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Vegetation, Topography and Snow WMelt at the Forest-Tundra
Ecotone in Arctic Europe: a Study using Synthetic Aperture Radar

PhD Thesis Abstract

Andrew Mark Dean, 2003

This research was conducted as part of DART (Dynamic Response of the Forest-Tundra
Ecotone to Environmental Change), a four year (1998-2002) European Commission —
funded international programme of research addressing the potential dynamic response of
the (mountain birch) forest-tundra ecotone to environmental change. Satellite remote
sensing was used to map landscape scale (10'-10° m) patterns of vegetation and spatial
dynamics of snow melt at the forest-tundra ecotone at three sites along ca. an 8° latitudinal

gradient in the Fennoscandian mountain range.

Vegetation at the forest-tundra ecotone was mapped using visible —near infrared (VIR)
satellite imagery, with class definition dependent on the timing of the acquisition of
imagery (related to highly dynamic vegetation phenology) and spatial variation in the FTE.
Multi-temporal spaceborne ERS-2 synthetic aperture radar (SAR) was used for mapping
snow melt. Comprehensive field measurements of snow properties and meteorological data
combined with a physically based snow backscatter model indicated potential for mapping
wet snow cover at each site. Significant temporal backscatter signatures enabled a
classification algorithm to be developed to map the pattern of snow melt across the forest-
tundra ecotone. However, diumnal and seasonal melt-freeze effects relative to the timing of
ERS-2 SAR image acquisition effectively reduce the temporal resolution of data. Further,
the study sites with large topographic variation and complex vegetative cover, provided a
challenging operating environment and problems were identified with the robustness of
classification during the later stages of snow melt because of the effects of vegetation.
Significant associations were identified between vegetation, topography, and snow melt

despite limitations in the snow mapping.




Acknowledgements

I would like to thank my departmental supervisors, Dr Chris Thomas and Professor Brian
Huntley, for providing the opportunity to complete this research. They have given me

support and productive advice throughout.

I am indebted to Ian Brown for invaluable assistance and encouragement in the face of
adversity. I would also like to acknowledge members of the DART project for their interest

in this part of the project and their humour.

Also, in no particular order, thanks to Stuart Wain, Mick Green, Matthias Zielke, Maria
Johansson, Clare McSorely, Sean Twiss, Judy Allen, Bob Baxter, and Nick Baker, Ruth
Cox, Dave Bryant, and John Bennie.

Thanks to Mum, Dad, and Alison who have always been so supportive. Especially, thanks

to Gill for her wonderful love, support and patience.



Table of contents

LISTOF FIGURES.......cciiiiiiiiiiii et re e e e s s e e e en ranen Vil
LIST OF TABLES. ...t s s e s e e s sa e ea s eaesa s an s ens Xl
CHAPTER 1 INTRODUCTION.......ccccerierreerrnercseersee s e errssnessssnesnssessenes 1
1.1 CONTEXT OF RESEARCH: DART PROJECT ......ceoiniinirieiirieieieceeee e 2
1.2 DELINEATION OF THE FOREST-TUNDRA ECOTONE ......coctivrieiemiririererenensresinseinnens 3
1.3 UTILITY OF REMOTE SENSING FOR MONITORING ARCTIC ECOSYSTEMS............... 3
1.4 RESEARCH AIMS.......ocviiiiiiiimiiieitintct sttt sttt ettt eee et aseesesassesassnsese s 4
1.5 THESIS STRUCTURE .....cerueuiieiieriueteeanienenenteteeeteeasanessstssensssessssesessesssssasessesess 4
CHAPTER 2 LITERATURE REVIEW ..........correreerircccecreennnssnessenenennne 6
2.1 SNOW-VEGETATION INTERACTION .....ccoviuirimiiemirmentererteieseniesteseneere e ee e s eeenne 6
2.1.1 Snow-vegetation iNteraACtiON ................ccccvvcerivaveesseieeinesiesese e eeenens 6
2.1.2 Scale dependence...................cocoeeiouicimoeieiiiieeeiieee e 7
2.1.3 Mapping vegetation at the forest-tundra ecotone using VIR imagery...... 8
2.1.4 Mapping snow cover usihg VIR imagery.........ccccoocmiiiivinniiaiianneenn, 9
2.1.5 Landscape scale modelling of snow-vegetation interaction at the forest-
FURAEA @COTOME ...ttt 10
2.2 SYNTHETIC APERTURE RADAR REMOTE SENSING ...c.ce.trueuinremiinieieneaerieereenenes 14
2.2.1 SAR IMAGING ...ttt 14
2.2.2 Frequency /wavelength...............cc.ccccoeoviviieiiiiionieeieeiieeeeeeen, 15
2.2.3 Polarisation ................cccocovivviiiiriiiiniiieeee e 16
224 Radar GeOMEIry.............ccccoiiiiiiiiiieeceeeeee et 17
2.2.5 SPOCKIE ... 18
2.2.6 SUFfAce ROUGHNESS ............coceiiiiaiiieeeceeeeee e 19
2.2.7 PermittiVity.........cccccoviiviiiiiiiiiiiiiiiiee e 19
2.2.8 SAR system development................c...ccccccouivcieiviiiriiiniireseee e 20
229 Resolution of Digital Elevation Models for SAR applications ............... 22
23 SAR EXPERIMENTS AND ECOLOGICAL APPLICATIONS ......cccotiirmiaieniiaineaerennns 23
2.3.1 Land cover classifiCcation...............c....cccooooioeiiiiieiceiciiiieieee 24
2.3.2 FOrest BiOMASS ...........cc.cccouiiiiiiiiiiiiiiieeeeeee e 26
233 SOII MOTSIUFE ..ot 29
24 SAR REMOTE SENSING OF SNOW COVER .......ccceriiiiirieiieieieieesieeneserceie e 30
24.1 Passive microwave remote sensing of SHOW COVer ................................ 30
2.4.2 SAR remote Sensing of SHOW COVEF .............c.c.cocvevvimieioeieaiieeeaesen e, 31

I




2.4.3 Effects of vegetation on SNHOW MAPPING................ccoceviveneeieciiiaaaenen, 35
2.4.4 Validation of SHOW MAPPING ..........c.cccooviviiiiiiiiieiieiieieee e 36

245 Future research with radar for snow applications............c........ccc.o..... 36

CHAPTER3 METHODS: DATA FOR VEGETATION AND SNOW

MAPPING. ... e c s s s e s e s e ra e snnsnsnns 38
3.1 DESCRIPTION OF STUDY SITES....c.coteuirtettiirieserinuestetesesiesaesesssiesessenseseseesasnssesenes 38
3.1.1 Joatka (69° 45" N, 24° 00" E) ........coecvereeeeieireieeresieieiaeeeaese e an v 39
3.1.2 Abisko (68° 21" N, 18° 49" E) ..o 39
3.1.3 Dovrefjell (62° 18" N, 09° 37" E) c...coeeeeveeeieeieeeeeeeeeeeeeeeeveeeee e 40
3.2 FIELD LOCATION MEASUREMENTS ....c.ccooettutrieuiruesenieseneesenieseseeseneeeseesesesensessens 44
3.2.1 Position averaging.............c.cccccocovvveiviiiiniiiieiiieni e 45
322 Differential GPS ............ccccoiiiiviiiiieeeii e 45
3.3 FIELD METEOROLOGICAL MEASUREMENTS ......c.ccueveutetenieneririrnenneaseeeseesenesaenens 46
3.3.1 TEMPEFALUFE.........cooieiciieiece ettt et nes 46
3.4  FIELD SNOWPACK AND GROUND SURFACE MEASUREMENTS........c.coocvevverirvennenes 47
3.4.1 Snowpack Stratigraphy .............ccccceeceoeeeiviiiiiieneieee e 47
3.4.2 Snow permittivity and liquid water content ..................cc.cc..ccveveveeennen.. 47
3.4.3 SHOW dEPUA ...t 50
3.4.4 SHOW AENSILY ..ottt 50
3.4.5 SHOW LEMPEFAIUTE ...t 51
3.4.6 Snow and ground surface roughness ...............cccocoovivevcreiiieiiiiaennen. 51
34.7 Ground surface / SOl MOISTUFE ..............c.c.cooeeeeceeairireeiciieceeeeeeeerenen, 51
35 REMOTELY SENSED IMAGE ACQUISITION ....cvvviiiiiiiiieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeanens 51
3.5.1 ERS-21IMagery .........ccccccovvimioiiniiiiiieiiiiecieeie ettt ettt 51
3.5.2 Landsat TM IMAGETY.........c..ccoooevoiivieciieiieeiece e 57
353 Aerial photography ..............ccccceveviivieiiieieieiiee e 57
3.6 FIELD VEGETATION SURVEY .....cotiriieiiiiriiieniettitesieseeestcstestesbeseeseaenesinseennasenns 58
3.7 DISCUSSION .......... PP PP 59
CHAPTER 4 METHODS: VIR IMAGE PROCESSING ........c..ccccoeeeeiiiinennee 62
4.1 DEM EXTRACTION FROM AERIAL PHOTOGRAPHY .....ccooviiiiiiiiiaienieineive s, 62
4.1.1 DEM editing and evaluation...........................cccccviiiiceiionsiciiiie 63
4.2 LANDSAT TM IMAGERY .....ooitiiiiiiiiiiiiictc sttt 63
4.2.1 TYQIRING ..o e 64
4.2.2 Class allocation .............cccocoeeciiiiiieiiiiiiiis e 64




4.2.3 EVQIUATION ..o e, 65

43 DISCUSSION ....ooveiiiiiitiiiteteetert ettt ss et e e e e eba e raae s e e sraestaesaesssesreesseeses 66
CHAPTER 5 METHODS: ERS-2 SAR IMAGE PROCESSING ................... 67
5.1 SPECKLE FILTERING ....cutiuiittriiiesiesitestesaeseesesessesseseesesensessessesssssasessssessessensans 67
5.2 GEOMETRIC CORRECTION .....ccviiieiiauiiuiieeserantensestensessseesesseseesassetessessesssssssennas 69
53 INCIDENCE ANGLE CORRECTION MODELS......c.corttrieiiieneieniaienieeieseeereensessesnenns 69
5.3.1 COSING COFPFOCHION. ..o 70
53.2 INVErse SINE COTTECHION. ...............c..cccvveveeienviiieeiirie et 71
533 Modified Muhleman model..................c..cccooveeeeeeiieeieeeeeieeeeeeeereeeeenns 72
534 Empirical correction models ...............cc..cc.ooouevevvevceimiiiiiieieeeeeeineennn. 72
535 Comparison of correction models...................c.coeeueeviivniienieaeeaneranenn, 72
54  CALCULATION OF LOCAL INCIDENCE ANGLE......ccccoctiuereariiiesteeereseeseeeeseeneenas 73
5.5 EFFECT OF IMAGING GEOMETRY .....ccutiriiiiinienieenienreeeesneenesasasssasessssessesnseenns 74
5.6  IMPLEMENTATION OF INCIDENCE ANGLE CORRECTION........c0cccveeurereenrecreennennn, 76
5.6.1 INVerse SiN@ COFTECION............cccveeeuveeieiiieeeeiieeei e 76
5.7 DISCUSSION ..ottt ittt ettt teste st e e e e baesesae s e b e e ebesbessensssenseneas 78

CHAPTER 6 RESULTS: VEGETATION AND TOPOGRAPHY USING VIR

IMAGERY ... s s rase s sa e s s n e ra s s a e eas 80
6.1 TOPOGRAPHIC VARIABLES ...c..oeiuiitieiieieerisiresteesseeveesssesesseeseeesteeeresresseenseenns 80
6.1.1 EleVAiON ... 80
6.1.2 Slope aspect and slope gradient ..................ccccocvvevieiivnieiiieieeeeen 84
6.1.3 Other topographic variables.................cccccoveecvevieeeeicieeeeeeeeeeeene 88

6.2  JOATKA VEGETATION CLASSIFICATION ....ccocveiieireceeeieeieeereereereseeasseesneenieas 88
6.3 DOVREFJELL CLASSIFICATION......ccuttitiiirrteaeasteestesaesssesseessesnessnsereeesesseesnnenns 92
6.4 ABISKO CLASSIFICATION.......oiuiiiiatieieetieeteetreeteeteereeeteeeaeeereeeaeenreereesaneneeeeea 95
6.5 DISCUSSION ...ttt et et e e et e et e ese e e s b e e ebeesseeeanaeeas 97

CHAPTER 7 RESULTS: MONITORING PROGRESSION OF SNOW MELT

USING TEMPERATURE AND SNOWPACK MEASUREMENTS ................... 99
7.1 AIR TEMPERATURE......coitiitiiieiieetieeeette ettt e st evseataeets et e saeseeeetsestseaaeeareans 99
7.2 GROUND SURFACE TEMPERATURE .....covieiiiiiieniieitiee ettt ere e eve e 105
7.3 SNOWPACK MEASUREMENTS .....ouiiiiiiiiiiiiiiiiteeeeie et see et 109

7.3.1 JOAERQ ...t 110
7.3.2 ABISKO. ..., 111



7.3.3
7.4

DOVEEfJEll ........coociriiiiiiiieee e e e s 114
DISCUSSION ...ttt e et 116

CHAPTER 8 RESULTS: MODELLING ERS-2 BACKSCATTER FROM A

GROUND SURFACE AND SEASONALLY VARYING SNOWPACK ........... 119
8.1 SURFACE SCATTER MODELS INCORPORATING SURFACE ROUGHNESS AND
DIELECTRIC PROPERTIES .....cooiitiiiiiiiiiiiiiiiiie et sttt s s 119

81.1 SUFJACE FOUGRANESS ...t eane 120
812 Kirchhoff geometric optics model..................cccueceviimorncenoieneneeeneannns 121
813 Kirchhoff physical optics model ................cccocoocveciiiiiiiiiiicianiiieieneennns 122
814 Other surface scatter models ..............cc.ccooevveveeeeiiiiiiiieeeceecieeiee e 123
8.2 VOLUME BACKSCATTER MODEL.......cccotveieiitiieeetieeeeteestsseeeteesstesesesneessesessans 123
8.3  INTEGRATED SNOW BACKSCATTER MODEL ......c.occccuvuemeirrinienenrennenecraeenesnens 125
8.4 ANALYSIS DESIGN ... .uiiiiieiiietieiiiirieeeeeiiteseeeeeeetsaeeeeesseesessbesseeesssseseserresasessas 126
8.4.1 SUFfACE FOUGRNESS..........oooieieieee e 126
84.2 Ground permittivity / SOl MOISTUFe. ..............ccereieiieieieesrereereere e, 127
843 SROWDACK PAYAMELETS ...........cc.covoiiiiiiiiiiiiicceee e 129
844 Parameters for sensitivity analysis................ccccccoeronovnovenieneneaeenns 129
8.5  RESULTS: GROUND SURFACE MODEL.......ccccutimuimiainiinreteerieneeseseseesessenaeeeas 132
85.1 Ground surface roughness...................... s 132
852 Ground dielectric CONSIANE ............c.cccovvivciiieaieeei e, 133
8.6  RESULTS: INTEGRATED SNOW BACKSCATTER MODEL .....cccorueureureniriiinenninnneas 134
8.6.1 Snow dielectric Properties ...........c....couvevceeeeeeenoeseeieee e 134
8.6.2 SHOW SUFfACE FOUGRNESS. ..ot 138
8.6.3 Snow density, grain radius and depth.................ccccccvveeviivvninninnanns. 139
8.6.4 Seasonal change in backscatter ..................ccooovviveiciivisicieiiiseeiinnin, 142
8.7 DISCUSSION ....oeeiiiiieetiee ettt e et e ettt e e e e e e e e eat e e s e areeesennneesneneas 145

CHAPTER 9 RESULTS: CHANGE IN ERS-2 SAR BACKSCATTER IN
RELATION TO SEASONALLY VARYING SNOWPACK AND GROUND

PROPERTIES........c.o et s e e e e ne e e 148
9.1 SAMPLING METHODOLOGY ....ciiiiiiuireaiieanieaieesieeaaeastresaeseseesenaesssesssessnsaens 148
9.2 WET SNOW SIGNATURE DETECTION ....cccutiiiiiiriiiiaiieeineenrienieenineeenneeiseesaraeeennes 150

9.2.1 JOAEKQ ... 150
922 Dovreffell ...........cocccoiiiiiiiiiii e, 152
9.2.3 ABISKO. ... 154

v




93 SNOW-FREE SIGNATURE DETECTION ....eeiuteeeeeeee e e eeeeeeeee e e e e e s s eeeeserenaaaesens 157

9.3.1 JOAIRA. ..ottt 157
9.3.2 Dovreffell ...t s 157
9.3.3 ADISKO. ...t 158
9.4 DISCUSSION ..ottt sttt sttt bbbttt se e sesns 159
CHAPTER 10 RESULTS: SNOW MELT MAPPING........cccoccvrvrmmrersvennreene 162
10.1  THE EFFECT OF MISSING COVERAGE ....c..ccitrutrietritetencnrerenteneeseneeesseessesenna 162
10.2 SNOW MAPPING ALGORITHM.......ccoeuetruirienrinianireacssesseesesesessasassssassessssesssnns 163
10.2.1  TransSition COAEs..............ccoocvvurcuieiesiiieiiieeeseess e 165
10.2.2  Temporal consistency and additional rules....................cccocveeuvenn.... 166
10.3 SNOW MAPPING......ccoruiiiiiiiininieirteiteee et es ettt st st e s es e e e e seeneaee 168
10.4  VALIDATION ....ootiiiiiiiiiieiinii ittt ettt ee et enaens 182
10.4.1  Joatha Validation.................ccccooevivimiiiniiiiiieieeiiecieete e 182
10.4.2  Dovreffell validation...............c...ccccoovviviiveeceeieeeceisie v eenrennn 183
10.4.3  Abisko validation ................cc..ccoovieiiouiiiiiiieiieeeeeee e 184
10.5  DISCUSSION ..couviiiiieiieeeieeetee ettt et et eteeeete e e e e eaesene e et saee s eaeesenneeaensesaesnsens 185

CHAPTER 11 RESULTS: RELATIONSHIP BETWEEN TOPOGRAPHY,
VEGETATION AND RADAR-DERIVED SNOW MELT AT THE FOREST-

TUNDRA ECOTONE ........ccoeiimeetritescenetmstenccnereresscseensessssnaneesssssssnnunerennes 187
11.1  SAMPLING SCHEME ......ccctoiiuireiiiieiireeineieeeieste ettt tsaesbese e se s sasnsseas 187
11.2  TOPOGRAPHY AND PATTERNS OF SNOW COVER......c.oecteteriraeirireiereeeneaienaennes 190

T12:1 JOQERQ.........coiiiiiiiiiieiceee e 190
11.2.2 DOVFEfJell ......oooocoiiiiiiieiiiciiiaieee ettt 192
T1.2.3 ABISKO......ceiiiieieeeee et 194
11.3  VEGETATION AND PATTERNS OF SNOW MELT ......cceertrieirnrierinieenneceeesreseennenns 196
131 JOAURQ..........cccoocoiiiiiiiiiiiiiiiiieeee e 196
11.3.2 DOVFEJEl ... 197
T1.3.3  ADISKO......o.oooiiiiiciiiiieeeee e 199
11.3.4  Unclassified snow cover and vegetation / topography ........................ 200
11.4  STATISTICAL MODELLING OF VEGETATION, TOPOGRAPHY AND SNOW-MELT.. 202
11.4.1  Profile and planform curvature............................cccccoeieeiiiiiiien. 202
11.4.2 UpSIOPe Qreq..........c...ccoccooeeiiiiiiiiiiieiicee e 203
11.4.3  Topographic soil MOIStUFe. ....................cc.coovoeeiieiiiiii e 203
11.4.4  Topographic shelter.....................ccccooceiiiiiiiiiiiiiiiiee e 203



11.4.5  Redundancy in topographic variables ...................ccc..ccccovevivvecnenn.n. 204

11.4.6  Principal component QRALYSIS................cccoceeceeiiaiieceeeieeeieeeeeeeens 204

11.4.7  Logistic regression at JOAtRQ.....................c.c.ccovevreemeeeeeieeeeeeeeee, 206

115 DISCUSSION ...ttt bttt b et b et 208
CHAPTER 12 GENERAL DISCUSSION ........ccoeieerirrercrereereceereeesssnsesnes 210
12.1  FUTURE RESEARCH PROSPECTS .....oovtiviitirireeiuiesieesteeteeeeeeeeeeaeeeeseeseneneesoreenns 214
REFERENCES........ociiiiiiiiiiii st re e re s ea e nra e s e sanns 216
APPENDICES........ce i re s s s e e e e e n e enaeen 231

Vi




List of figures

Figure 2.1. Simple conceptual model showing the interrelationship between snow,

vegetation and topography........ccccceennn. seeessasesseessnnesetesarsssanssssasantesanssnstases 12

Figure 2.2. Schematic diagram showing (local) incidence angle 6, which is defined
by the incident radar beam and the normal to the ground surface. ................ 17

Figure 3.1. Location of Study sites: (a) relative location of each site, (b) location of
Joatka, (c) location of Abisko, and (d) location of Dovrefjell. ...........ccceueuee.. 41

Figure 3.2. Joatka Study site with field station in foreground. The tree line and

study area is beyond snow-covered lake. . . 43

Figure 3.3. Abisko study site. Looking south toward treeline and Lapporten (Lapp
Gate) from summit of Njulla (1169 m)... . sessesssensntssersanaanee 43

Figure 3.4. Patch of snow-free tundra at Abisko study site. Looking south toward
Lapporten. ....eercinceenseesensensenssncsssssncssese 44

Figure 3.5. Obtaining field measurements: Snow density (left) and snow
permittivity using snow dielectric moisture meter (right). ......cccccerereerseccanranne 49
Figure 3.6. Relative location of study area within ERS-2 image frame for Joatka

study site. ceeresessisssannsensassansssnns .54

Figure 3.7. Relative location of study area within ERS-2 image frame for Abisko

study Site. .....cceeveisinsssnncensisnnsoes tesreessssnesesstassnssssnssrssssstntssasesnatesenssssassrssssants 55

Figure 3.8. Relative location of study area within ERS-2 image frame for

Dovrefjell study site. ......... croresssnesssnssanesiasessansene e 56

Figure 3.9. Hierarchical classification of arctic vegetation used for vegetation

SUTVEY. eeerrurersaresssssssnsssanssssssssnssssassassssssssssesssasessosssssesssssessssssssasssessasssnssssnsossessssssssss 61

Figure 5.1. Example of Gamma MAP speckle filter of image acquired over Joatka

study site. . . eesssesesssesesisssssnsasssnssssrsressntesssanssssennrses 68
Figure 5.2. Correction functions for incidence angle for ERS SAR data................ 73
Figure 5.3. ERS-2 SAR image processing methodology.........ccccevecrrecrucscaccsnsceccsseesans 77
Figure 6.1. DEM created over Joatka study site with 15 m contours. ........c.cceeeeueue 81
Figure 6.2. DEM created over Abisko study site with 25 m contour lines. ............. 82
Figure 6.3. Digitised DEM over Dovrefjell study site with 100 m contour lines..... 83

Figure 6.4. (a) Slope gradient and (b) solar radiation index derived from Joatka
DEML oectintitinniisssiisssiessississsssssssssssssssssssssssssssssosssssassasanassesssanessranssses 85

Figure 6.5. (a) Slope gradient and (b) solar radiation index derived from Abisko
DEM. ciiiiniininiinninsniinissiisisseissssessssssissssssssssssssssssssssasssssssssassssessasssasarsssasssssesses 86

VII




Figure 6.6. (a) Slope gradient and (b) solar radiation index derived from Dovrefjell

DEM ..cctnneniieiiisinnsisinississssisssssssstssssssosssonssssssssnsssssssonsss ... 87
Figure 6.7. Vegetation classification at Joatka. Classification using ML.C method

using Landsat TM data, acquired 16/07/87....... vressesassanssnesssnssnsossesns 91
Figure 6.8. Vegetation classification at Dovrefjell. Classification using ML.C

method using Landsat ETM data, acquired 06/08/99 ..........ccccererurcercunsnesensanes 94
Figure 6.9. Abisko vegetation classification. Source Lantmiteriet. .........ceceeverurenrens 96

Figure 7.1. Hourly mean air temperature and daily mean air temperature (1999):
a) Joatka, b) Abisko and c) Dovrefjell. Temperature measurements are the

mean of the four forest-tundra ecotone locations. .... 101

Figure 7.2. Hourly mean air temperature and daily mean air temperature (2000):
a) Joatka, b) Abisko and c) Dovrefjell. Temperature measurements are the

mean of the four forest-tundra ecotone J0CAtIONS. .....ccoverrerrrrrserssresssssessscereserss 102

Figure 7.3. Example of diurnal temperature change: Abisko SAR image

acquisition on (a) 02/04, (b) 21/04 and (c) 07/05 1999.......cccccverererrerrncene .103
Figure 7.4. Example of diurnal temperature change at Dovrefjell: SAR image
acquisition on (a) 29/03, (b) 14/04 and (c) 03/05 2000.............cccverreurense .104

Figure 7.5. Ground surface temperature (where available) across the forest-tundra

ecotone for each site. cersreestnresssnessesssnerersnnrassases 106

Figure 7.6. Snow measurements at a representative forest and tundra location at

JOATKA. ccecovreeerrrenrircrerererrossseesesssesosssassessssssssassosssssssssssssssssossnssnsssnsassosssessnsssnsessnonaos 110

Figure 7.7. Snow measurements at a representative forest and tundra location at

ADISKO. cevurrvereeriririsisissssccseseseresossserssesssrssssssssssss evsreceneresasesersererensrane 113

................................................... 115

Figure 7.9. Evolution of snow properties at tundra location in relation to
temperature. Dovrefjell, 14" April. .......c........ ceereaesaesrerasserassasaes e aanares 115
Figure 8.1. Validity domain of the small perturbation model (SPM) and Kirchhoff

physical optics (PO) and geometric optics (GO) models of surface scattering.
For the GO model the incidence angle is 23° (adapted from Rees (2001)). The
values of snow roughness are from Drinkwater and Crocker (1988) and the
ground roughness value is from Nagler and Rott (2000). .....ccccccerererveerrnnenne 132
Figure 8.2. Ground surface backscatter model for variable roughness a) std. dev.
surface height b) correlation length. .........cccccvvverivinniiscncnnninsennnenennnecrseeenes 133

Figure 8.3. Ground surface backscatter model for variable ground permittivity.134

VIl




Figure 8.4. Integrated snow backscatter model with variable snow water content.

Figure 8.5. Relative proportion of snow surface and snow volume scatter to total

backscatter for wet SHOW (W% = 6). ...ccceveirininsinsensnssssnesossssanssesansanes .. 136

Figure 8.6. Relative proportion of snow surface, snow volume and ground surface

scatter to total backscatter for dry snow (W% = 0). cucccererercsecsrnserccnecsersaenne 136

Figure 8.7. Penetration depth of ERS-2 into a snowpack for different dielectric and
density properties (see table 8.4 and equation 8.18)....... 137

Figure 8.8. Variation in backscatter for a dry snow covered surface with dry (g =
S), wet (g = 25) ground surfaces compared to a wet, snow-free surface. In

each case ground roughness parameters are /= 0.15 m and 4 = 0.022 m...... 138

Figure 8.9. Integrated snow backscatter model with variable snow surface

roughness (std. dev. surface height). ................. sesessesssossassrsssatosens 139
Figure 8.10. Integrated snow backscatter model with variable snow surface

roughness (surface correlation length). .... . 139
Figure 8.11. Integrated snow backscatter model with variable snow density....... 140

Figure 8.12. Integrated snow backscatter model with variable snow grain radius.

.................................................................................. 141
Figure 8.13. Integrated snow backscatter model with variable snow depth for a)

W% =2.5% and b) W% = 6%. tvesunessnssnesnssntsssasasesassasssbsesasaasassrsatasaente 142
Figure 8.14. Integrated snow backscatter model with for wet and dry and dry |

snowpacks with roughness from Drinkwater and Crocker (1988). ............... 143

Figure 8.15. Relative proportion of snow surface, snow volume and ground surface
scatter to total backscatter for very wet snow (W% = 4.5, table 8.5). ............ 143
Figure 8.16. Relative proportion of snow surface, snow volume and ground surface
scatter to total backscatter for dry snow (W% = 0, table 8.5)........cccccreeeueee. 144
Figure 10.1. The algorithm used to classify snow cover using difference in
DACKSCALLET . cueeiieiniiiieiiiiniiiisitnisiissnicsssissssssstissssossssssssssssssossssssnsossansenasesaesannas 164
Figure 10.2. The algorithm to recode cells that are dry/frozen snow in the image
acquired on 21* June to snow-free if they previously contained wet snow in an
CATHETr IMAGE. cccuiiiiitiieiiiiirenticiicernsinnsiscssessecssssassssesasesesssassssssasssseasserensssenssne 167

Figure 10.3. The algorithm to ensure temporal consistency of snow cover. Example

for Joatka image acquired on 17th May........vnviiniicnncnineereccnssssseessecsssnsens 168
Figure 10.4. Vegetation at Joatka study Site.......c.occererviinsinsresniirensnernssersesseesaenes 170
Figure 10.5. Elevation at Joatka study Site.......cocovermsicsirrensurnccrcssncccrseerensensnessenns 170

IX




Figure 10.6. Slope gradient at Joatka study Site. .......ccecceerriivesvnscnserscernsancnsscsesnssssn 171

Figure 10.7. Slope aspect (solar radiation index) at Joatka study site.........ccecseus 171
Figure 10.8. Spatial variation in backscatter difference (decibels) at Joatka, 17"
MAY .ciitreeirnsiniorensessessaseessssissessisesassanssistsassnsssassessassassssosssssonsssssssssssosssssssssnsssss 172
Figure 10.9. Snow map for Joatka, 17" May. ......cccoeerrereerrreenes .172
Figure 10.10. Spatial variation in backscatter difference (decibels) at Joatka, 5™
JUIC. ottt sissssssssesssssssssossssnssssssssssssssassnssssssossasanss 173
Figure 10.11. Snow map for Joatka, 5™ JURe. .......ccoeerevrecrerevereesirnneseresessessesssssesnes 173
Figure 10.12. Spatial variation in backscatter difference (decibels) at Joatka, 21*
June. i sesessasessnserssssasasastsansasanessstastasstesnsessane 174
Figure 10.13. Snow map for Joatka, 21* June. ............. 174
Figure 10.14. Vegetation at Dovrefjell study Site. ....ccccceereerercrsnccnccnscsencsnesnnccnssanesns 175
Figure 10.15. Elevation at Dovrefjell study site. .......c.ceeccsrisncsnisncsicsnsonene 175
Figure 10.16. Slope gradient at Dovrefjell. . ssussesenassrasessess 176
Figure 10.17. Slope aspect (solar radiation index) at Dovrefjell. .............cccecvueuue.. 176
Figure 10.18. Spatial variation in backscatter difference at Dovrefjell, 14™ April.
............................................................................................. 177
Figure 10.19. Snow map for Dovrefjell, 14™ April. ................ cereresseseenees 177

Figure 10.20. Spatial variation in backscatter difference at Dovrefjell, 3r May. 178
Figure 10.21. Snow maps for Dovrefjell, 3" May. .ccovnveecsnsocsonsncs . 178

Figure 10.22. Spatial variation in backscatter difference at Dovrefjell, 19* May.179
Figure 10.23. Spatial variation in backscatter difference at Dovrefjell, 19™ April.

....................................................................................... 179
Figure 10.24. Spatial variation in backscatter difference at Abisko. .......cccccoveveeene 180
Figure 10.25. Snow maps for ADISKO........cceevvinvirnvnnssnnroessnessanssanssscssssssssesssnsossssaose 181
Figure 11.1. Semivariogram of elevation at JoatKa. ..........cccvurvuvvvnricnsncnversrensancen 189
Figure 11.2. Semivariogram of solar radiation index at Joatka.........c..ceeververeenes 189

Figure 11.3. Semivariograms and fitted models of backscatter values (dB) on (a)

7™ January and (b) 5™ June at Joatka. ........ sessssssesessareneos 190
Figure 11.4. Area of wet snow by elevation (JoatKka)........ccccceercerrrnrrreecrnrrerccanesnne 191
Figure 11.5. Area of wet snow by elevation (Dovrefjell). .......ccccoevirvveririeniccercnnnes 193
Figure 11.6. Area of wet snow by elevation (AbiSK0). ..co.ccovviiciincninnerissncssersnnenes 195




List of tables

Table 2.1. Radar band designations. ........cocccuccvervievnesnnsnnnssicssesesssssessssesssssssssssseas 16
Table 2.2. System parameters for space-borne SAR. .........cccvvsssseessnsnssssesessusaesssnses 21
Table 2.3. Future space-borne SAR SYStEINS. ......cocovvvcsreresursenssassassasssassasassasasnsassssases 21
Table 3.1. ERS-2 imagery acquired at each study site. .......ccoreererserserscrecrescanns 53
Table 3.2. Landsat TM imagery acquired at each site. ........coceevevverrensecrencencancens 37
Table 3.3. Photogrammetric values of aerial diapositives. 58
Table 5.1. Incidence angle for different image tracks at each study site.................. 75

Table 5.2. Backscatter correction functions (dB) for incidence angle of difference

image tracks relative to reference incidence angle (23°). ......cecoseeuvrniressesnssasncas 75
Table 5.3. Modelled difference in backscatter (dB) between image tracks............. 75
Table 6.1. Implementation of classification: Joatka. ........cccceinveerencecseencssnsseesenseecnns 89
Table 6.2. Contingency table for classification: Joatka..........ccceervevverrncvcrersenns 92
Table 6.3. Implementation of classification: Dovrefjell..........cccocveucvcrccncccencsaecrecnnee 92
Table 6.4. Contingency table for classification: Dovrefjell...........ccorveeueueeen.. .93
Table 7.1. Duration of snow cover at Joatka relative to lower forest. ................... 107
Table 7.2. Duration of snow cover at Abisko relative to lower forest.................... 107
Table 7.3. Duration of snow cover at Dovrfjell relative to lower forest................. 108

Table 8.1. Qualitative ground surface roughness and quantitative parameters... 126

Table 8.2. Qualitative interpretation of snow surface roughness and quantitative

PATAIMNELETS. .cuorecrrrensreesssssrssssssansesassssassossanss crsessstssssssnsetosissnsenissssssssassssssnsases 127
Table 8.3. Soil dielectric measurements at Abisko and Joatka. ..........ccccecveeeveenene 127
Table 8.4. Measured snowpack parameters during seasonal evolution compared

with parameters from literature. sessesssessusesssasssanersnssrsssssnesasesantes 128

Table 8.5. Variable sets of ground surface parameters for sensitivity analysis.... 129
Table 8.6. Combination of ground surface parameters for sensitivity analysis.
Variable indicates the set of values from table 8.5. .........cccceivivrreerverecersensenene 130
Table 8.7. Variable sets of snow parameters for sensitivity analysis. .........ccccnee.. 130
Table 8.8. Typical values of real and imaginary part of dielectric constant for snow
water content. Calculated for p = 0.4.......covnieiinvnniiinnsnnnennnncncenenseeseensens 131
Table 8.9. Combination of Snow parameters for sensitivity analysis. Variable
indicates the set of values from table 8.7. ........cccevmervrercerrenenriesecrencrenrennensnens 131
Table 9.1. Descriptive statistics for wet snow and dry snow samples from 12" April

ANA 17 MY (JOALKA)..vvurveireresereieeseesssssssesessssnsenseassssssssssstasessessssssssesssassssans 151




Table 9.2. Paired t-test to evaluate difference in mean backscatter of 12th April
and 17th May from reference image (JoatKka).........cccovunrercrunsserccnssssosessosssnncsns 151

Table 9.3. Descriptive statistics for wet snow and dry snow sample from 5™ June
(J0atKA). ..uueicrerircenninisssnnisasersssessnsessnessssssaase cesesanssesssnnanes .- L1582

Table 9.4. Paired t-test to evaluate difference in mean backscatter of 5th June from

dry snow sample (Joatka)........cccoerececcnerene 152
Table 9.5. Descriptive statistics for wet snow and dry snow samples from 29"

March, and 14™ April (Dovrefjell). 153
Table 9.6. Paired t-test to evaluate difference in mean backscatter of 29th March

and 14th April from mean dry snow sample (Dovrefjell). ...c..ccceervecrrscnreranans 153
Table 9.7. Descriptive statistics for wet snow and dry snow sample from 3r May
(Dovrefjell)... e 154

Table 9.8. Paired t-test to evaluate difference in mean backscatter of 3™ May from
mean dry snow sample (Dovrefjell).......coccinvneensscnrssssnnccsenseccsonnscssasesssonissssnsasans 154

Table 9.9. Descriptive statistics for wet snow and dry snow sample on 21* April
(ADISKO). cvvrnrireninnnssnnssnsssisssessenssisessassssissansssmsassssassssssssssssssssssrsssssssassssssssssnsessasse 155

Table 9.10. Paired t-test to evaluate difference in mean backscatter from dry snow

cover and 21% April (AbiSKo). ......ccceururenreenenes 155

Table 9.11. Descriptive statistics for wet snow and dry snow sample on 7™ May
(ADISKO)..cccovurrrrcrueerrenennn. stssssesssneessuessraneastssntessresssesesanessensaseesanees 155

Table 9.12. Paired t-test to evaluate difference in mean backscatter of 7" May

from mean dry snow sample (Abisko). reeesssnessnssnes .156
Table 9.13. Descriptive statistics for wet snow and dry snow sample from 26™ May
(ADISKO). . cuviruvreensssreensssnesossisnssanessrsnsccsanssssessssnsenases cesssersssssnsasssssantesensnes 156

Table 9.14. Paired t-test to evaluate difference in mean backscatter of 26™ May

from mean dry snow sample (ADISKO). ....cccciveeivsriisssenssncsssnossanssnssssssessesssnssssase 156

Table 9.15. Descriptive statistics for snow free and dry snow samples (Joatka). . 157
Table 9.16. Paired t-test to evaluate difference in mean backscatter of snow-free

from mean dry snow sample................ . . e 157

Table 9.17. Descriptive statistics for snow free and dry snow samples (Dovrefjell).
Table 9.18. Paired t-test to evaluate difference in mean backscatter of snow-free

from mean dry snow sample at Dovrefjell............occovviuivinvrnrecnnsnscnsnsssisennnnes 157

Table 9.19. Descriptive statistics for snow free and dry snow samples (Abisko).. 158

X1




Table 9.20. Paired t-test to evaluate difference in mean backscatter of snow-free

from mean dry snow sample at ADiSKO.........ccevuivrensverisenenissnnssnssssisensssosssseins
Table 10.1. Layover, shadow and other topographic information for each site. .. 163
Table 10.2. Snow-state transition COdes. .......c.ccevivueirensnesrnsessicsesssossesssssssasersssassasones 165

Table 10.3. Contingency table for 12™ April image at Joatka. It is likely that there

is some accurately classified wet snow, but this cannot be validated............. 183
Table 11.1. Proportion of wet snow by elevation (Joatka). 191
Table 11.2. Proportion snow-free by elevation (Joatka). . 191
Table 11.3. Proportion wet snow by slope aspect (Joatka). 192
Table 11.4. Proportion snow-free by slope aspect (Joatka). ... 192
Table 11.5. Proportion of wet snow by elevation zone (Dovrefjell).........ccccourueenenn. 193
Table 11.6. Proportion snow-free by elevation (Dovrefjell). 193
Table 11.7. Proportion of wet snow by slope aspect (Dovrefjell). .........cceveecnrcansane 193
Table 11.8. Proportion snow-free by slope aspect (Dovrefjell). ..194
Table 11.9. Proportion of wet snow by elevation (AbiSK0)......cccoeeeruevrnrsncsessansonesens 194
Table 11.10. Proportion snow-free by elevation (Abisko) . .. 195
Table 11.11. Proportion of wet snow by slope aspect (Abisko) 196
Table 11.12. Proportion snow-free by slope aspect (AbiSKO0)......c.ccvevevercenccsnrennecnss 196
Table 11.13. Proportion of wet snow by vegetation type (Joatka). ........ccecerurvuencne 197
Table 11.14. Proportion snow-free by vegetation type (Joatka).........ccoeeereenruceserens 197
Table 11.15. Proportion snow-free by vegetation type and elevation. ..........ccc.e.... 197
Table 11.16. Proportion of wet snow by vegetation type (Dovrefjell)..........c.ccu.... 197
Table 11.17. Proportion snow-free by vegetation type (Dovrefjell). ......ccceeueeunee 198
Table 11.18. Proportion snow-free by vegetation type and elevation (Dovrefjell).

199
Table 11.19. Proportion snow-free by vegetation type (Abisko). .......ccccceverceerrerunes 199
Table 11.20. Proportion snow-free by vegetation type and elevation. ................... 200
Table 11.21. Percentage of unclassified pixels at each site......ccccoovrerrciircvercnrcncsacens 200
Table 11.22 Percentage of unclassified pixels by elevation at Joatka..........ccceucu.. 201
Table 11.23. Percentage of unclassified pixels by elevation at Dovrefjell.............. 201
Table 11.24. Percentage of unclassified pixels by elevation at Abisko................... 201
Table 11.25. Percentage of unclassified pixels by slope aspect at Joatka.............. 202
Table 11.26. Pearson Correlations for topographic variables at Joatka (shaded

cells significant at the 0.01 1eVel. ...cc..coverevirennnirecicecieninenncercnsecseersensessnnessessnnes 203
Table 11.27. PCA: Total variance explained...........cccoevvvvncrsnvveisrennncccerssesssnssnenne 205

XIII




Table 11.28. Component MatriX....c.coccevceissisensnssssssnssssssssssessesssssessnssssssssosesasssnssass 205
Table 11.29. Interpretation of PCA 10adings. .......coccervvervesreisireesnssresssnssassssssassssssases 206
Table 11.30. Predictor variables for logistic regression at Joatka. .......ccceecererersaras 206

Table 11.31. Residual analysis (Nagelkerke R°) and prediction accuracy (Kappa).

Table 11.32. Model parameter estimates. Empty cells for a model indicate a

predictor was not significant as an overall model predictor...........ccccceerreruene 208

X1V




Chapter 1. Introduction

In the north of Scandinavia, the treeline, the limit to which trees can grow, is generally
formed by mountain birch (Betula pubescens ssp. tortuosa). The forest-tundra ecotone
1s the zone between the limits of continuous forest and the treeline. Beyond the treeline,
vegetation is predominantly dwarf shrubs, herbs and mosses and can be loosely termed
tundra. The latitudinal treeline is an exceptionally important transition zone in terms of

global vegetation, climate, biodiversity and human settlement (Callaghan et al., 2002a).

The third assessment of the Intergovernmental Panel on Climate Change (IPCC) reports
that globally averaged surface temperature is projected to increase by 1.4 to 5.8 °C over
the period 1990 to 2100' (Houghton ef al., 2001). The character of predicted future
climate change is, however, distinctly non-uniform with maximum warming in high
latitudes of the Northern Hemisphere (Cubasch et al., 2001). Globally averaged water
vapour, evaporation and precipitation are projected to increase. Results from recent
Atmosphere-Ocean General Circulation Model (AOGCM) simulations indicate that it is
likely that mean precipitation will increase in both summer and winter over high-
latitude regions (Houghton et al., 2001), although the European Arctic may have lower
summer precipitation (Cubasch, 2001). Current climate trends are such that global
average surface temperature has increased by 0.6 + 0.2 °C since the late 19™ century
(Houghton et al., 2001). Recently an increase of photosynthetic activity of terrestrial
vegetation was observed from 1981 to 1991 using satellite data, with the greatest
increase in the Arctic regions (Myneni et al., 1997); this is interpreted as a consequence

of an early disappearance of snow cover and subsequent increased temperature

(Groisman et al., 1994).

The feedbacks between the climate system and vegetation in high latitude regions are
substantial. We know that the latitudinal treeline has been sensitive to climate changes
in the past with, for example, forest expansion during a Holocene episode of climate
warming that occurred between 5,000 and 4,000 years ago (Macdonald et al., 1993). In
the Abisko area of the Swedish Arctic, Barnekow (1999) found macrofossils of
mountain birch 300-400 m above the present treeline and a pronounced expansion of

Scots pine (Pinus sylvestris) above its present limit around 5500 B.P. 1t is precisely

1 . .. .
Based on a number of climate models and 35 emission scenarios.
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because of this sensitivity to climate influence that reconstructions of past changes in

treeline have been used to make inferences about past climates (Payette et al., 1989).

Most global and regional models of vegetation redistribution resulting from global
climate change suggest that an advance of the boreal forest will displace a major part of
the tundra. Kaplan (2001) developed a state-of-the-art equilibrium vegetation
distribution model, BIOME4, which includes several Arctic plant functional types
(PFTs). Compared to the present day, the potentially forested area of the Arctic
increased substantially for an increased greenhouse gas scenario® for 2100; tundra was
correspondingly reduced. The simulated tree line was farther north than in any of the
mid-Holocene simulations, and the treeline was shown to advance relative to the present
in all areas. Latitudinal shifts in the location of the forest-tundra ecotone will have
significant effects on carbon cycling, trace-gas exchange, and water/energy balances.
The primary control of energy balance at the surface is albedo and the contrast in
surface albedo between tundra vegetation and forest is considerable; it is greatest in the
winter, when the tundra is snow covered but the trees of the forest protrude above the
snowpack (Harding et al., 2002). Earlier disappearance of snow from the tundra and a
decrease in albedo of new areas of forest will cause massive changes in the energy
fluxes at the surface and a positive feedback resulting in significant heating of the lower
atmosphere (Harding ez al., 2002). However, this process might be offset by an increase
in carbon sequestration and surface hydrological changes that reduce methane

emissions.

The forests and tundra of northern Scandinavia are home to the Sami people who
depend for their livelihood on large herds of semi-domesticated reindeer (Rangifer
tarandus), which migrate between summer tundra and winter forest grazing pastures. A
shift in the location of the forest-tundra ecotone will also have significant impact on the

livelihood of these indigenous people.

1.1 Context of research: DART project

This research was conducted as part of the DART project (Dynamic Response of the
Forest-tundra Ecotone to Environmental change) (Huntley, 2003), which was funded by

the European Commission as part of the Environment and Climate Programme of the

? An exponential “business as usual” scenario (IS92a).
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4th Framework. The project commenced in April 1998 and ended in December 2002
and this research comprises Work Package 2. DART was an international programme of
scientific research that aimed to increase our understanding of ecosystem dynamics at
the forest-tundra ecotone in northern Europe and, in particular, to quantify the dynamics
of the response of this ecotone to environmental change. A key component of the
DART project was to assess the interaction between vegetation at the forest-tundra

ecotone and snow-melt dynamics.

1.2 Delineation of the forest-tundra ecotone

Spatial scale is inherently involved in recognising spatial patterns on the landscape and
in estimating the relationships between landscape components and environmental (and
social) processes driving those patterns (Walsh et al., 1999). At small scales (10°-10* m)
the forest-tundra ecotone is generalised as a linear boundary. At such scales, location of
the treeline is controlled by macroclimate, as demonstrated by the strong inverse
relationship between tree limit of the southern Swedish Scandes and shortest distance to
the sea (Kjillgren and Kullman, 1998). At landscape scale (10'-10° m) significant
spatial variation is revealed with, for example, trees commonly following river courses
and abrupt reversals of the sequence of treeline components along elevation gradients
(Rees et al., 2002; Walsh er al,, 1994). At landscape-scale, distribution of snow is
perhaps the single most important variable controlling biological systems in arctic
ecosystems (Walker et al., 1993; Walker et al., 1999). Depth and duration of snow
cover are consequences of interactions between landscape-scale variability in
topography, climate and vegetation. Causal relationships, however, are uncertain
because the nature of the vegetation itself influences the distribution of the snow cover
(Schaefer and Messier, 1995). Snow persistence has a wide variety of ecosystem
influences, including effects on length of the plant growing season, soil moisture, soil
chemistry, soil temperatures, depth of freezing and heat flux (Walker, 2000). Persistent
snow may limit the plant growing season but, depending upon the timing, late snow
melt may function as a beneficial moisture reservoir offering protection from climatic

stresses, particularly wind desiccation.

1.3 Utility of remote sensing for monitoring Arctic

ecosystems

The utility of remote sensing for monitoring and classification of vegetation at a range

of spatial (and temporal) scales is well known. Much of the Arctic is remote and
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accessible only with difficulty, remote sensing from spaceborne platforms is, therefore,
likely to play a significant role in determining the dynamic of the forest-tundra
boundary (Callaghan et al., 2002a). Requirements for regional or global mapping are
likely to limit resolution to 30 to 100 m, which precludes the identification of individual
trees (Rees et al., 2002). Consequently, the emphasis is on the spatial pattern of change
in cover and density of trees (Callaghan et al., 2002b).

Snow cover is one of the easiest types of land cover to distinguish in visible and near-
infrared (VIR) imagery (Rees and Steel, 2001), although the latter suffers from several
limitations: (1) Inoperability through cloud and at night; (2) Incompatibility between the
temporal resolution required to reduce problems of cloud cover and the spatial
resolution compatible with topographic variation in mountainous regions; (3) Inability
to monitor snow cover beneath a forest canopy; and (4) Inability to distinguish different
types of snow cover, especially the discrimination of wet and dry snow. As an
alternative, space-borne synthetic aperture radar (SAR) with independence of cloud
cover and solar illumination, and especially given sensitivity to liquid water content,

offers an attractive alternative (Kasischke et al., 1997).

1.4 Research aims

The aims of this research can be summarised as follows:
1. Use suitable remote sensing techniques to identify the location and landscape-
scale spatial patterns of the forest-tundra ecotone in Arctic Europe at.
2. Evaluate the capability of synthetic aperture radar (SAR) to map landscape-scale
snow melt dynamics at the forest-tundra ecotone in Arctic Europe.
3. Identify the correlation between location of the forest tundra ecotone and aspects

of the physical environment, particularly the pattern of snow melt.

1.5 Thesis structure

Following this short introduction, this thesis is structured into a number of discrete
chapters. Chapter 2 provides an introduction to research concerning snow-vegetation
interaction at the forest tundra ecotone and a comprehensive review of ecological
applications of SAR, in particular for snow monitoring. Chapter 3 introduces the study
sites, field measurements, and the VIR and SAR remotely sensed data, which were a

necessary prerequisite for this research.



The methods of processing the VIR imagery are given in a relatively short chapter 4.
Following this, chapter 5 presents the SAR image processing methods required to
conform the ERS-2 SAR imagery into map geometry for integration within a GIS and
details of the radiometric correction of the SAR imagery. The results of the vegetation
classification using VIR imagery at each site are presented in chapter 6 and in chapter 7
the results of the field measurements collected to monitor evolution of snow melt across
the forest-tundra ecotone are presented. A simple snow backscatter model, which has
been commonly applied in applications of SAR for snow cover monitoring, is used
chapter 8 along with field measurements to investigate the nature of radar interaction
the snow covered ground. Changes in SAR backscatter in relation to the change in snow
properties are reported in chapter 9 and this leads to the development of a snow-
mapping algorithm in chapter 10. Subsequently, chapter 11 undertakes analysis of the
evolution of snow melt within biophysical zones related to topography and vegetation.
The final chapter is a general discussion of research findings and discusses priorities for

future research.



Chapter 2. Literature review

This chapter presents a review of important literature in the context of this research.
Firstly, research into interaction between snow and vegetation, focused at the forest-
tundra ecotone, is reviewed. Following this, an extensive review of radar remote sensing
is undertaken, which introduces the fundamentals of radar imaging and some ecological
applications of radar remote sensing with emphasis on the utility of radar for snow and

forestry applications.
2.1 Snow-vegetation interaction

211 Snow-vegetation interaction

Snow cover influences plant distribution and abundance both directly and indirectly by
affecting establishment, growth, reproduction and phenology of plants (Heegaard,
2002). By limiting the length of the growing season, snow indirectly controls the
distribution of many plant species (Billings and Bliss, 1959; Kudo, 1991; Walker et al.,
1993). Snow distribution can prevent tree establishment (Billings and Bliss, 1959), but,
conversely, wind exposed sites that are snow-free have extremely low winter soil
temperatures and high moisture stress (Billings and Bliss, 1959; Walker et al., 1993).
Therefore, a late-lying snowpack may offer beneficial protection, being a valuable
moisture reservoir and also a potentially large source of nitrogen for supporting plant

growth (Bowman, 1992).

Several studies have combined measurements with manipulations of seasonal
distribution of snow cover and temperature at plot scales (<10 m?). Snow fences have
long been used to manipulate the amount of snow distributed by wind in open
environments (Daly, 1984), but experiments at the Arctic forest tundra ecotone have
been more limited. Considerable plasticity in growth and phenology of Alpine and
Arctic plants in response to the manipulated snow and temperature has been recorded
(Galen and Stanton, 1995; Walker et al., 1999) and Walker et al. (1999) reported the
death of the dominant tundra species within three years of a manipulated shortened
growing season. The DART project, focusing on Arctic Europe, has conducted
experiments to modify the rate at which the snow melts, extending or decreasing the
period of snow cover (Huntley, 2003). This includes erecting artificial canopies of dead

birch trees to examine how the canopy alters snow accumulation and melting.



Preliminary results suggest that the “fake forest” favourably increased temperature as a
result of lower albedo of the forest microclimate, accelerating phenology of birch

saplings in spring and early summer (Molau, pers. comm.).

21.2 Scale dependence

Vegetation at the forest tundra ecotone exhibits hierarchically-scaled spatial
heterogeneity, with plant community mosaics at landscape scales and variation in the
predominant mosaic elements at regional to Pan-Arctic scales; this heterogeneity
reflects hierarchically-scaled spatial and temporal environmental heterogeneity (Baxter,
pers. comm.). Spatial patterns in the landscape may be discernable only at certain
measurement scales and ranges of measurement scales; landscapes appear homogeneous
at some scales but heterogeneous at others (Walsh et al., 1999). Therefore, defining an
appropriate measurement scale is particularly important, because we must capture the

natural spatial variability at an appropriate scale given the processes we wish to study.

The term scale refers to a characteristic length or time (Bloschl, 1999). 1t is useful to
define: (1) process scale, which refers to the spatial dimension of natural variability; (2)
measurement scale, which relates to the spatial dimension of a measurement structure;
and (3) model scale that relates to the spatial dimension of a model (Bloschl, 1999).
Measurements can be undertaken at various scales, depending on the generality with
which we wish to model the ecological processes under examination (Chapin 111 et al.,
1996). For example, if a snow pack is investigated in great detail, the spatial variation of
the hydrologic environment means that the numbers of possible flow paths for melt
water or gas exchange is enormous (Bloschl, 1999). A coarser measurement scale may
make the patterns of snow melt more predictable by averaging out spatial variation and

decreasing noise (Wiens, 1989).

With remote sensing, the measurement scale is defined by the spacing, extent, and
resolution of the imagery: Spacing is equal to the pixel size; the extent is effectively the
swath width; and the resolution is the ability of a sensor to distinguish two closely
spaced objects or lines as two rather than one object or line. Alternately, it is the
smallest object or narrowest line a sensor can detect. Remotely sensed data may appear
complex because of the scale of natural variation relative to the resolution, noise, and
sheer volume of information. Inherently related to the spatial scale achievable with

space-borne remote sensing is the frequency with which observations can be made, or
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the temporal resolution. The average time between successive opportunities to observe a
specific location is roughly inversely proportional to the swath width (Rees et al.,
2002). If we are to adequately capture landscape-scale variation in snow melt patterns in
relation to the structure of the vegetation at the forest tundra ecotone, data on snow
cover are required at relatively high temporal and spatial scales over relatively large
areas. Remote sensing is the only reasonable method for such data collection and a
discussion of available remote sensing technologies is undertaken in section 2.1.3 and

2.1.4 and from section 2.2 onwards.

213 Mapping vegetation at the forest-tundra ecotone using
VIR imagery

Remote sensed data have been used in a number of classification schemes at landscape,
regional and global scales (Townshend et al., 1991). There has been an increasing
demand for remote-sensed data products for use within regional and global ecosystem
models and it is recognized that many vegetation classifications are no longer an end
product, but a source of initialising data for ecological modelling (Nemani and Running,
1996). Observation of vegetation assemblages provides a challenge if classification
products are to be “scaled-up” and used to initialise or validate regional mechanistic
models, which produce proportions of plant functional types (PFTs) for each pixel (e.g.
BIOME 3 and 4; see Haxeltine and Prentice (1996); Cramer (2002); Kaplan (2001)).

Techniques to exploit data in the visible near-infrared (VIR) portion of the
electromagnetic spectrum are already reasonably well established for the delineation of
different Arctic vegetation types, although these techniques do generally require the
input of field data (Frank, 1988; Rees et al., 2002). Chapin Il et al. {, 1996 #112} and
Walker {, 2000 #147} proposed a hierarchical classification of Arctic PFTs that should
be readily detectable using satellite imagery. This includes the discrimination of forest
and non-forest types, and shrubs, herbs, and non-vascular PFTs. However, many
classification products suffer a lack of generality because of the classes selected and
uncertainty regarding their statistical characterization. Therefore, a classification may
require detailed ancillary information to resolve classes for comparative studies or
another application. It is important to be realistic in terms of class definition given the
spatial and spectral resolution of current earth orbiting satellites; number of classes
should be restricted to those with potential to have a unique spectral and/or temporal

signature. Class definition is also likely to depend on timing of the acquisition of
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imagery (related to solar illumination and vegetation phenology) and scale of spatial

variation in the forest-tundra ecotone relative to the resolution of the sensor.

In addition to space-borne techniques, we should also consider the possibilities
presented by airborne remote sensing methods (Rees et al., 2002). Ortho-rectified aerial
photography may be useful for mapping the forest tundra ecotone at local and regional
scales, however, spectral variation amongst photographs and the fact that such products
are production intensive in terms of ground control requirements, digitising, and
requirement for a high resolution DEM are limitations (Baker et al., 1995). Using
Airborne Thematic Mapper (ATM) data, (Foody et al., 1992) demonstrated the potential
of using probabilistic measures of class membership from a maximum likelihood
classification for modelling a forest-heathland ecotone in the UK. New developments in
air-borne remote sensing such as laser height profilers (e.g. LIDAR - Light Detection
and Ranging) and use of “fuzzy” classifications offer potential for improved models of
the three-dimensional patterns (Callaghan et al., 2002) and density gradient of the

forest-tundra ecotone.

214 Mapping snow cover using VIR imagery

Routine snow survey and snow gauge data provided by meteorological stations establish
temporal ground snow cover conditions but they lack a spatial dimension. Reliable
spatial information can only reasonably be acquired through remote sensing, with VIR
and active and passive microwave systems having considerable potential. Snow cover is
one of the easiest types of land cover to distinguish in VIR imagery because snow has a
very high albedo throughout the visible wavelengths, unless the surface has acquired a
covering of dust (Rees and Steel, 2001a). Historically, the only serious problem was
with snow/cloud discrimination; in the visible and thermal infrared wavelengths snow
and clouds have similar reflected and emitted longwave terrestrial radiance.
Discrimination between snow and cloud can be achieved using observations in the near
infrared where the albedo of snow cover is comparatively very low. For example,
Dozier (1984) used band 5 (1.55 — 1.75 um) of Landsat Thematic Mapper (TM), which
has a spatial resolution of 30 m, to distinguish snow from cloud. Similarly, the new
band 3a (1.58 — 1.64 pm) of AVHRR/3 (Advanced Very High Resolution Radiometer)
onboard NOAA-17 facilitates snow discrimination, but has a resolution at nadir of 1.09
km (NOAA, 2002). MODIS (Moderate Resolution Imaging Spectroradiometer),
onboard the Earth Observing System (EOS) Terra and Aqua satellites, acquires data in
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36 spectral bands with high radiometric sensitivity, including band 6 (1.628 — 1.652

pum) with a spatial resolution of 500 m.

Data from relatively low spatial resolution sensors such as AVHRR are routinely used
for national, regional and hemispheric scale snow mapping. Since the launch of the EOS
satellites in 1999, daily snow cover mapping for the Northern Hemisphere has been
performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using
MODIS data (Hall et al., 2001). Lucas and Harrison (1994) discussed the potential
application of AVHRR data for improving or replacing the UK’s National Snow
Survey. Landsat TM data, with the 30 m resolution that is comparable to the scale of
topographic relief in many alpine regions, are routinely applied to monitoring snow
cover on drainage basin scales. Indeed, the Normalized Difference Snow Index (NDSI)
using TM bands 2 and 5 has been developed for monitoring and mapping of snow/ice

cover (Dozier and Marks, 1987; Walsh ez al., 1994; Winther and Hall, 1999).

VIR sensors, however, suffer from several disadvantages that can be considered to
preclude their operational use: (1) inoperability through cloud and inoperability at night;
(2) incompatibility between the temporal resolution required to reduce problems of
cloud cover and the spatial resolution compatible with topographic variation in
mountainous regions; (3) inability to monitor snow cover beneath a forest canopy,
because the received radiation will be mixed from the snow cover and the vegetation;
and (4) inability to distinguish different types of snow cover, especially the
discrimination of wet and dry snow. VIR methods can provide limited information on
snow wetness, because the albedo of a wet snowpack is reduced, but this approach is
very difficult to apply (Rees and Steel, 2001a). These problems have prompted interest
in alternative space-borne methods for snow monitoring, and in particular synthetic

aperture radar (SAR) systems, which are discussed in section 2.3 — 2.5.

21.5 Landscape scale modelling of snow-vegetation

interaction at the forest-tundra ecotone

Predictive spatial modelling of vegetation is founded in ecological niche theory and
environmental gradient analysis (Franklin, 1995). Models are generally based on
hypotheses as to how environmental variables, or gradients, control the distribution of
species and communities. There have been various attempts to model snow-vegetation

interaction and vegetation responses and feedbacks to climate. Levens (1966)
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formulated the principle that only two out of three model properties, generality, reality,
and precision can be improved simultaneously, while the third property has to be
sacrificed. This leads to a distinction of three different groups of model; analytical,

empirical, and mechanistic, the choice of which has an implication for the research task.

Analytical models focus on generality and precision, and are designed to predict
accurate response with simplified reality (e.g. Lokta-Volterra models: see Gillman and
Hails (1997)). Empirical or statistical models forfeit generality for precision and reality.
It i1s not possible to determine physiological cause and effect with such models,
although some description of functional relationships can be achieved (Austin, 2002);
their main purpose is to condense empirical facts (Wisel, 1992). Empirical techniques
are static, in the sense that they consider vegetation to be in equilibrium with climate
(Gottfried et al., 1998). They also model the realised rather than fundamental niche due
to their intrinsic empirical nature and implicitly incorporate biotic interactions and
negative stochastic effects that can change from one area to another (Guisan et al.,
2002; Guisan and Zimmermann, 2000). Consequently, application of empirical models

in different regions and at different spatial scales is limited.

Process-based or mechanistic models are based on cause-effect relationships that are
biologically functional (Woodward, 1987), and are therefore considered to be realistic
and general. Mechanistic models parameterise the fundamental niche and may also
implement rules of competitive behaviour to predict the realized niche. Biotic
relationships are likely to change over time, as demonstrated through paleoecological
evidence (Huntley and Webb, 1988), and modelling the fundamental niche enables

prediction of response to changing environmental conditions.

Franklin (1995) makes an important distinction between three types of environmental
gradient used within predictive habitat models; resource, direct, and indirect gradients.
Resource gradients refer to matter and energy consumed by plants for growth (e.g. light,
water). Direct gradients include those having direct physiological impact but not
consumed by plants (e.g. temperature, pH). Indirect gradients (e.g. slope and aspect)
have no direct physiological influence on plant growth, and relationships with
vegetation are likely to be location-specific. From a mechanistic point of view (to
improve model generality), it is desirable to predict species or community distribution

on the basis of resource or direct gradients, those ecological parameters that are believed
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to be the causal factors for their distribution and abundance (Guisan and Zimmermann,
2000). The use of indirect gradients to replace a combination of resource and direct
gradients means that a model can only be applied within a limited geographical extent
without significant errors, because, for example, in a different region the same
topographic gradients can reveal different resource and direct gradients. However,
because of topographic controls on microclimate, direct bioclimatic parameters are
often developed from spatial interpolations of climate station data based on topography
(Daly et al, 1994; Garen et al., 1994), which introduces spatial uncertainties into
microclimates because of interpolation errors and lack of sufficient data collecting
stations (Joyce, 2000). In such circumstances, the use of indirect variables may produce

better predictions.

In a modelling process, some sort of conceptual or theoretical model should already be
proposed (Austin, 2002). A very simple conceptual model is given in figure 2.1, which
illustrates that snow-vegetation associations are likely to be due to their mutual
relationships with topography. It is difficult to address questions of causality with
empirical approaches; causal mechanisms must be pursued by experiment or process-

based modelling.

snow distribution

topography

plant communities

Figure 2.1. Simple conceptual model showing the interrelationship between snow, vegetation and

topography.

Empirical modelling techniques have frequently been employed at landscape scales to
correlate vegetation at the forest-tundra ecotone with environmental gradients, including
snow melt. Many analyses are implemented within geographical information systems
(GIS) and frequently utilise a digital elevation model (DEM) and data obtained from
using remote sensing. Environmental gradients derived from DEMs are particularly
important at landscape scales because of the importance of topography in determining

important environmental gradients at such scales.
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Landsat TM —derived snow maps and indirect gradients such as elevation and aspect
have be used to assess the relationship between topography, snow melt (Allen and
Walsh, 1993), snow avalanche (Walsh ez al., 1994) and the spatial composition of the
Alpine forest-tundra ecotone in Glacier National park, Montana. In these studies,
distinct differences in snow melt patterns relative to topography and Alpine vegetation
were observed. Brown (1994) used several environmental gradients in statistical
modelling (logistic regression) to predict vegetation type at treeline in Glacier National
Park. The gradients included elevation and others derived from a DEM, including
potential soil moisture, potential solar radiation, and potential snow accumulation;
however, the model explained little of the spatial variation in vegetation types. A high
resolution DEM (1 m) was used by Gottfried et al. (1998) to derive indirect gradients
including measures of topographic roughness and curvature. The empirical model
explained a significant amount of variability in plant communities and was successfully
related to elevation and moisture gradients. Ostendorf and Reynolds (1998) found
similar correlation with soil moisture, modelling tundra vegetation in relation to slope as

a function of upslope area.

Tappeiner et al. (2001) aimed to model daily snow cover patterns using daily terrestrial
photographic remote sensing and elevation-derived gradients and a coarse vegetation
classification (forested/non-forested). In addition, a direct temperature gradient was
incorporated (number of days with temperature <0 °C) regressed using elevation. An
artificial neural network (ANN) modelling approach was used, which allows for non-
linearity in relationships and requires no assumptions about the functional interrelations
between variables. The results indicated that using topographic variables, a significant

amount of spatial variation in snow cover could be explained by the model.

The relationship between snow and vegetation at the forest-tundra ecotone is usually
studied at a single spatial scale of enquiry (Walker ef al., 1993). An exception is a study
by Schaefer and Messier (1995) who examined multi-scale correlations between snow
cover and tundra vegetation on Victoria Island, Arctic Canada. Scale was modified by
altering the size of the sampling unit; correlation between single species and thickness
of snow typically increased with a more generalised scale of analysis because of
decreasing noise and averaging of spatial variation. The fact that results of statistical

analyses vary according to scale is now well known (Flowerdew et al., 2001). When
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investigating the relationships between environmental gradients and vegetation, we
must question what spatial scale is appropriate and, if necessary, the nature of a

sampling scheme and the number of samples.

2.2 Synthetic Aperture Radar remote sensing

Ecologists are aware of the utility of remote sensing for studying ecological processes at
a range of spatial and temporal scales. In particular, the synoptic perspective, regular
and frequent coverage, and cost of remotely sensed data from space-borne sensors
combine to form an attractive basis for many ecological applications. As discussed in
section 2.1.3 and 2.1.4 in the context of mapping snow and vegetation at the forest-
tundra ecotone, a wide range of approaches has been developed to exploit remotely
sensed data collected in the VIR region of the electromagnetic spectrum (Kasischke et
al., 1997).

SAR systems operate in the microwave portion of the electromagnetic spectrum
(approximately 1 mm to 1 m wavelength; 300 to 0.3 GHz frequency). They are active
systems, transmitting microwave energy pulses and receiving the reflected energy back
to a sensor. Radar is capable of penetrating the atmosphere under virtually all
conditions, and is not limited by cloud cover or solar illumination, a distinct advantage
over VIR sensors. Unlike passive microwave systems, space-borne SAR can achieve
high spatial resolutions of around 10 m, and the discussion is primarily limited to active,

space-borne SAR systems.

221 SAR imaging

Unlike most passive remote sensing techniques, SAR necessarily has an oblique view of
its target, the radar beam being directed to the side of the platform trajectory. The pulse
length and antenna beam width control the resolution of conventional imaging radar.
The pulse length is the length of time the microwave pulse is transmitted for, and
determines resolution in the range direction. The antenna beam width determines the
resolution in the direction of movement of the radar platform, the azimuth direction.
The antenna beam width is inversely proportional to length of the antenna, a longer
antenna giving a smaller beam width and improved resolution (Lillesand and Kiefer,
1994). A SAR system is able to improve the azimuth resolution over that reasonably
possible with a conventional radar system by using the forward motion of the SAR

platform to create an array of short antennas through sophisticated signal processing
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(Rees, 2001). This processing makes use of the Doppler shift, the decrease in the
frequency of the received wave as the sensor passes a target, and requires that both
phase and amplitude of the signal. Amplitude (specifically height of an electromagnetic
wave) is the conventional information extracted from a radar signal. Radar phase is an
additional information source (Gens and Van Genderen, 1996) and concerns the
oscillation and advancement of electromagnetic waves relative to an origin. Waves are
said to be “in-phase” if their origins of phase are exactly aligned. Knowledge of the
phase of microwave data is fundamental to interferometric SAR e.g. Gens and Van

Genderen (1996).

The amplitude, or strength, of scattering is usually expressed in terms of the backscatter
cross section per unit area (sigma-nought, ¢®). Due to its range ¢ is usually expressed

in decibels:

o, =10 log,,(c") Equation 2.1

The landscape features known to affect SAR backscatter are topography, the dielectric
constant of the ground surface, surface roughness and vegetation cover. The effects of
landscape properties are related to the nature of SAR imaging and specific SAR system

parameters: frequency, polarisation, and imaging geometry.

2.2.2 Frequency / wavelength

Frequency / wavelength is important because a microwave will interact strongly with
surface components having a size comparable to that wavelength. Radar band
designations for different regions within the microwave portion of the electromagnetic

spectrum are given in table 2.1.
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Table 2.1. Radar band designations.

Band  Wavelength A (m) Frequency (GHz)

Ka 0.0075 - 0.011 40 - 26.5
K 0.011 - 0.0167 26.5-18
Ku 0.0167 - 0.024 18 -12.5
X 0.024 - 0.0375 12.5-8
C 0.0375 - 0.075 8-4

S 0.075-0.15 4-2

L 0.15-0.30 2-1

P 0.30-1 1-03

Source: adapted from (Lillesand and Kiefer, 1994)

A radar image contains different information depending on the wavelength, meaning
that a composite of different bands can provide increased information content. A multi-
frequency system, which can transmit microwaves of more than one wavelength, is

preferable to a single-frequency radar system.

2.2.3 Polarisation

Radar polarization refers to the orientation of the transmitted and received wave, which
is normally horizontal (H) or vertical (V) in orbital space-borne SAR systems. A SAR
system will commonly transmit and receive either V polarized or H polarized radiation,
meaning that there are four possible combinations of transmit/receive polarization; VV,
HH, HV, and VH. When the transmitted radiation is in the same polarization of received
radiation, the image is said to be like or co —polarized. When the transmitted radiation is
the opposite polarization to the received radiation, the image is said to be cross-
polarised. A polarimetric SAR is a system capable of measuring a full polarization
signature of the ground surface and the change in the degree of polarization
(depolarisation) (CCRS, 2002). Ratios of different polarisation measurements do not
require radiometric terrain correction (Shi and Dozier, 1997), which is similar to the use

of band ratios for VIR imagery.

Polarization of a SAR system needs to be considered in the context of the geometric
structure of the object under study. If a surface object has a vertical structure, such as a
cereal crop, then vertically polarized microwaves will interact strongly with the crop.

Conversely, horizontally polarized energy will not interact with the crop and will scatter
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so steep that it is imaged in reverse order and parts of the terrain are superimposed in
the image. If one part of the terrain prevents the energy of the radar from reaching
another, then shadowing will occur, with the consequence that no signal at all can be
detected from the shadowed region (Rees and Steel, 2001b). High and low —lighting is a
radiometric distortion in which the variation in the strength of backscattering received
from surface depends on the slope because an unusually large number of scatterers in
the terrain contribute to the backscatter measured for a given pixel (Rees and Steel,

2001b).

In general, we expect that o’ should be decrease with increasing incidence angle.
Previous studies have investigated empirical and physically based backscatter models to
“correct” such topographic effects on backscatter (Bayer et al., 1991; Goering et al.,
1995; Goyal et al., 1998; Rees and Steel, 2001a). In the models that have been
developed, the variation in backscatter explained by incidence angle depends on the
SAR system parameters (frequency, polarisation), the resolution of the topographic
data, and land surface characteristics. Such models are evaluated in detail in chapter 8.
Local incidence angle also varies depending on the ascending or descending orbit of the
(polar-orbiting) satellite platform at the time of acquisition. Combination of ascending
and descending scenes has been used to reduce the effects of layover and shadow in
mountainous areas (Haefner et al, 1993); however, this assumes that there are no

significant differences in land surface attributes between acquisitions.

Incidence angle can have an indirect effect on backscatter because it can, in part,
determine the “path length” of the radiation through a surface feature. However, other
factors are important in determining the amount of surface scattering and the angle of
refraction at a boundary such as a vegetation canopy or snowpack. In general, a SAR
with a relatively steep angle will tend to have greater penetration than one that is more

oblique from the nadir because of a reduced path length through a surface target.

225 Speckle

As a consequence of the coherent imaging technique, SAR imagery is subject to an
undesirable multiplicative noise called speckle (Rees and Steel, 2001a). Scatter from
each target within a pixel is coherently summed for all scatterers. Speckle is produced
because backscatter can be either high or low depending on the particular phase

relationships between the reflected waves from different parts of the pixel (Wooding,
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1995). A process called multi-looking is used to introduce incoherent averaging into the
resulting image by taking several independent sub-samples and averaging the resulting
backscatter. Applying a spatial filter can reduce speckle further (Shi and Fung, 1994),
but this effectively reduces spatial resolution and can reduce the texture information in

an image (Collins ef al., 2000).

2.2.6 Surface Roughness

Within an imaged pixel, there is small-scale variation in the relief of a terrain surface
known as surface roughness. The roughness of a surface can be described by the
standard deviation of the surface height, Ak, but this must be considered relative to the
wavelength A of the radar system. The Rayleigh criterion is usually used to classify a
surface as smooth or rough (Ulaby et al., 1982):

A
8cosd

Ah < Equation 2.2

The spatial dimension of the irregularities is determined by the surface correlation
length /, which is used to quantify the distance beyond which variation is approximately
statistically independent. A very smooth surface may produce specular scattering,
whereas an ideally rough surface may produce Lambertian scattering (Rees, 2001;
Ulaby et al., 1982).

2.2.7 Permittivity

Permittivity affects the amount of radiation reflected and the amount refracted across
the interface between air and the lower target or medium. The relative permittivity is
also known as the dielectric constant, and is the permittivity of the lower medium
relative to the permittivity of "free space". If the surface medium absorbs energy from
the wave then a complex number must be used to represent the dielectric constant
(Rees, 2001). The real part & (permittivity) is the measure of how easily the energy
passes across the interface, while the imaginary part ' (usually referred to as the loss
factor) describes how much energy is absorbed by the medium. The complex number is

represented as:
e=¢&' —ig" Equation 2.3

The dielectric constant depends, among other variables, on the water content of a
surface medium; the more liquid water in the lower medium the greater the reflection.

The Fresnel reflection coefficient is a suitable measure of reflectivity given the
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dielectric constant (see Appendix A). Increased liquid water also increases the

imaginary part of the dielectric constant.

228 SAR system development

Several space-borne and airborne SAR systems have been developed throughout the last
two decades. Much early research was conducted with the NASA Jet Propulsion
Laboratory (JPL) AIRSAR, which is an air-borne, fully polarimetric SAR operating at
P-band (0.68 m wavelength), L-band (0.24 m), and C-band (0.056 m). AIRSAR
research generally focused on assessing potential applications of future space-borne
SAR systems. Seasat, launched by NASA in 1978, was the first civilian space-borne
SAR system and was designed to obtain high-resolution imagery of the sea surface and
sea ice. Seasat carried an L-band, HH polarised SAR with a resolution of 25 metres.
However, it failed after 109 days of operation and, as an experimental mission, there

was no replacement.

Further space-borne radar experiments were carried out in the early 1980s onboard the
American space shuttles, using SIR —A and -B (Shuttle Imaging Radar). Both SIR
experiments carried an L-band SAR with HH polarization. The SIR-B antenna could be
tilted to direct signals toward the earth at varying look angles, ranging from 15 to 60°.
This allowed the investigation of the impact of varying incidence angles on
backscattering returns, and provided the opportunity to acquire stereo radar imagery and
imagery at different range resolutions (Lillesand and Kiefer, 1994). The deployment of
SIR-C and X-SAR during 1994 enabled evaluation multi-frequency, polarimetric space-
borne SAR data. This system comprised a C and L —band fully polarimetric SAR and an
X-band SAR that collected HH and VV polarised data (Lillesand and Kiefer, 1994). The
ground coverage of the SIR-C/X-SAR experiment was limited because the shuttle orbit
limited data collection between 57 °N/S and because of concentration on specific test

sites.



Table 2.2. System parameters for space-borne SAR.

Satellite ERS-1, ERS-2 JERS-1 Radarsat-1 Envisat
European National Space Canadian European Space
Agency Space Agency Development Space Agency Agency (ESA)
(ESA) Agency of Japan (CSA)
(NASDA)
AMI —  Active ASAR -
SAR Instrument Microwave Advanced SAR
Instrument
Period of 1991-2000 1992-1998 1995-present  2002-present
operation 1995-present
Wavelength (cm) 5.65 23.5 5.65 5.65
Frequency (GHz) 5.3 1.275 53 53
Band C C c
Polarisation \AY HH HH HH+VV+HV+VH
Incidence angle1 23° 40° 20-60° 156 to 45°
Swath width ' 100 km 75 km 50-500 km 100-400 km
Return Period'? 35 days 44 days 1to 24 days  35days
Spatial resolution' 30 m 18 m 8-100 m 30-1000 m
Table 2.3. Future space-borne SAR systems.
Satellite Radarsat-2 ALOS
Agency CSA NASDA
SAR Instrument SAR PALSAR
Proposed launch 2003 2004
Wavelength (cm) 5.66 23.5
Frequency (GHz) 5.3 1.275
Band C L
Polarisation HH+VV+HV+VH  HH+HV or VV+VH
Incidence angle ' 10-60° 8-60°
Swath width ' 10-500 km 40- 350 km
Return Period’ 1-24 days 46 days
Spatial resolution'  3-100 m 7-100 m

' Dependent on imaging mode for Radarsat, Envisat and ALOS.

* Dependent on latitude and/or acquisition phase for ERS (e.g. ERS-1 Mission Phase B: ice phase with 3

day return period from 28/12/91 to 01/04/92)
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These experiments demonstrated that multi-frequency SAR systems with combinations
of polarisation offer the greatest potential for characterisation of the earth’s surface and
vegetation cover, compared with single channel radars alone (Schmullius and Evans,
1997). However, adequate spatial or temporal coverage can only be provided by orbital
satellites (Dobson et al., 1995b), which until recently have been limited to a single
channel and polarisation. The most significant systems are summarised in table 2.2,

with planned systems shown in table 2.3.

The launch of ERS-1 in 1991 heralded a new era in space-borne SAR imaging and since
then an enormous amount of imagery has been acquired. Early space-borne SAR
instruments were limited to a single frequency and polarisation, and subsequent
instruments have been designed to ensure continuity with the early missions, but also to
provide enhanced capabilities. ASAR and Radarsat-1 have beam shaping and steerage
capabilities, allowing the selection of different swaths and incidence angles. ASAR
utilises a ScanSAR technique to acquire two images of the same scene in like and cross
—polarisation (ESA, 2002); Radarsat-2 and PALSAR are being developed with these
capabilities. As these systems become operational, data collected at different spatial
resolutions, polarisations, and frequencies will become available. Envisat also carries a
VIR sensor (MERIS — Medium Resolution Imaging Spectrometer), as did JERS-1.
ALOS will also carry VIR sensors for collection of data in visible and near infrared
wavelengths, although the usefulness for acquiring simultaneous microwave and VIR
data is limited because of the coarse resolution of the VIR data (e.g. 300m for MERIS).
The highly variable SAR acquisition geometries made available by Radarsat and
Envisat have intensified the need for terrain correction of scenes over mountainous
terrain. The broadly unchanging geometry of ERS-1 and ERS-2 allowed multi-temporal
overlay in radar geometry, whereas “mixed-mode” images require terrain correction
before any overlay is possible. However, given the incidence angle of ERS, layover can

be a substantial problem in mountainous terrain, whereas shadow is unlikely.

229 Resolution of Digital Elevation Models for SAR
applications

For areas of high topographic variability, the accuracy of geometric and radiometric

correction will be influenced by the resolution (and accuracy) of the available DEM.

The interaction between the viewing geometry of SAR and topography was discussed in

section 2.2.4. SAR imagery is subject to interrelated geometric and radiometric

22



distortions, which mean that the resolution of topographic data has implications for the
quality of both radiometric and geometric correction. A physical process cannot be
modelled successfully unless data are available at an appropriate scale and we must
recognise that slope, including slope in the direction of the incident radar, is a property
of scale. Intuitively, a DEM should at least be of comparable resolution as the SAR
imagery, however, the compatibility of DEMs with SAR often varies, perhaps because
of the difficulty in obtaining high-resolution data. Over-sampling a DEM to match SAR
data is considered unwise (Johnsen et al., 1995). Wivell (1992) rectified a Seasat image
using several commonly used DEMs in an area of highly variable terrain. Variation of
the horizontal, vertical, and slope resolutions and the presence of artefacts in DEMs

were found to cause errors in the radiometric and geometric correction.

Numerous studies have used a DEM and topographic correction functions in order to
“normalise topographic” effects. For example, Goyal et al. (1998) found a reduction in
variance in air-borne SAR backscatter values of the order of 54% using an empirical
correction model for a high resolution DEM. However, a coarse resolution DEM
significantly reduced the amount of variation in backscatter explained by incidence
angle to 36%, which was attributed to the SAR data resolving topographic features not
resolved by this DEM (Goyal et al., 1998). Other studies aiming at reductions in
variance have found results between 9 and 33% (Bayer et al., 1991; Goering et al.,
1995; Hinse et al., 1988), with results clearly dependent on land surface properties;
however, the influence of DEM resolution should not be dismissed. In addition to a high
resolution DEM, Shi and Dozier (1997) stress the importance of accurate sensor

location data in order to determine the angle of the incident radar.

2.3 SAR experiments and ecological applications

Experiments with AIRSAR and the SIR missions have shown the increased value of
multi-parameter capabilities to characterise the Earth’s surface and vegetation cover,
compared with VIR sensors or single channel radars alone (Schmullius and Evans,
1997). Space-borne SAR systems have only recently extended to multi-polarisation
capabilities, meaning that multi-temporal imagery and synergy between data from
different SAR and VIR systems is often important for the successful application of SAR
data (Pohl and van Genderen, 1998). However, space-borne SAR are currently limited

to C-band, which is not particularly useful for many ecological applications (Rees ef al.,
2002).
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2.3.1 Land cover classification

Experiments using multi-frequency, multi-polarisation SAR data have demonstrated the
potential of SAR for land cover classification and indicated the ideal configurations
required for various land cover types. Data from the SIR missions and AIRSAR
experiments have been successfully applied for land cover classification (Haack ef al.,
2000; Way et al, 1994), crop classification (Soares et al., 1997), tropical forest
classification (e.g. Nezry et al. (1993); Pope et al. (1994); Rignot et al. (1997)) and
boreal and temperate forest classification (e.g. Rignot et al. (1994b); Ranson and Sun
(1994); Pierce et al. (1998)).

One can generalise and suggest two common classification approaches for land cover
classification using radar data: (1) statistical approaches, including both supervised and
unsupervised clustering algorithms and textural analysis applied to multi-temporal SAR
data or SAR data that is combined with VIR data; and (2) knowledge-based techniques,
such as empirical or physical backscattering models and hierarchical decision trees. A
classification may use a combination of the two methodologies. For example, using
JERS data, Saatchi et al. (2000) used a supervised statistical classification followed by a
rule-based approach on texture measures to discriminate sub-categories of tropical

forest vegetation.

Multi-parameter experiments using AIRSAR and SIR-C/X-SAR demonstrated the
limitations that the first generation of orbital satellites would have for land cover
classification; a single frequency, single polarisation does not represent a suitable data
source for land cover classification (Dobson et al., 1995a; Kasischke et al., 1997). The
advantage of using a combination polarimetric L and C -band data for vegetation
mapping is clear (Schmullius and Evans, 1997). For example, Pierce et al. (1998) were
able to produce single scene classifications of boreal coniferous and deciduous forest in
excess of 90 percent using L and C -bands from SIR-C/X-SAR with combinations of
cross and like —polarisations. The addition of X-band (single polarisation) improved
overall accuracies to 98 percent. Balzter et al. (2002) acquired fully polarimetric L and
C —band airborne SAR over a Finnish boreal forest test site and suggest that
decomposition of the polarimetric data could provide information on scattering
mechanisms in the vegetation canopy and on the ground, being of great value for land

cover mapping.
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The Global Boreal Forest Mapping (GBFM) Project was initiated by NASDA in 1997
and substantial data was acquired over the boreal zone of Siberia, northern Europe,
Canada and Alaska before the operation of the JERS-1 satellite was terminated in
October 1998. The aim was to create an inventory of forest cover at 100 m resolution
and to distribute image mosaics on compact disc e.g. ASF (2002). Separability between
boreal tree species in ERS data may be small, because at C-band changes in
backscattering are dominated by changes in the dielectric properties of the forest floor
and canopy (Rignot et al., 1994a). At regional scales, Kuntz and Siegert (1999)
demonstrated that ERS-1/2 could be used to map basic tropical land cover types and
deforestation, and Saatchi ez al. (2000) produced a regional scale land cover map for the
entire Amazon Basin using L-band JERS data, which has certainly provided the most
potential for forest mapping. Texture measures have most commonly been applied to
improve forest cover classification (Haack et al., 2000; Saatchi et al., 2000) and for

monitoring deforestation (Kuntz and Siegert, 1999).

The most effective use of information derived from SAR images has occurred when
combined with complementary data provided by VIR data sets; land cover classification
accuracy can be improved (Kuplich et al., 2000) and classes identified that are not
distinguishable in the SAR or VIR data set alone (Pohl and van Genderen, 1998). Crop
classification is facilitated by using VIR imagery for landscape segmentation and
weather independent SAR data to create crop evolution profiles from temporal change
in backscatter conditions (Brisco and Brown, 1995; Mangolini and Arino, 1998). For
crop classification, ERS data alone have demonstrated potential. For example, Schotten
et al. (1995) used multi-temporal ERS-1 data to discriminate 12 crop types in the
Netherlands with 80% accuracy, and Tso and Mather (1999) discriminated crop type in
the UK with accuracies of up to 75%. Fusion of VIR and SAR data has been used to
improve tropical forest classification (Lozano-Garcia and Hoffer, 1993; Nezry et al.,
1993). Rignot et al. (1997) investigated SIR-C, JERS-1, SPOT XS and Landsat TM data
for mapping deforestation in Brazil. The synergy of SAR data and Landsat TM imagery

could reliably map additional classes, such as flooded dead forests.

Interferometric coherence has also been used as a basis for land cover classification.
Behaviour of coherence from ERS-1/2 tandem mission was investigated as a function of
forest-type, forest parameters, and environmental factors by Castel e al. {, 2000 #255}

and they were able to discriminate between coniferous forest types. Strozzi et al. (2000)
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produced land use maps of three different areas in Europe with ERS SAR
interferometry with, in the best case, classification accuracies in the order of 75%,

although topographic effects reduced performance.

Future SAR systems may have limited mapping capabilities when used alone (Rignot et
al., 1994b), but as parameters available for classification increase, with multi-frequency,
multi-polarisation capabilities afforded by a combination of Envisat, Radarsat-2, and
ALOS, the accuracy of land cover classification might be expected to improve.
However, the complexity of land cover classification techniques may also increase,

which may remove the process of data acquisition and processing from end-users.

2.3.2 Forest Biomass

Information on woody biomass in both boreal and tropical forest ecosystems is essential
for studies of the global carbon cycle; remote sensing has potential to provide such data.
It is generally recognized that the utility of VIR sensors to extract information on forest
biomass is limited because there is a saturation effect at very low levels of biomass
(Kasischke et al., 1997; Sader et al., 1989) and there is no direct linkage between VIR
reflectance from a forest canopy and woody biomass (Cohen and Spies, 1992; Sader et
al., 1989). The potential of radar for derivation of forestry parameters is clear, because
energy at radar wavelengths will interact with the woody components of the vegetation.
In general, the total backscatter from forest is a combination of volume scatter from the
canopy, surface scatter from the ground, and double-bounce scatter between the trunk
and ground. At higher frequencies (e.g. X-band) scattering from the crown is important,
while at lower frequencies, trunk-ground components are dominant (Stjernman, 1995).

Spatial resolution of the SAR is important, because it may affect the biomass response.

Much research has been directed to evaluate the potential of linking radar backscatter to
forest biomass and develop algorithms to convert backscatter intensity into biomass by
regressing SAR backscatter and biomass (Wang et al., 1995). The discussion here is
focused on applications for boreal forests, with synthesis of some results from SIR and
AIRSAR experiments and emphasis on the potential of space-borne SAR for biomass

retrieval.

Polarimetric C, L, and P —band AIRSAR data and data from SIR-C/X-SAR have been

used to investigate the potential of different frequencies and polarisations for biomass
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estimation. Results suggest that the dynamic range of backscattering sensitivity is
maximised at P-band, and then decreases with increasing frequency (Dobson et al.,
1992; Le Toan et al., 1992; Ranson and Sun, 1994). Dobson et al. (1992) reports that
biomass saturation level is about 200 tons/ha at P-band and 100 tons/ha at L-band.
Imhoff (1995) reports saturation approximate to 100 tons/ha for P-band, 40 tons/ha for
L-band, and 20 tons/ha for C-band for tropical broadleaf and coniferous forests. Using
P-band HV polarised data for a mono-specific pine forest, Le Toan et al. (1992) were
able to achieve r* of 0.95 for the relationship between backscatter and biomass. It is
clear that cross-polarised data or combinations of polarisation are most sensitive to
variations of forest biomass (Le Toan ef al., 1992; Ranson and Sun, 1994; Schmullius
and Evans, 1997, Wu, 1987), However relationships are known to be non-linear and
radar saturation with biomass means that approximately 38% of Earth's vegetated
surface area containing 81% of the estimated total terrestrial phytomass have biomass

densities above the saturation limit of current SAR systems (Imhoff, 1995).

The potential of C-band ERS data for biomass retrieval has been investigated through
empirical studies. Kasischke et al. (1994) found significant linear correlations between
the radar backscattering and the various components of biomass of young pine stands.
In older pine forest, the backscattering is not highly correlated to biomass and the
dynamic range of backscattering in boreal forest is low (Harrell et al., 1997), with the
signal saturating at very low biomass because of a high sensitivity to moisture
conditions (Wang et al., 1994). Even with polarimetric SAR, empirical studies have
great difficulty in determining which part of the canopy is responsible for the
backscattering and the effect of a particular forest parameter on backscatter because of
inter-correlation between parameters (Le Toan ef al., 1992; Wang et al., 1995). Physical
backscatter models have been developed to explore the mechanisms of microwave
scattering from forest canopies and to predict the radar backscattering as a function of

the geometry and size of the forest canopies and radar system parameters (Wang et al.,
1995).

Using a backscatter model, SAR backscatter data from AIRSAR, and ground data,
Wang et al. (1995) studied the influence of changes in biomass on SAR backscatter as a
function of frequency and polarisation and evaluated the feasibility of deriving biomass
from the radar data. Results indicated that L and P —band in cross polarisation (HV)

together provides the best potential for measuring biomass. C-band was found to be

-
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insensitive to biomass change. HH polarised L. and P —band modelled returns are mainly
from the trunk-ground interface, and therefore may be useful for coniferous forests
where most biomass is stored in the trunk. For cross-polarised L and P —band, canopy
volume scattering was dominant. Ranson and Sun (1997) found that SIR-C/X-SAR data
compared favourably with AIRSAR data, with P-band providing the best results for
biomass estimation. Fransson and Israelsson (1999) used a backscatter model to
investigate backscatter from C-band ERS-1 and L-band JERS-1 in relation to boreal
forest biomass (stem volume). JERS-1 data was superior because the ERS-1 signal
saturates at such low biomass. A semi-empirical model developed by Pulliainen et al.
(1996) further showed that the dynamic range of backscattering values of ERS-1 with

changing boreal forest biomass was very small.

There is a significant variation in backscatter within forest ecosystems due to temporal
changes in environmental conditions, which may obscure or enhance the biomass
signature (Kasischke et al., 1994). Surface moisture conditions can be a strong influence
on backscatter intensity (Fransson and Israelsson, 1999), and seasonal snow cover and
freeze/thawing effects cause drastic changes in backscattering (Rignot et al., 1994a).
Pulliainen et al. (1996) found that the correlation between ERS-1 backscattering and
forest biomass was positive or negative depending upon canopy and soil moisture,
whereas Fransson and Israelsson (1999) found that backscattering in JERS-1 data
always increases with biomass. Moghaddam and Saatchi (1999) investigated canopy
moisture with the aim of estimating moisture status from polarimetric C and L —band
AIRSAR data. Scattering from the canopy was isolated using a classification algorithm
and a model was developed to invert canopy moisture from backscatter; changes in
canopy moisture were reflected by significant changes in backscatter. Such research
confirms that, in particular, C-band data affords an opportunity to monitor temporal
changes in forest ecosystems (Rignot et al., 1994a; Way et al., 1990). Literature
concerning backscatter measurements from birch forest is limited. However, ground-
based C-band scatterometer measurements by Stjernman (1995) over birch trees in
Arctic Sweden revealed that backscatter was dominated by trunk-ground scatter

component, which meant backscatter was influenced by ground properties.

Development of practical and useful inversion algorithms for inferring forest biomass
from SAR data will require multiple frequencies and polarisations; the cross-

polarisation and revisit capabilities offered by the new generation of space-borne SAR
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systems, particularly L-band PALSAR, will be of most interest. The major challenge is
estimating biomass from deciduous and coniferous and mixed species forests. Other
problems relate to spatial variation of biomass within forest stands, variation due to

natural disturbance, complex canopy structure and observational geometry (Balzter et
al., 2002).

2.3.3 Soil moisture

In the early 90s there was hope that soil moisture estimation from radar measurements
could become operational; soil moisture is highly variable both spatially and temporally
and therefore remotely sensed data have potential to provide spatial measurements
(Engman, 1991). The theoretical basis for a relationship between soil moisture and
backscatter is the sensitivity of the dielectric constant to soil water content. However,
the effects of surface roughness, vegetation moisture and structure, and topography are
appreciable at all frequencies and polarisations, which may mask the soil moisture
signal (Engman and Chauhan, 1995; Goyal et al., 1998; Macelloni et al., 1999). The
sensitivity of microwave backscatter to soil moisture at different frequencies and
polarisations has been investigated using experimental AIRSAR and SIR-C/X-SAR,
mostly over bare or sparsely vegetated soils; Co-polarised L-band has the highest soil

moisture information (Lin et al., 1994; Macelloni et al., 1999; Shi et al., 1997).

Several empirical and physical —based models have been developed to invert volumetric
soil moisture from observed backscatter coefficients. Empirical models are inherently
site-specific and have limited ranges of validity. Results suggest that backscattering
cannot be easily converted into moisture estimates at field scale even over non-
vegetated or sparsely vegetated areas because of the effect of surface roughness
(Macelloni et al., 1999; Moeremans and Dautrebande, 2000). However, Bindlish and
Barros (2000) suggest that operational utility could be improved by re-sampling SAR
data by an order of magnitude and Moeremans and Dautrebande (2000) found that at
coarse regional scales, correlation between backscatter and mean soil moisture
measurements was considerably improved. Multi-temporal imagery can be used to
minimise the impact variables such as roughness and vegetation because these tend to

change slowly with time (Engman and Chauhan, 1995).

Physical models have been used to model the interaction between soil moisture, surface

roughness and vegetation; the relationship is almost certainly non-linear when surface
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roughness and vegetation cover are taken into consideration (Bindlish and Barros,
2000). Theoretical surface backscatter models such as the Small Perturbation Model
(SPM), Kirchhoff Physical Optics (PO) and Geometric Optics (GO) (see Rees (2001)),
and Integral Equation Model (IEM) (Fung, 1994) have been developed to improve
understanding of microwave surface scattering processes and the interaction between
soil moisture and surface roughness at field scales. However, to different degrees, these
models suffer from restrictive assumptions (Dubois et al., 1995), which means that

application to invert backscatter data into soil moisture is problematic.

Altese et al. (1996) observed that for ERS SAR the sensitivity to the roughness
parameters is much higher than the sensitivity to dielectric constant, so that even a small
error in the measurement of this parameter can affect the retrieved value of soil moisture
significantly. Shi et al. (1997) found a good agreement between IEM model output and
L-band measurements from SIR-C and AIRSAR. With respect to Radarsat's
configuration, Biftu and Gan (1999) found that radar backscatter modelled using the
IEM was highly sensitive to the RMS surface height. IEM model results from Tansey
and Millington (2001) confirm that the successful monitoring of soil moisture is
strongly dependent on surface roughness. Baghdadi et al. (2002) suggest that none of
the existing models provide consistently good agreement with the measured data. Such
models were originally developed to describe the scattering from bare soil surfaces
only; therefore, vegetation backscatter effects are not explicitly incorporated. Empirical
vegetation scattering parameterisation has been attempted with limited success
(Bindlish and Barros, 2001). The future of soil moisture monitoring may depend on
PALSAR, which will allow investigation of frequent repeat coverage L-band SAR for

regional soil moisture monitoring,

2.4 SAR remote sensing of snow cover

The problems with remote sensing of snow cover using VIR sensors were discussed in
section 2.1.4. SAR systems offer a promising alternative space-borne method for snow
monitoring because, in particular, they are independent of cloud cover and solar

illumination and are sensitive to the liquid water content of snow cover.

241 Passive microwave remote sensing of snow cover

It is appropriate to consider passive microwave remote sensing methods, which operate

at frequencies between 5 and 100 GHz and have a strong utility for detecting wet snow
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over large areas and can give an indication of snow depth for dry snow covers
(Lillesand and Kiefer, 1994; Rees and Steel, 2001a). Signals still require calibration by
ground snow data, but are appropriate for macro-scale hydrological investigations
(Josberger and Mognard, 2002; Pulliainen and Hallikainen, 2001) and have been linked
to spatially distributed snow hydrology models (Wilson et al., 1999). Spatial resolution
available with space-borne systems is very poor, typically a few tens of kilometres, so

only airborne systems can be realistically used for landscape-scale studies.

24.2 SAR remote sensing of snow cover

Since the early 80’s and throughout the 90’s, experimental data and empirically and
physically based modelling studies have demonstrated the potential of SAR for
monitoring snow cover. The physical basis of snow monitoring using SAR is the change
in dielectric constant that occurs due to the presence of liquid water as the snowpack
begins to melt. However, as a snowpack develops, significant metamorphosis in terms
of surface roughness, snow grain (scatterer) size, snow density occur in addition to the
change in reflectivity and potential for dielectric loss that occur because of liquid water.
The effects of frequency, polarisation, and incidence angle of the incident radar must

also be considered.

A conceptual snow backscatter model introduced by Ulaby et al. (1982) describes
scattering from snow cover as the sum of the scattering from the snow surface, the snow
volume, and scattering from the underlying ground surface. The relative strength of
surface and volume scattering is dependent upon the snow properties and system
parameters. A more comprehensive examination of a physically based backscatter
model is undertaken in chapter 8, but it is pertinent to consider key parameters and to

review important research here.

Liquid water increases the real and imaginary part of the dielectric constant, increasing
reflectivity of the snow surface and dielectric loss (energy absorption) within the snow
volume, thereby reducing snowpack penetration depth. Dry snow is effectively
transparent for X, C, and L —band SAR because the snow surface has low reflectivity
and the snow volume has negligible absorption; the dominant scattering source is the
snow-ground interface and there is often no significant difference in scattering from dry
snow and snow-free surfaces at C-band (Bernier and Fortin, 1998; Rott and Nagler,

1992) or X —band (Fily et al., 1995, Shi and Dozier, 1997).
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When a snowpack is wet (typically up to 5% volumetric water), penetration depths are
of the order of one wavelength (Rott and Maitlzer, 1987). Therefore, as snow melts
surface scattering at the air-snow interface dominates (Rott and Nagler, 1992), but at
higher incidence angles, greater than about 25° for X-band and 30° for C-band, volume
scattering may dominate (Rott, 1984). The sensitivity of backscattering to water content
is also influenced by wavelength; the difference between backscattering from a dry and
wet snow pack increases with frequency (Ulaby et al., 1986). The impact of liquid water
for C and X —band SAR was monitored over a diurnal cycle by Stiles and Ulaby (1980),
who observed changes in backscatter of around 2-3 dB related to increase in snow
volumetric water content to 1.3 %. Snow wetness at the surface can change rapidly.
Under clear skies, solar illumination may cause partial melting of the snow surface layer
even though the temperature is below freezing (Koh and Jordan, 1995; Ulaby et al.,
1986), which can have important consequences for penetration depth, especially for

shorter wavelengths.

For a dry snowpack, backscattering has been found to be independent of snow surface
roughness at several incidence angles, even at high frequencies (Ulaby et al., 1982).
Wet snow, however, shows a significant increase in surface scattering from rough
surfaces (Nagler and Rott, 2000; Rott and Davis, 1993; Ulaby et al., 1982), which may
be important when discriminating wet snow from bare surfaces (Shi and Dozier, 1993,

1997).

In a wet snowpack, scattering from larger individual snow grains is likely to increase,
but this should be insignificant compared to dielectric losses due to liquid water in the
snowpack. In modelling volume backscatter from a snowpack, snow grains are
commonly assumed to be spherical and randomly oriented and liquid water is treated as
uniformly distributed within the snowpack. However, a wet snowpack will be
heterogeneous due to melt-freeze processes, meaning that modelling scatter from a
snow volume is complicated by the presence of significant internal structure in the snow
pack. An assumption of a homogenous medium may be acceptable since at C-band, the
penetration depth will commonly be a few cm into a thin wet surface layer; however, at
longer wavelengths backscatter may be affected by larger structures (Shi and Dozier,

1995, 1997; Shi et al., 1998).
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Experimental studies using airborne and space-borne multi-frequency, multi-polarised
SAR has demonstrated that wet snow could be discriminated from dry snow and snow-
free ground. Early studies using AIRSAR demonstrated the potential of C and X —band
polarimetric measurements for mapping snow and glacier covered areas (Shi and
Dozier, 1993, 1994). Such studies confirm that C—band SAR with VV and HH
polarisation (approximating to ERS-1/2 and Radarsat-1) had good potential, whereas L-
band HH polarised SAR (approximating to JERS) had poor potential for discrimination
of wet snow from other targets. During the SIR-C/X-SAR experiment, Shi and Dozier
(1997) investigated backscatter coefficients at L, C, and X —band at each combination of
like and cross —polarisation (HH, HV, VH, VV). Results indicated that C-band VH and
like-polarised X-band VV provided the best separation between dry and wet snow, with
poor discrimination by L-band. Shi and Dozier (1997) also investigated the utility of
polarisation ratios, such as depolarisation factors (HV/VV and VH/HH), and band
ratios. Using band and polarisation ratios a complex decision-tree classification was
undertaken, and results indicated that in addition to wet snow, it was possible to map

dry snow (Shi and Dozier, 1997).

The use of single band, single polarisation SAR for snow cover mapping is usually
based on temporal differences in backscattering between wet snow covered surfaces and
dry snow cover or snow free surfaces (Baghdadi et al., 1997; Rott and Nagler, 1995).
An alternative method, comparing an image simulated from a DEM to real images to
identify wet snow has also been used (Rott and Mitlzer, 1987). Since dry snow is highly
transparent at microwave frequencies, it cannot usually be discriminated from snow free
surfaces. However, if terrain is known to be snow covered, a backscattering
characteristic of snow-free conditions can be taken to indicate snow is dry (Rees and
Steel, 2001a). Development of wet snow significantly reduces backscattering in
comparison to dry snow and snow-free conditions because of dielectric loss; the
discrimination of wet snow is based on the difference between the two images. Two
classification approaches have typically been used on the multi-temporal imagery, a
statistical approach such as a supervised maximum likelihood classification and, more

commonly, a rule-based approach.

Shi and Dozier (1997) suggest that accurate sensor location and a DEM of comparable
resolution to image resolution are important for geometric and radiometric correction

prior to snow mapping. However, an advantage of the broadly unchanging geometry of
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space-borne satellites, particularly ERS-1 and ERS-2, allows multi-temporal overlay in
radar geometry. Subsequently, the ratio of multi-temporal images can be applied to
determine changes in the backscatter from a reference image of dry snow or snow-free
conditions and to develop rules for snow cover mapping’. Image ratios also afford a
reduction of topographic effects in SAR imagery prior to any geometric correction into
map geometry. Several rule-based algorithms have been developed, which use a
combination of SAR imagery, VIR imagery, and other measures. Rott and Nagler
(1995) and Baghdadi et al. (1997) used multi-temporal ERS-1 SAR images to determine
temporal changes in the backscattering coefficient from a dry snow and snow-free
reference images. Both studies developed a simple classification decision tree based on
typical backscatter difference of 3 dB and used masks for layover, shadow and others
created from VIR imagery to improve robustness. Nagler and Rott (2000) demonstrated
that an algorithm based on ratios between repeat pass SAR data with a threshold of 3 dB
was also suitable for determining wet snow in Radarsat-1 data. It is clear that a dry
snow 1mage is preferable as a reference, because soil moisture variations in a snow-free
image could produce ambiguities (Bernier and Fortin, 1998; Rott and Nagler, 1995).
Rott and Nagler (1995) and Haefner et al. (1993) provide examples of combining
ascending and descending orbits to reduce the effects of layover. However, such
combinations suffer from significant differences in the backscatter values associated
with the different local incidence angle and relative surface roughness for each scene
and diurnal differences in snow dielectric properties between ascending and descending

orbits.

Adam et al. (1997) evaluated a supervised maximum likelihood classification approach
for mapping the movement of the snow line in a temperate glacier basin with ERS-1
SAR. Only a coarse definition of wet-snow, glacier ice or bedrock classes could be
achieved. Texture information over the image was also employed; the principle being
that snow is generally more uniform in distribution than a rock surface, and it is that
these differences texture differences can improve the classification (Adam et al., 1997;

Shi and Dozier, 1993).

* The ratio of amplitude images (in linear scale) is the equivalent of the difference between decibel

images (in logarithmic scale): logarithm theory states that 10log,(a/b) = 10log¢{a) — 10log,o(b).
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The HUT (Helsinki University of Technology) empirical model, developed by
Koskinen et al. (1997) determines the relative fraction of snow-free ground F, by
comparing the backscatter (in dB) of an ERS SAR image of interest o, with the
backscatter values of two other images, one acquired at the beginning of snow-melt o”;,

and a snow-free image o’, from the end of snow-melt:

0_ 0
F, =100- :0 - Z‘J Equation 2.4.
243 Effects of vegetation on snow mapping

One of the unique applications of imaging radars occurs because a significant portion of
the energy transmitted by these systems penetrates a vegetation canopy to the ground
surface (Kasischke et al., 1997). As mentioned in section 2.3.2, L and P -band SAR are
significantly affected by vegetation biomass, whereas C-band is considerably less
affected by biomass, but maybe attenuated by a forest canopy depending on canopy
moisture (Way et al., 1990).

Experiments with AIRSAR indicate that C-band, VV polarisation SAR can expect large
total changes in backscafter for varied forest types as a result of ground moisture
conditions (Way et al., 1990; Way et al., 1994). The effect of pine and mixed type
forest was assessed for snow mapping with ERS SAR using the HUT model by
(Koskinen et al., 1997). The difference for wet snow was around 3 dB for open areas,
but this difference decreased with increasing biomass, and for the most densely forested
pine backscatter was independent of snow conditions. At all frequencies, the difference
in backscattering between wet snow and dry snow and snow free cover decreases with
increasing biomass (Koskinen et al., 1999). Indeed, numerous studies simply use a VIR
derived land cover data to mask vegetation types such as forest (Baghdadi ez al., 1997;
Nagler and Rott, 2000). A model developed by Pulliainen et al. (1996) indicates that as
the stem volume increases, the standard deviation of backscatter decreases, meaning
that the ability to distinguish wet snow from other categories is reduced. However,
boreal forests are relatively low density, and since C-band radar can partially penetrate
through the vegetation canopy, ERS SAR has potential for monitoring the seasonal
changes of boreal forests (Rignot et al., 1994a). As indicated previously, Stjernman

(1995) found C-band backscatter over an area of birch trees in Arctic Sweden was
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dominated by diurnal variation in ground permittivity due to changes in dielectric

properties of the snow cover.

244 Validation of snow mapping

Validation of SAR-derived snow maps is usually conducted using a combination of
ground control data and, if available, concurrent VIR data. However, given the trade-off
between satellite return frequency and resolution and the cloud attenuation of VIR
sensors, the availability of concurrent VIR data at a resolution compatible with the SAR
data is likely to be limited. Usually, one or two images from a VIR sensor such as
Landsat TM may be used where possible (e.g. Rott and Nagler (1995); Turpin (2000);
Nagler and Rott (2000)) or a comparison might be made with AVHRR data (Koskinen
et al., 1999). Given the canopy attenuation of VIR data, validation using VIR data is
only reasonable in open areas (Koskinen et al., 1999). Studies may rely on knowledge
of snow conditions from concurrently collected ground control data and from weather
stations. In general, good agreement is suggested between SAR and VIR derived snow
mapping products (Nagler and Rott, 2000; Rott and Nagler, 1995; Turpin et al., 2000),
but site-specific factors can often confound separability of wet snow and snow-free

ground.

245 Future research with radar for snow applications

Given the sensitivity of SAR to wet snow, there has been considerable interest in SAR
capability to estimate snow water equivalent (SWE), and additional parameters such as
snow depth and snow density. The availability of spatially distributed snow parameters
is potentially a great resource for hydrological modelling, but this research is still

experimental.

At the moment, operational snow applications are limited by using existing space-borne
SAR systems. However, multi-parameter (frequency and polarisation) SAR systems
could aid in production of snow products. Rott and Nagler (1995) showed the potential
of SAR derived snow maps for use in modelling of runoff from snow covered areas and
glaciers. More recently, Bernier e al. (1999) assessed the feasibility of using Radarsat-1
and ERS data to estimate the spatial distribution of SWE in a partially forested
catchment in northwest Quebec. An algorithm inferring SWE from the estimated
thermal resistance had a relative difference between 1 and 13% derived from snow

transects. Polarimetric information could have promising applications for monitoring
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SWE, snow depth and snow density. Using SIR-C/X-SAR measurements, Shi and
Dozier (1995) were able to estimate snow wetness with 2.5 % RMS. Algorithms for
estimating dry snow density and depth were developed by Shi and Dozier (2000a;
2000b); snow density derived from VV and HH polarization data at L-band frequency
shows 13% relative error compared with field measurements. Snow depth achieved
RMS error of 34 cm. The potential for ScanSAR multi-polarisation imagery onboard
Envisat and Radarsat-2 will prompt more active research in using SAR this area.
Interferometric SAR has also been investigated for estimation of changes in snow water
equivalent in dry snow. Small changes in snow properties between Interferometric SAR
image acquisitions may introduce significant phase changes; the change in the degree of
coherence could allow discrimination of wet snow (Guneriussen et al., 2001; Strozzi et
al., 1999). However, changes in amplitude of backscatter allow discrimination of wet

snow, therefore computer intensive interferometric processing is perhaps redundant.
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Chapter 3. Methods: Data for vegetation and snow
mapping

This chapter introduces the study sites and the remotely sensed and field data, which
were a necessary prerequisite for this research. Remotely sensed data have a different
measurement extent, depending on the source, but the extent of each study area was
defined by the extent of aerial photography, from which a high resolution DEM was to
be extracted. At each study site, this area encompasses continuous birch forest, the

forest-tundra ecotone and tundra vegetation beyond the treeline.

Within this area various field measurements were made for the snow cover and
vegetation mapping, with emphasis given to achieving a reasonable extent and spacing
of measurements given the variability in topography and vegetation and logistical
constraints during the snow melt period. Some field measurements were collected
continuously through the snow melt period, whereas other measurements, which could
not be collected continuously, were made coincident with image acquisition. As
indicated in chapter 2, the sensitivity of a snowpack to diurnal temperature change
means that the temporal correspondence of measurements with image acquisition was

particularly important.

3.1 Description of study sites

The DART project involved conducting experiments at study sites across gradients in
both continentality and latitude within the Fennoscandian mountain range in northern
Europe. This research is focused on three study sites where there is a local example of
the mountain birch (Betula pubescens ssp. tortuosa) forest-tundra ecotone (figure 3.1a-
d): Dovrefjell (Sgr-Trondelag, Norway), Abisko (Norbotten, Sweden) and Joatka
(Finnmark, Norway). Each study site reveals different climate and geological influences
on topography, vegetation and the structure of the forest-tundra ecotone. The study sites
provide useful contrasts for the investigation of snow and vegetation mapping, but with
large topographic variation and heterogeneous vegetation cover, provide a challenging
operating environment for remote sensing. The main species in the tundra areas are:
Empetrum hermaphroditum, Vaccinium ulginosum, V. vitis-idae and Betula nana,
lichens and bryophytes (and additionally in Dovrefjell Arctostaphylus uva-ursi)
(Sjogersten and Wookey, 2002). Within the forest, there may be a greater tendency

towards V. myrtillus.
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3.1.1 Joatka (69° 45' N, 24° 00' E)

Joatka is the most northerly and continental study site. Bordered on the east by the large
lake Ies’javri (ca. 12 x 8 km) and on the west by Alta Elva (Alta river) and Joatka’javri
(Joatka lake — see figure 3.2), Joatka lies towards the northern edge of the
Finmarksvidda, the continental inland plateau of northernmost Norway. The birch forest
is generally discontinuous and large areas of the study site are dominated by tundra,
which begins to prevail above ca. 400 m a.s.l. Annual precipitation is 354 mm, but
winters are dry (ca. 50 mm per month). Mean July and February temperatures are ca. 11
°C and -14 °C respectively, although long-term temperature records do not exist. The
study site can be characterised into three distinct sub-areas:

(1) The “lowland” plateau is an undulating plain at elevations of 385-500 m a.s.l. It
has numerous bogs and small shallow lakes, with glacial-fluvial ridge
formations hosting typical tundra vegetation of dwarf birch (Betula nana) lichen
heath on the ridges and often bilberry (Vaccinium myrtillus) in depressions, and
mountain birch (Betula pubescens ssp. tortuosa) in favourable sites. Geology
consists of relatively nutrient rich, basic igneous gabbro.

(2) An escarpment edge rises forming a steep south-facing slope running west to
east. Elevation rises to 671 m a.s.l. and small streams are abundant and
vegetation is relatively productive with herb-rich birch forest.

(3) The “highland” plateau to the north comprises relatively nutrient poor pre-
Cambrian quartz rich bedrock. Vegetation is mostly bryophytes or lichen with

trailing dwarf shrubs and large areas of bogs and peat.

3.1.2 Abisko (68° 21' N, 18° 49'E)

The Abisko study site, figure 3.3 and 3.4, is close to the Abisko Scientific Research
Station (356 m a.s.l), which is situated on the southern shore of Lake Tornetriisk. The
forest-tundra ecotone is located on an undulating gentle slope of northwesterly aspect
and is comprised of a patchwork of tundra and forest, with extensions of forest up to
700-800 m a.s.l. At a finer scale, the topography is “hummocky” due to till deposits,
with peat formed in the depressions. A pronounced orographic effect causes a
“precipitation shadow”, which results in low local mean annual precipitation of
300 mm. Mean July and January temperatures at Abisko are 11 °C and -11.9 °C
respectively (30 year mean 1961-90 (Andersson et al., 1996)). The bedrock in the area

belongs to the Scandes mountain range and is mainly hard shale.
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3.1.3 Dovrefjell (62° 18' N, 09° 37' E)

Dovrefjell has long been famous as a centre of floristic diversity within Norway, partly
due to the complexity of the bedrock. The E6 highway runs along the Drivdalen valley
and essentially separates two areas of contrasting geology; the west side, which is
dominated by acidic gneiss, and the east side underlain by carbonate-bearing rocks. The
“Western Gneiss region” contrasts with the eastern “Trondheim region”, the latter
having a rich flora including many uncommon species, which have only been found in

one or a few localities, or occur in a limited area.

The forest-tundra ecotone is narrow, given the steep slope gradient of the topography,
and is typically located at 1080 m a.s.l elevation. Topography of the Western Gneiss is
sharper, typified by Snghetta (2286 m a.s.l.), whereas the younger Trondheim region
has rounder landscape forms, such as Mt. Knutsg (1690 m a.s.l.). Within the Divdalen
valley is Kongsvoll Biological Station (Norwegian University of Science and
Technology, Trondhiem); a meteorological station at 972 m a.s.l. records mean July and
January temperatures as 10.2 and -7.9 °C respectively and annual precipitation of 473

mm.
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The effects of SA and other random errors were ameliorated using two alternate
methods, position averaging or differential GPS, the choice dependent on the accuracy
required for the particular location measurement. The two methods are discussed below
and the choice of either position averaging or differential GPS is specified in subsequent

sections where each field measurement is discussed.

3.2.1 Position averaging

Taking the average of repetitive location measurements at a single location increases
accuracy and precision. If the horizontal errors were not correlated, the root mean
square error (RMS) would be inversely proportional to the square root of the number of
measurements. However, the errors are correlated and this causes the error from
averaging to decrease at a slower rate than if the errors were not correlated. When SA
(Selective Availability) was on, it was noted that if one position-averaged, the RMS
error when position-averaging roughly fell by the reciprocal of the square root of the
number of fixes divided by twice the correlation time of the fixes (Rees, pers. comm.).
The protocol used for location averaging was to collect a minimum of 180 (1/sec)
consecutive positions, which means that the reduction in RMS error was a factor of
approximately 10. Therefore, It is reasonable to assume that measurements were
collected with a RMS error of less than 10 m. Repeated visits to the same site on

separate occasions may further improve accuracy.

3.2.2 ‘Differential GPS

Differential GPS is a technique that uses additional GPS measurements from a fixed
“base” GPS receiver and post-processing to increase the accuracy of GPS positions. It is
based on the fact that any pseudo-range errors in a GPS signal are common to all
receivers within a radius of several hundred miles. Differential GPS can provide
accuracies from sub-metre to around five metres, depending on the sophistication of the
antenna and GPS signal used. The base receiver for each site was a permanent base
station operated by the relevant national mapping agency (Sweden: Lantmiiteriet, SE-
801 82, Givle; Norway: Statens Kartverk, 3504 Hgnefoss). The “rover” receiver was
the Trimble GPS referred to in section 3.2. In post-processing, differential correction
compares the base station data with the known base station location and computes the
error associated with each satellite pseudo-range. Each base station was located between
100-200 km of the study site, which helps to ensure that the signal received by the base

receiver has errors representative of the rover receiver. This error is used to correct the
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rover positions, improving their accuracy. Under SA conditions, August et al. (1994)
found that 95% of locations were within 73 m of true without differential correction and

within 6 m of true with correction.

Differential corrections were post-processed using Trimble Pathfinder Office software
using concurrent base station files. A logging interval of one position per second was

used, with at least 180 (1/sec) positions collected at a location.

3.3 Field meteorological measurements

At each study site, temperature measurements were recorded. At Abisko and Dovrefjell
additional meteorological measurements were also available from the meteorological
station at the respective research station: precipitation, humidity, and incoming solar

radiation.

3.3.1 Temperature

Temperature measurements are useful because air temperature is the main influence on
the timing and rapidity of the snow melt. Temperature monitoring at each study site was
conducted using temperature loggers (TinyTag Plus: Gemini Data Loggers Ltd,
Chichester, UK). These loggers were distributed in the field and maintained as part of
the DART project by a number of project members, coordinated by Dr. Robert Baxter,

University of Durham.

Four temperature stations were erected spanning the forest-tundra ecotone: (1) upper
tundra, characterised by tundra vegetation above the treeline; (2) upper forest,
characterised by a patch of forest close to the treeline; (3) lower tundra, typically an
extensive tundra area within the discontinuous forest; and (4) lower forest, which is
within the continuous forest. At each station, three hourly mean measures were
recorded:

(1) Air temperature — measured from a screened logger at 2 m above ground level.

(2) Ground surface temperature — measured from an unscreened logger.

(3) Soil temperature — measured with a probe at 10 cm depth.

Ground surface and soil temperature measurements can indicate how the snowpack is
acting as an insulating medium from variations in air temperature. Unscreened ground

surface temperature is particularly useful because it can provide accurate information on
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the duration of snow cover across the forest-tundra ecotone, which can be correlated to
information in the ERS-2 SAR images. The method of determining snow cover duration
is based on the amplitude of temperature variation. Beneath the snow cover, insulation
causes a low amplitude response of ground temperature to variation in air temperature.
In contrast, snow-free conditions reveal a significant increase in the amplitude of
temperature variations, which allows the transition to snow-free conditions to be

identified.

3.4 Field snowpack and ground surface measurements

Snow pits enable retrieval of several snowpack measurements that are important for
interpretation of the ERS-2 SAR imagery, which were discussed in chapter 2. Snow pits
were excavated to monitor the development of the snowpack at each site throughout the
snow melt season. They were always excavated coincident with ERS-2 SAR image
acquisition, with some additional pits excavated at other times if possible. Snowpack
properties are highly variable both spatially and temporally. However, the aim is not
spatial interpolation of measurement values, but to obtain representative measurements
at locations across the forest-tundra ecotone. In addition, every effort was made to
excavate snow pits at the same location in order to effectively monitor temporal change
in snowpack properties and minimise measurement variation due to spatial variation.
Fewer ground surface measurements were made when snow-free conditions had
emerged because for snow mapping the emphasis is on the temporal change in snow

conditions.

Field measurements were located using the US Department of Defence global
positioning system (GPS) and the procedure of position averaging, as discussed in

section 3.2.

3.4.1 Snowpack stratigraphy

The stratigraphy of the snowpack was examined following excavation of each snow pit.
The mean diameter of snow grain was estimated and the complexity of the stratigraphy
was recorded, in particular the evidence of melt-refreeze processes. To some extent, the

complexity of stratigraphy determined the frequency of other snowpack measurements.

3.4.2 Snow permittivity and liquid water content

Determination of snow liquid water content is based on measurement of the permittivity

of snow and air and, subsequently, the calculation of the snow dielectric constant. The
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measurement of snow permittivity must be rapid and preferably non-destructive because
of the rapid snow metamorphism at and near the melting point; any disturbance of the

snow may change its structure, texture, and wetness (Denoth et al., 1984)

Measurements were made using a Denoth (1994) snow dielectric moisture meter with
flat capacitive sensor (figure 3.5), which allows both near surface and snow volume
wetness determinations. The snow dielectric moisture meter operates at a frequency of
20 MHz, where snow density and wetness mostly control snow permittivity and the size

of ice grains and liquid water distrbution can be neglected (Denoth, 1994).
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The sensor is inserted horizontally into the snowpack and a measurement U is made
through a tuning operation, which requires a minimum value from the mA meter. A
reference measurement U, in air is also made. The dielectric constant (real part) of

snow is calculated according to:
&=1+k- log(% ) Equation 3.1
ref

where k is a sensor specific calibration factor. The relationship between snow
permittivity £ density o (g/cm3), and volumetric water content W%, has been found

experimentally (Denoth, 1994; Frolov and Macheret, 1999):

£ =1+1.92p +0.44p% +0.187W +0.0046W > Equation 3.2

The calculation of the imaginary part £ of the dielectric constant (the loss factor),
which is important for determining radar penetration depth, is more difficult. The loss
factor is very sensitive to the water content and the shape of the water inclusions,
meaning that a simple relationship between £” and liquid water content may not exist
(Denoth, 1989). However, Fung (1994) introduces a relationship for calculation of &”

for a frequency range that encompasses ERS-2 SAR, but for snow density up to only
0.38 g/cm’:

2
0.073(% 07) Wt

E = Equation 3.3

I+ (%07)2

where frequency is expressed in GHz.

343 Snow depth

Total snow depth and depth of each measurement were made following excavation of
each snow pit. All measurements are referenced relative to the snow surface. It is import
to note that a wet snowpack will limit ERS-2 SAR penetration depth to around one
wavelength (ca. 5 cm) so that spatial variation in snow depth maybe less important for a

wet snowpack.

3.4.4 Snow density

Snow density (g/cm®) was measured using a volumetric method with a cylinder of

known volume and a digital balance (+1 g measurement accuracy). Cylinders of snow
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were extracted throughout the profile of the snowpack, specifically where the dielectric

measurements were taken.

3.4.5 Snow temperature

Temperature was taken throughout the profile of the snowpack using a digital
thermometer with a needle probe (Fluke 51 J/K thermometer: RS Components Ltd.,

Corby, UK), which has 0.1 °C measurement accuracy.

3.4.6 Snow and ground surface roughness

Quantitative measurements of surface roughness and correlation length of snow and
ground surfaces were not acquired. However, snow surface roughness was recorded
qualitatively, with interpretation of temporal change in roughness of snowpack relative
to dry snow conditions. The tundra surface is assumed to remain relatively constant

over the period of snow melt.

3.4.7 Ground surface / soil moisture

Since the dielectric constant of soil can influence the ERS-SAR backscatter,
measurements of soil permittivity were acquired when snow-free conditions emerged.
Soil permittivity was measured using a ThetaProbe (type ML2x: Delta-T Devices Ltd.,
Cambridge, UK), which measures volumetric soil moisture content to within 1%. The
soil dielectric constant, &q, was derived from ThetaProbe field measurements V (volts)

using:
€ =1.07+64V -6.4V2 +47V° Equation 3.4

Volumetric soil water content W;,; (%) was derived from &g using the following

relationship:

1/5}0.1 =a+bW,, Equation 3.5

where a and b are manufacturers constant values, which are 1.6 and 8.4 respectively.
3.5 Remotely sensed image acquisition

3.5.1 ERS-2 Imagery

ERS-2 SAR imagery provides suitable imagery for landscape-scale monitoring of snow-
melt at the forest-tundra ecotone, with a spatial resolution of approximately 25 m and

spatial extent of approximately 100x100 km. Table 2.2 gave details of ERS-2
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parameters; as a C-band, VV-polarised SAR, ERS-2 is suitable for snow-mapping. The
combination of the high latitude of the study sites and the polar orbit of ERS-2 improves
the return frequency over the DART study sites. However, while coverage is achieved
more frequently, images may have a different orbit track, which results in images
having different imaging geometry. This precludes simple multi-temporal overlay in
radar geometry for some images, which is discussed in subsequent analysis. Given the
problems of large differences in imaging geometry and differences in dielectric
properties between descending (daytime) and ascending (night-time) images, only
descending scenes were acquired. ERS-2 SAR imagery was acquired in precision image
(PRI) format through Eurimage (Via E. D’Onofrio 212, Roma 00155, Italy) and since
imagery is independent of cloud cover, Eurimage gives confirmation of acquisition in
advance. Because of inter-annual variation, the timing of snow melt is difficult to
predict. The aim was to acquire an image of dry snow conditions and several images

throughout the period of snow melt until snow-free conditions emerge.

Logistical constraints meant that field data could not be collected in the same year at
each site and since image acquisition is required with concurrent field data, images were
collected in different years at different site. In 1999, 5 ERS-2 SAR scenes were acquired
over Joatka and 5 at Abisko. During 2000, 6 ERS-2 SAR scenes were acquired over
Dovrefjell. This roughly translates to an image acquisition every 3 weeks during the
melt period, which represents a good temporal resolution for remotely sensed snow
mapping. Details of images are shown in table 3.1 and an example image from each

satellite track is shown in figures 3.6 to 3.8.

The reference image for snow mapping should ideally be from the same track and frame
as the change images. At Joatka, however, a reference image from the same orbit was
not acquired for the image on 5™ June, which may result in uncertainties in the analysis.
However, the terrain is not extreme here and the high latitude means that the tracks
overlap substantially, so that the change in imaging geometry is not large. At Abisko,
there is sufficient imagery that we should be able to compare each image to a dry snow
or snow-free image from the same track. An average of more than one dry snow image
can be made, if available, to reduce the effects of variation in surface roughness and

speckle.
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3.5.2 Landsat TM imagery

Landsat TM imagery provides imagery with a suitable spatial scale (30 m spatial
resolution, 185 x 185 km spatial extent) for landscape-scale mapping of the vegetation
at the forest-tundra ecotone. However, attenuation of VIR imagery by cloud cover
despite the increased return frequency of the satellite at high latitudes (above the
nominal repeat cycle of 16 days) means that the archive of Landsat TM imagery at each
site is limited. Imagery had to be acquired in 1999 to meet project deadlines, and in
1999 a single Landsat ETM (Enhanced TM) with reasonable cloud cover was acquired
at Abisko and Dovrefjell. At Joatka no such images were available and so an archive
Landsat (5) TM image was acquired for this site. All Landsat TM imagery was from the
United States Geological Survey (USGS) Earth Resources Observation Systems
(EROS) Data Center. Details of imagery are given in table 3.2.

Table 3.2. Landsat TM imagery acquired at each site.

Date Landsat TM Path Row Cloud cover %

Sensor (scene average)
Joatka 16/07/87 5 195 011 10
Abisko 25/09/99 7 197 012 10
Dovrefjell  06/08/99 7 199 016 10

3.5.3 Aerial photography

A DEM at an appropriate resolution is an important prerequisite for geometric and
radiometric correction of SAR imagery. Stereo aerial photography was acquired for
creation of a high resolution DEM. Black and white stereo aerial diapositives were
obtained for each study site from the relevant national agency; Lantmiteriet, SE-801 82,
Givle, Sweden and Fjellanger Widerge Geomatics AS, 7486 Trondheim, Norway. Each
diapositive was professionally scanned using a flatbed photogrammetric scanner
(greyscale, 1000 pixels/inch) to minimise distortion; details are given in table 3.3. From
the scanned photographs, given suitable horizontal and vertical locational ground
control data, feasible horizontal pixel spacing for a DEM was estimated at 10 m and
feasible vertical resolution at 5 m at each site. Ground control positions (GCPs) were

collected using the differential GPS procedure, which was discussed in section 3.2.

57




Table 3.3. Photogrammetric values of aerial diapositives.

Study site No. of Image Camera / Lens Calibrated focal length
photos Scale (mm)

Abisko 6 1:60000 Wild RC10 152.82

Joatka 9 1:40000 Wild RC5 152.51

Dovrefjell 12 1:40000 Zeiss RMK TOP 15 153.51

Since horizontal accuracy is superior to vertical accuracy in GPS positions, two types of
GCPs were collected. A full GCP has accurately known horizontal and vertical
components, whereas a horizontal GCP has no knowledge of the vertical component.
Full GCP were taken at a number of previously surveyed locations (by a national
mapping agency), where accurate elevation had been acquired using advanced
surveying methods during acquisition of the photography. The geodetic datum of these
elevations was WGS84, which matched the datum of GPS measurements. Typical

locations were spot heights and numerous lakes.

An additional DEM of a larger area was made available at Dovrefjell, provided by
Professor NR Szlthun (Norwegian Institute for Water Research, Oslo); the DEM was
digitised from Statens Kartverk Dovrefjell Map Set 6 with 25 m contours.

3.6 Field vegetation survey

The aim of the vegetation survey was to record the location of vegetation communities
for use as training and validation data for a supervised classification of the Landsat TM
imagery. This requires sampling of vegetation communities over a large extent of each
study area with a reasonable spacing of samples. The location of vegetation
communities was recorded using a GPS and position averaging as discussed in section
3.2. The approximate location of samples was determined in advance using existing
sources of spatial data that contained vegetation information: at each site the aerial
photography was useful and at Dovrefjell and a 1:50,000 vegetation map (polygon-
based) was available (Statens Kartverk, 3504 Hgnefoss, Norway), while at Abisko a

digitised 1:50,000 vegetation map was also available from Lantmiiteriet.

Samples were collected during a late summer field campaign. Samples were taken from
the accessible areas while ensuring sufficient spatial extent. Samples were also taken
from relatively homogenous areas of vegetation, but an effort was also made to record
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data for reference in more heterogeneous vegetation, to avoid optimistic bias and ensure
it was representative. Collection of samples in close proximity was minimised to
improve independence of samples; ignoring spatial autocorrelation might result in

optimistic bias.

The vegetation survey was adapted from the hierarchical approach to classifying PFTs
for Arctic ecosystems proposed by (Chapin III ez al., 1996; Walker, 2000), as shown in
figure 3.9. A larger number of PFTs can be defined, but the final classification may be
limited because of the measurement scale of Landsat TM relative to the spatial scale of

variation in vegetation at each site and spectral differences between vegetation types.

3.7 Discussion

The data outlined in this chapter were required in order to fulfil the aims of the study.
The data present challenges for integration because of the different measurement scales,
in terms of measurement extent and resolution (pixel spacing) of the remotely sensed
imagery. In addition, the temporal variation in data within and between sites demands
caution. The acquisition of SAR imagery and field measurements was from a different
year at Dovrefjell to Abisko and Joatka and the Landsat TM imagery was only
concurrent with other data at Abisko. In particular, the archive Landsat TM imagery of
Joatka must be treated with caution. However, given the slow rate of change of
vegetation in Finmarksvidda, the use of this image is considered reasonable, and
imagery acquired during the month where contrasts between vegetation types are

maximised is probably superior to a more recent image acquired at other times.

The requirement for frequent imagery to properly monitor snow melt at the forest-
tundra ecotone means that SAR imagery has been acquired under a different imaging
geometry (different track). Therefore, a DEM of comparable resolution to the SAR
imagery is a prerequisite to geometric and radiometric correction. Since no suitable
digital elevation source was available, construction of a high-resolution DEM was
required and suitable data were acquired; the aerial photography also afforded the

opportunity for improved vegetation mapping.

Previous research involving radar remote sensing of snow melt has often used field data
for interpretation of radar backscatter from a meteorological station a substantial

distance from the study site, which is also of poor temporal resolution relative to the
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image acquisition. This limits the confidence of using information obtained from the
imagery in relation to changing environmental conditions. Here the focus was on

concurrent field measurements within the study area.

Precautions have been taken to optimise all data quality. The errors associated with the
GPS have been assessed and some propagation of error is likely during image geometric
correction and in relating field measurements to the imagery. In defining the vegetation
sampling protocol, it is important to consider that at landscape-scale the vegetation is
often a complex mosaic and communities will often not reflect classification distinction.
Further, no survey can deliver the “ground truth” needed for exact validation and no
reference data can be truly representative of the entire classification. However, given the
accuracy of the GPS and the nature of the data collected, it is reasonable to analyse field

data in conjunction with the spatially explicit data to be generated with the GIS.
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Chapter 4. Methods: VIR image processing

This chapter presents the image processing techniques undertaken on the VIR imagery:
the aerial photography and Landsat TM imagery. A high resolution DEM was extracted
for each site from the aerial photography. VIR imagery was geometrically corrected
using standard image processing methods. Vegetation maps were created from Landsat
TM imagery using a supervised maximum likelihood classifier (MLC) and accuracy

assessment was also completed using conventional methods.

Since conversion of files between software formats can be problematic, all data were
processed to conform to the relevant UTM map projection (Joatka and Abisko UTM
34N; Dovrefjell UTM 32N) with a WGS 84 datum.

4.1 DEM extraction from aerial photography

Within Erdas Imagine 8.3 (ESRI Imaging Solutions: ESRI(UK) Ltd., Aylesbury, UK)
the OrthoMAX module was used for block triangulation and extraction of DEMs. The
block triangulation procedure requires substantial manual-input; interior
orientation/calibration is required using parameters from the camera calibration
certificate and GCPs must be digitised between the stereo-pair photographs. The Block
Tool allows the definition of different types of GCP: (c¢) full control point that has
accurately known horizontal and vertical components, (h) horizontal control point that
has no information on the vertical component, (v) vertical control point that has no
knowledge of the horizontal component, and (t) tie point that simply provides a link
between images. This allows the addition of tie points in locations that are difficult for
ground data collection, and also the addition of an accurate vertical component to tie

points which are placed at locations with an accurately surveyed height, such as lakes.

DEMs were extracted using the “DEM-Tool” at several resolutions from the original
triangulation information. The software indicates the maximum resolution available,
and given the high quality and density of the GCPs this was ca. 1 m in horizontal and
vertical. However, for the requirements of this research a DEM with 12.5 m horizontal
spacing and 1 m vertical precision was created. The accuracy of the DEM was estimated

as ca. 5 m in horizontal and vertical dimensions.
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411 DEM editing and evaluation

DEM extraction can produce considerable noise and errors in elevation values, this is
especially noticeable on lake surfaces and if there is any cloud clover. There was little
or no cloud in the photos for each study site, but the numerous lakes in each study area
were not flat in the DEM and contained erroneous values because they have no features
for the automatic DEM extraction to match on. PCI ImageWorks version 6.3 (PCI
Geomatics: Henley on Thames, UK) provides a set of DEM editing tools for creating
editing masks, interpolation, filtering, and smoothing. Corresponding ortho-photos were
analysed to provide a mask for the lakes using the low grey values and distinctive low
texture of lakes. Using the lakes mask, the correct elevation of large lakes was added
manually from a relevant map source. For numerous small lakes interpolation was used
using elevation at the shore of the lake, which resulted in a reasonably flat surface at

approximately the correct elevation.

4.2 Landsat TM imagery

The focus of this research is the forest-tundra ecotone, primarily the distinction between
forest and tundra and location of the treeline. However, it was interesting to consider
additional classes of vegetation that form distinct parts of the landscape mosaic at each
site, which are also relevant for the purposes of the DART project. Therefore, field
vegetation sampling for image classification was conducted according to the
hierarchical PFT classification shown in figure 3.9 (Chapin III ez al., 1996; Walker,
2000).

Imagery at each site was geometrically corrected and classified within Erdas Imagine
8.4 using standard techniques. In remotely sensed data classification, usually a
supervised classification is performed, which, regardless of the particular technique, has
three main stages:

(1) The training stage, which involves the statistical characterization of the classes
that are to be mapped. This can involve characterization of reflected radiation
signatures and temporal evolution of a signature and its association to various
phenological attributes of a vegetation type.

(2) Pixels of unknown class membership are allocated by some predefined decision

rule to the class to which they have the greatest similarity according to the

training statistics.




(3) The third stage involves validation by assessing the correspondence of the
known to the predicted land cover type, the most common method being a
contingency table (Congalton, 1991).

Ancillary products such as a DEM are often used in attempts to improve spectral-based
classifications, with data used before (e.g. stratification), during (additional bands), or
following (post-classification recoding). However, no ancillary data were used in the
classification process to ensure independence of vegetation data from other data sets.
Further, training and reference data were separated and training data were not used in

validation.

4.2.1 Training

Using an unsupervised classification (ISODATA algorithm), the nature of the spectral
classes within the data was explored. Using this information and the ground control
data, polygons were digitised using the onscreen editing tools with the aim of obtaining

pure samples of each vegetation type in the conventional way.

The signatures were evaluated for divergence according to PFT type. The Transformed
Divergence measure, which gives exponentially decreasing weight with increasing
distance between classes (Erdas, 1999), identified classes that could not be separated.
Training was repeated with edited, merged, and deleted samples in order to optimise the
classification. The use of a single image at each site, spectral similarity of vegetation
types, topographic effects, and the natural variability in the vegetation types (mosaics)
meant that there were difficulties in defining suitable signatures for classification at

higher levels of the PFT hierarchy.

4.2.2 Class allocation

There are numerous methodologies for the classification of remotely sensed data. The
maximum likelihood classifier (MLC) was employed, which is one of the most widely
used methods for supervised classification, e.g. Fuller ef al. (1994). Using the mean
spectral response and covariance matrix derived from the training statistics, the MLC
determines the likelthood of each pixel belonging to each class. Unknown pixels are

allocated to a class to which it has the highest likelihood of membership. Following

class allocation, classes were combined to form the final classification product.




4.2.3 Evaluation

Accuracy assessment was conducted to evaluate the quality of the classified product. An
error matrix was constructed, which compares the reference class values to the assigned
class values in a ¢ x ¢ matrix, where ¢ is the number of classes. The assessment
calculated statistics of the percentage of correct correspondence (overall accuracy); total

number of correctly classified cases divided by the total number of cases.

Even a completely random assignment of pixels to classes will produce correct values in

the contingency table. The Kappa statistic, k, is a measure of the actual agreement
between reference data and the classification and the chance agreement between the
reference data and a random classifier (Congalton, 1991). Conceptually, kappa can be

defined as (Lillesand and Kiefer, 1994):

i correct — chance

Equation 4.1
1 — chance

The value of kappa usually ranges between 0 and 1, with the values representing the
percentage improvement over a random assignment of pixels. From a contingency table,

the kappa statistic is computed (Lillesand and Kiefer, 1994):

r ¥
N'ini _Z(XH 'x+i

k= = =l Equation 4.2

N2 _i(xn 'x+i)
i=1

where

r = number of rows in the contingency table

X; = number of observations in row i and column i (on the major diagonal)
x,, = total of observations in row i

x,, = total of observations in column i

N = total observations in contingency table

In considering the accuracy of classifications, only vegetation classes were included;
classes such as water are relatively easy to classify and can inflate accuracy measures

and are not important for this research.
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4.3 Discussion

Key to the quality of SAR processing is the availability of a DEM of compatible
resolution with the SAR data. With no suitable source of DEM available at Joatka and
Abisko, a high-resolution product had to be produced that was compatible with the
ERS-2 product. The advantage is that full control is gained over the resolution of DEM
products and knowledge of the quality of inputs and methods of filtering and editing
means that the limitations are known. The triangulation results indicated that the
maximum resolution of DEM at each site was ca. 1 m in horizontal and vertical, but a
conservative estimate of accuracy was 5 m horizontal and vertical. The large scale
DEMs should resolve landscape features that influence the level of radar backscatter.
This is essential if we are to extract the maximum possible information from the SAR
data, which is required for mapping landscape-scale snow melt at the forest-tundra
ecotone. At Dovrefjell, the digitised Statens Kartverk DEM is useful because of its

larger spatial extent.
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Chapter 5. Methods: ERS-2 SAR image processing

This chapter presents the image processing techniques required to reduce image speckle
and conform the ERS-2 SAR imagery into map geometry for integration within a GIS.
The first operation on the images was the application of a speckle filter. Following this,
the DEMs extracted from the aerial photography were used to geometrically correct the
SAR images. The final stage is the radiometric correction of the SAR imagery, which is
the correction of the SAR backscatter for the variation the angle of the incident radar
cause by topography. Several simple correction models for incidence angle variation are

discussed.

ERS-2 imagery was received on compact disc from the UKPAF (UK Processing and
Archiving Facility) as the standard ESA ERS-2 Precision Image (PRI). PRI images are
geometrically corrected from slant range (range from sensor to target) to a nominal
ground range (horizontal range from nadir), SAR antenna pattern gain (the change in
brightness toward the near and far range of an image), and range spreading loss (Laur ez

al., 1998). Each pixel is related to the radar brightness ,BO as follows (Laur et al., 1998):

DN =.,/° Equation 5.1

where DN is the value of each pixel in the PRI image.

5.1 Speckle filtering

Speckle filtering was undertaken in radar geometry within ERS SAR Toolbox (ESA,
1999), a command-line driven collection of image manipulation tools developed
specifically for ERS SAR data. The pre-processing at UKPAF means that the ERS-2
imagery has 3-looks, but additional speckle filtering was employed using a moving
kernel of 7x7 dimension and the Gamma MAP algorithm (Capstick and Harris, 2001,

ESA, 1999). A comparison of unfiltered and filtered imagery is shown in figure 5.1.

67







5.2 Geometric correction

Geometric correction was undertaken using PCI EASI/PACE Version 6.3. In the first
stage a simulated ERS-2 image was created for each study site using the DEM and
Xpace Radar Analysis tools. The resulting ground range simulated SAR image had
simulated distortions caused by the imaging geometry of the SAR system. The
simulated image enabled the collection of GCPs to tie the SAR image to the DEM,
which would be otherwise difficult in mountainous terrain because of the distortion in
the SAR image. A particularly high number of GCPs were possible because of the high
resolution of the DEM. The uncorrected SAR image, simulated SAR image, DEM, and

the set of GCPs were used to transform each image into map geometry.

Production of the simulated ERS-2 images within PCI also enables production of
layover and shadow masks, which are useful for incorporation into the GIS. All images
were processed to conform to the relevant UTM map projection (Joatka and Abisko

UTM 34N; Dovrefjell UTM 32N) with a WGS84 datum.

5.3 Incidence angle correction models

As discussed in chapter 2, the side-looking imaging technique of SAR means ihat
backscatter will show variations due to the local incidence angle 6. A fundamental aim
of most research using SAR imagery is the removal of the topographic effects because
the variation in backscatter as a function of incidence angle essentially masks variation
due to other factors, which are the factors of interest. The stability of ERS-2 SAR orbit
means that the ratio of images relative to a reference image should, for practical
purposes, remove the incidence angle dependence of ERS-2 backscatter. The ratio
images can then be investigated for information content regarding snow cover.
However, images were acquired from different orbits to improve temporal resolution of
snow mapping, which means that investigation of the effect of incidence angle on

backscatter was necessary.

Essentially, the value f° (equation 5.1) given by Laur er al. (1998) represents the
incidence angle —dependent radar backscatter, which is subsequently defined as o 6).
The simplest backscatter models interpret topographically dependent backscatter ¢°(6)
as being equal to topographically normalised backscatter o’ and some function of

incidence angle f(6) (e.g. Shi and Dozier (1994); Guneriussen (1997)):
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c’0) = O',? -f(@) Equation 5.2

The aim was to produce incidence angle —normalised backscatter, so equation 5.2 must

be re-arranged:

0',? =0%(6) L Equation 5.3

fo)

However, the reference incidence angle « of ERS-2 for flat terrain is 23°. Therefore the
incidence angle correction of the SAR imagery must be calculated relative to the
reference incidence angle. To adjust backscatter relative to a reference incidence angle

we define a correction function c(6) that takes the reference incidence angle into

account:
O',? =0%6)-c(6) Equation 5.4
where
f(@) :
c(@)=—-—= Equation 5.5
[

and f(a) is the value of function for angular dependence determined for the reference

incidence angle for a horizontal surface.

5.3.1 Cosine correction

Simple surface scattering models based on a cosine function were introduced by Ulaby

et al. (1982a; 1982b):
o’ (@) =0 cosO Equation 5.6
0’ (@) =0 cos’* 0 Equation 5.7

The models in equation 5.6 and 5.7 are based on theoretical surfaces that are collections
of small spherical scatterers. Equation 5.6 is based on the fact that area of the surface
illuminated increases with increasing incidence angle, which means that the scattering
per unit area would be decreased. Equation 5.6 represents scattering based on Lambert’s
Law, where it is assumed that scattering is in accordance with a cosine law rather than
being isotropic for each sphere. Since the incident power per unit area also decreases
according to a cosine law, the product results in the angular dependence of cos?6.
Although the Lambertian model is simple and idealised, natural physical surfaces do

sometimes show this behaviour (Rees, 2001) and both models are commonly used in the

remote sensing field (Ulaby et al., 1982b).
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A familiar application of this form of correction is topographic normalisation of VIR
imagery. The cosine correction for VIR imagery assumes a surface reflects incident

radiation uniformly in all directions (i.e. equation 5.6):

cosx

DN, = DN Equation 5.8

cosd

where DN is the reflectance value in a VIR image and DN, is the cosine normalised
value. For solar radiation the reference incidence angle is 0°, i.e. nadir, which means
that equation 5.8 is often simplified to:

_ DN
cosd

DN

n

Equation 5.9

Cosine models have been used to correct SAR data (Teillet et al., 1985), where cosa
depends on the reference incidence angle of the SAR system. A simple cosine

correction based correction for SAR imagery is:

cos’ o

o) =0°) Equation 5.10

cos’ @

5.3.2 Inverse sine correction

Laur ef al. (1998)' state that in ERS-2 imagery, the radar brightness /° is equal to the
incidence angle —normalised backscatter coefficient 0;,0 divided by the sine of the local
incidence angle. Therefore, with reference to equation 5.2:

1
sind

fo)=

Equation 5.11

Essentially, this model represents the angular dependence of backscatter as an inverse
sine law. Therefore, inserting equation 5.11 into equation 5.5 gives the correction
function as:

sin(&)
sin(a)

c(@) = Equation 5.12

Therefore, incidence angle —normalised backscatter was calculated according to:

00:0_0(9).sin9

- Equation 5.13
smao

! See Laur et al. (1998) Section 1 — introduction, where this relationship is stated clearly for the only time

in the document.
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5.3.3 Modified Muhleman model

Guneriussen (1997), referring to Stiles and Ulaby (1980), introduces the modified
Muhleman scattering model to describe the incidence angle dependence of backscatter”.
The Muhleman model is an empirical model based on Bragg scattering. The Bragg
scattering mechanism is largely thought to be responsible for reflection of microwave
scattering from small scale (of the order of 1 cm) roughness on water surfaces,
especially if the Bragg scattering has a dominant spatial frequency, in which case it is
said to be resonant (Rees, 2001). As such, Bragg models have been used for ocean and
geologic surfaces, with extensive research into scattering from ocean waves e.g. for
ocean wind speed measurements and oil slick detection (Quilfen ez al., 1999). The use
of the Muhleman model for monitoring snow melt by Guneriussen (1997) was novel.

The model is given by:

acosfd

o’ @)=0""
[sin 6@ +bcos 19]3

Equation 5.14

where the empirical constants for ERS are b = 0.1 and a = 0.0133 (Guneriussen, 1997).
The Muhelman model can be used to create the incidence angle correction function in

equation 5.5, but this is not reproduced here.

534 Empirical correction models

Often an empirical backscatter model is used to explain variance in backscatter in
relation to incidence angle instead of physically based models (e.g. Bayer et al. (1991);
Goering et al. (1995); Goyal et al. (1998); Rees and Steel (2001)). Application of
empirical models has been successful, but they are obviously limited to specific

locations and surface conditions.

5.3.5 Comparison of correction models

The correction function c(6) can be graphically represented across a range of incidence
angles relative to the reference incidence angle for ERS-2 (a = 23°). If backscatter is
expressed in decibels then equation 5.4 is equivalent to:

O',? i = 0-25 (@) +c5(0) Equation 5.15

Correction models are displayed in figure 5.2; note that at 23° each model has

correction of 0 dB.

* Stiles and Ulaby (1980) does not contain any reference to the Muhleman model.
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study areas in this research, this assumption was considered reasonable given the
simplification of processing that results. Maps of local incidence angle were created for
each study area using both SAR Toolbox and PCI functionality. The SAR Toolbox
Geometric Correction module can be used to determine the ERS-2 satellite position
(x,y,z) for specified image rows and columns on an individual pixel basis. Using this
functionality, satellite position was located for the centre of each study area for the
different satellite tracks in each image. This location for the satellite was subsequently
used with the PCI EASI/PACE ANG (Incidence angle) function to create a map of

incidence angle based on this position.

In light of this problem in generating an incidence angle product, I decided to use the
simple physical models introduced in section 5.3 to investigate the theoretical impact of
the different ERS-2 image geometries on backscatter. The aim was to assess the
implication of using image ratios on images from different orbit tracks that have been

accurately geometrically corrected.

5.5 Effect of imaging geometry

A (dry snow) reference SAR image from the same imaging geometry was not available
for one image at Joatka (05.06.99) and potentially not available at Abisko depending on
snow conditions. At Dovrefjell, a reference scene was available for each image track,
but the same analysis was undertaken. It was understood that the difference in the ERS-
2 image track resﬁlted in a different incidence angle for identical ground locations
between the images from different tracks. Table 5.1 provides an example of difference
in incidence angle for a location at the centre of each study area for different image
tracks. The difference depends on latitude of the study site, because this influenced the

overlap of the SAR scenes. The difference is less than 2° at Joatka and Abisko.
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Table 5.1. Incidence angle for different image tracks at each study site.

. Centre of study area Image Image
Site Date 0
(lat., long.) track, frame row, col

21/06/99 394, 2187 5410,4774  23.72°
05/06/99 165, 2187 4688,2650 21.85°
02/04/99 251, 2223 2833,5759  24.62°
21/04/99  022,2223 1907, 3466  22.62°
03/05/00 423, 2349 2009,2954 22.11°
19/05/00 151, 2349 3077,5798  24.62°

Joatka 69.75 °N, 24.00 °E

Abisko 68.35 °N, 18.81 °E

Dovrefjell 62.3°N, 09.61 °E

Using & from table 5.1 and the topographic correction models from section 3.5, the
theoretical impact of the different imaging geometries can be quantified. Table 5.2
shows the value of the correction functions in decibels c(8)q4p for the different image
tracks used at each site. Table 5.3 shows the modelled difference in backscatter for each

image track.

Table 5.2. Backscatter correction functions (dB) for incidence angle of difference image tracks

relative to reference incidence angle (23°).

Joatka Abisko Dovre
Track 165 394 022 251 423 151
Incidence angle  21.85°  23.72° 22.62° 24.62° 22.11° 24.62°
Cosine -0.036 0.024  -0.012 0.054 -0.036 0.054
Cos? -0.072  0.047 -0.024  0.108 -0.072  0.108
Inverse sine -0.211  0.126 -0.068  0.278 -0.211  0.278
Muhleman -0.525 0.318 -0.171  0.705 -0.525 0.705

Table 5.3. Modelled difference in backscatter (dB) between image tracks

Difference in backscatter (dB)

Model Joatka  Abisko Dovrefjell
Cosine 0.06 0.066 0.09

Cos? 0.119 0.132 0.18

Sine (Laur) 0.337  0.346 0.489
Muhleman  0.843  0.876 1.23
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The impact of different image track is dependent on latitude because this determines the
overlap between tracks. The cosine models produce a small difference in backscatter for
the different image tracks, whereas the inverse sine model gives values between 0.3 to
0.5 dB depending on the site. The Muhleman models produce the greatest difference,
between 0.8 to 1.2 dB.

5.6 implementation of incidence angle correction

The correction models in section 5.3 were used in section 5.5 to assess to assess the
influence of different imaging geometry between reference and other images.
Essentially, if the inverse sine correction were implemented, then the correction applied
to images of different image rack would be differ by less than 0.35 dB at Joatka and
Abisko. Since only Joatka and Abisko are affected by the problem of different orbit
tracks for a reference and a change image, it was reasonably assumed that image
ratioing of all images could be undertaken. It is very likely that the impact of geometric
correction and (unresolved) speckle on backscatter will be greater than the impact of

different orbit tracks.

5.6.1 Inverse sine correction

The incidence angle normalisation given in equation 5.13 was implemented within ERS
SAR Toolbox. This correction was undertaken following speckle filtering but before
geometric correction, meaning that the imagery is in nominal ground range. Therefore,
within SAR Toolbox, flat terrain is assumed and the incidence angle only varies from
approximately 19.5° at near range to approximately 26.5° at far range. In addition to
equation 5.13, Laur et al. (1998) include a calibration constant, which is dependent on
the image processing facility. Therefore, for ERS-2 PRI products, incidence angle —

normalised backscatter was calculated according to:

0! =00~ 27
k sina

Equation 5.16

where k is the calibration constant = 666110 for imagery pre-processed at UKPAF (UK

Processing and Archiving Facility).

Following the application of this correction, the geometric correction was implemented
as in section 5.2. The implementation of image processing is illustrated in figure 5.3.

This figure summarises the application of the speckle filter, backscatter correction, and

76






5.7 Discussion

Topography is known to have a major influence on radar backscatter (e.g. Domik et al.
(1988); Bayer er al. (1991); Hinse et al. (1988); Guneriussen (1997)). The removal of
the topographic effects is often a primary consideration for most SAR studies because
the variation in backscatter as a function of incidence angle essentially dominates

variation due to other factors, which are the factors of interest.

Simple physical models are often used to “correct” images for the effects of incidence
angle. However, it was shown that the magnitude of the correction of backscatter differs
substantially depending on model selection, therefore the choice of model is important.
Often, an empirical relationship is used, which means that correction is site specific.
The comparison of correction models was conducted as part of an assessment of the
impact of the different imaging geometry of the ERS-2 images at Abisko and Joatka.
The impact of differences in incidence angle of 2° or less for the different image tracks
was found to have a theoretical impact of less than 0.35 dB for flat terrain. However,
these simple models do not take into account surface roughness. There could possibly
be a change in effective surface roughness in addition to the effects of the change in

incidence angle.

An examination of the correction models is relevant in the context of SAR systems in
which the acquisition geometries are more variable. The image modes offered by
Radarsat and Envisat can result in highly variable SAR acquisition geometries and
therefore increase the need for application of incidence angle correction models for
images over mountainous terrain. Consideration of which simple model to apply is more
important given the very wide range of incidence angles possible with such SAR
systems. Development of software tools to create accurate maps of incidence angle is
required, otherwise application of SAR imagery to a study may require processing

beyond the capabilities of many current users.

A correction for topographic effects must also consider the resolution or scale of the
DEM. While not explicitly considered here, we must recognise that slope, including
slope in the direction of the incident radar, is a property of scale. Teillet et al. (1985)
reported that simple cosine based corrections were inadequate and ov