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Abstract 

Historically pore pressure evaluation in exploration areas was based on empirical 

relationships between drilling parameters, wireline logs and the mud weight. 

Examples include Eaton's Ratio and the Hottman & Johnson Methods, which were 

based on data from the Gulf o f Mexico. These methods are not readily transported to 

other areas, such as the North Sea Basin, where the sediments are different in 

character and where burial and temperature histories are distinctly different. 

Data from several offshore North Sea wells, with high quality wireline and associated 

data have been analysed to determine the most appropriate method to estimate pore 

pressure in mudrocks. The data have led to an understanding o f the key parameters 

for successful pore pressure estimation. The most effective method is shown to be the 

Equivalent Depth Method, but only where disequilibrium compaction is the source o f 

the overpressure in the mudrocks. 

Core samples from 576 British Geological Survey sites in the offshore area o f the 

British Islands were compared with > 10,000 porosities collected f rom the deep oceans 

(DSDP/ODP sites), which show that the porosities in the shallow section in the North 

Sea are anomalously low. The shallow section o f the North Sea includes large 

volumes o f Pleistocene-Recent sediments deposited as glacial and inter-glacial 

deposits. Frequency analysis (Cyclolog) o f the wireline data covering this interval in 

several North Sea wells revealed a pattern in the relative featureless original data. 

Comparison wi th the global signature for oxygen isotopes for the same time period 

suggests that there have been ten cycles o f ice sheet build up (Glacial period) 

followed by melting (Interglacial period) during the last one mil l ion years. Glacial 

deposits from 10 individual glacial cycles have therefore been identified in several 

exploration wells in the North Sea. Implications o f loading/unloading o f ice for the 

migration and trapping o f hydrocarbons in the North Sea Basin are assessed. 
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Chapter 1 Introduction 
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1.1 Background 

Fifteen years ago, most pore pressure studies were undertaken solely for safety 

aspects in the design and drilling o f exploration wells. As the need for accurate pore 

pressure evaluation is growing due to its general application in exploration studies 

such as hydrocarbon migration studies, more accurate methods founded on sound 

physical principles, and not just empirical observations, are needed. 

Pore pressure estimation is a particular challenge in the North Sea on account o f the 

complex tectonic and sedimentological history o f the region, where the highest 

overpressure (pore pressures above the normal, hydrostatic pressure) are found in 

Jurassic and Triassic reservoir sandstones. The presence o f a thick Chalk section as 

well as a variety o f mudrock types, including a kerogen-rich petroleum source rock, 

challenge standard practices for pore pressure evaluation which were, in many cases, 

developed in the Gulf o f Mexico where the rocks are younger and exclusively 

siliciclastic (sandstone, siltstones and shale mudrocks). The late history (Pleistocene-

Holocene) o f the North Sea has involved ice loading and the deposition o f glacially-

derived sediments which add a further component o f complexity to the stress and 

f lu id history o f North Sea sediments. 

The availability o f a very high quality set o f well data f rom the Norwegian North Sea 

(Central Graben) provided impetus for this project which was designed to test current 

methods o f pore pressure prediction, assess the impact o f a late ice-loading and 

unloading history and apply new technology on mudrock compaction (being 

concurrently developed in the GeoPOP research group - see below). 

There are a number o f complementary data which can be used for pore pressure 

evaluation including basin modelling, seismic velocities, wireline logs and drilling 

parameters. Each requires different data input and interpretation requirements. In this 

thesis the emphasis is for pore pressure evaluation using wireline logs. The response 

f rom the drilling parameters was used as an independent control. 
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Chapter I I n i r ouu i ' i ion 

The thesis was funded by Norske Conoco in Norway and the work was included as 
part o f GeoPoP. GeoPoP (GEOsciences Project into OverPressure) was a joint 
research project involving University o f Durham, Newcastle University, Heriot Watt 
University and industrial sponsors such as major oi l companies like BP, Amoco, 
Statoil, Norsk Hydro, Phillips, Conoco, etc. The aim o f GeoPOP was to explain how 
pore pressures evolve in mudrocks and to evaluate and develop new methods to 
predict and calculate the pore pressure in these sediments. 

1.2 Data 

Norske Conoco made most o f the data available, consisting o f wireline data f rom 

exploration wells. The most important well was 1/6-7, drilled by Norske Conoco in 

1989, which is classified as a high pressure (> 10,000 psi) and high temperature 

(>350°F) (HPHT) well . In addition to well 1/6-7 were a number o f offset wells in the 

southern part o f the Norwegian shelf. The data set included also some wells f rom 

Haltenbanken and the Barents sea. Well 1/6-7 has high quality wireline and mud 

logging data particularly with respect to testing pore pressure prediction and 

calculation methods (Figure 1.1, 1.2 and 1.3). 

GeoPOP provided the data f rom the Gulf o f Mexico. Data f rom the shallow coring 

project by British Geological Survey (BGS) were provided by BGS. Data f rom the 

Ocean Dri l l ing Project (ODP) are freely available on the Internet and were 

downloaded free o f any charge. 
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Figure 1.1 The wireline log plot of well 1/6-7 from seabed to 2000m. 
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Figure 1.2 The wireline log plot of well 1/6-7 from 1900 to 4000m. 
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Figure 1.3 The wireline log plot of well 1/6-7 from 3000 m to 4995 m (TD). 
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1.3 Introduction 

In exploration dril l ing operations pressure f rom the circulating dril l ing f lu id (mud) is 

used to prevent the pore f lu id in the porous rock entering the borehole. The pressure 

from the mud at a particular depth is a function o f the average density ( M W = Mud 

Weight) and the vertical height o f the column f rom that depth to the surface. In low 

permeability formations, such as mudrocks, the formation can cave into the wellbore 

through tensile failure i f the pore pressure is higher than the counter pressure from the 

mud. The industry has a long history o f establishing empirical relationships between 

drilling parameters such as the rate o f penetration and the gas measured in the 

returning dril l ing f lu id to the pore pressure in the mudrocks. The uses o f dril l ing 

parameters are very subjective and prone to large uncertainties. The pressure can also 

be calculated indirectly f rom petrophysical measurements. Petrophysical data can be 

acquired while dri l l ing or after dril l ing a section. In the former case the petrophysical 

sensors are placed behind the dri l l bit in operations known as Logging While Dri l l ing 

(LWD) or Measurement While Dri l l ing ( M W D ) . When data is acquired once drilling 

has been completed, the petrophysical sensors are lowered down the hole suspended 

f rom a wire (wireline logging) and readings taken by the tools while being reeled back 

up. The pore pressures in the reservoir rocks with high permeability are measured 

directly using a wireline tool wi th a pressure gauge. A cylindrical probe with a small 

aperture is hydraulically forced into the formation (Figure 1.4) and the tool remains at 

the location until the pressure stabilizes between the inside o f the tool (where the 

pressure gauge is located) and the formation (where the probe has been extended). 

The pressure is recorded as pressure vs time. The most common trade acronyms for 

these tools are RFT (Repeat Formation), FMT (Formation multi-tester) or M D T 

(Modular Dynamics Tester). In mudrocks where permeability is very low, this tool 

cannot be used due to the time it w i l l take for pressure to stabilize. Direct pressure 

measurements are also recorded when a hydrocarbon zone is tested, called a Dr i l l 

Stem Test (DST). 

The accompanying petrophysical measurements collected at the same time as the 

pressure tests include sonic, velocity, neutron porosity, density, and resistivity (unless 

you intended to list something else). These sensors are all calibrated for the porous 

formation and w i l l tend to give erroneous reading i f any clay minerals are present. 
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The challenge is therefore to use these measurements in mudrocks wi th low 

permeability and high clay content. During compaction o f compressible sediment, 

such as mudrock, water is expelled and the porosity decreases. I f the free water which 

needs to be expelled to maintain equilibrium with the imposed stresses cannot drain 

out o f the system, the porosity w i l l not decrease, wi th the result that the pore pressure 

increases above the hydrostatic pressure. Porosity cannot be measured directly in a 

borehole. The porosity is calculated indirectly f rom the sonic velocity, neutron 

porosity, density or the resistivity measurement, or a combination o f these 

measurements. The effective or inter-granular stress is then calculated using a 

relationship between the porosity, the normal compaction trend and the total 

lithostatic stress (overburden stress). 

A variety o f empirical relationships have been developed for calculating mudrock 

porosity f rom different log responses. Typically, a stress-porosity relationship is not 

used directly, but instead porosity is compared against a normal compaction trend, 

which would be the porosity against depth for the location in question assuming a 

'normal' pressure profile equivalent to the hydrostatic head of a water column. In this 

work it w i l l be shown that the normal compaction trend often yields the biggest 

uncertainties in calculating the pore pressure in mudrocks. 
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Figure 1.4 Schematic of wireline logging. The lithological column to the right is a schematic of a 
pressure probe (RFT) being used to measure the pore pressure in permeable sandstone. 

Having inferred mudrock porosity f rom logs and computed or established a normal 

compaction trend o f expected porosity for normal pressure, the final step is to f ind a 

relationship quantifies the pore pressure magnitude associated with a mismatch 

between the estimated mudrock porosity f rom log response and the normal 

compaction trend.. This transform or equation might be based on physical principles, 

such as the equivalent depth (or effective stress) method, or empirical relationships, 

such as the Eaton's method. It w i l l be shown that the transform method used for 

calculating the pore pressure is less important than the choice o f normal compaction 

trend. 
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Chapter i 

The initial goal for this research was to establish a new method to calculate the pore 

pressure in mudrocks as a function o f petrophysical measurements. During the course 

of this research it became apparent that the classical equivalent depth method is a 

reliable equation and it would be o f limited value to attempt an improvement to it. 

Also, the porosity o f the mudrocks can be reliably calculated f rom a combination o f 

the available wireline logs. A sensitivity study shows clearly that the biggest 

uncertainty is the normal compaction curve. Eaton (1975) summarized it best: "The 

methods used to establish normal trends vary as much as the number o f people who 

do i t" . 

A normal compaction curve represents the reference trend describing the compaction 

behaviour o f sediments which are normally pressured. The compaction (porosity loss 

involving expulsion o f fluids) is caused by increases in vertical and /or horizontal 

stress. Conventional pore pressure prediction uses the normal compaction curve to 

estimate the magnitude o f overpressure. Data f rom which normal compaction curves 

are derived include shallow buried sediments o f the same age and lithology, or 

published compaction relationships. For example, Hansen (1996) examined three 

wells in the North Sea where he assumed that the mudrocks have normal pore 

pressure. He established a relationship between the sonic travel time and the mudrock 

porosity used in this research. Other approaches are based on laboratory 

measurements o f compaction such as by Skempton (1970) where he showed a 

relationship between compaction and the volume of fine-grained material in the 

samples. The shortcoming o f that approach is that the relationship does not take into 

account the different compaction behaviours o f clay minerals such as montmorillonite 

versus fine-grained quartz, (K. Bjorlykke (2001) personal oral cornmun.). 

This research shows that it is unlikely that any useful normal compaction trend can be 

established in the North Sea due to recent glacial events. The glacial tills left by a 

earlier glacial event have been overlooked for many years. The nature o f these 

sediments is found to be very different from normal marine and non-marine shale 

mudrocks. This suggest that the previous method of establishing a normal trend by 

overlaying a number o f porosity curves form offset wells w i l l give wrong results i f 

used in basins such as the North Sea. 
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1.4 Pressure, the basic concepts 

Fluids differ from solids in that they are unable to support shear stress. When a body 

is submerged in a f lu id such as water, the f lu id exerts a force perpendicular to the 

surface at all locations around the surface o f the body. I f the body is small enough so 

we can neglect any differences in the vertical water column, the force (F) per unit area 

(A) is the same in all directions. This force per unit area is called the pressure P o f the 

f lu id : 

P = F/A [ E l . l ] 

The SI unit o f pressure is Newton per square meter (N/m 2 ) , which is called Pascal 

(Pa). The equivalent imperial unit is pounds per square inch (psi = lb/in ). 

Liquids found in rocks in the subsurface are relatively incompressible. This means 

that the ratio o f mass to volume, called density is approximately constant. For a 

liquid whose density is constant, the pressure increases linearly wi th depth. The 

pressure P at any point in a liquid column is: 

P =P0 + pxgxh [E1.2] 

P is the pressure at the surface and h is the vertical liquid column. The Greek letter p 

(rho) is the density. Density has the unit mass/volume (kg/m 3 = g/cm 3). g is the 

acceleration due gravity at the earth surface and equal to 9.81 m/s 2. 

Figure 1.5 shows a simplified diagram o f how pore pressure may increase in a well . 

The hydrostatic pressure (often called the normal pressure) in sediments underlying 

the ocean often follows a gradient equal to 0.0101 MPa/m. That is the increase in 

hydrostatic pressure in water wi th an average density o f 1.03 g/cm 3. The overburden 

pressure is the pressure exerted by all overlying material, both solid and f lu id . Below 

the water bottom, this line approximates 0.0226 MPa/m (1 psi/ft) in a clastic 

sedimentary environment. The pore pressure is the pressure o f the f lu id in the pore 

space of the rock. It may be equal to or higher than the hydrostatic pressure, but not 

higher than the overburden pressure (Figure 1.5). I f the pore pressure approaches the 

overburden pressure the rock w i l l fracture and release fluids. However, often 

fracturing w i l l occur at a lower pressure, equivalent to the least principal stress, which 
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Chapter I Introduction 

in an extensional basin is less than the overburden (the vertical stress). I f at a specific 

depth o f burial the mudrock permeability becomes so low that the excess water f rom 

normal compaction can no longer f low out o f the system as fast as the rate o f new 

sediments, the pore pressure w i l l increase. The maximum increase o f pore pressure by 

this mechanism called disequilibrium compaction (Swarbrick and Osborne, 1997)-

and is often found to be parallel to the lithostatic gradient (Clayton and Hey, 1994), 

indicating, at depth, transfer o f most/all o f the load onto the pore f luid, with very 

little/no increase with vertical effective stress.. 
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Figure 1.5 Pressure plotted against depth in a fictional well. The effective stress is equal to the 
overburden pressure minus the pore pressure and the overpressure is equal to the pore pressure 
minus the hydrostatic pressure. 

In a borehole, the pressure exerted by the drilling f lu id to either prevent inf lux o f 

pore fluids f rom the formation or prevent hole caving instability is equivalent to 
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density o f the drilling f lu id and its column height. Therefore, the formation pore 

pressures are often converted into dril l ing f lu id density equivalents so it is clear as 

what drilling f luid density just balances the pore pressures. Figure 1.6 shows how a 

typical pore pressure profile can be displayed as pressure gradient versus depth. I f one 

follows the change in the pressure gradient o f the pore pressure (red curve), every 

point on the curve represents a pressure gradient and a corresponding average f lu id 

density that particular pressure at that depth represents. The maximum pore pressure 

gradient is reached at the top o f the reservoir (3200 meters) equal 0.016 MPa/m. That 

is equivalent to the pressure at the bottom of a 3200-meter vertical f lu id column with 

an average f lu id density o f 1.64 g/cm 3. In exploration drilling a dril l ing mud is used 

where materials such as barite is mixed to form a liquid (called dril l ing mud) wi th 

such high average density. The terminology used is equivalent mud weight (EqMW). 

The pressure gradient plot illustrates a big challenge while drilling these wells. The 

EqMW has to be high enough to hold back the f lu id f rom the depth where the 

formation has the highest-pressure gradient. However, in some formations, typically 

the shallower ones, this mud density would apply a pressure significantly greater than 

the pore pressures in these formations. This excess pressure may lead to fracturing o f 

the rock and losses o f the drilling f lu id . 

A confusing aspect in the o i l industry with regard to pressure terminology is the 

mixing the terms; pressure gradient and density (EqMW). This becomes particularly 

diff icul t and confusing when working with a mixture o f both imperial and the SI 

units. It has already been shown that the pressure gradient equals density multiplied 

by the acceleration due to gravity. In the imperial system, the norm is to use weight 

density rather than density. Weight density is defined as the ratio o f the weight o f an 

object to its volume. The units are pounds per gallon (ppg). As the weight is equal to 

the mass multiplied with gravity, both weight density and pressure gradient have the 

same units. The imperial unit system has historically been the norm in the oi l industry 

and the people involved has become used to converting directly f rom weight density 

(ppg) to pressure gradient (psi/ft) and to pressure (psi). The word weight density is 

often shortened to density. This has created a problem when converting to the SI 

system. Too often, while converting f rom density (g/cm 3) to pressure gradient 

(MPa/m), density is not multiplied by gravity (9.81 m/s 2). A typical example is a 

recent paper titled "Pore Pressure terminology" in the Leading Edge written to explain 
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Chapter i Introduction 

the problem, but failing to explain the difference between weight density and density 

(Bruce and Bowers, 2002). 
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Figure 1.6 The Figure to the right shows how a pressure versus depth plot (left, Figure 1.5) 
becomes presented as pressure gradient versus depth. 

1.5 Aims and layout of thesis 

The aims and objective o f this thesis are to: 

1. Develop a critical review o f current methods used to calculate the pore 

pressure in mudrocks. 

2. Establish the uncertainties o f the input variables using in principle 

component analysis, applied to the wireline measurements with reference 

to the mudrock porosity calculated and the drilling parameters wi th 

reference to the calculated dril l ing exponents. 

3. Identify the variables that have the biggest impact on the estimation o f 

pore pressure, and how they can be improved. 
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4. Compare the wireline signature o f overpressured shales in the North Sea 

basin wi th those f rom the Gul f o f Mexico. 

5. Examine why the resistivity measurements o f the mudrocks can be used as 

input parameter to calculate pore pressure in the Gul f o f Mexico, while 

this has proved diff icul t to apply in the estimation o f pore pressure in the 

North Sea. 

Following the introduction comes Chapter 2 where the pressure concepts with 

respects to pore pressure in shallow sediments are discussed. That is followed by a 

discussion o f mudrock porosity and normal compaction in mudrocks. Then the 

different pressure calculation methods, first wi th wireline logs as input, then those 

using drilling parameters. 

Chapter 3 discusses the results f rom using these different pore pressure estimation 

methods on a test well , Nor 1/6-7 in the North Sea. The sensitivity o f the input 

parameters are discussed. The results f rom the North Sea are then compared with the 

mudrocks f rom a mini-basin in the Gulf o f Mexico, 

Chapter 4 examines the glacial history o f the North Sea to explain the nature o f the 

shallow sediments, and their physical and petrophysical properties. Use o f a novel 

application o f the software Cyclolog has helped in characterising the glacial 

sediments. Finally the relevance o f the glacial history o f the North Sea is reviewed in 

relation to the petroleum system which has generated productive oil and gas fields . 
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Chapter 2 Pore Pressure Evaluation Concepts and 
definitions 
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2.1 Definition 

Underpinning pore pressure interpretation is the effective stress equation for porous 

media (Terzhagi, 1936): 

<7V = s v . pf [E2.1] 

where crv is the vertical effective stress, sv is the total vertical lithostatic pressure 

(overburden) and pf is the pore pressure. 

In most sedimentary basins, the vertical stress (sv) is also the overburden stress and is 

the integration o f the weight o f the overlying sediments including the water column as 

well as the air column. This function was later modified based on the poroelasticity 

theory that suggests that it is the mean stress rather than the vertical stress that 

controls the porosity reduction (Goulty, 1998). The mean effective stress (<7m) is 

defined as the difference between the mean stress, sm, which is the mean o f the 

vertical and horizontal principal stresses, and the pore pressure (pf). The following 

equation is a modification o f equation 2.1: 

<Tm= sm _ pf [E2.2] 

where 

sm = ^{sv+sh +sH) 
[E2.3] 

where Sh and sh being the minimum and maximum horizontal stresses, respectively. 

The hydrostatic pressure iphyd) is the pressure exerted by a static column of the pore 

f luid and is expressed by the fol lowing equation: 

phyd = pxgxh [E2.4] 

3 2 

where p is the average f lu id density (kg/m ), g is the acceleration due to gravity (m/s ) 

and h is the vertical height o f the column of water (m). 
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Chapter 2 Pore Pressure .Evaluation Concepts and deiiniiions 

2.1.1 Mudrock porosity 

Blatt (1970) has defined mudrock based on grain size, where mud is sediment 

composed o f clay sized particles. Typically mudrocks contain some silt. A 

mudstone is a sedimentary rock composed o f li thified mud, and shale is a fissile 

mudstone. The term porosity has a different meaning in various disciplines as well as 

being different for coarse grain sandstone when compared with a mudrock. The 

porosities discussed here w i l l be limited to the physical or total porosity, which is the 

ratio o f void volume to total volume. 

The preferred method of obtaining the porosity in a rock is to carry out laboratory 

experiments on core extracted f rom the well during dril l ing operations. The porosity 

of low permeability rocks such as mudrocks is measured from the bulk density, then 

drying the sample, followed by measurement o f the dry density in the laboratory. 

This procedure ideally must be commenced prior to the samples drying after reaching 

the surface. On research vessels such used during the Ocean Dri l l ing Program (ODP), 

these measurements are done just after the samples are recovered at surface. Mudrock 

is generally not cored during exploration drilling. I f it is cored, the samples are waxed 

at the wellsite so the water content is preserved. 

Mudrock porosity as well as general rock porosity f rom exploration wells is in most 

cases calculated f rom wireline measurements such as the sonic log, the density log or 

the neutron log. None o f these measurements are a direct measurement o f porosity. 

They are referred to as log-derived porosity to indicate that their origin is f rom 

wireline log responses. For all these instruments, the tool response is affected by the 

formation porosity, f lu id and matrix. I f the f lu id and matrix effects are known, the 

porosity can be derived f rom the tool response. 

In addition to the above tools, the resistivity response can also used to determine 

porosity. However the resistivity is greatly influenced by the f lu id saturation. 

2.1.2 Different porosity evaluation equations 

Sonic derived porosity 
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Wyllie et al. (1958) demonstrated that there was an approximate linear relationship 

between sonic velocity and porosity in sandstone. The porosity is calculated from a 

linear interpolation between the zero porosity matrix sonic velocity (in principle 

slowness when using |isec/ft unit) and the 100 % porosity fluid sonic velocity. 

f t, -t 
log ma 

[E2.5] 

where; tma is the matrix velocity (67 (isec/ft in mudrock, 47.5 |isec/ft in chalk, 55.5 

iisec/ft in sandstone) and // the fluid velocity equal 189 (isec/ft in fresh water 

(Schlumberger, 1989). t\„& is the measured sonic velocity. 

Another equation was suggested by Raiga-Clemenceau et al. (1988): 

0 = 1-
f At ^ 

ma 
At [E2.6] 

The matrix velocity tma and x are both constants that are basin specific. Raiga-

Clemenceau called "x" the acoustic formation factor exponent. 

Issler (1992) developed this relationship using data f rom the Beaufort-Mackenzie 

Basin, Northern Canada where the shales are quite uniform in their composition. The 

matrix transit time is the same as for mudrocks in the Wyll ie equation (67 |isec/ft) 

(Wyllie, 1958) and the x was calculated to 2.19. 

, , (6lY2A9 

(p = 1 - — i 
A t J [E2.7] 

Hansen 11 (1996), using shale densities measured on sidewall and cuttings samples 

from the North Sea, modified this equation. He suggests using the fol lowing equation 

where the shale matrix velocity is 76.5 |isec/ft and x= 1.17: 

0 = 1-
^ 7 6 . 5 ^ 1 7 

At J [E2.8] 
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Figure 2.1a show how the porosity in a mudrock w i l l change as a function o f sonic 

velocity. In the shallow section where the velocities often are 150 Lisec/ft the Hansen 

(1996) model suggests 44 % porosity versus the Wyllie (1958) equation estimation o f 

68 %. The Wyll ie equation, although based on an empirical relationship in sandstones 

is used to calculate mudrock porosity in several publications (e.g. Hermanrud et al., 

1998). 
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Figure 2.1 a,b,c,d. la porosity variation as a function of sonic velocity. B, porosity versus bulk 
density. C, the sensitivity to pore water density. D, the sensitivity to matrix density. 

Density derived porosity 
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Density log-derived porosity is calculated f rom the log bulk density, the matrix 

density and the pore f lu id density (equation 2.9). 

0: 
( \ 

Pma ~ Pb 

Pn,a ' P f [E2.9] 

where pma is the matrix density, Pf is the pore water density and ph is the bulk density 

measured by the density tool. In mudrocks f rom the North Sea, 2.715 g/cm was used 

as an average matrix density. This value is used by British Geological Survey (BGS) 

and is based on their shallow coring program in the North Sea. The pore water density 

is assumed to increase from 1.03 to 1.08 g/cm 3 with depth. As the shale compacts, the 

released water has a lower salt concentration than the remaining pore water. Figure 

2.1b shows the porosity variation, as a function o f bulk density. The matrix density 

and the fluid density are kept constant at 2.715 g/cm 3 and 1.03 g/cm 3 while the 

measured bulk density increases from 1.75 to 2.75 g/cm 3. The porosity varies linearly 

with the measured bulk density and an increase o f 0.1 g/cm 3 changes the porosity by 

5.8 %. The second sensitivity plot (Figure 2.1c) shows that increasing the f lu id 

density f rom 1.03 to 1.08 g/cm 3 only increases the porosity by 1 %. Figure 2. I d shows 

that the porosity changes by 4 % i f the matrix density changes by 0.1 g/cm . The 

relationship between porosity and matrix density is not linear, but near linear. The 

porosity increases slightly faster at lower matrix densities that at the higher end. The 

matrix density is a function o f mineralogy. Smectite has a low matrix density (2.21 to 

2.71 g/cm 3) while chlorite matrix density can be as high as 2.94 (Fertl and 

Chilingarian, 1989). In the North Sea the mudrock compositions vary and therefore 

so do the dry densities. Using a constant dry density w i l l therefore result in 10 to 20% 

error in calculated the porosity using the density log. 

Neutron derived porosity 

Neutron-derived porosity is related to the hydrogen index, which is an indication o f 

the amount o f hydrogen in the sediment. As most o f the hydrogen in a formation is in 

the water and hydrocarbon molecules it is for all practical purposes a measure o f the 

water and/or hydrocarbon content. In formations wi th phyllosilicates, the bound water 

w i l l be counted as water, and hence void space, by the neutron log. When comparing 
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the different porosities in the Tertiary succession in the North Sea, it was found that 
the neutron porosity was much higher than that calculated f rom the sonic velocity 
using equation 2.8. Using the equation 2.5 (Wyll ie , 1958) the sonic-derived porosities 
becomes comparable to the high neutron-derived porosities, ranging f rom 60 to 80 %, 
between a range o f depths from 500 m to 2500 m. In the same interval the sonic-
derived porosity using equation 2.8 ranges f rom 40 to 50 %. As this equation is 
calibrated to North Sea sample measurements it does illustrate the uncertainties in 
log-derived porosities. One may ask i f the quality o f the neutron log was good enough 
to yield reliable porosity estimates, but the same formation was logged in a nearby 
well Nor 1/6-6 yielding the same neutron response and estimated porosity values. 

In the section down to 2500 meters in well Nor-1/6-7 the porosity range is typically 

40 to 80 % over the same depth interval, depending on the method chosen. Two o f the 

methods where close to overlying each other, the Hansen (1996) and the log density 

porosity. The term "Log porosity" is an average between the Hansen (1996) sonic 

porosity and the density porosity in the Tertiary section. In the chalk the neutron 

porosity was used. The neutron tool is calibrated in limestone and there exists a 

simple linear relationship between limestone porosity and neutron log porosity as long 

as the pores are f i l led by water or oil (Gardner and Dumanoir, 1980) .In the Jurassic 

the density porosity was chosen. This was done because at that depth the borehole has 

a small diameter, which makes the log-measured density more reliable as the tool pad 

has good contact with the bolehole wall . This porosity is used as the log-derived 

porosity while comparing different pore pressure methods in the next chapter. 
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Figure 2.2 Log derived porosities in well Nor-1/6-7 Norway. The low porosity interval from 
3261m to 4346m depth is the Cretaceous Chalk. The values are listed in Appendix 1. 

Based on Figure 2.2 it is important to realize the uncertainties that exit in the porosity 

estimates in shales based on wireline logs. This put limitations on the conclusions we 

may wish to draw concerning the mechanisms underlying the porosity reduction or 

compaction. I f one only has available a wireline log-derived porosity profile, one can 

clearly not attribute the porosity change solely either to a mechanical process or to a 

chemical process. 

2.1.3 Normal compaction curve and trend lines 

During normal compaction, a mudrock undergoes a monotonic increase in effective 

stress, which causes an elastoplastic reduction in porosity. Compaction is a result o f 

grain reorientation and breakage. Mudstone consists o f clay minerals, fine grained 

quartz, feldspar and mica. As the compressibility is different for different minerals as 

well as for different clay minerals, the mudrock compressibility becomes very 

diff icult to predict. The resultant relationship between effective stress and porosity is 

known as the normal compaction curve (Harrold et al., 1999). In this case equilibrium 

is reached such that: 

Pf (pore pressure) = phycj (hydrostatic pressure). 
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Although many porosity - depth data have been published, details o f age, lithology or 

effective stress are generally absent. In this study it was chosen to evaluate and 

compare two different relationships: (1) Athy type and (2) Soil-mechanical type. 

These compaction curves assume mechanical compaction only, and are suitable only 

to describe siliciclastic sediments. Below 2-3 km depth (70-100°C), mineral 

dissolution and precipitation becomes important (Bjorlykke, 1999). At these 

temperatures hydrocarbon generation also comes into play. There have been many 

publications on attempts to assess the potential overpressure generated by these 

reactions. The results are conflicting in the sense that for the same reaction, some 

suggest that no overpressure is generated while others suggest generation o f large 

overpressure. The conflict lies to a large degree in the assumed permeability. For 

many of these reactions to generate overpressure, the permeability w i l l not be low 

enough for overpressure to be retained over geological time (Osborne and Swarbrick, 

1999). It is also evident that wi th all the uncertainties with regard to chemical 

compaction or chemical reactions in mudrocks, it would be quite impossible to predict 

the normal compaction trend and hence impossible to calculate the pore pressure. 

Chemical compaction w i l l therefore not be taken into account in the present study. 

2.1.3.1 Athy-type relationship 

The exponential curve to describe compaction was introduced by Athy (1930). It was 

based on curve f i t t ing a particular data set and is given as: 

Where 0 is porosity at depth o f interest, 00 is porosity at sea bed, c the compaction 

coefficient and z the depth. Variations o f the compaction curve result f rom 

substituting depth wi th mean or vertical effective stress. The Athy compaction curve 

was later modified by Hubbert and Rubey (1959), who recognised that porosity is 

controlled by effective stress and not by depth: 

0 — 0oe ,(-«) (Athy, 1930) [E2.10] 

0 = K + 0oe c [ E 2 . l l ] 
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Where <p is shale porosity, A. is a constant, <fo is the sea bed shale porosity, av is the 
vertical effective stress in psi and c is the compaction coefficient ranging from 4000 
to 7000 (Figure 2.3).. 

2.1.3.2 Soil mechanics relationship 

A normal compaction trend has been developed by Burland (1990), following 

Skempton (1970) based on soil mechanical (SM) experiments: 

V^ioo j [E2.12] 

where e - fl(l-<p) is void ratio, crv' is the vertical effective stress, (Tioo is the reference 

value o f effective stress, taken here to be 100 KPa, eioo is the void ratio at 100 KPa 

effective stress, about 10 meters below seabed and Cc is the compaction coefficient. 

2.1.3.3 Athy - Soil mechanics: how are they different 

The soil mechanics and Athy normal compaction trends are both a function o f void 

space and the compaction coefficient. The two fundamental differences are that in the 

Athy equation the porosity varies exponentially wi th respect to the effective stress (or 

depth) while in the Soil Mechanics equation the effective stress varies exponentially 

wi th respect to the void ratio, where void ratio is 0/(1 -())). 

The two equations can be rearranged: 

SM: av = 0 - l o o x l O ^ ) [E2.13] 

Athy: ^ = ^ x e " f f ' c [E2.14] 

Mathematically one o f the equations is the inverse o f the other (Figure 2.3). 

Figure 2.3 shows the porosity versus the effective stress for the two equations: Athy 

and the SM. The two curves would have been symmetric i f the parameters had been 

set inverse o f each other. This suggests that the two equations are inverse functions. It 

is important to note that the SM compaction trend w i l l cross the depth axis suggesting 

that the mudrock porosity w i l l reach 0 %. The Athy compaction curve w i l l never 
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reach 0 % porosity, only at infinity. The sea floor porosity is a factor that can be 

related to samples. The compaction coefficient is a function o f rock compressibility, 

which in theory could be measured in the laboratory (Athy, 1930). But the 

compressibility w i l l vary with depth as the rock becomes more consolidated. In 

practice what is being done is to use a well where the pore pressure is assumed 

hydrostatic based on the M W used and RFT pressure points. Then calculate the 

mudrock porosity to calibrate the compaction coefficients in the normal compaction 

equation. 

Figure 2.3 shows how different the two equations express the change in porosity with 

increased total stress. The soil mechanical function suggests a larger rate o f porosity 

reduction in the shallow section and w i l l always end up with zero porosity i f the total 

stress gets large enough. The Athy function suggests a more moderate change o f 

porosity in the shallow section. With increasing stress, the porosity w i l l move 

asymptotically to zero porosity, but never become zero. 

Normal compaction 

Log der ived poros i ty 

0.1 0.4 

5000 

10000 

15000 

20000 
L0 

! 25000 

" 30000 

Athy, 0.7, 0.00008 
35000 

40000 SM, 2 (0.66), 0.74 

45000 

50000 

Figure 2.3 Comparison of porosity with effective stress for the Athy and the SM equations. Initial 
porosity (sea floor porosity) for Athy is 0.7 (70 %) while the porosity at 100 kPa (approximately 
100 meters below sea floor) is 0.66 (66 %) The compaction factors a re for Athy; 0.00008 and 
SM; 0.74. 
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Figure 2.4 The relation ship between porosity, solidity and void ratio is shown. The y-axis is the 
compaction as a length reduction. It is assumed that a confined volume is compressed beginning 
with a void ratio of four. 

Figure 2.4 shows the three different frames o f reference to describe the loss o f pore 

space. This is a theoretical model built in EXCEL based on the definition o f porosity, 

solidity and void ratio. The compaction as length reduction on the y-axis represents 

the proportional thickness reduction and the corresponding porosity, solidity and void 

ration. Solidity is the volume o f solid grains as a percent o f the total volume o f 

sediment, i.e. ( 1 - ())). The complement to solidity is porosity as the volume o f pore 

space as a percent o f the total volume of sediment. This is the opposite o f what has 

been suggested by Baldwin and Butler (1985). The third parameter is void ratio, 

which is the ratio o f the volume of pore space and the volume of solids. Figure 2.4 

shows that there is a linear relationship between void ratio and compaction while the 

relationship is non-linear between porosity as well as solidity to compaction. It would 

therefore be mathematically easier to describe the compaction as a function o f void 

ratio rather than porosity. The reason why the oil industry uses porosity is that it has 

become the convention in the reservoir section. By comparison the convention in the 

soil mechanics environment is to use void ratio as compaction is o f interest. 
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2.1.4 Vertical versus mean effective stress 

The mean effective stress (crm) is defined as the difference between the mean stress, 

sm, which is the mean o f sum of the vertical and the two horizontal principal stresses, 

and the pore pressure. 

am= sm-pf [E2.15] 

where Sm =^(SV +Sh + SH) [E2.16] 

with Sf, and SH being the minimum and maximum horizontal stresses, respectively. 

The idea o f using mean stress rather than vertical stress is based on the poroelasticity 

theory, which suggests that it is the mean stress, rather than the vertical stress that 

controls porosity reduction (Goulty, 1998). 

When using mean effective stress <rv' is replaced by <rm' in the equation for normal 

compaction such as E 2.11 and E2.12. 

The vertical or lithostatic stress is calculated by integrating the density log. Sh can be 

estimated by assuming it is equal to the leak o f f test (LOT). The LOT pressure is 

measured in a short length o f open hole drilled after a string o f casing is cemented in 

the well (Engelder and Fischer, 1994). To test the maximum pressure the system can 

sustain in an emergency, the convention is to dri l l through the cement below the 

casing plus three meters o f new formation. Dri l l ing f lu id is then pumped down hole in 

a closed system and the pressure build up is recorded until the formation fractures. 

The well is then shut in and the instantaneous shut-in pressure is recorded. Collected 

LOT data suggest that the LOT can overestimate the Sh by 5% (Bell, 1990). 

Gaarenstroom et al (1993) used LOT data f rom the North Sea and showed that the Sh 

is a function o f depth or the overburden. Engelder and Fischer (1994) show that there 

is a relationship between Sh and pore pressure. In basins wi th tectonic stress the Sh and 

SH w i l l be different. The direction o f SH can be established by studying the calliper log 

f rom the well bore. Measuring the predominant borehole breakout directions does 

this. Measuring the expansion o f cores during the first hours after being cut can also 
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give this information (Zoback et al., 1985, Evans and Brereton, 1990). As these logs 

or cores are rarely available and the methods far f rom generally accepted, Sh and SH 

are in this study set equal. 

2.2 Pore Pressure Calculation Methods 

Pore pressure prediction models can be divided into two major groups; vertical and 

horizontal methods (Traugott, 1997). The vertical methods are also called explicit 

methods as they assume that given a log value or porosity, the effective stress or pore 

pressure can be determined uniquely. This requires also that a normal compaction 

trend have been defined. A classical example is the equivalent depth method 

(Mouchet and Mithell , 1989) and the "Harrold" method (Harrold et al., 1999). 

The horizontal methods (often called ratio method) are based on empirically related 

ratio o f the measured parameter to the expected value at a trend line at the same 

depth. Methods such as the Eaton (1975) method, Hottmann and Johnson (1965) and 

PresGraf (Heppard, et al., 1998) are methods in this category. 

The difference between the horizontal and vertical methods is illustrated at Figure 2.5. 

I f one assumes that in this case the correct normal compaction curve fa is the Athy 

curve (solid red) with regard to the vertical methods the pore pressure at the 

equivalent depth would be at A . Wi th regard to the horizontal method the pore 

pressure would be calculated as a function o f fa and the value at D . The equation used 

is empirically derived (Eaton, 1975). 
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Figure 2.5. Porosity from a pseudo well is plotted versus depth. Integrating the density log and 
subtracting the hydrostatic pressure calculate the effective stress. The two normal compaction 
curves are coming from Figure 2.3. 

2.2.1 Vertical Methods 

2.2.1.1 Equivalent depth method 

The equivalent depth method is based on the effective stress equation for porous 

media (Equation 2.1, Terzaghi, 1936). Mechanical compaction o f fine-grained 

sediments w i l l , i f the excess pore f lu id cannot escape, result in f lu id pressure 

exceeding the hydrostatic pressure. This is often referred to as disequilibrium 

compaction (Fertle, 1976, Magara, 1976, Mann and MacKenzie, 1990, Osborne and 

Swarbrick, 1997). I f one assumes that no other physical or chemical processes add to 

the pore pressure generated, this pressure can be calculated mathematically. The 

calculation assumes that the lithology in the overlying succession is uniform and that 

Sh and SH are equal. When dewatering is incomplete, mechanical compaction is 

incomplete and therefore the porosity reduction is reduced or halted (Swarbrick and 

Schneider, 1999). The consequence o f these assumptions is a direct relationship 

between the porosity and the effective stress. I f the porosity does remain constant with 

increasing depth the effective stress w i l l also remain constant and the pressure f rom 

Carl Fredrik Gyllenhammar 30 



Chapter 2 Pore Pressure tvaluation Concepts and definitions 

the weight o f the lithostatic column between the two porosity points w i l l be the 

additional overpressure. 

Figure 2.5 shows porosity versus depth wi th two normal compaction trends displayed. 

Since the porosity can be calculated f rom the sonic, density or neutron log, the 

porosity could have been substituted by any o f these logs and the normal compaction 

could have been converted f rom a porosity versus depth relationship to a log response 

as a function o f depth. But using the porosity has an advantage i f it is calculated f rom 

a combination o f several logs rather than depending on only one input log such as the 

sonic slowness. 

The following is an example o f how the computation can be made. Phi 1 is at depth 1 

on the pseudo well porosity curve where the pore pressure is to be calculated. In this 

case the normal compaction trend is an Athy type equation where the porosity is 

calculated as a function o f depth. Entering the calculated porosity (or a sonic 

slowness) the equivalent depth " A " on the normal compaction trend is found. Since 

" A " is on the normal compaction curve the Pf at " A " is the hydrostatic pressure 

Phyd(A)- The effective stress in " A " can therefore be calculated using the effective 

stress law; <7A = svA - phyd(A) where S v A is the vertical overburden at " A " calculated 

f rom integrating the density log. It was assumed f rom the beginning that the effective 

stress at phi 1 and A is the same <7A =0^ , . I f follows that; - pf =svA - p h y d [ A ) 

which can be rearranged to; 

Pf =SV~S

VA+ PhyJW [E2.17] 

On Figure 2.5, porosity is plotted versus depth. This method is physically correct for 

the normal compaction curve only i f the density is constant. Density variations w i l l be 

accounted for i f the porosity is plotted versus the effective stress rather than the depth 

(Figure 2.6). This is done by integrating the density log and subtracting the 

hydrostatic pressure. The normal compaction equation in this case is the effective 

stress as a function o f porosity. Entering the porosity at depth 1 into the normal 

compaction equation gives the effective stress at depth, " A " which is the same at 

depth 1. As the porosity is displayed as a function o f the theoretical effective stress 

assuming hydrostatic pressure the pore pressure in 1 is simply the effective stress in 1 
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minus the effective stress in " A " plus the hydrostatic pressure in " A " . This method 

w i l l be referred to as the equivalent effective stress method (Mann and MacKenzie, 

1990). 
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Figure 2.6 Porosity from a pseudo well is plotted versus mean effective stress. The two normal 
compaction curves are coming from Figure 2.3. See text for an explanation for the equivalent 
effective stress method. 

2.2.1.2 Harrold method 

A method to calculate pore pressure using wireline log was developed at the 

University o f Durham by Toby Harrold (Harrold, 1999). The method involves 

plotting porosity as a function o f the mean stress, using a relationship first developed 

by Breckels and van Eekelen (1982) coupling pore pressure, depth, vertical stress and 

mean effective stress. 

The vertical stress sv is calculated by integrating the density log. Sh is calculated using 

the empirical relationship derived from well data in Brunei by Breckels and van 

Eekelen (1982): 
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sh=\6.6DlA4i+0A9(pf-phwl) [ E 2 1 g ] 

By combining equation 2.18 with the mean effective stress law from basic stress 

analysis (Goulty, 1998) the fol lowing relationship can be derived (Harrold, 1999): 

pf = 1 6 . 6 £ > ' 1 4 5 + 0 . 5 ^ - 0 . 5 ^ - 1 . 5 ^ , [ m 9 ] 

The porosity is initially calculated f rom the sonic travel time using the equation 

proposed by Issler (1992). When testing this equation on North Sea sediments the 

porosity was derived from equation 2.8 proposed by Hansen (1996). The normal 

compaction trend was equation 2.12. Application o f this method to three wells f rom 

SE Asia is described in Harrold et al., (1999) 

2.2.1.3 Explicit method using the resistivity log 

Several methods have been published claiming they do not rely on trend lines, and are 

therefore more universal. One o f these methods is called the "Explicit method" and 

was published by Alixant and Desbrandes (1991). This method was chosen as the 

normal compaction curve is based on the equation 2.12 as in the previous method. A l l 

parameters listed are calibrated to the North Sea. The method starts by calculating the 

mudstone porosity as a function o f the resistivity and the bound water resistivity. The 

bound water resistivity is a function o f formation temperature (Clavier et al., 1984): 

R,.,h — 

297.6 
wl> m 1 76 

T [E2.20] 

T: formation temperature in °F 

The porosity is calculated f rom the fol lowing equation: 

\-<f> 

(Perez-Rosales, 1975) [E2.21] 

G is the geometrical factor set at 1.85 and fa the residual porosity set equal 0.1. 
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The above relationship is a new way o f calculating mudstone porosity. A more 

conventional way would be the Waxman-Smith (1968) equation: 

R, _ a 1 

Rw~9" \ + RwBQv [ E 2 2 2 ] 

B = equivalent conductivity o f the compensating ions 

l-d> 
Qv=CECx—?-pma 

r [E2.23] 

(CEC is the concentration o f free ions in the dry clay while, Qv is the concentration o f 

free ions in the pore f lu id . Thus BxQv is a measure o f the total conductivity o f the free 

ions) 
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Figure 2.7 Comparing the porosity derived from the sonic, density and neutron log with the 
resistivity derived using the equation 1.37 proposed by Alixant and Desbrandes (1991). 
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The poor agreement between the porosity using equation 2.21 and porosity derived 

from the density log is shown in Figure 2.7. The difference in the upper section 

averages about 20%. The next step in the Alixant and Desbrandes method is to 

convert the porosity to void ratio and use the void ratio in a universal normal 

compaction curve. This is a curve quite similar to equation 2.12: 

e2 =e , - 7 c . l o g , 0 

(a \ i>2 

(Perloff and Baron, 1976) [E2.24] 

Alixant and Desbrandes (1991) set aev\ equal to 1, which is approximately 100 meters 

below sea floor. Based on triaxial compression tests o f shale samples from the North 

Sea they suggested the void ratio at the depth is 3.84, which is equal to 79% porosity. 

The compression index Ic was measured to 1.1. With these constants the equation 2.24 

was rearranged to determine the effective stress: 

^ = 1 0 ( e - 3 . 8 4 ) / - / ( . [ 2 2 5 ] 

Using the standard Terzaghi relationship (equation 2.1), the pore pressure is then 

calculated by subtracting the vertical effective stress from the overburden. 

Due to the high porosity calculated f rom the resistivity data in the data f rom Norway, 

the calculated pore pressure exceeded the overburden gradient. It was therefore 

deemed of little value in comparing it further with the other methods. The strength o f 

the method, however, is the normal compaction curve applied. This could be 

improved by not assuming its universal character, but let it be a function o f clay 

content as suggested by Yang and Apl in (1999). The weakness in the method is the 

way porosity is calculated from the resistivity data. 

2.2.2 Horizontal methods 

2.2.2.1 Eaton Method 

Eaton (1972, 1975) established empirical relationships between the logging response 

and the pore pressure in the Gul f Coast. Routed in the Terzaghi stress relationship 

(Equation 2.1) he defined the pore pressure as a function o f the overburden pressure, 
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the hydrostatic pressure and an observed parameter / normal parameter ratio. The 

observed parameter could be the resistivity, conductivity, sonic travel time or the 

d'exponent (a dril l ing parameter that w i l l be discussed later). The equations were first 

published in 1972 and later modified in 1975 (Eaton, 1972, Eaton, 1975): 

P = S-(S-hyd) 
R ^observed 

R ^normal 

- i 1.2 

[E2.26] 

P = S-(S-hyd) 
A, normal 

A,observed 

n 3 

[E2.27] 

P = S - (S - hyd) 
dc - observed 

dc— normal 

1.2 

[E2.28] 

where P is pore pressure, S is the overburden (integration o f the density log) and hyd 

is the hydrostatic pressure (using 1.03 g/cm 3 for seawater and 1.05 g/cm 3 for 

formation water). Rsh is the resistivity, Ar the sonic slowness and dc, the d'exponent. 

The ratio methods based on empirical correlation have no inherent bias towards one 

particular overpressure mechanism. They simply reflect whatever the dominant cause 

of overpressure is in the area in which they were developed (Bowers, 1995). The 

normal trend line is assumed to be peculiar to the specific area or basin and is 

developed f rom wells wi th well-known pore pressure profiles. The pore pressure 

profiles are based on the mud-weight used to dr i l l these wells. 

The reference trends for the different input logs (sonic, resistivity or d'exponent) are 

equivalent to the normal compaction trend as a function o f porosity. The difference is 

that it is diff icul t to convert sonic, resistivity and d'exponent to porosity. Therefore 
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the normal trend for the different log parameters such as sonic, resistivity and the 

d'exponent are established by overlaying the log values f rom multiple exploration 

wells in areas where the mud-weight suggest that the mudstone have hydrostatic pore 

pressure (Hottmann and Johnson, 1965) 

2.2.2.2 The pore pressure calculation program; PresGraf 

Several computer programs designed to calculate the pore pressure in mudrocks are 

commercially available such as Predict from Knowledge Systems. PresGraf is another 

program designed and written by Traugott, M (University o f Durham) and Heppard, 

P. (BP). The program is proprietary to BP Exploration, but was made available to this 

study by BP. The program has several calculation methods available including the 

Eaton method, the equivalent depth method and the PresGraf method. The PresGraf 

method is an Eaton type equation only with a different exponent. A l l calculations 

were performed using a normal compaction curve proprietary to the program owners. 

Some of the principles behind the normal compaction in PresGraf have been 

published by Heppard et al (1998). 

2.2.2.2.1 PresGraf normal compaction trend 

The PresGraf software developed by Amoco uses sonic slowness or the resistivity in 

shales as the input variable to calculate the pore pressure in the shales (Heppard et al., 

1998). The normal compaction trend used was developed by Hubbert and Rubey 

(1959) (equation 2.11). The pore pressure is calculated as a function o f either the 

sonic log or the resistivity log. The normal compaction curve is converted to slowness 

(^sec/ft) using the fol lowing equation (Eberhart-Philips et al., 1989); 

Vp is the compressional wave in milliseconds per kilometre; Vcl the fraction o f the 

volume o f clay and the effective stress is in bars. The volume o f clay in mudstone 

varies, but due to the program design it must be entered as an average. This value can 

be found be laboratory analysis o f mudrock samples or calculated from various 

wireline logs, such as the gamma ray log or a cross plot o f the neutron-density log. 
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The conversion of the normal compaction trend expressed as a function of porosity to 

a function of the resistivity has its root in the dual water model. The duel water model 

suggests that clays contains a mixture of two waters (Clavier et al., 1984); the bound 

water Sb of conductivity Q,, and the free water of conductivity Cw. The effective water 

conductivity Cwe for 100 % water saturation is then; 

The Sb is a function of the cation exchange capacity (CEC) with units expressed in 

milliequivalents/gram (meq/g). The CEC is a measure of the available free cations. 

The CEC in a clay is the ability of a clay mineral to absorb cations from surrounding 

waters and maintain them in an exchangeable state. This ability arises because 

imperfections in the clay lattice create electronegative charges on the clay surface 

(van Olphen, 1963, Grim, 1968) The conductivity of a clay is directly related to the 

cation exchange capacity. By knowing the density and porosity the CEC can be 

expressed as milliequivalents per unit volume (meq/cm3) of pore fluid; Q. The amount 

of bound water (W) has been measured in the laboratory and the following empirical 

relationship was found (Hill et al., 1979); 

where C is the concentration of sodium chlorides (moles/liter). This leaves us with the 

following important relationship; 

The specific counterion conductivity in the bound water is measured in mho/m per 

meq/cm3 and called B. The quantity of B has been determined (Waxman and Smits, 

1968) from core measurements to 2.05 mho/m at 25°C. The conductivity of the bound 

water can therefore be expressed as; 

cwe = cw{\-sh)+cbsb [E2.30] 

W = 0.55 + 0.084VC [E2.31] 

Sb = WxQ [E2.32] 

Cb-B I W [E2.33] 

Combining equation 2.32 and 2.33 gives; 

SbX Cb = B x Q [E2.34] 
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Archie (1942) determined experimentally using clean sandstone the following 

equation; 

a Ct 

[E2.35] 

where the Sw is water saturation, Rw the resistivity of formation water and R, the 
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Figure 2.8 The PresGraf normal compaction trend to the left compared with the Athy normal 
compaction curve (Figure 2.3) to the right. 

resistivity of the rock measured by the resistivity tool. The constants are «, a, and m. 

These can be found by cross plotting log of the porosity versus log of the RolRw ratio. 

n is the saturation exponent, m is the cementation exponent and is equal to the slope 

of a best-fit line on the cross plot, a is the value of the Ro/Rw ratio at 100% porosity. 

Laboratory experiments suggest that m vary from 1.8 to 2 in consolidated sandstones 

(Doveton, 1985). Dewan (1983) suggested that n is equal 2 and a equal 1 in sandstone 

mixed with clay. By entering those values (including m-T) into equation 2.35, it 

simplifies to; 

C a r l Fredrik G y l l e n h a m m a r 39 



Chapter 2 Pore Pressure 1£valuation Concepts and definitions 

[E2.36] 

The following equation is the dual water model for sandstone with clay (Clavier et al., 

In wet shale with no hydrocarbons, Sw is 1. In PresGraf it is assumed that all water in 

the claystone is bound. Consequently the total conductivity in the shale is Q,. This 

assumption simplifies the equation to; 

Having computed a normal compaction trend as a function of porosity, it is possible 

to compute one as a function of resistivity knowing the values of the following 

variables; Vcl, m and CEC. "m" ranges from 1.6 to 2 in clean formations, but was 

found to increase with shaliness reaching values as high as 2.9 in shales (Waxman and 

Thomas, 1972). 

2.2.3 Seismic 

Determining pore pressure from seismic interval velocities is no different than using 

the sonic log. The important difference is that the interval velocities that are 

calculated from the RMS velocities coming from stacking velocities are horizontal 

velocities while the sonic log is measuring the vertical velocity assuming the well is 

vertical. There is also a considerable difference in the frequencies. While the seismic 

frequency is broadband in the low frequency part of the spectrum (50 Hz), the sonic 

log uses 50000 Hz. In general the seismic velocities are 10% faster than the sonic 

velocity. In general it is important to understand that velocity anisotropy can play an 

important roll and introduce error in the porosity calculation that depend on those data 

as input. It is not evident which is the best with regard to calculating the porosity. The 

vertical, the horizontal or the average. I f the compaction trend is a function of vertical 

velocity it is important to make sure that the shale velocity is the same. 

1984); 

2 c=s:*r c H , ( i - - f ) + c „ x 
w w [E2.37] 

m m C. = <pmxC,xS d>m xBxQ 
[2.38] 
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Pennebaker (1968) was one of the first authors to describe in detail how to calculate 

pore pressure from seismic velocities. In seismic processing the interval velocities are 

calculated from the stacking velocities. This interval velocity is in theory an average 

of the sonic log and its application is identical to that of a sonic log. It has the 

disadvantage of lacking resolution but the advantage of being acquired prior to 

drilling. I f the velocity is from a 3-D seismic survey, a 3-D image of the pore pressure 

can be produced. 

In the last few years it has been shown that it may be possible to calculate the porosity 

from seismic attributes (Elsayed and Slusarczyk, 2001). Several of the seismic 

software providers have developed artificial neural networks to extract porosity from 

seismic attributes, such as Hamson Russall. 

2.2.4 ShaleQuant 

The computer program ShaleQuant was developed at University of Newcastle. Shale 

samples from the North Sea and the Gulf of Mexico were analysed and their 

corresponding wireline log response such as calliper, resistivity, gamma ray, sonic 

and density recorded against depth. The underlying premise is that the principal 

control on compaction of shales is clay fraction (Aplin et al., 1995). The sample grain 

size distribution as clay fraction rather than clay volume and its corresponding wire 

line log values were used to train an artificial neural network (ANN). The clay 

fraction is a grain size terminology and clay is defined as material with grain size less 

than 2 micro metres. The normal compaction curve was equation 2.12 where the 

constants are a function of the measure clay fraction from ANN. The pore pressure is 

calculated using the equivalent mean effective stress method (chapter 2.2.1.1). 

2.2.5 Principle Component Analysis 

The multivariate statistical method of Principle Component Analysis (PCA) can be a 

useful tool to test each variable importance with respect to any common trend. Any 

variable with limited influence on the common trend of change can be identified and 

taken out of the analysis. A Principal Component Analysis of the data set will 

determine the perpendicular axes (called eigenvectors), which are defined by the 

dimensions of the data set. There will be the same number of axes as 

variables/dimensions; the longest axis is the First Principle Component (PCI), the 
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next major axis is the Second Principle Component (PC2), etc. I f there where only 3 

variables one could visually see the predominant trend in the data. With N variables 

the data points become a cloud in N dimensions and PCA rotates it such that the 

maximum variability is visible. Each variable in the analysed data set can be assessed 

concerning its contribution to the overall distribution of the data set. A high 

correlation between PCI and a variable indicates that the variable is associated with 

the direction of the maximum amount of variation in the data set. 

Conversely, i f a variable does not correspond to any PC axis, or corresponds only 

with high-number PC axes, this usually suggests that the variable has little or no 

control on the distribution of the data set. Therefore, Principle Component Analysis 

may often indicate which variables in a data set are important and which ones may be 

of little consequence. Some of these low-performance variables might therefore be 

"weeded out" and removed from consideration in order to simplify the overall 

analyses. 

The first stage in the process is to standardize the data. The mean and the standard 

deviation for each variable is determined using EXEL. Subtracting the mean and 

dividing by the standard deviation find the standardized value. Thus the centroid of 

each data set is zero. 

It is possible to run PCA without dividing by the standard deviation and run an 

eigenanalysis of the covariance matrix. But in this case (wireline data) where the 

variables are all measured in different units only a correlation matrix can be used. The 

entire variable will then have a variance equal to 1.0. The logs included in the analysis 

were; delta calliper (delta ca), neutron (HCNC), density (HDEN), gamma ray (HGR), 

resistivity (HRD) and the sonic travel time (HAC). The same methodology will apply 

to the PCA performed on the drilling data later in this chapter. 

Table 2-1 Eigenanalysis of the correlation matrix 

Eigenvalue 2.8762 1.3671 0.8951 0.6499 0.1476 0.0642 

Proportion 0.479 0.228 0.149 0.108 0.025 0.011 

Cumulative 0.479 0.707 0.856 0.965 0.989 1.000 
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Figure 2.9 Scree plot of the eigenvalue of each principal component of the PCA of the wireline 
logs. 

The scree plot (Figure 2.9) shows how the eigenvalue drops from PCI to PC6 (Figure 

2.9). The first screening of the data is done at this level. It is important to make a 

decision about what criteria to use with regard to which principal component is 

important or not. The Kaiser criterion suggests that we can only retain factors with 
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eigenvalues greater than 1 (Kaiser, 1960). In this case we would only retain PCI and 

PC2. 

The scree test is a graphical method first proposed by Cattell (1966). Cattell suggested 

using the scree plot to find the place where the smooth decrease of eigenvalues 

appears to level off. In this case it is not evident whether to include PC3 and PC4 in 

addition. 
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Figure 2.10 a, b, c and d. The plots to the left (a and c) are cross sections through data 
perpendicular to P C I , PC2 and PC3. b and d show the loading values with respect to the 
different principal components. 

Table 2.1 includes the loadings of the principal components. The loadings can also be 

presented graphically (Figure 2.10b and d). The loadings for PCI shows that the 

density and neutron measurements have 0.55 loading in opposite directions and that 

the sonic measurements have a positive 0.56 loading. Calliper, gamma ray and 

resistivity have limited influence on PCI but are the most influence on PC2 and have 

loadings in the same direction. These three measurements are also controlling PC3 

and PC4. Figure 2.10 a and c are cross sections through the PCI and PC2. The blue 
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cloud comprises the Tertiary data points while the red cloud is the Jurassic data. It 

suggests that there is some sort of parallel shift of the general trend at Figure 2.10a. 

This may be due to the chalk layer in between or an erosional discontinuity between 

the two epochs. Figure 2.11 shows the PCI versus depth in blue and the log-derived 

porosity in green. It is possible that the PCI is the porosity change with depth, and 

that the porosity can only be calculated from the density, neutron or the sonic log. The 

three other including resistivity represent only noise in relation the PCI. With respect 

to PC3, the gamma ray has no impact just like the density, neutron and sonic. The 

delta calliper and resistivity pull with equal amount in opposite direction. This 

suggests that the variation in hole size has most impact on the resistivity log. It puts 

the resistivity log into a very difficult position with respect to whether it can be used 

to calculate the pore pressure based on Eaton's equation or equivalent depth where in 

effect it substitutes for sonic or density measurements. 

It is important at this stage to remember than the study so far has been concentrated 

on data from one well, Nor 1/6-7 and not to generalize these observations beyond this 

well. But it shows the power of PCA as an analytical method, which should be done 

more regularly on well data. 
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Figure 2.11 a and b. PCI versus depth in blue and the sonic travel time in green. 

2.3 Drilling parameters 

Most of what is explained in this chapter is based on the author's personal experience 

from having been a mudlogger for 18 months followed by 10 years as a wellsite 

geologist with responsibility for pore pressure evaluation using drilling parameters. 

The drilling parameters come from three sources; the mudloggers, MWD engineers 

and the driller. The mudloggers data are divided into two categories; real time data 

and lagged data (table 2.2). The LWD/MWD tool is a group of sensors equivalent to 

the wireline sensors built into the drill-string placed just behind the drill-bit. The 

signals are transmitted to surface by pressure pulsation in the mud, as well as being 

recorded in a memory built into the tool. As the sensors can be several meters behind 

the drill-bit the data are regarded as lagged data, i.e. the recording of the data does not 

correspond in time with the position of the bit, and hence the drilling response. The 

MWD/LWD data as pore pressure indicators are not discussed separately as the data 

are regarded close to identical with wireline data. (Chapter 2.2). The driller's data are 

all real time. Since they are recorded by the mudloggers as well, only data from the 

mudloggers will be listed as drilling parameters. 
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Table 2-2 A list of measurements that can be used to interpret the shale pore pressure. 

Mudlogger real time 
Mudlogger lagged 

data 
MWD data Drillers data 

d'exponent gas resistivity mud flow in (kick) 

torque mud temperature density pit gain (kick) 

mud flow in (kick) mud salinity neutron porosity drill break 

pit gain (kick) cuttings shape sonic porosity 
pump off mud 

return 

changes in 

standpipe pressure 
cavings pit loss 

pit loss cuttings density 

mud density in/out 

On most drilling sites all mudloggers and drillers data are available, but the use of 

MWD/LWD tools varies a lot due to high rental cost of the tools. In addition most 

operators wil l wireline log each section drilled and will therefore get the data only 

later. While available during drilling they are very useful, but should be avoided as 

the primary resource. Base on personal field experience these tools often fails and the 

drill string will have to be pulled to surface for repair (a bit trip). As this operation 

often takes 24 hrs. it is normally only done when a drill-bit is worn, hence the name 

"bit trip". 

Since the interpretation of the wireline data and hence the MWD/LWD data have 

been discussed (Chapter 2.2), it was decided not to include them in this section. One 

can also see from table 2.2 that the drillers data are duplicated as the same data are 

collected by the mudlogger although the data are sourced from different sensors. The 

drilling data discussed in this chapter are therefore divided into two groups; real time 

data and lagged data as listed in column one and two of table 2.2. 
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2.3.1 Real time data 

Real time data are all recorded by the mudlogger which represents the data recorder 

from the actual total depth of the well; rate of penetration (ROP), weight on bit 

(WOB), bit revolution per minute (RPM), d'exponent, torque, mud flow in, mud loss, 

changes in standpipe pressure and PWD (down hole mud pressure measured by the 

MWD or LWD tool. 

2.3.2 D'exponent 

The d'exponent is a way of normalizing the rate of penetration (ROP) to extract the 

formation drillability or hardness. Bingham (1964) suggested the following 

relationship between ROP, weight on bit (WOB), bit rotating speed (RPM) and bit 

diameter (D): 

ROP/RPM= a (WOB/D) d [E2.38] 

where d is the compaction exponent and a the lithology constant. Jordan and Shirley 

(1966) solved this equation. They assumed constant lithology in a shale sequence, 

hence a=l: 

log10(ROP/RPM)=d(log10(WOB/D)) [E2.39] 

This equation was rearranged to: 

DEXP=log,0(ROP/60RPM)/logio(WOB/106D) called the d'exponent. 

In standard metric units, ROP is in meters/hour, RPM in revolutions/minute, WOB in 

tones and D the bit diameter in inches. In standard US units ROP is in feet/hour, RPM 

in revolutions/minute, WOB in pounds and D the bit diameter in inches. 
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Figure 2.12 The plot shows the d'exponent and the corrected d'exponent versus depth. The 
straight lines are trend lines representing one particular pressure gradient (one mud weight). 

The most used "corrected" d'exponent (dc) was suggested by Rehm and McClendon 

(1971). They corrected it for changing mud weight (MW): 

dc= DEXP * (hydrostatic gradient / MW) 
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Figure 2.12 shows the d and dc versus depth. As long as the MW is constant over a 

given interval the two parameters wi l l run parallel. It is not the absolute value that is 

of interest, but the shift in trend (di -d2)/depth interval. The trend shifts are seen on 

both parameters. It should therefore be enough to use one of them. 

Mudlogging companies have suggested several normalizing functions in recent years. 

Actually most mudlogging companies like to present their personal pressure 

exponent, most of them a d'exponent corrected for MW, bit wear, etc. It is important 

to remember that bit design and technology has come a long way since the 

introduction of the d'exponent in 1966. What we want to extract is the drillability of 

the rock. It will always be an empirical function. But it must not be so complicated 

that we loose control of the input parameters. 

N 1/6-7 

y = -37.Q86x + 191.12 
R ! = 0.7904 

y= 16.301X +83.762 
R ! = 0.095 

• Chalk 

• 1000 - 3261m 

• 4346m -5000m 

— Linear (4346m - 5000m) 
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o 

1.50 
DEXP 

Figure 2.13 Cross plot of the d'exponent versus the sonic travel time, well N 1/6-7. It suggests a 
good relationship between the sonic log and the d'exponent in the Tertiary section (pink squares). 
The correlation is less obvious in the Jurassic (yellow triangles). There is no correlation in the 
Chalk. 

It is therefore, based on personal experience, enough to use one of these exponents. 

As the d'exponent is only an approximation to any normalization of the ROP with 

respect to extracting porosity changes, it is recommended to plot the input parameters 

parallel as well as other parameters such as torque that influence the ROP. This to be 
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able to visually check i f a sudden change in one of the input parameters is the source 

to a trend shift in the d'exponent. 

The d'exponent was developed using rock bits, while PDC bits are often used today. 

A PDC bit do not have any roller cones, but is a solid cutter that cut loose the rock 

rather that hammer loose the rock bits. It appears that the d'exponent still can be used, 

but the data is more scattered. The d'exponent is also a function of what type of drill-

bit being used and the size and number of drilling stabilizers used. 

Figure 2.13 show a good correlation between the d'exponent and the sonic value in 

the Tertiary section. This suggests that the d'exponent is also a function of porosity 

and should in theory also be a function of pore pressure. Figure 2.14 show that there is 

no correlation between the d'exponent and the resistivity log. 
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Figure 2.14 Cross plot of the d'exponent versus the resistivity log. The plot show no correlation. 

One important limitation is that a reduction of the overpressure cannot be measured 

and often not even detected. The mud weight (MW) needed in one section drilled 

(between two casing shoes) wil l always be a function the highest overpressure 

gradient encountered. Drilling with higher MW than needed (drilling overbalanced) 

will to some degree reduce and change the ROP, but often not at all. Small changes in 
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lithology can be important for the particular bit in use and increase the ROP 

regardless of reduction in overpressure. 

Table 2-3 Eigenanalysis of the correlation matrix 

Eigenvalue 1.5075 1.0032 0.4893 

Proportion 0.502 0.334 0.163 

Cumulative 0.502 0.837 1.000 

Variable PCI PC2 PC3 

ROP 0.708 0.004 0.706 

RPM 0.347 0.869 -0.352 

WOB -0.615 0.494 0.614 

The eigenvalues of the principal components in table 2.3 show that it is PCI and PC2 

that have an eigenvalue higher than 1 and that PCI (Figure 2.15) represent 50% of the 

variability while PCI and PC2 account for 84% of the variability. PCI is influence by 

the ROP and the WOB pulling in opposite direction while the RPM more or less 

represent noise on PCI (Figure 2.16b). 
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Figure 2.16 a, b, c, d. The plots to the left (a and c) are cross sections through data perpendicular 
to P C I , PC2 and PC3. b and d show the loading values with respect to the different principal 
components. 
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The loading plot and score plot of PCI versus PC2 suggest there is a predominant 

trend controlled by ROP and WOB (Figure 2.16). Figure 2.17 show the PCI versus 

depth with the log derived porosity and the sonic log overlaid. I f we assume it is the 

degree of consolidation we try to get from the drilling parameters it appears from this 

well that the RPM do not help. The d'exponent i f for pore pressure analysis would be 

a better pore pressure indicator in this well i f it were only a function of ROP and 

WOB. 
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Figure 2.17 a, b and c. PCI versus depth with the standardized log porosity overlaid in Figure b 
and the normalized sonic travel time in Figure c 

2.3.3 Torque 

Torque is measured on the surface and represents therefore the sum of the bit torque, 

the stabilizer torque and the drill string torque. As the hole gets deeper the contact 
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area between the drill string and the borehole walls increases. A sudden increase in 

the torque can be related to increased pore pressure, but also be related several other 

causes such as; 

-swelling clays due to chemical reactions between the formation and the drilling fluid 

(mud). 

-accumulation of cuttings in the hole because the drilling fluid properties changes and 

its lifting capacity is reduced (Mouchet and Mitchell, 1989). 

-to rapid building of borehole angle 

Torque has for these reasons never been taken directly into account as part of the 

normalized ROP equation because the bit torque has not been available. Torque as a 

pressure indicator is therefore quite elusive and only used as an addition indicator by 

very experienced pore pressure engineers at the wellsite when on are quite certain that 

it is only an increase in pore pressure that is causing the increased torque. 

Today bit torque can be measured as part of the MWD service. No equation is 

available at the time of writing this chapter, but may be an interesting future pathway 

when sufficient data becomes available. 

2.3.4 Hydraulics 

The effect of hydraulic flow on ROP varies for different lithologies as well as degree 

of consolidation (Mouchet and Mitchell, 1989). The effect is also a function of MW, 

mud viscosity, mud composition, bit type and bit nozzle size. The effect of hydraulic 

flow on ROP is not fully understood and cannot be taken directly into the normalized 

ROP equation. 

2.3.5 Bit type and wear 

The d'exponent was developed the tri-cone bits where the only available bit type. 

With the introduction of the PDC bit it has been observed that the d'exponents tend to 

scatter and its resolution is therefore severely reduced. It is time to develop a new 

drilling exponent for the PDC bit, but a good digital database must be available. As 
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good practices are in place with regard to wireline data, the same is not the case with 

regard to drilling data. 

Most mudlogging companies has developed some sort of bit wear function that can be 

used to correct the d'exponent, but in most cases it confuses more than it helps. Most 

drilling supervisors will have experienced that the bit appears to wear out quit sudden 

rather than gradually. The result is a sudden drop in ROP due to bit wear rather than a 

gradual reduction in the ROP. 

2.3.6 Lagged data 

Lagged data are the information the mudlogger extract from the drilling mud as it 

reach the surface and passes over the shale shaker. This information arrives typically 

one to two hours after the bit passed that specific depth. The lagged data can be 

subdivided into information from the mud and from the cuttings. 

MUD: total gas, mud temperature, mud weight, mud resistivity 

CUTTINGS: density, CEC, calcimetry, cuttings gas, shape of the cuttings and 

cavings, the volume of cavings. 

2.3.6.1 Gas 

The gas is sampled from the returning drilling fluid and analysed. This is a 

fundamental analysis for safety, and it is for example one of the parameters that NPD 

in Norway require be monitored while drilling. As a pore pressure detection tool 

while drilling it has the disadvantage of being a lagged parameter and not real time as 

the d'exponent. 

The total gas is detected in the returning drilling fluid (heather tank) before the shaker 

screens. The sample equipment is working under extremely harsh conditions. These 

systems need therefore a lot of maintenance and regular calibration. This has proven 

very difficult while drilling exploration wells. The different sample equipment are not 

standardized and seldom built for purpose. As a result gas level variations are often a 

result of change in sampling conditions. The sample equipment is placed in the header 

box in front of the shaker screens. Variations in the mud level and frequent cleaning 
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with large quantities of drill water dilute the drilling fluid and results in unreliable gas 

readings. 

The total gas is also dependent on the volume of drilling fluid a given amount of rock 

is cut and diluted into. This ratio dependent of the volume of rock being drilled versus 

the volume of drilling fluid it is diluted into is often omitted in the assumed total gas 

reading. 

The total gas measured is the sum of the gas diluted in the mud from the rock being 

crushed by the bit and the gas seeping in from the borewall (gas influx). The total gas 

can be categorized according to different sources (Mouchet and Mithell, 1989); 

Cuttings gas released from the cuttings while being pumped up hole to surface. 

Produced gas seeping in from the borehole. 

Recycled gas in the drilling mud system. 

Contamination gas from petroleum products mixed into the mud. 

The total gas is used as a pore pressure tool based on the idea that i f underbalanced, 

gas will seep into the well. I f overbalanced it wil l not. While pumping, the effective 

pressure of the mud column against the borewall (ECD) is higher than when the mud 

is static. The pumps are turned off while doing a connection or simply a dummy 

connection. I f there is a difference between the connection gas (and/or trip gas) and 

the background gas, the difference could be due to underbalanced drilling. I f this 

difference decreases after increasing the MW we know increasing pore pressure 

gradient caused it. But increase of the TOC in the mudrock can easily be mall 

interpreted as pore pressure increase as well as a hydrocarbon discovery. 

Despite errors in the method, it remains often as the most important method while 

drilling. This could be because everyone working at the wellsite regardless of 

background can have an opinion about the pore pressure based on this method. When 

large changes are observed in the total gas, the drilling engineers and drilling foreman 

wil l build their own opinion regarding the pore pressure. 
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2.3.6.2 Cuttings and Cavings 

At wellsite the interpreted lithological log is based on describing the drill cuttings. 

The bulk sample from the shaker screens are sieved based on a size that is assumed to 

be representative of drilled cuttings. Large cuttings (>lcm) are generally regarded as 

cavings. Drilling a borehole creates stress at the walls. There will therefore always be 

some cavings in the samples. But an increase in the amount of cavings in the bulk 

sample is indicative of borehole instability. Abundant cavings are either due to stress 

relief (rock mechanical problem) or underbalanced drilling (pore pressure problem). 

With regard to pore pressure it is cavings of shales we are most concerned with and 

they react with the drilling fluid and changes their original shape as they are pumped 

up with the mud. Pore pressure produced cavings are typically long, splintery and 

occasionally concave. Stress relief cavings are blockier. But often increasing the MW 

solves the problem regardless of the cause (Mouchet and Mitchell, 1989). 

Several rock mechanical experts are convinced that cavings will always appear i f one 

is under balanced. 

2.3.6.3 Mud temperature in and out 

The theory behind measuring the mud temperature in and out for pore pressure 

evaluation is trying to measure the geothermal gradient. As a result of higher porosity, 

hence higher water content high porosity rocks are insulating bodies with regards to 

low porosity rocks. One would therefore expect the mud temperature increase less 

than before in the pressure transition zone, but increase quit dramatic within the 

overpressure zone. In reality this is mostly a method to be used on onshore wells. On 

offshore rigs the mud are cold while being pumped up the riser from the seafloor to 

the rig. On deep-water wells the method cannot be applied. 

2.3.6.4 Mud resistivity in and out 

In normally compacted shales water salinity could increase with depth. Overton and 

Timko (1969) have demonstrated the role of ionic filtering by clays. This was later 

revised by Magara (1978). It is still a controversial question whether the compacting 

mudrock act as a filter when water is expelled. It is therefore difficult to assess the salt 

concentration in any water flowing from the formation into the borehole. It is also 
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difficult to assess the expected salt concentration in the mudrock itself, as that is also 

a function of the mudrock mineralogy, which is never available at an exploration 

wellsite. 

To be able to measure a salt influx into the drilling fluid system it must be a 

significant salt contrast between the drilling fluid and the influx. This will require a 

near fresh water mud. The North Sea and the Gulf of Mexico have several formations 

with high level of Montmorillonite. To inhibit the swelling reaction considerable 

amount of KCL is added to the drilling fluid. It is therefore practically difficult to 

measure a resistivity change caused by formation fluid influx. 

2.3.7 Mud chemistry and mud-formation chemical reactions 

The chemical composition of the mud system used is imperative as some water-based 

systems can cause swelling of the formation. For example a Montmorillonite rich 

formation can swell with out proper shale inhibitor added to the system. This will 

increase the torque and reduce drill rate (ROP). The d'exponent wi l l decrease or 

remain unchanged suggesting no pressure increase, while the increased torque may 

suggest increased pressure. The result is severely reduced resolution on the real time 

pore pressure parameters. This is generally a problem in shaly succession with a high 

CEC value. It is therefore wise to monitor chemically the CEC well using for example 

the Methyl blue titration technique and have the mud composition adjusted to the 

zone of highest CEC value for the specific open hole section. 
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Chapter 3 Comparison of different pore pressure 
methods using a North Sea well. 

Carl Fredrik Gyllenhammar 60 



Chapter 3 Comparison o f different pore pressure methods using a North Sea well . 

3.1 Introduction 

The different pore pressure equations and the techniques discussed in Chapter 2 were 

tested on one high pressure, high temperature well in the North Sea, Nor 1/6-7. The 

wireline log acquisition programme was particularly complete in this example. The 

overburden was logged by a density log in addition to the conventional logging 

program consisting of gamma ray, resistivity and the sonic log. This was done solely 

for the purpose of pore pressure evaluation. The density and neutron log are normally 

only run in the reservoir section. A nearby well Nor 1/6-6 was drilled the same year to 

the same depth and enabled cross checking of the log response. The operator provided 

us with all wireline logs, not only for Nor 1/6-7, but also for all the neighbouring 

wells. 

The method used by the operator for the post-well analysis wil l first be explained. 

This method is quite commonly used in the industry and its result appears good. 

However, the method requires that the interpreter has considerable wellsite experience 

with responsibility for pore pressure interpretation and becomes therefore subjective. 

Such interpretations are often difficult to defend scientifically and can vary 

considerably from well to well. 

After a resume of the operator's interpretation, there follows a discussion of how 

appropriate normal compaction trends can be developed for an area such as the North 

Sea. Finally, a test of the different methods listed in Chapter 2 is conducted and 

comparisons made between the results. 

3.2 Pore pressure evaluation of well 1/6-7 in the North Sea, 
Norwegian sector. 

Exploration well Nor 1/6-7 was drilled by Norske Conoco AS in the Central Graben 

in 1992. The well was drilled to 4995 mRKB and plugged and abandoned as a dry 

hole. The overburden consists of 3251 meters of mudrock, initially of Quaternary age, 

followed by Pleistocene, Oligocene, Eocene and Palaeocene aged sediments. The base 

Palaeocene section consists of Ekofisk Formation chalk. The Lower Palaeocene and 

Carl Fredrik Gyllenhammar 61 



Chapter, : Comparison o f different pore pressure methods using a North Sea well. 

Cretaceous chalk have a combined thickness of 1200 meters. The underlying Jurassic 

sediments consist of interbedded shale and sandstone beds. 

3.2.1 Pore pressure evaluation while drilling (wellsite) 

The primary pore pressure indicators during drilling were the d'exponent (2.3.2), the 

mud gas (2.3.6.1) and the amount of cavings (2.3.6.2). The upper hole section was 

assumed to have hydrostatic pore pressure, i.e. the wireline signature indicates 

decreasing porosity in the mudrocks, which is interpreted as normal compaction and 

normal (hydrostatic) pore pressure. A normal trendline was developed within this 

upper section, based on the visual best fit of the d'exponent plotted on a semilog 

graph paper (Figure 3.1). The green trend line was parallel shifted each time the drill 

bit was changed. The new trend represents the current mud weight pressure gradient. 

The pore pressure gradient can be calculated either by Eaton's equation (2.2.2.1) or 

the equivalent depth method (2.2.1.1). With regard to the use of measuring the total 

background gas versus trip and connection gas (2.3.6.1) the data were considered to 

be reliable, and their interpretation was especially significant for the Jurassic section. 

Despite all the effort to interpret the pore pressures in real time based on the above 

approach, this well started flowing in the Lower Jurassic sand and had to be shut in 

(called a "kick" in the oil industry). The kick gave a real pressure point for 

calibration which was later pressure tested by the RET tool. 

MWD gamma ray and resistivity data were available, but were not used in the pore 

pressure evaluation. The limitation for pore pressure evaluation at the time was the 

absence of an acceptable model for correlation of the resistivity to the pore pressure 

for North Sea sediments. 

Carl Fredrik Gyllenhammar 62 



Chapter 3 Comparison o f different pore pressure methods using a North Sea well . 

N 1/6-7 
0 1 1 cTexponent 10 

500 i 1 1 
dexponent 

1000 Altemaltiue 
Nomal trend 

Normal trend 1500 

2000 

£ 2500 

3000 

3500 

4000 

1 4500 

5000 

Figure 3.1 The corrected d'exponent plotted versus depth with a normal trend line overlaid in 
green. Normally new trend lines will be added paralleling the green line each time a new bit is 
put on the drill string. The new line will represent the actual MW. An alternative trend line is 
suggested in red. That trend line will also result in a reasonable calculated pore pressure at the 
target of interest (i.e. 4200 to 4800 m). 

3.2.2 The Post-well analysis 

For the post-drill pore pressure evaluation, the wireline data provided higher 

resolution as well as indications of where the pressure gradients were changing. The 

technique used was a quantitative calculation of pore pressure based on the equivalent 

depth method (2.2.1.1). The input parameters were the sonic log and the density log. 

As input to find the equivalent depth, the sonic log was used directly rather than first 

calculating the porosity. The normal compaction curve assumed an Athy exponential 

function. At the time, no attempt was made to use a normal compaction curve from 

other basins (or a universal normal compaction trend for mudrocks/shales). Sonic 
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slowness was picked in the shales by using a gamma ray cut off of 50 API from the 

following offset Norwegian wells; Nor 1/6-7, Nor 1/6-6, Nor 1/3-5 and Nor 1/3-2. A l l 

the data were displayed on one graph with depth in meters as y-axis (linear) and shale 

sonic slowness on the x-axis (logarithmic). The normal trend was selected by drawing 

a straight line based on the visual best fi t (Figure 3.2). The best visual fi t is not the 

mean value. On Figure 3.2, all points to the right of the trend line suggests 

overpressure. So the line wil l sit on the points or to the left of them. The assumption is 

that some of the sections in the well are hydrostatically pressured. That is clearly also 

the weakest part of the method. This suggests that the seabed reference slowness is 

182 ixsec/ft, which is equivalent to a mud porosity of 52 % at the sea floor (E2.8). I f 

we assume that the sonic slowness is a function of porosity (/ = / ( 0 ) ) > t n e Athy normal 

compaction equation 2.14 can be modified to: 

where t is the sonic slowness (usec/ft) at depth of interest and to is the sonic slowness 

at sea bed. The compaction trend c = -0.00014745 is derived from the analysis of the 

data. 

The equation for the equivalent depth (Z e) (corresponding to normal compaction 

depth) to any observed (t) can then be derived: 

The excess pore pressure at any depth (Z) is therefore an integration of the densities 

between Z and Ze minus the weight of the pore fluid. I f the Ze is deeper than Z, the 

pore pressure was assumed normal, but can also indicate pore pressure lower than 

hydrostatic or over-compaction caused by uplift followed by erosion. In case of over-

compaction, the maximum palaeo-overburden (hence the amount of uplift/erosion) 

can be calculated with reference to the present seabed (Magara, 1978). 

The pore pressure calculated from the sonic slowness and from the d'exponent was 

overlaid to generate the final pore pressure curve (Figure 3.3). 

/ = t0e(-cxz) [E3.1] 

Ze = [ln{t/t0)]/c [E3.2] 
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Figure 3.2 The sonic velocities in the shale sections plotted against depth on a semilogaritmic 
graph. The yellow line is the best visual fit trend line. 
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Figure 3.3 A comparison of the calculated pore pressure from the d'exponent (blue dots) and the 
sonic velocity calculated pore pressure. 

The critical assumptions with such a method is that it is based on a uniform lithology. 

The mudstone must have a constant volume of clay versus quartz i f one single normal 

compaction trend is to be used (Aplin et al., 1995). Secondly the only source of the 

over pressure is assumed coming from disequilibrium compaction (Swarbrick, 2002). 
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3.2.2.1 Tertiary 

The initial pore pressure interpretation based on drilling parameters suggested that the 

excess pore pressure began at approximately 1000 meters. The sonic data suggests 

that this depth could be lowered to 1300 meters. The depth is difficult to detect 

without the wireline logs as the 20" casing was placed at lOOOmRKB and the MW 

subsequently increased from seawater gravity to 10 ppg. The pore pressure probably 

exceeded the mudweight in an interval starting at 1800m, which corresponds with 

large cavings observed and sampled on the shaker screens. From 2500 meters and 

downwards, no changes in the pore pressure gradient were observed based on the 

drilling parameters. The sonic log that was run after having drilled the section 

suggested a decrease in the pore pressure gradient. 

Generally in the Tertiary section the final pore pressure interpretation was based on 

the sonic log rather than the drilling parameters. 

3.2.2.2 Chalk 

Pressure data in the Chalk were mostly interpreted from RFT and DST measurements 

from offset wells. This was later confirmed when the RFT data from the nearest offset 

well Nor 1/6-6 became available. Again the mudweight used gives the maximum pore 

pressure gradient assuming parts of the chalk have some permeability. At 3534 m, 4 

barrels of mud were lost into the formation and the mudweight was lowered from 13.5 

ppg to 12.3 ppg. This did not result in increased total gas in the mud, which could 

indicate a lower pore pressure than mudweight (i.e. drilling overbalanced), or 

alternatively the permeability of the Chalk is too low to allow bleeding of formation 

fluid into the borehole (drilling underbalanced in tight formation). 

3.2.2.3 Jurassic 

The d'exponent was as quite spiky in the Jurassic shale section, and the trend line was 

shifted several times while drilling (Figure 3.1). Figure 3.1 only display one of the 

many trend-lines paralleling the green line. It was only in retrospect that the one 

single alternative trend line (the red line in Figure 3.1) was applied. That d'exponent 

derived pore pressure evaluation compares well with the sonic calculated pore 

pressure with respect to the pressure transition at 4400 meters. The two methods give 

similar results down to 4600 meters. From that depth downwards the sonic velocity 
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increases suggesting rapid reduction of the porosity hence decreasing pore pressure 

gradient as well. This is not in agreement with what was observed at the well site. It 

was therefore decided to disregard the sonic values and use the drilling parameters for 

the final pore pressure evaluation in the Jurassic section. 

The following is a description of how the total gas reading was used to interpret the 

pore pressure. The rig had top-drive, so the well was drilled with stands, not singles. 

This meant that it was 30 metres between each connection not 10. The pumps were 

therefore turned off every 10 metres to simulate connections (dummy connections). 

When the connection gas (CG) was 10 % higher than total gas (TG), the mudweight 

was increased. Drilling was stopped each time new mud was circulated. The well took 

a water kick at 4878m and was shut in after a 2.5 bbl of formation fluid had flowed 

into the well (recorded as gain in the drilling mud pit). Further down in this sandstone 

section a loss circulation situation occurred and loss circulation material circulated to 

seal of the permeable sandstone. An RFT log later confirmed this estimate of the 

overpressure. 

The well operator was quite convinced that the pore pressure gradient increased 

continuously while drilling this section with no decreases except through the 

sandstone at 4878 meters where the overpressure was constant. The wellsite 

evaluation by the author was therefore assumed correct. The well operator was faced 

with the following problem: either believe in the empirical drilling data, or deduce an 

alternative interpretation of lower pore pressures provided by the wireline data in 

particular the sonic log. In particular the sonic log is very powerful in the sense that it 

can be correlated from well to well, and is a standard tool to determine shale porosity. 

The drilling parameter such as the d'exponent is a function not only of the formation, 

but also the drill bit and the drilling mud as well. 

The above reveals a weakness in the provision of traditional porosity based pore 

pressure prediction using the sonic log data. Additional information on porosity from 

the neutron density cross plot suggests that the composition of the mudrocks vary, 

which would lead to errors on account of selecting a single normal compaction curve 

for the pore pressure evaluation. It is also suggested that the origin of the pore 

pressure in this area has several sources (Bjorlykke, 1996, Holm, 1996, Gaarstroom et 

al., 1993), and that consequently these methods do not take them all into account 
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With respect to the d'exponent, one has to ask what the initial calibration was based 
on. The total gas response? Then what decided the total gas response values to be 
used before the mudweight was increased? What does the maximum mudweight used 
in the low permeable mudrock section represent? Do the cavings come from 
differential stress release zones rather than initiated by overpressure in the mudrock? 
What is the origin of the gas monitored in the drilling fluid while drilling through the 
mudrock and how is it related to the pore pressure? This is very empirical indeed. But 
never the less this method is universal with respect to the cause of the overpressure. It 
is purely based on observations and the actual mud weight that was used to drill these 
formations. 

The following is the well operator's comment in 1992: "It is interesting to note that 

the sonic log often indicates normal compaction or much lower overpressure than 

what is seen from the RFT results in the interbedded sandstones of Jurassic age. This 

problem is not discussed any further in this report". 

This will be discussed later in this chapter. 

3.3 Normal Compaction in the North Sea. 

Hansen (1996) developed a normal compaction curve for the North Sea using shale 

velocity from several exploration wells in the Norwegian sector of the North Sea. The 

equation was an Athy type equation (2.1.3.1); 

at = 191xe0 0 0 O 2 7 x d e p , h [E3.3] 

The Hansen curve was based on three exploration wells; Nor-8/3-2, Nor-9/2-2 from 

the Central North Sea and Nor-30/2-1 from the Northern North Sea. It was assumed 

that the shales in these wells were to a large degree dewatered and had hydrostatic 

pore pressure. These wells are located in an area with low geothermal gradient 

relative to the axial rift portion of the North Sea basin. 
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Figure 3.4 show the Hansen dataset compared wi th the dataset in this study. At 2000 

meters the shale slowness span from 160 jxsec/ft to 90 |i,sec/ft. The distance from Nor-

1/6-7 to Nor-9/2-2 is less than 100 km. It shows that it is diff icul t to define a normal 
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Figure 3.4 Shale velocities from the wells in Figure 3.2 compared with the wells used by Hansen 
(1996). The Figure to the left has a logarithmic X-axis. At such a plot the Athy type normal 
compaction trend become a straight line. O n the plot to the right it is much more obvious that the 
well used in this study are different from the one used by Hansen (1996). 

compaction trend applicable to these two datasets. Ideally, the normal compaction 

trend for mudrocks should be defined f rom a continuously subsiding basin in which 

the compaction o f the sediments had been going on for such a long time that all 

excess pore f lu id have migrated out o f the system and the pore pressure has reduced 

to hydrostatic. In the case o f any upl i f t and erosion, the eroded succession must have 

been reburied by an equal amount o f overburden. Ideally porosities should come from 

core measurements, rather than calculated from wireline logs. 

For more than 32 years the Ocean Dri l l ing Program (ODP) and its predecessor Deep 

Sea Dri l l ing Project (DSDP) have explored the history o f the ocean basins and the 

nature o f the sediments and the crust beneath the ocean floor. Uti l izing the dri l l ships 

Joides Resolution and Glomar Challenger rocks and sediments have been recovered 

from beneath the sea floor at more than 1000 locations (sites) worldwide. The density 
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and water content have been measured on these samples, which has provided a 

suitable plot o f porosity versus depth for shallow buried mudrocks. 
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Figure 3.5 Porosity data from 10000 D S D P / O D P mudrock samples. O D P site #336 is in the deep 
water Norwegian Sea. The yellow curve is the suggested normal compaction trend drawn 
through the data set. 

Figure 3.5 shows the porosity plotted versus depth from 10000 mudrock samples 

acquired during the DSDP/ODP project. The normal compaction trend is drawn using 

the visual best-fit method. By manipulating the seabed porosity and the compaction 

coefficient in an Athy equation using Excel, the following equation for porosity (<p) 

was found: 

0 = 6 8 x e

0- 0 0 0 7 6* d eP t h ~ (p — 55 x e

0 0 0 0 0 8 2 > < e f f e c t i v e s t r e s s 4 j 
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Figure 3.6 Compaction trends as plotted as void ratio versus effective stress. Al l the different 
trends that have been tested in this chapter are overlaid. The PresGraf (in blue) is an 
approximation as the real curve is proprietary data to B P . 

On Figure 3.6 the operator's original compaction trend (in red) and the ODP/DSDP 

(in yellow) forms the two extremes and the curve suggested by Hansen (1996) (in 

green) and PresGraf ( in blue) by Heppard (1997) plot in between. The two curves 

based on North Sea porosity data and projected to the surface suggest seabed porosity 

less than 55 %, while the DSDP/ODP dataset for shallow buried sediments suggests it 

is higher than 65 %. 

Mineralogically, the North Sea is different f rom the deep-sea areas where the 

DSDP/ODP data were acquired. The upper 500 meters o f mudrock in the North Sea is 

abundant in illite rather than montmorillonite (Thyberg et al., 2000). In most basins 

the upper sequence is abundant in montmorillonite and with increasing depth and 

temperature, the illitization process transforms most o f the montmorillonite to illite. 

In all o f these trends (Figure 3.6) it is assumed that the lithology is constant. In the 

Harrold method as well as in ShaleQuant pore pressure method, different normal 
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compaction trends for different clay content are used. The problem then arises: what 
parameter to use to determine the clay content? In the Harrold method wireline logs 
are used such as the gamma ray. The gamma ray gives clay content as the volume of 
phyllosilicates versus quartz (Harrold, 1999). The gamma ray is not always a reliable 
indicator o f shale content due to occasional radioactive material, such as potassium 
feldspar, in the sandstone (Doveton, 1985). A different method is to use the neutron 
density cross plot. That method w i l l also approximate to a measure the volume of clay 
(Vcl) equivalent to the volume o f phyllosilicates. The problem with the neutron 
density cross plot method is that these logs in most wells only cover the reservoir 
section, not the overburden. It is not uncommon for these estimates to differ from one 
another, and the lowest estimate is usually taken (Doveton, 1985). In the case o f Nor-
1/6-7 the average Vc l f rom the different methods are 58% from neutron density, 54% 
from ShaleQuant and 40% from gamma ray. This average is not for mudstone alone, 
but for the whole succession, including sandstone and chalk. It is therefore not far 
from the average clay content composition o f 10000 shales reported by Yaalon (1965) 
as 59%. 
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Figure 3.7. Different wireline methods to calculate the volume of clay are compared in well N 1/6-
7. The red dot are V c l form using the G R log, the blue dots from the neural network (ShaleQuant 
and the green dots the neutron and density log. 

In the ShaleQuant, a neural network has been trained to output the clay fraction f rom 

the resistivity, sonic and the gamma ray logs, the clay fraction can be calculated for 

most o f the hole section. This clay fraction is only a measure o f grain size, not 

mineralogy. But is most cases the fine fraction is the Vc l measured from the neutron 

density cross plot. It is therefore quite unclear with regards to what controls the 

compaction trend, the grain size distribution or the mineralogy. 

In the North Sea where the clay content in the shales varies a lot, a potential 

consequence o f using a compaction trend, as a function o f clay content would be 

calculated shale pore pressure with large vertical fluctuations (Figure 3.7). I f one 

assumes some permeability the pore pressure should equalize over geological time. 

Therefore companies such as Amoco decided to use an average Vc l rather than a 

variable clay content ( M . Traugott, 2001, pers comm.). 
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The two compaction trends, the operator's and the one generated f rom the 

DSDP/ODP data set were used later in this chapter while comparing different pore 

pressure equations. As the Athy equation used in the operator's calculation was based 

on a sonic velocity versus depth, the equation was transferred to porosity versus depth 

and to porosity versus mean effective stress. The process was done in Excel by 

varying the compaction coefficient and the seabed porosity with the fol lowing 

equations as result; 

at = i 8 2 x e 0 0 0 0 1 4 7 5 x d e p , h - <j> = 4 8 x e 0 0 0 0 1 3 x d e p , h - </> = 55 x e 0.000025xeffectives tress 

e = 2 . 2 - 0 .75x log 1 0 ' t f * * ™ ^ [ E 3 . 5 ] 

3.3.1 Palaeocene and Lower Eocene 

The Palaeocene to lower Eocene section serves to illustrate how complex and 

heterogeneous the mudrock composition is in the North Sea. The Eocene deposits 

consists o f up to four hundred meters o f smectite-rich mudstone low in quartz while 

the underlying Palaeocene has less smectite, but more chlorite. The overlying 

Neogene sediments are rich in il l i te, kaolinite and chlorite (Thyberg et al., 2000). 

The high-smectite content in the Palaeocene and Lower Eocene is related to volcanic 

activity. This zone is often referred to as the t u f f zone consisting o f water-laid tephras 

(Morton and Knox, 1990). Pearson (1990) suggested that sufficient volumes o f 

pyroclastics could have been deposited on adjacent landmasses to supply the basin 

with smectite-rich sediments. In simple terms the glass in the tephras reacts wi th 

water to form smectite and silica (Wensaas et al., 1989). In well Nor-30/2-1 the t u f f 

zone is estimated to be 76 meters thick, out o f which 16 meters was cored (1952m -

1968m). 168 individual t u f f beds ranging in thickness from a few millimetres to 28 

centimetres are identified. They add up to 6.85 meters or 44% of the core. It is 

believed that the 76 meter t u f f layer consists o f 500 individual ash beds adding up to a 

theoretical ash thickness o f 33 meters after compaction to 1950 meters (Morton and 

Knox, 1990). These beds occur over the entire North Sea extending onshore into 
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Denmark, Northwest Germany, The Netherlands and SE England. They have also 

been recorded in the Bay o f Biscay, the Goban Spur area o f the NE Atlantic and 

offshore mid-Norway (Jordt et al., 2000). 

Geochemical analysis suggests that hydratisation o f the tephras (glass + water) forms 

smectite, chlorite and chlorite-smectite. The alteration results also in an exceptionally 

high secondary porosity (40%) (Malm et al., 1984). The reaction between glass and 

water forms silica (cristobalite) as well as smectite. It is suggested that this reaction 

may have inhibited the illitization since the illitization o f smectite also is a silica 

realising reaction (Huggett, 1992). 

3.3.2 Normal compaction from resistivity data. 

A n example o f a resistivity-based normal compaction trend has been shown [E2.38]. 

The resistivity is a less effective porosity tool compared to the sonic velocity. The 

resistivity is not only a function o f water content, but also the salt content. In addition 

any hydrocarbons in the system w i l l complicate the calculation o f mudrock porosity 

from the resistivity measurement, as Sw no longer is equal to unity in E 2.35, E2.35 

and E2.37. 

It has been shown that Ze = (/« {t/t0))IC [E3.2]. This equation can be rewritten to: 

1 , 1 , 
Ze = —x\nt xlnt 

C C zo 

I f one assumes that the resistivity measurement in the shale is a function of porosity, 

the following general equation should be valid: 

Z = - J ; X l o g / ? ( - ^ x l o g i ? Z 0 

C C [E3.6] 

Where Z is the depth o f interest, C the compaction trend and Zo the depth where 

R t =lohmm (logR,=0) Equation E3.6 can be rewritten as: 

2-Z„ 

R, =10 c " ' 
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Macgregor (1965) published resistivity trends f rom 26 different wells f rom the Gulf 
o f Mexico area (Figure 3.8). A visual average line w i l l be satisfied by equation 3.7 
using Zo - 4131.6 and the compaction coefficient C = 9672.2: 

Z-4131.6 

R, = 10 9 6 7 2 2 

Such a reference trend line is a function o f the overburden pressure, temperature 

gradient, mineralogy and resistivity o f the pore f luid. Applying the same curve in the 

North Sea makes the assumption that all the variables are the same. It is quite obvious 

they are not, but for simplicity and curiosity a test was run with the results in the next 

chapter. 
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Figure 3.8 Twenty-six wells in 5 offshore areas and 4 onshore fields (MacGregor, 1965). The pink 
line is a suggested normal trend for the Gul f of Mexico. 

Traugott (1997) suggested improving the use o f the resistivity data by applying a 

temperature correction. This results in a shift in the normal compaction trend. A test 

was run using EXCEL and where the exponent in the Eaton equation was changed. 

[E3.7] 
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This experiment showed there is little to achieve by modifying the exponent in the 
Eaton equation itself. 

As the resistivity is a function o f temperature it is important that is corrected so that 

real differences in the resistivity are used in the calculation. Arps (1953) published the 

first correction; 

RT] R T 2 

Tx +21.5°C 

T2 +21.5°C [E3.8] 

T2 is the reference temperature chosen and is normally set to 100°C. 

The Arps (1953) equation was modified by Kern et al. (1977); 

r, +22°C + £T 
RT\ — R 

T2 + 2 2 ° c + sr [E3.9] 

In sandstone ST is zero and increases as a function o f rising clay content. The 

published data suggest a ST as high as 12°C based on their experiments (Kern, 1977). 

Wi th the current information it was decided to use equation 3.9 setting ST =0. 

Using the temperature-corrected resistivity it was found that a normal trend line using 

equation 3.7 with Zo - 3000 and a compaction coefficient C = 4000 would give a 

satisfactory result; 

2-3000 

R = 10 4 0 0 0 

i [3.10] 

3.4 Wireline log pore pressure calculation 

The pore pressure calculation methods have been tested first by using different 

equations wi th the same input parameters. This is not simple, as certain methods have 

implicit unique input parameters. The fol lowing is a description o f five tests done 

using EXCEL spread sheets. The first three tests were based on shale porosity other 

than from the resistivity log. The fourth test was on the different compaction trends, 
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while the last tested the resistivity log as input parameter versus shale porosity f rom 

sonic, density and neutron logs. 

In the first test, the idea was to evaluate the conventional equivalent effective stress 

method (E2.17) wi th an Athy type compaction trend (E2.19) versus the University o f 

Durham method developed by Harrold (1999) with its unique equivalent effective 

stress method (E2.19). The compaction trend used for equivalent depth method has an 

Athy type compaction trend (E3.5) while the University o f Durham method has a soil 

mechanical type compaction trend (E2.20). The parameters used in E2.20 were 2 for 

void ratio (=67 % porosity) at 100 KPa (=about 10 meters below sea floor) and 0.65 

as the compaction coefficient C. This was done to make the equation 2.20 track the 

equation 3.5 as closely as possible. 

Well 1/6-7 Pore Pressure, GR>50API 
Pressure (MPa) 
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Figure 3.9 Pore pressure in mega-Pascal versus depth in meters. The green solid line is the 
overburden and the blue solid line is the hydrostatic pressure. The equivalent depth method 
calculated pressure is in blue dots while the orange is the University of Durham method. The 
dashed black curve is the operator's interpretation while the olive solid line is the mud weight. 
The red crosses are the R F T direct pore pressure measurements. 

Figure 3.9 shows the comparison o f the two methods, the University o f Durham in 

orange crosses and the equivalent depth in blue dots. Both o f the calculations suggest 
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pressure lower than the hydrostatic pressure above 1000 meters. This is unreasonable 
and can be a result o f low porosity mudrock below the sea floor. It can also be a 
mudrock with unusually high matrix velocity. This w i l l be further discussed in the 
next chapter. Below the chalk (from 4380 meters) the pressure transition zone is better 
defined by the University o f Durham method than the equivalent depth method. 
However, below 4650 meters both methods fai l to properly identify the continuing 
increase in the pore pressure gradient down to the Jurassic sand at 4878 meters. 

The Durham University equation was developed using data f rom Southeast Asia wells 

and yields a higher pressure than lithostatic f rom 1700 to 1900 meters. It is likely that 

this equation is area dependent, and needs local calibration. In the Tertiary section, the 

equivalent method gave a reasonable result, but below the Chalk in the Jurassic 

section both methods failed. 

In the second test (Figure 3.10), the equivalent effective stress method (blue dots) was 

tested against the Eaton method (red dots) using the sonic log and the same Athy type 

compaction trend (E3.5). The input parameter to the Eaton method was the sonic 

velocity while the shale porosity is used in the equivalent effective stress method. In 

the shallow section, the Eaton method also suggests pressures lower than the 

hydrostatic, but only just below. The possible high-pressure gradient described f rom 

wellsite at 1850 meters based on abundant caving was only picked up by the 

equivalent effective stress method. Below the Chalk in the Jurassic, the Eaton method 

calculates initially higher and more realistic pressures. Then the sonic velocity 

increases from 4650 meters down to 4878 meters. The porosity calculated f rom the 

density neutron log does not vary as much as the sonic does in the Jurassic shales. 

This suggests that the shale velocity is more influenced by changing matrix velocity 

than the water content, hence the porosity. The Eaton method suggests a drop in 

pressure from 85 MPa at 4650 meters to below 60 MPa while the equivalent effective 

stress method drops from 72 MPa to 64 MPa. The pressure in the sand at 4878 meters 

is lOOMPa. So both methods are wrong, but the large negative variation is reduced by 

using porosity rather than the sonic velocity. 

This is illustrated in the third test (Figure 3.11) where the equivalent depth method 

(solid blue) using the sonic log is compared with the Eaton method (red dots). The 

equivalent depth method suggests more variability in the Tertiary section than the 
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Eaton method. In particular the interval from 1800 to 1900 m was characterised by 
abundant cavings, suggesting pore pressure above the mud weight (solid olive). The 
calculated shale pore pressure in the Jurassic is about the same. 

Based on these three tests it appears that the equivalent effective stress method, as 

described in Chapter 2.2.1.1, is the method, which gives the best results in the 

Tertiary section. The equivalent effective stress method is preferred since it is based 

on physical principles rather than empirical relationships. The input parameter should 

also be the calculated shale porosity rather than a single log measurement such as the 

sonic velocity. 

The fourth test (Figure 3.12) examines different compaction trends using the 

equivalent effective stress method with the porosity as input. The pore pressure using 

the DSDP/ODP normal compaction trend (E3.4) suggests considerably higher 

pressures than were calculated by the operator in the Tertiary section. The sediments 

just below the seafloor become sub-hydrostatic wi th this compaction trend, but only 

down to 500 meters, not to 1000 meters. The calculated pressure is not higher than the 

mud weight and therefore not unreasonable. In the Jurassic, it is the only model that 

predicts the pressure transition zone and calculates the magnitude o f pore pressure 

down to 4650 meters. Figure 3.12 shows that the sonic velocity (green solid line) 

increases f rom 140 |isec/ft to 90 |isec/ft at 5000 meters. Using the Hansen (1996) 

sonic to porosity transform, it suggests that the porosity decreases f rom 40 to 13 % 

(not on Figure 3.13). The porosity calculated by combining the neutron and density 

logs (Figure 3.13 and 3.14, red solid line to the right) suggests a decrease f rom 30 to 

20 %. 

This reduction in porosity results in a calculated pore pressure much lower than 

suggested by the drilling parameters. One may say that all these arguments are 

circular arguments. Unfortunately there are no direct pore pressure measurements 

possible in the shale. But one would expect that the shale pressure close to the sand at 

4878 meters would have a pore pressure close to the sand pressure. On the other hand, 

what kind o f evidence is there for the assumed correlation between the shale porosity 

and the pore pressure? It is possible that we are observing the maximum loading that 
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particular shale have experienced and that it now have been pressurized by lateral 
transfer via the underlying sandstone, (J. I l i f fe (2003), pers. comm.). 

On Figure 3.14, the sonic log suggests a sharp transition zone where the velocity 

decreases f rom 100 usec/ft at 4870 to 120 (isec/ft at 4878 meters. Even with the 

DSDP/ODP trend, the shale pressure using the equivalent method is suggested to be 

10 MPa lower than in the sand. That is a 10% error i f one assumes that the first few 

centimetres o f the shale have the same overpressure as the underlying sandstone. The 

porosity increasing towards the shale-sand intersection suggests that f lu id is forced 

from the sand into the shale. What we do not know is the actual shale pore pressure. 

Well 1/6-7 Pore Pressure, GR>50API 
Pressure (MPa) 
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Figure 3.10 Pore pressure in mega-Pascal versus depth in meters. The green solid line is the 
overburden and the blue solid line is the hydrostatic pressure. The Eaton equation with the sonic 
log as input (red dots) compared with the Equivalent depth method with the porosity as input 
(blue dots). The red crosses are the R F T direct pore pressure measurements. The values are 
listed in Appendix 2. 
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Well 1/6-7 Pore Pressure, GR>50API 
Pressure (MPa) 
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Figure 3.11 Pore pressure in mega-Pascal versus depth in meters. The green solid line is the 
overburden and the blue solid line is the hydrostatic pressure. The Eaton equation in red dots 
compared with the Equivalent depth method in solid blue, both with the sonic log as input. The 
red crosses are the R F T direct pore pressure measurements. The values are listed in Appendix 2. 

Well 1/6-7 Pore Pressure, GR>50API 
Pressure (MPa) 
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Figure 3.12 Pore pressure in mega-Pascal versus depth in meters. The green solid line is the 
overburden and the blue solid line is the hydrostatic pressure. The Equivalent depth method 
tested with two different normal trends. The Athy equation used by the operator of well Nor-1/6-
7 (blue dots) versus the D S D P - O D P based trend (red dots).The red crosses are the R F T direct 
pore pressure measurements. The values are listed in Appendix 2. 
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Figure 3.13 The shale porosity (red solid curve to the right) and the shale travel time (green solid 
line to the right) versus depth in the Jurassic section. The x axis is in % for porosity, (isec/ft for 
the sonic log. The curves to the left of the overburden (strait solid green line) is in MPa. Between 
the overburden and the hydrostatic pressure (left most solid blue) are from left the pore pressure 
calculated using the sonic log as input (blue curve) then with porosity as input (orange curve). 
The values are listed in Appendix 2. 
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Figure 3.14 Figure 3.13, the pressure transition zone from 4850- 4890 meters. The values are 
listed in Appendix 2. 
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Well 1«-7 Pore Pressure, GR>50API 
Pressure (MPa) 
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Figure 3.15 Pore pressure in mega-Pascal versus depth in meters. The green solid line is the 
overburden and the blue solid line is the hydrostatic pressure. The Eaton equation with the 
resistivity log as input (green dots) compared with the Eaton sonic (red dots). The red crosses are 
the R F T direct pore pressure measurements. The values are listed in Appendix 2. 

In the last test, the two Eaton methods were tested; based on sonic as input versus 

resistivity as input. In the resistivity model, the resistivity data were temperature 

corrected as suggested in Chapter 3.3.1. The normal trend was developed using 

equation 3.10. It is important to recall the PCA test in Chapter 2.2.4, which suggests 

that the resistivity in this well is a pore porosity indicator. 

In the Tertiary section, the resistivity-derived pressure is influenced by the low salt 

content in the brine. The compaction trend is based on a constant salt content 

appearing f rom about 1500 meters. From 1500 meters the two Eaton methods have 

comparable results down to 2500 meters. Down to the top Chalk, the resistivity-

derived pressure is considerably higher than the sonic-derived pore pressure 

estimation, but below the mud weight used. In the Jurassic section the resistivity 

model is the only wireline method that suggests a continuous increase in pressure with 

depth down to the Jurassic sand at 4878 meters. This could be explained by salt water 

being forced into the low porosity mudrock f rom the underlying overpressured 
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sandstone, which would increase the resistivity and lead to higher overpressure in the 

pore pressure estimation. But there are other concerns with using the resistivity. 

Firstly, it is very difficult to compare the normal compaction trend versus other 

porosity trends. There is no one simple way of calculating the porosity from the 

resistivity log. A bigger concern is when hydrocarbons are present. Hydrocarbons will 

increase the resistivity and therefore decrease the calculated pore pressure. 

3.5 Comparing the North Sea with the Gulf of Mexico 
Basin 

The objective of this study using the Gulf of Mexico was to compare a standard 

wireline pressure model with a 3-D basin model. The wireline pressure model is not a 

1-D model, but rather a model where the effective stress in the shale is assumed to be 

a function of the shale porosity (calculated from the sonic velocity or the resistivity) 

and the overburden stress. This is calculated for each point in the section independent 

of any other calculated pore pressure. The study area is a classic Gulf of Mexico 

(GoM) mini-basin (Figure 3.16). In a study such as this, it was important to preserve 

confidentiality. As earlier practice within the GeoPOP group, the well name was 

invented, and the name "Vimto" was used as the code-name for this Gulf of Mexico 

oilfield. The two Vimto wells were provided to the GeoPOP research group along 

with the seismic data to do a case study. 

The basin has received rapid, deep-water sedimentation since the beginning of the 

Miocene. Mobile salt covered the area in early Miocene times. Subsequent salt 

movement resulted in diapiric rise and salt withdrawal. The basin is close to the outer 

shelf/upper slope break, with water depth in the range of 400 meters. The sediments 

consist of turbidite sands interbedded with mudrock. Due to extreme rates of 

deposition and low temperature gradient (20°C/km), it is likely that disequilibrium 

compaction is the primary overpressure generating mechanism (Yardley and Couples, 

2000). 

For the 1-D model it was decided to use the PresGraf model (Chapter 2.2.2.2) with the 

default normal compaction trend. That particular model has proved to give good 
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results in most of the Gulf of Mexico, (M. Traugott ,2000, pers comm). As the 

GeoPOP project was near its end it was important to complete this analysis rather 

quickly. 

G. Yardley at the Heriot-Watt University did the basin modelling using the PetroMod 

3-D versions 6.0/6.1 software. The basin modelling software is based on a grid 

system. The grid nodes can only move vertically. This makes it difficult to model salt 

movements. In effect salt was treated as a facies within each layer and assumed 

deposited along with muds and sands. The permeability in the sand was set to a 

constant of 100 mDarcy, which in effect is instantaneous free flow over basin scale. 

The mudstone permeability is shown on Figure 3.17. The normal compaction used 

was derived from ShaleQuant (Chapter 2.2.3) and is shown on Figure 3.18. 

i m 

Figure 3.16 Depiction of salt features in the area around the basin. The local depocenteres are 
termed mini-basins (Yardley and Couples, 2000). 
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3.6 Vimto#l and #2 

The two wells were drilled from the same location and deviated from about 8000 ft. 

The available data consisted of wireline and MWD (or LWD) data. The operator 

experienced logging problems resulting in sections where wireline logging was 

impossible. MWD logs were then spliced in. There appears also to have been 

problems with the calibration of the GR tool between the different hole sections. 

Since the wells are so close, most of the pore pressure calculations were preformed on 

the Vimto #2 well. The pore pressure was calculated using three methods. Two 

methods where the sonic log were used as the input for the Eaton method and the 

Equivalent Depth Method of determining pore pressure. The third method was the 

Eaton method using the resistivity log as input. A l l of the calculations used an 

overburden curve based on integrating the density log from the wells. The normal 

compaction trend used is a curve that is proprietary to BP-Amoco and available while 

using their software PresGraf. The Eaton method based on the resistivity log was also 

tested with a log linear normal compaction curve. 
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Figure 3.17 Comparison of the NRG derived shale porosity versus permeability curves, with 
some basin modelling default curves. A range of clay-fractions are shown, from 20% to 80% 
(Yang and Aplin, 2000). 

The pore pressure from the different methods is displayed as pore pressure gradient 

(ppg) versus depth (ft) and as pore pressure (psi) versus depth (ft). (Figure 3.19 and 

Figure 3.20). 
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Figure 3.18 Comparison of the GeoPOP derived shale compaction curves with some basin 
modelling default curves. A range of clay fractions are shown, from 20% to 80% (Yang and 
Aplin, 1999). 
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Figure 3.19 Pore pressure prediction for Vimto #2. The blue curve is the pore pressure 
calculated using the Eaton method and the shale sonic velocity as input. The red line is pore 
pressure using the equivalent depth method. The pink diamonds are the MDT pressure points. 
The red line to the left is the overburden. The values are listed in Appendix 3. 
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Figure 3.20 The reservoir section for well Vimto#2. The MDT pressures are generally 50 to 100 
psi higher than the calculated shale pressures. 
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Figure 3.21 The red curve is the pore pressure calculated from a 2-D model alowing for lateral 
transfere (Yardley and Couples, 2000). 

The pore pressure evaluation using the sonic data in these two wells appears to be not 

very sensitive to the method applied with regard to the equivalent depth method or the 

Eaton method (Figure 3.19). This suggests that the pore pressure generated in these 

two wells is predominantly generated by disequilibrium compaction. Figure 3.20 

shows that the MDT pressures are 50 to 100 psi higher than the calculated pore 

pressure in the shales. The difference between the model results and the MDT data is 

\ 
• 
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1% and must be considered a very good result. The results from the 2-D basin 
modelling yields equally good results (Figure 3.21). 

Basin modelling packages determine pore pressure with depth by calculating the fluid 

loss through a sequence of sedimentary layers during burial. Fluid loss is assumed to 

follow the Darcy flow theory. One of the problems is that the porosity-permeability 

relationships are based on empirical observations from high porosity samples, (Mark. 

Osborne (2001) pers comm). In principal, calculation of pore pressure in three 

dimensions has the potential to accurately model pore pressure as the model accounts 

for lateral flow within the system. This is not the case in a one-dimensional model 

using wireline logs from one well. The shortcoming is the resolution and the lack of 

geological control between the wells data points needed for such a calculation. Any 

extensive low permeability layer will radically change the fluid flow regime. The 

model would possibly gain from using pore pressure calculated from wireline logs as 

input to the basin model. 

3.7 Summary and conclusions 

The single most important factor with respect to calculating pore pressure is the 

selection of the appropriate normal compaction curve. The mudrock porosity is 

important and it is suggested to combine as many porosity logs as possible. An 

analogy can be made with seismic processing where noise is suppressed by stacking 

as many traces as possible. 

Concerning the equation to calculate the pore pressure, there is no reason not to use 

the equivalent effective stress method as long as it is assumed that most of the 

overpressure is generated by disequilibrium compaction. Some have argued that it is 

important to use mean effective stress and not vertical effective stress to calculate the 

overburden. 

An other concern is using the equivalent mean effective stress method in place of the 

traditional equivalent depth method. The argument is that the variation of density with 

depth wil l result in an inaccurate pressure unless the calculation is referred to mean 

effective stress (Chapter 2.2.1.1.). 
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The resistivity log shows promising results in the North Sea Jurassic section, but there 
is no good scientific explanation for its ability to yield a good pore pressure 
prediction. The PCA analysis in Chapter 2.2.4 suggests no correlation between 
porosity and resistivity in that particular well. The correlation between the pore 
pressure and resistivity could be coincidental and could be a function of hydrocarbons 
in the shale. 

In the Jurassic shales in the North Sea, the challenge is to first calculate the porosity, 

then relate the calculated porosity to pore pressure. This study has clearly shown that 

large differences exist between sonic and neutron-density derived porosities. The low 

porosity suggests low pore pressure while the drilling parameters as well as the pore 

pressure in the porous reservoir suggests high pore pressure. 

It is also suggested by some authors that the excess pore pressure in the Central North 

Sea has several sources (other than disequilibrium compaction) that these prediction 

methods do not take into account (Bjorlykke, 1996, Holm, 1996, Gaarstroom et al., 

1993). These other causes would include chemical compaction such as illitization, 

hydrocarbon generation and lateral transfer. 

In the last exercise, the Vimto case study in the Gulf of Mexico, three different 

methods were used to calculate the pressure: Eaton, PresGraf and the equivalent depth 

combining shale velocity with the PresGraf normal trend (Figure 3.6). A list of the 

calculated pressures can be found in Appendix 1. At shallow depths, the difference is 

much larger than in deeper stratigraphic intervals. The reason is the low gradient of 

the compaction curve at shallow depth shown seen in Figure 2.5. At 1000 meters the 

pressure difference is 13%. That difference decreases with depth and is less than 5% 

at 2000 meters. At 4000 meters the difference is less than 1%. At that depth the 

PresGraf normal trend crosses the DSDP/ODP trend (Figure 3.6). Calculation of the 

pore pressure at that depth using the Equivalent Depth Method, and only changing the 

compaction trend from the PresGraf trend to the trend used by the operator of well 

Nor 1/6-7 (Equation 3.5), drops the calculated pressure by 28%. The actual shale 

pressure that fits the MDT data in the Vimto area is in the range of 9900psi (68MPa) 

at 4000 meters. Shifting the compaction trend to the initial trend used in North Sea 

drops the calculated pressure to 7600psi (52MPa). 
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In conclusion, I suggest that when calculating pore pressure it is important to 

eliminate all errors. This means that to calculate the pressure in shales generated by 

compaction the best method is the equivalent mean effective stress method. As input 

parameter it is recommended not to use a single wireline log but the best calculated 

porosity. Having said this, the difference at 4000 meters wil l be in the range of 0-2 

MPa. By changing the compaction trend the shift can be up to 15MPa. This is clearly 

significant. I want to end with Eaton's (1975) statement again; "the methods used to 

establish normal trends vary as much as the number of people who do it". His 27 

years-old statement is still valid today. 
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4.1 Introduction 

A comparison of normal compaction porosity profiles from the North Sea versus the 

Gulf of Mexico reveals a marked difference in the upper 500 meters of sediments. 

The most striking difference is the porosity of the mudrocks, which may be related to 

the glacial history affecting Northern Europe and which would not have affected the 

Gulf of Mexico, south of the Pleistocene glaciation. 

The Recent offshore glacial history of the Central North Sea has received little 

investigation in comparison with the older rocks whose sedimentary and tectonic 

evolution related to the Eocene and older oil and gas fields (Riis and Fjeldskaar, 

1992). Consequently the thickness, character and internal architecture of the glacial 

sedimentary packages in the North Sea have not been well explored. Further, the 

impact on burial and fluid flow processes episodic of glacial loading and removal of 

load have not been fully assessed. 

NW Europe is currently responding to the lithospheric rebound from the removal of 

the Weichselian / Devensian ice sheet, but Berger and Loutre (1999) suggest there 

have been nine or ten major cycles of ice sheet build up (glacial period) followed by 

melting (interglacial period) during the last one million years (Figure 4.1). The extent 

of successive ice sheets is known from onshore data to vary. The sedimentary record 

of each is found mainly in glacial deposits, dominantly tills. Unravelling the history of 

each cycle onshore is made difficult by repeated cannibalisation of the earlier 

sedimentary record during successive ice movement and associated scouring. The 

offshore record is not well documented, in part because of a lack of data in the 

interval between shallow boreholes (typically 200m) drilled for site investigation and 

near-surface sedimentary research, and deep boreholes (> 1000m to 5000m) drilled for 

oil and gas. Bad borehole conditions also reduce the quality of shallow wireline logs. 
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Figure 4.1 A curve showing the variation in oxygen isotope composition of the sea-water for the 
last 6 million years. The oxygen isotope data are based on foraminifera from three boreholes 
near the coast of Ecuador (Shackleton et al., 1990; Shackleton et al., 1995. 
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4.2 Glacial history 

As the last ice age, the Weichselian / Devensian (Wisconsin in the North America), 

has removed most of the traces of its precursor, only assumptions can be made about 

the older ones. The geological record of older glaciations is often sporadic. It begins 

with poor and fragmentary evidence from Archean rocks followed by a long 

Mesoproterozoic non-glacial period (2.0 - 1.0 Ga). The Late Proterozoic (1.0 Ga to 

just before the Cambrian) glaciogenic deposits are known from all the continents. 

They provide evidence of one of the most widespread and long-ranging glaciations on 

Earth. Most regions display evidence of several glaciations separated by warmer 

periods. In Phanerozoic times glaciations are reported from Ordovician in Africa, 

possibly Brazil and Arabia. Silurian and Devonian glaciations are limited to South 

America. The most significant Phanerozoic glaciation took place in the Permo-

Carboniferous, between 350 and 250 Ma, across a large area of the Gondwanian 

supercontinent (protocontinent). There is no direct geologic record of Mesozoic 

glaciations but small ice sheets can have developed at high latitudes. Late Tertiary 

glaciations are recorded from Antarctica about at 36 Ma. 

Ice began to accumulate on Antarctica 20 million years ago. Glaciations in the 

Northern Hemisphere were initiated at about 6 Ma (Eyles and Young, 1994). Oxygen 

isotope data from ODP leg 104 Site 642B and 644A suggest intensification of the 

glaciation periods from 2.75 Ma and a new intensification from 1 Ma (Jansen and 

Sjoeholm, 1991). This data suggest an important change in the climate from a stable 

to a cyclic changing climate, causing of periods of glaciation and interglaciation. 

During the last 1 million years it appears that the Earth has been changing from one 

equilibrium to the other, being cold (glaciated) or warm (such as today). At first the 

cycle was 41,000 years in length, but from 900,000 years ago the glaciations have 

been more intense with thicker ice sheets, but less frequent, down to 100 000 year 

cycles. These cycles correlate with the astronomical theory, which is most associated 

with Milutin Milankovitch (1879-1958) (Williams et al., 1998). In sum, one 

superimposes several variables concerning the Earth orbit around the sun. The three 

most important are the obliquity of the Earth's axis to the plane of the ecliptic cycles, 

the eccentricity of the orbit and the precession. But the Milankovitch (1941) theory 

does not explain the dramatic change from a stable to a cyclical climate. The 
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intensification of glaciations also correlates with an increase in the number and 

thickness of volcanic ash layers (Prueher and Rea, 1998). It is obvious that one cannot 

assign one prime cause to drive the changes as long as the cyclic situation to day has 

only taken place over the last 1 million years. Plate tectonic movements are believed 

to drive the most dramatic climatic changes over geologic time. 

The extent of the last big ice sheet, the Weichselian / Devensian (in Europe), has been 

assessed by studying enclosed depressions on land and linear incisions on the 

continental shelf (Ehlers and Wingfield, 1991). The enclosed depressions are about 6 

km wide, 30 km long and 400 meter deep, often occupied by lakes orthogonal to the 

ice margins. They do not go beyond the ice and coincide with the distribution of tills. 

The offshore depressions divert from the onshore in that they appear not to coincide 

with tills. These observations have been used as an argument to suggest that offshore 

incisions are not formed by glacial activity. The lack of identification of tills could be 

due to limited core samples, lack of wireline log interpretation or attributed to erosion 

during the post-glacial transgression. But the ongoing debate during the last decade 

following the increased knowledge from the North Sea has led to a continuous 

reduction of the extent of the last ice age. Despite this it is suggested that an extensive 

glaciation began after 29,400 years and lasted until 22,000 years (Sejrup et al., 1994). 

The ice sheet extent of northern Eurasia covered most of Ireland, most of England, 

Scotland, Shetland, most of the North Sea, most of Scandinavia, the Barents Sea, 

Spitsbergen, Balticum and East Russia (Hughes, 1998; Svensen et al, 1999) (Figure 

4.2). The maximum Wisconsin ice sheet thickness in the North-America was more 

than 4000 meters and the maximum Weichselian / Devensian ice sheet thickness over 

Fennoscandia exceeded 2000 meters. The average thickness of the Weichselian / 

Devensian ice sheet was about 1600 meters (Pollard and Thompsom, 1997). 1,600 

metre has been suggested as the maximum thickness of a Weichselian / Devensian ice 

sheet over the North Sea with its crest from Southwest Norway to Scotland (Figure 

4.2). 

During the Weichselian / Devensian glaciation, Holland remained ice-free. But 

Holland had been covered by ice sheets during previous glaciations. It is also well 

known that the Weichselian / Devensian glaciation was far from being the most 

extensive glaciation in the Alps (Hughes, 1998). Earlier Quaternary glaciations were 
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evidently more extensive as their terminal moraines in the Alps lay further down 

valley (Williams et al., 1998). It is therefore quite plausible that one or more 

glaciation cycles during the 

Figure 4.2 Reconstruction of the Scandinavian and British Ice Sheet during a glacial stadial 
(after Hughes, 1998). The maximum ice thickness onshore was 2600 m and the maximum 
thickness in the offshore North Sea was approximately 1600 m 

Quaternary has been substantially more extensive than the Weichselian / Devensian 

and that the North Sea was effected by one or several of them. 

The recent completion of the Vostok ice core in East Antarctica has provided detailed 

information about atmospheric conditions during the past 420,000 years (Petit et al., 

1999). The data suggests four glacial cycles during the following intervals; 13,000-

30,000 years, 127,000-180,000, 245,000-274,000 and 337,000-363,000. The average 
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duration is 30,000 years for these glaciations, and a total of 125,000 years over the 
last 420,000 years. 

4.2.1 The Neogene - Pleistogene sedimentary succession 

In the Viking Graben the basin subsided rapidly in Late Oligocene-Early Miocene 

times (Dahl and Augustson, 1993). The Mid-Miocene unconformity is a result of 

period of uplift and erosion, which followed at this time. This tectonic event is 

concomitant with the Alpine Orogeny. During the Pliocene and Pleistocene period, a 

massive delta system prograded westward associated with Baltic rivers from the 

Fennoscandian Shield and on the south margin deltas associated with northern 

German river systems (Cameron et al., 1993). The sediments consist mostly of low 

permeable mudstone interbedded with sands. These fluvio-deltaic deposits reach up to 

1,400 metres in the Central Graben and filled most of the southern North Sea Basin. 

The system was later peneplaned and following minor erosion, the Late Quaternary 

sediments rest upon the unconformity (Dahl and Augustson, 1993). 

There is a clear separation of depositional style between the Early and Middle 

Pleistocene deposition. The older underlying deltaic sediments were deposited under 

relatively stable climatic and sea level conditions (Scourse et al., 1998). In contrast 

the younger overlying non-deltaic division, though volumetrically less significant, 

were deposited during the high amplitude climatic and sea level oscillations 

characteristic of Quaternary glacial deposits in the North Sea. The thickness of the 

Quaternary succession is often difficult to access due to limited well data. In the 

shallow cores used in this study the Quaternary succession is generally 50 to 60 

meters. Based on seismic interpretation associated with the well data, the Quaternary 

section is assumed to be as much as 600 m in the U.K. sector of the North Sea 

(Stacker et al., 1985). 

Late Pleistocene ice-scoured surfaces were first identified in the Central North Sea 

from regional seismic profiles (Stoker and Long, 1984). Numerous 3-D seismic 

surveys in the North Sea have made it possible to explain unresolved features on the 

earlier 2-D seismic within the Quaternary succession. Azimuth maps from the 3D-

seismic data cube have revealed lineated surfaces interpreted to be subglacial features 

in the Norwegian Channel (Lygren et al., 1997). On Haltenbanken buried ice-scours 
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are similarly interpreted from time-slices within the Upper Pliocene sequences (Long 

and Praeg, 1997). 

4 . 3 Tills 

Depositional processes refer to the mechanisms that lay down the final deposit. 

Glacial, fluvial, gravitational and aeolian processes are involved. Of these, only 

glacial deposition is unique to the glacial environment. Primary deposits, laid down 

uniquely by glacial agents are TILLS. Tills have been transported and deposited by or 

from glacier ice, with little or no sorting by water (Dreimanis, 1989). In the glacial 

environment active depositional centres shift position on a daily, seasonal and random 

basis. The glacier will advance and retreat so the sedimentary deposits are subject to 

deformation, reworking and resedimentation (Dreimanis, 1989). Sub-water tills are 

therefore unlikely to be primary deposits. There are different types of tills and the two 

most important in this case are melt-out tills, which refers to direct sediment 

deposition through melting of stagnant or very slowly moving debris-rich ice and 

lodgement tills which are generated byplastering of glacial debris from the base of a 

sliding glacier on to the underlying rocks. The destruction of pre-existing structures 

under very high cumulative strains makes tills difficult to identify. 

Sediments deposited in glacial environments (tills) commonly have much lower 

density and porosity than sediments deposited in pure marine environment 

(Dreimanis, 1989). Sediment grain size is highly variable. For example, large 

boulders have been encountered several hundred metres below seabed inbedded in 

mudstone in the offshore mid-Norway. 

Hence i f we were to search for offshore tills we would either use shallow cores or 

wireline logs. And we would be searching for unusually low porosity (high density) 

sediments in the shallow section in areas where no or limited uplift and erosion has 

taken place. 
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4 . 4 Mudrock porosities 

The British Geological Survey has collected core samples from 576 sites in the 

offshore area of the British Islands, mostly for palynological studies. At several sites 

in the North Sea the density and water content of the sediments were measured. The 

wells reached a total depth below seabed ranging from only a few meters to 1228.5 

m). These porosity data were compared with the DSDP/ODP data (Figure 3.4 and 

Figure 4.3). A l l the DSDP/ODP sites are located in deep water where there has not 

been any ice loading. The general trend of the porosities in the shallow succession 

from borehole data can therefore be used to compare with the DSDP/ODP data. 

Anomalously low porosities would traditionally be interpreted as possible unloading 

in shallow basins such as the North Sea 

In addition to the Central North Sea wells, porosities from shallow cores were also 

available from the Statfjord Field, Troll Field (Andersen et al., 1995) and 

Haltenbanken. The shallow core from the Troll field was 40 meter deep in 358 meters 

of water (Andersen et al., 1995). The lower part of the core consists of sediments from 

the Norwegian Trench Formation and the measurements of water content and density 

suggests they are over-consolidated. The overlying Kleppe Senior Formation is 

normally consolidated and has been deposited during the last 15,000 years after the 

last ice sheet melted (Andersen et al., 1995). 

The database used for this study was compiled using direct porosity measurements 

from 100 DSDP/ODP sites, 9 BGS sites and wireline data from 13 exploration wells 

(Figure 4.2 and Table 4.1). The DSDP/ODP porosities are a collection of about 

40,000 porosity data points from 100 different sites around the world (ODP internet 

WEB site, 2002). 

Figure 4.3 show the porosities plotted vs. depth with reference to the seabed rather 

than sea surface. While the DSDP/ODP densities of the first few meters of sediments 

below the seafloor range from 50 to 80 %, the North Sea data range from 30 to 50 %. 

This low porosity trend continues through the upper 500 - 600 meters of sediments in 

the North Sea. Below that depth the porosity trend steps up by 20 % and joins the 

expected normal trend based on DSDP/ODP data. Such low porosities in the shallow 

sediments have also been reported from the Troll field (Andersen et al., 1995). The 
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thickness of the Quaternary succession in the central axis of the North Sea has been 
previously estimated to be up to 600 m (Stoker et al., 1985; Gatliff et al., 1994). 
Seismic data suggest Pleistocene deposition and erosion with several generations of 
incisions (Ehlers and Wingfield, 1991). These low porosity sediments are therefore 
assumed young sediments (Pliocene and Quaternary). It is generally assumed that 
there was no tectonic movement in the North Sea during Pliocene and Quaternary (i.e. 
no uplift and erosion is evident) and the only alternative explanation is related to 
glacial loading and unloading. 

The low porosity data suggest that the sequences are not a result of sediment supply 

distally from the glacial activity. I f so the porosities would have been closer to the 

DSDP/ODP normal trend, hence higher. The base of the glacial sediments and 

interglacial sediments is taken as the depth where muddy sediments return abruptly to 

the "normal compaction curve" defined from North Sea as well as by the ODP/DSDP 

mudrock data. The North Sea tills are sub-water tills that have undergone reworking 

by non-glacial processes such as sea bottom currents. The core samples may therefore 

be very different from the primary tills seen in onshore exposures. 

Table 4-1 BGS sits and exploration wells. 

BGS sits Exploration wells 

BH7702 BH8119 1/3-5 2/7-15 6507/2-1 6507/10-1 

BH7703 BH8134 1/5-2 2/11-7 6507/3-1 

BH8117 BH8137 1/6-7 6506/11-2 6507/7-1 

BH8118 2/4-9x 6506/12-4 6507/8-5 
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Figure 4.3 Porosity versus depth. A compilation of core measurements and wireline calculated 
porosities. 

4 . 5 Oxygen isotope data 

Oxygen isotope data provide evidence for the volume of water locked up in 

continental ice sheets (Shackleton and Opdyke, 1973). Oxygen occurs in two 

common, stable isotopes, 1 6 0 and 1 8 0 , of which l 6 0 is the most abundant. The ratio of 

these two isotopes in water is temperature-dependent and follows predictable 

geographic trends in the oceans, atmosphere, and glaciers. When seawater evaporates, 

the heavier isotope O is left behind in remaining seawater, while the resulting water 

vapour is depleted in l g O. The oxygen-isotope composition of a water sample is 
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expressed in delta (5) units per mil (l%o = 0.1%) of relative concentrations with 

respect to the ratio of standard mean ocean water (SMOW). 

1 8 0 / l 6 0 sample - SMOW 

5 = X 1000 [E4.1] 

SMOW 

By definition, 8 is zero for standard mean ocean water. A value of 5 = -10 thus means 

the sample has an 1 8 0 / 1 6 0 ratio 10%o (or 1%) less than SMOW. 

Each oxygen isotope cycle is characterized by an upward trend from low to high delta 

units (8), reflecting an increase in the global ice volume (Figure 4.1) (Shackleton and 

Opdyke, 1973; Dawson, 1992). Under present conditions, the volume of land ice is 

relatively small, and this ice has 8 values around -30. During glacial periods, however, 

isotopically lighter water is removed from oceans and stored in glaciers on land. This 

causes slight enrichment of 1 8 0 in sea water to about 8 = +1.5, while glacier ice has 

even lower 8 values of around -40. The oxygen-isotope values during past glaciations 

are preserved in glacier ice and in fossils buried on the sea floor. These isotopic 

records are primarily a measure of changing volume of glacier ice, but the oxygen-

isotope ratios are also affected by temperature, for example, the water temperature. 

The long-term record of oxygen isotopes in the Greenland Ice Sheet extends back 

more than 250,000 years and the Vostok ice core from Antarctica extends back 

420,000 years. These data correlate with fossil data from the DSDP and ODP wells, 

which has enabled establishment of the oxygen-isotope ratio curve to get much older 

than the base of the oldest ice core. The curve in Figure 4.1 has therefore been 

estimated based on study of foraminifera from three boreholes from the coast of 

Ecuador (Shackleton et al., 1990; Shackleton et al., 1995; Shackleton and Pisias, 

1985). 

Dependant on what 8 value one chooses to be the minimum for a glacial episode, the 

oxygen isotope data show there have been at least 6 major glacial times with 8 above 

4.7. On Figure 4.1, glacial episodes are suggested beginning at 8 = 4.5 with possibly 
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more than 9 glacial and interglacial cycles. Continental ice build up reduced the 

world's water volume by 5.5% resulting in a sea level drop of 100 to 150 meters with 

reference to present sea level (Figure 4.6). Evidence from coral reefs indicates that the 

global sea levels have risen, on average, by a 120 m since the last glacial maximum 

(Fairbanks, 1989). The fall in sea level was sufficient to remove the sea cover from 

the North Sea. As the ice sheet build-up continued, the dried-up sea bottom of the 

previous North Sea became covered under up to 1500 meters of ice. 

It is important to take into account the uncertainties in these studies. The amount of 

water or ice required for analysis is small (5-10 g), and stable isotopes can be 

measured quite accurately using mass spectrographic techniques. Dating the ice core 

is not straightforward. The atmospheric air circulates through the ice long after 

snowfall accumulates at the surface. This circulation ceases once the pore spaces are 

no longer connected with each other. The age difference between enclosed air and 

surrounding ice varies between 2500 years for interglacials and 4300 years for the 

coldest intervals (Wilson et al., 2000). 

4.6 Time series frequency analysis (CycloLog) 

Five exploration wells in the North Sea with gamma-ray logs from near the seafloor to 

1000 meters were used to create a correlation of glacial events and to compare them 

with oxygen isotope data. The five wells were drilled in the southern part of the 

Norwegian sector of the Central North Sea. The distance from Norwegian well Nor-

1/3-2 to Nor-2/11-7 is about 100 km (Figure 4.2). Wireline logs like the gamma-ray 

from the shallow section do not show enough distinctive signature to permit 

correlation between the wells. This is because these shallow sediments in the North 

Sea are generally soft and tend to wash out as they are being drilled. Hence the ability 

to recognize glacial cycles has been impossible previously based solely on gamma ray 

signature. Most cyclic phenomena such as the oxygen isotope data vary in the time 

domain, and are analysed using time series analysis. Wireline log data are always 

measured in the depth domain. But the depth axis of any log is a function of 

geological time in sequences, where they are not faulted or overturned. Consequently 

most logs are a natural expression of a time series of geological variations. But there 
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are important differences between logs and time series. Variations in sedimentation 

rates, different compaction trends and 
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Figure 4.4 To the left is the oxygen isotope data shown in Figure 4.1. To the right is the GR log 
followed by the Altered G R log from well Nor-1/3-2. The third curve is picks representing sudden 
changes in the cyclicity of the filtered GR curve. The third curve show peaks, positive or negative 
representing sudden transitions from high to low G R value, shown as a negative peak (to the 
left). The opposite results in a positive peak. The last curve is the integration of previous curve. 
These curve were output from C Y C L O L O G * . This curve represents the cumulative difference 
between the predicted log values and the actual log values. Breaks in the cyclicity succession may 
be related to missing sections or abrupt changes in sedimentation rates. A large positive peak 
could be a condensed section. 

discontinuities caused by erosional breaks and periods of non-deposition result in a 

non-linear and discontinuous representation of time. Ager (1973) even considers the 

gaps to be more important than the sedimentary record. The lithological successions 

are possibly a sum of catastrophic events in between long periods of non-deposition. 
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Since the glacial events are cyclic events, the idea has been to analyse gamma-ray 
logs in such a way that any cyclic pattern becomes easily recognizable. The 
fundamental model for cyclicity is that of the sine wave which sketches out the 
operation of a circular process as it develops through time. I f it had been a seismic 
signal an autocorrelation would have given the predominant frequencies in the signal. 
The problem we are faced with is that two cycles in a wireline log that should had the 
same frequency in the time domain because it happed during the same time interval 
have different frequencies because the thickness of the sedimentary succession they 
cause are different. So an autocorrelation would cancel real signals out as i f it were all 
noise. The first step in frequency analysis of wireline logs is to remove some noise in 
a somewhat blind manner compared to what would have been done to a seismic wave. 
In this case the gamma-ray has generally a ragged and complex character in the high-
frequency range. This is because of the somewhat stochastic nature of the gamma-ray 
measurement. A simple low-pass filter such as a moving average will remove the high 
frequency spikes. This is illustrated in Figure 4.4. The moving average equation wil l 
also make the sharp transitions from sand to shale become a rather smooth transition. 
A median filter calculates the median value of all points within a predefined window 
and plots the results as a single point at the mid-point of the window. The final result 
is a smoothed and blocked curve. The filtered curve must now be analysed for the 
predominate frequencies by analysing small segments at a time. The predominant 
frequency in that window is then moved up the section and as the cyclicity model 
breaks down, the break is noted and the section above is analysed. A new set of 
wavelengths is selected and moved up section til l it breaks down again. 

This type of processing can be done using software programs such as CycloLog. The 

input data in CycloLog can be the raw gamma-ray wireline log. A median filter with a 

l m window filtered the raw gamma-ray log. A best-fit cyclicity model was 

constructed for a small widow and the program quantifies the deviation of the filtered 

gamma-ray log from the best-fit cyclicity model. A sudden transition from high to low 

gamma-ray value is shown as a negative peak and the opposite results in a positive 

peak. This is shown on Figure 4.4 as curve number three from the left. This happens 

each time the cyclicity model break down and a new set of wavelengths are found. A 

large positive peak could be a condensed section. The last step was the integration of 
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all these spicks. This curve represents the cumulative difference between the predicted 

log values and the actual log values and are shown on Figure 4.4 (the curve to the 

right). Breaks in the cyclicity succession may be related to missing sections caused by 

erosion or abrupt changes in sedimentation rate. An increasing trend suggests a 

deepening of the basin, hence progradation and a decreasing curve, retrogradation. 

Figure 4.5 show the gamma-ray curve and the last curve in Figure 4.4 of five North 

Sea wells. The cross-section show a change from progradation to retrogradation 

sequences starting at about 500 to 600 metres below seabed. The sedimentary 

thickness from one glacial - interglacial cycle varies from 150 metres to only 10 

metres. They are generally thicker up section as a result of compaction from the 

overburden sediments as well as successive ice sheet movements. There do not appear 

to be any glacial cycles missing in the five wells investigated. Offshore preservation 

of the signature of all ten cycles is in contrast to onshore record of glacial periodicity 

where the record is mostly incomplete due to scouring. 
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Figure 4.5 Correlation of Ave wells drilled in the southern part of the Norwegian sector using 
CycloLog software. The distance from Nor-1/3-2 to Nor-2/11-7 is about 100 km (60 mils). The 
cycles are compared on the left with oxygen isotope signature (See text). 
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The correlation between the time data (oxygen isotopes data) and the depth data 
(gamma-ray log) was carried out assuming that the change seen in the integrated 
curve at about 500 to 600 meters correlates with 0.96 My on the oxygen isotope curve 
(Figure 4.4). 0.96 My is the onset of the first interglacial before the first of the last 10 
cold glacial periods. The 10 complete cycles (interglacial followed by interglacial) 
were identified on the integrated wireline logs from all five wells. Each cycle begins 
with a sharp increase in the integrated curve suggesting a rapid progradation. This is 
in correspondence with the sharp drop in d value on the oxygen isotope curve 
suggesting a rapid melt of the glacial ice resulting a rapid sea level rise. On most of 
the gamma-ray logs an increase can be seen suggesting an increase in the clay 
content. This is interpreted as the result of a slow increase in the ice volume and 
corresponding drop in sea level. The integrated curve shows a decreasing trend 
suggesting regression. As the water depth dropped the sedimentary deposits became 
sandier, which is reflected in the gamma-ray log as a lower gamma-ray response. 

In general the frequency analysis has enhanced the gamma-ray log to enable this 

interpretation. We note that in some wells the section identified as glacial deposits has 

experienced borehole wash outs resulting in an incorrect low gamma-ray log 

response. 

4 . 7 Ice loading and pore pressure 

The additional overburden pressure from an ice sheet has an impact on the underlying 

sediments as well as the lithosphere. The current isostatic rebound from the last 

glaciation is well known (Milne, 1999), but the effect on the underlying sediments is 

less well known. 

The overburden pressure and the hydrostatic pressure will change during glacial 

cycles. During an interglacial period, such as today, the overburden pressure and the 

hydrostatic pressure in the North Sea are regulated by the sea level. However, during 

a typical glaciation phase, water is removed from the global ocean and the sea level 

drops. Since the water depth in most of the North Sea is less than 100 meters and the 

sea level drop was in excess of 200 meters during a significant portion of the glacial 

cycle most of the North Sea would have been exposed as dry land (Figure 4.6). It has 
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been shown earlier in this chapter that it is likely that the Scandinavian and the British 
ice sheets covered a large part of the North Sea. At the time when the ice sheet 
progressed to cover the North Sea it is likely to have progressed over dry land. As the 
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Figure 4.6 The four maps above present the palaeo-coastline for each subsequent crustal motion 
model. It is important to note that large parts of the North Sea were dry land after the last 
deglaciation, in each case for a period of several 1000 years. 
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ice sheet thickens, the overburden pressure increases. During the initial stage of 

deglaciation it is not clear i f the North Sea again became dry land prior to flooding. I f 

the ice over the North Sea reached a thickness of 1500 m, the overburden pressure and 

hydrostatic pressure would have shifted regularly from -0.8MPa to +13MPa (-117psi 

to +1900psi) relative to the present pressure field. The pressure due to 80 m of 

seawater is 0.8 MPa and 13 MPa is the pressure due to the additional weight of 1500 

m of ice. 
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Figure 4.7 The figure to the left show a typical pore pressure profile in the North Sea with no 
seawater just prior to a glaciation. The sand at 2000 meters subcrope to seafloor and has 
therefore hydrostatic pressure. During glaciation of the North Sea the overburden pressure and 
the hydrostatic pressure increase with a pressure equivalent to the weight of the ice-sheet. If the 
sand subcrops under the ice-sheet the pore pressure will also increase in the sand. But if it 
subcrops outside the ice-sheet, its pore pressure will only vary as much as the sealevel changes. 

During the interglacial period such as today the overburden pressure and the hydrostatic 
pressure are regulated by the sealevel in the North Sea. In the initial stage of glaciation water is 
removed and sealevel drops. This is followed by an increase in overburden pressure as the ice 
cover progresses. Then during deglaciation the North Sea becomes ice free, while there is still 
enough water retained in the big icesheets, such as over Canada, for the North Sea to become dry 
land again, prior to flooding as shown in the figure to the left. 
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At the University of South Carolina the ice loading effect on the underlying sediments 

has been modelled using a two-dimensional dynamic model called GEOPETII 

(Lerche, 1997). Their model suggests that ice loading increases the pore pressure in 

the same way as a load of a car is taken up by increased oil pressure on a hydraulic 

jack. Such a process assumes that rocks involved behave perfectly elastically; hence i f 

there is no fluid gain or loss, the loading and unloading curve are identical (Yardley 

and Swarbrick, 2000). It is well known that is not the case. As the pore pressure 

increases, fluid will move laterally to the basin margins as a function of the lateral 

permeability. In the case of low lateral permeability the pore pressure as well as the 

overburden pressure and with it the fracture pressure wil l increase. It is not known i f 

the increase of the pressure will be happening instantaneous down the section at the 

same time. The different formations wil l have different compressibility, which may 

cause a delay in the pore pressure increase in the stiffer rock than in the more 

compressible. In the case where a cap rock was rather stiff it is possible that the 

fracture pressure will increase over time as the pore pressure increases over time after 

the onset of the ice-sheet. But the increased pore pressure in the underlying reservoir 

will happen instantaneously. In some cases this could be enough to fracture the cap 

rock seal. Both fracturing and fluid dissipation would then reduce the overpressure 

and increase the effective stress. I f the process were perfectly synchronized the 

effective pressure would remain unchanged initially, then as a function of time and 

permeability, sedimentary compaction wil l reduce the porosity and increase the 

effective stress. 

The glaciation was periodic and the effective stress increased during each glaciation 

period. In addition, new sediments were deposited during each deglaciation period 

increasing the overburden stress. Due to the irreversible incremental compaction the 

increase in pore pressure from ice loading was more dramatic during the first 

glaciation period than from the last. The formation water flow in this model is 

assumed to have originated from sediment compaction. The melt water from the ice 

sheet was omitted in the GEOPETII model (Lerche, 1997). 

In Chapter 2, the vertical effective stress, <xv, was defined as the difference between 

the lithostatic stress due to the weight of the overburden, Sv, and the pore pressure, Pj 

(Terzaghi, 1936). At the surface the overburden is initially at atmospheric pressure 
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and so is the effective stress. By adding an ice load, the effective stress at surface 

is: 

<rv=sv+Pi - P f [E4.2] 

What the consequence is on the pore pressure development is illustrated in Figure 4.8. 

The red pore pressure line was suggested by Lerche et al (1997). The entire ice load is 

taken up by increased pore pressure. This will result in a very unstable bed under the 

ice sheet, as the effective stress will be zero at the bed surface. 

0) 
E 
c 
+-» c 
E 
0 

P R O F I L E B 

TO 
U 
t 
0) 

> 

Present 

B000 years 

15000 years 

25000 years 

-500 
0 200 400 600 800 1000 1200 1400 1600 

Profile length in Km. (1000 mils) 

Figure 4.8 The profile B-B' shown on Figure 4.7. It show that the maximum subsidence was in 
the centre of the Baltic Sea of more than 400 metres, while it was potentially uplift in the North 
Sea (Milne et al., 1999, Mitrovica et al., 1994, Tushingham, A.M., 1991). 

Boulton and Dobbie (1993) have suggested a model where the effective stress is not 

zero at the bed surface, but close. This wil l make the surface bed stable. The water 

pressure will be close to the ice pressure. The overpressure potential drop, A^, across 

the underlying clay (aquitard) and the overpressure in the first aquifer, \ f / a - p f - pt,yd, 

of high transmissibility. This leads up to the relationship illustrated in Figure 4.8: 

Sy + Pi-PHyd-Va [E4.3] 

This added pressure will not only affect the interface between the ice base and the 

sediments, but be transmitted down through the entire sedimentary succession. The 
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pore pressure wil l increase with the ice load in all aquitards and aquifers unless the 

permeable layer initially had hydrostatic pressure and communication to seabed 

beyond the extent of the ice sheet and the permafrost. It is important to distinguish 

between these two cases, when the aquifer has hydrostatic pressure with 

communication to seabed and the case where the aquifer has limited extent and is 

overpressured. In the first case, there will be an overpressure drop through the 

aquitard equal to the overpressure ( y / a ) from the ice load on the surface. The pressure 

development becomes very complex as the pressures increase in all previous 

overpressured sections, while it remains hydrostatic in aquifers. This could result in 

an increased fluid through the aquitards towards to aquifers (Figure 4.7). In the 

second case the overpressure ( y / a ) wil l be added to all earlier developed overpressures 

in each bed down to the basement. In this case the aquifer is concealed within the low 

permeability aquitard. The ice load will increase the overburden and the pore 

pressures such that the vertical effective stress remains unchanged. Loading and 

subsequent unloading of the ice will have little to no effect on consolidation. But the 

reservoir pressures will also change. This wil l have an effect on fluid composition, 

and may lead to a change in the gas/oil ratio in hydrocarbon reservoirs. Such rapid 

increase in the pore pressure can have significant effect on hydrocarbon 

accumulations as the solubility of gas in oil is pressure and temperature dependent 

(Price, 1976). The ice sheet can also stop fluid escape at seabed and gas leakage from 

reservoirs can provide clathrate seal under the ice reducing the permeability. Virtually 

no change in the temperature development can be expected from ice loading (Lerche 

etal., 1997). 

The Cretaceous chalk layer within several oil and gas fields (Ekofisk) has subsided 

several meters as a result of bleeding of some of its overpressure during production. 

The chalk has therefore elasticity sufficient to allow substantial variation in strain as a 

function of load. An ice load could therefore have generated an increased pore fluid 

pressure as well as been taken up by the chalk structure as increased effective stress. 

I f most of the ice load were taken up by increased fluid pressure in the chalk, the pore 

fluid would have flowed from the area of maximum overpressure (or ice load) to the 

lower overpressure area (or glacial rim). On melting the load away the flow will 

gradually reverse its direction. More general consequences on the basin could be the 

reactivation and generation of faults. 
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An ice sheet has variable thickness and is therefore not a uniform load. An extreme 

case could be the situation at the Haltenbanken shelf edge. The distribution of such a 

load wil l be reduced with depth in the same way as seismic energy is reduced. The 

result could be a downward decrease in the added overpressure and potentially a 

downward water flow even in an overpressured environment. 

Continental ice build up depresses the underlying lithosphere and uplifts the areas of 

the ice sheet rim and beyond. As the ice melts isostatic forces reverses the movement. 

The maximum depression of the NW European basement by ice loading was centred 

in the Gulf of Bothnia with a magnitude on the order of 500 meters (Lamdeck et al., 

1998). Isostatic forces reverse the crustal movement when the ice melts. In the North 

Sea, the basement has moved vertically as much as 150 meters during each 100 kyr 

cycle of glaciation and deglaciation, G. A. Milne (2000, pers comm) (Figure 4.8). 

4.8 Subglacial water flow 

The necessity for ice to melt can be looked at in a philosophic way. Ice fits well 

between water and air in the stratification of Earth's constituents according to density. 

I f ice did not melt, gravity would try to convert present-day ice sheets into a layer 

some 82-meter thick over Earth's oceans (Hughes, 1998). 

The ice sheets melt on their surface, but also at their base due to shear heating and the 

geothermal heat flux. The temperature at the ice base is about zero degrees although it 

is as low as -30°C just below the centre of the biggest ice sheets. Water will discharge 

at the bed-ice interface in three different ways; (1) flow in a thin layer, (2) creation of 

a tunnel flow beneath the ice, or (3) both of these effects. In each of the cases 

involving a thin layer, the water pressure is equal to the ice pressure resulting in zero 

effective stress in the bed at the ice base. In the third case the ground water flow is 

directed down beneath the ice sheet resulting in a flow upwards beyond the ice sheet 

margin (Boulton et al., 1995). For thick ice sheets, several hundred meters, no surface 

melt water can reach the base of the ice. Typical ice sheet melting rate (m) at the base 

is in the order of millimetre to centimetre per year. The total volume of melts water 

available over 125,000 years could be 375 m 3 per m 2 based on 3 mm melting water 

per year. The available water for downward water flow will be a sum of the melt 
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water and expelled pore water from the consolidation of the underlying sediments. I f 

water is flowing out of the system through a hydrostatic pressured aquifer the 

overlying aquitard will consolidate as a function of the ice load, time and 

permeability. If, for example, a 1500-meter thick ice sheet is overlying a 500-meter 

thick aquitard the compaction wil l probably reduce the porosity with 3 %. This will 

only add about 15 m 3 per m 2 to the already 375 m 3 per m 2 of water available from 

melting. 

Sub-glacial melt water can generate a downward flow of fresh water through the 

underlying sediments i f aquifers exist to channel excess fluid away laterally (Boulton 

and Caban, 1995). This flow is controlled by the permeability and the differential 

water pressure in the sediments (Darcy Flow). The hydrostatic pressure at the sub-

glacial level is equal to the ice overburden pressure when the ice sheet and sediments 

are separated by a thin water film (Benn and Evans, 1998). In other cases a discrete 

sub-glacial drainage system can produce channels and conduits with an air gap 

between the water flow and the overlying melting and moving ice. As the ice moves 

and the sub-glacial channels shift direction, the hydrostatic pressure on the interface 

will vary as well. 

The downward flow will be a function of the average permeability of the aquitard, the 

thickness, ice load and the available water. The potential flow rate, q, through the 

aquitard will be controlled by the Darcy's law: 

g = A - K P w g h l - h l = A - K d y [ E 4 4 ] 

rj dz 7] dz 

where q is the flow rate in cubic meters/second, rj the viscosity in Pascal * seconds, 

K Intrinsic permeability in meters squared, li2-hi the hydraulic head in meters, A the 

cross section area in square meters, 3 V the pressure differential in Pascal and dz 

length along flow path or the thickness of the aquitard in meters. 
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Table 4-2 The flow rates are calculated assuming hydrostatic pressure in the aquifer underlying 
the aquitard. 

Row rate the aquitard based on Darcy law 
(m): (MPa): (Pa) (psi): 

Thickness of the overlying ice sheet (meters): 1500 13.2435 13243500 1920.811 

Water viscosity in (Pa'sec): 0.001 
(MPa): (Pa) (psi): 

The overpressure in the first aquifer in (MPa): 0 0 0 

(mO): (m2) (mD): (m2) (mO): (m2) (mD): (m2) 
Average permeability in the aquilard in rnilliDarcy: 0.007 6.91 E-18 0.001 9.87E-19 0.0001 9 87E-20 0.00001 9.87E-21 

Row rate across 1 m2: 
(m3/s) (m3/30Ka) (m3/125Ka(m3/s) (m3(30Ka) (m3/125Ka (rrfl/s) (m3/30Ka) (m3/125Ka) (m3/30Ka) (m3/125Ka 

The Thickness of the aquitard in meters: 100 9.15E-10 865.6 3606.6 1.31E-10 1237 515.2 1.31E-11 12.4 51.5 1.31E-12 1.2 5.2 
200 4.57E-10 432.8 18033 6.54E-11 61.8 257.6 6 54E-12 6 2 25.8 6.54E-13 0.6 2.6 
300 3.05E-10 2885 12022 4.36E-11 41.2 171.7 4.36E-12 4.1 17.2 4.36E-13 0.4 1.7 
400 2.29E-10 216,4 901.7 327E-11 309 1288 327E-12 3.1 129 327E-13 0.3 1.3 
600 1.B3E-10 173.1 721.3 261E-11 24.7 103 261E-12 2.5 10.3 2.61E-13 0.2 1 
600 1.52E-10 144.3 601.1 218E-11 20.6 85.9 2.18E-12 2.1 8.6 2.18E-13 0.2 09 
700 1.31E-10 123.7 5152 1.87E-11 17.7 73.6 1.87E-12 1.8 7.4 1.87E-13 0 2 0.7 
BOO 1.14E-10 108.2 450.8 1.63E-11 15.5 64.4 1.63E-12 1.5 6.4 1 63E-13 0.2 06 
900 1.02E-10 96.2 4007 1.45E-11 13.7 57.2 1 45E-12 1.4 5.7 1 45E-13 0.1 0.6 

1000 9.15E-11 866 360.7 1.31E-11 12.4 51.5 1.31E-12 1.2 5.2 1.31E-13 0.1 0.5 
1100 8 32E-11 78.7 3279 1.19E-11 11.2 46.8 1.19E-12 1.1 4.7 1.19E-13 0.1 0.5 
1200 7.62E-11 72.1 300.6 1.09E-11 10.3 42.9 1.09E-12 1 4.3 1.09E-13 0.1 0.4 
1300 7.04E-11 66.6 2774 1.01 E-11 9.5 39.6 1.01E-12 1 4 1.01 E-13 01 0.4 
1400 6.54E-11 61.8 257.6 9.34E-12 8.8 36.8 9.34E-13 0.88 3.7 9.34E-14 0.1 0.4 
1500 6.1E-11 57.7 2404 8.71E-12 8.2 34.3 8.71E-13 0.82 3.4 B.71E-14 0.1 0.3 
1600 5.72E-11 54.1 225.4 8.17E-12 7.7 322 8.17E-13 0.77 3.2 8.17E-14 0.1 0.3 
1700 5.38E-11 50.9 2122 7.686-12 7.3 30.3 7.69E-13 0.73 3 7.69E-14 0.1 0.3 
1800 5.08E-11 48.1 200.4 7.26E-12 6.9 28.6 7.26E-13 0.69 Z9 7 26E-14 0.1 0.3 
1900 4 82E-11 456 189 8 688E-12 6.5 27.1 6 88E-13 065 27 6.88E-14 0.1 0.3 
2000 4.57E-11 43.3 1803 654E-12 62 25.8 6.54E-13 0.62 26 6.54E-14 0.1 0.3 

There are few available permeability data on the first 1000 m of mudrocks below the 
17 2 

seabed. A permeability of 0.01 mD (milli-Darcy) (10" m ) is suggested for an 

argillaceous formation with a porosity of 40% (Neuzil, 1994). Using Darcy law, one 

can for example calculate the theoretical flow through a 500 m thick mudstone 

overlying an aquifer at hydrostatic pressure. Assuming 1500 m ice thickness and a 

average mudrock porosity less than 40 % and hence a permeability about 0.001 mD, it 

would be possible to flow 25 m 3 water over 30,000 years through each unit area A 

(A=l m 2). The assumed permeable bed at 500 meters must in such a case be in 

contact with seabed beyond the ice sheet limit or permafrost limit. I f the average 

porosity is about 40 % in these sediments, about 60 meters of downward pore water 

displacement can have occurred during each glacial event. 

Numerical modelling coupled with field evidence in north-west Germany suggests 

that only 25% of the sub glacial melt water could have been evacuated through the 

underlying sediments, due to low permeability (Piotrowski, 1997). 

It has so far been difficult to explain large fluctuations in the hydrocarbon/water 

contact in fields such as the Bruce Field. Several of the fields have tilted oil water 

contacts. The sudden increase in the overburden pressure due to the ice sheets can 
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have produced enough lateral flow to explain some of the features of these reservoirs. 

Further research on this topic may reveal some of the answers. 

4.8.1 Resistivity log response 

The resistivity log from the North Sea wells has been compared with the Gulf of 

Mexico (Chapter 3). Since the resistivity is very temperature dependant the resistivity 

logs were temperature corrected. While there are published conductivity temperature 

corrections for most materials, there are no perfect methods for a complex composite 

material such as porous a mudrock. One of the first published corrections was by Arps 

(1953). Later laboratory experiments have shown that the clay volume also influences 

the corrections Kern et al. (1977). But as only some results were published, only one 

correction was made on theses logs. 

This equation normalizes all values to 100 C, which is within the oil window. It also 

suggests that regardless of clay content, the resistivity is constant at -22°C. 

Temperature corrected resistivity logs from several wells in the North Sea and 

Haltenbanken has been compared with wells in the Gulf of Mexico (Figure 4.9). The 

shallow North Sea resistivity are around 0.8 ohmm decreasing with depth down to 

1750 m below sea bed where the resistivity are the same as in the Gulf of Mexico; 0.3 

ohmm. In the Gulf of Mexico, the resistivity increases in the same interval beginning 

at less than 0.1 ohmm (Figure 4.9). But as the total resistivity is 8 times higher in the 

North Sea, the porosity is about Vi of the porosity in the Gulf of Mexico. Using the 

Archie equation it can be shown that the Rw in the North Sea is at least 2 times the 

Rw in the Gulf of Mexico. 

I suggest that this could be a result of sediments in the North Sea being deposited by 

glacial activity as well as downward flow of fresh water by the additional ice sheet 

overburden pressure down to about 1750 m below sea-bed. 

ILDx 
temp + 22 

[E4.5] 
100 + 22 
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Figure 4.9 Resistivity curves from the North Sea compared with Gulf of Mexico. The graph to the 
left is raw data while the raw resistivity curves have been temperature corrected on the graph to 
the right. 

4.9 Hydrocarbon migration 

The timing of hydrocarbon migration into the oil and gas fields is not well known, but 

it occurs rapidly (on the order of a few million years (Horstad and Larter, 1997)). 

Oilfields are dynamic short-lived phenomena with a median age of 35 Ma 

(Macgregor, 1996). A common error in interpretation is the age of oil emplacement as 

well as underestimating the importance of remigration. Evidence for recent filling (on 

the order of a few million years) (Horstand and Larter, 1997) comes from 

reconstructed burial histories and fluid inclusion studies (Aplin et al., 1999; Swarbrick 

et al., 2000). Several important questions on large fields like Troll remain unsolved 

like the source of meteoric water needed for biodegradation of the oil and the recent 

tilting and remigration in the field. It is likely that the fluid flow regimes established 

during successive glaciation and interglaciation cycles have influenced the timing of 

hydrocarbon migration also. 
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4.10 Erosion of the Scandinavia during Quaternary 

While on the onshore areas most sediments from previous glacial ages were removed 

by the last, the North Sea was a part of the sediment accumulation area. The total 

volume of rock eroded from Scandinavia during Quaternary has been calculated (Riis 

and Fjeldskaar, 1992). The calculation is based on the assumption that a pre-glacial 

surface can be generated by contouring the present day summits in Norway, Sweden 

and Finland. By subtracting this contour levels from the real map the total volume 

sums up to 173900 km 3 . The total area is about 500000 km giving an average 350 m 

of rock eroded or about 35 m during each glaciation. But the volume of the 

Quaternary wedge of Mid-Norway is only 100000 km 3 . I f we add on 1000 m of 

Quaternary sediments on Haltenbanken it will add on 30000 km 3 of sediments to the 

total budget. Then another 500 m of Quaternary sediments in the Norwegian sector of 

the North Sea would add up to about 50000 km 3 . We assume that most of the 

Quaternary sediments in the UK sector originates from glacial erosion of the British 

Isles. 

Recent reinvestigation of the transition from 41000 years cycles to 100000 years 

cycles about 1 My ago suggests that this can not be explained by the Milankovitch 

cycles (Wilson et al., 2000). Investigations have shown that the lateral extent of the 

ice sheets did not change, only the ice volume. One has to explain why suddenly the 

ice thickness over North America, Greenland and Scandinavia became about twice as 

thick during these longer cycles. One explanation is that prior to 1 My the ice sheets 

were resting on unconsolidated sediments and therefore were moving too fast to 

accumulate the volumes causing the lithostatic rebound today from the last ice age. 

When loose sediment was removed, the ice got frozen to the bedrock and slowly 

began to erode the bedrock to form deep fjord and valleys existing today. This may 

suggest than contouring the present summits is a substantial under estimation of the 

real volumes of sediments and bedrock that has been moved from land to the sea 

during the time of the large ice sheets. 
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4.11 Conclusions 

The low porosities seen in the North Sea can be explained by ice loading during the 

Quaternary period. The reduction of the porosities (increased density) can be a 

consequence of glacial deposition, hence the high density shallow sediments are 

actually tills. The porosity reduction can also have happened during the periods when 

the North Sea was dry land. 

It has been shown that water from dewatering sediments under an ice load would have 

had to be directed down and that substantial volumes of melt water would have been 

directed the same way. Successive glaciation and interglaciation cycles during the last 

1 Myr have influenced the fluid flow regimes by overpressure variations and by 

lithospheric flow. The ice loading and unloading produced a significant stress field in 

the underlying sediments as well as in the underlying lithosphere. The change in the 

stress field changed the pore fluid flow. The suppression of the lithosphere and 

subsequent rebound tilted and faulted the migration path as well as the reservoirs. It 

has hitherto been difficult to explain large fluctuations in the hydrocarbon/water 

contact in fields such as the Bruce Field. Several of the fields have tilted oil water 

contacts. Some fields such as Draugen on Haltenbanken are many kilometres laterally 

away from the source rock. Large lateral flow generated by ice loading can explain 

some of these reservoirs as well as open up the possibility to find hydrocarbons in 

places that are so far unexplored in Scandinavia. 

The first ice sheet over the North Sea came possibly 2.6 my ago. The giant ice sheets 

covered all areas surrounding the North Pole, such as Canada, North America, 

Greenland, Scandinavia and Siberia, all being hydrocarbon provinces. In the North 

Sea 1000-1500 meters of Upper Miocene/Pliocene sediments were followed by 

successive ice loading and an additional 500 meters of glacial and interglacial 

deposits. 1500 to 2000 meters of rapid subsidence moved considerable volumes of 

shale into the oil and gas maturation window during the same time window. The 

cyclic ice sheet loading change the water flow from down during the glacial periods 

and the possibly up during the interglacials. At the same time the reservoir pressures 

increased due to the additional ice load (10 - 15 Mpa). Each glacial period is a short 

event in the geologic time scale, making them catastrophic. They changed the 

overburden pressure, pore pressure, the fracture pressure, the reservoir bubble point 
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and the water flow in a sedimentary basin. It can be regarded as one of nature's 

natural pumps being vital for hydrocarbon migration. It is not the only pump 

mechanism, as it is clear that hydrocarbons migrate in areas that probably never have 

experienced any ice cover. 

Calculations of the total source rock potential in the North Sea shows that only 2 % of 

the generated oil and gas are so far found in North Sea reservoirs (Cornford, 1993). In 

other areas such as the Barents Sea very little hydrocarbons are found and the reason 

maybe related to post-glacial rebound (Kjemperud and Fjeldskaar, 1992). I suggest 

that large volumes of hydrocarbons were released during and after each glacial period. 

The release of methane may even have been enough to increase the greenhouse effect 

ending each glacial epoch, as methane is 20 times as potent a greenhouse gas as CO 2. 

The amount of methane released due to glaciations is unknown and so far has not 

been taken into the palaeoclimate debate. I must stress that that is high speculative as 

we have no numbers to substantiate these suggestions. The total effect on the 

exploration potential as well as the climate can only be assessed by more research as 

well as co-operation between the petroleum and the climate research communities. 

The Quaternary period appears to have been omitted in basin modelling performed by 

exploration geologists to assess the source rock potential and the migration pathway 

in America, Greenland, Scandinavia and Siberia, all being hydrocarbon provinces. 

Clearly this is unfortunate and quite inappropriate in the light of what has been 

discovered in the present thesis. 
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The following table are the calculated porosities shown in Figure 2.2. The porosity 
called USED is the preferred porosity used in the pore pressure calculations when 
porosity are used as input parameter. 

Nor-1/6-7 Calculated porosity 
Depth Sonic Sonic Density Neutron USED 
(mRKB) Wyllie S.Hansen average 
174 0.33 0.20 0.42 0.42 
184 0.37 0.22 0.37 0.36 
194 0.38 0.23 0.39 0.38 
204 0.38 0.23 0.41 0.40 
214 0.39 0.23 0.42 0.42 
224 0.39 0.24 0.44 0.44 
234 0.40 0.24 0.46 0.46 
244 0.40 0.25 0.47 0.48 
254 0.41 0.25 0.49 0.50 
264 0.41 0.25 0.50 0.52 
274 0.58 0.35 0.75 0.65 
284 0.79 0.48 0.65 0.57 
294 0.66 0.43 0.72 0.57 
304 0.15 0.09 0.31 0.39 
314 0.24 0.14 0.34 0.40 
324 0.32 0.19 0.38 0.41 
334 0.41 0.25 0.50 0.49 
344 0.51 0.31 0.37 0.43 
354 0.25 0.15 0.15 0.16 
364 0.50 0.31 0.18 0.34 
374 0.20 0.12 0.36 0.39 
384 0.35 0.21 0.37 0.40 
394 0.78 0.47 0.45 0.46 
404 0.28 0.17 0.44 0.44 
414 0.52 0.31 0.50 0.50 
424 0.42 0.25 0.50 0.48 
434 0.51 0.31 0.52 0.52 
444 0.67 0.40 0.46 0.47 
454 0.73 0.44 0.52 0.50 
464 0.25 0.15 0.37 0.38 
474 0.74 0.46 0.40 0.43 
484 0.46 0.28 0.45 0.46 
494 0.34 0.21 0.18 0.24 
504 0.75 0.44 0.69 0.60 
514 0.36 0.22 0.47 0.47 
524 0.37 0.22 0.60 0.59 
534 0.41 0.25 0.52 0.52 
544 0.13 0.08 0.58 0.58 
554 0.68 0.44 0.43 0.43 
564 0.64 0.42 0.42 0.42 
574 0.71 0.45 0.43 0.44 
584 0.69 0.44 0.40 0.42 
594 0.67 0.43 0.39 0.41 
604 0.71 0.45 0.44 0.45 
614 0.71 0.45 0.40 0.43 
624 0.67 0.43 0.43 0.43 
634 0.70 0.45 0.49 0.47 
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644 0.69 0.44 
654 0.70 0.45 
664 0.67 0.44 
674 0.68 0.44 
684 0.71 0.45 
694 0.70 0.45 
704 0.70 0.45 
714 0.79 0.48 
724 0.67 0.43 
734 0.68 0.44 
744 0.74 0.46 
754 0.68 0.44 
764 0.68 0.44 
774 0.71 0.45 
784 0.65 0.42 
794 0.61 0.41 
804 0.64 0.42 
814 0.64 0.42 
824 0.66 0.43 
834 0.67 0.43 
844 0.69 0.44 
854 0.69 0.44 
864 0.73 0.46 
874 0.67 0.43 
884 0.71 0.45 
894 0.67 0.43 
904 0.64 0.42 
914 0.68 0.44 
924 0.67 0.43 
934 0.68 0.44 
944 0.62 0.41 
954 0.64 0.42 
964 0.66 0.43 
974 0.61 0.41 
984 0.63 0.42 
994 0.62 0.41 
1004 0.64 0.42 
1014 0.66 0.43 
1024 0.67 0.43 
1034 0.62 0.41 
1044 0.66 0.43 
1054 0.62 0.41 
1064 0.66 0.43 
1074 0.66 0.43 
1084 0.60 0.41 
1094 0.69 0.44 
1104 0.66 0.43 
1114 0.67 0.43 
1124 0.66 0.43 
1134 0.65 0.42 
1144 0.68 0.44 
1154 0.66 0.43 
1164 0.67 0.43 
1174 0.67 0.43 
1184 0.64 0.42 
1194 0.61 0.41 

0.42 0.43 
0.43 0.44 
0.44 0.44 
0.43 0.43 
0.42 0.44 
0.40 0.42 
0.41 0.43 
0.43 0.45 
0.40 0.42 
0.44 0.44 
0.46 0.46 
0.40 0.42 
0.41 0.42 
0.43 0.44 
0.41 0.42 
0.41 0.41 
0.43 0.42 
0.40 0.41 
0.40 0.42 
0.43 0.43 
0.42 0.43 
0.48 0.46 
0.43 0.45 
0.41 0.42 
0.48 0.46 
0.41 0.42 
0.41 0.42 
0.41 0.42 
0.40 1.12 0.41 
0.43 1.00 0.44 
0.38 1.05 0.40 
0.38 0.97 0.40 
0.40 1.01 0.42 
0.38 0.93 0.39 
0.38 0.89 0.40 
0.00 0.98 0.41 
0.43 0.80 0.43 
0.42 0.69 0.43 
0.40 0.81 0.42 
0.40 0.78 0.41 
0.39 0.74 0.41 
0.41 0.70 0.41 
0.40 0.64 0.42 
0.41 0.69 0.42 
0.42 0.71 0.41 
0.46 0.90 0.45 
0.45 0.68 0.44 
0.44 0.70 0.44 
0.43 0.77 0.43 
0.44 0.82 0.43 
0.44 0.77 0.44 
0.44 0.74 0.44 
0.43 0.75 0.43 
0.46 0.78 0.44 
0.42 0.81 0.42 
0.40 0.74 0.41 
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1204 0.69 0.44 
1214 0.68 0.44 
1224 0.69 0.44 
1234 0.68 0.44 
1244 0.66 0.43 
1254 0.65 0.42 
1264 0.68 0.44 
1274 0.72 0.45 
1284 0.69 0.44 
1294 0.64 0.42 
1304 0.64 0.42 
1314 0.68 0.44 
1324 0.69 0.44 
1334 0.70 0.44 
1344 0.69 0.44 
1354 0.69 0.44 
1364 0.71 0.45 
1374 0.73 0.46 
1384 0.73 0.46 
1394 0.65 0.43 
1404 0.67 0.43 
1414 0.66 0.43 
1424 0.68 0.44 
1434 0.65 0.43 
1444 0.72 0.45 
1454 0.72 0.45 
1464 0.66 0.43 
1474 0.66 0.43 
1484 0.71 0.45 
1494 0.73 0.46 
1504 0.72 0.45 
1514 0.75 0.46 
1524 0.74 0.46 
1534 0.74 0.46 
1544 0.75 0.46 
1554 0.73 0.46 
1564 0.76 0.47 
1574 0.74 0.46 
1584 0.75 0.46 
1594 0.75 0.46 
1604 0.76 0.47 
1614 0.76 0.47 
1624 0.77 0.47 
1634 0.78 0.47 
1644 0.70 0.44 
1654 0.77 0.47 
1664 0.77 0.47 
1674 0.77 0.47 
1684 0.79 0.48 
1694 0.81 0.48 
1704 0.82 0.49 
1714 0.82 0.49 
1724 0.78 0.48 
1734 0.82 0.49 
1744 0.82 0.49 
1754 0.80 0.48 

0.44 0.90 0.44 
0.43 0.77 0.43 
0.43 0.71 0.44 
0.39 0.79 0.41 
0.41 0.77 0.42 
0.44 0.67 0.43 
0.44 0.71 0.44 
0.45 0.81 0.45 
0.45 0.77 0.44 
0.43 0.71 0.42 
0.45 0.84 0.44 
0.44 0.75 0.44 
0.45 0.74 0.45 
0.45 0.71 0.45 
0.44 0.84 0.44 
0.43 0.88 0.44 
0.45 0.71 0.45 
0.47 0.77 0.46 
0.44 0.82 0.45 
0.41 0.73 0.42 
0.41 0.74 0.42 
0.40 0.84 0.41 
0.42 0.80 0.43 
0.44 0.76 0.43 
0.43 0.75 0.44 
0.41 0.70 0.43 
0.41 0.79 0.42 
0.41 0.75 0.42 
0.44 0.77 0.44 
0.45 0.70 0.45 
0.42 0.84 0.44 
0.45 0.75 0.46 
0.48 0.85 0.47 
0.43 0.75 0.45 
0.46 0.84 0.46 
0.44 0.90 0.45 
0.44 0.89 0.46 
0.45 0.83 0.45 
0.46 0.88 0.46 
0.44 0.78 0.45 
0.45 0.78 0.46 
0.44 0.70 0.45 
0.45 0.86 0.46 
0.43 0.74 0.45 
0.40 0.69 0.42 
0.44 0.70 0.46 
0.44 0.78 0.45 
0.43 0.79 0.45 
0.44 0.78 0.46 
0.47 0.83 0.48 
0.49 0.77 0.49 
0.48 0.79 0.48 
0.47 0.77 0.47 
0.48 0.79 0.49 
0.49 0.80 0.49 
0.49 0.85 0.48 
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1764 0.80 0.48 0.50 0.87 0.49 
1774 0.82 0.49 0.49 0.80 0.49 
1784 0.81 0.48 0.50 0.83 0.49 
1794 0.69 0.44 0.52 0.61 0.48 
1804 0.73 0.46 0.51 0.75 0.48 
1814 0.74 0.46 0.51 0.78 0.48 
1824 0.73 0.46 0.48 0.75 0.47 
1834 0.73 0.46 0.51 0.77 0.48 
1844 0.73 0.46 0.52 0.73 0.49 
1854 0.82 0.49 0.49 0.75 0.49 
1864 0.76 0.47 0.47 0.84 0.47 
1874 0.76 0.47 0.49 0.76 0.48 
1884 0.76 0.47 0.47 0.81 0.47 
1894 0.74 0.46 0.50 0.79 0.48 
1904 0.78 0.48 0.48 0.79 0.48 
1914 0.75 0.46 0.49 0.74 0.48 
1924 0.74 0.46 0.49 0.85 0.48 
1934 0.78 0.47 0.49 0.80 0.48 
1944 0.76 0.47 0.43 0.78 0.45 
1954 0.71 0.45 0.43 0.76 0.44 
1964 0.68 0.44 0.43 0.75 0.44 
1974 0.74 0.46 0.44 0.73 0.45 
1984 0.65 0.42 0.37 0.68 0.40 
1994 0.69 0.44 0.43 0.71 0.44 
2004 0.74 0.46 0.43 0.67 0.44 
2014 0.66 0.43 0.42 0.65 0.42 
2024 0.69 0.44 0.44 0.75 0.44 
2034 0.68 0.44 0.44 0.73 0.44 
2044 0.68 0.44 0.46 0.79 0.45 
2054 0.72 0.45 0.44 0.77 0.44 
2064 0.68 0.44 0.45 0.73 0.44 
2074 0.67 0.44 0.43 0.65 0.43 
2084 0.67 0.43 0.41 0.70 0.42 
2094 0.68 0.44 0.44 0.75 0.44 
2104 0.63 0.42 0.41 0.71 0.42 
2114 0.67 0.44 0.42 0.75 0.43 
2124 0.66 0.43 0.38 0.65 0.41 
2134 0.68 0.44 0.42 0.78 0.43 
2144 0.65 0.42 0.43 0.73 0.43 
2154 0.60 0.41 0.37 0.64 0.39 
2164 0.68 0.44 0.42 0.79 0.43 
2174 0.64 0.42 0.42 0.78 0.42 
2184 0.66 0.43 0.40 0.69 0.41 
2194 0.67 0.43 0.42 0.78 0.43 
2204 0.67 0.44 0.41 0.78 0.42 
2214 0.66 0.43 0.40 0.66 0.42 
2224 0.63 0.42 0.42 0.72 0.42 
2234 0.60 0.40 0.35 0.67 0.37 
2244 0.69 0.44 0.39 0.69 0.41 
2254 0.70 0.45 0.41 0.75 0.43 
2264 0.70 0.45 0.41 0.72 0.43 
2274 0.68 0.44 0.40 0.78 0.42 
2284 0.65 0.42 0.40 0.70 0.41 
2294 0.69 0.44 0.41 0.70 0.43 
2304 0.66 0.43 0.42 0.76 0.42 
2314 0.69 0.44 0.42 0.69 0.43 
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2324 0.68 0.44 0.42 0.76 0.43 
2334 0.68 0.44 0.42 0.72 0.43 
2344 0.69 0.44 0.42 0.74 0.43 
2354 0.60 0.40 0.40 0.64 0.40 
2364 0.67 0.43 0.44 0.76 0.44 
2374 0.66 0.43 0.41 0.71 0.42 
2384 0.68 0.44 0.42 0.80 0.43 
2394 0.64 0.42 0.41 0.71 0.41 
2404 0.71 0.45 0.43 0.71 0.44 
2414 0.70 0.45 0.42 0.71 0.43 
2424 0.68 0.44 0.40 0.71 0.42 
2434 0.73 0.45 0.44 0.77 0.45 
2444 0.64 0.42 0.36 0.70 0.39 
2454 0.64 0.42 0.39 0.67 0.40 
2464 0.61 0.41 0.32 0.66 0.36 
2474 0.71 0.45 0.35 0.65 0.40 
2484 0.68 0.44 0.40 0.74 0.42 
2494 0.71 0.45 0.39 0.65 0.42 
2504 0.67 0.43 0.38 0.67 0.40 
2514 0.67 0.43 0.39 0.66 0.41 
2524 0.65 0.43 0.34 0.71 0.39 
2534 0.63 0.42 0.37 0.70 0.39 
2544 0.64 0.42 0.35 0.61 0.38 
2554 0.62 0.41 0.34 0.61 0.37 
2564 0.69 0.44 0.39 0.68 0.42 
2574 0.66 0.43 0.37 0.67 0.40 
2584 0.68 0.44 0.38 0.74 0.41 
2594 0.65 0.43 0.37 0.66 0.40 
2604 0.61 0.41 0.36 0.66 0.38 
2614 0.59 0.40 0.35 0.58 0.37 
2624 0.63 0.42 0.34 0.66 0.38 
2634 0.63 0.42 0.38 0.70 0.40 
2644 0.63 0.42 0.36 0.72 0.39 
2654 0.60 0.40 0.35 0.66 0.38 
2664 0.58 0.40 0.32 0.72 0.36 
2674 0.59 0.40 0.33 0.63 0.37 
2684 0.58 0.39 0.36 0.62 0.38 
2694 0.54 0.38 0.29 0.62 0.33 
2704 0.53 0.37 0.32 0.61 0.34 
2714 0.54 0.38 0.32 0.63 0.35 
2724 0.56 0.39 0.34 0.70 0.36 
2734 0.54 0.38 0.29 0.62 0.33 
2744 0.57 0.39 0.32 0.60 0.36 
2754 0.54 0.38 0.30 0.62 0.34 
2764 0.51 0.36 0.29 0.55 0.32 
2774 0.53 0.37 0.29 0.56 0.33 
2784 0.48 0.34 0.35 0.69 0.35 
2794 0.56 0.38 0.36 0.62 0.37 
2804 0.45 0.33 0.33 0.73 0.33 
2814 0.53 0.37 0.34 0.70 0.35 
2824 0.56 0.38 0.32 0.66 0.35 
2834 0.53 0.37 0.30 0.69 0.33 
2844 0.59 0.40 0.33 0.75 0.36 
2854 0.51 0.36 0.29 0.55 0.32 
2864 0.54 0.38 0.32 0.62 0.35 
2874 0.52 0.37 0.30 0.56 0.33 
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2884 
2894 
2904 
2914 
2924 
2934 
2944 
2954 
2964 
2974 
2984 
2994 
3004 
3014 
3024 
3034 
3044 
3054 
3064 
3074 
3084 
3094 
3104 
3114 
3124 
3134 
3144 
3154 
3164 
3174 
3184 
3194 
3204 
3214 
3224 
3234 
3244 
3254 
3264 
3274 
3284 
3294 
3304 
3314 
3324 
3334 
3344 
3354 
3364 
3374 
3384 
3394 
3404 
3414 
3424 
3434 

0.53 
0.46 
0.46 
0.50 
0.55 
0.49 
0.52 
0.51 
0.50 
0.49 
0.35 
0.51 
0.50 
0.45 
0.40 
0.41 
0.43 
0.53 
0.46 
0.29 
0.42 
0.37 
0.35 
0.27 
0.32 
0.32 
0.32 
0.44 
0.41 
0.37 
0.34 
0.38 
0.22 
0.23 
0.23 
0.12 
0.35 
0.26 
0.32 
0.21 
0.16 
0.17 
0.15 
0.15 
0.15 
0.16 
0.18 
0.16 
0.19 
0.11 
0.19 
0.05 
0.13 
0.13 
0.14 
0.10 

0.37 
0.34 
0.33 
0.35 
0.38 
0.35 
0.37 
0.36 
0.35 
0.35 
0.26 
0.36 
0.36 
0.33 
0.30 
0.30 
0.31 
0.37 
0.33 
0.21 
0.31 
0.28 
0.27 
0.21 
0.24 
0.25 
0.24 
0.32 
0.30 
0.28 
0.25 
0.28 
0.16 
0.17 
0.17 
0.06 
0.27 
0.20 
0.25 
0.15 
-0.08 
-0.06 
-0.09 
-0.09 
-0.10 
-0.07 
-0.04 
-0.07 
-0.02 
-0.20 
-0.02 
-0.32 
-0.13 
-0.13 
-0.11 
-0.20 

0.32 
0.28 
0.30 
0.35 
0.30 
0.27 
0.32 
0.31 
0.29 
0.29 
0.24 
0.29 
0.29 
0.27 
0.24 
0.29 
0.31 
0.34 
0.23 
0.26 
0.24 
0.22 
0.24 
0.27 
0.22 
0.22 
0.19 
0.20 
0.18 
0.19 
0.18 
0.27 
0.19 
0.18 
0.17 
0.16 
0.24 
0.22 
0.48 
0.19 
0.13 
0.18 
0.11 
0.14 
0.11 
0.16 
0.15 
0.16 
0.22 
0.12 
0.12 
0.05 
0.14 
0.16 
0.15 
0.11 

0.63 
0.50 
0.56 
0.70 
0.54 
0.52 
0.65 
0.59 
0.58 
0.57 
0.42 
0.55 
0.57 
0.50 
0.45 
0.47 
0.57 
0.70 
0.69 
0.48 
0.42 
0.38 
0.36 
0.36 
0.39 
0.35 
0.47 
0.46 
0.55 
0.40 
0.42 
0.49 
0.21 
0.32 
0.31 
0.26 
0.52 
0.00 
0.65 
0.23 
0.11 
0.17 
0.10 
0.15 
0.11 
0.16 
0.14 
0.20 
0.24 
0.08 
0.11 
0.03 
0.12 
0.14 
0.14 
0.08 

0.35 
0.31 
0.32 
0.35 
0.34 
0.31 
0.34 
0.34 
0.32 
0.32 
0.25 
0.33 
0.32 
0.30 
0.27 
0.29 
0.31 
0.36 
0.28 
0.23 
0.27 
0.25 
0.26 
0.24 
0.23 
0.23 
0.22 
0.26 
0.24 
0.23 
0.22 
0.28 
0.18 
0.17 
0.17 
0.11 
0.25 
0.21 
0.36 
0.17 
0.11 
0.17 
0.10 
0.15 
0.11 
0.16 
0.14 
0.20 
0.24 
0.08 
0.11 
0.03 
0.12 
0.14 
0.14 
0.08 
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3444 0.09 
3454 0.11 
3464 0.08 
3474 0.11 
3484 0.12 
3494 0.08 
3504 0.08 
3514 0.11 
3524 0.10 
3534 0.08 
3544 0.07 
3554 0.09 
3564 0.12 
3574 0.06 
3584 0.10 
3594 0.08 
3604 0.09 
3614 0.09 
3624 0.09 
3634 0.16 
3644 0.05 
3654 0.07 
3664 0.07 
3674 0.12 
3684 0.12 
3694 0.15 
3704 0.08 
3714 0.12 
3724 0.12 
3734 0.09 
3744 0.16 
3754 0.11 
3764 0.12 
3774 0.11 
3784 0.11 
3794 0.12 
3804 0.17 
3814 0.11 
3824 0.11 
3834 0.11 
3844 0.11 
3854 0.11 
3864 0.12 
3874 0.12 
3884 0.12 
3894 0.10 
3904 0.09 
3914 0.08 
3924 0.09 
3934 0.09 
3944 0.08 
3954 0.09 
3964 0.08 
3974 0.08 
3984 0.09 
3994 0.08 

-0.23 0.10 
-0.17 0.13 
-0.25 0.09 
-0.17 0.12 
-0.15 0.14 
-0.25 0.09 
-0.25 0.09 
-0.19 0.12 
-0.21 0.12 
-0.25 0.07 
-0.29 0.06 
-0.23 0.06 
-0.16 0.09 
-0.31 0.06 
-0.20 0.13 
-0.25 0.09 
-0.23 0.07 
-0.23 0.09 
-0.22 0.05 
-0.08 0.17 
-0.35 0.05 
-0.27 0.08 
-0.27 0.05 
-0.15 0.07 
-0.16 0.12 
-0.10 0.14 
-0.25 0.06 
-0.15 0.07 
-0.15 0.07 
-0.22 0.06 
-0.08 0.09 
-0.17 0.08 
-0.16 0.07 
-0.19 0.07 
-0.18 0.06 
-0.16 0.06 
-0.06 0.08 
-0.18 0.06 
-0.18 0.07 
-0.17 0.08 
-0.18 0.10 
-0.18 0.08 
-0.15 0.07 
-0.16 0.07 
-0.15 0.08 
-0.20 0.09 
-0.22 0.07 
-0.24 0.06 
-0.22 0.07 
-0.23 0.07 
-0.25 0.05 
-0.22 0.06 
-0.26 0.08 
-0.25 0.08 
-0.23 0.07 
-0.25 0.08 

0.08 0.08 
0.10 0.10 
0.07 0.07 
0.09 0.09 
0.13 0.13 
0.06 0.06 
0.07 0.07 
0.08 0.08 
0.08 0.08 
0.06 0.06 
0.05 0.05 
0.05 0.05 
0.09 0.09 
0.04 0.04 
0.09 0.09 
0.06 0.06 
0.06 0.06 
0.07 0.07 
0.04 0.04 
0.14 0.14 
0.03 0.03 
0.04 0.04 
0.03 0.03 
0.10 0.10 
0.12 0.12 
0.14 0.14 
0.06 0.06 
0.09 0.09 
0.08 0.08 
0.06 0.06 
0.12 0.12 
0.08 0.08 
0.07 0.07 
0.06 0.06 
0.06 0.06 
0.06 0.06 
0.06 0.06 
0.05 0.05 
0.08 0.08 
0.06 0.06 
0.09 0.09 
0.08 0.08 
0.08 0.08 
0.07 0.07 
0.06 0.06 
0.06 0.06 
0.05 0.05 
0.05 0.05 
0.05 0.05 
0.05 0.05 
0.04 0.04 
0.05 0.05 
0.05 0.05 
0.07 0.07 
0.04 0.04 
0.07 0.07 

Car l F red r ik G y l l e n h a m m a r 142 



Appendix 1 

4004 0.08 -0.25 
4014 0.06 -0.30 
4024 0.10 -0.21 
4034 0.11 -0.17 
4044 0.12 -0.16 
4054 0.11 -0.18 
4064 0.09 -0.23 
4074 0.08 -0.26 
4084 0.07 -0.27 
4094 0.08 -0.24 
4104 0.12 -0.17 
4114 0.08 -0.24 
4124 0.09 -0.24 
4134 0.10 -0.21 
4144 0.15 -0.11 
4154 0.06 -0.02 
4164 0.09 -0.23 
4174 0.11 -0.17 
4184 0.11 -0.17 
4194 0.16 -0.07 
4204 0.11 -0.19 
4214 0.13 -0.14 
4224 0.15 -0.10 
4234 0.12 -0.16 
4244 0.12 -0.16 
4254 0.12 -0.15 
4264 0.13 -0.15 
4274 0.11 -0.17 
4284 0.14 -0.12 
4294 0.03 -0.07 
4304 0.10 0.03 
4314 0.15 0.08 
4324 0.15 0.08 
4334 0.15 0.08 
4344 0.23 0.16 
4354 0.34 0.26 
4364 0.43 0.31 
4374 0.29 0.22 
4384 0.28 0.21 
4394 0.27 0.20 
4404 0.45 0.33 
4414 0.48 0.35 
4424 0.52 0.37 
4434 0.45 0.33 
4444 0.36 0.26 
4454 0.40 0.30 
4464 0.49 0.35 
4474 0.58 0.39 
4484 0.64 0.42 
4494 0.56 0.39 
4504 0.53 0.37 
4514 0.51 0.36 
4524 0.64 0.42 
4534 0.50 0.35 
4544 0.48 0.34 
4554 0.51 0.36 

0.05 0.03 0.03 
0.07 0.04 0.04 
0.07 0.04 0.04 
0.07 0.05 0.05 
0.02 0.03 0.03 
0.10 0.10 0.10 
0.04 0.03 0.03 
0.07 0.07 0.07 
0.06 0.06 0.06 
0.07 0.07 0.07 
0.08 0.09 0.09 
0.08 0.08 0.08 
0.09 0.09 0.09 
0.06 0.07 0.07 
0.07 0.10 0.10 
0.11 0.12 0.11 
0.09 0.07 0.07 
0.08 0.10 0.10 
0.06 0.07 0.07 
0.06 0.12 0.12 
0.06 0.07 0.07 
0.06 0.09 0.09 
0.05 0.10 0.10 
0.08 0.11 0.11 
0.09 0.12 0.12 
0.07 0.08 0.08 
0.09 0.09 0.09 
0.08 0.08 0.08 
0.08 0.09 0.09 
0.11 0.11 0.11 
0.11 0.14 0.11 
0.15 0.26 0.15 
0.26 0.44 0.26 
0.25 0.24 0.25 
0.10 0.09 0.10 
0.20 0.45 0.20 
0.26 0.41 0.26 
0.26 0.28 0.26 
0.24 0.24 0.24 
0.21 0.24 0.21 
0.23 0.35 0.23 
0.23 0.35 0.23 
0.22 0.33 0.22 
0.25 0.32 0.25 
0.19 0.26 0.19 
0.20 0.26 0.20 
0.27 0.32 0.27 
0.32 0.35 0.32 
0.30 0.33 0.30 
0.28 0.33 0.28 
0.32 0.33 0.32 
0.33 0.35 0.33 
0.30 0.34 0.30 
0.27 0.33 0.27 
0.28 0.32 0.28 
0.32 0.37 0.32 
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4564 0.49 
4574 0.15 
4584 0.54 
4594 0.51 
4604 0.52 
4614 0.54 
4624 0.57 
4634 0.59 
4644 0.54 
4654 0.53 
4664 0.46 
4674 0.42 
4684 0.42 
4694 0.39 
4704 0.34 
4714 0.31 
4724 0.32 
4734 0.34 
4744 0.29 
4754 0.35 
4764 0.32 
4774 0.35 
4784 0.35 
4794 0.28 
4804 0.25 
4814 0.29 
4824 0.30 
4834 0.24 
4844 0.25 
4854 0.24 
4864 0.28 
4874 0.42 
4884 0.27 
4894 0.29 
4904 0.32 
4914 0.28 
4924 0.26 
4934 0.26 
4944 0.23 
4954 0.24 
4964 0.24 
4974 0.23 
4984 0.19 
4994 0.17 

0.35 0.24 
0.04 0.06 
0.37 0.27 
0.36 0.28 
0.37 0.29 
0.37 0.25 
0.39 0.28 
0.40 0.28 
0.38 0.27 
0.37 0.27 
0.34 0.25 
0.31 0.26 
0.31 0.25 
0.29 0.24 
0.26 0.24 
0.24 0.24 
0.24 0.22 
0.26 0.24 
0.22 0.22 
0.21 0.18 
0.19 0.17 
0.21 0.16 
0.21 0.15 
0.21 0.23 
0.18 0.21 
0.21 0.21 
0.22 0.20 
0.17 0.20 
0.18 0.21 
0.17 0.21 
0.20 0.20 
0.30 0.20 
0.13 0.25 
0.16 0.24 
0.18 0.24 
0.14 0.18 
0.12 0.23 
0.12 0.22 
0.09 0.20 
0.10 0.21 
0.10 0.24 
0.09 0.22 
0.12 0.15 
0.11 0.18 

0.30 0.24 
0.12 0.06 
0.34 0.27 
0.33 0.28 
0.34 0.29 
0.33 0.25 
0.33 0.28 
0.34 0.28 
0.36 0.27 
0.36 0.27 
0.31 0.25 
0.26 0.26 
0.27 0.25 
0.25 0.24 
0.23 0.24 
0.22 0.24 
0.24 0.22 
0.24 0.24 
0.22 0.22 
0.23 0.20 
0.23 0.20 
0.25 0.21 
0.24 0.20 
0.21 0.23 
0.19 0.21 
0.21 0.21 
0.24 0.20 
0.20 0.20 
0.21 0.21 
0.20 0.21 
0.22 0.20 
0.28 0.20 
0.19 0.22 
0.19 0.22 
0.20 0.22 
0.18 0.18 
0.17 0.20 
0.17 0.20 
0.18 0.19 
0.17 0.19 
0.16 0.20 
0.17 0.20 
0.23 0.15 
0.23 0.18 
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The following table are the wireline data with the calculated pore pressure values used 
in Figure 3.9, 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15. 

Well Nor-1/6-7 Overbur Hydrost PORE PRESSURE CALCULATION 
den atic 

Water D 69.80 (m) Porosity pressure pressure Toby Equivalent depth Eaton method 
metod 

RKB 22.00 (m) USED Univers Burland Athy Sonic Resistiv 
ity ity 

Depth HDEN HRD HAC HGR Durham Compaction trend 
(mRKB) g/cc ohmm usec/ft api MPa MPa MPa MPa MPa MPa MPa 

92 4 0.8 0.8 0.0 0.7 
93 5 0.8 0.8 0.0 0.7 
94 5 0.8 0.8 0.0 0.7 
95 5 0.9 0.8 0.0 0.8 
96 5 0.9 0.9 0.0 0.8 
97 5 0.9 0.9 0.0 0.8 
98 6 0.9 0.9 0.0 0.8 
99 5 0.9 0.9 0.0 0.8 

110 5 1.1 1.0 0.0 0.0 0.0 0.0 1.0 
120 6 1.3 1.1 0.0 0.0 0.0 0.0 1.2 
130 7 1.5 1.2 0.0 0.0 0.0 0.0 1.4 
140 6 1.7 1.3 0.0 0.0 0.0 0.0 1.6 
150 12 1.8 1.4 0.0 0.0 0.0 0.0 1.7 
160 13 0.13 2.0 1.5 0.0 0.0 0.0 0.0 1.9 
170 1.96 0.0 46 0.48 2.2 1.6 -2.6 -1.2 -8.7 0.0 2.1 
180 1.54 167.0 58 0.36 2.4 1.7 -14.9 -9.4 -1.5 1.5 2.3 
190 8 0.00 2.6 1.8 0.0 0.0 0.0 0.0 2.5 
200 9 0.00 2.8 1.9 0.0 0.0 0.0 0.0 2.7 
210 8 0.00 2.9 2.0 0.0 0.0 0.0 0.0 2.8 
220 9 0.00 3.1 2.1 0.0 0.0 0.0 0.0 3.0 
230 9 0.00 3.3 2.2 0.0 0.0 0.0 0.0 3.2 
240 9 0.00 3.5 2.3 0.0 0.0 0.0 0.0 3.4 
250 10 0.00 3.6 2.5 0.0 0.0 0.0 0.0 3.5 
260 11 0.00 3.8 2.6 0.0 0.0 0.0 0.0 3.7 
270 67 0.37 4.0 2.7 -11.7 -6.9 -2.0 2.3 3.9 
280 1.83 75 0.56 4.2 2.8 3.0 2.9 -3.0 2.5 4.1 
290 1.62 167.0 62 0.56 4.4 2.9 3.4 3.2 4.3 2.6 4.3 
300 1.71 71 0.58 4.5 3.0 4.0 3.7 13.0 2.7 4.4 
310 1.61 68 0.27 4.7 3.1 -26.7 -16.8 9.4 2.8 4.6 
320 9 0.00 4.9 3.2 0.0 0.0 0.0 0.0 4.8 
330 2.07 160.0 76 0.45 5.1 3.3 -1.7 0.0 -3.1 2.8 5.0 
340 14 0.04 5.3 3.4 0.0 0.0 0.0 0.6 5.2 
350 2.04 88 0.40 5.4 3.5 -5.5 -2.5 -4.7 3.2 5.4 
360 11 0.00 5.6 3.6 0.0 0.0 0.0 0.0 5.5 
370 66 0.39 5.8 3.7 -6.3 -2.9 -3.9 3.2 5.7 
380 7 0.00 6.0 3.8 0.0 0.0 0.0 0.0 5.9 
390 2.17 79 0.41 6.2 3.9 -4.2 -1.5 -1.1 3.6 6.1 
400 1.98 73 0.44 6.4 4.0 -1.2 0.6 -1.2 3.7 6.3 
410 1.80 77 0.55 6.5 4.1 5.7 5.2 1.2 3.8 6.4 
420 2.02 159.4 77 0.46 6.7 4.2 1.2 2.2 0.2 3.6 6.6 
430 1.82 166.4 82 0.48 6.9 4.3 2.7 3.3 -0.4 4.0 6.8 
440 2.06 164.1 87 0.43 7.1 4.4 -0.5 1.1 -1.0 4.0 7.0 
450 1.96 58 0.53 7.3 4.5 5.8 5.4 7.0 4.2 7.2 
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460 2.06 154.6 75 0.45 7.5 4.6 1.7 2.7 0.1 3.8 7.4 
470 1.56 48 0.64 7.7 4.7 8.6 7.3 4.8 0.0 7.6 
480 1.82 58 0.43 7.9 4.8 0.3 1.8 1.9 4.6 7.8 
490 2.00 44 0.53 8.1 4.9 6.6 6.1 18.5 0.0 8.0 
500 1.57 20 0.70 8.2 5.0 0.0 0.0 0.0 0.0 8.2 
510 1.59 20 0.70 8.4 5.2 0.0 0.0 0.0 0.0 8.3 
520 2.06 156.2 89 0.45 8.6 5.3 2.8 3.6 -0.1 4.5 8.5 
530 1.87 33 0.56 8.8 5.4 8.5 7.4 11.5 1.0 8.7 
540 1.63 31 0.64 9.0 5.5 10.1 8.6 4.8 0.9 8.9 
550 2.06 156.9 63 0.44 9.2 5.6 2.1 3.3 -0.4 4.6 9.1 
560 2.08 150.3 67 0.43 9.4 5.7 1.7 3.0 -1.2 4.5 9.3 
570 2.06 151.1 64 0.44 9.6 5.8 2.7 3.7 0.7 4.4 9.5 
580 1.89 152.6 71 0.49 9.8 5.9 6.7 6.4 -0.2 4.7 9.7 
590 2.01 153.8 68 0.44 10.0 6.0 3.2 4.1 0.3 4.6 9.9 
600 2.11 150.4 72 0.41 10.2 6.1 1.1 2.8 -0.3 4.5 10.1 
610 2.04 149.3 71 0.43 10.4 6.2 3.6 4.4 -1.3 4.9 10.3 
620 2.07 132.1 76 0.40 10.6 6.3 0.7 2.6 1.9 3.0 10.5 
630 1.87 156.6 58 0.48 10.8 6.4 7.4 7.1 4.6 5.6 10.7 
640 2.01 146.0 63 0.43 11.0 6.5 4.3 5.0 3.8 4.8 10.9 
650 2.01 157.7 77 0.45 11.2 6.6 5.9 6.1 2.6 5.9 11.1 
660 2.07 146.7 69 0.42 11.4 6.7 3.7 4.7 1.0 5.0 11.3 
670 2.01 154.4 71 0.46 11.6 6.8 7.4 7.2 3.9 5.8 11.5 
680 1.97 158.6 81 0.46 11.8 6.9 7.1 7.1 1.9 6.3 11.7 
690 2.04 156.9 89 0.44 12.0 7.0 6.1 6.4 2.5 6.2 11.9 
700 2.10 152.9 77 0.42 12.2 7.1 4.7 5.5 2.0 5.9 12.1 
710 2.04 151.9 73 0.44 12.4 7.2 6.4 6.7 4.1 4.7 12.3 
720 2.07 155.0 86 0.44 12.6 7.3 6.8 7.0 3.7 6.5 12.5 
730 2.12 146.7 67 0.41 12.8 7.4 3.8 5.0 1.2 5.6 12.7 
740 2.09 145.6 79 0.43 13.0 7.5 6.4 6.8 3.3 5.5 12.9 
750 2.09 155.1 78 0.43 13.2 7.6 6.3 6.7 4.2 6.7 13.1 
760 2.13 146.1 68 0.41 13.4 7.8 4.7 5.7 -0.5 5.5 13.3 
770 1.99 152.9 79 0.45 13.6 7.9 8.8 8.5 4.0 6.7 13.5 
780 2.07 149.0 66 0.43 13.8 8.0 7.0 7.3 3.9 6.3 13.7 
790 2.08 150.6 74 0.43 14.0 8.1 7.5 7.7 3.5 6.7 13.9 
800 2.04 149.5 72 0.44 14.2 8.2 8.6 8.5 5.2 6.5 14.1 
810 2.08 148.9 69 0.42 14.4 8.3 7.5 7.8 4.1 6.6 14.3 
820 2.08 145.9 71 0.42 14.6 8.4 6.8 7.3 4.1 6.2 14.5 
830 2.08 150.9 76 0.43 14.8 8.5 8.3 8.4 3.9 7.0 14.7 
840 2.11 150.0 86 0.42 15.0 8.6 7.5 7.8 4.2 7.0 14.9 
850 2.11 149.1 74 0.41 15.2 8.7 7.4 7.8 4.7 7.0 15.1 
860 2.02 152.7 97 0.45 15.4 8.8 10.7 10.0 6.6 7.7 15.3 
870 2.12 146.3 76 0.41 15.6 8.9 7.1 7.7 3.5 7.0 15.5 
880 2.05 150.6 76 0.43 15.8 9.0 9.8 9.6 5.2 7.6 15.7 
890 2.10 136.9 80 0.41 16.0 9.1 8.2 8.5 5.0 6.0 15.9 
900 2.09 146.6 77 0.42 16.2 9.2 9.0 9.0 5.3 7.2 16.1 
910 2.10 147.2 83 0.41 16.4 9.3 8.8 8.9 4.5 7.3 16.3 
920 2.11 148.1 76 0.41 16.6 9.4 8.9 9.1 5.2 7.7 16.5 
930 2.09 147.3 74 0.41 16.8 9.5 9.5 9.5 5.1 7.6 
940 2.07 155.0 97 0.43 17.0 9.6 11.4 10.8 7.1 8.9 
950 2.13 146.9 82 0.40 17.2 9.7 8.9 9.2 4.9 8.0 
960 2.11 143.9 71 0.41 17.4 9.8 10.0 9.9 4.2 7.4 
970 2.10 145.9 82 0.42 17.6 9.9 10.6 10.4 6.1 8.2 
980 2.13 145.6 70 0.40 17.9 10.0 9.7 9.8 5.1 8.0 
990 2.10 145.1 51 0.41 18.1 10.1 10.4 10.3 5.7 6.3 

1000 144.2 46 0.37 18.3 10.2 5.8 7.3 7.1 0.0 
1010 2.12 0.78 145.5 70 0.42 18.5 10.3 11.6 11.2 8.9 8.3 16.0 
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1020 2.12 0.77 149.9 82 0.42 18.7 10.5 12.1 11.5 7.1 9.4 16.2 
1030 2.06 0.80 150.0 86 0.43 18.9 10.6 13.1 12.3 8.3 9.3 16.2 
1040 2.08 1.02 146.7 77 0.42 19.1 10.7 12.6 12.0 7.8 8.9 15.6 
1050 2.04 0.83 149.5 82 0.44 19.3 10.8 14.5 13.3 9.0 9.5 16.6 
1060 2.11 0.92 141.3 71 0.40 19.5 10.9 11.3 11.2 7.2 8.3 16.3 
1070 2.01 0.81 149.4 81 0.44 19.7 11.0 15.1 13.7 10.1 9.8 16.9 
1080 2.11 0.75 140.7 72 0.41 19.9 11.1 12.3 11.9 6.8 8.2 17.3 
1090 2.05 0.72 149.2 84 0.43 20.1 11.2 15.1 13.8 9.4 10.0 17.7 
1100 2.00 0.80 151.3 76 0.45 20.3 11.3 16.6 14.8 11.2 10.4 17.6 
1110 2.03 0.77 149.8 75 0.44 20.5 11.4 16.3 14.7 11.2 10.4 17.9 
1120 2.10 0.79 146.5 91 0.42 20.7 11.5 14.3 13.3 8.5 9.8 18.0 
1130 2.06 0.91 142.9 74 0.42 20.9 11.6 15.0 13.9 9.8 9.4 17.7 
1140 2.02 0.79 149.5 78 0.44 21.1 11.7 17.2 15.3 11.1 10.5 18.4 
1150 2.02 0.86 144.6 66 0.43 21.3 11.8 16.4 14.9 11.8 9.8 18.3 
1160 2.02 0.85 147.8 68 0.44 21.5 11.9 17.4 15.6 12.0 10.7 18.5 
1170 2.09 0.89 144.8 67 0.42 21.7 12.0 15.8 14.5 10.2 10.1 18.6 
1180 2.02 0.82 148.6 67 0.44 21.9 12.1 18.2 16.2 11.8 10.8 19.0 
1190 2.03 0.79 148.4 68 0.43 22.1 12.2 17.4 15.7 12.9 11.0 19.3 
1200 2.02 0.73 151.9 70 0.44 22.3 12.3 18.8 16.6 13.3 11.8 19.8 
1210 2.04 0.72 152.6 69 0.44 22.5 12.4 18.5 16.5 12.2 12.0 20.0 
1220 2.09 0.78 151.3 86 0.42 22.7 12.5 17.0 15.5 10.5 11.9 20.0 
1230 2.10 0.70 148.9 74 0.42 22.9 12.6 17.3 15.8 11.1 11.9 20.5 
1240 2.11 0.72 148.1 70 0.41 23.1 12.7 16.7 15.4 10.8 11.8 20.6 
1250 2.00 0.77 150.9 63 0.43 23.3 12.8 19.2 17.1 13.8 11.9 20.5 
1260 2.07 0.83 144.1 65 0.42 23.5 12.9 18.0 16.3 13.1 11.3 20.6 
1270 1.97 0.78 149.3 70 0.45 23.7 13.1 21.1 18.4 15.6 12.7 21.0 
1280 2.02 0.69 155.7 72 0.45 23.9 13.2 21.4 18.6 15.4 13.7 21.5 
1290 2.06 0.75 147.3 69 0.43 24.1 13.3 20.0 17.7 15.1 12.5 21.5 
1300 2.01 0.75 146.3 61 0.44 24.3 13.4 20.5 18.1 13.8 12.2 21.5 
1310 2.02 0.70 147.3 63 0.44 24.5 13.5 21.4 18.7 16.3 12.5 22.0 
1320 2.02 0.69 151.9 74 0.45 24.7 13.6 21.8 19.1 16.0 13.8 22.3 
1330 2.04 0.68 151.4 76 0.44 24.9 13.7 21.3 18.7 15.5 13.7 22.5 
1340 2.04 0.68 149.8 83 0.44 25.1 13.8 21.6 19.0 13.7 13.1 22.7 
1350 2.03 0.66 150.5 76 0.44 25.3 13.9 22.3 19.5 16.0 14.0 23.0 
1360 2.04 0.63 151.8 75 0.45 25.5 14.0 22.8 19.9 16.6 14.3 23.3 
1370 2.02 0.65 152.4 76 0.45 25.7 14.1 23.2 20.1 17.1 14.5 23.5 
1380 2.07 0.65 153.9 72 0.44 25.9 14.2 22.9 20.0 16.4 14.9 23.6 
1390 2.07 0.71 147.5 63 0.42 26.1 14.3 21.6 19.1 15.3 13.8 23.6 
1400 2.05 0.65 150.9 58 0.43 26.3 14.4 22.3 19.7 14.6 14.6 24.0 
1410 2.05 0.63 151.4 62 0.43 26.5 14.5 22.7 20.0 15.4 14.4 24.3 
1420 2.03 0.65 150.2 73 0.44 26.7 14.6 23.7 20.7 16.4 14.8 24.5 
1430 2.01 0.57 153.6 70 0.45 26.9 14.7 24.5 21.2 17.7 15.4 24.9 
1440 2.06 0.60 152.2 75 0.43 27.1 14.8 23.6 20.7 16.8 15.4 25.0 
1450 2.05 0.57 152.4 75 0.43 27.3 14.9 23.8 20.9 17.9 15.8 25.3 
1460 2.09 0.69 144.6 83 0.42 27.5 15.0 22.7 20.1 15.5 14.2 25.1 
1470 2.10 0.61 150.0 73 0.42 27.7 15.1 23.0 20.4 17.3 15.4 25.6 
1480 2.04 0.60 148.5 69 0.43 27.9 15.2 24.8 21.6 16.9 15.2 25.8 
1490 2.01 0.54 155.7 68 0.45 28.1 15.3 26.3 22.6 18.9 17.0 26.3 
1500 2.05 0.53 156.7 61 0.44 28.3 15.4 25.4 22.1 17.2 17.6 26.5 
1510 1.96 0.48 160.2 69 0.47 28.5 15.5 28.0 23.8 21.2 18.0 26.9 
1520 2.05 0.56 153.9 69 0.44 28.7 15.6 26.3 22.8 19.0 16.9 26.8 
1530 1.96 0.55 154.5 69 0.47 28.9 15.8 28.4 24.2 22.4 17.7 27.0 
1540 1.96 0.47 155.2 59 0.46 29.1 15.9 28.5 24.3 18.3 17.9 27.5 
1550 2.00 0.51 156.4 67 0.46 29.3 16.0 28.4 24.3 21.3 18.2 27.6 
1560 2.06 0.49 161.8 62 0.45 29.5 16.1 27.9 24.0 21.1 19.0 27.9 
1570 2.01 0.48 156.6 76 0.46 29.7 16.2 28.7 24.6 21.9 18.7 28.1 
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1580 2.05 0.49 160.1 77 0.46 29.9 16.3 29.1 24.8 23.0 19.3 28.2 
1590 2.13 0.51 154.5 66 0.43 30.1 16.4 26.7 23.2 21.9 18.5 28.4 
1600 2.03 0.43 161.9 59 0.46 30.3 16.5 29.3 25.1 22.3 19.8 28.8 
1610 2.04 0.45 161.1 64 0.46 30.5 16.6 29.8 25.4 21.8 19.7 29.0 
1620 1.97 0.45 159.6 72 0.47 30.7 16.7 30.6 26.0 22.6 19.8 29.2 
1630 2.03 0.43 163.3 72 0.46 30.9 16.8 30.5 25.9 22.8 20.5 29.4 
1640 1.98 0.43 159.7 69 0.47 31.1 16.9 31.1 26.4 16.4 19.5 29.5 
1650 2.01 0.45 160.4 77 0.46 31.3 17.0 31.0 26.3 24.4 20.6 29.8 
1660 2.03 0.46 164.9 81 0.46 31.5 17.1 31.3 26.6 23.2 21.2 30.0 
1670 2.03 0.47 162.7 82 0.46 31.7 17.2 31.5 26.7 23.3 21.2 30.1 
1680 2.03 0.49 160.3 66 0.45 31.9 17.3 31.2 26.6 23.8 21.0 30.3 
1690 2.01 0.45 161.0 68 0.46 32.1 17.4 31.9 27.1 23.8 21.3 30.6 
1700 1.97 0.40 166.9 70 0.48 32.3 17.5 33.2 28.0 20.1 20.8 30.9 
1710 1.94 0.43 162.9 62 0.49 32.5 17.6 34.3 28.7 26.3 22.1 31.1 
1720 2.07 0.44 151.8 65 0.43 32.7 17.7 30.4 26.2 23.8 20.5 31.3 
1730 1.95 0.40 167.0 80 0.48 32.9 17.8 34.4 28.9 26.5 22.9 31.5 
1740 1.94 0.40 164.3 92 0.48 33.1 17.9 34.5 29.0 27.2 22.7 31.8 
1750 1.92 0.42 167.0 90 0.49 33.2 18.0 35.4 29.6 28.0 23.3 31.9 
1760 1.95 0.43 166.5 88 0.49 33.4 18.1 35.3 29.6 27.6 23.4 32.0 
1770 1.93 0.42 160.9 78 0.48 33.6 18.2 35.1 29.5 27.8 22.5 32.3 
1780 1.98 0.40 166.0 85 0.48 33.8 18.3 35.2 29.6 28.3 23.6 32.5 
1790 1.93 0.42 162.3 90 0.49 34.0 18.5 36.3 30.4 29.6 23.4 32.6 
1800 1.94 0.40 156.7 63 0.47 34.2 18.6 35.4 29.8 27.5 22.4 32.9 
1810 1.94 0.38 162.1 72 0.48 34.4 18.7 36.1 30.3 28.1 23.3 33.1 
1820 1.90 0.42 154.0 81 0.48 34.6 18.8 36.5 30.6 29.4 22.3 33.2 
1830 1.89 0.41 153.7 67 0.49 34.8 18.9 36.8 30.8 28.3 22.3 33.4 
1840 1.92 0.40 155.3 59 0.47 34.9 19.0 36.1 30.4 28.5 23.1 33.6 
1850 2.00 0.40 159.5 58 0.47 35.1 19.1 36.3 30.6 28.9 23.8 33.9 
1860 1.91 0.36 165.9 58 0.49 35.3 19.2 37.8 31.6 30.3 24.6 34.2 
1870 1.90 0.38 161.5 59 0.49 35.5 19.3 38.0 31.8 30.1 24.3 34.3 
1880 1.95 0.37 160.3 58 0.48 35.7 19.4 37.5 31.5 29.4 24.2 34.5 
1890 1.94 0.41 158.5 58 0.48 35.9 19.5 37.7 31.6 27.6 24.4 34.6 
1900 2.04 0.37 160.1 57 0.46 36.1 19.6 36.4 30.8 28.8 24.9 35.0 
1910 2.12 0.44 141.3 52 0.42 36.3 19.7 33.6 29.0 27.9 22.0 34.9 
1920 1.93 0.40 160.7 58 0.48 36.5 19.8 38.6 32.3 29.2 25.3 35.2 
1930 2.02 0.39 166.3 65 0.46 36.7 19.9 37.6 31.7 29.3 26.3 35.4 
1940 1.98 0.39 162.2 57 0.46 36.9 20.0 37.8 31.9 29.4 25.7 35.6 
1950 2.04 0.43 160.7 60 0.44 37.1 20.1 36.5 31.0 28.5 25.7 35.7 
1960 2.02 0.44 157.5 62 0.45 37.3 20.2 37.3 31.6 27.4 25.5 35.9 
1970 2.05 0.42 161.6 56 0.44 37.5 20.3 36.7 31.3 27.2 26.2 36.1 
1980 2.06 0.44 153.4 61 0.44 37.7 20.4 36.9 31.4 27.9 25.5 36.3 
1990 2.03 0.44 155.1 62 0.45 37.9 20.5 37.6 31.9 27.5 25.4 36.5 
2000 2.03 0.41 156.4 63 0.45 38.1 20.6 38.3 32.4 29.9 26.0 36.8 
2010 2.07 0.44 149.5 81 0.42 38.3 20.7 36.2 31.1 28.8 24.3 36.9 
2020 2.04 0.41 149.2 73 0.43 38.5 20.8 37.1 31.7 27.8 24.5 37.2 
2030 2.09 0.47 147.0 64 0.42 38.7 20.9 36.5 31.3 28.9 24.5 37.2 
2040 2.04 0.45 153.5 68 0.44 38.9 21.1 38.7 32.8 29.5 25.9 37.5 
2050 2.09 0.41 150.7 74 0.41 39.1 21.2 35.4 30.7 28.6 25.7 37.8 
2060 2.07 0.41 150.3 70 0.43 39.3 21.3 37.6 32.2 28.4 25.7 38.0 
2070 2.03 0.40 151.7 70 0.45 39.5 21.4 39.6 33.5 30.0 26.3 38.2 
2080 2.02 0.38 151.6 68 0.44 39.7 21.5 39.2 33.3 28.5 26.4 38.5 
2090 2.05 0.44 150.3 65 0.43 39.9 21.6 38.5 32.8 28.5 26.2 38.5 
2100 2.04 0.43 146.0 75 0.39 40.1 21.7 34.6 30.3 29.7 24.3 38.7 
2110 2.06 0.39 151.7 76 0.43 40.3 21.8 39.5 33.6 29.3 27.0 39.1 
2120 2.06 0.43 142.5 69 0.42 40.5 21.9 38.5 33.0 29.4 25.1 39.2 
2130 2.08 0.41 146.1 66 0.42 40.7 22.0 38.9 33.3 28.7 26.3 39.4 
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2140 2.07 0.48 144.6 79 0.43 40.9 22.1 39.6 33.8 31.2 26.0 39.4 
2150 2.23 1.03 85.1 51 0.23 41.1 22.2 8.8 13.2 19.0 -21.6 37.7 
2160 2.03 0.43 153.9 69 0.44 41.3 22.3 41.5 35.1 31.1 28.2 39.9 
2170 2.05 0.42 149.5 71 0.43 41.5 22.4 40.5 34.5 29.3 27.1 40.2 
2180 2.09 0.47 143.7 72 0.40 41.7 22.5 38.1 32.9 30.5 26.4 40.2 
2190 2.27 0.51 138.7 65 0.37 41.9 22.6 35.2 31.0 28.3 25.0 40.4 
2200 2.03 0.42 147.4 65 0.43 42.1 22.7 41.2 35.0 27.8 27.9 40.8 
2210 2.07 0.40 149.1 74 0.43 42.3 22.8 41.4 35.2 30.7 28.2 41.1 
2220 2.08 0.43 150.3 70 0.42 42.5 22.9 41.1 35.1 31.2 28.2 41.2 
2230 2.07 0.45 146.4 70 0.42 42.7 23.0 41.6 35.4 29.6 28.1 41.4 
2240 2.04 0.39 152.3 72 0.44 42.9 23.1 43.0 36.4 33.0 29.3 41.8 
2250 2.07 0.40 150.6 79 0.43 43.1 23.2 42.8 36.3 33.1 29.7 42.0 
2260 2.06 0.41 150.1 76 0.43 43.4 23.3 42.9 36.4 32.5 29.7 42.1 
2270 2.09 0.39 148.8 72 0.42 43.6 23.4 42.3 36.0 33.1 29.5 42.4 
2280 2.07 0.43 151.3 69 0.43 43.8 23.5 43.2 36.6 32.5 30.2 42.5 
2290 2.13 0.46 145.5 69 0.42 44.0 23.6 42.3 36.1 30.9 28.8 42.6 
2300 2.08 0.35 152.3 75 0.43 44.2 23.8 44.0 37.3 33.6 30.7 43.1 
2310 2.02 0.42 151.7 79 0.44 44.4 23.9 44.9 37.9 33.0 31.0 43.1 
2320 2.27 0.41 149.8 70 0.40 44.6 24.0 41.8 35.8 33.8 30.8 43.4 
2330 2.02 0.39 150.2 69 0.44 44.8 24.1 45.5 38.4 34.4 30.8 43.6 
2340 2.28 0.43 139.4 68 0.39 45.0 24.2 40.2 34.9 32.0 28.5 43.7 
2350 2.06 0.41 145.3 85 0.42 45.2 24.3 44.3 37.7 27.5 28.4 44.0 
2360 2.02 0.43 149.0 69 0.44 45.4 24.4 46.7 39.2 36.0 31.5 44.1 
2370 2.08 0.42 148.6 65 0.43 45.6 24.5 45.6 38.6 34.9 31.4 44.4 
2380 2.17 0.43 146.0 72 0.39 45.8 24.6 41.6 35.9 32.6 30.9 44.6 
2390 2.10 0.43 140.9 74 0.41 46.0 24.7 44.1 37.6 33.3 29.7 44.8 
2400 2.07 0.44 147.6 68 0.41 46.2 24.8 44.3 37.8 32.6 31.4 44.9 
2410 2.10 0.37 151.3 67 0.42 46.4 24.9 45.7 38.8 34.4 32.5 45.4 
2420 2.14 0.39 143.4 66 0.40 46.6 25.0 44.3 37.9 34.4 31.5 45.5 
2430 2.02 0.37 154.5 63 0.45 46.8 25.1 48.8 40.9 37.2 33.9 45.7 
2440 2.47 0.43 155.7 69 0.38 47.0 25.2 41.5 36.1 33.8 33.9 45.8 
2450 2.07 0.37 147.9 82 0.42 47.2 25.3 46.5 39.5 35.6 32.8 46.2 
2460 2.12 0.32 151.8 76 0.41 47.4 25.4 46.2 39.2 32.5 33.2 46.5 
2470 2.12 0.39 147.1 63 0.40 47.7 25.5 45.0 38.5 34.9 33.0 46.5 
2480 2.04 0.34 152.5 70 0.44 47.9 25.6 49.2 41.3 37.4 34.6 46.9 
2490 2.09 0.37 151.3 71 0.41 48.1 25.7 47.1 40.0 34.2 34.6 47.0 
2500 2.10 0.39 151.3 72 0.42 48.3 25.8 47.9 40.5 36.9 34.2 47.1 
2510 2.12 0.32 147.4 71 0.41 48.5 25.9 47.3 40.2 35.9 33.8 47.6 
2520 2.11 0.38 147.1 74 0.41 48.7 26.0 47.3 40.2 37.1 34.0 47.6 
2530 2.17 0.44 153.2 74 0.40 48.9 26.1 46.6 39.8 36.9 35.5 47.6 
2540 2.17 0.36 142.1 76 0.39 49.1 26.2 45.5 39.1 34.8 32.6 48.1 
2550 2.19 0.37 141.0 70 0.38 49.3 26.3 45.2 38.9 32.9 32.7 48.3 
2560 2.06 0.35 149.5 62 0.43 49.5 26.5 50.4 42.4 36.8 35.3 48.5 
2570 2.12 0.34 149.7 64 0.41 49.7 26.6 49.1 41.6 37.0 35.7 48.8 
2580 2.13 0.38 144.5 70 0.40 50.0 26.7 47.9 40.8 34.9 34.1 48.9 
2590 2.16 0.44 134.6 62 0.38 50.2 26.8 45.8 39.5 32.9 31.7 49.0 
2600 2.16 0.39 145.7 73 0.39 50.4 26.9 47.6 40.7 36.6 35.4 49.3 
2610 2.20 0.40 140.6 66 0.37 50.6 27.0 45.6 39.4 35.9 33.4 49.5 
2620 2.15 0.36 147.5 68 0.39 50.8 27.1 48.4 41.3 36.4 36.1 49.8 
2630 2.15 0.36 140.6 66 0.39 51.0 27.2 47.9 41.0 36.3 35.1 50.0 
2640 2.23 0.35 139.9 61 0.39 51.2 27.3 48.1 41.2 37.6 34.8 50.3 
2650 2.24 0.33 133.8 59 0.37 51.4 27.4 46.4 40.1 32.4 32.6 50.5 
2660 2.17 0.35 142.2 68 0.38 51.7 27.5 48.1 41.2 35.1 35.0 50.7 
2670 2.29 0.40 131.5 61 0.34 51.9 27.6 42.1 37.2 33.2 32.5 50.8 
2680 2.18 0.37 138.4 62 0.38 52.1 27.7 47.7 41.1 34.4 33.2 51.1 
2690 2.14 0.40 138.6 62 0.37 52.3 27.8 47.8 41.1 34.1 33.8 51.2 
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2700 2.24 0.39 136.4 73 0.37 52.5 27.9 46.9 40.6 37.3 34.1 51.5 
2710 2.19 0.42 137.2 70 0.38 52.7 28.0 48.5 41.7 36.7 34.5 51.6 
2720 2.21 0.42 136.4 62 0.36 53.0 28.1 46.4 40.3 34.9 33.8 51.8 
2730 2.27 0.43 133.5 68 0.34 53.2 28.2 43.7 38.5 34.1 33.9 52.0 
2740 2.17 0.47 130.3 62 0.35 53.4 28.3 46.5 40.4 32.2 32.3 52.1 
2750 2.18 0.37 132.8 64 0.35 53.6 28.4 46.8 40.7 34.0 34.2 52.6 
2760 2.29 0.39 127.4 63 0.32 53.8 28.5 42.2 37.6 30.5 31.7 52.8 
2770 2.34 0.38 128.1 60 0.32 54.1 28.6 42.1 37.6 31.8 32.8 53.1 
2780 2.28 0.40 125.6 61 0.32 54.3 28.7 43.1 38.3 34.2 31.5 53.2 
2790 2.19 0.39 133.4 74 0.35 54.5 28.8 47.5 41.3 31.1 34.8 53.5 
2800 2.18 0.41 139.9 61 0.36 54.7 28.9 49.3 42.5 35.1 37.0 53.6 
2810 2.17 0.36 124.0 74 0.36 54.9 29.1 48.7 42.1 37.0 32.6 54.0 
2820 2.25 0.40 134.9 66 0.34 55.2 29.2 47.1 41.2 36.4 35.5 54.1 
2830 2.24 0.34 137.4 64 0.36 55.4 29.3 49.2 42.5 36.3 37.3 54.5 
2840 2.30 0.44 133.2 73 0.34 55.6 29.4 46.5 40.8 34.1 35.8 54.4 
2850 2.31 0.39 123.8 51 0.31 55.8 29.5 42.4 38.1 35.1 32.0 54.8 
2860 2.31 0.29 133.7 58 0.33 56.1 29.6 45.8 40.4 28.2 29.2 55.2 
2870 2.25 0.36 131.5 55 0.35 56.3 29.7 49.1 42.6 35.4 36.0 55.3 
2880 2.29 0.32 127.4 56 0.33 56.5 29.8 46.4 40.9 33.7 34.4 55.7 
2890 2.28 0.38 130.0 52 0.32 56.7 29.9 46.1 40.7 32.1 28.0 55.7 
2900 2.31 0.37 126.9 52 0.32 56.9 30.0 45.7 40.5 32.0 34.5 56.0 
2910 2.25 0.34 130.7 63 0.34 57.2 30.1 49.2 42.8 35.6 36.1 56.3 
2920 2.18 0.30 137.9 54 0.37 57.4 30.2 53.0 45.4 38.8 39.1 56.6 
2930 2.28 0.45 125.6 47 0.32 57.6 30.3 46.4 41.1 34.5 0.0 56.4 
2940 2.39 0.42 127.1 47 0.29 57.8 30.4 41.3 37.7 30.3 0.0 56.7 
2950 2.25 0.35 134.3 50 0.35 58.1 30.5 51.6 44.6 37.4 0.0 57.2 
2960 2.23 0.36 131.0 52 0.35 58.3 30.6 51.6 44.6 37.0 37.2 57.4 
2970 2.30 0.34 132.2 52 0.33 58.5 30.7 48.5 42.5 35.7 30.6 57.6 
2980 2.31 0.47 118.2 50 0.30 58.7 30.8 44.3 39.8 33.8 0.0 57.5 
2990 2.32 0.45 122.8 51 0.31 59.0 30.9 46.3 41.2 35.1 34.1 57.8 
3000 2.29 0.37 126.3 55 0.33 59.2 31.0 50.1 43.8 36.1 36.5 58.3 
3010 2.39 0.47 119.0 48 0.28 59.4 31.1 41.8 38.3 33.9 6.9 58.2 
3020 2.32 0.49 116.0 47 0.28 59.6 31.2 42.7 38.9 32.8 0.0 58.4 
3030 2.22 0.45 116.1 40 0.31 59.9 31.3 46.8 41.6 36.6 0.0 58.7 
3040 2.27 0.44 120.4 47 0.31 60.1 31.4 47.8 42.3 36.8 0.0 59.0 
3050 2.36 0.46 126.4 59 0.31 60.3 31.5 47.4 42.1 39.9 38.1 59.1 
3060 2.16 0.39 136.3 58 0.37 60.5 31.6 56.9 48.5 42.9 40.7 59.5 
3070 2.49 0.37 114.3 84 0.23 60.8 31.8 31.8 31.8 31.2 31.0 59.8 
3080 2.36 0.48 108.6 86 0.25 61.0 31.9 38.5 36.3 22.1 22.3 59.7 
3090 2.41 0.60 109.7 64 0.25 61.2 32.0 38.3 36.2 29.1 28.0 59.7 
3100 2.36 0.56 108.0 60 0.25 61.5 32.1 38.1 36.1 29.6 25.7 60.0 
3110 2.41 0.74 110.2 72 0.23 61.7 32.2 33.3 32.9 28.3 26.8 59.7 
3120 2.43 0.63 107.2 80 0.24 61.9 32.3 36.0 34.8 27.1 25.1 60.2 
3130 2.38 0.73 107.1 69 0.24 62.2 32.4 36.7 35.2 28.5 24.8 60.2 
3140 2.50 0.72 108.2 71 0.21 62.4 32.5 31.5 31.8 21.0 25.6 60.4 
3150 2.39 0.57 114.5 81 0.26 62.6 32.6 41.4 38.5 27.3 33.3 61.2 
3160 2.46 0.57 113.4 88 0.24 62.9 32.7 38.0 36.2 27.2 30.6 61.4 
3170 2.41 0.48 114.0 71 0.24 63.1 32.8 38.1 36.3 29.9 32.3 61.9 
3180 2.42 1.27 89.1 41 0.17 63.4 32.9 22.8 26.2 10.6 0.0 59.5 
3190 2.50 0.88 98.5 47 0.20 63.6 33.0 30.0 31.0 22.2 0.0 61.5 
3200 2.41 0.56 115.0 32 0.26 63.8 33.1 43.1 39.7 32.8 0.0 62.4 
3210 2.47 0.85 97.9 45 0.18 64.1 33.2 24.8 27.6 7.7 0.0 61.5 
3220 2.48 0.81 95.0 43 0.17 64.3 33.3 22.8 26.3 15.5 0.0 62.1 
3230 2.50 0.88 91.0 38 0.16 64.6 33.4 19.1 23.9 12.4 0.0 62.0 
3240 2.55 0.54 111.5 68 0.21 64.8 33.5 32.4 32.8 23.6 30.0 63.5 
3250 2.38 0.57 114.1 27 0.25 65.1 33.6 42.6 39.6 30.9 0.0 63.6 
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3260 0.69 110.8 16 0.26 65.3 33.7 0.0 0.0 0.0 0.0 63.4 
3270 2.49 1.01 96.7 31 0.18 65.5 33.8 27.4 29.5 29.6 0.0 62.7 
3280 2.56 1.95 78.2 18 0.16 65.7 33.9 0.0 0.0 0.0 0.0 59.3 
3290 2.36 0.75 75.0 9 0.23 66.0 34.0 0.0 0.0 0.0 0.0 63.9 
3300 2.49 2.24 68.2 11 0.12 66.2 34.1 0.0 0.0 0.0 0.0 58.2 
3310 2.46 1.90 68.7 10 0.13 66.4 34.2 0.0 0.0 0.0 0.0 59.8 
3320 2.48 1.94 67.5 13 0.13 66.7 34.3 0.0 0.0 0.0 0.0 60.4 
3330 2.46 1.70 67.4 9 0.16 66.9 34.5 0.0 0.0 0.0 0.0 61.3 
3340 2.36 1.06 72.6 11 0.18 67.2 34.6 0.0 0.0 0.0 0.0 64.0 
3350 2.44 1.36 72.5 11 0.19 67.4 34.7 0.0 0.0 0.0 0.0 63.4 
3360 2.46 1.18 73.2 12 0.18 67.6 34.8 0.0 0.0 0.0 0.0 64.3 
3370 2.36 0.75 71.6 9 0.20 67.9 34.9 0.0 0.0 0.0 0.0 65.9 
3380 2.50 2.07 74.0 12 0.11 68.1 35.0 0.0 0.0 0.0 0.0 61.3 
3390 2.62 6.07 62.2 13 0.04 68.4 35.1 0.0 0.0 0.0 0.0 44.3 
3400 2.59 3.92 59.0 7 0.07 68.6 35.2 0.0 0.0 0.0 0.0 53.9 
3410 2.48 1.52 62.2 6 0.10 68.9 35.3 0.0 0.0 0.0 0.0 64.2 
3420 2.52 1.94 63.1 6 0.08 69.1 35.4 0.0 0.0 0.0 0.0 63.6 
3430 2.46 0.86 67.2 7 0.14 69.3 35.5 0.0 0.0 0.0 0.0 67.0 
3440 2.51 1.70 62.7 7 0.08 69.6 35.6 0.0 0.0 0.0 0.0 64.0 
3450 2.51 1.63 60.9 6 0.08 69.8 35.7 0.0 0.0 0.0 0.0 65.1 
3460 2.56 2.68 58.7 7 0.06 70.1 35.8 0.0 0.0 0.0 0.0 60.8 
3470 2.52 1.43 65.2 7 0.10 70.3 35.9 0.0 0.0 0.0 0.0 66.3 
3480 2.48 1.05 65.6 7 0.11 70.6 36.0 0.0 0.0 0.0 0.0 67.8 
3490 2.53 2.85 59.3 6 0.06 70.8 36.1 0.0 0.0 0.0 0.0 58.4 
3500 2.45 0.96 64.1 6 0.11 71.1 36.2 0.0 0.0 0.0 0.0 68.2 
3510 2.61 5.46 55.0 6 0.04 71.3 36.3 0.0 0.0 0.0 0.0 50.5 
3520 2.58 3.50 58.7 7 0.06 71.6 36.4 0.0 0.0 0.0 0.0 59.3 
3530 2.43 0.78 69.2 6 0.15 71.8 36.5 0.0 0.0 0.0 0.0 69.3 
3540 2.53 2.32 59.6 7 0.07 72.1 36.6 0.0 0.0 0.0 0.0 64.1 
3550 2.56 2.43 62.1 7 0.08 72.3 36.7 0.0 0.0 0.0 0.0 63.5 
3560 2.58 3.77 61.1 7 0.06 72.6 36.8 0.0 0.0 0.0 0.0 58.4 
3570 2.58 3.59 57.0 6 0.05 72.8 36.9 0.0 0.0 0.0 0.0 59.0 
3580 2.59 4.34 57.5 7 0.06 73.1 37.1 0.0 0.0 0.0 0.0 56.7 
3590 2.55 2.58 60.8 7 0.07 73.3 37.2 0.0 0.0 0.0 0.0 65.0 
3600 2.59 4.88 57.2 7 0.04 73.6 37.3 0.0 0.0 0.0 0.0 52.1 
3610 2.60 3.96 58.1 7 0.05 73.8 37.4 0.0 0.0 0.0 0.0 58.7 
3620 2.61 7.97 55.6 10 0.04 74.1 37.5 0.0 0.0 0.0 0.0 35.9 
3630 2.62 7.03 55.7 7 0.03 74.4 37.6 0.0 0.0 0.0 0.0 41.4 
3640 2.65 7.97 52.8 7 0.03 74.6 37.7 0.0 0.0 0.0 0.0 36.7 
3650 2.64 10.01 55.4 9 0.03 74.9 37.8 0.0 0.0 0.0 0.0 17.8 
3660 2.60 6.60 55.6 8 0.04 75.1 37.9 0.0 0.0 0.0 0.0 43.8 
3670 2.57 4.04 65.9 13 0.09 75.4 38.0 0.0 0.0 0.0 0.0 59.6 
3680 2.57 3.23 64.5 15 0.12 75.6 38.1 0.0 0.0 0.0 0.0 64.9 
3690 2.50 2.65 68.1 12 0.13 75.9 38.2 0.0 0.0 0.0 0.0 66.6 
3700 2.56 3.54 65.5 12 0.10 76.1 38.3 0.0 0.0 0.0 0.0 63.9 
3710 2.56 3.40 67.4 12 0.10 76.4 38.4 0.0 0.0 0.0 0.0 63.7 
3720 2.54 4.86 65.1 13 0.09 76.6 38.5 0.0 0.0 0.0 0.0 57.2 
3730 2.60 5.06 62.5 10 0.08 76.9 38.6 0.0 0.0 0.0 0.0 56.1 
3740 2.55 3.71 65.7 12 0.09 77.1 38.7 0.0 0.0 0.0 0.0 63.1 
3750 2.51 2.74 66.8 11 0.12 77.4 38.8 0.0 0.0 0.0 0.0 68.5 
3760 2.56 4.67 66.4 9 0.07 77.6 38.9 0.0 0.0 0.0 0.0 60.8 
3770 2.59 5.47 62.5 14 0.06 77.9 39.0 0.0 0.0 0.0 0.0 54.1 
3780 2.60 6.66 64.7 16 0.07 78.1 39.1 0.0 0.0 0.0 0.0 47.5 
3790 2.61 6.46 62.7 16 0.06 78.4 39.2 0.0 0.0 0.0 0.0 49.9 
3800 2.58 7.02 71.9 12 0.06 78.6 39.3 0.0 0.0 0.0 0.0 46.5 
3810 2.62 7.18 65.2 12 0.05 78.9 39.4 0.0 0.0 0.0 0.0 46.0 
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3820 2.60 5.74 60.6 15 0.06 79.2 39.5 0.0 0.0 0.0 0.0 54.4 
3830 2.60 5.76 64.1 15 0.08 79.4 39.6 0.0 0.0 0.0 0.0 55.3 
3840 2.57 5.64 61.3 11 0.07 79.7 39.8 0.0 0.0 0.0 0.0 56.3 
3850 2.55 5.35 63.2 12 0.09 79.9 39.9 0.0 0.0 0.0 0.0 57.4 
3860 2.59 5.75 64.8 15 0.07 80.2 40.0 0.0 0.0 0.0 0.0 56.8 
3870 2.61 6.21 62.6 17 0.07 80.4 40.1 0.0 0.0 0.0 0.0 54.6 
3880 2.58 7.55 61.4 13 0.06 80.7 40.2 0.0 0.0 0.0 0.0 46.5 
3890 2.59 7.63 61.6 15 0.07 80.9 40.3 0.0 0.0 0.0 0.0 47.0 
3900 2.57 6.23 62.3 16 0.06 81.2 40.4 0.0 0.0 0.0 0.0 53.5 
3910 2.62 7.18 60.1 16 0.06 81.4 40.5 0.0 0.0 0.0 0.0 49.4 
3920 2.59 7.16 60.9 12 0.06 81.7 40.6 0.0 0.0 0.0 0.0 49.2 
3930 2.60 10.57 58.2 10 0.04 81.9 40.7 0.0 0.0 0.0 0.0 23.4 
3940 2.59 7.40 63.9 14 0.05 82.2 40.8 0.0 0.0 0.0 0.0 46.7 
3950 2.60 5.79 68.8 15 0.06 82.5 40.9 0.0 0.0 0.0 0.0 55.7 
3960 2.61 10.92 57.3 8 0.03 82.7 41.0 0.0 0.0 0.0 0.0 22.8 
3970 2.56 5.08 57.9 8 0.08 83.0 41.1 0.0 0.0 0.0 0.0 63.6 
3980 2.59 7.60 58.5 6 0.03 83.2 41.2 0.0 0.0 0.0 0.0 46.4 
3990 2.56 4.57 57.2 7 0.07 83.5 41.3 0.0 0.0 0.0 0.0 67.0 
4000 2.61 7.27 59.1 8 0.05 83.7 41.4 0.0 0.0 0.0 0.0 52.3 
4010 2.60 7.01 65.4 9 0.04 84.0 41.5 0.0 0.0 0.0 0.0 53.6 
4020 2.59 6.18 58.1 7 0.05 84.2 41.6 0.0 0.0 0.0 0.0 58.7 
4030 2.61 11.22 56.9 8 0.03 84.5 41.7 0.0 0.0 0.0 0.0 25.5 
4040 2.57 5.20 66.4 12 0.05 84.7 41.8 0.0 0.0 0.0 0.0 64.7 
4050 2.63 10.63 56.5 11 0.03 85.0 41.9 0.0 0.0 0.0 0.0 29.8 
4060 2.56 3.92 71.9 24 0.10 85.3 42.0 0.0 0.0 0.0 0.0 62.6 
4070 2.61 8.47 60.6 16 0.06 85.5 42.1 0.0 0.0 0.0 0.0 48.0 
4080 2.61 8.95 57.9 13 0.05 85.8 42.2 0.0 0.0 0.0 0.0 44.2 
4090 2.61 4.27 61.4 17 0.08 86.0 42.3 0.0 0.0 0.0 0.0 71.2 
4100 2.62 9.25 60.9 12 0.04 86.3 42.5 0.0 0.0 0.0 0.0 42.2 
4110 2.60 5.57 57.9 8 0.06 86.5 42.6 0.0 0.0 0.0 0.0 64.5 
4120 2.56 3.82 59.2 11 0.08 86.8 42.7 0.0 0.0 0.0 0.0 74.2 
4130 2.59 4.64 60.6 14 0.07 87.0 42.8 0.0 0.0 0.0 0.0 71.5 
4140 2.60 4.87 62.9 15 0.07 87.3 42.9 0.0 0.0 0.0 0.0 69.8 
4150 2.56 3.46 69.1 24 0.13 87.5 43.0 0.0 0.0 0.0 0.0 77.1 
4160 2.30 0.91 94.7 42 0.26 87.8 43.1 73.4 63.3 47.4 0.0 85.8 
4170 2.57 3.95 62.3 11 0.08 88.0 43.2 0.0 0.0 0.0 0.0 74.6 
4180 2.60 3.43 66.0 19 0.09 88.3 43.3 0.0 0.0 0.0 0.0 78.0 
4190 2.60 3.83 63.1 17 0.09 88.6 43.4 0.0 0.0 0.0 0.0 75.8 
4200 2.60 4.13 62.2 17 0.07 88.8 43.5 0.0 0.0 0.0 0.0 75.4 
4210 2.62 3.52 64.4 18 0.08 89.1 43.6 0.0 0.0 0.0 0.0 78.6 
4220 2.63 2.78 65.4 16 0.07 89.3 43.7 0.0 0.0 0.0 0.0 81.2 
4230 2.56 1.60 66.3 15 0.12 89.6 43.8 0.0 0.0 0.0 0.0 85.6 
4240 2.59 1.74 63.1 14 0.09 89.8 43.9 0.0 0.0 0.0 0.0 85.7 
4250 2.57 2.23 64.4 14 0.10 90.1 44.0 0.0 0.0 0.0 0.0 84.5 
4260 2.58 2.30 62.9 11 0.09 90.3 44.1 0.0 0.0 0.0 0.0 84.5 
4270 2.52 3.03 66.0 15 0.09 90.6 44.2 0.0 0.0 0.0 0.0 82.7 
4280 2.56 2.55 65.2 14 0.09 90.8 44.3 0.0 0.0 0.0 0.0 84.2 
4290 2.58 3.09 67.2 14 0.09 91.1 44.4 0.0 0.0 0.0 0.0 83.0 
4300 2.57 2.37 74.5 21 0.13 91.3 44.5 0.0 0.0 0.0 0.0 85.7 
4310 2.56 1.22 84.7 37 0.14 91.6 44.6 48.6 47.2 32.9 0.0 88.8 
4320 2.57 0.72 84.7 46 0.13 91.8 44.7 46.3 45.7 36.8 0.0 90.5 
4330 2.60 0.91 84.8 49 0.12 92.1 44.8 42.9 43.6 25.8 0.0 90.2 
4340 0.60 84.8 19 0.00 92.3 44.9 0.0 0.0 0.0 0.0 91.2 
4350 0.75 114.0 25 0.09 92.5 45.1 0.0 0.0 0.0 0.0 91.1 
4360 2.41 0.48 116.2 29 0.21 92.7 45.2 68.6 60.8 34.8 0.0 91.7 
4370 2.26 2.84 98.6 29 0.30 93.0 45.3 87.0 73.1 55.5 0.0 86.5 
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4380 2.38 2.47 98.1 25 0.24 93.2 45.4 75.7 65.6 56.0 0.0 87.6 
4390 2.27 3.03 102.1 27 0.30 93.4 45.5 87.8 73.7 64.7 0.0 85.7 
4400 2.48 1.19 101.5 45 0.19 93.7 45.6 64.6 58.2 51.6 0.0 91.3 
4410 2.35 1.09 134.9 100 0.25 93.9 45.7 79.9 68.5 58.0 74.4 91.7 
4420 2.42 0.69 125.9 104 0.22 94.1 45.8 71.9 63.2 57.8 71.6 92.8 
4430 2.37 0.68 131.8 120 0.24 94.4 45.9 76.7 66.4 53.0 74.2 93.1 
4440 2.39 0.80 130.7 125 0.24 94.6 46.0 76.9 66.6 59.5 74.2 93.1 
4450 2.54 0.89 114.6 73 0.17 94.8 46.1 60.6 55.7 57.1 65.3 93.2 
4460 2.40 0.73 115.4 68 0.22 95.1 46.2 74.9 65.3 54.7 66.7 93.8 
4470 2.30 1.41 137.5 93 0.25 95.3 46.3 81.0 69.4 67.2 76.9 92.3 
4480 2.27 1.63 137.2 120 0.31 95.5 46.4 93.0 77.5 71.9 78.0 91.9 
4490 2.33 1.14 133.9 116 0.24 95.8 46.5 79.4 68.4 66.7 76.4 93.4 
4500 2.24 8.17 129.3 103 0.32 96.0 46.6 94.9 78.8 71.0 75.1 64.9 
4510 2.22 25.31 117.9 95 0.33 96.2 46.7 96.7 80.0 73.5 71.1 -82.4 
4520 2.33 0.59 123.7 70 0.26 96.4 46.8 85.2 72.4 67.3 72.9 95.3 
4530 2.24 9.72 122.1 95 0.31 96.7 46.9 94.9 78.9 73.5 72.4 58.3 
4540 2.19 0.65 139.5 72 0.34 96.9 47.0 100.0 82.3 71.5 80.3 95.6 
4550 2.32 0.59 122.8 68 0.28 97.1 47.1 89.5 75.4 66.9 73.5 96.1 
4560 2.34 0.57 130.3 72 0.27 97.3 47.2 86.9 73.6 66.2 76.9 96.3 
4570 2.37 0.56 121.3 67 0.24 97.6 47.3 81.7 70.3 61.5 73.5 96.6 
4580 2.34 0.64 125.7 78 0.26 97.8 47.4 85.5 72.8 61.2 75.4 96.6 
4590 2.32 1.33 129.7 87 0.27 98.0 47.5 88.1 74.6 67.0 77.5 95.2 
4600 2.21 3.70 126.8 93 0.33 98.3 47.6 99.2 82.0 75.3 77.2 88.3 
4610 2.28 0.50 143.1 103 0.31 98.5 47.8 95.7 79.7 71.9 82.8 97.7 
4620 2.26 1.06 144.4 101 0.30 98.7 47.9 95.7 79.7 74.9 83.5 96.9 
4630 2.30 0.58 142.9 107 0.28 98.9 48.0 92.1 77.4 70.3 83.3 98.0 
4640 2.30 0.55 137.3 108 0.29 99.2 48.1 92.9 78.0 70.5 82.0 98.3 
4650 2.35 0.31 134.3 107 0.27 99.4 48.2 89.5 75.7 68.9 81.5 98.9 
4660 2.49 0.41 105.8 76 0.22 99.6 48.3 80.3 69.6 66.1 66.1 99.0 
4670 2.33 0.31 126.7 82 0.27 99.9 48.4 91.4 77.1 68.6 79.3 99.3 
4680 2.39 0.35 114.8 68 0.24 100.1 48.5 84.2 72.3 65.8 72.7 99.5 
4690 2.41 0.35 107.5 68 0.22 100.3 48.6 80.7 70.0 62.5 67.3 99.8 
4700 2.40 0.37 108.0 69 0.24 100.6 48.7 84.9 72.8 65.8 68.4 100.0 
4710 2.39 0.41 107.5 70 0.24 100.8 48.8 85.4 73.2 65.4 67.1 100.1 
4720 2.43 0.37 105.9 74 0.21 101.0 48.9 79.8 69.5 60.2 66.5 100.4 
4730 2.40 0.36 108.9 76 0.23 101.3 49.0 85.0 73.0 63.2 69.7 100.7 
4740 2.40 0.40 107.9 75 0.24 101.5 49.1 86.3 73.9 65.4 69.7 100.9 
4750 2.44 0.66 89.6 63 0.18 101.7 49.2 71.8 64.3 64.4 44.7 100.7 
4760 2.39 0.49 97.4 59 0.19 102.0 49.3 76.3 67.3 59.3 59.9 101.2 
4770 2.40 0.41 99.1 69 0.20 102.2 49.4 78.9 69.1 61.6 60.9 101.6 
4780 2.41 0.42 98.1 60 0.19 102.4 49.5 76.0 67.2 58.4 60.5 101.8 
4790 2.42 0.37 102.8 72 0.22 102.7 49.6 84.0 72.5 65.3 65.6 102.1 
4800 2.42 0.38 100.4 70 0.22 102.9 49.7 85.0 73.2 64.1 63.2 102.3 
4810 2.46 0.42 95.7 69 0.20 103.1 49.8 80.1 70.0 62.3 58.1 102.5 
4820 2.42 0.34 108.0 77 0.22 103.4 49.9 85.4 73.6 63.9 70.9 102.9 
4830 2.45 0.59 90.0 70 0.20 103.6 50.0 80.4 70.3 58.4 55.7 102.8 
4840 2.43 0.41 96.6 70 0.21 103.9 50.1 82.7 71.8 62.8 61.0 103.2 
4850 2.44 0.46 96.7 67 0.20 104.1 50.2 81.9 71.3 63.1 60.6 103.4 
4860 2.46 0.44 97.9 69 0.20 104.3 50.4 80.9 70.7 62.3 62.7 103.7 
4870 2.46 0.43 102.0 74 0.20 104.6 50.5 80.1 70.2 61.5 67.6 103.9 
4880 2.36 1.02 80.6 36 0.17 104.8 50.6 74.3 66.4 63.4 14.7 103.5 
4890 2.27 0.27 89.9 28 0.21 105.0 50.7 83.7 72.7 64.6 0.0 104.6 
4900 2.26 0.35 90.6 28 0.21 105.3 50.8 85.1 73.6 65.4 0.0 104.8 
4910 2.30 0.43 98.1 37 0.21 105.5 50.9 84.4 73.2 66.3 0.0 104.9 
4920 2.35 0.43 87.7 29 0.20 105.7 51.0 83.7 72.8 65.0 0.0 105.1 
4930 2.28 0.30 91.0 26 0.20 105.9 51.1 83.6 72.7 62.1 0.0 105.5 
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4940 2.31 0.54 89.1 30 0.20 106.2 51.2 82.8 72.3 64.6 0.0 105.4 
4950 2.27 0.38 87.6 31 0.20 106.4 51.3 84.8 73.6 62.1 0.0 105.8 
4960 2.29 0.39 87.3 27 0.20 106.6 51.4 82.9 72.4 66.0 0.0 106.0 
4970 2.25 0.35 86.0 21 0.21 106.8 51.5 0.0 0.0 0.0 0.0 106.3 
4980 2.46 0.52 88.8 66 0.19 107.1 51.6 81.6 71.6 61.5 51.4 106.3 
4990 2.52 0.51 87.2 74 0.15 107.3 51.7 72.8 65.7 54.7 51.5 106.6 
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The following table are the calculated pore pressure values used in Figure 3.19. Due 
to the fact that this study was based on a Gulf of Mexico well the pressure are 
measured in psi. 1 megaPascal (MPa) is equal 145 psi. 

Depth, 
measured Eaton PresGraf EQVD EQVD Eaton/EQVD PresG/EQ 
Water Depth=975 PresGraf normal trend Conoco Normal trend 

Pressure Pressure Pressure Pressure 
feet meters (psi) (psi) (psi) (psi) 
2715 827.5421 944.502 994.62 1287 0.949611 0.772821 
2770 844.3063 938.738 993.986 1298 0.944418 0.765783 
2786 849.1831 926.068 985.069 1308 0.940105 0.753111 
2807 855.584 913.98 976.99 1322 0.935506 0.739024 
2854 869.9098 919.338 985.123 1353 0.933222 0.728103 
2868 874.177 929.203 993.481 1340 0.9353 0.741404 
2894 882.1019 938.58 1003 1357 0.935773 0.73913 
2920 890.0268 942.417 1008 1373 0.934938 0.734159 
2966 904.0478 953.333 1021 1402 0.933725 0.728245 
2976 907.0958 969.038 1034 1409 0.937174 0.733854 
3008 916.8495 999.899 1061 1409 0.942412 0.753016 
3035 925.0792 1035 1093 1426 0.946935 0.76648 
3092 942.4531 1072 1127 1462 0.951198 0.770862 
3098 944.2819 1083 1136 1466 0.953345 0.774898 
3140 957.0836 1157 1200 1472 0.964167 0.815217 
3173 967.1422 1199 1237 1493 0.969281 0.828533 
3177 968.3614 1192 1232 1495 0.967532 0.82408 
3228 983.9064 1250 1283 1527 0.974279 0.84021 
3258 993.0505 1309 1334 1525 0.981259 0.874754 
3261 993.9649 1310 1336 1527 0.980539 0.874918 
3305 1007.376 1335 1360 1554 0.981618 0.875161 
3336 1016.825 1311 1342 1572 0.9769 0.85369 
3361 1024.445 1353 1379 1587 0.981146 0.868935 
3423 1043.343 1294 1334 1607 0.970015 0.830118 
3470 1057.669 1301 1343 1636 0.968727 0.820905 
3487 1062.851 1331 1369 1647 0.972243 0.831208 
3522 1073.519 1288 1335 1647 0.964794 0.810565 
3552 1082.663 1335 1377 1666 0.969499 0.826531 
3561 1085.406 1352 1392 1672 0.971264 0.832536 
3605 1098.817 1411 1444 1699 0.977147 0.849912 
3612 1100.951 1414 1447 1703 0.977194 0.849677 
3639 1109.181 1428 1461 1720 0.977413 0.849419 
3714 1132.041 1504 1530 1745 0.983007 0.876791 
3785 1153.682 1550 1574 1790 0.984752 0.87933 
3838 1169.837 1601 1620 1799 0.988272 0.9005 
3874 1180.81 1586 1610 1822 0.985093 0.883644 
3988 1215.557 1581 1613 1870 0.980161 0.862567 
4092 1247.257 1785 1794 1933 0.994983 0.928091 
4199 1279.871 1941 1935 2028 1.003101 0.954142 
4227 1288.405 2006 1992 2104 1.007028 0.946768 
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4274 1302.731 2092 2069 2216 1 .011116 0.933664 
4302 1311.266 2188 2154 2320 1 .015785 0.928448 
4331 1320.105 2261 2219 2409 1 .018927 0.921129 
4356 1327.725 2321 2272 2485 1 .021567 0.914286 
4372 1332.602 2349 2297 2516 1 .022638 0.912957 
4416 1346.013 2442 2380 2614 1 .02605 0.910482 
4449 1356.072 2489 2423 2674 1 .027239 0.906133 
4477 1364.606 2474 2413 2648 1 .02528 0.911254 
4526 1379.542 2483 2424 2654 1 .02434 0.913338 
4572 1393.563 2453 2402 2606 1 .021232 0.921719 
4577 1395.087 2451 2401 2602 1 .020825 0.922752 
4605 1403.621 2460 2410 2592 1 .020747 0.929784 
4636 1413.07 2502 2449 2643 1 .021641 0.926599 
4672 1424.043 2529 2475 2653 1 .021818 0.932906 
4696 1431.358 2540 2486 2673 1 .021722 0.930041 
4734 1442.941 2577 2521 2708 1 .022213 0.930945 
4815 1467.63 2680 2617 2828 1 .024073 0.925389 
4864 1482.565 2860 2777 3056 516.408 1 .029888 0.908704 
4892 1491.1 2922 2833 3134 675.434 1 .031415 0.903957 
4911 1496.891 2959 2867 3164 766.058 1 .032089 0.906131 
4930 1502.682 2977 2884 3181 792.8 1 .032247 0.906633 
4973 1515.789 3080 2978 3319 1068 1 .034251 0.897258 
5008 1526.457 3145 3037 3401 1222 1 .035561 0.892973 
5013 1527.981 3106 3003 3340 1080 1 .034299 0.899102 
5367 1635.881 3249 3157 3395 917.142 1 .029142 0.929897 
5517 1681.602 3353 3260 3502 993.994 1 .028528 0.930897 
5767 1757.803 3542 3446 3680 1154 1 .027858 0.936413 
5804 1769.081 3546 3452 3665 1100 1 .027231 0.941883 
5834 1778.225 3575 3481 3693 1140 1 .027004 0.942594 
5890 1795.294 3667 3566 3808 1332 1 .028323 0.93645 
5909 1801.085 3713 3609 3857 1455 1 028817 0.935701 
5940 1810.534 3760 3653 3912 1548 1 .029291 0.933793 
5967 1818.764 3804 3695 3963 1641 1 .029499 0.932374 
6004 1830.041 3844 3733 4006 1701 1 .029735 0.931852 
6007 1830.956 3841 3730 4002 1687 1 029759 0.932034 
6042 1841.624 3853 3743 4008 1660 1 029388 0.933882 
6083 1854.121 3883 3773 4042 1682 1 .029155 0.933449 
6112 1862.96 3916 3806 4063 1742 1 028902 0.936746 
6135 1869.971 3943 3831 4092 1786 1 029235 0.936217 
6160 1877.591 3963 3851 4114 1804 1 029083 0.936072 
6184 1884.906 3986 3874 4137 1835 1 028911 0.936427 
6221 1896.184 4026 3912 4172 1896 1 .029141 0.93768 
6269 1910.814 4082 3965 4241 1985 1 .029508 0.934921 
6280 1914.167 4094 3976 4254 2003 1 029678 0.93465 
6306 1922.092 4125 4008 4273 2062 1 029192 0.937983 
6336 1931.236 4157 4038 4309 2110 1 02947 0.937108 
6376 1943.428 4187 4068 4340 2133 1 029253 0.937327 
6388 1947.086 4183 4066 4326 2099 1 028775 0.939898 
6425 1958.364 4214 4096 4361 2128 1 028809 0.939234 
6455 1967.508 4213 4097 4353 2071 1 028313 0.94119 
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6480 1975.128 4204 4091 4338 2001 1 .027622 0.943061 
6522 1987.93 4234 4122 4349 2025 1 .027171 0.947804 
6530 1990.368 4234 4122 4335 2012 1 .027171 0.950865 
6585 2007.132 4250 4140 4353 1963 1 .02657 0.951068 
6612 2015.362 4247 4140 4342 1908 1 .025845 0.953478 
6647 2026.03 4206 4106 4282 1718 1 .024355 0.958898 
6658 2029.383 4206 4107 4279 1698 1 .024105 0.959804 
6687 2038.222 4163 4069 4213 1510 1 .023101 0.96582 
6708 2044.623 4157 4066 4222 1455 1 .022381 0.963051 
6739 2054.072 4167 4078 4211 1440 1 .021824 0.968416 
6771 2063.826 4180 4092 4230 1423 1 .021505 0.967376 
6789 2069.312 4201 4112 4248 1453 1 .021644 0.967985 
6817 2077.847 4233 4143 4273 1503 1 .021723 0.969576 
6845 2086.381 4253 4163 4300 1514 1 .021619 0.96814 
6996 2132.407 4309 4224 4348 1429 1 .020123 0.971481 
7019 2139.417 4323 4239 4359 1433 1 .019816 0.972471 
7036 2144.599 4297 4216 4339 1323 1 .019213 0.971652 
7071 2155.267 4317 4236 4358 1322 1 .019122 0.972006 
7086 2159.839 4321 4241 4360 1309 1 .018863 0.972706 
7119 2169.898 4397 4312 4430 1482 1 .019712 0.973363 
7163 2183.309 4512 4421 4541 1762 1 .020584 0.973574 
7180 2188.491 4554 4460 4591 1858 1 .021076 0.971466 
7213 2198.549 4641 4541 4682 2062 1 .022022 0.969885 
7247 2208.912 4735 4629 4784 2286 1 .022899 0.9676 
7292 2222.629 4810 4700 4862 2431 1 .023404 0.96668 
7294 2223.238 4810 4701 4864 2430 1 .023187 0.966488 
7337 2236.345 4863 4751 4907 2512 1 023574 0.968209 
7351 2240.612 4842 4733 4896 2427 1 02303 0.966708 
7392 2253.109 4889 4780 4932 2504 1 022803 0.969181 
7420 2261.644 4889 4783 4924 2457 1 .022162 0.971365 
7440 2267.74 4888 4783 4930 2418 1 .021953 0.970183 
7480 2279.932 4832 4734 4852 2182 1 .020701 0.97568 
7489 2282.675 4806 4712 4840 2090 1 019949 0.973554 
7524 2293.343 4805 4713 4825 2028 1 01952 0.976788 
7565 2305.84 4850 4757 4881 2093 1 01955 0.974595 
7589 2313.155 4860 4767 4890 2081 1 019509 0.974847 
7626 2324.433 4880 4790 4899 2088 1 018789 0.977751 
7663 2335.711 4952 4858 4960 2240 1 01935 0.979435 
7681 2341.197 5022 4923 5046 2415 1 02011 0.975624 
7699 2346.684 5049 4948 5064 2464 1 020412 0.977093 
7727 2355.218 5074 4973 5092 2490 1 02031 0.97663 
7765 2366.801 5132 5029 5163 2601 1 020481 0.974046 
7804 2378.688 5198 5092 5231 2732 1 020817 0.973428 
7814 2381.736 5208 5102 5240 2744 1 020776 0.973664 
7839 2389.356 5231 5126 5255 2780 1 020484 0.975452 
7876 2400.634 5261 5156 5284 2808 1 020365 0.975776 
7922 2414.655 5329 5221 5342 2931 1 020686 0.977349 
7936 2418.922 5353 5244 5375 2979 1 020786 0.975628 
7988 2434.772 5406 5296 5430 3049 1 02077 0.975322 
8012 2442.087 5419 5310 5442 3048 1 020527 0.975744 
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8040 2450.622 5431 5323 5455 3036 1 .020289 0.975802 
8067 2458.851 5448 5340 5475 3041 1 .020225 0.975342 
8084 2464.033 5471 5364 5486 3089 1 .019948 0.977762 
8126 2476.835 5504 5397 5519 3114 1 .019826 0.977895 
8139 2480.797 5504 5398 5517 3092 1 .019637 0.97843 
8188 2495.733 5559 5452 5575 3172 1 .019626 0.977937 
8215 2503.962 5591 5483 5609 3219 1 .019697 0.977536 
8217 2504.572 5591 5483 5607 3217 1 .019697 0.977885 
8250 2514.631 5548 5447 5557 3039 1 .018542 0.980205 
8298 2529.261 5544 5447 5555 2949 1 .017808 0.980558 
8370 2551.207 5471 5387 5466 2631 1 .015593 0.985547 
8375 2552.731 5493 5407 5490 2685 1 .015905 0.984882 
8419 2566.142 5513 5428 5504 2669 1 .01566 0.986192 
8450 2575.591 5489 5408 5487 2549 1 .014978 0.985602 
8456 2577.42 5489 5409 5487 2541 1 .01479 0.985785 
8492 2588.393 5463 5387 5462 2408 1 .014108 0.986269 
8518 2596.318 5485 5410 5486 2430 1 .013863 0.986147 
8578 2614.606 5525 5452 5507 2457 1 .01339 0.990013 
8607 2623.446 5557 5483 5543 2501 1 .013496 0.989176 
8635 2631.98 5613 5537 5601 2614 1 .013726 0.988573 
8689 2648.439 5681 5603 5668 2718 1 .013921 0.988532 
8719 2657.584 5699 5622 5692 2722 1 .013696 0.987702 
8737 2663.07 5713 5636 5703 2731 1 .013662 0.988252 
8763 2670.995 5719 5644 5710 2707 1 .013288 0.988441 
8794 2680.444 5717 5644 5709 2652 1 .012934 0.988614 
8813 2686.235 5742 5670 5709 2703 1 .012698 0.993169 
8843 2695.379 5814 5738 5791 2855 1 .013245 0.990848 
8867 2702.694 5832 5757 5811 2869 1 .013028 0.990707 
8912 2716.411 5851 5777 5830 2848 1 .012809 0.990909 
8917 2717.935 5856 5783 5833 2856 1 .012623 0.991428 
8966 2732.87 5896 5823 5864 2889 1 .012536 0.993008 
8990 2740.185 5894 5823 5876 2844 1 .012193 0.99098 
9032 2752.987 5868 5802 5843 2706 1 .011375 0.992983 
9056 2760.302 5892 5826 5870 2735 1 .011329 0.992504 
9083 2768.532 5927 5862 5895 2801 1 .011088 0.994402 
9113 2777.676 5961 5895 5925 2847 1 .011196 0.994937 
9137 2784.991 5967 5903 5937 2828 1 .010842 0.994273 
9179 2797.793 6000 5936 5968 2852 1 .010782 0.994638 
9199 2803.889 6019 5955 5989 2873 1 .010747 0.994323 
9230 2813.338 6053 5989 6027 2920 1 .010686 0.993695 
9249 2819.129 6055 5991 6025 2894 1 .010683 0.994357 
9279 2828.274 6104 6039 6077 2983 1 .010763 0.993747 
9312 2838.332 6150 6084 6125 3060 1 .010848 0.993306 
9335 2845.343 6173 6109 6132 3098 1 .010476 0.996249 
9384 2860.278 6265 6198 6224 3274 1 .01081 0.995823 
9416 2870.032 6310 6241 6270 3348 1 .011056 0.995375 
9476 2888.32 6321 6256 6287 3285 1 .01039 0.995069 
9500 2895.635 6365 6299 6320 3369 1 .010478 0.996677 
9508 2898.074 6325 6262 6289 3248 1 .010061 0.995707 
9538 2907.218 6281 6224 6246 3083 1 .009158 0.996478 
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9563 2914.838 6284 6228 6251 3053 1.008992 0.996321 
9601 2926.42 6262 6212 6215 2946 1.008049 0.999517 
9624 2933.431 6297 6246 6249 3006 1.008165 0.99952 
9651 2941.661 6277 6230 6229 2913 1.007544 1.000161 
9673 2948.366 6308 6260 6262 2964 1.007668 0.999681 
9718 2962.082 6445 6390 6397 3265 1.008607 0.998906 
9772 2978.542 6653 6587 6596 3746 1.01002 0.998636 
9803 2987.991 6790 6717 6752 4071 1.010868 0.994816 
9848 3001.707 7020 6933 6975 4629 1.012549 0.993978 
9872 3009.022 7084 6995 7038 4767 1.012723 0.99389 
9885 3012.985 7102 7012 7056 4793 1.012835 0.993764 
9936 3028.53 7198 7104 7151 4974 1.013232 0.993427 
9960 3035.845 7300 7200 7265 5211 1.013889 0.991053 
9973 3039.807 7307 7207 7270 5209 1.013875 0.991334 
9995 3046.513 7337 7237 7302 5259 1.013818 0.991098 
10036 3059.01 7429 7325 7401 5444 1.014198 0.989731 
10086 3074.25 7493 7387 7472 5540 1.01435 0.988624 
10109 3081.261 7498 7395 7450 5524 1.013928 0.992617 
10123 3085.528 7484 7384 7443 5468 1.013543 0.992073 
10160 3096.806 7492 7395 7436 5433 1.013117 0.994486 
10191 3106.255 7505 7409 7463 5423 1.012957 0.992764 
10213 3112.96 7503 7410 7458 5387 1.012551 0.993564 
10247 3123.324 7503 7413 7456 5337 1.012141 0.994233 
10262 3127.896 7507 7418 7462 5326 1.011998 0.994103 
10291 3136.735 7526 7437 7478 5333 1.011967 0.994517 
10344 3152.89 7556 7470 7503 5335 1.011513 0.995602 
10371 3161.119 7613 7524 7567 5444 1.011829 0.994317 
10385 3165.386 7646 7557 7593 5518 1.011777 0.995259 
10439 3181.846 7716 7626 7656 5623 1.011802 0.996082 
10456 3187.028 7752 7661 7697 5694 1.011878 0.995323 
10494 3198.61 7814 7721 7765 5800 1.012045 0.994334 
10515 3205.011 7841 7748 7785 5840 1.012003 0.995247 
10547 3214.765 7885 7791 7831 5909 1.012065 0.994892 
10581 3225.128 7927 7832 7876 5969 1.01213 0.994413 
10605 3232.443 7955 7860 7908 6010 1.012087 0.99393 
10625 3238.539 7982 7886 7937 6050 1.012173 0.993574 
10650 3246.159 8008 7912 7962 6083 1.012133 0.99372 
10693 3259.266 8059 7965 8003 6162 1.011802 0.995252 
10698 3260.79 8066 7971 8013 6172 1.011918 0.994759 
10876 3315.045 8458 8345 8441 6938 1.013541 0.988627 
10953 3338.515 8548 8436 8538 7065 1.013276 0.988053 
10985 3348.269 8585 8473 8580 7116 1.013218 0.987529 
10995 3351.317 8587 8476 8578 7108 1.013096 0.988109 
11071 3374.482 8629 8521 8609 7109 1.012675 0.989778 
11139 3395.208 8661 8556 8629 7094 1.012272 0.99154 
11145 3397.037 8651 8548 8612 7060 1.01205 0.992569 
11176 3406.486 8669 8567 8627 7062 1.011906 0.993045 
11200 3413.802 8671 8572 8629 7034 1.011549 0.993394 
11250 3429.042 8693 8598 8627 7025 1.011049 0.996638 
11273 3436.052 8713 8620 8649 7046 1.010789 0.996647 
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11305 3445.806 8710 8620 8646 6992 1.010441 0.996993 
11326 3452.207 8711 8623 8637 6967 1.010205 0.998379 
11362 3463.18 8733 8647 8667 6972 1.009946 0.997692 
11386 3470.495 8765 8678 8696 7020 1.010025 0.99793 
11446 3488.783 8790 8707 8718 7000 1.009533 0.998738 
11492 3502.804 8804 8724 8731 6969 1.00917 0.999198 
11518 3510.729 8834 8756 8752 7015 1.008908 1.000457 
11521 3511.644 8817 8741 8729 6968 1.008695 1.001375 
11591 3532.98 8858 8785 8772 6975 1.00831 1.001482 
11605 3537.247 8867 8795 8782 6979 1.008186 1.00148 
11637 3547.001 8908 8835 8823 7037 1.008263 1.00136 
11681 3560.412 8914 8846 8824 6991 1.007687 1.002493 
11716 3571.08 8949 8881 8858 7031 1.007657 1.002597 
11717 3571.385 8951 8883 8862 7035 1.007655 1.00237 
11783 3591.502 8999 8933 8901 7063 1.007388 1.003595 
11815 3601.256 9003 8943 8900 7036 1.006709 1.004831 
11924 3634.479 9104 9046 9001 7139 1.006412 1.004999 
11934 3637.527 9109 9052 9008 7138 1.006297 1.004885 
11974 3649.72 9141 9084 9027 7161 1.006275 1.006314 
11983 3652.463 9149 9093 9036 7169 1.006159 1.006308 
12031 3667.093 9160 9108 9060 7130 1.005709 1.005298 
12065 3677.457 9187 9136 9087 7151 1.005582 1.005392 
12072 3679.59 9138 9092 9034 7019 1.005059 1.00642 
12100 3688.125 9107 9070 8985 6913 1.004079 1.00946 
12148 3702.755 9143 9108 9018 6936 1.003843 1.00998 
12168 3708.851 9244 9202 9132 7157 1.004564 1.007665 
12216 3723.482 9344 9297 9234 7335 1.005055 1.006823 
12248 3733.236 9457 9403 9354 7569 1.005743 1.005238 
12270 3739.941 9532 9473 9434 7722 1.006228 1.004134 
12304 3750.305 9563 9504 9465 7751 1.006208 1.00412 
12310 3752.134 9556 9499 9456 7727 1.006001 1.004547 
12353 3765.24 9596 9540 9486 7766 1.00587 1.005693 
12370 3770.422 9616 9560 9518 7791 1.005858 1.004413 
12389 3776.213 9624 9569 9525 7785 1.005748 1.004619 
12420 3785.662 9662 9610 9556 7844 1.005411 1.005651 
12472 3801.512 9727 9674 9609 7931 1.005479 1.006764 
12494 3808.218 9763 9708 9659 7988 1.005665 1.005073 
12518 3815.533 9781 9728 9676 8001 1.005448 1.005374 
12557 3827.42 9799 9748 9698 7991 1.005232 1.005156 
12571 3831.687 9775 9728 9666 7915 1.004831 1.006414 
12610 3843.575 9792 9748 9685 7903 1.004514 1.006505 
12654 3856.986 9771 9734 9656 7793 1.003801 1.008078 
12655 3857.291 9748 9714 9637 7738 1.0035 1.00799 
12705 3872.531 9773 9745 9631 7738 1.002873 1.011837 
12711 3874.36 9765 9738 9638 7711 1.002773 1.010376 
12742 3883.809 9754 9732 9623 7644 1.002261 1.011327 
12767 3891.429 9727 9710 9592 7546 1.001751 1.012302 
12815 3906.059 9721 9710 9584 7469 1.001133 1.013147 
12823 3908.498 9708 9699 9569 7428 1.000928 1.013586 
12883 3926.786 9753 9746 9614 7456 1.000718 1.01373 
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12900 3931.968 9785 9778 9650 7511 1.000716 1.013264 
12940 3944.16 9820 9814 9685 7542 1.000611 1.01332 
12959 3949.951 9849 9842 9715 7588 1.000711 1.013073 
12984 3957.571 9880 9873 9747 7630 1.000709 1.012927 
13011 3965.801 9890 9888 9744 7628 1.000202 1.014778 
13033 3972.507 9894 9894 9746 7610 1 1.015186 
13068 3983.175 9900 9903 9755 7578 0.999697 1.015172 
13099 3992.624 9926 9930 9783 7601 0.999597 1.015026 
13144 4006.34 9961 9967 9818 7627 0.999398 1.015176 
13199 4023.104 10055 10059 9898 7781 0.999602 1.016266 
13235 4034.077 10131 10131 9993 7914 1 1.01381 
13243 4036.515 10146 10146 10009 7940 1 1.013688 
13296 4052.67 10240 10237 10102 8091 1.000293 1.013364 
13322 4060.595 10287 10285 10141 8177 1.000194 1.0142 
13342 4066.691 10304 10302 10159 8191 1.000194 1.014076 
13375 4076.75 10337 10336 10193 8227 1.000097 1.014029 
13384 4079.493 10343 10343 10199 8229 1 1.014119 
13415 4088.942 10387 10386 10246 8292 1.000096 1.013664 
13462 4103.267 10443 10443 10303 8364 1 1.013588 
13476 4107.535 10467 10466 10330 8401 1.000096 1.013166 
13507 4116.984 10503 10502 10366 8446 1.000095 1.01312 
13545 4128.566 10548 10547 10414 8503 1.000095 1.012771 
13572 4136.796 10563 10563 10426 8503 1 1.01314 
13616 4150.207 10603 10605 10468 8542 0.999811 1.013088 
13643 4158.437 10639 10643 10494 8600 0.999624 1.014199 
13649 4160.266 10641 10646 10495 8596 0.99953 1.014388 
13701 4176.116 10615 10629 10466 8471 0.998683 1.015574 
13715 4180.383 10591 10609 10441 8398 0.998303 1.01609 
13815 4210.863 10475 10515 10315 8004 0.996196 1.019389 
13817 4211.473 10468 10509 10309 7987 0.996099 1.019401 
13851 4221.836 10402 10453 10242 7792 0.995121 1.020601 
13887 4232.809 10321 10383 10153 7561 0.994029 1.022653 
13942 4249.573 10314 10382 10152 7476 0.99345 1.022656 
13947 4251.097 10308 10377 10144 7456 0.993351 1.022969 
13989 4263.899 10293 10370 10118 7381 0.992575 1.024906 
14001 4267.557 10298 10376 10123 7378 0.992483 1.024993 
14049 4282.187 10380 10457 10199 7507 0.992637 1.025297 
14057 4284.626 10406 10482 10209 7557 0.992749 1.026741 
14110 4300.78 10514 10587 10343 7741 0.993105 1.023591 
14111 4301.085 10515 10588 10344 7741 0.993105 1.023589 
14152 4313.582 10573 10646 10403 7822 0.993143 1.023359 
14177 4321.202 10594 10668 10425 7840 0.993063 1.023309 
14216 4333.089 10660 10733 10486 7945 0.993199 1.023555 
14242 4341.014 10684 10758 10516 7967 0.993121 1.023013 
14274 4350.768 10797 10865 10638 8187 0.993741 1.021339 
14299 4358.388 10847 10916 10674 8281 0.993679 1.022672 
14399 4388.869 10931 11004 10760 8351 0.993366 1.022677 
14412 4392.831 10901 10979 10732 8269 0.992896 1.023015 
14457 4406.547 10861 10946 10694 8122 0.992235 1.023565 
14484 4414.777 10843 10933 10669 8051 0.991768 1.024745 
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14496 4418.435 10884 10972 10717 8128 0.99198 1.023794 
14689 4477.262 11209 11294 11040 8643 0.992474 1.023007 
14705 4482.139 11242 11326 11073 8699 0.992583 1.022848 
14748 4495.245 11249 11338 11060 8665 0.99215 1.025136 
14762 4499.512 11273 11362 11106 8702 0.992167 1.023051 
14800 4511.095 11290 11381 11120 8695 0.992004 1.023471 
14812 4514.752 11273 11367 11109 8643 0.99173 1.023224 
14889 4538.222 11462 11549 11304 8976 0.992467 1.021674 
14897 4540.661 11503 11587 11328 9057 0.99275 1.022864 
14948 4556.206 11627 11708 11465 9283 0.993082 1.021195 
14974 4564.131 11705 11781 11547 9426 0.993549 1.020265 
15015 4576.628 11746 11824 11587 9470 0.993403 1.020454 
15037 4583.333 11749 11830 11583 9451 0.993153 1.021324 
15064 4591.563 11792 11871 11637 9515 0.993345 1.020108 
15094 4600.707 11818 11899 11642 9538 0.993193 1.022075 
15107 4604.67 11812 11895 11658 9509 0.993022 1.020329 
15135 4613.204 11910 11986 11759 9693 0.993659 1.019304 
15163 4621.739 11929 12007 11780 9703 0.993504 1.01927 
15222 4639.722 12037 12111 11877 9873 0.99389 1.019702 
15270 4654.353 12158 12226 12023 10088 0.994438 1.016884 
15279 4657.096 12164 12235 12016 10097 0.994197 1.018226 
15337 4674.774 12249 12318 12094 10219 0.994398 1.018522 
15359 4681.48 12299 12365 12156 10303 0.994662 1.017193 
15398 4693.367 12355 12421 12214 10383 0.994686 1.016948 
15418 4699.464 12387 12452 12249 10431 0.99478 1.016573 
15446 4707.998 12383 12452 12241 10391 0.994459 1.017237 
15480 4718.361 12384 12458 12244 10354 0.99406 1.017478 
15502 4725.067 12359 12439 12218 10275 0.993569 1.018088 
15536 4735.43 12320 12409 12174 10153 0.992828 1.019303 
15555 4741.222 12304 12397 12158 10098 0.992498 1.019658 
15576 4747.623 12292 12389 12144 10051 0.99217 1.020175 
15612 4758.595 12376 12468 12230 10196 0.992621 1.01946 
15642 4767.74 12422 12515 12267 10273 0.992569 1.020217 
15665 4774.75 12501 12588 12334 10420 0.993089 1.020593 
15706 4787.247 12594 12677 12449 10580 0.993453 1.018315 
15741 4797.915 12677 12754 12534 10723 0.993963 1.017552 
15752 4801.268 12693 12771 12552 10747 0.993892 1.017447 
15796 4814.679 12752 12828 12611 10829 0.994075 1.017207 
15806 4817.727 12761 12838 12621 10838 0.994002 1.017194 
15860 4834.187 12782 12864 12625 10827 0.993626 1.018931 
15864 4835.406 12773 12857 12627 10804 0.993467 1.018215 
15900 4846.379 12784 12871 12644 10790 0.993241 1.017953 
15926 4854.304 12779 12870 12640 10753 0.992929 1.018196 
15963 4865.582 12802 12898 12631 10774 0.992557 1.021138 
15998 4876.25 12841 12937 12692 10822 0.992579 1.019303 
16142 4920.141 12950 13053 12800 10912 0.992109 1.019766 
16169 4928.371 12977 13080 12828 10942 0.992125 1.019645 
16183 4932.638 13089 13181 12941 11170 0.99302 1.018546 
16231 4947.269 13165 13254 13024 11283 0.993285 1.01766 
16249 4952.755 13245 13326 13093 11435 0.993922 1.017796 
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16281 4962.509 13289 13370 13152 
16319 4974.092 13353 13433 13214 
16331 4977.749 13350 13433 13209 
16389 4995.428 13401 13486 13261 
16393 4996.647 13396 13482 13254 
16429 5007.62 13430 13517 13274 
16457 5016.155 13468 13554 13327 
16479 5022.86 13492 13578 13352 
16532 5039.015 13505 13598 13367 
16557 5046.635 13516 13611 13378 
16568 5049.988 13508 13606 13368 
16606 5061.57 13553 13651 13417 
16644 5073.153 13572 13673 13436 
16665 5079.554 13619 13718 13477 
16700 5090.222 13742 13831 13603 
16718 5095.708 13821 13901 13688 
16758 5107.901 13879 13957 13747 
16775 5113.082 13923 13999 13781 
16822 5127.408 14055 14119 13937 
16834 5131.066 14064 14128 13945 
16856 5137.771 14087 14152 13969 
16909 5153.926 14188 14246 14065 
16911 5154.535 14190 14249 14066 
16944 5164.594 14288 14337 14178 
16989 5178.31 14328 14379 14213 
17019 5187.454 14397 14444 14293 
17025 5189.283 14364 14416 14247 

11497 0.993942 1.016575 
11601 0.994045 1.016573 
11582 0.993821 1.016958 
11631 0.993697 1.016967 
11616 0.993621 1.017202 
11651 0.993564 1.018306 
11702 0.993655 1.017033 
11732 0.993666 1.016926 
11706 0.993161 1.017281 
11703 0.99302 1.017417 
11676 0.992797 1.017804 
11733 0.992821 1.017441 
11735 0.992613 1.017639 
11818 0.992783 1.017882 
12043 0.993565 1.016761 
12191 0.994245 1.015561 
12272 0.994411 1.015276 
12349 0.994571 1.015819 
12577 0.995467 1.013059 
12584 0.99547 1.013123 
12610 0.995407 1.0131 
12768 0.995929 1.012869 
12772 0.995859 1.01301 
12943 0.996582 1.011215 
12983 0.996453 1.011679 
13102 0.996746 1.010565 
13026 0.996393 1.011862 
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