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Abstract 
T h i s w o r k p resen t s t he r e s u l t s o f a n i n v e s t i g a t i o n i n t o t h e t e c h n i q u e o f 

c o m b i n e d T E M - C a t h o d o l u r n i n e s c e n c e a n d i t s a p p l i c a t i o n to t h e s t u d y o f G a N 

e p i t a x i a l l aye r s g r o w n b y M O V P E a n d P A M B E o n s a p p h i r e a n d UAIO2 s u b s t r a t e s 

r e spec t ive ly - a n d M O V P E g r o w n I n x G a i - x N / G a N / A b O a Q W s t r u c t u r e s . 

T h e m e a s u r e m e n t o f C L i n a T E M a l lows spec t r a l i n f o r m a t i o n t o be 

c o r r e l a t e d w i t h s t r u c t u r a l i n f o r m a t i o n . I n - s i t u e l e c t r o n b e a m d e g r a d a t i o n c u r v e s 

o f p a n c h r o m a t i c C L f r o m G a N epi layers a n d Ino.1Gao.9N Q W e m i s s i o n revea led a 

dec l ine i n t h e l u m i n e s c e n c e w h i c h c o u l d be a t t r i b u t e d to t h e i n t r o d u c t i o n o f n o n -

r a d i a t i v e r e c o m b i n a t i o n cent res . T h e i n f l u e n c e of t h i c k n e s s o n b o t h C L spec t r a 

a n d images was inves t iga t ed e x p e r i m e n t a l l y a n d b y m o d e l l i n g . A m e t h o d o f 

n o r m a l i s i n g S T E M - C L images f o r t h i c k n e s s c o n t r a s t was developed. 

A p p l i c a t i o n o f t h i s n o r m a l i s a t i o n t o Ino.1Gao.9N Q W s i n c ros s - sec t ion 

r evea led i n h o m o g e n e o u s C L w i t h b r i g h t r eg ions 2 0 0 - 7 0 0 n m i n w i d t h . No 

s y s t e m a t i c r e l a t i o n s h i p w a s i d e n t i f i e d b e t w e e n l u m i n e s c e n c e a t t h e Q W p e a k 

e m i s s i o n w a v e l e n g t h , Q W A , a n d l u m i n e s c e n c e a t Q W A ± 1 0 n m . T h i s f i n d i n g does 

n o t s u p p o r t t h e h y p o t h e s i s t h a t v a r i a t i o n i n Q W C L b r i g h t n e s s i s d u e t o l o c a l 

c o m p o s i t i o n a l f l u c t u a t i o n . However , c lu s t e r s o f t h r e a d i n g d i s l o c a t i o n s were 

s h o w n to supp re s s Q W l u m i n e s c e n c e a n d are sugges ted as a cause f o r t h e 

o b s e r v e d i n h o m o g e n e i t y i n l u m i n e s c e n c e . A s t a t i s t i c a l ana lys i s of ( d i s l o c a t i o n 

re la ted) V - p i t s i n In^Gai-JN M Q W samples revealed c l u s t e r i n g o f p i t s o n a l e n g t h 

scale o f 6 0 - 1 2 0 n m , b u t n o l o n g r ange c l u s t e r i n g i n d i c a t i v e o f s u b - g r a i n 

b o u n d a r i e s w a s f o u n d . 

F i n a l l y T E M - C L spec t ra a n d m o n o c h r o m a t i c l i ne - scans were u s e d t o s h o w 

t h a t b u n d l e s o f b a s a l p l a n e s t a c k i n g f a u l t s i n M - p l a n e G a N e p i t a x i a l l aye r s g r o w n 

o n LiAlC>2 e m i t r a d i a t i v e l y a t 3 .3 -3 .35eV (100K) . T h e r a d i a t i v e t r a n s i t i o n ene rgy i s 

c o n s i s t e n t w i t h m o d e l s i n t h e l i t e r a t u r e t h a t cons ide r b a s a l p l a n e s t a c k i n g f a u l t s 

t o be l aye r s of c u b i c G a N i n t h e w u r t z i t e m a t r i x w h i c h ac t as t y p e I I Q W s . 

i i 

http://Ino.1Gao.9N
http://Ino.1Gao.9N


Declaration 

I dec la re t h a t w i t h t he e x c e p t i o n o f those p r o c e d u r e s l i s t e d b e l o w a l l t h e 

w o r k p r e s e n t e d i n t h i s thes i s was c a r r i e d o u t b y t h e cand ida t e . I a lso dec la re 

t h a t n o n e o f t h i s w o r k ha s p r e v i o u s l y been s u b m i t t e d f o r a n y degree a n d t h a t i t is 

n o t b e i n g s u b m i t t e d f o r a n y o the r degree. 

Sample s were p r o v i d e d by : 

D r . I . W . W a t s o n a n d C. L i u , I n s t i t u t e of Pho ton ic s , U n i v e r s i t y of S t r a t h c l y d e ; a l l c-

p l a n e G a N / I n G a N s t r u c t u r e s . 

D r . A c h i m T r a m p e r t , P a u l - D r u d e I n s t i t u t e B e r l i n ; a l l M - p l a n e L i A 1 0 2 / G a N 

sample s . 

S E M - C L o f L iAlCh i n c l u d e d i n F i g u r e 6.5 w a s p r o v i d e d b y D r . A c h i m T r a m p e r t . 

A F M images i n c l u d e d i n F igures 8.10(a) , 8.11(a) a n d 8.13(a) were p e r f o r m e d b y C. 

L i u 

D r . K . D u r o s e 

S u p e r v i s o r 

A/ 
N . M . B o y a l l 

C a n d i d a t e 

T h e c o p y r i g h t o f t h i s t hes i s res ts w i t h t h e a u t h o r . No q u o t a t i o n f r o m i t 

s h o u l d be p u b l i s h e d w i t h o u t t h e i r p r i o r w r i t t e n consen t a n d i n f o r m a t i o n d e r i v e d 

f r o m i t s h o u l d be acknowledged . 

i i i 



Acknowledgements 
F i r s t a n d f o r e m o s t I w o u l d l i k e to o f f e r m y t h a n k s a n d g r a t i t u d e t o m y 

s u p e r v i s o r D r . K e n D u r o s e w i t h o u t w h o s e e n c o u r a g e m e n t a n d e n t h u s i a s m t h i s 

w o r k w o u l d n o t have been poss ib le . I w o u l d a lso l i k e to t h a n k D r A . W . 

B r i n k m a n , a n d D r . D.P . H a l l i d a y f o r a l l t h e v a l u a b l e d i s c u s s i o n s , h e l p a n d 

e n c o u r a g e m e n t over t h e years . 

I w o u l d also l i k e t o give spec ia l t h a n k s t o D r . I a n W a t s o n , C h a o w a n g L i u 

a n d D r . P a u l E d w a r d s a t t h e U n i v e r s i t y o f S t r a t h c l y d e a n d D r . A c h i m T r a m p e r t a t 

t he P a u l - D r u d e I n s t i t u t e f o r p r o v i d i n g n o t o n l y t h e c rys t a l s , b u t a lso f o r m a n y 

h e l p f u l d i s c u s s i o n s a n d advice . 

I a m e x t r e m e l y g r a t e f u l to N o r m a n T h o m p s o n a n d D a v i d P a t t i n s o n f o r 

t e c h n i c a l s u p p o r t a n d k e e p i n g the m i c r o s c o p e g o i n g t h r o u g h a s e e m i n g l y end less 

s t r e a m o f ca t a s t rophes . R e c o g n i t i o n m u s t also go t o P au l i ne R u s s e l l i n t h e 

d r a w i n g o f f i ce f o r ass i s tance i n t h e p r o d u c t i o n o f d i a g r a m s f o r pos t e r s a n d 

papers , some o f w h i c h have been a m e n d e d f o r use i n t h i s thes i s . 

T h a n k s are d u e t o t h e f o l l o w i n g g r o u p m e m b e r s pa s t a n d p resen t , n o t o n l y 

f o r v a l u a b l e d i s c u s s i o n s , b u t also f o r m a k i n g t h e g r o u p a p l e a s u r e t o w o r k i n : 

A r n a b B a s u , B e n C a n t w e l l , M i c h a e l C o u s i n s , K e r i y a M a m , J o h n M u l l i n s , R a i n e r 

S c h m i d t , D a v i d S m y t h - B o y l e , A n d r e w Yates , a n d G u i l l a u m e Z o p p i . I w o u l d a lso 

l i k e to w i s h B e n C a n t w e l l w e l l i n h i s P h D s t u d y o f t h e M T P V T g r o w t h o f CdTe . 

O n a m o r e p e r s o n a l n o t e I w o u l d l i k e t o t h a n k a l l t h e s t a f f a t T h e College o f 

St. H i l d a n d St. Bede f o r l o o k i n g a f t e r m e d u r i n g m y t i m e i n D u r h a m , a n d t h e 

m a n y f r i e n d s I have m a d e t h r o u g h t h e college a n d sen ior c o m m o n r o o m . F i n a l l y , 

t h a n k s m u s t go to m y p a r e n t s a n d w i f e t o be, C h a r l o t t e , f o r s u p p o r t i n g m e 

t h r o u g h m y s tud ie s . T h a n k s are also d u e to t h e m f o r e d u c a t i n g m e i n t h e co r r ec t 

u s e o f p u n c t u a t i o n a n d g r a m m a r , a n d l e a r n i n g m o r e t h a n I ' m s u r e t h e y ever 

w a n t e d t o a b o u t s e m i c o n d u c t o r s . 

T h i s w o r k w a s f u n d e d b y the E n g i n e e r i n g a n d P h y s i c a l Sciences Research 

C o u n c i l . 

i v 



This thesis is dedicated to 
My mother and father 



ABBREVIATIONS 
A D F - A n n u l a r D a r k F i e l d 

A F M - A t o m i c Force M i c r o s c o p y 

B F - B r i g h t F i e l d 

B X - B o u n d E x c i t o n 

C D F - C e n t r e d D a r k F i e l d 

C T E M - C o n v e n t i o n a l T E M 

D A P - D o n o r A c c e p t o r Pai r 

D F - D a r k F i e l d 

E L O G - E p i t a x i a l L a t e r a l O v e r g r o w t h 

F I B - Focused I o n B e a m 

F X - Free E x c i t o n 

H C P - H e x a g o n a l Close-Packed 

H V P E - H y d r i d e V a p o u r Phase E p i t a x y 

L E D - L i g h t E m i t t i n g D i o d e 

L D - Laser D i o d e 

M B E - M o l e c u l a r B e a m E p i t a x y 

M O V P E - M e t a l O r g a n i c V a p o u r Phase E p i t a x y 

M Q W - M u l t i Q u a n t u m W e l l 

P A M B E - P l a s m a A s s i s t e d M o l e c u l a r B e a m E p i t a x y 

P M T - P h o t o - m u l t i p l i e r T u b e 

P L - P h o t o l u m i n e s c e n c e 

Q W - Q u a n t u m W e l l 

Q W a - Peak E m i s s i o n W a v e l e n g t h f r o m a Q W 

R B S - R u t h e r f o r d B a c k - S c a t t e r i n g 

S A D - Selected A r e a D i f f r a c t i o n 

S E M - S c a n n i n g E l e c t r o n M i c r o s c o p y 

S F E - S t a c k i n g F a u l t B o u n d E x c i t o n 

S Q W - S ing le Q u a n t u m W e l l 

S T E M - S c a n n i n g T r a n s m i s s i o n E l e c t r o n M i c r o s c o p y 

S T E M - C L - C a t h o d o l u m i n e s c e n c e M e a s u r m e n t i n S T E M 

( S ) T E M - C L - S T E M - C L or T E M - C L 

T E M - T r a n s m i s s i o n E l e c t r o n M i c r o s c o p y 

T E M - C L - C a t h o d o l u m i n e s c e n c e M e a s u r e m e n t i n T E M 



Contents 

CONTENTS 
1 Introduction 1 

1.1 Introduction 1 
1.2 References 5 

2 Review of TEM-CL 7 
2.1 Introduction 7 
2.2 Scanning Cathodoluminescence Microscopy 7 
2.3 Review of (S)TEM-CL 9 
2.4 References 15 

3 GaN and InGaN 22 
3.1 Crystal Structure of Nitrides 22 
3.2 Epitaxy 23 
3.3 Doping 24 
3.4 Nitride Growth 25 
3.5 Structural Defects and Materials Performance 26 
3.6 References 29 

4 Experimental Techniques 33 
4.1 Introduction 33 
4.2 Material Growth 33 
4.3 Sample Preparation 34 
4.4 Scanning Electron Microscopy 36 
4.5 Transmission Electron Microscopy 36 
4.6 TEM-CL 38 
4.7 Image Analysis 41 
4.8 References 42 

5 TEM-CL System and CL Generation 43 
5.1 Introduction 43 
5.2 Calibration 43 

5.2.1 Wavelength Calibration 43 
5.2.2 Wavelength Response 44 
5.2.3 Spectrometer Resolution 44 
5.2.4 Hole Spectra and Dark Noise 45 
5.2.5 Effect of Cooling 49 
5.2.6 The Objective Aperture 50 

v i i 



Contents 

5.4 CL Emission from a Thin Crystal 51 
5.4.1 Resolution, Beam Broadening and Generation Volume 51 
5.4.2 Thin Film Interference Effects 54 
5.4.3 Visual Basic Model 55 
5.4.4 Comparison with Experimental Data 61 

5.5 Conclusions 62 
5.6 References 64 

6 TEM-CL Spectroscopy 66 
6.1 Introduction 66 
6.2 Samples Used in this Chapter 67 
6.3 Excitation Conditions 67 
6.4 Spectral Features of GaN and ln xGai. xN 71 

6.4.1 Spectral Features of C-Plane InxGa^N/GaN 
on (0001) Sapphire 71 

6.4.2 Spectral Features of M-Plane GaN/LiAl02 77 
6.5 Beam Degradation of CL 79 

6.5.1 GaN/lnxGa,.xN Beam Degradation 79 
6.5.2 Beam Degradation of LiAl02 84 

6.6 Conclusions 85 
6.7 References 86 

7 STEM-CL Imaging of Quantum Wells 89 
7.1 Introduction 89 
7.2 STEM-CL Imaging 90 
7.3 Thickness Dependence of STEM Signal: Model and 

Experiment 91 
7.4 Thickness Dependence of CL: Model 94 
7.5 Thickness Dependence of CL: Comparison of Model 

with Experiment 97 
7.6 Panchromatic Imaging of lno.1Gao.9N Quantum Wells 97 

7.6.1 Normalisation of Images 97 
7.6.2 Discussion 101 

7.7 Monochromatic Analysis fo lno.1Gao.9N Quantum Wells 102 
7.7.1 Monochromatic Imaging 102 

7.7.2 Monochromatic Line-Scans 105 
7.7.3 Discussion 106 

7.8 Conclusions 108 
7.9 References 110 

v i i i 

http://lno.1Gao.9N
http://lno.1Gao.9N


Contents 

8 Extended Defects in Gallium Nitride 112 
8.1 Introduction 112 
8.2 Statistical Methods Used in this Chapter 113 

8.2.1 Analysis of Dislocations in 1D 113 
8.2.2 Analysis of Dislocations in 2D 115 

8.3 Samples Used in this Chapter 120 
8.4 c-Plane GaN 121 

8.4.1 Threading Dislocations in c-Plane GaN 121 
8.4.2 Effect of Threading Dislocations on QW Luminescence 124 
8.4.3 Analysis of Dislocation Distributions 126 
8.4.4 Discussion 127 
8.4.5 Analysis of V-Pit Distribution 127 
8.4.6 Analysis of Statistical Results 133 
8.4.7 Discussion 134 

8.5M-PlaneGaN 136 
8.5.1 Stacking Faults in M-Plane GaN 136 
8.5.2 Luminescence from Stacking Faults 138 
8.5.3 Analysis and Discussion 140 

8.6 Conclusions 142 
8.7 References 144 

9 Discussion and Conclusions 148 
9.1 Discussion and Conclusions 148 
9.2 References 153 

Appendix A - Computer Code 154 
A1 Introduction 154 
A2 Image Analysis 154 
A3 Fabry-Perot Simulations 155 
A4 1-D Autocorrelation Function 156 
A5 2-D Point Logging Routine 158 
A6 Nearest Neighbour Analysis 159 
A7 Comparison to Poisson Distribution 160 
A8 Radial Autocorrelation Function 162 
A9 Spatial Correlation Function 164 

i x 



Contents 

Appendix B - Derivation of Reflectivity 166 
B1 Derivation of Reflectivity 166 

Appendix C - List of Publications 168 

X 



Chapter 

Introduction 

1.1 Introduction 
T h e IrixGai-xN a l loy is a n i m p o r t a n t m a t e r i a l f o r t h e f a b r i c a t i o n o f l i g h t 

e m i t t i n g d iodes (LEDs) a n d laser d iodes (LDs) s p a n n i n g t h e v i s ib l e r a n g e i n t o t h e 

n e a r u l t r a - v i o l e t [1 -4 ] . L E D s o f f e r i n c r e a s e d e f f i c i ency a n d l onge r o p e r a t i o n a l 

l i f e t i m e s c o m p a r e d to t r a d i t i o n a l i n c a n d e s c e n t l i g h t i n g . P r o d u c t i o n o f r e d a n d 

y e l l o w L E D s i s a n e s t ab l i shed t e chno logy . However , p r i o r t o t h e d e v e l o p m e n t o f 

InxGai-xN, t e c h n o l o g y devices o f s i m i l a r b r i g h t n e s s w i t h e m i s s i o n e x t e n d i n g i n t o 

s h o r t e r r eg ions o f t h e s p e c t r u m p r o v e d p r o b l e m a t i c . L E D s based o n I n x G a i - x N 

m u l t i - q u a n t u m w e l l (MQW) act ive r eg ions o p e r a t i n g i n t h e b l u e - g r e e n r e g i o n of 

t h e s p e c t r u m have f a c i l i t a t e d t h e p r o d u c t i o n of h i g h - b r i g h t n e s s , h i g h e f f i c i e n c y 

f u l l c o l o u r d i sp l ays , a n d o f f e r t h e p o s s i b i l i t y o f r e p l a c i n g i n e f f i c i e n t i n c a n d e s c e n t 

sources f o r eve ryday l i g h t i n g . 

S e m i c o n d u c t o r L D s p r o v i d e a cheap , r e l i ab l e a n d e f f i c i e n t s o u r c e of 

m o n o c h r o m a t i c l i g h t f o r r e a d i n g a n d w r i t i n g o p t i c a l d i s k s a n d i n o the r 

a p p l i c a t i o n s s u c h as laser p r i n t e r s . GaAs L D s o p e r a t i n g i n t h e nea r i n f r a r e d 

( 7 8 0 n m ) are u s e d i n c o m p a c t d i s k p l aye r s p r o v i d i n g a d a t a c a p a c i t y o f - 6 5 0 

megaby te s . T h e m o r e r ecen t d i g i t a l versa t i le d i s k (DVD) uses a r e d A l I n G a P L D 

o p e r a t i n g a t 6 5 0 n m w h i c h , toge the r w i t h i m p r o v e d s igna l p r o c e s s i n g t e c h n i q u e s , 

gives d a t a c a p a c i t y o f - 4 . 7 g igabytes . A greater a rea l d a t a d e n s i t y is p o s s i b l e w i t h 

1 



Chapter 1 - Introduction 

a s m a l l e r w a v e l e n g t h laser . D a t a capac i t y has n o w been f u r t h e r i n c r e a s e d t o ~27 

g igabytes i n devices c o m p l i a n t w i t h t h e Blu-ray s t a n d a r d [5] u s i n g r e c e n t l y 

c o m m e r c i a l i z e d 4 0 5 n m L D s based a r o u n d a n InxGai-xN M Q W . 

T h i s n e w t e c h n o l o g y w a s m a d e poss ib le b y the p i o n e e r i n g r e s e a r c h o f 

I s a m u A k a s a k i i n t o the u s e o f A1N a n d G a N n u c l e a t i o n l aye r s f o r t h e g r o w t h of 

G a N f i l m s [6, 7 ] . B u i l d i n g o n t h i s r e sea rch S h u j i N a k a m u r a a t Nichia Chemicals 

w a s able t o g r o w h i g h q u a l i t y G a N f i l m s u s i n g a l o w t e m p e r a t u r e b u f f e r l aye r [8] 

a n d create a b l u e / g r e e n In^Gai-xN single q u a n t u m w e l l L E D [9] . W i t h i n a s h o r t 

space of t i m e L D s based a r o u n d InxGa i - x N M Q W s were deve loped [10 -12 ] w i t h 

p r e d i c t e d l i f e t i m e s a p p r o a c h i n g 10000 h o u r s a t r o o m t e m p e r a t u r e c o n t i n u o u s 

wave o p e r a t i o n . 

C l ea r l y t h e d e v e l o p m e n t of n i t r i d e based l i g h t e m i t t i n g devices h a s been 

e x t r e m e l y s u c c e s s f u l . Desp i t e t h i s a n u m b e r of m a t e r i a l s i s sues r e m a i n . N i t r i d e 

b a s e d devices c o n t a i n l a rge d i s l o c a t i o n dens i t i es o f t h e o rde r o f 1 0 1 0 c m - 2 [ 1 3 ] . 

W h i l s t these devices are c o m m e r c i a l l y ava i lab le a n d have accep tab le l i f e t i m e s , 

ev idence t h a t t h r e a d i n g d i s l o c a t i o n s ac t as n o n - r a d i a t i v e r e c o m b i n a t i o n cen t res 

[ 1 4 - 1 7 ] s h o w s t h a t a r e d u c t i o n i n t h e d i s l o c a t i o n d e n s i t y i s necessa ry f u r t h e r t o 

i m p r o v e device e f f i c i e n c y a n d o u t p u t power . T w o m a j o r cha l lenges are, t he r e fo re , 

to r e d u c e t h e d i s l o c a t i o n dens i t y , a n d to e x p l a i n w h y t h e devices are so e f fec t ive 

a t h i g h d i s l o c a t i o n dens i t i e s . A cause o f d i s l o c a t i o n s is t h e s u b s t r a t e s u s e d f o r 

t h e g r o w t h o f G a N e p i t a x i a l l ayers . E p i t a x i a l G a N is c o m m o n l y g r o w n o n t h e 

s a p p h i r e (0001) p l ane . T h e la rge m i s m a t c h b e t w e e n t h e t w o m a t e r i a l s , 13 .8%, i s 

a cause o f these d i s l o c a t i o n s . I n a d d i t i o n to t h e i r ro l e as n o n - r a d i a t i v e 

r e c o m b i n a t i o n cent res , d i s l o c a t i o n s c a n i m p a i r t h e o p e r a t i o n o f L D s b y a c t i n g as 

s c a t t e r i n g cen t res f o r l i g h t . C o m p l e x g r o w t h p r o c e d u r e s s u c h as e p i t a x i a l l a t e r a l 

o v e r g r o w t h (ELOG) have been u s e d to r educe d i s l o c a t i o n dens i t i e s i n L D s [12 ] . 

B e t t e r m a t c h e d s u b s t r a t e s , however , o f f e r clear advan tages f o r n i t r i d e g r o w t h . 

T h e ac t ive r eg ions o f n i t r i d e l i g h t e m i t t i n g devices are o f t e n In^Gai-^N 

q u a n t u m w e l l s t r u c t u r e s g r o w n o n G a N e p i t a x i a l l ayers . These s t r u c t u r e s e x h i b i t 

h i g h e f f i c i enc ie s despi te t h e large d e n s i t y of t h r e a d i n g d i s l o c a t i o n s i n t h e G a N 

ep i layers . T h e r e i s cons ide rab l e debate i n t h e l i t e r a t u r e as to w h e t h e r t h i s 

e f f i c i e n c y is d u e t o l oca l i s ed s tates caused b y c o m p o s i t i o n a l i n h o m o g e n e i t i e s 

a n d / o r s t r a i n [ 1 8 - 2 1 ] . I d e n t i f i c a t i o n of t he cause o f t h i s l o c a l i s a t i o n i s of 

i m p o r t a n c e f o r t h e r e a l i z a t i o n o f longer w a v e l e n g t h devices as t h e l a rge r i n - p l a n e 
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(0001) l a t t i c e s p a c i n g o f I n N c o m p a r e d to G a N w i l l l e ad to i n c r e a s e d s t r a i n as t h e 
I n c o n t e n t i s inc reased . 

T h e p u r p o s e o f t h i s w o r k is to use the u n u s u a l t e c h n i q u e o f c o m b i n e d 

t r a n s m i s s i o n e l ec t ron m i c r o s c o p y a n d c a t h o d o l u m i n e s c e n c e ( T E M - C L ) to 

i nves t iga t e t h e p rope r t i e s o f G a N e p i t a x i a l layers a n d In^Gai-xN Q W s t r u c t u r e s . 

T E M i s a c o m m o n l y u s e d t e c h n i q u e f o r t h e s t u d y o f s t r u c t u r e a n d defec t s i n 

s e m i c o n d u c t o r s a n d C L is t h e e m i s s i o n o f l i g h t as a r e s u l t o f e l e c t r o n 

b o m b a r d m e n t . I n s e m i c o n d u c t o r s t h i s e m i s s i o n is a r e s u l t o f r a d i a t i v e 

r e c o m b i n a t i o n o f e l ec t rons a n d holes genera ted b y i n c i d e n t e l ec t rons . T h e ene rgy 

o f a n e m i t t e d p h o t o n y ie lds i n f o r m a t i o n a b o u t t he energy s ta tes o f t h e 

p a r t i c i p a t i n g e l e c t r o n a n d ho le p a i r s . Hence a C L s p e c t r u m c o n t a i n s i n f o r m a t i o n 

c o n c e r n i n g t h e f u n d a m e n t a l band -gap , d o n o r a n d accep tor levels , a n d e x c i t o n i c 

s t r u c t u r e . T h e advan tage o f a T E M - C L s y s t e m is t h e a b i l i t y to co r r e l a t e t h e 

spec t roscop ic C L i n f o r m a t i o n w i t h s t r u c t u r a l i n f o r m a t i o n f r o m T E M . C L 

m e a s u r e m e n t s t a k e n i n s u c h a s y s t e m b e n e f i t f r o m h i g h s p a t i a l r e s o l u t i o n d u e t o 

s u r f a c e r e c o m b i n a t i o n l i m i t e d d i f f u s i o n l eng th s , a n d l i m i t e d b e a m b r o a d e n i n g i n 

c o m p a r i s o n to t h e large gene ra t i on v o l u m e s t y p i c a l l y assoc ia ted w i t h t h e m o r e 

c o m m o n S E M - C L [22] . A necessary consequence o f t h i s h i g h s p a t i a l r e s o l u t i o n i n 

T E M - C L i s a m a j o r loss o f s i g n a l d u e to b o t h n o n - r a d i a t i v e r e c o m b i n a t i o n a t 

s u r f a c e s ta tes a n d a s m a l l spec imen-e l ec t ron b e a m i n t e r a c t i o n v o l u m e . T h i s i s 

a n u n d e r l y i n g l i m i t i n g f a c t o r i n a l l T E M - C L e x p e r i m e n t s . 

I n t h e f i r s t s ec t ion o f t h i s w o r k t h e h i s t o r i c a l d e v e l o p m e n t a n d p rogress o f 

T E M - C L i s r ev i ewed i n C h a p t e r T w o . T h e g r o w t h a n d s t r u c t u r e of e p i t a x i a l G a N 

a n d InxGai-xN Q W s t r u c t u r e s are de sc r ibed i n C h a p t e r Three . A d e s c r i p t i o n o f 

e x p e r i m e n t a l t e c h n i q u e s is g iven i n C h a p t e r F o u r f o l l o w e d b y t h e e x p e r i m e n t a l 

r e s u l t s w h i c h are d i v i d e d i n t o f o u r chap t e r s as f o l l o w s : 

• C h a p t e r Five is d i v i d e d i n t o t w o p a r t s . T h e f i r s t desc r ibes t h e 

c a l i b r a t i o n a n d i n v e s t i g a t i o n o f t he T E M - C L s y s t e m . I n t h e second 

p a r t t h e r e s o l u t i o n o f S T E M - C L i s c o n s i d e r e d a n d t h i n f i l m o p t i c a l 

i n t e r f e r e n c e effects are d i s c u s s e d a n d m o d e l l e d . 

• Aspec t s of T E M - C L spec t roscopy are d i s c u s s e d i n C h a p t e r S ix . T h e 

f e a t u r e s observed i n T E M - C L spec t r a o f G a N a n d I n x G a i - x N Q W s are 

i d e n t i f i e d a n d t h e ef fec ts o f e l ec t ron b e a m d e g r a d a t i o n are 

i nves t i ga t ed . 
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• C h a p t e r Seven descr ibes S T E M - C L i m a g i n g of In^Gai-xN Q W 

s t r u c t u r e s . A m o d e l t o n o r m a l i s e C L l i ne - scans f o r t h i c k n e s s 

c o n t r a s t i s deve loped a n d u t i l i s e d to inves t iga te i n h o m o g e n e i t y i n 

Q W C L e m i s s i o n . 

• I n t h e first p a r t o f C h a p t e r E i g h t S T E M - C L images o f I n ^ G a i ^ N 

SQWs are co r r e l a t ed w i t h d i f f r a c t i o n c o n t r a s t T E M i m a g i n g to 

inves t iga te t h e e f fec t s o f t h r e a d i n g d i s l o c a t i o n o n t h e n o n - u n i f o r m i t y 

o f Q W C L e m i s s i o n . T h e s t a t i s t i c a l d i s t r i b u t i o n o f t h r e a d i n g 

d i s l o c a t i o n i n a T E M f o i l i s t h e n a n a l y s e d i n one d i m e n s i o n . T h i s i s 

f o l l o w e d b y a s t a t i s t i c a l ana lys i s o f V - p i t s i n I n x G a i x N M Q W s . I n t h e 

second p a r t of t h e c h a p t e r l u m i n e s c e n c e assoc ia ted w i t h b a s a l p l a n e 

s t a c k i n g f a u l t s i n M - p l a n e G a N g r o w n o n y - L i A K b is i n v e s t i g a t e d 

u s i n g T E M - C L spec t roscopy a n d l ine - scans . 

O v e r a l l d i s c u s s i o n a n d c o n c l u s i o n s are g iven i n C h a p t e r N i n e . C o m p u t e r 

code a n d o t h e r s u p p l e m e n t a r y m a t e r i a l is g iven i n A p p e n d i c e s A - C . 
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Chapter 

Review of (S)TEM-CL 
Technique 

2.1 Introduction 
CL spectroscopy and CL microscopy are widely used techniques in 

semiconductor characterisation. Cathodoluminescence yields information about 

the properties of a semiconductor such as: diffusion length (minority carrier 

lifetime), impurity content and distribution, lattice defects, strain, composition 

and is temperature dependent. The development of high resolution scanning 

probe CL systems in a scanning electron microscope (SEM) and scanning 

transmission electron microscope (STEM) has been of importance for the 

characterisation of nanometer scale quantum confined structures for LEDs and 

LDs [1-5]. In this chapter the strengths and weaknesses of SEM-CL and (S)TEM-

CL are discussed. This is followed by a review of the development of (S)TEM-CL 

techniques and their applications. 

2.2 Scanning Cathodoluminescence Microscopy 
The ability to scan an electron beam over a sample allows the formation of 

a CL image, thus yielding information about the spatial distribution of 

luminescence. Keeping the beam stationary at a single point or rastering over a 
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small area allows spectra from different positions on a sample to be collected with 

a greater spatial resolution than is achievable in photoluminescence (PL) 

experiments. The SEM is therefore highly suited for CL measurements and as 

such SEM-CL is a widely used technique. 

SEM-CL. The main advantage of SEM-CL is that a bulk sample may be 

used thereby saving on preparation time and allowing a large region to be rapidly 

evaluated. SEM-CL is non-destructive as long as the specimen is not affected by 

the electron beam. A necessary consequence of using a bulk sample is the 

formation of the so called generation volume [2]. This region excited by the 

incident beam is typically of the order of microns at typical SEM operating 

voltages (15-40kV) and thus limits the resolution of SEM-CL to this size. This is 

both beneficial and disadvantageous. Depth resolved CL takes advantage of the 

generation volume through experiments where the primary beam voltage is varied 

to change the depth of the generation volume in a controlled manner. This is a 

useful technique for investigating buried structures. Calibration of the extent of 

the generation volume, however, is difficult and care must be taken to consider 

internal absorption of the luminescence. On the negative side a micron scale 

spatial resolution is inadequate for the investigation of nanoscale structures. 

Techniques developed to overcome this include the use of a low energy (~lkV) 

electron probe [6] or the analysis of a thin foil. 

(S)TEM-CL. Installation of a CL collection system into a TEM or STEM is 

complex due to space constraints in the TEM pole piece; therefore there need to 

be clear benefits over SEM-CL to justify the conversion of a TEM. The main 

impetus to implement such a system is the ability to correlate spectroscopic 

information with structural information from diffraction contrast TEM. The 

spatial resolution in STEM-CL is much improved on SEM-CL, a typical resolution 

being lOOnm (See Chapter 5 for further discussion of spatial resolution). This is 

due to limited beam broadening in a TEM foil and a smaller, surface 

recombination limited, diffusion length. Conversely to bulk SEM-CL an increase 

in primary electron beam energy decreases beam broadening, whereas for a bulk 

specimen such an increase will extend the range of the generation volume. These 

benefits are offset by dramatically reduced CL intensity compared to SEM-CL, 

due to a smaller excitation volume and large losses of free carriers to surface 
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recombination. High beam energies in TEM (>100keV) also increase the 

likelihood of specimen damage. 

Before proceeding to a review of the literature it is first necessary to clarify 

the difference between TEM-CL and STEM-CL. In TEM-CL the microscope is 

operated in conventional TEM mode with the ability to collect CL spectra from the 

material illuminated by the beam. STEM-CL is either performed in a dedicated 

STEM or a TEM with scanning attachment. This allows panchromatic and 

monochromatic images to be collected for comparison with STEM bright field (BF) 

or annular dark field (ADF) images from exactly the same region. Spectra may be 

collected using a stationary probe or a scanning probe either to average the CL 

signal over a larger area or to minimise beam damage. 

2.3 Review of (S)TEM-CL 
The earliest report of TEM-CL is by Kingsley [7]. STEM-CL was first 

described by Pennycook et al [8] in the Cavendish laboratory and Petroff et al [9] 

at Bell laboratories. These two groups implemented quite different techniques for 

collecting the luminescence and reflecting it out of the microscope column. 

Pennycook and co-workers [8] adapted a dedicated STEM using a concave 

aluminium reflector built into the sample holder on the electron exit side of the 

specimen. This design allowed for uniform collection over an area ~ l m m in 

diameter thereby eliminating lengthy alignment procedures. A tapered, silvered 

tube collected the luminescence before directing i t into a quartz light guide and 

photomultiplier (PMT). The light guide could be replaced with fibre optics 

connected to a spectrometer when needed [10]. A major advantage of this design 

was that i t allowed the specimen to be tilted, thereby enabling investigations into 

the variation of CL intensity with diffraction conditions to be performed [8, 11, 

12]. Panchromatic STEM-CL images and line-scans were used to demonstrate 

that dislocations in type lib diamond act as sites for radiative recombination. No 

correlation with dislocation type was found, however, and dislocations of the 

same type were shown to be also non-luminescent in some occurrences [10, 11]. 

Performance of this system was inhibited by considerable background noise as a 

result of stray electrons striking the silvered collection tube. This was overcome 

by moving the collection tube to the electron entrance side with the specimen 
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tilted towards the tube [13, 14] and later by replacing the tube with a plane 

mirror at 45° to the specimen reflecting light on to a collimating lens and PMT 

assembly [15-17]. 

The CL collection system implemented by Petroff et al [9] was installed in a 

TEM with scanning facilities. An elliptical mirror positioned above the specimen 

reflected the luminescence from the specimen onto an arrangement of planar 

mirror and optical fibre for transmission out of the microscope. The 

luminescence was then dispersed in a monochromator before detection by a PMT 

or solid state detector. Using a combination of electron beam induced current 

(EBIC), STEM and monochromatic STEM-CL imaging Petroff et al [18, 19] 

observed non-radiative carrier recombination at misfit dislocations at a Gai-

xAljcAsi-yPy/GaAs interface with edge sessile dislocations found to be electrically 

neutral. The absence of non-radiative recombination was explained by 

suggesting the dislocation has no dangling bonds [19]. Studies of GaAs/Gai-

xALAs double heterostructures identified defect-bound exciton emission lines 

associated with point defects concentrated around dislocations and showed 

interface roughness in QW superlattices to be related to trapped impurities at the 

inferfaces [20-23]. Magnea et al [24, 25] used EBIC and STEM-CL for the study of 

InP/InGaAs photodiodes, determining microplasmas to be associated with 

increased electric fields localised at doping fluctuations. In later work Cibert et al 

[26] and Petroff, latterly at the University of California, [27-29] investigated 

GaAs/AlGaAs quantum wires and boxes demonstrating the effectiveness of high 

resolution STEM-CL for the investigation of nanoscale structures. Lines were 

attributed to transitions from ground and excited states within these low-

dimensional structures and demonstrated to originate from them using 

monochromatic STEM-CL imaging. 

Following the pioneering work of Pennycook and Petroff a number of 

laboratories began to implement (S)TEM-CL systems. The first of these was 

Bristol. Bearing similarities to the system at Bell the Bristol apparatus consisted 

of a retractable, ellipsoidal mirror positioned above the specimen reflecting 

luminescence outside the microscope column onto a quartz light guide and a 

grating monochromator [30-35]. A continuous flow liquid He cold stage allowed 

samples to be cooled to 30K. The main advantage of this system over the light 

guide used by Pennycook is improved collection efficiency, albeit at the cost of a 
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smaller collection area, ~150nm, leaving no space to tilt the specimen with the CL 

mirror in place. The performance of this system is reviewed by Steeds [36]. 

Myhajlenko et al [34] report on CL studies of individual dislocations in 

ZnSe and InP. Y-band luminescence at 2.60eV and S-band at 2.52eV in ZnSe 

was attributed to dislocations. Specifically the Y-emission was correlated to 

quenching of exitonic (2.79eV) emission in regions of high dislocation density. 

This quenching was shown to be variable at screw dislocations. However, in 

studies of InP crystals [34, 37, 38] although exciton quenching was observed at 

dislocations no dislocation related luminescence was observed. 

Wang et al studied molecular beam epitaxy (MBE) grown AlGaAs/GaAs 

quantum well structures [39-41] and AlGaAs/GaAs quantum dots [42]. 

Monochromatic STEM-CL imaging revealed that residual impurities in the growth 

system tended to be trapped in the first QW grown and agglomerate at defect 

interfaces [39, 40, 43]. These investigations included the first reported 

application of STEM-CL to an electron transparent cross-sectional foil [41], 

demonstrating a spatial resolution of ~50nm normal to the QW. In other work 

the origins of degradation mechanisms in AlGaAs/GaAs laser diode structures 

was studied [44] using STEM-CL spectra to identify Al fluctuations in AlGaAs 

epilayers. These fluctuations were considered to induce stress into the layers 

promoting defect formation. CL analysis of InxGai-xP/GaAs strained layers 

identified an increase in CL emission energy and a reduction in the FWHM with 

compressive strain [45, 46]. 

Implementing a similar CL collection system to Bristol, Yamamoto et al [47] 

at Arizona State University describe a (S)TEM-CL system with the added 

innovation of a polariser mounted directly in front of the monochromator. This 

was used to identify the dislocation emission at 2.85eV in type l ib diamond 

(previously identified by Pennycook et al [11]) as being polarised along the 

dislocation line [47, 48]. CL studies of chemical vapour deposition (CVD) grown 

diamond films by Graham et al [49-52] showed that band-A emission due to 

closely spaced donor-acceptor pairs (431 and 436nm) is correlated with 

dislocations, whilst band-A emission due to widely spaced donor-acceptor pairs 

(586 and 607nm) was shown to be uniformly distributed throughout the f i lm. 

The use of high resolution STEM-CL monochromatic imaging for assessing doping 

was demonstrated by imaging boron related CL emission at 2.32eV in diamond 

films [53]. 
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At the Tokyo Institute of Technology, Yamamoto (formerly at Arizona State 

University) reports the construction of a (S)TEM-CL detection system based 

around an ellipsoidal collection mirror which could be positioned either above or 

below the specimen [54]. By positioning the mirror below the specimen 

Yamamoto and Toda [55-57] demonstrated that Cherenkov radiation generated by 

high energy electrons exceeding the critical velocity1, vc, in a specimen could be 

detected in a TEM. Polarisation-dependent CL studies of plan-view and cross-

sectional ZnSe films grown on GaAs substrates revealed Y-band emission at 

2.60eV (previously identified as dislocation related by Myhajlenko et al [34]) to be 

polarised parallel to the dislocation line [58-61]. The action of defects in a 

ZnCdSe/ZnSe QW structure was also investigated using the STEM-CL method 

[62]. Inhomogeneous QW emission was observed and attributed to well thickness 

fluctuations and recombination at defects and impurities. 

Mitsui et al [58, 63, 64] correlated diffraction contrast TEM and 

monochromatic CL images of ZnS films on GaAs in plan view and cross-section. 

A reduction in neutral-acceptor to bound-exciton and free-electron to ionised-

acceptor emission in regions of high stacking fault density was observed. Deep 

level emission at 425nm due to Ga doping was observed in these samples close to 

the interface. This was attributed to the diffusion of Ga atoms from the 

substrate. An unexpected peak was also identified at 527nm and attributed to 

point defects produced during Ar + milling. This hypothesis was confirmed by in-

situ observation of the CL emission using the electron beam as a source of point 

defects [65] revealing a linear rise in CL emission at this wavelength during 

electron beam irradiation at lOOkeV [66]. 

Further studies into beam degradation processes were carried out by Ohno 

and Takeda [67-69] using a TEM specially developed for both simultaneous CL 

and PL studies [70]. PL excitation was achieved by shining a laser beam into the 

microscope column through an optical window and reflecting it down the column 

using an on-axis mirror with a hole to allow the electron beam passage. A 20|um 

diameter laser spot could then be positioned on the TEM foil with an accuracy of 

l)um by adjusting the optics outside the microscope. Collected CL and/or PL was 

guided out of the column using an ellipsoidal mirror focusing light onto an optical 

fibre coupled to a monochromator. In-situ PL/CL spectroscopy of GaP during 

1 vc=c/ n, where c is the velocity of light and n is the refractive index of the medium 
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irradiation with 200keV electrons revealed degradation of the luminescence at a 

temperature of 90K. Cooling to 20K arrested the degradation [67]. The 

degradation curves were modelled analytically using a recombination centre 

model for the introduction of non-radiative recombination centres. This analysis 

was then extended to the electron beam induced degradation of InGaP by Ohno et 

al [68, 69] and elsewhere by Bailey et al [71]. 

Recent innovation of the (S)TEM-CL concept includes the work carried out 

by Furuya and Saito [72] who incorporated a 25keV Ga focused ion beam (FIB) 

gun into a CL equipped TEM. This device was capable of forming a 200nm 

diameter collimated Ga+ beam with a 80pA spot intensity. Boundaries between 

FIB irradiated and unirradiated areas were identified by TEM and investigated 

with CL showing a decrease in the CL from FIB irradiated regions. This is 

suggested to be a strain-induced effect due to ion implantation. Tanabe et al [73] 

describe a specially constructed TEM specimen holder containing a flat reflector 

below the specimen reflecting light into a quartz fibre leading out of the 

microscope. This design has the major advantage of allowing large angle tilting 

and requires no modifications to the microscope. The performance of this CL 

enabled specimen holder is as yet limited by lack of sample cooling and light 

emission from the optical fibre due to stray electrons. Other reports of STEM-CL 

are by Gao et al [74] of voids in Y203 :Eu thin films investigated by CL in a Z-

contrast STEM; Ohno and Takeda [75] who consider the effect of reflection off an 

ellipsoidal mirror on the polarisation of CL; and Grillo et al [76] who use STEM-

CL to investigate Cu drops formed on InAs ultrathin QWs. 

More recently monochromatic STEM-CL analysis has been used to 

investigate the optical properties of dislocations in GaN [5, 77, 78] and the 

luminescence from In*Gai-xN QWs [79]. Albrecht et al [79] use an Oxford MonoCL 

system with a paraboloidal CL collection mirror together with energy filtered TEM 

(performed in a separate instrument) to investigate the optical, compositional and 

structural properties of InxGai-JNf QWs (x=0.1 and 0.2). They report uniform QW 

emission in cross-section with a constant FWHM as the spot size is increased 

from 5nm to l pm suggesting well thickness and composition is uniform on a 

length scale >5nm. Compositional analysis of these same samples showed 

inhomogeneous In distribution in the QWs on a length scale of 3-9nm. They 

conclude that the optical properties of InxGai-xN QWs are therefore not influenced 

by In segregation on a nanometer scale. Remmele et al [77] and Albrecht et al 
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[78] addressed the controversial topic of whether dislocations in GaN act as 

recombination centres. TEM imaging and STEM-CL of dislocations showed 

strong contrast in band-edge CL images of edge dislocations in agreement with 

Yamamoto [5]. A-type 60° basal plane dislocations introduced by indentation 

were shown to be sites of radiative recombination with an emission energy of 

2.9eV, whilst a-type screw dislocations were seen to be non-radiative 

recombination centres. 

To summarise, a brief review of the development and applications of CL 

collection in a TEM or STEM has been presented with consideration of the merits 

and disadvantages of the different CL collection techniques. The use of an 

ellipsoidal or parabolic mirror positioned above the specimen is a popular method 

offering uniform, efficient collection. The major limitation of this design is the 

proximity of the mirror to the specimen making tilting impossible with the mirror 

in place. STEM-CL has been shown to be a powerful technique for the 

investigation of the optical properties of dislocations in II-VI and III-V 

semiconductors and in the characterisation of quantum confined structures. 
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Chapter 

General Properties of 
Nitrides 

3.1 Crystal Structure of Nitrides 
The AlxIriyGaj-x-yN quaternary system offers the possibility of continuously 

variable alloying to obtain a bandgap in the range 1.9 to 6.2eV as can be seen in 

Figure 3.1. The variation in lattice parameters and thermal expansion 

coefficients between the three binary alloys complicates the fabrication of 

structures and devices and has a significant effect on the properties and 

structure of the resultant alloys. 

Under ambient conditions the wurtzite lattice is thermodynamically stable 

for A1N, GaN and InN. In the ideal wurtzite structure this consists of two 

interpenetrating hexagonal close-packed (HCP) sublattices offset along the c-axis 

by 5/8 of the unit cell height. The zincblende form can be grown on cubic 

substrates such as Si, MgO and GaAs, and takes the structure of two 

interpenetrating face-centred cubic sublattices offset by a quarter of the distance 

along a body diagonal. In both cases each group III atom is co-ordinated by four 

nitrogen atoms and vice versa. In the wurtzite form the stacking sequence of 

(0001) planes is ABABAB, whilst in the zincblende lattice the stacking sequence 

of (111) planes is ABCABCABC. 
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AIN 

G a N ^ ^ 

InN 

3.0 3.1 3.2 3.3 3.4 3.5 3.6 

Lattice parameter (A) 

Figure 3.1: Bandgap and lattice parameter (hexagonal plane) for the wurtzite form 
of the binary alloys AIN, GaN and InN. 

W u r t z i t e G a N e x h i b i t s b o t h a s p o n t a n e o u s a n d p iezoelec t r ic p o l a r i s a t i o n 

a l o n g t h e < 0 0 0 1 > d i r e c t i o n s [1 -3 ] . The s p o n t a n e o u s p o l a r i s a t i o n i s t h e 

p o l a r i s a t i o n a t zero s t r a i n , t he d i f f e r e n c e i n t h i s p o l a r i s a t i o n b e i n g m u c h l a rge r i n 

ALrGa i -xN/GaN t h a n i n I n * G a i - x N / G a N h e t e r o s t r u c t u r e s [4] , D u e to t h e s m a l l 

d i f f e r e n c e i n s p o n t a n e o u s p o l a r i s a t i o n be tween I n N a n d G a N t h e p iezoe lec t r ic 

p o l a r i s a t i o n i s t he d o m i n a n t f a c t o r a t G a N / I n x G a i - ^ N in t e r f aces . T h e p iezoe lec t r ic 

p o l a r i s a t i o n is d e t e r m i n e d b y l a t t i c e m i s m a t c h s t r a i n a n d t h e r m a l s t r a i n f r o m t h e 

d i f f e r e n c e i n t h e r m a l e x p a n s i o n coe f f i c i en t s . A consequence of t h i s f o r t h e g r o w t h 

o f I n x G a i - x N e p i t a x i a l l ayers o n G a N i s t h a t i n c r e a s i n g t h e I n m o l e f r a c t i o n 

inc reases t h e p iezoelect r ic f i e l d d u e to i nc reased l a t t i ce m i s m a t c h s t r a i n . 

3.2 Epitaxy 
E p i t a x i a l g r o w t h is a n e s t a b l i s h e d t e c h n i q u e f o r t h e g r o w t h o f c r y s t a l l i n e 

t h i n f i l m s . I t h a s t he advan tage of a l l o w i n g the c o m b i n a t i o n of d i f f e r e n t m a t e r i a l s 

to create h e t e r o s t r u c t u r e s , a n d is a n e f f i c i e n t w a y of g r o w i n g devices w i t h a l a rge 

s u r f a c e a rea [5] . I n genera l t e r m s e p i t a x y is t h e o r i e n t e d g r o w t h o f a c r y s t a l l i n e 

m a t e r i a l o n the s ingle c r y s t a l su r f ace o f a d i f f e r e n t m a t e r i a l [6 ] . D u e to d i f f i c u l t i e s 

i n t h e g r o w t h o f b u l k s ingle c rys t a l s o f t h e g r o u p I I I n i t r i d e s f o r e i g n s u b s t r a t e s 

need to be u s e d f o r n i t r i d e ep i t axy . Idea l ly s u c h a s u b s t r a t e s h o u l d be c lose ly 
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m a t c h e d to t h e l a t t i ce s p a c i n g a n d t h e r m a l e x p a n s i o n coe f f i c i en t s o f t h e m a t e r i a l 
to be g r o w n . A l a c k o f su i t ab l e subs t r a t e s m e e t i n g these r e q u i r e m e n t s i s a cause 
of m a n y of t h e p r o b l e m s of G r o u p I I I n i t r i d e e p i t a x i a l g r o w t h . Desp i t e t h i s G a N 
h a s been s u c c e s s f u l l y g r o w n o n a w i d e range o f s u b s t r a t e s i n c l u d i n g s a p p h i r e , 
Z n O , 6 H - S i C , S i , GaAs a n d M g O [7, 8 ] . T h e e p i t a x i a l l ayers i n v e s t i g a t e d i n t h i s 
w o r k were g r o w n o n s a p p h i r e a n d Y -L1AIO2 s ubs t r a t e s w h i c h are b r i e f l y d e s c r i b e d 
be low. 

S a p p h i r e . Sapph i r e is c o m p o s e d of H C P p lanes of oxygen i n t e r c a l a t e d 

w i t h H C P p l anes o f a l u m i n i u m . The a l u m i n i u m p l anes have vacanc ies o n one 

t h i r d of t h e si tes so t h a t each A l a t o m is s u r r o u n d e d b y s ix oxygen a t o m s , a n d 

each o x y g e n a t o m is s u r r o u n d e d b y f o u r a l u m i n i u m a t o m s . The l a t t i c e m i s m a t c h 

b e t w e e n t h e G a N b a s a l p l a n e a n d the s a p p h i r e b a s a l p l a n e i s 13 .8%. Desp i t e t h i s 

l a rge m i s m a t c h g r o w t h of G a N i n the (0001) d i r e c t i o n o n t h e s a p p h i r e b a s a l p l a n e 

is t h e m o s t p o p u l a r choice of o r i e n t a t i o n a n d subs t r a t e . T h i s is i n p a r t d u e to t h e 

a v a i l a b i l i t y of l o w p r i ce , la rge w a f e r s o f good q u a l i t y s a p p h i r e . Sapph i r e ' s h i g h 

t e m p e r a t u r e s t a b i l i t y i s also a n i n p o r t a n t f ac to r . However , t h e g r o w t h o f G a N 

l aye r s d i r e c t l y o n to s a p p h i r e r e s u l t s i n ve ry poor q u a l i t y f i l m s u n s u i t a b l e f o r 

device f a b r i c a t i o n . T h i s was overcome b y the use o f A1N [9] or G a N [10] b u f f e r 

l aye r s g r o w n at l o w t e m p e r a t u r e . A f t e r d e p o s i t i o n of t h e n u c l e a t i o n l aye r t he 

t e m p e r a t u r e is t h e n e levated to a l l o w t h e s e m i - a m o r p h o u s b u f f e r l aye r to 

c ry s t a l l i s e a n d p r o v i d e a c loser m a t c h e d e p i t a x i a l s y s t e m f o r G a N g r o w t h . G r o w t h 

o f t h e m a i n G a N layer i s i n i t i a t e d b y the f o r m a t i o n of h e x a g o n a l i s l a n d s w h i c h 

f o r m o n t h e b u f f e r layer a n d g r o w l a t e r a l l y u n t i l t h e y coalesce. 

Y-LiA102 . T h e (100) face o f y - L i A l C h is a n a t t r a c t i v e s u b s t r a t e f o r t h e 

e p i t a x i a l g r o w t h of (1-100) M - p l a n e G a N w i t h a m i s f i t o f 1.7% i n t h e 

[001] LiAio21| [1 l - 2 0 ] G a N d i r e c t i o n a n d 0 . 3 % i n the [ 0 1 0 ] U A I O 2 || [0001]GaN d i r e c t i o n . 

G r o w t h o f M - p l a n e G a N w a s i n i t i a l l y h a m p e r e d b y a l a c k of h i g h q u a l i t y y-LiA102 

s u b s t r a t e s [ 1 1 - 1 3 ] . However , w i t h i m p r o v e d subs t r a t e s t h e s u c c e s s f u l g r o w t h of 

M - p l a n e G a N has r e c e n t l y been ach ieved [ 1 4 - 1 6 ] . 

3.3 Doping 
N o m i n a l l y u n d o p e d G a N is genera l ly n - t y p e . T h i s c o n d u c t i v i t y i s o f t e n 

a t t r i b u t e d t o n i t r o g e n vacanc ies s h o w n to be s h a l l o w d o n o r s i n I n N a n d G a N [17] . 

I n t e n t i o n a l n - t y p e d o p i n g i n G a N is o f t e n ach ieved w i t h S i [ 1 8 ] . S i s u b s t i t u t e s G a 
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i n t h e l a t t i c e p r o v i d i n g a loose ly b o u n d e l ec t ron w h i c h is f r ee to en t e r t h e 
c o n d u c t i o n b a n d . P-type d o p i n g i n G a N has been d e m o n s t r a t e d u s i n g M g . 
I n i t i a l l y M g d o p e d G a N was f o u n d to be h i g h l y res is t ive . However , M g d o p e d G a N 
c a n be ac t i va t ed b y l o w energy e l ec t ron b e a m i r r a d i a t i o n (LEEBI) [19] or 
a n n e a l i n g [ 2 0 ] . A poss ib le m e c h a n i s m f o r t h i s a c t i v a t i o n process i s t h e b r e a k i n g 
d o w n of a c o m p l e x f o r m e d b e t w e e n M g a n d H i n M g d o p e d f i l m s . 

3.4 Nitride Growth 
T e c h n i q u e s s u c h as h y d r i d e v a p o u r phase e p i t a x y (HVPE), m o l e c u l a r b e a m 

e p i t a x y (MBE) a n d m e t a l o r g a n i c v a p o u r phase ep i t axy (MOVPE) are u s e d f o r t h e 

g r o w t h of e p i t a x i a l f i l m s . T h e t e c h n i q u e s of M O V P E o n a s a p p h i r e s u b s t r a t e [21] 

a n d p l a s m a ass i s ted m o l e c u l a r b e a m e p i t a x y (PAMBE) o n a Y-LLAIO2 s u b s t r a t e 

[16] u s e d f o r t he g r o w t h o f ep i layers e x a m i n e d i n t h i s w o r k , are n o w b r i e f l y 

d i s cus sed . 

M O V P E . T h e g r o u p th ree p r e c u r s o r s f o r M O V P E g r o w t h are 

t r i m e t h y l g a l l i u m a n d t r i m e t h y l i n d i u m . T h e n i t r o g e n p r e c u r s o r i s a m m o n i a . P r io r 

to g r o w t h t h e subs t r a t e is a n n e a l e d a t h i g h t e m p e r a t u r e ( > 1 0 0 0 ° C ) i n a n 

a m m o n i a a m b i e n t f o r m i n g a n A1N m o n o l a y e r . T h e s u b s t r a t e is t h e n cooled to 

5 0 0 - 8 0 0 ° C f o r the g r o w t h o f a t h i n (<50nm) G a N n u c l e a t i o n layer . T h e 

t e m p e r a t u r e is t h e n inc reased to 8 0 0 - 1 2 0 0 ° C f o r g r o w t h o f t h e m a i n G a N layer . 

In^Gai-xN g r o w t h r equ i r e s a l o w e r g r o w t h t e m p e r a t u r e of a r o u n d 8 0 0 ° C s ince I n 

w i l l evapora te a t h i g h e r t e m p e r a t u r e s . N - t y p e d o p i n g w i t h s i l i c o n or g e r m a n i u m 

i n M O V P E is ach ieved w i t h s i l ane (Sim) or ge rmane (Gem). P- type d o p i n g w i t h 

m a g n e s i u m i s p e r f o r m e d w i t h b i s - c y c l o p e n t a d i e n y l m a g n e s i u m (Cp2Mg) or b i s -

m e t h l y c y c l o p e n t a d i e n y l m a g n e s i u m (MCp2Mg). 

P A M B E . M o l e c u l a r n i t r o g e n does n o t c h e m i s o r b o n G a N a t M B E 

g r o w t h t e m p e r a t u r e s ( 5 5 0 - 8 0 0 ° C ) , t he re fo re a t o m i c n i t r o g e n is c r ea t ed b y p a s s i n g 

m o l e c u l a r n i t r o g e n t h r o u g h a n e l ec t ron c y c l o t r o n r e sonance (ECR) or r a d i o -

f r e q u e n c y (RF) p l a s m a source . A b e a m of G a a t o m s is d i r e c t e d o n t o t h e h e a t e d 

s u b s t r a t e a n d nuc lea te s there w i t h t h e a t o m i c n i t r o g e n . D o p i n g is ach i eved b y 

e v a p o r a t i n g M g or Si d u r i n g l aye r g r o w t h . 
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3.5 Structural Defects and Materials Performance 
T h e s t r u c t u r a l q u a l i t y o f G a N e p i t a x i a l f i l m s is of i m p o r t a n c e s ince 

e x t e n d e d defects m a y r educe ca r r i e r l i f e t i m e s a n d c o n s e q u e n t l y device 

e f f i c i enc ies . D i s l o c a t i o n dens i t i e s of t he o rder o f 1 0 1 0 c n v 2 are c o m m o n i n G a N 

e p i t a x i a l l ayers u s e d i n c o m m e r c i a l l y avai lable In^Gai-xN Q W L E D s [22] . S ince 

d i s l o c a t i o n dens i t i e s of t h e o rde r of 1 0 3 c r r r 2 adverse ly a f f ec t t h e e f f i c i e n c y of GaAs 

devices t h e cause o f t h i s u n e x p e c t e d e f f i c i e n c y i n I n ^ G a i - x N / G a N devices is o f 

i n t e r e s t . T h i s sec t ion c o n t a i n s reviews of t he e x t e n d e d defec ts f o u n d i n M O V P E 

a n d M B E g r o w n G a N a n d a d i s c u s s i o n of r e c o m b i n a t i o n m e c h a n i s m s i n I n x G a i - x N 

Q W s . 

T h r e a d i n g D i s l o c a t i o n s . These are the d o m i n a n t e x t e n d e d defec ts i n c-

p l a n e , M O V P E g r o w n G a N w i t h dens i t ies of t he o rder of 1 0 1 0 c m - 2 , w h e r e a s i n Mi-

p l a n e M B E g r o w n G a N the t h r e a d i n g d i s l o c a t i o n d e n s i t y is less t h a n 8><10 8 cm- 2 

[ 1 6 ] . Edge ( b = l / 3 < 2 - l - 1 0 > ) , sc rew (b=<0001>) a n d m i x e d ( b = l / 3 < l l - 2 3 > ) type 

d i s l o c a t i o n s are f o u n d i n G a N epi layers a n d have been s h o w n to be sources o f 

n o n - r a d i a t i v e r e c o m b i n a t i o n i n w u r t z i t e GaN [ 2 3 - 2 5 ] . T h e ro le of t h r e a d i n g 

d i s l o c a t i o n s i n G a N is f u r t h e r d i s cus sed i n Sec t ion 8 . 4 . 1 . 

S t a c k i n g F a u l t s . T h e d o m i n a n t defects i n M - p l a n e , M B E g r o w n G a N are 

i n t r i n s i c , h, b a s a l p l a n e s t a c k i n g f a u l t s [16, 2 6 ] . L o w t e m p e r a t u r e (4K) PL 

s p e c t r a f r o m these layers were d o m i n a t e d b y a p e a k at 3 .356eV. T h i s 

l u m i n e s c e n c e w a s s h o w n to be loca l i sed a t r eg ions of s u r f a c e c o r r u g a t i o n w h i c h 

were be l i eved to have a h i g h d e n s i t y of s t a c k i n g f a u l t s [ 1 6 ] . T h e h s t a c k i n g f a u l t 

i n t r o d u c e s a t h i n l aye r of f ace -cen t r ed c u b i c m a t e r i a l i n t o the c r y s t a l . T h i s c u b i c 

l aye r i s c a l c u l a t e d to f o r m a type I I Q W w h e r e c a p t u r e d e lec t rons c a n f o r m 

e x c i t o n s w i t h holes a t t r a c t e d t h r o u g h the C o u l o m b p o t e n t i a l [27 ] . T h e e m i s s i o n 

energy f r o m r e c o m b i n a t i o n across t h i s w e l l was c a l c u l a t e d to be 3 .4eV a n d w a s 

c o n s i d e r e d t o a c c o u n t f o r t he observed s t a c k i n g f a u l t l u m i n e s c e n c e . However , 

t h e s p o n t a n e o u s p o l a r i s a t i o n o f the w u r t z i t e m a t r i x a l o n g t h e (0001) d i r e c t i o n 

w a s n o t t a k e n i n t o a c c o u n t i n t h i s c a l c u l a t i o n . A l l o w i n g f o r t h e s p o n t a n e o u s 

p o l a r i s a t i o n revealed a t r i a n g u l a r p o t e n t i a l [16 ] . T h e r e l a t i o n s h i p b e t w e e n 

s t a c k i n g f a u l t s a n d l u m i n e s c e n c e at 3 .3 -3 .35eV is i n v e s t i g a t e d i n Sec t ion 8 .5 . 

I n v e r s i o n D o m a i n s . G a N has a po l a r a s y m m e t r y i n t h e (0001) d i r e c t i o n 

w i t h t h e [0001] d i r e c t i o n d e f i n e d as t h e d i r e c t i o n f r o m t h e N t e r m i n a t e d p l a n e to 

t h e G a t e r m i n a t e d p l ane . I n v e r s i o n d o m a i n s are r eg ions w h e r e the p o l a r i t y i s 
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i n v e r t e d to t h a t o f t he b u l k m a t r i x . These d o m a i n s are t h o u g h t to be n u c l e a t e d a t 
A1N si tes f o r m e d o n the s a p p h i r e su r f ace d u r i n g n i t r i d a t i o n o f t h e s u b s t r a t e [28 , 
2 9 ] . T h e r e is n o evidence of s i g n i f i c a n t s t r a i n or s ta tes w i t h i n t h e b a n d g a p 
a s soc ia t ed w i t h i n v e r s i o n d o m a i n s [30, 3 1 ] . 

N a n o p i p e s . M i c r o or n a n o p i p e s are h o l l o w t u b e s , t y p i c a l l y 5 - 2 5 n m i n 

d i a m e t e r p r o p a g a t i n g i n t h e [0001] d i r e c t i o n i n c -p lane G a N [32] . N a n o p i p e s are 

t h o u g h t t o r e s u l t f r o m oxygen c o n t a m i n a t i o n of t h e {10-10} i s l a n d s ide w a l l s 

p r e v e n t i n g coalescence o f t h e G a N layer [33 ] . A poss ib le source f o r t h i s 

c o n t a m i n a t i o n is m i g r a t i o n o f oxygen a t o m s f r o m s a p p h i r e subs t r a t e s . T h i s i s 

c o n s i s t e n t w i t h r e p o r t s of h i g h e r n a n o p i p e dens i t i e s i n h i g h t e m p e r a t u r e M O V P E 

g r o w n G a N t h a n i n l o w e r t e m p e r a t u r e M B E m a t e r i a l u s i n g GaAs a n d GaP 

s u b s t r a t e s [29 ] . 

IiixGai-xN Q W s . A poss ib le e x p l a n a t i o n f o r t h e s u r p r i s i n g e f f i c i e n c y of 

In^Gai -xN Q W b a s e d l i g h t e m i t t i n g devices is e x c i t o n l o c a l i s a t i o n [34 , 35 ] i n t h e 

w e l l s l i m i t i n g t h e n o n - r a d i a t i v e ef fects o f d i s l oca t i ons . A n u m b e r o f m e c h a n i s m s 

f o r t h i s l o c a l i s a t i o n o f ca r r i e r s have been p roposed . 

I t h a s been p o s t u l a t e d t h a t l a t t i ce m i s m a t c h i n d u c e d s t r a i n causes a 

p iezoe lec t r ic f i e l d i n t he Q W l o w e r i n g t h e energy levels a n d i n t r o d u c i n g a s p a t i a l 

s e p a r a t i o n of t he e l e c t r o n a n d hole w a v e f u n c t i o n s . T h i s m o d e l m a y a c c o u n t f o r 

a n obse rved r e d - s h i f t of e m i s s i o n a n d increase i n l u m i n e s c e n c e decay t i m e s w i t h 

i n c r e a s i n g w e l l w i d t h [36] . M a r t i n et a l [37] cons ide r t h i s e f fec t o n a 

h o m o g e n e o u s Q W a n d c o n c l u d e t h a t t he observed l o n g w a v e l e n g t h e m i s s i o n 

c a n n o t be solely a c c o u n t e d f o r b y the a c t i o n of t h e p iezoelec t r ic f i e l d . T h e y 

cons ide r a n a d d i t i o n a l e f fec t d u e to I n N - G a N segregat ion to be necessa ry to 

a c c o u n t f o r t h e e x p e r i m e n t a l obse rva t ions . 

A n u m b e r o f a u t h o r s a t t r i b u t e l o c a l i s a t i o n ef fec ts to p e r t u r b a t i o n s i n t h e 

Q W d e p t h c a u s e d b y f l u c t u a t i o n s i n the I n c o n t e n t o f t he w e l l as a r e s u l t o f phase 

s e p a r a t i o n [38] . N a r u k a w a et a l [39] u s e d energy d i spers ive x - r a y m i c r o a n a l y s i s 

t o s h o w t h a t i n h o m o g e n e o u s c o n t r a s t f r o m In^Gai-xN Q W s i m a g e d w i t h cross-

s e c t i o n a l T E M [34] co r r e sponds w i t h f l u c t u a t i o n s i n I n c o n t e n t . Rad ia t i ve 

r e c o m b i n a t i o n w i t h i n t h i s s t r u c t u r e w a s a t t r i b u t e d to exc i t ons l oca l i s ed a t I n - r i c h 

r eg ions o f the Q W . O ' D o n n e l l et a l [40 , 41] a rgue t h a t these I n - r i c h r eg ions are 

a c t u a l l y n e a r l y p u r e I n N q u a n t u m dots . T h i s e x p l a n a t i o n of I n c l u s t e r i n g as a n 

i n t r i n s i c p r o p e r t y o f t he In^Gai-xN a l l oy is s u p p o r t e d b y C h i c h i b u et al [42] w i t h 
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ana lys i s o f b u l k c u b i c Ino .1Gao.9N, w h i c h does n o t e x h i b i t a p o l a r i s a t i o n f i e l d , 

s h o w i n g s i m i l a r o p t i c a l p rope r t i e s to w u r t z i t e I n x G a i - x N Q W s . 

C o n t r a d i c t o r y evidence to the I n c l u s t e r i n g m o d e l i s g iven b y A l b r e c h t et al 

[43 ] . U s i n g S T E M - C L a n d energy f i l t e r e d T E M o f In*Gai-*N Q W s i n c ross - sec t ion 

t h e y s h o w t h a t t h e o p t i c a l p rope r t i e s of t he QWs are n o t i n f l u e n c e d b y I n 

segrega t ion o n a n a n o m e t r e scale. These r e s u l t s are bes t e x p l a i n e d as a n e f fec t 

i n t r i n s i c to t h e I n x G a i - x N a l loy due to ho le l o c a l i s a t i o n a t t h e I n a t o m . B e l l a i c h e 

a n d Z u n g e r [44] a n d Be l l a i che et al [45] ca l cu l a t e t h a t a l l o y i n g of I n w i t h G a N 

leads to l o c a l i s a t i o n of ho le s tates a c c o u n t i n g f o r t he observed l o c a l i s a t i o n e f fec t s 

i n In^Gai-jcN. 
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Chapter 

Experimental Techniques 

4.1 Introduction 
I n t h i s c h a p t e r t h e t e c h n i q u e s u s e d f o r t h e g r o w t h of s amples a n d t h e 

p r e p a r a t i o n of c ross - sec t iona l a n d p l a n - v i e w T E M f o i l s f r o m these are desc r ibed . 

T h e s t a n d a r d c h a r a c t e r i s a t i o n t e c h n i q u e s of S E M a n d T E M u s e d i n t h i s s t u d y are 

b r i e f l y o u t l i n e d , w h i l s t t h e e x p e r i m e n t a l t e c h n i q u e s spec i f i c to T E M - C L are 

d i s c u s s e d i n grea ter d e t a i l . However , to b e g i n w i t h , t h e de ta i l s o f t h e s a m p l e 

g r o w t h are o u t l i n e d be low. 

4.2 Material Growth 
Samples g r o w n o n t w o d i f f e r e n t e p i t a x i a l sy s t ems were i nves t i ga t ed . 

In^Gai-xN Q W s t r u c t u r e s were g r o w n o n c-plane G a N / s a p p h i r e b y M O V P E a t t h e 

Institute of Photonics, University of Strathclyde. T h e t e c h n i q u e o f M O V P E is 

r e v i e w e d i n Sec t i on 3 .4 . M - p l a n e G a N e p i t a x i a l l ayers were g r o w n o n LiA102 b y 

P A M B E at t he Paul-Drude Institut in Berlin. P A M B E is a lso r ev i ewed i n Sec t i on 

3 .4 . S u m m a r y g r o w t h de ta i l s a n d references to f u r t h e r i n f o r m a t i o n are g iven i n 

Tab les 6 .1 a n d 8 . 1 . 
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4.3 Sample Preparation 
Cross - sec t iona l T E M f o i l p r e p a r a t i o n b y m e c h a n i c a l p o l i s h i n g f o l l o w e d b y 

A r + m i l l i n g t o p e r f o r a t i o n is a r o u t i n e o p e r a t i o n a n d is r ev i ewed b y a n u m b e r of 

a u t h o r s [ 1 - 6 ] . I n t h i s s t u d y T E M fo i l s were p r e p a r e d i n c ross - sec t ion a n d p l a n 

v i e w o r i e n t a t i o n s . T h e t e c h n i q u e s u s e d are o u t l i n e d be low. 

C r o s s - s e c t i o n a l T E M fo i l p r e p a r a t i o n . Sl ices of s a p p h i r e / G a N w a f e r s 

were s a n d w i c h e d toge ther w i t h t he e p i t a x i a l layers toge ther u s i n g s i l i c o n as a 

p a c k i n g m a t e r i a l c r e a t i n g a S i / A l 2 0 3 / G a N / G a N / A l 2 0 3 / S i s t r u c t u r e . M-Bond 610 

epoxy w a s u s e d as a n adhes ive a n d w a s c u r e d a t 1 7 5 ° C f o r 9 0 m i n u t e s . T h i s 

s a n d w i c h w a s m e c h a n i c a l l y p o l i s h e d f r o m b o t h s ides u s i n g a Logitech PM2 

p o l i s h i n g m a c h i n e w i t h 1 7 u m SiC p o w d e r to a t h i c k n e s s o f ~ l m m . A Testbourne 

Model 360 m i c r o - d r i l l w i t h 1 7 u m SiC s l u r r y to ass is t c u t t i n g was t h e n u s e d to c u t 

3 . 0 5 m m d i scs f r o m t h e 1 m m t h i c k s a n d w i c h . A 3 . 0 5 m m disc was t h e n m o u n t e d 

o n t o t h e s a m p l e s t u b of a Gatan d i sc g r inde r . T h e emergen t face w a s t h e n 

p o l i s h e d w i t h Buehler Metadi Supreme d i a m o n d s u s p e n s i o n o f d e c r e a s i n g 

r o u g h n e s s (15 u m , 5 u m a n d 1 u m ) a n d a p p r o p r i a t e Struers p o l i s h i n g p a d s u s i n g 

a n a r r a n g e m e n t w h e r e t h e G a t a n d isc g r i n d e r w a s m o u n t e d o n a Logitech PR2 

m e c h a n i c a l po l i she r . T h i s a r r a n g e m e n t is s h o w n i n F igu re 4 . 1 . T h e advan tage of 

m o u n t i n g t h e Gatan d isc g r i n d e r o n a m e c h a n i c a l p o l i s h e r i s t h a t t h e p r e s s u r e o n 

t h e s a m p l e i s c o n s t a n t . T h e p o l i s h e r c a n be ope ra t ed o n a t i m e r so t h e r e q u i r e d 

a m o u n t o f m a t e r i a l c a n be exposed u s i n g t h e sc rew t h r e a d o n the Gatan g r i n d e r 

a n d t h e p o l i s h e r c a n be l e f t u n a t t e n d e d . T h e Gatan g r i n d e r moves i n w a r d s 

t o w a r d s t h e cen t re o f t he p o l i s h i n g p a d as t he s amp le becomes leve l w i t h t h e 

b o t t o m s u r f a c e o f t h e Gatan g r i nde r . W h e n c h a n g i n g the grade o f d i a m o n d 

s u s p e n s i o n care was t a k e n to en su re a l l t he c o m p o n e n t s were t h o r o u g h l y c l eaned 

a n d a n e w p o l i s h i n g p a d was f i t t e d . 
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polishing pad 
rotating base plate 

Gatan disc grinder r sample 

\ 
disc grinder tether 

Figure 4.1: Arrangement for the mounting of a Gatan disc grinder on a Logitech 
PM2 mechanical polisher. 

Once the exposed side was p o l i s h e d to a l u m f i n i s h i t was c l eaned w i t h 

i s o p r o p y l a l c o h o l a n d a C u or A u s u p p o r t r i n g was g l u e d t o the s amp le u s i n g a 

r o o m t e m p e r a t u r e c u r i n g epoxy. Care was t a k e n to a v o i d a n y c o n t a m i n a t i o n of 

t h e s a m p l e s u r f a c e w i t h epoxy a n d to ensu re t h e s u p p o r t r i n g l a y f l a t . T h e 

s a m p l e w a s t h e n r e m o u n t e d o n t h e G a t a n g r i n d e r s a m p l e s t u b w i t h t h e s u p p o r t 

r i n g i n c o n t a c t w i t h t h e m e t a l s t u b . M i l d p r e s su re w a s a p p l i e d d u r i n g m o u n t i n g 

so t h a t t h e sample l ay f l a t . T h e sample was t h e n p o l i s h e d u n t i l i t w a s < 5 0 u m 

t h i c k (no t i n c l u d i n g t h e t h i c k n e s s of t he s u p p o r t r i n g ) . T h e d i a m o n d s u s p e n s i o n 

r o u g h n e s s w a s r e d u c e d f r o m 1 5 u m to l u m as t h e t a rge t t h i c k n e s s was 

a p p r o a c h e d . T h e s ample w a s t h e n r e m o v e d a n d degreased i n t r i c h l o r o e t h a n e . 

F o l l o w i n g degreas ing t h e s amp le was m o u n t e d i n a n Ion Tech 800 Series 

A r + m i l l e r o p e r a t i n g a t 4 k V . T h e sample stage i n t h e A r + m i l l e r w a s cooled w i t h 

f l o w i n g l i q u i d n i t r o g e n a n d r o t a t e d u s i n g a PC c o n t r o l l e d Atom Tech 820T Series 

Stepper M o t o r D r i v e w i t h a n RS 4-Phase Unipolar Stepper Motor Drive Board 332-

098. A s i m p l e p r o g r a m was w r i t t e n to increase t h e speed o f r o t a t i o n f o r t h e 

p e r i o d t h a t t he g lue - l i ne of t h e s amp le was p a r a l l e l to t h e i o n b e a m w i t h i n a n 

a n g u l a r r ange o f ± 1 0 ° . T h i s a l l ev ia t ed p r e f e r e n t i a l s p u t t e r i n g o f t h e e p i t a x i a l 

l ayer . T h e angle of i nc idence o f t he A r + b e a m w a s r e d u c e d f r o m 3 0 ° to 5 ° as 

p e r f o r a t i o n was a p p r o a c h e d . 

P l a n v i e w T E M fo i l p r e p a r a t i o n . A C u or A u s u p p o r t r i n g w a s g l u e d o n 

t h e ep i l aye r side of t he sample . A 3 . 0 5 m m disc was t h e n d r i l l e d f r o m the s a m p l e 

e n c o m p a s s i n g the s u p p o r t d isc . T h e s ample d i sc w a s t h e n m o u n t e d , s u p p o r t i n g 

d i sc u p w a r d s , o n a G a t a n g r i n d e r s t u b . T h e s ample w a s t h e n p o l i s h e d to a 
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t h i c k n e s s o f < 5 0 u m , r e m o v e d a n d m o u n t e d i n t h e A r + t h i n n e r u s i n g t h e 
t e c h n i q u e s desc r ibed f o r c ross - sec t iona l samples . A r + m i l l i n g w a s t h e n 
p e r f o r m e d f r o m t h e s u b s t r a t e side o n l y u n t i l p e r f o r a t i o n . 

4.4 Scanning Electron Microscopy 
S c a n n i n g e l ec t ron m i c r o s c o p y (SEM) i s a n o n - d e s t r u c t i v e m e t h o d of 

i n v e s t i g a t i n g t h e su r face m o r p h o l o g y o f m a t e r i a l s . I n i t s m o s t bas ic m o d e a S E M 

opera tes b y s c a n n i n g a f o c u s e d b e a m of e lec t rons across a n a rea o f t h e s a m p l e 

a n d b u i l d i n g u p a n image f r o m b a c k s c a t t e r e d o r s econda ry e lec t rons . T h e 

acce l e r a t i ng vol tage is t y p i c a l l y i n t he r eg ion of l - 4 0 k V . S E M i n t h i s s t u d y w a s 

p e r f o r m e d o n a JEOL JSM-IC848 o p e r a t i n g i n s econda ry e l ec t ron m o d e w i t h a n 

acce l e r a t i ng vol tage of 2 0 k V . D e t a i l e d S E M o p e r a t i n g p r o c e d u r e s c a n be f o u n d i n 

re fe rences [ 7 - 9 ] . However a b r i e f d e s c r i p t i o n o f b a c k s c a t t e r e d e l e c t r o n a n d 

s e c o n d a r y e l ec t ron modes f o l l o w s . 

B a c k s c a t t e r e d E l e c t r o n Mode . B a c k s c a t t e r e d e lec t rons are p r i m a r y 

e lec t rons w h i c h have been e la s t i ca l ly sca t t e red ( t h r o u g h s ing le or m u l t i p l e 

s c a t t e r i n g events) b y C o u l o m b i c i n t e r a c t i o n s w i t h a t o m i c n u c l e i i n t h e t a rge t so 

t h a t t h e y re-emerge f r o m the t a rge t sample . Since t h e p r o b a b i l i t y of sca t te r b y 

t h e a t o m i c n u c l e i is C o u l o m b i c i n n a t u r e the r a t e of e l ec t ron b a c k s c a t t e r c o n t a i n s 

c o m p o s i t i o n a l i n f o r m a t i o n . 

S e c o n d a r y E l e c t r o n Mode . Secondary e lec t rons t y p i c a l l y have energies 

b e l o w 5 0 e V a n d are genera ted close to t h e s a m p l e su r f ace . T h e y are gene ra t ed 

t h r o u g h t h e i n t e r a c t i o n of t h e p r i m a r y b e a m w i t h loosely b o u n d c o n d u c t i o n 

e lec t rons . Seconda ry e lec t rons are c o m m o n l y u s e d f o r s u r f a c e t opo logy s tud i e s . 

4.5 Transmission Electron Microscopy 
T h e use of t r a n s m i s s i o n e l ec t ron m i c r o s c o p y (TEM) f o r t he s t u d y o f t h e 

s t r u c t u r e a n d defects i n s e m i c o n d u c t o r s i s a w e l l e s t ab l i shed t e c h n i q u e a n d is 

d e s c r i b e d i n d e t a i l i n a n u m b e r of t ex t s [ 1 , 5, 8, 10 -14 ] . I n t h i s s t u d y T E M w a s 

p e r f o r m e d o n a JEOL 200CX w i t h a JEOL EM-ASID3D2 s c a n n i n g u n i t o p e r a t i n g 

a t 8 0 - 1 2 0 k V . T E M w a s u s e d f o r b r i g h t f i e l d m i c r o s c o p y , d a r k f i e l d m i c r o s c o p y , 

se lected area d i f f r a c t i o n a n d S T E M w h i c h are de sc r ibed b r i e f l y be low; 
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S e l e c t e d A r e a D i f f r a c t i o n (SAD) . T h i s t e c h n i q u e is u s e d to select a 
spec i f ic a rea of t h e s p e c i m e n to c o n t r i b u t e to t h e d i f f r a c t i o n p a t t e r n b y i n s e r t i n g 
a n a p e r t u r e i n t o t h e image p l ane of t he ob jec t ive lens . 

B r i g h t F i e l d (BF) M i c r o s c o p y . A b r i g h t f i e l d image is f o r m e d i f t he 

c e n t r a l , u n d e v i a t e d b e a m i n the S A D p a t t e r n is se lected b y i n s e r t i n g t h e ob jec t ive 

a p e r t u r e i n t o t h e b a c k foca l p l ane of t h e ob jec t ive lens . 

D a r k F i e l d (DF) M i c r o s c o p y . A d a r k f i e l d i m a g e m a y be f o r m e d b y 

se lec t ing a B r a g g r e f l ec t ed b e a m w i t h the ob jec t ive a p e r t u r e . T h i s m a y be done 

b y d i s p l a c i n g the ob jec t ive a p e r t u r e o f f - a x i s o r b y c e n t e r i n g t h e ob jec t ive a p e r t u r e 

o n axis a n d t i l t i n g t h e b e a m to f o r m a c e n t r e d d a r k f i e l d (CDF) image . 

S c a n n i n g T r a n s m i s s i o n E l e c t r o n M i c r o s c o p y ( S T E M ) . I n S T E M 

o p e r a t i o n a f i n e e l ec t ron p r o b e ( l O n m ) is u s e d to scan a n a rea o f t h e s a m p l e . T h e 

p r o b e scans p a r a l l e l to t he op t i c axis a n d is c o n t r o l l e d b y t w o p a i r s o f s c a n coi l s 

b e t w e e n t h e second condense r lens a n d the u p p e r ob jec t ive polepiece. T h e s i g n a l 

f r o m a n on -ax i s B F s c i n t i l l a t o r - p h o t o m u l t i p l i e r de tec tor i s s y n c h r o n i z e d w i t h t he 

s c a n coi ls to f o r m a n image . 

(a) (b) 

convergence convergence 
angle 2a angle 2a 

specimen 

ection / \ 
lie 2 p T / \ 

collection objective 
angle 2BS aperture 

collection 
STEM BF angle 2BT 

detector 

Figure 4.2: Beam convergence and divergence angles in (a) TEM, and (b) STEM [12] 

T h e d i f f r a c t i o n c o n t r a s t i n S T E M m o d e is t y p i c a l l y m u c h poo re r t h a n i n 

T E M . T h i s c a n be d e m o n s t r a t e d w i t h t h e a i d of F i g u r e 4 .2 w h e r e t h e T E M 

convergence semi-angle i s d e f i n e d as otr, a n d the ob jec t ive a p e r t u r e c o l l e c t i o n 
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semiang le is fir. T h e e q u i v a l e n t S T E M angles are t h e beam-convergence angle as, 

a n d S T E M de tec tor co l l ec t i on angle fis. T h e p r i n c i p l e o f r e c i p r o c i t y s tates t h a t i f 

( X s = f i T (4.1) 

a n d 

aT = fis (4.2) 

t h e n the d i f f r a c t i o n c o n d i t i o n s i n S T E M w i l l be i d e n t i c a l to those i n T E M . 

Since fir i s t y p i c a l l y s i m i l a r to as E q u a t i o n 4 . 1 is s a t i s f i ed . However , as a p a r a l l e l 

b e a m i s necessa ry f o r s t r o n g d i f f r a c t i o n c o n t r a s t i n T E M , ecr needs to be s m a l l . To 

s a t i s f y E q u a t i o n 4 .2 i t i s necessary f o r fis to be as s m a l l as poss ib le f o r s t r o n g 

S T E M d i f f r a c t i o n c o n t r a s t . As fis i s r e d u c e d t h e e l ec t ron f l u x i n c i d e n t o n t h e o n -

ax is B F de tec tor f a l l s a n d t h e image becomes no i sy . The re fo re t h e a m o u n t of 

d i f f r a c t i o n c o n t r a s t ach ievable i n S T E M is a t r a d e - o f f aga ins t image noise . 

C a l i b r a t i o n . S t a n d a r d Agar r u l e d g r i d s were u s e d to c a l i b r a t e t h e 

m a g n i f i c a t i o n i n T E M a n d S T E M . T h e c a m e r a - l e n g t h w a s c a l i b r a t e d u s i n g a n 

e v a p o r a t e d a l u m i n i u m f o i l a n d the image r o t a t i o n re la t ive to t h e d i f f r a c t i o n 

p a t t e r n w a s c a l i b r a t e d u s i n g the [001] d i r e c t i o n o f M o l y b d e n u m Ox ide c ry s t a l s . 

4.6 TEAA-Cl 
T h e T E M - C L co l l ec t ion s y s t e m is a n Oxford Instruments2 MonoCL2 

c o n t r o l l e d b y t h e LINK ISIS 300 sy s t em. T h e s y s t e m cons i s t s o f a C L c o l l e c t i o n 

m i r r o r , 0 . 3 m spec t romete r , a Pelt ier cooled Burle C31034 p h o t o m u l t i p l i e r t u b e , 

PA3 p h o t o a m p l i f i e r s u p p l y a n d s tepper d r ive r , a n d ISIS 300 c o n t r o l s y s t e m . T h e 

s y s t e m a n d i t s c h a r a c t e r i s t i c s are d i s cus sed i n C h a p t e r 5 a n d c a n be seen i n 

F i g u r e 4 .3 . T h e T E M - C L a p p a r a t u s a n d e x p e r i m e n t a l t e c h n i q u e s u s e d f o r 

r e c o r d i n g C L s p e c t r a a n d p e r f o r m i n g p a n c h r o m a t i c a n d m o n o c h r o m a t i c i m a g i n g 

are d e s c r i b e d be low. 

1 Now trading as Gatan pic. 
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Figure 4.3: (a) Photograph of JEOL 200CX with TEM-CL attachment, (b) diagram 
showing TEM-CL mirror in the collection position above the specimen 
holder. 

CL Collection Mirror. CL from the TEM foil is collected using the Oxford 

CL302 collection system. This consists of a retractable paraboloidal aluminium 

mirror which collects and guides the CL either to the slits of the monochromator 

or directly on to the photomultiplier tube for panchromatic imaging. The 

collection efficiency for the mirror, as specified by the manufacturer, is 80%. 

However, as the light emission from a high refractive index material is not 

directionally uniform this collection efficiency is not necessarily applicable. This 

is discussed in greater detail in Section 5.4.2. 

Low CL emission from thin films makes accurate positioning of the mirror 

critical. The mirror position is variable in all three dimensions. The mirror is 

inserted and retracted from the microscope column using a screw thread and can 

be varied in the directions normal to this using two positioning screws. As the 

focus of the mirror is 1mm below the bottom of the mirror and the sample is held 

in the sample holder 0.5-1mm below the top surface, the mirror has to be 

positioned very close to the sample holder without colliding with it. A preset 

mirror position is not practical as the vertical, z, position of the mirror varies with 

eucentric height and a misalignment of as little as 0.1mm can reduce the CL 

signal by an order of magnitude. Initial mirror positioning was done by 

illuminating an unused section of the specimen and positioning the mirror to 

optimise the signal. Care has to be taken to ensure that an increase in signal 
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due to ongoing cooling of the sample or a decrease due to beam degradation (see 
Chapter 6 for further discussion) does not disrupt optimisation. 

TEM-CL LN2 Specimen Holder. Due to the limited space available in the 

microscope pole piece and requirement for a 1mm mirror/specimen separation a 

specially designed specimen holder is used. The specimen holder is an Oxford 

Instruments CT3500TR Tilt-Rotate Cryo-Transfer Holder. The sample is held in a 

cradle in the specimen holder using a screwed ring to achieve a good thermal 

contact. The cradle is cooled by a short braid and a solid conduction rod from a 

nitrogen dewar. The specimen is rotated by a flexible line which is connected to a 

drive motor. This is controlled by an Oxford Instruments Digital Tilt Indicator. 

When the TEM-CL mirror is inserted the sample can be rotated. However the 

proximity of the mirror means tilting is not possible. Once inside the TEM the 

specimen holder can be filled with liquid nitrogen approximately fifteen minutes 

after the anti-contamination trap on the TEM has been cooled. The specimen 

temperature is monitored and controlled using an Oxford Instruments ITC502 

Temperature Controller. The lowest temperature achievable is a nominal 90K. 

Once stabilised at this temperature experiments may be performed for around 

one hour without significant specimen drift or the need to refill the dewar. 

Monochromator. The collected CL could be either directed undeviated 

into the aperture of the photomultiplier or dispersed using a 0.3 metre 

monochromator. The spectrometer was fitted with two 150 lines/mm gratings 

blazed for maximum transmission at 300 and 500nm. The spectral dispersion 

was 21.6nm/mm. Typically the monochromator entrance and exit slits were set 

between 0.5 and 1mm yielding a dispersion of 10.8-21.6nm. 

Spectral Acquisition. The LINK ISIS 300 control system allowed spectra 

to be recorded using the PA3 photoamplifier supply and stepper driver with 

integration times ranging from 1ms to 10s. Spectra were recorded in CTEM, 

STEM, and STEM point illumination modes. The calibration and spectral 

response of the optical system are discussed in Chapter 5. 

CL Imaging and Line-Scans. Panchromatic and monochromatic CL 

imaging was performed in STEM mode using the LINK ISIS control system. 

Images were recorded with resolutions of 128x100, 256*200, 512*400, and 

1024*800 pixels. Dwell times between 100 and 12800 yielded a range of 1.5 

seconds to ~3 hours for image acquisition. The onset of specimen drift limited 

acquisition times to forty minutes or less. A major limitation of STEM-CL imaging 
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was the short integration time at each pixel (limited to a maximum of 12800jis by 
the control software). This was particularly limiting for monochromatic imaging. 
However, by performing line-scans the integration times could be varied from 1 
ms to 10s with 1 to 10000 data points along the line. Line-scans were set up by 
recording a STEM image and overlaying the required scan direction. 

4.7 Image Analysis 
A Visual Basic routine (listed in Appendix A2) was used to obtain 

numerical position/intensity data from greyscale bitmap images and hence to 

make vertical summations from noisy images of single layers. 

1 2 3 4 5 i-1 i 
2 
3 

j-1 
j 

Figure 4.4: Pixel positions in a rectangular bitmap image. 

The operation of the program is represented in Figure 4.4 with each 

numbered square representing a pixel. A rectangular greyscale bitmap is loaded 

into memory in an ixj array where i is the image width in pixels and j is the image 

height in pixels. Each pixel has a numerical value associated with i t ranging 

from 0 (black) to 256 or 2 8 (white). The matrix is then summed vertically and i 

numbers are saved to a file with each number equal to the sum of i t h column. 
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Chapter 5 

TEM-CL System and CL 
Generation 

5.1 Introduction 
In the first part of this chapter the calibration of the TEM-CL apparatus 

and characterisation of the instrument are reported. As TEM-CL is a non

standard technique brief descriptions of routine calibration operations, which 

may be of interest to other operators, have been included for completeness. In 

the second part of this chapter the resolution of STEM-CL is considered and thin 

f i lm interference effects are discussed and investigated using computer models. 

5.2 Calibration 

5.2.1 Wavelength Calibration 

The spectrometer wavelength calibration was performed using sodium and 

cadmium spectral lamps. This was performed in-situ by bringing the microscope 

column up to air, positioning the lamp close to a removable seal in the pole piece 

and inserting the CL mirror with no specimen holder present. The spectrometer 

calibration was fitted to the spectral lines with associated RMS fitting errors of 
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0.243nm for the grating blazed for maximum reflectance at 300nm and 0.707 for 
the 500nm blazed grating. 

5.2.2 Wavelength Response 

Spectra presented in this study have not been corrected for the relative 

attenuation of different wavelengths as light passes through the optical system. 

The manufacturer's standard 150 lines/mm, 500nm blaze grating was found to 

have poor transmittance below 400nm so a second grating, blazed at 300nm, was 

fitted. The products of the transmittance of these gratings and the 

photomultiplier based upon the manufacturer's specifications are shown in 

Figure 5.1. 

100 
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500nm 

80 

60 CJ 

40 to 
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Figure 5.1: TEM-CL system wavelength response curves for 150 lines/mm 
gratings blazed for peak reflectance at 300nm and 500nm. 

All lenses and light guides in the system are Spectrosil B quartz providing 

good uniformity in transmission across the optical range of the system. 

5.2.3 Spectrometer Resolution 

The maximum resolution of the optical system was investigated using a 

flake of ruby held within a slot grid. Intense CL emission was generated by 

illuminating the bulk ruby with a lOOkV electron beam at a temperature of 100K. 

The resulting spectra can be seen in Figure 5.2(a) and (b). 
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Figure 5.2: Spectra obtained from bulk ruby with a lOOkV electron beam at lOOK 
with nominal wavelength dispersions of (a) 4.32nm, 2.16nm and 
1.06nm, and (b) 1.08nm. 

Ruby has a characteristic doublet; Ri=6,942.3A and R2=6,927.4A [1], as a 

result of chromium doping. Figure 5.2(a) demonstrates the effect of decreasing 

the monochromator entrance and exit slits. Halving the slit width from 0.2mm to 

0.1mm results in an order of magnitude drop in signal and halving of the fu l l 

width half maximum (FWHM). The highest resolution obtainable before no signal 

was detected was nominally 1.08nm (0.05mm slits). This can be seen in Figure 

5.2(b) with dark noise and gun glow (see ahead to 5.2.4 for further details) 

removed. As can be seen this resolution is not high enough completely to resolve 

the ruby doublet, but a shoulder is visible (see A and B in Figure 5.2b). It is not 

possible to calculate an exact FWHM for the more intense peak at 693nm. 

However at the point A, where the peak broadens, it is possible to interpolate a 

FWHM of ~ l n m which is in agreement with the nominal value. 

The position of the ruby doublet peaks shown in Figure 5(b) at 692 and 

693nm is l n m below the literature values. However, this error is within the RMS 

fitting error of ~ l n m for the 500nm blaze grating used and i t should be noted that 

the literature values for ruby are for room temperature. 

5.2.4 Hole Spectra and Dark Noise 

As part of the system calibration process it was necessary to measure the 

PMT dark noise and record Tiole' spectra, with the electron beam on, but no 

sample loaded. Without cooling the PMT the dark noise would swamp all but the 

strongest signals; however cooling reduced the dark noise by several orders of 
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magnitude to around a 100 counts per second. The dark noise levels of the PMT 

were monitored periodically as they tended to increase slightly with time. 

Hole spectra were investigated rigorously as light emission due to glow of 

the tungsten filament (gun glow) or CL emission from stray electrons were 

considered a possibility. 

Figure 5.3(a) shows three spectra. The first is taken with no electron 

beam. The slight decrease in dark noise is due to ongoing cooling of the PMT. 

The two remaining spectra were taken with the beam passing through the hole in 

a TEM foil as shown in Figure 5.3(b). The spectrum taken with condenser 

aperture 3 (200|jm diameter) has a higher level of background noise, but no 

spectral features, whilst the spectrum taken with condenser aperture 1 (400(am 

diameter) has a broad peak centred around 650nm. This peak may be due to 

light from the filament being measured, larger CL emission due to stray electrons 

striking the sides of the column, or some combination of the two. 

a) 
400 

No Beam 
CTEM - Condenser Aperture 3 350 
CTEM - Condenser Aperture 1 

300 

rS" 250 

<= 200 2 
150 

100 

50 
200 400 600 800 1000 

Wavelength (nm) 

Figure 5.3:(a) Hole spectra taken with a lOOkV CTEM beam and varying condenser 
aperture size, (b) schematic of electron beam passing through a hole 
in a TEM foil. 

Figure 5.4 is taken under the same conditions as Figure 5.3, with the 

accelerating voltage varied and with a fixed condenser aperture. An increase in 

the accelerating voltage is seen to increase the level of recorded CL without 

changing the shape of the spectrum. This is consistent with increased filament 

emission at higher operating voltages and is borne out by beam current 

measurements taken with a Faraday cup (see Table 6.2). 
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Figure 5.4: Hole spectra taken with a CTEM beam and the maximum condenser 
aperture width. 

Recording hole spectra (as shown in Figures 5.3(a) and 5.4) is an 

established method of investigating background emission in detector systems. It 

is conceivable, however, that hole spectra underestimate the amount of gun glow 

picked up by the system. As can be seen in Figure 5.5(b) the mirror is facing 

away from the gun so it can only collect reflected gun glow. Therefore it would be 

better to illuminate a reflective TEM foil which has no intrinsic CL emission. 

Such a test specimen was made by gold coating a perforated carbon f i lm. The 

holes in the f i lm are much smaller than the large hole in a standard specimen 

(Figure 5.3(b)) and allow the beam to pass whilst leaving plenty of reflective 

surface area directly below the hole in the CL collection mirror. A series of 

spectra collected with this specimen is shown in Figure 5.5(a). 
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Figure 5.5:(a) Spectra taken with a lOOkV beam and 400um diameter condenser 
aperture with a gold coated holey carbon film in the specimen holder, 
spectra were taken for arrangements B,C and D; (b) beam passes 
through small hole in specimen; (c) specimen directly below hole in C L 
mirror, electron beam deviated above the mirror; (d) specimen holder 
directly below hole in CL mirror, electron beam deviated above the 
mirror. 

Spectrum 'B' in Figure 5.5(a) shows the the spectrum with the beam 

passing through a hole in the gold coated carbon f i lm. The spectrum has a peak 

around 650nm, similar to Figure 5.3(a). The intensity, however, is around five 

times greater. Spectrum 'C is taken with the geometrical arrangement shown in 

Figure 5.5(c) - with the beam diverted off-axis so that it hits the top surface of the 

CL collection mirror. Spectrum 'C is identical to spectrum 'B' demonstrating that 

the feature seen is indeed due to gun glow, not emission from the foil. Figure 
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5.5(d) shows the geometrical arrangement for spectrum 'D'. For this spectrum 
the specimen holder was inserted into the microscope column as far as possible 
so that the dull stainless steel of the holder was below the hole in the mirror. The 
beam was left off-axis. Spectrum 'D' consists of a broad band in the 600nm to 
900nm range. This is similar to the hole spectra recorded in Figure 5.3(a) and is 
attributed to the lower reflectivity of the steel surface compared to the gold coated 
carbon fi lm. 

These experiments have identified a broad peak in the range 600-900nm 

as attributable to gun glow effects. The intensity of gun glow increases with the 

size of the condenser aperture. Operationally it is therefore advisable to work 

with the smallest possible condenser aperture setting in order to reduce the 

effects of gun glow. 

5.2.5 Effect of Cooling 

Luminescence studies are generally performed at the lowest temperatures 

possible to achieve sharply defined spectral lines and an increased probability of 

radiative recombination due to a lessening of phonon interactions [2-4]. The 

actual specimen temperature achieved using a liquid nitrogen cooled specimen 

holder is a function of the beam current, illumination area, sample geometry and 

thermal coefficients. The absolute sample temperature typically achieved has not 

been calculated; however a nominal temperature of 90K is routinely achieved if 

the specimen holder vacuum is regularly pumped out. Figure 5.6 shows the 

panchromatic CL emission from a GaN epilayer as it is cooled from room 

temperature to 90K. A STEM area raster was used to minimise specimen damage 

(see Chapter 6 for further discussion) and the area under the beam was 

monitored during cooling to counter sample drift during cooling. Cooling to 10-

20K is reported to increase CL intensities by an order of magnitude or more [5], 

and work at this temperature is suggested as an area for future investigation. 
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Figure 5.6: Effect of cooling from room temperature to 90K on the panchromatic 
CL emission from GaN (120kV beam, STEM area scan). 

5.2.6 The Objective Aperture 

When in place the objective aperture was discovered to have the effect of 

introducing a strong CL signal characteristic of the bulk material in a TEM foil. 

The CL emission was several orders of magnitude greater than the signal from the 

material under direct illumination. This effect has been observed in X-Ray 

microanalysis [6] and is thought to be due to electrons scattering off the upper 

surface of the objective aperture and exciting the TEM foil. This effect is not a 

major limitation as the inability to tilt the specimen with the CL collection mirror 

in place limits simultaneous diffraction contrast and CL imaging. Care was taken 

to ensure the objective aperture was removed prior to CL work. 
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5.4 CL Emission from a Thin Crystal 

5.4.1 Resolution, Beam Broadening and Generation Volume 

The spatial resolution of CL, d, is related to the electron probe diameter, 

dp, the diameter of the generation volume, dg; and the carrier diffusion length, Ld. 

The relationship between these parameters is given by Pennycook to be [7, 8]: 

Whilst the probe diameter, dp, will be constant the value of the parameters 

dg and Ld in Equation 5.1 will vary depending on whether a bulk specimen or thin 

foil is being investigated. Both the bulk and thin foil regimes are briefly 

discussed below. 

Bulk. There are a number of empirical expressions [2, 9-11] for the range 

of electron penetration in a material as a function of the incident beam energy. 

The range according to Kanaya and Okayama [11] is given as: 

where A is the atomic weight in g/mol, the beam energy, £&, is in keV, p is in 

g/cm 3 and Zis the atomic number. This expression yields a value of Re

a40nm for 

a 120kV electron beam incident on GaN. Therefore at TEM operating voltages, 

considering only resolution, it is necessary to use a thin foil to limit the formation 

of a generation volume as shown in Figure 5.7. 

(5.1) 

0.0276,4 1.67 R 0.889 b pZ v 

( H (5.2) 
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excitation volume 
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Figure 5.7: Excitation volumes in a thin foil and a bulk specimen. 

Thin foil. Passing through a thin foil the primary beam will undergo 

scattering events which will broaden the beam. Brown [12] gives the beam size, 

b, on exciting a thin foil of thickness t to be: 

where a is the lattice parameter of the unit cell and N is the number of atoms in 

the cell. For a 250nm thick foil, b=80nm. Equation 5.3 assumes the incident 

electron beam to have a negligible width. A probe diameter of lOnm would 

therefore yield an exit beam size, b, of 90nm. 

Monte Carlo simulations are another method of investigating electron 

scattering [2, 13]. In a simulation a trajectory is calculated for each electron as it 

undergoes elastic and inelastic scattering. Monte Carlo simulations for lOOkV 

electrons have been performed using the commercially available MC-SET software 

[14] and are shown in Figure 5.8. The simulations shown in Figure 5.8(a-e) are 

for lOOkeV electrons incident on GaN layers of thickness lOOnm to lOum. The 

beam broadening seen in these simulations is in line with that given by Equation 

t 

urn 6 = 6x10 
Eb 

(5.3) 

5.3. 
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(a) (b) 
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c (d 
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GaN ©allium Nitride dx= 4.00 dy= 4.00 <!z= 0.60 

(e) 100.00 kV (scale - 10.00 um) 
GaN Layer 
GaN Gallium Nitride dx-20.00 dy=20.00 dz=100.00 

ure 5.8: Monte Carlo simulations for lOOkV electron incident on GaN thin foils 
of thickness; (a) lOOnm, (b) 250nm, (c) 500nm, (d) lum, and (e) lOum. 
Simulations are performed using MC-SET[14]. 
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The final parameter to consider in Equation 5.1 is carrier diffusion. In a 
bulk semiconductor the carrier diffusion length, Ld, is a function of impurity 
scattering and recombination processes. It is commonly defined as: 

where, D is a diffusion coefficient, and i is the carrier lifetime. In a thin 

foil, however, the proximity of the crystal surfaces to the generated carriers will 

have a dominant effect. The rate of surface recombination is a function of the 

surface recombination velocity, s, expressed in cm/s. In a thin foil, making the 

assumption that s=<x! Shockley [15] showed that: 

This can be thought of intuitively as effective 'pinning' of generated carriers 

by surface states, with carriers generated in the centre of the thin foil having the 

greatest diffusion length. However, Equation 5.5 was shown slightly to 

underestimate diffusion lengths as Pennycook [7] determined the diffusion length 

to be t/2.2. 

With calculated values for the size of the generation volume and diffusion 

length i t is now possible to calculate an estimated spatial resolution using 

Equation 5.1. For a 250nm thick foil with dp=10nm, d 9=80nm and Ld=80nm, the 

spatial resolution, d=110nm. This value compares well to typical spatial 

resolutions of ~l(am in SEM-CL [16]. 

5.4.2 Thin Film Interference Effects 

Thin fi lm interference effects have been previously observed in TEM-CL 

spectroscopy experiments [17-19]. Yuan et al [18] modelled this effect by 

considering the interference from light generated in a thin pencil and emitted 

normal to the fi lm. In the following section this concept is extended so that CL 

emission across all collection angles is included in the interference term. 

d 
(5.4) 

L 
n 

(5.5) 
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5.4.3 Visual Basic Model 

The incident electron beam is considered to generate electron-hole pairs i n 

a t h i n cylinder through the specimen. I t is assumed that the recombination of 

these electron-hole pairs results i n the generation of cathodoluminescence (CL) 

un i fo rmly through the specimen. Figure 5.9 represents the emission of CL f r o m a 

point S at a depth x i n a specimen of thickness t. 

t-x 

R 

Figure 5.9: Geometrical arrangement of CL emission from a point S at a depth x 
in a specimen of thickness t. 

To calculate the total interference t e rm at the CL collection mi r ro r i t is 

necessary to calculate the interference te rm across the range of angles between 

the cri t ical angle for escape f r o m the specimen (sin '(l/n)) and the normal to the 

surface. Since the distance f r o m the surface of the specimen to the CL collection 

mi r ro r is m u c h greater than the specimen thickness, d, we make the assumption 

tha t </> is f ixed for a pair of rays SQ and RP and if/ = 90 - <j>. 

Equation 5.6 describes, to a f i r s t approximation, the electric f ield E(z) 

resul t ing f r o m light emission f r o m a point source a distance x below the top 

surface of the fo i l : 

ikflX ikn(2t-x) 

E(z) = E0(z) (\-r)ecos* +re cos* (5.6) 
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where r is the reflection coefficient of the l ight at the f i lm's interface 1 and Eo is the 

electric f ield f r o m a single point source. The f i r s t t e rm describes the interference 

cont r ibut ion f r o m the l ight travelling directly to the detector, whi ls t the second 

te rm describes the interference contr ibut ion of the l ight reflecting off the back 

surface of the f i l m . A l l higher terms i n r representing mul t ip le in ternal reflections 

have been neglected since they have a significance of less than three percent. 

The total measured intensity, h^, at the detector result ing f r o m interference f r o m 

this cylinder of point sources is calculated by integrating the product of Equation 

5.6 and its complex conjugate over the thickness of the fo i l : 

— A) 
, _ , rcosd) . 

a -2rd H - s in 
hi 

2knt 
cos^ 

(5.7) 

where Io is the intensity generated f r o m a point source. To calculate the total 

observed interference, IT, i t is necessary to integrate Equation 5.7 at all angles 

between the cri t ical angle for l ight escape f r o m the foi l and the normal to i ts 

surface. This was calculated numerically by considering the intensity across an 

annulus of thickness &(/> at a posit ion (/>. I t was f o u n d tha t 100 incremental 

angular steps were sufficient to evaluate the integral. The effect of fo i l thickness 

variat ion on emission at constant wavelength is now discussed. 

Constant Wavelength. Figure 5.10 has been calculated us ing only the 

periodic par t of Equation 5.7 to highlight features which are masked when all 

three terms i n Equation 5.7 are included as i n Figure 5 .11. There are three 

features i n Figure 5.10. The f i r s t is the rapidly oscillating line which is a func t ion 

of the thickness of the fo i l and the wavelength of emission. The second feature is 

the overall envelope func t ion which is a result of the numerical integration over a 

range of angles between the normal to the surface and the crit ical angle. The 

t h i r d is the increase i n magnitude of the oscillation as the thickness of the fo i l 

increases. However th is w i l l only be true for completely coherent point sources. 

I n reality the interference f r o m rays w i t h large pa th lengths w i l l not be so marked 

' The value of r for GaN is calculated to be 0.17. This value diverges as we approach the critical angle. A 
derivation of r using the Fresnel equations is given in Appendix B and the effect of using a variable value for 
r is shown in Figure 5.14. 
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since part ia l temporal coherence w i l l suppress the interference f r o m these rays 
[18, 20, 21]. 
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Figure 5.10: Numerical evaluation of Equation 5.7 calculated with an emission 
wavelength of 500nm. 

Whils t Figure 5.10 highlights the interference effects the total observed l ight 

ou tpu t is shown i n Figure 5 .11. 
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Figure 5.11: Evaluation of the total observed light output calculated with an 
emission wavelength of 500nm. 
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Figure 5.12 compares the effect of only considering l ight that is emitted 

normal to the foil 's surface wi th the f u l l calculation across al l angles between the 

cr i t ical angle and the normal . Considering only the normal rays yields 

oscillations of the same periodicity as the f u l l angular range, bu t of increased 

ampli tude. This is i n agreement w i t h the analysis performed by Yuan et al [18] 

where only l ight i n the l imi t ing case of emission normal to the surface was 

considered. This difference can be at t r ibuted to the smoothing effect of the range 

of phase differences generated by the integration over the angular range 

performed i n this analysis. This is a more accurate representation of the physical 

system encountered in TEM-CL, where all emission close to the normal would 

travel th rough the hole i n the CL mir ror wi thou t being recorded. This has been 

allowed for i n the calculations. It was shown that when the mi r ro r is i n its 

o p t i m u m collection position 1mm above the sample i t is wide enough to collect al l 

l ight emission u p to the critical angle of gal l ium ni tr ide. 
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Figure 12: Numerical evaluation of the total observed light output calculated 
with an emission wavelength of 500nm using the full angular range 
method and only considering the light emitted normal to the foil's 
surface. 

I n the next section the variat ion of CL intensi ty w i t h wavelength for foils of 

constant thickness is considered. 
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Spectra F r o m Foils of Constant Thickness . Figure 5.13 has been 

generated us ing Equation 5.7 w i t h the thickness held constant while the 

wavelength is changed, again us ing 100 angular steps to calculate each data 

point . 
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Figure 5.13: CL emission vs wavelength for foils of thickness varying between 
lOOnm and 500nm. 

I t is seen that the CL emission f r o m the thicker foils is greater, as wou ld be 

expected, and that the intensi ty modulat ion of the CL intensity f r o m interference 

is less for th inner foils. At shorter wavelengths the oscillations of the CL intensi ty 

are more frequent as the wave f ronts are closer together at the high frequency 

end of the spectrum. The amplitude of the interference oscillations increases 

w i t h wavelength. This is because at longer wavelengths i t becomes less likely 

tha t there w i l l be both constructive and destructive interference at the same 

wavelength thereby increasing the magnitude of the oscillations. Once the 

wavelength becomes an order of magnitude greater or more than the thickness of 

the fo i l , the CL intensi ty increases to a steady state as the phase difference 

between the direct and reflected rays tends to zero. 

Reflectivity considerations. I n this subsection the effect of the variat ion 

i n reflectance, r, calculated i n Appendix B, is considered. The s imulat ion has 

been performed for a range of foi l thicknesses and is shown i n Figure 5.14 for a 

500nm th ick fo i l . 
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Figure 5.14: CL emission versus wavelength for a 500nm thick foil with reflectance 
set to a fixed value of 0.17 and varying as defined by Equation B3. 

There is l i t t le change to the CL emission f r o m thinner foils when a variable 

value for the reflectivity is used. However for foils thicker than 3 0 0 n m there is a 

noticeable effect w i t h the amplitude of oscillation of CL emission increasing and 

an increase i n period of the oscillations. These differences are more marked at 

longer wavelengths. 

Effect of surface recombination and generation function. The analyses 

i n the previous subsections all have the impl ic i t assumption that the CL is 

generated un i fo rmly throughout the fo i l . The a im of this section is to model how 

non-radiative surface recombination and inhomogeneous electron-hole pair 

generation by the electron beam w i l l affect the total emitted CL. To do this i t is 

necessary to evaluate fr$ numerically rather than us ing the algebraic solution 

given i n Equation 5.7. Simulations show that an adequate numerica l integration 

is achieved by using an incremental thickness step of one angstrom. The 

calculated intensi ty for each incremental thickness is mul t ip l ied by a factor to 

allow for the effects of non-radiative surface recombination and non-homogenous 

energy deposition by the electron beam w i t h fo i l thickness. The model used to 

allow for these effects is described i n detail i n Section 7.4. The simulated CL 

emission for a 500nm thick fo i l using this modified model is compared to a 

s imulat ion performed on a u n i f o r m generation assumption i n Figure 5.15. 
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Figure 5.15: Comparison of CL emission versus wavelength for a 500nm thick foil 
using a uniform factor for the generation of CL and a non-uniform 
factor with depth dependent values. The CL emission calculated 
using the depth dependent generation model has been scaled up for 
comparison purposes. In reality the use of this model will result in 
reduced CL emission due to losses from non-radiative surface 
recombination. 

Figure 5.15 shows there is l i t t le difference i n the two simulat ions for a 

500nm th ick fo i l . Other simulations have shown the greatest difference to occur 

for th inner foils. This is a logical f ind ing as i t would be expected that the relative 

effects of surface recombination would be greater for a t h i n fo i l . 

5.4.4 Comparison with Experimental Data (and limitations of the model) 

T h i n f i l m interference effects were not observed i n TEM-CL spectra 

acquired using a CTEM beam as a source of excitation. This may be accounted 

for by the larger area i l luminated by the CTEM beam result ing i n CL emission 

f r o m parts of the fo i l w i t h different thicknesses. Interference effects were also not 

observed i n STEM-CL monochromatic images. This is thought to be due to the 

relatively large spectral dispersion typically needed (~20nm) to achieve a 

measurable signal f r o m a t h i n fo i l . Over the spectral range measured 

constructive and destructive interference may be self compensating. Interference 

effects were, however, observed i n spectra acquired us ing a stationary STEM 

probe as a source of excitation. Such a spectrum is shown i n Figure 5.16 i n 

wh ich the underlying curve can be seen to be overlaid w i t h a rapidly oscillating 

func t ion . Fi t t ing this func t ion to the simulations performed indicated that the 
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section of fo i l was approximately 500nm thick. (Spectra were rarely collected 

us ing a stationary STEM probe to avoid damage to the specimen. A small area 

STEM scan was f o u n d to be a more satisfactory method for spectral acquisition.) 
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Figure 5.16: TEM-CL spectra acquired with a stationary STEM probe on a thin GaN 
epilayer (lOOkV beam, 100K nominal temperature). 

This f i t t i ng process clearly has the potential to be used to str ip the 

interference fringes f r o m a peak so the under ly ing peaks can be investigated. I t 

can also be used as a thickness estimator for STEM work in which ext inct ion 

fringes are not as clear as i n di f f ract ion contrast TEM. 

5.5 Conclusions 
The performance of a CL collection system f i t ted to a JEOL 200CX TEM 

w i t h STEM scanning attachment was investigated. The spectrometer was 

calibrated us ing standard sources to an error of 0 .243nm for a grating blazed for 

m a x i m u m reflectance at 300nm and 0.707nm for a grating blazed at 500nm. The 

m a x i m u m spectral resolution was determined to be l n m . A broad peak centred 

at 650nm observed w i t h the largest condenser aperture i n place was a t t r ibuted to 

glow f r o m the tungsten f i lament and CL f r o m stray electron collisions. I f the 

objective aperture was inserted electrons scattered f r o m the aperture were shown 

to excite the substrate and give spurious CL emission. 

T h i n f i l m interference i n a parallel sided specimen excited by a cyl indrical 

electron probe was modelled using a Visual Basic rout ine. Emission over an 
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angular range between the cri t ical angle for emission and the hole i n the 

collecting mi r ro r were considered for the f i r s t t ime. The model was used to 

investigate the variation i n CL intensity w i t h fo i l thickness for a par t icular 

wavelength or the variation i n CL intensity w i t h wavelength for a par t icular 

thickness. Thickness fringes i n images were predicted, as were thickness 

oscillations i n spectra. Refinement of the model to account for the wavelength 

dependence of reflectance and surface recombination had only a minor influence 

on the f o r m of the modelling results. Interference effects on spectra were 

observed experimentally, bu t only for the case of a stationary STEM beam. 

Irradiat ion of a dis t r ibut ion of thicknesses i n an area us ing either a CTEM or 

moving STEM beam caused the fringes to be lost: this suggests the conditions to 

be used for the most reliable spectral acquisition. 
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Chapter 

TEM-CL Spectroscopy 

6.1 Introduction 
The aims of this chapter are: to ident i fy features observed i n TEM-CL 

spectra of GaN/In^Gai-xN QW structures grown on sapphire and i n GaN epilayers 

grown on LiA102; to investigate how the excitation conditions i n TEM-CL affect 

these spectra; and to investigate the effects of electron beam degradation on the 

CL emission f r o m these materials. 

This informat ion is necessary to fu r the r the interpretat ion of STEM-CL 

images and spectral data presented i n Chapters 7 and 8. The excitation 

conditions i n TEM-CL are evaluated using beam current measurements and an 

empirical description of the energy deposited by a high energy electron beam i n a 

TEM fo i l . In-s i tu measurements of the beam induced degradation of CL emission 

are presented and analysed using a recombination-centre model. 

66 



Chapter 6 - TEM-CL Spectroscopy 

6.2 Samples used in this chapter 
Sample Epilayer structure Substrate Growth 

Method 
Summary Growth 
Details 

M-plane 
GaN 
epilayer 

500nm epilayer Y-LiA102 

(100) 
PAMBE (Paul-
Drude 
Institute, 
Berlin) 

750°C substrate 
temperature, 
constant nitrogen 
flux f l , 21 

Ino.1Gao.9N 
SQW 

lum GaN buffer layer, 
2.5nm InxGai-xN QW, 
15nm GaN capping 
layer. (x=0.101±0.015) 

c-plane 
sapphire 

MOVPE 
(Institute of 
Photonics, 
University of 
Strathclyde) 

20nm GaN 
nucleation layer at 
540°C, GaN buffer 
layer at 1140°C, 
InxGai-xN QW 
grown at 832°C [3, 
41 

Ino.1Gao.9N 
2QW 

lum GaN buffer layer, 
2.5nm InxGai-xN QW, 
7.5nm GaN barrier 
layer, 2.5nm InxGai-xN 
QW, 15nm GaN 
capping layer. 
(x=0.101±0.015) 

c-plane 
sapphire 

MOVPE 
(Institute of 
Photonics, 
University of 
Strathclyde) 

20nm GaN 
nucleation layer at 
540°C, GaN buffer 
layer at 1140°C, 
InxGai-xN QWs 
grown at 832°C [3, 
41 

Ino.2Gao.8N 
8QW 

lum GaN buffer 
layer, 8-period InxGai-
xN/GaN QW structure 
(7nm barrier thickness, 
2.8nm QW thickness), 
0.4nm GaN capping 
layer (growth 
interrupted). 
(x=0.196±0.025) 

c-plane 
sapphire 

MOVPE 
(Institute of 
Photonics, 
University of 
Strathclyde) 

20nm GaN 
nucleation layer at 
540°C, GaN buffer 
layer at 1140°C, 
InxGai-xN QW 
grown at 760°C. 
[3, 5] 

Table 6.1: Specimen growth details. 

The samples investigated i n this chapter are listed i n Table 6.1 and the 

reader is referred to Section 3.4 for general descriptions of growth methods. 

Spectra f r o m the samples investigated i n this chapter are typical of spectra f r o m 

other samples investigated i n this work. Differences such as q u a n t u m well 

emission wavelengths are discussed when results f r o m other samples are 

presented. 

6.3 Excitation Conditions 
A fract ion of the electron beam energy deposited i n a semiconductor w i l l be 

converted into cathodoluminescence through the radiative recombination of 

electron-hole pairs. I t has been shown that the injected density of electron-hole 

pairs i n a semiconductor can influence luminescent properties [6, 7] . To 
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investigate the free carrier generation rate i n TEM-CL experiments, beam current 
measurements (Section 6.3a) have been analysed us ing an analytical expression 
for the energy loss per u n i t path length for electrons described i n Section 6.3b. 

(a) Beam Current Measurements 

Beam current measurements for the JEOL 200CX TEM taken w i t h a 

Faraday cup i n STEM and CTEM modes are shown i n Table 6.2. I n each instance 

the f i lament current was set to saturation before insert ing the Faraday cup. 

Beam current values vary w i t h the posit ion of the t ip of the tungsten f i lament i n 

relation to the top of the Wehnelt cylinder so beam current measurements were 

repeated as needed. 

Accelerating 
Voltage 

Condenser 
Aperture 

S T E M 
Current 
(amps) 

e- per 
c m 2 per s 

C T E M 
Current 
(amps) 

e- per 
c m 2 per s 

40kV 1 2.1E-11 1.7E+20 2.1E-09 1.7E+18 
2 7.0E-12 5.6E+19 7.0E-10 5.6E+17 
3 2.0E-12 1.6E+19 1.8E-10 1.4E+17 
4 - - 7.0E-12 5.6E+15 

80kV 1 3.1E-11 2.5E+20 2.0E-09 1.6E+18 
2 1.1E-11 8.8E+19 6.8E-10 5.4E+17 
3 3.0E-12 2.4E+19 1.9E-10 1.5E+17 
4 - - 7.0E-12 5.6E+15 

1 0 0 W 1 1.0E-10 8.0E+20 9.3E-09 7.4E+18 
2 3.3E-11 2.6E+20 3.2E-09 2.5E+18 
3 9.0E-12 7.2E+19 8.6E-10 6.9E+17 
4 - - 3.2E-11 2.5E+16 

120kV 1 1.3E-10 9.9E+20 1.1E-08 8.6E+18 
2 3.7E-11 2.9E+20 3.3E-09 2.6E+18 
3 1.1E-11 8.8E+19 9.7E-10 7.7E+17 
4 - - 3.5E-11 2.8E+16 

Table 6.2: STEM and CTEM beam currents for different beam accelerating 
voltages and condenser apertures in the JEOL 200CX. The electron 
flux density is calculated based upon a CTEM beam diameter of 1pm 
and STEM beam diameter of lOnm. 
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(b) Energy Deposition - Bethe Model 

The average rate of energy loss by an electron travelling th rough a material 

was originally derived by Bethe. [8] This is expressed i n Equat ion 6.1 w i t h 

relativistic corrections [9]: 

dE^ 
dz 

( _2 > 2nN0Zp 

o j mc2p2A 

In 
r ( r + r ' ) y + M ; ) 

irmc 
(2Vr^-l + ^ 2 ) l n 2 + l ( l - V l ^ ) 2 

(6.1) 

where j3=u/c, v is the electron velocity, c the speed of l ight , Z the atomic 

number , A the atomic weight, p the density, No is Avogadro's constant, T the 

kinet ic energy of the electron, and J is the mean ionisation potential . The mean 

ionisat ion potential represents the average energy lost by an electron at an 

electron-solid interaction. This has been shown to be described empirical ly as 

[10]: 

/ = 9.76Z + 
58.5 
ry0.\9 (eV) (6.2) 

Values of the variation i n dE/dz w i t h accelerating voltage are shown i n 

Table 6.3. These have been calculated using a mean value of 25 for the atomic 

number i n Equations 6.1 and 6.2. 

80kV lOOkV 120kV 
dE 
dz 

1.54 e V / n m 1.33 e V / n m 1.19 e V / n m 

Table 6.3: Bethe energy loss per unit path length values. 

These values allow a calculation of the generation rate per u n i t volume of 

electron-hole pairs i n a TEM foi l . I t may be assumed that d £ / d z is constant and 

the average energy deposited by each electron passing through the fo i l is 130eV. 

The average energy lost by the incident electron beam i n generating an electron-

hole pair, £, has been shown to be approximately three times the bandgap energy 

[11]. For the purposes of this investigation i t is adequate to make the assumption 
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tha t £=10eV. The average number of electron-hole pairs generated by a single 
electron of energy lOOkeV passing through lOOnm of GaN is therefore 
approximately 13. A typical CTEM electron f l u x of 1 0 1 8 e-s ' cm- 2 would therefore 
generate approximately 10 1 9 e h + pairs s^cnr 2 throughout a fo i l thickness of 
lOOnm. This is equivalent 1 0 2 4 e h + pairs s ' c n r 3 . 

(c) Discussion of Exci tat ion Conditions 

The average energy deposited by a single electron of energy 80-120keV has 

been shown (Table 6.3) to be ~1 .5eV/nm i n GaN. This value reduces by 30% as 

the electron energy is increased f r o m 80 to 120keV due to the decrease in 

electron-solid interaction cross-section as the electron energy is increased. Under 

typical TEM beam current conditions this rate of energy deposition would yield an 

electron-hole pair generation rate of approximately 1 0 2 4 e h + pairs s-'cm 3 . This is 

a h igh carrier density i n comparison to typical PL and SEM-CL operating 

conditions which are typically < 1 0 1 8 c m 3 . Studies of GaN taken under h igh 

excitation conditions have shown the spectra to be influenced by the effects of 

inelastic exciton-exciton scattering and electron-hole plasma emission [7, 12-17]. 

The results of these calculations w i l l be discussed fu r the r i n the fol lowing 

sections. 
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6.4 Spectral Features of GaN and lnxGai-xN 

6.4.1 Spectral features of c-plane I^Ga^N /GaN on (0001) Sapphire 

Figure 6.2 shows a STEM-CL spectrum f r o m a cross-section T E M specimen 

made f r o m the Ino.1Gao.9N single QW sample described i n Table 6 .1 . The 

spectrum was acquired w i t h the STEM probe scanning an area containing the 

GaN layer and the QW. The integration time at each monochromator posit ion 

was two seconds, a time m u c h greater than the STEM duty cycle. 

10 5 
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Figure 6.1: 
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STEM-CL spectrum of Ino.1Gao.9N single quantum well (lOOkV beam 
energy, cooled to 100K). Inset shows a PL spectrum of the sample 1. 

Figure 6.1 is typical of spectra collected i n both STEM and CTEM modes. 

The spectrum is r i ch i n features which have been at t r ibuted to the sapphire 

substrate. This is surpris ing as the spectrum was acquired f r o m a GaN epitaxial 

layer containing an Ino.1Gao.9N QW. Spectral features a t t r ibuted to the Ino.1Gao.9N 

1 PL measurements performed by P. Dawson, UMIST. 
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/ G a N s tructure are less dominant i n the spectrum. The peak at 4 1 0 n m is 
a t t r ibuted to the single Ino.1Gao.9N QW and is i n the same position as the QW 
peak seen i n PL 2 spectra of the same sample (STEM-CL monochromatic images 
presented i n Chapter 7 conf i rm the 410nm emission originates f r o m the expected 
posi t ion of the QW in the foil). A broad peak can be seen i n the range 480-
660nm. This is a t t r ibuted to GaN yellow emission [18] and 'gun glow' (see Section 
5.2.4). There is evidence of a small shoulder at 360nm on the broad peak 
labelled sapphire F + (colour) centre. This is possibly attr ibutable to a GaN near 
band edge feature such as emission due to the recombination of free excitons [7, 
19]. The PL spectrum of this sample revealed the near band edge feature to be 
several orders of magnitude lower than the QW emission which is consistent w i t h 
th is observation. However, the near band edge is clearly defined i n PL spectra 
w i t h no sapphire luminescence peaks obscuring i t . The origins of the sapphire 
luminescence seen i n Figure 6.1 w i l l now be discussed. 

The sapphire luminescence w i l l be discussed i n four paragraphs. The f i r s t 

w i l l address the physical origins of spectral features seen i n sapphire, the second 

w i l l discuss some of the differences between PL and (S)TEM-CL spectroscopy, and 

the t h i r d the effects of sample geometry. In the f ina l paragraph mechanisms to 

account for the observation of spectral features characteristic of sapphire dur ing 

i l lumina t ion of only the GaN layer are considered. 

Sapphire emission at 694nm is routinely observed i n SEM-CL and PL 

studies and is due to the C r 3 + doublet [20] (692.Onm and 693.4nm). I t could not 

be resolved w i t h the gratings used i n this work. On the low energy side of this 

doublet, the peak at 715nm has been at t r ibuted to T i 3 + [21]. A broad peak at 

3 3 0 n m and a less intense peak at 415nm have been previously observed i n 

neu t ron and electron bombarded sapphire [22-25] and are a t t r ibuted to an F + 

centre (an oxygen vacancy which has trapped a single electron) and an F centre 

(an oxygen vacancy containing two trapped electrons), respectively. Under 

electron i r radia t ion the peak at 4 1 5 n m is reported to be m u c h weaker than the 

3 3 0 n m F + centre peak [24, 26]. This suggests that the peak seen i n Figure 6.2 at 

3 3 0 n m is due to an electron irradiat ion induced F + centre. Whilst th is peak has 

been previously observed i n TEM-CL spectra [27] i t is not usual ly observed i n PL 

and SEM-CL studies of epitaxial layers grown on sapphire. Possible explanations 

for this are now described. 

2 PL measurements performed by P. Dawson, UMIST. 
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Lee and Crawford [22] discovered that l ight of wavelength 2 5 8 n m was 
needed to produce emission i n the band centred at 330nm. As PL studies of GaN 
are often performed using the 334nm line of an A r + laser or the 3 2 5 n m line of a 
HeCd laser the exciting photons would be insuff ic ient ly energetic to yield F + 

centre emission at 330nm. However, i n SEM-CL, electron energies are enough to 
excite sapphire F + centre luminescence. I t is possible that its absence is due to 
the threshold energy for the in t roduct ion of the F + centre being between 30keV 
and 80keV (the m i n i m u m operating voltage for TEM-CL). Geometrical reasons for 
the absence of the F + centre peak i n SEM-CL are now discussed. 

Most of the samples investigated i n this s tudy were prepared as cross-

sectional TEM foils. The geometry of such a fo i l is a wedge w i t h the epitaxial 

layer at the thinnest end and substrate making up the th ick end of the wedge (as 

described i n Section 4.3). I n comparison to experiments on plan view samples 

(which are usual ly used i n PL and SEM-CL) two major differences are; a) the 

volume ratio of epitaxial layer to substrate is lower i n cross-section, and b) 

luminescence f r o m the substrate can escape directiy to the surface f r o m a cross-

sectional fo i l rather than having to travel through the epitaxial layer to escape. In 

the case of the sapphire/GaN system, F + centre luminescence emitted f r o m a 

sapphire substrate would be absorbed rapidly by a GaN epitaxial layer due to the 

h igh absorption coefficient of semiconductors at above band gap energies. 

The f ina l aspect to consider is why spectral features specific to sapphire 

are observed when only the GaN layer is i l luminated. A number of different 

mechanisms for the excitation of the sapphire substrate have been considered: 

a) Electrons i n the tails of the Gaussian electron beam shape; the 

energy loss of a lOOkeV electron passing through a lOOnm th ick 

fo i l is on average ~100eV. However, i f an electron i n the 

Gaussian ta i l of the pr imary beam was to be completely stopped 

i n a thicker (substrate) section of the wedge the whole lOOkeV 

would be available for e-h+ pair generation, 

b) Deflected pr imary electrons and fast secondary electrons; fast 

secondary electrons and pr imary electrons deflected such that 

they entered the substrate laterally would lose al l their energy 

inside the specimen (assuming no fu r the r large angle scattering). 

As described i n (a) i t would only take approximately one i n a 

thousand such scattering events to deposit the same energy i n 
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the substrate as was deposited i n the area under direct electron 
beam i l lumina t ion , 

c) X-rays; bremsstrahlung and characteristic X-rays generated i n 

the specimen and inside the microscope pole piece w i l l excite 

luminescence away f r o m the region excited by the pr imary beam 

[28], 

d) Surface recombination; whi ls t not an excitation issue, this w i l l 

suppress luminescence f r o m the epitaxial layer under 

investigation as a greater proport ion of available free carriers w i l l 

recombine at the surface of a t h i n specimen as opposed to a 

thicker section (this is discussed i n greater detail i n Chapter 7). 

This may account for strong substrate luminescence w i t h only 

weak excitation of the substrate. 

The effect of these four factors has not been evaluated quantitatively i n this 

study. However, greater understanding of the relative cont r ibut ion of these 

factors would be valuable and might perhaps be the subject of fu r the r study. 

To investigate the hypothesis that the sapphire F + centre peak would be 

absorbed by a GaN layer, a p lan view specimen was prepared and spectra were 

obtained w i t h the substrate facing away f r o m the CL collection mi r ro r (spectrum 

A) and the substrate facing the mir ror (spectrum B). The two spectra are plotted 

together i n Figure 6.2. 
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Figure 6.2: TEM-CL spectra of In0.2Ga0.sN 8QW plan view foil (lOOkV electron 
beam, cooled to 100K, CTEM acquisition) 

Figure 6.2 does indeed conf i rm that the sapphire F + centre peak is 

absorbed by - l j j m of GaN. The inset to Figure 6.2 shows there are also slight 

differences to the near band edge luminescence for the two spectra w i t h the peak 

centred at 360-365nm appearing to be at a higher energy i n spectrum B . This 

may be a t t r ibuted to the influence of the F + centre peak creating an apparent blue 

shi f t due to peak overlap. Comparison of Figure 6.2 to 6.1 shows near band edge 

features i n the spectra f r o m the plan view foi l wh ich are not seen i n the cross-

sectional fo i l and a different QW position. The QW posit ion (465nm) i n f igure 6.2 

is as expected f r o m PL performed on the same specimen 3 . However, the near 

band edge features seen deserve fu r the r discussion. 

I t is suggested that the stronger near band edge features seen are due to 

the larger volume of GaN being excited i n the p lan view fo i l . From the l i terature i t 

is k n o w n tha t the dominant spectral feature i n epitaxial GaN layers at a 

temperature of 100K and low excitation density would be due to free exciton 

recombination at 355-356nm [7, 19]. Spectrum A, however, exhibits a peak 

start ing at 3 5 5 n m and rising to a peak at 365nm. I n studies us ing high PL 

3 PL performed by R. Pecharroman-Gallego, Department of Physics, University of 

Strathclyde. 
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excitation densities 4 th is feature has been observed and is sometimes referred to 
as the 'P' l ine. Hvam and Ejder [13] identif ied this emission band at 359.1 and 
359 .6nm i n highly excited GaN (excitation intensi ty of 2.5MW c m 2 ) at a 
temperature of 2K, a t t r ibut ing i t to inelastic exciton-exciton scattering. As the 
temperature was increased to 77K and the free exciton luminescence increased 
(due to the thermal dissociation of bound excitons) the P-band luminescence was 
observed to increase, giving support to the proposed mechanism. Cingolani et al 
[14] observed a shif t i n the P-band luminescence to lower energy (363nm) and a 
broadening of the FWHM as the excitation intensi ty was increased to 10MW cm 2 . 
Considering the large number of carriers expected to be generated i n TEM-CL the 
near band edge feature at 355-365nm i n Figure 6.2 is tentatively a t t r ibuted to the 
GaN P-band. Further investigation into dependence of this line on beam current 
would help to clar i fy this. 

The emission at 385nm has been previously at t r ibuted to cubic phase 

inclusions [18]; i t is also w i t h i n the spectral range of DAP transi t ions (380-

390nm). There is some evidence of phonon replicas [6] i n spectrum A suggesting 

that the peak is due to a DAP transi t ion. 
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Figure 6.3: TEM-CL spectra of bulk sapphire substrate material (lOOkV electron 
beam, cooled to 100K). 

4 The transition to a high excitation regime is broadly considered to take place at a 

free carrier density of 10 1 8 cm 3 . 
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Figure 6.3 shows TEM-CL spectra of a flake f r o m a b u l k sapphire substrate 

recorded i n order fu r the r to investigate the origins of peaks assigned to the 

substrate. Since the sample was i n b u l k f o r m the high CL intensi ty allowed 

spectra to be recorded at h igh spectral resolution (2 and 3nm). Both the 

impur i ty , F + and F centre peaks are present. The presence of the F + centre peaks 

i n bo th b u l k and ion beam thinned samples makes i t unl ike ly that such centres 

are an artefact of TEM specimen preparation. 

6.4.2 Spectral features of M-Plane GaN/LiAl02 
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Figure 6.4: TEM-CL spectrum of M-plane GaN epilayer (lOOkV electron beam, 
cooled to 100K). 

Figure 6.4 shows a typical TEM-CL spectrum taken f r o m a cross-sectional 

M-plane GaN sample (Table 6.1). The sharp peak at 355nm and the broad peak 

centred at 600nm are similar to those seen i n c-plane GaN and are a t t r ibuted to 

free exciton recombination and GaN yellow luminescence respectively. The peak 

seen at 3 7 0 n m has been previously at t r ibuted to excitons bound to s t ruc tura l 

defects such as stacking faul ts or dislocations [2, 29-31]. An investigation into 

the origins of this peak is presented i n Chapter 8. 

77 



Chapter 6 - TEM-CL Spectroscopy 

A peak i n a posit ion similar to that identif ied i n 6.4.1 as the sapphire F + 

centre can be seen i n Figure 6.4 at 3.7eV (335nm). Whils t there is l i t t le detailed 
spectroscopy of LiAlCb i n the literature, studies have identif ied absorption bands 
i n UAIO2 w i t h similar physical origins to the F + centre absorption band i n 
sapphire [32]. Figure 6.5 shows a TEM-CL spectrum of b u l k LIAIO2 taken under 
conditions identical to those i n Figure 6.4. The inset to Figure 6.5 is a SEM-CL 
spect rum 5 taken f r o m a similar LiAlCh substrate prior to sample growth. 
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Figure 6.5: TEM-CL spectrum of LLAIO2 substrate (lOOkV electron beam, cooled to 
100K). Inset shows a SEM-CL spectrum 5 of a similar substrate. 

Figure 6.5 shows a broad band centred on 3.65eV (340nm) w i t h a less 

intense band centred at 2.2eV (563nm). The SEM-CL shows the dominant broad 

band to be centred on 3.8eV (326nm) w i t h a secondary peak at 3.2eV (388nm). 

The 3.2eV (388nm) emission reduces i n intensity relative to the 3.8eV (326nm) as 

the temperature is changed f r o m room temperature to 5K. This peak is not seen 

i n the TEM-CL spectrum. I t might be conjectured that this may be due to some 

process occurring at higher electron energies that suppresses the 3.2eV (388nm) 

peak or promotes the 3.8eV (326nm) peak. However, no physical basis for this 

presumption is suggested. 

5 SEM-CL provided courtesy of Achim Trampert at the Paul-Drude Institute, Berlin 
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I t is wor th not ing that the LiAlCb substrate material proved to be extremely 
unstable when i l luminated by 80-120keV electrons. I t could be seen to move and 
even crack w i t h i n seconds of i l lumina t ion . Carbon, gold coating and l iqu id 
nitrogen cooling made no observable difference. Reducing the beam current was 
effective to some extent, b u t the current needed to be reduced to almost unusable 
levels before the material became stable enough for imaging to be attempted. 

6.5 Beam Degradation of CL 
Electron beam induced degradation of CL has been observed i n a number 

of different I I I -V and I I -VI semiconductors dur ing TEM-CL studies [33-38]. The 

observed degradation has been at t r ibuted to either the creation of non-radiative 

centres such as point defects, or to the destruction of luminescence centres [34]. 

Through a simple recombination centre model Ohno et al [37] described the 

degradation and calculated a threshold electron energy for the displacement of 

atoms f r o m the crystal lattice by displacement or knock-on damage [39]. In the 

fol lowing sections electron beam degradation data are analysed for the 

panchromatic CL emission f r o m an Ino.1Gao.9N 2QW, the monochromatic emission 

f r o m an Ino.1Gao.9N SQW and the L1AIO2 substrate discussed i n the previous 

section. 

6.5.1 GaN/lrixGa^xN Beam Degradation 

Figure 6.6 shows panchromatic-CL degradation curves as a func t ion of 

t ime f r o m the Ino.1Gao.9N double quan tum well s t ructure described i n Table 6 .1 . 

The degradation was recorded i n both STEM and CTEM modes at operating 

voltages of 80, 100 and 120kV, us ing a CTEM beam of diameter l ( i m and a l O n m 

STEM probe scanning an area of approximately l p m 2 . Care was taken to select 

an unexposed section of fo i l for each measurement. 
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Figure 6.6: Electron beam induced degradation of the panchromatic CL emission 
versus time from an Ino.1Gao.9N double quantum well in STEM and 
CTEM modes (cooled to 100K). 

I n Figure 6.6 the measured CL emission i n CTEM mode can be seen to 

degrade to around half of its in i t i a l intensity over ten minutes . However, only a 

small reduction i n emission is seen i n STEM mode. Beam current measurements 

presented i n Table 6.2 suggest that this effect is due to effects of electron dose. 

Whi ls t the current density i n the i l luminated area is approximately two orders of 

magnitude higher when comparing a static lOnm STEM probe to a lpim CTEM 

beam, the total dose i n STEM is two orders of magnitude lower than for CTEM 

when the STEM scan area is the same as the area i l luminated by the CTEM 

beam. This suggests that specimen damage can be avoided by in i t ia l ly 

investigating newly prepared foils and collecting spectra i n STEM mode before 

us ing CTEM for di f f ract ion contrast imaging. Further analysis of the CL 

degradation w i l l now be considered i n terms of electron dose rather than t ime as 

shown i n Figure 6.7. 
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Figure 6.7: Electron beam induced degradation of the panchromatic CL emission 
versus dose from an Ino.1Gao.9N double quantum well in CTEM modes 
(cooled to 100K). Fits to Equation 6.3 are shown with 61 values listed 
in Table 6.4. 

It is reported that CL emission intensity, ICL, is well described by the 

fol lowing func t ion [38]: 

l c , m (6.3) 
C L 1+0,2) 

where 6j is a f i t parameter and D is the dose. Figure 6.7 shows the CTEM 

data f r o m Figure 6.6 f i t ted to this func t ion on an ICL v s dose plot. The plot shows 

a good f i t between Equation 6.3 and the experimental data. A t rend is also noted 

w i t h the degradation occurring more rapidly as the electron beam energy falls 

f r o m 120keV to 80keV. 

The physical origin of Equation 6.3 can be explained by a recombination -

centre model [6]. I f the radiative recombination efficiency is, r\, then: 
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77 = — = ^ — (6.4) 
Trr 1 + _ 2 L 

where r, in, and r n r are the minor i ty carrier l ifetime, the radiative 

recombination lifetime, and the non-radiative recombination lifetimes 

respectively. Making the s impl i fying assumption that the material contains one 

type of radiative and mul t ip le non-radiative recombination centres then: 

7 = y J „ (6-5) 
nr(i)anr(i) 

1 + 
N a 

rr rr 

where Nn- and Nnrp), are the densities of radiative and the I t h non-radiative 

recombination centres; a n and onr(i), are the radiative and I t h non-radiative capture 

cross sections; and Vm is the carrier thermal velocity, these being related by 

v=(NoVth)'1- Making the assumption that onr(i)/Nn-Orr remains constant dur ing 

i r radia t ion then i V n r ^ % D where % is the rate of increase of the rth non-radiative 

centre w i t h dose. Therefore we may deduce that: 

^ ' C r n r ( / ) f ' i 

1 N„cr„ 
(6.6) 

where 61 is the experimental f i t parameter i n Equat ion 6.3. The f i ts i n 

Figure 6.7 therefore support the hypothesis that CL degradation is caused by the 

incident electron beam in t roducing non-radiative centres into the material . 

However, the t rend of reduced CL degradation rate w i t h increased beam energy 

seen i n Figure 6.7 st i l l needs to be explained. 

SOkeV lOOkeV 120keV 

1.26x10-20 c m 2 4.86X10- 2 1 c m 2 2.59*10- 2 i c m 2 

Table 6.4: 61 degradation parameters from figure 6.7. 

The discussion of the beam degradation results so far has taken into 

account the electron dose. I t does not, however, take into account the variat ion 
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i n electron beam-solid interaction cross-section w i t h beam energy. I n Section 6.3 
(excitation conditions) the energy deposition per u n i t depth was calculated and 
shown to be 15% greater at 80keV than at lOOkeV and 30% greater at 80keV 
than at 120keV. As can be seen f r o m the tabulated 9i values i n Table 6.4 the 
differences i n energy deposition rates brings the 9i values closer together, bu t 
does not explain the more rapid degradation at 80keV. 

Comparison w i t h more extensive measurement of 6 i versus beam energy 

(Ohno et al [38]) for (Ga,In)P is instructive: Ohno's data shows a threshold energy 

for displacement damage. Below this energy the 0i values reported by Ohno et al 

are similar to those i n Table 6.4. Above this energy the 6i values are typical ly of 

the order of 10- 1 9 c m 2 and increase rapidly w i t h beam energy. This suggests that 

fu r the r analysis of the electron beam degradation of GaN would be of interest to 

determine the threshold value for displacement damage i n GaN. 

1400 

410nm at 100kV CTEM illumination 
Fit with 0.=2.65e-21 
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800 

600 

400 

200 i , 1 1 1 1 1 1 

0 1e+20 2e+20 3e+20 4e+20 5e+20 6e+20 7e+20 8e+20 

Dose (e7cm2) 

Figure 6.8: CTEM degradation of Ino.1Gao.9N single quantum well emission at 
410±10nm (lOOkV electron beam, cooled to 100K). 

The decay of the monochromatic QW emission f r o m an Ino.1Gao.9N SQW 

was also investigated as shown i n Figure 6.8. The decay curve is wel l described 

by Equat ion 6.3 w i t h a 61 value of 2.65* 1 0 2 1 c m 2 . This is s imilar to the 

panchromatic 61 values and shows that there is no need to be concerned about 

the QW CL decaying faster than the overall CL emission. 
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6.5.2 Beam Degradation of LiAl0 2 

I n this section the degradation of the CL f r o m the LiAlC^ substrate 

discussed i n Section 6.4.2 is reported. 

Figure 6.9 shows the decay of the CL emission f r o m the LLAIO2 centred at 

3 4 0 ± 2 0 n m . This spectral range contains the major i ty of the CL intensi ty (as is 

detectable by the CL collection system) f r o m the LiAlC>2 (see Figure 6.5). Spectra 

taken after electron exposure revealed no evidence of peak shif t ing, only a decline 

i n intensity. 

1200 

100kV 
1000 4 120kV 

H 1 1 1 1 1 1 1 -

0 1e+20 2e+20 3e+20 4e+20 5e+20 6e+20 7e+20 8e+20 9e+20 1e+21 

Dose (eVcm2) 

Figure 6.9: CTEM degradation of LiAlC-2 CL at 340±20nm (cooled to IOOK). 

The decay curves i n Figure 6.9 are characterised by an in i t i a l rap id decay 

followed by a slower rate of decay after a dose of around 2.5><1020 e lect rons/cm 2 . 

The data was not well described by Equation 6.3. A better f i t was f o u n d us ing a 

logari thmic func t ion ; bu t since this does not relate to a physical model i t w i l l not 

be described fur ther . I t is also noted that sample d r i f t resul t ing f r o m the 

ins tabi l i ty of LiA102 under the electron beam presents a possibly large error. 

Further study into the behaviour of this important substrate material wou ld be of 

benefit. 
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6.6 Conclusions 
Calculations based upon single and mult iple scattering assumptions have 

been used to investigate the energy deposited i n a GaN TEM foi l by an electron 

beam of energy 80-120keV. It was then demonstrated that the energy deposition 

rate is h igh enough to allow an electron-hole plasma to fo rm. Evidence of this 

plasma was seen i n the GaN near band edge region w i t h CL emission 

characteristic of free exciton interactions as described i n Section 6 .4 .1 . 

C-plane GaN/In^Gai-ArN QW structures grown on sapphire and M-plane 

GaN epilayers grown on LiA102 were investigated. A broad CL emission band at 

3 3 0 n m was seen i n spectra taken f r o m cross-sectional c-plane GaN T E M foils and 

was identif ied as the sapphire F + centre peak. The F + centre consists of an 

oxygen vacancy which has trapped a single electron and is thought to be formed 

th rough electron beam damage. This peak was observed when the substrate was 

not directly i l luminated and is thought to be excited through secondary processes 

such as x-ray emission or fast secondary electrons. Spectra taken f r o m both the 

substrate and epilayer side of a p lan view TEM foi l showed the F + centre peak was 

absorbed by ~l |um of GaN. 

CL emission f r o m GaN/InxGai-JM epilayers was observed to degrade under 

i l lumina t ion f r o m 80-120keV electrons. At the electron dose levels investigated 

(up to 1 0 2 1 e / c m 2 ) the degradation process was shown to be consistent w i t h the 

in t roduct ion of non-radiative recombination centres. The rate of CL degradation 

was shown to be of a similar magnitude at beam energies of 80-120keV. 

Monochromatic CL emission f r o m an Ino.1Gao.9N SQW was shown to degrade at a 

similar rate to panchromatic CL. The lower STEM dose rate i n comparison to 

that of CTEM was demonstrated to degrade the CL f r o m GaN at a m u c h slower 

rate and is therefore recommended for in i t i a l specimen investigations and 

spectral acquis i t ion/ imaging before diff ract ion contrast imaging. 
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Chapter 

STEM-CL Imaging of 
Quantum Wells 

7.1 Introduction 
M o d e l s f o r a n d evidence o f l o c a l i s a t i o n of l u m i n e s c e n c e f r o m I n x G a i - x N 

Q W ' s are r ev iewed i n d e t a i l i n Sec t ion 3 .5 . A n u m b e r o f a u t h o r s [1 -3] a t t r i b u t e 

t h i s l o c a l i s a t i o n to a degree o f I n N - G a N segregat ion o c c u r r i n g w i t h i n t h e Q W s . 

C o n t r a r y to t h i s v i ew A l b r e c h t et al's S T E M - C L i m a g i n g [4] revea led n o ev idence o f 

i n h o m o g e n e i t y i n t he C L e m i s s i o n f r o m Ino.1Gao.9N QWs a l r eady s h o w n to e x h i b i t 

n a n o m e t e r scale i n d i u m c l u s t e r i n g , hence p r o v i d i n g evidence f o r a m o d e l w h e r e b y 

InxGai-xN o p t i c a l p rope r t i e s are governed b y a t o m i c s h o r t r ange order , r a t h e r t h a n 

n a n o m e t e r i n d i u m c l u s t e r i n g . 

I n t h i s c h a p t e r S T E M - C L images f r o m e l ec t ron t r a n s p a r e n t Ino.1Gao.9N Q W 

samp le s are p re sen ted . T h e e f fec t t h a t s p e c i m e n t h i c k n e s s w o u l d h a v e o n t h e 

c o n t r a s t seen i n C L images i s i n v e s t i g a t e d a n d a m o d e l i s deve loped t o p r e d i c t t h e 

expec t ed C L i n t e n s i t y f r o m a r e g i o n o f p a r t i c u l a r t h i c k n e s s . B y c o r r e l a t i n g t h e 

t r a n s m i t t e d i n t e n s i t y i n S T E M m o d e t o the s p e c i m e n t h i c k n e s s t h r o u g h t h e 

d y n a m i c a l t h e o r y o f e l ec t ron d i f f r a c t i o n , t he expec ted C L e m i s s i o n c a n be 

c o m p a r e d t o t h e observed C L e m i s s i o n . T h i s process a l l ows c o n t r a s t d u e to 

t h i c k n e s s to be e l i m i n a t e d l e a v i n g o n l y the c o n t r a s t d u e t o m a t e r i a l e f fec ts . 
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Panchromatic and monochromatic imaging, and line-scans, are utilised to 
investigate the CL emission from Ino.1Gao.9N SQWs. 

7.2 STEM-CL Imaging 
Results presented in this chapter are taken from cross-sectional TEM foils 

prepared from the same MOVPE-grown Ino.1Gao.9N SQW wafer (details in Table 

6.1). STEM-CL imaging of MQW samples showed similar contrast features to the 

SQW. However, there is an advantage to be gained by using a SQW over a MQW 

sample for the unambiguous interpretation of CL line scans, therefore SQW 

results have been used throughout this chapter for consistency. 

GaN sapphire mm 
InGaN quantum well 

epoxy 

Figure 7.1: Panchromatic STEM-CL image (lOOkVbeam, cooled to 100K). 

Figure 7.1 shows a panchromatic STEM-CL image of an Ino.1Gao.9N SQW as 

described above. A region of brighter contrast can be seen from the outermost 

surface of the GaN where the SQW is located. Monochromatic STEM-CL imaging 

shows this bright contrast to be due to emission at 410nm, in agreement with the 

emission wavelength of the SQW as determined by PL1. Closer inspection of 

Figure 7.1 shows that the bright CL emission from the SQW appears to be 

inhomogeneous on a sub-micron scale. In the following analysis the effect that 

foil thickness may have on this contrast is evaluated and discussed along with 

other factors which may affect the homogeneity of CL emission. 

1 PL measurements performed by P. Dawson, UMIST. 
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7.3 Thickness Dependence of STEM Signal: Model 
and Experiment. 

I n t h i s sec t ion a n e q u a t i o n f o r t r a n s m i t t e d e l ec t ron i n t e n s i t y ve r sus 

t h i c k n e s s i s w r i t t e n f o r the case o f S T E M i m a g i n g w i t h w e a k d i f f r a c t i o n c o n t r a s t . 

F i t t i n g t h i s e q u a t i o n to e x p e r i m e n t a l d a t a o b t a i n e d f r o m wedge s h a p e d samples 

e n a b l e d t h e t h i c k n e s s of a g iven p o i n t o n a s amp le to be eva lua t ed . 

T h e d y n a m i c a l t h e o r y o f e l ec t ron d i f f r a c t i o n [5] descr ibes w a v e f u n c t i o n s i n 

t h e c r y s t a l l a t t i ce as t w o B l o c h waves pe r iod i c w i t h t he l a t t i c e . B l o c h wave 1 is 

d e f i n e d as b e i n g loca l i s ed a t nodes b e t w e e n a t o m i c p o s i t i o n s a n d wave 2 is 

l oca l i s ed a t a t o m i c p o s i t i o n s a n d is t he r e fo re s t r o n g l y sca t te red . T h e i n t e r f e r e n c e 

o f these waves w i t h one a n o t h e r , see F i g u r e 7 .2 , gives r i se to t h i c k n e s s f r i n g e s . 

W h e n B l o c h wave 2 is de-selected i t appears to be e f fec t ive ly a b s o r b e d . T h e 

r e m a i n i n g B l o c h wave is less s t r o n g l y sca t t e red a n d f o r m s t h e i m a g e w h e n t h e 

c r y s t a l i s r e l a t i v e l y t h i c k . 

T h e f o l l o w i n g f o r m u l a e f o r t h e t r a n s m i t t e d i n t e n s i t y , T, a n d t h e r e f l e c t e d 

i n t e n s i t y , R, have been de r ived f o r t h e t w o b e a m case [6] : 

T = (l + 2w z)cosh 
2(1+ w z ) 

+ 2 W l + w sinh 
1 + W J l + w 2 

+ cos(2;r 4 
(7.1a) 

R = -
'M0Z 

2(1 + w z ) 

Mez Vl + w2 

cosh , - cos(2;r z) 
4 

(7.1b) 
g 

I n w h i c h ju = — 7 - , / / 0 = — - , w i s t he d e v i a t i o n f r o m the B r a g g c o n d i t i o n , z i s 

t h e s p e c i m e n t h i c k n e s s , £ i s t h e e x t i n c t i o n d i s t ance i n t h e m a t e r i a l , <f0 i s t h e 

m e a n a b s o r p t i o n d i s t ance a n d £ is t h e a n o m a l o u s a b s o r p t i o n d i s t ance . A t t h e 

r e f l e c t i n g p o s i t i o n (w = 0) t h e d i f f e r ence be tween t h e t w o a b s o r p t i o n c o e f f i c i e n t s 

i s a m a x i m u m a n d t h e e f fec t i s m o s t ex t r eme w h e n £ g = cf 0 , i .e. l e t t i n g t h e 

p a r a m e t e r (<^0/^g) = x = 1 . T h i s c o n d i t i o n i m p l i e s t h a t t h e a b s o r p t i v e p o w e r is 
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d i s t r i b u t e d i n t h e c r y s t a l l a t t i ce l i k e d e l t a f u n c t i o n s a t t he a t o m i c p o s i t i o n s . For 
e l ec t rons i t h a s o f t e n been a s s u m e d t h a t ^ g = ^ 0 a n d ( £ g / ^ ) = y = 0 . 1 i n 
c a l c u l a t i o n s o f d i f f r a c t i o n c o n t r a s t . 

1.0 
I 

0.9 

0.8 

0.7 
05 

Transmitted intensity Q>. 0.6 
Bragg-reflected intensity 

Q) 0) 

TO 

Z 0.3 

r 
0.1 

0.0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 7.2: Transmitted and diffracted electron intensities calculated as a 
function of thickness using Equation (7.1), (x = 0.9, y = 0.075). 

F i g u r e 7.2 shows t h e r e l a t i o n s h i p b e t w e e n t h e r e f l ec t ed a n d t r a n s m i t t e d 

waves as d e s c r i b e d b y E q u a t i o n 7 . 1 . T h e de tec ted S T E M i n t e n s i t y i n t h e 

m i c r o s c o p e is n o t m a d e u p p u r e l y of d i r ec t b e a m e lec t rons because o f t h e 

c o l l e c t i o n angle o f t h e de tec tor a n d d e v i a t i o n f r o m t h e t w o b e a m c o n d i t i o n . A 

f ac to r , r, i s n o w i n t r o d u c e d t o a l l o w f o r a f r a c t i o n o f t h e d i f f r a c t e d b e a m to be 

a d d e d t o t h e d i r e c t b e a m to s i m u l a t e r ea l i n t e n s i t i e s . T h e t o t a l i n t e n s i t y r e c o r d e d 

b y a n o n - a x i s S T E M detec tor i s t he r e fo re t h e t r a n s m i t t e d i n t e n s i t y , T, p l u s a 

f r a c t i o n , r, o f t h e r e f l ec t ed i n t e n s i t y , R: 

1= T+rR (7.2) 

I n t h i s w o r k a r e l a t i o n s h i p b e t w e e n t h e t h i c k n e s s a n d obse rved C L 

i n t e n s i t y w a s d e t e r m i n e d e x p e r i m e n t a l l y as f o l l o w s : 
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1. A u n i f o r m wedge w a s i d e n t i f i e d f r o m s m o o t h S T E M c o n t r a s t a n d 

p e r i o d i c e x t i n c t i o n c o n t o u r s . 

2 . T h e i n t e n s i t y versus p o s i t i o n o n t h e wedge was m e a s u r e d ( in p r a c t i c e 

t h e i n t e n s i t y f r o m s t r i p s o f e q u a l t h i c k n e s s w a s s u m m e d to r e d u c e 

s t a t i s t i c a l noise) . 

3. T h e i n t e n s i t y p r o f i l e a l o n g t h e wedge was f i t t e d to E q u a t i o n 7 .2 . 

4 . E a c h cycle of o s c i l l a t o r y c o n t r a s t co r r e sponds to a n e x t i n c t i o n d i s t ance . 

Hence t h e f i t t i n g a l lows t h e t h i c k n e s s of t he wedge t o be e s t i m a t e d a t each 

p o s i t i o n . 

I n p r a c t i c e t h e S T E M i m a g i n g r e q u i r e m e n t s f o r t h e f i t t i n g p r o c e d u r e s are 

c o n t r a d i c t o r y , (i) I t is des i rab le t o e l i m i n a t e d i f f r a c t i o n c o n t r a s t d u e t o de fec t s a n d 

b e n d i n g so as to i so la te t h i c k n e s s - o n l y d e p e n d e n t i n t e n s i t y changes . T h i s c a n be 

ach i eved b y m o n i t o r i n g c o m b i n e d i n t e n s i t i e s o f d i r e c t a n d d i f f r a c t e d waves ; (ii) to 

c a r r y o u t t h e f i t t i n g , o s c i l l a t o r y t h i c k n e s s f r i n g e s s h o u l d be p r e s e n t i n t h e 

i n t e n s i t y p r o f i l e b u t t h e c o n t r a s t i s w e a k e n e d i n t h e c o m b i n e d d i r e c t / d i f f r a c t e d 

b e a m images . 

F i g u r e 7.3(a) shows a S T E M i m a g e of t h e r eg ion selected f o r t h e above 

c a l i b r a t i o n p r o c e d u r e . F igu re 7.3(b) shows t h e c o r r e s p o n d i n g i n t e n s i t y p r o f i l e 

f i t t e d t o E q u a t i o n 7.2 u s i n g x = 0 .9 , y = 0 .075 a n d r= 0 .9 , i .e. 1 0 0 % o f t h e d i r e c t 

a n d 9 0 % o f t h e d i f f r a c t e d wave i n t e n s i t i e s . A l t h o u g h t h e o s c i l l a t o r y c o n t r a s t was 

w e a k t h e envelope p l u s r e s i d u a l f r i n g e c o n t r a s t c o n t a i n s e n o u g h i n f o r m a t i o n to 

m a k e a f i t . T h e t h i c k n e s s f o r each p o s i t i o n a l o n g the s amp le is b a s e d o n t h i s f i t . 

A s c a n be seen i n F i g u r e 7 .2 t h e r a t e of change o f i n t e n s i t y w i t h t h i c k n e s s 

decreases r a p i d l y w i t h i n c r e a s i n g t h i c k n e s s . I f t h e e r ro r i n t h e t h i c k n e s s i s b a s e d 

u p o n c o u n t i n g s t a t i s t i c s (VN) f r o m t h e S T E M i n t e n s i t y t h i s w i l l r e s u l t i n a l o w 

e r r o r f o r t h i n spec imens a n d h i g h e r e r r o r f o r t h i c k spec imens . 
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(a) 
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Figure 7.3: Transmitted electron intensity for a GaN wedge-shaped foil, (a) 120kV 
STEM image of GaN, (b) Calculated and recorded transmitted electron 
intensity along the GaN layer. 

7.4 Thickness Dependence of CL: Model 
A m o d e l of t h e C L i n t e n s i t y expec ted f r o m t h i n f o i l s i s n o w p r e s e n t e d t h a t 

t a k e s i n t o a c c o u n t t h e r e l a t i o n s h i p o f C L i n t e n s i t y to excess c a r r i e r dens i ty , 

s u r f a c e r e c o m b i n a t i o n a n d t h e gene ra t i on f u n c t i o n . 

C a t h o d o l u m i n e s c e n c e e m i s s i o n r e s u l t s f r o m t h e r a d i a t i v e r e c o m b i n a t i o n of 

excess ca r r i e r s b e t w e e n p a r t i c i p a t i n g states. T h e t o t a l C L e m i s s i o n , LCL, i s 
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l i n e a r l y d e p e n d e n t o n t h e excess ca r r i e r dens i ty , A n , as s h o w n i n E q u a t i o n 7 . 3 
[ 7 ] : 

J / M ^ V , 7 . 3 ) 
V Xrr 

w h e r e , x„ i s t h e r a d i a t i v e r e c o m b i n a t i o n l i f e t i m e , a n d / i s a c o r r e c t i o n 

p a r a m e t e r f o r losses i n t h e C L d e t e c t i o n process . ' / a c c o u n t s f o r t h e e f f i c i e n c y o f 

t h e p h o t o m u l t i p l i e r , t h e t r a n s m i s s i o n o f t h e m o n o c h r o m a t o r , r e f l e c t i o n a n d 

a b s o r p t i o n i n t h e s amp le (see C h a p t e r 5). Here i t h a s been a s s u m e d t h a t these 

t e r m s are c o n s t a n t across the a rea s canned . 

I n ve ry t h i n spec imens su r f ace r e c o m b i n a t i o n i s i m p o r t a n t i n C L e m i s s i o n 

[ 7 ] . T h e s u r f a c e r e c o m b i n a t i o n ra te c a n be d e s c r i b e d as: 

sAn = D 
dAn 

dz 
( 7 . 4 ) 

w h e r e s i s t h e s u r f a c e r e c o m b i n a t i o n ve loc i ty , a n d D i s the d i f f u s i o n coe f f i c i en t . 

T h e s o l u t i o n o f E q u a t i o n 7 . 4 b y v a n Roosbroeck [8 ] s h o w s the loss d u e to s u r f a c e 

r e c o m b i n a t i o n scales as e x p ( - z / L ) , w h e r e L i s t h e m i n o r i t y c a r r i e r d i f f u s i o n 

l e n g t h . T h i s i m p l i e s t h a t a l l t h e ca r r i e r s genera ted a t t h e s u r f a c e o f t h e 

s e m i c o n d u c t o r are l o s t to su r f ace r e c o m b i n a t i o n whe rea s t h i s r educes to 

a p p r o x i m a t e l y one t h i r d a t a d e p t h o f one d i f f u s i o n l e n g t h . 

Since a w i d e r ange o f t h i cknes se s needs to be c o n s i d e r e d i t i s a lso 

necessa ry t o m o d e l t h e gene ra t i on o f ca r r i e r s . I n t h i s ana lys i s t h e d e p t h 

d e p e n d e n t g e n e r a t i o n ra te has been e v a l u a t e d u s i n g t h e e m p i r i c a l dep th -dose 

f o r m u l a b y E v e r h a r t a n d H o f f [9] : 

g(u) = 0 . 6 0 + 6 . 2 1 u - 1 2 . 4 0 u 2 + 5.69u3 ( 7 . 5 ) 

w h e r e u = z / R e a n d z i s t h e d e p t h of t h e s ample , Re i s t h e r a n g e o f t h e 

e l e c t r o n p e n e t r a t i o n , i n t h i s case c a l c u l a t e d b y the K a n a y a a n d O k a y a m a m e t h o d 

[ 1 0 ] . 
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(a) 
Jjfc.' .;>.,'. 

A l O 
2 3 

• Experimental Results 

— Model for CL Intensity 

U 0.8 

S 0.7 

Figure 7.4: Panchromatic cathodoluminescence of the GaN wedge shown in Figure 
2(a). (a) CL image, (b) CL linescan of the intensity along the GaN layer 
comparing the analytical model (solid line) and the experimental data. 

The product of the loss due to surface recombination and the local 

generation rate was evaluated numerically at incremental thicknesses. In these 

calculations the minority carrier diffusion length was taken to be 0 . 5 L i m this 

being the median value from the literature [11-18]. The modelled CL emission for 

specimens of varying thickness was evaluated numerically and is plotted in 

Figure 7.4. 
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7.5 Thickness Dependence of CL: Comparison of 
Model with Experiment 

Figu re 7.4(b) s h o w s t h e c o m p a r i s o n o f t h e C L g e n e r a t i o n m o d e l w i t h t h e 

e x p e r i m e n t a l d a t a p l o t t e d as C L i n t e n s i t y , LCL V S Z/ % . T h e t h i c k n e s s w a s 

e s t i m a t e d u s i n g the d a t a i n F i g u r e 7.3(b) w h i l s t t h e e x p e r i m e n t a l va lues o f LCL 

were e x t r a c t e d f r o m F i g u r e 7.4(a) a long t h e wedge sec t ion i n d i c a t e d . A s f o r t h e 

S T E M i n t e n s i t i e s , t h e C L va lues u s e d were s u m m e d f o r each wedge t h i c k n e s s t o 

r educe noise . These va lues are p l o t t e d w i t h t h e i r assoc ia ted c o u n t i n g e r ro r s . 

H o r i z o n t a l e r r o r ba r s r ep re sen t t h e e s t i m a t e d e r r o r i n t h i c k n e s s as d e s c r i b e d i n 

Sec t ion 7 .3 . 

T h e genera l shapes of t h e e x p e r i m e n t a l a n d m o d e l l e d f o r m s o f LCL v e r s u s 

t h i c k n e s s are i n agreement . I n the n e x t sec t ion t h i s r e l a t i o n s h i p i s u s e d to 

n o r m a l i s e a C L i m a g e f o r t h i c k n e s s u s i n g t h e S T E M i n t e n s i t y as a r e fe rence 

s igna l . 

7.6 Panchromatic Imaging of ln0.iGa0.9N Quantum 

Wells 

7.6.1 Normalisation of Images 

T h e t e c h n i q u e o f u s i n g t h e S T E M i n t e n s i t y to i n f e r t he a b s o l u t e s a m p l e 

t h i c k n e s s a n d hence t h e expec ted C L h a s been u s e d to re-scale a n d i n t e r p r e t t h e 

l u m i n e s c e n c e c o n t r a s t f r o m a n Ino.1Gao.9N q u a n t u m w e l l . T h i s ha s b e e n done i n 

t w o d i r e c t i o n s , b o t h across t h e w e l l (Figure 7.5) a n d a l o n g t h e w e l l (F igure 7 .6) . 
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(b) 

Figure 7.5: 

(C) 

(d ) 
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Normalisation of the CL image intensity for thickness variation in a 
GaN/GaN/ALO;) structure, (a) STEM image of cross-sectional 
Ino.1Gao.9N quantum well in GaN, (b) panchromatic CL image of (a), (c) 
CL and STEM line scans across the sample, (d) calculated specimen 
thickness and CL intensity normalised using the thickness-intensity 
relation in Figure 7.3(b). 
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F i g u r e 7.5(a) shows a S T E M i m a g e of a cross sec t ion o f a n Ino.1Gao.9N 

q u a n t u m w e l l o n G a N , a n d F i g u r e 7.5(b) shows t h e c o r r e s p o n d i n g p a n c h r o m a t i c 

C L i m a g e . F i g u r e 7.5(c) shows l ine - scans o f t h e S T E M a n d C L i n t e n s i t y r u n n i n g 

across F igu re s 7.5(a) a n d 7.5(b) respec t ive ly . E a c h p o i n t o n t h e l i n e - s c a n s is t h e 

s u m o f each v e r t i c a l r o w o f p i x e l s i n t h e i r respect ive images . T h e C L l i n e - s c a n 

reaches a p e a k va lue a t t he p o s i t i o n o f t h e q u a n t u m w e l l a n d dec l ines d o w n 

t o w a r d s t h e i n t e r f a c e b e t w e e n t h e G a N a n d s a p p h i r e s u b s t r a t e . T h e S T E M l i n e -

s c a n s h o w s m a x i m u m t r a n s m i s s i o n w i t h t he b e a m o f f t h e s a m p l e w h i c h r a p i d l y 

decreases to a l o c a l m i n i m u m va lue ( r ep resen t ing i n c r e a s e d t h i c k n e s s ) o n t h e 

edge o f t h e G a N laye r before i n c r e a s i n g t o w a r d s t h e i n t e r f a c e b e t w e e n t h e G a N 

a n d s a p p h i r e . (The decreased t h i c k n e s s a t t h e G a N / s a p p h i r e i n t e r f a c e i s t h o u g h t 

t o r e s u l t f r o m p r e f e r e n t i a l t h i n n i n g o f t h e G a N n u c l e a t i o n layer ) . 

F i g u r e 7.5(d) s h o w s t h e c a l c u l a t e d t h i cknesses (see Sec t i on 7.3) ac ross t h e 

l aye r a n d t h e C L i n t e n s i t y va lues expec ted f o r these t h i c k n e s s e s f r o m t h e m o d e l 

i n Sec t i on 7 .4 , t he l a t t e r b e i n g n o r m a l i s e d b y d i v i d i n g the e x p e r i m e n t a l v a l u e b y 

t h e i n t e n s i t y expec ted f r o m c a l c u l a t i o n . D e v i a t i o n f r o m u n i t y i n d i c a t e s c o n t r a s t 

e f fec t s t h a t are n o t t h i c k n e s s a r t e f ac t s a t t h e p o s i t i o n of t h e q u a n t u m w e l l a n d to 

a lesser degree a t t he i n t e r f a c e b e t w e e n the G a N a n d t h e s a p p h i r e s u b s t r a t e . 

S ince t h e n o r m a l i s a t i o n process i s f o r G a N , e n h a n c e d n o r m a l i s e d l u m i n e s c e n c e 

f r o m t h e q u a n t u m w e l l (here b y a f a c t o r o f x l 2 ) i s expected . T h e n o r m a l i s a t i o n 

i m p l i c i t l y a s sumes t h a t t h e f o i l t h i c k n e s s a t t h e q u a n t u m w e l l p o s i t i o n is t h e 

s ame as i n t h e a d j a c e n t G a N . E r r o r s a r i s i n g f r o m d i f f r a c t i o n c o n t r a s t a t t h e 

q u a n t u m w e l l are expected to be neg l ig ib le s ince the w e l l w i d t h ( 2 . 5 n m ) is s m a l l 

c o m p a r e d to t h e p r o b e w i d t h (~10nm) . However , t h e i n c r e a s e d v a l u e o f t h e 

n o r m a l i s e d l u m i n e s c e n c e a t t h e i n t e r f a c e r e g i o n b e t w e e n t h e G a N a n d t h e 

s a p p h i r e c o u l d be a t t r i b u t e d to some p r o p e r t y of t h e n u c l e a t i o n l aye r i t se l f . B u t 

s ince t h e m o d e l f o r t h e C L i n t e n s i t y s l i g h t l y u n d e r e s t i m a t e s t h e obse rved C L 

e m i s s i o n f o r ve ry t h i n sec t ions (see F i g u r e 7.4(b)) t h i s s y s t e m a t i c e r r o r m a y 

a c c o u n t f o r t h e a p p a r e n t e n h a n c e d l u m i n e s c e n c e of t h i s layer . 
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Figure 7.6: Normalisation of the variation in C L emission along the length of a 
Ino.1Gao.9N quantum well, (a) STEM image along the length of the 
quantum well, (b) panchromatic C L image of (a), (c) C L and STEM line 
scans along sample, (d) calculated specimen thickness and C L 
intensity normalised using the thickness-intensity relation in Figure 
7.3(b). 
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A s i m i l a r n o r m a l i s a t i o n process was u s e d to assess t h e c o n t r a s t a l o n g t h e 

l e n g t h o f a q u a n t u m w e l l as s h o w n i n F i g u r e 7 .6 . W h i l e t h e S T E M i m a g e o f 

F i g u r e 7.6(a) shows some v a r i a t i o n i n t h i c k n e s s , t h e C L image (F igure 7.6(b)) 

s h o w s s t r o n g zones o f c o n t r a s t w i t h a l e n g t h scale o f ~ 0 . 7 | i m . I n o rde r to 

n o r m a l i s e t h e c o n t r a s t f r o m the Ino.1Gao.9N q u a n t u m w e l l , t h e t h i c k n e s s v a r i a t i o n 

o f t h e T E M f o i l a t t h e w e l l p o s i t i o n w a s e s t i m a t e d u s i n g t h e S T E M i m a g e i n t e n s i t y 

f r o m t h e G a N b a r r i e r . T h e i n f e r r e d G a N t h i c k n e s s v a r i a t i o n is s h o w n i n F i g u r e 

7.6(d) - t h e t h i c k n e s s increases f r o m t h e l e f t to t h e r i g h t o f t h e image . T h e r e s u l t 

o f n o r m a l i s i n g t h e C L l i n e scan i n F igu re 7.6(c) i s s h o w n i n F igu re 7 .6(d) . 

7.6.2. Discussion 

A p p l i c a t i o n o f t h e t e c h n i q u e developed f o r t h e n o r m a l i s a t i o n o f S T E M - C L 

images f o r t h e ef fec ts o f t h i c k n e s s ha s s h o w n t h a t c o n t r a s t obse rved i n Q W 

e m i s s i o n o n a scale o f ~0.7 |um is n o t sole ly a f u n c t i o n of t h i c k n e s s . E r r o r s i n t h e 

n o r m a l i s a t i o n m i g h t be expec ted to o c c u r d u e to u n c e r t a i n t i e s i n t h e t h i c k n e s s o f 

t h e f o i l as d e t e r m i n e d f r o m S T E M i n t e n s i t y a n d f r o m u n d e r e s t i m a t i o n o f t h e C L 

i n t e n s i t y b y t h e m o d e l f o r t h i n samples . B o t h c a n be seen i n F i g u r e 7 .4(b) . I n 

t h e a p p l i c a t i o n o f t h i s process to Ino.1Gao.9N Q W s i n G a N i t ha s been necessa ry to 

eva lua te t h e t h i c k n e s s o f t he G a N a n d to a s s u m e t h a t t h e f o i l i n t h e w e l l p o s i t i o n 

i s t h e same. 

Possible causes o f C L c o n t r a s t f r o m a u n i f o r m l y l u m i n e s c e n t s a m p l e are 

s u r f a c e c o n t a m i n a t i o n or a r t e fac t s o f s a m p l e p r e p a r a t i o n . A c o m m o n s u r f a c e 

c o n t a m i n a n t i s a c a r b o n - r i c h , p o l y m e r i s e d f i l m f o r m e d t h r o u g h t h e r a d i a t i o n 

d a m a g e o f a d s o r b e d h y d r o c a r b o n molecu le s o n t h e s p e c i m e n s u r f a c e [6 ] . 

I n s p e c t i o n o f F i g u r e 7 .1 shows t h a t t h e G a N l u m i n e s c e n c e appea r s u n i f o r m 

w h i l s t t h e Q W a t t h e epi layer ' s s u r f a c e e x h i b i t s i n h o m o g e n e o u s c o n t r a s t . I f i t is 

s u p p o s e d , t he re fo re , t h a t t he cause o f C L c o n t r a s t i s n o t c o n t a m i n a t i o n o f a 

u n i f o r m s a m p l e , t h e n i t i s poss ib le t h a t i t r e s u l t s f r o m a n o n - u n i f o r m s a m p l e . 

T h i s n o n - u n i f o r m i t y m a y t a k e the f o r m of l u m i n e s c e n c e ' ho t spots ' i n t h e m a t e r i a l 

w h i c h h a v e been selected i n the T E M f o i l . C o m p a r i s o n o f t h e e x p e r i m e n t a l a n d 

n o r m a l i s e d C L i n t e n s i t i e s (Figures 7.6(c) a n d (d)) gives some i n s i g h t i n t o t he 

d i s t r i b u t i o n o f these h o t spots i n t h e p l a n e o f t h e q u a n t u m w e l l : S ince the 

i n t e n s i t i e s o f t h e m a i n peaks i n t h e C L image are c o m p a r a b l e , e a c h m a y be 
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a s s u m e d to be d u e t o one h o t spo t c o n t a i n e d i n t h e t h i c k n e s s of t h e T E M f o i l . 

N o r m a l i s a t i o n o f t h e image f o r t h i c k n e s s e f fec t s emphas i ses t h e peaks o n t h e l e f t 

over t h e ones o n t h e r i g h t , s ince w h i l e b o t h r e p r e s e n t t he r e s u l t o f e x c i t a t i o n o f a 

s i m i l a r ' h o t spot ' , t h e ones o n t h e l e f t are e m b e d d e d i n a t h i n n e r p a r t o f t h e T E M 

f o i l . 

To i nves t iga te f u r t h e r t h e p h e n o m e n a o f n o n - u n i f o r m Q W l u m i n e s c e n c e 

m o n o c h r o m a t i c i m a g i n g a n d l i ne - scans have been u t i l i s e d i n t h e f o l l o w i n g 

s ec t i on . 

7.7 Monochromatic Analysis of ln0.iGa0.9N QWs 

7.7.1 Monochromatic Imaging 

M o n o c h r o m a t i c i m a g i n g a f f o r d s t h e p o s s i b i l i t y o f s p a t i a l l y r e s o l v i n g t h e 

l u m i n e s c e n t cen t res e m i t t i n g a t p a r t i c u l a r wave l eng ths . M o v i n g f r o m a r e g i m e of 

p a n c h r o m a t i c to m o n o c h r o m a t i c i m a g i n g r e s u l t s i n a m u c h lower c o u n t ra te ; t h e 

ava i l ab l e s i g n a l c a n be a d j u s t e d b y i n c r e a s i n g o r . dec reas ing t h e spec t r a l 

r e s o l u t i o n . For t h i s r ea son s l i g h t l y t h i c k e r sec t ions o f t h e T E M f o i l were 

i n v e s t i g a t e d . T h e i nc r ea sed t h i c k n e s s also r e s u l t e d i n a s m a l l e r dependence of 

t h e C L e m i s s i o n o n changes i n f o i l t h i c k n e s s , t h e r e f o r e t h e n o r m a l i s a t i o n process 

h a s n o t b e e n a p p l i e d to t h e images a n d l i ne - scans i n t h i s sec t ion . 

A n a d d i t i o n a l f a c t o r to a c c o u n t f o r i s i n t e g r a t i o n t i m e . D u r i n g s p e c t r a l 

a c q u i s i t i o n w i t h a r e s o l u t i o n o f 5 n m i n t e g r a t i o n t i m e s o f l - 5 s were t y p i c a l . T h e 

Link ISIS s o f t w a r e ha s a m a x i m u m i n t e g r a t i o n t i m e of 0 . 0 1 s e c o n d s / p i x e l f o r C L 

i m a g i n g - o p e r a t i o n a l l y a m a x i m u m i n t e g r a t i o n t i m e m u c h grea ter t h a n t h i s 

w o u l d be i m p r a c t i c a l as a 5 0 0 p i x e l square image t akes a p p r o x i m a t e l y 4 0 

m i n u t e s t o acqu i r e w i t h a 0 .01s i n t e g r a t i o n t i m e . To w o r k a r o u n d t h i s 

e x p e r i m e n t a l l i m i t a t i o n i t w a s necessary to set t h e m o n o c h r o m a t o r s l i t s a t 1 m m , 

c o r r e s p o n d i n g to 2 1 . 6 n m d i s p e r s i o n . 
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Figure 7.7: STEM-CL spectrum taken from an area centred on an Ino.1Gao.9N SQW. 
Monochromatic images of the same area are shown in b, c, and d. The 
image contrast has been inverted from the conventional sense for 
ease of viewing (black = CL intensity) and the images have been 
thresholded for clarity. 

Monochromatic images were recorded with the spectrometer centred on the 

peak QW emission wavelength of 410nm as shown in Figure 7.7(c). Images taken 

with centre wavelengths of 405 and 415nm are also shown. Attempts to record 

images with the spectrometer centred at ±10nm from the peak QW emission 

(QWx) were unsuccessful due to lack of signal. The images shown in Figure 7.7 

have been processed to remove noise, and the gain and contrast have been 

adjusted equally for each image. Intensity line-scans along the images are shown 

in Figure 7.8. Inspection of the micrographs in Figure 7.7 and the line-scans in 

Figure 7.8 highlights some regions where there is strong CL emission at all three 

wavelengths. The line scans taken at 405nm and 410nm have similar intensity, 

and while they have the same general shape there are slight differences between 

them. That taken at 415nm shows reduced intensity and further shape 

differences. 
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Figure 7.8: Intensity profiles along the monochromatic CL images of the QW 
shown in Figure 7.7 recorded at 405nm, 410nm and 415nm. 

To aid the interpretation of these results it is necessary briefly to discuss 

the effects that the resolution of the spectrometer had on the observations. 

405nm 415nm 
410nm 

Figure 7.9: Diagram showing the transmission range of the spectrometer with the 
different centre wavelengths selected for the images in Figure 7.7, 
QWx=410nm. 

As can be seen in Figure 7.9 all three monochromatic images in Figure 7.7 

have a contribution from Q W a . Hence only features common to all three 

monochromatic micrographs are unambiguously due to 410nm emission. The 

differences in fine detail in the intensity line scans may be attributed to localised 

Q W luminescence at non peak wavelengths. Furthermore, since Figures 7.7(b) 

and 7.7(d) differ, the luminescent features responsible for C L at Q W A ± 5 n m are 

distributed asymmetrically about the peak of the Q W emission. Having identified 

an asymmetrical distribution of luminescence about the Q W peak this 
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distribution will be further investigated by utilising monochromatic scans along 

the length of the QWs. 

7.7.2 Monochromatic Line-Scans 

It is possible to circumvent the software imposed maximum integration 

time of 0.01 seconds in STEM-CL imaging by using line-scans for which there is 

no preset limit on the integration time. In practice the risk of sample drift limits 

the length of time available for consecutive line scans to around 30 minutes. 

Allowing for six scans and 200 data points per scan results in an integration time 

of 1 second - two orders of magnitude above that available for monochromatic 

imaging. The downside of monochromatic line-scans is the problem of aligning 

the scan parallel to the QW. This was achieved by acquiring a panchromatic 

STEM-CL image of the area to be investigated and using the contrast from the 

QW to define the path of the line-scan. Calculations show that misalignment in 

the programmed path of the line-scan is likely to yield less than a lOnm variation 

in the relative position of the QW and the electron probe over a 2^xm scan, i.e. less 

than the image width. 

Figure 7.10 shows monochromatic line scans taken along the length of a 

QW with a spectral resolution of lOnm. The spectral separation of the line scans 

in Figure 7.10 has been increased from the 5nm used in Figure 7.7 to lOnm so 

that each scan is spectrally distinct from those adjacent. The line scan at 410nm 

is the most intense and exhibits fluctuations in intensity on a length scale of 

~200nm. The peak to peak variation is a maximum of 110 counts which is well 

above a V N counting error for the data. However, the line scan at 420nm 

exhibited a maximum peak to peak variation of 60 counts and the remaining 

scans had a typical peak to peak variation of 30 counts. These peak to peak 

variations are only slightly larger than the associated V N counting errors on the 

data, suggesting that the features seen in the line scans at 400nm and 430nm 

may be attributable to statistical noise. 
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Figure 7.10: Monochromatic line scans taken along the length of an Ino.1Gao.9N 

Inspection of the line shapes in Figure 7.10 shows no consistent 

correlation or anti-correlation between the QW line-scan and the scans at ±10nm 

or between the scans at ±10nm themselves. This experiment was performed a 

number of times with a similar lack of correlation evident in each case. Attempts 

to investigate line-scans at wavelengths 5nm either side of the QW emission were 

unsuccessful as the further reduction in monochromator slit width necessary to 

work with a 5nm spectral resolution resulted in too great a drop in count rate. 

Factors which could account for the differences in localised luminescence 

observed will now be discussed. 

7.7.3 Discussion 

It is now discussed whether the results support any particular mechanism 

for non-uniform QW luminescence. Ternary composition and well thickness are 

considered separately. 

To investigate the effect that fluctuation in the In content of the QW would 

have on emission wavelength, the data recorded by Martin et al [19] for CL peak 

energy E, in eV, versus In composition in InxGai^N/GaN epilayers (0<x<0.23) was 

used: 

SQW, QW*=410nm. 

E = [(3.398 ± 0.006)- (3.91 ± 0.05)x] (eV) (7.6) 
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Equation 7.6 gives the CL peak energy for In^Gai-xN epilayers, however for 

QWs the peak emission energy is also a function of well thickness. Despite this 

Equation 7.6 can be used to give the relative shift in emission resulting from a 

variation, 6x, in In content in a well of fixed width. Hence i t may be calculated 

that a decrease in the QW emission wavelength of 5nm would result from a 

variation in In content of 6x = 0.01 or approximately 10% for the samples 

investigated. 

Considering well thickness, data presented for Ino.1Gao.9N SQWs by 

Chichibu et al [20] shows a linear change of PL peak energy with QW thickness 

over the range 2.9eV (428nm) to 3.1eV (400nm). The gradient of this is 

0.05eV/nm. This demonstrates that a change in QW thickness of 0.75nm would 

be required to account for a 5nm shift in the peak QW emission from 410nm. 

There is no evidence that QW thickness fluctuations of this size exist in these 

specimens. However, the uniformity of PL peak wavelength from the wafers 

investigated is reported to be high indicating good QW integrity, but this could be 

explained by compensatory changes to both the well thickness and indium mole 

fraction. Quantum confinement in the direction of the electron beam is judged to 

be unlikely. 

Figure 7.11: Mechanisms for radiative transitions in an In rich region with (a) an 
electron beam scanning along a QW, and (b) an electron beam 
scanning parallel to a QW. 
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Figure 7.11(a) shows possible recombination paths for a scenario where 
the Q W contains In rich regions and the electron beam scans across such a 
region. As the electron beam approaches the In rich region it is able to capture 
some of the carriers, thereby causing emission at two principal wavelengths. If 
the electron beam directly excites the In rich region it would be necessary for all 
the states within the deeper well to be filled before carriers could 'spill over' into 
the rest of the Q W . It should also be considered what would happen if the beam 
were not exactly aligned with the Q W . Figure 7.11(b) shows a representation of 
the effect of the electron beam travelling parallel to the Q W , but generating 
carriers in the barrier (GaN) which then diffuse towards the Q W . If these carriers 
fall into the Q W they may behave in a similar manner to that described in Figure 
11 (a). If radiative recombination were indeed described by this model then we 
would expect to observe emission at both QWA and at wavelengths of lower energy 
when the electron beam was near to an In rich region. When an In rich region 
was directly excited we would expect to see strong emission at wavelengths of 
lower energy than QWA with a smaller level of emission from QWA. 

Inspection of Figures 7.8 and 7.10 reveals no systematic evidence of this 

type of behaviour. Low CL intensity and the necessity to disperse spectrally what 

signal there is results in a poor signal to noise ratio yields which make 

interpretation of the data difficult. However, the evidence would appear to 

support the conclusion that there is little evidence of regions of higher than 

average In content along the length of the QW. Fluctuations on a length scale of 

less than the lOnm probe size would not be detected in the STEM-CL apparatus 

used. 

7.8 Conclusions 
In this chapter a model was developed to predict the expected CL intensity 

from a region of particular thickness thus allowing CL images taken from 

electron-transparent wedge specimens to be corrected for thickness contrast 

artefacts. The foil thickness was estimated using the dynamical formulation of 

the relationship between the thickness and the transmitted electron intensity. 

For a given thickness the CL intensity was calculated using the Everhart-Hoff 

depth-dose function and also taking into account surface recombination losses. 
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Experimental CL images were normalised by dividing by the calculated CL value 

at each point. 

Application of this normalisation method to GaN buffer layers with 

Ino.1Gao.9N quantum wells revealed discontinuous luminescence characterised by 

bright regions on the scale of ~0.7(im. It is suggested that these regions of bright 

CL contrast are the result of 'hot spots' in the material which have been isolated 

in the TEM foil, rather than being a uniform property of the quantum wells. 

Monochromatic imaging and line scans were utilised to investigate the 

localised spectral properties of these hot spots. Low CL intensity made 

measuring CL emission within narrow wavelength bands subject to significant 

counting errors. No statistically significant contrast in CL was observed with a 

wavelength greater than lOnm above or below the peak of Q W emission, QWA. 

Regions with high CL intensity at QWA also exhibited high CL intensity at QWA 

±10nm. A variation in Q W emission of this magnitude may be accounted for by a 

variation of ±0.02 in the In mole fraction or a change in the Q W width of ±1.5nm. 

However, variation in In mole fraction or Q W width does not necessarily explain 

the variation in CL intensity along the Q W on the length scale of ~200nm seen in 

monochromatic line-scans, or of ~0.7um seen in monochromatic imaging. If the 

cause of the bright luminescence in these 200-700nm wide 'hot spots' were In 

clusters forming traps then an increase in luminescence at lower energy at the 

expense of emission at QWA may be expected. No evidence of this was found. In 

the next Chapter the effects of threading dislocations on the non-uniformity of 

Q W CL is investigated. 
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Chapter 

Extended Defects In 
Gallium Nitride 

8.1 Introduction 
The aims of this chapter are to use TEM-CL to investigate the effect of 

extended defects on the luminescent properties of InxGai-xN QWs and GaN 

epitaxial layers. Statistical analysis methods are used to investigate the 

distribution of extended defects in GaN epilayers. InxGai-;tN/GaN QW structures 

grown in the conventional [0001] (c-plane) direction, and GaN epitaxial layers 

grown in the more unusual [1-100] (M-plane) direction are investigated. M-plane 

GaN epilayers are of interest since this orientation is non-polar and offers the 

possibility of growing QWs free from the spontaneous polarization that is present 

in c-plane GaN [1]. 

In the first part of this chapter STEM-CL images of In xGai- xN/GaN SQWs 

are correlated with diffraction contrast TEM imaging to investigate the effects of 

threading dislocations on the non-uniformity of QW CL emission seen in Chapter 

7. The spatial statistical distribution of threading dislocations observed in a TEM 

foil is analysed in one dimension (ID) and the relationship between threading 

dislocations and the so-called V-defect or V-pit is discussed. A two dimensional 
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(2D) statistical analysis of V-pit distributions in In^Gai-xN/GaN MQWs is then 

presented. 

In the second part luminescence associated with basal plane stacking 

faults in M-plane GaN grown on Y~LiA102 is investigated using TEM-CL 

spectroscopy and line-scans. 

8.2 Statistical Methods Used in this Chapter 

8.2.1 Analysis of Dislocation Distributions in 1D 

A number of statistical methods have been reported for the analysis of one 

dimensional distributions [2]. However these are not necessarily directly 

applicable to the task of analysing the occurrence of threading dislocations in a 

TEM foil. This is because TEM foils are typically wedge shaped, so that there is 

greater probability of seeing a threading dislocation in projection in a thicker 

section of the wedge than a thinner section. This complicates the analysis as the 

occurrence of a threading dislocation in the thinnest section of the wedge should 

be statistically more heavily weighted than a dislocation in the thicker section. 

However, moving to thicker sections of the wedge brings problems of electron 

beam penetration and the risk of underestimating dislocation densities as some 

dislocations will be masked by others in the projection. With these problems in 

mind a weighted autocorrelation method has been created to assess whether 

there is any correlation between the threading dislocations observed. The 

analysis method has been coded in FORTRAN and is listed in Appendix A4. The 

data preparation necessary and subsequent analysis performed by the ID 

autocorrelation statistical analysis tool is listed below: 

1. A montage of TEM diffraction contrast images moving along the 

length of the epitaxial layer was produced. 

2. The position of each dislocation was recorded together with the 

approximate thickness of the layer at each position estimated 

from thickness fringes. 

3. The dislocation distribution was mapped on to a line of unit 

length. 

4. The thickness value associated with each dislocation was 

normalised so that the dislocation in the thinnest section of foil 
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had an associated value of 1 and the dislocation in the thickest 

an associated value of where the relative increase in 

thickness between the two dislocations. 

5. The thickness values associated with each dislocation were then 

inverted and multiplied by xmax. The dislocation in the thinnest 

section of the foil now has an associated thickness of xmax, and 

the dislocation in the thickest section has an associated 

thickness of 1. (This is the data format for the code listed in 

Appendix A4.) 

6. The unit length was then divided up into a number of bins, in 

effect the resolution of the analysis. 

7. The distance between each dislocation and every other 

dislocation, and also the product of the thickness values 

associated with each dislocation correlation was calculated. This 

product was added to the appropriate bin for the correlation 

distance. The whole process was repeated for every dislocation 

in the distribution. 

8. The data held within the bins was normalised by dividing by a 

distribution calculated using a large number of randomly 

generated data points. 

9. The normalised ID autocorrelation function was plotted as a 

histogram. 

A random distribution of dislocations would yield an autocorrelation 

function with a value of unity at all separations. Whilst a peak at a certain 

separation would indicate a tendency for the dislocations to be separated by that 

distance, ie ordering of some form. 
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(a) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Position Radius 

Figure 8.1: Synthetic 1-D array of clusters on a normalised field (a), ID 
correlation function analysis for the clustered data (b). 

Figure 8.1 shows the application of the ID autocorrelation function to 

synthetic clustered data. Spacing within each cluster is 0.001. A peak at a 

radius spacing of 0 is representative of the intra-cluster distances. The peaks at 

0.2, 0.4 and 0.6 are due to the separation of the clusters, whilst anti-clustering is 

represented by minima in the correlation function. The width of the peaks is a 

function of the width of the clusters themselves. 

8.2.2 Analysis of Dislocation Distributions in 2D 

In this work four methods of analysing 2D distributions quantitatively have 

been used. These methods have been successfully applied to the analysis of 

dislocation distributions in II-VI compounds previously [2-5]. The four tests are a 

nearest neighbour analysis, comparison with a Poisson distribution, radial 

autocorrelation function, and spatial autocorrelation function. All four tests were 

performed using FORTRAN routines these being listed in Appendix A. 

Nearest neighbour analysis. This test assesses the extent to which a 

distribution is clustered or ordered through the distribution parameter Rn, 

Rn=2dj- (8.1) 
v A 

where d is the mean distance between nearest neighbours, n is the number 

of points in the study area of size A [6]. A Rn value of unity indicates 
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randomness, Rn< 1 clustering, and Rn> 1 ordering. For a distribution containing a 

minimum of 500 points the effective thresholds for clustering and ordering are 

0.85 and 1.15 respectively [6]. Synthetic distributions of clustered, random and 

ordered data are show in Figure 8.2 together with Rn values. 

(b) (a) 

r \ \ X r J y X r 

(c) (d) 

Figure 8.2: Synthetic point distributions. Rn values for the clustered (a), random 
(b), hexagonal ordered (c), and honeycomb ordered (d) distributions are 
0.22, 0.99, 2.13, and 0.62 respectively. 

Comparison to a Poisson distribution: By mapping a point distribution 

onto a grid made up of sections of equal area a frequency histogram of the 

occupancy of each section can be constructed. If the original distribution is 

random this histogram will tend to a Poisson distribution. Comparison of 

experimental data to a Poisson distribution allows the degree of randomness to be 
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evaluated. If the mean number of points expected to occur in an interval is A, 

then the probability, P(r), that an integer number of points, r, occur in that 

interval is given by, 

f 
P(r)=exp(- / l )— (8.2) 

r\ 

A chi-squared test is used to compare the observed distribution with a 

Poisson distribution using the null hypothesis that the real and Poissonian data 

belong to the same distribution. 

Radial Autocorrelation Function. This function assesses radial 

correlations between points in a data set. The radial distribution is calculated by 

taking each point in turn and using it as a centre point for generating a radial 

density distribution and normalising by dividing by a curve generated for random 

data. The frequencies at each radial distance for random data are plotted on a 

histogram as shown in Figure 8.3(a). Randomly distributed data will give a radial 

distribution function of unity at all radii. This can be seen in Figure 8.3(b) where 

the radial correlation function is distributed closely around unity at radii values 

up to 1. At radii above 1 the radial correlation function deviates from unity. This 

is due to a smaller number of data points in the corners of the square which can 

participate in long range radial correlations. Peaks in the histogram indicate 

enhanced clustering at specific radii. This is demonstrated in Figure 8.3(c) where 

a random point distribution has been overlaid with clustered data. This 

clustering is manifested in a short range intercluster correlation at low radius 

and longer range intracluster correlations. A number of features can be seen in 

the autocorrelation function (Figure 8.3(d)) for the honeycomb distribution shown 

in Figure 8.2(d). The peak at low radius (<0.1) is due to short range intercluster 

correlations. The longer range correlations with periodicity of approximately 0.16 

are due to correlations between the hexagonal planes in the honeycomb 

distribution 
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Figure 8.3: (a) Radial correlation frequencies generated using 100,000 data 
points, (b) radial correlation function for a random distribution of 
5000 points, (c) radial correlation function for a random distribution 
overlaid with a second distribution containing clusters of points, and 
(d) radial correlation function for the honeycomb structure shown in 
Figure 8.2(d). 

Spatial Distribution Function. The spatial distribution function is used 

to study any spatial and directional relationship in a set of data points. As in all 

the other statistical tests used the data is initially mapped onto a unit grid. The 

distribution is calculated by taking each point in turn and subtracting its x,y 

coordinates from those of each and every other point in the distribution. Thus 

each point will yield n-1 translational vectors, where n is the number of points in 

the distribution. Therefore the total number of translational vectors will be n(n-

1). The unit square is divided up into a number of bins; a count is recorded in 

each bin for every translational vector that falls within the boundaries of that bin. 

This spatial distribution function is normalised by dividing by a function 

generated using random point positions and displayed as a contour map with x,y 

axes and greyscale colouring representing intensity. Due to excessively long 
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8.3 Samples Used in this Chapter 
T h e samples i nves t i ga t ed i n t h i s c h a p t e r a re l i s t e d i n Tab le 8 .1 b e l o w . 

Sample Epilayer structure Substrate Growth 
Method 

Summary Growth 
Details 

M-plane 
GaN 
epilayer 

5 0 0 n m epilayer Y-LiA10 2 (100) PAMBE (Paul-
Drude 
Inst i tu te , 
Berlin) 

750°C substrate 
temperature, 
constant ni t rogen 
f l u x (7, 81 

Ino.1Gao.9N 
SQW 

1pm GaN buffer 
layer, 2 .5nm 
InxGai-xN QW, 
15nm GaN capping 
layer. 
(x=0.10110.015) [9] 

c-plane 
sapphire 

MOVPE 
(Insti tute of 
Photonics, 
University of 
Strathclyde) 

20nm GaN 
nucleat ion layer at 
540°C, GaN buffer 
layer at 1140°C, 
InxGai-xN QW 
grown at 8 3 2 ° C 
f i o , 111 

STR94 1pm GaN buffer 
layer, 10 period 
MQW IruGai xN 
9.4nm super lattice 
period, 15nm GaN 
capping layer. 
(x=0.101±0.015) 

c-plane 
sapphire 

MOVPE 
(Institute of 
Photonics, 
University of 
Strathclyde) 

MQW growth 
temperature 8 3 2 ° C , 
GaN buffer layer 
grown at 1170°C 
[10] 

STR204 1pm GaN buffer 
layer, 10 period 
MQW InxGai-xN 
lO.Onm 
superlattice period, 
15nm GaN capping 
layer. (x=0.1) 

c-plane 
sapphire 

MOVPE 
(Institute of 
Photonics, 
University of 
Strathclyde) 

MQW growth 
temperature 8 6 0 ° C , 
GaN buffer layer 
grown at 1170°C 
[10] 

STR241 1pm GaN buffer 
layer, 14 period 
MQW IrixGai.xN, 
2.4nm well 
thickness, 7 .3nm 
barrier thickness , 
15nm GaN capping 
layer. ( ^0 .091) 

c-plane 
sapphire 

MOVPE 
(Institute of 
Photonics, 
University of 
Strathclyde) 

As STR 204 

Table 8.1: Specimen structure and growth details. 
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8.4 c-plane GaN 

8.4.1 Threading Dislocations in c-plane GaN 

W u r t z i t e G a N g r o w n o n the b a s a l p l a n e o f s a p p h i r e is c h a r a c t e r i s e d b y a 

la rge d e n s i t y o f t h r e a d i n g d i s loca t i ons o f t h e o rde r o f 1 0 1 0 c m - 2 . Edge , s c rew a n d 

m i x e d c h a r a c t e r t h r e a d i n g d i s loca t i ons have b e e n i d e n t i f i e d i n G a N e p i t a x i a l 

l ayers , w i t h edge d i s l o c a t i o n s b e i n g the d o m i n a n t t ype [12 ] . T h e edge d i s l o c a t i o n s 

are c h a r a c t e r i s e d w i t h B u r g e r s vec tors , b = l / 3 < 2 - l - 1 0 > , w i t h t h e l i n e d i r e c t i o n 

p e r p e n d i c u l a r to t he B u r g e r s vec tor i n t h e [0001] d i r e c t i o n . Pure sc rew 

d i s l o c a t i o n s are c h a r a c t e r i s e d b y a l i n e d i r e c t i o n a n d B u r g e r s vec to r a l o n g t h e 

[0001 ] d i r e c t i o n , w h i l s t m i x e d d i s l o c a t i o n have B u r g e r s vec tors g iven b y 

b = l / 3 < l l - 2 3 > . 

T h e o r i g i n o f these d i s loca t i ons m a y be be t t e r u n d e r s t o o d b y c o n s i d e r i n g 

t h e n u c l e a t i o n l aye r m e t h o d u s e d f o r e p i t a x i a l G a N g r o w t h . T h e u s e o f a G a N 

b u f f e r l aye r g r o w n a t l o w t e m p e r a t u r e ( ~ 5 0 0 ° C ) w a s d e m o n s t r a t e d b y N a k a m u r a 

as a t e c h n i q u e f o r i m p r o v i n g the q u a l i t y o f G a N f i l m s [13 ] , a n d is r o u t i n e l y u s e d 

i n t h e g r o w t h of G a N e p i t a x i a l l ayers [14 ] . T h e n u c l e a t i o n l ayer i s c o m p o s e d of 

c u b i c , h e x a g o n a l a n d a m o r p h o u s G a N [15 , 16] . A k a s a k i et a l [17] p r o p o s e d a 

n u c l e a t i o n m e c h a n i s m w h e r e b y t h e n u c l e a t i o n l aye r c rys ta l l i zes i n t o c o l u m n a r 

c ry s t a l s d u r i n g a n n e a l i n g a t ~ 1 0 0 0 ° C . W h e n G a N g r o w t h w a s t h e n r e s u m e d a t 

t h e h i g h e r t e m p e r a t u r e G a N i s l a n d s f o r m e d o n t o p of t h e c rys t a l s i n t h e b u f f e r 

layer . These i s l a n d s w o u l d l a t e r a l l y ove rg row the n u c l e a t i o n l aye r f o r m i n g 

r eg ions o f h i g h q u a l i t y G a N of size 5 0 n m to l | u m . D i f f e r e n c e s i n o r i e n t a t i o n of 

these i s l a n d s as t h e y coalesced w o u l d generate t h r e a d i n g d i s l o c a t i o n s . T h i s i s 

s h o w n i n F i g u r e 8.5(a) w h e r e r o t a t i o n a b o u t t h e [0001] d i r e c t i o n r e s u l t s i n t i l t 

b o u n d a r i e s a n d (b) w h e r e r o t a t i o n a b o u t [uvtO] r e s u l t s i n t w i s t b o u n d a r i e s [ 1 8 ] . 
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a 7 s 

\ / / 
Figure 8.5: GaN columnar structure model based upon island growth on a low 

temperature nucleation layer. Variations in the orientation of the 
crystals can occur due to (a) tilt and (b) twist. 

G a N b a s e d l i g h t e m i t t i n g s t r u c t u r e s have been s h o w n to have q u a n t u m 

e f f i c i enc ie s as h i g h as 4 % desp i te d i s l o c a t i o n dens i t i e s o f t h e o rde r o f 1 0 1 0 c m - 2 

[19 , 2 0 ] . Ev idence d e m o n s t r a t i n g t h a t d i s l o c a t i o n s ac t as n o n r a d i a t i v e 

r e c o m b i n a t i o n cent res [21-25] s h o w s t h a t a n u n d e r s t a n d i n g o f t h e f o r m a t i o n 

m e c h a n i s m o f d i s l o c a t i o n s a n d t h e i r ro l e as n o n r a d i a t i v e r e c o m b i n a t i o n cen t res i s 

i m p o r t a n t f o r t h e d e v e l o p m e n t o f h i g h e r p o w e r G a N b a s e d devices a n d laser 

d iodes . T E M - C L m e a s u r e m e n t s p e r f o r m e d b y A l b r e c h t et al [25] s h o w e d t h a t 

d i s l o c a t i o n s ( b = l / 3 < l l - 2 0 > ) i n t r o d u c e d i n t o G a N s ingle c rys t a l s b y i n d e n t a t i o n 

ac t as n o n r a d i a t i v e r e c o m b i n a t i o n cent res . C h e r n s et al [24] s h o w e d t h a t 

r e d u c e d C L f r o m a n In*Ga i - x N S Q W w a s co r r e l a t ed to r eg ions a s soc ia t ed w i t h 

t h r e a d i n g edge d i s l o c a t i o n s . 

V - s h a p e d su r f ace p i t s were i d e n t i f i e d i n G a N [21] a n d I n ^ G a i - x N / G a N Q W 

s t r u c t u r e s [23 , 24] a n d s h o w n to be d i r e c t l y co r r e l a t ed to r eg ions o f l o w C L 

c o n t r a s t . T h e su r f ace p i t s were s h o w n to be assoc ia ted w i t h s c rew a n d m i x e d 

d i s l o c a t i o n s . However , t h e d a r k C L c o n t r a s t observed f r o m the p i t s i n t h e I n x G a i -

XN Q W s t r u c t u r e [23] c o u l d be a t t r i b u t e d to t h e absence o f t h e Q W f r o m t h e p i t 

f ace t s r a t h e r t h a n f r o m t h e d i s l o c a t i o n a t t h e base of t h e p i t . T E M images o f V -

p i t s obse rved i n a n InxGai-JM M Q W s a m p l e are s h o w n i n F igu re 8.6. 
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I 
lOOnm 

(b) 

Figure 8.6: Cross-sectional TEM micrographs of c-plane InGaN/GaN MQW 
structure, (a) a threading dislocation can be seen crossing the MQW, 
g=[0002], (b) MQWs in cross section. V-shaped region indicated may 
be due to the partial intersection of a V-pit, g=[0002]. 

The V - p i t is r o u t i n e l y observed i n I n x G a i - x N / G a N Q W s t r u c t u r e s a n d is also 

k n o w n as a n i n v e r t e d h e x a g o n a l p y r a m i d or h e x a g o n a l p i n h o l e [ 2 6 ] . F i g u r e 8.7 

s h o w s the s t r u c t u r e o f the V - p i t s w i t h a h e x a h e d r o n cone w i t h t h e s ix s idewa l l s 

o n < 1 - 1 0 1 > p lanes a n d a d i s l o c a t i o n c o n n e c t e d to t h e ver tex o f t h e cone. I n 

c ross - sec t ion t h i s s t r u c t u r e appears as a n o p e n V shape. 

(a) <1 -101 > planes 
b ( 0 0 0 1 

\ t1 r r / 

(0001) surface 

M O W 
V ,1 I * 

, 1 I I 

TD 
T D 

Figure 8.7: Diagramatic representation of the V-pit formed from a dislocation 
terminating at a hexahedron cone in the (0001) surface, (b) cross-
sectional view of a V-pit forming at an InGaN/GaN interface. 

C h e n et al [27] r e p o r t t h a t i n M O V P E g r o w n m a t e r i a l t h e V - p i t c a n be 

assoc ia ted w i t h t h r e a d i n g d i s l o c a t i o n s of screw, edge a n d m i x e d cha rac t e r . A 

s i m i l a r f i n d i n g is r e p o r t e d w i t h a n inc reased n u c l e a t i o n p r o b a b i l i t y a t m i x e d 

d i s l o c a t i o n s i n c o m p a r i s o n w i t h p u r e edge d i s l o c a t i o n s [28 ] . T h e o p e n s u r f a c e 

(0001) w i d t h o f t h e V - p i t increases w i t h t h e d e p t h o f t h e p i t . For e x a m p l e , t h e 

average size o f p i t w a s r e p o r t e d to increase f r o m ~ 1 0 n m o n t h e su r f ace o f a t h r ee 

Q W sample t o ~ 2 5 n m o n t h e su r f ace o f f ive Q W s [27] . N o r t h r u p a n d Neugebaue r 

[26] p ropose t h a t I n acts as a d i f f e r e n t i a l s u r f a c t a n t , r e d u c i n g t h e ene rgy o f t h e 
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(10-11) s u r f a c e re la t ive t o t h e (0001) su r f ace , t h u s p r o m o t i n g t h e f o r m a t i o n o f 
(10-11) f a ce t ed d i s l o c a t i o n p i t s o n t h e (0001) su r f ace . A l t e r n a t i v e m e t h o d s o f V -
p i t f o r m a t i o n i n c l u d e those b y L i l i e n t a l - W e b e r et al [29] w h o p ropose t h a t t h e p i t s 
are i n i t i a t e d b y a n i m p u r i t y c o m p l e x s u c h as oxygen a n d s i l i c o n or m o r e r e c e n t l y 
b y M i r a g l i a et al [30] w h o propose t h a t p i t t i n g i s c a u s e d b y d i s l o c a t i o n s 
i n t e r f e r i n g w i t h s tep f l o w , p a r t i c u l a r l y a t l o w t e m p e r a t u r e s . 

8.4.2 Effect of Threading Dislocations on QW Luminescence 

T h e e f fec t o f t he t h r e a d i n g d i s l o c a t i o n s o n t h e C L f r o m t h e I n o . 1 G a o . 9 N S Q W 

d e s c r i b e d i n T a b l e 8 .1 h a s been i n v e s t i g a t e d b y r e c o r d i n g a p a n c h r o m a t i c S T E M -

C L i m a g e f r o m a c ross - sec t iona l T E M f o i l a n d t h e n c r e a t i n g a m o n t a g e o f C T E M 

images a l o n g t h e e p i t a x i a l layer . T h e p o s i t i o n o f a l l d i s l o c a t i o n s p a s s i n g t h r o u g h 

t h e Q W w a s n o t e d a n d these were a l i g n e d w i t h a C L i n t e n s i t y l i n e s can t a k e n 

a l o n g t h e l e n g t h o f t h e S T E M - C L image . T h i s c a n be seen i n F i g u r e 8.8 w h e r e (a) 

a n d (b) are b r i g h t f i e l d ( B = [ l l - 2 0 ] ) T E M images , (c) i s a b r i g h t f i e l d ( B = [ l l - 2 0 ] ) 

C T E M i m a g e m o n t a g e , (d) i s a p a n c h r o m a t i c S T E M - C L image , a n d (e) s h o w s a C L 

i n t e n s i t y l i n e s can a l o n g t h e l e n g t h o f t h e Q W w i t h t h e p o s i t i o n o f a l l d i s l o c a t i o n s 

c r o s s i n g t h e Q W m a r k e d . 

I n t he C T E M m o n t a g e i n F i g u r e 8.8(c) a b r i g h t r e g i o n b e t w e e n t h e G a N 

ep i l aye r a n d t h e s a p p h i r e s u b s t r a t e c a n be seen. T h i s e f fec t i s t h o u g h t to be d u e 

to p r e f e r e n t i a l t h i n n i n g o f t h e l o w t e m p e r a t u r e G a N n u c l e a t i o n l aye r d u r i n g A r + 

m i l l i n g . T h i c k n e s s f r i n g e s c a n be seen i n t h e t h i n n e r sec t ions o f t h e wedge 

( t o w a r d s t h e l e f t o f t h e image) . These have been u s e d t o e s t i m a t e t h e r e l a t ive 

t h i c k n e s s e s of d i f f e r e n t sec t ions o f t h e wedge f o r t h e ana ly s i s i n Sec t i on 8 .4 .3 . 

T h e S T E M - C L i m a g e seen i n F i g u r e 8.8(d) was r e c o r d e d i n p a n c h r o m a t i c 

m o d e . T h e l u m i n e s c e n c e f r o m t h e G a N epi layer increases u n i f o r m l y i n b r i g h t n e s s 

f r o m l e f t to r i g h t as t h e t h i c k n e s s o f t he wedge increases . However , t he 

l u m i n e s c e n c e f r o m t h e Q W var ies i n i n t e n s i t y i n a n o n - u n i f o r m m a n n e r . T h e 

necess i ty o f u s i n g t h e t h i n n e s t p a r t o f t h e f o i l f o r ana lys i s m e a n t t h a t 

m o n o c h r o m a t i c i m a g i n g was n o t poss ib le due to the weaknes s o f t h e s i g n a l ; t h i s 

w a s d i s c u s s e d i n greater d e t a i l i n Sec t ion 7 . 7 . 1 . T h e C L i n t e n s i t y l i n e - s c a n was 

t a k e n b y se lec t ing a l o n g , t h i n sec t ion of F i g u r e 8.8(d) c o n t a i n i n g t h e Q W a n d 

v e r t i c a l l y i n t e g r a t i n g t h e r e s u l t a n t b i t m a p . T h e overa l l shape o f t h e l i n e - s c a n 

(F igure 8.8e) i s a n i n c r e a s i n g t r e n d as t h e t h i c k n e s s o f t h e f o i l inc reases . As 
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d e s c r i b e d i n Sec t ion 7 .4 t h e C L increases s u p e r - l i n e a r l y w i t h i n c r e a s i n g t h i c k n e s s 
d u e t o dec reas ing losses to s u r f a c e r e c o m b i n a t i o n as a pe rcen tage o f t h e t o t a l . 

(a) 

( c ) 

(d) 

( e ) 900 

c 
CD 

800 -

700 

O 600 
c co 
Q-

500 

400 

300nm 
300nm 

sapphire 
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InGaN SQW 

sapphire 
GaN 
InGaN SQW 

Panchromatic C L 
Threading Dislocation 

10 15 

Position (|jm) 

20 25 

Figure 8.8: (a), (b) Bright field (B=[ 11-20]) TEM images, (c) montage of TEM 
images, B=[l 1-20], (d) panchromatic STEM-CL image of the area in (c), 
(e) intensity line-scan of QW luminescence and dislocation positions. 

T h r e e reg ions have b e e n h i g h l i g h t e d i n F i g u r e 8.8(e). Regions 1 a n d 2 

c o n t a i n o n l y one or t w o d i s l o c a t i o n s w i t h i n a n a p p r o x i m a t e l y l u m l e n g t h o f t h e 

Q W . I n s p e c t i o n o f t h e C L l i n e - s c a n i n these r eg ions s h o w s t h e C L reaches l o c a l 

m a x i m a a t these p o s i t i o n s . Region 3 c o n t a i n s a h i g h d e n s i t y o f d i s l o c a t i o n s 

w h i c h appea r m a r g i n a l l y t o supp re s s t h e assoc ia ted C L . H o w e v e r w i t h t h e 

i n c r e a s i n g t r e n d i n C L i n t e n s i t y w i t h d i s t ance a l o n g t h e l aye r i n m i n d t h e 

s u p p r e s s i o n o f t h e C L i n t e n s i t y is m o r e m a r k e d t h a n i t appea r s . D i s l o c a t i o n 
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q u e n c h i n g o f Q W l u m i n e s c e n c e is cons i s t en t w i t h r e p o r t s [24 , 25] t h a t t h r e a d i n g 
d i s l o c a t i o n s ac t as n o n - r a d i a t i v e r e c o m b i n a t i o n cen t res . 

I n s p e c t i o n o f t h e d i s l o c a t i o n d i s t r i b u t i o n s h o w n i n F i g u r e 8.8(e) s h o w s t h e 

d i s l o c a t i o n s t o appea r s l i g h t l y c l u s t e r e d a n d a n t i - c l u s t e r e d o n a l e n g t h scale o f 

a p p r o x i m a t e l y 2 p m . To inves t iga te t h i s f u r t h e r a s t a t i s t i c a l a n a l y s i s o f t h e 

d i s t r i b u t i o n i n F i g u r e 8.8(e) a n d those o b t a i n e d f r o m s i m i l a r m o n t a g e s is n o w 

c o n s i d e r e d . 

8.4.3 Analysis of Dislocation Distributions 

M o n t a g e s o f d i f f r a c t i o n c o n t r a s t C T E M images r u n n i n g a l o n g t h e l e n g t h o f 

e p i t a x i a l GaN/Ino. iGao.9N S Q W fo i l s were t a k e n f o r t w o samples p r e p a r e d f r o m t h e 

s ame w a f e r . U n l i k e t h e ana lys i s i n Sec t ion 8 .4 .2 a d i s l o c a t i o n w a s logged i f i t 

a p p e a r e d a n y w h e r e i n t h e epi layer ' s t h i c k n e s s , n o t j u s t w h e n i t i m p i n g e d o n t h e 

Q W . T h e d i s l o c a t i o n d i s t r i b u t i o n s were a n a l y s e d u s i n g t h e I D a u t o c o r r e l a t i o n 

f u n c t i o n d e s c r i b e d i n sec t ion 8 .2 .1 a n d are s h o w n i n F i g u r e 8.9. 

TO 
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Figure 8.9: Correlation function analysis of two linear dislocation distributions 
(series one and two) taken from Ino.1Gao.9N/GaN SQWs. 

T h e I D a u t o c o r r e l a t i o n f u n c t i o n s are s i m i l a r i n shape s h o w i n g s m a l l 

d e v i a t i o n s a b o u t u n i t y a t r a d i i u p to 0 .7 . B e y o n d t h i s t h e y dec l ine t o a r o u n d 0 .5 

a t a r a d i u s o f 0 .8 a n d the re i s cons ide rab le sca t te r as t h e y a p p r o a c h a r a d i u s o f 

1. T h i s i s t h o u g h t to be d u e to t he re b e i n g a s m a l l e r n u m b e r of d a t a p o i n t s 
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w h i c h are s epa ra t ed b y t h e l a rge r r a d i i hence g i v i n g grea ter s t a t i s t i c a l no ise ; t h i s 

i s seen also i n F i g u r e 8.3(b). T h e dec l ine a t 0 .8 i n d i c a t e s a n a n t i - c o r r e l a t i o n a t 

t h i s r a d i u s w h i c h co r r e sponds to a s e p a r a t i o n o f 1 5 u m . P h y s i c a l l y t h i s w o u l d 

i n d i c a t e a s m a l l e r t h a n expec ted n u m b e r o f d i s l o c a t i o n s s epa ra t ed b y t h i s 

d i s t ance . However , t h i s f i n d i n g s h o u l d be v i e w e d w i t h c a u t i o n as t h e n u m b e r o f 

d a t a p o i n t s a n a l y s e d (series one, 8 2 p o i n t s , a n d series t w o , 9 4 po in t s ) i s ve ry l o w . 

O r d i n a r i l y 5 0 0 p o i n t s o r m o r e are r e c o m m e n d e d f o r t h e a u t o c o r r e l a t i o n ana lys i s . 

I n t h i s ana lys i s , however , i t i s n o t poss ib le to increase t h e n u m b e r o f d a t a p o i n t s 

as t h e d a t a c o l l e c t i o n i s l i m i t e d b y t h e p e n e t r a t i o n p o w e r o f t h e T E M b e a m a n d 

d i f f i c u l t i e s i n r e s o l v i n g i n d i v i d u a l d i s loca t i ons i n t h i c k e r sec t ions o f a T E M f o i l 

d u e t o t h e p r o j e c t i o n o f a la rge d e n s i t y o f d i s l o c a t i o n s o n t o a p l a n e . 

8.4.4 Discussion 

T h e I D c o r r e l a t i o n f u n c t i o n s h o w n i n F i g u r e 8.9 s h o w s the re i s n o s t r o n g 

c l u s t e r i n g o f d i s l o c a t i o n s i n t h e d i s t r i b u t i o n s ana lysed . T h i s i s i n c o n t r a d i c t i o n t o 

o the r s t ud i e s [18] w h e r e d i s l o c a t i o n c lu s t e r s w i t h a s e p a r a t i o n o f 0 . 3 u m were 

obse rved a n d a t t r i b u t e d to t h e m i s a l i g n m e n t o f G a N c ry s t a l l i t e s a t t h e n u c l e a t i o n 

l a y e r / b u f f e r l aye r i n t e r f a c e . However , t h e s m a l l n u m b e r of d i s l o c a t i o n s i n t h e 

d i s t r i b u t i o n s a n a l y s e d casts d o u b t o n t h e s t a t i s t i c a l s i g n i f i c a n c e o f t h e tes t . I n 

t h e n e x t s ec t i on l a rge r n u m b e r s of d i s loca t i ons are i n v e s t i g a t e d b y e x t e n d i n g t h e 

ana ly s i s to t h e s u r f a c e o f a n I n ^ G a i x N / G a N Q W s t r u c t u r e t h r o u g h t h e 

i n v e s t i g a t i o n o f V - p i t s as s econda ry evidence f o r t h e presence o f d i s l o c a t i o n s . 

8.4.5 Analysis of V-Pit Distribution 

A F M a n d S E M are e f fec t ive , n o n de s t ruc t i ve , too l s f o r m a p p i n g t h e s u r f a c e 

m o r p h o l o g y o f m a t e r i a l s . As desc r ibed i n sec t ion 8 .4 .1 t h e s t r u c t u r e o f a V - p i t i s 

a n o p e n h e x a g o n a l cone w i t h a t h r e a d i n g d i s l o c a t i o n a t t h e ve r tex . T h e r e f o r e b y 

m a p p i n g t h e o c c u r r e n c e of V - p i t s i t s h o u l d be poss ib le to i nves t iga t e t h e 

c o r r e l a t i o n s b e t w e e n t h r e a d i n g d i s loca t ions o n r e l a t i ve ly large l e n g t h scales. 

However , i t i s w o r t h n o t i n g a t t h i s p o i n t t h a t w h i l s t V - p i t s have been s h o w n to 

a l w a y s have a t h r e a d i n g d i s l o c a t i o n a t t he ver tex , a l l t h r e a d i n g d i s l o c a t i o n s do 

n o t t e r m i n a t e i n a V - p i t [27] . 
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W a f e r s o f 10 a n d 14 p e r i o d In^Gai-^N M Q W s (see T a b l e 8 .1 f o r g r o w t h 

de ta i l s ) were i nves t iga t ed u s i n g A F M a n d t h e 10 p e r i o d M Q W w a s also 

i n v e s t i g a t e d u s i n g S E M . Prev ious s tud ie s o f these samples have revea led s u r f a c e 

p i t t i n g w i t h a s i m i l a r s t r u c t u r e to V - p i t s [31 ] . T h e A F M m a p p i n g w a s p e r f o r m e d 

b y C h a o w a n g L i u 1 u s i n g a Digital Instruments Multimode Nanoscope Ilia o p e r a t i n g 

i n t a p p i n g m o d e w i t h a n e t c h e d s i l i c o n t i p . T h e S E M w a s p e r f o r m e d u s i n g a 

JEOL JSM-IC848 S E M i n s econda ry e l ec t ron m o d e u s i n g GW Printerface f o r image 

a c q u i s i t i o n . T h e d a t a was co l l ec ted i n t h e f o l l o w i n g m a n n e r : 

1. O v e r l a p p i n g S E M images were t a k e n w i t h a m a g n i f i c a t i o n h i g h 

e n o u g h to resolve i n d i v i d u a l s u r f a c e p i t s . 

2 . T h e i n d i v i d u a l f r a m e s were u s e d to create a m o n t a g e o f a la rge 

a rea of t h e su r f ace . 

3. T h e p i t p o s i t i o n s were m a r k e d o n a n o v e r l a i d aceta te sheet . 

4 . T h e acetate w a s s c a n n e d as a 1-bit b i t m a p a n d t h e p i t p o s i t i o n s 

were logged u s i n g the Visual Basic r o u t i n e g iven i n A p p e n d i x A 5 . 

5. The p i t p o s i t i o n p a t t e r n w a s b r o k e n d o w n i n t o a n u m b e r of 

sma l l e r r eg ions c o n t a i n i n g 5 0 0 - 1 0 0 0 p i t s . 

6. E a c h r e g i o n w a s m a p p e d o n t o a u n i t g r i d f o r ana ly s i s u s i n g t h e 

s t a t i s t i c a l t es t s de sc r ibed i n sec t ion 8 .2 .2 . 

F igu re s 8 .10 to 8 .13 s h o w t h e r e s u l t s of t h e s t a t i s t i c a l tes ts f o r p i t 

d i s t r i b u t i o n s t a k e n u s i n g A F M f r o m t w o 10 p e r i o d M Q W samples , u s i n g S E M 

f r o m one o f t h e 10 p e r i o d M Q W samples , a n d A F M f r o m a 14 p e r i o d M Q W 

s a m p l e . F o r each s a m p l e t h e o r i g i n a l A F M or S E M i m a g e i s s h o w n toge the r w i t h 

t h e p i t d i s t r i b u t i o n m a p p e d o n to a u n i t g r i d . The r a d i a l a u t o c o r r e l a t i o n f u n c t i o n , 

t h e s p a t i a l c o r r e l a t i o n f u n c t i o n , a n d c o m p a r i s o n t o a Po isson d i s t r i b u t i o n are 

s h o w n toge ther w i t h s u m m a r y s t a t i s t i c s of t h e da ta . 

1 C.liu@strath.ac.uk, Inst i tute of Photonics, 106 Wolfson Centre, 106 Rottenrow, 

Glasgow, G4 0NW 
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STR94 -10 period MQW grown at 832oC 
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Figure 8.10: Summary of statistical tests applied to the 10 period Ino.1Gao.9N/GaN 
MQW STR94. (a) AFM image courtesy of Chaowang Liu, Institute of 
Photonics, University of Strathclyde, (b) Point distribution mapped on 
to a unit square, (c) spatial correlation function, (d) radial correlation 
function, (e) comparison to Poisson distribution, (f) summary of 
numerical data. 
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STR204 -10 period MQW grown at 860OC 

(a) AFM Image 
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Figure 8.11: Summary of statistical tests applied to the 10 period Ino.1Gao.9N/GaN 
MQW STR204. (a) AFM image courtesy of Chaowang Liu, Institute of 
Photonics, University of Strathclyde, (b) Point distribution mapped on 
to a unit square, (c) spatial correlation function, (d) radial correlation 
function, (e) comparison to Poisson distribution, (f) summary of 
numerical data. 

130 

http://Ino.1Gao.9N/GaN


Chapter 8 -Extended Defects 

STR204 -10 period MQW grown at 860<>C 

(a) SEM Image) 
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Figure 8.12: Summary of statistical tests applied to the 10 period Ino.1Gao.9N/GaN 
MQW STR204. (a) SEM image (b) Point distribution mapped on to a 
unit square, (c) spatial correlation function, (d) radial correlation 
function, (e) comparison to Poisson distribution, (f) summary of 
numerical data. 
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STR241 -14 period MQW grown at 860°C 

(a) AFM Image 
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Figure 8.13: Summary of statistical tests applied to the 14 period Ino.09Gao.91N/GaN 
MQW STR241. (a) AFM image courtesy of Chaowang Liu , Institute of 
Photonics, University of Strathclyde, (b) Point distribution mapped on 
to a unit square, (c) spatial correlation function, (d) radial correlation 
function, (e) comparison to Poisson distribution, (f) summary of 
numerical data. 
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8.4.6 Analysis of Statistical Results 

T h e n u m e r i c a l r e s u l t s o f t h e s t a t i s t i c a l tes ts d e s c r i b e d i n Sec t i on 8 .2 .2 a n d 

s h o w n i n F igu res 8 .10 to 8.13 are p r e sen t ed i n Tab le 8.2 f o r c o m p a r i s o n . 

S a m p l e P i t D e n s i t y D i s t r i b u t i o n 
P a r a m e t e r , 
R N 

P r o b a b i l i t y o f 
R a n d o m n e s s 

L e n g t h S c a l e 
o f O b s e r v e d 
C l u s t e r i n g 

A F M S T R 9 4 -
1 0 M Q W 

2 . 7 x l 0 9 c m 2 1.15 >99% 6 0 - 1 0 0 n m 

A F M S T R 2 0 4 -
1 0 M Q W 

2 . 2 x l 0 9 c m 2 1.06 >99% 6 0 - 1 2 0 n m 

S E M S T R 2 0 4 -
10MQW 

2 . 6 x l 0 9 c m 2 1.18 >99% 8 0 - 1 2 0 n m 

A F M S T R 2 4 1 -
14MQW 

2 . 4 x l 0 9 c m 2 1.09 >99% 6 0 - 1 0 0 n m 

Table 8.2: Numerical results of the statistical tests described in Section 8.2.2 and 
presented in Figures 8.10-8.13. 

O v e r a l l , t h e s t a t i s t i c a l tes ts p e r f o r m e d i n d i c a t e t h a t t h e p i t d i s t r i b u t i o n s 

seen i n F igu re s 8.10(a) to 8.13(a) are r a n d o m . However , c l u s t e r i n g is obse rved o n 

a l e n g t h scale o f 6 0 - 1 2 0 n m . T h i s i s n o w d i s cus sed f o r each of t h e s t a t i s t i c a l 

t es t s . 

T h e r a d i a l a u t o c o r r e l a t i o n f u n c t i o n has a s i m i l a r shape f o r a l l f o u r 

d i s t r i b u t i o n s . I n each case the re is a n a n t i - c o r r e l a t i o n a t ve ry s m a l l r a d i u s 

c o r r e s p o n d i n g to a s e p a r a t i o n o f less t h a n 6 0 n m a n d a c o r r e l a t i o n a t a s e p a r a t i o n 

o f ~ 6 0 - 1 2 0 n m . B e y o n d t h i s t h e a u t o c o r r e l a t i o n f u n c t i o n i s c losely d i s t r i b u t e d 

a b o u t u n i t y u n t i l i t deviates a t t he h i g h e r r a d i i va lues d u e to t h e s m a l l e r n u m b e r 

o f d a t a p o i n t s i n t h e co rne r s of t h e square w h i c h c a n p a r t i c i p a t e i n l o n g r ange 

c o r r e l a t i o n s . T h e a n t i - c o r r e l a t i o n a t s epa ra t ions less t h a n ~ 6 0 n m i s p o s s i b l y d u e 

t o t h e m i n i m u m i d e n t i f i a b l e p i t s e p a r a t i o n . T h e a u t o c o r r e l a t i o n f u n c t i o n f o r t h e 

d i s t r i b u t i o n i n F i g u r e 8 .12 s h o w s a b r o a d e r d i s t r i b u t i o n o f p o i n t s a n d m o r e 

e r r a t i c b e h a v i o u r i n t h e t a i l o f t h e f u n c t i o n . T h i s i s d u e to t h e s m a l l e r n u m b e r of 

d a t a p o i n t s i n t h e d i s t r i b u t i o n i n c o m p a r i s o n to t h e o the r d i s t r i b u t i o n s . 

T h e p r o b a b i l i t y of r a n d o m n e s s as d e t e r m i n e d b y a p p l i c a t i o n o f t h e c h i -

s q u a r e d t es t t o t h e c o m p a r i s o n o f t h e e x p e r i m e n t a l d a t a t o a Po isson d i s t r i b u t i o n 

i s g rea te r t h a n 99% f o r a l l f o u r d i s t r i b u t i o n s . T h i s i s p e r h a p s s u r p r i s i n g as a t 

f i r s t i n s p e c t i o n t h e e x p e r i m e n t a l d i s t r i b u t i o n s appear to devia te f r o m t h e Poisson 

c u r v e . However , t h e ove ra l l shape of t he e x p e r i m e n t a l d i s t r i b u t i o n s f o l l o w s t h e 
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Poisson c u r v e s f a i r l y c losely a n d is p a r t i c u l a r l y w e l l b e h a v e d a t t h e t a i l s o f t h e 

Po i sson cu rves . 

T h e s p a t i a l c o r r e l a t i o n f u n c t i o n tes ts s h o w g r id s of u n i f o r m i n t e n s i t y 

except i n t h e c o r n e r s w h e r e t h e c o r r e l a t i o n f u n c t i o n f i r s t increases r a p i d l y t h e n 

decreases. T h i s i s t h o u g h t to be due t o t h e same ef fec t t h a t causes t h e r a d i a l 

a u t o c o r r e l a t i o n f u n c t i o n to devia te w h e n t h e r a d i u s is greater t h a n 1. T h e 

u n i f o r m i t y o f t h e f o u r s p a t i a l c o r r e l a t i o n f u n c t i o n s shows the re is n o p r e f e r r e d 

o r i e n t a t i o n b e t w e e n t h e p i t s i n t h e d i s t r i b u t i o n s . 

T h e d i s t r i b u t i o n pa rame te r , Rn, f o r a l l f o u r d i s t r i b u t i o n s is w i t h i n t h e r a n g e 

0 . 8 5 - 1 . 1 5 spec i f i ed [6] f o r r a n d o m n e s s . However , a l l t h e d i s t r i b u t i o n p a r a m e t e r s 

are greater t h a n u n i t y i m p l y i n g t h a t t he re i s a s l i g h t t r e n d t o w a r d s o r d e r i n g i n 

t h e d i s t r i b u t i o n s . 

8.4.7 Discussion 

Q u a n t i t a t i v e s t a t i s t i c a l tes ts f o r r a n d o m n e s s s h o w e d t h e s u r f a c e p i t s i n 10 

a n d 14 p e r i o d I n x G a i - x N / G a N M Q W s t r u c t u r e s to be r a n d o m l y d i s t r i b u t e d o n a l l 

l e n g t h scales b e t w e e n 1 2 0 n m a n d 7 u m . B e l o w 1 2 0 n m t h e r a d i a l a u t o c o r r e l a t i o n 

f u n c t i o n i d e n t i f i e s c l u s t e r i n g o f p i t s a t a d i s t ance of 6 0 - 1 2 0 n m . B e l o w 6 0 n m a 

f a l l i n t h e r a d i a l a u t o c o r r e l a t i o n f u n c t i o n s h o w e d a n absence o f p i t s s epa ra t ed b y 

t h i s d i s t ance . T h i s m i n i m u m reso lvable f e a t u r e size c a n be i d e n t i f i e d p h y s i c a l l y 

as t h e m i n i m u m d i s t ance t w o p i t s c a n be sepa ra t ed b y be fore t h e y m e r g e d u r i n g 

g r o w t h . 

As d i s c u s s e d p r e v i o u s l y t h e r e l a t i o n s h i p b e t w e e n V - p i t s , t h r e a d i n g 

d i s l o c a t i o n s a n d t h e n u c l e a t i o n l a y e r / b u f f e r l ayer i n t e r f a c e a l l o w s some 

in f e r ences a b o u t t h e s t r u c t u r e to be m a d e f r o m t h i s ana lys i s . As V - p i t s c o n t a i n a 

t h r e a d i n g d i s l o c a t i o n a t t h e i r ver t ices i t is p l a u s i b l e to deduce t h a t r eg ions of h i g h 

V - p i t dens i t i e s c o r r e s p o n d to reg ions o f h i g h t h r e a d i n g d i s l o c a t i o n dens i t i e s -

a s s u m i n g t h a t t h e p r o p o r t i o n o f V - p i t s to t h r e a d i n g d i s l o c a t i o n s is c o n s t a n t 

across t h e e p i t a x i a l l ayers . I f r eg ions o f h i g h d i s l o c a t i o n d e n s i t y were c o r r e l a t e d 

t o t i l t o r t w i s t b o u n d a r i e s i n t h e n u c l e a t i o n l a y e r / b u f f e r l ayer i n t e r f a c e [15] t h e n 

i t i s poss ib le t h a t t h e p o s i t i o n of s u r f a c e V - p i t s w o u l d m a r k t h e b o u n d a r i e s o f 

G a N m i c r o - c r y s t a l l i t e s f o r m e d d u r i n g t h e o v e r g r o w t h of t h e G a N b u f f e r l aye r as 

d e s c r i b e d b y t h e m o d e l of A k a s a k i et a l [17 ] . A n a l y s i s o f V - p i t d i s t r i b u t i o n s i s 

c o m p l i c a t e d b y t h e r e p o r t e d i nc r ea sed p r o b a b i l i t y o f V - p i t f o r m a t i o n f r o m a 
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dislocation of mixed or screw type [28]. Therefore to evaluate the underlying 

structure it would be necessary to understand both the distribution of screw, 

mixed and edge dislocations and the relationship between the three dislocation 

types and the formation of V-pits. 

GaN sub-grains are reported to have grain sizes in the range 50-500nm 

[16]. If the grain sizes were towards the bottom of this size range and the grains 

themselves were randomly distributed it is possible that V-pits formed by 

dislocations emanating from the grains would appear to be randomly distributed 

as the V-pits themselves can be larger than 50nm. This scenario would be 

consistent with the observations of randomness, but does not explain the peak of 

the radial autocorrelation function at 60-120nm. 

The observation of clustering on the 60-120nm length scale is perhaps 

more consistent with there being sub-grains on the scale of ~500nm. Such 

clustering is possibly due to polygonisation walls. Indeed, such walls can be seen 

in Figures 8.10(a)-8.13(a) in which there is some indication of a cellular 

structure. (However this structure is not as strong as the synthetic regular 

honeycomb of points analysed in Figure 8.2(d).) Previous reports of similar 

cellular structures [31, 32] attribute the structures to misoriented grains. Such a 

model of dislocations propagating from grain boundaries suggests that the 'hot 

spots' in QW luminescence reported in Chapter 7 may correspond to regions of 

the QW grown above the centre of a GaN island where there is a lower density of 

luminescence quenching dislocations. This is not inconsistent with reports of 

enhanced band edge luminescence from the centre of GaN crystallites observed in 

plan view SEM-CL [33]. 
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8.5 M-plane GaN 

8.5.1 Stacking Faults in M-plane GaN 

GaN epitaxial layers grown with M-plane (1-100) orientation on Y-L1AIO2 

benefit from the relatively low lattice mismatch of -1.4% (compression) along the 

[001]LiAlO 2 | | [H-20]GaN direction and -0 .1% along the [010]LiAlO21| [0001]GaN 

direction [34, 35]. Figure 8.14 shows the relative orientations of the 

crystallographic directions at the ( l -100 ) G A N, (100)UAIO2 interface. The epitaxial 

GaN films used in this work were grown by PAMBE [7, 36, 37] as described in 

Table 8.1. Further discussion of the GaN/LiA102 system can be found in Chapter 

3. 

0001 

GaN< 

T[ioo] 

LiAlO 
010 

Figure 8.14: Relative orientations of the crystallographic directions at the (1-
lOOjaaN, (100)LIAIO2 interface. 

The dominant defects in M-plane GaN epilayers are reported to be 

intrinsic, I2, basal plane stacking faults [38-40] that lie perpendicular to the 

interface and intersect the entire thickness of the layer. Figure 8.15 shows a 

cross sectional bright field micrograph of one of the samples. There appears to be 

a fairly uniform distribution of stacking faults with one area containing a high 

density bundle of stacking faults. The I2 stacking fault results from slip of 

1/3<10-10> in a perfect crystal: 
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ABABABAB... ABABCACA... 

The change to the hexagonal close packed structure from the stacking 

fault is equivalent to the introduction of a face centred cubic layer. Prism plane 

stacking mismatch boundaries are also reported on the (10-10) prism plane [8, 

34]. However these are less common by a factor of 10-20 times and are not 

uniformly distributed. The density of threading dislocations is reported to be 

<8xlQ8cm-2 [8]. 

1-100 

-1100 
• 

100nm 

Figure 8.15: Cross-sectional bright-field TEM micrograph near the [11-20] zone 
axis. 

The dominant basal plane stacking fault has no component in the [0001] 

direction (out of the faulted plane) and is therefore not able to relieve epitaxial 

strain. This suggests that the faults are related to the morphology of the 

substrate/epilayer interface. It is reported that bundles of basal plane stacking 

faults are observed where the substrate/epilayer interface is stepped [8, 38]. This 

is shown schematically in Figure 8.16. 
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SFs clustered at 
GaN 

7 , 

Figure 8.16: Diagram showing the proposed substrate/epilayer morphology. 

Low temperature photoluminescen.ee studies of M-plane GaN revealed a 

luminescence peak at 3.356eV (369.5nm). Using a combined TEM and SEM-CL 

study Sun et al [8] showed that this peak was spatially correlated with substrate 

roughening. Concentration of basal plane stacking faults at similar regions of 

substrate roughening was taken to be indirect evidence that the 3.356eV 

luminescence is stacking fault related. The substrate roughening is reported to 

take the form of periodic trenching on the substrate and was correlated with a 

striped pattern of ridges and trenches identified by AFM on the GaN epilayer. 

These ridges and trenches in turn were correlated with lines of bright CL contrast 

at 3.356eV in plan view SEM-CL measurements. In the next section the 

correlation of this luminescence to basal plane stacking faults is investigated 

using TEM-CL. 

8.5.2 Luminescence from Stacking Faults 

Cross-sectional foils 2 of M-plane GaN on LiAlC>2 (see Table 8.1) were 

investigated by TEM. Investigation by TEM from both B=[0001] and B = [ l l - 2 0 ] 

revealed a high yet variable density of basal plane stacking faults, determined 

earlier by Trampert et al [34] to be intrinsic. As can be seen in Figure 8.15 and 

8.17(c) the basal plane stacking faults are dominant. TEM investigation was 

hampered by the extreme sensitivity of the substrate to the electron beam. Under 

all but the lowest levels of observable beam currents the foil would move at a 

speed of several microns per second. Working at very low beam currents was 

2 TEM foils supplied by A. Trampert were prepared at the Paul-Drude Institute in 
Berlin, final Ar+ milling was carried out in Durham. 

138 

http://photoluminescen.ee


Chapter 8 -Extended Defects 

beneficial. However the longer exposure times necessary somewhat mitigated the 
advantage gleaned by slowing down the rate of sample drift. 

TEM-CL spectra were taken from the GaN epilayers using a CTEM beam 

focused down to a diameter of ~0.5um. Acquisition times with a 2s integration 

and 5nm monochromator spectrometer step were up to 10 minutes depending on 

the wavelength range scanned. TEM-CL spectra taken in both B=[0001] and 

B = [ l l - 2 0 ] orientations showed three main peaks. Figure 8.17(a) and (b) show 

typical spectra taken from these samples. The broad peak centred at 3.8eV 

(326.3nm) is due to the LiA102 substrate. The peak centred near to 3.5eV 

(354nm) is attributed to GaN near band edge emission. The peak at 3.3-3.35eV 

(370.1-375.8nm) varies in relative intensity and is very consistently strongest 

where the density of basal plane stacking faults is greatest. This is illustrated in 

Figure 8.17 (a) and (b) which were recorded with the beam focused on to the 

areas highlighted in Figure 8.17(c). 

The relationship between stacking faults and the luminescence seen at 

3.3-3.35eV was further investigated by taking a line-scan of CL intensity along 

the centre of the GaN layer parallel to the substrate, with the spectrometer set to 

select the peak at 3.3eV. The line scan was taken using an electron probe formed 

using the STEM scanning unit and taking a CL intensity reading every lOnm. 

With a 2s integration time a 5pm line scan took approximately 17 minutes. Due 

to the lower beam currents in STEM mode (see Chapter 6 for further discussion) 

the CL signal was much lower so the spectral dispersion was increased to 0.1 eV. 

Despite this large spectral dispersion the variation in stacking fault luminescence 

was less marked than for the CTEM spectra as the dark noise was more 

significant. The line-scan is shown in Figure 8.17(d) and is aligned with the 

montage of TEM images shown in Figure 8.17(c). There is a direct 

correspondence between the densities of stacking faults and the luminescence 

intensity maxima and minima. Inspection of the TEM montage of the GaN layer 

shows the stacking faults appear in bundles with a periodicity of ~0.5um. This 

corresponds to the periodicity of the trenches identified in the substrate prior to 

growth by Sun et al [8]. 
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Figure 8.17: Cross-section TEM-CL investigation of M-plane GaN on L1AIO2. (a) 
TEM-CL spectrum of area containing a low density of stacking faults, 
(b) TEM-CL spectrum of area containing a high density of stacking 
faults, (c) TEM montage with B=[ 11-20] multi-beam image, and (d) CL 
line-scan with spectrometer centred on 3.3eV (375.8nm). 

8.5.3 Analysis and Discussion 

As demonstrated in Figure 8.17 TEM-CL spectroscopy and monochromatic 

line-scans have established a correlation between stacking faults and 3.3eV 

(375.8nm) luminescence. Whilst it is possible that this emission is due to point 

defects and impurities accumulating in the vicinity of stacking faults there are 

well known models in the literature attributing the luminescence to excitons 

bound to the stacking faults [41-43]. The emission energy observed in this work 

(3.3eV) is at the lower end of the range of energies (3.3-3.4eV) at which lines have 

been previously attributed to excitons bound to stacking faults [44, 45]. However 
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the spectral resolution typically used in TEM-CL is far inferior to PL and the 
spectroscopy is performed at a higher temperature (nominally 100K) as opposed 
to 5K in PL. 

CB 1 i 

VB 1 | 

1nm 
Figure 8.18: Diagram showing the type II potential well at an I2 stacking fault in 

wurtzite GaN. 

Stacking faults are considered to form quantum well-like regions since the 

stacking error is equivalent to the introduction of a thin zinc-blende layer 

embedded in the wurtzite matrix [8, 41, 42]. The width of the cubic layer is 2c 

(1.04nm) since the I2 stacking sequence, ABABABCA-CAC..., contains two units 

of cubic stacking. Band structure calculations by Rebane et al [41] show that 12 

stacking faults act as quantum wells for electrons and potential barriers for 

holes, therefore attracting electrons to the stacking faults but repelling holes. 

Figure 8.18 shows the alignment of the bands to form a structure similar to a 

type II heterojunction. In such a structure holes may be attracted to the electron 

bound to the stacking faults through the Coulomb force, forming excitons bound 

to stacking faults (SFE). The binding energy of the SFE was estimated to be 

45meV [41]. 

These models yielded an inter-band transition energy of 3.359eV [8, 42], 

assuming that the stacking faults have a spatial separation of 5nm, which was in 

good agreement with PL data given by Sun et al [8]. Whilst the stacking fault 

related peak seen in this work is centred at 3.3eV it covers a broad spectral range 

from 3.25-3.35eV at 100K. Therefore, this peak is considered to be the same as 

the feature studied by Sun et al [8] at 3.356eV and the direct correlation with 
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stacking faults presented in this work confirms Sun's earlier conclusions that i t is 

stacking fault related luminescence. 

8.6 Conclusions 
Panchromatic STEM-CL imaging and diffraction contrast imaging of a 

cross-sectional Ino.1Gao.9N SQW thin foil was used to investigate the effect of 

threading dislocations on the QW luminescence. Threading dislocations crossing 

the QW were shown to be associated with regions of lower QW luminescence. 

This observation is consistent with reports in the literature that threading 

dislocations in GaN can act as non-radiative recombination centres. However, no 

comment is made about the relative effects of edge, mixed and screw dislocations 

as non-radiative recombination centres. 

The distributions of threading dislocations observed in CTEM micrograph 

montages were analysed using a one-dimensional autocorrelation function 

normalised to highlight spatial correlations such as clustering. Distributions of 

<100 dislocations revealed no significant clustering. However, the small number 

of dislocations in the distributions is below the optimum number ideally required 

for correlation analysis. This lack of clustering of dislocations is not consistent 

with the model whereby threading dislocations are propagated in clusters from 

misaligned GaN crystallites formed on the low temperature GaN buffer layer. 

This problem was investigated by a statistical analysis of V-pits as secondary 

evidence for the presence of dislocations. 

Quantitative statistical tests for radial correlations, spatial correlations, 

and clustering were used to analyse V-pits in AFM and SEM images of the surface 

of 10 and 14 period In xGai-ArN/GaN MQW structures. These pits were shown to 

be randomly distributed on all length scales between 120nm and 7pm, clustered 

at a distance of 60-120nm and anti-correlated below 60nm. Physically this anti-

correlation was interpreted as the minimum pit separation before the pits 

merged. As V-pits have been shown to contain threading dislocations at their 

vertices the observed clustering at 60-120nm was considered to be due to 

clusters of threading dislocations. These clusters of threading dislocations are 

reported to be initiated at t i l t or twist boundaries between GaN micro-crystals 

formed during the overgrowth of a GaN low temperature nucleation layer. As 
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such the observed clustering of V-pits is suggested to be the result of threading 

dislocations emanating from the boundaries of GaN micro-crystals forming lines 

of closely spaced V-pits on the surface of the MQW. A random distribution of the 

micro-crystals is thought to account for the randomness of the V-pits observed on 

a scale of 120nm to 7pm. It is suggested that the 'hot spots' in QW luminescence 

reported in Chapter 7 may correspond to the centre of GaN micro-crystallites 

where the density of dislocations is lower. 

(1-100) GaN grown on (100) Y"LiA102 was studied using combined 

diffraction contrast imaging and CL spectroscopy and monochromatic CL line-

scans. Basal plane stacking faults originating from substrate roughness were 

shown to be distributed in periodic clusters. These basal plane stacking faults 

were demonstrated to be directly associated with a broad emission peak in the 

range 3.3-3.35eV (370.1-375.8nm) at 100K. This finding is consistent with 

reported SEM-CL and PL analysis revealing a peak at 3.35eV (PL at 5K) seen in 

samples with a high density of basal plane stacking faults. 
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Chapter 

Discussion and 
Conclusions 

9.1 Discussion and Conclusions 
In this thesis the technique of (S)TEM-CL has been investigated and 

applied to the study of GaN epitaxial layers and InAGai-JN/GaN QW structures. 

The samples investigated were GaN epitaxial layers grown by MOVPE and PAMBE 

on sapphire and LLAIO2 substrates respectively, and MOVPE grown In*Gai-

xN/GaN/AbOa QW structures. CL collection is performed using a parabolic 

mirror with a small hole to allow passage of the electron beam positioned above 

the specimen inside the TEM pole-piece. CL is reflected out of the column by the 

mirror into a spectrometer/photomultiplier arrangement. The major motivation 

for implementing such a system is its ability to correlate spectral information with 

structural information from TEM. In addition limited beam broadening and a 

small effective carrier diffusion length (pinned by surface recombination) in a thin 

TEM foil gives STEM-CL a high spatial resolution making it a useful technique for 

investigating nanostructures. A necessary consequence of using an electron 

transparent specimen is a weak CL signal due to a small generation volume and 

large free carrier losses to surface recombination. This leads to conflicting 

requirements; the thicker the foil the stronger the signal, but at the expense of 
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spatial resolution. An additional factor to consider is beam damage. Analysis of 

in-situ degradation curves of panchromatic CL from GaN epilayers and Ino.1Gao.9N 

QW emission under electron beam irradiation revealed a decline in the 

luminescence which could be described through the introduction of non-radiative 

recombination centres. 

Spectral acquisition in the (S)TEM-CL instrument is possible in either 

conventional TEM mode, STEM area scan or STEM point mode. Higher beam 

currents and larger illumination areas in conventional TEM yield much stronger 

CL signals facilitating faster and/or higher resolution spectral acquisition. 

Working in STEM mode allows panchromatic and monochromatic images and 

line-scans to be performed. Weak CL emission from TEM foils means 

monochromatic STEM-CL imaging generally required long integration times and 

large spectral dispersions. Long integration times are not always possible due to 

sample drift; line-scans, therefore, are a useful tool for increasing integration 

times. 

To aid interpretation of STEM-CL data it is necessary to understand the 

generation of CL within a polished TEM foil and the effect of thickness fluctuation 

in the foil. Fabry-Perot interference fringes have been observed in spectra 

acquired with a stationary probe. A numerical model was created to model the 

interference term at the collection mirror from CL generated in a thin column in 

the TEM foil. This allowed the interference fringe periodicity to be predicted for a 

given thickness and wavelength. Fitting the expected fringe periodicity to an 

experimentally observed spectrum allowed the foil thickness to be estimated. 

Apart from interference effects, to predict the effect of thickness variation 

on CL intensity a model was developed to predict the expected CL intensity from a 

region of particular thickness using the Everhart-Hoff depth-dose function and 

taking into account surface recombination losses. To check this experimentally 

and to allow image normalisation the transmitted electron intensity in STEM was 

used to estimate the foil thickness using the dynamical formulation of electron 

diffraction. This process allowed a STEM image to be used to create an expected 

CL image based on the assumption that the foil is a uniform material, 

luminescing uniformly. Therefore, dividing the actual CL image by the expected 

CL image revealed underlying contrast due to the foil material rather than foil 

thickness variation. In practice the images to be analysed were electronically 

processed to create line-scans prior to normalisation. 
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This technique was applied to panchromatic STEM-CL imaging of MOVPE 

grown Ino.1Gao.9N/GaN/AI2O3 QWs in cross-section. These panchromatic images 

revealed that the CL emission from the QWs was inhomogeneous with bright 

regions of luminescence behaving as apparent 'hot spots' 200-700nm in width. 

The thickness normalisation confirmed that this inhomogeneity was an 

underlying property of the material and not due to foil thickness variation. 

Investigating this with monochromatic STEM-CL imaging and line-scans along 

the length of the wells revealed detectable levels of luminescence at ±10nm either 

side of the characteristic Q W luminescence peak, QWA. In regions where QWA was 

bright, CL at QWA ±10nm and ±5nm was also observed to be bright. In regions 

where QWA was darker, CL at QWA ±10nm and ±5nm was also observed to be 

darker. Indium rich regions in the Q W are often postulated to account for In^Gai-

X N luminescence, and the possibility of such regions causing the observed "hot 

spots' was considered. Indium rich regions would result in a deepening of the 

Q W . If such a region was directly excited by the electron beam luminescence at a 

wavelength greater than QWA would be expected. However, i f a 'normal' region 

were directly excited i t may be expected that CL at QWA would be observed in 

addition to CL at longer wavelengths from carriers moving along the Q W and 

recombining at the regions of lower potential energy associated with indium 

clustering. As behaviour of this sort was not observed it is therefore suggested 

that large scale (>200nm) indium rich regions are not responsible for luminescent 

l io t spots'. 

This inhomogeneity in Ino.1Gao.9N QW luminescence is in contradiction to 

the findings of Albrecht et al [1] who performed STEM-CL and energy selected 

imaging on In0.2Ga0.sN SQWs and Ino.1Gao.9N MQWs grown by MOVPE on 

dislocation free G a N single crystals. STEM-CL monochromatic mapping in cross-

section revealed the QW luminescence to be homogeneously distributed on a 

length scale greater than 5nm (the minimum probe size). Analysis of the indium 

content of the wells revealed indium concentration fluctuations on a length scale 

of 3-9nm. This was taken as evidence that the optical properties of In^Gai-xN 

QWs are not influenced on a nanometre scale by indium segregation, but rather, 

are determined by a short range order resulting from the localisation of the hole 

wave function at the indium atom as proposed by Bellaiche and Zunger [2]. This 

explanation, however, does not account for the observation of long range 

(>200nm) inhomogeneity seen in this study. A possible explanation for this 
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difference is the effect of dislocations acting as non-radiative recombination 
centres and as a source of epitaxial strain relief. 

Comparison of panchromatic STEM-CL micrographs and montages of 

diffraction contrast TEM images revealed that bundles of threading dislocations 

suppress QW luminescence. This investigation, and literature evidence 

supporting the suppositition that dislocations act as non-radiative recombination 

centres, is given in the first part of Chapter 8. It is, therefore, possible that the 

observed *hot spots' are in fact islands of luminescence surrounded by 

dislocations suppressing QW luminescence. (It is possible that the interaction 

between the dislocation strain fields and the QW have an influence on local 

luminescence efficiency.) This may account for the difference between these 

results and those of Albrecht et al [1], as the dislocation density in the material 

grown on GaN single crystals is likely to be lower than the material grown on 

sapphire substrates in this study. As it is only possible to evaluate a small 

volume of material using TEM the distribution of dislocations was evaluated 

across the surface of sapphire/GaN/In^Gai-xN MQWs using V-pits as secondary 

evidence for the presence of dislocations. The distribution of V-pits was mapped 

using SEM and AFM, and analysed for clustering, and spatial and radial 

correlations using statistical tests. No long range (>200nm) clustering was found; 

clustering, however, on a length scale of 60-120nm was identified. This is 

possible due to clustering of dislocations formed from the coalescence of 

misaligned GaN islands during the early stages of epitaxial growth. There was no 

evidence of correlations between periodically separated sub-grain boundaries. 

This does not, however, preclude a random distribution of sub-grains in terms of 

both size and positions. It is, therefore, possible that the 'hot spots' correspond 

to regions of QW grown above the centre of a GaN island where there is a lower 

density of luminescence quenching dislocations. Other factors to be considered 

are that the inhomogeneous Ino.1Gao.9N QW luminescence is an artefact of sample 

preparation, beam induced damage or surface contamination. Uniform 

luminescence from the GaN epilayers suggests that this is not the case but it is 

likely that the Ino.1Gao.9N alloy is more susceptible to ion or electron beam 

damage. 

Due to the spontaneous and piezoelectric polarisation of GaN in the [0001] 

direction, GaN epilayers grown on a non-polar plane are of interest. One of these 

planes is (1-100) GaN (M-plane) which may be grown on the (100) face of LiA102 
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with a misfit of 0.3% in the GaN [0001] direction and 1.7% in the GaN [11-20] 

direction. The dominant defect type in plasma assisted MBE grown GaN layers in 

this orientation has been previously identified by Sun et al [3] as basal plane 

stacking faults lying perpendicular to the interface and intersecting the entire 

thickness of the layer. These stacking faults occur in bundles propagating from 

regions of roughness on the substrate. Using SEM-CL and PL Sun et al 

correlated luminescence at 3.356 eV (4K) from these samples with regions of 

substrate roughening. In this work TEM-CL spectroscopy and monochromatic 

line-scans were used to correlate luminescence at 3.3-3.35 eV (100K) with the 

stacking faults themselves. TEM-CL spectra from cross-sectional foils contained 

a peak at 3.3-3.35 eV which is consistently strongest where the density of basal 

plane stacking faults is greatest. A monochromatic line-scan at 3.3 eV along the 

centre of the GaN layer parallel to the substrate was aligned and compared 

against a TEM montage of the same area showing a direct correspondence 

between bundles of stacking faults and luminescent maxima. 

The correlation of this spectral feature at 3.3-3.35 eV with stacking faults 

is consistent with models in the literature attributing transitions in the energy 

range 3.3-3.4eV to excitons bound to stacking faults. The intrinsic basal plane 

stacking fault in wurtzite GaN is equivalent to the inclusion of two layers of cubic 

stacking into the matrix. In simple terms the lower bandgap of cubic GaN means 

the cubic layer acts as a quantum well. Calculations such as those by Rebane et 

al [4] show this to be a type II QW such that excitons are formed with holes 

attracted to electrons bound in the well. Accounting for the spontaneous 

polarisation results in a triangular potential with a redshift of the luminescence 

and a transition energy of 3.359 eV [3]. This is in close agreement with the PL 

data from the same author. Whilst the stacking fault related peak seen in this 

work is centred at 3.3eV, it covers a broad spectral range (3.25-3.35 eV at 100K) 

and is considered to be the same as that identified by Sun et al [3] and is direct 

evidence of stacking fault related luminescence. 

To the best of the author's knowledge this study is believed to be the first 

to report direct evidence of stacking faults acting as sites for radiative 

recombination in GaN. 
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Appendix 

Computer Code 

A1 Introduction 
This appendix lists the full code for all the programs used in this work. In 

some cases the code has not been developed solely by the author, but is based 

upon previously used routines. The Image Analysis and 2D Point Logging 

Routines running in Visual Basic were originally developed by Dr Mike Cousins, 

the ID Autocorrelation Function, Nearest Neighbour Analysis, Comparison to a 

Poisson Distribution, and Radial Autocorrelation functions have been developed 

over a number of years by the author, Andrew Yates, Deborah Buckley, Eddie 

Walker, and Dr Ken Durose. The Fabry-Perot Simulation and Spatial Correlation 

Function routines have been newly developed for this work. 

A2 image Analysis 
This image analysis routine to obtain position intensity data from greyscale 

bitmaps is described in Section 4.7 and is used extensively in Chapter 7. The 

code is designed to run in Visual Basic. 

154 



Appendix A 

Dim arr() As Long 

Private Sub Command l_Click() 

ReDim arr(l To Picturel.ScaleWidth) 

For j = 1 To Picturel.ScaleHeight 

For i = 1 To Picture l.ScaleWidth 
arr(i) = arr(i) + (Picturel.Point(i, j) / 

65536) 
Next i 

For i = 1 To Picture l.ScaleWidth 
Print #1,1, arr(i) 

Next i 
End Sub 

Private Sub Form_Load() 

Form 1. Picture 1. Picture = LoadPicture("C:\My 
Documents\My PhD\Term 7\23 October 
2002 \scan 1 -edited-20June02.bmp") 

Form 1 .Show 

Next j 

Open "C:\My Documents\My PhD\Term 
7\23 October 2002\scanl-edited-
20June02.txt" For Output As #1 

Picture l.ScaleMode = 3 
End Sub • • • 

A3 Fabry-Perot Simulations 
The Fabry-Perot Simulations described in Section 5.4.3 were performed using 

Microsoft Excel for numerical calculations controlled by a Visual Basic macro, 

listed below, to automate the data handling. 

Sub Thicknesslntegrals() 

' Macro written 21 May 2002, N. Boyall 

Do 
Sheetsf'Integral calcs").Select 
Range("E3").Select 
Range("E3") = ActiveCell.Value + 10 
Range("C3"). Select 
Selection.Copy 
Sheetsf'Wavelength Data").Select 
Range("B6"). Select 
Selection.PasteSpecial Paste: =xlValues, 

Operation:=xlNone, SkipBlanks:= _ 
False, Transpose:=False 
Range("A7").Select 

Range("M 12").Select 
Selection. Copy 
Sheets("Wavelength Data"). Select 
Selection. OfTset(0, 1).Select 
Selection.PasteSpecial Paste:=xlValues, 

Operation:=xlNone, SkipBlanks:= _ 
False, Transpose:=False 
Selection.OfTset(l, -1).Select 
Loop Until ActiveCell.Value = Empty 

Sheetsf'Wavelength Data") .Select 
Range("B6:B2006").Select 
Selection.Copy 
Do 

ActiveCell.Offset(0, l).Select 
Loop Until ActiveCell.Value = Empty 
ActiveCell. Select 
Selection.PasteSpecial Paste:=xlValues, 

Operation:=xlNone, SkipBlanks:= _ 
False, Transpose:=False 

Selection.Copy 
Sheets("Integral calcs").Select 
Range("C4").Select 
Selection.PasteSpecial Paste:=xlValues, 

Operation: =xlNone, SkipBlanks:= _ 
False, Transpose:=False 
Call Angles 

Sheets("Integral calcs").Select 
Loop Until Range("E3") = 50 

Application. ScreenUpdating = True 
End Sub 
Sub mtegrals() 
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Integrals Macro 

'Application.ScreenUpdating = False 

Do 

SheetsfWavelength Data").Select 
ActiveCell.Select 
Selection. Copy 
Sheetsf'Integral calcs"). Select 
Range("C4"). Select 
Selection.PasteSpecial Paste:=xlValues, 

Operation:=xlNone, SkipBlanks:= _ 
False, Transpose:=False 
Call Angles 
Range("M12"). Select 
Selection.Copy 
Sheets("Wavelength Data").Select 
ActiveCell.Offset(0, 1).Select 
Selection.PasteSpecial Paste:=xlValues, 

Operation:=xlNone, SkipBlanks:= _ 
False, Transpose:=False 
ActiveCell.Offset(l, -l).Select 
Loop Until ActiveCell.Value = Empty 

'Application. ScreenUpdating = True 

End Sub 

Sub Angles)) 

Dim Dummy As Integer 
Dim Dummy2 As Double 

Application.ScreenUpdating = False 
Sheetsf'Integral Calcs").Select 
Range("F10") = 8 
'F10 is set to 8 so as not to run the 

calculation too close to the critical angle so r 
isn't too great 

Dummy = 0 
Dummy2 = 0 

Do 

Dummy = Rangef'FlO") 
Dummy = Dummy + 1 
Range("F10") = Dummy 
Dummy2 • Dummy2 + Range("K12" 

Loop Until Rangef'FlO") = Range("F9") 
- 6 

' -6 covers the angle not collected from the 
hole in the CL mirror 

Range("M12") = Dummy2 
'Application.ScreenUpdating = True 

End Sub 

A4 1D Autocorrelation Function 
The following FORTRAN code is used to perform the one-dimensional radial 

correlation function described in Section 8.2.1. The data is read into the program 

in Unit22 in x,z form where x is the position on the unit line, and z is the 

associated thickness for each data point. This program calculates a new 

normalisation file each time it is run. The correlation function is outputted in 

Unit44. 

program radial 

integer n,c,freq(2,l 100), 1, m, k, nx, xc, p, v, 
xr, nb ins j 
real x,points(2,1100),a, b, pois(l 100), 
pro(1100),sumpro,sumpois,rand(4,25000) 
double precision xb,box_width,increm, 
tally(3,U00),r 
character unit22*65,unit44*65,unit3*65 

!22 is the data from your sample 
NAMEdata.txt 
unit2 2='D: \ 1_D \raw_data\ 1 Dclustered. txt' 
!44 is the main output file for the radial 
correlation function 
unit44='D:\l_D\Results\lDclusteredRADIAL 
.txt' 
!3 is the non-normalised data from radial 
correlation function 
unit3='D:\l_D\Results\lQWlv2chck.txt ' 
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open (unit=22, file =unit22) 
open (unit=44, file=unit44) 
open (unit=3, file=unit3) 

write(6,*)'enter a value for n, the number of 
points' 
read(*,*)n 
call getdata(n,points) 
call random(n,rand) 
call radius(n,points,xr,tally,rand) 

close(3) 
close(22) 
close(44) 
!close(55) 

stop 
end 

1************1"su pro u tines**************** 
! getdata gets the data from file 22 and puts it 
into array 'points' 
subroutine getdata(n,points) 
real points(2,l 100) 
integer n,m 
write(6,*)'reading in data from file' 
do m=l ,n , 1 
read(22,*)points(l,m),points(2,m) 

end do 
return 
end 

! prepares and returns normalised random 
correlation data set 
subroutine random(n,rand) 
real rand(4,25000) )x,xr>increm )r,s 
integer n,i,a,b,m 

Call random_seed 
Do i= 1,1000,1 

call random_number(x) 
rand(l,i)=x 

end do 

increm=0.005 
do xr=0,1.02,increm 

i= 1 +nint(xr / increm) 
rand(2,i)=xr 

end do 

write(*,*)'calculating radial values for random 
numbers' 

do a= 1,1000 
write!*,*)'working on point',a 

do b=(a+l),1000 
r=sqrt((rand( 1 ,b)-rand( 1 ,a))**2) 

do xr=0,1.02,increm 
i=nint(xr/increm) 
if((r.ge.xr).and.(r.lt.(xr+increm)))then 

rand(3,i)=rand(3,i)+1.0 
else 

: .!::: V 

end if 
end do 

end do 
end do 
a=0 

sum=0 
do s=increm, 1.02,increm 
Ifiddled from 0,1.44 and also s/increm 

a=nint((s-increm) / increm) 
sum=sum+rand(3,a) 

end do 
a=0 
write(*,*)' test sum is',sum 
write(*,*)' if even should be',n*((n/2)-l)+n/2 
write(*,*)' if odd should be',n*(n-1)/2 

m=0 

lim=nint{ 1.02/increm) 

do m=l , l im 
rand(4,m)=real(rand(3,m)/real(sum)) 

end do 
write(*,*)rand(l,5),rand(2,5),rand(3,5),rand(4, 
5) 
pause 10 
return 
end 

I'radius' calculates the radial correlation 
function 

subroutine radiusfn,points,xr,tally,rand) 
integer a,b,n,c,lim,dummy4,j,i 
real 
increm,r,s,points(2,1100),tally(3,1000),xr,su 
m,ref,tal(3,1100),rand(4,1000) 

Idefines the increment 'increm' and fills 
array'tally'with radial values 
increm=0.005 

do xr=0,1.02,increm 
i= 1 +nint(xr / increm) 
tally(l,i)=xr 

end do 

!tally(2,0)=0.0 
write(*,*)'calculating radial values etc' 

do a=l ,n 
write)*,*)'working on point'.a 

do b=(a+l),n 
r=sqrt((points(l,b)-points(l,a))**2) 

do xr=0,1.02,increm 
i=nint(xr / increm) 
if((r.ge.xr).and.(r.lt.(xr+increm)))then 

tally(2,i)=tally(2,i)+(points(2,b)*points(2,a)) 
else 
end if 

end do 
end do 
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end do 
a=0 
sum=0 
do s=increm,1.02,increm 
ifiddled from 0,1.44 and also s/increra 

a=nint((s-increm) / increm) 
sum=sum+tally(2 ,a) 

end do 

write(*,*)' test sum is',sum 
write(*,*)' if even should be',n*((n/2)-l)+n/2 
write(*,*)' if odd should be',n*(n-l)/2 

m=0 

lim=nint( 1.02/ increm) 

do m= 1 ,lim 
tally(3,m)=real(tally(2,m)/real(sum)) 
wr i te^^Ol ta l lyf l .ml^a l^ .ml . ta l ly ia .m) 
write(3,60)tally(l,m),tally(2,m),tally(3,m) 

end do 
m=0 

60format(fl5.6,3x,fl5.6,3x,fl5.6) 
108 format(fl5.6 ,7 ,fl5.6) 
do m= 1 ,lim 
! read(55,*)ref 
ref=rand(4,m) 
if (ref.eq.O.O)then 
ref=l 
end if 
!write(*,*)m 
write(44,108)tally( 1 ,m),taUy(3,m)/ref 
write(*,*)rand(4,m),ref,tally(l,m),tally(3,mj 

end do 

write(*,*)'increm=',0.025 
write(*,*)'using n=',n,' points' 

61 format(42x,fl0.7) 

return 
end 

A5 2D Point Logging Routine 
The use of this Visual Basic routine is described in Secion 8.4.5 for logging 

the x,y coordinates of black dots on a white background. The distribution to be 

analysed must be provided in the form of a 1-bit bitmap. 

Option Explicit 
Type xy 

x As Integer 
y As Integer 

End Type 

Const MAXCENTS = 5000 

Dim pic() As Integer, nocents As Integer 
Dim cents(l To MAXCENTS) As xy 

Sub Get_Surrs(x As Integer, y As Integer) 
Dim xp As Integer, yp As Integer 

pic(x, y) = -1 
Form 1.Picturel.PSet (x, y), QBColor(13) 
nocents = nocents + 1 
cents(nocents).x = x 
cents(nocents).y = y 

On Error GoTo Errorlinesl 

For yp = -1 To 1 
For xp = -1 To 1 

If pic(x + xp, y + yp) = 1 Then 
Get_Surrs x + xp, y + yp 

Next xp 
Next yp 

: 

: 

Exit Sub 

Errorlinesl: 

If Err = 9 Then Resume Next 

MsgBox (Error) 

End Sub 

Sub Load_Picture(FName As String, szx As 
Integer, szy As Integer) 
Dim x As Integer, y As Integer 

Form 1. Picture 1. Picture = LoadPicture(FName) 

'Forml.Width = Form 1. Picture l.ScaleWidth 
'Forml.Height = Forml.Picturel.ScaleHeight 
+ 28 
'Forml.Picturel.Left - 0 
'Forml. Picture 1.Top = 0 

Forml.Picturel.ScaleMode m 3 
Form 1. Show 
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szx = Forml.Picturel.ScaleWidth 
szy = Forml.Picturel.ScaleHeight 
Form 1.Caption = "Saving Picture as Array" 

ReDim pic(l To szx, 1 To szy} 
For y = 1 To szy 

For x = 1 To szx 
If Form 1.Picturel.Pointjx, y) = 

QBColor(O) Then 
pic(x, y) = 1 

End If 
Next x, y 

End Sub 

Sub main() 
Const PicName = "D:\NMB_Thesis\Chapter 8 
- Extended Defects\c-plane\Synthetic 
distributions \ Honeycomb, bmp" 
Const SaveName = "D:\NMB_Thesis\Chapter 
8 - Extended Defects\c-plane\Synthetic 
distributions \ Honeycomb, dat" 
Dim x As Integer, y As Integer, szx As Integer, 
szy As Integer 
'in pic(), 1 = black, 0 = white, -1 = black but 
selected 
'Open_Bitmap PicName, pic(), szx, szy 
Load_Picture PicName, szx, szy 
Open SaveName For Output As # 1 
Form 1. Show 
'Draw_Bitmap pic(), szx, szy, Form 1.Picture! 

Appendix A 

Form l.Picture2. Picture = 
LoadPicturelPicNamel 

Forml.Caption = "Getting Points...)" 
For y = 1 To szy 

For x = 1 To szx 
If pic(x, y) = 1 Then 

Get_Surrs x, y 
Save_Point 

End If 
Next x 

Next y 

Close #1 
Forml.Caption = "Finished" 
'x = Shellf'notepad " & SaveName, 1) 
End Sub 

Sub Save_Point() 
Dim i As Integer 
Dim xtemp As Long, ytemp As Long 

For i = 1 To nocents 
xtemp = xtemp + cents(i).x 
ytemp = ytemp + cents(i).y 

Next i 
xtemp = xtemp / nocents 
ytemp = ytemp / nocents 
Print # 1, xtemp, ytemp 

nocents = 0 
End Sub 

A6 Nearest Neighbour Analysis 
The following FORTRAN code is used to calculate the nearest neighbour 

distribution parameter, R„, described in Section 8.2.2. Point distributions need 

to be mapped onto a unit square with axis such that 0^x<l and 0<i/<l prior to 

data analysis. The program reads in the raw data formatted in lines of x,y 

coordinates into the file specified as Unit22. The distribution parameter is 

displayed on screen. 

inteeer a.b.c.i.k.n 
real points(2,2000), nn(2000), r(2000), 
mean,tt,rn,aa,bb,area 
character unit22*65, unit99*65 

Ichange the NAME in uni t 22 in the next line 
unit22='D:\2d analysis disk 
l\Samplesdata\Honeycomb.dat' 
unit99='D:\2d analysis disk 
1 \results\Honeycomb.txt' 
open(unit=22,file=unit22) 
open(unit=99,file=unit99) 

! 'NEARN' calculates a single value 
distribution parameter Rn 
! for the data set in 
a\samplesdata\NAMEdata.txt and 
! returns it to the screen. A file of nearest 
neighbour 
! distances is put into 
a\results\NAMEnear.txt. It has few uses, 
! but Rn is a useful parameter 

program NEARN 
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idefines parameters 
write(6,*)'enter the number of points 
read(*,*)n 

call getdatafn, points) 

Ido i=l ,4 
! write(*,*)points(l,i),points(2,i) 
lend do 

! calculates distance between all points 
do a= 1 ,n 
nn(a)=1000 
c=l 
r(l)=1.2 
d o b = l , n , l 

c=c+l 
r(c)=sqrt(((points(l,b)-

points(l,a)))**2+(points(2,b)-points(2,a))**2) 

if(a.eq.b)then 
r(c)=r(c-l) 
else 
goto 111 

111 end i f 
if(r(c).le.r(c-l).and.r(c).lt.nn(a)) then 
nn(a)=r(c) 
else 
nn(a)=nn(a) 
end i f 

end do 
write(99,*)nn(a) 

end do 

do k=l ,20 
!write(6,*)nn(k) 
end do 

close(22) 

tt=O.OdO 
do k= 1 ,n, 1 
tt=tt+nn(k) 
end do 

[calculate mean distance between closest 
points 
mean=tt/n 
writef*,*)' number of points is 
n=',n 
write(*,*)'sum of nearest neighbour distances 
is tt=',tt 
write(*,*)'mean nearest neighbour distances is 
=',mean 
!area=aa*bb 
area=l 
write(*,*)'area of the unit squre is 
=',area 

[calculate rn value 
rn=2.0d0*mean*(sqrt(n/area)) 
write(*,*)' rn is'.rn 
!close(99) 
end 

I'getdata' retrieves the x-y data from file unit 
22 and puts i t in array 'points' 
subroutine getdatafn,points) 
real points(2,2000),dummy(2,2000) 
integer n,m,aa,bb 
do m=l ,n , 1 

read(22,*)points( 1 ,m) ,points(2,m) 
end do 
return 
end 

A7 Comparison to Poisson Distribution 
The following FORTRAN code performs the Poisson test described in 

Section 8.2.2. Point distributions need to be mapped onto a unit square with 

axes such that 0<x<l and 0<y<\ prior to data analysis. The program reads in the 

raw data formatted in lines of x,y coordinates into the file specified as Unit22. 

The Poisson distribution data is outputted in the file Unit 11. 

! point does the poisson distribution test for 
data file unit 22 

program poiss 

integer n,c,freq(2,l 100), 1, m, k, nx, xc, yc, p, 
v, xr, nbins j 

real x,y, points(2,l 100),a, b, pois(llOO), 
orofl lOOl.sumoro.sumDois 
double precision xb, yb, box_width,increm, r, 
tally(3,1100) 
character yn, name*20, f i l l*30, fil2*30, 
corref*30, alldat*30 
character comdat*30, source*30, ques, 
raddat*30, corrl*40 
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character un i t l l *65 , unit22*65, unit222*65, 
unit33*65, unit44*65 
character unit3*65, unit55*65 

! enter paths 

! 11 is the output file from subroutine 'answer' 
unit 11 - d : \ 2 d analysis disk 
1 \Results\hexPOISSON.xls' 
!22 is the scatter data 
unit22='d:\2d analysis disk 
1 \Samplesdata\hex.dat' 

open ( u n i t = l l , file = u n i t l l ) 
open (unit=22, file =unit22) 
!open (unit=222, file=unit222) 
'.open (unit=33, file=unit33) 
lopen (unit=44, file=unit44) 
lopen (unit=3, file=unit3) 
lopen (unit=55, file=unit55) 

Idefines parameters 

do k=l,1100 
freq(l ,k)«k-l 
freq(2,k)=0 

end do 

k=0 
box_width=0.05d0 
write(6,*)'enter a value for n, the number of 
points' 
read(*,*)n 
call getdata(n,points) 
write(*,*)'using n=',n,' points .... 
box_width-,box_width 

! box test creates frequency table from array 
'points' in array 'freq' 
nx=nint(l/box_width) 
c=0 

do yc=0,nx- l , l 
Iwrite(*,*)'just about to enter box tes 

second loop yc=',yc 
do xc=0,nx- l , l 

xc=',xc 
xb=real(xc)*box_width 
yb=real(yc)*box_width 

do i = l , n , l 
x=points(l,i) 
y=points(2,i) 

if((x.ge.xb).and.(x.lt.(xb+box_width)))then 
if((y.ge.yb).and.(y.lt.(yb+box_width)))then 

! write(*,*) 'found a point in 
position ',xb,yb 

c=c+l 
else 
end if 

end i f 
end do 

if(c.ge.O)then 

frea!2,c+D=freq(2,c+l)+l 
c=0 
else 
end i f 

end do 
end do 
write(*,*)' ' 
write(6,*)'the first three frequencies are' 
write(6,*)'points in box*',freq(l,l), freq(l,2) 
freq(l,3) 
write(6,*)'freq for this*',freq(2,l), freq(2,2), 
freq(2,3) 
writef*,*)' ' 

call probab(m,v,freq,pro) 
call table(i,p,freq) 

write(6,*)'numb of points using the freq table 
* '.P 
! calculates the mean for use in the poisson 
work 

a=n*box_width*box_width 
write(6,*)'mean numb of points per box = ',a 

call poisson(pois, a.m.freq) 
call answer(m,v,freq,pro,pois,nbins) 

writef*,*)'total proability checksums' 
do j= 1,100 

sumpro=sumpro+pro(j) 
sumpois=sumpois+pois(j) 

end do 
writef*,*)'probabilty sum from data 
is'.sumpro 
write(*,*)'probability sum jpoisson) 
is'.sumpois 

20 format(al) 
close(3) 
close(l 1) 
close(22) 
close(222) 
close(44) 
close(55) 
stop 
end 

s\it)roiJ.tincs**************** 
! getdata gets the data from file 22 and puts i t 
into array'points' 
subroutine getdata(n,points) 
real points(2,1100) 
integer n,m 
write(6,*)'reading in data from file' 
do m=l ,n , 1 
read(2 2 ,*)points( 1 ,m) ,points(2 ,m) 

end do 
return 
end 
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Iprobab calculates the probabilities from the 
frequency data in 'freq' 
subroutine probab(m,v,freq,pro) 
integer m,v,freq(2,1100) 
real pro(HOO) 
do m= 1,1000 

v=v+freq(2,rn) 
end do 
write(*,*)'there are',v,'boxes if v is not 100 
theres a problem' 
do m= 1,1000 
pro(m)=real(freq(2,m)/real(v)) 

end do 
write(6,*)' ' 
write(6,*)'the first three probabilities are:' 
write(6,*)'points in a box ' , freq(l , l) , 
freq(l,2), freq(l,3) 
write(6,*)'prob from freq ',pro(l), pro(2), 
pro(3) 
write(6,*)' ' 
return 
end 

!'table' checks whether the number of points 
in freq equals n 
subroutine table(i,p,freq) 
integer i,freq(2,1100),p 
i=0 
p=0 
do i= 1,1000,1 

p=p+(freq(l,i)*freq(2,i)) 
end do 
return 
end 

Ipoisson calculates the poisson values for 
freq(l.n) 
subroutine poisson(pois,a,m,freq) 
integer m,freq(2,1100) 
real pois(l 100),a 

Dois(l)=exp(-a) 
write(*,*)'first poisson value exp(-a)= pois(0) 
is',exp(-a) 
do m=2,1000,1 

pois(m)=(a*pois(m-1 ))/real(freq( 1 ,m)) 
end do 

writef*,*)' ' 
write(6,*)'the first three poisson data points 
are' 
write(6,*)'number in a 
box',freq( 1,1),',' ,freq( 1,2),',' ,freq( 1,3) 
write(6,*)'poisson 
probabs',pois(l),',',pois(2),7,pois(3) 
write(6,*)' ' 
return 
end 

lanswer writes the data to a file 
subroutine answer(m,v,freq,pro,pois,nbins) 
integer v,mon,freq(2,l 100),dummy2,nbins 
real 
pro(1100),pois(1100),dummy3,dum22,dum33 
nbins=0 
dummy2=0 
dummy3=0 
dum22=0 
dum33=0 
totalfreq=0 
write(ll,*)'numb freq prob pois 
prob' 

do m = l , 100,1 
write(l 1,30)freq( 1 ,m),freq(2,m),pro(m),pois(m) 

nbins=nbins+1 
end do 
30 format(i4,3x,i4,3x,fl5.7,3x,fl5.7) 
return 
end 

A8 Radial Autocorrelation Function 
The following FORTRAN code performs the radial autocorrelation test 

described in Section 8.2.2. Point distributions need to be mapped onto a unit 

square with axis such that 0<x<l and 0<i/<l prior to data analysis. The program 

reads in the raw data formatted in lines of x,y coordinates into the file specified 

as Unit22. Unit 55 contains normalisation data created using a random 

distribution. The radial autocorrelation function is outputted in Unit44. 

program RADpoint double precision xb, yb, box_width,increm, r, 
tallvf3.1100) 

integer n,c,freq(2,l 100), 1, m, k, nx, xc, yc, p, character yn, name*20, f i l l*30, fil2*30, 
v, xr, nbins j corref*30, alldat*30 
real x,y, points(2,1100),a, b, pois(l 100), character comdat*30, source*30, ques, 
pro(1100),sumpro,sumpois raddat*30, corrl*40 
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character un i t l l*65 , unit22*65, unit222*65, 
unit33*65, unit44*65 
character unit3*65, unit55*65 

• '• 

!22 is the scatter data 
unit22='D:\2d analysis disk 
1 \Samplesdata\Honeycomb.dat' 
!44 is the main output file for the radial 
correlation function 
unit44='D:\2d analysis disk 
1 \Results\HoneycombRNormOOO 1 .xls' 
!55 contains reference data generated from 
random numbers 
unit55='D:\2d analysis disk 
1 \ Programs \ Refdat \ NORMRdataOOO 1 .xls' 

open (unit=22, file =unit22) 
open (unit=44, file=unit44) 
open (unit=55, file=unit55) 

Idefines parameters 

write(6,*)'enter a value for n, the number of 
points' 
read(*,*)n 
call getdata(n,points) 
call radius(n,points,xr,tally) 

20 format(al) 
close(22) 
close(44) 
close(55) 
stop 
end 

! getdata gets the data from file 22 and puts it 
into array 'points' 
subroutine getdata(n.points) 
real points(2,1100) 
integer n,m 
write(6,*)'reading in data from file' 
do m=l ,n , 1 
read(22,*)points(l,m),points(2,m) 

end do 
return 
end 

I'radius' calculates the radial correlation 
function 

subroutine radius(n,points,xr.tally) 
integer a,b,n,c,lim,dummy4 j , i 
real ; 

increm,r,s,points(2,1100),tally(3,1000),xr,su 
m,ref,tal(3,1100) 

Idefines the increment 'increm' and fills 
array'tally'with radial values 
increm=0.001 

do xr=0,1.44,increm 
i= 1 +nint(xr / increm) 
tally(l,i)=xr 

end do 

write(*,*)'calculating radial values etc' 

do a= 1 ,n 
write(*,*)'working on point',a 

do b=(a+l),n 
r=sqrt((points( 1 ,b)-

points(l,a))**2+(points(2,b)-points(2,a))**2) 
do xr=0,1.44,increm 

i=nint(xr/increm) 
if((r.ge.xr).and.fr.It.(xr+increm)))then 

tally(2,i)=tally(2,i)+1.0 
else 
end i f 

end do 
end do 

end do 
a=0 

do s=increm,1.44,increm 
a=nint((s-increm) /increm) 
sum=sum+tally(2,a) 

end do 

write(*,*)' test sum is',sum 
write(*,*)' i f even should be',n*((n/2)-l)+n/2 
writef*,*)' if odd should be',n*(n-l)/2 

m=0 

lim=nint( 1.44/ increm) 

do m=l , l im 
tally(3,m)=real(tally(2,m) / real(sum)) 
write(*,60)tally(l,m),tally(2,m),tally(3,m) 

end do 
write(*,*)'test' 
60 format(fl5.6,3x,fl5.6,3x,fl5.6) 
108 format(fl5.6, ' , ' ,fl5.6) 
do m= 1 ,lim 
read(55,*)ref 
if(ref.eq.0.0)then 
ref-1 
end if 
write(*,*)m 
write(44,108)tally(l ,m),tally(3,m)/ref 

end do 
write(*,*)'increm=',0.001 
write(*,*)'using n-' ,n, ' points' 

61 format(42x,fl0.7) 

return 
end 
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A9 Spatial Correlation Function 
The following FORTRAN code is used to perform the test for spatial 

correlations described in Section 8.2.2. Point distributions need to be mapped 

onto a unit square with axis such that 0<x<l and 0<i/^l prior to data analysis. 

The program reads in the raw data formatted in lines of x,y coordinates into the 

file specified as Unit22. A normalisation file generated using a random point 

distribution is contained in Unit66. Unit44 contains the outputted spatial 

correlation function. 

program SPATIAL 

integer n 
real points(2,100000) 
character unit22*65, unit44*65, unit66*65 

!22 is the scatter data 
unit22='D:\2d analysis disk 
1 \Samplesdata\hex.dat' 
!44 is the main output file for the radial 
correlation function 
unit44='D:\2d analysis disk 
1 \Results\hexSpatial30000.dat' 
!66 is a normalisation file generated from 
random data 
unit66='D:\2d analysis disk 
1 \ Programs \ Refdat\30000RadialNorm.dat' 

open (unit=22, file=unit22) 
open (unit=44, file=unit44) 
open (unit=66, file=unit66) 

write(6,*)'enter a value for n, the number of 
points' 
read(*,*)n 
call getdata(n,points) 
call vectors(n,points) 

close(22) 
close(44) 
close(66) 

stop 
end 

• 

subroutine getdata(n,points) 
real points(2,100000) 
integer n,m 
write(6,*)'reading in data from file' 
do m=l ,n , 1 
read(22,*)points(l,m),points(2,m) 
writef* ,*) points( 1 ,m) .point s(2 ,m) 

end do 
return 
end 

subroutine vectors(n,points) 
integer s,t,n,x,y,xx,z 
real 
points(2,100000),norm(3,10000),a,b,c,d,grid( 
3,10000),cc,dd,sum,dummy 

write(*,*)'calculating vectors' 

do x-0,9900,100 
y=y+l 
do xx= 1,100,1 

z-x+xx 
grid(l,z)=xx 
grid(2,z)=y 
grid(3,z)=0 

end do 
end do 
y=o 

do s= l ,n , l 
a=points(l,s) 
b=points(2,s) 
write(*,*)a,b,s 
do t = l , n , l 

c=points(l,t)-a 
d=points(2,t)-b 
do x= 1,10000,1 

cc=grid(l,x)/100 
dd=grid(2,x)/100 
if({c.lt.cc).and.(d.lt.dd).and.(c.ge.(cc-

0.01)).and.(d.ge.(dd-0.01)))then 
grid(3,x)=grid(3,x)+l 
else 
end if 

end do 
c=0 
d=0 

end do 
end do 
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do x= 1,10000,1 
sum=sum+grid(3,x) 

end do 

do x= 1,10000,1 
read (6 6, *) norm (1 ,x) ,norm (2 ,x) ,norm (3, x) 

end do 

do x= 1,10000,1 
dummy=sum*norm(3,x) 
write(44,*)grid( 1 ,x) ,grid(2,x) ,(grid(3,x) / sum) 

end do 

return 
end 

• • • 
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Reflectivity Calculations 

B1 Derivation of Reflectivity1 

Application of suitable boundary conditions to a plane monochromatic wave 

incident on a planar surface separating two isotropic, dielectric media yields the 

simplified Fresnel Equations B l and B2: 

F 

ru = 
rE A 

ni cos#( -n! cos0t 

n, cos0. +n, cos9, 

n, cosO, -n, cos0, 

u njcos0t +nt cos0j 

(Bl) 

(B2) 

where r± denotes the amplitude reflection coefficient perpendicular to the 

plane of incidence, ru the amplitude reflection coefficient parallel to the plane of 

incidence, m is the refractive index of the material incident to the boundary and nt 

is the refractive index of the material at the other side of the boundary. 

1 Hecht E., Optics, (Addison-Wesley, Reading Massachusetts, 1974). 
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For the purposes of this analysis we require the reflectance, R, defined as the 

ratio of the reflected over the incident flux. It can be shown that: 

R = Ru cos2 Yi + RL sin2 yt (B3) 

and 

T = Tu cos2 yx+ TL sin2 yi (B4) 

where yi is the azimuthal angle, defined as the angle between the plane of 

vibration and the plane of incidence such that: 

\E 1 
tan / , .= i -^f (B5) 

The solution of Equation B3 for all allowed angles of transmittance from the 

GaN foil is shown in Figure B l . 
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Figure B l : Reflectance and transmittance versus observed angle of escape for 
propagation of light from GaN to vacuum. 
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