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The role of chemotaxis operon genes in Agrobacterium tumefaciens 

Abstract: 

Behrouz Harighi 

PhD 2003 

A 1.7 Kb chromosomal DNA of A. tumefaciens C58Cl downstream of chemotaxis 

operon was sequenced completely in both directions. The comparison of this sequence 

with sequence databases revealed one open reading frame with strong sequence 

identity to MCP gene in other bacteria. The sequencing of chromosomal DNA of A. 

tumefaciens C58 confirmed that this open reading frame has similarity with 

cytoplasmic domain of McpA. 

Four mutants of A. tumefaciens C58Cl (ClIde1Yl, ClidelY2, ClidelB and ClIdelR) 

were created by in-frame deletion mutagenesis in cheYl, cheY2, cheB and cheR using 

pKl8mobsacB. Some phenotypic properties of mutants were studied. The cheY2, 

cheR and cheB mutants showed impaired chemotactic capabilities in both swarming 

and chemotaxis assays. Deletion of cheYl appeared to have no significant effect on 

chemotaxis, under the conditions studied. 
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1. Introduction 

1.1. Signal transduction system in Bacteria 

In bacteria the most common signal transduction system involves phosphoryl 

transfer and is known as two- component signal transduction. It contains two domains, 

the receiver and the transmitter domains. 

Two-component systems regulate different responses in many different 

organisms e.g. nutrient acquisition, electron transport systems, plasmid transfer and 

adaptation to physical or chemical aspects of the environment. It is possible that a 

single cell may have many two-component systems. In E. coli, 178 genes encode 

products related to regulatory functions, and of those, 62 genes are part of the two­

component signal transduction pathways. 

In the two-component system, the receIver domain functions as a sensor, 

usually located in the cytoplasmic membrane, and monitors the environment. The 

second is a response regulator, which is cytoplasmic and mediates an adaptative 

response. The sensor component has a kinase function that binds A TP, and when 

activated, phosphorylates a histidine usually found in the same protein. Furthermore it 

becomes a substrate for dephosphorylation by the second component. 

The second component, the receiver domain, accepts the phosphoryl group 

from the histidyl-phosphate of the sensor to an aspartate residue. The phosphorylation 

of the receiver causes a conformational change that regulates the functional state of an 

output domain to activate specific effector functions such as chemotaxis, flagellar 

rotation, regulation of transcription virulence, antibiotic resistance or enzymatic 

catalysis. 
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Many of the known sensory kinases are transmembrane molecules that 

combine an external stimulus detection domain and an internal kinase domain into a 

single molecule. In chemotaxis, however, as discussed later, receptor and kinase 

function are separated into different molecules. 

1.2. Chemotaxis in Bacteria 

Chemotaxis, the ability of some bacteria to sense and respond to chemical 

stimuli in the environment by moving toward attractants (often nutrient sources) and 

away from repellents (often toxic compounds ), is an important survival function for 

many bacterial species and a frequent feature in bacterial pathogenesis. The process 

requires the functional activity of some proteins that receive chemical signals and use 

the information to direct suitable swimming behaviour. 

During chemotaxis, for example in. enteric bacteria, such as E. coli, the 

chemical environment is sensed through the periplasmic domains of a family of 

transmembrane chemoreceptors and intracellular signals are produced and transferred 

to the flagellar motor, through protein-protein interaction, influencing the direction of 

flagellar rotation and, consequently, cellular movement. The proteins required for 

chemotaxis in E. coli are shown in Fig (1.2.1). 
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~ Periplasm 
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~ __ -~~~-:s Imulu8 molecules 
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¥Dephosphorylntion 

~ 
Flagellar motor 

Fig (1.2.1): The classic chemotaxis system in E.coli. A: CheA, W: CheW, R: 

CheR, B: CheB, Y: CheY , Z: CheZ and MCP: Methyl-accepting chemotaxis 

protein (Figure adapted from: Grebe, T. W. and Stock, J. 1998). 

Signal processing and output involve a phosphore lay system. The activity of 

CheA, a cytoplasmic histidine kinase protein, is affected by its interactions with the 

chemoreceptors (MCPs). The chemoreceptors bind and sense small molecules or 

protein ligands and indirectly by confonnational changes enhance the activity of the 

histidine kinase CheA. CheA is inactive when an attractant is bound to the receptor 

and becomes active when a repellent signal is given. When activated, CheA can 

autophosphorylate (using A TP) and then transfers the phosphate groups to either of 

two aspartate autokinases involved in signal output (CheY) and adaptation (CheB). 

Another protein, CheW couples CheA to chemoreceptor control by physically linking 

17 



the proteins in a complex. CheY, the response regulator, catalyses its own acceptance 

of a phosphate group from CheA on an asparatic acid residue. 

The default state of a flagellum is smooth swimming of the bacterial cell in the 

absence of bound CheY. Only phosphorylated CheY interacts with a flagellum and 

produces tumbling. CheZ controls the level of phosphorylated Che Y by increasing its 

rate of autodephosphorylation, with the result that tumbles rapidly stop when CheA is 

turned off (Snezana D., and A. M. Stock, 1998). CheA, CheY, and CheZ usually 

localize at the cell poles, and clustering is dependent on the presence of MCPs 

(Sourjik, V., P. Muschler, et aI., 2000). CheY and CheZ localization is dependent on 

CheA, and CheA localization is dependent on CheW (Bourret, R. B. and A. M. Stock, 

2002). 

Adaptation resets the system by changing the signalling properties of the 

receptor through reversible methylation. When methylated, the receptor is a more 

efficient activator of the kinase. Two proteins work together to determine receptor 

methylation under particular conditions. CheR, a methyltransferase, continuously 

transfers methyl groups from S-adenosylmethionine molecules to specific sites on the 

membrane receptor. CheB, a methyl esterase, specifically removes methyl groups from 

the receptor. CheB becomes activated by accepting a phosphate group from CheA and 

this control largely determines the observed level of methylation at any time (Bren, A. 

and M. Eisenbach, 2000). 

1.2.1. Transmembrane signalling 

Most transmembrane signalling is done by chemoreceptors known as methyl­

accepting chemotaxis proteins (MCPs). These proteins are components of the 

18 



chemotactic response system in Bacteria and Archaea (Grebe, T. W. and 1. Stock, 

1998). These proteins usually are concentrated and clustered at the cell poles in an 

evolutionarily diverse range of bacteria and an archea (Gestwicki, 1. E., A. C. 

Lamanna, et aI., 2000). MCPs may play a role in the signalling pathway of 

chemotaxis. 

Five closely related MCPs are found in E.coli, each between 533 and 553 

ammo acids in length. These are: Trg, for ribose, galactose and glucose, Tar, for 

aspartate, Tsr, for serine, Tap, for dipeptides and Aer, which may be a redox detector 

(Grebe, T. W. and 1. Stock, 1998). MCPs are transmembrane proteins with the 

carboxyl- terminus located in the cytoplasm and the amino-terminus accessible to the 

external environment (Yost, C. K., P. Rochepeau, et aI., 1998). The amino- terminal 

domain detects attractants and repellents, and carboxyl-terminal domain transfers this 

information to CheA, allowing the bacterium to swim towards attractants and away 

from repellents. Serine, aspartate and citrate bind directly to the receptors but maltose, 

ribose, galactose, glucose and dipeptides bind to the specific periplasmic binding 

proteins, which then dock with the con-ect membrane receptors. MCPs also mediate 

responses to temperature and pH, and serve as receptors for several different 

repellents. The cytoplasmic domain is very highly conserved between transducers but 

there is little sequence homology between the periplasmic domains of the different 

MCPs, therefore they sense different molecules. The cytoplasmic domain contains 

four or five methylatable glutamate residues, and are therefore called methyl­

accepting chemotaxis proteins (Manson, M. D., 1. P. Armitage, et aI., 1998). 

The periplasmic sensing domain is flanked by transmembrane segments, the 

second of which connect to the cytoplasmic signalling domain through a linker region. 

The methylation sites responsible for sensory adaptation are located next to the 
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signalling domain. MCP is known to form stab le dimmers, resulting in four 

transmembrane a-helices, two from each monomer. These are called TM 1 and TM2 

for one monomer and TM l' and TM2' for the second one. 

Fig (1.2.2): Schematic model for the cytoplasmic domain of the transmembrane 

receptor (Figure adapted from: Falke, J. J., et aI., 1997). 

The receptors are connected using a linker protein, CheW, to a histidine kinase, 

CheA, generating stable ternary complexes. Active receptors form a supramolecular 

complex, consisting of about seven receptors, two or four CheW molecules and one 

CheA dimmer (Bren, A. and M. Eisenbach, 2000). 

Methylation and demethylation of homodimeric chemoreceptors such as Tar, 

Tsr, Trg, Tap and Aer are catalysed by methyltransferases and methylesterases 

homologous to E.coli CheR and CheB (Aravind, L. and C. P. Ponting, 1999). The 
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pentapeptide sequence Asn-Trp-Glu-Thr-Phe (NWETF), present at the carboxyl 

terminus of some chemoreceptors (high abundance) gives a docking site for the 

methyltransferase (Wu, J., et aI., 1996) and greatly improves methylation of receptors 

on which it is present. Receptors naturally lacking the methyltransferase-docking site 

(low-abundance receptors) are poorly methylated and thus are ineffective, in the 

absence of high-abundance receptors, in both adaptation and the ability to mediate 

chemotaxis (Bamakov, A. N., L. A. Bamakova, et aI., 1998). 

The presence of a docking site on the receptor enhances the rates of 

demethylation catalysed both by inactivated CheB and by the activated 

(phosphorylated) enzyme. Phosphorylation of CheB either by free CheA, or by CheA 

activated in a complex with its receptor, results in increased rates of demethylation for 

receptors lacking or carrying the docking site (Bamakov, A. N., L. A. Bamakova, et 

aI., 1999). 

MCPs are not involved in effector transport, and deletion of anyone results in 

loss of chemotaxis to a few compounds, but no effect on responses to other attractants. 

The intracellular response of cells to environmental change is mediated by 

phophorylation and methylation- dependent signalling in a closed system. 

Transmembrane receptors of extracellular ligands include molecules with histidine 

kinase or methyl-accepting functions. Homodimeric histidine kinases catalyse 

transphosphorylation of specific histidine residues and the phosphoryl groups are 

subsequently transferred to specific aspartyl residues, usually on response regulator 

domain homologous to E.coli CheY. 
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Fig (1.2.3): A typical receptor-kinase signalling complex and protein-protein 

interaction between receptor and CheA, CheW, CheB and CheR (Figure adapted 

from: Falke, J. J., et aI., 1997). 
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1.2.2. Cytoplasmic signal transduction 

Histidine Kinase CheA: Signals detected by the receptors are used to control 

the activity of the bound histidine kinase CheA. The isolated kinase is a dimmer of 

identical 71 kDa subunits containing two symmetrical active sites, each of them using 

Mg2+_ ATP to drive phosphorylation of His48 (Surette, M. G., M. Levit, et aI., 1996). 

Each subunit of CheA can be divided into four functional regions (Parkinson, 

J. S. and E. C. Kofoid, 1992), at least three of these regions have been shown to be 

distinct folding domains (Falke, 1. J., R. B. Bass, et aI., 1997). The N-terminal PI 

phosphotransfer domain possesses the reactive His48 residue that serves as the site of 

autophosphorylation (Morrison, T. B. and J. S. Parkinson, 1994). 

Autophosphorylation is the most important control point in the chemotaxis signalling 

pathway. CheA can autophosphorylate itself slowly in the absence of other proteins, 

but the reaction is accelerated and enhanced several hundred times in the presence of 

membrane receptors and CheW (Blair, D. F., 1995). The phospho-PI domain is fully 

functional as a phosphotransfer substrate for Che Y or CheB even when other parts of 

the CheA are absent (Swanson et al 1993). The P2 response-regulator docking domain, 

which contains the docking site for Che Y and CheB, is C-terminal to the PI domain 

(Morrison, T. B. and J. S. Parkinson, 1994). The CheB protein competes with CheY 

for binding to the PI-P2 region and probably uses the same docking site on the P2 

domain (Li et al 1995). Many histidine kinases encode specificity within other 

domains and lack the P2 domain completely, suggesting that CheA and its 

homologues have developed this domain for a specific purpose other than 

phosphotransfer specificity (Parkinson, J. S. and E. C. Kofoid, 1992). 
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The most highly conserved region of the CheA is its catalytic domain. The 

CheA catalytic domain folds independently, and the isolated domain can efficiently 

phosphorylate the isolated PI domain (Swanson et al 1993). The C-terminal-receptor 

docking region of CheA is essential for receptor- mediated regulation. Genetic studies 

suggest that different CheW- and receptor-binding sites exist within this region of 

CheA (Parkinson, ]. S. and E. C. Kofoid, 1992). One possible mechanism of receptor-

mediated regulation is suggested by the dimeric structure of CheA, since that enzyme 

is active only when it is a dimmer (Surette, M. G., M. Levit, et a1., 1996). 

J 
PI P2 

N 

Dimerization 

CheY 

ATP 

Kinase Regulation( PS: 

Fig (1.2.4): Domain organisation of the transmitter histidine kinase cheA. 

The CheA gene from both E. coli and S. typhimurium has an alternative 

translational start site at Met-98 that produces a short variant called CheAs (Stock, J. 

B. and M. G. Surette, 1996). Bacteria which can cany out chemotaxis express CheA 

both as the full length and a short form termed CheAs. Both forms have the same C-

terminus, but CheAs lacks a sequence of almost 100 residues that contains the PI 

domain and cannot be phosphorylated . CheAs is not strictly required for chemotaxis 

(Sanatinia, H., E. C. Kofoid, et al. , 1995) but a 1: 1 mole ratio of CheAl to CheAs 
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provides optimal cellular motility (Wang, H. and P. Matsumura, 1997) and CheAs 

binds Che Y as well as does the full- length CheA protein ( Swason et al 1993). Over 

production of CheAs in wild type cells increased counter clock wise rotation (CCW) 

(Wang, H. and P. Matsumura, 1996) and this effect is dependent on the presence of 

CheZ. The CheAs/CheZ complex shows greater dephosphorylating activity on Che Y­

P in comparison with that observed by the action of free CheZ, alone. 

1.2.3. Adaptation pathway 

Adaptation, the restoration of the pre-stimulus behaviour in the presence of the 

stimulus, is a necessary component of chemotactic behaviour. Adaptation resets the 

system by changing the signalling properties of the receptor through reversible 

methylation. Two proteins working together to determine receptor methylation under 

special conditions. CheR is a methyl transferase, which continuously transfers methyl 

groups from S-adenosylmethionine molecules to specific glutamate sites on the 

cytoplasmic domain of the receptors during adaptation to positive stimuli. CheB is a 

methylesterase that removes methyl groups from receptors during adaptation to 

negative stimuli. This protein also has an amidase activity that catalyzes the 

conversion of specific glutamine residues of the MCP receptors into glutamate 

residues (Bren, A., and M. Eisenbach, 2000). The result of this demethylation is the 

preventation of CheA autophosphorylation and the transient maintenance of a CCW 

signal (Borkovich, K. A., et aI., 1992). 

In the chemotaxis system, sensory adaptation is continuous process that 

enables the cells to make temporal comparisons as they swim about. The adaptation 

machinery works to cancel recent stimulus responses, so that the organism is ready to 
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respond to any new changes in chemoeffector concentration. Adaptation is an 

essential part of chemotaxis because if the receptor can not reset after experiencing a 

change in receptor occupancy, the receptor would continue to generate a signal and 

the cell would be unable to respond to future change. Mutation in the adaptation 

mechanism results in the smooth swimming of the cell. 

The relative activities of CheR and CheB determine the methylation level of 

each MCP species. In the absence of chemical stimuli, about half the sites are 

methylated. In high attractant or low repellent levels, most sites are methylated, 

whereas in low attractant or high repellent levels, few sites are methylated. 

CheB: The methylesterase CheB is a member of a large and functionally 

varied family of proteins known as response regulators. These proteins are involved in 

. a wide variety of phosphotransfer-dependent signal transduction pathways found in 

prokaryotes and eukaryotes (Djordjevic, S., P. N. Goudreau, et aI., 1998). 

Methylesterase CheB (3S-kD) functions together with methyltransferase CheR (31-kD) 

to control and detennine the level of methylation of a set of four or five glutamate 

residues in the cytoplasmic domains of the chemoreceptors (Djordjevic, S., P. N. 

Goudreau, et aI., 1998). 

The level of receptor methylation is controlled both globally and locally. 

Global control includes the change of CheB activity by CheA, CheW, and the 

receptors. The level of methylation is also controlled locally by the conformation of 

the receptors themselves. The binding of attractant to a receptor increases the level of 

methylation of that receptor more than others, presumably by inducing a 

conformational change that alters the exposure of methylation sites to CheR and CheB. 
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Regulation of CheB involves many protein-protein interactions. There are 

three known sites of interaction between CheB and the receptor-CheA-CheW 

complex: the kinase site at which CheB obtains a phosphate group, the sites at which 

the enzyme modifies the receptor and the pentapeptide docking site at the carboxyl 

terminus of the receptor. 

CheB has amidase activity and converts the glutamines to glutamates which 

can subsequently to take part in the methylationldemethylation cycle catalysed by 

CheR and CheB. CheB, like CheY, is a response-regulator protein with an activity 

controlled by phosphorylation. CheB has a two-domain architecture, with an N­

terminal regulatory domain homologous to Che Y and a C-terminal effectors domain 

with amidase/esterase activity. Structural similarity between the two CheB and CheR 

suggests an evolutionary and / or functional relationship. 

As the autophosphorylating histidine kinase CheA is acting as a phosphoryl 

donor protein to two response regulators, CheYand CheB. CheYand CheB compete 

for binding to the P2 domain of CheA and when band, phosphorylation of the N­

terminal domain of the intact CheB protein results in enhanced methylesterase activity. 

The N-terminal domain plays two regulatory roles, functioning to inhibit 

methylesterase activity when unphosphorylated and to stimulate activity when 

phosphorylated. The interaction between methyl esterase CheB and the chemotaxis 

receptors is complex and probably contains multiple regions of the CheB molecular 

surface. There is no phosphatase to increase the rate of CheB dephosphorylation and 

the protein therefore has developed a more rapid rate of autocatalytic 

dephosphorylation than CheY-P. Mutants deleted for CheB have over methylated 

receptors and, as a result, smooth swim constantly. 
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CheR: Methyltransferase CheR, which utilizes S-adenosyl-methionine as the 

methyl donor, catalyses S-adenosyl-methionine (AdoMet)- dependent methylation of 

the y-carboxyl groups of specific glutamate residues in the chemotaxis receptors. 

CheR is a two- domain protein with an N-terminal domain that appears to be involved 

in substrate recognition, and an a/~ C-terminal domain that contains sequences 

typical of AdoMet- dependent methyltransferases. 

In the cell, two separate domains of the MCP receptor are involved in the 

interaction with CheR: a binding domain onto which CheR docks and a domain that is 

methylated by CheR. Mutants deleted for CheR cannot methylate the receptors and 

constantly tumble. CheR binds to major chemoreceptors through their C-terminal 

motif NWETF, which differs from the C-terminal motif in methylation sites (Shiomi, 

D., H. Okumura, et aI., 2000). 

1.2.4. Characteristics of other Che proteins: 

CheW: The 18 kDa CheW protein couples CheA to the MCP receptor and is 

required for receptor- mediated activation of histidine kinase activity (Ames, P. and 1. 

S. Parkinson, 1994). In E.coli, CheW is an essential protein necessary for MCP­

dependent chemotaxis and interaction with the signalling domain of Tsr and the 

carboxy-terminus of CheA, suggesting a role as a linker protein between the sensor 

(MCP) and the CheA (Liu, 1. D. and 1. S. Parkinson, 1991; Bourret, R. B., J. 

Davagnino, et aI., 1993). Neither CheW nor Tsr alone has a significant effect on 

CheA activity; however all three proteins must be together for activation to occur 

(Ninfa, A. 1. and R. L. Bennett, 1991). 
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Evidence for the formation of complexes between MCP, CheW and CheA has 

been identified by immunoelectron microscopy and immunofluorescence light 

microscopy of E. coli. The complex is frequently found in clusters at one or both 

poles of the cells. In mutant strains where one of MCP, CheW or CheA is absent, the 

polar clustering of the remaining components is dramatically reduced (Maddock, J.R., 

and Shapiro, L., 1993). 

No catalytic or regulatory activity has been associated with CheW, although 

Sanders et a1. have shown that over-expression of CheW produces a phenotype 

similar to its deletion (Sanders et aI., 1989). In-vitro experiments showed that the 

kinase activity of CheA was greatly reduced in the presence of high levels of CheW 

(Ninfa, A. J. and R. L. Bennett, 1991). CheW of R. sphaeroides, when cloned into E. 

coli, induced changes in the switching frequency of the flagellar motor of bacterial 

cell. Over-expressed CheW reduced the switching frequency. Smooth swimming 

results from a reduction in the level of Che Y -P and this suggests that CheA was 

sequestered by excess CheW in an inactive form (Hamblin, P. A., N. A. BouIne, et aI., 

1997). 

In E. coli, deletion of che W results in smooth- swimming and non-chemotactic 

behaviour (Liu, J. D. and J. S. Parkinson, 1991). In contrast, deletion of cheW1 in R. 

sphaeroides has no significant effect on chemotactic behaviour when analysed using 

swarm plate and plug plate chemotaxis assays (Hamblin, P. A., N. A., et aI., 1997). 

CheY: CheY, a 14kDa polypeptide, is the response regulator protein which 

serves as a phosphorylation- dependent protein in the bacterial chemotaxis signal 

transduction pathway. Che Y has a special and important place in the chemotaxis 

pathway because this molecule is the diffusible component that acts as the signal 
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between the two membrane-localized supramacromoleculear complexes; namely, the 

chemotaxis receptor clusters that are localised at the two poles of the cell and usually 

the six to eight flagellar basal bodies that are uniformly distributed (Djordjevic, S. and 

A. M. Stock, 1998). Che Y binds to the P2 domain of CheA and phosphate is 

transferred from His-48 in a reversible reaction which phosphorylates Che Y. 

Phospho-Che Y (Che Y -P) diffuses through the cytoplasm and binds to FliM, one of an 

assembly of proteins called the 'switch' at the base of the flagellar motor. This 

binding event results in the change of direction of the flagella from the counter 

clockwise (CCW) to clockwise (CW) rotation. 

Che Y can also be phosphorylated by small phospho donors such as acetyl 

phosphate. The rate of phosphorylation of CheY by small phosphodonors is much 

lower than that ofCheA-mediated phosphorylation (Mayover, T. L., C. ], Halkides, et 

aI.,·1999). This CheA-independent phosphorylation indicates that CheY can catalyse 

its own phosphorylation. Phosphorylation ofCheY results in a confonnational change 

that is necessary for activation (Silversmith, R. E. and R. B. Bourret, 1999) and not 

only reduces the affinity of the Che Y to CheA, but also improves its affinity for the 

protein FliM (McEvoy, M. M., A. Bren, et aI., 1999). Even though mutational 

analysis and NMR data have identified three distinct regions on Che Y that interact 

with its three protein effectors (P2 of CheA, FliM and CheZ), and all are distinct from 

the phosphorylation site, it can bind to only one protein at a time because the C­

terminal portion ofCheY is involved in the binding to all these proteins. 

Dephosphorylation ofCheY-P occurs through autophosphatase activity but the 

rate of autodephosphorylation is increased by CheZ in enteric species (Eisenbach, M. 

1996). CheZ binds Che Y in a phosphorylation-dependent process, and the Che Y­

binding domain is located at the C-terminus of CheZ (Blat, Y. and M. Eisenbach, 
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1996). The phosphatase activity of CheZ is modulated and occurres only after a 

chemotaxis response is established. 

CheZ: CheZ protein acts to inactivate the tumble signal of the chemosensory 

pathway by increasing the hydrolysis of phospho-Che Y, either directly using a CheZ 

active site residue to carry out a nucleophilic attack, or indirectly through a 

conformational change that stimulates the intrinsinc auto-phosphatase activity of the 

Che Y active site (Hess et al 1988). Only phospho-Che Y binds to the CheZ protein, 

and after dephosphorylation CheY is separated from CheZ (Blat& Eisenbach 1994). 

CheZ can be isolated as a dimmer of 24-kDa subunits. It also forms mixed oligomers 

with CheAs (but not with the full-length of CheA) that enhance CheY phosphatase 

activity (Wang, H. and P. Matsumura, 1996, 1997). 

CheZ has also been isolated as a high-order oligomer with phospho-CheY but 

not CheY, and it appears to compete with FliM for CheY-P but not CheY (Blat, Y. 

and M. Eisenbach, 1996). The inability of CheZ to dephosphprylate FliM-bound 

CheY -P may be the result of its inability to bind to CheY -P when the latter is bound 

to FliM (Bren, A., et aI., 1996). This protein, like all the other cytoplasmic chemotaxis 

proteins, can be attached to the receptor supermolecular complex. CheZ homologues 

have not been found in species outside the y-subgroup. 

CheC, CheD and Che V: These three proteins are absent from E. coli and 

their functions are restricted to some bacteria, such as Bacillus subtilis. Che V, has 

amino acid sequence similarity to CheW and CheY in N-terminal and C-terminal 

domains, and functions in both adaptation and receptor coupling (Rosario, M. M. L., J. 

R. Kirby, et ai., 1995). CheC and CheD both seem to function in MCP methylation, 
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but the two proteins appear to act independently (Kirby, J.R., 2001). CheC interacts 

with flagellar switch components and dissociates when Che Y -P binds. Subsequently 

this protein interacts with the receptor complex to enhance adaptation (Kirby, J. R., C. 

J. Kristich, et at., 2001). 

Homologues of the CheD protein of Bacillus subtilis have been found in a 

large number of bacteria, and it seems to play important role in chemotaxis. CheD 

catalyzes the amide hydrolysis of the B. subtilis chemoreceptor McpA, and also 

deamidates other B. subtilis chemoreceptors such as McpB and McpC. CheD mutant 

cells do not respond to most chemoattractants and deamidation by CheD is required 

for B. subtilis chemoreceptor to transduce signals to the CheA kinase (Kristich, C. J. 

and G. W. Ordal, 2002). 

1.2.5. Chemotaxis towards phosphotransferase sugars (PTS taxis) 

Chemotaxis to sugars transported by the phosphoenolpyruvate 

phosphotransferase system exhibits a mechanism intennediate between chemotaxis 

and metabolism-dependent energy taxis. This system is independent from MCPs. It is 

formed from enzyme I (EI), phosphohistidine canier protein (HPr) and several 

membrane-bound sugar specific proteins (enzymell, Ell). During transfer by Ell the 

incoming sugar is phosphorylated by a phosphate group accepted from 

phosphoenolpyruvate (PEP) and signalled by HPr and El. The phosphorylation of EI 

regulates autophosphorylation of CheA (Lux, R., K. Jahreis, et at., 1995). To cause a 

signal the sugar must be transported but methylation is not necessary and only Che Y 

and CheA in combination with CheW are necessary (Postma, P. W., et at., 1993). 
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Fig (1.2.5): Diagram showing the signal transduction pathway in E. coli for 

phosphotransferase (PTS) taxis (Figure adopted fJ'om: Taylor, B. L., et aI., 

1997). 

1.2.6. Other sensing behaviour in Bacteria (Energy taxis) 

In contrast to classical chemotaxis behaviour, in which sensing of stimuli is 

independent of cellular metabolism, some bacteria monitor their cellular energy levels 

and in response to a decrease in energy level swim to a new environment that re-

energizes the cells . Aerotaxis (taxis to oxygen), phototaxis and taxis to alternative 

electron acceptors share a common signal transduction pathway, and use some 

components of classical chemotaxis as well. 

1.2.6.1. Aerotaxis 
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Aerotaxis is a response to changes in respiratory electron flow that results 

from an increase or decrease in oxygen concentration. In the absence of oxygen, 

alternative electron acceptors such as fumarate or nitrate support electron flow. In the 

presence of air the preferred acceptor (oxygen) is used. A transducer senses the 

change in electron transport and establishes a signal that changes the direction of 

flagellar rotation and swimming. 

The Aer and Tsr proteins in E. coli are recognized as transducers for energy 

taxis. Aer is homologous to E. coli chemoreceptors but in other aspects it is unique 

because it has a PAS domain and flavin-adenine dinucleotide (FAD) cofactor that 

interacts with a component of the electron transport system. 

The cheA, cheW and cheY genes of the chemotaxis operon are essential for 

aerotaxis, since the aerotaxis transducer (Aer) regulates the CheA histidine kinase. 

The· sensing domain of Aer is a PAS, domain that contains the flavin-adenine 

dinucleotide (FAD) binding site. In addition" the Aer transducer has two cytoplasmic 

domains anchored to the membrane by one central hydrophobic sequence. All known 

P AS domains are located in the cytoplasm. 

34 



Hydrophobic 
segment 

Periplasm 

Cytoplasmic 
membrane 

Cytoplasm 

MCP homologous 

Fig (1.2.6): Suggested model of Aer structure, domain organisation and protein-

protein interaction during aerotaxis (PNAS: 2000:97:11 :5830-5835). 

During signal transduction by Aer, oxidation and reduction of FAD produces 

the on and off signals for aerotaxis. The PAS domain interacts with a component of 

the electron transport system. During an increase or decrease in oxygen concentration 

the redox changes in FAD reflect redox changes in the electron transport system. 

Subsequently the PAS domain signals the redox status of FAD to the highly 

conserved signalling domain in the C-tenninus. In the presence of CheW, this highly 

conserved domain regulates the histidine kinase activity of CheA. 
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The serine receptor Tsr in E. coli is also a transducer for aerotaxis. Tsr is a 

multifunctional protein, in addition to detecting serine and energy, it senses 

temperature and the repellents leucine, indole and weak acids. The transduction 

mechanism of Tsr in aerotaxis is unknown. Unlike Aer, Tsr has no known cofactor 

and some evidence suggests that it has a role in the adaptation pathway, a process that 

does not occur in Aer-mediated aerotaxis. 

Fig (1.2.7): Scheme showing the signal transduction pathway in E. coli for 

aerotaxis and chemotaxis mediated by Tsr chemoreceptor (Figure adopted from: 

Taylor, B. L., et aI., 1997). 

1.2.6.2. Phototaxis 

Some bacteria responses to changes in light intensity and colour using the 

sensory photoreceptors, rhodopsin I and II (SRI and SRII) (Hoff, W . D. , K. H. Jung, 

et aI., 1997). Light activated SRI and SRII transmit signals to their specific 
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transducers, HtrI and HtrII. The Htr proteins contain two transmembrane helices, 

cytoplasmic methyl-accepting and histidine-kinase- activating domains (Rudolph, J. 

and D. Oesterhelt, 1995) that are homologous to domains in the chemotaxis 

transducers of E. coli, Tsr and Tar. 

There is a specific interaction between SRI and HtrI and between SRII and 

HtrII. This specificity seems to be encoded in the transmembrane portion of the 

transducers (Zhang, X. N., et al., 1999) and it has been suggested that Htr transducers 

physically and functionally interact with their sensory rhodopsins within the 

membrane (Spudich, J. L., 1998), which results is the control of the flagellar motor 

switching through a cytoplasmic phosphoregulator. 

The mechanism of responding to light in Halobacterium salinarum is the best 

understood system. The two sensory rhodopsins give the bacterial cells the ability to 

respond to light as an attractant or repellent depending on its colour and the stage of 

growth of the cells. A change in the oxygen concentration and light wavelength 

prevent SRII production or produce more of SRI that subsequently induce the 

production of another two rhodopsins, the transport rhodopsin BR (a proton pump) 

and HR (a chloride pump). SRI and SRII, in combination with BR and HR functions, 

transmit signals to HtrI and HtrII through membrane spanning a-helices and the 

conformation of the signalling domains controls the activity of the CheA and CheY 

and subsequently control the motor switching function (Armitage, 1. P., 1999, 

Spudich, J. L., 1998). 
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Fig (1.2.8): The schematic figure of phototaxis pathway in Halobacterium 

salinarum, with location of sensors and protein-protein interaction (Figure 

adapted from: Spudich, J. L., 1998). 
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1.3. Motility in bacteria 

Responses to a variety of environmental information or signals are very well 

developed in bacteria, and result in suitable movement in response to this information 

(Macnab, R. M., 1996). 

Various styles or types of motility are recognized but most of them are based 

on the rotation of rigid, extracellular and helical flagellar filaments, driven by a rotary 

motor fixed in the cell envelope (Berry, R. M. and J. P. Armitage, 1999). Because the 

filament is normally a left-handed helix, rotation in the counter clockwise (CCW) 

sense causes the helical wave to travel from proximal to distal and to exert a pushing 

motion on the cell. Sometimes a tumbling form of motility occurs when the filaments 

are rotated in the opposite direction, clockwise (CW), when the helical wave travels 

from distal to proximal. The situation is made possible by structural changes that take 

place in the filament (Macnab,. R. M., 1977). 

In Salmonella, for example, there are currently 44 known flagellar genes. 

Twenty-three of these genes encode struchlral components of the flagellum. Of these 

components, five (MotA, MotB, FliG, FliM and FliN) are needed for torque 

generation and three of these five (FliG, FliM and FliN) are also needed for switching. 

The principal remaining components are the filament, the hook, and the basal body. 

The basal body has three parts: rod, MS ring and LP ring. 

1.3.1. The flagellar structure 

With some small differences, the flagella from most bacterial species are built 

in the same basic ways. The proteins that form most parts of the flagellum have been 
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identified by electron microscopic studies, genetic and biochemical characterization 

(Blair, D. F., 1995). The flagellum is formed from a helical filament connected via the 

hook to the basal body, which is surrounded by several rings of torque-generating 

particles in the cytoplasmic membrane (Berry, R. M. and J. P. Armitage, 1999). The 

filament is the propeller, and the basal body and torque- generating particles together 

are the motor. Within the motor, the basal body is the rotor and rotates relative to the 

anchored torque- generating particles or stator. 

1.3.1.1. The filament 

The filament has variable length (5-10/lm) but it has a constant diameter of 

about 20nm through its length (Namba,K., I. Yamashita, et aI., 2000). It is built from 

more than 1000 copies of a single protein; flagellin. The flagellin subunits are 

synthesized in the cytoplasm, transferred to the outside, and arranged at points on a 

cylindrical or tubular pattern. 

1.3.1.2. The Hook 

The filament is connected to the cell 'by the hook. The structure of hook is very 

similar to the structure of the flagellum but it is built from a different subunit, called 

the hook protein (FlgE) (Macnab, R. M., 1996). Three hook-associated proteins (HAP) 

have been identified in E. coli. HAPI and HAP3 are placed between the hook and 

filament but HAP2 make a cap at the top of the filament. The hook is flexible and 

reflecting it is role as a universal causing flagella to come together as a bundle (Berry, 

R. M. and J. P. Armitage, 1999). 

40 



1.3.1.3. Basal body 

The hook is connected to a complex structure known as the basal body, which 

is embedded in the cell wall surface. It is consists two rings (L and P) in a position 

equivalent to the outer membrane (the L ring is in the Lipopolysaccharide membrane, 

the P ring is in the peptidoglycan layer), two rings (S and M) in the position of the 

cytoplasmic membrane and a central rod that link together the rings and the hook. 

The basal body complex made up from at least 8 proteins, four of them in the 

rod (FlgB, FlgC, FlgF, and FlgG), three in the rings (FlgH, FlgI, and FliF forming the 

L, P, and MS rings respectively) and one whose location is not known (FliE) (Macnab, 

R. M., 1996). 
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Fig (1.3.1): Schematic structure of the bacterial flagellum (Figure adapted from: 

Morgan, D. G., and S. Khan, 2001). 
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1.3.2. Flagellar assembly 

Assembly of the flagellum begins with components, such as the rotary motor, 

(which are closest to the bacterial surface) and ends with the filament (the most distal 

part of it) (Macnab, R. M., 2000). It is normally starts with the formation of the MS 

ring, formed from single protein called FliF. At the next step the function of at least 

four genes (jlgB,jlgC,jlgF andjlgG) are needed to form the basal-body rod. 

The flagellar genes are clustered in three (E. coli) or four (S typhimurium) 

regions on the chromosome. The genes are named jlg, jlh, jli and jlj according to the 

chromosomal region in which they are found. Expression of the flagellar genes is 

controlled,by a regulatory hierarchy that has three levels. Levell has two genes (jlhC, 

jlhD) that are required for the expression of level 2 genes, and level 2 genes are 

required for expression of level 3 genes. Level 1 genes are under control of cAMP 

(cyclic- AMP) levels and other factors linked to the cell cycle. 

Many of the level 2 genes encode components of the basal body and level 3 

genes encode components of the filament that are added in the later steps or encode 

the Che and Mot proteins (Macnab, R. M., 1996). 
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Fig (1.3.2): The genetically 'defined sequence of flagellar assembly in E. coli 

(Figure adopted from: Kalir, S. et.aJ. 2001). 

1.3.3. Mot proteins 

Two proteins, MotA and MotB, are integrated into the cell membrane and are 

necessary for motor rotation. Electron microscopic studies suggested that they form a 

ring of proteins surrolmding the MS ring of the basal body (Khan, S., M. Dapice, et ai. , 

1988). 
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1.3.3.1. Motor function and torque generation 

As mentioned above, some studies indicate that MotA and MotB interact with 

each other via their periplasmic domains and both of them form the complete stator 

(Garza, A. G., L. W. Harrishaller, et aI., 1995). Each flagellar motor contains several 

MotAIMotB complexes that surround the MS-ring. The Fh complex is attached to the 

face of the M-ring protein on the base of the flagellum, and contains of three proteins, 

FliG, FliM and FliN. Genetic studies have shown that only FhG, MotA and MotB are 

directly involved in torque generation. 

The mechanism of flagellar rotation involves electrostatic interactions between 

the rotor and stator (Zhou, J. D., S. A. Lloyd, et aI., 1998). Regarding to motor 

function, studies on motA mutants have shown that· MotA, possibly in association 

with MotB, acts as a proton trans locating protein (Zhou, J. D. and D. F. Blair, 1997), 

which forms a proton channel anchored to the cell wall by MotB. Proton flow through 

the inside of this channel produces the torque or rotation (Bren, A. and M. Eisenbach, 

2000). 

MotB contains a conserved aspartic acid, Asp32, that is essential for rotation. 

According to a current hypothesis the protonation of Asp32 in MotB produces a 

conformational change that affects a cytoplasmic domain of MotA (containing a 

residue known to interact with the rotor), which works on the rotor to drive rotation 

(Kojima, S. and D. F. Blair, 2001). 

This model provides potential mechanistic models of switching from one 

direction of rotation to the other, but the mechanism of signal propagation within the 

switch subsequent to Che Y -P - FliM binding is not yet fully known. 
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Phosphorylated Che Y (Che Y ~P) diffuses through the cytoplasm and binds to 

switch. FliM appears to be the major target of Che Y ~P interaction. It appears that 

Che Y ~P binding to FliM is essential but insufficient fo r the generation of CW 

rotation. 

(A) (B) 

(C) 

Fig (1.3.3): Suggested model of stator conformational changes in the generation 

of torque by the flagellar motor. Asp32 : Asparatic acid 32, H+: Proton (Figure 

adapted from: Kojima, S., and D. F. Blair, 2001). 

1.3.4. The switch complex 

Three genes were identified in E.coli , named JUG, jliM and jliN, that are 

expressed in early steps of the flagellar biosynthes is. The resulting products are the 
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proteins FliG, FliM and FliN which are located in cytoplasm, and together comprise a 

gearbox, termed the "switch complex", because certain mutations in these proteins 

affect the switching between CW and CCW rotation. This structure is located on the 

cytoplasmic face of the MS-ring, and is the element of the supramolecular complex 

onto which Che Y -P docks, and which determines the direction of flagellar rotation. 

All three genes have diverse roles in producing four distinct mutant 

phenotypes: ( a) non-flagellate (jla) (occurring at three loci flg, flh and fli) where the 

flagellar structure is incomplete, (b) paralysed (Mot-), where the flagellum is 

completed but does not rotate, (c) smooth-swimming[ che-(ccw)] and (d) tumble[che­

(cw)] where the flagellum is made and rotates but does not reverse with suitable 

frequency, therefore chemotaxis does not occurr (De Rosier, D. J., 1998). Thus, these· 

proteins are important for the mechanism of rotation as well as for controlling its 

direction. Analysis of mutants suggests that FliM is the most important, central 

component of the switch and is the target for binding of the switch regulator, Che Y -P. 

The primary function of FliN is flagellum- specific export rather than torque 

generation. The characteristics of FliG mutants suggest that it could be involved in 

torque generation. 
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1.4. The 0.- subgroup of Proteobacteria 

1.4.1. The family of Rhizobiaceae 

The members of this family, Rhizobium (Sinorhizobium), Agrobacterium, 

Bradyrhizobium and Pyhllobacterium, usually have one polar or subpolar flagellum 

and 2-6 peritrichous flagella. All species except Agrobacterium, in association with 

plants and during the symbiosis procedure, incite cortical hypertrophies on plants. 

Nodules are produced on roots of Leguminous species and on leaves of certain plants 

in the family of Rubiaceae by strain of Phyllobacterium. 

The nitrogen-fixing group usually subdivided into two groups: The fast 

growmg genus e.g. Rhizobium and the slow growing genus the same of 

Bradyrhizobium. Two further genera have recently been described, Azorhizobium and 

Sinorhizobium. Some of the Rhizobiaceae affect plant development and cause plant 

disease. Examples are Agrobacterium tumefaciens and A. rhizogenes that produce 

crown gall and hairy root on plants. 

1.4.2. Genus Agrobacterium tumefaciens (descriptive information) 

This bacterium is bacilliform, 0.6- 1.0 Jlm by 1.5- 3.0Jlm, gram negative and 

motile by flagella circumthecally arranged, near one end rather than ringing the 

middle portion of the cell. Colonies are usually convex, circular, smooth and non­

pigmented. Members of this genus invade the crown, roots and stems of the great 

variety of dicotyledonous and some monocotyledonous plants, via wounds, causing 
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the transformation of the plant cells into autonomously proliferating tumour cells. The 

induced plant diseases are commonly known as crown gall, hairy root and cane gall. 

Tumour induction by Agrobacterium is correlated with the presence of a large 

tumour- inducing plasmid (Ti- plasmid). Agrobacterium species are soil inhabitants. 

The type species is Agrobacterium tume/aciens. 

1.5. Sensing behaviours in a-subgroup of Proteobacteria 

1.5.1. Chemotaxis in a- subgroup of Proteobacteria 

The genetic organisation of the chemosensory genes of several members of 

this subgroup has been characterised and found to be very similar (Greck, M., J. 

Platzer, et aI., 1995, and Ward, M. J., A. W. Bell, et aI., 1995). The organisation is 

very different from that seen in E. coli (Annitage, J. P. and R. Schmitt, 1997). In all 

members of this subgroup at least two copies of the che f genes have been found, but 

no cheZ genes. 

1.5.1.1. Chemotaxis in Sinorhizobium meliloti (formerly named Rhizobium 

melilott): 

The chemotaxis genes are part of a large operon containing three novel open 

reading frames (or/I, orj2 and or19) and the six familiar che genes, cheA, cheW, cheR, 

cheB, cheYl and cheY2. Sinorhizobium meliloti has chemotaxis behaviour different 

from E. coli. In this bacteria chef 1 and cheYIl have different role. cheYI alone does 

not mediate chemotaxis in the wild type but it is necessary for full tactic response. 
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Furthermore both CheYII and CheYI require phosphorylation by CheA for activity. 

Che YII is the main response regulator directing chemokinesis. In comparison Che YI 

has a small ro le in chemokinesis, but interferes with smooth swimming (Sourjik, V. 

and R . Schmitt, 1996). 

Signal 
Signal 

MCPs 

/' 
Signal 

: 

: 

Innel' membrane 

Moten' Peptidoglycan layer 

Outer membrane 

Fig (1.5.1): Accepted model for the sensory pathway of Sinorhizobium meliloti 

(Microbiology: 1997:143:3671-82). 
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1.5.1.2. Chemotaxis in Rhodobacter sphaeroides 

The chemotaxis operon of R. sphaeroides contains mil, cheYl, cheA, cheW, 

cheR, chef2, orj2 and orj3. In this bacterium a second operon has been identified with 

a second functional set of the chemotaxis genes cheA, cheW, cheR and a third copy of 

the che Y genes (Hamblin, P. A., B. A. Maguire, et aI., 1997). Further investigation 

showed that R. sphaeroides has multiple copies of chemotaxis genes (two cheA, two 

cheR, one cheR, three cheW and five cheY) (Shah, D. S. H., S. L. Porter, et aI., 2000). 

Rhodobacter sphaeroides has more complex chemotactic behaviour than E. 

coli because it has multiple copies of chemotaxis genes. Tethered cell analysis 

suggested that CheY4, CheY5 are the motor- binding response regulators. CheA2 

mediates an attractant response via Che Y 4 but CheA 1 and Che Y 5 appear to mediate a 

repellent response. Che Y3 facilitates signal termination, and Che Y 1 and Che Y2 can 

substitute. CheW3 (but not CheW2) restored swarming to a CheW mutant of E. coli 

(Shah, D. S. H., S. L. Porter, et aI., 2000). In addition CheW2 and CheA2 are required 

for the normal localisation of McpG and for normal chemotactic responses (Martin, A. 

c., G. H. Wadhams, et aI., 2001), although the roles of these genes are different in 

aerobic or anaerobic conditions. In this bacterium, cheR2 and cheRI were essential for 

normal chemotaxis. cheR2 and cheRI, but not cheRI, were able to complement the 

equivalent E. coli mutants, but none of these proteins were required for correct polar 

localisation of the McpG in R. sphaeroides (Martin, A. C., G. H. Wadhams, et aI., 

2001). 

Analysis of the DNA sequence directly upstream of the chemotaxis operon of 

R. sphaeroides identified a single gene that has strong similarity to the methyl­

accepting chemotaxis protein (Ward, M. J., D. M. Harrison, et aI., 1995). Using 
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antibody raised against the highly conserved domain of E. coli Tsr at least one MCP-

like protein was detected in R. sphaeroides. Analysis using western blotting and 

immunogold electron microscopy showed that expressIOn of these proteins is 

environmentally regulated and that receptors are targeted to two different cellular 

locations, the poles and the cytoplasm of the cell (Harrison, D. M., J. Skidmore, et aI. , 

1999). 

. ' 

~I"I.\ 
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Fig (1.5.2): Multiple chemosensory pathway in Rhodobacter sphaeroides. 
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1.5.1.3. Chemotaxis in other members of a-subgroup of Proteobacteria 

Sequencing of the genomic DNA of Azospirillum brasilense indicated that a 

region of five open reading frames translated in one direction as encoded homologues 

of cheA, cheW, cheY, cheB and cheR genes of the chemotaxis operon of E. coli 

(Hauwaerts, D., G. Alexandre, et aI., 2002). 4Kb DNA region of Rhizobium 

leguminosarum bv. Viciae was also sequenced, and found to encode a chemoreceptor 

(Brito, B., J. M. Palacios, et aI., 1996). Another investigation showed that R. 

leguminosarum contains at least five MCP- encoding genes (McpB to McpF) and 

some of these playa role in early steps in the plant- microbe interaction (Yost, C. K., 

P. Rochepeau, et aI., 1998). 

Phylogenetic and genomic analysis has shown three groups of chemotaxis 

operons in the a-subgroup of Proteobacteria. Group I is exemplified by the operons of 

S. meliloti, A. tumejaciens, R. sphaeroides and Caulobacter crescentus. Group II is 

exemplified by the chemotaxis operon from Rhodospirillum centenum and the best 

example of group III is the major chemotaxis operon of R. sphaeroides. Some species 

have more than one operon, belonging to different groups. In S. meliloti and C. 

crescentus the group I operons are the major ones. The major chemotaxis operon in R. 

sphaeroides belongs to group III. 

The mechanism of sensing an environmental change seems to vary across the 

a- subgroup. Caulobacter crescentus, has membrane- spanning MCP related to those 

in E. coli, at the other, R. sphaeroides, primarily senses its metabolic state using both 

cytoplasmic and membrane- bound sensors to signal changes to the flagellar motor, 

with S. meliloti taking an intennediate position. 
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1.5.2. Energy sensing in a-subgroup of Proteobacteria 

In Rhodobacter sphaeroides energy taxis is a very common behaviour and 

electron transport-sensing mediates aerotaxis, photo responses, electron acceptor taxis 

and taxis toward metabolized substrates. R. sphaeroides contains a homologue of the 

Aer protein identified in E. coli, the change in electron transport rate signalled 

through CheAll and the second chemosensory phosphor-relay system was induced. 

This signal, in combination with others, produces a balance response at the flagellar 

motor (Armitage, J. P. and R. Schmitt, 1997). In Sinorhizobium meliloti all natural 

amino acids induce chemotaxis, and it seems that energy-dependent signals are 

important role in this bacteria. S. meliloti cells respond to changes in oxygen 

concentration by changing their swimming speed. Azospirillium brasilense is the first 

bacterial species in which redox taxis was reported. The major response in. A. 

brasilense is aerotaxis and attracts the bacteria to an oxygen concentration that 

supports a maximum energy level in bacterial cells. 

A variety of taxis play major roles in establishing symbiotic, pathogenesis and 

associative relationships between plants and Rhizobacteria. Ifthe strains of this group 

are motile then they are able to travel distances in soil between the plant roots. Several 

line of evidence suggest that taxis in plant-associated bacteria is towards metabolites 

(Armitage, J. P. and R. Schmitt, 1997). 

In symbiotic strains ego Sinorhizobium meliloti different metabolizable 

substrates cause chemotaxis and III some cases chemoreceptors are cytoplasmic 

proteins that respond to intracellular signals. The carbon sources that support the 

fastest growth are also the best chemoattractants, a behaviour typical of energy-
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dependent taxis. In Azospirillium species, aerotaxis and taxis toward some substrates 

(malate, succinate) are the most important responses. 

1.6. Motility in a.-subgroup of Proteobacteria 

Members of a.-subgroup of proteobacteria, such as Agrobacterium, Rhizobium 

(Sinorhizobium), Azospirillium, Caulobacter and Rhodobacter have a motility system 

which differs from entric bacteria. Cells of S. meliloti, unlike Entrobacteria, swim by 

unidirectional rotation of their rigid flagella (Gotz, R. and R. Schemitt, 1987) and 

swimming cells respond to material stimuli by changing their flagellar rotary speed 

(Sourjik, V. and R. Schmitt, 1996). 

Unlike the Entrobacteria, in this group two different Che Y response regulators 

act in concern with new Mote and MotDmotor proteins to control flagellar rotary 

speed (Greck, M., 1. Platzer, et ai., 1995). The organisation of the S. meliloti 

chemotaxis (che), flagellar (/la, jlg, jlh and fli) and motility (mot) genes is very 

different from that in Enterobacteria, since all known 41 genes are clustered in one 

chromosomal region (Sourjik, V., W. Sterr, et ai., 1998). Furthermore, in S. meliloti 

two related members of the luxR family, VisN and VisR (for vital of swimming) have 

been identified (Sourjik, V., W. Sterr, et ai., 1998). VisN and VisR act as the master 

controls of a gene cascade that encodes flagellar, motor and chemotaxis proteins 

(Sourjik, V., P. Muschler, et ai., 2000). 
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1.7. Virulence in A. tumefaciens 

Tumor formation by this bacteria is induced through transfer of approximately 

15 genes of bacterial DNA (Zhu, J., et at., 2000, Zupan, 1., T. R. Muth, et at., 2000, 

Zupan, J. and P. Zambryski, 1997). The transferred DNA (T-DNA), which is on a 

200Kb tumor- inducing plasmid (Ti- plasmid), is translocated to the plant cell, where 

it is integrated into the plant genome (Ziemienowicz, A., B. Tinland, et at., 2000). 

This transfer process requires the products of 20 known vir genes located on a non­

transferred portion of the Ti-plasmid as well as a smaller number of chromosomally­

encoded proteins (Winans, S. C, 1992). 

Most transferred genes can be categorized into two distinct groups: The first 

group, when expressed, induce the production of opines, a group of carbon 

compounds that are produced from plant metabolism and used by A. tumefaciens as a 

nutrient source (Dessaux, Y., A. Petit, et at., 1993). The second group mediates the 

over production of the phytohormones, auxin and cytokinin, which cause neoplastic 

growth and crown gall tumor formation in some parts of the plants (Kalogeraki, V. S. 

and S. C Winans, 1998). 

To start the process of transfer, virulence genes (from vir region) must be 

induced in response to chemical signals from the plant wound site, which include low 

pH, phenolic compounds, and monosaccarides of the plant cell wall (Kemner, J. M., 

x. Y. Liang, et at., 1997). The signals are recognized by three proteins, the VirA­

VirG, two component transduction system and ChvE, a periplasmic sugar binding 

protein (Peng, W. T., Y. W. Lee, et at., 1998). 
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1.7.1. Attachment of Agrobacterium to the plant cell 

Bacterial attachment to the host cell is necessary for virulence, and non­

attaching bacterial mutants normally cannot incite disease (Matthysse, A. G., 1987). 

Agrobacterium attaches to the plant cell in two steps. The first step is mediated by a 

cell associated, acetylated, acidic capsular polysaccharide; the second step involves 

the elaboration of cellulose fibrils by the bacterium. A region of the chromosome of A. 

tumefaciens containing genes (aU genes) required for bacterial attachment to host cell 

has been identified. 

The aU region includes two segments of DNA, these are attAl- attE, which 

has homology with ABC transport system, and attR, which has homology to cetyl 

transferases (Reuhs, B. L., 1. S. Kim, et aI.; 1997). The genes located in the aU region 

have been :organized into nine operons which contain 26 genes. Non-attaching 

mutants have reduced ability to colonize roots; suggesting that att genes are involved· 

in the colonization of roots (Matthysse, A. G., 2001). 

The chromosomal virulence genes chvA, chvB and pscA are involved in the 

synthesis, processing and export of cyclic ~-1, 2 glucan. Agrobacterium strains with 

mutation in chvA or chvB show attachment deficiencies (Douglas, 1985). Attachment 

occurs at the cell wall surface of wounded plant tissue and two plant cell wall proteins 

mediate bacterial attachment, a vitronectin- like protein (Wagner, V. T., and A. G. 

Matthysee, 1992) and a rhicadhesin- binding protein (Swart, S., et aI., 1994). 
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1.7.2. Ti- Plasmid: Structure and Function 

In past Ti- plasmids were generally classified by the type of opines that could 

be catabolised by genes on the plasmid. However, this nomenclature is becoming less 

satisfactory because all known Ti- plasmids catalyse the catabolism of more than one 

opines (Zhu, J., P. M. Oger, et ai., 2000). The most common type ofTi- plasmid is the 

octopine-type. This Ti- plasmid contains 155 open-reading frames. All Ti- plasmids 

have simi lIar functions and generally contain five region: 

1. The T - region that is transferred to the plant cell. 

2. The vir region, which directs the process of transfer of the T - DNA 

3. The rep region, required for replication of the Ti- plasmid 

4. The tra and trb loci that is required for the conjugal transfer of the Ti-

plasmid 

5. Genes that direct uptake and catabolism of opines. 

T-DNA 

Vir 
region 

pl'iC58 

Fig (1.7.1): Map of A. tumefaciens pTiC58 plasmid. 
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1.7.2.1. T- DNA structure 

Typically T-DNA contains two regions, TL- DNA and TR- DNA, that join 

together to make T - region. Each region is flanked by cis- acting, 25bp direct repeats 

called border sequences (Zambryski, P., 1988). The left border of the TL- DNA is 

responsible for T -DNA transfer, but in comparison the right border is essential and 

acts in a polar fashion (Miranda, A., G. Janssen, et aI., 1992). TL- DNA and TR- DNA 

encodes several proteins. One group of these genes directs the production of plant 

growth hormons, auxin and cytokinin, responsible for the gall formation of the 

transformed plant cell (Binns, A. N., and P. Castantino, 1998). The second group of 

genes induce the production of various type of opines by host cells. 

C\ 
11--------- TL-DNA -'---------1 

rr.lII'.lrll"JT"'.I7IJI;""""I'"7'~"17'f".r.71. 

1---- T R-DNA-----f 
""-""T.rr.rrlrJ~ 

Fig. (1.7.2): Genetic map ofT-DNA region ofthe octopine-type Ti plasmid 

(Journal of Bacteriology: 2000: 182(14): 3885-3895). 

1.7.2.2. Vir region 

Proteins responsible for T-DNA processing and transfer are encoded by the vir 

region, which is separate from T-DNA region. Twenty genes have been identified, 

which are expressed in six operons, virA, B, C, D, E and G. The vir regulon is induced 
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in response to a variety of chemical signals that are released from plant wounds. The 

signals are perceived by the VirA-VirG system. VirA is a transmembrane sensory 

histidine kinase which phosphorylates the response regulator VirGo Phospho-VirG 

binds to binding sites in vir region and activates transcription of the other genes in this 

region (Jin, S. G., R. K. Prusti, et aI., 1990). 

The proteins required for cutting the left and right border sequences are 

encoded by virDI and virD2 (Yanofsky, M. F., S. G. Porter, et aI., 1986). VirCI and 

VirC2 are not required for T - region processing but are necessary for efficient T­

strand transfer into plant host cell. The virB operon contains 11 genes. All of them 

except virBI are essential for tumorigenesis (Berger, B. R. and P. 1. Christie, 1994) 

All proteins of this operon are localised to the inner or outer membrane of the 

bacterial cell (Thorstenson, Y. R., G. A. Kuldau, et aI., 1993). 

VirE2 and VirD2 contain nuclear localization sites (NLS) and mediate 

transport of the T-DNA from cytoplasm to the nucleoplasm inside the plant host cell 

(Zupan, J., T. R. Muth, et aI. , 2000). The virB and virD operons together make a 

complete set of conjugation proteins . Some members of the vir regulon are not 

essential for tumorigenesis in all hosts and may be required only in specific hosts or 

may play other roles. These include virF, H, J, K, L , M, P, and virR (Kalogeraki, V. S. 

and S. C. Winans, 1998). 
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.. Fig (1.7.3): Map of A. tumefaciens vir region (Science: 2001:299:2317-2323). 

1.7.3. T - DNA transfer process 

The process initiates when bacterial cells perceive certain phenolic and sugar 

compounds from wounded plant cells (Winans, S. c., 1992). These compounds act as 

a inducers of the vir genes. Phenolic compounds such as acetosyringone and related 

compounds are recognized by virA. Autophosphorylation of VirA protein and 

transphosphorylation of VirG protein results in the activation of vir genes. The 

activation of virDJ and virD2 results the cleavage of Ti- plasmid in the border 

sequences, and production of a single stranded (ss) copy of the T-DNA (T-strand) 

with a single molecule of the Vir protein. VirD2 covalently binds at the 5' end, coated 

61 



with the ssDNA binding protein, VirE2, and produces the T- complex (Zupan, J., T. R. 

Muth, et aI., 2000). 

T-DNA borders act as sites of initiation and termination for T- strand 

production and nicking enzymes (VirDI, VirD2), which produce ss nicks in T- DNA 

borders. In Agrobacterium VirDl firstly recognises and binds to the T-DNA border, 

to enhance the binding of VirD2, working as a relaxase (Pansegrau, W. and E. Lanka, 

1996). 

During transfer of VirD2:T-strand and before transfer into the plant cell, the 

nucleic acid is coated by ssDNA-binding protein, VirE2, (Zupan, 1. and P. Zambryski, 

1997). Some investigators have proposed that VirE2 and VirD2:T -strand are exported 

independently from the bacterium and that the formation of the T -complex IS 

completed in the plant cell cytoplasm (Lee, L. Y., S. B. Gelvin, et ai., 1999). 

Structure and function of T - transporter: The T -complex transporter is 

. assembled from 11 proteins encoded by the virB operon and virD4. This transporter 

mediates transfer of the T - complex to plant cell, conjugal transfer of plasmids into 

the bacterium and also transfer of some proteins, such as VirE2. The assembly of T­

transporter is started by the hydrolysis of the peptidoglycan layer by VirB 1 (Baron, C., 

M. Llosa, et aI., 1997). VirB6, VirB7, VirB8, VirB9 and VirBI0 are the constituents 

of the T - DNA transport pore (Kumar, R. B., Y. H. Xie, et aI., 2000), and through it 

VirB2 and VirB5 migrate to the cell surface to form the T - Pilus. Energy to make the 

assembly and mediate translocation is supplied by the three ATPases (VirB4, VirB 11 

and VirD4) (Christie, P. 1., 1997). 

The VirB apparatus delivers the T -complex to the cytoplasm of the plant cell. 

The carboxyl- terminus of VirD2 contains a nuclear localization signal (NLS) that 

mediates import of T - strand through the nuclear pore. The VirE2 protein also has a 
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role in nuclear import. This protein has a nuclear localization site that mediates 

transport of the T- DNA from the cytoplasm to the nucleoplasm (Citovsky, V., J. 

Zupan, et aI., 1992). For import of short ssDNA, VirD2 is sufficient, but import of 

long ssDNA requires VirE2. Both proteins, VirE2 and VirD2, are required for 

efficient import of the T-DNA complex into plant nuclei (Ziemienowicz, A., T. 

Merkle, et aI., 2001). 

In the final step, the ssDNA of the T -complex is integrated into plant 

chromosome. After nuclear import, the T-strand made ds-DNA with the concomitant 

displacement of VirE2. Most models propose illegitimate recombination for T - strand 

integration (De Buck, S., A. Jacobs, et aI., 1999). VirD2 initiates integration by 

ligating the 5' end to an exposed 3'- OH in plant chromosome. VirE2 interacts with 

nuclear factors (VIP2) that mediate interaction with chromatin and facilitate 

integration of the T -strand. 
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Fig (1.7.4): The basic steps in the transformation of plant cells by A. tumefaciens 

(Figure adopted from: Zupan, J., et aI., 2000). 
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1.8. Chemotaxis and motility in Agrobacterium 

1.8.1. VirA and vir genes activation 

The vir genes are induced in response to chemical signals produced at the 

plant wound site. These signals include low pH, phenolic compounds, and 

monosaccharide components of the plant cell wall (Cangelosi, G. A., R. G. 

Ankenbauer, et aI., 1990, Shimoda, N., A. Toyodayamamoto, et aI., 1993, Stachel, S. 

E., E. Messens, et aI., 1985). The signals are perceived by the chromosomally 

encoded sugar- binding protein, ChvE, and the Ti-plasmid- encoded proteins, VirA 

and VirGo VirA/VirG are members of the highly conserved class of two-component 

sensory transduction proteins. VirA is a transmembrane, sensory histidine kinase 

which phosphorylates the response protein VirG (Jin, S. G., R. K. Prusti, et aI., 1990, 

Winans, S. C., R. A. Kerstetter, et aI., 1989). Phospho-VirG binds to binding sites 

designated vir boxes, located upstream of each vir promotor and co~ordinately 

activates transcription of these promoters (Han., D.C., and S. C. Winans, 1994, Jin, S .. 

G., R. K. Prusti, et aI., 1990). 

The most impOliant and key molecule that permits Agrobacterium to sense 

environmental conditions suitable for T-DNA transfer is the VirA protein, which is 

anchored to the cytoplasmic memberane by two transmembrane domains (TMI and 

TM2). This protein contains four other domains: an amino- terminal periplasmic 

domain and three cytoplasmic domains. The cytoplasmic domain include a linker, a 

kinase, and a carboxyl-terminal region termed the receiver because it contains a 

region that is homologous to the phosphorylatable receiver domain of VirGo The 
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periplasmic domain is required for detection of monosaccharides and has homology 

with the chemoreceptor Trg (Chang, C. H., and S. C. Winans, 1992). 

Genetic analysis showed that the Trg- homologous region of virA is not 

essential for the enhancement of vir gene expression by sugars (Toyoda-Yamamoto, 

A., N. Shimoda, et aI., 2000). The kinase domain is critical for tumorigenesis (Jin, S. 

G., T. Roitsch, et aI., 1990). There are differences in vir gene induction by a variety of 

different phenolic compounds which is determined by the virA gene of Agrobacterium. 

The virA locus determines which phenolic compounds can function as vir inducers, 

suggesting that VirA directly senses the phenolic compounds and responds to them 

for vir activation (Lee, Y. W., S. G. Jin, et aI., 1996). The site of interaction of the 

phenolic compounds withVirAis in the linker domain of VirA (Chang, C. H., and S. 

C. Winans, 1992). Mutation in the TM2 region adjacent to the cytoplasmic linker 

abolished induction of vir genes. In the linker domain, sites essential for vir induction 

by phenolic compounds were distributed over the entire region (Toyoda-Yamamoto, 

A., N. Shimoda, et aI., 2000). 

virA and virG are the Ti-plasmid loci required for chemotaxis towards 

acetosyringone, suggesting a multifunctional role for the VirA/G system: at low vir 

inducer concentration, it induces chemotaxis, at high concentration, it effects vir­

induction (Shaw, C. H., G. 1. Loake, et aI., 1991). For chemotaxis, vir induction does 

not appear to be required, the constitutive level of virA/G expression being sufficient 

to effect chemotaxis. Under peak chemotaxis condition, vir induction is unlikely to 

occur (Shaw, C. H., A. M. Ashby, et aI., 1988). 
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Fig (1.8.1). Functional domains of the sensor molecule, Vir A. ( Figure adapted 

from Lee, W., et aI., 1996). 

Monosaccharides, which act as inducers of vir genes, are derived from 

components of the plant cell wall. They are bound by the periplasmic sugar-binding 

protein, ChvE, which then interacts with the periplasmic region of the membrane-

bound VirA molecule of the VirAiVirG sensor-regulator pair to activate transcription 

of the vir regulon (Huang, M, L. , et ai, 1990, Shimoda, N. A., et ai, 1990). Most of the 

periplasmic domain of VirA is required for the interaction with, or response to, ChvE 

(Doty, S. L. , M. C. Yu, et aI. , 1996), All Agrobacterium strains containing a defective 

chvE are defective in vir gene induction (Huang, M. L. , et aI, 1990). ChvE also 
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mediates chemotaxis toward various sugars, presumably by interacting in the sugar-

bound form with an unidentified membrane- bound receptor (Cangelosi, G. A., R. G. 

Ankenbauer, et aI., 1990). Specific inducing sugars can broaden the specificity of the 

phenolic compounds which VirA senses. This broadened specificity results from the 

increased level of ChvE through induction by arabinose via the regulatory protein 

GbpR. (Peng, W. T., Y. W. Lee, et aI., 1998). 

A chemotaxis operon has been identified in A. tumefaciens. The operon begins 

with orfl, a protein product showing strong sequence identity to Mcps protein, 

followed by or12, cheYl, cheA, cheR, cheB, cheY2, orj9 (which shows the strong 

similarity with cheD of Bacillus subtilis) and orflO. Complete deletion of this operon 

results in severely-impaired chemotaxis. cheW is not found in the che operon (Wright, 

E.L, et aI., 1998) but elsewhere in A. tumefaciens genome (Wood, D. W., 1. C. 

Setubal, et aI., 2001). or12 has sequence identity with cheZ. 

orfl orfl Yl cheA cheR cheB Y2 orf9 orfl 0 

lKb 

Fig (1.8.2): Map of A. tumefaciens chemotaxis operon. 

1.8.2. Motility in Agrobacterium 

For motility, A. tumefaciens produces flagella that are circumthecally arranged, 

near one end rather than ringing the middle portion of the bacilliform cell, and they 

are not peritrichously situated (Chesnokova, 0., J. B. Coutinho, et aI., 1997). The 
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flagella rotate unidirectionally, clockwise, driving the bacterium at 60 llm/s (Shaw, 

C.H., 1991). This type of flagellar arrangement might play a role in facilitating 

bacterial chemotaxis and expedite the infection process because cells are frequently 

attached to plant cells in a polar fashion (Smith, V.A., et al., 1978). 

Motility by A. tumefaciens plays a critical role in the early infection process, 

but probably it does not influence virulence. Direct inoculation of plants showed that 

non- motile mutants were equally as virulent as the parent strains (Bradley, D. E., C. 1. 

Douglas, et al., 1984). Another group reported chemotaxis by A. tumefaciens towards 

plant phenolics such as acetosyringone, and observed that non- motile mutants were 

non- chemotactic and incapable of colonising the roots of young potato seedlings 

(Shaw, C. H., G. 1. Loake, et al., 1991). These observations would suggest that 

motility, and presumably flagella, may be a necessary component for ecological 

fitness in natural environment (Chesnokova, 0., 1. B. Coutinho; et al., 1997). The size 

and weight of the tumors induced by mutant strains (with a deletion of jlaABC of 

motility gene region) were consistantly smaller than those induced by the wild type 

(Chesnokova, 0., 1. B. Coutinho, et al., 1997). 

Genes concerned with motility have been identified (Deakin, W.J., et al., 

1997., 1999., Chesnokova, 0., 1. B. Coutinho, et al., 1997). These genes are clustered 

in Agrobacterium. The cluster contains genes concerned with filament and basal body 

structure, assembly and export, motion and switching (Deakin, W.J., et al., 1999). The 

Agrobacterium cluster shows considerable similarity with that from another member 

of the a- subgroup of Bacteria, Sinorhizobium meliloti (Sourjik, V., W. Sterr, et al., 

1998). 

69 



1.9. Aims of this work 

This project aIms to describe how Agrobacterium tumefaciens processes 

sensory information and to determine which cytoplasmic components of the 

chemotaxis operon have a major role in signal transduction in the chemosensory 

pathway. Another aim is to find possible MCP genes in A. tumefaciens and to 

investigate the role of this protein(s) in the acquisition of sensory information from 

chemoattractants. 
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Chapter 2 

Materials and Methods 
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2. Materials & Methods 

2.1. Materials 

All inorganic chemicals were of Analar quality and purchased from BDH Chemical 

Ltd., Poole, Dorset, U.K., unless otherwise specified. 

All organic chemicals and enzymes were from Sigma Chemicals pIc., Poole, Dorset, 

u.K., unless otherwise specified. 

Lab M nutrient broth (no.2) and Lab M nutrient Agar were from Amersham Ltd., 

Bury, u.K.. 

Nylon hybridisation transfer membranes and radiochemicals were from Amersham 

Biosciences U.K. Limited, Amersham Place, Little Chalfont, Bucks HP7 9NA, u.K. 

Bacteriological Agar (no.1) and yeast extract were from Oxiod Ltd, Basingstoke, 

Hants, u.K.. 

Trypticase peptone was from BBL, Cockeysville, U.S.A .. 

Restriction endonucleases, T4 DNA ligase, Klenow fragment enzyme, Taq 

polymerase, corresponding buffers, X-gal, IPTG and A-DNA were from NBL 

ferrnentas, Cramlington, Northumberland, U.K., Boehringer Mannheim Ltd, Lewes, 

u.K., or Helena Biosciences, Tyne & Wear, u.K.. 
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Agarose was from BRL, Gaithersburg, U.S.A .. 

Metaphor agarose was from FMC Bioproducts, Rockland, U.S.A .. 

Fico1l400 and Sephadex G-50 were from Pharmacia fine chemicals, Uppsala, Sweden. 

Fuji RX-lOO x-ray film was from Fuji Photo film Co, Ltd., Japan. Polaroid film was 

from Polaroid Ltd., St. Albans, Hertfordshire, U.K .. 

Filter paper (3MM) and laboratory sealing film were from Whatman International 

Ltd., Maidstone, U.K .. 

Nitrocellulose discs (25mm, 0.22~m pore size) were from Schleicher & Schuell, 

Postfach 4, D-3354, Dassel, Germany. 

Oligonucleotides for use in PCR analysis were from MWG-Biotech, Germany and 

PE-Applied Biosystems U.K., Cheshire, U.K .. 

Nitrocellulose discs (l3mm, 0.8~m pore size) for use in chemotaxis assay were from 

Scientific Laboratory Supplies Ltd, Wilford Industrial Estate, Nottingham, U.K .. 

IsotonII for use in Coulter Counter Multisizer II was from Coulter Electronics Limited, 

Northwell Drive, Luton, U.K. 
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2.2. Bacterial strains 

2.2.1. E.coli Strains 

Strain Characterization Source 

DHSa. supE44 ~lacUl69 (f80 lacZ~MI5) hsdRl7 Woodcock et al.(1989) 

RecAI endAI gyrA96 thi-l relAI 

2.2.2. Agrobacterium tumefaciens strains 

Strain Characterization Source 

CS8Cl Wild-type chemotaxis, Ti-, Rif+ VanLarebeke et al. (1974 

Cl-delYl Chemotaxis mutant-created by in-frame This work 

deletion of che Y 1, Rif+ 

Cl-delY2 Chemotaxis mutant-created by . in-frame This work 

deletion of cheY2; Rif+ 

Cl-delB Chemotaxis mutant-created by in-frame This work 

deletion of cheB, Rif+ 

Cl-delR Chemotaxis mutant-created by .in-frame This work 

deletion of cheR, Rif+ 

2.3. Plasmid 

2.3.1. Plasmid vectors 

Plasmid Characterization Source 

pBluescriptSK + 2.96 Kb Cloning vector, Amp® Lab stock 

pJQ200uc1 Suicide vector, Gm® Quandt and Hynes 

(1993) 

pJQ200mp18 Suicide vector, Gm® Quandt and Hynes 

(1993) 

pK18mobSacB Allelic exchange vector, Kan® Schafer et al. (1991) 
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2.3.2. Recombinant plasmids containing cloned chemotaxis genes 

Plasmid Characterization Source 

pDUB1911 C58C 1 cosmid library clone containing Bamill Lab stock 

fragment from chromosomal DNA in the vector 

pLAFR3, Tc® 

2.3.3. Recombinant SK + plasmids containing sub cloned A. tum efacien s 

chemotaxis genes 

Plasmid Characterization Source 

pELW6 pBluescript SK + containing 1.7Kb EeoRI Wright, E. L., 1999 

fragment from pDUB1911 

pELWl pBluescript SK + containing 4KbKb HindIII Wright, E. L., 1999 

fragment from pDUB 1911 

pELW2 pBluescript SK + containing 4KbKb HindIII Wright, E. L., 1999 . 

fragment from pDUB 1911 

pELW61 1309 bp SadI fragment isolated from pELW6 This work 

and subcloned into pBluescript sk+ 

pELW62 363 bp SadI fragment isolated from pELW6 This work 

and subcloned into pBluescript sk+ 

pELW63 1190 bp EeoRV fragment isolated from pELW6 This work 

and subcloned into pBluescript sk+ 

pELW64 1373 bp XbaIJ HindIII fragment isolated from This work 

pELW6 and subcloned into pBluescript sk+ 

pELW65 547 bp HineII fragment isolated from pEL W 6 This work 

and subcloned into pBluescript sk+ 

SK+lcheR 1827bp PstI fragment from pEL WI and This work 

sub cloned into pBleuscriptsk+ 

SK+/cheB 1935bp Rsal fragment from pELW1 and This work 

subcloned into pBluescriptsk+ 
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SK+lcheYl 773bp PvuIIl HincIl fragment from pEL W2 and This work 

subcloned into pBluescript sk+ 

SK+/cheY2 957bp BglIIl Mlul fragment from pELWl and This work 

sub cloned into pBluescript sk+ 

SK/delYl ~3.4Kb PCR product resulting of deletion of This work 

cheYl gene from SKicheYl 

SK/de1Y2 ~3.8Kb PCR product resulting of deletion of This work 

cheY2 gene from SKicheY2 

SK/deiR ~3.8Kb DNA product resulting of deletion of This work 

cheR gene from SKicheR 

SK/delB ~3.7Kb peR product resulting of deletion of This work 

cheB gene from SKI cheB 

2.3.4. Recombinant pK18mobsacB plasmids containing subcloned A. 

tumefaciens chemotaxis genes 

Plasmid Characterization Source 

pK18/delYl 490bp EcoRIIHindIIl fragment from SKidelYl This work 

ligated into pK18mobsacB vector 

pK18/de1Y2 990bp HindlIIlXbal fragment from SKidelY2 This work 

ligated into pK18mobsacB vector 

pK18/delR 900bp EcoRIIXbal fragment from SKidelR This work 

ligated into pK18mobsacB vector 

pK18/delB 750bp HindlIIlXbal fragment from SKidelB This work 

ligated into pK18mobsacB vector 

2.3.5. Plasmid used in mutant construction 

Plasmid Characterization Source 

pRK2013 Helper plasmid for conjugation into Figursky and Helinski 

A. tumefaciens , Km® (1979) 

pDUB2033 Neomycin resistance cassette, Amp®, Neo® Lab stock 
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2.4. Bacterial growth, media, condition and procedure 

Lab M nutrient broth no.2 (LM-broth): 

25g made up to 1 litre with distilled water gives final concentration of 5g/1 beef 

extract, 109/I balanced peptone no.1, 5g/1 NaCI pH: 7.5 ±0.2. 

For swarm plates bacteriological agar was added at a concentration of 0.2-0.35%. 

Lab M nutrient agar (LM-agar): 

2Sg made up to 1 litre with distilled water, gives final concentration of 5g/1 peptone, 

3g/1 beef extract, Sg/l NaCl, 12-15g/1 Agar no.2, pH: 7.3±0.2. 

MinA+Glucose: 

20ml 5X MinA salts, 2ml 10% Glucose, O.lml 1M MgS04 made up to 100mi with 

distilled water (5X MinA salts contains 52.5g K2HP04, 22.5g KHP04, 1.0g 

(NH4hS04 and 2.5g Sodium citrate, 2HzO per 1000ml). 

If required, bacteriological agar was added to final concentration of 1-1.2% for solid 

plates. 

Chemotaxis media: 

Iml O.1M EDTA and IOml 1M K2HP04 (pH: 7.0) made up to 1 litre with distilled 

water. 

Antibiotics were added to sterile media to give a final concentration of: 

For A. tumefaciens: Erythromycin 100~g/ml, Kanamycin 50~g/ml, Neomycin 

1 OO~g/ml, Rifampicin 1 OO~g/ml and Tetracycline 15 ~g/ml. 
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For E. coli: Ampicillin 50llg/ml, Gentamycin 101lg/ml, Kanamycin 50Ilg/ml, 

Neomycin 1001lg/ml and Tetracycline 151lg/ml. 

For selecting against the inactivation of the ~-galactosidase gene, by insertion of 

DNA fragments into the multiple cloning sites of pBluescriptSK + and other plasmids, 

50111 of 20mg/ml X-gal (in dimethyl formamide) were spread over the surface of agar 

plates using sterile glass spreader. 

All cultures were sterilized by autoclaving at 20PS! for 20 minutes, unless otherwise 

specified. 

Liquid cultures were inoculated with a flamed loopful or with 5 III of overnight culture 

using sterile tip. 

Solutions and bacterial suspenSIOns were spread onto agar plates usmg a glass 

spreader which had been sterilized by flame and then cooled with 70% ethanol. 

Bacterial colonies were inoculated into the centre of swarm plates using sterile needle 

(stab inoculation), or 3-5 III of bacterial suspension was placed on agar plates as a 

spot with sterile tip. 

Liquid bacterial cultures were incubated on an orbital shaker at about 200rpm at 37°C 

for E. coli and 28-30°C for A. tumefaciens strains. 
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I, 

Short-tenn (up to 2 months) stocks of cultures were kept at 4°e. For long-tenn 

storage, stocks were made in liquid media, glycerol was added to final concentration 

of 15-20% and after quick freezing in liquid nitrogen, kept at -80°e. 

All glassware, plasticware and other equipment was sterilized by autoclaving at 15-

20PSI for 15-20 minutes. Otherwise solutions were filter-sterilized through a 0.22)..lm 

nitrocellulose filter into sterile container. 
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2.5. Isolation of DNA 

2.5.1. Alkaline lysis plasmid minipreps 

A single colony of bacteria was grown for overnight in 5 ml sterile LM broth 

media containing the appropriate antibiotic selection. The cells were harvested by 

centrifugation in a microfuge at full speed (14000 rpm) for 1.5 minutes. The 

supernatant was discarded and the pellet was resuspended in 200 III of ice-cooled 

solution I: 

Solution I: 50mM glucose, 25mM Tris.CI (pH 8.0), 10mM EDTA (pH 8.0) 

200111 of solution II was added and the contents mixed by gentle inversion. 

Solution H: (prepared fresh) 1.0 ml of 0.4 M NaOH and 1.0 ml of 2% SDS 

Then 200111 of ice- cooled solution III was added and shaked gently to mix. 

Solution III: 1.15 ml glacial acetic acid, 2.85 ml distilled water, 6 ml 5M 

potassium acetate, pH: 4.8 

The tube was then centrifuged in a microfuge at 14000 rpm for 5 min. The 

supernatant was transferred to a clean tube and centrifuged for 1 minute. The 

supernatant was transferred to new eppendorf tube, 2 volumes of absolute ethanol 

(100%) were added at -20uC, and the solution was left on ice for at least 15 minute to 

enhance the precipitation of the DNA. The tubes were centrifuged at full speed for 15 

minutes at 4°C. Then the ethanol was poured off and 1 ml of 70% ethanol (-20°C) 

was added and the sample was centrifuged at room temperature for 5 minutes. The 

ethanol was removed from the tube, and the pellet was left at 37°C to dry for a few 

minutes. The final DNA pellet was resuspended in 50111 of T.E. Buffer (containing 

RNAase to final concentration of 20Ilg/ml). 

T.E. Buffer: Tris.CI (pH 7.5) 1.0mM, EDTA (pH 8.0) 0.01 mM 
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(When necessary plasmid DNA was isolated and purified with Qiagen Qiaprep spin 

columns, according to the manufacturer's instruction). 

2.5.2. Isolation of chromosomal DNA 

A single colony of bacteria was grown to logarithmic phase in 5 ml LB 

medium containing appropriate antibiotic. Cells were collected in 1.5 ml eppendorff 

tubes and pellets were left at -20°C for 30 minutes. The pellet was resuspended in 

200111 of TE buffer and incubated with 8111 lysozyme (10llgi ml) at 37°C for 30 min. 

Then the cells were lysed by addition of 40111 of 4M sodium perchlorate, 24111 of 10% 

SDS and 8 III of proteinase K (20llg/ ml stock) and after mixing by inverting; 

incubated at 45°C. After 2 hr the DNA was precipitated by adding 2 volumes ethanol 

(100%, -20°C), incubated at -20°C for 30 minutes and centrifuged for 5 minutes 

(13000~m, 4°C). The ethanol was discarded, the pellet was washed with 1 ml 70% 

ethanol, dried for a few seconds and resuspended in 500~ll TE buffer. 

The DNA was mixed with an equal volume of Phenol: chlorofonn: isoamyl 

alcohol (25:24: 1), inverted at room temperature to mix completely then the solution 

was centrifuged for 3 minutes or until the three phases were separated completely. 

The aqueous layer transferred to a clean tube and this procedure was repeated three 

times; each time the aqueous layer was transferred to a clean tube followed by 

extraction once with chloroform:isoamyl alcohol (24: 1). The DNA was precipitated 

by adding 2 volumes of ethanol (100%) and 0.1 volume 3M sodium acetate (pH: 4.8), 

and then incubated at -20°C overnight. It was subsequently centrifuged for 5 minutes, 

washed with lml 70% ethanol and left at 37°C until dried completely, and then 
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resuspended in 50111 TE buffer (with RNAase (lOmg/ml stock)) to a final 

concentration of 20llg/ml. 

2.5.3. Preparation and purification of salmon sperm DNA 

100mg of highly polymerized DNA from salmon sperm (Sigma) is dissolved 

in 10 ml sterile distilled water in a sterile 50ml polypropylene centrifuge tube. I.28ml 

of 0.25M EDTA and 4.8ml of 1M sodium hydroxide was added and the solution has 

boiled in a water bath for 20min. Then tube was cooled in ice, and 1.1 ml of 2M Tris­

CI (pH: 7.5), 4.8ml of 1M hydrochloric acid were added and well mixed. This was 

followed by addition of 10ml phenol/chloroform/isoamyl alcohol (25:24:1), and the 

tube was shaken well (to mix completely to make one phase), then vortexed and 

centrifuged at full speed for 10 min; The aqueous layer was collected and transferred 

to new tube, and 2ml 3M sodium acetate (pH: 5.6) and 40ml 100% ethanol (-20°C) 

was added. The solution was left overnight at -20°C, or for Ihr at -80°C. 

The mixture was subsequently centrifuged (l3000rpm, 4°C, 15min), the 

ethanol was discarded and pellet was washed 2-3 times with 70% ethanol. The pellet 

was dried, redissolved in I5-20ml ofTE buffer and stored at -20°C. 

2.6. DNA manipulation 

2.6.1. Phenol:Chloroform extraction of DNA 

The DNA was usually suspended in 500111 TE buffer. Then to the suspension 

an equal volume of phenol: chloroform: isoamyl alcohol (25:24: 1) was added, mixed 
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by inverting until the suspenSlOn become one phase, and then the phase were 

separated by centrifugation. It was repeated three times and each time the aqueous 

layer was transferred to the clean tube. The DNA was then extracted once with 

chloroform:isoamyl alcohol (24: 1), precipitated by addition of 2 volumes of ethanol 

(100%) and 0.1 volume 3M sodium acetate (pH: 4.8). 

After overnight incubation at -20°C the sample was centrifuged (13000rpm, 

Smin, 4°C), the ethanol was discarded and the pellet was washed with Iml 70% 

ethanol. Then the ethanol was removed, the DNA dried and resuspended in SOIlI TE 

buffer containing RNAse (10mg/ml) to a final concentration of 20Ilg/ ml. The sample 

was stored at -20°C. 

2.6.2. Spectrophotometric quantification of DNA solution 

A dilution of 1 :SO of the DNA samples (dissolved in SO~t1 of TE butfer) was 

made in sterile distilled water and the absorbance was read at 230nm, 260nm and 

280nm with a Pu8740 UV/vis scanning spectrophotometer (Philips), using sterile 

distilled water as blank. As an A260nm of 1.0 is equivalent to a concentration of 2.S 

Ilg Illl of double stranded DNA and according with it sample DNA concentration 

could be calculated. 

2.6.3. Restriction endonuclease digestion of DNA 

The following procedure was used for a typical reaction containing I Ilg of 

DNA. Plasmid DNA was digested in a total volume of SOlll, with 0.1 volume of lOX 

restriction endonuclease buffer, I Ilg of DNA, 1-3 units of restriction endonuclease 
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enzyme and sterile distilled water was added to the final volume. The components 

were mixed well and the reaction was incubated at the recommended temperature 

(usually 37°C) overnight. 

If more than one enzyme was to be used in the same reaction and the 

recommended buffers were different, the Y+/tango buffer (MBI Fennentas) was used 

according to the manufacturer's instruction. The reaction was stopped by addition of 

1 III of EDT A (0.5M, pH 8.0) or incubation at 65°C for 20 minutes. 

2.6.4. Agarose gel electrophoresis 

Gel electrophoresis of DNA was usually carried out using a mini gel (77 x 55 

mm, 60 ml vol.). Minigels were run in Phannaciagel apparatus GNA-IOO 

electrophoresis tanks. The concentration of agarose could be varied depending on the 

size of DNA. Usually a 0.7- 1.5% agarose gel was used. The required amounts of 

agarose were mixed and dissolved in 1 xT AE buffer by heating in a microwave oven. 

1xTAE Buffer: - [0.04 M Tris-Acetate, 0.001 M EDTA (pH 8.0)] 

The solution was cooled to 60° C, and the agarose poured into the gel mould with a 

suitable well comb in place. When the gel had set, it was put in a tank and covered 

with 1 xT AE buffer. 

The samples and size marker were mixed with 6xloading buffer (bromophenol 

blue 0.25%, xylene cyanol 0.25%, glycerol 30%), and 20-30111 of the mixture was 

slowly pippeted into the slots of the submerged gel using a disposable micropipette. 

Electrophoresis was carried out at 5-10 V I Cm for the required amount of time. The 

gel was then stained with ethidium bromide (lOmg/ml stock solution) to final 

concentration of 0.5!lg/ml for 30-60 minutes. Excess ethidium bromide was removed 
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by washing the gel in distilled water for 10-15 minutes. DNA fragments within the gel 

were visualised on a transilluminator and photographed with a Polaroid RP4 camera, 

using a red filter onto Polaroid 667 film, or recorded using Gel Doc 2000 (Bio-Rad). 

The size markers used were A- DNA digested with HindIII or HindIIVEcoRI. 

2.6.5. Isolation of DNA fragments from agarose gel using silica fines 

The required DNA bands were cut out from an agarose gel using a sterile razor 

blade and placed into an eppendorf tube. 800 ,.d of sodium iodide solution [90.8g 

sodium iodide and 1.5g Na2S03 were dissolved in 100ml of distilled water, filter, 

sterilised and saturated with 0.5g Na2S03 (stored at 4°C in dark bottle to protect it 

from the light) was added and the tube incubated in a water bath at 70°C for about 5 

minutes or until the agarose has completely melted. The tube was mixed by inversion 

and allowed to cool to room temperature for 5 minutes. A suspension of silica fines 

(50% slurry in water) was vortexed and 5111 was added to DNA solution. The solution 

was mixed for 1 minute and left for 10 minutes at room temperature with inverting 

continuously. 

The tube was centrifuged for 30 seconds, the supernatant discarded and the 

pellet washed with 1 ml 70% ethanol. The solution was centrifuged for 30 seconds, the 

70% ethanol was removed and pellet was dried using tissue or by placing it at 37°C 

with lied open. The silica fines were resuspended in 30111 TE buffer and incubated at 

37°C for 10 minutes with occasional shaking. The samples were centrifuged for 30 

second and the supernatant containing the DNA was transferred to new sterile tube. 

The silica fines were then resuspended in 20 III TE buffer and incubated as before. 
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Then, the tube was centrifuged for 30 seconds and supernatant containing the DNA 

added to other 30 ~l of sample to give a total volume of 50~1 of DNA solution. 

Preparation of the silica fines: 

2.5ml of silica was resuspended in distilled water to give a total volume of 5ml. 

The suspension was stirred for 1 hour and left to settle for another one hour. The 

suspension was centrifuged at 7000rpm for lO minute, the supernatant was discarded 

and the pellet was resuspended in 1.5 ml of distilled water plus 1.5 ml of nitric acid. 

The suspension was then heated to 98°C and allowed to cool to room temperature. 

The silica fines were then repeatedly washed with sterile distilled water until the pH 

was greater than 5.5. Silica fines were stored at 4°C as a 50% slurry in sterile distilled 

water. 

(When necessary the DNA fragments were isolated from the gel using QIAEX II 

Agarose gel extraction Kits according manufacturer's instruction). 

2.6.6. Ligation of DNA fragments 

T4 DNA ligase was used to ligate DNA fragments with compatible cohesive 

or blunt termini. In a microcentrifuge tube, lO-l5~1 of vector DNA and foreign DNA 

to be inserted, were digested with restriction enzymes, when necessary 

dephosphorylated using alkaline phosphatase, mixed at a ratio (insert: vector) of 3: 1 

(cohesive tennini) or l: 1 (blunt end) with maximum 300-400ng DNA. 0.1 volume of 

lOx ligase buffer, 2J..lI polyethylene glycol (to increase the rate of ligation of blunt 

ended DNA) and sterile distilled water up to 20~1 were added, then 2u (for sticky 
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ended) and 4u (for blunt ended) T4 DNA ligase was added. The tube was incubated 

overnight at 4°C (sticky ended) or 24-48hr at 16°C (blunt ended). 3-10111 of the 

ligation mix was then used immediately by adding to competent cells, or the T4 DNA 

ligase was inactivated by heating at 65°C for 10 minutes. 

2.6.7. Dephosphorylation of DNA fragment 

To reduce self-ligation of vector restricted with enzymes giving blunt ends, the 

vector was usually dephosphorylated before mixing with DNA fragment. 5111 of lOx 

reaction buffer (O.1M Tris-Cl pH: 7.5, O.IM MgCh) was added to 10-40111 of DNA 

solution, followed by sterile distilled water to a total volume of 49111 and 1 u/1l1 

alkaline phosphatase. The reaction mixture was incubated at 37°C for 30 Thin or 3hr at 

room temperature and then the reaction was stopped by heating at 85°C for 15 min. 

2.6.8. Filling- in Recessed 3'- Termini 

To the 30111 of DNA (O.l- 4~lg) digested with enzyme the following 

components were added: 

lOx reaction buffer 3.5111 

4dNTPs (0.05mM final concentration) 

Klenow fragment 0.5111 

The reaction mixture was incubated at 37°C for 10 minutes and reaction was stopped 

by heating at 75°C for 10min. 
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2.6.9. Polymerase chain reaction (peR) 

All polymerase chain reactions were perfonned in a Perkin-Elmer thennal 

cycler. Reaction was carried out III a total volume of 25111 and the following 

components were added in order: 

1. dH20 to make a final volume of 25 111 

2. lOx reaction buffer 2.5111 

3. dNTPs 2.0111 (each at 1 mM) 

4. 5' primer 1.0111 (10pmolllll) 

5. 3' primer 1.0111 (lOpmolllll) 

6. MgS04 3.0111 (2.5mM) 

7. Template DNA y* ~tl 

8. Taq polymerase** 0.3111 (5ullll) 

*y= The amount of template DNA was varied, it is usually 100ng for plasmid DNA 

and 500- 1000ng for genomic DNA. 

**= Taq polymerase usually was added after the initial denaturation step if it was 

longer than 3 minutes. 

Primer design: 

Primers were generally designed to contain an equal number ofG+C and A+T, 

usually 10 of each to make sure the Tm of both primers are the same. Furthermore, 

care was taken to ensure the primers would not self anneal or hybridise to each other. 
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When required, the appropriate restriction enzyme target sequences was usually added 

to 5'-end of each primers followed by 2-5 extra bases. 

peR protocol: 

The temperatures and times used in PCR were as follow: 

Starting Denaturation 94°C 

{ Denaturation 

15-20 cycle: { Annealing* 

{ Extension** 

Final extension 

2-5 mm. 

45 sec. 

60 sec. 

5 min. 

10 min. 

* The annealing temperature varied depending on the Tm of each pair of primers and 

was established empirically. 

The following formula was used to determine the Tm of primers: 

Tm = [(No. G+C) x4 + (No. A+T)x2]- 5°C 

* * The extension time depended on the length of PCR product, usually 1 min for 1 Kb 

when the Taq polymerase was used. 

- Before starting the PCR 25f.l1 of mineral oil was added to the top of the mixture. 
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2.7. Transformation of E. coli 

2.7.1. Preparation of competent cell (Hanahan methods) 

5 ml of LM broth was inoculated with E. coli (DH5 a) and incubated overnight 

at 37°C. A dilution of 1: 100 was made in fresh LM broth and the cells grown for 2.5-

3 hour or until to OD600 of 0.3-0.35 or OD550 of 0.45- 0.55. The culture was 

aseptically transferred to a sterile and ice- cold propylene tube, chilled for 5 minutes 

on ice, then cells were centrifuged at 4000rpm for 7 minutes at 4°C. The supernatants 

were discarded and the cell pellets resuspended in 40% of the original culture volume 

of solution A. 

solution A: 30mM potassium acetate, 

100mM rubidium chloride, 

10mM calcium chloride 

50mM manganese chloride and'15% glycerol. 

The solution was adjusted to pH 5,8 with 0.2M acetic acid,filter sterilised and stored 

at 4°C. The tubes were incubated on ice for 5 minutes and cells were recovered by 

centrifugation as before. The supernatants were poured off and the pellets 

resuspended in 4% of the original volume of solution B: 

Solution B: 10mMMOPS 

75mMCaCb 

10mM RbC12 

15% glycerol 

The solution was adjusted to pH 6.5 with KOH, filter sterilised and stored at 

4°C. The tubes were left on ice for 15 minutes, then suitable volumes (l00-200111) 
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were added to pre- chilled eppendorf tubes, frozen in liquid nitrogen and stored at -

80°C. These cells can be used for transformation for at least 3 months. 

2.7.2. Transformation procedure 

Competent cells were removed from the -80°C freezer, thawed and then placed 

on ice for 10 minutes. DNA was added up to 5% volume of the competent cells with 

pre-cooled sterile tips, and the tubes stored on ice for at least 15 minutes. The cells 

were heat shocked in a water bath at 42°C for 90 seconds then rapidly transferred to 

an ice bath. Cells were chilled for 2'-5 minutes and then 800lli of LM broth were 

added. The cultures were warmed to 37°C in a water bath, and then the tubes were 

transferred to a shaking incubator for 1 hour at 37°C. 

Finally an appropriate volume of transformed competent cells, usually 10% 

and 90%, were spread onto selective agar plates with a sterile glass spreader. The 

medium was incubated at a suitable temperature until bacterial colonies appeared. 

2.7.3. peR product cloning 

Some polymerases such as Taq-polymerase have specific extension activities. 

This characteristic will decrease ligation and cloning efficiencies of the PCR product. 

Therefore, unless it is known which base is extended onto the end of the completed 

PCR molecules, blunt-ended cloning should be used. With the one-tube PCR cloning 

method, polishing and ligation is completed in one step. The components were as 

follows: 
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10~l of the purified PCR product 

2~l lOx T4-DNA ligase buffer 

2~l T4-DNA ligase 

S~l T4-DNA polymerase (lu/~l) 

O.S~l dNTPs (2.SmM) 

The reaction mixture was incubated for 1-2 days at 16°C and then was used in 

transformation procedure directly. 

2.8. DNA Hybridisation procedure 

2.8.1. Radio labelling of DNA fragment 

30- SO ng of the DNA fragment (28~l total volume) was boiled for S min and 

immediately held on ice for 2min. The components for radio labelling were as follows: 

lO~l OLB* buffer 

2~ll BSA (lOmg/ml) 

S~l p32_dCTP (SO ~lCi) 

2~l klenow enzyme (2u1~l) 

Sterile distilled water (up to SO~l) 

The mixture was incubated at room temperature overnight and the reaction was 

stopped by adding S~l of 10%SDS. 

* Preparation of OLB buffer: 
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Solution 0: 

Solution A: 

Solution B: 

Solution C: 

(1.2SM Tris-CI, 0.12SM MgCh), pH: 8.0 

To 1 ml of solution 0 added the following components: 

18~ll 2- mercaptoethanol, 

S~l dATP, S~l dGTP, S~l dTTP [each as a O.IM stock 

in (3mM Tris-CI, 0.2mM EDTA, pH: 7.0)] store at 

_20DC 

2M HEPES, titrated to pH: 6.6 with 4M NaOH. Store at 

_20DC 

Hexadeoxyribonucleotides in TE buffer at 90 OD 

units/ml. Store at -20DC 

Mix solution A: B: C in a ratio of 100: 2S0: ISO to make OLB buffer, store at _20DC 

2.8.2. Purification of probe using Sephadex G-SO chromatography 

A 10% suspension of Sephadex G-SO was prepared in sterile distilled water. 

The solution was vortexed completely, washed with sterile distilled water several 

times to remove unsettled Sephadex particles, and stored at room temperature under 

distilled water. To make a column, the bottom of the 10ml plastic pipette was blocked 

by sterile cotton wool and Sephadex solution was added to make a column of about 

10cm. Immediately afterwards, the column buffer was added to fill the column. 

Column buffer: - (O.ISM NaCI, 10mM EDTA, 0.1% SDS, SOmM Tris-CI, 

pH: 7.5) 

Prior to loading the labelling reaction onto the column, 200~1 of column buffer was 

added and the labelling mixture was pipetted onto the column. The purified labelled 
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DNA was collected at the bottom of the column from unincorporated sample and 

stored at -20°C until required. 

2.8.3. Preparation of Southern blots 

The DNA samples were digested with suitable restriction enzymes, 

electrophoresed in a 0.7-1 % agarose gel, and after staining with ethidium bromide the 

gel was photographed with the ruler side beside it to estimate the correct size of the 

fragments after hybridisation. Gels known to have DNA fragments greater than 10kb 

were soaked in 0.25M HCI for 10-15 minutes or until the colour of loading buffer 

changed to yellow, and washed twice with distilled water. After that, the gel was 

soaked in denaturation buffer with shaking for 30 min and rinsed twice with distilled 

water. 

Denaturation buffer: - 105M HCI, O.SM NaOH 

The gel was then soaked in neutralization buffer for 30 mm with shakinK After 

washing the gel twice with distilled water the blot was set up. 

Neutralization buffer: -105M NaCI, O.SM Tris-CI pH: 7.2, O.OOIM EDTA 

A reservoir of 20xSSC was set up, a platform was placed over this reservoir and three 

pieces of Whatman 3mm paper (pre soaked in 20x SSC) put on the platform with its 

ends dipped into the reservoir. 

The gel was placed on the 3mm paper (wells uppermost) and a pIece of 

Hybond-N nylon membrane was placed on top of it (the same size of the gel and pre­

soaked in 20xSSC). Any air bubbles between gel and nylon were removed carefully 

then 3 sheets of Whatman paper were placed on top (the same size of the gel and pre 

soaked in 20xSSC). Finally several paper towel (10 cm high) were placed on top, 
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stock covered with a glass plate and a 500g weight placed on top of it. The blot was 

left for at least 16hr. 

20xSSC: - 3M NaCl, 0.3M Na Citrate pH: 7.0 

After transfer, all the sheets above the nylon membrane were removed 

carefully, the position of the wells marked on the membrane, and the membrane was 

washed in 2xSSC. The nylon membrane was air dried for up to Ihr and then wrapped 

in cling film. The membrane was exposed to UV light for 2 minutes (each side) to fix 

the DNA fragments to the membrane. 

2.8.4. Hybridization of Radio'-Iabelledprobes to Southern blots 

Hybridization reactions were carried out using Techne hybridization tubes in a 

Techne Hybridizer HB-l oven. The blots were' put inside the hybridization tube and 

200111 of pre-hybridization solution was added per cm2 of filter (usually 25-30ml per 

blots). 

Pre- hybridization solution: - 5xSSC, 

- 5x Denhardt's solution (1% ficoll, 1% poly 

vinyl pyrrolidone, 1 % BSA fraction V) 

- 0.5% SDS 

- 0.1 % pyrophosphate 

- 10011g/ml denatured Salmon Sperm DNA 

The tubes were incubated at 65°C for 2hr with rotation in oven. At the end of 

this period 100- 200111 of the labelled probes (denatured by boiling for 5 min and 

immediately put in an ice bath for 2 minutes) were added to the tube. The tube was 

incubated in oven at 65°C for at least 12hr. The pre-hybridization solution was poured 
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off and the blots were washed within the tube twice with 2x sse, 0.1 % SDS for 10 

min at room temperature followed by one wash in 0.1 x sse, 0.1 % SDS for 15 min at 

65°e or until :::;20 cpm was obtained by Geiger counter. The filter was wrapped in 

cling film. 

2.8.5. Detection of hybridization blot 

The labelled blots were placed onto Whatman paper and put inside the film 

holder with the intensifying screen on top of the filter. In the dark room a sheet of x­

ray film was either pre-flashed once to increase its -sensitivity, or without pre-flash, 

placed between the intensifying screen and the blot. Exposure was carried out at -

800 e for varying amount of time depending on the probes and the counts obtained. 

The exposed films were developed using the automatic X-ray film processor. 

2.8.6. Stripping blots for reuse 

Blots were stripped by adding a boiling solution of 0.1 % SDS and were then 

allowed to cool to room temperature. Stripping was usually allowed to proceed for at 

least 12hr, after that the filter was wrapped in cling film and exposed again to check 

that probes were removed completely. 

2.9. DNA Sequencing 

Sequencing of the DNA samples were done by DNA sequencmg servIce. 

DNA sequencing was carried out with an Applied Biosystems 373A or 377A DNA 
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sequencer, using double stranded DNA templates and dye terminator chemistries. 

Usually, the universal 21ml3 forward and reverse primers were used. The DNA 

Strider programme was used to determine the Restriction endonuclease and ORF 

maps of DNA fragments. Nucleotide sequence searches were carried out using Blastn 

programme. Amino acid sequences were analysed by BlastX for homology with 

protein database programmes. 

2.10. Mutagenesis 

2.10.1. Gene replacement mutagenesis 

Gene replacement mutagenesis was carried out according to the Quandt & 

Hynes method (Quandt & Hynes, 1993). Three suicide vectors were used in this 

method, pJQ200ucl, pJQ200mp 18 and pJQ200SK. These vectors contain the 

following elements: The RP4 origin of transfer (which allows the mobilization of the . 

constructs into most Gram-negative bacteria), sacB gene of Bacillus subtilis as a 

source of positive selection for loss of the vector, and the lacZa gene for easy 

identification of cloned fragments. The only difference between these vectors is in the 

restriction enzymes available in their multiple cloning sites (MeSs), thus allowing the 

simplified cloning of DNA fragments. 

The pJQ200uc 1 was used in this work to carry out gene replacement 

experiments leading to the insertional inactivation of chemotaxis genes. Genes to be 

mutated were ligated into pJQ200 vector. The 1.2kb EcoRI fragment of pDUB2033, 

containing a neomycin resistance cassette, was then ligated into the gene and positive 

constructs obtained by selection on plates containing gentamycin and neomycin. 
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2.10.2. In-frame deletion method 

In-frame deletion mutagenesis was carried out according to the Schafer 

method (Schafer, A., et.al., 1994). According to this method by deleting single gene, 

all other genes are left correctly in-frame, hence allowing phenotypic studies of the 

effects of mutating a single gene. The basic vector used in this work was the allelic 

exchange vector pKl8mobsacB. The vector constructed from mobilizable pK18 and 

contains The Km @ gene, a p-galactosidase gene for identification of correct 

transformants, genetically modified sacB gene, which confers sucrose-sensitivity to 

bacterial hosts, multiple cloning sites (MCS) and a functional mob site for 

conjugation. into Gram-negative bacteria. The gene to be deleted plus 200-500bp of 

the upstream and downstream flanking sequence was cloned into pBluescriptSK +. 

The coding region of gene was deleted using a protocol based on the PCR reaction. 

PCR primers (sense and antisense) were designed to amplify the regions of the 

flanking sequences of the gene and also the vector backbone. Nucleotide sequencing 

of primers contains only the first 9bp or the last 3bp of the gene, but also had an 

additional restriction enzyme site at their 5' termini plus 2-5 extra bases. 

After PCR, the DNA products were electrophoresed, isolated and digested 

with suitable enzyme then religated and transformed into E. coli (DH5 a). Sequencing 

of the fragment usually carried out to confinn that the PCR reaction and religation had 

taken place correctly. The constructs were isolated from bacterial strains and digested 

with suitable enzymes to excise the fragment containing the specific gene deletion 

plus flanking sequence and cloned into pK 18mobsacB vector. The final construct was 

mobilised into A. tumefaciens (C58C}) by tri-parental mating. 
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pK18mobsacB is only able to survive in A. tumefadens by integration into the 

genome via homologous recombination. The first transconjugants were selected on 

LM-agar plates containing rifampicin and kanamycin. The genotype of resulting 

colonies was confirmed by PCR and Southern blotting. To select double cross-over 

events a single colony, previously identified, was grown for 24 hours in LB medium 

containing rifampicin only. Serial dilutions of the culture were plated onto MinA-agar 

plates containing rifampicin and 10-IS% sucrose, and incubated at 28-30°C for 48 

hours. The resulting colonies were then picked from plates and replica streaked onto 

LM-agar containing rifampicin only or rifampicin plus kanamycin. 

Recombinants were sensitive to kanamycin, indicating the eXClSlon of the 

plasmid by second cross-over events. This second cross-over either restored the wild 

type situation or led to a mutant with the deletion left in the chromosome. The 

mutants were checked once again by PCR analysis and Southern blotting. 

2.11. Conjugation of plasmids intoAgrobacterium 

The final plasmid clones resulting from the mutagenesis process maintained in 

E.coli were mobilised into Agrobacterium by the pRK2013-based tri-parental mating 

system (Ditta et aI., 1980). Cultures of donor, recipient and helper strains were grown 

to mid log phase in selective media. Then the cell cultures were sedimented by 

centrifugation (4000rpm, Smin) and resuspended in the LB broth to the same volume 

as before. For all matings, 300JlI of recipient cells, 200JlI of donor cells and IS0JlI of 

helper plasmid were pipetted into I.Sml Eppendurf tube. The mixture was centrifuged 

for 30-60 seconds and resuspended in 100JlI of LB broth by pippeting. The mating 
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mixture was dropped onto a sterile nitrocelulose filter (0.22~lm pore size), which was 

placed on non-selective LM agar plate. 

The plates were incubated at 28-30°C for overnight to allow to mating occur. 

After the mating period, the discs were transferred to a universal bottle containing 

10ml of 10mM MgS04 and vortexed to wash the cells. Serial dilutions then were 

made from the bacterial suspension and plated onto selective medium. Selection 

plates were incubated at 28°C for 2 to 3 days. 

2.12. Swarming behaviour assay 

Swarm plates were prepared as follows. To LabM nutrient broth, 

bacteriological agar was added at a concentration of 0.2-0.22%. Usually 3~1 sample of 

cells grown in LB medium were placed on swarm plates and incubated at 28-30°C for 

up to three days. The swarm- ring size was measured after 10, 24, 48 and 56hr. 

2.13. Chemotaxis assay 

2.13.1. Preparation of attractant 

Stock solutions of attractant were prepared from 10-2 to 10-4 M using ethyl 

acetate: methanol (1: 1) as a solvent. Solutions (10-5 to 10-8 M) were prepared for 

assay by dilution of the stocks with chemotaxis media. The control solution consisted 

of chemotaxis media with an equal concentration of solvent but no attractant. 

Chemotaxis media: - (0.1 mM EDTA, 0.01 M KH2P04 (pH:7.0). 
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2.13.2. Blind-well chamber assay 

Exponential phase cultures of each Agrobacterium tumefaciens mutants were 

grown for 24 hr in MinA+G, then were washed twice with chemotaxis medium. The 

pellet was resuspended in chemotaxis media to a cell density of about OD= 0.1 at 

600nm. The lower chamber was filled with 200/11 of cell suspension, sealed with 

13mm diameter filter (Sartorius, 8/1m pore size), and 400/11 of attractant was added 

into upper chamber. The chamber was inverted for 3hr at 28°C. After that, 200/11 was 

removed from upper chamber into 20ml IsotonII and the number of bacteria count 

using coulter counter. 

The method selected for quantitatively measunng ·chemotaxis has been 

modified from Adler (1969) and it is more quickly than which measures, by viable 

plate counts, the number of bacteria moving into a capillary tube under a chemotactic 

stimulus. The capillary assay is slow and need over night incubation of the plated 

bacteria (Armitage, J. P., et aI., 1977). 

The chemotaxis assay presented uses a Coulter counter to measure the 

percentage of a suspension of motile bacteria passing through a membrane filter in a 

determined time, into a cell free buffer, containing a chemotactic stimulus. 
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Chemotactic chamber: in blindwell chemotactic chambers used in this 

experiment, the lower wells had a capacity of 200111, and the upper wells had a 

capacity of 400111; a cellulose nitrate membrane filter (13mm diam., 811m pore size) 

was clamped between the two chambers. 

Upper chamber 

I Lower chamber 

l j - -
------~' - --

Fig. (2.12.1): The schematic diagram showing blind well chamber 

Chemotaxis media: A chemotactic media, which consisted of O.OIM-

potassium phosphate buffer pH: 7 .0, (containing 0.1 mM EDT A) was used. This 

medium provides conditions necessary for optimum motility of bacteria. The EDT A 

was added as a chelating agent because distilled water can contain traces of heavy 

metal ions, that inhibit motility. A buffer system was used to keep the pH at the 

optimum. 

Effect of growth condition and stage of bacterial growth: The MinA media 

plus 20% glucose (final concentration of 0.2%) was used as a growth medium. Media 

was inoculated by bacteria and allowed to grow to stationary phase (overnight) at 
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28°C with rotary shaking. Some bacteria e.g. E. coli without shaking the bacteria 

were poorly motile. Bacteria in the early exponential phase are the best sample for 

chemotaxis. 

Requirement of wash media: Bacterial cells should be washed to make a 

suspension of bacteria free of the growth medium to remove any unwanted attractants 

or repellents, and to reduce the high ionic strength of the growth medium which could 

be inhibit the motility. 

Chemotaxis measurement: . chemotaxis was measured by adding 200)11 of 

bacterial suspension in upper chamber, after 2hr incubation at 28°C, to 20ml IsotonII 

and counting using coulter counter according to manufacturer's instruction. 

IsotonlI: 7.9g NaCl, 1.9gNa2HP04, OAg EDTA, OAg KCI, 0.2g NaH2P04, 

0.3g NaF, per 1000ml of water and filter sterilized 

Mechanism of measuring by coulter counter: The Coulter method of sizing 

and counting of particles is based on measurable changes in electrical impedance 

produced by non-conductive particles suspended in electrolytes. A small aperture 

between electrodes is the sensing zone through which suspended particles pass. In the 

sensing zone, each particle displaces its own volume of electrolytes. The volume 

displaced is measured as a voltage pulse, the height of each pulse being proportional 

to the volume of the particle. The quantity of suspension drawn through the aperture 

is precisely controlled to allow the system to count and size particles in an exact 

volume. With this method several thousand particles per second are individually 

counted and sized. 
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Enemal elec. "'~f----!' Intel1lal electrode 

apel'atw'e tube 

Sensing zone 

Fig. (2.12.2): A schematic diagram showing the sensing zone of coulter counter. 

An aperture size of 30/lm was used and the Coulter counter was set up to 

measure sizes between 0 . 6~lm and 8/lm. The system was set up to count 100/l1 of 

sample during 30 seconds. Before start the counting of the samples, the background of 

1sotonll alone was determined and when the count was less than 500 then the 

counting of samples were started. For each sample reading was done two times and 

each sample counted at least two times. 

The number of particles per ml was calculated as follows: 

n : number of particles counted in 100/l1l30second 

N= 200xn = number of particles per 20ml of 1soton plus 200/l1 sample 

N= number of paIiicle in 200/l1 of sample 

x= 5xN = number of particle per Iml of sample 

X= [xl * + x2**]: 2 - x3** * 
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*x I : number of particle counted/ml at the first reading 

**x2: number of particle counted/ml at the second reading 

***x3: number of particle counted/ml of Isotone II alone 

x = Net number of particle counted/ml of sample 

Presentation of results: As discussed Coulter counter readings were 

converted to numbers of cells per ml. Control values (parallel assays usmg 

chemotaxis medium as attractant) were subtracted from each number/concentration to 

give a correct number of cells attracted by the acetosyringone. The number of cells 

attracted were presented graphically and also presented in the form of the chemotaxis 

index (el). 

Chemotaxis index: The CI is· a measure of the proportion of cells in tht: 

bacterial population attracted towards the attractant. The CI corrects for differing 

initial cell density, and arises from the observation that for a given strain, the 

proportion of cells attracted to a particular attractant concentration is constant (Loak,. 

et.al, 1992). 

[Cells in upper chamber] - [cells in control assay upper chamber] 
CI= ---------------------------------------------------------------------------------- xl 00% 

[Cells initially introduced to lower chamber] 
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Chapter3 

Identification of the MCP-encoding gene in 

A. tumefaciens 
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3.1. Background 

As part of the signal transduction pathway involved in chemotaxis in E. coli, 

methyl groups are transferred to MCPs from S-adenosyl methionine. A number of 

observations provide evidence to suggest that a similar system operates in A. 

tumefaciens: (1) antisera raised to transducer Trg of E. coli cross reacts with proteins 

of approximately 60 - 65 kDa in A. tumefaciens (Morgan D. G., et aI., 1993). (2) The 

periplasmic domain of VirA contains a sequence conserved with the MCPs, and 

which ChvE interacts (Cangelosi, G. A., et aI., 1990). (3) A. tumefaciens met­

auxotrophs do not display chemotaxis unless supplemented with methionine. Partial 

chemotaxis can be restored by supplementation with substrates for S-adenosyl 

methionine synthase (Shaw, C. R., 1996). (4) The orj1 of chemotaxis cluster of A. 

tumefaciens shows the greatest homology with known MCPs of C. crescentus (McpA), 

R. sphaeroides (TlpA) and E. coli Tai- and like Tip appears to lack a membrane­

spanning domain (Wright, E. L., et aI, 1998). (5) Oligonucleotide probes 

corresponding to the conserved signalling domain of E. coli MCPs hybridise to a 

number of DNA fragments in A. tumefaciens (Shaw, C. H., 1996). 

The results of a Southern blot using a 0.7 kb MCP fragment from plasmid 

MCP3.2.7P of Rhizobium leguminosarum digested with HindIIIIPstI as a 

heterologous probe showed that 1.7 kb EcoRI fragment of a cosmid library of 

pDUB1911 from A. tumefaciens chromosomal DNA, contains a MCP-encoding 

sequence. This fragment was subcloned into pBluescriptSK +, forming the plasmid 

pEL W6 (Wright, E.L., et aI., 1998). 
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3.2. Sequencing of the Mep gene 

pEL W 6 was sequenced fully in both directions. The plasmid was digested 

with suitable restriction enzymes, the resulting fragments were sub cloned in cloning 

vector, pBluescriptSK +, transfonned into E. coli (DH5 a), and sequenced as discussed 

previously. 

Table (3.2.1) 

I Plasmid 

pELW61 

pELW62 

pELW63 

pELW64 

pELW65 

Relevant genotype 

1309 bp SadI fragment isolated from pELW6 

and sub cloned into pBluescriptSK + 

363 bp Sadl fragment isolated from pELW6 

and subcloned into pBluescriptSK + 

1190 bp EcoRV fragment 'isolated from pEL W 6 

and sub cloned into pBltiescriptSK + 

1373 bp ./Ybal - HindUI fragment isolated 

from pELW6 and sub cloned into pBluescriptSK+ 

547 bp HindI fragment iso lated from pEL W 6 

and subcloned into pBluescriptSK + 

108 

I 



120799 26.Seq 

170699-13 

Bf1 

Br1 

300399 22.Seq 
) - I 

21 150699.Seq - ( 

090499_04.Seq 

23_150699.Seq 

1,766 

••••••••••••••••• ,_ ••••••••••••••••••••••••••• , ••• u_._ ••••• u •••• u ••••••• _ ••••••••••• _,_ •• _ •• _, ••• _ •••••••••• "._ •••••••••• . ) • • • ) bumps locate motifs i 
~. • I -<~; 

: I.; .;. ;. -" .... T 8Q ~~. ;:.~; ~n d: $~~~';~;~~ . f~~ ~.~ ~s t~I~~~': ~ ~~ II 
i ~-1ui I ip Ie fno;,lm",nh S<lim", sir and Sing I eo to ag me fit . 
: I I It t I I I I I t 4- S~~r~~oo;jon fr-lmo;> 1 

i 11111 f I +-Stop. o-:-d.;.n fraMe 2 Diagr-ilm Dee-II. 

Fig (3.2.1): Diagram showing sequencing ofpELW6 using sequencer program 
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10 20 30 40 50 60 70 80 

GAATTCGGCA ATATCGCCCG CGCTCTGGTG ATTTTCCGCG AGAATGCGAT TGAGAAGCTG GCGATCGAGG GCAAAAGTGC 80 

81 GCAGGAACGG CTCCGCGGCC GAGTCCGAGC GACACCGCAA CGATGCCGAG AAGCAGGAAC TGGACGGCCA GATCGAGTTT 160 
SacII 

161 GCAGTGGGCG AGATCGCCTC CGGCCTCGGC AGGCTTTCGC GTGGCGATCT GAGCCGCACG ATCGAGACGC CCTTTGCAGG 240 

241 CCGCCTCGAC CGGCTGCGCA CGGATTTCAA CGAATCCTTG CTCAACCTTC GCGATGCGCT GGGGCAGATC CGTGAGCGCA 320 

321 CGCTCATCAT TCAGAATAGT GGCATCGAAA TCGAACAGTC TTCGGTCGAT CTGTCGAAAC GCACGGAAAA TCAGGCCGCC 400 

401 TCGCTGGAGG AGACCGCCGC TGCCGTGGAG GAGATCACCG CTACCGTGAG ATCGTCGGCC GAGCGGGCAC GGGAGGCAAA 480 

481 TGAGGCCGTA CGCGTCACCA AGCAGAGCGC CGACAGTTCC GGTTCGGTTG TCAGCAATGC CGTCGACGCC ATGAGCCGTA 560 
HincII 

561 TCGAAGGCGC CTCGCGCAAG ATCGAGCAGA TCATCGAGGT CATCGACGAC ATCGCCTTCC AGACCAATCT TCTCGCTTCT 640 

641 CAATGCCGGC ATTGAAGCGG CGCGCGCGGG TGAGGCGGGC AAGGGTTTTG CCGTCGTGGC GCAAGAAGTG CGCGAACTTG 720 

721 CCCAGCGCTC TTGCCGACGC AACCCGTGAA ATCAAGCAGC TCATCAACCA GTCGACCCAT G.I'GGTCAGCT CCGGTTCGAA 800 
HincII 

801 GCTGGTGCAG GAGGCGGGCA CCGTTCTCTC CGCCCATCAG CCGGCAGATC GTGACTGTCA GCCAGCATGT CGAAACCATC 880 

881 GCGACGGCGA CGCAGGACCA G1'CC1'CAGCC CTTCACAl\CG TCAACGGC1'C CG1'1'AACCAG A1'GGACCAGA TGACGCAGCA 960 

961 GAA1'GCAGCG CTGGCCGAAC AG1'CGAGCGC GGCCAGCCGG GTACT1'TCCG GCGAAGTGGA GGCGCTGCTC GATCTGG1'AC 1040 

1041 AGCGGT1'CCA GATGGAGCAG GGG1'C1'GC1'G CCGGTTCGGG TCGATTGAAC CGGGCGGCCT GATC1'C1'CCA T1'TT1'GAAAG 1120 

1121 1'CAATGCAGC TCCCGGATCG CAAGGTCCGG GAG1'1'1'T1'A1' TCGGCCGC1'G CCCGCGCCG1' ACCGGATA1'C 1'GGTTGA1'A1' 1200 
EcoRV 

1201 AGGCACGCAA CGCCGCAGGC 1'1'AACCGG1'1' 1'G1'GCTGCAC GGAGATCCCG 1'.I'T1'TCTCCG CA1'CGC1'GCG CAC1'1'CCGGG 1280 

1281 C1'GCGA1'CCG CCG1'1'ACCAG CAGGGCAGGG A1'CG1'C1'1'GC CG1'AAAA1'G1' CC1'GATGAGG CGGA1'GGCGC 1'GATACCG1'C 1360 

1361 ACCATCA1'C1' AGA1'GA1'AG1' CGGCGA1'GAT GACA1'CCGGG GCCGCGGCCA GAG1'GAGGAA GGG1'1'CTTCC AGCGCCGCCA 1440 
XbaI SacII 

1441 CGGAACCTGC GGGCAAGACA TCGCAACCCC ATCCCGTCAA AAGCAGCGTC ATGCCC1'CGA GGATT1'TCGG C1'CGTTGTCG 1520 

1521 A1'GCACAGCA CCCGAATGCC ATGAAGACGG TCGCTTGCTG CGGGAC1'GGT TGTCCCGCCC 1'CCG1'C1'TGG CAGGAGCAAG 1600 

1601 ACGATCCGCC TCACGCGGCA GATGGATGCG GAAGG1'CGTG CC1'1'TGCCGG GGG1'GGAAAT GAGCTGCACC GGATGGTGCA 1680 

1681 GCATGCGTGA TAGCCGA1'CG ACGATGGAAA GGCCGAGCCC AAGGCCAGAC GCCGTT1'1'1'G CCCC1'TCG1'C CAGCCGGGCG 1760 

1761 AATTC 1765 

10 20 30 40 50 60 70 80 

Fig. (3.2.2): Nucleotide sequencing of pEL W6 (1765 bp) 
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pELW6 was analysed by Blastn for homology with Agrobacterium 

tumejaciens strain C58 complete genomic sequence. 

refINC_003062.11 Agrobacterium tumefaciens strain C58 circular chromosome, complete 
sequence 

Length = 2841581 

Score = 3420 bits (1725), Expect = 0.0 
Identities = 1759/1765 (99%), Gaps = 4/1765 (0%) 
Strand = Plus / Plus 

Query: gaattcggcaatatcgcccgcgctctggtgattttccgcgagaatgcgattgagaagctg 60 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516354 gaattcggcaatatcgcccgcgctctggtgattttccgcgagaatgcgattgagaagctg 516413 

Query: 61 gcgatcgagggcaaaagtgcgcaggaacggctccgcggccgagtccgagcgacaccgcaa 120 
11111111111111111111111111111 111111111111111111111111111111 

Sbjct: 516414 gcgatcgagggcaaaagtgcgcaggaacg-ctccgcggccgagtccgagcgacaccgcaa 516472 

Query: 121 cgatgccgagaagcaggaactggacggccagatcgagtttgcagtgggcgagatcgcctc 180 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516473 cgatgccgagaagcaggaactggacggccagatcgagtttgcagtgggcgagatcgcctc 516532 

Query: 181 cggcctcggcaggctttcgcgtggcgatctgagccgcacgatcgagacgccctttgcagg 240 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516533 cggcctcggcaggctttcgcgtggcgatctgagccgcacgatcgagacgccctttgcagg 516592 

Query: 241 ccgcctcgaccggctgcgcacggatttcaacgaatccttgctcaaccttcgcgatgcgct 300 
11111111111111111111111111111111111111111111111111111111111 i 

Sbjct: 516593 ccgcctcgaccggctgcgcacggatttcaacgaatccttgctcaaccttcgcgatgcgct 516652 

Query: 301 ggggcagatccgtgagcgcacgctcatcattcagaatagtggcatcgaaatcgaacagtc 360 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516653 ggggcagatccgtgagcgcacgctcatcattcagaatagtggcatcgaaatcgaacagtc 516712 

Query: 361 ttcggtcgatctgtcgaaacgcacggaaaatcaggccgcctcgctggaggagaccgccgc 420 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516713 ttcggtcgatctgtcgaaacgcacggaaaatcaggccgcctcgctggaggagaccgccgc 516772 

Query: 42l tgccgtggaggagatcaccgctaccgtgagatcgtcggccgagcgggcacgggaggcaaa 480 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516773 tgccgtggaggagatcaccgctaccgtgagatcgtcggccgagcgggcacgggaggcaaa 516832 

Query: 481 tgaggccgtacgcgtcaccaagcagagcgccgacagttccggttcggttgtcagcaatgc 540 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516833 tgaggccgtacgcgtcaccaagcagagcgccgacagttccggttcggttgtcagcaatgc 516892 

Query: 541 cgtcgacgccatgagccgtatcgaaggcgcctcgcgcaagatcgagcagatcatcgaggt 600 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 516893 cgtcgacgccatgagccgtatcgaaggcgcctcgcgcaagatcgagcagatcatcgaggt 516952 

Query: 601 catcgacgacatcgccttccagaccaatcttctcgcttctcaatgccggcattgaagcgg 660 
1111111111111111111111111111111111111 1111111111111111111111 

Sbjct: 516953 catcgacgacatcgccttccagaccaatcttctcgct-ctcaatgccggcattgaagcgg 517011 

Query: 661 cgcgcgcgggtgaggcgggcaagggttttgccgtcgtggcgcaagaagtgcgcgaacttg 720 
11111 11111 11111 11111 III! 1111111111111111111 1111111111111111 

Sbjct: 517012 cgcgcgcgggtgaggcgggcaagggttttgccgtcgtggcgcaggaagtgcgcgaacttg 517071 

Query: 72l cccagcgctcttgccgacgcaacccgtgaaatcaagcagctcatcaaccagtcgacccat 780 
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11111111111 111111111 11111111111111111111111111111111111111 
Sbjct: 517072 cccagcgctct-gccgacgcagcccgtgaaatcaagcagctcatcaaccagtcgacccat 517130 

Query: 781 gaggtcagctccggttcgaagctggtgcaggaggcgggcaccgttctctccgcccatcag 840 
1111111111111111111I1111111111111111111111111111111111 11111 

Sbjct: 517131 gaggtcagctccggttcgaagctggtgcaggaggcgggcaccgttctctccgcc-atcag 517189 

Query: 841 ccggcagatcgtgactgtcagccagcatgtcgaaaccatcgcgacggcgacgcaggacca 900 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517190 ccggcagatcgtgactgtcagccagcatgtcgaaaccatcgcgacggcgacgcaggacca 517249 

Query: 901 gtcctcagcccttcacaacgtcaacggctccgttaaccagatggaccagatgacgcagca 960 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517250 gtcctcagcccttcacaacgtcaacggctccgttaaccagatggaccagatgacgcagca 517309 

Query: 961 gaatgcagcgctggccgaacagtcgagcgcggccagccgggtactttccggcgaagtgga 1020 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517310 gaatgcagcgctggccgaacagtcgagcgcggccagccgggtactttccggcgaagtgga 517369 

Query: 1021 ggcgctgctcgatctggtacagcggttccagatggagcaggggtctgctgccggttcggg 1080 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517370 ggcgctgctcgatctggtacagcggttccagatggagcaggggtctgctgccggttcggg 517429 

Query: 1081 tcgattgaaccgggcggcctgatctctccatttttgaaagtcaatgcagctcccggatcg 1140 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517430 tcgattgaaccgggcggcctgatctctccatttttgaaagtcaatgcagctcccggatcg 517489 

Query: 1141 caaggtccgggagtttttattcggccgctgcccgcgccgtaccggatatctggtcgatat 1200 
I I I I I I I I I I I I I I I I I I I I i I I I I I I I L I I I I I I I ! I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 517490 caaggtccgggagtttttattcggccgctgcccgcgccgtaccggatatctggttgatat 517549 

Query: 1201 aggcacgcaacgccgcaggcttaaccggtttgtgctgcacggagatcccgtatttctccg 1260 
111111111111111111111111111111111111 i 11111111111111111111111 

Sbjct: 517550 aggcacgcaacgccgcaggcttaaccggtttgtgctgcacggagatcccgtatttctccg 517609 

Query: 1261 catcgctgcgcacttccgggctgcgatccgccgttaccagcagggcagggatcgtcttgc 1320 
II! 111111111111111111111111111111111111111111111111111111III 

Sbjct: 517610 catcgctgcgcacttccgggctgcgatccgccgttaccagcagggcagggatcgtcttgc 517669 

Query: 1321 cgtaaaatgtcctgatgaggcggatggcgctgataccgtcaccatcatctagatgatagt 1380 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517670 cgtaaaatgtcctgatgaggcggatggcgctgataccgtcaccatcatctagatgatagt 517729 

Query: 1381 cggcgatgatgacatccggggccgcggccagagtgaggaagggttcttccagcgccgcca 1440 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517730 cggcgatgatgacatccggggccgcggccagagtgaggaagggttcttccagcgccgcca 517789 

Query: 1441 cggaacctgcgggcaagacatcgcaaccccatcccgtcaaaagcagcgtcatgccctcga 1500 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517790 cggaacctgcgggcaagacatcgcaaccccatcccgtcaaaagcagcgtcatgccctcga 517849 

Query: 1501 ggattttcggctcgttgtcgatgcacagcacccgaatgccatgaagacggtcgcttgctg 1560 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517850 ggattttcggctcgttgtcgatgcacagcacccgaatgccatgaagacggtcgcttgctg 517909 

Query: 1561 cgggactggttgtcccgccctccgtcttggcaggagcaagacgatccgcctcacgcggca 1620 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517910 cgggactggttgtcccgccctccgtcttggcaggagcaagacgatccgcctcacgcggca 517969 

Query: 1621 gatggatgcggaaggtcgtgcctttgccgggggtggaaatgagctgcaccggatggtgca 1680 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 517970 gatggatgcggaaggtcgtgcctttgccgggggtggaaatgagctgcaccggatggtgca 518029 
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Query: 1681 gcatgcgtgatagccgatcgacgatggaaaggccgagcccaaggccagacgccgtttttg 1740 
111111111111111111111111111111111111111111111111111111111111 

Sbjct: 518030 gcatgcgtgatagccgatcgacgatggaaaggccgagcccaaggccagacgccgtttttg 518089 

Query: 1741 ccccttcgtccagccgggcgaattc 1765 
1111111111111111111111111 

Sbjct: 518090 ccccttcgtccagccgggcgaattc 518114 

Fig. (3.2.3): Comparison of nucleotide sequences of pELW6 with Agrobacterium 

tumefaciens strain C58 complete genomic sequence. 

The subclones were sequenced and the deduced amino acid sequences were 

analysed by BlastX for homology with the protein database. One open reading frame, 

that when translated, showed a strong identity to Mcp gene: The highest alignment 

scores occurred with the McpA gene recently identified from A. tumefaciens (Goodner, 

B. et aI., 2001), the Mcp gene of Rhizobium sp. (Frieberg, c., et aI., 1997), McpG of R. 

leguminosarum (Yost, C. K., et aI., 1998) and McpA of Caulobacter crescentus 

( Alley, M. R., et aI., 1992 ). 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

MKNIMSFGVVARLALGFGVLLLLMVGLTIYSTEEVALINDKLGAMNDVNSVKQRFAINYR 60 
MKRIRLVDLPLIIKIGFAPAFALLM-LAVMAGGAILVQKSQSAALKQVVERDMRQNLEIQ 59 

MALGNCFMHNRLFKSVAGKVVALTIGLITLSVAAVGFSTYIRLKDNIITTALRDTHGAMR 60 

GSVHDRAIAIRDVTLVTSDDE-RKTAEALI-----GKLAASYAENEKRMADMVASPAGAT 114 
RISKRISNINGELFVVMTHKAGNIDVDKND-----ARMAAVLVETDAVKKDLLALKSKLP 114 

GMAILYEMKVGGVALEMVDGDLKSVGRASIGTMRDNDLVDRTAAGNGGIATVFEAKAGEF 120 

EQEKTI LSEIADIQAKANPLVAQI IALQEKGDGEAARKILLEQARPAFVAWLGAIN KFID 174 
AEEQPKIAELIKSLEECRSAIDTVSGMISVDFNMAAG--FIAPFEEQYVKMTGQLDQVVA 172 

IRLTTNLKNEKGERAAGTKLATDHPAFEKVSKGEAYFGTATLFGTSYMTGYMPVTNKTGA 180 

YQEALNKSI-GGEVRSSASGFKPFALTALGIAAVLSLVAAAVTARTIVGPLAKLQLSLKA 233 
AANQRIESE-SAKRQAQATAAMSVTIIMSLLTLGAVGALAFLTVMTTRKSINDlAAATDK 231 

TVGILFVGVPMDFYNAQIYSLRDMMVVCGALAMLGVGLLAYFVIKRTLQPLSKLTDAVKS 240 

MADGNLDGDRRLEARGDEIGKLARAVAGLRDAISAKAEREADAEAKRAVSERHRLEQDAD 293 
LSKGDNSIDLEKMTRGDELGGIVTALKVFRDNQVHLEQLRADQEKSAALTADERRSKEAA 291 
-----------------EFGNIARALVIFRENAIEKLAIEGKSAQERSAAESERHRNDAE 43 
LSDGDLETPIPYATNTNEFGNIARALVIFRENAIEKLAIEGKSAQERSAAESERHRNDAE 300 
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R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
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pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

R.leguminosarum 
C.crescentus 
pELW6 
A.tumefaciens C58 

* : * :. *: 

ERRTLAEQTDKAVGQLGDALQALADGDLTQQIGTPFIPSLEKLRADFNSAVEKLRAAMQK 353 
AA-AAAQEASLVVSNLAEGLEKLASGDLTFRVTADFPGDYRKLKDDFNAAMGSLQETMKV 350 
KQ-ELDGQIEFAVGEIASGLGRLSRGDLSRTIETPFAGRLDRLRTDFNESLLNLRDALGQ 102 
KQ-ELDGQIEFAVGEIASGLGRLSRGDLSRTIETPFAGRLDRLRTDFNESLLNLRDALGQ 359 

. * .. . . . ..... . *. ***. :: * .*. *** :: .*: :: 

VAQNASAIAAGAQEIRSASDDLAKRTEQQAASVEETAAALEEITTTVADSSNKAQEAGQL 413 
IAASTDGLSTGADEIAHASDDLSRRTEQQAASLEETAAALDELTATVRRTAAGARQASDV 410 
IRERTLIIQNSGIEIEQSSVDLSKRTENQAASLEETAAAVEEITATVRSSAERAREANEA 162 
IRERTLIIQNSGIEIEQSSVDLSKRTENQAASLEETAAAVEEITATVRSSAERAREANEA 419 

** :* **::***:****:******::*:*:** *: : * . : 

VRKTKDSAERSGSVVRDAVDAMGKIESSATEIGSIIGVIDEIAFQTNLLALNAGVEAARA 473 
VSTTRGEATHSGQVVHQAVSAMGEIEKSSGQISQIIGVIDEIAFQTNLLALNAGVEAARA 470 
VRVTKQSADSSGSVVSNAVDAMSRIEGASRKIEQIIEVIDDIAFQTNLLALNAGIEAARA 222 
VRVTKQSADSSGSVVSNAVDAMSRIEGASRKIEQIIEVIDDIAFQTNLLALNAGIEAARA 479 
* *: .* **.** :**.** **:: :* ** ***:*************:***** 

GEAGKGFAVVAQEVRELAQRSAKAAKEIKELINASNGHVKSGVALVGETGKALKEIAEQV 533 
GEAGRGFAVVAQEVRALAQRSAEAAKEIKALISSSTQQVSQGVSLVGQTGEALQRIVTKV 530 
GEAGKGFAVVAQEVRELAQRSADAAREIKQLINQSTHEVSSGSKLVQEAGTVLSAISRQI 282 
GEAGKGFAVVAQEVRELAQRSADAAREIKQLINQSTHEVSSGSKLVQEAGTVLSAISRQI 539 
****:********** ******.**:*** ** * .. * .. * ** ::* .*. * 

QQVDGNVGAIVGASQEQATGLKEINTAVNRMDQGTQQNAAMVEEATAASHNLAKEADALF 593 
GEIDALVTEIAASAAEQATGLNEVNTAVNQMDQVTQQNAAMVEQSTAATHSLKGETAELV 590 
VTVSQHVETIATATQDQSSALHNVNGSVNQMDQMTQQNAALAEQSSAASRVLSGEVEALL 342 
VTVSQHVETIATATQDQSSALHNVNGSVNQMDQMTQQNAALAEQSSAASRVLSGEVEALL 599 

*. :: :*::.*:::* :**:*** ******:.*:::**:: * 

QLLGQFNIGGAVAPKRASQPAAAASHAQPAPSPARQMIAKVG---KSFQTNGNAALAGD- 649 
RLMARFQVG-SGSSSYARPAVADAGHHAPARNPVAEQQARLNTFARPGRSSGSAALAQAP 649 
DLVQRFQMEQGSAAGSGRLNRAASLIIFKSMQLPDRKVREFLFGRCPRRTGYLVDIGTQRP. 402 
DLVQRFQMEQGSAAGSGRLNRAA------------------------·------- ------ 622 

*: : * : : * 

----WEEF---------------------------------------------------- 653 
ASDGWEEF---------------------------------------------------- 657 
RLNRFVLHGDPVFLRIAAHFRAAIRRYQQGRDRLAVKCPDEADGADTVTIIMIVGDDDIR 462 

GRGQSEEGFFQRRHGTCGQDIATPSRQKQRHALEDFRLVVDAQHPNAMKTVACCGTGCPA 522 

LRLGRSKTIRLTRQMDAEGRAFAGGGNELHRMVQHAPIDDGKAEPKARRRFCPFVQPGEF 582 

Fig. (3.2.4): Alignment of the pELW6 with McpA from Caulobacter crescentus 

McpA from A. tumefaciens (C58) and R. leguminosarum. 
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Analysis of the translated protein sequence strongly predicted a C-tenninal 

cytoplasmic domain with homology to the methylation domains and signalling 

domain of the Mcp genes identified in other bacteria. As discussed earlier Mcp 

receptors are membrane proteins, about 550 amino acids in length. pEL W6 contains 

part of an Agrobacterium Mcp gene. 
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Chapter4 

Mutagenesis 

116 



4. Mutagenesis 

In-frame deletion method 

In this method a single gene was deleted leaving all other genes in frame. The 

basic allelic exchange vector used in this method is pK18mobsacB. This vector 

combines the useful properties of the pK plasmids (e.g., multiple cloning site, lacZa 

fragment, sequencing with M13 primers), and also has the Broad-Host-Range transfer 

(bhr) machinery of plasmid RP4 and a modified sacB gene from Bacillus subtillis. 

This construct can be transferred by RP4- mediated conjugation into Agrobacterium. 

The sacB gene confers sucrose sensitivity to Agrobacterium and transformants 

containing pK 18mobsacB were not able to grow on media containing 10% sucrose. 

Generally, gene that should be deleted with 200- 500bp DNA fragment ligate 

into pBluescript SK +, then two primers (usually 20-30bp length) containing only 9bp 

of the starting sequence of the gene, and 3 bp of the end of the gene were designed and 

gene was deleted using PCR. The PCR product containing upstream and downstream 

flanking sequences of the gene were then ligated into pK 18mobsacB vector and the 

final construct introduced into Agrobacterium tumefaciens using Tri-parental mating 

method. 

pK 18mobsacB is unable to replicate in A. tumefaciens, and transconjugants 

only arise after integration of the plasmid into the chromosome by homologous 

recombination. Intermediate strains containing constructs in pK18mobsacB were 

selected on media containing Rifampicin and Kanamycin. To enhance the double 

cross-over events, cells from first step were incubated overnight in media containing 

Rifampicin only; subsequently serial dilutions of culture were plated onto MinA 
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media plus 10% sucrose. After 3-4 days several colonies from each dilutions were 

selected and then sensitivity to Kanamycin checked. Colonies sensitive to Kanamycin 

indicated the excision of the vector during second crossing-over event. This second 

crossing-over event restored the wild type genotype, or led to a mutant with the 

deletion fragment left in the chromosome. The resulting mutant was then checked by 

PCR and Southern blot using the deleted fragment as a probe. 

4.1. Mutagenesis of cheYl gene 

pEL W2, containing che Y 1, was digested with PvuIl/ HindI, and after 

. electrophoresis the 773bp fragment containing cheY1, a 264bp region upstream and 

142bp·region downstream of cheYl was isolated from the gel. This fragment was 

ligated into pBluescriptSK + digested with Ec6RV and transformed into E. coli (DH5a) 

tOo produce SK +/ che Y 1. This new construct was checked by digestion with 

appropriate restriction enzymes. To delete the cheY1 gene two primers were designed 

as below: 

cheYla (forward): 

cheYIb (reverse): 

5'- GGACT CCA TGG TTT CTT CAC TTT TGC A TC- 3' 

5'- GGACT CCA TGG TGA TAC GGG ACA TTT CAC- 3' 

Primer che Y 11 contained upstream flanking sequence, the first 9bp of the 

cheYl gene, plus five extra bases (GGACT) and Ncol site (CCATGG) at the 5' end to 

use in religation of the PCR product. Primer che Y 12 contained downstream flanking 

sequence, the last 3bp of the cheYI gene, plus an Ncol site and five extra bases at the 

5' end. 
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cheY1b 
5' ~ 3' 

CheY1 

3' CT ACGTTTICACnCTTT 5' 
3'''' 5' 

cheY1a 

SKicheY1 

Fig. (4.1.1) Diagram of Sk/cheY1 plasmid showing sequence traces across 

deletion junctions and position of cheY1a and cheY1b primers. 

Amplification by polymerase chJl in reaction was carried out using SK+/ cheY I as 

DNA template. After amplification, 51ll of the peR reaction was loaded onto an 

agarose gel , and separated by electrophoresis. The expected fragment of 

approximately 3.4 Kb ( corresponding to the vector plasmid, and the upstream and 

downstream sequences flanking cheY l) was isolated from the gel (see fig . 4.1.2) . 

119 



:2 

. Fig (4.1.2): 0.8% agarose gel electrophoresis showing the expected fragment for 

cheYl in-frame deletion. Lanet: ADNAlHindIII lane2: in-frame deleted peR 

product (SK/deIYl). 

The isolated PCR product was digested with Neal, religated together using T4 

DNA ligase and cloned into E. coli. This procedure gave no transfOlmants. The PCR 

product was therefore re-isolated and treated in a one-step polishing and ligation 

reaction using DNA polymerase and T4 DNA ligase (see methods section). 

The reaction was incubated at 16°C for 2 days, then transformed into E. coli to 

produce transformants containing the plasmid (SK +/ deIYl) . The plasmid was 

isolated from transformed cells and checked by digestion with EcoRII HindU!. The 

deletion produced in this plasmid was checked by DNA sequencing. 

The new construct (SK +/deIY 1) was excised by digestion with EcoRII HindUI, 

separated by electrophoresis and the 490bp fragment containing the upstream and 
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downstream flanking sequences of cheYl was isolated from the gel. This fragment 

was ligated into pK18mobsacB previously restricted with EcoRU HindIII and the 

product was transformed into E. coli to generate the final construct (PK 18/delY 1). 

This new construct was checked by digestion with appropriate restriction enzymes 

and the result was confirmed by sequencing the plasmid DNA as well. The E. coli 

strain containing plasmid pK181 delYl has subsequently been used as a donor cell in a 

tri- parental mating. 

Tri- parental mating method: Cultures of donor, recipient and helper strains 

were grown to mid log phase in selective media. Then the cell cultures were 

sedimented by centrifugation (4000RPM, 5min) and resuspended in the LB broth to 

the same volume as before. For all matings, 300J.lI of recipient cell, 200J.lI of donor 

cell and 150~ll of cell containing helper plasmid were pipetted into 1.5ml Eppendorf 

tube. The mixture was centrifuged for 30-60 seconds and resuspended in 100J.lI of LB 

broth by pippeting. The mating mixture was dropped onto sterile nitrocellulose filters 

(0.22~lm pore size), which were placed on non-selective LM agar plate. 

. The mating mixture was incubated at 28- 30°C over night then serial 

dilutions were made and plated onto selective media (containing Rifampicin and 

Kanamycin). After 3 days incubation several colonies were picked and restreaked on 

the same media to produce the stable resistant intermediate colonies. Chromosomal 

DNA of some intermediate strains were isolated and checked by PCR to confirm the 

result. 
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Fig (4.1.3): Diagram showing schematic steps for construction of che YJ in-frame 

deletion mutant of A. tumefaciens. 
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Polymerase chain reaction for mutant verification: Two primers were designed for 

use in PCR: 

cheYll : 5'- GCT GGA TCT CAA CGA AGC AT-3' 

cheY12: 5'- ACG GTC CCC GTC ATT CAA TT - 3' 

After amplification the PCR reaction was separated by agarose gel electrophoresis. 

The predicted sizes of the PCR products from the wild type cheYl gene and the 

deleted cheYl gene were 773bp and 408bp, respectively. As shown in fig 4.1.2 some 

strains produced the expected fragments of wild type and intermediates.(wild type 

fragment about 773bp, intermediate strain fragments, 773bp plus 408bp deleted 

fragment). 

1 2 3 4 5 6 7 8 9 10 11 

Fig. (4.1.4): 1 % agarose gel electrophoresis of peR product of intermediate 

strains of A. tumefaciens lane1: 'ADNAlEcoRI:HindIIl, lanes 5, 7, 8 and 11 correct 

the intermediate strains. 
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Second recombination event: 

Four intennediate strains that had show the expected fragments in PCR, 

indicating that they contained both wild-type and deleted cheYl genes, were grown 

overnight in liquid media containing rifampicin only. Serial dilutions were made and 

plated on MinA media plus 10-15% sucrose. After 3 days incubation at 28°C the 

number of colonies grown were as below: 

Concentration Number of colonies 

Neat >200 

10-1 > 50 

10-2 
~20 

10-3 1 

Several colonies were picked up and restreaked on LA media containing 

Rifampicin then on media containing Rifampicin and kanamycin to check the 

sensitivity to kanamycin. Several kanamycin- sensitive colonies were grown in LB+ 

rifampicin media, and chromosomal DNA was isolated to check by PCR and 

Southern blot whether the desired deletion was present. 

PCR was perfonned as described previously, and after the reaction, 5f.ll of PCR 

product was analysed by electrophoresis on 1 % agarose gel (see fig. 4.1.5). 
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JI JJ6bp 

514Sbp 
4973bp 
.tJ6!lbp 

JOJ 7bp 

I ~Q3~~ 
1315bp 
947bp 
S31bp 

1 2 3 4 5 6 

Fig (4.1.5):. 1% agarose gel electrophoresis showing the peR products from 

genomic DNA of cheYI in-frame deletion mutant strains produced using cheYla 

and cheYlb primers. Lanet: "AJEcoRI:Hindlll, lanes 2, 3, 4, 5, 6 possible mutant 

strains. 

As shown in fig (4.1.5) only lane 2 (cheYl-12) showed the correct peR product 

corresponding to a deleted fragment (408bp). This strain was selected as a mutant and 

was checked by Southern blotting. 
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Southern blot analysis of che Yl mutant: 

The chromosomal DNA of two intennediate strains, one possible mutant, 

cheYI-12, and wild type strain (C58Cl) were digested with EcoRV and HindIII. The 

Southern blot perfonned as described before. The cheYl-deleted fragment containing 

upstream and downstream flanking sequence of the che Y 1 was used as probe. 

The following diagram shows the expected fragments for each strain: 
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Hindlll 4.1Kb 

EcoRV I 0.9 I 2.7Kb 

III I RV RV III I I RV 
C58C1 I ~ 

Hindlll 7.8Kb 2.2Kb 

EcoRV 10.9 6.0Kb 3.0Kb 

III RV RV III RV III RV 

I I lalil 
pK 18mobsacB 

I rH I I IntermediateA 
(Recombination orf2) 

Hindlll 8.2Kb 1.8Kb 

EcoRV 1 0.9 I 6.3Kb 2.3Kb 

III RV III RV 

IntermediateS 
(Recombination cheAl 

'II:IWH I 
III RV RV Y1 pK18mobsacB 

--~I----~I ~~~*Ic:================:t~IOOru---~---L-

Hindlll 3.7Kb 

EcoRV 10.9 I 2.3Kb 

III RV RV III RV 

C1- delY1 I I • I 

Fig. (4.1.6): Diagram showing the position and expected size of the EcoRV and 

HindU! fragments for each A. tumefaciens wild type, two possible intermediates 

and the cheYl in-Frame deletion mutant strains. 
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Fig (4.1.7) Fig (4.1.8) 

Fig. (4.1.7): 1 % agarose gel electrophoresis of chromosomal DNA from wild type, 

intermediate strains and cheYl in-frame deletion mutant (cheYI-12) digested by 

HindIlI and EcoRV. Lanes 1, 10: 'A.DNAIEcoRI:HindIlI, lanes 2,4: intermediate 

strains digested with HindIlI, lanes 3, 5: intermediate strains digested with 

EcoRV, lanes 6, 7: A.tume/aciens mutant digested with HindIlI and EcoRV 

respectively, lanes 8, 9: A.tume/aciens (wild type) digested with HindIII and 

EcoRV respectively. 

Fig. (4.1.8): Subsequent Southern blot analysis of strains digested in fig. (4.1.6) 

using cheYl-deleted fragment containing upstream and downstream flanking 

sequence ofthe cheYl as a probe. 
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Digestion of wild-type DNA with HindIII gave a single fragment of 4.1 Kb 

after probing with the cheYI probe. Digestion with EcoRV gave fragments of O.9Kb 

and 2.7Kb after probing. Digestion of intermediate strain chromosomal DNA with 

HindIII gave two fragments of 7.8Kb and 2.2Kb. Also digestion with EcoRV gave 

fragments of O.9Kb, 6.0Kb and 3.0Kb and showed the expected fragments size of 

intermediate A. Digestion of mutant chromosomal DNA with HindIII gave a fragment 

of3.7Kb and digestion with EcoRV gave two fragments ofO.9Kb and 2.3KB. 
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4.2. Mutagenesis of che Y2 

The plasmid pELWl was digested with BgIW Mlul and a 957bp fragment 

containing the cheY2 gene, and 363bp upstream and 628bp downstream flanking 

sequences was isolated from the gel. After separation by agarose gel electrophoresis 

fragment was made blunt ended and ligated into pBluescriptSK + plasmid which had 

been digested with EcoRV, to produce the sk+/cheY2 plasmid. This construct was 

checked by digestion with appropriate restriction enzymes and has subsequently 

verified by DNA sequencing. To delete the cheY2 gene, two primers were designed as 

follows: 

cheY2a (forward): 

cheY2b (reverse): 

5'- GGACT CCATGG GAG AGA CAT TAG TCA GCA- 3' 

5'- GGACT CCA TGG TGA TGG AAG CTG CGG CCA- 3' 

The forward primer contains upstream flanking sequence, the first 9bp of che Y2 gene, 

plus Neal site (CCA TGG) and five extra bases (GGACT) at the 5' end to use for 

cloning of PCR fragment. The reverse primer contains downstream flanking sequence, 

the last 3bp of cheY2 gene, plus an Neal site and 5 extra bases at 5' end. 
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cheY2b 
8g1 II 5' .. 3' Mlu 

! 5' TGATGGAAGCTGCGGCCA 3' + 

3' ACGACTGA TT ACAGAGAG 5' 

3'" 5' 
cheY1a 

SKlcheY2 

Fig. (4.2.1) Diagram of SkicheY2 plasmid showing sequence traces across 

deletion junctions and position of cheY2a and cheY2b primers. 

Polymerase chain reaction was carried out using sk+/ cheY2 as template DNA. 

After reaction 5fll of peR product was separated by electrophoresis on 0.8% agarose 

gel and the expected fragment (- 3.4 Kb) was isolated from the gel. 

1 2 

Fig. (4.2.2): 0.8% agarose gel electrophoresis showing the expected peR product 

131 



fragment for cheY2 in-frame deletion. Lane1: ADNA/HindlIl lane2: in-frame 

deleted fragment (SKJdeIY2). 

The peR product was digested with Neal, purified by agarose gel 

electrophoresis, religated using T4 DNA ligase and transformed into E. coli (DH5a). 

The plasmid isolated from bacterial clones was subjected to DNA sequencing. The 

result of sequencing showed that the peR product contained only the upstream 

flanking sequence of cheY2; that is, the 3' flanking sequence had been deleted. In 

order to make the desired in-frame deletion of cheY2, it was therefore decided to 

ligate the Rsal fragment of pEL WI, containing the downstream flanking sequence of 

cheY2, into the new construct from the previous step. The plasmid containing the peR 

product was digested with Smal and the 590bp RsaI fragment, containing downstream 

flanking sequence of cheY2, purified by agarose gel electrophoresis, was ligated to 

pBlueskriptSK to make new construct, sk+/ delY2. 

Sk+/deIY2 was transformed into E. coli and the resulting plasmid was checked 

by restriction enzyme digestion and confirmed by sequencing as well. At the next step 

the sk+/ delY2 plasmid was digested with HindIIVXbaI and the expected fragment 

containing upstream and downstream flanking sequence of che Y2 was ligated into 

similarly cut pK18mobsacB to produce pK18/ delY2 plasmid. The new construct was 

transformed into E. coli, reisolated from the bacterial strain and checked by restriction 

enzyme digestion. The construct was confirmed by DNA sequencing as well. 

The E. coli strain contain pK18/delY2 was used as a donor cell to transfer the plasmid 

into A. tumefaciens during the conjugation process. 
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Fig. (4.2.3): Diagram showing schematic steps for construction of cheY2 in-frame 

deletion mutant of A. tumefaciellS. 
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Tri-parental mating: was perfonned as previously described. After overnight 

incubation of the mating mixture on a filter, several dilutions were made and plated 

on LA media containing Rifampicin and Kanamycin. The plates were incubated at 28-

30°C, and after 3-4 days several colonies were picked and restreaked on the same 

media to obtain colonies showing stable antibiotic resistance. These intennediate 

strains containing both the wild type and che Y2 genes were grown overnight in liquid 

LB media containing Rifampicin only to hence the second recombination event. After 

the overnight growth, serial dilutions were made and plated on MinA media 

containing 10% sucrose. The number of colonies grown from different dilutions were 

as follows: 

dilution Number of cells 

Neat >2000 

10-1 >1000 

10-2 >800 

10-3 >500 

10-4 
~200 

10-5 
~50 

10-6 
20 

Several colonies from 10-6, 10-5 and 10-4 dilutions were picked and checked for 

sensitivity to kanamycin. All kanamycin-sensitive strains were checked by swanning 

plate assay on 0.2% LA. Some strains that showed a deficiency in swanning 
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behaviour, in comparison with wi ld type strain, and were checked by PCR. Some 

intermediate and wild type strains were checked by PCR as well. 

Polymerase chain reaction for mutant verification: Two primers were designed as 

follows: 

cheY21 (forward): 5'- CGG TGA GCG TCA TTT ACA GA- 3' 

cheY22 (reverse): 5'- CTC TGC AAG CTG CAT TGG AA- 3' 

The chromosomal DNA was used as a template. After the PCR reaction 51-11 of PCR 

product was electrophoresed. 

::'12J6bp 

514Sbp 

426Sbp 

~O]7bp 

1904bp 
1534bp 
13751>1' 
947bp 
83 1bp 

1234567 

933bp 

Fig. (4.2.4): 0.8% agarose gel electrophoresis of PCR products from resulting 

amplification of chromosomal DNA showing expected fragments resulting of 

PCR for each wild type, intermediate and mutant strains of A. tumefaciens. 

Lanes 5, 6, 7: mutant, lanes 3, 4: intermediate strains, Lane2: wild type and 

lane1: A.DNAIEcoRI: HindlIl 
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As shown in Fig 4.2.4 lanes 5, 6 and 4 showed the expected fragment (deIY2~933bp), 

lanes 3, 4 showed the expected fragments for intermediate strains (~ 933bp and ~ 

1321bp) and lane 2 (wild type) showed the expected fragment for wild type only 

(~1321 bp). 

Southern blot analysis of mutants: 

Intermediate strains and mutants that had shown the expected fragments in 

peR were checked by Southern blot. The wild type strain (e58e 1) was included as a 

control. The cheY2 deleted fragment (containing upstream and downstream flanking 

sequences of cheY2) was used as a probe. The chromosomal DNA of intermediate 

strains, possible mutants and wild type was digested with HincH and HindHI. The 

southern blot was done as discussed in materials & methods. 

The following diagram showed the expected fragments of each intermediate, mutants 

and wild type strains. 
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Fig. (4.2.5): Diagram showing the position and expected size of the HincH and 

Hindlll fragments for each A. tumefaciens wild type, two possible intermediate 

and the che Y2 in-Frame deletion mutant strains. 
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Fig. (4.2.6) Fig. (4.2.7) 

Fig. (4.2.6): 1 % agarose gel electrophoresis of wild type, intermediate strains and 

cheY2 in-frame deletion mutant chromosomal DNA digested by HindIIl and 

HincIl. Lanes 1, 12: ADNAIEcoRI: HindlIl, lanes 4, 6: intermediate strains 

digested with HincH, lanes 5, 7: intermediate strains digested with HindlIl, lanes 

9,11: A. tumefaciens mutant digested with Hindlll , lanes 8, 10: A.tumefaciens 

mutant digested with HincIl, lanes 2,3: A. tumefaciens (wild type) digested with 

Hincll and Hindlll. 

Fig. (4.2.7): Subsequent Southern blot analysis of strains digested in gel in fig. 

(4.2.6) using deleted fragment (containing upstream and downstream flanking 

sequences of cheY2) as a probe. 
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Digestion of wild-type chromosomal DNA with HindUI gave a single 

fragment of 4.0Kb after probing with the che Y2 deleted fragment probe. Digestion 

with HindI gave fragments of 1.0Kb and 2.5Kb after probing. Also, digestion of 

intermediate strains chromosomal DNA with HindlII for some strains gave fragments 

of 8.5Kb and 1.7Kb, and digestion with HincU gave fragments of 3.9Kb, 2.9Kb and 

2.5Kb after probing. Digestion of some of the other intermediate strains DNA with 

HindUI gave fragments of9.3Kb and 1.3Kb. Digestion with HincU gave fragments of 

1.0Kb, 3.2Kb and 5.1Kb after probing with cheY2 deleted fragment. Digestion of 

mutant chromosomal DNA with HindIU gave a single fragment of 3.2Kb and 

digestion with HincH gave a single fragment of3.6Kb after probing. 

The result of the Southern blot showed that the size of fragments produced by 

wild type and mutants for both enzymes are correct. In addition lanes 4&5 show the 

correct size for intermediate B and lanes 6&7 indicated the correct size for 

intennediate A. The mutants were named C lIdelY2 and used to investigate the 

phenotypic properties of mutant. 
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4.3. Mutagenesis of cheB gene 

To make template DNA for the PCR-based deletion, plasmid pELWI was 

digested with EcoRV and Ehel, separated by agarose gel electrophoresis, and the 

1777bp fragment containing cheB gene plus 399bp upstream and 326bp downstream 

flanking sequences was isolated from the gel. This fragment was ligated into 

pBluescriptSK + digested with EcoRV to produce SK +/cheB plasmid. The new 

construct was transformed into E. coli, the plasmid was isolated from the bacterial 

strain and checked by digestion with restriction enzyme. The sequencing confirmed 

the result. SK +/cheB was then used as template DNA in PCR reaction for deleting the 

cheB gene. 

Polymerase chain reaction: Two primers were designed as follow: 

Bl (forward): 5'- GG CCATGG TGC GCT CAT GCC TTC CTC- 3' 

B2 (reverse): 5'- GG CCATGG TGA CTA ATG TCT CTC GCA G- 3' 

The forward primer contains the upstream flanking sequence, the first 9bp of cheB 

gene, an Neal site (CCATGG) and two extra bases (GG) at the 5' end to use for 

cloning of PCR product. 

The reverse primer also contains the downstream flanking sequence, the last 3bp of 

cheB gene, an Neal site and two extra bases at the 5' end. 
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EcoRV 

cheB 

3' CTCCTTCCGTACTCGCGT 5' 
3' 4 5' 

B1 

SKlcheB 

B2 
5' • 3' Ehel 

5'TGACTAATGTCTCTCGCAG ' 

Fig. (4.3.1) Diagram of SkicheB plasmid showing sequence traces across deletion 

junctions and position of Bl and B2 primers. 

After the reaction, Sill of peR product was electrophoresed and the expected 

fragment (~3.6Kb) was isolated from the gel. 

5.19Kb 

4 .27Kb 

2.03Kb 
1.90Kb 
1.58Kb 
1.38Kb 
O.95Kb 
O.83Kb 

2 3 
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Fig. (4.3.2): 0.8% agarose gel electrophoresis showing the expected fragment for 

cheB in-frame deletion. Lane 1: 'A.DNAlHindlII:EcoRI lane 3: in-frame deleted 

fragment (SKIdelB). 

To religate the PCR product two methods were used: 

In the first, the PCR product was made blunt ended by treatment with T4 DNA 

polymerase prior to ligation. The mixture was incubated at 16°C for 2 days then S~l 

was transformed into E. coli (DHSa) directly. 

In the second method, the PCR product was restricted with Nco I. After 

overnight incubation at 37°C, the digested fragment was electrophoresed, isolated 

from the gel and the single stranded ends were religated together using T4-DNA ligase. 

The resulting plasmid was transformed into E. coli. Both methods gave successful 

results. The new construct plasmid, SK +/delB, was isolated from transformed cells 

and checked by restriction enzyme digestion. The correct construct was confirmed by 

sequencing as well. 

The entire insert fragment from SK +/delB was excised with HindIIII XbaI and ligated 

into similarly cut pK 18mobsacB to generate pK 181 delB plasmid. After cloning of 

new construct into E. coli, the plasmid was reisolated from bacterial cells and checked 

once by digestion with restriction enzyme. Plasmid pK18/delB was confirmed by 

sequencing as well. 
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Fig. (4.3.3): Diagram showing schematic steps for construction of cheB in-frame 

deletion mutant of A. tumefaciens. 
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Tri-parental mating was done as before. The E. coli (pK 18/delB) was used as 

a donor cell. Mating mixture was plated onto selective media (LA+ rifampicin & 

kanamycin) and incubated at 28-30°C for 3 days. Several colonies were picked up, 

restreaked on the same media to give the stable resistant colonies and grown 

overnight in LB media containing Rif+ Kam. Chromosomal DNA was isolated from 

these strains and integration ofpK18/delB plasmid into the bacterial chromosome was 

checked by PCR using chromosomal DNA as a template and two following primers: 

cheBa (forward): 5'- TAC GAT GAC AAC GCG CTT GA- 3' 

cheBb (reverse): 5'- TGC GCG GTG AGA ATG ATG AA- 3' 

1 J 3 4 5 6 7 8 9 10 11 

1.8DKb 

D.73Kb 

Fig. (4.3.4): 1% agarose gel electrophoresis of peR products of intermediate 

strains of A.tumefaciens Lane 1, 'ADNAJEcoRI:HindIIl, lanes 3, 4 showed the 

correct size for the intermediate strains. 
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The PCR product was electrophoresed. As shown in Fig. 4.3.4 two strains (lanes 3 & 

4) produced the expected fragment for intennediate strains in comparison with lane 2, 

wild type strain, C58C 1. These two strains were used in a second recombination event. 

To promote the second recombination event, the intennediate strains were growth 

overnight in LB media containing Rifampicin only, then serial dilutions were made 

and plated on MinA media plus 10-15% sucrose. After 3-4 days incubation at 28-

30°C the number of colonies grown were as follows: 

dilution number of colonies 

Neat > 500 

10'\ > 200 

10-2 
~ 30 

10-3 9 

Several colonies from the lower dilutions were picked up, restreaked on 

LA+Rifampicin plates and checked for sensitivity to kanamycin on LA media 

containing Rif+ Kam. The chromosomal DNA was isolated from kanamycin­

sensitive strains and checked by PCR under the same conditions as used for 

intennediate strains. As shown in fig 4.3.5 two strains (lanes 2, 3) produced the 

expected fragment of mutant only. 
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4 .91Kb 
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2 .03Kb 
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1.58Kb 

1.3SKb 
O.95Kb 
O.S31Cb 

1234567 

1.77Kb 

O.7JKb 

Fig. (4.3.5): 0.8% agarose gel electrophoresis showing expected fragments 

resulting from peR for each wild type; intermediate and mutant strains of 

A.tumefaciens. Lanes 2, 3: mutant, lanes 4, 5: intermediate strains, lane6: wild 

type and lane1: ADNAI EcoRI:HindlII. 
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Southern blot analysis of mutant: Chromosomal DNA of wild type, 

intennediate strains and possible mutants were digested with PstI and HindI. The 

cheB deleted fragment (containing upstream and downstream flanking sequences of 

cheB) was used as a probe. 

The following diagram shows the expected fragment SIze for each wild type, 

intennediate and mutant strains. 
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Fig. (4.3.6): Diagram showing the position and expected size of the HincH and 

PstI fragment for each A. tumefaciens wild type, two possible intermediate and 

the cheB in-Frame deletion mutant strains. 
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Fig. (4.3.7) Fig. (4.3.8) 

Fig~ (4.3.6): 1 % agarose gel electrophoresis of wild type, intermediate strains and 

cheB in-frame deletion mutant chromosomal DNA digested by Pstl and HincH. 

Lanes 1, 16: t...DNAIEcoRI:HimfiH, lanes 3, 5: intermediate strains digested with 

HiIlCH, lanes 2, 4: intermediate strains digested with Pstl , lanes 4, 6, 8, 10, 12: A. 

tumefaciens mutant digested with Pstl, lanes 7, 9, 11, 13: A. tumefaciens mutant 

digested with HincH, lanes 14, 15: A. tumefaciens (wild type) digested with Pstl 

and HincH. 

Fig. (4.3.7): Subsequent southern blot analysis of strains digested according to fig. 

(4.3.6) using cheB deleted fragment (containing upstream and downstream 

flanking sequences of cheB) as a probe. 
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Digestion of wild-type chromosomal DNA with PstI gave fragments of 

1.8Kb and 2.0Kb after probing with the cheB deleted fragment probe. Digestion with 

HincH gave fragments of 1.0Kb, 1.8Kb and 2.5Kb after probing. Also digestion of 

intermediate strain chromosomal DNA with PstI gave fragments of 1.0Kb, 2.0Kb and 

7.1Kb. Digestion with HincII gave fragments of 1.8Kb, 3.0Kb and 2.5Kb after 

probing. Digestion of mutant chromosomal DNA with Pst! gave a single fragment of 

2.9Kb and digestion with HincH gave fragments of 1.8Kb and 2.5Kb after probing. 

Southern blot indicated that the fragments size for wild type and mutant strains 

for both enzymes are correct. The fragments size for intermediate strain are correct as 

well and confirmed the intermediate A type of recombination. 
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4.4. Mutagenesis of the cheR gene 

To make template DNA for the PCR- based deletion method, plasmid pELWl 

was digested with Pst!, separated by agarose gel electrophoresis and the 1827bp 

fragment containing cheR gene plus 200-500bp upstream and downstream flanking 

sequences was isolated from the gel. This fragment was ligated into pBluescriptSK + 

digested with the same enzyme to produce SK +/cheR plasmid. The resulting construct 

was transformed into E. coli, plasmid was isolated from bacterial strain and checked 

by digestion with PstI enzyme again. DNA sequencing confirmed the correct 

fragment had been cloned. SK +/cheR was used as template DNA in PCR reaction for 

deleting the cheR gene. 

Polymerase chain reaction: Two primers were designed as follow: 

cheRI (forward): 

cheR2 (reverse): 

5'-GCATGC TGC TGC CAT TGG ATA TCC GC - 3' 

5'-GCATGC TGA GCG CAC TCG CAC GGG TC ~ 3' 

The forward primer contains the upstream flanking sequence, the first 9bp of cheR 

gene, and a Sphl site (GCATGC) at the 5' end to use for cloning ofPCR product. 

The reverse primer also contains the downstream flanking sequence, the last 3bp of 

cheR gene and SphI site in 5' end. 

After The PCR reaction, 5~d of PCR product was separated by electrophoresis and the 

expected fragment (-3. 8Kb) was isolated from the gel. 
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Fig. (4.4.1): 0.7% agarose gel electrophoresis showing the expected fragment for 

cheR in-frame deletion. Lane 1: ADNAlHimUn lanes 2 & 3: in-frame deleted 

fragment (SK/deIR). 

This fragment was digested with Sphl and religated with T4 DNA ligase to 

transform into E.coli. The procedure was performed several times with different 

conditions but no recombinant plasmids were obtained. The in-frame deletion of cheR 

was therefore made according to the following procedure. 

The SK+/cheR plasmid was digested with EcoRVIHinclI . After 

electrophoresis two fragments , 3427bp containing vector backbone plus the 

immediate downstream flanking sequence of cheR and 40 I bp fragment containing 

sequence immediately upstream of cheR, were isolated from the gel and religated 

together, making SK +/delR plasmid. This new construct was transformed into E.coli 

(DH5a), and, after the isolation of plasmid from the bacterial strain, checked with 
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digestion by EcoRIIXbaI. To confinn the result and to ensure that cheR is in-frame 

correctly, SK +/delR was subjected to DNA sequencing as well. 

SK +/cheR was digested with EcoRIIXbaI and the 900bp fragment containing 

in-frame deleted fragment of cheR was ligated into the suicide vector, pKl8mobsacB, 

and digested with the same enzymes to make pK18/deiR plasmid. This new construct 

was transfonned into E.coU and after isolation from the bacterial strain was checked 

with enzyme digestion again. The E.coli containing this new construct used as a donor 

cell and introduced into A. tumefaciens by tri-parental mating. 
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A.tltme/aciens (C/deIR mutant) 

Fig. (4.4.2): Diagram showing schematic steps for construction of cheR in-frame 

deletion mutant of A. tumefaciens. 
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To carry out the tri-parental mating 300/11 of recipient cell, 150/11 of donor cell 

and 150/11 of helper plasmid were mixed, and after collection of mating mixture from 

the filter, to reduce the unwanted background colonies, 100/11 of the mixture was 

incubated overnight in 10ml liquid media containing kanamycin and rifampicin. Then, 

serial dilutions of this culture were plated onto selective media (LA+ rif.! kan.). 

After 2-3 days incubation at 28°C several colonies were picked up and resreaked on 

the same media to get the pure colonies. LB media plus rifampicin and kanamycin 

was inoculated with these strains and after overnight incubation at 28-30°C, the 

chromosomal DNA was isolated to check the intermediate strains by PCR or southern 

blot. 

Polymerase chain reaction: Two primers were designed as follows: 

delRI (forward): 

delR2 (reverse): 

5'-ATC CAC TCC TTC GGT TCC AA-3' 

5'-CCG ATA TTC GCT CAT COG AA-3' 

The PCR was performed as before. The chromosomal DNA of possible intermediate 

strains and wild type were used as DNA template. No PCR product was detected in 

this reaction, neither in wild type nor in intermediate strains, in both a standard 

reaction and after modifying the PCR conditions. Despite this problem, it was decided 

to attempt to produce the desired mutant. 

Second recombination event: To promote the second recombination event, 

several possible intermediate strains from previous step were grown overnight in LB 
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media containing Rifampicin only. Serial dilutions were made and plated on MinA 

media plus 10-15% sucrose. After 3-4 days incubation at 28-30°C, the number of 

colonies grown were as following table: 

dilution number of colonies 

Neat > 1000 

10-1 > 500 

10-2 
~ 100 

10-3 30 

10-4 9 

Several colonies from the lower dilutions were picked, restreaked on 

LA+Rifampicin plates and checked for sensitivity to kanamycin on LA media 

containing Rif+Kam. The chromosomal DNA was isolated from kanamycin- sensitive 

strains and checked by Southern blot, with intermediate strains and wild type as 

control. 
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Southern blot analysis was perfonned as described in the Material & 

Methods. The chromosomal DNA of the strains was digested with Pst! and EcoRV. 

The deleted cheR fragment (containing only the upstream and downstream flanking 

sequences of cheR) was used as a probe. The following diagram shown the expected 

fragments size for each wild type, intennediate and mutant strains. 
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Fig. (4.4.3): Diagram showing the position and expected size of the EcoRV and 

Pstl fragment for each A. tumefaciens wild type, two possible intermediate and 

the cheR in-Frame deletion mutant strains. 
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Fig. (4.4.4) Fig. (4.4.5) 

Fig. (4.4.4): 1 % agarose gel electrophoresis of wild type, intermediate strains and 

cheR in-frame deletion mutant chromosomal DNA digested by Pstl and EcoRV. 

Lanes 1, 16: 'f..DNAIEcoRI:HintllU, lanes 10, 12, 14: intermediate strains digested 

with Pst!, lanes 11,13,15: intermediate strains digested with EcoRV, lanes 4, 6, 8: 

A. tumefaciens mutant digested with Pstl, lanes 5, 7, 9: A. tumefaciens mutant 

digested with EcoRV, lanes 2, 3: A.tumefaciens (wild type) digested with EcoRV 

and Pst!. 

Fig. (4.4.5): Subsequent southern blot analysis of strains digested according to fig. 

(4.4.4) using deleted cheR fragment (containing only upstream and downstream 

flanking sequences of cheR) as a probe. 
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Digestion of wild-type chromosomal DNA with Pst! gave a single fragment of 

1.8Kb after probing with the cheR deleted fragment probe. Digestion with EcoRV 

gave fragments of 3.2Kb and 5.0Kb after probing. Digestion of intermediate strain 

chromosomal DNA with Pst! gave fragments of 1.8Kb and 0.9Kb. Digestion with 

EcoRV gave fragments of 3.2Kb and 11.5Kb after probing. Digestion of mutant 

chromosomal DNA with Pst! gave a single fragment of 0.9Kb and digestion with 

EcoRV gave a single fragment of 8.2Kb after probing. 

The result of Southern blot confirmed the expected fragments for both wild 

type and mutant strains. The fragments produced by chromosomal DNA of the 

intermediate strains confirmed the intennediate B type of recombination. The mutants 

renamed as C lIdelR. 
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Chapter 5 

Phenotypic properties of A.tumefaciens mutants 
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5. Phenotypic properties of the A. tumefaciens mutants 

5.1. Swarming behaviour assay 

The migration of bacterial cells is usually studied in semi-solid agar plates. 

The concentration of agar is sufficiently low (0.2-0.35%) to allow to bacteria to swim 

in this medium. The behaviour is complex; swimming involves transport, metabolism 

and growth, as well as motility (Berg, H. C., 2000). 

If the swarming plate contains nutrients which the bacterium can metabolise 

and to which it is tactically responsive, the growing population of cells swarms 

outward from the centre, following the gradient which it has created. This method 

provides a powerful means for screening of motility and taxis in wild type and mutant 

bacterial strains. 

During swarming, different types of swarming pattern can be formed that are 

chemotactically inert. The type of pattern depends on the amount of nutrition and 

energy source that is uniformly distributed in the petri dish. Earlier studies (Adler, 

1973) demonstrated that the bacteria migrate in the form of a ring, and, depending on 

nutrition and energy source, the number of rings is differ. 

In Adler's experiment, rings formed when cells of E. coli are placed in an 

environment containing substances (oxygen, amino acids, etc.) that the bacteria both 

consume and respond to chemotactically. The consumption of the substrate generates 

an attractant gradient, which provokes chemotaxis. The net response is a ring of cells 

moving outwards from the centre in the petri dish. 

Budrene and Berg (1995) found conditions in which more complex patterns 

can form. In contrast to Adler's experiment, the environmental conditions induce the 
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bacteria to excrete an attractant toward which the cells undergo chemotaxis. These 

conditions produce patterns that are more complex. 

More investigation has shown that migration of bacteria through semi-solid 

agar occurs in the absence of many of the genes known to be required for 

chemoreception and chemotactic signal processing. The swarming pattern for such 

strains vary in size and in pattern, depending on whether or not the flagellar motor in 

the bacterial strain is able to spin both clockwise and counter-clockwise. Experiments 

by Wolf and Berg (1989) indicate that in E.coli, formation of the wild type band 

structure requires the complete set of chemotaxis proteins. Non-chemotactic cells that 

retain the ability to tumble as well as to run migrate faster than cells that can only run. 

Cells withahility to run only get trapped in the agar. 
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5.1.1: Effect of the deletion of cheYl and cheY2 genes 

The swarming behaviour of wild-type and mutants of A. tumefaciens was 

compared. Usually 3).11 sample of cells grown in LB medium were placed on swarm 

plates and incubated at 28-30°C for up to three days. The swarm-ring size was 

measured after 10, 24, 48 and 56hr. The effects of the deletion of cheYl and cheY2 

genes are shown in Fig. (5.1.1) and Fig. (5.1.2). 

When incubated, both wild-type and mutants for the same period of time 

ClIdelYI formed swarms approximately 30% reduced in size compared to those 

formed by A. tumefaciens (C58Cl) wild-type. Also Cl/delY2 inhibited swarming 

behaviour and it swarmed to approximately 60% the size of swarms formed by wild­

type. The data suggest that cheYI and cheY2 have different effects on the tactic 

response, it seems CheY2 is the main response regulator (Fig. 5.1.2., compare No 2. 

with No 3 & 4). 
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Fig. (5.1.1): Swarm test of A. tumefaciens wild type (1) and chemotaxis mutant 

(2-4) ClIdelY2 (Photograph after 48hr). 

Fig. (5.1.2): Swarm test of A. tumefaciens wild type (1) and chemotaxis mutant (2) 

ClIdelYI and (3& 4) ClIdelY2 (Photograph after 48hr). 
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Wild-type cells (C58C 1) formed a swarm ring, and their displacement 

increased with time (See Fig. 5.1.3).The first migration appeared about 2.5 hr after 

inoculation and it increased with time. Wild-type cells produced swarm of 

approximately 3cm in diameter after 56hr. The mutant cells, ClIdelYl, produced a 

swarm of approximately 2.2cm in diameter after the same length of time. The edge of 

swarm produced by cheYl mutant moved outward at a rate about 60% of the wild­

type swarms (Fig. 5.1.3). 

The mutant cells, ClIdelY2, produced swarm approximately 1.2cm in 

diameter after 56hr. This mutant produced a growth pattern of high density. The edge 

" , displacement swarm was at a rate about 30% of the wild type swarms. 
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Fig. (5.1.3): Displacement of the edge of swarms produced by cells of 
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A. tumefaciens (wild type) and the mutant strains, ClIdelYl and ClIdelY2. 
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5.1.2: Effect of the deletion of cheB and cheR genes 

The predicted amino acid sequences of CheR and CheB were compared with 

the equivalent proteins from E. coli. The CheR and CheB have 41 % and 48% identity, 

respectively, with the corresponding E. coli proteins and therefore designated 

homologues of these adaptation enzymes. 

>retlNP 416397.11 response regulator for chemotaxis (cheA sensor); protein 

methylesterase [Escherichia coli K12l 
Length = 349 

Score = 305 bits (781), Expect = 3e-84 
Identities = 1681345 (48%), Positives = 229/345 (66%), Gaps = 11/345 (3%) 

Query: 6 RVLVVDDSPTMRGLISAVLKADPEVEVVGQAGNAMEARAAIKQLNPDVVTLDIEMPEMNG 65 
RVL VDDS MR +++ ++ + ++E+V A + + AR IK+ NPDV+TLD+EMP M+G 

Sbjct: 5 RVLSVDDSALMRQIMTEIINSHSDMEMVATAPDPLVARDLIKKFNPDVLTLDVEMPRMDG 64 

Query: 66 LEFLEKIMRLRPMPVIMVSSLTHRGADASLAALEIGAFDCVGKPAPGDARPF----GDLA 121 
L+FLEK+MRLRPMPV+MVSSLT +G++ +L ALE+GA D V KP G +A 

Sbjct: 65 LDFLEKLMRLRPMPVVMVSSLTGKGSEVTLRALELGAIDFVTKPQLGIREGMLAYNEMIA 124 

Query: 122 DKVKXXXXXXXXXXXXTRPETAAAPQPVPMSEYRAGRKVVAIGSSTGGVEALIAVLQKFP 181 
+KV+ T P+ SE K++AIG+STGG EA+ VLQ P 

Sbjct: 125 EKVRTAAKASLAAHKPLSAPTTLKAGPLLSSE-----KLIAIGASTGGTEAIRHVLQPLP 179 

Query: 182 ANCPPTVITQHMPPTFTKSFAERLNRICAPVVEEATDGARLQTGKIYLAPGGERHLQIAN 241 
+ P +ITQHMPP FT+SFA+RLN++C V+EA DG R+ G Y+AP G+RH++++ 

Sbjct: 180 LSSPALLITQHMPPGFTRSFADRLNKLCQIGVKEAEDGERVLPGHAYIAP-GDRHMELSR 238 

Query: 242 RSAPC-CRLLDRDPVNGHRPSVDVLFDSVAELAGRNAVGVILTGMGRDGAAGLLKMRHAG 300 
A ++ D VN HRPSVDVLF SVA+ AGRNAVGVILTGMG DGAAG+L MR AG 

Sbjct: 239 SGANYQIKIHDGPAVNRHRPSVDVLFHSVAKQAGRNAVGVILTGMGNDGAAGMLAMRQAG 298 

Query: 301 ARTVGQNEKTCVVYGMPRVAYELGAVEQQLPLASIGEEILKLTTA 345 
A T+ QNE +CVV+GMPR A +G V + + L+ + +++L +A 

Sbjct: 299 AWTLAQNEASCVVFGMPREAINMGGVCEVVDLSQVSQQMLAKISA 343 

Fig.(5.1.4): Alignment ofthe CheB from A. tumefaciens with E. coli (K-12). 
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Score = 174 bits (442), Expect = 5e-45 
Identities = 102/246 (41%), Positives = 144/246 (58%), Gaps = 9/246 (3%) 

Query: 32 IAAMIYAOAGIYLNOTKASLVYSRLSKHIRNLGLSGFREYCALVSSSEGAQPRREMLSHL 91 
1+ +IY AGI L 0 K +VY+RL + +R+LGL+ F Y L+ S++ + + ++ L 

Sbjct: 30 ISQLIYQRAGIVLAOHKROMVYNRLVRRLRSLGLTOFGHYLNLLESNQHSGEWQAFINSL 89 

Query: 92 TTNFTRFFRENHHFEHLROEVLPGLIARAKSGGRVRIWSAACSOGQEPYSIALTVLAMFP 151 
TTN T FFRE HHF L 0 AR +S G R+WSAA S G+EPYSIA+T LA 

Sbjct: 90 TTNLTAFFREAHHFPLLAOH------ARRRS-GEYRVWSAAASTGEEPYSIAMT-LAOTL 141 

Query: 152 NAAOYOFKILATOIOPKILAQARAGVYOONALETVSPAMRKQWFTEVOAGGRRKFRlOOK 211 
A +K+ A+OIO ++L +AR+G+Y L+ ++P +++F R+ + 

Sbjct: 142 GTAPGRWKVFASOIOTEVLEKARSGIYRHEELKNLTPQQLQRYFMRGTGPHEGLVRVRQE 201 

Query: 212 VKRLITFNELNLMT-QWPFKGNFOVIFCRNVVIYFOEPTQVRIWSRFAGLLPEGGHLYIG 270 
+ + F LNL+ Q+ G FO IFCRNV+IYFO+ TQ I RF LL G L+ G 

Sbjct: 202 LANYVOFAPLNLLAKQYTVPGPFOAI FCRNVMIYFOQTTQQEI LRRFVPLLKPOG LLFAG 261 

Query: 271 HSERVS 276 
HSE S 

Sbjct: 262 HSENFS 267 

Fig.(5.1.5): Alignment of the CheR from A. tumefaciens with E. coli 

The swarming behaviour of wild-type and mutants of A. tumefaciens, Cl/delB 

and ClIdel/R, were compared. Usually a 3~l sample of cells grown in LB medium 

were placed on swarm plates, or the bacterial cells were stab inoculated, and plates 

were incubated at 28-30 D C for up to three days. The swann-ring size was measured 

after 10, 24, 48 and 56hr. The effects of the deletion of cheB and cheR genes are 

shown in Fig. 5.1.6 and Fig. 5.1.7. 

When both wild-type and mutants were incubated for the same period of time 

both C lIdelB and C lIdelR displayed a strong effect on swarming behaviour. A. 

tumefaciens cheB mutant had inhibited swarming behaviour and their swann ring was 

approximately 60% reduced in comparison with those formed by wild-type, C58Cl. A. 

tumefaciens cheR mutant formed swarms approximately 36% of the diameter of wild-

type swarms after incubation for the same period of time. 
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Fig. (5.1.6): Swarm test of A. tumefaciens wild type (1) and chemotaxis mutant 

(2 & 4) Cl/deiB and (3) Cl/delYl (photograph after 48hr). 

Fig. (5.1.7): Swarm test of A. tumefaciens wild type (1) and chemotaxis mutant (2) 

Cl/delR. Another two strains are resulting from mutagenesis those changes to 

phenotypic properties of wild type (photograph after 24hr). 
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Wild-type cells (C58C I) formed swarms and their displacement of the edge 

was clearly different from that produced by cheB and cheR mutants (See Fig. 5.1.8). 

Wild-type produced swarm of approximately 3cm in diameter after 56hr. The mutant 

cells, ClIdelB, produced swarm of approximately 0.9cm in diameter after the same 

length of time. The edge of swarm produced by cheB mutant moved outward at a rate 

of only about 20% of that of the wild-type swarm (see Fig. 5.1.6). The mutant cells, 

ClIdelR, produced swarm approximately 0.8cm in diameter after 56hr; however, this 

mutant produced a growth pattern of high density. The edge displacement swarm was 

at a rate about 20% of the wild type swarm. 
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Fig. (5.1.8): Displacement of the edge of swarms produced by cells of 

A. tumefaciens (wild type) and the mutant strains, Cl/delB and Cl/deIR. 
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5.2. Blindwell assay 

5.2.1. Effect of the deletion of cheYI and cheY2 genes: 

Results were presented based on the number of bacterial cells attracted to 

acetosyringone and also in the form of the Chemotaxis index (CI). Data from the 

chemotaxis assays show that cheYi and cheY2 have effects on the tactic response. 

According to Fig. (5. 2. 1) A. tumefaciens (C58Cl) wild-type cells showed a weak 

response to acetosyringone in the concentration range of 10-4 M to 10-8 M and the 

maximum response observed in the concentration of 10-7 M. 

Compared to wild-type strain, taxis of the A. tumefaciens cheYi mutant was 

75% reduced at 10-7 M concentration of attractant, and 27% increased at 10-5 

concentration indicating decreased sensitivity of Che Y2 alone to chemotaxis 

signalling (see Fig. 5.2.1). The decrease response of cheYi mutant indicates the 

importance of Che Y 1, which is essential for the full tactic response. Compared to 

cheYi, mutant data from the chemotaxis assay indicated that cheY2 gene has greater 

effect on the tactic response. At the peak concentration (10-7 M), the response of wild­

type strain, taxis of the cheY2 mutant was minimum (98% reduced) (Fig. 5.2.1). 
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Fig. (5.2.1): Concentration- response chart showing the net number of 

A. tumefaciens wild type and chemotaxis-mutant strains, ClIdelYl and ClIdelY2, 

cells attracted toward acetosyringone. 
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Fig. (5.2.2): Concentration-response curves for A. tumefaciells wild type (C58Cl) 

and Chemotaxis mutant strains, ClIdelYl and ClIdelY2, in blindwell assay. 

Each curve represents the mean of two experiments, each with duplicate 

readings, after background subtraction. 
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5.2.2. Effect of the deletion of cheB and cheR genes: 

Chemotaxis assays were performed on the cheB and cheR mutant strains using 

acetosyringone as a chemoattractant. The results show that cheB and cheR mutants 

have the same phenotype indicating that both genes are essential for tactic response. 

At the peak concentration response of wild-type (10-7 M) only small number of cheR 

mutant cells (~1- 1.2% of wild-type) were able to response to attractant (Fig. 5.2.4). 

Compared with wild-type, taxis response of cheB mutant strain is 94% reduced at 10-7 

M, but the maximum reduction occurred at the 10-6 M (~4% of wild-type cells) (see 

Fig. 5.2.3). 
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Fig. (5.2.3): Concentration- response chart showing the net number of 

A. tumefaciens wild type and chemotaxis-mutant strains, ClIdelB and ClIdelR, 

cells attracted toward acetosyringone. 
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Fig. (5.2.4): Concentration-response curves for A. tumefaciens wild type 

(CSSCl) and chemotaxis mutant strains, Cl/delB and Cl/delR, in blindwell 

assay. Each curve represents the mean of two experiments, each with duplicate 

readings, after background subtraction. 
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Chapter 6 

Discussion 
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Discussion: 

Agrobacterium tumefaciens has a chemotaxis operon containing orf1, or12, 

cheYl, cheA, cheR, cheB, cheY2, 01'19 and orf1O. A common feature of chemotaxis 

operon found in this bacterium the same as other members of a-subgroup of 

proteobacteria is two homologues of cheY gene, named cheYl and cheY2, and also 

the lack of cheZ gene homologues. 

In E. coli, CheW links to the signalling domain of a MCP, the histidine protein 

kinase, CheA, which phosphorylates response regulator, CheY, or methyltransferase, 

CheB, in response to an attractant. 

In this study, mutations were made in four genes of the chemotaxis operon 

genes previously identified (che yl, che Y2, cheB and cheR). Phenotypic studies 

showed that each, except cheY1 mutant, have strong effect on motility and chemotaxis 

behaviour of A. tumefaciens. The cheY2, cheB and cheR mutant strains showed 

impaired chemotactic capabilities in swarming behaviour assay. 

As discussed earlier, the central part of chemosensory pathway is methyl­

accepting chemotaxis protein (MCP), and the other part of this study was to find 

possible MCP gene (s) in A. tumefaciens. 

The role of che YI and che Y2: 

Here, we have demonstrated that both Che Y 1 and Che Y2 are required for the 

chemotactic behaviour in A. tumejaciens. Data from chemotaxis assays show that 

Che Y 1 and Che Y2 have different effects on the tactic response. Che Y2 alone 

mediates larger decrease (60%) in swarming behaviour to amino acids, suggested that 
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Che Y2 is the main response regulator. The effect of the che Y J mutant on phenotypic 

behaviour of A. tumefaciens indicates the importance of functional CheYI that is 

essential for the full tactic response. 

In Sinorhizobium meliloti, it has been showed that signal termination IS 

brought about by one of the two CheYs (SourjiK, V., and R. Schmitt, 1996). In this 

bacterium both Che Y 1 and Che Y2 are phosphorylated by CheA, and it is suggested 

that CheYI assumes the role of a phosphatase of CheY2-P by acting as a sink for 

phosphate that is shuttled from CheY2-P back to CheA. The protein database analysis 

of A. tumefaciens Che Y 1 and Che Y2 showed 90% and 89% identity to Che Y 1 and 

Che Y2 proteins of S. meliloti, suggesting the same phosphotransfer reaction between 

CheY1, CheY2 and CheA in A. tumefaciens. 

>reflNP 384741.11 CHEMOTAXIS REGULATOR PROTEIN [Sinorhizobium meliloti] 
Length = 121 

Score = 224 bits (571), Expect = 5e-59 
Identities = 110/121 (90%), Positives = 118/121 (97%) 

Query: 1 MKKKVLTVDDSRTIRNMLLVTLNNAGFETIQAEDGIEGLEVLEQSNPDVIVTDINMPRLD 60 
MKK+VLTVDDSRTIRNMLLVTLNNAGFETIQAEDG+EGLE L+ +NPDVIVTDINMPRLD 

Sbjct: 1 MKKRVLTVDDSRTIRNMLLVTLNNAGFETIQAEDGVEGLEKLDTANPDVIVTDINMPRLD 60 

Query: 61 GFGFIEGVRRNEKYRAIPILVLTTESDAEKKNRARQAGATGWIVKPFDPAKLIDAIERVT 120 
GFGFIEGVR+N++YRA+PILVLTTESDAEKKNRARQAGATGWIVKPFDP KLIDAIERVT 

Sbjct: 61 GFGFIEGVRKNDRYRAVPILVLTTESDAEKKNRARQAGATGWIVKPFDPTKLIDAIERVT 120 

Query: 121 A 121 
A 

Sbjct: 121 A 121 

Fig.(6.1): Alignment of the CheYl from A. tumefaciens with S. meliloti 
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>rcfltJP 384749.11 CHEMOTAXIS REGULATOR PROTEIN [Sinorhizobium melilotil 
Length = 129 

Score = 225 bits (573), Expect = 3e-59 
Identities = 116/129 (89%), Positives = 121/129 (93%) 

Query: 1 MSLAEKIKVLIVDDQVTSRLLLSDALTQLGFKQITSAGDGEQGLKIMEQQPHHLVISDFN 60 
MSLAEKIKVLIVDDQVTSRLLL DAL QLGFKQIT+AGDGEQG+KIM Q PHHLVISDFN 

Sbjct: 1 MSLAEKIKVLIVDDQVTSRLLLGDALQQLGFKQITAAGDGEQGMKIMAQNPHHLVISDFN 60 

Query: 61 MPKMDGLGFLHAVRANPTTKKAAFIILTAQGDRALVQKAAQLGANNVLAKPFTIDKMRAA 120 
MPKMDGLG L AVRANP TKKAAFIILTAQGDRALVQKAA LGANNVLAKPFTI+KM+AA 

Sbjct: 61 MPKMDGLGLLQAVRANPATKKAAFIILTAQGDRALVQKAAALGANNVLAKPFTIEKMKAA 120 

Query: 121 IEAVFGSLK 129 
IEAVFG+LK 

Sbjct: 121 IEAVFGALK 129 

Fig.(6.2): Alignment of the CheY2 from A. tumefaciens with S. meliloti 

A. tumefaciens CheA protein was shown to have 48% identity to E. coli CheA 

protein. The main region of variation between the two CheA proteins was shown to be 

between the E. coli CheA region containing the P2 domain, which has Che Y -binding 

capability. Differences in the sequence of the domain in the A. tumefaciens Ch@A 

might be because it may interact with both Che Y 1 and Che Y2 proteins. On the other 

hand, because a CheZ-like phosphatase has not been detected in A. tumefaciens, and 

CheYI was found to be essential for the full tactic response (Fig. 5.1.3), it is possible 

that Che Y 1 is a competitor of Che Y2 for phosphorylation by CheA. 

The same result was obtained for Sinorhizobium meliloti when its chemotaxis 

measured against proline (Sourjik, V., and R. Schmitt, 1996). Phosphotransfer 

reactions assay using radio labeled recombinant proteins, CheA, Che Y2 and Che Y 1 

showed that Che Y 1 has the role of a phosphatase of Che Y2-P by acting as a sink for 

phosphate when unphosphorylated CheA is present. Phosphotransfer is from CheY2-P 

via CheA to CheYI (Sourjik, V., and R. Schmitt, 1996). 

To find the exact role of cheYl and cheY2 it seems that more testing of 

chemotactic capability is required perhaps by performing the swanning plate assay 
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using specific chemoattractants; also, either blind well or capillary assays could be 

perfolmed using a similar range of compounds. 

To find the mechanism of signal transduction in A. tumefaciens it is necessary 

to investigate the phosphotransfer reactions between CheAlCheYI/CheY2. Also, 

monitoring changes of the rotation rate of flagella in tethering experiments and 

analysis of free-swimming cells in both wild type and each cheYl, cheY2, 

cheYllcheY2 mutant strains and in combination with cheA indicated the correct 

relationships between CheA, response regulators (CheYI and CheY2) and the 

flagellar motor. 

The role of cheB and cheR: 

. CheR is a methyltransferase, which transfers methyl groups from s­

adenosylmethionine molecules to the cytoplasmic domain of the receptors during 

adaptation· to positive stimuli. CheB is also a methylesterase that removes methyl 

groups from receptors during adaptation to negative stimuli. Several observations 

have led to the suggestion that methylation-dependent adaptation may have a role in A. 

tumefaciens chemotaxis. A. tumefaciens met-auxotroph does not display chemotaxis 

unless supplemented with methionine. Partial chemotaxis can be restored by 

supplementation with moderate substrate for s-adenosyl methionine synthatase (Shaw, 

C.H., 1996). 

In this study we also examined the adaptation enzymes by genetic and some 

biochemical approaches. Our data from chemotaxis assay and swarming plate assay 

shown that both cheR and cheB have strong effect on the tactic response of A. 

tumefaciens mutant strains, C lIdelB and C lIdelR. The deletion of either cheR or cheB 
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resulted in a nonchemotactic phenotype both on swann plates and m chemotaxis 

assays under conditions tested. 

Comparative protein sequence analysis of A. tllmefaciens CheR revealed that it 

has a CheR-specific N-tenninal domain, the catalytic domain, and a ~-subdomain. 

This part of the protein show 41 % identity to E. coli CheR protein. The functional 

role of the j3-subdomain is interaction with MCPs. It also has homology with U2 helix 

of E. coli CheR that is involved in the recognition and methylation of MCP. This 

infonnation suggest that chemotaxis is mediated by chemotaxis operon genes in A. 

tllmefaciens and is dependent on a methyl-accepting chemotaxis protein. 

Score = 174 bits (442), Expect = 5e-45 
Identities = 102/246 (41%), Positives = 144/246 (58%), Gaps = 9/246 (3%) 

Query: 32 IAAMIYADAGIYLNDTKASLVYSRLSKHIRNLGLSGFREYCALVSSSEGAQPRREMLSHL 91 
1+ +IY AGI L D K +VY+RL + +R+LGL+ F Y L+ S++ + + ++ L 

Sbjct: 30 ISQLIYQRAGIVLADHKRDMVYNRLVRRLRSLGLTDFGHYLNLLESNQHSGEWQAFINSL 89 

Query: 92 TTNFTRFFRENHHFEHLRDEVLPGLIARAKSGGRVRIWSAACSDGQEPYSIALTVLAMFP 151 
TTN T FFRE HHF L D AR +S G R+WSAA S G+EPYSIA+T LA 

Sbjct: 90 TTNLTAFFREAHHFPLLADH------ARRRS-GEYRVWSAAASTGEEPYSIAMT-LADTL 141 

Query: 152 NAADYDFKILATDIDPKILAQARAGVYDDNALETVSPAMRKQWFTEVDAGGRRKFRIDDK 211 
A +K+ A+DID ++L +AR+G+Y L+ ++P +++F R+ + 

Sbjct: 142 GTAPGRWKVFASDIDTEVLEKARSGIYRHEELKNLTPQQLQRYFMRGTGPHEGLVRVRQE 201 

Query: 212 VKRLITFNELNLMT-QWPFKGNFDVIFCRNVVIYFDEPTQVRIWSRFAGLLPEGGHLYIG 270 
+ + F LNL+ Q+ G FD IFCRNV+IYFD+ TQ I RF LL G L+ G 

Sbjct: 202 LANYVDFAPLNLLAKQYTVPGPFDAIFCRNVMIYFDQTTQQEILRRFVPLLKPDGLLFAG 261 

Query: 271 HSERVS 276 
HSE S 

Sbjct: 262 HSENFS 267 

Fig.(6.3): Alignment of the CheR from A. tllmefaciens with E. coli 

In experiments on the A. tumefaciens cheB mutant, chemotaxis does not occur 

because of the lack a methylation-independent adaptation system. This hypothesis is 

supported by the following observations: (i) the full sequence of A. tllmefaciens 

chromosomal DNA indicates that there are no other cheB homologues genes (ii) 

unlike A. tllmefaciens, in some bacteria such Bacillus subtilis, two other proteins, 
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CheC and CheD, have a role in adaptation pathway. Then, alternative path could 

allow B subtilis to achieve chemotaxis. 

The swarming behaviour assay indicated 60% size reduction of Cl/delB and 

64% size reduction of C lIdelR in comparison with A. tumefaciens wild type strain 

(Fig.5.1.6). Results of chemotaxis assay shown that both cheR and cheB genes were 

essential for normal chemotaxis; compared to the wild type, cheB mutant showed a 

94% decrease in response to acetosyringone, and the cheR mutant indicated 99% 

decrease in response to acetosyringone at 1O-7M concentration (see Fig.5.2.3). 

As discussed in Chapter 3, genetic and some previous biochemical data 

indicated that A. tumefaciens has a DNA fragment containing an orf that has a role, 

coupled with CheR and CheB, in the chemotactic response of this bacteria. 

To investigate and find the exact role of cheR and cheB additional experiments 

should be performed. As discussed in Chapter 1, CheB act as a response regulator and 

phosphoryl group acceptor from CheA. Therefore performing a phosphotransfer assay 

could indicate the relationship between CheA and CheB. Methanol release after 

methylation of MCPs is a common reaction during chemotactic response and 

therefore a methanol release experiment could show another aspects of chemotaxis 

pathway and determine the role of both cheR and cheB genes. 

It is necessary to check the swarming and chemotaxis behaviour of cheR and 

cheB mutant strains against more specific chemoattractants and to analyse free­

swimming cells in both wild type and mutants, by measuring the rotation rate of 

flagellar motor in tethering experiment, which could indicate the influence of cheR 

and cheB genes on flagellar motor rotation and bacterial cell movement. 

185 



Identification of the MCP-Iike gene: 

The presence of a protein antigenic ally related to the E. coli Trg protein in A. 

tumefaciens has been reported (Morgan, D.G., et aI., 1993). Our results provide 

evidence for the existence of a MCP-like gene in A. tumefaciens C58Cl. Positive 

hybridisation to a probe from MCP3.2.7P of Rhizobium leguminosearum and 

sequence similarity between this fragment and the deduced amino acid sequences for 

MCPs suggest that this gene does code for MCP protein. The highest alignment scores 

occurred with McpA gene recently identified from A. tumefaciens. 

The amino acid sequences indicate this gene contains all the characteristic 

features ofMCPs, such as methylation sites, signalling domain and transmembrane 

domains (Fig. J.2.4). Transmembrane domains have been predicted in McpA using a 

transmembrane" helix prediction program, the TMHMM programme (Krogh, A., et aI., 

2001). This predicts two transmembrane regions, the first TMD from amino acid 20 to 

42 and the second from amino acid 205 to 224. This prediction suggests the N­

terminal domain of McpA is located in the periplasmic space and probably functions 

as a sensor domain. In some bacteria, such as E. coli and S. typhimurium, it has been 

shown that a pentapeptide sequence (NWETF) is present at the carboxyl terminus of 

some chemoreceptors (the high-abundance receptors), as is a similar motif in McpA 

(GWEDF, GFEDF). This pentapeptide provides a docking site for the 

methyltransferase and greatly enhances methylation of these receptors (Barnakov, 

A.N., et aI., 1999). Such a docking site is absent in A. tumefaciens McpA indicating 

that methyltransferase may be docking to other specific sites in this protein. 

Previous investigations argue that A. tumefaciens C58 is attracted to a group of 

phenolic compounds that have been identified as vir gene inducers. Acetosyringone 
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and related compounds elicited chemotaxis in two different assays. According to these 

experiments the range of concentrations active in inducing chemotaxis was quite 

narrow and chemotaxis required the Ti-plasmid, and specifically the regulatory genes 

virA and virG (Shaw, e. H., et aI., 1989). 

Palmer, A, et ai. (1992) reported that non-phosphorylatable, mutant VirA and 

VirG proteins are incapable of replacing their wild type counterparts in conferring the 

ability to respond chemotactically to nanomolar concentrations of vir-inducing 

phenolics such as acetosyringone. It seems chemotaxis in A. tumefaciens involves 

phosphorylation of VirA and VirGo 

Also Ashby, AM., et ai. (1988) have described the phenolic compounds that 

have different effect on virulence region and have different roles to acting as 

chemoattractants as well. They categorized the acetosyringone as a strong inducer of 

the virulence region and a chemoattractant for Ti-plasmid-harbouring strain only 

(Ashby, AM., et ai., 1988). 

Results of another group failed to detect chemotaxis toward acetosyringone at 

any concentration (Hawes, M.e., and L. Y. Smith, 1989); however, another group 

reported that acetosyringone did not elicit chemotaxis in A. tumefaciens A348 and that 

chemotaxis toward related compounds did not require the Ti-plasmid (Parke, D., et ai. 

1987). 

Our results in this project show that acetosyringone is a weak chemoattractant 

for A. tumefaciens wild type (C58C1) and at the 1O-7M concentration (peak 

concentration of attraction) about 1 % of bacterial cells are attracted to this phenolic 

compound (Fig.5.2.1). Comparing the response to acetosyringone of the wild type and 

che mutant strains produced in this thesis indicates that this phenomenon is mediated 

by the chemotaxis operon genes. 
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Compared with preVIOUS results discussed above, the results of this study 

indicate that A. tumefaciens can express two separate receptor systems for chemotaxis 

toward acetosyringone: (i) a Ti plasmid-encoded system, (ii) a chromosomally 

encoded system. The virA and virG are the Ti plasmid functions responsible for the 

specific chemotactic response toward acetosyringone. At low concentrations of 

attractant they mediate chemotaxis and at higher concentration they effect vir 

induction. 

Our results demonstrate that chromosomally encoded system is mediated by 

chemotaxis operon genes. Both systems gave a definite dose response, indicating 

maximal attraction at 1O-7M concentration of acetosyringone. The two systems 

differed markedly in the number of bacterial cells attracted towards acetosyringone. 

The chemotactic response mediate by chemotaxis operon genes showed a smaller 

number of bacterial cells attracted towards attractant. 

The positive chemotactic response of A. tumefaciens to acetosyringone and 

several other aromatic compounds raises the question as to whether these compounds 

are attractants or whether they are conve11ed to metabolite (s) that interact with one or 

more chemoreceptors. The full chromosomal sequence indicates that A. tumefaciens 

contains several genes that appear to code for distinct methyl-accepting chemotaxis 

proteins. It appears more likely that some of them are acting as chemoreceptors for 

these phenolic compounds. 

In order to study the chemotactic response of A. tumefaciens in-frame 

deletions should be made of the remaining che operon genes. Also, further analysis of 

these effects could be come from perfonning overexpression studies of each of the 

proteins transcribed by these genes. 
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A. tumefaciens has a unique perspective on which further investigations should 

be carried out. This is the possible interactions between Ti-encoded virulence system 

and chromosomally-encoded chemotaxis system. Strong chemotaxis activity to plant 

wound phenolics has been shown to require virAlvirG system from Ti-plasmid. It is 

therefore possible that this system interacts with some elements of chemotaxis operon 

genes. To investigate interactions between vir and che systems it could be possible to 

use the Ti-containing che mutant strains constructed in this work, using wound 

exudates as a chemoattractants. 
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