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Biochemical studies on plant Glycerol-3-phosphate 

acyltransferase 

Matthew William Hayman 

sn-Glycerol-3-phosphate acyltransferase [G3PAT, PlsB (E.coli), EC 2.3.1.15] is an enzyme 

involved in glycerolipid biosynthesis, catalysing the acylation of glycerol-3-phosphate (G3P) 

to produce lysophosphatidic acid (LPA). Chilling tolerance in plants is linked to the acyl-

group composition of membranes, which is linked to acyltransferases with a higher 

selectivity for unsaturated acyl-substrates. Plant soluble G3PAT is located in the chloroplast 

and uses acyl-acyl carrier protein (acyl-ACP) as substrate. Soluble G3PAT exhibits strong 

substrate selectivity for acyl-ACP, the plastidial substrate in vivo, over acyl-CoA. cDNAs 

encoding soluble G3PATs have previously been cloned f rom several plant species and both 

oleate-selective and non-selective forms identified. The purpose of this thesis is to study the 

mechanism of plastidial G3PAT and attempt to identify factors important in determining 

substrate selectivity. 

An in vitro assay has been optimised to distinguish selective and non-selective enzyme 

forms under physiologically relevant conditions. The assay has been adapted to determine 

enzyme activity with a range of acyl-ACP and acyl-CoA substrates and to measure the 

kinetic constants K m and Vmax. Kinetic measurements have been made on a G3PAT 

protein f rom the chilling sensitive plant squash (Cucurbita moschata) and the L261F mutant 

protein containing a single amino acid substitution that significantly alters substrate 

selectivity. The mutation was found to increase selectivity by raising K m for unsaturated 

acyl-substrate. 

Mutant squash G3PAT proteins have been investigated to determine the importance of 

particular regions or amino acid residues. The mutations E142A, K193S, R235S and R237S 

resulted in enzymes that were completely inactive. The mutations H194S and L261F altered 

catalytic or substrate binding characteristics without enzyme inactivation. The catalytic 

mechanism and order of substrate binding for squash G3PAT have been determined, the 

reaction was found to proceed via a compulsory-ordered ternary complex with acyl-ACP 

binding before glycerol-3-phosphate. 
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Chapter 1 

Introduction 



1.1 General Introduction 

Plants and their products form the vast majority of the world's food supply. Plants 

provide food chains with essential sources of energy, minerals and fundamental food 

groups. Mankind has been continually adapting crop plants to its needs for many 

centuries using traditional breeding techniques. More recent advances in the field of 

biotechnology have enabled the creation of transgenic plants. These plants have 

specifically enhanced qualities, known as either input or output traits. 

Input traits. Crops world-wide are subject to environmental stresses such as invasion by 

pathogens and parasites, salt stress, water-logging, drought and extremes of temperature. 

Enhancement of input traits involves increasing plant resistance to these stresses to 

improve crop performance ' in the f ie ld ' , for example, increasing pest and disease 

resistance or low temperature (chilling) tolerance. 

Output traits. Crop plants produce a wide variety of fruits, grains and seeds that may be 

harvested for use by humans. Each may contain a complex mix of proteins, 

carbohydrates and lipids. Enhancement of output traits involves increasing the overall 

quantity of the harvest, or increasing the specific yield of a particular product or range of 

products to improve the harvest quality. Proteins, lipids or other products may also be 

expressed at high levels for use in the pharmaceutical industry (Briggs and Koziel, 1998; 

Napier and Michaelson, 2001). 
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The bulk of the world's lipids are supplied by plants, most accessibly in the form of seed 

oils. Major seed oil crops include oilseed rape, soybean, sunflower and oil palm. These 

plants have been selected by man for oil production as they exhibit several favourable 

characteristics which facilitate their farming: 

1 They have a high yield 

2 They perform well as crops 

3 The seed oils have no specific requirements for extensive processing 

Seed oils are an especially valuable crop as they are a concentrated, easy to harvest 

resource. The oil produced is used to feed humans and animals and is a the primary 

resource for the production of lubricants, paints and plastics. As a result, the production 

of plant oils and derived products is an important industry. Thus, the study of the 

biochemical pathways for lipid biosynthesis and storage has been keenly undertaken. 

1.2 Lipids 

The group of biological molecules known as lipids is an important and diverse one. Al l 

living organisms contain lipids, functioning in various roles such as protection from 

pathogens and disruption of water balance (e.g. waxes), signalling molecules (e.g. 

steroids, glycolipids) and as an energy and carbon source, facilitating the production of 

other classes of molecules and the giving potential for cells to safely store large amounts 

of chemical energy (e.g. triacylglycerols, glycerolipids). In addition, lipid bilayers form 

intracellular membranes for the maintainence of physical barriers and sub-cellular 

compartments, anchoring of proteins to specific localisations, and the establishment of 

specialised micro-environments for certain metabolic processes, for example 

13 



photosynthesis. The physical properties of different membranes vastly affect their 

function, in turn affecting many other biological systems within the cell. As such, the 

study of the production of membrane lipids is an important one. Understanding the 

enzymes responsible and how the functional properties of these enzymes directly 

influence the composition and types of membrane lipids produced is also of considerable 

interest. Some important fatty acids and their formulae are shown in Table 1.1. 

Lipids are a highly heterogeneous group of chemical compounds, broadly defined by 

their insolubility in polar solvents, being most readily soluble in polar solvents such as 

acetone, benzene and chloroform. Lipids consist of a carbon backbone, with side groups 

which are chiefly non-polar. This is an important characteristic as it enables lipids to 

associate into non-polar groups and barriers, an example is the phospholipids that form 

cell membranes. Lipids can also provide a hydrophobic micro-environment that favour 

reactions which proceed most readily in non-aqueous surroundings, for example some 

reactions of photosynthetic photosystems I and I I and cellular oxidations. Lipids are also 

a source of both energy and carbon for cellular reactions. In seeds they are most 

commonly stored as triglycerides (or triacylgylcerol; TAGs, figure 1.1), where they may 

represent up to 80% of the dry weight of storage tissues. Some lipids have regulatory 

roles and may also form composite molecular groups, eg lipoproteins and glycoproteins. 

These compounds may also have a variety of functional and structural roles. 

14 
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a) Palmitic acid 

O 
H I H H H H H H 
C C 

H X 
H H H H H H H 

b) Glycerol-3-phosphate 

H X — O H 
2 | 

H C — O H 
I 

H X — O — P 0 3 H 2 

c) Tri-palmitin 

H X — 0 

I 
H C — O 

I 
H 2 C - 0 

Figure 1.1 Schematic diagrams of a) palmitic acid, a fatty acid; b) glycerol-3-

phosphate and c) tri-palmitin, a triacylglyceride (TAG). 

O 
— C — C H — ( C H 2 ) 1 3 — C H 3 

— C — C H — ( C H 2 ) 1 3 — C H 3 

— C — C H — ( C H 2 ) 1 3 — C H 3 



Lipids can be broadly divided into three main functional groups: Neutral lipids, 

phospholipids and steroids. Glycolipids and shpingolipids are important additional 

groups. 

Neutral lipids. At the cellular pH these lipids bear no charge, making the side groups 

entirely hydrophobic. These are rarely found free in the cell (due to toxic effects) and are 

usually complexed with glycerol to form triglycerides, the main constituent of fats and 

oils. The properties of the fats/oils depend almost entirely on the acyl chain length and 

level of desturation. As a general rule, triglycerides containing longer, more saturated 

acyl chains are more gel-like with less fluid properties. 

Phospholipids. This class of lipids forms the majority of biological membranes. These 

phosphate containing molecules have a structure related to triglycerides, with one acyl 

chain replaced by a phosphate containing polar group at position sn-3. On the other side 

of the bridging phosphate group can be a variety of polar chemical groups of varying 

levels of size and complexity including choline, ethanolamine, glycerol, inositol, 

glycosides, serine or threonine. This means that this is a highly diverse group of 

compounds, a useful characteristic as it often correlates with advantageous functional 

diversity. Phospholipids are amphipathic and have a "dual-solubility" in both polar and 

apolar solvents. In fact, this property is of fundamental importance to their interactions in 

membranes. Phospholipids at the interface formed by a layer of polar solvent over the 

top of a layer of non-polar solvent take up a 2D sheet-like arrangement to satisfy their 

dual solubilty properties. In an aqueous solution phopholipids form a bilayer, an 

17 



organisation which is favourable to both the hydrophobic and hydrophilic chemical 

domains. Phospholipid bilyers, held together by a combination of polar and non-polar 

associations are the primary framework of biological membranes. 

Steroids and sterols. This class of compounds consists of a framework of (usually) four 

interconnected 5 or 6 carbon rings with a further one or more attached lipid groups. The 

most common steroids are the sterols, which have a hydroxy group at one end of the 

framework and a complex, non-polar carbon chain at the opposite end. Of the sterols, 

cholesterol is the most common in animal cell plasma membranes. Sterols are 

synthesised by the mevalonate pathway of isoprenoid metabolism (Lichtenhaler, 1987) in 

which acetyl-CoA and acetoaceyl-CoA condense to form 3-HMG CoA, the precursor of 

mevalonate. Mevalonate is converted into isopentenyl pyrophosphate, a 5 carbon 

intermediate for many subsequent reactions. Various condensations, cyclisations and 

isomerations are used to produce further intermediates such as geranyl and farnesyl 

pyrophosphate and eventually C 2 7. 3 0 compounds such as squalene, lanosterol and 

cholesterol. Plants produce little cholesterol, instead cyclising 2,3-oxidosqualene into 

cycloartenol (Benveniste, 1986) which is further metabolised into 24-ethyl sterols, the 

major sterol in higher plants. Common plant sterols include sitosterol, campesterol, 

episterol and stigmasterol. Hormones with steroid-based structures are known to have 

considerable effects on biochemical functions of a number of organisms; in plants 

brassinosteroids are important in the regulation of growth and development. Plant sterols 

have limited uptake in the gut of mammals and, together with stanols and sterolins, have 
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been demonstrated to have beneficial effects by lowering blood cholesterol when 

included in the diet of humans (reviewed by Jones, 1999). 

Glycolipids. These are amphipathic lipids with carbohydrate groups anchored to their 

polar segments. They are present in the highest proportions in bacterial plasma 

membranes and the thylakoid membranes of chloroplasts. They lend varied structural 

and functional properties to membranes. The simple or branched carbohydrate regions 

can form many hydrogen bonds and reinforce the bilayer structure. For these reason they 

are present in the highest levels in membranes which are subject to higher than normal 

physical or chemical stress. The carbohydrate chains can also form external recognition 

markers, for example blood group recognition factors on the external surface of red blood 

cells. 

Sphingolipids. These membrane lipids are structurally similar to phospholipids, but the 

'backbone' is sphingosine, rather than glycerol. Sphingosine is an amino alcohol that 

contains a long, unsaturated hydrocarbon chain. In all sphingolipids, the amino group of 

sphingosine is acylated (to form ceramide). The terminal hydroxyl group may also be 

substituted, often for phosphorylcholine or glucose/galactose to form sphingomyelin or 

cercerebrosides/gangliosides respectively. 
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1.3 Fatty acid biosynthesis 

1.3.1 Acetyl-CoA Carboxylase (ACCase) 

ACCase catalyses the carboxylation of acetyl-CoA to yield malonyl-CoA. The reaction 

is: 

Mg2+ 

HC0 3 + ATP + Acetyl-CoA < = > Malonyl-CoA + ADP + Pi 

ACCase, together with malonyl-CoA:ACP transacylase (figure 1.2), is responsible for the 

production of malonyl-ACP extender units for fatty acid synthesis. The ACCase reaction 

has two distinct steps, catalysed at two separate active sites on the protein. The first 

involves an ATP dependant carboxylation of the biotin prosthetic group of biotin 

carboxyl carrier protein (BCCP) using bicarbonate (dissolved from atmospheric C0 2 ) , 

proceeding via a carboxylphosphate intermediate. The second occurs as BCCP moves 

from the biotin carboxylase active site to that of the carboxyltransferase, which transfers 

the carboxyl group onto acetyl-CoA, forming malonyl-CoA. ACCase has four functional 

regions: BCCP, biotin carboxylase, carboxyltransferase and a fourth region, suggested by 

Wood (1977) to be regulatory. This is significant as ACCase has a high flux control 

coefficient for the fatty acid synthesis pathway (discussed below). 

There are two main types of ACCase. E. coli and many other prokaryotes have an 

ACCase in which each of the enzymatic activities is present on a separate protein. This 

dissociable multienzyme complex is called the 'prokaryotic' form. It is present in only a 

few plant types, for example pea chloroplasts and some other dicotlydon plastids. 
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Grasses, yeast, fungi and animals have another ACCase form. Here all the functional 

domains are present on a single, high molecular mass polypeptide chain. This is termed 

the 'eukaryotic' form. As all catalytic domains are on one polypeptide, the BCCP region 

has to be flexible enough to move between the two active sites of biotin carboxylase and 

carboxyltransferase. Eukaryotic ACCases are very sensitive to graminicides, 

cyclohexanediones and aryloxyphenoxypropionates (Harwood, 1991a,b), unlike the 

prokaryotic form which is essentially resistant to attack by these herbicides. 

There are multiple isoforms of ACCase and it is also present at several separate 

subcellular locations. This is because, as well as being required for de novo fatty acid 

synthesis in the plastid, malonyl-CoA is also required for fatty acid elongation and the 

formation of secondary metabolites, all of which occurs in the cytoplasm. 

ACCase is believed to have a high flux control coefficient, on occasion as high as 0.5-0.6 

for de novo fatty acid synthesis (the flux control coefficient is a key parameter in the 

Metabolic Control Theory. It is a measure of the sensitivity of the total flux through a 

pathway to the infintesimal variation in enzyme activity. I f the flux control coefficient 

for an enzyme is 1, it has complete control on the flux through the pathway; i f it is 0 it 

has no control). Page, Okada and Harwood (1994) altered the flux through the lipid 

biosynthesis pathway for barley and maize using two specific inhibitors of ACCase 

(sethoxydim and fluazifop). The data gained indicated apparent flux coefficients for 

barley and maize of 0.58 and 0.52 respectively. 
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ACCase is regulated in a complex manner by a combination of pH and Mg + , ATP and 

ADP levels. Also by feedback inhibition, phosphorylation, regulation of substrate levels 

and control of gene transcription by transcription factors such as FadR. This regulation is 

reviewed by Ohlrogge and Jaworski (1997). 

Plastidial acetyl-CoA, the substrate for ACCase, is believed to be supplied either by the 

action of plastidial pyruvate decarboxylase/dehydrogenase or the movement of cytosolic 

acetate into the plastid, where it is the substrate for acetyl-CoA synthase. In some plants 

tissues other photosynthetic products (for example malate or sucrose) may be an indirect 

source of acetate. This area has been under investigation for many years, radiolabeled 

[ 1 4C] acetate has been often been used as a precursor to enable tracking of the products of 

fatty acid synthesis (Roughan and Slack, 1982). 

1.3.2 The reactions of fatty acid synthesis 

Fatty acids are synthesised in the plastid by the repeated incorporation of two carbon 

units to initiate and then extend an acyl chain to 16 or 18 carbons long. The products of 

fatty acid synthesis may be used in the plastid or exported into the cytoplasm, where 

further chain extension and modification may occur, shown schematically in figure 1.2. 

The chemical reactions of de novo fatty acid synthesis are conserved for virtually all 

organisms. Following the production of plastidial acetyl-CoA and malonyl-ACP, 

successive additions of 2 carbon units (supplied by malonyl-ACP) initially to acetyl-CoA 

and subsequently to the growing acyl-chain are made. Chain extension involves a cycle 

of four reactions, the first is a condensation reaction involving the decarboxylation of a 
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malonyl-ACP with concomitant linkage to acetyl-CoA or a growing acyl-ACP chain, 

forming (3-ketoacyl-ACP. The acyl chain (now two carbons longer) undergoes three 

more reactions to produce a fully reduced acyl-ACP: reduction to a hydroxylated acyl 

group, dehydration and then further reduction. These reactions are shown in figure 1.3. 

Ketoacyl synthase I I I (KASIII) uses acetyl-CoA as the primer for the initial condensation 

reaction (this enzyme is believed to have intrinsic acyltransferase properties - Acetyl-

CoA:ACP transacylase exists in all plants but the physiological role of this enzyme is 

unclear as it appears to be functionally redundant Jaworski et al, 1993). 

1.3.3 Acyl-carrier protein (ACP) 

ACP is a protein containing a pantothene group, central to fatty acid synthesis and the 

FAS complex (figure 1.4). It was first purified from E. coli, in which it is one of the most 

abundant proteins. It has since been purified and cloned from many plants. There is 

strong conservation of amino acid sequence between leaf and seed forms, but not 

necessarily at nucleotide level), for instance in Arabidopsis thaliana (Post-Beittenmiller 

et al, 1989). There is also a high level of heterogeneity between ACPs from different 

plants (Harwood, 1996). 

ACP from prokaryotes is a low molecular weight (approximately 9 kDa), enzymatically 

stable, acidic protein. In eukaryotes the protein is believed to be much larger, central to 

FAS with a 'swinging' pantothene arm to deliver the nascent acyl chain to the relevant 

catalytic FAS domains in turn. 
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Figure 1.3 The chemical steps involved in fatty acid synthesis. Adapted from Slabas 
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The presence of complex gene families has been demonstrated in several plant species, 

including Barley (Hansen, 1987), Spinach leaf (Scherer and Knauf, 1987), Brassica 

napus (Safford et al, 1988) and Arabidopsis (Post-Beittenmiller 1989, Lamppa and Jacks, 

1991). This complex gene family may be the result of the complicated interbreeding 

involved in the production of modern crops, or it may be required for the production of 

several necessary plant isoforms and their regulation. There are frequently several 

species of ACP in plants, discernable either by immunological detection or by differences 

in pi, often with tissue specific-distribution. Initial predictions were that leaf would have 

one isoform and the seed would have two - one a core FAS component and the other 

involved in TAG storage. However, at least three ACP isoforms were discovered in rape 

embryo (Safford et al, 1988) and more recently in other species including Thunbergia 

alata and Coriandum sativum (Suh et al, 1999). ACP expression has been closely 

correlated to deposition of storage lipids and thus demonstrates tissue and temporal 

specific regulation (Turnham and Northcote, 1982 and 1983). 

ACP is present in the plastid, esterified to the growing acyl chain during fatty acid 

synthesis. Guerra et al (1986) and Suh et al (1999) showed that the relative activities of 

the competing acyl-ACP thioesterase and acyltransferase were influenced by the ACP 

isoform of the substrate. Thus ACP type may have a role in the channelling of fatty acids 

between the prokaryotic and eukaryotic pathways. ACP is also present in plant 

mitochondria as demonstrated by immunolocalisation studies performed by Mikolajczyk 

and Brody (1990). 
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1.3.4 Fatty acid synthase (FAS) 

Two types of Fatty Acid Synthase are well characterised, designated FAS I and FAS I I . 

Animals and yeast have a multifunctional enzyme complex which contains large 

polypeptides that are capable of catalysing several fatty acid synthesis reactions. Each 

polypeptide has several separate catalytic domains. This type of fatty acid synthase is 

known as Type I FAS (Bloch and Vance, 1977; Battey and Ohlrogge, 1990). 

Plants and the majority of bacteria contain a complex in which there are several smaller 

proteins that have individual enzyme activities which are easily dissociable from one 

another. This complex is highly organised and extensive metabolite channelling occurs 

(Roughan, 1997). This type of fatty acid synthase is known as Type I I FAS (Volpe and 

Vagelos, 1973). Important regulatory questions have recently been raised regarding the 

arrangement of FAS I I into multi-molecular complexes, or 'metabolons' (Roughan and 

Ohlrogge, 1996). 

1.3.5 The Kennedy pathway 

Plant triacylglycerols (TAGs) are produced by the classic Kennedy Pathway (Kennedy, 

1961; Harwood and Page, 1994), which involves two acylations of glycerol-3-phosphate 

(G3P), a dephosphorylation to produce diacylglycerol and a further acylation. Acylation 

steps occur at the endoplasmic reticulum and the acyl-donor molecule is acyl-CoA. 

Glycerol-3-phosphate acyltransferase catalyses the transfer of a fatty acid from an acyl-

donor to the sn-l position of glycerol-3-phosphate to yield l-acylglycerol-3-phosphate 

(or lysophosphatidic acid). Lysophosphatidic acid acyltransferase (LP A AT) then 
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catalyses the formation phosphatidic acid, which s dephosphorylated by phosphatidic 

acid phosphatase (PAP) to form diacylglycerol. Diacylglycerol acyltransferase 

(DAGAT) performs the final acylation step to form triacylglycerol. 

These enzymes have been purified and partially characterised from several plant tissues 

(Harwood, 1998, Stobart et al, 1998). Substrate selectivity of the acyltransferase 

enzymes, together with the pool of acyl-CoA substrates available, influences the types of 

TAG synthesised. As TAGs are primarily a storage product and do not have a functional 

role to play in, for instance, membrane fluidity, a much wider range of acyl-groups can be 

incorpoarted into TAGs (however, TAG storage tissues are not necessarily metabolically 

inert -see below). 

1.3.6 Oil body formation 

Virtually all plant species synthesise triacylglycerols in their developing seeds. TAGs are 

deposited and stored in discrete organelles called oil bodies until germination when they 

are catabolised for use as an energy and carbon source. As the harvest of seed oils from 

crop species is an important industry, there has been much interest in the mechanism of 

oil body formation. 

Oil bodies contain a core of triacylglycerols enclosed within an outer monolayer of 

phospholipid. Associated with this outer monolayer is a class of proteins called oleosins 

which are believed to stabilise oil bodies to prevent coalescence during seed dessication 

(Murphy et al 1993, reviewed by Frandsen et al, 2001). Enzymes responsible for the 
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synthesis of TAGs ('Kennedy Pathway' enzymes - see above) are located at the 

endoplasmic reticulum (ER), which is involved in oil body biogenesis (Lacey and Hills 

1996; Napier et al, 1996). 

In 1978 Wanner and Theimer proposed the mechanism of oil body formation. TAGs 

accumulate between the leaflets of the ER phospholipid bilayer. Wanner and Theimer 

suggested that this accumulation results in swelling of the ER to form TAG filled 

vesicles. When these vesicles reach a 'critical size' they bud off to form an oil body 

surrounded by a phospholipid monolayer. Thus, mature oil bodies form by budding from 

the ER (Huang, 1992, Napier et al, 1996). The timing of oleosin insertion into the oil 

body is more poorly understood and it is not known whether or not TAG deposition and 

oleosin production are spatially and temporarily separated. Seemingly different results 

have been obtained in different plants. In Brassica napus TAGs are synthesised before 

oleosins (Murphy and Cummins, 1989), whereas the two have been shown to appear at 

the same time in Zea mays and soybean (Herman, 1987, Tzen et al, 1993). 

In 1997 Sarmiento et al proposed a new model for oil body formation in which the 

oilseeds in early stages of development produce oil bodies with minimal protein coats. 

These fuse with oleosin-rich oil bodies during mid to late stages in seed development. 

Oleosin has been demonstrated to be co-translationally inserted into the ER, mediated by 

a signal recognition particle (SRP) (Hills et al, 1993, Thoyts et al, 1995). 
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TAG may comprise 90-95% of the oil body organelle constituents. Several studies have 

indicated that TAG storage tissues are not metabolically inert - desaturases, transacylases 

and acyltransferases may play a further role in TAG remodelling (Sarmiento et al, 1998; 

Mancha and Stymne, 1997; Murphy, 1999) 

1.3.7 Prokaryotic and Eukaryotic pathways 

There are two main products of the plastidial FAS system 16:0- and 18:1-ACP - key 

substrates for further metabolism. Two distinct pathways exist for the incorporation of 

these fatty acids into cellular components: the Prokaryotic and Eukaryotic pathways. A 

simplifed schematic view detailing the pathways of fatty acid incorporation into various 

cellular components in the plant cell is shown in figure 1.5. 

The Prokaryotic Pathway. This pathway is so called because the products remain within 

the plastid, an organelle that has been functionally compared to prokaryotic organisms. 

The stromal G3PAT is the first step in the prokaryotic pathway and is frequently highly 

specific for 18:1-ACP (Dormann et al 1994), most notably in spinach. The second 

acylation is catalysed by a membrane bound lysophosphatidic acid acyltransferase 

(LPAAT) which typically esterifies 16:0 to the sn-2 position to yield 1-18:1, 2-16:0-

phosphatidic acid (Ohlrogge et al, 1993, Murphy, 1994). 
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Figure 1.5 Simplified schematic of the pathways of fatty acid incorporation into 
cellular components in the plant cell. 

Monogalactosidyl diacylglycerol (MGDG) is formed from diacylglycerol (DAG) by the 

action of a galactosyltransferase enzyme located in the inner envelope membrane, and is 

the most abundant chloroplast lipid. Dismutation of two MGDG molecules produces 

digalactosidyl diacylglycerol (DGDG), catalysed by MGDG: MGDG 

galactosyltransferase, thought to be present in the outer envelope membrane (Browse and 

Sommerville, 1991). A sulphoquinovosyltransferase is responsible for SQDG formation 

-less is known about this enzyme but it is thought to have access to the stromal side of the 
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inner chloroplast envelope and use the same pool of DAG as the enzymes mentioned 

above (Browse, 1993; Browse and Sommerville, 1991). 

There are several desaturase enzymes specific to the chloroplast. For instance, 16:0 at the 

sn-2 position of PG is frequently converted to A.3-trans-16:l (Miquel and Browse, 1992; 

Browse and Sommerville, 1991). Other desaturases are present at varying levels of 

activity and with different specificities, see 1.4.2. The balance of substrate specificities 

of these desaturases is responsible for the ultimate lipid composition of chloroplastic 

membranes. MGDG, DGDG and SQDG are inserted into the thylakoid membrane and 

provide part of the specific hydrophobic micro-environment that favour reactions of 

photosystems I and I I . 

The Eukaryotic Pathway. An acyl-ACP thioesterase catalyses the first committed step in 

this pathway, hydrolysing the 16:0 and 18:l-ACPs to free fatty acids which are 

transported across the plastid envelope membranes and converted to acyl-CoA thioesters. 

Acyl-CoAs are used by membrane bound G3PAT and LPAAT acyltransferases at the 

endoplasmic reticulum to produce phosphatidic acid (PA). Unlike prokaryotic lipids, 

eukaryotic PA has 18:1 at the sn-2 position. 16:0, i f present at all, is usually positioned at 

sn-l. Phosphatidic acid is converted to the following phospholipids: 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 

phosphatidylserine (PS) and phosphatidylglycerol (PG), compounds which are 

characteristic of extrachloroplast membranes. Fuller details of the intermediates and the 
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approximate flux through these pathways in Arabidopsis leaves are shown in the 

schematic figure 1.6 

'Complex' lipids (galactolipids) are not produced via this pathway as only they are 

required in the thylakoid membrane. However, DAG produced via the eukaryotic route 

may return to the chloroplast. Labelling experiments have made it clear there is 

significant lipid exchange between the chloroplast and other cellular locations (Browse 

and Sommerville 1991). Lipid Transfer Proteins (LTPs) are thought to play a great role 

in transfer of lipids between different cellular membranes, although this area of lipid 

research is currently poorly understood. 

The cytoplasm is also the site for further desaturation, chain elongation and acyl-group 

modificatation. Very long chain fatty acids (VLCFAs) are often produced in greater 

quantities by plants that make structural lipids, for example waxes, by the action of 3-

ketoacyl-ACP synthase dependant elongases (Millar and Kunst, 1997; Leonard et al, 

1998). Acetylation, epoxydation, and hydroxylation may also take place. The acyl-CoA 

pool can be channelled into the formation of signalling and membrane glycerolipids and 

the production of storage triacylglycerols. 
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1.4 Chilling sensitivity in plants 

The primary energy source for plants is sunlight. The performance of crop plants 

depends on their ability to capture energy by photosynthesis, which in turn depends on 

integrity of photosynthetic membranes. The ability of plants to tolerate chilling 

temperatures seems closely correlated with the degree of unsaturation of fatty acids in the 

phosphatidylglycerol of chloroplast membranes (Nishida and Murata, 1996). The 

majority of membrane lipids are comprised of 16:0, 18:0 or 18:1 fatty acids. Those of 

particularly chilling tolerant plants have elevated levels of polyunsaturated glycerolipids 

containing acyl groups from linoleic acid (18:2 A9, 12), cc-linoleic acid (18:3 A9, 12, 15) 

and y-linoleic acid (18:3 A6, 9, 12), although y-linoleic acid is rarely found in higher 

plants. 

1.4.1 Membrane phosphatidylglycerol (PG) acyl-group composition - thioesterases 

and acyltransferases. 

De novo biosynthesis fatty acid produces one compound, acyl-ACP, that is substrate for 

two different plastidial enzymes: glycerol-3-phosphate acyltransferase and acyl-ACP 

thioesterase. The relative activities of these two enzyme types determine the flux through 

the 'prokaryotic' and 'eukaryotic' pathways and the acyl composition of 

phosphatidylglycerol. Thioesterases, as G3PATs, are present as different forms that have 

different, distinct acyl-chain preference - one thioesterase type has a preference for 

unsaturated acyl-ACPs, another has a greater preference for 18:1-ACP (Dormann et al, 

1995; Jones et al, 1995). In addition, some plant plastids contain thioesterases with 

specificity for medium chain length (8-12 carbons) acyl-ACPs (Pollard et al, 1991; 
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Davies, 1993). The lipid profiles of TAGs in these plants contain elevated levels of 

medium chain length acyl groups 

Glycerol-3-phosphate acyltransferase is present as a soluble enzyme in the plastid (Joyard 

and Douce, 1977) and competes with acyl-ACP thioesterase for acyl-ACP. Membrane 

bound lysophosphatidic acid acyltransferase (LPAAT) converts LPA into diacylglycerol. 

Membrane-bound acyltranferases at the endoplasmic reticulum can synthesise DAG in a 

similar fashion, using acyl-CoA as the acyl-donor. Some of this DAG pool re-enters the 

plastid and may be incorporated into membrane lipids (figure 1.4). Acyltransferases at 

each location have varying substrate selectivities and specificities. As a general rule, 

DAG synthesised in the chloroplasts has C18 and C16 groups at position sn-l and C16 at 

position sn-2. DAG synthesised in the cytoplasm usually contains C18 and C16 groups 

at position sn-l and C18 at position sn-2. The mixing of DAG from these two sources 

determines the pool available for membrane lipid (including 'complex', galactosidyl-

containing lipids) synthesis. 

1.4.2 Desaturases 

Acyl-CoA and glycerolipid desaturases introduce double bonds at specific points of acyl 

chains in the endoplasmic reticulum (in the chloroplast stroma this is performed by 

glycerolipid and acyl-ACP desaturases). In the chloroplast, de novo fatty acid 

biosynthesis provides substrate for steroyl-ACP desaturase, the best characterised 

desaturase enzyme. Steroyl-ACP desaturase inserts a cis double bond at the A9-position 

of 18:0-ACP, converting the majority of the plastidial pool of steroyl-ACP to oleoyl-
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ACP. The enzyme is soluble and has a relatively high activity (compared to KAS II) so 

that stearate rarely accumulates in plants. Steroyl-ACP desaturase was first purified from 

safflower (McKeon and Stumpf, 1982) and the crystal structure of the castor bean form 

has now been solved (Lindqvist et al, 1996). This has led to a rationalised approach to 

engineering of chain-length specificity and the orientation of the hydrogen abstraction 

(Cahoon et al, 1997, 1998). 

Fatty acid desaturation occurs at a variety of sub-cellular locations and unsaturated fatty 

acids are important for many cellular functions, including synthesis of signalling 

molecules, cell expansion and increased membrane fluidity (reviewed by Somerville and 

Browse, 1996). Different activities and acyl-group and positional specificities of plant 

destaurases determine the ultimate acyl-profiles of both plastidial and cytosolic 

glycerolipids. The membrane lipid composition is known to have a significant effect on 

plant chilling tolerance (Nishida and Murata, 1996). Plants may alter their membrane 

acyl-group desaturation as a response to low temperatures. Temperature sensitive 

induction of desaturase genes has been studied for some years and is well characterised in 

bacteria (des gene family) and increasingly so in plants. More recently, sequence 

analysis of a plastidial omega-3 desaturase gene from Brassica juncea has led to the 

identification of putative cis elements in the 5' untranslated region, responsible for stress 

(temperature)-inducible expression (Garg et al, 2001). 

Many plant desaturases are membrane bound and have proven difficult to purify and 

characterise. However, the identification of the fab and fad gene families in Arabidopsis 
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(together with sequencing of the Arabidopsis genome) have enabled the creation of many 

mutant plants, deficient in a variety of desaturase activities (Wallis and Browse, 2002). 

This has permitted the investigation of many aspects of desaturase activity and membrane 

lipid function. The study of desaturase enzymes is attracting much interest and 

transgenic approaches are being undertaken to produce pharmaceutically beneficial 

compounds, for example, polyunsaturated fatty acids (Napier et al, 1999; Napier and 

Michaelson, 2001). 

1.4.3 Other factors effecting chilling sensitivity 

There are many documented plant responses to chilling (2-6°C) temperatures. This 

complex process involves changes in morphology, metabolism and gene expression (Xin 

and Browse, 1998). Such changes may include growth reduction, increases in abscisic 

acid concentration, the accumulation of osmolytes and antioxidants and changes in the 

increased expression of several genes (Thomashow, 1999; Xin and Browse, 2000). Most 

cold-upregulated genes are already expressed during normal growth and several exhibit 

functional redundancy (the phenotypes of knock-out plants are the same as wild-type 

when grown at cold temperatures). Functional redundancy of responses to chilling stress 

may be the result of convergent evolution or simply indicative of the importance of 

overcoming the physiological effects of this environmental stress. 

Temperature sensing in plants has also been a matter of much recent interest. Plieth et al 

(1999) proposed that membrane fluidity changes at low temperatures affect a change in 

Ca2+ ion channels which in turn may cause Ca2+ influxes responsible for activation of a 
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'mitogen-activated-protein (MAP) kinase' signalling cascade (Kiegle et al, 2000; Monroy 

et al, 1998). Histidine kinases and abscissic acid are thought to form (part of) the 

signalling cascade between plant temperature sensors (reviewed by Browse and Xin, 

2001). However, many of the plant reponses to chilling (2-6°C) temperatures appear to 

'prepare' the plant for freezing (<0°C) conditions. They frequently have, cryoprotectant, 

osmotic or anti-dehydration roles. 

1.5 Glycerol-3-phosphate acyltransferases in plants 

Glycerolipid synthesis occurs at three distinct sub-cellular locations, the mitochondria, 

the endoplasmic reticulum and the plastids. Therefore a (different) glycerol-3-phosphate 

acyltransferase exists at each of these locations to catalyse the initial acyltransferase step. 

The relative activities of G3PAT in preparations of chloroplasts, microsomes and 

mitochondria is approximately 6:3:1. 

1.5.1 Mitochondrial G3PAT 

G3PAT from plant mitochondria is relatively poorly characterised and has been purified 

from only a handful of plant sources. The enzyme has been reported as a soluble 

intermembrane protein in pea leaves (Frentzen, 1990) but as an outermembrane protein in 

potato tubers (Frentzen, ibid.) and an inner and outer membrane protein in castor bean 

endosperm (Vick and Beevers, 1977). Mitochondrial G3PAT is reported to display higher 

activities with acyl-CoA than acyl-ACP substrates and have a slight preference for 

unsaturated acyl-groups (Frentzen, 1993). 

40 



1.5.2 Microsomal G3PAT 

The endoplasmic reticulum (ER) is the main site of the 'Eukaryotic' pathway. 

Cytoplasmic G3PAT is membrane bound, localised to the ER (Frentzen et al, 1990) and 

uses acyl-CoA as substrate. Frentzen et al (1993) reports that microsomal G3PAT 

specifically uses acyl-CoA substrates and is inactive with acyl-ACP. A slight preference 

for 16:0- over 18:l-CoA was also reported. 

1.5.3 Plastidial G3PAT 

G3PAT has been purified from chloroplasts of various plant sources and is well 

characterised (Joyard and Douce, 1977; Bertrams and Heinz, 1981; Cronan and Roughan, 

1987; Ishizaki et al, 1988; Fritz et al, 1995) - a table showing a selection of purified and 

cloned plastidial G3PATs is to be found in chapter 5, table 5.1. More recently, the 3D 

structure of squash G3PAT has been determined (Turnbull et al, 2001a,b). The protein is 

known to be nuclear encoded, transported to the plastid via a target peptide, which is 

cleaved to yield the mature, active protein. The processing site for cleavage of the target 

peptide has been predicted (Murata and Tasaka, 1997). In some plant species several 

G3PAT isoforms have been identified (Ishizaki et al, 1988; Nishida et al, 2000) 

Acyl-ACP is the plastidial substrate for plastidial G3PAT. Reported substrate 

specificities and selectivities vary greatly between species, for example G3PAT from 

bean (Phaseolus vulgaris) has no substrate preference (Fritz et al, 1995) whereas G3PAT 

from pea (Pisum sativum) has a strong substrate preference for 18:1 acyl-groups. 

(Frentzen et al, 1994). 
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1.6 Aims and Objectives 

Recent years have seen rapid advances in research on the principle reactions responsible 

for lipid synthesis and metabolism in plants. Commercial interest has been taken in the 

modification of plants to produce unusual and valuable fatty acids in oliseeds and to 

increase the resistance of crop plants to membrane damage suffered at low temperatures. 

Acyltransferases are known to have an important role to play in both of these processes. 

The biochemical study of recombinant chloroplast glycerol-3-phosphate acyltransferase 

has been the main goal of this thesis. 

The first objective of this study was to develop a (pre-existing) assay for the glycerol-3-

phosphate acyltransferase so that it could be performed in vitro under physiologically 

relevant conditions. The most 'relevant' conditions are dictated partly by the literature 

(for instance, using the reported pH(s) of the chloroplast stroma), but also by the 

performance of G3PAT proteins in the assay (the activity and substrate selectivity of 

G3PAT proteins can vary dramatically depending on the assay conditions used). G3PAT 

performance has been measured under a range of assay conditions. Single and dual 

substrate assays have been performed using a range of acyl-ACP and acyl-CoA 

substrates. The effect of variation of pH has been measured. Inclusion of BSA, 

cyclodextrin and other proteins at varying levels have also been investigated. 

The second objective was to investigate amino acid residues in recombinant chloroplast 

glycerol-3-phosphate acyltransferase that are postulated to have a role in binding of either 

G3P or acyl-ACP substrates. In addition, with the 3D structure of squash G3PAT 
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available, investigation of residues recently identified as lining the acyl-binding pocket 

was also undertaken. Several residues have been substituted using site-directed 

mutagenesis and the resulting effect on catalytic activity and/or substrate selectivity has 

been determined for each mutant. 

A mutant G3PAT with novel selectivity was identified by chance, separately from the 

site-directed mutagenesis studies. The final aim of this thesis was to characterise the 

novel mutant, in terms of activity, substrate selectivity and kinetic measurements and 

compare them to the 'wild-type' protein. Complimentary to this aim was the 

determination of the kinetic mechanism and order of substrate binding for squash 

glycerol-3-phosphate acyltransferase, to enable a model to be proposed for the mode of 

altered substrate selectivity. 
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Chapter 2 

Materials and Methods 



2.1 Materials. 

Radiochemicals (radiolabeled fatty acids and glycerol-3-phosphate) were purchased from 

Amersham and used at a specific activity of 55 Ci/mol. 

Fatty acids, azido-fatty acids and acyl-CoA substrates were purchased from Sigma. 

ACP was provided as a freeze dried powder by John Gilroy, University of Durham. 

Solvents were purchased from BDH, research grade. 

Acrylamide solutions and SDS PAGE apparatus were purchased from Biorad. 

Ecoscint A scintillation fluid was purchased from National Dianostics. 

Ultrafree™ centrifugal filter units were purchased from Millipore. 

Bactotryptone (pancreatic digest of casein) and yeast extract for LB broth were obtained 

from BBL and Oxoid respectively. 

Milli-Q purified water (MQH 2 0) was prepared in the lab using a distillation unit 

connected to a Millipore Milli-Q Plus water purification system. 

Chromatography matrices and columns were purchased from Pharmacia. 

Acyl-ACP synthetase' 'overexpression' strain (AASO) was a gift from the laboratory of 

John Shanklin, Department of Biology, Brookhaven National Laboratory, Upton, New 

York 11786. (Reference, T. K. Ray and J. E. Cronan, Jr. (1976) Activation of long chain 

fatty acids with acyl carrier protein: Demonstration of a new enzyme, acyl-acyl carrier 

protein synthetase in Escherichia coli. Proc. Natl. Acad. Sci. USA 73 pp. 4374^4378). 

G3PAT cDNA clones were obtained as a gift from Norio Murata, National Institute for 

Basic Biology, Myodaiji, Okasaki 444, Japan. 

Subcloned G3PAT clones were obtained from Johan Kroon, University of Durham. 

Quickchange™ mutagenesis kit(s) were purchased from Stratagene. 

Al l other substrates and reagents were purchased from Sigma, unless otherwise indicated 

in the text. 

45 



2.2 Production and purification of recombinant Acyl-ACP Synthetase (AAS). 

References: Rock and Cronan, 1979; Jackowski, Jackson and Rock, 1994; Shanklin, 2000. 

2.2.1 Growth of the Acyl-ACP synthase 'overexpression' strain (AASO). 

Acyl-ACP synthase expressing strain was seeded onto an agar plate containing 50 ng/ml 

ampicillin and 50 jag/ml kanamycin and grown at 30°C for 36 hours. Colonies were used 

to inoculate eight 3 ml cultures which were grown at 30°C until the optical density at 600 

nm (OD 6 0 0) reached 0.6 units. Each 3 ml culture was used to inoculate a 500 ml culture of 

Luria-Bertani (LB) broth containing 50 (Xg/ml ampicillin and 50 ng/ml kanamycin. 

LB broth contained (per litre): Bactotryptone lOg 

Yeast extract 5g 

NaCl lOg 

Cultures were grown at 30°C, with shaking at 120 rpm, until OD 6 0 0 reached 0.6 units 

(approximately 3 hours). Cultures were then grown at 42°C for one hour to induce 

expression of AAS (plasmid is temperature sensitive), followed by 4 hours at 37°C, during 

which OD 6 0 0 reached approximately 1 unit. Cultures were transferred to 4°C and harvested 

using a Beckman J2-HC (rotor JA 10.500) at 7,000 rpm for 15 minutes. Cell pellets were 

resuspended in 10 ml of ice cold 50 mM Tris-HCl pH 8.0 and transferred to 15 ml falcon 

tubes. The cell suspensions were spun for 15 minutes at 4,000 rpm in a Jouan MR 1822 

centrifuge to harvest the cells. The supernatant was removed and pellets snap frozen in 

liquid nitrogen and stored at -80°C until required. 
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2.2.2 Preparation of membranes containing AAS activity. 

(Reference: Rock and Cronan, 1979) 

Al l procedures carried out at 4°C or (where possible) on ice. Al l buffers were ice-cold. 

Pellets from 500 ml cultures were thawed on ice and resuspended in 10 ml 50 mM Tris-

HC1 pH 8.0. Cells were lysed by 3 passes through a French pressure cell at setting 

25,000psi and centrifuged in a Jouan MR 1822 at 10,000 rpm for 15 minutes to pellet cell 

debris. The supernatant was removed and MgCl 2 was added to a final concentration of 10 

mM. The sample was transferred to fresh (ultracentrifuge) tubes and spun at 100,000g for 

90 minutes in a Beckman L-70 (rotor 70Ti). Pelleted membranes appeared as a clear 

pellet - these were resuspended in 50 ml of 50 mM Tris-HCl pH 8.0 containing 1 M NaCl 

(to remove extrinsically associated membrane proteins) and 20 mM MgCl 2 . The sample 

was spun at 100,000g for 90 minutes. The supernatant was removed, pelleted membranes 

(from 4 litres of AASO culture) were resuspended in a total of 30 ml 50 mM Tris-HCl pH 

8.0 containing 2% Triton X-100 and 20 mM MgCl 2 to achieve a protein concentration of 

2-5 mg/ml. The sample was stirred on ice for 30 minutes to dissolve the AAS. The 

sample was spun at 100,000g for 90 minutes to pellet undissolved material. The 

supernatant assayed for AAS activity (see 2.3). The pellet was resuspended in 50 mM 

Tris-HCl pH 8.0 containing 2% Triton X-100 and 20 mM MgCl 2 and assayed likewise. 

Typically >90% of AAS activity was detected in the supernatant at this point. The sample 

was loaded onto a Blue-Sepharose column for purification. 

2.2.3 Purification of Acyl-ACP synthetase using Blue-Sepharose chromatography 

(Reference: Rock and Cronan, 1979) 

A 40 ml blue-sepharose fast flow (Pharmacia) column was prepared and allowed to settle. 

The column was washed with 200 ml 50 mM Tris-HCl pH 8.0 containing 2% Triton X-
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100 and 1 M NaCl. The column was washed with >200 ml MQH 2 0 followed by 200 ml 

50 raM Tris-HCl pH 8.0 containing 4 M guanidine hydrochloride. The column was 

washed with >200 ml MQH 2 0 and re-equilibrated by washing with 200 ml 50 mM Tris-

HCl pH 8.0 containing 2% Triton X-100. 

The sample was loaded onto the column and washed on with 50 mM Tris-HCl pH 8.0 

containing 2% Triton X-100. 2 x 50 ml passes were collected. The column was washed 

with 600 ml 50 mM Tris-HCl pH 8.0 containing 2% Triton X-100 and 1 M NaCl to 

remove proteins other than AAS (in particular thioesterases) - 1 x 600 ml pass was 

collected. No significant levels of AAS were detected in any of the passes. AAS was 

eluted with 50 mM Tris-HCl pH 8.0 containing 2% Triton X-100 and 0.5 M KSCN. 2 ml 

fractions were collected and assayed (see 2.3). AAS activity was greatest in fractions 

containing a slight yellow/green colouration (Rock and Cronan reported AAS co-

purification with a red cytochrome but it appeared yellow/green). Active fractions were 

pooled and ATP was added to a final concentration of 5 mM (for increased enzyme 

stability). Pooled fractions were dialysed against 3 x 21 of 50 mM Tris-HCl pH 8.0 

containing 2% Triton X-100 to remove KSCN. Samples were aliquotted, snap frozen in 

liquid nitrogen and stored at -80°C. 
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2.3 Assay of Acyl-ACP Synthetase (AAS) activity. 

2.3.1 Low volume assay (for Blue-sepharose column fractions) 

A reaction mixture containing the following components was prepared: 

100 mM Tris-HCl pH 8.0 
400 mM LiCl 
10 mM MgCl 2 

2 mM DTT 
10 mM ATP 
2% Triton X-100 
1 mg/ml holo-ACP 
30 | i M 1-14C 16:0 fatty acid (1:20 dilution of a 600 \iM stock at 55 Ci/mole in 5% Triton 
X-100) 

The reaction mixture was transferred to 1.5 ml eppendorf tubes in 50 \i\ aliquots. 2 (il of 

each fraction to be assayed was added per tube. The mixture was vortexed and placed in a 

30°C water bath for 10 minutes. The reaction was stopped by addition of 400 [il of 

'STOP' solution. 

Stop solution: 5 mM KP0 4 pH 7.2 
0.2 mg/ml BSA 
10 mM MgCl 2 

50% v/v Isopropanol (IPA) 
1.25% v/v Glacial acetic acid 

400 f i l of extraction solution were added. 

Extraction solution: Petroleum ether (40-60°C fraction); saturated with 50% v/v IPA 

containing 1 mg/ml palmitic acid. 

The mixture was vortexed and centrifuged in a benchtop centrifuge for 1 minute to resolve 

the aqueous and organic phases. The petroleum ether (upper layer, containing extracted 

free fatty acids) was carefully removed using a fine-tipped pipette. 400 \i\ extraction 

solution was added and removed as described above twice more - three extractions were 

sufficient to remove all uncombined fatty acids. A 200 \i\ aliquot of the lower layer was 

removed into a scintillation vial, mixed with 4 ml Ecoscint A scintillation-fluid and 
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counted using a Packard 1600 TR liquid scintillation analyser. Counts per minute (dpm) 

measured nmoles of radiolabeled fatty acid incorporated into 16:0-ACP (with 

uncombined fatty acid removed) in the 10 minute incubation period. This was used to 

calculate enzyme activity, taking into account the following: 

The specific activity of the fatty acid substrate = 55Ci/mole 

1 nCi = 2.22 x 106 dpm 

One unit of acyl-ACP synthase activity is defined as the amount of protein required to 

produce 1 nmole C 1 6 ; 0-ACP per minute. 

2.3.2 Large volume assay (for acyl-ACP synthesis mixture) 

A 40 JLLI aliquot of the acyl-ACP synthesis reaction mixture (section 2.4) was removed into 

a 15 ml glass falcon tube containing 2 ml of reaction 'Stop' solution (see above). The 

mixture was vortexed and 2 ml of 'Extraction' solution were added. The mixture was 

vortexed and centrifuged in a Sigma 204 benchtop (rotor 133/94) at 3,000 rpm for one 

minute. The petroleum ether (upper layer, containing extracted free fatty acids) was 

carefully removed using a fine-tipped pipette. 2 ml extraction solution were added and 

removed as described above twice more - three extractions were sufficient to remove all 

uncombined fatty acids. 1 ml of the lower layer (containing acyl-ACP - equivalent to 20 

[i\ of acyl-ACP synthesis reaction mixture) was removed, mixed with 4 ml Ecoscint A 

scintillation-fluid and counted using a Packard 1600 TR liquid scintillation analyser. A 20 

\xl aliquot of the original reaction mixture was also counted. An estimation of the 

incorporation of radiolabeled fatty acid into acyl-ACP was then made by comparison of 

the two counts. 
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For example: Count of acyl-ACP with uncombined fatty acid removed = 200,000 dpm 

Count of reaction mixture (acyl-ACP and uncombined fatty acid) = 

300.000 dpm 

Therefore % fatty acids in acyl-ACP synthesis reaction mixture 

incorporated into acyl-ACP = (200,000/300,000) xl00% = 66.6% 

2.4 Synthesis and isolation of radiolabeled acyl-ACP substrates. 

2.4.1 Acyl-ACP synthesis 

The acyl-ACP synthesis reaction mixture was prepared by addition of the following 

reagents: 

Reagent ml added to ml added to Final 
16:0 tube 18:1 tube Concentration 

1 M Tris-HCl 1.1 1.1 100 mM 
2 M LiCl 2.2 2.2 400 mM 

1 M MgCl 2 0.11 0.11 10 mM 
50 mM DTT 0.44 0.44 2 mM 

100 mM ATP (in Tris-HCl pH 8) 0.55 0.55 5 mM 
20% Triton X-100 0.33 0.33 1% 

1 mg/ml ACP (20 mM HEPES pH 6.8) 5.0 5.0 33 uM 

C 16:0 (600 nM; 55 Ci/mol; 5% 0.46 - 25 \iM 

Triton X-100 

H 18:1 (600 uM; 55 Ci/mol; 5% Triton - 0.46 25 \iM 

X-100 
Acyl-ACP Synthetase 0.8 0.8 33 U/ml 

11.0 ml 11.0 ml Total volume 

Table 2.1 Acyl-ACP synthesis reaction conditions 

The reaction was incubated in a 30°C water bath for 12 hours, after which an aliquot was 

removed for assay (section 2.3) to ensure the reaction had produced a sufficient (>50%) 

yield of acyl-ACP. 
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2.4.2 Isolation of acyl-ACP substrates using ion-exchange and hydrophobic 

interaction chromatography. 

A 10 ml Q-sepharose FF column was prepared, storage 20% ethanol was removed by 

washing with 20 ml of MQH 2 0. Bound material was removed by washing with 30 ml 20 

mM Tris-HCl pH 7.0 containing 1 M NaCl. The column was washed with 40 ml MQH 2 0 

and equilibrated with 30 ml 20 mM Tris-HCl pH 7.0. The sample was diluted x4 with 20 

mM Tris-HCl pH 7.0 to bring the LiCl concentration to <100 mM and loaded onto the 

column which was then washed with 40 ml 20 mM Tris-HCl pH 7.0. This was collected 

as Pass 1 (uncombined fatty acids do not bind to the Q-sepharose column). The sample 

was eluted with 20 mM Tris-HCl pH 7.0 containing 1 M NaCl. Fractions were collected 

using a Gilson fraction collector, fraction size was 80-100 drops (approximately 2 ml). 

An aliquot of 5 u.1 of each fraction and 100 [xl of Pass 1 were counted using a Packard 

1600 TR liquid scintillation analyser. Radioactive fractions were pooled, mixed and 

counted again to determine % 14C-acyl-ACP formation. 

A 10 ml octyl-sepharose FF column was prepared, storage 20% ethanol was removed by 

washing with 20 ml of MQH 2 0. Bound material was removed by washing with 40 ml 20 

mM Tris-HCl pH 7.0 containing 80% v/v IPA. IPA was carefully removed by washing 

the column with >300 ml MQH 2 0. The column was equilibrated by washing with 20 ml 

20 mM Tris-HCl pH 7.0. Pooled fractions from the Q-sepharose column were loaded onto 

the octyl-sepharose column and the column washed with 20 ml 20 mM Tris-HCl pH 7.0. 

This was collected as Pass 1 (ACP does not bind to the octyl-sepharose column). The 

column was re-equilibrated with 20 ml 20 mM N-ethyl morpholine acetate (NEMAc 

(volatile)) buffer pH 7.0. This was collected as Pass 2. The sample was eluted with 20 ml 

20 mM NEMAc containing 40% v/v IPA. Fractions were collected in a Gilson fraction 

52 



collector, fraction size was 80-100 drops. 5 \x\ of each fraction and 100 \x\ of Pass 1 were 

mixed with 4 ml Ecoscint A scintillation-fluid and counted using a Packard 1600 TR 

liquid scintillation analyser. Acyl-ACP was found to elute in the first few fractions 

containing IPA - IPA drop-size is smaller and so these fractions are identifiable by their 

lower volume (fraction size is approximately 1ml). Radioactive fractions were pooled, 

mixed and counted again to determine % acyl-ACP recovery. Sample volume was 

reduced in a Jouan RC 10.22 vacuum centrifuge until the acyl-ACP concentration reached 

approximately 80-100 |J,M. As IPA and NEMAc are volatile, Tris-HCl was added to give 

a final concentration of 50 mM in the concentrated sample. Acyl-ACP samples were snap 

frozen in liquid nitrogen and stored at -20°C prior to use. 

2.5 Production and purification of recombinant G3PAT proteins. 

2.5.1 Production of squash G3PAT 

Squash G3PAT protein was expressed in E. coli BL21 (DE3) containing the pET 24a 

vector system, under the influence of the T7 promoter/DNA polymerase system (clone 

was obtained as a gift from Norio Murata, National Institute for Basic Biology, Myodaiji, 

Okasaki 444, Japan). Transformed cells were grown in 0.5 litre cultures (of L-B broth) at 

37°C and induced to produce G3PAT by the addition of IPTG to a final concentration of 

0.4 mM. Cells were grown for a further 3 hours after the addition of IPTG before 

harvesting using a Beckman J2-HC (rotor JA 10.500) at 7,000 rpm for 15 minutes. 

G3PAT production was confirmed using SDS PAGE, figure 2.1. 

2.5.2 Preparation of crude, cell-free protein extracts (CFEs) of squash G3PAT 

Cell pellets were resuspended in 10 ml of ice cold 20 mM Tris-HCl pH 7.4 and transferred 
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8 Lane 1 

<-66kDa 

<-45 kDa 
G3PAT -» 

^ 3 6 kDa 

<r29 kDa 
<- 24 kDa 

<-20 kDa 

Figure 2.1 SDS PAGE gel of E.coli cell lysates demonstrating production of the 
squash G3PAT protein. Lanes 1 and 9 SDS7 molecular weight markers (from top) 
BSA, 66 kDa, Ovalbumin, 45 kDa, G-3-PDHe, 36 kDa, Bovine carbonic anhydrase, 29 
kDa, Bovine trypsinogen, 24 kDa, Soybean trypsin inhibitor, 20 kDa, (a-lactalbumin, 
14.2 kDa - not on gel). Lanes 2,4 and 6 Total protein from 50 ul E.coli cells at OD600 
of 0.6 units (extracted by boiling for 5 minutes in SDS PAGE loading buffer) prior to 
addition of IPTG. Lanes 3,5 and 7 Total protein from 50 ul E.coli cells at OD600 of 
approx 0.8 units, three hours after the addition of IPTG to a final concentration of 0.4 
mM. (Lane 8 blank). 



to 15 ml falcon tubes. The cell suspensions were centrifuged for 15 minutes at 4,000 rpm 

in a Jouan MR1822 centrifuge to harvest the cells. Cells were lysed in 20 mM Tris-HCl 

pH 7.4 using 3 freeze/thaw cycles in dry ice/ethanol and ice/water baths (Johnson and 

Height, 1994) and samples were centrifuged at 100,000 g for 1 hour at 4°C using a 

Beckman L-70 (rotor 70Ti) ultracentrifuge. The supernatant (a crude, cell-free soluble 

protein extract, CFE) was removed and tested for G3PAT activity (section 2.9). 

Confirmation of G3PAT presence in the extract was obtained by SDS PAGE analysis, 

figure 2.2. The amount of protein present in the G3PAT band was calculated via 

densiometric comparison with bands of known amounts of BSA, section 2.8. 

2.5.3 Preparation of purified G3PAT 

G3PAT protein was purified from the supernatant via anion-exchange chromatography. A 

40 ml Q-sepharose FF column was prepared, storage 20% ethanol was removed by 

washing with 100 ml of MQH 2 0. Bound material was removed by washing with 100 ml 

20 mM Tris-HCl pH 7.0 containing 1 M NaCl. The column was washed with 200 ml 

MQH 2 0 and equilibrated with 100 ml 20 mM Tris-HCl pH 7.0. CFE of squash G3PAT 

(approximately 5 mgs total protein) was loaded onto the column and washed on with 100 

ml 20 mM Tris-HCl pH 7.0, collected as Pass 1. G3PAT was eluted with a gradient of 

lysis buffer containing 0 - 2M NaCl over 500 ml. Enriched fractions were pooled and 

NaCl was removed by dialysis against 20 mM Tris-HCl pH 7.0. Where necessary, sample 

was concentrated using Ultrafree™ centrifugal filter units with a 5 kDa molecular weight 

cut-off. Enriched fractions containing G3PAT activity were analysed by a combination of 

SDS PAGE and densiometric scanning to assess purity and quantify the levels of G3PAT 

protein in each fraction. The final, highly purified preparation contained a single band of 

42 kDa demonstrated on SDS PAGE, figure 2.3. 
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Figure 2.2 SDS PAGE gel oiE.coli cell-free extracts (CFEs) to demonstrate the 
presence of the squash G3PAT protein. Lanes 1 and 9 SDS7 molecular weight 
markers (from top) BSA, 66 kDa, Ovalbumin, 45 kDa, G-3-PDHe, 36 kDa, Bovine 
carbonic anhydrase, 29 kDa, Bovine trypsinogen, 24 kDa, Soybean trypsin inhibitor, 20 
kDa, a-lactalbumin, 14.2 kDa - not on gel. Lane 2 Total protein from 50 ul E.coli cells at 
OD<5oo of 0.6 units (extracted by boiling for 5 minutes in SDS PAGE loading buffer) prior 
to addition of IPTG. Lanes 3,4,5 and 6 5, 5,7 and 7 ul respectively of squash G3PAT 
CFE. Lanes 7 and 8 100 ng and 200 ng respectively of BSA (the 66 kDa BSA band in 
lane 9 contained lug BSA). (Lane 8 blank). 



Lane 1 8 

<- 66 kDa 

<-45kDa G3PAT -» 
«-36 kDa 

«-29 kDa 
«- 24 kDa 

<-20 kDa 

Figure 2.3 SDS PAGE gel of squash G3PAT C F E s and purified protein. Lanes 1 and 
8 SDS7 molecular weight markers (from top) BSA, 66 kDa, Ovalbumin, 45 kDa, G-3-
PDHe, 36 kDa, Bovine carbonic anhydrase, 29 kDa, Bovine trypsinogen, 24 kDa, Soybean 
trypsin inhibitor, 20 kDa, (a-lactalbumin, 14.2 kDa - not on gel). Lanes 2,3,4 and 5 7 ul 
of squash G3PAT CFE Lane 6 Approximately 100 ng of purified squash G3PAT - seen 
as a single band at 42 kDa. (Lane 7 blank). 



2.6 SDS PAGE 

(Reference: Sambrook, Fritsch and Maniatis, 1989) 

Apparatus used was the Mini Protean I I system. Assembly of gel apparatus, gel 

preparation and electrophoresis were performed as described by Maniatis et al, (1989) and 

in the Biorad literature accompanying the Mini Protean I I system. 

2.6.1 12% SDS PAGE electrophoresis 

Samples were prepared by diluting into lx SDS loading buffer and boiling for 5 minutes 

immediately prior to loading. 

lx SDS loading buffer: 
50 mM Tris-HCl (pH 6.8) 
100 mM dithiothreitol 
2% SDS 
0.1% bromophenol blue 
10% glycerol 

Samples were electrophoresed at 100 volts (stacking gel) and at 200 volts (resolving gel). 

Al l G3PAT proteins were resolved on 12% SDS PAGE gels. Gels were stained using 

Coomassie Brilliant Blue (Sigma) and destained in 10% glacial acetic acid; 1% glycerol. 

2.6.2 18% Urea gel electrophoresis 

(reference: Post-Beittenmiller, Jaworski and Ohlrogge, 1990) 

Al l ACP and acyl-ACP samples were electrophoresed on native (non-denaturing) 

polyacrylamide gels. 

Resolving gel solution: 

6.0 ml 30% Acrylamide:Bis-acrylamide (37.5:1) solution 
2.5 ml 1.5 M Tris-HCl pH 9 
0.625 ml 8 M urea 
0.875 ml MQH 2 0 
100 | i l 10% w/v Ammonium persulphate 
10 \il TEMED 
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Stacking gel solution: 

1.5 ml 30% Acrylamide:Bis-acrylamide (37.5:1) solution 
2.5 ml 0.5 M Tris-HCl pH 6.8 
0.625 ml urea 
5.265 ml MQH 2 0 
100 (il 10% w/v Ammonium persulphate 
10 ul TEMED 

Running (tank) buffer: 

30.2g Tris (base) 
144g Glycine 
to 1 litre with MQH 2 0 

Samples were prepared by diluting into lx sample loading buffer. 

lx sample loading buffer: 

50 mM Tris-HCl (pH 6.8) 
0.1% bromophenol blue 
10% glycerol 

Samples were electrophoresed at 100 volts. Gels were stained using Coomassie Brilliant 

Blue (Sigma) and destained in 10% glacial acetic acid; 1% glycerol. 

2.7 Quantification of G3PAT in crude cell-free extracts (CFEs) and purified protein 

extracts via densiometric scanning 

Scanned polyacrylamide gels were analysed using the Biorad Multi-Analyst® PC Image 

Analysis software. Pixel density and band area were aquired using the GS-690 

densitometer system. G3PAT bands were compared with known standards (on the same 

gel) of BSA and/or ovalbumin to estimate the quantity of G3PAT protein on the gel(s). 
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2.8 Standard Iysophosphatidic acid (LPA) extraction and quantification 

Chloroform:methanol (1:1) was added to 1.5 ml eppendorf tubes in aliquots of 710 ul. 

The G3PAT assay reaction mixture was prepared (sections 2.9-2.11). After initiation of 

the G3PAT reaction, 80 |al aliquots of the reaction mixture were removed into the 

eppendorf tubes containing chloroform:methanol, at timed intervals, to stop the reaction. 

To each tube 280 u.1 of 1 M KC1/0.2 M H2P04 was added, vortexed and centrifuged at 

13,000 g for 10 minutes. The mixture was partitioned under g-force into an upper aqueous 

layer (containing the product ACP) and a lower organic layer (containing the product, 

LPA, which was radiolabeled). 250 |0,1 of the lower layer was removed using a Hamilton 

syringe, the needle wiped and the sample transferred into a scintillation vial. The samples 

were dried in a Jouan RC 10.22 vacuum centrifuge and resuspended in 280 ^il ethanol. 280 

^il Ecoscint A was added, tubes vortexed and counted using a Packard 1600 TR liquid 

scintillation analyser (single isotope (either 1 4C or 3H) counting for single substrate assays, 

dual isotope counting for assays using 1 4C and 3H-labelled substrates). 
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2.9 Assay for G 3 P A T activity 

2.9.1 Reaction mixtures 

The fol lowing reaction mixture was prepared to measure G3PAT activity using acyl-ACP 

substrate: 

250 m M HEPES buffer pH 8.0 
300 LtM G3P 
5 mg/ml BSA 
2 JAM [1- ' 4 C] 16:0-ACP or [9 ,10 - 3 H] 18:1-ACP (acyl group radiolabelled at a 
specific activity of 55 Ci/mole or 120,000 dpm/nmole) 

The fol lowing reaction mixture was prepared to measure G3PAT activity using acyl-CoA 

substrate: 

250 m M HEPES buffer pH 8.0 
5 mg/ml BSA 
400 u M 16:0-CoA or 18:l-CoA 
30 ixM [U- 1 4 C] G3P (radiolabelled at a specific activity of 4.5 u,Ci/^imole - or 
10,000 dpm/nmole). 

2.9.2 Substrate quality 

The reaction mixture was divided into 340 Lil aliquots. 80 [ i l of the reaction mixture was 

removed and processed as described in section 2.8 to quantify any free fatty acids (when 

using radiolabelled acyl-ACP) in the reaction mixture at the start of the reaction - this 

figure is counted as time = zero (T 0 ) or 'background'. Free fatty acids would be present i f 

the acyl-ACP substrate had undergone any hydrolysis during storage - usually < 1%. I f 

greater than 2% of the radioactivity was contributed by free fatty acids the sample was 

discarded and a fresh aliquot used. The T 0 value when using radiolabelled G3P measured 

the amount of G3P present in the organic phase - usually very low (<0.1%). 
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2.9.3 Reaction initiation 

The aliquots (now 260 (il) of reaction mixture were mixed with 210 | ig of G3PAT protein 

to initiate the reaction and 80 (xl aliquots were removed at suitable time intervals (usually 

1,2 and 3 minutes but longer i f the enzyme was active at a low level) and transferred to an 

eppendorf tube containing 710 u.1 chloroform:methanol (1:1). LPA was isolated using 

phase partition, as described in section 2.8, and counted in the liquid scintillation counter 

(LSC) using a single isotope counting protocol. 

Enzyme activity was plotted as pmol LPA formed per minute. This assay was most often 

used to identify active fractions during purification of G3PAT proteins. 

2.10 Assay for G 3 P A T selectivity 

(1 unit of G3PAT enzyme activity (U) = amount of enzyme required to transfer 1 pmol of 

fatty acid to G3P per minute). 

The fol lowing reaction mixture was prepared to measure G3PAT selectivity using acyl-

ACP substrates: 

250 m M HEPES buffer pH 8.0 
300 u M G3P 
5 mg/ml BSA 
1 \iM [1- 1 4 C] 16:0-ACP (55 Ci/mole) 
1 j i M [9,10- 3H] 18:1-ACP (55 Ci/mole) 

[The fol lowing reaction mixture may be prepared to measure G3PAT selectivity using 

acyl-CoA substrates but has not been performed by the author:] 

250 m M HEPES buffer pH 8.0 
5 mg/ml BSA 
300 nM G3P 
10 [iM [1- 1 4 C] 16:0-CoA (55 Ci/mole) 
10 [9,10- 3H] 18:l-CoA (55 Ci/mole) 
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The reaction mixture was divided into 340 | i l aliquots. An aliquot of 80 [i\ of the reaction 

mixture was removed from each reaction tube and used to calculate T 0 values as described 

in section 2.9. G3PAT protein was added to the remaining reaction mixture (210 | ig to 

start the reaction) and 80 u l aliquots were removed at suitable time intervals (usually 1,2 

and 3 minutes). Removed aliquots were transferred to eppendorf tubes containing 710 ui 

chloroform:methanol (1:1) and LPA was isolated as described in section 2.8. Samples 

were counted in a liquid scintillation counter using a dual isotope counting protocol to 

quantify levels of [1- 1 4 C] 16:0-LPA and [9,10- 3H] 18:1-LPA present. 

Picomoles of both 16:0 and 18:1-LPA present in each of the 'timepoints' tested were 

calculated and the data were plotted as pmoles of 16:0 and 18:1-LPA formed over time. 

This is how the majority of substrate selectivity assay data is presented in this thesis. The 

assay can also be used to asses activity of G3PAT proteins using a standardised amount of 

protein under standard conditions by addition of the rates of 16:0 and 18:1-LPA formation 

under the conditions given above. 
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2.11 G 3 P A T assay using short chain substrates 

C4:0-CoA and C6:0-CoA substrates were purchased f rom Sigma. Assays were carried out 

in 250 m M HEPES NaOH pH 8.0 containing 5.0 mg/ml BSA with 33 \iM [1- 1 4 C] G3P (55 

Ci/mol) and 0.1 m M acyl-CoA, in a total volume of 20 | i l . Assays were initiated by the 

addition of 16.25 ng of G3PAT and terminated after 5 minutes by the addition of 40 |J,1 of 

chloroform/ methanol (1:1). The samples (total volume 60 [il) were mixed and loaded 

onto a TLC plate and run for three hours in Butanol:Acetic Acid:Water 5:2:3 to separate 

LPA f rom unreacted [1- 1 4 C] G3P. The TLC plate was exposed to photographic f i l m 

before the LPA spot was scraped into 1 ml methanol, vortexed and added to 4 ml Ecoscint 

A. Samples were counted in a Packard liquid scintillation counter to determine the rate of 

incorporation of acyl-CoA into LPA. 

2.12 Assay to determine binding of acyl-ACP and G3P substrates to G 3 P A T 

Radiolabeled [9,10- 3H] 18:1-ACP, [1- 1 4 C] 16:0-ACP or [1- 1 4 C] G3P (100 pmoles of each 

at 55 Ci/mol) were incubated with 50 pmoles of G3PAT in the absence of the other 

substrate(s) for 5 minutes in 250 m M HEPES buffer pH 8.0. The samples (total volume 

200 jLXl) were centrifuged through a 30,000 Da molecular weight cut o f f membrane 

(Millipore Ultrafree® M C filter unit) and the radioactivity above and below the membrane 

determined. Radiolabeled substrate bound to G3PAT was retained by the membrane in 

the upper compartment, unbound substrate passed through the membrane into the lower 

compartment. In earlier experiments we determined that neither substrate was retained by 

this 30,000 Da cut o f f membrane or bound to boiled (denatured) G3PAT (ratio was less 

than 0.08 moles of substrate bound per mole of enzyme). Sample volume in both 

compartments was readjusted to 200 | i l and the sample removed and added to 4 ml 
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Ecoscint A prior to counting in a Packard liquid scintillation counter. Assays were 

performed in triplicate. 

2.13 Microdialysis of BSA/acyl -ACP mixtures 

Radiollabelled [9,10- 3H] 18:1-ACP and [1- 1 4 C] 16:0-ACP (both at 1.1 \xM) were mixed 

with BSA at either 1.25 or 5.0 mg/ml BSA in 250 m M HEPES-NaOH buffer pH 8.0 in a 

total volume of 100 (xl. The mixtures were incubated for 10 minutes at room temperature 

prior to dialysis for four hours against 2 ml 250 m M HEPES-NaOH buffer pH 8.0 through 

at 30,000 Da molecular weight cut-off membrane. Aliquots of the dialysis buffer were 

counted at intervals of 0.5, 1, 2, 3 and 4 hours to track dialysis of the acyl-ACPs through 

the membrane. When no BSA was used, >95% of both acyl-ACPs had dialysed through 

the membrane into the external buffer after 4 hours of dialysis. 
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2.14 Measurment of standard error values 

Definitions: 

SS = the sum of the squares of deviations of experimental values 

n = the number of times the experiment was performed 

a 2 = experimental variance 

S.E.M. = 1 standard error measurement 

Standard error measurements given in this thesis have been calculated using the following 

formulae: 

o 2 = SS/(n-2) 

and 

S.E.M. = Va 2 = V SS/(n-2) 

As defined in Fundamentals of Enzyme Kinetics by Athel Cornish Bowden: 

" I f the number of observations n in each experiment is 

infinite, then the true value of the parameter w i l l lie within 

one estimated standard deviation of the calculated parameter 

in about 68% of this universe of conceivable experiments.... 

one may take two and three times the standard error as 

confidence limits for 95% and 99% respectively." 

It should also be noted that S.E.M. can only be calculated where the experiment has been 

repeated three or more times. 
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Chapter 3 

Development of an assay for 

G3PAT activity. 

Investigation of factors that influence assay 

performance and detemination of the range of 

permissible enzyme substrates. 



3.1 Introduction 

Glycerol-3-phosphate acyltransferase (G3PAT) catalyses the transfer of a fatty acid 

group f rom an acyl donor to glycerol-3-phosphate at position sn-l. This reaction yields 

l-acylglycerol-3-phosphate (or Iysophosphatidic acid; LPA). In the 1960's Barron and 

Stumpf were the first to identify the activity of this class of enzyme in purified 

microsomal fractions f rom avocado (Persea americana)m<\ G3PAT activity was 

subsequently identified in the chloroplasts, cytoplasm and mitochondria of several plant 

species (examples are given in Tables 5.1 and 5.2, chapter 5). 

G3PAT in plant chloroplasts is a soluble protein localised to the stroma (Roughan and 

Slack, 1982) whereas cytoplasmic and mitochondrial G3PAT forms are membrane bound 

(Frentzen et al, 1983). These two forms are different proteins with distinct structures and 

substrate specificities. Plastidial G3PAT has a proven role (Murata et al, 1992) in the 

determination of membrane phospholipid composition which influences the sensitivity of 

plants to low, non-freezing or 'chil l ing' temperatures (2-6°C). Due to the impact that 

chilling sensitivity/resistance may have on levels of cold damage to crop plants and 

agricultural productivity, much interest has been taken in the study of G3PAT enzymes 

from a variety of plants sources, both chilling sensitive and tolerant. To assist 

purification of G3PAT it has been essential to develop assays for G3PAT activity. In 

order to determine whether the enzyme from a particular species has a substrate 

preference, assays that can differentiate between selective and non-selective forms are 

necessary. 
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In 1976, Bertrams and Heinz began to develop an assay for the acyl-CoA:5n-glycerol-3-

phosphate acyltransferase reaction, using l 4 C radiolabeled glycerol-3-phophate to 

measure acylation rates. This was one of the first attempt to develop a sensitive, low 

volume assay for G3PAT activity. Soluble and membrane bound fractions f rom spinach 

chloroplasts were used in a HEPES buffer system. Palmitoyl-CoA was the acyl donor 

and radiolabeled G3P ensured that acylation rates could be accurately followed. Full 

details of the reaction conditions are shown in Table 3.1. Assays were optimised with 

the objective of achieving maximum acylation rates. During assay optimisation, several 

interesting details were noted. These included: 

1. Acylation rates were pH dependant with an optimum of approximately pH 7-8. 

2. When low G3PAT protein levels were used acylation rates were only linear i f Bovine 

Serum Albumin (BSA) was included in the assay. The optimum rate occurred with 

BSA at 15 mg/ml. 

3. Maximum acylation rates were achieved when 16:0-CoA was present at 1.5mM 

The group postulated that the acyI-CoA:sn-glycerol-3-phosphate acyltransferase f rom 

spinach used the acyl-CoA substrate dispersed in a micellar form. 

Component Concentration in assay 
HEPES-NaOH buffer pH 7.5 40 m M 

G3P 200-250 | i M 
BSA 15mg/ml 

Palmitoyl-CoA 750 nM 
G3PAT protein solution 0.25 - 0.375 ng/ul 

Table 3.1 Summary of the reaction conditions used in acyl-CoA:sn-glycerol-3-

phosphate acyltransferase assays by Bertrams and Heinz, 1976. 
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Previously, Lamb and Fallon (1972) had investigated the activity of acyl-CoA:sn-

glycerol-3-phosphate acyltransferase f rom rat liver microsomes. Using palmitoyl-CoA 

as the acyl donor and BSA levels of between 0 and 3.75 mg/ml, acylation rates were 

measured. Several important observations were made: 

1. High levels of 16:0-CoA (above 30 | i M ) cause inhibition of the G3PAT reaction. 

2. BSA was shown to reduce inhibition of the G3PAT reaction caused by high 16:0-

CoA concentrations, with 3.75 mg/ml giving the maximum acylation rate. 

The group offered several theories to explain the effects noticed when BSA was included 

in the assays. One was that acyl-CoA deacylase activity is lowered by BSA. Deacylases, 

esterases that specifically hydrolyse fatty acyl-ester bonds, would reduce the pool of 

substrate available to the G3PAT enzyme. Another was that BSA may bind fatty acids 

released during the G3PAT reaction which would otherwise cause product inhibition, or 

that 'albumin activation' could occur. The enzyme is in a dilute solution with few other 

proteins in the reaction mixture and BSA may increase acylation rates via indirect 

stabilistaion of the G3PAT protein. However, the best supported explanation was that 

BSA binds the acyl-CoA substrate and lowers the free acyl-CoA concentration to below 

the critical micelle concentration (CMC), reducing the inhibitory effects previously 

observed. This idea supports the suggestion of Bertrams and Heinz (1976) that acyl-CoA 

substrate is delivered to G3PAT in a micellar form. 

Bertrams and Heinz continued to investigate acyl-CoA:5n-glycerol-3-phosphate 

acyltransferase activity in plant protein extracts. In 1981, important observations were 
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made using extracts f rom pea and spinach chloroplasts (Bertram and Heinz, 1981, for 

experimental conditions see table 3.2): 

1. The pea plant has two G3PAT isofoms. 

2. Thioesters (16:0-CoA substrate) were inhibitory above a concentration of 20 ( i M . 

This inhibition was counteracted by BSA, optimally at 6 mg/ml. Both pea isoforms 

exhibited maximum acylation rates when BSA was present at 6-10 mg/ml. 

3. A buffer concentration of 250-300 m M produced maximum acylation rates. 

4. The K m for G3P was estimated to be approximately 0.7 m M . 

The group explained the effect of BSA (point 1.) as BSA binding to acyl-CoA and 

reducing the concentration of free thioester in solution, agreeing with previous 

suggestions of how BSA reduced the inhibition of G3PAT. This work was also helpful 

as it provided useful guidelines for future researchers assaying G3PAT activity, 

specifically outlining the optimum concentrations of BSA, buffer and G3P. 

Component Concentration in assay 
MOPS-NaOH buffer pH 7.4 250 m M 

BSA 6 mg/ml 
16:0-CoA 400 j i M 

G3P (0.3 Ci/mol) 2 m M 
Pea and Spinach enriched protein extract 3.125-37.5 ng/ml 

Total 

Table 3.2 Summary of the reaction conditions used in acyl-CoA:sn-glycerol-3-

phosphate acyltransferase assays by Bertrams and Heinz 1981. 

The natural substrate of plastidial G3PAT is acyl-ACP, not acyl-CoA (Frentzen et al, 

1983). Traditionally, due to the commercial availability of a wide variety of acyl-CoAs, 
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experiments on both acyl-CoA:sn-glycerol-3-phosphate acyltransferase and acyl-

ACP:sn-glycerol-3-phosphate acyltransferase have been performed using acyl-CoA 

substrates. However, the performance of this second group of enzymes, some of which 

are already known to exhibit selectivity for particular substrates over others, may be 

greatly different with acyl-CoAs than with the natural substrate, acyl-ACPs. For this 

reason it was recognised that assays using acyl-ACPs were likely to give results most 

similar to those in vivo. Following the reported purification and cloning of the E.coli 

gene for acyl-ACP synthetase (Rock and Cronan, 1979), it became possible to 

enzymatically synthesise acyl-ACP substrates for use in assays for G3PAT activity and 

substrate selectivity. 

Frentzen et al (1983) continued to investigate G3PAT activity in extracts f rom pea and 

spinach chloroplasts. This group was the first to use acyl-ACP substrates in such assays 

and took the additional step of using substrate 'mixtures' comprising of palmitoyl-ACP 

and oleoyl-ACP thioesters to study the substrate selectivity of the G3PAT proteins. This 

approach has subsequently been employed by several groups investigating whether 

G3PAT proteins have preferences for particular substrates over others. For a summary of 

the experimental conditions used by Frentzen et al (ibid), see table 3.3. The work was 

also important as it indicated that the selectivity of acylation at the sn-l position was 

dependant not only on the concentrations of acyl-ACP thioesters but also on the 

concentration of glycerol-3-phosphate. In addition it was demonstrated that, given the 

competitive conditions of oleoyl-ACP against oleoyl-CoA substrates, .m-glycerol-3-
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phosphate acyltransferase would preferentially incorporate 18:1 fatty acid f rom the 

oleoyl-ACP: G3PAT prefers acyl-ACP substrates. 

Component Final concentration 
MOPS-NaOH buffer pH 7.4 250 m M 

BSA 0.125-0.5 mg/ml 
18:1-ACP and 16.0-ACP (in different ratios) 4.5 \xM in total 

G3P 1 m M 
Pea and spinach purified acyltransferase fractions 3.75-7.5 | ig/ml 

Table 3.3 Summary of the reaction conditions used in G 3 P A T assays by Frentzen et 
al in 1983. 

Frentzen et al purified acyl-ACP:sn-glycerol-3-phosphate acyltransferase f rom the 

chloroplasts of squash and investigated its properties (Frentzen et al, 1987). Assay 

conditions used are detailed in Table 3.4. Again, several interesting observations were 

made using 18:1-ACP/16:0-ACP competitive conditions: 

1. Alteration of the pH f rom pH 7.4 to pH 8.0 does not affect total acylation rates but 

can alter substrate selectivity. At the lower pH there is increased discrimination 

against 16:0. 

2. This discrimination against 16:0 was also observed when the concentration of G3P 

was reduced f rom 30 to 0.3 m M . 

3. Variation in the concentration of the thioester mixes (but not the ratio of 18:1 to 16:0) 

did not alter the resulting fatty acid selectivity. 

It should be noted that three isomeric forms of stromal G3PAT were identified f rom 

squash (Frentzen et al, ibid.), designated A T I , AT2 and AT3. AT2 and 3 are very 

similar in properties having different pH optima, Vmax and substrate preference to A T I . 
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A T I is thought to have a preference for 18:1-ACP over 16:0-ACP, whereas AT2 and 

AT3 are non-selective. 

Component Final concentration 
HEPES-NaOH buffer pH 7.4 250 mM 

BSA 1.25 mg/ml 
18:1-ACP, 18:0-ACP and 16:0-ACP 3-8 LXM 

G3P 0.3-30 mM 
Purified acyltransferase fractions 

of A T I , AT2 and AT3 
25, 9000 and 6875 
ng/ml respectively 

Table 3.4 Summary of the reaction conditions used in G 3 P A T assays by Frentzen et 
al, 1987. 

The group also emphasised the point that stromal ACP-thioester concentrations had been 

found to be approximately 4 uJVl in illuminated chloroplasts, whereas in dark conditions 

the concentration of ACP-thioesters immediately dropped to zero (Soli and Roughan, 

1982; Roughan, 1986). As the pH of an illuminated chloroplast stroma is 8.0, but under 

dark conditions it is pH 7.4 (Lea and Leegood, 1993), this indicates that the in vivo 

plastidial acyltransferases are only provided with substrates when the pH of the stroma is 

8.0. This has considerable implications for assays of these enzymes and indicates that 

G3PAT normally functions in vivo at pH 8.0 with total acyl-ACPs at 4 | iM - these may be 

the most physiologically relevant conditions at which to carry out assays of G3PAT 

activity and selectivity. 

Sauer and Heise (1983) used the uptake of exogenous radiolabeled G3P by isolated 

spinach chloroplasts to calculate the stromal concentration of G3P. They reported a 

stromal G3P concentration of between 0.1-0.2 mM. These calculations, however, were 

dependant on an estimation of stromal volume, not an experimentally validated figure. 
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Taking into account the work and findings of the various groups performing assays on 

G3PAT enzymes, it is apparent that an assay for G3PAT which is attempting to reflect 

the physiological conditions would take into account the fol lowing. 

1. G3PAT enzymes appear to perform best at high concentrations (250 - 300 mM) of 

buffers such as MOPS-NaOH and HEPES-NaOH. 

2. pH 8.0 is the most physiologically relevant pH (Soil and Roughan, 1982; Frentzen et 

al, 1987; Lee and Leagood, 1993) 

3. Acyl-ACPs are the natural substrate. 

4. BSA appears a necessary component of a linear assay for G3PAT activity. 

5. Plastidial concentrations of acyl-ACPs are thought to lie in the range 4-6 \xM, with 

the sum of 16:0-ACP and 18:1-ACP concentrations approximately 2.6 |xM (Soli and 

Roughan, 1982). 

6. Plastidial concentrations of G3P are thought to lie in the range 100-600 u,M (Sauer 

and Heise, 1984; Cronan and Roughan 1987). 

Details of standard G3PAT assay conditions for assays using acyl-CoA and acyl-ACP 

substrates described in this thesis (single and dual substrate) are outlined in table 3.5. 

Effects of Cyclodextrins and BSA on fatty acid binding and assays using acyl-thioesters 

Cyclodextrins or cyclic glucosides can form stable monomolecular complexes with acyl-

CoAs and their derivatives (Machida et al, 1973). This effect can stimulate reactions 

involving acyl-CoA substrates and, to a varying degree, modulate the chain-length 

pattern of the acylated product(s). This may occur if , for instance, there is differential 
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stability/binding capacity between two different acyl-CoA substrates, or i f one acyl chain 

is derivatised in such a way as to interfere with insertion into the cyclodextrin molecule. 

Computer generated space-filled modelling shows that the external surface of a 

cyclodextrin is largely hydrophilic (i.e. C-OH groups etc.) whereas the internal surface is 

more hydrophobic (i.e. C-H groups etc.). Internal hydrophobic patches may be 

supplemented by chemical methylation to extend the apolar regions (Machida et al, 

1973). 

In simulation experiments on fatty acid synthesis (using yeast FAS f rom M.phlei) a,(3 

and y-cyclodextrins were all investigated and demonstrated to enhance the fatty acid 

synthetase reaction carried out by this enzyme complex. The enhancing effect observed 

on reaction rate was a- > (3-> y-cyclodextrin. Where acyl-CoA is a substrate, 

cyclodextrins have been shown to have similar positive effects as BSA and 

mycobacterial polysaccharides (for example M M P or MGLP). Theories to explain the 

effects of cyclodextrins on the reactions involving acyl-CoA substrates either propose 

that cyclodextrins aid substrate presentation or remove negative feedback by binding 

fatty acids/reaction products. 

BSA, as previously mentioned, is thought to act by either lowering the concentration of 

free acyl-CoA to below the critical micelle concentration (CMC), or by presentation of 

the acyl-CoA or acyl-ACP substrate to the G3PAT enzyme. It is known that the external 

surface of BSA has three hydrophobic domains, thought to be non-specific and it is 

postulated that acyl binding to these regions induces a conformational change, exposing 
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internalised acy] binding pockets which have differential affinities for particular acyl 

groups (Lamb and Fallon, 1972). In this way it is possible for BSA to bind different 

acyl-CoA or acyl-ACP substrates with differential affinities. 

In this chapter the effects of a range of BSA concentrations have in assays on selective 

and non-selective G3PAT proteins have been investigated. Experiments have been 

performed to determine whether BSA can be replaced in the G3PAT assay with a) agents 

that are known to bind fatty acid containing compounds, for example cyclodextrins and 

b) other non-plastidial proteins. The synthesis of acyl-ACP substrates is discussed and 

experiments using acyl-CoA and acyl-ACP substrates with selective and non-selective 

G3PATs are detailed. There is interest in determining the basis of substrate selectivity in 

the G3PAT enzyme. The range of acyl-donating substrates that squash G3PAT utilises 

has been investigated. Crystals of squash G3PAT have been obtained (Turnbull et al, 

2002a,b) and this work will be a useful preliminary study for attempts to soak short-chain 

acyl substrates into pre-existing crystals of squash G3PAT. Enzyme:substrate co-crystals 

may provide more structural information about the substrate binding domain(s). In 

addition, G3PAT is reported to use photo-reactive azido derivatives of acyl-CoA and 

acyl-ACP substrates in the G3PAT reaction. Such analogues have previously been used 

to probe the active sites of various enzymes (Hach et al, 1990; Rajasekharan et al, 1993 

and Shockey et al, 1995), with UV illumination causing covalent modification of the 

active site with these probes. This work may be a useful introductory study to determine 

i f the G3PAT active site can be probed directly using these compounds. 
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3.2 Standard assays for G3PAT activity and selectivity 

The assays used in these studies follow the acylation rate of G3P by one or more acyl 

donor. Either the acyl group in acyl-ACP or -CoA or the G3P molecule carried a 

radiolabel of a known specific activity, so that the reaction product LPA could be 

accurately quantified following isolation using separation of aqueous and organic phases 

under centrifugation (section 2.7). The purpose of assays on G3PAT proteins fell into 

one of the following categories: 

A. Single substrate or G3PAT activity assays 

These assays were used to measure the rate of acylation of G3P to establish the amount of 

G3PAT activity present, either to detect active fractions during purification procedures or 

to quantify the rate at which a known amount of enzyme will use a particular acyl-CoA or 

acyl-ACP substrate. These assays used a single acyl donor as substrate and had substrate 

levels of several times the estimated Km to enable detection of all the G3PAT activity 

present. Either the acyl group or G3P were radiolabelled. When radiolabeled G3P was 

used background radioactive counts present in the organic phase were much lower as the 

substrate is not prone to cleavage, unlike the CoA or ACP thioesters. In acyl-ACP and -

CoA substrates the polarised bond (~) between the acyl chain and the pantothene group 

(CH3-CH2n-CH2-C(=0)~S-Pantothene-ACP) is prone to base-catalysed hydrolysis, 

releasing free fatty acids and pantothene-ACP. This can be caused by either high pHs or 

specific thioesterases (present in the cell to specifically hydrolyse certain acyl-ACPs for 

subsequent export out of the plastid to serve as substrate for the synthesis of storage or 
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membrane lipids). Only acyl-ACP substrates with free fatty acid levels below 2% were 

used in G3PAT assays. 

B Dual substrate or G3PAT selectivity assays 

These assays were used to measure the rate of G3PAT activity with two different 

substrates under competitive conditions. The acyl groups of the two substrates were 

differentially radiolabeled to enable the rate of enzyme activity with each substrate to be 

individually measured. For example [9,10-3H] labelled 18:1 and [1- 1 4C] labelled 16:0-

ACPs or -CoAs were most typically used. Acyl-ACPs were used in the majority of 

assays as they are the natural acyl-substrate. Substrate levels were chosen so as to be 

close to the estimated Km. The majority of assays described in the results chapters are 

dual substrate assays. 

The results for both assay types are presented as graphs of 18:1- or 16:0-LPA formed (or 

both) plotted against time. The plots show linear, positive rates of LP A formation over a 

period of time, usually less than five minutes to ensure that the initial, linear velocity was 

measured. Full details of the experimental conditions used for each type of assay are 

given in table 3.4. Performance of G3PAT from a) a chilling-sensitive (non-selective) 

species and b) an oleophilic (18:1-ACP selective) in a G3PAT dual substrate assay are 

shown in figure 3.1. 
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Figure 3.1 Typical results format of G3PAT selectivity assays. 
The assays are performed under competitive conditions with 18:1-ACP and 16:0-ACP 
substrates each present at 1.1 |j.M and results are displayed as rate of product (LPA) 
formation against time. • = 18:1 LPA. O = 16:1 LPA. Squash G3PAT (a), a non­
selective enzyme uses both substrates at a similar rate. Arabidopsis G3PAT (b), an 
oleophilic enzyme, uses 18:1-ACP approximately 4-5 times faster than 16:0-ACP under 
standard conditions. 



G3PAT single substrate (act iv i ty) 
assay 

G3PAT dua l substrate (selectivity) 
assay 

a) Using radiolabeled acvl-ACP and G3P 

250 mM HEPES-NaOH buffer pH 8.0 
300 uM G3P 
2.2 nM 18:1-ACP or 16:0-ACP 
5 mg/ml BSA 

c) Using radiolabeled acvl-ACPs and G3P 

250 mM HEPES-NaOH buffer pH 8.0 
300 uM G3P 
1.1 uM ( 3H) 18:1-ACP 
1.1 |iM( 1 4C)16:0-ACP 
5 mg/ml BSA 

b) Using acvl-CoA and radiolabeled G3P 

250 mM HEPES-NaOH buffer pH 8.0 
30 HM G3P (variable) 
400 nM 16:0-CoA or 18:l-CoA 
5 mg/ml BSA 

d) Using radiolabeled acvl-CoAs and G3P 

250 mM HEPES-NaOH buffer pH 8.0 
300 uM G3P 
10nM( 3H)18:l-CoA 
10 (AM (14C)16:0-CoA 
5 mg/ml BSA 

Table 3.5 Standard conditions for G3PAT assay types. 

3.3 Effect of a range of BSA concentrations on the dual substrate G3PAT assay 

In order to establish the effects of a range of BSA concentrations on the standard G3PAT 

selectivity assay, the assay was performed under standard conditions using 1.1 uM 18:1-

ACP and 16:0-ACP, but with varying levels of BSA from 0 - 5.0 mg/ml. Levels used 

were 0.0, 0.125, 0.50, 1.25, 2.5 and 5.0 mg/ml BSA. Assays were performed on purified 

G3PAT from squash, a non-selective enzyme form, using 210 ng of protein to initiate 

each assay. Assays were performed over two minutes and the results from these assays 

are presented in figure 3.2. 

It is apparent that when no BSA is present, the data points do not correlate well and 

acylation rates for each substrate are below optimal. When BSA is added, even at levels 

81 



a) O.Omg/ml BSA 
35 . 

30 

a. 20 

I 15 

10 

0 20 40 60 80 100 120 140 

s e c o n d s 

b) 0.125mg/ml BSA 

35 

30 

25 

1 20 

15 

10 

0 20 40 60 80 100 120 140 
s e c o n d s 

c) 0.5mg/ml BSA 

[ 
15 

10 

0 20 40 60 80 100 120 140 
seconds 

d) 1.25mg/ml BSA 

35 

30 

< 25 

20 

1 15 

10 

0 20 40 60 60 100 120 140 

s e c o n d s 

e) 2.5mg/ml BSA 
35 

30 

25 

5 

10 

0 20 40 60 80 100 120 140 
s e c o n d s 

f) 5.0mg/ml BSA 
35 

30 

25 

a. 20 

I 15 

10 

0 20 40 60 80 100 120 140 
s e c o n d s 

Figure 3.2 Selectivity assays with squash G3PAT over a range of BSA 
concentrations. 
Assays were performed under standard G3PAT selectivity assay conditions with BSA 
concentrations of a) 0.0 mg/ml; b) 0.125 mg/ml; c) 0.5 mg/ml; d) 1.25 mg/ml, e) 2.5 
mg/ml and f) 5.0 mg/ml. • = 18:1 LP A. O = 16:0 LPA 



as low as 0.125 mg/ml, the assay becomes linear over the two minute period and the data 

points correlate more closely. At 0.125 mg/ml BSA the selectivity ratio (enzymatic rate 

with 18:1-ACP/ rate with 16:0-ACP) is approximately 2.7. As the BSA level increases 

towards 2.5 and 5.0 mg/ml, the enzyme behaves increasingly like a non-selective form as 

expected, having a selectivity ratio of approximately 0.9/1.0 i.e. the G3PAT is using both 

18:1-ACP and 16:0-ACP at similar rates. As BSA levels increase from 0.125 to 5.0 

mg/ml, the rate with 18:1-ACP reduces slightly, dropping from roughly 21 to 13 pmoles 

formed per minute. However, rates with 16:0-ACP are stimulated and rise from 

approximately 8 pmoles formed per minute to 15. I f BSA is involved in presentation of 

the acyl-ACP substrate to the G3PAT enzyme then it appears that it has a different effect 

with 18:1- and 16:0-ACPs. This raises the interesting possibility that BSA binds these 

two substrates with different affinities. 

3.4 Assessment of differential BSA-binding of 18:1-ACP and 16:0-ACP substrates 

under competitive conditions 

In order to determine whether BSA bound 18.1-ACP and 16:0-ACP with differential 

affinities, the substrates were dialysed away from BSA using microdialysis (method in 

section 2.13). Briefly, 1.1 | i M [9,10-3H] labelled 18:1-ACP and [1- 1 4C] labelled 16:0-

ACP were mixed with BSA at 1.25 mg/ml and 5.0 mg/ml in 250 mM HEPES-NaOH 

buffer pH 8.0. Following incubation at room temperature for 10 minutes, this mixture 

was dialysed against of 250 mM HEPES-NaOH buffer pH 8.0 for 4 hours through a 30 

kDa dialysis membrane. The amount of each substrate dialysed away from the BSA was 

recorded at 0.5, 1, 2, 3 and 4 hours and results are shown in figure 3.3. 
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Figure 3.3 Microdialysis to determine binding of 18:1 and 16:0-ACPs to BSA under 
competitive conditions. 
Assays were performed under standard microdialysis assay conditions using a) 1.25 
mg/ml BSA and b) 5.0 mg/ml BSA. l . l u M 18:1-ACP and l . l u M 16:0-ACP were used 
in each case. . • = 18:1 ACP dialysed. O = 16:0 ACP dialysed. At 1.25 mg/ml BSA 
18:1-ACP is dialysed away from BSA more quickly than 16:0-ACP, indicating that it 
binds less strongly to BSA. At 5.0 mg/ml BSA both substrates dialyse away from BSA at 
a comparable rate. 



These data suggest that BSA binds 18:1-ACP and 16:0-ACP with different affinities, but 

that this effect is dependant on the concentration of BSA and is greatly reduced at 5.0 

mg/ml with respect to 1.25 mg/ml. The effect was observed to be even greater at 0.125 

mg/ml BSA, but the data correlated very poorly and is not shown. It should also be noted 

that in each case >80% of each substrate remained bound to BSA, even after 4 hours of 

dialysis. 

Additional evidence to suggest BSA has differential affinity for 18:1-ACP and 16:0-ACP 

has been provided using an ultrafiltration unit to separate unbound acyl-ACP substrates 

from BSA. In a modification of the G3PAT binding assay, section 2.11, 100 pmoles of 

18:1- or 16:0-ACP were incubated with 500 pmoles of BSA for 5 minutes, prior to 

centrifugation through a 30 kDa molecular weight cut-off membrane. BSA was found to 

bind 16:0-ACP with greater affinity than 18:1-ACP -1.6 times more 16:0-ACP is bound 

to the BSA and retained in the upper compartment under the ultrafiltration conditions. 

This data is displayed in table 3.6. 

3.5 Investigation of the effects of 2,6-dimethyl P-cyclodextrin, lysozyme and 

cytochrome C on the standard dual substrate G3PAT assay 

BSA has been shown to have an effect on the performance of the standard dual substrate 

G3PAT assay (section 3.2). This effect has been hypothesised to be due to a substrate 
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Table 3.6 Differential binding of 18:1-ACP and 16:0-ACP substrates to BSA. 
100 pmoles of radiolabelled 18:1-ACP or 16:0-ACP were incubated with or without 500 
pmoles of BSA in the absence of the second substrate for 5 minutes in 250 mM HEPES-
NaOH buffer (total volume 100 (0.1). The mixture was centrifuged through a 30,000 Da 
molecular weight cut-off membrane. Substrate bound to BSA did not pass through the 
membrane and was retained in the upper compartment. Assays were performed in 
triplicate and results are presented as mean values ± 1 standard error measurement. 

+ B SA -BSA 
18:1-ACP 16:0-ACP 18:1-ACP 16:0-ACP 

total pmoles of substrate in 
upper compartment 

35.2 ± 2.65 56.4 + 4.10 0.15 ± 0.06 0.10 ± 0.05 

mmoles of substrate bound 
per mole of BSA 

70.4 ± 5.30 112.8 ± 8.20 n/a n/a 



binding effect or differential presentation to the G3PAT enzyme. To establish whether 

this effect could be mimicked by other molecules, G3PAT substrate selectivity assays 

were performed with 2,6-dimethyl P-cyclodextrin, lysozyme and cytochrome C at levels 

of 0.5 mg/ml and 5.0 mg/ml. Cyclodextrins were investigated due to their proven role in 

fatty acid binding and presentation of acyl-containing substrates to their enzymes. 

Cytochrome C and lysozyme were investigated as both are structurally and functionally 

well characterised and neither are naturally present in the stroma or have known fatty 

acid binding capabilities (effectively included as 'negative controls'). I f they alter 

substrate selectivity in the standard dual substrate G3PAT assay it is likely that this is via 

indirect stabilisation of the G3PAT protein or intermediates rather than direct binding of 

the G3PAT substrates, or by bulk solvent exclusion effects. 

(3-cyclodextrins consist of a ring of 7 glucosides, making these molecules slightly larger 

than a-cyclodextrins and more likely to accommodate an acyl chain and/or part of the 

acyl carrier protein. The apolar region(s) in the ring centre have been extended via the 

introduction of two methyl groups, increasing the chances of interactions between this 

region and the hydrophobic acyl chain. 

The effects of these compounds were investigated under standard G3PAT selectivity 

assay conditions. Cytochrome C, lysozyme, 2,6-dimethyl (3-cyclodextrin were present at 

0.5 or 5.0 mg/ml and the results are presented in figure 3.4. These data indicate that the 

proteins cytochrome C and lysozyme have little or no effect on acylation rates and the 

substrate selectivity of squash G3PAT, as there is little or no difference in the 
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Figure 3.4 Effects of the proteins Lysozyme and Cytochrome C and the 
compound 2,6-dimethyl pVcyclodextrin on the substrate selectivity of squash 
G3PAT Standard G3PAT selectivity assays using a) 0.5 mg/ml lysozyme, b) 5.0 
mg/ml lysozyme, c) 0.5 mg/ml cytochrome C, d) 5.0 mg/ml cytochrome C, e) 0.5 
mg/ml 2,6-dimethyl (3-cyclodextrin and f) 0.5 mg/ml 2,6-dimethyl (3-cyclodextrin. 
= 18:1-LPA and O = 16:0-LPA. 
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performance of the standard G3PAT selectivity assay when the level of these proteins is 

raised from 0.5 to 5.0 mg/ml. However, a similar increase in the levels of 2,6-dimethyl 

(3-cyclodextrin has a marked effect, altering both reaction velocities with 18:1-ACP and 

16:0-ACP substrates and the substrate selectivity. The alteration of reaction velocities 

was similar to that observed when BSA levels were elevated from 0.5 to 5.0 mg/ml -

18:1-LPA production decreased slightly and 16:0-LPA production increased slightly 

resulting in a enzyme with a ratio of 18:1/16:0-LPA production of approximately 1:1. At 

both 0.5 mg/ml BSA and 0.5 mg/ml cyclodextrin the 'non-selective' G3PAT had an 

apparent preference for 18:1-ACP. 

BSA and 2,6-dimethyl 3-cyclodextrin may both affect a change in the performance of the 

squash G3PAT via a direct effect, probably presentation of the substrates to the 

binding/catalytic domain of the protein and both may have differential binding affinities 

for each of the 18:1-ACP and 16:0-ACP substrates. 

Additional evidence to suggest 2,6-dimethyl |3-cyclodextrin has differential affinity for 

18:1-ACP and 16:0-ACP has been shown using an ultrafiltration unit to separate unbound 

acyl-ACP substrates from the cyclodextrin. In a modification of the G3PAT binding 

assay, section 2.11, 100 pmoles of 18:1- or 16:0-ACP were incubated with 500 pmoles of 

2,6-dimethyl |3-cyclodextrin for 5 minutes, prior to centrifugation through a 30 kDa 

molecular weight cut-off membrane. The cyclodextrin bound 16:0-ACP at greater levels 

than 18:1-ACP - 1.3 times more 16:0-ACP is bound to the cyclodextrin and retained in 

the upper compartment under ultrafiltration conditions, see table 3.7. 
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Table 3.7 Differential binding of 18:1-ACP and 16:0-ACP substrates to 2,6-
dimethyl-cyclodextrin. 
100 pmoles of radiolabeled 18:1-ACP or 16:0-ACP were incubated with or without 
500 pmoles of 2,6-dimethyl-cyclodextrin (2,6MeCD) in the absence of the second 
substrate and centrifuged through a 30,000 Da molecular weight cut-off membrane. 
Substrate bound to BSA did not pass through the membrane and was retained in the 
upper compartment. Assays were performed in triplicate and results are presented as 
mean values ± 1 standard error measurement. 

I + 2,6MeCD - 2,6MeCD 
18:1-ACP 16:0-ACP 18:1-ACP 16:0-ACP 

total pmoles of substrate in 1 0.38 ± 0.32 
upper compartment 

0.50 ± 0.40 0.19 ±0.16 0.20 ±0.19 

mmoles of substrate bound 1 0.76 ± 0.64 
per mole of 2,6MeCD | 

1.00 ± 0.80 n/a n/a 



3.6 Investigation of substrate selectivity under a range of conditions using G3PAT 

from squash and Arabidopsis 

In joint work performed by the author, Johan Kroon (University of Durham) and Ted 

Schierer (University of Durham), G3PAT selectivity (dual substrate) assays were 

performed on crude cell-free extracts (CFEs) of squash and Arabidopsis recombinant 

G3PATs. The Arabidopsis CFE was prepared in a manner identical to the preparation of 

squash CFEs, section 2.3, and the protein produced was very similar in size to squash 

G3PAT, as it was cloned using the same predicted processing site (G3PAT processing 

sites are discussed by Murata and Tasaka, 1997). In this section only, CFEs of squash 

G3PAT protein NA4 and Arabidopsis G3PAT protein ARl were used. An alignment of 

the N-termini of the constructs used is presented in figure 3.5. 

(Murata and Tasaka 1997) P r e v i o u s l y P r e d i c t e d 
P r e d i c t e d Processing S i t e Processing S i t e 

I I 
ARA 1AT KLFLPPLRSRGGVSVRAMSELVQDKESSVAASIAFNEAAGETPSELNHSRTFLDARSEQD 
ARl MASMTGGQQMGRIELNHSRTFLDARSEQD 

SQU 1AT PKLASSCSLRFSASRAMAELIQDKESAQSAATAAAASSGYERRNEPAHSRKFLDVRSEEE 
NA4 MASMTGGQQMGRIAHSRKFLDVRSEEE 
Q2 4a • MASHSRKFLDVRSEEE 

Figure 3.5 Alignment of the N-termini of constructs ARA 1AT, A R l , SQU 1AT and 
NA4. Q24a has been included for comparison. ARA 1 AT and SQU 1 AT are the 
sequences for the full-length precursor from Arabidopsis and squash (AT2) respectively. 
ARl and NA4 are the constructs originally used by our group for the plastidial proteins 
from Arabidopsis and squash, expressed at high levels in E.coli. Bold type indicates 
amino acids that have been coded for by vector DNA. Arrows indicate putative 
processing sites. The ful l squash and Arabidopsis protein sequences are detailed in figure 
4.2. 
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Both NA4 and AR1 were assayed using dual substrate (18:1/16:0) assays with acyl-ACP 

and acyl-CoA substrates. Conditions investigated were 0.5 mg/ml and 5.0 mg/ml BSA 

and pH 7.4 and pH 8.0. 

Assays were performed jointly and are only summarised herein to make the following 

points: (a table showing the full experimental data is appended - Appendix 2.) 

1. Squash (AT2 isoform) is a G3PAT reported to have no substrate preference (Frentzen 

etal, 1987) 

2. Arabidopsis is a G3PAT with reported selectivity for unsaturated (18:1) over 

saturated (16:0) acyl-groups (Wolter et al, 1992) 

3. When using acyl-CoA substrates, very little difference in substrate selectivity was 

observed under any of the assay conditions 

4. When using acyl-ACP substrates, Arabidopsis G3PAT exhibited greater substrate 

selectivity than squash G3PAT under all conditions tested 

5. At 0.5 mg/ml BSA, acylation rates are higher than at 5.0 mg/ml, and squash G3PAT 

exhibits a preference for 18:1- over 16:0-ACP 

6. At 5.0 mg/ml BSA both Arabidopsis and squash G3PAT exhibit substrate preference 

consistent with those expected, i.e. squash is non-selective and Arabidopsis has a 

preference for unsaturated (18:1) over saturated (16:0) acyl-ACPs. 

7. At 5.0 mg/ml BSA, using acyl-ACP substrates there is little difference in performance 

of either enzyme between the pHs 7.4 and 8.0. 

Taking these general conclusions into consideration, these data reinforce the contention 

that appropriate conditions for assay of soluble G3PAT lie in the vicinity of 5.0 mg/ml 

BSA using acyl-ACP substrates. Based on previous reports (Soil and Roughan, 1982; 
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Frentzen et al, 1987; Lea and Leagood, 1993) the most physiologically relevant pH at 

which to perform G3PAT assays is pH 8.0. 

3.7 Investigation of the range of acceptable acyl-CoA and acyl-ACP substrates for 

the G3PAT reaction 

Squash G3PAT has been crystallised and shown to defract X-rays to a high resolution 

(Turnbull et al 2002a). However, no enzyme-substrate co-crystals have yet been 

produced and the fine structural detail of the substrate binding sites remains poorly 

understood. I f the lower limit for substrate chain length which still permits binding and 

catalysis (i.e. correct insertion of the substrate into the catalytic region) were to be 

confirmed, work could begin to soak these smaller, more soluble substrates into pre­

existing crystals of squash G3PAT to obtain enzyme-substrate co-crystals. 

An investigation of the range of substrates that squash G3PAT could use and the rates at 

which catalysis occurred was undertaken. Standard single substrate G3PAT assays were 

performed using the following substrates: 12:0-ACP, 16:0-ACP, 18:1-ACP, 4:0-CoA, 

6:0-CoA, 12:0-CoA, 16:0-CoA and 18:l-CoA. It was not possible to synthesise shorter 

chain length acyl-ACP substrates due to the minimum chain length requirements of both 

the acyl-ACP synthetase enzyme and the purification procedures for acyl-ACP substrates, 

which involve hydrophobic interaction chromatography, not practical with shorter acyl 

chain lengths. However, acyl-CoA substrates are commercially available and chain 

lengths as short as 4 carbons were able to be used in the assays (acyl-CoAs were 

purchased from Sigma, acyl-ACPs were synthesised as described in section 2.3). 
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Radioactive G3P was used to measure acylation rates in each case. Isolation and 

detection of short chain (n < 12 carbons) LPA was performed on TLC plates using a 

single timepoint, as described in section 2.11. Isolation and detection of longer chain 

LPA was performed as per usual, via separation of aqueous and organic phases under 

centrifugation. 

It was demonstrated that squash G3PAT will use 4:0-CoA and 6:0-CoA (Sigma) to 

produce LPA, although at much lower rates than with the longer chain substrates - figure 

3.6. Squash G3PAT will also use 12:0-CoA, 16:0-CoA, 18:l-CoA and 12:0-ACP, 16:0-

ACP and 18:1-ACP - figure 3.7. A summary of the velocity of the G3PAT reaction with 

each of these substrates in pmol LPA formed per minute is given in table 3.8. 

3.8 Squash G3PAT uses 12-Azido oleoyl-ACP and 12-Azido oleoyl-CoA as 

substrates 

Substrate analogues containing azido groups, or their derivatives, have been used to 

probe the active site of several enzymes (Hach et al, 1990; Rajasekharan et al, 1993 and 

Shockey et al, 1995). The reactive group covalently links to amino acid side chains in its 

immediate vicinity using UV energy, and can be used to obtain direct structural evidence 

regarding the active site of an enzyme, specifically relating to the amino acids in contact 

with the substrate(s). 

As a preliminary study to the development of this approach for squash G3PAT, it was 

investigated whether 12-azido oleoyl-ACP and 12-azido oleoyl-CoA could be used as 
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<- 18.1 lysophosphatidic acid 

4-6:0 lysophosphatidic acid 

<- 4:0 lysophosphatidic acid 

glycerol-3-phosphate 

unreacted glycerol-3-phosphate 

Figure 3.6 Autoradiograph of I X C analysis of G3PAT assays using short 
chain acyl-CoA substrates. Single timepoints were taken after 5 minutes and 
separated in the solvent mixture butanol:acetic acid:water 6:3:1. Lane 1 4:0-CoA. 
Lane 2 6:0-CoA. Lane 3 18:l-CoA. Lane 4 G3P. 
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Figure 3.7 Single substrate assays using acyl-ACP and acyl-CoA substrates. 
Assays to show the catalytic velocity of squash G3PAT with a) 12:0-, 16:0- and 18:1-
CoA and b) 12:0-, 16:0- and 18:1-ACP substrates. • , 18:1 LP A; O , 16:1 LP A; A, 12:0 
LPA formed. Assays were performed in triplicate and results are presented as mean 
values ± 1 standard error measurement. 



Table 3.8 G3PAT reaction velocities with various acyl-CoA and -ACP substrates. 
Velocity is presented as pmol LPA formed per minute per mg G3PAT under the 
following conditions: Acyl-CoAs - 400 \iM acyl-CoA and 300 | i M G3P. Acyl-ACPs -
10 (iM acyl-ACP and 300 U.M G3P. Assays were performed in triplicate and results are 
presented as mean values ±1 standard error measurement. * Assay performed on one 
occasion only. 

Velocity 

C 4 : 0 CoA 5.1 ±0 .4 

C 6 : 0 CoA 11 ± 1.1 

C U : 0 C o A 55.3* 

Ci 6 : 0CoA 120 ±4 .3 

C l g : iCoA 111 ±4.7 

Ci2:()ACP 28 ±3.2 

Ci6:()ACP 83 ± 1.9 

C I 8 : 1 A C P 81 ±2 .8 



substrates in such assays. Acyl-CoAs and -ACPs and azidoacyl-CoAs and -ACPs were 

incubated with squash G3PAT prior to initiation of the reaction with radiolabeled G3P. 

In addition, half of the assay mixtures were pre-illuminated with UV light (all 

illumination was at 254 nm unless otherwise stated) before G3P was added in order to 

ascertain whether the azido-acyl analogues could be used to irreversibly bind to the 

G3PAT active site, inactivating the enzyme, see figure 3.8. 

The data illustrate that squash G3PAT will use both 12-Azido oleoyl-ACP and 12-Azido 

oleoyl-CoA as substrates. The rates observed for 12-Azido oleoyl-CoA and 12-Azido 

oleoyl-ACP were approximately 60% and 70% of the non-azido substrates respectively. 

UV pre-treatment of the mixture did not cause significant inactivation of the G3PAT as 

expected. This indicates that covalent attachment of 12-Azido oleoyl-CoA primarily in 

or around the active site may not have occurred. G3PAT samples from before and after 

the UV treatment were analysed via MA LD I TOFF mass spectrometry. The results 

(figure 3.9) show that 1:1 binding of 12-Azido oleoyl-CoA does not occur. It is possible 

that some molecules attach at the active site, although only a very limited proportion. 

This proportion could perhaps be increased by optimisation of the incubation conditions 

and UV light intensity. However this work may still be a useful study to show G3PAT 

uses azidoacyl-derivatives as substrate. Protocols for the synthesis of these compounds 

and their use in assay have been established. Ongoing work is being carried out to see if 

12-Azido oleoyl-CoA can be radiolabeled with 3 2P which would facilitate tracking of any 

peptides with one or more 12-Azido oleoyl-CoA molecules attached. 
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Figure 3.8 Squash G3PAT uses azidoacyl-CoA and -ACP as substrates. 
Single substrate assays with or without UV flash using 1 4C G3P and a) oleoyl-CoA 
(18:lCoA) and 12-azido oleoyl-CoA (12Azl8:lCoA) and b) oleoyl-ACP and 12-
azido oleoyl-ACP as substrates. In both a) and b) products formed were • = 18:1-
LPA (no UV); B = 18:1-LPA (with UV flash); O = 12Azl8:l-LPA (no UV) and • 
= 12Azl8:l-LPA (with UV flash). 



a) MALDI TOF spectrum of purified squash G3PAT 
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Figure 3.9 MALDI T O F mass spectra of squash G3PAT before and after 
incubation with 12-Azidooleoyl-ACP. 

Spectra of purified squash G3PAT a) before and b) following a 10 minute 
incubation with 10 uM 12-azidooleoyl-ACP under UV illumination. The 
mass of the G3PAT molecule is 40.8 kDa, mass of 12-azidooleoyl-ACP is 
9174.5 Da and 12-azidooleic acid is 323.5 Da. The G3PAT peak is seen 
clearly but there is no peak at G3PAT plus 12-azidooleic acid or 12-
azidooleoyl-ACP. 

http://S199S.fi


Chapter 4 

Substrate binding, activity 
and selectivity assays of 

G3PAT mutants. 

Identification of residues important in substrate 

binding and catalysis. 



4.1 Introduction 

The advent of site-directed mutagenesis (SDM) 

The development of techniques in the mid to late seventies for the rapid sequencing of 

large stretches of DNA (Sanger and Coulson, 1975; Maxam and Gilbert, 1977) was a 

milestone in the development of molecular approaches involving the study and 

manipulation of DNA. These advances facilitated the advent of methods which allowed 

predefined changes to be introduced into a known DNA sequence (Hutchison et al 1978), 

rather than previously used random mutagenesis using chemical or physical mutagens. 

Over recent years this method has increased in efficiency and flexibility into a 

sophisticated technique which is known as site-directed mutagenesis. Early work 

performed involved the synthesis of oligodeoxyribonucleotides which were 

complimentary to the stretch of single-stranded DNA to be mutated (Hutchison et al 

1978). These oligonucleotides were used as specific mutagens, priming DNA synthesis 

and themselves becoming incorporated into the resulting heteroduplex molecule. This 

method, now known as primer extension site-directed mutagenesis, can also be adapted to 

produce multiple point mutations, insertions, deletions and trans versions. A drawback to 

this method is that the double stranded heteroduplex molecules which are generated are 

contaminated with single stranded non-mutant template DNA and incomplete duplexes 

(partially double-stranded molecules). Methods exist for their removal (nuclease 

treatment, centrifugation, electrophoresis etc.), but are not always quick or convenient. 
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An alternative to primer extension site-directed mutagenesis is a technique known as 

cassette mutagenesis. A synthetic DNA fragment containing the complete desired mutant 

sequence is used to replace the corresponding sequence in the wild-type gene. Larger 

insertions/deletions can be more easily introduced with this technique, it is simple and the 

efficiency is close to 100%. However there will be a limited number of unique restriction 

sites flanking the region to be mutagenised which may limit the realistic number of 

different oligonucleotides that may be used. 

PCR-based mutagenesis is another method of introducing mutations into DNA 

sequences. Single bases mismatched between the amplification primer and the template 

sequence become incorporated into future template sequences as a result of amplification. 

It is possible to introduce a mutation into a PCR-produced DNA fragment at any point 

along it's length: two primary PCR reactions produce overlapping DNA fragments, both 

bearing the same mutation in the overlap region, this region allows the fragments to 

hybridise. One of the two hybrids extends via the action of DNA polymerase to produce 

a duplex fragment. The other hybrid is 5'-recessed, not a substrate for the polymerase 

and is effectively lost from the reaction mixture. 

The type of mutagenesis used to produce mutant G3PAT proteins detailed in this chapter 

is a plasmid based mutagenesis technique - the Quickchange™ site directed mutagenesis 

kit from Strategene. 
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4.2 Site-directed mutagenesis and the study of acyltransferases 

Site directed mutagenesis is useful tool for the production of mutant proteins. Such 

proteins, i f thoughtfully 'designed' and correctly studied may increase our understanding 

of the structural and functional relationships which govern their biological activity. 

The information provided by amino-acid sequence alignments has allowed the 

identification of putative catalytic motifs based on absolute or partial conservation 

between species. Several groups have previously employed mutagenesis as a tool to 

create mutant acyltransferase proteins containing amino acid substitutions in critical 

regions or 'blocks' (Ferri and Toguri, 1997; Heath and Rock, 1998; Lewin et al, 1999). 

The mutant proteins were investigated for activity, substrate preference determinations 

were additionally performed in some instances. Studies have been carried out on 

acyltransferase proteins from a variety of species and subcellular compartments to asses 

the importance of different amino acid residues, either by chemical modification of such 

residues or their substitution for alternatives by site directed mutagenesis. Proteins from 

such diverse sources as bacteria (lipoate acyltransferase from E. coli; Russell and Guest 

1991), mammals (carnitine acyltransferase from rat; Cronin 1997) and plants (plastidial 

lysophosphatidic acid acyltransferase from oilseed rape; Maisonneuve et al, 2000) have 

been investigated using site directed mutagenesis. 

Useful work has been performed on G3PAT proteins by several groups attempting to 

identify amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase 

reaction (Heath and Rock, 1998; Dircks et al, 1999 and Lewin et al 1999). Sequence 
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analysis has revealed that G3PAT proteins from many plant species share a highly 

conserved domain that contains 'invariant' histidine and aspartic acid residues in a 

specific configuration. This region has become known as the H(X) 4D box, with a 

histidine and aspartic acid residue separated by four variable 'spacer' residues. One or 

more residues in this region are proposed to have catalytic importance. Heath and Rock 

investigated the role of the invariant histidine H306 (position in the published E. coli 

sequence, NCBI accession number 130326). The investigation was performed on two 

enzymes with acyltransferase activity: G3PAT from E. coli and the Afunctional 2-acyl-

glycerophosphoethanolamine acyltransferase/ acyl-ACP synthetase. In both cases site-

directed mutagenesis was used to convert the histidine in the H(X) 4D box to an alanine 

residue. The resulting loss in activity was presented as evidence to support the theory 

that the histidine residue was directly involved in catalysis of the acyltransferase reaction. 

When the aspartate residue D311 in E. coli G3PAT was substituted for alanine the mutant 

enzyme had significantly reduced catalytic activity but was also reported not to assemble 

into the cytoplasmic E. coli membrane (as determined by membrane isolation, flag-

epitope tagging of the carboxy-terminus and immuno-detection with monoclonal M2 

antibody (Heath and Rock, 1998)). This indicates that D311 may have an important role 

in G3PAT activity as well as protein folding and membrane insertion. 

Lewin et al (1999) identified four regions of strong homology when comparing amino 

acid sequences of G3PAT (PlsB), lysophosphatidic acid acyltransferase (LPAAT) and di-

hydroxy-acetone phosphate acyltransferase DHAPAT from E. coli. These regions were 

termed blocks I-IV and were each proposed to contain invariant residues essential for 
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catalysis of the acyltransferase reaction. The role of these residues was investigated by a 

combination of chemical modification and site-directed mutagenesis. It was determined 

that D311 was crucial to the G3PAT reaction, whereas H306 - whilst important - could be 

substituted for glycine and retain 22% of wild type activity. When histidine residues 

were chemically modified by DEPC, 50% of wild type activity was retained. The group 

postulated that this result indicates H306 may not be absolutely essential for the PlsB 

acyltransferase reaction. 

Within the H(X) 4D box other residues are often be highly conserved between species. In 

many bacteria the sequence is HXSXXD. In most chilling resistant plants the sequence is 

HQSEAD and in many chilling sensitive plants the sequence is HQTEAD (see figure 

4.2). The importance of the residue shown in bold was also investigated by Lewin et al 

(1999). In E.coli the residue is S308 - the substitution S308A was described to have only 

modest effects on PlsB activity. The results of a similar substitution by our group of the 

same residue in plastidial G3PAT is reported in section 4.5. 

Lewin et al (1999) also identified the residues F351,1352, R354, E385, G386 and P421 

as residues which, i f substituted, had a significant effect on the catalytic activity of PlsB 

(measured as a drop in Vmax). These residues were said to be located in or around the 

hydrophobic acyl-binding cleft, but no structural data for PlsB is available so this is 

difficult to determine. Minimal proof that the mutant proteins did not have a perturbed 

3D structure (despite correct membrane insertion) was offered so the precise reason for 

the drop in activity of these proteins remains undetermined. 
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The work of these groups has been a useful step forward in understanding the chemistry 

of the membrane-bound G3PAT reaction. The work described in this chapter is intended 

to continue to elucidate the mechanisms for both substrate binding and catalysis in the 

plastidial (soluble) G3PAT enzyme from squash. 

4.3 Functional regions/motifs in plant plastidial G3PAT proteins. 

Plant G3PAT is nuclear encoded; a target peptide is responsible for the transport of this 

protein to the plastid (Murata and Tasaka, 1997). In the plastid the target peptide is 

cleaved away to produce the mature protein. The form of G3PAT used in these studies 

was a clone created in the vector system pET 24a, named Q24a. The protein is 28 

residues shorter than the most recently predicted processing, beginning at the previously 

predicted processing site, see figure 4.1. The newly predicted processing site has been 

published by Murata and Tasaka in 1997. However, the truncated form coupled to the 

RUBISCO transit peptide has been demonstrated to be successfully transported to the 

plastid in tobacco plants, where the enzyme is biologically active and non-selective 

(Murata et al 1992). 
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P r e d i c t e d 
p r o c e s s i n g s i t e 

P r e v i o u s l y p r e d i c t e d 
p r o c e s s i n g s i t e 

SQU G3PAT 
Q24a 

PKLASSCSLRFSASRAMAELIQDKESAQSAATAAAASSGYERRNEPAHSRKFLDVRSEEE 
•MASHSRKFLDVRSEEE 

Figure 4.1 N-terminal amino acid alignment of squash plastidial G3PATs. 
SQU G3PAT is the ful l length precursor from squash (NCBI accession number 
AB049134.1) Residues shown in bold are coded for by the vector, pET24a. 

Alignment studies performed on plastidial G3PAT proteins from a variety of plant 

sources permitted the identification of regions or single residues which were invariant or 

highly conserved between species. The alignment used is shown in figure 4.2. In 

addition to the information provided by sequence analysis, detailed structural information 

is available on squash G3PAT following the recent publication of its 3D structure 

(Turnbull et al 2001a,b). This combined information has been central to the design of a 

rationalised site-directed mutagenesis approach to study the catalytic mechanism of 

squash G3PAT reaction. It has also permitted the mutagenesis of residues thought to be 

located within or near to putative substrate binding regions. 

Three negatively charged residues near the H(X) 4D box, K193 R235 and R237 form a 

region strongly attractive to the positively charged phosphate moiety of glycerol-3-

phosphate, the suggested binding site for G3P. The H(X) 4D box was determined to be 

located at the mouth of a hydrophobic cleft lined with 14 residues which made Van der 

Waal contacts with a computer modelled palmitoyl-pantothene substrate. These residues 
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CLUSTAL W (1.7) m u l t i p l e sequence alignment of Q24a and G3PAT from seven 
c h i l l i n g s e n s i t i v e (top) and four c h i l l i n g r e s i s t a n t (bottom) p l a n t s p e c i e s . 

. = Conserved : = H i g h l y conserved * = I n v a r i a n t 

Q24a(SQUASH) 
SQUASH • • 
FIGLEAF 
CUCUMIS MFILSAVSSSSSSSSSVPSSLPPFSLSPSISLSFSRVSLPPSSSSSSSSLKLFLPLSLHF 
ELAEIS-S MLVPSALPRVSRS VSAARFSVSGVGSSPALSSRSCTSLDSSV 
CARTHAMUS MSIFFSPSSPTLFFS TTNANPRVSPSSSPSSAFTPPLSSSRLRP 
ELAEIS-H MTDSFAHCASHIN YRHKMKTMFIFSTPCCSPSTAFFSP F 
PHASEOLUS MSMTGSSAYYVAHAIPPFLRLSNKTMLLLSTPPTTFFPTSTTPRVTL 

PISUM MTDSFAHCASHIN YRHKMKTMFIFSTPCCSPSTAFFSP---F 
ARA MTLTFSSSAATVAVAAATVTSSARVPVYPLASSTLRGLVSFRLTAKKL 
SPINACIA MLVLSSSAPPVLEVCKDRVSSS-FSTSSSSSSSAFSAVVFRRSFFTR 
VICIA MTDSFAH YASHIN IRPKTKTMLIFSTPCCSPSTAFFSP F 

Q24a(SQUASH) 
SQUASH 
FIGLEAF 
CUCUMIS 
ELAEIS-S 
CARTHAMUS 
ELAEIS-H 
PHASEOLUS 

MAELIQDKESA ^QSAATAAAASSGYE RR--N 
MAELIQDKESA QSAATAAAASSGHE RR--N 

TPPKLSSPHSFLRFSASRAMAELIQDKESA- — HTPSTTDVT R N 
RSSLRRCPCG-IYTSRTKAVVEAVESKASAREWRSAVKRAVLASDTG AE--E 
ILRGFPCLAFSAPANAAHGTAETVHGNKWPS--PSSSSSAATQPSAG S 
RASNSKPLR STLSLRSSISSS-SITSTSHCSLAFNIVKHKEKN VVSANMT 
LSSTSSSSS SSISLRSSTAPSPSCSSVTPKDNCLASAKHSP PNMS 

PISUM 
ARA 
SPINACIA 
VICIA 
CONSENSUS 

RASNSKPLR 
FLPPLRSRGG--
FNSSLICCCS — 
RASNCKPLRS— 

—STLSLRSSISSS-SITSTSHCSLAFNIVKHKEKN VVSANMT 
—VSVRAMSELVQDKESS VAASIAFNEAAG-E TP--S 
--SKLKLMADTALPSSSSSTSASASYSAAAKSVEEENHEIPVKKEDDN 
--STLCLRSLTSSATSITSTSNSSLAFNIVKPKEKN VVSANMT 

Q24a numbering 1 10 20 30 40 50 59 
Q2 4a(SQUASH) MASHSRKFLDVRSEEELLSCIKKETEAGKLPPNVAAGMEELYQNYRNAVIESGNPKAD-E 
SQUASH EPAHSRKFLDVRSEEELLSCIKKETEAGKLPPNVAAGMEELYQNYRNAVIESGNPKAD-E 
FIGLEAF EPAHSRKFLDVRSEEELLSCIKKETEAGKLPPNVAAGMEELYQNHRNAVIESRNPKAD-E 
CUCUMIS DPPHSRAFLDLRSEEELLSCIRRETEAGKLPSNVAAGMEELYQNYKNAVFESGNPKAD-E 
ELAEIS-S EVGHSRSFLRARSEEELLSYIRKEVETGRLSSDIANGLEELYYNYRNAVLQSGDPRAN-K 
CARTHAMUS DHGHSRTFIDARSEQDLLSGIQRELEAGTLPKHIAQAMEELYQNYKNAVLQSAAPHAE-D 
ELAEIS-H SSVSSRTFLNAQNEQDVLSGIKKEVEAGTLPASIAAGMEEVYLNYKSAVIKEWRSQSNRN 
PHASEOLUS ASVSSRTFLNAQSEQDVFAGIKKEVEAGSLPANVAAGMEEVYNNYKKAVIQSGDPKAN-E 

PISUM SSVSSRTFLNAQNEQDVLSGIKKEVEAGTLPASIAAGMEEVYLNYKSAVIKSGDPKAN-E 
ARA ELNHSRTFLDARSEQDLLSGIKKEAEAGRLPANVAAGMEELYWNYKNAVLSSGASRAD-E 
SPINACIA QLLRSRTYRNVRSAEELISEIKRESEIGRLPKSVAYAMEGLFHYYRNAVLSSGISHAD-E 
VICIA SSVSSRTFLNAQNEQDVLSGIKKEVEAGTLPASIAAGMQEVYLNYKSAVIKSGDPKAN-E 
CONSENSUS * * : : . : : : : : * : : * * * * . : * . : : : : ::.**:.. .::.. 



Q24a numbering 
Q24a(SQUASH) 
SQUASH 
FIGLEAF 
CUCUMIS 
ELAEIS-S 
CARTHAMUS 
ELAEIS-H 
PHASEOLUS 

60 70 80 90 100 110 119 
IVLSNMTVALDRILLDVEDPFVFSSHHKAIREPFDYYIFGQNYIRPLIDFGNSFVGNLSL 
IVLSNMTVALDRILLDVEDPFVFSSHHKAIREPFDYYIFGQNYIRPLIDFGNSFVGNLSL 
IVLSNMTVALDRILLDVEDPFVFSPHHKAIRE-FDYYMFGQKYIRPLIDFGNSFVGNPYL 
IVLSNMTVALDRILLDVEDPFMFSPHHKAIREPFDYYTFGQNYVRPLIDFENSFVGNLSL 
IILSNMAVAFDRILLDVEDPFTFSPHHQAIREPFDYYMFGQNYIRPLIDFRRSYIGNISI 
IVLSNMRVAFDRMFLDVKEPFEFSPYHEAILEPFNYYMFGQNYIRPLVNFRESYVGNVSV 
CINKIRLPLIDRIFLDVKEPFVFEAHHKAKREPFDYYMFGQNYIRPLVDFETSYVGNMPL 
IVLSNMIALLDRVFLDVTDPFVFQPHHKAKREPFDYYVFGQNYIRPLVDFKNAYVGNMPL 

PISUM 
ARA 
SPINACIA 
VICIA 
CONSENSUS 

IVLSNMTALLDRIFLDVKEPFVFEAHHKAKREPFDYYMFGQNYIRPLVDFETSYVGNMPL 
TVVSNMSVAFDRMLLGVEDPYTFNPYHKAVREPFDYYMFVHTYIRPLIDFKNSYVGNASI 
IVLSNMSVMLDFVLLDIEDPFVFPPFHKAIREPADYYSFGQDYIRPLVDFGNSYVGNIAI 
IVLSNMTALLDRIFLDVKEPFVFEAHHKAKRGPFDYYMFGQNYIRPLVDFETSYVGNMPL 

* . * * * . 

Q24a numbering 
Q24a(SQUASH) 
SQUASH 
FIGLEAF 
CUCUMIS 
ELAEIS-S 
CARTHAMUS 
ELAEIS-H 
PHASEOLUS 

HOXEAD 
120 130 140 150 
FKDIEEKLQQGHNVVLISNHQTEADPAIISLLLEKTNPY 
FKDIEEKLQQGHNVVLISNHQTEADPAIISLLLEKTNPY 
FKDIEEKLQQGHNVVLISNHQTEADPAIISLLLEKTNPY 
FKDIEEKLHQGHNVVLISNHQTEADPAIISLLLEKTNPY 
FSDMEEKLQQGHNIVLMSNHQTEADPAIIALLLERTNSH 
FGVMEEQLKQGDKVVLISNHQTEADPAVIALMLETTNPH 
FIQMEEQLKQGHNIILMSNHQSEADPAIIALLLEMRLPH 
FIEMEEKLKQGHNIILMSNHQTEADPAIISLLLETRLPY 

160 170 179 
IAENTIFVAGDRVLADPLCKP 
IAENTIFVAGDRVLADPLCKP 
IAENTIFVAGDRVLADPLCKP 
IAENMIYVAGDRVIADPLCKP 
IAETMVFVAGDRVLTDPLCKP 
ISENIIYVAGDRVITDPLCKP 
IAENLIYVAGDRVITDPLCKL 
IAENLTYVAGDRVITDPLSKP 

PISUM 
ARA 
SPINACIA 
VICIA 
CONSENSUS 

FIQMEEQLKQGHNIILMSNHQSEADPAIIALLLEMRLPHIAENLIYVAGDRVITVPLCKP 
FSELEDKIRQGHNIVLISNHQSEADPAVISLLLEAQSPFIGENIKCVAGDRVITDPLCKP 
FQEMEEKLKQGDNIILMSNHQSEADPAVIALLLEKTNSLIAENLIYIAGDRVITDPLCKP 
FIQMEEQLKQGHNIILMSNHQSEADPAIIALLLEMQLPHIAENLIYVAGDRVITDPLCKP 

* * * * . * * * * * . + * * * * , 

Q24a numbering 
Q24a(SQUASH) 
SQUASH 
FIGLEAF 
CUCUMIS 
ELAEIS-S 
CARTHAMUS 
ELAEIS-H 
PHASEOLUS 

180 190 200 210 220 230 238 
FSIGRNLICVYSKKHMFDIPELTETKRKANTRSLK-EMALLLRGGSQLIWIAPSGGRDRP 
FSIGRNLICVYSKKHMFDIPELTETKRKANTRSLK-EMALLLRGGSQLIWIAPSGGRDRP 
FSIGRNLISVYSKKHMLDIPELAETKRNANTRTLK-EMALLLRGGSQLIWIAPSGGRDRP 
FSIGRNLICVYSKKHMLDIPELAETKRKANTRSLK-EMALLLRGGSQLIWIAPSGGRDRP 
FSMGRNLLCVYSKKHMDDVPELIEMKRRANTRSLK-EMALLLRGGSQIIWIAPSGGRDRP 
FSMGRNLLCVYSKKHMNDVPELAEMKKRSNTRSLKGRMALLLRGGSKIIWIAPSGGRDRP 
FSIGRNLICVYSKKHMLDNPELVDMKRKANTRSRK-EMAMLLRSGSQIIWITPSGGRDRP 
FSIGRNLICVYSKKHMLDDPALVEMKRTANIRALK-EMAMLLRNGSQLVWIAPSGGRDRP 

PISUM 
ARA 
SPINACIA 
VICIA 
CONSENSUS 

FSIGRNLICVYSKKHMLDNPELVDMKRKANTRSRK-EMAMLLRSGSQIIWIAPSGGRDRP 
FSMGRNLICVYSKKHMNVDPELVDMKRKANTRSLK-EMATMLRSGGQLIWIAPSGGRDRP 
FSMGRNLLCVYSKKHMYDDPELVDVKKRANTRSLK-ELVLLLRGGSKIIWIAPSGGRDRP 
FSIGRNLICVYSKKHMLDNPELIDMKRKANTRSLK-EMATLLRSGSQIIWIAPSGGRDRP 
* * . * * * * * * * * * * * * * . * * * * * * * * 



Q24a numbering 
Q24a(SQUASH) 
SQUASH 
FIGLEAF 
CUCUMIS 
ELAEIS-S 
CARTHAMUS 
ELAEIS-H 
PHASEOLUS 

L261 
239 250 260 270 280 290 297 
DPSTGEWYPAPFDASSVDNMRRLIQHSDVPGHLFPLALLCHDIMPPPSQVEIEIGEKRVI 
DPSTGEWYPAPFDASSVDNMRRLIQHSDVPGHLFPLALLCHDIMPPPSQVEIEIGEKRVI 
DPLTGEWYPAPFDASSVDNMRRLVQHSDVPGHLFPLALLCHDIMPPPSQVEVEIGEKRVI 
DPSTGEWYPAPFDASSVDNMRRLLQHSGAPGHLYPLALLCYDIMPPPSQVEIEIGEKRVI 
DPSTGEWHPAPFDVSSVDNMRRLVEHSSVPGHIYPLSLLCYEVMPPPQQVEKQIGERRTI 
DPITNQWFPAPFDATSLDNMRRLVDHAGLVGHIYPLAILCHDIMPPPLQVEKEIGEKSWI 
VANSGEWAPAPFDSSSVDNMRRLVDHSSPPGHIYPLAILCHDIMPPPLKVEKEIGEKRII 
DAQTREWVPAPFDISSVDNMRRLVEHSGPPGHVYPLAILCHDIMPPPLKVEKEIGEKRII 

PISUM 
ARA 
SPINACIA 
VICIA 
CONSENSUS 

VANSGEWAPAPFDSSSVDNMRRLVDHSGPPGHIYPLAILCHDIMPPPLKVEKEIGEKRII 
NPSTGEWFPAPFDASSVDNMRRLVEHSGAPGHIYPMSLLCYDIMPPPPQVEKEIGEKRLV 
DAVTGEWYPGTFDFAALDNMRRLVEHAGRPGHIYPLALLCYDIMPPPAQVEKEIGEKRVM 
VANSGEWAPAPFDSSSMDNMRRLVDHSGPPGHIYPLAILCHDIMPPPLKVEKEIGEKRII 

. . * * * * **..*...**...**** . * * . * * * . 

Q24a numbering 298 310 320 330 340 350 357 
Q24a(SQUASH) AFNGAGLSVAPEISFEEIAATHKNPEEVREAYSKALFDSVAMQYNVLKTAISGKQGLGAS 
SQUASH AFNGAGLSVAPEISFEEIAATHKNPEEVREAYSKALFDSVAMQYNVLKTAISGKQGLGAS 
FIGLEAF AFNGAGLSVAPEISFDEVAATHKNPEEVREAYSKALFDSVAMQYTVLKTAISGKQGLGAS 
CUCUMIS SFNGTGLSVGPEISFDEIAASRDNPDEVREAYSKALYDSVAKQYNVLKAAIDGKQELEAS 
ELAEIS-S SFHGVGLSVAPELNFNELTAGCETPEEAKEAFSQALYNSVGEQYNVLKSAIHEHRGLNAS 
CARTHAMUS SFHGTGISVAPEINFQEVTASCGSPEEAKAAYSQALYDSVCEQYKVLHSAVHGGKGLEAS 
ELAEIS-H SYHGTGISTAPEISFSNTTAACENPEKAKDAYTKALYDSVTEQYDVLKSAIHGKKGLQAS 
PHASEOLUS CFHGAGISVAPAISFSETTATCENPEKAK-VFSKALYNSVTEQYNVLKSAIQGKKGFEAS 

PISUM SYHGTGISTAPEISFSNTTAACENPEKAKDAYTKALYDSVTEQYDVLKSAIHGKKGLQAS 
ARA GFHGTGLSIAPEINFSDVTADCES PNEAKEAYSQALYKSVNEQYEILNSAIKHRRGVEAS 
SPINACIA SFHGVGVSVEPEINYNDVSLGCKNDEEAKSVYGQALYNSVNEQYNVLKAAIHGKQGSGAS 
VICIA SYHGTGISTAPEISFSSTTAACENPETAKDAYTKALYDSVTEQYDVLKSAIHGKKGLQAS 
CONSENSUS ::*.*:* * :.:.. : . : .: .: :**:.** ** :*::*: : ** 

Q24a numbering 
Q24a(SQUASH) 
SQUASH 
FIGLEAF 
CUCUMIS 
ELAEIS-S 
CARTHAMUS 
ELAEIS-H 
PHASEOLUS 

358 367 
TADVSLSQPW 
TADVSLSQPW 
IADVSLSQLW 
VADVSLSQPWI 
NSIISLSQPWQ 
TPSVSLSQPLQFLD 
TPVVSLSQPWK 
TPVVTLSQPWK 

SPECIES ( i n f u l l ) 
Cucurbits moschata 
Cucurbita moschata 
Cucurbits ficifolia 
Cucumis sativus L. 
Eleis guineensis (Kroon) 
Carthamus tinctorius L. 
Eleis guineensis (Harwood) 
Phaseolus vulgaris 

PISUM 
ARA 
SPINACIA 
VICIA 
CONSENSUS 

TPVVSLSQPWK--
TSRVSLSQPWN--
TPTTSLSQPWAS-
TPVVSLSQPWK--

Pisum sativum 
Arabidopsis thaliana 
Spinacia oleracea 
Vicia faba 

Figure 4.2 Clustal W (1.7)™ multiple amino acid sequence alignment of Q24a and G3PAT from 
seven chilling sensitive (top) and four chilling resistant (bottom) plant species. Invariant residues 
are indicated with *. The positions of the H4XD box and residue L261 are indicated above the 
sequence. 



were H139, E142, V166, A167, G168, R170, V189, H194, L213,1229, R235, N257, 

M258 and L261. The 'jaws' of the cleft made near contact at the residues K193 and 

D251. These charged residues were proposed to facilitate salt bridge formation, 

excluding bulk solvent from the fatty acid binding fold. Palmitoyl-pantethene substrate 

cannot be modelled into the cleft entirely unambiguously so computer models should be 

supported with conventional biochemical studies. The predicted structure of the catalytic 

and acyl-binding pocket with modelled palmityol substrate is shown in schematic form in 

figure 4.3. 

Structural information and conventional sequence alignments, has been used to design 

several G3PAT mutant proteins. Analysis of the catalytic and substrate binding 

properties of these proteins are detailed in sections 4.3 - 4.5. 

Please note: A l l mutants detailed in this chapter were created by William J. Simon as 

part of a combined disciplinary approach to the study of G3PAT (see Appendix 1 - paper 

in press). However, all investigations of molecular and biochemical properties (assays of 

enzyme activity, substrate preference, substrate binding and Km and Vmax 

determinations) have been carried out solely by myself, and so are described herein. Al l 

mutant proteins were assayed using standard absolute amounts to permit the direct 

comparison of catalytic velocities and substrate selectivities. 
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Figure 4.3 (Top) Structural diagram of the glycerol-3-phosphate (G3P) binding site with 
modelled G3P molecule. The three residues thought to be critical for G3P binding are K193, 
R235 and R237. Positively charged regions are shaded blue. Negatively charged regions are 
shaded red. 

Figure 4.3 (Bottom) Structural diagram of the acyl- and glycerol-3-phosphate binding sites 
with modelled G3P and palmitoyl-pantothene substrate. Residues that make Van der Waal 
contacts with the palmitoyl-pantothene substrate are H139, E142, V166, A167, G168, R170, 
V189, H194, L213,1229, R235 , N257, M258 and L261. Positively charged regions are shaded 
blue. Negatively charged regions are shaded red. The thioester bond is shaded yellow. 

Diagrams were provided by A.P. Turnbull (Krebs Institute for Biomolecular Research, 
Department of Molecular Biology and Biotechnology, University of Sheffield). 





4.4 Analysis of mutant G3PAT proteins - G3P binding pocket 

Structural information regarding squash G3PAT has indicated that the residues K193, 

HI94, R235 and R237 are located close to one another, forming a pocket of local positive 

charge (Turnbull et al, 2001 (a and b); Appendix 1 and figure 4.3). This pocket is the 

proposed binding region for glycerol-3-phosphate. Each of these residues were 

individually substituted for a serine residue. Serine is a relatively small, non-charged, 

hydroxyl containing amino acid, lysine, histidine and arginine are not (see figure 4.4). In 

each case the activity and selectivity (where possible) of the mutant enzymes were 

determined in dual-substrate assays. Mutant proteins K193S, R235S and R237S were 

wholly inactive, whereas H194S retained 79% of wild type (Q24a) activity and was 

essentially non-selective (a ratio of 18:1/16:0-ACP usage of 0.8 was measured). These 

data, shown in figure 4.5, are consistent with the proposed function of the residues K193, 

R235 and R237 as a docking site for G3P. HI94 may play a supplementary role in G3P 

binding. 

To determine whether the mutant proteins had a perturbed 3D structure, substrate binding 

experiments were performed to ensure that they could still bind the first-bound substrate, 

acyl-ACP (determination of substrate binding order is discussed in chapter 5). The 

binding capacity of the three inactive mutant G3PAT proteins was compared to the 

binding capacity of the original construct Q24a, the results are presented in Table 4.1. 
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Figure 4.4 Schematic diagram of amino acid residues a) hisdine b) lysine c) 
arginine and d) serine. 



a) K193S b) R23SS 

0.3 -, 

0 .25 -j 

0.2 \ 

0.15 

0.1 J 

0 .05 j 
I 

»n-
0 

-0 .05 | 

-0.1 J 

2 .5 3 3 .5 

minutes minutes 

c) R237S d) H194S 

0.3 

0 .25 

0.2 

> 

L 
0 1 

0.05 

op— 
0 

-0 .05 I minutes 

Figure 4.5 Substrate selectivity assays on squash G3PAT mutant proteins K193S, 

R235S, R237S and H194S. 

The assays are performed under competitive conditions with 18:1-ACP and 16:0-ACP 

substrates present at 1.1 \iM and results are displayed as rate of product (LPA) formation 

against time. • = 18:1-LPA. O = 16:0-LPA. Mutant proteins K193S, R235S and 

R237S are inactive with both 18:1-ACP and 16:0-ACP substrates. H194S uses both 

substrates, with a 18:1/16:0 ratio of approximately 0.8. Experiments were performed in 

triplicate and results are presented as mean values ± one standard error measurement. 



G3PAT mutant protein Molar ratio - moles of 18:1-ACP 
substrate bound per mole of G3PAT 

Q24a 0.95 ±0.01 
K193S 0.91 ±0.02 
R235S 0.91 ±0.05 
R237S 

1 , 
0.90 ± 0.03 

Table 4.1 The mutant enzymes K193S, R235S and R237S retain their ability to bind 
acyl-ACP substrate. Results are given in moles of 18:1-ACP substrate bound per mole of 
G3PAT ± one standard error unit. 100 pmoles of radiolabeled 18:1-ACP was incubated 
with 50 pmoles of G3PAT protein in the absence of G3P and centrifuged through a 
30,000Da molecular weight cut-off membrane. Substrate bound to G3PAT did not pass 
through the membrane and was retained in the upper compartment. 

The mutant enzymes K193S, R235S and R237S can still bind acyl-ACP at levels very 

close to wild type, indicating that the 3D structure at the substrate binding region/active 

site is not grossly perturbed or blocked. This conclusion is supported by further 

structural data - crystals of the mutant enzymes K193S, R235S and R237S have been 

produced and their structures solved. The mutant proteins have structures highly 

homologous to each other and to Q24a (communication from A.P. Turnbull, Krebs 

Institute, University of Sheffield). As acyl-ACP binding is unaffected, it seems likely 

that the residues K193, R235 and R237 are crucial for G3P binding. 

4.5 Analysis of mutant G3PAT proteins - can a single residue substitution in the 

H(X) 4D box result in alteration of substrate selectivity? 

The H(X) 4D box is an amino acid sequence conserved in the G3PAT enzyme throughout 

many species (figure 2) and characteristic of the acyltransferase reaction (Heath and 

Rock, 1998). The motif has the consensus of HQSEAD in oleate selective (chilling 

tolerant) and HQTEAD in non-selective (chilling sensitive) species (Kroon, 2000). Q24a 
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(the wild type squash protein) has a threonine at position 141. The substitution T141S 

was performed and the resulting mutant G3PAT was assayed for activity and selectivity. 

Somewhat surprisingly, the mutation did not seem to affect catalytic activity to any 

significant degree. T141S was found to have an activity close to that of Q24a (106% of 

total moles of LPA formed per minute by Q24a) and an identical selectivity - a ratio of 

18:1/16:0-ACP usage of 1.0 was measured. 

The mutant E142A was created to investigate the role of the glutamic acid in the H(X) 4D 

box. The mutant was found to be entirely inactive. The substitution of glutamic acid for 

a relatively small residue such as alanine is unlikely to result in a major conformational 

change around the region of the active site. It may be the case that without a negatively 

charged residue at this point, the electron density around different residues within the 

H(X) 4D box is sufficiently perturbed so as to interfere with the relay of charge in this 

region and so disrupt catalysis. It is also possible that the increase in electron density 

associated with the negatively charged side chain of glutamic acid may permit the 

formation of hydrogen bonds that stabilise that the enzyme:substrate complex 

Serendipity has also contributed to this study. The Q24a mutant L261F, fortuitously 

created by PCR error during a cloning step, has a near wild type activity but an altered 

substrate selectivity. The residue L261 is located at the distal end of the acyl-binding 

pocket, away from the catalytic H(X) 4D domain. An analysis of the properties of L261F 

and fuller discussion of the effects of this mutation are presented in chapter 5. 
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4.6 Analysis of mutant G3PAT proteins - acyl-ACP binding pocket 

Several mutant G3PAT proteins were created to study the effect residues in the acyl-

binding pocket and other areas of the protein. It was also noted that plastidial G3PAT 

contains four cysteine residues (numbering in Q24a is C20, C177, C188, C278) which are 

highly conserved when compared to several other plant species (figure 4.2). These 

residues were not located near to the acyl-binding pocket but were thought worthy of 

investigation on the basis of sequence alignment data alone. Each of these cysteine 

residues were individually converted to a serine; a residue of almost identical size, but in 

which the -CH 2-SH side group is a -CH 2-OH. The activity and selectivity of each of 

these enzymes were determined under standard dual substrate assay conditions (18:1-

ACP/16:0-ACP), table 4.2. The cysteine residues were not proposed to have a structural 

role, for example in the formation of disulphide bridges, although this could have been 

investigated by the creation of double or treble cysteine mutants, or the inclusion of a 

reducing agent, such as DTT or -mercaptoethanol in G3PAT assays. 

Mutant - based on Q24a 
numbering 

Activity as % of w.t. 
(Q24a)' 

Selectivity as ratio of 18:1-
LPA/16:0-LPA formation 

Q24a 1 100 (arbitrary) . 1.0 

C20S 94 ±6.1 1.1 
C177S • " •'•'! ' 96 ± 7.2 7 1.0 

^ C188S 115 ±8.9 0.8 
C278S 106 ± 4.6 1.0 

Table 4.2 Mutants C20S, C177S, C188S and C278S have activity and substrate 
selectivity similar to wild type. Assays were performed in triplicate and the results are 
presented as mean values ± 1 standard error measurement. 
'Percentage activity is calculated by assigning the wild type enzyme an activity of 100% 
and comparing the total LPA formed per minute (18:1- and 16:0-LPA combined) 

The residues V166, R170, H194, L213 and N257 were all predicted to line the acyl-

binding pocket, being close enough to make Van der Waal contact with computer 
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modelled palmitoyl-pantothene substrate (communication from A.P.Turnbull, Krebs 

Institute, University of Sheffield). The following mutations were generated: V166A, 

R170S, H194S, L213S and N257S. The activity and selectivity of each of these mutant 

proteins was determined under standard dual substrate assay conditions (18:1 -ACP/16:0-

ACP) and the results are presented in table 4.3. 

Mutant - based on Q24a 
numbering 

Activity as % of w.t. 
(024a.)1 

Selectivity as ratio of 18:1-
LPA/16:()-LPA formation 

_ Q24a 100 (arbitrary) ' 1.0 

V166A : 97 1.5 
R170S i 5.6 not determined2 

H194S 79 0.8 
L213S 104 1.3 
N257S 106 0.8 

Table 4.3 The activity and selectivity of acyl-binding pocket mutant G3PATs. 
Assays were performed in triplicate and the results are presented as average values. 
'Percentage activity is calculated by assigning the wild type enzyme an activity of 100% 
and comparing the total LPA formed per minute (18:1 and 16:0LPA combined) 
2The selectivity of this enzyme is more difficult to determine as the rates of enzyme 
activity are very low and closer to the margins of error. 

The mutants V166A, H194S, L213S, N257S displayed activity and substrate selectivity 

close to wild type. The mutant R170S had a reduced catalytic activity and a substrate 

selectivity more difficult to measure (point 2, table 4.3) The primary data for R170S 

(plot of formation of pmoles 18:1- and 16:0-LPA against time) is presented in figure 4.6. 

It can be seen that, although the mutant enzyme may have a novel selectivity (16:0-LPA 

appears to be formed more quickly than 18:1-LPA) the very low enzymatic rates mean 

that the levels of error are large in comparison to selectivity measured. This means that it 

is difficult to determine the selectivity of this enzyme with confidence. 
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Figure 4.6 Substrate selectivity assays on Q24a and mutant R170S 
The assays are performed under competitive conditions with 18:1-ACP and 16:0-ACP 
substrates each present at 1.1 |JM and results are displayed as rate of product (LPA) formation 
against time. • = 18:1 LPA. O = 16:1 L P A . Squash G3PAT (a), a non-selective enzyme uses 
both substrates at a similar rate. R170S (b) uses 16:0-ACP faster than 18:1-ACP rates are low. 
Error bars show ±1 standard error measurement. 



4.7 Discussion 

Several residues have been identified as essential for G3PAT activity. R235 and R237 

are predicted to form part of the G3P binding pocket, along with K193, a residue which 

has also previously been implicated in salt bridge formation to exclude bulk solvent from 

the acyl-binding pocket, thus increasing the hydrophobicity of this micro-environment 

(Turnbull et al, 2001b). 

E142 is also essential for catalysis. It is uncertain why this is - the residue may be 

important for charge-relay (donation or acceptance of a de-localised electron) in the 

active site or for hydrogen bond formation with the substrate, see discussion in chapter 6. 

The residue R170 is also important for enzyme activity, though not essential. When this 

residue is mutated to serine the enzyme is still active, but at very low levels. This is a 

result that was not predicted by either alignment or structural studies. Structural data 

places this residue within the acyl-binding pocket (figure 4.3). It may have a subsidiary 

role in substrate binding or substrate orientation. Arginine has a long, positively charged 

side chain (-(CH 2) 3-NH-C(NH 2

+)(NH 2)) which may interact with S-negatively charged 

oxygen atoms between ACP and the hydrocarbon chain of acyl-ACP (ACP-S-CO-

(CH 2) n-CH 3). Further investigation of this residue is recommended, either by chemical 

inactivation or the creation of mutants in which the residue is substituted for a variety of 

other residues. Low catalytic rates make determination of substrate selectivity difficult, 

but early indications suggest this mutant may have a substrate preference for 16:0-ACP 
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over 18:1-ACP. This is an unusual result as most enzymes investigated to date have had 

no reported selectivity, or have been selective for 18:1-ACP over 16:0-ACP. 

Mutation of the residue HI94 does not alter the rate of G3PAT catalysis to any great 

extent. The modest drop in activity (to approximately 80% of that of Q24a) may be due 

to loss of non-essential hydrogen bonds with the substrate, or a reduction in the charge-

stabilisation of essential residues nearby (K193 is an adjacent residue). 

The conserved cysteines C20, C177, C188 and C278 appear to be non-essential for 

G3PAT activity. Their role in squash plastidial G3PAT may be to ensure the protein 

remains correctly folded, either by the formation of di-sulphide bonds or by other 

favourable interactions. The majority of other mutations made to the acyl-binding region 

had little effect on G3PAT activity or selectivity. Of these the most surprising is T141S. 

It could logically be expected that this residue, different between selective and non­

selective enzymes but conserved within each group, would play at least some role in the 

determination of substrate preference. However, there must be another reason for the 

pattern of conservation observed in sequence alignments as the mutated enzyme has 

virtually identical catalytic velocity and substrate selectivity to Q24a. Where alteration 

of the enzyme characteristics was anticipated, but not observed, this could be due to 

substitution for residue that was not different enough from the original. This is, after all, 

only the 'first round' of site-directed mutagenesis, the permutations for further mutagenic 

study are numerous. The amount of structural data available for this enzyme means that 

it is an ideal target for investigation. It is hoped that the structure of plastidial G3PAT 
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will be solved with acyl-substrate co-crystallised, bound in the active site. This will 

greatly increase knowledge of the structural and functional relationships at work in this 

region. 

126 



Chapter 5 

Kinetic analysis of wild type and 

mutant G3PAT proteins. 

Determination of G3PAT catalytic mechanism and 

substrate binding constants for Q24a and Q24a L261F. 



5.1 Introduction 

Plastidial G3PATs have been purified from various plant sources including squash 

(Cucurbita moschata - Ishizaki et al, 1988; Nishida et al, 2000), pea (Pisum sativum -

Weber et al, 1991), spinach (Spinacia oleracea - Ishizaki-Nishizawa et al, 1995) and 

Arabidopsis thaliana (Nishida et al, 1993). A list of the G3PATs cloned or purified 

from various sources and their substrate selectivity (if determined) is shown in table 5.1 

for plastidial/soluble G3PAT and table 5.2 for membrane bound G3PAT. It is apparent 

from these studies that different plastidial G3PATs often display different selectivities 

for various acyl-ACP substrates. For example, G3PAT from Oil palm exhibits little 

selectivity between 16:0ACP and 18:1ACP groups (Kroon, 2000), whereas G3PAT 

from spinach has a strong preference for the longer, monounsaturated acyl group of 

18:1ACP over 16:0ACP (Ishizaki-Nishizawa, ibid.). 

Substantial effort has been made to determine the basis of substrate selectivity in this 

class of enzymes due to their proven role in the determination of membrane lipid 

composition (Murata et al, 1992). Initial surveys of acyl-group composition in 

complex lipids of chilling resistant and sensitive plants indicated a significant 

correlation between membrane lipid composition and chilling resistance (Murata et al, 

1982; Murata, 1983). In 1992 Murata et al proved the link between the level of 

unsaturation of membrane lipids and chilling resistance - experimental verification was 

obtained when tobacco plants were transformed with cDNAs from a chilling sensitive 
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Species S /R Status Acyl 
group 
pref. 

Group responsible 

Arabidopsis thaliana 
(Thale cress) 

R Amino acid sequence 
determined (from cDNA) 

18:1 Nishida I , etal 1993 

Cucurbita moschata 
(Squash) 

S Amino acid sequence 
determined for A T I isoform 

18:1 Nishida I , et al 2000 

Pisum sativum (Pea) R Amino acid sequence 
determined (from cDNA) 

18:1 Weber S, et al 1991 

Spinacia oleracia 
(Spinach) 

R Amino acid sequence 
determined (from cDNA) 

18:1 Ishizaki-Nishizawa 0 et 
al, 1995 

Vicia Java (Fava bean) R Amino acid sequence 
determined (from cDNA) 

18:1 Liu JM etal, 1999 

Phaseolus vulgaris 
(Bean) 

S Amino acid sequence 
determined (from cDNA) 

No pref. Fritz Met al, 1995 

Cucurbita moschata 
(Squash) 

S Amino acid sequence 
determined for AT2 and AT3 

isoforms 

No pref. Ishizaki 0 et al, 1988 

Cucumis sativis 
(Cucumber) 

S Amino acid sequence 
determined (from cDNA) 

No pref. Johnson TC et al, 1992 

Elaeis guineensis (Oil 
palm) 

S Amino acid sequence 
determined (from cDNA) 

No pref. Kroon JTM et al 

Oryza sativa (Rice) S Amino acid sequence 
determined (from cDNA) 

No pref. Chen SN etal, 1999 

Cucurbita ficifolia 
(Figleaf gourd) 

S Amino acid sequence 
determined (from cDNA) 

No pref. 

Carthamus tinctoris 
(Safflower) 

S Amino acid sequence 
determined (from cDNA) 

N.D. Bhella RS and 
MacKensie SL, 1994 

Peaonia californica 
(Core eudicot) 

? Amino acid sequence 
determined (from cDNA) 

N.D. Tank DC and Sang T, 
2001 

Citrus unshiu (Satsuma 
orange) 

7 Amino acid sequence 
determined (from cDNA) 

N.D. KatoMe; al, 2001 

Table 5.1 Details of plastidial G3PATs cloned or purified from various species and their substrate 
selectivity (if determined). N.D. = substrate preference not determined. S/R denotes whether the species 
is known to be chilling resistant (R) or sensitive (S). 



Species Status Group responsible Notes 
Elaeis guineensis (Oil palm) Amino acid sequence 

determined 
Manaf A.M. and Harwood 

J.L., 2000 
Preference for 

16:0-CoA 
Persea americana (Avocado) 150-fold purification from 

mesocarp microsomes 
Eccleston V.S. and Harwood 

J.L., 1995 
Eshericia coli plsB gene cloned Lightner V.A. et al, 1980 -

Mortierella ramanniana 
(Oleagenous fungus) 

1308-fold purification (to 
homogeneity) from 
membrane fraction 

Mishra S. and Kamisaka Y., 
2001 

Preference for 
18:l-CoA over 

16:0-CoA 

Xylella fastidiosa (Bacterial 
plant pathogen) 

DNA and amino acid 
sequence determined 

Simpson A.J.G. et al, 2001 * 

Mycobacterium tuberculosis DNA and amino acid 
sequence determined 

ColeS.T. et al, 2001 * 

Mycobacterium leprae 
(Leprosy bacterium) 

DNA and amino acid 
sequence determined 

ColeS.T. et al, 2001 * 

Vibrio cholerae (Cholera 
pathogen) 

DNA and amino acid 
sequence determined 

Heidelberg J.F. et al, 2001 * 

E.coli 0157:H7 
(Enterohaemorragic bact.) 

DNA and amino acid 
sequence determined 

Perna N.T. et al, 2001 * 

Pseudomonas aeruginosa 
(Bacterial pathogen) 

DNA and amino acid 
sequence determined 

Stover C.K. et al, 2000 * 

Pasteurella multocida 
(Bacterial pathogen) 

DNA and amino acid 
sequence determined 

May B.J. et al, 2001 * 

Caenorhabditis elegans 
(Nematode) 

Amino acid sequence 
determined 

Blanchard M . and Bradshaw 
H., 1996 

-

Mus musculus (Mouse) Cloned from murine 
mitochondria 

YetS.F. etal, 1993 -

Rattus norvegicus (Rat) Cloned from rat liver 
mitochondria 

BhatB.G. etal, 1999 -

Homo sapiens (Human) DNA and amino acid 
sequence determined 

N.C.B.I. Annotation Project 
2002 

** 

Table 5.2 Details of membrane bound G3PATs cloned or purified from various species. * denotes 
that a genome consortium published the pathogen genome and N.C.B.I. matched the probable G3PAT 
function by sequence similarity. ** denotes that the Human Genome Consortium published the genome 
and N.C.B.I. matched the probable G3PAT function by sequence similarity. For all entries except Elaeis 
guineensis (Oil palm) and Mortierella ramanniana (oleagenous fungus) the substrate preference has not 
been determined. 



{Cucurbita moschata) and a chilling resistant {Arabidopsis thaliana) plant, expressed at 

a higher level than the endogenous G3PAT. 

Acyl-group composition of phosphatidylglycerols from the leaves of the wild type and 

transgenic tobacco plants was determined. Analysis of the growth of these plants at 

chilling temperatures revealed that differences in the chilling sensitivity correlated 

closely with the extent of fatty acid unsaturation in phosphatidylglycerol. Furthermore, 

it was demonstrated for the first time that it is possible to alter the degree of 

phosphatidylglycerol fatty acid saturation by the insertion of a suitable acyltransferase. 

More recently the introduction of a cDNA for G3PAT from Arabidopsis into transgenic 

rice has been shown to increase levels of acyl-unsaturation in membrane phospholipids 

and increase the chilling tolerance of the photosynthetic apparatus [Yokoi et al 1998]. 

These are studies offer sound experimental evidence that G3PAT enzymes affect 

chilling sensitivity of higher plants by determining the degree of acyl-unsaturation of 

membrane phospholipids. 

Physical changes in membrane lipids have long been considered the primary event in 

chilling injury to plants and the case for membrane lipid composition determining the 

susceptibility of a plant to low, non-freezing temperatures is a strong one. However, it 

should be noted that other factors may be involved in temperature sensing and 

acclimatisation. Systems which detect temperature change and acclimatise higher 

plants to 'cold' or 'chilling' (low, non-freezing temperatures 2-6°C) have been identified 

and their components investigated (reviewed by Browse and Xin, 2001 and in Chapter 
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1). The expression of several genes which encode proteins with known enzymatic 

functions has been shown to be regulated by temperature change - alterations to 

cytoskeleton arrangement and calcium influxes are among the early changes that 

activate plant cold acclimation responses (Plieth et al, 1999). However, it is unclear 

whether these changes are to protect the plant against cold conditions or to prepare the 

plant for freezing conditions (0°C or below) prior to the onset of winter. Thus, even 

taking these findings into account, the majority of evidence implicates membrane 

fluidity as the factor with the most impact on chilling sensitivity and resistance. 

This chapter (combined with chapter 4) investigates the basis for substrate selectivity in 

the G3PAT enzyme. Central to this approach is the establishment of an assay which 

can distinguish between selective and non-selective enzyme forms, using the natural 

substrate acyl-ACP and with conditions carefully chosen to mimic those in vivo 

(chapter 3). Once G3PAT enzymes are known to have different substrate selectivities, 

an attempt can be made to compare their structural and functional attributes. 

Analysis of site-directed mutants (chapter 4) revealed that a single point mutation could 

alter squash G3PAT substrate selectivity without significantly affecting overall 

catalytic activity. This meant that both a selective and non-selective form of the squash 

enzyme were now available, both of which crystallised and diffracted an X-ray beam, 

enabling their 3D structure to be determined. This provided a suitable model for the 

investigation of substrate selectivity in this class of enzymes. 
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5.2 Cloning of selective and non-selective G3PAT enzymes and creation of the 

L261F mutant 

Cloning steps detailed in this section were performed by Bill Simon and Johan Kroon, 

but biochemical and kinetic characterisation of the wild type and mutant enzymes were 

performed by the author. 

A plastidial G3PAT cDNA clone from Squash (Cucurbita moschata) was a gift from 

Professor Norio Murata (National Institute for Basic Biology, Myodaiji, Okasaki 444, 

Japan). The coding sequence was cloned into the vector pET 17b for expression of the 

protein at high levels under selection of the antibiotic ampicillin (Kroon, 2000). In a 

further cloning step, the coding sequence for squash G3PAT was transferred to the 

vector pET 24a so that the protein could be expressed at high levels under selection of 

the antibiotic kanamycin (which has better thermal stability and lasts longer in bacterial 

culture). It was observed that the product of this final cloning step was no longer non­

selective in assays performed by Hayman and Kroon, but exhibited a novel preference 

for 18:1-ACP over 16:0-ACP. Determination of the nucleotide sequence of the new 

construct revealed that three base changes had occurred during the PCR-based cloning 

steps, resulting in two amino acid substitutions in the C-terminal domain of the product. 

One (or both) of these mutations, L261F and P331S, was thus responsible for the 

dramatic change in substrate selectivity. Site directed mutagenesis was utilised to 

mutate each residue individually back to that occurring in the wild type cDNA, and 

then both at once to generate the mutants L261F, P331S and L261F/P331S. This 

generated a series of constructs, details of which are given in the sequence alignment 
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Q24a MAS 
Q24aL261F MAS 
Q24aP331S MAS 
Q24aL261FP331S MAS 

261 

D F E 
D L E 
D F 2 

331 
3 P EZ3 
3 P EZ2 
3 S \ZZ2 
3 S ES3 

N terminus C terminus 

Figure 5.1 Amino acid sequence alignment schematic of mutants Q24a, Q24a 
L261F, Q24a P331S and Q24a L261F P331S. Characters in italics are coded for by the 
vector (pET24a) DNA. Numbering begins at the start of the coding sequence for squash 
G3PAT. For full sequence details of the Q24a construct see figure 4.2. 



schematic in Fig 5.1. The 'wild type' construct (L261/P331) was termed Q24a. These 

constructs were transformed into E. coli BL21 (DE3) and expressed to a high level 

using the bacteriophage T7 promoter/T7 DNA polymerase system via IPTG induction. 

The following sections describe analyses carried out to characterise the wild type and 

mutant proteins. 

5.3 Preparation and assay of wild type and mutant recombinant squash G3PATs 

produced in E. coli. 

G3PAT clones were kindly provided by Johan Kroon, University of Durham. The four 

cloned G3PATs detailed in section 5.2 were grown in 4 litre cultures and harvested as 

described in section 2.4. Briefly, cells were lysed in 20 mM Tris-HCl pH 7.4 using 3 

freeze/thaw cycles in dry ice/ethanol and ice/water baths. The crude cell lysate was 

centrifuged at 150,000 g for lhr at 4°C. The supernatent contained >95% of the 

G3PAT activity and was termed a crude Cell Free Extract (CFE) of G3PAT. The 

amount of G3PAT present in each CFE was determined by a combination of SDS 

PAGE and densiometric scanning (figure 2.1). 

Using a standard amount of G3PAT per assay (210ng) to permit direct comparison of 

substrate selectivities and catalytic rates, each of the mutants Q24a, Q24a L261F, Q24a 

P331S and Q24a L261F P331S were assayed under standard selectivity assay 

conditions. This data is shown in figure 5.2. 
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Figure 5.2 Selectivity assays on Q24a, Q24a L261F, Q24a P331S and Q24a L261F P331S 
G3PAT proteins 
Standard selectivity assays were performed on a) Q24a, b) Q24a L261F, c), Q24a P331S and d) 
Q24aL261FP331S G3PAT proteins. • = 18:1-LPA. O = 16:0-LPA. The 18:1/16:0-LPA 
formation ratios are a) 1.0, b) 4.5, c)1.2 and d) 6.0 



Figure 5.2a demonstrates that the Q24a enzyme has little or no substrate selectivity. 

This wild type enzyme has an L residue at position 261 and a P residue at position 331. 

When an F is substituted at position 261, the enzyme exhibits a dramatically increased 

preference for 18:1ACP over 16:0ACP - a ratio of 4.5:1 (Fig 5.2b). When an S is 

substituted at position 331, the enzyme shows little alteration in substrate selectivity 

from wild type, using 18:1ACP to 16:0ACP in a ratio of 1.2:1 (Fig 5.2c). When both 

substitutions are made, the enzyme again exhibits a dramatically increased preference 

for 18:1ACP over 16:0ACP - a ratio of 6:1 (Fig 5.2d). It is evident from these data that 

the amino acid residue effecting the greatest alteration of substrate selectivity is at 

position 261. In order to substantiate this finding, the corresponding mutation was 

made in G3PAT from oil palm (Elaeis guineensis), another non-selective enzyme, to 

ascertain i f the same mutation could create a similar effect in a G3PAT from an entirely 

different species, section 5.4. 

5.4 Creation of oil palm G3PAT mutant L352F and determination of its substrate 

selectivity 

Previous work on G3PAT enzymes resulted in the expression of a full-length oil palm 

G3PAT clone in E. coli using the vector system pET 24a. The product was shown to 

be active and have no substrate preference (Kroon, 2000). The sequence is included in 

the G3PAT alignment in Appendix 1. Using the Quickchange™ mutagenesis system 

the mutation L352F was made and expressed in E. coli using the vector system pET 

24a (by Bill Simon). 
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Cell free protein extracts of the wild type and mutant oil palm G3PATs were prepared 

(section 2.5) and assayed for selectivity, see figure 5.3. These data illustrate that a 

single amino acid change can have a dramatic effect on the substrate selectivity of a 

G3PAT enzyme, in oil palm as well as squash. The wild type oil palm G3PAT uses 

18:1ACP to 16:0ACP in a ratio of 1:1. The L352F mutant G3PAT uses 18:1ACP to 

16:0ACP in a ratio of 3.3:1, i.e. the mutant enzyme now selects more than three times 

the amount of 18:1-ACP substrate over 16:0-ACP. These data support the hypothesis 

that the change in substrate selectivity is due to a direct effect at the substrate binding 

site rather than a gross conformational change in the protein structure or folding, as it is 

unlikely (but not impossible) that a conformational change would occur in exactly the 

same way in two enzymes from different plant species. In order to reduce this 

uncertainty and directly characterise the alteration of substrate selectivity, binding 

constants and maximum reaction velocities were determined for 16:0-ACP and 18:1-

ACP in both the wild type and L261F mutant squash G3PAT proteins, section 5.5. 
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Figure 5.3 Selectivity assay on oil palm wild type G3PAT and oil palm L352F G3PAT. 
Assay was performed under standard G3PAT selectivity (dual substrate) assay conditions (see 
Chapter II). v = 18:1-LPA. O = 16:0-LPA. (A) Oil palm wild type G3PAT has no substrate 
preference between 18:1-ACP and 16:0-ACP, utilising them in a ratio of 1.0:1. (B) Oil palm 
L352F G3PAT has a preference for 18:1- ACP over 16:0-ACP, in a ratio of 3.3:1. 



5.5 Determination of kinetic constants for Q24a and Q24a L261F 

A series of assays were performed on purified preparations of the G3PAT proteins 

Q24a and Q24a L261F to determine the maximum reaction velocities (Vmax) and 

binding constants (Km) for each of the substrates 18:1ACP, 16:0ACP and G3P. 

Following preliminary assays to estimate these constants, further assays were 

performed in order to accurately measure the values. Initial catalytic velocities were 

measured when one substrate was held at a constant, high level (10 or more times the 

estimated Km value) and the second substrate was varied within the range 0.2-5 x Km. 

The resultant velocities were analysed via Lineweaver-Burke plots to calculate the Km 

and Vmax values, as shown in figure 5.4. The results are summarised and given as 

mean values in table 5.3. The concentrations of the second substrate used were 

carefully chosen so that when the reciprocal values were plotted for Lineweaver-Burke 

analysis, the data points were equal distances apart and no 'bunching' of the data points 

occurred. For example, when G3P was held at a high concentration (20 mM) the 

concentrations of G3P were 1, 1.5, 2.5 and 10 uM, giving near evenly spaced 

reciprocals of 1, 0.67, 0.4 and 0.1. 

The results demonstrate a decreased binding ability of Q24a L261F for 16:0ACP, 

shown by an increase in the Km value from 3.4 in the wild type to 9.2 in the mutant 

G3PAT. Q24a L261F also has a lower Vmax when 16:0-ACP is used, approximately 

47% of the Vmax when 16.0ACP is used by the wild type enzyme. However, the 

mutant enzyme does not seem to demonstrate impaired binding or catalysis when using 

18:1-ACP substrate, shown by a comparable binding constant (Km) and maximum 
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catalytic rate (Vmax). This could be due to the difference in shape of the 16:0 and 18:1 

acyl chains (discussed in section 5.9). 

5.6 G3PAT product-inhibition a s s a y s 

The catalytic mechanism of soluble G3PAT has been predicted by several groups 

based on sequence alignments, studies of catalytic motifs via site-directed mutagenesis 

and, more recently, the elucidation of the structure of G3PAT from squash (Heath and 

Rock, 1998; Turnbull et al, 2001b). However, the catalytic mechanism has not been 

determined experimentally. I f the mechanism of soluble G3PAT were determined it 

would offer increased information regarding how the substrates are oriented in the 

active site and which reaction intermediates are formed. 

Determination of the binding order and reaction mechanism of G3PAT can be 

performed via product inhibition assays. In 1914, Michaelis and Pechstein observed 

that the activity of the enzyme invertase could be inhibited by its two products, fructose 

and glucose. W.W. Cleland later demonstrated that the types of inhibition observed by 

each of the substrates in a two substrate reaction, when the levels of the substrates were 

also varied, could be used to determine the reaction mechanism and order of substrate 

binding (Cleland, 1963). These studies assume that there is only one active site on the 

enzyme that can be operative at one time (a reasonable assumption for soluble G3PAT) 

and compare Michaelis constants (for substrates) and inhibition constants (for products) 

at different concentrations of a fixed (non-varied) substrate. 
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Determination of the reaction mechanism will indicate whether catalysis occurs when 

the enzyme binds both substrates in a single complex (ternary-complex; sequential 

mechanism) or by binding one substrate, accepting the transferred group and then 

binding the second substrate for group transfer, i.e. neither of the complete substrates 

are present at the same time (ping pong; substituted-enzyme mechanism). This would 

enable one to determine how the substrates bind and to predict which intermediate 

molecules are present in the active site at the moment of catalysis. Schematic 

representations of a ternary-complex and a ping-pong reaction mechanism are shown in 

figures 5.5 and 5.6 respectively. It can be seen that the ternary-complex involves both 

substrates being present in the active site at once, whilst in the substituted-enzyme 

reaction mechanism involves the acyl-donor binding, formation of enzyme:acyl 

complex ('EG' in figure 5.6) and then G3P binding and acyl-transfer to form LPA. 

Elucidation of the binding order may facilitate the production of suitable substrate 

analogues that may be used to probe the G3PAT active site and substrate binding 

domains. A suitable analogue would still be able to bind to the substrate binding 

domain(s) but would not undergo catalysis. Crystallisation of such a complex would 

permit structural data of a G3PAT enzyme with bound substrate to be obtained. Such 

co-crystals could directly tell us the nature and orientation of the hydrophobic acyl-

binding pocket and/or the glycerol-3-phosphate binding pocket, negating the need for 

computer modelling of substrates into the 3D structure. 
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Figure 5.5 Schematic diagram of a ternary-complex/sequential reaction mechanism. 
The acyltransferase reaction is represented as XG + Y <=> X + GY, where the letter X 
represents ACP, G represents the acyl group, Y represents G3P and E represents the 
enzyme, G3PAT. The mechanism shown is a compulsory ordered ternary-complex, with 
acyl-ACP binding first. However, it is possible that G3P could bind first, or the order 
could be random. The figure is adapted from 'Fundamentals of Enzyme Kinetics' by 
Athel Cornish-Bowden, 1995. 
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Figure 5.6 Schematic diagram of a ping-pong/substituted-enzyme reaction 
mechanism. As in figure 5.5, the acyltransferase reaction is represented as XG + Y <=> X 
+ GY. I f the reaction were to proceed from left to right, as written, this would be 
represented as the reaction advancing in a clockwise direction, as shown in the schematic. 
Neither of the substrates X or Y are present in the active site at the same time. The 
reaction may be compulsory or random ordered. Non- productive complexes such as EX 
and EY may also be formed. The figure is adapted from 'Fundamentals of Enzyme 
Kinetics' by Athel Cornish-Bowden, 1995. 



5.7 Determination of G3PAT reaction mechanism and binding order 

To determine whether G3PAT proceeds via a sequential or ternary complex reaction 

mechanism, a series of assays using fixed, non-saturating levels of one substrate and 

varying concentrations of the second substrate were carried out. In the first instance, 

fixed, non-saturating levels of acyl-ACP (2, 3, 5 and 10 |J,M) and varying 

concentrations of G3P (0.1, 0.3, 1.0 and 3.0 mM) were used. The double reciprocal 

plots produced from these assays, when analysed by linear regression, showed a series 

of lines which converge (figure 5.7a). When fixed, non-saturating levels of G3P were 

used and the concentration of acyl-ACP varied, a similar converging pattern of lines 

was recorded (figure 5.7b). These patterns indicate that the squash G3PAT reaction 

occurs via a ternary complex rather than a substituted-enzyme reaction mechanism 

(Cleland, 1963). 

In order to establish whether the G3PAT reaction occurs via a random or compulsory 

ordered mechanism ACP and LPA, the reaction products, were used as reaction 

inhibitors. Analysis of the results was performed as by Cleland (1963). When acyl-

ACP was varied in the presence of LPA (fig. 5.8B) and G3P varied in the presence of 

ACP (fig. 5.8C) or LPA (fig. 5.8D), mixed patterns of inhibition were observed in each 

case. However, when acyl-ACP was varied in the presence of ACP (fig. 5.8A), 

competitive inhibition was observed. This pattern of inhibition indicates that the 

mechanism for squash G3PAT is a compulsory-ordered ternary complex with acyl-
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Figure 5.7a) Determination of squash G3PAT kinetic mechanism. 
Initial velocity was recorded in assays using varying G3P concentrations at fixed, non-
saturating concentrations of acyl-ACP (2|iM (<), 3\iM (p), 5|iM (O), lOuM ( i ) ) . Assays 
were performed in duplicate. Linear regression shows that the series of lines converge, 
demonstrating that the enzyme mechanism is sequential rather than substitution. 
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Figure 5.7b) Determination of squash G3PAT kinetic mechanism. 
Initial velocity was recorded in assays using varying acyl-ACP concentrations at fixed, 
non-saturating concentrations of G3P (0.1 mM (<), 0.33 mM (p), 1.0 mM (O), 3.0 mM 
(I)). Assays were performed in duplicate. Linear regression shows that the series of lines 
converge, demonstrating that the enzyme mechanism is sequential rather than substitution. 
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ACP binding first, as competitive inhibition was only observed when acyl-ACP (the 

acyl-donor) was varied in the presence of ACP. This also implies that LPA is released 

first, as ACP is the only competitive inhibitor for binding of the next substrate (acyl-

ACP). 

5.8 Substrate binding studies on squash G3PAT 

Following determination of the substrate binding order, direct binding studies were 

carried out in order to confirm the order of binding. Binding assays were carried out as 

described in chapter I I to assess the binding of each substrate in the absence of the other 

substrate. Centrifugal micro-concentrators were used to retain the G3PAT enzyme and 

any bound substrate molecules, above a 30 kDa cut off membrane. Radiolabeled acyl-

ACP or G3P substrates (both at 55 Ci/mol) were mixed with pure protein in a ratio of 

100 pmoles of substrate to 50 pmoles G3PAT. The enzyme-substrate mixture was 

equilibrated at room temperature in 250 mM HEPES-OH buffer (pH 8.0) for 10 

minutes, prior to centrifugation at 5,000xg for 10 minutes through the 30 kDa cut off 

membrane. The number of moles of substrate present in the upper and lower 

compartments (bound and unbound material respectively) was determined by counting 

in a liquid scintillation counter and used to calculate the molar ratio of substrate which 

had bound to the G3PAT enzyme, displayed in table 5.4. It was determined that neither 

substrate was retained by the 30 kDa cut off membrane ('-G3PAT' section of table 5.4). 

In addition, G3PAT that had been boiled for 5 minutes prior to the binding assay 

retained (in the upper compartment) less than 2 pmoles and 1 pmole of acyl-ACP and 

G3P substrates respectively. 
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Table 5.4 Differential binding of acyl-ACP and G3P substrates to G3PAT. 

100 pmoles of radiolabelled 18:1-ACP or G3P were incubated with or without 50 pmoles of 

G3PAT enzyme in the absence of the second substrate and centrifuged through a 30,000 Da 

molecular weight cut-off membrane. Substrate bound to G3PAT did not pass through the 

membrane and was retained in the upper compartment. Assays were performed in triplicate 

and results are presented as mean values ± one standard error measurement. 

+ G3PAT - G3PAT 
Acyl-ACP G3P Acyl-ACP G3P 

total pmoles of substrate in 
upper compartment 

47.4 ± 0.48 1.01 ±0.11 0.11 ± 0.02 0.09 ± 0.01 

moles of substrate bound 
per mole of enzyme 

0.95 ±0.01 0.02 ± 0.002 n/a n/a 



These data support the findings in section 5.7 - indicating that the substrates do bind in 

a compulsory order, as acyl-ACP will remain bound in the absence of G3P but not vice 

versa. This is evidence for a reaction which proceeds with acyl-ACP binding first, in 

the absence of G3P, with G3P then binding for catalysis to occur. 

Binding assays for 18:1 and 16.0-ACP to Q24a and Q24a L261F were additionally 

performed, under the standard substrate binding assay conditions. Q24a bound 18:1 

and 16:0-ACP in molar ratios of 0.95(±0.01) and 0.90 (±0.02) respectively, whilst Q24a 

L261F bound 18:1 and 16:0-ACP in molar ratios of 0.92 (±0.02) and 0.82 (±0.02). A 

slight decrease in the binding of 16:0-ACP is apparent in Q24a L261F, but this assay is 

less sensitive at detecting a change in Km for an individual substrate than conventional 

kinetic means (compare with table 5.3). However, this it is useful to note that both 

substrates still bind to the mutant protein under binding-assay conditions. 
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5.9 Discussion 

In this study, an examination of the kinetic parameters, reaction mechanism and 

substrate binding for squash G3PAT and the mutant L261F are presented. The binding 

constants of 18:1-ACP, 16:0-ACP and G3P have been determined, along with the 

maximum catalytic velocities with these substrates for a wild type squash G3PAT 

(Q24a) and a mutated form of the enzyme. The cause of this selectivity change, a 

single amino acid substitution L261 to F261, has been kinetically characterised. The 

mutation L261F causes decreased binding affinity for 16:0-ACP substrate, indicated by 

the elevated Km of the mutant (9.2 u.M) compared to 3.4 |LIM in the wild type. The 

Vmax with 16:0-ACP substrate is also lower in the mutant, down to 101 (from 213) 

pmoles LPA formed per minute. 

One possibility for the dramatic change in substrate selectivity in the mutant Q24a 

L261F is that the enzyme conformation has somehow been disturbed due to the amino 

acid substitution. This may result in a vastly altered catalytic/binding environment (but 

would be of little practical use in a study of substrate selectivity in this class of 

enzymes as such a change would be almost impossible to reproduce in other enzyme 

constructs or enzymes from other species). However, evidence presented here is to the 

contrary, as an almost identical effect is witnessed when the corresponding residue is 

mutated in oil palm G3PAT. Furthermore, structural data comparing the 3D structure 

of Q24a and Q24a L261F indicates that no significant alterations to the folding or 3D 

structure of the mutant have taken place (chapter 4 - communication from A.P. 

Turnbull, University of Sheffield). The mutant Q24a L261F has a predicted structure 
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isomorphous to Q24a. The mutant Q24a L261F has also been shown to bind 18:1-ACP 

in binding assays (section 5.8) and has a catalytic rate similar to the wild type enzyme. 

These data indicate that the gross structure of the acyl-binding pocket and ability to 

bind some substrates have not been significantly altered. 

Structural data locates the residue L261 towards the distal end of the acyl binding 

pocket (figure 4.2), at the opposite end to the phosphopantethenyl linker to the acyl 

binding protein. This may explain why the mutant has a level of catalytic activity 

similar to wild type, as the mutation is not in the vicinity of the motif diagnostic for the 

G3PAT reaction, the H(X) 4D box (assigned the nomenclature 'Block 1' by Lewin, T.M. 

et al, 1999). Phenylalanine does not appear naturally at this position in any known 

plant G3PAT sequence and has a side chain that is chemically more hydrophobic and 

sterically much larger than leucine, as indicated in the schematic representation shown 

in figure 5.9. It may be the case that the unnatural F residue at position 261 assists the 

binding of the 'curved' 18:1 acyl chain, but more likely partially blocks the binding of 

the straight 16:0 acyl chain, resulting in the observed increase in Km and drop in Vmax 

for this substrate compared to the wild type G3PAT. This supposition could be 

investigated by the creation of 'intermediate' mutants, in which L261 is replaced by 

residues which are smaller than phenylalanine, for example isoleucine or valine. These 

results and models derived from them may assist future attempts to determine the exact 

nature of the acyl binding pocket and the interactions between this domain and the acyl 

chain. 

155 



CH 3 

a) Leucine 
111 

I 
/ 

[ 

COO CH 

C C H - C H 
2 \ 

b) Phenylalanine 
N i l 

< 
.1 • 

C CH 
a 

COO 
....... 

Figure 5.9 Schematic diagram of the amino acids a) leucine b) phenylalanine. 
The boxed area contains the central amino acid unit, the side chain is the part of the 
molecule extending outside the box. 



The G3PAT reaction was found to proceed via a ternary-complex mechanism, not a 

ping-pong mechanism. Often, a ping-pong mechanism is employed by an enzyme 

when its two substrates have similar properties and so may occupy the same, or 

overlapping, space at the active site. However i f we consider the substrates 

involved in the G3PAT reaction it is apparent that they are very different types of 

molecule. G3P is a small, polar molecule and acyl-ACP is a hydrophobic acyl chain 

attached to a highly acidic carrier protein. It seems likely that the binding areas for 

these molecules should be different, bringing the molecules into contact in the vicinity 

of the H(X) 4D box. A recently proposed model for G3PAT catalysis (Heath, R.J. and 

Rock, CO., 1998) suggests that the invariant histidine in the H4XD box acts as a base, 

withdrawing a proton from the sn-l hydroxyl group. This would permit the 

nucleophilic attack on the thioester bond of the acyl-ACP, by the -O5" group at position 

sn-l (see discussion (chapter 6) and figure 6.1). The invariant aspartate is proposed to 

act as a 'charge-relay system' to increase the nucleophilicity of the sn-l hydroxyl group 

of G3P. This proposed scheme fits in with the findings in this chapter, as in a ternary-

complex both substrates would be present in the active site at the same moment, 

enabling one to undergo assisted nucleophilic attack on the other. 

This work has been an important step forward in understanding the basis of substrate 

selectivity in G3PAT enzymes. Squash G3PAT, a non-selective enzyme, and an 

oleophilic mutant are now kinetically well characterised. The mechanism has been 

resolved and agrees strongly with an existing hypothetic model for catalysis. Kinetic 

and ancillary binding studies have determined the order of substrate binding. This 

157 



information, combined with an assessment of the range of substrates which G3PAT 

will utilise (chapter 3), enable better attempts to be made to probe the active site of the 

enzyme and to obtain enzyme-substrate co-crystals for structural analysis of the fatty 

acid binding domain. Determination of the 3D structure of G3PAT with bound 

substrate would eliminate the need for computer modelling and would be an ideal tool 

for studying the amino acid residues that directly interact with the acyl chain of acyl-

ACP substrate. This would assist a rationalised site-directed mutagenesis approach, 

designed to direct the evolution of the function of G3PAT enzymes using only single 

amino acid substitutions to strategically 'block' the acyl-binding site a critical points to 

directly affect the subset of acyl-ACP substrates utilised by the enzyme. 
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Chapter 6 

General Discussion 



6.1 Discussion 

Plant glycerol-3-phosphate acyltransferase has a demonstrated role in the determination of 

membrane lipid composition, which has proven effects on the overall function of the plant 

when responding to different environmental stresses, for example chilling temperatures 

(Murata et al 1992). The molecular mechanisms responsible for substrate selection and the 

mode of catalysis in acyltransferase enzymes are of interest: an investigation of these 

parameters in the enzyme sfl-glycerol-3-phosphate acyltransferase from the chloroplast of 

squash (Cucurbita moschata) has been undertaken. 

A critical initial step in an investigation of the molecular mechanisms responsible for 

substrate selectivity is the development of an assay that can distinguish between selective 

and non-selective enzyme forms. Chapter 3 reports the optimisation of an existing assay 

for several purposes. Substrate concentrations and pH have been carefully chosen to be 

closely approximated to physiological, using values reported in experimental literature 

backed up with an investigation of a range of assay conditions. The assay has been used to 

determine the activity level and substrate selectivity of several G3PAT proteins. The assay 

has also been adapted to permit the determination of kinetic constants for G3PAT proteins, 

in particular the binding or Michaelis constant (Km) and the maximum reaction velocity 

(Vmax). These have been performed on a wild type G3PAT protein and a mutant that 

exhibits altered substrate selectivity following a single amino acid substitution. A method 

to determine the ratio of acyl-ACP binding to various proteins, specifically BSA and 

purified recombinant G3PAT has also been developed. This enables an assessment to be 

made as to whether or not the protein can bind acyl-ACP, and provide a relative 
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measurement of the strength of this binding (as a ratio of moles of substrate bound per mole 

of enzyme). 

Squash G3PAT will bind and utilise a variety of acyl-ACP and acyl-CoA substrates with 

acyl-chain lengths as short as 4:0-CoA. This has implications for current approaches to 

produce co-crystals of squash G3PAT with bound acyl-ACP substrate. I f shorter acyl-chain 

substrates are used by G3PAT, they must still bind correctly for catalysis to occur. Fewer 

solubility problems are associated with shorter acyl-substrates, which may co-crystalise 

more easily or be soaked into pre-existing crystals. These data widen the range of possible 

substrates which can be utilised in such trials. This may help to overcome problems 

associated with currently used substrates and produce structural information about G3PAT 

with bound acyl-ACP substrate - direct evidence for the precise location and orientation of 

substrates in and around the acyl-binding site. Such information would supersede currently 

used computer models. 

The proven effects of BSA in G3PAT assays has led to an investigation of the binding of 

acyl-ACP substrates to BSA. Assay data and binding experiments indicate that BSA binds 

both 16:0 and 18:1, but with a differential affinity. This means that proper consideration 

must be given to BSA levels in any dual-substrate assay of G3PAT activity. In the 

complete absence of BSA, G3PAT assays work very poorly and low catalysis rates are 

achieved. This raises questions over the precise function of BSA in the assays. Does the 

BSA act to increase the local concentration of acyl-ACP/CoA substrates near the G3PAT 

enzyme? BSA is known to a) bind acyl-ACPs and b) affect the velocity of the G3PAT 

reaction. Increasing BSA concentration has been shown to increase the rate of acylation 
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with 16-.0-ACP substrate. Is it therefore possible that there is a docking site for BSA on 

G3PAT? I f this is so, it implies that there may be a 'BSA counterpart' in the plastid, 

responsible for the transfer of acyl-donor substrates to the G3PAT enzyme. ACP may 

already be fulfilling this role in vivo. Future work in this area should seek to isolate, 

identify and characterise such a protein and study how the acyl-ACP/CoA substrates are 

transferred, and if the protein can transfer substrate to other acyltransferase enzymes using 

the same mechanism. It may be possible that G3PAT complexes to FAS in vivo and 

substrate 'channelling' normally occurs. 

Structural information on squash G3PAT (Turnbull et al, 2001a, b) has led to the creation 

of several mutant G3PAT proteins, in each of which a single amino acid substitution has 

been made. Investigation of the catalytic rates and, where possible, determination of 

substrate selectivity have taken place. The mutations K193S, R235S and R237S result in a 

total loss of enzyme activity. These residues have previously been proposed to form the 

glycerol-3-phosphate binding pocket and this data is consistent with that contention. 

Structural and biochemical data support the proposal that these proteins remain correctly 

folded and able to bind the first substrate, acyl-ACP. It appears that the residue H194 may 

play a subsidiary role in glycerol-3-phosphate binding as the mutation H194S reduces 

catalytic velocity to 79% of the wild type. 

Two residues within the H(X) 4D box have been mutated, T141 to serine and E142 to 

alanine. The former mutation was anticipated to have an effect on G3PAT acyl-selectivity, 

as alignments show it to be a conserved threonine in G3PATs from chilling sensitive (non­

selective) species and a conserved serine in chilling tolerant species. However, the 
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mutation T141S had a surprisingly modest effect on both catalytic activity and substrate 

selectivity. The mutant protein had a reaction velocity of 106% of wild type and an 

identical 18:1-ACP/16:0-ACP selectivity of 1.0. Therefore it is likely that this residue is 

not conserved for the purpose of substrate selectivity. The conversion of the residue E142, 

conserved in many plant species, to alanine resulted in an enzyme that was fully inactive. 

The glutamic acid at this position appears to be vital for enzymatic function. Alanine, a 

relatively small amino acid, would be unlikely to interfere spacially with insertion of 

substrate into the binding region so perhaps E142 has a catalytic role. It may instead be the 

case that E142 is responsible for charge-relay around the HI39 residue, or the formation of 

favourable hydrogen bonds with glycerol-3-phosphate. This hypothesis could be 

investigated further by the creation of a set of mutant proteins in which El42 has been 

substituted for various different amino acids with one 'characteristic' changed each time. 

For instance, a substitution for a residue of similar size but opposite or no charge (for 

example leucine or lysine) could be made, in addition to substitution for a residue with a 

positive charge but smaller size (for example aspartic acid or asparagine). The effect of 

substitution for a residue with a hydroxy, sulphur or aromatic containing side chain could 

also be examined. 

One mutation in the acyl-binding pocket has demonstrated that it is possible to alter the 

substrate selectivity of squash G3PAT with a single amino acid substitution. L261F is a 

mutation at the distal end of the acyl-binding pocket, farthest from the H(X) 4D box and 

G3P binding site. It is possible that the aromatic side chain facilitates preferential binding 

of the slightly 'bent' 18:1 acyl chain. However it is more likely that this moderately large 

side chain partially blocks correct insertion of the 'straighter' 16:0 acyl chain, disrupting 
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normal orientation of the acyl-ACP molecule into the binding pocket (see figure 4.2 for a 

structural diagram of the acyl-ACP binding pocket). This is reflected in an increased Km 

value for 16:0-ACP, indicating a decreased ability of the mutant enzyme to bind this 

substrate. This observation has led to the idea that it may be possible to 'block' the acyl-

binding pocket in strategic places to favour binding of specific acyl groups and disrupt the 

binding of others. Thus, the substrate selectivity of G3PAT enzymes (and potentially other 

acyltransferases with similar binding/catalytic sites) could be engineered to preferentially 

select both acyl chain length and degree of unsaturation. 

The G3PAT reaction was determined by kinetic study to proceed via a compulsory ordered 

ternary complex mechanism. This means that there is a physical (and theoretically 

'isolatable') intermediate product formed between the two substrates (and enzyme), which 

quickly rearranges to form the two final reaction products (ACP and LPA) and regenerated 

G3PAT. This proposed mechanism is in support of a model suggested by Heath and Rock 

(1998). It also has a general mechanism analogous to serine proteases (in which a 

histidine/aspartate pair deprotonate the sn-l hydroxyl group of glycerol-3-phosphate, which 

subsequently undergoes nucleophilic attack on an acyl-substrate) as has been previously 

suggested (Turnbull et al 2001b). The proposed G3PAT reaction mechanism is detailed in 

the schematic diagram, figure 6.1. The reaction intermediate (ternary complex) is shown in 

part K of this schematic. 

The order of the compulsory substrate binding for squash G3PAT has been determined. 

The acyl-ACP substrate was found to bind first, before glycerol-3-phosphate. This finding 
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Figure 6.1 Schematic of the proposed mechanism of squash G3PAT 
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was substantiated by binding studies using centrifugal filter units with a molecular weight 

cut-off, which showed that acyl-ACP remained bound to the G3PAT enzyme whereas 

glycerol-3-phosphate did not. This means that computer models previously generated with 

palmitoyl-pantofhene as the first-bound substrate were likely to have been more accurate 

than those with modelled G3P. In addition, enzyme:substrate co-crystals are most likely to 

be obtained with either acyl-ACP or acyl-CoA substrates, as G3P dissociates from G3PAT 

more readily. However, co-crystals may be obtained with glycerol-3-phosphate or G3P-

based analogues, as these compounds will still have an equilibrium constant with the G3P 

binding pocket and may bind readily enough i f the exogenous concentration is sufficiently 

high - this assumes that the enzyme 'active-site' does not alter shape after binding of the 

acyl-ACP molecule to facilitate G3P binding. 

This study on G3PAT binding and catalytic motifs and the determination of the reaction 

mechanism and substrate binding order have increased our understanding of the functional 

mechanisms central to the G3PAT reaction. The functional relationships elucidated herein 

may act as a model system with potential application to other acyltransferase systems. 

6.2 Future work 

The further investigation of residues E142, R170 and L261 via chemical modification or 

site directed mutagenesis is recommended. These residues are not critical for the 

acyltransferase reaction but have a demonstrated role in substrate binding. The creation 

and characterisation of mutants in which these residues are substituted for others will 

provide increased information on the role of these residues, and how they may be mutated 

to select some substrate types in preference to others. 
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Acyl-CoA analogues containing reactive azido groups have previously been used to 

characterise acyl-binding sites on of various proteins (Hach et al, 1990; Rajasekharan et al, 

1993 and Shockey et al, 1995). G3PAT has been shown to use azidooleoyl-CoA and -ACP 

as substrates The azido group, at position 12, is located at the distal side of the double bond 

(at position 9) in the 18:1 acyl chain. If covalent binding of this compound to residues in 

the G3PAT acyl binding pocket was achieved, determination of the spatial orientation of 

the 18:1 acyl chain within the active site would be possible. Thus the author recommends 

optimisation of photo-reactive modification of G3PAT with azidooleoyl-CoA and -ACP 

substrates. 

With the structural elucidation of squash G3PAT, it may now be possible to 'direct' the 

evolution of this enzyme, with the characteristics tailored to produce desirable qualities, for 

example substrate preference. Rationalisation of the substrate selectivity may be possible, 

as has been the case with other enzymes (Cahoon et al, 1997). A certain amount of 

'catalytic plasticity' has been demonstrated in fatty acid modification enzymes (Broun et al, 

1998) and the same may be true with G3PAT. Increased information about the acyl-

binding pocket may enable blocking at strategic points to produce LPA with shortened 

acyl-chain lengths. It would also be interesting to make the equivalent mutation to L261F 

in a G3PAT that is already selective for longer, less saturated acyl substrates (for example 

G3PAT from spinach) to determine if the existing selectivity can be augmented. 

The inclusion of BSA in G3PAT assays has a measurable effect on acyl-ACPs with 

saturated and monounsaturated acyl chains. Increasing BSA concentration has been shown 
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to increase the rate of acylation with saturated acyl-ACP substrate. This raises the prospect 

of BSA 'docking' to G3PAT, acyl-ACP, or both. It may be the case that G3PAT complexes 

to FAS or another protein (the BSA 'counterpart) in the plastid. This could be investigated 

by chromatography of purified chloroplast lysates on columns containing immobilsed FAS 

components, BSA or G3PAT to see if any novel plastid components have affinity for these 

proteins. 

Several ACP isoforms have been identified in some plants, and there are known differences 

between ACP from plants and bacteria. Acyltransferase enzymes may have different 

activities and substrate selectivities with acyl-ACP containing different ACP isoforms. 

This study has only used ACP from one source (recombinant ACP from E. coli) but ACP 

has been cloned from several plant species. It would be interesting to see how G3PATs 

from squash (and other species) perform in assays using plant forms of acyl carrier protein. 
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Plant Glycerol-3-phosphate (l)-acyltransferase 

Summary 

Glycerol-3-phosphate-l-acyltransferase is a soluble chloroplast enzyme involved in 

glycerol-lipid biosynthesis associated with chilling resistance in plants [1]. Resistance is 

associated with higher selectivity for unsaturated acyl substrates over saturated ones. In 

vitro substrate selectivity assays performed under physiologically relevant conditions 

have been established which discriminate between selective and non-selective forms of 

the enzyme. A mutation, L261F, in the squash protein, converts it from a non-selective 

enzyme into a selective one. The mutation lies within 10 A of the predicted acyl binding 

site and results in a higher Km for 16:0 ACP. Site directed mutagenesis was used to 

determine the importance of 4 residues, R235, R237, K193 and H194, implicated to be 

involved in binding of the phosphate group of glycerol-3-phosphate to the enzyme. All 

the proteins were highly homologous in structure to the wild type enzyme. Mutations in 

R235, R237 and K193 resulted in inactive enzyme whilst H194 had reduced catalytic 

activity. The mutant proteins retained the ability to bind stoichiometric quantities of acyl-

ACP's supporting the potential role of these residues in G-3-P binding. 
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Plant Glycerol-3-phosphate (l)-acyltrcmsferase 

Introduction 

Glycerol-3-phosphate-l-acyltransferase [G3PAT, [plsb], EC 2.3.1.15] catalyses the first 

acylation step in glycerol lipid biosynthesis acylating the snl position of glycerol-3-

phosphate [G-3-P]. Both soluble and membrane bound forms of the enzyme exist [2]. In 

E.coli the enzyme is membrane bound and uses both acyl-ACP and acylCoA as substrates 

[3]. Plants contain soluble and membrane bound forms of the enzyme, the former being 

located in the chloroplast and the latter being extra-plastidial [2,4]. Soluble G3PAT has 

strong substrate selectivity for acyl-ACP over acyl-CoAs consistent with the location of 

both the enzyme and ACP within the chloroplast [4]. Both selective [4,5,6] and non­

selective forms of the enzyme have been isolated from plants [7, and oil palm in this 

report]. Non-selective enzymes utilise 16:0 and 18:1 substrates at the same rate whilst 

selective enzymes preferentially incorporate 18:1. 

Chilling sensitive plants preferentially incorporate C16 saturated fatty acids at position 1, 

whilst chilling-resistant plants have a much higher content of unsaturated fatty acids at 

that position [8]. As a consequence the glycerolipids of chilling-resistant plants are more 

fluid at lower temperatures and hence less sensitive to chilling damage. Transgenic 

studies with tobacco using constructs containing selective [Arabidopsis] and non­

selective [squash-AT2] G3PATs targeted to the chloroplast supported this view [1]. 
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Plant Glycerol-3-phosphate (l)-acyltransferase 

G3PAT is nuclear encoded, and import into the chloroplast requires a transit peptide 
which is removed to give the mature protein. The exact nature of the processing site has 
not been determined experimentally [9,10]. Transformation experiments performed in 
tobacco utilising the truncated form of the squash enzyme linked to the RUBISCO transit 
peptide have demonstrated that this form of the enzyme is both biologically active and 
non-selective in vivo [1]. 

The primary structure of mature soluble plant G3PAT is highly conserved. Comparison 

of the amino acid sequences of the putative mature protein from spinach, pea and 

Arabidopsis, all of which show substrate preference for 18:1 over 16:0, reveals that in the 

mature sequence 199 residues are absolutely conserved between all three of these species. 

Of these 19 are different in squash, thus it is difficult to identify discrete amino acid 

residues that could play a major role in determining substrate selectivity. 

It is also highly likely, as with the oleate desaturase / hydroxylase [11], that several 

residues contribute to substrate selectivity and no one residue has a dominating effect. 

Determining the nature of the acyl-ACP and glycerol-3-phosphate [G-3-P] binding sites 

will be of importance as a step in elucidating the mechanism of substrate selectivity of 

this enzyme. The reaction proceeds via a compulsory ordered ternary complex with acyl-

ACP binding before G-3-P [12]. The molecular structure of squash G3PAT has been 

determined at 1.9 A resolution [13]. Crystals containing bound substrates could not be 
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Plant Glycerol-3-phosphate (l)-acyltransferase 

obtained, however modelling of the G-3-P and acyl-ACP binding site was performed on 
the basis of proximity to the conserved H(X) 4 D motif which has been shown to be 

important in catalysis amongst glycerolipid acyltransferases [14]. From the crystal 

structure it has been predicted that the phosphate group of G-3-P lies in a positively 

charged pocket formed by the side chains of two arginine residues R235 and R237, a 

lysine K193 and a histidine residue H194. The presumptive acyl-ACP site was modelled 

by maximisation of the substrate contacts with fully conserved residues across the 

G3PAT family and the positioning of the reactive S of the fatty acid moiety close to the 

snl position of the modelled G-3-P site. This placed the palmitoyl/pantothene substrate 

within a deep hydrophobic cleft lined with 14 residues which make van der Waals 

contacts with the substrate. 

We are now in a position to test the predicted models for residues implicated to be 

important in G-3-P and acyl-ACP binding via site directed mutagenesis. Appropriate 

assays need to be in place to determine i f any change in in vitro substrate selectivity 

occurred, since assaying with a single substrate may mistake change in selectivity with 

total loss of activity. Assays with G3PAT, in the literature, have been performed under a 

variety of different conditions, hence we have decided to develop assays pertinent to 

known physiological conditions. The pH of the stroma in the light is pH 8.0 and pH 7.4 

in the dark [15]. Estimates of the concentration of G-3-P vary between 65-90 | J M in 
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spinach [16] and 450-620|iM in Amaranthus [17]. Chloroplast acyl-ACP concentration 
values vary in the literature between 0.6-1.9uM and 0.4-2.OuM for C16:0 and C18:l acyl 
ACP respectively [18,19]. 

In this paper we report on: [1] in vitro assays which can distinguish between selective and 

non-selective G3PATs performed under physiological relevant conditions, [2] the effect 

of mutation of K193, R235, R237 and HI94, proposed to be involved with binding of the 

phosphate group of G-3-P, on biological activity and acyl-ACP binding, [3] the 

conversion of non-selective squash enzyme into a selective one by site directed 

mutagenesis resulting in an alteration of the Km forl6:0 ACP. X-ray crystallography has 

been performed with the protein variants and has shown that the structures are highly 

homologous to the wild type protein. 

E X P E R I M E N T A L P R O C E D U R E S 

Cloning of Oil Palm G3PA T 

A 111 day post anthesis oil palm (Elaeis guineesis) mesocarp cDNA library was 

constructed in the XZKYW cloning vector (Stratagene) using the TimeSaver cDNA 

synthesis kit (Pharmacia) to prepare EcoRI flanked double stranded cDNA. A 2043 bp 
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cDNA sequence encoding oil palm G3PAT was isolated from this library by heterologous 
screening of 2 xlO 5 pfu with a 3 2P labelled 1445 bp EcoRI cDNA fragment of Arabidopsis 
G3PAT. 

Overexpression and Purification of Oil Palm, Arabidopsis and Squash G3PA T in 

E.coli 

Over-expression of squash (NA4, Q24a, Q17b and JKSQ+), Arabidopsis (AR1) and oil 

palm constructs for G3PAT [Figure 1] was carried out using the pET ™ plasmid over-

expression system. Typical levels of over-expression of plant G3PAT were 10- 15% of 

the total E.coli proteins. 

For substrate selectivity and kinetic analyses recombinant G3PAT was selectively 

released from the E.coli cells by repeated cycles of freezing and thawing in dry 

ice/ethanol and ice/water [20] and the concentration adjusted to give standard amounts in 

each assay. 

Site Directed Mutagenesis 

Site directed mutations of squash and oil palm G3PAT were generated using the 

QuickChange ™ site directed mutagenesis kit from Stratagene [21]. 
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Synthesis of Radioactive Acyl-ACPs. 

I 4C palmitic and 3 H oleic acyl-ACPs were synthesised using 25 uM 1 4C palmitic or 

3 H oleic acid at a specific activity of 55 Ci/mole and 33 U.M recombinant E.coli holo ACP 

in a reaction catalysed by 5u.M E.coli acyl-ACP synthetase. The reaction was carried out 

in a total volume of 5.0 ml containing 100 mM Tris-HCl pH 8.0, 400 m M LiCl, 10 mM 

MgCl 2 , 2 mM DTT, 5 mM ATP, 1% Triton XI00, and proceeded at 30°C for 10 hours. 

Following synthesis the radioactive acyl-ACP reaction product was purified away from 

the other reaction components using anion exchange (Q Sepharose) and hydrophobic 

interaction (Octyl Sepharose) chromatography. 

Assay for G3PAT Enzymatic Activity. 

Dual substrate specificity assays using radioactive acyl-ACP substrates were carried out 

using modified reaction conditions of Frentzen et al, [7]. Assays were carried out in 250 

mM HEPES buffer pH 8.0, 300 uM G3P, 5.0 mg/ml BSA with 1 4C 16:0ACP and 3 H 

18:1 ACP at 1.1 U.M each, in a total volume of 320 ul. Assays were started with the 

addition of 200 ng of G3PAT purified protein. 80 |J,1 aliquots were removed at 0 (before 

addition of enzyme), 1, 2 and 3 minutes and mixed with 710 (i.1 of chloroform/ methanol 

(1:1). 280ul of 0.2 M H 2 P0 4 in 1 M KC1 was added to the samples, which were 

vigorously mixed and the phases separated by centrifugation. 
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250 u,l of the lower (LPA containing) layer were removed, dried in a vacuum centrifuge, 
re-suspended in 280 p.1 of methanol and mixed with 4 ml Ecoscint A. Samples were 
counted in a Packard liquid scintillation counter on a 1 4C/ 3 H dual counting protocol to 
determine the rate of incorporation of 1 4C 16.0ACP and 3 H 18:1 ACP into LPA. The initial 
velocities were linear. 

Acyl-A CP Binding Assays. 

Binding assays with mutant G3PAT enzymes and acyl-ACP substrates were carried out 

using a Ultrafree ™ micro-concentrator (Millipore). 100 pmol of radiolabeled acyl-ACP 

(18:1 ACP) was incubated with 50 pmols of G3PAT enzyme in the absence of the other 

substrate for 5 minutes in 200 u.1 250 mM HEPES buffer pH 8.0. Following incubation 

the samples were transferred to the concentrator and centrifuged through a 30,000 Mw 

cut off membrane. The radio-labelled substrate bound to G3PAT was retained by the 

membrane in the upper compartment of the concentrator. Sample volume in both 

compartments was readjusted to 200 u.1 and the sample removed and added to 4 ml 

Ecoscint A scintillation fluid prior to counting in a Packard liquid scintillation counter. 

This membrane did not retain acyl-ACPs in the absence of G3PAT. 
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X-Ray Crystallography. 

X-ray crystallography and modelling of substrates within the structure of squash G3PAT 

was carried out as described previously [13]. 

DNA Sequencing. 

DNA sequencing of all G3PAT constructs was carried out on an Applied Biosystems 377 

automated sequencer using forward and reverse primers flanking the position of the 

G3PAT insert. Primers specific to regions close to mutation sites were also used to 

confirm the presence of the correct mutation. 

Materials and Chemicals 

General molecular biology reagents and restriction enzymes were obtained from, 

Boehringer Mannheim or Stratagene. pET expression vectors came from Novagen and 

competent E.coli cells were from Stratagene. Oligonucleotide primers for cloning and 

mutagenesis reactions were from MWG Biotech. 14C palmitic and 3 H oleic acids were 

supplied by Amersham Pharmacia Biotech. A l l other reagents were purchased from 

Sigma or MERCK. 
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R E S U L T S A N D D I S C U S S I O N 

In vitro Substrate Selectivity Assays for Recombinant G3PAT. 

Assays were performed under competitive conditions with two substrates in the reaction 

mixture, 18:1 and 16:0 acyl-ACP at a concentration of 1.1 (LIM each, which is close to 

their physiological concentration. Since BSA has routinely been used in assays for 

G3PAT we chose to include it in these studies. Two different BSA concentrations were 

used, 0.5 and 5 mg/ml, referred to respectively as low and high. Two different pHs were 

used, pH 7.4 and pH 8.0, reflecting the pH of the chloroplast in the dark and the light 

respectively. The G-3-P concentration was 300uM, which is in the physiological range of 

this substrate. 

With the squash enzyme [Figure 2] both reaction velocities are lower at pH7.4 than at 

pH8.0. At high BSA there is little preference for either 16:0 or 18:1 whilst at low BSA 

there is a preference for 18:1 over 16:0 which is more marked at the lower pH. At low 

BSA, in comparison to high BSA, the reaction velocity is lowered for 16:0 and increased 

for 18:1 resulting in an alteration of the substrate selectivity of the enzyme. Assays 

conducted with the full-length sequence of the squash enzyme [JSKQ+] in the presence 

of high BSA and pH 8.0 gave a substrate selectivity of 0.93 which is close to that 
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observed for the truncated enzyme. With the Arabidopsis enzyme [Figure 2] similar 

effects are seen however under all assay conditions the Arabidopsis enzyme shows a 

strong preference for 18:1. 

As the physiological concentrations of G-3-P and acyl-ACP could be as high as 2uJVl for 

acyl-ACPs and 620uM for G-3-P we conducted further selectivity assays increasing the 

acyl-ACP and G-3-P concentration at high BSA and pH 8.0. The G-3-P concentration 

was increased up to 620(J.M and the acyl-ACP up to a concentration of 2.2u.M each. 

Assays were conducted with both the squash and Arabidopsis enzymes [Table 1], 

Doubling the acyl-ACP or G-3-P concentration had little effect on the substrate 

selectivity. We therefore decided to use 1.1 JAM of each acyl-ACP, 300flM G-3-P, high 

BSA and pH 8.0 in all future experimentation. 

Mutation of L261 to F Causes Alteration of Substrate Selectivity of both the Squash 

and Oil palm G3PAT Changing it from a Non-selective Enzyme to an Oleate Selective 

One. 

In order to prepare large quantities of squash G3PAT, using fermentation, for more 

extensive crystallization trials we decided to replace the ampicillin selection marker with 

a kanamycin one. This was to overcome problems with loss of the plasmid due to the 

expense of maintaining the organism under ampicillin selection in the fermenter. In our 
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cloning strategy we amplified the squash G3PAT cDNA from the plasmid pNA4 via a 
PCR based protocol using a proof reading taq polymerase [VENT™ DNA Polymerase] 
and inserted it into the pET24a plasmid which contains a kanamycin selection marker. 
Assays using the dual substrate 16:0/18:1 acyl ACP selectivity assay were performed on 
selected transformants. It was noticed that G3PAT from one of the transformants showed 
a preference for 18:1 [Figure 3d] whilst the "wild type" plasmid from which it was 
derived exhibited no acyl preference [Figure 3a]. Sequencing of the entire coding region 
for G3PAT in the "mutant" plasmid revealed that two point mutations had occurred 
during the PCR reactions. These converted L261 and S331 to F and P respectively 
[Figure 3d]. In order to identify which residue was responsible for this change in 
substrate selectivity both mutated residues were individually mutated back to the wild 
type. The L261F enzyme was selective [Figure 3b] whist the S33 IP was non-selective 
[Figure 3c] indicating that a point mutation at 261 converts a non-selective enzyme into a 
selective one. In order to see i f mutation at this residue could result in altered substrate 
selectivity in other G3PAT enzymes we looked for the corresponding residue in the oil 
palm G3PAT, which we had recently cloned, and which shows no substrate selectivity. 
The corresponding residue in oil palm is L352. We mutated this to a F and assayed for 
substrate selectivity. Mutation of this residue in oil palm caused a similar alteration in 
substrate selectivity [Figure 3 e + f j . 
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Position 261 in the Squash G3PAT structure lies at the end of the deep cleft remote from 

the H(X) 4 D motif and represents one of 12 residues implicated in binding the fatty acyl 

substrate [13]. The fact that the structures of the wild type and L261F variant are 

otherwise identical suggests that differential substrate specificity could arise in part from 

the large side chain of the phenylalanine residue. 

Kinetic Analysis of the L261F and Wild Type Squash Enzymes. 

In order to determine the basis of the alteration in substrate selectivity we performed 

kinetic analysis on the wild type and mutant enzymes from squash. Assays were 

performed using acyl-ACP at 10uM each and G-3-P at 20mM at pH 8.0 in the presence 

of 5mg ml BSA, whilst varying the second substrate concentration. The Km and Vmax 

for both G-3-P and acyl-ACP [Figure 4] are almost identical for the wild type and mutant 

using 18:1-ACP as substrate, however the Km for 16:0 in the mutant was almost 3 times 

as high [Table 2]. The reaction velocity of both Q24a N-terminally truncated recombinant 

protein and the Q24a-L261F mutant were determined at 20mM G-3-P and lOuM of both 

16:0 and 18:1 ACP [total acyl-ACP concentration 20uM]. The values for 18:1 were 

similar but were almost half for 16:0 with the mutant, consistent with the mutation being 

caused by a Km effect on 16:0 ACP. 
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Mutation of T141 to S Does Not Alter Substrate Selectivity of the Squash Enzyme. 
The H(X) 4 D motif is present in G3PAT and is hypothesised to be involved in metal 
binding and the D331E mutant of plsb in E.coli is still capable of binding G-3-P, all be it 
with an increased Km of 200uM in comparison to lOOuM for the wild type. By analogy 
with chloramphenicol acetyltransferase [22] it has been argued that the H residue could 
act as a general base to abstract a proton from the hydroxy group of the acyl acceptor to 
facilitate nucleophilic attack on the thioester of the acyl donor. It is notable that in all 
18:1 selective G3PATs the sequence is HQSEAD whilst in the squash enzyme, which is 
non-selective, the S is a T(141). The corresponding residue in oil palm is also a T (169). 
Mutation of T141 to an S in the squash enzyme does not result in any major alteration in 
substrate selectivity of the protein [Table 3]. It is still fully catalytically active and shows 
the same substrate preference, indicating that this single residue does not play a major 
role in determining substrate selectivity. 

Mutation of Residues Predicted to be Involved in G-3-P Binding. 

From the crystal structure it has been predicted that the G-3-P binding site lies in domain 

2 of the protein and that the phosphate group lies in a positively charged pocket formed 

by the side chains of two arginine residues R235, and R237, a lysine K193 and a histidine 

residue H I 94 (Figure 5). We mutated each of the four positively charged residues and 
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converted them individually to serine residues. The proteins were expressed in E.coli at 
the same level as the wild type protein and were fully soluble. The soluble protein was 
assayed for biological activity using the standard assay with acyl-ACPs [Table 3]. R235S, 
R237S and K193S were all inactive, even following incubation times 100 times longer 
than those normally used. In acyl-ACP binding studies using a spin column, all three 
inactive enzymes retained their ability to bind stoichiometric quantities of acyl-ACP. The 
values for nmoles of acyl ACP substrate bound per mole of enzyme were 0.95 ± 0 . 0 1 , 
0.81± 0.03, 0.91 ± 0.02, 0.91 ± 0.05 and 0.90 ± 0.03 for Q24a, E142A, K193S, R235S 
and R237S respectively. Since the reaction proceeds via an ordered ternary complex with 
acylACP binding first the results are consistent with the three residues being involved in 
G-3-P binding. The H194S mutant had approximately 80% of the biological activity of 
the wild type enzyme indicating that this residue is not so critical for binding and 
catalysis. We also mutated E142 which lies in the H(X) 4 D box to a A. This residue is 
conserved in all plant G3PAT enzymes. The resultant E142A protein is biologically 
inactive indicating that it plays an important role in the enzyme. Replacing the E with an 
A changes the local hydrogen bonding environment close to the presumptive G-3-P 
binding site and presumably perturbs the structure in such a way that the enzyme is 
catalytically inactive. 
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High resolution X-ray diffraction data were collected for crystals of the K193S, R235S 
and R237S mutant enzymes and the three-dimensional structures were solved using 
molecular replacement methods employing programs from the CCP4 suite (data not 
shown). Pairwise superposition using the program LSQKAB [23] of the structures of the 
mutant enzymes with that of the wild type G3PAT structure gave root mean square 
displacements (rmsd) of C_ positions ranging between 0.1 A and 0.3 A which indicate 
that the structures of these enzymes are highly homologous. Therefore, the replacement 
of any of these residues with a serine residue inactivates the enzyme without major 
perturbation of the three-dimensional structure. Additionally, the structure of the L261F 
mutant is also highly homologous to the wild type structure with an rmsd of C_ distances 
of 0.1 A. 

Overall Implications 

Introduction of E.coli [24] and plant pish genes [1], which code for the non-selective 

enzyme into tobacco has confirmed the importance of the acyl group composition on 

chilling resistance in plants. Studies using chimeric protein constructs between the pea 

and the squash enzymes have indicated that the central portion of the enzyme is probably 

important in substrate selectivity [25]. However these studies have been compromised by 

the use of non-physiological conditions and substrate analogues. 
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In this study we have developed in vitro assays which discriminate between selective and 
non-selective plant G3PATs. It is interesting to note that BSA which is known to bind 
fatty acids has a significant effect on this assay prompting us to suggest that chloroplasts 
may contain an acyl binding protein equivalent to the acyl CoA binding protein present in 
the cytoplasm [26]. 

Mutation of a single residue L261F causes major changes in substrate selectivity and 

from modelling studies this is likely to be due to masking of the hydrophobic cleft. The 

exact nature of the interactions between the enzyme and fatty acyl substrate awaits further 

three-dimensional structural data on a binary complex of the enzyme with substrate. 

However, the modelling studies combined with the site directed mutagenesis studies 

presented here have indicated that changing L261 to a phenylalanine residue alters 

specificity from a non-selective enzyme to one which preferentially incorporates CI8:1-

ACP. Given that our crystallographic studies reveal no other changes in enzyme 

structure, the bulky hydrophobic nature of the phenylalanine side chain must alter the 

shape of the binding pocket so that a lower binding affinity and rate of catalysis is 

observed with the C16:0 substrate (K,,, 3x higher and K c a t 50%) whilst the affinity and 

catalytic rate with the CI8:1 substrate remain unchanged compared to the wild type 

protein. 
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Since knowledge of the active site of the enzyme is important to understand how it 
functions, we have performed site directed mutagenesis on amino acid residues proposed 
from modelling studies to be involved in G3P and acyl ACP binding. Our results are 
consistent with K193, R235 and R237 as residues important in binding the negatively 
charged phosphate group of G3P. 

Clear evidence can not be obtained on the site of acyl ACP binding and this wi l l require 

further studies either using a catalytically inactive enzyme in order to obtain a suitable 

enzyme complex or appropriate binding studies using photo-affinity probes. Such studies 

wil l be the basis of future work. 
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Figure Legends 

Figure 1. Amino acid sequence alignment at the predicted processing sites of G3PATs 
from Arabidopsis thaliana and squash {Cucurbita moschata). SQU G3PAT and 
APvA G3PAT represent the sequences of the full-length precursor G3PATs from squash 
and Arabidopsis respectively. JKSQ+, NA4, Q17b, Q24a and AR1, A 17b, A24a are 
recombinant G3PAT proteins from squash and Arabidopsis respectively. The 
recombinant proteins are N-terminally truncated at predicted processing sites. Bold type 
depicts amino acids that have been coded for by vector DNA. Arrows indicate predicted 
processing sites and the symbol # represents amino acids which are not depicted in the 
figure. 

Figure 2. Acyl-ACP selectivity of squash and Arabidopsis G3PAT with varying pH and 
BSA concentration. The amount of labelled 1 -LPA formed in standard competitive 
assays was measured. Assays contained 65 ng of purified recombinant squash G3PAT 
(Q24a) or Arabidopsis G3PAT (AR1). Labelled 1-LPA formed in standard competitive 
assays with labelled 18:1 and 16:0 acyl-ACP thioesters at 1.0 |oM each and glycerol-3-
phosphate at 300 |a,M. Numbers in bold show the ratio of labelled 18:1/16:0 1-LPA 
formed. 

Figure 3. Substrate selectivity of the recombinant squash, oil palm G3PA T and mutant 
proteins. Substrate selectivity of squash (a) Q24a, (b) Q24a-L261F, (c) Q24a-S331P (d) 
Q24a-L261F/S331P, and oil palm (e) JK/OA2.2 and (f) the JK/OA2.2- L352F was 
measured as incorporation of differently labelled acyl-ACP thioesters into LPA under the 
standard conditions for the competitive assay described in the materials and methods. 
• represents 18:1-LPA formation and O represents 16:0-LPA formation. The amino acid 
substitution L352F in the oil palm GPAT is equivalent to the L261F substitution in the 
Q24a derived squash GPAT proteins. 

Figure 4. Kinetic analyses (Michaelis-Menten plots) of squash G3PAT'wild type (Q24a) 
and mutant (Q24a L261F activity. Assays i + i i were performed with G3P at 20mM and 
variable acyl-ACP concentrations. Assays i i i + iv were performed at 10 U.M acyl-ACP 
and variable G3P concentrations. A = 16:0 acyl-ACP and O = 18:1 acyl-ACP. 
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Figure 5. 

Crystal structure of the predicted glycerol-3-phosphate binding domain of squash 
G3PAT. The binding site lies in domain 2 of the protein and the phosphate group of the 
G-3-P lies in a positively charged pocket (arrowed) formed by the side chains of R235, 
R237, K193andH194. 
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Table 1. Substrate selectivity assays of squash and Arabidopsis G3PAT using varying 
levels of acyl-ACP and G3P substrates. 

Squash G3PAT (Q24a) 

Concentration of 

each acyl-ACP | i M ' 

[G3P] |J.M Rates for 18:1/16:0-LPA 

production in pmol/min 

Selectivity2 

(18:1/16:0) 

1.1 300 12.4/13.0 0.95 

1.1 620 15.6/17.3 0.9 

2.2 300 18.2/15.2 1.2 

Arabidopsis G3PAT (AR,) 

Concentration of 

each acyl-ACP U.M1 

[G3P] uJVI Rates for 18:1/16:0-LPA 

production in pmol/min 

Selectivity2 

(18:1/16:0) 

1.1 300 20.1/6.5 3.1 

1.1 620 25.9/9.65 2.7 

2.2 300 30.1/8.6 3.5 

'Equimolar mixtures of 18:1 and 16:0ACP were used in the reaction mixture, each at the 
concentration given. 
Selectivity is given as the rate of production of 18:1-LPA divided by the rate of 
production of 16:0-LPA. 
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Table 2. Kinetic analysis of squash G3PAT (Q24a) and mutant displaying altered 
substrate selectivity (Q24a L261F) using acyl-ACP substrates. 

Isomeric form Acyl-ACP Km acyl- Km G-3-P Velocity1 (pmol 
ACP [|iM] |>M] LPA formed / fig 

G3PAT7 mm 1 ) 
18:1ACP 16:0ACP 

Q24a 16:0 3.42 142.6 198 213 
18:1 3.01 117.1 

Q24a L261F 16:0 9.20 150.9 218 101 
18:1 2.78 100.7 

'Velocity under conditions close to Vmax. G3P at 20mM. Each acyl-ACP at 10|iM. 
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Table 3. Summary of squash G3PAT Q24a mutants created and analysed. 

Mutant (based on Q24a Activity as % of w.t. Selectivity ( i f determined) 
numbering) (standardised ng of GPAT 

protein added)1 

Q24a 100 (arbitrary) 1.0 

T141S 106 1.0 
E142A* 0 
K193S* 0 
H194S 79 0.8 

R235S* 0 
R237S* 0 
L261F 90 3.8 
S331P 94 1.2 
Oil Palm W.t. 100 1.1 
Oil Palm L352F 117 3.3 

'Percentage activity is calculated by assigning the wild type enzyme an activity of 100% 
and comparing the LPA formed per min (of 18:1 and 16:0-ACP together) against that of 
the wild type. 
* These assays were performed for up to 100 times the normal incubation time to 
confrim lack of activity. 
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P r e v i o u s l y P r e d i c t e d 
P r e d i c t e d P r o c e s s i n g S i t e P r o c e s s i n g S i t e 

I V 
ARA G3PAT KLFLPPLRSRGGVSVRAMSELVQDKESSVAASIAFNEAAGETPSELNHSRTFLDARSEQD# 
AR1 MASMTGGQQMGRIELNHSRTFLDARSEQD# 
A17b/A24a MASHSRTFLDARSEQD# 

SOU G3PAT PKLASSCSLRFSASRAMAELIQDKESAQSAATAAAASSGYERRNEPAHSRKFLDVRSEEE# 
JKSQ+ MAELIQDKESAQSAATAAAASSGYERRNEPAHSRKFLDVRSEEE# 
NA4 MASMTGGQQMGRIAHSRKFLDVRSEEE# 
Q17b/Q24a MASHSRKFLDVRSEEE# 

Figure 1. 
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• 18:1ACP rJ16:0ACP 

Squash G3PAT Arabidopsis G3PAT 

8.60 

.III llll 
High High Low Low High High Low Low 
B S A , B S A , B S A . BSA, B S A , BSA, B S A , B S A , 
pH7.4 pH8.0 pH 7.4 pH 8.0 pH7.4 pH8.0 pH 7.4 pH 8.0 

Figure 2. 
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Figure 3. 

29 



Plant Glycerol-3-phosphate (l)-acyltransferase 

ii) Q24a L261F ) Q24a 
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1/ So l/ISol 

Figure 4. 
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iR235 

Figure 5. 
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Appendix 2 - Summary of selectivity assays performed in partnership 

with Ted Schierer (University of Durham) 

Substrate ACP 
18:1/16:0 

CoA 
18:1/16:0 

Conditions Squash Arabidopsis Squash Arabidopsis 

5.0 mg/ml 
BSA, pH 7.4 

0.98 ± 0.03 2.33 ± 0.15 

[7 .2 /7 .4 ] [10 .3 /4 .4 ] 
±0.15/±0.09 ±0.22/±0.25 

0.77 ± 0.03 0.93 ± 0.02 

[5 .6 /7 .3 ] [12.0 /13.0 ] 
±0 .61/±0.89 ±0.73/±1.01 

5.0 mg/ml 
BSA, pH 8.0 

0.90 ± 0.03 2.97 ± 0.05 

[10.8 /12.0 ] 17.3/5.8] 
±0.95/±0.95 ±0.83/±0.24 

1.14 ± 0.04 1.38 ± 0.08 

[5 .1 /4 .6 ] [8 .7 /6 .3 ] 
±0 .36 /±0 .33 ±0.30/±0.59 

0.5mg/ml 
BSA, pH 7.4 

5.09 ± 0.43 11.0 ± 0.19 

[16 .6 /3 .3 ] [18 .6 /1 .7 ] 
±0.94/±0.13 ±0.84/±0.06 

1.36 ± 0.03 1.88 ± 0.01 

[55 .9 /41 .3 ] [102.7 /54.7 ] 
±4 .30/±3.57 ±6.87/±3.87 

0.5 mg/ml 
BSA, pH 8.0 

2.51 ± 0.17 8.60 ± 1.09 

[22 .3 /8 .9 ] [20.5 /2 .4 ] 
±2.30/±0.78 ±1.30/±0.23 

1.21 ± 0.08 2.19 ± 0.14 

[67 .9 /55 .8 ] [94.7 /43.5 ] 
±6 .27/±1.86 ±4.42/±2.91 



Summary of substrate selectivity assays performed on Squash and Arabidopsis 

G3PAT using acyl-ACP and acyl-CoA substrates. 

Values in bold represent the ratio of activity of the enzyme for 18:1ACP over 16:0ACP: 

i f the number is higher than 1 the enzyme has a preference for 18:1 over 16:0. The 

figures in square brackets show the rate of enzyme activity with each substrate in pmol of 

LPA formed per minute. Assays were performed in triplicate on two separate occasions 

and results are presented as mean values ± 1 standard error measurement. Assays using 

acyl-CoA substrates presented here were performed jointly by the author and Ted 

Schierer, University of Durham. 
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