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Abstract 

The Suitability Of Polymerised Microemulsions As Stationary 

Phases For Capillary Electrochromatography 

Kelly Flook 

Submitted for Ph.D. March 2003 

Capillary electrochromatography (CEC) is an analytical separation technique, 

coupling the electroosmotic flow principles of capillary electrophoresis (CE) with the 

stationary phase separation principles of high performance liquid chromatography 

(HPLC). The development of this technique has been slowed due to technical 

problems with packing capillary columns. Alteration of the stationary phase to a 

solid monolithic support enables ease of fi l l ing and reduces bubble formation. 

Polymerisation of bicontinuous microemulsions can yield porous structures that are 

potentially suitable for use as a stationary phase for this technique. Polymerising 

bicontinuous microemulsions with different compositions produces monoliths of 

varying pore sizes. The microemulsions consist of a hydrophobic phase and an 

aqueous phase. The hydrophobic phase is typically methyl or butyl methacrylate, and 

a cross-linker, ethylene glycol dimethacrylate. The aqueous phase consists of water 

and a surfactant, typically sodium dodecyl sulfate. A short chain alcohol (C3-C5) is 

added as a porogen which also acts as a co-surfactant to aid with the stabilisation of 

the microemulsion. AMPS (2-acrylamido-2-methyl-l -propane sulfonic acid), added 

to the aqueous phase provides a charge along the polymer backbone essential for 

electroosmotic flow mechanism in electrochromatography. SEM analysis shows that 

polymerisation in-situ yields a structure with a porous topography. Materials 

prepared were assessed for suitability with a variety of microemulsion compositions. 
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There is a theory which states that if ever anybody discovers exactly 
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Liquid Phase Separation Techniques 

1 Liquid Phase Separation Techniques 

1.1 Introduction 

Analytical separation techniques are continuously being developed to achieve 

improved performances such as greater efficiency, shorter analysis times and 

enhanced selectivity. The importance of these techniques is heightened by the 

growing number of substances requiring analysis, especially of biological 

importance. Three analytical techniques which have been developed over the years 

are High Performance Liquid Chromatography (HLPC), Capillary Electrophoresis 

(CE) and Capillary Electrochromatography (CEC). They have been applied to a 

range of areas and thousands of instruments are now in use for the analysis of a wide 

variety pharmaceuticals, samples of biological importance, forensic samples, 

agrochemicals and fine chemicals. HPLC is the most commonly used liquid 

separation technique and is well established in industry. There is much interest 

worldwide in improving these techniques and expanding their versatility. 

1.2 High Performance Liquid Chromatography 

Chromatography can be defined as a separation process in which a sample mixture is 

distributed between two phases. 

1.2.1 History 

HPLC is capable of resolving a wide range of both neutral and charged analytes. At 

present hundreds of thousands of HPLC systems are running all over the world, 

carrying out thousands of different analyses. There has been a huge increase in 

stationary phase development since the early 1970's. Multiple phases with widely 

differing chemistries are now available in a range of particle sizes. Furthermore, non-

2 
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particulate stationary phases have been developed including monolithic silica [1-5] 

and polymeric rods [6-9]. Stationary phase development also includes imprinted 

polymer packing [10]. Recent developments in synthetic column packing are 

reviewed [11]. 

1.2.2 Operation 

8 
9 

10 
11 

13 

MAJV 
o 1 

12 ' ' 

Figure 1.1 Schematic diagram of an H P L C system. 1 = solvent reservoir; 2 = 

sintered frit; 3 = high pressure pump; 4 = pulse damper; 5 = drain 

valve; 6 = manometer; 7 = optional precolumn; 8 = injection 

syringe; 9 = injection valve; 10 = column; 11 = thermostat oven 

(optional); 12 = detector; 13 = data acquisition. 

The mobile phase flow in HPLC is provided by a high pressure pump attached to the 

solvent reservoir, which may consist of a single solvent or multiple solvents in 

multiple reservoirs. From the reservoir the mobile phase is pumped through a 

sintered fri t to filter the solvent prior to entering the oven. The HPLC column may be 

situated in a thermostatically controlled oven. I f this is the case the mobile phase wi l l 

pass into the oven prior to entering the column. The sample is injected onto the 

column typically by syringe or an automated injection system into a loop valve. On 

3 
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elution from the column the sample peaks wi l l pass into a detector, typically a UV 

detector or mass spectrometer. The data acquisition w i l l be computer controlled. 

1.2.3 Separation Principles 

A mixture of compounds is separated by partitioning between two phases; a mobile 

phase and a stationary phase. In the case of HPLC the stationary phase is a solid, 

porous surface active material or a coating on a non surface active support or column 

wall. Typically the stationary phase is in the form of small particulates. The phase 

presence can be expressed by either the distribution coefficient, K: 

c 

j£ _ slal 

^mob 

Equation 1.1 

where c s t at is the concentration o f compound x in the stationary phase and cm ob is the 

concentration of x in the mobile phase, or the capacity factor, k. 

n 
K = — 

nmob 

Equation 1.2 

where n s t a i is the number of moles of x in the stationary phase and nmQb is the number 

of moles of x in the mobile phase. 

I f the components present have different distribution coefficients, and hence different 

capacity factors in the chromatographic system, they can be separated. On 

introduction of the mixture to the column the components w i l l equilibrate between 

the mobile and stationary phases. As a flow through the column is established and 

fresh eluent is introduced, the sample molecules in the mobile phase wi l l be partly 

adsorbed by the stationary phase and those already adsorbed w i l l move into the 

mobile phase; a new equilibrium is reached. On repeating this process many times 

the individual components with different distribution coefficients w i l l eventually 

4 
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become separated. Where a component has a preference for the mobile phase it wi l l 

migrate through the column more rapidly than one with a higher affinity for the 

stationary phase. The capacity factor for individual components can be calculated 

from the experimental data using the retention time (time taken from injection to 

elution from the column), tR and the retention of an unretained marker, to. 

£ _ t R ~ 0̂ 

'o 

Equation 1.3 

1.2.4 Column Efficiency 

The distance along the column where the new balance is found represents a 

theoretical plate or plate height, H. The longer the column the more theoretical 

plates it contains and the better the separation wi l l be. The column efficiency of each 

separation can be expressed as the number of theoretical plates, N (plate number) or 

the HETP, height equivalent to one theoretical plate (also known as plate height). 

Both the plate height and the plate number can be calculated using the standard 

deviation, a, of the peak in time, length, or volume and the length, L of the column 

in metres or centimetres. 

N = (L/a) 2 

Equation 1.4 

where the population standard deviation is defined as the square root of the sample 

population variance, the amount of dispersion in the data where x-x, is the 

difference between the value and the mean and n is the number of terms. 

- 4 
n 

t-n 

n-\ 

Equation 1.5 

5 



Liquid Phase Separation Techniques 

As the standard deviation is dependent on the peak width the plate number can be 

calculated experimentally using the peak retention time and the width of the peak at 

half its height, wm. 

N = 5 .54 ( t R /w 1 / 2 ) 2 

Equation 1.6 

H = G 2 / L 

Equation 1.7 

The narrower the peak or the lower the standard deviation of the peak in question the 

higher the number of theoretical plates there are for that column. It follows that as 

the height equivalent to one theoretical plate is inversely proportional to the number 

of theoretical plates then the better the column, the lower the HETP. 

It should also be noted that in order to compare column efficiencies directly, 

calculations should be carried out on the same analytes. 

The typical way to assess the efficiency of a column is by generating a Van Deemter 

curve. This assesses the effect of flow velocity, v, on efficiency. Equation 1.8 shows 

this relationship where A is the eddy diffusion and flow distribution component (a 

function of packing quality), B is the longitudinal diffusion and C is the mass transfer 

component. 

H = Av03i+- + Cv 
v 

Equation 1.8 

The shape of the plot of H against v is shown in Figure 1.2. 

A main indication of poor column performance is the issue of band broadening. 

There are many causes of this and it is important that these are kept to a minimum so 

the number of theoretical plates is high. 
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H = A + B/v + Cv 

H 

A 
B/v 

Cv 

mobile flow velocity / v 

Figure 1.2 A general plot of the van Deemter equation showing the effects of 

A, B, and C on H. 

1.2.4.1 Eddy Diffusion 

The column is packed with small stationary phase particles. The mobile phase passes 

through and transports the sample molecules with it. Some molecules are 'fortunate' 

and leave the column before most of the others, after having travelled by chance in 

roughly a straight line through the chromatographic bed. Other molecules leave later 

having undergone several diversions on the way. 

Figure 1.3 Schematic representation of eddy diffusion through particulate 

packing material. 
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1.2.4.2 Flow Distribution 

In pumped systems the mobile phase passes in a laminar flow between the stationary 

phase particles (Figure 1.4). The flow is faster in the centre of the channel than near 

the particle. This effect is reduced by the use of an electroosmotically driven flow 

system. 

Using particles with a narrow size distribution can reduce effects of eddy diffusion 

and flow distribution. The ratio between the largest and smallest particle diameters 

should not exceed 2. 

The band broadening due to eddy diffusion and flow distribution is little affected by 

the mobile phase velocity. 

Figure 1.4 Laminar flow profile in pumped systems 

1.2.4.3 Sample diffusion in the mobile phase. 

Sample molecules spread out in the solvent without any external influence (Figure 

1.5). This is an important effect in gas chromatography yet can often be ignored in 

liquid chromatography especially when particle diameters exceed 30um. 

Longitudinal diffusion has a disadvantageous effect on plate height i f there is a 

combination o f particle diameters less than lOum, a low mobile phase velocity and a 

relatively large sample diffusion coefficient. 

The mobile phase flow velocity should also be chosen so that longitudinal diffusion 

has no adverse effect. This occurs when v > 2Dm/dp, where v is the linear flow 

velocity of the mobile phase, Dm is the diffusion coefficient of the sample in the 

mobile phase and dp is the particle diameter. 
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Figure 1.5 Sample diffusion in the mobile phase. 

1.2.4.4 Mass transfer between mobile, 'stagnant mobile', and stationary phases 

Within a stationary phase particle there are both narrow and wide pores, some pass 

straight through the whole particle and others are closed of f (Figure 1.6). The pores 

are filled with stagnant mobile phase. A sample molecule entering a pore ceases to be 

transported by the solvent flux and changes its position by means of diffusion only. 

Two possibilities present themselves: 

(a) The molecule diffuses back in to the mobile phase flux. This process takes 

time and the molecules that have not been retained in pores have moved 

further down the column. This results in band broadening. The shorter the 

pores the smaller the resulting band broadening. Also, the diffusion rate of 

the sample molecules in a solvent is larger in a lower viscosity medium. 

(b) The molecule interacts with the stationary phase itself and is adsorbed. It 

remains 'stuck' for a while to the stationary phase and then passes on once 

more. Again this mass transfer takes time. 

In both cases band broadening increases with increasing mobile phase velocity. The 

sample molecules remaining in the moving solvent are further removed from those 

trapped in the stagnant pools of mobile phase. 
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> 
Mobile Phase 

v > n 

Stationary phase 

T 
'.Stagnant Mobile Phase 

V = 0 

Figure 1.6 Mass transfer between mobile, 'stagnant mobile' and stationary 

phases. 

Plate numbers of popular conventional HPLC columns have been around 10,000-

30,000 plates per column for the last few decades. 

1.2.5 Limitations 

The correct storage of columns is vital to ensure their longevity. Due to the nature of 

the stationary phase the columns should be stored sealed containing a suitable 

solvent to prevent the material drying out. Upon drying the stationary phase packing 

is likely to crack, producing gaps along the column length which are detrimental to 

the separation. 

HPLC analysis, along with all analytical techniques, is subject to detection limits 

dependent on the detection system used. Where separations are achievable with high 

efficiencies the detection limits wi l l be much lower. One should always strive to 

develop methods to increase efficiency without compromising the resolution of the 

resulting separation. New column technologies are being developed to improve 

column efficiency and hence improve separation efficiencies. 
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1.3 Capillary Electrophoresis 

1.3.1 History 

Electrophoresis, as a separation technique, was introduced by Arne Tiselius in 1937 

[12] who was awarded a Nobel Prize in 1948 "for his research on electrophoresis and 

adsorption analysis, especially for his discoveries concerning the complex nature of 

the serum proteins". 1967 saw initial work on open tube electrophoresis by Hjerten 

[13] who rotated the millimetre-bore capillaries to minimise convection effects. As 

narrower bore capillaries became available the rate of development of the technique 

increased. The number of publications on capillary electrophoresis rose dramatically 

in a few years, from about 80 in 1989 to about 1000 in 1994 and the increased 

interest can be seen from Figure 1.7. Even though CE is a much developed technique 

widely used in the pharmaceutical industry, sales of instruments are still much lower 

than those of high performance liquid chromatography (HPLC). 
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Figure 1.7 Records from Scifinder show an increase in capillary 

electrophoresis research through the early 1990s. 
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The reason for this is probably due to the number of established methods already 

carried out with HPLC, transferring these methods to CE takes time and resources. 

CE methods principally involve the separation of charged species that are 

irresolvable by HPLC. 

There has been a wide range of HPLC stationary phases available for several years 

allowing the technique to be tailored to specific separations to maximum efficiency 

with little effort. The recent history of the development of CE is reviewed by Issaq 

[14], 

1.3.2 Operation 

•-< 

a _ 

'wi,.. 
Vial 

0 © "-5! 

Vl-.l 

Figure 1.8 Schematic of capillary electrophoresis operation and separation. 

Capillary electrophoresis (CE) employs coated fused silica tubing in which the 

electrophoretic separation occurs. It utilises very high electric field strengths, often 

higher than 500V/cm. Detection is on-capillary via an optical detection window in 

line with typically a single wavelength or diode array UV detector. The ends of the 

capillary are placed in the buffer reservoirs which act as the mobile phase. A third 

reservoir contains the analytes, often dissolved in buffer solution. The sample is 

introduced by placing the inlet of the capillary into this reservoir and either an 

electric field is applied causing electrophoretic migration of the charged species 

(electrokinetic injection) or a pressure difference is created. This was traditionally 
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achieved by elevating the inlet reservoir above the outlet reservoir. Newer systems 

allow pressurisation of either one or both reservoirs in preparation for separation. 

1.3.3 Separation Principles 

One fundamental process that drives CE is electroosmosis. This is a consequence of 

the surface charge on the capillary wall. The silanol groups of the fused silica are 

ionisable in contact with the buffer solution contained within the capillary. The 

isoelectric point (pi) of fused silica is about 1.5 and can be controlled mainly by the 

pH of the buffer. The electroosmotic flow, u. e o, is proportional to the applied electric 

field, E and defined by Equation 1.9 where e is the dielectric constant, r\ is the 

viscosity of the buffer and t, is the zeta potential measured at the shear plane close to 

the liquid-solid interface. 

Equation 1.9 

Stern layer 
Shear Plane 
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I l l 
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Figure 1.9 The electrical double layer. 

The negatively charged wall attracts the positively charged ions from the buffer 

creating an electrical double layer. Upon application of a voltage across the capillary 

the cations in the diffuse layer migrate towards the negative electrode, carrying water 
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with them. The result is a net migration towards the cathode. The EOF increases at 

higher pH for a constant buffer concentration. 

The zeta potential is inversely proportional to the charge per unit surface area (the 

number of valence electrons) and the square root concentration of the electrolyte. 

This means that increasing the buffer concentration decreases the EOF. 

In the case of CE the EOF is measured simply by introducing a neutral species and 

measuring the time it takes to reach the detector. 

1.3.4 Electroosmosis 

In an electric field charged species wi l l migrate depending on their charge and mass. 

This is known as their electrophoretic mobility (u e p ) and is dependent on the field 

applied. The applied field is calculated by dividing the applied volts, V by the total 

column length, L t . 

M e p E V/L, 

Equation 1.10 

As velocities (u) are measured terms they can be calculated by dividing the 

migration time ( t m ) by the length of time taken to get to the detector (Ld). Apparent 

mobilities are then determined by dividing the velocity (u e p ) by the field strength, E. 

To calculate the actual mobility, electrophoretic effects must be accounted for. 

Imagine the separation of a mixture containing a zwitter ion, such as a peptide, at 

different pHs. At low pH the peptide wi l l be positively charged and the EOF is low, 

thus the electrophoretic migration is towards the cathode. The peptide wi l l be 

detected prior to a neutral EOF marker. At high pH EOF is large and the peptide is 

negatively charged. Even though the electrophoretic migration is towards the anode 
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the EOF is overwhelming and the net migration is towards the cathode, the peptide 

migrating behind the neutral marker. 

7.3.5 Limitations 

Due to the mode of separation mixtures containing more than one neutral molecule 

cannot be analysed effectively due to the lack of charge difference. The addition of 

surfactants (micellar electrokinetic chromatography, MEKC) may be employed to 

separate electrically similar or neutral analytes with different partition coefficients in 

and out of the micelle. The migration times of electrically neutral molecules are 

between t 0 and t m c , the migration time of the micelle. Separation of neutral species is 

only by partitioning in and out of the micelle. Varying the nature of the surfactant in 

the micelle can dramatically change selectivity. 

1.4 Capillary Electrochromatography 

1.4.1 A hybrid technique 

Capillary electrochromatography is an analytical separation technique combining the 

separation principles of HPLC and the electroosmotically driven mobile phase flow 

of capillary electrophoresis. Over the past few years it has been the subject of general 

reviews by several authors [15-18]. 

1.4.2 History 

The advantages of combining electroosmotic flow (EOF) with thin layer and column 

chromatography were recognised as early as 1974 [19] but the first electro-

chromatographic separations were not demonstrated until the early 1980's [20]. 

Technical difficulties slowed development, mainly due to the availability of packing 

materials that are easily packed into um scale capillaries and bubble formation at the 

frits required to hold the packing material in place. Most groups have been 
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implementing HPLC particle technology in CEC [21-33], which is difficult on the 

capillary scale. CEC has been used for a variety of separations [34] including chiral 

separations of amino acids [35], dyes [36] and toxins. In recent years several groups 

have moved development towards monolithic stationary phases where a solution is 

polymerised inside the capillary to produce a porous stationary phase through which 

separation can be carried out. These monolithic columns have also been the subject 

of several reviews [37-39]. 
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Figure 1.10 Records from Web of Science show an increase in Electro­

chromatography with a decline after 2000. 

1.4.3 Operation 

The operation of the instruments is similar to that of CE described earlier in this 

chapter. Mobile phase flow is induced by the application of a potential difference 

across the capillary. Migration of analytes is again caused by the generated EOF and 

separation of neutral species is by partitioning with the mobile phase. Separation of 
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charged analytes is a combination of partitioning between the mobile and stationary 

phases and electromigration. 

Until six years ago CEC was performed on modified standard CE equipment. The 

requirement of vial pressurisation has lead to instruments being manufactured by 

Hewlett Packard (HP 3 DCEC), Thermoseparations (Ultra) and Beckman (P/ACE 

MDQ). These instruments are similar in operation to that of standard CE with the 

option to regulate the pressure of one or both buffer vials during separation. A review 

by Steiner describes the development of column technology and the adaptation of 

commercial CE instruments for electrochromatography [40]. 

1.4.4 Applications 

In the last few years there has been a steady flow of publications describing the use 

of CEC for the analysis of neutral and ion suppressed pharmaceuticals [41-45] due to 

its ability to provide highly efficient, rapid analysis with increased peak capacity. 

CEC has also been employed in the analysis of natural products such as triglycerides 

and fatty acids and their derivatives. A review of specific applications by Krull [46] 

covers the analysis of biopolymers such as proteins, nucleic acids, peptides and 

antibodies. 

1.4.5 Monolithic Columns 

Columns for CEC have been developed using a variety of procedures to eliminate the 

need for fri t fabrication. Monolithic columns, where the bed is microfabricated in an 

inorganic material by ablation [47] is one option. Several methods have been 

employed using modified silica to produce continuous beds [3,18,48-52]. Sintered 

octadecylsilica columns have been prepared from traditionally packed CEC columns 

and the retaining fri t was then cut o f f to remove the inhomogeneities [50]. ODS-
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modified silica gels [48] and silica particles embedded in a sol-gel column [53] have 

been used for the separation of enantiomers (amino acids). 

Hydrophobic hydrogels have been used for the separation of polyaromatic 

hydrocarbons and steroids, on beds prepared from acrylamides [49] as well as 

monoliths based on water soluble monomers [54-56]. 

Solid monoliths have extensively been prepared from butyl methacrylate and 

ethyleneglycol dimethacrylate [57-61] for the separation of basic pharmaceuticals 

[57], polycyclic aromatic hydrocarbons [58] and benzene derivatives [59-61]. 

Poly(styrene-divinylbenzene) supports have also proven to be suitable for CEC [62-

65]. The development of stationary phases has also developed in the area of 

enanteomeric separations [35,66-69] with a monolithic chiral ligand-exchange phase 

for the chiral separation of underivatized amino acids [70]. Josic et al. have reviewed 

the use of monoliths for the separation of proteins and polynucleotides [71]. 

The analysis of plant extracts has been successfully transferred from HPLC to CEC 

using monolithic macroporous polyacrylamide columns [72]. Continuous beds have 

also been used for the analysis of basic pharmaceuticals. 

Fused silica tubing with a coating to produce open tubular capillary 

electrochromatography [73-75], including the use of quaternary ammonium-bearing 

latex particles, was used as the stationary phase in open tubular and CEC separations 

in order to combine the separation mechanisms from both capillary electrophoresis 

and ion-exchange chromatography [76]. 

/ . 4.6 Limitations 

The analysis of basic analytes is problematic due to the presence of the acidic silanol 

groups vital for EOF generation. Peak tailing occurs due to the mixed mode of 

operation. The capillaries available commercially are prepared using traditional 
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HPLC packing materials. In HPLC analysis basic compounds are incorporated into 

the packing to minimise interactions with basic analytes. This has been shown also to 

be a successful technique when applied to CEC [77]. 

The development of CEC has been slowed due to technical problems associated with 

packing capillary columns with traditional materials. Packing small diameter silica 

beads involves the use of very high pressures and an experienced chromatographer to 

produce columns with a high batch-to-batch reproducibility. As with HPLC it is 

recommended either to purchase professionally-packed columns or to invest a large 

amount of time in packing columns in-house. Colon et al.[78] have discussed 

packing methods for CEC columns, and have identified problems associated with the 

frits required to hold the packing material in the capillary. These can be formed using 

a heating filament at 450°C to sinter locally a narrow band of the packing material 

[79]; this can alter the characteristics of the material, creating a non-homogeneous 

section through which passage of the mobile phase can lead to bubble formation at 

the frit-open column boundary. 
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2 Colloidal Systems 

2.1 Introduction 

2.1.1 Emulsions 

An emulsion is a system of two liquid phases where one phase is dispersed in the 

other with varying stability. In the usual type of emulsion (macroemulsions), the 

globules of dispersed liquid are usually between 0.1 um and lOum in diameter. 

Microemulsions may have droplet diameters of up to 0.01 \xm. The droplet size 

influences the visual appearance of the emulsion due to an influence on the degree of 

light scattering. Large particles give a mi Iky-white-opaque appearance whereas 

smaller droplets give a grey-translucent-transparent appearance. 

Emulsions are typically classed as oil-in-water (o/w) or water-in-oil (w/o) depending 

on which phase is the dispersed phase and which is the dispersing medium. 

2.7.2 Emulsion Stability 

When an emulsion is prepared by homogenising two liquid phases, separation w i l l 

occur quickly. To stabilise the prepared emulsion an emulsifying agent or amphiphile 

is required. Surface-active agents (surfactants) are one type of these. They form an 

adsorbed film around the droplets to help prevent coagulation and coalescence. 

2.2 Surfactants 

Surface-active agents (or surfactants) are amphiphilic molecules, i.e. they possess 

hydrophobic and hydrophilic groups. They are used as stabilising (emulsifying) 

agents in emulsion preparation. Due to the nature of the surfactant molecule it tends 

to form aggregates in solution with properties that change with concentration. The 

Debye equation (Equation 2.1) relates the surfactant concentration, c, to the turbidity, 
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x, of the system to determine the molecular weights, M , of the aggregates formed 

above the CMC (critical micelle concentration). K is the optical constant and A2 is 

the osmotic pressure. The effect of concentration is shown schematically in Figure 

2.1 where a change in the physical properties is observed around the CMC. The 

osmotic pressure is proportional to the total concentration of micelles and monomers. 

Above the CMC added surfactant forms micelles and the increase in the total number 

of 'particles' is small. The turbidity is proportional to the concentration of micelles. 

Larger aggregates w i l l have a greater scattering intensity and contribute more to the 

turbidity. 

K(c-CMC) = ± { c _ C M c ) 

T M 

Equation 2.1 

Osmotic Pressure 

X / \ 
/ Turbidity 

/ 

/ \ ; \ / ' 

Surface Tension 

/ 

M
C

 

/ ^ - . Equivalent 
/ U | / Conductivity 

/ 
u Surfactant Concentration (M) 

Figure 2.1 The effect of surfactant concentration on osmotic pressure, 

turbidity, surface tension and conductivity. 

2.2.1 Inter facial Tension 

Surfactant molecules spontaneously adsorb at the liquid interface; either liquid - air 

or liquid - liquid. At the interface between two liquids, there is an imbalance of 
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intermolecular forces. The molecules located in the bulk of the liquid are, on 
average, subjected to equal forces of attraction in all directions. Those located at the 
surface (liquid-air interface) or interface (liquid-liquid interface) experience 
unbalanced attractive forces resulting in a net inward pull. This is represented 
schematically in Figure 2.2. 

Interface 

t̂ V̂  ^ ^ t̂ v̂  t^r^ 

Figure 2.2 Forces exerted on molecules in bulk solution and near the interface. 

Phase A 
Head group 

Interfile G J^^" 
^ PPPPPPPPPPPPPPPPP 

Tail group 
Phase B 

Figure 2.3 Surfactant packing at the interface. 

When the solubility o f the surfactant is low in either of the two phases (aqueous 

and/or organic) the molecules concentrate at the interface forming a two-dimensional 

monolayer, Figure 2.3. I f the surface area of a liquid is increased, more molecules are 

at the surface and work must be done. A surface therefore has an excess Gibbs 

energy, relative to the interior of the liquid. The force required to stretch the surface 

film of length 1 is proportional to 21. The proportionality constant, y is known as the 
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surface tension. It has SI units of N m" therefore is the surface energy per unit area, 

/ The surface pressure, n is the lowering of surface tension due to the monolayer; 

the expanding pressure exerted by the monolayer which opposes the normal 

contracting tension of the 'clean' interface, yo. Any spontaneous process results in a 

lowering of free energy and associated with a lowering of the surface tension. 

Y = r0 - n 

Equation 2.2 

7min ~ YII ~ 7o ~ H max 

Equation 2.3 

y 0 and y are the surface tensions before and after adsorption respectively. I f the 

surfactant molecules are more soluble in either of the two phases, a monolayer is still 

formed at the interface but it wi l l exchange between the monolayer and the bulk 

phases. The interfacial tension at the liquid-air interface wi l l never be very small as 

the surfactant chains wi l l orientate to form an 'organic' layer in direct contact with 

the air. 

The surface pressure wi l l be dependent on concentration. Its maximum concentration 

wi l l correspond to a maximum chain coverage (Equation 2.3) where yH is the 

hydrocarbon liquid surface tension. The interfacial tension of an oil/water mixture 

can be very low and possibly zero when the hydrophobic and hydrophilic parts of the 

surfactant completely balance the interactions between the oil and the water. This 

happens when the interface is saturated at a particular value of area per surfactant 

molecule, a*. A precise value of a* can be determined [1]. The surface free energy 

can be written: 
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f = y0A + ntG(a) 

Equation 2.4 

where A is the total surface area, which is the product of the area per surfactant 

molecule, a, and the number of surfactant molecules in the layer, n s and G is the free 

energy per molecule describing surfactant - surfactant repulsions. The system wil l 

adjust its surface concentration to minimise / s o that the surface pressure is equal to 

the surface tension. 

In the case of an interface between two phases, the amount of substance adsorbed per 

unit area of the interface can be described as the surface excess concentration, Y. The 

general form of the Gibbs equation (Equation 2.5) can be applied to adsorption 

processes where the chemical potential of the component, u. of component / is related 

to its activity (and concentration for dilute systems). 

dy = -Zr^M; 

Equation 2.5 

where the chemical potential can be expressed in terms of standards potential, \i f in 

relation to the surfactant activity, a. 

fi, = nf +RT\na 

Equation 2.6 

In region A, Figure 2.4, as the surfactant concentration increases, as does the surface 

excess concentration, Y as surfactant molecules spontaneously adsorb at the surface. 

Upon adding more surfactant region B is approached. The surface excess remains 

constant as the interface is 'saturated' by surfactant. However, the surface tension 

still reduces. At a constant surface excess concentration the area per surfactant 

molecule can be calculated. As the concentration increases to region C micelles are 
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formed. The monomer concentration wi l l remain at a constant level dependant on its 

solubility in the appropriate phases. 

y 

B 

In (c) 

Figure 2.4 The effect of surfactant concentration on surface tension. 

2.2.1.1 Electrical double layer repulsion. 

When ionic emulsifying agents are used, double layer repulsion may prevent the 

formation of a close-packed f i lm. This effect can be minimised by using mixed 

ionic/nonionic surfactants and/or increasing the electrolyte concentration in the 

aqueous phase to balance the repulsive charges. 

2.3 Microemulsions 

2.3.1 Initial Development 

Becher defines an emulsion as an unstable heterogeneous system in which the 

diameters of the dispersed droplets exceed 1000 A [2]. The term 'microemulsion', 

introduced in 1959 by Schulman, refers to a thermodynamically stable, fluid oil-

water-surfactant mixture in which contain tiny ordered oil or water droplets. By 

staining the oil phase with osmium tetroxide oil droplets can be observed by electron 

microscopy [3]. This was again defined by Lindman in 1981 as 'a system of water, 
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oil and amphiphile which is a single optically isotropic and thermodynamically stable 

liquid solution' [4]. It was Schulman, in 1943, who noticed that the addition of an 

alcohol, amine, fatty acid or another non-ionised amphiphilic substance to a course 

emulsion could be used to form an optically transparent, thermodynamically stable 

solution [5]. He suggested that, upon addition of an amphiphilic species, the 

dispersed phase then consisted of sub-microscopic micelles having a core of 

surfactant in water and surface of surfactant ion pairs with the hydrocarbon chains 

pointing outwards into the dispersed phase. The oil/water interface would contain 

non-ionised amphiphilic molecules sufficiently separating the surfactant ion pairs to 

prevent repulsion between them that would normally occur, therefore, increasing the 

stabilising power of the interface. 

2.3.2 Types of Microemulsion 

Winsor observed that mixtures containing oil and brine in equivalent amounts which 

contain small amounts of ionic surfactant and co-surfactant often demix into two or 

three phases. At low salinity an oil-in-water microemulsion co-exists with an excess 

oil phase. At high salinity the inverse is observed, a water-in-oil microemulsion co­

exists with an excess oil phase. A third phase is also observed where the equilibrium 

is at an intermediate where the oil and aqueous domains are interdispersed. Klier et 

al. discuss the properties and applications of different types of microemulsion [6]. 

2.3.3 Physical Properties 

The physical properties of a microemulsion can be identified using a variety of 

methods such as identification by the naked eye, light scattering, small angle x-ray 

scattering, nuclear magnetic resonance spectroscopy and microscopy. 
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2.3.3.1 Light scattering 

Macroemulsions, where droplet sizes are in the range of 100-10,000nm, wi l l scatter 

visible light and wi l l appear white and opaque. As the droplet diameter is decreased 

to about 1/4 wavelength of visible light (ca 1400 A), white light is not scattered and 

passes straight through. The microemulsion wi l l then appear translucent or 

opalescent. At about 100 A the systems are no longer translucent but transparent. 

2.3.3.2 Nuclear Magnetic Resonance 

NMR diffusion studies can be used to measure the obstruction effects resulting from 

systems in various conformations. Initial experiments were carried out by Schulman 

and work has expanded to the development of pulsed field gradient methods for the 

investigation of microemulsion structure. In recent years microemulsions have been 

characterised using NMR [7-11] including their potential use as transdermal drug 

delivery agents [12]. 

2.3.3.3 Electron Microscopy 

Early methods of microemulsion investigation carried out by Schulman [3] involving 

the staining of organic materials in the oil phase by exposure to osmium tetroxide 

vapour enabling one to take a picture of the organic phase. With the development of 

microscopic techniques, transmission electron microscopy (TEM) is now the most 

important technique for the visual study of microstructures. It has the ability to 

produce high resolution images of the captured microstructures. Due to the low 

operating pressures of TEM being incompatible with the high vapour pressures of the 

microemulsions, the ability of electrons to induce chemical reactions in organic 

systems and the lack of contrast between the microstructures and their surroundings 

various preparation techniques have been developed. Cryo-TEM is the technique of 
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choice to produce the best images of microemulsion microstructures. The technique 

is covered well by Bellare et al [13]. 

2.3.3.4 Conductivity 

Ions in an applied electric field wi l l migrate, generating a current. The current 

generated by a system wi l l be dependent on the resistance of the liquid to which the 

electric field is applied. As the ions in a system containing an ionic surfactant are 

'bound' at the interface and exist in the aqueous fraction their movement in an 

electric field wi l l be dependent on the total electrolyte concentration, the surface 

charge density of the microemulsion droplet and its size, among other factors. Lam 

and Schechter [14] studied the effects of diffusion and electrical conductivity in 

microemulsions. When the system consists of an aqueous phase dispersed in an oil 

continuous phase the conductivity of the system wi l l be closer to that of the oil 

phase. As the oil fraction is decreased and the system inverts to a water continuous 

state the conductivity wi l l increase. Unlike macroemulsions there is a gradual change 

in conductivity rather than a sharp change associated with phase inversion. This 

suggests an intermediate microstructure different to oil in water or water in oil. The 

preparation of polymer latexes formed from acrylamide containing microemulsions 

was monitored by conductivity and shows a rapid fall in conductivity as the 

polymerisation progresses [15]. 

2.3.4 Microemulsion Formation 

In contrast to conventional emulsions, microemulsions have a droplet size below 

0.1 jam and form spontaneously. Spontaneous formation and stability of small droplet 

sized dispersions is thought to be due to zero interfacial tension. I f the surface 

pressures measured are in excess of the o/w surface tension then a negative 

interfacial tension wi l l result as there would be energy (-y 0dA) available to increase 
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the interfacial area. Microemulsions may be formed with low surfactant levels and 

may involve the introduction of an alcohol as a co-surfactant or salt to alter the 

surface tension, which has been reported to be close to zero. Flexible films can be 

obtained using an anionic surfactant or an ionic surfactant with the addition of an 

alcohol or amine as a co-surfactant. As most microemulsions form when the co-

surfactant is oil soluble, the co-surfactant distributes itself between the oil phase and 

the interface. The negative surface tension is not necessarily a result of an increase in 

surface pressure but a depression of y 0 / w by the co-surfactant. 

The structure of the microemulsion can vary widely with composition and wi l l 

resemble swollen micelles at small fractions of water-in-oil (w/o) or oil-in-water 

(o/w). Scriven suggested a bicontinuous structure at larger fractions of oil and water 

[16] where the oil and water phases form interconnecting domains separated by a 

surfactant film. The bicontinuous candidate wi l l be an optically isotropic and light 

scattering microemulsion containing comparable amounts of oil and water where one 

predominates. An illustration is shown in Figure 2.5. 

Surfactants have the ability to stabilise oil and water due to their amphiphilic nature 

and form a variety of stable phases. The phases exhibited in water-SDS-alcohol 

systems have previously been documented [17]. The water-SDS-l-pentanol system 

at 25°C has been shown to exhibit four one-phase regions. Three of them are 

mesophases: the lamellar phase; the hexagonal phase; and the rectangular phase [18]. 

Regions of these systems have the ability to stabilise volumes of oil. When volumes 

of oil and water are comparable a random bicontinuous structure is formed. 

There has been much debate as to whether microemulsions should be considered as 

swollen micelles or small droplet emulsions, as they represent the intermediate stage 

between micelles and ordinary emulsions. Their droplet size can still be large enough 
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to classify them as emulsions but their thermodynamic stability and reproducibility is 

uncharacteristic of ordinary emulsions. 

1 

A l l ! 1 

r 

Figure 2.5 Representation of a bicontinuous microemulsion structure [9] 

2.3.4.1 Co-surfactants 

Microemulsions can be formed either using high levels of a non-ionic surfactant or 

an ionic surfactant with the addition of a co-surfactant. Certain surfactants are not 

capable of lowering the surface tension enough to form microemulsions without the 

addition of another amphiphilic species known as a co-surfactant. The addition of 

high levels of a non ionic surfactant are sufficient to lower the surface tension and 

increase the interfacial area enough to form a microemulsion. The addition of a co-

surfactant acts to shield the repulsion of the head groups allowing closer packing and 

a lowering o f the surface tension. 

2.3.5 Microscopic surface tension 

In the case of microemulsions the surface is sometimes assumed to be zero [19] and 

has been shown to be zero by electrical birefringence [20]. This means that i f the 

area per surfactant molecule stays constant the microstructural entities are deforming. 

Inelastic neutron scattering [21 ] suggests that the shape fluctuations are governed by 

the bending elasticity. 
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2.3.6 Reactions in Microemulsions 

Nanosized ceramic powders such as hydroxyapatite, ZrC>2, ferrites, PbTi03, and 

PbZrCh powders were prepared via reactions in bicontinuous microemulsions and 

inverse microemulsions [22-24], Colloidal silica particles ranging from about 10 to 

20 nm in diameter have been synthesised by the controlled hydrolysis and 

polymerisation of sodium metasilicate in bicontinuous microemulsions at room 

temperature [25]. 

2.3.7 Microemulsion Polymerisation 

Pioneering work in the early 1980's by Stoffer and Bone revealed the concept of 

microemulsion polymerisation [26] expanding the research previously carried out to 

the polymerisation of methyl acrylate and methyl methacrylate in a microemulsion 

system containing 1-pentanol, water and sodium dodecyl sulfate. It was shown that 

the molecular weight of the resulting polymers is a function of the 1-pentanol 

concentration, as expected when the solvent acts as a chain transfer agent. The phase 

separation observed on polymerisation was explained by Gan and co-workers as a 

space-restriction conformational problem due to the dramatic reduction in solubility 

of the dimer compared to the monomer [27,28]. 

It has been shown that the presence of polymers can have a profound effect on the 

stability of microemulsions [27-29]. Replacement of styrene'with the dimer reduces 

the water solubility of the microemulsion by 80% and further with the addition of the 

oligomer. The resulting systems were then subject to phase separation during 

polymerisation as the growing polymer chain becomes less soluble in the co-

surfactant and monomer. 

Oil-in-water microemulsions have been polymerised to produce polystyrene [30,31] 

and PMMA [32-34] particles whose size distribution widens at increasing 
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conversions. The effect of microemulsion composition on the structure of PS 

particles has also been investigated [35,36]. 

Polymerisation of microemulsions in the bicontinuous region yields a monolithic 

structure with open pore characteristics suitable for transport of a solution. 

Subsequently, Gan and co-workers [33,37-40] observed that the pore sizes of the 

materials prepared from bicontinuous microemulsions could be varied by altering the 

nature of the monomer, surfactant and co-surfactant. The development of 

microporous polymer composites prepared from microemulsion polymerisation is 

reviewed by Gan and Chew [41]. 

2.3.8 Polymerisation of Bicontinuous Microemulsions 

2.3.8.1 A crylamide/Sodium A cry late 

Work by Candau et al. shows the polymerisation of acrylamide in inverse 

microemulsions, stabilised by Aerosol OT produces clear microlatices with 

diameters of approximately 50nm [42]. This work was then progressed to investigate 

the use of bicontinuous microemulsions that progress on polymerisation to form 

uniform, stable and clear latexes from acrylamide and sodium acrylate. A linear 

decrease in the radius of gyration from 890 and 296 A was found with an increase in 

acrylate content. It was suggested that as the polymer is insoluble in the monomer the 

monomer consumption gives rise to a shift in the phase diagram producing 

temporarily a three phase Winsor I I I type system explaining why the random 

structure evolves towards a final globular configuration after polymerisation. 

2.3.8.2 Acrylic Acid/Styrene 

Antonietti et. al [43] showed the polymerisation of bicontinuous microemulsions 

prepared from styrene and acrylic acid formed using an ionic surfactant, 

cetyltrimethylammonium chloride and w-diisopropenylbenzene as a crosslinker. 
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Shear measurements were taken during the course of the reaction to measure the 

process of gelation and phase behaviour. Those samples containing a high and low 

water content showed a low and high modulus respectively. They attribute the 

viscosity increases upon polymerisation to an overlap of the behaviour of lyotropic 

structures and the onset of gelation. Polarisation microscopy was used to examine 

samples before and during polymerisation and shows the transition of the 

microemulsion from a bicontinuous phase to a lamellar phase. The final polymerised 

samples were observed by TEM and SEM and show a porous sponge like fractured 

surface where they found no influence of surfactant/water ratio on the pore size of 

the resulting monoliths. 

2.3.8.3 Methyl methacrylate 

Polymerisation of single-phase (Winsor IV) microemulsions containing methyl 

methacrylate and acrylic acid crosslinked with EGDMA has been shown by Raj et. al 

to yield porous solid materials and films with good mechanical properties [44]. The 

prepared microemulsion was spread as a film and polymerised. Solid porous 

structures were observed on polymerisation of microemulsions containing up to 80 

wt% water, were transparent up to 60 wt% water and self supporting up to 70 wt% 

water. However, the transparency of the resulting monoliths was found to be 

dependent on the EGDMA level. SEM imaging showed a pore diameter of 2-4 //m. 

Incorporation of potassium undecanoic acid in place of the acrylic acid yielded 

microemulsion with a droplet size smaller than that of the acrylic acid system [45] 

with a typical pore size of 1-3 fjm. Micrographs indicated that the microporous 

structure in the polymer was related to the water content o f the precursor 

microemulsion. 
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The effect of surfactant concentration on the structure of microporous polymeric 

materials prepared from methyl methacrylate was investigated by Chieng et al. [38]. 

At 40 wt% monomer and a low surfactant/water ratio larger and less uniform 

globular structures were observed along with a dramatic decrease in channel 

diameter. Based on the fractured surfaces, 6 wt% DTAB (dodecyltimethyl-

ammonium bromide) produced pore dimensions in the region of l-3//m dropping to 

0.1-0.3/an at 9 wt% and 0.05-0.2//m at 12 wt% due to the reduced stability of the 

interface at lower surfactant concentrations. On comparing the effect of anionic and 

cationic surfactants on the morphology, swelling and permeability of membranes 

prepared from microemulsions in the bicontinuous region it was found that the pore 

size could be decreased by increasing the DTAB concentration while the reverse was 

true for a system prepared using SDS [46]. Materials prepared using SDS exhibited 

larger pore sizes (in the range of lOOnm to 3//m) than those prepared using DTAB 

(up to lOOnm) but both suggest a loss of the bicontinuous structure o f the precursor 

microemulsions on polymerisation. It was also reported that at SDS levels above 10 

wt% phase separation occurs prior to gelation resulting in the formation of 

membranes with low mechanical strength. More DTAB than SDS was required to 

stabilise the system and increasing the concentration of cationic surfactant led to a 

decrease in opacity. It was also noted that there was little change in the equilibrium 

water content of membranes prepared with increasing SDS content whereas a 

decrease was observed with increasing DTAB. 

Burban et al [47] investigated both hydrophilic and oleophilic monomers for the 

preparation of microporous materials from bicontinuous. They note that the use of 

hydrophobic monomers ( M M A or BMA crosslinked with EGDMA and stryrene 

crosslinked with DVB) produce opaque monoliths possibly due to phase separation 
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on polymerisation whereas hydrophilic monomers (acrylic acid and methacrylic acid 

crosslinked with EGDMA) produce transparent monoliths. X-ray scattering data of 

the parent microemulsions and porosity analysis of the resulting monoliths show that 

upon polymerisation 90% of the potential surface area is lost suggesting the 

microemulsion structure is not captured in the final porous material. 

2.3.8.4 Microemulsions usingpolymerisable surfactants. 

Gan et. al have shown that transparent porous monoliths with channel diameters in 

the range of 20-50nm can be prepared from bicontinuous microemulsions containing 

methyl methacrylate with the incorporation of a polymerisable surfactant, sodium 11 -

(jV-ethylacrylamido)undecanoate ( N a l l - E A A U ) when the water content is above 20 

wt% [37]. A combination of N a l l - E A A U and SDS allows materials with an 

increased pore diameter of 1-2/zm [39] where the glass transition temperature of the 

resulting monoliths was found the be proportional to the Nal 1-EAAU weight ratio in 

the total surfactant mix. Monoliths with channel sizes of up to 200nm have also been 

prepared using a polymerisable cationic surfactant, acryloyloxyundecyl 

trimethylammonium bromide (AUMAB) [48]. A difference observed between the 

sample surface and the fractured surface was suggested to be related to a possible 

change in the structure of the precursor microemulsion upon polymerisation. 

The use of a zwitterionic polymerisable surfactant also produces transparent porous 

materials with up to 50 wt% M M A in the parent microemulsion [33]. The randomly 

distributed and intertwining water channels and polymer islands of the resulting 

monoliths was seen to be between 50 and 70 nm. Monoliths prepared in this manner 

using polymerisable surfactants have also been prepared for use as ultrafiltration 

membranes [40]. 
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The use of a polymerisable surfactant showed no apparent phase separation of the 

microemulsion during polymerisation, unlike in previous studies [49]. 

Gan et al use a nonionic macromonomer (<y-methoxy poly(ethylene oxideV 

undecyl-a-methacrylate) in the polymerisation of M M A and HEMA to yield 

materials with pore sizes in the range of 0.02-1 fim [50,51]. Nanofiltration 

membranes have also been produced by the same group in a similar manner using 

acrylonitrile as the monomer [52]. The effect of electrolyte concentration, water, 

HEMA and polymerisable surfactant was investigated [53] and showed that water 

content increases pore size, HEMA narrows the channels and increasing the NaCl 

concentration increases the pore size. 

Bicontinuous microemulsions have also been synthesized containing ruthenium 

complexes to produce materials for practical applications such as the development of 

chemical sensors and biosensors [54]. 

2.3.8.5 Macroporous silica frameworks 

Sims et. al [55] prepared macroporous frameworks from bicontinuous 

microemulsions prepared from tetraethoxysilane (TEOS) solubilised in alkanes. The 

prepared microemulsions were frozen prior to the hydrolysis and condensation of the 

TEOS. Mesoporous organic networks with well-defined nanostructure have also 

been obtained by polymerization within the interconnective pore system of a 

mesoporous silica monolith by two step nanocasting [56]. 

2.3.9 The potential use as stationary phases 

Due to the ability to control successfully the structure and porosity of the monoliths 

prepared from bicontinuous microemulsions and their low viscosity prior to 

polymerisation it should be possible to produce continuous beds from 

microemulsions inside fused silica capillaries used for CEC. 
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3 General Experimental 

3.1 Materials 

The monomers methyl methacrylate, butyl methacrylate (99%), ethyleneglycol 

dimethacrylate (98%) and 2-hydroxyethyl methacrylate (98%), were purchased from 

Aldrich and the inhibitors were removed by passing through basic alumina in a 

sintered funnel. a,a'-azobis isobutyronitrile (AIBN) (99%) which was purchased 

from BDH. Methanol and ethanol were supplied by Fischer. Phosphoric acid (85%) 

dipropylphthalate, diphenylphthalate and thiourea were a gift from Astra Zeneca 

(Macclesfield, Cheshire). A l l other components were purchased from Sigma-Aldrich; 

1-propanol (99%), 1-butanol (99.8%), 1-pentanol (99%), sodium dodecyl sulfate 

(97%), didecyldimethylammonium bromide (98%), ammonium persulfate (98%), 

sodium persulfate (98%), N , N'-tetramethylethylene diamine (TMEDA) (99%). 

3.2 Equipment 

3.2.1 Mercury Porosimetry 

3.2.1.1 Instrumentation 

Mercury porosimetry was carried out using a Micrometrics Autopore 9400 series 

porosimeter. This high pressure porosimeter allows sample pressurisation up to 

60,000 psia and can be used to measure pore sizes accurately in the range of 360u.m 

down to 0.003um. Samples were analysed up to a pressure of 2000 psia in order to 

prevent sample collapse at higher pressures. 

During analysis the sample is placed in a penetrometer, detailed in Figure 3.1. A nut 

and cap are placed around the sample cup and seal to ensure no leaks occur. The 

penetrometer is filled with mercury through the base of the capillary stem upon 
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application of pressure. Electrical contact between the stem coating and conductive 

plates on the porosimeter provides a means to measure the volume of mercury in the 

stem. 

Nut 

Seal 

r Sample Cup 

Capillary stem with 
conductive coating 

/ 
Cap 

Figure 3.1 Penetrometer and closure components. 

3.2.1.2 Theory 

Mercury does not wet most surfaces and wi l l not penetrate pores by capillary action. 

It must be forced to intrude pores. Liquid mercury has a high surface tension (485 

dyne/cm) and contact angle, 0 (130°C) with most solids. See Figure 3.2. 

9 

Hg 

Figure 3.2 Mercury in contact with a pore. 

When mercury is in contact with a circular pore opening the surface tension of the 

mercury acts along the circle of contact for a length equal to the perimeter of the 
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circle. The force, Fi, with which the mercury resists entering the pores is shown in 

Equation 3.1 where D is the diameter of the pore, 9 is the contact angle and y is the 

surface tension. (For values of 6 > 90° the term is intrinsically negative). 

F, = -nDy cos 9 

Equation 3.1 

The force, F2, due to an externally applied pressure, P, acts over the area of the circle 

of contact and is expressed mathematically by Equation 3.2. 

F 2 =TZD2 P/4 

Equation 3.2 

At equilibrium the opposing forces are equal (Fi = F2) and the pore diameter can be 

calculated at a given pressure using the Washburn equation (Equation 3.3) 

_ - 4y cos 0 
P 

Equation 3.3 

An over-simplification assumes that the pores are cylindrical but this is the best 

representation. 

The volume of mercury forced into pores increases with pressure (up to 60,000 psi) 

producing a unique pressure-volume curve. As the pressure is reduced again a 

mercury extrusion curve wi l l be produced. Where the extrusion curve does not 

overlay the intrusion curve suggests the presence of bottle-necked pores where the 

mercury is trapped. Incremental pore volumes can be related to some mean pore 

diameter. I f the pores are taken to be cylinders, pore wall areas can be calculated 

from the pore volume data. Plots of differential intrusion versus diameter (dV/dD) 

and log differential intrusion (dV/d(logD) can be obtained where the peaks wi l l be 
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plotted with equal areas on the logarithmic diameter axis when a sample has pores 

concentrated in distinct size ranges containing the same total volume. 

3.2.2 SEMandESEM 

3.2.2.1 Instrumentation 

Scanning electron microscopy was carried out at the University of Newcastle using a 

Hitachi S2400 electron microscope operating at 25kV. Samples were prepared for 

SEM by mounting on aluminium stubs using adhesive carbon disks to increase the 

conductivity. A l l samples were sputter-coated twice with a layer of gold, prior to 

collection of a secondary electron image, to enhance conductivity. A double coating 

was required to reduce charging phenomena. 

In the latter part of this study SEM images were obtained using a Phillips XL30 

electron microscope with environmental capabilities. Samples were prepared by 

mounting on aluminium stubs using carbon disks. Backscattered electron images 

were generated in ESEM, low vacuum mode which does not require electrically 

conducting samples. Operating conditions can be found on the individual images. 

3.2.2.2 Theory 

The SEM uses electrons rather than light to form an image (hence, the images are 

always rendered black and white). An electron gun emits a beam of high energy 

electrons which travels vertically downwards through a series of magnetic lenses 

designed to focus the electrons to a very fine spot. Near the bottom, a set of scanning 

coils moves the focused beam back and forth across the sample, row by row. As the 

electron beam hits each spot on the sample, electrons (secondary or backscattered) 

are ejected from its surface. Detectors count these electrons and send signals to an 

amplifier. The final image is built up from the number of electrons emitted from each 

spot on the sample. 
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Figure 3.3 The scanning electron microscope 

3.2.2.2.1 Secondary Electrons (SE) 

When beam electrons approach the electrons in an atom they slow down as they 

repel the specimen electrons. This repulsion may be so great that the specimen 

electrons are ejected from the atom and exit the surface of the sample. These 

electrons are called secondary electrons. These electrons are moving very slowly 

when they leave the sample but due to their negative charge they can be attracted to a 

positively charged detector. Electrons are attracted from a wide area including 

around corners giving the ability to produce an apparent three dimensional image. 
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Rimary 
electrons 

Sample 

Figure 3.4 Secondary electron production 

3.2.2.2.2 Backscattered electrons (BSE) 

When the electron beam strikes the sample some of the electrons wi l l interact with 

the nucleus. The electrons wi l l be attracted to the positive charged nucleus but the 

correct incident angle wi l l result in the electrons being caught in the 'gravitational 

pull ' of the nucleus and ejected back from the sample. These high velocity 

backscattered electrons travel in straight lines therefore a detector must be placed 

directly in their path. This type of imaging can be used to enhance different elements 

of a sample as the number of BSE increases with nuclear size. 

3.2.2.2.3 Environmental Scanning Electron Microscopy (ESEM) 

The development of ESEM now allows specimens to be viewed in their natural state 

surrounded by a gaseous environment meaning that samples need not be coated with 

a conductive material. 

As electrons travel through the gaseous environment collisions occur between an 

electron and a gas particle resulting in the emission of more electrons and an 

ionisation of the gas molecules. This increase in the amount of electrons effectively 

amplifies the electron signal. The positively charged gas ions are attracted to the 

negatively biased specimen offsetting charging effects. 

Detector U l o 
Secondary 

^ electrons 
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Figure 3.5 Electron interactions in E S E M 

3.3 Capillary Electrochromatograph 

Figure 3.6 The Beckman P / A C E MDQ method development system. 

CEC analysis was carried out using the Beckman P/ACE Method Development 

System which is a CE-based analytical system configured for methods development. 

The system is configured with both a photo diode array and selectable-wavelength 

UV/Vis (200, 214, 254 and 280 nm filters included) detector, UV source optics, 

temperature-controlled sample storage module and 32 Karat™ Software. 
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3.3.1 Sample Introduction 

Automated sample introduction is achieved directly from 96 well plates which hold 

2ml vials and 0.5 ml tubes. Sample can be introduced by three injection modes; 

electrokinetic, pressure and vacuum with variable control of each parameter. 

3.3.2 Sample Tray Temperature Control 

The sample tray storage area within the unit is also temperature controlled 

independently from the electrophoresis buffers. Sample temperature may be 

maintained from 4° to 60° C in order to minimise degradation of temperature-labile 

compounds and controlling reaction rates when looking at enzyme kinetics. 

3.3.3 36 Position Buffer Array 

A 36 position buffer pair array independent from sampling vials enables method 

development to be optimised to determine successful separation conditions. 

3.3.4 Multiple Separation Modes 

This system allows several modes of operation including voltage, current, power, 

pressure and vacuum. A l l electrophoretic separations allow the programming of both 

step and linear gradients along with the simultaneous application of pressure or 

vacuum on both ends of the capillary necessary for CEC. The application of voltage 

gradient programming can be beneficial for separations over a wide range of 

fragment sizes particularly for the separation of nucleic acids. The application of 

simultaneous voltage and pressure is beneficial for detecting material not migrated 

of f the capillary. 

3.3.5 Detectors 

A high sensitivity selectable wavelength UV detector is available complete with up 

to seven filters which can be changed during a run. Detector sensitivity in CE is 
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critical due to the small mass loads introduced and small detection path lengths. 

Fixed wavelength detection in a filter wheel assembly maximizes detector sensitivity 

yet still allows wavelength changes during a run. Additionally the system employs 

fibre-optic technology bypassing the necessity of an optical bench and lowering the 

noise on the detection system. A diode array detector is also available and essential 

for method development work which allows a real time display, collection and 

analysis of electropherograms from up to four different wavelengths simultaneously. 
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4 Methyl Methacrylate Systems 

4.1 Introduction 

Polymerising microemulsions in the bicontinuous region has been shown to yield 

porous structures with a variety of pore sizes. Initial studies investigated systems to 

assess their suitability for the preparation of stationary phases for use in CEC and 

included the introduction of a charged species required to support an EOF. A system 

reported by Gan et al. [ 1 ] was investigated initially to study the effect of HEMA and 

EGDMA on microemulsion formation and pore size. In order to assess the suitability 

of polymerised microemulsions as stationary phases, capillaries were filled and the 

fil l ing technique was developed to produce homogeneously packed capillaries. An 

alteration of the microemulsion composition has also been investigated to assess the 

effect of the weight fraction of each component on the topography and pore size. 

4.2 Experimental 

4.2.1 Standard Procedures 

4.2.1.1 Microemulsion Preparation 

Each microemulsion composition detailed in appendix A was prepared by adding the 

components to a glass vial and manually shaking. To ensure stability, each 

composition was allowed to equilibrate by standing at room temperature for a 

minimum of 15 minutes. 

4.2.1.2 Microemulsion Polymerisation 

The prepared microemulsion was purged with nitrogen for 10 minutes and sealed 

with a rubber seal. Polymerisation was carried out at the temperature detailed in 

appendix A either in an oven (above 40°C) or a water bath (up to 40°C). The 

monoliths were cleaned by Soxhlet extraction in the appropriate solvent. 
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4.2.2 Capillary filling 

The microemulsions detailed in appendix A4 were prepared according to the 

procedure in 4.2.1.1 and purged with nitrogen for 10 minutes. The microemulsion 

was injected into six 30cm lengths of fused silica capillary (75 jjm i.d.) using a 

syringe and adapter. A further six lengths were filled by drawing the microemulsion 

up into the capillary. These lengths were sealed with rubber and polymerised in an 

oven at 70°C overnight. Three lengths of each set were placed in the oven 

horizontally and the remaining three placed in the oven vertically. 

A further six lengths were filled using the apparatus in Figure 4.1 which involves a 

glass tube with a side arm. The microemulsion is placed in the bottom of the tube and 

lengths of capillary are passed through a rubber septum and into the microemulsion 

using a syringe needle. Upon pressurising the tube the microemulsion is driven up 

the capillary to the desired level. The filled capillaries were then sealed with rubber 

and suspended vertically from the outlet end in an oven 70°C overnight. 

The homogeneity of the packing inside the capillary was determined using a light 

microscope. 

Subsequent capillaries were filled using the apparatus in Figure 4.1. 

4.2.3 Solubility of Surfactants 

SDS and DDAB (20-40mg) were added to glass vials containing 2 ml of either water, 

methanol, ethanol, chloroform, THF or dichloromethane. 
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Figure 4.1 Pressurised glass capillary filler. 

4.2.4 Capillary Cleaning. 

Each capillary prepared in all the previous experiments were attached to an HPLC 

pump after fracturing 5mm from each end of the capillary. Deionised water and 

acetonitrile were applied successively up to a pressure of 60 bar. 

The capillary prepared in 4.2.2 was broken into 4cm lengths and immersed in 

different solvents for 24 hours; ethanol, THF and water. They were then dried on a 

vacuum line for 24 hours alongside an untreated capillary. Each capillary was then 

halved and each end was examined by SEM. 

4.2.5 Effect of a Liquid Interface 

In order to assess whether the surface morphology of the polymerised microemulsion 

can be altered a layer of heptane was carefully placed on top of the microemulsion, 

which was then polymerised.The microemulsion composition in appendix A9 was 

used for this. 
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4.2.6 Application to HPLC 

The microemulsion prepared according to appendix A9 was filled into a 25cm, 5mm 

i.d. HPLC column, polymerised and flushed with 80 % acetonitrile and 20 % water 

(v/v). A plastic disk was placed at each end to prevent the microemulsion running out 

prior to polymerisation. 
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4.3 Results and Discussion 

4.3.1 The Effect of EGDMA andHEMA 

The microemulsion formulation in appendix A l was prepared, following work by 

Gan et al. [1] who reported pore sizes of up to 800nm. The reported recipe included 

42wt% 2-hydroxyethyl methacrylate (HEMA). As the initial stationary phase to be 

investigated was to be reverse-phase, the HEMA was omitted and replaced with 

M M A . The introduction of polar components results in a normal-phase packing. 

Upon preparation the resulting emulsion was slightly opaque in appearance 

suggesting the droplet size was not small enough to be classified as a microemulsion. 

In this case phase separation occurred during the first 30 minutes of polymerisation. 

When the HEMA was then added to replace some of the M M A a stable optically 

transparent system was formed. The addition of HEMA may act to stabilise the 

microemulsion by acting as a type of co-surfactant due to it being similar 

amphiphilic in nature. The hydroxyl groups w i l l act as the hydrophilic head and the 

acrylate group w i l l act as the end of the hydrophobic tail. Its effect as a surfactant 

wi l l be weak due to its short hydrocarbon chain length. The addition of HEMA has 

been found to enlarge the microemulsion region by increasing the flexibility of the 

oil-water interface [2] and also to reduce the pore size of the resulting monolith [2-4]. 

The fractured surface of the monolith prepared without the addition of HEMA 

exhibits an aggregate and channel structure (Figure 4.2). The channels appear to be 

wider than those observed with the inclusion of HEMA (Figure 4.3i). The addition of 

a co-surfactant wi l l reduce the surface tension and the size of the bicontinuous 

channels in the microemulsion and hence the channels in the resulting monolith. As 

it had been previously reported that a higher concentration of EGDMA causes phase 

separation [5], the preparation with M M A was repeated with less EGDMA, however 

62 



Methyl Methacrylate Systems 

phase separation still occurred prior to gelling. Coalescence of the oil phase occurs as 

the microemulsion is allowed to stand without agitation. As a microemulsion is 

thermodynamically stable and does not separate, it is concluded that the systems 

initially prepared are not microemulsions. The addition of HEMA to the system at 

the expense of methyl methacrylate results in an optically transparent and 

homogeneous microemulsion which remained stable throughout the polymerisation. 

X 

Figure 4.2 Monolith prepared from 28 wt% water, 9 wt% SDS, 54 wt% MMA 

and 9 wt% E G D M A . Appendix A l . 

The addition of EGDMA to a microemulsion accelerates gelation and hence aids the 

preservation of the microemulsion structure upon polymerisation [5]. It can also 

reduce the extent of physical changes (e.g. shrinkage) on drying and increase the 

mechanical strength of the resulting foam [2]. 

From the first set of experiments the need to include a co-surfactant in order to form 

a microemulsion when using an ionic surfactant such as SDS has been confirmed. 
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4.3.2 Capillary Preparation 

Attempts to f i l l capillaries homogenously with the microemulsion in appendix A4 

were unsuccessful due to the high polymerisation rate using the redox system of 

initiators, ammonium persulfate and. TMEDA. SEM images of a fractured section of 

a polymerised capillary can be seen in Figure 4.3H. The porous structure observed in 

the fractured surface of the monolith is not observed here. This is possibly due either 

to phase separation of the microemulsion prior to polymerisation or the channels 

being blocked with surfactant. Attempts to flush the capillary with both water then 

ethanol were unsuccessful. 

The microemulsion polymerisation in appendix A4 uses an oil soluble initiator, 

A I B N , which is initiated above room temperature to enable the fi l l ing of a capillary 

to occur before polymerisation. Filling was difficult using a syringe and adapter. It 

was found to be more effective to draw the microemulsion up into the capillary from 

the preparation vial. A constant pressure was required to achieve a uniformly filled 

section of capillary. During polymerisation of the capillaries it was found that a 

higher success rate of homogeneously packed capillaries was achieved when both 

ends of the capillary were sealed and they were placed in the oven vertically with the 

unfilled end to the top. 

Later experiments employed a capillary filler (Figure 4.1). Filling at a constant 

pressure enabled the production of homogeneously filled capillaries. 

The effect of polymerisation position was assessed by polymerising microemulsion 

filled capillaries in various positions. It was difficult to assess the polymer inside the 

capillary due to the polyamide coating on the capillary. Dark gaps along the capillary 

length were assumed to be gaps in the monolith. A l l the capillaries appeared to 

contain air bubbles, the ones polymerised vertically had larger homogeneous sections 
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than those laid horizontally. It was concluded that the filling technique requires care 

and the polymerisation technique may need improving. The microemulsion structure 

has been shown to alter over a range of temperatures [6]. I f this is the case and the 

bicontinuous structure is lost, a non homogeneous packing wi l l result. 

(i) 

5 k V 501*1 

(11) 

Figure 4.3 S E M images of the fractured surface of (i) a monolith prepared 

from MMA, E G D M A , DDAB and water and (ii) the resulting filled 

capillary (appendix A4) 
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4.3.3 Introduction of Charged Species 

The next stage was the introduction of a potentially charged species to a 

microemulsion (appendix A5). In order to support an electroosmotic flow through 

the capillary, a species needs to be introduced that wi l l enable the support of an 

electrical double layer to provide the flow of ions required for electroosmosis. A 

redox initiator was used; the microemulsion formed easily but polymerisation was 

too rapid to enable capillary filling. The polymerisation was repeated with a fresh 

monomer mixture. It was now found that gelling did not begin until a few minutes 

after the addition of the aqueous phase to the oil. This could simply be a result of the 

change in ambient temperature. This enabled capillary fi l l ing until gelling started. 

SEMs of the polymerised microemulsions show elongated aggregates (Figure 4.4(i)). 

These elongated particles could be due to the fast polymerisation rate and the 

preservation of the microemulsion structure within the monolith. 

2 f 

mm < rCfc 

• 

1 
WW 

•*_<* ( i i ) l 

Figure 4.4 S E M image monolith prepared form a microemulsion containing 

(i) 4-vinylpyridine; (ii) D E A E M A . 

Altering the potentially charged species to DEAEMA seems to give a reduction of 

these elongated aggregates and a structure similar to that observed for the 

composition containing no charged species (Figure 4.4(ii)). The occurrence of these 

elongated aggregates could be due to the use of a water soluble initiator where 
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polymerisation wi l l be with radicals at the interface, however, in previous 

experiments using a water soluble initiator spherical aggregates were observed 

(Figure 4.2). 

Figure 4.5 The structure of 2-(Diethylamino)ethyl methacrylate 

Again polymerisation is rapid and the microemulsion had begun to gel before it 

could be removed from the filler. 

As polymerisation is still too rapid at room temperature with redox initiation A I B N 

was again employed (appendix A6). The resulting filled polymerised capillaries 

appeared to contain very few air bubbles. This is likely to be due to care when fi l l ing 

and a slower polymerisation rate. 

4.3.4 Altering Charge Concentration 

Comparing the compositions in appendix A7 and A8 the amount of charged species 

present in the resulting monolithic stationary phase was altered in order to assess the 

effect of increased DEAEMA on the ability of the new composition to form a 

microemulsion, assuming the resulting capillaries were porous. A flow could not be 

established through these capillaries as the resulting monoliths polymerised in-situ 

did not show a porous structure. 

4.3.5 Initiator system 

The microemulsion described in appendix A6 was prepared. In order to enable filling 

of the capillaries required for use in CEC the initiator is either required to decompose 

at a slow enough rate at room temperature to enable filling prior to the gel stage or 

must decompose at a temperature above room temperature. 

o T N 

O 
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The system employed in the present work is a redox couple consisting of ammonium 

persulfate and N , N'-tetramethylethylene diamine (TMEDA). On transfer of an 

electron from the TMEDA to the ammonium persulfate, a radical species is produced 

as shown in Figure 4.6. As this reaction takes place at room temperature, 

polymerisation of the acrylates occurs rapidly after addition of the TMEDA. Due to 

the fast rate of this reaction the gel stage is reached quickly and the microemulsion 

becomes too viscous prior to injection into the capillaries. 

O O 
+ - II || _ + + _ II _ . II _ + 
N H 4 0 — S — O — O — S — O N H 4 N H 4 O — S — O O — S — O N H 4 

II t II II II 
o \J o o o 

Radical Species 

Figure 4.6 Decomposition of ammonium persulfate by the addition of T M E D A . 

In addition to this, a thermally initiated system, a,a'-azobis isobutyronitrile (AIBN), 

was investigated. 

CN CN 

N = N 

Figure 4.7 Thermal decomposition of AIBN 

4.3.6 Surfactants 

Early experiments assessed the need for a co-surfactant by employing a non-ionic 

surfactant which has been shown to produce a microemulsion without the addition o f 

a co-surfactant. The addition of DDAB, which is a two tailed ionic surfactant, 

enables a sufficient reduction in surface tension to produce a microemulsion. 
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However, relatively large amounts are required. SEM images (Figure 4.3) showed a 

porous structure when observing the fractured surface of the foam, however the 

monolith inside the capillary essentially showed a non-porous structure. As the bulk 

monolith has been cleaned by Soxhlet extraction all of the residual monomer, 

surfactant and water have been removed to reveal a porous structure. Attaching the 

capillary to an HPLC pump, however, proved to be unable to clean the monolith 

inside as a flow of solvent could not be established. This was thought possibly to be 

due to the high surfactant content (ca 65 wt%) blocking the pores. 

CHo 
1 + 

C H 3 ( C H 2 ) 8 C H 2 - N - C H 2 ( C H 2 ) 8 C H 3 B r " 

C H 3 

Figure 4.8 The structure of didecyldimethylammonium bromide 

The pore sizes of the monoliths prepared using DDAB are smaller than those 

prepared using SDS. This may be related to the two-tailed nature of the DDAB 

having a greater solubility in the oil phase compared to SDS. A larger head group 

wi l l give rise to a positive curvature due to the surfactant-packing parameter. I f the 

DDAB produces a more stable interface than the SDS system the narrow oil and 

water domains of the microemulsion wi l l be more effectively retained upon 

polymerisation. 

4.3.7 Effect of Polymerisation Temperature and Rate 

It was postulated that the temperature of polymerisation could have an effect on the 

structure of the microemulsion, producing a different structure of the resulting 

monolith. I f phase separation occurs during polymerisation inside the capillaries then 

the resulting packing of those prepared at a higher temperature would show a less 

69 



Methyl Methacrylate Systems 

homogeneous packing. Polymerisation of the same microemulsion at three different 

temperatures (room temperature, 40°C and 70°C; appendix A4) gave no conclusive 

evidence of this. SEM images in Figure 4.9 show an increase in aggregate size with 

temperature of polymerisation. Different polymerisation temperatures did not alter 

the porosity of the monolith inside the capillaries. Rapid polymerisation should yield 

channel and aggregate sizes comparable to those found in the microemulsion i f the 

polymerisation the gel stage is reached rapidly leaving little time for coalescence. As 

the aggregates are larger when polymerisation is carried out at higher temperature 

this suggests a change in microemulsion structure prior to the gel stage induced by 

the temperature change prior to the onset of polymerisation. As the temperature 

increases the hydration of the lyophilic group decreases and the surfactant becomes 

less hydrophilic. As the HLB value of SDS drops to below 40 it may not be as 

effective preventing coalescence of the water and oil domains. 

At lower temperatures polymerisation is slower and any effect of coalescence on 

polymerisation would be seen here. However, the microemulsion remains stable, 

preserving the narrow channel size of the microemulsion. Comparing SEM images of 

monoliths prepared at room temperature with a redox initiator (Figure 4.2), which is 

efficient at low temperatures and a thermally initiated system which wi l l slowly 

decompose in solution at room temperature (Figure 4.9(i)) shows that polymerisation 

rate or type of initiator has a greater effect on aggregate size than temperature. 

4.3.8 Initiator Efficiency 

Primary recombination can occur i f the diffusion of the radical fragments in solution 

is impeded and a cage effect leads to reaction of two the initiator radical species. The 

solvent usually plays an important part in the extent of the decomposition. 
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I 

(v) 

Figure 4.9 S E M images of monoliths prepared at (i) room temperature for 10 

days; (ii) 40°C for 65 hours; (iii) 70°C for 2 hours and their 

corresponding capillaries (iv) room temperature for 10 days; (v) 

40°C for 65 hours; (vi) 70°C for 2 hours 
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Induced decomposition can also occur when the radical species attacks an active 

centre. This is typical in peroxide initiators. In the case of microemulsion 

polymerisation the initiator needs to be efficient enough to enable gelling to take 

place prior to phase separation to retain the bicontinuous channel structure. 

4.3.9 Effect of Water and Surfactant Content. 

The compositions assessed in appendix A9 - 13 all formed optically transparent 

system. Upon polymerisation where the oil to water ratio was low the resulting 

monolith was very soft with a fine, brittle structure. Where the oil content was high 

the resulting monolith was very hard and difficult to fracture. Altering the pore size 

of monolith produced by the polymerisation of a microemulsion can be achieved by 

altering the surfactant to water ratio as shown in Figure 4.10. At a lower surfactant 

concentration the interfacial tension at the water-oil interface w i l l be higher and the 

interface more prone to coalescence. As the polymer chains grow and the 

composition of the oil phase changes, the lower surfactant concentrations wi l l not be 

able to stabilise the interface as well and coalescence of the oil channels wi l l occur 

producing larger aggregates. 

Increasing the water content wi l l reduce the overall surfactant concentration in the 

aqueous phase altering the surfactants equilibrium with the interface. The ratio of 

micelles to surfactant monomer wi l l change and the possibly the surface pressure, 

(see Figure 2.4) cause the interface to expand, spreading the monolayer of surfactant 

and increasing the rigidity of the interface. At higher water (and lower surfactant) 

contents the channels within the microemulsion wi l l be wider, the size of the 

resulting aggregates wi l l be larger and the pore size w i l l increase. This effect can be 

seen in Figure 4.11. 
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For a constant water concentration increasing the oil to SDS ratio increases the 

modal pore size. With less surfactant, the interface wi l l be less stable and the oil 

domains wi l l be more prone to coalescence, resulting in larger aggregates which wi l l 

pack less efficiently leaving larger voids. As the surfactant level is increased the 

interface wi l l be more stable and coalescence wi l l be reduced. Where there is a 

bimodal distribution or a 'shoulder' to the distribution this wi l l represent the larger 

channels resulting from the water domains and the smaller pores in between the 

aggregates where the oil domains have undergone coalescence. 

4.0 i 

oil : water : SDS 
40 ; 40 : 20 

50 : 40 : 10 

ft 
30 : 40 : 30 

20 : 60 : 20 
M l 

60 : 20 : 20 

> 
1.0 

0.001 0.01 0.1 1 10 100 1000 

Pore Diameter (um) 

Figure 4.10 Pore size distribution of methyl methacrylate monoliths from 

microemulsions containing various ratios of oil, water and SDS. 

Surfactant molecules pack at the oil-water interface causing a lowering of the surface 

tension. Different concentrations of different surfactants are required to achieve the 

same surface tension due to the size and shape of the surfactant molecule. Surfactants 

with a large head group wil l pack less effectively than those with a smaller head 

group. 

For example SDS yields a larger bicontinuous region than DTAB due to the less 

effective packing of the larger head group in the latter [7]. At higher water 
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concentrations DTAB has a larger bicontinuous region due to the less rigid (less 

packed) monolayer having a higher flexibility. 

* 
• B P . ( • ) ii 

(iii 
Figure 4.11 S E M images of monoliths prepared from microemulsions 

containing (i) 50.8 wt% oil, 39.5 wt% water, 9.7 wt% SDS 

(appendix A10); (ii) 41.0 wt% oil, 39.4 wt% water, 19.6 wt% SDS 

(appendix A9); (iii) 31.0 wt% oil, 39.4 wt% water, 29.6 wt% SDS 

(appendix A l l ) . 

Increasing the surfactant concentration wi l l decrease the aggregate size as the 

microemulsion wi l l be more stable. At lower surfactant concentrations the globules 

become bigger due to extensive coalescence of growing polymer particles of lower 

stability. At higher concentrations a more rigid interfacial f i lm is obtained and more 

polymer particles are generated [7]. 
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4.3.10 Effect of Co-surfactant Species 

Altering the co-surfactant species from HEMA to 1-pentanol still allows the 

formation of a microemulsion. Direct replacement of HEMA with 1-pentanol 

(appendix A9 versus A14) results in the formation of a single phase microemulsion. 

Upon polymerisation the resulting monolith is more fragile due to the reduction of 

the polymerisable species. The inclusion of 1-pentanol still allows the solublisation 

of close to 70 wt% water with only a 10 wt% level of surfactant. The ability to 

replace the polymerisable co-surfactant with a non polymerisable one while still 

keeping the surfactant level low should allow the production of large pore size 

materials. Polymerisation of the corresponding microemulsions in capillaries 

however still did not result in pores that allowed flow through of solvent. 

i 

1 

( i ) ^ •• - * r i 1 (n 

1 

1 

V 

(111) i v ) 

Figure 4.12 S E M images of monoliths prepared in glass vials and a capillary, (i) 

with AMPS (ii) without AMPS (iii) uncleaned capillary packing (iv) 

packed capillary. 
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It can be seen from the SEM images in Figure 4.12 of monoliths prepared from 40 

wt% oil (50:50 M M A : H E M A , 4 wt% EGDMA) that there is little difference between 

the aggregate and channel size either with (i) or without (ii) the presence of AMPS. It 

can also be seen that upon polymerisation inside a capillary the porous structure is 

retained (iv) and (iii) the aggregates appear to be of similar size but coated in what is 

most likely to be surfactant. 

4.3.11 Capillary Cleaning 

A l l of the capillaries prepared in this section could not be cleaned by attaching to an 

HPLC pump. As a flow of solvent could not be established and the SEM images 

showed mainly a non-porous structure on the fractured surfaces of the unclean 

monoliths, pore blockage by surfactant is thought to be the main problem. In order to 

remove all of the impurities from the monoliths prepared in capillaries a suitable 

solvent needs to be identified i f the blockage is to be removed to produce a porous 

structure. It can be seen from Figure 4.13 that methanol w i l l be the most successful 

solvent for cleaning monoliths prepared using SDS. The use of ethanol or THF 

appears to cause the monolith to shrink. 

4.3.12 The Effect of a Liquid Interface 

It can be seen that from the SEM images in Figure 4.14 that different species in 

contact with the microemulsion interface produce different monolith surface 

topographies upon polymerisation suggesting a change in interfacial tension. 

The addition of heptane to the surface wi l l slowly mix with any excess oil on the 

surface of the microemulsion should phase separation begin to occur during 

polymerisation. As polymerisation occurs and the growing chains precipitate they 

wi l l be dispersed in the heptane rather than forming a flat non-porous surface. Where 

the microemulsion is polymerised in contact air, a less porous surface is obtained. 
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This suggests that phase separation prior to polymerisation is occurring, resulting in a 

layer of monomer which produces a non-porous surface on polymerisation. 

However, addition of a non-polymerisable solvent is not a viable solution to the 

problem of a film at the interface. It is difficult to add the solvent to the top of the 

microemulsion within the capillary without the solvent mixing with the bulk 

microemulsion. 

1 

(0 i i 

(hi 

( I V ) v 

Figure 4.13 S E M images of in situ prepared monoliths (i) unwashed or washed 

in (ii) water; (Hi) methanol; (iv) ethanol; (v) T H F . 
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Figure 4.14 S E M images of monolith prepared with (i) a layer of heptane on the 

surface; (ii) an air, microemulsion interface. 
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4.3.13 Application to HPLC 

When formed in an HPLC column, the resulting monolith prepared from the 

microemulsion in appendix A9 was flushed successfully with methanol with a 

negligible build up of back pressure. No gaps could be observed between the wall 

and the monolith. This suggests that during polymerisation in a capillary, the 

resulting monolith, where it appears to be homogeneous, either does not have pores 

that are interconnected along its length or there is a loss of bicontinuity of the 

microemulsion upon fi l l ing or polymerisation. This result requires further 

investigation. 

4.4 Conclusions 

Monoliths prepared from microemulsions containing methyl methacrylate are not 

suitable for use as stationary phases for capillary electrochromatography. The use of 

DDAB prevents the cleaning of the monolith when packed into a capillary due to the 

high levels involved. Upon polymerisation, this blocks the resulting pores to the 

extent that it cannot be removed by a through flow of solvent. 

At a low concentration of SDS in the presence of a co-surfactant blockage should not 

occur, however the resulting monoliths inside the capillary did not show a porous 

structure. This is possibly due to a partial collapse of the bicontinuous structure upon 

filling into capillaries or upon polymerisation. The method of filling of the capillaries 

has also been determined to be an important factor in the preparation. Care and a 

constant pressure are vital. There is potential for these M M A monoliths to be used as 

stationary phases for HPLC, however further investigation would be required. 
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5 Butyl Methacrylate Systems 

5.1 Introduction 

Monoliths prepared from butyl methacrylate have been successfully used as 

stationary phases for CEC [1,2]. Microemulsions prepared containing B M A in the oil 

phase wi l l potentially yield monoliths with a porous structure. Alteration of the 

composition has been shown in previous experiments to affect the porosity of the 

resulting monolith. In this chapter we assess the conductivity of the microemulsions 

in order to determine whether the system is in a bicontinuous state and use N M R 

diffusion studies to give an insight into the phase structure. Porosity measurements 

and imaging using SEM show relationships between parent microemulsion 

composition and pore size of the resulting monolith. 

5.2 NMR Diffusion Studies. 

5.2.1 Introduction 

Molecules in solution or in the liquid state have translational motion often referred to 

as diffusion or self diffusion. In the absence of interactions, i.e. at infinite dilution, 

the self diffusion of a spherical colloidal particle is given by the Stokes-Einstein 

relation: 

Equation 5.1 

where ke is the Boltzmann constant, T is the absolute temperature, u, is the solvent 

viscosity and Rh is the hydrodynamic radius. Interactions become important at 

higher concentrations and the self diffusion coefficient decreases with increasing 

concentration. Another issue is that in the case of surfactants the mere act of altering 
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their concentration can have a dramatic effect on their self assembled structure 

(Equation 5.2, where k D is a function of inter-aggregate potential). An increase in the 

molecular weight and hydrodynamic radius with concentration may not just imply a 

growth of micelles but the effect of interactions. The relative importance of these 

effects wi l l depend on the composition and temperature of the solution. 

D = D0{\ + kDc) 

Equation 5.2 

Work by Jonsson et al. [3] shows that the presence of spherical and rod shaped 

aggregates gives rise to minor obstruction effects in the continuous medium while 

oblate or disk shaped particles have a greater effect. Solvation also reduces the 

observed diffusion coefficient. 

A system composed of a mixture of a hydrophile, a lipophile and an amphiphile (e.g. 

a surfactant) wi l l be segregated into ' o i l ' and 'water' domains separated by a layer of 

surfactant molecules. Depending on the composition of the mixture, the size and 

shape of the domains differ, from finite aggregates, for example, or a structure where 

there is interconnection over macroscopic distances in one, two or three dimensions. 

NMR can be used to shed light on these issues providing information on the 

distribution of surfactant molecules and oil and water domains, enabling conclusions 

to be drawn as to whether the microemulsion is of an oil-in-water, water-in-oil or 

bicontinuous type. A component in the system can diffuse through the continuous 

phase as an individual molecule at a rate dependent on its concentration or can be 

transported with droplets subjected to Brownian motion. Diffusion of the droplets 

wi l l be subjected to obstruction effects from other droplets. In the case of a 

bicontinuous system there wi l l be an absence of a dispersed phase and the two 
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individual continuous phases wi l l exhibit a diffusion similar to that of the 'pure' 

solvent. 

In NMR, diffusion measurements are usually made using a magnetic-field gradient 

pulse to label molecules spatially. After a certain time (A) a second gradient is used 

to decode their new position. I f the spins remain stationary during the time between 

pulses, the intensity and phase of the NMR signal after the second pulse wi l l be 

independent of the strength and length of the gradient pulse. However, molecular 

motion due to diffusion wi l l result in an attenuated signal as the spins wi l l move 

between the phase labelling. The intensity attenuation is dependant on the gradient 

parameters (g, 8) and the diffusion time (A). The intensity change is described by 

Equation 5.3 

7(A,<y,g) = / 0 exp •r

2g2S2(A~)D 

Equation 5.3 

where I is the observed intensity and Io is the unattenuated signal intensity. D is the 

diffusion coefficient, y the gyromagnetic ratio of the observed nucleus, g the gradient 

strength, 5 the length of the gradient and A the diffusion time. 

In this experiment a conventional DOSY (diffusion-ordered spectroscopy) 

experiment was employed where the diffusion coefficient was measured by acquiring 

a series of one-dimensional spectra with different amounts of diffusion weighting. 

The diffusion coefficients are then calculated by fitting the variations in the 

intensities of the peaks between the spectra. The resulting coefficients are then 

plotted against chemical shift. Recent work by Morris et al. [4] has shown that one-

dimensional DOSY measurements can yield the same results as conventional DOSY 
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using a nonuniform magnetic field gradient to encode the diffusion information into 

the line shapes of the peaks in the chemical shift dimension. 

Soderman and Nyden investigated the microstructure of microemulsions using the 

NMR pulsed field gradient (PFG) method by which self-diffusion coefficients can be 

determined [5]. In fact, self-diffusion studies gave the first direct evidence for a 

bicontinuous structure [6,7]. 

By varying the magnitude (g) and the length (5) of the spin or altering the distance 

between the leading edges of the gradient pulses (A) while keeping the distance 

between the r f pulses (beam of radiofrequency energy used to irradiate the precessing 

nucleus) constant, D can be determined by fitting Equation 5.3 to the observed echo 

intensities. 

. In this case where a bipolar gradient for dephasing and rephasing is used a correction 

for the time x between bipolar gradients is applied (Equation 5.4). This reduces the 

errors associated with the experiment including reducing the effects of radiation 

damping [8]. 

I(A,S,g) = I0 exp T V * 2 ( A - f ~ ) D 

Equation 5.4 

Generally, the equation holds true for microemulsion systems. The value of T2 (spin-

spin relaxation time) often limits the lowest value of D that can be measured. Slow 

diffusion is found in systems that show rapid transverse relaxation. As a consequence 

the echo intensity gets severely damped by T2 relaxation. This problem is virtually 

non existent for microemulsion systems, while the accuracy for the surfactant 

molecules is often reduced because of T2 effects. A basic pulse sequence is outlined 

in Figure 5.1. 
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Self diffusion of the solvent molecules (both oil and water) can give a direct insight 

into the connectivity of the domains and NMR relaxation of the surfactant molecules 

at different magnetic fields allows determination of the surfactant film curvature and 

thus aggregate shape and size. 

o 80 90° 

echo 

g g / 
\ 

2x ^ • time 
A 

Figure 5.1 Pulse sequence for a bipolar pulsed field-gradient spin echo 

(BPPGSE) experiment. 

In a simplified system consisting of one phase dispersed in another, i f the droplets of 

the dispersed phase are considerably larger than that over which diffusion is 

measured the self diffusion of both components wi l l be unrestricted and D values 

wi l l be similar to those observed for the neat solvents. For microemulsions this case 

is invalid due to the reduced size of the structures observed. Where a surfactant 

system is in equilibrium, as in microemulsions, the aggregates or droplets extend 

over much smaller distances than the distances monitored in a diffusion experiment. 

This means that the experiment is sensitive to the translation of the droplet rather 

than the molecular displacement within the structure. The diffusion of the whole 

structure is going to be much slower than that of the displacement within it or a 
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solvent component of the microemulsion. Where we find a microemulsion of droplet 

type with one phase dispersed in the other the diffusion of the dispersed phase wi l l 

differ greatly from that of the continuous phase. 

The diffusion coefficients that can be measured using a PGSE experiment range from 

very fast diffusing small molecules in solution with D values of around 10"9mV to 

very slow diffusion of polymers in more concentrated solutions where D values can 

be measured down to 10"l6mV' [9]. 

5.2.2 Radiation Damping 

Radiation damping affects intense signals in high field NMR. When the rotating 

transverse magnetisation of the sample induces a strong r f current in the detection 

coil (which produces the observed resonance) the current then induces its own r f 

field which is fed back to the sample. The damping of the signal produces a reduced 

apparent T2. In the case of a DOSY experiment where diffusion is calculated from 

the exponential decay of the signal intensities, the initial peak intensity (Io) w i l l be 

attenuated by radiation damping to a greater extent than a less intense decayed signal 

detected at time A. A non linear attenuation effect by radiation damping wi l l 

therefore reduce the gradient of the exponential and in turn decrease the calculated 

diffusion. 

In the experiment discussed earlier these effects are not taken into account as the 

concern is not that of the actual diffusion but that of the relative diffusion. Further 

investigation wi l l be required to ensure this is the case. 
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5.3 Experimental 

5.3.1 Standard solutions 

5.3.1.1 Aqueous amphiphile solutions. 

Aqueous solutions of SDS and co-surfactant were made up as in Table 5.1 and 

subsequently. The ratio of SDS:co-surfactant was kept constant at 1:2 (by weight). 

Mixing of each solution was achieved by sonication. 

Table 5.1 Aqueous phase stock solutions. 

SDS/CS: water 
ratio (w/w) SDS/g Co-surfactant/g Water/g 

75:25 25.00 50.00 25.00 

60:40 20.00 40.00 40.00 

50:50 16.67 33.33 50.00 

49:51 16.33 32.67 51.00 

40:60 13.33 26.67 60.00 

*30:70 10.00 20.00 70.00 

20:80 6.67 13.33 80.00 

•"Composition forms a viscous gel type phase. 

The following solutions were prepared and used in the 2 n d part of this chapter. 

5.3.1.2 SDS solution 

40.00g SDS was dissolved in deionised water and made up accurately to 200ml. 

5.3.1.3 AMPSsolution 

0.7500g AMPS was made up to 25g with 20% SDS solution. 

5.3.1.4 Oil Phase 

1.00g A I B N was dissolved in 60.00g B M A and 40.00g EGDMA. 
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5.3.2 General Procedures 

5.3.2.1 Microemulsion Formation 

Each microemulsion composition detailed in the appendices was prepared by adding 

the components in a glass vial and shaking. Where the determination of the phase 

boundary is required one phase is added to the other dropwise with stirring. To 

ensure stability each composition was allowed to equilibrate at room temperature for 

a minimum of 15 minutes. Where the phase region is determined using different co-

surfactants phases were added to each other along the lines in Figure 5.2. 
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Figure 5.2 Ternary diagram showing the lines along which phase regions were 

determined. 
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5.3.2.2 Microemulsion Polymerisation. 

Each composition was prepared in a glass vial as in 4.2.1.1 and purged with nitrogen 

for 10 minutes. The vials were then sealed and polymerisation took place in an oven 

at 60°C for 20 hours. After polymerisation the vials were fractured from around the 

resulting monoliths, which were then washed by Soxhlet extraction with methanol 

and dried in a vacuum oven at 50°C until a constant weight was achieved. 

5.3.2.3 Capillary Preparation and Cleaning 

Capillaries were filled with microemulsion using the glass f i l l ing apparatus found on 

page 63 of chapter 4. 

75% of a 50cm length of capillary (lOOum i.d.) was filled in each case and each end 

sealed with rubber. Each capillary was placed in the oven so that the outlet (unfilled) 

section of the capillary was raised above the inlet (filled) section. Polymerisation 

took place in an oven at 60°C for 20 hours. 

After polymerisation the capillaries were inspected using a light microscope for 

inhomogeneous sections along the packed length. 

Cleaning was carried out by fracturing a 5mm section from the inlet end of the 

capillary before attaching it to an HPLC pump. A mixture of acetonitrile and water 

(50:50 v/v) was applied at a flow rate of up to 2.5 ml/min. The maximum pressure 

was limited to 60 bar. 2 hours after a flow was obtained the water/acetonitrile was 

replaced with 5mM phosphate buffer in acetonitrile (20% v/v) at pH 7 and flushed 

for a further 4 hours. 

5.3.3 Conductivity Measurements 

Conductivity was measured using an in-house prepared platinum conductivity 

electrode. The platinum plates were 1cm2 and 1cm apart attached to platinum wire 
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encased in a glass tube. The 100% oil composition was used to zero the conductivity 

meter. 
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Figure 5.3 Ternary phase diagram for conductivity measurements taken at 

5wt% increments of oil along lines A, B and C . 

Aqueous phases were prepared as in Table 5.1 and 1-propanol was used as the co-

surfactant. Compositions were prepared using the procedures in 4.2.1.1 at 5 wt% 

increments of the oil phase (60:40 BMA:EGDMA, w/w) along lines A, B and C in 

Figure 5.3. A l l were well mixed and allowed to equilibrate at room temperature for 

30 minutes. AMPS was added at 0.3 wt% of the oil phase. 

Measurements were also taken using the 20 wt% SDS solution detailed in 5.3.1.2. 

Measurements were taken at 40:60 (w/w) SDS(aq): 1-propanol at 5 wt% increments of 

oil phase. 

5.3.4 Self diffusion measurements 

A l l proton self-diffusion measurements were performed on a 500MHz Varian Unity 

Ionova spectrometer. The relaxation delay was 20s with an acquisition time of 4s. 
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Gradient pulses were 2 ms with a delay of 50ms. The temperature was controlled at 

21.0 +/- 0.1 °C. Diffusion was calculated from 25 points. 

A l l experiments were carried out using an internal capillary containing deuterium 

oxide. 

The protons of the EGDMA methacrylate group at 6.1 ppm were used in the 

evaluation of the oil diffusion coefficient. The protons of the dodecyl chain adjacent 

to the sulfate head were used to determine the surfactant diffusion coefficient. 

5.3.4. J Sample preparation 

Samples were prepared on lines A and B of the ternary diagram in Figure 5.4. 

0.2 0.8 0 / \ / \ \ / 0.4 
\ \ CP / 

\ / \ \ \ / «l. 0.6 \ 0.4 
\ 

/ \ 
0.8 0.2 

\ / \ / / \ 
1.0 0.0 r 0.0 0.2 0.4 0.6 0.8 1.0 

(f) Oil 

60wt% BMA: 40wt% EGDMA, 

Figure 5.4 Ternary phase diagram of 60:40 B M A : E G D M A system. Points 

represent compositions used for self diffusion measurements. 
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Table 5.2 Compositions of the points on the ternary diagram in Figure 5.4 

SDS( a q/1 -propanol 

ratio 
Oil (%) SDS ( a q ) (%) 1-Propanol (%) AMPS (% wrt oil) 

40:60 0 40 60 0 

40:60 10 36 54 0.3 

40:60 20 32 48 0.3 

40:60 30 28 42 0.3 

40:60 40 24 36 0.3 

40:60 50 20 30 0.3 

40:60 60 16 24 0.3 

40:60 100 0 0 0 

30:70 40 18 42 0.3 

50:50 40 30 30 0.3 

60:40 40 36 24 0.3 
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5.4 Results and Discussion. 

5.4.1 Butyl methacrylate systems - 1. 

5.4.2 Determination of the Phase Boundary where the Oil Phase is BMA 

Figure 5.5 indicates the compositions where a single phase is observed for 

microemulsions containing 100% B M A in the oil phase. Upon heating phase 

separation occurs prior to polymerisation and a block of poly(butyl methacrylate) 

results. An absence of cross linker prevents any gelling prior to phase separation and 

hence a loss of microemulsion structure. The compositions in appendix B l -3 

represent the compositions at the phase boundary. 
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Figure 5.5 Ternary Diagram for 100% Butyl Methacrylate. Dots represent 

determined two-phase compositions and the shaded region represents 

the determined single phase region 
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5.4.3 The Effect of EGDMA on the Microemulsion Single Phase Boundary 

With an increasing EGDMA level less oil can be stabilised at a constant amphiphile 

- water level. At 20 wt% EGDMA a transparent single phase was not formed with a 

mixture containing 60 wt% water. The compositions at the phase boundary can be 

found in appendix B4 - 7. Higher water levels are added here at the expense of 

surfactant and co-surfactant therefore there is less surfactant available to stabilise the 

microemulsion. 

As the B M A is replaced by EGDMA the reduction in single phase area suggests an 

increase in the interfacial tension. This increase w i l l require more surfactant to form 

a microemulsion. I f EGDMA has a higher surface tension than B M A therefore yo 

wi l l be increased with increasing EGDMA level. 

5.4.4 Microemulsions prepared from 95 wt% BMA and 5 wt% EGDMA 

5.4.4.1 Microemulsion Phase Boundary 

Figure 5.6 shows points at which a single phase is not formed when the oil phase 

contains 5 wt% EGDMA. The continuing line represents compositions into the 

single-phase region. The compositions represented in appendix B8 - 11 are the 

compositions at the phase boundary and were polymerised in capillaries. 

The filled polymerised capillaries contained gaps in the packing to varying degrees 

along each length. This is possibly due to phase separation during the polymerisation 

process. As the compositions are on the single phase boundary there w i l l be little 

change required to revert the microemulsion back to two phases. Where the 

amphiphile : water ratio is 40:60 (w/w) in this set of experiments more oil is able to 

be solublised than in the previous set of experiments. This is due to the presence of 

AMPS in the composition. When it is present may wi l l increase the surface tension 

of the interface as it introduces charged species. The negative sulfate groups wi l l be 
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repelled by the negative sulfate of the surfactant causing less efficient packing. As 

the area per surfactant is increased the interface free energy wi l l increase resulting in 

an increase in interfacial tension. 
• 

SEM pictures in Figure 5.7 show monoliths prepared from the microemulsions at the 

phase boundary. Shown is both the fractured surface and the surface on the top of the 

monolith where it has not been in contact with the glass walls of the vial. From the 

fractured surface a porous structure made up of aggregates can be seen. It would 

appear that from these resulting structures the parent microemulsions were of an oil-

in-water type and coalescence of the droplets upon polymerisation has resulted in a 

solid monolith. 
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Figure 5.6 Ternary phase diagram for 95:5 B M A : E G D M A microemulsion. See 

text for details. 
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The air surface shows a non porous topography suggesting a microemulsion existing 

with an excess oil phase typical of a Winsor I type microemulsion prior to gelation. 

A layer of 'pure' oil phase would result in a non porous polymer f i lm at the surface. 

At higher oil levels the surface of the polymerised microemulsion becomes less 

porous resulting in a totally non-porous topography. 

A less porous structure was also observed by Gan et al when preparing M M A 

microemulsions with polymerisable surfactants [10] 

5.4.4.2 The Effect of Surfactant and Co-surfactant to Water Ratio 

All of the capillaries produced were non-homogeneously packed. The foams are 

also quite firm indicating denser, stronger polymer aggregates. 

Figure 5.8 shows that for the compositions in appendix B13 and 13 at a constant oil 

level (50wt%) there is no significant difference of varying the surfactant and co-

surfactant content on the surface structure. 

5.4.4.3 Effect of Oil Fraction on Topography of the Resulting Monolith. 

As the water : SC ratio at a constant oil ratio is increased from 1/3 to 1 (appendix 

B14 -18), the surface topology of the polymerised microemulsion can be seen to 

change (Figure 5.9). There is only a slight change in the aggregates at the fractured 

surface as the water : SC ratio is increased. With an increase in water content wider 

channels can be observed above 40 wt% total water content. There also appears to be 

a greater coalescence of the aggregates resulting from a decrease in stabilising 

surfactant. A t higher surfactant/co-surfactant levels there wi l l be a greater 

stabilisation of the interface, less coalescence of the oil droplets and possible 

retention of the microemulsion structure. A great difference can be observed between 

the air and the fractured surface. At 50 times magnification the fractured surface 

shows a textured, potentially porous structure confirmed at higher magnification 
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whereas the air surface appears flat and non porous. At a high magnification a slight 

porosity is observed on the surface but not to the extent of the porosity of the 

fractured surface. Again this is possibly due to phase separation during 

polymerisation resulting in excess oil at the microemulsion surface. 

1 

a) i) ii) 

• 
1 

• 

if 

b i i i 

c) (i) i i 

Figure 5.7 S E M images at 2000X magnification of monoliths prepared from 

the microemulsions at the phase boundary; (i) the fractured surface 

and (ii) the surface on the top of the monolith where it has not been 

in contact with the glass walls of the vial, a) 70.6 wt% oil, 7.3 wt% 

SDS, 14.7 wt% 1-pentanol, 7.3 wt% water; b) 66.1 wt% oil, 6.8 

wt% SDS, 13.6 wt% 1-pentanol, 13.6 wt% water; c) 48.7 wt% oil, 

8.6 wt% SDS, 17.1 wt% 1-pentanol, 25.7 wt% water. 
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an a) (i) 

*• 

4 :.J 

b) (i) i n ) 

Figure 5.8 S E M images at 2000X magnification of (i) the fractured and (ii) 

nonfractured surface of monoliths prepared from microemulsions 

containing 50.0 wt% oil. a) 12.5 wt% SDS, 25.0 wt% 1-pentanol, 

12.5 wt% water; . b) 10.0 wt% SDS, 20.0 wt% 1-pentanol, 20.0 

wt% water. 
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b) i) (ii) (lii) 
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15s! 
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Figure 5.9 S E M images showing the effect of various SDS:l-pentanol:water 

ratios Images a - e represent parent compositions in appendix B14 

- 18 respectively; i) the fractured surface at 600X magnification, ii) 

unfractured surface, iii) compares the air surface (left) and the 

fractured surface (right), c) shows the unfractured surface (left) 

and the fractured surface (right) at 50X magnification. 
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5.4.5 Microemulsions prepared from 80 wt% BMA, 20 wt% EGDMA 

5.4.5.1 Determination of Single Phase Microemulsion Compositions and 

Composition Effect on Monolith Structure 

Figure 5.10 shows points in the single phase region (filled) and those in the two 

phase region (unfilled). The percentage compositions of each can be found in 

appendix B19 - 35. 
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Figure 5.10 Ternary phase diagram for 80:20 B M A : E G D M A microemulsions 

( • ) two phase, (•) single phase. 

Figure 5.11 shows that there is little change in the void size left by the water 

channels upon polymerisation with variation of surfactant/co-surfactant : water ratio. 

SEM images in Figure 5.12 show that at high oil fractions the monoliths exhibit a 

non porous film at the air interface. This film is connected to the porous section and 

extends about 250 |j.m into the monolith (Figure 5.13) indicating the bicontinuous 

section of the microemulsion is in equilibrium with excess oil prior to gelling. At 60 
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wt% oil , 16 wt% water the parent microemulsion has two visible phases which 

appear to consist of a microemulsion region below a thin layer of oil. Upon 

polymerisation the non porous layer on the surface on the monolith is about a 

millimetre thick. 

m 

(a) - i 1 

/ycr.V Spot M.i«jn 0*1 Wtl F«p I 
I H V I . (I M l t h HSI 10 1 (I I I ! A H 

Figure 5.11 S E M images (500X magnification) of the fractured surface of 

monoliths prepared from microemulsions containing 30.0 wt% oil. 

(a) 35.0 wt% water, 11.7 wt% SDS, 23.3 wt% 1-propanol; (b) 28.0 

wt% water, 14.0 wt% SDS, 28.0 wt% 1-propanol; (c) 14.0 wt% 

water, 18.7 wt% SDS, 37.3 wt% 1-propanol 
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Figure 5.12 S E M images (1000X magnification) of the monolith surface 

polymerised in contact with air (i) and the fractured section (ii) of 

monoliths prepared from (a) 50.0 wt% oil, 20.0 wt% water, 10.0 

wt% SDS, 20.0 wt% 1-propanol; (b) 60.0 wt% oil, 16.0 wt% water, 

8.0 wt% SDS, 16.0 wt% 1-propanol; (c) 50.0 wt% oil, 10.0 wt% 

water, 13.3 wt% SDS, 26.7 wt% 1-propanol 

From the fractured surface shown in Figure 5.13 the interconnecting water and oil 

domains can clearly be seen. 
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Figure 5.14 shows a linear increase in modal pore diameter with increasing oil level 

from 20 wt% to 50 wt%. This increase is not observed above 50 wt% oil possibly 

due to the conversion from a bicontinuous structure extending all the way to the 

surface of the microemulsion to a microemulsion where the bicontinuous region 

coexists in equilibrium with an excess oil phase. 

Air surface 

jAcc.V Spot Magn Del WD Exp t1 —1 200 \un 
12 0 k V 6 0 128x B S E 9 7 0 0.3Torr 1 

Figure 5.13 S E M image of the longitudinal cross section of a monolith prepared 

from 50 wt% oil (20 wt% E G D M A 80 wt% BMA), 20 wt% water, 

10 wt% SDS, 20 wt% 1-propanol. 

Figure 5.15 shows SEM images of the monoliths prepared with constant SDS and 1-

propanol to water ratio. The channels and aggregates of the monolith prepared 

containing 10 wt% oil are narrow and small. The resulting monolith did not hold its 

structure and collapsed on drying. 

The surface area can be seen from Figure 5.14 to be inversely proportional to the 

weight fraction of oil. As the size of the pores increases the surface area decreases. 

The increasing oil level is coupled with a decrease in water and surfactant. This wi l l 

result in a decrease in channel width. With less stabilising species available the oil 
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channels w i l l be more susceptible to coalescence and the aggregates wi l l grow. 

Larger aggregates do not pack as efficiently as the smaller ones, resulting in more 

free space between them. The surface area increases with increasing amounts of 

surfactant and water as there are more smaller aggregates giving overall a larger 

surface area. 

Figure 5.16 shows the region which has been determined to produce two phase 

systems. The compositions at the phase boundary can be found in appendix B36 -

38. The unmapped region is potentially single phase. This region contains high 

amounts of surfactant and low levels of oil. The high level of surfactant could result 

in difficult cleaning of the monoliths inside the capillaries. 

Table 5.3 Pore diameter and surface area data for a range of compositions of 

60:40 B M A : E G D M A microemulsions. (n = 2-6.) 

SDS/l-pentanol: 
water ratio 

Pore Diameter (um) Surface Area (m2/g) SDS/l-pentanol: 
water ratio 

Oil wt% Average stdev Average stdev 

40:60 20 2.253 0.0122 5.760 0.0049 

50:50 30 3.242 0.0054 3.820 0.0530 

60:40 20 1.946 0.0031 7.220 0.0219 

60:40 30 2.643 0.0146 4.516 0.1301 

60:40 40 3.187 0.0066 2.785 0.0460 

60:40 50 3.902 0.0110 1.772 0.0177 

60:40 60 3.718 0.0006 1.164 0.0339 

80:20 30 5.719 0.2978 1.605 0.0064 

80:20 40 5.758 0.0238 1.267 0.0438 

80:20 50 0.607 0.0001 11.476 0.0580 
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The capillaries filled with monolith prepared from parent microemulsions containing 

13 wt% SDS, 26 wt% 1-pentanol, 38.8 wt% water and 22.2 wt% oil were 

homogeneously filled containing no gaps along the length of the packing. After 

cleaning and flushing with buffer solution a current of 1.6 to 1.8 uA was achieved 

when a 20cm packed length was attached to the CE and a voltage of 25kV was 

applied. This current was only steady for approximately 5 minutes. In this case the 

vials containing the buffer solutions were held at atmospheric pressure. It has 

previously be shown [11] that a constant pressure needs to be applied to the inlet and 

outlet vials in order to prevent degassing of the buffer solution at heterogeneous 

sections of the packing where there may be differences in electroosmotic flow. 
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Figure 5.14 Modal pore diameter ( • ) and surface area ( • ) against oil fraction, 

<f>0. The remaining fraction consists of SDS, 1-propanol and water in 

a 20:40:40 ratio. The error bars are smaller than the data points. 
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Figure 5.15 Parent microemulsions contain a) 10 wt%, b) 20 wt%, c) 30 wt%, 

d) 40 wt%, e) 50 wt%, f) 60 wt% oil. The surfactant, 1-propanol 

and water are in 20:40:40 wt% ratio making up the remainder of 

the microemulsion. 
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Figure 5.16. Ternary phase diagram for the system containing SDS, 1-pentanol, 

water and oil where the oil consists of 60 wt% BMA and 40 wt% 

E G D M A . The lines show the non optically homogeneous region. 

5.4.6 The Effect of Co-surfactant Species 

5.4.6.1 Effect on Microemulsion Boundary Determination 

The most important quantities, which control all structuring processes in 

microemulsions are free energy and entropic factors as well as the curvature free 

energy. This energy can be described by the Helfrich equation, Equation 5.5. 

F = i * r (C , + C 2 - 2 C 0 ) 2 + icClC2 

Equation 5.5 

Here, K and K are the mean and the Gaussian bending elastic constants. C\ and C2 

are the curvatures of the formed structure and Co the spontaneous curvature. The first 

term in Equation 5.5 characterises the rigidity, the energy required to bend a unit area 

of interface by a unit amount of curvature. The role of the second term is a change in 
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membrane topography and subsequently phase transition. The elasticity parameters, 

K, K and Co depend strongly on the type and concentration of surfactant and co-

surfactant, salt concentration, and also temperature. A calculation of the dependence 

of the curvature elasticity on chain length when mixing a surfactant and co-surfactant 

has been published [12] where the replacement of long chain molecules by short ones 

is shown to be efficient in lowering the bending constant K of the surfactant f i lm. 

Reducing the alcohol chain length this the interfacial membrane and in turn causes a 

reduction of the rigidity modulus k c [13]. 

Figure 5.17 shows a change in the position of the single phase boundary dependent 

on the co-surfactant. Compositions on the phase boundary can be found in appendix 

B39 - 78. The smaller the alcohol chain length the less it wi l l penetrate the interface. 

The addition of an alcohol as a co-surfactant wi l l reduce the interfacial rigidity by 

causing a thinning of the mixed membrane and a larger single phase region wi l l be 

obtained. The observed effect of the co-surfactant may also be due to its partitioning 

between the oil and water phases and the interface. 

5.4.6.2 Effect of Co-surfactant on the Porosity of the Resulting Monolith 

Polymerisation of microemulsions represented by the points in Figure 5.18 and 

detailed in appendix B79 - 90, gives monoliths with pore diameters and surface areas 

outlined in Figure 5.19. The composition containing 33 wt% oil and 1-pentanol falls 

outside the single phase range and therefore would not form a monolith upon 

polymerisation. As discussed earlier a decrease in pore size is coupled with an 

increase in surface area. The results show that an alteration of the co-surfactant can 

also be used in tailoring the pore size of the resulting monoliths. Changing the co-

surfactant chain length from C 5 to C 3 has a greater effect at lower oil levels. At 18 

wt% oil the modal pore size decreases by 42% from 1.64 to 0.95 um possibly due to 
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the effect of destabilisation and coalescence overwhelming the effect of the co-

surfactant. This is coupled with an increase in surface area from 7.13 to 11.34 m2g"'» 
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Figure 5.17 Pseudo ternary phase diagrams for systems containing SDS, water, 

oil (60:40 B M A : E G D M A ) and (i) 1-pentanol; (ii) 1-butanol and (iii) 

1-propanol. The shaded area represents the single phase region. 
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an increase of 59%. This is compared to a decrease in surface area of 0.6 % and an 

increase in modal pore diameter of 19 % for the monolith prepared where the parent 

microemulsion contains 41 wt% oil. At a low level of oil , (18 wt%) the resulting 

monolith shows the highest surface area and the lowest pore diameter. Increasing the 

oil level increases the pore size and subsequently reduces the surface area. This is 

due to smaller aggregates having a larger overall surface area than the aggregates 

resulting from monoliths prepared using higher fractions of oil. The SEM images in 

Figure 5.20 show there is no significant difference in the pore structure to support the 

corresponding changes in pore size and surface area. For the monoliths prepared 

using 1-propanol there is a greater range of pore size and surface area available for 

investigation therefore further systems are prepared using this as the co-surfactant. 

Using Figure 5.18 as a reference, the pore size increases along lines A and B as the 

oil level is increased at a constant surfactant/co-surfactant: water ratio and 

coalescence of the oil domains is more probable in a less stable system. The pore size 

decreases along lines D and E where the water level is reduced at a constant oil : 

surfactant/co-surfactant ratio. This wi l l be due to a constant surfactant/co-surfactant 

film and an increasing water domain. Rather than produce an expanded interface the 

intertwining water domains wi l l widen resulting in an increased modal pore size. The 

reverse is true regarding surface area due to packing mechanics. Along line C there is 

little change in surface area at constant water to oil ratio with a surfactant/co-

surfactant. There is however, an increase in pore size possibly due to the introduction 

of more co-surfactant. The exception is the surface area along line C for the 

composition prepared using 1-propanol. The pore size decreases slightly. 

I l l 



Butyl Methacrylate Systems 

0.0—1.0 

0 6 \ 
D \ 

0.0 0.2 0.4 C 0.6 

Wt % Oil 
60:40 BMA:EGDMA 

0.8 1.0 

Figure 5.18 Ternary diagram showing the compositions from which monoliths 

were produced using either 1-pentanol, 1-butanol or 1-propanol. 
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Figure 5.19 The effect of co-surfactant type and concentration on surface area 

and pore size. 
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Figure 5.20 Monoliths prepared from microemulsions along line C of Figure 

5.18 containing approximately equal proportions of oil and water, 

a) 1-propanol; b) 1-butanol (i) 23 wt% oil; (ii) 33 wt% oil. 
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5.4.7 Effect of Surfactant to Water Ratio on Conductivity 

From the three lines in the ternary diagram of the 2:3 EGDMA:BMA system, the 

single phase microemulsions were formed between 30 and 40 wt% SCW. Where the 

SDS and 1-propanol is in a 50% ratio to the water the single phase at 40 wt% 

exhibits a bluish tint due to increased light scattering suggesting it is composed of a 

dispersed and continuous phase rather than a bicontinuous phase. 

Where the microemulsion is in a two-phase or oil continuous state, containing mainly 

oil , the conductivity approaches that of the pure oil. As the oil level is decreased a 

water continuous state is reached enabling a flow of ions. Phase inversion to a water 

continuous phase would result in a sharp change in conductivity over a narrow oil 

fraction range to that of the 'aqueous' phase. In Figure 5.21 a gradual increase in 

conductivity with decreasing oil concentration from a critical composition referred to 

as the percolation threshold can be seen [14]. This gradual phase inversion suggests 

there is an intermediate structure(s) present as well as an observed increase due to the 

increase in surfactant content of the microemulsion. 

The conductivity slope of the higher SDS composition is shallower due to larger 

micelles in solution, which wi l l have a slower mobility than the more dilute 

composition. 

A higher concentration of surfactant should yield a higher conductivity due to the 

increased ion concentration. However, this is not observed here. As the surfactant 

levels increase the molecules wi l l arrange into organised structures. Equation 5.6 

expresses the electrical conductivity, K of a microemulsion as a function of the 

electrostatic migration of individual ions and microemulsion globules in the 

continuous water phase. Counter-ions bind to micelles [15] and it is assumed that 

they w i l l bind to the droplets in a microemulsion. The net valence of a droplet 
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depends on the total number of ionic surfactant molecules at the interface and the 

number of counter-ions, which move with the droplet when an electric field is 

applied. Assuming ions flow only in water continuous states, the electrical 

conductivity of a microemulsion has been expressed by Lam and Schechter [16]. 

k = m w c ^ {nzfc^Dr 0 - A y+ZID\:c)k } 

Equation 5.6 

Where © w c is the volume fraction which is water continuous, e is the fundamental 

unit of charge, Z , is the valence of ion i , C, is the concentration of i , D™° is the 

molecular diffusivity of i in the water continuous phase, cp is the oil phase volume 

fraction, Z,„ is the net valence of the droplet, jV 0 * is the number of oil drops per unit 

volume and DM is the Brownian diffusion coefficient of a droplet given by the 

Stokes-Einstein equation 

With more surfactant in solution there is a limited packing density at the interface. 

Once the interface is saturated with surfactant molecules and counter ions the 

remaining molecules in the water continuous phase w i l l self assemble into organised 

structures. As the conductivity is related to the motion of ions in the aqueous phase, 

which at a higher surfactant level wi l l contain a greater number of larger aggregate 

structures subject to more obstruction effects there wi l l be a hindrance of their 

diffusion with a resulting drop in conductivity. 
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Figure 5.21 The effect of surfactant concentration on conductivity 

5.4.8 Butyl methacrylate systems - 2. 

5.4.9 Microemulsion boundary where the oil phase is BMA and EGDMA 

The bold lines shown in Figure 5.22 indicate a large single phase microemulsion 

region. This provides many potential compositions available for analysis. The 

corresponding percentage compositions of the phase boundary can be found in 

appendix CI-3. 

5.4.10 Effect of composition on pore size 

Determining the pore size of the monoliths prepared from the microemulsions in 

appendix C4 - 7 enables us to assess the degree to which we can alter the pore size 

by only altering the weight fraction of surfactant solution, co-surfactant and oil. The 

resulting pore sizes of the monoliths and the corresponding compositions of the 

parent microemulsions can be found in Table 5.4. It is shown that at equal weight 

fractions of SDS solution and 1-propanol, increasing the oil fraction increases the 

pore size. As the oil level is increased the amount of surfactant available to stabilise 
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Figure 5.22 Ternary phase diagram showing a large single phase 

microemulsion region (weighted lines). Squares represent points on 

the single - two phase boundary 

the interface is decreased. The oil domains are more prone to coalescence and as this 

happens the width of the aqueous domains w i l l widen resulting in a larger modal 

pore size. From Figure 5.23 a marked decrease in surface area can be seen as the oil 

level is increased from 18 wt% to 33 wt% at equal levels of SDS solution and 1-

propanol. The SEM images in Figure 5.24 (a and c) show that the monolith prepared 

from 18 wt% oil has smaller aggregates with slightly narrower channels through 

them. A small aggregate size wi l l increase the overall surface area of the monolith. 

At constant oil to surfactant solution weight fractions, increasing the 1-propanol 

fraction by 20 wt% increases the modal pore size from 3.8um to 10.7um. The 

surface area also increases from 0.26m2g"' to 1.60 m2g~'. An increase in surface area 

with pore size suggests additional structural features on the surface of the aggregates. 

From the SEM images in Figure 5.24 (b and c) the monoliths prepared with 23 wt% 
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oil appears to have wider channels than the monolith prepared with 33 wt% oil in 

agreement with the porosimetry results. The resolution of the ESEM at high 

magnifications is not high enough to determine clearly any substructure of the 

material. Upon polymerisation of microemulsion 4 containing 41 wt% oil there was 

some structural collapse and the resulting monolith was structurally tough and very 

difficult to fracture suitably for porosity analysis. In Figure 5.24 the smaller 

aggregates and close packed structure of the monolith containing 41 wt% oil can be 

seen This correlates with indications of microemulsion collapse. 

A l l of the microemulsions formed an optically homogeneous phase. Upon 

polymerisation, all formed solid monoliths. The filled capillaries all appeared 

visually to be homogeneously filled. Upon attachment to the HPLC pump, 

compositions 1 - 3 flushed easily with methanol. Capillary 4 did not enable a flow. 

The monolith prepared from composition 4 is also very difficult to fracture and 

appears to have reduced in volume compared to the initial volume of the 

microemulsion. 

Table 5.4 The pore size of the resulting monoliths is altered by altering the 

fraction of components in the microemulsion. 

Oil (%) SDS ( a q ) (%) 1-Propanol (%) Pore size/urn 2—I— 
Surface area/m g" 

1 18.0 41.0 41.0 2.09 7.169 

2 23.0 23.1 53.9 10.65 1.596 

3 33.0 33.5 33.5 3.81 0.258 

4 41.0 17.7 41.3 - -
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Figure 5.23 The pore size and surface area of monoliths prepared from 

microemulsions in appendix C 4 - 7.Error bars are obscured by the 

data bar borders. 

5.4.11 Correlation between parent microemulsion composition and porosity. 

In order to be suitable as a stationary phase the monolithic packing must be able to 

sustain an electroosmotic flow on the application of an electric field when filled with 

a buffer solution. This is achieved by the introduction of a potentially charged 

species along the polymer backbone. The species used is AMPS where the 

acrylamide group wil l polymerise into the developing matrix and the sulfonate head 

group wi l l support the flow of ions along the length of the packed bed. The 

introduction of this species may increase the surface tension of the interface hence 

influencing the formation and structure of the microemulsion. From Figure 5.25 a 

large single phase region can still be seen. The two phase region is at compositions 

where the surfactant and co-surfactant levels are insufficient to stabilise the oil in the 

system. 
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Figure 5.24 Altering the oil, SDS ( a q ) and 1-propanol fractions can control the 

porosity of the resulting monoliths, a) 18.0 wt% oil, 41.0 wt% 

S D S ( a q ) , 41.0 wt % 1-propanol; b) 23.0 wt% oil, 23.1 wt % SDS ( a q ) , 

53.9 wt % 1-propanol; c) 33.0 wt% oil, 33.5 wt% SDS ( a q ) , 33.5 wt% 

1-propanol; d) 41.0 wt% oil, 17.7 wt% SDS ( a q ) , 41.3 wt% 1-

propanol. 

As the volume fraction of the oil phase is increased, the fraction of surfactant is 

decreased. This results in a lowering of the microemulsion stability as there are less 

surfactant molecules available to stabilise the interface. As polymerisation proceeds 

and the temperature of the microemulsion is increased there wi l l be an alteration in 

microemulsion structure from bicontinuous tending towards oil-in-water. This w i l l 

result in the coalescence of the oil phase producing growing aggregates. The higher 

the oil level the more coalescence wi l l occur prior to the gel phase resulting in larger 

aggregates. This can be seen from the SEM pictures in Figure 5.26. As the oil level is 
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increased from 30 wt% oil to 50 wt% the aggregate size increases. The graph in 

Figure 5.27 shows a linear trend of increasing pore diameter with increasing oil 

content. At 60 wt% oil the aggregates appear to be smaller as do the channels 

throughout the monolith. This also results in a considerable decrease in pore size. 

Visually, the resulting monolith has undergone noticeable shrinkage compared to the 

initial volume occupied by the parent microemulsion, possibly due to destabilisation 

of the microemulsion resulting in a loss of or alteration of microemulsion structure. 
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Figure 5.25 Ternary phase diagram for 60:40 B M A : E G D M A system 

(appendix C 8 - 32). Filled squares indicate optically 

homogeneous microemulsions and unfilled squares represent two 

phase compositions. 

From Figure 5.27 it can also be seen that as the surfactant: 1-propanol ratio is 

decreased at a constant fraction of oil the modal pore diameter increases. Again, i f 

there is less surfactant at the oil-water interface, the microemulsion formed with a 

ratio of SDS ( a q) to 1 -propanol of 40 wt% to 60 wt% wi l l have a less stable interface 
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than that for the microemulsion formed with a ratio of SDS(aq) to 1-propanol of 60 

wt% to 40 wt%. The addition of a higher level of 1-propanol serves to reduce the 

mean curvature of the surfactant f i lm stabilising the microemulsion, however an 

increase in temperature during polymerisation is promoting a greater shift towards an 

oil-in-water phase. 

From the plots in Figure 5.28 it can be seen that the pore size distribution of the 

monoliths decreases with increasing oil . A gradual increase in intrusion volume 

shows large pores fi l l ing followed by a sharp increase in intrusion at the modal pore 

volume. This suggests a structure with channels larger than the void space between 

the aggregates. As the aggregates increase in size the space between them becomes 

similar to the channel width left by the water domains and a narrow pore size 

distribution is observed as intrusion is only observed over a narrow pressure increase. 

Figure 5.27 also shows that at a constant oil level, as the surfactant:co-surfactant 

ratio is increased, the pore size of the resulting monolith decreases. At a lower 

surfactant concentration the tension of the interfacial f i lm w i l l be higher and so it 

wi l l be less stable. Larger globules wi l l form due to coalescence of the growing 

polymer particles which w i l l not be stabilised as well. Disregarding the channel size, 

larger aggregates w i l l pack less effectively and have a larger void volume than 

smaller aggregates. As the SDS level is increased the interface wi l l be more stable 

and the channels within the microemulsion are more likely to be retained upon 

polymerisation. The aggregates produced as the oil phase polymerises wi l l be less 

prone to coalescence and therefore the resulting monoliths wi l l have smaller 

aggregates packed more efficiently with less void space between them resulting in a 

smaller modal pore diameter. In Figure 5.29 the cumulative intrusion for the 

monoliths shown in Figure 5.30, prepared from a microemulsion containing different 
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levels of SDS solution, shows intrusion at lower pressures for lower SDS levels 

suggesting the presence of channels as well as the space between the aggregates. The 

more uniform the channels the sharper the intrusion gradient. 

* i 
V Spot Ma<)n l>at W » f xp I 

I S O K V f i O 1000* B>e 104 0 O b i o n 

Figure 5.26 S E M images (1000X magnification) of monoliths prepared with a 

constant surfactant solution : co-surfactant ratio (40:60 SDS ( a q ) : l -

propanol) and an increasing oil content: (a) 20wt%, (b) 30wt%, (c) 

40wt% oil, (d) 50wt%, (e) 60wt%. 
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Figure 5.27 Increasing the oil concentration increases the pore size of the 

resulting monolith (SDS ( a q):l-propanol ratios • - 40:60 • - 50:50, • 

60:40) 
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Figure 5.28 Normalised intrusion volume over a range of pressures for 

monoliths prepared from microemulsions containing SDS solution 

and l-propanol in a 40 to 60 wt% ratio with varying proportions of 

oil. 

124 



Butyl Methacrylate Systems 

100 

80 
DO o3 

2 60 o 6 60:40 

50:50 en > 40 03 40:60 
O P-i 

20 

0 
0.1 1 10 00 000 10000 

Pressure/psi 

Figure 5.29 Normalised intrusion volume over a range of pressures for 

monoliths prepared from microemulsions containing 40 wt% oil 

with the remaining SDS solution and 1-propanol in various ratios. 

Now that it has been established that the pore size of the resulting monoliths for this 

system can successfully be controlled by altering the basic composition of the 

microemulsion, their suitability for CEC needs to be established. 

Figure 5.31 shows that the topography of the monoliths at the air-microemulsion 

interface is porous. It does however have different characteristics compared to the 

bulk. At the air interface, the surface that is in contact with vapour, there is a 

negligible force attracting the molecules away from the liquid, therefore there is a net 

inward attraction and the molecules at the surface have an excess Gibbs energy 

relative to the interior of the liquid. A greater number of surfactant molecules at the 

air interface w i l l have a greater stabilising effect on the channels towards the surface. 

The result of this is similar to that observed in systems with a higher surfactant 

concentration (Figure 5.32); the aggregates are much smaller. 
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^ * 
> 

b) 

Figure 5.30 SEM images (1000X magnification) of monoliths prepared with a 

constant 40 w t % oil (60:40 w/w B M A : E G D M A ) and varying the 

SDS solution to 1-propanol ratio, a) 40:60; b) 50:50; c) 60:40. 
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Figure 5.31 SEM images (1000X magnification) of the air-microemulsion 

interface of monoliths prepared with a constant surfactant solution: 

co-surfactant ratio (40:60 SDS (, i q ): l-propanol) and an increasing oil 

content (a) 20 w t % , (b) 30 w t % , (c) 40 w t % , 
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Figure 5.32 SEM images (1000X magnification) of a monolith prepared with an 

SDS (aq);l-propanol ratio of 60:40 wt/wt containing 20 w t % oil. (a) 

fractured surface and (b) air-microemulsion surface. 

(0 

( i l l ) 

Figure 5.33 SEM image of the longitudinal cross section of monoliths prepared 

f rom (i) 50 w t % oil, 20 w t % SDS solution (20% SDSw/v), 30 w t % 

1-propanol; (ii) 20 w t % oil, 32 w t % SDS solution (20% SDSw/v), 48 

w t % 1-propanol; (iii) 30 w t % oil , 35 w t % SDS solution (20% 

SDSw/v), 35 w t % 1-propanol where the oil phase consists of 

E G D M A : B M A (40:60, w/w). 
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In the previous section, the microemulsion type prior to polymerisation was shown to 

have an effect on the topography of the monolith at the air surface. In the case of the 

monoliths discussed here the topography is porous and it can be seen from Figure 

5.33 that the bicontinuous structure of the microemulsion continues all the way to the 

surface without the presence of an excess oil layer. 

5.4.12 Conductivity Measurements 

Mixtures were prepared with a constant SDS solution: 1-propanol ratio of 40:60 w/w 

along line C in Figure 5.25. The conductivity meter was set to zero using the 100% 

oil phase in order to measure a normalised conductivity. 
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Figure 5.34 Conductivity measured along line C in Figure 5.25 at a constant 

SDS solution: 1-propanol ratio of 40:60. Altering the oil content 

shows a conductivity gradient through the single phase region. 

As discussed earlier in this chapter ions only flow in the water continuous states and 

when the microemulsion is in a two-phase or oil continuous state, containing mainly 

oil , the conductivity approaches that of the pure oil. As the oil level is decreased a 
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water continuous state is reached enabling a flow of ions. Phase inversion to a water 

continuous phase would result in a sharp change in conductivity over a narrow oil 

fraction range to that of the 'aqueous' phase. In this case we see a gradual increase in 

conductivity from a critical composition referred to as the percolation threshold [14]. 

This gradual phase inversion suggests there is an intermediate structure(s) present as 

well as an observed increase due to the increase in surfactant content of the 

microemulsion. 

5.5 NMR Diffusion Studies. 

The diffusion of the 20 %w/v SDS solution is slow at 0.192 x 10"'° mY 1 due to the 

solution concentration being above the CMC of the surfactant. I f the system consists 

of a droplet structure dispersed in a continuous medium the diffusion of the dispersed 

phase w i l l match that of the surfactant. 

In this system a divergence of diffusion coefficients is observed, indicating that the 

diffusion mechanisms can not be due to swollen droplets (Figure 5.35). The 

divergence suggests that channels of the oil and water domains exist stabilised by a 

less mobile surfactant film. A value of D s is less than D 0 indicates bicontinuity. D 0 

increases with oil concentration indicating that the diffusion of the oil molecules is 

less constrained and tends towards that o f the pure oil phase. This situation would 

arise i f the oil channels of the microemulsion increased or organised into a less 

hindered structure such as a layered system. As the channels increase in size and the 

surfactant content of the microemulsion is reduced the lateral diffusion of the 

surfactant molecules along the hydrophobic/hydrophilic interface decreases, 

indicating either less mobile channel domains at higher oil concentrations or the 

formation of discrete droplets dispersed in an oil continuous phase. The latter 
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scenario would be coupled with a significant decrease in the diffusion of the water 

domains which is not observed here. 
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Figure 5.35 Self-diffusion coefficients of surfactant ( • ) , water ( * ) and oil (o) 

represented by points along line A in Figure 5.4. 

Anderson and Wennerstrom [17] calculated the geometrical obstruction factors for 

the effective self-diffusion rate of components forming cubic phases, bicontinuous 

microemulsions and L 3 (lamellar) phases. These calculations serve as good 

approximations in order to -investigate the bicontinuity of the structures; the 

normalised diffusion coefficient, or obstruction factor, D/Do was used, where D is the 

measured diffusion coefficient in the structured system and D 0 is the diffusion 

coefficient in 'pure' solvent. From Figure 5.36, in which the normalised self-

diffusion coefficients for microemulsions represented by line A in Figure 5.4 are 

plotted, a branched tubular system can be deduced using the approximations outlined 

by Anderson and Wennerstrom [17] and applying them to a disordered bicontinuous 

structure. It was observed that in the case of a lamellar phase the obstruction factor 
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wil l be 2/3 and 1/3 when the diffusion is confined to a cylindrical region of 

negligible diameter. The obstruction from the cylinders is small resulting in the 

normalised diffusion of the water phase being close to 1. D/D 0 for the oil phase is 

approximately 0.5 at low oil concentrations suggesting a tubular structure where the 

distance between branching points is greater than the tube diameter and diffusion is 

allowed along the axes of the tubes. Increasing the oil level gives an increase in 

D/Do, diffusion is becoming less hindered suggesting a tendency towards a layered 

structure where diffusion is only hindered in one direction and free in the other two. 

Table 5.5 Diffusion coefficients of the oil phase (D„) and surfactant (D s) along 

line A in Figure 5.4. D„ at 100% oil is the self-diffusion coefficient of 

the 'pure oil' and D s at 0% oil is the self-diffusion of the surfactant 

at 20 % w / V ( a q ) , 60wt% 1-propanol. 

% Oil line A D o x l 0 " l u m V DsXlO '^mV 1 

100 6.255 -

60 5.078 1.057 

50 4.63 1.38 

40 4.244 1.655 

30 3.751 1.73 

20 3.776 1.672 

10 3.029 1.599 

0 - 2.502 

Another possibility is a widening of the tubules. In this case there w i l l be less of a 

hindrance to diffusion within the tubes from effects at the tube walls, as the solvent 
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molecules wi l l have a lower mobility in the vicinity of the surfactant film due to 

possible solvation effects. 
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Figure 5.36 Normalised diffusion of surfactant ( • ) , water ( * ) and oil (o) 

represented by points along line A in Figure 5.4. 

From Figure 5.37, it can be seen that altering the aqueous surfactant solution to 1-

propanol ratio while keeping the fraction of oil in the system constant has little effect 

on the structure of the microemulsion. D/D 0 for the oil phase remains approximately 

2/3 whereas it is close to 1 for the water domains suggesting hindered diffusion of 

the oil domains and a layer of surfactant whereas the water domains are less hindered 

and are similar to the molecules in free solution. With an increase in surfactant level 

a normalised diffusion of surfactant close to the oil phase diffusion can be seen and a 

divergence at 36 wt%. As the surfactant wi l l exist in three different forms at any 

given time, at the interface, as micelles or as single molecules, the observed diffusion 

wi l l be an average of the diffusion coefficients in the different states. As there is an 

increase in surfactant the ratio of these states may change. As the oil level decreases 

and the surfactant level increases the interface wi l l become saturated with surfactant 
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and the remaining molecules wi l l be free in solution or exist as aggregates. An 

increase in the diffusion coefficient and hence the normalised diffusion suggests 

there is a higher proportion of faster diffusing species in the mixture. Again the 

diffusion coefficient of the surfactant is lower than that of the oil indicating all four 

compositions are still within the bicontinuous region. 

a) 
w t % S D S , L i n e B 

(aq) 

w t % S D S L i n e B 
(aq) 

b) 

Figure 5.37 (a) Self-diffusion coefficients and (b) normalised diffusion of 

surfactant (A), water ( * ) and oil (O) represented by points along 

line B in Figure 5.4. 
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5.6 Conclusions and Further Work 

In the earlier part of this chapter it was shown that the polymerisation of 

microemulsion systems containing a high proportion of surfactant were unsuitable 

for use as stationary phases due to the apparent production of an excess phase upon 

polymerisation. It was shown that with a high surfactant to co-surfactant ratio the 

resulting monoliths exhibited a porous structure, which could be controlled by 

altering the volume fractions of each phase. However, a non porous topography was 

observed where the polymerising microemulsion was in contact with the air in the 

sealed glass vial. As this fdm on the top of the monolith represents the section of 

stationary phase packing at the outlet end of the capillary prior to the detection 

window and cannot be altered prior to use, a non porous structure renders systems of 

this type unsuitable. Increasing the water content of the microemulsion increases the 

porosity o f the resulting monolith but in doing so for a constant fraction of oil we 

reduce the fraction of stabilising species (surfactant and co-surfactant). A high 

porosity material that enables a flow through the pores is required. The bicontinuous 

structure (and hence a porous topography) at the surface needs to be retained during 

polymerisation. This is achieved by reducing the surfactant level and achieving 

stabilisation by increasing the volume fraction of co-surfactant. This then creates a 

more fluid interface or a different microemulsion structure while retaining 

bicontinuity and reduces the portion of excess oil on the surface of the 

microemulsion. 
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6 Capillary Electrochromatography 

6.1 Introduction 

Capillary electrochromatography has been in development for several years with 

stationary phase materials being developed from a wide range of analytes for a 

diverse range of applications. The limitations of capillaries packed with beads has 

lead to the development of stationary phases prepared in-situ in the form of 

hydrogels or solid porous monoliths. There is also a wide range of proven 

preparation methods. This section assesses the suitability of polymerising 

bicontinuous microemulsions in-situ to form a solid monolith and its application to 

capillary electrochromatography as a stationary phase. The effect of pore size and 

operating conditions are assessed. 

6.2 Experimental 

6.2.1 Chemicals 

Acetonitrile was of HPLC grade and supplied by BDH. 

6.2.2 Columns 

Figure 6.1 Electrical coil through which the fuses silica capillary is placed to 

remove the polyamide coating. 

Packed CEC capillaries were supplied by ThermoHypersil™ (Runcorn, Cheshire). 

Fused silica capillaries were supplied by Composite Metals (Worcs., UK). Table 6.1 

details the properties and composition of the capillaries prepared using the standard 
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procedures in the previous chapter. The polyamide coating was removed from the 

capillary close to the packing by electrical heating as shown in Figure 6.1 to produce 

a detection window required for on-line detection. It was determined that a low 

setting for a longer period prevented damage to the capillary packing enabling the 

dead volume between the stationary phase and the window to be reduced. 

6.2.2.1 Column reference, x:y:z 

x:y is the 20% SDS ( a q): 1-propanol (w/w) ratio; z is the oil concentration 

(BMA:EGDMA, 60:40,w/w) of the parent microemulsion. 

Table 6.1 Columns prepared for analysis. 

Sample 

No. Column 

[SDS] ( a q ) 

(%) 

AMPS 

(wt%) 

Length to 

detector/ cm 

Pore Diameter/ 

um 

Surface Area/ 

m y 

1 40:60:30 20 0.3 20 5.3 2.25 

2 40:60:20 20 0.3 20 4.9 3.50 

3 40:60:40 20 0.3 20 5.8 0.98 

4 40:60:40 20 0.6 20 5.8 1.08 

5 60:40:40 20 0.3 20 3.3 2.27 

6 60:40:20 20 0.3 20 1.7 7.88 

7 60:40:40 20 0.3 30 3.3 2.27 

8 50:50:50 20 0.3 30 4.5 1.24 

9 50:50:50 20 0.3 40 4.5 1.24 

10 54:46:34 10 0.6 20 3.3 2.37 

11 37:63:29 10 0.6 20 6.6 1.78 
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6.2.3 Instrumentation 

CEC experiments were carried out using a Beckman Coultier P/ACE™ MDQ 

Methods Development System discussed in chapter 3. Detection was by online U V 

detection at 214nm. The column temperature was thermostatically controlled to 25°C 

with the exception of temperature studies. 

6.2.4 Stock solutions 

6.2.4.1 Buffer solutions 

50mM phosphate buffer was prepared using phosphoric acid, using 2M sodium 

hydroxide to adjust the pH to pH 8. 

The buffer solutions in Table 6.2 were prepared daily as required. 

6.2.4.2 Sample solutions 

The structures of the substituted phthalates are shown in Figure 6.2. A l l analytes 

were dissolved in acetonitrile:buffer (80:20, v/v; Table 6.2, solution 1) to give a 

concentration of 4 mg ml" 1. Thiourea was added as a EOF marker to give a 

concentration of lmg ml" 1. 

6.2.5 CEC Analysis 

Columns were conditioned by initial flushing with 80:20 MeCN: I m M buffer at a 

pressure of 60 p.s.i for at least 5 minutes or until a flow through the capillary was 

observed. A voltage of 25 kV was then applied across the capillary until a steady 

current and a flat baseline were observed. During analysis both vials were 

pressurised to 60 p.s.i. Sample injection was electrokinetic for 3 seconds at 5 kV. 
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Table 6.2 Buffers prepared for C E C analysis. 

Phosphate Buffer Water Acetonitrile 

Hi mM ml ml % (v/v) 

1 100 5 1.90 8.0 80 

2 100 5 2.90 7.0 70 

3 100 5 3.90 6.0 60 

4 100 5 4.90 5.0 50 

5 100 5 5.90 4.0 40 

6 50 0.5 4.95 5.0 50 

7 200 2 4.80 5.0 50 

8 300 3 4.70 5.0 50 

9 400 4 4.60 5.0 50 

10 500 5 4.50 5.0 50 

11 600 6 4.40 5.0 50 

o 

ox 
ox 

o 

Figure 6.2 The general structure of phthalate compounds where X is a propyl 

or phenyl group. 
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6.3 Results and Discussion 

6.3.1 Capillary conditioning 

6.3.1.1 Monolithic columns 

After flushing with buffer under pressure a steady current was achieved within 10 

minutes of the application of an electric field. This current remained steady and 

constant throughout experiments with a single buffer solution. Upon changing the 

operating conditions, namely the buffer system, column equilibrium was achieved 

again within 5 minutes. 

6.3.1.2 Commercial ODS columns 

In contrast to the monolithic columns the bead packed capillaries were unreliable. 

Initial conditioning was difficult and time consuming. Due to the tight packing of the 

capillaries containing 3um beads, filling the capillary with the required buffer under 

pressure was difficult due to the build up of back pressure. Conditioning with 

different buffer systems by electroosmosis frequently required up to and beyond an 

hour to achieve a steady and stable current. This meant that method development 

with these columns was time consuming in comparison to the monolithic columns. 

6.3.2 Effect of Acetonitrile Concentration 

By altering the composition of the mobile phase to increase or decrease the analyte's 

affinity for that phase, its retention time on the column can subsequently be 

decreased or increased respectively. In this case the acetonitrile content of the mobile 

phase was decreased from 80 % (v/v) to 50 % (v/v) at a constant overall ionic 

strength. In all cases the retention of the phthalates increased with decreasing 

acetonitrile concentration and In k (capacity factor) remains linearly related to 

percentage acetonitrile content of the mobile phase in line with well established 

142 



Capillary Electrochromatography 

HPLC theory (Figure 6.4). The retention time of the thiourea added as a flow marker 

remained constant as expected as it has negligible interactions with the stationary 

phase packing. The effect of acetonitrile concentration on separation can be seen 

from Figure 6.3. 

The analytes investigated here have a higher affinity for the ODS packing. The 

analyte peaks are resolved at a higher acetonitrile content and have much greater 

retention times (Figure 6.6). This is due to the ten-fold increase in surface area of the 

ODS packing in comparison to the porous monolithic material. A higher surface area 

results in an increased number of binding sites and is evident from the increased 

gradient in Figure 6.5. At 50 % v/v acetonitrile on the ODS columns the capacity 

factors for dipropyl- and diphenylphthalate are 3.25 and 6.03 respectively compared 

to between 0.3 and 0.8 for dipropylphthalate and between 0.8 and 1.7 for the 

monolithic columns investigated. 
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Figure 6.3 Electrochromatograms of (in order of elution) thiourea, 

dipropylphthalate and diphenylphthalate in l m M total phosphate 

buffer at pH 8 and (i) 80 %; (ii) 70 %; (iii) 60 %; (iv) 50 % (v/v) 

acetonitrile. Column - 20cm 3.3jj,m monolithic packing (Table 

6.1.5). 
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Figure 6.4 Effect of acetonitrile content of the mobile phase on the logarithm 

of the capacity factor, k, of dipropylphthalate ( 0 ) and 

diphenlphthalate ( • ) on a 3.3u.m monolithic stationary phase 

(Table 6.1.5). 

c 

acetonitr i le content (%) 

Figure 6.5 Effect of acetonitrile content of the mobile phase on the logarithm 

of the capacity factor, k, of dipropylphthalate ( 0 ) and 

diphenlphthalate ( • ) on 3|im ODS packing. 
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Figure 6.6 Electrochromatograms of (in order of elution) thiourea, 

dipropylphthalate and diphenylphthalate in ImM total phosphate 

buffer at pH 8 and (i) 80 %; (ii) 70 %; (iii) 60 %; (iv) 50 % (v/v) 

acetonitrile. Column - 20cm 3)̂ m ODS beads. 
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6.3.3 Linear Velocity 

6.3.3.1 Effect of acetonitrile 

Acetonitrile was chosen as the organic modifier as it supports a high EOF. 

The concentration of acetonitrile in the buffer system should have no effect on the 

linear velocity of the mobile phase through the capillary at a constant ionic strength. 

As the linear velocity is mainly dependant on the ionic strength of the buffer, i f the 

organic modifier present does not contribute towards the generated electrical double 

layer there should be no change in linear velocity over a range of concentrations. 

Figure 6.7 shows that the acetonitrile level has some effect on the linear velocity. An 

increase in linear velocity could be attributed to a decrease in mobile phase viscosity, 

(acetonitrile is 40% less viscous than water) however, a higher linear velocity at 

lower concentrations is observed for columns with pore sizes of 5.3um and 4.9um. 

60 70 

acetonitrile content (% 

Figure 6.7 Effect of acetonitrile content on linear velocity. ( A , 5.8um; • , 

5.3(xm; O, 4.9um; X , 1.7|j,m) 
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6.3.3.2 Effect of Pore Size 

At a standard buffer concentration and field strength it can be seen from Figure 6.8 

that the linear velocity ueo is proportional to the pore size of the monolithic stationary 

phase packing. The Smoluchowski equation (Equation 6.1) shows how the EOF is 

governed by the zeta potential ^, the permittivity, s r and the viscosity, r\ of the 

mobile phase as well as the electric field strength, E. eo is the permittivity of a 

vacuum: 

Equation 6.1 

A l l the terms in Equation 6.1 remain constant leaving a variability in zeta potential 

responsible for the change in linear velocity. The zeta potential is related to the 

surface charge, a and the double layer thickness, 5 by 

aS 

Equation 6.2 

As the pore size is increased the surface area of the stationary phase decreases. It has 

been shown theoretically by Rice and Whitehead [1] that the flow velocity w i l l be 

independent of diameter, d when d is greater than 5. As d approaches 8 double layer 

overlap w i l l occur coupled with a decrease in flow velocity. In this case the added 

charged species, AMPS, is added at a constant level (0.3 wt% of the monomers) 

therefore it is assumed that the surface coverage is at the same density across all the 

columns. Figure 6.9 shows that the correlation between surface area and linear 

velocity is not perfect but there is a general downward trend of linear velocity as 

surface area is increased. This corresponds to a decrease in surface area with 

increasing pore size and hence permittivity. 
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Figure 6.8 Effect of pore size on E O F for monolithic stationary phases 

prepared using BMA and E G D M A (60:40 w/w). 
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Figure 6.9 Effect of surface area on E O F for monolithic stationary phases 

prepared using BMA and E G D M A (60:40 w/w). 
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6.3.3.3 Effect of Ionic Strength 

The linear flow velocity through a capillary is related to the ionic strength, I of the 

buffer by the following relationship: 

«„„ = or 
2 

E 
V Wlr, j 

Equation 6.3 

Linear velocity is directly proportional to the zeta potential and the electric field 

applied to the column. The zeta potential is in turn directly proportional to the double 

layer thickness at a given ionic strength as defined by the Poisson-Boltzman 

distribution and Debye-Huckel approximation. 

Equation 6.4 

8 = o r 

2F2I v ^ 1 J 
Equation 6.5 

An increase in the ionic strength wi l l cause a decrease in the linear flow velocity. At 

lower ionic strengths a larger double layer is observed. I f the double layer distance is 

greater than the size o f the pores in the stationary phase, double layer overlap wi l l 

occur. This may result in the inability to maintain a steady current flow across the 

column. Figure 6.10 shows the effect of ionic strength on flow velocity for the 

Hypersil ODS column and two of the monolithic columns. The linear velocity 

through the monolithic column is greater than through the commercial column. This 

is mainly attributed to the porosity of the columns, the monolithic column being 

more porous than the commercial column. 
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b) 

Figure 6.10 The effect of buffer ionic strength on linear velocity in a) an ODS 

packed column; b) a porous monolith filled column at 50 % MeCN 

v/v and x contains 0.3 wt% AMPS, • contains 0.6 wt% AMPS. 
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At lower ionic strengths the linear velocity begins to reach a plateau, possibly as 

double layer overlap begins to occur. The Smoluchowski equation assumes the 

independence of packing size on linear velocity (unless double layer overlap occurs). 

Using traditional porous or non-porous silica a decrease in the particle size wi l l result 

in an increase in surface area and an overall increase in surface functionalities. As the 

EOF is directly proportional to the number of surface silanol groups, any effect on 

linear velocity due to flow resistance is likely to be counteracted by an increase in 

surface charge resulting in an increased EOF. 

Within the monolithic systems the surface charge of the packing is easy to alter. 

When the added AMPS level is doubled there is little change in the resulting linear 

velocity over a range of ionic strengths suggesting a larger increase in AMPS is 

required to significantly change the effect on the generated electrical double layer. 

> 0.2 

10 15 20 

Run Voltage (kV) 

25 30 35 

Figure 6.11 The effect of applied voltage on E O F linear velocity for monolithic 

columns with pore sizes of 4.9 (+), 5.3 (•) and 5.8jim (o). 

6.3.3.4 Field Strength 

Figure 6.11 confirms that the EOF is proportional to the electric field strength 

(applied voltage under standard conditions) as stated in Equation 6.3. An increase in 
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electric field w i l l cause a faster migration of solvated cations in the diffuse layer 

towards the cathode resulting in a proportional increase in velocity. 

6.3.3.5 Efficiency 

Compared to the 3um ODS packed capillary, the efficiencies of these monolithic 

columns are low. This could be due to a variety of reasons as yet to be established. 

Firstly, the surface area of the monolithic columns is significantly lower (a factor of 

100 times lower) than that of the ODS beads. This low surface area reduces the 

number of sites available for partitioning. I f this effect is significant then increasing 

the column length wi l l increase the number of theoretical plates. However, in 

comparing the number of theoretical plates and HETP for two identical columns of 

different lengths, different values are obtained (Table 6.3). This suggests that there 

are other factors affecting the column efficiency and these are possibly dependent on 

column length. Columns packed using a BMA:EGDMA, 60:40 w/w mixture to 

prepare the stationary phase have been prepared by other groups. Efficiencies of 

32,000 plates per metre have been quoted for the separation of basic pharmaceuticals 

[2] on columns where no porosity data was available. Peters et al. [3-5] have reported 

efficiencies of higher than 120,000 plates per metre for the separation of benzene 

derivatives. These columns have reported pore diameters in the region of 700nm 

therefore the higher efficiencies are expected to be due to increased surface area 

corresponding to the smaller pore size. However, no surface area measurements are 

available for these materials. 
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Figure 6.12 Electrochromatograms of (in order of elution) thiourea, 

dipropylphthalate and diphenylphthalate on (i) 30cm, 4.5u,m; (ii) 

40cm, 4.5u,m; (iii) 20cm, 3.3p,m; (iv) 30cm, 3.3u,m columns. Mobile 

phase: phosphate containing 60% v/v acetonitrile. 
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Figure 6.13 Van Deemter plots for (i) thiourea; (ii) dipropylphthalate; and (iii) 

diphenylphthalate on 4.9 ( • ) , 5.3 ( • ) and 5.8 ( A ) u.m monoliths. 
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As discussed in chapter 1.2.4 there are various parameters that can affect efficiency. 

One of these could be due to mobile phase and analyte perfusion through the 

packing. A very relevant effect is that of eddy diffusion and analyte mass transfer 

between the mobile, stagnant mobile and stationary phases. I f the porous material 

used for the stationary phase contains dead end pores then the analytes wi l l take a 

more tortuous path along the column, increasing the time taken for a fraction of the 

analytes to migrate through the column. Where the right hand side ' tail ' of the van 

Deemter plot has a shallow gradient, a negligible effect from mass transfer 

mechanisms is implied. In the case of thiourea for the 4.9^m column the plot does 

not resemble a 'usual' van Deemter plot and H appears to be proportional to the 

linear velocity. 

Table 6.3 Efficiency data for different column lengths. Mobile phase: I m M 

phosphate containing 60% v/v acetonitrile. 

3.3|am 4.5um 

Column Length /cm 

20 30 30 40 

Thiourea 

N 8093 9424 3533 26160 

Thiourea H /mm 0.0247 0.0212 0.057 0.008 Thiourea 

Nm"1 40465 31413 17666 130798 

Dipropylphthalate 

N 1502 1943 2935 5792 

Dipropylphthalate H /mm 0.133 0.103 0.0681 0.0345 Dipropylphthalate 

Nm"1 7510 6477 14676 28962 

Diphenylphthalate 

N 675 899 1707 2773 

Diphenylphthalate H /mm 0.296 0.222 0.117 0.0721 Diphenylphthalate 

Nm"1 3375 2997 8537 13867 
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The shape of the plot would seem to suggest the most significant effect from mass 

transfer mechanisms (the C term in the van Deemter equation). As the thiourea does 

not interact with the stationary phase this suggests that the mechanism responsible 

for this decreased efficiency wi l l be transfer between a mobile and stagnant phase. 

The general case observed here for these monolithic columns is that the linear 

velocity appears not to have a detrimental effect on efficiency, which w i l l enable the 

flow rate to be altered to achieve optimum resolution without a major loss of 

efficiency. 

6.3.3.6 AMPS level 

An increased level of AMPS can be seen, in the two cases in Table 6.4, to increase 

the column efficiency. An increase in AMPS gives a slight decrease in the linear 

velocity. With a higher level of charged species along the stationary phase surface 

the electrical double layer produced wi l l be slightly compressed reducing the linear 

velocity. A slightly slower flow rate may be responsible for the increased efficiencies 

by allowing more analyte - stationary phase interactions during the analyte's lifetime 

on the column. 

Table 6.4 Theoretical plates for 20cm columns with pores of 5.6um and 3.3 

urn prepared with varying levels of AMPS. 

3.3um 5.8um 

0.3wt% AMPS 0.6 wt% AMPS 0.3 wt% AMPS 0.6 wt% AMPS 

Thiourea 6186 15445 7167 7822 

Dipropyl-
phthalate 

408 802 599 744 

Diphenyl-
phthalate 

215 450 315 349 
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6.3.3.7 Pore size 

The linear velocity was found to be lower through columns with smaller pore sizes. 

Figure 6.14 shows that the efficiency of the thiourea marker is increased with 

decreasing pore size and vice versa for the phthalate analytes (Figure 6.15). This 

increase in efficiency is coupled with lower surface areas and higher linear velocities. 
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Figure 6.14 The effect of pore size on thiourea plate height. 
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Figure 6.15 The effect of pore size on dipropylphthalate (0) and 

diphenylphthalate (•) plate height at 50 % (v/v) acetonitrile 

content. 
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6.3.4 Effect of Temperature 

6.3.4.1 Effect on separation 

A classic description of the adsorption process is based on the Gibbs excess 

adsorption theory, which basically considers two similar hypothetical adsorption 

systems with the same volume, temperature, pressure and adsorbant surface area. 

The only difference is that the first system does not show any adsorption on the 

surface and the second one does. Linear velocity is proportional to the square root of 

the absolute temperature (Equation 6.3). K, the equilibrium constant, is a measure of 

interaction energy difference between the eluent and analyte molecules with the 

adsorbant surface. It is proportional to the partition ratio, k, by Equation 6.6 where ft 

is the phase volume ratio. 

K = pk 

Equation 6.6 

Using standard thermodynamics where AG is the standard Gibbs free energy of the 

system, R is the molar gas constant, AS is the standard entropy of the system, T is the 

absolute temperature and AH is the standard enthalpy of the system 

AG = -RT\nK 

= -RTIn k -RTIn fi 

Equation 6.7 

AG = AH-TAS 

Equation 6.8 

It follows that; 

. . , _ -AH AS 
In k + In B = + — 

RT R 

Equation 6.9 
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Rearrangement of Equation 6.9 enables the enthalpy of the system to be determined 

from the gradient of a logarithmic plot of capacity factor against the inverse 

temperature. 

In k = + constant 

RT 

Equation 6.10 

Across the different monolithic columns there is no significant difference in between 

the plots for dipropylphthalate and diphenylphthalate. There is no correlation 

between enthalpy and pore size however there is a difference when comparing 

equivalent columns with different AMPS levels. At 0.6 wt% AMPS the enthalpy is 

approximately double that at 0.3 wt% (Figure 6.16). 

As can be seen from Figure 6.17 there is a lot of scatter in the data obtained using the 

ODS bead packed column. Due to the nature of the packing material more time is 

needed for the column to equilibrate to its new conditions. 

Table 6.5 Gradients and calculated standard enthalpies obtained from Van't 

Hoff plots. 

Column 
Reference 

Dipropylphthalate Diphenylphthalate Column 
Reference 

Gradient AH (kJmor 1) Gradient AH (kJmor 1) 

40-60-20 (0.3) 881.6 -7.33 304.9 -2.54 

40-60-30 (0.3) 728.6 -6.06 802.8 -6.67 

40-60-40 (0.3) 622.2 -5.17 800.5 -6.66 

40-60-40 (0.6) 1160.9 -9.65 304.7 -2.53 

60-40-40 (0.3) 503.4 -4.19 655 -5.45 

37-63-29 (0.3) 728.6 -6.06 949.1 -7.89 

Hypersil 566.4 -4.71 729 -6.06 

160 



Capillary Electrochromatography 

A linear van't Hof f plot indicates that the retention mechanism under the temperature 

range being studied is invariant. When the plots are divergent and A(AH) dominates 

over the entropy term A(AS) it indicates that the separation is enthalpy driven, 

whereas a convergent plot where A(AS) is dominant over A(AH), an entropy driven 

process is indicated. 
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Figure 6.16 Van't Hoff plot for monolithic columns containing a) 0.3 wt% 

AMPS; b) 0.6 wt% AMPS for dipropylphthalate ( A ) and 

diphenlphthalate ( • ) . Errors are smaller than the points. 
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Figure 6.17 Van't Hoff plot for Hypersil ODS column for dipropylphthalate 

( A ) and diphenlphthalate ( • ) . 

6.3.4.2 Effect on linear velocity 

20 30 40 

Tern perature (°C) 

Figure 6.18 The effect of temperature on linear velocity in monolithic columns 

1-4 (+, * , D,x) and 11 (A) and an ODS packed column ( • ) . 
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From Figure 6.18 it can also be seen that the increase in linear velocity is directly 

proportional to temperature. This is due to an exponential relationship between 

temperature and viscosity. As the temperature of the column increases the viscosity 

of the mobile phase decreases. An increase in temperature also results in an increase 

in current generated. As the capillary is analogous to a cylindrical conductor resistive 

(Joule) heat is produced on the application of a voltage when a current flows. The 

quantity of heat generated per volume of electrolyte, Q, can be calculated using 

Equation 6.11 where A. is the molar conductivity, c is the concentration of electrolyte 

and £ is the total porosity. The heat is dissipated by conduction through the capillary 

wall and surrounding air (or liquid in temperature controlled systems). The gradients 

of the plots in Figure 6.18 are all of similar magnitude suggesting that the heat 

produced in each column is easily dissipated. 

Q = E2Acs 

Equation 6.11 

6.3.4.3 Effect on Efficiency 

As mentioned in the previous section heat is produced on the generation of a current 

through the capillary. There wi l l be a viscosity gradient across the capillary resulting 

from the temperature difference between the core and the capillary wall. As EOF is 

inversely proportional to viscosity this wi l l cause a parabolic flow to form. An 

expression relating thermal effects and plate height was derived by Knox [6] where 

the plate height increment, H T H , due to thermal effects is larger with wider 

capillaries, electrolyte concentrations and field strengths. D m is the diffusion 

coefficient of the solute in the mobile phase. 
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Hm =10" E5dc6

r

2c2 

Equation 6.12 

The data shown in Figure 6.19 is in agreement with Equation 6.12, that is at 

increased temperatures, and viscosities efficiency is decreased. 
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Figure 6.19 The effect of temperature on the separation efficiency of thiourea 

(O), plotted on right y-axis; dipropylphthlate ( A ) and 

diphentlphthalate ( • ) plotted on left y-axis. 

6.4 Conclusions 

The columns investigated in this chapter show potential as stationary phases for 

capillary electrochromatography. Monolithic columns show several advantages over 

traditional packed capillaries: their 'hands on' preparation time is short and many 

capillaries can be prepared simultaneously from one batch of microemulsion at one 

time increasing reproducibility. Also, conditioning of the columns prior to use is 

quick and reliable allowing rapid method development. The columns themselves 
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exhibit characteristics necessary for use as separation media. An alteration of the 

mobile phase system allows analyte capacity to be altered enabling method 

development with different analytes. The use of wide pore diameters allows the use 

of low ionic strengths without the concerns of electrical double layer overlap 

experienced using columns packed with ODS beads. Further development of these 

packing materials is required to increase efficiency and gain an understanding of the 

effects of channel size and distribution on this. 
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7 Summary and Further Work 

7.1 Summary 

Polymerised bicontinuous microemulsions show potential as stationary phases for 

capillary electrochromatography. In chapter 5 it was shown that polymerised 

microemulsion systems containing a high proportion of surfactant were unsuitable 

for use as stationary phases due to the apparent production of an excess phase. Upon 

polymerisation these systems showed a nonporous layer which inhibited solvent 

flow. Lowering the surfactant level and increasing the co-surfactant level rectified 

this problem retaining bicontinuity toward the air surface of the microemulsion. 

Capillary electrochromatography experiments showed that these materials act as 

effective separation media, however with efficiencies lower than would be required 

for commercialisation. As mentioned previously monolithic columns show several 

advantages over traditional packed capillaries: their 'hands on' preparation time is 

short and many capillaries can be prepared simultaneously from one batch of 

microemulsion at one time increasing reproducibility. The ability to control porous 

properties provides additional method development parameters towards optimum 

separations. Further development of these packing materials is required to increase 

efficiency as well as a robust method for the determination of the surface area of 

these materials. Monolithic columns offer further advantages over traditional bead 

packed columns in that conditioning prior to use is quick and reliable allowing rapid 

method development. 
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Summary 

7.2 Further Work 

In order to further assess the relationships between pore size chromatographic 

behaviour, columns should be prepared and assessed with a wider range of pore 

diameters. Results obtained so far suggest that materials with a large pore diameter 

and high surface area w i l l be required to achieve high throughput efficient 

separation. This may be achieved by assessing the effect of additional non-

polymerisable substances to the oil phase. Porogens in which the polymer is more 

soluble may increase the surface area coupled with a high water content which wi l l 

aid in the creation of large channels in the resulting monolith. 

Further potential materials could include stereospecific and molecular imprinted 

stationary phases for specific analytes. 

Characterisation of the precursor microemulsions could be extended to x-ray and 

neutron scattering to determine domain size and cryogenic transmission electron 

microscopy to assess the effect of phase structure on the resulting monoliths. Further 

electrochromatography may link these factors together to enable effective prediction 

of column performance. 
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Appendix B - Butyl Methacrylate Systems 1 

8.2 B - Butyl methacrylate systems 1 

Sample 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

Total 
oi l 1 

57.8 

24.9 

22.3 

22.3 

21.9 

21.8 

19.0 

70.6 

66.1 

48.7 

30.4 

50.1 

50.1 

25.0 

25.0 

20.5 

20.4 

24.3 

20.0 

30.0 

40.0 

50.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

BMA EGDMA 

57.2 

24.7 

22.1 

22.3 

20.8 

19.6 

15.2 

67.1 

62.8 

46.2 

28.9 

47.6 

47.6 

23.8 

23.8 

19.5 

19.4 

23.1 

16.0 

24.0 

32.0 

40.0 

8.0 

16.0 

24.0 

32.0 

40.0 

48.0 

0.0 

0.0 

0.0 

0.0 

1.1 

2.2 

3.8 

3.5 

3.3 

2.4 

1.5 

2.5 

2.5 

1.3 

1.3 

1.0 

1.0 

1.2 

4.0 

6.0 

8.0 

10.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

SDS 

10.6 

12.3 

10.4 

10.4 

10.4 

10.4 

10.8 

7.3 

6.8 

8.6 

9.3 

12.5 

10.0 

18.8 

15.0 

13.3 

10.6 

7.6 

21.3 

18.7 

16.0 

13.3 

18.0 

16.0 

14.0 

12.0 

10.0 

8.0 

co-surfactant 

Pentanol 

21.1 

24.5 

20.7 

20.7 

20.8 

20.9 

21.6 

14.7 

13.6 

17.1 

18.6 

25.0 

20.0 

37.5 

30.0 

26.5 

21.2 

15.1 

Butanol Propanol 

42.7 

37.3 

32.0 

26.7 

36.0 

32.0 

28.0 

24.0 

20.0 

16.0 

water 

10.6 

38.3 

46.6 

46.6 

46.8 

46.9 

48.6 

7.3 

13.6 

25.7 

41.8 

12.5 

20.0 

18.8 

30.0 

39.8 

47.8 

53.0 

16.0 

14.0 

12.0 

10.0 

36.0 

32.0 

28.0 

24.0 

20.0 

16.0 

AMPS' 

none 

none 

none 

2.0 

2.0 

2.0 

2.0 

none 

none 

none 

none 

2.0 

2.0 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

AIBN is dissolved in the oil phase at 1 wt% of the monomers in all compositions. 
2 The AMPS values stated are weight percent added with respect to the monomers. 



Appendix B - Butyl Methacrylate Systems 1 Continued 

Sample 
No. 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

Total oil BMA EGDMA 

20.0 

30.0 

40.0 

50.0 

20.0 

40.0 

20.0 

46.9 

33.2 

22.2 

46.7 

37.5 

23.3 

47.1 

40.1 

26.4 

64.5 

50.4 

36.2 

24.4 

17.6 

10.3 

63.1 

53.6 

36.8 

22.8 

13.4 

6.1 

68.5 

59.1 

16.0 

24.0 

32.0 

40.0 

16.0 

32.0 

16.0 

28.1 

19.9 

13.3 

28.0 

22.5 

14.0 

28.3 

24.1 

15.8 

38.7 

30.2 

21.7 

14.6 

10.6 

6.2 

37.9 

32.2 

22.1 

13.7 

8.0 

3.7 

41.1 

35.5 

4.0 

6.0 

8.0 

10.0 

4.0 

8.0 

4.0 

18.7 

13.3 

8.9 

18.7 

15.0 

9.3 

18.8 

16.0 

10.6 

25.8 

20.2 

14.5 

9.8 

7.0 

4.1 

25.2 

21.4 

14.7 

9.1 

5.4 

2.4 

27.4 

23.6 

SDS 

13.3 

11.7 

10.0 

8.3 

10.7 

8.0 

5.3 

13.3 

13.4 

13.0 

14.2 

12.5 

12.8 

14.1 

12.0 

12.3 

9.2 

11.2 

12.1 

12.2 

13.7 

13.7 

9.8 

9.3 

10.5 

10.3 

8.7 

6.7 

8.4 

8.2 

co-surfactant 

Pentanol 

26.6 

26.7 

25.9 

28.4 

25.0 

25.6 

28.2 

24.0 

24.5 

18.4 

22.4 

24.2 

24.4 

27.4 

27.4 

Butanol 

19.7 

18.6 

21.1 

20.6 

17.3 

12.5 

16.8 

16.4 

Propanol 

26.7 

23.3 

20.0 

16.7 

21.3 

16.0 

10.7 

water 

40.0 

35.0 

30.0 

25.0 

48.0 

36.0 

64.0 

13.3 

26.2 

38.9 

10.7 

25.0 

38.3 

10.6 

24.0 

36.8 

7.8 

16.0 

27.5 

39.0 

41.3 

48.6 

7.4 

18.6 

31.6 

46.3 

60.6 

75.1 

6.3 

16.4 

AMPS 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 



Appendix B - Butyl Methacrylate Systems 1 Continued 

Sample 
No. 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

Total oil BMA EGDMA 

54.0 

41.2 

37.5 

59.1 

45.8 

34.5 

21.6 

10.7 

3.8 

78.7 

63.7 

42.1 

25.0 

43.2 

63.1 

60.9 

48.1 

41.3 

25.7 

24.1 

33.0 

18.0 

41.0 

23.0 

33.0 

18.0 

41.0 

23.0 

33.0 

18.0 

41.0 

23.0 

32.4 

24.7 

22.5 

35.5 

27.5 

20.7 

13.0 

6.4 

2.3 

47.2 

38.2 

25.3 

15.0 

25.9 

37.9 

36.5 

28.9 

24.8 

15.4 

14.5 

19.8 

10.8 

24.6 

13.8 

19.8 

10.8 

24.6 

13.8 

19.8 

10.8 

24.6 

13.8 

21.6 

16.5 

15.0 

23.6 

18.3 

13.8 

8.6 

4.3 

1.5 

31.5 

25.5 

16.8 

10.0 

17.3 

25.2 

24.4 

19.2 

16.5 

10.3 

9.6 

13.2 

7.2 

16.4 

9.2 

13.2 

7.2 

16.4 

9.2 

13.2 

7.2 

16.4 

9.2 

SDS 

9.2 

9.8 

10.4 

8.4 

10.2 

11.5 

10.8 

8.4 

5.1 

5.7 

7.3 

9.7 

10.0 

15.2 

7.4 

7.8 

8.7 

9.8 

9.9 

10.1 

11.2 

13.7 

13.8 

18.0 

11.2 

13.7 

13.8 

18.0 

11.2 

13.7 

13.8 

18.0 

co-surfactant 

Pentanol 

22.3 

27.3 

27.5 

35.9 

Butanol 

18.4 

19.6 

20.8 

16.9 

20.4 

23.0 

21.6 

16.7 

10.3 

22.3 

27.3 

27.5 

35.9 

Propanol 

11.3 

14.5 

19.3 

20.0 

30.3 

14.8 

15.6 

17.3 

19.6 

19.8 

20.2 

22.3 

27.3 

27.5 

35.9 

water 

18.4 

29.4 

31.2 

15.6 

23.7 

31.0 

46.0 

64.2 

80.8 

4.3 

14.5 

29.0 

45.0 

11.4 

14.8 

15.6 

26.0 

29.4 

44.6 

45.5 

33.5 

41.0 

17.7 

23.1 

33.5 

41.0 

17.7 

23.1 

33.5 

41.0 

17.7 

23.1 

AMPS 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 



Appendix C - Butyl Methacrylate Systems 2 

8.3 C - Butyl methacrylate systems 2 

Sample No. 
Total Oil 

/ w t % 

BMA 

/ wt% 

EGDMA 

/ wt% 

SDS(aq) 

/ w t % 

1-Propanol 

/w t% 

1 6.1 3.7 2.4 87.8 6.1 

2 52 31.2 20.8 24 24 

3 38.4 23.0 15.4 38.4 23.2 

4 23.0 13.8 9.2 23.1 53.9 

5 18.0 10.8 7.2 41.0 41.0 

6 33.0 19.8 13.2 33.5 33.5 

7 41.0 24.6 16.4 17.7 41.3 

8 20.0 12.0 8.0 64.0 16.0 

9 30.0 18.0 12.0 56.0 14.0 

10 39.9 24.0 16.0 48.0 12.1 

11 50.0 30.0 20.0 40.0 10.0 

12 60.0 36.0 24.0 32.0 8.0 

13 20.0 12.0 8.0 56.0 24.0 

14 30.0 18.0 12.0 49.0 21.0 

15 40.0 24.0 16.0 41.9 18.1 

16 50.0 30.0 20.0 35.0 15.0 

17 60.0 36.0 24.0 28.0 12.0 

18 20.1 12.1 8.0 48.0 31.9 

19 29.8 17.9 11.9 42.4 27.8 

20 40.6 24.4 16.2 35.6 23.8 

21 49.9 30.0 20.0 30.1 20.0 

22 60.0 36.0 24.0 24.0 16.0 

23 20.0 12.0 8.0 40.0 40.1 

24 30.0 18.0 12.0 35.0 35.0 

25 39.9 24.0 16.0 30.0 30.1 

26 50.0 30.0 20.0 25.0 25.0 

27 59.9 36.0 24.0 20.1 20.0 

28 20.0 12.0 8.0 32.0 48.0 

29 30.1 18.1 12.1 28.2 42.0 

30 40.0 24.0 16.0 24.0 35.9 

31 50.1 30.0 20.0 21.3 30.0 

32 60.0 36.0 24.0 16.0 24.1 


