the BMI. If BMI is 
included in any regression model, then its lower order terms, (height)"^ and weight, 
such be incorporated in the model too. 

Although the use of conditional index for monitoring height or weight gain in 
childhood is advocated (Cole 1994a; Cole 1997a) it hasn't been put into practice 
in the growth literature. Published work tends to look at the raw height change 
or the change in height Z-score with no allowance made for the correlation between 
the height measures. Mulligan et al. (1998) used community height data collected 
on 486 children (247 boys, 239 girls) at a mean age of 4.91 years and 7.87 years, to 
see how many children had an abnormal growth rate. As pointed out in this paper 
there is no empirical standard for defining slow growth. Mulligan et al. (1998) 
took a change in height Z-score greater than 0.67 to be abnormal. The community 
data identified 11 'slow growing' and 9 'fast growing' children. Rudolf et al. (2000) 
looked at the change in height, weight and BMI Z-score of 694 children from Leeds 
participating in the APPLES project. These children were between 7 and 10 years 

^ponderal index is weight divided by cubed length at birth 
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old and they were followed longitudinally over a period of 3 years. Rudolf et al. 
(2000) considered the number of children that had a change in Z-score greater than 
0.67 (one channel width). Rudolf et al. (2000) found that 1% of sample experienced 
a change (increase or decrease) in height Z-score greater than 0.67. Whereas for 
weight and B M I no children experienced a decrease in Z-score less than -0.67, but 
2% and 5% of sample experienced an increase in Z-score greater than 0.67 for weight 
and BMI , respectively. 

Conditional height gain Z-scores were calculated (using the Argyle model to es
timate correlation) between school entry and follow-up. It was found that there was 
no reason to doubt that the mean of the conditional height gain Z-scores obtained 
was zero for boys but this was not the case for the girls. There was also strong 
evidence to suggest that the variance of the conditional height gain Z-scores was not 
one. Therefore the use of conventional cut-offs (0.4th percentile) with conditional 
height gain Z-scores was not advocated. I t appears that there is no significant dif
ference in the mean of the conditional height gain Z-scores for cases and controls. 
Thus suggesting that the rate of height gain is similar in case and control children. 
However there was some indication that the variance of the conditional height gain 
Z-scores for case girls was more variable than for control girls. This difference in 
variance was partly attributable to the four extreme conditional height gain Z-scores 
obtained within the case girls group. 

Conditioning weight on height was also considered. This was found to produce 
comparable results to the Z-score for BMI, but with slightly more variability for the 
conditional index at follow up. The plausibility of conditioning follow-up weight on 
previous weight Z-scores was considered. However the Newcastle sample is too small 
in childhood to provide viable sample sizes in order to provide a reliable correlation. 
Furthermore, there are no adequate correlation matrices for weight Z-scores covering 
this age range within the research literature. An alternative to using a conditional 
index would be to utilise the conditional growth Norms in LGROW (see Chapter 3). 
These are derived using multilevel modelling on several data sources from European 
growth studies. 

To conclude, we have considered the use of conditional height gain Z-scores and 

conditioning weight on height for childhood data. There was several potential models 

for the correlation between height Z-scores, but with similar predictive capabilities. 

I t was found that the correlation between height Z-scores in childhood was also 

adequately modelled by the Argyle model. It would be interesting to see if this model 

was adequate for describing the correlation between weight Z-scores in childhood. 

However, as noted above, the Newcastle childhood weight data is too sparse to obtain 
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the correlations between weight Z-scores. The use of conditional height gain Z-scores 
seems promising, we only need to be cautious in using conventional cut-offs because 
there is some indication that the variance is greater than one. It was interesting 
to find that the conditional height gain Z-scores in case and control children were 
similar. The conditional Z-score for weight on height was found to be comparable to 
the Z-score for BMI . Systolic blood pressure at 7 to 9 years appears to be associated 
most with current weight Z-score. 

Figure 9.1: Systematic sample (excluding cases): Boxplot of difference 
between systolic blood pressure on initial and final measurement occasion 
(SYS3-SYS1) by gender 

Boxplot of difference between systolic blood pressure 
on initial and final measurennent occas ion 



9 Analysis of growth data beyond infancy 437 

Figure 9.2: Notch boxplots of systolic blood pressure by gender for: 

upper panel systematic sample excluding cases lower panel case-control study 

Boxplot of systol ic blood pressure by gender 

Boxplot of systol ic blood pressure by 
case—control status and gender 

Corhrol Corftroi 
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Figure 9.3: Systematic sample (excluding cases): Scatterplots of systohc 

blood pressure versus Z-scores for height, weight, B M I and head circumfer

ence at follow-up 
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Figure 9.4: Scatterplots of all pair-wise combinations of Z-scores for height, 

weight, B M I and head circumference for individuals within systematic sample 

(excluding cases) 
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Figure 9.5: Scatterplots of all pair-wise combinations of Z-scores for height, 

weight, B M I and head circumference for individuals within case-control study 
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Figure 9.6: Systematic Sample (excluding cases) Scatterplots of all 

pairwise combinations of Z-scores for: birth weight, weight at 1 year, heights 

and weights at school entry and follow-up 
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Figure 9.7: French height correlations: Scatterplots of correlations versus 
t2 and t2 — tl (points that take on the same value of tl are connected) 
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Figure 9.8: French height correlations: Exploratory plots to see how 
constant (c) added in model log(r( t l , t2)) = A\og{tl+c)+B\og{t2+c)+C+e 
effects model fit, term coefficients and intercept 
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Figure 9.9: Regressing log correlation on log{tl - 70/52) and log(i2 - 70/52): 

Left Plots of standardised residuals versus fitted values Right Plot of Cook's 

distance versus index 
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Figure 9.10: Systematic sample (excluding cases): Boxplots of condi

tional height gain Z-score by gender 
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Figure 9.11: Systematic sample (excluding cases): Plot of conditional 
height gain Z-score versus: initial time (upper left), final time (upper right), 
time elapsed (lower left) and initial height Z-score (lower right) 
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Figure 9.12: Systematic sample (excluding cases): Plot of age at school 
entry versus time elapsed between school entry and follow up measure 
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Figure 9.13: Systematic sample (excluding cases): Quantile-Quantile 

plot of conditional height gain Z-scores by gender 
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Figure 9.14: Case-control sample: Boxplots of conditional height gain Z-

scores 
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Figure 9.15: Systematic sample (excluding cases): Plot of correlation 

between later weight Z-scores and weight Z-scores at birth and 1 year versus 

later time 
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Figure 9.17: Systematic sample Effect of varying span on trend curves for 

weight Z-scores from birth to 9 years 
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Figure 9.18: Boys Upper panel Plot of weight Z-score versus age for cases 
with default lowess curve. Lower panel Plot of weight Z-score versus age for 

controls with default lowess curve. 

Lowess trend curve for weigtit z—scores 
C a s e boys 

aoo (years) 

Lowess trend curve for welgnt Z—scores 
Control boys 

o 

o 

o 

i ° o 

1 J. 1 
O 2 

[ 1 

4 6 

age (years) 

e 



9 Analysis of growth data beyond infancy 453 

Figure 9.19: Girls Upper panel Plot of weight Z-score versus age for cases 
with default lowess curve. Lower panel Plot of weight Z-score versus age for 

controls with default lowess curve. 
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Figure 9.20: Systematic sample (excluding cases) Plot of weight Z-score 

versus age for boys (upper panel) and girls (lower panel) with default lowess 

curve 
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Figure 9.21: Birth to 9 years: Summary lowess trend curves of weight Z-

scores for cases, controls and systematic sample by gender 

Default Lowess trend curve for weight Z - s c o r e s 

i 

G i r l s 

C o n t r o l s C o n t r o l s 

S y s t e m a t i c S y s t e m a t i c 

a g e ( y e a r s ) 



Chapter 10 

Conclusions 

The statistical analysis of child growth data has been of interest to many academics, 
from a wide range of disciplines, over the last century. In this thesis we have focused 
mainly on one aspect of child growth, namely assessing a child's weight or height 
gain. An approach based on the conditional weight gain Z-score was used in infancy 
to assess an infant's current weight Z-score given their previous weight Z-scores. We 
also explored how conditional weight gain Z-scores in infancy could be utilised as 
they evolved. The conditional gain Z-score was also used in childhood to assess a 
child's current height Z-score given their previous height Z-score or mid-parental 
height Z-score. 

10.1 Modelling correlation 

In order to calculate a conditional weight gain Z-score all that is needed is a growth 
reference to convert weights to Z-scores and the correlation structure of weight Z-
scores in infancy. In this thesis we have modelled the correlation structure of weight 
Z-scores in infancy to allow us to calculate the correlation for any pair of ages 
within infancy. We have arrived at a very simple model, termed the Argyle model 
for convenience, for the correlation between weight Z-scores: r = ( f ^ ^ ) ° ^ ^ where 
tl and t2 are age in weeks and tl < t2. An interesting, and important, result is that 
the use of this one variable Argyle model to model the correlation between weight 
Z-scores in infancy is that conditioning on the previous weight Z-score is the same 
as conditioning on all previous weight Z-scores (Markov property). Thus to assess 
recent weight gain we only need to consider the previous weight Z-score. 

Cole (1995) and Cole (1998a) had modelled the correlations generated from the 

456 
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weight Z-scores in the Cambridge infant study. Cole (1995) applied the Fisher's 
transformation to these correlations and developed a model that had five terms 
and an intercept. The Argyle model developed here has fewer terms than the model 
proposed by Cole (1995). The Argyle model also provides a reasonable fit, in terms of 
the multiple correlation coefficient, to the correlation between weight Z-scores from 
the Cambridge infant study. However, the Argyle model is a monotonic function 
and the Cambridge correlations exhibit an upward trend towards the end of infancy 
indicating the need for a quadratic term. The upward trend in the Cambridge 
correlations at the end of infancy is counterintuitive and is not a feature observed in 
the Newcastle correlations. Furthermore, Heimendinger and Laird (1983) highlight 
the importance of using correlations pertinent to the target population. 

The Newcastle infancy data generated a large number of correlations and there 

is scope for further research into models for these correlations. In this thesis we 

have focused on deriving the simplest model, a more complex model may result 

in a closer fit to the Newcastle correlations. A further improvement of the fit of 

the Argyle model could be achieved by additional work on the weightings of the 

correlations. 

In childhood the Newcastle data is too sparse to generate correlation matrices 
for weight or height Z-scores. There are no published correlation matrices for weight 
Z-scores in childhood; so calculation of conditional weight gain Z-scores in childhood 
was not possible. However, Cole (1997a) published a correlation matrix for heights 
from a French longitudinal study. It was found that the Argyle model also provided 
a reasonable fit to the height correlations: log(r) = 0.0158 + 0.0929 log(il -70/52) -
0.0997 ]og(t2 - 70/52) where tl and t2 are age in years and tl < t2. This model for 
correlation was used to calculate conditional height gain Z-scores in childhood for 
the Newcastle data. I t was interesting that the form of the model developed for the 
correlation between weight Z-scores in infancy was equally valid for the correlation 
between height Z-scores in childhood. Seventy weeks was subtracted from age in 
the model for correlation, this has no biological significance and was deduced from 
exploratory data analysis. I t would be interesting to see if this same functional form 
would be suitable for the correlation between weight Z-scores in childhood. 

10.2 Functional Data analysis 

As discussed in chapter 2, the aim of curve registration is to display growth data in 

a way that highlights the characteristics of the growth process, i.e. spurts, troughs 
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and levelling off. Once this is achieved, it is then possible to explore important 
sources of pattern and variation. At present functional data analysis (structural 
averaging) has only been used to characterise growth in childhood (Gasser et al. 
1989; Gasser et al. 1990; Gasser et al. 1991; Gasser et al. 1991; Gasser et al. 1993; 
Gasser et al. 1994; Gasser et al. 1994). Therefore, there use of functional data 
analysis to characterise growth in infancy is a potential area of further research. 
Once characterisation of the growth process in infancy has been achieved it would 
be of potential value in comparing groups of infants e.g. boys and girls, impact 
of deprivation. Functional data analysis also has potential scope for discriminating 
between infants that are failing to thrive and infants that are growing 'normally'. 

In curve registration there is initially a need to determine a set of characteristic 
times in infancy. In infancy i t is expected that characteristic points may be con
ception, birth and period of weight loss immediately after birth. Further research is 
needed to determine suitable characteristic points in mid to late infancy. The non-
parametric approach used in functional data analysis is heavily reliant on having 
large quantities of data for each individual. Usually this approach uses splines to 
model growth curves and the quality of these splines are highly dependent on the 
number of measurements. The Newcastle infancy data frame has too few weights 
for each individual to directly employ the techniques outlined in Ramsay and Silver
man (1997) using their software. However, recently James et al. (2000) presented 
techniques for addressing the situation where data is at irregular time points and 
sparse. Another possibility may be apply any of the infancy models or multi-level 
modelling to the weight data of each individual and then apply functional data 
analysis techniques to the individual curves to align and analyse them. 

10.3 Characteristics of Newcastle data 

The Newcastle infancy data frame is formed from recorded routine weights for all 

infants resident in Newcastle in November 1989. It is suspected that these weights 

in infancy are likely to be typical of routine weights recorded in community clinics 

in other northern cities in the UK. Research suggests that the tempo of growth is in

fluenced by many factors: regional variations, urbanisation, ethnic, socio-economic, 

disease and nutrition (Tanner 1989). The mode of feeding of infants from the New

castle study is unknown, there will be a mix of bottle fed and breast fed infants 

within the sample. 

Infants from the Cambridge study are breast fed and likely to be from a middle 
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class or affluent background. Weights from the Cambridge study are measured in 
a research setting and thus will have a lower measurement error than community 
weights. Therefore, the correlation between weight Z-scores is likely to be higher 
than those from a community setting, but Cole (1998a) argues that this increase 
will be likely to be offset to some extent by the homogeneous nature of the selection 
of Cambridge infants. Thus i t could be argued that the research on correlations 
between weight Z-scores in Newcastle may be more relevant to weight measures on 
infants in the community. 

10.4 Implications of research for clinicians 

Overall i t would appear that the revised UK 1990 growth reference is suitable for 
converting heights, weights and BMIs of Newcastle children to Z-scores. In infancy 
females from Newcastle tend to be lighter than those children that contribute to 
the reference. Whereas male infants from Newcastle tend to be heavier than those 
children that contribute to the reference. However, these diflFerences are viewed to 
be not clinically significant. The variance of weight Z-scores in late infancy appears 
to be slightly greater than one. Therefore, we should be cautious in interpretation 
of weight Z-scores in the tails of the distribution in late infancy. At 4 to 5 years the 
revised UK 1990 reference appears to be adequate for converting weights, heights 
and BMIs to Z-scores. There may be some indication that girls at school entry are 
shorter than those children that contribute to the reference. At 7 to 9 years the use 
of the revised UK 1990 reference to convert weight, height and BMI to Z-scores is 
not entirely inappropriate. However, some caution may be needed when interpreting 
the BMI Z-scores of boys. However the UK 1990 growth reference is unsuitable for 
converting head circumference measures to Z-scores. Children in Newcastle have 
significantly lower head circumferences than those children that contribute to the 
reference (predominantly from Edinburgh growth study). 

In contrast to the Wessex growth study (Voss and Mulligan 1999b), the body 
mass indices of Newcastle children from 4 to 9 years are in reasonable agreement 
with the children that contribute to the revised UK 1990 reference. However, some 
caution may be needed in interpreting the Z-score for BMI at the extremes at 7 to 9 
years for boys, because there is reason to doubt that the variance of the Z-score for 
B M I is one. The Z-score for weight conditional on height correlates reasonably well 
with the Z-score for BMI. However, the use of the Z-score for BMI is advocated over 
the Z-score for weight conditional on height because there is evidence to suggest 
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that this conditional index has a non-zero mean. 

In this thesis we have highlighted the benefits of using conditional weight gain 
Z-scores to assess weight gain in infancy. The Argyle model is a simple model 
that is suitable for use in calculating the correlation between weight Z-scores up 
to the age of about 18 months. The Argyle model developed for correlation does 
have implications for utilising conditional weight gain Z-scores: conditioning on the 
previous weight Z-score is the same as conditioning on all previous weight Z-scores. 

A cautionary note is that the conditional approach assumes that the weight 
conditioned on itself is not abnormal (Healy 1986). I t only takes one 'unusual' 
weight Z-score (in relation to rest of weight Z-scores of that individual) to produce 
very extreme conditional weight gain Z-scores. Therefore it would be unwise to 
take action after one extreme conditional weight gain Z-score. Furthermore, i t is 
suggested that three weights are the bare minimum before any decision can be made 
about a child's weight gain. We have not being able to address here suitable spacing 
between weight measures and this is an area which could merit further research. 
Where growth is rapid, such as in early infancy, weight measures could be closer in 
time than say in late infancy. A further concern is that conditional gain Z-scores 
may have an elevated variance (greater than one) because of an elevated variance 
in either or both of the original Z-scores. Therefore the use of conventional cut-offs 
(0.4th centile or 2nd centile) is not advocated. 

The reported parental heights were available for children that participated in 
the foUow-up study. The girls' heights were found to be more correlated with the 
reported parental heights than the boys' heights. Preliminary research suggests that 
the use of the Z-score for height conditional on mid-parental height to assess a child's 
current height looks promising. There is no reason to doubt that the variance of the 
Z-score for child's height conditional on mid-parental height is one. However, this 
conditional index should be interpreted cautiously for boys as there is evidence to 
suggest that the mean is non-zero. 

Research suggests that conditioning on previous weight Z-score is of value for 

detecting failure to thrive or growth faltering. An alternative criterion was proposed, 

the first two (or three) consecutive conditional weight gain Z-scores are 'negative' 

would identify infants that are 'at risk'. I t may also be worth ignoring birth weight 

and employing the criterion that second and third consecutive conditional weight 

gain Z-scores are 'negative'. 

The lowess procedure was used to characterise the growth patterns of infants 

that were identified as failing to thrive by the 'thrive index' approach (Wright et al. 
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1994) and infants growing 'normally' (full Newcastle data frame excluding cases). 
Infants that fail to thrive in infancy, in general, experience a rapid deceleration in 
weight gain from birth and the deceleration slows towards the end of infancy. This 
means that children continue to gain less weight than predicted for the individual, 
but with smaller systematic differences as the child ages. 

I t would appear that individuals that fail to thrive in infancy have significantly 
lower attained heights (even after adjusting for mid-parental height) and weights at 
school entry and 7-9 years. Furthermore, it would appear that failing to thrive in 
infancy has a greater impact on boys attained heights and weights in childhood. This 
observation may suggest that boys may be more vulnerable to growth faltering in 
infancy. It would appear that the conditional height gain Z-scores, between school 
entry and follow-up, are similar for case and control children. If we consider the 
measured mothers heights, then there is no significant diff"erence between the heights 
of case and control mothers. However, the reported heights of fathers, indicated that 
fathers of case children were significantly shorter than fathers of control children. 
Thus suggesting that there may be some genetic component to the growth faltering 
in early infancy. This observation has not been noted elsewhere. 
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