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Abstract 

This thesis is concerned with the electronic and structural properties of interfaces and 

quantum wells constructed from GaN, A1N, InN and their alloys. Calculations have been 

carried out on the electronic properties of the nitrides in the wurtzite crystal structure using 

the complex bandstructure method. Although this method has previously been applied to 

semiconductors with the zincblende crystal structure, the author believes that this is the first 

time the complex bandstructure method has been applied to systems with a wurtzite crystal 

structure. The complex bandstructures are derived from bulk bandstructures which have been 

calculated within the framework of the plane wave empirical pseudopotential method. The 

bound states of nitride quantum well heterostructures are calculated by the matching of com­

plex bandstructure wavefunctions at the heterointerfaces. The effects of biaxial strain in the 

structures are taken into account by a suitable parameterisation of the pseudopotential form 

factors and the effects of alloying are described by the virtual crystal approximation. The 

method of matching the complex bandstructure wavefunctions at heterointerfaces has also 

been extended to wurtzite-zincblende homointerfaces and applied to a wurtzite-zincblende 

homostructure quantum well. The wurtzite-zincblende homointerface is further examined 

using first principles calculations based on density functional theory. 

As a result of this work a complex bandstructure method for calculating the electronic 

properties of wurtzite-wurtzite and wurtzite-zincblende structures has been established as a 

calculational tool. Further, the efficacy of the method has been demonstrated by calculation 

of the bound state energies and carrier probability densities of GaN-InGaN-GaN and AlGaN-

GaN-AlGaN quantum wells and the inter-subband absorption spectrum of an AlGaN-GaN-

AlGaN conduction band well. The ab-initio calculations predict a small degree of interface 

reconstruction and very small band offsets for wurtzite-zincblende homointerfaces. 
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A List of symbols used throughout the text and their corresponding meaning. Quantities in 
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Symbol Meaning 

dot product operator 

A vector product operator 

X multiplication 

1 direction perpendicular to planes, i.e. in direction of growth (z-direction). 

II direction parallel to growth planes {x,y direction in this work) 

t up spin 

1 down spin 

E Set of all real number 

C Set of all complex numbers 

Oif absorption coefficient between band i and / 

parameters for symmetric functional form of pseudopotential 

A parameters for antisymmetric functional form of pseudopotential 

az 
z component of straight bond 

z component of diagonal bond 

a straight bond 

diagonal bond 

r T-point (centre of the Brillouin zone) 

crystal field splitting 

spin orbit splitting 

AEVBO Valence band offset 

AECBO Conduction band offset 
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AEV Diference in valence band energies 

A2?c Diference in conduction band energies 
=B-A 

AV difference in macroscopic average potential of material A and B 

e strain 

e0 absolute permittivity of free space 

er relative dielectric constant of the material 

ew dielectric constant of the well 

£(, dielectric constant of the barrier 

€|| in-plain strain 

e_i_ growth direction strain 

tj column form of strain tensor 

€ki strain tensor 

£xc(p(r)) exchange-correlation energy of a uniform electron density. 

V = ( k ' - k * + g ' - g ) 

K bulk modulus 

A interaction strength of spin orbit coupling component 

A s symmetric part of A 

A a anti-symmetric part of A 

A line in ky-space within the 2D BZ 

H Chemical potential 

H refractive index 

/j, spin orbit coupling parameter 

v Poisson's ratio 

a stress 

cr Pauli spin matrix 

a* column form of stress tensor 

Oij stress tensor 

ax x component of Pauli spin matrices 

oy y component of Pauli spin matrices 

az z component of Pauli spin matrices 

u) photon frequency 
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f2 primitive unit cell volume 

fill in-plane unit cell area 

(j) bulk pseudo wavefunction 

$ many electron wavefunction 

V true wavefunction 

* c core wavefunction 

tp layer (pseudo) wavefunction 

pn charge density of band n 

pc core energy parameter 

p(r) electron density (charge density) 

p(z) planar charge density 

p(z) macroscopically averaged charge density 

T, T ' period of potential in superlattice 

f ^ momentum matrix integral 

a 'in-plane' lattice constant 

a lattice vector 

a* reciprocal lattice vector 

ae bulk equilibrium growth layer 'in-plane' lattice constant 

a g ) S pseudo wavefunction coefficient 

a[2g complex bandstructure pseudo wavefunction coefficient 

as substrate 'in-plane' lattice constant 

A A-point in wurtzite Brillouin zone 

A stacking location 

unknown coefficient of general solution in layer / 

A vector potential 

b lattice vector 

b* reciprocal lattice vector 

bc core state coefficients 

b^lg complex bandstructure pseudo wavefunction coefficient 

B stacking location 

unknown coefficient of general solution in layer / 
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c 

Csupercell 

C 

C 

c* 

c 

Oijkl 

Cij 

^hexagonal 

Ce 

C9 

c ( i ) 

Cs 

c 
d 
7(0 

E 

Ex 

E2 

E3 

Ecor 

EHF 

Ec 

Ey 

EQ 

Eexact 

Ecut 

Ek 

'growth direction' lattice constant 

supercell 'growth direction' lattice constant 

speed of light 

lattice vector 

reciprocal lattice vector 

Young's modulus / elastic modulus / elastic stiffness constant 

elastic stiffness tensor 

matrix form of elastic stiffness tensor 

elastic stiffness matrix for cubic symmetry 

elastic stiffness matrix for hexagonal symmetry 

bulk equilibrium growth layer 'growth direction' lattice constant 

relaxed value c-lattice constant for the epilayer strained on the substrate 

heterostructure layer coefficient 

substrate 'growth direction' lattice constant 

stacking location 

unit cell displacement 

heterostructure layer coefficient 

charge of an electron 

piezoelectric coefficients 

energy 

Heavy hole band energy at T 

Light hole band energy at T 

Crystal hole band energy at T 

correlation energy 

Hartree Fock energy 

Conduction band energy 

Valence band energy 

Band gap 

Exact total energy including all many body effects 

kinetic energy cutoff for plane wave expansion 

energy at wavevector k 

viii 



E][ Energy separation of bands i and / 

i?[p(r)] Total energy functional 

EH[p(r)] Hartree energy functional 

EK[p(v)\ Kinetic energy functional 

EXc[p{*)\ Exchange correlation functional 

E p z Piezoelectric field strength 

Ez ^ Piezoelectric field strength in layer / 

F[p(r)] energy functional 

Fi force acting on ion i 

f final band in transition 

fi, f f Fermi occupation factors 

f ^ ( z ) one dimensional envelope function in region (/) 

g reciprocal lattice vector 

g 2 z component of reciprocal lattice vector 

g' reciprocal lattice vector 

G reciprocal lattice vector 

g(E) density of states 

<7i/ (E) joint density of states 

H Hamiltonian matrix 

H H-point in Brillouin zone 

H Hamiltonian operator 

HMB many body Hamiltonian operator 

H p pseudo Hamiltonian matrix 

H° matrix of terms independent of k 

H 1 matrix of terms linear in k 

Hg g l individual component of pseudo Hamiltonian matrix 

H£gl s s , individual component of SOC pseudo Hamiltonian matrix 

H s o c spin orbit coupling Hamiltonian operator 

H f f , c spin orbit coupling term of Hamiltonian 

h Planck's constant 

hc critical layer thickness 
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i square root of -1 

i initial band in transition 

i, j, k, I indices for vectors, matrices and tensors 

I identity matrix 

k growth (z) direction component of wavevector 

ktot total complex wavevector 

k wavevector 

k i imaginary part of wavevector k 

k r real part of wavevector k 

k|| in-plane component of wavevector 

K K = k + g 

K K-point in Brillouin zone 

/ layer number 

/ orbital angular momentum quantum number 

/ integer component of g-vector in a* direction 

L left barrier 

L lattice vector 

L L-point in Brillouin zone 

m integer component of g-vector in b* direction 

m* effective mass of electron 

me rest mass of electron 

M number of bulk states used in layer wavefunction basis 

M M-point in Brillouin zone 

n integer component of g-vector in c* direction 

n band index 

n number of atoms 

n number of interfaces 

N number of plane waves used in Fourier series 

Ng\\ the number of different projections of g onto the growth plane 

p quantum mechanical momentum operator 

q reciprocal space vector 
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P p* piezoelectric polarisation vector 

P*p spontaneous polarisation vector 
<-(') 
P projection matrix for wavefunction to left interface of layer / 
-»(') 
P projection matrix for wavefunction to right interface of layer / 
<-(0 

Q projection matrix for derivative to left interface of layer / 

Q projection matrix for derivative to right interface of layer I 

q magnitude of reciprocal space vector 

q core cutoff 

R right barrier 

±Ri,±R .2 atomic positions in wurtzite unit cell 

± R , atomic positions in zinc blend unit cell 

r ,r ' general position 

S^Sa spin orbit coupling pseudopotential parameters 

S(g ~ g') structure factor 

s,s' spin indices 

s elastic compliance constant 

Sijki elastic compliance tensor 

Sij matrix form of elastic compliance tensor 

tb barrier thickness 

tw well thickness 

f kinetic energy operator 

T e electron kinetic energy operator 

T/v nucleus kinetic energy operator 

T ( ' ) transfer matrix for layer / 

T total transfer matrix 

U arbitrary energy shift 

U U-point in Brillouin zone 

u wurtzite internal parameter 

Uj local ideality at atom j 

U p Atomic Pseudopotential 

Uf Atomic pseudopotential of atom i 
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U s j Atomic pseudopotential form factor of atom j 

V® Potential in region (/) 

Potential in region (/) at zero field 

V Macroscopic average of potential 

V(z) Planar microscopic average of the potential 

V, V{r) Potential 

V p Crystal Pseudopotential 

VG Pseudopotential form factor 

V}/(r) Hartree potential 

Vion(x) ionic potential (ab-initio pseudopotential) 

Vtfs(r) Kohn Sham potential 

V R Orthogonalisation potential 

Vxc(r) exchange - correlation potential 

VNN nucleus - nucleus potential energy operator 
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VEE electron - electron potential energy operator 

W W-point in Brillouin zone 
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x x-axis 
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y y-axis 

z z-axis 
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Where possible acronyms have been defined, in the main text, at the instance of their first 
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AES Auger electron spectroscopy 

BCC Body centred cubic 

BEF Built-in electric field 

BZ Brillouin zone 

CASTEP A commercial DFT package 

CB Conduction band 

CBM Conduction band minimum 

CBO Conduction band offset 

CBS Complex band structure 

CH Crystal hole 

CL Cathodoluminescence 

CMOS Complimentary metal-oxide semiconductor 

DFT Density functional theory 

DOS Density of states 

DVD Digital versatile disc 

EELS Electron energy loss spectroscopy 

EM Electromagnetic 

EMT Effective mass theory 

EPM Empirical pseudopotential method 

FCC Face centred cubic 

FFT Fast fourier transform 
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GGA Generalised gradient approximations 

HBT Heterojunction bipolar transistor 

HCP Hexagonal close packed 

HF Hartree Fock (theory) 

HH Heavy hole 

HRXRD High resolution x-ray diffraction 

HVPE Halide vapour phase epitaxy 

IR infrared 

ISBT Inter-subband transition 

JDOS Joint density of states 

KS Kohn Sham (equations) 

LCAO Linear combination of atomic orbitals 

LDA Local density approximation 

LED Light emitting diode 

LEEBI Low energy electron beam irradiation 

LH Light hole 

MBE Molecular beam epitaxy 

MIS Metal insulator semiconductor 

M L Mono-layer 

MOSFET Metal-oxide semiconductor field effect transistor 

MOVPE Metal-organic vapour phase epitaxy 

MQW Multiple quantum well 

PD Probability density 

PL Photoluminescence 

PR Photoreflectance 

PZ Piezoelectric 

PWP Plane wave pseudopotential (calculation) 

QC Quantum cascade 

QCSE Quantum confined stark effect 

QW Quantum well 

QD Quantum dot 
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RF Radio frequency 

RHEED Reflection high energy electron diffraction 

SAW Surface acoustic wave 

SOC Spin orbit coupling 

SP Spontaneous polarisation 

SQW Single quantum well 

SSO Spin split off band 

TBM Tight binding method 

USP Ultrasoft pseudopotentials 

VB Valence band 

V B M Valence band maximum 

VBO Valence band offset 

VCA Virtual crystal approximation 

WZ Wurtzite 
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Chapter 1 

Introduction 

1.1 Semiconductors 

Semiconductors can be defined as materials possessing a fundamental energy gap 

of less than a few electron volts [1] and this is the origin of many of their characteristic 

properties which have not only formed the basis of much fascinating physics but are also 

exploited by the electronics industry. The semiconductor electronics revolution started with 

the invention of the bipolar junction transistor in 1947, followed by the integrated circuit, 

the MOSFET and the CMOS later in the twentieth century. Since then demand for increas­

ingly sophisticated electronic components has steadily increased and today semiconductor 

electronic components feature in most of the technology we use every day. The most well 

known semiconductor is silicon (Si), a group IV element with a diamond crystal structure, 

because it has become the semiconductor of choice for the integrated circuit industry. 

However, there are many other semiconductors that have found industrial application, 

although none to the same extent. Silicon is an indirect bandgap semiconductor and is there­

fore poorly suited in devices for light emission. To serve this purpose researchers have 

looked to other semiconducting materials, with direct band gaps, which are more effective in 

the efficient production of light. As well as Si, some group IV, V and V I elements are consid­

ered semiconductors, including germanium (Ge), phosphorus (P), tellurium (Te), selenium 

(Se) and sulphur (S). Binary compounds of two elements from groups HI and V or groups I I 

and V I of the periodic table, are also observed to be semiconducting. The compound semi­

conductors tend to exhibit larger fundamental energy gaps due to their increased ionicity, 
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which is a result of charge transfer from the group I I I (or II) atoms to the group V (or VI) 

atoms. GaAs is probably the most well known binary semiconductor and has found many 

commercial applications, primarily due to its high electron mobility compared to silicon and 

its direct band gap. Other materials have been shown to exhibit semiconductor behaviour, 

including layered semiconductors such as lead iodide (Pbl 2), organic semiconductors, and 

compounds with the formulas I-HJ-VI 2 or I I - IV-V 2 . The properties of a semiconductor can 

be varied by doping or two or more semiconductors can be mixed to form an alloy. In 

addition the construction of interfaces and heterostructures, including quantum wells, super-

lattices and quantum dots enables the electronic and optical properties to be tailored in a way 

that provides great scope in the construction of electronic and optical devices. The need to 

understand the physics of these materials and structures based on them continues and is as 

important and challenging as ever. 

One of the many semiconducting material systems experiencing a great deal of current 

interest is the group of binary compounds, comprising of group I I I elements and nitrogen, 

known collectively as the group HI - nitrides. 

1.2 Nitrides 

The work of this thesis is focused on the III-V system of semiconductor materials 

known as the group I I I - nitrides. In particular we are concerned with gallium nitride (GaN), 

indium nitride (InN), aluminium nitride (A1N) and their alloys, which are currently generat­

ing a considerable level of research interest. 

The lattice constants of the nitrides are considerably smaller than those of other III-V 

compounds, which is a direct result of the small covalent radius of nitrogen (e.g. 0.7 A for 

GaN, c.f. 1.18 A for GaAs). Large bond energies gives rise to high melting points which 

makes the crystal growth of nitrides more difficult. One of the most striking features is 

the ability of the nitrides to form stable crystals in either the zincblende (cubic) or wurtzite 

(hexagonal) crystal structure. The wurtzite structure is more thermodynamically stable and 

is the structure in which most of the devices are fabricated. The stability of the wurtzite phase 

for the nitrides is due to the small covalent radius of the nitrogen atom. A combination of 

the symmetry of the wurtzite crystal structure, and the partially ionic bonding, leads to very 
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strong (~ 1 MV/cm) piezoelectric fields when under strain, and a spontaneous polarisation 

of a similar order of magnitude, even without strain [2,3]. The total field, often referred 

to as a built-in electric field presents significant additional complications in experimental 

measurements of quantities such as band offsets. 

However, the property that has attracted most attention is the size of the direct band 

gaps of the nitrides, which spans the range from 2.0 eV (InN) to 6.2 eV (A1N) and includes 

the whole of the visible spectrum and some of the ultraviolet region. Figure 1.1 gives an 

overview of the lattice constants and band gaps of some III-IV materials. The wide range of 

band gaps and efficient luminescence makes the nitrides attractive materials for light emitting 

devices, specifically for bright colour displays, for which the primary colours of red, green 

and blue are required. Large outdoor full colour displays have been demonstrated [4], and 

look to be commercially successful. Bright white LEDs based on blue GaN LEDs that excite 

an yttrium aluminium garnet (YAG) phosphor have also been produced [5] and are likely to 

be commercially attractive because of their high efficiency. Another important application 

for the nitride semiconductors will be as short wavelength laser diodes for optical storage 

devices. The next generation optical disc standard, the 'blu-ray' disc is expected be read by 

a GaN based laser and will have a storage capacity of 27Gb in comparison to the 4.7Gb of 

a digital versatile disc (DVD). Other optical device applications include visible-blind ultra­

violet photodetectors, which are required to be selectively sensitive in the ultraviolet region 

of the spectrum. In addition the wide bandgap of GaN makes it a candidate material in the 

field of high frequency, high power electronic devices, important to the communications in­

dustry for satellite and terrestrial radio frequency electronics [5,6]. The high melting point 

and wide range of operating temperatures also makes GaN very suitable for high temperature 

electronics in the automotive and aerospace industries [6]. In fact the development of heat 

tolerant heterojunction bipolar transistors (HBTs) based on nitrides may allow the construc­

tion of an all electric aircraft. The strong piezoelectric properties of the hexagonal nitrides 

also makes them suitable for surface acoustic wave devices (SAW) in components such as 

filters, duplexers and resonators [5]. 
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Figure 1.1: The band gaps and lattice constants of the nitrides and other com­
mon HI-V compound semiconductors. The lattice constants are represented in 
zincblende equivalents for the wurtzite values to make a relevant comparison. The 
dashed line indicates the lattice constant of sapphire, which is commonly used as a 
growth surface [5,7,8] 

1.3 History of nitrides research 

Work on the synthesis of GaN began as early as 1938 when Juza and Hahn [9,10] 

passed ammonia over hot gallium, resulting in the growth of small crystals. The first GaN 

films were grown in 1969 when a number of workers attempted hetero-epitaxial growth on 

sapphire surfaces by applying the growth techniques developed for GaAs a decade earlier 

(see for example [11]). The growth was performed at a relatively high temperature of 1000 

°C, which has the advantage of increasing the Ga mobility on the growing surface. The suc­

cessful growth of GaN enabled the measurement of lattice constants [12] and other material 

properties such as the bandstructure, including the fundamental energy gap [13]. The first 

blue GaN LED (a metal insulator semiconductor (MIS) type diode) was fabricated in 1972 

by Pankove et al [14]. Further device developments were not achieved until the next decade 

as the GaN available was not of sufficiently high quality. Higher quality GaN was realised 

by Yoshinda et al in 1983 and later by Amano et al [15,16] when the use of an AIN buffer 

layer initially grown at a lower temperature (500 °C) on sapphire, allowed the fabrication 
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of higher quality crystals. The higher quality layers exhibited the strong photoluminescence 

and high mobility that was expected of crystalline GaN. The production of p-type GaN, nec­

essary for the p-n junction in LEDs and laser diodes, still eluded researchers until the mod­

ern growth techniques of metal-organic chemical vapour deposition (MOCVD), and later 

molecular beam epitaxy (MBE), were utilised. The first successful p-doping of GaN was by 

Amano et al [17] in 1989 through the Mg doping of MOCVD grown samples and the sub­

sequent irradiation by low energy electron beam irradiation (LEEBI). In x Gai_ x N was first 

grown in 1990 when Matsuoka et al [18] achieved films of In x Gai_ x N on sapphire for the 

whole range of indium compositions x — 0 -> 1. At the start of the 1990s A l x G a i _ x N was 

grown as part of a layered heterostructure by Khan et al [19] and Itoh et al [20]. In x Gai_ x N 

layered structures are observed to possess a large (~ 10 1 0 cm - 2 [21]) dislocation density in 

the GaN epilayers. Most recently the 2.5% lattice mismatch between GaN and A1N, or GaN 

and InN has been used during MBE growth to grow 3D quantum dots that form naturally as 

a result of "islanding" [22]. 

The use of alloys allowed a range of different material layers to be used as the building 

blocks that workers in the 1990s have used to construct the commercially important de­

vices described in section 1.2. Room temperature stimulated emission and lasing have been 

demonstrated and the thresholds of stimulated emission and lasing now improve every year 

(see [7] and references therein). This thesis is concerned with the heterostructure quantum 

well optical devices constructed from layers of GaN, In xGai_xN and A l x G a i _ x N . 

The quality of the nitride layers in the heterostructures that can currently be produced 

has come a long way from the first efforts at crystal growth. However, the materials are 

still of relatively poor quality. The large dislocation densities are a direct result of the lat­

tice mismatch between the Hi-nitrides and the substrate (usually sapphire). Despite these 

dislocation densities, optical device performance is still very impressive. In other III-IV de­

vices dislocation densities above ~ 10 3 cm - 2 would significantly reduce the performance 

of the device and in most cases stop it entirely at ~ 106cm~2 [7]. It has been suggested 

by Ponce [23] that the dislocations are clustered, leaving large regions dislocation free, and 

that the trapping/recombination centres may only be able to cope with a limited number of 

recombinations per unit time [7]. 

The poor quality of the nitride crystals has tended to inhibit the experimental determi-
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nation of the material properties. In particular the band offsets and the built in electric field 

strengths are not accurately known for layered nitride heterostructures. This situation makes 

theoretical studies even more important in the role of determining the various quantities of 

interest. 

1.4 Description of the work 

The thesis is concerned with theoretical calculations of the electronic structure of 

quantum wells constructed from the nitrides. In order to achieve this the bulk electronic 

structure of the nitrides is also investigated. The division into chapters is primarily by theo­

retical technique and in each chapter a theory is introduced followed by a presentation of the 

results and a discussion. 

Chapter 2 - Bandstructure Calculations 

The existence of hexagonal (wurtzite) and cubic (zincblende) phases for nitride crys­

tals is described in terms of stacking sequences. The hexagonal crystal structure of the ni­

trides is defined and discussed in some detail while a discussion of the cubic phase is deferred 

until chapter 5 in which calculations involving cubic GaN are first presented. The impor­

tance of the bandstructure is discussed and the empirical pseudopotential method (EPM) is 

introduced as an effective approach to bandstructure calculations which represents the wave-

functions as a Fourier series. The EPM is used because the accuracy with which it calculates 

both valence and conduction band states and the possibility of its application to alloys using 

the virtual crystal approximation. The empirical pseudopotential bandstructures for GaN, 

InN and A1N are presented as well as examples of the density of states and charge densi­

ties obtained for GaN. The effects of alloying, spin-orbit coupling and strain are considered, 

as is the choice of criterion for a convergent solution within the empirical pseudopotential 

scheme. The variations of the band gap and the effective masses for AlGaN and InGaN are 

presented as a function of alloy composition. 
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Chapter 3 - Complex Bandstructure 

The advantages of using bandstructures with complex wavevector in the considera­

tion of the electronic structure of finite spatial regions is explained. An eigenvalue method 

of generating bandstructures with a complex wavevector is outlined. Complex bandstruc­

tures of GaN, InN and A1N, within the empirical pseudopotential method are shown and the 

general topological features of these complex bandstructure are considered. The complex 

bandstructure of GaN with a non-zero wavevector in the growth plane, is investigated and 

the convergence of the complex bandstructure against number of plane waves, is considered. 

Finally the complex bandstructure of a strained alloy with the pseudopotential parameters 

derived from the virtual crystal approximation is also presented. 

Chapter 4 - Heterostructures 

The nature of nitride heterostructures is considered and a simple effective mass ap­

proach to modelling the bandstructure of a quantum well is outlined. The use of a transfer 

matrix method to establish the bound state energies and wavefunctions of a many layered 

heterostructure is discussed and a theoretical approach for calculating these bound states in a 

heterostructure using the complex bandstructure method is described. Bound state energies 

and probability densities are presented for GaN - InGaN conduction and valence band quan­

tum wells for a range of electric field strengths and alloy compositions. The bound states 

are found to be very strongly affected by the built-in electric fields. Bound states of the A l -

GaN - GaN conduction band quantum well and the associated momentum matrix elements 

of conduction subband transitions are calculated and compared with experimental measure­

ments. The complex bandstructure calculations of bound state energies are found to be in 

good general agreement with effective mass calculations. 

Chapter 5 - Wurtzite - zincblende interface 

The zincblende crystal structure is defined and the empirical pseudopotential band-

structure is presented along with the corresponding complex bandstructure. The convergence 

of the calculations is considered for both the bulk and the complex bandstructure. The con­

cept of wurtzite crystals grown pseudomorphically on zincblende substrates is introduced 

and the possibility of a zincblende - wurtzite quantum well is considered. The nature of a 
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wurtzite - zincblende interface is considered and a quantum well of GaN in the wurtzite and 

zincblende phase is modelled using the empirical pseudopotential complex bandstructure 

method. 

Chapter 6 - Ab-initio Calculations 

A commonly used, plane wave, pseudopotential method using density function theory 

is outlined as a versatile and convenient ab-initio approach to electronic structure calcu­

lations of semiconductors. Calculations are carried out for the compounds GaN, InN and 

A1N. Lattice constants are obtained including the effect of strain. The lattice properties of 

zincblende GaN, InN and A1N are studied with the effect of biaxial strain included. Finally, 

the band discontinuities are calculated for the wurtzite-zincblende interface and interface 

structural properties are presented including the atomic relaxation at the interface. 

Chapter 7 - Conclusions 

A summary is presented of the calculations carried out and the results obtained. Con­

clusions are drawn and suggestions for future work are put forward. 
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Chapter 2 

Bandstructure Calculations 

2.1 Introduction 

Bandstructure calculations remain at the heart of the theory of semiconductors and 

are an important starting point for the calculations performed in this work. This chapter is 

primarily concerned with an overview of bandstructure calculations using the empirical pseu-

dopotential method for bulk GaN, A1N and InN in the wurtzite crystal structure. A discussion 

of the zincblende crystal structure is deferred until chapter 5 where the pseudopotential ap­

proach is applied to zincblende-wurtzite homostructures. The generation of pseudopotential 

form factors for the alloys is discussed and examples of bulk bandstructure are presented for 

GaN, A1N, InN and their alloys under the biaxial strain which occurs in epitaxial layers of a 

heterostructure with a lattice mismatch. 

2.2 Crystal Structure 

The nitrides, GaN, A1N, InN and their alloys, like many other semiconductors are 

covalently bonded by the overlap of s-p3 hybrid bonding orbitals. These hybrid bonding 

orbitals have a tetrahedral geometry, with a bond angle of ~ 109.5°. The bond lengths, 

determined by x-ray crystallography [24] are shorter than those of many other IB-V semi­

conductors because of the smaller covalent radius of the nitrogen atom. The tetrahedral bond 

geometry can result in two different crystal structures, the exact structure depending on the 

stacking repeat sequence in which the layers of the crystal are built up. I f the atoms of the 
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I l i l J 
I B B 

Wurtzite Zincblende 

Figure 2.1: Wurtzite and zincblende crystal structures. The wurtzite structure is 
oriented along the (0001) direction and the zincblende along the (111) direction. 
The construction of the crystals through the stacking repeat sequence is indicated 
as ABABAB for wurtzite and ABC ABC for zincblende. 

layers are considered to be in the pattern of a close packed array of spheres, the atoms could 

align in one of three locations, labelled A,B and C. I f the placing of the atoms repeats as 

ABABAB then a wurtzite crystal structure results and if the repeat sequence is ABC ABC 

then the crystal has a zincblende structure. Figure 2.1 illustrates both crystal structures and 

the difference in repeat sequences. The wurtzite phase has hexagonal symmetry with space 

group P63mc and the zincblende phase exhibits cubic symmetry with space group F43m. 

The nitrides considered here are thermodynamically stable in the wurtzite phase, although 

the zincblende phase can be achieved, under suitable growing conditions. The existence of 

two phases is unusual for a m-V semiconductor although it is commonly observed in the 

I I -VI compounds, due to their more ionic bonding [25]. 

2.2.1 Wurtzite 

The wurtzite structure can be considered as two interpenetrating hexagonal close 

packed (HCP) lattices. Each of the two lattices contains an atomic species of the two com­

ponents labelled A and B. The two HCP lattices are displaced along the c-axis by uc where 

u is the 'internal parameter' and c is the lattice constant for the c axis. The crystal structure 

is described by a four atom basis and a Bravais lattice constructed using the primitive lattice 
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Figure 2.2: The wurtzite unit cell and 1st Brillouin zone indicating the irreducible 
wedge of the zone and points of high symmetry. 
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vectors 

b -

a 
v/3 1 

,0 a 

V3 1 
,0 a (2.1b) 

(2.1a) 

c = (0,0, l )c (2.1c) 

Therefore the crystal is defined by the internal parameter u and two lattice constants, a and 

c, where a refers to the hexagonal plane and c to its normal. The parameter a of wurtzite 

can only be meaningfully compared to the lattice parameter of zincblende i f a factor of y/2 

is taken into account (i.e. CLZB = V^awz)- Referring to figure 2.2, the four atoms that make 

up the basis, two of type A and two of type B are located at ± R i and ±R.2. By convention 

those denoted as type A are from group HI (i.e. gallium, indium and aluminium in this work) 

and are found at — R i and R 2 . 

and those of type B are group V elements (i.e. nitrogen in this work) and are found at — R 2 

and R i . 

It follows that by convention the [0001] direction is given by a vector pointing from the 

gallium atom to the nearest neighbour nitrogen atom [26]. This convention in positioning is 

important in order to achieve a consistent agreement on the polarity of the crystal [27]. 

For the so called ideal wurtzite structure all the bond lengths are equal, the internal 

1 a + b R 

1 u a + b + R (2.2b) 

(2.2a) 

1 (a + b + R 

1 u a + b + - + R 1 (2.3b) 

(2.3a) 
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parameter takes on the value u = 3/8 and the ratio of the lattice constants must then be 

c/a = y/8/3. Real wurtzite crystals are not quite ideal, and have two slightly different 

bond lengths. The reciprocal lattice of a simple hexagonal lattice is also a simple hexagonal 

lattice, and the first Brillouin zone of a wurtzite crystal is a hexagonal prism of volume 

2/y/3(2ir)/a2c as shown in figure 2.2 with the following points of high symmetry marked. 

i 4 = ( 0 , 0 , i ) 

M = ( ± 0 , 0 ) 
V 2 ' (2.4) 

r = (0,0,0) 
IT _ (2 1 1\ 

V 3 ' 3 ' 2 / 

2.2.2 Bandstructure calculations in semiconductor crystals 

An accurate theoretical representation of the electronic structure (i.e. the bandstruc­

ture) of a semiconductor crystal is critical to realistic calculations of devices or heterostruc­

tures of that material. To define the problem more clearly, we require the electronic structure 

to be known as a function of position in k-space; 

E = EJk) 
v ' (2.5) 

* = *„(k) 

where E is the energy, n is the band index and k is the wavevector. # is the single electron 

wavefunction. The first step is therefore the reduction of the many body problem of electrons 

and ions, to that of solving the single electron (time-independent) Schrodinger equation, 

(r) = f - ^ - V 2 + v) (r) = £ * ( r ) (2.6) 

The reduction is achieved, firstly by application of the Born-Oppenheimer approximation 

[28] which assumes that due to the differences in mass, the nuclear response to electron-
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nuclei interactions is very small and therefore the nuclei can be considered stationary. Sec­

ondly the Hartree or mean-field approximation assumes that each electron experiences an 

identical mean-field potential V, as a result of all the other electrons and nuclei. The full 

wavefunction can then be approximated by a Slater determinant of the one electron wave-

functions, solved using this mean-field potential (see for example [29]). Al l the difficulty 

in solving equation (2.6) lies in knowing the exact form of the potential V. This potential 

does however have the periodicity of the lattice. From Bloch's theorem [30] the eigenstates 

\&(r) of the one electron Hamiltonian in 2.6 have the form of a plane wave multiplied by a 

function with the periodicity of the Bravais lattice: 

*»k(r) = e i k r w n k ( r ) (2.7) 

where w nk(r + L) = «„k(r) for all L in the Bravais lattice. There are several different 

approaches to bandstructure calculations in semiconductors, one of the most commonly em­

ployed being the use of pseudopotentials in combination with a Fourier series basis set for 

the wavefunction. The pseudopotential approximation allows computationally efficient cal­

culations to be performed while retaining a realistic description of the electronic structure of 

valence and conduction electrons. In this work the empirical pseudopotential method (EPM) 

is used to calculate bulk bandstructures which are later used in a model for the bound states 

of heterostructures. 

2.3 Pseudopotential Method 

The pseudopotential approach was proposed by Fermi in 1934 [31] for the study of 

high energy atomic states and refined a year later by Hellman [32] for calculating alkali 

metal energy levels. However, most of the progress in applying pseudopotentials to metals 

and semiconductors occurred from the 1950s onwards (see for example [33], [34] and [35]). 

There are many excellent reviews and books about the pseudopotential method, its history 

and its application, see for example [25,35,36]. 

The pseudopotential bandstructure method considers the electrons to be grouped as 

either core electrons, tightly bound to the nucleus, or delocalised valence electrons which 
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are free-electron-like. For example Si has the electronic configuration ls 22s 22p 63s 23p 2, of 

which the Is, 2s and 2p form the core orbitals. The 3s and 3p orbitals are those responsible 

for the bonding between atoms and can be modelled by a so called pseudowavefunction, 

which differs from the true wavefunction only in the ionic cores that occupy a small fraction 

of the crystal volume, and obeys a Schrodinger-like equation with only a relatively weak 

potential. This assumption of a weak potential can be understood in terms of the fact that 

the valence electrons experience a nuclear potential that is screened by the core electrons 

and, in addition, the effect of the Phillips-Kleinman cancellation theorem [37]. The latter 

demonstrates that since the true wavefunction must be orthogonal to the core states, the 

pseudowavefunction behaves as i f there is a repulsive "orthogonality potential". It turns out 

that the repulsive orthogonality potential and the attractive core potential almost cancel. 

2.3.1 Orthogonalised Plane Waves 

A mathematical formulation of the above argument is now presented. First of all 

the true wavefunction \& must be expressed as a smooth wavefunction <j), which is to be 

determined, and a linear combination of occupied core state wavefunctions tyc 

(2.8) 
c 

The true wavefunction is forced to be orthogonal to the core requiring that 

(*d*> = 0, (2.9) 

for all c. Then solving for bc yields 

l * > = l * > - £ l * « > < * « W « (2.10) 
c 

which can be substituted into the Schrodinger equation H\$) = E\$) io give 
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H\<t>) - £ £ | ¥ e ) < ¥ e | * ) = E\4>) - £ £ | * c ) ( ¥ c | 0 (2.11) 
c c 

Now the Hamiltonian has the core states as its eigenstates, with energy Ec. Further, the 

Hamiltonian can be written as the sum of the kinetic T and potential V energy operators 

(H = f + V) 

f\<j>) + V\4>) - £ ) £ c | * c ) ( ¥ c | * > = E\cf>) -Y,E\Vc)(*M) (2.12) 
c c 

which can be rearranged to produce; 

f\(j>) + (y + VR)\(l>) = E\<t>) (2.13) 

where the orthogonalisation potential V R has been defined as 

V R = Y,{E - Et)<t>t{(j>t\ct>) (2.14) 
t 

If this potential is combined with the core potential V, the resulting total potential (or pseu­

dopotential V p ) is normally very weak [25]. The Schrodinger-like equation with a pseudo-

Hamiltonian Hp now becomes 

Hpct> = ( ~ ^ - V 2 + V + V*}<t> = ( - ^ - V 2 + Vp)<t> = E<f> (2.15) 

where 0 is a pseudo-wavefunction. The true wavefunction is related to <f> by equation (2.10). 
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Figure 2.3: Schematic representation of an actual potential and pseudopotential. 
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Figure 2.4: Schematic representation of an actual wavefunction and corresponding 
pseudo-wavefunction 
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2.3.2 Concept of a pseudopotential 

The cancellation of terms in equation (2.15) results in a pseudopotential which is 

weaker than the original ionic potential as illustrated in figure 2.3. Near the nucleus the ionic 

potential diverges, but the pseudopotential weakens, as a result the true wavefunction for 

the ionic potential has rapid spatial oscillations near the core, but the pseudo-wavefunction 

is quite smooth. Both the potential and pseudopotential, and the wavefunction and pseudo-

wavefunction become identical far away from the core. Note that although the true wave-

function and pseudo-wavefunction differ near the ionic cores, the ionic cores only constitute 

a small fraction of the crystal volume. 

2.3.3 Empirical pseudopotentials 

In this chapter we are concerned with pseudopotentials that have been determined by 

experimental measurements or more fundamental calculations. These pseudopotentials are 

said to be empirical, however it is possible to define pseudopotentials, from first principles 

without empirical input, using an all-electron calculation of the core states. Such an ap­

proach is often used self-consistently in combination with density functional theory (DFT) 

to provide accurate ground state properties of a system. In such an "ab-initio" calculation 

the pseudo-wavefunction would be used in turn to generate a new potential. The new po­

tential would be again used to generate a wavefunction, and the process would be repeated 

until the potential and wavefunction remained unchanged. The use of DFT is however, not 

an appropriate theory for the excited states of a system. First principles self-consistent cal­

culations are a powerful tool in the calculation of the electronic structure of solids, but the 

restriction to ground state properties means that they have limitations in the calculation of 

optical properties. 

Unlike ab-initio pseudopotentials, empirical pseudopotentials consider the pseudopo­

tential to include the mean field seen by a single electron due to all the other electrons. 

This information is included by parameterising the pseudopotential and fitting by compari­

son with experimental bandstructure data. In this way the effects of temperature, exchange 

and correlation are all included, although only because they were present in the experiments 

from which the data is taken. The use of experimental information should in principle make 

the pseudopotential self-consistent, but this is not explicitly enforced. Studies of the na-
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ture of empirical pseudopotentials have been performed and suggest a reasonable level of 

self-consistency can be achieved [38]. 

The form of equation (2.14) suggests that the pseudopotential will generally be spa­

tially non-local in nature [39]. In practice, for wurtzite materials the non-local contribution 

is normally small [40] and is not included in these calculations. The total pseudopotential of 

the lattice is periodic and can be written in a Fourier representation. 

V p ( r ) = ^2vgei*r (2.16) 
g 

V p ( r ) is the local crystal pseudopotential and is parameterised by the Fourier coefficients 

V g whose g are reciprocal lattice vectors. The coefficients V s of equation (2.16) are often 

referred to as the "pseudopotential form factors". It follows from the theory of Fourier 

analysis that 

V g = i f Vp{v)e-is rdh (2.17) 

Here Q is the lattice unit cell volume. V(r) can be rewritten in terms of 'atomic' pseudopo­

tentials of each atom in the unit cell. 

Vp(r) = Y^i2Ut

p(r-Lj-Ri) (2.18) 
hj Ki = l 

Here Uf is the atomic pseudopotential, R j is the atomic positions within the wurtzite unit 

cell, as defined by equations (2.2) and (2.3) for atom i and L , is the j t h lattice vector. Com­

bining (2.17) and (2.18) gives 

Vs = 7> E f U?(T ~ R O e - ^ r (2.19) 
" i=x J n 

The atomic form factors for each of the A and B atomic species can now be defined as 
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U*i = fi J (2-20) 

where j = A or B. Equation (2.19) can now be simplified in terms of the atomic form factors 

v* = \ [ e i s K l U s A + e ' i s K 2 U e , A + e ^ U e , B + e-^Us>B] (2.21) 

It is convenient to express V s in terms of symmetric V 5 and antisymmetric V* form factors: 

Vi = V%Sl + iVfS$ (2.22) 

where = \[UsA + US)B] and V* = \[UsA - USyB}. The structure factors; S% and S f , 

contain the terms which are dependent on the crystal structure and are defined as 

Sg = cos(g • R i ) + cos(g • R 2 ) = cos 

5^ = cos(g • R i ) - cos(£ g. H. ) - a » [ i h r g + = + (21)] (2.23b) 

where l,m,n are the integer components of reciprocal lattice vector g such that g = la* + 

rab* + nc*. Note that although the lattice constants do not appear in the definition of the 

structure factors, and S£ are functions of u and are therefore changed by any deviation 

of u from its ideal value of 3/8. 

The atomic pseudopotentials are taken to be spherically symmetric, and it follows that 

the pseudopotential form factors depend only on the magnitude of the reciprocal lattice vec­

tor. The symmetric and antisymmetric form factors can now simply be described by U9tA 

and UgtB where g = |g|. This greatly reduces the number of independent form factors that 

define the pseudopotential and therefore the number that have to be determined. Vg=(0oo) is 

spatially independent, contributing only to a uniform potential and is usually set to zero. The 

structure factors for g = (003), g = (211) and g = (213) and the antisymmetric structure 
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g g 2 s! si 
(100) i 

2 
0* 

(002) 3 0.71 0.71 
(101) 

° 3 

0.33 0.80 
(102) ° 3 0.35 0.35 
(210) 8 1 0 + 
(103) 1?, 0.80 0.33 
(200) 

1?, I 
2 

o t 
(212) 11 0.71 0.71 
(201) 11-5-

1 1 12 0.33 0.80 
(004) 12 0.00* 1.00 
(202) 13| 0.35 0.35 
(104) 14I 0.00* 0.50 

Table 2.1: The reciprocal lattice vectors used in Fourier expansion of a wurtzite 
pseudopotential. The values of g 2 and the structure factors Sg and S£ are displayed 
for ideal wurtzite, u = 3/8 and c/a = y/8/3 and will vary slightly for the non ideal 
case. * The symmetric structure factors for (004) and (104) are only exactly zero 
for ideal wurtzite. f the antisymmetric structure factors for (100), (200) and (210) 
are zero for all u 

factors for g = (100), g = (210) and g = (200) are also zero and the corresponding form 

factors are not required. 

The Fourier expansion of the lattice pseudopotential is truncated and it is found that 

for the wurtzite structure 21 form factors, (12 symmetric and 9 antisymmetric) are sufficient 

to adequately describe the potential. The complete list is given in table 2.1. 

In summary, we may write the pseudopotential of the crystal lattice as; 

VP(T) = E (v?si+iV9Asi)eigr <2-24> 
g 

2.3.4 EPM calculations of electronic structure 

Having considered the nature of the pseudopotential and the general form of the em­

pirical pseudopotential for wurtzite materials, the application of the pseudopotential method 

to the calculation of electronic structure of a nitride semiconductor will now be discussed. 

A pseudo-energy eigenfunction for the crystal will still satisfy Bloch's theorem and can be 
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written as a Fourier series expansion; 

0Bk(r) = e * - r £ a g e * p (2.25) 
g 

Where a g is the Fourier coefficient for the reciprocal lattice vector g. The energy eigenval­

ues and their associated pseudo-wavefunction, can be obtained by solving the Schrodinger 

equation which, in the representation of equation (2.25), is the matrix equation with the 

pseudo-Hamiltonian in a plane wave basis. 

# g

p

g , a g = Kae (2.26) 

The pseudo-Hamiltonian matrix is given by 

^ ' = 2 ^ : ( k + g ) 2 5 g ' g ' + v 1 g - g ' 1 ( 2 - 2 7 ) 

where V j g - g ' | is the coefficient of e ' ( g - g ' ) ' r on the right hand side of equation (2.24). 

2.3.5 Spin-orbit coupling 

Spin-orbit coupling (SOC) is the interaction of the electron spin and its orbital angular 

momentum which causes the degeneracy of some of the electron states in the crystal to 

be lifted. It is a relativistic phenomenon and is therefore more pronounced in the heavier 

elements. The electronic states of nitrogen are known to dominate the electronic structure 

at the top of the valence band [40], where the effect of spin-orbit coupling is expected to 

be most noticeable. Although nitrogen is a light element, the spin-orbit splitting cannot be 

ignored without undue error. The spin-orbit coupling is described by a contribution to the 

Hamiltonian 
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jjSOC 
h 

Arrive2 
<r ( W ( r ) A p) (2.28) 

where here c is the speed of light, and a is the Pauli spin matrix, with 

0 1 0 -i 1 0 
ox = Oy - Oz = 

1 0 
Oy -

i 0 0 -1 
(2.29) 

Spin-orbit coupling has been incorporated into the pseudopotential scheme by Weisz [41] 

and others [42,43] and here we make use of the simplest form of the approach. Weisz has 

shown that H s o c can be parameterised within the pseudopotential scheme as 

Hs

s°f = -»A5(g - g > • (K A K') (2.30) 

where K = k + g and A is an adjustable parameter for interaction strength. It can be shown 

that 

- i A 5 g _ g / = - i \ s (cos(g • Rx) + cos(g • R 2 ) ) + XA (sin(g • R i ) + sin(g • R 2 ) ) (2.31) 

where the parameters A s and XA are determined empirically and are usually expressed in 

terms of two more factors 5M and Sa by 

(2.32) 

^5 _ Sn(l + Sg) (2.33) 

Sn determines the strength of the spin-orbit coupling and Sa gives the relative strengths of 
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Figure 2.5: (a) Schematic illustration of the spin-orbit splitting and crystal field 
splitting in wurtzite materials, (b) Schematic illustration of the resulting valence 
bandstructure near the zone centre. The heavy hole (HH), light hole (LH) and crys­
tal hole (CH) bands are indicated. 

the spin-orbit interaction for the two atomic species A and B. 

With the inclusion of spin-orbit effects the states of the system are now spinors and 

the wavefunction of equation (2.25) must be modified to include spin up and spin down 

components. 

m = E e i ( k + g ) r ( 2 - 3 4 ) 

g \ a s i J 

2.3.6 Crystal Field Splitting 

Spin-orbit coupling has a significant effect on the bandstructure at the top valence 

band in nitride semiconductors. Fig 2.5a shows schematically how some splitting of bands 

occurs due to the spin-orbit interaction. Additional splitting is observed due to the symmetry 

of the crystal, known as crystal field splitting. The crystal field splitting is a function of the 

deviation of the crystal from ideality, i.e. a function of the change in u from the ideal internal 

parameter u = 3/8 and the deviation from the ideal ratio of lattice constants a/c = >/8/3 

[44]. The crystal field splitting (also shown in fig 2.5a) is given by 
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ACF = Er6 - ETl 

A C F = Ag. F + a (u - f ) +/? - y § ) 

where a = -17eV and /? = 2eV for GaN [44], indicating that A C F is strongly effected by 

changes in u. The combination of these spin-orbit coupling and crystal field splitting gives 

rise to the valence bandstructure shown in fig 2.5b. A schematic representation of the three 

bands is shown in figure 2.5. The energies at the top of the three valence bands are given 

by [45] 

E0 = Q 

Ex = - 1 ( A 5 0 + A C F ) + | y/(&so + A C F ) 2 - | A S O A C F (2.36) 

E2 = - J ( A s o + A C F ) - \\J{&so + A C F ) 2 - | A 5 0 A C F 

where Aso is the splitting due to spin-orbit coupling alone, and E\,E2 and E3 are the ener­

gies of the top three valence bands. 

2.3.7 Fitting of Pseudopotentials 

Experimental information is incorporated into the pseudopotentials through the sym­

metric and antisymmetric pseudopotential form factors. Bandstructure information for a 

particular material is obtained from experiment and/or from more fundamental calculations. 

This bandstructure data is used to determine a set of V^5 and V£ that define the pseudopo­

tential for the specific reciprocal lattice vectors of the material in question. The simplest 

approach is to fit the set of V£ and directly to the bandstructure data. Data for form 

factors established in this way are available in the literature (see for example [45]). This 

approach is well established and has proved to be a very successful tool in the calculation of 

electronic structure [25,46], but there is no ready way to use the results to obtain the form 

factors of the material when strained, or of alloys made from the material. 

An alternative approach, which is used throughout this thesis, is to parameterise the 

functions and V£, for a range of continuous q values, such that the form factors could 

be obtained for any reciprocal lattice in that range. This approach provides more flexibility, 
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as the reciprocal lattice vectors can be varied as the lattice constant changes with strain or 

alloying. The symmetric and antisymmetric functional forms of the pseudopotentials used 

in this work are given below [47,48] 

V s = " i f + *» (2.37) 
9 I .). e[o3(a4-92)] v ' 

V A = (P1Q

2 + (32)e^-^ (2.38) 

where ai}i = 1-4 and i = 1 - 4 are the parameters to be adjusted in the fitting procedure 

and q (in units of 2-n/azB) is the magnitude of the reciprocal space vector at which the 

form factors are required. The values of a» and /?» are fitted using a Monte-Carlo approach 

in which the values or fa are varied randomly until the pseudopotential reproduces the 

experimental bandstructure data to within the required accuracy. The experimental data is 

in the form of typically between three and six band energies at three different points of high 

symmetry. A weighting is applied to the fitting to ensure the more important transitions 

are fitted more accurately (e.g. those across the principal band gap). Specifically the fitting 

procedure attempts to minimise the function: 

e = M " . k ) I^EPM(n, k) - £ T A R 0 E r ( n , k ) | 2 (2.39) 
nk 

where the index n refers to the band energy information at each of the k-points. In each loop 

of the algorithm the weighted error e is calculated for a new changed set of a* or $ and the 

changes are only retained if e is reduced. The algorithm for this approach is described by the 

flow chart in figure 2.6. Care must be taken to avoid the procedure becoming trapped in a 

local minimum of e. 

The lattice parameters and the internal parameter u are set to the experimental values or 

those obtained from a first principles calculation. Spin-orbit splitting parameters are usually 

fitted after the procedure has minimised e for a bandstructure with spin-orbit effects ignored. 

A single spin-orbit parameter is then manually fitted to the experimental values of Aso-

As well as agreeing with the experimental data at the three points of high symmetry, 

several other constraints were placed on the resultant functional forms of the pseudopoten-
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Figure 2.6: Flowchart describing the procedure for fitting of a parameterised pseu­
dopotential to experimental values. 

tials. 

1. The Vq functional forms must be smooth and physically reasonable 

2. The Vq functional form for a particular material should bear some resemblance to that 

of its zincblende counterpart 

3. Reasonable deformation potentials should be obtained 

By physically reasonable we mean constraints such as the requirement that the potential 

decays away from the atom. The second point is a result of the concept of atomic pseudopo-

tentials and attempts to maintain a consistency between the two structures. It is logical to 

expect two different crystal pseudopotentials derived from the same atomic species to have 

a similar form. The recent method adopted by Goano et al [49] for the functional form of 

nitride pseudopotentials takes this idea a stage further. In the scheme of Goano et al [49], 

the functional form is applied to the atomic pseudopotential and the bandstructure data is 

used to fit the atomic pseudopotentials which in turn are then used for the production of the 

pseudopotential form factors. The atomic functional forms generated in this way are how­

ever still dependent on the structure they are part of, e.g. there are three nitrogen atomic 

function forms, one for each of A1N, GaN and InN. In the calculations performed by Goano 
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V s V A 

ax 0:4 fa 02 0Z A 

GaN 0.0837 -0.5643 -0.5485 10.5076 0.0148 0.0869 0.1265 9.3214 

InN 0.0843 -0.6104 -0.5851 10.3746 0.0079 0.0857 0.0492 9.6443 

A1N 0.0767 -0.4478 -0.4831 10.7550 0.0018 0.1005 0.1736 10.7369 

Table 2.2: The oij and 0i parameters for the functional form of the symmetric and 
anti-symmetric form factors for wurtzite GaN, InN and A1N. [47,50,51] 

et al [49], nonlocal corrections are included which although often important are not com­

patible with the complex bandstructure techniques used later on in this work. No data was 

available on the effectiveness of this method without the nonlocal components and therefore 

the approach outlined in figure 2.6 is adopted. The a* and 0i parameters as well as the spin 

parameter n used in this work for wurtzite materials were obtained by Pugh et al [47] and 

are presented in table 2.2. 

The symmetric and antisymmetric Vq curves are displayed in figure 2.7. As Dug-

dale [40] and Goano et al [49] point out the antisymmetric form factors for A1N are signifi­

cantly larger than those of GaN and InN leading to some disagreement with pseudopotentials 

produced by other workers [45,49,52-54]. The larger antisymmetric form factors are quite 

obvious from inspection of the curves in fig 2.7. However, the general form of the curves is 

consistent with other similar studies of zincblende and wurtzite systems [25,40,46]. 

2.4 Nitride Bandstractures 

The bandstructures of GaN, InN and A1N are presented in figures 2.8-2.10. 263 plane 

waves per spin orientation were used in the calculations, the choice of this number is dis­

cussed in section 2.4.4. All three materials are direct gap semiconductors, with the valence 

band maximum at T. It is worth noting that the band ordering of A1N at the top of the valence 

band is different to that of GaN and InN in that A1N has a negative crystal field splitting. 
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Figure 2.7: The symmetric (blue) and antisymmetric (red) Vq curves for wurtzite 
GaN, InN and AIN using the parameters from table 2.2. 
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Figure 2.8: Empirical pseudopotential bandstructure of wurtzite GaN 
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Figure 2.9: Empirical pseudopotential bandstructure of wurtzite InN 
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Figure 2.10: Empirical pseudopotential bandstructure of wurtzite A1N 
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2.4.1 Accuracy of E P M bandstructures 

Unfortunately the details of the electronic structure at the top of the valence band for 

the nitrides are still contentious. In particular, the values of ACF and A 5 0 to be found in the 

literature vary considerably [8]. Most of the valence bandstructure information comes from 

first principles calculations and very little experimental information is available to support 

these. Even the commonly accepted values of the band gap are not beyond dispute, and 

notably for InN where the measurements of band-gap vary widely [55]. Analysis of the 

optical absorption of crystals grown by different techniques gives rise to band gaps from less 

than leV to above 2eV [56]. Wu et al [55] recently examined the optical properties of a 

series of MBE-grown InN films and found the band gap of InN to be below 1.0 eV rather 

than the accepted value of 1.95 eV. 

The bandstructure information derived by Pugh et al [47] and used to construct the 

pseudopotentials in this work is in general agreement with much of the data in the literature 

and is considered adequate. However, as with any calculation based on empirical input the 

results are only as reliable as experimental data used as input. Further progress in obtain­

ing reliable data for nitride bandstructures can be put to use in calculations as appropriate. 

The experimental results upon which these bandstructures are based are examined in detail 

by Dugdale [40] and Pugh et al [47]. A review of band parameters for a range of III-V 

semiconductors including the nitrides can be found in [8]. 

2.4.2 Density of states 

The density of electronic states at energy E is given by 

where the summation is over all energy bands n and the integral is over a single Brillouin 

zone. Evaluation of equation 2.40 requires only a knowledge of the relationship between E 

and k for each band and the integral is carried out numerically by a sampling of k throughout 

the Brillouin zone. As an illustration, the density of states for GaN is plotted in figure 2.11. 

d3k 
g(E) = ] > > ( £ ) = £ J '•-En) 

n n 

(2.40) 
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Figure 2.11: Density of states for GaN 

2.4.3 Pseudo-wavefunction 

The pseudo-wavefunction is important in calculations of overlap integrals, matrix el­

ements of quantum mechanical operators and the dielectric function for a bulk material. In 

this work we are concerned with the calculation of properties such as the quantum well 

bound states constructed from bulk pseudo-wavefunctions. However it is also interesting to 

use the pseudo-wavefunction to calculate the charge density for a unit cell of bulk GaN. The 

(pseudo) charge density for the nth band is defined as: 

In which e is the charge of an electron and the summation is again over all states in the 

Brillouin zone. The k-space summation can be made computationally more efficient by 

summing the charge at several representative "special" k-points [57,58], (see [25] for more 

details). The total valence charge density can be obtained by summing over all the individual 

valence bands. The calculated valence charge density of GaN is shown in figure 2.12. The 

highest concentration of charge is situated between the atoms as would be expected for a co-

valently bonded material. Some ionic character is apparent with significantly greater charge 

density observed near the anion (N) than the cation (Ga). 

fc(r) = e V | ^ ( r ) f (2.41) 
k 
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Figure 2.12: Valence charge density for GaN along the bond plane. The y-axis is 
the growth direction and the a>axis defines the plane to cut through the core sites 
and the bonds between them. The contours are in units of electrons per unit cell 
volume 
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2.4.4 Convergence 

In section 2.3 it was stated that the pseudopotential wavefunction was expanded as a 

Fourier series, also referred to as an expansion in plane waves. In this section we consider at 

what point the Fourier series can be truncated and still be an adequate approximation to the 

pseudo-wavefunction. Figure 2.13 shows the change in the calculated energy eigenvalues of 

the conduction and valence bands with increasing number of plane waves. The plane waves 

are added in groups of equal energy in order to ensure there is a closed set of reciprocal lat­

tice vectors [49]. As can be seen from the figures, the energies are converged to within about 

0.02eV per unit cell, at 263 plane waves per spin direction, and no significant benefit is ob­

served for any higher values up to 496 plane waves. Although convergence of energies does 

not provide definitive evidence for convergence of the pseudo-wavefunction, it is generally 

accepted as a strong indicator. 

It is worth noting that the computational time taken to diagonalise the Hamiltonian 

matrix varies with the cube of its size. For calculations that include spin the matrix size 

is doubled. It is clear that very significant savings in computational effort are achieved by 

choosing the lowest acceptable number of plane waves. For this reason 263 plane waves 

have been chosen for our calculations. The truncation of the Fourier series is often described 

in terms of the maximum kinetic energy of the plane waves used, the kinetic energy cutoff. 

For the lattice parameters of GaN, 263 plane waves corresponds to a kinetic energy cutoff of 

183eV. 

2.5 Alloys 

An important benefit of including an alloy as part of a heterostructure is the ability to 

tune the properties of the alloy through the choice of alloy composition x. However, the use 

of alloys leads to the need for a theoretical description of material properties that is valid for 

a range of alloy compositions. In this work we are concerned with the ternary nitride alloys 

InxGai_xN and A^Gai^N. 

To describe successfully the electronic structure of an alloy any theoretical technique 

must take account of the local strains present due to the lattice mismatch of the constituent 

materials. Two ab-initio approaches commonly employed are the use of cluster expansions 
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Figure 2.13: The convergence of conduction band (top) and valence band (bottom) 
energies at various points of high symmetry with increasing number of plane waves 
N. The top of the valence band is considered to be zero for all energies. 
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Figure 2.14: The virtual crystal concept. Schematic illustration of a random alloy 
with randomly positioned atomic species, and the corresponding virtual crystal with 
a single species representing the average of the constituents in the alloy. The atomic 
sites in the random alloy are clearly subject to local strain fields resulting from the 
different lattice constants of A and B. 

[59] and supercells [60]. A cluster expansion involves the study of a set of ordered crystal 

structures, which are in turn used to infer the properties of a disordered alloy. The second 

approach involves the use of supercells with atomic species of the alloy randomly placed at 

the lattice sites and normally involves considerable computational effort as 1000s of atoms 

are required in a supercell. 

One successful empirical approach involves the use of parameterised force fields and 

potentials with large supercells [61] to approximate the local strains, but this is still relatively 

computationally expensive, k • p parameters have been derived from EPM calculations and 

can provide a continuum model of the alloy [51]. However the virtual crystal approximation 

(VCA) within the framework of the pseudopotential approach is employed in this work. 

2.5.1 Virtual crystal approximation 

The virtual crystal approximation considers the alloy to be a uniform crystal composed 

of one atomic species for each lattice site that displays the characteristics of the alloy [47, 

50] as illustrated in figure 2.14. The characteristics are modelled by choosing parameters 
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that are a concentration dependent function of those of the real atoms. For example the In 

and Ga atoms in the alloy Ia,.Gai_ xN would be approximated by a single "virtual" atom. 

The In-N and the Ga-N bond lengths are assumed to be the same in the virtual crystal and 

therefore local strain fields are ignored. The virtual lattice constants a(x) and c(x) can be 

approximated by Vegard's Law [40] which approximates the lattice constants as the mean of 

the lattice constants of the binary compound, weighted by their relative compositions. For 

the alloys considered here 

A combination of Rutherford, HRXRD and elastic recoil detection analysis that the predic­

tions of Vegard's law and measured lattice constants agree to better than 2% [62-65] for 

the nitride alloys. No consistent experimental data exists for the variation of u with alloy 

composition x so it is assumed to vary linearly with x. Note however that the crystal field 

splitting of the valence bands is not expected to vary linearly with x because of the nature of 

the strong dependence on u. 

Chemical and electronic clustering 

The assumption of a completely randomly disordered alloy is implicit in the adoption 

of the virtual crystal approximation. However, for In x Gai_ I N in particular, the clustering 

of In atoms has been observed [61,66,67]. The effect of this chemical clustering or phase 

separation is to introduce local regions of high indium concentration that may act like quan­

tum dots and confine the carriers. As well as changing the electronic structure, it has been 

proposed that this effect could give rise to high efficiency of optical emission even in the 

presence of dislocations [7]. 

In addition to chemical clustering, Bellaiche et al [68] have used large supercell empir-

CAlGaNVx) 

ClnGaN{x) 

CAlInN\X) 

(3.190 - 0.080:r)A 

(3.190+ 0.354rr)A 

(3.544 - 0.434z)A 

(5.189 - 0.080x)A 

(5.189 + 0.529x)A 

(5.718 - 0.735z)A 

(2.42) 
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ical pseudopotential calculations to predict an "electronic clustering". This is in the form of 

In-localised hole wavefunctions for low In concentration alloys. The existence of localised 

states is thought to have a strong effect on the effective band gap of the alloy and its variation 

with alloy composition. 

Clearly the VCA is a simplistic approximation to the complexities of a real alloy, but 

it has been successfully applied to several HI-V alloys that do not contain nitrogen. Given 

the existence of both chemical and electronic clustering in the nitride alloys the VCA is used 

here with an understanding of its limitations. 

2.5.2 Empirical pseudopotentials for alloys 

The simplest approach to applying the empirical pseudopotential method to alloys 

within the VCA is to fit the pseudopotentials of a virtual crystal to experimental information 

on the alloy at that composition. However this approach relies on experimental information 

being available at all alloy compositions of interest, rather than providing a means to predict 

the properties of alloys. 

In this work the pseudopotential for the virtual crystal is assumed to be the composi­

tion weighted average of the pseudopotentials of the alloy constituents and the symmetric 

and antisymmetric form factors are averaged using Vegard's Law. The symmetric and anti­

symmetric form factors for I ^ G a i ^ N are therefore given by 

y alloy = ylnNx + yGaN ^ _ ^ y.43) 

where Vg

In and V^a relate to bulk InN and A1N, but at the g values relevant to the alloy and 

the new alloy volume. 

2.6 Strain 

Strain can arise in semiconductors in a number of ways, including growth on a lattice-

mismatched substrate, applied stress, thermal expansion and the piezoelectric effect. In the 

case of heterostructures, strain due to lattice mismatch is often deliberately introduced. If one 
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material is grown on a crystal substrate with a different equilibrium lattice constant then the 

atoms of the growth layer try to match up neatly with the atoms of the substrate. Depending 

on the growth conditions and the thickness of the growth layer one of several outcomes is 

possible: 

1. The strain causes the growth atoms to collect together into "islands" or other strained 

nanostructures. Island formation is used in the preparation of self assembled quantum 

dots and is the subject of much current research [69]. 

2. If the in-plane strain does not cause islanding, then up to a certain critical layer thick­

ness the layer grows "pseudomorphically" with the same in-plane lattice constants as 

the substrate and is said to be a strained layer. 

3. If the layer thickness is too large then the formation of dislocations is energetically 

favoured and further layer growth is relaxed towards the equilibrium lattice constant 

of the growth material. The layer thickness when this begins to occur is known as the 

critical layer thickness, denoted by hc. 

If a strained layer results from the growth then a relaxation of the lattice constant in the 

growth direction is observed to compensate for the in-plane strain. For an epitaxial layer with 

an in-plane lattice constant larger than that of the substrate, the resulting in-plane (biaxial) 

compression gives rise to an increase in the perpendicular lattice constant of the growth 

material. Conversely for an in-plane expansion (biaxial tensile strain) caused by a smaller 

lattice constant, a reduction in perpendicular lattice constant would be observed. This is 

illustrated schematically in figure 2.15. 

2.6.1 Elastic Theory 

The relationship between the stress applied to a crystal and the resultant strain is 

described by elastic theory and is important to an understanding of strained systems and 

strain related effects such as piezoelectricity. A brief account of the relevant parts of elastic 

theory is given below, but for a more detailed study, see for example [72]. 

When subjected to a stress a solid body changes its shape. Below the elastic limit this 

change is reversible and can be considered linear. The fourth rank elastic stiffness tensor 

Cijki relates the stress tensor to the strain tensor e*/ 
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Figure 2.15: Schematic representation of the growth of an epilayer on a substrate 
and the resulting relaxation of lattice constant. as is the substrate in-plane lattice 
constant and ae is the epilayer in-plane lattice constant, i) a„ — ae- growth of epi­
layer without strain, ii) as < ae - in-plane compression results in growth direction 
relaxation of epilayer with cg > ce. iii) as > ae- in-plane tension results in growth 
direction relaxation of epilayer with cg < ce. 
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<*ij = C-ijkltkl (2.44) 
kl 

In the absence of body-torques the tensors for stress and strain are symmetric [72] and there­

fore can be represented by 6 independent components. 

Oil 031 

0"12 (722 032 

013 2̂3 0"33 

2̂1 €31 

€22 3̂2 

ei3 2̂3 3̂3 

0\ 06 05 

06 

05 

2f6 2C5 

1, 2C5 

(2.45) 

(2.46) 

It follows that the number of independent components in dju drops from 81 to 36. It is often 

convenient to represent this simpler situation with a matrix notation where stress and strain 

are expressed as column matrices a{,tj with 6 components and ĉ w is expressed as a square 

matrix of order 6. 

°i = ^2 Cijtj (2.47) 
j 

In a crystal can be reduced further due to symmetry. For all crystal structures the matrix 

is found to be symmetric and in addition further reductions in number of independent com­

ponents for crystal structures of higher symmetry are noted. For hexagonal crystal structures 

five independent components exist; cu,c 3 3,c 44,ci2 and c i 3 . [73] 
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Cll Cl2 Cl3 0 0 

Cl2 Cn Cl3 0 0 

Cl3 Cl3 C33 0 0 

0 0 0 C44 0 

0 0 0 0 C44 

0 0 0 0 0 

(2.48) 

The independent components of Cj, (called stiffness constants) are usually determined exper­

imentally for each bulk material. The inverse relation between stress and strain is expressed 

in terms of the compliance constants 

3 

2.6.2 Uniaxial Stress 

Uniaxial stress is an important experimental tool because it can be used to break 

crystal symmetry. It can also be used to define Poisson's ratio. Consider a uniaxial stress in 

the ^-direction (growth direction), the only non-zero stress tensor element is then 0-33 = a 

ti = < 

sna 2 = 1,2 

s33(7 i = 3 

0 otherwise 

(2.50) 

Poisson's ratio v is defined as minus the ratio of the strains perpendicular and parallel to the 

stress axis, 

v - -— - - — (2.51) 

Poisson's ratio is a property of the material and for tetrahedral semiconductors it typically 
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has a value of about 1/3. 

2.6.3 Biaxial Stress 

In the case of planar heterostructures we are mainly interested in biaxial stress. The 

strains in both in-plane directions (i.e. parallel to the growth plane) are equal and given by 

as — ae 

en = ex = e2 = (2.52) 

which gives rise to a relaxation (strain) perpendicular to the growth plane 

e L = e 3 =

 cJLZ^l = _ c J l { e i + e 2 ) (2.53) 
Ce C33 

The strain is often written in terms of Poisson's ratio v 

2v 

e,| = e x (2.54) 

For a value of v = | , equation (2.54) gives ej| ~ e± 

Critical Layer Thickness 

The heterostructures in this work are assumed to be continuous defect free crystals 

made up of strained layers that normally only exist below the critical layer thickness hc 

(sometimes referred to as the critical film thickness). It is therefore important to have an idea 

of the size of hc for relevant materials. A brief discussion is presented here, but for a more 

complete review, see the work of Jain [7,74,75]. 

The critical layer thickness is a function of the in-plane strain and the material proper­

ties. There exist two main approaches to modelling this behaviour; the energy minimisation 

approach and the force balance approach [74]. The energy minimisation approach was first 

proposed by Frank and Van der Merwe [76] in 1949 and, as is suggested by the name, relies 

on the minimisation of the system's energy [77]. The force balance approach was developed 
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by Matthews and Blakeslee in 1974 [78] and is based on thermodynamic assumptions and 

represents an elasticity theory approach [79]. The two approaches can be shown to be equiv­

alent if the same values of dislocation energies are used [74,75]. From the force balance 

approach, the critical layer thickness is given as [40] 

Here v is Poisson's ratio, b is the length of the dislocation Burgers vector and q is the core 

cutoff parameter, assumed to be equal to b. pc is the core energy parameter, which is usually 

fitted to experiment and typically has values between 1 and 4 [79]. Equation 2.55 is clearly 

transcendental and is normally solved numerically, but recently it has been shown that its 

solution can be written analytically [79]. When compared to experimental values, equation 

2.55 tends to underestimate the value of hc, primarily because real growing conditions are 

less favourable to the propagation of dislocations. 

Experimental measurements of hc vary considerably. For A1N grown on GaN, val­

ues of hc measured by RHEED vary from 4 A to 30 A [75,80,81]. For InN on GaN, hc is 

estimated to be 6 A [81]. Larger values of hc occur for the alloys when the strain is signif­

icantly reduced. For example Akasaki and Amano looked at the critical layer thickness of 

In x Gai_ x N and Al^Gai-^N grown on GaN, and observed hc of 300 nm - 700 nm [82-84]. 

No significant variation with indium alloy composition was noted, over the range of low in­

dium alloy composition (x = 0 — 0.2) studied, however hc is usually thought to be a very 

strong function of alloy composition [5]. 

2.6.4 Strain in pseudopotential theory 

Strain is included in the empirical pseudopotential method through i) alterations to 

the pseudopotential formfactors Vg, and ii) the change in the lattice constants and hence the 

reciprocal lattice vectors g. The concept of transferable pseudopotentials, requires that the 

form of the atomic pseudopotentials should not change under the influence of strain. The 

values of the form factors Vg will therefore only be different in that g will have changed. The 

advantages of a functional form for the pseudopotential are fully appreciated at this point, 

1 - W4 Pchc i n be 
47r(l + v) 

(2.55) 
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as the new strained form factors are immediately available from equation (2.37). The curves 

for the functional form of the pseudopotentials are continuous in reciprocal space, and in 

principle any amount of strain can be modelled in this way. 

An alternative approach is to consider the form factors to vary linearly in the region 

of each reciprocal lattice vector [85]. The gradients of the form factor curves can be fitted 

in a similar way to the form factors themselves. This approach can accurately reproduce 

the changes in bandstructure for very small (~ 1%) values of strain. The change in energy 

with strain for a particular band is known as the deformation potential and the strength of 

this approach is the ability to fit the form factor gradients to these deformation potentials. 

However, the restriction to small values of strain is not appropriate for the modelling of 

nitride quantum wells and therefore we adopt the first approach. 

2.6.5 Effect on bandstructures 

Unlike a zincblende or diamond structure, the symmetry of a wurtzite crystal is not 

lowered by the introduction of a lattice relaxed biaxial strain, in the hexagonal plane. As a 

consequence there is no splitting of degenerate bands as a result of the biaxial strain. How­

ever, an important consequence of strain is the effect on the principal band gap. Under com­

pressive strain the semiconductor band gap is generally observed to reduce in size. Biaxially 

strained materials also tend to exhibit a reduced band gap. Other features of a bandstructure 

may also be effected, with the shape and even the ordering of the bands being altered. 

2.7 Nitride Alloy Bandstractures 

This work is concerned with nitride alloys grown on a GaN substrate for use in quan­

tum wells. The alloys are biaxially strained and therefore it is as important to consider the 

effect of strain on the bandstructure as it is the effect of the alloying. Of primary importance 

to the modelling of a quantum well is the band gap and the effective mass. Figure 2.16 

displays the variation of conduction band and valence band energies changing with alloy 

composition for both AlxGai-^N and In^Gai-sN. The band gap is seen to vary from more 

than 6eV for strained A1N right down to 0.5eV for strained InN. The dashed line indicates 

the variation for a strain free alloy and provides some indication of the importance of strain. 
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Figure 2.16: The variation of band energy with different alloy concentrations of Al 
(left) and In (right) for both unstrained (dashed line) and biaxially strained to GaN 
(solid line). The blue line is the conduction band minima and the red lines are the 
valence bands. The zero of energy is taken as the valence band maxima. 
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Figure 2.17: The variation of the conduction and valence band effective masses 
with alloy composition of Al (left) and In (right) for both unstrained (dashed line) 
and biaxially strained to GaN (solid line). 
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The variation of effective mass with alloy composition is considered in figure 2.17. 

The effective mass will be used in chapter 4 for simple calculations of quantum well states 

based on a single parabolic band model. Note that In x Gai_ x N exhibits a greater change in 

effective mass with alloy composition than Al x Gai_ x N. 

Figures 2.18i)-2.18iii) describe the valence bandstructure of GaN and In x Gai_ x N for 

x = 0.05 and x = 0.1. There is a a flip in the normal ordering of the valence band at an 

alloy composition x = 0.02 — 0.03. This change in ordering is not observed for Al x Gai_ x N. 

Figures 2.19i)-2.19iii) describe the valence bandstructure of GaN and Al x Gai_ x N for x = 

0.2 and x = 0.4. 
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Figure 2.18: Valence bandstructure near the Y point for i) GaN, ii) Ino.05Gao.95N 
and iii) In0.iGao.gN 
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Figure 2.19: Valence bandstructure near the T point for i) GaN, ii) Al0.2Ga0.sN and 
iii) Al0.4Ga0.eN 
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Chapter 3 

Complex Bandstructure 

3.1 Introduction 

The complex bandstructure is a generalisation of the bulk bandstructure that is dis­

cussed in chapter 2. The empirical pseudopotential method acts as a starting point for the 

generation of complex bandstructures, which can be used in the study of heterostructure 

bound states. In this chapter the complex bandstructures of the nitrides in the wurtzite crys­

tal structure are generated using a pseudopotential approach. 

3.2 Complex wavevector 

The bulk bandstructure is usually presented as the set of allowed real energies for all 

real wavevectors in the whole first Brillouin zone. Complex bandstructure is the set of real, 

imaginary and complex wavevectors (within the first Brillouin zone) for all real energies. A 

complex wavevector is defined as being within the first Brillouin zone if its real component 

k r is in the zone. Any wavevector with a real component outside the first Brillouin zone 

is a repeated solution within Bloch's theorem. Bloch states with complex wavevectors are 

evanescent and are not valid solutions for bulk semiconductors because they are not finite 

everywhere. However, evanescent states can exist in a region of space that is limited in 

some way so that they do not diverge. For example, evanescent states are possible in a 

region of finite spatial extent or in an infinite half-space, states that decay away from the 

surface of the half-space are allowed. Therefore in the case of a planar heterostructure, the 
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wavevector is only allowed to have a complex component in the direction perpendicular to 

the interfaces, i.e. the growth direction. In the plane parallel to the surface the wavevector 

must be real. The components of wavevector parallel and perpendicular must therefore be 

considered separately. The growth direction is described as perpendicular (_L) because it is 

perpendicular to the plane of the interface and will always be defined as the z axis in this 

work. Vectors parallel to the interface are referred to as being in the in-plane or parallel (||) 

directions and will always be in the xy plane. In general we can write the wavevector k t o t as 

keC 

k,| 6 R (3.2) 

Ektot G R 

3.3 Bandstructure with imaginary wavevectors 

The empirical pseudopotential method has been shown to provide an effective ap­

proach to calculations of bulk bandstructure in semiconductors, and it provides a good basis 

for the calculation of complex bandstructures. However, it is worth noting that complex 

bandstructures can be generated from other bandstructure techniques such as the tight bind­

ing method [86], although the pseudopotential approach, with a plane wave basis set, is 

applied in this work. The most rudimentary approach is to calculate the energy eigenval­

ues and eigenvectors from the normal pseudopotential Hamiltonian for complex values of 

k. This approach will in general yield complex energy eigenvalues of which any real eigen­

values can be considered to be associated with valid solutions and used to form part of the 

complex bandstructure. For example, for GaN the energy solutions for a range of imaginary 

wavevectors can quickly be computed and the results are shown in figure 3.1. 

A significant feature is a branch of the bandstructure spanning the band gap corre­

sponding to evanescent states. This bandstructure for imaginary k is only a subset of the 

kii + k tot (3.1) 

where 
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Figure 3.1: Bandstructure for GaN with imaginary wavevector. The horizontal red 
lines indicate the band gap. k is in units of 2TV/C 

bandstructure for complex k. To generate the complete complex bandstructure, a search over 

a range of complex k would be required which would be computationally very inefficient. 

3.4 Eigenvalue method 

Ideally a complex bandstructure calculation would provide a set of all the possible 

wavevectors (real, imaginary and complex) for any given real energy. This objective can be 

achieved by rearranging the matrix elements of the Schrodinger equation (2.26) to provide an 

eigenvalue problem with k as the eigenvalue [86-89]. The Schrodinger equation is written 

as a quadratic function of k, with terms independent of k and those dependent on k and k2. 

(H° + AH 1 + k2l)(j> = 0 (3.3) 

where the elements of H° and H 1 are from (2.26-2.27) and (2.30-2.33) are given by 
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HL\*,s> = [ ( ^ + 8||)2 + < £ - £ ] < W < W 

+ terms from Haoc that are independent of k (3.4) 

HlfS',s,s' = 2 5 2 <W<^' 

+ terms from Hsoc that are linear in k 

where gz is the z component of g, and s, s' label the elements of the spin matrix. The 

inclusion of the trivial identity, 00 + k<f> = k(j), to equation (3.3) gives 

0 I </> </> 

= k 
H° - H 1 k<f> k(j> 

(3.5) 

The solution of equation (3.5) yields complex eigenvalues k and associated eigenvectors for a 

given energy E and in-plane wavevector k||. In this way the complete complex bandstructure 

can be generated by sweeping through E and ky. However, note that the matrix is now twice 

the dimension it was for the standard bandstructure calculation of equation (2.26), with an 

associated increase in computational cost. 

3.4.1 Calculation of complex bandstructure 

The complete complex bandstructure would contain an infinite number of wavevec-

tors, the majority of them with increasingly large imaginary components. In practice since a 

finite basis set is used only a finite number of wavevectors are computed. For a given E and 

k|| there are 2N solutions to the eigenvalue problem (3.5) where N is the number of recip­

rocal lattice vectors used in the plane wave basis. Many of the k values represent equivalent 

solutions, separated by a reciprocal lattice vector. The number of independent solutions is 

given by 4iVg | ), where -/Vg|| is the number of distinct projections of the N reciprocal lattice 

vectors g onto the growth plane [88]. The 4-/Vg|| unique solutions must therefore be identified, 

and the out of zone or repeated solutions discarded, before the complex bandstructure can 

be plotted. Solutions that are separated by a reciprocal lattice vector can be easily identified 
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as being out of the first Brillouin zone. Solutions exactly on the zone edge are related to a 

solution on the opposite side of the zone by the g-vector (0001) and must also be accounted 

for. 

3.5 GaN, InN, A1N 

The complex bandstructures of GaN, InN and A1N for zero in-plane wavevector are 

presented in figures 3.2-3.4. The plots show the real bandstructure (in the growth direction) 

between T and A, as well as the states for imaginary and complex k. The limited extent of 

the fc-axis means that not all the solutions with imaginary k are shown. Notable features are 

the imaginary A; which spans the principal band gap and, in the case of InN, a link with the 

third conduction band. For GaN and A1N this link is still present, but is more complicated 

as the part of the link involves complex A; rather than purely imaginary solutions. Lines of 

complex k are only found between a maximum and a minimum away from the origin. The 

complex solutions in this valence-third conduction band link, join a maximum and minimum 

at imaginary values of wavevector. Another example that is seen in all three materials is the 

complex solutions that originate at the maximum in the first and second conduction bands. 

An imaginary or complex wavevector is connected to any extremum in the bandstruc­

ture and this ensures that the number of solutions at any given energy remains constant. This 

"rule" was proposed by Heine [90] and implies that the energy bands never terminate, but 

are continuous in the complex /c-space. All the complex bandstructures considered in this 

work behaved in that manner. For example, consider a maximum on the real axis that is con­

nected to bands in the complex plane. Lines with an imaginary and real component represent 

four different A; corresponding to ±kr and ±fa. For a given energy below the maxima there 

are two lines of ±kr (i.e. 4 /c-states) that come together to form a maxima. The number of 

solutions for the complex branch is conserved. 

The conservation of the number of solutions provides a useful checking mechanism 

when attempting to identify unique and repeated solutions to equation (3.5). A further check 

on the consistency of the computed bandstructure can be made by comparing the numerical 

output for a given energy with the energies calculated from the standard pseudopotential with 

a general complex k. 
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Figure 3.2: Complex Bandstructure for GaN. The solid pink lines to the left of T 
represent purely imaginary solutions. The solid orange lines to the right are the 
lines of real bandstructure between F and A. Complex solutions have a real and 
imaginary component of k, which are represented by a pair of dashed lines. The 
colours of the complex solutions identify which imaginary component matches up 
with which real component of the complex k. The inset shows a magnified view 
of the region around the F point and is indicated on the main graph by a black 
rectangle, k is in units of 2ty/c. In-plane wavevector of zero. 
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Figure 3.3: Complex Bandstructure for InN with an in-plane wavevector of zero. 
See figure 3.2 for details. 
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Figure 3.4: Complex Bandstructure for A1N with an in-plane wavevector of zero. 
See figure 3.2 for details. 
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Figure 3.5: In-plane Complex Bandstructure for GaN with i) k\\ = (0.05,0) and ii) 
h = (o.i.o) 

To our knowledge, calculations of complex bandstructure of wurtzite crystals have 

not been reported previously and no published bandstructures are available to confirm the 

topological features we have observed. A comparison of the zincblende and wurtzite crystal 

structures suggests that the bandstructure along the (111) direction in zincblende should have 

similarities to that along the c-axis in wurtzite. Zincblende complex bandstructures have 

been studied extensively, although the (111) direction has received little attention. However, 

Chang [91] used a 10-band tight binding model to produce the complex bandstructures for 

14 zincblende materials, including consideration of the (111) direction. Chang's zincblende 

(111) complex bandstructures share many features with those presented here, including the 

complex loops between maxima and minima on the imaginary axis. 

3.6 In-plane Complex Bandstructure 

The complex bandstructure calculations can be performed for different values of in-

plane wavevector (see figures 3.5 and 3.6). This is important in the consideration of het-

erostructures, because for the bound states of a quantum well it is the in-plane bandstructure 

that produces the subbands. The introduction of a non-zero in-plane wavevector moves the 

wavevector off a point of high symmetry and splits the degeneracy of some of the complex 

bandstructure. The "band gap" at a particular in-plane wavevector, increases with increasing 
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Figure 3.6: In-plane Complex Bandstructure for GaN with i) k\\ = (0.2,0) and ii) 
k\\ = (0.5,0) (i.e. the M-point) 

in-plane wavevector (figures 3.5-3.6), and is "indirect" at the zone edge k\\ — (0.5,0) (figures 

3.6i and 3.6ii). The "indirect band gap" gives rise to a complex, rather than imaginary loop 

over the gap. With more bands due to the splitting of some of the degeneracy, the complex 

bandstructure is increasingly complicated and many more examples of maxima and minima 

and their corresponding branches into the complex plane are seen. 

3.7 Convergence 

It was reported in chapter 2 that the convergence for the bulk bandstructure was better 

than 0.02eV. However, there is no guarantee that the complex bandstructure is converged 

to the same degree. The convergence for the bulk bandstructure was tested by consider­

ing the changes in the band energies with number of plane waves. A corresponding test 

for the complex bandstructure is to plot the energy of a significant feature of the complex 

bandstructure against the number of plane waves. The energy difference between the max­

imum and minimum along the imaginary axis of the GaN complex bandstructure seems an 

appropriate choice in that it is a feature that is not part of the real bandstructure, for which 

the convergence has already been tested. Figure 3.7 shows the convergence in the complex 

bandstructure to be slightly slower than for the real bandstructure, but broadly in agreement. 

The energy difference measured was seen to be converged to better than 0.05eV at 263 plane 
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Figure 3.7: Convergence of complex bandstructure vs iV for GaN 

waves. 

3.8 Alloy complex bandstructure 

The method of generation of the complex bandstructures of the alloys only requires 

the input of the calculated pseudopotential form factors from the functional forms, discussed 

in chapter 2. As with the bulk bandstructure, the observed alloy bandstructures gradually 

change from being that of GaN to that of biaxially strained A1N or InN with the increase 

of In or Al composition. Shown in figure 3.8 is the complex bandstructure of Ino.15Gao.85N, 

grown on GaN. This should be compared to that of GaN (figure 3.2) and unstrained InN 

(figure 3.3) while remembering that the alloy is under biaxial strain. The relaxed biaxial 

strain has had the effect of changing the ordering of the top valence bands and the associated 

loops for imaginary wavevector. The inset of figure 3.8 provides an interesting comparison 

with InN (figure 3.3) because the same anti-crossing behaviour is observed between the 

crystal hole and light hole bands, when the anti-crossing occurs at both real wavevectors and 

imaginary wavevectors. 
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Figure 3.8: Complex Bandstructure for Ino.15Gao.s5N 
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Chapter 4 

Complex bandstructure method applied 

to heterostructures 

4.1 Introduction 

A semiconductor heterostructure can be denned as a structure comprising two or more 

different semiconducting materials. For the purposes of this work it is assumed that there is 

an abrupt change of chemical composition at the interface. A heterojunction is the simplest 

heterostructure, and consists of a single planar interface between two different materials. 

The introduction of more than one interface allows the construction of more complicated 

heterostructures and makes possible the confinement of any charge carriers. The confine­

ment can be in one, two or three directions, resulting in quantum wells, quantum wires or 

quantum dots. In this work we are concerned with quantum wells constructed from two or 

more parallel interfaces. Quantum wells like this are usually grown using molecular beam 

epitaxy (MBE) or metal-organic chemical vapour deposition (MOCVD), and depending on 

the materials involved, some of the layers may be under the influence of a biaxial strain 

which will have an effect on their properties. 

4.2 Band offsets 

The bandstructures of two materials forming a heterojunction will not match at the in­

terface. Around the principal energy gap, this leads to discontinuities in both the valence and 
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Type I Type I I - staggered V Type I I - broken 

EM) AE„ 

EC{B) 

Figure 4.1: Schematic illustration of three types of heterojunction. The type I het-
erojunction has material B's conduction and valence band entirely within the prin­
cipal band gap of material A. The type II - staggered has either the conduction or 
valence band of material B within the energy range of material A's band gap. The 
final type of heterojunction (type II - broken) has no overlap of band gap energy 
between the two materials. The blue lines represent the principal energy gap as a 
function of position and the red lines illustrate the relative offsets of the bandstruc­
tures. 

conduction bands, referred to as the valence band offset (VBO) and the conduction band off­

set (CBO). The existence of a valence band and conduction band offsets is the origin of most 

of the useful properties of a heterojunction. The relative positions of two bandstructures are 

characteristic of the two materials present and are affected by the strain of the layers. Since 

the strain is caused by the lattice parameter of whichever material on which the heterostruc-

ture is grown, the band offsets may not be symmetric; i.e. the offset of A grown on B may 

not be the same as B grown on A. Furthermore, it is thought that for lattice matched systems 

the band offsets between two materials A and B can be inferred by the offsets of both A and 

B with a third material C. 

&EvBO,CBO — ^VBOfiBO + BO,CBO (4-1) 

This property is known as transitivity and has been verified experimentally [92,93] to within 

the experimental precision. Valence band offsets can be calculated with first principles ap­

proaches and can be determined experimentally with techniques such as x-ray photoelectron 

spectroscopy, although such measurements are often prone to large uncertainties. 
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Trends in the change of valence band offset between the common I I -VI and ITI-V 

semiconductors are mainly due to cation d orbital to anion coupling; in aluminium nitride, 

the cation d orbital is unoccupied and above the anion p orbital and therefore p-d repulsion 

pushes the anion valence band maximum (VBM) down in energy. Ga and In have occupied 

3d (Ga) and Ad (In) orbitals which are below the anion p energy so p-d repulsion moves 

the anion p VBM up in energy [44,94]. The observed valence band offsets for the nitrides 

are larger than comparable HI-V systems because, due to the shorter bond lengths and the 

smaller cation d and nitrogen 2p energy differences, the p-d repulsion is stronger [44]. 

Heterojunctions can be classified into three basic types depending on the band offset 

and the relative size of their principal band gaps. Figure 4.1 describes the three types of 

interface. In this work we are concerned with nitride interfaces which, for GaN, A1N and 

InN and their alloys, are all of type I . 

Figure 4.2: Schematic illustration of a quantum well formed by two heterojunc-
tions. The blue lines represent the principal energy gap as a function of position 
and the red lines illustrate the relative offsets of the bandstructures. 

A heterostructure with quantum wells in both the conduction and valence bands can 

be constructed from two type I heteroj unctions, formed by a layer of material sandwiched 

between layers of a semiconductor of larger band gap (figure 4.2). The width of the well is 

of the order of the de-Broglie wavelength of the charge carriers, and the carrier confinement 

to the layer gives rise to quantum mechanical effects. In particular, the confinement causes 

the carrier's kinetic energy associated with motion normal to the quantum well layer to be 

quantised. Then the in-plane bandstructure resulting from the unconfined in-plane motion of 

V V _ AE 

E0(A) EG(A) Ee(B) n Mi 
— 

well width 

4.3 Quantum Wells 
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the charge carriers takes the form of one or more subbands. 

Nitride quantum wells are most easily fabricated through the same methods by which 

the nitride bulk semiconductors are grown. In particular molecular beam epitaxy (MBE) 

allows the precise growth of layers of material and by changing the chemical composition 

during growth, different layers are built up. The atoms of the new layers try to crystallise 

at the same in-plane positions as the previous layers, which can give rise to a strained layer. 

The growth of high quality layered heterostructures is the subject of much research for all 

materials, including the nitrides [7]. 

4.4 Effective mass calculations 

Effective mass theory (EMT) [95-100] simplifies the problem of describing the physics 

of a crystal by abandoning the periodic potential. The physics of the periodic potential is ap­

proximated by an effective mass and the rapidly oscillating true wavefunction becomes a 

smooth envelope function. The idea of an effective mass and the concept of an envelope 

function can be used to provide a rudimentary initial approximation for calculating the quan­

tum mechanical bound states of a quantum well. An approach such as this has the advantage 

of simplicity and provides a 'baseline' comparison for more complicated techniques such as 

the complex bandstructure approach employed in this work. Within effective mass theory the 

bandstructure of the semiconductor can be approximated as a single parabolic band. We will 

refer to this as the effective mass single parabolic band model. This single band is consid­

ered in isolation and no interactions with other bands are considered. Heterostructures can 

be modelled in this approach by employing the same techniques of a wave-mechanics calcu-

i l l l f 
ii) Bloch periodic function 

0 True wavefunction 

iii) Envelope function 

Figure 4.3: Concept of an envelope function. The true wavefunction (i) can be con­
sidered to compose of two components, the rapidly varying Bloch periodic function 
(ii) and the slowly varying envelope function (iii) 
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lation found in any standard quantum mechanics textbook [101] with the free electron mass 

me replaced by an effective mass m*. Implicit in the approximation of an effective mass 

is the consideration of just the envelope function rather than the full wavefunction which 

includes the Bloch periodic part as illustrated in figure 4.3. 

J in: in i ! 

E=AE 

J in 

E-0 
z=0 z=W 

Region I Region I I Region I I I 

Figure 4.4: A simple quantum well with two barrier regions and a well region. 

For a layered heterostructure such as the quantum well in figure 4.4 the one-dimensional 

Schrodinger equation for the envelope function f^(z) of each separate material layer (/) is 

where is a constant potential in layer (/) and Ek is the energy. General solutions of (4.2) 

have the familiar form 

(z) = A^eikz + B{l)e~lkz (4.3) 

where and 5 ^ are constants and the wave vector k is given by 

k = ^ E

r

v m ) (4.4) 
h 

The boundary conditions across the interfaces however cannot be derived from (4.2) as this 

is only valid for the bulk. For a rigorous derivation of the boundary conditions across the in-
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terfaces, a microscopic model such as that proposed by Burt [98,99] is required. Burt shows 

that both envelope function and derivative of envelope function, weighted by the effective 

mass, are continuous across the interfaces. 

/ ( / ) ( 0 ) 

fiu)(W) 
1 dfW 

m) dz 
i d / w 

= / ( / / ) ( o ) 

= f ( I I I ) ( W ) 
i d / w 

z=0 m*n dz 2 = 0 

m*u dz 
1 3/< / J /) 

z=W m*UI dz 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 
z=W 

For the case of bound states the six unknowns from equation (4.3) is reduced to four by 

setting one of the coefficients in each barrier region to zero, to prevent f ( z ) from diverging. 

The boundary conditions of (4.5) then allow the solutions to be identified. This is usually 

achieved by writing equations (4.3) and (4.5) as an eigenvalue problem and searching for 

a zero in the determinant of the resulting matrix M. Figure 4.5 gives an example of the 

determinant as a function of energy and the resulting envelope functions are described in 

figure 4.6. Heterostructures with more than three layers can be modelled in much the same 

way by making use of a transfer matrix. 

4.5 Complex bandstructure transfer matrix approach 

The same general approach as described in section 4.4 for envelope functions can 

be applied to the pseudowavefunctions generated by the empirical pseudopotential complex 

bandstructure method. Monaghan et al [87] and Brand et al [88,89] describe examples of 

this approach for zincblende quantum wells and superlattices. In essence, the complex band-

structures replace the single parabolic band of the envelope function approximation and the 

matching conditions are well defined for this microscopic approach. 

4.5.1 Matching of pseudo-wavefunction at interfaces 

Consider a general heterostructure grown as a series of layers sandwiched between 

two barrier regions of thickness much greater than the layers. Each of the different layers 
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0.02 -

0.05 0.1 0.15 0.2 
Energy (eV) 

0.25 

Figure 4.5: Graph showing scan over energy range for zeros in the determinant, 
used to identify bound state solutions of a Alo.4Gao.6N / GaN / Alo.4Gao.6N quantum 
well within the effective mass approximation. 

n 1 _u_: 

20 0 20 0 20 0 20 
z-axis (A) 

Figure 4.6: The probability densities (PD) of the ground state and first two excited 
state envelope functions for a Alo.4Gao.6N / GaN / Alo.4Gao.6N quantum well. 
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Left Barrier Heterostructure layers Right Barrier 

xy-plane 

(1) (M) (0 

Z 

Figure 4.7: Schematic describing the relative positions of n interfaces in a general 
heterostructure. The material layers are labelled L, 1, 2,... ,1 — 1,/, ...n-l and R, 
where L and /? are the left and right hand barriers. 

and barrier regions may be a different material. The most general wavefunction in a given 

layer is the sum of all complex bandstructure states for that material at a given energy E and 

in-plane wavevector, kn, which we write as 

^ E k n (r) = ^ C f c E k n ^ k i i ( r ) ( 4 - 6 ) 
k 

where C^EV.^ are coefficients, yet to be determined and 4>kEkn (r) is the pseudo wavefunction 

determined by the complex bandstructure calculation at energy E and in-plane wavevector, 

k||. Henceforth, the wavefunction is assumed to be dependent on E and ky, and for clarity 

and notational compactness the subscripts indicating this dependence are no longer included. 

For layer / we write 4>kEkn (r) as </>W (r) which is itself an expansion of a Fourier series given 

by 

^ W = Ea

gV (k+8)r (4-7) 
g 

where a^sk are the Fourier components (spinors, with spin index s) of state A; for the material 

in layer (/). 

Now consider the general layered heterostructure, grown in the z direction, with n 
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interfaces as shown in figure 4.7. The interfaces are labelled from left to right, starting with 

interface 1 at z = zu which separates the left barrier material and layer 1 = 1. There are n—1 

layers between the two barriers, finishing on the right with interface Nj at z — zn, separating 

layer / = n — 1 and the right barrier. The barriers are considered to extend infinitely in the z 

direction. The wavefunction in layer / can now be written as 

V,«)(z, r,,) = £ 4 ° £ a ^ e ' ^ V ^ N + ' i i H i (4.8) 
k g 

the superscripts in parenthesis denote the layer and the wavevector k and reciprocal lattice 

vector g have been split into inplane and growth direction components k = k + ky, g = 

9 + &U-

Now consider general interface / which joins layers / — 1 on the left to / on the right. 

The boundary conditions of continuity of wavefunction and continuity of derivative can be 

applied to the wavefunctions of both layers at z = z\. 

^ - ^ r i i H V ^ . r i l ) (4-9) 

= h m 

oz 
zi'T\\ 

(4.10) 
*/>rn 

For continuity of wavefunction (4.9) applied to equation (4.8) this gives 

E ci i _ 1 ) E a ^ e ^ V ^ ^ = EE^v*'e<(A:'+9')2'ei(k'l+gl|)'r" 
k g k' g' 

where k represents the wavevectors for layer / — 1 and k' for layer /. The in-plane translation 

symmetry is maintained throughout the heterostructure layers. The in-plane wavevector must 

therefore be the same in the different layers in order to conserve momentum; i.e. k\\ = k'^. 
—iff" r 

Equation (4.11) is multiplied by e 8 » ' 11 and then integrated over the in-plane unit cell face 
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in the plane of the interface. Integrating in this way has the effect of equating the sum of all 

coefficients that project onto each given 2D projection. [88,89] 

-•(') <-(0 

zt is assumed to be an integer number of unit cells. Defining Pg^* and P g | | Sfc, the projection 

of the wavefunction in layer (/) on to the right and left interface respectively as 

pZ*=Ea%eiki,+l (4-13) 

e' 

now equation (4.12) becomes 

E ^ ' C ^ ' C ' (4.15) 
k k' 

The same procedure can be followed for equation (4.10), the continuity of derivative, 

resulting in 

k k' 

Ml) <-(*) 

where Q g | | S j b and Q g | | S f c , the projection of the derivative of the wavefunction to the right and 

left, are defined by 
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•(0 
ej|g|i (4.17) 

g' 

-(0 

g' 
Kit (4.18) 

Pgnsk (0. Qen8k ( 0 . i V * (0 a n d Qm,k (0 are now best represented as a pair of 2 M by AM 

matrices, where M is the number of inplane projections of g being used 

' MD ->(0 Ml) 
•P(00)tfci 
MD 

(00)1*2 ' 
Mi) 

• P (00)tfc4M 
Ml) 

^(U) t* i P (n)tfca " ' P(n)tk4M 

Mi) 
P = MD ->(0 Mi) C(D = 

•P(00)4*i -P(00)^ 2 ' 
->(0 

• P(00)ik4M 

Ml) 
• P(n)ik4M 

,(') 
-kl 

"*2 

Combining equations (4.16) and (4.15) in matrix form, 

r Mi-i) 1 r <-w i P 
->(»-!) c d - i ) = 

p 
<-(0 

. Q . Q 

(4.19) 

(4.20) 

where the combined matrices are square (4M x AM). A transfer matrix can now be 

defined which relates the wavefunction on layer / to that on layer I — 1 

c ( 0 _ T ( i ) c ( i - i ) (4.21) 

where is given by 
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T ( i ) = 

r •-(') i - i 
p p 
<-(<) 

. Q . Q 
(4.22) 

The wavefunctions between the two layers / and / + m are therefore related by 

c ( i+m) _ T ( / + m ) T ( / + m - l ) . . . <p(i+2) T(i+l) c(0 (4.23) 

The use of a transfer matrix is only valid in this way when applied to the finite layers and is 

not valid for the barriers on the left and right hand sides of the structure. 

4.5.2 Barrier Regions 

The barrier regions are for the purposes of the calculation considered to be infinite in 

extent. The purpose of the calculation is to identify bound states, which by definition are 

restricted to some finite region of space. In order for the wavefunction to remain finite in 

the barrier regions it must not be allowed to grow exponentially, away from the barriers. 

To ensure this, only wavevectors that provide solutions that decay away from the barrier are 

allowed. Since the wavefunction is of the form ip oc etk'z fc-solutions in the left barrier are 

required to have only negative imaginary components. Conversely A>solutions in the right 

barrier are required to have only positive imaginary components. 

left barrier Km ( e i { k r + i k i ) z ) = 0 i f A* < 0 (4.24) 
z - > - o o v ' 

right barrier lim ( e i { k r + i k i ) z ) = 0 i f k{ > 0 (4.25) 

The energy range of the quantum well, coincides with the band gap of the semiconductor of 

the barrier regions, for which there are only states with imaginary or complex wavevector. 

Exactly half of these states will have either a positive or negative imaginary component of 

wavevector in the growth direction and therefore exactly half the total number of states will 

be used in the matching of the wavefunctions at the barriers. 
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The same interface boundary conditions as were applied to a general well interface, 

apply to the interface between the left barrier (L) and the first finite layer (/ = 1) 

E c i L ) E a g e ^ ' ^ ) * ! = £ cg ) £ a g ^ e ^ + ^ e ^ + ^ i (4.26) 
g it' g' 

where again, the wavevectors used are those appropriate to the material layer in question. An 

analogous equation can be written down for the right barrier and similarly for the matching 

of the derivative at the left and right barriers, giving four equations in total. As with equation 

(4.12) both sides are multiplied by e - t g"' r | 1 and integrated over the in-plane unit cell face. 

This produces four equations for the projections of the wavefunction and derivative onto the 

the left and right barrier interfaces. 

E ^ ' C - E ^ C (4-27) 
k=k~ k' 

£4X!* = £ ^ C ( « « 
k=k~ k1 

£4 s , C = £ # - l , C < 4 - 2 9 > 
k' 

£4R,C* = £ 4 " - ' ) C ) <«<>) 
k' 

The projections of the wavefunction are again represented by matrices. In order to relate the 

wavefunction in the right barrier to that in the left barrier the total transfer matrix between 

the first and last finite layer needs to be defined. 

T = i H " - 1 ) ^ " - 2 ) • • • T ^ T ^ I (4-31) 

where I is the identity matrix. I f there is only one finite layer then T = I . Equations 

(4.27)(4.28)(4.29)(4.30) and the total transfer matrix (4.31) can be put together to form two 

matrix equations. 
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0 P<*> 

c<L> 

c(n) 
p 

->(n-l) 
P T 

(4.32) 

0 

0 Q(«) 

" <-(l) ' 
Q 

" <-(l) ' 
Q 

c ( « ) 
— 

Q T 
(4.33) 

which may be combined into a single eigenvalue equation with an eigenvalue of 1 and eigen­

vector c^ . [46,88] 

" <-(l) " - l 

Q 
- » ( n - l ) 
Q T 

Q ( L ) 0 

0 Q ( H ) 

P ( i ) o 

0 P(*> 

- 1 r i 
p 

->(n-l) — 

P T 

(4.34) 

M c ( 1 ) = c ( 1 ) (4.35) 

Bound states therefore exist i f solutions to equation (4.34) exist for a given energy and 

in-plane wavevector. The bound states can therefore be located by scanning over the energy 

range of the quantum well and looking for eigenvalues of unity. Equivalently solutions will 

be found when the determinant of M - I vanishes. 

4.5.3 Practicalities 

The calculations of the complex bandstructure and the associated wavefunction co­

efficients is usually performed separately from that of the matching which requires that the 

wavefunction and wavevector information for a range of given energies is stored. This initial 

calculation is computationally quite expensive, taking up to a day on a standard workstation. 

However, once stored, this data can be used for any heterostructure that uses that material 

over that energy range. This allows quantum wells to be studied very easily over a range 
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Figure 4.8: Example of the graph of determinant of matrix vs E for a 0.5eV deep, 
20 unit cells wide, GaN, conduction band quantum well, i) Without spin-orbit cou­
pling. Bound state solutions are found where the solid line crosses the | M — I | = 0 
line ii) With spin-orbit coupling. Solutions are found at downward spikes in the 
value of | M — I | . The y axis is plotted on a log scale for clarity. 

of thicknesses at very little additional computational cost. The precision of a search over 

the energy range for a zero in the determinant is dependent on the energy sampling used in 

the complex bandstructure. Clearly a greater level of sampling requires a computationally 

more expensive complex bandstructure calculation and greater storage requirements. For the 

purposes of this work the energy sampling was chosen such that between about 100 and 200 

energy points were calculated for each quantum well. Interpolation schemes allow the bound 

state energy to be estimated to an accuracy which is enhanced by a further order of magni­

tude, giving a precision of three significant figures in the bound state energies. I f necessary 

the storage requirements can be further reduced by calculating the projection matrices and 

storing these rather than the complete wavefunctions. 

Identification of solutions 

An example of a determinant as a function of energy is given in figure 4.8 for a 

quantum well with and without the effects of spin-orbit coupling. The locations of the bound 

states are indicated by |M—1| crossing the abscissa for the calculation without spin-orbit cou­

pling and by sharp dips in the curve if spin-orbit coupling is included. Asymptotic changes 

in sign can be seen on the non spin-orbit coupling graph that become sharp upwards peaks 
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i f spin-orbit coupling is included. These features correspond to energies where the infinite 

well solutions for a quantum well of that width are valid. Examination of the corresponding 

wavefunction coefficients for the barrier regions at one of these crossover energies, confirms 

this. The wavefunctions in the barrier becomes smaller and smaller as the crossover energy 

is approached. 

Numerical Problems 

The elkz terms in the projection matrices can produce a numerically ill-conditioned 

problem for the evaluation of a determinant. For anything larger than the smallest quantum 

wells, for complex k, the etkz terms contribute to very large or very small values in the pro­

jection matrices. This is handled in two ways, firstly the evanescent solutions are normalised 

for each layer to ensure that they decay from numerically the same value. Secondly a limit 

on the decay of the elkz term is imposed by truncating any elkz terms smaller than this limit 

e E u M [88,102]. This truncation can be justified physically, because any solutions that have 

decayed excessively will effectively make no difference to the matching conditions. 

Convergence 

The bulk and complex bandstructures were tested separately for convergence against 

number of plane waves in sections 2.4.4 and 3.7. Given that the pseudo wavefunction was 

considered adequately converged in those instances it is reasonable to consider the number 

of plane waves adequate for the process of identification of bound states. However, the 

number of complex k basis states used in the two dimensional projections M will affect the 

accuracy of the quantum well state energies and eigenfunctions and requires justification. 

The microscopic hexagonal in-plane symmetry allows the use of M = 1,7,13,19... as the 

matching must be performed for a complete set of in-plane g-vectors. Figure 4.9 describes 

the variation of bound state energy for the ground state and first and second excited states of a 

test quantum well for different values of M. Figure 4.9 shows that the energies are converged 

to within the precision of the energy sampling at M = 7. From the complex bandstructure 

graphs in chapter 3, it is clear that after the first few states the imaginary component of 

the wavevectors gets too large for the associated states to play any meaningful role in the 

matching. 
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W 3.7-

M 

Figure 4.9: The convergence of bound state energy with M for the ground state and 
first and second excited states for a 0.5eV GaN quantum well. 

4.5.4 Probability Density 

Having identified an energy at which a bound state exists, the complex bandstructure 

wavefunctions and the eigenvectors of equation (4.34) can be used to construct the bound 

state wavefunction. The eigenvector from the solution of (4.34) contains the wavefunction 

coefficients for the bulk A;-states used to construct the bound state wavefunction for region 

1 = 1. The transfer matrix (4.22) for each layer can then be used to calculate the wave-

function coefficients in all the other layers and equation (4.32) yields the wavefunction co­

efficients in the barrier regions. The probability density (PD) can then easily be generated 

as 

k k> g g ' 

x e « ( k | | + g | | ) T | | e * ( k H+8| | ) - r l l* e » ( * + f f ) * e * ( * ' + f f ' ) « * (4.36) 

For a convenient comparison with the envelope function solutions the probability can be 
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integrated over the in-plane unit cell to produce a two dimensional average of the three 

dimensional probability density. 

+00 +oo 

/ / W ( « « £ £ £ E « * ( a ^ 4 V ' ^ ^ ' ) 
J J k k> g g' 

x e i ( k z + g z - k " z - 9 ' z ) 6 ^ ( 4 3 ? ) 

Figure 4.10 shows the probability density of a slice through the bond plane of a AlGaN-

GaN-AlGaN valence band quantum well, the resulting in-plane averaged probability density 

and the envelope function corresponding to an effective mass calculation of the same well. 

The "bond plane" can be defined by the 4 atoms in a single unit cell and the bonds between 

them, and has one axis in the growth direction. The in-plane averaged PD is an average of the 

whole of the in-plane unit cell. Al l the probability densities are for zero in-plane wavevector. 

The PD is noticeably asymmetric about the well centre, especially when compared to the 

envelope function. This is partly a result of the inherent asymmetry of the polar wurtzite 

crystal and partly because of the microscopic ordering of the atomic layers and their corre­

sponding band offsets. Consider a hypothetical A1N - GaN - A1N quantum well in which we 

have atomic layers in the order: 

Al • N • Al • N Ga • N • Ga • N A l - N - A 1 - N - -

For a polar crystal the N • Al layers are not mirror images of the Al • N layers and the 

asymmetry is clearly a physical feature. However, for a non-polar crystal any asymmetry 

in the theoretical well is solely a result of the approximation of the N atoms at the interface 

being either part of GaN or A1N, because in a real crystal such an artificial designation 

doesn't exist and the well is in reality perfectly symmetrical. In an EPM calculation for a 

non-polar crystal, the asymmetry can be removed by a suitable choice of matching plane: 

Al • N • Al N • Ga • N • Ga • N Al • N • Al • N 
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Figure 4.10: Top: Probability density of a slice through the bond plane of a 10.38A 
wide Alo.4Gao.6N-GaN-Alo.4Gao.6N quantum well. Middle: the resulting in-plane 
.averaged probability density. Bottom: The corresponding envelope function from 
an effective mass calculation. 
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However, for wurtzite materials, the polar nature of the crystal provides the dominant con­

tribution to the asymmetry and therefore such considerations are not required. The effect is 

especially noticeable for such a small well. 

4.6 Electric fields 

Quantum well systems are often subject to an electric field which can have a dramatic 

effect on the electronic and optical properties. An electric field, can be either applied as part 

of the working of the device, or it can be a built-in electric field due to an inherent polarisation 

or that derived from the piezoelectric or pyroelectric properties of the semiconductor layers. 

The field strength will normally vary in the different layers due to their different properties. 

An electric field can be considered to produce a linear change with position z in the 

band profile of the quantum well, thus 

V®(z) = V0

{1) - E®z (4.38) 

where V^(z) is the potential when is the field strength in layer /, VQ^ is the zero field 

potential. The sloped band profile causes any symmetry of the well to be broken and changes 

the bound state energies. This change of carrier energy is manifested in the quantum confined 

Stark effect (QCSE) which is the observed redshift (lowering) in the valence to conduction 

band energy transition of bound states due to the presence of an electric field. The redshift 

results from the decrease in energy difference, with increasing field, between the bottom of 

the valence band quantum well and the bottom of the conduction band quantum well. The 

asymmetric well profile gives rise to asymmetric wavefunctions, with an associated change 

in the optical transition rates. 

4.6.1 Piezoelectricity 

When strained, piezoelectric materials have a polarisation Ppz which is given in terms 

of the piezoelectric constants and the column form of the strain tensor e, (see equations 

(2.49)) by 
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pPZ 
r x 

pPZ 
V 

pPZ 
z 

4.6.2 Spontaneous polarisation 

Spontaneous polarisation is also known as equilibrium polarisation or as pyroelectric-

ity. The polarisation is caused by a movement of positive and negative charge to opposite 

ends of a crystal's polar axis due to a change in temperature. Spontaneous polarisation will 

therefore give rise to an electric field even i f there is no strain. Pyroelectricity is observed 

to some extent in all crystals having a polar axis, although it is particularly strong in the 

nitrides, especially for A1N. 

Experimental measurements of the strength of the electric field and therefore the level 

of spontaneous polarisation and the piezoelectric constants for the nitrides are still not par­

ticularly consistent. The temperature dependence of the pyroelectric contribution probably 

accounts for some of the disagreement. Different defect densities will also give rise to differ­

ent effective strains and therefore different piezoelectric fields. The measurements are often 

based on photoluminescence measurements of a quantum well, and infer the polarisation 

induced electric field from comparisons with envelope function calculations. This approach 

requires the valence band offset and effective masses to be known accurately, which for a 

given alloy they may not be. In any case for many quantum well structures the envelope 

function approximation may not be entirely valid. Furthermore, it has been reported that 

the piezoelectric properties are non-linear with respect to strain and therefore alloy composi­

tion [26] and that there is a barrier and well width dependence on the field strength in nitride 

quantum wells [103]. However, most reports in the literature agree on one thing, that the 

fields are large. Fields of over 2.5MV/cm [84] are reported for InGaN quantum wells and 

even higher for AlGaN wells. 

Experimental measurements tend to underestimate the polarisation induced sheet charge 

0 0 0 0 e 1 5 0 

0 0 0 eis 0 0 

C3i e 3 1 e 3 3 0 0 0 

2̂ 

3̂ 

C6 

(4.39) 
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densities and therefore the field strengths by about 50% [26,104] compared to theoretical pre­

dictions. The reasons for the reduced field strength found in practice are not entirely clear, but 

could be a result of indium alloy fluctuations [26], free carrier screening [26,105], partial neu­

tralisation of charges at the sample surface by some adsorbates [106-108] or segregation of 

species at the quantum well boundaries during growth, giving non-planar interfaces [26,106]. 

This reduced field manifests itself in the quantitative disagreement between the experimental 

ground excitonic states and the values based on a theoretical field strength [109]. 

The theoretical calculations are not without problems, because the dipole of a periodic 

charge distribution is i l l defined [110,111], which makes consistent theoretical calculations 

of the polarisation model-dependent [110]. Ab-initio calculations of polarisation have been 

performed [112,113] on the nitrides, and provide piezoelectric and pyroelectric coefficients, 

but still compare poorly to experimental measurements [26]. 

The total polarisation Pz due to spontaneous and piezoelectric polarisations, for a well 

layer, is given by [103] 

Pz = Pb

sp - P%p + P2

PZ (4.40) 

where Pb

sp and P£p are the barrier and well spontaneous polarisations and P p z is the piezo­

electric polarisation in the ^-direction. The corresponding electric field for a quantum well 

is given by [103] 

E\ = — — (4.41) 
t P 
"1111 1 

tbPz 

tw£b + tb£ 
E? = ^ (4.42) 

with Pz given by (4.40). tw and tb are the well and barrier thicknesses and ew and are the 

dielectric constants. Equation (4.41) introduces a barrier thickness dependence for the field. 

However, in the limit of the barriers being considered infinite in extent, the field in the well 

region becomes: 
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w E 
w 

(4.43) 

The electric field in a nitride quantum well can be tuned to a certain extent by the barrier 

width dependence of the field strength [103], using temperature to affect the free carrier 

screening, modulation doping to screen the field [114] or simply the application of an ex­

ternal electric field [115]. Given the uncertainty in the field strengths and the possibility of 

tuning them to a certain extent the heterostructures treated in this work consider the field to 

be a parameter and the resultant effect of various field strengths on the heterostructures is 

explored. 

Figure 4.11: Schematic diagram showing the stepped approximation of the electric 

Electric fields are included within the matching schemes of the EPM and envelope 

function methods by approximating the slope in the band edge caused by the fields as a 

series of small steps. Figure 4.11 illustrates this approach. In order to achieve truly bound 

states the barrier regions are kept field free, which is not a bad approximation provided 

the bound state wavefunction is concentrated in the well region. For the approximation 

to be accurate, the widths of the steps should be as small a possible. For the envelope 

function approach this is not a problem, but the EPM calculation includes the microscopic 

information of the atomic positions. While mathematically matching at the ionic cores is 

possible, from a physical point of view it can be argued that this is unphysical since the 

field. 

4.6.3 Electric Fields within the EPM 
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Figure 4.12: Convergence of bound state energy with increasing number of field 
steps for both an envelope calculation and an EPM calculation. 

pseudopotential is only strictly valid away from the ionic cores. I f the matching is only 

performed at the bond centre locations then this imposes a lower limit on the minimum 

width of a field step. In practice is is found that this is more than enough to make the 

approximation valid, even for the strong fields encountered in nitride quantum wells. Figure 

4.12 describes the convergence of bound state energy with increasing number of field steps 

for both an envelope calculation and an EPM calculation. The variation of bound state energy 

with number of steps is surprisingly small, with adequate convergence achieved using just 

8 steps. For the calculations presented in this work as many steps as is possible for the size 

of well under consideration will be used, while only performing the matching at the bond 

centre locations. 

4.7 InGaN wells 

IOrGai-zN is primarily of interest as the active region in blue-green, single quantum 

well (SQW) light emitting diodes [5,116,117] and multiple quantum well laser diodes [5, 

116,118]. In this work we concentrate on the In^Gai-^N single quantum well system. 
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Figure 4.13: The profiles of a 5 unit cell wide Ino.1Gao.9N conduction and valence 
band quantum well for a) No field b) 0.7MV/cm c) 1.6MV/cm 

The GaN - InxGai^N single quantum well system comprises an In xGai_j;N well layer 

between two layers of GaN grown on a buffer layer, as shown by figure 4.13. The GaN re­

gion acts as a barrier confining the electron and hole bound states to the In-rGax-jN well 

region, with the latter under biaxial compression. The difference in the GaN and InN a-

lattice parameters, which are 3.19 A and 3.544 A respectively, lead to considerable strain in 

the quantum well even at low indium compositions. The resulting built-in electric field is 

dominated by the piezoelectric contribution, which is a function of the strain and therefore 

of the alloy composition. In practice the large InN/GaN lattice mismatch restricts GaN -

InzGai-zN quantum wells to low indium compositions, with x rarely outside the 0.03-0.25 

range. Within this range of compositions, wells up to 40nm thick can be grown pseudomor-

phically [83]. However, in most cases, the wells are considerably narrower to reduce the 

redshift of the quantum confined Stark effect. 

Measured values for the built-in electric field within the well region of In x Gai_ x N 

quantum wells vary considerably. Experimental values are usually based on photoreflectance 

or photoluminescence measurements of the excitonic energy for a range of well widths, from 
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Material Band Gap (eV) VBO (eV) CBO (eV) 

Ino.2Gao.8N 2.612 0.252 0.636 
Ino.15Gao.s5N 2.810 0.189 0.501 
Ino.1Gao.9N 3.028 0.126 0.346 
Ino.05Gao.95N 3.267 0.063 0.170 

Table 4.1: The barrier principal band gap and resultant band offsets for the InGaN 
quantum well system. 

which envelope function or similar calculations are used to extract a field strength. These 

calculations require the band offset between the well and barrier materials, the principal band 

gap of both materials and the effective masses of both materials. Examples of derived electric 

fields for an Ino.1Gao.9N quantum well, assuming a linear variation of field strength with x, 

include 0.62MV/cm [2,83,119], 0.9MV/cm [120], 0.6MV/cm [116], 0.8MV/cm [84,121], 

0.98MV/cm [122], 1.25MV/cm [22] and 1.4MV/cm [123]. Theoretical values, based on ab-

initio calculations of bulk materials consistently overestimate the experimental results; for 

example the field in aIno.1Gao.9N quantum well is given as 1.63MV/cm [3,105,112,113,124]. 

The profile of a quantum well with electric fields of 0.8MV/cm and 1.6MV/cm is illustrated 

in figure 4.13. 

The band offsets between the well region and the barriers used in this work are derived 

from the photoluminescence measurements of Manz et al [125] and assume a linear variation 

of offsets with indium composition x. The value of the valence band offset for x = 0.1 is 

0.126eV and corresponds to a type I quantum well with a valence band offset to conduction 

band offset ratio of 27% to 73%. All the band offsets used are given in table 4.1. 

4.7.1 Energy vs well width 

Figures 4.14-4.17 show plots of bound state energy against well width for a range 

of values of electric field calculated by both the complex bandstructure method outlined 

in this chapter and a single band effective mass mass model. In order to make a relevant 

comparison, the effective masses used in the single band effective mass mass model were 

derived from the empirical pseudopotential bulk bandstructures used in the generation of 

the the complex bandstructures. The valence band quantum wells do not include heavy and 
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Figure 4.14: The variation of bound state energy with well width of a conduction 
(top) and valence band (bottom) Ino.05Gao.95N quantum well, for different strengths 
of built-in electric field. The solid lines represent EPM calculations and the dashed 
lines represent envelope function calculations with effective mass derived from the 
EPM. Energies are in eV, with OeV as the top of the well, 0.063eV at the bottom of 
the valence band well and -0.170eV at the bottom of the conduction band well. The 
valence band energies for E=0.4MV/cm are magnified by a factor of 10. 
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Figure 4.15: The variation of bound state energy with well width of a conduction 
(top) and valence band (bottom) Ino.1Gao.9N quantum well, for different strengths 
of built-in electric field. The solid lines represent EPM calculations and the dashed 
lines represent envelope function calculations with effective mass derived from the 
EPM. Energies are in eV, with OeV as the top of the well, 0.126eV at the bottom 
of the valence band well and -0.3465eV at the bottom of the conduction band well. 
The valence band energies for E=0.8MV/cm are magnified by a factor of 10. 
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Figure 4.16: The variation of bound state energy with well width of a conduction 
(top) and valence band (bottom) Ino.15Gao.85N quantum well, for different strengths 
of built-in electric field. The solid lines represent EPM calculations and the dashed 
lines represent envelope function calculations with effective mass derived from the 
EPM. Energies are in eV, with OeV as the top of the well, 0.189eV at the bottom 
of the valence band well and -0.5005eV at the bottom of the conduction band well. 
The valence band energies for E=1.2MV/cm are magnified by a factor of 10. 
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Figure 4.17: The variation of bound state energy with well width of a conduction 
(top) and valence band (bottom) Ino.2Gao.8N quantum well, for different strengths 
of built-in electric field. The solid lines represent EPM calculations and the dashed 
lines represent envelope function calculations with effective mass derived from the 
EPM. Energies are in eV, with OeV as the top of the well, 0.252eV at the bottom 
of the valence band well and -0.6359eV at the bottom of the conduction band well. 
The valence band energies for E=1.6MV/cm are magnified by a factor of 10. 
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Figure 4.18: The variation of bound state energies with increasing electric field for 
a 6 unit cell wide In^Gai-^N quantum well. 

light hole bound states because the valence band offset is smaller than the energy difference 

between the crystal-hole band as the top valence band and the heavy hole band. The quantum 

well bound states are therefore entirely due to the crystal hole and very little band mixing is 

present. The deviation of the complex bandstructure energies from the single band effective 

mass energies is a measure of the non-parabolic bandstructure and the extent of band mixing 

that occurs. It can be seen from figures 4.14-4.17 that, in general, the complex bandstructure 

results are in good agreement with the single band effective mass energies. The agreement 

is better near the bottom of the well for the ground states and for larger well widths. At 

the top of the well the deviation of the well region bandstructure from a parabolic form is 

more noticeable and results in a less accurate effective mass bound state energy. The same 

argument is true for thinner wells in which the energies are closer to the top of the well. 

The quantum wells with higher indium composition have a larger valence band offset 

and both deeper valence and conduction band quantum wells. The deeper wells give rise to 

bound state energies further from the tops of the wells and for the lower values of built-in 

electric field more than one bound state is predicted. 
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Figure 4.19: The in-plane averaged probability density for the ground state of a 4 
unit cell wide Ino.1Gao.9N quantum well. 

95 

http://Ino.1Gao.9N


Chapter 4. Heterostructures 4.7. InGaN wells 

4.7.2 Effect of built in electric-field 

Figures 4.14-4.17 show the bound state energies for zero field and two different val­

ues of built-in electric field. The field values are increased linearly with increasing indium 

composition to allow a meaningful comparison between wells composed of different alloys. 

The field strengths used are approximately at 50% and 100% of the experimentally observed 

values. For instance the field strengths used for Ino.1Gao.9N are 0.4MV/cm and 0.8MV/cm. 

For wells with a built-in field the variation of bound state energy with well width is 

observed to level off and much less change in the energy is observed for the wider wells. 

The presence of the electric field causes the triangular well region to act as its own barrier 

confining the bound state to one side of a triangular quantum well. The barrier on the other 

side is therefore less and less important for the confinement as the width of the well increases. 

The bound states in the presence of a field are at considerably higher confinement 

energies, i.e. closer to the top of the quantum well. This is most noticeable for the valence 

band wells where for the higher value of field the states are at the very top of the well. 

States so close to the top of a quantum well are only very loosely bound and are likely to 

result in large fraction of the integrated probability density in the barrier regions. Accurately 

establishing the energy of these states proved problematic as only a finite grid of energies 

was employed and often this was not accurate enough to detect a state so close to the top of 

the well. In these cases a finer grid was employed in over a small energy range near the top 

of the well, but this was computationally quite expensive. The higher values of electric field 

give rise to states closer to the top of the well and therefore were more problematic in this 

respect. Figure 4.18 illustrates this by showing the variation of bound state energies with 

increasing field strength for a quantum well with a width of 6 unit cells. 

The wavefunction of a bound state in a strongly asymmetric well is itself strongly 

asymmetric and this effect is quite dramatic for the nitride quantum wells. Under the influ­

ence of a field the well profile is clearly asymmetric and the resultant probability densities 

are shifted by the field to one side of the well (see figure 4.19). 

4.7.3 In-plane bandstructure 

In chapter 3 the complex bandstructure was described for a range of non-zero in-plane 

wavevectors. This complex bandstructure can be used to calculate the in-plane subband-
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Figure 4.20: The in-plane bandstructure for a 6 unit cell wide conduction (top) and 
valence (bottom) band Ino.1Gao.9N quantum well. The green circles mark the in-
plane bound state energy (in eV), with respect to the top of the well at T, for 
in the in-plane direction of high symmetry point M and the red circles in the in-
plane direction of high symmetry point K. The dashed lines display a parabola for 
comparison. 
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Figure 4.21: The profiles of a Alo.6Gao.4N conduction and valence band quantum 
well for a) No field b) 2MV/cm c) 4MV/cm 

structure of a given quantum well by simply applying the same matching procedures as 

described in section 4.5.1 and scanning over an appropriate energy range. The resultant in-

plane bandstructure for an Ino.1Gao.9N quantum well with a width of 6 unit cells is displayed 

in figure 4.20. The energy dispersion is plotted as a function of the magnitude of the in-plane 

wavevector. The in-plane energies in the T—A and T—K directions is very similar, indi­

cating an essentially isotropic in-plane bandstructure. Some splitting is observed for values 

of ley away from the high symmetry point of V, although this is very small and to a good 

approximation the system can be considered spin degenerate. The subband energies vary 

quadratically for very small k\\ but deviate noticeably at larger values. The non-parabolicity 

of the in-plane energy dispersion is illustrated by comparison to parabolic curves which were 

fitted to values of the subband energy close to T. 
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Chapter 4. Heterostructures 4.8. AlGaN wells 

4.8 AlGaN wells 

One of the motivations for studying the high Al content, Al^Ga^^N - GaN quantum 

well system, is because the deep (~l-2eV) conduction band well gives rise to multiple sub-

bands between which inter-subband transitions (ISBT) have been observed [126]. Unlike 

the InGaN system, the strong built-in electric fields due to piezoelectricity and pyroelectric-

ity do not always adversely affect the transition probabilities and in fact allow what would 

otherwise be forbidden transitions to take place due to the symmetry breaking of the well po­

tential. ISBTs in GaAs quantum wells have possible application for infrared (IR) detectors 

and quantum cascade (QC) lasers [126-128] and similar applications are possible for ISBTs 

in the AljGai-^N - GaN quantum well system. It has also been suggested that a techno­

logically important terahertz frequency laser could be based on Alo.75Gao.25N quantum well 

ISBTs [129]. 

The ALrGai-zN - GaN quantum well system is, like the In^Gai-xN-GaN system, 

grown on a GaN buffer and so the whole system is still held at the in-plane lattice con­

stant of GaN. However, unlike the In^Gai-^N-GaN system, the alloy Al^Gai-^N forms the 

barrier region for both the conduction and valence bands and GaN forms the well region (see 

figure 4.21). The smaller a-lattice constant of A1N mean that the barriers are under biaxial 

tensile strain, while the GaN well layers are unstrained. The magnitude of lattice mismatch 

between GaN and A1N, and therefore the magnitude of strain, is significantly less in an 

Al^Gai-xN - GaN system than the In I Gai_ I N system. The alloy therefore often has substan­

tial aluminium fraction, with quantum wells across the whole composition range reported. 

Piezoelectric fields occur in the barrier regions and spontaneous polarisation is considered 

to contribute significantly. The resultant field in the well region can be very strong indeed; 

up to 4MV/cm. As with I ^ G a ^ N , there is strong disagreement between the experimen­

tally determined built-in electric fields and those based on theoretical calculations of bulk 

materials [5]. Examples of experimental estimates of the field in an Alo.6Gao.4N quantum 

well include 3.75MV/cm [130], 2.5MV/cm [22,131], 3.42MV/cm [129], 2MV/cm [132], 

1.6MV/cm [126] and 3.33MV/cm [106]. The theoretical calculations predict a field of 

4.0MV/cm [3,112,113,124,132,133] 

The difference between the band gap of A1N and GaN is generally considered to be 

contained mostly in the conduction band offset, with the valence band offset being compar-
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Material Band Gap (eV) VBO (eV) CBO (eV) 

A1N 6.083 0.568 2.015 
Al0.8Gao.2N 5.627 0.468 1.659 
Al0.eGa0.4N 5.141 0.361 1.280 
Al0.4Ga0.eN 4.625 0.247 0.877 
Alo.2Gao.8N 4.104 0.133 0.471 

Table 4.2: The barrier principal band gap and resultant band offsets for the AlGaN 
quantum well system. 

atively small [5]. Conduction band offset to valence band offset ratios of between 94% : 

6% [40,134] 65% : 35% and [44,81] are reported. In this work we use a conduction band 

offset to valence band offset ratio of 78% : 22% consistent with the x-ray photoemission 

spectroscopy measurements of Martin etal [81]. This gives rise to conduction band wells as 

deep as 2eV for AIN/GaN quantum wells, as shown in Table 4.2. 

4.8.1 Bound States 

The bound states of conduction band A ^ G a i ^ N quantum wells as a function of 

width, alloy composition and field strength are presented in figures 4.22-4.24. The deep 

(0.877eV-1.659eV) wells give rise to more than one conduction subband, even at the strongest 

field and with zero field up to 8 subbands are predicted. Unlike the In^Gai-xN quantum well 

system, the AlxGax-^N alloy is in the barrier regions and therefore the changing alloy has 

less of an effect on the bound states. The effect of the changing band offset and therefore well 

depth dominates the variation of bound state energy with increasing aluminium composition. 

The results are in good general agreement with those calculated by an effective mass 

model (indicated by dashed lines on figures 4.22-4.24). The complex bandstructure bound 

state energies are consistently lower (further from the top of the well) than the effective mass 

energies and consequently any predicted intra-subband transitions (ISBTs) have slightly 

lower energies. The good agreement with effective mass theory is again because off the 

highly parabolic conduction band and general lack of mixing between the states. As with 

the InGaN quantum wells, the presence of a field gives rise to a levelling out of the bound 

state energies as the well width increases. The fields applied in figures 4.22-4.24 correspond 
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Figure 4.22: The variation of bound state energy with well width of a conduction 
band Al0.4Ga0.6N quantum well, for different strengths of built-in electric field. The 
solid lines represent EPM calculations and the dashed lines represent envelope func­
tion calculations with effective masses derives from the EPM. Energies are in eV, 
with OeV as the top of the well, -0.877eV at the bottom of the conduction band well. 
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Figure 4.23: The variation of bound state energy with well width of a conduction 
band A l o . 6 G a o . 4 N quantum well, for different strengths of built-in electric field. The 
solid lines represent EPM calculations and the dashed lines represent envelope func­
tion calculations with effective masses derives from the EPM. Energies are in eV, 
with OeV as the top of the well, -1.280eV at the bottom of the conduction band well. 
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Figure 4.24: The variation of bound state energy with well width of a conduction 
band Al0.sGa0.2N quantum well, for different strengths of built-in electric field. The 
solid lines represent EPM calculations and the dashed lines represent envelope func­
tion calculations with effective masses derives from the EPM. Energies are in eV, 
with OeV as the top of the well, -1.659eV at the bottom of the conduction band well. 
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Figure 4.25: The variation of bound state energies with increasing electric field for 
a 8.5 unit cell wide Al x Gai_ x N quantum well. 

to approximately 50% and 100% of the theoretically predicted values. As was noted in sec­

tions 4.6.3 and 4.8 the experimental observed fields in AlGaN quantum wells vary consider­

ably and are of the order ~50% of the theoretical values. Therefore the two different field 

strengths in figures 4.22-4.24 approximately correspond to the theoretical and experimental 

values. It would appear that the theoretical field is incorrect because transitions between 

the ground and 2nd excited state have been observed in an Alo.56Gao.44N quantum well and 

both the complex bandstructure and effective mass calculations only predict 2 conduction 

subband states at the higher value of field (4MV/cm) [126]. Three subbands are predicted 

for 2MV/cm, in agreement with experiment. 

A stronger value of field raises the bound state energies, but the deeper AlGaN wells do 

not suffer the same pinning by the field, of the ground state to the top of the well, observed in 

the InGaN wells. Figure 4.25 shows the variation of bound state energy with built-in electric 

field, for an Al 0 .6Ga 0 .4N quantum well which is 8.5 units cells wide, and indicates the rise 

in the bound state energy as the field increases. It is interesting to note the effect of the field 

on the ISBT energies (figure 4.26). The 1st, 2nd and 3rd subbands are labelled Ex, E2 and 

£•3 respectively and figure 4.26 shows a reduction in the E2 — E3 transition energy as the 

Ei — E3 and E\ — E2 transition energies increase. At approximately the experimentally 

104 

http://Alo.56Gao.44N


Chapter 4. Heterostructures 4.8. AIGaN wells 
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Figure 4.26: The inter-subband transition energies as a function of built-in electric 
field for a 8.5 unit cell wide conduction band Alo.6Gao.4N quantum well. 
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Figure 4.27: The bound state energies as a function of valence band offset for a 
8.5 unit cell wide conduction band Alo.6Gao.4N quantum well. The value of valence 
band offset for Alo.6Gao.4N used in this work is indicated by the dashed line. 
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observed field strength of 2MV/cm the Ex - E2 and the E2 - E3 transitions are of similar 

values (i.e. the subbands are approximately evenly spaced in energy). 

Comparison with experimental measurements is difficult because of the uncertainty in 

the parameters used in the theoretical model, especially the field strength and the band offset. 

The problem is principally in what field strength to use for the comparison, since the experi­

mental value is obtained by fitting effective mass model energies to experimental transitions 

by varying the field. Consequently a comparison between the complex bandstructure transi­

tion energies to experimental values at the experimentally quoted field implicitly involves the 

effective mass model. For instance, Suzuki and Iizuka [132] observed an E\ — E2 transition 

energy of 0.35eV for 6nm Alo.65Gao.35N quantum wells. A complex bandstructure calcula­

tion with a field of 2.2MV/cm predicts the same transition energy, which can be compared 

to their effective mass derived field of 2.0MV/cm. Similarly the results of Hoshino et al in­

dicate an Ei - E2 transition energy of 0.3eV and an E\ - £ 3 transition energy of 0.6leV for 

4.4nm wide, Alo.56Gao.44N quantum wells. A complex bandstructure calculation with a field 

of 1.5MV/cm gives rise to an E\ - E2 transition energy of 0.3eV and an E\ — £ 3 transition of 

0.7eV. Hoshino et al estimate the field as 1.6MV/cm from effective mass calculations. Any 

comparison of theory and experiment is also somewhat confused by the value of band offset 

and therefore the well depth used. Figure 4.27 describes the calculated bound state energies 

as a function of valence band offset for a 8.5 unit cell wide conduction band Alo.6Gao.4N 

quantum well. The band offset strongly affects the bound state energies and will clearly have 

an impact on any estimated field strength. 

Very few theoretical calculations have been performed on the conduction band 

AlsGai-zN single quantum well system with which to make a relevant comparison. One 

interesting approach taken by Liu et al [129] is to calculate the potential of an Alo.75Gao.25N 

quantum well self-consistently. With such an approach they predict some band bending and 

and estimate the field to be approximately 4.28MV/cm. From these values they report an 

Ei - E3 transition energy of 0.795eV compared to a complex bandstructure calculated tran­

sition of 0.88eV at the same field strength, width and well depth. 

The complex bandstructure calculations of bound state energies are in excellent agree­

ment with effective mass calculations, and in good qualitative agreement with experimental 

measurements and self-consistent calculations. It is therefore reasonable to suggest that, due 
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to the more complete bandstructure informations used in the complex bandstructure calcula­

tions, the field strengths inferred by this approach are likely to be more accurate that those 

based on the simple effective mass calculations. The difference in the field values predicted 

from experimental data is small and not, however enough to account for the wide discrepancy 

in the theoretical and experimental values. 

4.8.2 Probability densities 

Figure 4.28 shows the in-plane averaged probability densities for the ground state, 

and 1st and 2nd excited states of a 8.5 unit cell wide Alo.6Gao.4N quantum well under the 

influence of a built-in electric field of 2MV/cm. The overall shapes of the densities are 

notably asymmetric as a result of the triangular potential caused by the field. 

4.8.3 In-plane Bandstructure 

Figure 4.29 displays the in-plane bandstructure for an 8.5 unit cell wide Alo.6Gao.4N 

conduction band quantum well. As with the InGaN quantum well, the in-plane energy dis­

persion is almost isotropic. Any splitting for in-plane wavevectors away from the T point 

was not resolved in the finite energy sampling used to locate the bound state solutions and 

is therefore less than 20meV. The dashed lines of parabolic dispersion indicate the degree 

of non-parabolicity. Figure 4.30 indicates the ISBT energies as a function of magnitude of 

in-plane wavevector, and at the larger wavevectors these clearly deviate strongly from those 

of parabolic subbands. 

Joint Density of States 

The joint density of state (JDOS) is related to the density of states and represents the 

"density of transitions" between two subbands in a quantum well. It is required for calcula­

tion of the rate of transitions between the two subbands, that might result from optical excita­

tion or some other perturbing influence. For an ideal quantum well with parabolic subbands, 

the form of the joint density of states gij{E) is that of a step function. For the quantum wells 

considered in this work the subbands may not even be approximately parabolic and therefore 

9if{E) must be calculated over a range of in-plane wavevectors. The joint density of states 
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Figure 4.28: The in-plane averaged probability density for the ground state, and 1st 
and 2nd excited states of a 8.5 unit cell wide Alo.6Gao.4N quantum well under the 
influence of a built-in electric field of 2MV/cm. 
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Figure 4.29: The in-plane bandstructure for a 8.5 unit cell wide conduction band 
Alo.6Gao.4N quantum well with 2MV/cm built-in electric field. The green circles 
mark the in-plane bound state energy (in eV), with respect to the top of the well at 
T, for ky in the in-plane direction of high symmetry point M and the red circles in 
the in-plane direction of high symmetry point K. The dashed lines display a parabola 
for comparison. 
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Figure 4.30: The average in-plane inter-subband transition energies for a 8.5 unit 
cell wide conduction band Alo.6Gao.4N quantum well with 2MV/cm built-in electric 
field. The dashed lines display a parabola for comparison. 
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Figure 4.31: The joint density of states for the inter-subband transition of an 8.5 
unit cell wide conduction band Alo.6Gao.4N quantum well with 2MV/cm built-in 
electric field. The dashed lines display the JDOS for parabolic subbands. 

for a quantum well is given by 

dA 

a w | V k | 1 < | 
(4.44) 

Here E^ is the energy separation of bands % and / , E^ = E£ — . The integral is over 

A(E), which is the line of constant energy E, through two dimensional k-space, within the 

2D Brillouin zone. To evaluate (4.44) over the whole energy range E requires a knowledge 

of the complete in-plane bandstructure. This can prove computationally very costly as a 

separate complex bandstructure calculation is required for many directions of k||. However, 

since the approximation of an isotropic bandstructure can often be made, the path A(E) is 

approximated by a circle, and 

/ dA « 2nk\\(E) (4.45) 

where k\\(E) is the value of k\\ at energy E. There may be more than one value of k\\ for 
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a given energy, in which case all the values must be summed over. The JDOS can now be 

calculated from the complex bandstructure for a discrete set of points along a single line in 

2D k-space and using a cubic spline fit to interpolate the values in-between. The JDOS is 

then given by 

= - r d ^ i T T ( 4 - 4 6 > 

Figure 4.31 shows the joint density of states for an 8.5 unit cell wide Alo.6Gao.4N 

quantum well with the equivalent step function for parabolic subbands marked by a dashed 

line. A clear departure from the JDOS of parabolic subbands is noted. 

4.9 Optical Transitions 

Optical properties of semiconductors are of considerable interest, because of the wide 

range of applications that can result from them. For the nitrides, we are particularly interested 

in the absorption and emission of light in the visible part of the electromagnetic spectrum. 

The transition probability At/ between two states, i and / is given by Fermi's Golden 

rule (see for example [29]) 

V = f \Mif\2g(E)if (4.47) 

where g(E)if is the joint density of states and Mj/ is the transition matrix element. The 

electron-radiation matrix element has the form 

Mif = m ^ - A . p \ * f ) (4.48) 

where e the electron charge, me the mass of the electron, p = — ihV is the momentum 

operator and A is the vector potential of the electromagnetic field. For bound states in 

quantum wells, equation (4.48) becomes 
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M i f = / / ^ ^ - A - p V / d r i i ^ 
Jz=-oo Jnn

 l m e 
(4.49) 

Here is the momentum matrix element per unit cell area. For a layered heterostructure, 

this is easiest to achieve layer by layer and then sum to get the final value. The contribution 

from layer I is therefore given by 

Mif= / 
J zty J fin 

E E 
k S 

(0 * 
JO* [ a * t g ] -i(k*+ g)-r_N_ A . o 

a *4-g 

* E E 4 M ; r k i ( k ' + g , ) - r 

k' g' \ 

„(')*J(')„(') \ ( < ) lel 

6 ( 0 

k' g' \ "Jfc'lg' 

Mif = ^ | | E E E i^^aLV^-g' ̂ A • (k' + g')<W<̂  x ? 

driidz 

(0 

(4.50) 

(4.51) 
fc.fc' g,g' 4 , S ' 

i° a n d 4'ig 
state. f ^ is an integral that depends on the layer type 

where cjjV and a j ^ g are the coefficients for the initial state and S£ and are for the final 

and 

£(*) _ / e i ( fc ' - fc '+ 9 ' -9); (4.52) 

z?7 

= < 
e">zl+l-e'iH r ? # 0 

zi+i - zi V = 0 

Z77 

(4.53) 

(4.54) 

(4.55) 

where 
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Figure 4.32: Squared magnitude of the momentum matrix elements for the transi­
tion between i) Ei-E2 (red), ii) E2-E3 (green) and iii) E1-E3 (blue). The dashed 
lines indicate the values in the absence of a field and the solid lines represent the 
values with a field of 2MV/cm. Matrix elements are for z polarised transitions. 

V = (k'-k*+g'-g) (4.56) 

Figure 4.32 shows an example of the calculated momentum matrix elements for an 

Alo .6Gao.4N quantum well, with both zero field and a built-in electric field of 2MV/cm. In 

agreement with the experimental observations of Hoshino et al [126], the normally forbidden 

transition, E\-E3 has non-zero matrix elements for the asymmetric potential caused by the 

built-in electric field. The E\-E2 transition has the largest momentum matrix elements both 

with and without the field, and is slightly enhanced by the presence of a field. The small but 

non-zero momentum matrix elements for the forbidden transition E1-E3 with zero field is 

due to a combination of the slight intrinsic asymmetry of the well discussed in section 4.5.4 

and the band mixing present in the states [46]. 
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Figure 4.33: The theoretical absorption spectra for an 8.5 unit cell wide 
Alo.6Gao.4N quantum well. The dashed red line indicates the contribution from 
the E1-E2 transition and the dashed blue line from the E1-E3 transition. The solid 
lines indicate the OK spectra for a quantum well with the lowest subband containing 
1012 electrons/cm2. 

4.9.1 Absorption Coefficients 

The calculated momentum matrix elements and joint density of states can be together 

used to predict the optical absorption spectra of the quantum well. The absorption coefficient 

resulting from electronic transitions between initial state i and final state / can be written 

as [135,136] 

= / ^ £ L w l M " m - m E " - fcodk« ( 4 - 5 7 ) 

where // = refractive index of well material, hw = photon energy, c = speed of light, W = 

well width, Mj/ = optical matrix element, Eij = energy separation of subbands i and / , 

£0 = permittivity of free space, / j and / / are the Fermi occupation factors which are the 

probabilities that the states i and / are occupied. The measured optical absorption will be 
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a result of the transitions between a number of subbands and is obtained by summing the 

individual absorption coefficients of the transitions concerned. 

We are assuming that the bands are isotropic in the x-y plane, in which case equation 

(4.57) can be written as 

which can be expressed in terms of the joint density of states ^ / through a change of variables 

to an integration over energy 

/

ire2h 

Equation (4.59) predicts that transitions only occur when Eif = huj and gives rise to a step 

like structure similar to the joint density of states that is modulated by the affect of the Fermi 

occupation factors. For a simplistic demonstration of an absorption spectra, the lowest sub-

band can be filled with a given number of electrons at OK. Figure 4.33 shows the calculated 

absorption spectrum for a conduction band AlGaN quantum well with 10 1 2 electrons/cm2 

filling the lowest subband. The dashed lines indicate the shape of the spectra for more and 

more electrons. In reality, finite temperature effects would considerably broaden the spectra. 

However, despite the simplistic assumptions, figure 4.33 is broadly similar to experimental 

spectra of similar quantum wells, for example [126]. 

4.10 Summary 

A matching technique for the complex bandstructure approach is presented and has 

been demonstrated on InGaN and AlGaN wurtzite quantum wells for a range of field strengths 

and alloy compositions. The results for both quantum well systems have been shown to be in 

excellent agreement with effective mass envelope function calculations, therefore justifying 

to some extent the use of the simplistic effective mass approach in these systems. Compar­

ison with experiment in these systems in not always possible or valid because of the large 
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uncertainties in the model parameters especially the built-in electric field strength. It is sug­

gested that the complex bandstructure approach could be used as a more accurate method for 

the fitting of these fields to experimental data. Finally the calculation of momentum matrix 

elements has been demonstrated and suggests that the electric field strongly effects in the 

optical performance of a device based on AlGaN ISBTs, enhancing the E\ — E2 and the nor­

mally forbidden E\ — E3 transition and slightly reducing the matrix elements for the E2 — E3 

transition. 
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Chapter 5 

Wertzite-Zincblende Interface 

5.1 Introduction 

In previous chapters, studies were performed on nitride heterostructures with the 

wurtzite crystal structure using the empirical pseudopotential method. However, crystal 

growth in the zincblende phase is also possible. In this chapter, the zincblende phase, which 

for the nitrides is characterised by marginally smaller band gaps, is considered. First the 

empirical pseudopotential method is used to calculate the bulk and complex bandstructures 

of zincblende GaN. The wurtzite (0001) crystal face and the zincblende (111) crystal face 

are analogous faces in the two crystals. The structure and electronic properties of zincblende 

GaN in the (111) direction, therefore makes an interesting comparison with those of wurtzite 

GaN. The smaller band gap of zincblende GaN and the concept of a homointerface between 

the wurtzite (0001) face and the zincblende (111) face of GaN, allows the construction of 

a quantum well entirely from GaN; a homostructure. The wavefunction matching methods 

employed in chapter 4 are adapted for matching between the two crystal structures and the 

approach is demonstrated for a GaN conduction and valence band quantum well. 

5.2 Zincblende Crystal Structure 

The cubic zincblende crystal structure can be thought of as two interpenetrating face 

centred cubic (FCC) lattices separated by (1/4,1/4, l/4)a, where a is the lattice constant. 

Each of the two lattices contains atomic species of the two components labelled A and B. 
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More formally, the structure is described by a face centred cubic Bravais lattice with a two 

atom (A and B) basis. The two atoms are located at positions + R and —R relative to the 

lattice points, where 

R = ^ - ^ (5.1) 
8 

The resulting conventional cubic unit cell in figure 5.1 describes the geometry of the crystal. 

The primitive lattice vectors are 

a = ( 0 , i , i ) o 

b = ( | , 0 , i )a (5.2) 

c = (±,±,0)a 

The reciprocal lattice for a face centred cubic lattice is a body centred cubic (BCC) lattice 

and the first Brillouin zone is therefore a truncated octahedron of volume A(2ix/af. Figure 

5.1 shows the first Brillouin zone and the following points of high symmetry. 

T - f l I M 
^2' 2' 2> 

r = (o,o,o) 
X = (1,0,0) 

V ' (5.3) 

U = {h\,\) 

tf=(f,},0) 
w = (i,lo) 

5.3 Pseudopotentials 

The empirical pseudopotential approach has been widely applied to the zincblende 

crystal structure. The basic approach is very similar to that described in chapter 2 for the 

wurtzite crystal structure. The principal difference comes from the pseudopotential term 

which has the periodicity of the lattice. The symmetric and antisymmetric structure factors 

for a zincblende crystal are given by [25,46] 
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Sf = cos(g • R ) 
8 (5.4) 

S£ = sin(g • R ) 

For the bandstructure calculations presented here 6 form factors, 3 symmetric and 3 anti­

symmetric are found to be sufficient to describe the pseudopotential and are given in table 

5.1. Clearly the g-vectors appropriate to the zincblende reciprocal lattice must be used in the 

Fourier expansions. 

g g 2 s i 

(111) 3 A 
2 2 

(200) 4 0 1 
(220) 8 1 0 
(311) 11 2 2 

Table 5.1: The reciprocal lattice vectors used in Fourier expansion of a zincblende 
pseudopotential [40]. 

5.3.1 Local Pseudopotentials 

To use the complex bandstructure method employed in this work, the pseudopotentials 

must be local. However, unlike wurtzite, most empirical pseudopotential work on zincblende 

semiconductors makes use of non-local pseudopotentials and it is generally believed that 

accurate zincblende bandstructures require the non-local contribution [39]. As a result the 

majority of pseudopotential form factors available in the literature are non-local. Fan et 

al [137,138] and Kassali and Bouarissa [139] do quote local form factors for zincblende 

GaN, but the two bandstructures are in strong disagreement with each other and also with 

those that include a non-local contribution, such as Pugh et al [50]. 

For this work, local form-factors were instead derived by making Monte-Carlo fits 

to the accepted bandstructure, as outlined in chapter 2. The bandstructure targets used by 

Dugdale [40] for his non-local calculations were used with an increased weighting between 

T and L in an effort to provide an accurate representation of the bandstructure for the region 
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g g 2 V s V A 

(111) 3 -0.36626 0.20355 
(200) 4 0 0.20069 
(220) 8 0.05316 0.14339 
(311) 11 0.014339 0 

Table 5.2: The local pseudopotential form factors (in Rydbergs) for zincblende 
GaN, derived by Monte-Carlo fitting. 

Local Non-local Quasiparticle Expt. 

3.301 3.370 3.1 3.2 [140,141] 3.3 [142] 
xi- 7.191 7.191 7.7 

6.943 6.966 7.3 

Table 5.3: Comparison of energy gap transitions (in eV) calculated by i) local pa­
rameters presented here, ii) non-local parameters [40,50], ii) quasiparticle calcula­
tions within the GW approximation [143] and experiment. 

of particular interest, despite the use of local pseudopotentials. The resultant form factors 

are given in table 5.2. A value for the zincblende lattice constant of aZb — 4.511 A is used to 

ensure exact lattice matching with wurtzite GaN. 

Table 5.3 contains the values of the transition energies obtained from the local pseu­

dopotential calculations, along with the non-local and GW-quasiparticle values for compar­

ison. Surprisingly the local pseudopotential values are very similar to the non-local values, 

and will be considered sufficient accuracy for this work. Table 5.4 gives the values of effec­

tive mass calculated from the local and non-local bandstructures. Figure 5.2 shows the actual 

local bandstructure calculated with 137 plane waves. Very little experimental information is 

available for the spin-orbit splitting energy of zincblende GaN, and therefore the spin-orbit 

parameter is assumed to be the same as for the wurtzite structure n — 0.00325. The top of 

the valence band for the zincblende structure is more degenerate than for the wurtzite struc­

ture because of the additional crystal field splitting in the latter. A close up of the top of the 

valence bandstructure (figure 5.3) illustrates this and should be compared to the close-up of 

the GaN in the wurtzite bandstructure in figure 2.18. 
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Local Non-local [40] 

mso 0.33 0.33 
mlh 0.20 0.21 
rrihh 0.86 0.81 
m L 2.11 2.41 
mc 0.13 0.13 

Table 5.4: Comparison of the relative effective masses for the local calculation with 
those including a non-local contribution. 
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Figure 5.2: The empirical local-pseudopotential bandstructure for zincblende GaN. 
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Figure 5.3: A close-up of the empirical local-pseudopotential bandstructure around 
T for zincblende GaN. 
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Figure 5.4: The convergence, against number of plane waves, of the conduction 
band of zincblende GaN at various points within the first Brillouin zone. 

5.3.2 Convergence 

The convergence of energy eigenvalues for the expansion of pseudo-wavefunction 

against number of plane waves, has to be tested separately for zincblende GaN. The zincblende 

unit cell is smaller than that of wurtzite and only contains two atoms. Therefore, the pseudo-

wavefunction should achieve the same level of convergence as for the wurtzite structure with 

significantly fewer plane waves. 

Figure 5.4 describes the convergence of the zincblende GaN first conduction bands for 

several points of high symmetry throughout the zone. For symmetry reasons, the energies 

at the K and U points of the Brillouin zone should be equal. It can be seen that for less 

than 113 plane waves they are significantly different. The energies seem to be converged 

to within about 0.05eV at 113 or 137 plane waves, which is accurate enough for this work. 

Similar calculations by other workers (e.g. [46]) on zincblende semiconductors make use of 

89 or even 65 plane waves in calculations. However, in comparison to the computational 

cost of the wurtzite calculations, 137 plane waves is very efficient. For bulk bandstructure 

calculations, a value of 137 plane waves is therefore considered adequate. 
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5.4 Complex Bandstructure 

The complex bandstructure of a zincblende crystal is constructed in an analogous way 

to that for a wurtzite crystal. The g-vectors appropriate to zincblende must be used, and in 

the construction of H° s , s > y and H^g, s s,, the appropriate terms from the zincblende Haoc 

should be included. Zincblende materials are also usually grown in the (100) direction and 

most complex bandstructure calculations are for this direction. However, for this work the 

complex bandstructure is primarily required in the (111) direction. Wurtzite bandstructures 

are 'folded' in the (0001) direction in the plane of the A, L and H points when compared to 

zincblende. Therefore wurtzite bandstructures do not have stationary points at the zone edge 

in the (0001) direction. In contrast zincblende does have stationary points at the zone edge 

in the (111) direction. While this is noticeable in the bulk bandstructure, it has important 

consequences for the complex bandstructure. Complex wavevector states start and end at 

stationary points and these complex states have the real part of the wavevector on the zone 

edge which has consequences for the identification of the non-repeated solutions in the first 

Brillouin zone. 

Figure 5.5 shows the complex bandstructure of zincblende GaN as both the full open 

representation and "folded" about the plane halfway to the L point. The folded version of the 

bandstructure allows a comparison with the wurtzite complex bandstructures. The complex 

bandstructure of zincblende GaN features saddle points in the complex plane. These are at a 

zone edge maxima in kr which becomes a minima in hi. When "folded", these features are 

clearly recognisable as the minima along the imaginary axis seen in the wurtzite complex 

bandstructure (figure 3.2). Figure 5.6 shows the complex bandstructure of zincblende GaN 

in the (100) and (110) directions. Saddle features are not observed in the (110) direction 

or the (100) direction. For all the complex bandstructures, the imaginary wavevector loop 

across the band gap is observed and the spin split-off band loops along the imaginary axis to 

the first conduction band. 

5.4.1 Numerical problems 

The existence of stationary points at the zone edge presents numerical problems in the 

calculation of the complex bandstructure of zincblende crystals. The complex wavevector 
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Figure 5.5: Top: Complex bandstructure, with zero in-plane wavevector, in the 
(111) direction for zincblende GaN. The solid pink lines to the left represent the 
purely imaginary solutions. The solid orange lines in the middle region are the 
real bandstructure between F and L. To the right the solid red lines are complex 
solutions with the real component at L. The complex states are represented by pairs 
of similarly coloured dashed lines. Bottom: The above complex bandstructure is 
'folded' about | to provide a relevant comparison with the complex bandstructure 
of wurtzite GaN (figure 3.2). 
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Figure 5.6: The complex bandstructure, with zero in-plane wavevector, in the (100) 
direction (top) and the (110) direction (bottom). 
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Figure 5.7: A close up of the saddle features of the zincblende GaN complex band-
structure for 137 and 169 plane waves. The solid red line describes the bandstruc­
ture for 137 plane waves and the green circles are for 169 plane waves. The addition 
of the (333) group of plane waves has a significant effect on the convergence in the 
(111) direction. 

solutions arising from these stationary points should ideally be and remain exactly at the zone 

edge. However, a complex solution at the zone edge will have an equivalent solution at the 

opposite edge of the zone and such repeat solutions have to be identified and discarded or the 

conservation of number of solutions will be effected. In practice, with a finite basis set, the 

complex solutions are not exactly at the zone edge and worse still, "wander" away from the 

zone edge slightly as the energy varies. In addition states may exist that are genuinely inside 

the zone, but very near the edge. This makes the identification of the set of non-repeated 

solutions much more difficult. In practice this identification is only really needed over the 

region of energy being studied in a heterostructure calculation, and some numerical scheme 

for automatically identifying the non-repeated solutions is usually possible. 

The complex bandstructure of zincblende GaN presents an interesting numerical prob­

lem in relation to the saddle features. The bandstructures shown in figures 5.5-5.6 were 

generated with 169 plane waves. This is more than was required for reasonable convergence 

of the bulk bandstructure. However, it was observed that no consistent scheme could be 

found to establish the non-repeated solutions over a wide energy range of the complex band-

structure at 137 plane waves. In fact, the complex bandstructure is still not converged at 137 
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plane waves and a noticeable difference is observed in the saddle features for 137 and 169 

plane waves. Figure 5.7 shows this difference. The true nature of the saddle points and the 

corresponding effect on the identification of non-repeated solutions is only clear if 169 or 

more plane waves are used. The reason is, the addition of the (333) group of plane waves 

was required for convergence to be achieved in the (111) direction. To include the next (111) 

group of g-vectors, the (444) group, requires the use of at least 339 plane waves. 

5.5 Wurtzite-Zincfolende Interface 

The existence of two different crystal structures based on related stacking sequences 

allows for the possibility of stacking faults and even a seamless change in the crystal struc­

ture during growth. The geometry of the change in crystal structure from zincblende to 

wurtzite has been studied as part of the effort to improve the growth of hexagonal semicon­

ductors on cubic substrates [144]. The nitrides are known for the extremely high density of 

extended defects [21], although the role of the defects in the electronic properties has not 

yet been determined [145]. As a result of the stacking faults, even high quality crystals are 

expected to contain regions of zincblende structure. These regions of zincblende structure 

could be considered to form natural superlattices or quantum wells. Also, the controlled 

growth through solid source MBE of SiC structures consisting of hexagonal and cubic layers 

has been demonstrated [146] and continues to be improved. This development opens up new 

device design possibilities and allows for increased flexibility in the design of current SiC 

devices [147]. The growth of the nitrides is significantly less mature that that of many other 

semiconductor systems. Nevertheless it remains a possibility that controlled growth of ho-

mostructures of wurtzite and zincblende GaN could very soon be achievable. One possible 

route that has been suggested is the introduction of Mg doping in wurtzite GaN to induce the 

formation of zincblende regions [148]. 

5.5.1 Stacking Sequences 

It is instructive to first consider the stacking sequences that give rise to the two dif­

ferent polytypes of GaN. The rotational freedom about the tetrahedral bonds oriented in the 

growth direction gives rise to three different positions onto which a growth layer can be 
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Figure 5.8: The wurtzite and zincblende interface. 
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"placed" during growth. These three positions are labelled A, B and C. The wurtzite phase 

is achieved by stacking the sequence . . . ABABAB... or equivalently . . . BCBCBC... 

or . . . AC AC AC — The crystal resulting from an . . . ABABAB... is related to that re­

sulting from . . . BCBCBC... by a rotation of 60°. The zincblende phase is then achieved 

by making use of the third possible stacking location with the sequence . . . ABC ABC 

Again the . . . ABC ABC... sequence is equivalent to the . . . ACBACB... or 

... CABCAB... sequences, rotated by 60°. It is important to note that each letter, A,B 

or C , in the stacking sequence corresponds to a cation-anion pair of atoms, i.e. a gallium 

atom and a nitrogen atom for GaN. The term monolayer (ML) is often used in the literature to 

refer to a layer formed from a pair of atoms corresponding to one of the letters in the growth 

sequence [148]. The environment of a single atom in a wurtzite crystal differs from one in 

a zincblende crystal only by the comparative location of its second and third nearest neigh­

bours. The similarity in the local structure leads to a very small (~10meV/atom) [148,149] 

difference in the formation energies of the two crystal structures. 

5.5.2 Stacking Faults 

A stacking fault can be thought of as the result of a misplaced monolayer. The fault 

then places the monolayer in the only other available location. For an atomic pair in a 

wurtzite crystal that should go into location B as part of a sequence AB, the fault would 

then be the sequence AC since C is the only other location permitted while retaining the 

tetrahedral bonding. The sequence for the fault would then be... ABABABCBCBCB 

The stacking fault itself actually contains a zincblende-like sequence of ABC. It is clear that 

a wurtzite zincblende interface could be formed by continuing this zincblende sequence after 

the stacking fault... AB AB ABC ABC ABC The zincblende-wurtzite interface would 

then be formed by the sequence . . . ABC ABC ABABAB..., noting that there will be an 

asymmetry between the WZ-ZB and the ZB-WZ interfaces. 

A WZ-ZB interface of the sequence... ABABAB ABC ABC ABC... represents the 

only possible crystal geometry without the introduction of further stacking faults. Double 

stacking faults, or more complicated variations on the stacking sequence, are commonly 

observed and may well play a role in the geometry of a real WZ-ZB interface. However 

for the purposes of this work we will restrict the models to the most simple case of an 
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interface without additional faults. The stacking layers marked in bold type face could be 

considered part of either the wurtzite or zincblende repeat pattern. Only layers either side of 

this "interface region" can be unambiguously defined as either wurtzite or zincblende. 

Any other combinations of zincblende and wurtzite stacking sequences result in the 

same interface crystal structure in the same way as the ABABAB sequence results in the 

same structure as AC AC AC. This is important, because as a result there is only one type 

of WZ-ZB interface. To illustrate this consider . . . BCBCBCBCABCABCA... which 

is related to . . . ABABAB ABC ABC ABC... by a rotation of the whole structure by 60°. 

Clearly the same argument holds for the ZB-WZ interface. 

5.5.3 Quantum Well 

Now consider a quantum well constructed from a structure with WZ-ZB and ZB-

WZ interfaces. The wurtzite structure, having a 0.2eV larger band gap, forms the barrier 

regions around a zincblende well. The growth direction is therefore the (0001) direction in 

the wurtzite and the (111) direction in the zincblende. 

In this chapter we describe the application of the empirical pseudopotential complex 

bandstructure matching techniques used in chapters 2,3 and 4 to a simple quantum well 

formed from wurtzite and zincblende GaN. The lattice constants of wurtzite and zincblende 

GaN are so similar that a quantum well constructed this way would be under very little 

strain (<0.5%). The effects of distortion of the crystal in the (11 Indirection of a zincblende 

structure would result in a reduction of the crystal symmetry and a resultant splitting of 

degenerate bands. These effects could be included, but the additional complexity is not jus­

tified for the small effect it would have, and is avoided by considering the very nearly lattice 

matched system to be exactly matched. Without strain there will be no piezoelectric fields, 

although spontaneous polarisation could be present. For the purposes of a demonstration of 

the calculation the effect of spontaneous polarisation has been ignored. 

The band offset between wurtzite and zincblende GaN has not been investigated ex­

perimentally. Chapter 6 investigates the WZ-ZB interface, including the band offset, using a 

first principles calculation based on density functional theory. In this chapter, the band offset 

calculated in chapter 6 is used. 
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Figure 5.9: Schematic diagram of the 5 possible locations di - d 5 of the WZ-ZB 
and ZB-WZ interfaces. 

5.5.4 Matching 

Figure 5.8 illustrates a WZ-ZB interface and the different unit cells on both sides. 

The matching of wavefunctions is carried out in a similar way to that for a wurtzite only 

heterojunction. The zincblende complex bandstructure is required in the (111) direction. 

The wavefunctions for the WZ and ZB complex bandstructures are described in terms of 

the two different sets of g-vectors and therefore the appropriate in-plane projections need 

to be calculated separately for each structure. The origins of the WZ and ZB unit cells are 

displaced by a vector d to give the two unit cells the correct alignment for a WZ-ZB and 

ZB-WZ interface. This displacement can be accounted for by multiplying the wavefunction 

projections by a phase factor e t g d . Having calculated the wavefunction projections for the 

well and barrier regions over a range of energies, the matching technique described in chapter 

4 can then be used to establish the bound state energies. 

Location of interface 

The exact location of the WZ-ZB (or equivalently the ZB-WZ) interface is not well 

defined. Over the stacking sequence • • • ABABABABCABCABC • • • the stacking lay­

ers marked in bold could equally be considered part of the wurtzite or zincblende repeat 

sequences. This "interface region" exists to a small extent in a normal heterostructure, in 

that the nitrogen atoms at the interface between GaN and A1N could be considered part of 
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either material. However the interface region of 1 atomic layer in the GaN - A1N interface 

is significantly smaller than the 4 atom region of a WZ-ZB interface. For GaN - A1N, the 

matching was performed on one side of the nitrogen atom, at the bond centre of the "diago­

nal" bonds. It could equally have been performed at the centre of the growth direction bonds. 

Hall [71] has considered the effect of the matching plane for bond-centred and atom-centred 

matching of zincblende superlattices. Although some differences of the energies and the 

symmetry of wavefunctions were observed, generally the results were in good agreement. 

Since the pseudopotential approximation is only valid away from the ionic cores, there is 

an argument to restrict the matching of the wavefunctions to the bond centre sites. For a 

WZ-ZB interface that narrows the choice down to 5 locations, shown in figure 5.9,with the 

most intuitive being at the centre of the "interface region". The choice of matching plane is 

achieved in practice by choosing an appropriate displacement vector d between the origins 

of the WZ and ZB unit cells. In the actual calculations the choice of matching plane from 

these 5 positions had little effect on the final bound state energies or wavefunctions. Fig­

ure 5.10 illustrates this point, the bound state energy for a GaN conduction band quantum 

well is plotted against the location of matching plane. For a given matching plane on the 

WZ-ZB interface, the complementary one on the ZB-WZ was used to ensure the well width 

remained constant. The variation of bound state energy with matching plane is found to be 

very small (~0.0005eV) with the most noticeable difference being between that of matching 

on a diagonal bond (di,d 3,d 5) and growth direction bond (d 2 ,d 4). 

5.5.5 Bound states 

A profile of the quantum well with band offsets calculated by the ab-initio density 

functional theory calculations described in chapter 6 is displayed in figure 5.11. Zero field 

is assumed in the zincblende region and the conduction band offset is inferred from the 

empirical difference in band gaps of the two materials. The resulting conduction band well 

is 0.168eV deep and the valence band well is 0.0314eV deep. 

The bound states vs well width of a GaN WZ-ZB conduction and valence band quan­

tum well are plotted in figures 5.12 and 5.13. The conduction band states are typical of a 

conduction band quantum well and somewhat similar to the results for a WZ well previously 

discussed in chapter 4. The conduction band state energies are in good agreement with those 
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Figure 5.10: The variation of bound state energy for a GaN WZ-ZB conduction 
band quantum well with the location of matching plane. 
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Figure 5.11: The band profile of a 3 unit cell wide zincblende/wurtzite GaN con­
duction and valence band quantum well 
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Figure 5.12: The variation of bound state energy with well width of a conduction 
band WZ-ZB GaN quantum well. Energies are in eV, with OeV as the top of the well 
and -0.168eV at the bottom of the conduction band well. Dashed lines illustrate 
the solutions of an envelope function calculation based on effective masses derived 
from the pseudopotentials used in the complex bandstructure matching calculation. 
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GaN WZ-ZB Valence Band Quantum Well 

0.03 hhi 

hh2 
ih 

0.02 
hh3 »>—< 

• 

• 

0.01 
/ 

hh4 

Ih2 

: 0 J 
0 20 40 60 80 100 

well width (A) 

Figure 5.13: The variation of bound state energy with well width of a valence band 
WZ-ZB GaN quantum well. Energies are in eV, with OeV as the top of the well, 
0.0314eV at the bottom of the valence band well. Dashed lines illustrate the so­
lutions of an envelope function calculation based on effective masses derived from 
the pseudopotentials used in the complex bandstructure matching calculation. 
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Figure 5.14: The in-plane averaged probability densities for the ground state and 
1st excited state of a 46.71 A wide GaN WZ-ZB conduction band quantum well. 
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based on an effective mass model, with masses derived from the pseudopotential results. For 

any width above about 4nm we predict more than one conduction subband, and it should 

be possible to confirm this experimentally using photoluminescence measurements. The in-

plane averaged probability densities are displayed in figure 5.14 for the ground state and 1st 

excited state of a 46.71 A wide GaN WZ-ZB conduction band quantum well. 

The valence subband structure is considerably more complicated than for InGaN quan­

tum wells which, because of the nature of the bulk InGaN valence bandstructure, and the 

small well depth, only possessed one bound state. For the WZ-ZB wells we predict multiple 

heavy hole, light hole and spin split off subbands. Considerable band mixing is present and 

the effective mass calculations only broadly reflect the bound state energies as a function of 

well width. Anti-crossing behaviour is observed, for instance between the 2nd, 3rd and 4th 

subbands at a well width of 7.5nm. The presence of anti-crossing behaviour would not be 

predicted by a simple single parabolic band effective mass approach and demonstrates the 

advantages of the complex bandstructure method for calculating quantum well bound states. 

In reality, the well may be under the influence of an electric field. The zincblende 

region is to a very good approximation unstrained and not prone to pyroelectric effects to 

quite the same extent of wurtzite materials, but the WZ-ZB and ZB WZ interfaces may well 

give rise to a polarisation. To properly account for these effects an approach similar to the 

first principles geometric optimisations discussed in chapter 6 would be required. In fact, 

an interesting extension to this work would be to use ab-initio calculations of the field in a 

quantum well due to polarisation effects, in a complex bandstructure calculation of the bound 

states. 

5.6 Summary 

The bulk local pseudopotential bandstructure and corresponding complex bandstruc­

ture of zincblende GaN have been calculated and used in a complex bandstructure study 

of the electronic states of a wurtzite-zincblende quantum well composed entirely of GaN. 

The bound state energies and probability densities have been calculated and anti-crossing 

behaviour has been observed in the states of a valence band quantum well as a function of 

well width. 
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Chapter 6 

Ab-initio Calculations of Nitride 

Semiconductors 

6.1 Introduction 

Ab-initio, total energy calculations have for a number of years been an established 

and extremely profitable approach in the theoretical toolkit of condensed matter physics. 

Specifically the combination of density functional theory (DFT), the use of plane waves, 

and the pseudopotential approximation has proved a particularly effective combination. The 

approach is often simply referred to as a DFT calculation or as an ab-initio plane wave 

pseudopotential (PWP) calculation. DFT has routinely been applied to solid state problems 

such as the atomic and electronic structure of crystals, surfaces, interfaces, and the study 

of defects. More recently DFT has found success in the fields of computational chemistry 

and the biosciences. This success was formally recognised through the 1998 Nobel prize 

for chemistry being awarded in part to Walter Kohn "for his development of the density 

functional theory" [150]. 

In this chapter, we report total energy calculations using pseudopotentials and plane 

waves which have been performed on zincblende and wurtzite nitride systems. An overview 

of the theory and its implementation is given, but many much more detailed reviews are 

available in the literature [150-162]. The DFT calculations have been used to supply sup­

porting data for the calculations performed in earlier chapters in this thesis and provide an 

interesting comparison between the empirical and ab-initio pseudopotential approaches. Fi-
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nally the nature of the wurtzite - zincblende interface is explored by ab-initio methods. In 

particular, the ambiguously defined location of the interface is considered and the degree of 

structural relaxation is investigated. Estimates are provided for the band offsets which are an 

important property of a heterointerface. 

6.2 Ab-initio Total Energy Calculations 

The aim of ab-initio total energy calculations is to calculate the total energy of the sys­

tem without the input of experimental information. For a system of electrons and nuclei, the 

only information required is a reasonable starting point for the relative positions and atomic 

numbers of the ions. The calculation of the total energy of a system is in itself not a very use­

ful quantity, but many important physical quantities can be found indirectly from total energy 

calculations. These physical quantities are often calculated by considering changes in the to­

tal energy with system parameters. A simple example of this is the lattice parameter which 

is found by searching for a minimum in the total energy of a unit cell with a range of lattice 

parameters. The first principles nature of the calculation enables systems to be investigated 

where experiments are very expensive, difficult or even impossible to perform. The classic 

example of the latter is establishing the crystal structure of materials under extremely high 

pressures. The problems of depending on experimental information for calculation inputs is 

truly appreciated when the experimental data is inconclusive or unreliable. Within the field 

of nitride materials, many physical parameters are still poorly known such as band offsets 

and the built-in electric fields, and more recently even the accepted band gap of InN has been 

questioned [55,56]. An ab-initio approach suffers from none of those problems although it 

should be noted that that does not mean the results are necessarily any more accurate; that 

all depends on the strengths and weaknesses of the theory. 

6.2.1 Description of the problem 

The problem of calculating the total energy of a number of electrons and nuclei is a 

quantum mechanical many-body problem. Mathematically the Hamiltonian is written as the 

sum of the kinetic and potential energy operators of the components of the system; 
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^Many Body = TN + TE + VNN + K/v + VEE (6.1) 

where the subscripts N refer to the nucleus N and the electrons e. The solution of the 

Schrodinger equation with the Hamiltonian in (6.1) is clearly impossible without approxima­

tion. As with the empirical pseudopotential approach, the Bom-Oppenheimer approximation 

allows the nuclei to be considered stationary so that the nuclear kinetic energy TN term can 

be ignored, and the nuclear potential term VNN will simply be a constant for fixed atomic 

positions. The problem is now essentially one of an interacting electron gas in the presence 

of nuclei. The kinetic energy of all the electrons is represented by the operator; 

( 6 ' 2 ) 

The potential of the nuclei seen by the electrons is represented by 

47reok - R i l 

where Zi is the atomic number of nucleus i, R i denotes the positions of the ions and r< 

denotes the positions of the electrons. This term is usually approximated through the use of 

pseudopotentials for some of the same reasons as pseudopotentials are used in the empirical 

pseudopotential approach. The pseudopotential V i 0 n then describes the potential due to the 

ionic cores rather than the nuclei. 

The important difference between an empirical and ab-initio pseudopotential is the ab­

sence of the effects of a mean field in the ab-initio pseudopotential. The empirical pseudopo­

tentials include the average effect of all the electron-electron interactions. For this reason 

the empirical pseudopotentials contribute essential physics to the empirical pseudopoten­

tial method whereas in an ab-initio calculation they serve only to reduce the computational 

cost of the calculation. All-electron ab-initio calculations in a plane wave basis, without 

pseudopotentials have been performed, and act as an excellent test of the validity of the 
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pseudopotential approximation [163]. The ab-initio pseudopotentials are generated without 

experimental input, requiring only the core radius and the ionic charge as input. It should be 

noted that care must be taken in deciding which electrons are to be considered core electrons, 

so as not to exclude the effects on bonding of the lower orbitals. This is especially true of 

some nitrides, in which the upper d-orbitals of Ga and In are known to have an effect on the 

bonding [164]. For more details on the construction of ab-initio pseudopotentials, see the 

work of Kleinman and Bylander [165] on which many ab-initio pseudopotentials are based. 

The final term of (6.1) left for consideration is that of the electron electron interactions, 

and it is this which presents the greatest challenge because of the many electron interactions. 

A number of different theoretical frameworks that come under the umbrella of ab-initio to­

tal energy calculations have been applied to overcoming the difficulties associated with the 

many electron problem. Two of the most common are the Hartree-Fock (HF) approach and 

density functional theory (DFT). The Hartree Fock approach is an extension of the mean field 

Hartree approach, which approximates the actual N electron wavefunction * by a product 

of single particle orbitals V»- However, only the effect of Coulomb repulsion is included. 

The Hartree Fock approach improves on this, by including the effects of electron indistin-

guishability and therefore the Pauli exclusion principle is enforced exactly. However, no 

further many body effects are included and hence the Hartree Fock theory is not an exact 

theory. The difference between the actual energy and the Hartree Fock energy is defined as 

the electron correlation energy 

This is the effect of all the many body interactions, apart from the exchange interaction. Den­

sity functional theory is an exact theory, but practical implementation make use of approx­

imate exchange-correlation functionals to describe the effects of exchange and correlation 

energy. 

1 
V. 

ee 2 TT! 47re0 r* - r, 
(6.4) 

Ecor — E — EHF (6.5) 
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6.3 Density Functional Theory 

Density functional theory was initially developed as an exact theory for interacting 

electrons by Hohenberg and Kohn in 1964 [166]. A year later a practical method for using 

DFT in the calculation of single particle energies was reported [167]. DFT is based on two 

fundamental theorems [162,166]: 

1. The total energy of a system of electrons and nuclei is a unique functional of the elec­

tron density. 

2. The true ground state energy is exactly equal to the variational minimum of the total 

Equivalent to the first theorem is the observation that the density uniquely determines the 

overall potential which in turn determines the total energy [162]. This allows a major sim­

plification of the problem without any loss of generality. Now the total energy E can be 

expressed as a functional E[p(r)] of the electronic density p(r). 

where ^ ^ ( r ) is the pseudopotential of the ionic cores, -F[p(r)] is a yet to be determined 

functional and Ei is a constant energy shift. 

DFT avoids the need to describe several interacting electrons by the use of a mean 

field or effective potential. The concept of a mean field allows N electrons to be described, 

separately by N Schrddinger-like equations called the Kohn-Sham (KS) equations [167]. 

The Kohn-Sham equations arise by the application of the second theorem of DFT to the 

energy functional [162]. The density can now be defined in terms of the wavefunctions of 

the non-interacting electron-like quasi-particles. That is 

N 

PW = E ^ W ^ „ ( r ) (6.7) 
n=l 

Where •(/>„ are the wavefunctions of n non-interacting electron-like quasi-particles. The func­

tional F[p(r)] can now be considered to consist of three components 

energy. 

E[P(v)} = f Vion(r)p(T)dT + F[p(r)\ + Ei (6.6) 
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F[p(r)} = EK[p(r)] + EH[p(r)] + Exc[p(r)} (6-8) 

EK[P{V)} is the kinetic energy of a system of non-interacting electrons whose electronic 

density is identical to that of the real system. EK[P(T)) is analogous to TE in equation (6.1), 

although the expectation value of fe wil l not correspond to EK[p(r)]. EH[p(r)] is the Hartree 

energy and is analogous to electron interaction operator Vee, although it also doesn't corre­

spond to the expectation value of VEE. 

The final term in equation (6.6) is Exc[p(r)], the exchange and correlation energy. There is 

no analogous operator for Exc[p(r)] because it arises as a result of the lack of correspondence 

between the expectation value of the many body operators and the analogous terms in the 

energy functional. In other words 

EH[p(r)) + EK{p(r)} ^ < f e + V E E > (6.10) 

Exc[p(r)] therefore contains the energy not present in EH[P(T)} + EK[P{T)\ that is needed to 

make i?[p(r)] exact. 

Exc[p(r)] = E e x a c t - EH[p(r)} - EK[p{v)) (6.11) 

Effective Potential 

The empirical pseudopotential method incorporated the mean field into the empirical 

pseudopotentials. In an ab-initio calculation the mean field is calculated as an effective 

potential and it is important to consider the form of the effective potential. The Kohn-Sham 

equations arise as a result of the second theorem which says that the ground state of the 
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system can be found using the variational principle. Consider the density to be perturbed by 

a small amount 6p(r) which gives rise to a small change in energy 5E. 

5E JSp(r) 
8EK[p(v)) 5EH[p(v)} 6Exc[p(r)} 

Vion{r) H ^~r^ 1 H 
5p(r) 5p(v) Mr) 

dr (6.12) 

Since the number of electrons in the system remains unchanged 

/ 5p(r)dr = 0 (6.13) 

which ensures that the quantity in square brackets is a constant, which is the chemical poten­

tial / i . 

,_x , 5EK[p{v)] , 6EH[p{v)) , 8Exc[p(r)} 
M - Vion{T) + —^-7-^ 1- —^—r-, \-

5p(r) Sp(r) 8p(v) 
(6.14) 

The chemical potential is the energy gained as a result of increasing the number of electrons 

by one. For a ground state system it is equal to the Fermi energy. We can now define an 

effective potential called the Kohn-Sham potential V K S { r ) as the potential seen by the non-

interacting electrons. 

v K S ( r ) = ^(r) + -^y- + ^ ) -

V K S { r ) = V i o n ( r ) + V H ( r ) + V x c ( r ) 

(6.15) 

(6.16) 

which has also illustrated the definition of the Hartree potential V#(r) and the exchange-

correlation potential Vxc(r). The definition of the Kohn-Sham potential is important because 

it allows the charge density to be constructed from Kohn-Sham single particle orbitals V't- By 

replacing V with VKS the Schrodinger equation for non-interacting particles can be solved 

yielding ipi. 
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h 
2m 

ltpi + V K S A = E^i (6.17) 

The charge density can be constructed from equation (6.7), but it is necessary to know p{v) 

to construct VKS- This circular problem is solved through self-consistency, which we will 

discuss later. 

6.3.1 The Local Density Approximation 

The functional for the exchange and correlation energy Exc[p(r)] was defined previ­

ously in equation (6.11) as the contribution to the total energy from electron-electron inter­

actions not accounted for by the Hartree or kinetic energy terms. Exc[p(v)\ contains all the 

"difficult" parts of the many body interaction and as yet we have not considered its form. In 

general, an exact form for the exchange-correlation functional is not known, and approxima­

tions must be employed. 

The most common approximation for the exchange-correlation functional is the lo­

cal density approximation (LDA). The main assumption behind the LDA is that the den­

sity is slowly varying. The exchange-correlation energy contribution at a point r can then 

be approximated as the exchange-correlation energy of an electron gas of uniform density 

p(r). The exchange-correlation energy per electron in a uniform electron density can be 

calculated by explicit many body calculations such as quantum Monte-Carlo (see for ex­

ample [168,169]). Further, a computationally efficient approximation can be achieved by a 

parameterisation based on these calculations and allows the exchange and correlation energy 

to be evaluated. The exchange-correlation functional can now be written as 

where e I C(p(r)) is the exact exchange-correlation energy of uniform electron density p(r). 

As part of the definition of the Kohn-Sham potential in equation (6.16), the derivative of 

exchange-correlation energy with respect to electron density is required. Now 

[P(r)] = / exc(p(T))p(T)d3r E xc (6.18) 
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6Exc[p(r)} = d[p(r)exc(p(T))} 

5p(r) dp{v) 
(6.19) 

where 

eM(p(r)) = e\T (p(r)) (6.20) 

The most common parameterisation for e^™ is that of Perdew and Zunger [170] which is 

based on the quantum Monte Carlo calculations of Ceperly and Alder [169]. 

Despite its simplicity, the LDA works remarkably well in the context of plane wave 

pseudopotential calculations based on DFT. Alternatives to the LDA do exist, the most com­

mon of which are known as generalised gradient approximations (GGA). In general the 

exchange-correlation energy is non-local, whereas the LDA is clearly local in nature. By 

also considering the spatial derivative of the density rather than just the density, GGAs hope 

to include a little of the non-local nature. 

Higher and higher order derivatives could in principle be included although presently 

only the use of first order derivatives is well established. The most commonly used GGAs 

are that of Perdew and Wang (PW91) [171-173], Perdew, Burke and Ernzerhof (PBE) [174] 

and a revised form of PBE called RPBE [175]. In this work the well established functionals 

of Perdew and Wang are used throughout. 

Self-consistency 

The combination of an approximate form for the exchange-correlation functional, such 

as the GGA we use in this work, and the definition of an effective potential allows the Kohn-

Sham equations to be solved and yield the charge density. However the EH[p(r)], EK[p(r)] 

and Exc[p(v)\ are all functionals of the charge density. This leaves a circular problem, which 

[p(r)] = j e I C(p(r),Vp(r)) / 9(r)rf 3 E xc 
(6.21) 
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B E G I N 

Calculate K^. given atomic positions 
and atomic numbers 

Pick a trial density p(r) 

i 
Calculate Kohn-Sham potential Vu 

Solve Kohn-Sham equations yielding 
Kohn-Sham wavefunctions <p.(r) 

I 
Calculate new density p(r) from 
Kohn-Sham wavefunctions cp.(r) 

Is solution self 
consistent 3 

NO 

Generate new density p(r) 

Figure 6.1: Flow chart describing the procedure for finding the self-consistent so­
lutions to the Kohn-Sham equations. 

is solved through the concept of self-consistency. 

For the densities to be self-consistent, the charge density should give rise to an effective 

potential that on solution of the Kohn-Sham equations gives rise to Kohn-Sham wavefunc­

tions with the same charge density. In practice this is achieved by starting from an initial 

guess for the density which is then used to calculate the Kohn-Sham potential and then solve 

the Kohn-Sham equations. The resultant Kohn-Sham wavefunctions and therefore the den­

sity is then hopefully closer to the true ground state than the original guess. This procedure 

is repeated with the new density and Kohn-Sham wavefunctions until self-consistency is ob­

served. Figure 6.1 describes this process as a flow chart. The computational cost can be 

significantly reduced with improved iterative schemes for the self-consistent minimisation 

(see for example [157]). 
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Expansion using a plane wave basis set 

A Kohn-Sham wavefunction is represented as a Fourier expansion in the same way as 

the empirical pseudo-wavefunctions: 

^„(r) = ] > > ) k + g e « k + e ) - r > (6.22) 
g 

where g are the reciprocal lattice vectors and k is the wavevector of the state. The use of a 

plane wave expansion implies a periodic system, but by making the cell size large enough, 

a periodic array of essentially isolated aperiodic systems may also be studied. The unit cell 

used in a calculation in this way is referred to as a supercell. In theory the calculation of 

charge density requires an infinite number of k-points to be calculated, however in practice 

this is approximated by a finite sampling of k-points just as it was in the calculation of the 

empirical pseudo-charge density. Each k-point involves a separate self-consistent calculation 

and therefore any reduction in the number of k-points results in a significant saving in com­

putational cost. Usually a relatively small number of k-points, known as special k-points, 

covering the irreducible wedge of the first Brillouin zone are sampled. Several schemes for 

this sampling exist such as those of Chadi and Cohen [57] and Monkhorst and Pack [58]. 

These schemes involve the allocation of a weight wk for the contributions of each special 

k-point. 

<°(r) = E E ^kWtMr) = E E w* E c n , k + g C n , K + g ' e ( i ( g - g ' ) r ) (6.23) 
n k n k g,g' 

In this work the Monkhorst and Pack (MP) scheme is used. In addition to the finite sampling 

of k-points, the plane wave expansion has to be truncated. In contrast to the EPM the number 

of plane waves is not kept constant, but a kinetic energy cut-off E^t is chosen such that all 

plane waves k with lower energy that are obeying the inequality 

£ » ' > 2 l | k + g l 
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are included in the expansion. The use of a kinetic energy cut-off rather than a fixed number 

of plane waves has the consequence that the number of plane waves, and therefore the com­

putational cost, changes with the size of the supercell. For a larger system it is reasonable to 

expect more plane waves to be needed to successfully approximate the wavefunction. 

The use of a plane wave basis set is advantageous in that the substitution of equation 

(6.22) into the Kohn-Sham equations yields a particularly simple form: 

The simplest approach to finding the self-consistent solution to the Kohn-Sham equations 

within a plane wave basis is by diagonalisation of the Hamiltonian matrix. The size of 

the matrix is determined by the kinetic energy cut-off. In all but the most simple systems, 

the TV3 scaling for the cost of a diagonalisation would make systems with more than a few 

atoms impossible. In practice, more advanced techniques for minimising the Kohn-Sham 

energy functional are employed. These typically treat the plane wave coefficients as dynam­

ical variables and iteratively improve the self-consistent solution to the Kohn-Sham energy 

functional. [157,176-178] 

6.4 Structural relaxations 

The Kohn-Sham equations can now be solved self-consistently yielding a charge den­

sity for each of the n bands and a total energy for the system. The total energy can be 

minimised for changes in the supercell dimensions or even the ionic positions. This on its 

own is a powerful tool and can determine bandstructures, lattice parameters, and providing 

there are not too many degrees of freedom, the crystal structure. 

For more complicated systems of ions with many degrees of freedom, there is a need 

to calculate the forces on the ions and establish a minimum energy set of ionic positions by 

minimising the forces. This is achieved through the application of the Hellman-Feynman 

theorem. 

J 2 — |k + g| 2 5 g g , + vion(& - g') + VH(g- g') + Vxc(g - g') x 
g 

(6.25) 
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6.4.1 Hellman-Feynman theorem 

If F j is force acting on ion i at position R j , Fj is given by the full derivative of the 

total energy of the system with respect to the ionic position: 

dE 
F , = (6.26) 

The energy depends on all the wavefunctions and atomic positions, and therefore the full 

derivative must be written in terms of partial derivatives as 

_ dE f dE di>n f dE dtp* _ r ^ d ^ _ [ < w d ^ 

J d^ndIU J dftdRi 1 ' ; 

this can be simplified using 

E =< ij)\H\i(f > (6.28) 

which enables the final two terms in equation (6.27) to be written as 

£ > n 0 | T < i/'nlV'n > (6.29) 
n 

where En is the energy eigenvalue for the electronic eigenstate x/)n. Equation (6.29) is clearly 

zero for all n as < Vnl^n > is simply the normalisation constant. Hence, the Hellman-

Feynman theorem states that if the electronic wavefunctions are eigenstates of the Hamilto-

nian, the force felt by an ion is just the partial derivative of the total energy with respect to 

the ionic position. 

dE 

This allows the forces on the individual ions to be calculated and the equilibrium structure 
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to be determined by what is called a "geometric optimisation". 

6.4.2 Geometric optimisation 

A geometric optimisation involves predicting the equilibrium ionic positions and or 

the equilibrium lattice constants for the system. Within the Born-Oppenheimer approxima­

tion the equilibrium ionic positions can be established through the Hellman-Feynman forces. 

A self-consistent electronic calculation is performed for a given set of ionic positions and the 

Hellman-Feynman forces are then obtained. If the forces are not below a given numerical 

tolerance then the ions are moved in the direction of the forces and the process is repeated 

until equilibrium is achieved. The same procedure can involve changes to the lattice con­

stants, using stresses, in order to establish their equilibrium value at the same time. With 

each geometric optimisation iteration the old charge density is used as the initial guess. This 

gives a starting point that should be close to the new self-consistent density and therefore 

significantly reduce the computational cost. A flowchart describing the overall procedure is 

given in figure 6.2. Where possible the symmetry of the system is used to reduce the degrees 

of freedom for the geometric optimisation. 

6.4.3 Lattice relaxations 

The geometric optimisation becomes less efficient as the number of degrees of free­

dom increases. Is is sometimes computationally cheaper to vary manually one of the lattice 

constants and look for a minimum in the total energy as a function of lattice constant. At 

each lattice constant, if the symmetry of the system allows the ions to move, a separate ge­

ometric optimisation must be performed. The form of total energy as a function of lattice 

constant is asymmetric and is well described by Murnaghan's equation [176,179,180]. 

Murnaghan's equation 

Murnaghan's equation [179,180] is an equation of state which gives the pressure as 

a function of the adiabatic bulk modulus and as such can be used to model the change in 

energy with volume [176] as 
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Figure 6.2: Flow chart describing the procedure for establishing the equilibrium 
ionic positions. 

154 



Chapter 6. Ab-initio 6.5. DFT calculations 

1 _ (Vo K .1 KV 
E 

K ;' - 1 V V 
+ EQ (6.31) 

Here K is the bulk modulus, K' is the derivative of bulk modulus with pressure and VQ is the 

equilibrium volume. By fitting 6.31 to a minimum of five energies computed at different cell 

volumes (c-lattice parameters), the values of K, K' and Vo can be calculated. For a structural 

relaxation of a supercell, we are only interested in the equilibrium volume [176,181]. With 

the equilibrium lattice parameters established a further geometric optimisation of the atomic 

positions is performed for a supercell with the equilibrium lattice parameters. 

In this work first principles calculations have been performed on bulk crystals and 

wurtzite-zincblende superlattices of A1N, GaN, InN. A commercial plane wave density func­

tional code called CASTEP [162] was used for this purpose. Ultra-soft Vanderblit pseudopo-

tentials [182] were used throughout. For GaN and InN, these pseudopotentials treated the 

d electrons as valence rather than core electrons to account for the known effect they have 

on bonding for the nitrides [164]. An increased computational cost is incurred as a result of 

the extra electrons and A1N was noticeably quicker in calculations. The GGA of Perdew and 

Wang [173] was used for all calculations. 

6.5.1 Convergence tests 

As with the empirical calculations involving plane waves, a confirmation of the conver­

gence of the wavefunction with respect to the plane wave kinetic energy cut-off is important 

in establishing the validity of the results. Convergence must also be tested against the num­

ber of k-points within the Monkhorst-Pack scheme used in the self-consistent calculation of 

the wavefunctions. Finally, if periodicity is not required in one or more directions then the 

convergence against the size of the supercell must also be tested. 

The most convenient test for convergence is the total energy, which can be examined as 

a function of plane wave kinetic energy cutoff and number of k-points. Figure 6.3 describes 

6.5 DFT calculations 
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Figure 6.3: i) The convergence of total energy with increasing plane wave energy 
cutoff for wurtzite GaN. ii) The convergence of total energy with increasing number 
of k-points for wurtzite GaN. 

such a convergence test for a single unit cell of GaN. The total energy is its self an important 

quantity, but it does not alone provide a good test from which to judge the convergence. It 

is important to also confirm the convergence against the particular outputs required from the 

calculation. In this work we calculate and make use of the lattice constants, and therefore it 

is reasonable to examine the convergence of the predicted lattice constants as well. Figure 

6.4 shows the convergence of the lattice constants for wurtzite GaN against kinetic energy 

cut-off and number of k-points. 

Kinetic energy cut-off 

The kinetic energy cut-off depends only on the depth of the pseudopotentials and is 

therefore a function of the species present. Nitrogen has quite a deep pseudopotential and 

therefore the cut-off needed is higher than for many other elements. From figures 6.3 and 6.4 

it is clear that 350eV is adequate and has been used in the calculations in this work. A kinetic 

energy cut-off of 350eV is sufficient to converge the total energy to within 0.0leV and the 

lattice constants to within 0.002 A. Similar tests were performed for A1N and InN, however 

the deep nitrogen pseudopotential dominates and no significant difference is noticed on the 

convergence requirements. 

The pseudopotentials used in the calculations presented here are 'ultrasoft pseudopo-
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Figure 6.4: i) The convergence of lattice constants with increasing plane wave en­
ergy cutoff for wurtzite GaN. ii) The convergence of lattice constants with increas­
ing number of k-points for wurtzite GaN. 

tentials' (USP) [182]. USPs are weaker potentials and therefore require a smaller energy 

cutoff than norm-conserving ab-initio pseudopotentials. This is achieved by relaxing the 

restriction of norm-conservation and accounting for the resulting difference between the ex­

act and the pseudo charge density using localised augmentation functions centred on each 

atom [182]. 

It is interesting to compare the convergence requirements of the DFT calculations with 

the convergence tested for the EPM. The energy cutoff and therefore the number of plane 

waves required for DFT calculations is significantly greater than those of the empirical pseu-

dopotential approach. This is mainly because the empirical pseudopotentials are weaker than 

the ab-initio pseudopotentials. Ab-initio pseudopotentials are a result of only the cancellation 

of the orthogonalisation potential and the core ionic potential. The empirical pseudopoten­

tials attempts to include the mean field effects of other electrons, through the experimental 

input, that DFT seeks to calculate self-consistently. This mean field further softens the po­

tential and means that a smaller number of plane waves are required. 
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Number of k-points 

The number of k-points required within the Monkhorst-Pack scheme [58] is a function 

of the structure and a convergence test should be performed for all structures being studied. 

Figures 6.3 and 6.4 show that 16 k-points generated from a grid of 7 x 7 x 4, is sufficient 

to converge the total energy to within 0.002eV and the lattice constants to within 0.001 A. 

Similar tests were performed on all the different structures investigated using DFT in this 

work and a suitable number of k-points corresponding to a similar level of convergence were 

used. 

6.6 Lattice constants 

As an initial fundamental test of the DFT calculations and to provide supporting data 

for other calculations, the lattice constants of the bulk materials were investigated first. GaN, 

A1N and InN were considered in both the wurtzite and zincblende crystal structures. For the 

wurtzite crystal structure the same unit cell geometry as was used in the EPM calculations 

is considered, although to aid visualisation the origin at the bond centre has been located at 

the centre of the unit cell. For the zincblende structure, calculations were performed on the 

primitive 2-atom unit cell, the conventional 8-atom cubic unit cell and an alternative 6-atom 

unit cell that shares the same hexagonal geometry as wurtzite. The 6-atom unit cell has its 

c-lattice vector in the Ill-direction, which corresponds to the 0001 direction in wurtzite. 

Figures 6.5 and 6.6 illustrate the geometry of the 4 different unit cells. 

The convergence tests described in the previous section concluded that a MP grid of 7 

x 7 x 4 was sufficient for wurtzite and it was also found to be sufficient for the zincblende 

6-atom cell. A grid of 7 x 7 x 7 was used for the primitive zincblende cell and a grid of 4 x 

4 x 4 was used for the conventional zincblende unit cell. Table 6.1 contains the calculated 

lattice constants for wurtzite A1N, GaN and InN. All the calculated values are within 2% of 

the experimental values. DFT calculations are often quoted as having an accuracy of 1-2% 

for lattice constants [153], and the values presented here are therefore reasonably accurate. 

The lattice constants calculated for the zincblende 6-atom cell have a different a and 

c as a result of the geometry of the 6-atom cell. Table 6.2 contains the calculated lattice 

constants for this unusual 6-atom unit cell. Comparisons are made with the experimental 
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Figure 6.5: The wurtzite unit cell and the corresponding zincblende unit cell, with 
the same hexagonal geometry. For ideal wurtzite, the zincblende unit cell should be 
exactly 50% larger in the c-direction 
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Figure 6.6: The conventional 8-atom unit cell for zincblende and the primitive 2-
atom unit cell. 
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CASTEP experimental 

wurtzite A1N a, 

wurtzite GaN o. 

wurtzite InN a, 

(azb) 3.0578(4.324) 
c 4.9023 

u 0.3817 

(azb) 3.1983 (4.523) 

c 5.2136 

u 0.3760 

(a z 6) 3.5782(5.060) 

c 5.7870 

u 0.3785 

3.110(4.398) [184] 
4.980 [184] 

0.3819 [44] 

3.190(4.511) [184] 

5.189 [184] 

0.3768 [44] 

3.544 (5.012) [12] 

5.718 [12] 

0.3790 [44] 

Table 6.1: The calculated and experimental lattice constants (in Angstroms) for 
wurtzite GaN, InN and A1N. The values in parenthesis are the wurtzite lattice con­
stants multiplied by y/2 to provide a meaningful comparison with zincblende. 

CASTEP experimental 

6-atom A1N awz(azb) 3.0423(4.3025) 3.10 (4.38) [185] 
c 7.4517 7.59 
u 0.37514 0.375 

6-atom GaN awz(azb) 3.1970(4.5212) 3.18 (4.50) [186] 
c 7.828 7.80 
u 0.37507 0.375 

6-atom InN awz(azb) 3.5314(4.9942) 3.52 (4.98) [35] 
c 8.6895 8.63 
u 0.37417 0.375 

Table 6.2: The calculated a and c and lattice constants (in Angstroms) for 
zincblende GaN, InN and A1N. The experimental value of zincblende azb lattice 
constant is given in parenthesis with the equivalent wurtzite. The corresponding 
experimental value of c is then calculated from azb. For zincblende u should be 
exactly 0.375. 
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CASTEP experimental 

6-atomAlN azb 4.3020 4.38 [185] 
2-atomAlN azb 4.3019 4.38 [185] 
8-atomAlN azb 4.3018 4.38 [185] 

6-atomGaN azb 4.5212 4.50 [186] 
2-atomGaN azb 4.5219 4.50 [186] 
8-atomGaN azb 4.4943 4.50 [186] 

6-atomInN azb 4.9942 4.98 [35] 
2-atomInN azb 5.0562 4.98 [35] 
8-atomInN azb 5.0464 4.98 [35] 

Table 6.3: The calculated and experimental azb lattice constants (in Angstroms) for 
three different unit cells of zincblende GaN, InN and A1N. 

value for the a-lattice constant and the equivalent c lattice constant that should be exactly 

x 3/2 x azb, where azb is the equivalent zincblende conventional unit cell lattice 

constant. The wurtzite a-lattice constant awz is always related to the zincblende one by 

&\uz x \/2 = azb. The theoretical values of azb are within the 2% accuracy expected of a 

DFT calculation. The values of "experimental" c-lattice constant are also in good agreement 

with those calculated. The wurtzite internal parameter for a zincblende structure should be 

exactly | = 0.375 and the calculated values are very close to that. 

Table 6.3 contains the calculated lattice constants for the three different unit cells of 

zincblende A1N, GaN and InN. The various unit cell lengths have been converted to that 

of a zincblende conventional cell length for comparison purposes. Agreement between the 

different cells is to better than 1% and again the experimental values all agree within 2%. 

6.6.1 Effect of biaxial strain 

The relaxation of a crystal under the influence of biaxial strain can be studied from 

first principles using DFT. The in-plane lattice parameters of the strained unit cell are held 
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Figure 6.7: Total energy against c-lattice constant for i) Lattice relaxation of 
wurtzite A1N grown on wurtzite GaN. Minimum at c = 6.248A. ii) Lattice re­
laxation of wurtzite InN grown on wurtzite GaN. Minimum at c = 4.736A. The 
dots represent the total energy calculated by DFT and the solid line in the best fit by 
least squares to Murnaghan's equation. 

at the chosen value, which in the case of a pseudomorphic layer, would be those of the 

substrate. The c-lattice parameter is then varied with a separate geometric optimisation of 

the ions being performed for each different length of c. The minimum is then found by fitting 

the data to a Murgnahan. 

Wurtzite on wurtzite heteroepitaxy 

The EPM calculations of alloy bandstructures relied on known values for the relaxed 

c-lattice of wurtzite A1N and InN grown with the in-plane lattice of wurtzite GaN. In this 

section we consider the ab-initio calculations used to obtain those values. Figure 6.7 shows 

plots of total energy against c-lattice constant used to predict the equilibrium relaxation. The 

c-lattice parameter of A1N has lowered from 4.9023A to 4.736A under the biaxial strain 

appropriate to a GaN substrate. Conversely the c-lattice parameter of InN is increased from 

5.7870A to 6.248A as the GaN in-plane lattice parameter is smaller than that of InN. 
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Figure 6.8: Total energy against c-lattice constant for i) Lattice relaxation of 
zincblende A1N grown on wurtzite A1N. Minimum at c = 7.4418A. ii) Lattice re­
laxation of zincblende GaN grown on wurtzite GaN. Minimum at c = 7.8380A. 
ii i) Lattice relaxation of zincblende InN grown on wurtzite InN. Minimum at 
c = 8.7427A. The dots represent the total energy calculated by DFT and the solid 
line in the best fit by least squares to Murnaghan's equation. 
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Zincblende on wurtzite homoepitaxy 

The small difference in lattice constant between the wurtzite and zincblende crystal 

structures of the same material suggests that very little relaxation should be observed for 

zincblende grown on wurtzite. The same approach as was applied to wurtzite heteroepitaxy 

was used establish the relaxed c-lattice constants. Figure 6.8 contains the plots of total energy 

against c-lattice constant used to predict the equilibrium relaxation. The calculated values of 

relaxation were indeed small as would be expected from such little biaxial strain. Relaxations 

of O.OlA were observed for GaN and A1N and a larger value of 0.06A was observed for 

InN. The values of the relaxed lattice constant for the zincblende nitrides on wurtzite were 

required as a starting point for the calculation of WZ-ZB band offsets. 

14 

12 

Figure 6.9: Ab-initio bandstructure for wurtzite GaN. 

6.7 Bandstructure 

DFT calculations can be used to produce ab-initio bandstructures by simply perform­

ing the calculation over the range of k required. Figure 6.9 shows the ab-initio bandstructure 
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for wurtzite GaN. The most important difference between the ab-initio and empirical band-

structures (see figure 2.8) is in the underestimation of the band gap. DFT is a ground state 

theory and the lines on the bandstructure above the valence band represent unoccupied or-

bitals rather than excited states. It is therefore not surprising that the excited states are not 

accurately represented. However, apart from the band gap, the ab-initio conduction bands 

are surprisingly accurate. 

The ab-initio bandstructures of the wurtzite and zincblende nitrides studied in this 

work are required as part of the calculation of WZ-ZB band offsets. 

'A 431.35 

91.65 

29.78 

13.40 

Q 7.35 

4.75 

3.81 

3.21 

(2100) direction 
Figure 6.10: Ab-initio charge density for wurtzite GaN. The t/-axis is the growth 
direction and the x axis defines a plane cutting through the core sites and bonds 
between them. The charge density is in units of electrons per unit cell volume. 

6.8 Charge densities 

As a consequence of the workings of a DFT calculation, the charge densities are 

always explicitly calculated. For example the ab-initio charge density of wurtzite GaN is 

presented in figure 6.10 which should be compared with the empirical charge density in 

figure 2.12. Overall the two charge densities are obviously quite different, with the the 

ab-initio density showing more spherically symmetric distribution and steeper peaks. The 
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cause of the difference in shape is not at present known. The empirical charge densities 

did not include the d-electrons, but even if the d-electrons are excluded from the ab-initio 

calculation the densities are still very different. A study of the differences in the charge 

densities produced by the two methods would make an interesting extension to this work. 

6.9 Interface calculations 

The properties of a semiconductor interface are a result of the change in structure and 

chemical composition across the interface. As such these properties are determined by the 

ground state of the system and are therefore a good candidate for study by a DFT calculation. 

In this section the techniques of DFT are used to determine the band offsets of nitride wurtzite 

- zincblende homointerfaces, the degree of interface reconstruction and to study the effective 

"location" of the interface. A general overview of the geometry of the WZ-ZB and ZB-WZ 

interfaces was given in chapter 5. 

6.9.1 Supercell 

ZB W Z ZB 

A B A B C A B C A B A B A B A B C A B C A B A B A 

Figure 6.11: Schematic illustration of the supercell used to produce the superlattice 
from which the interface properties are extracted. This supercell contains 24 atoms, 
12 Gallium and 12 Nitrogen. The corresponding stacking sequence used to generate 
the supercell is illustrated, the yellow bars highlight atoms in the interface region. 

The first step in the calculation of interface properties is the construction of a super-

cell. The supercell has to be periodic in all three dimensions and therefore must contain 

both a region of wurtzite and zincblende material and both a WZ-ZB and ZB-WZ inter­

face. The periodic supercell is actually a unit cell of a superlattice of alternating wurtzite 

and zincblende crystals. Figure 6.11 illustrates this approach for a 24 atom supercell. The 
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supercell must be large enough to include an adequate bulk-like representation of both the 

wurtzite and zincblende regions. These regions must approximately have the charge den­

sities, potentials and the relaxed atomic positions of the bulk. The computational cost is 

however very strongly dependent on the number of atoms and size of cell. Previous workers 

report that for band offset calculations layers 8 to 12 atoms thick are required to achieve 

bulk-like properties at the layer centre [40,187,188]. However the WZ-ZB superlattice re­

sults from an ordering of the stacking sequence rather than a change in chemical composition 

and there is a region, 4 atoms thick of overlap between the crystal structures. A given atom 

in the supercell only "knows" it is wurtzite or zincblende from the positions of its second and 

third nearest neighbours. It is therefore reasonable to assume that the interface regions will 

be larger than those based around superlattices of chemically different layers. To examine 

properly the convergence of the bulk-like properties of the layers against the size of super-

cell, a range of supercell sizes was studied. The smallest conceivable WZ-ZB superlattice 

could be constructed from 14 atoms and would only contain one instance of the zincblende 

"C" stacking sequence. Larger supercells would contain increasing numbers of "C" stacking 

sequences, for example 

14 atom supercell: ABABCAB 

24 atom supercell: ABAB ABC ABC AB 

34 atom supercell: ABAB ABABCAB CAB CAB 

48 atom supercell: AB ABAB ABAB ABC ABC ABC ABC AB 

where the sequence letters in bold represent stacking layers in the interface regions. It should 

be noted that the lengths of wurtzite and zincblende regions are only equal for the 24 and 

48 atoms supercells. Calculations performed using these supercells utilise a MP grid of 

7 x 7 x 1 for the k-space sampling. The in-plane k-space sampling 7 x 7 is the same as 

was previously employed for the bulk wurtzite and zincblende calculations. The reduction 

of the final component to 1 is because we are not interested in the periodic properties of the 

z-direction. 
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Figure 6.12: Total energy against csuperceu for the relaxation of a supercell of a 
WZ-ZB superlattice held at the in-plane lattice constant of wurtzite. i) A1N 24 atom 
supercell - csuperceu = 29.622A ii) GaN 24 atom supercell - csuperceu — 31.339A 
iii) InN 24 atom supercell - csuperceu = 35.851A . The dots represent the total energy 
calculated by DFT and the solid line in the best fit by least squares to Murnaghan's 
equation. 

168 



Chapter 6. Ab-initio 6.9. Interface calculations 

Before any calculations of the properties of an interface can be considered, the super-

cell must be relaxed to establish the equilibrium length for the in-plane lattice constant used. 

For the materials studied here the in-plane lattice parameter used was that of wurtzite, as 

calculated previously in a bulk DFT calculation. For example, in an A1N WZ-ZB super-

cell, the in-plane lattice parameter was held at that of wurtzite A1N, as listed in table 6.1. 

The calculated lattice parameters were used rather than the experimental values to keep the 

calculation consistent; an experimental value or even one from a different calculation may 

introduce unwanted strain [189]. However, the zincblende parts of the superlattice are how­

ever under small strain as they are forced into the in-plane lattice constants of the wurtzite 

phase. The resultant relaxation of a zincblende structure under these conditions was exam­

ined in section 6.6.1. The results of those calculations enabled the atomic positions in the 

supercell to be constructed and a length to be estimated. The estimated length was based on 

the relaxed length of the zincblende unit cells and the equilibrium length of the wurtzite unit 

cells. However, the equilibrium supercell length may be different as a result of reconstruc­

tion at the interfaces. Figure 6.12 shows the calculated total energy against cauperceu. The 

supercell calculations for each value csuperceu involved a separate geometric optimisation of 

the atomic positions to ensure the structure was in the relaxed geometry. 

6.9.2 Relaxation of atoms at interface 

A final geometric optimisation of the atomic position for the equilibrium cauperceu 

was performed and the structure was then considered relaxed, including the effects of any 

interface reconstruction. The in-plane symmetry of the lattice restricts the atomic movements 

to the z-axis. Looking at the absolute movement of the atoms as a result of the optimisation 

can be misleading as whole superlattice layers may have been moved due to expansion or 

contraction at the interfaces. Any movement relative to nearest neighbours along the z-axis 

will affect the bond-lengths, which may result in different bond-lengths for the "straight" 

bonds, parallel to the z-axis, and the "diagonal" bonds. Figures 6.13-6.15 show plots of 

both bond-lengths against position for the 24-atom superlattices of A1N, GaN and InN. The 

diagonal and the straight bond-lengths for the zincblende regions are not equal because the 

zincblende regions are under biaxial strain. Clear differences in bond length behaviour can 

be seen between the zincblende regions and the wurtzite regions, and evidence of interface 
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Figure 6.13: Top Bond lengths for straight (green) and diagonal (orange) bonds 
along the length of the A1N WZ-ZB superlattice. Bottom The local ideality as a 
function of position in the A1N WZ-ZB superlattice. 
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Figure 6.14: Top Bond lengths for straight (green) and diagonal (orange) bonds 
along the length of the GaN WZ-ZB superlattice. Bottom The local ideality as a 
function of position in the GaN WZ-ZB superlattice. 
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Figure 6.15: Top Bond lengths for straight (green) and diagonal (orange) bonds 
along the length of the InN WZ-ZB superlattice. Bottom The local ideality as a 
function of position in the InN WZ-ZB superlattice. 

172 



Chapter 6. Ab-initio 6.9. Interface calculations 

reconstruction is observed. 

For wurtzite materials the internal parameter u measures the ideality of the crystal 

structure. An ideal structure has diagonal and straight bonds of equal length and u = 3/8 = 

0.375. An analogous internal parameter local to a given atom j in the superlattice can be 

defined, which we will call the local ideality Uj. Atom j has in general two different types 

of bond, the straight bond, represented by vector a with a 2-component az and the diagonal 

bond (3 with 2-component j5z. The local ideality can simply defined as 

Uj = n "* (6.32) 

A value of Uj is then available for each atom in the superlattice. Figures 6.13-6.15 also 

contain graphs of Uj for all of the atomic positions in the superlattice. A clear difference be­

tween the wurtzite regions and the zincblende regions becomes very apparent. The difference 

is more pronounced for InN than for A1N and GaN, but in all three case the zincblende re­

gions are more ideal (closer to 0.375) than the wurtzite regions. Again the zincblende regions 

are not completely ideal because they are under strain, which breaks the crystal symmetry of 

zincblende. It is interesting to note that the position of the transition between zincblende-like 

Uj and wurtzite-like Uj occurs progressively closer to the (000T) edge of the interface region 

when going from A1N to GaN to InN. The pattern of the change-over is also different in each 

case, although in all cases some kind of symmetry is observed between the WZ-ZB interface 

and the ZB-WZ interface. 

Overall the scale of any reconstruction is quite small, with bond lengths varying by no 

more than 0.03A. The change in ideality is most marked for InN, but is still less than 1%. 

In fact, very little reconstruction is to be expected, since the atoms in the interface regions 

still have the same nearest neighbours as they do in the bulk. Nardelli [190] states that the 

residual relaxation of atoms at an AIN-GaN heterointerface is negligible and that it does not 

affect the band offset [191]. This is relevant since an AIN/GaN interface is likely to face 

much more severe reconstruction than the WZ-ZB interfaces studied here. 

Over the range of csuperceu scanned during the relaxation of the supercell the bond 

length and ideality profiles change surprisingly little. There is a general increase in the 

straight bonds with increasing csuperceu and a corresponding lowering in the ideality with 
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increasing csuperceu. The reconstruction at the interface takes much the same form for each 

of the materials at all the values of csuperceu. 

6.9.3 Convergence of structure with supercell size 

The appearance of interface reconstruction and "plateaus" of constant bond-length 

and local ideality provide some evidence that the layers of the superlattice contain bulk-like 

regions. Complete convergence of the structure with respect to supercell size can only really 

be confirmed by studying a range of supercell sizes. Figure 6.16 shows the variation of local 

ideality against supercell size for four different supercells. The scale on the x axis is kept 

the same to allow a fair comparison of the four different superlattices. It is immediately 

apparent that the 14 atom supercell is unlikely to represent accurately the bulk regions of 

wurtzite or zincblende. The 14 atom supercell only contains one "C" stacking location and 

is still interesting as a model of a stacking fault, but is probably too small for determining 

the band offset. The 24 atom and larger supercells show very similar reconstructions at 

the interface regions, with larger and larger sections of constant bulk-like structure. The 24 

atom contains regions 6 atoms wide that could be described as bulk-like and therefore could 

be used to extract the band offsets. The computational cost of the calculations increases 

very strongly with increasing size of supercell because of the additional number of electrons 

involved and the additional plane-waves required for a larger unit cell. 

6.9.4 Band offset 

Having calculated the relaxed structure of the interface, the electronic properties such 

as the band offset can be determined. The valence band offset is defined as the difference 

in energy between the top of the valence bands of the two materials. However, this quantity 

cannot be determined from separate bulk calculations because the band energies are deter­

mined with respect to a macroscopic average potential of the bulk V. Instead the difference 
—B-A 

in the microscopic average AV between the two materials A and B, is extracted from 

a supercell calculation containing both materials. The band offset is then derived from the 

relative energies of the top of the valence bands, when the bulk bandstructures of the two 
=B-A 

materials have been shifted relative to each other by AV . Figure 6.17 describes the 

procedure schematically. In mathematical terms the valence AEy^Q and conduction band 
174 



Chapter 6. Ab-initio 6.9. Interface calculations 

• 1—4 

i-H 

o 

o 

°- 3 7 6r WZ Z 
0.375 

14 atom supercell 
0.379 

0.378 -

0.377 -

WZ ZB WZ ZB WZ ZB 

0.38 

A B A B A B C A B A B A B C A B A B A B C A B A B A B C A B A 

24 atom supercell 
r r r r r n i i i i i i i r r r r m 

0.379 -

0.378 

0.377 -

0.376 r 

' 1 • • 1 1 1 

0.38 

A B A B A B A B C A B C A B A B A B A B C A B C A B A B A B A 

34 atom supercell 
i i i 1 1 1 1 1 M i 1 1 1 1 1 1 1 1 1 1 1 

0.379 -

0.378 = 

0.377 i-

0.376 

0.38 

0.379 

0.378 

0.377 

0.376 

0.375 

A B A B A B A B A B C A B C A B C A B A B A B A B A B C A B C 

48 atom supercell 
J 1 1 u 1 1 1 1 1 M 1 1 1 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1*1 T T T ' T T T l I t I 1 1 1 1 i i i ' r r r r m i i i _ 

n 

• I 1 1 

WZ 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

• 

1 1 1 

ZB 
i i i i i i i i i i i i i i i i i i i i i i 

W Z i 
i i i i i i i i i r 

A B A B A B A B A B A B A B C A B C A B C A B C A B A B A B A 

(0001) direction 

Figure 6.16: The local ideality as a function of position in the A1N WZ-ZB super-
lattice for various different supercells. The interface regions are marked by yellow 
rectangles. 
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LEQBQ offsets are given by 

&EVBO 
—B-A 

= AV + AE B-A 
V 

o A =B-A D 

AEgg£ = AV ' A T?B~A + AEy + AEC 

(6.33) 

(6.34) 

where AEy~A is the relative difference in the bulk valence band maximum energies and 

AEQ~A is the difference in band gaps. Note the conduction band offset cannot reliably be 

calculated from first principles entirely because the GGA-based method does not predict the 

correct band gap. 

Conduction Band 

Valence Band 

AV B A 

Bulk material A Heteroj unction Bulk material B 

Figure 6.17: Schematic illustration describing the evaluation of the band offset 
from knowledge of i) the bandstructure EV(A),EV(B),EG{A),EG(B) and ii) the 

=B-A 
relative difference in the effective potentials AV . The red lines illustrate the 
relative positions of the bandstructures of materials A and B. 

Macroscopic Averaging 

To extract the macroscopic average from the superlattice calculations, the micro­

scopic potential must first be considered. In a DFT calculation this microscopic potential 
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is generated as part of the self-consistent calculation and is given by the sum of the Hartree, 

exchange-correlation and ionic potentials 

The microscopic potential can be integrated in the plane perpendicular to the growth direc­

tion to produce a planar microscopic average V(z). The periodic character of the potential 

at any z is eliminated by integrating V(z) over a region centred on z with width of the 

same period T as the potential [192,193]. This has the effect of averaging the periodicity 

of period T over a "slab" that moves along the 2-axis, resulting in the macroscopic average 

V(z). This integral needs to be performed twice since the wurtzite and zincblende parts of 

the superlattice will have different potential periods, T and T ' [194]. 

In practice the DFT calculation is performed with the self-consistent potential and charge 

density sampled on a finite grid. The in-plane averaging is then calculated on this grid and 

the resultant planar potential is interpolated before the macroscopic averaging is performed. 

The same procedure can be employed to average the in-plane charge density (p{z)) and then 

to obtain the macroscopically averaged charge density Q)(z)). 

Electric Fields 

I f there are no electric fields present as a result of polar interfaces then the difference in 

macroscopic potential is easily extracted from V(z). However, the presence of a field causes 

a spatial variation in the potential in the wurtzite and zincblende layers and the difference in 

macroscopic potential is then ill-defined. Figure 6.18 illustrates this point. 

The difficulty in extracting the relative difference in potentials lies in the lack of an 

abrupt discontinuity. The problem then becomes one of locating the interface, or equiva-

lently, locating the middle of the bulk-like regions. This is not an easy problem to solve and 

as yet no perfect solution has been found. Binggeli et al [195] used the theoretical positions 

V(r) = VH(r) + Vxc(T) + Vion(r) (6.35) 

1 rz'=z+i r* 
V(z")dz"dz Viz) 

T' 
(6.36) 
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without field with field 

Figure 6.18: Schematic description of the periodic potential V(z) (red line) and its 
macroscopic average V(z) (blue line) used to define the band offset. The band offset 
for a superlattice with an electric field is ill-defined unless a consistent location 
relative to the period of the superlattice can be defined, such as the middle or edge 
of the layer. 

of the interface planes in the calculation of band offset of an AIN/GaN superlattice. The 

location is not well defined even in an AIN/GaN interface and the location of the WZ-ZB 

interface is even less certain. Other workers [134,196] have attempted to locate the centre of 

the bulk-like regions by decomposing the macroscopically averaged charge density into two 

components, containing the odd and even multipoles. This does not make the problem any 

less ill-defined as the decomposition can be performed in an infinite number of ways [134]. 

In fact, the decomposition approach is of most use when the fields are particularly strong and 

the corresponding polarisations well defined, such as the wurtzite AIN-GaN and InN-GaN 

heterostructures. For the WZ-ZB interface the fields are not particularly strong, but they do 

tend to obscure what is a very small offset. Figure 6.19 shows the self-consistent poten­

tial, the in-plane average potential and the macroscopic average potential for a 24 atom GaN 

WZ-ZB superlattice. Figure 6.20 shows the resulting charge density over the bond plane, the 

in-plane average charge density and macroscopic average charge density. Note that the red 

line of the macroscopic average is also shown on the plot of the planar potential (and charge 

density) to give an indication of the small scale of the variation in macroscopic average. 

The bulk-like regions can only just be made out as regions of constant gradient in V(z) and 

plateaus of constant value in p(z). 

It is tempting to use the measured atomic reconstruction to define the middle of the 

interfaces or the bulk-like regions from figures 6.13-6.15 and measure the band offset from 

there. Another possibility is to use the macroscopically averaged charge density to define 

the interface or bulk-like regions. However, using either the charge density or the structural 
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Figure 6.19: Top The self-consistent potential V(r ) as a function of position in 
the bond plane for a GaN 24 atom WZ-ZB superlattice. Middle The resulting 
in-plane average potential V(z) (blue) and the macroscopically averaged potential 
V(z) (red). Bottom The macroscopically averaged potential V(z). 
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Figure 6.20: Top The charge density of the GaN 24 atom WZ-ZB superlattice as 
a function of position in the bond plane. Middle The resulting in-plane average 
charge density p(z) (blue) and the macroscopically averaged charge density p(z) 
(red) Bottom The macroscopic average of the periodic charge density. p(z) 
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AVZB-WZ A E z B _ w z aeZB-WZ AE™oWZ 

ab-initio EG empirical EG 

A1N 0.326eV -0.268eV 0.0587eV -1.12eV* -1.24eV* 

GaN 0.0824eV -0.0510eV 0.0314eV -0.150eV -0.268eV 

InN 0.0823eV -0.130eV -0.0480eV -0.0406eV -0.398eV 

Table 6.4: The calculated values of difference in macroscopic average potential 
=ZB-WZ 

AV , difference in bulk valence band energy AEZB~WZ, calculated valence 
band offset AEyBQWZ and predicted conduction band offset AE^BOWZ based on 
the ab-initio band gaps and experimental band gaps [5,7,8]. * The band gap of 
zincblende A1N is indirect r —> X which gives rise to the larger difference in band 
gap between wurtzite and zincblende and therefore a larger conduction band offset. 

reconstruction still results in an ambiguous definition of the interface and therefore the band 

offset. The location of the interface for the charge density might not necessarily coincide 

with the location for the potential or the structure. Probably the most consistent approach 

would be to use the potential itself in the estimation of the interface locations. 

The bulk-like regions provide the most well defined parts of the macroscopically aver­

aged potential in that they are regions of constant gradient. This is illustrated by the first and 

second derivate of V(z) in figure 6.21, which provide a clear indication of the extent of the 

bulk-like regions and therefore an estimate for their centre. Given the location of the centre 

of the bulk like regions the difference in macroscopic potentials can be inferred and used 

to estimate the band offset. The location of the centre of the bulk-like regions can then be 

defined as the centre of the region for which the second derivative of V(z) remains less than 

a given numerical tolerance. A tolerance of 5% of the maximum value of second derivative 

was found to be adequate for all three material systems. 
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Figure 6.21: Top The macroscopically averaged potential for two repeat units of 
the 24 atom GaN WZ-ZB superlattice. Locations of constant gradient correspond­
ing to bulk-like regions are used to identify the band offset. Bottom The first deriva­
tive (green line) and second derivative (blue line) with respect to z are used to es­
tablish the bulk-like regions of constant gradient. 
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6.9.5 Discussion 

The calculated values for the valence and conduction band offset for the three wurtzite-

zincblende interfaces investigated are presented in table 6.4. The difficulty in determining 

the bulk-like regions from which to extract the macroscopic averages, and therefore the band 

offset, gives rise to large uncertainties in the values presented. An upper limit of the error in 

the difference in the macroscopic average of the potential is estimated at ±20%. 

It is apparent that the calculated valence band offsets are very small. Experimental 

measurements are currently unable to resolve such small band offsets [8] and values for WZ-

ZB interfaces are often quoted as zero. Murayama and Nakayama [197] estimated the VBO 

of WZ-ZB interfaces for many materials, by comparing the valence band maxima of separate 

bulk calculations. The values of -0.034eV for GaN and -0.056eV for A1N therefore assume 

that the difference in macroscopic potential is negligible, which these calculations here show 

it is not the case. Murayama and Nakayama's estimates are also based on an ideal wurtzite 

structure lattice matched to a zincblende structure without any relaxation due to strain. In 

contrast to the results of Murayama and Nakayama, the offsets of GaN and A1N calculated 

in this work predict type I interfaces and heterostructures. This is confirmed by examination 

of the macroscopically averaged charge densities which locate the greater average charge 

densities in the wurtzite region. Murayama and Nakayama's values imply a type I I interface 

for A1N and GaN. The calculated band offset of InN is negative and does give rise to a type 

I I interface, but unfortunately no direct data is available in the literature for comparison. It 

should be noted that the superlattices were modelled at the in-plane lattice constant of the 

wurtzite phase of the material. Any future experimental measurements may be made at the 

lattice constant of the zincblende phase or even the lattice constant of a GaN substrate. Band 

offsets this small are likely to be very sensitive to changes in the strain of the materials. 

Wei and Zunger [44] calculated the difference in band offset for wurtzite and zincblende 

forms of the AIN/GaN interface to be 0.03eV. The results presented here predict a value of 

0.027eV. Similarly Wei and Zunger calculate the difference for the InN/AIN interface to be 

-0.2 leV, and here the results suggest a value of -0.1 leV. For the GaN/InN interface Wei and 

Zunger calculate a difference of -0.22eV, compared to -0.079eV from the results in this work. 

Wei and Zunger's interfaces are under considerable strain which explains the difference in 

the numbers, although qualitatively the results are in agreement. 
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The calculated conduction band offsets suffer from the additional uncertainty in the 

band gap of the two phases. The experimental band gap is typically known to within ~0. leV, 

which leaves uncertainties in the difference of gaps which are large relative to the band 

offsets. The ab-initio values of band gap are clearly not correct, especially for InN for which 

DFT calculates to be very close to zero (0.0075eV (ZB) and 0.00018eV (WZ)). The ab-initio 

calculation would therefore predict the InN WZ-ZB superlattice is of type I I - broken gap, 

whereas the use of experimental band gaps suggests the superlattice is type I I - staggered. In 

all cases, the difference in band gap is mostly accommodated by the conduction band offset. 

Physically this is reasonable, since the designation of an atom in the crystal to be part of a 

wurtzite or zincblende crystal depends on the location of its next nearest neighbours. The 

valence bands are considered to be more localised and are influenced by the effect of the next 

nearest neighbours less than the delocalised conduction bands. 

The use of larger supercell sizes resulted in no significant improvement in the calcu­

lated value of band offset. The middle of the bulk-like regions was more difficult to locate in 

a larger supercell to the same absolute level of accuracy because the bulk-like regions were 

longer. Clearly the band offset remained the same but was obscured by larger regions of 

electric field. Given that the structural relaxation, potential and charge density all showed ev­

idence of constant bulk-like regions, the 24-atom supercells can be considered large enough 

to extract bulk-like properties. 

The location of the interface was shown to be an integral part of the problem of calcu­

lating the band offset, but is also an interesting question in its own right. The matching tech­

niques applied in chapter 5 relied on an estimate of the "effective" location of the interface at 

which to match the wavefunctions. The effective interface as defined by the location used to 

extract the band offsets of GaN is closest to the d 2 (see fig 5.9) mid-straight bond matching 

location. The atomic reconstruction agrees with this location. However, the macroscopic 

charge density seems shifted to the left when compared to the potential and would suggest 

that the d i (see fig 5.9) matching location of the first diagonal bond at the edge of the in­

terface region. Al l the estimates of the effective location of the interface agree that it is to 

the left ((0001) direction) of the "theoretical" location at the centre of the interface region. 

A1N has an effective interface in a more central location with respect to the interface region, 

whereas the interface for InN seems to be even more shifted in the (0001) direction. 
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6.10 Summary 

In this chapter the techniques of DFT within the GGA approximation were applied to 

the wurtzite and zincblende structures of A1N, GaN and InN. Lattice constants were calcu­

lated and compared with experiment. The relaxation as a result of biaxially strained InN and 

A1N on GaN was predicted and was used as part of the input to the empirical pseudopoten-

tial calculations of alloys. The relaxation of zincblende nitrides grown on wurtzite substrates 

was used to set up supercell calculations of WZ-ZB superlattices. The superlattices were ob­

served to show some small interface reconstruction and bulk-like regions were also observed. 

From these bulk-like regions the band offsets were extracted after accounting for the domi­

nating effects of the electric fields present. The resulting band offsets were, as expected, very 

small and the error in their value was estimated at ~20%. For A1N and GaN the interfaces 

were predicted to be of type I and for InN of type I I . No direct comparison was available 

with other work as the calculated offsets are below the current uncertainty of experimental 

measurement and no other comparable calculations have been performed. The magnitude 

of the calculated band offsets is within that which is generally expected [8] and therefore 

this author believes the band offsets presented in this work to be at least a reasonable first 

estimate. 
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Conclusions and suggestions for further 

work 

In this thesis, work investigating the electronic structure of group HI - nitride quantum 

wells in the wurtzite crystal structure has been presented. A complex bandstructure matching 

technique, previously applied to zincblende structure materials has been used to calculate the 

bound state energies of wurtzite structure quantum wells. The wurtzite-zincblende interface 

has also been studied by an adapted complex bandstructure matching technique and through 

ab-initio calculations using density functional theory. 

Bulk nitrides in the wurtzite crystal structure form the focus of chapter 2. The empirical 

pseudopotential method with a plane wave basis was presented as an effective method for 

the calculation of semiconductor bandstructures. The bandstructures of A1N, GaN and InN 

were presented including the effects of spin-orbit coupling. An example of the density of 

states and a plot of the charge density of GaN were also presented. The virtual crystal 

approximation and a parameterisation of the pseudopotential form factors allowed the effects 

of alloying and biaxial strain to be incorporated into the pseudopotential calculations. These 

calculations involved the alloys, AlGaN and InGaN being modelled as biaxially strained to 

the a-lattice constant of GaN. The demonstration of the empirical pseudopotential method 

for the nitrides provided a foundation upon which subsequent chapters built. 

In chapter 3 the empirical pseudopotential method was used to produce complex band-

structures and associated pseudo-wavefunctions for wurtzite materials. To our knowledge, 

wurtzite complex bandstructures have not previously been reported, and therefore the topo-
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logical features were compared to the (111) zincblende complex bandstructures which is 

expected to have similarities. The complex bandstructure was also demonstrated for non­

zero values of in-plane wavevector. 

The complex bandstructures were then used to construct the bulk states of heterostruc-

tures. By matching the general complex states at the interfaces of a heterostructure, calcula­

tions of the bound state energies and wavefunctions of wurtzite InGaN and AlGaN quantum 

wells were carried out. The electronic structure of quantum wells of various widths were 

studied for a range of in-plane wavevectors, and for a range of built-in electric fields and 

alloy compositions. The strong built-in electric fields, due to piezoelectricity and pyroelec-

tricity, were found to dramatically affect the bound state energies and wavefunctions. The 

wavefunctions and therefore the probability densities were observed to show a noticeable 

asymmetry as a result of the electric field and the bound state energies were increased, with 

respect to the bottom of the well, as a result of the increased confinement the electric fields 

introduced. The inter subband transitions of AlGaN conduction band quantum wells were 

studied and the results compared with experiment. In addition the issues involved in any 

comparison with experiment were considered including the problem of estimating the elec­

tric field strength. It was suggested that the complex bandstructure approach demonstrated 

could provide a better method than the usual effective mass models for estimating the field 

strengths from experimental spectroscopy data. The joint density of states and optical ma­

trix elements were calculated from the bound state energies and wavefunctions and used to 

calculate the absorption spectra of an AlGaN quantum well. 

Chapter 5 considered the widely investigated zincblende crystal structure and demon­

strated the use of the empirical pseudopotential method and the production of complex band-

structures for zincblende GaN. Local pseudopotential form factor were needed and had to be 

generated using a Monte-Carlo scheme. The bandstructures produced from local pseudopo-

tentials were found not to be as accurate as the non-local calculations, but were sufficient for 

the purposes of this work. The concept of an interface between a wurtzite and zincblende 

region of GaN was considered and the existence of homostructure quantum wells as a result 

of stacking faults was put forward. The matching procedure used in chapter 4 was adapted 

to generate the bound states of this type of quantum well as a function of well width. The va­

lence band states were observed to exhibit anti-crossing behaviour when their energies were 
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plotted as a function of well width. This illustrated one of the advantages of the complex 

bandstructure approach, because this anti-crossing behaviour would not be predicted by the 

simpler effective mass-based methods. 

Chapter 6 reviewed the techniques based on ab-initio calculations using density func­

tional theory and a plane wave basis. The method was used to calculate supporting data 

for the other calculations described in earlier chapters and to provide a comparison to the 

empirical pseudopotential method. The nature of the wurtzite-zincblende interface was in­

vestigated from first principles. The location of the interface was found to be poorly defined 

and some interface reconstruction was observed. The band offsets were found to be very 

small and were difficult to accurately extract from the self consistent potentials because of 

the presence of comparatively strong electric fields. However, the values of the band offsets 

were successfully extracted and their magnitude was found to be in agreement with the gen­

eral expectation. In the absence of any more accurate values, the band offsets presented in 

this work provide at least a good first estimate. 

7.1 Suggestions for further work 

The complex bandstructure matching techniques for wurtzite-wurtzite and wurtzite-

zincblende structures developed in this work could be employed in the study of other sys­

tems. For the nitrides, the InGaN - GaN - AlGaN laser diode has already been a com­

mercial success, and there is also considerable interest in nitride multiple quantum wells 

which could be modelled with the complex bandstructure approach, as could a superlattice 

constructed from nitride semiconductors. Other semiconductor systems that have wurtzite 

crystal structures would make interesting subjects for study using the complex bandstructure 

approach, such as many I I -VI semiconductors. Equally, other systems of heterostructures 

or homostructures based on the wurtzite-zincblende interface, such as SiC homostructures 

which have already been demonstrated experimentally, would make interesting subjects for 

further work. For any study of heterostructures with a wurtzite-zincblende interface, strain 

is likely to be present and must be accounted for in the zincblende regions. 

The techniques presented here focus on bound states, but the matching approach can 

be adapted to unbound states and would provide a valuable extension to the results presented 
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within this work. In addition to the inter subband transition studied in chapter 4, inter band 

transitions including excitonic effects are of both fundamental and device interest in the 

nitrides and would provide an interesting and challenging theoretical problem. 

The effects of band bending due to space charge effects were not included in this work. 

These effects could be incorporated by the introduction of a self-consistent calculation of 

the well potential. However, this would make the calculation of bound state energies and 

wavefunctions significantly more computationally expensive. 

The first principles calculations provided results for WZ-ZB interfaces of the same ma­

terial, however heterostructures with a WZ-ZB interface could also be investigated and can 

be expected to give substantially larger band offsets in some cases. Such work would enable 

a more convincing verification of the band offset results presented in this work through the 

property of transitivity. 
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