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Abstract 

This thesis examines the construction of static solutions of (3+l)-dimensional 

SU(TV) Skyrme models, usual and alternative, and pure massive SU(TV) Yang-Mills 

theories. In particular, the application of harmonic maps from S2 into the subspace 

of fields configuration space Ai. Here, the harmonic maps are used as an ansatz to 

factoring out the angular dependence part of the solutions from the field equations. 

In this thesis, we consider the harmonic maps S2 Gr(n, N), where Gr(n, N) is 

the Grassmann manifold of n-dimensional planes passing through the origin in CN. 

Using the harmonic map ansatz of S2 —»• Gr(2, N) to study the usual SU(N) 

Skyrme models, we have found that our approximate solutions have marginally 

higher energies in comparison to the corresponding results previously obtained using 

(jpN-i a g t a r g e £ S p a c e M. For exact spherically symmetric solutions, we present 

arguments which suggest that the only solutions obtained this way are embeddings. 

For the alternative SU(N) Skyrme models, using the harmonic map ansatz of 

S2 —> CPN~l, we have found that our results for the energies of the exact spherically 

symmetric solutions are higher than in the usual models. 

When considering the pure massive SU(N) Yang-Mills theories, we have shown 

that by choosing the gauge potential to be of almost pure gauge form, the theories 

reduce to the usual SU(N) Skyrme models. This observation has suggested to 

us to consider the harmonic map ansatz of S2 —> CPN~l previously applied to 

monopole theories. Using this ansatz, we have constructed some bounded spherically 

symmetric solutions of the theories having finite energies. 



Declaration 

This thesis is based on research carried out by the author during the period 2000-

2002 at the University of Durham, England, under the supervision of Professor 

Wojtek Zakrzewski. No part of it has been submitted for any degree, either at the 

university or anywhere else. 

With the exception of chapters 1, 2, 3 (except for section 3.2.3) and wherever 

a reference is given, this work is believed to be original. Section 3.2.3 of chapter 

3 and chapter 4 are based on two published papers in collaboration with Wojtek 

Zakrzewski [17,18], while chapter 5 is based on an unpublished work [19]. 

C o p y r i g h t © 2002 by Hans Jacobus Wospakrik. 

"The copyright of this thesis rests with the author. No quotations from it should be 

published without the author's prior written consent and information derived from 

it should be acknowledged". 

i i i 



Acknowledgements 

I would like to thank my supervisor, Professor Wojtek Zakrzewksi, for his guidance 

and encouragements during the course of my research. I have also benefited from 

the internal Topological Soli ton seminars organised by him, and I would like to 

acknowledge all the colleagues that took part in these seminars. 

I thank my colleague M. Imran for making possibile the availability of the LA­

TEX template that I have used to prepare this thesis and also for help during the 

early months of my stay in Durham. I would also like to thank my colleagues: Jafar 

Sadeghi, Auttakit Chattaraputi and Mehrdad Ghominejad for interesting discus­

sions and encouragements; in particular, to Jaffar and Auttakit for help with the 

use of the LATEX template. 

I thank my family for their interest and constant encouragements during my 

research. 

Finally, I would like to acknowledge the QUE Project at the Department of 

Physics, Institute of Technology Bandung, Indonesia, for the fellowship which has 

supported my postgraduate study and my research for this thesis. 

iv 



Contents 

Abstract ii 

Declaration iii 

Acknowledgements iv 

1 Introduction 1 

2 Harmonic Maps and Nonlinear Sigma Models 6 

2.1 Theory of Harmonic Maps 7 

2.2 Nonlinear Sigma Models 10 

2.2.1 0(N) a model 11 

2.2.2 Compactified RN~l 13 

2.2.3 RPN~l a Model 15 

2.3 Group Theoretical Formulation of a Models 17 

2.4 Chiral Models 18 

2.4.1 Group and Geometrical Formulations 19 

2.4.2 G-Chiral Lagrangian Density 24 

2.5 Coset a Models 25 

2.5.1 Coset Formulation 25 

2.5.2 Lie Algebra Decomposition 30 

2.5.3 Geometric Formulation 32 

2.5.4 Coset a Models Lagrangian Density 37 

3 Grassmannian o Model and Their 2D Solutions 40 

3.1 Grassmannian a Model 41 

v 



Contents _vi 

3.1.1 Coset Formulation 41 

3.1.2 U(n) Gauge Invariant Lagrangian Density 46 

3.1.3 Projection Matrix Formulation 47 

3.2 Harmonic Maps R2 ->• Gr(n, N) 51 

3.2.1 Instanton Solutions 52 

3.2.2 Full Solutions 53 

3.2.3 The Action of Full Solutions and Nonabelian Toda Equations 57 

3.2.4 Topological Lowest Bound for the Action 59 

3.2.5 Veronese Map 60 

3.3 Topological Consideration 63 

3.3.1 Topological Charge: de Rham Cohomology 63 

3.3.2 Discrete Solutions: Homotopy 65 

3.4 Scale Stability and Multidimensional Solutions 66 

4 SU(N) Skyrme Models and Harmonic Maps 69 

4.1 SU(N) Skyrme Models 70 

4.2 Static Energy and Topological Charge 71 

4.2.1 Static Energy and Static Field Equations 71 

4.2.2 Scale Stability 72 

4.2.3 Topological Charge 73 

4.3 Generalised Harmonic Map Ansatz 75 

4.3.1 Energy 76 

4.3.2 Topological Charge 77 

4.4 Approximate Formulations 78 

4.5 One Projector Approximations 80 

4.5.1 SU(3) 82 

4.5.2 SU(A) 83 

4.5.3 SU(5) 86 

4.6 Two Projector Approximations 87 

4.6.1 SU(4) 88 

4.6.2 51/(5) 88 

4.7 Exact Spherically Symmetric Solutions 89 



Contents vii 

4.7.1 Condition for an Exact Spherically Symmetric Solution . . . . 89 

4.7.2 Further Analysis of the Condition (4.96) 92 

4.7.3 Some Specific Configurations 94 

4.8 Alternative SU(N) Skyrme Models 96 

4.9 Spherically Symmetric Solutions - General Discussion 97 

4.9.1 Static Energy and Equations for the Profile Functions 97 

4.9.2 Symmetries 100 

4.10 Special Cases 101 

4.10.1 SU(3) 101 

4.10.2 51/(4) 103 

4.10.3 SU{b) 104 

5 SU{N) Yang-Mills Theories and Harmonic Maps 109 

5.1 Massive SU(N) Yang-Mills Theories and Skyrme Models 110 

5.2 Static Magnetic type Energy and B-integral 112 

5.3 SU(N) Harmonic Map Ansatz 115 

5.4 Spherically Symmetric Solutions 119 

5.4.1 SU{2) 119 

5.4.2 517(3) 121 

5.4.3 SU{4) 123 

6 Conclusions and Outlook 126 

6.1 Harmonic maps 126 

6.2 SU{N) Skyrme models 127 

6.3 Alternative SU(N) Skyrme models 128 

6.4 Massive SU(N) Yang-Mills Theories 128 

6.5 Outlook 129 

Bibliography 130 

Appendix 136 

A Evaluation of Exp(/C(0)) 136 



Contents viii 

B Derivations of the properties (3.81) and (3.82) 138 

B.0.1 Derivation of (3.81) 138 

B.0.2 Derivation of (3.82) 140 

C Projectors of C -> CP3 141 

D Symmetry of the Veronese Sequence 143 

E Homotopy Groups 147 

E. l U0(M) 147 

E.2 n j ( M ) 148 

E.3 UD(M), D > 1 149 

E.4 Computation of U2(Gr(n, N)) 150 

E.4.1 IMS 1), D > 2 151 
E.4.2 IlD{U{N)) 151 

E.4.3 UD(V{n, N)) 152 

E.4.4 U2(Gr{n, N)) 153 

E.5 Computation of U3(SU{N)) 153 

F Reduced Formula for Evaluating Tr ( [ |M f c + 1 | 2 |Mjt | - 2 ] 2 ) 154 

G Condition (4.96) from the SU{N) Chiral Models 155 

H Derivation of Energy from Energy-Momentum Density Tensor 157 

H . l SU(N) Skyrme Models 158 

H.2 Pure Massive SU(N) Yang-Mills Fields 159 

I Numerical Methods 160 



List of Figures 

4.1 Approximate 5(7(4) profile functions for rank-1 and 2 cases 84 

4.2 Approximate SU(4) energy densities for rank-1 and 2 cases 85 

5.1 Profile function of the massive SU{2) Y M field for M = 1 120 

5.2 Energy density of the massive SU{2) Y M field for M = 1 120 

5.3 Profile functions of the massive SU(3) YM fields for M = 1, G o(0) = 2 

and Gi(0) = 0 122 

5.4 Energy density of the massive 517(3) Y M fields for M = 1, G 0(0) = 2 

and Gi(0) = 0 122 

5.5 Profile functions of the massive 577(4) Y M fields for M = 1, G 0(0) = 

0, Gi(0) = 2 and G 2(0) = 2 124 

5.6 Energy density of the massive 517(4) Y M fields for M = 1, G 0(0) = 0, 

Gi(0) = 2 and G 2(0) = 2 125 

ix 



List of Tables 

4.1 Approximate energies of the SU(4) Skyrme model 85 

4.2 Energies of the alternative and the usual SU(4) Skyrme models. . . . 105 

5.1 Energies of the massive SU{2) Y M fields 119 

5.2 Energies of the massive SU(3) Y M fields 121 

5.3 Energies of the massive SU(4) Y M fields (reduced case) 123 

5.4 Energies of the massive SU(4) Y M fields 124 

C. l Elements of the (4 x 4) matrices Pk = P£ (k = 0, . . . , 3) 142 

x 



Chapter 1 

Introduction 

In the course of trying to understand nucleon charge radius, which has a size of 

roughly 1 fermi [1], T. H. R Skyrme in 1962 put forward the idea that strongly 

interacting particles (hadrons) are locally concentrated static solutions of classical 

extended nonlinear sigma (chiral) model field theories [2]. This is a very interesting 

and challenging proposal as i t was against the established understanding of the 

mainstream physics at that time. "Elementary particles are quantum mechanical 

objects and that their intractions are described by perturbed quantum field theories" 

[3]. Skyrme proposal was thus left aside and was forgotten. 

A breakthrough which shed light along this line was then made by Gardner et. 

al in 1967 with the invention of inverse scattering method revealing the existence of 

multi-solitons in the (1 + 1)D (dimensional) Korteweg-de Vries (KdV) equation [4], 

which describes shallow water waves phenomena [5]. These solitons are locally con­

centrated classical solutions in one spatial dimension exhibiting particle-like be­

haviour in interactions, the analog of 3-D entities envisaged by Skyrme. However, 

their dynamics is very simple, for instance, their collisions occur elastically and they 

undergo no more than a phase shift. This peculiar property is believed to have 

relation to the fact uncovered by Gardner et. al that KdV equation possesses an in­

finite number of globally conserved quantities of dynamical origin. These conserved 

quantities was then found to exist in a large class of (1 + 1)D nonlinear classical 

field equations classified as integrable systems [5,6]. Even though these ID soli-

ton picture is outside the realm of 3D particles, which could interact nonelastically 
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and annihilate each other, the revealed basic phenomena is very interesting and 

tantalising. 

The ZD solitons of the Skyrme models, also known as skyrmions, possess a con­

served quantity that is purely topological in origin and so they are classified as 

topological solitons [7]. This conserved quantity, generally called topological charge, 

is related to the global aspects, i.e., homotopy, of static field configurations as maps 

from compactified 3D space: R3 U {oo} ~ S3 into target space of fields, i.e. the 

SU(N) group manifold. For the original Skyrme model, N — 2, the target space 

is isomorphic to the 3-sphere S3. Skyrme main proposal is to identify this inte­

ger valued winding number, i.e., the topological charge, with baryon number B of 

hadrons. 

With the advent of renormaliseable quantised nonabelian gauge field theories in 

the early '70s, an alternative theory of strong interactions was introduced around 

1973-74 in the form of 517(3) quantum chromodynamics (QCD) [3]. This theory 

explains that quarks, the building blocks of hadrons, and gluons, the quantised 

mediating coloured gauge fields between quarks, must be confined within a region 

of about 1 fermi radius. This seems to imply that the original Skyrme motivation, 

seeking classical explanation for nucleon charge radius, was no longer relevant that 

added further discouragement to the exploration of Skyrme's proposal. 

However, in the late '70s E. Witten [8] resurrected Skyrme's idea by showing 

that the Skyrme model (sigma model part) is deriveable from SU(Nc) QCD in the 

large limit of the colour number Nc. Since then, Skyrme models has been used to 

study various properties of low energy mesons and baryons [9,10]. Especially, for 

the N = 2 case, it has been argued [2,9] that they describe, at a classical level, low 

energy states of nucleons and light nuclei. 

The classical static solutions of Skyrme models with global SU (TV) symmetry is 

an interesting topic in its own right and is a challenging problem in the 3-dimensional 

nonlinear field theories. Especially, the search for bounded solutions having finite 

energies (or mass), which is one of the main problem that we are concerned in this 

thesis. 

The first exact solution, in the SU(2) case, was found by Skyrme [2]. This solu-
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tion, also known as the hedgehog solution, describes a spherically symmetric energy 

lump and has baryon number B = 1. Since Witten's suggestion that the Skyrme 

model arises in the large iV c limit of QCD [8], most of the studies involving SU (N) 

for iV > 2 considered configurations which were embeddings of the SU(2) fields [10]. 

The first non-embedding solution, for N = 3, was presented by Balachandran et. 

al. [7] who found an SO(3) subgroup soliton which has baryon number B = 2. 

Another configuration, which has a large strangeness content was then found by 

Kopeliovich et. al. [11]. 

Until very recently very little attention has been paid to field configurations 

describing many skyrmions in SU(N) models which were not embeddings of SU(2) 

skyrmions. Although some work has been done earlier [7,11] the real progress has 

only been made since Houghton, Manton and Sutcliffe had produced their harmonic 

map ansatz [12], which revealed the connection between 3D skyrmions and 2D 

harmonic maps. Here, the harmonic map ansatz is used to describe the angular 

dependence of field configurations. In their seminal work [12] Houghton et. al. have 

shown how to use rational maps of S2 —> S2 to construct field configurations for the 

SU(2) Skyrme model which have arbitrary baryon number B and, for low values 

of B, are close to the exact solutions of the model. In Ref. [13] Ioannidou et. al. 

took the SU(2) ansatz of Houghton et. al. and rewrote i t in terms of a projector 

of S2 into complex projective space CP1 and then generalised i t to more general 

projectors of S2 —>• CPN~l of rank-1 [14]. This method enabled the construction 

of new static spherically symmetric solutions for any AT. Moreover, it also presents 

field configurations, which though not solutions of the equations, are close to them 

- thus providing us with good approximants to other solutions [13]. 

The main aim of this thesis is twofolds. Firstly, to seek other possible static 

spherically symmetric solutions of the SU(N) Skyrme models having lower energy 

by using a further generalisation of Ioannidou et. aFs harmonic map ansatz method. 

Secondly, to apply harmonic map ansatz method to alternative SU(N) Skyrme 

models and Yang-Mills theories. 

The organisation of this thesis is as follows. Chapters 2 and 3 contain the nec­

essary background materials for the rest of discussions. In chapter 2, we start by 
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briefly reviewing basic concepts of harmonic mapping theories (also known as sigma 

models) as maps M.q —> M. satisfying sigma model equations. This is followed 

by extensive discussions on group and geometrical formulations of sigma models 

field configurations space Ai as coset group manifolds. In chapter 3, we concen­

trate on geometrical formulation of Grassmannian sigma model Gr(n, N), n < N, 

in terms of N x N matrix projector fields of rank-n [15]. Here, Gr(n, N) is the 

Grassmann manifold of n-dimensional planes passing through the origin in CN, for 

which CPN~l = Gr(l, N). Our main stress is on the constructions of full solu­

tions and the related topological invariants of the 2D Grassmannian sigma model, 

using projectors of higher rank. These ful l solutions, first constructed by A. Din 

and W. J. Zakrzewski [16], are backbones of the 2D harmonic maps, as they con­

stitute mutually orthogonal (N x n) matrix fields in CN, which are complete for 

the CPN~l case. Of particular importance is the Veronese sequence of N mutually 

orthogonal vector fields in CPN~l, which play an important role in the construction 

of exact spherically symmetric solutions of SU(N) Skyrme models and Yang-Mills 

field theories. 

The SU(N) Skyrme models are then considered in chapter 4 where in sections 

4.1-4.7, which are taken from Ref. [17], we generalise the method of Ioannidou et. al. 

further by considering projectors of S2 into the Grassman manifold Gr(2,N), i.e., 

using rank-2 projectors. We find that, in contrast to the rank-1 case, in which exact 

spherically symmetric solutions can be found (numerically) by using the Veronese 

sequence, such a construction is now more involved. In section 4.7, in particular, 

we formulate a condition on the sequence of A < N mutually orthogonal (N x n) 

matrix fields in Gr(n, N) which would give exact spherically symmetric solutions of 

the SU(N) Skyrme models. After analysing this condition further and considering 

some special configurations, we present arguments suggesting that its only solutions 

are embeddings. In sections 4.8-4.10, which are taken from Ref. [18], we consider 

alternative SU(N) Skyrme models which possess a modified Skyrme term, which 

deviates from the usual one when N > 2. We then show that all the ideas involving 

harmonic maps (where we concentrate our attention to rank-1 projectors) work as 

in the usual models [13]. 
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Finally, in chapter 5, we apply the harmonic map ansatz method to pure SU(N) 

Yang-Mills field theories where we concentrate on the massive case only [19] . First, 

we show that its action reduces to the SU(N) Skyrme models in the special case 

when the gauge potential is chosen to be of almost pure gauge form, which suggests 

the existence of stable static solutions having finite energies. Then, using Ioannidou-

Sutcliffe [65] harmonic map ansatz (with rank-1 projectors) for static spherically 

symmetric gauge potential, we finally found that some bounded solutions with finite 

energies can be constructed as we have expected. 

To keep our presentation self-contained, as far as possible, we have added 9 

appendices, A — I, containing details of the derivations of some formula, concrete 

examples of abstract constructions, proofs of propositions, etc. 

The thesis is concluded with a summary of the results obtained and an outlook 

for further research. 



Chapter 2 

Harmonic Maps and Nonlinear 

Sigma Models 

The concept of harmonic map is in fact a generalisation of the concept of geodesic in 

differential geometry. Basically, harmonic map is a map between Riemannian man­

ifolds which extremises a certain functional called "energy" integral in mathematics 

literature. In physics, this functional is nothing but the static energy of nonlinear 

sigma model field theories. These containing several models of special interest such 

as chiral models, O(N) and Grassmannian (which includes CPN~l) sigma models. 

Thus, harmonic maps are (static) solutions of nonlinear sigma model field equations. 

The theory of harmonic maps was introduced in mathematics in 1954 by B. F. 

Fuller [20] and the general theory was laid by J. Eeels and J. M. Sampson 10 years 

later [21]. Its role in physics was first emphasized by C. W. Misner [22] in 1978, 

who formulated nonlinear sigma model field theories in a more direct geometrical 

description. The nonlinear sigma models in 2-dimensions are of special interest 

because they bear much resemblance to 4-dimensional nonabelian gauge theories and 

that they have the property of being an "integrable" system. This generally means 

that the corresponding solutions or harmonic maps can be constructed explicitly and 

that they bear soliton-like structures, i.e. they are stable and having finite energy 

integral. 

In this chapter, we first introduce harmonic map theory, and then we discuss 

group and geometrical formulations of the nonlinear sigma models. 
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2.1 Theory of Harmonic Maps 

Let us start by briefly recalling some basic definitions of harmonic map theory 

[23-25]. Let Mo be a Riemannian manifold w i t h local coordinates X*1, jj, = 1,2, . . . , 

dim[Mo], w i t h metric 

ds2 = g^dx^dx", (2.1) 

and let M be another Riemannian manifold w i t h local coordinates f A , A = 1, 2, 

dim[M], w i t h metric 

da2 = h A B d f A d f B , (2.2) 

where g^ and HAB are the corresponding metric tensors. Here summation conven­

t ion on repeated indices is understood. 

Then the map: 

/ : M o ^ M , f = ( f A ( x ) ) , 

is called a harmonic map i f i t extremises the action 

S ( f ) = [ cT^y/g-Cix), (2.3) 
JMo 

where n 0 = dim(Mo), g = {det^^l and where 

1 d f A d f B 

C(x) = -hAB^——9ilv, (2.4) 
K ' 2 A B dx» dxv y ' K } 

is the Lagrangian density. 

Note that, we do not use the terminologies "energy" and "energy density" for 

(2.3) and (2.4), respectively, in order to avoid confusion w i t h the corresponding def­

initions in physics. I n fact, for the static case, where Mo is the spatial submanifold 

of the (2+1) or (3+l) -dimensional spacetime manifold, both terminologies coincide. 

In this thesis, we w i l l assume Mo to be general, i.e. the metric (2.1) needs not to 

be positive definite. 

Thus / is a harmonic map i f and only i f i t satisfies the Euler-Lagrange equation 

of the action S ( f ) , i.e. 

° f A + ^ - h w * " = °' ( 2 ' 5 ) 

where 
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is the covariant Laplacian of f A and where 

I B C ( / ) = \ h A D (9chBD + d B h C D - d D h B C ) , d A = d / d f A , (2 .7) 

are the components of the Christoffel symbol of M. Equation (2 .5) is a second 

order nonlinear part ial differential equations whose type depends on the signature 

s(g) = sign of diag(<7M1/) of the metric tensor of the base manifold Mo- I f s(g) = 

( + , . . . , + ) then i t is elliptic, otherwise i t is hyperbolic. The manifolds MQ and M 

are called "source" (or base) manifold and "target" (or field configuration) manifold, 

respectively. 

Classical examples of harmonic maps appear for the following cases. When the 

target manifold M is a real line, i.e. dim(M) = 1, then the Euler-Lagrange equation 

(2.5) reduces to harmonic equation: 

• / = 0. (2 .8) 

In this harmonic map / is nothing else but a harmonic function / = f ( x ) 

in Mo- When the source manifold Mo is a real line, i.e. dim(Mo) = 1, then (2.5) 

becomes 

% ^ < ^ = »-
Thus, the harmonic maps / = ( f A ( s ) ) in this case are geodesies of M parametrised 

proportionally to arc length s. The corresponding map is called a geodesic map. 

Sometimes, i t is useful to consider the composition of two harmonic maps: 

r) : M 0 ->• M', f : M ' - > M . (2 .10) 

Then we have the following. 

Propos i t ion 2.1 I f rj: Mo ->• M', and / : M! -> M being two harmonic maps 

then i f dim[M'\ = 1, the composite map: foq(x): Mo —> M is a harmonic map. 

Proof. As dim[A4'] = 1, 77 is a scalar funct ion in Mo, i.e. r\ = r\{x). By 

considering the composition forj(x) = f(r](x)) and using the chain rule in (2 .5) we 

obtain 

+ ^ ^ L ^ L \ H 1 + r A m ^ ^ l - o (211) 
d V

D V + 9 dx» dx» Ydr? + 1 B c U > dV drj \ ~ °- ( 2 - U ) 
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As r\\ Mo —>• M! is a harmonic map, rj(x) satisfies the harmonic equation (2.8). 

Hence, i f ^ " ^ r ^ r ^ 0, then for)(x) = f(r](x)) is a geodesic map parametrised 

proportionally to the harmonic funct ion 77(2;). Hence, foa(x) is a harmonic map [26]. 

• 

This proposition then implies the following. 

Coro l lary 2.1 The Lagrangian density of the harmonic map forj{x) in proposi­

t ion 1 is proportional to a free scalar field Lagrangian density. 

Proof. As for)(x) i n the previous proposition is a geodesic map, so using the 

chain rule, the Lagrangian density (2.4) becomes 

Thus, i f we choose 77 to be proportional to the arc length of the geodesic in M, i.e. 

d v

2 = jda2 = j h A B d f A d f B , (2.13) 

where A is an arbitrary nonzero constant parameter, then the Lagrangian density 

(2.12) reduces to the free scalar field Lagrangian density 

W = k P - P - l T , (2-14) 

as required. • 

Given a map / : Mo —> M, not necessarily harmonic, then its second funda­

mental form is defined by [21,25] 

a , M ) - d x l l d x U d x P + 1 BC D X T I D X I L , 

where 7^ are the components of the Christoffel symbol of g on Mo-

I f 

< ( / ) = 0, (2.16) 

then the map / is called a totally geodesic map. This map is unique as i t maps 

geodesies of MQ into geodesies of M linearly. 

This can be seen as follows. 



2.2. Nonl inear S igma Models 10 

Let = x,i(s) be an arbitrary twice differentiable curve in Mo and so f A = 

f^x^s)) = f A ( s ) . Then f rom (2.15), we derive that 

dx>> dxu 

ds ds < ( / ) = 
d 2 f ' d f B d f c fix* 

~dl? 
dxv dxp 

v p ds ds 
d f A 

dx»' 
(2.17) 

ds2 ' ~BC ds ds 

Thus, i f a^(s) is a geodesic in Mo then the second term in the right hand side of 

(2.17) vanishes, and w i t h a A „ ( f ) = 0, i t follows that f A = f A ( x f l ( s ) ) satisfies the 

geodesic equation in M. 

This fact leads to the following. 

Propos i t ion 2.2 Any total ly geodesic map / : Mo —> M is also a harmonic 

map. 

Proof. Let us consider • / i n (2.8). Using 

1 dV9 = 1 padgp* ( 2 1 8 ) 

y/g dx» 2 y dx»' v ' ; 

and 

S f L = -g^^E.g"" (2.19) 

then 

• / = sT 
i2 tA d2f 

(2.20) 
dx*dx" dxP 

Substituting (2.20) into the harmonic map equation (2.5) yields the equivalent equa­

t ion 

sTc^U) = 0- (2-21) 

Clearly, aA

v = 0 satisfies (2.21) which completes our proof. • 

The functional 

T ( / ) = < T < ( / ) , ^ v , „ (2-22) 

is called the tension of the map / : Mo ^ M which was first introduced by J. 

Eeels and J. M . Sampson [21]. Thus, / is a harmonic map i f its tension vanishes. 

2.2 Nonlinear Sigma Models 

As mentioned previously, the theory of harmonic map is what in physics literature 

called nonlinear sigma model. Here, by a nonlinear sigma model we mean a field 

theory w i t h the following properties [7]: 
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(1) The fields (f)(x) of the model are subjected to nonlinear constraints for all 

points x G Aio-

(2) The constraints and the Lagrangian density are invariant under the action 

of a global symmetry group G on (j)(x). 

To illustrate these models, in the following subsections we discuss two examples: 

the O(N) and its descendant the RPN~X nonlinear sigma models. From now on, 

we use the Greek letter a to abbreviate the adjective "sigma" in the name of these 

models. 

2.2.1 0(N) o model 

The simplest example of these models is the O(N) nonlinear a model which 

of iV-real scalar fields, <f>A, A = 1,...,N, having the Lagrangian density 

2 dx» dxv 9 ' 

where the scalar fields 4>A satisfy the constraint: 

d>A<t>A = i . 

The Lagrangian density (2.23) is obviously invariant under the global (or space 

independent) orthogonal transformations O(N), i.e. the group of iV-dimensional 

rotations: 

(t>A 4 A = 0 \ ^ . (2.25) 

I n the following, we shall derive Euler-Lagrange equations for the Lagrangian 

density (2.23) taken together w i t h the constraint (2.24). We do this by applying 

Lagrange mult ipl ier method in which, instead of (2.23), we consider the extended 

Lagrangian density: 

where 77 = rj(x) is a ^^-independent multiplier . As the fields (j)A are now being 

independent, i.e. unconstrained, the variation of the action Sv = J M o d^x^/gC^x), 
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w i t h respect to the field variations 5<fiA and 5rj is 

I 
J Mo 

6 

dx» 

+ 

dxu 

HA (y/wtS) + Ur) (<̂ V - l) (2.27) 

The first term is a to ta l divergence term, so i t vanishes after being transformed into 

a surface integral due to the boundary conditions: 8(j>A = 0 and 5r) = 0 on the 

boundary dAio-

Thus, f rom the least action principle: 5SV = 0, we derive 

1 d ( _ ..„d<f>A 

Vgdx* V99 dxv 
- fit* 0, 

0 V = 1. 

(2.28) 

(2.29) 

El iminat ing 77 f rom (2.28) by mul t ip l ing (2.28) w i t h 4>A and summing over A then 

after using (2.29) we obtain 

d(j)A d(j)A 

V = -gT (2.30) 
dx» dxv 

where we have used: (f>Adv(f)A = 0. 

Substituting (2.30) into (2.28) then yields the required Euler-Lagrange equations: 

U(f>A + g^- 4>A = 0. (2.31) 
dx*1 dx" 

Geometrically, the constraint (2.24) defines an (iV-l)-dimensional sphere SN~l 

in the iV-dimensional Euclidean space RN of field manifolds <f>A. This constraint can 

be solved, for example by introducing the parametrisation: 

4>A = f A , <f>N = ±y/{l - | / | 2 ) , A = 1,2,...,(N-1), (2.32) 

where | / | 2 = f A f A and the range of | / | is restricted to —1 < | / | < 1. The sign 

choice determines we parametrise either the upper or the lower hemisphere of SN~1. 

Using either of the two possible solutions of (2.32) allows us to wri te 

B 1 d f * d f _ 
L~<TABdx»dx» 

(2.33) 
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where the metric tensor of the target space S N 1 is given by 

h A B ( f ) = 6 A B + **** , (2.34) 

and where 5AB is the Kronecker's delta. 

I n terms of the non-constraint field / = ( f A ( x ) ) , the O(N) o model equations 

(2.31) are 
flfB ftfC 

° f A + f A h « ^ h ^ = °- ( 2 - 3 5 ) 

which coincide w i t h the general harmonic map equations (2.5) as the Christoffel 

symbol (2.7) of the metric tensor UAB i n (2.34) is 

I B C ( / ) = fAhBC (2.36) 

Thus, the non-constraint field / = ( f A ( x ) ) which solves the O(N) a model field 

equations (2.35), describes the harmonic map: 

/ : Mo^ SN~l. 

There are, of course, infini tely many parametrisations of the field <j)A, besides 

(2.32) , that can be introduced to solve the constraint (2.24). To prepare the geo­

metrical background for our discussion in the next chapters, in the following two 

subsections we discuss two other special parametrisations of the sphere S1*'1: 

(1) the stereographic projection 

iA 2 / A

 N 1 — | / | 2 , . 

* = T T | 7 r * T + W ' ( ' 
(2) the projective coordinates projection 

<t>A - J A , 4>N = , 1 (2-38) 

V T + T 7 F V ^ W 

These two parametrisations are unique as we shall see below that they provide 

conformal and projective perspectives of the sphere respectively. 

•N-l 2.2.2 Compactified R 

For the stereographic projection, as f r o m (2.37) 
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the "south" pole <f>A

s^ = ( 0 , . . . , —1) acts as the centre of projection. A point ((f>A) 

on the sphere is projected by a "ray" emerging f rom <f>A to a point ( f A ) on the 

(N — 1)-dimensional "equatorial plane" R N _ 1 , (f>N = 0. As ( f A ) is the intersection 

point of the ray w i t h the equatorial plane, so points on the northern (resp. southern) 

hemisphere have | / | < 1 (resp. | / | > 1). 

The projection (2.39) is, unfortunately, pathological as (f>A

s^ goes to points at oo 

which are not points of R1*'1 at al l . To get r id of this, we change <j>N to -<j)N in (2.39) 

which reverses the roles of north and south poles. Thus, we need two coordinate 

charts: Us = SN ~l / {<t>fs)} and UN = SN~l/{<t>fN)} which fo rm the atlas {UN,US} 

to cover S1*'1. Hence, f A in (2.39) are the stereographic coordinates of the sphere 

SN~1 in the chart Us- Relations between these two coordinates: fA

s^ e Us and 

f f i f ) € UN for each point in the overlap region UN f ] Us is given by the transition 

functions: 
jA j?A 

I(An) = ifop = i w " ( 2 ' 4 0 ) 

The corresponding metric tensor, resulting f rom (2.37) is 

h A B ( f ) = T r f ^ * (2-41) 

which is conformally equivalent to the flat metric 5AB of R N _ 1 w i t h the conformal 

factor A = 4(1 + | / | 2 ) - 2 - Hence, by including points at oo, the "plane" R N _ 1 is 

compactified to RN~* U { ° ° } — S N _ 1 . (Note that, this compactified sphere has 

infini te radius rather than uni t radius). 

As an i l lustration, let us consider the S2 case: 

( x , y , z ) e S 2 - > ( e , e ) e R 2 . 

Here, i t is convenient to use the complex coordinates: £ = (£ x + i(,2) 6 C, (i2 = — 1), 

on the plane R2. Then, in terms of the spherical polar angle coordinates (0 < 

6 < IT, 0 < (j) < 27r), of S2 i.e. (x = sin 9 cos </>, y = sin 6 sin <f>, z = cos#), the 

stereographic coordinate (2.37) in Us is 

* = + < s ) = ^ 7 = t a n ( 0 / 2 ) e * (2.42) 

and in UN is 

C = cotan(0/2)e _ < *. (2.43) 
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Note that we have chosen the phase of £ to be the conjugate of the phase of £, in order 

that in the overlap region UNC\US the transition function is holomorphic [27,28], 

i.e. 

£ = (2.44) 

For this case, the compactified complex plane C ( J { o o } — S2 is known as a 

Riemann sphere. Its metric is 

d a = ( T T W ( 2 - 4 5 ) 

2.2.3 fli^"1 <r Model 

For the projective coordinates projection, as f rom (2.38) 

f A = ~ , (2-46) 

so here the centre of projection is the centre 4>Q = ( 0 , . . . ,0) of S N ~ l . A point (4>A) 

on the northern (resp. southern) hemisphere <j)N > 0 (resp. ^ < 0) is projected by 

a ray emerging f rom 4>o to a point ( f A ) on the (N — l)-dimensional plane (f>N = 1 

(resp. 0 ^ = —1). From (2.46) we see that (4>A) and (-<j>A) have the same value 

of f A , but the corresponding projective points lying on different projective planes. 

This fact suggests us to identify antipodal (or diametrically opposite) points on 

the sphere 5 J V _ 1 and by doing this, we obtain the so called real projective space 

RP>r-i~SN-1/{1,-1}. 

The division notation " 5 N _ 1 / { 1 , —1}" means that two points w i th coordinates 

<j)A, 4>A G 5 , / v _ 1 that satisfy 4>A = \<j)A w i t h A 2 = 1 (or A = ± 1 ) are considered 

equivalent which defines the equivalence classes {4>A} ~ {\</)A}. As A 2 = 1 is also 

considered as the equation for the zeroth sphere 5 ° , so RPN~l ~ SN~l/S°. 

Thus RPN~l may be thought of as a hemisphere of SN~l w i t h antipodal points 

on the "equator" identified. Geometrically, w i t h no reference to S N ~ l , RPN~l is 

defined as an (N-l)-dimensional manifold of straightlines passing through the origin 

in RN. Thus a "point" of RPN~l is represented by a line in RN whereas a point on 

§N-I r e p r e s e n t s an equivalence class in RN [29]. 
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The extension of RPN~1 to complex manifold CN results in the complex projec­

tive space CPN~l and its generalisation, Grassmann manifold, which we shall be 

discussing separately in Chapter 3. 

Note that, under the 0 ( N ) transformation (2.25) on <pA, by virtue of (2.38), f A 

transforms as 

1 ~ o » f B + oN

N' 

which is nothing but the fractional or homographic map of RPN~l onto itself. This 

suggests the projective interpretation of the fields (f)A and f A in (2.38) as homoge­

neous and inhomogeneous (or affine) coordinates of R P N _ 1 , respectively. W i t h no 

reference to S ' A r _ 1 , the projection (2.38) is generalised to 

0(6) ' 
f A

d ) = A ^ C , (2.48) 

where (C) denotes a fixed index value C for which <f>c / 0. Hence, fA^ are the 

inhomogeneous coordinates of RPN~l in the coordinate chart = RN/{4>C}- In 

general, RPN~l is covered by iV-coordinate charts U ^ , C = 1 , . . . , N and that the 

transition funct ion in the overlap region f ] is 

In fact, the corresponding metric tensor, resulting f rom (2.38) is 

4) = ^ /(V ( " 9 ) 

. m ( l + \ f \ 2 ) 6 A B - f A f B 

which is the standard R P N _ 1 metric tensor. As "points" of RPN~1 are lines i n R N , 

the metric ds here measures the smaller angle between two lines. 

Hence, the non-constraint field / = ( f A ( x ) ) in (2.46), desribes the harmonic 

map: 

/ : M 0 -> RPN~\ 

In the rest of this thesis, by the term "cr model", we w i l l always mean for "nonlin­

ear a model". The adjective "sigma" in these models, historically, was introduced 

in relation to scalar field a in M . Gell Mann and M . Levy linear a model field 

theory of current algebra [30] where its nonlinear extension was originated by S. 

Weinberg [31-33]. 
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2.3 Group Theoretical Formulation of a Models 

There is another way of formulat ing a models using group theoretical method which 

brings out group and coset space nature of the target manifold M.. Here, by a 

group G we mean a matr ix Lie group and in this thesis we assume G to be compact. 

This formulation, which was first systematically formulated by F. Eichenher and M . 

Forger [34], is interesting in the sense that i t shows an intimate relationship between 

differential geometry and gauge theories. 

The idea is based on the observation that, taking the above O(N) a model as 

an example, the global invariance group G acts transitively on the target or field 

manifold M., which means that the action of G over a given field (f>p e M produces 

the whole field manifold M.. More specifically, for any ^ / ^ e A i , there is at 

least one element g £ G such that <f>q = g<f>p. The set of fields <f> that can be reached 

f rom 4>P by applying elements of G is called the orbit of G at 4>P. The field manifold 

M. w i th this property is called a homogeneous space of G; geometrically, this means 

that any point of M is like any other point under the action of G. 

But, i f H C G is the stability or isotropy group of a field value (j)p £ M., i.e. 

then the set of group elements gH acting on <j)p w i l l produce the same field value 

4>G ^ (f>p as acting by g alone. Therefore, in order to have a one to one correspondence 

between points of M and elements of G, we need to "divide out" H f r om G, i.e. by 

identifying all the elements of G of the fo rm gh, for a given g and arbitrary h £ H. 

Formally, we do this by performing the quotient 

which is the coset space of equivalence classes of the group G modulo the subgroup 

H, G ~ GH, called left cosets (of G relative to H or of H in G). 

Then, any g E G can be wr i t ten as 

H = {h £ G | h(j)p = <f)p} , (2.51) 

G/H = {gh\g £ G} , (2.52) 

9 = 9(9)h, 9(0) e G/H, (2.53) 

and so any (j)q £ M can be obtained f rom (f>p as 

= g(Q)HP = g(0)4>P- (2.54) 
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Here, g{8) is labeled by dim[G/H] = (dim[G] — dim[H]) parameters (9). Hence, the 

element g(6) of the cosets G/H, also called coset representative, yields a parametri-

sation of M, where dim{M\ = dim[G/H]. Therefore, we can identify M w i t h the 

cosets G/H. However, i f the identity group I do is the only subgroup of G which 

leaves every field <j> G AA invariant, i.e. H = Ida then G is said to act effectively 

on A4. Hence, M. = G/H = G, the manifold of the group G. I n this case, the 

corresponding a model is called chiral model. 

I t is interesting to note that this coset construction fit naturally into the fibre 

bundle setting (E, B, F, p) [27-29]. Here G is the total space E, G/H = M the base 

manifold B w i t h p : G —>• G/H the projection, and p~l{G/H) — H the typical fibre 

F. I n fact, this is a principal bundle w i t h structure group H. I f we let py : H —» 

GL(V) be a fixed representation of H on some A;-dimensional vector space V, then 

the bundle ((G, G/H, H, p)) ®V)/H defines a vector bundle of rank-A; associated 

to (G, G/H, H, p). For k = 1, i t is called a line bundle. 

I n the following section, we shall discuss the chiral model first which form the 

foundations of our discussion of a models on coset spaces in the next section. 

2.4 Chiral Models 

By definition, a chiral model w i t h a global symmetry group G, which in this thesis 

we call G-chiral model, is a a model where the fields (j> of the model take values in the 

manifold of the group G. To have an idea about this statement, let us consider the 

0 ( 4 ) a model. Here, the field variables <f)A, (A = 1,..., 4), can be identified wi th the 

elements of the matrices G G SU(2), in the fundamental (or spinor) representation, 

as 

G = <f>AaA + i<l>AaA, (2.55) 

where oA (A = 1,2,3) are the Pauli matrices and <J4 = I2 a (2 x 2) unit matr ix . 

We see that, this identification is consistent w i t h the 0 ( 4 ) a model constraint (2.24) 

which follows directly f rom the uni tar i ty condition of the group SU(2), i.e. G^G = 

72- The condition detG = 1 follows automatically. Note that the northern (resp. 

southern) hemisphere is represented by G (resp. -G). Hence, the elements of SU(2) 
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can be parametrised by the coordinates of the target manifold M. and that the origin 

(j)A = 0 of M. corresponds to I 2 , the identity element of SU{2). 

2.4.1 Group and Geometrical Formulations 

In general, as mentioned previously, the target space M of the G-chiral model is 

the group manifold G. Thus, elements of G correspond to points on M. and may 

be parametrised in terms of the real coordinates of M , i.e. f A , (A = 1 , . . . , n = 

dim(G)), where the origin f A = 0 determines the uni t element Ida € G. Hence, the 

target space M. is equipped w i t h a group structure. 

Let $ be the composition function which determines the group mult ipl icat ion 

[35-37]. Then i f f A and f A be the parameters corresponding to gi, g2 £ G, i.e. 

9i = 9(h) a n d #2 = g(f2), the group product g = g±g2 corresponds to the equations 

f A = *A(9i,92) = * A ( f u f 2 ) - (2-56) 

Let G ( f ) be a matr ix representation of G, satisfying 

d G ( f ) 

d f 
= - i T { A ) , (2.57) 

fA=o 

where T ^ ) are the generators of the Lie algebra Q of the group G in the chosen 

representation. These generators are normalised to TV(T^)T(B)) = \&{A){B)i where 

Tr is for trace, and that they satisfy the commutation relations 

[ T { A ) , T { B ) } = i f $ { B ) T { c ) , (2.58) 

(C) 

where f ^ ) ( B ) a r e ^ n e corresponding structure constants of Q. Note that, we have 

introduced bracketed indices, like (A), for labelling the components of a Lie algebra 

element w i t h respect to the generator T^A)-

Then (2.56) implies that 

G ( * A ( f u f 2 j ) = G ( f 1 ) G ( f 2 ) t (2.59) 

and so by taking the derivative of (2.59) w i t h respect to f 2 evaluated at f A = 0, 

yield 
f)&B Fin Fin 

(2.60) 
d f A d f B 

= G ( f l )

d G 

ft** d f * 
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The quantity 

(2.61) 0B ( f ) _ d * * { f , f 2 ) 
P(A)(t)- DFA 

2 f?=o 

is defined as the left auxiliary coordinate dependent matr ix . Equation (2.60) implies 

that 

11{A) = p f A ) d B , (2.62) 

are the infinitesimal generators of transformations via group mult ipl icat ion f rom the 

right: G —> GGr, which fo rm a basis of the vector space Tf(A4) of tangent vectors 

in M. 

Substituting (2.57) and (2.61) into (2.60) gives the relation 

p?A)dBG =-iGT{A), (2.63) 

or 

\{B]T{A) = iG-xdBG (2.64) 

where A is the inverse of p, i.e. 

W o = C (2-65) 

In terms of the exterior derivative d, the relation (2.64) in differential fo rm 

expression is [27,29] 

>$T{A)dfB = iG-'dG, (2.66) 

which shows that the mat r ix 1-form G~ldG takes values in the Lie algebra Q of G. 

This matr ix 1-form G_1dG is obviously invariant under the global transformation 

f rom the left: G —Y GiG, and is called Maurer-Cartan left-invariant 1-form. We w i l l 

see that i t plays an important role i n the geometrical formulat ion of Lie group. Note 

that, when in (2.59) we take the derivative w i t h respect to the first argument, then 

the rojes of left and right are reversed. 

Taking the exterior derivative of (2.66), then using dG^1 = —G~xdGG~l and 

Poincare lemma d2G = 0, we find that the the Maurer-Cartan 1-form components: 

A^> = X ^ d f 8 , (2.67) 

satisfy 

d \ ^ = - \ f $ { c ) \ W A (2.68) 
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the celebrated Maurer-Cartan equations. Poincare lemma c P A ^ = 0, then yields 

AC) F(E) AC) AE) AC) AE) _ 0 F 2 6 Q ) 

J(A)(B)J(C)(D) + J(D)(A)J(C)(B) ' J (B)(D)J (C)(A) ~ u > {Z.VV) 

the Jacobi identity for the structure constants J(A)(B) • 

Using the Maurer-Cartan 1-form components X^ as "building blocks", we can 

now apply Cartan's moving frames method to extract geometrical objects of the 

curved target manifold Ai that we need to construct Lagrangian density of the G-

chiral model. W i t h i n this approach, the 1-forms A ^ are taken to be the basis of 

the dual vector space Tj(Ai) which is a space of 1-forms on Ai at point / [27]. 

Hence, the components A ^ can be taken as vielbein fields of Ai, and so the 

natural metric tensor on the target manifold Ai, known as Cartan-Killing metric 

tensor, is 

hAB = A ^ A ^ = 2Tr ( X A X B ) , (2.70) 

where 

XA = A f T ( c ) . (2.71) 

The inverse metric tensor then reads 

h A B = pfoPfcy (2-72) 

For a given representation G ( f ) , the metric tensor can also be wr i t t en as 

h A B = - 2 T r [G-1 (dAG) G'1 (dBG)} , (2.73) 

which evidently invariant under the global left and right actions: G —> GiG and 

G —> GGr, respectively. 

In terms of the Maurer-Cartan 1-form A ^ , the group volume is given by 

Vn [ (A<1>AA<2>A...AA<n>) 
J M 

( A £ A g . . . A<£) e A ^ d f ' d f . . . d r , (2.74) 

where 

EA,A2...AN = SMA3...A„ = D E F 

6A> 6'i 
AN 

X 

... 5A» 

(2.75) 
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is the Levi-Civi ta antisymmetric symbol and where det is for determinant. 

Considering A#^ as elements of the (n x n) matr ix ( A ^ ) , (2.74) simplified to 

VG = J [det ( A ^ ) ] d f d f . . . d f n , (2.76) 

where we have used the definition of determinant det (^B^ given by the integrand in 

(2.74). Furthermore, the Cartan-Kil l ing metric tensor (2.70) can also be interpreted 

as matr ix mult ipl icat ion 

( h A B ) = ( X ( B } ) \ (2.77) 

and so (2.76) becomes 

VG I y/det(hAB) 
JM 1 

) d f l d f . . . d f n , (2.78) 

the standard volume integral in general coordinates ( f 1 , f 2 , . . . , /"). 

To have an explicit example about this metric tensor, let us consider the SU(2)-

chiral model. As here G _ 1 = so (2.70) becomes h A B = 2Ti(dAG^dBG) and using 

the representation (2.55) for G, we obtain 

h A B ( f ) = 4 [SAB + T j ^ y ] , (2.79) 

which coincides w i t h the metric tensor (2.34) for S3 up to the overall factor 4. 

Note that, the Lie algebra Q is a metric space as well w i t h the Killing form 

9lA){B) = Tr {adT{A)adT(B)) = f ^ f ^ c y (2-80) 

plays the role of metric tensor. Here adT(A) is the adjoint representation matr ix of 

T(A) defined by 

( a d T { A ) ) T { B ) = [ T { A ) , T ( B ) ] , (2.81) 

where (adT{A)) T { B ) = T ( c ) (adT{A)) ( C ) { B ) which implies that (adT(A)) { C ) ( B ) = f ^ B ) . 

Thus, for example, 

f(C)(A)(B) = 9(C)(D)f(

{A)(B)- ( 2 - 8 2 ) 

In fact, by mul t ip ly ing the Jacobi identity (2.69) by f^E)(F)' w e deduce that /(C)(D)(F) 

is antisymmetric in (C) and (D). Thus, f(A)(B)(c) is antisymmetric in all its in­

dices. I f det(g(A){B)) 7̂  0, then we can define the inverse metric tensor g(AKB\ i.e. 
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g{A)(B)(j(B^C) = <5^. Note that, the condition det{g^A){B)) ^ 0 is Cartan's criteria 

for the group G to be semi-simple, i.e. G has no abelian subgroup [36]. 

Next, let us return to the target manifold M, and assume that it is equipped with 

an affine connection 1-form co^y Then we have the Cartan structural equations for 

M [27,37,40]: 

T i A ) = d\W+J$}A\(B\ (2.83) 

R% = + A w c 2 ) > (2-84) 

where T { A ) and are the torsion 2-form and the curvature 2-form of M., respec­

tively. 

Now a question arises. What is the affine connection 1-form of MP. In fact, 

the answer is already provided by the Maurer-Cartan equations (2.68) that can be 

regarded as the Cartan's first structural equation (2.83). With this interpretation, 

we conclude that M. is torsion-less, i.e. = 0, and that the corresponding affine 

connection 1-form is given by 

(A) hilled- (2-85) (c ) - 2

J(B)(cy 

Armed with this connection 1-form, we can now determine the value of the curvature 

of M, that proceeds as follows. 

Firstly, we take the exterior derivative of in (2.85) and after using again 

the Maurer-Cartan equations (2.68), we obtain 

^ $ = ^ & / w U A ( 0 , A A W - ( 2 ' 8 6 ) 

Next, introducing (2.85) and (2.86) in the Cartan's second structural equation (2.84), 

and then using the Jacobi identity (2.69), we find that the curvature 2-form is 

* (2) = ^ ( C ^ A ( D ) A X i E ) - \ R % F G d f F A d f G , (2.87) 

where R^g^FG are its local components. The Riemann curvature tensor is defined 

by 
r>K _ nK \ ( B ) D 

' (B)FG' 

Hence, the scalar curvature of M is 

- ^ L F G — P(A)^L ^R\B)FG- (2.88) 

R = GLGRK

LKG = ^f(A){B)f(c)(A) = ~^9(A)(A)- (2.89) 
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For the 5f/(2)-chiral model, f^)(c) = e ( B ) ( c ) > s 0 9(A)(A) = ~6, hence i? = | . (Here 
e(A)(B)(c) is the Levi-Civita antisymmetric symbol given by (2.75)). As R in (2.89) is 

determined solely by the Killing form, i.e. the structure constants, of Q, we conclude 

that the target space M. of the G-chiral model is a Riemannian manifold of constant 

curvature. 

2.4.2 G-Chiral Lagrangian Density 

Now, we are ready to construct the Lagrangian density for the (9-chiral model. 

Substituting the metric tensor (2.73) into the Lagrangian density of the harmonic 

maps (2.4), yields 

1 d f A d f B ^ 

= -Ti[G-l{d^G)G-l{dvG)]g^, (2.90) 

where G - 1 (d^G) is the pull back of the Maurer-Cartan 1-form onto the base manifold 

Mo, i-e. 

G-l(d,G) = G-1(dAG)dllfA. (2.91) 

Equation (2.90) is the basic expression that is taken as the definition of the G-chiral 

model Lagrangian density. The Euler-Lagrange equation that follows from (2.90) is 

d2G - VGG^dpG = 0, (2.92) 

which is the G-chiral model field equation. I f we define 

L„ = G~%G, (2.93) 

then in terms of i t , the G-chiral model Lagrangian density (2.90) becomes 

£ = - T r ( i / L M ) , (2.94) 

and the Euler-Lagrange equations (2.92) simplify to 

d^Lfj, = 0. (2.95) 

Equation (2.95) is a conservation law equation for L M which suggests the name left 

current for L^. An equivalent formulation is given in terms of the right current: 

Rn = dpGG~l. 
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As the Lagrangian density (2.90) is invariant under the global left-right action: 

G -> G' = GiGGr, (2.96) 

the real invariance of the G-chiral model is Gi x Gr. In fact, the adjective chiral 

(derived from the name "chira" which means a hand in Greek) in the name of the 

models is introduced in relation to this left-right invariance. 

2.5 Coset a Models 

We now possess basic group and geometrical knowledge necessary to formulate a 

models with coset space as the target space. These include the O(N), RPN~l 

and its generalisation Grassmannian a model. In this section, we discuss a coset 

formulation of these models, in general, while in Chapter 3, we shall deal mainly 

with the Grassmannian a model [7,34,36,38,39]. For further reference, we call them 

coset a models. 

2.5.1 Coset Formulation 

To start our discussion on coset formulation of these models, let us take the O(N) 

a model as an example [36,39]. Here, we identify the fields <j)A as the elements 

in the last column of the matrix (GAB) £ O(N), in the fundamental or vector 

representation, i.e. 

<f>A = GAN. (2.97) 

This identification partitions the (N x N) matrix G into 

G = [ § A B cj)A ] , (2.98) 

where & A B is an (N x (N — 1)) matrix whereas <f>A is an Af-component column 

vector. The constraint (2.24) then follows from the orthogonality condition of O, 

i.e. GTG = IN, where the superscript T is for transposition and IN the (N x N) 

unit matrix. Explicitly, as 

G G = 

kT\A 

(2.99) 
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$ and 4> satisfy the constraints: 

'AT-l, <f>T(j) = 0, (j)T(f> = 1. (2.100) 

Now, under the right action of the group H 6 O(N) on G, «.e. G —»• 

transforms according to [7] 

^ + $ A B H B N . (2.101) 

Thus, is left invariant under this transformation if we set HAN = S A N , i.e. 

. . x 0 

H 

x 

x 

0 

X 

X 

0 

0 

1 

(2.102) 

With this definition, H defines an embedding of the group 0(N— 1) in O(N). Thus, 

0(N — 1) is the isotropy group (or in physics terminology, the little group) of the 

field manifold <pA. 

Therefore, if a transformation G\ € O(N) maps a certain field value <j)p e SN~l, 

for example the "north pole" (0, . . . , 1 ) , into another point 4>q G 5 A r _ 1 , then the 

transformation G2 = G\H on SN~l will produce the same field value as well, i.e. 

<l>q = <J20P. Hence, points on the sphere SN~l can be associated with the left cosets 

of O(N) relative to 0(N - 1), i.e. SN = 0{N)/0(N - 1). 

In general, as mentioned previously, the elements oiG/H are equivalence classes 

of the form GH and that dim[G/H] = (dim[G] — dim[H]). For our case, 

dim[0(N)/0(N-l)} = 
1 

N ( N - l ) 
;(N - 1)(N - 2) ( N - l ) , (2.103) 

as expected for the dimension of S^ - 1 . 

Giving a parametrisation <f>A = <j>A(fl,..., fN~r), as in sections 2.2.1-2.2.3, is 

equivalent to take a particular coset representantive from the cosets 0(N)/0(N — 

1) which assigns a single O(N) element to every coset [36,39]. To find such a 

parametrisation within this coset formalism, we observe that every element G € 

O(N) can be decomposed as the product: 

G = G(9)H, (2.104) 
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where H e 0(N-1), and G(9), (91,... , 9^N~^) e It"'1, is the coset space element 

which we choose as a representative element of each ^/-equivalence class. 

Here G{9) can be locally obtained by exponentiating the component of the Lie 

algebra of O(N) orthogonal to the Lie algebra of 0(N - 1). Let O(M) be the Lie 

algebra of the orthogonal group O(M) then 

0(N) = 0(N-1)®K, (2.105) 

where JC is the complement to 0(N — 1) in O(N). Thus, K consists of matrices of 

the form [36,39] 

m = 

0 

0 

-e1 

o e1 

o e^-v 
(2.106) 

Hence, the coset representative G(8) is given by 

G{9) = Exp(/C(0)) 

fiAB _|_ QAQB ( C O S J 9 | - 1 ) QA sin 

cos \e\ 

(2.107) 

as evaluated in appendix A, where \0\ = \/6A6A, 0 < |^| < IT. Setting, 

f A = e 
Asin\9\ 

\9\ ' 
(2.108) 

then the coset representative (2.107) reads 

G(f) = 

5AB + f A f B ( W ^ t } l f 

(2.109) 

- f B ± V ( 1 - I / I 2 ) -

Of course, one may choose a different representative of the cosets G/H. This is 

due to the fact that all different representatives G(f) of the cosets are related by 

/-dependent H transformation from the right on G(f), i.e. 

G ( f ) ^ G ( f ) h ( f ) , (2.110) 

for h ( f ) e H. 



2.5. Coset a Models 28 

Since G ( f ) £ G, we may examine the effect of a G transformation acting on 

G ( f ) from the left. To see this explicitly, let us consider the following infinitesimal 

g € O(N) transformation [39] 

/ + 

0 0 

— 6 

0 e 
N-l o 

AT—1 
(2.111) 

where (e1, 

leads to 

e *) are infinitesimal parameters. Acting on G( / ) in (2.109) this 

+ 

gG(f) « G ( f ) 

- e A f B ± e V ( l - | / l 2 ) 

B _ f B { e C f C ) ( ± ^ E p Z } ± _ { e C f C ) 

(2.112) 

We see that gG(f) is no longer compatible with the coset representative G ( f ) . In 

fact, we can interpret it as having the effect of inducing a coordinate transformation 

on the coset space S ^ - 1 

, i.e. 

f A ^ f ' A ^ f A ± e A y / l ^ W . (2.113) 

In general, the action of a transformation g 6 G on a coset representative G ( f ) 

will give another element g' G G. Since g' can be written uniquely in a coset 

decomposition as in (2.104), the transformation gG(f) could also be interpreted as 

having the effect of transforming G ( f ) into a different equivalence class in G/H, 

whose representative element we denote by G(f'), i.e. 

gG(f) = G(f')h(f,g), h e H. (2.114) 

This equation determines / ' and h as functions of both / and g [36,38,39] . 

The abstract relation (2.114) is given concretely, for our case 0(N)/0(N — 1), 

by the matrix multiplication [36] 

A b 

cT d 

H 0 

0 1 

(2.115) 
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where A, $ and H are (N — 1) x (TV — 1) matrices, whereas b, c and / are (N — 1)-

component column vectors. For example, to determine / ' in terms of g —(A, b, c, d) 

and / , we need to solve the equation 

(2.116) 

The effect is to change the coordinate / — » • / ' in a way that i t satisfies the group 

multiplication law. 

We notice that the "north pole" (j)p = ( 0 , . . . , 1 ) T E SN~l is mapped onto any 

point of SN~X by the coset representative G(9), i.e. 

x ( A f + b<f)N) ' x / ' ( I ) " 

x (cTf + d</)N) X ( f ) ' N ( l ) 

0 4>l 

G(6) = 

<j>N-1 

G(6) 
0 <j>N-1 

1 <t>N 

(2.117) 

In fact, using (2.107) for G{9)) in the left hand side of (2.117) gives us 

6>x sin |<9| 
4>l = sin#sin</?i.. .sin<p^r_2, 

^ = 

N-l 

6A sm\0\ 

6N~1 sin \9\ 

eNsm\e\ _ 

N-A-l 
= sin6i[ Yl sin<y3fc | c o s ^ , (2 < A < N - 2), 

jfc=i 

= sin 9 cos (pi, 

cos 9, (2.118) 

the parametrisation of . . . , (/)N) in terms of the spherical polar coordinates of 

SN~\ N>3, where 0 < 9, <fA_x < n and 0 < <f>N-2 < 2TT. Using G ( f ) from (2.109), 

instead of G(9), in (2.117) gives us <\>A = ( f A , ±y/\ - |/|2). 

Thus, we see that S N _ 1 C RN is the orbit of <f>p under the action of O(N). In fact, 

Exp(tlC(9))(j)p with t G R is a geodesic starting from <pp; conversely, every geodesic 

from (f>p is of this form [36]. 
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2.5.2 Lie Algebra Decomposition 

In the above construction, we have seen that the coset manifold G/H is generated 

through the exponential map Exp(/C) where K is the matrix vector space comple­

ment of the Lie algebra % of H in the Lie algebra Q of G. Thus, geometrically, K, 

plays the role as tangent space to the coset manifold. 

To prepare the background for our discussion in the next subsection about geo­

metric structures of this coset manifold, here we consider the algebraic structure of 

the Lie algebra decomposition: 

Q = U®K. (2.119) 

Let Ta (a = 1 , . . . , dim{Q)) be the generators of Q satisfying the commutation 

relations: 

lT«,Th\ = faTt, (2.120) 

where are the corresponding structure constants of Q. Note that, here we have 

deleted the % factor from the right hand side of (2.120) as this amounts to multiply­

ing the generators T„ by % and the corresponding group parameters by {—%) which 

changes nothing. Thus, here the generators are normalised to Tr(TaTb) = — \o~&b-

I f we let Ta (a = 1 , . . . , dim(Q) — dim{%)) and T„ (a = dim(Q) — dimffl) + 

1 , . . . , dim(Q)) be the generators of /C and H, respectively, then from (2.120) we 

have [7] 

[T,,T-b] = feTs, (2.121) 

[T a ,TJ = / £ T C > (2.122) 

[T 0 ,T 6 ] = fabT£ + fc

abTc. (2.123) 

The first commutation relation (2.121) states that % is a subalgebra which follows 

from the fact that H is a subgroup of G, whereas (2.122) implies that the generators 

of K form a representation of H. The absence of T-c in the right hand side of (2.122) 

is due to 

Tr (T j [T 5 , Tb}) = Tr (Tb [Tj, T a ]) = 0. (2.124) 

Thus, schematically, we have 

[H,H] = U, [H,K] = K, [K,Q =n®K. (2.125) 
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I f for a specific coset G/H, the corresponding subgroup H is such that the third 

commutator in (2.125) satisfies 

[JC,K] = U, (2.126) 

i.e. f£b — 0 in (2.123), then the coset G/H is a symmetric space. A detailed group 

theoretical formulation of symmetric space will be given in Chapter 3. 

As an illustration of this construction, let us consider the Lie algebra O(N). 

Here the corresponding ^N(N — 1) generators, in two indices notation, are M^B] = 

—M^^, which satisfy [35] 

M[AB),M[Cb]] = hcM[Bb] - hbM[BC] + 5BbM[AC] ~ SBCM[Ab]- (2-127) 

Let (AB) stand for the indices in a fixed order A < B; then the identifications: 

T a = M ( A B ) , Ta = M ( A N ) , (2.128) 

constitute the decomposition O(N) = G(N — 1) (B /C with nonzero structure con­

stants: 

f L = f(AB)(CD) = \ [WfE - <Wf£ + <Wf£ - S B C S E

A

F ] , (2.129) 

f-ac = f(AB)c = *Ac5dB ~ W l , (2-130) 

& - f % D ) = \ s Z D , (2-131) 

where is given by (2.75). We see that, as /fL = = / a

c

6 = 0, is a 

symmetric space. 

In the vector representation pv, as we have used above for the coset construction 

of the O(N) o model, the matrix elements of the generators M^B^ are 

{M[AB]) { d ) { £ ) ) = h{d)h{b) - h{c)h{by (2-132) 

Here the bracketed indices, (A) for example, label the components of the repre­

sentation vector, ( f ) A = \(A) > , where the matrix acts. We see that £{6)(c)(b) = 

9A (M[AN])(C)(6) coincides with (2.106). 

The case N — 2n is of particular interest, as here 0(2n) has spinor representation 

ps for which 

% B ] = ^ [ r i , r ^ ] , (2.133) 
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where are the generalised (2 n x 2 n ) Dirac gamma matrices satisfying the Clifford 

algebra [27,37]: 

1 ^ + 1 ^ = 2 ^ . (2.134) 

For this case, the coset representative is [39] 

1 
G(6) = Exp 

2 o A {TATN) 

s in ( |0 | /2L A = cos(|fl|/2) + v , ' J9A(TATN). (2.135) 
r l 

Applying this on a 2"-components spinor: i/)T = (0, 0, . . . , 0, 1) (the analog of 

(2.117)), we obtain a spinor on S , w _ 1 . 

As the coset space G/H plays an important role as the manifold for the a-model 

field configurations, we shall also use geometric terminology for these models, such 

as " 5 A r - 1 a model" for O(N) a model. 

2.5.3 Geometric Formulation 

From the above discussion, we see that within this coset formalism, the nonlinear 

a model fields take value in the coset representative G(f(x)) € G which is defined 

up to the action of global g € G from the left and the local invariant subgroup 

h ( f ) £ H (or gauge transformation) from the right, i.e. 

G ( f ) - 9G(f)h(f). (2.136) 

Due to this gauge arbitrariness, the parametrisation G ( f ) contains gauge degrees of 

freedom. Therefore, the true dynamical (physical) fields (also known as Goldstone 

bosons in physics literature) are the equivalence classes, i. e. have values in the coset 

space M = G/H. 

Thus, the invariant Lagrangian density for the G-valued fields G ( f ) should be 

constructed from the geometrical quantities of the coset space G/H. We have seen 

in the previous section that the basic geometrical object in this construction is the 

Maurer-Cartan left-invariant 1-form G~ldG. As i t takes value in the Lie algebra Q 

of G, it can be decomposed into the generators of W and /C, as follows: 

G~ldG = + V, (2.137) 
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where [7,38,39] 

n = (G~1dG)n = - 2 T 5 T r (T-aG~ldG), (2.138) 

V = (G~ldG)K = - 2 T a T r (TaG-ldG) . (2.139) 

Hence, 

dtt + nAtt = -{V AV)n, (2.140) 

dV + ttAV + VASl = ~(VAV)K. (2.141) 

Under the H-gauge transformation: 

G ( f ) -+ G ( f ) h ( f ) , (2.142) 

h ( f ) £ H, each part of the 1-form G~YdG transforms as 

fi(GTi) -> hTlSl{G)h + h-*dh, (2.143) 

V(G7i) h~lV(G)h. (2.144) 

Thus, f2 can be interpreted as a gauge potential or a connection 1-form matrix for 

H whereas V transforms covariantly. Their explicit expressions with respect to the 

local coordinates f A and the generators Ta are 

- Q a T d = &AT&dfA, (2.145) 

V = VaTa = V%TadfA. (2.146) 

The 1-forms Va can be regarded as the basis of Tj(M) of 1-forms on M at point / , 

whereas Qa defines the "spin" connection 1-form with the tangent space "rotation" 

on M. given by the isotropy group H [38,39]. 

Hence, as in the previous section, the V% can be taken as the vielbein fields on 

Ai, and so the natural metric tensor on M. is 

hAB = V\Va

B = - 2 T r ( V A V B ) , (2.147) 

where 

V A = V%Ta. (2.148) 

The metric tensor HAB in (2.147) is obviously //-gauge invariant, as VA is H-

covariant. 
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In terms of the 1-form basis: V a = V^dfA, the coset space volume integral is also 

given by (2.74), with the replacement: —>• V a , which results in the standard 

general coordinates formula (2.78) as well, where the metric tensor hAB is now given 

by (2.147). 

To have an explicit example about the coset space metric tensor (2.147), let 

us consider the coset space SN~l = 0(N)/0(N — 1). Here, the matrix G in the 

fundamental representation of O(N) is given by the partitions (2.98). Hence, the 

generic (N x N) matrix representation of (2.137) is 

G ( / ) - 1 r f G ( / ) 

~(VT)C

D 

VB

D 

d f D , (2.149) 

where 

\AC VB

D = { * T ) B A d»<t>A> (2.150) 

and where we have used the properties (2.100) so that (j)Td(f) = 0, and (d$T)(f> = 

-<&Td(j). These properties also yield: QB£ = -Q,CB. 

Using the explicit coset representative form (2.109) we derive [39] 

( ± ^ A z ^ L f P - l ) 
^ c = ( f B 5 c

D - f c s B

D ) 

V» = 5B

D + [ ±- 1 
/ 2 v v ^ w 

Thus, according to (2.147) the corresponding metric tensor is 

fAfB 
h AB &AB + 

(2.151) 

(2.152) 

(2.153) 
( l - l / l 2 ) ' 

which coincides with (2.34). 

Now let us proceed to consider the effect of the left action of the global symmetry 

group g € G, i.e. G —> G' = gG on the metric tensor hAB- In the previous subsection 

we have seen that i t has two effects on our coset formalism: 

(1). I t transforms a particular coset representative G ( f ) into G(f') of a different 

equivalence class, and so from the construction (2.147), the dependence of the metric 

tensor on / changes accordingly into 

h A B ( f ) h A B ( f ) . (2.154) 
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(2), I t induces a coordinate transformation on the coset space M: /—>• /'(/)• 

Hence, the metric tensor transforms into 

QflC QflD 
H ' A B ( f ) = J f X J f W h c M ) . (2.155) 

However, as the Maurer-Cartan 1-form G~ldG is left-invariant, so 

hAB<J') = tiAB{f), (2.156) 

which means that g is an isometry. In fact, i f we consider the infinitesimal transfor­

mation: 

f A * f A + ZA(f), (2-157) 

then by virtue of the isometry condition (2.156), the tangent vector 

X = ZA£x (2-158) 

is a Killing vector, i.e. its components £ A satisfy the Killing equations: 

UB + ^ - 2 T % ^ C = 0, (2-159) 

where FAB is the Cristoffel symbol (2.7), and where £ 4 = HAB^8• As G is the 

isometry group of M. so the number of Killing vectors admitted by M. is equal to 

dim(G), i.e. £A = e&^&A, where e°, (d = 1, . . . , dim(G)), are constant parameters. 

One can check that the infinitesimal part of the transformation (2.113), i.e. 

£A = ±eAy/l — P do satisfy the Killing equation (2.159), which is consistent with 

the fact that it is a G-transformation. 

Let us now compute the curvature of the coset space M. = G/H using Cartan's 

moving frames method. Here, the basic equations to start with are equations (2.140)-

(2.141) that could be interpreted as embedding equations of the coset space M. into 

the group manifold G. In terms of the Lie algebra components of Q, and V in (2.145) 

and (2.146), respectively, the embedding equations (2.140)-(2.141) become 

d f t 8 + \ f l S l b A = - \ f l V b A V c , (2.160) 

dVa + / f c f i S A V c = - \ f ^ c V b A V c . (2.161) 
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As the matrix curvature 2-form of the matrix //-connection 1-form f2 is defined by 

R(Q) = dQ + A SI, (2.162) 

the //-connection curvature 2-form that we read-off from (2.160) is 

= - \ f L V b A V c = l-R°BCdfB A d f c . (2.163) 

As in section 2.4.1, we regard equation (2.161) as the Cartan's first structural 

equation (2.83) from which we shall define the affine connection 1-form oja

c of the 

coset space M.. In fact, there are two ways to define this connection [38]. 

The simplest one is to choose 

u% = (2.164) 

which has non-zero torsion 2-form 

r a = -\rbcvb AVC = \ r B C d f B A d f . (2.165) 

The corresponding curvature 2-form of M. is then obtained by substituting the affine 

connection (2.164) into the Cartan's second structural equation (2.84), which yields 

Ra

c = f?dnh + /? y* n J A tf. (2.166) 

The second choice is to choose 

< = / ^ + ^ / b

a

c y b , (2.167) 

which has a vanishing torsion 2-form, i.e. T = 0. The corresponding 2-form curva­

ture Ra

c is then obtained by substituting (2.167) into (2.84). 

In the following discussion, we consider Ai to be a symmetric space, which means: 

f l b = 0, so the corresponding torsion 2-form T ° in (2.165) vanishes and the above 

two assignments become identical. 

Substituting (2.160) into (2.166) and using the Jacobi identity (2.69) for the 

special structure constants of Q = % © K., we finally obtain 

# a 6 = f?„R£ = A V° EE \ R a

b C D d f c A d f D . (2.168) 
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Thus, the Riemann curvature tensor of M. is 

RABCD = h A E R E

B C D = V{VI { p E

a V B

B R \ C D ) = ti-JleVZVb

BV*V^ (2.169) 

and so the corresponding scalar curvature is 

R = h B D R A

B A D = - g b b , (2.170) 

where gbb = -fb%fj;a is the Killing form of Q. 

For the SN~l a model case, the structure constants (2.130)-(2.131) yield 

fbVL = / 6 a ( P Q ) / i P Q ) = W»e ~ 5aJbd. (2.171) 

Hence, from (2.169) we obtain 

RABCD = ^AC^BD — hADh>Bc, (2.172) 

the standard curvature tensor of the sphere, and so the scalar curvature of S N _ 1 is 

R=(N -1)(N - 2 ) . (2.173) 

Thus, we conclude that the coset a model target space A4 = G/H is a Rieman-

nian manifold with constant curvature if Ai is a symmetric space. 

2.5.4 Coset a Models Lagrangian Density 

Now we have discussed all the basic group and geometrical formalisms we need to 

construct the Lagrangian density for the coset a model. First, we note that, by 

rewriting the decomposition (2.137) as 

dG-Gn = GV, (2.174) 

the extended matrix exterior derivative on the left hand side, i.e. 

DG = dG- GQ, (2.175) 

transforms covariantly under the //-gauge transformation (2.144). Hence, D plays 

a role as H-gauge covariant exterior derivative in M.. 
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In terms of D, the matrix vielbein field VA — V^Ta, according to the decompo­

sition (2.137) is given by [34] 

V A = G~lDAG, (2.176) 

and the metric tensor (2.147) reads 

hAB = -2Tr (VAVB) = -2Tr [ G " 1 (DAG) G~l (DBG)} , (2.177) 

which is H-gauge invariant. 

Now we are ready to construct the Lagrangian density for the coset o model. 

Substituting the metric tensor hAB in (2.177) into the Lagrangian density of the 

harmonic maps (2.4), yields 

C(x) = - T r = - T r [G~l (ITG) G'1 (D^G)] , 

where 

D^G = d^G - G%, 

is the pull back of DA in M. onto the base manifold M,$, i.e. 

d,G = dAGd,fA, 

whereas the pullback of Q,A and VA are 

^ = nAT&d»fA, = vxTad^f*, 

(2.178) 

(2.179) 

(2.180) 

(2.181) 

respectively. Equation (2.178) defines the Lagrangian density of the coset a models. 

At this stage one still have the ful l gauge invariance with respect to local H 

transformations and we can impose a gauge restricting G to the form of a particular 

coset representative. For example, let us reconsider the coset representative of .S^ - 1 

a model as given in (2.98). From the results (2.149)-(2.150), we deduce that the 

matrix partitions of the pullback of fiM and onto the base space A^o are 

$ T d M $ 0 

0 0 

0 

respectively, and so 

D^G = [D„<f> d^}, 

0 

(2.182) 

(2.183) 
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where 

£>M$ = d f l - <$><$>Tdfl. (2.184) 

Substituting f rom (2.182) and D^G f rom (2.184) into the first and second 

equality of the Lagrangian density (2.178), respectively, yield the explicit expres­

sions: 

£ = I d ^ f l ^ = T r ( J D " $ ) T £ > M $ . (2.185) 

The field equations of the first and second Lagrangian in (2.185), taken together 

w i t h the constraints (2.100) are 

+ d ^ d ^ V * = 0, (2.186) 

and 

+ $ ( £ > " $ ) T = 0, (2.187) 

respectively. 

We note that we have obtained two different formulations of the 5 W _ 1 model: 

the first one involves the O(N) vector field <j> which is the usual one, whereas the 

second one involves the mat r ix field $ and for N > 3 has a non-Abelian 0(N — 1) 

gauge symmetry. Classically, this simply amounts to different parametrisations of 

S"-1 a model [34]. 



Chapter 3 

Grassmannian a Mode l and Their 

2D Solutions 

In our application of harmonic map theory to construct solutions of static SU(N) 

Skyrme models in Chapter 4, and Yang-Mills theories in Chapter 5, we w i l l be using 

harmonic maps f rom S2 into complex projective space CP(N~^ and Grassmann 

manifold, GV(2, N). Geometrically, the Grassmann manifold Gr(n, TV), 1 < n < 

N is the manifold of n-dimensional planes passing through the origin in the TV-

dimensional complex space CN, for which CP^N~^ = Gr(l, N). 

I n the first section of this chapter we shall introduce the Gr(n, N) a model and 

then discuss its coset formulation which we use to construct the corresponding local 

U(n) gauge invariant Lagrangian density. Next, after showing that Gr(n, N) is 

a symmetric space, we proceed to reformulate the Gr(n, N) a model in terms of 

rank-n projector matrices. Using this projector formalism we discuss the method of 

constructing full harmonic maps: R2 —> Gr(n, TV), starting f rom a given instanton 

solution which was originally introduced by A. D i n and W . J. Zakrzewski [16]. 

We then discuss the Veronese sequence as an example of the f u l l harmonic maps: 

S2 —• CPN~1, which play an important role in the construction of exact spherically 

symmetric solutions of the SU(N) Skyrme models and Yang-Mills theories. 

In the final section, after discussing topological meanings of the 2D solutions, we 

discuss the Hobart-Derrick scale stabili ty argument for the existence of soliton-like 

solutions i n higher dimensions. 

40 
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3.1 Grassmannian a Model 

Let us start by recalling some basic definitions of the model [15]. The complex 

Grassmannian or Gr(n,N) a model, consists of (N x n ) , 1 < n < N, complex 

matr ix fields Z = (ZAa(x)) w i t h J4 = l , . . . , i V ; a = l , . . . , n (the analogue of the 

vector 4>A of the 5 J V _ 1 a model) which satisfy the constraint: 

(Z^)aAZAb = 5ab, or Z^Z = In, (3.1) 

where t denotes Hermit ian conjugation, and / „ the (n x n) unit matrix. 

The Lagrangian density of the model is required to be invariant under the global 

unitary transformations G € U(N) acting f rom the left on Z, 

Z -+Z' = GZ, Ge U(N), (3.2) 

and under the local H(x) G U(n) transformations f r o m the right, 

Z ->• Z' = ZH(x), (3.3) 

and is given by 

C = (D»Z)1 (D.Z), (3.4) 

where 

D^Z = d^Z - ZZ^d^Z. (3.5) 

Note that ZZ* in (3.5) is an iV x N matrix, i.e. ( Z t f ) A 6 = ZAa{Z^)a6. Taking 

into account the constraint (3.1), the Euler-Lagrange equation for the Lagrangian 

density (3.4) is 

D^D^Z + Z (D*zy D^Z = 0. (3.6) 

Note that, the special case n = 1 corresponds to CPN~X a model. 

3.1.1 Coset Formulation 

I n this subsection we discuss group and geometrical formulations of the Gr(n, N) a 

model, by formulat ing its target space as coset space. This we do by identifying the 

Gr(n,N) a model matr ix fields Z i n terms of [/(iV)-valued field, as we did for the 

SN~l model in chapter 2. 
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First, we note that i f we let w a (a = 1 , . . . , n) to be a set of TV-components 

orthonormal vectors in C N , i.e. wa.wb = ((w^)aAwAb^ = 5ab, (A, = 1, . . . ,N), 

then the matr ix field Z can be represented as 

Z = ( w \ . . . ,w") = (ZAa), n<N (3.7) 

Thus, w i t h this representation, Z defines an orthonormal n-frame in C N . Now, 

let us choose Z A a as the last ra-columns of the matrices G A B in the fundamental 

representation of U(N), i.e. 

gAa jjA(N—n+a) 

which part i t ioning G\ into 

G yAB ^Ab B = 1 , . . . , (TV — n) , 

where Y is an (N x (N — n)) mat r ix and Z an (TV x n) matr ix . Since 

zty tfz 

GG] = 

^ ^/Aa gAbjj(N—n-\-b)(N-n+a) _|_ y A B j j B ( N - n + a ) 

(3.8) 

(3.9) 

(3.10) 

the uni tar i ty condition, G^G = GG^ = 7;v implies that 

yty = Y ] Z = o, z f z = i n , YY* + zz^ = i N . (3.11) 

Thus Z satisfies the constraint (3 .1) as required. 

Under the right action of H € U(N) on G, 

(3.12) 

and we see that Z A a is left invariant i f 

j]A(N-n+a) __ fiA(N-n+a) Q J . H = 

X . . . x fit 

: x : : 

x . . . x fit 
0 n . . . 0 n In 

(3.13) 
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where 6 n is a zero column vector w i t h n-components. W i t h this definition, H defines 

an embedding of the group U(N — n) in U(N). Thus, U(N — n) is the isotropy group 

of the mat r ix fields Z, and so the corresponding target space is the coset space 

V(n, TV) = U(N)/U(N - n). (3.14) 

This coset space is known as the Stiefel manifold of orthonormal n-frames in C N , 

i.e. 

V(n, N) = { Z e M{N,n)\Z*Z = / „ } , (3.15) 

where M(N, n) is the vector space of (TV x n)-complex matrices. Since the condition 

Z^Z = / „ gives n2 real equations so the real dimension of V(n, TV) is, 

dim[V(n, TV)] = 2Nn - n2 = 2n(N - n) + n 2 , (3.16) 

which coincides w i t h the dimension of the coset U(N)/U(N — n) as i t should be. 

Geometrically, "a point" of V(n, N) is represented by an orthonormal n-frame. 

The Grassmann manifold Gr(n, TV), as we have mentioned previously, is the 

manifold of n-dimensional planes Ln passing through the origin in C N . Thus, geo­

metrically, a particular plane Ln represents "a point" of Gr(n, TV), and so to con­

struct the coset space representation of Gr(n, TV) we need to find the isotropy group 

of Ln. We observe that i f we let (w 1 , . . . , w n ) being a basis for Ln then we can 

associate the exterior vector: 

C - w 1 A . . . A w" 

= - V a i " ' d n l e « i A ••• A e « " ' ( 3 - 1 7 ) 

where (ea) are orthonormal vector basis in CN and where is antisymmetric 

in its indices. The set of ( ^ ) complex numbers •••»»), 1 < d i < . . . d n < TV, fo rm 

the so called Pliicker-Grassmann coordinates of Ln in Gr(n,N). From the property 

of exterior product, £ AC = 0, the coordinates £ ( a i - a « ) satisfy the Pliicker relation: 

^ 1..A.6 1..i 1.C [ 4 l™ a" 1C [ S l- 8" 1 = 0, (3.18) 

where e a & n g gn is given by (2.75). Thus - a » ) could be considered as a generali­

sation of homogeneous coordinates in projective space CP^~l into which Gr(n, TV) 

embeds. 
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For example, let us consider Gr(2, 4). Here we have 

w 1 = p d e a , w 2 = g

a e a , a = 1 , . . . . 4, (3.19) 

and so 

where 

C = w ^ w 2 = I ^ e a A e&> (3.20) 

= pagb _ gapb (3 2 1 ) 

By considering pa and qb as homogeneous coordinates in CP3 then (^ a 6 ) is uniquely 

determined by the line w1w^ through the points vfi and ufe (not on the chosen 

points). The six complex numbers 

(c12, c13, r , c23, c24, n , (3.22) 

are precisely the Pliicker-Grassmann coordinates in Gr (2 , 4) which can be considered 

as homogeneous coordinates in C P 5 . The corresponding Pliicker relation (3.18) is 

^2^34 _ C 13 C 24 + C 14 C 23 = Q (3 33) 

By the identification 

* i = C 1 2 + C34, z3 = C 2 4 + C 1 3 , 5̂ = c 1 4 - c 2 3 , 

z2 = C 1 2 - C 3 4 , zA = z(C 2 4 - C 1 3 ) , z6 = *(C 1 4 + C 2 3 ) . (3-24) 

equation (3.23) reads 

z\ = z\ + z\ + zj + zl + zl (3.25) 

which defines a complex quadric Q4 in CP5. Thus we see that the space of lines in 

CP3 may be thought of as a quadric hypersurface Q 4 i n C P 5 . This is known as Klein 

representation of lines in C P 3 which is the base of Penrose's twistor formulation 

[28]. I f we restrict to the real projective subspace RP5 C C P 5 then we obtain the 

identification 

SA = Q 4 P| j z e C P 5 | 2 = z } , (3.26) 

and for z G S 1 4 automatically z\ ^ 0. 
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I f the basis w ° of Ln transforms by a matr ix A, w ' a = w ' M " then f rom the 

property of the exterior product, £' — det(A)£, which describes the same plane Ln 

up to an orientation. Thus, under the right action of 

U(N - n) 0 
H = U(N -n)x U(n) (3.27) 

0 U(n) 

£ transforms into det(U(n))(, and so Ln is mapped onto itself (up to the complex 

number det(U(n)). Thus, H is the isotropy group of Ln and so we have 

Gr(n, N) = U(N)/(U(N - n) x U(n)). (3.28) 

Therefore, the real dimension of Gr(n, N) is 

dim[Gr(n, N)} = dim[U{N)\ - (dim[U{N - n)] + dim[U(n)]} = 2n(N-n). 

(3.29) 

Note that this dimension is n 2 less than d i m [ V ( n , N)], as two frames Z and Z' i n 

Gr(n, N) are considered equivalent i f they are related by an U{n) transformation 

acting f rom the right, i.e. Z ~ Z' i f Z' = ZU(n) where U(n) has n 2 parameters. 

I f the orientation of CN is taken into account, we obtain the manifold of oriented 

n-planes given by 

Gr(n, N) = SU(N)/S(U(N - n) x U(n)), 

which has the same dimension as Gr(n, N). 

The corresponding Lie algebra decomposition of Q = U(N) is 

u(N) = n e K, 

(3.30) 

(3.31) 

n = 
0 X 

K = 
0 

(3.32) 

where 

r U(N - n) 0 

0 U{n) 

and where X € M(N—n, n). Now, as here (7C, K] = %, so according to the definition 

in section 2.5.2, Gr(n, N) is a symmetric space. 

For the Stiefel manifold, V(n, N), we have 

%' = 
U(N -n) 0 

0 / „ 
(3.33) 
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and K as in (3.32). As here, for 2 < n < N: [K, K] = W © /C, so the corresponding 

Stiefel manifold V(n, N) is not a symmetric space. However, V(1, N) is a symmetric 

space, as V(1,N) = S2N~\ 

In fact, the coset definit ion (3.30) for Gr(n, N), in relation to V(n, N) in (3.14), 

shows that 

Gr(n, N) = V{n, N)/U{n). (3.34) 

This suggests the principle bundle picture: {V(n, N), Gr(r,N), U(n), p), whose 

base space is the Grassmann manifold Gr(n, TV), and the Stiefel manifold V(n, N) 

is the tota l space where the fibre p~1(Gr(n, N)) = U(n) acts. Here, the projection 

p : V(n, N) -» Gr(r, N) takes an n-frame to the n-plane i t spans. I n particular, 

CP"'1 = V(1,N)/U(1) ~ Spx-i/S1, which is an immediate extension of the real 

case: RPN~X — SN~1/S° that we have considered in section 2.2.3. 

3.1.2 U(n) Gauge Invariant Lagrangian Density 

To construct the invariant Lagrangian density of the model, let us choose the G-

invariant fields as given by the coset representative (3.9). Then, f rom the corre­

sponding Maurer-Cartan one-forms G~ldG, we find that the pull-back onto the 

base manifold Mo of the H = (U(N - n) x U(n)) connection part and the 

orthonormal basis part V^, as described in section 2.5.4, are given by 

0 

Z^duZ 

v, = 

0 Y^d^Z 

{Y%zy 

(3.35) 

respectively. Thus the covariant derivative on a G-valued field, according to (2.179), 

is given by 

D„G = [D^Y D^Z], (3.36) 

where 

DfjY = d^Y - YY^d^Y, D»Z = d^Z - ZZ%Z, 

We see that, D^Z in (3.37) coincides w i t h (3.5) and that 

(3.37) 

4, = z ^ z , B M = y ^ y , (3.38) 
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play the role as gauge field potentials or connections for the local U(n) and U(N—n) 

gauge symmetry, respectively. 

As Y^Z = 0, so the submatrix Y^d^Z of in (3.35) is in fact YiDpZ. Bearing 

this in mind, then by substituting and f rom (3.35) into the Lagrangian density 

(2.178), we obtain 

C = Tr (D^Y)* (D^Y) = Tr (D^Z)1 D„Z, (3.39) 

and the corresponding field equations are 

D^D^Y + Y (D»Y)] D„Y = 0, (3.40) 

and 

D^D^Z + Z (D^Z^ D^Z = 0, (3.41) 

respectively. 

We see that the formulat ion i n terms of Z coincides w i t h those presented in the 

beginning of this section. Note that, the number of independent fields of Z, due to 

the constraint (3.1) is n(2N — n) . However, due to the U(n) gauge invariance of 

the Lagrangian density (3.39), this number is reduced further to become 2n(N — n) 

which coincides w i t h the real dimension of the Grassmann manifold Gr(n, N). 

3.1.3 Projection Matrix Formulation 

In this subsection, we discuss group and geometrical formulations of the Grassman­

nian o model target space M. as a symmetric space, and reformulating i t in terms of 

rank-n matr ix projector P 6 C^NxN^ [34]. We shall see that this formalism enables 

us to derive a concise equivalent invariant Lagrangian density and offers us a simple 

but much structured approach to construct solutions of the models. 

To start our discussion, we need to introduce additional symmetry group a called 

involutive automorphism of G [36,40]. This term simply means that 

a2 = IdG, 0(9192) = o{gx)o{g2), (3.42) 

for gi, g2 € G where Ida is the identity element of G. The corresponding involutive 

automorphism of the Lie algebra Q is 

a2 = Idg, a ( [ J l 5 I 2 ] ) = [^(JO, a ( X 2 ) ] , (3.43) 
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for J 1 ; J 2 e 0-
We recall that i f a is an automorphism of order iV, i.e. 

aN = Idg, 

then as a vector space the Lie algebra Q splits into the direct sum 

0 = 0(o)©0(i)©.--©0(N), 

of eigenspaces of a, w i t h 

g(Q) = \ i e g \ a i i ) = e ^ i a ' N x ) . 

The automorphism property of a implies that 

[0(a), 0(/3)] ^ G(a+P mod N) • 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

Thus we see that the eigenspace 0O w i t h eigenvalue + 1 is a subalgebra. 

As involutive automorphism is an automorphism of order TV = 2, so the Lie 

algebra Q decomposes into 

0 = 0(0) ©0(i), (3.48) 

and f rom the decomposition (3.31), we can identify 0(O) = % and 0(i) = /C. Hence, 

a(H) = U and a{K) = e™K = - /C . 

Geometrically, a defines the symmetry ap at a distinguished point p G A4 which 

is a diffeomorphism of a neighbourhood of p onto itself. As K can be considered 

as the tangent space of Ai, ap maps E x p p ( T ) into Exp p (—T) where T G TP(M), 

the tangent plane at p. Hence a2, which is an identi t i ty transformation of G, is an 

involutive diffeomorphism. I f (9l, . . . , 0 d i r n ( M ) ) is the local coordinates of p then ap 

sends (0 1 , . . . , 0 d i m ( M ) ) to ( - 0 1 , . . . , - 6 d i m ( M ) ) and so the differential ap of ap at p 

is —Idp where Idp is the identity transformation at TP(M). 

For Gr(n, N), the involutive automorphism a of U(N) is defined as 

- l Vn 

IN-n 0 

(3.49) 

file:///ieg/aii
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for g € U(N). Thus, 

a(H) = VnHrj-1 = H, (3.50) 

which means that H e U(n) are fixed points of Gr(n, N) involutive automorphism 

a. For the coresponding Lie algebra decomposition, % and /C, we have o(H) = H 

and <J(K) = —JC as required. 

W i t h this brief introduction, we are now ready to give the group theoretical 

definition of the symmetric space M = G/H. A symmetric space is defined by the 

tr iple (G, H, a) where G is a connected Lie group, and H a closed subgroup of G 

such that [34,41,42] 

(Ga)0 C H C Ga, (3.51) 

w i t h Ga be the set of fixed points of a, i.e. Ga = {g € G, a(g) = g} and (Ga)0 i ts 

identity component. For Gr(n, N), we have (Ga)a = H = Ga which implies that 

Gr(n, N) is a symmetric space. 

Let $ : G —>• G/H be the natural projection which assigns to an element g 6 G 

the coset gH. Then, i t is a well known result in differential geometry that the map 

: G/H G 

gH I * " 1 ^ ) = a ( 0 ) < r \ (3.52) 

is a diffeomorphism of G/H onto the closed totally geodesic submanifold 

M a = {geG\a(g)g = I d G } , (3.53) 

of G. This is called Cartan immersion of G/H i n G. We recall that a submanifold 

M' of j V is called tota l ly geodesic i f any geodesic 7(s) in N' is a geodesic i n J\f. 

Thus, according to section 2.1, the harmonic map / : M' —>• M is a to ta l ly geodesic 

map. 

As # is a fixed element of a, i.e. cr(H) = H, so the G-valued field is gauge 

invariant and satisfies the constraint 

$ - V ( $ _ 1 ) = I N . (3.54) 

Let us return to Gr(n, N) a model and define the field 

$ = V n $ - 1 = g ^ g - 1 . (3.55) 
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This field has the properties: 

$2 = I N } $t = $ (3.56) 

Introducing the par t i t ion g = (Y, Z) G U(N), as in (3.9), then, since gr]k

1 = 

(Y, - Z ) , 

$ = Y - Z = { [Y Z] - [0 2Z] } [ y f Z t ] . (3.57) 

Using the t h i r d formula in (3.11) this reduces to 

$ = {I - 2P), 

where 

P = ZZ\ 

(3.58) 

(3.59) 

is an (N x N) matr ix projector field which projects vectors i n CN into the n-

dimensional plane Ln spanned by the column vectors w a , (a = 1 , . . . , n ) , of Z 

as defined in (3.7). I n terms of these colum vectors, 

P = ^ w a w a t , (3.60) 

which shows that P has maximal rank-n. 

Note that, the projector P satisfies the properties, 

p2 = p = p \ T r P = n, (3.61) 

where the trace property means that P is a rank-n projector, which is consistent 

w i t h the rank definition in (3.60). 

Using the decomposition (3.9) then for any U G U(N), we have 

P = UQU\ Q 

01 

(3.62) 

Furthermore, under the action of the subgroup H = {U(N — n) x U(n)) on Z 

f r o m the right: P' = Z'Z* = ZU{n)U{nyzK As U(n)U(nY = J„, we see that 
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H = (U(N — n) x U(n)) is the isotropy group of the projector P. I n this way, the 

Grassmann manifold Gr(n, N) is also defined as 

Gr(n,N) = { P G M{N,N)\P2 = P = P\ T r P = n } . (3.63) 

Since $ is if-gauge invariant, and so is w i t h P , the invariant Lagrangian density 

for the Gr(n, N) a model is simply given by [15] 

C = -TrVQdpQ = ^ T r ^ P d ^ P (3.64) 
8 2 

which coincides w i t h (3.39). Taking into account the constraint (3.61), the corre­

sponding Euler-Lagrange equations for the projector P is 

[P, DP] = 0. (3.65) 

As (3.56) constraining $ G U(N), we conclude that the solution space of the 

Gr(n, N) a model is a subspace of the t /( iV)-chiral models solution space. 

3.2 Harmonic Maps R2 -> Gr(n, N) 

I n this section we shall discuss the construction of solutions of the Gr(n, N) a-

model field equations (3.65) i n 2-dimensional Euclidean space R2 or the complex 

plane C which we w i l l be using in chapters 4 and 5. Later we compactify R2 by 

including points at oo to obtain the Riemann sphere S2 = R2 U { o o } and consider 

the harmonic maps: S2 —> Gr(n, N). I n the following, by a Gr(n, N) a model we 

always mean that the base manifold is a 2-dimensional Euclidean space. 

I n searching for these solutions, we shall use the complex coordinates (£, £) where 

£ G C, in terms of which the Gr(n, N) a model field equations (3.65) becomes 

[P, d^P] = 0. (3.66) 

This can also be wr i t ten in a conservation law equation fo rm 

d^[P,d^P]+d^[P,d^P} = 0. (3.67) 
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3.2.1 Instanton Solutions 

Using the projector property, P2 = P, we see that two special classes of solutions 

for equation (3.67) are given by the following simpler equations: 

Pd^P = 0, and Pd^P = 0, (3.68) 

which are called selfdual and anti-selfdual equations, respectively. 

Since both equations in (3.68) have similar structure, i n the following we discuss 

the construction of the solutions for self-dual equation only. For this purpose, let 

us consider an im-normalised (TV x n) matr ix field M = M ( £ , £ ) for which the 

(n x n) mat r ix \M\2 = M^M is assumed to be non-singular. As \M\2 is hermitian, 

its eigenvalues are real and so there exist an uni tary matr ix U such that 

\M\2 = UWU, (3.69) 

where A 2 is a diagonal mat r ix w i t h eigenvalues ( A 2 , . . . , X2

N). Let A be the square 

root matr ix of A 2 , i.e. ( A 2 ) I = diag ( X u . . . , XN). Then, as \M\2 = (WAU) (WAU), 

so 

\M\ = ( | M | 2 ) ^ = U^AU. (3.70) 

Hence, in terms of M, the Gr(n, TV) o model mat r ix field Z is given by 

Z = M\M\-\ (3.71) 

and so the (TV x TV) matr ix projector field P is 

P = ZZ] = M\M\~2M]. (3.72) 

As, (J — P)M = 0, the first equation in (3.68) is equivalent to 

M\M\'2 {d^My [I-P] = 0. (3.73) 

We see that the obvious solution is given by the matr ix field M which satisfies 

d f M = 0, (3.74) 

i.e. M = M 0 ( £ ) is a holomorphic matr ix field. Analogously, the solution of the 

anti-selfdual equation is given by an anti-holomorphic field M = M 0 ( 0 - The first 

class of solution is called instanton solutions while the second, anti-instanton. 
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3.2.2 Ful l Solutions 

I n this subsection, we proceed to discuss the method of generating more general 

exact solutions of the 2D GV(n, N) a model field equations (3.66) starting f rom an 

instanton solution. The method is very powerful and i t was originally introduced 

by A. D i n and W . J. Zakrzewski [15,16]. From now on, we abandon summation 

convention on repeated lower case latin indices. 

Let Mk = M fc(£,D, * = 0 , 1 , . . . , A where A < (N - 1), be a set of (A + 1) 

mutually orthogonal (N x n) matrices (n < N), i.e. 

M j M , = | M f c | 2 4 / , (3.75) 

where 

| M f c | 2 = MlMk, (3.76) 

are (n x n) nonsingular matrices. Then the corresponding projector Pk(n) onto each 

matr ix Mk is given by 

Pk(n) = Mk\Mk\~2Ml (3.77) 

Clearly, T r P k ( n ) = T r / „ = n where / „ is an (n x n) unit matrix, which means 

that each projector Pk(n) has rank-n. From (3.77), we see that the projectors 

Pjt(n) are mutual ly orthogonal, i.e. Pk(n)Pi(n) = 6ktPi(n), and are Hermitian, i.e. 

Pk(nY = Pfc(n), as by definition Mk are mutually orthogonal and, by construction 

(3.76), | M f c | 2 are Hermit ian. 

In the following we want to present a generalised harmonic map ansatz. To do 

this we use a sequence of mutually orthogonal matrices ( M 0 , M i , ...,M\) obtained 

f rom a sequence of holomorphic (analytic) matrices ( M , d^M, ...,d£M), d^M = 0, 

via the Gram-Schmidt orthogonalisation process. 

We can do this using the operator P+ which is defined by its action on any mat r ix 

M e C N x n as [15,16] 

P+M = d^M - M\M\-2(M]d/:M). (3.78) 

Then we have 

M 0 = M , M i = P + M , . . , Mk = P*M = P+{Pl~1M), MX = P*M, 
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or simply 

M 0 = M , Mk = ( I - P k - X ) d t M k _ u k = l , . . . , \ , (3.79) 

where Pk-i is the projector (3.77). 

A n equivalent formula for the sequence Mk, in terms of the projectors Pk, is 

given by 

Mk = (I - P0 - ... - P*_ t) d*M0. (3.80) 

W i t h either one of these constructions the following properties of the matrices 

Mk hold when M0 is holomorphic [15]: 

d-tMk = -Mk^\Mk^\-2\Mk\2, (3.81) 

d^(Mk\Mk\-2) = M k + 1 \ M k \ ' 2 , (3.82) 

as derived in appendix B. 

For rank-2 projectors, the matr ix Mk is given by 

Mk = ( M k l , M k 2 ) , (3.83) 

where Mk\ and Mk2 are two AT-component column vector fields and |Mfe| 2 is a 

(2 x 2) matr ix . Using this column vector notation the entries of the projector Pk{2) 

are given by 

W 2 ) L = ~ \ \ M k \ 2

2 2 ( M k l ) a ( M k l ) b + \Mk\2

n(Mk2)a(Mk2)b 

- \Mk\2

u(Mkl)a(Mk2)b ~ \Mk\2

21(Mk2)a(Mkl)b , (3.84) 

where a, b = 1,2, . . . , iV , ( M k j ) a , j = 1,2 is the complex conjugate of ( M k j ) a , and 

where 

Dk = Det\Mk\2. (3.85) 

Clearly, TrP f e (2) = 2. Furthermore, i f we let 

P k j ( l ) = Mkj\Mkj\-2Mlp (3.86) 

then f rom (3.84) i t follows that 

P f c(2) = P f c l ( l ) + P * 2 ( l ) , (3.87) 
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where 

PkM = Mk2\Mk2\-2Mt2, (3.88) 

with 

Mk2 = [I - Pki(l)]Mk2, (3.89) 

which is orthogonal to Mki, i.e. M\x Mk2 = 0. Thus, we see from (3.87) that each 

projector of GV(2, N) is really a sum of two mutually orthogonal rank-1 projectors. 

Note that for some cases this construction does not work. To see this take the 

case where the initial (N x 2) matrix Mo is chosen to be given by, 

M 0 = ( M o i , 0 € M O i ) , (3.90) 

i.e. M 02 is a derivative of M 0 i . Then i t follows from (3.79) that 

M 1 = ( 0 , M 1 2 ) . (3.91) 

Thus, in this special case, |Mx| 2 is singular, and so the projector Pi (2) does not 

exist. 

Notice also that, for the CP^N~^ case, the projectors Pk, k = 0 , . . . , (N — 1) are 

complete, i.e. 

P0 + P1+ . . . +PN-i=I, (3.92) 

and so according to the construction (3.80) 

MN = 0. (3.93) 

With the projectors Pk that we have constructed above, we have the following 

result that was originally proved by A. Din and W. J. Zakrzewski [16] using the Z 

fields formalism. 

Theorem 3.1 Each (N x N) projector Pk{n) = Mk\Mk\-2M]

k, (k = 0 , 1 , A ) , 

where Mk = P * M 0 , with M 0 = M 0 (£) a holomorphic (N x n) matrix field, solves 

the Gr(n, N) a-model Gr(n, N) field equation (3.66). 

Proof. Here we shall apply Sasaki's method [43], where we shall be using the 

projector formalism in terms of Mk, which proceeds as follows. 
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Prom the properties (3.81) and (3.82) we derive 

d6PQ = M^M^Ml 

d(Pk = M ^ M ^ M l - M ^ M k ^ M l ^ k = l,...,X. (3.94) 

Define 

k-l 

1=0 

then (3.94) imply that 

d(Qk = Mk\Mk^\'2Ml_v (3.96) 

Therefore, the orthogonality of Mks implies that Qk satisfy the self-dual equation 
QkdsQk = 0, (3.97) 

whereas Pk satisfy 

Qkd(Pk = 0, PkdeQk = dsQk. (3.98) 

Thus, the following quantities 

Rk = Qk + Pk, (3.99) 

satisfies the self-dual equation: 

Rkd6Rk = 0. (3.100) 

Using (3.97) - (3.98), then (3.100) reduces to 

PkdsPk + d<:Qk = 0. (3.101) 

Taking the Hermitian conjugate of (3.101) gives 

(dfPk) Pk + d&k = 0. (3.102) 

Now, from the integrability condition: (d^Q) = (d^Q), we obtain from (3.101) 

and (3.102) that the projectors Pk satisfy 

[Pkl d&Pk] = 0, (3.103) 

which completes the proof. • 
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3.2.3 The Action of Full Solutions and Nonabelian Toda 

Equations 

As each projector Pk(n) solves the Gr(n, N) a model equations as stated in the 

previous theorem, each projector Pk{n) describes a specific field configuration having 

action or "energy" 

Sk = i jd£dZTv (dzPkd6Pk) , (3.104) 

where -So corresponds to instanton (or anti-instanton) configuration. 

Using relation (3.94) for d^Pk and the fact that the matrices Mk are mutually 

orthogonal, then in terms of Mk, the action Sk in (3.104) becomes 

Sk = 2Tr(Mk+Afk-i), (3.105) 

where 

M k = h I d^d^Tl
 ( i M * + i i 2 i M * i - 2 ) • ( 3 - 1 0 6 ) 

and where by definition M-i = 0 (as d^M0 = 0). 

In the following we derive recurrence relations for Tr (|Mfc| 2 |Mfc_i|~ 2) appearing 

in the integral J\fk of (3.106). To do this we rewrite the definition of Mk+i in (3.79) 

as follows: 

dtMk = Mk+1 + Pkd^Mk. (3.107) 

As d^Mk is given by (3.81) so from the integrability condition: d^Mk = d ^ M k , 

we derive the recurrence relations [17]: 

d* [{dt\Mk\2) \Mk\~2] = \Mk+1\2\Mk\-2 - \Mk\2\Mk^\-2. (3.108) 

We note that for the n = 1 case, i. e. when Mk are a sequence of AT-component vector 

fields, equation (3.108) gives the celebrated Toda equation [44]. Thus, for n ^ 1 our 

equation (3.108) could be considered as its generalisation to the nonabelian case. In 

fact, it coincides with the nonabelian Toda equation considered in Refs. [45,46]. 

Furthermore, taking the trace of (3.108) we obtain 

d^[logDet\Mk\2] = T r ( | M f c + 1 | 2 | M , | - 2 ) - T r C M ^ I M ^ ! " 2 ) , (3.109) 

i.e. our recurrence relations for Tr (\Mk\2\Mk_i\~2). Note that, for n — 1, i.e. the 

Gr(l,N) = C P ( N _ 1 ) case, equations (3.108) and (3.109) are equivalent. 
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By virtue of (3.109), we have the following [17]: 

Proposition 3.1 I f Dk = Det \Mk\2 ^ 0 in the whole complex plane C and 

hmM^Dk-tlHl2"", (3.110) 

i.e. uik is the highest degree of |£ | 2 in Dk, then 

u k = M k - Mk-U (3.111) 

where J\fk, (k = 0 , . . . , A — 1), are given by (3.106). 

Proof. As we have assumed that Dk ^ 0 in the whole complex plane C so by 

applying Stokes' theorem in the plane to (3.109), i.e. 

[ d£ dftVOfc = \ i [ d & f - d^s] , (3.112) 
J 1 J\i\-+<x> 

we obtain 

% 

4-JT 
<f [d£dz(logDk) - d^(logDk)] = Mk - N k ^ , (3.113) 

where we have used (3.106) in the right hand side. 

From (3.110), i t follows that d^(logDk) —> ojk/£. Using polar coordinate £ = re1*, 

then on the circle |£| = R0 —> oo, d£ = i^dc/), so the left hand side of (3.113) becomes 

/ [d^(logDk) - dtd&ogDkj\ = -^(-2iuk) [ d<}> = W j t > (3.114) 

which yields (3.111) as required. • 

Note that, if Dk = 0 at some points, then this proposition cease to hold. In 

this case, i f the singularities of D^1 are poles, then they must be substracted from 

(3.112), i.e. using the residue theorem. As we have assumed that Dk is analytic in 

C, so cjk e Z. Hence, we have the following [16]: 

Corollary 3.1 I f the elements of the initial matrix Mo are polynomials in £ such 

that the conditions of Proposition 3.1 hold then each solution Mk has finite action. 

Proof. See the preceding outline of this construction. • 
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3.2.4 Topological Lowest Bound for the Action 

In this subsection we consider the problem of finding the lowest bound finite action 

solutions of the 2D Gr(n, N) a model field equations (3.66). First, we observe that 

the 2D Lagrangian density (3.64), in terms of the real coordinates = {x,y), can 

be written in the form of perfect square plus "something", as follows 

C = - T r 
2 

(<9MP ± e^PdvPf T 2ellvPdilPduP , n,i/ = l,2, (3.115) 

where eMl/ = — e„M with e1 2 = 1. Here, P is the generic expression for Pk. Hence, the 

corresponding action is 

S = \ j (FxTr^P ± e^Pd„P)2] T2TTQ, (3.116) 

where 

Q = ^ j ^xTvie^Pd^P}. (3.117) 

Note that the integrand in (3.117) is metric independent. In section 3.3.1, we shall 

show that Q is a topological quantity; in fact, it is the topological charge of the 

Gr(n, N) a model. 

As the first term in (3.116) is positive definite so we have the topological lowest 

bound on the action: 

S>2ir\Q\. (3.118) 

This lowest bound, known as Bogomol'nyi bound [48], would be saturated if the 

perfect square term in (3.116) vanishes, i.e. 

dltP±elu/PdvP = 0, (3.119) 

which is nothing but the (anti-)selfdual equations (3.68). This means that all (anti-) 

instanton solutions are the lowest finite action solutions with value: S0 = 27r|Qo|-

For these special class of solutions, Q 0 is also called (anti)-instanton number. 

Let us now have a closer look on the topological charge Qk of the solution Pk, 

by rewriting (3.117) in the complex coordinate f = x + iy, which takes the form 

Qk = hf d ^ x tPfc (P f c f p ^ _ P fc f"p*^ • ( 3 - 1 2 0 ) 
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Using the relation (3.94) for d^Pk and noting that the matrices Mk are mutually 

orthogonal, then in terms of Mk, we find that 

Qk= M k - (3.121) 

where Mk is given in (3.106). Thus, by virtue of Proposition 3.1, 

Qk = w f c, ojk e Z. (3.122) 

3.2.5 Veronese Map 

In this subsection, we shall illustrate explicit construction of the ful l solutions of the 

2D-Grassmannian a model as we have described in the previous subsections. Here, 

for simplicity, we shall consider the Gr(l,N) = CP^N~^ case for which M 0 € C N x l 

is a vector field, i.e. 

M 0 : C->CN, 

^ M 0 = ( / 0 , . . . , / p , . . . , / i V - i ) T . (3.123) 

In particular, to prepare analytical background for our discussions in chapters 4 

and 5, we shall discuss Veronese map or embedding [47], in which each component 

f p is a monomial in f of order p in such a way that 

| M 0 | 2 = ( H - K | a ) " ~ 1 . (3-124) 

This constraint restricts the components fp to have the form 

fp = \fcf1^, (3.125) 

where C^~l is the combinatorial factor and so the corresponding CP^N^ field is 

( V . ^ y / C p ^ , . . . , ^ - 1 ) 

l M o i " 7(TTpF 
To construct ful l solutions of the CP(N~^ field equation (3.66) generating from 

this special Veronese map, explicitly, we need to choose a specific low N, in order 

to simplify the task. 

V V . ' • (3-126) 
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For N = 4, we find, after using the construction (3.79) or (3.80), that 

M 0 = ( l , v/3£, v^e 2 , , (3-127) 

^ = ( - 3 ^ ( 1 - 2 1 ^ , ^ ( 2 ^ ^ , 3 ^ ) ^ ( 3 i 2 8 ) 

M 2 = 2 ( 3 f , - ^ - ( 2 - | a ^ ( l - 2 | a , 3 e r 

_ e K 3 , y^-, -y^-, i ) T 

M 3 - (i + ie i 2 ) 3 ' ( 3 - 1 3 0 ) 

whereas M 4 = 0, according to (3.93), and so 

| M 0 | 2 = (1 + | £ | 2 ) 3 , 

| M X | 2 = 3(1 + | £ | 2 ) , 

| M 2 | 2 = 12(1 + | £ | 2 ) - X , 

| M 3 | 2 = 36(1 + | £ | 2 ) - 3 . (3.131) 

For completeness, in the appendix C, we present the complete set of the corre­

sponding (4 x 4) matrix projectors Pk = Mk\Mk\~2M^, (A; = 0, . . . , 3). 

As for the CP^^ case, Dk = | M f c | 2 , so we conclude that 

cj0 = 3, ui = 1, u2 = —1, u>3 = —3, (3.132) 

which are the topological charges Qk for the configurations M 0 , Mi, M 2 and M 3 , 

consecutively. 

Putting the results for | M f c | 2 , k = 0 , . . . , 4 from (3.131) into the integrand of J\fk 

in (3.106) and using the integral formula 

/ 2TT , (3.133) 
(i + \m2 

we obtain 

JV0 = 3, M = 4, M = 3, M = 0. (3.134) 

With the above results for | M f c | 2 , Mk and ujk, [k = 0 , . . . , 3), we see that the recur­

rence relations (3.108) or (3.109) and (3.111) are satisfied, explicitly. 

Let us now return to the general case N and proof the following result that was 

first given by Ioannidou et. al [14]: 
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Proposition 3.2 For the Veronese map M0 in (3.126), the sequence Mk, (k = 
0 , . . . , N — 1), constructed by the scheme (3.79) or (3.80), called Veronese sequence 
[47], satisfy 

\Mk+1\2 _(k + l ) ( N - k - l ) 
\Mk\2 ~ (i + ie i 2 ) 2 • [ } 

Proof. Here, we shall make use of the recurrence relations (3.108) or (3.109). As 

i M o ^ a + i e i 2 ) ^ , 

d&(log\Mof) = (N - 1) (1 + | e | 2 ) " 2 . (3.136) 

Thus, from (3.108) or (3.109), we obtain 

| M ! | 2 ( N - l ) 
(3.137) 

\Mo\2 ( l + l ^ l 2 ) 2 ' 

as by definition M _ i = 0. 

For general k, we shall use inductive proof, by assuming (3.135) holds up to 

1 < k < (AT - 1), i.e. 

W - * < * - * > (3.138) 
|Mt_,P (1 + W 

which is already true for k = 1, as we have seen in (3.137). Equation (3.138) then 

implies that 

_ | M f c | 2 I M ^ I 2 W 
W A ~ | M f c _ 1 N M f c _ 2 r - - l M o F l °' 

and so 

d&(log\Mk\2) = ( ^ + ^ | 2 ) 2

1 ) . (3.140) 

Substituting (3.138) and (3.140) into (3.108) or (3.109) gives 

| M f c + 1 | 2

 = jk + l ) { N - k - l ) 
\Mk\2 (i + ie i 2 ) 2 ' 

which completes our inductive proof. • 

From this proposition, follows: 

(3.141) 

Corollary 3.2 Each configuration Mk, (k = 0 , . . . , N — 1), of the Veronese map 

(3.126), has 

Mk = (k + l ) ( N - k - 1), (3.142) 
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and topological charge 

Qk = ( N - 2 k - l ) . (3.143) 

Proof. Equation (3.142) follows after substituting (3.135) and using the integral 

formula (3.133). 

Since for CPN~\ Dk = | M f c | 2 , where | M f c | 2 is given by (3.139), 

l i m ^ D k -+ l e i ^ " 2 * - 1 ) . (3.144) 

Thus, according to (3.110), u)k = (N - 2k - 1) and so, by virtue of (3.122), Qk = 

(N — 2k — 1) as required, which is consistent with (3.122). • 

3.3 Topological Consideration 

We now turn to consider the topological meanings of the topological charges Qk 

and the solutions Zk = Mk\Mk\~x that we have constructed in section 3.2.2. This 

needs some algebraic topological backgrounds, in particular, de Rham cohomology 

and homotopy groups theories, which we shall discuss in this section. Here we shall 

only discuss the common framework relevant to the case under consideration. In 

fact, we do also need these topological theories background as we shall encounter 

similar topological quantities in chapters 4 and 5, which deal with the 3D cases. 

3.3.1 Topological Charge: de Rham Cohomology 

First, let us consider the topological meaning of the topological charge Qk. By a 

little inspection on the integral (3.117) we note that the integrand is in fact the pull-

back of the celebrated 1-st Chern form in Gr(n, N) [27,53] into the base manifold 

R2, i.e. 

C l ( G r ( n , TV)) = Tr(F) = Tr [PdP A dP]. (3.145) 

Here 

F = Z]dP AdPZ, (3.146) 

is the curvature 2-form of the local U (n) gauge transformation having connection 

1-form 

A = ZUZ, (3.147) 
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with local components in R2 as given in (3.38). Using (3.59) for the projector P, 

we find that 

dcx = 0, (3.148) 

which is consistent with the fact that cx is the generator of H%R(Gr(n, N), Z) , the 

second de Rham cohomology group of Gr(n, TV) with coefficients in the integers 

Z [28,29,49,51,52]. 

We recall that if ^ ( M ) denotes the set of p-forms on M, then a G ^ { M ) is 

called closed i f da = 0, and exact i f a = d/3 for /3 € ^ r p - 1 ( A ^ ) . Two closed p-forms 

are called cohomologous, denoted a ~ a' i f a — a' is exact. The set of the equivalence 

relation ~ is called the p-th de Rham cohomology group of M. and is denoted by 

H^R(/A). Its elements [a], called cohomology classes, form an additive group and 

even a vector space structure, i.e. i f a i ~ a[ and a 2 ~ ot'2 then (ai + o^) ^ (ai + a^), 

ccii ~ ca^, for c 6 R. Since any exact form is closed (d2 = 0), so we can rephrase 

the definition of HP(M) by saying that it is a quotient vector space 

= closed p-forms 
d i n ' exact p-forms v ' 

On a compact manifold M., H%R(Ai) is finite dimensional and its dimension b^R is 

called the p-th Betti number which is a topological invariant. More precisely, bp

lR = n 

if there exist n classes of closed p-forms a^), k = 1 , . . . , n, each representing [«(*)], 

such that any element a is given by the finite sum of the form 

n 
a = ^2rka{k), (3.150) 

where the coefficient rk is an element of a ring R. The notation HP(M,R) is then 

used to denote the ring type of this coefficient. As a = 0 for p > dim[M], the p-th 

Betti number bp

iR is always finite. 

For our case here, we have H%R(Gr(n, TV), Z) = Z. Here the ring of integers Z 

is considered as an infinite cyclic group with one independent generator which can 

be chosen to be + 1 . The corresponding cohomology class of the 1-st Chern form c\, 

i.e. [ci], is called the 1-st Chern class c\. In relation to this, the topological charge 

Q is also called the 1-st Chern number. 
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As the finiteness of the action (3.104) requires the boundary condition Dk —> 

|^| 2 t U f c at |£| -» oo, we may identify all points at infinity to a single point and view 

Zk : R2 U {oo} ~ S2 -> Gr(n, N). (3.151) 

Since the 1-st Chern number measures the number of times S2 is covered by the 

mapping, the integers u)k has geometric interpretation as the degree of maps Zk : 

S2 -> Gr(n, N). We refer to Refs. [53,54] for more details. 

3.3.2 Discrete Solutions: Homotopy 

The solutions Zk = Mk\Mk\~x by themselves do also provide another topological 

meaning. We have seen that each solution Zk attains discrete topological charge 

value uk E Z. This implies that solutions with different cjk fall into disjoint classes 

of field configurations which can not be transformed into one another by a continuous 

or topological deformations. In this case, the field configurations Zk and Zt with 

k ^ I are said to be nonhomotopic. 

We recall that i f F(x, r), x G SD denotes a continuous function from SD x 

[0,1] —> M. then two maps / and g are said nomotopic to each other, denoted / ~ g, 

i f F(x, T ) compatible with the boundary conditions (imposed on / and g) and fulfills 

F(x, 0) = / , F(x, 1) = g. I f F(x, r) exist then i t is called a homotopy from / to g. 

The set of these equivalence classes can be provided with a group structure HD(A4) 

called Z)-dimensional homotopy group of manifold M. Here, the notation YlD(M) 

means that we map the manifold of the £)-sphere SD into M [49,51,52]. 

A brief review on this homotopy group and their computations are given in the 

appendix E, where we have shown that 

U2(Gr(n,N)) = Z. (3.152) 

Homotopically, the result (3.152) means that there is a 2-dimensional subman-

ifold S2 C Gr(n, N) ~ S2 which is nondeformable to one point. As we have 

seen in the previous subsection that H2(Gr(n, N)) = Z, we have the isomorphism 

H2(Gr(n, N)) ~ n 2 (G'r(n, AQ). This is consistent with the celebrated Hureuiicz 

theorem [51,52] which asserts that: if Uk(M.) = 0 for k = 1, 2, . . . , (D — 1), and 

TlD(M) ^ 0 then HD(M) ~ UD{M). 



3.4. Scale Stability and Multidimensional Solutions 66 

3.4 Scale Stability and Multidimensional Solutions 

From the above discussions, we see that the solutions of the 2D Gr(n, N) a models 

satisfy the properties of being nonsingular, having finite energies, and topologically 

stable. Thus, they belong to a class of soliton solutions called topological solitons [7]. 

Their stability with respect to small initial perturbations, i.e. topological de­

formations, as was claimed in the section 3.3.2, is a neccessary condition for the 

applicability of the classical solutions to the construction of extended quantum me­

chanical objects such as particles and nuclei which we shall consider in chapters 4 

and 5. This then brought into focus the problem of analytical investigations to the 

existence of topological solitons in higher dimensions which we shall carry out in 

this section. 

The simplest stability criterion for multidimensional field theory classical so­

lutions is given by a scale argument that was first put forward by Hobart and 

Derrick [56,57], which considers energy variation under scale perturbations. This 

argument is stated as follows: 

Theorem 3.2 Let 

E[f} = J dDx£(f(x)), (3.153) 

be the static energy functional of field theories in a (D + l)-dimensional spacetime. 

I f under the scaling: 

x" ->• As", (3.154) 

where A is a scale parameter, the energy functional varies as 

E [ f } ^ E [ f ( X ) ) , (3.155) 

then a necessary but not sufficient conditions for stability of the classical solutions 

f ( x ) are given by 

dE[f(X)} 
dX 

d2E[f(X)] 

= 0, (3.156) 

dX2 
A = l 

> 0. (3.157) 

Proof: Consider the energy functional E[f(X)] as an ordinary function of one 

variable E(X) and apply calculus analysis. • 



3.4. Scale Stability and Multidimensional Solutions 67 

Let us study the application of the above theorem by starting from the o model 

energy functional (2.3) in arbitrary dimension D: 

E M ^ l J ^ s ^ , (3.158) 

where we have chosen the base space M.$ to be Euclidean and that that the summa­

tion convention on repeated indices is understood. Under the scale transformation 

(3.154), 

f A ( x ) -> fA(Xx), (3.159) 

and the energy functional (3.158) changes to 

d f A ( X x ) d f B ( X x ) 
E„[f(X)] = \ j dDxhAB{f{\x))-

dxk dxk 

1 f d D ( X x ) u , 2 . d f A { X x ) d f B { X x ) 

= X ^ E a [ f } . (3.160) 

From (3.160) i t follows that 

dX 
tPEAfiX)} 

A = l 

dX2 

(2 - D)Ea, (3.161) 

( 2 - D)(l- D)Ea. (3.162) 
A— 1 

We see from (3.160) that for D = 2, Ea[f] is scale invariant and that the sta­

bility conditions (3.156) and (3.157) are satisfied identically by (3.161) and (3.162). 

However, for D > 3, since Ea[}\ > 0, the only stable solution is the trivial one, 

/ = constant. Other nontrivial solutions, for example the composite geodesic map 

solutions in Corollary 2.1, have Ea[f] —> oo. 

Let us see whether the addition of arbitrary nonderivative potential energy 

V[f] = J dDxV(f(x), (3.163) 

could improve this result. As under the scale transformation (3.154) 

V[f] -* V[f(X)} = X~DV[f], (3.164) 

the total energy: E = Ea + V scales as 

E[f(X)} = X ^ E a [ f ] + X~DV[f], (3.165) 
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from which i t follows that 

dE[f(X)]/dX = {2-D)Ea-DV, (3.166) 

d2E[f(X)]/dX2 = (2 -D){1 -D)Ea + D(D + 1)V. (3.167) 

The extremum condition (3.156) then implies the virial type relation: V = ^2~^ Ea 

from (3.166), which after we put this relation into (3.167) yields 

d2Ea[f (X)]dX2 = 2(2 - D)Ea. (3.168) 

Hence, we conclude that all static solutions in D > 3 should be unstable. 

In chapter 4 when we discuss the SU(N) Skyrme models, we will see how to 

evade the above no-go theorem by the addition of terms of higher power in field 

derivatives to Ea in (3.158). 



Chapter 4 

SU{N) Skyrme Models and 

Harmonic Maps 

In this chapter we discuss the SU(N) Skyrme models and the alternative models, 

which are minimal generalisations of the SU(N) chiral models in (3+l)-dimensional 

spacetime that possess static finite energy solutions called multiskyrmions. They 

are examples of topological solitons in 3 spatial dimensions that evade the Hobart-

Derrick no-go theorem, which we have discussed in chapter 3. This is achieved by 

the addition of terms of higher power in field derivatives to the er-model action. 

First, we introduce formulation of the SU(N) Skyrme models and the related 

3D topological charge quantity. Then we discuss the application of harmonic map 

ansatz method to construct approximate and exact solutions of static field equations. 

This ansatz is used to factoring out the angular dependence parts of the solutions 

from the equations which leaves us with radial equations for the profile functions 

gk. Here, we generalise the harmonic map ansatz method of Ioannidou et. al [14] by 

considering rank-2 projectors of S 2 —> Gr(2, N). When comparing our results for gk 

with those of rank-1 case, we found that they are very close but having marginally 

higher energies and that exact solutions are just embeddings. 

In section 4.8 and the rest, we consider alternative SU(N) Skyrme models and 

show that the harmonic map ansatz methods work as in the usual models. Here, we 

use instead the rank-1 projectors of S2 —> CPN~l in order to compare exact results 

of both models. We found that the alternative models have higher energies. 

69 
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4.1 SU(N) Skyrme Models 

The SU(N) Skyrme models are described by SU(N) group valued functions U of 

(3 + l)-D spacetime coordinates = (x°,x = (xa)). Their dynamics is determined 

by the action [13] 

S = Jd*x£, (4.1) 

where 

£ = T r [ - ^ V / + ^{L^L^L^L"} + ^ M 2 (U~l + U - 21) ], (4.2) 

is the corresponding Lagrangian density and where 

Lp, = U-%U, (4.3) 

are the left chiral currents with values in the Lie algebra su(N), F = 189 MeV is the 

pion decay constant and a is a dimensionless constant. Notice that, our convention 

for the spacetime metric is: ds2 = (dx0)2 — (dxa)2. 

The first term in (4.2) is the SU(N) chiral models Lagrangian density (2.94) 

whereas the second term is the celebrated Skyrme term that is responsible for sta­

bilising the would be solitonic solutions. In terms of U the Skyrme term is of order 

four in field derivatives. The last term in (4.2) describes the mass term where 

is the pion (meson) mass. The action (4.1) has a global SU(N)/7J2 symmetry, as 

i t is invariant under the conjugation: U —> £IU&, where Q, € SU(N) is a constant 

matrix. 

To derive the Euler-Lagrange equations of the models, we start by considering 

variation of the action (4.1) with respect to the field variation 5U, i.e. 

5S = j d4x5C, (4.4) 

where 

SC = Tr 
p2 i p2 

- —{SL^W + i g ^ ( * [ £ „ , LV\W, W + J^M2 {5U-1 + 8U)\. (4.5) 

As 5U'1 = -U-X{5U)U-1, we have 

<5LM = -U~l (<$[/)£„ + L^U'1 (6U) + (U-HU), (4.6) 
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and so 

Tr {(SLJIS) = - T r [{d^V) U~l6U] (4.7) 

plus a to ta l divergence term. 

Next, using the fact that is the pull-back of the Maurer-Cartan 1-form which 

satisfies the Maurer-Cartan equation: 

dyX-u - dvLp = -[Lp, Lu], (4.8) 

then 

<y[Lp> Lv) = -dp&Lv + duSL^ (4.9) 

f rom which we derive that 

Tr ((5[Lll,Lv])[If,L"]) = 2Tr ( ( ^ [ L ^ , [Lv, Z/ 1]]) U~l5U) (4.10) 

plus a to ta l divergence term. 

Substituting (4.7) and (4.10) i n (4.4) and throwing away the tota l divergence 

terms, which are transformed into surface integral terms, due to the vanishing of 

the variation SU on the boundary, we arrive at 

SS = j d ' x T r ^ d , ^ + ^ . [ L . J L M I ] + ^ M ^ U - I T 1 ) ) {U~X8U) . 

(4.11) 

Hence, the equations of motion, in matr ix fo rm, that we read-off f rom (4.11) are 

D» (L» - -±^[LV, [L<\ L " ] ] ) + l-Ml (U - I T 1 ) = 0. (4.12) 

4.2 Static Energy and Topological Charge 

I n the following discussions we shall concentrate on the static case only, for which 

Lo = 0. 

4.2.1 Static Energy and Static Field Equations 

The static energy of the SU(N) Skyrme models, as we have derived in the appendix 

H . l , is given by E = E s t a t in (H.1.9), i.e. 

E = - J d3xTr[^Ll + J L [ L a > Lbf + ^ M l ( I T 1 + U - 2 I ) ] , (4.13) 
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We see that the energy density E of (4.13) coincides w i t h the negative of the La-

grangian density (4.2), i.e. 8 = —Cstat as derived f rom the canonical method. 

To study solitonic properties of the SU(N) Skyrme models f rom the static energy 

E i n (4.13), i t is convenient to scale the spatial coordinates x by setting x - » 2x/aF 

and give the energy in units of F /4o , i.e. by taking F/Aa = l/(12n2). I n this uni t 

the energy (4.13) reads 

, (4.14) 

where m% = 2M7r/aF and the equations of motion (4.12), in the static case, read 

da ( La - ^[Lb,[La,Lb]] 
m: 

'*(U- U~l) = 0. (4.15) 

which coincides w i t h stationary points (minima or saddle points) of the static energy 

(4.14). 

4.2.2 Scale Stability 

Let us now examine scale stability of the static energy (4.14). As under the scale 

transformation: x —>• Ax, the currents La scale as 

La(x) -+ U - \ X x ) ^ ^ - = XLa(Xx), 
dxa 

(4.16) 

the energy (4.14) changes to 

d3{Xx) 
A 3 

Tr - \x2La(Xx)2 - ±X4[La(Xx), Lb(Xx)}2 

—Ep + XEshr, (4.17) 

where Ea and ESkr are the static chiral energy term and the Skyrme term, respec­

tively. 

From (4.17) i t follows that 

dE[X] 
dX 

d2E[X] 
dX2 

A=l 

A=l 

A 2 
E„ + ESkr 

A=l 
— —Ea + ESkri 

2 p 

A=l 
= 2Ea. 

(4.18) 

(4.19) 
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The extremum condition dE[X]/dX = 0 implies that E„ = Eskr, and so, i f Ea > 

0, (4.19) implies that the static energy (4.14) is stable against scale perturbations. 

Thus, we conclude that the SU(N) Skyrme models admit the existence of stable 

static finite energy solutions. We see that i t is the additional Skyrme term that is 

responsible for stabilising the would be solitonic solutions. 

4.2.3 Topological Charge 

We observe that the energy (4.14), in the massless case mn = 0, can be wr i t ten in 

the fo rm of a perfect square plus "something" as follows 

E = vh j ^ ( L ° ± I C a 6 c [ L b ' L c ] ) ± 24^ /
 d3x€abc

 ^ (LaLbLJ • 
(4.20) 

where eaf,c is the Levi-Civita symbol, i.e. eabc = S^l, where the right hand side is 

defined in (2.75). The first integral is positive definite and thus we arrive at the 

energy lower bound 

E > B, (4.21) 

where 

B = 2 i b / d 3 x € a b c T r ( L q L 6 j L c ) • ( 4 2 2 ) 

This bound is known as Faddeev bound that would be saturated i f 

La T \eabc[Lb, Lc] = 0. (4.23) 

I t turns out that the only solution to this equation is the t r iv ia l one, namely U = 

constant and so La = 0. We note that B is metric independent and we shall show 

that i t is a topological quantity. In fact, B is the topological charge of the SU(N) 

Skyrme models. Thus, equation (4.21) shows that the energy E is measured in the 

topological charge unit. 

In order that a given configuration corresponds to a finite energy lump, we must 

impose the boundary condition that the field U(x) goes to a constant matr ix UQ at 

spatial inf ini ty. As by a global SU(N) transformation, this U0 can be brought to 

the identity matr ix i , so wi thout the loss of generality we can impose the following 

boundary condition on U: U —> I as |x | —> oo. 
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As La = U 1daU, this boundary condition implies that U[x) is effectively a 

mapping: 

U: R3 U {00} ~ S3 -> SU(N). (4.24) 

I n chapter 3, we have seen that such maps fa l l into homotopy classes and are sim­

ply the elements of the 3th-homotopy group Yl3(SU(N)) = Z as computed in the 

appendix E. 

Let us now have a look at the topological meaning of the topological charge B 

in (4.22). We notice that L = U~ldU is the Maurer-Cartan left invariant 1-form of 

the SU(N) group manifold and so the corresponding integrand is the pull-back of 

the 3-form 

ft = Tr (L A L A L), (4.25) 

into the base space R3. As L satisfies the Maurer-Cartan equation dL = — L A L, 

ft = - T r (dL A L), (4.26) 

and we derive that dQ = 0. This result is obtained by using the Lie algebra com­

ponent fo rm L = U~ldU = X^T^A) where T(A) are the S U ( N ) generators and 

the vielbein 1-forms of the SU(N) group manifold. Thus, dL = dX^T^A) where 

is given by (2.68). Assuming that the generators has been chosen so that the 

Cartan-Kil l ing fo rm is simply the Kronecker delta, then the vanishing of d f t follows 

f rom the Jacobi identities (2.69) [58]. 

Thus ft generates the 3th-de Rham cohomology group H%R(SU(N)). As we have 

shown in appendix E that Ui(SU(N)) = U2(SU(N)) = 0, so according to Hurewicz 

theorem: 

H3

dR(SU(N)) = U3(SU(N)) = Z . (4.27) 

Hence, B is .the integer valued winding number of the map U: 5 3 —> SU(N). 

I n relation to (static) solutions of the SU(N) Skyrme models, B classifies the 

solitonic sectors of the models. Following Skyrme [2] and W i t t e n [8], B is identified 

w i t h baryon number of the finite energy lump configurations called multiskyrmions. 

Thus, multiskyrmions are stationary points (minima or saddle points) of the static 

energy functional (4.13). 
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4.3 Generalised Harmonic Map Ansatz 

In this section, we first rewrite the energy (4.14) and the topological charge (4.22) 

in the spherical polar coordinates (r, 9, <p). Later we introduce the harmonic map 

ansatz - so i t is convenient to replace the spherical angular coordinates by the 

complex (or holomorphic) stereographic coordinates (£, £) where £ is related to the 

9, <p, via £ = tan as given in (2.42). 

The spatial metric i n the spherical polar coordinates (r, 9, cp): 

ds2 = dr2 + r2 (d92 + s in 2 9d(f>2) , (4.28) 

then reads 

ds2 = dr2 + r2 

.(1 + lel 2) 2 

in the (r, £, £) coordinates, whereas for the volume element 

dzx = r2dr [sm9d0d(f>] = r2dr . 2 ^ t 9 

L(l + \kYY . 
We also note that in (£, £) coordinates, the angular derivatives d$ and d$ read: 

( i + m 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

respectively, where |£| = \/ |<!; | 2 . 

Taking the sequence of rank-n projectors Pk(n) = Pk in section 3.3.2, we can 

now formulate our generalised harmonic map ansatz for the SU(N) Skyrme fields 

in 3 dimensions. Namely, we take the mat r ix U e SU(N) of the fo rm 

A - l 

U 
fc=0 v ' 

(4.33) 
/=0 

where gfc = p f c ( r ) for = 0 , A — 1 are the profile functions and 

Ak = (e** - 1). (4.34) 

The profile functions <?jt(r) are required to satisfy the boundary conditions: gk(oo) = 

0 and <?fc(0) = 2mr, where a = 0 or ± 1 . 
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4.3.1 Energy 

The energy (4.14), when wri ten in the spherical polar coordinates (r, 8, takes the 

fo rm 

E = / rf™0#(r2sin0)(-^Tr r 2
 _ i _ J l / " 2 4- 1 r2 

H r 2 sin^ 0 v 

, (4.35) 

where, for simplicity, we have put the pion (meson) mass = 0. In the spherical 

(holomorphic) coordinates (r, £, £) , using (4.30)-(4.32), (4.35) takes the form: 

1 1 „ . 1 
E = 

12n2 I 
d£d£drrzTr ( l + | £ | 2 ) 2 L r + + -^[Lr>hl [Lr, fy] 

(1 + l e i 2 ) 2 

16r 4 
(4.36) 

W i t h the matr ix U given by the harmonic map ansatz (4.33), the currents L^s 

in (4.3) take the following forms: 

A - l 

k=0 v 7 

(4.37) 

where g^ = ^ and dr 
A - l 

'+£<< l)Pk 
h=0 

A - l 

/=0 
A - l 

= £ [ c i ( » - f t + i > _ i ] ( M f e + 1 | M f c | - 2 M ; ) , (4.38) 
fe=0 

where by definition g\ = 0, and that = —(L^. 

Using the expressions for LT and in (4.37) and (4.38), respectively, we find 

that the traces in the energy functional (4.36) become 

T r ( L 2 ) 

T r ( L € L f ) 

Tr ([Lr,L{] [Lr,L^]) 

2 / A - l \ * A - l 

j f S > < 4 - 3 9 > 
\Jt=0 / fc=0 

A - l 
- 2 ^ S f c T r ( | M f c + 1 | 2 | M f c | - 2 ) , (4-40) 

fe=0 
A - l 

- 2 (gk ~ 9k+i)2 Sk Tr ( | M * + 1 | 2 | i l 4 | - 2 ) , (4.41) 
fc=0 
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x-i 
T r ( [ L „ L f ] 2 ) = 8 ^ : [ ^ 2 T r ( [ | M f c + 1 | 2 | M , | - 2 ] 2 ) 

- S k S k ^ Tr ( I M / t + x H M * - ! ! - 2 ) ] , (4.42) 

where by definition = 0 and for k = 0 , A — 1: 

Sk = [1 - cos(0b - 0 f c + 1 ) ] . (4.43) 

4.3.2 Topological Charge 

The topological charge (4.22), in covariant form, is 

B = 2 S 5 / s , ^ " 3 l ( 5 ) 1 V ( W c ) ' ^ 
where g = det(gab) and e a 6 c the Levi-Civi ta symbol. I n the spherical polar coordi­

nates (r, 5, 0 ) , w i t h eabc = 5$fr: 

B = ^ 2 / ( d r d 0 # ) T r ( Z , r [ L f l j Z,*]). (4.45) 

This takes the form: 

B = ^ 2 / drd£d£TT (Lr[L^, Lg]) (4.46) 

in the (r, £, £) coordinates. 

Using the expression for in (4.38) we find that 

lh, L f ] = 2 ^ < S f c ^ M j f c l M f c l ^ l M f c + x H M f c l ^ M j - M f c + i l M f c l ^ M ^ j , (4.47) 

and so, using this commutator and Lr as given in (4.37), the topological charge 

(4.46) becomes 

1 f A _ 1 

B = - — dr^2 (9k ~ 9k+\) (1 - cos(5 fe - gk+i))Nk, (4.48) 
^ ^ fe=0 

where Mk is given in (3.106). 

As <7jfc(oo) = 0, we finally obtain 

1 A _ 1 

B = ^ MO) ~ fflk+i(0)), (4.49) 
fc=0 
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and so we see that the only contributions to the topological charge comes f rom <?jt(0). 

According to proposition 3.1, i f Z>̂  = De^M^ is nonsingular in the whole 

complex £ plane then A 4 obey the recurrence relations (3.111). Thus i f we know u>k, 

the highest degree of | £ | 2 in Dk, as determined f rom (3.110), then we can determine 

A/jt. I n fact, i f 

H0 = Moi A M 0 2 A . . . A M 0 „ , (4.50) 

is the exterior product of the column vectors of M 0 which fo rm the n—dimensional 

subspace of C N , then 

UQ = deg(Ho), (4.51) 

i.e. is the highest degree of £ i n H0. 

4.4 Approximate Formulations 

I n this section, we derive field equations for the profile functions f rom the energy 

(4.36) into which we have inserted the expressions of the generalised harmonic map 

ansatz. 

To do this we, first of al l , take a holomorphic matr ix M0 = M ( £ ) and then 

evaluate the sequence ( M i , M 2 , M \ ) using the formulation of section 3.2.2. Then 

we compute the angular integrals A 4 in (3.106), 

Xk = h j d ^ [ l + l e | 2 ) 2 T r (0M*+ii 2 iM*r 2 ] 2). (4-52) 

and 

U k = h j ^ ( 1 + l e | 2 ) 2 T r ( l M * + i l 2 l M * - i l " 2 ) > (4-53) 

for k = 0 , A — 1, where by definition Ho = 0. 

In terms of A 4 , Ik and Hk, the energy (4.36), for our ansatz (22), reduces to 

E 6TT/ dr ( r 2 

' A - l A - l 

k=0 

A - l 

+ 
*=0 

1 + 4 (9k ~ 9k+if 
1 A - 1 \ 

S * + ^ X ) \-IkSZ - n ^ k S k - i ] ) • (4.54) 
fc=0 
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Introducing 

Fk = 9k~ 9k+i, (4.55) 

w i t h g\ = 0 we find that, in terms of Fk, the energy integral (4.54) becomes 

2 / A - l \ * A - l / A - l 

67ry 
dr r 

vfc=0 ifc=0 \ i = A 

1 A _ 1 

+ 2 E - ^ ( 4 + ^ 2 ) ( ! - C O S ^ ) 
fc=0 

1 A _ 1 \ 
+ ^ ^ 2 [ W - ^ s F k ) 2 - ^( l -cosFOa-cosFfc.!)] , (4, 

r Jt=0 / 

56) 

and the topological charge (4.49) becomes 

B = ^ X > f c f f c ( 0 ) 
fc=0 

(4.57) 

d£ 

dFL 

To derive the equations for the profile functions gk f rom (4.56) we note that 

A - l / / A - l 
i = r 

2n 2 ( / + l ) 
N i=0 \ j = i i=0 

+ ^ ^ ( 1 - 0 0 8 ^ ) , (4.58) 

where £ denotes the integrand of E. 

Thus our field equations for the functions F j and so also for & are given by 

A - l l A - l 2n 2 ( / + 1) 
N 5 > + l ) F i + 2 ™ E E ^ 

i=0 j = i i=0 

+ ^ ^ ( l ' C O S F , ) 

2 
+ -

r 

2n 2 ( / + 1) 
A - l I A - l 

X > + I ) F * + 2 « E E ^ 
i=0 i=0 j '=i 

+ 
sin Ft 

2r2 

2 J , ( l - c o s F , ) ^ ( 1 - c o s F f - i ) ^ f + 1 ( l - c o s F t + 1 ) 
= 0. (4.59) 

y»Z 

Now a question arises: what is the best choice of the in i t i a l mat r ix M 0 that 

would yield low energy field configurations which, hopefully, are close to the exact 

solutions of the f u l l equations of the model, i.e. equations (4.15). To answer this 

question we note that each Mk is, in fact, the energy of the Grassmannian Gr(n, N) 

models. Thus in order to have minimal J\fk, and so also energy to be close to the 
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exact mult iskyrmion energy, the entries of the mat r ix M0 must be polynomials in £ 

as stated in Corollary 3.2 [15,16]. 

In the following sections we make this choice for M 0 and consider various fields for 

the SU(3), SU(A) and SU(5) cases w i t h 1 and 2 rank-2 projector approximations. 

Our choices are dictated by simplicity and they lead to energy density distributions 

which are spherically symmetric. Moreover, looking at the general case we see that 

they also correspond to setting some & functions in (4.33) equal to zero. 

4.5 One Projector Approximations 

In this case, we take only one profile funct ion g0 = F0 = F, i.e. A = 1, and so the 

approximate energy (4.56) w i t h the mass term reduces to 

E = ~ J dr ( ^ F 2 [AN(n)r2 + Af0{l - cos F)] + 2Af0{l - cosF) 

+ 
J 0 ( l - c o s F ) ^ 

2r~2 

(N - n) 1 - cos 
nF 

+ n 1 — cos 
(N - n)F' 

N 

where 

AN{n) 
2n(N - n) 

and the field equation for the approximate function F becomes 

A/"o(l - cosF) ' 

+ 

AN(n) + 

s i n F 

2 r 2 

-ml AN(n) 

M . ( F 2 - 4 ) 

nF" 

+ 2AN(n) p 

2J 0 (1 - cosF) 

sin sin 
(N - n)F 

0. 

(4.60) 

(4.61) 

(4.62) 
N I V N 

I n the following we restrict our attention to the rank-2 case only, i.e. n = 2. 

To solve (4.62) we impose the boundary conditions: F(0) = 2TY and F(oo) = 0. 

Thus, the baryon number of these configurations is B = A/o- Finally, we compare 

the approximate energies of each subcase w i t h the corresponding energies of the one 

rank-1 projector approximations [14]. 
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As a first attempt to solve (4.62), let us take the in i t ia l matr ix MQ = (Moi , M 0 2 ) , 

where both column vectors are given by the following Veronese type form: 

M 0 1 = ( l , y / ^ e ) . - - , V / ^ r T ^ - - - ^ 7 V _ 1 ) T ' M02 = d^M01. (4.63) 

This special fo rm of M0 enables us to express the determinant D0 of | M 0 | 2 in the 

following closed form, 

D0 = ( i V - l ) ( l + | £ | 2 ) 2 ( i V - 2 > . (4.64) 

Then f rom (3.110) we conclude that Af0 = 2(N — 2), which is consistent w i th (4.51). 

This result can be verified explicitly using definition (3.106) w i t h the help of the 

recurrence relations (3.109) which yields 

T r O M x P l M o r 2 ) = | f j = j f - (4-65) 

For this case, according to (3.91), D± = 0, and so according to formula (F.0.3), 

Jo = K = 4(N - 2 ) 2 . 

In the SU(3) case, we find that ^3(2) = | , J\f0 = 2, and so XQ = 4 , which 

all coincide w i t h the values of the corresponding quantities in the rank-1 projector 

approximation [13]. Thus, we conclude that their energies also coincide, i.e. E = 

2.44404 (rriir = 0). This equality holds for mw ^ 0 as well. This is to be expected as 

in this case our rank-2 projector is really a sum of two rank-1 projectors constructed 

f rom the first two vectors of the Veronese sequence. 

I t is clear that, for SU(N) w i t h TV > 3 we have: AN(2) > AN(1), Af0 > (N - 1), 

and IQ > (N — l ) 2 . Thus, this Veronese type configuration for N > 3 w i l l lead to 

energies higher in comparison w i t h those for the rank-1 projector approximations 

[14]. 

So, in the following, we look only at M0 w i t h A/o = (N—l) and IQ < (N — l ) 2 in 

order to compensate AN(2) > ^ ( 1 ) i n the energy integral (4.60). More specifically, 

we look at the following 2 subcases for which the determinant of | M 0 | 2 is of the form: 

Do = c(l + K I T " 1 , (4.66) 

or 

Do = c(l+a\Z\y-a(l + \Z\2)2, (4.67) 
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where c and a are some constants. For the subcase (4.67) we choose the column 

vector Mqi to have the Veronese type fo rm (4.63) while M02 = d^~2M0i. 

4.5.1 SU{3) 

As here we have TV = 3, so subcase (4.67) is the same w i t h the Veronese type 

subcase that we have discussed previously. Thus in this section we consider only the 

subcase (4.66). 

In this subcase, we can choose the in i t ia l mat r ix M 0 to be given by 

T 

M0 = 

i v i e 

0 1 

(4.68) 

I f we now require that D0 = (1 + | £ | 2 ) 2 , then c = 2 while there is an infini te 

number of solutions for a and 6 as here we have only one equation for a and b. I n 

the following we restrict our attention to the solution: a = 0 and 6 = 1 . 

Starting f rom the corresponding in i t ia l mat r ix Mo we f ind that 

v / 2 £ f - £ 2 -y/2l I) 1 
V2 

M i = 

-V2£ 1 

(4.69) 

which is orthogonal to M 0 , i.e. M ^ M i = 0. Note that | M i | 2 is singular, i.e. 

£>i = 0. 

Using these two basis matrices, M 0 and M x , we find f rom (3.106) that Af0 = 2, 

and f rom (4.52) 10 — 4. These results coincide w i t h the corresponding numbers i n 

the one rank-1 projector approximation of the SU(3) case described by the in i t i a l 

vector field [14] 

/o = ( l , \ / 2 £ , a T (4-70) 

As A3(2) = | = A 3 ( l ) both rank-1 and rank-2 projector approximations have 

equal energy, i.e. E = 2.44404 = 0). This equality holds for mn ^ 0 as well. 

The result D\ = 0 that we have encountered previously is in fact a general 

property for SU(3) case w i t h rank-2 projectors ansatz, which can be seen as follows. 
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Using the spl i t t ing relations (3.87) we see that 

M j = ( [ / - Po i ( l ) - P o 2 ( l ) ] 9 { M 0 1 , [/ - Po i ( l ) - J P o 2 ( l ) ] 9 C M 0 2 ) . (4.71) 

As the case d^M02 = 0 is t r iv ia l so we w i l l only consider the nonzero case. We 

observe that 

Vo = M 0 1 , 

Vi = [/ - P o i ( l ) ] M 0 2 , 

V2 = [I - P 0 1 ( l ) - P o 2 ( l ) ] ^ M 0 2 , 

are mutually orthogonal and so they span C 3 . Thus, 

<%M 0 i = aV0 + PVI + -yV2, 

where a, ft and 7 are expansion coefficients which depend on £ and £. As 

[/ - p 0 1 ( i ) - p02(i)][«vb + m + 7V2} = W2, 

(4.72) 

(4.73) 

(4.74) 

so 

M1 = (jV2,V2), 

and i t clearly follows that | M i | 2 has a vanishing determinant. 

(4.75) 

4.5.2 SU(4) 

Do = c{\ + |£|2)3 

In this subcase we can choose the in i t i a l matr ix M 0 to be given by 

T 

M 0 

1 0 y/E£ y/be 
(4.76) 

^ 0 1 v^e yfde 

I f we require D0 = (1 + 1 £ | 2 ) 3 , then there is an infini te number of solutions for a, b, c 

and d as here we have only 3 equations for the 4 parameters a, b, c, and d. I n the 

following we consider the solution: a = 2, 6 = 1, c = 1, d = 2. 

Then, starting f rom Mo in (4.76) we have computed the corresponding mutual ly 

orthogonal mat r ix Mi and by using these two basis matrices, M 0 and M i , we have 
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Figure 4.1: Approximate 5{7(4) profile functions for rank-1 and 2 cases. 

computed explicit ly the integrals A/o and IQ in expressions (3.106) and (4.52), re­

spectively and we have found that J\f0 = 3 and X 0 = y- We note that, in the one 

projector rank-1 case w i t h in i t i a l vector field 

/o = ( l , V 3 £ , x / 3 £ 2 , £ 3 ) T , (4.77) 

Jo = 9 which is larger than the above result. However, as A4(2) = 2 while 

^4.(1) = I i t is not clear which energy is larger. 

To assess this we have solved numerically equation (4.62) for F, and we found 

that i t is very close to that found in [14] using rank-1 projector ansatz. I n fig. 4.1, 

we compare the graphs of the solution F, denotes by F(2), w i t h the approximate 

profile functions using one rank-1 projector, F(l), whereas the comparison of the 

corresponding energy densities (i.e. radial energy distributions) is presented in fig. 

4.2. 

I n table 4.1 we present our results for the energies £7(2) and compare them w i t h 

the results using one rank-1 projector, E(l) [14], for different values of the mass m^. 

We see that for all the masses (at least to = 30.0) we always have £"(2) > £ ' (1) . 
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Figure 4.2: Approximate SU(A) energy densities for rank-1 and 2 cases. 

E(2) 

0.0 3.64410 3.81387 

0.2 3.68291 3.86158 

1.0 4.17241 4.42030 

2.23 5.00186 5.33405 

7.0 7.47187 8.02336 

30.0 14.3393 15.4287 

Table 4.1: Approximate energies of the S£/(4) Skyrme model. 
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A> = c(l + a|£|2)(l + |£|2) 2\2 

In this subcase, we choose the in i t ia l matr ix M 0 to be given by the following Veronese 

type form 

T 

M 0 = 

i v% v*e e 

0 0 2\/3 6£ 

(4.78) 

which has Z) 0 = 12(1 + 4 | £ | 2 ) ( 1 + | £ | 2 ) 2 . For this configuration, we have found that 

i t has J\f0 = 3 but 2o = 7.14357 and its energy is E = 3.76929 ( m , = 0), which 

is a l i t t l e lower than the energy of the previous subcase, but i t is s t i l l higher than 

the energy of the one rank-1 projector approximation, i.e. E = 3.64410. 

4.5.3 51/(5) 

A, = c(l + |£| 2) 4 

In this subcase we can choose the in i t ia l matr ix M 0 to be 

i vk2 v7^4 

Mo 

0 0 0 

(4.79) 

I f we require D0 = (1 + | £ | 2 ) 4 , then there is an infini te number of solutions for 

a, b, c, d and e as here we have only 4 equations for these 5 parameters. Here we 

consider only the solution: a = b = c = e = \ /2 and d = 1. 

For this configuration, we have found that Af0 = 4 but X 0 = 12.2667 which 

is much lower than 16. However, as ^5(2) = y , we see that its energy is E = 

5.10580 ( T O T T = 0) which is s t i l l higher than E = 4.83792 in the rank-1 projector 

approximation [18]. When we have solved the equations for the approximate profile 

funct ion F = g0 for each rank (1 and 2), we found that their difference is very 

small. 
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D0 = c(l + ( T m 2 ( l + K | 2 ) 2 

In this subcase we choose the initial matrix Mo to have the following Veronese type 

form 
T 

Mn = 

1 2£ \ /6£ 2 2£ 3 £ 4 

12 24£ 0 0 0 

(4.80) 

which has D0 = 144(1 + 3 |£ | 2 ) 2 (1 + | £ | 2 ) 2 . 

We have found that this configuration has A/"o = 4 but I 0 = 12.4444 and its 

energy is E = 5.11875 (m„- = 0) which is higher than the energy of the previous 

subcase. 

4.6 Two Projector Approximations 

Now we consider the case of two projectors. Here we have 2 profile functions: F0 

and F i , i.e. A = 2, and so the energy integral (4.56) becomes 

E (n )F 2 + AN(2n)F0F1 + ,4,v(2n)F 2 

+ Af 0(4 + F 2 ) ( l - COSFQ) + M ( 4 + F 2 ) ( l - cosFj) 

+ J 0 ( l - cosFo)2 - H i ( l - cosF 0 )(l - cosF x) + 2 i ( l - cosFi) 2 , (4.81) 

where now, for simplicity, we have set mn = 0. 

The field equations for F 0 and Fi are 

F 0 
AN{n) + 

Afo{l -COSFQ) 
+ lAN(2n)F1 + -

I r 
AN(n)F0 + -AN(2n)Fl 

+ 
sinF 0 

2r 2 
M , ( F 2 - 4) -

22o ( l - cosF 0 ) H i ( l - c o s F ! ) 

1 
AN{2n)F0 + F x AN(2n) + 

M C l - c o s F x ) 

+ 

+ 

= 0, (4.82) 

l-AN{2n)Fo + AN{2n)F1 

+ 
sin Fx 

2r 2 
M ( F 2 - 4 ) 

2Xi (1 - cos F j ) Ux (1 - cos F 0 ) 
+ 0. (4.83) 
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In the following, we take n = 2 and solve these equations (numerically) by 

imposing the boundary conditions: F o(0) = 2ir, Fi(0) = 0, and F0(oo) = Fi(oo) = 0. 

Thus, the baryon number of these configurations is B = A/o- We then compare the 

approximate energies of each of these cases with the corresponding energies of the 

one rank-1 projector approximations [14]. 

For the SU(3) configurations, we have shown that | M i | 2 is singular. Thus for 

this case the projector Px does not exist. As for the SU(4) and SU(b) cases that we 

have considered previously | M i | 2 is nonsingular, so in this section we consider these 

two cases only. 

4.6.1 SU(4) 

Starting from the initial matrix M 0 in (4.76), we find that 

M 2 = 0, (4.84) 

so from (3.106), (4.52) and (4.53) we have M = 0, l x = 0, and H i = 0. As for this 

case, N = 4 and n = 2, the energy integral (4.81) reduces to the energy integral 

(4.60) for the corresponding one projector of rank-2 projector approximation. 

We note that Mi = 0 is in fact a general property for SU(4) with rank-2 

projectors ansatz. To prove this i t is convenient to use the construction (3.80). 

Then using the splitting relations (3.87) in (3.80) for M2 gives 

M 2 = [ / - P 0 ( 2 ) - P i ( 2 ) ] d f M 0 , 

= [/ - (Poi(l) + Po 2(l)) - (Pn( l ) + P i 2 ( l ) ) ]d f M 0 . (4.85) 

Now, Mi = 0 follows from the completeness relation for the rank-1 projectors in 

C\ i.e. 

Poi(l) + P 0 2 ( l ) + Pu(l) + Pu{l) = I. (4.86) 

4.6.2 SU{5) 

As the subcase Do = c ( l + | £ | 2 ) 4 in the one projector approximation has lower energy, 

we restrict our attention to this subcase. Starting from the matrix M 0 in (4.80), 
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we have computed the corresponding matrices M i and M2, and we have found that 

Afi = 2.0, J i = 4.28989, and Ux = 3.57357. 

Solving equations (4.82)-(4.83) with the correct values for A/*, J*, and Hk, k — 0 

and 1, we have found that, as ^5 (2) = y and A 5 (4) = | , this configuration has 

energy: E — 5.02469. This is higher than the energy of the one rank-1 projector 

approximation case, i.e. E = 4.83792; however, they are marginally higher than the 

exact energy of the SU(2) case with B = 4, i.e.E = 4.464 [59]. 

4.7 Exact Spherically Symmetric Solutions 

In this section we consider whether one could also construct exact spherically sym­

metric solutions of the SU(N) Skyrme field equations (4.15) using the general har­

monic maps ansatz (4.33) with A rank-2 projectors. 

4.7.1 Condition for an Exact Spherically Symmetric Solu­

tion 

When written in the spherical polar coordinates (r, 0, 0), equations (4.15) without 

the mass term become 

dr (r2Lr) + 
sin 9 

de (sm$Le) + -^—rd^L^ 
sin0 

1 
4 

d, {r2Cr) + -!—a \de (sinflC,) + - ^ f y C * ) v ' sin6> [ sin0 J. 0, 

where 

Co = [Lr, [Lr, La]] + ~^[Lg, [Lg, La]] + . 2 [L^, [L0, La]], 

(4.87) 

(4.88) 
r 2 sin 2 9 

for a = (r, 9, <ft). 

In the spherical holomorphic coordinates (r, £, £), using (4.31)-(4.32), equations 

(4.87) become 
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„ 2 r , (1 + k l 2 ) 2 

rzLr + 
8 

{[Lz,[Lr,L(]] + [Ls,[Lr,Lj:}}) 

+ ( 1 + lf)2 ( $ [ L f , L,]]) + % ( [L r , [L„ L r ] ] ) 

+ 
(1 + KI 2 ) 2A2 

16r2 = 0. 

(4.89) 

Now, let us look in detail at all the terms in these equations in our generalised 

harmonic map ansatz (4.33) case. We find that 

A - l 

i=o 

d ^ + d ^ = 2 i ^ s i n F 1 [ M , + 1 | M l | - 2 M , t

J 

- M , | M , | - 2 | M , + 1 | 2 | M , | - 2 M / 

(4.90) 

A - l 

/=0 

A - l 

(4.91) 

(4.92) 
z=o 

A - l 

[ L ( t [ L ^ ] ] = 2 ^ 
i=o L 

2SiblMl+i\Ml\'2\Ml+1\2\Ml\-2\Ml - Sibi+iMi+2\Mi\~2Mj_ J+i 

-Si+1blMl+l\Ml+1\-2\Ml+2\2\Ml\-2Ml (4.93) 

where <Sj is given by (4.43) and where 

k = (e** - 1). (4.94) 

We have checked that none of the configurations that we have considered so far 

in this paper is an exact solution of (4.89). This can be seen as follows. First, we 

multiply (4.89) by Mi from the right, which results in a set of equations for Mi. As 

the terms dr(r2Lr)M[ are proportional to Mi while the others are not, the contracted 
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equations have the following general structure 

A - l 

aM + ^MkAk, = 0, (4.95) 
fc=0 

where a/ depend only on N, n, g\, and r while the (n x n) matrices AM depend 

on <7j, £ and £ as well. Clearly, these equations are inconsistent, unless each matrix 

Aki is proportional to the (n x n) unit matrix In, i.e. AM = bkiln where each bki is 

independent of £ and £ . 

Armed with this observation we can now ask the following question: for which 

forms of the matrices Mk do the SU(N) Skyrme field equations (4.89) have exact 

solutions? In appendix G, we have looked at the SU(N) chiral models and we found 

that, if we are able to find the matrices Mk which satisfy the condition 

| M , + 1 | 2 | M f c | - 2 = Kk{l + \Z\2)~2In, (4-96) 

where K,k are some constants which depend on N, n and k then this configuration 

could possibly give exact solutions for the profile functions g^- Note that, for rank-

1 projectors case, this condition is satisfied by the Veronese sequence Mk, k = 

1 , . . . , (N — 1), where in Ref. [14] it had been shown that the corresponding field 

configurations give exact solutions for g^. 

To see how this may work in our case we have put the condition (4.96) into 

(4.90)- (4.93), which has turned the field equations (4.89) into the following reduced 

set 

A - l 

E 
fc=0 

where 

nl 
(Pk - —)ak + (Pk+1 - Pk)Pk + (Pk+2 - Pk+ihk 0, (4.97) 

otk = dr (r2gk) , (4.98) 

Pk = -\KkFk + Kk (l + sinFk + ^ [2K,2

kSk - fCk}Ck+1Sk+1] sinF*, (4.99) 

7k = s i n F f c + 1 ] . (4.100) 

Next, we multiply (4.97) from the right by Mi and follow the procedure of ap­

pendix G, which yields 
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kp=0 g=p p=0 

- - s i n F , 
4 

/ • \ 2 1 
Ki \ A + Fij + — {2/Cf«5i — K-i-ifciSi-i + K-iK-i+iSi+i} = 0. (4.101) 

Substituting condition (4.96) into (3.106), (4.52) and (4.53) yields the relations: 

Afk = n/Cfc, 

= n/Cfc/Cfe_i. 

(4.102) 

(4.103) 

(4.104) 

Using relations (4.102) - (4.104) in (4.101), we found that the resulting equations 

for the profile functions do, indeed, coincide with (4.144). This also means that 

the energy integral (4.36), in this case, is exact {i.e. not an approximation). As the 

corresponding energy density is a function of the radial coordinate r only, solutions 

of the field equations (4.87) are spherically symmetric. 

4.7.2 Further Analysis of the Condition (4.96) 

As the matrices Mk for k 0 are generated from the initial matrix M 0 , so in this 

section, we derive the conditions that M0 should satisfy in order for condition (4.96) 

to hold. To do so, we put (4.96) into (3.108) and (3.109) with A; = 0, and obtain 

and 

% [ ( % | M 0 | 2 ) | M 0 | - 2 ] = /C 0 (l + | £ I T 2 4 , 

dftilogDo] = «/C 0(l + l £ D > 

(4.105) 

(4.106) 

respectively. 

The general solution of equation (4.105) is 

iMoi 2 = ( l + i e r y ^ c & o . 

where G(£,£) is an (n x n) Hermitian matrix satisfying 

(4.107) 

d, [ ( d p ) G~l] = 0. (4.108) 
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Equation (4.108) has the general solution [60] 

G ( £ 0 = H(0H(t), (4.109) 

where H and H = W are arbitrary (n x n) matrices of one variable. 

Thus, with G(£,€) given by (4.109), solution (4.107) becomes 

| M 0 | 2 = (l + m^HiOHiO, (4.110) 

and from condition (4.96) i t follows that (for I > 1) 

| M , | 2 = /Co/Ci . . . /C,_ i(l + m^HiOHiO- (4.111) 

Furthermore, from (4.107) it follows that 

D0 = (1 + \^)^Det[B{^]Det[H(0], (4.112) 

is a solution of (4.106). By putting D0 into (3.113) we have found that J\f0 = n/C0, as 

we have assumed that Det[H(£)] is holomorphic (and Deif-H^f)] is antiholomorphic) 

with the only singularity at |£| —>• co, which is consistent with (4.102). Thus, we 

can choose Det[G(£, £)] = 1, and so from (4.111) i t follows that 

Dl = (/Co/d . . . JC^T (1 + |e | 2 )"(^- 2 ' ) , (4.113) 

from which, according to (3.110), 

ui = n ( /C 0 - 2/). (4.114) 

Using the recurrence relations (3.111), with u>i given by (4.114), we derive 

Mi = (I + 1) (Mo - nl). (4.115) 

Now, with | M 0 | 2 given by (4.110), the projector P0(n) = M0\Mo\~2M^ becomes 

P0(n) = (1 + \C\2)-KoMoMl (4.116) 

where M0 = MQH~1. Using (4.110) then i t follows that the matrix M 0 satisfies 

| M 0 | 2 = J r ^ l M o l 2 ^ - 1 = (1 + | e | 2 ) K o / „ . (4.117) 
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Equation (4.117) implies that the column vectors of the (N x n) matrix M 0 = 

^ M 0 i , . . . , Mon) are orthogonal. Thus, using the SU(N) global symmetry, we can 

bring the column vectors M$j, (jf = 1, 2,.., n) to live in n-disjoint subspaces. In this 

case, the projector Po(n) has a block diagonal form. For example, in the rank-2 

projector ansatz, i.e. n = 2, for N = even, we have 

Po(2) = 

where 

Po.(l) 

Poi(l) 0 

0 P 0 2 ( l ) 

MQMl 

(4.118) 

\MQ\ 
(4.119) 

s = 0,1, are rank-1 projectors. For N = odd, still in the rank-2 projector ansatz, 

equation (4.117) requires that one of the entries of M0j should be zero, so if we 

choose (Mo-,) = 0, then the ((N - 1) x (N - 1)) submatrix of P0(2) has the block 

form (4.118) while P0(2)NN = 0. 

Thus, as far as condition (4.96) is concerned, i t seems that the only exact spher­

ically symmetric solutions of the SU(N) Skyrme models using projectors of rank-2 

are embeddings of a pair of SU([N]/2) solutions of rank-1 projector ansatz, where 

[N] = N, or (N — 1) for N even or odd, respectively. 

4.7.3 Some Specific Configurations 

In this final subsection we consider only the rank-2 projector ansatz, i.e. n = 2. 

Thus, here, the SU(3) case should be excluded, as from our analysis in section 

4.5.1, | M i | 2 is singular so i t is automatically not proportional to the nonsingular 

matrix |Mo| 2 as required by (4.96). For the same reason, we also exclude the case 

M02 = d^Moi, i.e. equation (3.90). Next, we have a look at some specific forms of 

the initial matrix Mo, for the N = 4 and 6 cases. 



4.7. Exact Spherically Symmetric Solutions 95 

51/(4) 

In this case, we can choose the initial matrix MQ to be given by 

Mn (4.120) 

0 0 1 £ 

where / (£) is an arbitrary polynomial function of only £. Then 

| m 0 | 2 = ( l + iei2) 

1 0 

/(O i 

(4.121) 

0 1 

which is of the form (4.110). 

For the corresponding projector Po(2), we have found by direct evaluation that 

it has the block form (4.118) with 

P 0 s ( l ) 1 

a + iei2) 
(4.122) 

* K l 2 

s = 0,1, which clearly are the rank-1 projectors of a one skyrmion SU(2) solution. 

As D0 = (1 + |£ | 2 ) 2 , this configuration has A/o = 2, or /C0 = 1, and so according 

to (4.103), 2o = 2. Then from (4.115) we obtained jVi = 0 or K\ = 0 (according 

to (4.102)) so from (4.111) we conclude that Mi = 0, for / > 2 which is consistent 

with our general result in subsection V I A . Thus, this configuration has only one 

projector, i.e. Po(2). 

Substituting No = Xo = A 4 (2) = 2 in the 1-projector energy integral (4.60) 

we found that it has energy: E = 2Esu{2), where ESu{2) is the energy of the SU(2) 

Skyrme model [14], as we would have been expected. 

SU{6) 

In this case, we can choose the initial matrix M0 to be given by 

M 0 = 

0 0 0 1 \/2£ 

(4.123) 
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from which i t follows that | M 0 | 2 is of the form (4.110) as well with /C0 = 2. 

We have also found that the corresponding projector Po(2), has the block form 

(4.118) with Pos(l), s = 0,1, are the rank-1 projectors of the SU(3) solution [14]. 

As Do = (1 + | £ | 2 ) 4 , this configuration has A/"o = 4, from which we derived that 

J 0 = 8, Ni = 4, Ti = 8, Ui = 8, but Af2 = 0 or JC2 = 0 and so Ml = 0, for 

/ > 3. Thus, this configuration has only 2 projectors, i.e. PQ(2) and P\{2). 

Substituting the correct values for Mk, 2^, and Hk, k = 0,1 into the 2 projectors 

energy integral (4.81) we have found that, as A6(2) = ^ ( 4 ) = | , this configuration 

has energy: E = 2ESU^, where ESU(3) is the energy of the SU(3) Skyrme model 

[14]. 

4.8 Alternative SU(N) Skyrme Models 

Until very recently most of the studies involving the Skyrme models have concen­

trated on the SU(2) version of the model. However, when one considers SU(N), for 

N > 3, one has to bear in mind that the Skyrme model is not unique. In fact, there 

are two possible versions of the fourth order Skyrme term [61] and so in this section 

we study the model based on the alternative form of the fourth-order Skyrme term. 

Thus instead of looking at 

^ T r f L , , ^ ] 2 , (4.124) 

in (4.1) we consider 

" 1 6 ^ ( ^ L A 1 ) ) 2 " ( T r ( L ^ ) ) 2 ] • ( 4 1 2 5 ) 

Note that when N = 2 the two expressions are the same. To see this we introduce 

Lll = U~1dtlU = i L f a { k \ (4.126) 

where a^k\ k = 1,2,3, are Pauli matrices. Then, using the properties of Pauli 

matrices, we find that 

T r ( L ^ ) = - 2 ( L « Z « ) , (4.127) 



4.9. Spherically Symmetric Solutions - General Discussion 97 

and so 

Tr [Ljj, L „ ] 2 = - 8 [L^L^L^L^ - L ^ L ^ L ^ L ^ ] 

= - 2 [(Tr ( L ^ ) ) 2 - (Tr {L,Lv)f} . (4.128) 

However, for N > 2 the two expressions are different. 

Thus, the alternative SU(N) Skyrme models are determined by the action (4.1) 

with the Skyrme term (4.124) is replaced by the alternative term (4.125), i.e. 

S = Jd*x ( - ^ T r ( V / ) - J L [ ( T r (L,L»)f - (Tr {L,Lv)f}^ , (4.129) 

where here we have put Mv = 0. The corresponding field equations are 

^ (L" + Jp2 [(Tr ( L v f ) W - (Tr (L"L„)) L " ] ) = 0. (4.130) 

In the following two sections, i.e. 4.9-4.10, which are taken from Ref. [18], we 

apply the same ideas of harmonic map ansatz to these models. 

4.9 Spherically Symmetric Solutions - General Dis­

cussion 

In this section, we shall consider general discussion on static spherically symmetric 

energy and field equations of the alternative SU(N) Skyrme models by applying 

harmonic map ansatz (4.33) involving (TV —1) rank-1 projectors Pk, k = 0 , . . . , (N— 

2). As for the ususal SU(N) Skyrme models [14], we show that this leads to exact 

solutions for the alternative models as well. 

4.9.1 Static Energy and Equations for the Profile Functions 

Prom the action (4.129) we derive that the corresponding static energy and field 

equations in the spherical holomorphic coordinates (r, £, £), in topological charge 

unit, are 

E = 
12TT2 

-r2dr 
1 1, 

8r 2 Q 

(4.131) 
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and 

dr(r2Lr) + { 1 + lf)2 ( d ^ + d ^ ) 

(1 + KI 2 ) 2-\2 
•dr [{Tr Lr-Tr (LrL() L f } + 

(1 + lei2) 
4r 2 

- ( 1 + lf ) [ ^ { T r ( L 2 ) L f - Tr ( L f L r ) L r } + (£ ^ £)] 

(Tr ( L | ) L{ - Tr (L<L f ) L f ) } + (1 + Kl 2 ) 

respectively, where L r is given by (4.37), by (4.38) and 

Q = Q(r ,e ,D = (1 + | £ | 2 ) 2 Tr(L € L f ) 

= 0, 

(4.132) 

(4.133) 

Let us simplify the field equations (4.132). First, we note that the orthogonality 

of the vectors Mk yields 

T r ( L r L e ) = Tr (L 2 ) = Tr (L | ) = 0. (4.134) 

Next, using these results and the fact that Tr (L2), given in (4.39), with n = 1 

and X — (N — 1), is independent of (f , £) we see that (4.132) reduces to 

dr r 2 - \ Q ) L r 

( i + iei 2) 2 

+ ( ^ + 3 f L e ) j l - ^ T r ( L r

2 ) } - ^ { d , ( Q L f ) + 0 f ( Q L f ) } = 0. 

(4.135) 

Let us choose the vectors Mk (k = 0 , . . . , (AT —2)) to be given by the Veronese se­

quence as described in proposition 3.2, so that the recursive quotient ( |M f c + 1 | 2 / |Mj fc | 2 ) 

is given by (3.135). Thus from now on, we restrict to the n = 1, A = (N — 1) case 

of the general formula we derive in section 4.3.1. 

Then we find that Q in (4.133), with Tr ( L { L f ) given by (4.40), reduces to 

N-2 

Q = - 2 ^ X V , (4.136) 
fc=0 

where 

V k = (k + l ) ( N - k - l ) S k , 

and where Sk is given by (4.43). 

(4.137) 
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Let us reconsider the energy (4.131) using this special choice of the vectors Mk. 

Substituting (4.136), T r (L 2 ) as given by (4.39), and (4.136) into (4.131) and then 

carried out the integration with respect to the holomorphic coordinates (£, £), gives 

us 

E 
J L \fc=o / fc=o \i=k / I (=o ,fc=0 

N-2 

fc=0 \ l=k 

(4.138) 
fc=o \ i=o 

where Fk = (gk - gk+1), k = 0 , . . . , (N - 2), with gN^ = 0. 

Let us now consider the field equations (4.135) to derive the equations for the 

profile functions gk. To do this we look in detail at all the terms in these equations. 

From (4.90), with Mk given by the Veronese sequence, we find that 

N—2 

0 { L f + d f L c = ( 1 +

2 | e | 2 ) 2 g ( f c + 1)(AT - fc - 1) s inF f c (P f c + 1 - Pk). (4.139) 

The term LT is given in (4.37), while Tr (L 2 ) is given in (4.39). 

Using these results we find that (4.135) reduce to the the following factorised 

form 
N-2 

E 
fc=0 L 

(Pk - ^)ak + {Pk+l - Pk)pk 0, 

where 

and 

ak = dT (r2 - ^Q)h 

fa = (k + l)(N -k-l)sinFk 

(4.140) 

(4.141) 

(4.142) 

Next, we multiply (4.140) from the right by the vectors Mm (m = 0 , 1 , . . . , N—2) 

and follow the procedure of appendix G. This yields 

N-2 

fc=0 
^ I > - f t = o, (4.143) 

n=0 

which gives the required equations for the profile functions Fk or gk. They are 



4.9. Spherically Symmetric Solutions - General Discussion 100 

N—2 / N—2 

i=0 J=0 7 = 1 

r 

2 . .. AT-2 i iV-2 " 

i=0 i=0 7 = 1 

~[{1 + \){N - l - l)smFi\Am = 0, (4.144) 

where 

AN2 

N-2 1 

A:=0 

(4.145) 

JV-2 

2r ^ 1 + 
fc=0 

'fci (4.146) 

( N-2 \ " . AT-2 /AT-2 \ 

i=0 / i=0 \ j=i / 

Af-2 1 V P f c . (4.147) + 1 + NO 2r 2 2N 
k=0 

Equation (4.144) coincides with stationary points (minima or saddle points) of 

the static energy (4.138) [18]. This means that, with the vectors Mk given by the 

Veronese sequence, the energy integral (4.138) is exact {i.e. not an approximation). 

In the next section, to compare the obtained results with the results discussed 

in [13], we look in detail at the simplest cases of N = 3, 4 and 5. 

4.9.2 Symmetries 

Our {N — 1) equations (4.144) for functions Fk, k = 0 , N — 2 and so gk have many 

symmetries. These symmetries allow us to find special solutions which involve only 

a smaller number of functions. So, before looking at special cases, let us mention 

some of these symmetries. 

The main symmetry, which is relatively easy to spot is the symmetry under the 

independent interchanges 

To see this symmetry we look at the expression for the energy and note that as 

F0 Fi N-2, Fx <-> FN-3, Fk Ftf-k-2, (4.148) 

T>k = (k + 1)(N - k - 1)(1 - cos Fk) 
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V k have this symmetry; i.e. V k «-» when Fk -H- Fjv_fc. 

This symmetry is evident in all terms involving V k s and so we are left with 

having to look at the terms involving Fks. For the terms 

1 /N-2 \ 2 N-2 /N-2 \ 2 

\fc=0 / k=0 \l=k / 

we note that the coefficient of Fk is given by 

~ ( k + l ) 2 + (* + 1) = (* + l ) ( 7 V ~ ^ ~ 1 } , (4.150) 

which is also the coefficient of F^_k_2. Moreover, as the coefficient of FkFi (when 

k > I) is 

2k - l ( * + i)(Z + l ) , (4.151) 

which is also the coefficient of F/v_ f c_ 2F^_i_2 we see that we have demonstrated the 

validity of our symmetry. 

4.10 Special Cases 

Now we look at the cases of low N. 

4.10.1 SU(3) 

For this case we have two functions: Fo and Fi. The radial energy density is given 

by 

£ = l(̂ o + F i + FoFi) V 2 + 2(1 - cosFo) + 2(1 - cos^) ] 3 

+ 4 [ ( l - c o s F 0 ) + ( l - c o s F 1 ) ] 

The equations for Fo and F\ are 

1 + 2 ^ ( 1 - c o s F o ) + ^ ( 1 - c o s F x ) (4.152) 

2 6 
(2F0 + F1)A32 + -(2^0 + ^ ) ^ 3 1 - ^ ( s i n F 0 ) ^ 3 0 = 0, 

{FQ + 2F1)A32 + -(Fo + 2F1)AZI - ^ ( s h i F ^ o = 0, (4.153) 



4.10. Special Cases 102 

where 

A32 

A30 

1 + ^ ( 1 - COSFQ) + ^ ( 1 - cos 

1 + -F0 sin F 0 + -Fx sin F i , 
r r 

1,-o -o • . 1 1 
-(F2 + F2 + F0Fi) + l + _ ( l - cosFo) + - ( 1 - cos Fx). (4.154) 

The equations (72) can be solved for the two functions F0 and Clearly, we 

cannot put either of them to zero but, due to the symmetry, we can take F0 — F\ = F 

in which case both equations reduce to 

F 1 + — ( 1 - c o s F ) 
2 • 2 

+ -F + ^ sin F l - - ( l - c o s F ) 0. (4.155) 

This equation coincides with the equation of the usual SU(2) Skyrme model after 

rescaling the coordinate r = 2f. Performing this coordinate rescaling in the corre­

sponding energy integral, we find that its energy is E = 8 x 1.232, i.e. is exactly 

8 times the energy of one SU(2) skyrmion (taking F(0) = 2ir). This agrees with 

our numerical result 9.85242 obtained from (74) (within our numerical accuracy the 

energy of one SU(2) skyrmion is 1.23146). The topological charge of this configu­

ration is clearly B = 4, so energy per baryon is 2 times the energy of one SU(2) 

skyrmion. 

In addition, there is a further symmetry; we can put F0 = — F\ = G. In this case 

both equations reduce to 

G 1 + —(1-cosG) 
2 • 2 

+ -G + ^ s i n G G2 - 3 r ( l - cosG) 0. (4.156) 

This case, as F0 = g0 — gi and Fi = gx, corresponds to the case of g0 = 0 and 

so our solution involves only one projector, namely Pi . Its topological charge is 

B = 2 — 2 = 0 and its energy is 5.11338. A similar solution was discussed, in the 

usual Skyrme model case, in [14] (there its energy is 3.861). 

In general, however, our solutions depend on two functions F0 and F i . For 

example, by imposing the boundary conditions: F 0(0) = 2TY, F 0(OO) = 0 and Fi(0) = 

0,Fi(oo) = 0 in (4.153) we found that the energy of this solution is E = 2.61503 

and its baryon number is B = 2. (In the usual Skyrme model, a similar solution has 

energy 2.3764). 
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4.10.2 SU(4) 

In this case we have three functions F 0 , Fi and F 2 . The energy density becomes 

1 
£ = 3FJ + 4Ff + 3F2

2 + 4FoFj + 2FQF2 + AFXF2 

x [ r 2 + 3(1 - cos F 0 ) + 4(1 - cos F{) + 3(1 - cos F 2 )] 

+ 2 [3(1 - cos F 0 ) + 4(1 - cos Fi) + 3(1 - cos F 2 )] 

x 1 + J j U " c o s i ? o ) + ^ ( 1 - cosFO + - cosF 2) .(4.157) 

The equations for F 0 , F\ and F 2 are very complicated. They read 

(3F 0 + 2F : + F2)A42 + 2(3F 0 + 2F 1 + F 2 ) A i - ^ ( s i n F 0 ) ^ 4 o = 0, 

{F0 + 2F1 + F2)Ai2 + -{F0 + 2F1 + F2)A41 - - | (sinFi)A«> = 0, 
r 

(F 0 + 2FX + 3F2)A42 + - ( F 0 + 2FX + 3F 2 )A, i - ^ ( s i n F 2 ) A o = 0, (4.158) 

where 

3 4 3 
-442 = l + ^2-(l-cosFo) + — ( l - c o s F ! ) + — ( l - c o s F 2 ) , 

3 • 2 • 3 • 
A n = 1 + — F 0 sin F 0 + - F x sin Fi + — F 2 sin F 2 , 2r r 2r 

-440 = ^(F 0

2 + ^ + F | + ^ 0 F 1 + ^ F 0 F 2 + ^ 1 F 2 ) + 

1 + ^ ( 1 - cosFo) + ^ ( 1 - cosFi) + ~ ( l - cosF 2). (4.159) 

These equations have the previously mentioned symmetry F 0 -H- F 2 which allows 

us to set Fo = F 2 = F while keeping F i arbitrary. In this case the above equations 

reduce to the following two coupled equations: 

(2F + Fl)A42 + - ( 2 F + F 0 i 4 1 - - | ( s i n F ) i 4 0 = 0, 

(F + F ^ + -(F + Fl)A41 - 4 ( s i n F i ) i 4 0 = 0, (4.160) 

where 

6 4 
A t 2 = l + ^ ( l - c o s F ) + — ( 1 - c o s F j ) , 

3 . 2 • 
A n = 1 + - F s i n F + -Fis inFx, 

r r 

Ato = ( F 2 + i F 2 + F F 1 ) + l + 4 ( l - c o s F ) + 4 ( l - c o s F i ) . (4.161) 
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By imposing: F(0) = 27r,F(co) = 0 and -F\(0) = 0, F^oo) = 0 the corresponding 

solution is found to have energy 13.2006 and its baryon number is 6. 

I f we further set F\ — F = G then the above coupled equations reduce to 

G 1 + ^ ( 1 - cos G) 
2 • 1 . _ 

+ - G + — sinG 5G 2 - 2 - ^ ( 1 - c o s G ) = 0. (4.162) 

This equation coincides with the usual SU(2) Skyrme model equation, after rescaling 

the coordinate r = \ / l 0 f . Performing this coordinate rescaling in the corresponding 

energy integral we find that this configuration has energy E = 10\/T0 x 1.232. 

Our numerical result for the energy obtained from (81) is 38.9551 which is in good 

agreement with the above exact result. Note that the topological charge of this 

solution is 10, so energy per baryon is ^/T0 times the energy of one SU(2) skyrmion. 

Another solution can be found by setting F 0 — — F2 = Z. Then the equations 

have a solution if F\ = 0. This case corresponds to go = 0 and g\ = # 2 and 

so, effectively, the field configuration is described by a one projector of rank two; 

namely, P\ + P 2. The corresponding equation for Z is 

l + ^ ( l - c o s Z ) + -Z + — sinz Z 2 - 2 - — ( 1 - c o s Z ) 0. (4.163) 

This solution has energy 9.39388 and its charge is B = 3 — 3 = 0. 

When we use all 3 functions we get results which depend on Fj(0). In Table 2 we 

present our results for Ea and compare them with the similar results for Eu derived 

in the usual Skyrme models [14]. 

We see that our energies are higher (especially for larger values of B). 

4.10.3 SU(5) 

have four functions F 0 , Fi, F2 and F 3 . The energy density becomes This time we 

\ |2F 0

2 + ZFl + 3F2

2 + 2F3

2 + 3F 0 F! + 2F 0 F 2 + F 0 F 3 + 4FiF 2 + 2FXF3 + 3F 2 F 3 

x [r2 + 2 {2(1 - cos F 0 ) + 3(1 - cos Fi) + 3(1 - cos F 2 ) + 2(1 - cos F 3 ) } ] 

+ 4 [2(1 - cos F 0 ) + 3(1 - c o s F x ) + 3(1 - cos F 2 ) + 2(1 - cosF 3)] 

' 1 ' - ^ { 2 ( l - c o s F 0 ) + 3 ( l - c o s F 1 ) + 3 ( l - c o s F 2 ) + 2 ( l - c o s F 3 ) } 1 + ^ { 2 ( 1 

A .164) 
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Fo(0) F : (0) F 2(0) 5 Ea Eu 

2?r 0 0 3 3.96601 3.518 

0 2TT 0 4 5.87187 4.788 

2TT 0 2TT 6 13.2006 7.22553 

2TT 2TT 0 7 18.9833 8.45219 

2TT 2TT 2TT 10 38.9551 12.32 

2TT - 2 T T 2TT 6-4 14.3419 8.852 

2TT 2TT - 2 T T 7-3 20.5668 9.896 

2TT 0 - 2 T T 3-3 9.39388 6.63422 

- 2 T T 2TT 0 4-3 9.07753 6.61478 

Table 4.2: Energies of the alternative and the usual SU(4) Skyrme models. 

The equations for Fo, F\, F 2 and F 3 are now given by 

. . . . . . . . 2 20 
(4F 0 + 3Fi + 2F 2 + F3)A52 + - ( 4F 0 + 3F1 + 2F 2 + F3)Abl - —(sin F0)A50 = 0, 

. . . . . . . . 2 30 
(3F 0 + 6 F 1 + 4 F 2 + 2F 3)>l5 2 + - (3F 0 + 6FX + 4F 2 + 2F 3 )A 5 i - ^ ( s i n F x ) ^ = 0, 

. . . . . . . . 2 • • • 30 
(2F 0 + 4Fx + 6F 2 + 3 F 3 ) ^ 5 2 + - (2F 0 + 4F1 + 6F 2 + 3F 3 )A 5 1 - — (sin F2)A50 = 0, 

9 . 20 
(Fo+2F 1 +3F 2 +4F 3 ) ^ 5 2 + - ( F 0 + 2 F 1 + 3 F 2 + 4 F 3 ) ^ 5 i - ^ - ( s i n F 3 ) ^ 5 0 = 0, (4.165) 

where 

2 
A 5 2 = 1 + ^ [2(1 - cos F 0 ) + 3(1 - cos Fi) + 3(1 - cos F 2 ) + 2(1 - cos F 3 ) ] , 

A51 = 1 + - [2F0 sin F 0 + 3Fi sin Fi + 3F 2 sin F 2 + 2F 3 sin F 31 , 
r L J 

^50 - \[2F0

2 + 3FX

2 + 3 F | + 2 F | + 3F 0 A + 2F 0 F 2 + F 0 F 3 + AFXF2 

+ 2F1F3 + 3F 2 F 3 ] + 1 + ^ [ 2 ( 1 - cosF 0) + 3(1 - cosf \ ) 

+ 3 ( l - c o s F 2 ) + 2 ( l - c o s F 3 ) ] . (4.166) 

It is easy to spot, as we have mentioned before, that these expressions have 

symmetries F 0 «-»• F 3 and, independently, Fi <-» F 2 . 

So we can seek solutions involving only two functions F 0 = F 3 = F and Fi = 

F 2 = G. I f we impose this condition our equations reduce to the following two 
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coupled equations: 

where 

(F + G)A52 + ^(F + G)A51 - l ( s i n F ) i 5 o = 0, 

(F + 2G)A52 + -(F + 2G)A51 - ^{smG)A50 = 0, (4.167) 

-452 

A50 

= 1 + — [ 2 ( l - c o s F ) + 3 ( l - c o s G ) ] , 

1 + 2Fs inF + 3GsinG 
r 

7i2 i r>/»2 F + 2Gl + 2FG 

+ 1 + — [2(1 - cos F) + 3(1 - cos G)] (4.168) 

By imposing: F(0) = 0, F(oo) = 0 and G(0) — 2n, G(oo) = 0, the corresponding so­

lution is found to have energy 37.3436 and its baryon number is 12. We observe that 

equations (4.167) coincide with equations (4.160) in the 517(4) case, after rescaling 

the coordinate r = y/2f. Performing this coordinate rescaling in the corresponding 

energy integral of (4.167), we find that its energy is 2\/2 times the energy of (4.160) 

which agrees with our numerical results above. 

Note that if in addition, we further let G = F then the above coupled equations 

reduce to 

20 
1 + — ( 1 - c o s F ) 

2 • 2 
+ -F + ^ s i n F 5 F 2 - l - ^ ( l - c o s F ) = 0. (4.169) 

This equation, again, coincides with the usual SU(2) Skyrme model equation after 

rescaling the coordinate r = y/20f and from the corresponding energy integral we 

find that its energy is E = 20\/20 x 1.232. Our numerical result for the energy 

obtained from (88) is 110.251 which is also in good agreement with the above exact 

result. As its topological charge is 20 we see that the energy per baryon of this 

solution is -\/20 times the energy of one SU(2) skyrmion. 

There is still a further symmetry, which we could exploit, and which allows us 

to put F0 = — F3 = Y and F\ = — F2 = Z. The corresponding equations for Y and 

Z are 
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(3Y + Z)A52 + -(3Y + Z)A51 

20 
{sinY)A50 = 0, 

.. ~ 2 • • ~ 30 ~ 
(Y + 2Z)A62 + -{Y + 2Z)Abl - —{smZ)A^ = 0, (4.170) 

where 

. 4 
-452 = H ~ ^2 

• 2 r 
= 1 + -

r L 

A50 

1 
3Y 2 

2Y s inF + 3ZsinZ 

3YZ + 2Zl + 2YZ 

+1 + — [2(1 - cos Y) + 3(1 - cos Z)\ (4.171) 

This case corresponds to go = 0 and gi — g 3 and so the corresponding field config­

urations are described by two projectors - namely P2 and Pi + P 3. By imposing: 

Y(0) = 2TT, Y(oo) = 0 and Z(0) = 0, Z(oo) = 0, we found that this configuration 

has energy 13.4618. Its charge is B = 4 — 4 = 0. 

More general solutions, however, depend on all four functions. 

Finally, let us note that for SU(N) with N > 2, when all profile functions F* 

are the same, i.e. F 0 — Fi = ... = FN_2 = F equations (4.144) reduce to single 

equation 

1 + ^ ( l - c o s P ) 
2 • 2 

+ -F + ^ s i n P f ^ - l - ^ ( l - c o B F ) = 0, 

(4.172) 

and the corresponding energy integral (4.138) reduces to 

E = - L / r 2dr 
67r y 

f F 2 f 1 + ^ ( 1 -cos F ) ] + 2 ^ ( 1 - cos F) + ^ ( 1 - c o s F ) 2 

2r 4 

where 

B 
{N - 1)N(N + 1) 

(4.173) 

(4.174) 

and P is the baryon number of our configuration. 

We observe that by rescaling the radial coordinate r to 

= f V £ , (4.175) 
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equation (4.172) reduces to the usual SU(2) Skyrme model equation (in the coordi­

nate f ) and the energy integral (4.173) becomes 

E = By/BTESU{2), (4.176) 

where ESu{2) is the energy integral of the usual SU (2) Skyrme model (in the coordi­

nate f ) . Thus this configuration has energy E = B \ f h x 1.232 (taking F(0) = 2TT), 

which agrees with our results for the cases: iV = 3,4, and 5 above. As the baryon 

number of this configuration is B, the energy per baryon is yfii times the energy of 

one SU(2) skyrmion. 



Chapter 5 

SU(N) Yang-Mil ls Theories and 

Harmonic Maps 

In this chapter we apply the harmonic mapping method to pure SU(N) Yang-Mills 

theories where we concentrate on the massive case only as i t has been known that 

the massless case does not admit classical particle-like solutions [62,63]. The pure 

massive case is of course pathological, as its action is nongauge invariant. In order 

to get rid of this nongauge invariancy, here we consider a Stiickelberg type gauge 

invariant formalism [64], where SU(N) chiral currents U^d^U with U G SU(N) 

are added to render the massive terms gauge invariant. The pure massive case now 

corresponds to choosing the special gauge U = I. As the pure massive SU(N) Yang-

Mills fields action is not scale invariant, this raises the expectation that solitonic 

solutions might exist in these theories. In fact, we observe that i f we choose the 

gauge potential to be of almost pure gauge form, we recover the SU(N) Skyrme 

models action, which adds strong support to our previous expectation. 

Armed with this observation, we turn to consider a static magnetic type case 

by using the harmonic map ansatz for the gauge potential that was introduced 

by Ioannidou and Sutcliffe in their study of non-Bogomolnyi BPS monopoles [65]. 

When we studied spherically symmetric solutions of the equations (numerically) for 

lower N cases (2, 3 and 4), we found that by letting the profile functions gi(r) vanish 

at r —> oo and appropriately choosing the boundary conditions to be imposed at 

the origin r = 0, some bounded solutions with finite energies can be constructed. 

109 
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5.1 Massive SU(N) Yang-Mills Theories and Skyrme 

Models 

Let U(x) be an SU(N) group valued function of spacetime coordinates. Then a 

Stiickelberg type formalism of massive SU(N) Yang-Mills theories is given by the 

action [64] 

= Jd'xTr —F^F^ + M2 - L " ) (A» - (5.1) 

where 

= d^Au - + i [A^, Au\, (5.2) 

= -iU^d^U, (5.3) 

with M a mass parameter and where we have chosen arbitrarily the gauge coupling 

e = 1. The gauge potential A^ and the left chiral current have values in the Lie 

algebra su(N) and here we have chosen them to be Hermitian, i.e. A^ = A^ and 

= L M , respectively. 

We note that the action (5.1) is invariant under the gauge transformations: 

A'p = J T ^ f t - i J T ^ f t , (5.4) 

U' = USl, (5.5) 

where £1 e SU(N). On the other hand, as under the scale transformation x^ —> 

Arc'1, the gauge potential and the chiral current scale as XAn(Xx) and AL / i(Arr), 

respectively, we see that the mass term breaks the scale invariancy of the action 

(5.1). 

To derive the Euler-Lagrange equations of the action (5.1), let us consider its 

variation under the variations of field variables SA^ and 5U. We find 

SS = j d4xTr [-F^SF^ + 2 M 2 (A» - Z>) (<L4M - <?ZM)] . (5.6) 

As 

SF^ = 8^6Av + i [8A^, Ay\ - (// v), (5.7) 
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where SL^ is given by (4.6), so up to the total divergence terms, which vanish due 

to the boundary conditions: SA^ = 0 and 6U = 0 on the boundary, we obtain 

5S = - 2 J d 4 x T r [ { f ^ F " " - M2 (AV - Z") } <L4„ 

- M 2 ( ^ A " - Z ^ Z " ) U-15U\, (5.8) 

where is the covariant derivative 

D„G = d^G + i[A^ G] (5.9) 

for any G €= su(N). 

Thus, the corresponding Euler-Lagrange equations are 

- M2 (AV - Z 1 7 ) = 0, (5.10) 

0 ^ " - Z V > = 0. (5.11) 

Taking = U~l in (5.4) and (5.5), U becomes the unit element / and the action 

(5.1) reduces to 

Tr —F^F^ + M2A»ATL , (5.12) 

i.e. i t is the pure massive SU(N) Yang-Mills action. The field equations (5.10) and 

(5.11) then reduce to 

D^F"" - M2AV = 0, (5.13) 

dpA* = 0, (5.14) 

respectively. 

Equation (5.14) means that the gauge potential satisfies the Lorentz condi­

tion. Thus, we may interpret the action (5.12) as a gauge fixed version of the gauge 

invariant action (5.1). As the field equations (5.13) and (5.14) imply 3 degrees of 

freedom (polarisation states) for each vector field A^ where a is the Lie algebra 

index, we call the gauge U = I the physical or unitary gauge. In the following, by 

massive SU(N) Yang-Mills theories we mean the pure case (5.12). 

Now, let us make the following observation by choosing the gauge potential A^ 

in the action (5.12) to be of almost pure-gauge form, i.e. 

A„ = iqU~%U, (5.15) 
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where U takes value in the group SU(N), and q is a spacetime independent free 

parameter. In terms of U, the gauge field strength F^, according to (5.2), becomes 

Fp, = -iq{l + q)[L^Lu\, (5.16) 

where 

L» = U~ld„U. (5.17) 

Thus we see that, i f we choose q = — 1 then F^ = 0 and so the corresponding gauge 

potential is a pure-gauge. 

Putting (5.15) and (5.16) into the action (5.12) yields a new action 

S = J d 4 xTr Q g ^ l + g ) 2 ^ , ^ ] ^ , ^ ] - q2M2L»L^ , (5.18) 

which coincides with the SU(N) Skyrme models action (4.1) for M w = 0, with the 

parameters identification 

F = 4"M' a = wuj< (519) 

where F is the pion decay constant, and a the Skyrme models dimensionless con­

stant. 

As the SU(N) Skyrme models have solitonic solutions (i.e. the skyrmions), this 

coincidence gives us a strong basis to expect that massive 517(N) Yang-Mills theories 

might admit solitonic solutions as well. To check this further, in the following 

sections 5.2-5.4, we choose to study the static magnetic type case. 

5.2 Static Magnetic type Energy and B-integral 

As we are interested in the static magnetic type case, we exclude the electric type 

fields by imposing 

A0 = 0, d0Aa = 0, (5.20) 

from which it follows that 

F0a = 0, (5.21) 

where a = 1 ,2 ,3 . Then, from the action (5.12), the static magnetic type energy of 

the massive SU(N) Yang-Mills fields, as derived in appendix H.2, is 

1 
E = J cPxTr ^ b + M2A2

a (5.22) 
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In Ref. [66], Sheng had shown that the static magnetic type massive SU(N) 

Yang-Mills fields in (n + 1)-D spacetime with n ^ 3 do not allow for the existence 

of finite energy static solutions. Thus, the n = 3 case that we are considering here 

evades Sheng non-existence theorems which was left as an open problem in Ref. [66]. 

To examine this n = 3 case explicitly, let us study the scale stability of the energy 

integral (5.22) under the scale transformation: x —> Xx. As the gauge potentials 

scale as 

A^x) XA^Xx), (5.23) 

from which 

the energy integral (5.22) scales as 

d3{Xx) 

X2F^(Xx), (5.24) 

E ->• E[X] I A 3 
Tr -X4Fab(Xx)2 + M2X2Aa(Xx)2 

1 
XEF + —EM, (5.25) 

where Ep and EM are the F-term and the massive term, respectively. Thus we 

see that the pure massive SU(N) Yang-Mills static energy (5.22) scales in the same 

fashion as the static energy of the SU(N) Skyrme models (4.17). 

As 

dE[X] 
dX 

d2E[X] 
dX2 A=l 

— Ep — EM, 

= 2E Mi 

(5.26) 

(5.27) 

the extremum condition guarantees that EM = Ep. Thus we see that the stability 

condition could be satisfied, and so we conclude that static massive SU(N) Yang-

Mills field theories admit the existence of solitonic solutions as we expected. 

Next, we note that the energy integral (5.22) can be expressed in the form of a 

perfect square term plus "something" as follows 

E = J d3xTr QcofcFab - MA^j + MeabcFabAc (5.28) 

The second term in (5.28) has structure which is independent of the metric tensor, 

which raises the expectation that i t is a topological quantity. As i t is proportional 
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to the baryon number B of the SU(N) Skyrme models if is of almost pure gauge 

form, so for convenience we keep the same letter B for i t , and define 

B = TtLr / rfx^fcabcFriAc]. (5.29) 

For later reference, we call i t by the name B-integral. 

From (5.28) i t is obvious that, for finite B, 

E > WTTMB, (5.30) 

and so the lower bound of the energy would be saturated if 

CabcFat - 2MAC = 0, (5.31) 

which is analogous to Bogomolnyi's bound in Yang-Mills-Higgs monopole theories 

[65]. Note that (5.31) is consistent with the Lorentz condition (5.14) in this static 

magnetic type case. 

In terms of the spherical polar coordinates (r, 9, (f>), the energy (5.22) becomes 

1 1 

2 sin 
E = j dr (sin 9d0d<j>)Tr 

r 0 ~in29 r * r 2 s i n 2 0 J 

+M2r2A2 + M2A2 + - ^ - A 2 (5.32) 

As we are going to apply the harmonic maps S 2 —>• CPN~L to this problem, in 

the following we choose to use the holomorphic coordinates (£, £) for S2. The 

transformation relations between the angular components of the gauge potential 

and field strength in the spherical polar and holomorphic coordinates are 

A e = ^ ^ P ^ + ^ ' (5"33) 

A 0 = i ({A; - {A;), (5.34) 

Fro = ( 1 2|^| ^ ^ + ' ( 5 " 3 5 ) 

Fr4> = i (£F r C - £Frf) , (5.36) 

FH = m { l + \^2)F^. (5.37) 

In terms of the complex quantities on the right hand side of (5.33) - (5.37), the 

energy (5.32) in the spherical holomorphic coordinates (r, £, f ) is 

f - T (1 + I f I 2 ! 2 M2r2 o 1 
F = 2i J drdtdZTr | j r f F r f - i - M J - F ^ + { l + m ^ A r + M 2 A ^ , 

(5.38) 
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and the field equations (5.13) become 

+ DtF^r -
2Mr2 

0, (5.39) 
(i + m 

while the Lorentz condition (5.14) becomes 

(i + \m D D.F. 
2r 2 

- M2Al = 0, (5.40) 

dr (r2Ar) + (i + lei 2) 2 
[d^ + d ^ ] = 0. (5.41) 

2 

5.3 SU(N) Harmonic Map Ansatz 

In this section, we solve the massive SU(N) Yang-Mills field equations (5.39) and 

(5.40) together with the constraint (5.41), numerically, by using harmonic maps 

S2 -> CPN~l. Explicitly, we choose to take the following harmonic map ansatz for 

the gauge potentials [65]: 

N - 2 

Ar = 0, At = iY,9k [Pk, d^Pk], (5.42) 
fc=0 

where Pk = Pk(£,Q are rank-1 projector fields of the CPN_1 a model, and the 

profile functions gk are functions of the radial coordinate r only. Note that, A^ = 

( A e ) f . From now on, we abandon summation convention on repeated indices. 

As the projectors satisfy the CPN~^ equation: [Pk,d^Pk] = 0, i t follows from 

the ansatz (5.42) that the gauge potentials A$ and A%, satisfy the identity 

and so (5.41) is solved by this ansatz automatically. 

Furthermore, we find that with the ansatz (5.42), equation (5.39) is also satisfied 

identically. Thus, the only nontrivial equation left is (5.40). To derive the explicit 

equations for the profile functions gk from (5.40), we need to extract out the an­

gular dependence in a consistent way. To carry out this manipulation directly is 

a formidable task due to the complexities in evaluating the derivatives of the pro­

jectors. In order to get rid of i t , we reduce the dependencies on the holomorphic 

deA£ + dfAt = 0, (5.43) 
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coordinates (£, £) by multiplying (5 .40) from the right by the mutually orthogonal 

vector fields Mx (I = 0 , . . . , (N - 1)) , i.e. 

(DrFri - D-t

 ( 1 + j f )2FU - M2A^j Mi = 0, (5 .44) 

and then use the following properties of the projector operators Pk = Mk\Mk\~2M\ 

and its derivatives applied to Mf 

P F C M , = 5klMh (5 .45) 

(d €P*)M, = ( S k l - S k H 1 ) M t + u (5 .46) 

( % P F C ) M , = « I _ 1 ( < 5 I F C , I _ 1 - 5 W ) M I _ 1 , (5 .47) 

where 

* • V - ( 5 - 4 8 ) 

In deriving the above results we have taken M 0 to be holomorphic and we have used 

the derivative properties of Mi as given by equations (3 .81) - (3 .82) . Note that, by 

definition: K_I = 0. For example, in deriving (5 .47) we first write 

( % P * ) M , = 9 F ( P F C M , ) - P ^ M i . (5 .49) 

Then, using (5 .45) and (3 .81) , i.e. d^Mt = - K W M m , gives (5 .47) . 

Hence, the action of the gauge potential, as given by the ansatz (5 .42) , on the 

vectors Mi are 

A^Mi = - t G , M , + 1 , (5 .50) 

A^Mt = i G i - i K j - i M i - i , ( 5 . 5 1 ) 

where 

from which we derive that 

Gi = (gi + gi+i), (5 .52) 

FHMt = -iGM+1, (5 .53) 

FriMt = iGi-iKi-iMi-i, (5 .54) 

F^Mt = i(QlKl - (5 .55) 
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where 

Qi = G t(2 - Gi). (5.56) 

Note that, by definition: gt = 0 i f I (£ [ 0 , 1 , . . . , (N - 2)]. 

Let us now return to equation (5.44). We observe that, in order to have a 

compatible set of equations for the profile functions gi, we have to choose the vectors 

Mi in such a way that each factor (1 + | £ | 2 ) 2 K ( is equal to a constant, i.e. 

«l = (5.57) 
(i + iei 2 ) 2 ' 

where K\ are some constants depending on the index /. In fact, we found that the 

condition (5.57) is satisfied if we choose the initial vector M 0 to be given by the 

Veronese map, (3.123)-(3.125), i.e. 
T 

Mn = i,\/crie,...,\/cc-1eK
 r - 1 , (5.58) 

With this choice then from the construction of the vectors M ; as described in propo­

sition 3.2, i.e. equations (3.135) and (3.142): 

/q = (I + I ) ( N - I - I ) = M\. (5.59) 

Using (5.50) - (5.54), and (5.57) for KI then for the first two terms of equation 

(5.40), we obtain 

(i + \t?Y 
2r2 

M, 

2r 2 MQi - W-1Q1-1+M-2Q1-2] (1 - j / c j - iM, . ! . (5.60) 

Substituting (5.51) and (5.60) in equation (5.40), and noticing that Mj are in­

dependent vector fields, we find that the profile functions gi satisfy the following 

second order nonlinear ordinary differential equations: 

1 
G ' + 2 ^ M+1Q1+1 - 2MQ1+M-1Q1-1 (1 - Gt) - M2Gi = 0 (5.61) 

Thus we see that the harmonic map ansatz (5.42) with the initial vector M0 given by 

the Veronese map (5.58) is an exact spherically symmetric solution of the massive 

Yang-Mills field equations (5.39) - (5.41). 
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Next, we want to express the static magnetic type energy (5.22) in terms of the 

profile functions g\. To simplify the evaluation of the traces in (5.22), we choose to 

use the formula: 
N-l 

^ = E I M P M ^ M * ' ( 5 - 6 2 ) 

fc=0 ' fc' 

where R is a (N x N) nonsingular complex matrix which is diagonal in each basis 

vector M f c , (A; = 0,1, . . . , JV — 1). Note that the upper sum in (5.62) is (N - 1), 

instead of (N — 2), because here we have to sum over the whole complete set of basis 

vectors Mk in CN. 

Using (5.50) - (5.54) and (5.57) we obtain 

T r f e % ) = - ( 1 + | E | 2 ) 4 E ( ^ - ^ - ^ - 0 2 ( 5- 6 4) 

T r ( ^ ) = ( 1 + i E | 2 ) 2 E ^ (5-65) 

where, by definition, G^-i = 0 and N-\ = 0. 

With the above results for the traces, the static energy (5.38), written in a 

symmetrical form, becomes: 

,oo N-\ r 

/

1 / ~ ~ \ 2 

dr [MG? + 4-5 [MQi - M-1Q1-1) + M2MGf 

(5.66) 

We note that equations for the critical points of the energy (5.66) coincide with 

the equations for the profile functions gi in (5.61) as we expected. From this ex­

pression we see that the energy is finite provided the profile functions G/, for all 

I = 0 ,1. . . , (iV — 2), are bounded and that they approach zero at infinity as re~Mr 

and at the origin the boundary conditions: Gi = 0 or 2, are imposed. 

The B-integral in this coordinate system is 

B = j drdtd£Yx [Fr(Af + F^} , (5.67) 

and so using the formula (5.62) to express the traces, we obtain 

B = - \ E^< / d r {G^) = -7 E ^ ^ C - v ( 5 - 6 8 ) 

1=0 J o 1=0 r 
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where Mi is given by (5.59). Thus, by taking the boundary conditions Gj(oo) = 0, 

we see that the B-integral is determined solely by the boundary conditions at the 

origin. 

5.4 Spherically Symmetric Solutions 

In this section, we have a look at the numerical solutions of the profile equations 

(5.61) for some different values of the mass M by imposing the boundary conditions: 

G;(oo) = 0 and G/(0) = 0 or 2, as required for having finite energy solutions. In 

fact, we only consider the cases: N = 2,3 and 4. 

Here we have only one profile function Go, with Mo = 1, so the profile equations 

(5.61) reduce to a single equation 

Solving (5.69) for some different values of the mass M with the boundary condition 

Go(0) = 2 at the origin, we have found that each solution Go is bounded. In fig. 5.1 

we show the solution for M = 1. 

We have also computed the corresponding energy from (5.66), i.e. 

and the results for 4 different mass parameters, i.e. M = 1, 5, 10 and 50, are 

summarised in Table 5.1. 

Go(0) B £ M = I / 4 T T £ M = 5 / 4 T T £ M = I O / 4 T T £ M = 5 O / 4 T T 

2 1 4.94629e+00 2.47320e+01 4.94670e+01 2.47755e+02 

Table 5.1: Energies of the massive SU(2) Y M fields. 

In fig. 5.2 we show the radial energy density for M = 1 and we see that it looks 

like a trough ball. 

5.4.1 SU(2) 

Go - \Q0(1 - G0) - M 2 G 0 = 0. (5.69) 

oo 1 dr \G' + Ql + M G E o > 2r 2 

o 
(5.70) 
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Figure 5.1: Profile function of the massive SU(2) Y M field for M = 1 
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Figure 5.2: Energy density of the massive SU(2) Y M field for M = 1. 
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These solutions has £?-integral equal to 1 and so, according to (5.30), the lower 

bound of the energy is Ej(47r) = AM. We see that each energy is about 25 precent 

higher than the corresponding lower bound value. 

For the boundary condition Go(0) = 0, we have found that equation (5.69) has 

trivial solution Go(r) = 0. 

5.4.2 SU(S) 

For N = 3, we have two profile functions Go and G\ which satisfy 

Go - ^ [2Q 0 - Qi] (1 - G 0 ) - M 2 G 0 = 0, 

G * 

(5.71) 

(5.72) -Qo + 2Ql\ (1-Gl)-M2G1=0, 

as JVo = M = 2. 

We have solved these equations for each of the following two different choices of 

boundary conditions imposing at the origin (Go(0), Gi(0)) = (2, 0) and (2, 2), and 

we have also found that the corresponding solutions are bounded. In fig. 5.3, we 

show the graphs of these solutions for M = 1, and the corresponding radial energy 

distribution is presented in fig. 5.4. In table 5.2, we have summarised the result of 

energies computed from (5.66), i.e. 

E = 4TT(2) J™ dr ( G 2 + G2 + ^ [Q2

0 - Q0QX + Q2] + M2G2

0 + M 2 G ? ) , (5. .73) 

for different values of mass M. 

G 0(0) Gi(0) B EM=I/4IT EM=5/4ir £ M = I O / 4 T T £ M = 5 O / 4 T T 

2 0 2 1.19080e+01 5.95409e+01 1.19087e+02 5.96217e+02 

2 2 4 2.16498e+01 1.08251e+02 2.16516e+02 1.08440e+03 

Table 5.2: Energies of the massive SU(Z) Y M fields. 

We notice that equations (5.71) and (5.72) are symmetric with respect to the 

interchange G 0 G\. This allows us to set G 0 = Gi which reduces the system 

to a single SU(2) profile equation (5.69). This configuration has 5 = 4 (taking 

GQ(0) = 2) and having energy 4 times the energy of a SU(2) configuration. 
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Figure 5.3: Profile functions of the massive SU(S) Y M fields for M = 1, G o(0) = 2 

and Gi(0) = 0. 
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Figure 5.4: Energy density of the massive SU(3) Y M fields for M = 1, G 0(0) = 2 

and Gi(0) = 0. 
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5.4.3 SU(4) 

Here we have three profile functions G 0 , G\ and G2, with No = A/2 = 3 and A/i = 4, 

so the profile equations (5.61) reduce to 

Go 3Qo - 2Qi (1 - Go) - M 2 G 0 = 0, 

Gi - ^ [ -3Q 0 + 8Q1 - 3Q 2] (1 - G a ) - M 2 G X 0, 

(5.74) 

(5.75) 

(5.76) G 2 - ^ [ -2Q! + 3Q 2 ] (1 - G 2 ) - M 2 G 2 = 0, 

The corresponding energy (5.66) is 

E = 4TT J dr (SG2

0 + AG\ + ZG\ + ^ [9Qjj - 12Q 0Qi + 16Q? - + 9Ql] 

+ 3 M 2 G ^ + 4 M 2 G 2 + 3M 2G?.). (5.77) 

We observe that the system (5.74) - (5.76) has symmetry G 0 <-t G2, which allows 

us to set Go = G 2 = G by keeping Gi arbitrary. The energies for this configuration 

are summarised in table 5.3. 

G(0) Gi(0) B £ M = I / 4 T T EM=IO/4TT EM=50/^ 

0 2 4 2.69092e+01 1.34550e+02 2.69120e+02 1.34817e+03 

2 0 6 3.66547e+01 1.83276e+02 3.66567e+02 1.83496e+03 

Table 5.3: Energies of the massive SU(4) Y M fields (reduced case). 

In addition, letting Go = G\ = G2 = G the above system of equations reduces to 

the SU(2) profile equation (5.69). This configuration has B = 10 (taking G(0) = 2) 

and has energy 10 times the energy of a one SU(2) configuration. 

In table 5.4, we have summarised the values of energies for general configurations 

Go 7̂  Gi ^ G2 for 4 different combinations of boundary conditions at the origin. In 

fig. 5.5, we show the graphs of the solutions for M = 1, G 0(0) = 0, Gi(0) = 2 and 

G 2(0) = 2. The corresponding radial energy distribution is presented in fig. 5.6. 
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G 0(0) 0,(0) G 2(0) B ^ M = 5 / 4 T T £ M = I O / 4 T T £ M = 5 0 /47T 

0 0 2 3 1.91795e+01 9.58985e+01 1.91804e+02 9.60104e+02 

0 2 0 4 2.77712e+01 1.38860e+02 2.77748e+02 1.39303e+03 

2 0 2 6 3.66540e+01 1.83273e+02 3.66568e+02 1.83597e+03 

0 2 2 7 4.13643e+01 2.06826e+02 4.13680e+02 2.07268e+03 

Table 5.4: Energies of the massive 517(4) Y M fields. 
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Figure 5.5: Profile functions of the massive SU(A) Y M fields for M = 1, G 0(0) = 0, 

Gi(0) = 2 and G2{0) = 2. 
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Figure 5.6: Energy density of the massive SU(4) Y M fields for M = 1, G0(0) = 0, 

Gi(0) = 2 and G2(0) = 2. 



Chapter 6 

Conclusions and Outlook 

In this thesis we have discussed the applications of harmonic mapping methods to 

the construction of solutions of static 3-dimensional SU(N) Skyrme models, usual 

and alternative, and pure massive SU(N) Yang-Mills theories, which are based on 

the results of our research works [17-19]. 

In the following sections, 6.1-6.4, we present concluding remarks of each chapter, 

starting from chapter 2. Chapter 1 is omitted as it contained a general Introduction. 

Discussion of the outlook for further research is presented in the final section, i.e. 

6.5. 

6.1 Harmonic maps 

In chapter 2 we briefly reviewed harmonic mapping theories as maps between two 

Riemannian manifolds Mo —>• M, generalising the concept of a geodesic in differ­

ential geometry. Based on the fact that solutions of the nonlinear sigma (or a) 

models field equations coincide with harmonic maps, we reformulated the a model 

field configurations space M as group and coset space manifolds revealing intimate 

relationship between differential geometry and gauge theories. 

In chapter 3 we concentrated on the Grassmannian a model, and reformu­

lated the model in terms of rank-n projectors Pk of S2 into Grassmann manifold 

Gr(n, N) = SU(N)/S(U(N - n) x U(n)), which offers us a simple but much struc­

tured approach to construct ful l solutions of the models. There, we discussed ex-

126 
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plicitly the Veronese map or embedding: S2 —> CPN~l = Gr(l, N) that plays an 

important role in the construction of exact spherically symmetric solutions of the 

SU(N) Skyrme models and Yang-Mills theories in chapters 4 and 5, respectively. 

In that chapter we also discussed some relevant algebraic topology concepts, in 

particular, de Rham cohomology and homotopy theories, which gives us topological 

understanding about the existence of topological charges and discrete solutions in 

sigma models, SU(N) Skyrme models and massive Yang-Mills theories. 

6.2 SU(N) Skyrme models 

In sections 4.1-4.7 of chapter 4, we studied the SU(N) Skyrme models by construct­

ing SU(N) multiskyrmions fields using harmonic mappings method. We generalised 

the method of Ioannidou et. al. [14] by considering projectors of S2 —> Gr(n,N), 

i.e. using projectors of rank n > 1. In particular, we concentrated our attention 

only on the rank-2 projectors. 

Using our construction we studied some approximate spherically symmetric con­

figurations of SU(N) Skyrme models. When we solved the equations for the profile 

functions for configurations with baryon number B — (N — 1) we found that they 

are very close to those for the rank-1 cases and that they have marginally higher 

energies. These results indicate that the rank-1 projector ansatz [13] is the best way 

to approximate energy minima of the SU(N) Skyrme models. 

We also discussed the possibility of generating exact spherically symmetric so­

lutions using this construction. However, we found that, in contrast to the rank-1 

projector ansatz in which exact spherically symmetric solutions can be found (nu­

merically) by using the Veronese sequence of ./V mutually orthogonal vector fields in 

CPN~l, such a construction is more involved in our case. In particular, we found 

that if the sequence of the (N x n) matrix fields satisfy the condition (4.96) then 

it seems that the only possible exact solutions are embeddings. For example, for the 

rank-2 projector ansatz these are embeddings of a pair of SU([N]/2) solutions of 

rank-1 projector ansatz, where [N] = N, or (N—l) for N even or odd, respectively. 



6.3. Alternative SU(N) Skyrme models 128 

6.3 Alternative SU(N) Skyrme models 

In sections 4.8 and the rest of chapter 4, we discussed the alternative SU(N) Skyrme 

models where we showed that to study these models we could use the harmonic maps 

ansatz [12] as has been applied to the usual Skyrme models [13]. 

We found that, as in the case of usual Skyrme models, the use of (N — 1) rank-1 

projectors constructed from the Veronese sequence of vectors gives us spherically 

symmetric solutions of the alternative models. These solutions are characterised by 

the appropriate profile functions, which have to be determined numerically. In some 

cases we can exploit symmetries of the energy densities and reduce the number of 

functions. 

Thus, almost everything has worked exactly like for the usual Skyrme models; 

only the equations for the profile functions have been a little modified. When we 

solved the equations for the profile functions we found that the solutions of the 

alternative models have energies higher than the corresponding solutions of the 

usual models. This can be traced to the extra terms in the expression for the energy 

density which give an additional positive contribution to the total energy. 

6.4 Massive SU(N) Yang-Mills Theories 

In chapter 5 we considered the pure massive SU(N) Yang-Mills theories where we 

first showed that for the case when the gauge potential is chosen to be almost pure 

gauge the theories reduce to the SU(N) Skyrme models. When we studied the 

static magnetic type case we found that the theories do also admit the existence of 

a topological charge like quantity that we called by the name 5-integral. 

To solve the corresponding static equations, we used Ioannidou-Sutcliffe har­

monic map ansatz that they introduced in their study of non-Bogomolnyi BPS 

monopoles [65]. This ansatz enabled us to construct some bounded solutions having 

finite energies. These solutions are very special in the sense that they depend very 

much on the chosen boundary conditions to be imposed on the profile functions gk, 

i.e. gk = —2, 0 or 2 at the origin and zero at infinity. 
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6.5 Outlook 

We have seen that the generalised harmonic map ansatz (4.33) is compatible with 

the SU(N) Skyrme equations if the sequence of (N x n) matrices M f c(£) of the map 

S2 —> Gr(n, N) satisfy the condition (4.96). For the rank-1 projectors case, i.e. 

n = 1, as applied to the massive SU(N) Yang-Mills equations as well, the solution 

of (4.96) for Mk are given by the Veronese sequence. For higher rank cases, however, 

our analysis suggests that the only solutions are embeddings of the rank-1 cases. 

I t would be interesting to see, whether there exists other conditions than (4.96) 

for the (N x n) matrix fields Mk that might lead to non-embedding solutions. 

For the pure massive SU(N) Yang-Mills theories, i t would be interesting to see 

if there exist an extended version of the harmonic map ansatz (5.42) that can be 

applied to solve static e/ecfnomagnetic type equations. 

As far as spatial symmetry is concerned, i t is not clear, how to generalise the 

harmonic map ansatz (4.33) and (5.42) to derive an analytical or quasi-analytical 

form of non-spherically symmetric solutions for the Skyrme models and the Yang-

Mills theories. 

I t would be interesting, as a first step in this direction, to see if the harmonic 

map ansatz method can be applied, at least, to the oblate or prolate spheroidal 

symmetric cases, where for the SU(2) Skyrme model, a hedgehog-like ansatz has 

been applied to construct solutions having this deformed symmetry [69,70]. 
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Appendix A 

Evaluation of Exp(/C(0)) 

In this appendix we shall derive the closed matrix expression of the exponential 

matrix G{9) = Exp (JC(9)) in (2.107) from the series expansion: 

oo 1 

Exp(M) =1 + ^2 ~MP, 
P = i p -

(A.0.1) 

which is defined for any (N x N) matrix M [36]. 

For our case, 

M = K{0) 

OJV-I 6 

- 6 T 0 

0={61,...,6N-1)T, (A.0.2) 

where ON-I is an (N — 1) x (N — 1) zero matrix. We observe that the powers of the 

matrix K,{9) satisfy the following properties: 

JC{6fp = (-\9\2)p-l!C(9)2, 

JC(9)2p+1 = (-\9\2)P)C{9), (A.0.3) 

fovp= 1, 2, where \9\2 = 9T0, 

K{9f 

-99T 0 N _! 

(A.0.4) 

and where 6TV_I is a zero column vector with (N — 1) components. 
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Thus, the series expansion (A.0.1) for our case becomes 

E x p ( / C « » ) = / + E ^ ^ ) + E 
p=0 V F ' p=Q 

(2p)\ 
K{df (A.0.5) 

Recall the Taylor series expansions of the sine and cosine functions: 

sin 

cos 

P\g\2p+i ( - Y \ e \ 
(2p + l)\ ' 

p=0 
0 0 ' 

(A.0.6) 

(A.0.7) 

the series (A.0.5) has the closed form 

E x p ( K W ) = i + * ? m m + 1 1 ^ 1 (A.0.8) 

With /C(6>) and K{6)2 given by (A.0.2) and (A.0.4), respectively, (A.0.8) has the 

matrix form 

Exp(/C(0)) = 

Kr , + RffT(cos\e\-l) Qsm\0\ 
J J V - 1 - I - OO | F L | 2 (7 | S | 

aT sin|g| 
0 \o\ cos|0| 

(A.0.9) 

Explicitly, 

Exp(/C(0)) = 

fiAB QAQB (COS | 0 | - 1 ) ^sinjei 

- 0 B sin \9\ COS|0| 

(A.0.10) 

(̂ 4, B = 1 , . . . , N — 1), which completes our derivation of (2.107). 



Appendix B 

Derivations of the properties 

(3.81) and (3.82) 

In this appendix we present the derivations of the properties (3.81) and (3.82) of 

the (N x n) mutually orthogonal matrices Mk, (k = 0 , . . . , A), that we constructed 

in section 3.2.2. 

B.0.1 Derivation of (3.81) 

Using the fact that the sequence Mk are independent, we have the expansion: 

A 

dlMl = Y,MkakU l = l,...,X, (B.0.1) 
k=0 

where aki are (n x n) matrices. Note that, d^M0 = 0, as we have assumed M 0 to be 

holomorphic. 

Multiplying (B.0.1) from the left by then yields 

Mld-^ = \Mm\2aml, (B.0.2) 

where we have used the orthogonality property (3.75). 

Next, using the construction (3.79), the left hand side of (B.0.2) becomes 

= S^Mld^Mt-d^lMtl2. (B.0.3) 
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Thus, using (B.0.2) in (B.0.3), we obtain 

ami = Slm\Mm\-2Mld^Mt - S ^ M ^ M ^ 2 , (B.0.4) 

and so the expansion (B.0.1) reduces to 

d{-M, = Miail + M ^ a ^ . (B.0.5) 

In the following we shall show that 

a„ = 0, / = 1,. . . ,A, (B.0.6) 

which is, according to (B.0.4), equivalent to 

Mjd^Mi = 0. (B.0.7) 

For the case / = 1, using the construction (3.79) or (3.80) and d^M0 = 0, 

obtain 

we 

0 f-Mi = -dfPodtMo = - M o 0 £ - (\M0\-2M^ % M 0 , (B.0.8) 

and so 

MldcMi = 0, i.e. an = 0. (B.0.9) 

that 

i.e. 

For the general case: 1 < A; < A, we use the inductive argument by assuming 

o-kk = 0, 

<9|Mfe = M f c _ io f c _ i > f c . 

(B.0.10) 

(B.0.11) 

As 

dtPk = dfMk(\Mk\-2Mi)+Mkdz(\Mk\-2M£) 

= [Mk-M-u + M ^ ^ M ^ M l ) , (B.0.12) 

using the construction (3.80) and the orthogonality property (3.75), i t follows that 

Ml+1d^Mk+l = Ml+1 - E ( ^ K + 1 M > 
1=0 

i.e. 

a/t+i,fc+i = 0, 

which completes our inductive proof of (B.0.6). 

= 0, (B.0.13) 

(B.0.14) 
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Thus, (B.0.5) becomes 

d-^Mi = - M ^ l M ^ H M d 2 , (B.0.15) 

i.e. the equation (3.81). 

B.0.2 Derivation of (3.82) 

As from (3.81), 

d^M\ = (d^Mky = (ak.1>ky Mi,, (B.0.16) 

i t follows from the orthogonality property (3.75) that 

ds\Mk\2 = Mtd(Mk. (B.0.17) 

Thus, 

dt{Mk\Mk\~2) = (d^Mk)\Mk\~2 - Mk\Mk\-2 {d6\Mk\2) \Mk\~2 

= [(I-Pk)dsMk}\Mk\-2, (B.0.18) 

and (3.82) follows by using the construction (3.79). 



Appendix C 

Projectors of C C P 3 

In this appendix we present the complete (4 x 4) matrix projectors P f c, (A: = 0 , . . . , 3), 

of the Veronese map M 0 : C —> CP 3 , i.e. 

M 0 = ( l , y/3£, Vse, • (CO.l) 

Using M0 in (C.0.1) and the remaining mutually orthogonal vector fields Mk 

(k — 1, 2, 3), that we have computed in section 3.2.5, we find that these (4 x 4) 

matrix projectors 

Pk = Mk\Mk\~2Ml (C.0.2) 

are 

Pk = (1 + | £ | 2 r 3 P * , fc = 0, . . .3, (C.0.3) 

where the diagonal and the upper diagonal entries of the (4 x 4) matrix Pk are 

given in table A . l . The other elements are obtained from the Hermiticity property: 

Pk = Pi 
From table A . l , we see explicitly that the projectors Pk, (k — 0 , . . . , 3), satisfy 

the rank-1 condition: Tr(Pjfc) = 1, and the completeness relation: P0 + P1+P2+P3 = 

Zi, where 74 is the (4 x 4) unit matrix. 
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Entries h P\ p 2 p 3 

11 i m 2 3 k | 4 

12 - V 5 e ( i - 2iei 2) -v / seiei 2 (2 - iei 2) - v ^ e i e i 4 

13 - v ^ e 2 ( 2 - iei 2) x/3£ 2 (l - 2|e|2) 

14 3 f 

22 a - 2 i e i 2 ) 2 iei2(2 - ie i 2 ) 2 3|^|4 

23 e ( i - 2 | e i 2 ) ( 2 - i e i 2 ) - < e ( i - 2 | e i 2 ) ( 2 - i e i 2 ) 

24 \ / 3p i e i 2 ^ _ 2 ( i - 2 i e i 2 ) - V 5 ? ( 2 - iei 2) 

33 3|£| 4 iei2(2 - ie i 2 ) 2 ( i - 2 | e i 2 ) 2 siei 2 

34 v^eiei 4 v /seiei 2(2 - m >/5e(i - 2iei 2) 

44 K I 6 siei 4 siei 2 i 

Table C. l : Elements of the (4 x 4) matrices Pk = Pi {k = 0, . . . , 3). 



Appendix D 

Symmetry of the Veronese 

Sequence 

In this appendix we shall consider the action of the coordinate transformation £—>•£', 

on the CPN~l fields Zk = Mk\Mk\~l where Mk are the Veronese sequence. Here, we 

assume £ 6 S2, which is our main concern in chapters 4 and 5. We do not consider 

the complex plane C as base space, since for this case, the fields Zk could take an 

arbitrary, but fixed, value at |£| —» oo, which breaks the global SU(N) symmetry. 

Then we have the following result, first proved by Ioannidou et. al. [13]. 

Proposition C . l 

Let M f c ( f ) : S2 ->• CPN~l be the Veronese sequence. Then the CPN~X fields 

Zk = Mjt lMfel - 1 transform covariantly under the Mobius transformation: 

^ ^ = 4 ^ T ' H 2 + I ' l a = i . (D.0.1) 
—o£ + a 

i.e. 

Zk(0 = mk(0, (k = 0 , . . . , N - 1), (D.0.2) 

where Q, e SU(N) depends on a and b and their complex conjugates. 

Proof 

Our proof will consist of two parts: (1) f2 € U(N), and (2) del Q = 1. 
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(l) e U(N) 

Here we shall use the construction (3.79). First, we consider the case A; = 0. By 

acting the Mobius transformation (D.0.1) on the Veronese map M 0 in (3.123), with 

the components [M 0 (£)] p = / p (£ ) given by (3.125), we find that 

AM0(0 
M 0 ( O = (D.0.3) 

(-6e + fi)^-i' 

where A is an (N x N) matrix depending only on a and b and their complex conju­

gates. The elements Apq of A are extracted from the expression 

9 = 0 

Explicitly, 
9 {-)sCp

q_sC^-p-laq-saN-p-s-lbp-q+sbs 

(D.0.4) 

A pq 
s = 0 

(D.0.5) 

where Cf = 0, for I > k. 

By virtue of (3.139), 

\Mo{e)\2 = {\ + \€\*)»-* = i\2\N-l |M 0 (OP 
{-K + a) ?i\N-l 

(D.0.6) 

(D.0.7) 

where we have used \a\2 + \b\2 = 1. Thus, from (D.0.3) and (D.0.6), 

\AM0(0\2 = \(-k + a)N-'M0(O\2 = (1 + \Z\Y~\ 

which proves that A G U(N). 

Let us now introduce the notations: Mk — Mk(Z') a n d Mk = Mk(Z) and consider 

the case k = 1. As 

and 

ae* _ (i + l^l2) dP = — f t = 

P0 = M0\M0\-2M1

0=AP0A\ 

which follows from (D.0.3), so, by the construction (3.79), 

Mi = (I-P0)deM0 

= A(I-P0)A\-bZ + a)2ds 

(D.0.8) 

(D.0.9) 

AMn 

L(-6e + o)^-i 
4(7 - PQ)^M 0 

{-bZ + a)N~3 ' 
(D.0.10) 

file:///Z/Y~/
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since (I - P0)M0 = 0. Thus, 

Mi = (D.0.11) 

and so Px = M ^ M ^ M ! = APxAl 

Now we consider the general case: 1 < k < (N — 1), where we shall use inductive 

proof by assuming 

M , 
AMh 

and so Pk = APkA\ holds up to k < (N - 1). 

Note that (D.0.12) is consistent with A <E U(N), as from (3.139), 

I iCr |2 _ fc!(A/" - 1)! , |^/|2\jV-2fe-l 

W 

K - ^ + a ) ^ " 1 ! 2 ' 

and so 

L4M.I 2 - K-fte + a ) ^ " 1 ^ ! 2 = | M f c | 2 . 

The construction (3.79) then gives us 

Mk+1 = (I-Pk)d?Mk 

= A(I-Pk)A\-bC + a)2ds 

AMk+1 

AMk 

(-&£ + a )* - 2 *- 1 

(-6£ + a)N-2(k+i)-i' 

since ( / — Pk)Mk = 0, which completes our inductive proof of (D.0.12). 

(D.0.12) 

(D.0.13) 

(D.0.14) 

(D.0.15) 

(2) detti = 1. 

Now we give a proof of det A = 1. For this purpose, i t is enough to consider A 

around the identity, i.e. 

A = e x ~I + X, X 2 ~ 0 , (D.0.16) 

where X takes value in the Lie algebra u(N). 

Since det A = e^*, so to proof det A = 1 is equivalent to proof 

T r X = 0. (D.0.17) 
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Thus, according to (D.0.16), we need to consider the infinitesimal part of the diag­

onal elements App of A only. For the finite expression, (D.0.5) gives us 

APP=Y^(-yCP-sc^~p~laP's^N~p~s~l\b\2s- (D.O.18) 

Now a question arises: what is the infinitesimal expressions of the elements a and 

6? To answer this question, let us reconsider the Mobius transformation (D.0.1). In 

the homogeneous coordinates [zi, z^], where £ = zi/z2, z-i ^ 0, the action of (D.0.1) 

is simply matrix multiplication [28,42]: 

'a ' a b Z\ 

. z , 1 . —b a Z2 
(D.0.19) 

showing that a and b are elements of 5(7(2). Thus, their infinitesimal forms are [36] 

a ~ 1 + i0, b ~ iX + T], 62 ~ A 2 ~ rf ~ 0. (D.0.20) 

As |6|2 ~ 0, the infinitesimal form of the diagonal elements App in (D.0.18) is 

nonzero for s = 0 only. Thus, 

App ~ Cp

pC^-p-laPaN-p-1 ~ 1 + i8(2p - N + l ) , (D.0.21) 

and so the diagonal elements of X , according to (D.0.16), are 

X p p = i6(2p- N + 1). (D.0.22) 

As 
N-l 

^T,{2p -N + l) = 2.-(N - 1)N - N(N - 1) = 0, (D.0.23) 

we see that (D.0.17) is satisfied, which completes our proof of detA = 1. 

Thus, for the CPN~l fields Zk, by virtue of (D.0.12), 

Zk = Mk\Mk\~l = AMk\Mk\~l = AZk, k = 0 ,1 , . . . , (N - 1), (D.0.24) 

which proves that (D.0.2) holds with Q = A 6 SU(N). • 



Appendix E 

Homotopy Groups 

In this appendix we briefly review the definitions of the D-th homotopy groups, 

I I D ( - A ^ ) , for D = 0, 1 and D > 1 and discuss their computations [49-52]. In fact, 

our main aim here is to proof that: 

(1) n 2 (Gr (n , AT)) = Z, and 

(2) U3(SU(N)) = Z, 

which are relevant to our discussion in sections 3.3.2 and 4.2.3, respectively. 

E . l Yl0(M) 

Here, as S° consist of two points: -1 and + 1 only, U0(M) is not a group but just 

a set. This is explained as follows. Let a, (3 : {—1, 1} ~ 5° —>A4 where we fix 

a(—1) = /?(—1) = y0 e M. Then a ( l ) and /3(1) could be any two points in M. 

I f F(s, r ) : S° x [0, 1] -»• M be a homotopy from a to ft then r ) = y0 

for r G [0, 1] whereas F ( l , r ) is a continuous function from [0, 1] —> M such 

that F ( l , 0) = o ( l ) and F ( l , 1) = /?(1). Thus U0(M) corresponds to set of path-

connected components of Ai. If IIo(A4) has only one component then A1 is connected 

and we write U0(M) = 0. The disconnected case n 0 (A4) ^ 0 is the analog of 

topological charges for the maps 5° -» M. called domain walls in physics literature. 

Clearly, n 0 (R) = 0, while IL^S 0 ) = Z 2 . Here, Z 2 is considered as a set with just 

two elements {—1, 1}. For the integers Z, which consists of infinitely countable 

disconnected elements, we have n 0 ( Z ) = Z. 
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E . 2 III (.M) 

The homotopy group IIi(.M), called fundamental group, is of particular interest. Its 

elements [a] consist of closed paths or loops a(s), s 6 [0, 1] ~ S1, which begin and 

end at a definite point y0 € M, i.e. a(0) = a(l) = y0 called the base point. Let [e] 

denotes class of loops homotopic to a point. Then rii(.A/f) = 0 ~ [e] means that any 

loops on M. can be shrunk to a point, which implies that Ai is simply connected. 

Otherwise, M is multiply connected. 

The group multiplication in IIi(.M) is defined as follows. Let [a], [/?] G n 1(A^), 

then we define 

[a]\p] = [aUP]. (E.2.1) 

The product loop 7 = a U f3 is formally defined by 

f a(2s), 0 < s < \ 
j(s)=\ h ~ - 2 (E.2.2) 

[ P(2s-1), l<s<l. 

Geometrically, 7 corresponds to traversing a in the first half, then followed by ft in 

the remaining half. Traversing a in the reverse direction defines the inverse loop 

a-\s) = a ( l - s). (E.2.3) 

One can show that this really gives a group structure, i.e. the multiplication is 

associative, i t has inverse a - 1 and an identity element [e] [51,52]. The multiplication 

(E.2.2) could be non-commutative, in that case Ui(Ai) is nonabelian [7]. 

For illustration, let us consider the computation of n^S1*) for k > 1. The case 

k = 1 corresponds to the map S} —> S1 which can be specified by a complex function 

of unit modulus, f(s) = el<l>(-s\ s € [0, 1] G The single valuedness of the map 

then requires that 0(1) = </>(0) + n(27r), n eZ, which is precisely the set of elements 

generated by the action of Z. Intuitively, this means that a loop winding n times 

around the circle cannot be shrunk to a point without leaving i t . Thus, maps with 

different n fall into different classes [an]. Therefore, we have U^S1) — Z. Since .S1 

is isomorphic to the unitary group U(l), we also have ^ ( [ / ( l ) ) = Z. For k > 1, 

Si maps into arbitrary loops on Sk. As any curve on 5* can always be deformed 

into a single point, we have n 1 (5 f c ) = 0. Next, since SU(2) ~ 5 3 , we also have 
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n1(5C/(2)) = 0. In general, as SU(N) is simply-connected, HX(SU(N)) = 0 as well. 

Let us consider U1(RPN~1). As RP"-1 ~ ^ ^ / [ - l , 1], i.e. S^" 1 covers P P " " 1 

twice, we have LTi (RPN~1) = Z 2 . Here, Z 2 is considered as a cyclic group of order 

two which includes just two elements: —1 and 1. 

E . 3 TlD(M), D > 1 

Let us now consider the higher homotopy groups UD(-M.), D > 1. They are gen­

erated by homotopy classes of the higher dimensional generalisation of a loop i.e. 

.D-loop which is homeomorphic to SD. Here the interval X = [0, 1] is generalised 

to £)-dimensional interval or cube: [0, 1] x . . . x [0, 1] = XD, where the boundary 

dXD is made of points: s = ( s i , . . . , sp) such that at least one coordinate Sj is 0 or 

1. Then a D-loop a(s), s 6 T D , based at y0 e M. is a map: XD —>• M. such that 

a(s) = yo for all s € dZ1*. Loops a and ft are homotopic if there exist a continuous 

function F(s, T) : XD x [0, 1] -> such that 

F(s,0) = a(s), F(l,s)=0{s), (E.3.4) 

and 

F(s,T) = y0, i f sedXD. (E.3.5) 

The homotopy class [a] is now the quotient of the space of the D-loops in M. by the 

homotopy equivalence as defined above. 

The group product of the homotopy classes [a] and [/?] is defined as in (E.2.1) 

where here the product loop 7 = a U ft is defined by 

^ s ) = ( a ( 2 S l , s 2 , . . . , s D ) , 0 < S < I ( E 3 6 ) 

[ P ( 2 S 1 - 1 , 8 2 , . . . , S D ) , \ < S < 1, 

and the invers loop 

a _ 1 ( s ) = a ( l - si, s2,..., s„). (E.3.7) 

The set with elements [a] and group multiplication [a] [0\ as defined above form 

the D-th homotopy group UD(M). I f i t is nontrivial, i.e. UD(M) ^ 0, then there 

is a .D-dimensional submanifold SD in M which is topologically equivalent to SD 



E.4 . Computation of n2(Gr(n, N)) 150 

that cannot be shrunk into one point. In fact, since SD is a smooth manifold, 

UD(SN) = 0 for D < N whereas UD(SD) = Z. 

E . 4 Computation of U2{Gr(n, N)) 

We now come to the first aim of this appendix, the computation of the second 

homotopy group of the Grassmann manifold, U2(Gr(n, N)). This we need to add 

homotopy perspective to the topological meaning to the disrete solutions Zk and 

the topological charge integral (3.117). 

Here we shall follow the general scheme to compute the n-th homotopy groups 

TLD(M.) which is set by presenting the manifold M as coset space G/H. Fitting this 

construction into the bundle picture (E, B, F, p) where E = G, B — G/H, F = H 

and p : E —>• B the projection then there exist a long exact homotopy sequence 

Here iD is a group homomorphism of the inclusion map i : F —> i(F) C E, and pD 

as well, as p : i(F) -> B, whereas d : {XD~l x X ->• B} -> {XD~l x dl -> F}. 

Recall that the sequence: 

is called exact i f the kernel of the mapping Ker(/fc)c $fc, is the image of the 

mapping I m ( / f c + 1 ) C $ f c , where by definition: fk(Kev(fk)) = 0. 

To summarise the relevant theorems related to the exact homotopy sequence 

(E.4.8), let us introduce the following notations. Let <frk, k = 0, 1, . . . be the k-th 

element in the sequence (E.4.8) counting from the right end. Thus, i f A; = ZD + r, 

with r = 0, 1, 2, then = U D ( X r ) where X0 = B, Xi = E and X2 = F. Using 

this notation, then the relevant theorems are summarised as follows: 

(1) I f $ f c + 1 = 0 and = 0 then $ f c = 0. 

(2) I f = 0 and $ f c-2 = 0 then $ f c = $k_u i.e. fk : $ f c -» $fc_x is an 

isomorphism (onto). 

[49-52]: 

d in PD D 
^UD(F) UD(E) ->• UD(B) U D ^ ( F ) ^ 

(E.4.8) 

fk+l fk fk-l (E.4.9) 

(3) If E = B x F then $k(E) = $k(B) 0 $ f c (F) . 
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For detail explanations and proofs we refer to Ref. [51,52]. 

As the Grassmann manifold Gr(n, N) = V(n, N)/U{n) where V(n, N) is the 

Stiefel manifold, i.e. V(n, N) = U(N)/U(N — n), we shall first compute the D-th 

homotopy group of U(N) and V(n, N). This we do in steps by starting from the 

simpler manifold S1 as follows. 

E.4.1 U D ( S l ) , D>2 

As S1 ~ R/Z, the corresponding exact homotopy sequence is 

. . . -> TID+^S1) -> n D ( z ) n D (R) -> u^s1) n ^ z ) -> . . . ( E A I O ) 

Since n D (R) = 0, D > 0, UD(Z) = 0, £> > 1, n 0 (Z) = Z, and n 0 ( 5 1 ) = 0, i t follows 

from (E.4.10) that n 1 (5 ' 1 ) = n 0(Z) = Z, as we have found before, and 

UoiS1) = 0, for D > 2. (E.4.11) 

E.4.2 i~b([/(jV)) 

Here we use the coset relation S 2 N + 1 = V(l, N + 1) = U(N + 1)/U(N), for which 

the corresponding exact homotopy sequence is 

i w s 2 " + 1 ) -> n D ( t / ( iv ) ) -» n D ( f / ( i v + 1 ) ) -» n D ( s 2 J V + 1 ) 

->n D _i(C/(JV))->. . . (E.4.12) 

Since Uk{Sl) = 0, for k < I, i t follows from (E.4.12) that 

n D ([ /( iV)) = nfl(C7(JV + l ) ) , for D<2N. (E.4.13) 

Using the result n 1 ( f / ( l ) ) = n ^ S 1 ) = Z in (E.4.13) then by induction we obtain 

Ui(U(N)) = Z, i V > l . (E.4.14) 

Next, since n 2 ( S 3 ) = 0 (2 < 3) and U2{U{1)) = n 2 ( 5 1 ) = 0, according to (E.4.11), 

i t follows from (E.4.12) that U2(U(2)) = 0. Hence, from (E.4.13): 

U2(U(N)) = 0 for any N. (E.4.15) 
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E.4.3 UD(V(n, N)) 

As the Stiefel manifold V(n, N) = U(N)/U(N — n), the corresponding exact homo-

topy sequence is 

... -> UD(U{N)) UD(V(n, N)) -+ nD_x(U(N - n)) -> n D _ 1 ( f / ( iV)) 

-)• n D _ i ( V ( n , AT)) -> • . . . (E.4.16) 

which is, unfortunately, inconclusive for us to compute HD(V(n, N)). 

To get around with this we shall use the fibre bundle picture {V(n, N), V(n — 

1, N), 5 , 2 ( 7 V -")+ 1

j p) whose setting is explained as follows [55]. Let Y = (w 1 , . . . , w n _ 1 ) 

be a fixed orthonormal (n — l)-frame and S2(-N~n^+1 be the unit sphere which 

is tangent to Y, i.e. v^Y = 0 for v G S 2 ^""^ 1 . Thus, locally V(n, N) = 

V(n - 1, N) x 5 2 ^ - n ) + 1 = \Z = {Y, v ) } , and p : V(n, N) V{n - 1, AT) is 

the projector that assigns to each n-frame Z the (n — 1)- frame F obtained by omit­

ting one vector (here, the last vector v) with p~l(V{n — 1, N)) = S2(N~n)+1 is the 

fibre. For this bundle, the corresponding exact homotopy sequence is 

... -+ U D ( S 2 ^ + 1 ) -+ UD(V(n, N)) -> UD(V(n - 1, N)) 

-> n ( D _ 1 ) ( 5 2 ( 7 V - n ) + 1 ) -> . . . (E.4.17) 

Since for D < 2(N - n) + 1, n ^ S 2 ^ - " ^ 1 ) = 0, we have 

UD(V(n, N)) = TlD(V{n - 1, N)). (E.4.18) 

For n = 2, V ( l , AT) = 5 2 7 V " 1 , so n D ( V ( l , AT)) = 0, and by induction we obtain 

from (E.4.18) that [50] 

UD(V(n, AT)) = 0, for D< 2(N - n) + 1. (E.4.19) 

For D = 2(N - n) + 1 , UD(S2<^N-^+1) = Z, and so the exact sequence (E.4.17) gives 

us [50] 

UD(V(n, AO) = n D ( 5 2 ( A r - " ) + 1 ) = Z. (E.4.20) 



E . 5 . Computation of U3(SU(N)) 153 

E.4.4 Tl2(Gr(n, N)) 

Now we come to our main aim. As Gr(n, N) = V(n, N)/U(n), the corresponding 

exact homotopy sequence is 

... -> UD(V(n, N)) -> UD{Gr(n, N)) -> n D _ 1 ( [ / ( n ) ) I W ^ n , N)) -> ... 

(E.4.21) 

If D < 2(AT - n) + 1, then using (E.4.19) in (E.4.21) gives us 

I I D ( G r ( n , iV) = nD. 1(C/(n)). (E.4.22) 

Thus, for (iV — n) > 1 we ultimately obtain from (E.4.22) that 

Il2(Gr(n, N)) = I I i (t/(n)) = Z, (E.4.23) 

where the last equality (isomorphism) follows from (E.4.14). 

E.5 Computation of U3(SU{N)) 

To compute U3(SU(N)), we use exact homotopy sequence for the coset relation 

S2N-i = SU(N)/SU(N - 1). In analogy with the computation of UD(U(N)) that 

we have carried out in section 4.2.3, we get 

UD(SU(N-1))=UD(SU{N)), for D < 2(N - 1). (E.5.24) 

As 5*7(2) is topological^ a 3-sphere S 3, U1(SU(2)) = U2(SU(2)) = 0 whereas 

n3(5C/(2)) = Z. Then by induction we obtain 

U^SUiN)) = n2{SU(N)) = 0 for all N, 

U3(SU(N)) = Z, for N > 2. (E.5.25) 



Appendix F 

Reduced Formula for Evaluating 

T r ( [ | M f c + 1 | 2 | M f c | - 2 ] 2 ) 

In this appendix, we derive a formula for simplifying the calculation of the trace in 

J for the case n = 2. Using the formula, 

Tv(H2) = ( T r # ) 2 - 2DetH, (F.0.1) 

which is true for any (2 x 2) matrix H we note that for = Det \Mk\2 / 0, we 

have 

Tr ( [ | M f c + 1 | 2 | M f c | - 2 ] 2 ) = (Tr [ | M , + 1 | 2 | M f c | - 2 ] ) 2 - 2 (F.0.2) 

Thus, if Dk+i = 0, then from (F.0.2) we have 

T r ( [ | M f c + 1 | 2 | M f e | - 2 ] 2 ) = ( T r [ | M f c + 1 | 2 | M f e | - 2 ] ) 2 . (F.0.3) 

154 



Appendix G 

Condition (4.96) from the SU(N) 

Chiral Models 

To simplify our search for finding a condition for exact solution of the SU(N) Skyrme 

model equations (4.89), in this appendix, we look at the corresponding SU(N) chiral 

model equations 

(1 + I f |2\2 
dr ( r % ) + {-^jLL {d^ + 3 {L f-) = 0, (G.0.1) 

i.e. (4.89) without the Skyrme terms. In terms of the rank-n projectors Pkl equa­

tions (G.0.1), after we have put in (4.37) and (4.90), become 

2 [ ( P k " %) + ( 1 + KI 2 ) 2 s i n F * 
Jfc=0 ^ ' 

x ( M m | M , | - 2 M / + 1 - M ^ M ^ M ^ M ^ M } ) ] = 0, (G.0.2) 

where Fk = gk - gk+1, gx = 0. 

Next we multiply equations (G.0.2) from the right by Ms. Using PkMs = 

(Mk\Mk\~2Ml)Ms = MsSsk and noting that Ms are independent matrix fields, we 

see that the requirement of the vanishing of the corresponding coefficients leaves us 

with 

r2 I <?., - y\<7* I I n 

Jfc=0 

+ ( l + | e | 2 ) 2 ( | M , _ 1 | - 2 | M 4 | 2 s i n F . _ 1 - | M s | - 2 | M s + 1 | 2 s i n F 5 ) = 0. (G.0.3) 
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Finally, summing over s from 0 to /, and noting that M _ i = 0 (by definition), 

we find that (G.0.3) gives us 

l A - l , ,x A - l 

d. 
^p=0 q=p p=0 

( l + | ^ 2 ) 2 | M , | - 2 | M m | 2 s i n F , = 0. (G.0.4) 

Thus, in order to have a compatible and a consistent set of equations for the 

functions Ft in (G.0.4), the matrices Mi must satisfy 

| M , | - 2 | M m | 2 = /C|(l + K| a)-X 2 \ - 2 j (G.0.5) 

i.e. the condition (4.96). 



Appendix H 

Derivation of Energy from 

Energy-Momentum Density 

Tensor 

In this appendix we shall derive static energies of the field theories we are con­

sidering in this thesis. Here, instead of using the canonical method, we use the 

familiar method in General Relativity theory for deriving the corresponding energy-

momentum density tensor T^" from which the corresponding energy density S is 

given by the component T 0 0 . 

Let g^v be the metric tensor of the curved spacetime .Mo, then the corresponding 

action is 

where C is the curved spacetime Lagrangian density and where g = det^g^) < 0. 

By definition, the variation of the action (H.0.1) with respect to the variation of 

the metric tensor g^ alone is [67] 

J d4x^/^g g£, (H.0.1) 

\ J d4x^T^6g 
uv 

(H.0.2) 

Using 
1 

poi g"p (<JO g 5g LLU (H.0.3) 

then 

(H.0.4) 
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where 5gL is the corresponding variation of C. 

By comparing (H.0.4) and (H.0.2), we can read-off the corresponding energy-

momentum density tensor T 7"'. 

In the following two subsections we shall apply this formalism to the usual SU(N) 

Skyrme models and pure massive SU(N) Yang-Mills fields. 

H . l SU(N) Skyrme Models 

Here, the flat spacetime Lagrangian density is given by (4.2), so its curved spacetime 

version is 

C = Tr ^<r^u + ^<r<r'[L„Lv\[L«M + ^M2{U-I + U - 2 I ) 

(H.1.5) 

Under the variation of the metric tensor alone, 5g^, i t transforms as 

- (sTirsT* + trsT'sT0) ^ T r [ L „ Lu)[La, L0}. (H.1.6) 

Hence, the energy-momentum density tensor that we read-off from (H.0.4) is 

Tp° = -gpaC - —g^g^Tv (LML„) 
o 

16a2 
1_ (g^gfag* + g T ^ f P ) T*[L„, Lv][Ltt, Lp\. (H.1.7) 

We now let <^„ to be Minkowskian metric. Then the energy of the SU(N) 

Skyrme models is 

E = j d3xT00 = Estat + Erot, (H.1.8) 

where 

E stat «xTr[^Ll + ^2[La,Lb]2 + ^ M 2 (U^ + U - 21) ] , (H.1.9) 

which determines the mass of the configuration, and 

E, 'rot 'xTr 
^2 i 
_ r 2 _i £ _ 

L16^° + 16a2 [Lo, La] (H.1.10) 

for rotating finite mass configuration and its quantisation [9]. 
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.2 Pure Massive SU(N) Yang-Mills Fields 

Here, the curved spacetime Lagrangian density of the pure massive SU(N) Yang-

Mills fields as we read-off from the action (5.12) is 

C = Tr - l g ^ F a P F ^ + M2 {gTAaA^ 

Under the metric tensor fields variation Sg^, i t varies as 

6gC = Tr [FpvFa

v - M2ApAa] 5gpa. 

(H.2.11) 

(H.2.12) 

Hence, the energy-momentum density tensor that we read-off from (H.0.4) is 

2 ( - -g^F^Fp,,) - 2M2 \A»A" - -g^A^A^ ) . (H.2.13) 
1 

Thus the static energy density of the pure massive SU(N) Yang-Mills fields, for 

which A0 = 0 and Foa = 0, in flat spacetime, is 

£ = T oo Tr ^FabFab + M2AaAa (H.2.14) 



Appendix I 

Numerical Methods 

In this appendix we outline the numerical methods that we have used to solve 

the boundary value problems of the profile functions of the models in this thesis. 

These equations, which are of the type of ordinary differential equations (ODE), are 

highly nonlinear, thus require iterative methods to approach the corresponding exact 

solutions Fk(r), k = 0 , 1 , . . . , (A — 1). In this thesis we apply the Newton-Raphson 

iterative method [68] which proceeds as follows: 

(a) Choose an initial guess Fk°\r) and prescribe a tolerance value TOL ~ 0. 

(b) Set the iteration sequence: 

F?\r) = F t 1 ) ( r ) + rt\r), < = 1, 2 , . . . , J, (1.0.1) 

with | /W | 2 - 0 . 

(c) At each iteration step i, substitute (1.0.1) to the profile equations and solve 

the resulting system of linear ordinary differential equations: 

duff + a l f c / f 4- a o f c j f +4 = 0, (1.0.2) 

where the coeficients a0h, • • •, dk are functions of F k E q . (1.0.2) are subjected 

to the boundary conditions: fk\o) = 0, / ^ ( o o ) = 0. 

(d) Stop the iteration when 

\Fk

(I) - F k

{ I - l ) \ < TOL. (1.0.3) 

(e) The 7-th iterated functions Fk

I\x) are the required (numerical) solutions. 
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In this thesis, we solve the linear ordinary differential equations (1.0.2) by using 

the finite difference scheme [68]. For the first derivative df /dr we use the central 

difference approximation: 

/ 4f 
dr f 3 + \ h f l ~ 1 + 0 [ h 2 ) ' 

(1.0.4) 

whereas for the second derivative with an equally sensible order of accuracy 

_d2f _ . f j + 1 - 2f3 + U 
f dr7 h2 

+ 0(h2). (1.0.5) 

where f j = f ( r j ) and h = r J + i — rj. 

Having the results of the computed profile functions available, we then 

proceed to compute the corresponding energy integral E using the simple trapesoidal 

rule [68]. 

In executing these numerical computations, we have used the computer C-

language program to implement the above algorithm [68]. 


