Investigating the role of chemotaxis operon genes in agrobacterium tumefaciens

Harighi, Behrouz

How to cite:
Harighi, Behrouz (2003) Investigating the role of chemotaxis operon genes in agrobacterium tumefaciens, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4083/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source
• a link is made to the metadata record in Durham E-Theses
• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
Investigating the role of chemotaxis operon genes in

Agrobacterium tumefaciens

By:

Behrouz Harighi

A thesis submitted to the School of Biological & Biomedical Sciences

University of Durham

In accordance to the requirements for the degree of PhD

January 2003

The copyright of this thesis rests with the author.
No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
For my father, my late mother, my wife and

also my little girl, Sana
Declaration

I declare that the work contained within this thesis submitted by me for the degree of PhD is my own work, except where otherwise stated, and has not been submitted previously for a degree at this or any other universities.

The copyright of this thesis rests with the author. No quotation from it should be published without prior written consent and the information derived from it should be acknowledged.
The role of chemotaxis operon genes in *Agrobacterium tumefaciens*

Behrouz Harighi

PhD 2003

Abstract:
A 1.7 Kb chromosomal DNA of *A. tumefaciens C58Cl* downstream of chemotaxis operon was sequenced completely in both directions. The comparison of this sequence with sequence databases revealed one open reading frame with strong sequence identity to *MCP* gene in other bacteria. The sequencing of chromosomal DNA of *A. tumefaciens C58* confirmed that this open reading frame has similarity with cytoplasmic domain of *McpA*.

Four mutants of *A. tumefaciens C58Cl* (C1/delY1, C1/delY2, C1/delB and C1/delR) were created by in-frame deletion mutagenesis in cheY1, cheY2, cheB and cheR using pK18mobsacB. Some phenotypic properties of mutants were studied. The cheY2, cheR and cheB mutants showed impaired chemotactic capabilities in both swarming and chemotaxis assays. Deletion of cheY1 appeared to have no significant effect on chemotaxis, under the conditions studied.
Acknowledgment

I would like to thank my supervisor Dr Charlie Shaw, who advised and always supported me. Also many thanks to Dr John Gatehouse, who gave me a lot of valuable advice.

Many thanks to Dr David Bown who helped me to do Southern blotting, also thanks to Dr Emma Louise Wright who gave me a lot of technical support.

The financial support of the Ministry of Culture & Higher Education, Islamic Republic of Iran is gratefully acknowledged.

Also the help of all staff in School of Biological & Biomedical Sciences, University of Durham is much appreciated.
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. tumefaciens</td>
<td>Agrobacterium tumefaciens</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>A.S.</td>
<td>3’-5’ dimethoxy-4’-hydroxy aceto phenone (Acetosyringone)</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine tri phosphate</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CI</td>
<td>Chemotaxis index</td>
</tr>
<tr>
<td>CCW</td>
<td>Counter clock wise</td>
</tr>
<tr>
<td>CW</td>
<td>Clock wise</td>
</tr>
<tr>
<td>dH₂O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxy nucleotide triphosphate</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethyl formamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin- adenine dinucleotide</td>
</tr>
<tr>
<td>HAP</td>
<td>Hook- associated protein</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo dalton</td>
</tr>
<tr>
<td>MCPs</td>
<td>Methyl accepting chemotaxis proteins</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PTS</td>
<td>Phosphotransferase sugar</td>
</tr>
<tr>
<td>Rnase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>Rif</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SSC</td>
<td>Saline sodium citrate</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>Tris</td>
<td>[2-amino-2-(hydroxymethyl) propane-1,3-diol]</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>T-DNA</td>
<td>Transfer DNA</td>
</tr>
<tr>
<td>Ti-plasmid</td>
<td>Tumour inducing plasmid</td>
</tr>
<tr>
<td>Uv</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>Vir</td>
<td>Virulence</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D- galacto pyranoside</td>
</tr>
<tr>
<td>5’</td>
<td>5’ terminal phosphate of DNA molecule</td>
</tr>
<tr>
<td>3’</td>
<td>3’ terminal hydroxyl of DNA molecule</td>
</tr>
</tbody>
</table>
1. Introduction

1.1. Signal transduction system in Bacteria 15

1.2. Chemotaxis in Bacteria 16
 1.2.1. Transmembrane signalling 18
 1.2.2. Cytoplasmic signal transduction 23
 1.2.3. Adaptation pathway 25
 1.2.4. Characteristics of other Che proteins 28
 1.2.5. Chemotaxis towards phosphotransferase sugars (PTS taxis) 32
 1.2.6. Other sensing behavior in Bacteria (Energy taxis) 33
 1.2.6.1. Aerotaxis 33
 1.2.6.2. Phototaxis 36

1.3. Motility in Bacteria 39
 1.3.1 The flagellar structure 39
 1.3.1.1. The filament 40
 1.3.1.2. The Hook 40
 1.3.1.3. Basal body 41
 1.3.2. Flagellar assembly 43
 1.3.3. Mot protein 44
 1.3.3.1. Motor function and Torque generation 45
 1.3.4. The switch complex 46

1.4. The α-subgroup of the Proteobacteria 48
 1.4.1. The family of Rhizobiaceae 48
 1.4.2. The Genus of Agrobacterium 48

1.5. Sensing behaviors in α–subgroup of Proteobacteria 49
 1.5.1. Chemotaxis in α-subgroup of Proteobacteria 49
 1.5.1.1. Chemotaxis in Sinorhizobium meliloti 49
 1.5.1.2. Chemotaxis in Rhodobacter sphaeroides 51
 1.5.1.3. Chemotaxis in other members of the subgroup 53
 1.5.2. Energy sensing in α-subgroup of Proteobacteria 54

1.6. Motility in α-subgroup of Proteobacteria 55

1.7. Virulence in Agrobacterium tumefaciens 56
 1.7.1. Attachment of Agrobacterium to the plant cell 57
 1.7.2. Ti-plasmid: Structure and function 58
 1.7.2.1. T-DNA structure 59
 1.7.2.2. Vir region 59
 1.7.3. T-DNA transfer process 61

1.8. Chemotaxis and motility in A. tumefaciens 65
 1.8.1. VirA and vir gene activation 65
1.8.2. Motility

1.9. Aims of this work

2. Materials & Methods

2.1. Materials

2.2. Bacterial strains
 2.2.1. E. coli strains
 2.2.2. A. tumefaciens strains

2.3. Plasmids
 2.3.1. Plasmid vectors
 2.3.2. Recombinant plasmids containing cloned chemotaxis genes
 2.3.3. Recombinant SK+ plasmids containing subcloned A. tumefaciens chemotaxis genes
 2.3.4. Recombinant pK18mobsacB plasmids containing subcloned A. tumefaciens chemotaxis genes
 2.3.5. Plasmids used in mutant construction

2.4. Bacterial growth, media, condition and procedure

2.5. Isolation of bacterial DNA
 2.5.1. Alkalyne lysis plasmid miniprep
 2.5.2. Isolation of chromosomal DNA
 2.5.3. Preparation and purification of salmon sperm DNA

2.6. DNA manipulation
 2.6.1. Phenol: chloroform extraction of DNA
 2.6.2. Spectrophotometric quantification of DNA solution
 2.6.3. Restriction endonuclease digestion of DNA
 2.6.4. Agarose gel electrophoresis
 2.6.5. Isolation of DNA fragments from agarose gel using silica fines
 2.6.6. Ligation of DNA fragment
 2.6.7. Dephosphorylation of DNA fragments
 2.6.8. Filling-in recessed 3'-termini
 2.6.9. Polymerase chain reaction (PCR)

2.7. Transformation of E. coli
 2.7.1. Preparation of competent cell
 2.7.2. Transformation procedure
 2.7.3. PCR product cloning procedure

2.8. DNA hybridization procedure
 2.8.1. Radio-labelling of DNA fragment
 2.8.2. Purification of probe using Sephadex G-50 chromatography
 2.8.3. Preparation of Blot
 2.8.4. Hybridization of Radio-labelled probes to blots
 2.8.5. Detection of hybridized blot
2.8.6. Stripping of blots for reuse

2.9. DNA sequencing

2.10. Mutagenesis
 2.10.1. Gene replacement mutagenesis
 2.10.2. In-frame deletion method

2.11. Conjugation of plasmids into \textit{A. tumefaciens}

2.12. Swarming behaviour assay

2.13. Chemotaxis assay
 2.13.1. Preparation of attractant
 2.13.2. Blindwell assay

3. Identification and sequencing of the MCP-like gene in \textit{A. tumefaciens}
 3.1. Background
 3.2. Sequencing of the \textit{MCP} gene

4. Mutagenesis of the \textit{che} operon genes
 4.1. Mutagenesis of the \textit{cheY1} gene
 4.2. Mutagenesis of the \textit{cheY2} gene
 4.3. Mutagenesis of the \textit{cheB} gene
 4.4. Mutagenesis of the \textit{cheR} gene

5. Phenotypic properties of \textit{A. tumefaciens} mutants
 5.1. Swarming behaviour assay
 5.1.1. Effect of the deletion of \textit{cheY1} and \textit{cheY2} genes
 5.1.2. Effect of the deletion of \textit{cheB} and \textit{cheR} genes
 5.2. Chemotaxis assay
 5.2.1. Effect of the deletion of \textit{cheY1} and \textit{cheY2} genes
 5.2.2. Effect of the deletion of \textit{cheB} and \textit{cheR} genes

6. Discussion

7. References
List of Figures

Fig (1.2.1): The classic chemotaxis system in *E.coli*
Fig (1.2.2): Cytoplasmic domain of the transmembrane receptor
Fig (1.2.3): A typical receptor-kinase signalling complex
Fig (1.2.4): Domain organisation of the *cheA*
Fig (1.2.5): Phosphotransferase (PTS) taxis system in *E. coli*
Fig (1.2.6): Protein-protein interaction during aerotaxis
Fig (1.2.7): Signal transduction pathway in *E. coli* for aerotaxis and chemotaxis mediated by Tsr chemoreceptor
Fig (1.2.8): Phototaxis pathway in *Halobacterium salinarum*
Fig (1.3.1): Schematic structure of the bacterial flagellar
Fig (1.3.2): Flagellar assembly in *E. coli*
Fig (1.3.3): Suggested model for flagellar motor function
Fig (1.5.1): Sensory pathway of *Sinorhizobium meliloti*
Fig (1.5.2): Chemosensory pathway in *Rhodobacter sphaeroides*
Fig (1.7.1): Map of *A. tumefaciens* pTiC58 plasmid
Fig (1.7.2): Genetic map of T-DNA region of the octopine-type Ti plasmid
Fig (1.7.3): Map of *A. tumefaciens* vir region
Fig (1.7.4): Transformation of plant cells by *A. tumefaciens*
Fig (1.8.1): Functional domains of the sensor molecule, VirA
Fig (1.8.2): Map of *A. tumefaciens* chemotaxis operon
Fig (2.12.1): The schematic diagram showing blindwell chamber
Fig (2.12.2): The schematic diagram showing the sensing zone of coulter counter
Fig (3.2.1): Sequencing of MCP gene using sequencher program
Fig (3.2.2): Comparison of nucleotide sequences of pELW6 with *Agrobacterium tumefaciens* strain C58 complete genomic sequence
Fig. (3.2.4): Alignment of the pELW6 with McpA from *Caulobacter crescentus* McpA from *A. tumefaciens* (C58) and *R. leguminosarum*.
Fig. (4.1.1): Diagram of Sk/cheY1 plasmid showing sequence traces across deletion junction and position of cheY1a and cheY1b primers
Fig (4.1.2): Gel electrophoresis showing the expected fragment for *cheY1* in-frame deletion
Fig (4.1.3): Schematic steps for construction of *cheY1* in-frame deletion mutant of *A. tumefaciens*
Fig (4.1.4): Agarose gel electrophoresis of PCR product of intermediate strain for *cheY1* in-frame deletion
Fig (4.1.5): Electrophoresis of PCR product showing the *cheY1* in-frame deletion mutant strains
Fig (4.1.6): Position and expected size of the EcoRV and HindIII fragment for each *A. tumefaciens* wild type, two possible intermediate and the *cheY1* in-frame deletion mutant strains
Fig (4.1.7): Gel electrophoresis of wild type, intermediate strains and *cheY1* in-frame deletion mutant chromosomal DNA digested by HindIII and EcoRV
Fig (4.1.8): Southern blot analysis of wild type, intermediate strains and *cheY1* in-frame deletion mutant using *cheY1* deletion fragment as a probe
Fig (4.2.1): Diagram of Sk/cheY2 plasmid showing sequence traces across deletion
junction and position of cheY2a and cheY2b primers

Fig (4.2.2): Agarose gel electrophoresis of PCR product showing the expected fragment for *cheY2* in-frame deletion

Fig (4.2.3): Schematic steps for construction of *cheY2* in-frame deletion mutant of *A. tumefaciens*

Fig (4.2.4): Gel electrophoresis showing expected fragments resulting of PCR for each wild type, intermediate and mutant strains of *cheY2*.

Fig (4.2.5): The position and expected size of the HincII and HindIII fragment for each *A. tumefaciens* wild type, two possible intermediate and the *cheY2* in-frame deletion mutant strains.

Fig (4.2.6): Gel electrophoresis of wild type, intermediate strains and *cheY2* in-frame deletion mutant chromosomal DNA digested by HindIII and HincII.

Fig (4.2.7): Southern blot analysis of wild type, intermediate strains and *cheY2* in-frame deletion mutant using *cheY2* deletion fragment as a probe.

Fig (4.3.1): Diagram of Sk/cheB plasmid showing sequence traces across deletion junction and position of cheB1 and cheB2 primers

Fig (4.3.2): Agarose gel electrophoresis of PCR product showing the expected fragment for *cheB* in-frame deletion

Fig (4.3.3): Schematic steps for construction of *cheB* in-frame deletion mutant of *A. tumefaciens*

Fig (4.3.4): Gel electrophoresis of PCR product for intermediate strains to make in-frame deletion of *cheB*.

Fig (4.3.5): Agarose gel electrophoresis showing expected fragments resulting of PCR for each wild type, intermediate and *cheB* mutant strains of *A. tumefaciens*.

Fig (4.3.6): The position and expected size of the HincII and PstI fragment for each *A. tumefaciens* wild type, two possible intermediate and the *cheB* in-frame deletion mutant strains.

Fig (4.3.7): Gel electrophoresis of wild type, intermediate strains and *cheB* in-frame deletion mutant chromosomal DNA digested by PstI and HincII.

Fig (4.3.8): Southern blot analysis of wild type, intermediate strains and *cheB* in-frame deletion mutant using *cheB* deletion fragment as a probe.

Fig (4.4.1): Gel electrophoresis showing the expected fragment for *cheR* in-frame deletion

Fig (4.4.2): Schematic steps for construction of *cheR* in-frame deletion mutant of *A. tumefaciens*

Fig (4.4.3): The position and expected size of the EcoRV and PstI fragment for each *A. tumefaciens* wild type, two possible intermediate and the *cheR* in-frame deletion mutant strains.

Fig (4.4.4): Gel electrophoresis of wild type, intermediate strains and *cheR* in-frame deletion mutant chromosomal DNA digested by PstI and EcoRV.

Fig (4.4.5): Southern blot analysis of wild type, intermediate strains and *cheR* in-frame deletion mutant using *cheR* deletion fragment as a probe.

Fig (5.1.1): Comparision swarming behaviour of *A. tumefaciens* wild type and C1/delY2 mutant.

Fig (5.1.2): Comparison swarming behaviour of *A. tumefaciens* wild type, C1/delY2 and C1/delY2 mutants.
Fig (5.1.3): Displacement of the edge of swarms produced by cells of *A. tumefaciens* (wild type) and the mutant strains, C1/delY1 and C1/delY2.

Fig (5.1.4): Alignment of the CheB from *A. tumefaciens* with *E. coli* (K-12).

Fig (5.1.5): Alignment of the CheR from *A. tumefaciens* with *E. coli*

Fig (5.1.6): Comparison swarming behaviour of *A. tumefaciens* wild type, C1/delY1 and C1/delB mutants.

Fig (5.1.7): Comparison swarming behaviour of *A. tumefaciens* wild type and C1/delR mutant.

Fig (5.1.8): Displacement of the edge of swarms produced by cells of *A. tumefaciens* (wild type) and the mutant strains, C1/delB and C1/delR

Fig (5.2.1): Concentration-response chart showing the net number of *A. tumefaciens* wild type and chemotaxis-mutant strain, C1/delY1 and C1/delY2, cells attracted toward acetosyringone.

Fig (5.2.2): Concentration-response curves for *A. tumefaciens* wild type (C58C1) and Chemotaxis mutant strain, C1/delY1 and C1/delY2, in blindwell assay.

Fig (5.2.3): Concentration-response chart showing the net number of *A. tumefaciens* wild type and chemotaxis-mutant strain, C1/delB and C1/delR, cells attracted toward acetosyringone.

Fig (5.2.6): Concentration-response curves for *A. tumefaciens* wild type (C58C1) and Chemotaxis mutant strain, C1/delB and C1/delR, in blindwell assay.

Fig (6.1): Alignment of the CheY1 from *A. tumefaciens* with *S. meliloti*

Fig (6.2): Alignment of the CheY2 from *A. tumefaciens* with *S. meliloti*

Fig (6.3): Alignment of the CheR from *A. tumefaciens* with *E. coli*
Chapter 1

Introduction
1. Introduction

1.1. Signal transduction system in Bacteria

In bacteria the most common signal transduction system involves phosphoryl transfer and is known as two-component signal transduction. It contains two domains, the receiver and the transmitter domains.

Two-component systems regulate different responses in many different organisms e.g. nutrient acquisition, electron transport systems, plasmid transfer and adaptation to physical or chemical aspects of the environment. It is possible that a single cell may have many two-component systems. In *E. coli*, 178 genes encode products related to regulatory functions, and of those, 62 genes are part of the two-component signal transduction pathways.

In the two-component system, the receiver domain functions as a sensor, usually located in the cytoplasmic membrane, and monitors the environment. The second is a response regulator, which is cytoplasmic and mediates an adaptative response. The sensor component has a kinase function that binds ATP, and when activated, phosphorylates a histidine usually found in the same protein. Furthermore it becomes a substrate for dephosphorylation by the second component.

The second component, the receiver domain, accepts the phosphoryl group from the histidyl-phosphate of the sensor to an aspartate residue. The phosphorylation of the receiver causes a conformational change that regulates the functional state of an output domain to activate specific effector functions such as chemotaxis, flagellar rotation, regulation of transcription virulence, antibiotic resistance or enzymatic catalysis.
Many of the known sensory kinases are transmembrane molecules that combine an external stimulus detection domain and an internal kinase domain into a single molecule. In chemotaxis, however, as discussed later, receptor and kinase function are separated into different molecules.

1.2. Chemotaxis in Bacteria

Chemotaxis, the ability of some bacteria to sense and respond to chemical stimuli in the environment by moving toward attractants (often nutrient sources) and away from repellents (often toxic compounds), is an important survival function for many bacterial species and a frequent feature in bacterial pathogenesis. The process requires the functional activity of some proteins that receive chemical signals and use the information to direct suitable swimming behaviour.

During chemotaxis, for example in enteric bacteria, such as *E. coli*, the chemical environment is sensed through the periplasmic domains of a family of transmembrane chemoreceptors and intracellular signals are produced and transferred to the flagellar motor, through protein-protein interaction, influencing the direction of flagellar rotation and, consequently, cellular movement. The proteins required for chemotaxis in *E. coli* are shown in Fig (1.2.1).
Fig (1.2.1): The classic chemotaxis system in *E. coli*. A: CheA, W: CheW, R: CheR, B: CheB, Y: CheY, Z: CheZ and MCP: Methyl-accepting chemotaxis protein (Figure adapted from: Grebe, T. W. and Stock, J. 1998).

Signal processing and output involve a phosphorelay system. The activity of CheA, a cytoplasmic histidine kinase protein, is affected by its interactions with the chemoreceptors (MCPs). The chemoreceptors bind and sense small molecules or protein ligands and indirectly by conformational changes enhance the activity of the histidine kinase CheA. CheA is inactive when an attractant is bound to the receptor and becomes active when a repellent signal is given. When activated, CheA can autophosphorylate (using ATP) and then transfers the phosphate groups to either of two aspartate autokinases involved in signal output (CheY) and adaptation (CheB). Another protein, CheW couples CheA to chemoreceptor control by physically linking
the proteins in a complex. CheY, the response regulator, catalyses its own acceptance of a phosphate group from CheA on an asparatic acid residue.

The default state of a flagellum is smooth swimming of the bacterial cell in the absence of bound CheY. Only phosphorylated CheY interacts with a flagellum and produces tumbling. CheZ controls the level of phosphorylated CheY by increasing its rate of autodephosphorylation, with the result that tumbles rapidly stop when CheA is turned off (Snezana D., and A. M. Stock, 1998). CheA, CheY, and CheZ usually localize at the cell poles, and clustering is dependent on the presence of MCPs (Sourjik, V., P. Muschler, et al., 2000). CheY and CheZ localization is dependent on CheA, and CheA localization is dependent on CheW (Bourret, R. B. and A. M. Stock, 2002).

Adaptation resets the system by changing the signalling properties of the receptor through reversible methylation. When methylated, the receptor is a more efficient activator of the kinase. Two proteins work together to determine receptor methylation under particular conditions. CheR, a methyltransferase, continuously transfers methyl groups from S-adenosylmethionine molecules to specific sites on the membrane receptor. CheB, a methyl esterase, specifically removes methyl groups from the receptor. CheB becomes activated by accepting a phosphate group from CheA and this control largely determines the observed level of methylation at any time (Bren, A. and M. Eisenbach, 2000).

1.2.1. Transmembrane signalling

Most transmembrane signalling is done by chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). These proteins are components of the
chemotactic response system in Bacteria and Archaea (Grebe, T. W. and J. Stock, 1998). These proteins usually are concentrated and clustered at the cell poles in an evolutionarily diverse range of bacteria and an archaea (Gestwicki, J. E., A. C. Lamanna, et al., 2000). MCPs may play a role in the signalling pathway of chemotaxis.

Five closely related MCPs are found in *E.coli*, each between 533 and 553 amino acids in length. These are: Trg, for ribose, galactose and glucose, Tar, for aspartate, Tsr, for serine, Tap, for dipeptides and Aer, which may be a redox detector (Grebe, T. W. and J. Stock, 1998). MCPs are transmembrane proteins with the carboxyl-terminus located in the cytoplasm and the amino-terminus accessible to the external environment (Yost, C. K., P. Rochepeau, et al., 1998). The amino- terminal domain detects attractants and repellents, and carboxyl-terminal domain transfers this information to CheA, allowing the bacterium to swim towards attractants and away from repellents. Serine, aspartate and citrate bind directly to the receptors but maltose, ribose, galactose, glucose and dipeptides bind to the specific periplasmic binding proteins, which then dock with the correct membrane receptors. MCPs also mediate responses to temperature and pH, and serve as receptors for several different repellents. The cytoplasmic domain is very highly conserved between transducers but there is little sequence homology between the periplasmic domains of the different MCPs, therefore they sense different molecules. The cytoplasmic domain contains four or five methylatable glutamate residues, and are therefore called methyl-accepting chemotaxis proteins (Manson, M. D., J. P. Armitage, et al., 1998).

The periplasmic sensing domain is flanked by transmembrane segments, the second of which connect to the cytoplasmic signalling domain through a linker region. The methylation sites responsible for sensory adaptation are located next to the
signalling domain. MCP is known to form stable dimers, resulting in four transmembrane α-helices, two from each monomer. These are called TM1 and TM2 for one monomer and TM1' and TM2' for the second one.

![Diagram of the cytoplasmic domain of the transmembrane receptor.]

Fig (1.2.2): Schematic model for the cytoplasmic domain of the transmembrane receptor (Figure adapted from: Falke, J. J., et al., 1997).

The receptors are connected using a linker protein, CheW, to a histidine kinase, CheA, generating stable ternary complexes. Active receptors form a supramolecular complex, consisting of about seven receptors, two or four CheW molecules and one CheA dimer (Bren, A. and M. Eisenbach, 2000).

Methylation and demethylation of homodimeric chemoreceptors such as Tar, Tsr, Trg, Tap and Aer are catalysed by methyltransferases and methylesterases homologous to E.coli CheR and CheB (Aravind, L. and C. P. Ponting, 1999). The
pentapeptide sequence Asn-Trp-Glu-Thr-Phe (NWETF), present at the carboxyl
terminus of some chemoreceptors (high abundance) gives a docking site for the
methyltransferase (Wu, J., et al., 1996) and greatly improves methylation of receptors
on which it is present. Receptors naturally lacking the methyltransferase-docking site
(low-abundance receptors) are poorly methylated and thus are ineffective, in the
absence of high-abundance receptors, in both adaptation and the ability to mediate

The presence of a docking site on the receptor enhances the rates of
demethylation catalysed both by inactivated CheB and by the activated
(phosphorylated) enzyme. Phosphorylation of CheB either by free CheA, or by CheA
activated in a complex with its receptor, results in increased rates of demethylation for
receptors lacking or carrying the docking site (Barnakov, A. N., L. A. Barnakova, et
al., 1999).

MCPs are not involved in effector transport, and deletion of any one results in
loss of chemotaxis to a few compounds, but no effect on responses to other attractants.
The intracellular response of cells to environmental change is mediated by
phosphorylation and methylation- dependent signalling in a closed system.
Transmembrane receptors of extracellular ligands include molecules with histidine
kinase or methyl-accepting functions. Homodimeric histidine kinases catalyse
transphosphorylation of specific histidine residues and the phosphoryl groups are
subsequently transferred to specific aspartyl residues, usually on response regulator
domain homologous to *E.coli* CheY.
Fig (1.2.3): A typical receptor-kinase signalling complex and protein-protein interaction between receptor and CheA, CheW, CheB and CheR (Figure adapted from: Falke, J. J., et al., 1997).
1.2.2. Cytoplasmic signal transduction

Histidine Kinase CheA: Signals detected by the receptors are used to control the activity of the bound histidine kinase CheA. The isolated kinase is a dimer of identical 71kDa subunits containing two symmetrical active sites, each of them using Mg$^{2+}$-ATP to drive phosphorylation of His48 (Surette, M. G., M. Levit, et al., 1996). Each subunit of CheA can be divided into four functional regions (Parkinson, J. S. and E. C. Kofoid, 1992), at least three of these regions have been shown to be distinct folding domains (Falke, J. J., R. B. Bass, et al., 1997). The N-terminal P1 phosphotransfer domain possesses the reactive His48 residue that serves as the site of autophosphorylation (Morrison, T. B. and J. S. Parkinson, 1994). Autophosphorylation is the most important control point in the chemotaxis signalling pathway. CheA can autophosphorylate itself slowly in the absence of other proteins, but the reaction is accelerated and enhanced several hundred times in the presence of membrane receptors and CheW (Blair, D. F., 1995). The phospho-P1 domain is fully functional as a phosphotransfer substrate for CheY or CheB even when other parts of the CheA are absent (Swanson et al 1993). The P2 response-regulator docking domain, which contains the docking site for CheY and CheB, is C-terminal to the P1 domain (Morrison, T. B. and J. S. Parkinson, 1994). The CheB protein competes with CheY for binding to the P1-P2 region and probably uses the same docking site on the P2 domain (Li et al 1995). Many histidine kinases encode specificity within other domains and lack the P2 domain completely, suggesting that CheA and its homologues have developed this domain for a specific purpose other than phosphotransfer specificity (Parkinson, J. S. and E. C. Kofoid, 1992).
The most highly conserved region of the CheA is its catalytic domain. The CheA catalytic domain folds independently, and the isolated domain can efficiently phosphorylate the isolated P1 domain (Swanson et al. 1993). The C-terminal-receptor docking region of CheA is essential for receptor-mediated regulation. Genetic studies suggest that different CheW- and receptor-binding sites exist within this region of CheA (Parkinson, J. S. and E. C. Kofoid, 1992). One possible mechanism of receptor-mediated regulation is suggested by the dimeric structure of CheA, since that enzyme is active only when it is a dimer (Surette, M. G., M. Levit, et al., 1996).

Fig (1.2.4): Domain organisation of the transmitter histidine kinase cheA.

The CheA gene from both *E. coli* and *S. typhimurium* has an alternative translational start site at Met-98 that produces a short variant called CheAs (Stock, J. B. and M. G. Surette, 1996). Bacteria which can carry out chemotaxis express CheA both as the full length and a short form termed CheAs. Both forms have the same C-terminus, but CheAs lacks a sequence of almost 100 residues that contains the P1 domain and cannot be phosphorylated. CheAs is not strictly required for chemotaxis (Sanatinia, H., E. C. Kofoid, et al., 1995) but a 1:1 mole ratio of CheAl to CheAs
that provides optimal cellular motility (Wang, H. and P. Matsumura, 1997) and CheAs binds CheY as well as does the full-length CheA protein (Swason et al., 1993). Overproduction of CheAs in wild-type cells increased counter-clockwise rotation (CCW) (Wang, H. and P. Matsumura, 1996) and this effect is dependent on the presence of CheZ. The CheAs/CheZ complex shows greater dephosphorylating activity on CheY-P in comparison with that observed by the action of free CheZ, alone.

1.2.3. Adaptation pathway

Adaptation, the restoration of the pre-stimulus behaviour in the presence of the stimulus, is a necessary component of chemotactic behaviour. Adaptation resets the system by changing the signalling properties of the receptor through reversible methylation. Two proteins working together to determine receptor methylation under special conditions. CheR is a methyltransferase, which continuously transfers methyl groups from S-adenosylmethionine molecules to specific glutamate sites on the cytoplasmic domain of the receptors during adaptation to positive stimuli. CheB is a methylesterase that removes methyl groups from receptors during adaptation to negative stimuli. This protein also has an amidase activity that catalyzes the conversion of specific glutamine residues of the MCP receptors into glutamate residues (Bren, A., and M. Eisenbach, 2000). The result of this demethylation is the prevention of CheA autophosphorylation and the transient maintenance of a CCW signal (Borkovich, K. A., et al., 1992).

In the chemotaxis system, sensory adaptation is a continuous process that enables the cells to make temporal comparisons as they swim about. The adaptation machinery works to cancel recent stimulus responses, so that the organism is ready to
respond to any new changes in chemoeffector concentration. Adaptation is an essential part of chemotaxis because if the receptor can not reset after experiencing a change in receptor occupancy, the receptor would continue to generate a signal and the cell would be unable to respond to future change. Mutation in the adaptation mechanism results in the smooth swimming of the cell.

The relative activities of CheR and CheB determine the methylation level of each MCP species. In the absence of chemical stimuli, about half the sites are methylated. In high attractant or low repellent levels, most sites are methylated, whereas in low attractant or high repellent levels, few sites are methylated.

CheB: The methylesterase CheB is a member of a large and functionally varied family of proteins known as response regulators. These proteins are involved in a wide variety of phosphotransfer-dependent signal transduction pathways found in prokaryotes and eukaryotes (Djordjevic, S., P. N. Goudreau, et al., 1998). Methylesterase CheB (35-kD) functions together with methyltransferase CheR (31-kD) to control and determine the level of methylation of a set of four or five glutamate residues in the cytoplasmic domains of the chemoreceptors (Djordjevic, S., P. N. Goudreau, et al., 1998).

The level of receptor methylation is controlled both globally and locally. Global control includes the change of CheB activity by CheA, CheW, and the receptors. The level of methylation is also controlled locally by the conformation of the receptors themselves. The binding of attractant to a receptor increases the level of methylation of that receptor more than others, presumably by inducing a conformational change that alters the exposure of methylation sites to CheR and CheB.
Regulation of CheB involves many protein-protein interactions. There are three known sites of interaction between CheB and the receptor-CheA-CheW complex: the kinase site at which CheB obtains a phosphate group, the sites at which the enzyme modifies the receptor and the pentapeptide docking site at the carboxyl terminus of the receptor.

CheB has amidase activity and converts the glutamines to glutamates which can subsequently to take part in the methylation/demethylation cycle catalysed by CheR and CheB. CheB, like CheY, is a response-regulator protein with an activity controlled by phosphorylation. CheB has a two-domain architecture, with an N-terminal regulatory domain homologous to CheY and a C-terminal effectors domain with amidase/esterase activity. Structural similarity between the two CheB and CheR suggests an evolutionary and / or functional relationship.

As the autophosphorylating histidine kinase CheA is acting as a phosphoryl donor protein to two response regulators, CheY and CheB. CheY and CheB compete for binding to the P2 domain of CheA and when band, phosphorylation of the N-terminal domain of the intact CheB protein results in enhanced methylesterase activity. The N-terminal domain plays two regulatory roles, functioning to inhibit methylesterase activity when unphosphorylated and to stimulate activity when phosphorylated. The interaction between methylesterase CheB and the chemotaxis receptors is complex and probably contains multiple regions of the CheB molecular surface. There is no phosphatase to increase the rate of CheB dephosphorylation and the protein therefore has developed a more rapid rate of autocatalytic dephosphorylation than CheY-P. Mutants deleted for CheB have over methylated receptors and, as a result, smooth swim constantly.
CheR: Methyltransferase CheR, which utilizes S-adenosyl-methionine as the methyl donor, catalyses S-adenosyl-methionine (AdoMet)-dependent methylation of the ω-carboxyl groups of specific glutamate residues in the chemotaxis receptors. CheR is a two-domain protein with an N-terminal domain that appears to be involved in substrate recognition, and an α/β C-terminal domain that contains sequences typical of AdoMet-dependent methyltransferases.

In the cell, two separate domains of the MCP receptor are involved in the interaction with CheR: a binding domain onto which CheR docks and a domain that is methylated by CheR. Mutants deleted for CheR cannot methylate the receptors and constantly tumble. CheR binds to major chemoreceptors through their C-terminal motif NWETF, which differs from the C-terminal motif in methylation sites (Shiomi, D., H. Okumura, et al., 2000).

1.2.4. **Characteristics of other Che proteins:**

CheW: The 18 kDa CheW protein couples CheA to the MCP receptor and is required for receptor-mediated activation of histidine kinase activity (Ames, P. and J. S. Parkinson, 1994). In *E.coli*, CheW is an essential protein necessary for MCP-dependent chemotaxis and interaction with the signalling domain of Tsr and the carboxy-terminus of CheA, suggesting a role as a linker protein between the sensor (MCP) and the CheA (Liu, J. D. and J. S. Parkinson, 1991; Bourret, R. B., J. Davagnino, et al., 1993). Neither CheW nor Tsr alone has a significant effect on CheA activity; however all three proteins must be together for activation to occur (Ninfa, A. J. and R. L. Bennett, 1991).
Evidence for the formation of complexes between MCP, CheW and CheA has been identified by immunoelectron microscopy and immunofluorescence light microscopy of *E. coli*. The complex is frequently found in clusters at one or both poles of the cells. In mutant strains where one of MCP, CheW or CheA is absent, the polar clustering of the remaining components is dramatically reduced (Maddock, J.R., and Shapiro, L., 1993).

No catalytic or regulatory activity has been associated with CheW, although Sanders et al. have shown that over-expression of CheW produces a phenotype similar to its deletion (Sanders et al., 1989). In-vitro experiments showed that the kinase activity of CheA was greatly reduced in the presence of high levels of CheW (Ninfa, A. J. and R. L. Bennett, 1991). CheW of *R. sphaeroides*, when cloned into *E. coli*, induced changes in the switching frequency of the flagellar motor of bacterial cell. Over-expressed CheW reduced the switching frequency. Smooth swimming results from a reduction in the level of CheY-P and this suggests that CheA was sequestered by excess CheW in an inactive form (Hamblin, P. A., N. A. Bourne, et al., 1997).

In *E. coli*, deletion of cheW results in smooth- swimming and non-chemotactic behaviour (Liu, J. D. and J. S. Parkinson, 1991). In contrast, deletion of cheW1 in *R. sphaeroides* has no significant effect on chemotactic behaviour when analysed using swarm plate and plug plate chemotaxis assays (Hamblin, P. A., N. A., et al., 1997).

CheY: CheY, a 14kDa polypeptide, is the response regulator protein which serves as a phosphorylation- dependent protein in the bacterial chemotaxis signal transduction pathway. CheY has a special and important place in the chemotaxis pathway because this molecule is the diffusible component that acts as the signal
between the two membrane-localized supramacromolecular complexes; namely, the chemotaxis receptor clusters that are localised at the two poles of the cell and usually the six to eight flagellar basal bodies that are uniformly distributed (Djordjevic, S. and A. M. Stock, 1998). CheY binds to the P2 domain of CheA and phosphate is transferred from His-48 in a reversible reaction which phosphorylates CheY. Phospho-CheY (CheY-P) diffuses through the cytoplasm and binds to FliM, one of an assembly of proteins called the ‘switch’ at the base of the flagellar motor. This binding event results in the change of direction of the flagella from the counter clockwise (CCW) to clockwise (CW) rotation.

CheY can also be phosphorylated by small phosphodonors such as acetyl phosphate. The rate of phosphorylation of CheY by small phosphodonors is much lower than that of CheA-mediated phosphorylation (Mayover, T. L., C. J. Halkides, et al., 1999). This CheA-independent phosphorylation indicates that CheY can catalyse its own phosphorylation. Phosphorylation of CheY results in a conformational change that is necessary for activation (Silversmith, R. E. and R. B. Bourret, 1999) and not only reduces the affinity of the CheY to CheA, but also improves its affinity for the protein FliM (McEvoy, M. M., A. Bren, et al., 1999). Even though mutational analysis and NMR data have identified three distinct regions on CheY that interact with its three protein effectors (P2 of CheA, FliM and CheZ), and all are distinct from the phosphorylation site, it can bind to only one protein at a time because the C-terminal portion of CheY is involved in the binding to all these proteins.

Dephosphorylation of CheY-P occurs through autophosphatase activity but the rate of autodephosphorylation is increased by CheZ in enteric species (Eisenbach, M. 1996). CheZ binds CheY in a phosphorylation-dependent process, and the CheY-binding domain is located at the C-terminus of CheZ (Blat, Y. and M. Eisenbach,
The phosphatase activity of CheZ is modulated and occurs only after a chemotaxis response is established.

CheZ: CheZ protein acts to inactivate the tumble signal of the chemosensory pathway by increasing the hydrolysis of phospho-CheY, either directly using a CheZ active site residue to carry out a nucleophilic attack, or indirectly through a conformational change that stimulates the intrinsic auto-phosphatase activity of the CheY active site (Hess et al 1988). Only phospho-CheY binds to the CheZ protein, and after dephosphorylation CheY is separated from CheZ (Blat & Eisenbach 1994). CheZ can be isolated as a dimer of 24-kDa subunits. It also forms mixed oligomers with CheAs (but not with the full-length of CheA) that enhance CheY phosphatase activity (Wang, H. and P. Matsumura, 1996, 1997).

CheZ has also been isolated as a high-order oligomer with phospho-CheY but not CheY, and it appears to compete with FliM for CheY-P but not CheY (Blat, Y. and M. Eisenbach, 1996). The inability of CheZ to dephosphorylate FliM-bound CheY-P may be the result of its inability to bind to CheY-P when the latter is bound to FliM (Bren, A., et al., 1996). This protein, like all the other cytoplasmic chemotaxis proteins, can be attached to the receptor supermolecular complex. CheZ homologues have not been found in species outside the γ-subgroup.

CheC, CheD and CheV: These three proteins are absent from *E. coli* and their functions are restricted to some bacteria, such as *Bacillus subtilis*. CheV, has amino acid sequence similarity to CheW and CheY in N-terminal and C-terminal domains, and functions in both adaptation and receptor coupling (Rosario, M. M. L., J. R. Kirby, et al., 1995). CheC and CheD both seem to function in MCP methylation,
but the two proteins appear to act independently (Kirby, J.R., 2001). CheC interacts with flagellar switch components and dissociates when CheY-P binds. Subsequently this protein interacts with the receptor complex to enhance adaptation (Kirby, J. R., C. J. Kristich, et al., 2001).

Homologues of the CheD protein of Bacillus subtilis have been found in a large number of bacteria, and it seems to play important role in chemotaxis. CheD catalyzes the amide hydrolysis of the B. subtilis chemoreceptor McpA, and also deamidates other B. subtilis chemoreceptors such as McpB and McpC. CheD mutant cells do not respond to most chemoattractants and deamidation by CheD is required for B. subtilis chemoreceptor to transduce signals to the CheA kinase (Kristich, C. J. and G. W. Ordal, 2002).

1.2.5. Chemotaxis towards phosphotransferase sugars (PTS taxis)

Chemotaxis to sugars transported by the phosphoenolpyruvate phosphotransferase system exhibits a mechanism intermediate between chemotaxis and metabolism-dependent energy taxis. This system is independent from MCPs. It is formed from enzyme I (EI), phosphohistidine carrier protein (HPr) and several membrane-bound sugar specific proteins (enzymelI, EII). During transfer by EII the incoming sugar is phosphorylated by a phosphate group accepted from phosphoenolpyruvate (PEP) and signalled by HPr and EI. The phosphorylation of EI regulates autophosphorylation of CheA (Lux, R., K. Jahreis, et al., 1995). To cause a signal the sugar must be transported but methylation is not necessary and only CheY and CheA in combination with CheW are necessary (Postma, P. W., et al., 1993).
1.2.6. Other sensing behaviour in Bacteria (Energy taxis)

In contrast to classical chemotaxis behaviour, in which sensing of stimuli is independent of cellular metabolism, some bacteria monitor their cellular energy levels and in response to a decrease in energy level swim to a new environment that re-energizes the cells. Aerotaxis (taxis to oxygen), phototaxis and taxis to alternative electron acceptors share a common signal transduction pathway, and use some components of classical chemotaxis as well.

1.2.6.1. Aerotaxis
Aerotaxis is a response to changes in respiratory electron flow that results from an increase or decrease in oxygen concentration. In the absence of oxygen, alternative electron acceptors such as fumarate or nitrate support electron flow. In the presence of air the preferred acceptor (oxygen) is used. A transducer senses the change in electron transport and establishes a signal that changes the direction of flagellar rotation and swimming.

The Aer and Tsr proteins in *E. coli* are recognized as transducers for energy taxis. Aer is homologous to *E. coli* chemoreceptors but in other aspects it is unique because it has a PAS domain and flavin-adenine dinucleotide (FAD) cofactor that interacts with a component of the electron transport system.

The *cheA, cheW* and *cheY* genes of the chemotaxis operon are essential for aerotaxis, since the aerotaxis transducer (Aer) regulates the CheA histidine kinase. The sensing domain of Aer is a PAS domain that contains the flavin-adenine dinucleotide (FAD) binding site. In addition, the Aer transducer has two cytoplasmic domains anchored to the membrane by one central hydrophobic sequence. All known PAS domains are located in the cytoplasm.
During signal transduction by Aer, oxidation and reduction of FAD produces the on and off signals for aerotaxis. The PAS domain interacts with a component of the electron transport system. During an increase or decrease in oxygen concentration the redox changes in FAD reflect redox changes in the electron transport system. Subsequently the PAS domain signals the redox status of FAD to the highly conserved signalling domain in the C-terminus. In the presence of CheW, this highly conserved domain regulates the histidine kinase activity of CheA.
The serine receptor Tsr in *E. coli* is also a transducer for aerotaxis. Tsr is a multifunctional protein, in addition to detecting serine and energy, it senses temperature and the repellents leucine, indole and weak acids. The transduction mechanism of Tsr in aerotaxis is unknown. Unlike Aer, Tsr has no known cofactor and some evidence suggests that it has a role in the adaptation pathway, a process that does not occur in Aer-mediated aerotaxis.

Fig (1.2.7): Scheme showing the signal transduction pathway in *E. coli* for aerotaxis and chemotaxis mediated by Tsr chemoreceptor (Figure adopted from: Taylor, B. L., et al., 1997).

1.2.6.2. Phototaxis

Some bacteria responses to changes in light intensity and colour using the sensory photoreceptors, rhodopsin I and II (SRI and SRII) (Hoff, W. D., K. H. Jung, et al., 1997). Light activated SRI and SRII transmit signals to their specific
transducers, HtrI and HtrII. The Htr proteins contain two transmembrane helices, cytoplasmic methyl-accepting and histidine-kinase-activating domains (Rudolph, J. and D. Oesterhelt, 1995) that are homologous to domains in the chemotaxis transducers of *E. coli*, Tsr and Tar.

There is a specific interaction between SRI and HtrI and between SRII and HtrII. This specificity seems to be encoded in the transmembrane portion of the transducers (Zhang, X. N., et al., 1999) and it has been suggested that Htr transducers physically and functionally interact with their sensory rhodopsins within the membrane (Spudich, J. L., 1998), which results in the control of the flagellar motor switching through a cytoplasmic phosphoregulator.

The mechanism of responding to light in *Halobacterium salinarum* is the best understood system. The two sensory rhodopsins give the bacterial cells the ability to respond to light as an attractant or repellent depending on its colour and the stage of growth of the cells. A change in the oxygen concentration and light wavelength prevent SRII production or produce more of SRI that subsequently induce the production of another two rhodopsins, the transport rhodopsin BR (a proton pump) and HR (a chloride pump). SRI and SRII, in combination with BR and HR functions, transmit signals to HtrI and HtrII through membrane spanning α-helices and the conformation of the signalling domains controls the activity of the CheA and CheY and subsequently control the motor switching function (Armitage, J. P., 1999, Spudich, J. L., 1998).
Fig (1.2.8): The schematic figure of phototaxis pathway in *Halobacterium salinarum*, with location of sensors and protein-protein interaction (Figure adapted from: Spudich, J. L., 1998).
1.3. Motility in bacteria

Responses to a variety of environmental information or signals are very well developed in bacteria, and result in suitable movement in response to this information (Macnab, R. M., 1996).

Various styles or types of motility are recognized but most of them are based on the rotation of rigid, extracellular and helical flagellar filaments, driven by a rotary motor fixed in the cell envelope (Berry, R. M. and J. P. Armitage, 1999). Because the filament is normally a left-handed helix, rotation in the counter clockwise (CCW) sense causes the helical wave to travel from proximal to distal and to exert a pushing motion on the cell. Sometimes a tumbling form of motility occurs when the filaments are rotated in the opposite direction, clockwise (CW), when the helical wave travels from distal to proximal. The situation is made possible by structural changes that take place in the filament (Macnab, R. M., 1977).

In Salmonella, for example, there are currently 44 known flagellar genes. Twenty-three of these genes encode structural components of the flagellum. Of these components, five (MotA, MotB, FliG, FliM and FliN) are needed for torque generation and three of these five (FliG, FliM and FliN) are also needed for switching. The principal remaining components are the filament, the hook, and the basal body. The basal body has three parts: rod, MS ring and LP ring.

1.3.1. The flagellar structure

With some small differences, the flagella from most bacterial species are built in the same basic ways. The proteins that form most parts of the flagellum have been
identified by electron microscopic studies, genetic and biochemical characterization (Blair, D. F., 1995). The flagellum is formed from a helical filament connected via the hook to the basal body, which is surrounded by several rings of torque-generating particles in the cytoplasmic membrane (Berry, R. M. and J. P. Armitage, 1999). The filament is the propeller, and the basal body and torque-generating particles together are the motor. Within the motor, the basal body is the rotor and rotates relative to the anchored torque-generating particles or stator.

1.3.1.1. The filament

The filament has variable length (5-10 μm) but it has a constant diameter of about 20 nm through its length (Namba, K., I. Yamashita, et al., 2000). It is built from more than 1000 copies of a single protein, flagellin. The flagellin subunits are synthesized in the cytoplasm, transferred to the outside, and arranged at points on a cylindrical or tubular pattern.

1.3.1.2. The Hook

The filament is connected to the cell by the hook. The structure of hook is very similar to the structure of the flagellum but it is built from a different subunit, called the hook protein (FlgE) (Macnab, R. M., 1996). Three hook-associated proteins (HAP) have been identified in E. coli. HAP1 and HAP3 are placed between the hook and filament but HAP2 make a cap at the top of the filament. The hook is flexible and reflecting it is role as a universal causing flagella to come together as a bundle (Berry, R. M. and J. P. Armitage, 1999).
1.3.1.3. Basal body

The hook is connected to a complex structure known as the basal body, which is embedded in the cell wall surface. It consists of two rings (L and P) in a position equivalent to the outer membrane (the L ring is in the Lipopolysaccharide membrane, the P ring is in the peptidoglycan layer), two rings (S and M) in the position of the cytoplasmic membrane and a central rod that link together the rings and the hook.

The basal body complex made up from at least 8 proteins, four of them in the rod (FlgB, FlgC, FlgF, and FlgG), three in the rings (FlgH, FlgI, and FliF forming the L, P, and MS rings respectively) and one whose location is not known (FliE) (Macnab, R. M., 1996).
Fig (1.3.1): Schematic structure of the bacterial flagellum (Figure adapted from: Morgan, D. G., and S. Khan, 2001).
1.3.2. Flagellar assembly

Assembly of the flagellum begins with components, such as the rotary motor, (which are closest to the bacterial surface) and ends with the filament (the most distal part of it) (Macnab, R. M., 2000). It is normally starts with the formation of the MS ring, formed from single protein called FliF. At the next step the function of at least four genes (flgB, flgC, flgF and flgG) are needed to form the basal-body rod.

The flagellar genes are clustered in three (E. coli) or four (S. typhimurium) regions on the chromosome. The genes are named flg, flh, fli and flj according to the chromosomal region in which they are found. Expression of the flagellar genes is controlled by a regulatory hierarchy that has three levels. Level 1 has two genes (flhC, flhD) that are required for the expression of level 2 genes, and level 2 genes are required for expression of level 3 genes. Level 1 genes are under control of cAMP (cyclic-AMP) levels and other factors linked to the cell cycle.

Many of the level 2 genes encode components of the basal body and level 3 genes encode components of the filament that are added in the later steps or encode the Che and Mot proteins (Macnab, R. M., 1996).
1.3.3. Mot proteins

Two proteins, MotA and MotB, are integrated into the cell membrane and are necessary for motor rotation. Electron microscopic studies suggested that they form a ring of proteins surrounding the MS ring of the basal body (Khan, S., M. Dapice, et al., 1988).
1.3.3.1. Motor function and torque generation

As mentioned above, some studies indicate that MotA and MotB interact with each other via their periplasmic domains and both of them form the complete stator (Garza, A. G., L. W. Harrishaller, et al., 1995). Each flagellar motor contains several MotA/MotB complexes that surround the MS-ring. The Fli complex is attached to the face of the M-ring protein on the base of the flagellum, and contains of three proteins, FliG, FliM and FliN. Genetic studies have shown that only FliG, MotA and MotB are directly involved in torque generation.

The mechanism of flagellar rotation involves electrostatic interactions between the rotor and stator (Zhou, J. D., S. A. Lloyd, et al., 1998). Regarding to motor function, studies on motA mutants have shown that MotA, possibly in association with MotB, acts as a proton translocating protein (Zhou, J. D. and D. F. Blair, 1997), which forms a proton channel anchored to the cell wall by MotB. Proton flow through the inside of this channel produces the torque or rotation (Bren, A. and M. Eisenbach, 2000).

MotB contains a conserved aspartic acid, Asp32, that is essential for rotation. According to a current hypothesis the protonation of Asp32 in MotB produces a conformational change that affects a cytoplasmic domain of MotA (containing a residue known to interact with the rotor), which works on the rotor to drive rotation (Kojima, S. and D. F. Blair, 2001).

This model provides potential mechanistic models of switching from one direction of rotation to the other, but the mechanism of signal propagation within the switch subsequent to CheY~P- FliM binding is not yet fully known.
Phosphorylated CheY (CheY-P) diffuses through the cytoplasm and binds to switch. FliM appears to be the major target of CheY-P interaction. It appears that CheY-P binding to FliM is essential but insufficient for the generation of CW rotation.

![Fig 1.3.3](image)

Fig (1.3.3): Suggested model of stator conformational changes in the generation of torque by the flagellar motor. Asp32: Asparatic acid 32, H+: Proton (Figure adapted from: Kojima, S., and D. F. Blair, 2001).

1.3.4. The switch complex

Three genes were identified in E.coli, named fliG, fliM and fliN, that are expressed in early steps of the flagellar biosynthesis. The resulting products are the
proteins FliG, FliM and FliN which are located in cytoplasm, and together comprise a
gearbox, termed the "switch complex", because certain mutations in these proteins
affect the switching between CW and CCW rotation. This structure is located on the
cytoplasmic face of the MS-ring, and is the element of the supramolecular complex
onto which CheY-P docks, and which determines the direction of flagellar rotation.

All three genes have diverse roles in producing four distinct mutant
phenotypes: (a) non-flagellate (fla) (occurring at three loci flg, flh and fli) where the
flagellar structure is incomplete, (b) paralysed (Mot-), where the flagellum is
completed but does not rotate, (c) smooth-swimming[che-(ccw)] and (d) tumble[che-
(cw)] where the flagellum is made and rotates but does not reverse with suitable
frequency, therefore chemotaxis does not occur (De Rosier, D. J., 1998). Thus, these
proteins are important for the mechanism of rotation as well as for controlling its
direction. Analysis of mutants suggests that FliM is the most important, central
component of the switch and is the target for binding of the switch regulator, CheY-P.
The primary function of FliN is flagellum-specific export rather than torque
generation. The characteristics of FliG mutants suggest that it could be involved in
torque generation.
1.4. The α-subgroup of Proteobacteria

1.4.1. The family of Rhizobiaceae

The members of this family, Rhizobium (Sinorhizobium), Agrobacterium, Bradyrhizobium and Phyllobacterium, usually have one polar or subpolar flagellum and 2-6 peritrichous flagella. All species except Agrobacterium, in association with plants and during the symbiosis procedure, incite cortical hypertrophies on plants. Nodules are produced on roots of Leguminous species and on leaves of certain plants in the family of Rubiaceae by strain of Phyllobacterium.

The nitrogen-fixing group usually subdivided into two groups: The fast growing genus e.g. Rhizobium and the slow growing genus the same of Bradyrhizobium. Two further genera have recently been described, Azorhizobium and Sinorhizobium. Some of the Rhizobiaceae affect plant development and cause plant disease. Examples are Agrobacterium tumefaciens and A. rhizogenes that produce crown gall and hairy root on plants.

1.4.2. Genus Agrobacterium tumefaciens (descriptive information)

This bacterium is bacilliform, 0.6-1.0 μm by 1.5-3.0μm, gram negative and motile by flagella circumthecally arranged, near one end rather than ringing the middle portion of the cell. Colonies are usually convex, circular, smooth and non-pigmented. Members of this genus invade the crown, roots and stems of the great variety of dicotyledonous and some monocotyledonous plants, via wounds, causing
the transformation of the plant cells into autonomously proliferating tumour cells. The induced plant diseases are commonly known as crown gall, hairy root and cane gall.

Tumour induction by Agrobacterium is correlated with the presence of a large tumour-inducing plasmid (Ti-plasmid). Agrobacterium species are soil inhabitants. The type species is Agrobacterium tumefaciens.

1.5. Sensing behaviours in α-subgroup of Proteobacteria

1.5.1. Chemotaxis in α-subgroup of Proteobacteria

The genetic organisation of the chemosensory genes of several members of this subgroup has been characterised and found to be very similar (Greck, M., J. Platzer, et al., 1995, and Ward, M. J., A. W. Bell, et al., 1995). The organisation is very different from that seen in E. coli (Armitage, J. P. and R. Schmitt, 1997). In all members of this subgroup at least two copies of the cheY genes have been found, but no cheZ genes.

1.5.1.1. Chemotaxis in Sinorhizobium meliloti (formerly named Rhizobium meliloti):

The chemotaxis genes are part of a large operon containing three novel open reading frames (orf1, orf2 and orf9) and the six familiar che genes, cheA, cheW, cheR, cheB, cheY1 and cheY2. Sinorhizobium meliloti has chemotaxis behaviour different from E. coli. In this bacteria cheY1 and cheYII have different role. cheY1 alone does not mediate chemotaxis in the wild type but it is necessary for full tactic response.
Furthermore both CheYII and CheYI require phosphorylation by CheA for activity. CheYII is the main response regulator directing chemokinesis. In comparison CheYI has a small role in chemokinesis, but interferes with smooth swimming (Sourjik, V. and R. Schmitt, 1996).

Fig (1.5.1): Accepted model for the sensory pathway of *Sinorhizobium meliloti* (Microbiology: 1997:143:3671-82).
The chemotaxis operon of *R. sphaeroides* contains *orf1*, *cheY1*, *cheA*, *cheW*, *cheR*, *cheY2*, *orf2* and *orf3*. In this bacterium a second operon has been identified with a second functional set of the chemotaxis genes *cheA*, *cheW*, *cheR* and a third copy of the *cheY* genes (Hamblin, P. A., B. A. Maguire, et al., 1997). Further investigation showed that *R. sphaeroides* has multiple copies of chemotaxis genes (two *cheA*, two *cheR*, one *cheB*, three *cheW* and five *cheY*) (Shah, D. S. H., S. L. Porter, et al., 2000).

Rhodobacter sphaeroides has more complex chemotactic behaviour than *E. coli* because it has multiple copies of chemotaxis genes. Tethered cell analysis suggested that CheY4, CheY5 are the motor- binding response regulators. CheA2 mediates an attractant response via CheY4 but CheA1 and CheY5 appear to mediate a repellent response. CheY3 facilitates signal termination, and CheY1 and CheY2 can substitute. CheW3 (but not CheW2) restored swarming to a CheW mutant of *E. coli* (Shah, D. S. H., S. L. Porter, et al., 2000). In addition CheW2 and CheA2 are required for the normal localisation of McpG and for normal chemotactic responses (Martin, A. C., G. H. Wadhams, et al., 2001), although the roles of these genes are different in aerobic or anaerobic conditions. In this bacterium, *cheR2* and *cheB1* were essential for normal chemotaxis. *cheR2* and *cheB1*, but not *cheR1*, were able to complement the equivalent *E. coli* mutants, but none of these proteins were required for correct polar localisation of the McpG in *R. sphaeroides* (Martin, A. C., G. H. Wadhams, et al., 2001).

Analysis of the DNA sequence directly upstream of the chemotaxis operon of *R. sphaeroides* identified a single gene that has strong similarity to the methyl-accepting chemotaxis protein (Ward, M. J., D. M. Harrison, et al., 1995). Using
antibody raised against the highly conserved domain of *E. coli* Tsr at least one MCP-like protein was detected in *R. sphaeroides*. Analysis using western blotting and immunogold electron microscopy showed that expression of these proteins is environmentally regulated and that receptors are targeted to two different cellular locations, the poles and the cytoplasm of the cell (Harrison, D. M., J. Skidmore, et al., 1999).

Fig (1.5.2): Multiple chemosensory pathway in *Rhodobacter sphaeroides*.
1.5.1.3. Chemotaxis in other members of α-subgroup of *Proteobacteria*

Sequencing of the genomic DNA of *Azospirillum brasilense* indicated that a region of five open reading frames translated in one direction as encoded homologues of *cheA, cheW, cheY, cheB* and *cheR* genes of the chemotaxis operon of *E. coli* (Hauwaerts, D., G. Alexandre, et al., 2002). 4Kb DNA region of *Rhizobium leguminosarum bv. Viciae* was also sequenced, and found to encode a chemoreceptor (Brito, B., J. M. Palacios, et al., 1996). Another investigation showed that *R. leguminosarum* contains at least five MCP- encoding genes (*McpB* to *McpF*) and some of these play a role in early steps in the plant- microbe interaction (Yost, C. K., P. Rochepeau, et al., 1998).

Phylogenetic and genomic analysis has shown three groups of chemotaxis operons in the α-subgroup of Proteobacteria. Group I is exemplified by the operons of *S. meliloti, A. tumefaciens, R. sphaeroides* and *Caulobacter crescentus*. Group II is exemplified by the chemotaxis operon from *Rhodospirillum centenum* and the best example of group III is the major chemotaxis operon of *R. sphaeroides*. Some species have more than one operon, belonging to different groups. In *S. meliloti* and *C. crescentus* the group I operons are the major ones. The major chemotaxis operon in *R. sphaeroides* belongs to group III.

The mechanism of sensing an environmental change seems to vary across the α-subgroup. *Caulobacter crescentus*, has membrane- spanning MCP related to those in *E. coli*, at the other, *R. sphaeroides*, primarily senses its metabolic state using both cytoplasmic and membrane- bound sensors to signal changes to the flagellar motor, with *S. meliloti* taking an intermediate position.
1.5.2. Energy sensing in α-subgroup of Proteobacteria

In *Rhodobacter sphaeroides* energy taxis is a very common behaviour and electron transport-sensing mediates aerotaxis, photo responses, electron acceptor taxis and taxis toward metabolized substrates. *R. sphaeroides* contains a homologue of the Aer protein identified in *E. coli*, the change in electron transport rate signalled through CheAII and the second chemosensory phosphor-relay system was induced. This signal, in combination with others, produces a balance response at the flagellar motor (Armitage, J. P. and R. Schmitt, 1997). In *Sinorhizobium meliloti* all natural amino acids induce chemotaxis, and it seems that energy-dependent signals are important role in this bacteria. *S. meliloti* cells respond to changes in oxygen concentration by changing their swimming speed. *Azospirillum brasilense* is the first bacterial species in which redox taxis was reported. The major response in *A. brasilense* is aerotaxis and attracts the bacteria to an oxygen concentration that supports a maximum energy level in bacterial cells.

A variety of taxis play major roles in establishing symbiotic, pathogenesis and associative relationships between plants and Rhizobacteria. If the strains of this group are motile then they are able to travel distances in soil between the plant roots. Several line of evidence suggest that taxis in plant-associated bacteria is towards metabolites (Armitage, J. P. and R. Schmitt, 1997).

In symbiotic strains eg. *Sinorhizobium meliloti* different metabolizable substrates cause chemotaxis and in some cases chemoreceptors are cytoplasmic proteins that respond to intracellular signals. The carbon sources that support the fastest growth are also the best chemoattractants, a behaviour typical of energy-
dependent taxis. In *Azospirillium* species, aerotaxis and taxis toward some substrates (malate, succinate) are the most important responses.

1.6. **Motility in α-subgroup of Proteobacteria**

Members of α-subgroup of proteobacteria, such as *Agrobacterium, Rhizobium* (*Sinorhizobium*), *Azospirillium, Caulobacter* and *Rhodobacter* have a motility system which differs from entric bacteria. Cells of *S. meliloti*, unlike Entrobacteria, swim by unidirectional rotation of their rigid flagella (Gotz, R. and R. Schemitt, 1987) and swimming cells respond to material stimuli by changing their flagellar rotary speed (Sourjik, V. and R. Schmitt, 1996).

Unlike the Entrobacteria, in this group two different CheY response regulators act in concern with new MotC and MotD motor proteins to control flagellar rotary speed (Greck, M., J. Platzer, et al., 1995). The organisation of the *S. meliloti* chemotaxis (*che*), flagellar (*fla, flg, flh* and *fli*) and motility (*mot*) genes is very different from that in Enterobacteria, since all known 41 genes are clustered in one chromosomal region (Sourjik, V., W. Sterr, et al., 1998). Furthermore, in *S. meliloti* two related members of the luxR family, VisN and VisR (for vital of swimming) have been identified (Sourjik, V., W. Sterr, et al., 1998). VisN and VisR act as the master controls of a gene cascade that encodes flagellar, motor and chemotaxis proteins (Sourjik, V., P. Muschler, et al., 2000).
1.7. Virulence in *A. tumefaciens*

Tumor formation by this bacteria is induced through transfer of approximately 15 genes of bacterial DNA (Zhu, J., et al., 2000, Zupan, J., T. R. Muth, et al., 2000, Zupan, J. and P. Zambryski, 1997). The transferred DNA (T-DNA), which is on a 200Kb tumor- inducing plasmid (Ti- plasmid), is translocated to the plant cell, where it is integrated into the plant genome (Ziemienowicz, A., B. Tinland, et al., 2000). This transfer process requires the products of 20 known vir genes located on a non-transferred portion of the Ti-plasmid as well as a smaller number of chromosomally-encoded proteins (Winans, S. C., 1992).

Most transferred genes can be categorized into two distinct groups: The first group, when expressed, induce the production of opines, a group of carbon compounds that are produced from plant metabolism and used by *A. tumefaciens* as a nutrient source (Dessaux, Y., A. Petit, et al., 1993). The second group mediates the over production of the phytohormones, auxin and cytokinin, which cause neoplastic growth and crown gall tumor formation in some parts of the plants (Kalogeraki, V. S. and S. C. Winans, 1998).

To start the process of transfer, virulence genes (from vir region) must be induced in response to chemical signals from the plant wound site, which include low pH, phenolic compounds, and monosaccarides of the plant cell wall (Kemner, J. M., X. Y. Liang, et al., 1997). The signals are recognized by three proteins, the VirA-VirG, two component transduction system and ChvE, a periplasmic sugar binding protein (Peng, W. T., Y. W. Lee, et al., 1998).
1.7.1. Attachment of *Agrobacterium* to the plant cell

Bacterial attachment to the host cell is necessary for virulence, and non-attaching bacterial mutants normally cannot incite disease (Matthysse, A. G., 1987). *Agrobacterium* attaches to the plant cell in two steps. The first step is mediated by a cell associated, acetylated, acidic capsular polysaccharide; the second step involves the elaboration of cellulose fibrils by the bacterium. A region of the chromosome of *A. tumefaciens* containing genes (*att* genes) required for bacterial attachment to host cell has been identified.

The *att* region includes two segments of DNA, these are *attAl-* *attE*, which has homology with ABC transport system, and *attR*, which has homology to cetyl transferases (Reuhs, B. L., J. S. Kim, et al.; 1997). The genes located in the *att* region have been organized into nine operons which contain 26 genes. Non-attaching mutants have reduced ability to colonize roots; suggesting that *att* genes are involved in the colonization of roots (Matthysse, A. G., 2001).

The chromosomal virulence genes *chvA*, *chvB* and *psca* are involved in the synthesis, processing and export of cyclic β-1, 2 glucan. *Agrobacterium* strains with mutation in *chvA* or *chvB* show attachment deficiencies (Douglas, 1985). Attachment occurs at the cell wall surface of wounded plant tissue and two plant cell wall proteins mediate bacterial attachment, a vitronectin- like protein (Wagner, V. T., and A. G. Matthyssee, 1992) and a rhicadhesin- binding protein (Swart, S., et al., 1994).
1.7.2. Ti- Plasmid: Structure and Function

In past Ti- plasmids were generally classified by the type of opines that could be catabolised by genes on the plasmid. However, this nomenclature is becoming less satisfactory because all known Ti- plasmids catalyse the catabolism of more than one opines (Zhu, J., P. M. Oger, et al., 2000). The most common type of Ti- plasmid is the octopine-type. This Ti- plasmid contains 155 open-reading frames. All Ti- plasmids have similar functions and generally contain five region:

1. The T- region that is transferred to the plant cell.
2. The \textit{vir} region, which directs the process of transfer of the T- DNA
3. The \textit{rep} region, required for replication of the Ti- plasmid
4. The \textit{tra} and \textit{trb} loci that is required for the conjugal transfer of the Ti-plasmid
5. Genes that direct uptake and catabolism of opines.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{map.png}
\caption{Map of \textit{A. tumefaciens} pTiC58 plasmid.}
\end{figure}
1.7.2.1. T-DNA structure

Typically T-DNA contains two regions, T_L-DNA and T_R-DNA, that join together to make T-region. Each region is flanked by cis-acting, 25bp direct repeats called border sequences (Zambryski, P., 1988). The left border of the T_L-DNA is responsible for T-DNA transfer, but in comparison the right border is essential and acts in a polar fashion (Miranda, A., G. Janssen, et al., 1992). T_L-DNA and T_R-DNA encodes several proteins. One group of these genes directs the production of plant growth hormones, auxin and cytokinin, responsible for the gall formation of the transformed plant cell (Binns, A. N., and P. Castantino, 1998). The second group of genes induce the production of various type of opines by host cells.

1.7.2.2. Vir region

Proteins responsible for T-DNA processing and transfer are encoded by the *vir* region, which is separate from T-DNA region. Twenty genes have been identified, which are expressed in six operons, *virA, B, C, D, E* and *G*. The *vir* regulon is induced
in response to a variety of chemical signals that are released from plant wounds. The signals are perceived by the VirA-VirG system. VirA is a transmembrane sensory histidine kinase which phosphorylates the response regulator VirG. Phospho-VirG binds to binding sites in vir region and activates transcription of the other genes in this region (Jin, S. G., R. K. Prusti, et al., 1990).

The proteins required for cutting the left and right border sequences are encoded by virD1 and virD2 (Yanofsky, M. F., S. G. Porter, et al., 1986). VirC1 and VirC2 are not required for T-region processing but are necessary for efficient T-strand transfer into plant host cell. The virB operon contains 11 genes. All of them except virBI are essential for tumorigenesis (Berger, B. R. and P. J. Christie, 1994). All proteins of this operon are localised to the inner or outer membrane of the bacterial cell (Thorstenson, Y. R., G. A. Kulda, et al., 1993).

VirE2 and VirD2 contain nuclear localization sites (NLS) and mediate transport of the T-DNA from cytoplasm to the nucleoplasm inside the plant host cell (Zupan, J., T. R. Muth, et al., 2000). The virB and virD operons together make a complete set of conjugation proteins. Some members of the vir regulon are not essential for tumorigenesis in all hosts and may be required only in specific hosts or may play other roles. These include virF, H, J, K, L, M, P, and virR (Kalogeraki, V. S. and S. C. Winans, 1998).
Fig (1.7.3): Map of *A. tumefaciens vir* region (Science: 2001:299:2317-2323).

1.7.3. T-DNA transfer process

The process initiates when bacterial cells perceive certain phenolic and sugar compounds from wounded plant cells (Winans, S. C., 1992). These compounds act as inducers of the *vir* genes. Phenolic compounds such as acetosyringone and related compounds are recognized by *virA*. Autophosphorylation of VirA protein and transphosphorylation of VirG protein results in the activation of *vir* genes. The activation of *virD1* and *virD2* results in the cleavage of Ti-plasmid in the border sequences, and production of a single stranded (ss) copy of the T-DNA (T-strand) with a single molecule of the Vir protein. VirD2 covalently binds at the 5' end, coated

T-DNA borders act as sites of initiation and termination for T-strand production and nicking enzymes (VirD1, VirD2), which produce ss nicks in T-DNA borders. In Agrobacterium VirD1 firstly recognises and binds to the T-DNA border, to enhance the binding of VirD2, working as a relaxase (Pansegrau, W. and E. Lanka, 1996).

During transfer of VirD2:T-strand and before transfer into the plant cell, the nucleic acid is coated by ssDNA-binding protein, VirE2, (Zupan, J. and P. Zambryski, 1997). Some investigators have proposed that VirE2 and VirD2:T-strand are exported independently from the bacterium and that the formation of the T-complex is completed in the plant cell cytoplasm (Lee, L. Y., S. B. Gelvin, et al., 1999).

Structure and function of T-transporter: The T-complex transporter is assembled from 11 proteins encoded by the virB operon and virD4. This transporter mediates transfer of the T-complex to plant cell, conjugal transfer of plasmids into the bacterium and also transfer of some proteins, such as VirE2. The assembly of T-transporter is started by the hydrolysis of the peptidoglycan layer by VirB1 (Baron, C., M. Llosa, et al., 1997). VirB6, VirB7, VirB8, VirB9 and VirB10 are the constituents of the T-DNA transport pore (Kumar, R. B., Y. H. Xie, et al., 2000), and through it VirB2 and VirB5 migrate to the cell surface to form the T-Pilus. Energy to make the assembly and mediate translocation is supplied by the three ATPases (VirB4, VirB11 and VirD4) (Christie, P. J., 1997).

The VirB apparatus delivers the T-complex to the cytoplasm of the plant cell. The carboxyl-terminus of VirD2 contains a nuclear localization signal (NLS) that mediates import of T-strand through the nuclear pore. The VirE2 protein also has a
role in nuclear import. This protein has a nuclear localization site that mediates transport of the T-DNA from the cytoplasm to the nucleoplasm (Citovsky, V., J. Zupan, et al., 1992). For import of short ssDNA, VirD2 is sufficient, but import of long ssDNA requires VirE2. Both proteins, VirE2 and VirD2, are required for efficient import of the T-DNA complex into plant nuclei (Ziemienowicz, A., T. Merkle, et al., 2001).

In the final step, the ssDNA of the T-complex is integrated into plant chromosome. After nuclear import, the T-strand made ds-DNA with the concomitant displacement of VirE2. Most models propose illegitimate recombination for T-strand integration (De Buck, S., A. Jacobs, et al., 1999). VirD2 initiates integration by ligating the 5’ end to an exposed 3’-OH in plant chromosome. VirE2 interacts with nuclear factors (VIP2) that mediate interaction with chromatin and facilitate integration of the T-strand.
Fig (1.7.4): The basic steps in the transformation of plant cells by *A. tumefaciens* (Figure adopted from: Zupan, J., et al., 2000).
1.8. Chemotaxis and motility in *Agrobacterium*

1.8.1. *VirA* and *vir* genes activation

The most important and key molecule that permits *Agrobacterium* to sense environmental conditions suitable for T-DNA transfer is the VirA protein, which is anchored to the cytoplasmic membrane by two transmembrane domains (TM1 and TM2). This protein contains four other domains: an amino-terminal periplasmic domain and three cytoplasmic domains. The cytoplasmic domain include a linker, a kinase, and a carboxyl-terminal region termed the receiver because it contains a region that is homologous to the phosphorylatable receiver domain of VirG. The
The periplasmic domain is required for detection of monosaccharides and has homology with the chemoreceptor Trg (Chang, C. H., and S. C. Winans, 1992).

Genetic analysis showed that the Trg-homologous region of \textit{virA} is not essential for the enhancement of \textit{vir} gene expression by sugars (Toyoda-Yamamoto, A., N. Shimoda, et al., 2000). The kinase domain is critical for tumorigenesis (Jin, S. G., T. Roitsch, et al., 1990). There are differences in \textit{vir} gene induction by a variety of different phenolic compounds which is determined by the \textit{virA} gene of \textit{Agrobacterium}. The \textit{virA} locus determines which phenolic compounds can function as \textit{vir} inducers, suggesting that VirA directly senses the phenolic compounds and responds to them for \textit{vir} activation (Lee, Y. W., S. G. Jin, et al., 1996). The site of interaction of the phenolic compounds with VirA is in the linker domain of VirA (Chang, C. H., and S. C. Winans, 1992). Mutation in the TM2 region adjacent to the cytoplasmic linker abolished induction of \textit{vir} genes. In the linker domain, sites essential for \textit{vir} induction by phenolic compounds were distributed over the entire region (Toyoda-Yamamoto, A., N. Shimoda, et al., 2000).

\textit{virA} and \textit{virG} are the Ti-plasmid loci required for chemotaxis towards acetosyringone, suggesting a multifunctional role for the VirA/G system: at low \textit{vir} inducer concentration, it induces chemotaxis, at high concentration, it effects \textit{vir}-induction (Shaw, C. H., G. J. Loake, et al., 1991). For chemotaxis, \textit{vir} induction does not appear to be required, the constitutive level of \textit{virA/G} expression being sufficient to effect chemotaxis. Under peak chemotaxis condition, \textit{vir} induction is unlikely to occur (Shaw, C. H., A. M. Ashby, et al., 1988).
Monosaccharides, which act as inducers of \textit{vir} genes, are derived from components of the plant cell wall. They are bound by the periplasmic sugar-binding protein, ChvE, which then interacts with the periplasmic region of the membrane-bound VirA molecule of the VirA/VirG sensor–regulator pair to activate transcription of the \textit{vir} regulon (Huang, M. L., et al., 1990, Shimoda, N. A., et al., 1990). Most of the periplasmic domain of VirA is required for the interaction with, or response to, ChvE (Doty, S. L., M. C. Yu, et al., 1996). All \textit{Agrobacterium} strains containing a defective \textit{chvE} are defective in \textit{vir} gene induction (Huang, M. L., et al., 1990). ChvE also
mediates chemotaxis toward various sugars, presumably by interacting in the sugar-bound form with an unidentified membrane-bound receptor (Cangelosi, G. A., R. G. Ankenbauer, et al., 1990). Specific inducing sugars can broaden the specificity of the phenolic compounds which VirA senses. This broadened specificity results from the increased level of ChvE through induction by arabinose via the regulatory protein GbpR. (Peng, W. T., Y. W. Lee, et al., 1998).

A chemotaxis operon has been identified in *A. tumefaciens*. The operon begins with *orf1*, a protein product showing strong sequence identity to Mcps protein, followed by *orf2*, *cheY1*, *cheA*, *cheR*, *cheB*, *cheY2*, *orf9* (which shows the strong similarity with *cheD* of *Bacillus subtilis*) and *orf10*. Complete deletion of this operon results in severely-impaired chemotaxis. *cheW* is not found in the che operon (Wright, E.L.; et al., 1998) but elsewhere in *A. tumefaciens* genome (Wood, D. W., J. C. Setubal, et al., 2001). *orf2* has sequence identity with *cheZ*.

![Fig (1.8.2): Map of *A. tumefaciens* chemotaxis operon.](image)

1.8.2. Motility in Agrobacterium

For motility, *A. tumefaciens* produces flagella that are circumthecally arranged, near one end rather than ringing the middle portion of the bacilliform cell, and they are not peritrichously situated (Chesnokova, O., J. B. Coutinho, et al., 1997). The
flagella rotate unidirectionally, clockwise, driving the bacterium at 60 μm/s (Shaw, C.H., 1991). This type of flagellar arrangement might play a role in facilitating bacterial chemotaxis and expedite the infection process because cells are frequently attached to plant cells in a polar fashion (Smith, V.A., et al., 1978).

Motility by *A. tumefaciens* plays a critical role in the early infection process, but probably it does not influence virulence. Direct inoculation of plants showed that non-motile mutants were equally as virulent as the parent strains (Bradley, D. E., C. J. Douglas, et al., 1984). Another group reported chemotaxis by *A. tumefaciens* towards plant phenolics such as acetosyringone, and observed that non-motile mutants were non-chemotactic and incapable of colonising the roots of young potato seedlings (Shaw, C. H., G. J. Loake, et al., 1991). These observations would suggest that motility, and presumably flagella, may be a necessary component for ecological fitness in natural environment (Chesnokova, O., J. B. Coutinho; et al., 1997). The size and weight of the tumors induced by mutant strains (with a deletion of *flaABC* of motility gene region) were consistently smaller than those induced by the wild type (Chesnokova, O., J. B. Coutinho, et al., 1997).

Genes concerned with motility have been identified (Deakin, W.J., et al., 1997., 1999., Chesnokova, O., J. B. Coutinho, et al., 1997). These genes are clustered in *Agrobacterium*. The cluster contains genes concerned with filament and basal body structure, assembly and export, motion and switching (Deakin, W.J., et al., 1999). The *Agrobacterium* cluster shows considerable similarity with that from another member of the α- subgroup of Bacteria, *Sinorhizobium meliloti* (Sourjik, V., W. Sterr, et al., 1998).
1.9. Aims of this work

This project aims to describe how *Agrobacterium tumefaciens* processes sensory information and to determine which cytoplasmic components of the chemotaxis operon have a major role in signal transduction in the chemosensory pathway. Another aim is to find possible MCP genes in *A. tumefaciens* and to investigate the role of this protein(s) in the acquisition of sensory information from chemoattractants.
Chapter 2

Materials and Methods
2. Materials & Methods

2.1. Materials

All inorganic chemicals were of Analar quality and purchased from BDH Chemical Ltd., Poole, Dorset, U.K., unless otherwise specified.

All organic chemicals and enzymes were from Sigma Chemicals plc., Poole, Dorset, U.K., unless otherwise specified.

Lab M nutrient broth (no.2) and Lab M nutrient Agar were from Amersham Ltd., Bury, U.K..

Nylon hybridisation transfer membranes and radiochemicals were from Amersham Biosciences U.K. Limited, Amersham Place, Little Chalfont, Bucks HP7 9NA, U.K.

Bacteriological Agar (no.1) and yeast extract were from Oxoid Ltd, Basingstoke, Hants, U.K..

Trypticase peptone was from BBL, Cockeysville, U.S.A..

Restriction endonucleases, T4 DNA ligase, Klenow fragment enzyme, Taq polymerase, corresponding buffers, X-gal, IPTG and λ-DNA were from NBL fermentas, Cramlington, Northumberland, U.K., Boehringer Mannheim Ltd, Lewes, U.K., or Helena Biosciences, Tyne & Wear, U.K.
Agarose was from BRL, Gaithersburg, U.S.A.

Metaphor agarose was from FMC Bioproducts, Rockland, U.S.A.

Ficoll 400 and Sephadex G-50 were from Pharmacia fine chemicals, Uppsala, Sweden.

Fuji RX-100 x-ray film was from Fuji Photo film Co, Ltd., Japan. Polaroid film was from Polaroid Ltd., St. Albans, Hertfordshire, U.K.

Filter paper (3MM) and laboratory sealing film were from Whatman International Ltd., Maidstone, U.K.

Nitrocellulose discs (25mm, 0.22μm pore size) were from Schleicher & Schuell, Postfach 4, D-3354, Dassel, Germany.

Oligonucleotides for use in PCR analysis were from MWG-Biotech, Germany and PE-Applied Biosystems U.K., Cheshire, U.K.

Nitrocellulose discs (13mm, 0.8μm pore size) for use in chemotaxis assay were from Scientific Laboratory Supplies Ltd, Wilford Industrial Estate, Nottingham, U.K.

IsotonII for use in Coulter Counter Multisizer II was from Coulter Electronics Limited, Northwell Drive, Luton, U.K.
2.2. Bacterial strains

2.2.1. *E. coli* Strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHSa. supE44</td>
<td>supE ΔlacU169 (f80 lacZΔM15) hsdR17</td>
<td>Woodcock et al. (1989)</td>
</tr>
<tr>
<td></td>
<td>RecA1 endA1 gyrA96 thi-1 relA1</td>
<td></td>
</tr>
</tbody>
</table>

2.2.2. *Agrobacterium tumefaciens* strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C58C1</td>
<td>Wild-type chemotaxis, Ti-, Rif+</td>
<td>VanLarebeke et al. (1974)</td>
</tr>
<tr>
<td>C1-delY1</td>
<td>Chemotaxis mutant-created by in-frame deletion of cheY1, Rif+</td>
<td>This work</td>
</tr>
<tr>
<td>C1-delY2</td>
<td>Chemotaxis mutant-created by in-frame deletion of cheY2, Rif+</td>
<td>This work</td>
</tr>
<tr>
<td>C1-delB</td>
<td>Chemotaxis mutant-created by in-frame deletion of cheB, Rif+</td>
<td>This work</td>
</tr>
<tr>
<td>C1-delR</td>
<td>Chemotaxis mutant-created by in-frame deletion of cheR, Rif+</td>
<td>This work</td>
</tr>
</tbody>
</table>

2.3. Plasmid

2.3.1. Plasmid vectors

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBluescriptSK+</td>
<td>2.96 Kb Cloning vector, Amp®</td>
<td>Lab stock</td>
</tr>
<tr>
<td>pJQ200uc1</td>
<td>Suicide vector, Gm®</td>
<td>Quandt and Hynes (1993)</td>
</tr>
<tr>
<td>pJQ200mp18</td>
<td>Suicide vector, Gm®</td>
<td>Quandt and Hynes (1993)</td>
</tr>
<tr>
<td>pK18mobSacB</td>
<td>Allelic exchange vector, Kan®</td>
<td>Schafer et al. (1991)</td>
</tr>
</tbody>
</table>
2.3.2. Recombinant plasmids containing cloned chemotaxis genes

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDUB1911</td>
<td>C58C1 cosmid library clone containing BamHI fragment from chromosomal DNA in the vector pLAFR3, Tc®</td>
<td>Lab stock</td>
</tr>
</tbody>
</table>

2.3.3. Recombinant SK+ plasmids containing subcloned *A. tumefaciens* chemotaxis genes

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pELW6</td>
<td>pBluescript SK+ containing 1.7Kb EcoRI fragment from pDUB1911</td>
<td>Wright, E. L., 1999</td>
</tr>
<tr>
<td>pELW1</td>
<td>pBluescript SK+ containing 4KbKb HindIII fragment from pDUB1911</td>
<td>Wright, E. L., 1999</td>
</tr>
<tr>
<td>pELW2</td>
<td>pBluescript SK+ containing 4KbKb HindIII fragment from pDUB1911</td>
<td>Wright, E. L., 1999</td>
</tr>
<tr>
<td>pELW61</td>
<td>1309 bp SacII fragment isolated from pELW6 and subcloned into pBluescript sk+</td>
<td>This work</td>
</tr>
<tr>
<td>pELW62</td>
<td>363 bp SacII fragment isolated from pELW6 and subcloned into pBluescript sk+</td>
<td>This work</td>
</tr>
<tr>
<td>pELW63</td>
<td>1190 bp EcoRV fragment isolated from pELW6 and subcloned into pBluescript sk+</td>
<td>This work</td>
</tr>
<tr>
<td>pELW64</td>
<td>1373 bp XbaI/HindIII fragment isolated from pELW6 and subcloned into pBluescript sk+</td>
<td>This work</td>
</tr>
<tr>
<td>pELW65</td>
<td>547 bp HincII fragment isolated from pELW6 and subcloned into pBluescript sk+</td>
<td>This work</td>
</tr>
<tr>
<td>SK+/cheR</td>
<td>1827bp PstI fragment from pELW1 and subcloned into pBluescriptsk+</td>
<td>This work</td>
</tr>
<tr>
<td>SK+/cheB</td>
<td>1935bp RsaI fragment from pELW1 and subcloned into pBluescriptsk+</td>
<td>This work</td>
</tr>
</tbody>
</table>
2.3.4. Recombinant pK18mobsacB plasmids containing subcloned *A. tumefaciens* chemotaxis genes

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pK18/delY1</td>
<td>490bp EcoRI/HindIII fragment from SK/delY1 ligated into pK18mobsacB vector</td>
<td>This work</td>
</tr>
<tr>
<td>pK18/delY2</td>
<td>990bp HindIII/XbaI fragment from SK/delY2 ligated into pK18mobsacB vector</td>
<td>This work</td>
</tr>
<tr>
<td>pK18/delR</td>
<td>900bp EcoRI/XbaI fragment from SK/delR ligated into pK18mobsacB vector</td>
<td>This work</td>
</tr>
<tr>
<td>pK18/delB</td>
<td>750bp HindIII/XbaI fragment from SK/delB ligated into pK18mobsacB vector</td>
<td>This work</td>
</tr>
</tbody>
</table>

2.3.5. Plasmid used in mutant construction

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characterization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRK2013</td>
<td>Helper plasmid for conjugation into A. tumefaciens, Km®</td>
<td>Figursky and Helinski (1979)</td>
</tr>
<tr>
<td>pDUB2033</td>
<td>Neomycin resistance cassette, Amp®, Neo®</td>
<td>Lab stock</td>
</tr>
</tbody>
</table>
2.4. Bacterial growth, media, condition and procedure

Lab M nutrient broth no.2 (LM-broth):

25g made up to 1 litre with distilled water gives final concentration of 5g/l beef extract, 10g/l balanced peptone no.1, 5g/l NaCl pH: 7.5 ±0.2.

For swarm plates bacteriological agar was added at a concentration of 0.2-0.35%.

Lab M nutrient agar (LM-agar):

28g made up to 1 litre with distilled water, gives final concentration of 5g/l peptone, 3g/l beef extract, 8g/l NaCl, 12-15g/l Agar no.2, pH: 7.3±0.2.

MinA+Glucose:

20ml 5X MinA salts, 2ml 10% Glucose, 0.1ml 1M MgSO₄ made up to 100ml with distilled water (5X MinA salts contains 52.5g K₂HPO₄, 22.5g KHPO₄, 1.0g (NH₄)₂SO₄ and 2.5g Sodium citrate, 2H₂O per 1000ml).

If required, bacteriological agar was added to final concentration of 1-1.2% for solid plates.

Chemotaxis media:

1ml 0.1M EDTA and 10ml 1M K₂HPO₄ (pH: 7.0) made up to 1 litre with distilled water.

Antibiotics were added to sterile media to give a final concentration of:

For *A. tumefaciens*: Erythromycin 100μg/ml, Kanamycin 50μg/ml, Neomycin 100μg/ml, Rifampicin 100μg/ml and Tetracycline 15μg/ml.
For *E. coli*: Ampicillin 50\(\mu\)g/ml, Gentamycin 10\(\mu\)g/ml, Kanamycin 50\(\mu\)g/ml, Neomycin 100\(\mu\)g/ml and Tetracycline 15\(\mu\)g/ml.

For selecting against the inactivation of the \(\beta\)-galactosidase gene, by insertion of DNA fragments into the multiple cloning sites of pBluescriptSK+ and other plasmids, 50\(\mu\)l of 20mg/ml X-gal (in dimethyl formamide) were spread over the surface of agar plates using sterile glass spreader.

All cultures were sterilized by autoclaving at 20PSI for 20 minutes, unless otherwise specified.

Liquid cultures were inoculated with a flamed loopful or with 5\(\mu\)l of overnight culture using sterile tip.

Solutions and bacterial suspensions were spread onto agar plates using a glass spreader which had been sterilized by flame and then cooled with 70% ethanol.

Bacterial colonies were inoculated into the centre of swarm plates using sterile needle (stab inoculation), or 3-5 \(\mu\)l of bacterial suspension was placed on agar plates as a spot with sterile tip.

Liquid bacterial cultures were incubated on an orbital shaker at about 200rpm at 37°C for *E. coli* and 28-30°C for *A. tumefaciens* strains.
Short-term (up to 2 months) stocks of cultures were kept at 4°C. For long-term storage, stocks were made in liquid media, glycerol was added to final concentration of 15-20% and after quick freezing in liquid nitrogen, kept at -80°C.

All glassware, plasticware and other equipment was sterilized by autoclaving at 15-20PSI for 15-20 minutes. Otherwise solutions were filter-sterilized through a 0.22μm nitrocellulose filter into sterile container.
2.5. Isolation of DNA

2.5.1. Alkaline lysis plasmid minipreps

A single colony of bacteria was grown for overnight in 5 ml sterile LM broth media containing the appropriate antibiotic selection. The cells were harvested by centrifugation in a microfuge at full speed (14000 rpm) for 1.5 minutes. The supernatant was discarded and the pellet was resuspended in 200 µl of ice-cooled solution I:

Solution I: 50mM glucose, 25mM Tris.Cl (pH 8.0), 10mM EDTA (pH 8.0)

200µl of solution II was added and the contents mixed by gentle inversion.

Solution II: (prepared fresh) 1.0 ml of 0.4 M NaOH and 1.0 ml of 2% SDS

Then 200µl of ice-cooled solution III was added and shaken gently to mix.

Solution III: 1.15 ml glacial acetic acid, 2.85 ml distilled water, 6 ml 5M potassium acetate, pH: 4.8

The tube was then centrifuged in a microfuge at 14000 rpm for 5 min. The supernatant was transferred to a clean tube and centrifuged for 1 minute. The supernatant was transferred to new eppendorf tube, 2 volumes of absolute ethanol (100%) were added at -20°C, and the solution was left on ice for at least 15 minute to enhance the precipitation of the DNA. The tubes were centrifuged at full speed for 15 minutes at 4°C. Then the ethanol was poured off and 1 ml of 70% ethanol (-20°C) was added and the sample was centrifuged at room temperature for 5 minutes. The ethanol was removed from the tube, and the pellet was left at 37°C to dry for a few minutes. The final DNA pellet was resuspended in 50µl of T.E. Buffer (containing RNAase to final concentration of 20µg/ml).

T.E. Buffer: Tris.Cl (pH 7.5) 1.0mM, EDTA (pH 8.0) 0.01 mM
(When necessary plasmid DNA was isolated and purified with Qiagen Qiaprep spin columns, according to the manufacturer’s instruction).

2.5.2. Isolation of chromosomal DNA

A single colony of bacteria was grown to logarithmic phase in 5 ml LB medium containing appropriate antibiotic. Cells were collected in 1.5 ml eppendorff tubes and pellets were left at -20°C for 30 minutes. The pellet was resuspended in 200μl of TE buffer and incubated with 8μl lysozyme (10μg/ml) at 37°C for 30 min. Then the cells were lysed by addition of 40μl of 4M sodium perchlorate, 24μl of 10% SDS and 8μl of proteinase K (20μg/ml stock) and after mixing by inverting, incubated at 45°C. After 2 hr the DNA was precipitated by adding 2 volumes ethanol (100%, -20°C), incubated at -20°C for 30 minutes and centrifuged for 5 minutes (13000 rpm, 4°C). The ethanol was discarded, the pellet was washed with 1ml 70% ethanol, dried for a few seconds and resuspended in 500μl TE buffer.

The DNA was mixed with an equal volume of Phenol: chloroform: isoamyl alcohol (25:24:1), inverted at room temperature to mix completely then the solution was centrifuged for 3 minutes or until the three phases were separated completely. The aqueous layer transferred to a clean tube and this procedure was repeated three times; each time the aqueous layer was transferred to a clean tube followed by extraction once with chloroform:isoamyl alcohol (24:1). The DNA was precipitated by adding 2 volumes of ethanol (100%) and 0.1 volume 3M sodium acetate (pH: 4.8), and then incubated at -20°C overnight. It was subsequently centrifuged for 5 minutes, washed with 1ml 70% ethanol and left at 37°C until dried completely, and then
resuspended in 50\(\mu\)l TE buffer (with RNAase (10mg/ml stock)) to a final concentration of 20\(\mu\)g/ml.

2.5.3. Preparation and purification of salmon sperm DNA

100mg of highly polymerized DNA from salmon sperm (Sigma) is dissolved in 10 ml sterile distilled water in a sterile 50ml polypropylene centrifuge tube. 1.28ml of 0.25M EDTA and 4.8ml of 1M sodium hydroxide was added and the solution has boiled in a water bath for 20min. Then tube was cooled in ice, and 1.1ml of 2M Tris-Cl (pH: 7.5), 4.8ml of 1M hydrochloric acid were added and well mixed. This was followed by addition of 10ml phenol/chloroform/isoamyl alcohol (25:24:1), and the tube was shaken well (to mix completely to make one phase), then vortexed and centrifuged at full speed for 10 min. The aqueous layer was collected and transferred to new tube, and 2ml 3M sodium acetate (pH: 5.6) and 40ml 100% ethanol (-20\(^\circ\)C) was added. The solution was left overnight at -20\(^\circ\)C, or for 1hr at -80\(^\circ\)C.

The mixture was subsequently centrifuged (13000rpm, 4\(^\circ\)C, 15min), the ethanol was discarded and pellet was washed 2-3 times with 70% ethanol. The pellet was dried, redissolved in 15-20ml of TE buffer and stored at -20\(^\circ\)C.

2.6. DNA manipulation

2.6.1. Phenol:Chloroform extraction of DNA

The DNA was usually suspended in 500\(\mu\)l TE buffer. Then to the suspension an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1) was added, mixed
by inverting until the suspension become one phase, and then the phase were separated by centrifugation. It was repeated three times and each time the aqueous layer was transferred to the clean tube. The DNA was then extracted once with chloroform:isoamyl alcohol (24:1), precipitated by addition of 2 volumes of ethanol (100%) and 0.1 volume 3M sodium acetate (pH: 4.8).

After overnight incubation at \(-20^\circ C\) the sample was centrifuged (13000rpm, 5min, 4°C), the ethanol was discarded and the pellet was washed with 1ml 70% ethanol. Then the ethanol was removed, the DNA dried and resuspended in 50μl TE buffer containing RNAs (10mg/ml) to a final concentration of 20μg/ml. The sample was stored at \(-20^\circ C\).

2.6.2. Spectrophotometric quantification of DNA solution

A dilution of 1:50 of the DNA samples (dissolved in 50μl of TE buffer) was made in sterile distilled water and the absorbance was read at 230nm, 260nm and 280nm with a Pu8740 UV/vis scanning spectrophotometer (Philips), using sterile distilled water as blank. As an \(A_{260}\) of 1.0 is equivalent to a concentration of 2.5 μg /μl of double stranded DNA and according with it sample DNA concentration could be calculated.

2.6.3. Restriction endonuclease digestion of DNA

The following procedure was used for a typical reaction containing 1 μg of DNA. Plasmid DNA was digested in a total volume of 50μl, with 0.1 volume of 10X restriction endonuclease buffer, 1 μg of DNA, 1-3 units of restriction endonuclease
enzyme and sterile distilled water was added to the final volume. The components were mixed well and the reaction was incubated at the recommended temperature (usually 37°C) overnight.

If more than one enzyme was to be used in the same reaction and the recommended buffers were different, the Y+/tango buffer (MBI Fermentas) was used according to the manufacturer’s instruction. The reaction was stopped by addition of 1µl of EDTA (0.5M, pH 8.0) or incubation at 65°C for 20 minutes.

2.6.4. Agarose gel electrophoresis

Gel electrophoresis of DNA was usually carried out using a minigel (77 x 55 mm, 60 ml vol.). Minigels were run in Pharmacia gel apparatus GNA-100 electrophoresis tanks. The concentration of agarose could be varied depending on the size of DNA. Usually a 0.7- 1.5% agarose gel was used. The required amounts of agarose were mixed and dissolved in 1×TAE buffer by heating in a microwave oven.

1×TAE Buffer: - [0.04 M Tris-Acetate, 0.001 M EDTA (pH 8.0)]

The solution was cooled to 60°C, and the agarose poured into the gel mould with a suitable well comb in place. When the gel had set, it was put in a tank and covered with 1×TAE buffer.

The samples and size marker were mixed with 6×loading buffer (bromophenol blue 0.25%, xylene cyanol 0.25%, glycerol 30%), and 20-30µl of the mixture was slowly pipetted into the slots of the submerged gel using a disposable micropipette. Electrophoresis was carried out at 5-10 V / Cm for the required amount of time. The gel was then stained with ethidium bromide (10mg/ml stock solution) to final concentration of 0.5µg/ml for 30-60 minutes. Excess ethidium bromide was removed.
by washing the gel in distilled water for 10-15 minutes. DNA fragments within the gel were visualised on a transilluminator and photographed with a Polaroid RP4 camera, using a red filter onto Polaroid 667 film, or recorded using Gel Doc 2000 (Bio-Rad). The size markers used were λ- DNA digested with HindIII or HindIII/EcoRI.

2.6.5. **Isolation of DNA fragments from agarose gel using silica fines**

The required DNA bands were cut out from an agarose gel using a sterile razor blade and placed into an eppendorf tube. 800 μl of sodium iodide solution [90.8g sodium iodide and 1.5g Na₂SO₃ were dissolved in 100ml of distilled water, filter sterilised and saturated with 0.5g Na₂SO₃ (stored at 4°C in dark bottle to protect it from the light) was added and the tube incubated in a water bath at 70°C for about 5 minutes or until the agarose has completely melted. The tube was mixed by inversion and allowed to cool to room temperature for 5 minutes. A suspension of silica fines (50% slurry in water) was vortexed and 5μl was added to DNA solution. The solution was mixed for 1 minute and left for 10 minutes at room temperature with inverting continuously.

The tube was centrifuged for 30 seconds, the supernatant discarded and the pellet washed with 1ml 70% ethanol. The solution was centrifuged for 30 seconds, the 70% ethanol was removed and pellet was dried using tissue or by placing it at 37°C with lied open. The silica fines were resuspended in 30μl TE buffer and incubated at 37°C for 10 minutes with occasional shaking. The samples were centrifuged for 30 second and the supernatant containing the DNA was transferred to new sterile tube. The silica fines were then resuspended in 20 μl TE buffer and incubated as before.
Then, the tube was centrifuged for 30 seconds and supernatant containing the DNA added to other 30 μl of sample to give a total volume of 50μl of DNA solution.

Preparation of the silica fines:

2.5ml of silica was resuspended in distilled water to give a total volume of 5ml. The suspension was stirred for 1 hour and left to settle for another one hour. The suspension was centrifuged at 7000rpm for 10 minute, the supernatant was discarded and the pellet was resuspended in 1.5 ml of distilled water plus 1.5 ml of nitric acid. The suspension was then heated to 98°C and allowed to cool to room temperature. The silica fines were then repeatedly washed with sterile distilled water until the pH was greater than 5.5. Silica fines were stored at 4°C as a 50% slurry in sterile distilled water.

(When necessary the DNA fragments were isolated from the gel using QIAEX II Agarose gel extraction Kits according manufacturer’s instruction).

2.6.6. Ligation of DNA fragments

T4 DNA ligase was used to ligate DNA fragments with compatible cohesive or blunt termini. In a microcentrifuge tube, 10-15μl of vector DNA and foreign DNA to be inserted, were digested with restriction enzymes, when necessary dephosphorylated using alkaline phosphatase, mixed at a ratio (insert: vector) of 3:1 (cohesive termini) or 1:1 (blunt end) with maximum 300-400ng DNA. 0.1 volume of 10x ligase buffer, 2μl polyethylene glycol (to increase the rate of ligation of blunt ended DNA) and sterile distilled water up to 20μl were added, then 2u (for sticky
ended) and 4u (for blunt ended) T4 DNA ligase was added. The tube was incubated overnight at 4°C (sticky ended) or 24-48hr at 16°C (blunt ended). 3-10μl of the ligation mix was then used immediately by adding to competent cells, or the T4 DNA ligase was inactivated by heating at 65°C for 10 minutes.

2.6.7. Dephosphorylation of DNA fragment

To reduce self-ligation of vector restricted with enzymes giving blunt ends, the vector was usually dephosphorylated before mixing with DNA fragment. 5μl of 10× reaction buffer (0.1M Tris-Cl pH: 7.5, 0.1M MgCl2) was added to 10-40μl of DNA solution, followed by sterile distilled water to a total volume of 49μl and 1u/μl alkaline phosphatase. The reaction mixture was incubated at 37°C for 30 min or 3hr at room temperature and then the reaction was stopped by heating at 85°C for 15 min.

2.6.8. Filling- in Recessed 3'-Termini

To the 30μl of DNA (0.1- 4μg) digested with enzyme the following components were added:

- 10× reaction buffer 3.5μl
- 4dNTPs 1μl (0.05mM final concentration)
- Klenow fragment 0.5μl

The reaction mixture was incubated at 37°C for 10 minutes and reaction was stopped by heating at 75°C for 10min.
2.6.9. Polymerase chain reaction (PCR)

All polymerase chain reactions were performed in a Perkin-Elmer thermal cycler. Reaction was carried out in a total volume of 25μl and the following components were added in order:

1. dH₂O to make a final volume of 25μl
2. 10× reaction buffer 2.5μl
3. dNTPs 2.0μl (each at 1mM)
4. 5' primer 1.0μl (10pmol/μl)
5. 3' primer 1.0μl (10pmol/μl)
6. MgSO₄ 3.0μl (2.5mM)
7. Template DNA Y* μl
8. Taq polymerase** 0.3μl (5u/μl)

*Y= The amount of template DNA was varied, it is usually 100ng for plasmid DNA and 500-1000ng for genomic DNA.

**= Taq polymerase usually was added after the initial denaturation step if it was longer than 3 minutes.

Primer design:

Primers were generally designed to contain an equal number of G+C and A+T, usually 10 of each to make sure the Tm of both primers are the same. Furthermore, care was taken to ensure the primers would not self anneal or hybridise to each other.
When required, the appropriate restriction enzyme target sequences was usually added to 5'-end of each primers followed by 2-5 extra bases.

PCR protocol:

The temperatures and times used in PCR were as follow:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Denaturation</td>
<td>94°C</td>
<td>2-5 min</td>
</tr>
<tr>
<td>Denaturation</td>
<td>94°C</td>
<td>45 sec</td>
</tr>
<tr>
<td>15-20 cycle:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annealing*</td>
<td>55-65°C</td>
<td>60 sec</td>
</tr>
<tr>
<td>Extension**</td>
<td>72°C</td>
<td>5 min</td>
</tr>
<tr>
<td>Final extension</td>
<td>72°C</td>
<td>10 min</td>
</tr>
</tbody>
</table>

* The annealing temperature varied depending on the Tm of each pair of primers and was established empirically.

The following formula was used to determine the Tm of primers:

\[
Tm = [(\text{No. G+C}) \times 4 + (\text{No. A+T})\times 2] - 5°C
\]

** The extension time depended on the length of PCR product, usually 1 min for 1 Kb when the Taq polymerase was used.

- Before starting the PCR 25 μl of mineral oil was added to the top of the mixture.
2.7. Transformation of *E. coli*

2.7.1. Preparation of competent cell (Hanahan methods)

5 ml of LM broth was inoculated with *E. coli (DH5α)* and incubated overnight at 37°C. A dilution of 1:100 was made in fresh LM broth and the cells grown for 2.5-3 hour or until to OD600 of 0.3-0.35 or OD550 of 0.45-0.55. The culture was aseptically transferred to a sterile and ice-cold propylene tube, chilled for 5 minutes on ice, then cells were centrifuged at 4000rpm for 7 minutes at 4°C. The supernatants were discarded and the cell pellets resuspended in 40% of the original culture volume of solution A.

solution A:
- 30mM potassium acetate,
- 100mM rubidium chloride,
- 10mM calcium chloride
- 50mM manganese chloride and 15% glycerol.

The solution was adjusted to pH 5.8 with 0.2M acetic acid, filter sterilised and stored at 4°C. The tubes were incubated on ice for 5 minutes and cells were recovered by centrifugation as before. The supernatants were poured off and the pellets resuspended in 4% of the original volume of solution B:

Solution B:
- 10mM MOPS
- 75mM CaCl₂
- 10mM RbCl₂
- 15% glycerol

The solution was adjusted to pH 6.5 with KOH, filter sterilised and stored at 4°C. The tubes were left on ice for 15 minutes, then suitable volumes (100-200μl)
were added to pre-chilled eppendorf tubes, frozen in liquid nitrogen and stored at -80°C. These cells can be used for transformation for at least 3 months.

2.7.2. Transformation procedure

Competent cells were removed from the -80°C freezer, thawed and then placed on ice for 10 minutes. DNA was added up to 5% volume of the competent cells with pre-cooled sterile tips, and the tubes stored on ice for at least 15 minutes. The cells were heat shocked in a water bath at 42°C for 90 seconds then rapidly transferred to an ice bath. Cells were chilled for 2-5 minutes and then 800μl of LM broth were added. The cultures were warmed to 37°C in a water bath, and then the tubes were transferred to a shaking incubator for 1 hour at 37°C.

Finally an appropriate volume of transformed competent cells, usually 10% and 90%, were spread onto selective agar plates with a sterile glass spreader. The medium was incubated at a suitable temperature until bacterial colonies appeared.

2.7.3. PCR product cloning

Some polymerases such as Taq-polymerase have specific extension activities. This characteristic will decrease ligation and cloning efficiencies of the PCR product. Therefore, unless it is known which base is extended onto the end of the completed PCR molecules, blunt-ended cloning should be used. With the one-tube PCR cloning method, polishing and ligation is completed in one step. The components were as follows:
- 10μl of the purified PCR product
- 2μl 10× T4-DNA ligase buffer
- 2μl T4-DNA ligase (2u/μl)
- 5μl T4-DNA polymerase (1u/μl)
- 0.5μl dNTPs (2.5mM)

The reaction mixture was incubated for 1-2 days at 16°C and then was used in transformation procedure directly.

2.8. DNA Hybridisation procedure

2.8.1. Radio labelling of DNA fragment

30-50 ng of the DNA fragment (28μl total volume) was boiled for 5 min and immediately held on ice for 2 min. The components for radio labelling were as follows:

- 10μl OLB* buffer
- 2μl BSA (10mg/ml)
- 5μl P32-dCTP (50 μCi)
- 2μl klenow enzyme (2u/μl)
- Sterile distilled water (up to 50μl)

The mixture was incubated at room temperature overnight and the reaction was stopped by adding 5μl of 10% SDS.

* Preparation of OLB buffer:
Solution O: (1.25M Tris-Cl, 0.125M MgCl₂), pH: 8.0

Solution A: To 1ml of solution O added the following components:
- 18μl 2- mercaptoethanol,
- 5μl dATP, 5μl dGTP, 5μl dTTP [each as a 0.1M stock in (3mM Tris-Cl, 0.2mM EDTA, pH: 7.0)] store at -20°C

Solution B: 2M HEPES, titrated to pH: 6.6 with 4M NaOH. Store at -20°C

Solution C: Hexadeoxyribonucleotides in TE buffer at 90 OD units/ml. Store at -20°C

Mix solution A: B: C in a ratio of 100: 250: 150 to make OLB buffer, store at -20°C

2.8.2. Purification of probe using Sephadex G-50 chromatography

A 10% suspension of Sephadex G-50 was prepared in sterile distilled water. The solution was vortexed completely, washed with sterile distilled water several times to remove unsettled Sephadex particles, and stored at room temperature under distilled water. To make a column, the bottom of the 10ml plastic pipette was blocked by sterile cotton wool and Sephadex solution was added to make a column of about 10cm. Immediately afterwards, the column buffer was added to fill the column.

Column buffer: - (0.15M NaCl, 10mM EDTA, 0.1% SDS, 50mM Tris-Cl, pH: 7.5)

Prior to loading the labelling reaction onto the column, 200μl of column buffer was added and the labelling mixture was pipetted onto the column. The purified labelled
DNA was collected at the bottom of the column from unincorporated sample and stored at -20°C until required.

2.8.3. Preparation of Southern blots

The DNA samples were digested with suitable restriction enzymes, electrophoresed in a 0.7-1% agarose gel, and after staining with ethidium bromide the gel was photographed with the ruler side beside it to estimate the correct size of the fragments after hybridisation. Gels known to have DNA fragments greater than 10kb were soaked in 0.25M HCl for 10-15 minutes or until the colour of loading buffer changed to yellow, and washed twice with distilled water. After that, the gel was soaked in denaturation buffer with shaking for 30 min and rinsed twice with distilled water.

Denaturation buffer: - 1.5M HCl, 0.5M NaOH

The gel was then soaked in neutralization buffer for 30 min with shaking. After washing the gel twice with distilled water the blot was set up.

Neutralization buffer: - 1.5M NaCl, 0.5M Tris-Cl pH: 7.2, 0.001M EDTA

A reservoir of 20×SSC was set up, a platform was placed over this reservoir and three pieces of Whatman 3mm paper (pre soaked in 20× SSC) put on the platform with its ends dipped into the reservoir.

The gel was placed on the 3mm paper (wells uppermost) and a piece of Hybond-N nylon membrane was placed on top of it (the same size of the gel and pre-soaked in 20×SSC). Any air bubbles between gel and nylon were removed carefully then 3 sheets of Whatman paper were placed on top (the same size of the gel and pre-soaked in 20×SSC). Finally several paper towel (10 cm high) were placed on top,
stock covered with a glass plate and a 500g weight placed on top of it. The blot was left for at least 16hr.

20×SSC: - 3M NaCl, 0.3M Na Citrate pH: 7.0

After transfer, all the sheets above the nylon membrane were removed carefully, the position of the wells marked on the membrane, and the membrane was washed in 2×SSC. The nylon membrane was air dried for up to 1hr and then wrapped in cling film. The membrane was exposed to UV light for 2 minutes (each side) to fix the DNA fragments to the membrane.

2.8.4. Hybridization of Radio-labelled probes to Southern blots

Hybridization reactions were carried out using Techne hybridization tubes in a Techne Hybridizer HB-1 oven. The blots were put inside the hybridization tube and 200μl of pre-hybridization solution was added per cm² of filter (usually 25-30ml per blots).

Pre- hybridization solution: - 5×SSC,

- 5× Denhardt's solution (1% ficoll, 1% polyvinyl pyrrolidone, 1% BSA fractionV)
- 0.5% SDS
- 0.1% pyrophosphate
- 100μg/ml denatured Salmon Sperm DNA

The tubes were incubated at 65°C for 2hr with rotation in oven. At the end of this period 100- 200μl of the labelled probes (denatured by boiling for 5 min and immediately put in an ice bath for 2 minutes) were added to the tube. The tube was incubated in oven at 65°C for at least 12hr. The pre-hybridization solution was poured
off and the blots were washed within the tube twice with 2× SSC, 0.1% SDS for 10 min at room temperature followed by one wash in 0.1× SSC, 0.1% SDS for 15 min at 65°C or until ≤20 cpm was obtained by Geiger counter. The filter was wrapped in cling film.

2.8.5. Detection of hybridization blot

The labelled blots were placed onto Whatman paper and put inside the film holder with the intensifying screen on top of the filter. In the dark room a sheet of X-ray film was either pre-flashed once to increase its sensitivity, or without pre-flash, placed between the intensifying screen and the blot. Exposure was carried out at -80°C for varying amount of time depending on the probes and the counts obtained. The exposed films were developed using the automatic X-ray film processor.

2.8.6. Stripping blots for reuse

Blots were stripped by adding a boiling solution of 0.1% SDS and were then allowed to cool to room temperature. Stripping was usually allowed to proceed for at least 12hr, after that the filter was wrapped in cling film and exposed again to check that probes were removed completely.

2.9. DNA Sequencing

Sequencing of the DNA samples were done by DNA sequencing service. DNA sequencing was carried out with an Applied Biosystems 373A or 377A DNA
sequencer, using double stranded DNA templates and dye terminator chemistries. Usually, the universal 21m13 forward and reverse primers were used. The DNA Strider programme was used to determine the Restriction endonuclease and ORF maps of DNA fragments. Nucleotide sequence searches were carried out using Blastn programme. Amino acid sequences were analysed by BlastX for homology with protein database programmes.

2.10. Mutagenesis

2.10.1. Gene replacement mutagenesis

Gene replacement mutagenesis was carried out according to the Quandt & Hynes method (Quandt & Hynes, 1993). Three suicide vectors were used in this method, pJQ200uc1, pJQ200mp18 and pJQ200SK. These vectors contain the following elements: The RP4 origin of transfer (which allows the mobilization of the constructs into most Gram-negative bacteria), sacB gene of Bacillus subtilis as a source of positive selection for loss of the vector, and the lacZα gene for easy identification of cloned fragments. The only difference between these vectors is in the restriction enzymes available in their multiple cloning sites (MCSs), thus allowing the simplified cloning of DNA fragments.

The pJQ200uc1 was used in this work to carry out gene replacement experiments leading to the insertional inactivation of chemotaxis genes. Genes to be mutated were ligated into pJQ200 vector. The 1.2kb EcoRI fragment of pDUB2033, containing a neomycin resistance cassette, was then ligated into the gene and positive constructs obtained by selection on plates containing gentamycin and neomycin.
2.10.2. In-frame deletion method

In-frame deletion mutagenesis was carried out according to the Schafer method (Schafer, A., et.al., 1994). According to this method by deleting single gene, all other genes are left correctly in-frame, hence allowing phenotypic studies of the effects of mutating a single gene. The basic vector used in this work was the allelic exchange vector pK18mobsacB. The vector constructed from mobilizable pK18 and contains the \textit{Km} gene, a \(\beta\)-galactosidase gene for identification of correct transformants, genetically modified \textit{sacB} gene, which confers sucrose-sensitivity to bacterial hosts, multiple cloning sites (MCS) and a functional mob site for conjugation into Gram-negative bacteria. The gene to be deleted plus 200-500bp of the upstream and downstream flanking sequence was cloned into pBluescript SK+. The coding region of gene was deleted using a protocol based on the PCR reaction. PCR primers (sense and antisense) were designed to amplify the regions of the flanking sequences of the gene and also the vector backbone. Nucleotide sequencing of primers contains only the first 9bp or the last 3bp of the gene, but also had an additional restriction enzyme site at their 5' termini plus 2-5 extra bases.

After PCR, the DNA products were electrophoresed, isolated and digested with suitable enzyme then religated and transformed into \textit{E. coli} (DH5\(\alpha\)). Sequencing of the fragment usually carried out to confirm that the PCR reaction and religation had taken place correctly. The constructs were isolated from bacterial strains and digested with suitable enzymes to excise the fragment containing the specific gene deletion plus flanking sequence and cloned into pK18mobsacB vector. The final construct was mobilised into \textit{A. tumefaciens} (C58Cl) by tri-parental mating.
pK18mobsacB is only able to survive in *A. tumefaciens* by integration into the genome via homologous recombination. The first transconjugants were selected on LM-agar plates containing rifampicin and kanamycin. The genotype of resulting colonies was confirmed by PCR and Southern blotting. To select double cross-over events a single colony, previously identified, was grown for 24 hours in LB medium containing rifampicin only. Serial dilutions of the culture were plated onto MinA-agar plates containing rifampicin and 10-15% sucrose, and incubated at 28-30°C for 48 hours. The resulting colonies were then picked from plates and replica streaked onto LM-agar containing rifampicin only or rifampicin plus kanamycin.

Recombinants were sensitive to kanamycin, indicating the excision of the plasmid by second cross-over events. This second cross-over either restored the wild type situation or led to a mutant with the deletion left in the chromosome. The mutants were checked once again by PCR analysis and Southern blotting.

2.11. **Conjugation of plasmids into Agrobacterium**

The final plasmid clones resulting from the mutagenesis process maintained in *E.coli* were mobilised into *Agrobacterium* by the pRK2013-based tri-parental mating system (Ditta et al., 1980). Cultures of donor, recipient and helper strains were grown to mid log phase in selective media. Then the cell cultures were sedimented by centrifugation (4000rpm, 5min) and resuspended in the LB broth to the same volume as before. For all matings, 300µl of recipient cells, 200µl of donor cells and 150µl of helper plasmid were pipetted into 1.5ml Eppendorf tube. The mixture was centrifuged for 30-60 seconds and resuspended in 100µl of LB broth by pipetting. The mating
mixture was dropped onto a sterile nitrocelulose filter (0.22μm pore size), which was placed on non-selective LM agar plate.

The plates were incubated at 28-30°C for overnight to allow to mating occur. After the mating period, the discs were transferred to a universal bottle containing 10ml of 10mM MgSO₄ and vortexed to wash the cells. Serial dilutions then were made from the bacterial suspension and plated onto selective medium. Selection plates were incubated at 28°C for 2 to 3 days.

2.12. Swarming behaviour assay

Swarm plates were prepared as follows. To LabM nutrient broth, bacteriological agar was added at a concentration of 0.2-0.22%. Usually 3μl sample of cells grown in LB medium were placed on swarm plates and incubated at 28-30°C for up to three days. The swarm-ring size was measured after 10, 24, 48 and 56hr.

2.13. Chemotaxis assay

2.13.1. Preparation of attractant

Stock solutions of attractant were prepared from 10⁻² to 10⁻⁴ M using ethyl acetate: methanol (1:1) as a solvent. Solutions (10⁻¹ to 10⁻⁸ M) were prepared for assay by dilution of the stocks with chemotaxis media. The control solution consisted of chemotaxis media with an equal concentration of solvent but no attractant.

Chemotaxis media: - (0.1 mM EDTA, 0.01 M KH₂PO₄ (pH:7.0)).
2.13.2. Blind-well chamber assay

Exponential phase cultures of each *Agrobacterium tumefaciens* mutants were grown for 24 hr in MinA+G, then were washed twice with chemotaxis medium. The pellet was resuspended in chemotaxis media to a cell density of about OD= 0.1 at 600nm. The lower chamber was filled with 200μl of cell suspension, sealed with 13mm diameter filter (Sartorius, 8μm pore size), and 400μl of attractant was added into upper chamber. The chamber was inverted for 3hr at 28°C. After that, 200μl was removed from upper chamber into 20ml IsotonII and the number of bacteria count using coulter counter.

The method selected for quantitatively measuring chemotaxis has been modified from Adler (1969) and it is more quickly than which measures, by viable plate counts, the number of bacteria moving into a capillary tube under a chemotactic stimulus. The capillary assay is slow and need over night incubation of the plated bacteria (Armitage, J. P., et al., 1977).

The chemotaxis assay presented uses a Coulter counter to measure the percentage of a suspension of motile bacteria passing through a membrane filter in a determined time, into a cell free buffer, containing a chemotactic stimulus.
Chemotactic chamber: In blindwell chemotactic chambers used in this experiment, the lower wells had a capacity of 200μl, and the upper wells had a capacity of 400μl; a cellulose nitrate membrane filter (13mm diam., 8μm pore size) was clamped between the two chambers.

![Fig. (2.12.1): The schematic diagram showing blind well chamber](image)

Chemotaxis media: A chemotactic media, which consisted of 0.01M-potassium phosphate buffer pH: 7.0, (containing 0.1mM EDTA) was used. This medium provides conditions necessary for optimum motility of bacteria. The EDTA was added as a chelating agent because distilled water can contain traces of heavy metal ions, that inhibit motility. A buffer system was used to keep the pH at the optimum.

Effect of growth condition and stage of bacterial growth: The MinA media plus 20% glucose (final concentration of 0.2%) was used as a growth medium. Media was inoculated by bacteria and allowed to grow to stationary phase (overnight) at
28°C with rotary shaking. Some bacteria e.g. *E. coli* without shaking the bacteria were poorly motile. Bacteria in the early exponential phase are the best sample for chemotaxis.

Requirement of wash media: Bacterial cells should be washed to make a suspension of bacteria free of the growth medium to remove any unwanted attractants or repellents, and to reduce the high ionic strength of the growth medium which could be inhibit the motility.

Chemotaxis measurement: Chemotaxis was measured by adding 200μl of bacterial suspension in upper chamber, after 2hr incubation at 28°C, to 20ml IsotonII and counting using coulter counter according to manufacturer’s instruction.

IsotonII: 7.9g NaCl, 1.9g Na₂HPO₄, 0.4g EDTA, 0.4g KCl, 0.2g NaH₂PO₄, 0.3g NaF, per 1000ml of water and filter sterilized

Mechanism of measuring by coulter counter: The Coulter method of sizing and counting of particles is based on measurable changes in electrical impedance produced by non-conductive particles suspended in electrolytes. A small aperture between electrodes is the sensing zone through which suspended particles pass. In the sensing zone, each particle displaces its own volume of electrolytes. The volume displaced is measured as a voltage pulse, the height of each pulse being proportional to the volume of the particle. The quantity of suspension drawn through the aperture is precisely controlled to allow the system to count and size particles in an exact volume. With this method several thousand particles per second are individually counted and sized.
Fig. (2.12.2): A schematic diagram showing the sensing zone of coulter counter.

An aperture size of 30\(\mu\)m was used and the Coulter counter was set up to measure sizes between 0.6\(\mu\)m and 8\(\mu\)m. The system was set up to count 100\(\mu\)l of sample during 30 seconds. Before start the counting of the samples, the background of IsotonII alone was determined and when the count was less than 500 then the counting of samples were started. For each sample reading was done two times and each sample counted at least two times.

The number of particles per ml was calculated as follows:

\[n: \text{number of particles counted in } 100\mu l/30\text{second} \]

\[N = 200 \times n = \text{number of particles per } 20\text{ml of Isoton plus } 200\mu l \text{ sample} \]

\[N' = \text{number of particle in } 200\mu l \text{ of sample} \]

\[x = 5 \times N = \text{number of particle per } 1\text{ml of sample} \]

\[X = [x1^* + x2**] - x3*** \]
*x1: number of particle counted/ml at the first reading

**x2: number of particle counted/ml at the second reading

***x3: number of particle counted/ml of Isotone II alone

X = Net number of particle counted/ml of sample

Presentation of results: As discussed Coulter counter readings were converted to numbers of cells per ml. Control values (parallel assays using chemotaxis medium as attractant) were subtracted from each number/concentration to give a correct number of cells attracted by the acetosyringone. The number of cells attracted were presented graphically and also presented in the form of the chemotaxis index (CI).

Chemotaxis index: The CI is a measure of the proportion of cells in the bacterial population attracted towards the attractant. The CI corrects for differing initial cell density, and arises from the observation that for a given strain, the proportion of cells attracted to a particular attractant concentration is constant (Loak, et.al, 1992).

\[
\text{CI} = \frac{\text{[Cells in upper chamber]} - \text{[cells in control assay upper chamber]}}{\text{[Cells initially introduced to lower chamber]}} \times 100\%
\]
Chapter 3

Identification of the MCP-encoding gene in

A. tumefaciens
3.1. **Background**

As part of the signal transduction pathway involved in chemotaxis in *E. coli*, methyl groups are transferred to MCPs from S-adenosyl methionine. A number of observations provide evidence to suggest that a similar system operates in *A. tumefaciens*: (1) antisera raised to transducer Trg of *E. coli* cross reacts with proteins of approximately 60 – 65 kDa in *A. tumefaciens* (Morgan D. G., et al., 1993). (2) The periplasmic domain of VirA contains a sequence conserved with the MCPs, and which ChvE interacts (Cangelosi, G. A., et al., 1990). (3) *A. tumefaciens* met­auxotrophs do not display chemotaxis unless supplemented with methionine. Partial chemotaxis can be restored by supplementation with substrates for S-adenosyl methionine synthase (Shaw, C. H., 1996). (4) The orf1 of chemotaxis cluster of *A. tumefaciens* shows the greatest homology with known MCPs of *C. crescentus* (McpA), *R. sphaeroides* (TlpA) and *E. coli* Tar and like Tlp appears to lack a membrane­spanning domain (Wright, E. L., et al, 1998). (5) Oligonucleotide probes corresponding to the conserved signalling domain of *E. coli* MCPs hybridise to a number of DNA fragments in *A. tumefaciens* (Shaw, C. H., 1996).

The results of a Southern blot using a 0.7 kb MCP fragment from plasmid MCP3.2.7P of *Rhizobium leguminosarum* digested with HindIII/PstI as a heterologous probe showed that 1.7 kb EcoRI fragment of a cosmid library of pDUB1911 from *A. tumefaciens* chromosomal DNA, contains a MCP-encoding sequence. This fragment was subcloned into pBluescriptSK+, forming the plasmid pELW6 (Wright, E.L., et al., 1998).
3.2. Sequencing of the MCP gene

pELW6 was sequenced fully in both directions. The plasmid was digested with suitable restriction enzymes, the resulting fragments were subcloned in cloning vector, pBluescriptSK+, transformed into E. coli (DH5α), and sequenced as discussed previously.

Table (3.2.1)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Relevant genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>pELW61</td>
<td>1309 bp SacII fragment isolated from pELW6 and subcloned into pBluescriptSK+</td>
</tr>
<tr>
<td>pELW62</td>
<td>363 bp SacII fragment isolated from pELW6 and subcloned into pBluescriptSK+</td>
</tr>
<tr>
<td>pELW63</td>
<td>1190 bp EcoRV fragment isolated from pELW6 and subcloned into pBluescriptSK+</td>
</tr>
<tr>
<td>pELW64</td>
<td>1373 bp XbaI – HindIII fragment isolated from pELW6 and subcloned into pBluescriptSK+</td>
</tr>
<tr>
<td>pELW65</td>
<td>547 bp HincII fragment isolated from pELW6 and subcloned into pBluescriptSK+</td>
</tr>
</tbody>
</table>
Fig (3.2.1): Diagram showing sequencing of pELW6 using sequencer program
Fig. (3.2.2): Nucleotide sequencing of pELW6 (1765 bp)
pELW6 was analysed by Blastn for homology with *Agrobacterium tumefaciens* strain C58 complete genomic sequence.

ref|NC_003062.11 Agrobacterium tumefaciens* strain C58 circular chromosome, complete

Sequence

Length = 2841581

Score = 3420 bits (1725), Expect = 0.0

Identities = 1759/1765 (99%), Gaps = 4/1765 (0%)

Strand = Plus / Plus
Fig. (3.2.3): Comparison of nucleotide sequences of pELW6 with *Agrobacterium tumefaciens* strain C58 complete genomic sequence.

The subclones were sequenced and the deduced amino acid sequences were analysed by BlastX for homology with the protein database. One open reading frame, that when translated, showed a strong identity to Mcp gene: The highest alignment scores occurred with the *McpA* gene recently identified from *A. tumefaciens* (Goodner, B. et al., 2001), the Mcp gene of *Rhizobium sp.* (Frieberg, C., et al., 1997), McpG of *R. leguminosarum* (Yost, C. K., et al., 1998) and McpA of *Caulobacter crescentus* (Alley, M. R., et al., 1992).
Fig. (3.2.4): Alignment of the pELW6 with McpA from *Caulobacter crescentus* McpA from *A. tumefaciens* (C58) and *R. leguminosarum*.
Analysis of the translated protein sequence strongly predicted a C-terminal cytoplasmic domain with homology to the methylation domains and signalling domain of the Mcp genes identified in other bacteria. As discussed earlier Mcp receptors are membrane proteins, about 550 amino acids in length. pELW6 contains part of an *Agrobacterium* Mcp gene.
Chapter 4

Mutagenesis
4. Mutagenesis

In-frame deletion method

In this method a single gene was deleted leaving all other genes in frame. The basic allelic exchange vector used in this method is pK18mob_sacB. This vector combines the useful properties of the pK plasmids (e.g., multiple cloning site, lac_\alpha fragment, sequencing with M13 primers), and also has the Broad-Host-Range transfer (bhr) machinery of plasmid RP4 and a modified sacB gene from Bacillus subtilis. This construct can be transferred by RP4- mediated conjugation into Agrobacterium. The sacB gene confers sucrose sensitivity to Agrobacterium and transformants containing pK18mob_sacB were not able to grow on media containing 10% sucrose.

Generally, gene that should be deleted with 200- 500bp DNA fragment ligate into pBluescript SK+, then two primers (usually 20-30bp length) containing only 9bp of the starting sequence of the gene, and 3bp of the end of the gene were designed and gene was deleted using PCR. The PCR product containing upstream and downstream flanking sequences of the gene were then ligated into pK18mob_sacB vector and the final construct introduced into Agrobacterium tumefaciens using Tri-parental mating method.

pK18mob_sacB is unable to replicate in A. tumefaciens, and transconjugants only arise after integration of the plasmid into the chromosome by homologous recombination. Intermediate strains containing constructs in pK18mob_sacB were selected on media containing Rifampicin and Kanamycin. To enhance the double cross-over events, cells from first step were incubated overnight in media containing Rifampicin only; subsequently serial dilutions of culture were plated onto MinA
media plus 10% sucrose. After 3-4 days several colonies from each dilutions were selected and then sensitivity to Kanamycin checked. Colonies sensitive to Kanamycin indicated the excision of the vector during second crossing-over event. This second crossing-over event restored the wild type genotype, or led to a mutant with the deletion fragment left in the chromosome. The resulting mutant was then checked by PCR and Southern blot using the deleted fragment as a probe.

4.1. Mutagenesis of cheY1 gene

pELW2, containing cheY1, was digested with PvuII/ HindII, and after electrophoresis the 773bp fragment containing cheY1, a 264bp region upstream and 142bp region downstream of cheY1 was isolated from the gel. This fragment was ligated into pBluescriptSK+ digested with EcoRV and transformed into E. coli (DH5α) to produce SK+ cheY1. This new construct was checked by digestion with appropriate restriction enzymes. To delete the cheY1 gene two primers were designed as below:

cheY1a (forward): 5'- GGACT CCATGG TTT CTT CAC TTT TGC A TC- 3'
cheY1b (reverse): 5'- GGACT CCATGG TGA TAC GGG ACA TTT CAC- 3'

Primer cheY11 contained upstream flanking sequence, the first 9bp of the cheY1 gene, plus five extra bases (GGACT) and NcoI site (CCATGG) at the 5' end to use in religation of the PCR product. Primer cheY12 contained downstream flanking sequence, the last 3bp of the cheY1 gene, plus an NcoI site and five extra bases at the 5' end.
Fig. (4.1.1) Diagram of Sk/cheY1 plasmid showing sequence traces across deletion junctions and position of cheY1a and cheY1b primers.

Amplification by polymerase chain reaction was carried out using SK+/cheY1 as DNA template. After amplification, 5μl of the PCR reaction was loaded onto an agarose gel, and separated by electrophoresis. The expected fragment of approximately 3.4 Kb (corresponding to the vector plasmid, and the upstream and downstream sequences flanking cheY1) was isolated from the gel (see fig. 4.1.2).
Fig (4.1.2): 0.8% agarose gel electrophoresis showing the expected fragment for cheY1 in-frame deletion. Lane1: λDNA/HindIII lane2: in-frame deleted PCR product (SK/delY1).

The isolated PCR product was digested with NcoI, religated together using T4 DNA ligase and cloned into E. coli. This procedure gave no transformants. The PCR product was therefore re-isolated and treated in a one-step polishing and ligation reaction using DNA polymerase and T4 DNA ligase (see methods section).

The reaction was incubated at 16°C for 2 days, then transformed into E. coli to produce transformants containing the plasmid (SK+/delY1). The plasmid was isolated from transformed cells and checked by digestion with EcoRI/ HindIII. The deletion produced in this plasmid was checked by DNA sequencing.

The new construct (SK+/delY1) was excised by digestion with EcoRI/ HindIII, separated by electrophoresis and the 490bp fragment containing the upstream and
downstream flanking sequences of cheY1 was isolated from the gel. This fragment was ligated into pK18mobsacB previously restricted with EcoRI/ HindIII and the product was transformed into E. coli to generate the final construct (pK18/delY1). This new construct was checked by digestion with appropriate restriction enzymes and the result was confirmed by sequencing the plasmid DNA as well. The E. coli strain containing plasmid pK18/delY1 has subsequently been used as a donor cell in a tri-parental mating.

Tri-parental mating method: Cultures of donor, recipient and helper strains were grown to mid log phase in selective media. Then the cell cultures were sedimented by centrifugation (4000RPM, 5min) and resuspended in the LB broth to the same volume as before. For all matings, 300μl of recipient cell, 200μl of donor cell and 150μl of cell containing helper plasmid were pipetted into 1.5ml Eppendorf tube. The mixture was centrifuged for 30-60 seconds and resuspended in 100μl of LB broth by pipetting. The mating mixture was dropped onto sterile nitrocellulose filters (0.22μm pore size), which were placed on non-selective LM agar plate.

The mating mixture was incubated at 28-30°C over night then serial dilutions were made and plated onto selective media (containing Rifampicin and Kanamycin). After 3 days incubation several colonies were picked and restreaked on the same media to produce the stable resistant intermediate colonies. Chromosomal DNA of some intermediate strains were isolated and checked by PCR to confirm the result.
Fig (4.1.3): Diagram showing schematic steps for construction of *cheY1* in-frame deletion mutant of *A. tumefaciens.*
Polymerase chain reaction for mutant verification: Two primers were designed for use in PCR:

cheY11: 5'- GCT GGA TCT CAA CGA AGC AT-3'

cheY12: 5'- ACG GTC CCC GTC ATT CAA TT- 3'

After amplification the PCR reaction was separated by agarose gel electrophoresis. The predicted sizes of the PCR products from the wild type cheY1 gene and the deleted cheY1 gene were 773bp and 408bp, respectively. As shown in fig 4.1.2 some strains produced the expected fragments of wild type and intermediates (wild type fragment about 773bp, intermediate strain fragments, 773bp plus 408bp deleted fragment).

Fig. (4.1.4): 1% agarose gel electrophoresis of PCR product of intermediate strains of A. tumefaciens lane1: λDNA/EcoRI:HindIII, lanes 5, 7, 8 and 11 correct the intermediate strains.
Second recombination event:

Four intermediate strains that had show the expected fragments in PCR, indicating that they contained both wild-type and deleted *cheYl* genes, were grown overnight in liquid media containing rifampicin only. Serial dilutions were made and plated on MinA media plus 10-15% sucrose. After 3 days incubation at 28°C the number of colonies grown were as below:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Number of colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat</td>
<td>> 200</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>> 50</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>~ 20</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>1</td>
</tr>
</tbody>
</table>

Several colonies were picked up and restreaked on LA media containing Rifampicin then on media containing Rifampicin and kanamycin to check the sensitivity to kanamycin. Several kanamycin- sensitive colonies were grown in LB+ rifampicin media, and chromosomal DNA was isolated to check by PCR and Southern blot whether the desired deletion was present.

PCR was performed as described previously, and after the reaction, 5μl of PCR product was analysed by electrophoresis on 1% agarose gel (see fig. 4.1.5).
Fig (4.1.5): 1% agarose gel electrophoresis showing the PCR products from genomic DNA of cheYI in-frame deletion mutant strains produced using cheY1a and cheY1b primers. Lane 1: λ/EcoRI:HindIII, lanes 2, 3, 4, 5, 6 possible mutant strains.

As shown in fig (4.1.5) only lane 2 (cheY1-12) showed the correct PCR product corresponding to a deleted fragment (408bp). This strain was selected as a mutant and was checked by Southern blotting.
Southern blot analysis of *cheYl* mutant:

The chromosomal DNA of two intermediate strains, one possible mutant, cheYl-12, and wild type strain (C58Cl) were digested with *EcoRV* and *HindIII*. The Southern blot performed as described before. The *cheYl*-deleted fragment containing upstream and downstream flanking sequence of the *cheYl* was used as probe.

The following diagram shows the expected fragments for each strain:
Fig. (4.1.6): Diagram showing the position and expected size of the EcoRV and HindIII fragments for each A. tumefaciens wild type, two possible intermediates and the cheY1 in-Frame deletion mutant strains.
Fig. (4.1.7): 1% agarose gel electrophoresis of chromosomal DNA from wild type, intermediate strains and cheYI in-frame deletion mutant (cheY1-12) digested by HindIII and EcoRV. Lanes 1, 10: λDNA/EcoRI:HindIII, lanes 2, 4: intermediate strains digested with HindIII, lanes 3, 5: intermediate strains digested with EcoRV, lanes 6, 7: *A. tumefaciens* mutant digested with HindIII and EcoRV respectively, lanes 8, 9: *A. tumefaciens* (wild type) digested with HindIII and EcoRV respectively.

Fig. (4.1.8): Subsequent Southern blot analysis of strains digested in fig. (4.1.6) using cheYI-deleted fragment containing upstream and downstream flanking sequence of the cheYI as a probe.
Digestion of wild-type DNA with *HindIII* gave a single fragment of 4.1 Kb after probing with the *cheYI* probe. Digestion with *EcoRV* gave fragments of 0.9 Kb and 2.7 Kb after probing. Digestion of intermediate strain chromosomal DNA with *HindIII* gave two fragments of 7.8 Kb and 2.2 Kb. Also digestion with *EcoRV* gave fragments of 0.9 Kb, 6.0 Kb and 3.0 Kb and showed the expected fragments size of intermediate A. Digestion of mutant chromosomal DNA with *HindIII* gave a fragment of 3.7 Kb and digestion with *EcoRV* gave two fragments of 0.9 Kb and 2.3 Kb.
4.2. Mutagenesis of cheY2

The plasmid pELW1 was digested with BglII/ MluI and a 957bp fragment containing the cheY2 gene, and 363bp upstream and 628bp downstream flanking sequences was isolated from the gel. After separation by agarose gel electrophoresis fragment was made blunt ended and ligated into pBluescriptSK+ plasmid which had been digested with EcoRV, to produce the sk+/cheY2 plasmid. This construct was checked by digestion with appropriate restriction enzymes and has subsequently verified by DNA sequencing. To delete the cheY2 gene, two primers were designed as follows:

cheY2a (forward): 5'- GGACT CCATGG GAG AGA CAT TAG TCA GCA - 3'
cheY2b (reverse): 5'- GGACT CCATGG TGA TGG AAG CTG CGG CCA- 3'

The forward primer contains upstream flanking sequence, the first 9bp of cheY2 gene, plus Ncol site (CCATGG) and five extra bases (GGACT) at the 5' end to use for cloning of PCR fragment. The reverse primer contains downstream flanking sequence, the last 3bp of cheY2 gene, plus an Ncol site and 5 extra bases at 5' end.
Polymerase chain reaction was carried out using sk+/cheY2 as template DNA.

After reaction 5μl of PCR product was separated by electrophoresis on 0.8% agarose gel and the expected fragment (~3.4Kb) was isolated from the gel.

Fig. (4.2.2): 0.8% agarose gel electrophoresis showing the expected PCR product
fragment for cheY2 in-frame deletion. Lane1: λDNA/HindIII lane2: in-frame deleted fragment (SK/delY2).

The PCR product was digested with NcoI, purified by agarose gel electrophoresis, religated using T4 DNA ligase and transformed into E. coli (DH5α). The plasmid isolated from bacterial clones was subjected to DNA sequencing. The result of sequencing showed that the PCR product contained only the upstream flanking sequence of cheY2; that is, the 3’ flanking sequence had been deleted. In order to make the desired in-frame deletion of cheY2, it was therefore decided to ligate the Rsal fragment of pELW1, containing the downstream flanking sequence of cheY2, into the new construct from the previous step. The plasmid containing the PCR product was digested with Smal and the 590bp Rsal fragment, containing downstream flanking sequence of cheY2, purified by agarose gel electrophoresis, was ligated to pBlueskriptSK to make new construct, sk+/ delY2.

Sk+/delY2 was transformed into E. coli and the resulting plasmid was checked by restriction enzyme digestion and confirmed by sequencing as well. At the next step the sk+/ delY2 plasmid was digested with HindIII/XbaI and the expected fragment containing upstream and downstream flanking sequence of cheY2 was ligated into similarly cut pK18mobsacB to produce pK18/ delY2 plasmid. The new construct was transformed into E. coli, reisolated from the bacterial strain and checked by restriction enzyme digestion. The construct was confirmed by DNA sequencing as well.

The E. coli strain contain pK18/delY2 was used as a donor cell to transfer the plasmid into A. tumefaciens during the conjugation process.
Fig. (4.2.3): Diagram showing schematic steps for construction of cheY2 in-frame deletion mutant of *A. tumefaciens.*
Tri-parental mating: was performed as previously described. After overnight incubation of the mating mixture on a filter, several dilutions were made and plated on LA media containing Rifampicin and Kanamycin. The plates were incubated at 28-30°C, and after 3-4 days several colonies were picked and restreaked on the same media to obtain colonies showing stable antibiotic resistance. These intermediate strains containing both the wild type and cheY2 genes were grown overnight in liquid LB media containing Rifampicin only to hence the second recombination event. After the overnight growth, serial dilutions were made and plated on MinA media containing 10% sucrose. The number of colonies grown from different dilutions were as follows:

<table>
<thead>
<tr>
<th>dilution</th>
<th>Number of cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat</td>
<td>>2000</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>>1000</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>>800</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>>500</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>~200</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>~50</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>20</td>
</tr>
</tbody>
</table>

Several colonies from 10^{-6}, 10^{-5} and 10^{-4} dilutions were picked and checked for sensitivity to kanamycin. All kanamycin-sensitive strains were checked by swarming plate assay on 0.2% LA. Some strains that showed a deficiency in swarming
behaviour, in comparison with wild type strain, and were checked by PCR. Some intermediate and wild type strains were checked by PCR as well.

Polymerase chain reaction for mutant verification: Two primers were designed as follows:

- cheY21 (forward): 5'- CGG TGA GCG TCA TTT ACA GA- 3'
- cheY22 (reverse): 5'- CTC TGC AAG CTG CAT TGG AA- 3'

The chromosomal DNA was used as a template. After the PCR reaction 5μl of PCR product was electrophoresed.

![Image](image.png)

Fig. (4.2.4): 0.8% agarose gel electrophoresis of PCR products from resulting amplification of chromosomal DNA showing expected fragments resulting of PCR for each wild type, intermediate and mutant strains of *A. tumefaciens*. Lanes 5, 6, 7: mutant, lanes 3, 4: intermediate strains, Lane2: wild type and lane1: λDNA/EcoRI: HindIII
As shown in Fig 4.2.4 lanes 5, 6 and 4 showed the expected fragment (delY2~933bp), lanes 3, 4 showed the expected fragments for intermediate strains (~933bp and ~1321bp) and lane 2 (wild type) showed the expected fragment for wild type only (~1321bp).

Southern blot analysis of mutants:

Intermediate strains and mutants that had shown the expected fragments in PCR were checked by Southern blot. The wild type strain (C58C1) was included as a control. The *cheY2* deleted fragment (containing upstream and downstream flanking sequences of *cheY2*) was used as a probe. The chromosomal DNA of intermediate strains, possible mutants and wild type was digested with *Hinc*II and *Hind*III. The southern blot was done as discussed in materials & methods. The following diagram showed the expected fragments of each intermediate, mutants and wild type strains.
Fig. (4.2.5): Diagram showing the position and expected size of the *HincII* and *HindIII* fragments for each *A. tumefaciens* wild type, two possible intermediate and the *cheY2* in-Frame deletion mutant strains.
Fig. (4.2.6): 1% agarose gel electrophoresis of wild type, intermediate strains and cheY2 in-frame deletion mutant chromosomal DNA digested by HindIII and HincII. Lanes 1, 12: λDNA/EcoRI: HindIII, lanes 4, 6: intermediate strains digested with HincII, lanes 5, 7: intermediate strains digested with HindIII, lanes 9,11: A. tumefaciens mutant digested with HindIII, lanes 8, 10: A. tumefaciens mutant digested with HincII, lanes 2, 3: A. tumefaciens (wild type) digested with HincII and HindIII.

Fig. (4.2.7): Subsequent Southern blot analysis of strains digested in gel in fig. (4.2.6) using deleted fragment (containing upstream and downstream flanking sequences of cheY2) as a probe.
Digestion of wild-type chromosomal DNA with *Hind*III gave a single fragment of 4.0Kb after probing with the *cheY2* deleted fragment probe. Digestion with *Hinc*I gave fragments of 1.0Kb and 2.5Kb after probing. Also, digestion of intermediate strains chromosomal DNA with *Hind*III for some strains gave fragments of 8.5Kb and 1.7Kb, and digestion with *Hinc*I gave fragments of 3.9Kb, 2.9Kb and 2.5Kb after probing. Digestion of some of the other intermediate strains DNA with *Hind*III gave fragments of 9.3Kb and 1.3Kb. Digestion with *Hinc*I gave fragments of 1.0Kb, 3.2Kb and 5.1Kb after probing with *cheY2* deleted fragment. Digestion of mutant chromosomal DNA with *Hind*III gave a single fragment of 3.2Kb and digestion with *Hinc*I gave a single fragment of 3.6Kb after probing.

The result of the Southern blot showed that the size of fragments produced by wild type and mutants for both enzymes are correct. In addition lanes 4&5 show the correct size for intermediate B and lanes 6&7 indicated the correct size for intermediate A. The mutants were named C1/delY2 and used to investigate the phenotypic properties of mutant.
4.3. Mutagenesis of *cheB* gene

To make template DNA for the PCR-based deletion, plasmid pELW1 was digested with *EcoRV* and *EheI*, separated by agarose gel electrophoresis, and the 1777bp fragment containing *cheB* gene plus 399bp upstream and 326bp downstream flanking sequences was isolated from the gel. This fragment was ligated into pBluescriptSK+ digested with *EcoRV* to produce SK+/cheB plasmid. The new construct was transformed into *E. coli*, the plasmid was isolated from the bacterial strain and checked by digestion with restriction enzyme. The sequencing confirmed the result. SK+/cheB was then used as template DNA in PCR reaction for deleting the *cheB* gene.

Polymerase chain reaction: Two primers were designed as follow:

B1 (forward): 5'- GG CCATGG TGC GCT CAT GCC TTC CTC- 3'

B2 (reverse): 5'- GG CCATGG TGA CTA ATG TCT CTC GCA G- 3'

The forward primer contains the upstream flanking sequence, the first 9bp of *cheB* gene, an *NcoI* site (CCATGG) and two extra bases (GG) at the 5' end to use for cloning of PCR product.

The reverse primer also contains the downstream flanking sequence, the last 3bp of *cheB* gene, an *NcoI* site and two extra bases at the 5' end.
Fig. (4.3.1) Diagram of Sk/cheB plasmid showing sequence traces across deletion junctions and position of B1 and B2 primers.

After the reaction, 5µl of PCR product was electrophoresed and the expected fragment (~3.6Kb) was isolated from the gel.
Fig. (4.3.2): 0.8% agarose gel electrophoresis showing the expected fragment for cheB in-frame deletion. Lane 1: λDNA/HindIII:EcoRI lane 3: in-frame deleted fragment (SK/delB).

To religate the PCR product two methods were used:

In the first, the PCR product was made blunt ended by treatment with T₄ DNA polymerase prior to ligation. The mixture was incubated at 16°C for 2 days then 5μl was transformed into E. coli (DH5α) directly.

In the second method, the PCR product was restricted with NcoI. After overnight incubation at 37°C, the digested fragment was electrophoresed, isolated from the gel and the single stranded ends were religated together using T₄-DNA ligase. The resulting plasmid was transformed into E. coli. Both methods gave successful results. The new construct plasmid, SK+/delB, was isolated from transformed cells and checked by restriction enzyme digestion. The correct construct was confirmed by sequencing as well.

The entire insert fragment from SK+/delB was excised with HindIII/ XbaI and ligated into similarly cut pK18mobsacB to generate pK18/ delB plasmid. After cloning of new construct into E. coli, the plasmid was reisolated from bacterial cells and checked once by digestion with restriction enzyme. Plasmid pK18/delB was confirmed by sequencing as well.
Fig. (4.3.3): Diagram showing schematic steps for construction of cheB in-frame deletion mutant of *A. tumefaciens*.
Tri-parental mating was done as before. The *E.coli* (pK18/delB) was used as a donor cell. Mating mixture was plated onto selective media (LA+ rifampicin & kanamycin) and incubated at 28-30°C for 3 days. Several colonies were picked up, restreaked on the same media to give the stable resistant colonies and grown overnight in LB media containing Rif+ Kam. Chromosomal DNA was isolated from these strains and integration of pK18/delB plasmid into the bacterial chromosome was checked by PCR using chromosomal DNA as a template and two following primers:

cheBa (forward): 5'- TAC GAT GAC AAC GCG CTT GA- 3'
cheBb (reverse): 5'- TGC GCG GTG AGA ATG ATG AA- 3'

![1% agarose gel electrophoresis of PCR products of intermediate strains of *A.tumefaciens* Lane 1, λDNA/EcoRI:HindIII, lanes 3, 4 showed the correct size for the intermediate strains.](image)

Fig. (4.3.4): 1% agarose gel electrophoresis of PCR products of intermediate strains of *A.tumefaciens* Lane 1, λDNA/EcoRI:HindIII, lanes 3, 4 showed the correct size for the intermediate strains.
The PCR product was electrophoresed. As shown in Fig. 4.3.4 two strains (lanes 3 & 4) produced the expected fragment for intermediate strains in comparison with lane 2, wild type strain, C58C1. These two strains were used in a second recombination event. To promote the second recombination event, the intermediate strains were growth overnight in LB media containing Rifampicin only, then serial dilutions were made and plated on MinA media plus 10-15% sucrose. After 3-4 days incubation at 28-30°C the number of colonies grown were as follows:

<table>
<thead>
<tr>
<th>dilution</th>
<th>number of colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat</td>
<td>> 500</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>> 200</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>~ 30</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>9</td>
</tr>
</tbody>
</table>

Several colonies from the lower dilutions were picked up, restreaked on LA+Rifampicin plates and checked for sensitivity to kanamycin on LA media containing Rif+ Kam. The chromosomal DNA was isolated from kanamycin-sensitive strains and checked by PCR under the same conditions as used for intermediate strains. As shown in fig 4.3.5 two strains (lanes 2, 3) produced the expected fragment of mutant only.
Fig. (4.3.5): 0.8% agarose gel electrophoresis showing expected fragments resulting from PCR for each wild type, intermediate and mutant strains of *A.tumefaciens*. Lanes 2, 3: mutant, lanes 4, 5: intermediate strains, lane6: wild type and lane1: λDNA/ *EcoRI*: *HindIII*.
Southern blot analysis of mutant: Chromosomal DNA of wild type, intermediate strains and possible mutants were digested with PstI and HindIII. The cheB deleted fragment (containing upstream and downstream flanking sequences of cheB) was used as a probe.

The following diagram shows the expected fragment size for each wild type, intermediate and mutant strains.
PstI

HindII

C58Cl

PstI

HindII

Intermediate A
(Recombination R)

PstI

HindII

Intermediate B
(Recombination Y2)

PstI

HindII

C1-delB

Fig. (4.3.6): Diagram showing the position and expected size of the HindII and PstI fragment for each A. tumefaciens wild type, two possible intermediate and the cheB in-Frame deletion mutant strains.
Fig. (4.3.6): 1% agarose gel electrophoresis of wild type, intermediate strains and cheB in-frame deletion mutant chromosomal DNA digested by PstI and HincII.

Fig. (4.3.7): Subsequent southern blot analysis of strains digested according to fig. (4.3.6) using cheB deleted fragment (containing upstream and downstream flanking sequences of cheB) as a probe.
Digestion of wild-type chromosomal DNA with $PstI$ gave fragments of 1.8Kb and 2.0Kb after probing with the $cheB$ deleted fragment probe. Digestion with $HincII$ gave fragments of 1.0Kb, 1.8Kb and 2.5Kb after probing. Also digestion of intermediate strain chromosomal DNA with $PstI$ gave fragments of 1.0Kb, 2.0Kb and 7.1Kb. Digestion with $HincII$ gave fragments of 1.8Kb, 3.0Kb and 2.5Kb after probing. Digestion of mutant chromosomal DNA with $PstI$ gave a single fragment of 2.9Kb and digestion with $HincII$ gave fragments of 1.8Kb and 2.5Kb after probing.

Southern blot indicated that the fragments size for wild type and mutant strains for both enzymes are correct. The fragments size for intermediate strain are correct as well and confirmed the intermediate A type of recombination.
4.4. Mutagenesis of the cheR gene

To make template DNA for the PCR-based deletion method, plasmid pELW1 was digested with PstI, separated by agarose gel electrophoresis and the 1827bp fragment containing cheR gene plus 200-500bp upstream and downstream flanking sequences was isolated from the gel. This fragment was ligated into pBluescriptSK+ digested with the same enzyme to produce SK+/cheR plasmid. The resulting construct was transformed into E. coli, plasmid was isolated from bacterial strain and checked by digestion with PstI enzyme again. DNA sequencing confirmed the correct fragment had been cloned. SK+/cheR was used as template DNA in PCR reaction for deleting the cheR gene.

Polymerase chain reaction: Two primers were designed as follow:

cheR1 (forward): 5'-GCATGC TGC TGC CAT TGG ATA TCC GC - 3'
cheR2 (reverse): 5'-GCATGC TGA GCG CAC TCG CAC GGG TC - 3'

The forward primer contains the upstream flanking sequence, the first 9bp of cheR gene, and a SphI site (GCATGC) at the 5' end to use for cloning of PCR product.

The reverse primer also contains the downstream flanking sequence, the last 3bp of cheR gene and SphI site in 5' end.

After the PCR reaction, 5μl of PCR product was separated by electrophoresis and the expected fragment (~3.8Kb) was isolated from the gel.
Fig. (4.4.1): 0.7% agarose gel electrophoresis showing the expected fragment for cheR in-frame deletion. Lane 1: λDNA/HindIII lanes 2 & 3: in-frame deleted fragment (SK/deIR).

This fragment was digested with Sphi and religated with T₄ DNA ligase to transform into E.coli. The procedure was performed several times with different conditions but no recombinant plasmids were obtained. The in-frame deletion of cheR was therefore made according to the following procedure.

The SK+/cheR plasmid was digested with EcoRV/HincII. After electrophoresis two fragments, 3427bp containing vector backbone plus the immediate downstream flanking sequence of cheR and 401bp fragment containing sequence immediately upstream of cheR, were isolated from the gel and religated together, making SK+/deIR plasmid. This new construct was transformed into E.coli (DH5α), and, after the isolation of plasmid from the bacterial strain, checked with
digestion by EcoRI/XbaI. To confirm the result and to ensure that cheR is in-frame correctly, SK+/delR was subjected to DNA sequencing as well.

SK+/cheR was digested with EcoRI/XbaI and the 900bp fragment containing in-frame deleted fragment of cheR was ligated into the suicide vector, pK18mobsacB, and digested with the same enzymes to make pK18/delR plasmid. This new construct was transformed into E.coli and after isolation from the bacterial strain was checked with enzyme digestion again. The E.coli containing this new construct used as a donor cell and introduced into A. tumefaciens by tri-parental mating.
Fig. (4.4.2): Diagram showing schematic steps for construction of cheR in-frame deletion mutant of *A. tumefaciens.*
To carry out the tri-parental mating 300μl of recipient cell, 150μl of donor cell and 150μl of helper plasmid were mixed, and after collection of mating mixture from the filter, to reduce the unwanted background colonies, 100μl of the mixture was incubated overnight in 10ml liquid media containing kanamycin and rifampicin. Then, serial dilutions of this culture were plated onto selective media (LA+ rif./kan.). After 2-3 days incubation at 28°C several colonies were picked up and resreaked on the same media to get the pure colonies. LB media plus rifampicin and kanamycin was inoculated with these strains and after overnight incubation at 28-30°C, the chromosomal DNA was isolated to check the intermediate strains by PCR or southern blot.

Polymerase chain reaction: Two primers were designed as follows:

\[
\text{delR1 (forward): } 5'\text{-ATC CAC TCC TTC GGT TCC AA-3'}
\]
\[
\text{delR2 (reverse): } 5'\text{-CCG ATA TTC GCT CAT CGG AA-3'}
\]

The PCR was performed as before. The chromosomal DNA of possible intermediate strains and wild type were used as DNA template. No PCR product was detected in this reaction, neither in wild type nor in intermediate strains, in both a standard reaction and after modifying the PCR conditions. Despite this problem, it was decided to attempt to produce the desired mutant.

Second recombination event: To promote the second recombination event, several possible intermediate strains from previous step were grown overnight in LB
media containing Rifampicin only. Serial dilutions were made and plated on MinA media plus 10-15% sucrose. After 3-4 days incubation at 28-30°C, the number of colonies grown were as following table:

<table>
<thead>
<tr>
<th>dilution</th>
<th>number of colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat</td>
<td>>1000</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>>500</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>~100</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>30</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>9</td>
</tr>
</tbody>
</table>

Several colonies from the lower dilutions were picked, restreaked on LA+Rifampicin plates and checked for sensitivity to kanamycin on LA media containing Rif+Kam. The chromosomal DNA was isolated from kanamycin-sensitive strains and checked by Southern blot, with intermediate strains and wild type as control.
Southern blot analysis was performed as described in the Material & Methods. The chromosomal DNA of the strains was digested with PstI and EcoRV. The deleted cheR fragment (containing only the upstream and downstream flanking sequences of cheR) was used as a probe. The following diagram shown the expected fragments size for each wild type, intermediate and mutant strains.
Fig. (4.4.3): Diagram showing the position and expected size of the EcoRV and PstI fragment for each *A. tumefaciens* wild type, two possible intermediate and the *cheR* in-Frame deletion mutant strains.
Fig. (4.4.4): 1% agarose gel electrophoresis of wild type, intermediate strains and cheR in-frame deletion mutant chromosomal DNA digested by PstI and EcoRV. Lanes 1, 16: λDNA/EcoRI:HindIII, lanes 10, 12, 14: intermediate strains digested with PstI, lanes 11, 13, 15: intermediate strains digested with EcoRV, lanes 4, 6, 8: A. tumefaciens mutant digested with PstI, lanes 5, 7, 9: A. tumefaciens mutant digested with EcoRV, lanes 2, 3: A. tumefaciens (wild type) digested with EcoRV and PstI.

Fig. (4.4.5): Subsequent southern blot analysis of strains digested according to fig. (4.4.4) using deleted cheR fragment (containing only upstream and downstream flanking sequences of cheR) as a probe.
Digestion of wild-type chromosomal DNA with *PstI* gave a single fragment of 1.8Kb after probing with the *cheR* deleted fragment probe. Digestion with *EcoRV* gave fragments of 3.2Kb and 5.0Kb after probing. Digestion of intermediate strain chromosomal DNA with *PstI* gave fragments of 1.8Kb and 0.9Kb. Digestion with *EcoRV* gave fragments of 3.2Kb and 11.5Kb after probing. Digestion of mutant chromosomal DNA with *PstI* gave a single fragment of 0.9Kb and digestion with *EcoRV* gave a single fragment of 8.2Kb after probing.

The result of Southern blot confirmed the expected fragments for both wild type and mutant strains. The fragments produced by chromosomal DNA of the intermediate strains confirmed the intermediate B type of recombination. The mutants renamed as C1/deIR.
Chapter 5

Phenotypic properties of *A. tumefaciens* mutants
5. Phenotypic properties of the *A. tumefaciens* mutants

5.1. Swarming behaviour assay

The migration of bacterial cells is usually studied in semi-solid agar plates. The concentration of agar is sufficiently low (0.2-0.35%) to allow bacteria to swim in this medium. The behaviour is complex; swimming involves transport, metabolism and growth, as well as motility (Berg, H. C., 2000).

If the swarming plate contains nutrients which the bacterium can metabolise and to which it is tactically responsive, the growing population of cells swarms outward from the centre, following the gradient which it has created. This method provides a powerful means for screening of motility and taxis in wild type and mutant bacterial strains.

During swarming, different types of swarming pattern can be formed that are chemotactically inert. The type of pattern depends on the amount of nutrition and energy source that is uniformly distributed in the petri dish. Earlier studies (Adler, 1973) demonstrated that the bacteria migrate in the form of a ring, and, depending on nutrition and energy source, the number of rings is differ.

In Adler's experiment, rings formed when cells of *E. coli* are placed in an environment containing substances (oxygen, amino acids, etc.) that the bacteria both consume and respond to chemotactically. The consumption of the substrate generates an attractant gradient, which provokes chemotaxis. The net response is a ring of cells moving outwards from the centre in the petri dish.

Budrene and Berg (1995) found conditions in which more complex patterns can form. In contrast to Adler's experiment, the environmental conditions induce the
bacteria to excrete an attractant toward which the cells undergo chemotaxis. These conditions produce patterns that are more complex.

More investigation has shown that migration of bacteria through semi-solid agar occurs in the absence of many of the genes known to be required for chemoreception and chemotactic signal processing. The swarming pattern for such strains vary in size and in pattern, depending on whether or not the flagellar motor in the bacterial strain is able to spin both clockwise and counter-clockwise. Experiments by Wolf and Berg (1989) indicate that in *E.coli*, formation of the wild type band structure requires the complete set of chemotaxis proteins. Non-chemotactic cells that retain the ability to tumble as well as to run migrate faster than cells that can only run. Cells with ability to run only get trapped in the agar.
5.1.1: Effect of the deletion of cheY1 and cheY2 genes

The swarming behaviour of wild-type and mutants of *A. tumefaciens* was compared. Usually 3μl sample of cells grown in LB medium were placed on swarm plates and incubated at 28-30°C for up to three days. The swarm-ring size was measured after 10, 24, 48 and 56hr. The effects of the deletion of *cheY1* and *cheY2* genes are shown in Fig. (5.1.1) and Fig. (5.1.2).

When incubated, both wild-type and mutants for the same period of time Cl/delY1 formed swarms approximately 30% reduced in size compared to those formed by *A. tumefaciens* (C58Cl) wild-type. Also Cl/delY2 inhibited swarming behaviour and it swarmed to approximately 60% the size of swarms formed by wild-type. The data suggest that *cheY1* and *cheY2* have different effects on the tactic response, it seems CheY2 is the main response regulator (Fig. 5.1.2., compare No 2. with No 3 & 4).

164
Fig. (5.1.1): Swarm test of *A. tumefaciens* wild type (1) and chemotaxis mutant (2-4) C1/delY2 (Photograph after 48hr).

Fig. (5.1.2): Swarm test of *A. tumefaciens* wild type (1) and chemotaxis mutant (2) C1/delY1 and (3& 4) C1/delY2 (Photograph after 48hr).
Wild-type cells (C58C1) formed a swarm ring, and their displacement increased with time (See Fig. 5.1.3). The first migration appeared about 2.5 hr after inoculation and it increased with time. Wild-type cells produced swarm of approximately 3cm in diameter after 56hr. The mutant cells, C1/delY1, produced a swarm of approximately 2.2cm in diameter after the same length of time. The edge of swarm produced by cheY1 mutant moved outward at a rate about 60% of the wild-type swarms (Fig. 5.1.3).

The mutant cells, C1/delY2, produced swarm approximately 1.2cm in diameter after 56hr. This mutant produced a growth pattern of high density. The edge displacement swarm was at a rate about 30% of the wild type swarms.
Fig. (5.1.3): Displacement of the edge of swarms produced by cells of
A. tumefaciens (wild type) and the mutant strains, C1/delY1 and C1/delY2.
5.1.2: Effect of the deletion of cheB and cheR genes

The predicted amino acid sequences of CheR and CheB were compared with the equivalent proteins from *E. coli*. The CheR and CheB have 41% and 48% identity, respectively, with the corresponding *E. coli* proteins and therefore designated homologues of these adaptation enzymes.

>retlNP_416397.11 response regulator for chemotaxis (cheA sensor); protein methylesterase [Escherichia coli K12]
Length = 349

Score = 305 bits (781), Expect = 3e-84
Identities = 168/345 (48%), Positives = 229/345 (66%), Gaps = 11/345 (3%)

Query: 6 RVLVVDSPTMKGLISA VLKADPEVEVGGQAGNAMERAA WIKQNLDPVTVTDIEMPENMG 65
RVLVVDS PTMRK+++ ++ + E+V A ++ AR IK+ NP D+TLD+EMP MG
Sbjct: 5 RVLSVDOGALSQMTEIINSNDMEMVATAPDPVARLKLKNDPVPDVLTVDMPRMEG 64

Query: 66 LELEKIMLRMPMPVMVSSLTHRGADASLAALIGAFDCVGKAPGDARF F----GDLA 121
L+FLEK+MLRMPMP+VMVSSL +G++ +L ALE+GA D V KP G +A
Sbjct: 65 LDFLEKIMLRMPMVMSLTLGSEVTLKALELQAGFTKFQPGIREGLNEMIA 124

Query: 122 DKVKKXXXXXXXXTXPETAAAPQPVMSEYRAKVVVAIGSSSTGVEALIAVLQKF 181
+KV+ T ++ SE K++AIG+STG EA+ VLP P
Sbjct: 125 EKVRATAKASLAHDCPASPTKLKAGPILLSE----KLIAGASTGTEAIRHLVLOPLP 179

Query: 182 ANCPFVITQHPHTTFTKSFAERLNICAPVVEATDCARLTQGKLYLAFEGERLQIAN 241
+ P +IQHFMP FT+SPA+RLN++C V+EA DG R+ G Y+AP G+RH+++ Sbjct: 180 LSSPALLITQHPHTFTRSFADRLNKLQIGKCAREDGERLVQGHA+GDPNMELS 238

Query: 242 RSPAC-CRLDDLDPVGHRPSVDVLFSVEAILGRNAVGVILTGMGKRDGGAGLLLRHAG 300
A ++ D VN HRPSVDVL SVA+ AGRNAVGVILTOM DGKAG+1 MR AG Sbjct: 239 SGANYQIKHDPVNVNHRPSVDVLFSVEIKQAGRNAYGVILTOMGKAGMLAMQAG 298

Query: 301 ARTVGVQNEKTVV YMFRVAYELGAEQQLPLASIGEEILKLTTA 345
A T+ QNE +CVV+GMFR A +G V + + L+ + ++L +A Sbjct: 299 AWTLQAONEASCVVYMFRVAYELGAEQQLPLASIGEEILKLTTA 343

Fig.(5.1.4): Alignment of the CheB from *A. tumefaciens* with *E. coli* (K-12).
Score = 174 bits (442), Expect = 5e-45
Identities = 102/246 (41%), Positives = 144/246 (58%), Gaps = 9/246 (3%)

Query: IAAMIYADAGYLNMTKLQVYLSKLRSKHMRNGLGSGPHREYCALVSSSSEGQPRREMLSHL 91
Sbjct: TGLYVPGAVGKHPKLVGLYROVYLSKLRSKHMRNGLGSGPHREYCALVSSSSEGQPRREMLSHL 89

Query: TTNTFRFRENNHHFELRDVEFLGLIARAKSGGRVRVRIAICSDGQEPYSIALTVLAMFP 151
Sbjct: TTNLTAFRENNHHFELRDVEFLGLIARAKSGGRVRVRIAICSDGQEPYSIALTVLAMFP 149

Query: NADQYDFKLATIDPILQQAAGVGQDAAEVSFAMRQKQFTGEDAGGRRRFRIDDK 211
Sbjct: GTAPGRKVFASIDYDEVLKAKGIVHHEFLNTPQLQQYFMRGZTGEPHZVLGVRQRQ 205

Query: VKRLITFRINLMT-WQFEGKNFQVLCRNVVVIYFYDETFQVTIVRWSFAKLLPGGLYIG 270
Sbjct: LANYDFAPLNNILKQTVPGFPAIFCRNVMIYDFQTTQEILRRFFVPLKPDQGFLAF 267

Fig.(5.1.5): Alignment of the CheR from A. tumefaciens with E. coli

The swarming behaviour of wild-type and mutants of A. tumefaciens, C1/delB and C1/del/R, were compared. Usually a 3μl sample of cells grown in LB medium were placed on swarm plates, or the bacterial cells were stab inoculated, and plates were incubated at 28-30°C for up to three days. The swarm-ring size was measured after 10, 24, 48 and 56hr. The effects of the deletion of cheB and cheR genes are shown in Fig. 5.1.6 and Fig. 5.1.7.

When both wild-type and mutants were incubated for the same period of time both C1/delB and C1/delR displayed a strong effect on swarming behaviour. A. tumefaciens cheB mutant had inhibited swarming behaviour and their swarm ring was approximately 60% reduced in comparison with those formed by wild-type, C58Cl. A. tumefaciens cheR mutant formed swarms approximately 36% of the diameter of wild-type swarms after incubation for the same period of time.
Fig. (5.1.6): Swarm test of *A. tumefaciens* wild type (1) and chemotaxis mutant (2 & 4) C1/delB and (3) C1/delY1 (Photograph after 48hr).

Fig. (5.1.7): Swarm test of *A. tumefaciens* wild type (1) and chemotaxis mutant (2) C1/delR. Another two strains are resulting from mutagenesis those changes to phenotypic properties of wild type (photograph after 24hr).
Wild-type cells (C58C1) formed swarms and their displacement of the edge was clearly different from that produced by cheB and cheR mutants (See Fig. 5.1.8). Wild-type produced swarm of approximately 3cm in diameter after 56hr. The mutant cells, C1/delB, produced swarm of approximately 0.9cm in diameter after the same length of time. The edge of swarm produced by cheB mutant moved outward at a rate of only about 20% of that of the wild-type swarm (see Fig. 5.1.6). The mutant cells, C1/delR, produced swarm approximately 0.8cm in diameter after 56hr; however, this mutant produced a growth pattern of high density. The edge displacement swarm was at a rate about 20% of the wild type swarm.
Fig. (5.1.8): Displacement of the edge of swarms produced by cells of *A. tumefaciens* (wild type) and the mutant strains, C1/delB and C1/delR.
5.2. Blindwell assay

5.2.1. Effect of the deletion of cheY1 and cheY2 genes:

Results were presented based on the number of bacterial cells attracted to acetosyringone and also in the form of the Chemotaxis index (CI). Data from the chemotaxis assays show that cheY1 and cheY2 have effects on the tactic response. According to Fig. (5.2.1) A. tumefaciens (C58C1) wild-type cells showed a weak response to acetosyringone in the concentration range of \(10^{-4}\) M to \(10^{-8}\) M and the maximum response observed in the concentration of \(10^{-7}\) M.

Compared to wild-type strain, taxis of the A. tumefaciens cheY1 mutant was 75% reduced at \(10^{-7}\) M concentration of attractant, and 27% increased at \(10^{-5}\) concentration indicating decreased sensitivity of CheY2 alone to chemotaxis signalling (see Fig. 5.2.1). The decrease response of cheY1 mutant indicates the importance of CheY1, which is essential for the full tactic response. Compared to cheY1, mutant data from the chemotaxis assay indicated that cheY2 gene has greater effect on the tactic response. At the peak concentration (\(10^{-7}\) M), the response of wild-type strain, taxis of the cheY2 mutant was minimum (98% reduced) (Fig. 5.2.1).
Fig. (5.2.1): Concentration-response chart showing the net number of *A. tumefaciens* wild type and chemotaxis-mutant strains, C1/delY1 and C1/delY2, cells attracted toward acetosyringone.
Fig. (5.2.2): Concentration-response curves for *A. tumefaciens* wild type (C58C1) and Chemotaxis mutant strains, C1/delY1 and C1/delY2, in blindwell assay. Each curve represents the mean of two experiments, each with duplicate readings, after background subtraction.
5.2.2. Effect of the deletion of cheB and cheR genes:

Chemotaxis assays were performed on the cheB and cheR mutant strains using acetosyringone as a chemoattractant. The results show that cheB and cheR mutants have the same phenotype indicating that both genes are essential for tactic response. At the peak concentration response of wild-type (10^-7 M) only small number of cheR mutant cells (~1-1.2% of wild-type) were able to respond to attractant (Fig. 5.2.4). Compared with wild-type, taxis response of cheB mutant strain is 94% reduced at 10^-7 M, but the maximum reduction occurred at the 10^-6 M (~4% of wild-type cells) (see Fig. 5.2.3).
Fig. (5.2.3): Concentration- response chart showing the net number of

A. tumefaciens wild type and chemotaxis-mutant strains, C1/delB and C1/delR, cells attracted toward acetosyringone.
Fig. (5.2.4): Concentration-response curves for *A. tumefaciens* wild type (C58C1) and chemotaxis mutant strains, C1/delB and C1/delR, in blindwell assay. Each curve represents the mean of two experiments, each with duplicate readings, after background subtraction.
Chapter 6

Discussion
Discussion:

Agrobacterium tumefaciens has a chemotaxis operon containing *orf1*, *orf2*, *cheY1*, *cheA*, *cheR*, *cheB*, *cheY2*, *orf9* and *orf10*. A common feature of chemotaxis operon found in this bacterium the same as other members of α-subgroup of *proteobacteria* is two homologues of *cheY* gene, named *cheY1* and *cheY2*, and also the lack of *cheZ* gene homologues.

In *E. coli*, CheW links to the signalling domain of a MCP, the histidine protein kinase, CheA, which phosphorylates response regulator, CheY, or methyltransferase, CheB, in response to an attractant.

In this study, mutations were made in four genes of the chemotaxis operon genes previously identified (*cheY1*, *cheY2*, *cheB* and *cheR*). Phenotypic studies showed that each, except *cheY1* mutant, have strong effect on motility and chemotaxis behaviour of *A. tumefaciens*. The *cheY2*, *cheB* and *cheR* mutant strains showed impaired chemotactic capabilities in swarming behaviour assay.

As discussed earlier, the central part of chemosensory pathway is methyl-accepting chemotaxis protein (MCP), and the other part of this study was to find possible MCP gene(s) in *A. tumefaciens*.

The role of *cheY1* and *cheY2*:

Here, we have demonstrated that both CheY1 and CheY2 are required for the chemotactic behaviour in *A. tumefaciens*. Data from chemotaxis assays show that CheY1 and CheY2 have different effects on the tactic response. CheY2 alone mediates larger decrease (60%) in swarming behaviour to amino acids, suggested that
CheY2 is the main response regulator. The effect of the cheY1 mutant on phenotypic behaviour of *A. tumefaciens* indicates the importance of functional CheY1 that is essential for the full tactic response.

In *Sinorhizobium meliloti*, it has been showed that signal termination is brought about by one of the two CheYs (SourjiK, V., and R. Schmitt, 1996). In this bacterium both CheY1 and CheY2 are phosphorylated by CheA, and it is suggested that CheY1 assumes the role of a phosphatase of CheY2-P by acting as a sink for phosphate that is shuttled from CheY2-P back to CheA. The protein database analysis of *A. tumefaciens* CheY1 and CheY2 showed 90% and 89% identity to CheY1 and CheY2 proteins of *S. meliloti*, suggesting the same phosphotransfer reaction between CheY1, CheY2 and CheA in *A. tumefaciens*.

Fig.(6.1): Alignment of the CheY1 from *A. tumefaciens* with *S. meliloti*
A. tumefaciens CheA protein was shown to have 48% identity to E. coli CheA protein. The main region of variation between the two CheA proteins was shown to be between the E. coli CheA region containing the P2 domain, which has CheY-binding capability. Differences in the sequence of the domain in the A. tumefaciens CheA might be because it may interact with both CheY1 and CheY2 proteins. On the other hand, because a CheZ-like phosphatase has not been detected in A. tumefaciens, and CheY1 was found to be essential for the full tactic response (Fig. 5.1.3), it is possible that CheY1 is a competitor of CheY2 for phosphorylation by CheA.

The same result was obtained for Sinorhizobium meliloti when its chemotaxis measured against proline (Sourjik, V., and R. Schmitt, 1996). Phosphotransfer reactions assay using radiolabeled recombinant proteins, CheA, CheY2 and CheY1 showed that CheY1 has the role of a phosphatase of CheY2-P by acting as a sink for phosphate when unphosphorylated CheA is present. Phosphotransfer is from CheY2-P via CheA to CheY1 (Sourjik, V., and R. Schmitt, 1996).

To find the exact role of cheY1 and cheY2 it seems that more testing of chemotactic capability is required perhaps by performing the swarming plate assay.
using specific chemoattractants; also, either blind well or capillary assays could be performed using a similar range of compounds.

To find the mechanism of signal transduction in *A. tumefaciens* it is necessary to investigate the phosphotransfer reactions between CheA/CheY1/CheY2. Also, monitoring changes of the rotation rate of flagella in tethering experiments and analysis of free-swimming cells in both wild type and each *cheY1*, *cheY2*, *cheY1/cheY2* mutant strains and in combination with *cheA* indicated the correct relationships between CheA, response regulators (CheY1 and CheY2) and the flagellar motor.

The role of *cheB* and *cheR*:

CheR is a methyltransferase, which transfers methyl groups from s-adenosylmethionine molecules to the cytoplasmic domain of the receptors during adaptation to positive stimuli. *CheB* is also a methylesterase that removes methyl groups from receptors during adaptation to negative stimuli. Several observations have led to the suggestion that methylation-dependent adaptation may have a role in *A. tumefaciens* chemotaxis. *A. tumefaciens* met-auxotroph does not display chemotaxis unless supplemented with methionine. Partial chemotaxis can be restored by supplementation with moderate substrate for s-adenosyl methionine synthetase (Shaw, C.H., 1996).

In this study we also examined the adaptation enzymes by genetic and some biochemical approaches. Our data from chemotaxis assay and swarming plate assay shown that both *cheR* and *cheB* have strong effect on the tactic response of *A. tumefaciens* mutant strains, C1/delB and C1/delR. The deletion of either *cheR* or *cheB*
resulted in a nonchemotactic phenotype both on swarm plates and in chemotaxis assays under conditions tested.

Comparative protein sequence analysis of *A. tumefaciens* CheR revealed that it has a CheR-specific N-terminal domain, the catalytic domain, and a β-subdomain. This part of the protein show 41% identity to *E. coli* CheR protein. The functional role of the β-subdomain is interaction with MCPs. It also has homology with α2 helix of *E. coli* CheR that is involved in the recognition and methylation of MCP. This information suggest that chemotaxis is mediated by chemotaxis operon genes in *A. tumefaciens* and is dependent on a methyl-accepting chemotaxis protein.

```
Score = 174 bits (442), Expect = 5e-45
Identities = 102/246 (41%), Positives = 144/246 (58%), Gaps = 9/246 (3%)
```

Fig.(6.3): Alignment of the CheR from *A. tumefaciens* with *E. coli*

In experiments on the *A. tumefaciens cheB* mutant, chemotaxis does not occur because of the lack a methylation-independent adaptation system. This hypothesis is supported by the following observations: (i) the full sequence of *A. tumefaciens* chromosomal DNA indicates that there are no other cheB homologues genes (ii) unlike *A. tumefaciens*, in some bacteria such *Bacillus subtilis*, two other proteins,
CheC and CheD, have a role in adaptation pathway. Then, alternative path could allow *B. subtilis* to achieve chemotaxis.

The swarming behaviour assay indicated 60% size reduction of C1/ΔelB and 64% size reduction of C1/ΔelR in comparison with *A. tumefaciens* wild type strain (Fig.5.1.6). Results of chemotaxis assay shown that both cheR and cheB genes were essential for normal chemotaxis; compared to the wild type, cheB mutant showed a 94% decrease in response to acetosyringone, and the cheR mutant indicated 99% decrease in response to acetosyringone at 10^{-7}M concentration (see Fig.5.2.3).

As discussed in Chapter 3, genetic and some previous biochemical data indicated that *A. tumefaciens* has a DNA fragment containing an orf that has a role, coupled with CheR and CheB, in the chemotactic response of this bacteria.

To investigate and find the exact role of cheR and cheB additional experiments should be performed. As discussed in Chapter 1, CheB act as a response regulator and phosphoryl group acceptor from CheA. Therefore performing a phosphotransfer assay could indicate the relationship between CheA and CheB. Methanol release after methylation of MCPs is a common reaction during chemotactic response and therefore a methanol release experiment could show another aspects of chemotaxis pathway and determine the role of both cheR and cheB genes.

It is necessary to check the swarming and chemotaxis behaviour of cheR and cheB mutant strains against more specific chemoattractants and to analyse free-swimming cells in both wild type and mutants, by measuring the rotation rate of flagellar motor in tethering experiment, which could indicate the influence of cheR and cheB genes on flagellar motor rotation and bacterial cell movement.
Identification of the MCP-like gene:

The presence of a protein antigenically related to the *E. coli* Trg protein in *A. tumefaciens* has been reported (Morgan, D.G., et al., 1993). Our results provide evidence for the existence of a MCP-like gene in *A. tumefaciens* C58C1. Positive hybridisation to a probe from MCP3.2.7P of *Rhizobium leguminosarum* and sequence similarity between this fragment and the deduced amino acid sequences for MCPs suggest that this gene does code for MCP protein. The highest alignment scores occurred with *McpA* gene recently identified from *A. tumefaciens*.

The amino acid sequences indicate this gene contains all the characteristic features of MCPs, such as methylation sites, signalling domain and transmembrane domains (Fig. 3.2.4). Transmembrane domains have been predicted in McpA using a transmembrane helix prediction program, the TMHMM programme (Krogh, A., et al., 2001). This predicts two transmembrane regions, the first TMD from amino acid 20 to 42 and the second from amino acid 205 to 224. This prediction suggests the N-terminal domain of McpA is located in the periplasmic space and probably functions as a sensor domain. In some bacteria, such as *E. coli* and *S. typhimurium*, it has been shown that a pentapeptide sequence (NWETF) is present at the carboxyl terminus of some chemoreceptors (the high-abundance receptors), as is a similar motif in McpA (GWEDF, GFEDF). This pentapeptide provides a docking site for the methyltransferase and greatly enhances methylation of these receptors (Barnakov, A.N., et al., 1999). Such a docking site is absent in *A. tumefaciens* McpA indicating that methyltransferase may be docking to other specific sites in this protein.

Previous investigations argue that *A. tumefaciens* C58 is attracted to a group of phenolic compounds that have been identified as *vir* gene inducers. Acetosyringone
and related compounds elicited chemotaxis in two different assays. According to these experiments the range of concentrations active in inducing chemotaxis was quite narrow and chemotaxis required the Ti-plasmid, and specifically the regulatory genes *virA* and *virG* (Shaw, C. H., et al., 1989).

Palmer, A., et al. (1992) reported that non-phosphorylatable, mutant VirA and VirG proteins are incapable of replacing their wild type counterparts in conferring the ability to respond chemotactically to nanomolar concentrations of vir-inducing phenolics such as acetosyringone. It seems chemotaxis in *A. tumefaciens* involves phosphorylation of VirA and VirG.

Also Ashby, A. M., et al. (1988) have described the phenolic compounds that have different effect on virulence region and have different roles to acting as chemoattractants as well. They categorized the acetosyringone as a strong inducer of the virulence region and a chemoattractant for Ti-plasmid-harbouring strain only (Ashby, A.M., et al., 1988).

Results of another group failed to detect chemotaxis toward acetosyringone at any concentration (Hawes, M.C., and L. Y. Smith, 1989); however, another group reported that acetosyringone did not elicit chemotaxis in *A. tumefaciens A348* and that chemotaxis toward related compounds did not require the Ti-plasmid (Parke, D., et al. 1987).

Our results in this project show that acetosyringone is a weak chemoattractant for *A. tumefaciens* wild type (*C58C1*) and at the 10^{-7}M concentration (peak concentration of attraction) about 1% of bacterial cells are attracted to this phenolic compound (Fig.5.2.1). Comparing the response to acetosyringone of the wild type and *che* mutant strains produced in this thesis indicates that this phenomenon is mediated by the chemotaxis operon genes.
Compared with previous results discussed above, the results of this study indicate that *A. tumefaciens* can express two separate receptor systems for chemotaxis toward acetosyringone: (i) a Ti plasmid-encoded system, (ii) a chromosomally encoded system. The *virA* and *virG* are the Ti plasmid functions responsible for the specific chemotactic response toward acetosyringone. At low concentrations of attractant they mediate chemotaxis and at higher concentration they effect *vir* induction.

Our results demonstrate that chromosomally encoded system is mediated by chemotaxis operon genes. Both systems gave a definite dose response, indicating maximal attraction at 10^{-7}M concentration of acetosyringone. The two systems differed markedly in the number of bacterial cells attracted towards acetosyringone. The chemotactic response mediate by chemotaxis operon genes showed a smaller number of bacterial cells attracted towards attractant.

The positive chemotactic response of *A. tumefaciens* to acetosyringone and several other aromatic compounds raises the question as to whether these compounds are attractants or whether they are converted to metabolite(s) that interact with one or more chemoreceptors. The full chromosomal sequence indicates that *A. tumefaciens* contains several genes that appear to code for distinct methyl-accepting chemotaxis proteins. It appears more likely that some of them are acting as chemoreceptors for these phenolic compounds.

In order to study the chemotactic response of *A. tumefaciens* in-frame deletions should be made of the remaining *che* operon genes. Also, further analysis of these effects could be come from performing overexpression studies of each of the proteins transcribed by these genes.
A. tumefaciens has a unique perspective on which further investigations should be carried out. This is the possible interactions between Ti-encoded virulence system and chromosomally-encoded chemotaxis system. Strong chemotaxis activity to plant wound phenolics has been shown to require virA/virG system from Ti-plasmid. It is therefore possible that this system interacts with some elements of chemotaxis operon genes. To investigate interactions between vir and che systems it could be possible to use the Ti-containing che mutant strains constructed in this work, using wound exudates as a chemoattractants.
References

34. **Blat, Y., and M. Eisenbach. 1996.** Conserved C-terminus of the phosphatase CheZ is a binding domain for the chemotactic response regulator CheY. Biochemistry 35:5679-5683.

199

200

190. McEvoy, M. M., A. Bren, M. Eisenbach, and F. W. Dahlquist. 1999. Identification of the binding interfaces on CheY for two of its targets, the phosphatase
CheZ and the flagellar switch protein FliM. Journal of Molecular Biology 289:1423-1433.

207. Packer, H. L., and J. P. Armitage. 1993. The unidirectional flagellar motor of Rhodobacter sphaeroides WS8 can rotate either clockwise or counterclockwise:
characterization of the flagellum under both conditions by antibody detection. Journal of Bacteriology 175:6041-6045.

